2003-11-07 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / ppc-sysv-tdep.c
1 /* Target-dependent code for PowerPC systems using the SVR4 ABI
2 for GDB, the GNU debugger.
3
4 Copyright 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdbcore.h"
25 #include "inferior.h"
26 #include "regcache.h"
27 #include "value.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
30 #include "ppc-tdep.h"
31 #include "target.h"
32
33 /* Pass the arguments in either registers, or in the stack. Using the
34 ppc sysv ABI, the first eight words of the argument list (that might
35 be less than eight parameters if some parameters occupy more than one
36 word) are passed in r3..r10 registers. float and double parameters are
37 passed in fpr's, in addition to that. Rest of the parameters if any
38 are passed in user stack.
39
40 If the function is returning a structure, then the return address is passed
41 in r3, then the first 7 words of the parametes can be passed in registers,
42 starting from r4. */
43
44 CORE_ADDR
45 ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
46 struct regcache *regcache, CORE_ADDR bp_addr,
47 int nargs, struct value **args, CORE_ADDR sp,
48 int struct_return, CORE_ADDR struct_addr)
49 {
50 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
51 const CORE_ADDR saved_sp = read_sp ();
52 int argspace = 0; /* 0 is an initial wrong guess. */
53 int write_pass;
54
55 /* Go through the argument list twice.
56
57 Pass 1: Figure out how much new stack space is required for
58 arguments and pushed values. Unlike the PowerOpen ABI, the SysV
59 ABI doesn't reserve any extra space for parameters which are put
60 in registers, but does always push structures and then pass their
61 address.
62
63 Pass 2: Replay the same computation but this time also write the
64 values out to the target. */
65
66 for (write_pass = 0; write_pass < 2; write_pass++)
67 {
68 int argno;
69 /* Next available floating point register for float and double
70 arguments. */
71 int freg = 1;
72 /* Next available general register for non-float, non-vector
73 arguments. */
74 int greg = 3;
75 /* Next available vector register for vector arguments. */
76 int vreg = 2;
77 /* Arguments start above the "LR save word" and "Back chain". */
78 int argoffset = 2 * tdep->wordsize;
79 /* Structures start after the arguments. */
80 int structoffset = argoffset + argspace;
81
82 /* If the function is returning a `struct', then the first word
83 (which will be passed in r3) is used for struct return
84 address. In that case we should advance one word and start
85 from r4 register to copy parameters. */
86 if (struct_return)
87 {
88 if (write_pass)
89 regcache_cooked_write_signed (regcache,
90 tdep->ppc_gp0_regnum + greg,
91 struct_addr);
92 greg++;
93 }
94
95 for (argno = 0; argno < nargs; argno++)
96 {
97 struct value *arg = args[argno];
98 struct type *type = check_typedef (VALUE_TYPE (arg));
99 int len = TYPE_LENGTH (type);
100 char *val = VALUE_CONTENTS (arg);
101
102 if (TYPE_CODE (type) == TYPE_CODE_FLT
103 && ppc_floating_point_unit_p (current_gdbarch) && len <= 8)
104 {
105 /* Floating point value converted to "double" then
106 passed in an FP register, when the registers run out,
107 8 byte aligned stack is used. */
108 if (freg <= 8)
109 {
110 if (write_pass)
111 {
112 /* Always store the floating point value using
113 the register's floating-point format. */
114 char regval[MAX_REGISTER_SIZE];
115 struct type *regtype
116 = register_type (gdbarch, FP0_REGNUM + freg);
117 convert_typed_floating (val, type, regval, regtype);
118 regcache_cooked_write (regcache, FP0_REGNUM + freg,
119 regval);
120 }
121 freg++;
122 }
123 else
124 {
125 /* SysV ABI converts floats to doubles before
126 writing them to an 8 byte aligned stack location. */
127 argoffset = align_up (argoffset, 8);
128 if (write_pass)
129 {
130 char memval[8];
131 struct type *memtype;
132 switch (TARGET_BYTE_ORDER)
133 {
134 case BFD_ENDIAN_BIG:
135 memtype = builtin_type_ieee_double_big;
136 break;
137 case BFD_ENDIAN_LITTLE:
138 memtype = builtin_type_ieee_double_little;
139 break;
140 default:
141 internal_error (__FILE__, __LINE__, "bad switch");
142 }
143 convert_typed_floating (val, type, memval, memtype);
144 write_memory (sp + argoffset, val, len);
145 }
146 argoffset += 8;
147 }
148 }
149 else if (len == 8 && (TYPE_CODE (type) == TYPE_CODE_INT /* long long */
150 || (!ppc_floating_point_unit_p (current_gdbarch) && TYPE_CODE (type) == TYPE_CODE_FLT))) /* double */
151 {
152 /* "long long" or "double" passed in an odd/even
153 register pair with the low addressed word in the odd
154 register and the high addressed word in the even
155 register, or when the registers run out an 8 byte
156 aligned stack location. */
157 if (greg > 9)
158 {
159 /* Just in case GREG was 10. */
160 greg = 11;
161 argoffset = align_up (argoffset, 8);
162 if (write_pass)
163 write_memory (sp + argoffset, val, len);
164 argoffset += 8;
165 }
166 else if (tdep->wordsize == 8)
167 {
168 if (write_pass)
169 regcache_cooked_write (regcache,
170 tdep->ppc_gp0_regnum + greg, val);
171 greg += 1;
172 }
173 else
174 {
175 /* Must start on an odd register - r3/r4 etc. */
176 if ((greg & 1) == 0)
177 greg++;
178 if (write_pass)
179 {
180 regcache_cooked_write (regcache,
181 tdep->ppc_gp0_regnum + greg + 0,
182 val + 0);
183 regcache_cooked_write (regcache,
184 tdep->ppc_gp0_regnum + greg + 1,
185 val + 4);
186 }
187 greg += 2;
188 }
189 }
190 else if (len == 16
191 && TYPE_CODE (type) == TYPE_CODE_ARRAY
192 && TYPE_VECTOR (type) && tdep->ppc_vr0_regnum >= 0)
193 {
194 /* Vector parameter passed in an Altivec register, or
195 when that runs out, 16 byte aligned stack location. */
196 if (vreg <= 13)
197 {
198 if (write_pass)
199 regcache_cooked_write (current_regcache,
200 tdep->ppc_vr0_regnum + vreg, val);
201 vreg++;
202 }
203 else
204 {
205 argoffset = align_up (argoffset, 16);
206 if (write_pass)
207 write_memory (sp + argoffset, val, 16);
208 argoffset += 16;
209 }
210 }
211 else if (len == 8
212 && TYPE_CODE (type) == TYPE_CODE_ARRAY
213 && TYPE_VECTOR (type) && tdep->ppc_ev0_regnum >= 0)
214 {
215 /* Vector parameter passed in an e500 register, or when
216 that runs out, 8 byte aligned stack location. Note
217 that since e500 vector and general purpose registers
218 both map onto the same underlying register set, a
219 "greg" and not a "vreg" is consumed here. A cooked
220 write stores the value in the correct locations
221 within the raw register cache. */
222 if (greg <= 10)
223 {
224 if (write_pass)
225 regcache_cooked_write (current_regcache,
226 tdep->ppc_ev0_regnum + greg, val);
227 greg++;
228 }
229 else
230 {
231 argoffset = align_up (argoffset, 8);
232 if (write_pass)
233 write_memory (sp + argoffset, val, 8);
234 argoffset += 8;
235 }
236 }
237 else
238 {
239 /* Reduce the parameter down to something that fits in a
240 "word". */
241 char word[MAX_REGISTER_SIZE];
242 memset (word, 0, MAX_REGISTER_SIZE);
243 if (len > tdep->wordsize
244 || TYPE_CODE (type) == TYPE_CODE_STRUCT
245 || TYPE_CODE (type) == TYPE_CODE_UNION)
246 {
247 /* Structs and large values are put on an 8 byte
248 aligned stack ... */
249 structoffset = align_up (structoffset, 8);
250 if (write_pass)
251 write_memory (sp + structoffset, val, len);
252 /* ... and then a "word" pointing to that address is
253 passed as the parameter. */
254 store_unsigned_integer (word, tdep->wordsize,
255 sp + structoffset);
256 structoffset += len;
257 }
258 else if (TYPE_CODE (type) == TYPE_CODE_INT)
259 /* Sign or zero extend the "int" into a "word". */
260 store_unsigned_integer (word, tdep->wordsize,
261 unpack_long (type, val));
262 else
263 /* Always goes in the low address. */
264 memcpy (word, val, len);
265 /* Store that "word" in a register, or on the stack.
266 The words have "4" byte alignment. */
267 if (greg <= 10)
268 {
269 if (write_pass)
270 regcache_cooked_write (regcache,
271 tdep->ppc_gp0_regnum + greg, word);
272 greg++;
273 }
274 else
275 {
276 argoffset = align_up (argoffset, tdep->wordsize);
277 if (write_pass)
278 write_memory (sp + argoffset, word, tdep->wordsize);
279 argoffset += tdep->wordsize;
280 }
281 }
282 }
283
284 /* Compute the actual stack space requirements. */
285 if (!write_pass)
286 {
287 /* Remember the amount of space needed by the arguments. */
288 argspace = argoffset;
289 /* Allocate space for both the arguments and the structures. */
290 sp -= (argoffset + structoffset);
291 /* Ensure that the stack is still 16 byte aligned. */
292 sp = align_down (sp, 16);
293 }
294 }
295
296 /* Update %sp. */
297 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
298
299 /* Write the backchain (it occupies WORDSIZED bytes). */
300 write_memory_signed_integer (sp, tdep->wordsize, saved_sp);
301
302 /* Point the inferior function call's return address at the dummy's
303 breakpoint. */
304 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
305
306 return sp;
307 }
308
309 /* Handle the return-value conventions specified by the SysV 32-bit
310 PowerPC ABI (including all the supplements):
311
312 no floating-point: floating-point values returned using 32-bit
313 general-purpose registers.
314
315 Altivec: 128-bit vectors returned using vector registers.
316
317 e500: 64-bit vectors returned using the full full 64 bit EV
318 register, floating-point values returned using 32-bit
319 general-purpose registers.
320
321 GCC (broken): Small struct values right (instead of left) aligned
322 when returned in general-purpose registers. */
323
324 static enum return_value_convention
325 do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *type,
326 struct regcache *regcache, const void *inval,
327 void *outval, int broken_gcc)
328 {
329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
330 gdb_assert (tdep->wordsize == 4);
331 if (TYPE_CODE (type) == TYPE_CODE_FLT
332 && TYPE_LENGTH (type) <= 8
333 && ppc_floating_point_unit_p (gdbarch))
334 {
335 if (outval)
336 {
337 /* Floats and doubles stored in "f1". Convert the value to
338 the required type. */
339 char regval[MAX_REGISTER_SIZE];
340 struct type *regtype = register_type (gdbarch, FP0_REGNUM + 1);
341 regcache_cooked_read (regcache, FP0_REGNUM + 1, regval);
342 convert_typed_floating (regval, regtype, outval, type);
343 }
344 if (inval)
345 {
346 /* Floats and doubles stored in "f1". Convert the value to
347 the register's "double" type. */
348 char regval[MAX_REGISTER_SIZE];
349 struct type *regtype = register_type (gdbarch, FP0_REGNUM);
350 convert_typed_floating (inval, type, regval, regtype);
351 regcache_cooked_write (regcache, FP0_REGNUM + 1, regval);
352 }
353 return RETURN_VALUE_REGISTER_CONVENTION;
354 }
355 if ((TYPE_CODE (type) == TYPE_CODE_INT && TYPE_LENGTH (type) == 8)
356 || (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8))
357 {
358 if (outval)
359 {
360 /* A long long, or a double stored in the 32 bit r3/r4. */
361 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
362 (bfd_byte *) outval + 0);
363 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
364 (bfd_byte *) outval + 4);
365 }
366 if (inval)
367 {
368 /* A long long, or a double stored in the 32 bit r3/r4. */
369 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
370 (bfd_byte *) inval + 0);
371 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
372 (bfd_byte *) inval + 4);
373 }
374 return RETURN_VALUE_REGISTER_CONVENTION;
375 }
376 if (TYPE_CODE (type) == TYPE_CODE_INT
377 && TYPE_LENGTH (type) <= tdep->wordsize)
378 {
379 if (outval)
380 {
381 /* Some sort of integer stored in r3. Since TYPE isn't
382 bigger than the register, sign extension isn't a problem
383 - just do everything unsigned. */
384 ULONGEST regval;
385 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
386 &regval);
387 store_unsigned_integer (outval, TYPE_LENGTH (type), regval);
388 }
389 if (inval)
390 {
391 /* Some sort of integer stored in r3. Use unpack_long since
392 that should handle any required sign extension. */
393 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
394 unpack_long (type, inval));
395 }
396 return RETURN_VALUE_REGISTER_CONVENTION;
397 }
398 if (TYPE_LENGTH (type) == 16
399 && TYPE_CODE (type) == TYPE_CODE_ARRAY
400 && TYPE_VECTOR (type) && tdep->ppc_vr0_regnum >= 0)
401 {
402 if (outval)
403 {
404 /* Altivec places the return value in "v2". */
405 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, outval);
406 }
407 if (inval)
408 {
409 /* Altivec places the return value in "v2". */
410 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, inval);
411 }
412 return RETURN_VALUE_REGISTER_CONVENTION;
413 }
414 if (TYPE_LENGTH (type) == 8
415 && TYPE_CODE (type) == TYPE_CODE_ARRAY
416 && TYPE_VECTOR (type) && tdep->ppc_ev0_regnum >= 0)
417 {
418 /* The e500 ABI places return values for the 64-bit DSP types
419 (__ev64_opaque__) in r3. However, in GDB-speak, ev3
420 corresponds to the entire r3 value for e500, whereas GDB's r3
421 only corresponds to the least significant 32-bits. So place
422 the 64-bit DSP type's value in ev3. */
423 if (outval)
424 regcache_cooked_read (regcache, tdep->ppc_ev0_regnum + 3, outval);
425 if (inval)
426 regcache_cooked_write (regcache, tdep->ppc_ev0_regnum + 3, inval);
427 return RETURN_VALUE_REGISTER_CONVENTION;
428 }
429 if (broken_gcc && TYPE_LENGTH (type) <= 8)
430 {
431 if (outval)
432 {
433 /* GCC screwed up. The last register isn't "left" aligned.
434 Need to extract the least significant part of each
435 register and then store that. */
436 /* Transfer any full words. */
437 int word = 0;
438 while (1)
439 {
440 ULONGEST reg;
441 int len = TYPE_LENGTH (type) - word * tdep->wordsize;
442 if (len <= 0)
443 break;
444 if (len > tdep->wordsize)
445 len = tdep->wordsize;
446 regcache_cooked_read_unsigned (regcache,
447 tdep->ppc_gp0_regnum + 3 + word,
448 &reg);
449 store_unsigned_integer (((bfd_byte *) outval
450 + word * tdep->wordsize), len, reg);
451 word++;
452 }
453 }
454 if (inval)
455 {
456 /* GCC screwed up. The last register isn't "left" aligned.
457 Need to extract the least significant part of each
458 register and then store that. */
459 /* Transfer any full words. */
460 int word = 0;
461 while (1)
462 {
463 ULONGEST reg;
464 int len = TYPE_LENGTH (type) - word * tdep->wordsize;
465 if (len <= 0)
466 break;
467 if (len > tdep->wordsize)
468 len = tdep->wordsize;
469 reg = extract_unsigned_integer (((bfd_byte *) inval
470 + word * tdep->wordsize), len);
471 regcache_cooked_write_unsigned (regcache,
472 tdep->ppc_gp0_regnum + 3 + word,
473 reg);
474 word++;
475 }
476 }
477 return RETURN_VALUE_REGISTER_CONVENTION;
478 }
479 if (TYPE_LENGTH (type) <= 8)
480 {
481 if (outval)
482 {
483 /* This matches SVr4 PPC, it does not match GCC. */
484 /* The value is right-padded to 8 bytes and then loaded, as
485 two "words", into r3/r4. */
486 char regvals[MAX_REGISTER_SIZE * 2];
487 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
488 regvals + 0 * tdep->wordsize);
489 if (TYPE_LENGTH (type) > tdep->wordsize)
490 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
491 regvals + 1 * tdep->wordsize);
492 memcpy (outval, regvals, TYPE_LENGTH (type));
493 }
494 if (inval)
495 {
496 /* This matches SVr4 PPC, it does not match GCC. */
497 /* The value is padded out to 8 bytes and then loaded, as
498 two "words" into r3/r4. */
499 char regvals[MAX_REGISTER_SIZE * 2];
500 memset (regvals, 0, sizeof regvals);
501 memcpy (regvals, inval, TYPE_LENGTH (type));
502 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
503 regvals + 0 * tdep->wordsize);
504 if (TYPE_LENGTH (type) > tdep->wordsize)
505 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
506 regvals + 1 * tdep->wordsize);
507 }
508 return RETURN_VALUE_REGISTER_CONVENTION;
509 }
510 return RETURN_VALUE_STRUCT_CONVENTION;
511 }
512
513 enum return_value_convention
514 ppc_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *valtype,
515 struct regcache *regcache, const void *inval, void *outval)
516 {
517 return do_ppc_sysv_return_value (gdbarch, valtype, regcache, inval, outval, 0);
518 }
519
520 enum return_value_convention
521 ppc_sysv_abi_broken_return_value (struct gdbarch *gdbarch, struct type *valtype,
522 struct regcache *regcache, const void *inval,
523 void *outval)
524 {
525 return do_ppc_sysv_return_value (gdbarch, valtype, regcache, inval, outval, 1);
526 }
527
528 /* Pass the arguments in either registers, or in the stack. Using the
529 ppc 64 bit SysV ABI.
530
531 This implements a dumbed down version of the ABI. It always writes
532 values to memory, GPR and FPR, even when not necessary. Doing this
533 greatly simplifies the logic. */
534
535 CORE_ADDR
536 ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
537 struct regcache *regcache, CORE_ADDR bp_addr,
538 int nargs, struct value **args, CORE_ADDR sp,
539 int struct_return, CORE_ADDR struct_addr)
540 {
541 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
542 /* By this stage in the proceedings, SP has been decremented by "red
543 zone size" + "struct return size". Fetch the stack-pointer from
544 before this and use that as the BACK_CHAIN. */
545 const CORE_ADDR back_chain = read_sp ();
546 /* See for-loop comment below. */
547 int write_pass;
548 /* Size of the Altivec's vector parameter region, the final value is
549 computed in the for-loop below. */
550 LONGEST vparam_size = 0;
551 /* Size of the general parameter region, the final value is computed
552 in the for-loop below. */
553 LONGEST gparam_size = 0;
554 /* Kevin writes ... I don't mind seeing tdep->wordsize used in the
555 calls to align_up(), align_down(), etc. because this makes it
556 easier to reuse this code (in a copy/paste sense) in the future,
557 but it is a 64-bit ABI and asserting that the wordsize is 8 bytes
558 at some point makes it easier to verify that this function is
559 correct without having to do a non-local analysis to figure out
560 the possible values of tdep->wordsize. */
561 gdb_assert (tdep->wordsize == 8);
562
563 /* Go through the argument list twice.
564
565 Pass 1: Compute the function call's stack space and register
566 requirements.
567
568 Pass 2: Replay the same computation but this time also write the
569 values out to the target. */
570
571 for (write_pass = 0; write_pass < 2; write_pass++)
572 {
573 int argno;
574 /* Next available floating point register for float and double
575 arguments. */
576 int freg = 1;
577 /* Next available general register for non-vector (but possibly
578 float) arguments. */
579 int greg = 3;
580 /* Next available vector register for vector arguments. */
581 int vreg = 2;
582 /* The address, at which the next general purpose parameter
583 (integer, struct, float, ...) should be saved. */
584 CORE_ADDR gparam;
585 /* Address, at which the next Altivec vector parameter should be
586 saved. */
587 CORE_ADDR vparam;
588
589 if (!write_pass)
590 {
591 /* During the first pass, GPARAM and VPARAM are more like
592 offsets (start address zero) than addresses. That way
593 the accumulate the total stack space each region
594 requires. */
595 gparam = 0;
596 vparam = 0;
597 }
598 else
599 {
600 /* Decrement the stack pointer making space for the Altivec
601 and general on-stack parameters. Set vparam and gparam
602 to their corresponding regions. */
603 vparam = align_down (sp - vparam_size, 16);
604 gparam = align_down (vparam - gparam_size, 16);
605 /* Add in space for the TOC, link editor double word,
606 compiler double word, LR save area, CR save area. */
607 sp = align_down (gparam - 48, 16);
608 }
609
610 /* If the function is returning a `struct', then there is an
611 extra hidden parameter (which will be passed in r3)
612 containing the address of that struct.. In that case we
613 should advance one word and start from r4 register to copy
614 parameters. This also consumes one on-stack parameter slot. */
615 if (struct_return)
616 {
617 if (write_pass)
618 regcache_cooked_write_signed (regcache,
619 tdep->ppc_gp0_regnum + greg,
620 struct_addr);
621 greg++;
622 gparam = align_up (gparam + tdep->wordsize, tdep->wordsize);
623 }
624
625 for (argno = 0; argno < nargs; argno++)
626 {
627 struct value *arg = args[argno];
628 struct type *type = check_typedef (VALUE_TYPE (arg));
629 char *val = VALUE_CONTENTS (arg);
630 if (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) <= 8)
631 {
632 /* Floats and Doubles go in f1 .. f13. They also
633 consume a left aligned GREG,, and can end up in
634 memory. */
635 if (write_pass)
636 {
637 if (ppc_floating_point_unit_p (current_gdbarch)
638 && freg <= 13)
639 {
640 char regval[MAX_REGISTER_SIZE];
641 struct type *regtype = register_type (gdbarch,
642 FP0_REGNUM);
643 convert_typed_floating (val, type, regval, regtype);
644 regcache_cooked_write (regcache, FP0_REGNUM + freg,
645 regval);
646 }
647 if (greg <= 10)
648 {
649 /* The ABI states "Single precision floating
650 point values are mapped to the first word in
651 a single doubleword" and "... floating point
652 values mapped to the first eight doublewords
653 of the parameter save area are also passed in
654 general registers").
655
656 This code interprets that to mean: store it,
657 left aligned, in the general register. */
658 char regval[MAX_REGISTER_SIZE];
659 memset (regval, 0, sizeof regval);
660 memcpy (regval, val, TYPE_LENGTH (type));
661 regcache_cooked_write (regcache,
662 tdep->ppc_gp0_regnum + greg,
663 regval);
664 }
665 write_memory (gparam, val, TYPE_LENGTH (type));
666 }
667 /* Always consume parameter stack space. */
668 freg++;
669 greg++;
670 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
671 }
672 else if (TYPE_LENGTH (type) == 16 && TYPE_VECTOR (type)
673 && TYPE_CODE (type) == TYPE_CODE_ARRAY
674 && tdep->ppc_vr0_regnum >= 0)
675 {
676 /* In the Altivec ABI, vectors go in the vector
677 registers v2 .. v13, or when that runs out, a vector
678 annex which goes above all the normal parameters.
679 NOTE: cagney/2003-09-21: This is a guess based on the
680 PowerOpen Altivec ABI. */
681 if (vreg <= 13)
682 {
683 if (write_pass)
684 regcache_cooked_write (regcache,
685 tdep->ppc_vr0_regnum + vreg, val);
686 vreg++;
687 }
688 else
689 {
690 if (write_pass)
691 write_memory (vparam, val, TYPE_LENGTH (type));
692 vparam = align_up (vparam + TYPE_LENGTH (type), 16);
693 }
694 }
695 else if ((TYPE_CODE (type) == TYPE_CODE_INT
696 || TYPE_CODE (type) == TYPE_CODE_ENUM)
697 && TYPE_LENGTH (type) <= 8)
698 {
699 /* Scalars get sign[un]extended and go in gpr3 .. gpr10.
700 They can also end up in memory. */
701 if (write_pass)
702 {
703 /* Sign extend the value, then store it unsigned. */
704 ULONGEST word = unpack_long (type, val);
705 if (greg <= 10)
706 regcache_cooked_write_unsigned (regcache,
707 tdep->ppc_gp0_regnum +
708 greg, word);
709 write_memory_unsigned_integer (gparam, tdep->wordsize,
710 word);
711 }
712 greg++;
713 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
714 }
715 else
716 {
717 int byte;
718 for (byte = 0; byte < TYPE_LENGTH (type);
719 byte += tdep->wordsize)
720 {
721 if (write_pass && greg <= 10)
722 {
723 char regval[MAX_REGISTER_SIZE];
724 int len = TYPE_LENGTH (type) - byte;
725 if (len > tdep->wordsize)
726 len = tdep->wordsize;
727 memset (regval, 0, sizeof regval);
728 /* WARNING: cagney/2003-09-21: As best I can
729 tell, the ABI specifies that the value should
730 be left aligned. Unfortunately, GCC doesn't
731 do this - it instead right aligns even sized
732 values and puts odd sized values on the
733 stack. Work around that by putting both a
734 left and right aligned value into the
735 register (hopefully no one notices :-^).
736 Arrrgh! */
737 /* Left aligned (8 byte values such as pointers
738 fill the buffer). */
739 memcpy (regval, val + byte, len);
740 /* Right aligned (but only if even). */
741 if (len == 1 || len == 2 || len == 4)
742 memcpy (regval + tdep->wordsize - len,
743 val + byte, len);
744 regcache_cooked_write (regcache, greg, regval);
745 }
746 greg++;
747 }
748 if (write_pass)
749 /* WARNING: cagney/2003-09-21: Strictly speaking, this
750 isn't necessary, unfortunately, GCC appears to get
751 "struct convention" parameter passing wrong putting
752 odd sized structures in memory instead of in a
753 register. Work around this by always writing the
754 value to memory. Fortunately, doing this
755 simplifies the code. */
756 write_memory (gparam, val, TYPE_LENGTH (type));
757 /* Always consume parameter stack space. */
758 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
759 }
760 }
761
762 if (!write_pass)
763 {
764 /* Save the true region sizes ready for the second pass. */
765 vparam_size = vparam;
766 /* Make certain that the general parameter save area is at
767 least the minimum 8 registers (or doublewords) in size. */
768 if (greg < 8)
769 gparam_size = 8 * tdep->wordsize;
770 else
771 gparam_size = gparam;
772 }
773 }
774
775 /* Update %sp. */
776 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
777
778 /* Write the backchain (it occupies WORDSIZED bytes). */
779 write_memory_signed_integer (sp, tdep->wordsize, back_chain);
780
781 /* Point the inferior function call's return address at the dummy's
782 breakpoint. */
783 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
784
785 /* Find a value for the TOC register. Every symbol should have both
786 ".FN" and "FN" in the minimal symbol table. "FN" points at the
787 FN's descriptor, while ".FN" points at the entry point (which
788 matches FUNC_ADDR). Need to reverse from FUNC_ADDR back to the
789 FN's descriptor address. */
790 {
791 /* Find the minimal symbol that corresponds to FUNC_ADDR (should
792 have the name ".FN"). */
793 struct minimal_symbol *dot_fn = lookup_minimal_symbol_by_pc (func_addr);
794 if (dot_fn != NULL && SYMBOL_LINKAGE_NAME (dot_fn)[0] == '.')
795 {
796 /* Now find the corresponding "FN" (dropping ".") minimal
797 symbol's address. */
798 struct minimal_symbol *fn =
799 lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (dot_fn) + 1, NULL,
800 NULL);
801 if (fn != NULL)
802 {
803 /* Got the address of that descriptor. The TOC is the
804 second double word. */
805 CORE_ADDR toc =
806 read_memory_unsigned_integer (SYMBOL_VALUE_ADDRESS (fn) +
807 tdep->wordsize, tdep->wordsize);
808 regcache_cooked_write_unsigned (regcache,
809 tdep->ppc_gp0_regnum + 2, toc);
810 }
811 }
812 }
813
814 return sp;
815 }
816
817
818 /* The 64 bit ABI retun value convention.
819
820 Return non-zero if the return-value is stored in a register, return
821 0 if the return-value is instead stored on the stack (a.k.a.,
822 struct return convention).
823
824 For a return-value stored in a register: when INVAL is non-NULL,
825 copy the buffer to the corresponding register return-value location
826 location; when OUTVAL is non-NULL, fill the buffer from the
827 corresponding register return-value location. */
828 enum return_value_convention
829 ppc64_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *valtype,
830 struct regcache *regcache, const void *inval,
831 void *outval)
832 {
833 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
834 /* Floats and doubles in F1. */
835 if (TYPE_CODE (valtype) == TYPE_CODE_FLT && TYPE_LENGTH (valtype) <= 8)
836 {
837 char regval[MAX_REGISTER_SIZE];
838 struct type *regtype = register_type (gdbarch, FP0_REGNUM);
839 if (inval != NULL)
840 {
841 convert_typed_floating (inval, valtype, regval, regtype);
842 regcache_cooked_write (regcache, FP0_REGNUM + 1, regval);
843 }
844 if (outval != NULL)
845 {
846 regcache_cooked_read (regcache, FP0_REGNUM + 1, regval);
847 convert_typed_floating (regval, regtype, outval, valtype);
848 }
849 return RETURN_VALUE_REGISTER_CONVENTION;
850 }
851 if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 8)
852 {
853 /* Integers in r3. */
854 if (inval != NULL)
855 {
856 /* Be careful to sign extend the value. */
857 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
858 unpack_long (valtype, inval));
859 }
860 if (outval != NULL)
861 {
862 /* Extract the integer from r3. Since this is truncating the
863 value, there isn't a sign extension problem. */
864 ULONGEST regval;
865 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
866 &regval);
867 store_unsigned_integer (outval, TYPE_LENGTH (valtype), regval);
868 }
869 return RETURN_VALUE_REGISTER_CONVENTION;
870 }
871 /* All pointers live in r3. */
872 if (TYPE_CODE (valtype) == TYPE_CODE_PTR)
873 {
874 /* All pointers live in r3. */
875 if (inval != NULL)
876 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, inval);
877 if (outval != NULL)
878 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, outval);
879 return RETURN_VALUE_REGISTER_CONVENTION;
880 }
881 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
882 && TYPE_LENGTH (valtype) <= 8
883 && TYPE_CODE (TYPE_TARGET_TYPE (valtype)) == TYPE_CODE_INT
884 && TYPE_LENGTH (TYPE_TARGET_TYPE (valtype)) == 1)
885 {
886 /* Small character arrays are returned, right justified, in r3. */
887 int offset = (register_size (gdbarch, tdep->ppc_gp0_regnum + 3)
888 - TYPE_LENGTH (valtype));
889 if (inval != NULL)
890 regcache_cooked_write_part (regcache, tdep->ppc_gp0_regnum + 3,
891 offset, TYPE_LENGTH (valtype), inval);
892 if (outval != NULL)
893 regcache_cooked_read_part (regcache, tdep->ppc_gp0_regnum + 3,
894 offset, TYPE_LENGTH (valtype), outval);
895 return RETURN_VALUE_REGISTER_CONVENTION;
896 }
897 /* Big floating point values get stored in adjacent floating
898 point registers. */
899 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
900 && (TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 32))
901 {
902 if (inval || outval != NULL)
903 {
904 int i;
905 for (i = 0; i < TYPE_LENGTH (valtype) / 8; i++)
906 {
907 if (inval != NULL)
908 regcache_cooked_write (regcache, FP0_REGNUM + 1 + i,
909 (const bfd_byte *) inval + i * 8);
910 if (outval != NULL)
911 regcache_cooked_read (regcache, FP0_REGNUM + 1 + i,
912 (bfd_byte *) outval + i * 8);
913 }
914 }
915 return RETURN_VALUE_REGISTER_CONVENTION;
916 }
917 /* Complex values get returned in f1:f2, need to convert. */
918 if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX
919 && (TYPE_LENGTH (valtype) == 8 || TYPE_LENGTH (valtype) == 16))
920 {
921 if (regcache != NULL)
922 {
923 int i;
924 for (i = 0; i < 2; i++)
925 {
926 char regval[MAX_REGISTER_SIZE];
927 struct type *regtype =
928 register_type (current_gdbarch, FP0_REGNUM);
929 if (inval != NULL)
930 {
931 convert_typed_floating ((const bfd_byte *) inval +
932 i * (TYPE_LENGTH (valtype) / 2),
933 valtype, regval, regtype);
934 regcache_cooked_write (regcache, FP0_REGNUM + 1 + i,
935 regval);
936 }
937 if (outval != NULL)
938 {
939 regcache_cooked_read (regcache, FP0_REGNUM + 1 + i, regval);
940 convert_typed_floating (regval, regtype,
941 (bfd_byte *) outval +
942 i * (TYPE_LENGTH (valtype) / 2),
943 valtype);
944 }
945 }
946 }
947 return RETURN_VALUE_REGISTER_CONVENTION;
948 }
949 /* Big complex values get stored in f1:f4. */
950 if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX && TYPE_LENGTH (valtype) == 32)
951 {
952 if (regcache != NULL)
953 {
954 int i;
955 for (i = 0; i < 4; i++)
956 {
957 if (inval != NULL)
958 regcache_cooked_write (regcache, FP0_REGNUM + 1 + i,
959 (const bfd_byte *) inval + i * 8);
960 if (outval != NULL)
961 regcache_cooked_read (regcache, FP0_REGNUM + 1 + i,
962 (bfd_byte *) outval + i * 8);
963 }
964 }
965 return RETURN_VALUE_REGISTER_CONVENTION;
966 }
967 return RETURN_VALUE_STRUCT_CONVENTION;
968 }
969
970 CORE_ADDR
971 ppc64_sysv_abi_adjust_breakpoint_address (struct gdbarch *gdbarch,
972 CORE_ADDR bpaddr)
973 {
974 /* PPC64 SYSV specifies that the minimal-symbol "FN" should point at
975 a function-descriptor while the corresponding minimal-symbol
976 ".FN" should point at the entry point. Consequently, a command
977 like "break FN" applied to an object file with only minimal
978 symbols, will insert the breakpoint into the descriptor at "FN"
979 and not the function at ".FN". Avoid this confusion by adjusting
980 any attempt to set a descriptor breakpoint into a corresponding
981 function breakpoint. Note that GDB warns the user when this
982 adjustment is applied - that's ok as otherwise the user will have
983 no way of knowing why their breakpoint at "FN" resulted in the
984 program stopping at ".FN". */
985 return gdbarch_convert_from_func_ptr_addr (gdbarch, bpaddr, &current_target);
986 }
This page took 0.053 seconds and 5 git commands to generate.