[gdb] Fix more typos in comments (2)
[deliverable/binutils-gdb.git] / gdb / ppc-linux-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "symtab.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "gdbcmd.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "regcache.h"
30 #include "value.h"
31 #include "osabi.h"
32 #include "regset.h"
33 #include "solib-svr4.h"
34 #include "solib.h"
35 #include "solist.h"
36 #include "ppc-tdep.h"
37 #include "ppc64-tdep.h"
38 #include "ppc-linux-tdep.h"
39 #include "arch/ppc-linux-common.h"
40 #include "arch/ppc-linux-tdesc.h"
41 #include "glibc-tdep.h"
42 #include "trad-frame.h"
43 #include "frame-unwind.h"
44 #include "tramp-frame.h"
45 #include "observable.h"
46 #include "auxv.h"
47 #include "elf/common.h"
48 #include "elf/ppc64.h"
49 #include "arch-utils.h"
50 #include "xml-syscall.h"
51 #include "linux-tdep.h"
52 #include "linux-record.h"
53 #include "record-full.h"
54 #include "infrun.h"
55
56 #include "stap-probe.h"
57 #include "ax.h"
58 #include "ax-gdb.h"
59 #include "cli/cli-utils.h"
60 #include "parser-defs.h"
61 #include "user-regs.h"
62 #include <ctype.h>
63 #include "elf-bfd.h"
64
65 #include "features/rs6000/powerpc-32l.c"
66 #include "features/rs6000/powerpc-altivec32l.c"
67 #include "features/rs6000/powerpc-vsx32l.c"
68 #include "features/rs6000/powerpc-isa205-32l.c"
69 #include "features/rs6000/powerpc-isa205-altivec32l.c"
70 #include "features/rs6000/powerpc-isa205-vsx32l.c"
71 #include "features/rs6000/powerpc-isa205-ppr-dscr-vsx32l.c"
72 #include "features/rs6000/powerpc-isa207-vsx32l.c"
73 #include "features/rs6000/powerpc-isa207-htm-vsx32l.c"
74 #include "features/rs6000/powerpc-64l.c"
75 #include "features/rs6000/powerpc-altivec64l.c"
76 #include "features/rs6000/powerpc-vsx64l.c"
77 #include "features/rs6000/powerpc-isa205-64l.c"
78 #include "features/rs6000/powerpc-isa205-altivec64l.c"
79 #include "features/rs6000/powerpc-isa205-vsx64l.c"
80 #include "features/rs6000/powerpc-isa205-ppr-dscr-vsx64l.c"
81 #include "features/rs6000/powerpc-isa207-vsx64l.c"
82 #include "features/rs6000/powerpc-isa207-htm-vsx64l.c"
83 #include "features/rs6000/powerpc-e500l.c"
84
85 /* Shared library operations for PowerPC-Linux. */
86 static struct target_so_ops powerpc_so_ops;
87
88 /* The syscall's XML filename for PPC and PPC64. */
89 #define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml"
90 #define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml"
91
92 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
93 in much the same fashion as memory_remove_breakpoint in mem-break.c,
94 but is careful not to write back the previous contents if the code
95 in question has changed in between inserting the breakpoint and
96 removing it.
97
98 Here is the problem that we're trying to solve...
99
100 Once upon a time, before introducing this function to remove
101 breakpoints from the inferior, setting a breakpoint on a shared
102 library function prior to running the program would not work
103 properly. In order to understand the problem, it is first
104 necessary to understand a little bit about dynamic linking on
105 this platform.
106
107 A call to a shared library function is accomplished via a bl
108 (branch-and-link) instruction whose branch target is an entry
109 in the procedure linkage table (PLT). The PLT in the object
110 file is uninitialized. To gdb, prior to running the program, the
111 entries in the PLT are all zeros.
112
113 Once the program starts running, the shared libraries are loaded
114 and the procedure linkage table is initialized, but the entries in
115 the table are not (necessarily) resolved. Once a function is
116 actually called, the code in the PLT is hit and the function is
117 resolved. In order to better illustrate this, an example is in
118 order; the following example is from the gdb testsuite.
119
120 We start the program shmain.
121
122 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
123 [...]
124
125 We place two breakpoints, one on shr1 and the other on main.
126
127 (gdb) b shr1
128 Breakpoint 1 at 0x100409d4
129 (gdb) b main
130 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
131
132 Examine the instruction (and the immediatly following instruction)
133 upon which the breakpoint was placed. Note that the PLT entry
134 for shr1 contains zeros.
135
136 (gdb) x/2i 0x100409d4
137 0x100409d4 <shr1>: .long 0x0
138 0x100409d8 <shr1+4>: .long 0x0
139
140 Now run 'til main.
141
142 (gdb) r
143 Starting program: gdb.base/shmain
144 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
145
146 Breakpoint 2, main ()
147 at gdb.base/shmain.c:44
148 44 g = 1;
149
150 Examine the PLT again. Note that the loading of the shared
151 library has initialized the PLT to code which loads a constant
152 (which I think is an index into the GOT) into r11 and then
153 branches a short distance to the code which actually does the
154 resolving.
155
156 (gdb) x/2i 0x100409d4
157 0x100409d4 <shr1>: li r11,4
158 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
159 (gdb) c
160 Continuing.
161
162 Breakpoint 1, shr1 (x=1)
163 at gdb.base/shr1.c:19
164 19 l = 1;
165
166 Now we've hit the breakpoint at shr1. (The breakpoint was
167 reset from the PLT entry to the actual shr1 function after the
168 shared library was loaded.) Note that the PLT entry has been
169 resolved to contain a branch that takes us directly to shr1.
170 (The real one, not the PLT entry.)
171
172 (gdb) x/2i 0x100409d4
173 0x100409d4 <shr1>: b 0xffaf76c <shr1>
174 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
175
176 The thing to note here is that the PLT entry for shr1 has been
177 changed twice.
178
179 Now the problem should be obvious. GDB places a breakpoint (a
180 trap instruction) on the zero value of the PLT entry for shr1.
181 Later on, after the shared library had been loaded and the PLT
182 initialized, GDB gets a signal indicating this fact and attempts
183 (as it always does when it stops) to remove all the breakpoints.
184
185 The breakpoint removal was causing the former contents (a zero
186 word) to be written back to the now initialized PLT entry thus
187 destroying a portion of the initialization that had occurred only a
188 short time ago. When execution continued, the zero word would be
189 executed as an instruction an illegal instruction trap was
190 generated instead. (0 is not a legal instruction.)
191
192 The fix for this problem was fairly straightforward. The function
193 memory_remove_breakpoint from mem-break.c was copied to this file,
194 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
195 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
196 function.
197
198 The differences between ppc_linux_memory_remove_breakpoint () and
199 memory_remove_breakpoint () are minor. All that the former does
200 that the latter does not is check to make sure that the breakpoint
201 location actually contains a breakpoint (trap instruction) prior
202 to attempting to write back the old contents. If it does contain
203 a trap instruction, we allow the old contents to be written back.
204 Otherwise, we silently do nothing.
205
206 The big question is whether memory_remove_breakpoint () should be
207 changed to have the same functionality. The downside is that more
208 traffic is generated for remote targets since we'll have an extra
209 fetch of a memory word each time a breakpoint is removed.
210
211 For the time being, we'll leave this self-modifying-code-friendly
212 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
213 else in the event that some other platform has similar needs with
214 regard to removing breakpoints in some potentially self modifying
215 code. */
216 static int
217 ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
218 struct bp_target_info *bp_tgt)
219 {
220 CORE_ADDR addr = bp_tgt->reqstd_address;
221 const unsigned char *bp;
222 int val;
223 int bplen;
224 gdb_byte old_contents[BREAKPOINT_MAX];
225
226 /* Determine appropriate breakpoint contents and size for this address. */
227 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
228
229 /* Make sure we see the memory breakpoints. */
230 scoped_restore restore_memory
231 = make_scoped_restore_show_memory_breakpoints (1);
232 val = target_read_memory (addr, old_contents, bplen);
233
234 /* If our breakpoint is no longer at the address, this means that the
235 program modified the code on us, so it is wrong to put back the
236 old value. */
237 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
238 val = target_write_raw_memory (addr, bp_tgt->shadow_contents, bplen);
239
240 return val;
241 }
242
243 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
244 than the 32 bit SYSV R4 ABI structure return convention - all
245 structures, no matter their size, are put in memory. Vectors,
246 which were added later, do get returned in a register though. */
247
248 static enum return_value_convention
249 ppc_linux_return_value (struct gdbarch *gdbarch, struct value *function,
250 struct type *valtype, struct regcache *regcache,
251 gdb_byte *readbuf, const gdb_byte *writebuf)
252 {
253 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
254 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
255 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
256 && TYPE_VECTOR (valtype)))
257 return RETURN_VALUE_STRUCT_CONVENTION;
258 else
259 return ppc_sysv_abi_return_value (gdbarch, function, valtype, regcache,
260 readbuf, writebuf);
261 }
262
263 /* PLT stub in an executable. */
264 static const struct ppc_insn_pattern powerpc32_plt_stub[] =
265 {
266 { 0xffff0000, 0x3d600000, 0 }, /* lis r11, xxxx */
267 { 0xffff0000, 0x816b0000, 0 }, /* lwz r11, xxxx(r11) */
268 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
269 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
270 { 0, 0, 0 }
271 };
272
273 /* PLT stubs in a shared library or PIE.
274 The first variant is used when the PLT entry is within +/-32k of
275 the GOT pointer (r30). */
276 static const struct ppc_insn_pattern powerpc32_plt_stub_so_1[] =
277 {
278 { 0xffff0000, 0x817e0000, 0 }, /* lwz r11, xxxx(r30) */
279 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
280 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
281 { 0, 0, 0 }
282 };
283
284 /* The second variant is used when the PLT entry is more than +/-32k
285 from the GOT pointer (r30). */
286 static const struct ppc_insn_pattern powerpc32_plt_stub_so_2[] =
287 {
288 { 0xffff0000, 0x3d7e0000, 0 }, /* addis r11, r30, xxxx */
289 { 0xffff0000, 0x816b0000, 0 }, /* lwz r11, xxxx(r11) */
290 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
291 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
292 { 0, 0, 0 }
293 };
294
295 /* The max number of insns we check using ppc_insns_match_pattern. */
296 #define POWERPC32_PLT_CHECK_LEN (ARRAY_SIZE (powerpc32_plt_stub) - 1)
297
298 /* Check if PC is in PLT stub. For non-secure PLT, stub is in .plt
299 section. For secure PLT, stub is in .text and we need to check
300 instruction patterns. */
301
302 static int
303 powerpc_linux_in_dynsym_resolve_code (CORE_ADDR pc)
304 {
305 struct bound_minimal_symbol sym;
306
307 /* Check whether PC is in the dynamic linker. This also checks
308 whether it is in the .plt section, used by non-PIC executables. */
309 if (svr4_in_dynsym_resolve_code (pc))
310 return 1;
311
312 /* Check if we are in the resolver. */
313 sym = lookup_minimal_symbol_by_pc (pc);
314 if (sym.minsym != NULL
315 && (strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym), "__glink") == 0
316 || strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym),
317 "__glink_PLTresolve") == 0))
318 return 1;
319
320 return 0;
321 }
322
323 /* Follow PLT stub to actual routine.
324
325 When the execution direction is EXEC_REVERSE, scan backward to
326 check whether we are in the middle of a PLT stub. Currently,
327 we only look-behind at most 4 instructions (the max length of a PLT
328 stub sequence. */
329
330 static CORE_ADDR
331 ppc_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
332 {
333 unsigned int insnbuf[POWERPC32_PLT_CHECK_LEN];
334 struct gdbarch *gdbarch = get_frame_arch (frame);
335 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
336 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
337 CORE_ADDR target = 0;
338 int scan_limit, i;
339
340 scan_limit = 1;
341 /* When reverse-debugging, scan backward to check whether we are
342 in the middle of trampoline code. */
343 if (execution_direction == EXEC_REVERSE)
344 scan_limit = 4; /* At most 4 instructions. */
345
346 for (i = 0; i < scan_limit; i++)
347 {
348 if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub, insnbuf))
349 {
350 /* Calculate PLT entry address from
351 lis r11, xxxx
352 lwz r11, xxxx(r11). */
353 target = ((ppc_insn_d_field (insnbuf[0]) << 16)
354 + ppc_insn_d_field (insnbuf[1]));
355 }
356 else if (i < ARRAY_SIZE (powerpc32_plt_stub_so_1) - 1
357 && ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so_1,
358 insnbuf))
359 {
360 /* Calculate PLT entry address from
361 lwz r11, xxxx(r30). */
362 target = (ppc_insn_d_field (insnbuf[0])
363 + get_frame_register_unsigned (frame,
364 tdep->ppc_gp0_regnum + 30));
365 }
366 else if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so_2,
367 insnbuf))
368 {
369 /* Calculate PLT entry address from
370 addis r11, r30, xxxx
371 lwz r11, xxxx(r11). */
372 target = ((ppc_insn_d_field (insnbuf[0]) << 16)
373 + ppc_insn_d_field (insnbuf[1])
374 + get_frame_register_unsigned (frame,
375 tdep->ppc_gp0_regnum + 30));
376 }
377 else
378 {
379 /* Scan backward one more instruction if it doesn't match. */
380 pc -= 4;
381 continue;
382 }
383
384 target = read_memory_unsigned_integer (target, 4, byte_order);
385 return target;
386 }
387
388 return 0;
389 }
390
391 /* Wrappers to handle Linux-only registers. */
392
393 static void
394 ppc_linux_supply_gregset (const struct regset *regset,
395 struct regcache *regcache,
396 int regnum, const void *gregs, size_t len)
397 {
398 const struct ppc_reg_offsets *offsets
399 = (const struct ppc_reg_offsets *) regset->regmap;
400
401 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
402
403 if (ppc_linux_trap_reg_p (regcache->arch ()))
404 {
405 /* "orig_r3" is stored 2 slots after "pc". */
406 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
407 ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, (const gdb_byte *) gregs,
408 offsets->pc_offset + 2 * offsets->gpr_size,
409 offsets->gpr_size);
410
411 /* "trap" is stored 8 slots after "pc". */
412 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
413 ppc_supply_reg (regcache, PPC_TRAP_REGNUM, (const gdb_byte *) gregs,
414 offsets->pc_offset + 8 * offsets->gpr_size,
415 offsets->gpr_size);
416 }
417 }
418
419 static void
420 ppc_linux_collect_gregset (const struct regset *regset,
421 const struct regcache *regcache,
422 int regnum, void *gregs, size_t len)
423 {
424 const struct ppc_reg_offsets *offsets
425 = (const struct ppc_reg_offsets *) regset->regmap;
426
427 /* Clear areas in the linux gregset not written elsewhere. */
428 if (regnum == -1)
429 memset (gregs, 0, len);
430
431 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
432
433 if (ppc_linux_trap_reg_p (regcache->arch ()))
434 {
435 /* "orig_r3" is stored 2 slots after "pc". */
436 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
437 ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, (gdb_byte *) gregs,
438 offsets->pc_offset + 2 * offsets->gpr_size,
439 offsets->gpr_size);
440
441 /* "trap" is stored 8 slots after "pc". */
442 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
443 ppc_collect_reg (regcache, PPC_TRAP_REGNUM, (gdb_byte *) gregs,
444 offsets->pc_offset + 8 * offsets->gpr_size,
445 offsets->gpr_size);
446 }
447 }
448
449 /* Regset descriptions. */
450 static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
451 {
452 /* General-purpose registers. */
453 /* .r0_offset = */ 0,
454 /* .gpr_size = */ 4,
455 /* .xr_size = */ 4,
456 /* .pc_offset = */ 128,
457 /* .ps_offset = */ 132,
458 /* .cr_offset = */ 152,
459 /* .lr_offset = */ 144,
460 /* .ctr_offset = */ 140,
461 /* .xer_offset = */ 148,
462 /* .mq_offset = */ 156,
463
464 /* Floating-point registers. */
465 /* .f0_offset = */ 0,
466 /* .fpscr_offset = */ 256,
467 /* .fpscr_size = */ 8
468 };
469
470 static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
471 {
472 /* General-purpose registers. */
473 /* .r0_offset = */ 0,
474 /* .gpr_size = */ 8,
475 /* .xr_size = */ 8,
476 /* .pc_offset = */ 256,
477 /* .ps_offset = */ 264,
478 /* .cr_offset = */ 304,
479 /* .lr_offset = */ 288,
480 /* .ctr_offset = */ 280,
481 /* .xer_offset = */ 296,
482 /* .mq_offset = */ 312,
483
484 /* Floating-point registers. */
485 /* .f0_offset = */ 0,
486 /* .fpscr_offset = */ 256,
487 /* .fpscr_size = */ 8
488 };
489
490 static const struct regset ppc32_linux_gregset = {
491 &ppc32_linux_reg_offsets,
492 ppc_linux_supply_gregset,
493 ppc_linux_collect_gregset
494 };
495
496 static const struct regset ppc64_linux_gregset = {
497 &ppc64_linux_reg_offsets,
498 ppc_linux_supply_gregset,
499 ppc_linux_collect_gregset
500 };
501
502 static const struct regset ppc32_linux_fpregset = {
503 &ppc32_linux_reg_offsets,
504 ppc_supply_fpregset,
505 ppc_collect_fpregset
506 };
507
508 static const struct regcache_map_entry ppc32_le_linux_vrregmap[] =
509 {
510 { 32, PPC_VR0_REGNUM, 16 },
511 { 1, PPC_VSCR_REGNUM, 4 },
512 { 1, REGCACHE_MAP_SKIP, 12 },
513 { 1, PPC_VRSAVE_REGNUM, 4 },
514 { 1, REGCACHE_MAP_SKIP, 12 },
515 { 0 }
516 };
517
518 static const struct regcache_map_entry ppc32_be_linux_vrregmap[] =
519 {
520 { 32, PPC_VR0_REGNUM, 16 },
521 { 1, REGCACHE_MAP_SKIP, 12},
522 { 1, PPC_VSCR_REGNUM, 4 },
523 { 1, PPC_VRSAVE_REGNUM, 4 },
524 { 1, REGCACHE_MAP_SKIP, 12 },
525 { 0 }
526 };
527
528 static const struct regset ppc32_le_linux_vrregset = {
529 ppc32_le_linux_vrregmap,
530 regcache_supply_regset,
531 regcache_collect_regset
532 };
533
534 static const struct regset ppc32_be_linux_vrregset = {
535 ppc32_be_linux_vrregmap,
536 regcache_supply_regset,
537 regcache_collect_regset
538 };
539
540 static const struct regcache_map_entry ppc32_linux_vsxregmap[] =
541 {
542 { 32, PPC_VSR0_UPPER_REGNUM, 8 },
543 { 0 }
544 };
545
546 static const struct regset ppc32_linux_vsxregset = {
547 ppc32_linux_vsxregmap,
548 regcache_supply_regset,
549 regcache_collect_regset
550 };
551
552 /* Program Priorty Register regmap. */
553
554 static const struct regcache_map_entry ppc32_regmap_ppr[] =
555 {
556 { 1, PPC_PPR_REGNUM, 8 },
557 { 0 }
558 };
559
560 /* Program Priorty Register regset. */
561
562 const struct regset ppc32_linux_pprregset = {
563 ppc32_regmap_ppr,
564 regcache_supply_regset,
565 regcache_collect_regset
566 };
567
568 /* Data Stream Control Register regmap. */
569
570 static const struct regcache_map_entry ppc32_regmap_dscr[] =
571 {
572 { 1, PPC_DSCR_REGNUM, 8 },
573 { 0 }
574 };
575
576 /* Data Stream Control Register regset. */
577
578 const struct regset ppc32_linux_dscrregset = {
579 ppc32_regmap_dscr,
580 regcache_supply_regset,
581 regcache_collect_regset
582 };
583
584 /* Target Address Register regmap. */
585
586 static const struct regcache_map_entry ppc32_regmap_tar[] =
587 {
588 { 1, PPC_TAR_REGNUM, 8 },
589 { 0 }
590 };
591
592 /* Target Address Register regset. */
593
594 const struct regset ppc32_linux_tarregset = {
595 ppc32_regmap_tar,
596 regcache_supply_regset,
597 regcache_collect_regset
598 };
599
600 /* Event-Based Branching regmap. */
601
602 static const struct regcache_map_entry ppc32_regmap_ebb[] =
603 {
604 { 1, PPC_EBBRR_REGNUM, 8 },
605 { 1, PPC_EBBHR_REGNUM, 8 },
606 { 1, PPC_BESCR_REGNUM, 8 },
607 { 0 }
608 };
609
610 /* Event-Based Branching regset. */
611
612 const struct regset ppc32_linux_ebbregset = {
613 ppc32_regmap_ebb,
614 regcache_supply_regset,
615 regcache_collect_regset
616 };
617
618 /* Performance Monitoring Unit regmap. */
619
620 static const struct regcache_map_entry ppc32_regmap_pmu[] =
621 {
622 { 1, PPC_SIAR_REGNUM, 8 },
623 { 1, PPC_SDAR_REGNUM, 8 },
624 { 1, PPC_SIER_REGNUM, 8 },
625 { 1, PPC_MMCR2_REGNUM, 8 },
626 { 1, PPC_MMCR0_REGNUM, 8 },
627 { 0 }
628 };
629
630 /* Performance Monitoring Unit regset. */
631
632 const struct regset ppc32_linux_pmuregset = {
633 ppc32_regmap_pmu,
634 regcache_supply_regset,
635 regcache_collect_regset
636 };
637
638 /* Hardware Transactional Memory special-purpose register regmap. */
639
640 static const struct regcache_map_entry ppc32_regmap_tm_spr[] =
641 {
642 { 1, PPC_TFHAR_REGNUM, 8 },
643 { 1, PPC_TEXASR_REGNUM, 8 },
644 { 1, PPC_TFIAR_REGNUM, 8 },
645 { 0 }
646 };
647
648 /* Hardware Transactional Memory special-purpose register regset. */
649
650 const struct regset ppc32_linux_tm_sprregset = {
651 ppc32_regmap_tm_spr,
652 regcache_supply_regset,
653 regcache_collect_regset
654 };
655
656 /* Regmaps for the Hardware Transactional Memory checkpointed
657 general-purpose regsets for 32-bit, 64-bit big-endian, and 64-bit
658 little endian targets. The ptrace and core file buffers for 64-bit
659 targets use 8-byte fields for the 4-byte registers, and the
660 position of the register in the fields depends on the endianness.
661 The 32-bit regmap is the same for both endian types because the
662 fields are all 4-byte long.
663
664 The layout of checkpointed GPR regset is the same as a regular
665 struct pt_regs, but we skip all registers that are not actually
666 checkpointed by the processor (e.g. msr, nip), except when
667 generating a core file. The 64-bit regset is 48 * 8 bytes long.
668 In some 64-bit kernels, the regset for a 32-bit inferior has the
669 same length, but all the registers are squeezed in the first half
670 (48 * 4 bytes). The pt_regs struct calls the regular cr ccr, but
671 we use ccr for "checkpointed condition register". Note that CR
672 (condition register) field 0 is not checkpointed, but the kernel
673 returns all 4 bytes. The skipped registers should not be touched
674 when writing the regset to the inferior (with
675 PTRACE_SETREGSET). */
676
677 static const struct regcache_map_entry ppc32_regmap_cgpr[] =
678 {
679 { 32, PPC_CR0_REGNUM, 4 },
680 { 3, REGCACHE_MAP_SKIP, 4 }, /* nip, msr, orig_gpr3. */
681 { 1, PPC_CCTR_REGNUM, 4 },
682 { 1, PPC_CLR_REGNUM, 4 },
683 { 1, PPC_CXER_REGNUM, 4 },
684 { 1, PPC_CCR_REGNUM, 4 },
685 { 9, REGCACHE_MAP_SKIP, 4 }, /* All the rest. */
686 { 0 }
687 };
688
689 static const struct regcache_map_entry ppc64_le_regmap_cgpr[] =
690 {
691 { 32, PPC_CR0_REGNUM, 8 },
692 { 3, REGCACHE_MAP_SKIP, 8 },
693 { 1, PPC_CCTR_REGNUM, 8 },
694 { 1, PPC_CLR_REGNUM, 8 },
695 { 1, PPC_CXER_REGNUM, 4 },
696 { 1, REGCACHE_MAP_SKIP, 4 }, /* CXER padding. */
697 { 1, PPC_CCR_REGNUM, 4 },
698 { 1, REGCACHE_MAP_SKIP, 4}, /* CCR padding. */
699 { 9, REGCACHE_MAP_SKIP, 8},
700 { 0 }
701 };
702
703 static const struct regcache_map_entry ppc64_be_regmap_cgpr[] =
704 {
705 { 32, PPC_CR0_REGNUM, 8 },
706 { 3, REGCACHE_MAP_SKIP, 8 },
707 { 1, PPC_CCTR_REGNUM, 8 },
708 { 1, PPC_CLR_REGNUM, 8 },
709 { 1, REGCACHE_MAP_SKIP, 4}, /* CXER padding. */
710 { 1, PPC_CXER_REGNUM, 4 },
711 { 1, REGCACHE_MAP_SKIP, 4}, /* CCR padding. */
712 { 1, PPC_CCR_REGNUM, 4 },
713 { 9, REGCACHE_MAP_SKIP, 8},
714 { 0 }
715 };
716
717 /* Regsets for the Hardware Transactional Memory checkpointed
718 general-purpose registers for 32-bit, 64-bit big-endian, and 64-bit
719 little endian targets.
720
721 Some 64-bit kernels generate a checkpointed gpr note section with
722 48*8 bytes for a 32-bit thread, of which only 48*4 are actually
723 used, so we set the variable size flag in the corresponding regset
724 to accept this case. */
725
726 static const struct regset ppc32_linux_cgprregset = {
727 ppc32_regmap_cgpr,
728 regcache_supply_regset,
729 regcache_collect_regset,
730 REGSET_VARIABLE_SIZE
731 };
732
733 static const struct regset ppc64_be_linux_cgprregset = {
734 ppc64_be_regmap_cgpr,
735 regcache_supply_regset,
736 regcache_collect_regset
737 };
738
739 static const struct regset ppc64_le_linux_cgprregset = {
740 ppc64_le_regmap_cgpr,
741 regcache_supply_regset,
742 regcache_collect_regset
743 };
744
745 /* Hardware Transactional Memory checkpointed floating-point regmap. */
746
747 static const struct regcache_map_entry ppc32_regmap_cfpr[] =
748 {
749 { 32, PPC_CF0_REGNUM, 8 },
750 { 1, PPC_CFPSCR_REGNUM, 8 },
751 { 0 }
752 };
753
754 /* Hardware Transactional Memory checkpointed floating-point regset. */
755
756 const struct regset ppc32_linux_cfprregset = {
757 ppc32_regmap_cfpr,
758 regcache_supply_regset,
759 regcache_collect_regset
760 };
761
762 /* Regmaps for the Hardware Transactional Memory checkpointed vector
763 regsets, for big and little endian targets. The position of the
764 4-byte VSCR in its 16-byte field depends on the endianness. */
765
766 static const struct regcache_map_entry ppc32_le_regmap_cvmx[] =
767 {
768 { 32, PPC_CVR0_REGNUM, 16 },
769 { 1, PPC_CVSCR_REGNUM, 4 },
770 { 1, REGCACHE_MAP_SKIP, 12 },
771 { 1, PPC_CVRSAVE_REGNUM, 4 },
772 { 1, REGCACHE_MAP_SKIP, 12 },
773 { 0 }
774 };
775
776 static const struct regcache_map_entry ppc32_be_regmap_cvmx[] =
777 {
778 { 32, PPC_CVR0_REGNUM, 16 },
779 { 1, REGCACHE_MAP_SKIP, 12 },
780 { 1, PPC_CVSCR_REGNUM, 4 },
781 { 1, PPC_CVRSAVE_REGNUM, 4 },
782 { 1, REGCACHE_MAP_SKIP, 12},
783 { 0 }
784 };
785
786 /* Hardware Transactional Memory checkpointed vector regsets, for little
787 and big endian targets. */
788
789 static const struct regset ppc32_le_linux_cvmxregset = {
790 ppc32_le_regmap_cvmx,
791 regcache_supply_regset,
792 regcache_collect_regset
793 };
794
795 static const struct regset ppc32_be_linux_cvmxregset = {
796 ppc32_be_regmap_cvmx,
797 regcache_supply_regset,
798 regcache_collect_regset
799 };
800
801 /* Hardware Transactional Memory checkpointed vector-scalar regmap. */
802
803 static const struct regcache_map_entry ppc32_regmap_cvsx[] =
804 {
805 { 32, PPC_CVSR0_UPPER_REGNUM, 8 },
806 { 0 }
807 };
808
809 /* Hardware Transactional Memory checkpointed vector-scalar regset. */
810
811 const struct regset ppc32_linux_cvsxregset = {
812 ppc32_regmap_cvsx,
813 regcache_supply_regset,
814 regcache_collect_regset
815 };
816
817 /* Hardware Transactional Memory checkpointed Program Priority Register
818 regmap. */
819
820 static const struct regcache_map_entry ppc32_regmap_cppr[] =
821 {
822 { 1, PPC_CPPR_REGNUM, 8 },
823 { 0 }
824 };
825
826 /* Hardware Transactional Memory checkpointed Program Priority Register
827 regset. */
828
829 const struct regset ppc32_linux_cpprregset = {
830 ppc32_regmap_cppr,
831 regcache_supply_regset,
832 regcache_collect_regset
833 };
834
835 /* Hardware Transactional Memory checkpointed Data Stream Control
836 Register regmap. */
837
838 static const struct regcache_map_entry ppc32_regmap_cdscr[] =
839 {
840 { 1, PPC_CDSCR_REGNUM, 8 },
841 { 0 }
842 };
843
844 /* Hardware Transactional Memory checkpointed Data Stream Control
845 Register regset. */
846
847 const struct regset ppc32_linux_cdscrregset = {
848 ppc32_regmap_cdscr,
849 regcache_supply_regset,
850 regcache_collect_regset
851 };
852
853 /* Hardware Transactional Memory checkpointed Target Address Register
854 regmap. */
855
856 static const struct regcache_map_entry ppc32_regmap_ctar[] =
857 {
858 { 1, PPC_CTAR_REGNUM, 8 },
859 { 0 }
860 };
861
862 /* Hardware Transactional Memory checkpointed Target Address Register
863 regset. */
864
865 const struct regset ppc32_linux_ctarregset = {
866 ppc32_regmap_ctar,
867 regcache_supply_regset,
868 regcache_collect_regset
869 };
870
871 const struct regset *
872 ppc_linux_gregset (int wordsize)
873 {
874 return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
875 }
876
877 const struct regset *
878 ppc_linux_fpregset (void)
879 {
880 return &ppc32_linux_fpregset;
881 }
882
883 const struct regset *
884 ppc_linux_vrregset (struct gdbarch *gdbarch)
885 {
886 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
887 return &ppc32_be_linux_vrregset;
888 else
889 return &ppc32_le_linux_vrregset;
890 }
891
892 const struct regset *
893 ppc_linux_vsxregset (void)
894 {
895 return &ppc32_linux_vsxregset;
896 }
897
898 const struct regset *
899 ppc_linux_cgprregset (struct gdbarch *gdbarch)
900 {
901 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
902
903 if (tdep->wordsize == 4)
904 {
905 return &ppc32_linux_cgprregset;
906 }
907 else
908 {
909 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
910 return &ppc64_be_linux_cgprregset;
911 else
912 return &ppc64_le_linux_cgprregset;
913 }
914 }
915
916 const struct regset *
917 ppc_linux_cvmxregset (struct gdbarch *gdbarch)
918 {
919 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
920 return &ppc32_be_linux_cvmxregset;
921 else
922 return &ppc32_le_linux_cvmxregset;
923 }
924
925 /* Collect function used to generate the core note for the
926 checkpointed GPR regset. Here, we don't want to skip the
927 "checkpointed" NIP and MSR, so that the note section we generate is
928 similar to the one generated by the kernel. To avoid having to
929 define additional registers in GDB which are not actually
930 checkpointed in the architecture, we copy TFHAR to the checkpointed
931 NIP slot, which is what the kernel does, and copy the regular MSR
932 to the checkpointed MSR slot, which will have a similar value in
933 most cases. */
934
935 static void
936 ppc_linux_collect_core_cpgrregset (const struct regset *regset,
937 const struct regcache *regcache,
938 int regnum, void *buf, size_t len)
939 {
940 struct gdbarch *gdbarch = regcache->arch ();
941 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
942
943 const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);
944
945 /* We collect the checkpointed GPRs already defined in the regular
946 regmap, then overlay TFHAR/MSR on the checkpointed NIP/MSR
947 slots. */
948 cgprregset->collect_regset (cgprregset, regcache, regnum, buf, len);
949
950 /* Check that we are collecting all the registers, which should be
951 the case when generating a core file. */
952 if (regnum != -1)
953 return;
954
955 /* PT_NIP and PT_MSR are 32 and 33 for powerpc. Don't redefine
956 these symbols since this file can run on clients in other
957 architectures where they can already be defined to other
958 values. */
959 int pt_offset = 32;
960
961 /* Check that our buffer is long enough to hold two slots at
962 pt_offset * wordsize, one for NIP and one for MSR. */
963 gdb_assert ((pt_offset + 2) * tdep->wordsize <= len);
964
965 /* TFHAR is 8 bytes wide, but the NIP slot for a 32-bit thread is
966 4-bytes long. We use raw_collect_integer which handles
967 differences in the sizes for the source and destination buffers
968 for both endian modes. */
969 (regcache->raw_collect_integer
970 (PPC_TFHAR_REGNUM, ((gdb_byte *) buf) + pt_offset * tdep->wordsize,
971 tdep->wordsize, false));
972
973 pt_offset = 33;
974
975 (regcache->raw_collect_integer
976 (PPC_MSR_REGNUM, ((gdb_byte *) buf) + pt_offset * tdep->wordsize,
977 tdep->wordsize, false));
978 }
979
980 /* Iterate over supported core file register note sections. */
981
982 static void
983 ppc_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
984 iterate_over_regset_sections_cb *cb,
985 void *cb_data,
986 const struct regcache *regcache)
987 {
988 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
989 int have_altivec = tdep->ppc_vr0_regnum != -1;
990 int have_vsx = tdep->ppc_vsr0_upper_regnum != -1;
991 int have_ppr = tdep->ppc_ppr_regnum != -1;
992 int have_dscr = tdep->ppc_dscr_regnum != -1;
993 int have_tar = tdep->ppc_tar_regnum != -1;
994
995 if (tdep->wordsize == 4)
996 cb (".reg", 48 * 4, 48 * 4, &ppc32_linux_gregset, NULL, cb_data);
997 else
998 cb (".reg", 48 * 8, 48 * 8, &ppc64_linux_gregset, NULL, cb_data);
999
1000 cb (".reg2", 264, 264, &ppc32_linux_fpregset, NULL, cb_data);
1001
1002 if (have_altivec)
1003 {
1004 const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
1005 cb (".reg-ppc-vmx", PPC_LINUX_SIZEOF_VRREGSET, PPC_LINUX_SIZEOF_VRREGSET,
1006 vrregset, "ppc Altivec", cb_data);
1007 }
1008
1009 if (have_vsx)
1010 cb (".reg-ppc-vsx", PPC_LINUX_SIZEOF_VSXREGSET, PPC_LINUX_SIZEOF_VSXREGSET,
1011 &ppc32_linux_vsxregset, "POWER7 VSX", cb_data);
1012
1013 if (have_ppr)
1014 cb (".reg-ppc-ppr", PPC_LINUX_SIZEOF_PPRREGSET,
1015 PPC_LINUX_SIZEOF_PPRREGSET,
1016 &ppc32_linux_pprregset, "Priority Program Register", cb_data);
1017
1018 if (have_dscr)
1019 cb (".reg-ppc-dscr", PPC_LINUX_SIZEOF_DSCRREGSET,
1020 PPC_LINUX_SIZEOF_DSCRREGSET,
1021 &ppc32_linux_dscrregset, "Data Stream Control Register",
1022 cb_data);
1023
1024 if (have_tar)
1025 cb (".reg-ppc-tar", PPC_LINUX_SIZEOF_TARREGSET,
1026 PPC_LINUX_SIZEOF_TARREGSET,
1027 &ppc32_linux_tarregset, "Target Address Register", cb_data);
1028
1029 /* EBB registers are unavailable when ptrace returns ENODATA. Check
1030 availability when generating a core file (regcache != NULL). */
1031 if (tdep->have_ebb)
1032 if (regcache == NULL
1033 || REG_VALID == regcache->get_register_status (PPC_BESCR_REGNUM))
1034 cb (".reg-ppc-ebb", PPC_LINUX_SIZEOF_EBBREGSET,
1035 PPC_LINUX_SIZEOF_EBBREGSET,
1036 &ppc32_linux_ebbregset, "Event-based Branching Registers",
1037 cb_data);
1038
1039 if (tdep->ppc_mmcr0_regnum != -1)
1040 cb (".reg-ppc-pmu", PPC_LINUX_SIZEOF_PMUREGSET,
1041 PPC_LINUX_SIZEOF_PMUREGSET,
1042 &ppc32_linux_pmuregset, "Performance Monitor Registers",
1043 cb_data);
1044
1045 if (tdep->have_htm_spr)
1046 cb (".reg-ppc-tm-spr", PPC_LINUX_SIZEOF_TM_SPRREGSET,
1047 PPC_LINUX_SIZEOF_TM_SPRREGSET,
1048 &ppc32_linux_tm_sprregset,
1049 "Hardware Transactional Memory Special Purpose Registers",
1050 cb_data);
1051
1052 /* Checkpointed registers can be unavailable, don't call back if
1053 we are generating a core file. */
1054
1055 if (tdep->have_htm_core)
1056 {
1057 /* Only generate the checkpointed GPR core note if we also have
1058 access to the HTM SPRs, because we need TFHAR to fill the
1059 "checkpointed" NIP slot. We can read a core file without it
1060 since GDB is not aware of this NIP as a visible register. */
1061 if (regcache == NULL ||
1062 (REG_VALID == regcache->get_register_status (PPC_CR0_REGNUM)
1063 && tdep->have_htm_spr))
1064 {
1065 int cgpr_size = (tdep->wordsize == 4?
1066 PPC32_LINUX_SIZEOF_CGPRREGSET
1067 : PPC64_LINUX_SIZEOF_CGPRREGSET);
1068
1069 const struct regset *cgprregset =
1070 ppc_linux_cgprregset (gdbarch);
1071
1072 if (regcache != NULL)
1073 {
1074 struct regset core_cgprregset = *cgprregset;
1075
1076 core_cgprregset.collect_regset
1077 = ppc_linux_collect_core_cpgrregset;
1078
1079 cb (".reg-ppc-tm-cgpr",
1080 cgpr_size, cgpr_size,
1081 &core_cgprregset,
1082 "Checkpointed General Purpose Registers", cb_data);
1083 }
1084 else
1085 {
1086 cb (".reg-ppc-tm-cgpr",
1087 cgpr_size, cgpr_size,
1088 cgprregset,
1089 "Checkpointed General Purpose Registers", cb_data);
1090 }
1091 }
1092 }
1093
1094 if (tdep->have_htm_fpu)
1095 {
1096 if (regcache == NULL ||
1097 REG_VALID == regcache->get_register_status (PPC_CF0_REGNUM))
1098 cb (".reg-ppc-tm-cfpr", PPC_LINUX_SIZEOF_CFPRREGSET,
1099 PPC_LINUX_SIZEOF_CFPRREGSET,
1100 &ppc32_linux_cfprregset,
1101 "Checkpointed Floating Point Registers", cb_data);
1102 }
1103
1104 if (tdep->have_htm_altivec)
1105 {
1106 if (regcache == NULL ||
1107 REG_VALID == regcache->get_register_status (PPC_CVR0_REGNUM))
1108 {
1109 const struct regset *cvmxregset =
1110 ppc_linux_cvmxregset (gdbarch);
1111
1112 cb (".reg-ppc-tm-cvmx", PPC_LINUX_SIZEOF_CVMXREGSET,
1113 PPC_LINUX_SIZEOF_CVMXREGSET,
1114 cvmxregset,
1115 "Checkpointed Altivec (VMX) Registers", cb_data);
1116 }
1117 }
1118
1119 if (tdep->have_htm_vsx)
1120 {
1121 if (regcache == NULL ||
1122 (REG_VALID
1123 == regcache->get_register_status (PPC_CVSR0_UPPER_REGNUM)))
1124 cb (".reg-ppc-tm-cvsx", PPC_LINUX_SIZEOF_CVSXREGSET,
1125 PPC_LINUX_SIZEOF_CVSXREGSET,
1126 &ppc32_linux_cvsxregset,
1127 "Checkpointed VSX Registers", cb_data);
1128 }
1129
1130 if (tdep->ppc_cppr_regnum != -1)
1131 {
1132 if (regcache == NULL ||
1133 REG_VALID == regcache->get_register_status (PPC_CPPR_REGNUM))
1134 cb (".reg-ppc-tm-cppr", PPC_LINUX_SIZEOF_CPPRREGSET,
1135 PPC_LINUX_SIZEOF_CPPRREGSET,
1136 &ppc32_linux_cpprregset,
1137 "Checkpointed Priority Program Register", cb_data);
1138 }
1139
1140 if (tdep->ppc_cdscr_regnum != -1)
1141 {
1142 if (regcache == NULL ||
1143 REG_VALID == regcache->get_register_status (PPC_CDSCR_REGNUM))
1144 cb (".reg-ppc-tm-cdscr", PPC_LINUX_SIZEOF_CDSCRREGSET,
1145 PPC_LINUX_SIZEOF_CDSCRREGSET,
1146 &ppc32_linux_cdscrregset,
1147 "Checkpointed Data Stream Control Register", cb_data);
1148 }
1149
1150 if (tdep->ppc_ctar_regnum)
1151 {
1152 if ( regcache == NULL ||
1153 REG_VALID == regcache->get_register_status (PPC_CTAR_REGNUM))
1154 cb (".reg-ppc-tm-ctar", PPC_LINUX_SIZEOF_CTARREGSET,
1155 PPC_LINUX_SIZEOF_CTARREGSET,
1156 &ppc32_linux_ctarregset,
1157 "Checkpointed Target Address Register", cb_data);
1158 }
1159 }
1160
1161 static void
1162 ppc_linux_sigtramp_cache (struct frame_info *this_frame,
1163 struct trad_frame_cache *this_cache,
1164 CORE_ADDR func, LONGEST offset,
1165 int bias)
1166 {
1167 CORE_ADDR base;
1168 CORE_ADDR regs;
1169 CORE_ADDR gpregs;
1170 CORE_ADDR fpregs;
1171 int i;
1172 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1174 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1175
1176 base = get_frame_register_unsigned (this_frame,
1177 gdbarch_sp_regnum (gdbarch));
1178 if (bias > 0 && get_frame_pc (this_frame) != func)
1179 /* See below, some signal trampolines increment the stack as their
1180 first instruction, need to compensate for that. */
1181 base -= bias;
1182
1183 /* Find the address of the register buffer pointer. */
1184 regs = base + offset;
1185 /* Use that to find the address of the corresponding register
1186 buffers. */
1187 gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order);
1188 fpregs = gpregs + 48 * tdep->wordsize;
1189
1190 /* General purpose. */
1191 for (i = 0; i < 32; i++)
1192 {
1193 int regnum = i + tdep->ppc_gp0_regnum;
1194 trad_frame_set_reg_addr (this_cache,
1195 regnum, gpregs + i * tdep->wordsize);
1196 }
1197 trad_frame_set_reg_addr (this_cache,
1198 gdbarch_pc_regnum (gdbarch),
1199 gpregs + 32 * tdep->wordsize);
1200 trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
1201 gpregs + 35 * tdep->wordsize);
1202 trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
1203 gpregs + 36 * tdep->wordsize);
1204 trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
1205 gpregs + 37 * tdep->wordsize);
1206 trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
1207 gpregs + 38 * tdep->wordsize);
1208
1209 if (ppc_linux_trap_reg_p (gdbarch))
1210 {
1211 trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
1212 gpregs + 34 * tdep->wordsize);
1213 trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
1214 gpregs + 40 * tdep->wordsize);
1215 }
1216
1217 if (ppc_floating_point_unit_p (gdbarch))
1218 {
1219 /* Floating point registers. */
1220 for (i = 0; i < 32; i++)
1221 {
1222 int regnum = i + gdbarch_fp0_regnum (gdbarch);
1223 trad_frame_set_reg_addr (this_cache, regnum,
1224 fpregs + i * tdep->wordsize);
1225 }
1226 trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
1227 fpregs + 32 * tdep->wordsize);
1228 }
1229 trad_frame_set_id (this_cache, frame_id_build (base, func));
1230 }
1231
1232 static void
1233 ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
1234 struct frame_info *this_frame,
1235 struct trad_frame_cache *this_cache,
1236 CORE_ADDR func)
1237 {
1238 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
1239 0xd0 /* Offset to ucontext_t. */
1240 + 0x30 /* Offset to .reg. */,
1241 0);
1242 }
1243
1244 static void
1245 ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
1246 struct frame_info *this_frame,
1247 struct trad_frame_cache *this_cache,
1248 CORE_ADDR func)
1249 {
1250 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
1251 0x80 /* Offset to ucontext_t. */
1252 + 0xe0 /* Offset to .reg. */,
1253 128);
1254 }
1255
1256 static void
1257 ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
1258 struct frame_info *this_frame,
1259 struct trad_frame_cache *this_cache,
1260 CORE_ADDR func)
1261 {
1262 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
1263 0x40 /* Offset to ucontext_t. */
1264 + 0x1c /* Offset to .reg. */,
1265 0);
1266 }
1267
1268 static void
1269 ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
1270 struct frame_info *this_frame,
1271 struct trad_frame_cache *this_cache,
1272 CORE_ADDR func)
1273 {
1274 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
1275 0x80 /* Offset to struct sigcontext. */
1276 + 0x38 /* Offset to .reg. */,
1277 128);
1278 }
1279
1280 static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
1281 SIGTRAMP_FRAME,
1282 4,
1283 {
1284 { 0x380000ac, ULONGEST_MAX }, /* li r0, 172 */
1285 { 0x44000002, ULONGEST_MAX }, /* sc */
1286 { TRAMP_SENTINEL_INSN },
1287 },
1288 ppc32_linux_sigaction_cache_init
1289 };
1290 static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
1291 SIGTRAMP_FRAME,
1292 4,
1293 {
1294 { 0x38210080, ULONGEST_MAX }, /* addi r1,r1,128 */
1295 { 0x380000ac, ULONGEST_MAX }, /* li r0, 172 */
1296 { 0x44000002, ULONGEST_MAX }, /* sc */
1297 { TRAMP_SENTINEL_INSN },
1298 },
1299 ppc64_linux_sigaction_cache_init
1300 };
1301 static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
1302 SIGTRAMP_FRAME,
1303 4,
1304 {
1305 { 0x38000077, ULONGEST_MAX }, /* li r0,119 */
1306 { 0x44000002, ULONGEST_MAX }, /* sc */
1307 { TRAMP_SENTINEL_INSN },
1308 },
1309 ppc32_linux_sighandler_cache_init
1310 };
1311 static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
1312 SIGTRAMP_FRAME,
1313 4,
1314 {
1315 { 0x38210080, ULONGEST_MAX }, /* addi r1,r1,128 */
1316 { 0x38000077, ULONGEST_MAX }, /* li r0,119 */
1317 { 0x44000002, ULONGEST_MAX }, /* sc */
1318 { TRAMP_SENTINEL_INSN },
1319 },
1320 ppc64_linux_sighandler_cache_init
1321 };
1322
1323 /* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */
1324 int
1325 ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
1326 {
1327 /* If we do not have a target description with registers, then
1328 the special registers will not be included in the register set. */
1329 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
1330 return 0;
1331
1332 /* If we do, then it is safe to check the size. */
1333 return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
1334 && register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
1335 }
1336
1337 /* Return the current system call's number present in the
1338 r0 register. When the function fails, it returns -1. */
1339 static LONGEST
1340 ppc_linux_get_syscall_number (struct gdbarch *gdbarch,
1341 thread_info *thread)
1342 {
1343 struct regcache *regcache = get_thread_regcache (thread);
1344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1345 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1346
1347 /* Make sure we're in a 32- or 64-bit machine */
1348 gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8);
1349
1350 /* The content of a register */
1351 gdb::byte_vector buf (tdep->wordsize);
1352
1353 /* Getting the system call number from the register.
1354 When dealing with PowerPC architecture, this information
1355 is stored at 0th register. */
1356 regcache->cooked_read (tdep->ppc_gp0_regnum, buf.data ());
1357
1358 return extract_signed_integer (buf.data (), tdep->wordsize, byte_order);
1359 }
1360
1361 /* PPC process record-replay */
1362
1363 static struct linux_record_tdep ppc_linux_record_tdep;
1364 static struct linux_record_tdep ppc64_linux_record_tdep;
1365
1366 /* ppc_canonicalize_syscall maps from the native PowerPC Linux set of
1367 syscall ids into a canonical set of syscall ids used by process
1368 record. (See arch/powerpc/include/uapi/asm/unistd.h in kernel tree.)
1369 Return -1 if this system call is not supported by process record.
1370 Otherwise, return the syscall number for process record of given
1371 SYSCALL. */
1372
1373 static enum gdb_syscall
1374 ppc_canonicalize_syscall (int syscall)
1375 {
1376 int result = -1;
1377
1378 if (syscall <= 165)
1379 result = syscall;
1380 else if (syscall >= 167 && syscall <= 190) /* Skip query_module 166 */
1381 result = syscall + 1;
1382 else if (syscall >= 192 && syscall <= 197) /* mmap2 */
1383 result = syscall;
1384 else if (syscall == 208) /* tkill */
1385 result = gdb_sys_tkill;
1386 else if (syscall >= 207 && syscall <= 220) /* gettid */
1387 result = syscall + 224 - 207;
1388 else if (syscall >= 234 && syscall <= 239) /* exit_group */
1389 result = syscall + 252 - 234;
1390 else if (syscall >= 240 && syscall <= 248) /* timer_create */
1391 result = syscall += 259 - 240;
1392 else if (syscall >= 250 && syscall <= 251) /* tgkill */
1393 result = syscall + 270 - 250;
1394 else if (syscall == 336)
1395 result = gdb_sys_recv;
1396 else if (syscall == 337)
1397 result = gdb_sys_recvfrom;
1398 else if (syscall == 342)
1399 result = gdb_sys_recvmsg;
1400
1401 return (enum gdb_syscall) result;
1402 }
1403
1404 /* Record registers which might be clobbered during system call.
1405 Return 0 if successful. */
1406
1407 static int
1408 ppc_linux_syscall_record (struct regcache *regcache)
1409 {
1410 struct gdbarch *gdbarch = regcache->arch ();
1411 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1412 ULONGEST scnum;
1413 enum gdb_syscall syscall_gdb;
1414 int ret;
1415
1416 regcache_raw_read_unsigned (regcache, tdep->ppc_gp0_regnum, &scnum);
1417 syscall_gdb = ppc_canonicalize_syscall (scnum);
1418
1419 if (syscall_gdb < 0)
1420 {
1421 printf_unfiltered (_("Process record and replay target doesn't "
1422 "support syscall number %d\n"), (int) scnum);
1423 return 0;
1424 }
1425
1426 if (syscall_gdb == gdb_sys_sigreturn
1427 || syscall_gdb == gdb_sys_rt_sigreturn)
1428 {
1429 int i, j;
1430 int regsets[] = { tdep->ppc_gp0_regnum,
1431 tdep->ppc_fp0_regnum,
1432 tdep->ppc_vr0_regnum,
1433 tdep->ppc_vsr0_upper_regnum };
1434
1435 for (j = 0; j < 4; j++)
1436 {
1437 if (regsets[j] == -1)
1438 continue;
1439 for (i = 0; i < 32; i++)
1440 {
1441 if (record_full_arch_list_add_reg (regcache, regsets[j] + i))
1442 return -1;
1443 }
1444 }
1445
1446 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
1447 return -1;
1448 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
1449 return -1;
1450 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
1451 return -1;
1452 if (record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum))
1453 return -1;
1454
1455 return 0;
1456 }
1457
1458 if (tdep->wordsize == 8)
1459 ret = record_linux_system_call (syscall_gdb, regcache,
1460 &ppc64_linux_record_tdep);
1461 else
1462 ret = record_linux_system_call (syscall_gdb, regcache,
1463 &ppc_linux_record_tdep);
1464
1465 if (ret != 0)
1466 return ret;
1467
1468 /* Record registers clobbered during syscall. */
1469 for (int i = 3; i <= 12; i++)
1470 {
1471 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
1472 return -1;
1473 }
1474 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + 0))
1475 return -1;
1476 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
1477 return -1;
1478 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
1479 return -1;
1480 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
1481 return -1;
1482
1483 return 0;
1484 }
1485
1486 /* Record registers which might be clobbered during signal handling.
1487 Return 0 if successful. */
1488
1489 static int
1490 ppc_linux_record_signal (struct gdbarch *gdbarch, struct regcache *regcache,
1491 enum gdb_signal signal)
1492 {
1493 /* See handle_rt_signal64 in arch/powerpc/kernel/signal_64.c
1494 handle_rt_signal32 in arch/powerpc/kernel/signal_32.c
1495 arch/powerpc/include/asm/ptrace.h
1496 for details. */
1497 const int SIGNAL_FRAMESIZE = 128;
1498 const int sizeof_rt_sigframe = 1440 * 2 + 8 * 2 + 4 * 6 + 8 + 8 + 128 + 512;
1499 ULONGEST sp;
1500 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1501 int i;
1502
1503 for (i = 3; i <= 12; i++)
1504 {
1505 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
1506 return -1;
1507 }
1508
1509 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
1510 return -1;
1511 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
1512 return -1;
1513 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
1514 return -1;
1515 if (record_full_arch_list_add_reg (regcache, gdbarch_pc_regnum (gdbarch)))
1516 return -1;
1517 if (record_full_arch_list_add_reg (regcache, gdbarch_sp_regnum (gdbarch)))
1518 return -1;
1519
1520 /* Record the change in the stack.
1521 frame-size = sizeof (struct rt_sigframe) + SIGNAL_FRAMESIZE */
1522 regcache_raw_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch), &sp);
1523 sp -= SIGNAL_FRAMESIZE;
1524 sp -= sizeof_rt_sigframe;
1525
1526 if (record_full_arch_list_add_mem (sp, SIGNAL_FRAMESIZE + sizeof_rt_sigframe))
1527 return -1;
1528
1529 if (record_full_arch_list_add_end ())
1530 return -1;
1531
1532 return 0;
1533 }
1534
1535 static void
1536 ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
1537 {
1538 struct gdbarch *gdbarch = regcache->arch ();
1539
1540 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
1541
1542 /* Set special TRAP register to -1 to prevent the kernel from
1543 messing with the PC we just installed, if we happen to be
1544 within an interrupted system call that the kernel wants to
1545 restart.
1546
1547 Note that after we return from the dummy call, the TRAP and
1548 ORIG_R3 registers will be automatically restored, and the
1549 kernel continues to restart the system call at this point. */
1550 if (ppc_linux_trap_reg_p (gdbarch))
1551 regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
1552 }
1553
1554 static const struct target_desc *
1555 ppc_linux_core_read_description (struct gdbarch *gdbarch,
1556 struct target_ops *target,
1557 bfd *abfd)
1558 {
1559 struct ppc_linux_features features = ppc_linux_no_features;
1560 asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
1561 asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx");
1562 asection *section = bfd_get_section_by_name (abfd, ".reg");
1563 asection *ppr = bfd_get_section_by_name (abfd, ".reg-ppc-ppr");
1564 asection *dscr = bfd_get_section_by_name (abfd, ".reg-ppc-dscr");
1565 asection *tar = bfd_get_section_by_name (abfd, ".reg-ppc-tar");
1566 asection *pmu = bfd_get_section_by_name (abfd, ".reg-ppc-pmu");
1567 asection *htmspr = bfd_get_section_by_name (abfd, ".reg-ppc-tm-spr");
1568
1569 if (! section)
1570 return NULL;
1571
1572 switch (bfd_section_size (section))
1573 {
1574 case 48 * 4:
1575 features.wordsize = 4;
1576 break;
1577 case 48 * 8:
1578 features.wordsize = 8;
1579 break;
1580 default:
1581 return NULL;
1582 }
1583
1584 if (altivec)
1585 features.altivec = true;
1586
1587 if (vsx)
1588 features.vsx = true;
1589
1590 CORE_ADDR hwcap = linux_get_hwcap (target);
1591
1592 features.isa205 = ppc_linux_has_isa205 (hwcap);
1593
1594 if (ppr && dscr)
1595 {
1596 features.ppr_dscr = true;
1597
1598 /* We don't require the EBB note section to be present in the
1599 core file to select isa207 because these registers could have
1600 been unavailable when the core file was created. They will
1601 be in the tdep but will show as unavailable. */
1602 if (tar && pmu)
1603 {
1604 features.isa207 = true;
1605 if (htmspr)
1606 features.htm = true;
1607 }
1608 }
1609
1610 return ppc_linux_match_description (features);
1611 }
1612
1613
1614 /* Implementation of `gdbarch_elf_make_msymbol_special', as defined in
1615 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
1616
1617 static void
1618 ppc_elfv2_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1619 {
1620 elf_symbol_type *elf_sym = (elf_symbol_type *)sym;
1621
1622 /* If the symbol is marked as having a local entry point, set a target
1623 flag in the msymbol. We currently only support local entry point
1624 offsets of 8 bytes, which is the only entry point offset ever used
1625 by current compilers. If/when other offsets are ever used, we will
1626 have to use additional target flag bits to store them. */
1627 switch (PPC64_LOCAL_ENTRY_OFFSET (elf_sym->internal_elf_sym.st_other))
1628 {
1629 default:
1630 break;
1631 case 8:
1632 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
1633 break;
1634 }
1635 }
1636
1637 /* Implementation of `gdbarch_skip_entrypoint', as defined in
1638 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
1639
1640 static CORE_ADDR
1641 ppc_elfv2_skip_entrypoint (struct gdbarch *gdbarch, CORE_ADDR pc)
1642 {
1643 struct bound_minimal_symbol fun;
1644 int local_entry_offset = 0;
1645
1646 fun = lookup_minimal_symbol_by_pc (pc);
1647 if (fun.minsym == NULL)
1648 return pc;
1649
1650 /* See ppc_elfv2_elf_make_msymbol_special for how local entry point
1651 offset values are encoded. */
1652 if (MSYMBOL_TARGET_FLAG_1 (fun.minsym))
1653 local_entry_offset = 8;
1654
1655 if (BMSYMBOL_VALUE_ADDRESS (fun) <= pc
1656 && pc < BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset)
1657 return BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset;
1658
1659 return pc;
1660 }
1661
1662 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1663 gdbarch.h. */
1664
1665 static int
1666 ppc_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1667 {
1668 return (*s == 'i' /* Literal number. */
1669 || (isdigit (*s) && s[1] == '('
1670 && isdigit (s[2])) /* Displacement. */
1671 || (*s == '(' && isdigit (s[1])) /* Register indirection. */
1672 || isdigit (*s)); /* Register value. */
1673 }
1674
1675 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
1676 gdbarch.h. */
1677
1678 static int
1679 ppc_stap_parse_special_token (struct gdbarch *gdbarch,
1680 struct stap_parse_info *p)
1681 {
1682 if (isdigit (*p->arg))
1683 {
1684 /* This temporary pointer is needed because we have to do a lookahead.
1685 We could be dealing with a register displacement, and in such case
1686 we would not need to do anything. */
1687 const char *s = p->arg;
1688 char *regname;
1689 int len;
1690 struct stoken str;
1691
1692 while (isdigit (*s))
1693 ++s;
1694
1695 if (*s == '(')
1696 {
1697 /* It is a register displacement indeed. Returning 0 means we are
1698 deferring the treatment of this case to the generic parser. */
1699 return 0;
1700 }
1701
1702 len = s - p->arg;
1703 regname = (char *) alloca (len + 2);
1704 regname[0] = 'r';
1705
1706 strncpy (regname + 1, p->arg, len);
1707 ++len;
1708 regname[len] = '\0';
1709
1710 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1711 error (_("Invalid register name `%s' on expression `%s'."),
1712 regname, p->saved_arg);
1713
1714 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1715 str.ptr = regname;
1716 str.length = len;
1717 write_exp_string (&p->pstate, str);
1718 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1719
1720 p->arg = s;
1721 }
1722 else
1723 {
1724 /* All the other tokens should be handled correctly by the generic
1725 parser. */
1726 return 0;
1727 }
1728
1729 return 1;
1730 }
1731
1732 /* Initialize linux_record_tdep if not initialized yet.
1733 WORDSIZE is 4 or 8 for 32- or 64-bit PowerPC Linux respectively.
1734 Sizes of data structures are initialized accordingly. */
1735
1736 static void
1737 ppc_init_linux_record_tdep (struct linux_record_tdep *record_tdep,
1738 int wordsize)
1739 {
1740 /* Simply return if it had been initialized. */
1741 if (record_tdep->size_pointer != 0)
1742 return;
1743
1744 /* These values are the size of the type that will be used in a system
1745 call. They are obtained from Linux Kernel source. */
1746
1747 if (wordsize == 8)
1748 {
1749 record_tdep->size_pointer = 8;
1750 record_tdep->size__old_kernel_stat = 32;
1751 record_tdep->size_tms = 32;
1752 record_tdep->size_loff_t = 8;
1753 record_tdep->size_flock = 32;
1754 record_tdep->size_oldold_utsname = 45;
1755 record_tdep->size_ustat = 32;
1756 record_tdep->size_old_sigaction = 32;
1757 record_tdep->size_old_sigset_t = 8;
1758 record_tdep->size_rlimit = 16;
1759 record_tdep->size_rusage = 144;
1760 record_tdep->size_timeval = 16;
1761 record_tdep->size_timezone = 8;
1762 record_tdep->size_old_gid_t = 4;
1763 record_tdep->size_old_uid_t = 4;
1764 record_tdep->size_fd_set = 128;
1765 record_tdep->size_old_dirent = 280;
1766 record_tdep->size_statfs = 120;
1767 record_tdep->size_statfs64 = 120;
1768 record_tdep->size_sockaddr = 16;
1769 record_tdep->size_int = 4;
1770 record_tdep->size_long = 8;
1771 record_tdep->size_ulong = 8;
1772 record_tdep->size_msghdr = 56;
1773 record_tdep->size_itimerval = 32;
1774 record_tdep->size_stat = 144;
1775 record_tdep->size_old_utsname = 325;
1776 record_tdep->size_sysinfo = 112;
1777 record_tdep->size_msqid_ds = 120;
1778 record_tdep->size_shmid_ds = 112;
1779 record_tdep->size_new_utsname = 390;
1780 record_tdep->size_timex = 208;
1781 record_tdep->size_mem_dqinfo = 24;
1782 record_tdep->size_if_dqblk = 72;
1783 record_tdep->size_fs_quota_stat = 80;
1784 record_tdep->size_timespec = 16;
1785 record_tdep->size_pollfd = 8;
1786 record_tdep->size_NFS_FHSIZE = 32;
1787 record_tdep->size_knfsd_fh = 132;
1788 record_tdep->size_TASK_COMM_LEN = 16;
1789 record_tdep->size_sigaction = 32;
1790 record_tdep->size_sigset_t = 8;
1791 record_tdep->size_siginfo_t = 128;
1792 record_tdep->size_cap_user_data_t = 8;
1793 record_tdep->size_stack_t = 24;
1794 record_tdep->size_off_t = 8;
1795 record_tdep->size_stat64 = 104;
1796 record_tdep->size_gid_t = 4;
1797 record_tdep->size_uid_t = 4;
1798 record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */
1799 record_tdep->size_flock64 = 32;
1800 record_tdep->size_io_event = 32;
1801 record_tdep->size_iocb = 64;
1802 record_tdep->size_epoll_event = 16;
1803 record_tdep->size_itimerspec = 32;
1804 record_tdep->size_mq_attr = 64;
1805 record_tdep->size_termios = 44;
1806 record_tdep->size_pid_t = 4;
1807 record_tdep->size_winsize = 8;
1808 record_tdep->size_serial_struct = 72;
1809 record_tdep->size_serial_icounter_struct = 80;
1810 record_tdep->size_size_t = 8;
1811 record_tdep->size_iovec = 16;
1812 record_tdep->size_time_t = 8;
1813 }
1814 else if (wordsize == 4)
1815 {
1816 record_tdep->size_pointer = 4;
1817 record_tdep->size__old_kernel_stat = 32;
1818 record_tdep->size_tms = 16;
1819 record_tdep->size_loff_t = 8;
1820 record_tdep->size_flock = 16;
1821 record_tdep->size_oldold_utsname = 45;
1822 record_tdep->size_ustat = 20;
1823 record_tdep->size_old_sigaction = 16;
1824 record_tdep->size_old_sigset_t = 4;
1825 record_tdep->size_rlimit = 8;
1826 record_tdep->size_rusage = 72;
1827 record_tdep->size_timeval = 8;
1828 record_tdep->size_timezone = 8;
1829 record_tdep->size_old_gid_t = 4;
1830 record_tdep->size_old_uid_t = 4;
1831 record_tdep->size_fd_set = 128;
1832 record_tdep->size_old_dirent = 268;
1833 record_tdep->size_statfs = 64;
1834 record_tdep->size_statfs64 = 88;
1835 record_tdep->size_sockaddr = 16;
1836 record_tdep->size_int = 4;
1837 record_tdep->size_long = 4;
1838 record_tdep->size_ulong = 4;
1839 record_tdep->size_msghdr = 28;
1840 record_tdep->size_itimerval = 16;
1841 record_tdep->size_stat = 88;
1842 record_tdep->size_old_utsname = 325;
1843 record_tdep->size_sysinfo = 64;
1844 record_tdep->size_msqid_ds = 68;
1845 record_tdep->size_shmid_ds = 60;
1846 record_tdep->size_new_utsname = 390;
1847 record_tdep->size_timex = 128;
1848 record_tdep->size_mem_dqinfo = 24;
1849 record_tdep->size_if_dqblk = 72;
1850 record_tdep->size_fs_quota_stat = 80;
1851 record_tdep->size_timespec = 8;
1852 record_tdep->size_pollfd = 8;
1853 record_tdep->size_NFS_FHSIZE = 32;
1854 record_tdep->size_knfsd_fh = 132;
1855 record_tdep->size_TASK_COMM_LEN = 16;
1856 record_tdep->size_sigaction = 20;
1857 record_tdep->size_sigset_t = 8;
1858 record_tdep->size_siginfo_t = 128;
1859 record_tdep->size_cap_user_data_t = 4;
1860 record_tdep->size_stack_t = 12;
1861 record_tdep->size_off_t = 4;
1862 record_tdep->size_stat64 = 104;
1863 record_tdep->size_gid_t = 4;
1864 record_tdep->size_uid_t = 4;
1865 record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */
1866 record_tdep->size_flock64 = 32;
1867 record_tdep->size_io_event = 32;
1868 record_tdep->size_iocb = 64;
1869 record_tdep->size_epoll_event = 16;
1870 record_tdep->size_itimerspec = 16;
1871 record_tdep->size_mq_attr = 32;
1872 record_tdep->size_termios = 44;
1873 record_tdep->size_pid_t = 4;
1874 record_tdep->size_winsize = 8;
1875 record_tdep->size_serial_struct = 60;
1876 record_tdep->size_serial_icounter_struct = 80;
1877 record_tdep->size_size_t = 4;
1878 record_tdep->size_iovec = 8;
1879 record_tdep->size_time_t = 4;
1880 }
1881 else
1882 internal_error (__FILE__, __LINE__, _("unexpected wordsize"));
1883
1884 /* These values are the second argument of system call "sys_fcntl"
1885 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1886 record_tdep->fcntl_F_GETLK = 5;
1887 record_tdep->fcntl_F_GETLK64 = 12;
1888 record_tdep->fcntl_F_SETLK64 = 13;
1889 record_tdep->fcntl_F_SETLKW64 = 14;
1890
1891 record_tdep->arg1 = PPC_R0_REGNUM + 3;
1892 record_tdep->arg2 = PPC_R0_REGNUM + 4;
1893 record_tdep->arg3 = PPC_R0_REGNUM + 5;
1894 record_tdep->arg4 = PPC_R0_REGNUM + 6;
1895 record_tdep->arg5 = PPC_R0_REGNUM + 7;
1896 record_tdep->arg6 = PPC_R0_REGNUM + 8;
1897
1898 /* These values are the second argument of system call "sys_ioctl".
1899 They are obtained from Linux Kernel source.
1900 See arch/powerpc/include/uapi/asm/ioctls.h. */
1901 record_tdep->ioctl_TCGETS = 0x403c7413;
1902 record_tdep->ioctl_TCSETS = 0x803c7414;
1903 record_tdep->ioctl_TCSETSW = 0x803c7415;
1904 record_tdep->ioctl_TCSETSF = 0x803c7416;
1905 record_tdep->ioctl_TCGETA = 0x40147417;
1906 record_tdep->ioctl_TCSETA = 0x80147418;
1907 record_tdep->ioctl_TCSETAW = 0x80147419;
1908 record_tdep->ioctl_TCSETAF = 0x8014741c;
1909 record_tdep->ioctl_TCSBRK = 0x2000741d;
1910 record_tdep->ioctl_TCXONC = 0x2000741e;
1911 record_tdep->ioctl_TCFLSH = 0x2000741f;
1912 record_tdep->ioctl_TIOCEXCL = 0x540c;
1913 record_tdep->ioctl_TIOCNXCL = 0x540d;
1914 record_tdep->ioctl_TIOCSCTTY = 0x540e;
1915 record_tdep->ioctl_TIOCGPGRP = 0x40047477;
1916 record_tdep->ioctl_TIOCSPGRP = 0x80047476;
1917 record_tdep->ioctl_TIOCOUTQ = 0x40047473;
1918 record_tdep->ioctl_TIOCSTI = 0x5412;
1919 record_tdep->ioctl_TIOCGWINSZ = 0x40087468;
1920 record_tdep->ioctl_TIOCSWINSZ = 0x80087467;
1921 record_tdep->ioctl_TIOCMGET = 0x5415;
1922 record_tdep->ioctl_TIOCMBIS = 0x5416;
1923 record_tdep->ioctl_TIOCMBIC = 0x5417;
1924 record_tdep->ioctl_TIOCMSET = 0x5418;
1925 record_tdep->ioctl_TIOCGSOFTCAR = 0x5419;
1926 record_tdep->ioctl_TIOCSSOFTCAR = 0x541a;
1927 record_tdep->ioctl_FIONREAD = 0x4004667f;
1928 record_tdep->ioctl_TIOCINQ = 0x4004667f;
1929 record_tdep->ioctl_TIOCLINUX = 0x541c;
1930 record_tdep->ioctl_TIOCCONS = 0x541d;
1931 record_tdep->ioctl_TIOCGSERIAL = 0x541e;
1932 record_tdep->ioctl_TIOCSSERIAL = 0x541f;
1933 record_tdep->ioctl_TIOCPKT = 0x5420;
1934 record_tdep->ioctl_FIONBIO = 0x8004667e;
1935 record_tdep->ioctl_TIOCNOTTY = 0x5422;
1936 record_tdep->ioctl_TIOCSETD = 0x5423;
1937 record_tdep->ioctl_TIOCGETD = 0x5424;
1938 record_tdep->ioctl_TCSBRKP = 0x5425;
1939 record_tdep->ioctl_TIOCSBRK = 0x5427;
1940 record_tdep->ioctl_TIOCCBRK = 0x5428;
1941 record_tdep->ioctl_TIOCGSID = 0x5429;
1942 record_tdep->ioctl_TIOCGPTN = 0x40045430;
1943 record_tdep->ioctl_TIOCSPTLCK = 0x80045431;
1944 record_tdep->ioctl_FIONCLEX = 0x20006602;
1945 record_tdep->ioctl_FIOCLEX = 0x20006601;
1946 record_tdep->ioctl_FIOASYNC = 0x8004667d;
1947 record_tdep->ioctl_TIOCSERCONFIG = 0x5453;
1948 record_tdep->ioctl_TIOCSERGWILD = 0x5454;
1949 record_tdep->ioctl_TIOCSERSWILD = 0x5455;
1950 record_tdep->ioctl_TIOCGLCKTRMIOS = 0x5456;
1951 record_tdep->ioctl_TIOCSLCKTRMIOS = 0x5457;
1952 record_tdep->ioctl_TIOCSERGSTRUCT = 0x5458;
1953 record_tdep->ioctl_TIOCSERGETLSR = 0x5459;
1954 record_tdep->ioctl_TIOCSERGETMULTI = 0x545a;
1955 record_tdep->ioctl_TIOCSERSETMULTI = 0x545b;
1956 record_tdep->ioctl_TIOCMIWAIT = 0x545c;
1957 record_tdep->ioctl_TIOCGICOUNT = 0x545d;
1958 record_tdep->ioctl_FIOQSIZE = 0x40086680;
1959 }
1960
1961 /* Return a floating-point format for a floating-point variable of
1962 length LEN in bits. If non-NULL, NAME is the name of its type.
1963 If no suitable type is found, return NULL. */
1964
1965 const struct floatformat **
1966 ppc_floatformat_for_type (struct gdbarch *gdbarch,
1967 const char *name, int len)
1968 {
1969 if (len == 128 && name)
1970 {
1971 if (strcmp (name, "__float128") == 0
1972 || strcmp (name, "_Float128") == 0
1973 || strcmp (name, "_Float64x") == 0
1974 || strcmp (name, "complex _Float128") == 0
1975 || strcmp (name, "complex _Float64x") == 0)
1976 return floatformats_ia64_quad;
1977
1978 if (strcmp (name, "__ibm128") == 0)
1979 return floatformats_ibm_long_double;
1980 }
1981
1982 return default_floatformat_for_type (gdbarch, name, len);
1983 }
1984
1985 static void
1986 ppc_linux_init_abi (struct gdbarch_info info,
1987 struct gdbarch *gdbarch)
1988 {
1989 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1990 struct tdesc_arch_data *tdesc_data = info.tdesc_data;
1991 static const char *const stap_integer_prefixes[] = { "i", NULL };
1992 static const char *const stap_register_indirection_prefixes[] = { "(",
1993 NULL };
1994 static const char *const stap_register_indirection_suffixes[] = { ")",
1995 NULL };
1996
1997 linux_init_abi (info, gdbarch);
1998
1999 /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
2000 128-bit, they can be either IBM long double or IEEE quad long double.
2001 The 64-bit long double case will be detected automatically using
2002 the size specified in debug info. We use a .gnu.attribute flag
2003 to distinguish between the IBM long double and IEEE quad cases. */
2004 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2005 if (tdep->long_double_abi == POWERPC_LONG_DOUBLE_IEEE128)
2006 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
2007 else
2008 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
2009
2010 /* Support for floating-point data type variants. */
2011 set_gdbarch_floatformat_for_type (gdbarch, ppc_floatformat_for_type);
2012
2013 /* Handle inferior calls during interrupted system calls. */
2014 set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);
2015
2016 /* Get the syscall number from the arch's register. */
2017 set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number);
2018
2019 /* SystemTap functions. */
2020 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
2021 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
2022 stap_register_indirection_prefixes);
2023 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
2024 stap_register_indirection_suffixes);
2025 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
2026 set_gdbarch_stap_is_single_operand (gdbarch, ppc_stap_is_single_operand);
2027 set_gdbarch_stap_parse_special_token (gdbarch,
2028 ppc_stap_parse_special_token);
2029
2030 if (tdep->wordsize == 4)
2031 {
2032 /* Until November 2001, gcc did not comply with the 32 bit SysV
2033 R4 ABI requirement that structures less than or equal to 8
2034 bytes should be returned in registers. Instead GCC was using
2035 the AIX/PowerOpen ABI - everything returned in memory
2036 (well ignoring vectors that is). When this was corrected, it
2037 wasn't fixed for GNU/Linux native platform. Use the
2038 PowerOpen struct convention. */
2039 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
2040
2041 set_gdbarch_memory_remove_breakpoint (gdbarch,
2042 ppc_linux_memory_remove_breakpoint);
2043
2044 /* Shared library handling. */
2045 set_gdbarch_skip_trampoline_code (gdbarch, ppc_skip_trampoline_code);
2046 set_solib_svr4_fetch_link_map_offsets
2047 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
2048
2049 /* Setting the correct XML syscall filename. */
2050 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC);
2051
2052 /* Trampolines. */
2053 tramp_frame_prepend_unwinder (gdbarch,
2054 &ppc32_linux_sigaction_tramp_frame);
2055 tramp_frame_prepend_unwinder (gdbarch,
2056 &ppc32_linux_sighandler_tramp_frame);
2057
2058 /* BFD target for core files. */
2059 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
2060 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle");
2061 else
2062 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc");
2063
2064 if (powerpc_so_ops.in_dynsym_resolve_code == NULL)
2065 {
2066 powerpc_so_ops = svr4_so_ops;
2067 /* Override dynamic resolve function. */
2068 powerpc_so_ops.in_dynsym_resolve_code =
2069 powerpc_linux_in_dynsym_resolve_code;
2070 }
2071 set_solib_ops (gdbarch, &powerpc_so_ops);
2072
2073 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
2074 }
2075
2076 if (tdep->wordsize == 8)
2077 {
2078 if (tdep->elf_abi == POWERPC_ELF_V1)
2079 {
2080 /* Handle PPC GNU/Linux 64-bit function pointers (which are really
2081 function descriptors). */
2082 set_gdbarch_convert_from_func_ptr_addr
2083 (gdbarch, ppc64_convert_from_func_ptr_addr);
2084
2085 set_gdbarch_elf_make_msymbol_special
2086 (gdbarch, ppc64_elf_make_msymbol_special);
2087 }
2088 else
2089 {
2090 set_gdbarch_elf_make_msymbol_special
2091 (gdbarch, ppc_elfv2_elf_make_msymbol_special);
2092
2093 set_gdbarch_skip_entrypoint (gdbarch, ppc_elfv2_skip_entrypoint);
2094 }
2095
2096 /* Shared library handling. */
2097 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
2098 set_solib_svr4_fetch_link_map_offsets
2099 (gdbarch, svr4_lp64_fetch_link_map_offsets);
2100
2101 /* Setting the correct XML syscall filename. */
2102 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC64);
2103
2104 /* Trampolines. */
2105 tramp_frame_prepend_unwinder (gdbarch,
2106 &ppc64_linux_sigaction_tramp_frame);
2107 tramp_frame_prepend_unwinder (gdbarch,
2108 &ppc64_linux_sighandler_tramp_frame);
2109
2110 /* BFD target for core files. */
2111 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
2112 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle");
2113 else
2114 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc");
2115 }
2116
2117 set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
2118 set_gdbarch_iterate_over_regset_sections (gdbarch,
2119 ppc_linux_iterate_over_regset_sections);
2120
2121 /* Enable TLS support. */
2122 set_gdbarch_fetch_tls_load_module_address (gdbarch,
2123 svr4_fetch_objfile_link_map);
2124
2125 if (tdesc_data)
2126 {
2127 const struct tdesc_feature *feature;
2128
2129 /* If we have target-described registers, then we can safely
2130 reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
2131 (whether they are described or not). */
2132 gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
2133 set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);
2134
2135 /* If they are present, then assign them to the reserved number. */
2136 feature = tdesc_find_feature (info.target_desc,
2137 "org.gnu.gdb.power.linux");
2138 if (feature != NULL)
2139 {
2140 tdesc_numbered_register (feature, tdesc_data,
2141 PPC_ORIG_R3_REGNUM, "orig_r3");
2142 tdesc_numbered_register (feature, tdesc_data,
2143 PPC_TRAP_REGNUM, "trap");
2144 }
2145 }
2146
2147 set_gdbarch_displaced_step_location (gdbarch,
2148 linux_displaced_step_location);
2149
2150 /* Support reverse debugging. */
2151 set_gdbarch_process_record (gdbarch, ppc_process_record);
2152 set_gdbarch_process_record_signal (gdbarch, ppc_linux_record_signal);
2153 tdep->ppc_syscall_record = ppc_linux_syscall_record;
2154
2155 ppc_init_linux_record_tdep (&ppc_linux_record_tdep, 4);
2156 ppc_init_linux_record_tdep (&ppc64_linux_record_tdep, 8);
2157 }
2158
2159 void
2160 _initialize_ppc_linux_tdep (void)
2161 {
2162 /* Register for all sub-families of the POWER/PowerPC: 32-bit and
2163 64-bit PowerPC, and the older rs6k. */
2164 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
2165 ppc_linux_init_abi);
2166 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
2167 ppc_linux_init_abi);
2168 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
2169 ppc_linux_init_abi);
2170
2171 /* Initialize the Linux target descriptions. */
2172 initialize_tdesc_powerpc_32l ();
2173 initialize_tdesc_powerpc_altivec32l ();
2174 initialize_tdesc_powerpc_vsx32l ();
2175 initialize_tdesc_powerpc_isa205_32l ();
2176 initialize_tdesc_powerpc_isa205_altivec32l ();
2177 initialize_tdesc_powerpc_isa205_vsx32l ();
2178 initialize_tdesc_powerpc_isa205_ppr_dscr_vsx32l ();
2179 initialize_tdesc_powerpc_isa207_vsx32l ();
2180 initialize_tdesc_powerpc_isa207_htm_vsx32l ();
2181 initialize_tdesc_powerpc_64l ();
2182 initialize_tdesc_powerpc_altivec64l ();
2183 initialize_tdesc_powerpc_vsx64l ();
2184 initialize_tdesc_powerpc_isa205_64l ();
2185 initialize_tdesc_powerpc_isa205_altivec64l ();
2186 initialize_tdesc_powerpc_isa205_vsx64l ();
2187 initialize_tdesc_powerpc_isa205_ppr_dscr_vsx64l ();
2188 initialize_tdesc_powerpc_isa207_vsx64l ();
2189 initialize_tdesc_powerpc_isa207_htm_vsx64l ();
2190 initialize_tdesc_powerpc_e500l ();
2191 }
This page took 0.101422 seconds and 5 git commands to generate.