Eliminate make_cleanup_obstack_free, introduce auto_obstack
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "expression.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "breakpoint.h"
31 #include "demangle.h"
32 #include "gdb-demangle.h"
33 #include "valprint.h"
34 #include "annotate.h"
35 #include "symfile.h" /* for overlay functions */
36 #include "objfiles.h" /* ditto */
37 #include "completer.h" /* for completion functions */
38 #include "ui-out.h"
39 #include "block.h"
40 #include "disasm.h"
41 #include "dfp.h"
42 #include "observer.h"
43 #include "solist.h"
44 #include "parser-defs.h"
45 #include "charset.h"
46 #include "arch-utils.h"
47 #include "cli/cli-utils.h"
48 #include "cli/cli-script.h"
49 #include "format.h"
50 #include "source.h"
51 #include "common/byte-vector.h"
52
53 #ifdef TUI
54 #include "tui/tui.h" /* For tui_active et al. */
55 #endif
56
57 /* Last specified output format. */
58
59 static char last_format = 0;
60
61 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
62
63 static char last_size = 'w';
64
65 /* Default address to examine next, and associated architecture. */
66
67 static struct gdbarch *next_gdbarch;
68 static CORE_ADDR next_address;
69
70 /* Number of delay instructions following current disassembled insn. */
71
72 static int branch_delay_insns;
73
74 /* Last address examined. */
75
76 static CORE_ADDR last_examine_address;
77
78 /* Contents of last address examined.
79 This is not valid past the end of the `x' command! */
80
81 static struct value *last_examine_value;
82
83 /* Largest offset between a symbolic value and an address, that will be
84 printed as `0x1234 <symbol+offset>'. */
85
86 static unsigned int max_symbolic_offset = UINT_MAX;
87 static void
88 show_max_symbolic_offset (struct ui_file *file, int from_tty,
89 struct cmd_list_element *c, const char *value)
90 {
91 fprintf_filtered (file,
92 _("The largest offset that will be "
93 "printed in <symbol+1234> form is %s.\n"),
94 value);
95 }
96
97 /* Append the source filename and linenumber of the symbol when
98 printing a symbolic value as `<symbol at filename:linenum>' if set. */
99 static int print_symbol_filename = 0;
100 static void
101 show_print_symbol_filename (struct ui_file *file, int from_tty,
102 struct cmd_list_element *c, const char *value)
103 {
104 fprintf_filtered (file, _("Printing of source filename and "
105 "line number with <symbol> is %s.\n"),
106 value);
107 }
108
109 /* Number of auto-display expression currently being displayed.
110 So that we can disable it if we get a signal within it.
111 -1 when not doing one. */
112
113 static int current_display_number;
114
115 struct display
116 {
117 /* Chain link to next auto-display item. */
118 struct display *next;
119
120 /* The expression as the user typed it. */
121 char *exp_string;
122
123 /* Expression to be evaluated and displayed. */
124 expression_up exp;
125
126 /* Item number of this auto-display item. */
127 int number;
128
129 /* Display format specified. */
130 struct format_data format;
131
132 /* Program space associated with `block'. */
133 struct program_space *pspace;
134
135 /* Innermost block required by this expression when evaluated. */
136 const struct block *block;
137
138 /* Status of this display (enabled or disabled). */
139 int enabled_p;
140 };
141
142 /* Chain of expressions whose values should be displayed
143 automatically each time the program stops. */
144
145 static struct display *display_chain;
146
147 static int display_number;
148
149 /* Walk the following statement or block through all displays.
150 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
151 display. */
152
153 #define ALL_DISPLAYS(B) \
154 for (B = display_chain; B; B = B->next)
155
156 #define ALL_DISPLAYS_SAFE(B,TMP) \
157 for (B = display_chain; \
158 B ? (TMP = B->next, 1): 0; \
159 B = TMP)
160
161 /* Prototypes for exported functions. */
162
163 void _initialize_printcmd (void);
164
165 /* Prototypes for local functions. */
166
167 static void do_one_display (struct display *);
168 \f
169
170 /* Decode a format specification. *STRING_PTR should point to it.
171 OFORMAT and OSIZE are used as defaults for the format and size
172 if none are given in the format specification.
173 If OSIZE is zero, then the size field of the returned value
174 should be set only if a size is explicitly specified by the
175 user.
176 The structure returned describes all the data
177 found in the specification. In addition, *STRING_PTR is advanced
178 past the specification and past all whitespace following it. */
179
180 static struct format_data
181 decode_format (const char **string_ptr, int oformat, int osize)
182 {
183 struct format_data val;
184 const char *p = *string_ptr;
185
186 val.format = '?';
187 val.size = '?';
188 val.count = 1;
189 val.raw = 0;
190
191 if (*p == '-')
192 {
193 val.count = -1;
194 p++;
195 }
196 if (*p >= '0' && *p <= '9')
197 val.count *= atoi (p);
198 while (*p >= '0' && *p <= '9')
199 p++;
200
201 /* Now process size or format letters that follow. */
202
203 while (1)
204 {
205 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
206 val.size = *p++;
207 else if (*p == 'r')
208 {
209 val.raw = 1;
210 p++;
211 }
212 else if (*p >= 'a' && *p <= 'z')
213 val.format = *p++;
214 else
215 break;
216 }
217
218 while (*p == ' ' || *p == '\t')
219 p++;
220 *string_ptr = p;
221
222 /* Set defaults for format and size if not specified. */
223 if (val.format == '?')
224 {
225 if (val.size == '?')
226 {
227 /* Neither has been specified. */
228 val.format = oformat;
229 val.size = osize;
230 }
231 else
232 /* If a size is specified, any format makes a reasonable
233 default except 'i'. */
234 val.format = oformat == 'i' ? 'x' : oformat;
235 }
236 else if (val.size == '?')
237 switch (val.format)
238 {
239 case 'a':
240 /* Pick the appropriate size for an address. This is deferred
241 until do_examine when we know the actual architecture to use.
242 A special size value of 'a' is used to indicate this case. */
243 val.size = osize ? 'a' : osize;
244 break;
245 case 'f':
246 /* Floating point has to be word or giantword. */
247 if (osize == 'w' || osize == 'g')
248 val.size = osize;
249 else
250 /* Default it to giantword if the last used size is not
251 appropriate. */
252 val.size = osize ? 'g' : osize;
253 break;
254 case 'c':
255 /* Characters default to one byte. */
256 val.size = osize ? 'b' : osize;
257 break;
258 case 's':
259 /* Display strings with byte size chars unless explicitly
260 specified. */
261 val.size = '\0';
262 break;
263
264 default:
265 /* The default is the size most recently specified. */
266 val.size = osize;
267 }
268
269 return val;
270 }
271 \f
272 /* Print value VAL on stream according to OPTIONS.
273 Do not end with a newline.
274 SIZE is the letter for the size of datum being printed.
275 This is used to pad hex numbers so they line up. SIZE is 0
276 for print / output and set for examine. */
277
278 static void
279 print_formatted (struct value *val, int size,
280 const struct value_print_options *options,
281 struct ui_file *stream)
282 {
283 struct type *type = check_typedef (value_type (val));
284 int len = TYPE_LENGTH (type);
285
286 if (VALUE_LVAL (val) == lval_memory)
287 next_address = value_address (val) + len;
288
289 if (size)
290 {
291 switch (options->format)
292 {
293 case 's':
294 {
295 struct type *elttype = value_type (val);
296
297 next_address = (value_address (val)
298 + val_print_string (elttype, NULL,
299 value_address (val), -1,
300 stream, options) * len);
301 }
302 return;
303
304 case 'i':
305 /* We often wrap here if there are long symbolic names. */
306 wrap_here (" ");
307 next_address = (value_address (val)
308 + gdb_print_insn (get_type_arch (type),
309 value_address (val), stream,
310 &branch_delay_insns));
311 return;
312 }
313 }
314
315 if (options->format == 0 || options->format == 's'
316 || TYPE_CODE (type) == TYPE_CODE_REF
317 || TYPE_CODE (type) == TYPE_CODE_ARRAY
318 || TYPE_CODE (type) == TYPE_CODE_STRING
319 || TYPE_CODE (type) == TYPE_CODE_STRUCT
320 || TYPE_CODE (type) == TYPE_CODE_UNION
321 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
322 value_print (val, stream, options);
323 else
324 /* User specified format, so don't look to the type to tell us
325 what to do. */
326 val_print_scalar_formatted (type,
327 value_embedded_offset (val),
328 val,
329 options, size, stream);
330 }
331
332 /* Return builtin floating point type of same length as TYPE.
333 If no such type is found, return TYPE itself. */
334 static struct type *
335 float_type_from_length (struct type *type)
336 {
337 struct gdbarch *gdbarch = get_type_arch (type);
338 const struct builtin_type *builtin = builtin_type (gdbarch);
339
340 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
341 type = builtin->builtin_float;
342 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
343 type = builtin->builtin_double;
344 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
345 type = builtin->builtin_long_double;
346
347 return type;
348 }
349
350 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
351 according to OPTIONS and SIZE on STREAM. Formats s and i are not
352 supported at this level. */
353
354 void
355 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
356 const struct value_print_options *options,
357 int size, struct ui_file *stream)
358 {
359 struct gdbarch *gdbarch = get_type_arch (type);
360 unsigned int len = TYPE_LENGTH (type);
361 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
362
363 /* String printing should go through val_print_scalar_formatted. */
364 gdb_assert (options->format != 's');
365
366 /* If the value is a pointer, and pointers and addresses are not the
367 same, then at this point, the value's length (in target bytes) is
368 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
369 if (TYPE_CODE (type) == TYPE_CODE_PTR)
370 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
371
372 /* If we are printing it as unsigned, truncate it in case it is actually
373 a negative signed value (e.g. "print/u (short)-1" should print 65535
374 (if shorts are 16 bits) instead of 4294967295). */
375 if (options->format != 'c'
376 && (options->format != 'd' || TYPE_UNSIGNED (type)))
377 {
378 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
379 valaddr += TYPE_LENGTH (type) - len;
380 }
381
382 if (size != 0 && (options->format == 'x' || options->format == 't'))
383 {
384 /* Truncate to fit. */
385 unsigned newlen;
386 switch (size)
387 {
388 case 'b':
389 newlen = 1;
390 break;
391 case 'h':
392 newlen = 2;
393 break;
394 case 'w':
395 newlen = 4;
396 break;
397 case 'g':
398 newlen = 8;
399 break;
400 default:
401 error (_("Undefined output size \"%c\"."), size);
402 }
403 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
404 valaddr += len - newlen;
405 len = newlen;
406 }
407
408 /* Historically gdb has printed floats by first casting them to a
409 long, and then printing the long. PR cli/16242 suggests changing
410 this to using C-style hex float format. */
411 gdb::byte_vector converted_float_bytes;
412 if (TYPE_CODE (type) == TYPE_CODE_FLT
413 && (options->format == 'o'
414 || options->format == 'x'
415 || options->format == 't'
416 || options->format == 'z'))
417 {
418 LONGEST val_long = unpack_long (type, valaddr);
419 converted_float_bytes.resize (TYPE_LENGTH (type));
420 store_signed_integer (converted_float_bytes.data (), TYPE_LENGTH (type),
421 byte_order, val_long);
422 valaddr = converted_float_bytes.data ();
423 }
424
425 switch (options->format)
426 {
427 case 'o':
428 print_octal_chars (stream, valaddr, len, byte_order);
429 break;
430 case 'u':
431 print_decimal_chars (stream, valaddr, len, false, byte_order);
432 break;
433 case 0:
434 case 'd':
435 if (TYPE_CODE (type) != TYPE_CODE_FLT)
436 {
437 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
438 byte_order);
439 break;
440 }
441 /* FALLTHROUGH */
442 case 'f':
443 type = float_type_from_length (type);
444 print_floating (valaddr, type, stream);
445 break;
446
447 case 't':
448 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
449 break;
450 case 'x':
451 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
452 break;
453 case 'z':
454 print_hex_chars (stream, valaddr, len, byte_order, true);
455 break;
456 case 'c':
457 {
458 struct value_print_options opts = *options;
459
460 LONGEST val_long = unpack_long (type, valaddr);
461
462 opts.format = 0;
463 if (TYPE_UNSIGNED (type))
464 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
465 else
466 type = builtin_type (gdbarch)->builtin_true_char;
467
468 value_print (value_from_longest (type, val_long), stream, &opts);
469 }
470 break;
471
472 case 'a':
473 {
474 CORE_ADDR addr = unpack_pointer (type, valaddr);
475
476 print_address (gdbarch, addr, stream);
477 }
478 break;
479
480 default:
481 error (_("Undefined output format \"%c\"."), options->format);
482 }
483 }
484
485 /* Specify default address for `x' command.
486 The `info lines' command uses this. */
487
488 void
489 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
490 {
491 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
492
493 next_gdbarch = gdbarch;
494 next_address = addr;
495
496 /* Make address available to the user as $_. */
497 set_internalvar (lookup_internalvar ("_"),
498 value_from_pointer (ptr_type, addr));
499 }
500
501 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
502 after LEADIN. Print nothing if no symbolic name is found nearby.
503 Optionally also print source file and line number, if available.
504 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
505 or to interpret it as a possible C++ name and convert it back to source
506 form. However note that DO_DEMANGLE can be overridden by the specific
507 settings of the demangle and asm_demangle variables. Returns
508 non-zero if anything was printed; zero otherwise. */
509
510 int
511 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
512 struct ui_file *stream,
513 int do_demangle, const char *leadin)
514 {
515 char *name = NULL;
516 char *filename = NULL;
517 int unmapped = 0;
518 int offset = 0;
519 int line = 0;
520
521 /* Throw away both name and filename. */
522 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
523 make_cleanup (free_current_contents, &filename);
524
525 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
526 &filename, &line, &unmapped))
527 {
528 do_cleanups (cleanup_chain);
529 return 0;
530 }
531
532 fputs_filtered (leadin, stream);
533 if (unmapped)
534 fputs_filtered ("<*", stream);
535 else
536 fputs_filtered ("<", stream);
537 fputs_filtered (name, stream);
538 if (offset != 0)
539 fprintf_filtered (stream, "+%u", (unsigned int) offset);
540
541 /* Append source filename and line number if desired. Give specific
542 line # of this addr, if we have it; else line # of the nearest symbol. */
543 if (print_symbol_filename && filename != NULL)
544 {
545 if (line != -1)
546 fprintf_filtered (stream, " at %s:%d", filename, line);
547 else
548 fprintf_filtered (stream, " in %s", filename);
549 }
550 if (unmapped)
551 fputs_filtered ("*>", stream);
552 else
553 fputs_filtered (">", stream);
554
555 do_cleanups (cleanup_chain);
556 return 1;
557 }
558
559 /* Given an address ADDR return all the elements needed to print the
560 address in a symbolic form. NAME can be mangled or not depending
561 on DO_DEMANGLE (and also on the asm_demangle global variable,
562 manipulated via ''set print asm-demangle''). Return 0 in case of
563 success, when all the info in the OUT paramters is valid. Return 1
564 otherwise. */
565 int
566 build_address_symbolic (struct gdbarch *gdbarch,
567 CORE_ADDR addr, /* IN */
568 int do_demangle, /* IN */
569 char **name, /* OUT */
570 int *offset, /* OUT */
571 char **filename, /* OUT */
572 int *line, /* OUT */
573 int *unmapped) /* OUT */
574 {
575 struct bound_minimal_symbol msymbol;
576 struct symbol *symbol;
577 CORE_ADDR name_location = 0;
578 struct obj_section *section = NULL;
579 const char *name_temp = "";
580
581 /* Let's say it is mapped (not unmapped). */
582 *unmapped = 0;
583
584 /* Determine if the address is in an overlay, and whether it is
585 mapped. */
586 if (overlay_debugging)
587 {
588 section = find_pc_overlay (addr);
589 if (pc_in_unmapped_range (addr, section))
590 {
591 *unmapped = 1;
592 addr = overlay_mapped_address (addr, section);
593 }
594 }
595
596 /* First try to find the address in the symbol table, then
597 in the minsyms. Take the closest one. */
598
599 /* This is defective in the sense that it only finds text symbols. So
600 really this is kind of pointless--we should make sure that the
601 minimal symbols have everything we need (by changing that we could
602 save some memory, but for many debug format--ELF/DWARF or
603 anything/stabs--it would be inconvenient to eliminate those minimal
604 symbols anyway). */
605 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
606 symbol = find_pc_sect_function (addr, section);
607
608 if (symbol)
609 {
610 /* If this is a function (i.e. a code address), strip out any
611 non-address bits. For instance, display a pointer to the
612 first instruction of a Thumb function as <function>; the
613 second instruction will be <function+2>, even though the
614 pointer is <function+3>. This matches the ISA behavior. */
615 addr = gdbarch_addr_bits_remove (gdbarch, addr);
616
617 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
618 if (do_demangle || asm_demangle)
619 name_temp = SYMBOL_PRINT_NAME (symbol);
620 else
621 name_temp = SYMBOL_LINKAGE_NAME (symbol);
622 }
623
624 if (msymbol.minsym != NULL
625 && MSYMBOL_HAS_SIZE (msymbol.minsym)
626 && MSYMBOL_SIZE (msymbol.minsym) == 0
627 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
628 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
629 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
630 msymbol.minsym = NULL;
631
632 if (msymbol.minsym != NULL)
633 {
634 if (BMSYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
635 {
636 /* If this is a function (i.e. a code address), strip out any
637 non-address bits. For instance, display a pointer to the
638 first instruction of a Thumb function as <function>; the
639 second instruction will be <function+2>, even though the
640 pointer is <function+3>. This matches the ISA behavior. */
641 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
642 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
643 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
644 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
645 addr = gdbarch_addr_bits_remove (gdbarch, addr);
646
647 /* The msymbol is closer to the address than the symbol;
648 use the msymbol instead. */
649 symbol = 0;
650 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
651 if (do_demangle || asm_demangle)
652 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
653 else
654 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
655 }
656 }
657 if (symbol == NULL && msymbol.minsym == NULL)
658 return 1;
659
660 /* If the nearest symbol is too far away, don't print anything symbolic. */
661
662 /* For when CORE_ADDR is larger than unsigned int, we do math in
663 CORE_ADDR. But when we detect unsigned wraparound in the
664 CORE_ADDR math, we ignore this test and print the offset,
665 because addr+max_symbolic_offset has wrapped through the end
666 of the address space back to the beginning, giving bogus comparison. */
667 if (addr > name_location + max_symbolic_offset
668 && name_location + max_symbolic_offset > name_location)
669 return 1;
670
671 *offset = addr - name_location;
672
673 *name = xstrdup (name_temp);
674
675 if (print_symbol_filename)
676 {
677 struct symtab_and_line sal;
678
679 sal = find_pc_sect_line (addr, section, 0);
680
681 if (sal.symtab)
682 {
683 *filename = xstrdup (symtab_to_filename_for_display (sal.symtab));
684 *line = sal.line;
685 }
686 }
687 return 0;
688 }
689
690
691 /* Print address ADDR symbolically on STREAM.
692 First print it as a number. Then perhaps print
693 <SYMBOL + OFFSET> after the number. */
694
695 void
696 print_address (struct gdbarch *gdbarch,
697 CORE_ADDR addr, struct ui_file *stream)
698 {
699 fputs_filtered (paddress (gdbarch, addr), stream);
700 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
701 }
702
703 /* Return a prefix for instruction address:
704 "=> " for current instruction, else " ". */
705
706 const char *
707 pc_prefix (CORE_ADDR addr)
708 {
709 if (has_stack_frames ())
710 {
711 struct frame_info *frame;
712 CORE_ADDR pc;
713
714 frame = get_selected_frame (NULL);
715 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
716 return "=> ";
717 }
718 return " ";
719 }
720
721 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
722 controls whether to print the symbolic name "raw" or demangled.
723 Return non-zero if anything was printed; zero otherwise. */
724
725 int
726 print_address_demangle (const struct value_print_options *opts,
727 struct gdbarch *gdbarch, CORE_ADDR addr,
728 struct ui_file *stream, int do_demangle)
729 {
730 if (opts->addressprint)
731 {
732 fputs_filtered (paddress (gdbarch, addr), stream);
733 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
734 }
735 else
736 {
737 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
738 }
739 return 1;
740 }
741 \f
742
743 /* Find the address of the instruction that is INST_COUNT instructions before
744 the instruction at ADDR.
745 Since some architectures have variable-length instructions, we can't just
746 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
747 number information to locate the nearest known instruction boundary,
748 and disassemble forward from there. If we go out of the symbol range
749 during disassembling, we return the lowest address we've got so far and
750 set the number of instructions read to INST_READ. */
751
752 static CORE_ADDR
753 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
754 int inst_count, int *inst_read)
755 {
756 /* The vector PCS is used to store instruction addresses within
757 a pc range. */
758 CORE_ADDR loop_start, loop_end, p;
759 std::vector<CORE_ADDR> pcs;
760 struct symtab_and_line sal;
761
762 *inst_read = 0;
763 loop_start = loop_end = addr;
764
765 /* In each iteration of the outer loop, we get a pc range that ends before
766 LOOP_START, then we count and store every instruction address of the range
767 iterated in the loop.
768 If the number of instructions counted reaches INST_COUNT, return the
769 stored address that is located INST_COUNT instructions back from ADDR.
770 If INST_COUNT is not reached, we subtract the number of counted
771 instructions from INST_COUNT, and go to the next iteration. */
772 do
773 {
774 pcs.clear ();
775 sal = find_pc_sect_line (loop_start, NULL, 1);
776 if (sal.line <= 0)
777 {
778 /* We reach here when line info is not available. In this case,
779 we print a message and just exit the loop. The return value
780 is calculated after the loop. */
781 printf_filtered (_("No line number information available "
782 "for address "));
783 wrap_here (" ");
784 print_address (gdbarch, loop_start - 1, gdb_stdout);
785 printf_filtered ("\n");
786 break;
787 }
788
789 loop_end = loop_start;
790 loop_start = sal.pc;
791
792 /* This loop pushes instruction addresses in the range from
793 LOOP_START to LOOP_END. */
794 for (p = loop_start; p < loop_end;)
795 {
796 pcs.push_back (p);
797 p += gdb_insn_length (gdbarch, p);
798 }
799
800 inst_count -= pcs.size ();
801 *inst_read += pcs.size ();
802 }
803 while (inst_count > 0);
804
805 /* After the loop, the vector PCS has instruction addresses of the last
806 source line we processed, and INST_COUNT has a negative value.
807 We return the address at the index of -INST_COUNT in the vector for
808 the reason below.
809 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
810 Line X of File
811 0x4000
812 0x4001
813 0x4005
814 Line Y of File
815 0x4009
816 0x400c
817 => 0x400e
818 0x4011
819 find_instruction_backward is called with INST_COUNT = 4 and expected to
820 return 0x4001. When we reach here, INST_COUNT is set to -1 because
821 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
822 4001 is located at the index 1 of the last iterated line (= Line X),
823 which is simply calculated by -INST_COUNT.
824 The case when the length of PCS is 0 means that we reached an area for
825 which line info is not available. In such case, we return LOOP_START,
826 which was the lowest instruction address that had line info. */
827 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
828
829 /* INST_READ includes all instruction addresses in a pc range. Need to
830 exclude the beginning part up to the address we're returning. That
831 is, exclude {0x4000} in the example above. */
832 if (inst_count < 0)
833 *inst_read += inst_count;
834
835 return p;
836 }
837
838 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
839 placing the results in GDB's memory from MYADDR + LEN. Returns
840 a count of the bytes actually read. */
841
842 static int
843 read_memory_backward (struct gdbarch *gdbarch,
844 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
845 {
846 int errcode;
847 int nread; /* Number of bytes actually read. */
848
849 /* First try a complete read. */
850 errcode = target_read_memory (memaddr, myaddr, len);
851 if (errcode == 0)
852 {
853 /* Got it all. */
854 nread = len;
855 }
856 else
857 {
858 /* Loop, reading one byte at a time until we get as much as we can. */
859 memaddr += len;
860 myaddr += len;
861 for (nread = 0; nread < len; ++nread)
862 {
863 errcode = target_read_memory (--memaddr, --myaddr, 1);
864 if (errcode != 0)
865 {
866 /* The read was unsuccessful, so exit the loop. */
867 printf_filtered (_("Cannot access memory at address %s\n"),
868 paddress (gdbarch, memaddr));
869 break;
870 }
871 }
872 }
873 return nread;
874 }
875
876 /* Returns true if X (which is LEN bytes wide) is the number zero. */
877
878 static int
879 integer_is_zero (const gdb_byte *x, int len)
880 {
881 int i = 0;
882
883 while (i < len && x[i] == 0)
884 ++i;
885 return (i == len);
886 }
887
888 /* Find the start address of a string in which ADDR is included.
889 Basically we search for '\0' and return the next address,
890 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
891 we stop searching and return the address to print characters as many as
892 PRINT_MAX from the string. */
893
894 static CORE_ADDR
895 find_string_backward (struct gdbarch *gdbarch,
896 CORE_ADDR addr, int count, int char_size,
897 const struct value_print_options *options,
898 int *strings_counted)
899 {
900 const int chunk_size = 0x20;
901 gdb_byte *buffer = NULL;
902 struct cleanup *cleanup = NULL;
903 int read_error = 0;
904 int chars_read = 0;
905 int chars_to_read = chunk_size;
906 int chars_counted = 0;
907 int count_original = count;
908 CORE_ADDR string_start_addr = addr;
909
910 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
911 buffer = (gdb_byte *) xmalloc (chars_to_read * char_size);
912 cleanup = make_cleanup (xfree, buffer);
913 while (count > 0 && read_error == 0)
914 {
915 int i;
916
917 addr -= chars_to_read * char_size;
918 chars_read = read_memory_backward (gdbarch, addr, buffer,
919 chars_to_read * char_size);
920 chars_read /= char_size;
921 read_error = (chars_read == chars_to_read) ? 0 : 1;
922 /* Searching for '\0' from the end of buffer in backward direction. */
923 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
924 {
925 int offset = (chars_to_read - i - 1) * char_size;
926
927 if (integer_is_zero (buffer + offset, char_size)
928 || chars_counted == options->print_max)
929 {
930 /* Found '\0' or reached print_max. As OFFSET is the offset to
931 '\0', we add CHAR_SIZE to return the start address of
932 a string. */
933 --count;
934 string_start_addr = addr + offset + char_size;
935 chars_counted = 0;
936 }
937 }
938 }
939
940 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
941 *strings_counted = count_original - count;
942
943 if (read_error != 0)
944 {
945 /* In error case, STRING_START_ADDR is pointing to the string that
946 was last successfully loaded. Rewind the partially loaded string. */
947 string_start_addr -= chars_counted * char_size;
948 }
949
950 do_cleanups (cleanup);
951 return string_start_addr;
952 }
953
954 /* Examine data at address ADDR in format FMT.
955 Fetch it from memory and print on gdb_stdout. */
956
957 static void
958 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
959 {
960 char format = 0;
961 char size;
962 int count = 1;
963 struct type *val_type = NULL;
964 int i;
965 int maxelts;
966 struct value_print_options opts;
967 int need_to_update_next_address = 0;
968 CORE_ADDR addr_rewound = 0;
969
970 format = fmt.format;
971 size = fmt.size;
972 count = fmt.count;
973 next_gdbarch = gdbarch;
974 next_address = addr;
975
976 /* Instruction format implies fetch single bytes
977 regardless of the specified size.
978 The case of strings is handled in decode_format, only explicit
979 size operator are not changed to 'b'. */
980 if (format == 'i')
981 size = 'b';
982
983 if (size == 'a')
984 {
985 /* Pick the appropriate size for an address. */
986 if (gdbarch_ptr_bit (next_gdbarch) == 64)
987 size = 'g';
988 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
989 size = 'w';
990 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
991 size = 'h';
992 else
993 /* Bad value for gdbarch_ptr_bit. */
994 internal_error (__FILE__, __LINE__,
995 _("failed internal consistency check"));
996 }
997
998 if (size == 'b')
999 val_type = builtin_type (next_gdbarch)->builtin_int8;
1000 else if (size == 'h')
1001 val_type = builtin_type (next_gdbarch)->builtin_int16;
1002 else if (size == 'w')
1003 val_type = builtin_type (next_gdbarch)->builtin_int32;
1004 else if (size == 'g')
1005 val_type = builtin_type (next_gdbarch)->builtin_int64;
1006
1007 if (format == 's')
1008 {
1009 struct type *char_type = NULL;
1010
1011 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1012 if type is not found. */
1013 if (size == 'h')
1014 char_type = builtin_type (next_gdbarch)->builtin_char16;
1015 else if (size == 'w')
1016 char_type = builtin_type (next_gdbarch)->builtin_char32;
1017 if (char_type)
1018 val_type = char_type;
1019 else
1020 {
1021 if (size != '\0' && size != 'b')
1022 warning (_("Unable to display strings with "
1023 "size '%c', using 'b' instead."), size);
1024 size = 'b';
1025 val_type = builtin_type (next_gdbarch)->builtin_int8;
1026 }
1027 }
1028
1029 maxelts = 8;
1030 if (size == 'w')
1031 maxelts = 4;
1032 if (size == 'g')
1033 maxelts = 2;
1034 if (format == 's' || format == 'i')
1035 maxelts = 1;
1036
1037 get_formatted_print_options (&opts, format);
1038
1039 if (count < 0)
1040 {
1041 /* This is the negative repeat count case.
1042 We rewind the address based on the given repeat count and format,
1043 then examine memory from there in forward direction. */
1044
1045 count = -count;
1046 if (format == 'i')
1047 {
1048 next_address = find_instruction_backward (gdbarch, addr, count,
1049 &count);
1050 }
1051 else if (format == 's')
1052 {
1053 next_address = find_string_backward (gdbarch, addr, count,
1054 TYPE_LENGTH (val_type),
1055 &opts, &count);
1056 }
1057 else
1058 {
1059 next_address = addr - count * TYPE_LENGTH (val_type);
1060 }
1061
1062 /* The following call to print_formatted updates next_address in every
1063 iteration. In backward case, we store the start address here
1064 and update next_address with it before exiting the function. */
1065 addr_rewound = (format == 's'
1066 ? next_address - TYPE_LENGTH (val_type)
1067 : next_address);
1068 need_to_update_next_address = 1;
1069 }
1070
1071 /* Print as many objects as specified in COUNT, at most maxelts per line,
1072 with the address of the next one at the start of each line. */
1073
1074 while (count > 0)
1075 {
1076 QUIT;
1077 if (format == 'i')
1078 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1079 print_address (next_gdbarch, next_address, gdb_stdout);
1080 printf_filtered (":");
1081 for (i = maxelts;
1082 i > 0 && count > 0;
1083 i--, count--)
1084 {
1085 printf_filtered ("\t");
1086 /* Note that print_formatted sets next_address for the next
1087 object. */
1088 last_examine_address = next_address;
1089
1090 if (last_examine_value)
1091 value_free (last_examine_value);
1092
1093 /* The value to be displayed is not fetched greedily.
1094 Instead, to avoid the possibility of a fetched value not
1095 being used, its retrieval is delayed until the print code
1096 uses it. When examining an instruction stream, the
1097 disassembler will perform its own memory fetch using just
1098 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1099 the disassembler be modified so that LAST_EXAMINE_VALUE
1100 is left with the byte sequence from the last complete
1101 instruction fetched from memory? */
1102 last_examine_value = value_at_lazy (val_type, next_address);
1103
1104 if (last_examine_value)
1105 release_value (last_examine_value);
1106
1107 print_formatted (last_examine_value, size, &opts, gdb_stdout);
1108
1109 /* Display any branch delay slots following the final insn. */
1110 if (format == 'i' && count == 1)
1111 count += branch_delay_insns;
1112 }
1113 printf_filtered ("\n");
1114 gdb_flush (gdb_stdout);
1115 }
1116
1117 if (need_to_update_next_address)
1118 next_address = addr_rewound;
1119 }
1120 \f
1121 static void
1122 validate_format (struct format_data fmt, const char *cmdname)
1123 {
1124 if (fmt.size != 0)
1125 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1126 if (fmt.count != 1)
1127 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1128 cmdname);
1129 if (fmt.format == 'i')
1130 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1131 fmt.format, cmdname);
1132 }
1133
1134 /* Parse print command format string into *FMTP and update *EXPP.
1135 CMDNAME should name the current command. */
1136
1137 void
1138 print_command_parse_format (const char **expp, const char *cmdname,
1139 struct format_data *fmtp)
1140 {
1141 const char *exp = *expp;
1142
1143 if (exp && *exp == '/')
1144 {
1145 exp++;
1146 *fmtp = decode_format (&exp, last_format, 0);
1147 validate_format (*fmtp, cmdname);
1148 last_format = fmtp->format;
1149 }
1150 else
1151 {
1152 fmtp->count = 1;
1153 fmtp->format = 0;
1154 fmtp->size = 0;
1155 fmtp->raw = 0;
1156 }
1157
1158 *expp = exp;
1159 }
1160
1161 /* Print VAL to console according to *FMTP, including recording it to
1162 the history. */
1163
1164 void
1165 print_value (struct value *val, const struct format_data *fmtp)
1166 {
1167 struct value_print_options opts;
1168 int histindex = record_latest_value (val);
1169
1170 annotate_value_history_begin (histindex, value_type (val));
1171
1172 printf_filtered ("$%d = ", histindex);
1173
1174 annotate_value_history_value ();
1175
1176 get_formatted_print_options (&opts, fmtp->format);
1177 opts.raw = fmtp->raw;
1178
1179 print_formatted (val, fmtp->size, &opts, gdb_stdout);
1180 printf_filtered ("\n");
1181
1182 annotate_value_history_end ();
1183 }
1184
1185 /* Evaluate string EXP as an expression in the current language and
1186 print the resulting value. EXP may contain a format specifier as the
1187 first argument ("/x myvar" for example, to print myvar in hex). */
1188
1189 static void
1190 print_command_1 (const char *exp, int voidprint)
1191 {
1192 struct value *val;
1193 struct format_data fmt;
1194
1195 print_command_parse_format (&exp, "print", &fmt);
1196
1197 if (exp && *exp)
1198 {
1199 expression_up expr = parse_expression (exp);
1200 val = evaluate_expression (expr.get ());
1201 }
1202 else
1203 val = access_value_history (0);
1204
1205 if (voidprint || (val && value_type (val) &&
1206 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1207 print_value (val, &fmt);
1208 }
1209
1210 static void
1211 print_command (char *exp, int from_tty)
1212 {
1213 print_command_1 (exp, 1);
1214 }
1215
1216 /* Same as print, except it doesn't print void results. */
1217 static void
1218 call_command (char *exp, int from_tty)
1219 {
1220 print_command_1 (exp, 0);
1221 }
1222
1223 /* Implementation of the "output" command. */
1224
1225 static void
1226 output_command (char *exp, int from_tty)
1227 {
1228 output_command_const (exp, from_tty);
1229 }
1230
1231 /* Like output_command, but takes a const string as argument. */
1232
1233 void
1234 output_command_const (const char *exp, int from_tty)
1235 {
1236 char format = 0;
1237 struct value *val;
1238 struct format_data fmt;
1239 struct value_print_options opts;
1240
1241 fmt.size = 0;
1242 fmt.raw = 0;
1243
1244 if (exp && *exp == '/')
1245 {
1246 exp++;
1247 fmt = decode_format (&exp, 0, 0);
1248 validate_format (fmt, "output");
1249 format = fmt.format;
1250 }
1251
1252 expression_up expr = parse_expression (exp);
1253
1254 val = evaluate_expression (expr.get ());
1255
1256 annotate_value_begin (value_type (val));
1257
1258 get_formatted_print_options (&opts, format);
1259 opts.raw = fmt.raw;
1260 print_formatted (val, fmt.size, &opts, gdb_stdout);
1261
1262 annotate_value_end ();
1263
1264 wrap_here ("");
1265 gdb_flush (gdb_stdout);
1266 }
1267
1268 static void
1269 set_command (char *exp, int from_tty)
1270 {
1271 expression_up expr = parse_expression (exp);
1272
1273 if (expr->nelts >= 1)
1274 switch (expr->elts[0].opcode)
1275 {
1276 case UNOP_PREINCREMENT:
1277 case UNOP_POSTINCREMENT:
1278 case UNOP_PREDECREMENT:
1279 case UNOP_POSTDECREMENT:
1280 case BINOP_ASSIGN:
1281 case BINOP_ASSIGN_MODIFY:
1282 case BINOP_COMMA:
1283 break;
1284 default:
1285 warning
1286 (_("Expression is not an assignment (and might have no effect)"));
1287 }
1288
1289 evaluate_expression (expr.get ());
1290 }
1291
1292 static void
1293 sym_info (char *arg, int from_tty)
1294 {
1295 struct minimal_symbol *msymbol;
1296 struct objfile *objfile;
1297 struct obj_section *osect;
1298 CORE_ADDR addr, sect_addr;
1299 int matches = 0;
1300 unsigned int offset;
1301
1302 if (!arg)
1303 error_no_arg (_("address"));
1304
1305 addr = parse_and_eval_address (arg);
1306 ALL_OBJSECTIONS (objfile, osect)
1307 {
1308 /* Only process each object file once, even if there's a separate
1309 debug file. */
1310 if (objfile->separate_debug_objfile_backlink)
1311 continue;
1312
1313 sect_addr = overlay_mapped_address (addr, osect);
1314
1315 if (obj_section_addr (osect) <= sect_addr
1316 && sect_addr < obj_section_endaddr (osect)
1317 && (msymbol
1318 = lookup_minimal_symbol_by_pc_section (sect_addr, osect).minsym))
1319 {
1320 const char *obj_name, *mapped, *sec_name, *msym_name;
1321 char *loc_string;
1322 struct cleanup *old_chain;
1323
1324 matches = 1;
1325 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1326 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1327 sec_name = osect->the_bfd_section->name;
1328 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1329
1330 /* Don't print the offset if it is zero.
1331 We assume there's no need to handle i18n of "sym + offset". */
1332 if (offset)
1333 loc_string = xstrprintf ("%s + %u", msym_name, offset);
1334 else
1335 loc_string = xstrprintf ("%s", msym_name);
1336
1337 /* Use a cleanup to free loc_string in case the user quits
1338 a pagination request inside printf_filtered. */
1339 old_chain = make_cleanup (xfree, loc_string);
1340
1341 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1342 obj_name = objfile_name (osect->objfile);
1343
1344 if (MULTI_OBJFILE_P ())
1345 if (pc_in_unmapped_range (addr, osect))
1346 if (section_is_overlay (osect))
1347 printf_filtered (_("%s in load address range of "
1348 "%s overlay section %s of %s\n"),
1349 loc_string, mapped, sec_name, obj_name);
1350 else
1351 printf_filtered (_("%s in load address range of "
1352 "section %s of %s\n"),
1353 loc_string, sec_name, obj_name);
1354 else
1355 if (section_is_overlay (osect))
1356 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1357 loc_string, mapped, sec_name, obj_name);
1358 else
1359 printf_filtered (_("%s in section %s of %s\n"),
1360 loc_string, sec_name, obj_name);
1361 else
1362 if (pc_in_unmapped_range (addr, osect))
1363 if (section_is_overlay (osect))
1364 printf_filtered (_("%s in load address range of %s overlay "
1365 "section %s\n"),
1366 loc_string, mapped, sec_name);
1367 else
1368 printf_filtered (_("%s in load address range of section %s\n"),
1369 loc_string, sec_name);
1370 else
1371 if (section_is_overlay (osect))
1372 printf_filtered (_("%s in %s overlay section %s\n"),
1373 loc_string, mapped, sec_name);
1374 else
1375 printf_filtered (_("%s in section %s\n"),
1376 loc_string, sec_name);
1377
1378 do_cleanups (old_chain);
1379 }
1380 }
1381 if (matches == 0)
1382 printf_filtered (_("No symbol matches %s.\n"), arg);
1383 }
1384
1385 static void
1386 address_info (char *exp, int from_tty)
1387 {
1388 struct gdbarch *gdbarch;
1389 int regno;
1390 struct symbol *sym;
1391 struct bound_minimal_symbol msymbol;
1392 long val;
1393 struct obj_section *section;
1394 CORE_ADDR load_addr, context_pc = 0;
1395 struct field_of_this_result is_a_field_of_this;
1396
1397 if (exp == 0)
1398 error (_("Argument required."));
1399
1400 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1401 &is_a_field_of_this).symbol;
1402 if (sym == NULL)
1403 {
1404 if (is_a_field_of_this.type != NULL)
1405 {
1406 printf_filtered ("Symbol \"");
1407 fprintf_symbol_filtered (gdb_stdout, exp,
1408 current_language->la_language, DMGL_ANSI);
1409 printf_filtered ("\" is a field of the local class variable ");
1410 if (current_language->la_language == language_objc)
1411 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1412 else
1413 printf_filtered ("`this'\n");
1414 return;
1415 }
1416
1417 msymbol = lookup_bound_minimal_symbol (exp);
1418
1419 if (msymbol.minsym != NULL)
1420 {
1421 struct objfile *objfile = msymbol.objfile;
1422
1423 gdbarch = get_objfile_arch (objfile);
1424 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1425
1426 printf_filtered ("Symbol \"");
1427 fprintf_symbol_filtered (gdb_stdout, exp,
1428 current_language->la_language, DMGL_ANSI);
1429 printf_filtered ("\" is at ");
1430 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1431 printf_filtered (" in a file compiled without debugging");
1432 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1433 if (section_is_overlay (section))
1434 {
1435 load_addr = overlay_unmapped_address (load_addr, section);
1436 printf_filtered (",\n -- loaded at ");
1437 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1438 printf_filtered (" in overlay section %s",
1439 section->the_bfd_section->name);
1440 }
1441 printf_filtered (".\n");
1442 }
1443 else
1444 error (_("No symbol \"%s\" in current context."), exp);
1445 return;
1446 }
1447
1448 printf_filtered ("Symbol \"");
1449 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1450 current_language->la_language, DMGL_ANSI);
1451 printf_filtered ("\" is ");
1452 val = SYMBOL_VALUE (sym);
1453 if (SYMBOL_OBJFILE_OWNED (sym))
1454 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1455 else
1456 section = NULL;
1457 gdbarch = symbol_arch (sym);
1458
1459 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1460 {
1461 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1462 gdb_stdout);
1463 printf_filtered (".\n");
1464 return;
1465 }
1466
1467 switch (SYMBOL_CLASS (sym))
1468 {
1469 case LOC_CONST:
1470 case LOC_CONST_BYTES:
1471 printf_filtered ("constant");
1472 break;
1473
1474 case LOC_LABEL:
1475 printf_filtered ("a label at address ");
1476 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1477 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1478 if (section_is_overlay (section))
1479 {
1480 load_addr = overlay_unmapped_address (load_addr, section);
1481 printf_filtered (",\n -- loaded at ");
1482 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1483 printf_filtered (" in overlay section %s",
1484 section->the_bfd_section->name);
1485 }
1486 break;
1487
1488 case LOC_COMPUTED:
1489 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1490
1491 case LOC_REGISTER:
1492 /* GDBARCH is the architecture associated with the objfile the symbol
1493 is defined in; the target architecture may be different, and may
1494 provide additional registers. However, we do not know the target
1495 architecture at this point. We assume the objfile architecture
1496 will contain all the standard registers that occur in debug info
1497 in that objfile. */
1498 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1499
1500 if (SYMBOL_IS_ARGUMENT (sym))
1501 printf_filtered (_("an argument in register %s"),
1502 gdbarch_register_name (gdbarch, regno));
1503 else
1504 printf_filtered (_("a variable in register %s"),
1505 gdbarch_register_name (gdbarch, regno));
1506 break;
1507
1508 case LOC_STATIC:
1509 printf_filtered (_("static storage at address "));
1510 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1511 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1512 if (section_is_overlay (section))
1513 {
1514 load_addr = overlay_unmapped_address (load_addr, section);
1515 printf_filtered (_(",\n -- loaded at "));
1516 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1517 printf_filtered (_(" in overlay section %s"),
1518 section->the_bfd_section->name);
1519 }
1520 break;
1521
1522 case LOC_REGPARM_ADDR:
1523 /* Note comment at LOC_REGISTER. */
1524 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1525 printf_filtered (_("address of an argument in register %s"),
1526 gdbarch_register_name (gdbarch, regno));
1527 break;
1528
1529 case LOC_ARG:
1530 printf_filtered (_("an argument at offset %ld"), val);
1531 break;
1532
1533 case LOC_LOCAL:
1534 printf_filtered (_("a local variable at frame offset %ld"), val);
1535 break;
1536
1537 case LOC_REF_ARG:
1538 printf_filtered (_("a reference argument at offset %ld"), val);
1539 break;
1540
1541 case LOC_TYPEDEF:
1542 printf_filtered (_("a typedef"));
1543 break;
1544
1545 case LOC_BLOCK:
1546 printf_filtered (_("a function at address "));
1547 load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1548 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1549 if (section_is_overlay (section))
1550 {
1551 load_addr = overlay_unmapped_address (load_addr, section);
1552 printf_filtered (_(",\n -- loaded at "));
1553 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1554 printf_filtered (_(" in overlay section %s"),
1555 section->the_bfd_section->name);
1556 }
1557 break;
1558
1559 case LOC_UNRESOLVED:
1560 {
1561 struct bound_minimal_symbol msym;
1562
1563 msym = lookup_minimal_symbol_and_objfile (SYMBOL_LINKAGE_NAME (sym));
1564 if (msym.minsym == NULL)
1565 printf_filtered ("unresolved");
1566 else
1567 {
1568 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1569
1570 if (section
1571 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1572 {
1573 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1574 printf_filtered (_("a thread-local variable at offset %s "
1575 "in the thread-local storage for `%s'"),
1576 paddress (gdbarch, load_addr),
1577 objfile_name (section->objfile));
1578 }
1579 else
1580 {
1581 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1582 printf_filtered (_("static storage at address "));
1583 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1584 if (section_is_overlay (section))
1585 {
1586 load_addr = overlay_unmapped_address (load_addr, section);
1587 printf_filtered (_(",\n -- loaded at "));
1588 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1589 printf_filtered (_(" in overlay section %s"),
1590 section->the_bfd_section->name);
1591 }
1592 }
1593 }
1594 }
1595 break;
1596
1597 case LOC_OPTIMIZED_OUT:
1598 printf_filtered (_("optimized out"));
1599 break;
1600
1601 default:
1602 printf_filtered (_("of unknown (botched) type"));
1603 break;
1604 }
1605 printf_filtered (".\n");
1606 }
1607 \f
1608
1609 static void
1610 x_command (char *exp, int from_tty)
1611 {
1612 struct format_data fmt;
1613 struct cleanup *old_chain;
1614 struct value *val;
1615
1616 fmt.format = last_format ? last_format : 'x';
1617 fmt.size = last_size;
1618 fmt.count = 1;
1619 fmt.raw = 0;
1620
1621 if (exp && *exp == '/')
1622 {
1623 const char *tmp = exp + 1;
1624
1625 fmt = decode_format (&tmp, last_format, last_size);
1626 exp = (char *) tmp;
1627 }
1628
1629 /* If we have an expression, evaluate it and use it as the address. */
1630
1631 if (exp != 0 && *exp != 0)
1632 {
1633 expression_up expr = parse_expression (exp);
1634 /* Cause expression not to be there any more if this command is
1635 repeated with Newline. But don't clobber a user-defined
1636 command's definition. */
1637 if (from_tty)
1638 *exp = 0;
1639 val = evaluate_expression (expr.get ());
1640 if (TYPE_IS_REFERENCE (value_type (val)))
1641 val = coerce_ref (val);
1642 /* In rvalue contexts, such as this, functions are coerced into
1643 pointers to functions. This makes "x/i main" work. */
1644 if (/* last_format == 'i' && */
1645 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1646 && VALUE_LVAL (val) == lval_memory)
1647 next_address = value_address (val);
1648 else
1649 next_address = value_as_address (val);
1650
1651 next_gdbarch = expr->gdbarch;
1652 }
1653
1654 if (!next_gdbarch)
1655 error_no_arg (_("starting display address"));
1656
1657 do_examine (fmt, next_gdbarch, next_address);
1658
1659 /* If the examine succeeds, we remember its size and format for next
1660 time. Set last_size to 'b' for strings. */
1661 if (fmt.format == 's')
1662 last_size = 'b';
1663 else
1664 last_size = fmt.size;
1665 last_format = fmt.format;
1666
1667 /* Set a couple of internal variables if appropriate. */
1668 if (last_examine_value)
1669 {
1670 /* Make last address examined available to the user as $_. Use
1671 the correct pointer type. */
1672 struct type *pointer_type
1673 = lookup_pointer_type (value_type (last_examine_value));
1674 set_internalvar (lookup_internalvar ("_"),
1675 value_from_pointer (pointer_type,
1676 last_examine_address));
1677
1678 /* Make contents of last address examined available to the user
1679 as $__. If the last value has not been fetched from memory
1680 then don't fetch it now; instead mark it by voiding the $__
1681 variable. */
1682 if (value_lazy (last_examine_value))
1683 clear_internalvar (lookup_internalvar ("__"));
1684 else
1685 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1686 }
1687 }
1688 \f
1689
1690 /* Add an expression to the auto-display chain.
1691 Specify the expression. */
1692
1693 static void
1694 display_command (char *arg, int from_tty)
1695 {
1696 struct format_data fmt;
1697 struct display *newobj;
1698 const char *exp = arg;
1699
1700 if (exp == 0)
1701 {
1702 do_displays ();
1703 return;
1704 }
1705
1706 if (*exp == '/')
1707 {
1708 exp++;
1709 fmt = decode_format (&exp, 0, 0);
1710 if (fmt.size && fmt.format == 0)
1711 fmt.format = 'x';
1712 if (fmt.format == 'i' || fmt.format == 's')
1713 fmt.size = 'b';
1714 }
1715 else
1716 {
1717 fmt.format = 0;
1718 fmt.size = 0;
1719 fmt.count = 0;
1720 fmt.raw = 0;
1721 }
1722
1723 innermost_block = NULL;
1724 expression_up expr = parse_expression (exp);
1725
1726 newobj = new display ();
1727
1728 newobj->exp_string = xstrdup (exp);
1729 newobj->exp = std::move (expr);
1730 newobj->block = innermost_block;
1731 newobj->pspace = current_program_space;
1732 newobj->number = ++display_number;
1733 newobj->format = fmt;
1734 newobj->enabled_p = 1;
1735 newobj->next = NULL;
1736
1737 if (display_chain == NULL)
1738 display_chain = newobj;
1739 else
1740 {
1741 struct display *last;
1742
1743 for (last = display_chain; last->next != NULL; last = last->next)
1744 ;
1745 last->next = newobj;
1746 }
1747
1748 if (from_tty)
1749 do_one_display (newobj);
1750
1751 dont_repeat ();
1752 }
1753
1754 static void
1755 free_display (struct display *d)
1756 {
1757 xfree (d->exp_string);
1758 delete d;
1759 }
1760
1761 /* Clear out the display_chain. Done when new symtabs are loaded,
1762 since this invalidates the types stored in many expressions. */
1763
1764 void
1765 clear_displays (void)
1766 {
1767 struct display *d;
1768
1769 while ((d = display_chain) != NULL)
1770 {
1771 display_chain = d->next;
1772 free_display (d);
1773 }
1774 }
1775
1776 /* Delete the auto-display DISPLAY. */
1777
1778 static void
1779 delete_display (struct display *display)
1780 {
1781 struct display *d;
1782
1783 gdb_assert (display != NULL);
1784
1785 if (display_chain == display)
1786 display_chain = display->next;
1787
1788 ALL_DISPLAYS (d)
1789 if (d->next == display)
1790 {
1791 d->next = display->next;
1792 break;
1793 }
1794
1795 free_display (display);
1796 }
1797
1798 /* Call FUNCTION on each of the displays whose numbers are given in
1799 ARGS. DATA is passed unmodified to FUNCTION. */
1800
1801 static void
1802 map_display_numbers (char *args,
1803 void (*function) (struct display *,
1804 void *),
1805 void *data)
1806 {
1807 int num;
1808
1809 if (args == NULL)
1810 error_no_arg (_("one or more display numbers"));
1811
1812 number_or_range_parser parser (args);
1813
1814 while (!parser.finished ())
1815 {
1816 const char *p = parser.cur_tok ();
1817
1818 num = parser.get_number ();
1819 if (num == 0)
1820 warning (_("bad display number at or near '%s'"), p);
1821 else
1822 {
1823 struct display *d, *tmp;
1824
1825 ALL_DISPLAYS_SAFE (d, tmp)
1826 if (d->number == num)
1827 break;
1828 if (d == NULL)
1829 printf_unfiltered (_("No display number %d.\n"), num);
1830 else
1831 function (d, data);
1832 }
1833 }
1834 }
1835
1836 /* Callback for map_display_numbers, that deletes a display. */
1837
1838 static void
1839 do_delete_display (struct display *d, void *data)
1840 {
1841 delete_display (d);
1842 }
1843
1844 /* "undisplay" command. */
1845
1846 static void
1847 undisplay_command (char *args, int from_tty)
1848 {
1849 if (args == NULL)
1850 {
1851 if (query (_("Delete all auto-display expressions? ")))
1852 clear_displays ();
1853 dont_repeat ();
1854 return;
1855 }
1856
1857 map_display_numbers (args, do_delete_display, NULL);
1858 dont_repeat ();
1859 }
1860
1861 /* Display a single auto-display.
1862 Do nothing if the display cannot be printed in the current context,
1863 or if the display is disabled. */
1864
1865 static void
1866 do_one_display (struct display *d)
1867 {
1868 int within_current_scope;
1869
1870 if (d->enabled_p == 0)
1871 return;
1872
1873 /* The expression carries the architecture that was used at parse time.
1874 This is a problem if the expression depends on architecture features
1875 (e.g. register numbers), and the current architecture is now different.
1876 For example, a display statement like "display/i $pc" is expected to
1877 display the PC register of the current architecture, not the arch at
1878 the time the display command was given. Therefore, we re-parse the
1879 expression if the current architecture has changed. */
1880 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1881 {
1882 d->exp.reset ();
1883 d->block = NULL;
1884 }
1885
1886 if (d->exp == NULL)
1887 {
1888
1889 TRY
1890 {
1891 innermost_block = NULL;
1892 d->exp = parse_expression (d->exp_string);
1893 d->block = innermost_block;
1894 }
1895 CATCH (ex, RETURN_MASK_ALL)
1896 {
1897 /* Can't re-parse the expression. Disable this display item. */
1898 d->enabled_p = 0;
1899 warning (_("Unable to display \"%s\": %s"),
1900 d->exp_string, ex.message);
1901 return;
1902 }
1903 END_CATCH
1904 }
1905
1906 if (d->block)
1907 {
1908 if (d->pspace == current_program_space)
1909 within_current_scope = contained_in (get_selected_block (0), d->block);
1910 else
1911 within_current_scope = 0;
1912 }
1913 else
1914 within_current_scope = 1;
1915 if (!within_current_scope)
1916 return;
1917
1918 scoped_restore save_display_number
1919 = make_scoped_restore (&current_display_number, d->number);
1920
1921 annotate_display_begin ();
1922 printf_filtered ("%d", d->number);
1923 annotate_display_number_end ();
1924 printf_filtered (": ");
1925 if (d->format.size)
1926 {
1927
1928 annotate_display_format ();
1929
1930 printf_filtered ("x/");
1931 if (d->format.count != 1)
1932 printf_filtered ("%d", d->format.count);
1933 printf_filtered ("%c", d->format.format);
1934 if (d->format.format != 'i' && d->format.format != 's')
1935 printf_filtered ("%c", d->format.size);
1936 printf_filtered (" ");
1937
1938 annotate_display_expression ();
1939
1940 puts_filtered (d->exp_string);
1941 annotate_display_expression_end ();
1942
1943 if (d->format.count != 1 || d->format.format == 'i')
1944 printf_filtered ("\n");
1945 else
1946 printf_filtered (" ");
1947
1948 annotate_display_value ();
1949
1950 TRY
1951 {
1952 struct value *val;
1953 CORE_ADDR addr;
1954
1955 val = evaluate_expression (d->exp.get ());
1956 addr = value_as_address (val);
1957 if (d->format.format == 'i')
1958 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1959 do_examine (d->format, d->exp->gdbarch, addr);
1960 }
1961 CATCH (ex, RETURN_MASK_ERROR)
1962 {
1963 fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
1964 }
1965 END_CATCH
1966 }
1967 else
1968 {
1969 struct value_print_options opts;
1970
1971 annotate_display_format ();
1972
1973 if (d->format.format)
1974 printf_filtered ("/%c ", d->format.format);
1975
1976 annotate_display_expression ();
1977
1978 puts_filtered (d->exp_string);
1979 annotate_display_expression_end ();
1980
1981 printf_filtered (" = ");
1982
1983 annotate_display_expression ();
1984
1985 get_formatted_print_options (&opts, d->format.format);
1986 opts.raw = d->format.raw;
1987
1988 TRY
1989 {
1990 struct value *val;
1991
1992 val = evaluate_expression (d->exp.get ());
1993 print_formatted (val, d->format.size, &opts, gdb_stdout);
1994 }
1995 CATCH (ex, RETURN_MASK_ERROR)
1996 {
1997 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
1998 }
1999 END_CATCH
2000
2001 printf_filtered ("\n");
2002 }
2003
2004 annotate_display_end ();
2005
2006 gdb_flush (gdb_stdout);
2007 }
2008
2009 /* Display all of the values on the auto-display chain which can be
2010 evaluated in the current scope. */
2011
2012 void
2013 do_displays (void)
2014 {
2015 struct display *d;
2016
2017 for (d = display_chain; d; d = d->next)
2018 do_one_display (d);
2019 }
2020
2021 /* Delete the auto-display which we were in the process of displaying.
2022 This is done when there is an error or a signal. */
2023
2024 void
2025 disable_display (int num)
2026 {
2027 struct display *d;
2028
2029 for (d = display_chain; d; d = d->next)
2030 if (d->number == num)
2031 {
2032 d->enabled_p = 0;
2033 return;
2034 }
2035 printf_unfiltered (_("No display number %d.\n"), num);
2036 }
2037
2038 void
2039 disable_current_display (void)
2040 {
2041 if (current_display_number >= 0)
2042 {
2043 disable_display (current_display_number);
2044 fprintf_unfiltered (gdb_stderr,
2045 _("Disabling display %d to "
2046 "avoid infinite recursion.\n"),
2047 current_display_number);
2048 }
2049 current_display_number = -1;
2050 }
2051
2052 static void
2053 display_info (char *ignore, int from_tty)
2054 {
2055 struct display *d;
2056
2057 if (!display_chain)
2058 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2059 else
2060 printf_filtered (_("Auto-display expressions now in effect:\n\
2061 Num Enb Expression\n"));
2062
2063 for (d = display_chain; d; d = d->next)
2064 {
2065 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2066 if (d->format.size)
2067 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2068 d->format.format);
2069 else if (d->format.format)
2070 printf_filtered ("/%c ", d->format.format);
2071 puts_filtered (d->exp_string);
2072 if (d->block && !contained_in (get_selected_block (0), d->block))
2073 printf_filtered (_(" (cannot be evaluated in the current context)"));
2074 printf_filtered ("\n");
2075 gdb_flush (gdb_stdout);
2076 }
2077 }
2078
2079 /* Callback fo map_display_numbers, that enables or disables the
2080 passed in display D. */
2081
2082 static void
2083 do_enable_disable_display (struct display *d, void *data)
2084 {
2085 d->enabled_p = *(int *) data;
2086 }
2087
2088 /* Implamentation of both the "disable display" and "enable display"
2089 commands. ENABLE decides what to do. */
2090
2091 static void
2092 enable_disable_display_command (char *args, int from_tty, int enable)
2093 {
2094 if (args == NULL)
2095 {
2096 struct display *d;
2097
2098 ALL_DISPLAYS (d)
2099 d->enabled_p = enable;
2100 return;
2101 }
2102
2103 map_display_numbers (args, do_enable_disable_display, &enable);
2104 }
2105
2106 /* The "enable display" command. */
2107
2108 static void
2109 enable_display_command (char *args, int from_tty)
2110 {
2111 enable_disable_display_command (args, from_tty, 1);
2112 }
2113
2114 /* The "disable display" command. */
2115
2116 static void
2117 disable_display_command (char *args, int from_tty)
2118 {
2119 enable_disable_display_command (args, from_tty, 0);
2120 }
2121
2122 /* display_chain items point to blocks and expressions. Some expressions in
2123 turn may point to symbols.
2124 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2125 obstack_free'd when a shared library is unloaded.
2126 Clear pointers that are about to become dangling.
2127 Both .exp and .block fields will be restored next time we need to display
2128 an item by re-parsing .exp_string field in the new execution context. */
2129
2130 static void
2131 clear_dangling_display_expressions (struct objfile *objfile)
2132 {
2133 struct display *d;
2134 struct program_space *pspace;
2135
2136 /* With no symbol file we cannot have a block or expression from it. */
2137 if (objfile == NULL)
2138 return;
2139 pspace = objfile->pspace;
2140 if (objfile->separate_debug_objfile_backlink)
2141 {
2142 objfile = objfile->separate_debug_objfile_backlink;
2143 gdb_assert (objfile->pspace == pspace);
2144 }
2145
2146 for (d = display_chain; d != NULL; d = d->next)
2147 {
2148 if (d->pspace != pspace)
2149 continue;
2150
2151 if (lookup_objfile_from_block (d->block) == objfile
2152 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2153 {
2154 d->exp.reset ();
2155 d->block = NULL;
2156 }
2157 }
2158 }
2159 \f
2160
2161 /* Print the value in stack frame FRAME of a variable specified by a
2162 struct symbol. NAME is the name to print; if NULL then VAR's print
2163 name will be used. STREAM is the ui_file on which to print the
2164 value. INDENT specifies the number of indent levels to print
2165 before printing the variable name.
2166
2167 This function invalidates FRAME. */
2168
2169 void
2170 print_variable_and_value (const char *name, struct symbol *var,
2171 struct frame_info *frame,
2172 struct ui_file *stream, int indent)
2173 {
2174
2175 if (!name)
2176 name = SYMBOL_PRINT_NAME (var);
2177
2178 fprintf_filtered (stream, "%s%s = ", n_spaces (2 * indent), name);
2179 TRY
2180 {
2181 struct value *val;
2182 struct value_print_options opts;
2183
2184 /* READ_VAR_VALUE needs a block in order to deal with non-local
2185 references (i.e. to handle nested functions). In this context, we
2186 print variables that are local to this frame, so we can avoid passing
2187 a block to it. */
2188 val = read_var_value (var, NULL, frame);
2189 get_user_print_options (&opts);
2190 opts.deref_ref = 1;
2191 common_val_print (val, stream, indent, &opts, current_language);
2192
2193 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2194 function. */
2195 frame = NULL;
2196 }
2197 CATCH (except, RETURN_MASK_ERROR)
2198 {
2199 fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
2200 except.message);
2201 }
2202 END_CATCH
2203
2204 fprintf_filtered (stream, "\n");
2205 }
2206
2207 /* Subroutine of ui_printf to simplify it.
2208 Print VALUE to STREAM using FORMAT.
2209 VALUE is a C-style string on the target. */
2210
2211 static void
2212 printf_c_string (struct ui_file *stream, const char *format,
2213 struct value *value)
2214 {
2215 gdb_byte *str;
2216 CORE_ADDR tem;
2217 int j;
2218
2219 tem = value_as_address (value);
2220
2221 /* This is a %s argument. Find the length of the string. */
2222 for (j = 0;; j++)
2223 {
2224 gdb_byte c;
2225
2226 QUIT;
2227 read_memory (tem + j, &c, 1);
2228 if (c == 0)
2229 break;
2230 }
2231
2232 /* Copy the string contents into a string inside GDB. */
2233 str = (gdb_byte *) alloca (j + 1);
2234 if (j != 0)
2235 read_memory (tem, str, j);
2236 str[j] = 0;
2237
2238 fprintf_filtered (stream, format, (char *) str);
2239 }
2240
2241 /* Subroutine of ui_printf to simplify it.
2242 Print VALUE to STREAM using FORMAT.
2243 VALUE is a wide C-style string on the target. */
2244
2245 static void
2246 printf_wide_c_string (struct ui_file *stream, const char *format,
2247 struct value *value)
2248 {
2249 gdb_byte *str;
2250 CORE_ADDR tem;
2251 int j;
2252 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2253 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2254 struct type *wctype = lookup_typename (current_language, gdbarch,
2255 "wchar_t", NULL, 0);
2256 int wcwidth = TYPE_LENGTH (wctype);
2257 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2258
2259 tem = value_as_address (value);
2260
2261 /* This is a %s argument. Find the length of the string. */
2262 for (j = 0;; j += wcwidth)
2263 {
2264 QUIT;
2265 read_memory (tem + j, buf, wcwidth);
2266 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2267 break;
2268 }
2269
2270 /* Copy the string contents into a string inside GDB. */
2271 str = (gdb_byte *) alloca (j + wcwidth);
2272 if (j != 0)
2273 read_memory (tem, str, j);
2274 memset (&str[j], 0, wcwidth);
2275
2276 auto_obstack output;
2277
2278 convert_between_encodings (target_wide_charset (gdbarch),
2279 host_charset (),
2280 str, j, wcwidth,
2281 &output, translit_char);
2282 obstack_grow_str0 (&output, "");
2283
2284 fprintf_filtered (stream, format, obstack_base (&output));
2285 }
2286
2287 /* Subroutine of ui_printf to simplify it.
2288 Print VALUE, a decimal floating point value, to STREAM using FORMAT. */
2289
2290 static void
2291 printf_decfloat (struct ui_file *stream, const char *format,
2292 struct value *value)
2293 {
2294 const gdb_byte *param_ptr = value_contents (value);
2295
2296 #if defined (PRINTF_HAS_DECFLOAT)
2297 /* If we have native support for Decimal floating
2298 printing, handle it here. */
2299 fprintf_filtered (stream, format, param_ptr);
2300 #else
2301 /* As a workaround until vasprintf has native support for DFP
2302 we convert the DFP values to string and print them using
2303 the %s format specifier. */
2304 const char *p;
2305
2306 /* Parameter data. */
2307 struct type *param_type = value_type (value);
2308 struct gdbarch *gdbarch = get_type_arch (param_type);
2309 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2310
2311 /* DFP output data. */
2312 struct value *dfp_value = NULL;
2313 gdb_byte *dfp_ptr;
2314 int dfp_len = 16;
2315 gdb_byte dec[16];
2316 struct type *dfp_type = NULL;
2317 char decstr[MAX_DECIMAL_STRING];
2318
2319 /* Points to the end of the string so that we can go back
2320 and check for DFP length modifiers. */
2321 p = format + strlen (format);
2322
2323 /* Look for the float/double format specifier. */
2324 while (*p != 'f' && *p != 'e' && *p != 'E'
2325 && *p != 'g' && *p != 'G')
2326 p--;
2327
2328 /* Search for the '%' char and extract the size and type of
2329 the output decimal value based on its modifiers
2330 (%Hf, %Df, %DDf). */
2331 while (*--p != '%')
2332 {
2333 if (*p == 'H')
2334 {
2335 dfp_len = 4;
2336 dfp_type = builtin_type (gdbarch)->builtin_decfloat;
2337 }
2338 else if (*p == 'D' && *(p - 1) == 'D')
2339 {
2340 dfp_len = 16;
2341 dfp_type = builtin_type (gdbarch)->builtin_declong;
2342 p--;
2343 }
2344 else
2345 {
2346 dfp_len = 8;
2347 dfp_type = builtin_type (gdbarch)->builtin_decdouble;
2348 }
2349 }
2350
2351 /* Conversion between different DFP types. */
2352 if (TYPE_CODE (param_type) == TYPE_CODE_DECFLOAT)
2353 decimal_convert (param_ptr, TYPE_LENGTH (param_type),
2354 byte_order, dec, dfp_len, byte_order);
2355 else
2356 /* If this is a non-trivial conversion, just output 0.
2357 A correct converted value can be displayed by explicitly
2358 casting to a DFP type. */
2359 decimal_from_string (dec, dfp_len, byte_order, "0");
2360
2361 dfp_value = value_from_decfloat (dfp_type, dec);
2362
2363 dfp_ptr = (gdb_byte *) value_contents (dfp_value);
2364
2365 decimal_to_string (dfp_ptr, dfp_len, byte_order, decstr);
2366
2367 /* Print the DFP value. */
2368 fprintf_filtered (stream, "%s", decstr);
2369 #endif
2370 }
2371
2372 /* Subroutine of ui_printf to simplify it.
2373 Print VALUE, a target pointer, to STREAM using FORMAT. */
2374
2375 static void
2376 printf_pointer (struct ui_file *stream, const char *format,
2377 struct value *value)
2378 {
2379 /* We avoid the host's %p because pointers are too
2380 likely to be the wrong size. The only interesting
2381 modifier for %p is a width; extract that, and then
2382 handle %p as glibc would: %#x or a literal "(nil)". */
2383
2384 const char *p;
2385 char *fmt, *fmt_p;
2386 #ifdef PRINTF_HAS_LONG_LONG
2387 long long val = value_as_long (value);
2388 #else
2389 long val = value_as_long (value);
2390 #endif
2391
2392 fmt = (char *) alloca (strlen (format) + 5);
2393
2394 /* Copy up to the leading %. */
2395 p = format;
2396 fmt_p = fmt;
2397 while (*p)
2398 {
2399 int is_percent = (*p == '%');
2400
2401 *fmt_p++ = *p++;
2402 if (is_percent)
2403 {
2404 if (*p == '%')
2405 *fmt_p++ = *p++;
2406 else
2407 break;
2408 }
2409 }
2410
2411 if (val != 0)
2412 *fmt_p++ = '#';
2413
2414 /* Copy any width. */
2415 while (*p >= '0' && *p < '9')
2416 *fmt_p++ = *p++;
2417
2418 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2419 if (val != 0)
2420 {
2421 #ifdef PRINTF_HAS_LONG_LONG
2422 *fmt_p++ = 'l';
2423 #endif
2424 *fmt_p++ = 'l';
2425 *fmt_p++ = 'x';
2426 *fmt_p++ = '\0';
2427 fprintf_filtered (stream, fmt, val);
2428 }
2429 else
2430 {
2431 *fmt_p++ = 's';
2432 *fmt_p++ = '\0';
2433 fprintf_filtered (stream, fmt, "(nil)");
2434 }
2435 }
2436
2437 /* printf "printf format string" ARG to STREAM. */
2438
2439 static void
2440 ui_printf (const char *arg, struct ui_file *stream)
2441 {
2442 struct format_piece *fpieces;
2443 const char *s = arg;
2444 struct value **val_args;
2445 int allocated_args = 20;
2446 struct cleanup *old_cleanups;
2447
2448 val_args = XNEWVEC (struct value *, allocated_args);
2449 old_cleanups = make_cleanup (free_current_contents, &val_args);
2450
2451 if (s == 0)
2452 error_no_arg (_("format-control string and values to print"));
2453
2454 s = skip_spaces_const (s);
2455
2456 /* A format string should follow, enveloped in double quotes. */
2457 if (*s++ != '"')
2458 error (_("Bad format string, missing '\"'."));
2459
2460 fpieces = parse_format_string (&s);
2461
2462 make_cleanup (free_format_pieces_cleanup, &fpieces);
2463
2464 if (*s++ != '"')
2465 error (_("Bad format string, non-terminated '\"'."));
2466
2467 s = skip_spaces_const (s);
2468
2469 if (*s != ',' && *s != 0)
2470 error (_("Invalid argument syntax"));
2471
2472 if (*s == ',')
2473 s++;
2474 s = skip_spaces_const (s);
2475
2476 {
2477 int nargs = 0;
2478 int nargs_wanted;
2479 int i, fr;
2480 char *current_substring;
2481
2482 nargs_wanted = 0;
2483 for (fr = 0; fpieces[fr].string != NULL; fr++)
2484 if (fpieces[fr].argclass != literal_piece)
2485 ++nargs_wanted;
2486
2487 /* Now, parse all arguments and evaluate them.
2488 Store the VALUEs in VAL_ARGS. */
2489
2490 while (*s != '\0')
2491 {
2492 const char *s1;
2493
2494 if (nargs == allocated_args)
2495 val_args = (struct value **) xrealloc ((char *) val_args,
2496 (allocated_args *= 2)
2497 * sizeof (struct value *));
2498 s1 = s;
2499 val_args[nargs] = parse_to_comma_and_eval (&s1);
2500
2501 nargs++;
2502 s = s1;
2503 if (*s == ',')
2504 s++;
2505 }
2506
2507 if (nargs != nargs_wanted)
2508 error (_("Wrong number of arguments for specified format-string"));
2509
2510 /* Now actually print them. */
2511 i = 0;
2512 for (fr = 0; fpieces[fr].string != NULL; fr++)
2513 {
2514 current_substring = fpieces[fr].string;
2515 switch (fpieces[fr].argclass)
2516 {
2517 case string_arg:
2518 printf_c_string (stream, current_substring, val_args[i]);
2519 break;
2520 case wide_string_arg:
2521 printf_wide_c_string (stream, current_substring, val_args[i]);
2522 break;
2523 case wide_char_arg:
2524 {
2525 struct gdbarch *gdbarch
2526 = get_type_arch (value_type (val_args[i]));
2527 struct type *wctype = lookup_typename (current_language, gdbarch,
2528 "wchar_t", NULL, 0);
2529 struct type *valtype;
2530 const gdb_byte *bytes;
2531
2532 valtype = value_type (val_args[i]);
2533 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2534 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2535 error (_("expected wchar_t argument for %%lc"));
2536
2537 bytes = value_contents (val_args[i]);
2538
2539 auto_obstack output;
2540
2541 convert_between_encodings (target_wide_charset (gdbarch),
2542 host_charset (),
2543 bytes, TYPE_LENGTH (valtype),
2544 TYPE_LENGTH (valtype),
2545 &output, translit_char);
2546 obstack_grow_str0 (&output, "");
2547
2548 fprintf_filtered (stream, current_substring,
2549 obstack_base (&output));
2550 }
2551 break;
2552 case double_arg:
2553 {
2554 struct type *type = value_type (val_args[i]);
2555 DOUBLEST val;
2556 int inv;
2557
2558 /* If format string wants a float, unchecked-convert the value
2559 to floating point of the same size. */
2560 type = float_type_from_length (type);
2561 val = unpack_double (type, value_contents (val_args[i]), &inv);
2562 if (inv)
2563 error (_("Invalid floating value found in program."));
2564
2565 fprintf_filtered (stream, current_substring, (double) val);
2566 break;
2567 }
2568 case long_double_arg:
2569 #ifdef HAVE_LONG_DOUBLE
2570 {
2571 struct type *type = value_type (val_args[i]);
2572 DOUBLEST val;
2573 int inv;
2574
2575 /* If format string wants a float, unchecked-convert the value
2576 to floating point of the same size. */
2577 type = float_type_from_length (type);
2578 val = unpack_double (type, value_contents (val_args[i]), &inv);
2579 if (inv)
2580 error (_("Invalid floating value found in program."));
2581
2582 fprintf_filtered (stream, current_substring,
2583 (long double) val);
2584 break;
2585 }
2586 #else
2587 error (_("long double not supported in printf"));
2588 #endif
2589 case long_long_arg:
2590 #ifdef PRINTF_HAS_LONG_LONG
2591 {
2592 long long val = value_as_long (val_args[i]);
2593
2594 fprintf_filtered (stream, current_substring, val);
2595 break;
2596 }
2597 #else
2598 error (_("long long not supported in printf"));
2599 #endif
2600 case int_arg:
2601 {
2602 int val = value_as_long (val_args[i]);
2603
2604 fprintf_filtered (stream, current_substring, val);
2605 break;
2606 }
2607 case long_arg:
2608 {
2609 long val = value_as_long (val_args[i]);
2610
2611 fprintf_filtered (stream, current_substring, val);
2612 break;
2613 }
2614 /* Handles decimal floating values. */
2615 case decfloat_arg:
2616 printf_decfloat (stream, current_substring, val_args[i]);
2617 break;
2618 case ptr_arg:
2619 printf_pointer (stream, current_substring, val_args[i]);
2620 break;
2621 case literal_piece:
2622 /* Print a portion of the format string that has no
2623 directives. Note that this will not include any
2624 ordinary %-specs, but it might include "%%". That is
2625 why we use printf_filtered and not puts_filtered here.
2626 Also, we pass a dummy argument because some platforms
2627 have modified GCC to include -Wformat-security by
2628 default, which will warn here if there is no
2629 argument. */
2630 fprintf_filtered (stream, current_substring, 0);
2631 break;
2632 default:
2633 internal_error (__FILE__, __LINE__,
2634 _("failed internal consistency check"));
2635 }
2636 /* Maybe advance to the next argument. */
2637 if (fpieces[fr].argclass != literal_piece)
2638 ++i;
2639 }
2640 }
2641 do_cleanups (old_cleanups);
2642 }
2643
2644 /* Implement the "printf" command. */
2645
2646 static void
2647 printf_command (char *arg, int from_tty)
2648 {
2649 ui_printf (arg, gdb_stdout);
2650 gdb_flush (gdb_stdout);
2651 }
2652
2653 /* Implement the "eval" command. */
2654
2655 static void
2656 eval_command (char *arg, int from_tty)
2657 {
2658 string_file stb;
2659
2660 ui_printf (arg, &stb);
2661
2662 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2663
2664 execute_command (&expanded[0], from_tty);
2665 }
2666
2667 void
2668 _initialize_printcmd (void)
2669 {
2670 struct cmd_list_element *c;
2671
2672 current_display_number = -1;
2673
2674 observer_attach_free_objfile (clear_dangling_display_expressions);
2675
2676 add_info ("address", address_info,
2677 _("Describe where symbol SYM is stored."));
2678
2679 add_info ("symbol", sym_info, _("\
2680 Describe what symbol is at location ADDR.\n\
2681 Only for symbols with fixed locations (global or static scope)."));
2682
2683 add_com ("x", class_vars, x_command, _("\
2684 Examine memory: x/FMT ADDRESS.\n\
2685 ADDRESS is an expression for the memory address to examine.\n\
2686 FMT is a repeat count followed by a format letter and a size letter.\n\
2687 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2688 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2689 and z(hex, zero padded on the left).\n\
2690 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2691 The specified number of objects of the specified size are printed\n\
2692 according to the format. If a negative number is specified, memory is\n\
2693 examined backward from the address.\n\n\
2694 Defaults for format and size letters are those previously used.\n\
2695 Default count is 1. Default address is following last thing printed\n\
2696 with this command or \"print\"."));
2697
2698 #if 0
2699 add_com ("whereis", class_vars, whereis_command,
2700 _("Print line number and file of definition of variable."));
2701 #endif
2702
2703 add_info ("display", display_info, _("\
2704 Expressions to display when program stops, with code numbers."));
2705
2706 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2707 Cancel some expressions to be displayed when program stops.\n\
2708 Arguments are the code numbers of the expressions to stop displaying.\n\
2709 No argument means cancel all automatic-display expressions.\n\
2710 \"delete display\" has the same effect as this command.\n\
2711 Do \"info display\" to see current list of code numbers."),
2712 &cmdlist);
2713
2714 add_com ("display", class_vars, display_command, _("\
2715 Print value of expression EXP each time the program stops.\n\
2716 /FMT may be used before EXP as in the \"print\" command.\n\
2717 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2718 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2719 and examining is done as in the \"x\" command.\n\n\
2720 With no argument, display all currently requested auto-display expressions.\n\
2721 Use \"undisplay\" to cancel display requests previously made."));
2722
2723 add_cmd ("display", class_vars, enable_display_command, _("\
2724 Enable some expressions to be displayed when program stops.\n\
2725 Arguments are the code numbers of the expressions to resume displaying.\n\
2726 No argument means enable all automatic-display expressions.\n\
2727 Do \"info display\" to see current list of code numbers."), &enablelist);
2728
2729 add_cmd ("display", class_vars, disable_display_command, _("\
2730 Disable some expressions to be displayed when program stops.\n\
2731 Arguments are the code numbers of the expressions to stop displaying.\n\
2732 No argument means disable all automatic-display expressions.\n\
2733 Do \"info display\" to see current list of code numbers."), &disablelist);
2734
2735 add_cmd ("display", class_vars, undisplay_command, _("\
2736 Cancel some expressions to be displayed when program stops.\n\
2737 Arguments are the code numbers of the expressions to stop displaying.\n\
2738 No argument means cancel all automatic-display expressions.\n\
2739 Do \"info display\" to see current list of code numbers."), &deletelist);
2740
2741 add_com ("printf", class_vars, printf_command, _("\
2742 printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2743 This is useful for formatted output in user-defined commands."));
2744
2745 add_com ("output", class_vars, output_command, _("\
2746 Like \"print\" but don't put in value history and don't print newline.\n\
2747 This is useful in user-defined commands."));
2748
2749 add_prefix_cmd ("set", class_vars, set_command, _("\
2750 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2751 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2752 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2753 with $), a register (a few standard names starting with $), or an actual\n\
2754 variable in the program being debugged. EXP is any valid expression.\n\
2755 Use \"set variable\" for variables with names identical to set subcommands.\n\
2756 \n\
2757 With a subcommand, this command modifies parts of the gdb environment.\n\
2758 You can see these environment settings with the \"show\" command."),
2759 &setlist, "set ", 1, &cmdlist);
2760 if (dbx_commands)
2761 add_com ("assign", class_vars, set_command, _("\
2762 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2763 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2764 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2765 with $), a register (a few standard names starting with $), or an actual\n\
2766 variable in the program being debugged. EXP is any valid expression.\n\
2767 Use \"set variable\" for variables with names identical to set subcommands.\n\
2768 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2769 You can see these environment settings with the \"show\" command."));
2770
2771 /* "call" is the same as "set", but handy for dbx users to call fns. */
2772 c = add_com ("call", class_vars, call_command, _("\
2773 Call a function in the program.\n\
2774 The argument is the function name and arguments, in the notation of the\n\
2775 current working language. The result is printed and saved in the value\n\
2776 history, if it is not void."));
2777 set_cmd_completer (c, expression_completer);
2778
2779 add_cmd ("variable", class_vars, set_command, _("\
2780 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2781 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2782 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2783 with $), a register (a few standard names starting with $), or an actual\n\
2784 variable in the program being debugged. EXP is any valid expression.\n\
2785 This may usually be abbreviated to simply \"set\"."),
2786 &setlist);
2787
2788 c = add_com ("print", class_vars, print_command, _("\
2789 Print value of expression EXP.\n\
2790 Variables accessible are those of the lexical environment of the selected\n\
2791 stack frame, plus all those whose scope is global or an entire file.\n\
2792 \n\
2793 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2794 $$NUM refers to NUM'th value back from the last one.\n\
2795 Names starting with $ refer to registers (with the values they would have\n\
2796 if the program were to return to the stack frame now selected, restoring\n\
2797 all registers saved by frames farther in) or else to debugger\n\
2798 \"convenience\" variables (any such name not a known register).\n\
2799 Use assignment expressions to give values to convenience variables.\n\
2800 \n\
2801 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2802 @ is a binary operator for treating consecutive data objects\n\
2803 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2804 element is FOO, whose second element is stored in the space following\n\
2805 where FOO is stored, etc. FOO must be an expression whose value\n\
2806 resides in memory.\n\
2807 \n\
2808 EXP may be preceded with /FMT, where FMT is a format letter\n\
2809 but no count or size letter (see \"x\" command)."));
2810 set_cmd_completer (c, expression_completer);
2811 add_com_alias ("p", "print", class_vars, 1);
2812 add_com_alias ("inspect", "print", class_vars, 1);
2813
2814 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2815 &max_symbolic_offset, _("\
2816 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2817 Show the largest offset that will be printed in <symbol+1234> form."), _("\
2818 Tell GDB to only display the symbolic form of an address if the\n\
2819 offset between the closest earlier symbol and the address is less than\n\
2820 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2821 to always print the symbolic form of an address if any symbol precedes\n\
2822 it. Zero is equivalent to \"unlimited\"."),
2823 NULL,
2824 show_max_symbolic_offset,
2825 &setprintlist, &showprintlist);
2826 add_setshow_boolean_cmd ("symbol-filename", no_class,
2827 &print_symbol_filename, _("\
2828 Set printing of source filename and line number with <symbol>."), _("\
2829 Show printing of source filename and line number with <symbol>."), NULL,
2830 NULL,
2831 show_print_symbol_filename,
2832 &setprintlist, &showprintlist);
2833
2834 add_com ("eval", no_class, eval_command, _("\
2835 Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\
2836 a command line, and call it."));
2837 }
This page took 0.094957 seconds and 4 git commands to generate.