PR13858 - Can't do displaced stepping with no symbols
[deliverable/binutils-gdb.git] / gdb / ppc-linux-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "symtab.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "gdbcmd.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "regcache.h"
30 #include "value.h"
31 #include "osabi.h"
32 #include "regset.h"
33 #include "solib-svr4.h"
34 #include "solib-spu.h"
35 #include "solib.h"
36 #include "solist.h"
37 #include "ppc-tdep.h"
38 #include "ppc64-tdep.h"
39 #include "ppc-linux-tdep.h"
40 #include "glibc-tdep.h"
41 #include "trad-frame.h"
42 #include "frame-unwind.h"
43 #include "tramp-frame.h"
44 #include "observer.h"
45 #include "auxv.h"
46 #include "elf/common.h"
47 #include "elf/ppc64.h"
48 #include "arch-utils.h"
49 #include "spu-tdep.h"
50 #include "xml-syscall.h"
51 #include "linux-tdep.h"
52 #include "linux-record.h"
53 #include "record-full.h"
54 #include "infrun.h"
55
56 #include "stap-probe.h"
57 #include "ax.h"
58 #include "ax-gdb.h"
59 #include "cli/cli-utils.h"
60 #include "parser-defs.h"
61 #include "user-regs.h"
62 #include <ctype.h>
63 #include "elf-bfd.h" /* for elfcore_write_* */
64
65 #include "features/rs6000/powerpc-32l.c"
66 #include "features/rs6000/powerpc-altivec32l.c"
67 #include "features/rs6000/powerpc-cell32l.c"
68 #include "features/rs6000/powerpc-vsx32l.c"
69 #include "features/rs6000/powerpc-isa205-32l.c"
70 #include "features/rs6000/powerpc-isa205-altivec32l.c"
71 #include "features/rs6000/powerpc-isa205-vsx32l.c"
72 #include "features/rs6000/powerpc-64l.c"
73 #include "features/rs6000/powerpc-altivec64l.c"
74 #include "features/rs6000/powerpc-cell64l.c"
75 #include "features/rs6000/powerpc-vsx64l.c"
76 #include "features/rs6000/powerpc-isa205-64l.c"
77 #include "features/rs6000/powerpc-isa205-altivec64l.c"
78 #include "features/rs6000/powerpc-isa205-vsx64l.c"
79 #include "features/rs6000/powerpc-e500l.c"
80
81 /* Shared library operations for PowerPC-Linux. */
82 static struct target_so_ops powerpc_so_ops;
83
84 /* The syscall's XML filename for PPC and PPC64. */
85 #define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml"
86 #define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml"
87
88 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
89 in much the same fashion as memory_remove_breakpoint in mem-break.c,
90 but is careful not to write back the previous contents if the code
91 in question has changed in between inserting the breakpoint and
92 removing it.
93
94 Here is the problem that we're trying to solve...
95
96 Once upon a time, before introducing this function to remove
97 breakpoints from the inferior, setting a breakpoint on a shared
98 library function prior to running the program would not work
99 properly. In order to understand the problem, it is first
100 necessary to understand a little bit about dynamic linking on
101 this platform.
102
103 A call to a shared library function is accomplished via a bl
104 (branch-and-link) instruction whose branch target is an entry
105 in the procedure linkage table (PLT). The PLT in the object
106 file is uninitialized. To gdb, prior to running the program, the
107 entries in the PLT are all zeros.
108
109 Once the program starts running, the shared libraries are loaded
110 and the procedure linkage table is initialized, but the entries in
111 the table are not (necessarily) resolved. Once a function is
112 actually called, the code in the PLT is hit and the function is
113 resolved. In order to better illustrate this, an example is in
114 order; the following example is from the gdb testsuite.
115
116 We start the program shmain.
117
118 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
119 [...]
120
121 We place two breakpoints, one on shr1 and the other on main.
122
123 (gdb) b shr1
124 Breakpoint 1 at 0x100409d4
125 (gdb) b main
126 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
127
128 Examine the instruction (and the immediatly following instruction)
129 upon which the breakpoint was placed. Note that the PLT entry
130 for shr1 contains zeros.
131
132 (gdb) x/2i 0x100409d4
133 0x100409d4 <shr1>: .long 0x0
134 0x100409d8 <shr1+4>: .long 0x0
135
136 Now run 'til main.
137
138 (gdb) r
139 Starting program: gdb.base/shmain
140 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
141
142 Breakpoint 2, main ()
143 at gdb.base/shmain.c:44
144 44 g = 1;
145
146 Examine the PLT again. Note that the loading of the shared
147 library has initialized the PLT to code which loads a constant
148 (which I think is an index into the GOT) into r11 and then
149 branchs a short distance to the code which actually does the
150 resolving.
151
152 (gdb) x/2i 0x100409d4
153 0x100409d4 <shr1>: li r11,4
154 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
155 (gdb) c
156 Continuing.
157
158 Breakpoint 1, shr1 (x=1)
159 at gdb.base/shr1.c:19
160 19 l = 1;
161
162 Now we've hit the breakpoint at shr1. (The breakpoint was
163 reset from the PLT entry to the actual shr1 function after the
164 shared library was loaded.) Note that the PLT entry has been
165 resolved to contain a branch that takes us directly to shr1.
166 (The real one, not the PLT entry.)
167
168 (gdb) x/2i 0x100409d4
169 0x100409d4 <shr1>: b 0xffaf76c <shr1>
170 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
171
172 The thing to note here is that the PLT entry for shr1 has been
173 changed twice.
174
175 Now the problem should be obvious. GDB places a breakpoint (a
176 trap instruction) on the zero value of the PLT entry for shr1.
177 Later on, after the shared library had been loaded and the PLT
178 initialized, GDB gets a signal indicating this fact and attempts
179 (as it always does when it stops) to remove all the breakpoints.
180
181 The breakpoint removal was causing the former contents (a zero
182 word) to be written back to the now initialized PLT entry thus
183 destroying a portion of the initialization that had occurred only a
184 short time ago. When execution continued, the zero word would be
185 executed as an instruction an illegal instruction trap was
186 generated instead. (0 is not a legal instruction.)
187
188 The fix for this problem was fairly straightforward. The function
189 memory_remove_breakpoint from mem-break.c was copied to this file,
190 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
191 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
192 function.
193
194 The differences between ppc_linux_memory_remove_breakpoint () and
195 memory_remove_breakpoint () are minor. All that the former does
196 that the latter does not is check to make sure that the breakpoint
197 location actually contains a breakpoint (trap instruction) prior
198 to attempting to write back the old contents. If it does contain
199 a trap instruction, we allow the old contents to be written back.
200 Otherwise, we silently do nothing.
201
202 The big question is whether memory_remove_breakpoint () should be
203 changed to have the same functionality. The downside is that more
204 traffic is generated for remote targets since we'll have an extra
205 fetch of a memory word each time a breakpoint is removed.
206
207 For the time being, we'll leave this self-modifying-code-friendly
208 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
209 else in the event that some other platform has similar needs with
210 regard to removing breakpoints in some potentially self modifying
211 code. */
212 static int
213 ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
214 struct bp_target_info *bp_tgt)
215 {
216 CORE_ADDR addr = bp_tgt->reqstd_address;
217 const unsigned char *bp;
218 int val;
219 int bplen;
220 gdb_byte old_contents[BREAKPOINT_MAX];
221 struct cleanup *cleanup;
222
223 /* Determine appropriate breakpoint contents and size for this address. */
224 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
225 if (bp == NULL)
226 error (_("Software breakpoints not implemented for this target."));
227
228 /* Make sure we see the memory breakpoints. */
229 cleanup = make_show_memory_breakpoints_cleanup (1);
230 val = target_read_memory (addr, old_contents, bplen);
231
232 /* If our breakpoint is no longer at the address, this means that the
233 program modified the code on us, so it is wrong to put back the
234 old value. */
235 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
236 val = target_write_raw_memory (addr, bp_tgt->shadow_contents, bplen);
237
238 do_cleanups (cleanup);
239 return val;
240 }
241
242 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
243 than the 32 bit SYSV R4 ABI structure return convention - all
244 structures, no matter their size, are put in memory. Vectors,
245 which were added later, do get returned in a register though. */
246
247 static enum return_value_convention
248 ppc_linux_return_value (struct gdbarch *gdbarch, struct value *function,
249 struct type *valtype, struct regcache *regcache,
250 gdb_byte *readbuf, const gdb_byte *writebuf)
251 {
252 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
253 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
254 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
255 && TYPE_VECTOR (valtype)))
256 return RETURN_VALUE_STRUCT_CONVENTION;
257 else
258 return ppc_sysv_abi_return_value (gdbarch, function, valtype, regcache,
259 readbuf, writebuf);
260 }
261
262 /* PLT stub in executable. */
263 static struct ppc_insn_pattern powerpc32_plt_stub[] =
264 {
265 { 0xffff0000, 0x3d600000, 0 }, /* lis r11, xxxx */
266 { 0xffff0000, 0x816b0000, 0 }, /* lwz r11, xxxx(r11) */
267 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
268 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
269 { 0, 0, 0 }
270 };
271
272 /* PLT stub in shared library. */
273 static struct ppc_insn_pattern powerpc32_plt_stub_so[] =
274 {
275 { 0xffff0000, 0x817e0000, 0 }, /* lwz r11, xxxx(r30) */
276 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
277 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
278 { 0xffffffff, 0x60000000, 0 }, /* nop */
279 { 0, 0, 0 }
280 };
281 #define POWERPC32_PLT_STUB_LEN ARRAY_SIZE (powerpc32_plt_stub)
282
283 /* Check if PC is in PLT stub. For non-secure PLT, stub is in .plt
284 section. For secure PLT, stub is in .text and we need to check
285 instruction patterns. */
286
287 static int
288 powerpc_linux_in_dynsym_resolve_code (CORE_ADDR pc)
289 {
290 struct bound_minimal_symbol sym;
291
292 /* Check whether PC is in the dynamic linker. This also checks
293 whether it is in the .plt section, used by non-PIC executables. */
294 if (svr4_in_dynsym_resolve_code (pc))
295 return 1;
296
297 /* Check if we are in the resolver. */
298 sym = lookup_minimal_symbol_by_pc (pc);
299 if (sym.minsym != NULL
300 && (strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym), "__glink") == 0
301 || strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym),
302 "__glink_PLTresolve") == 0))
303 return 1;
304
305 return 0;
306 }
307
308 /* Follow PLT stub to actual routine.
309
310 When the execution direction is EXEC_REVERSE, scan backward to
311 check whether we are in the middle of a PLT stub. Currently,
312 we only look-behind at most 4 instructions (the max length of PLT
313 stub sequence. */
314
315 static CORE_ADDR
316 ppc_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
317 {
318 unsigned int insnbuf[POWERPC32_PLT_STUB_LEN];
319 struct gdbarch *gdbarch = get_frame_arch (frame);
320 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
321 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
322 CORE_ADDR target = 0;
323 int scan_limit, i;
324
325 scan_limit = 1;
326 /* When reverse-debugging, scan backward to check whether we are
327 in the middle of trampoline code. */
328 if (execution_direction == EXEC_REVERSE)
329 scan_limit = 4; /* At more 4 instructions. */
330
331 for (i = 0; i < scan_limit; i++)
332 {
333 if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub, insnbuf))
334 {
335 /* Insn pattern is
336 lis r11, xxxx
337 lwz r11, xxxx(r11)
338 Branch target is in r11. */
339
340 target = (ppc_insn_d_field (insnbuf[0]) << 16)
341 | ppc_insn_d_field (insnbuf[1]);
342 target = read_memory_unsigned_integer (target, 4, byte_order);
343 }
344 else if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so,
345 insnbuf))
346 {
347 /* Insn pattern is
348 lwz r11, xxxx(r30)
349 Branch target is in r11. */
350
351 target = get_frame_register_unsigned (frame,
352 tdep->ppc_gp0_regnum + 30)
353 + ppc_insn_d_field (insnbuf[0]);
354 target = read_memory_unsigned_integer (target, 4, byte_order);
355 }
356 else
357 {
358 /* Scan backward one more instructions if doesn't match. */
359 pc -= 4;
360 continue;
361 }
362
363 return target;
364 }
365
366 return 0;
367 }
368
369 /* Wrappers to handle Linux-only registers. */
370
371 static void
372 ppc_linux_supply_gregset (const struct regset *regset,
373 struct regcache *regcache,
374 int regnum, const void *gregs, size_t len)
375 {
376 const struct ppc_reg_offsets *offsets = regset->regmap;
377
378 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
379
380 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
381 {
382 /* "orig_r3" is stored 2 slots after "pc". */
383 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
384 ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
385 offsets->pc_offset + 2 * offsets->gpr_size,
386 offsets->gpr_size);
387
388 /* "trap" is stored 8 slots after "pc". */
389 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
390 ppc_supply_reg (regcache, PPC_TRAP_REGNUM, gregs,
391 offsets->pc_offset + 8 * offsets->gpr_size,
392 offsets->gpr_size);
393 }
394 }
395
396 static void
397 ppc_linux_collect_gregset (const struct regset *regset,
398 const struct regcache *regcache,
399 int regnum, void *gregs, size_t len)
400 {
401 const struct ppc_reg_offsets *offsets = regset->regmap;
402
403 /* Clear areas in the linux gregset not written elsewhere. */
404 if (regnum == -1)
405 memset (gregs, 0, len);
406
407 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
408
409 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
410 {
411 /* "orig_r3" is stored 2 slots after "pc". */
412 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
413 ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
414 offsets->pc_offset + 2 * offsets->gpr_size,
415 offsets->gpr_size);
416
417 /* "trap" is stored 8 slots after "pc". */
418 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
419 ppc_collect_reg (regcache, PPC_TRAP_REGNUM, gregs,
420 offsets->pc_offset + 8 * offsets->gpr_size,
421 offsets->gpr_size);
422 }
423 }
424
425 /* Regset descriptions. */
426 static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
427 {
428 /* General-purpose registers. */
429 /* .r0_offset = */ 0,
430 /* .gpr_size = */ 4,
431 /* .xr_size = */ 4,
432 /* .pc_offset = */ 128,
433 /* .ps_offset = */ 132,
434 /* .cr_offset = */ 152,
435 /* .lr_offset = */ 144,
436 /* .ctr_offset = */ 140,
437 /* .xer_offset = */ 148,
438 /* .mq_offset = */ 156,
439
440 /* Floating-point registers. */
441 /* .f0_offset = */ 0,
442 /* .fpscr_offset = */ 256,
443 /* .fpscr_size = */ 8,
444
445 /* AltiVec registers. */
446 /* .vr0_offset = */ 0,
447 /* .vscr_offset = */ 512 + 12,
448 /* .vrsave_offset = */ 528
449 };
450
451 static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
452 {
453 /* General-purpose registers. */
454 /* .r0_offset = */ 0,
455 /* .gpr_size = */ 8,
456 /* .xr_size = */ 8,
457 /* .pc_offset = */ 256,
458 /* .ps_offset = */ 264,
459 /* .cr_offset = */ 304,
460 /* .lr_offset = */ 288,
461 /* .ctr_offset = */ 280,
462 /* .xer_offset = */ 296,
463 /* .mq_offset = */ 312,
464
465 /* Floating-point registers. */
466 /* .f0_offset = */ 0,
467 /* .fpscr_offset = */ 256,
468 /* .fpscr_size = */ 8,
469
470 /* AltiVec registers. */
471 /* .vr0_offset = */ 0,
472 /* .vscr_offset = */ 512 + 12,
473 /* .vrsave_offset = */ 528
474 };
475
476 static const struct regset ppc32_linux_gregset = {
477 &ppc32_linux_reg_offsets,
478 ppc_linux_supply_gregset,
479 ppc_linux_collect_gregset
480 };
481
482 static const struct regset ppc64_linux_gregset = {
483 &ppc64_linux_reg_offsets,
484 ppc_linux_supply_gregset,
485 ppc_linux_collect_gregset
486 };
487
488 static const struct regset ppc32_linux_fpregset = {
489 &ppc32_linux_reg_offsets,
490 ppc_supply_fpregset,
491 ppc_collect_fpregset
492 };
493
494 static const struct regset ppc32_linux_vrregset = {
495 &ppc32_linux_reg_offsets,
496 ppc_supply_vrregset,
497 ppc_collect_vrregset
498 };
499
500 static const struct regset ppc32_linux_vsxregset = {
501 &ppc32_linux_reg_offsets,
502 ppc_supply_vsxregset,
503 ppc_collect_vsxregset
504 };
505
506 const struct regset *
507 ppc_linux_gregset (int wordsize)
508 {
509 return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
510 }
511
512 const struct regset *
513 ppc_linux_fpregset (void)
514 {
515 return &ppc32_linux_fpregset;
516 }
517
518 /* Iterate over supported core file register note sections. */
519
520 static void
521 ppc_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
522 iterate_over_regset_sections_cb *cb,
523 void *cb_data,
524 const struct regcache *regcache)
525 {
526 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
527 int have_altivec = tdep->ppc_vr0_regnum != -1;
528 int have_vsx = tdep->ppc_vsr0_upper_regnum != -1;
529
530 if (tdep->wordsize == 4)
531 cb (".reg", 48 * 4, &ppc32_linux_gregset, NULL, cb_data);
532 else
533 cb (".reg", 48 * 8, &ppc64_linux_gregset, NULL, cb_data);
534
535 cb (".reg2", 264, &ppc32_linux_fpregset, NULL, cb_data);
536
537 if (have_altivec)
538 cb (".reg-ppc-vmx", 544, &ppc32_linux_vrregset, "ppc Altivec", cb_data);
539
540 if (have_vsx)
541 cb (".reg-ppc-vsx", 256, &ppc32_linux_vsxregset, "POWER7 VSX", cb_data);
542 }
543
544 static void
545 ppc_linux_sigtramp_cache (struct frame_info *this_frame,
546 struct trad_frame_cache *this_cache,
547 CORE_ADDR func, LONGEST offset,
548 int bias)
549 {
550 CORE_ADDR base;
551 CORE_ADDR regs;
552 CORE_ADDR gpregs;
553 CORE_ADDR fpregs;
554 int i;
555 struct gdbarch *gdbarch = get_frame_arch (this_frame);
556 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
557 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
558
559 base = get_frame_register_unsigned (this_frame,
560 gdbarch_sp_regnum (gdbarch));
561 if (bias > 0 && get_frame_pc (this_frame) != func)
562 /* See below, some signal trampolines increment the stack as their
563 first instruction, need to compensate for that. */
564 base -= bias;
565
566 /* Find the address of the register buffer pointer. */
567 regs = base + offset;
568 /* Use that to find the address of the corresponding register
569 buffers. */
570 gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order);
571 fpregs = gpregs + 48 * tdep->wordsize;
572
573 /* General purpose. */
574 for (i = 0; i < 32; i++)
575 {
576 int regnum = i + tdep->ppc_gp0_regnum;
577 trad_frame_set_reg_addr (this_cache,
578 regnum, gpregs + i * tdep->wordsize);
579 }
580 trad_frame_set_reg_addr (this_cache,
581 gdbarch_pc_regnum (gdbarch),
582 gpregs + 32 * tdep->wordsize);
583 trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
584 gpregs + 35 * tdep->wordsize);
585 trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
586 gpregs + 36 * tdep->wordsize);
587 trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
588 gpregs + 37 * tdep->wordsize);
589 trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
590 gpregs + 38 * tdep->wordsize);
591
592 if (ppc_linux_trap_reg_p (gdbarch))
593 {
594 trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
595 gpregs + 34 * tdep->wordsize);
596 trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
597 gpregs + 40 * tdep->wordsize);
598 }
599
600 if (ppc_floating_point_unit_p (gdbarch))
601 {
602 /* Floating point registers. */
603 for (i = 0; i < 32; i++)
604 {
605 int regnum = i + gdbarch_fp0_regnum (gdbarch);
606 trad_frame_set_reg_addr (this_cache, regnum,
607 fpregs + i * tdep->wordsize);
608 }
609 trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
610 fpregs + 32 * tdep->wordsize);
611 }
612 trad_frame_set_id (this_cache, frame_id_build (base, func));
613 }
614
615 static void
616 ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
617 struct frame_info *this_frame,
618 struct trad_frame_cache *this_cache,
619 CORE_ADDR func)
620 {
621 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
622 0xd0 /* Offset to ucontext_t. */
623 + 0x30 /* Offset to .reg. */,
624 0);
625 }
626
627 static void
628 ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
629 struct frame_info *this_frame,
630 struct trad_frame_cache *this_cache,
631 CORE_ADDR func)
632 {
633 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
634 0x80 /* Offset to ucontext_t. */
635 + 0xe0 /* Offset to .reg. */,
636 128);
637 }
638
639 static void
640 ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
641 struct frame_info *this_frame,
642 struct trad_frame_cache *this_cache,
643 CORE_ADDR func)
644 {
645 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
646 0x40 /* Offset to ucontext_t. */
647 + 0x1c /* Offset to .reg. */,
648 0);
649 }
650
651 static void
652 ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
653 struct frame_info *this_frame,
654 struct trad_frame_cache *this_cache,
655 CORE_ADDR func)
656 {
657 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
658 0x80 /* Offset to struct sigcontext. */
659 + 0x38 /* Offset to .reg. */,
660 128);
661 }
662
663 static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
664 SIGTRAMP_FRAME,
665 4,
666 {
667 { 0x380000ac, -1 }, /* li r0, 172 */
668 { 0x44000002, -1 }, /* sc */
669 { TRAMP_SENTINEL_INSN },
670 },
671 ppc32_linux_sigaction_cache_init
672 };
673 static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
674 SIGTRAMP_FRAME,
675 4,
676 {
677 { 0x38210080, -1 }, /* addi r1,r1,128 */
678 { 0x380000ac, -1 }, /* li r0, 172 */
679 { 0x44000002, -1 }, /* sc */
680 { TRAMP_SENTINEL_INSN },
681 },
682 ppc64_linux_sigaction_cache_init
683 };
684 static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
685 SIGTRAMP_FRAME,
686 4,
687 {
688 { 0x38000077, -1 }, /* li r0,119 */
689 { 0x44000002, -1 }, /* sc */
690 { TRAMP_SENTINEL_INSN },
691 },
692 ppc32_linux_sighandler_cache_init
693 };
694 static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
695 SIGTRAMP_FRAME,
696 4,
697 {
698 { 0x38210080, -1 }, /* addi r1,r1,128 */
699 { 0x38000077, -1 }, /* li r0,119 */
700 { 0x44000002, -1 }, /* sc */
701 { TRAMP_SENTINEL_INSN },
702 },
703 ppc64_linux_sighandler_cache_init
704 };
705
706 /* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */
707 int
708 ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
709 {
710 /* If we do not have a target description with registers, then
711 the special registers will not be included in the register set. */
712 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
713 return 0;
714
715 /* If we do, then it is safe to check the size. */
716 return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
717 && register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
718 }
719
720 /* Return the current system call's number present in the
721 r0 register. When the function fails, it returns -1. */
722 static LONGEST
723 ppc_linux_get_syscall_number (struct gdbarch *gdbarch,
724 ptid_t ptid)
725 {
726 struct regcache *regcache = get_thread_regcache (ptid);
727 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
728 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
729 struct cleanup *cleanbuf;
730 /* The content of a register */
731 gdb_byte *buf;
732 /* The result */
733 LONGEST ret;
734
735 /* Make sure we're in a 32- or 64-bit machine */
736 gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8);
737
738 buf = (gdb_byte *) xmalloc (tdep->wordsize * sizeof (gdb_byte));
739
740 cleanbuf = make_cleanup (xfree, buf);
741
742 /* Getting the system call number from the register.
743 When dealing with PowerPC architecture, this information
744 is stored at 0th register. */
745 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum, buf);
746
747 ret = extract_signed_integer (buf, tdep->wordsize, byte_order);
748 do_cleanups (cleanbuf);
749
750 return ret;
751 }
752
753 /* PPC process record-replay */
754
755 static struct linux_record_tdep ppc_linux_record_tdep;
756 static struct linux_record_tdep ppc64_linux_record_tdep;
757
758 /* ppc_canonicalize_syscall maps from the native PowerPC Linux set of
759 syscall ids into a canonical set of syscall ids used by process
760 record. (See arch/powerpc/include/uapi/asm/unistd.h in kernel tree.)
761 Return -1 if this system call is not supported by process record.
762 Otherwise, return the syscall number for preocess reocrd of given
763 SYSCALL. */
764
765 static enum gdb_syscall
766 ppc_canonicalize_syscall (int syscall)
767 {
768 if (syscall <= 165)
769 return syscall;
770 else if (syscall >= 167 && syscall <= 190) /* Skip query_module 166 */
771 return syscall + 1;
772 else if (syscall >= 192 && syscall <= 197) /* mmap2 */
773 return syscall;
774 else if (syscall == 208) /* tkill */
775 return gdb_sys_tkill;
776 else if (syscall >= 207 && syscall <= 220) /* gettid */
777 return syscall + 224 - 207;
778 else if (syscall >= 234 && syscall <= 239) /* exit_group */
779 return syscall + 252 - 234;
780 else if (syscall >= 240 && syscall <=248) /* timer_create */
781 return syscall += 259 - 240;
782 else if (syscall >= 250 && syscall <=251) /* tgkill */
783 return syscall + 270 - 250;
784 else if (syscall == 336)
785 return gdb_sys_recv;
786 else if (syscall == 337)
787 return gdb_sys_recvfrom;
788 else if (syscall == 342)
789 return gdb_sys_recvmsg;
790 return -1;
791 }
792
793 /* Record registers which might be clobbered during system call.
794 Return 0 if successful. */
795
796 static int
797 ppc_linux_syscall_record (struct regcache *regcache)
798 {
799 struct gdbarch *gdbarch = get_regcache_arch (regcache);
800 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
801 ULONGEST scnum;
802 enum gdb_syscall syscall_gdb;
803 int ret;
804 int i;
805
806 regcache_raw_read_unsigned (regcache, tdep->ppc_gp0_regnum, &scnum);
807 syscall_gdb = ppc_canonicalize_syscall (scnum);
808
809 if (syscall_gdb < 0)
810 {
811 printf_unfiltered (_("Process record and replay target doesn't "
812 "support syscall number %d\n"), (int) scnum);
813 return 0;
814 }
815
816 if (syscall_gdb == gdb_sys_sigreturn
817 || syscall_gdb == gdb_sys_rt_sigreturn)
818 {
819 int i, j;
820 int regsets[] = { tdep->ppc_gp0_regnum,
821 tdep->ppc_fp0_regnum,
822 tdep->ppc_vr0_regnum,
823 tdep->ppc_vsr0_upper_regnum };
824
825 for (j = 0; j < 4; j++)
826 {
827 if (regsets[j] == -1)
828 continue;
829 for (i = 0; i < 32; i++)
830 {
831 if (record_full_arch_list_add_reg (regcache, regsets[j] + i))
832 return -1;
833 }
834 }
835
836 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
837 return -1;
838 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
839 return -1;
840 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
841 return -1;
842 if (record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum))
843 return -1;
844
845 return 0;
846 }
847
848 if (tdep->wordsize == 8)
849 ret = record_linux_system_call (syscall_gdb, regcache,
850 &ppc64_linux_record_tdep);
851 else
852 ret = record_linux_system_call (syscall_gdb, regcache,
853 &ppc_linux_record_tdep);
854
855 if (ret != 0)
856 return ret;
857
858 /* Record registers clobbered during syscall. */
859 for (i = 3; i <= 12; i++)
860 {
861 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
862 return -1;
863 }
864 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + 0))
865 return -1;
866 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
867 return -1;
868 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
869 return -1;
870 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
871 return -1;
872
873 return 0;
874 }
875
876 /* Record registers which might be clobbered during signal handling.
877 Return 0 if successful. */
878
879 static int
880 ppc_linux_record_signal (struct gdbarch *gdbarch, struct regcache *regcache,
881 enum gdb_signal signal)
882 {
883 /* See handle_rt_signal64 in arch/powerpc/kernel/signal_64.c
884 handle_rt_signal32 in arch/powerpc/kernel/signal_32.c
885 arch/powerpc/include/asm/ptrace.h
886 for details. */
887 const int SIGNAL_FRAMESIZE = 128;
888 const int sizeof_rt_sigframe = 1440 * 2 + 8 * 2 + 4 * 6 + 8 + 8 + 128 + 512;
889 ULONGEST sp;
890 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
891 int i;
892
893 for (i = 3; i <= 12; i++)
894 {
895 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
896 return -1;
897 }
898
899 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
900 return -1;
901 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
902 return -1;
903 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
904 return -1;
905 if (record_full_arch_list_add_reg (regcache, gdbarch_pc_regnum (gdbarch)))
906 return -1;
907 if (record_full_arch_list_add_reg (regcache, gdbarch_sp_regnum (gdbarch)))
908 return -1;
909
910 /* Record the change in the stack.
911 frame-size = sizeof (struct rt_sigframe) + SIGNAL_FRAMESIZE */
912 regcache_raw_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch), &sp);
913 sp -= SIGNAL_FRAMESIZE;
914 sp -= sizeof_rt_sigframe;
915
916 if (record_full_arch_list_add_mem (sp, SIGNAL_FRAMESIZE + sizeof_rt_sigframe))
917 return -1;
918
919 if (record_full_arch_list_add_end ())
920 return -1;
921
922 return 0;
923 }
924
925 static void
926 ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
927 {
928 struct gdbarch *gdbarch = get_regcache_arch (regcache);
929
930 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
931
932 /* Set special TRAP register to -1 to prevent the kernel from
933 messing with the PC we just installed, if we happen to be
934 within an interrupted system call that the kernel wants to
935 restart.
936
937 Note that after we return from the dummy call, the TRAP and
938 ORIG_R3 registers will be automatically restored, and the
939 kernel continues to restart the system call at this point. */
940 if (ppc_linux_trap_reg_p (gdbarch))
941 regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
942 }
943
944 static int
945 ppc_linux_spu_section (bfd *abfd, asection *asect, void *user_data)
946 {
947 return startswith (bfd_section_name (abfd, asect), "SPU/");
948 }
949
950 static const struct target_desc *
951 ppc_linux_core_read_description (struct gdbarch *gdbarch,
952 struct target_ops *target,
953 bfd *abfd)
954 {
955 asection *cell = bfd_sections_find_if (abfd, ppc_linux_spu_section, NULL);
956 asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
957 asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx");
958 asection *section = bfd_get_section_by_name (abfd, ".reg");
959 if (! section)
960 return NULL;
961
962 switch (bfd_section_size (abfd, section))
963 {
964 case 48 * 4:
965 if (cell)
966 return tdesc_powerpc_cell32l;
967 else if (vsx)
968 return tdesc_powerpc_vsx32l;
969 else if (altivec)
970 return tdesc_powerpc_altivec32l;
971 else
972 return tdesc_powerpc_32l;
973
974 case 48 * 8:
975 if (cell)
976 return tdesc_powerpc_cell64l;
977 else if (vsx)
978 return tdesc_powerpc_vsx64l;
979 else if (altivec)
980 return tdesc_powerpc_altivec64l;
981 else
982 return tdesc_powerpc_64l;
983
984 default:
985 return NULL;
986 }
987 }
988
989
990 /* Implementation of `gdbarch_elf_make_msymbol_special', as defined in
991 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
992
993 static void
994 ppc_elfv2_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
995 {
996 elf_symbol_type *elf_sym = (elf_symbol_type *)sym;
997
998 /* If the symbol is marked as having a local entry point, set a target
999 flag in the msymbol. We currently only support local entry point
1000 offsets of 8 bytes, which is the only entry point offset ever used
1001 by current compilers. If/when other offsets are ever used, we will
1002 have to use additional target flag bits to store them. */
1003 switch (PPC64_LOCAL_ENTRY_OFFSET (elf_sym->internal_elf_sym.st_other))
1004 {
1005 default:
1006 break;
1007 case 8:
1008 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
1009 break;
1010 }
1011 }
1012
1013 /* Implementation of `gdbarch_skip_entrypoint', as defined in
1014 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
1015
1016 static CORE_ADDR
1017 ppc_elfv2_skip_entrypoint (struct gdbarch *gdbarch, CORE_ADDR pc)
1018 {
1019 struct bound_minimal_symbol fun;
1020 int local_entry_offset = 0;
1021
1022 fun = lookup_minimal_symbol_by_pc (pc);
1023 if (fun.minsym == NULL)
1024 return pc;
1025
1026 /* See ppc_elfv2_elf_make_msymbol_special for how local entry point
1027 offset values are encoded. */
1028 if (MSYMBOL_TARGET_FLAG_1 (fun.minsym))
1029 local_entry_offset = 8;
1030
1031 if (BMSYMBOL_VALUE_ADDRESS (fun) <= pc
1032 && pc < BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset)
1033 return BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset;
1034
1035 return pc;
1036 }
1037
1038 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1039 gdbarch.h. */
1040
1041 static int
1042 ppc_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1043 {
1044 return (*s == 'i' /* Literal number. */
1045 || (isdigit (*s) && s[1] == '('
1046 && isdigit (s[2])) /* Displacement. */
1047 || (*s == '(' && isdigit (s[1])) /* Register indirection. */
1048 || isdigit (*s)); /* Register value. */
1049 }
1050
1051 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
1052 gdbarch.h. */
1053
1054 static int
1055 ppc_stap_parse_special_token (struct gdbarch *gdbarch,
1056 struct stap_parse_info *p)
1057 {
1058 if (isdigit (*p->arg))
1059 {
1060 /* This temporary pointer is needed because we have to do a lookahead.
1061 We could be dealing with a register displacement, and in such case
1062 we would not need to do anything. */
1063 const char *s = p->arg;
1064 char *regname;
1065 int len;
1066 struct stoken str;
1067
1068 while (isdigit (*s))
1069 ++s;
1070
1071 if (*s == '(')
1072 {
1073 /* It is a register displacement indeed. Returning 0 means we are
1074 deferring the treatment of this case to the generic parser. */
1075 return 0;
1076 }
1077
1078 len = s - p->arg;
1079 regname = alloca (len + 2);
1080 regname[0] = 'r';
1081
1082 strncpy (regname + 1, p->arg, len);
1083 ++len;
1084 regname[len] = '\0';
1085
1086 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1087 error (_("Invalid register name `%s' on expression `%s'."),
1088 regname, p->saved_arg);
1089
1090 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1091 str.ptr = regname;
1092 str.length = len;
1093 write_exp_string (&p->pstate, str);
1094 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1095
1096 p->arg = s;
1097 }
1098 else
1099 {
1100 /* All the other tokens should be handled correctly by the generic
1101 parser. */
1102 return 0;
1103 }
1104
1105 return 1;
1106 }
1107
1108 /* Cell/B.E. active SPE context tracking support. */
1109
1110 static struct objfile *spe_context_objfile = NULL;
1111 static CORE_ADDR spe_context_lm_addr = 0;
1112 static CORE_ADDR spe_context_offset = 0;
1113
1114 static ptid_t spe_context_cache_ptid;
1115 static CORE_ADDR spe_context_cache_address;
1116
1117 /* Hook into inferior_created, solib_loaded, and solib_unloaded observers
1118 to track whether we've loaded a version of libspe2 (as static or dynamic
1119 library) that provides the __spe_current_active_context variable. */
1120 static void
1121 ppc_linux_spe_context_lookup (struct objfile *objfile)
1122 {
1123 struct bound_minimal_symbol sym;
1124
1125 if (!objfile)
1126 {
1127 spe_context_objfile = NULL;
1128 spe_context_lm_addr = 0;
1129 spe_context_offset = 0;
1130 spe_context_cache_ptid = minus_one_ptid;
1131 spe_context_cache_address = 0;
1132 return;
1133 }
1134
1135 sym = lookup_minimal_symbol ("__spe_current_active_context", NULL, objfile);
1136 if (sym.minsym)
1137 {
1138 spe_context_objfile = objfile;
1139 spe_context_lm_addr = svr4_fetch_objfile_link_map (objfile);
1140 spe_context_offset = BMSYMBOL_VALUE_ADDRESS (sym);
1141 spe_context_cache_ptid = minus_one_ptid;
1142 spe_context_cache_address = 0;
1143 return;
1144 }
1145 }
1146
1147 static void
1148 ppc_linux_spe_context_inferior_created (struct target_ops *t, int from_tty)
1149 {
1150 struct objfile *objfile;
1151
1152 ppc_linux_spe_context_lookup (NULL);
1153 ALL_OBJFILES (objfile)
1154 ppc_linux_spe_context_lookup (objfile);
1155 }
1156
1157 static void
1158 ppc_linux_spe_context_solib_loaded (struct so_list *so)
1159 {
1160 if (strstr (so->so_original_name, "/libspe") != NULL)
1161 {
1162 solib_read_symbols (so, 0);
1163 ppc_linux_spe_context_lookup (so->objfile);
1164 }
1165 }
1166
1167 static void
1168 ppc_linux_spe_context_solib_unloaded (struct so_list *so)
1169 {
1170 if (so->objfile == spe_context_objfile)
1171 ppc_linux_spe_context_lookup (NULL);
1172 }
1173
1174 /* Retrieve contents of the N'th element in the current thread's
1175 linked SPE context list into ID and NPC. Return the address of
1176 said context element, or 0 if not found. */
1177 static CORE_ADDR
1178 ppc_linux_spe_context (int wordsize, enum bfd_endian byte_order,
1179 int n, int *id, unsigned int *npc)
1180 {
1181 CORE_ADDR spe_context = 0;
1182 gdb_byte buf[16];
1183 int i;
1184
1185 /* Quick exit if we have not found __spe_current_active_context. */
1186 if (!spe_context_objfile)
1187 return 0;
1188
1189 /* Look up cached address of thread-local variable. */
1190 if (!ptid_equal (spe_context_cache_ptid, inferior_ptid))
1191 {
1192 struct target_ops *target = &current_target;
1193
1194 TRY
1195 {
1196 /* We do not call target_translate_tls_address here, because
1197 svr4_fetch_objfile_link_map may invalidate the frame chain,
1198 which must not do while inside a frame sniffer.
1199
1200 Instead, we have cached the lm_addr value, and use that to
1201 directly call the target's to_get_thread_local_address. */
1202 spe_context_cache_address
1203 = target->to_get_thread_local_address (target, inferior_ptid,
1204 spe_context_lm_addr,
1205 spe_context_offset);
1206 spe_context_cache_ptid = inferior_ptid;
1207 }
1208
1209 CATCH (ex, RETURN_MASK_ERROR)
1210 {
1211 return 0;
1212 }
1213 END_CATCH
1214 }
1215
1216 /* Read variable value. */
1217 if (target_read_memory (spe_context_cache_address, buf, wordsize) == 0)
1218 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1219
1220 /* Cyle through to N'th linked list element. */
1221 for (i = 0; i < n && spe_context; i++)
1222 if (target_read_memory (spe_context + align_up (12, wordsize),
1223 buf, wordsize) == 0)
1224 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1225 else
1226 spe_context = 0;
1227
1228 /* Read current context. */
1229 if (spe_context
1230 && target_read_memory (spe_context, buf, 12) != 0)
1231 spe_context = 0;
1232
1233 /* Extract data elements. */
1234 if (spe_context)
1235 {
1236 if (id)
1237 *id = extract_signed_integer (buf, 4, byte_order);
1238 if (npc)
1239 *npc = extract_unsigned_integer (buf + 4, 4, byte_order);
1240 }
1241
1242 return spe_context;
1243 }
1244
1245
1246 /* Cell/B.E. cross-architecture unwinder support. */
1247
1248 struct ppu2spu_cache
1249 {
1250 struct frame_id frame_id;
1251 struct regcache *regcache;
1252 };
1253
1254 static struct gdbarch *
1255 ppu2spu_prev_arch (struct frame_info *this_frame, void **this_cache)
1256 {
1257 struct ppu2spu_cache *cache = *this_cache;
1258 return get_regcache_arch (cache->regcache);
1259 }
1260
1261 static void
1262 ppu2spu_this_id (struct frame_info *this_frame,
1263 void **this_cache, struct frame_id *this_id)
1264 {
1265 struct ppu2spu_cache *cache = *this_cache;
1266 *this_id = cache->frame_id;
1267 }
1268
1269 static struct value *
1270 ppu2spu_prev_register (struct frame_info *this_frame,
1271 void **this_cache, int regnum)
1272 {
1273 struct ppu2spu_cache *cache = *this_cache;
1274 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1275 gdb_byte *buf;
1276
1277 buf = alloca (register_size (gdbarch, regnum));
1278
1279 if (regnum < gdbarch_num_regs (gdbarch))
1280 regcache_raw_read (cache->regcache, regnum, buf);
1281 else
1282 gdbarch_pseudo_register_read (gdbarch, cache->regcache, regnum, buf);
1283
1284 return frame_unwind_got_bytes (this_frame, regnum, buf);
1285 }
1286
1287 struct ppu2spu_data
1288 {
1289 struct gdbarch *gdbarch;
1290 int id;
1291 unsigned int npc;
1292 gdb_byte gprs[128*16];
1293 };
1294
1295 static int
1296 ppu2spu_unwind_register (void *src, int regnum, gdb_byte *buf)
1297 {
1298 struct ppu2spu_data *data = src;
1299 enum bfd_endian byte_order = gdbarch_byte_order (data->gdbarch);
1300
1301 if (regnum >= 0 && regnum < SPU_NUM_GPRS)
1302 memcpy (buf, data->gprs + 16*regnum, 16);
1303 else if (regnum == SPU_ID_REGNUM)
1304 store_unsigned_integer (buf, 4, byte_order, data->id);
1305 else if (regnum == SPU_PC_REGNUM)
1306 store_unsigned_integer (buf, 4, byte_order, data->npc);
1307 else
1308 return REG_UNAVAILABLE;
1309
1310 return REG_VALID;
1311 }
1312
1313 static int
1314 ppu2spu_sniffer (const struct frame_unwind *self,
1315 struct frame_info *this_frame, void **this_prologue_cache)
1316 {
1317 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1319 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1320 struct ppu2spu_data data;
1321 struct frame_info *fi;
1322 CORE_ADDR base, func, backchain, spe_context;
1323 gdb_byte buf[8];
1324 int n = 0;
1325
1326 /* Count the number of SPU contexts already in the frame chain. */
1327 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1328 if (get_frame_type (fi) == ARCH_FRAME
1329 && gdbarch_bfd_arch_info (get_frame_arch (fi))->arch == bfd_arch_spu)
1330 n++;
1331
1332 base = get_frame_sp (this_frame);
1333 func = get_frame_pc (this_frame);
1334 if (target_read_memory (base, buf, tdep->wordsize))
1335 return 0;
1336 backchain = extract_unsigned_integer (buf, tdep->wordsize, byte_order);
1337
1338 spe_context = ppc_linux_spe_context (tdep->wordsize, byte_order,
1339 n, &data.id, &data.npc);
1340 if (spe_context && base <= spe_context && spe_context < backchain)
1341 {
1342 char annex[32];
1343
1344 /* Find gdbarch for SPU. */
1345 struct gdbarch_info info;
1346 gdbarch_info_init (&info);
1347 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
1348 info.byte_order = BFD_ENDIAN_BIG;
1349 info.osabi = GDB_OSABI_LINUX;
1350 info.tdep_info = (void *) &data.id;
1351 data.gdbarch = gdbarch_find_by_info (info);
1352 if (!data.gdbarch)
1353 return 0;
1354
1355 xsnprintf (annex, sizeof annex, "%d/regs", data.id);
1356 if (target_read (&current_target, TARGET_OBJECT_SPU, annex,
1357 data.gprs, 0, sizeof data.gprs)
1358 == sizeof data.gprs)
1359 {
1360 struct ppu2spu_cache *cache
1361 = FRAME_OBSTACK_CALLOC (1, struct ppu2spu_cache);
1362
1363 struct address_space *aspace = get_frame_address_space (this_frame);
1364 struct regcache *regcache = regcache_xmalloc (data.gdbarch, aspace);
1365 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
1366 regcache_save (regcache, ppu2spu_unwind_register, &data);
1367 discard_cleanups (cleanups);
1368
1369 cache->frame_id = frame_id_build (base, func);
1370 cache->regcache = regcache;
1371 *this_prologue_cache = cache;
1372 return 1;
1373 }
1374 }
1375
1376 return 0;
1377 }
1378
1379 static void
1380 ppu2spu_dealloc_cache (struct frame_info *self, void *this_cache)
1381 {
1382 struct ppu2spu_cache *cache = this_cache;
1383 regcache_xfree (cache->regcache);
1384 }
1385
1386 static const struct frame_unwind ppu2spu_unwind = {
1387 ARCH_FRAME,
1388 default_frame_unwind_stop_reason,
1389 ppu2spu_this_id,
1390 ppu2spu_prev_register,
1391 NULL,
1392 ppu2spu_sniffer,
1393 ppu2spu_dealloc_cache,
1394 ppu2spu_prev_arch,
1395 };
1396
1397 /* Initialize linux_record_tdep if not initialized yet.
1398 WORDSIZE is 4 or 8 for 32- or 64-bit PowerPC Linux respectively.
1399 Sizes of data structures are initialized accordingly. */
1400
1401 static void
1402 ppc_init_linux_record_tdep (struct linux_record_tdep *record_tdep,
1403 int wordsize)
1404 {
1405 /* Simply return if it had been initialized. */
1406 if (record_tdep->size_pointer != 0)
1407 return;
1408
1409 /* These values are the size of the type that will be used in a system
1410 call. They are obtained from Linux Kernel source. */
1411
1412 if (wordsize == 8)
1413 {
1414 record_tdep->size_pointer = 8;
1415 record_tdep->size__old_kernel_stat = 32;
1416 record_tdep->size_tms = 32;
1417 record_tdep->size_loff_t = 8;
1418 record_tdep->size_flock = 32;
1419 record_tdep->size_oldold_utsname = 45;
1420 record_tdep->size_ustat = 32;
1421 record_tdep->size_old_sigaction = 152;
1422 record_tdep->size_old_sigset_t = 128;
1423 record_tdep->size_rlimit = 16;
1424 record_tdep->size_rusage = 144;
1425 record_tdep->size_timeval = 16;
1426 record_tdep->size_timezone = 8;
1427 record_tdep->size_old_gid_t = 4;
1428 record_tdep->size_old_uid_t = 4;
1429 record_tdep->size_fd_set = 128;
1430 record_tdep->size_dirent = 280;
1431 record_tdep->size_dirent64 = 280;
1432 record_tdep->size_statfs = 120;
1433 record_tdep->size_statfs64 = 120;
1434 record_tdep->size_sockaddr = 16;
1435 record_tdep->size_int = 4;
1436 record_tdep->size_long = 8;
1437 record_tdep->size_ulong = 8;
1438 record_tdep->size_msghdr = 56;
1439 record_tdep->size_itimerval = 32;
1440 record_tdep->size_stat = 144;
1441 record_tdep->size_old_utsname = 325;
1442 record_tdep->size_sysinfo = 112;
1443 record_tdep->size_msqid_ds = 120;
1444 record_tdep->size_shmid_ds = 112;
1445 record_tdep->size_new_utsname = 390;
1446 record_tdep->size_timex = 208;
1447 record_tdep->size_mem_dqinfo = 24;
1448 record_tdep->size_if_dqblk = 72;
1449 record_tdep->size_fs_quota_stat = 80;
1450 record_tdep->size_timespec = 16;
1451 record_tdep->size_pollfd = 8;
1452 record_tdep->size_NFS_FHSIZE = 32;
1453 record_tdep->size_knfsd_fh = 132;
1454 record_tdep->size_TASK_COMM_LEN = 32;
1455 record_tdep->size_sigaction = 152;
1456 record_tdep->size_sigset_t = 128;
1457 record_tdep->size_siginfo_t = 128;
1458 record_tdep->size_cap_user_data_t = 8;
1459 record_tdep->size_stack_t = 24;
1460 record_tdep->size_off_t = 8;
1461 record_tdep->size_stat64 = 104;
1462 record_tdep->size_gid_t = 4;
1463 record_tdep->size_uid_t = 4;
1464 record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */
1465 record_tdep->size_flock64 = 32;
1466 record_tdep->size_io_event = 32;
1467 record_tdep->size_iocb = 64;
1468 record_tdep->size_epoll_event = 16;
1469 record_tdep->size_itimerspec = 32;
1470 record_tdep->size_mq_attr = 64;
1471 record_tdep->size_siginfo = 128;
1472 record_tdep->size_termios = 44;
1473 record_tdep->size_pid_t = 4;
1474 record_tdep->size_winsize = 8;
1475 record_tdep->size_serial_struct = 72;
1476 record_tdep->size_serial_icounter_struct = 80;
1477 record_tdep->size_size_t = 8;
1478 record_tdep->size_iovec = 16;
1479 }
1480 else if (wordsize == 4)
1481 {
1482 record_tdep->size_pointer = 4;
1483 record_tdep->size__old_kernel_stat = 32;
1484 record_tdep->size_tms = 16;
1485 record_tdep->size_loff_t = 8;
1486 record_tdep->size_flock = 16;
1487 record_tdep->size_oldold_utsname = 45;
1488 record_tdep->size_ustat = 20;
1489 record_tdep->size_old_sigaction = 152;
1490 record_tdep->size_old_sigset_t = 128;
1491 record_tdep->size_rlimit = 8;
1492 record_tdep->size_rusage = 72;
1493 record_tdep->size_timeval = 8;
1494 record_tdep->size_timezone = 8;
1495 record_tdep->size_old_gid_t = 4;
1496 record_tdep->size_old_uid_t = 4;
1497 record_tdep->size_fd_set = 128;
1498 record_tdep->size_dirent = 268;
1499 record_tdep->size_dirent64 = 280;
1500 record_tdep->size_statfs = 64;
1501 record_tdep->size_statfs64 = 88;
1502 record_tdep->size_sockaddr = 16;
1503 record_tdep->size_int = 4;
1504 record_tdep->size_long = 4;
1505 record_tdep->size_ulong = 4;
1506 record_tdep->size_msghdr = 28;
1507 record_tdep->size_itimerval = 16;
1508 record_tdep->size_stat = 88;
1509 record_tdep->size_old_utsname = 325;
1510 record_tdep->size_sysinfo = 64;
1511 record_tdep->size_msqid_ds = 68;
1512 record_tdep->size_shmid_ds = 60;
1513 record_tdep->size_new_utsname = 390;
1514 record_tdep->size_timex = 128;
1515 record_tdep->size_mem_dqinfo = 24;
1516 record_tdep->size_if_dqblk = 72;
1517 record_tdep->size_fs_quota_stat = 80;
1518 record_tdep->size_timespec = 8;
1519 record_tdep->size_pollfd = 8;
1520 record_tdep->size_NFS_FHSIZE = 32;
1521 record_tdep->size_knfsd_fh = 132;
1522 record_tdep->size_TASK_COMM_LEN = 32;
1523 record_tdep->size_sigaction = 140;
1524 record_tdep->size_sigset_t = 128;
1525 record_tdep->size_siginfo_t = 128;
1526 record_tdep->size_cap_user_data_t = 4;
1527 record_tdep->size_stack_t = 12;
1528 record_tdep->size_off_t = 4;
1529 record_tdep->size_stat64 = 104;
1530 record_tdep->size_gid_t = 4;
1531 record_tdep->size_uid_t = 4;
1532 record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */
1533 record_tdep->size_flock64 = 32;
1534 record_tdep->size_io_event = 32;
1535 record_tdep->size_iocb = 64;
1536 record_tdep->size_epoll_event = 16;
1537 record_tdep->size_itimerspec = 16;
1538 record_tdep->size_mq_attr = 32;
1539 record_tdep->size_siginfo = 128;
1540 record_tdep->size_termios = 44;
1541 record_tdep->size_pid_t = 4;
1542 record_tdep->size_winsize = 8;
1543 record_tdep->size_serial_struct = 60;
1544 record_tdep->size_serial_icounter_struct = 80;
1545 record_tdep->size_size_t = 4;
1546 record_tdep->size_iovec = 8;
1547 }
1548 else
1549 internal_error (__FILE__, __LINE__, _("unexpected wordsize"));
1550
1551 /* These values are the second argument of system call "sys_fcntl"
1552 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1553 record_tdep->fcntl_F_GETLK = 5;
1554 record_tdep->fcntl_F_GETLK64 = 12;
1555 record_tdep->fcntl_F_SETLK64 = 13;
1556 record_tdep->fcntl_F_SETLKW64 = 14;
1557
1558 record_tdep->arg1 = PPC_R0_REGNUM + 3;
1559 record_tdep->arg2 = PPC_R0_REGNUM + 4;
1560 record_tdep->arg3 = PPC_R0_REGNUM + 5;
1561 record_tdep->arg4 = PPC_R0_REGNUM + 6;
1562 record_tdep->arg5 = PPC_R0_REGNUM + 7;
1563 record_tdep->arg6 = PPC_R0_REGNUM + 8;
1564
1565 /* These values are the second argument of system call "sys_ioctl".
1566 They are obtained from Linux Kernel source.
1567 See arch/powerpc/include/uapi/asm/ioctls.h. */
1568 record_tdep->ioctl_TCGETS = 0x403c7413;
1569 record_tdep->ioctl_TCSETS = 0x803c7414;
1570 record_tdep->ioctl_TCSETSW = 0x803c7415;
1571 record_tdep->ioctl_TCSETSF = 0x803c7416;
1572 record_tdep->ioctl_TCGETA = 0x40147417;
1573 record_tdep->ioctl_TCSETA = 0x80147418;
1574 record_tdep->ioctl_TCSETAW = 0x80147419;
1575 record_tdep->ioctl_TCSETAF = 0x8014741c;
1576 record_tdep->ioctl_TCSBRK = 0x2000741d;
1577 record_tdep->ioctl_TCXONC = 0x2000741e;
1578 record_tdep->ioctl_TCFLSH = 0x2000741f;
1579 record_tdep->ioctl_TIOCEXCL = 0x540c;
1580 record_tdep->ioctl_TIOCNXCL = 0x540d;
1581 record_tdep->ioctl_TIOCSCTTY = 0x540e;
1582 record_tdep->ioctl_TIOCGPGRP = 0x40047477;
1583 record_tdep->ioctl_TIOCSPGRP = 0x80047476;
1584 record_tdep->ioctl_TIOCOUTQ = 0x40047473;
1585 record_tdep->ioctl_TIOCSTI = 0x5412;
1586 record_tdep->ioctl_TIOCGWINSZ = 0x40087468;
1587 record_tdep->ioctl_TIOCSWINSZ = 0x80087467;
1588 record_tdep->ioctl_TIOCMGET = 0x5415;
1589 record_tdep->ioctl_TIOCMBIS = 0x5416;
1590 record_tdep->ioctl_TIOCMBIC = 0x5417;
1591 record_tdep->ioctl_TIOCMSET = 0x5418;
1592 record_tdep->ioctl_TIOCGSOFTCAR = 0x5419;
1593 record_tdep->ioctl_TIOCSSOFTCAR = 0x541a;
1594 record_tdep->ioctl_FIONREAD = 0x4004667f;
1595 record_tdep->ioctl_TIOCINQ = 0x4004667f;
1596 record_tdep->ioctl_TIOCLINUX = 0x541c;
1597 record_tdep->ioctl_TIOCCONS = 0x541d;
1598 record_tdep->ioctl_TIOCGSERIAL = 0x541e;
1599 record_tdep->ioctl_TIOCSSERIAL = 0x541f;
1600 record_tdep->ioctl_TIOCPKT = 0x5420;
1601 record_tdep->ioctl_FIONBIO = 0x8004667e;
1602 record_tdep->ioctl_TIOCNOTTY = 0x5422;
1603 record_tdep->ioctl_TIOCSETD = 0x5423;
1604 record_tdep->ioctl_TIOCGETD = 0x5424;
1605 record_tdep->ioctl_TCSBRKP = 0x5425;
1606 record_tdep->ioctl_TIOCSBRK = 0x5427;
1607 record_tdep->ioctl_TIOCCBRK = 0x5428;
1608 record_tdep->ioctl_TIOCGSID = 0x5429;
1609 record_tdep->ioctl_TIOCGPTN = 0x40045430;
1610 record_tdep->ioctl_TIOCSPTLCK = 0x80045431;
1611 record_tdep->ioctl_FIONCLEX = 0x20006602;
1612 record_tdep->ioctl_FIOCLEX = 0x20006601;
1613 record_tdep->ioctl_FIOASYNC = 0x8004667d;
1614 record_tdep->ioctl_TIOCSERCONFIG = 0x5453;
1615 record_tdep->ioctl_TIOCSERGWILD = 0x5454;
1616 record_tdep->ioctl_TIOCSERSWILD = 0x5455;
1617 record_tdep->ioctl_TIOCGLCKTRMIOS = 0x5456;
1618 record_tdep->ioctl_TIOCSLCKTRMIOS = 0x5457;
1619 record_tdep->ioctl_TIOCSERGSTRUCT = 0x5458;
1620 record_tdep->ioctl_TIOCSERGETLSR = 0x5459;
1621 record_tdep->ioctl_TIOCSERGETMULTI = 0x545a;
1622 record_tdep->ioctl_TIOCSERSETMULTI = 0x545b;
1623 record_tdep->ioctl_TIOCMIWAIT = 0x545c;
1624 record_tdep->ioctl_TIOCGICOUNT = 0x545d;
1625 record_tdep->ioctl_FIOQSIZE = 0x40086680;
1626 }
1627
1628 static void
1629 ppc_linux_init_abi (struct gdbarch_info info,
1630 struct gdbarch *gdbarch)
1631 {
1632 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1633 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
1634 static const char *const stap_integer_prefixes[] = { "i", NULL };
1635 static const char *const stap_register_indirection_prefixes[] = { "(",
1636 NULL };
1637 static const char *const stap_register_indirection_suffixes[] = { ")",
1638 NULL };
1639
1640 linux_init_abi (info, gdbarch);
1641
1642 /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
1643 128-bit, they are IBM long double, not IEEE quad long double as
1644 in the System V ABI PowerPC Processor Supplement. We can safely
1645 let them default to 128-bit, since the debug info will give the
1646 size of type actually used in each case. */
1647 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
1648 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
1649
1650 /* Handle inferior calls during interrupted system calls. */
1651 set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);
1652
1653 /* Get the syscall number from the arch's register. */
1654 set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number);
1655
1656 /* SystemTap functions. */
1657 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1658 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1659 stap_register_indirection_prefixes);
1660 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1661 stap_register_indirection_suffixes);
1662 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1663 set_gdbarch_stap_is_single_operand (gdbarch, ppc_stap_is_single_operand);
1664 set_gdbarch_stap_parse_special_token (gdbarch,
1665 ppc_stap_parse_special_token);
1666
1667 if (tdep->wordsize == 4)
1668 {
1669 /* Until November 2001, gcc did not comply with the 32 bit SysV
1670 R4 ABI requirement that structures less than or equal to 8
1671 bytes should be returned in registers. Instead GCC was using
1672 the AIX/PowerOpen ABI - everything returned in memory
1673 (well ignoring vectors that is). When this was corrected, it
1674 wasn't fixed for GNU/Linux native platform. Use the
1675 PowerOpen struct convention. */
1676 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
1677
1678 set_gdbarch_memory_remove_breakpoint (gdbarch,
1679 ppc_linux_memory_remove_breakpoint);
1680
1681 /* Shared library handling. */
1682 set_gdbarch_skip_trampoline_code (gdbarch, ppc_skip_trampoline_code);
1683 set_solib_svr4_fetch_link_map_offsets
1684 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1685
1686 /* Setting the correct XML syscall filename. */
1687 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC);
1688
1689 /* Trampolines. */
1690 tramp_frame_prepend_unwinder (gdbarch,
1691 &ppc32_linux_sigaction_tramp_frame);
1692 tramp_frame_prepend_unwinder (gdbarch,
1693 &ppc32_linux_sighandler_tramp_frame);
1694
1695 /* BFD target for core files. */
1696 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1697 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle");
1698 else
1699 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc");
1700
1701 if (powerpc_so_ops.in_dynsym_resolve_code == NULL)
1702 {
1703 powerpc_so_ops = svr4_so_ops;
1704 /* Override dynamic resolve function. */
1705 powerpc_so_ops.in_dynsym_resolve_code =
1706 powerpc_linux_in_dynsym_resolve_code;
1707 }
1708 set_solib_ops (gdbarch, &powerpc_so_ops);
1709
1710 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1711 }
1712
1713 if (tdep->wordsize == 8)
1714 {
1715 if (tdep->elf_abi == POWERPC_ELF_V1)
1716 {
1717 /* Handle PPC GNU/Linux 64-bit function pointers (which are really
1718 function descriptors). */
1719 set_gdbarch_convert_from_func_ptr_addr
1720 (gdbarch, ppc64_convert_from_func_ptr_addr);
1721
1722 set_gdbarch_elf_make_msymbol_special
1723 (gdbarch, ppc64_elf_make_msymbol_special);
1724 }
1725 else
1726 {
1727 set_gdbarch_elf_make_msymbol_special
1728 (gdbarch, ppc_elfv2_elf_make_msymbol_special);
1729
1730 set_gdbarch_skip_entrypoint (gdbarch, ppc_elfv2_skip_entrypoint);
1731 }
1732
1733 /* Shared library handling. */
1734 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
1735 set_solib_svr4_fetch_link_map_offsets
1736 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1737
1738 /* Setting the correct XML syscall filename. */
1739 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC64);
1740
1741 /* Trampolines. */
1742 tramp_frame_prepend_unwinder (gdbarch,
1743 &ppc64_linux_sigaction_tramp_frame);
1744 tramp_frame_prepend_unwinder (gdbarch,
1745 &ppc64_linux_sighandler_tramp_frame);
1746
1747 /* BFD target for core files. */
1748 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1749 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle");
1750 else
1751 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc");
1752 }
1753
1754 /* PPC32 uses a different prpsinfo32 compared to most other Linux
1755 archs. */
1756 if (tdep->wordsize == 4)
1757 set_gdbarch_elfcore_write_linux_prpsinfo (gdbarch,
1758 elfcore_write_ppc_linux_prpsinfo32);
1759
1760 set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
1761 set_gdbarch_iterate_over_regset_sections (gdbarch,
1762 ppc_linux_iterate_over_regset_sections);
1763
1764 /* Enable TLS support. */
1765 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1766 svr4_fetch_objfile_link_map);
1767
1768 if (tdesc_data)
1769 {
1770 const struct tdesc_feature *feature;
1771
1772 /* If we have target-described registers, then we can safely
1773 reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
1774 (whether they are described or not). */
1775 gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
1776 set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);
1777
1778 /* If they are present, then assign them to the reserved number. */
1779 feature = tdesc_find_feature (info.target_desc,
1780 "org.gnu.gdb.power.linux");
1781 if (feature != NULL)
1782 {
1783 tdesc_numbered_register (feature, tdesc_data,
1784 PPC_ORIG_R3_REGNUM, "orig_r3");
1785 tdesc_numbered_register (feature, tdesc_data,
1786 PPC_TRAP_REGNUM, "trap");
1787 }
1788 }
1789
1790 /* Enable Cell/B.E. if supported by the target. */
1791 if (tdesc_compatible_p (info.target_desc,
1792 bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu)))
1793 {
1794 /* Cell/B.E. multi-architecture support. */
1795 set_spu_solib_ops (gdbarch);
1796
1797 /* Cell/B.E. cross-architecture unwinder support. */
1798 frame_unwind_prepend_unwinder (gdbarch, &ppu2spu_unwind);
1799 }
1800
1801 set_gdbarch_displaced_step_location (gdbarch,
1802 linux_displaced_step_location);
1803
1804 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
1805
1806 /* Support reverse debugging. */
1807 set_gdbarch_process_record (gdbarch, ppc_process_record);
1808 set_gdbarch_process_record_signal (gdbarch, ppc_linux_record_signal);
1809 tdep->ppc_syscall_record = ppc_linux_syscall_record;
1810
1811 ppc_init_linux_record_tdep (&ppc_linux_record_tdep, 4);
1812 ppc_init_linux_record_tdep (&ppc64_linux_record_tdep, 8);
1813 }
1814
1815 /* Provide a prototype to silence -Wmissing-prototypes. */
1816 extern initialize_file_ftype _initialize_ppc_linux_tdep;
1817
1818 void
1819 _initialize_ppc_linux_tdep (void)
1820 {
1821 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1822 64-bit PowerPC, and the older rs6k. */
1823 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1824 ppc_linux_init_abi);
1825 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1826 ppc_linux_init_abi);
1827 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1828 ppc_linux_init_abi);
1829
1830 /* Attach to observers to track __spe_current_active_context. */
1831 observer_attach_inferior_created (ppc_linux_spe_context_inferior_created);
1832 observer_attach_solib_loaded (ppc_linux_spe_context_solib_loaded);
1833 observer_attach_solib_unloaded (ppc_linux_spe_context_solib_unloaded);
1834
1835 /* Initialize the Linux target descriptions. */
1836 initialize_tdesc_powerpc_32l ();
1837 initialize_tdesc_powerpc_altivec32l ();
1838 initialize_tdesc_powerpc_cell32l ();
1839 initialize_tdesc_powerpc_vsx32l ();
1840 initialize_tdesc_powerpc_isa205_32l ();
1841 initialize_tdesc_powerpc_isa205_altivec32l ();
1842 initialize_tdesc_powerpc_isa205_vsx32l ();
1843 initialize_tdesc_powerpc_64l ();
1844 initialize_tdesc_powerpc_altivec64l ();
1845 initialize_tdesc_powerpc_cell64l ();
1846 initialize_tdesc_powerpc_vsx64l ();
1847 initialize_tdesc_powerpc_isa205_64l ();
1848 initialize_tdesc_powerpc_isa205_altivec64l ();
1849 initialize_tdesc_powerpc_isa205_vsx64l ();
1850 initialize_tdesc_powerpc_e500l ();
1851 }
This page took 0.06598 seconds and 5 git commands to generate.