* ppc-sysv-tdep.c (do_ppc_sysv_return_value): Handle other integer
[deliverable/binutils-gdb.git] / gdb / ppc-sysv-tdep.c
1 /* Target-dependent code for PowerPC systems using the SVR4 ABI
2 for GDB, the GNU debugger.
3
4 Copyright (C) 2000, 2001, 2002, 2003, 2005, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdbcore.h"
24 #include "inferior.h"
25 #include "regcache.h"
26 #include "value.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "ppc-tdep.h"
30 #include "target.h"
31 #include "objfiles.h"
32 #include "infcall.h"
33
34 /* Pass the arguments in either registers, or in the stack. Using the
35 ppc sysv ABI, the first eight words of the argument list (that might
36 be less than eight parameters if some parameters occupy more than one
37 word) are passed in r3..r10 registers. float and double parameters are
38 passed in fpr's, in addition to that. Rest of the parameters if any
39 are passed in user stack.
40
41 If the function is returning a structure, then the return address is passed
42 in r3, then the first 7 words of the parametes can be passed in registers,
43 starting from r4. */
44
45 CORE_ADDR
46 ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
47 struct regcache *regcache, CORE_ADDR bp_addr,
48 int nargs, struct value **args, CORE_ADDR sp,
49 int struct_return, CORE_ADDR struct_addr)
50 {
51 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
52 ULONGEST saved_sp;
53 int argspace = 0; /* 0 is an initial wrong guess. */
54 int write_pass;
55
56 regcache_cooked_read_unsigned (regcache,
57 gdbarch_sp_regnum (current_gdbarch),
58 &saved_sp);
59
60 /* Go through the argument list twice.
61
62 Pass 1: Figure out how much new stack space is required for
63 arguments and pushed values. Unlike the PowerOpen ABI, the SysV
64 ABI doesn't reserve any extra space for parameters which are put
65 in registers, but does always push structures and then pass their
66 address.
67
68 Pass 2: Replay the same computation but this time also write the
69 values out to the target. */
70
71 for (write_pass = 0; write_pass < 2; write_pass++)
72 {
73 int argno;
74 /* Next available floating point register for float and double
75 arguments. */
76 int freg = 1;
77 /* Next available general register for non-float, non-vector
78 arguments. */
79 int greg = 3;
80 /* Next available vector register for vector arguments. */
81 int vreg = 2;
82 /* Arguments start above the "LR save word" and "Back chain". */
83 int argoffset = 2 * tdep->wordsize;
84 /* Structures start after the arguments. */
85 int structoffset = argoffset + argspace;
86
87 /* If the function is returning a `struct', then the first word
88 (which will be passed in r3) is used for struct return
89 address. In that case we should advance one word and start
90 from r4 register to copy parameters. */
91 if (struct_return)
92 {
93 if (write_pass)
94 regcache_cooked_write_signed (regcache,
95 tdep->ppc_gp0_regnum + greg,
96 struct_addr);
97 greg++;
98 }
99
100 for (argno = 0; argno < nargs; argno++)
101 {
102 struct value *arg = args[argno];
103 struct type *type = check_typedef (value_type (arg));
104 int len = TYPE_LENGTH (type);
105 const bfd_byte *val = value_contents (arg);
106
107 if (TYPE_CODE (type) == TYPE_CODE_FLT
108 && ppc_floating_point_unit_p (current_gdbarch) && len <= 8)
109 {
110 /* Floating point value converted to "double" then
111 passed in an FP register, when the registers run out,
112 8 byte aligned stack is used. */
113 if (freg <= 8)
114 {
115 if (write_pass)
116 {
117 /* Always store the floating point value using
118 the register's floating-point format. */
119 gdb_byte regval[MAX_REGISTER_SIZE];
120 struct type *regtype
121 = register_type (gdbarch, tdep->ppc_fp0_regnum + freg);
122 convert_typed_floating (val, type, regval, regtype);
123 regcache_cooked_write (regcache,
124 tdep->ppc_fp0_regnum + freg,
125 regval);
126 }
127 freg++;
128 }
129 else
130 {
131 /* SysV ABI converts floats to doubles before
132 writing them to an 8 byte aligned stack location. */
133 argoffset = align_up (argoffset, 8);
134 if (write_pass)
135 {
136 char memval[8];
137 convert_typed_floating (val, type, memval,
138 builtin_type_ieee_double);
139 write_memory (sp + argoffset, val, len);
140 }
141 argoffset += 8;
142 }
143 }
144 else if (len == 8 && (TYPE_CODE (type) == TYPE_CODE_INT /* long long */
145 || (!ppc_floating_point_unit_p (current_gdbarch) && TYPE_CODE (type) == TYPE_CODE_FLT))) /* double */
146 {
147 /* "long long" or "double" passed in an odd/even
148 register pair with the low addressed word in the odd
149 register and the high addressed word in the even
150 register, or when the registers run out an 8 byte
151 aligned stack location. */
152 if (greg > 9)
153 {
154 /* Just in case GREG was 10. */
155 greg = 11;
156 argoffset = align_up (argoffset, 8);
157 if (write_pass)
158 write_memory (sp + argoffset, val, len);
159 argoffset += 8;
160 }
161 else if (tdep->wordsize == 8)
162 {
163 if (write_pass)
164 regcache_cooked_write (regcache,
165 tdep->ppc_gp0_regnum + greg, val);
166 greg += 1;
167 }
168 else
169 {
170 /* Must start on an odd register - r3/r4 etc. */
171 if ((greg & 1) == 0)
172 greg++;
173 if (write_pass)
174 {
175 regcache_cooked_write (regcache,
176 tdep->ppc_gp0_regnum + greg + 0,
177 val + 0);
178 regcache_cooked_write (regcache,
179 tdep->ppc_gp0_regnum + greg + 1,
180 val + 4);
181 }
182 greg += 2;
183 }
184 }
185 else if (len == 16
186 && TYPE_CODE (type) == TYPE_CODE_ARRAY
187 && TYPE_VECTOR (type) && tdep->ppc_vr0_regnum >= 0)
188 {
189 /* Vector parameter passed in an Altivec register, or
190 when that runs out, 16 byte aligned stack location. */
191 if (vreg <= 13)
192 {
193 if (write_pass)
194 regcache_cooked_write (regcache,
195 tdep->ppc_vr0_regnum + vreg, val);
196 vreg++;
197 }
198 else
199 {
200 argoffset = align_up (argoffset, 16);
201 if (write_pass)
202 write_memory (sp + argoffset, val, 16);
203 argoffset += 16;
204 }
205 }
206 else if (len == 8
207 && TYPE_CODE (type) == TYPE_CODE_ARRAY
208 && TYPE_VECTOR (type) && tdep->ppc_ev0_regnum >= 0)
209 {
210 /* Vector parameter passed in an e500 register, or when
211 that runs out, 8 byte aligned stack location. Note
212 that since e500 vector and general purpose registers
213 both map onto the same underlying register set, a
214 "greg" and not a "vreg" is consumed here. A cooked
215 write stores the value in the correct locations
216 within the raw register cache. */
217 if (greg <= 10)
218 {
219 if (write_pass)
220 regcache_cooked_write (regcache,
221 tdep->ppc_ev0_regnum + greg, val);
222 greg++;
223 }
224 else
225 {
226 argoffset = align_up (argoffset, 8);
227 if (write_pass)
228 write_memory (sp + argoffset, val, 8);
229 argoffset += 8;
230 }
231 }
232 else
233 {
234 /* Reduce the parameter down to something that fits in a
235 "word". */
236 gdb_byte word[MAX_REGISTER_SIZE];
237 memset (word, 0, MAX_REGISTER_SIZE);
238 if (len > tdep->wordsize
239 || TYPE_CODE (type) == TYPE_CODE_STRUCT
240 || TYPE_CODE (type) == TYPE_CODE_UNION)
241 {
242 /* Structs and large values are put on an 8 byte
243 aligned stack ... */
244 structoffset = align_up (structoffset, 8);
245 if (write_pass)
246 write_memory (sp + structoffset, val, len);
247 /* ... and then a "word" pointing to that address is
248 passed as the parameter. */
249 store_unsigned_integer (word, tdep->wordsize,
250 sp + structoffset);
251 structoffset += len;
252 }
253 else if (TYPE_CODE (type) == TYPE_CODE_INT)
254 /* Sign or zero extend the "int" into a "word". */
255 store_unsigned_integer (word, tdep->wordsize,
256 unpack_long (type, val));
257 else
258 /* Always goes in the low address. */
259 memcpy (word, val, len);
260 /* Store that "word" in a register, or on the stack.
261 The words have "4" byte alignment. */
262 if (greg <= 10)
263 {
264 if (write_pass)
265 regcache_cooked_write (regcache,
266 tdep->ppc_gp0_regnum + greg, word);
267 greg++;
268 }
269 else
270 {
271 argoffset = align_up (argoffset, tdep->wordsize);
272 if (write_pass)
273 write_memory (sp + argoffset, word, tdep->wordsize);
274 argoffset += tdep->wordsize;
275 }
276 }
277 }
278
279 /* Compute the actual stack space requirements. */
280 if (!write_pass)
281 {
282 /* Remember the amount of space needed by the arguments. */
283 argspace = argoffset;
284 /* Allocate space for both the arguments and the structures. */
285 sp -= (argoffset + structoffset);
286 /* Ensure that the stack is still 16 byte aligned. */
287 sp = align_down (sp, 16);
288 }
289
290 /* The psABI says that "A caller of a function that takes a
291 variable argument list shall set condition register bit 6 to
292 1 if it passes one or more arguments in the floating-point
293 registers. It is strongly recommended that the caller set the
294 bit to 0 otherwise..." Doing this for normal functions too
295 shouldn't hurt. */
296 if (write_pass)
297 {
298 ULONGEST cr;
299
300 regcache_cooked_read_unsigned (regcache, tdep->ppc_cr_regnum, &cr);
301 if (freg > 1)
302 cr |= 0x02000000;
303 else
304 cr &= ~0x02000000;
305 regcache_cooked_write_unsigned (regcache, tdep->ppc_cr_regnum, cr);
306 }
307 }
308
309 /* Update %sp. */
310 regcache_cooked_write_signed (regcache,
311 gdbarch_sp_regnum (current_gdbarch), sp);
312
313 /* Write the backchain (it occupies WORDSIZED bytes). */
314 write_memory_signed_integer (sp, tdep->wordsize, saved_sp);
315
316 /* Point the inferior function call's return address at the dummy's
317 breakpoint. */
318 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
319
320 return sp;
321 }
322
323 /* Handle the return-value conventions specified by the SysV 32-bit
324 PowerPC ABI (including all the supplements):
325
326 no floating-point: floating-point values returned using 32-bit
327 general-purpose registers.
328
329 Altivec: 128-bit vectors returned using vector registers.
330
331 e500: 64-bit vectors returned using the full full 64 bit EV
332 register, floating-point values returned using 32-bit
333 general-purpose registers.
334
335 GCC (broken): Small struct values right (instead of left) aligned
336 when returned in general-purpose registers. */
337
338 static enum return_value_convention
339 do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *type,
340 struct regcache *regcache, void *readbuf,
341 const void *writebuf, int broken_gcc)
342 {
343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
344 gdb_assert (tdep->wordsize == 4);
345 if (TYPE_CODE (type) == TYPE_CODE_FLT
346 && TYPE_LENGTH (type) <= 8
347 && ppc_floating_point_unit_p (gdbarch))
348 {
349 if (readbuf)
350 {
351 /* Floats and doubles stored in "f1". Convert the value to
352 the required type. */
353 gdb_byte regval[MAX_REGISTER_SIZE];
354 struct type *regtype = register_type (gdbarch,
355 tdep->ppc_fp0_regnum + 1);
356 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
357 convert_typed_floating (regval, regtype, readbuf, type);
358 }
359 if (writebuf)
360 {
361 /* Floats and doubles stored in "f1". Convert the value to
362 the register's "double" type. */
363 gdb_byte regval[MAX_REGISTER_SIZE];
364 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
365 convert_typed_floating (writebuf, type, regval, regtype);
366 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
367 }
368 return RETURN_VALUE_REGISTER_CONVENTION;
369 }
370 if ((TYPE_CODE (type) == TYPE_CODE_INT && TYPE_LENGTH (type) == 8)
371 || (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8))
372 {
373 if (readbuf)
374 {
375 /* A long long, or a double stored in the 32 bit r3/r4. */
376 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
377 (bfd_byte *) readbuf + 0);
378 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
379 (bfd_byte *) readbuf + 4);
380 }
381 if (writebuf)
382 {
383 /* A long long, or a double stored in the 32 bit r3/r4. */
384 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
385 (const bfd_byte *) writebuf + 0);
386 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
387 (const bfd_byte *) writebuf + 4);
388 }
389 return RETURN_VALUE_REGISTER_CONVENTION;
390 }
391 else if ((TYPE_CODE (type) == TYPE_CODE_INT
392 || TYPE_CODE (type) == TYPE_CODE_CHAR
393 || TYPE_CODE (type) == TYPE_CODE_BOOL
394 || TYPE_CODE (type) == TYPE_CODE_PTR
395 || TYPE_CODE (type) == TYPE_CODE_REF
396 || TYPE_CODE (type) == TYPE_CODE_ENUM)
397 && TYPE_LENGTH (type) <= tdep->wordsize)
398 {
399 if (readbuf)
400 {
401 /* Some sort of integer stored in r3. Since TYPE isn't
402 bigger than the register, sign extension isn't a problem
403 - just do everything unsigned. */
404 ULONGEST regval;
405 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
406 &regval);
407 store_unsigned_integer (readbuf, TYPE_LENGTH (type), regval);
408 }
409 if (writebuf)
410 {
411 /* Some sort of integer stored in r3. Use unpack_long since
412 that should handle any required sign extension. */
413 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
414 unpack_long (type, writebuf));
415 }
416 return RETURN_VALUE_REGISTER_CONVENTION;
417 }
418 if (TYPE_LENGTH (type) == 16
419 && TYPE_CODE (type) == TYPE_CODE_ARRAY
420 && TYPE_VECTOR (type) && tdep->ppc_vr0_regnum >= 0)
421 {
422 if (readbuf)
423 {
424 /* Altivec places the return value in "v2". */
425 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
426 }
427 if (writebuf)
428 {
429 /* Altivec places the return value in "v2". */
430 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
431 }
432 return RETURN_VALUE_REGISTER_CONVENTION;
433 }
434 if (TYPE_LENGTH (type) == 8
435 && TYPE_CODE (type) == TYPE_CODE_ARRAY
436 && TYPE_VECTOR (type) && tdep->ppc_ev0_regnum >= 0)
437 {
438 /* The e500 ABI places return values for the 64-bit DSP types
439 (__ev64_opaque__) in r3. However, in GDB-speak, ev3
440 corresponds to the entire r3 value for e500, whereas GDB's r3
441 only corresponds to the least significant 32-bits. So place
442 the 64-bit DSP type's value in ev3. */
443 if (readbuf)
444 regcache_cooked_read (regcache, tdep->ppc_ev0_regnum + 3, readbuf);
445 if (writebuf)
446 regcache_cooked_write (regcache, tdep->ppc_ev0_regnum + 3, writebuf);
447 return RETURN_VALUE_REGISTER_CONVENTION;
448 }
449 if (broken_gcc && TYPE_LENGTH (type) <= 8)
450 {
451 /* GCC screwed up for structures or unions whose size is less
452 than or equal to 8 bytes.. Instead of left-aligning, it
453 right-aligns the data into the buffer formed by r3, r4. */
454 gdb_byte regvals[MAX_REGISTER_SIZE * 2];
455 int len = TYPE_LENGTH (type);
456 int offset = (2 * tdep->wordsize - len) % tdep->wordsize;
457
458 if (readbuf)
459 {
460 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
461 regvals + 0 * tdep->wordsize);
462 if (len > tdep->wordsize)
463 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
464 regvals + 1 * tdep->wordsize);
465 memcpy (readbuf, regvals + offset, len);
466 }
467 if (writebuf)
468 {
469 memset (regvals, 0, sizeof regvals);
470 memcpy (regvals + offset, writebuf, len);
471 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
472 regvals + 0 * tdep->wordsize);
473 if (len > tdep->wordsize)
474 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
475 regvals + 1 * tdep->wordsize);
476 }
477
478 return RETURN_VALUE_REGISTER_CONVENTION;
479 }
480 if (TYPE_LENGTH (type) <= 8)
481 {
482 if (readbuf)
483 {
484 /* This matches SVr4 PPC, it does not match GCC. */
485 /* The value is right-padded to 8 bytes and then loaded, as
486 two "words", into r3/r4. */
487 gdb_byte regvals[MAX_REGISTER_SIZE * 2];
488 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
489 regvals + 0 * tdep->wordsize);
490 if (TYPE_LENGTH (type) > tdep->wordsize)
491 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
492 regvals + 1 * tdep->wordsize);
493 memcpy (readbuf, regvals, TYPE_LENGTH (type));
494 }
495 if (writebuf)
496 {
497 /* This matches SVr4 PPC, it does not match GCC. */
498 /* The value is padded out to 8 bytes and then loaded, as
499 two "words" into r3/r4. */
500 gdb_byte regvals[MAX_REGISTER_SIZE * 2];
501 memset (regvals, 0, sizeof regvals);
502 memcpy (regvals, writebuf, TYPE_LENGTH (type));
503 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
504 regvals + 0 * tdep->wordsize);
505 if (TYPE_LENGTH (type) > tdep->wordsize)
506 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
507 regvals + 1 * tdep->wordsize);
508 }
509 return RETURN_VALUE_REGISTER_CONVENTION;
510 }
511 return RETURN_VALUE_STRUCT_CONVENTION;
512 }
513
514 enum return_value_convention
515 ppc_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *valtype,
516 struct regcache *regcache, gdb_byte *readbuf,
517 const gdb_byte *writebuf)
518 {
519 return do_ppc_sysv_return_value (gdbarch, valtype, regcache, readbuf,
520 writebuf, 0);
521 }
522
523 enum return_value_convention
524 ppc_sysv_abi_broken_return_value (struct gdbarch *gdbarch,
525 struct type *valtype,
526 struct regcache *regcache,
527 gdb_byte *readbuf, const gdb_byte *writebuf)
528 {
529 return do_ppc_sysv_return_value (gdbarch, valtype, regcache, readbuf,
530 writebuf, 1);
531 }
532
533 /* The helper function for 64-bit SYSV push_dummy_call. Converts the
534 function's code address back into the function's descriptor
535 address.
536
537 Find a value for the TOC register. Every symbol should have both
538 ".FN" and "FN" in the minimal symbol table. "FN" points at the
539 FN's descriptor, while ".FN" points at the entry point (which
540 matches FUNC_ADDR). Need to reverse from FUNC_ADDR back to the
541 FN's descriptor address (while at the same time being careful to
542 find "FN" in the same object file as ".FN"). */
543
544 static int
545 convert_code_addr_to_desc_addr (CORE_ADDR code_addr, CORE_ADDR *desc_addr)
546 {
547 struct obj_section *dot_fn_section;
548 struct minimal_symbol *dot_fn;
549 struct minimal_symbol *fn;
550 CORE_ADDR toc;
551 /* Find the minimal symbol that corresponds to CODE_ADDR (should
552 have a name of the form ".FN"). */
553 dot_fn = lookup_minimal_symbol_by_pc (code_addr);
554 if (dot_fn == NULL || SYMBOL_LINKAGE_NAME (dot_fn)[0] != '.')
555 return 0;
556 /* Get the section that contains CODE_ADDR. Need this for the
557 "objfile" that it contains. */
558 dot_fn_section = find_pc_section (code_addr);
559 if (dot_fn_section == NULL || dot_fn_section->objfile == NULL)
560 return 0;
561 /* Now find the corresponding "FN" (dropping ".") minimal symbol's
562 address. Only look for the minimal symbol in ".FN"'s object file
563 - avoids problems when two object files (i.e., shared libraries)
564 contain a minimal symbol with the same name. */
565 fn = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (dot_fn) + 1, NULL,
566 dot_fn_section->objfile);
567 if (fn == NULL)
568 return 0;
569 /* Found a descriptor. */
570 (*desc_addr) = SYMBOL_VALUE_ADDRESS (fn);
571 return 1;
572 }
573
574 /* Pass the arguments in either registers, or in the stack. Using the
575 ppc 64 bit SysV ABI.
576
577 This implements a dumbed down version of the ABI. It always writes
578 values to memory, GPR and FPR, even when not necessary. Doing this
579 greatly simplifies the logic. */
580
581 CORE_ADDR
582 ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
583 struct regcache *regcache, CORE_ADDR bp_addr,
584 int nargs, struct value **args, CORE_ADDR sp,
585 int struct_return, CORE_ADDR struct_addr)
586 {
587 CORE_ADDR func_addr = find_function_addr (function, NULL);
588 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
589 ULONGEST back_chain;
590 /* See for-loop comment below. */
591 int write_pass;
592 /* Size of the Altivec's vector parameter region, the final value is
593 computed in the for-loop below. */
594 LONGEST vparam_size = 0;
595 /* Size of the general parameter region, the final value is computed
596 in the for-loop below. */
597 LONGEST gparam_size = 0;
598 /* Kevin writes ... I don't mind seeing tdep->wordsize used in the
599 calls to align_up(), align_down(), etc. because this makes it
600 easier to reuse this code (in a copy/paste sense) in the future,
601 but it is a 64-bit ABI and asserting that the wordsize is 8 bytes
602 at some point makes it easier to verify that this function is
603 correct without having to do a non-local analysis to figure out
604 the possible values of tdep->wordsize. */
605 gdb_assert (tdep->wordsize == 8);
606
607 /* By this stage in the proceedings, SP has been decremented by "red
608 zone size" + "struct return size". Fetch the stack-pointer from
609 before this and use that as the BACK_CHAIN. */
610 regcache_cooked_read_unsigned (regcache,
611 gdbarch_sp_regnum (current_gdbarch),
612 &back_chain);
613
614 /* Go through the argument list twice.
615
616 Pass 1: Compute the function call's stack space and register
617 requirements.
618
619 Pass 2: Replay the same computation but this time also write the
620 values out to the target. */
621
622 for (write_pass = 0; write_pass < 2; write_pass++)
623 {
624 int argno;
625 /* Next available floating point register for float and double
626 arguments. */
627 int freg = 1;
628 /* Next available general register for non-vector (but possibly
629 float) arguments. */
630 int greg = 3;
631 /* Next available vector register for vector arguments. */
632 int vreg = 2;
633 /* The address, at which the next general purpose parameter
634 (integer, struct, float, ...) should be saved. */
635 CORE_ADDR gparam;
636 /* Address, at which the next Altivec vector parameter should be
637 saved. */
638 CORE_ADDR vparam;
639
640 if (!write_pass)
641 {
642 /* During the first pass, GPARAM and VPARAM are more like
643 offsets (start address zero) than addresses. That way
644 the accumulate the total stack space each region
645 requires. */
646 gparam = 0;
647 vparam = 0;
648 }
649 else
650 {
651 /* Decrement the stack pointer making space for the Altivec
652 and general on-stack parameters. Set vparam and gparam
653 to their corresponding regions. */
654 vparam = align_down (sp - vparam_size, 16);
655 gparam = align_down (vparam - gparam_size, 16);
656 /* Add in space for the TOC, link editor double word,
657 compiler double word, LR save area, CR save area. */
658 sp = align_down (gparam - 48, 16);
659 }
660
661 /* If the function is returning a `struct', then there is an
662 extra hidden parameter (which will be passed in r3)
663 containing the address of that struct.. In that case we
664 should advance one word and start from r4 register to copy
665 parameters. This also consumes one on-stack parameter slot. */
666 if (struct_return)
667 {
668 if (write_pass)
669 regcache_cooked_write_signed (regcache,
670 tdep->ppc_gp0_regnum + greg,
671 struct_addr);
672 greg++;
673 gparam = align_up (gparam + tdep->wordsize, tdep->wordsize);
674 }
675
676 for (argno = 0; argno < nargs; argno++)
677 {
678 struct value *arg = args[argno];
679 struct type *type = check_typedef (value_type (arg));
680 const bfd_byte *val = value_contents (arg);
681 if (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) <= 8)
682 {
683 /* Floats and Doubles go in f1 .. f13. They also
684 consume a left aligned GREG,, and can end up in
685 memory. */
686 if (write_pass)
687 {
688 if (ppc_floating_point_unit_p (current_gdbarch)
689 && freg <= 13)
690 {
691 gdb_byte regval[MAX_REGISTER_SIZE];
692 struct type *regtype
693 = register_type (gdbarch, tdep->ppc_fp0_regnum);
694 convert_typed_floating (val, type, regval, regtype);
695 regcache_cooked_write (regcache,
696 tdep->ppc_fp0_regnum + freg,
697 regval);
698 }
699 if (greg <= 10)
700 {
701 /* The ABI states "Single precision floating
702 point values are mapped to the first word in
703 a single doubleword" and "... floating point
704 values mapped to the first eight doublewords
705 of the parameter save area are also passed in
706 general registers").
707
708 This code interprets that to mean: store it,
709 left aligned, in the general register. */
710 gdb_byte regval[MAX_REGISTER_SIZE];
711 memset (regval, 0, sizeof regval);
712 memcpy (regval, val, TYPE_LENGTH (type));
713 regcache_cooked_write (regcache,
714 tdep->ppc_gp0_regnum + greg,
715 regval);
716 }
717 write_memory (gparam, val, TYPE_LENGTH (type));
718 }
719 /* Always consume parameter stack space. */
720 freg++;
721 greg++;
722 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
723 }
724 else if (TYPE_LENGTH (type) == 16 && TYPE_VECTOR (type)
725 && TYPE_CODE (type) == TYPE_CODE_ARRAY
726 && tdep->ppc_vr0_regnum >= 0)
727 {
728 /* In the Altivec ABI, vectors go in the vector
729 registers v2 .. v13, or when that runs out, a vector
730 annex which goes above all the normal parameters.
731 NOTE: cagney/2003-09-21: This is a guess based on the
732 PowerOpen Altivec ABI. */
733 if (vreg <= 13)
734 {
735 if (write_pass)
736 regcache_cooked_write (regcache,
737 tdep->ppc_vr0_regnum + vreg, val);
738 vreg++;
739 }
740 else
741 {
742 if (write_pass)
743 write_memory (vparam, val, TYPE_LENGTH (type));
744 vparam = align_up (vparam + TYPE_LENGTH (type), 16);
745 }
746 }
747 else if ((TYPE_CODE (type) == TYPE_CODE_INT
748 || TYPE_CODE (type) == TYPE_CODE_ENUM
749 || TYPE_CODE (type) == TYPE_CODE_PTR)
750 && TYPE_LENGTH (type) <= 8)
751 {
752 /* Scalars and Pointers get sign[un]extended and go in
753 gpr3 .. gpr10. They can also end up in memory. */
754 if (write_pass)
755 {
756 /* Sign extend the value, then store it unsigned. */
757 ULONGEST word = unpack_long (type, val);
758 /* Convert any function code addresses into
759 descriptors. */
760 if (TYPE_CODE (type) == TYPE_CODE_PTR
761 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
762 {
763 CORE_ADDR desc = word;
764 convert_code_addr_to_desc_addr (word, &desc);
765 word = desc;
766 }
767 if (greg <= 10)
768 regcache_cooked_write_unsigned (regcache,
769 tdep->ppc_gp0_regnum +
770 greg, word);
771 write_memory_unsigned_integer (gparam, tdep->wordsize,
772 word);
773 }
774 greg++;
775 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
776 }
777 else
778 {
779 int byte;
780 for (byte = 0; byte < TYPE_LENGTH (type);
781 byte += tdep->wordsize)
782 {
783 if (write_pass && greg <= 10)
784 {
785 gdb_byte regval[MAX_REGISTER_SIZE];
786 int len = TYPE_LENGTH (type) - byte;
787 if (len > tdep->wordsize)
788 len = tdep->wordsize;
789 memset (regval, 0, sizeof regval);
790 /* WARNING: cagney/2003-09-21: As best I can
791 tell, the ABI specifies that the value should
792 be left aligned. Unfortunately, GCC doesn't
793 do this - it instead right aligns even sized
794 values and puts odd sized values on the
795 stack. Work around that by putting both a
796 left and right aligned value into the
797 register (hopefully no one notices :-^).
798 Arrrgh! */
799 /* Left aligned (8 byte values such as pointers
800 fill the buffer). */
801 memcpy (regval, val + byte, len);
802 /* Right aligned (but only if even). */
803 if (len == 1 || len == 2 || len == 4)
804 memcpy (regval + tdep->wordsize - len,
805 val + byte, len);
806 regcache_cooked_write (regcache, greg, regval);
807 }
808 greg++;
809 }
810 if (write_pass)
811 /* WARNING: cagney/2003-09-21: Strictly speaking, this
812 isn't necessary, unfortunately, GCC appears to get
813 "struct convention" parameter passing wrong putting
814 odd sized structures in memory instead of in a
815 register. Work around this by always writing the
816 value to memory. Fortunately, doing this
817 simplifies the code. */
818 write_memory (gparam, val, TYPE_LENGTH (type));
819 if (write_pass)
820 /* WARNING: cagney/2004-06-20: It appears that GCC
821 likes to put structures containing a single
822 floating-point member in an FP register instead of
823 general general purpose. */
824 /* Always consume parameter stack space. */
825 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
826 }
827 }
828
829 if (!write_pass)
830 {
831 /* Save the true region sizes ready for the second pass. */
832 vparam_size = vparam;
833 /* Make certain that the general parameter save area is at
834 least the minimum 8 registers (or doublewords) in size. */
835 if (greg < 8)
836 gparam_size = 8 * tdep->wordsize;
837 else
838 gparam_size = gparam;
839 }
840 }
841
842 /* Update %sp. */
843 regcache_cooked_write_signed (regcache,
844 gdbarch_sp_regnum (current_gdbarch), sp);
845
846 /* Write the backchain (it occupies WORDSIZED bytes). */
847 write_memory_signed_integer (sp, tdep->wordsize, back_chain);
848
849 /* Point the inferior function call's return address at the dummy's
850 breakpoint. */
851 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
852
853 /* Use the func_addr to find the descriptor, and use that to find
854 the TOC. */
855 {
856 CORE_ADDR desc_addr;
857 if (convert_code_addr_to_desc_addr (func_addr, &desc_addr))
858 {
859 /* The TOC is the second double word in the descriptor. */
860 CORE_ADDR toc =
861 read_memory_unsigned_integer (desc_addr + tdep->wordsize,
862 tdep->wordsize);
863 regcache_cooked_write_unsigned (regcache,
864 tdep->ppc_gp0_regnum + 2, toc);
865 }
866 }
867
868 return sp;
869 }
870
871
872 /* The 64 bit ABI retun value convention.
873
874 Return non-zero if the return-value is stored in a register, return
875 0 if the return-value is instead stored on the stack (a.k.a.,
876 struct return convention).
877
878 For a return-value stored in a register: when WRITEBUF is non-NULL,
879 copy the buffer to the corresponding register return-value location
880 location; when READBUF is non-NULL, fill the buffer from the
881 corresponding register return-value location. */
882 enum return_value_convention
883 ppc64_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *valtype,
884 struct regcache *regcache, gdb_byte *readbuf,
885 const gdb_byte *writebuf)
886 {
887 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
888
889 /* This function exists to support a calling convention that
890 requires floating-point registers. It shouldn't be used on
891 processors that lack them. */
892 gdb_assert (ppc_floating_point_unit_p (gdbarch));
893
894 /* Floats and doubles in F1. */
895 if (TYPE_CODE (valtype) == TYPE_CODE_FLT && TYPE_LENGTH (valtype) <= 8)
896 {
897 gdb_byte regval[MAX_REGISTER_SIZE];
898 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
899 if (writebuf != NULL)
900 {
901 convert_typed_floating (writebuf, valtype, regval, regtype);
902 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
903 }
904 if (readbuf != NULL)
905 {
906 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
907 convert_typed_floating (regval, regtype, readbuf, valtype);
908 }
909 return RETURN_VALUE_REGISTER_CONVENTION;
910 }
911 /* Integers in r3. */
912 if ((TYPE_CODE (valtype) == TYPE_CODE_INT
913 || TYPE_CODE (valtype) == TYPE_CODE_ENUM)
914 && TYPE_LENGTH (valtype) <= 8)
915 {
916 if (writebuf != NULL)
917 {
918 /* Be careful to sign extend the value. */
919 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
920 unpack_long (valtype, writebuf));
921 }
922 if (readbuf != NULL)
923 {
924 /* Extract the integer from r3. Since this is truncating the
925 value, there isn't a sign extension problem. */
926 ULONGEST regval;
927 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
928 &regval);
929 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
930 }
931 return RETURN_VALUE_REGISTER_CONVENTION;
932 }
933 /* All pointers live in r3. */
934 if (TYPE_CODE (valtype) == TYPE_CODE_PTR)
935 {
936 /* All pointers live in r3. */
937 if (writebuf != NULL)
938 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
939 if (readbuf != NULL)
940 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf);
941 return RETURN_VALUE_REGISTER_CONVENTION;
942 }
943 /* Array type has more than one use. */
944 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
945 {
946 /* Small character arrays are returned, right justified, in r3. */
947 if (TYPE_LENGTH (valtype) <= 8
948 && TYPE_CODE (TYPE_TARGET_TYPE (valtype)) == TYPE_CODE_INT
949 && TYPE_LENGTH (TYPE_TARGET_TYPE (valtype)) == 1)
950 {
951 int offset = (register_size (gdbarch, tdep->ppc_gp0_regnum + 3)
952 - TYPE_LENGTH (valtype));
953 if (writebuf != NULL)
954 regcache_cooked_write_part (regcache, tdep->ppc_gp0_regnum + 3,
955 offset, TYPE_LENGTH (valtype), writebuf);
956 if (readbuf != NULL)
957 regcache_cooked_read_part (regcache, tdep->ppc_gp0_regnum + 3,
958 offset, TYPE_LENGTH (valtype), readbuf);
959 return RETURN_VALUE_REGISTER_CONVENTION;
960 }
961 /* A VMX vector is returned in v2. */
962 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
963 && TYPE_VECTOR (valtype) && tdep->ppc_vr0_regnum >= 0)
964 {
965 if (readbuf)
966 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
967 if (writebuf)
968 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
969 return RETURN_VALUE_REGISTER_CONVENTION;
970 }
971 }
972 /* Big floating point values get stored in adjacent floating
973 point registers, starting with F1. */
974 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
975 && (TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 32))
976 {
977 if (writebuf || readbuf != NULL)
978 {
979 int i;
980 for (i = 0; i < TYPE_LENGTH (valtype) / 8; i++)
981 {
982 if (writebuf != NULL)
983 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
984 (const bfd_byte *) writebuf + i * 8);
985 if (readbuf != NULL)
986 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
987 (bfd_byte *) readbuf + i * 8);
988 }
989 }
990 return RETURN_VALUE_REGISTER_CONVENTION;
991 }
992 /* Complex values get returned in f1:f2, need to convert. */
993 if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX
994 && (TYPE_LENGTH (valtype) == 8 || TYPE_LENGTH (valtype) == 16))
995 {
996 if (regcache != NULL)
997 {
998 int i;
999 for (i = 0; i < 2; i++)
1000 {
1001 gdb_byte regval[MAX_REGISTER_SIZE];
1002 struct type *regtype =
1003 register_type (current_gdbarch, tdep->ppc_fp0_regnum);
1004 if (writebuf != NULL)
1005 {
1006 convert_typed_floating ((const bfd_byte *) writebuf +
1007 i * (TYPE_LENGTH (valtype) / 2),
1008 valtype, regval, regtype);
1009 regcache_cooked_write (regcache,
1010 tdep->ppc_fp0_regnum + 1 + i,
1011 regval);
1012 }
1013 if (readbuf != NULL)
1014 {
1015 regcache_cooked_read (regcache,
1016 tdep->ppc_fp0_regnum + 1 + i,
1017 regval);
1018 convert_typed_floating (regval, regtype,
1019 (bfd_byte *) readbuf +
1020 i * (TYPE_LENGTH (valtype) / 2),
1021 valtype);
1022 }
1023 }
1024 }
1025 return RETURN_VALUE_REGISTER_CONVENTION;
1026 }
1027 /* Big complex values get stored in f1:f4. */
1028 if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX && TYPE_LENGTH (valtype) == 32)
1029 {
1030 if (regcache != NULL)
1031 {
1032 int i;
1033 for (i = 0; i < 4; i++)
1034 {
1035 if (writebuf != NULL)
1036 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
1037 (const bfd_byte *) writebuf + i * 8);
1038 if (readbuf != NULL)
1039 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
1040 (bfd_byte *) readbuf + i * 8);
1041 }
1042 }
1043 return RETURN_VALUE_REGISTER_CONVENTION;
1044 }
1045 return RETURN_VALUE_STRUCT_CONVENTION;
1046 }
1047
1048 CORE_ADDR
1049 ppc64_sysv_abi_adjust_breakpoint_address (struct gdbarch *gdbarch,
1050 CORE_ADDR bpaddr)
1051 {
1052 /* PPC64 SYSV specifies that the minimal-symbol "FN" should point at
1053 a function-descriptor while the corresponding minimal-symbol
1054 ".FN" should point at the entry point. Consequently, a command
1055 like "break FN" applied to an object file with only minimal
1056 symbols, will insert the breakpoint into the descriptor at "FN"
1057 and not the function at ".FN". Avoid this confusion by adjusting
1058 any attempt to set a descriptor breakpoint into a corresponding
1059 function breakpoint. Note that GDB warns the user when this
1060 adjustment is applied - that's ok as otherwise the user will have
1061 no way of knowing why their breakpoint at "FN" resulted in the
1062 program stopping at ".FN". */
1063 return gdbarch_convert_from_func_ptr_addr (gdbarch, bpaddr, &current_target);
1064 }
This page took 0.052366 seconds and 5 git commands to generate.