Convert observers to C++
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "expression.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "breakpoint.h"
31 #include "demangle.h"
32 #include "gdb-demangle.h"
33 #include "valprint.h"
34 #include "annotate.h"
35 #include "symfile.h" /* for overlay functions */
36 #include "objfiles.h" /* ditto */
37 #include "completer.h" /* for completion functions */
38 #include "ui-out.h"
39 #include "block.h"
40 #include "disasm.h"
41 #include "target-float.h"
42 #include "observable.h"
43 #include "solist.h"
44 #include "parser-defs.h"
45 #include "charset.h"
46 #include "arch-utils.h"
47 #include "cli/cli-utils.h"
48 #include "cli/cli-script.h"
49 #include "format.h"
50 #include "source.h"
51 #include "common/byte-vector.h"
52
53 #ifdef TUI
54 #include "tui/tui.h" /* For tui_active et al. */
55 #endif
56
57 /* Last specified output format. */
58
59 static char last_format = 0;
60
61 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
62
63 static char last_size = 'w';
64
65 /* Default address to examine next, and associated architecture. */
66
67 static struct gdbarch *next_gdbarch;
68 static CORE_ADDR next_address;
69
70 /* Number of delay instructions following current disassembled insn. */
71
72 static int branch_delay_insns;
73
74 /* Last address examined. */
75
76 static CORE_ADDR last_examine_address;
77
78 /* Contents of last address examined.
79 This is not valid past the end of the `x' command! */
80
81 static struct value *last_examine_value;
82
83 /* Largest offset between a symbolic value and an address, that will be
84 printed as `0x1234 <symbol+offset>'. */
85
86 static unsigned int max_symbolic_offset = UINT_MAX;
87 static void
88 show_max_symbolic_offset (struct ui_file *file, int from_tty,
89 struct cmd_list_element *c, const char *value)
90 {
91 fprintf_filtered (file,
92 _("The largest offset that will be "
93 "printed in <symbol+1234> form is %s.\n"),
94 value);
95 }
96
97 /* Append the source filename and linenumber of the symbol when
98 printing a symbolic value as `<symbol at filename:linenum>' if set. */
99 static int print_symbol_filename = 0;
100 static void
101 show_print_symbol_filename (struct ui_file *file, int from_tty,
102 struct cmd_list_element *c, const char *value)
103 {
104 fprintf_filtered (file, _("Printing of source filename and "
105 "line number with <symbol> is %s.\n"),
106 value);
107 }
108
109 /* Number of auto-display expression currently being displayed.
110 So that we can disable it if we get a signal within it.
111 -1 when not doing one. */
112
113 static int current_display_number;
114
115 struct display
116 {
117 /* Chain link to next auto-display item. */
118 struct display *next;
119
120 /* The expression as the user typed it. */
121 char *exp_string;
122
123 /* Expression to be evaluated and displayed. */
124 expression_up exp;
125
126 /* Item number of this auto-display item. */
127 int number;
128
129 /* Display format specified. */
130 struct format_data format;
131
132 /* Program space associated with `block'. */
133 struct program_space *pspace;
134
135 /* Innermost block required by this expression when evaluated. */
136 const struct block *block;
137
138 /* Status of this display (enabled or disabled). */
139 int enabled_p;
140 };
141
142 /* Chain of expressions whose values should be displayed
143 automatically each time the program stops. */
144
145 static struct display *display_chain;
146
147 static int display_number;
148
149 /* Walk the following statement or block through all displays.
150 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
151 display. */
152
153 #define ALL_DISPLAYS(B) \
154 for (B = display_chain; B; B = B->next)
155
156 #define ALL_DISPLAYS_SAFE(B,TMP) \
157 for (B = display_chain; \
158 B ? (TMP = B->next, 1): 0; \
159 B = TMP)
160
161 /* Prototypes for local functions. */
162
163 static void do_one_display (struct display *);
164 \f
165
166 /* Decode a format specification. *STRING_PTR should point to it.
167 OFORMAT and OSIZE are used as defaults for the format and size
168 if none are given in the format specification.
169 If OSIZE is zero, then the size field of the returned value
170 should be set only if a size is explicitly specified by the
171 user.
172 The structure returned describes all the data
173 found in the specification. In addition, *STRING_PTR is advanced
174 past the specification and past all whitespace following it. */
175
176 static struct format_data
177 decode_format (const char **string_ptr, int oformat, int osize)
178 {
179 struct format_data val;
180 const char *p = *string_ptr;
181
182 val.format = '?';
183 val.size = '?';
184 val.count = 1;
185 val.raw = 0;
186
187 if (*p == '-')
188 {
189 val.count = -1;
190 p++;
191 }
192 if (*p >= '0' && *p <= '9')
193 val.count *= atoi (p);
194 while (*p >= '0' && *p <= '9')
195 p++;
196
197 /* Now process size or format letters that follow. */
198
199 while (1)
200 {
201 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
202 val.size = *p++;
203 else if (*p == 'r')
204 {
205 val.raw = 1;
206 p++;
207 }
208 else if (*p >= 'a' && *p <= 'z')
209 val.format = *p++;
210 else
211 break;
212 }
213
214 while (*p == ' ' || *p == '\t')
215 p++;
216 *string_ptr = p;
217
218 /* Set defaults for format and size if not specified. */
219 if (val.format == '?')
220 {
221 if (val.size == '?')
222 {
223 /* Neither has been specified. */
224 val.format = oformat;
225 val.size = osize;
226 }
227 else
228 /* If a size is specified, any format makes a reasonable
229 default except 'i'. */
230 val.format = oformat == 'i' ? 'x' : oformat;
231 }
232 else if (val.size == '?')
233 switch (val.format)
234 {
235 case 'a':
236 /* Pick the appropriate size for an address. This is deferred
237 until do_examine when we know the actual architecture to use.
238 A special size value of 'a' is used to indicate this case. */
239 val.size = osize ? 'a' : osize;
240 break;
241 case 'f':
242 /* Floating point has to be word or giantword. */
243 if (osize == 'w' || osize == 'g')
244 val.size = osize;
245 else
246 /* Default it to giantword if the last used size is not
247 appropriate. */
248 val.size = osize ? 'g' : osize;
249 break;
250 case 'c':
251 /* Characters default to one byte. */
252 val.size = osize ? 'b' : osize;
253 break;
254 case 's':
255 /* Display strings with byte size chars unless explicitly
256 specified. */
257 val.size = '\0';
258 break;
259
260 default:
261 /* The default is the size most recently specified. */
262 val.size = osize;
263 }
264
265 return val;
266 }
267 \f
268 /* Print value VAL on stream according to OPTIONS.
269 Do not end with a newline.
270 SIZE is the letter for the size of datum being printed.
271 This is used to pad hex numbers so they line up. SIZE is 0
272 for print / output and set for examine. */
273
274 static void
275 print_formatted (struct value *val, int size,
276 const struct value_print_options *options,
277 struct ui_file *stream)
278 {
279 struct type *type = check_typedef (value_type (val));
280 int len = TYPE_LENGTH (type);
281
282 if (VALUE_LVAL (val) == lval_memory)
283 next_address = value_address (val) + len;
284
285 if (size)
286 {
287 switch (options->format)
288 {
289 case 's':
290 {
291 struct type *elttype = value_type (val);
292
293 next_address = (value_address (val)
294 + val_print_string (elttype, NULL,
295 value_address (val), -1,
296 stream, options) * len);
297 }
298 return;
299
300 case 'i':
301 /* We often wrap here if there are long symbolic names. */
302 wrap_here (" ");
303 next_address = (value_address (val)
304 + gdb_print_insn (get_type_arch (type),
305 value_address (val), stream,
306 &branch_delay_insns));
307 return;
308 }
309 }
310
311 if (options->format == 0 || options->format == 's'
312 || TYPE_CODE (type) == TYPE_CODE_REF
313 || TYPE_CODE (type) == TYPE_CODE_ARRAY
314 || TYPE_CODE (type) == TYPE_CODE_STRING
315 || TYPE_CODE (type) == TYPE_CODE_STRUCT
316 || TYPE_CODE (type) == TYPE_CODE_UNION
317 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
318 value_print (val, stream, options);
319 else
320 /* User specified format, so don't look to the type to tell us
321 what to do. */
322 val_print_scalar_formatted (type,
323 value_embedded_offset (val),
324 val,
325 options, size, stream);
326 }
327
328 /* Return builtin floating point type of same length as TYPE.
329 If no such type is found, return TYPE itself. */
330 static struct type *
331 float_type_from_length (struct type *type)
332 {
333 struct gdbarch *gdbarch = get_type_arch (type);
334 const struct builtin_type *builtin = builtin_type (gdbarch);
335
336 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
337 type = builtin->builtin_float;
338 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
339 type = builtin->builtin_double;
340 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
341 type = builtin->builtin_long_double;
342
343 return type;
344 }
345
346 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
347 according to OPTIONS and SIZE on STREAM. Formats s and i are not
348 supported at this level. */
349
350 void
351 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
352 const struct value_print_options *options,
353 int size, struct ui_file *stream)
354 {
355 struct gdbarch *gdbarch = get_type_arch (type);
356 unsigned int len = TYPE_LENGTH (type);
357 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
358
359 /* String printing should go through val_print_scalar_formatted. */
360 gdb_assert (options->format != 's');
361
362 /* If the value is a pointer, and pointers and addresses are not the
363 same, then at this point, the value's length (in target bytes) is
364 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
365 if (TYPE_CODE (type) == TYPE_CODE_PTR)
366 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
367
368 /* If we are printing it as unsigned, truncate it in case it is actually
369 a negative signed value (e.g. "print/u (short)-1" should print 65535
370 (if shorts are 16 bits) instead of 4294967295). */
371 if (options->format != 'c'
372 && (options->format != 'd' || TYPE_UNSIGNED (type)))
373 {
374 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
375 valaddr += TYPE_LENGTH (type) - len;
376 }
377
378 if (size != 0 && (options->format == 'x' || options->format == 't'))
379 {
380 /* Truncate to fit. */
381 unsigned newlen;
382 switch (size)
383 {
384 case 'b':
385 newlen = 1;
386 break;
387 case 'h':
388 newlen = 2;
389 break;
390 case 'w':
391 newlen = 4;
392 break;
393 case 'g':
394 newlen = 8;
395 break;
396 default:
397 error (_("Undefined output size \"%c\"."), size);
398 }
399 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
400 valaddr += len - newlen;
401 len = newlen;
402 }
403
404 /* Historically gdb has printed floats by first casting them to a
405 long, and then printing the long. PR cli/16242 suggests changing
406 this to using C-style hex float format. */
407 gdb::byte_vector converted_float_bytes;
408 if (TYPE_CODE (type) == TYPE_CODE_FLT
409 && (options->format == 'o'
410 || options->format == 'x'
411 || options->format == 't'
412 || options->format == 'z'
413 || options->format == 'd'
414 || options->format == 'u'))
415 {
416 LONGEST val_long = unpack_long (type, valaddr);
417 converted_float_bytes.resize (TYPE_LENGTH (type));
418 store_signed_integer (converted_float_bytes.data (), TYPE_LENGTH (type),
419 byte_order, val_long);
420 valaddr = converted_float_bytes.data ();
421 }
422
423 /* Printing a non-float type as 'f' will interpret the data as if it were
424 of a floating-point type of the same length, if that exists. Otherwise,
425 the data is printed as integer. */
426 char format = options->format;
427 if (format == 'f' && TYPE_CODE (type) != TYPE_CODE_FLT)
428 {
429 type = float_type_from_length (type);
430 if (TYPE_CODE (type) != TYPE_CODE_FLT)
431 format = 0;
432 }
433
434 switch (format)
435 {
436 case 'o':
437 print_octal_chars (stream, valaddr, len, byte_order);
438 break;
439 case 'd':
440 print_decimal_chars (stream, valaddr, len, true, byte_order);
441 break;
442 case 'u':
443 print_decimal_chars (stream, valaddr, len, false, byte_order);
444 break;
445 case 0:
446 if (TYPE_CODE (type) != TYPE_CODE_FLT)
447 {
448 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
449 byte_order);
450 break;
451 }
452 /* FALLTHROUGH */
453 case 'f':
454 print_floating (valaddr, type, stream);
455 break;
456
457 case 't':
458 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
459 break;
460 case 'x':
461 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
462 break;
463 case 'z':
464 print_hex_chars (stream, valaddr, len, byte_order, true);
465 break;
466 case 'c':
467 {
468 struct value_print_options opts = *options;
469
470 LONGEST val_long = unpack_long (type, valaddr);
471
472 opts.format = 0;
473 if (TYPE_UNSIGNED (type))
474 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
475 else
476 type = builtin_type (gdbarch)->builtin_true_char;
477
478 value_print (value_from_longest (type, val_long), stream, &opts);
479 }
480 break;
481
482 case 'a':
483 {
484 CORE_ADDR addr = unpack_pointer (type, valaddr);
485
486 print_address (gdbarch, addr, stream);
487 }
488 break;
489
490 default:
491 error (_("Undefined output format \"%c\"."), format);
492 }
493 }
494
495 /* Specify default address for `x' command.
496 The `info lines' command uses this. */
497
498 void
499 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
500 {
501 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
502
503 next_gdbarch = gdbarch;
504 next_address = addr;
505
506 /* Make address available to the user as $_. */
507 set_internalvar (lookup_internalvar ("_"),
508 value_from_pointer (ptr_type, addr));
509 }
510
511 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
512 after LEADIN. Print nothing if no symbolic name is found nearby.
513 Optionally also print source file and line number, if available.
514 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
515 or to interpret it as a possible C++ name and convert it back to source
516 form. However note that DO_DEMANGLE can be overridden by the specific
517 settings of the demangle and asm_demangle variables. Returns
518 non-zero if anything was printed; zero otherwise. */
519
520 int
521 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
522 struct ui_file *stream,
523 int do_demangle, const char *leadin)
524 {
525 char *name = NULL;
526 char *filename = NULL;
527 int unmapped = 0;
528 int offset = 0;
529 int line = 0;
530
531 /* Throw away both name and filename. */
532 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
533 make_cleanup (free_current_contents, &filename);
534
535 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
536 &filename, &line, &unmapped))
537 {
538 do_cleanups (cleanup_chain);
539 return 0;
540 }
541
542 fputs_filtered (leadin, stream);
543 if (unmapped)
544 fputs_filtered ("<*", stream);
545 else
546 fputs_filtered ("<", stream);
547 fputs_filtered (name, stream);
548 if (offset != 0)
549 fprintf_filtered (stream, "+%u", (unsigned int) offset);
550
551 /* Append source filename and line number if desired. Give specific
552 line # of this addr, if we have it; else line # of the nearest symbol. */
553 if (print_symbol_filename && filename != NULL)
554 {
555 if (line != -1)
556 fprintf_filtered (stream, " at %s:%d", filename, line);
557 else
558 fprintf_filtered (stream, " in %s", filename);
559 }
560 if (unmapped)
561 fputs_filtered ("*>", stream);
562 else
563 fputs_filtered (">", stream);
564
565 do_cleanups (cleanup_chain);
566 return 1;
567 }
568
569 /* Given an address ADDR return all the elements needed to print the
570 address in a symbolic form. NAME can be mangled or not depending
571 on DO_DEMANGLE (and also on the asm_demangle global variable,
572 manipulated via ''set print asm-demangle''). Return 0 in case of
573 success, when all the info in the OUT paramters is valid. Return 1
574 otherwise. */
575 int
576 build_address_symbolic (struct gdbarch *gdbarch,
577 CORE_ADDR addr, /* IN */
578 int do_demangle, /* IN */
579 char **name, /* OUT */
580 int *offset, /* OUT */
581 char **filename, /* OUT */
582 int *line, /* OUT */
583 int *unmapped) /* OUT */
584 {
585 struct bound_minimal_symbol msymbol;
586 struct symbol *symbol;
587 CORE_ADDR name_location = 0;
588 struct obj_section *section = NULL;
589 const char *name_temp = "";
590
591 /* Let's say it is mapped (not unmapped). */
592 *unmapped = 0;
593
594 /* Determine if the address is in an overlay, and whether it is
595 mapped. */
596 if (overlay_debugging)
597 {
598 section = find_pc_overlay (addr);
599 if (pc_in_unmapped_range (addr, section))
600 {
601 *unmapped = 1;
602 addr = overlay_mapped_address (addr, section);
603 }
604 }
605
606 /* First try to find the address in the symbol table, then
607 in the minsyms. Take the closest one. */
608
609 /* This is defective in the sense that it only finds text symbols. So
610 really this is kind of pointless--we should make sure that the
611 minimal symbols have everything we need (by changing that we could
612 save some memory, but for many debug format--ELF/DWARF or
613 anything/stabs--it would be inconvenient to eliminate those minimal
614 symbols anyway). */
615 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
616 symbol = find_pc_sect_function (addr, section);
617
618 if (symbol)
619 {
620 /* If this is a function (i.e. a code address), strip out any
621 non-address bits. For instance, display a pointer to the
622 first instruction of a Thumb function as <function>; the
623 second instruction will be <function+2>, even though the
624 pointer is <function+3>. This matches the ISA behavior. */
625 addr = gdbarch_addr_bits_remove (gdbarch, addr);
626
627 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
628 if (do_demangle || asm_demangle)
629 name_temp = SYMBOL_PRINT_NAME (symbol);
630 else
631 name_temp = SYMBOL_LINKAGE_NAME (symbol);
632 }
633
634 if (msymbol.minsym != NULL
635 && MSYMBOL_HAS_SIZE (msymbol.minsym)
636 && MSYMBOL_SIZE (msymbol.minsym) == 0
637 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
638 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
639 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
640 msymbol.minsym = NULL;
641
642 if (msymbol.minsym != NULL)
643 {
644 if (BMSYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
645 {
646 /* If this is a function (i.e. a code address), strip out any
647 non-address bits. For instance, display a pointer to the
648 first instruction of a Thumb function as <function>; the
649 second instruction will be <function+2>, even though the
650 pointer is <function+3>. This matches the ISA behavior. */
651 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
652 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
653 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
654 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
655 addr = gdbarch_addr_bits_remove (gdbarch, addr);
656
657 /* The msymbol is closer to the address than the symbol;
658 use the msymbol instead. */
659 symbol = 0;
660 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
661 if (do_demangle || asm_demangle)
662 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
663 else
664 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
665 }
666 }
667 if (symbol == NULL && msymbol.minsym == NULL)
668 return 1;
669
670 /* If the nearest symbol is too far away, don't print anything symbolic. */
671
672 /* For when CORE_ADDR is larger than unsigned int, we do math in
673 CORE_ADDR. But when we detect unsigned wraparound in the
674 CORE_ADDR math, we ignore this test and print the offset,
675 because addr+max_symbolic_offset has wrapped through the end
676 of the address space back to the beginning, giving bogus comparison. */
677 if (addr > name_location + max_symbolic_offset
678 && name_location + max_symbolic_offset > name_location)
679 return 1;
680
681 *offset = addr - name_location;
682
683 *name = xstrdup (name_temp);
684
685 if (print_symbol_filename)
686 {
687 struct symtab_and_line sal;
688
689 sal = find_pc_sect_line (addr, section, 0);
690
691 if (sal.symtab)
692 {
693 *filename = xstrdup (symtab_to_filename_for_display (sal.symtab));
694 *line = sal.line;
695 }
696 }
697 return 0;
698 }
699
700
701 /* Print address ADDR symbolically on STREAM.
702 First print it as a number. Then perhaps print
703 <SYMBOL + OFFSET> after the number. */
704
705 void
706 print_address (struct gdbarch *gdbarch,
707 CORE_ADDR addr, struct ui_file *stream)
708 {
709 fputs_filtered (paddress (gdbarch, addr), stream);
710 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
711 }
712
713 /* Return a prefix for instruction address:
714 "=> " for current instruction, else " ". */
715
716 const char *
717 pc_prefix (CORE_ADDR addr)
718 {
719 if (has_stack_frames ())
720 {
721 struct frame_info *frame;
722 CORE_ADDR pc;
723
724 frame = get_selected_frame (NULL);
725 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
726 return "=> ";
727 }
728 return " ";
729 }
730
731 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
732 controls whether to print the symbolic name "raw" or demangled.
733 Return non-zero if anything was printed; zero otherwise. */
734
735 int
736 print_address_demangle (const struct value_print_options *opts,
737 struct gdbarch *gdbarch, CORE_ADDR addr,
738 struct ui_file *stream, int do_demangle)
739 {
740 if (opts->addressprint)
741 {
742 fputs_filtered (paddress (gdbarch, addr), stream);
743 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
744 }
745 else
746 {
747 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
748 }
749 return 1;
750 }
751 \f
752
753 /* Find the address of the instruction that is INST_COUNT instructions before
754 the instruction at ADDR.
755 Since some architectures have variable-length instructions, we can't just
756 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
757 number information to locate the nearest known instruction boundary,
758 and disassemble forward from there. If we go out of the symbol range
759 during disassembling, we return the lowest address we've got so far and
760 set the number of instructions read to INST_READ. */
761
762 static CORE_ADDR
763 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
764 int inst_count, int *inst_read)
765 {
766 /* The vector PCS is used to store instruction addresses within
767 a pc range. */
768 CORE_ADDR loop_start, loop_end, p;
769 std::vector<CORE_ADDR> pcs;
770 struct symtab_and_line sal;
771
772 *inst_read = 0;
773 loop_start = loop_end = addr;
774
775 /* In each iteration of the outer loop, we get a pc range that ends before
776 LOOP_START, then we count and store every instruction address of the range
777 iterated in the loop.
778 If the number of instructions counted reaches INST_COUNT, return the
779 stored address that is located INST_COUNT instructions back from ADDR.
780 If INST_COUNT is not reached, we subtract the number of counted
781 instructions from INST_COUNT, and go to the next iteration. */
782 do
783 {
784 pcs.clear ();
785 sal = find_pc_sect_line (loop_start, NULL, 1);
786 if (sal.line <= 0)
787 {
788 /* We reach here when line info is not available. In this case,
789 we print a message and just exit the loop. The return value
790 is calculated after the loop. */
791 printf_filtered (_("No line number information available "
792 "for address "));
793 wrap_here (" ");
794 print_address (gdbarch, loop_start - 1, gdb_stdout);
795 printf_filtered ("\n");
796 break;
797 }
798
799 loop_end = loop_start;
800 loop_start = sal.pc;
801
802 /* This loop pushes instruction addresses in the range from
803 LOOP_START to LOOP_END. */
804 for (p = loop_start; p < loop_end;)
805 {
806 pcs.push_back (p);
807 p += gdb_insn_length (gdbarch, p);
808 }
809
810 inst_count -= pcs.size ();
811 *inst_read += pcs.size ();
812 }
813 while (inst_count > 0);
814
815 /* After the loop, the vector PCS has instruction addresses of the last
816 source line we processed, and INST_COUNT has a negative value.
817 We return the address at the index of -INST_COUNT in the vector for
818 the reason below.
819 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
820 Line X of File
821 0x4000
822 0x4001
823 0x4005
824 Line Y of File
825 0x4009
826 0x400c
827 => 0x400e
828 0x4011
829 find_instruction_backward is called with INST_COUNT = 4 and expected to
830 return 0x4001. When we reach here, INST_COUNT is set to -1 because
831 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
832 4001 is located at the index 1 of the last iterated line (= Line X),
833 which is simply calculated by -INST_COUNT.
834 The case when the length of PCS is 0 means that we reached an area for
835 which line info is not available. In such case, we return LOOP_START,
836 which was the lowest instruction address that had line info. */
837 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
838
839 /* INST_READ includes all instruction addresses in a pc range. Need to
840 exclude the beginning part up to the address we're returning. That
841 is, exclude {0x4000} in the example above. */
842 if (inst_count < 0)
843 *inst_read += inst_count;
844
845 return p;
846 }
847
848 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
849 placing the results in GDB's memory from MYADDR + LEN. Returns
850 a count of the bytes actually read. */
851
852 static int
853 read_memory_backward (struct gdbarch *gdbarch,
854 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
855 {
856 int errcode;
857 int nread; /* Number of bytes actually read. */
858
859 /* First try a complete read. */
860 errcode = target_read_memory (memaddr, myaddr, len);
861 if (errcode == 0)
862 {
863 /* Got it all. */
864 nread = len;
865 }
866 else
867 {
868 /* Loop, reading one byte at a time until we get as much as we can. */
869 memaddr += len;
870 myaddr += len;
871 for (nread = 0; nread < len; ++nread)
872 {
873 errcode = target_read_memory (--memaddr, --myaddr, 1);
874 if (errcode != 0)
875 {
876 /* The read was unsuccessful, so exit the loop. */
877 printf_filtered (_("Cannot access memory at address %s\n"),
878 paddress (gdbarch, memaddr));
879 break;
880 }
881 }
882 }
883 return nread;
884 }
885
886 /* Returns true if X (which is LEN bytes wide) is the number zero. */
887
888 static int
889 integer_is_zero (const gdb_byte *x, int len)
890 {
891 int i = 0;
892
893 while (i < len && x[i] == 0)
894 ++i;
895 return (i == len);
896 }
897
898 /* Find the start address of a string in which ADDR is included.
899 Basically we search for '\0' and return the next address,
900 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
901 we stop searching and return the address to print characters as many as
902 PRINT_MAX from the string. */
903
904 static CORE_ADDR
905 find_string_backward (struct gdbarch *gdbarch,
906 CORE_ADDR addr, int count, int char_size,
907 const struct value_print_options *options,
908 int *strings_counted)
909 {
910 const int chunk_size = 0x20;
911 int read_error = 0;
912 int chars_read = 0;
913 int chars_to_read = chunk_size;
914 int chars_counted = 0;
915 int count_original = count;
916 CORE_ADDR string_start_addr = addr;
917
918 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
919 gdb::byte_vector buffer (chars_to_read * char_size);
920 while (count > 0 && read_error == 0)
921 {
922 int i;
923
924 addr -= chars_to_read * char_size;
925 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
926 chars_to_read * char_size);
927 chars_read /= char_size;
928 read_error = (chars_read == chars_to_read) ? 0 : 1;
929 /* Searching for '\0' from the end of buffer in backward direction. */
930 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
931 {
932 int offset = (chars_to_read - i - 1) * char_size;
933
934 if (integer_is_zero (&buffer[offset], char_size)
935 || chars_counted == options->print_max)
936 {
937 /* Found '\0' or reached print_max. As OFFSET is the offset to
938 '\0', we add CHAR_SIZE to return the start address of
939 a string. */
940 --count;
941 string_start_addr = addr + offset + char_size;
942 chars_counted = 0;
943 }
944 }
945 }
946
947 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
948 *strings_counted = count_original - count;
949
950 if (read_error != 0)
951 {
952 /* In error case, STRING_START_ADDR is pointing to the string that
953 was last successfully loaded. Rewind the partially loaded string. */
954 string_start_addr -= chars_counted * char_size;
955 }
956
957 return string_start_addr;
958 }
959
960 /* Examine data at address ADDR in format FMT.
961 Fetch it from memory and print on gdb_stdout. */
962
963 static void
964 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
965 {
966 char format = 0;
967 char size;
968 int count = 1;
969 struct type *val_type = NULL;
970 int i;
971 int maxelts;
972 struct value_print_options opts;
973 int need_to_update_next_address = 0;
974 CORE_ADDR addr_rewound = 0;
975
976 format = fmt.format;
977 size = fmt.size;
978 count = fmt.count;
979 next_gdbarch = gdbarch;
980 next_address = addr;
981
982 /* Instruction format implies fetch single bytes
983 regardless of the specified size.
984 The case of strings is handled in decode_format, only explicit
985 size operator are not changed to 'b'. */
986 if (format == 'i')
987 size = 'b';
988
989 if (size == 'a')
990 {
991 /* Pick the appropriate size for an address. */
992 if (gdbarch_ptr_bit (next_gdbarch) == 64)
993 size = 'g';
994 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
995 size = 'w';
996 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
997 size = 'h';
998 else
999 /* Bad value for gdbarch_ptr_bit. */
1000 internal_error (__FILE__, __LINE__,
1001 _("failed internal consistency check"));
1002 }
1003
1004 if (size == 'b')
1005 val_type = builtin_type (next_gdbarch)->builtin_int8;
1006 else if (size == 'h')
1007 val_type = builtin_type (next_gdbarch)->builtin_int16;
1008 else if (size == 'w')
1009 val_type = builtin_type (next_gdbarch)->builtin_int32;
1010 else if (size == 'g')
1011 val_type = builtin_type (next_gdbarch)->builtin_int64;
1012
1013 if (format == 's')
1014 {
1015 struct type *char_type = NULL;
1016
1017 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1018 if type is not found. */
1019 if (size == 'h')
1020 char_type = builtin_type (next_gdbarch)->builtin_char16;
1021 else if (size == 'w')
1022 char_type = builtin_type (next_gdbarch)->builtin_char32;
1023 if (char_type)
1024 val_type = char_type;
1025 else
1026 {
1027 if (size != '\0' && size != 'b')
1028 warning (_("Unable to display strings with "
1029 "size '%c', using 'b' instead."), size);
1030 size = 'b';
1031 val_type = builtin_type (next_gdbarch)->builtin_int8;
1032 }
1033 }
1034
1035 maxelts = 8;
1036 if (size == 'w')
1037 maxelts = 4;
1038 if (size == 'g')
1039 maxelts = 2;
1040 if (format == 's' || format == 'i')
1041 maxelts = 1;
1042
1043 get_formatted_print_options (&opts, format);
1044
1045 if (count < 0)
1046 {
1047 /* This is the negative repeat count case.
1048 We rewind the address based on the given repeat count and format,
1049 then examine memory from there in forward direction. */
1050
1051 count = -count;
1052 if (format == 'i')
1053 {
1054 next_address = find_instruction_backward (gdbarch, addr, count,
1055 &count);
1056 }
1057 else if (format == 's')
1058 {
1059 next_address = find_string_backward (gdbarch, addr, count,
1060 TYPE_LENGTH (val_type),
1061 &opts, &count);
1062 }
1063 else
1064 {
1065 next_address = addr - count * TYPE_LENGTH (val_type);
1066 }
1067
1068 /* The following call to print_formatted updates next_address in every
1069 iteration. In backward case, we store the start address here
1070 and update next_address with it before exiting the function. */
1071 addr_rewound = (format == 's'
1072 ? next_address - TYPE_LENGTH (val_type)
1073 : next_address);
1074 need_to_update_next_address = 1;
1075 }
1076
1077 /* Print as many objects as specified in COUNT, at most maxelts per line,
1078 with the address of the next one at the start of each line. */
1079
1080 while (count > 0)
1081 {
1082 QUIT;
1083 if (format == 'i')
1084 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1085 print_address (next_gdbarch, next_address, gdb_stdout);
1086 printf_filtered (":");
1087 for (i = maxelts;
1088 i > 0 && count > 0;
1089 i--, count--)
1090 {
1091 printf_filtered ("\t");
1092 /* Note that print_formatted sets next_address for the next
1093 object. */
1094 last_examine_address = next_address;
1095
1096 if (last_examine_value)
1097 value_free (last_examine_value);
1098
1099 /* The value to be displayed is not fetched greedily.
1100 Instead, to avoid the possibility of a fetched value not
1101 being used, its retrieval is delayed until the print code
1102 uses it. When examining an instruction stream, the
1103 disassembler will perform its own memory fetch using just
1104 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1105 the disassembler be modified so that LAST_EXAMINE_VALUE
1106 is left with the byte sequence from the last complete
1107 instruction fetched from memory? */
1108 last_examine_value = value_at_lazy (val_type, next_address);
1109
1110 if (last_examine_value)
1111 release_value (last_examine_value);
1112
1113 print_formatted (last_examine_value, size, &opts, gdb_stdout);
1114
1115 /* Display any branch delay slots following the final insn. */
1116 if (format == 'i' && count == 1)
1117 count += branch_delay_insns;
1118 }
1119 printf_filtered ("\n");
1120 gdb_flush (gdb_stdout);
1121 }
1122
1123 if (need_to_update_next_address)
1124 next_address = addr_rewound;
1125 }
1126 \f
1127 static void
1128 validate_format (struct format_data fmt, const char *cmdname)
1129 {
1130 if (fmt.size != 0)
1131 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1132 if (fmt.count != 1)
1133 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1134 cmdname);
1135 if (fmt.format == 'i')
1136 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1137 fmt.format, cmdname);
1138 }
1139
1140 /* Parse print command format string into *FMTP and update *EXPP.
1141 CMDNAME should name the current command. */
1142
1143 void
1144 print_command_parse_format (const char **expp, const char *cmdname,
1145 struct format_data *fmtp)
1146 {
1147 const char *exp = *expp;
1148
1149 if (exp && *exp == '/')
1150 {
1151 exp++;
1152 *fmtp = decode_format (&exp, last_format, 0);
1153 validate_format (*fmtp, cmdname);
1154 last_format = fmtp->format;
1155 }
1156 else
1157 {
1158 fmtp->count = 1;
1159 fmtp->format = 0;
1160 fmtp->size = 0;
1161 fmtp->raw = 0;
1162 }
1163
1164 *expp = exp;
1165 }
1166
1167 /* Print VAL to console according to *FMTP, including recording it to
1168 the history. */
1169
1170 void
1171 print_value (struct value *val, const struct format_data *fmtp)
1172 {
1173 struct value_print_options opts;
1174 int histindex = record_latest_value (val);
1175
1176 annotate_value_history_begin (histindex, value_type (val));
1177
1178 printf_filtered ("$%d = ", histindex);
1179
1180 annotate_value_history_value ();
1181
1182 get_formatted_print_options (&opts, fmtp->format);
1183 opts.raw = fmtp->raw;
1184
1185 print_formatted (val, fmtp->size, &opts, gdb_stdout);
1186 printf_filtered ("\n");
1187
1188 annotate_value_history_end ();
1189 }
1190
1191 /* Evaluate string EXP as an expression in the current language and
1192 print the resulting value. EXP may contain a format specifier as the
1193 first argument ("/x myvar" for example, to print myvar in hex). */
1194
1195 static void
1196 print_command_1 (const char *exp, int voidprint)
1197 {
1198 struct value *val;
1199 struct format_data fmt;
1200
1201 print_command_parse_format (&exp, "print", &fmt);
1202
1203 if (exp && *exp)
1204 {
1205 expression_up expr = parse_expression (exp);
1206 val = evaluate_expression (expr.get ());
1207 }
1208 else
1209 val = access_value_history (0);
1210
1211 if (voidprint || (val && value_type (val) &&
1212 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1213 print_value (val, &fmt);
1214 }
1215
1216 static void
1217 print_command (const char *exp, int from_tty)
1218 {
1219 print_command_1 (exp, 1);
1220 }
1221
1222 /* Same as print, except it doesn't print void results. */
1223 static void
1224 call_command (const char *exp, int from_tty)
1225 {
1226 print_command_1 (exp, 0);
1227 }
1228
1229 /* Implementation of the "output" command. */
1230
1231 static void
1232 output_command (const char *exp, int from_tty)
1233 {
1234 output_command_const (exp, from_tty);
1235 }
1236
1237 /* Like output_command, but takes a const string as argument. */
1238
1239 void
1240 output_command_const (const char *exp, int from_tty)
1241 {
1242 char format = 0;
1243 struct value *val;
1244 struct format_data fmt;
1245 struct value_print_options opts;
1246
1247 fmt.size = 0;
1248 fmt.raw = 0;
1249
1250 if (exp && *exp == '/')
1251 {
1252 exp++;
1253 fmt = decode_format (&exp, 0, 0);
1254 validate_format (fmt, "output");
1255 format = fmt.format;
1256 }
1257
1258 expression_up expr = parse_expression (exp);
1259
1260 val = evaluate_expression (expr.get ());
1261
1262 annotate_value_begin (value_type (val));
1263
1264 get_formatted_print_options (&opts, format);
1265 opts.raw = fmt.raw;
1266 print_formatted (val, fmt.size, &opts, gdb_stdout);
1267
1268 annotate_value_end ();
1269
1270 wrap_here ("");
1271 gdb_flush (gdb_stdout);
1272 }
1273
1274 static void
1275 set_command (const char *exp, int from_tty)
1276 {
1277 expression_up expr = parse_expression (exp);
1278
1279 if (expr->nelts >= 1)
1280 switch (expr->elts[0].opcode)
1281 {
1282 case UNOP_PREINCREMENT:
1283 case UNOP_POSTINCREMENT:
1284 case UNOP_PREDECREMENT:
1285 case UNOP_POSTDECREMENT:
1286 case BINOP_ASSIGN:
1287 case BINOP_ASSIGN_MODIFY:
1288 case BINOP_COMMA:
1289 break;
1290 default:
1291 warning
1292 (_("Expression is not an assignment (and might have no effect)"));
1293 }
1294
1295 evaluate_expression (expr.get ());
1296 }
1297
1298 static void
1299 info_symbol_command (const char *arg, int from_tty)
1300 {
1301 struct minimal_symbol *msymbol;
1302 struct objfile *objfile;
1303 struct obj_section *osect;
1304 CORE_ADDR addr, sect_addr;
1305 int matches = 0;
1306 unsigned int offset;
1307
1308 if (!arg)
1309 error_no_arg (_("address"));
1310
1311 addr = parse_and_eval_address (arg);
1312 ALL_OBJSECTIONS (objfile, osect)
1313 {
1314 /* Only process each object file once, even if there's a separate
1315 debug file. */
1316 if (objfile->separate_debug_objfile_backlink)
1317 continue;
1318
1319 sect_addr = overlay_mapped_address (addr, osect);
1320
1321 if (obj_section_addr (osect) <= sect_addr
1322 && sect_addr < obj_section_endaddr (osect)
1323 && (msymbol
1324 = lookup_minimal_symbol_by_pc_section (sect_addr, osect).minsym))
1325 {
1326 const char *obj_name, *mapped, *sec_name, *msym_name;
1327 const char *loc_string;
1328 struct cleanup *old_chain;
1329
1330 matches = 1;
1331 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1332 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1333 sec_name = osect->the_bfd_section->name;
1334 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1335
1336 /* Don't print the offset if it is zero.
1337 We assume there's no need to handle i18n of "sym + offset". */
1338 std::string string_holder;
1339 if (offset)
1340 {
1341 string_holder = string_printf ("%s + %u", msym_name, offset);
1342 loc_string = string_holder.c_str ();
1343 }
1344 else
1345 loc_string = msym_name;
1346
1347 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1348 obj_name = objfile_name (osect->objfile);
1349
1350 if (MULTI_OBJFILE_P ())
1351 if (pc_in_unmapped_range (addr, osect))
1352 if (section_is_overlay (osect))
1353 printf_filtered (_("%s in load address range of "
1354 "%s overlay section %s of %s\n"),
1355 loc_string, mapped, sec_name, obj_name);
1356 else
1357 printf_filtered (_("%s in load address range of "
1358 "section %s of %s\n"),
1359 loc_string, sec_name, obj_name);
1360 else
1361 if (section_is_overlay (osect))
1362 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1363 loc_string, mapped, sec_name, obj_name);
1364 else
1365 printf_filtered (_("%s in section %s of %s\n"),
1366 loc_string, sec_name, obj_name);
1367 else
1368 if (pc_in_unmapped_range (addr, osect))
1369 if (section_is_overlay (osect))
1370 printf_filtered (_("%s in load address range of %s overlay "
1371 "section %s\n"),
1372 loc_string, mapped, sec_name);
1373 else
1374 printf_filtered (_("%s in load address range of section %s\n"),
1375 loc_string, sec_name);
1376 else
1377 if (section_is_overlay (osect))
1378 printf_filtered (_("%s in %s overlay section %s\n"),
1379 loc_string, mapped, sec_name);
1380 else
1381 printf_filtered (_("%s in section %s\n"),
1382 loc_string, sec_name);
1383 }
1384 }
1385 if (matches == 0)
1386 printf_filtered (_("No symbol matches %s.\n"), arg);
1387 }
1388
1389 static void
1390 info_address_command (const char *exp, int from_tty)
1391 {
1392 struct gdbarch *gdbarch;
1393 int regno;
1394 struct symbol *sym;
1395 struct bound_minimal_symbol msymbol;
1396 long val;
1397 struct obj_section *section;
1398 CORE_ADDR load_addr, context_pc = 0;
1399 struct field_of_this_result is_a_field_of_this;
1400
1401 if (exp == 0)
1402 error (_("Argument required."));
1403
1404 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1405 &is_a_field_of_this).symbol;
1406 if (sym == NULL)
1407 {
1408 if (is_a_field_of_this.type != NULL)
1409 {
1410 printf_filtered ("Symbol \"");
1411 fprintf_symbol_filtered (gdb_stdout, exp,
1412 current_language->la_language, DMGL_ANSI);
1413 printf_filtered ("\" is a field of the local class variable ");
1414 if (current_language->la_language == language_objc)
1415 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1416 else
1417 printf_filtered ("`this'\n");
1418 return;
1419 }
1420
1421 msymbol = lookup_bound_minimal_symbol (exp);
1422
1423 if (msymbol.minsym != NULL)
1424 {
1425 struct objfile *objfile = msymbol.objfile;
1426
1427 gdbarch = get_objfile_arch (objfile);
1428 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1429
1430 printf_filtered ("Symbol \"");
1431 fprintf_symbol_filtered (gdb_stdout, exp,
1432 current_language->la_language, DMGL_ANSI);
1433 printf_filtered ("\" is at ");
1434 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1435 printf_filtered (" in a file compiled without debugging");
1436 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1437 if (section_is_overlay (section))
1438 {
1439 load_addr = overlay_unmapped_address (load_addr, section);
1440 printf_filtered (",\n -- loaded at ");
1441 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1442 printf_filtered (" in overlay section %s",
1443 section->the_bfd_section->name);
1444 }
1445 printf_filtered (".\n");
1446 }
1447 else
1448 error (_("No symbol \"%s\" in current context."), exp);
1449 return;
1450 }
1451
1452 printf_filtered ("Symbol \"");
1453 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1454 current_language->la_language, DMGL_ANSI);
1455 printf_filtered ("\" is ");
1456 val = SYMBOL_VALUE (sym);
1457 if (SYMBOL_OBJFILE_OWNED (sym))
1458 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1459 else
1460 section = NULL;
1461 gdbarch = symbol_arch (sym);
1462
1463 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1464 {
1465 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1466 gdb_stdout);
1467 printf_filtered (".\n");
1468 return;
1469 }
1470
1471 switch (SYMBOL_CLASS (sym))
1472 {
1473 case LOC_CONST:
1474 case LOC_CONST_BYTES:
1475 printf_filtered ("constant");
1476 break;
1477
1478 case LOC_LABEL:
1479 printf_filtered ("a label at address ");
1480 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1481 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1482 if (section_is_overlay (section))
1483 {
1484 load_addr = overlay_unmapped_address (load_addr, section);
1485 printf_filtered (",\n -- loaded at ");
1486 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1487 printf_filtered (" in overlay section %s",
1488 section->the_bfd_section->name);
1489 }
1490 break;
1491
1492 case LOC_COMPUTED:
1493 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1494
1495 case LOC_REGISTER:
1496 /* GDBARCH is the architecture associated with the objfile the symbol
1497 is defined in; the target architecture may be different, and may
1498 provide additional registers. However, we do not know the target
1499 architecture at this point. We assume the objfile architecture
1500 will contain all the standard registers that occur in debug info
1501 in that objfile. */
1502 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1503
1504 if (SYMBOL_IS_ARGUMENT (sym))
1505 printf_filtered (_("an argument in register %s"),
1506 gdbarch_register_name (gdbarch, regno));
1507 else
1508 printf_filtered (_("a variable in register %s"),
1509 gdbarch_register_name (gdbarch, regno));
1510 break;
1511
1512 case LOC_STATIC:
1513 printf_filtered (_("static storage at address "));
1514 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1515 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1516 if (section_is_overlay (section))
1517 {
1518 load_addr = overlay_unmapped_address (load_addr, section);
1519 printf_filtered (_(",\n -- loaded at "));
1520 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1521 printf_filtered (_(" in overlay section %s"),
1522 section->the_bfd_section->name);
1523 }
1524 break;
1525
1526 case LOC_REGPARM_ADDR:
1527 /* Note comment at LOC_REGISTER. */
1528 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1529 printf_filtered (_("address of an argument in register %s"),
1530 gdbarch_register_name (gdbarch, regno));
1531 break;
1532
1533 case LOC_ARG:
1534 printf_filtered (_("an argument at offset %ld"), val);
1535 break;
1536
1537 case LOC_LOCAL:
1538 printf_filtered (_("a local variable at frame offset %ld"), val);
1539 break;
1540
1541 case LOC_REF_ARG:
1542 printf_filtered (_("a reference argument at offset %ld"), val);
1543 break;
1544
1545 case LOC_TYPEDEF:
1546 printf_filtered (_("a typedef"));
1547 break;
1548
1549 case LOC_BLOCK:
1550 printf_filtered (_("a function at address "));
1551 load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1552 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1553 if (section_is_overlay (section))
1554 {
1555 load_addr = overlay_unmapped_address (load_addr, section);
1556 printf_filtered (_(",\n -- loaded at "));
1557 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1558 printf_filtered (_(" in overlay section %s"),
1559 section->the_bfd_section->name);
1560 }
1561 break;
1562
1563 case LOC_UNRESOLVED:
1564 {
1565 struct bound_minimal_symbol msym;
1566
1567 msym = lookup_minimal_symbol_and_objfile (SYMBOL_LINKAGE_NAME (sym));
1568 if (msym.minsym == NULL)
1569 printf_filtered ("unresolved");
1570 else
1571 {
1572 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1573
1574 if (section
1575 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1576 {
1577 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1578 printf_filtered (_("a thread-local variable at offset %s "
1579 "in the thread-local storage for `%s'"),
1580 paddress (gdbarch, load_addr),
1581 objfile_name (section->objfile));
1582 }
1583 else
1584 {
1585 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1586 printf_filtered (_("static storage at address "));
1587 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1588 if (section_is_overlay (section))
1589 {
1590 load_addr = overlay_unmapped_address (load_addr, section);
1591 printf_filtered (_(",\n -- loaded at "));
1592 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1593 printf_filtered (_(" in overlay section %s"),
1594 section->the_bfd_section->name);
1595 }
1596 }
1597 }
1598 }
1599 break;
1600
1601 case LOC_OPTIMIZED_OUT:
1602 printf_filtered (_("optimized out"));
1603 break;
1604
1605 default:
1606 printf_filtered (_("of unknown (botched) type"));
1607 break;
1608 }
1609 printf_filtered (".\n");
1610 }
1611 \f
1612
1613 static void
1614 x_command (const char *exp, int from_tty)
1615 {
1616 struct format_data fmt;
1617 struct value *val;
1618
1619 fmt.format = last_format ? last_format : 'x';
1620 fmt.size = last_size;
1621 fmt.count = 1;
1622 fmt.raw = 0;
1623
1624 if (exp && *exp == '/')
1625 {
1626 const char *tmp = exp + 1;
1627
1628 fmt = decode_format (&tmp, last_format, last_size);
1629 exp = (char *) tmp;
1630 }
1631
1632 /* If we have an expression, evaluate it and use it as the address. */
1633
1634 if (exp != 0 && *exp != 0)
1635 {
1636 expression_up expr = parse_expression (exp);
1637 /* Cause expression not to be there any more if this command is
1638 repeated with Newline. But don't clobber a user-defined
1639 command's definition. */
1640 if (from_tty)
1641 set_repeat_arguments ("");
1642 val = evaluate_expression (expr.get ());
1643 if (TYPE_IS_REFERENCE (value_type (val)))
1644 val = coerce_ref (val);
1645 /* In rvalue contexts, such as this, functions are coerced into
1646 pointers to functions. This makes "x/i main" work. */
1647 if (/* last_format == 'i' && */
1648 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1649 && VALUE_LVAL (val) == lval_memory)
1650 next_address = value_address (val);
1651 else
1652 next_address = value_as_address (val);
1653
1654 next_gdbarch = expr->gdbarch;
1655 }
1656
1657 if (!next_gdbarch)
1658 error_no_arg (_("starting display address"));
1659
1660 do_examine (fmt, next_gdbarch, next_address);
1661
1662 /* If the examine succeeds, we remember its size and format for next
1663 time. Set last_size to 'b' for strings. */
1664 if (fmt.format == 's')
1665 last_size = 'b';
1666 else
1667 last_size = fmt.size;
1668 last_format = fmt.format;
1669
1670 /* Set a couple of internal variables if appropriate. */
1671 if (last_examine_value)
1672 {
1673 /* Make last address examined available to the user as $_. Use
1674 the correct pointer type. */
1675 struct type *pointer_type
1676 = lookup_pointer_type (value_type (last_examine_value));
1677 set_internalvar (lookup_internalvar ("_"),
1678 value_from_pointer (pointer_type,
1679 last_examine_address));
1680
1681 /* Make contents of last address examined available to the user
1682 as $__. If the last value has not been fetched from memory
1683 then don't fetch it now; instead mark it by voiding the $__
1684 variable. */
1685 if (value_lazy (last_examine_value))
1686 clear_internalvar (lookup_internalvar ("__"));
1687 else
1688 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1689 }
1690 }
1691 \f
1692
1693 /* Add an expression to the auto-display chain.
1694 Specify the expression. */
1695
1696 static void
1697 display_command (const char *arg, int from_tty)
1698 {
1699 struct format_data fmt;
1700 struct display *newobj;
1701 const char *exp = arg;
1702
1703 if (exp == 0)
1704 {
1705 do_displays ();
1706 return;
1707 }
1708
1709 if (*exp == '/')
1710 {
1711 exp++;
1712 fmt = decode_format (&exp, 0, 0);
1713 if (fmt.size && fmt.format == 0)
1714 fmt.format = 'x';
1715 if (fmt.format == 'i' || fmt.format == 's')
1716 fmt.size = 'b';
1717 }
1718 else
1719 {
1720 fmt.format = 0;
1721 fmt.size = 0;
1722 fmt.count = 0;
1723 fmt.raw = 0;
1724 }
1725
1726 innermost_block.reset ();
1727 expression_up expr = parse_expression (exp);
1728
1729 newobj = new display ();
1730
1731 newobj->exp_string = xstrdup (exp);
1732 newobj->exp = std::move (expr);
1733 newobj->block = innermost_block.block ();
1734 newobj->pspace = current_program_space;
1735 newobj->number = ++display_number;
1736 newobj->format = fmt;
1737 newobj->enabled_p = 1;
1738 newobj->next = NULL;
1739
1740 if (display_chain == NULL)
1741 display_chain = newobj;
1742 else
1743 {
1744 struct display *last;
1745
1746 for (last = display_chain; last->next != NULL; last = last->next)
1747 ;
1748 last->next = newobj;
1749 }
1750
1751 if (from_tty)
1752 do_one_display (newobj);
1753
1754 dont_repeat ();
1755 }
1756
1757 static void
1758 free_display (struct display *d)
1759 {
1760 xfree (d->exp_string);
1761 delete d;
1762 }
1763
1764 /* Clear out the display_chain. Done when new symtabs are loaded,
1765 since this invalidates the types stored in many expressions. */
1766
1767 void
1768 clear_displays (void)
1769 {
1770 struct display *d;
1771
1772 while ((d = display_chain) != NULL)
1773 {
1774 display_chain = d->next;
1775 free_display (d);
1776 }
1777 }
1778
1779 /* Delete the auto-display DISPLAY. */
1780
1781 static void
1782 delete_display (struct display *display)
1783 {
1784 struct display *d;
1785
1786 gdb_assert (display != NULL);
1787
1788 if (display_chain == display)
1789 display_chain = display->next;
1790
1791 ALL_DISPLAYS (d)
1792 if (d->next == display)
1793 {
1794 d->next = display->next;
1795 break;
1796 }
1797
1798 free_display (display);
1799 }
1800
1801 /* Call FUNCTION on each of the displays whose numbers are given in
1802 ARGS. DATA is passed unmodified to FUNCTION. */
1803
1804 static void
1805 map_display_numbers (const char *args,
1806 void (*function) (struct display *,
1807 void *),
1808 void *data)
1809 {
1810 int num;
1811
1812 if (args == NULL)
1813 error_no_arg (_("one or more display numbers"));
1814
1815 number_or_range_parser parser (args);
1816
1817 while (!parser.finished ())
1818 {
1819 const char *p = parser.cur_tok ();
1820
1821 num = parser.get_number ();
1822 if (num == 0)
1823 warning (_("bad display number at or near '%s'"), p);
1824 else
1825 {
1826 struct display *d, *tmp;
1827
1828 ALL_DISPLAYS_SAFE (d, tmp)
1829 if (d->number == num)
1830 break;
1831 if (d == NULL)
1832 printf_unfiltered (_("No display number %d.\n"), num);
1833 else
1834 function (d, data);
1835 }
1836 }
1837 }
1838
1839 /* Callback for map_display_numbers, that deletes a display. */
1840
1841 static void
1842 do_delete_display (struct display *d, void *data)
1843 {
1844 delete_display (d);
1845 }
1846
1847 /* "undisplay" command. */
1848
1849 static void
1850 undisplay_command (const char *args, int from_tty)
1851 {
1852 if (args == NULL)
1853 {
1854 if (query (_("Delete all auto-display expressions? ")))
1855 clear_displays ();
1856 dont_repeat ();
1857 return;
1858 }
1859
1860 map_display_numbers (args, do_delete_display, NULL);
1861 dont_repeat ();
1862 }
1863
1864 /* Display a single auto-display.
1865 Do nothing if the display cannot be printed in the current context,
1866 or if the display is disabled. */
1867
1868 static void
1869 do_one_display (struct display *d)
1870 {
1871 int within_current_scope;
1872
1873 if (d->enabled_p == 0)
1874 return;
1875
1876 /* The expression carries the architecture that was used at parse time.
1877 This is a problem if the expression depends on architecture features
1878 (e.g. register numbers), and the current architecture is now different.
1879 For example, a display statement like "display/i $pc" is expected to
1880 display the PC register of the current architecture, not the arch at
1881 the time the display command was given. Therefore, we re-parse the
1882 expression if the current architecture has changed. */
1883 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1884 {
1885 d->exp.reset ();
1886 d->block = NULL;
1887 }
1888
1889 if (d->exp == NULL)
1890 {
1891
1892 TRY
1893 {
1894 innermost_block.reset ();
1895 d->exp = parse_expression (d->exp_string);
1896 d->block = innermost_block.block ();
1897 }
1898 CATCH (ex, RETURN_MASK_ALL)
1899 {
1900 /* Can't re-parse the expression. Disable this display item. */
1901 d->enabled_p = 0;
1902 warning (_("Unable to display \"%s\": %s"),
1903 d->exp_string, ex.message);
1904 return;
1905 }
1906 END_CATCH
1907 }
1908
1909 if (d->block)
1910 {
1911 if (d->pspace == current_program_space)
1912 within_current_scope = contained_in (get_selected_block (0), d->block);
1913 else
1914 within_current_scope = 0;
1915 }
1916 else
1917 within_current_scope = 1;
1918 if (!within_current_scope)
1919 return;
1920
1921 scoped_restore save_display_number
1922 = make_scoped_restore (&current_display_number, d->number);
1923
1924 annotate_display_begin ();
1925 printf_filtered ("%d", d->number);
1926 annotate_display_number_end ();
1927 printf_filtered (": ");
1928 if (d->format.size)
1929 {
1930
1931 annotate_display_format ();
1932
1933 printf_filtered ("x/");
1934 if (d->format.count != 1)
1935 printf_filtered ("%d", d->format.count);
1936 printf_filtered ("%c", d->format.format);
1937 if (d->format.format != 'i' && d->format.format != 's')
1938 printf_filtered ("%c", d->format.size);
1939 printf_filtered (" ");
1940
1941 annotate_display_expression ();
1942
1943 puts_filtered (d->exp_string);
1944 annotate_display_expression_end ();
1945
1946 if (d->format.count != 1 || d->format.format == 'i')
1947 printf_filtered ("\n");
1948 else
1949 printf_filtered (" ");
1950
1951 annotate_display_value ();
1952
1953 TRY
1954 {
1955 struct value *val;
1956 CORE_ADDR addr;
1957
1958 val = evaluate_expression (d->exp.get ());
1959 addr = value_as_address (val);
1960 if (d->format.format == 'i')
1961 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1962 do_examine (d->format, d->exp->gdbarch, addr);
1963 }
1964 CATCH (ex, RETURN_MASK_ERROR)
1965 {
1966 fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
1967 }
1968 END_CATCH
1969 }
1970 else
1971 {
1972 struct value_print_options opts;
1973
1974 annotate_display_format ();
1975
1976 if (d->format.format)
1977 printf_filtered ("/%c ", d->format.format);
1978
1979 annotate_display_expression ();
1980
1981 puts_filtered (d->exp_string);
1982 annotate_display_expression_end ();
1983
1984 printf_filtered (" = ");
1985
1986 annotate_display_expression ();
1987
1988 get_formatted_print_options (&opts, d->format.format);
1989 opts.raw = d->format.raw;
1990
1991 TRY
1992 {
1993 struct value *val;
1994
1995 val = evaluate_expression (d->exp.get ());
1996 print_formatted (val, d->format.size, &opts, gdb_stdout);
1997 }
1998 CATCH (ex, RETURN_MASK_ERROR)
1999 {
2000 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2001 }
2002 END_CATCH
2003
2004 printf_filtered ("\n");
2005 }
2006
2007 annotate_display_end ();
2008
2009 gdb_flush (gdb_stdout);
2010 }
2011
2012 /* Display all of the values on the auto-display chain which can be
2013 evaluated in the current scope. */
2014
2015 void
2016 do_displays (void)
2017 {
2018 struct display *d;
2019
2020 for (d = display_chain; d; d = d->next)
2021 do_one_display (d);
2022 }
2023
2024 /* Delete the auto-display which we were in the process of displaying.
2025 This is done when there is an error or a signal. */
2026
2027 void
2028 disable_display (int num)
2029 {
2030 struct display *d;
2031
2032 for (d = display_chain; d; d = d->next)
2033 if (d->number == num)
2034 {
2035 d->enabled_p = 0;
2036 return;
2037 }
2038 printf_unfiltered (_("No display number %d.\n"), num);
2039 }
2040
2041 void
2042 disable_current_display (void)
2043 {
2044 if (current_display_number >= 0)
2045 {
2046 disable_display (current_display_number);
2047 fprintf_unfiltered (gdb_stderr,
2048 _("Disabling display %d to "
2049 "avoid infinite recursion.\n"),
2050 current_display_number);
2051 }
2052 current_display_number = -1;
2053 }
2054
2055 static void
2056 info_display_command (const char *ignore, int from_tty)
2057 {
2058 struct display *d;
2059
2060 if (!display_chain)
2061 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2062 else
2063 printf_filtered (_("Auto-display expressions now in effect:\n\
2064 Num Enb Expression\n"));
2065
2066 for (d = display_chain; d; d = d->next)
2067 {
2068 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2069 if (d->format.size)
2070 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2071 d->format.format);
2072 else if (d->format.format)
2073 printf_filtered ("/%c ", d->format.format);
2074 puts_filtered (d->exp_string);
2075 if (d->block && !contained_in (get_selected_block (0), d->block))
2076 printf_filtered (_(" (cannot be evaluated in the current context)"));
2077 printf_filtered ("\n");
2078 gdb_flush (gdb_stdout);
2079 }
2080 }
2081
2082 /* Callback fo map_display_numbers, that enables or disables the
2083 passed in display D. */
2084
2085 static void
2086 do_enable_disable_display (struct display *d, void *data)
2087 {
2088 d->enabled_p = *(int *) data;
2089 }
2090
2091 /* Implamentation of both the "disable display" and "enable display"
2092 commands. ENABLE decides what to do. */
2093
2094 static void
2095 enable_disable_display_command (const char *args, int from_tty, int enable)
2096 {
2097 if (args == NULL)
2098 {
2099 struct display *d;
2100
2101 ALL_DISPLAYS (d)
2102 d->enabled_p = enable;
2103 return;
2104 }
2105
2106 map_display_numbers (args, do_enable_disable_display, &enable);
2107 }
2108
2109 /* The "enable display" command. */
2110
2111 static void
2112 enable_display_command (const char *args, int from_tty)
2113 {
2114 enable_disable_display_command (args, from_tty, 1);
2115 }
2116
2117 /* The "disable display" command. */
2118
2119 static void
2120 disable_display_command (const char *args, int from_tty)
2121 {
2122 enable_disable_display_command (args, from_tty, 0);
2123 }
2124
2125 /* display_chain items point to blocks and expressions. Some expressions in
2126 turn may point to symbols.
2127 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2128 obstack_free'd when a shared library is unloaded.
2129 Clear pointers that are about to become dangling.
2130 Both .exp and .block fields will be restored next time we need to display
2131 an item by re-parsing .exp_string field in the new execution context. */
2132
2133 static void
2134 clear_dangling_display_expressions (struct objfile *objfile)
2135 {
2136 struct display *d;
2137 struct program_space *pspace;
2138
2139 /* With no symbol file we cannot have a block or expression from it. */
2140 if (objfile == NULL)
2141 return;
2142 pspace = objfile->pspace;
2143 if (objfile->separate_debug_objfile_backlink)
2144 {
2145 objfile = objfile->separate_debug_objfile_backlink;
2146 gdb_assert (objfile->pspace == pspace);
2147 }
2148
2149 for (d = display_chain; d != NULL; d = d->next)
2150 {
2151 if (d->pspace != pspace)
2152 continue;
2153
2154 if (lookup_objfile_from_block (d->block) == objfile
2155 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2156 {
2157 d->exp.reset ();
2158 d->block = NULL;
2159 }
2160 }
2161 }
2162 \f
2163
2164 /* Print the value in stack frame FRAME of a variable specified by a
2165 struct symbol. NAME is the name to print; if NULL then VAR's print
2166 name will be used. STREAM is the ui_file on which to print the
2167 value. INDENT specifies the number of indent levels to print
2168 before printing the variable name.
2169
2170 This function invalidates FRAME. */
2171
2172 void
2173 print_variable_and_value (const char *name, struct symbol *var,
2174 struct frame_info *frame,
2175 struct ui_file *stream, int indent)
2176 {
2177
2178 if (!name)
2179 name = SYMBOL_PRINT_NAME (var);
2180
2181 fprintf_filtered (stream, "%s%s = ", n_spaces (2 * indent), name);
2182 TRY
2183 {
2184 struct value *val;
2185 struct value_print_options opts;
2186
2187 /* READ_VAR_VALUE needs a block in order to deal with non-local
2188 references (i.e. to handle nested functions). In this context, we
2189 print variables that are local to this frame, so we can avoid passing
2190 a block to it. */
2191 val = read_var_value (var, NULL, frame);
2192 get_user_print_options (&opts);
2193 opts.deref_ref = 1;
2194 common_val_print (val, stream, indent, &opts, current_language);
2195
2196 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2197 function. */
2198 frame = NULL;
2199 }
2200 CATCH (except, RETURN_MASK_ERROR)
2201 {
2202 fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
2203 except.message);
2204 }
2205 END_CATCH
2206
2207 fprintf_filtered (stream, "\n");
2208 }
2209
2210 /* Subroutine of ui_printf to simplify it.
2211 Print VALUE to STREAM using FORMAT.
2212 VALUE is a C-style string on the target. */
2213
2214 static void
2215 printf_c_string (struct ui_file *stream, const char *format,
2216 struct value *value)
2217 {
2218 gdb_byte *str;
2219 CORE_ADDR tem;
2220 int j;
2221
2222 tem = value_as_address (value);
2223 if (tem == 0)
2224 {
2225 fprintf_filtered (stream, format, "(null)");
2226 return;
2227 }
2228
2229 /* This is a %s argument. Find the length of the string. */
2230 for (j = 0;; j++)
2231 {
2232 gdb_byte c;
2233
2234 QUIT;
2235 read_memory (tem + j, &c, 1);
2236 if (c == 0)
2237 break;
2238 }
2239
2240 /* Copy the string contents into a string inside GDB. */
2241 str = (gdb_byte *) alloca (j + 1);
2242 if (j != 0)
2243 read_memory (tem, str, j);
2244 str[j] = 0;
2245
2246 fprintf_filtered (stream, format, (char *) str);
2247 }
2248
2249 /* Subroutine of ui_printf to simplify it.
2250 Print VALUE to STREAM using FORMAT.
2251 VALUE is a wide C-style string on the target. */
2252
2253 static void
2254 printf_wide_c_string (struct ui_file *stream, const char *format,
2255 struct value *value)
2256 {
2257 gdb_byte *str;
2258 CORE_ADDR tem;
2259 int j;
2260 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2261 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2262 struct type *wctype = lookup_typename (current_language, gdbarch,
2263 "wchar_t", NULL, 0);
2264 int wcwidth = TYPE_LENGTH (wctype);
2265 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2266
2267 tem = value_as_address (value);
2268 if (tem == 0)
2269 {
2270 fprintf_filtered (stream, format, "(null)");
2271 return;
2272 }
2273
2274 /* This is a %s argument. Find the length of the string. */
2275 for (j = 0;; j += wcwidth)
2276 {
2277 QUIT;
2278 read_memory (tem + j, buf, wcwidth);
2279 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2280 break;
2281 }
2282
2283 /* Copy the string contents into a string inside GDB. */
2284 str = (gdb_byte *) alloca (j + wcwidth);
2285 if (j != 0)
2286 read_memory (tem, str, j);
2287 memset (&str[j], 0, wcwidth);
2288
2289 auto_obstack output;
2290
2291 convert_between_encodings (target_wide_charset (gdbarch),
2292 host_charset (),
2293 str, j, wcwidth,
2294 &output, translit_char);
2295 obstack_grow_str0 (&output, "");
2296
2297 fprintf_filtered (stream, format, obstack_base (&output));
2298 }
2299
2300 /* Subroutine of ui_printf to simplify it.
2301 Print VALUE, a floating point value, to STREAM using FORMAT. */
2302
2303 static void
2304 printf_floating (struct ui_file *stream, const char *format,
2305 struct value *value, enum argclass argclass)
2306 {
2307 /* Parameter data. */
2308 struct type *param_type = value_type (value);
2309 struct gdbarch *gdbarch = get_type_arch (param_type);
2310 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2311
2312 /* Determine target type corresponding to the format string. */
2313 struct type *fmt_type;
2314 switch (argclass)
2315 {
2316 case double_arg:
2317 fmt_type = builtin_type (gdbarch)->builtin_double;
2318 break;
2319 case long_double_arg:
2320 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2321 break;
2322 case dec32float_arg:
2323 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2324 break;
2325 case dec64float_arg:
2326 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2327 break;
2328 case dec128float_arg:
2329 fmt_type = builtin_type (gdbarch)->builtin_declong;
2330 break;
2331 default:
2332 gdb_assert_not_reached ("unexpected argument class");
2333 }
2334
2335 /* To match the traditional GDB behavior, the conversion is
2336 done differently depending on the type of the parameter:
2337
2338 - if the parameter has floating-point type, it's value
2339 is converted to the target type;
2340
2341 - otherwise, if the parameter has a type that is of the
2342 same size as a built-in floating-point type, the value
2343 bytes are interpreted as if they were of that type, and
2344 then converted to the target type (this is not done for
2345 decimal floating-point argument classes);
2346
2347 - otherwise, if the source value has an integer value,
2348 it's value is converted to the target type;
2349
2350 - otherwise, an error is raised.
2351
2352 In either case, the result of the conversion is a byte buffer
2353 formatted in the target format for the target type. */
2354
2355 if (TYPE_CODE (fmt_type) == TYPE_CODE_FLT)
2356 {
2357 param_type = float_type_from_length (param_type);
2358 if (param_type != value_type (value))
2359 value = value_from_contents (param_type, value_contents (value));
2360 }
2361
2362 value = value_cast (fmt_type, value);
2363
2364 /* Convert the value to a string and print it. */
2365 std::string str
2366 = target_float_to_string (value_contents (value), fmt_type, format);
2367 fputs_filtered (str.c_str (), stream);
2368 }
2369
2370 /* Subroutine of ui_printf to simplify it.
2371 Print VALUE, a target pointer, to STREAM using FORMAT. */
2372
2373 static void
2374 printf_pointer (struct ui_file *stream, const char *format,
2375 struct value *value)
2376 {
2377 /* We avoid the host's %p because pointers are too
2378 likely to be the wrong size. The only interesting
2379 modifier for %p is a width; extract that, and then
2380 handle %p as glibc would: %#x or a literal "(nil)". */
2381
2382 const char *p;
2383 char *fmt, *fmt_p;
2384 #ifdef PRINTF_HAS_LONG_LONG
2385 long long val = value_as_long (value);
2386 #else
2387 long val = value_as_long (value);
2388 #endif
2389
2390 fmt = (char *) alloca (strlen (format) + 5);
2391
2392 /* Copy up to the leading %. */
2393 p = format;
2394 fmt_p = fmt;
2395 while (*p)
2396 {
2397 int is_percent = (*p == '%');
2398
2399 *fmt_p++ = *p++;
2400 if (is_percent)
2401 {
2402 if (*p == '%')
2403 *fmt_p++ = *p++;
2404 else
2405 break;
2406 }
2407 }
2408
2409 if (val != 0)
2410 *fmt_p++ = '#';
2411
2412 /* Copy any width or flags. Only the "-" flag is valid for pointers
2413 -- see the format_pieces constructor. */
2414 while (*p == '-' || (*p >= '0' && *p < '9'))
2415 *fmt_p++ = *p++;
2416
2417 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2418 if (val != 0)
2419 {
2420 #ifdef PRINTF_HAS_LONG_LONG
2421 *fmt_p++ = 'l';
2422 #endif
2423 *fmt_p++ = 'l';
2424 *fmt_p++ = 'x';
2425 *fmt_p++ = '\0';
2426 fprintf_filtered (stream, fmt, val);
2427 }
2428 else
2429 {
2430 *fmt_p++ = 's';
2431 *fmt_p++ = '\0';
2432 fprintf_filtered (stream, fmt, "(nil)");
2433 }
2434 }
2435
2436 /* printf "printf format string" ARG to STREAM. */
2437
2438 static void
2439 ui_printf (const char *arg, struct ui_file *stream)
2440 {
2441 const char *s = arg;
2442 std::vector<struct value *> val_args;
2443
2444 if (s == 0)
2445 error_no_arg (_("format-control string and values to print"));
2446
2447 s = skip_spaces (s);
2448
2449 /* A format string should follow, enveloped in double quotes. */
2450 if (*s++ != '"')
2451 error (_("Bad format string, missing '\"'."));
2452
2453 format_pieces fpieces (&s);
2454
2455 if (*s++ != '"')
2456 error (_("Bad format string, non-terminated '\"'."));
2457
2458 s = skip_spaces (s);
2459
2460 if (*s != ',' && *s != 0)
2461 error (_("Invalid argument syntax"));
2462
2463 if (*s == ',')
2464 s++;
2465 s = skip_spaces (s);
2466
2467 {
2468 int nargs_wanted;
2469 int i;
2470 const char *current_substring;
2471
2472 nargs_wanted = 0;
2473 for (auto &&piece : fpieces)
2474 if (piece.argclass != literal_piece)
2475 ++nargs_wanted;
2476
2477 /* Now, parse all arguments and evaluate them.
2478 Store the VALUEs in VAL_ARGS. */
2479
2480 while (*s != '\0')
2481 {
2482 const char *s1;
2483
2484 s1 = s;
2485 val_args.push_back (parse_to_comma_and_eval (&s1));
2486
2487 s = s1;
2488 if (*s == ',')
2489 s++;
2490 }
2491
2492 if (val_args.size () != nargs_wanted)
2493 error (_("Wrong number of arguments for specified format-string"));
2494
2495 /* Now actually print them. */
2496 i = 0;
2497 for (auto &&piece : fpieces)
2498 {
2499 current_substring = piece.string;
2500 switch (piece.argclass)
2501 {
2502 case string_arg:
2503 printf_c_string (stream, current_substring, val_args[i]);
2504 break;
2505 case wide_string_arg:
2506 printf_wide_c_string (stream, current_substring, val_args[i]);
2507 break;
2508 case wide_char_arg:
2509 {
2510 struct gdbarch *gdbarch
2511 = get_type_arch (value_type (val_args[i]));
2512 struct type *wctype = lookup_typename (current_language, gdbarch,
2513 "wchar_t", NULL, 0);
2514 struct type *valtype;
2515 const gdb_byte *bytes;
2516
2517 valtype = value_type (val_args[i]);
2518 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2519 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2520 error (_("expected wchar_t argument for %%lc"));
2521
2522 bytes = value_contents (val_args[i]);
2523
2524 auto_obstack output;
2525
2526 convert_between_encodings (target_wide_charset (gdbarch),
2527 host_charset (),
2528 bytes, TYPE_LENGTH (valtype),
2529 TYPE_LENGTH (valtype),
2530 &output, translit_char);
2531 obstack_grow_str0 (&output, "");
2532
2533 fprintf_filtered (stream, current_substring,
2534 obstack_base (&output));
2535 }
2536 break;
2537 case long_long_arg:
2538 #ifdef PRINTF_HAS_LONG_LONG
2539 {
2540 long long val = value_as_long (val_args[i]);
2541
2542 fprintf_filtered (stream, current_substring, val);
2543 break;
2544 }
2545 #else
2546 error (_("long long not supported in printf"));
2547 #endif
2548 case int_arg:
2549 {
2550 int val = value_as_long (val_args[i]);
2551
2552 fprintf_filtered (stream, current_substring, val);
2553 break;
2554 }
2555 case long_arg:
2556 {
2557 long val = value_as_long (val_args[i]);
2558
2559 fprintf_filtered (stream, current_substring, val);
2560 break;
2561 }
2562 /* Handles floating-point values. */
2563 case double_arg:
2564 case long_double_arg:
2565 case dec32float_arg:
2566 case dec64float_arg:
2567 case dec128float_arg:
2568 printf_floating (stream, current_substring, val_args[i],
2569 piece.argclass);
2570 break;
2571 case ptr_arg:
2572 printf_pointer (stream, current_substring, val_args[i]);
2573 break;
2574 case literal_piece:
2575 /* Print a portion of the format string that has no
2576 directives. Note that this will not include any
2577 ordinary %-specs, but it might include "%%". That is
2578 why we use printf_filtered and not puts_filtered here.
2579 Also, we pass a dummy argument because some platforms
2580 have modified GCC to include -Wformat-security by
2581 default, which will warn here if there is no
2582 argument. */
2583 fprintf_filtered (stream, current_substring, 0);
2584 break;
2585 default:
2586 internal_error (__FILE__, __LINE__,
2587 _("failed internal consistency check"));
2588 }
2589 /* Maybe advance to the next argument. */
2590 if (piece.argclass != literal_piece)
2591 ++i;
2592 }
2593 }
2594 }
2595
2596 /* Implement the "printf" command. */
2597
2598 static void
2599 printf_command (const char *arg, int from_tty)
2600 {
2601 ui_printf (arg, gdb_stdout);
2602 gdb_flush (gdb_stdout);
2603 }
2604
2605 /* Implement the "eval" command. */
2606
2607 static void
2608 eval_command (const char *arg, int from_tty)
2609 {
2610 string_file stb;
2611
2612 ui_printf (arg, &stb);
2613
2614 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2615
2616 execute_command (expanded.c_str (), from_tty);
2617 }
2618
2619 void
2620 _initialize_printcmd (void)
2621 {
2622 struct cmd_list_element *c;
2623
2624 current_display_number = -1;
2625
2626 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2627
2628 add_info ("address", info_address_command,
2629 _("Describe where symbol SYM is stored."));
2630
2631 add_info ("symbol", info_symbol_command, _("\
2632 Describe what symbol is at location ADDR.\n\
2633 Only for symbols with fixed locations (global or static scope)."));
2634
2635 add_com ("x", class_vars, x_command, _("\
2636 Examine memory: x/FMT ADDRESS.\n\
2637 ADDRESS is an expression for the memory address to examine.\n\
2638 FMT is a repeat count followed by a format letter and a size letter.\n\
2639 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2640 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2641 and z(hex, zero padded on the left).\n\
2642 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2643 The specified number of objects of the specified size are printed\n\
2644 according to the format. If a negative number is specified, memory is\n\
2645 examined backward from the address.\n\n\
2646 Defaults for format and size letters are those previously used.\n\
2647 Default count is 1. Default address is following last thing printed\n\
2648 with this command or \"print\"."));
2649
2650 #if 0
2651 add_com ("whereis", class_vars, whereis_command,
2652 _("Print line number and file of definition of variable."));
2653 #endif
2654
2655 add_info ("display", info_display_command, _("\
2656 Expressions to display when program stops, with code numbers."));
2657
2658 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2659 Cancel some expressions to be displayed when program stops.\n\
2660 Arguments are the code numbers of the expressions to stop displaying.\n\
2661 No argument means cancel all automatic-display expressions.\n\
2662 \"delete display\" has the same effect as this command.\n\
2663 Do \"info display\" to see current list of code numbers."),
2664 &cmdlist);
2665
2666 add_com ("display", class_vars, display_command, _("\
2667 Print value of expression EXP each time the program stops.\n\
2668 /FMT may be used before EXP as in the \"print\" command.\n\
2669 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2670 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2671 and examining is done as in the \"x\" command.\n\n\
2672 With no argument, display all currently requested auto-display expressions.\n\
2673 Use \"undisplay\" to cancel display requests previously made."));
2674
2675 add_cmd ("display", class_vars, enable_display_command, _("\
2676 Enable some expressions to be displayed when program stops.\n\
2677 Arguments are the code numbers of the expressions to resume displaying.\n\
2678 No argument means enable all automatic-display expressions.\n\
2679 Do \"info display\" to see current list of code numbers."), &enablelist);
2680
2681 add_cmd ("display", class_vars, disable_display_command, _("\
2682 Disable some expressions to be displayed when program stops.\n\
2683 Arguments are the code numbers of the expressions to stop displaying.\n\
2684 No argument means disable all automatic-display expressions.\n\
2685 Do \"info display\" to see current list of code numbers."), &disablelist);
2686
2687 add_cmd ("display", class_vars, undisplay_command, _("\
2688 Cancel some expressions to be displayed when program stops.\n\
2689 Arguments are the code numbers of the expressions to stop displaying.\n\
2690 No argument means cancel all automatic-display expressions.\n\
2691 Do \"info display\" to see current list of code numbers."), &deletelist);
2692
2693 add_com ("printf", class_vars, printf_command, _("\
2694 Formatted printing, like the C \"printf\" function.\n\
2695 Usage: printf \"format string\", arg1, arg2, arg3, ..., argn\n\
2696 This supports most C printf format specifications, like %s, %d, etc."));
2697
2698 add_com ("output", class_vars, output_command, _("\
2699 Like \"print\" but don't put in value history and don't print newline.\n\
2700 This is useful in user-defined commands."));
2701
2702 add_prefix_cmd ("set", class_vars, set_command, _("\
2703 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2704 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2705 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2706 with $), a register (a few standard names starting with $), or an actual\n\
2707 variable in the program being debugged. EXP is any valid expression.\n\
2708 Use \"set variable\" for variables with names identical to set subcommands.\n\
2709 \n\
2710 With a subcommand, this command modifies parts of the gdb environment.\n\
2711 You can see these environment settings with the \"show\" command."),
2712 &setlist, "set ", 1, &cmdlist);
2713 if (dbx_commands)
2714 add_com ("assign", class_vars, set_command, _("\
2715 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2716 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2717 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2718 with $), a register (a few standard names starting with $), or an actual\n\
2719 variable in the program being debugged. EXP is any valid expression.\n\
2720 Use \"set variable\" for variables with names identical to set subcommands.\n\
2721 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2722 You can see these environment settings with the \"show\" command."));
2723
2724 /* "call" is the same as "set", but handy for dbx users to call fns. */
2725 c = add_com ("call", class_vars, call_command, _("\
2726 Call a function in the program.\n\
2727 The argument is the function name and arguments, in the notation of the\n\
2728 current working language. The result is printed and saved in the value\n\
2729 history, if it is not void."));
2730 set_cmd_completer (c, expression_completer);
2731
2732 add_cmd ("variable", class_vars, set_command, _("\
2733 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2734 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2735 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2736 with $), a register (a few standard names starting with $), or an actual\n\
2737 variable in the program being debugged. EXP is any valid expression.\n\
2738 This may usually be abbreviated to simply \"set\"."),
2739 &setlist);
2740
2741 c = add_com ("print", class_vars, print_command, _("\
2742 Print value of expression EXP.\n\
2743 Variables accessible are those of the lexical environment of the selected\n\
2744 stack frame, plus all those whose scope is global or an entire file.\n\
2745 \n\
2746 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2747 $$NUM refers to NUM'th value back from the last one.\n\
2748 Names starting with $ refer to registers (with the values they would have\n\
2749 if the program were to return to the stack frame now selected, restoring\n\
2750 all registers saved by frames farther in) or else to debugger\n\
2751 \"convenience\" variables (any such name not a known register).\n\
2752 Use assignment expressions to give values to convenience variables.\n\
2753 \n\
2754 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2755 @ is a binary operator for treating consecutive data objects\n\
2756 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2757 element is FOO, whose second element is stored in the space following\n\
2758 where FOO is stored, etc. FOO must be an expression whose value\n\
2759 resides in memory.\n\
2760 \n\
2761 EXP may be preceded with /FMT, where FMT is a format letter\n\
2762 but no count or size letter (see \"x\" command)."));
2763 set_cmd_completer (c, expression_completer);
2764 add_com_alias ("p", "print", class_vars, 1);
2765 add_com_alias ("inspect", "print", class_vars, 1);
2766
2767 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2768 &max_symbolic_offset, _("\
2769 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2770 Show the largest offset that will be printed in <symbol+1234> form."), _("\
2771 Tell GDB to only display the symbolic form of an address if the\n\
2772 offset between the closest earlier symbol and the address is less than\n\
2773 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2774 to always print the symbolic form of an address if any symbol precedes\n\
2775 it. Zero is equivalent to \"unlimited\"."),
2776 NULL,
2777 show_max_symbolic_offset,
2778 &setprintlist, &showprintlist);
2779 add_setshow_boolean_cmd ("symbol-filename", no_class,
2780 &print_symbol_filename, _("\
2781 Set printing of source filename and line number with <symbol>."), _("\
2782 Show printing of source filename and line number with <symbol>."), NULL,
2783 NULL,
2784 show_print_symbol_filename,
2785 &setprintlist, &showprintlist);
2786
2787 add_com ("eval", no_class, eval_command, _("\
2788 Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\
2789 a command line, and call it."));
2790 }
This page took 0.086472 seconds and 5 git commands to generate.