Rename common to gdbsupport
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "c-lang.h"
27 #include "expression.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "breakpoint.h"
32 #include "demangle.h"
33 #include "gdb-demangle.h"
34 #include "valprint.h"
35 #include "annotate.h"
36 #include "symfile.h" /* for overlay functions */
37 #include "objfiles.h" /* ditto */
38 #include "completer.h" /* for completion functions */
39 #include "ui-out.h"
40 #include "block.h"
41 #include "disasm.h"
42 #include "target-float.h"
43 #include "observable.h"
44 #include "solist.h"
45 #include "parser-defs.h"
46 #include "charset.h"
47 #include "arch-utils.h"
48 #include "cli/cli-utils.h"
49 #include "cli/cli-option.h"
50 #include "cli/cli-script.h"
51 #include "cli/cli-style.h"
52 #include "gdbsupport/format.h"
53 #include "source.h"
54 #include "gdbsupport/byte-vector.h"
55 #include "gdbsupport/gdb_optional.h"
56
57 /* Last specified output format. */
58
59 static char last_format = 0;
60
61 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
62
63 static char last_size = 'w';
64
65 /* Last specified count for the 'x' command. */
66
67 static int last_count;
68
69 /* Default address to examine next, and associated architecture. */
70
71 static struct gdbarch *next_gdbarch;
72 static CORE_ADDR next_address;
73
74 /* Number of delay instructions following current disassembled insn. */
75
76 static int branch_delay_insns;
77
78 /* Last address examined. */
79
80 static CORE_ADDR last_examine_address;
81
82 /* Contents of last address examined.
83 This is not valid past the end of the `x' command! */
84
85 static value_ref_ptr last_examine_value;
86
87 /* Largest offset between a symbolic value and an address, that will be
88 printed as `0x1234 <symbol+offset>'. */
89
90 static unsigned int max_symbolic_offset = UINT_MAX;
91 static void
92 show_max_symbolic_offset (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94 {
95 fprintf_filtered (file,
96 _("The largest offset that will be "
97 "printed in <symbol+1234> form is %s.\n"),
98 value);
99 }
100
101 /* Append the source filename and linenumber of the symbol when
102 printing a symbolic value as `<symbol at filename:linenum>' if set. */
103 static int print_symbol_filename = 0;
104 static void
105 show_print_symbol_filename (struct ui_file *file, int from_tty,
106 struct cmd_list_element *c, const char *value)
107 {
108 fprintf_filtered (file, _("Printing of source filename and "
109 "line number with <symbol> is %s.\n"),
110 value);
111 }
112
113 /* Number of auto-display expression currently being displayed.
114 So that we can disable it if we get a signal within it.
115 -1 when not doing one. */
116
117 static int current_display_number;
118
119 struct display
120 {
121 /* Chain link to next auto-display item. */
122 struct display *next;
123
124 /* The expression as the user typed it. */
125 char *exp_string;
126
127 /* Expression to be evaluated and displayed. */
128 expression_up exp;
129
130 /* Item number of this auto-display item. */
131 int number;
132
133 /* Display format specified. */
134 struct format_data format;
135
136 /* Program space associated with `block'. */
137 struct program_space *pspace;
138
139 /* Innermost block required by this expression when evaluated. */
140 const struct block *block;
141
142 /* Status of this display (enabled or disabled). */
143 int enabled_p;
144 };
145
146 /* Chain of expressions whose values should be displayed
147 automatically each time the program stops. */
148
149 static struct display *display_chain;
150
151 static int display_number;
152
153 /* Walk the following statement or block through all displays.
154 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
155 display. */
156
157 #define ALL_DISPLAYS(B) \
158 for (B = display_chain; B; B = B->next)
159
160 #define ALL_DISPLAYS_SAFE(B,TMP) \
161 for (B = display_chain; \
162 B ? (TMP = B->next, 1): 0; \
163 B = TMP)
164
165 /* Prototypes for local functions. */
166
167 static void do_one_display (struct display *);
168 \f
169
170 /* Decode a format specification. *STRING_PTR should point to it.
171 OFORMAT and OSIZE are used as defaults for the format and size
172 if none are given in the format specification.
173 If OSIZE is zero, then the size field of the returned value
174 should be set only if a size is explicitly specified by the
175 user.
176 The structure returned describes all the data
177 found in the specification. In addition, *STRING_PTR is advanced
178 past the specification and past all whitespace following it. */
179
180 static struct format_data
181 decode_format (const char **string_ptr, int oformat, int osize)
182 {
183 struct format_data val;
184 const char *p = *string_ptr;
185
186 val.format = '?';
187 val.size = '?';
188 val.count = 1;
189 val.raw = 0;
190
191 if (*p == '-')
192 {
193 val.count = -1;
194 p++;
195 }
196 if (*p >= '0' && *p <= '9')
197 val.count *= atoi (p);
198 while (*p >= '0' && *p <= '9')
199 p++;
200
201 /* Now process size or format letters that follow. */
202
203 while (1)
204 {
205 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
206 val.size = *p++;
207 else if (*p == 'r')
208 {
209 val.raw = 1;
210 p++;
211 }
212 else if (*p >= 'a' && *p <= 'z')
213 val.format = *p++;
214 else
215 break;
216 }
217
218 *string_ptr = skip_spaces (p);
219
220 /* Set defaults for format and size if not specified. */
221 if (val.format == '?')
222 {
223 if (val.size == '?')
224 {
225 /* Neither has been specified. */
226 val.format = oformat;
227 val.size = osize;
228 }
229 else
230 /* If a size is specified, any format makes a reasonable
231 default except 'i'. */
232 val.format = oformat == 'i' ? 'x' : oformat;
233 }
234 else if (val.size == '?')
235 switch (val.format)
236 {
237 case 'a':
238 /* Pick the appropriate size for an address. This is deferred
239 until do_examine when we know the actual architecture to use.
240 A special size value of 'a' is used to indicate this case. */
241 val.size = osize ? 'a' : osize;
242 break;
243 case 'f':
244 /* Floating point has to be word or giantword. */
245 if (osize == 'w' || osize == 'g')
246 val.size = osize;
247 else
248 /* Default it to giantword if the last used size is not
249 appropriate. */
250 val.size = osize ? 'g' : osize;
251 break;
252 case 'c':
253 /* Characters default to one byte. */
254 val.size = osize ? 'b' : osize;
255 break;
256 case 's':
257 /* Display strings with byte size chars unless explicitly
258 specified. */
259 val.size = '\0';
260 break;
261
262 default:
263 /* The default is the size most recently specified. */
264 val.size = osize;
265 }
266
267 return val;
268 }
269 \f
270 /* Print value VAL on stream according to OPTIONS.
271 Do not end with a newline.
272 SIZE is the letter for the size of datum being printed.
273 This is used to pad hex numbers so they line up. SIZE is 0
274 for print / output and set for examine. */
275
276 static void
277 print_formatted (struct value *val, int size,
278 const struct value_print_options *options,
279 struct ui_file *stream)
280 {
281 struct type *type = check_typedef (value_type (val));
282 int len = TYPE_LENGTH (type);
283
284 if (VALUE_LVAL (val) == lval_memory)
285 next_address = value_address (val) + len;
286
287 if (size)
288 {
289 switch (options->format)
290 {
291 case 's':
292 {
293 struct type *elttype = value_type (val);
294
295 next_address = (value_address (val)
296 + val_print_string (elttype, NULL,
297 value_address (val), -1,
298 stream, options) * len);
299 }
300 return;
301
302 case 'i':
303 /* We often wrap here if there are long symbolic names. */
304 wrap_here (" ");
305 next_address = (value_address (val)
306 + gdb_print_insn (get_type_arch (type),
307 value_address (val), stream,
308 &branch_delay_insns));
309 return;
310 }
311 }
312
313 if (options->format == 0 || options->format == 's'
314 || TYPE_CODE (type) == TYPE_CODE_REF
315 || TYPE_CODE (type) == TYPE_CODE_ARRAY
316 || TYPE_CODE (type) == TYPE_CODE_STRING
317 || TYPE_CODE (type) == TYPE_CODE_STRUCT
318 || TYPE_CODE (type) == TYPE_CODE_UNION
319 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
320 value_print (val, stream, options);
321 else
322 /* User specified format, so don't look to the type to tell us
323 what to do. */
324 val_print_scalar_formatted (type,
325 value_embedded_offset (val),
326 val,
327 options, size, stream);
328 }
329
330 /* Return builtin floating point type of same length as TYPE.
331 If no such type is found, return TYPE itself. */
332 static struct type *
333 float_type_from_length (struct type *type)
334 {
335 struct gdbarch *gdbarch = get_type_arch (type);
336 const struct builtin_type *builtin = builtin_type (gdbarch);
337
338 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
339 type = builtin->builtin_float;
340 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
341 type = builtin->builtin_double;
342 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
343 type = builtin->builtin_long_double;
344
345 return type;
346 }
347
348 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
349 according to OPTIONS and SIZE on STREAM. Formats s and i are not
350 supported at this level. */
351
352 void
353 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
354 const struct value_print_options *options,
355 int size, struct ui_file *stream)
356 {
357 struct gdbarch *gdbarch = get_type_arch (type);
358 unsigned int len = TYPE_LENGTH (type);
359 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
360
361 /* String printing should go through val_print_scalar_formatted. */
362 gdb_assert (options->format != 's');
363
364 /* If the value is a pointer, and pointers and addresses are not the
365 same, then at this point, the value's length (in target bytes) is
366 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
367 if (TYPE_CODE (type) == TYPE_CODE_PTR)
368 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
369
370 /* If we are printing it as unsigned, truncate it in case it is actually
371 a negative signed value (e.g. "print/u (short)-1" should print 65535
372 (if shorts are 16 bits) instead of 4294967295). */
373 if (options->format != 'c'
374 && (options->format != 'd' || TYPE_UNSIGNED (type)))
375 {
376 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
377 valaddr += TYPE_LENGTH (type) - len;
378 }
379
380 if (size != 0 && (options->format == 'x' || options->format == 't'))
381 {
382 /* Truncate to fit. */
383 unsigned newlen;
384 switch (size)
385 {
386 case 'b':
387 newlen = 1;
388 break;
389 case 'h':
390 newlen = 2;
391 break;
392 case 'w':
393 newlen = 4;
394 break;
395 case 'g':
396 newlen = 8;
397 break;
398 default:
399 error (_("Undefined output size \"%c\"."), size);
400 }
401 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
402 valaddr += len - newlen;
403 len = newlen;
404 }
405
406 /* Historically gdb has printed floats by first casting them to a
407 long, and then printing the long. PR cli/16242 suggests changing
408 this to using C-style hex float format. */
409 gdb::byte_vector converted_float_bytes;
410 if (TYPE_CODE (type) == TYPE_CODE_FLT
411 && (options->format == 'o'
412 || options->format == 'x'
413 || options->format == 't'
414 || options->format == 'z'
415 || options->format == 'd'
416 || options->format == 'u'))
417 {
418 LONGEST val_long = unpack_long (type, valaddr);
419 converted_float_bytes.resize (TYPE_LENGTH (type));
420 store_signed_integer (converted_float_bytes.data (), TYPE_LENGTH (type),
421 byte_order, val_long);
422 valaddr = converted_float_bytes.data ();
423 }
424
425 /* Printing a non-float type as 'f' will interpret the data as if it were
426 of a floating-point type of the same length, if that exists. Otherwise,
427 the data is printed as integer. */
428 char format = options->format;
429 if (format == 'f' && TYPE_CODE (type) != TYPE_CODE_FLT)
430 {
431 type = float_type_from_length (type);
432 if (TYPE_CODE (type) != TYPE_CODE_FLT)
433 format = 0;
434 }
435
436 switch (format)
437 {
438 case 'o':
439 print_octal_chars (stream, valaddr, len, byte_order);
440 break;
441 case 'd':
442 print_decimal_chars (stream, valaddr, len, true, byte_order);
443 break;
444 case 'u':
445 print_decimal_chars (stream, valaddr, len, false, byte_order);
446 break;
447 case 0:
448 if (TYPE_CODE (type) != TYPE_CODE_FLT)
449 {
450 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
451 byte_order);
452 break;
453 }
454 /* FALLTHROUGH */
455 case 'f':
456 print_floating (valaddr, type, stream);
457 break;
458
459 case 't':
460 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
461 break;
462 case 'x':
463 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
464 break;
465 case 'z':
466 print_hex_chars (stream, valaddr, len, byte_order, true);
467 break;
468 case 'c':
469 {
470 struct value_print_options opts = *options;
471
472 LONGEST val_long = unpack_long (type, valaddr);
473
474 opts.format = 0;
475 if (TYPE_UNSIGNED (type))
476 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
477 else
478 type = builtin_type (gdbarch)->builtin_true_char;
479
480 value_print (value_from_longest (type, val_long), stream, &opts);
481 }
482 break;
483
484 case 'a':
485 {
486 CORE_ADDR addr = unpack_pointer (type, valaddr);
487
488 print_address (gdbarch, addr, stream);
489 }
490 break;
491
492 default:
493 error (_("Undefined output format \"%c\"."), format);
494 }
495 }
496
497 /* Specify default address for `x' command.
498 The `info lines' command uses this. */
499
500 void
501 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
502 {
503 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
504
505 next_gdbarch = gdbarch;
506 next_address = addr;
507
508 /* Make address available to the user as $_. */
509 set_internalvar (lookup_internalvar ("_"),
510 value_from_pointer (ptr_type, addr));
511 }
512
513 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
514 after LEADIN. Print nothing if no symbolic name is found nearby.
515 Optionally also print source file and line number, if available.
516 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
517 or to interpret it as a possible C++ name and convert it back to source
518 form. However note that DO_DEMANGLE can be overridden by the specific
519 settings of the demangle and asm_demangle variables. Returns
520 non-zero if anything was printed; zero otherwise. */
521
522 int
523 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
524 struct ui_file *stream,
525 int do_demangle, const char *leadin)
526 {
527 std::string name, filename;
528 int unmapped = 0;
529 int offset = 0;
530 int line = 0;
531
532 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
533 &filename, &line, &unmapped))
534 return 0;
535
536 fputs_filtered (leadin, stream);
537 if (unmapped)
538 fputs_filtered ("<*", stream);
539 else
540 fputs_filtered ("<", stream);
541 fputs_styled (name.c_str (), function_name_style.style (), stream);
542 if (offset != 0)
543 fprintf_filtered (stream, "+%u", (unsigned int) offset);
544
545 /* Append source filename and line number if desired. Give specific
546 line # of this addr, if we have it; else line # of the nearest symbol. */
547 if (print_symbol_filename && !filename.empty ())
548 {
549 fputs_filtered (line == -1 ? " in " : " at ", stream);
550 fputs_styled (filename.c_str (), file_name_style.style (), stream);
551 if (line != -1)
552 fprintf_filtered (stream, ":%d", line);
553 }
554 if (unmapped)
555 fputs_filtered ("*>", stream);
556 else
557 fputs_filtered (">", stream);
558
559 return 1;
560 }
561
562 /* See valprint.h. */
563
564 int
565 build_address_symbolic (struct gdbarch *gdbarch,
566 CORE_ADDR addr, /* IN */
567 int do_demangle, /* IN */
568 std::string *name, /* OUT */
569 int *offset, /* OUT */
570 std::string *filename, /* OUT */
571 int *line, /* OUT */
572 int *unmapped) /* OUT */
573 {
574 struct bound_minimal_symbol msymbol;
575 struct symbol *symbol;
576 CORE_ADDR name_location = 0;
577 struct obj_section *section = NULL;
578 const char *name_temp = "";
579
580 /* Let's say it is mapped (not unmapped). */
581 *unmapped = 0;
582
583 /* Determine if the address is in an overlay, and whether it is
584 mapped. */
585 if (overlay_debugging)
586 {
587 section = find_pc_overlay (addr);
588 if (pc_in_unmapped_range (addr, section))
589 {
590 *unmapped = 1;
591 addr = overlay_mapped_address (addr, section);
592 }
593 }
594
595 /* First try to find the address in the symbol table, then
596 in the minsyms. Take the closest one. */
597
598 /* This is defective in the sense that it only finds text symbols. So
599 really this is kind of pointless--we should make sure that the
600 minimal symbols have everything we need (by changing that we could
601 save some memory, but for many debug format--ELF/DWARF or
602 anything/stabs--it would be inconvenient to eliminate those minimal
603 symbols anyway). */
604 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
605 symbol = find_pc_sect_function (addr, section);
606
607 if (symbol)
608 {
609 /* If this is a function (i.e. a code address), strip out any
610 non-address bits. For instance, display a pointer to the
611 first instruction of a Thumb function as <function>; the
612 second instruction will be <function+2>, even though the
613 pointer is <function+3>. This matches the ISA behavior. */
614 addr = gdbarch_addr_bits_remove (gdbarch, addr);
615
616 name_location = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (symbol));
617 if (do_demangle || asm_demangle)
618 name_temp = SYMBOL_PRINT_NAME (symbol);
619 else
620 name_temp = SYMBOL_LINKAGE_NAME (symbol);
621 }
622
623 if (msymbol.minsym != NULL
624 && MSYMBOL_HAS_SIZE (msymbol.minsym)
625 && MSYMBOL_SIZE (msymbol.minsym) == 0
626 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
627 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
628 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
629 msymbol.minsym = NULL;
630
631 if (msymbol.minsym != NULL)
632 {
633 if (BMSYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
634 {
635 /* If this is a function (i.e. a code address), strip out any
636 non-address bits. For instance, display a pointer to the
637 first instruction of a Thumb function as <function>; the
638 second instruction will be <function+2>, even though the
639 pointer is <function+3>. This matches the ISA behavior. */
640 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
641 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
642 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
643 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
644 addr = gdbarch_addr_bits_remove (gdbarch, addr);
645
646 /* The msymbol is closer to the address than the symbol;
647 use the msymbol instead. */
648 symbol = 0;
649 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
650 if (do_demangle || asm_demangle)
651 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
652 else
653 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
654 }
655 }
656 if (symbol == NULL && msymbol.minsym == NULL)
657 return 1;
658
659 /* If the nearest symbol is too far away, don't print anything symbolic. */
660
661 /* For when CORE_ADDR is larger than unsigned int, we do math in
662 CORE_ADDR. But when we detect unsigned wraparound in the
663 CORE_ADDR math, we ignore this test and print the offset,
664 because addr+max_symbolic_offset has wrapped through the end
665 of the address space back to the beginning, giving bogus comparison. */
666 if (addr > name_location + max_symbolic_offset
667 && name_location + max_symbolic_offset > name_location)
668 return 1;
669
670 *offset = addr - name_location;
671
672 *name = name_temp;
673
674 if (print_symbol_filename)
675 {
676 struct symtab_and_line sal;
677
678 sal = find_pc_sect_line (addr, section, 0);
679
680 if (sal.symtab)
681 {
682 *filename = symtab_to_filename_for_display (sal.symtab);
683 *line = sal.line;
684 }
685 }
686 return 0;
687 }
688
689
690 /* Print address ADDR symbolically on STREAM.
691 First print it as a number. Then perhaps print
692 <SYMBOL + OFFSET> after the number. */
693
694 void
695 print_address (struct gdbarch *gdbarch,
696 CORE_ADDR addr, struct ui_file *stream)
697 {
698 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
699 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
700 }
701
702 /* Return a prefix for instruction address:
703 "=> " for current instruction, else " ". */
704
705 const char *
706 pc_prefix (CORE_ADDR addr)
707 {
708 if (has_stack_frames ())
709 {
710 struct frame_info *frame;
711 CORE_ADDR pc;
712
713 frame = get_selected_frame (NULL);
714 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
715 return "=> ";
716 }
717 return " ";
718 }
719
720 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
721 controls whether to print the symbolic name "raw" or demangled.
722 Return non-zero if anything was printed; zero otherwise. */
723
724 int
725 print_address_demangle (const struct value_print_options *opts,
726 struct gdbarch *gdbarch, CORE_ADDR addr,
727 struct ui_file *stream, int do_demangle)
728 {
729 if (opts->addressprint)
730 {
731 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
732 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
733 }
734 else
735 {
736 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
737 }
738 return 1;
739 }
740 \f
741
742 /* Find the address of the instruction that is INST_COUNT instructions before
743 the instruction at ADDR.
744 Since some architectures have variable-length instructions, we can't just
745 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
746 number information to locate the nearest known instruction boundary,
747 and disassemble forward from there. If we go out of the symbol range
748 during disassembling, we return the lowest address we've got so far and
749 set the number of instructions read to INST_READ. */
750
751 static CORE_ADDR
752 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
753 int inst_count, int *inst_read)
754 {
755 /* The vector PCS is used to store instruction addresses within
756 a pc range. */
757 CORE_ADDR loop_start, loop_end, p;
758 std::vector<CORE_ADDR> pcs;
759 struct symtab_and_line sal;
760
761 *inst_read = 0;
762 loop_start = loop_end = addr;
763
764 /* In each iteration of the outer loop, we get a pc range that ends before
765 LOOP_START, then we count and store every instruction address of the range
766 iterated in the loop.
767 If the number of instructions counted reaches INST_COUNT, return the
768 stored address that is located INST_COUNT instructions back from ADDR.
769 If INST_COUNT is not reached, we subtract the number of counted
770 instructions from INST_COUNT, and go to the next iteration. */
771 do
772 {
773 pcs.clear ();
774 sal = find_pc_sect_line (loop_start, NULL, 1);
775 if (sal.line <= 0)
776 {
777 /* We reach here when line info is not available. In this case,
778 we print a message and just exit the loop. The return value
779 is calculated after the loop. */
780 printf_filtered (_("No line number information available "
781 "for address "));
782 wrap_here (" ");
783 print_address (gdbarch, loop_start - 1, gdb_stdout);
784 printf_filtered ("\n");
785 break;
786 }
787
788 loop_end = loop_start;
789 loop_start = sal.pc;
790
791 /* This loop pushes instruction addresses in the range from
792 LOOP_START to LOOP_END. */
793 for (p = loop_start; p < loop_end;)
794 {
795 pcs.push_back (p);
796 p += gdb_insn_length (gdbarch, p);
797 }
798
799 inst_count -= pcs.size ();
800 *inst_read += pcs.size ();
801 }
802 while (inst_count > 0);
803
804 /* After the loop, the vector PCS has instruction addresses of the last
805 source line we processed, and INST_COUNT has a negative value.
806 We return the address at the index of -INST_COUNT in the vector for
807 the reason below.
808 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
809 Line X of File
810 0x4000
811 0x4001
812 0x4005
813 Line Y of File
814 0x4009
815 0x400c
816 => 0x400e
817 0x4011
818 find_instruction_backward is called with INST_COUNT = 4 and expected to
819 return 0x4001. When we reach here, INST_COUNT is set to -1 because
820 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
821 4001 is located at the index 1 of the last iterated line (= Line X),
822 which is simply calculated by -INST_COUNT.
823 The case when the length of PCS is 0 means that we reached an area for
824 which line info is not available. In such case, we return LOOP_START,
825 which was the lowest instruction address that had line info. */
826 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
827
828 /* INST_READ includes all instruction addresses in a pc range. Need to
829 exclude the beginning part up to the address we're returning. That
830 is, exclude {0x4000} in the example above. */
831 if (inst_count < 0)
832 *inst_read += inst_count;
833
834 return p;
835 }
836
837 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
838 placing the results in GDB's memory from MYADDR + LEN. Returns
839 a count of the bytes actually read. */
840
841 static int
842 read_memory_backward (struct gdbarch *gdbarch,
843 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
844 {
845 int errcode;
846 int nread; /* Number of bytes actually read. */
847
848 /* First try a complete read. */
849 errcode = target_read_memory (memaddr, myaddr, len);
850 if (errcode == 0)
851 {
852 /* Got it all. */
853 nread = len;
854 }
855 else
856 {
857 /* Loop, reading one byte at a time until we get as much as we can. */
858 memaddr += len;
859 myaddr += len;
860 for (nread = 0; nread < len; ++nread)
861 {
862 errcode = target_read_memory (--memaddr, --myaddr, 1);
863 if (errcode != 0)
864 {
865 /* The read was unsuccessful, so exit the loop. */
866 printf_filtered (_("Cannot access memory at address %s\n"),
867 paddress (gdbarch, memaddr));
868 break;
869 }
870 }
871 }
872 return nread;
873 }
874
875 /* Returns true if X (which is LEN bytes wide) is the number zero. */
876
877 static int
878 integer_is_zero (const gdb_byte *x, int len)
879 {
880 int i = 0;
881
882 while (i < len && x[i] == 0)
883 ++i;
884 return (i == len);
885 }
886
887 /* Find the start address of a string in which ADDR is included.
888 Basically we search for '\0' and return the next address,
889 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
890 we stop searching and return the address to print characters as many as
891 PRINT_MAX from the string. */
892
893 static CORE_ADDR
894 find_string_backward (struct gdbarch *gdbarch,
895 CORE_ADDR addr, int count, int char_size,
896 const struct value_print_options *options,
897 int *strings_counted)
898 {
899 const int chunk_size = 0x20;
900 int read_error = 0;
901 int chars_read = 0;
902 int chars_to_read = chunk_size;
903 int chars_counted = 0;
904 int count_original = count;
905 CORE_ADDR string_start_addr = addr;
906
907 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
908 gdb::byte_vector buffer (chars_to_read * char_size);
909 while (count > 0 && read_error == 0)
910 {
911 int i;
912
913 addr -= chars_to_read * char_size;
914 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
915 chars_to_read * char_size);
916 chars_read /= char_size;
917 read_error = (chars_read == chars_to_read) ? 0 : 1;
918 /* Searching for '\0' from the end of buffer in backward direction. */
919 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
920 {
921 int offset = (chars_to_read - i - 1) * char_size;
922
923 if (integer_is_zero (&buffer[offset], char_size)
924 || chars_counted == options->print_max)
925 {
926 /* Found '\0' or reached print_max. As OFFSET is the offset to
927 '\0', we add CHAR_SIZE to return the start address of
928 a string. */
929 --count;
930 string_start_addr = addr + offset + char_size;
931 chars_counted = 0;
932 }
933 }
934 }
935
936 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
937 *strings_counted = count_original - count;
938
939 if (read_error != 0)
940 {
941 /* In error case, STRING_START_ADDR is pointing to the string that
942 was last successfully loaded. Rewind the partially loaded string. */
943 string_start_addr -= chars_counted * char_size;
944 }
945
946 return string_start_addr;
947 }
948
949 /* Examine data at address ADDR in format FMT.
950 Fetch it from memory and print on gdb_stdout. */
951
952 static void
953 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
954 {
955 char format = 0;
956 char size;
957 int count = 1;
958 struct type *val_type = NULL;
959 int i;
960 int maxelts;
961 struct value_print_options opts;
962 int need_to_update_next_address = 0;
963 CORE_ADDR addr_rewound = 0;
964
965 format = fmt.format;
966 size = fmt.size;
967 count = fmt.count;
968 next_gdbarch = gdbarch;
969 next_address = addr;
970
971 /* Instruction format implies fetch single bytes
972 regardless of the specified size.
973 The case of strings is handled in decode_format, only explicit
974 size operator are not changed to 'b'. */
975 if (format == 'i')
976 size = 'b';
977
978 if (size == 'a')
979 {
980 /* Pick the appropriate size for an address. */
981 if (gdbarch_ptr_bit (next_gdbarch) == 64)
982 size = 'g';
983 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
984 size = 'w';
985 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
986 size = 'h';
987 else
988 /* Bad value for gdbarch_ptr_bit. */
989 internal_error (__FILE__, __LINE__,
990 _("failed internal consistency check"));
991 }
992
993 if (size == 'b')
994 val_type = builtin_type (next_gdbarch)->builtin_int8;
995 else if (size == 'h')
996 val_type = builtin_type (next_gdbarch)->builtin_int16;
997 else if (size == 'w')
998 val_type = builtin_type (next_gdbarch)->builtin_int32;
999 else if (size == 'g')
1000 val_type = builtin_type (next_gdbarch)->builtin_int64;
1001
1002 if (format == 's')
1003 {
1004 struct type *char_type = NULL;
1005
1006 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1007 if type is not found. */
1008 if (size == 'h')
1009 char_type = builtin_type (next_gdbarch)->builtin_char16;
1010 else if (size == 'w')
1011 char_type = builtin_type (next_gdbarch)->builtin_char32;
1012 if (char_type)
1013 val_type = char_type;
1014 else
1015 {
1016 if (size != '\0' && size != 'b')
1017 warning (_("Unable to display strings with "
1018 "size '%c', using 'b' instead."), size);
1019 size = 'b';
1020 val_type = builtin_type (next_gdbarch)->builtin_int8;
1021 }
1022 }
1023
1024 maxelts = 8;
1025 if (size == 'w')
1026 maxelts = 4;
1027 if (size == 'g')
1028 maxelts = 2;
1029 if (format == 's' || format == 'i')
1030 maxelts = 1;
1031
1032 get_formatted_print_options (&opts, format);
1033
1034 if (count < 0)
1035 {
1036 /* This is the negative repeat count case.
1037 We rewind the address based on the given repeat count and format,
1038 then examine memory from there in forward direction. */
1039
1040 count = -count;
1041 if (format == 'i')
1042 {
1043 next_address = find_instruction_backward (gdbarch, addr, count,
1044 &count);
1045 }
1046 else if (format == 's')
1047 {
1048 next_address = find_string_backward (gdbarch, addr, count,
1049 TYPE_LENGTH (val_type),
1050 &opts, &count);
1051 }
1052 else
1053 {
1054 next_address = addr - count * TYPE_LENGTH (val_type);
1055 }
1056
1057 /* The following call to print_formatted updates next_address in every
1058 iteration. In backward case, we store the start address here
1059 and update next_address with it before exiting the function. */
1060 addr_rewound = (format == 's'
1061 ? next_address - TYPE_LENGTH (val_type)
1062 : next_address);
1063 need_to_update_next_address = 1;
1064 }
1065
1066 /* Print as many objects as specified in COUNT, at most maxelts per line,
1067 with the address of the next one at the start of each line. */
1068
1069 while (count > 0)
1070 {
1071 QUIT;
1072 if (format == 'i')
1073 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1074 print_address (next_gdbarch, next_address, gdb_stdout);
1075 printf_filtered (":");
1076 for (i = maxelts;
1077 i > 0 && count > 0;
1078 i--, count--)
1079 {
1080 printf_filtered ("\t");
1081 /* Note that print_formatted sets next_address for the next
1082 object. */
1083 last_examine_address = next_address;
1084
1085 /* The value to be displayed is not fetched greedily.
1086 Instead, to avoid the possibility of a fetched value not
1087 being used, its retrieval is delayed until the print code
1088 uses it. When examining an instruction stream, the
1089 disassembler will perform its own memory fetch using just
1090 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1091 the disassembler be modified so that LAST_EXAMINE_VALUE
1092 is left with the byte sequence from the last complete
1093 instruction fetched from memory? */
1094 last_examine_value
1095 = release_value (value_at_lazy (val_type, next_address));
1096
1097 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1098
1099 /* Display any branch delay slots following the final insn. */
1100 if (format == 'i' && count == 1)
1101 count += branch_delay_insns;
1102 }
1103 printf_filtered ("\n");
1104 }
1105
1106 if (need_to_update_next_address)
1107 next_address = addr_rewound;
1108 }
1109 \f
1110 static void
1111 validate_format (struct format_data fmt, const char *cmdname)
1112 {
1113 if (fmt.size != 0)
1114 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1115 if (fmt.count != 1)
1116 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1117 cmdname);
1118 if (fmt.format == 'i')
1119 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1120 fmt.format, cmdname);
1121 }
1122
1123 /* Parse print command format string into *OPTS and update *EXPP.
1124 CMDNAME should name the current command. */
1125
1126 void
1127 print_command_parse_format (const char **expp, const char *cmdname,
1128 value_print_options *opts)
1129 {
1130 const char *exp = *expp;
1131
1132 if (exp && *exp == '/')
1133 {
1134 format_data fmt;
1135
1136 exp++;
1137 fmt = decode_format (&exp, last_format, 0);
1138 validate_format (fmt, cmdname);
1139 last_format = fmt.format;
1140
1141 opts->format = fmt.format;
1142 opts->raw = fmt.raw;
1143 }
1144 else
1145 {
1146 opts->format = 0;
1147 opts->raw = 0;
1148 }
1149
1150 *expp = exp;
1151 }
1152
1153 /* See valprint.h. */
1154
1155 void
1156 print_value (value *val, const value_print_options &opts)
1157 {
1158 int histindex = record_latest_value (val);
1159
1160 annotate_value_history_begin (histindex, value_type (val));
1161
1162 printf_filtered ("$%d = ", histindex);
1163
1164 annotate_value_history_value ();
1165
1166 print_formatted (val, 0, &opts, gdb_stdout);
1167 printf_filtered ("\n");
1168
1169 annotate_value_history_end ();
1170 }
1171
1172 /* Implementation of the "print" and "call" commands. */
1173
1174 static void
1175 print_command_1 (const char *args, int voidprint)
1176 {
1177 struct value *val;
1178 value_print_options print_opts;
1179
1180 get_user_print_options (&print_opts);
1181 /* Override global settings with explicit options, if any. */
1182 auto group = make_value_print_options_def_group (&print_opts);
1183 gdb::option::process_options
1184 (&args, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group);
1185
1186 print_command_parse_format (&args, "print", &print_opts);
1187
1188 const char *exp = args;
1189
1190 if (exp != nullptr && *exp)
1191 {
1192 expression_up expr = parse_expression (exp);
1193 val = evaluate_expression (expr.get ());
1194 }
1195 else
1196 val = access_value_history (0);
1197
1198 if (voidprint || (val && value_type (val) &&
1199 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1200 print_value (val, print_opts);
1201 }
1202
1203 /* See valprint.h. */
1204
1205 void
1206 print_command_completer (struct cmd_list_element *ignore,
1207 completion_tracker &tracker,
1208 const char *text, const char * /*word*/)
1209 {
1210 const auto group = make_value_print_options_def_group (nullptr);
1211 if (gdb::option::complete_options
1212 (tracker, &text, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group))
1213 return;
1214
1215 const char *word = advance_to_expression_complete_word_point (tracker, text);
1216 expression_completer (ignore, tracker, text, word);
1217 }
1218
1219 static void
1220 print_command (const char *exp, int from_tty)
1221 {
1222 print_command_1 (exp, 1);
1223 }
1224
1225 /* Same as print, except it doesn't print void results. */
1226 static void
1227 call_command (const char *exp, int from_tty)
1228 {
1229 print_command_1 (exp, 0);
1230 }
1231
1232 /* Implementation of the "output" command. */
1233
1234 void
1235 output_command (const char *exp, int from_tty)
1236 {
1237 char format = 0;
1238 struct value *val;
1239 struct format_data fmt;
1240 struct value_print_options opts;
1241
1242 fmt.size = 0;
1243 fmt.raw = 0;
1244
1245 if (exp && *exp == '/')
1246 {
1247 exp++;
1248 fmt = decode_format (&exp, 0, 0);
1249 validate_format (fmt, "output");
1250 format = fmt.format;
1251 }
1252
1253 expression_up expr = parse_expression (exp);
1254
1255 val = evaluate_expression (expr.get ());
1256
1257 annotate_value_begin (value_type (val));
1258
1259 get_formatted_print_options (&opts, format);
1260 opts.raw = fmt.raw;
1261 print_formatted (val, fmt.size, &opts, gdb_stdout);
1262
1263 annotate_value_end ();
1264
1265 wrap_here ("");
1266 gdb_flush (gdb_stdout);
1267 }
1268
1269 static void
1270 set_command (const char *exp, int from_tty)
1271 {
1272 expression_up expr = parse_expression (exp);
1273
1274 if (expr->nelts >= 1)
1275 switch (expr->elts[0].opcode)
1276 {
1277 case UNOP_PREINCREMENT:
1278 case UNOP_POSTINCREMENT:
1279 case UNOP_PREDECREMENT:
1280 case UNOP_POSTDECREMENT:
1281 case BINOP_ASSIGN:
1282 case BINOP_ASSIGN_MODIFY:
1283 case BINOP_COMMA:
1284 break;
1285 default:
1286 warning
1287 (_("Expression is not an assignment (and might have no effect)"));
1288 }
1289
1290 evaluate_expression (expr.get ());
1291 }
1292
1293 static void
1294 info_symbol_command (const char *arg, int from_tty)
1295 {
1296 struct minimal_symbol *msymbol;
1297 struct obj_section *osect;
1298 CORE_ADDR addr, sect_addr;
1299 int matches = 0;
1300 unsigned int offset;
1301
1302 if (!arg)
1303 error_no_arg (_("address"));
1304
1305 addr = parse_and_eval_address (arg);
1306 for (objfile *objfile : current_program_space->objfiles ())
1307 ALL_OBJFILE_OSECTIONS (objfile, osect)
1308 {
1309 /* Only process each object file once, even if there's a separate
1310 debug file. */
1311 if (objfile->separate_debug_objfile_backlink)
1312 continue;
1313
1314 sect_addr = overlay_mapped_address (addr, osect);
1315
1316 if (obj_section_addr (osect) <= sect_addr
1317 && sect_addr < obj_section_endaddr (osect)
1318 && (msymbol
1319 = lookup_minimal_symbol_by_pc_section (sect_addr,
1320 osect).minsym))
1321 {
1322 const char *obj_name, *mapped, *sec_name, *msym_name;
1323 const char *loc_string;
1324
1325 matches = 1;
1326 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1327 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1328 sec_name = osect->the_bfd_section->name;
1329 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1330
1331 /* Don't print the offset if it is zero.
1332 We assume there's no need to handle i18n of "sym + offset". */
1333 std::string string_holder;
1334 if (offset)
1335 {
1336 string_holder = string_printf ("%s + %u", msym_name, offset);
1337 loc_string = string_holder.c_str ();
1338 }
1339 else
1340 loc_string = msym_name;
1341
1342 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1343 obj_name = objfile_name (osect->objfile);
1344
1345 if (MULTI_OBJFILE_P ())
1346 if (pc_in_unmapped_range (addr, osect))
1347 if (section_is_overlay (osect))
1348 printf_filtered (_("%s in load address range of "
1349 "%s overlay section %s of %s\n"),
1350 loc_string, mapped, sec_name, obj_name);
1351 else
1352 printf_filtered (_("%s in load address range of "
1353 "section %s of %s\n"),
1354 loc_string, sec_name, obj_name);
1355 else
1356 if (section_is_overlay (osect))
1357 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1358 loc_string, mapped, sec_name, obj_name);
1359 else
1360 printf_filtered (_("%s in section %s of %s\n"),
1361 loc_string, sec_name, obj_name);
1362 else
1363 if (pc_in_unmapped_range (addr, osect))
1364 if (section_is_overlay (osect))
1365 printf_filtered (_("%s in load address range of %s overlay "
1366 "section %s\n"),
1367 loc_string, mapped, sec_name);
1368 else
1369 printf_filtered
1370 (_("%s in load address range of section %s\n"),
1371 loc_string, sec_name);
1372 else
1373 if (section_is_overlay (osect))
1374 printf_filtered (_("%s in %s overlay section %s\n"),
1375 loc_string, mapped, sec_name);
1376 else
1377 printf_filtered (_("%s in section %s\n"),
1378 loc_string, sec_name);
1379 }
1380 }
1381 if (matches == 0)
1382 printf_filtered (_("No symbol matches %s.\n"), arg);
1383 }
1384
1385 static void
1386 info_address_command (const char *exp, int from_tty)
1387 {
1388 struct gdbarch *gdbarch;
1389 int regno;
1390 struct symbol *sym;
1391 struct bound_minimal_symbol msymbol;
1392 long val;
1393 struct obj_section *section;
1394 CORE_ADDR load_addr, context_pc = 0;
1395 struct field_of_this_result is_a_field_of_this;
1396
1397 if (exp == 0)
1398 error (_("Argument required."));
1399
1400 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1401 &is_a_field_of_this).symbol;
1402 if (sym == NULL)
1403 {
1404 if (is_a_field_of_this.type != NULL)
1405 {
1406 printf_filtered ("Symbol \"");
1407 fprintf_symbol_filtered (gdb_stdout, exp,
1408 current_language->la_language, DMGL_ANSI);
1409 printf_filtered ("\" is a field of the local class variable ");
1410 if (current_language->la_language == language_objc)
1411 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1412 else
1413 printf_filtered ("`this'\n");
1414 return;
1415 }
1416
1417 msymbol = lookup_bound_minimal_symbol (exp);
1418
1419 if (msymbol.minsym != NULL)
1420 {
1421 struct objfile *objfile = msymbol.objfile;
1422
1423 gdbarch = get_objfile_arch (objfile);
1424 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1425
1426 printf_filtered ("Symbol \"");
1427 fprintf_symbol_filtered (gdb_stdout, exp,
1428 current_language->la_language, DMGL_ANSI);
1429 printf_filtered ("\" is at ");
1430 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1431 gdb_stdout);
1432 printf_filtered (" in a file compiled without debugging");
1433 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1434 if (section_is_overlay (section))
1435 {
1436 load_addr = overlay_unmapped_address (load_addr, section);
1437 printf_filtered (",\n -- loaded at ");
1438 fputs_styled (paddress (gdbarch, load_addr),
1439 address_style.style (),
1440 gdb_stdout);
1441 printf_filtered (" in overlay section %s",
1442 section->the_bfd_section->name);
1443 }
1444 printf_filtered (".\n");
1445 }
1446 else
1447 error (_("No symbol \"%s\" in current context."), exp);
1448 return;
1449 }
1450
1451 printf_filtered ("Symbol \"");
1452 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1453 current_language->la_language, DMGL_ANSI);
1454 printf_filtered ("\" is ");
1455 val = SYMBOL_VALUE (sym);
1456 if (SYMBOL_OBJFILE_OWNED (sym))
1457 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1458 else
1459 section = NULL;
1460 gdbarch = symbol_arch (sym);
1461
1462 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1463 {
1464 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1465 gdb_stdout);
1466 printf_filtered (".\n");
1467 return;
1468 }
1469
1470 switch (SYMBOL_CLASS (sym))
1471 {
1472 case LOC_CONST:
1473 case LOC_CONST_BYTES:
1474 printf_filtered ("constant");
1475 break;
1476
1477 case LOC_LABEL:
1478 printf_filtered ("a label at address ");
1479 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1480 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1481 gdb_stdout);
1482 if (section_is_overlay (section))
1483 {
1484 load_addr = overlay_unmapped_address (load_addr, section);
1485 printf_filtered (",\n -- loaded at ");
1486 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1487 gdb_stdout);
1488 printf_filtered (" in overlay section %s",
1489 section->the_bfd_section->name);
1490 }
1491 break;
1492
1493 case LOC_COMPUTED:
1494 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1495
1496 case LOC_REGISTER:
1497 /* GDBARCH is the architecture associated with the objfile the symbol
1498 is defined in; the target architecture may be different, and may
1499 provide additional registers. However, we do not know the target
1500 architecture at this point. We assume the objfile architecture
1501 will contain all the standard registers that occur in debug info
1502 in that objfile. */
1503 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1504
1505 if (SYMBOL_IS_ARGUMENT (sym))
1506 printf_filtered (_("an argument in register %s"),
1507 gdbarch_register_name (gdbarch, regno));
1508 else
1509 printf_filtered (_("a variable in register %s"),
1510 gdbarch_register_name (gdbarch, regno));
1511 break;
1512
1513 case LOC_STATIC:
1514 printf_filtered (_("static storage at address "));
1515 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1516 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1517 gdb_stdout);
1518 if (section_is_overlay (section))
1519 {
1520 load_addr = overlay_unmapped_address (load_addr, section);
1521 printf_filtered (_(",\n -- loaded at "));
1522 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1523 gdb_stdout);
1524 printf_filtered (_(" in overlay section %s"),
1525 section->the_bfd_section->name);
1526 }
1527 break;
1528
1529 case LOC_REGPARM_ADDR:
1530 /* Note comment at LOC_REGISTER. */
1531 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1532 printf_filtered (_("address of an argument in register %s"),
1533 gdbarch_register_name (gdbarch, regno));
1534 break;
1535
1536 case LOC_ARG:
1537 printf_filtered (_("an argument at offset %ld"), val);
1538 break;
1539
1540 case LOC_LOCAL:
1541 printf_filtered (_("a local variable at frame offset %ld"), val);
1542 break;
1543
1544 case LOC_REF_ARG:
1545 printf_filtered (_("a reference argument at offset %ld"), val);
1546 break;
1547
1548 case LOC_TYPEDEF:
1549 printf_filtered (_("a typedef"));
1550 break;
1551
1552 case LOC_BLOCK:
1553 printf_filtered (_("a function at address "));
1554 load_addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1555 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1556 gdb_stdout);
1557 if (section_is_overlay (section))
1558 {
1559 load_addr = overlay_unmapped_address (load_addr, section);
1560 printf_filtered (_(",\n -- loaded at "));
1561 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1562 gdb_stdout);
1563 printf_filtered (_(" in overlay section %s"),
1564 section->the_bfd_section->name);
1565 }
1566 break;
1567
1568 case LOC_UNRESOLVED:
1569 {
1570 struct bound_minimal_symbol msym;
1571
1572 msym = lookup_bound_minimal_symbol (SYMBOL_LINKAGE_NAME (sym));
1573 if (msym.minsym == NULL)
1574 printf_filtered ("unresolved");
1575 else
1576 {
1577 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1578
1579 if (section
1580 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1581 {
1582 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1583 printf_filtered (_("a thread-local variable at offset %s "
1584 "in the thread-local storage for `%s'"),
1585 paddress (gdbarch, load_addr),
1586 objfile_name (section->objfile));
1587 }
1588 else
1589 {
1590 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1591 printf_filtered (_("static storage at address "));
1592 fputs_styled (paddress (gdbarch, load_addr),
1593 address_style.style (), gdb_stdout);
1594 if (section_is_overlay (section))
1595 {
1596 load_addr = overlay_unmapped_address (load_addr, section);
1597 printf_filtered (_(",\n -- loaded at "));
1598 fputs_styled (paddress (gdbarch, load_addr),
1599 address_style.style (),
1600 gdb_stdout);
1601 printf_filtered (_(" in overlay section %s"),
1602 section->the_bfd_section->name);
1603 }
1604 }
1605 }
1606 }
1607 break;
1608
1609 case LOC_OPTIMIZED_OUT:
1610 printf_filtered (_("optimized out"));
1611 break;
1612
1613 default:
1614 printf_filtered (_("of unknown (botched) type"));
1615 break;
1616 }
1617 printf_filtered (".\n");
1618 }
1619 \f
1620
1621 static void
1622 x_command (const char *exp, int from_tty)
1623 {
1624 struct format_data fmt;
1625 struct value *val;
1626
1627 fmt.format = last_format ? last_format : 'x';
1628 fmt.size = last_size;
1629 fmt.count = 1;
1630 fmt.raw = 0;
1631
1632 /* If there is no expression and no format, use the most recent
1633 count. */
1634 if (exp == nullptr && last_count > 0)
1635 fmt.count = last_count;
1636
1637 if (exp && *exp == '/')
1638 {
1639 const char *tmp = exp + 1;
1640
1641 fmt = decode_format (&tmp, last_format, last_size);
1642 exp = (char *) tmp;
1643 }
1644
1645 last_count = fmt.count;
1646
1647 /* If we have an expression, evaluate it and use it as the address. */
1648
1649 if (exp != 0 && *exp != 0)
1650 {
1651 expression_up expr = parse_expression (exp);
1652 /* Cause expression not to be there any more if this command is
1653 repeated with Newline. But don't clobber a user-defined
1654 command's definition. */
1655 if (from_tty)
1656 set_repeat_arguments ("");
1657 val = evaluate_expression (expr.get ());
1658 if (TYPE_IS_REFERENCE (value_type (val)))
1659 val = coerce_ref (val);
1660 /* In rvalue contexts, such as this, functions are coerced into
1661 pointers to functions. This makes "x/i main" work. */
1662 if (/* last_format == 'i' && */
1663 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1664 && VALUE_LVAL (val) == lval_memory)
1665 next_address = value_address (val);
1666 else
1667 next_address = value_as_address (val);
1668
1669 next_gdbarch = expr->gdbarch;
1670 }
1671
1672 if (!next_gdbarch)
1673 error_no_arg (_("starting display address"));
1674
1675 do_examine (fmt, next_gdbarch, next_address);
1676
1677 /* If the examine succeeds, we remember its size and format for next
1678 time. Set last_size to 'b' for strings. */
1679 if (fmt.format == 's')
1680 last_size = 'b';
1681 else
1682 last_size = fmt.size;
1683 last_format = fmt.format;
1684
1685 /* Set a couple of internal variables if appropriate. */
1686 if (last_examine_value != nullptr)
1687 {
1688 /* Make last address examined available to the user as $_. Use
1689 the correct pointer type. */
1690 struct type *pointer_type
1691 = lookup_pointer_type (value_type (last_examine_value.get ()));
1692 set_internalvar (lookup_internalvar ("_"),
1693 value_from_pointer (pointer_type,
1694 last_examine_address));
1695
1696 /* Make contents of last address examined available to the user
1697 as $__. If the last value has not been fetched from memory
1698 then don't fetch it now; instead mark it by voiding the $__
1699 variable. */
1700 if (value_lazy (last_examine_value.get ()))
1701 clear_internalvar (lookup_internalvar ("__"));
1702 else
1703 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1704 }
1705 }
1706 \f
1707
1708 /* Add an expression to the auto-display chain.
1709 Specify the expression. */
1710
1711 static void
1712 display_command (const char *arg, int from_tty)
1713 {
1714 struct format_data fmt;
1715 struct display *newobj;
1716 const char *exp = arg;
1717
1718 if (exp == 0)
1719 {
1720 do_displays ();
1721 return;
1722 }
1723
1724 if (*exp == '/')
1725 {
1726 exp++;
1727 fmt = decode_format (&exp, 0, 0);
1728 if (fmt.size && fmt.format == 0)
1729 fmt.format = 'x';
1730 if (fmt.format == 'i' || fmt.format == 's')
1731 fmt.size = 'b';
1732 }
1733 else
1734 {
1735 fmt.format = 0;
1736 fmt.size = 0;
1737 fmt.count = 0;
1738 fmt.raw = 0;
1739 }
1740
1741 innermost_block_tracker tracker;
1742 expression_up expr = parse_expression (exp, &tracker);
1743
1744 newobj = new display ();
1745
1746 newobj->exp_string = xstrdup (exp);
1747 newobj->exp = std::move (expr);
1748 newobj->block = tracker.block ();
1749 newobj->pspace = current_program_space;
1750 newobj->number = ++display_number;
1751 newobj->format = fmt;
1752 newobj->enabled_p = 1;
1753 newobj->next = NULL;
1754
1755 if (display_chain == NULL)
1756 display_chain = newobj;
1757 else
1758 {
1759 struct display *last;
1760
1761 for (last = display_chain; last->next != NULL; last = last->next)
1762 ;
1763 last->next = newobj;
1764 }
1765
1766 if (from_tty)
1767 do_one_display (newobj);
1768
1769 dont_repeat ();
1770 }
1771
1772 static void
1773 free_display (struct display *d)
1774 {
1775 xfree (d->exp_string);
1776 delete d;
1777 }
1778
1779 /* Clear out the display_chain. Done when new symtabs are loaded,
1780 since this invalidates the types stored in many expressions. */
1781
1782 void
1783 clear_displays (void)
1784 {
1785 struct display *d;
1786
1787 while ((d = display_chain) != NULL)
1788 {
1789 display_chain = d->next;
1790 free_display (d);
1791 }
1792 }
1793
1794 /* Delete the auto-display DISPLAY. */
1795
1796 static void
1797 delete_display (struct display *display)
1798 {
1799 struct display *d;
1800
1801 gdb_assert (display != NULL);
1802
1803 if (display_chain == display)
1804 display_chain = display->next;
1805
1806 ALL_DISPLAYS (d)
1807 if (d->next == display)
1808 {
1809 d->next = display->next;
1810 break;
1811 }
1812
1813 free_display (display);
1814 }
1815
1816 /* Call FUNCTION on each of the displays whose numbers are given in
1817 ARGS. DATA is passed unmodified to FUNCTION. */
1818
1819 static void
1820 map_display_numbers (const char *args,
1821 void (*function) (struct display *,
1822 void *),
1823 void *data)
1824 {
1825 int num;
1826
1827 if (args == NULL)
1828 error_no_arg (_("one or more display numbers"));
1829
1830 number_or_range_parser parser (args);
1831
1832 while (!parser.finished ())
1833 {
1834 const char *p = parser.cur_tok ();
1835
1836 num = parser.get_number ();
1837 if (num == 0)
1838 warning (_("bad display number at or near '%s'"), p);
1839 else
1840 {
1841 struct display *d, *tmp;
1842
1843 ALL_DISPLAYS_SAFE (d, tmp)
1844 if (d->number == num)
1845 break;
1846 if (d == NULL)
1847 printf_unfiltered (_("No display number %d.\n"), num);
1848 else
1849 function (d, data);
1850 }
1851 }
1852 }
1853
1854 /* Callback for map_display_numbers, that deletes a display. */
1855
1856 static void
1857 do_delete_display (struct display *d, void *data)
1858 {
1859 delete_display (d);
1860 }
1861
1862 /* "undisplay" command. */
1863
1864 static void
1865 undisplay_command (const char *args, int from_tty)
1866 {
1867 if (args == NULL)
1868 {
1869 if (query (_("Delete all auto-display expressions? ")))
1870 clear_displays ();
1871 dont_repeat ();
1872 return;
1873 }
1874
1875 map_display_numbers (args, do_delete_display, NULL);
1876 dont_repeat ();
1877 }
1878
1879 /* Display a single auto-display.
1880 Do nothing if the display cannot be printed in the current context,
1881 or if the display is disabled. */
1882
1883 static void
1884 do_one_display (struct display *d)
1885 {
1886 int within_current_scope;
1887
1888 if (d->enabled_p == 0)
1889 return;
1890
1891 /* The expression carries the architecture that was used at parse time.
1892 This is a problem if the expression depends on architecture features
1893 (e.g. register numbers), and the current architecture is now different.
1894 For example, a display statement like "display/i $pc" is expected to
1895 display the PC register of the current architecture, not the arch at
1896 the time the display command was given. Therefore, we re-parse the
1897 expression if the current architecture has changed. */
1898 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1899 {
1900 d->exp.reset ();
1901 d->block = NULL;
1902 }
1903
1904 if (d->exp == NULL)
1905 {
1906
1907 try
1908 {
1909 innermost_block_tracker tracker;
1910 d->exp = parse_expression (d->exp_string, &tracker);
1911 d->block = tracker.block ();
1912 }
1913 catch (const gdb_exception &ex)
1914 {
1915 /* Can't re-parse the expression. Disable this display item. */
1916 d->enabled_p = 0;
1917 warning (_("Unable to display \"%s\": %s"),
1918 d->exp_string, ex.what ());
1919 return;
1920 }
1921 }
1922
1923 if (d->block)
1924 {
1925 if (d->pspace == current_program_space)
1926 within_current_scope = contained_in (get_selected_block (0), d->block);
1927 else
1928 within_current_scope = 0;
1929 }
1930 else
1931 within_current_scope = 1;
1932 if (!within_current_scope)
1933 return;
1934
1935 scoped_restore save_display_number
1936 = make_scoped_restore (&current_display_number, d->number);
1937
1938 annotate_display_begin ();
1939 printf_filtered ("%d", d->number);
1940 annotate_display_number_end ();
1941 printf_filtered (": ");
1942 if (d->format.size)
1943 {
1944
1945 annotate_display_format ();
1946
1947 printf_filtered ("x/");
1948 if (d->format.count != 1)
1949 printf_filtered ("%d", d->format.count);
1950 printf_filtered ("%c", d->format.format);
1951 if (d->format.format != 'i' && d->format.format != 's')
1952 printf_filtered ("%c", d->format.size);
1953 printf_filtered (" ");
1954
1955 annotate_display_expression ();
1956
1957 puts_filtered (d->exp_string);
1958 annotate_display_expression_end ();
1959
1960 if (d->format.count != 1 || d->format.format == 'i')
1961 printf_filtered ("\n");
1962 else
1963 printf_filtered (" ");
1964
1965 annotate_display_value ();
1966
1967 try
1968 {
1969 struct value *val;
1970 CORE_ADDR addr;
1971
1972 val = evaluate_expression (d->exp.get ());
1973 addr = value_as_address (val);
1974 if (d->format.format == 'i')
1975 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1976 do_examine (d->format, d->exp->gdbarch, addr);
1977 }
1978 catch (const gdb_exception_error &ex)
1979 {
1980 fprintf_filtered (gdb_stdout, _("<error: %s>\n"),
1981 ex.what ());
1982 }
1983 }
1984 else
1985 {
1986 struct value_print_options opts;
1987
1988 annotate_display_format ();
1989
1990 if (d->format.format)
1991 printf_filtered ("/%c ", d->format.format);
1992
1993 annotate_display_expression ();
1994
1995 puts_filtered (d->exp_string);
1996 annotate_display_expression_end ();
1997
1998 printf_filtered (" = ");
1999
2000 annotate_display_expression ();
2001
2002 get_formatted_print_options (&opts, d->format.format);
2003 opts.raw = d->format.raw;
2004
2005 try
2006 {
2007 struct value *val;
2008
2009 val = evaluate_expression (d->exp.get ());
2010 print_formatted (val, d->format.size, &opts, gdb_stdout);
2011 }
2012 catch (const gdb_exception_error &ex)
2013 {
2014 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.what ());
2015 }
2016
2017 printf_filtered ("\n");
2018 }
2019
2020 annotate_display_end ();
2021
2022 gdb_flush (gdb_stdout);
2023 }
2024
2025 /* Display all of the values on the auto-display chain which can be
2026 evaluated in the current scope. */
2027
2028 void
2029 do_displays (void)
2030 {
2031 struct display *d;
2032
2033 for (d = display_chain; d; d = d->next)
2034 do_one_display (d);
2035 }
2036
2037 /* Delete the auto-display which we were in the process of displaying.
2038 This is done when there is an error or a signal. */
2039
2040 void
2041 disable_display (int num)
2042 {
2043 struct display *d;
2044
2045 for (d = display_chain; d; d = d->next)
2046 if (d->number == num)
2047 {
2048 d->enabled_p = 0;
2049 return;
2050 }
2051 printf_unfiltered (_("No display number %d.\n"), num);
2052 }
2053
2054 void
2055 disable_current_display (void)
2056 {
2057 if (current_display_number >= 0)
2058 {
2059 disable_display (current_display_number);
2060 fprintf_unfiltered (gdb_stderr,
2061 _("Disabling display %d to "
2062 "avoid infinite recursion.\n"),
2063 current_display_number);
2064 }
2065 current_display_number = -1;
2066 }
2067
2068 static void
2069 info_display_command (const char *ignore, int from_tty)
2070 {
2071 struct display *d;
2072
2073 if (!display_chain)
2074 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2075 else
2076 printf_filtered (_("Auto-display expressions now in effect:\n\
2077 Num Enb Expression\n"));
2078
2079 for (d = display_chain; d; d = d->next)
2080 {
2081 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2082 if (d->format.size)
2083 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2084 d->format.format);
2085 else if (d->format.format)
2086 printf_filtered ("/%c ", d->format.format);
2087 puts_filtered (d->exp_string);
2088 if (d->block && !contained_in (get_selected_block (0), d->block))
2089 printf_filtered (_(" (cannot be evaluated in the current context)"));
2090 printf_filtered ("\n");
2091 }
2092 }
2093
2094 /* Callback fo map_display_numbers, that enables or disables the
2095 passed in display D. */
2096
2097 static void
2098 do_enable_disable_display (struct display *d, void *data)
2099 {
2100 d->enabled_p = *(int *) data;
2101 }
2102
2103 /* Implamentation of both the "disable display" and "enable display"
2104 commands. ENABLE decides what to do. */
2105
2106 static void
2107 enable_disable_display_command (const char *args, int from_tty, int enable)
2108 {
2109 if (args == NULL)
2110 {
2111 struct display *d;
2112
2113 ALL_DISPLAYS (d)
2114 d->enabled_p = enable;
2115 return;
2116 }
2117
2118 map_display_numbers (args, do_enable_disable_display, &enable);
2119 }
2120
2121 /* The "enable display" command. */
2122
2123 static void
2124 enable_display_command (const char *args, int from_tty)
2125 {
2126 enable_disable_display_command (args, from_tty, 1);
2127 }
2128
2129 /* The "disable display" command. */
2130
2131 static void
2132 disable_display_command (const char *args, int from_tty)
2133 {
2134 enable_disable_display_command (args, from_tty, 0);
2135 }
2136
2137 /* display_chain items point to blocks and expressions. Some expressions in
2138 turn may point to symbols.
2139 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2140 obstack_free'd when a shared library is unloaded.
2141 Clear pointers that are about to become dangling.
2142 Both .exp and .block fields will be restored next time we need to display
2143 an item by re-parsing .exp_string field in the new execution context. */
2144
2145 static void
2146 clear_dangling_display_expressions (struct objfile *objfile)
2147 {
2148 struct display *d;
2149 struct program_space *pspace;
2150
2151 /* With no symbol file we cannot have a block or expression from it. */
2152 if (objfile == NULL)
2153 return;
2154 pspace = objfile->pspace;
2155 if (objfile->separate_debug_objfile_backlink)
2156 {
2157 objfile = objfile->separate_debug_objfile_backlink;
2158 gdb_assert (objfile->pspace == pspace);
2159 }
2160
2161 for (d = display_chain; d != NULL; d = d->next)
2162 {
2163 if (d->pspace != pspace)
2164 continue;
2165
2166 if (lookup_objfile_from_block (d->block) == objfile
2167 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2168 {
2169 d->exp.reset ();
2170 d->block = NULL;
2171 }
2172 }
2173 }
2174 \f
2175
2176 /* Print the value in stack frame FRAME of a variable specified by a
2177 struct symbol. NAME is the name to print; if NULL then VAR's print
2178 name will be used. STREAM is the ui_file on which to print the
2179 value. INDENT specifies the number of indent levels to print
2180 before printing the variable name.
2181
2182 This function invalidates FRAME. */
2183
2184 void
2185 print_variable_and_value (const char *name, struct symbol *var,
2186 struct frame_info *frame,
2187 struct ui_file *stream, int indent)
2188 {
2189
2190 if (!name)
2191 name = SYMBOL_PRINT_NAME (var);
2192
2193 fputs_filtered (n_spaces (2 * indent), stream);
2194 fputs_styled (name, variable_name_style.style (), stream);
2195 fputs_filtered (" = ", stream);
2196
2197 try
2198 {
2199 struct value *val;
2200 struct value_print_options opts;
2201
2202 /* READ_VAR_VALUE needs a block in order to deal with non-local
2203 references (i.e. to handle nested functions). In this context, we
2204 print variables that are local to this frame, so we can avoid passing
2205 a block to it. */
2206 val = read_var_value (var, NULL, frame);
2207 get_user_print_options (&opts);
2208 opts.deref_ref = 1;
2209 common_val_print (val, stream, indent, &opts, current_language);
2210
2211 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2212 function. */
2213 frame = NULL;
2214 }
2215 catch (const gdb_exception_error &except)
2216 {
2217 fprintf_filtered (stream, "<error reading variable %s (%s)>", name,
2218 except.what ());
2219 }
2220
2221 fprintf_filtered (stream, "\n");
2222 }
2223
2224 /* Subroutine of ui_printf to simplify it.
2225 Print VALUE to STREAM using FORMAT.
2226 VALUE is a C-style string either on the target or
2227 in a GDB internal variable. */
2228
2229 static void
2230 printf_c_string (struct ui_file *stream, const char *format,
2231 struct value *value)
2232 {
2233 const gdb_byte *str;
2234
2235 if (VALUE_LVAL (value) == lval_internalvar
2236 && c_is_string_type_p (value_type (value)))
2237 {
2238 size_t len = TYPE_LENGTH (value_type (value));
2239
2240 /* Copy the internal var value to TEM_STR and append a terminating null
2241 character. This protects against corrupted C-style strings that lack
2242 the terminating null char. It also allows Ada-style strings (not
2243 null terminated) to be printed without problems. */
2244 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2245
2246 memcpy (tem_str, value_contents (value), len);
2247 tem_str [len] = 0;
2248 str = tem_str;
2249 }
2250 else
2251 {
2252 CORE_ADDR tem = value_as_address (value);;
2253
2254 if (tem == 0)
2255 {
2256 DIAGNOSTIC_PUSH
2257 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2258 fprintf_filtered (stream, format, "(null)");
2259 DIAGNOSTIC_POP
2260 return;
2261 }
2262
2263 /* This is a %s argument. Find the length of the string. */
2264 size_t len;
2265
2266 for (len = 0;; len++)
2267 {
2268 gdb_byte c;
2269
2270 QUIT;
2271 read_memory (tem + len, &c, 1);
2272 if (c == 0)
2273 break;
2274 }
2275
2276 /* Copy the string contents into a string inside GDB. */
2277 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2278
2279 if (len != 0)
2280 read_memory (tem, tem_str, len);
2281 tem_str[len] = 0;
2282 str = tem_str;
2283 }
2284
2285 DIAGNOSTIC_PUSH
2286 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2287 fprintf_filtered (stream, format, (char *) str);
2288 DIAGNOSTIC_POP
2289 }
2290
2291 /* Subroutine of ui_printf to simplify it.
2292 Print VALUE to STREAM using FORMAT.
2293 VALUE is a wide C-style string on the target or
2294 in a GDB internal variable. */
2295
2296 static void
2297 printf_wide_c_string (struct ui_file *stream, const char *format,
2298 struct value *value)
2299 {
2300 const gdb_byte *str;
2301 size_t len;
2302 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2303 struct type *wctype = lookup_typename (current_language, gdbarch,
2304 "wchar_t", NULL, 0);
2305 int wcwidth = TYPE_LENGTH (wctype);
2306
2307 if (VALUE_LVAL (value) == lval_internalvar
2308 && c_is_string_type_p (value_type (value)))
2309 {
2310 str = value_contents (value);
2311 len = TYPE_LENGTH (value_type (value));
2312 }
2313 else
2314 {
2315 CORE_ADDR tem = value_as_address (value);
2316
2317 if (tem == 0)
2318 {
2319 DIAGNOSTIC_PUSH
2320 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2321 fprintf_filtered (stream, format, "(null)");
2322 DIAGNOSTIC_POP
2323 return;
2324 }
2325
2326 /* This is a %s argument. Find the length of the string. */
2327 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2328 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2329
2330 for (len = 0;; len += wcwidth)
2331 {
2332 QUIT;
2333 read_memory (tem + len, buf, wcwidth);
2334 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2335 break;
2336 }
2337
2338 /* Copy the string contents into a string inside GDB. */
2339 gdb_byte *tem_str = (gdb_byte *) alloca (len + wcwidth);
2340
2341 if (len != 0)
2342 read_memory (tem, tem_str, len);
2343 memset (&tem_str[len], 0, wcwidth);
2344 str = tem_str;
2345 }
2346
2347 auto_obstack output;
2348
2349 convert_between_encodings (target_wide_charset (gdbarch),
2350 host_charset (),
2351 str, len, wcwidth,
2352 &output, translit_char);
2353 obstack_grow_str0 (&output, "");
2354
2355 DIAGNOSTIC_PUSH
2356 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2357 fprintf_filtered (stream, format, obstack_base (&output));
2358 DIAGNOSTIC_POP
2359 }
2360
2361 /* Subroutine of ui_printf to simplify it.
2362 Print VALUE, a floating point value, to STREAM using FORMAT. */
2363
2364 static void
2365 printf_floating (struct ui_file *stream, const char *format,
2366 struct value *value, enum argclass argclass)
2367 {
2368 /* Parameter data. */
2369 struct type *param_type = value_type (value);
2370 struct gdbarch *gdbarch = get_type_arch (param_type);
2371
2372 /* Determine target type corresponding to the format string. */
2373 struct type *fmt_type;
2374 switch (argclass)
2375 {
2376 case double_arg:
2377 fmt_type = builtin_type (gdbarch)->builtin_double;
2378 break;
2379 case long_double_arg:
2380 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2381 break;
2382 case dec32float_arg:
2383 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2384 break;
2385 case dec64float_arg:
2386 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2387 break;
2388 case dec128float_arg:
2389 fmt_type = builtin_type (gdbarch)->builtin_declong;
2390 break;
2391 default:
2392 gdb_assert_not_reached ("unexpected argument class");
2393 }
2394
2395 /* To match the traditional GDB behavior, the conversion is
2396 done differently depending on the type of the parameter:
2397
2398 - if the parameter has floating-point type, it's value
2399 is converted to the target type;
2400
2401 - otherwise, if the parameter has a type that is of the
2402 same size as a built-in floating-point type, the value
2403 bytes are interpreted as if they were of that type, and
2404 then converted to the target type (this is not done for
2405 decimal floating-point argument classes);
2406
2407 - otherwise, if the source value has an integer value,
2408 it's value is converted to the target type;
2409
2410 - otherwise, an error is raised.
2411
2412 In either case, the result of the conversion is a byte buffer
2413 formatted in the target format for the target type. */
2414
2415 if (TYPE_CODE (fmt_type) == TYPE_CODE_FLT)
2416 {
2417 param_type = float_type_from_length (param_type);
2418 if (param_type != value_type (value))
2419 value = value_from_contents (param_type, value_contents (value));
2420 }
2421
2422 value = value_cast (fmt_type, value);
2423
2424 /* Convert the value to a string and print it. */
2425 std::string str
2426 = target_float_to_string (value_contents (value), fmt_type, format);
2427 fputs_filtered (str.c_str (), stream);
2428 }
2429
2430 /* Subroutine of ui_printf to simplify it.
2431 Print VALUE, a target pointer, to STREAM using FORMAT. */
2432
2433 static void
2434 printf_pointer (struct ui_file *stream, const char *format,
2435 struct value *value)
2436 {
2437 /* We avoid the host's %p because pointers are too
2438 likely to be the wrong size. The only interesting
2439 modifier for %p is a width; extract that, and then
2440 handle %p as glibc would: %#x or a literal "(nil)". */
2441
2442 const char *p;
2443 char *fmt, *fmt_p;
2444 #ifdef PRINTF_HAS_LONG_LONG
2445 long long val = value_as_long (value);
2446 #else
2447 long val = value_as_long (value);
2448 #endif
2449
2450 fmt = (char *) alloca (strlen (format) + 5);
2451
2452 /* Copy up to the leading %. */
2453 p = format;
2454 fmt_p = fmt;
2455 while (*p)
2456 {
2457 int is_percent = (*p == '%');
2458
2459 *fmt_p++ = *p++;
2460 if (is_percent)
2461 {
2462 if (*p == '%')
2463 *fmt_p++ = *p++;
2464 else
2465 break;
2466 }
2467 }
2468
2469 if (val != 0)
2470 *fmt_p++ = '#';
2471
2472 /* Copy any width or flags. Only the "-" flag is valid for pointers
2473 -- see the format_pieces constructor. */
2474 while (*p == '-' || (*p >= '0' && *p < '9'))
2475 *fmt_p++ = *p++;
2476
2477 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2478 if (val != 0)
2479 {
2480 #ifdef PRINTF_HAS_LONG_LONG
2481 *fmt_p++ = 'l';
2482 #endif
2483 *fmt_p++ = 'l';
2484 *fmt_p++ = 'x';
2485 *fmt_p++ = '\0';
2486 DIAGNOSTIC_PUSH
2487 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2488 fprintf_filtered (stream, fmt, val);
2489 DIAGNOSTIC_POP
2490 }
2491 else
2492 {
2493 *fmt_p++ = 's';
2494 *fmt_p++ = '\0';
2495 DIAGNOSTIC_PUSH
2496 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2497 fprintf_filtered (stream, fmt, "(nil)");
2498 DIAGNOSTIC_POP
2499 }
2500 }
2501
2502 /* printf "printf format string" ARG to STREAM. */
2503
2504 static void
2505 ui_printf (const char *arg, struct ui_file *stream)
2506 {
2507 const char *s = arg;
2508 std::vector<struct value *> val_args;
2509
2510 if (s == 0)
2511 error_no_arg (_("format-control string and values to print"));
2512
2513 s = skip_spaces (s);
2514
2515 /* A format string should follow, enveloped in double quotes. */
2516 if (*s++ != '"')
2517 error (_("Bad format string, missing '\"'."));
2518
2519 format_pieces fpieces (&s);
2520
2521 if (*s++ != '"')
2522 error (_("Bad format string, non-terminated '\"'."));
2523
2524 s = skip_spaces (s);
2525
2526 if (*s != ',' && *s != 0)
2527 error (_("Invalid argument syntax"));
2528
2529 if (*s == ',')
2530 s++;
2531 s = skip_spaces (s);
2532
2533 {
2534 int nargs_wanted;
2535 int i;
2536 const char *current_substring;
2537
2538 nargs_wanted = 0;
2539 for (auto &&piece : fpieces)
2540 if (piece.argclass != literal_piece)
2541 ++nargs_wanted;
2542
2543 /* Now, parse all arguments and evaluate them.
2544 Store the VALUEs in VAL_ARGS. */
2545
2546 while (*s != '\0')
2547 {
2548 const char *s1;
2549
2550 s1 = s;
2551 val_args.push_back (parse_to_comma_and_eval (&s1));
2552
2553 s = s1;
2554 if (*s == ',')
2555 s++;
2556 }
2557
2558 if (val_args.size () != nargs_wanted)
2559 error (_("Wrong number of arguments for specified format-string"));
2560
2561 /* Now actually print them. */
2562 i = 0;
2563 for (auto &&piece : fpieces)
2564 {
2565 current_substring = piece.string;
2566 switch (piece.argclass)
2567 {
2568 case string_arg:
2569 printf_c_string (stream, current_substring, val_args[i]);
2570 break;
2571 case wide_string_arg:
2572 printf_wide_c_string (stream, current_substring, val_args[i]);
2573 break;
2574 case wide_char_arg:
2575 {
2576 struct gdbarch *gdbarch
2577 = get_type_arch (value_type (val_args[i]));
2578 struct type *wctype = lookup_typename (current_language, gdbarch,
2579 "wchar_t", NULL, 0);
2580 struct type *valtype;
2581 const gdb_byte *bytes;
2582
2583 valtype = value_type (val_args[i]);
2584 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2585 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2586 error (_("expected wchar_t argument for %%lc"));
2587
2588 bytes = value_contents (val_args[i]);
2589
2590 auto_obstack output;
2591
2592 convert_between_encodings (target_wide_charset (gdbarch),
2593 host_charset (),
2594 bytes, TYPE_LENGTH (valtype),
2595 TYPE_LENGTH (valtype),
2596 &output, translit_char);
2597 obstack_grow_str0 (&output, "");
2598
2599 DIAGNOSTIC_PUSH
2600 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2601 fprintf_filtered (stream, current_substring,
2602 obstack_base (&output));
2603 DIAGNOSTIC_POP
2604 }
2605 break;
2606 case long_long_arg:
2607 #ifdef PRINTF_HAS_LONG_LONG
2608 {
2609 long long val = value_as_long (val_args[i]);
2610
2611 DIAGNOSTIC_PUSH
2612 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2613 fprintf_filtered (stream, current_substring, val);
2614 DIAGNOSTIC_POP
2615 break;
2616 }
2617 #else
2618 error (_("long long not supported in printf"));
2619 #endif
2620 case int_arg:
2621 {
2622 int val = value_as_long (val_args[i]);
2623
2624 DIAGNOSTIC_PUSH
2625 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2626 fprintf_filtered (stream, current_substring, val);
2627 DIAGNOSTIC_POP
2628 break;
2629 }
2630 case long_arg:
2631 {
2632 long val = value_as_long (val_args[i]);
2633
2634 DIAGNOSTIC_PUSH
2635 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2636 fprintf_filtered (stream, current_substring, val);
2637 DIAGNOSTIC_POP
2638 break;
2639 }
2640 /* Handles floating-point values. */
2641 case double_arg:
2642 case long_double_arg:
2643 case dec32float_arg:
2644 case dec64float_arg:
2645 case dec128float_arg:
2646 printf_floating (stream, current_substring, val_args[i],
2647 piece.argclass);
2648 break;
2649 case ptr_arg:
2650 printf_pointer (stream, current_substring, val_args[i]);
2651 break;
2652 case literal_piece:
2653 /* Print a portion of the format string that has no
2654 directives. Note that this will not include any
2655 ordinary %-specs, but it might include "%%". That is
2656 why we use printf_filtered and not puts_filtered here.
2657 Also, we pass a dummy argument because some platforms
2658 have modified GCC to include -Wformat-security by
2659 default, which will warn here if there is no
2660 argument. */
2661 DIAGNOSTIC_PUSH
2662 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2663 fprintf_filtered (stream, current_substring, 0);
2664 DIAGNOSTIC_POP
2665 break;
2666 default:
2667 internal_error (__FILE__, __LINE__,
2668 _("failed internal consistency check"));
2669 }
2670 /* Maybe advance to the next argument. */
2671 if (piece.argclass != literal_piece)
2672 ++i;
2673 }
2674 }
2675 }
2676
2677 /* Implement the "printf" command. */
2678
2679 static void
2680 printf_command (const char *arg, int from_tty)
2681 {
2682 ui_printf (arg, gdb_stdout);
2683 reset_terminal_style (gdb_stdout);
2684 wrap_here ("");
2685 gdb_flush (gdb_stdout);
2686 }
2687
2688 /* Implement the "eval" command. */
2689
2690 static void
2691 eval_command (const char *arg, int from_tty)
2692 {
2693 string_file stb;
2694
2695 ui_printf (arg, &stb);
2696
2697 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2698
2699 execute_command (expanded.c_str (), from_tty);
2700 }
2701
2702 void
2703 _initialize_printcmd (void)
2704 {
2705 struct cmd_list_element *c;
2706
2707 current_display_number = -1;
2708
2709 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2710
2711 add_info ("address", info_address_command,
2712 _("Describe where symbol SYM is stored.\n\
2713 Usage: info address SYM"));
2714
2715 add_info ("symbol", info_symbol_command, _("\
2716 Describe what symbol is at location ADDR.\n\
2717 Usage: info symbol ADDR\n\
2718 Only for symbols with fixed locations (global or static scope)."));
2719
2720 add_com ("x", class_vars, x_command, _("\
2721 Examine memory: x/FMT ADDRESS.\n\
2722 ADDRESS is an expression for the memory address to examine.\n\
2723 FMT is a repeat count followed by a format letter and a size letter.\n\
2724 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2725 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2726 and z(hex, zero padded on the left).\n\
2727 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2728 The specified number of objects of the specified size are printed\n\
2729 according to the format. If a negative number is specified, memory is\n\
2730 examined backward from the address.\n\n\
2731 Defaults for format and size letters are those previously used.\n\
2732 Default count is 1. Default address is following last thing printed\n\
2733 with this command or \"print\"."));
2734
2735 add_info ("display", info_display_command, _("\
2736 Expressions to display when program stops, with code numbers.\n\
2737 Usage: info display"));
2738
2739 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2740 Cancel some expressions to be displayed when program stops.\n\
2741 Usage: undisplay [NUM]...\n\
2742 Arguments are the code numbers of the expressions to stop displaying.\n\
2743 No argument means cancel all automatic-display expressions.\n\
2744 \"delete display\" has the same effect as this command.\n\
2745 Do \"info display\" to see current list of code numbers."),
2746 &cmdlist);
2747
2748 add_com ("display", class_vars, display_command, _("\
2749 Print value of expression EXP each time the program stops.\n\
2750 Usage: display[/FMT] EXP\n\
2751 /FMT may be used before EXP as in the \"print\" command.\n\
2752 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2753 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2754 and examining is done as in the \"x\" command.\n\n\
2755 With no argument, display all currently requested auto-display expressions.\n\
2756 Use \"undisplay\" to cancel display requests previously made."));
2757
2758 add_cmd ("display", class_vars, enable_display_command, _("\
2759 Enable some expressions to be displayed when program stops.\n\
2760 Usage: enable display [NUM]...\n\
2761 Arguments are the code numbers of the expressions to resume displaying.\n\
2762 No argument means enable all automatic-display expressions.\n\
2763 Do \"info display\" to see current list of code numbers."), &enablelist);
2764
2765 add_cmd ("display", class_vars, disable_display_command, _("\
2766 Disable some expressions to be displayed when program stops.\n\
2767 Usage: disable display [NUM]...\n\
2768 Arguments are the code numbers of the expressions to stop displaying.\n\
2769 No argument means disable all automatic-display expressions.\n\
2770 Do \"info display\" to see current list of code numbers."), &disablelist);
2771
2772 add_cmd ("display", class_vars, undisplay_command, _("\
2773 Cancel some expressions to be displayed when program stops.\n\
2774 Usage: delete display [NUM]...\n\
2775 Arguments are the code numbers of the expressions to stop displaying.\n\
2776 No argument means cancel all automatic-display expressions.\n\
2777 Do \"info display\" to see current list of code numbers."), &deletelist);
2778
2779 add_com ("printf", class_vars, printf_command, _("\
2780 Formatted printing, like the C \"printf\" function.\n\
2781 Usage: printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2782 This supports most C printf format specifications, like %s, %d, etc."));
2783
2784 add_com ("output", class_vars, output_command, _("\
2785 Like \"print\" but don't put in value history and don't print newline.\n\
2786 Usage: output EXP\n\
2787 This is useful in user-defined commands."));
2788
2789 add_prefix_cmd ("set", class_vars, set_command, _("\
2790 Evaluate expression EXP and assign result to variable VAR\n\
2791 Usage: set VAR = EXP\n\
2792 This uses assignment syntax appropriate for the current language\n\
2793 (VAR = EXP or VAR := EXP for example).\n\
2794 VAR may be a debugger \"convenience\" variable (names starting\n\
2795 with $), a register (a few standard names starting with $), or an actual\n\
2796 variable in the program being debugged. EXP is any valid expression.\n\
2797 Use \"set variable\" for variables with names identical to set subcommands.\n\
2798 \n\
2799 With a subcommand, this command modifies parts of the gdb environment.\n\
2800 You can see these environment settings with the \"show\" command."),
2801 &setlist, "set ", 1, &cmdlist);
2802 if (dbx_commands)
2803 add_com ("assign", class_vars, set_command, _("\
2804 Evaluate expression EXP and assign result to variable VAR\n\
2805 Usage: assign VAR = EXP\n\
2806 This uses assignment syntax appropriate for the current language\n\
2807 (VAR = EXP or VAR := EXP for example).\n\
2808 VAR may be a debugger \"convenience\" variable (names starting\n\
2809 with $), a register (a few standard names starting with $), or an actual\n\
2810 variable in the program being debugged. EXP is any valid expression.\n\
2811 Use \"set variable\" for variables with names identical to set subcommands.\n\
2812 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2813 You can see these environment settings with the \"show\" command."));
2814
2815 /* "call" is the same as "set", but handy for dbx users to call fns. */
2816 c = add_com ("call", class_vars, call_command, _("\
2817 Call a function in the program.\n\
2818 Usage: call EXP\n\
2819 The argument is the function name and arguments, in the notation of the\n\
2820 current working language. The result is printed and saved in the value\n\
2821 history, if it is not void."));
2822 set_cmd_completer_handle_brkchars (c, print_command_completer);
2823
2824 add_cmd ("variable", class_vars, set_command, _("\
2825 Evaluate expression EXP and assign result to variable VAR\n\
2826 Usage: set variable VAR = EXP\n\
2827 This uses assignment syntax appropriate for the current language\n\
2828 (VAR = EXP or VAR := EXP for example).\n\
2829 VAR may be a debugger \"convenience\" variable (names starting\n\
2830 with $), a register (a few standard names starting with $), or an actual\n\
2831 variable in the program being debugged. EXP is any valid expression.\n\
2832 This may usually be abbreviated to simply \"set\"."),
2833 &setlist);
2834 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2835
2836 const auto print_opts = make_value_print_options_def_group (nullptr);
2837
2838 static const std::string print_help = gdb::option::build_help (N_("\
2839 Print value of expression EXP.\n\
2840 Usage: print [[OPTION]... --] [/FMT] [EXP]\n\
2841 \n\
2842 Options:\n\
2843 %OPTIONS%\
2844 Note: because this command accepts arbitrary expressions, if you\n\
2845 specify any command option, you must use a double dash (\"--\")\n\
2846 to mark the end of option processing. E.g.: \"print -o -- myobj\".\n\
2847 \n\
2848 Variables accessible are those of the lexical environment of the selected\n\
2849 stack frame, plus all those whose scope is global or an entire file.\n\
2850 \n\
2851 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2852 $$NUM refers to NUM'th value back from the last one.\n\
2853 Names starting with $ refer to registers (with the values they would have\n\
2854 if the program were to return to the stack frame now selected, restoring\n\
2855 all registers saved by frames farther in) or else to debugger\n\
2856 \"convenience\" variables (any such name not a known register).\n\
2857 Use assignment expressions to give values to convenience variables.\n\
2858 \n\
2859 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2860 @ is a binary operator for treating consecutive data objects\n\
2861 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2862 element is FOO, whose second element is stored in the space following\n\
2863 where FOO is stored, etc. FOO must be an expression whose value\n\
2864 resides in memory.\n\
2865 \n\
2866 EXP may be preceded with /FMT, where FMT is a format letter\n\
2867 but no count or size letter (see \"x\" command)."),
2868 print_opts);
2869
2870 c = add_com ("print", class_vars, print_command, print_help.c_str ());
2871 set_cmd_completer_handle_brkchars (c, print_command_completer);
2872 add_com_alias ("p", "print", class_vars, 1);
2873 add_com_alias ("inspect", "print", class_vars, 1);
2874
2875 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2876 &max_symbolic_offset, _("\
2877 Set the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2878 Show the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2879 Tell GDB to only display the symbolic form of an address if the\n\
2880 offset between the closest earlier symbol and the address is less than\n\
2881 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2882 to always print the symbolic form of an address if any symbol precedes\n\
2883 it. Zero is equivalent to \"unlimited\"."),
2884 NULL,
2885 show_max_symbolic_offset,
2886 &setprintlist, &showprintlist);
2887 add_setshow_boolean_cmd ("symbol-filename", no_class,
2888 &print_symbol_filename, _("\
2889 Set printing of source filename and line number with <SYMBOL>."), _("\
2890 Show printing of source filename and line number with <SYMBOL>."), NULL,
2891 NULL,
2892 show_print_symbol_filename,
2893 &setprintlist, &showprintlist);
2894
2895 add_com ("eval", no_class, eval_command, _("\
2896 Construct a GDB command and then evaluate it.\n\
2897 Usage: eval \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2898 Convert the arguments to a string as \"printf\" would, but then\n\
2899 treat this string as a command line, and evaluate it."));
2900 }
This page took 0.093336 seconds and 5 git commands to generate.