Simple unused variable removals
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "expression.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "breakpoint.h"
31 #include "demangle.h"
32 #include "gdb-demangle.h"
33 #include "valprint.h"
34 #include "annotate.h"
35 #include "symfile.h" /* for overlay functions */
36 #include "objfiles.h" /* ditto */
37 #include "completer.h" /* for completion functions */
38 #include "ui-out.h"
39 #include "block.h"
40 #include "disasm.h"
41 #include "target-float.h"
42 #include "observable.h"
43 #include "solist.h"
44 #include "parser-defs.h"
45 #include "charset.h"
46 #include "arch-utils.h"
47 #include "cli/cli-utils.h"
48 #include "cli/cli-script.h"
49 #include "format.h"
50 #include "source.h"
51 #include "common/byte-vector.h"
52
53 /* Last specified output format. */
54
55 static char last_format = 0;
56
57 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
58
59 static char last_size = 'w';
60
61 /* Last specified count for the 'x' command. */
62
63 static int last_count;
64
65 /* Default address to examine next, and associated architecture. */
66
67 static struct gdbarch *next_gdbarch;
68 static CORE_ADDR next_address;
69
70 /* Number of delay instructions following current disassembled insn. */
71
72 static int branch_delay_insns;
73
74 /* Last address examined. */
75
76 static CORE_ADDR last_examine_address;
77
78 /* Contents of last address examined.
79 This is not valid past the end of the `x' command! */
80
81 static value_ref_ptr last_examine_value;
82
83 /* Largest offset between a symbolic value and an address, that will be
84 printed as `0x1234 <symbol+offset>'. */
85
86 static unsigned int max_symbolic_offset = UINT_MAX;
87 static void
88 show_max_symbolic_offset (struct ui_file *file, int from_tty,
89 struct cmd_list_element *c, const char *value)
90 {
91 fprintf_filtered (file,
92 _("The largest offset that will be "
93 "printed in <symbol+1234> form is %s.\n"),
94 value);
95 }
96
97 /* Append the source filename and linenumber of the symbol when
98 printing a symbolic value as `<symbol at filename:linenum>' if set. */
99 static int print_symbol_filename = 0;
100 static void
101 show_print_symbol_filename (struct ui_file *file, int from_tty,
102 struct cmd_list_element *c, const char *value)
103 {
104 fprintf_filtered (file, _("Printing of source filename and "
105 "line number with <symbol> is %s.\n"),
106 value);
107 }
108
109 /* Number of auto-display expression currently being displayed.
110 So that we can disable it if we get a signal within it.
111 -1 when not doing one. */
112
113 static int current_display_number;
114
115 struct display
116 {
117 /* Chain link to next auto-display item. */
118 struct display *next;
119
120 /* The expression as the user typed it. */
121 char *exp_string;
122
123 /* Expression to be evaluated and displayed. */
124 expression_up exp;
125
126 /* Item number of this auto-display item. */
127 int number;
128
129 /* Display format specified. */
130 struct format_data format;
131
132 /* Program space associated with `block'. */
133 struct program_space *pspace;
134
135 /* Innermost block required by this expression when evaluated. */
136 const struct block *block;
137
138 /* Status of this display (enabled or disabled). */
139 int enabled_p;
140 };
141
142 /* Chain of expressions whose values should be displayed
143 automatically each time the program stops. */
144
145 static struct display *display_chain;
146
147 static int display_number;
148
149 /* Walk the following statement or block through all displays.
150 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
151 display. */
152
153 #define ALL_DISPLAYS(B) \
154 for (B = display_chain; B; B = B->next)
155
156 #define ALL_DISPLAYS_SAFE(B,TMP) \
157 for (B = display_chain; \
158 B ? (TMP = B->next, 1): 0; \
159 B = TMP)
160
161 /* Prototypes for local functions. */
162
163 static void do_one_display (struct display *);
164 \f
165
166 /* Decode a format specification. *STRING_PTR should point to it.
167 OFORMAT and OSIZE are used as defaults for the format and size
168 if none are given in the format specification.
169 If OSIZE is zero, then the size field of the returned value
170 should be set only if a size is explicitly specified by the
171 user.
172 The structure returned describes all the data
173 found in the specification. In addition, *STRING_PTR is advanced
174 past the specification and past all whitespace following it. */
175
176 static struct format_data
177 decode_format (const char **string_ptr, int oformat, int osize)
178 {
179 struct format_data val;
180 const char *p = *string_ptr;
181
182 val.format = '?';
183 val.size = '?';
184 val.count = 1;
185 val.raw = 0;
186
187 if (*p == '-')
188 {
189 val.count = -1;
190 p++;
191 }
192 if (*p >= '0' && *p <= '9')
193 val.count *= atoi (p);
194 while (*p >= '0' && *p <= '9')
195 p++;
196
197 /* Now process size or format letters that follow. */
198
199 while (1)
200 {
201 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
202 val.size = *p++;
203 else if (*p == 'r')
204 {
205 val.raw = 1;
206 p++;
207 }
208 else if (*p >= 'a' && *p <= 'z')
209 val.format = *p++;
210 else
211 break;
212 }
213
214 *string_ptr = skip_spaces (p);
215
216 /* Set defaults for format and size if not specified. */
217 if (val.format == '?')
218 {
219 if (val.size == '?')
220 {
221 /* Neither has been specified. */
222 val.format = oformat;
223 val.size = osize;
224 }
225 else
226 /* If a size is specified, any format makes a reasonable
227 default except 'i'. */
228 val.format = oformat == 'i' ? 'x' : oformat;
229 }
230 else if (val.size == '?')
231 switch (val.format)
232 {
233 case 'a':
234 /* Pick the appropriate size for an address. This is deferred
235 until do_examine when we know the actual architecture to use.
236 A special size value of 'a' is used to indicate this case. */
237 val.size = osize ? 'a' : osize;
238 break;
239 case 'f':
240 /* Floating point has to be word or giantword. */
241 if (osize == 'w' || osize == 'g')
242 val.size = osize;
243 else
244 /* Default it to giantword if the last used size is not
245 appropriate. */
246 val.size = osize ? 'g' : osize;
247 break;
248 case 'c':
249 /* Characters default to one byte. */
250 val.size = osize ? 'b' : osize;
251 break;
252 case 's':
253 /* Display strings with byte size chars unless explicitly
254 specified. */
255 val.size = '\0';
256 break;
257
258 default:
259 /* The default is the size most recently specified. */
260 val.size = osize;
261 }
262
263 return val;
264 }
265 \f
266 /* Print value VAL on stream according to OPTIONS.
267 Do not end with a newline.
268 SIZE is the letter for the size of datum being printed.
269 This is used to pad hex numbers so they line up. SIZE is 0
270 for print / output and set for examine. */
271
272 static void
273 print_formatted (struct value *val, int size,
274 const struct value_print_options *options,
275 struct ui_file *stream)
276 {
277 struct type *type = check_typedef (value_type (val));
278 int len = TYPE_LENGTH (type);
279
280 if (VALUE_LVAL (val) == lval_memory)
281 next_address = value_address (val) + len;
282
283 if (size)
284 {
285 switch (options->format)
286 {
287 case 's':
288 {
289 struct type *elttype = value_type (val);
290
291 next_address = (value_address (val)
292 + val_print_string (elttype, NULL,
293 value_address (val), -1,
294 stream, options) * len);
295 }
296 return;
297
298 case 'i':
299 /* We often wrap here if there are long symbolic names. */
300 wrap_here (" ");
301 next_address = (value_address (val)
302 + gdb_print_insn (get_type_arch (type),
303 value_address (val), stream,
304 &branch_delay_insns));
305 return;
306 }
307 }
308
309 if (options->format == 0 || options->format == 's'
310 || TYPE_CODE (type) == TYPE_CODE_REF
311 || TYPE_CODE (type) == TYPE_CODE_ARRAY
312 || TYPE_CODE (type) == TYPE_CODE_STRING
313 || TYPE_CODE (type) == TYPE_CODE_STRUCT
314 || TYPE_CODE (type) == TYPE_CODE_UNION
315 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
316 value_print (val, stream, options);
317 else
318 /* User specified format, so don't look to the type to tell us
319 what to do. */
320 val_print_scalar_formatted (type,
321 value_embedded_offset (val),
322 val,
323 options, size, stream);
324 }
325
326 /* Return builtin floating point type of same length as TYPE.
327 If no such type is found, return TYPE itself. */
328 static struct type *
329 float_type_from_length (struct type *type)
330 {
331 struct gdbarch *gdbarch = get_type_arch (type);
332 const struct builtin_type *builtin = builtin_type (gdbarch);
333
334 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
335 type = builtin->builtin_float;
336 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
337 type = builtin->builtin_double;
338 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
339 type = builtin->builtin_long_double;
340
341 return type;
342 }
343
344 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
345 according to OPTIONS and SIZE on STREAM. Formats s and i are not
346 supported at this level. */
347
348 void
349 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
350 const struct value_print_options *options,
351 int size, struct ui_file *stream)
352 {
353 struct gdbarch *gdbarch = get_type_arch (type);
354 unsigned int len = TYPE_LENGTH (type);
355 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
356
357 /* String printing should go through val_print_scalar_formatted. */
358 gdb_assert (options->format != 's');
359
360 /* If the value is a pointer, and pointers and addresses are not the
361 same, then at this point, the value's length (in target bytes) is
362 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
363 if (TYPE_CODE (type) == TYPE_CODE_PTR)
364 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
365
366 /* If we are printing it as unsigned, truncate it in case it is actually
367 a negative signed value (e.g. "print/u (short)-1" should print 65535
368 (if shorts are 16 bits) instead of 4294967295). */
369 if (options->format != 'c'
370 && (options->format != 'd' || TYPE_UNSIGNED (type)))
371 {
372 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
373 valaddr += TYPE_LENGTH (type) - len;
374 }
375
376 if (size != 0 && (options->format == 'x' || options->format == 't'))
377 {
378 /* Truncate to fit. */
379 unsigned newlen;
380 switch (size)
381 {
382 case 'b':
383 newlen = 1;
384 break;
385 case 'h':
386 newlen = 2;
387 break;
388 case 'w':
389 newlen = 4;
390 break;
391 case 'g':
392 newlen = 8;
393 break;
394 default:
395 error (_("Undefined output size \"%c\"."), size);
396 }
397 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
398 valaddr += len - newlen;
399 len = newlen;
400 }
401
402 /* Historically gdb has printed floats by first casting them to a
403 long, and then printing the long. PR cli/16242 suggests changing
404 this to using C-style hex float format. */
405 gdb::byte_vector converted_float_bytes;
406 if (TYPE_CODE (type) == TYPE_CODE_FLT
407 && (options->format == 'o'
408 || options->format == 'x'
409 || options->format == 't'
410 || options->format == 'z'
411 || options->format == 'd'
412 || options->format == 'u'))
413 {
414 LONGEST val_long = unpack_long (type, valaddr);
415 converted_float_bytes.resize (TYPE_LENGTH (type));
416 store_signed_integer (converted_float_bytes.data (), TYPE_LENGTH (type),
417 byte_order, val_long);
418 valaddr = converted_float_bytes.data ();
419 }
420
421 /* Printing a non-float type as 'f' will interpret the data as if it were
422 of a floating-point type of the same length, if that exists. Otherwise,
423 the data is printed as integer. */
424 char format = options->format;
425 if (format == 'f' && TYPE_CODE (type) != TYPE_CODE_FLT)
426 {
427 type = float_type_from_length (type);
428 if (TYPE_CODE (type) != TYPE_CODE_FLT)
429 format = 0;
430 }
431
432 switch (format)
433 {
434 case 'o':
435 print_octal_chars (stream, valaddr, len, byte_order);
436 break;
437 case 'd':
438 print_decimal_chars (stream, valaddr, len, true, byte_order);
439 break;
440 case 'u':
441 print_decimal_chars (stream, valaddr, len, false, byte_order);
442 break;
443 case 0:
444 if (TYPE_CODE (type) != TYPE_CODE_FLT)
445 {
446 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
447 byte_order);
448 break;
449 }
450 /* FALLTHROUGH */
451 case 'f':
452 print_floating (valaddr, type, stream);
453 break;
454
455 case 't':
456 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
457 break;
458 case 'x':
459 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
460 break;
461 case 'z':
462 print_hex_chars (stream, valaddr, len, byte_order, true);
463 break;
464 case 'c':
465 {
466 struct value_print_options opts = *options;
467
468 LONGEST val_long = unpack_long (type, valaddr);
469
470 opts.format = 0;
471 if (TYPE_UNSIGNED (type))
472 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
473 else
474 type = builtin_type (gdbarch)->builtin_true_char;
475
476 value_print (value_from_longest (type, val_long), stream, &opts);
477 }
478 break;
479
480 case 'a':
481 {
482 CORE_ADDR addr = unpack_pointer (type, valaddr);
483
484 print_address (gdbarch, addr, stream);
485 }
486 break;
487
488 default:
489 error (_("Undefined output format \"%c\"."), format);
490 }
491 }
492
493 /* Specify default address for `x' command.
494 The `info lines' command uses this. */
495
496 void
497 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
498 {
499 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
500
501 next_gdbarch = gdbarch;
502 next_address = addr;
503
504 /* Make address available to the user as $_. */
505 set_internalvar (lookup_internalvar ("_"),
506 value_from_pointer (ptr_type, addr));
507 }
508
509 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
510 after LEADIN. Print nothing if no symbolic name is found nearby.
511 Optionally also print source file and line number, if available.
512 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
513 or to interpret it as a possible C++ name and convert it back to source
514 form. However note that DO_DEMANGLE can be overridden by the specific
515 settings of the demangle and asm_demangle variables. Returns
516 non-zero if anything was printed; zero otherwise. */
517
518 int
519 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
520 struct ui_file *stream,
521 int do_demangle, const char *leadin)
522 {
523 std::string name, filename;
524 int unmapped = 0;
525 int offset = 0;
526 int line = 0;
527
528 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
529 &filename, &line, &unmapped))
530 return 0;
531
532 fputs_filtered (leadin, stream);
533 if (unmapped)
534 fputs_filtered ("<*", stream);
535 else
536 fputs_filtered ("<", stream);
537 fputs_filtered (name.c_str (), stream);
538 if (offset != 0)
539 fprintf_filtered (stream, "+%u", (unsigned int) offset);
540
541 /* Append source filename and line number if desired. Give specific
542 line # of this addr, if we have it; else line # of the nearest symbol. */
543 if (print_symbol_filename && !filename.empty ())
544 {
545 if (line != -1)
546 fprintf_filtered (stream, " at %s:%d", filename.c_str (), line);
547 else
548 fprintf_filtered (stream, " in %s", filename.c_str ());
549 }
550 if (unmapped)
551 fputs_filtered ("*>", stream);
552 else
553 fputs_filtered (">", stream);
554
555 return 1;
556 }
557
558 /* See valprint.h. */
559
560 int
561 build_address_symbolic (struct gdbarch *gdbarch,
562 CORE_ADDR addr, /* IN */
563 int do_demangle, /* IN */
564 std::string *name, /* OUT */
565 int *offset, /* OUT */
566 std::string *filename, /* OUT */
567 int *line, /* OUT */
568 int *unmapped) /* OUT */
569 {
570 struct bound_minimal_symbol msymbol;
571 struct symbol *symbol;
572 CORE_ADDR name_location = 0;
573 struct obj_section *section = NULL;
574 const char *name_temp = "";
575
576 /* Let's say it is mapped (not unmapped). */
577 *unmapped = 0;
578
579 /* Determine if the address is in an overlay, and whether it is
580 mapped. */
581 if (overlay_debugging)
582 {
583 section = find_pc_overlay (addr);
584 if (pc_in_unmapped_range (addr, section))
585 {
586 *unmapped = 1;
587 addr = overlay_mapped_address (addr, section);
588 }
589 }
590
591 /* First try to find the address in the symbol table, then
592 in the minsyms. Take the closest one. */
593
594 /* This is defective in the sense that it only finds text symbols. So
595 really this is kind of pointless--we should make sure that the
596 minimal symbols have everything we need (by changing that we could
597 save some memory, but for many debug format--ELF/DWARF or
598 anything/stabs--it would be inconvenient to eliminate those minimal
599 symbols anyway). */
600 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
601 symbol = find_pc_sect_function (addr, section);
602
603 if (symbol)
604 {
605 /* If this is a function (i.e. a code address), strip out any
606 non-address bits. For instance, display a pointer to the
607 first instruction of a Thumb function as <function>; the
608 second instruction will be <function+2>, even though the
609 pointer is <function+3>. This matches the ISA behavior. */
610 addr = gdbarch_addr_bits_remove (gdbarch, addr);
611
612 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
613 if (do_demangle || asm_demangle)
614 name_temp = SYMBOL_PRINT_NAME (symbol);
615 else
616 name_temp = SYMBOL_LINKAGE_NAME (symbol);
617 }
618
619 if (msymbol.minsym != NULL
620 && MSYMBOL_HAS_SIZE (msymbol.minsym)
621 && MSYMBOL_SIZE (msymbol.minsym) == 0
622 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
623 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
624 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
625 msymbol.minsym = NULL;
626
627 if (msymbol.minsym != NULL)
628 {
629 if (BMSYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
630 {
631 /* If this is a function (i.e. a code address), strip out any
632 non-address bits. For instance, display a pointer to the
633 first instruction of a Thumb function as <function>; the
634 second instruction will be <function+2>, even though the
635 pointer is <function+3>. This matches the ISA behavior. */
636 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
637 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
638 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
639 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
640 addr = gdbarch_addr_bits_remove (gdbarch, addr);
641
642 /* The msymbol is closer to the address than the symbol;
643 use the msymbol instead. */
644 symbol = 0;
645 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
646 if (do_demangle || asm_demangle)
647 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
648 else
649 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
650 }
651 }
652 if (symbol == NULL && msymbol.minsym == NULL)
653 return 1;
654
655 /* If the nearest symbol is too far away, don't print anything symbolic. */
656
657 /* For when CORE_ADDR is larger than unsigned int, we do math in
658 CORE_ADDR. But when we detect unsigned wraparound in the
659 CORE_ADDR math, we ignore this test and print the offset,
660 because addr+max_symbolic_offset has wrapped through the end
661 of the address space back to the beginning, giving bogus comparison. */
662 if (addr > name_location + max_symbolic_offset
663 && name_location + max_symbolic_offset > name_location)
664 return 1;
665
666 *offset = addr - name_location;
667
668 *name = name_temp;
669
670 if (print_symbol_filename)
671 {
672 struct symtab_and_line sal;
673
674 sal = find_pc_sect_line (addr, section, 0);
675
676 if (sal.symtab)
677 {
678 *filename = symtab_to_filename_for_display (sal.symtab);
679 *line = sal.line;
680 }
681 }
682 return 0;
683 }
684
685
686 /* Print address ADDR symbolically on STREAM.
687 First print it as a number. Then perhaps print
688 <SYMBOL + OFFSET> after the number. */
689
690 void
691 print_address (struct gdbarch *gdbarch,
692 CORE_ADDR addr, struct ui_file *stream)
693 {
694 fputs_filtered (paddress (gdbarch, addr), stream);
695 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
696 }
697
698 /* Return a prefix for instruction address:
699 "=> " for current instruction, else " ". */
700
701 const char *
702 pc_prefix (CORE_ADDR addr)
703 {
704 if (has_stack_frames ())
705 {
706 struct frame_info *frame;
707 CORE_ADDR pc;
708
709 frame = get_selected_frame (NULL);
710 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
711 return "=> ";
712 }
713 return " ";
714 }
715
716 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
717 controls whether to print the symbolic name "raw" or demangled.
718 Return non-zero if anything was printed; zero otherwise. */
719
720 int
721 print_address_demangle (const struct value_print_options *opts,
722 struct gdbarch *gdbarch, CORE_ADDR addr,
723 struct ui_file *stream, int do_demangle)
724 {
725 if (opts->addressprint)
726 {
727 fputs_filtered (paddress (gdbarch, addr), stream);
728 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
729 }
730 else
731 {
732 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
733 }
734 return 1;
735 }
736 \f
737
738 /* Find the address of the instruction that is INST_COUNT instructions before
739 the instruction at ADDR.
740 Since some architectures have variable-length instructions, we can't just
741 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
742 number information to locate the nearest known instruction boundary,
743 and disassemble forward from there. If we go out of the symbol range
744 during disassembling, we return the lowest address we've got so far and
745 set the number of instructions read to INST_READ. */
746
747 static CORE_ADDR
748 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
749 int inst_count, int *inst_read)
750 {
751 /* The vector PCS is used to store instruction addresses within
752 a pc range. */
753 CORE_ADDR loop_start, loop_end, p;
754 std::vector<CORE_ADDR> pcs;
755 struct symtab_and_line sal;
756
757 *inst_read = 0;
758 loop_start = loop_end = addr;
759
760 /* In each iteration of the outer loop, we get a pc range that ends before
761 LOOP_START, then we count and store every instruction address of the range
762 iterated in the loop.
763 If the number of instructions counted reaches INST_COUNT, return the
764 stored address that is located INST_COUNT instructions back from ADDR.
765 If INST_COUNT is not reached, we subtract the number of counted
766 instructions from INST_COUNT, and go to the next iteration. */
767 do
768 {
769 pcs.clear ();
770 sal = find_pc_sect_line (loop_start, NULL, 1);
771 if (sal.line <= 0)
772 {
773 /* We reach here when line info is not available. In this case,
774 we print a message and just exit the loop. The return value
775 is calculated after the loop. */
776 printf_filtered (_("No line number information available "
777 "for address "));
778 wrap_here (" ");
779 print_address (gdbarch, loop_start - 1, gdb_stdout);
780 printf_filtered ("\n");
781 break;
782 }
783
784 loop_end = loop_start;
785 loop_start = sal.pc;
786
787 /* This loop pushes instruction addresses in the range from
788 LOOP_START to LOOP_END. */
789 for (p = loop_start; p < loop_end;)
790 {
791 pcs.push_back (p);
792 p += gdb_insn_length (gdbarch, p);
793 }
794
795 inst_count -= pcs.size ();
796 *inst_read += pcs.size ();
797 }
798 while (inst_count > 0);
799
800 /* After the loop, the vector PCS has instruction addresses of the last
801 source line we processed, and INST_COUNT has a negative value.
802 We return the address at the index of -INST_COUNT in the vector for
803 the reason below.
804 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
805 Line X of File
806 0x4000
807 0x4001
808 0x4005
809 Line Y of File
810 0x4009
811 0x400c
812 => 0x400e
813 0x4011
814 find_instruction_backward is called with INST_COUNT = 4 and expected to
815 return 0x4001. When we reach here, INST_COUNT is set to -1 because
816 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
817 4001 is located at the index 1 of the last iterated line (= Line X),
818 which is simply calculated by -INST_COUNT.
819 The case when the length of PCS is 0 means that we reached an area for
820 which line info is not available. In such case, we return LOOP_START,
821 which was the lowest instruction address that had line info. */
822 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
823
824 /* INST_READ includes all instruction addresses in a pc range. Need to
825 exclude the beginning part up to the address we're returning. That
826 is, exclude {0x4000} in the example above. */
827 if (inst_count < 0)
828 *inst_read += inst_count;
829
830 return p;
831 }
832
833 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
834 placing the results in GDB's memory from MYADDR + LEN. Returns
835 a count of the bytes actually read. */
836
837 static int
838 read_memory_backward (struct gdbarch *gdbarch,
839 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
840 {
841 int errcode;
842 int nread; /* Number of bytes actually read. */
843
844 /* First try a complete read. */
845 errcode = target_read_memory (memaddr, myaddr, len);
846 if (errcode == 0)
847 {
848 /* Got it all. */
849 nread = len;
850 }
851 else
852 {
853 /* Loop, reading one byte at a time until we get as much as we can. */
854 memaddr += len;
855 myaddr += len;
856 for (nread = 0; nread < len; ++nread)
857 {
858 errcode = target_read_memory (--memaddr, --myaddr, 1);
859 if (errcode != 0)
860 {
861 /* The read was unsuccessful, so exit the loop. */
862 printf_filtered (_("Cannot access memory at address %s\n"),
863 paddress (gdbarch, memaddr));
864 break;
865 }
866 }
867 }
868 return nread;
869 }
870
871 /* Returns true if X (which is LEN bytes wide) is the number zero. */
872
873 static int
874 integer_is_zero (const gdb_byte *x, int len)
875 {
876 int i = 0;
877
878 while (i < len && x[i] == 0)
879 ++i;
880 return (i == len);
881 }
882
883 /* Find the start address of a string in which ADDR is included.
884 Basically we search for '\0' and return the next address,
885 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
886 we stop searching and return the address to print characters as many as
887 PRINT_MAX from the string. */
888
889 static CORE_ADDR
890 find_string_backward (struct gdbarch *gdbarch,
891 CORE_ADDR addr, int count, int char_size,
892 const struct value_print_options *options,
893 int *strings_counted)
894 {
895 const int chunk_size = 0x20;
896 int read_error = 0;
897 int chars_read = 0;
898 int chars_to_read = chunk_size;
899 int chars_counted = 0;
900 int count_original = count;
901 CORE_ADDR string_start_addr = addr;
902
903 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
904 gdb::byte_vector buffer (chars_to_read * char_size);
905 while (count > 0 && read_error == 0)
906 {
907 int i;
908
909 addr -= chars_to_read * char_size;
910 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
911 chars_to_read * char_size);
912 chars_read /= char_size;
913 read_error = (chars_read == chars_to_read) ? 0 : 1;
914 /* Searching for '\0' from the end of buffer in backward direction. */
915 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
916 {
917 int offset = (chars_to_read - i - 1) * char_size;
918
919 if (integer_is_zero (&buffer[offset], char_size)
920 || chars_counted == options->print_max)
921 {
922 /* Found '\0' or reached print_max. As OFFSET is the offset to
923 '\0', we add CHAR_SIZE to return the start address of
924 a string. */
925 --count;
926 string_start_addr = addr + offset + char_size;
927 chars_counted = 0;
928 }
929 }
930 }
931
932 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
933 *strings_counted = count_original - count;
934
935 if (read_error != 0)
936 {
937 /* In error case, STRING_START_ADDR is pointing to the string that
938 was last successfully loaded. Rewind the partially loaded string. */
939 string_start_addr -= chars_counted * char_size;
940 }
941
942 return string_start_addr;
943 }
944
945 /* Examine data at address ADDR in format FMT.
946 Fetch it from memory and print on gdb_stdout. */
947
948 static void
949 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
950 {
951 char format = 0;
952 char size;
953 int count = 1;
954 struct type *val_type = NULL;
955 int i;
956 int maxelts;
957 struct value_print_options opts;
958 int need_to_update_next_address = 0;
959 CORE_ADDR addr_rewound = 0;
960
961 format = fmt.format;
962 size = fmt.size;
963 count = fmt.count;
964 next_gdbarch = gdbarch;
965 next_address = addr;
966
967 /* Instruction format implies fetch single bytes
968 regardless of the specified size.
969 The case of strings is handled in decode_format, only explicit
970 size operator are not changed to 'b'. */
971 if (format == 'i')
972 size = 'b';
973
974 if (size == 'a')
975 {
976 /* Pick the appropriate size for an address. */
977 if (gdbarch_ptr_bit (next_gdbarch) == 64)
978 size = 'g';
979 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
980 size = 'w';
981 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
982 size = 'h';
983 else
984 /* Bad value for gdbarch_ptr_bit. */
985 internal_error (__FILE__, __LINE__,
986 _("failed internal consistency check"));
987 }
988
989 if (size == 'b')
990 val_type = builtin_type (next_gdbarch)->builtin_int8;
991 else if (size == 'h')
992 val_type = builtin_type (next_gdbarch)->builtin_int16;
993 else if (size == 'w')
994 val_type = builtin_type (next_gdbarch)->builtin_int32;
995 else if (size == 'g')
996 val_type = builtin_type (next_gdbarch)->builtin_int64;
997
998 if (format == 's')
999 {
1000 struct type *char_type = NULL;
1001
1002 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1003 if type is not found. */
1004 if (size == 'h')
1005 char_type = builtin_type (next_gdbarch)->builtin_char16;
1006 else if (size == 'w')
1007 char_type = builtin_type (next_gdbarch)->builtin_char32;
1008 if (char_type)
1009 val_type = char_type;
1010 else
1011 {
1012 if (size != '\0' && size != 'b')
1013 warning (_("Unable to display strings with "
1014 "size '%c', using 'b' instead."), size);
1015 size = 'b';
1016 val_type = builtin_type (next_gdbarch)->builtin_int8;
1017 }
1018 }
1019
1020 maxelts = 8;
1021 if (size == 'w')
1022 maxelts = 4;
1023 if (size == 'g')
1024 maxelts = 2;
1025 if (format == 's' || format == 'i')
1026 maxelts = 1;
1027
1028 get_formatted_print_options (&opts, format);
1029
1030 if (count < 0)
1031 {
1032 /* This is the negative repeat count case.
1033 We rewind the address based on the given repeat count and format,
1034 then examine memory from there in forward direction. */
1035
1036 count = -count;
1037 if (format == 'i')
1038 {
1039 next_address = find_instruction_backward (gdbarch, addr, count,
1040 &count);
1041 }
1042 else if (format == 's')
1043 {
1044 next_address = find_string_backward (gdbarch, addr, count,
1045 TYPE_LENGTH (val_type),
1046 &opts, &count);
1047 }
1048 else
1049 {
1050 next_address = addr - count * TYPE_LENGTH (val_type);
1051 }
1052
1053 /* The following call to print_formatted updates next_address in every
1054 iteration. In backward case, we store the start address here
1055 and update next_address with it before exiting the function. */
1056 addr_rewound = (format == 's'
1057 ? next_address - TYPE_LENGTH (val_type)
1058 : next_address);
1059 need_to_update_next_address = 1;
1060 }
1061
1062 /* Print as many objects as specified in COUNT, at most maxelts per line,
1063 with the address of the next one at the start of each line. */
1064
1065 while (count > 0)
1066 {
1067 QUIT;
1068 if (format == 'i')
1069 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1070 print_address (next_gdbarch, next_address, gdb_stdout);
1071 printf_filtered (":");
1072 for (i = maxelts;
1073 i > 0 && count > 0;
1074 i--, count--)
1075 {
1076 printf_filtered ("\t");
1077 /* Note that print_formatted sets next_address for the next
1078 object. */
1079 last_examine_address = next_address;
1080
1081 /* The value to be displayed is not fetched greedily.
1082 Instead, to avoid the possibility of a fetched value not
1083 being used, its retrieval is delayed until the print code
1084 uses it. When examining an instruction stream, the
1085 disassembler will perform its own memory fetch using just
1086 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1087 the disassembler be modified so that LAST_EXAMINE_VALUE
1088 is left with the byte sequence from the last complete
1089 instruction fetched from memory? */
1090 last_examine_value
1091 = release_value (value_at_lazy (val_type, next_address));
1092
1093 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1094
1095 /* Display any branch delay slots following the final insn. */
1096 if (format == 'i' && count == 1)
1097 count += branch_delay_insns;
1098 }
1099 printf_filtered ("\n");
1100 gdb_flush (gdb_stdout);
1101 }
1102
1103 if (need_to_update_next_address)
1104 next_address = addr_rewound;
1105 }
1106 \f
1107 static void
1108 validate_format (struct format_data fmt, const char *cmdname)
1109 {
1110 if (fmt.size != 0)
1111 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1112 if (fmt.count != 1)
1113 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1114 cmdname);
1115 if (fmt.format == 'i')
1116 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1117 fmt.format, cmdname);
1118 }
1119
1120 /* Parse print command format string into *FMTP and update *EXPP.
1121 CMDNAME should name the current command. */
1122
1123 void
1124 print_command_parse_format (const char **expp, const char *cmdname,
1125 struct format_data *fmtp)
1126 {
1127 const char *exp = *expp;
1128
1129 if (exp && *exp == '/')
1130 {
1131 exp++;
1132 *fmtp = decode_format (&exp, last_format, 0);
1133 validate_format (*fmtp, cmdname);
1134 last_format = fmtp->format;
1135 }
1136 else
1137 {
1138 fmtp->count = 1;
1139 fmtp->format = 0;
1140 fmtp->size = 0;
1141 fmtp->raw = 0;
1142 }
1143
1144 *expp = exp;
1145 }
1146
1147 /* Print VAL to console according to *FMTP, including recording it to
1148 the history. */
1149
1150 void
1151 print_value (struct value *val, const struct format_data *fmtp)
1152 {
1153 struct value_print_options opts;
1154 int histindex = record_latest_value (val);
1155
1156 annotate_value_history_begin (histindex, value_type (val));
1157
1158 printf_filtered ("$%d = ", histindex);
1159
1160 annotate_value_history_value ();
1161
1162 get_formatted_print_options (&opts, fmtp->format);
1163 opts.raw = fmtp->raw;
1164
1165 print_formatted (val, fmtp->size, &opts, gdb_stdout);
1166 printf_filtered ("\n");
1167
1168 annotate_value_history_end ();
1169 }
1170
1171 /* Evaluate string EXP as an expression in the current language and
1172 print the resulting value. EXP may contain a format specifier as the
1173 first argument ("/x myvar" for example, to print myvar in hex). */
1174
1175 static void
1176 print_command_1 (const char *exp, int voidprint)
1177 {
1178 struct value *val;
1179 struct format_data fmt;
1180
1181 print_command_parse_format (&exp, "print", &fmt);
1182
1183 if (exp && *exp)
1184 {
1185 expression_up expr = parse_expression (exp);
1186 val = evaluate_expression (expr.get ());
1187 }
1188 else
1189 val = access_value_history (0);
1190
1191 if (voidprint || (val && value_type (val) &&
1192 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1193 print_value (val, &fmt);
1194 }
1195
1196 static void
1197 print_command (const char *exp, int from_tty)
1198 {
1199 print_command_1 (exp, 1);
1200 }
1201
1202 /* Same as print, except it doesn't print void results. */
1203 static void
1204 call_command (const char *exp, int from_tty)
1205 {
1206 print_command_1 (exp, 0);
1207 }
1208
1209 /* Implementation of the "output" command. */
1210
1211 void
1212 output_command (const char *exp, int from_tty)
1213 {
1214 char format = 0;
1215 struct value *val;
1216 struct format_data fmt;
1217 struct value_print_options opts;
1218
1219 fmt.size = 0;
1220 fmt.raw = 0;
1221
1222 if (exp && *exp == '/')
1223 {
1224 exp++;
1225 fmt = decode_format (&exp, 0, 0);
1226 validate_format (fmt, "output");
1227 format = fmt.format;
1228 }
1229
1230 expression_up expr = parse_expression (exp);
1231
1232 val = evaluate_expression (expr.get ());
1233
1234 annotate_value_begin (value_type (val));
1235
1236 get_formatted_print_options (&opts, format);
1237 opts.raw = fmt.raw;
1238 print_formatted (val, fmt.size, &opts, gdb_stdout);
1239
1240 annotate_value_end ();
1241
1242 wrap_here ("");
1243 gdb_flush (gdb_stdout);
1244 }
1245
1246 static void
1247 set_command (const char *exp, int from_tty)
1248 {
1249 expression_up expr = parse_expression (exp);
1250
1251 if (expr->nelts >= 1)
1252 switch (expr->elts[0].opcode)
1253 {
1254 case UNOP_PREINCREMENT:
1255 case UNOP_POSTINCREMENT:
1256 case UNOP_PREDECREMENT:
1257 case UNOP_POSTDECREMENT:
1258 case BINOP_ASSIGN:
1259 case BINOP_ASSIGN_MODIFY:
1260 case BINOP_COMMA:
1261 break;
1262 default:
1263 warning
1264 (_("Expression is not an assignment (and might have no effect)"));
1265 }
1266
1267 evaluate_expression (expr.get ());
1268 }
1269
1270 static void
1271 info_symbol_command (const char *arg, int from_tty)
1272 {
1273 struct minimal_symbol *msymbol;
1274 struct objfile *objfile;
1275 struct obj_section *osect;
1276 CORE_ADDR addr, sect_addr;
1277 int matches = 0;
1278 unsigned int offset;
1279
1280 if (!arg)
1281 error_no_arg (_("address"));
1282
1283 addr = parse_and_eval_address (arg);
1284 ALL_OBJSECTIONS (objfile, osect)
1285 {
1286 /* Only process each object file once, even if there's a separate
1287 debug file. */
1288 if (objfile->separate_debug_objfile_backlink)
1289 continue;
1290
1291 sect_addr = overlay_mapped_address (addr, osect);
1292
1293 if (obj_section_addr (osect) <= sect_addr
1294 && sect_addr < obj_section_endaddr (osect)
1295 && (msymbol
1296 = lookup_minimal_symbol_by_pc_section (sect_addr, osect).minsym))
1297 {
1298 const char *obj_name, *mapped, *sec_name, *msym_name;
1299 const char *loc_string;
1300
1301 matches = 1;
1302 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1303 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1304 sec_name = osect->the_bfd_section->name;
1305 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1306
1307 /* Don't print the offset if it is zero.
1308 We assume there's no need to handle i18n of "sym + offset". */
1309 std::string string_holder;
1310 if (offset)
1311 {
1312 string_holder = string_printf ("%s + %u", msym_name, offset);
1313 loc_string = string_holder.c_str ();
1314 }
1315 else
1316 loc_string = msym_name;
1317
1318 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1319 obj_name = objfile_name (osect->objfile);
1320
1321 if (MULTI_OBJFILE_P ())
1322 if (pc_in_unmapped_range (addr, osect))
1323 if (section_is_overlay (osect))
1324 printf_filtered (_("%s in load address range of "
1325 "%s overlay section %s of %s\n"),
1326 loc_string, mapped, sec_name, obj_name);
1327 else
1328 printf_filtered (_("%s in load address range of "
1329 "section %s of %s\n"),
1330 loc_string, sec_name, obj_name);
1331 else
1332 if (section_is_overlay (osect))
1333 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1334 loc_string, mapped, sec_name, obj_name);
1335 else
1336 printf_filtered (_("%s in section %s of %s\n"),
1337 loc_string, sec_name, obj_name);
1338 else
1339 if (pc_in_unmapped_range (addr, osect))
1340 if (section_is_overlay (osect))
1341 printf_filtered (_("%s in load address range of %s overlay "
1342 "section %s\n"),
1343 loc_string, mapped, sec_name);
1344 else
1345 printf_filtered (_("%s in load address range of section %s\n"),
1346 loc_string, sec_name);
1347 else
1348 if (section_is_overlay (osect))
1349 printf_filtered (_("%s in %s overlay section %s\n"),
1350 loc_string, mapped, sec_name);
1351 else
1352 printf_filtered (_("%s in section %s\n"),
1353 loc_string, sec_name);
1354 }
1355 }
1356 if (matches == 0)
1357 printf_filtered (_("No symbol matches %s.\n"), arg);
1358 }
1359
1360 static void
1361 info_address_command (const char *exp, int from_tty)
1362 {
1363 struct gdbarch *gdbarch;
1364 int regno;
1365 struct symbol *sym;
1366 struct bound_minimal_symbol msymbol;
1367 long val;
1368 struct obj_section *section;
1369 CORE_ADDR load_addr, context_pc = 0;
1370 struct field_of_this_result is_a_field_of_this;
1371
1372 if (exp == 0)
1373 error (_("Argument required."));
1374
1375 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1376 &is_a_field_of_this).symbol;
1377 if (sym == NULL)
1378 {
1379 if (is_a_field_of_this.type != NULL)
1380 {
1381 printf_filtered ("Symbol \"");
1382 fprintf_symbol_filtered (gdb_stdout, exp,
1383 current_language->la_language, DMGL_ANSI);
1384 printf_filtered ("\" is a field of the local class variable ");
1385 if (current_language->la_language == language_objc)
1386 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1387 else
1388 printf_filtered ("`this'\n");
1389 return;
1390 }
1391
1392 msymbol = lookup_bound_minimal_symbol (exp);
1393
1394 if (msymbol.minsym != NULL)
1395 {
1396 struct objfile *objfile = msymbol.objfile;
1397
1398 gdbarch = get_objfile_arch (objfile);
1399 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1400
1401 printf_filtered ("Symbol \"");
1402 fprintf_symbol_filtered (gdb_stdout, exp,
1403 current_language->la_language, DMGL_ANSI);
1404 printf_filtered ("\" is at ");
1405 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1406 printf_filtered (" in a file compiled without debugging");
1407 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1408 if (section_is_overlay (section))
1409 {
1410 load_addr = overlay_unmapped_address (load_addr, section);
1411 printf_filtered (",\n -- loaded at ");
1412 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1413 printf_filtered (" in overlay section %s",
1414 section->the_bfd_section->name);
1415 }
1416 printf_filtered (".\n");
1417 }
1418 else
1419 error (_("No symbol \"%s\" in current context."), exp);
1420 return;
1421 }
1422
1423 printf_filtered ("Symbol \"");
1424 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1425 current_language->la_language, DMGL_ANSI);
1426 printf_filtered ("\" is ");
1427 val = SYMBOL_VALUE (sym);
1428 if (SYMBOL_OBJFILE_OWNED (sym))
1429 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1430 else
1431 section = NULL;
1432 gdbarch = symbol_arch (sym);
1433
1434 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1435 {
1436 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1437 gdb_stdout);
1438 printf_filtered (".\n");
1439 return;
1440 }
1441
1442 switch (SYMBOL_CLASS (sym))
1443 {
1444 case LOC_CONST:
1445 case LOC_CONST_BYTES:
1446 printf_filtered ("constant");
1447 break;
1448
1449 case LOC_LABEL:
1450 printf_filtered ("a label at address ");
1451 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1452 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1453 if (section_is_overlay (section))
1454 {
1455 load_addr = overlay_unmapped_address (load_addr, section);
1456 printf_filtered (",\n -- loaded at ");
1457 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1458 printf_filtered (" in overlay section %s",
1459 section->the_bfd_section->name);
1460 }
1461 break;
1462
1463 case LOC_COMPUTED:
1464 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1465
1466 case LOC_REGISTER:
1467 /* GDBARCH is the architecture associated with the objfile the symbol
1468 is defined in; the target architecture may be different, and may
1469 provide additional registers. However, we do not know the target
1470 architecture at this point. We assume the objfile architecture
1471 will contain all the standard registers that occur in debug info
1472 in that objfile. */
1473 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1474
1475 if (SYMBOL_IS_ARGUMENT (sym))
1476 printf_filtered (_("an argument in register %s"),
1477 gdbarch_register_name (gdbarch, regno));
1478 else
1479 printf_filtered (_("a variable in register %s"),
1480 gdbarch_register_name (gdbarch, regno));
1481 break;
1482
1483 case LOC_STATIC:
1484 printf_filtered (_("static storage at address "));
1485 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1486 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1487 if (section_is_overlay (section))
1488 {
1489 load_addr = overlay_unmapped_address (load_addr, section);
1490 printf_filtered (_(",\n -- loaded at "));
1491 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1492 printf_filtered (_(" in overlay section %s"),
1493 section->the_bfd_section->name);
1494 }
1495 break;
1496
1497 case LOC_REGPARM_ADDR:
1498 /* Note comment at LOC_REGISTER. */
1499 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1500 printf_filtered (_("address of an argument in register %s"),
1501 gdbarch_register_name (gdbarch, regno));
1502 break;
1503
1504 case LOC_ARG:
1505 printf_filtered (_("an argument at offset %ld"), val);
1506 break;
1507
1508 case LOC_LOCAL:
1509 printf_filtered (_("a local variable at frame offset %ld"), val);
1510 break;
1511
1512 case LOC_REF_ARG:
1513 printf_filtered (_("a reference argument at offset %ld"), val);
1514 break;
1515
1516 case LOC_TYPEDEF:
1517 printf_filtered (_("a typedef"));
1518 break;
1519
1520 case LOC_BLOCK:
1521 printf_filtered (_("a function at address "));
1522 load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1523 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1524 if (section_is_overlay (section))
1525 {
1526 load_addr = overlay_unmapped_address (load_addr, section);
1527 printf_filtered (_(",\n -- loaded at "));
1528 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1529 printf_filtered (_(" in overlay section %s"),
1530 section->the_bfd_section->name);
1531 }
1532 break;
1533
1534 case LOC_UNRESOLVED:
1535 {
1536 struct bound_minimal_symbol msym;
1537
1538 msym = lookup_bound_minimal_symbol (SYMBOL_LINKAGE_NAME (sym));
1539 if (msym.minsym == NULL)
1540 printf_filtered ("unresolved");
1541 else
1542 {
1543 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1544
1545 if (section
1546 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1547 {
1548 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1549 printf_filtered (_("a thread-local variable at offset %s "
1550 "in the thread-local storage for `%s'"),
1551 paddress (gdbarch, load_addr),
1552 objfile_name (section->objfile));
1553 }
1554 else
1555 {
1556 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1557 printf_filtered (_("static storage at address "));
1558 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1559 if (section_is_overlay (section))
1560 {
1561 load_addr = overlay_unmapped_address (load_addr, section);
1562 printf_filtered (_(",\n -- loaded at "));
1563 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1564 printf_filtered (_(" in overlay section %s"),
1565 section->the_bfd_section->name);
1566 }
1567 }
1568 }
1569 }
1570 break;
1571
1572 case LOC_OPTIMIZED_OUT:
1573 printf_filtered (_("optimized out"));
1574 break;
1575
1576 default:
1577 printf_filtered (_("of unknown (botched) type"));
1578 break;
1579 }
1580 printf_filtered (".\n");
1581 }
1582 \f
1583
1584 static void
1585 x_command (const char *exp, int from_tty)
1586 {
1587 struct format_data fmt;
1588 struct value *val;
1589
1590 fmt.format = last_format ? last_format : 'x';
1591 fmt.size = last_size;
1592 fmt.count = 1;
1593 fmt.raw = 0;
1594
1595 /* If there is no expression and no format, use the most recent
1596 count. */
1597 if (exp == nullptr && last_count > 0)
1598 fmt.count = last_count;
1599
1600 if (exp && *exp == '/')
1601 {
1602 const char *tmp = exp + 1;
1603
1604 fmt = decode_format (&tmp, last_format, last_size);
1605 exp = (char *) tmp;
1606 }
1607
1608 last_count = fmt.count;
1609
1610 /* If we have an expression, evaluate it and use it as the address. */
1611
1612 if (exp != 0 && *exp != 0)
1613 {
1614 expression_up expr = parse_expression (exp);
1615 /* Cause expression not to be there any more if this command is
1616 repeated with Newline. But don't clobber a user-defined
1617 command's definition. */
1618 if (from_tty)
1619 set_repeat_arguments ("");
1620 val = evaluate_expression (expr.get ());
1621 if (TYPE_IS_REFERENCE (value_type (val)))
1622 val = coerce_ref (val);
1623 /* In rvalue contexts, such as this, functions are coerced into
1624 pointers to functions. This makes "x/i main" work. */
1625 if (/* last_format == 'i' && */
1626 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1627 && VALUE_LVAL (val) == lval_memory)
1628 next_address = value_address (val);
1629 else
1630 next_address = value_as_address (val);
1631
1632 next_gdbarch = expr->gdbarch;
1633 }
1634
1635 if (!next_gdbarch)
1636 error_no_arg (_("starting display address"));
1637
1638 do_examine (fmt, next_gdbarch, next_address);
1639
1640 /* If the examine succeeds, we remember its size and format for next
1641 time. Set last_size to 'b' for strings. */
1642 if (fmt.format == 's')
1643 last_size = 'b';
1644 else
1645 last_size = fmt.size;
1646 last_format = fmt.format;
1647
1648 /* Set a couple of internal variables if appropriate. */
1649 if (last_examine_value != nullptr)
1650 {
1651 /* Make last address examined available to the user as $_. Use
1652 the correct pointer type. */
1653 struct type *pointer_type
1654 = lookup_pointer_type (value_type (last_examine_value.get ()));
1655 set_internalvar (lookup_internalvar ("_"),
1656 value_from_pointer (pointer_type,
1657 last_examine_address));
1658
1659 /* Make contents of last address examined available to the user
1660 as $__. If the last value has not been fetched from memory
1661 then don't fetch it now; instead mark it by voiding the $__
1662 variable. */
1663 if (value_lazy (last_examine_value.get ()))
1664 clear_internalvar (lookup_internalvar ("__"));
1665 else
1666 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1667 }
1668 }
1669 \f
1670
1671 /* Add an expression to the auto-display chain.
1672 Specify the expression. */
1673
1674 static void
1675 display_command (const char *arg, int from_tty)
1676 {
1677 struct format_data fmt;
1678 struct display *newobj;
1679 const char *exp = arg;
1680
1681 if (exp == 0)
1682 {
1683 do_displays ();
1684 return;
1685 }
1686
1687 if (*exp == '/')
1688 {
1689 exp++;
1690 fmt = decode_format (&exp, 0, 0);
1691 if (fmt.size && fmt.format == 0)
1692 fmt.format = 'x';
1693 if (fmt.format == 'i' || fmt.format == 's')
1694 fmt.size = 'b';
1695 }
1696 else
1697 {
1698 fmt.format = 0;
1699 fmt.size = 0;
1700 fmt.count = 0;
1701 fmt.raw = 0;
1702 }
1703
1704 innermost_block.reset ();
1705 expression_up expr = parse_expression (exp);
1706
1707 newobj = new display ();
1708
1709 newobj->exp_string = xstrdup (exp);
1710 newobj->exp = std::move (expr);
1711 newobj->block = innermost_block.block ();
1712 newobj->pspace = current_program_space;
1713 newobj->number = ++display_number;
1714 newobj->format = fmt;
1715 newobj->enabled_p = 1;
1716 newobj->next = NULL;
1717
1718 if (display_chain == NULL)
1719 display_chain = newobj;
1720 else
1721 {
1722 struct display *last;
1723
1724 for (last = display_chain; last->next != NULL; last = last->next)
1725 ;
1726 last->next = newobj;
1727 }
1728
1729 if (from_tty)
1730 do_one_display (newobj);
1731
1732 dont_repeat ();
1733 }
1734
1735 static void
1736 free_display (struct display *d)
1737 {
1738 xfree (d->exp_string);
1739 delete d;
1740 }
1741
1742 /* Clear out the display_chain. Done when new symtabs are loaded,
1743 since this invalidates the types stored in many expressions. */
1744
1745 void
1746 clear_displays (void)
1747 {
1748 struct display *d;
1749
1750 while ((d = display_chain) != NULL)
1751 {
1752 display_chain = d->next;
1753 free_display (d);
1754 }
1755 }
1756
1757 /* Delete the auto-display DISPLAY. */
1758
1759 static void
1760 delete_display (struct display *display)
1761 {
1762 struct display *d;
1763
1764 gdb_assert (display != NULL);
1765
1766 if (display_chain == display)
1767 display_chain = display->next;
1768
1769 ALL_DISPLAYS (d)
1770 if (d->next == display)
1771 {
1772 d->next = display->next;
1773 break;
1774 }
1775
1776 free_display (display);
1777 }
1778
1779 /* Call FUNCTION on each of the displays whose numbers are given in
1780 ARGS. DATA is passed unmodified to FUNCTION. */
1781
1782 static void
1783 map_display_numbers (const char *args,
1784 void (*function) (struct display *,
1785 void *),
1786 void *data)
1787 {
1788 int num;
1789
1790 if (args == NULL)
1791 error_no_arg (_("one or more display numbers"));
1792
1793 number_or_range_parser parser (args);
1794
1795 while (!parser.finished ())
1796 {
1797 const char *p = parser.cur_tok ();
1798
1799 num = parser.get_number ();
1800 if (num == 0)
1801 warning (_("bad display number at or near '%s'"), p);
1802 else
1803 {
1804 struct display *d, *tmp;
1805
1806 ALL_DISPLAYS_SAFE (d, tmp)
1807 if (d->number == num)
1808 break;
1809 if (d == NULL)
1810 printf_unfiltered (_("No display number %d.\n"), num);
1811 else
1812 function (d, data);
1813 }
1814 }
1815 }
1816
1817 /* Callback for map_display_numbers, that deletes a display. */
1818
1819 static void
1820 do_delete_display (struct display *d, void *data)
1821 {
1822 delete_display (d);
1823 }
1824
1825 /* "undisplay" command. */
1826
1827 static void
1828 undisplay_command (const char *args, int from_tty)
1829 {
1830 if (args == NULL)
1831 {
1832 if (query (_("Delete all auto-display expressions? ")))
1833 clear_displays ();
1834 dont_repeat ();
1835 return;
1836 }
1837
1838 map_display_numbers (args, do_delete_display, NULL);
1839 dont_repeat ();
1840 }
1841
1842 /* Display a single auto-display.
1843 Do nothing if the display cannot be printed in the current context,
1844 or if the display is disabled. */
1845
1846 static void
1847 do_one_display (struct display *d)
1848 {
1849 int within_current_scope;
1850
1851 if (d->enabled_p == 0)
1852 return;
1853
1854 /* The expression carries the architecture that was used at parse time.
1855 This is a problem if the expression depends on architecture features
1856 (e.g. register numbers), and the current architecture is now different.
1857 For example, a display statement like "display/i $pc" is expected to
1858 display the PC register of the current architecture, not the arch at
1859 the time the display command was given. Therefore, we re-parse the
1860 expression if the current architecture has changed. */
1861 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1862 {
1863 d->exp.reset ();
1864 d->block = NULL;
1865 }
1866
1867 if (d->exp == NULL)
1868 {
1869
1870 TRY
1871 {
1872 innermost_block.reset ();
1873 d->exp = parse_expression (d->exp_string);
1874 d->block = innermost_block.block ();
1875 }
1876 CATCH (ex, RETURN_MASK_ALL)
1877 {
1878 /* Can't re-parse the expression. Disable this display item. */
1879 d->enabled_p = 0;
1880 warning (_("Unable to display \"%s\": %s"),
1881 d->exp_string, ex.message);
1882 return;
1883 }
1884 END_CATCH
1885 }
1886
1887 if (d->block)
1888 {
1889 if (d->pspace == current_program_space)
1890 within_current_scope = contained_in (get_selected_block (0), d->block);
1891 else
1892 within_current_scope = 0;
1893 }
1894 else
1895 within_current_scope = 1;
1896 if (!within_current_scope)
1897 return;
1898
1899 scoped_restore save_display_number
1900 = make_scoped_restore (&current_display_number, d->number);
1901
1902 annotate_display_begin ();
1903 printf_filtered ("%d", d->number);
1904 annotate_display_number_end ();
1905 printf_filtered (": ");
1906 if (d->format.size)
1907 {
1908
1909 annotate_display_format ();
1910
1911 printf_filtered ("x/");
1912 if (d->format.count != 1)
1913 printf_filtered ("%d", d->format.count);
1914 printf_filtered ("%c", d->format.format);
1915 if (d->format.format != 'i' && d->format.format != 's')
1916 printf_filtered ("%c", d->format.size);
1917 printf_filtered (" ");
1918
1919 annotate_display_expression ();
1920
1921 puts_filtered (d->exp_string);
1922 annotate_display_expression_end ();
1923
1924 if (d->format.count != 1 || d->format.format == 'i')
1925 printf_filtered ("\n");
1926 else
1927 printf_filtered (" ");
1928
1929 annotate_display_value ();
1930
1931 TRY
1932 {
1933 struct value *val;
1934 CORE_ADDR addr;
1935
1936 val = evaluate_expression (d->exp.get ());
1937 addr = value_as_address (val);
1938 if (d->format.format == 'i')
1939 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1940 do_examine (d->format, d->exp->gdbarch, addr);
1941 }
1942 CATCH (ex, RETURN_MASK_ERROR)
1943 {
1944 fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
1945 }
1946 END_CATCH
1947 }
1948 else
1949 {
1950 struct value_print_options opts;
1951
1952 annotate_display_format ();
1953
1954 if (d->format.format)
1955 printf_filtered ("/%c ", d->format.format);
1956
1957 annotate_display_expression ();
1958
1959 puts_filtered (d->exp_string);
1960 annotate_display_expression_end ();
1961
1962 printf_filtered (" = ");
1963
1964 annotate_display_expression ();
1965
1966 get_formatted_print_options (&opts, d->format.format);
1967 opts.raw = d->format.raw;
1968
1969 TRY
1970 {
1971 struct value *val;
1972
1973 val = evaluate_expression (d->exp.get ());
1974 print_formatted (val, d->format.size, &opts, gdb_stdout);
1975 }
1976 CATCH (ex, RETURN_MASK_ERROR)
1977 {
1978 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
1979 }
1980 END_CATCH
1981
1982 printf_filtered ("\n");
1983 }
1984
1985 annotate_display_end ();
1986
1987 gdb_flush (gdb_stdout);
1988 }
1989
1990 /* Display all of the values on the auto-display chain which can be
1991 evaluated in the current scope. */
1992
1993 void
1994 do_displays (void)
1995 {
1996 struct display *d;
1997
1998 for (d = display_chain; d; d = d->next)
1999 do_one_display (d);
2000 }
2001
2002 /* Delete the auto-display which we were in the process of displaying.
2003 This is done when there is an error or a signal. */
2004
2005 void
2006 disable_display (int num)
2007 {
2008 struct display *d;
2009
2010 for (d = display_chain; d; d = d->next)
2011 if (d->number == num)
2012 {
2013 d->enabled_p = 0;
2014 return;
2015 }
2016 printf_unfiltered (_("No display number %d.\n"), num);
2017 }
2018
2019 void
2020 disable_current_display (void)
2021 {
2022 if (current_display_number >= 0)
2023 {
2024 disable_display (current_display_number);
2025 fprintf_unfiltered (gdb_stderr,
2026 _("Disabling display %d to "
2027 "avoid infinite recursion.\n"),
2028 current_display_number);
2029 }
2030 current_display_number = -1;
2031 }
2032
2033 static void
2034 info_display_command (const char *ignore, int from_tty)
2035 {
2036 struct display *d;
2037
2038 if (!display_chain)
2039 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2040 else
2041 printf_filtered (_("Auto-display expressions now in effect:\n\
2042 Num Enb Expression\n"));
2043
2044 for (d = display_chain; d; d = d->next)
2045 {
2046 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2047 if (d->format.size)
2048 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2049 d->format.format);
2050 else if (d->format.format)
2051 printf_filtered ("/%c ", d->format.format);
2052 puts_filtered (d->exp_string);
2053 if (d->block && !contained_in (get_selected_block (0), d->block))
2054 printf_filtered (_(" (cannot be evaluated in the current context)"));
2055 printf_filtered ("\n");
2056 gdb_flush (gdb_stdout);
2057 }
2058 }
2059
2060 /* Callback fo map_display_numbers, that enables or disables the
2061 passed in display D. */
2062
2063 static void
2064 do_enable_disable_display (struct display *d, void *data)
2065 {
2066 d->enabled_p = *(int *) data;
2067 }
2068
2069 /* Implamentation of both the "disable display" and "enable display"
2070 commands. ENABLE decides what to do. */
2071
2072 static void
2073 enable_disable_display_command (const char *args, int from_tty, int enable)
2074 {
2075 if (args == NULL)
2076 {
2077 struct display *d;
2078
2079 ALL_DISPLAYS (d)
2080 d->enabled_p = enable;
2081 return;
2082 }
2083
2084 map_display_numbers (args, do_enable_disable_display, &enable);
2085 }
2086
2087 /* The "enable display" command. */
2088
2089 static void
2090 enable_display_command (const char *args, int from_tty)
2091 {
2092 enable_disable_display_command (args, from_tty, 1);
2093 }
2094
2095 /* The "disable display" command. */
2096
2097 static void
2098 disable_display_command (const char *args, int from_tty)
2099 {
2100 enable_disable_display_command (args, from_tty, 0);
2101 }
2102
2103 /* display_chain items point to blocks and expressions. Some expressions in
2104 turn may point to symbols.
2105 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2106 obstack_free'd when a shared library is unloaded.
2107 Clear pointers that are about to become dangling.
2108 Both .exp and .block fields will be restored next time we need to display
2109 an item by re-parsing .exp_string field in the new execution context. */
2110
2111 static void
2112 clear_dangling_display_expressions (struct objfile *objfile)
2113 {
2114 struct display *d;
2115 struct program_space *pspace;
2116
2117 /* With no symbol file we cannot have a block or expression from it. */
2118 if (objfile == NULL)
2119 return;
2120 pspace = objfile->pspace;
2121 if (objfile->separate_debug_objfile_backlink)
2122 {
2123 objfile = objfile->separate_debug_objfile_backlink;
2124 gdb_assert (objfile->pspace == pspace);
2125 }
2126
2127 for (d = display_chain; d != NULL; d = d->next)
2128 {
2129 if (d->pspace != pspace)
2130 continue;
2131
2132 if (lookup_objfile_from_block (d->block) == objfile
2133 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2134 {
2135 d->exp.reset ();
2136 d->block = NULL;
2137 }
2138 }
2139 }
2140 \f
2141
2142 /* Print the value in stack frame FRAME of a variable specified by a
2143 struct symbol. NAME is the name to print; if NULL then VAR's print
2144 name will be used. STREAM is the ui_file on which to print the
2145 value. INDENT specifies the number of indent levels to print
2146 before printing the variable name.
2147
2148 This function invalidates FRAME. */
2149
2150 void
2151 print_variable_and_value (const char *name, struct symbol *var,
2152 struct frame_info *frame,
2153 struct ui_file *stream, int indent)
2154 {
2155
2156 if (!name)
2157 name = SYMBOL_PRINT_NAME (var);
2158
2159 fprintf_filtered (stream, "%s%s = ", n_spaces (2 * indent), name);
2160 TRY
2161 {
2162 struct value *val;
2163 struct value_print_options opts;
2164
2165 /* READ_VAR_VALUE needs a block in order to deal with non-local
2166 references (i.e. to handle nested functions). In this context, we
2167 print variables that are local to this frame, so we can avoid passing
2168 a block to it. */
2169 val = read_var_value (var, NULL, frame);
2170 get_user_print_options (&opts);
2171 opts.deref_ref = 1;
2172 common_val_print (val, stream, indent, &opts, current_language);
2173
2174 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2175 function. */
2176 frame = NULL;
2177 }
2178 CATCH (except, RETURN_MASK_ERROR)
2179 {
2180 fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
2181 except.message);
2182 }
2183 END_CATCH
2184
2185 fprintf_filtered (stream, "\n");
2186 }
2187
2188 /* Subroutine of ui_printf to simplify it.
2189 Print VALUE to STREAM using FORMAT.
2190 VALUE is a C-style string on the target. */
2191
2192 static void
2193 printf_c_string (struct ui_file *stream, const char *format,
2194 struct value *value)
2195 {
2196 gdb_byte *str;
2197 CORE_ADDR tem;
2198 int j;
2199
2200 tem = value_as_address (value);
2201 if (tem == 0)
2202 {
2203 fprintf_filtered (stream, format, "(null)");
2204 return;
2205 }
2206
2207 /* This is a %s argument. Find the length of the string. */
2208 for (j = 0;; j++)
2209 {
2210 gdb_byte c;
2211
2212 QUIT;
2213 read_memory (tem + j, &c, 1);
2214 if (c == 0)
2215 break;
2216 }
2217
2218 /* Copy the string contents into a string inside GDB. */
2219 str = (gdb_byte *) alloca (j + 1);
2220 if (j != 0)
2221 read_memory (tem, str, j);
2222 str[j] = 0;
2223
2224 fprintf_filtered (stream, format, (char *) str);
2225 }
2226
2227 /* Subroutine of ui_printf to simplify it.
2228 Print VALUE to STREAM using FORMAT.
2229 VALUE is a wide C-style string on the target. */
2230
2231 static void
2232 printf_wide_c_string (struct ui_file *stream, const char *format,
2233 struct value *value)
2234 {
2235 gdb_byte *str;
2236 CORE_ADDR tem;
2237 int j;
2238 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2239 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2240 struct type *wctype = lookup_typename (current_language, gdbarch,
2241 "wchar_t", NULL, 0);
2242 int wcwidth = TYPE_LENGTH (wctype);
2243 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2244
2245 tem = value_as_address (value);
2246 if (tem == 0)
2247 {
2248 fprintf_filtered (stream, format, "(null)");
2249 return;
2250 }
2251
2252 /* This is a %s argument. Find the length of the string. */
2253 for (j = 0;; j += wcwidth)
2254 {
2255 QUIT;
2256 read_memory (tem + j, buf, wcwidth);
2257 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2258 break;
2259 }
2260
2261 /* Copy the string contents into a string inside GDB. */
2262 str = (gdb_byte *) alloca (j + wcwidth);
2263 if (j != 0)
2264 read_memory (tem, str, j);
2265 memset (&str[j], 0, wcwidth);
2266
2267 auto_obstack output;
2268
2269 convert_between_encodings (target_wide_charset (gdbarch),
2270 host_charset (),
2271 str, j, wcwidth,
2272 &output, translit_char);
2273 obstack_grow_str0 (&output, "");
2274
2275 fprintf_filtered (stream, format, obstack_base (&output));
2276 }
2277
2278 /* Subroutine of ui_printf to simplify it.
2279 Print VALUE, a floating point value, to STREAM using FORMAT. */
2280
2281 static void
2282 printf_floating (struct ui_file *stream, const char *format,
2283 struct value *value, enum argclass argclass)
2284 {
2285 /* Parameter data. */
2286 struct type *param_type = value_type (value);
2287 struct gdbarch *gdbarch = get_type_arch (param_type);
2288
2289 /* Determine target type corresponding to the format string. */
2290 struct type *fmt_type;
2291 switch (argclass)
2292 {
2293 case double_arg:
2294 fmt_type = builtin_type (gdbarch)->builtin_double;
2295 break;
2296 case long_double_arg:
2297 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2298 break;
2299 case dec32float_arg:
2300 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2301 break;
2302 case dec64float_arg:
2303 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2304 break;
2305 case dec128float_arg:
2306 fmt_type = builtin_type (gdbarch)->builtin_declong;
2307 break;
2308 default:
2309 gdb_assert_not_reached ("unexpected argument class");
2310 }
2311
2312 /* To match the traditional GDB behavior, the conversion is
2313 done differently depending on the type of the parameter:
2314
2315 - if the parameter has floating-point type, it's value
2316 is converted to the target type;
2317
2318 - otherwise, if the parameter has a type that is of the
2319 same size as a built-in floating-point type, the value
2320 bytes are interpreted as if they were of that type, and
2321 then converted to the target type (this is not done for
2322 decimal floating-point argument classes);
2323
2324 - otherwise, if the source value has an integer value,
2325 it's value is converted to the target type;
2326
2327 - otherwise, an error is raised.
2328
2329 In either case, the result of the conversion is a byte buffer
2330 formatted in the target format for the target type. */
2331
2332 if (TYPE_CODE (fmt_type) == TYPE_CODE_FLT)
2333 {
2334 param_type = float_type_from_length (param_type);
2335 if (param_type != value_type (value))
2336 value = value_from_contents (param_type, value_contents (value));
2337 }
2338
2339 value = value_cast (fmt_type, value);
2340
2341 /* Convert the value to a string and print it. */
2342 std::string str
2343 = target_float_to_string (value_contents (value), fmt_type, format);
2344 fputs_filtered (str.c_str (), stream);
2345 }
2346
2347 /* Subroutine of ui_printf to simplify it.
2348 Print VALUE, a target pointer, to STREAM using FORMAT. */
2349
2350 static void
2351 printf_pointer (struct ui_file *stream, const char *format,
2352 struct value *value)
2353 {
2354 /* We avoid the host's %p because pointers are too
2355 likely to be the wrong size. The only interesting
2356 modifier for %p is a width; extract that, and then
2357 handle %p as glibc would: %#x or a literal "(nil)". */
2358
2359 const char *p;
2360 char *fmt, *fmt_p;
2361 #ifdef PRINTF_HAS_LONG_LONG
2362 long long val = value_as_long (value);
2363 #else
2364 long val = value_as_long (value);
2365 #endif
2366
2367 fmt = (char *) alloca (strlen (format) + 5);
2368
2369 /* Copy up to the leading %. */
2370 p = format;
2371 fmt_p = fmt;
2372 while (*p)
2373 {
2374 int is_percent = (*p == '%');
2375
2376 *fmt_p++ = *p++;
2377 if (is_percent)
2378 {
2379 if (*p == '%')
2380 *fmt_p++ = *p++;
2381 else
2382 break;
2383 }
2384 }
2385
2386 if (val != 0)
2387 *fmt_p++ = '#';
2388
2389 /* Copy any width or flags. Only the "-" flag is valid for pointers
2390 -- see the format_pieces constructor. */
2391 while (*p == '-' || (*p >= '0' && *p < '9'))
2392 *fmt_p++ = *p++;
2393
2394 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2395 if (val != 0)
2396 {
2397 #ifdef PRINTF_HAS_LONG_LONG
2398 *fmt_p++ = 'l';
2399 #endif
2400 *fmt_p++ = 'l';
2401 *fmt_p++ = 'x';
2402 *fmt_p++ = '\0';
2403 fprintf_filtered (stream, fmt, val);
2404 }
2405 else
2406 {
2407 *fmt_p++ = 's';
2408 *fmt_p++ = '\0';
2409 fprintf_filtered (stream, fmt, "(nil)");
2410 }
2411 }
2412
2413 /* printf "printf format string" ARG to STREAM. */
2414
2415 static void
2416 ui_printf (const char *arg, struct ui_file *stream)
2417 {
2418 const char *s = arg;
2419 std::vector<struct value *> val_args;
2420
2421 if (s == 0)
2422 error_no_arg (_("format-control string and values to print"));
2423
2424 s = skip_spaces (s);
2425
2426 /* A format string should follow, enveloped in double quotes. */
2427 if (*s++ != '"')
2428 error (_("Bad format string, missing '\"'."));
2429
2430 format_pieces fpieces (&s);
2431
2432 if (*s++ != '"')
2433 error (_("Bad format string, non-terminated '\"'."));
2434
2435 s = skip_spaces (s);
2436
2437 if (*s != ',' && *s != 0)
2438 error (_("Invalid argument syntax"));
2439
2440 if (*s == ',')
2441 s++;
2442 s = skip_spaces (s);
2443
2444 {
2445 int nargs_wanted;
2446 int i;
2447 const char *current_substring;
2448
2449 nargs_wanted = 0;
2450 for (auto &&piece : fpieces)
2451 if (piece.argclass != literal_piece)
2452 ++nargs_wanted;
2453
2454 /* Now, parse all arguments and evaluate them.
2455 Store the VALUEs in VAL_ARGS. */
2456
2457 while (*s != '\0')
2458 {
2459 const char *s1;
2460
2461 s1 = s;
2462 val_args.push_back (parse_to_comma_and_eval (&s1));
2463
2464 s = s1;
2465 if (*s == ',')
2466 s++;
2467 }
2468
2469 if (val_args.size () != nargs_wanted)
2470 error (_("Wrong number of arguments for specified format-string"));
2471
2472 /* Now actually print them. */
2473 i = 0;
2474 for (auto &&piece : fpieces)
2475 {
2476 current_substring = piece.string;
2477 switch (piece.argclass)
2478 {
2479 case string_arg:
2480 printf_c_string (stream, current_substring, val_args[i]);
2481 break;
2482 case wide_string_arg:
2483 printf_wide_c_string (stream, current_substring, val_args[i]);
2484 break;
2485 case wide_char_arg:
2486 {
2487 struct gdbarch *gdbarch
2488 = get_type_arch (value_type (val_args[i]));
2489 struct type *wctype = lookup_typename (current_language, gdbarch,
2490 "wchar_t", NULL, 0);
2491 struct type *valtype;
2492 const gdb_byte *bytes;
2493
2494 valtype = value_type (val_args[i]);
2495 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2496 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2497 error (_("expected wchar_t argument for %%lc"));
2498
2499 bytes = value_contents (val_args[i]);
2500
2501 auto_obstack output;
2502
2503 convert_between_encodings (target_wide_charset (gdbarch),
2504 host_charset (),
2505 bytes, TYPE_LENGTH (valtype),
2506 TYPE_LENGTH (valtype),
2507 &output, translit_char);
2508 obstack_grow_str0 (&output, "");
2509
2510 fprintf_filtered (stream, current_substring,
2511 obstack_base (&output));
2512 }
2513 break;
2514 case long_long_arg:
2515 #ifdef PRINTF_HAS_LONG_LONG
2516 {
2517 long long val = value_as_long (val_args[i]);
2518
2519 fprintf_filtered (stream, current_substring, val);
2520 break;
2521 }
2522 #else
2523 error (_("long long not supported in printf"));
2524 #endif
2525 case int_arg:
2526 {
2527 int val = value_as_long (val_args[i]);
2528
2529 fprintf_filtered (stream, current_substring, val);
2530 break;
2531 }
2532 case long_arg:
2533 {
2534 long val = value_as_long (val_args[i]);
2535
2536 fprintf_filtered (stream, current_substring, val);
2537 break;
2538 }
2539 /* Handles floating-point values. */
2540 case double_arg:
2541 case long_double_arg:
2542 case dec32float_arg:
2543 case dec64float_arg:
2544 case dec128float_arg:
2545 printf_floating (stream, current_substring, val_args[i],
2546 piece.argclass);
2547 break;
2548 case ptr_arg:
2549 printf_pointer (stream, current_substring, val_args[i]);
2550 break;
2551 case literal_piece:
2552 /* Print a portion of the format string that has no
2553 directives. Note that this will not include any
2554 ordinary %-specs, but it might include "%%". That is
2555 why we use printf_filtered and not puts_filtered here.
2556 Also, we pass a dummy argument because some platforms
2557 have modified GCC to include -Wformat-security by
2558 default, which will warn here if there is no
2559 argument. */
2560 fprintf_filtered (stream, current_substring, 0);
2561 break;
2562 default:
2563 internal_error (__FILE__, __LINE__,
2564 _("failed internal consistency check"));
2565 }
2566 /* Maybe advance to the next argument. */
2567 if (piece.argclass != literal_piece)
2568 ++i;
2569 }
2570 }
2571 }
2572
2573 /* Implement the "printf" command. */
2574
2575 static void
2576 printf_command (const char *arg, int from_tty)
2577 {
2578 ui_printf (arg, gdb_stdout);
2579 gdb_flush (gdb_stdout);
2580 }
2581
2582 /* Implement the "eval" command. */
2583
2584 static void
2585 eval_command (const char *arg, int from_tty)
2586 {
2587 string_file stb;
2588
2589 ui_printf (arg, &stb);
2590
2591 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2592
2593 execute_command (expanded.c_str (), from_tty);
2594 }
2595
2596 void
2597 _initialize_printcmd (void)
2598 {
2599 struct cmd_list_element *c;
2600
2601 current_display_number = -1;
2602
2603 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2604
2605 add_info ("address", info_address_command,
2606 _("Describe where symbol SYM is stored."));
2607
2608 add_info ("symbol", info_symbol_command, _("\
2609 Describe what symbol is at location ADDR.\n\
2610 Only for symbols with fixed locations (global or static scope)."));
2611
2612 add_com ("x", class_vars, x_command, _("\
2613 Examine memory: x/FMT ADDRESS.\n\
2614 ADDRESS is an expression for the memory address to examine.\n\
2615 FMT is a repeat count followed by a format letter and a size letter.\n\
2616 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2617 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2618 and z(hex, zero padded on the left).\n\
2619 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2620 The specified number of objects of the specified size are printed\n\
2621 according to the format. If a negative number is specified, memory is\n\
2622 examined backward from the address.\n\n\
2623 Defaults for format and size letters are those previously used.\n\
2624 Default count is 1. Default address is following last thing printed\n\
2625 with this command or \"print\"."));
2626
2627 #if 0
2628 add_com ("whereis", class_vars, whereis_command,
2629 _("Print line number and file of definition of variable."));
2630 #endif
2631
2632 add_info ("display", info_display_command, _("\
2633 Expressions to display when program stops, with code numbers."));
2634
2635 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2636 Cancel some expressions to be displayed when program stops.\n\
2637 Arguments are the code numbers of the expressions to stop displaying.\n\
2638 No argument means cancel all automatic-display expressions.\n\
2639 \"delete display\" has the same effect as this command.\n\
2640 Do \"info display\" to see current list of code numbers."),
2641 &cmdlist);
2642
2643 add_com ("display", class_vars, display_command, _("\
2644 Print value of expression EXP each time the program stops.\n\
2645 /FMT may be used before EXP as in the \"print\" command.\n\
2646 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2647 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2648 and examining is done as in the \"x\" command.\n\n\
2649 With no argument, display all currently requested auto-display expressions.\n\
2650 Use \"undisplay\" to cancel display requests previously made."));
2651
2652 add_cmd ("display", class_vars, enable_display_command, _("\
2653 Enable some expressions to be displayed when program stops.\n\
2654 Arguments are the code numbers of the expressions to resume displaying.\n\
2655 No argument means enable all automatic-display expressions.\n\
2656 Do \"info display\" to see current list of code numbers."), &enablelist);
2657
2658 add_cmd ("display", class_vars, disable_display_command, _("\
2659 Disable some expressions to be displayed when program stops.\n\
2660 Arguments are the code numbers of the expressions to stop displaying.\n\
2661 No argument means disable all automatic-display expressions.\n\
2662 Do \"info display\" to see current list of code numbers."), &disablelist);
2663
2664 add_cmd ("display", class_vars, undisplay_command, _("\
2665 Cancel some expressions to be displayed when program stops.\n\
2666 Arguments are the code numbers of the expressions to stop displaying.\n\
2667 No argument means cancel all automatic-display expressions.\n\
2668 Do \"info display\" to see current list of code numbers."), &deletelist);
2669
2670 add_com ("printf", class_vars, printf_command, _("\
2671 Formatted printing, like the C \"printf\" function.\n\
2672 Usage: printf \"format string\", arg1, arg2, arg3, ..., argn\n\
2673 This supports most C printf format specifications, like %s, %d, etc."));
2674
2675 add_com ("output", class_vars, output_command, _("\
2676 Like \"print\" but don't put in value history and don't print newline.\n\
2677 This is useful in user-defined commands."));
2678
2679 add_prefix_cmd ("set", class_vars, set_command, _("\
2680 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2681 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2682 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2683 with $), a register (a few standard names starting with $), or an actual\n\
2684 variable in the program being debugged. EXP is any valid expression.\n\
2685 Use \"set variable\" for variables with names identical to set subcommands.\n\
2686 \n\
2687 With a subcommand, this command modifies parts of the gdb environment.\n\
2688 You can see these environment settings with the \"show\" command."),
2689 &setlist, "set ", 1, &cmdlist);
2690 if (dbx_commands)
2691 add_com ("assign", class_vars, set_command, _("\
2692 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2693 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2694 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2695 with $), a register (a few standard names starting with $), or an actual\n\
2696 variable in the program being debugged. EXP is any valid expression.\n\
2697 Use \"set variable\" for variables with names identical to set subcommands.\n\
2698 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2699 You can see these environment settings with the \"show\" command."));
2700
2701 /* "call" is the same as "set", but handy for dbx users to call fns. */
2702 c = add_com ("call", class_vars, call_command, _("\
2703 Call a function in the program.\n\
2704 The argument is the function name and arguments, in the notation of the\n\
2705 current working language. The result is printed and saved in the value\n\
2706 history, if it is not void."));
2707 set_cmd_completer (c, expression_completer);
2708
2709 add_cmd ("variable", class_vars, set_command, _("\
2710 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2711 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2712 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2713 with $), a register (a few standard names starting with $), or an actual\n\
2714 variable in the program being debugged. EXP is any valid expression.\n\
2715 This may usually be abbreviated to simply \"set\"."),
2716 &setlist);
2717 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2718
2719 c = add_com ("print", class_vars, print_command, _("\
2720 Print value of expression EXP.\n\
2721 Variables accessible are those of the lexical environment of the selected\n\
2722 stack frame, plus all those whose scope is global or an entire file.\n\
2723 \n\
2724 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2725 $$NUM refers to NUM'th value back from the last one.\n\
2726 Names starting with $ refer to registers (with the values they would have\n\
2727 if the program were to return to the stack frame now selected, restoring\n\
2728 all registers saved by frames farther in) or else to debugger\n\
2729 \"convenience\" variables (any such name not a known register).\n\
2730 Use assignment expressions to give values to convenience variables.\n\
2731 \n\
2732 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2733 @ is a binary operator for treating consecutive data objects\n\
2734 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2735 element is FOO, whose second element is stored in the space following\n\
2736 where FOO is stored, etc. FOO must be an expression whose value\n\
2737 resides in memory.\n\
2738 \n\
2739 EXP may be preceded with /FMT, where FMT is a format letter\n\
2740 but no count or size letter (see \"x\" command)."));
2741 set_cmd_completer (c, expression_completer);
2742 add_com_alias ("p", "print", class_vars, 1);
2743 add_com_alias ("inspect", "print", class_vars, 1);
2744
2745 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2746 &max_symbolic_offset, _("\
2747 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2748 Show the largest offset that will be printed in <symbol+1234> form."), _("\
2749 Tell GDB to only display the symbolic form of an address if the\n\
2750 offset between the closest earlier symbol and the address is less than\n\
2751 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2752 to always print the symbolic form of an address if any symbol precedes\n\
2753 it. Zero is equivalent to \"unlimited\"."),
2754 NULL,
2755 show_max_symbolic_offset,
2756 &setprintlist, &showprintlist);
2757 add_setshow_boolean_cmd ("symbol-filename", no_class,
2758 &print_symbol_filename, _("\
2759 Set printing of source filename and line number with <symbol>."), _("\
2760 Show printing of source filename and line number with <symbol>."), NULL,
2761 NULL,
2762 show_print_symbol_filename,
2763 &setprintlist, &showprintlist);
2764
2765 add_com ("eval", no_class, eval_command, _("\
2766 Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\
2767 a command line, and call it."));
2768 }
This page took 0.083787 seconds and 5 git commands to generate.