Convert observers to C++
[deliverable/binutils-gdb.git] / gdb / ppc-linux-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "symtab.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "gdbcmd.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "regcache.h"
30 #include "value.h"
31 #include "osabi.h"
32 #include "regset.h"
33 #include "solib-svr4.h"
34 #include "solib-spu.h"
35 #include "solib.h"
36 #include "solist.h"
37 #include "ppc-tdep.h"
38 #include "ppc64-tdep.h"
39 #include "ppc-linux-tdep.h"
40 #include "glibc-tdep.h"
41 #include "trad-frame.h"
42 #include "frame-unwind.h"
43 #include "tramp-frame.h"
44 #include "observable.h"
45 #include "auxv.h"
46 #include "elf/common.h"
47 #include "elf/ppc64.h"
48 #include "arch-utils.h"
49 #include "spu-tdep.h"
50 #include "xml-syscall.h"
51 #include "linux-tdep.h"
52 #include "linux-record.h"
53 #include "record-full.h"
54 #include "infrun.h"
55
56 #include "stap-probe.h"
57 #include "ax.h"
58 #include "ax-gdb.h"
59 #include "cli/cli-utils.h"
60 #include "parser-defs.h"
61 #include "user-regs.h"
62 #include <ctype.h>
63 #include "elf-bfd.h"
64
65 #include "features/rs6000/powerpc-32l.c"
66 #include "features/rs6000/powerpc-altivec32l.c"
67 #include "features/rs6000/powerpc-cell32l.c"
68 #include "features/rs6000/powerpc-vsx32l.c"
69 #include "features/rs6000/powerpc-isa205-32l.c"
70 #include "features/rs6000/powerpc-isa205-altivec32l.c"
71 #include "features/rs6000/powerpc-isa205-vsx32l.c"
72 #include "features/rs6000/powerpc-64l.c"
73 #include "features/rs6000/powerpc-altivec64l.c"
74 #include "features/rs6000/powerpc-cell64l.c"
75 #include "features/rs6000/powerpc-vsx64l.c"
76 #include "features/rs6000/powerpc-isa205-64l.c"
77 #include "features/rs6000/powerpc-isa205-altivec64l.c"
78 #include "features/rs6000/powerpc-isa205-vsx64l.c"
79 #include "features/rs6000/powerpc-e500l.c"
80
81 /* Shared library operations for PowerPC-Linux. */
82 static struct target_so_ops powerpc_so_ops;
83
84 /* The syscall's XML filename for PPC and PPC64. */
85 #define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml"
86 #define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml"
87
88 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
89 in much the same fashion as memory_remove_breakpoint in mem-break.c,
90 but is careful not to write back the previous contents if the code
91 in question has changed in between inserting the breakpoint and
92 removing it.
93
94 Here is the problem that we're trying to solve...
95
96 Once upon a time, before introducing this function to remove
97 breakpoints from the inferior, setting a breakpoint on a shared
98 library function prior to running the program would not work
99 properly. In order to understand the problem, it is first
100 necessary to understand a little bit about dynamic linking on
101 this platform.
102
103 A call to a shared library function is accomplished via a bl
104 (branch-and-link) instruction whose branch target is an entry
105 in the procedure linkage table (PLT). The PLT in the object
106 file is uninitialized. To gdb, prior to running the program, the
107 entries in the PLT are all zeros.
108
109 Once the program starts running, the shared libraries are loaded
110 and the procedure linkage table is initialized, but the entries in
111 the table are not (necessarily) resolved. Once a function is
112 actually called, the code in the PLT is hit and the function is
113 resolved. In order to better illustrate this, an example is in
114 order; the following example is from the gdb testsuite.
115
116 We start the program shmain.
117
118 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
119 [...]
120
121 We place two breakpoints, one on shr1 and the other on main.
122
123 (gdb) b shr1
124 Breakpoint 1 at 0x100409d4
125 (gdb) b main
126 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
127
128 Examine the instruction (and the immediatly following instruction)
129 upon which the breakpoint was placed. Note that the PLT entry
130 for shr1 contains zeros.
131
132 (gdb) x/2i 0x100409d4
133 0x100409d4 <shr1>: .long 0x0
134 0x100409d8 <shr1+4>: .long 0x0
135
136 Now run 'til main.
137
138 (gdb) r
139 Starting program: gdb.base/shmain
140 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
141
142 Breakpoint 2, main ()
143 at gdb.base/shmain.c:44
144 44 g = 1;
145
146 Examine the PLT again. Note that the loading of the shared
147 library has initialized the PLT to code which loads a constant
148 (which I think is an index into the GOT) into r11 and then
149 branchs a short distance to the code which actually does the
150 resolving.
151
152 (gdb) x/2i 0x100409d4
153 0x100409d4 <shr1>: li r11,4
154 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
155 (gdb) c
156 Continuing.
157
158 Breakpoint 1, shr1 (x=1)
159 at gdb.base/shr1.c:19
160 19 l = 1;
161
162 Now we've hit the breakpoint at shr1. (The breakpoint was
163 reset from the PLT entry to the actual shr1 function after the
164 shared library was loaded.) Note that the PLT entry has been
165 resolved to contain a branch that takes us directly to shr1.
166 (The real one, not the PLT entry.)
167
168 (gdb) x/2i 0x100409d4
169 0x100409d4 <shr1>: b 0xffaf76c <shr1>
170 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
171
172 The thing to note here is that the PLT entry for shr1 has been
173 changed twice.
174
175 Now the problem should be obvious. GDB places a breakpoint (a
176 trap instruction) on the zero value of the PLT entry for shr1.
177 Later on, after the shared library had been loaded and the PLT
178 initialized, GDB gets a signal indicating this fact and attempts
179 (as it always does when it stops) to remove all the breakpoints.
180
181 The breakpoint removal was causing the former contents (a zero
182 word) to be written back to the now initialized PLT entry thus
183 destroying a portion of the initialization that had occurred only a
184 short time ago. When execution continued, the zero word would be
185 executed as an instruction an illegal instruction trap was
186 generated instead. (0 is not a legal instruction.)
187
188 The fix for this problem was fairly straightforward. The function
189 memory_remove_breakpoint from mem-break.c was copied to this file,
190 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
191 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
192 function.
193
194 The differences between ppc_linux_memory_remove_breakpoint () and
195 memory_remove_breakpoint () are minor. All that the former does
196 that the latter does not is check to make sure that the breakpoint
197 location actually contains a breakpoint (trap instruction) prior
198 to attempting to write back the old contents. If it does contain
199 a trap instruction, we allow the old contents to be written back.
200 Otherwise, we silently do nothing.
201
202 The big question is whether memory_remove_breakpoint () should be
203 changed to have the same functionality. The downside is that more
204 traffic is generated for remote targets since we'll have an extra
205 fetch of a memory word each time a breakpoint is removed.
206
207 For the time being, we'll leave this self-modifying-code-friendly
208 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
209 else in the event that some other platform has similar needs with
210 regard to removing breakpoints in some potentially self modifying
211 code. */
212 static int
213 ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
214 struct bp_target_info *bp_tgt)
215 {
216 CORE_ADDR addr = bp_tgt->reqstd_address;
217 const unsigned char *bp;
218 int val;
219 int bplen;
220 gdb_byte old_contents[BREAKPOINT_MAX];
221
222 /* Determine appropriate breakpoint contents and size for this address. */
223 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
224
225 /* Make sure we see the memory breakpoints. */
226 scoped_restore restore_memory
227 = make_scoped_restore_show_memory_breakpoints (1);
228 val = target_read_memory (addr, old_contents, bplen);
229
230 /* If our breakpoint is no longer at the address, this means that the
231 program modified the code on us, so it is wrong to put back the
232 old value. */
233 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
234 val = target_write_raw_memory (addr, bp_tgt->shadow_contents, bplen);
235
236 return val;
237 }
238
239 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
240 than the 32 bit SYSV R4 ABI structure return convention - all
241 structures, no matter their size, are put in memory. Vectors,
242 which were added later, do get returned in a register though. */
243
244 static enum return_value_convention
245 ppc_linux_return_value (struct gdbarch *gdbarch, struct value *function,
246 struct type *valtype, struct regcache *regcache,
247 gdb_byte *readbuf, const gdb_byte *writebuf)
248 {
249 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
250 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
251 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
252 && TYPE_VECTOR (valtype)))
253 return RETURN_VALUE_STRUCT_CONVENTION;
254 else
255 return ppc_sysv_abi_return_value (gdbarch, function, valtype, regcache,
256 readbuf, writebuf);
257 }
258
259 /* PLT stub in an executable. */
260 static const struct ppc_insn_pattern powerpc32_plt_stub[] =
261 {
262 { 0xffff0000, 0x3d600000, 0 }, /* lis r11, xxxx */
263 { 0xffff0000, 0x816b0000, 0 }, /* lwz r11, xxxx(r11) */
264 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
265 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
266 { 0, 0, 0 }
267 };
268
269 /* PLT stubs in a shared library or PIE.
270 The first variant is used when the PLT entry is within +/-32k of
271 the GOT pointer (r30). */
272 static const struct ppc_insn_pattern powerpc32_plt_stub_so_1[] =
273 {
274 { 0xffff0000, 0x817e0000, 0 }, /* lwz r11, xxxx(r30) */
275 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
276 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
277 { 0, 0, 0 }
278 };
279
280 /* The second variant is used when the PLT entry is more than +/-32k
281 from the GOT pointer (r30). */
282 static const struct ppc_insn_pattern powerpc32_plt_stub_so_2[] =
283 {
284 { 0xffff0000, 0x3d7e0000, 0 }, /* addis r11, r30, xxxx */
285 { 0xffff0000, 0x816b0000, 0 }, /* lwz r11, xxxx(r11) */
286 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
287 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
288 { 0, 0, 0 }
289 };
290
291 /* The max number of insns we check using ppc_insns_match_pattern. */
292 #define POWERPC32_PLT_CHECK_LEN (ARRAY_SIZE (powerpc32_plt_stub) - 1)
293
294 /* Check if PC is in PLT stub. For non-secure PLT, stub is in .plt
295 section. For secure PLT, stub is in .text and we need to check
296 instruction patterns. */
297
298 static int
299 powerpc_linux_in_dynsym_resolve_code (CORE_ADDR pc)
300 {
301 struct bound_minimal_symbol sym;
302
303 /* Check whether PC is in the dynamic linker. This also checks
304 whether it is in the .plt section, used by non-PIC executables. */
305 if (svr4_in_dynsym_resolve_code (pc))
306 return 1;
307
308 /* Check if we are in the resolver. */
309 sym = lookup_minimal_symbol_by_pc (pc);
310 if (sym.minsym != NULL
311 && (strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym), "__glink") == 0
312 || strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym),
313 "__glink_PLTresolve") == 0))
314 return 1;
315
316 return 0;
317 }
318
319 /* Follow PLT stub to actual routine.
320
321 When the execution direction is EXEC_REVERSE, scan backward to
322 check whether we are in the middle of a PLT stub. Currently,
323 we only look-behind at most 4 instructions (the max length of a PLT
324 stub sequence. */
325
326 static CORE_ADDR
327 ppc_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
328 {
329 unsigned int insnbuf[POWERPC32_PLT_CHECK_LEN];
330 struct gdbarch *gdbarch = get_frame_arch (frame);
331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
332 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
333 CORE_ADDR target = 0;
334 int scan_limit, i;
335
336 scan_limit = 1;
337 /* When reverse-debugging, scan backward to check whether we are
338 in the middle of trampoline code. */
339 if (execution_direction == EXEC_REVERSE)
340 scan_limit = 4; /* At most 4 instructions. */
341
342 for (i = 0; i < scan_limit; i++)
343 {
344 if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub, insnbuf))
345 {
346 /* Calculate PLT entry address from
347 lis r11, xxxx
348 lwz r11, xxxx(r11). */
349 target = ((ppc_insn_d_field (insnbuf[0]) << 16)
350 + ppc_insn_d_field (insnbuf[1]));
351 }
352 else if (i < ARRAY_SIZE (powerpc32_plt_stub_so_1) - 1
353 && ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so_1,
354 insnbuf))
355 {
356 /* Calculate PLT entry address from
357 lwz r11, xxxx(r30). */
358 target = (ppc_insn_d_field (insnbuf[0])
359 + get_frame_register_unsigned (frame,
360 tdep->ppc_gp0_regnum + 30));
361 }
362 else if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so_2,
363 insnbuf))
364 {
365 /* Calculate PLT entry address from
366 addis r11, r30, xxxx
367 lwz r11, xxxx(r11). */
368 target = ((ppc_insn_d_field (insnbuf[0]) << 16)
369 + ppc_insn_d_field (insnbuf[1])
370 + get_frame_register_unsigned (frame,
371 tdep->ppc_gp0_regnum + 30));
372 }
373 else
374 {
375 /* Scan backward one more instruction if it doesn't match. */
376 pc -= 4;
377 continue;
378 }
379
380 target = read_memory_unsigned_integer (target, 4, byte_order);
381 return target;
382 }
383
384 return 0;
385 }
386
387 /* Wrappers to handle Linux-only registers. */
388
389 static void
390 ppc_linux_supply_gregset (const struct regset *regset,
391 struct regcache *regcache,
392 int regnum, const void *gregs, size_t len)
393 {
394 const struct ppc_reg_offsets *offsets
395 = (const struct ppc_reg_offsets *) regset->regmap;
396
397 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
398
399 if (ppc_linux_trap_reg_p (regcache->arch ()))
400 {
401 /* "orig_r3" is stored 2 slots after "pc". */
402 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
403 ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, (const gdb_byte *) gregs,
404 offsets->pc_offset + 2 * offsets->gpr_size,
405 offsets->gpr_size);
406
407 /* "trap" is stored 8 slots after "pc". */
408 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
409 ppc_supply_reg (regcache, PPC_TRAP_REGNUM, (const gdb_byte *) gregs,
410 offsets->pc_offset + 8 * offsets->gpr_size,
411 offsets->gpr_size);
412 }
413 }
414
415 static void
416 ppc_linux_collect_gregset (const struct regset *regset,
417 const struct regcache *regcache,
418 int regnum, void *gregs, size_t len)
419 {
420 const struct ppc_reg_offsets *offsets
421 = (const struct ppc_reg_offsets *) regset->regmap;
422
423 /* Clear areas in the linux gregset not written elsewhere. */
424 if (regnum == -1)
425 memset (gregs, 0, len);
426
427 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
428
429 if (ppc_linux_trap_reg_p (regcache->arch ()))
430 {
431 /* "orig_r3" is stored 2 slots after "pc". */
432 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
433 ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, (gdb_byte *) gregs,
434 offsets->pc_offset + 2 * offsets->gpr_size,
435 offsets->gpr_size);
436
437 /* "trap" is stored 8 slots after "pc". */
438 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
439 ppc_collect_reg (regcache, PPC_TRAP_REGNUM, (gdb_byte *) gregs,
440 offsets->pc_offset + 8 * offsets->gpr_size,
441 offsets->gpr_size);
442 }
443 }
444
445 /* Regset descriptions. */
446 static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
447 {
448 /* General-purpose registers. */
449 /* .r0_offset = */ 0,
450 /* .gpr_size = */ 4,
451 /* .xr_size = */ 4,
452 /* .pc_offset = */ 128,
453 /* .ps_offset = */ 132,
454 /* .cr_offset = */ 152,
455 /* .lr_offset = */ 144,
456 /* .ctr_offset = */ 140,
457 /* .xer_offset = */ 148,
458 /* .mq_offset = */ 156,
459
460 /* Floating-point registers. */
461 /* .f0_offset = */ 0,
462 /* .fpscr_offset = */ 256,
463 /* .fpscr_size = */ 8,
464
465 /* AltiVec registers. */
466 /* .vr0_offset = */ 0,
467 /* .vscr_offset = */ 512 + 12,
468 /* .vrsave_offset = */ 528
469 };
470
471 static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
472 {
473 /* General-purpose registers. */
474 /* .r0_offset = */ 0,
475 /* .gpr_size = */ 8,
476 /* .xr_size = */ 8,
477 /* .pc_offset = */ 256,
478 /* .ps_offset = */ 264,
479 /* .cr_offset = */ 304,
480 /* .lr_offset = */ 288,
481 /* .ctr_offset = */ 280,
482 /* .xer_offset = */ 296,
483 /* .mq_offset = */ 312,
484
485 /* Floating-point registers. */
486 /* .f0_offset = */ 0,
487 /* .fpscr_offset = */ 256,
488 /* .fpscr_size = */ 8,
489
490 /* AltiVec registers. */
491 /* .vr0_offset = */ 0,
492 /* .vscr_offset = */ 512 + 12,
493 /* .vrsave_offset = */ 528
494 };
495
496 static const struct regset ppc32_linux_gregset = {
497 &ppc32_linux_reg_offsets,
498 ppc_linux_supply_gregset,
499 ppc_linux_collect_gregset
500 };
501
502 static const struct regset ppc64_linux_gregset = {
503 &ppc64_linux_reg_offsets,
504 ppc_linux_supply_gregset,
505 ppc_linux_collect_gregset
506 };
507
508 static const struct regset ppc32_linux_fpregset = {
509 &ppc32_linux_reg_offsets,
510 ppc_supply_fpregset,
511 ppc_collect_fpregset
512 };
513
514 static const struct regset ppc32_linux_vrregset = {
515 &ppc32_linux_reg_offsets,
516 ppc_supply_vrregset,
517 ppc_collect_vrregset
518 };
519
520 static const struct regset ppc32_linux_vsxregset = {
521 &ppc32_linux_reg_offsets,
522 ppc_supply_vsxregset,
523 ppc_collect_vsxregset
524 };
525
526 const struct regset *
527 ppc_linux_gregset (int wordsize)
528 {
529 return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
530 }
531
532 const struct regset *
533 ppc_linux_fpregset (void)
534 {
535 return &ppc32_linux_fpregset;
536 }
537
538 /* Iterate over supported core file register note sections. */
539
540 static void
541 ppc_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
542 iterate_over_regset_sections_cb *cb,
543 void *cb_data,
544 const struct regcache *regcache)
545 {
546 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
547 int have_altivec = tdep->ppc_vr0_regnum != -1;
548 int have_vsx = tdep->ppc_vsr0_upper_regnum != -1;
549
550 if (tdep->wordsize == 4)
551 cb (".reg", 48 * 4, &ppc32_linux_gregset, NULL, cb_data);
552 else
553 cb (".reg", 48 * 8, &ppc64_linux_gregset, NULL, cb_data);
554
555 cb (".reg2", 264, &ppc32_linux_fpregset, NULL, cb_data);
556
557 if (have_altivec)
558 cb (".reg-ppc-vmx", 544, &ppc32_linux_vrregset, "ppc Altivec", cb_data);
559
560 if (have_vsx)
561 cb (".reg-ppc-vsx", 256, &ppc32_linux_vsxregset, "POWER7 VSX", cb_data);
562 }
563
564 static void
565 ppc_linux_sigtramp_cache (struct frame_info *this_frame,
566 struct trad_frame_cache *this_cache,
567 CORE_ADDR func, LONGEST offset,
568 int bias)
569 {
570 CORE_ADDR base;
571 CORE_ADDR regs;
572 CORE_ADDR gpregs;
573 CORE_ADDR fpregs;
574 int i;
575 struct gdbarch *gdbarch = get_frame_arch (this_frame);
576 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
577 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
578
579 base = get_frame_register_unsigned (this_frame,
580 gdbarch_sp_regnum (gdbarch));
581 if (bias > 0 && get_frame_pc (this_frame) != func)
582 /* See below, some signal trampolines increment the stack as their
583 first instruction, need to compensate for that. */
584 base -= bias;
585
586 /* Find the address of the register buffer pointer. */
587 regs = base + offset;
588 /* Use that to find the address of the corresponding register
589 buffers. */
590 gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order);
591 fpregs = gpregs + 48 * tdep->wordsize;
592
593 /* General purpose. */
594 for (i = 0; i < 32; i++)
595 {
596 int regnum = i + tdep->ppc_gp0_regnum;
597 trad_frame_set_reg_addr (this_cache,
598 regnum, gpregs + i * tdep->wordsize);
599 }
600 trad_frame_set_reg_addr (this_cache,
601 gdbarch_pc_regnum (gdbarch),
602 gpregs + 32 * tdep->wordsize);
603 trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
604 gpregs + 35 * tdep->wordsize);
605 trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
606 gpregs + 36 * tdep->wordsize);
607 trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
608 gpregs + 37 * tdep->wordsize);
609 trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
610 gpregs + 38 * tdep->wordsize);
611
612 if (ppc_linux_trap_reg_p (gdbarch))
613 {
614 trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
615 gpregs + 34 * tdep->wordsize);
616 trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
617 gpregs + 40 * tdep->wordsize);
618 }
619
620 if (ppc_floating_point_unit_p (gdbarch))
621 {
622 /* Floating point registers. */
623 for (i = 0; i < 32; i++)
624 {
625 int regnum = i + gdbarch_fp0_regnum (gdbarch);
626 trad_frame_set_reg_addr (this_cache, regnum,
627 fpregs + i * tdep->wordsize);
628 }
629 trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
630 fpregs + 32 * tdep->wordsize);
631 }
632 trad_frame_set_id (this_cache, frame_id_build (base, func));
633 }
634
635 static void
636 ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
637 struct frame_info *this_frame,
638 struct trad_frame_cache *this_cache,
639 CORE_ADDR func)
640 {
641 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
642 0xd0 /* Offset to ucontext_t. */
643 + 0x30 /* Offset to .reg. */,
644 0);
645 }
646
647 static void
648 ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
649 struct frame_info *this_frame,
650 struct trad_frame_cache *this_cache,
651 CORE_ADDR func)
652 {
653 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
654 0x80 /* Offset to ucontext_t. */
655 + 0xe0 /* Offset to .reg. */,
656 128);
657 }
658
659 static void
660 ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
661 struct frame_info *this_frame,
662 struct trad_frame_cache *this_cache,
663 CORE_ADDR func)
664 {
665 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
666 0x40 /* Offset to ucontext_t. */
667 + 0x1c /* Offset to .reg. */,
668 0);
669 }
670
671 static void
672 ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
673 struct frame_info *this_frame,
674 struct trad_frame_cache *this_cache,
675 CORE_ADDR func)
676 {
677 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
678 0x80 /* Offset to struct sigcontext. */
679 + 0x38 /* Offset to .reg. */,
680 128);
681 }
682
683 static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
684 SIGTRAMP_FRAME,
685 4,
686 {
687 { 0x380000ac, -1 }, /* li r0, 172 */
688 { 0x44000002, -1 }, /* sc */
689 { TRAMP_SENTINEL_INSN },
690 },
691 ppc32_linux_sigaction_cache_init
692 };
693 static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
694 SIGTRAMP_FRAME,
695 4,
696 {
697 { 0x38210080, -1 }, /* addi r1,r1,128 */
698 { 0x380000ac, -1 }, /* li r0, 172 */
699 { 0x44000002, -1 }, /* sc */
700 { TRAMP_SENTINEL_INSN },
701 },
702 ppc64_linux_sigaction_cache_init
703 };
704 static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
705 SIGTRAMP_FRAME,
706 4,
707 {
708 { 0x38000077, -1 }, /* li r0,119 */
709 { 0x44000002, -1 }, /* sc */
710 { TRAMP_SENTINEL_INSN },
711 },
712 ppc32_linux_sighandler_cache_init
713 };
714 static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
715 SIGTRAMP_FRAME,
716 4,
717 {
718 { 0x38210080, -1 }, /* addi r1,r1,128 */
719 { 0x38000077, -1 }, /* li r0,119 */
720 { 0x44000002, -1 }, /* sc */
721 { TRAMP_SENTINEL_INSN },
722 },
723 ppc64_linux_sighandler_cache_init
724 };
725
726 /* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */
727 int
728 ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
729 {
730 /* If we do not have a target description with registers, then
731 the special registers will not be included in the register set. */
732 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
733 return 0;
734
735 /* If we do, then it is safe to check the size. */
736 return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
737 && register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
738 }
739
740 /* Return the current system call's number present in the
741 r0 register. When the function fails, it returns -1. */
742 static LONGEST
743 ppc_linux_get_syscall_number (struct gdbarch *gdbarch,
744 ptid_t ptid)
745 {
746 struct regcache *regcache = get_thread_regcache (ptid);
747 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
748 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
749
750 /* Make sure we're in a 32- or 64-bit machine */
751 gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8);
752
753 /* The content of a register */
754 gdb::byte_vector buf (tdep->wordsize);
755
756 /* Getting the system call number from the register.
757 When dealing with PowerPC architecture, this information
758 is stored at 0th register. */
759 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum, buf.data ());
760
761 return extract_signed_integer (buf.data (), tdep->wordsize, byte_order);
762 }
763
764 /* PPC process record-replay */
765
766 static struct linux_record_tdep ppc_linux_record_tdep;
767 static struct linux_record_tdep ppc64_linux_record_tdep;
768
769 /* ppc_canonicalize_syscall maps from the native PowerPC Linux set of
770 syscall ids into a canonical set of syscall ids used by process
771 record. (See arch/powerpc/include/uapi/asm/unistd.h in kernel tree.)
772 Return -1 if this system call is not supported by process record.
773 Otherwise, return the syscall number for preocess reocrd of given
774 SYSCALL. */
775
776 static enum gdb_syscall
777 ppc_canonicalize_syscall (int syscall)
778 {
779 int result = -1;
780
781 if (syscall <= 165)
782 result = syscall;
783 else if (syscall >= 167 && syscall <= 190) /* Skip query_module 166 */
784 result = syscall + 1;
785 else if (syscall >= 192 && syscall <= 197) /* mmap2 */
786 result = syscall;
787 else if (syscall == 208) /* tkill */
788 result = gdb_sys_tkill;
789 else if (syscall >= 207 && syscall <= 220) /* gettid */
790 result = syscall + 224 - 207;
791 else if (syscall >= 234 && syscall <= 239) /* exit_group */
792 result = syscall + 252 - 234;
793 else if (syscall >= 240 && syscall <= 248) /* timer_create */
794 result = syscall += 259 - 240;
795 else if (syscall >= 250 && syscall <= 251) /* tgkill */
796 result = syscall + 270 - 250;
797 else if (syscall == 336)
798 result = gdb_sys_recv;
799 else if (syscall == 337)
800 result = gdb_sys_recvfrom;
801 else if (syscall == 342)
802 result = gdb_sys_recvmsg;
803
804 return (enum gdb_syscall) result;
805 }
806
807 /* Record registers which might be clobbered during system call.
808 Return 0 if successful. */
809
810 static int
811 ppc_linux_syscall_record (struct regcache *regcache)
812 {
813 struct gdbarch *gdbarch = regcache->arch ();
814 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
815 ULONGEST scnum;
816 enum gdb_syscall syscall_gdb;
817 int ret;
818 int i;
819
820 regcache_raw_read_unsigned (regcache, tdep->ppc_gp0_regnum, &scnum);
821 syscall_gdb = ppc_canonicalize_syscall (scnum);
822
823 if (syscall_gdb < 0)
824 {
825 printf_unfiltered (_("Process record and replay target doesn't "
826 "support syscall number %d\n"), (int) scnum);
827 return 0;
828 }
829
830 if (syscall_gdb == gdb_sys_sigreturn
831 || syscall_gdb == gdb_sys_rt_sigreturn)
832 {
833 int i, j;
834 int regsets[] = { tdep->ppc_gp0_regnum,
835 tdep->ppc_fp0_regnum,
836 tdep->ppc_vr0_regnum,
837 tdep->ppc_vsr0_upper_regnum };
838
839 for (j = 0; j < 4; j++)
840 {
841 if (regsets[j] == -1)
842 continue;
843 for (i = 0; i < 32; i++)
844 {
845 if (record_full_arch_list_add_reg (regcache, regsets[j] + i))
846 return -1;
847 }
848 }
849
850 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
851 return -1;
852 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
853 return -1;
854 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
855 return -1;
856 if (record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum))
857 return -1;
858
859 return 0;
860 }
861
862 if (tdep->wordsize == 8)
863 ret = record_linux_system_call (syscall_gdb, regcache,
864 &ppc64_linux_record_tdep);
865 else
866 ret = record_linux_system_call (syscall_gdb, regcache,
867 &ppc_linux_record_tdep);
868
869 if (ret != 0)
870 return ret;
871
872 /* Record registers clobbered during syscall. */
873 for (i = 3; i <= 12; i++)
874 {
875 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
876 return -1;
877 }
878 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + 0))
879 return -1;
880 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
881 return -1;
882 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
883 return -1;
884 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
885 return -1;
886
887 return 0;
888 }
889
890 /* Record registers which might be clobbered during signal handling.
891 Return 0 if successful. */
892
893 static int
894 ppc_linux_record_signal (struct gdbarch *gdbarch, struct regcache *regcache,
895 enum gdb_signal signal)
896 {
897 /* See handle_rt_signal64 in arch/powerpc/kernel/signal_64.c
898 handle_rt_signal32 in arch/powerpc/kernel/signal_32.c
899 arch/powerpc/include/asm/ptrace.h
900 for details. */
901 const int SIGNAL_FRAMESIZE = 128;
902 const int sizeof_rt_sigframe = 1440 * 2 + 8 * 2 + 4 * 6 + 8 + 8 + 128 + 512;
903 ULONGEST sp;
904 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
905 int i;
906
907 for (i = 3; i <= 12; i++)
908 {
909 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
910 return -1;
911 }
912
913 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
914 return -1;
915 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
916 return -1;
917 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
918 return -1;
919 if (record_full_arch_list_add_reg (regcache, gdbarch_pc_regnum (gdbarch)))
920 return -1;
921 if (record_full_arch_list_add_reg (regcache, gdbarch_sp_regnum (gdbarch)))
922 return -1;
923
924 /* Record the change in the stack.
925 frame-size = sizeof (struct rt_sigframe) + SIGNAL_FRAMESIZE */
926 regcache_raw_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch), &sp);
927 sp -= SIGNAL_FRAMESIZE;
928 sp -= sizeof_rt_sigframe;
929
930 if (record_full_arch_list_add_mem (sp, SIGNAL_FRAMESIZE + sizeof_rt_sigframe))
931 return -1;
932
933 if (record_full_arch_list_add_end ())
934 return -1;
935
936 return 0;
937 }
938
939 static void
940 ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
941 {
942 struct gdbarch *gdbarch = regcache->arch ();
943
944 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
945
946 /* Set special TRAP register to -1 to prevent the kernel from
947 messing with the PC we just installed, if we happen to be
948 within an interrupted system call that the kernel wants to
949 restart.
950
951 Note that after we return from the dummy call, the TRAP and
952 ORIG_R3 registers will be automatically restored, and the
953 kernel continues to restart the system call at this point. */
954 if (ppc_linux_trap_reg_p (gdbarch))
955 regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
956 }
957
958 static int
959 ppc_linux_spu_section (bfd *abfd, asection *asect, void *user_data)
960 {
961 return startswith (bfd_section_name (abfd, asect), "SPU/");
962 }
963
964 static const struct target_desc *
965 ppc_linux_core_read_description (struct gdbarch *gdbarch,
966 struct target_ops *target,
967 bfd *abfd)
968 {
969 asection *cell = bfd_sections_find_if (abfd, ppc_linux_spu_section, NULL);
970 asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
971 asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx");
972 asection *section = bfd_get_section_by_name (abfd, ".reg");
973 if (! section)
974 return NULL;
975
976 switch (bfd_section_size (abfd, section))
977 {
978 case 48 * 4:
979 if (cell)
980 return tdesc_powerpc_cell32l;
981 else if (vsx)
982 return tdesc_powerpc_vsx32l;
983 else if (altivec)
984 return tdesc_powerpc_altivec32l;
985 else
986 return tdesc_powerpc_32l;
987
988 case 48 * 8:
989 if (cell)
990 return tdesc_powerpc_cell64l;
991 else if (vsx)
992 return tdesc_powerpc_vsx64l;
993 else if (altivec)
994 return tdesc_powerpc_altivec64l;
995 else
996 return tdesc_powerpc_64l;
997
998 default:
999 return NULL;
1000 }
1001 }
1002
1003
1004 /* Implementation of `gdbarch_elf_make_msymbol_special', as defined in
1005 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
1006
1007 static void
1008 ppc_elfv2_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1009 {
1010 elf_symbol_type *elf_sym = (elf_symbol_type *)sym;
1011
1012 /* If the symbol is marked as having a local entry point, set a target
1013 flag in the msymbol. We currently only support local entry point
1014 offsets of 8 bytes, which is the only entry point offset ever used
1015 by current compilers. If/when other offsets are ever used, we will
1016 have to use additional target flag bits to store them. */
1017 switch (PPC64_LOCAL_ENTRY_OFFSET (elf_sym->internal_elf_sym.st_other))
1018 {
1019 default:
1020 break;
1021 case 8:
1022 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
1023 break;
1024 }
1025 }
1026
1027 /* Implementation of `gdbarch_skip_entrypoint', as defined in
1028 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
1029
1030 static CORE_ADDR
1031 ppc_elfv2_skip_entrypoint (struct gdbarch *gdbarch, CORE_ADDR pc)
1032 {
1033 struct bound_minimal_symbol fun;
1034 int local_entry_offset = 0;
1035
1036 fun = lookup_minimal_symbol_by_pc (pc);
1037 if (fun.minsym == NULL)
1038 return pc;
1039
1040 /* See ppc_elfv2_elf_make_msymbol_special for how local entry point
1041 offset values are encoded. */
1042 if (MSYMBOL_TARGET_FLAG_1 (fun.minsym))
1043 local_entry_offset = 8;
1044
1045 if (BMSYMBOL_VALUE_ADDRESS (fun) <= pc
1046 && pc < BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset)
1047 return BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset;
1048
1049 return pc;
1050 }
1051
1052 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1053 gdbarch.h. */
1054
1055 static int
1056 ppc_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1057 {
1058 return (*s == 'i' /* Literal number. */
1059 || (isdigit (*s) && s[1] == '('
1060 && isdigit (s[2])) /* Displacement. */
1061 || (*s == '(' && isdigit (s[1])) /* Register indirection. */
1062 || isdigit (*s)); /* Register value. */
1063 }
1064
1065 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
1066 gdbarch.h. */
1067
1068 static int
1069 ppc_stap_parse_special_token (struct gdbarch *gdbarch,
1070 struct stap_parse_info *p)
1071 {
1072 if (isdigit (*p->arg))
1073 {
1074 /* This temporary pointer is needed because we have to do a lookahead.
1075 We could be dealing with a register displacement, and in such case
1076 we would not need to do anything. */
1077 const char *s = p->arg;
1078 char *regname;
1079 int len;
1080 struct stoken str;
1081
1082 while (isdigit (*s))
1083 ++s;
1084
1085 if (*s == '(')
1086 {
1087 /* It is a register displacement indeed. Returning 0 means we are
1088 deferring the treatment of this case to the generic parser. */
1089 return 0;
1090 }
1091
1092 len = s - p->arg;
1093 regname = (char *) alloca (len + 2);
1094 regname[0] = 'r';
1095
1096 strncpy (regname + 1, p->arg, len);
1097 ++len;
1098 regname[len] = '\0';
1099
1100 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1101 error (_("Invalid register name `%s' on expression `%s'."),
1102 regname, p->saved_arg);
1103
1104 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1105 str.ptr = regname;
1106 str.length = len;
1107 write_exp_string (&p->pstate, str);
1108 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1109
1110 p->arg = s;
1111 }
1112 else
1113 {
1114 /* All the other tokens should be handled correctly by the generic
1115 parser. */
1116 return 0;
1117 }
1118
1119 return 1;
1120 }
1121
1122 /* Cell/B.E. active SPE context tracking support. */
1123
1124 static struct objfile *spe_context_objfile = NULL;
1125 static CORE_ADDR spe_context_lm_addr = 0;
1126 static CORE_ADDR spe_context_offset = 0;
1127
1128 static ptid_t spe_context_cache_ptid;
1129 static CORE_ADDR spe_context_cache_address;
1130
1131 /* Hook into inferior_created, solib_loaded, and solib_unloaded observers
1132 to track whether we've loaded a version of libspe2 (as static or dynamic
1133 library) that provides the __spe_current_active_context variable. */
1134 static void
1135 ppc_linux_spe_context_lookup (struct objfile *objfile)
1136 {
1137 struct bound_minimal_symbol sym;
1138
1139 if (!objfile)
1140 {
1141 spe_context_objfile = NULL;
1142 spe_context_lm_addr = 0;
1143 spe_context_offset = 0;
1144 spe_context_cache_ptid = minus_one_ptid;
1145 spe_context_cache_address = 0;
1146 return;
1147 }
1148
1149 sym = lookup_minimal_symbol ("__spe_current_active_context", NULL, objfile);
1150 if (sym.minsym)
1151 {
1152 spe_context_objfile = objfile;
1153 spe_context_lm_addr = svr4_fetch_objfile_link_map (objfile);
1154 spe_context_offset = MSYMBOL_VALUE_RAW_ADDRESS (sym.minsym);
1155 spe_context_cache_ptid = minus_one_ptid;
1156 spe_context_cache_address = 0;
1157 return;
1158 }
1159 }
1160
1161 static void
1162 ppc_linux_spe_context_inferior_created (struct target_ops *t, int from_tty)
1163 {
1164 struct objfile *objfile;
1165
1166 ppc_linux_spe_context_lookup (NULL);
1167 ALL_OBJFILES (objfile)
1168 ppc_linux_spe_context_lookup (objfile);
1169 }
1170
1171 static void
1172 ppc_linux_spe_context_solib_loaded (struct so_list *so)
1173 {
1174 if (strstr (so->so_original_name, "/libspe") != NULL)
1175 {
1176 solib_read_symbols (so, 0);
1177 ppc_linux_spe_context_lookup (so->objfile);
1178 }
1179 }
1180
1181 static void
1182 ppc_linux_spe_context_solib_unloaded (struct so_list *so)
1183 {
1184 if (so->objfile == spe_context_objfile)
1185 ppc_linux_spe_context_lookup (NULL);
1186 }
1187
1188 /* Retrieve contents of the N'th element in the current thread's
1189 linked SPE context list into ID and NPC. Return the address of
1190 said context element, or 0 if not found. */
1191 static CORE_ADDR
1192 ppc_linux_spe_context (int wordsize, enum bfd_endian byte_order,
1193 int n, int *id, unsigned int *npc)
1194 {
1195 CORE_ADDR spe_context = 0;
1196 gdb_byte buf[16];
1197 int i;
1198
1199 /* Quick exit if we have not found __spe_current_active_context. */
1200 if (!spe_context_objfile)
1201 return 0;
1202
1203 /* Look up cached address of thread-local variable. */
1204 if (!ptid_equal (spe_context_cache_ptid, inferior_ptid))
1205 {
1206 struct target_ops *target = &current_target;
1207
1208 TRY
1209 {
1210 /* We do not call target_translate_tls_address here, because
1211 svr4_fetch_objfile_link_map may invalidate the frame chain,
1212 which must not do while inside a frame sniffer.
1213
1214 Instead, we have cached the lm_addr value, and use that to
1215 directly call the target's to_get_thread_local_address. */
1216 spe_context_cache_address
1217 = target->to_get_thread_local_address (target, inferior_ptid,
1218 spe_context_lm_addr,
1219 spe_context_offset);
1220 spe_context_cache_ptid = inferior_ptid;
1221 }
1222
1223 CATCH (ex, RETURN_MASK_ERROR)
1224 {
1225 return 0;
1226 }
1227 END_CATCH
1228 }
1229
1230 /* Read variable value. */
1231 if (target_read_memory (spe_context_cache_address, buf, wordsize) == 0)
1232 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1233
1234 /* Cyle through to N'th linked list element. */
1235 for (i = 0; i < n && spe_context; i++)
1236 if (target_read_memory (spe_context + align_up (12, wordsize),
1237 buf, wordsize) == 0)
1238 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1239 else
1240 spe_context = 0;
1241
1242 /* Read current context. */
1243 if (spe_context
1244 && target_read_memory (spe_context, buf, 12) != 0)
1245 spe_context = 0;
1246
1247 /* Extract data elements. */
1248 if (spe_context)
1249 {
1250 if (id)
1251 *id = extract_signed_integer (buf, 4, byte_order);
1252 if (npc)
1253 *npc = extract_unsigned_integer (buf + 4, 4, byte_order);
1254 }
1255
1256 return spe_context;
1257 }
1258
1259
1260 /* Cell/B.E. cross-architecture unwinder support. */
1261
1262 struct ppu2spu_cache
1263 {
1264 struct frame_id frame_id;
1265 readonly_detached_regcache *regcache;
1266 };
1267
1268 static struct gdbarch *
1269 ppu2spu_prev_arch (struct frame_info *this_frame, void **this_cache)
1270 {
1271 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
1272 return cache->regcache->arch ();
1273 }
1274
1275 static void
1276 ppu2spu_this_id (struct frame_info *this_frame,
1277 void **this_cache, struct frame_id *this_id)
1278 {
1279 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
1280 *this_id = cache->frame_id;
1281 }
1282
1283 static struct value *
1284 ppu2spu_prev_register (struct frame_info *this_frame,
1285 void **this_cache, int regnum)
1286 {
1287 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
1288 struct gdbarch *gdbarch = cache->regcache->arch ();
1289 gdb_byte *buf;
1290
1291 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1292
1293 cache->regcache->cooked_read (regnum, buf);
1294 return frame_unwind_got_bytes (this_frame, regnum, buf);
1295 }
1296
1297 struct ppu2spu_data
1298 {
1299 struct gdbarch *gdbarch;
1300 int id;
1301 unsigned int npc;
1302 gdb_byte gprs[128*16];
1303 };
1304
1305 static enum register_status
1306 ppu2spu_unwind_register (void *src, int regnum, gdb_byte *buf)
1307 {
1308 struct ppu2spu_data *data = (struct ppu2spu_data *) src;
1309 enum bfd_endian byte_order = gdbarch_byte_order (data->gdbarch);
1310
1311 if (regnum >= 0 && regnum < SPU_NUM_GPRS)
1312 memcpy (buf, data->gprs + 16*regnum, 16);
1313 else if (regnum == SPU_ID_REGNUM)
1314 store_unsigned_integer (buf, 4, byte_order, data->id);
1315 else if (regnum == SPU_PC_REGNUM)
1316 store_unsigned_integer (buf, 4, byte_order, data->npc);
1317 else
1318 return REG_UNAVAILABLE;
1319
1320 return REG_VALID;
1321 }
1322
1323 static int
1324 ppu2spu_sniffer (const struct frame_unwind *self,
1325 struct frame_info *this_frame, void **this_prologue_cache)
1326 {
1327 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1328 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1329 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1330 struct ppu2spu_data data;
1331 struct frame_info *fi;
1332 CORE_ADDR base, func, backchain, spe_context;
1333 gdb_byte buf[8];
1334 int n = 0;
1335
1336 /* Count the number of SPU contexts already in the frame chain. */
1337 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1338 if (get_frame_type (fi) == ARCH_FRAME
1339 && gdbarch_bfd_arch_info (get_frame_arch (fi))->arch == bfd_arch_spu)
1340 n++;
1341
1342 base = get_frame_sp (this_frame);
1343 func = get_frame_pc (this_frame);
1344 if (target_read_memory (base, buf, tdep->wordsize))
1345 return 0;
1346 backchain = extract_unsigned_integer (buf, tdep->wordsize, byte_order);
1347
1348 spe_context = ppc_linux_spe_context (tdep->wordsize, byte_order,
1349 n, &data.id, &data.npc);
1350 if (spe_context && base <= spe_context && spe_context < backchain)
1351 {
1352 char annex[32];
1353
1354 /* Find gdbarch for SPU. */
1355 struct gdbarch_info info;
1356 gdbarch_info_init (&info);
1357 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
1358 info.byte_order = BFD_ENDIAN_BIG;
1359 info.osabi = GDB_OSABI_LINUX;
1360 info.id = &data.id;
1361 data.gdbarch = gdbarch_find_by_info (info);
1362 if (!data.gdbarch)
1363 return 0;
1364
1365 xsnprintf (annex, sizeof annex, "%d/regs", data.id);
1366 if (target_read (&current_target, TARGET_OBJECT_SPU, annex,
1367 data.gprs, 0, sizeof data.gprs)
1368 == sizeof data.gprs)
1369 {
1370 struct ppu2spu_cache *cache
1371 = FRAME_OBSTACK_CALLOC (1, struct ppu2spu_cache);
1372 std::unique_ptr<readonly_detached_regcache> regcache
1373 (new readonly_detached_regcache (data.gdbarch,
1374 ppu2spu_unwind_register,
1375 &data));
1376
1377 cache->frame_id = frame_id_build (base, func);
1378 cache->regcache = regcache.release ();
1379 *this_prologue_cache = cache;
1380 return 1;
1381 }
1382 }
1383
1384 return 0;
1385 }
1386
1387 static void
1388 ppu2spu_dealloc_cache (struct frame_info *self, void *this_cache)
1389 {
1390 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) this_cache;
1391 delete cache->regcache;
1392 }
1393
1394 static const struct frame_unwind ppu2spu_unwind = {
1395 ARCH_FRAME,
1396 default_frame_unwind_stop_reason,
1397 ppu2spu_this_id,
1398 ppu2spu_prev_register,
1399 NULL,
1400 ppu2spu_sniffer,
1401 ppu2spu_dealloc_cache,
1402 ppu2spu_prev_arch,
1403 };
1404
1405 /* Initialize linux_record_tdep if not initialized yet.
1406 WORDSIZE is 4 or 8 for 32- or 64-bit PowerPC Linux respectively.
1407 Sizes of data structures are initialized accordingly. */
1408
1409 static void
1410 ppc_init_linux_record_tdep (struct linux_record_tdep *record_tdep,
1411 int wordsize)
1412 {
1413 /* Simply return if it had been initialized. */
1414 if (record_tdep->size_pointer != 0)
1415 return;
1416
1417 /* These values are the size of the type that will be used in a system
1418 call. They are obtained from Linux Kernel source. */
1419
1420 if (wordsize == 8)
1421 {
1422 record_tdep->size_pointer = 8;
1423 record_tdep->size__old_kernel_stat = 32;
1424 record_tdep->size_tms = 32;
1425 record_tdep->size_loff_t = 8;
1426 record_tdep->size_flock = 32;
1427 record_tdep->size_oldold_utsname = 45;
1428 record_tdep->size_ustat = 32;
1429 record_tdep->size_old_sigaction = 32;
1430 record_tdep->size_old_sigset_t = 8;
1431 record_tdep->size_rlimit = 16;
1432 record_tdep->size_rusage = 144;
1433 record_tdep->size_timeval = 16;
1434 record_tdep->size_timezone = 8;
1435 record_tdep->size_old_gid_t = 4;
1436 record_tdep->size_old_uid_t = 4;
1437 record_tdep->size_fd_set = 128;
1438 record_tdep->size_old_dirent = 280;
1439 record_tdep->size_statfs = 120;
1440 record_tdep->size_statfs64 = 120;
1441 record_tdep->size_sockaddr = 16;
1442 record_tdep->size_int = 4;
1443 record_tdep->size_long = 8;
1444 record_tdep->size_ulong = 8;
1445 record_tdep->size_msghdr = 56;
1446 record_tdep->size_itimerval = 32;
1447 record_tdep->size_stat = 144;
1448 record_tdep->size_old_utsname = 325;
1449 record_tdep->size_sysinfo = 112;
1450 record_tdep->size_msqid_ds = 120;
1451 record_tdep->size_shmid_ds = 112;
1452 record_tdep->size_new_utsname = 390;
1453 record_tdep->size_timex = 208;
1454 record_tdep->size_mem_dqinfo = 24;
1455 record_tdep->size_if_dqblk = 72;
1456 record_tdep->size_fs_quota_stat = 80;
1457 record_tdep->size_timespec = 16;
1458 record_tdep->size_pollfd = 8;
1459 record_tdep->size_NFS_FHSIZE = 32;
1460 record_tdep->size_knfsd_fh = 132;
1461 record_tdep->size_TASK_COMM_LEN = 16;
1462 record_tdep->size_sigaction = 32;
1463 record_tdep->size_sigset_t = 8;
1464 record_tdep->size_siginfo_t = 128;
1465 record_tdep->size_cap_user_data_t = 8;
1466 record_tdep->size_stack_t = 24;
1467 record_tdep->size_off_t = 8;
1468 record_tdep->size_stat64 = 104;
1469 record_tdep->size_gid_t = 4;
1470 record_tdep->size_uid_t = 4;
1471 record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */
1472 record_tdep->size_flock64 = 32;
1473 record_tdep->size_io_event = 32;
1474 record_tdep->size_iocb = 64;
1475 record_tdep->size_epoll_event = 16;
1476 record_tdep->size_itimerspec = 32;
1477 record_tdep->size_mq_attr = 64;
1478 record_tdep->size_termios = 44;
1479 record_tdep->size_pid_t = 4;
1480 record_tdep->size_winsize = 8;
1481 record_tdep->size_serial_struct = 72;
1482 record_tdep->size_serial_icounter_struct = 80;
1483 record_tdep->size_size_t = 8;
1484 record_tdep->size_iovec = 16;
1485 record_tdep->size_time_t = 8;
1486 }
1487 else if (wordsize == 4)
1488 {
1489 record_tdep->size_pointer = 4;
1490 record_tdep->size__old_kernel_stat = 32;
1491 record_tdep->size_tms = 16;
1492 record_tdep->size_loff_t = 8;
1493 record_tdep->size_flock = 16;
1494 record_tdep->size_oldold_utsname = 45;
1495 record_tdep->size_ustat = 20;
1496 record_tdep->size_old_sigaction = 16;
1497 record_tdep->size_old_sigset_t = 4;
1498 record_tdep->size_rlimit = 8;
1499 record_tdep->size_rusage = 72;
1500 record_tdep->size_timeval = 8;
1501 record_tdep->size_timezone = 8;
1502 record_tdep->size_old_gid_t = 4;
1503 record_tdep->size_old_uid_t = 4;
1504 record_tdep->size_fd_set = 128;
1505 record_tdep->size_old_dirent = 268;
1506 record_tdep->size_statfs = 64;
1507 record_tdep->size_statfs64 = 88;
1508 record_tdep->size_sockaddr = 16;
1509 record_tdep->size_int = 4;
1510 record_tdep->size_long = 4;
1511 record_tdep->size_ulong = 4;
1512 record_tdep->size_msghdr = 28;
1513 record_tdep->size_itimerval = 16;
1514 record_tdep->size_stat = 88;
1515 record_tdep->size_old_utsname = 325;
1516 record_tdep->size_sysinfo = 64;
1517 record_tdep->size_msqid_ds = 68;
1518 record_tdep->size_shmid_ds = 60;
1519 record_tdep->size_new_utsname = 390;
1520 record_tdep->size_timex = 128;
1521 record_tdep->size_mem_dqinfo = 24;
1522 record_tdep->size_if_dqblk = 72;
1523 record_tdep->size_fs_quota_stat = 80;
1524 record_tdep->size_timespec = 8;
1525 record_tdep->size_pollfd = 8;
1526 record_tdep->size_NFS_FHSIZE = 32;
1527 record_tdep->size_knfsd_fh = 132;
1528 record_tdep->size_TASK_COMM_LEN = 16;
1529 record_tdep->size_sigaction = 20;
1530 record_tdep->size_sigset_t = 8;
1531 record_tdep->size_siginfo_t = 128;
1532 record_tdep->size_cap_user_data_t = 4;
1533 record_tdep->size_stack_t = 12;
1534 record_tdep->size_off_t = 4;
1535 record_tdep->size_stat64 = 104;
1536 record_tdep->size_gid_t = 4;
1537 record_tdep->size_uid_t = 4;
1538 record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */
1539 record_tdep->size_flock64 = 32;
1540 record_tdep->size_io_event = 32;
1541 record_tdep->size_iocb = 64;
1542 record_tdep->size_epoll_event = 16;
1543 record_tdep->size_itimerspec = 16;
1544 record_tdep->size_mq_attr = 32;
1545 record_tdep->size_termios = 44;
1546 record_tdep->size_pid_t = 4;
1547 record_tdep->size_winsize = 8;
1548 record_tdep->size_serial_struct = 60;
1549 record_tdep->size_serial_icounter_struct = 80;
1550 record_tdep->size_size_t = 4;
1551 record_tdep->size_iovec = 8;
1552 record_tdep->size_time_t = 4;
1553 }
1554 else
1555 internal_error (__FILE__, __LINE__, _("unexpected wordsize"));
1556
1557 /* These values are the second argument of system call "sys_fcntl"
1558 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1559 record_tdep->fcntl_F_GETLK = 5;
1560 record_tdep->fcntl_F_GETLK64 = 12;
1561 record_tdep->fcntl_F_SETLK64 = 13;
1562 record_tdep->fcntl_F_SETLKW64 = 14;
1563
1564 record_tdep->arg1 = PPC_R0_REGNUM + 3;
1565 record_tdep->arg2 = PPC_R0_REGNUM + 4;
1566 record_tdep->arg3 = PPC_R0_REGNUM + 5;
1567 record_tdep->arg4 = PPC_R0_REGNUM + 6;
1568 record_tdep->arg5 = PPC_R0_REGNUM + 7;
1569 record_tdep->arg6 = PPC_R0_REGNUM + 8;
1570
1571 /* These values are the second argument of system call "sys_ioctl".
1572 They are obtained from Linux Kernel source.
1573 See arch/powerpc/include/uapi/asm/ioctls.h. */
1574 record_tdep->ioctl_TCGETS = 0x403c7413;
1575 record_tdep->ioctl_TCSETS = 0x803c7414;
1576 record_tdep->ioctl_TCSETSW = 0x803c7415;
1577 record_tdep->ioctl_TCSETSF = 0x803c7416;
1578 record_tdep->ioctl_TCGETA = 0x40147417;
1579 record_tdep->ioctl_TCSETA = 0x80147418;
1580 record_tdep->ioctl_TCSETAW = 0x80147419;
1581 record_tdep->ioctl_TCSETAF = 0x8014741c;
1582 record_tdep->ioctl_TCSBRK = 0x2000741d;
1583 record_tdep->ioctl_TCXONC = 0x2000741e;
1584 record_tdep->ioctl_TCFLSH = 0x2000741f;
1585 record_tdep->ioctl_TIOCEXCL = 0x540c;
1586 record_tdep->ioctl_TIOCNXCL = 0x540d;
1587 record_tdep->ioctl_TIOCSCTTY = 0x540e;
1588 record_tdep->ioctl_TIOCGPGRP = 0x40047477;
1589 record_tdep->ioctl_TIOCSPGRP = 0x80047476;
1590 record_tdep->ioctl_TIOCOUTQ = 0x40047473;
1591 record_tdep->ioctl_TIOCSTI = 0x5412;
1592 record_tdep->ioctl_TIOCGWINSZ = 0x40087468;
1593 record_tdep->ioctl_TIOCSWINSZ = 0x80087467;
1594 record_tdep->ioctl_TIOCMGET = 0x5415;
1595 record_tdep->ioctl_TIOCMBIS = 0x5416;
1596 record_tdep->ioctl_TIOCMBIC = 0x5417;
1597 record_tdep->ioctl_TIOCMSET = 0x5418;
1598 record_tdep->ioctl_TIOCGSOFTCAR = 0x5419;
1599 record_tdep->ioctl_TIOCSSOFTCAR = 0x541a;
1600 record_tdep->ioctl_FIONREAD = 0x4004667f;
1601 record_tdep->ioctl_TIOCINQ = 0x4004667f;
1602 record_tdep->ioctl_TIOCLINUX = 0x541c;
1603 record_tdep->ioctl_TIOCCONS = 0x541d;
1604 record_tdep->ioctl_TIOCGSERIAL = 0x541e;
1605 record_tdep->ioctl_TIOCSSERIAL = 0x541f;
1606 record_tdep->ioctl_TIOCPKT = 0x5420;
1607 record_tdep->ioctl_FIONBIO = 0x8004667e;
1608 record_tdep->ioctl_TIOCNOTTY = 0x5422;
1609 record_tdep->ioctl_TIOCSETD = 0x5423;
1610 record_tdep->ioctl_TIOCGETD = 0x5424;
1611 record_tdep->ioctl_TCSBRKP = 0x5425;
1612 record_tdep->ioctl_TIOCSBRK = 0x5427;
1613 record_tdep->ioctl_TIOCCBRK = 0x5428;
1614 record_tdep->ioctl_TIOCGSID = 0x5429;
1615 record_tdep->ioctl_TIOCGPTN = 0x40045430;
1616 record_tdep->ioctl_TIOCSPTLCK = 0x80045431;
1617 record_tdep->ioctl_FIONCLEX = 0x20006602;
1618 record_tdep->ioctl_FIOCLEX = 0x20006601;
1619 record_tdep->ioctl_FIOASYNC = 0x8004667d;
1620 record_tdep->ioctl_TIOCSERCONFIG = 0x5453;
1621 record_tdep->ioctl_TIOCSERGWILD = 0x5454;
1622 record_tdep->ioctl_TIOCSERSWILD = 0x5455;
1623 record_tdep->ioctl_TIOCGLCKTRMIOS = 0x5456;
1624 record_tdep->ioctl_TIOCSLCKTRMIOS = 0x5457;
1625 record_tdep->ioctl_TIOCSERGSTRUCT = 0x5458;
1626 record_tdep->ioctl_TIOCSERGETLSR = 0x5459;
1627 record_tdep->ioctl_TIOCSERGETMULTI = 0x545a;
1628 record_tdep->ioctl_TIOCSERSETMULTI = 0x545b;
1629 record_tdep->ioctl_TIOCMIWAIT = 0x545c;
1630 record_tdep->ioctl_TIOCGICOUNT = 0x545d;
1631 record_tdep->ioctl_FIOQSIZE = 0x40086680;
1632 }
1633
1634 /* Return a floating-point format for a floating-point variable of
1635 length LEN in bits. If non-NULL, NAME is the name of its type.
1636 If no suitable type is found, return NULL. */
1637
1638 const struct floatformat **
1639 ppc_floatformat_for_type (struct gdbarch *gdbarch,
1640 const char *name, int len)
1641 {
1642 if (len == 128 && name)
1643 {
1644 if (strcmp (name, "__float128") == 0
1645 || strcmp (name, "_Float128") == 0
1646 || strcmp (name, "_Float64x") == 0
1647 || strcmp (name, "complex _Float128") == 0
1648 || strcmp (name, "complex _Float64x") == 0)
1649 return floatformats_ia64_quad;
1650
1651 if (strcmp (name, "__ibm128") == 0)
1652 return floatformats_ibm_long_double;
1653 }
1654
1655 return default_floatformat_for_type (gdbarch, name, len);
1656 }
1657
1658 static void
1659 ppc_linux_init_abi (struct gdbarch_info info,
1660 struct gdbarch *gdbarch)
1661 {
1662 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1663 struct tdesc_arch_data *tdesc_data = info.tdesc_data;
1664 static const char *const stap_integer_prefixes[] = { "i", NULL };
1665 static const char *const stap_register_indirection_prefixes[] = { "(",
1666 NULL };
1667 static const char *const stap_register_indirection_suffixes[] = { ")",
1668 NULL };
1669
1670 linux_init_abi (info, gdbarch);
1671
1672 /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
1673 128-bit, they can be either IBM long double or IEEE quad long double.
1674 The 64-bit long double case will be detected automatically using
1675 the size specified in debug info. We use a .gnu.attribute flag
1676 to distinguish between the IBM long double and IEEE quad cases. */
1677 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
1678 if (tdep->long_double_abi == POWERPC_LONG_DOUBLE_IEEE128)
1679 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1680 else
1681 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
1682
1683 /* Support for floating-point data type variants. */
1684 set_gdbarch_floatformat_for_type (gdbarch, ppc_floatformat_for_type);
1685
1686 /* Handle inferior calls during interrupted system calls. */
1687 set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);
1688
1689 /* Get the syscall number from the arch's register. */
1690 set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number);
1691
1692 /* SystemTap functions. */
1693 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1694 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1695 stap_register_indirection_prefixes);
1696 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1697 stap_register_indirection_suffixes);
1698 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1699 set_gdbarch_stap_is_single_operand (gdbarch, ppc_stap_is_single_operand);
1700 set_gdbarch_stap_parse_special_token (gdbarch,
1701 ppc_stap_parse_special_token);
1702
1703 if (tdep->wordsize == 4)
1704 {
1705 /* Until November 2001, gcc did not comply with the 32 bit SysV
1706 R4 ABI requirement that structures less than or equal to 8
1707 bytes should be returned in registers. Instead GCC was using
1708 the AIX/PowerOpen ABI - everything returned in memory
1709 (well ignoring vectors that is). When this was corrected, it
1710 wasn't fixed for GNU/Linux native platform. Use the
1711 PowerOpen struct convention. */
1712 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
1713
1714 set_gdbarch_memory_remove_breakpoint (gdbarch,
1715 ppc_linux_memory_remove_breakpoint);
1716
1717 /* Shared library handling. */
1718 set_gdbarch_skip_trampoline_code (gdbarch, ppc_skip_trampoline_code);
1719 set_solib_svr4_fetch_link_map_offsets
1720 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1721
1722 /* Setting the correct XML syscall filename. */
1723 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC);
1724
1725 /* Trampolines. */
1726 tramp_frame_prepend_unwinder (gdbarch,
1727 &ppc32_linux_sigaction_tramp_frame);
1728 tramp_frame_prepend_unwinder (gdbarch,
1729 &ppc32_linux_sighandler_tramp_frame);
1730
1731 /* BFD target for core files. */
1732 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1733 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle");
1734 else
1735 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc");
1736
1737 if (powerpc_so_ops.in_dynsym_resolve_code == NULL)
1738 {
1739 powerpc_so_ops = svr4_so_ops;
1740 /* Override dynamic resolve function. */
1741 powerpc_so_ops.in_dynsym_resolve_code =
1742 powerpc_linux_in_dynsym_resolve_code;
1743 }
1744 set_solib_ops (gdbarch, &powerpc_so_ops);
1745
1746 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1747 }
1748
1749 if (tdep->wordsize == 8)
1750 {
1751 if (tdep->elf_abi == POWERPC_ELF_V1)
1752 {
1753 /* Handle PPC GNU/Linux 64-bit function pointers (which are really
1754 function descriptors). */
1755 set_gdbarch_convert_from_func_ptr_addr
1756 (gdbarch, ppc64_convert_from_func_ptr_addr);
1757
1758 set_gdbarch_elf_make_msymbol_special
1759 (gdbarch, ppc64_elf_make_msymbol_special);
1760 }
1761 else
1762 {
1763 set_gdbarch_elf_make_msymbol_special
1764 (gdbarch, ppc_elfv2_elf_make_msymbol_special);
1765
1766 set_gdbarch_skip_entrypoint (gdbarch, ppc_elfv2_skip_entrypoint);
1767 }
1768
1769 /* Shared library handling. */
1770 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
1771 set_solib_svr4_fetch_link_map_offsets
1772 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1773
1774 /* Setting the correct XML syscall filename. */
1775 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC64);
1776
1777 /* Trampolines. */
1778 tramp_frame_prepend_unwinder (gdbarch,
1779 &ppc64_linux_sigaction_tramp_frame);
1780 tramp_frame_prepend_unwinder (gdbarch,
1781 &ppc64_linux_sighandler_tramp_frame);
1782
1783 /* BFD target for core files. */
1784 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1785 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle");
1786 else
1787 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc");
1788 }
1789
1790 set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
1791 set_gdbarch_iterate_over_regset_sections (gdbarch,
1792 ppc_linux_iterate_over_regset_sections);
1793
1794 /* Enable TLS support. */
1795 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1796 svr4_fetch_objfile_link_map);
1797
1798 if (tdesc_data)
1799 {
1800 const struct tdesc_feature *feature;
1801
1802 /* If we have target-described registers, then we can safely
1803 reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
1804 (whether they are described or not). */
1805 gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
1806 set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);
1807
1808 /* If they are present, then assign them to the reserved number. */
1809 feature = tdesc_find_feature (info.target_desc,
1810 "org.gnu.gdb.power.linux");
1811 if (feature != NULL)
1812 {
1813 tdesc_numbered_register (feature, tdesc_data,
1814 PPC_ORIG_R3_REGNUM, "orig_r3");
1815 tdesc_numbered_register (feature, tdesc_data,
1816 PPC_TRAP_REGNUM, "trap");
1817 }
1818 }
1819
1820 /* Enable Cell/B.E. if supported by the target. */
1821 if (tdesc_compatible_p (info.target_desc,
1822 bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu)))
1823 {
1824 /* Cell/B.E. multi-architecture support. */
1825 set_spu_solib_ops (gdbarch);
1826
1827 /* Cell/B.E. cross-architecture unwinder support. */
1828 frame_unwind_prepend_unwinder (gdbarch, &ppu2spu_unwind);
1829
1830 /* We need to support more than "addr_bit" significant address bits
1831 in order to support SPUADDR_ADDR encoded values. */
1832 set_gdbarch_significant_addr_bit (gdbarch, 64);
1833 }
1834
1835 set_gdbarch_displaced_step_location (gdbarch,
1836 linux_displaced_step_location);
1837
1838 /* Support reverse debugging. */
1839 set_gdbarch_process_record (gdbarch, ppc_process_record);
1840 set_gdbarch_process_record_signal (gdbarch, ppc_linux_record_signal);
1841 tdep->ppc_syscall_record = ppc_linux_syscall_record;
1842
1843 ppc_init_linux_record_tdep (&ppc_linux_record_tdep, 4);
1844 ppc_init_linux_record_tdep (&ppc64_linux_record_tdep, 8);
1845 }
1846
1847 void
1848 _initialize_ppc_linux_tdep (void)
1849 {
1850 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1851 64-bit PowerPC, and the older rs6k. */
1852 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1853 ppc_linux_init_abi);
1854 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1855 ppc_linux_init_abi);
1856 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1857 ppc_linux_init_abi);
1858
1859 /* Attach to observers to track __spe_current_active_context. */
1860 gdb::observers::inferior_created.attach (ppc_linux_spe_context_inferior_created);
1861 gdb::observers::solib_loaded.attach (ppc_linux_spe_context_solib_loaded);
1862 gdb::observers::solib_unloaded.attach (ppc_linux_spe_context_solib_unloaded);
1863
1864 /* Initialize the Linux target descriptions. */
1865 initialize_tdesc_powerpc_32l ();
1866 initialize_tdesc_powerpc_altivec32l ();
1867 initialize_tdesc_powerpc_cell32l ();
1868 initialize_tdesc_powerpc_vsx32l ();
1869 initialize_tdesc_powerpc_isa205_32l ();
1870 initialize_tdesc_powerpc_isa205_altivec32l ();
1871 initialize_tdesc_powerpc_isa205_vsx32l ();
1872 initialize_tdesc_powerpc_64l ();
1873 initialize_tdesc_powerpc_altivec64l ();
1874 initialize_tdesc_powerpc_cell64l ();
1875 initialize_tdesc_powerpc_vsx64l ();
1876 initialize_tdesc_powerpc_isa205_64l ();
1877 initialize_tdesc_powerpc_isa205_altivec64l ();
1878 initialize_tdesc_powerpc_isa205_vsx64l ();
1879 initialize_tdesc_powerpc_e500l ();
1880 }
This page took 0.100755 seconds and 5 git commands to generate.