gdb/
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright (C) 1988-1989, 1991-1992, 1994, 1996, 2000-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "observer.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbthread.h"
27 #include "gdbcore.h"
28 #include "regcache.h"
29 #include "gdb_assert.h"
30 #include "target.h"
31 #include "linux-nat.h"
32
33 #include <stdint.h>
34 #include <sys/types.h>
35 #include <sys/param.h>
36 #include <signal.h>
37 #include <sys/user.h>
38 #include <sys/ioctl.h>
39 #include "gdb_wait.h"
40 #include <fcntl.h>
41 #include <sys/procfs.h>
42 #include <sys/ptrace.h>
43
44 /* Prototypes for supply_gregset etc. */
45 #include "gregset.h"
46 #include "ppc-tdep.h"
47 #include "ppc-linux-tdep.h"
48
49 /* Required when using the AUXV. */
50 #include "elf/common.h"
51 #include "auxv.h"
52
53 /* This sometimes isn't defined. */
54 #ifndef PT_ORIG_R3
55 #define PT_ORIG_R3 34
56 #endif
57 #ifndef PT_TRAP
58 #define PT_TRAP 40
59 #endif
60
61 /* The PPC_FEATURE_* defines should be provided by <asm/cputable.h>.
62 If they aren't, we can provide them ourselves (their values are fixed
63 because they are part of the kernel ABI). They are used in the AT_HWCAP
64 entry of the AUXV. */
65 #ifndef PPC_FEATURE_CELL
66 #define PPC_FEATURE_CELL 0x00010000
67 #endif
68 #ifndef PPC_FEATURE_BOOKE
69 #define PPC_FEATURE_BOOKE 0x00008000
70 #endif
71 #ifndef PPC_FEATURE_HAS_DFP
72 #define PPC_FEATURE_HAS_DFP 0x00000400 /* Decimal Floating Point. */
73 #endif
74
75 /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
76 configure time check. Some older glibc's (for instance 2.2.1)
77 don't have a specific powerpc version of ptrace.h, and fall back on
78 a generic one. In such cases, sys/ptrace.h defines
79 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
80 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
81 PTRACE_SETVRREGS to be. This also makes a configury check pretty
82 much useless. */
83
84 /* These definitions should really come from the glibc header files,
85 but Glibc doesn't know about the vrregs yet. */
86 #ifndef PTRACE_GETVRREGS
87 #define PTRACE_GETVRREGS 18
88 #define PTRACE_SETVRREGS 19
89 #endif
90
91 /* PTRACE requests for POWER7 VSX registers. */
92 #ifndef PTRACE_GETVSXREGS
93 #define PTRACE_GETVSXREGS 27
94 #define PTRACE_SETVSXREGS 28
95 #endif
96
97 /* Similarly for the ptrace requests for getting / setting the SPE
98 registers (ev0 -- ev31, acc, and spefscr). See the description of
99 gdb_evrregset_t for details. */
100 #ifndef PTRACE_GETEVRREGS
101 #define PTRACE_GETEVRREGS 20
102 #define PTRACE_SETEVRREGS 21
103 #endif
104
105 /* Similarly for the hardware watchpoint support. These requests are used
106 when the BookE kernel interface is not available. */
107 #ifndef PTRACE_GET_DEBUGREG
108 #define PTRACE_GET_DEBUGREG 25
109 #endif
110 #ifndef PTRACE_SET_DEBUGREG
111 #define PTRACE_SET_DEBUGREG 26
112 #endif
113 #ifndef PTRACE_GETSIGINFO
114 #define PTRACE_GETSIGINFO 0x4202
115 #endif
116
117 /* These requests are used when the BookE kernel interface is available.
118 It exposes the additional debug features of BookE processors, such as
119 ranged breakpoints and watchpoints and hardware-accelerated condition
120 evaluation. */
121 #ifndef PPC_PTRACE_GETHWDBGINFO
122
123 /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the new BookE
124 interface is not present in ptrace.h, so we'll have to pretty much include
125 it all here so that the code at least compiles on older systems. */
126 #define PPC_PTRACE_GETHWDBGINFO 0x89
127 #define PPC_PTRACE_SETHWDEBUG 0x88
128 #define PPC_PTRACE_DELHWDEBUG 0x87
129
130 struct ppc_debug_info
131 {
132 uint32_t version; /* Only version 1 exists to date. */
133 uint32_t num_instruction_bps;
134 uint32_t num_data_bps;
135 uint32_t num_condition_regs;
136 uint32_t data_bp_alignment;
137 uint32_t sizeof_condition; /* size of the DVC register. */
138 uint64_t features;
139 };
140
141 /* Features will have bits indicating whether there is support for: */
142 #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
143 #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
144 #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
145 #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
146
147 struct ppc_hw_breakpoint
148 {
149 uint32_t version; /* currently, version must be 1 */
150 uint32_t trigger_type; /* only some combinations allowed */
151 uint32_t addr_mode; /* address match mode */
152 uint32_t condition_mode; /* break/watchpoint condition flags */
153 uint64_t addr; /* break/watchpoint address */
154 uint64_t addr2; /* range end or mask */
155 uint64_t condition_value; /* contents of the DVC register */
156 };
157
158 /* Trigger type. */
159 #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
160 #define PPC_BREAKPOINT_TRIGGER_READ 0x2
161 #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
162 #define PPC_BREAKPOINT_TRIGGER_RW 0x6
163
164 /* Address mode. */
165 #define PPC_BREAKPOINT_MODE_EXACT 0x0
166 #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
167 #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
168 #define PPC_BREAKPOINT_MODE_MASK 0x3
169
170 /* Condition mode. */
171 #define PPC_BREAKPOINT_CONDITION_NONE 0x0
172 #define PPC_BREAKPOINT_CONDITION_AND 0x1
173 #define PPC_BREAKPOINT_CONDITION_EXACT 0x1
174 #define PPC_BREAKPOINT_CONDITION_OR 0x2
175 #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
176 #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
177 #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
178 #define PPC_BREAKPOINT_CONDITION_BE(n) \
179 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
180 #endif /* PPC_PTRACE_GETHWDBGINFO */
181
182
183
184 /* Similarly for the general-purpose (gp0 -- gp31)
185 and floating-point registers (fp0 -- fp31). */
186 #ifndef PTRACE_GETREGS
187 #define PTRACE_GETREGS 12
188 #endif
189 #ifndef PTRACE_SETREGS
190 #define PTRACE_SETREGS 13
191 #endif
192 #ifndef PTRACE_GETFPREGS
193 #define PTRACE_GETFPREGS 14
194 #endif
195 #ifndef PTRACE_SETFPREGS
196 #define PTRACE_SETFPREGS 15
197 #endif
198
199 /* This oddity is because the Linux kernel defines elf_vrregset_t as
200 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
201 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
202 the vrsave as an extra 4 bytes at the end. I opted for creating a
203 flat array of chars, so that it is easier to manipulate for gdb.
204
205 There are 32 vector registers 16 bytes longs, plus a VSCR register
206 which is only 4 bytes long, but is fetched as a 16 bytes
207 quantity. Up to here we have the elf_vrregset_t structure.
208 Appended to this there is space for the VRSAVE register: 4 bytes.
209 Even though this vrsave register is not included in the regset
210 typedef, it is handled by the ptrace requests.
211
212 Note that GNU/Linux doesn't support little endian PPC hardware,
213 therefore the offset at which the real value of the VSCR register
214 is located will be always 12 bytes.
215
216 The layout is like this (where x is the actual value of the vscr reg): */
217
218 /* *INDENT-OFF* */
219 /*
220 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
221 <-------> <-------><-------><->
222 VR0 VR31 VSCR VRSAVE
223 */
224 /* *INDENT-ON* */
225
226 #define SIZEOF_VRREGS 33*16+4
227
228 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
229
230 /* This is the layout of the POWER7 VSX registers and the way they overlap
231 with the existing FPR and VMX registers.
232
233 VSR doubleword 0 VSR doubleword 1
234 ----------------------------------------------------------------
235 VSR[0] | FPR[0] | |
236 ----------------------------------------------------------------
237 VSR[1] | FPR[1] | |
238 ----------------------------------------------------------------
239 | ... | |
240 | ... | |
241 ----------------------------------------------------------------
242 VSR[30] | FPR[30] | |
243 ----------------------------------------------------------------
244 VSR[31] | FPR[31] | |
245 ----------------------------------------------------------------
246 VSR[32] | VR[0] |
247 ----------------------------------------------------------------
248 VSR[33] | VR[1] |
249 ----------------------------------------------------------------
250 | ... |
251 | ... |
252 ----------------------------------------------------------------
253 VSR[62] | VR[30] |
254 ----------------------------------------------------------------
255 VSR[63] | VR[31] |
256 ----------------------------------------------------------------
257
258 VSX has 64 128bit registers. The first 32 registers overlap with
259 the FP registers (doubleword 0) and hence extend them with additional
260 64 bits (doubleword 1). The other 32 regs overlap with the VMX
261 registers. */
262 #define SIZEOF_VSXREGS 32*8
263
264 typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
265
266 /* On PPC processors that support the Signal Processing Extension
267 (SPE) APU, the general-purpose registers are 64 bits long.
268 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
269 ptrace calls only access the lower half of each register, to allow
270 them to behave the same way they do on non-SPE systems. There's a
271 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
272 read and write the top halves of all the general-purpose registers
273 at once, along with some SPE-specific registers.
274
275 GDB itself continues to claim the general-purpose registers are 32
276 bits long. It has unnamed raw registers that hold the upper halves
277 of the gprs, and the full 64-bit SIMD views of the registers,
278 'ev0' -- 'ev31', are pseudo-registers that splice the top and
279 bottom halves together.
280
281 This is the structure filled in by PTRACE_GETEVRREGS and written to
282 the inferior's registers by PTRACE_SETEVRREGS. */
283 struct gdb_evrregset_t
284 {
285 unsigned long evr[32];
286 unsigned long long acc;
287 unsigned long spefscr;
288 };
289
290 /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
291 PTRACE_SETVSXREGS requests, for reading and writing the VSX
292 POWER7 registers 0 through 31. Zero if we've tried one of them and
293 gotten an error. Note that VSX registers 32 through 63 overlap
294 with VR registers 0 through 31. */
295 int have_ptrace_getsetvsxregs = 1;
296
297 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
298 PTRACE_SETVRREGS requests, for reading and writing the Altivec
299 registers. Zero if we've tried one of them and gotten an
300 error. */
301 int have_ptrace_getvrregs = 1;
302
303 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
304 PTRACE_SETEVRREGS requests, for reading and writing the SPE
305 registers. Zero if we've tried one of them and gotten an
306 error. */
307 int have_ptrace_getsetevrregs = 1;
308
309 /* Non-zero if our kernel may support the PTRACE_GETREGS and
310 PTRACE_SETREGS requests, for reading and writing the
311 general-purpose registers. Zero if we've tried one of
312 them and gotten an error. */
313 int have_ptrace_getsetregs = 1;
314
315 /* Non-zero if our kernel may support the PTRACE_GETFPREGS and
316 PTRACE_SETFPREGS requests, for reading and writing the
317 floating-pointers registers. Zero if we've tried one of
318 them and gotten an error. */
319 int have_ptrace_getsetfpregs = 1;
320
321 /* *INDENT-OFF* */
322 /* registers layout, as presented by the ptrace interface:
323 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
324 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
325 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
326 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
327 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
328 PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
329 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
330 PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
331 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
332 PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
333 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
334 PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
335 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
336 /* *INDENT_ON * */
337
338 static int
339 ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
340 {
341 int u_addr = -1;
342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
343 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
344 interface, and not the wordsize of the program's ABI. */
345 int wordsize = sizeof (long);
346
347 /* General purpose registers occupy 1 slot each in the buffer. */
348 if (regno >= tdep->ppc_gp0_regnum
349 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
350 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
351
352 /* Floating point regs: eight bytes each in both 32- and 64-bit
353 ptrace interfaces. Thus, two slots each in 32-bit interface, one
354 slot each in 64-bit interface. */
355 if (tdep->ppc_fp0_regnum >= 0
356 && regno >= tdep->ppc_fp0_regnum
357 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
358 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
359
360 /* UISA special purpose registers: 1 slot each. */
361 if (regno == gdbarch_pc_regnum (gdbarch))
362 u_addr = PT_NIP * wordsize;
363 if (regno == tdep->ppc_lr_regnum)
364 u_addr = PT_LNK * wordsize;
365 if (regno == tdep->ppc_cr_regnum)
366 u_addr = PT_CCR * wordsize;
367 if (regno == tdep->ppc_xer_regnum)
368 u_addr = PT_XER * wordsize;
369 if (regno == tdep->ppc_ctr_regnum)
370 u_addr = PT_CTR * wordsize;
371 #ifdef PT_MQ
372 if (regno == tdep->ppc_mq_regnum)
373 u_addr = PT_MQ * wordsize;
374 #endif
375 if (regno == tdep->ppc_ps_regnum)
376 u_addr = PT_MSR * wordsize;
377 if (regno == PPC_ORIG_R3_REGNUM)
378 u_addr = PT_ORIG_R3 * wordsize;
379 if (regno == PPC_TRAP_REGNUM)
380 u_addr = PT_TRAP * wordsize;
381 if (tdep->ppc_fpscr_regnum >= 0
382 && regno == tdep->ppc_fpscr_regnum)
383 {
384 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
385 kernel headers incorrectly contained the 32-bit definition of
386 PT_FPSCR. For the 32-bit definition, floating-point
387 registers occupy two 32-bit "slots", and the FPSCR lives in
388 the second half of such a slot-pair (hence +1). For 64-bit,
389 the FPSCR instead occupies the full 64-bit 2-word-slot and
390 hence no adjustment is necessary. Hack around this. */
391 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
392 u_addr = (48 + 32) * wordsize;
393 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
394 slot and not just its second word. The PT_FPSCR supplied when
395 GDB is compiled as a 32-bit app doesn't reflect this. */
396 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
397 && PT_FPSCR == (48 + 2*32 + 1))
398 u_addr = (48 + 2*32) * wordsize;
399 else
400 u_addr = PT_FPSCR * wordsize;
401 }
402 return u_addr;
403 }
404
405 /* The Linux kernel ptrace interface for POWER7 VSX registers uses the
406 registers set mechanism, as opposed to the interface for all the
407 other registers, that stores/fetches each register individually. */
408 static void
409 fetch_vsx_register (struct regcache *regcache, int tid, int regno)
410 {
411 int ret;
412 gdb_vsxregset_t regs;
413 struct gdbarch *gdbarch = get_regcache_arch (regcache);
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
416
417 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
418 if (ret < 0)
419 {
420 if (errno == EIO)
421 {
422 have_ptrace_getsetvsxregs = 0;
423 return;
424 }
425 perror_with_name (_("Unable to fetch VSX register"));
426 }
427
428 regcache_raw_supply (regcache, regno,
429 regs + (regno - tdep->ppc_vsr0_upper_regnum)
430 * vsxregsize);
431 }
432
433 /* The Linux kernel ptrace interface for AltiVec registers uses the
434 registers set mechanism, as opposed to the interface for all the
435 other registers, that stores/fetches each register individually. */
436 static void
437 fetch_altivec_register (struct regcache *regcache, int tid, int regno)
438 {
439 int ret;
440 int offset = 0;
441 gdb_vrregset_t regs;
442 struct gdbarch *gdbarch = get_regcache_arch (regcache);
443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
444 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
445
446 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
447 if (ret < 0)
448 {
449 if (errno == EIO)
450 {
451 have_ptrace_getvrregs = 0;
452 return;
453 }
454 perror_with_name (_("Unable to fetch AltiVec register"));
455 }
456
457 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
458 long on the hardware. We deal only with the lower 4 bytes of the
459 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
460 there is no need to define an offset for it. */
461 if (regno == (tdep->ppc_vrsave_regnum - 1))
462 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
463
464 regcache_raw_supply (regcache, regno,
465 regs + (regno
466 - tdep->ppc_vr0_regnum) * vrregsize + offset);
467 }
468
469 /* Fetch the top 32 bits of TID's general-purpose registers and the
470 SPE-specific registers, and place the results in EVRREGSET. If we
471 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
472 zeros.
473
474 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
475 PTRACE_SETEVRREGS requests are supported is isolated here, and in
476 set_spe_registers. */
477 static void
478 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
479 {
480 if (have_ptrace_getsetevrregs)
481 {
482 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
483 return;
484 else
485 {
486 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
487 we just return zeros. */
488 if (errno == EIO)
489 have_ptrace_getsetevrregs = 0;
490 else
491 /* Anything else needs to be reported. */
492 perror_with_name (_("Unable to fetch SPE registers"));
493 }
494 }
495
496 memset (evrregset, 0, sizeof (*evrregset));
497 }
498
499 /* Supply values from TID for SPE-specific raw registers: the upper
500 halves of the GPRs, the accumulator, and the spefscr. REGNO must
501 be the number of an upper half register, acc, spefscr, or -1 to
502 supply the values of all registers. */
503 static void
504 fetch_spe_register (struct regcache *regcache, int tid, int regno)
505 {
506 struct gdbarch *gdbarch = get_regcache_arch (regcache);
507 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
508 struct gdb_evrregset_t evrregs;
509
510 gdb_assert (sizeof (evrregs.evr[0])
511 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
512 gdb_assert (sizeof (evrregs.acc)
513 == register_size (gdbarch, tdep->ppc_acc_regnum));
514 gdb_assert (sizeof (evrregs.spefscr)
515 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
516
517 get_spe_registers (tid, &evrregs);
518
519 if (regno == -1)
520 {
521 int i;
522
523 for (i = 0; i < ppc_num_gprs; i++)
524 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
525 &evrregs.evr[i]);
526 }
527 else if (tdep->ppc_ev0_upper_regnum <= regno
528 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
529 regcache_raw_supply (regcache, regno,
530 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
531
532 if (regno == -1
533 || regno == tdep->ppc_acc_regnum)
534 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
535
536 if (regno == -1
537 || regno == tdep->ppc_spefscr_regnum)
538 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
539 &evrregs.spefscr);
540 }
541
542 static void
543 fetch_register (struct regcache *regcache, int tid, int regno)
544 {
545 struct gdbarch *gdbarch = get_regcache_arch (regcache);
546 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
547 /* This isn't really an address. But ptrace thinks of it as one. */
548 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
549 int bytes_transferred;
550 unsigned int offset; /* Offset of registers within the u area. */
551 char buf[MAX_REGISTER_SIZE];
552
553 if (altivec_register_p (gdbarch, regno))
554 {
555 /* If this is the first time through, or if it is not the first
556 time through, and we have comfirmed that there is kernel
557 support for such a ptrace request, then go and fetch the
558 register. */
559 if (have_ptrace_getvrregs)
560 {
561 fetch_altivec_register (regcache, tid, regno);
562 return;
563 }
564 /* If we have discovered that there is no ptrace support for
565 AltiVec registers, fall through and return zeroes, because
566 regaddr will be -1 in this case. */
567 }
568 if (vsx_register_p (gdbarch, regno))
569 {
570 if (have_ptrace_getsetvsxregs)
571 {
572 fetch_vsx_register (regcache, tid, regno);
573 return;
574 }
575 }
576 else if (spe_register_p (gdbarch, regno))
577 {
578 fetch_spe_register (regcache, tid, regno);
579 return;
580 }
581
582 if (regaddr == -1)
583 {
584 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
585 regcache_raw_supply (regcache, regno, buf);
586 return;
587 }
588
589 /* Read the raw register using sizeof(long) sized chunks. On a
590 32-bit platform, 64-bit floating-point registers will require two
591 transfers. */
592 for (bytes_transferred = 0;
593 bytes_transferred < register_size (gdbarch, regno);
594 bytes_transferred += sizeof (long))
595 {
596 long l;
597
598 errno = 0;
599 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
600 regaddr += sizeof (long);
601 if (errno != 0)
602 {
603 char message[128];
604 sprintf (message, "reading register %s (#%d)",
605 gdbarch_register_name (gdbarch, regno), regno);
606 perror_with_name (message);
607 }
608 memcpy (&buf[bytes_transferred], &l, sizeof (l));
609 }
610
611 /* Now supply the register. Keep in mind that the regcache's idea
612 of the register's size may not be a multiple of sizeof
613 (long). */
614 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
615 {
616 /* Little-endian values are always found at the left end of the
617 bytes transferred. */
618 regcache_raw_supply (regcache, regno, buf);
619 }
620 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
621 {
622 /* Big-endian values are found at the right end of the bytes
623 transferred. */
624 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
625 regcache_raw_supply (regcache, regno, buf + padding);
626 }
627 else
628 internal_error (__FILE__, __LINE__,
629 _("fetch_register: unexpected byte order: %d"),
630 gdbarch_byte_order (gdbarch));
631 }
632
633 static void
634 supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
635 {
636 int i;
637 struct gdbarch *gdbarch = get_regcache_arch (regcache);
638 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
639 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
640
641 for (i = 0; i < ppc_num_vshrs; i++)
642 {
643 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
644 *vsxregsetp + i * vsxregsize);
645 }
646 }
647
648 static void
649 supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
650 {
651 int i;
652 struct gdbarch *gdbarch = get_regcache_arch (regcache);
653 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
654 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
655 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
656 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
657
658 for (i = 0; i < num_of_vrregs; i++)
659 {
660 /* The last 2 registers of this set are only 32 bit long, not
661 128. However an offset is necessary only for VSCR because it
662 occupies a whole vector, while VRSAVE occupies a full 4 bytes
663 slot. */
664 if (i == (num_of_vrregs - 2))
665 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
666 *vrregsetp + i * vrregsize + offset);
667 else
668 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
669 *vrregsetp + i * vrregsize);
670 }
671 }
672
673 static void
674 fetch_vsx_registers (struct regcache *regcache, int tid)
675 {
676 int ret;
677 gdb_vsxregset_t regs;
678
679 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
680 if (ret < 0)
681 {
682 if (errno == EIO)
683 {
684 have_ptrace_getsetvsxregs = 0;
685 return;
686 }
687 perror_with_name (_("Unable to fetch VSX registers"));
688 }
689 supply_vsxregset (regcache, &regs);
690 }
691
692 static void
693 fetch_altivec_registers (struct regcache *regcache, int tid)
694 {
695 int ret;
696 gdb_vrregset_t regs;
697
698 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
699 if (ret < 0)
700 {
701 if (errno == EIO)
702 {
703 have_ptrace_getvrregs = 0;
704 return;
705 }
706 perror_with_name (_("Unable to fetch AltiVec registers"));
707 }
708 supply_vrregset (regcache, &regs);
709 }
710
711 /* This function actually issues the request to ptrace, telling
712 it to get all general-purpose registers and put them into the
713 specified regset.
714
715 If the ptrace request does not exist, this function returns 0
716 and properly sets the have_ptrace_* flag. If the request fails,
717 this function calls perror_with_name. Otherwise, if the request
718 succeeds, then the regcache gets filled and 1 is returned. */
719 static int
720 fetch_all_gp_regs (struct regcache *regcache, int tid)
721 {
722 struct gdbarch *gdbarch = get_regcache_arch (regcache);
723 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
724 gdb_gregset_t gregset;
725
726 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
727 {
728 if (errno == EIO)
729 {
730 have_ptrace_getsetregs = 0;
731 return 0;
732 }
733 perror_with_name (_("Couldn't get general-purpose registers."));
734 }
735
736 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
737
738 return 1;
739 }
740
741 /* This is a wrapper for the fetch_all_gp_regs function. It is
742 responsible for verifying if this target has the ptrace request
743 that can be used to fetch all general-purpose registers at one
744 shot. If it doesn't, then we should fetch them using the
745 old-fashioned way, which is to iterate over the registers and
746 request them one by one. */
747 static void
748 fetch_gp_regs (struct regcache *regcache, int tid)
749 {
750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
751 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
752 int i;
753
754 if (have_ptrace_getsetregs)
755 if (fetch_all_gp_regs (regcache, tid))
756 return;
757
758 /* If we've hit this point, it doesn't really matter which
759 architecture we are using. We just need to read the
760 registers in the "old-fashioned way". */
761 for (i = 0; i < ppc_num_gprs; i++)
762 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
763 }
764
765 /* This function actually issues the request to ptrace, telling
766 it to get all floating-point registers and put them into the
767 specified regset.
768
769 If the ptrace request does not exist, this function returns 0
770 and properly sets the have_ptrace_* flag. If the request fails,
771 this function calls perror_with_name. Otherwise, if the request
772 succeeds, then the regcache gets filled and 1 is returned. */
773 static int
774 fetch_all_fp_regs (struct regcache *regcache, int tid)
775 {
776 gdb_fpregset_t fpregs;
777
778 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
779 {
780 if (errno == EIO)
781 {
782 have_ptrace_getsetfpregs = 0;
783 return 0;
784 }
785 perror_with_name (_("Couldn't get floating-point registers."));
786 }
787
788 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
789
790 return 1;
791 }
792
793 /* This is a wrapper for the fetch_all_fp_regs function. It is
794 responsible for verifying if this target has the ptrace request
795 that can be used to fetch all floating-point registers at one
796 shot. If it doesn't, then we should fetch them using the
797 old-fashioned way, which is to iterate over the registers and
798 request them one by one. */
799 static void
800 fetch_fp_regs (struct regcache *regcache, int tid)
801 {
802 struct gdbarch *gdbarch = get_regcache_arch (regcache);
803 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
804 int i;
805
806 if (have_ptrace_getsetfpregs)
807 if (fetch_all_fp_regs (regcache, tid))
808 return;
809
810 /* If we've hit this point, it doesn't really matter which
811 architecture we are using. We just need to read the
812 registers in the "old-fashioned way". */
813 for (i = 0; i < ppc_num_fprs; i++)
814 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
815 }
816
817 static void
818 fetch_ppc_registers (struct regcache *regcache, int tid)
819 {
820 int i;
821 struct gdbarch *gdbarch = get_regcache_arch (regcache);
822 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
823
824 fetch_gp_regs (regcache, tid);
825 if (tdep->ppc_fp0_regnum >= 0)
826 fetch_fp_regs (regcache, tid);
827 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
828 if (tdep->ppc_ps_regnum != -1)
829 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
830 if (tdep->ppc_cr_regnum != -1)
831 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
832 if (tdep->ppc_lr_regnum != -1)
833 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
834 if (tdep->ppc_ctr_regnum != -1)
835 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
836 if (tdep->ppc_xer_regnum != -1)
837 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
838 if (tdep->ppc_mq_regnum != -1)
839 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
840 if (ppc_linux_trap_reg_p (gdbarch))
841 {
842 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
843 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
844 }
845 if (tdep->ppc_fpscr_regnum != -1)
846 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
847 if (have_ptrace_getvrregs)
848 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
849 fetch_altivec_registers (regcache, tid);
850 if (have_ptrace_getsetvsxregs)
851 if (tdep->ppc_vsr0_upper_regnum != -1)
852 fetch_vsx_registers (regcache, tid);
853 if (tdep->ppc_ev0_upper_regnum >= 0)
854 fetch_spe_register (regcache, tid, -1);
855 }
856
857 /* Fetch registers from the child process. Fetch all registers if
858 regno == -1, otherwise fetch all general registers or all floating
859 point registers depending upon the value of regno. */
860 static void
861 ppc_linux_fetch_inferior_registers (struct target_ops *ops,
862 struct regcache *regcache, int regno)
863 {
864 /* Overload thread id onto process id. */
865 int tid = TIDGET (inferior_ptid);
866
867 /* No thread id, just use process id. */
868 if (tid == 0)
869 tid = PIDGET (inferior_ptid);
870
871 if (regno == -1)
872 fetch_ppc_registers (regcache, tid);
873 else
874 fetch_register (regcache, tid, regno);
875 }
876
877 /* Store one VSX register. */
878 static void
879 store_vsx_register (const struct regcache *regcache, int tid, int regno)
880 {
881 int ret;
882 gdb_vsxregset_t regs;
883 struct gdbarch *gdbarch = get_regcache_arch (regcache);
884 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
885 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
886
887 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
888 if (ret < 0)
889 {
890 if (errno == EIO)
891 {
892 have_ptrace_getsetvsxregs = 0;
893 return;
894 }
895 perror_with_name (_("Unable to fetch VSX register"));
896 }
897
898 regcache_raw_collect (regcache, regno, regs +
899 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
900
901 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
902 if (ret < 0)
903 perror_with_name (_("Unable to store VSX register"));
904 }
905
906 /* Store one register. */
907 static void
908 store_altivec_register (const struct regcache *regcache, int tid, int regno)
909 {
910 int ret;
911 int offset = 0;
912 gdb_vrregset_t regs;
913 struct gdbarch *gdbarch = get_regcache_arch (regcache);
914 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
915 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
916
917 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
918 if (ret < 0)
919 {
920 if (errno == EIO)
921 {
922 have_ptrace_getvrregs = 0;
923 return;
924 }
925 perror_with_name (_("Unable to fetch AltiVec register"));
926 }
927
928 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
929 long on the hardware. */
930 if (regno == (tdep->ppc_vrsave_regnum - 1))
931 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
932
933 regcache_raw_collect (regcache, regno,
934 regs + (regno
935 - tdep->ppc_vr0_regnum) * vrregsize + offset);
936
937 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
938 if (ret < 0)
939 perror_with_name (_("Unable to store AltiVec register"));
940 }
941
942 /* Assuming TID referrs to an SPE process, set the top halves of TID's
943 general-purpose registers and its SPE-specific registers to the
944 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
945 nothing.
946
947 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
948 PTRACE_SETEVRREGS requests are supported is isolated here, and in
949 get_spe_registers. */
950 static void
951 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
952 {
953 if (have_ptrace_getsetevrregs)
954 {
955 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
956 return;
957 else
958 {
959 /* EIO means that the PTRACE_SETEVRREGS request isn't
960 supported; we fail silently, and don't try the call
961 again. */
962 if (errno == EIO)
963 have_ptrace_getsetevrregs = 0;
964 else
965 /* Anything else needs to be reported. */
966 perror_with_name (_("Unable to set SPE registers"));
967 }
968 }
969 }
970
971 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
972 If REGNO is -1, write the values of all the SPE-specific
973 registers. */
974 static void
975 store_spe_register (const struct regcache *regcache, int tid, int regno)
976 {
977 struct gdbarch *gdbarch = get_regcache_arch (regcache);
978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
979 struct gdb_evrregset_t evrregs;
980
981 gdb_assert (sizeof (evrregs.evr[0])
982 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
983 gdb_assert (sizeof (evrregs.acc)
984 == register_size (gdbarch, tdep->ppc_acc_regnum));
985 gdb_assert (sizeof (evrregs.spefscr)
986 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
987
988 if (regno == -1)
989 /* Since we're going to write out every register, the code below
990 should store to every field of evrregs; if that doesn't happen,
991 make it obvious by initializing it with suspicious values. */
992 memset (&evrregs, 42, sizeof (evrregs));
993 else
994 /* We can only read and write the entire EVR register set at a
995 time, so to write just a single register, we do a
996 read-modify-write maneuver. */
997 get_spe_registers (tid, &evrregs);
998
999 if (regno == -1)
1000 {
1001 int i;
1002
1003 for (i = 0; i < ppc_num_gprs; i++)
1004 regcache_raw_collect (regcache,
1005 tdep->ppc_ev0_upper_regnum + i,
1006 &evrregs.evr[i]);
1007 }
1008 else if (tdep->ppc_ev0_upper_regnum <= regno
1009 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
1010 regcache_raw_collect (regcache, regno,
1011 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1012
1013 if (regno == -1
1014 || regno == tdep->ppc_acc_regnum)
1015 regcache_raw_collect (regcache,
1016 tdep->ppc_acc_regnum,
1017 &evrregs.acc);
1018
1019 if (regno == -1
1020 || regno == tdep->ppc_spefscr_regnum)
1021 regcache_raw_collect (regcache,
1022 tdep->ppc_spefscr_regnum,
1023 &evrregs.spefscr);
1024
1025 /* Write back the modified register set. */
1026 set_spe_registers (tid, &evrregs);
1027 }
1028
1029 static void
1030 store_register (const struct regcache *regcache, int tid, int regno)
1031 {
1032 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1033 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1034 /* This isn't really an address. But ptrace thinks of it as one. */
1035 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
1036 int i;
1037 size_t bytes_to_transfer;
1038 char buf[MAX_REGISTER_SIZE];
1039
1040 if (altivec_register_p (gdbarch, regno))
1041 {
1042 store_altivec_register (regcache, tid, regno);
1043 return;
1044 }
1045 if (vsx_register_p (gdbarch, regno))
1046 {
1047 store_vsx_register (regcache, tid, regno);
1048 return;
1049 }
1050 else if (spe_register_p (gdbarch, regno))
1051 {
1052 store_spe_register (regcache, tid, regno);
1053 return;
1054 }
1055
1056 if (regaddr == -1)
1057 return;
1058
1059 /* First collect the register. Keep in mind that the regcache's
1060 idea of the register's size may not be a multiple of sizeof
1061 (long). */
1062 memset (buf, 0, sizeof buf);
1063 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1064 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1065 {
1066 /* Little-endian values always sit at the left end of the buffer. */
1067 regcache_raw_collect (regcache, regno, buf);
1068 }
1069 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1070 {
1071 /* Big-endian values sit at the right end of the buffer. */
1072 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
1073 regcache_raw_collect (regcache, regno, buf + padding);
1074 }
1075
1076 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
1077 {
1078 long l;
1079
1080 memcpy (&l, &buf[i], sizeof (l));
1081 errno = 0;
1082 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
1083 regaddr += sizeof (long);
1084
1085 if (errno == EIO
1086 && (regno == tdep->ppc_fpscr_regnum
1087 || regno == PPC_ORIG_R3_REGNUM
1088 || regno == PPC_TRAP_REGNUM))
1089 {
1090 /* Some older kernel versions don't allow fpscr, orig_r3
1091 or trap to be written. */
1092 continue;
1093 }
1094
1095 if (errno != 0)
1096 {
1097 char message[128];
1098 sprintf (message, "writing register %s (#%d)",
1099 gdbarch_register_name (gdbarch, regno), regno);
1100 perror_with_name (message);
1101 }
1102 }
1103 }
1104
1105 static void
1106 fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1107 {
1108 int i;
1109 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1110 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1111 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1112
1113 for (i = 0; i < ppc_num_vshrs; i++)
1114 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1115 *vsxregsetp + i * vsxregsize);
1116 }
1117
1118 static void
1119 fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
1120 {
1121 int i;
1122 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1123 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1124 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
1125 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1126 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
1127
1128 for (i = 0; i < num_of_vrregs; i++)
1129 {
1130 /* The last 2 registers of this set are only 32 bit long, not
1131 128, but only VSCR is fetched as a 16 bytes quantity. */
1132 if (i == (num_of_vrregs - 2))
1133 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1134 *vrregsetp + i * vrregsize + offset);
1135 else
1136 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1137 *vrregsetp + i * vrregsize);
1138 }
1139 }
1140
1141 static void
1142 store_vsx_registers (const struct regcache *regcache, int tid)
1143 {
1144 int ret;
1145 gdb_vsxregset_t regs;
1146
1147 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1148 if (ret < 0)
1149 {
1150 if (errno == EIO)
1151 {
1152 have_ptrace_getsetvsxregs = 0;
1153 return;
1154 }
1155 perror_with_name (_("Couldn't get VSX registers"));
1156 }
1157
1158 fill_vsxregset (regcache, &regs);
1159
1160 if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
1161 perror_with_name (_("Couldn't write VSX registers"));
1162 }
1163
1164 static void
1165 store_altivec_registers (const struct regcache *regcache, int tid)
1166 {
1167 int ret;
1168 gdb_vrregset_t regs;
1169
1170 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
1171 if (ret < 0)
1172 {
1173 if (errno == EIO)
1174 {
1175 have_ptrace_getvrregs = 0;
1176 return;
1177 }
1178 perror_with_name (_("Couldn't get AltiVec registers"));
1179 }
1180
1181 fill_vrregset (regcache, &regs);
1182
1183 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
1184 perror_with_name (_("Couldn't write AltiVec registers"));
1185 }
1186
1187 /* This function actually issues the request to ptrace, telling
1188 it to store all general-purpose registers present in the specified
1189 regset.
1190
1191 If the ptrace request does not exist, this function returns 0
1192 and properly sets the have_ptrace_* flag. If the request fails,
1193 this function calls perror_with_name. Otherwise, if the request
1194 succeeds, then the regcache is stored and 1 is returned. */
1195 static int
1196 store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1197 {
1198 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1199 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1200 gdb_gregset_t gregset;
1201
1202 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1203 {
1204 if (errno == EIO)
1205 {
1206 have_ptrace_getsetregs = 0;
1207 return 0;
1208 }
1209 perror_with_name (_("Couldn't get general-purpose registers."));
1210 }
1211
1212 fill_gregset (regcache, &gregset, regno);
1213
1214 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1215 {
1216 if (errno == EIO)
1217 {
1218 have_ptrace_getsetregs = 0;
1219 return 0;
1220 }
1221 perror_with_name (_("Couldn't set general-purpose registers."));
1222 }
1223
1224 return 1;
1225 }
1226
1227 /* This is a wrapper for the store_all_gp_regs function. It is
1228 responsible for verifying if this target has the ptrace request
1229 that can be used to store all general-purpose registers at one
1230 shot. If it doesn't, then we should store them using the
1231 old-fashioned way, which is to iterate over the registers and
1232 store them one by one. */
1233 static void
1234 store_gp_regs (const struct regcache *regcache, int tid, int regno)
1235 {
1236 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1237 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1238 int i;
1239
1240 if (have_ptrace_getsetregs)
1241 if (store_all_gp_regs (regcache, tid, regno))
1242 return;
1243
1244 /* If we hit this point, it doesn't really matter which
1245 architecture we are using. We just need to store the
1246 registers in the "old-fashioned way". */
1247 for (i = 0; i < ppc_num_gprs; i++)
1248 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1249 }
1250
1251 /* This function actually issues the request to ptrace, telling
1252 it to store all floating-point registers present in the specified
1253 regset.
1254
1255 If the ptrace request does not exist, this function returns 0
1256 and properly sets the have_ptrace_* flag. If the request fails,
1257 this function calls perror_with_name. Otherwise, if the request
1258 succeeds, then the regcache is stored and 1 is returned. */
1259 static int
1260 store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1261 {
1262 gdb_fpregset_t fpregs;
1263
1264 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1265 {
1266 if (errno == EIO)
1267 {
1268 have_ptrace_getsetfpregs = 0;
1269 return 0;
1270 }
1271 perror_with_name (_("Couldn't get floating-point registers."));
1272 }
1273
1274 fill_fpregset (regcache, &fpregs, regno);
1275
1276 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1277 {
1278 if (errno == EIO)
1279 {
1280 have_ptrace_getsetfpregs = 0;
1281 return 0;
1282 }
1283 perror_with_name (_("Couldn't set floating-point registers."));
1284 }
1285
1286 return 1;
1287 }
1288
1289 /* This is a wrapper for the store_all_fp_regs function. It is
1290 responsible for verifying if this target has the ptrace request
1291 that can be used to store all floating-point registers at one
1292 shot. If it doesn't, then we should store them using the
1293 old-fashioned way, which is to iterate over the registers and
1294 store them one by one. */
1295 static void
1296 store_fp_regs (const struct regcache *regcache, int tid, int regno)
1297 {
1298 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1300 int i;
1301
1302 if (have_ptrace_getsetfpregs)
1303 if (store_all_fp_regs (regcache, tid, regno))
1304 return;
1305
1306 /* If we hit this point, it doesn't really matter which
1307 architecture we are using. We just need to store the
1308 registers in the "old-fashioned way". */
1309 for (i = 0; i < ppc_num_fprs; i++)
1310 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1311 }
1312
1313 static void
1314 store_ppc_registers (const struct regcache *regcache, int tid)
1315 {
1316 int i;
1317 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1319
1320 store_gp_regs (regcache, tid, -1);
1321 if (tdep->ppc_fp0_regnum >= 0)
1322 store_fp_regs (regcache, tid, -1);
1323 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1324 if (tdep->ppc_ps_regnum != -1)
1325 store_register (regcache, tid, tdep->ppc_ps_regnum);
1326 if (tdep->ppc_cr_regnum != -1)
1327 store_register (regcache, tid, tdep->ppc_cr_regnum);
1328 if (tdep->ppc_lr_regnum != -1)
1329 store_register (regcache, tid, tdep->ppc_lr_regnum);
1330 if (tdep->ppc_ctr_regnum != -1)
1331 store_register (regcache, tid, tdep->ppc_ctr_regnum);
1332 if (tdep->ppc_xer_regnum != -1)
1333 store_register (regcache, tid, tdep->ppc_xer_regnum);
1334 if (tdep->ppc_mq_regnum != -1)
1335 store_register (regcache, tid, tdep->ppc_mq_regnum);
1336 if (tdep->ppc_fpscr_regnum != -1)
1337 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
1338 if (ppc_linux_trap_reg_p (gdbarch))
1339 {
1340 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1341 store_register (regcache, tid, PPC_TRAP_REGNUM);
1342 }
1343 if (have_ptrace_getvrregs)
1344 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1345 store_altivec_registers (regcache, tid);
1346 if (have_ptrace_getsetvsxregs)
1347 if (tdep->ppc_vsr0_upper_regnum != -1)
1348 store_vsx_registers (regcache, tid);
1349 if (tdep->ppc_ev0_upper_regnum >= 0)
1350 store_spe_register (regcache, tid, -1);
1351 }
1352
1353 /* Fetch the AT_HWCAP entry from the aux vector. */
1354 static unsigned long
1355 ppc_linux_get_hwcap (void)
1356 {
1357 CORE_ADDR field;
1358
1359 if (target_auxv_search (&current_target, AT_HWCAP, &field))
1360 return (unsigned long) field;
1361
1362 return 0;
1363 }
1364
1365 /* The cached DABR value, to install in new threads.
1366 This variable is used when we are dealing with non-BookE
1367 processors. */
1368 static long saved_dabr_value;
1369
1370 /* Global structure that will store information about the available
1371 features on this BookE processor. */
1372 static struct ppc_debug_info booke_debug_info;
1373
1374 /* Global variable that holds the maximum number of slots that the
1375 kernel will use. This is only used when the processor is BookE. */
1376 static size_t max_slots_number = 0;
1377
1378 struct hw_break_tuple
1379 {
1380 long slot;
1381 struct ppc_hw_breakpoint *hw_break;
1382 };
1383
1384 /* This is an internal VEC created to store information about *points inserted
1385 for each thread. This is used for BookE processors. */
1386 typedef struct thread_points
1387 {
1388 /* The TID to which this *point relates. */
1389 int tid;
1390 /* Information about the *point, such as its address, type, etc.
1391
1392 Each element inside this vector corresponds to a hardware
1393 breakpoint or watchpoint in the thread represented by TID. The maximum
1394 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1395 the tuple is NULL, then the position in the vector is free. */
1396 struct hw_break_tuple *hw_breaks;
1397 } *thread_points_p;
1398 DEF_VEC_P (thread_points_p);
1399
1400 VEC(thread_points_p) *ppc_threads = NULL;
1401
1402 /* The version of the kernel interface that we will use if the processor is
1403 BookE. */
1404 #define PPC_DEBUG_CURRENT_VERSION 1
1405
1406 /* Returns non-zero if we support the ptrace interface which enables
1407 booke debugging resources. */
1408 static int
1409 have_ptrace_booke_interface (void)
1410 {
1411 static int have_ptrace_booke_interface = -1;
1412
1413 if (have_ptrace_booke_interface == -1)
1414 {
1415 int tid;
1416
1417 tid = TIDGET (inferior_ptid);
1418 if (tid == 0)
1419 tid = PIDGET (inferior_ptid);
1420
1421 /* Check for kernel support for BOOKE debug registers. */
1422 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &booke_debug_info) >= 0)
1423 {
1424 /* Check whether ptrace BOOKE interface is functional and
1425 provides any supported feature. */
1426 if (booke_debug_info.features != 0)
1427 {
1428 have_ptrace_booke_interface = 1;
1429 max_slots_number = booke_debug_info.num_instruction_bps
1430 + booke_debug_info.num_data_bps
1431 + booke_debug_info.num_condition_regs;
1432 return have_ptrace_booke_interface;
1433 }
1434 }
1435 /* Old school interface and no BOOKE debug registers support. */
1436 have_ptrace_booke_interface = 0;
1437 memset (&booke_debug_info, 0, sizeof (struct ppc_debug_info));
1438 }
1439
1440 return have_ptrace_booke_interface;
1441 }
1442
1443 static int
1444 ppc_linux_can_use_hw_breakpoint (int type, int cnt, int ot)
1445 {
1446 int total_hw_wp, total_hw_bp;
1447
1448 if (have_ptrace_booke_interface ())
1449 {
1450 /* For PPC BookE processors, the number of available hardware
1451 watchpoints and breakpoints is stored at the booke_debug_info
1452 struct. */
1453 total_hw_bp = booke_debug_info.num_instruction_bps;
1454 total_hw_wp = booke_debug_info.num_data_bps;
1455 }
1456 else
1457 {
1458 /* For PPC server processors, we accept 1 hardware watchpoint and 0
1459 hardware breakpoints. */
1460 total_hw_bp = 0;
1461 total_hw_wp = 1;
1462 }
1463
1464 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1465 || type == bp_access_watchpoint || type == bp_watchpoint)
1466 {
1467 if (cnt + ot > total_hw_wp)
1468 return -1;
1469 }
1470 else if (type == bp_hardware_breakpoint)
1471 {
1472 if (cnt > total_hw_bp)
1473 return -1;
1474 }
1475
1476 if (!have_ptrace_booke_interface ())
1477 {
1478 int tid;
1479 ptid_t ptid = inferior_ptid;
1480
1481 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1482 and whether the target has DABR. If either answer is no, the
1483 ptrace call will return -1. Fail in that case. */
1484 tid = TIDGET (ptid);
1485 if (tid == 0)
1486 tid = PIDGET (ptid);
1487
1488 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1489 return 0;
1490 }
1491
1492 return 1;
1493 }
1494
1495 static int
1496 ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1497 {
1498 /* Handle sub-8-byte quantities. */
1499 if (len <= 0)
1500 return 0;
1501
1502 /* The new BookE ptrace interface tells if there are alignment restrictions
1503 for watchpoints in the processors. In that case, we use that information
1504 to determine the hardcoded watchable region for watchpoints. */
1505 if (have_ptrace_booke_interface ())
1506 {
1507 /* DAC-based processors (i.e., embedded processors), like the PowerPC 440
1508 have ranged watchpoints and can watch any access within an arbitrary
1509 memory region. This is useful to watch arrays and structs, for
1510 instance. It takes two hardware watchpoints though. */
1511 if (len > 1
1512 && booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE)
1513 return 2;
1514 else if (booke_debug_info.data_bp_alignment
1515 && (addr + len > (addr & ~(booke_debug_info.data_bp_alignment - 1))
1516 + booke_debug_info.data_bp_alignment))
1517 return 0;
1518 }
1519 /* addr+len must fall in the 8 byte watchable region for DABR-based
1520 processors (i.e., server processors). Without the new BookE ptrace
1521 interface, DAC-based processors (i.e., embedded processors) will use
1522 addresses aligned to 4-bytes due to the way the read/write flags are
1523 passed in the old ptrace interface. */
1524 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1525 && (addr + len) > (addr & ~3) + 4)
1526 || (addr + len) > (addr & ~7) + 8)
1527 return 0;
1528
1529 return 1;
1530 }
1531
1532 /* This function compares two ppc_hw_breakpoint structs field-by-field. */
1533 static int
1534 booke_cmp_hw_point (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
1535 {
1536 return (a->trigger_type == b->trigger_type
1537 && a->addr_mode == b->addr_mode
1538 && a->condition_mode == b->condition_mode
1539 && a->addr == b->addr
1540 && a->addr2 == b->addr2
1541 && a->condition_value == b->condition_value);
1542 }
1543
1544 /* This function can be used to retrieve a thread_points by the TID of the
1545 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1546 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1547 provided TID will be created and returned. */
1548 static struct thread_points *
1549 booke_find_thread_points_by_tid (int tid, int alloc_new)
1550 {
1551 int i;
1552 struct thread_points *t;
1553
1554 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1555 if (t->tid == tid)
1556 return t;
1557
1558 t = NULL;
1559
1560 /* Do we need to allocate a new point_item
1561 if the wanted one does not exist? */
1562 if (alloc_new)
1563 {
1564 t = xmalloc (sizeof (struct thread_points));
1565 t->hw_breaks
1566 = xzalloc (max_slots_number * sizeof (struct hw_break_tuple));
1567 t->tid = tid;
1568 VEC_safe_push (thread_points_p, ppc_threads, t);
1569 }
1570
1571 return t;
1572 }
1573
1574 /* This function is a generic wrapper that is responsible for inserting a
1575 *point (i.e., calling `ptrace' in order to issue the request to the
1576 kernel) and registering it internally in GDB. */
1577 static void
1578 booke_insert_point (struct ppc_hw_breakpoint *b, int tid)
1579 {
1580 int i;
1581 long slot;
1582 struct ppc_hw_breakpoint *p = xmalloc (sizeof (struct ppc_hw_breakpoint));
1583 struct hw_break_tuple *hw_breaks;
1584 struct cleanup *c = make_cleanup (xfree, p);
1585 struct thread_points *t;
1586 struct hw_break_tuple *tuple;
1587
1588 memcpy (p, b, sizeof (struct ppc_hw_breakpoint));
1589
1590 errno = 0;
1591 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p);
1592 if (slot < 0)
1593 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1594
1595 /* Everything went fine, so we have to register this *point. */
1596 t = booke_find_thread_points_by_tid (tid, 1);
1597 gdb_assert (t != NULL);
1598 hw_breaks = t->hw_breaks;
1599
1600 /* Find a free element in the hw_breaks vector. */
1601 for (i = 0; i < max_slots_number; i++)
1602 if (hw_breaks[i].hw_break == NULL)
1603 {
1604 hw_breaks[i].slot = slot;
1605 hw_breaks[i].hw_break = p;
1606 break;
1607 }
1608
1609 gdb_assert (i != max_slots_number);
1610
1611 discard_cleanups (c);
1612 }
1613
1614 /* This function is a generic wrapper that is responsible for removing a
1615 *point (i.e., calling `ptrace' in order to issue the request to the
1616 kernel), and unregistering it internally at GDB. */
1617 static void
1618 booke_remove_point (struct ppc_hw_breakpoint *b, int tid)
1619 {
1620 int i;
1621 struct hw_break_tuple *hw_breaks;
1622 struct thread_points *t;
1623
1624 t = booke_find_thread_points_by_tid (tid, 0);
1625 gdb_assert (t != NULL);
1626 hw_breaks = t->hw_breaks;
1627
1628 for (i = 0; i < max_slots_number; i++)
1629 if (hw_breaks[i].hw_break && booke_cmp_hw_point (hw_breaks[i].hw_break, b))
1630 break;
1631
1632 gdb_assert (i != max_slots_number);
1633
1634 /* We have to ignore ENOENT errors because the kernel implements hardware
1635 breakpoints/watchpoints as "one-shot", that is, they are automatically
1636 deleted when hit. */
1637 errno = 0;
1638 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1639 if (errno != ENOENT)
1640 perror_with_name (_("Unexpected error deleting "
1641 "breakpoint or watchpoint"));
1642
1643 xfree (hw_breaks[i].hw_break);
1644 hw_breaks[i].hw_break = NULL;
1645 }
1646
1647 /* Return the number of registers needed for a ranged breakpoint. */
1648
1649 static int
1650 ppc_linux_ranged_break_num_registers (struct target_ops *target)
1651 {
1652 return ((have_ptrace_booke_interface ()
1653 && booke_debug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
1654 2 : -1);
1655 }
1656
1657 /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1658 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1659
1660 static int
1661 ppc_linux_insert_hw_breakpoint (struct gdbarch *gdbarch,
1662 struct bp_target_info *bp_tgt)
1663 {
1664 struct lwp_info *lp;
1665 struct ppc_hw_breakpoint p;
1666
1667 if (!have_ptrace_booke_interface ())
1668 return -1;
1669
1670 p.version = PPC_DEBUG_CURRENT_VERSION;
1671 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1672 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1673 p.addr = (uint64_t) bp_tgt->placed_address;
1674 p.condition_value = 0;
1675
1676 if (bp_tgt->length)
1677 {
1678 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1679
1680 /* The breakpoint will trigger if the address of the instruction is
1681 within the defined range, as follows: p.addr <= address < p.addr2. */
1682 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1683 }
1684 else
1685 {
1686 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1687 p.addr2 = 0;
1688 }
1689
1690 ALL_LWPS (lp)
1691 booke_insert_point (&p, TIDGET (lp->ptid));
1692
1693 return 0;
1694 }
1695
1696 static int
1697 ppc_linux_remove_hw_breakpoint (struct gdbarch *gdbarch,
1698 struct bp_target_info *bp_tgt)
1699 {
1700 struct lwp_info *lp;
1701 struct ppc_hw_breakpoint p;
1702
1703 if (!have_ptrace_booke_interface ())
1704 return -1;
1705
1706 p.version = PPC_DEBUG_CURRENT_VERSION;
1707 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1708 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1709 p.addr = (uint64_t) bp_tgt->placed_address;
1710 p.condition_value = 0;
1711
1712 if (bp_tgt->length)
1713 {
1714 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1715
1716 /* The breakpoint will trigger if the address of the instruction is within
1717 the defined range, as follows: p.addr <= address < p.addr2. */
1718 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1719 }
1720 else
1721 {
1722 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1723 p.addr2 = 0;
1724 }
1725
1726 ALL_LWPS (lp)
1727 booke_remove_point (&p, TIDGET (lp->ptid));
1728
1729 return 0;
1730 }
1731
1732 static int
1733 get_trigger_type (int rw)
1734 {
1735 int t;
1736
1737 if (rw == hw_read)
1738 t = PPC_BREAKPOINT_TRIGGER_READ;
1739 else if (rw == hw_write)
1740 t = PPC_BREAKPOINT_TRIGGER_WRITE;
1741 else
1742 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1743
1744 return t;
1745 }
1746
1747 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1748 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1749 or hw_access for an access watchpoint. Returns 0 on success and throws
1750 an error on failure. */
1751
1752 static int
1753 ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1754 CORE_ADDR mask, int rw)
1755 {
1756 struct lwp_info *lp;
1757 struct ppc_hw_breakpoint p;
1758
1759 gdb_assert (have_ptrace_booke_interface ());
1760
1761 p.version = PPC_DEBUG_CURRENT_VERSION;
1762 p.trigger_type = get_trigger_type (rw);
1763 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1764 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1765 p.addr = addr;
1766 p.addr2 = mask;
1767 p.condition_value = 0;
1768
1769 ALL_LWPS (lp)
1770 booke_insert_point (&p, TIDGET (lp->ptid));
1771
1772 return 0;
1773 }
1774
1775 /* Remove a masked watchpoint at ADDR with the mask MASK.
1776 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1777 or hw_access for an access watchpoint. Returns 0 on success and throws
1778 an error on failure. */
1779
1780 static int
1781 ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1782 CORE_ADDR mask, int rw)
1783 {
1784 struct lwp_info *lp;
1785 struct ppc_hw_breakpoint p;
1786
1787 gdb_assert (have_ptrace_booke_interface ());
1788
1789 p.version = PPC_DEBUG_CURRENT_VERSION;
1790 p.trigger_type = get_trigger_type (rw);
1791 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1792 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1793 p.addr = addr;
1794 p.addr2 = mask;
1795 p.condition_value = 0;
1796
1797 ALL_LWPS (lp)
1798 booke_remove_point (&p, TIDGET (lp->ptid));
1799
1800 return 0;
1801 }
1802
1803 /* Check whether we have at least one free DVC register. */
1804 static int
1805 can_use_watchpoint_cond_accel (void)
1806 {
1807 struct thread_points *p;
1808 int tid = TIDGET (inferior_ptid);
1809 int cnt = booke_debug_info.num_condition_regs, i;
1810 CORE_ADDR tmp_value;
1811
1812 if (!have_ptrace_booke_interface () || cnt == 0)
1813 return 0;
1814
1815 p = booke_find_thread_points_by_tid (tid, 0);
1816
1817 if (p)
1818 {
1819 for (i = 0; i < max_slots_number; i++)
1820 if (p->hw_breaks[i].hw_break != NULL
1821 && (p->hw_breaks[i].hw_break->condition_mode
1822 != PPC_BREAKPOINT_CONDITION_NONE))
1823 cnt--;
1824
1825 /* There are no available slots now. */
1826 if (cnt <= 0)
1827 return 0;
1828 }
1829
1830 return 1;
1831 }
1832
1833 /* Calculate the enable bits and the contents of the Data Value Compare
1834 debug register present in BookE processors.
1835
1836 ADDR is the address to be watched, LEN is the length of watched data
1837 and DATA_VALUE is the value which will trigger the watchpoint.
1838 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1839 CONDITION_VALUE will hold the value which should be put in the
1840 DVC register. */
1841 static void
1842 calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1843 uint32_t *condition_mode, uint64_t *condition_value)
1844 {
1845 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1846 rightmost_enabled_byte;
1847 CORE_ADDR addr_end_data, addr_end_dvc;
1848
1849 /* The DVC register compares bytes within fixed-length windows which
1850 are word-aligned, with length equal to that of the DVC register.
1851 We need to calculate where our watch region is relative to that
1852 window and enable comparison of the bytes which fall within it. */
1853
1854 align_offset = addr % booke_debug_info.sizeof_condition;
1855 addr_end_data = addr + len;
1856 addr_end_dvc = (addr - align_offset
1857 + booke_debug_info.sizeof_condition);
1858 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1859 addr_end_data - addr_end_dvc : 0;
1860 num_byte_enable = len - num_bytes_off_dvc;
1861 /* Here, bytes are numbered from right to left. */
1862 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1863 addr_end_dvc - addr_end_data : 0;
1864
1865 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1866 for (i = 0; i < num_byte_enable; i++)
1867 *condition_mode
1868 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
1869
1870 /* Now we need to match the position within the DVC of the comparison
1871 value with where the watch region is relative to the window
1872 (i.e., the ALIGN_OFFSET). */
1873
1874 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1875 << rightmost_enabled_byte * 8);
1876 }
1877
1878 /* Return the number of memory locations that need to be accessed to
1879 evaluate the expression which generated the given value chain.
1880 Returns -1 if there's any register access involved, or if there are
1881 other kinds of values which are not acceptable in a condition
1882 expression (e.g., lval_computed or lval_internalvar). */
1883 static int
1884 num_memory_accesses (struct value *v)
1885 {
1886 int found_memory_cnt = 0;
1887 struct value *head = v;
1888
1889 /* The idea here is that evaluating an expression generates a series
1890 of values, one holding the value of every subexpression. (The
1891 expression a*b+c has five subexpressions: a, b, a*b, c, and
1892 a*b+c.) GDB's values hold almost enough information to establish
1893 the criteria given above --- they identify memory lvalues,
1894 register lvalues, computed values, etcetera. So we can evaluate
1895 the expression, and then scan the chain of values that leaves
1896 behind to determine the memory locations involved in the evaluation
1897 of an expression.
1898
1899 However, I don't think that the values returned by inferior
1900 function calls are special in any way. So this function may not
1901 notice that an expression contains an inferior function call.
1902 FIXME. */
1903
1904 for (; v; v = value_next (v))
1905 {
1906 /* Constants and values from the history are fine. */
1907 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1908 continue;
1909 else if (VALUE_LVAL (v) == lval_memory)
1910 {
1911 /* A lazy memory lvalue is one that GDB never needed to fetch;
1912 we either just used its address (e.g., `a' in `a.b') or
1913 we never needed it at all (e.g., `a' in `a,b'). */
1914 if (!value_lazy (v))
1915 found_memory_cnt++;
1916 }
1917 /* Other kinds of values are not fine. */
1918 else
1919 return -1;
1920 }
1921
1922 return found_memory_cnt;
1923 }
1924
1925 /* Verifies whether the expression COND can be implemented using the
1926 DVC (Data Value Compare) register in BookE processors. The expression
1927 must test the watch value for equality with a constant expression.
1928 If the function returns 1, DATA_VALUE will contain the constant against
1929 which the watch value should be compared and LEN will contain the size
1930 of the constant. */
1931 static int
1932 check_condition (CORE_ADDR watch_addr, struct expression *cond,
1933 CORE_ADDR *data_value, int *len)
1934 {
1935 int pc = 1, num_accesses_left, num_accesses_right;
1936 struct value *left_val, *right_val, *left_chain, *right_chain;
1937
1938 if (cond->elts[0].opcode != BINOP_EQUAL)
1939 return 0;
1940
1941 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain);
1942 num_accesses_left = num_memory_accesses (left_chain);
1943
1944 if (left_val == NULL || num_accesses_left < 0)
1945 {
1946 free_value_chain (left_chain);
1947
1948 return 0;
1949 }
1950
1951 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain);
1952 num_accesses_right = num_memory_accesses (right_chain);
1953
1954 if (right_val == NULL || num_accesses_right < 0)
1955 {
1956 free_value_chain (left_chain);
1957 free_value_chain (right_chain);
1958
1959 return 0;
1960 }
1961
1962 if (num_accesses_left == 1 && num_accesses_right == 0
1963 && VALUE_LVAL (left_val) == lval_memory
1964 && value_address (left_val) == watch_addr)
1965 {
1966 *data_value = value_as_long (right_val);
1967
1968 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1969 the same type as the memory region referenced by LEFT_VAL. */
1970 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1971 }
1972 else if (num_accesses_left == 0 && num_accesses_right == 1
1973 && VALUE_LVAL (right_val) == lval_memory
1974 && value_address (right_val) == watch_addr)
1975 {
1976 *data_value = value_as_long (left_val);
1977
1978 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
1979 the same type as the memory region referenced by RIGHT_VAL. */
1980 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
1981 }
1982 else
1983 {
1984 free_value_chain (left_chain);
1985 free_value_chain (right_chain);
1986
1987 return 0;
1988 }
1989
1990 free_value_chain (left_chain);
1991 free_value_chain (right_chain);
1992
1993 return 1;
1994 }
1995
1996 /* Return non-zero if the target is capable of using hardware to evaluate
1997 the condition expression, thus only triggering the watchpoint when it is
1998 true. */
1999 static int
2000 ppc_linux_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
2001 struct expression *cond)
2002 {
2003 CORE_ADDR data_value;
2004
2005 return (have_ptrace_booke_interface ()
2006 && booke_debug_info.num_condition_regs > 0
2007 && check_condition (addr, cond, &data_value, &len));
2008 }
2009
2010 /* Set up P with the parameters necessary to request a watchpoint covering
2011 LEN bytes starting at ADDR and if possible with condition expression COND
2012 evaluated by hardware. INSERT tells if we are creating a request for
2013 inserting or removing the watchpoint. */
2014
2015 static void
2016 create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
2017 int len, int rw, struct expression *cond,
2018 int insert)
2019 {
2020 if (len == 1
2021 || !(booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
2022 {
2023 int use_condition;
2024 CORE_ADDR data_value;
2025
2026 use_condition = (insert? can_use_watchpoint_cond_accel ()
2027 : booke_debug_info.num_condition_regs > 0);
2028 if (cond && use_condition && check_condition (addr, cond,
2029 &data_value, &len))
2030 calculate_dvc (addr, len, data_value, &p->condition_mode,
2031 &p->condition_value);
2032 else
2033 {
2034 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2035 p->condition_value = 0;
2036 }
2037
2038 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2039 p->addr2 = 0;
2040 }
2041 else
2042 {
2043 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2044 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2045 p->condition_value = 0;
2046
2047 /* The watchpoint will trigger if the address of the memory access is
2048 within the defined range, as follows: p->addr <= address < p->addr2.
2049
2050 Note that the above sentence just documents how ptrace interprets
2051 its arguments; the watchpoint is set to watch the range defined by
2052 the user _inclusively_, as specified by the user interface. */
2053 p->addr2 = (uint64_t) addr + len;
2054 }
2055
2056 p->version = PPC_DEBUG_CURRENT_VERSION;
2057 p->trigger_type = get_trigger_type (rw);
2058 p->addr = (uint64_t) addr;
2059 }
2060
2061 static int
2062 ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw,
2063 struct expression *cond)
2064 {
2065 struct lwp_info *lp;
2066 int ret = -1;
2067
2068 if (have_ptrace_booke_interface ())
2069 {
2070 struct ppc_hw_breakpoint p;
2071
2072 create_watchpoint_request (&p, addr, len, rw, cond, 1);
2073
2074 ALL_LWPS (lp)
2075 booke_insert_point (&p, TIDGET (lp->ptid));
2076
2077 ret = 0;
2078 }
2079 else
2080 {
2081 long dabr_value;
2082 long read_mode, write_mode;
2083
2084 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2085 {
2086 /* PowerPC 440 requires only the read/write flags to be passed
2087 to the kernel. */
2088 read_mode = 1;
2089 write_mode = 2;
2090 }
2091 else
2092 {
2093 /* PowerPC 970 and other DABR-based processors are required to pass
2094 the Breakpoint Translation bit together with the flags. */
2095 read_mode = 5;
2096 write_mode = 6;
2097 }
2098
2099 dabr_value = addr & ~(read_mode | write_mode);
2100 switch (rw)
2101 {
2102 case hw_read:
2103 /* Set read and translate bits. */
2104 dabr_value |= read_mode;
2105 break;
2106 case hw_write:
2107 /* Set write and translate bits. */
2108 dabr_value |= write_mode;
2109 break;
2110 case hw_access:
2111 /* Set read, write and translate bits. */
2112 dabr_value |= read_mode | write_mode;
2113 break;
2114 }
2115
2116 saved_dabr_value = dabr_value;
2117
2118 ALL_LWPS (lp)
2119 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (lp->ptid), 0,
2120 saved_dabr_value) < 0)
2121 return -1;
2122
2123 ret = 0;
2124 }
2125
2126 return ret;
2127 }
2128
2129 static int
2130 ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw,
2131 struct expression *cond)
2132 {
2133 struct lwp_info *lp;
2134 int ret = -1;
2135
2136 if (have_ptrace_booke_interface ())
2137 {
2138 struct ppc_hw_breakpoint p;
2139
2140 create_watchpoint_request (&p, addr, len, rw, cond, 0);
2141
2142 ALL_LWPS (lp)
2143 booke_remove_point (&p, TIDGET (lp->ptid));
2144
2145 ret = 0;
2146 }
2147 else
2148 {
2149 saved_dabr_value = 0;
2150 ALL_LWPS (lp)
2151 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (lp->ptid), 0,
2152 saved_dabr_value) < 0)
2153 return -1;
2154
2155 ret = 0;
2156 }
2157
2158 return ret;
2159 }
2160
2161 static void
2162 ppc_linux_new_thread (struct lwp_info *lp)
2163 {
2164 int tid = TIDGET (lp->ptid);
2165
2166 if (have_ptrace_booke_interface ())
2167 {
2168 int i;
2169 struct thread_points *p;
2170 struct hw_break_tuple *hw_breaks;
2171
2172 if (VEC_empty (thread_points_p, ppc_threads))
2173 return;
2174
2175 /* Get a list of breakpoints from any thread. */
2176 p = VEC_last (thread_points_p, ppc_threads);
2177 hw_breaks = p->hw_breaks;
2178
2179 /* Copy that thread's breakpoints and watchpoints to the new thread. */
2180 for (i = 0; i < max_slots_number; i++)
2181 if (hw_breaks[i].hw_break)
2182 booke_insert_point (hw_breaks[i].hw_break, tid);
2183 }
2184 else
2185 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2186 }
2187
2188 static void
2189 ppc_linux_thread_exit (struct thread_info *tp, int silent)
2190 {
2191 int i;
2192 int tid = TIDGET (tp->ptid);
2193 struct hw_break_tuple *hw_breaks;
2194 struct thread_points *t = NULL, *p;
2195
2196 if (!have_ptrace_booke_interface ())
2197 return;
2198
2199 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2200 if (p->tid == tid)
2201 {
2202 t = p;
2203 break;
2204 }
2205
2206 if (t == NULL)
2207 return;
2208
2209 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2210
2211 hw_breaks = t->hw_breaks;
2212
2213 for (i = 0; i < max_slots_number; i++)
2214 if (hw_breaks[i].hw_break)
2215 xfree (hw_breaks[i].hw_break);
2216
2217 xfree (t->hw_breaks);
2218 xfree (t);
2219 }
2220
2221 static int
2222 ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
2223 {
2224 siginfo_t siginfo;
2225
2226 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2227 return 0;
2228
2229 if (siginfo.si_signo != SIGTRAP
2230 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
2231 return 0;
2232
2233 if (have_ptrace_booke_interface ())
2234 {
2235 int i;
2236 struct thread_points *t;
2237 struct hw_break_tuple *hw_breaks;
2238 /* The index (or slot) of the *point is passed in the si_errno field. */
2239 int slot = siginfo.si_errno;
2240
2241 t = booke_find_thread_points_by_tid (TIDGET (inferior_ptid), 0);
2242
2243 /* Find out if this *point is a hardware breakpoint.
2244 If so, we should return 0. */
2245 if (t)
2246 {
2247 hw_breaks = t->hw_breaks;
2248 for (i = 0; i < max_slots_number; i++)
2249 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2250 && hw_breaks[i].hw_break->trigger_type
2251 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2252 return 0;
2253 }
2254 }
2255
2256 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
2257 return 1;
2258 }
2259
2260 static int
2261 ppc_linux_stopped_by_watchpoint (void)
2262 {
2263 CORE_ADDR addr;
2264 return ppc_linux_stopped_data_address (&current_target, &addr);
2265 }
2266
2267 static int
2268 ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
2269 CORE_ADDR addr,
2270 CORE_ADDR start, int length)
2271 {
2272 int mask;
2273
2274 if (have_ptrace_booke_interface ()
2275 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2276 return start <= addr && start + length >= addr;
2277 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2278 mask = 3;
2279 else
2280 mask = 7;
2281
2282 addr &= ~mask;
2283
2284 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
2285 return start <= addr + mask && start + length - 1 >= addr;
2286 }
2287
2288 /* Return the number of registers needed for a masked hardware watchpoint. */
2289
2290 static int
2291 ppc_linux_masked_watch_num_registers (struct target_ops *target,
2292 CORE_ADDR addr, CORE_ADDR mask)
2293 {
2294 if (!have_ptrace_booke_interface ()
2295 || (booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
2296 return -1;
2297 else if ((mask & 0xC0000000) != 0xC0000000)
2298 {
2299 warning (_("The given mask covers kernel address space "
2300 "and cannot be used.\n"));
2301
2302 return -2;
2303 }
2304 else
2305 return 2;
2306 }
2307
2308 static void
2309 ppc_linux_store_inferior_registers (struct target_ops *ops,
2310 struct regcache *regcache, int regno)
2311 {
2312 /* Overload thread id onto process id. */
2313 int tid = TIDGET (inferior_ptid);
2314
2315 /* No thread id, just use process id. */
2316 if (tid == 0)
2317 tid = PIDGET (inferior_ptid);
2318
2319 if (regno >= 0)
2320 store_register (regcache, tid, regno);
2321 else
2322 store_ppc_registers (regcache, tid);
2323 }
2324
2325 /* Functions for transferring registers between a gregset_t or fpregset_t
2326 (see sys/ucontext.h) and gdb's regcache. The word size is that used
2327 by the ptrace interface, not the current program's ABI. Eg. if a
2328 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2329 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2330
2331 void
2332 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
2333 {
2334 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2335
2336 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
2337 }
2338
2339 void
2340 fill_gregset (const struct regcache *regcache,
2341 gdb_gregset_t *gregsetp, int regno)
2342 {
2343 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2344
2345 if (regno == -1)
2346 memset (gregsetp, 0, sizeof (*gregsetp));
2347 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
2348 }
2349
2350 void
2351 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
2352 {
2353 const struct regset *regset = ppc_linux_fpregset ();
2354
2355 ppc_supply_fpregset (regset, regcache, -1,
2356 fpregsetp, sizeof (*fpregsetp));
2357 }
2358
2359 void
2360 fill_fpregset (const struct regcache *regcache,
2361 gdb_fpregset_t *fpregsetp, int regno)
2362 {
2363 const struct regset *regset = ppc_linux_fpregset ();
2364
2365 ppc_collect_fpregset (regset, regcache, regno,
2366 fpregsetp, sizeof (*fpregsetp));
2367 }
2368
2369 static int
2370 ppc_linux_target_wordsize (void)
2371 {
2372 int wordsize = 4;
2373
2374 /* Check for 64-bit inferior process. This is the case when the host is
2375 64-bit, and in addition the top bit of the MSR register is set. */
2376 #ifdef __powerpc64__
2377 long msr;
2378
2379 int tid = TIDGET (inferior_ptid);
2380 if (tid == 0)
2381 tid = PIDGET (inferior_ptid);
2382
2383 errno = 0;
2384 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
2385 if (errno == 0 && msr < 0)
2386 wordsize = 8;
2387 #endif
2388
2389 return wordsize;
2390 }
2391
2392 static int
2393 ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
2394 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
2395 {
2396 int sizeof_auxv_field = ppc_linux_target_wordsize ();
2397 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
2398 gdb_byte *ptr = *readptr;
2399
2400 if (endptr == ptr)
2401 return 0;
2402
2403 if (endptr - ptr < sizeof_auxv_field * 2)
2404 return -1;
2405
2406 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2407 ptr += sizeof_auxv_field;
2408 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2409 ptr += sizeof_auxv_field;
2410
2411 *readptr = ptr;
2412 return 1;
2413 }
2414
2415 static const struct target_desc *
2416 ppc_linux_read_description (struct target_ops *ops)
2417 {
2418 int altivec = 0;
2419 int vsx = 0;
2420 int isa205 = 0;
2421 int cell = 0;
2422
2423 int tid = TIDGET (inferior_ptid);
2424 if (tid == 0)
2425 tid = PIDGET (inferior_ptid);
2426
2427 if (have_ptrace_getsetevrregs)
2428 {
2429 struct gdb_evrregset_t evrregset;
2430
2431 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
2432 return tdesc_powerpc_e500l;
2433
2434 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2435 Anything else needs to be reported. */
2436 else if (errno != EIO)
2437 perror_with_name (_("Unable to fetch SPE registers"));
2438 }
2439
2440 if (have_ptrace_getsetvsxregs)
2441 {
2442 gdb_vsxregset_t vsxregset;
2443
2444 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2445 vsx = 1;
2446
2447 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2448 Anything else needs to be reported. */
2449 else if (errno != EIO)
2450 perror_with_name (_("Unable to fetch VSX registers"));
2451 }
2452
2453 if (have_ptrace_getvrregs)
2454 {
2455 gdb_vrregset_t vrregset;
2456
2457 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2458 altivec = 1;
2459
2460 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2461 Anything else needs to be reported. */
2462 else if (errno != EIO)
2463 perror_with_name (_("Unable to fetch AltiVec registers"));
2464 }
2465
2466 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
2467 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
2468 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2469 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2470 half of the register are for Decimal Floating Point, we check if that
2471 feature is available to decide the size of the FPSCR. */
2472 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
2473 isa205 = 1;
2474
2475 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2476 cell = 1;
2477
2478 if (ppc_linux_target_wordsize () == 8)
2479 {
2480 if (cell)
2481 return tdesc_powerpc_cell64l;
2482 else if (vsx)
2483 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2484 else if (altivec)
2485 return isa205
2486 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
2487
2488 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2489 }
2490
2491 if (cell)
2492 return tdesc_powerpc_cell32l;
2493 else if (vsx)
2494 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
2495 else if (altivec)
2496 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
2497
2498 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
2499 }
2500
2501 void _initialize_ppc_linux_nat (void);
2502
2503 void
2504 _initialize_ppc_linux_nat (void)
2505 {
2506 struct target_ops *t;
2507
2508 /* Fill in the generic GNU/Linux methods. */
2509 t = linux_target ();
2510
2511 /* Add our register access methods. */
2512 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
2513 t->to_store_registers = ppc_linux_store_inferior_registers;
2514
2515 /* Add our breakpoint/watchpoint methods. */
2516 t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint;
2517 t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint;
2518 t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint;
2519 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
2520 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
2521 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
2522 t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint;
2523 t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint;
2524 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
2525 t->to_stopped_data_address = ppc_linux_stopped_data_address;
2526 t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
2527 t->to_can_accel_watchpoint_condition
2528 = ppc_linux_can_accel_watchpoint_condition;
2529 t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers;
2530 t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers;
2531
2532 t->to_read_description = ppc_linux_read_description;
2533 t->to_auxv_parse = ppc_linux_auxv_parse;
2534
2535 observer_attach_thread_exit (ppc_linux_thread_exit);
2536
2537 /* Register the target. */
2538 linux_nat_add_target (t);
2539 linux_nat_set_new_thread (t, ppc_linux_new_thread);
2540 }
This page took 0.097636 seconds and 5 git commands to generate.