Remove duplicate or commented-out #includes
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "expression.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "breakpoint.h"
31 #include "demangle.h"
32 #include "gdb-demangle.h"
33 #include "valprint.h"
34 #include "annotate.h"
35 #include "symfile.h" /* for overlay functions */
36 #include "objfiles.h" /* ditto */
37 #include "completer.h" /* for completion functions */
38 #include "ui-out.h"
39 #include "block.h"
40 #include "disasm.h"
41 #include "target-float.h"
42 #include "observable.h"
43 #include "solist.h"
44 #include "parser-defs.h"
45 #include "charset.h"
46 #include "arch-utils.h"
47 #include "cli/cli-utils.h"
48 #include "cli/cli-script.h"
49 #include "cli/cli-style.h"
50 #include "format.h"
51 #include "source.h"
52 #include "common/byte-vector.h"
53
54 /* Last specified output format. */
55
56 static char last_format = 0;
57
58 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
59
60 static char last_size = 'w';
61
62 /* Last specified count for the 'x' command. */
63
64 static int last_count;
65
66 /* Default address to examine next, and associated architecture. */
67
68 static struct gdbarch *next_gdbarch;
69 static CORE_ADDR next_address;
70
71 /* Number of delay instructions following current disassembled insn. */
72
73 static int branch_delay_insns;
74
75 /* Last address examined. */
76
77 static CORE_ADDR last_examine_address;
78
79 /* Contents of last address examined.
80 This is not valid past the end of the `x' command! */
81
82 static value_ref_ptr last_examine_value;
83
84 /* Largest offset between a symbolic value and an address, that will be
85 printed as `0x1234 <symbol+offset>'. */
86
87 static unsigned int max_symbolic_offset = UINT_MAX;
88 static void
89 show_max_symbolic_offset (struct ui_file *file, int from_tty,
90 struct cmd_list_element *c, const char *value)
91 {
92 fprintf_filtered (file,
93 _("The largest offset that will be "
94 "printed in <symbol+1234> form is %s.\n"),
95 value);
96 }
97
98 /* Append the source filename and linenumber of the symbol when
99 printing a symbolic value as `<symbol at filename:linenum>' if set. */
100 static int print_symbol_filename = 0;
101 static void
102 show_print_symbol_filename (struct ui_file *file, int from_tty,
103 struct cmd_list_element *c, const char *value)
104 {
105 fprintf_filtered (file, _("Printing of source filename and "
106 "line number with <symbol> is %s.\n"),
107 value);
108 }
109
110 /* Number of auto-display expression currently being displayed.
111 So that we can disable it if we get a signal within it.
112 -1 when not doing one. */
113
114 static int current_display_number;
115
116 struct display
117 {
118 /* Chain link to next auto-display item. */
119 struct display *next;
120
121 /* The expression as the user typed it. */
122 char *exp_string;
123
124 /* Expression to be evaluated and displayed. */
125 expression_up exp;
126
127 /* Item number of this auto-display item. */
128 int number;
129
130 /* Display format specified. */
131 struct format_data format;
132
133 /* Program space associated with `block'. */
134 struct program_space *pspace;
135
136 /* Innermost block required by this expression when evaluated. */
137 const struct block *block;
138
139 /* Status of this display (enabled or disabled). */
140 int enabled_p;
141 };
142
143 /* Chain of expressions whose values should be displayed
144 automatically each time the program stops. */
145
146 static struct display *display_chain;
147
148 static int display_number;
149
150 /* Walk the following statement or block through all displays.
151 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
152 display. */
153
154 #define ALL_DISPLAYS(B) \
155 for (B = display_chain; B; B = B->next)
156
157 #define ALL_DISPLAYS_SAFE(B,TMP) \
158 for (B = display_chain; \
159 B ? (TMP = B->next, 1): 0; \
160 B = TMP)
161
162 /* Prototypes for local functions. */
163
164 static void do_one_display (struct display *);
165 \f
166
167 /* Decode a format specification. *STRING_PTR should point to it.
168 OFORMAT and OSIZE are used as defaults for the format and size
169 if none are given in the format specification.
170 If OSIZE is zero, then the size field of the returned value
171 should be set only if a size is explicitly specified by the
172 user.
173 The structure returned describes all the data
174 found in the specification. In addition, *STRING_PTR is advanced
175 past the specification and past all whitespace following it. */
176
177 static struct format_data
178 decode_format (const char **string_ptr, int oformat, int osize)
179 {
180 struct format_data val;
181 const char *p = *string_ptr;
182
183 val.format = '?';
184 val.size = '?';
185 val.count = 1;
186 val.raw = 0;
187
188 if (*p == '-')
189 {
190 val.count = -1;
191 p++;
192 }
193 if (*p >= '0' && *p <= '9')
194 val.count *= atoi (p);
195 while (*p >= '0' && *p <= '9')
196 p++;
197
198 /* Now process size or format letters that follow. */
199
200 while (1)
201 {
202 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
203 val.size = *p++;
204 else if (*p == 'r')
205 {
206 val.raw = 1;
207 p++;
208 }
209 else if (*p >= 'a' && *p <= 'z')
210 val.format = *p++;
211 else
212 break;
213 }
214
215 *string_ptr = skip_spaces (p);
216
217 /* Set defaults for format and size if not specified. */
218 if (val.format == '?')
219 {
220 if (val.size == '?')
221 {
222 /* Neither has been specified. */
223 val.format = oformat;
224 val.size = osize;
225 }
226 else
227 /* If a size is specified, any format makes a reasonable
228 default except 'i'. */
229 val.format = oformat == 'i' ? 'x' : oformat;
230 }
231 else if (val.size == '?')
232 switch (val.format)
233 {
234 case 'a':
235 /* Pick the appropriate size for an address. This is deferred
236 until do_examine when we know the actual architecture to use.
237 A special size value of 'a' is used to indicate this case. */
238 val.size = osize ? 'a' : osize;
239 break;
240 case 'f':
241 /* Floating point has to be word or giantword. */
242 if (osize == 'w' || osize == 'g')
243 val.size = osize;
244 else
245 /* Default it to giantword if the last used size is not
246 appropriate. */
247 val.size = osize ? 'g' : osize;
248 break;
249 case 'c':
250 /* Characters default to one byte. */
251 val.size = osize ? 'b' : osize;
252 break;
253 case 's':
254 /* Display strings with byte size chars unless explicitly
255 specified. */
256 val.size = '\0';
257 break;
258
259 default:
260 /* The default is the size most recently specified. */
261 val.size = osize;
262 }
263
264 return val;
265 }
266 \f
267 /* Print value VAL on stream according to OPTIONS.
268 Do not end with a newline.
269 SIZE is the letter for the size of datum being printed.
270 This is used to pad hex numbers so they line up. SIZE is 0
271 for print / output and set for examine. */
272
273 static void
274 print_formatted (struct value *val, int size,
275 const struct value_print_options *options,
276 struct ui_file *stream)
277 {
278 struct type *type = check_typedef (value_type (val));
279 int len = TYPE_LENGTH (type);
280
281 if (VALUE_LVAL (val) == lval_memory)
282 next_address = value_address (val) + len;
283
284 if (size)
285 {
286 switch (options->format)
287 {
288 case 's':
289 {
290 struct type *elttype = value_type (val);
291
292 next_address = (value_address (val)
293 + val_print_string (elttype, NULL,
294 value_address (val), -1,
295 stream, options) * len);
296 }
297 return;
298
299 case 'i':
300 /* We often wrap here if there are long symbolic names. */
301 wrap_here (" ");
302 next_address = (value_address (val)
303 + gdb_print_insn (get_type_arch (type),
304 value_address (val), stream,
305 &branch_delay_insns));
306 return;
307 }
308 }
309
310 if (options->format == 0 || options->format == 's'
311 || TYPE_CODE (type) == TYPE_CODE_REF
312 || TYPE_CODE (type) == TYPE_CODE_ARRAY
313 || TYPE_CODE (type) == TYPE_CODE_STRING
314 || TYPE_CODE (type) == TYPE_CODE_STRUCT
315 || TYPE_CODE (type) == TYPE_CODE_UNION
316 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
317 value_print (val, stream, options);
318 else
319 /* User specified format, so don't look to the type to tell us
320 what to do. */
321 val_print_scalar_formatted (type,
322 value_embedded_offset (val),
323 val,
324 options, size, stream);
325 }
326
327 /* Return builtin floating point type of same length as TYPE.
328 If no such type is found, return TYPE itself. */
329 static struct type *
330 float_type_from_length (struct type *type)
331 {
332 struct gdbarch *gdbarch = get_type_arch (type);
333 const struct builtin_type *builtin = builtin_type (gdbarch);
334
335 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
336 type = builtin->builtin_float;
337 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
338 type = builtin->builtin_double;
339 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
340 type = builtin->builtin_long_double;
341
342 return type;
343 }
344
345 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
346 according to OPTIONS and SIZE on STREAM. Formats s and i are not
347 supported at this level. */
348
349 void
350 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
351 const struct value_print_options *options,
352 int size, struct ui_file *stream)
353 {
354 struct gdbarch *gdbarch = get_type_arch (type);
355 unsigned int len = TYPE_LENGTH (type);
356 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
357
358 /* String printing should go through val_print_scalar_formatted. */
359 gdb_assert (options->format != 's');
360
361 /* If the value is a pointer, and pointers and addresses are not the
362 same, then at this point, the value's length (in target bytes) is
363 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
364 if (TYPE_CODE (type) == TYPE_CODE_PTR)
365 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
366
367 /* If we are printing it as unsigned, truncate it in case it is actually
368 a negative signed value (e.g. "print/u (short)-1" should print 65535
369 (if shorts are 16 bits) instead of 4294967295). */
370 if (options->format != 'c'
371 && (options->format != 'd' || TYPE_UNSIGNED (type)))
372 {
373 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
374 valaddr += TYPE_LENGTH (type) - len;
375 }
376
377 if (size != 0 && (options->format == 'x' || options->format == 't'))
378 {
379 /* Truncate to fit. */
380 unsigned newlen;
381 switch (size)
382 {
383 case 'b':
384 newlen = 1;
385 break;
386 case 'h':
387 newlen = 2;
388 break;
389 case 'w':
390 newlen = 4;
391 break;
392 case 'g':
393 newlen = 8;
394 break;
395 default:
396 error (_("Undefined output size \"%c\"."), size);
397 }
398 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
399 valaddr += len - newlen;
400 len = newlen;
401 }
402
403 /* Historically gdb has printed floats by first casting them to a
404 long, and then printing the long. PR cli/16242 suggests changing
405 this to using C-style hex float format. */
406 gdb::byte_vector converted_float_bytes;
407 if (TYPE_CODE (type) == TYPE_CODE_FLT
408 && (options->format == 'o'
409 || options->format == 'x'
410 || options->format == 't'
411 || options->format == 'z'
412 || options->format == 'd'
413 || options->format == 'u'))
414 {
415 LONGEST val_long = unpack_long (type, valaddr);
416 converted_float_bytes.resize (TYPE_LENGTH (type));
417 store_signed_integer (converted_float_bytes.data (), TYPE_LENGTH (type),
418 byte_order, val_long);
419 valaddr = converted_float_bytes.data ();
420 }
421
422 /* Printing a non-float type as 'f' will interpret the data as if it were
423 of a floating-point type of the same length, if that exists. Otherwise,
424 the data is printed as integer. */
425 char format = options->format;
426 if (format == 'f' && TYPE_CODE (type) != TYPE_CODE_FLT)
427 {
428 type = float_type_from_length (type);
429 if (TYPE_CODE (type) != TYPE_CODE_FLT)
430 format = 0;
431 }
432
433 switch (format)
434 {
435 case 'o':
436 print_octal_chars (stream, valaddr, len, byte_order);
437 break;
438 case 'd':
439 print_decimal_chars (stream, valaddr, len, true, byte_order);
440 break;
441 case 'u':
442 print_decimal_chars (stream, valaddr, len, false, byte_order);
443 break;
444 case 0:
445 if (TYPE_CODE (type) != TYPE_CODE_FLT)
446 {
447 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
448 byte_order);
449 break;
450 }
451 /* FALLTHROUGH */
452 case 'f':
453 print_floating (valaddr, type, stream);
454 break;
455
456 case 't':
457 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
458 break;
459 case 'x':
460 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
461 break;
462 case 'z':
463 print_hex_chars (stream, valaddr, len, byte_order, true);
464 break;
465 case 'c':
466 {
467 struct value_print_options opts = *options;
468
469 LONGEST val_long = unpack_long (type, valaddr);
470
471 opts.format = 0;
472 if (TYPE_UNSIGNED (type))
473 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
474 else
475 type = builtin_type (gdbarch)->builtin_true_char;
476
477 value_print (value_from_longest (type, val_long), stream, &opts);
478 }
479 break;
480
481 case 'a':
482 {
483 CORE_ADDR addr = unpack_pointer (type, valaddr);
484
485 print_address (gdbarch, addr, stream);
486 }
487 break;
488
489 default:
490 error (_("Undefined output format \"%c\"."), format);
491 }
492 }
493
494 /* Specify default address for `x' command.
495 The `info lines' command uses this. */
496
497 void
498 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
499 {
500 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
501
502 next_gdbarch = gdbarch;
503 next_address = addr;
504
505 /* Make address available to the user as $_. */
506 set_internalvar (lookup_internalvar ("_"),
507 value_from_pointer (ptr_type, addr));
508 }
509
510 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
511 after LEADIN. Print nothing if no symbolic name is found nearby.
512 Optionally also print source file and line number, if available.
513 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
514 or to interpret it as a possible C++ name and convert it back to source
515 form. However note that DO_DEMANGLE can be overridden by the specific
516 settings of the demangle and asm_demangle variables. Returns
517 non-zero if anything was printed; zero otherwise. */
518
519 int
520 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
521 struct ui_file *stream,
522 int do_demangle, const char *leadin)
523 {
524 std::string name, filename;
525 int unmapped = 0;
526 int offset = 0;
527 int line = 0;
528
529 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
530 &filename, &line, &unmapped))
531 return 0;
532
533 fputs_filtered (leadin, stream);
534 if (unmapped)
535 fputs_filtered ("<*", stream);
536 else
537 fputs_filtered ("<", stream);
538 fputs_styled (name.c_str (), function_name_style.style (), stream);
539 if (offset != 0)
540 fprintf_filtered (stream, "+%u", (unsigned int) offset);
541
542 /* Append source filename and line number if desired. Give specific
543 line # of this addr, if we have it; else line # of the nearest symbol. */
544 if (print_symbol_filename && !filename.empty ())
545 {
546 fputs_filtered (line == -1 ? " in " : " at ", stream);
547 fputs_styled (filename.c_str (), file_name_style.style (), stream);
548 if (line != -1)
549 fprintf_filtered (stream, ":%d", line);
550 }
551 if (unmapped)
552 fputs_filtered ("*>", stream);
553 else
554 fputs_filtered (">", stream);
555
556 return 1;
557 }
558
559 /* See valprint.h. */
560
561 int
562 build_address_symbolic (struct gdbarch *gdbarch,
563 CORE_ADDR addr, /* IN */
564 int do_demangle, /* IN */
565 std::string *name, /* OUT */
566 int *offset, /* OUT */
567 std::string *filename, /* OUT */
568 int *line, /* OUT */
569 int *unmapped) /* OUT */
570 {
571 struct bound_minimal_symbol msymbol;
572 struct symbol *symbol;
573 CORE_ADDR name_location = 0;
574 struct obj_section *section = NULL;
575 const char *name_temp = "";
576
577 /* Let's say it is mapped (not unmapped). */
578 *unmapped = 0;
579
580 /* Determine if the address is in an overlay, and whether it is
581 mapped. */
582 if (overlay_debugging)
583 {
584 section = find_pc_overlay (addr);
585 if (pc_in_unmapped_range (addr, section))
586 {
587 *unmapped = 1;
588 addr = overlay_mapped_address (addr, section);
589 }
590 }
591
592 /* First try to find the address in the symbol table, then
593 in the minsyms. Take the closest one. */
594
595 /* This is defective in the sense that it only finds text symbols. So
596 really this is kind of pointless--we should make sure that the
597 minimal symbols have everything we need (by changing that we could
598 save some memory, but for many debug format--ELF/DWARF or
599 anything/stabs--it would be inconvenient to eliminate those minimal
600 symbols anyway). */
601 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
602 symbol = find_pc_sect_function (addr, section);
603
604 if (symbol)
605 {
606 /* If this is a function (i.e. a code address), strip out any
607 non-address bits. For instance, display a pointer to the
608 first instruction of a Thumb function as <function>; the
609 second instruction will be <function+2>, even though the
610 pointer is <function+3>. This matches the ISA behavior. */
611 addr = gdbarch_addr_bits_remove (gdbarch, addr);
612
613 name_location = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (symbol));
614 if (do_demangle || asm_demangle)
615 name_temp = SYMBOL_PRINT_NAME (symbol);
616 else
617 name_temp = SYMBOL_LINKAGE_NAME (symbol);
618 }
619
620 if (msymbol.minsym != NULL
621 && MSYMBOL_HAS_SIZE (msymbol.minsym)
622 && MSYMBOL_SIZE (msymbol.minsym) == 0
623 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
624 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
625 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
626 msymbol.minsym = NULL;
627
628 if (msymbol.minsym != NULL)
629 {
630 if (BMSYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
631 {
632 /* If this is a function (i.e. a code address), strip out any
633 non-address bits. For instance, display a pointer to the
634 first instruction of a Thumb function as <function>; the
635 second instruction will be <function+2>, even though the
636 pointer is <function+3>. This matches the ISA behavior. */
637 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
638 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
639 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
640 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
641 addr = gdbarch_addr_bits_remove (gdbarch, addr);
642
643 /* The msymbol is closer to the address than the symbol;
644 use the msymbol instead. */
645 symbol = 0;
646 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
647 if (do_demangle || asm_demangle)
648 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
649 else
650 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
651 }
652 }
653 if (symbol == NULL && msymbol.minsym == NULL)
654 return 1;
655
656 /* If the nearest symbol is too far away, don't print anything symbolic. */
657
658 /* For when CORE_ADDR is larger than unsigned int, we do math in
659 CORE_ADDR. But when we detect unsigned wraparound in the
660 CORE_ADDR math, we ignore this test and print the offset,
661 because addr+max_symbolic_offset has wrapped through the end
662 of the address space back to the beginning, giving bogus comparison. */
663 if (addr > name_location + max_symbolic_offset
664 && name_location + max_symbolic_offset > name_location)
665 return 1;
666
667 *offset = addr - name_location;
668
669 *name = name_temp;
670
671 if (print_symbol_filename)
672 {
673 struct symtab_and_line sal;
674
675 sal = find_pc_sect_line (addr, section, 0);
676
677 if (sal.symtab)
678 {
679 *filename = symtab_to_filename_for_display (sal.symtab);
680 *line = sal.line;
681 }
682 }
683 return 0;
684 }
685
686
687 /* Print address ADDR symbolically on STREAM.
688 First print it as a number. Then perhaps print
689 <SYMBOL + OFFSET> after the number. */
690
691 void
692 print_address (struct gdbarch *gdbarch,
693 CORE_ADDR addr, struct ui_file *stream)
694 {
695 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
696 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
697 }
698
699 /* Return a prefix for instruction address:
700 "=> " for current instruction, else " ". */
701
702 const char *
703 pc_prefix (CORE_ADDR addr)
704 {
705 if (has_stack_frames ())
706 {
707 struct frame_info *frame;
708 CORE_ADDR pc;
709
710 frame = get_selected_frame (NULL);
711 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
712 return "=> ";
713 }
714 return " ";
715 }
716
717 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
718 controls whether to print the symbolic name "raw" or demangled.
719 Return non-zero if anything was printed; zero otherwise. */
720
721 int
722 print_address_demangle (const struct value_print_options *opts,
723 struct gdbarch *gdbarch, CORE_ADDR addr,
724 struct ui_file *stream, int do_demangle)
725 {
726 if (opts->addressprint)
727 {
728 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
729 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
730 }
731 else
732 {
733 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
734 }
735 return 1;
736 }
737 \f
738
739 /* Find the address of the instruction that is INST_COUNT instructions before
740 the instruction at ADDR.
741 Since some architectures have variable-length instructions, we can't just
742 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
743 number information to locate the nearest known instruction boundary,
744 and disassemble forward from there. If we go out of the symbol range
745 during disassembling, we return the lowest address we've got so far and
746 set the number of instructions read to INST_READ. */
747
748 static CORE_ADDR
749 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
750 int inst_count, int *inst_read)
751 {
752 /* The vector PCS is used to store instruction addresses within
753 a pc range. */
754 CORE_ADDR loop_start, loop_end, p;
755 std::vector<CORE_ADDR> pcs;
756 struct symtab_and_line sal;
757
758 *inst_read = 0;
759 loop_start = loop_end = addr;
760
761 /* In each iteration of the outer loop, we get a pc range that ends before
762 LOOP_START, then we count and store every instruction address of the range
763 iterated in the loop.
764 If the number of instructions counted reaches INST_COUNT, return the
765 stored address that is located INST_COUNT instructions back from ADDR.
766 If INST_COUNT is not reached, we subtract the number of counted
767 instructions from INST_COUNT, and go to the next iteration. */
768 do
769 {
770 pcs.clear ();
771 sal = find_pc_sect_line (loop_start, NULL, 1);
772 if (sal.line <= 0)
773 {
774 /* We reach here when line info is not available. In this case,
775 we print a message and just exit the loop. The return value
776 is calculated after the loop. */
777 printf_filtered (_("No line number information available "
778 "for address "));
779 wrap_here (" ");
780 print_address (gdbarch, loop_start - 1, gdb_stdout);
781 printf_filtered ("\n");
782 break;
783 }
784
785 loop_end = loop_start;
786 loop_start = sal.pc;
787
788 /* This loop pushes instruction addresses in the range from
789 LOOP_START to LOOP_END. */
790 for (p = loop_start; p < loop_end;)
791 {
792 pcs.push_back (p);
793 p += gdb_insn_length (gdbarch, p);
794 }
795
796 inst_count -= pcs.size ();
797 *inst_read += pcs.size ();
798 }
799 while (inst_count > 0);
800
801 /* After the loop, the vector PCS has instruction addresses of the last
802 source line we processed, and INST_COUNT has a negative value.
803 We return the address at the index of -INST_COUNT in the vector for
804 the reason below.
805 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
806 Line X of File
807 0x4000
808 0x4001
809 0x4005
810 Line Y of File
811 0x4009
812 0x400c
813 => 0x400e
814 0x4011
815 find_instruction_backward is called with INST_COUNT = 4 and expected to
816 return 0x4001. When we reach here, INST_COUNT is set to -1 because
817 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
818 4001 is located at the index 1 of the last iterated line (= Line X),
819 which is simply calculated by -INST_COUNT.
820 The case when the length of PCS is 0 means that we reached an area for
821 which line info is not available. In such case, we return LOOP_START,
822 which was the lowest instruction address that had line info. */
823 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
824
825 /* INST_READ includes all instruction addresses in a pc range. Need to
826 exclude the beginning part up to the address we're returning. That
827 is, exclude {0x4000} in the example above. */
828 if (inst_count < 0)
829 *inst_read += inst_count;
830
831 return p;
832 }
833
834 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
835 placing the results in GDB's memory from MYADDR + LEN. Returns
836 a count of the bytes actually read. */
837
838 static int
839 read_memory_backward (struct gdbarch *gdbarch,
840 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
841 {
842 int errcode;
843 int nread; /* Number of bytes actually read. */
844
845 /* First try a complete read. */
846 errcode = target_read_memory (memaddr, myaddr, len);
847 if (errcode == 0)
848 {
849 /* Got it all. */
850 nread = len;
851 }
852 else
853 {
854 /* Loop, reading one byte at a time until we get as much as we can. */
855 memaddr += len;
856 myaddr += len;
857 for (nread = 0; nread < len; ++nread)
858 {
859 errcode = target_read_memory (--memaddr, --myaddr, 1);
860 if (errcode != 0)
861 {
862 /* The read was unsuccessful, so exit the loop. */
863 printf_filtered (_("Cannot access memory at address %s\n"),
864 paddress (gdbarch, memaddr));
865 break;
866 }
867 }
868 }
869 return nread;
870 }
871
872 /* Returns true if X (which is LEN bytes wide) is the number zero. */
873
874 static int
875 integer_is_zero (const gdb_byte *x, int len)
876 {
877 int i = 0;
878
879 while (i < len && x[i] == 0)
880 ++i;
881 return (i == len);
882 }
883
884 /* Find the start address of a string in which ADDR is included.
885 Basically we search for '\0' and return the next address,
886 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
887 we stop searching and return the address to print characters as many as
888 PRINT_MAX from the string. */
889
890 static CORE_ADDR
891 find_string_backward (struct gdbarch *gdbarch,
892 CORE_ADDR addr, int count, int char_size,
893 const struct value_print_options *options,
894 int *strings_counted)
895 {
896 const int chunk_size = 0x20;
897 int read_error = 0;
898 int chars_read = 0;
899 int chars_to_read = chunk_size;
900 int chars_counted = 0;
901 int count_original = count;
902 CORE_ADDR string_start_addr = addr;
903
904 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
905 gdb::byte_vector buffer (chars_to_read * char_size);
906 while (count > 0 && read_error == 0)
907 {
908 int i;
909
910 addr -= chars_to_read * char_size;
911 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
912 chars_to_read * char_size);
913 chars_read /= char_size;
914 read_error = (chars_read == chars_to_read) ? 0 : 1;
915 /* Searching for '\0' from the end of buffer in backward direction. */
916 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
917 {
918 int offset = (chars_to_read - i - 1) * char_size;
919
920 if (integer_is_zero (&buffer[offset], char_size)
921 || chars_counted == options->print_max)
922 {
923 /* Found '\0' or reached print_max. As OFFSET is the offset to
924 '\0', we add CHAR_SIZE to return the start address of
925 a string. */
926 --count;
927 string_start_addr = addr + offset + char_size;
928 chars_counted = 0;
929 }
930 }
931 }
932
933 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
934 *strings_counted = count_original - count;
935
936 if (read_error != 0)
937 {
938 /* In error case, STRING_START_ADDR is pointing to the string that
939 was last successfully loaded. Rewind the partially loaded string. */
940 string_start_addr -= chars_counted * char_size;
941 }
942
943 return string_start_addr;
944 }
945
946 /* Examine data at address ADDR in format FMT.
947 Fetch it from memory and print on gdb_stdout. */
948
949 static void
950 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
951 {
952 char format = 0;
953 char size;
954 int count = 1;
955 struct type *val_type = NULL;
956 int i;
957 int maxelts;
958 struct value_print_options opts;
959 int need_to_update_next_address = 0;
960 CORE_ADDR addr_rewound = 0;
961
962 format = fmt.format;
963 size = fmt.size;
964 count = fmt.count;
965 next_gdbarch = gdbarch;
966 next_address = addr;
967
968 /* Instruction format implies fetch single bytes
969 regardless of the specified size.
970 The case of strings is handled in decode_format, only explicit
971 size operator are not changed to 'b'. */
972 if (format == 'i')
973 size = 'b';
974
975 if (size == 'a')
976 {
977 /* Pick the appropriate size for an address. */
978 if (gdbarch_ptr_bit (next_gdbarch) == 64)
979 size = 'g';
980 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
981 size = 'w';
982 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
983 size = 'h';
984 else
985 /* Bad value for gdbarch_ptr_bit. */
986 internal_error (__FILE__, __LINE__,
987 _("failed internal consistency check"));
988 }
989
990 if (size == 'b')
991 val_type = builtin_type (next_gdbarch)->builtin_int8;
992 else if (size == 'h')
993 val_type = builtin_type (next_gdbarch)->builtin_int16;
994 else if (size == 'w')
995 val_type = builtin_type (next_gdbarch)->builtin_int32;
996 else if (size == 'g')
997 val_type = builtin_type (next_gdbarch)->builtin_int64;
998
999 if (format == 's')
1000 {
1001 struct type *char_type = NULL;
1002
1003 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1004 if type is not found. */
1005 if (size == 'h')
1006 char_type = builtin_type (next_gdbarch)->builtin_char16;
1007 else if (size == 'w')
1008 char_type = builtin_type (next_gdbarch)->builtin_char32;
1009 if (char_type)
1010 val_type = char_type;
1011 else
1012 {
1013 if (size != '\0' && size != 'b')
1014 warning (_("Unable to display strings with "
1015 "size '%c', using 'b' instead."), size);
1016 size = 'b';
1017 val_type = builtin_type (next_gdbarch)->builtin_int8;
1018 }
1019 }
1020
1021 maxelts = 8;
1022 if (size == 'w')
1023 maxelts = 4;
1024 if (size == 'g')
1025 maxelts = 2;
1026 if (format == 's' || format == 'i')
1027 maxelts = 1;
1028
1029 get_formatted_print_options (&opts, format);
1030
1031 if (count < 0)
1032 {
1033 /* This is the negative repeat count case.
1034 We rewind the address based on the given repeat count and format,
1035 then examine memory from there in forward direction. */
1036
1037 count = -count;
1038 if (format == 'i')
1039 {
1040 next_address = find_instruction_backward (gdbarch, addr, count,
1041 &count);
1042 }
1043 else if (format == 's')
1044 {
1045 next_address = find_string_backward (gdbarch, addr, count,
1046 TYPE_LENGTH (val_type),
1047 &opts, &count);
1048 }
1049 else
1050 {
1051 next_address = addr - count * TYPE_LENGTH (val_type);
1052 }
1053
1054 /* The following call to print_formatted updates next_address in every
1055 iteration. In backward case, we store the start address here
1056 and update next_address with it before exiting the function. */
1057 addr_rewound = (format == 's'
1058 ? next_address - TYPE_LENGTH (val_type)
1059 : next_address);
1060 need_to_update_next_address = 1;
1061 }
1062
1063 /* Print as many objects as specified in COUNT, at most maxelts per line,
1064 with the address of the next one at the start of each line. */
1065
1066 while (count > 0)
1067 {
1068 QUIT;
1069 if (format == 'i')
1070 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1071 print_address (next_gdbarch, next_address, gdb_stdout);
1072 printf_filtered (":");
1073 for (i = maxelts;
1074 i > 0 && count > 0;
1075 i--, count--)
1076 {
1077 printf_filtered ("\t");
1078 /* Note that print_formatted sets next_address for the next
1079 object. */
1080 last_examine_address = next_address;
1081
1082 /* The value to be displayed is not fetched greedily.
1083 Instead, to avoid the possibility of a fetched value not
1084 being used, its retrieval is delayed until the print code
1085 uses it. When examining an instruction stream, the
1086 disassembler will perform its own memory fetch using just
1087 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1088 the disassembler be modified so that LAST_EXAMINE_VALUE
1089 is left with the byte sequence from the last complete
1090 instruction fetched from memory? */
1091 last_examine_value
1092 = release_value (value_at_lazy (val_type, next_address));
1093
1094 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1095
1096 /* Display any branch delay slots following the final insn. */
1097 if (format == 'i' && count == 1)
1098 count += branch_delay_insns;
1099 }
1100 printf_filtered ("\n");
1101 gdb_flush (gdb_stdout);
1102 }
1103
1104 if (need_to_update_next_address)
1105 next_address = addr_rewound;
1106 }
1107 \f
1108 static void
1109 validate_format (struct format_data fmt, const char *cmdname)
1110 {
1111 if (fmt.size != 0)
1112 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1113 if (fmt.count != 1)
1114 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1115 cmdname);
1116 if (fmt.format == 'i')
1117 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1118 fmt.format, cmdname);
1119 }
1120
1121 /* Parse print command format string into *FMTP and update *EXPP.
1122 CMDNAME should name the current command. */
1123
1124 void
1125 print_command_parse_format (const char **expp, const char *cmdname,
1126 struct format_data *fmtp)
1127 {
1128 const char *exp = *expp;
1129
1130 if (exp && *exp == '/')
1131 {
1132 exp++;
1133 *fmtp = decode_format (&exp, last_format, 0);
1134 validate_format (*fmtp, cmdname);
1135 last_format = fmtp->format;
1136 }
1137 else
1138 {
1139 fmtp->count = 1;
1140 fmtp->format = 0;
1141 fmtp->size = 0;
1142 fmtp->raw = 0;
1143 }
1144
1145 *expp = exp;
1146 }
1147
1148 /* Print VAL to console according to *FMTP, including recording it to
1149 the history. */
1150
1151 void
1152 print_value (struct value *val, const struct format_data *fmtp)
1153 {
1154 struct value_print_options opts;
1155 int histindex = record_latest_value (val);
1156
1157 annotate_value_history_begin (histindex, value_type (val));
1158
1159 printf_filtered ("$%d = ", histindex);
1160
1161 annotate_value_history_value ();
1162
1163 get_formatted_print_options (&opts, fmtp->format);
1164 opts.raw = fmtp->raw;
1165
1166 print_formatted (val, fmtp->size, &opts, gdb_stdout);
1167 printf_filtered ("\n");
1168
1169 annotate_value_history_end ();
1170 }
1171
1172 /* Evaluate string EXP as an expression in the current language and
1173 print the resulting value. EXP may contain a format specifier as the
1174 first argument ("/x myvar" for example, to print myvar in hex). */
1175
1176 static void
1177 print_command_1 (const char *exp, int voidprint)
1178 {
1179 struct value *val;
1180 struct format_data fmt;
1181
1182 print_command_parse_format (&exp, "print", &fmt);
1183
1184 if (exp && *exp)
1185 {
1186 expression_up expr = parse_expression (exp);
1187 val = evaluate_expression (expr.get ());
1188 }
1189 else
1190 val = access_value_history (0);
1191
1192 if (voidprint || (val && value_type (val) &&
1193 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1194 print_value (val, &fmt);
1195 }
1196
1197 static void
1198 print_command (const char *exp, int from_tty)
1199 {
1200 print_command_1 (exp, 1);
1201 }
1202
1203 /* Same as print, except it doesn't print void results. */
1204 static void
1205 call_command (const char *exp, int from_tty)
1206 {
1207 print_command_1 (exp, 0);
1208 }
1209
1210 /* Implementation of the "output" command. */
1211
1212 void
1213 output_command (const char *exp, int from_tty)
1214 {
1215 char format = 0;
1216 struct value *val;
1217 struct format_data fmt;
1218 struct value_print_options opts;
1219
1220 fmt.size = 0;
1221 fmt.raw = 0;
1222
1223 if (exp && *exp == '/')
1224 {
1225 exp++;
1226 fmt = decode_format (&exp, 0, 0);
1227 validate_format (fmt, "output");
1228 format = fmt.format;
1229 }
1230
1231 expression_up expr = parse_expression (exp);
1232
1233 val = evaluate_expression (expr.get ());
1234
1235 annotate_value_begin (value_type (val));
1236
1237 get_formatted_print_options (&opts, format);
1238 opts.raw = fmt.raw;
1239 print_formatted (val, fmt.size, &opts, gdb_stdout);
1240
1241 annotate_value_end ();
1242
1243 wrap_here ("");
1244 gdb_flush (gdb_stdout);
1245 }
1246
1247 static void
1248 set_command (const char *exp, int from_tty)
1249 {
1250 expression_up expr = parse_expression (exp);
1251
1252 if (expr->nelts >= 1)
1253 switch (expr->elts[0].opcode)
1254 {
1255 case UNOP_PREINCREMENT:
1256 case UNOP_POSTINCREMENT:
1257 case UNOP_PREDECREMENT:
1258 case UNOP_POSTDECREMENT:
1259 case BINOP_ASSIGN:
1260 case BINOP_ASSIGN_MODIFY:
1261 case BINOP_COMMA:
1262 break;
1263 default:
1264 warning
1265 (_("Expression is not an assignment (and might have no effect)"));
1266 }
1267
1268 evaluate_expression (expr.get ());
1269 }
1270
1271 static void
1272 info_symbol_command (const char *arg, int from_tty)
1273 {
1274 struct minimal_symbol *msymbol;
1275 struct obj_section *osect;
1276 CORE_ADDR addr, sect_addr;
1277 int matches = 0;
1278 unsigned int offset;
1279
1280 if (!arg)
1281 error_no_arg (_("address"));
1282
1283 addr = parse_and_eval_address (arg);
1284 for (objfile *objfile : current_program_space->objfiles ())
1285 ALL_OBJFILE_OSECTIONS (objfile, osect)
1286 {
1287 /* Only process each object file once, even if there's a separate
1288 debug file. */
1289 if (objfile->separate_debug_objfile_backlink)
1290 continue;
1291
1292 sect_addr = overlay_mapped_address (addr, osect);
1293
1294 if (obj_section_addr (osect) <= sect_addr
1295 && sect_addr < obj_section_endaddr (osect)
1296 && (msymbol
1297 = lookup_minimal_symbol_by_pc_section (sect_addr,
1298 osect).minsym))
1299 {
1300 const char *obj_name, *mapped, *sec_name, *msym_name;
1301 const char *loc_string;
1302
1303 matches = 1;
1304 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1305 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1306 sec_name = osect->the_bfd_section->name;
1307 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1308
1309 /* Don't print the offset if it is zero.
1310 We assume there's no need to handle i18n of "sym + offset". */
1311 std::string string_holder;
1312 if (offset)
1313 {
1314 string_holder = string_printf ("%s + %u", msym_name, offset);
1315 loc_string = string_holder.c_str ();
1316 }
1317 else
1318 loc_string = msym_name;
1319
1320 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1321 obj_name = objfile_name (osect->objfile);
1322
1323 if (MULTI_OBJFILE_P ())
1324 if (pc_in_unmapped_range (addr, osect))
1325 if (section_is_overlay (osect))
1326 printf_filtered (_("%s in load address range of "
1327 "%s overlay section %s of %s\n"),
1328 loc_string, mapped, sec_name, obj_name);
1329 else
1330 printf_filtered (_("%s in load address range of "
1331 "section %s of %s\n"),
1332 loc_string, sec_name, obj_name);
1333 else
1334 if (section_is_overlay (osect))
1335 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1336 loc_string, mapped, sec_name, obj_name);
1337 else
1338 printf_filtered (_("%s in section %s of %s\n"),
1339 loc_string, sec_name, obj_name);
1340 else
1341 if (pc_in_unmapped_range (addr, osect))
1342 if (section_is_overlay (osect))
1343 printf_filtered (_("%s in load address range of %s overlay "
1344 "section %s\n"),
1345 loc_string, mapped, sec_name);
1346 else
1347 printf_filtered
1348 (_("%s in load address range of section %s\n"),
1349 loc_string, sec_name);
1350 else
1351 if (section_is_overlay (osect))
1352 printf_filtered (_("%s in %s overlay section %s\n"),
1353 loc_string, mapped, sec_name);
1354 else
1355 printf_filtered (_("%s in section %s\n"),
1356 loc_string, sec_name);
1357 }
1358 }
1359 if (matches == 0)
1360 printf_filtered (_("No symbol matches %s.\n"), arg);
1361 }
1362
1363 static void
1364 info_address_command (const char *exp, int from_tty)
1365 {
1366 struct gdbarch *gdbarch;
1367 int regno;
1368 struct symbol *sym;
1369 struct bound_minimal_symbol msymbol;
1370 long val;
1371 struct obj_section *section;
1372 CORE_ADDR load_addr, context_pc = 0;
1373 struct field_of_this_result is_a_field_of_this;
1374
1375 if (exp == 0)
1376 error (_("Argument required."));
1377
1378 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1379 &is_a_field_of_this).symbol;
1380 if (sym == NULL)
1381 {
1382 if (is_a_field_of_this.type != NULL)
1383 {
1384 printf_filtered ("Symbol \"");
1385 fprintf_symbol_filtered (gdb_stdout, exp,
1386 current_language->la_language, DMGL_ANSI);
1387 printf_filtered ("\" is a field of the local class variable ");
1388 if (current_language->la_language == language_objc)
1389 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1390 else
1391 printf_filtered ("`this'\n");
1392 return;
1393 }
1394
1395 msymbol = lookup_bound_minimal_symbol (exp);
1396
1397 if (msymbol.minsym != NULL)
1398 {
1399 struct objfile *objfile = msymbol.objfile;
1400
1401 gdbarch = get_objfile_arch (objfile);
1402 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1403
1404 printf_filtered ("Symbol \"");
1405 fprintf_symbol_filtered (gdb_stdout, exp,
1406 current_language->la_language, DMGL_ANSI);
1407 printf_filtered ("\" is at ");
1408 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1409 gdb_stdout);
1410 printf_filtered (" in a file compiled without debugging");
1411 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1412 if (section_is_overlay (section))
1413 {
1414 load_addr = overlay_unmapped_address (load_addr, section);
1415 printf_filtered (",\n -- loaded at ");
1416 fputs_styled (paddress (gdbarch, load_addr),
1417 address_style.style (),
1418 gdb_stdout);
1419 printf_filtered (" in overlay section %s",
1420 section->the_bfd_section->name);
1421 }
1422 printf_filtered (".\n");
1423 }
1424 else
1425 error (_("No symbol \"%s\" in current context."), exp);
1426 return;
1427 }
1428
1429 printf_filtered ("Symbol \"");
1430 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1431 current_language->la_language, DMGL_ANSI);
1432 printf_filtered ("\" is ");
1433 val = SYMBOL_VALUE (sym);
1434 if (SYMBOL_OBJFILE_OWNED (sym))
1435 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1436 else
1437 section = NULL;
1438 gdbarch = symbol_arch (sym);
1439
1440 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1441 {
1442 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1443 gdb_stdout);
1444 printf_filtered (".\n");
1445 return;
1446 }
1447
1448 switch (SYMBOL_CLASS (sym))
1449 {
1450 case LOC_CONST:
1451 case LOC_CONST_BYTES:
1452 printf_filtered ("constant");
1453 break;
1454
1455 case LOC_LABEL:
1456 printf_filtered ("a label at address ");
1457 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1458 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1459 gdb_stdout);
1460 if (section_is_overlay (section))
1461 {
1462 load_addr = overlay_unmapped_address (load_addr, section);
1463 printf_filtered (",\n -- loaded at ");
1464 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1465 gdb_stdout);
1466 printf_filtered (" in overlay section %s",
1467 section->the_bfd_section->name);
1468 }
1469 break;
1470
1471 case LOC_COMPUTED:
1472 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1473
1474 case LOC_REGISTER:
1475 /* GDBARCH is the architecture associated with the objfile the symbol
1476 is defined in; the target architecture may be different, and may
1477 provide additional registers. However, we do not know the target
1478 architecture at this point. We assume the objfile architecture
1479 will contain all the standard registers that occur in debug info
1480 in that objfile. */
1481 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1482
1483 if (SYMBOL_IS_ARGUMENT (sym))
1484 printf_filtered (_("an argument in register %s"),
1485 gdbarch_register_name (gdbarch, regno));
1486 else
1487 printf_filtered (_("a variable in register %s"),
1488 gdbarch_register_name (gdbarch, regno));
1489 break;
1490
1491 case LOC_STATIC:
1492 printf_filtered (_("static storage at address "));
1493 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1494 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1495 gdb_stdout);
1496 if (section_is_overlay (section))
1497 {
1498 load_addr = overlay_unmapped_address (load_addr, section);
1499 printf_filtered (_(",\n -- loaded at "));
1500 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1501 gdb_stdout);
1502 printf_filtered (_(" in overlay section %s"),
1503 section->the_bfd_section->name);
1504 }
1505 break;
1506
1507 case LOC_REGPARM_ADDR:
1508 /* Note comment at LOC_REGISTER. */
1509 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1510 printf_filtered (_("address of an argument in register %s"),
1511 gdbarch_register_name (gdbarch, regno));
1512 break;
1513
1514 case LOC_ARG:
1515 printf_filtered (_("an argument at offset %ld"), val);
1516 break;
1517
1518 case LOC_LOCAL:
1519 printf_filtered (_("a local variable at frame offset %ld"), val);
1520 break;
1521
1522 case LOC_REF_ARG:
1523 printf_filtered (_("a reference argument at offset %ld"), val);
1524 break;
1525
1526 case LOC_TYPEDEF:
1527 printf_filtered (_("a typedef"));
1528 break;
1529
1530 case LOC_BLOCK:
1531 printf_filtered (_("a function at address "));
1532 load_addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1533 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1534 gdb_stdout);
1535 if (section_is_overlay (section))
1536 {
1537 load_addr = overlay_unmapped_address (load_addr, section);
1538 printf_filtered (_(",\n -- loaded at "));
1539 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1540 gdb_stdout);
1541 printf_filtered (_(" in overlay section %s"),
1542 section->the_bfd_section->name);
1543 }
1544 break;
1545
1546 case LOC_UNRESOLVED:
1547 {
1548 struct bound_minimal_symbol msym;
1549
1550 msym = lookup_bound_minimal_symbol (SYMBOL_LINKAGE_NAME (sym));
1551 if (msym.minsym == NULL)
1552 printf_filtered ("unresolved");
1553 else
1554 {
1555 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1556
1557 if (section
1558 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1559 {
1560 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1561 printf_filtered (_("a thread-local variable at offset %s "
1562 "in the thread-local storage for `%s'"),
1563 paddress (gdbarch, load_addr),
1564 objfile_name (section->objfile));
1565 }
1566 else
1567 {
1568 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1569 printf_filtered (_("static storage at address "));
1570 fputs_styled (paddress (gdbarch, load_addr),
1571 address_style.style (), gdb_stdout);
1572 if (section_is_overlay (section))
1573 {
1574 load_addr = overlay_unmapped_address (load_addr, section);
1575 printf_filtered (_(",\n -- loaded at "));
1576 fputs_styled (paddress (gdbarch, load_addr),
1577 address_style.style (),
1578 gdb_stdout);
1579 printf_filtered (_(" in overlay section %s"),
1580 section->the_bfd_section->name);
1581 }
1582 }
1583 }
1584 }
1585 break;
1586
1587 case LOC_OPTIMIZED_OUT:
1588 printf_filtered (_("optimized out"));
1589 break;
1590
1591 default:
1592 printf_filtered (_("of unknown (botched) type"));
1593 break;
1594 }
1595 printf_filtered (".\n");
1596 }
1597 \f
1598
1599 static void
1600 x_command (const char *exp, int from_tty)
1601 {
1602 struct format_data fmt;
1603 struct value *val;
1604
1605 fmt.format = last_format ? last_format : 'x';
1606 fmt.size = last_size;
1607 fmt.count = 1;
1608 fmt.raw = 0;
1609
1610 /* If there is no expression and no format, use the most recent
1611 count. */
1612 if (exp == nullptr && last_count > 0)
1613 fmt.count = last_count;
1614
1615 if (exp && *exp == '/')
1616 {
1617 const char *tmp = exp + 1;
1618
1619 fmt = decode_format (&tmp, last_format, last_size);
1620 exp = (char *) tmp;
1621 }
1622
1623 last_count = fmt.count;
1624
1625 /* If we have an expression, evaluate it and use it as the address. */
1626
1627 if (exp != 0 && *exp != 0)
1628 {
1629 expression_up expr = parse_expression (exp);
1630 /* Cause expression not to be there any more if this command is
1631 repeated with Newline. But don't clobber a user-defined
1632 command's definition. */
1633 if (from_tty)
1634 set_repeat_arguments ("");
1635 val = evaluate_expression (expr.get ());
1636 if (TYPE_IS_REFERENCE (value_type (val)))
1637 val = coerce_ref (val);
1638 /* In rvalue contexts, such as this, functions are coerced into
1639 pointers to functions. This makes "x/i main" work. */
1640 if (/* last_format == 'i' && */
1641 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1642 && VALUE_LVAL (val) == lval_memory)
1643 next_address = value_address (val);
1644 else
1645 next_address = value_as_address (val);
1646
1647 next_gdbarch = expr->gdbarch;
1648 }
1649
1650 if (!next_gdbarch)
1651 error_no_arg (_("starting display address"));
1652
1653 do_examine (fmt, next_gdbarch, next_address);
1654
1655 /* If the examine succeeds, we remember its size and format for next
1656 time. Set last_size to 'b' for strings. */
1657 if (fmt.format == 's')
1658 last_size = 'b';
1659 else
1660 last_size = fmt.size;
1661 last_format = fmt.format;
1662
1663 /* Set a couple of internal variables if appropriate. */
1664 if (last_examine_value != nullptr)
1665 {
1666 /* Make last address examined available to the user as $_. Use
1667 the correct pointer type. */
1668 struct type *pointer_type
1669 = lookup_pointer_type (value_type (last_examine_value.get ()));
1670 set_internalvar (lookup_internalvar ("_"),
1671 value_from_pointer (pointer_type,
1672 last_examine_address));
1673
1674 /* Make contents of last address examined available to the user
1675 as $__. If the last value has not been fetched from memory
1676 then don't fetch it now; instead mark it by voiding the $__
1677 variable. */
1678 if (value_lazy (last_examine_value.get ()))
1679 clear_internalvar (lookup_internalvar ("__"));
1680 else
1681 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1682 }
1683 }
1684 \f
1685
1686 /* Add an expression to the auto-display chain.
1687 Specify the expression. */
1688
1689 static void
1690 display_command (const char *arg, int from_tty)
1691 {
1692 struct format_data fmt;
1693 struct display *newobj;
1694 const char *exp = arg;
1695
1696 if (exp == 0)
1697 {
1698 do_displays ();
1699 return;
1700 }
1701
1702 if (*exp == '/')
1703 {
1704 exp++;
1705 fmt = decode_format (&exp, 0, 0);
1706 if (fmt.size && fmt.format == 0)
1707 fmt.format = 'x';
1708 if (fmt.format == 'i' || fmt.format == 's')
1709 fmt.size = 'b';
1710 }
1711 else
1712 {
1713 fmt.format = 0;
1714 fmt.size = 0;
1715 fmt.count = 0;
1716 fmt.raw = 0;
1717 }
1718
1719 innermost_block.reset ();
1720 expression_up expr = parse_expression (exp);
1721
1722 newobj = new display ();
1723
1724 newobj->exp_string = xstrdup (exp);
1725 newobj->exp = std::move (expr);
1726 newobj->block = innermost_block.block ();
1727 newobj->pspace = current_program_space;
1728 newobj->number = ++display_number;
1729 newobj->format = fmt;
1730 newobj->enabled_p = 1;
1731 newobj->next = NULL;
1732
1733 if (display_chain == NULL)
1734 display_chain = newobj;
1735 else
1736 {
1737 struct display *last;
1738
1739 for (last = display_chain; last->next != NULL; last = last->next)
1740 ;
1741 last->next = newobj;
1742 }
1743
1744 if (from_tty)
1745 do_one_display (newobj);
1746
1747 dont_repeat ();
1748 }
1749
1750 static void
1751 free_display (struct display *d)
1752 {
1753 xfree (d->exp_string);
1754 delete d;
1755 }
1756
1757 /* Clear out the display_chain. Done when new symtabs are loaded,
1758 since this invalidates the types stored in many expressions. */
1759
1760 void
1761 clear_displays (void)
1762 {
1763 struct display *d;
1764
1765 while ((d = display_chain) != NULL)
1766 {
1767 display_chain = d->next;
1768 free_display (d);
1769 }
1770 }
1771
1772 /* Delete the auto-display DISPLAY. */
1773
1774 static void
1775 delete_display (struct display *display)
1776 {
1777 struct display *d;
1778
1779 gdb_assert (display != NULL);
1780
1781 if (display_chain == display)
1782 display_chain = display->next;
1783
1784 ALL_DISPLAYS (d)
1785 if (d->next == display)
1786 {
1787 d->next = display->next;
1788 break;
1789 }
1790
1791 free_display (display);
1792 }
1793
1794 /* Call FUNCTION on each of the displays whose numbers are given in
1795 ARGS. DATA is passed unmodified to FUNCTION. */
1796
1797 static void
1798 map_display_numbers (const char *args,
1799 void (*function) (struct display *,
1800 void *),
1801 void *data)
1802 {
1803 int num;
1804
1805 if (args == NULL)
1806 error_no_arg (_("one or more display numbers"));
1807
1808 number_or_range_parser parser (args);
1809
1810 while (!parser.finished ())
1811 {
1812 const char *p = parser.cur_tok ();
1813
1814 num = parser.get_number ();
1815 if (num == 0)
1816 warning (_("bad display number at or near '%s'"), p);
1817 else
1818 {
1819 struct display *d, *tmp;
1820
1821 ALL_DISPLAYS_SAFE (d, tmp)
1822 if (d->number == num)
1823 break;
1824 if (d == NULL)
1825 printf_unfiltered (_("No display number %d.\n"), num);
1826 else
1827 function (d, data);
1828 }
1829 }
1830 }
1831
1832 /* Callback for map_display_numbers, that deletes a display. */
1833
1834 static void
1835 do_delete_display (struct display *d, void *data)
1836 {
1837 delete_display (d);
1838 }
1839
1840 /* "undisplay" command. */
1841
1842 static void
1843 undisplay_command (const char *args, int from_tty)
1844 {
1845 if (args == NULL)
1846 {
1847 if (query (_("Delete all auto-display expressions? ")))
1848 clear_displays ();
1849 dont_repeat ();
1850 return;
1851 }
1852
1853 map_display_numbers (args, do_delete_display, NULL);
1854 dont_repeat ();
1855 }
1856
1857 /* Display a single auto-display.
1858 Do nothing if the display cannot be printed in the current context,
1859 or if the display is disabled. */
1860
1861 static void
1862 do_one_display (struct display *d)
1863 {
1864 int within_current_scope;
1865
1866 if (d->enabled_p == 0)
1867 return;
1868
1869 /* The expression carries the architecture that was used at parse time.
1870 This is a problem if the expression depends on architecture features
1871 (e.g. register numbers), and the current architecture is now different.
1872 For example, a display statement like "display/i $pc" is expected to
1873 display the PC register of the current architecture, not the arch at
1874 the time the display command was given. Therefore, we re-parse the
1875 expression if the current architecture has changed. */
1876 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1877 {
1878 d->exp.reset ();
1879 d->block = NULL;
1880 }
1881
1882 if (d->exp == NULL)
1883 {
1884
1885 TRY
1886 {
1887 innermost_block.reset ();
1888 d->exp = parse_expression (d->exp_string);
1889 d->block = innermost_block.block ();
1890 }
1891 CATCH (ex, RETURN_MASK_ALL)
1892 {
1893 /* Can't re-parse the expression. Disable this display item. */
1894 d->enabled_p = 0;
1895 warning (_("Unable to display \"%s\": %s"),
1896 d->exp_string, ex.message);
1897 return;
1898 }
1899 END_CATCH
1900 }
1901
1902 if (d->block)
1903 {
1904 if (d->pspace == current_program_space)
1905 within_current_scope = contained_in (get_selected_block (0), d->block);
1906 else
1907 within_current_scope = 0;
1908 }
1909 else
1910 within_current_scope = 1;
1911 if (!within_current_scope)
1912 return;
1913
1914 scoped_restore save_display_number
1915 = make_scoped_restore (&current_display_number, d->number);
1916
1917 annotate_display_begin ();
1918 printf_filtered ("%d", d->number);
1919 annotate_display_number_end ();
1920 printf_filtered (": ");
1921 if (d->format.size)
1922 {
1923
1924 annotate_display_format ();
1925
1926 printf_filtered ("x/");
1927 if (d->format.count != 1)
1928 printf_filtered ("%d", d->format.count);
1929 printf_filtered ("%c", d->format.format);
1930 if (d->format.format != 'i' && d->format.format != 's')
1931 printf_filtered ("%c", d->format.size);
1932 printf_filtered (" ");
1933
1934 annotate_display_expression ();
1935
1936 puts_filtered (d->exp_string);
1937 annotate_display_expression_end ();
1938
1939 if (d->format.count != 1 || d->format.format == 'i')
1940 printf_filtered ("\n");
1941 else
1942 printf_filtered (" ");
1943
1944 annotate_display_value ();
1945
1946 TRY
1947 {
1948 struct value *val;
1949 CORE_ADDR addr;
1950
1951 val = evaluate_expression (d->exp.get ());
1952 addr = value_as_address (val);
1953 if (d->format.format == 'i')
1954 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1955 do_examine (d->format, d->exp->gdbarch, addr);
1956 }
1957 CATCH (ex, RETURN_MASK_ERROR)
1958 {
1959 fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
1960 }
1961 END_CATCH
1962 }
1963 else
1964 {
1965 struct value_print_options opts;
1966
1967 annotate_display_format ();
1968
1969 if (d->format.format)
1970 printf_filtered ("/%c ", d->format.format);
1971
1972 annotate_display_expression ();
1973
1974 puts_filtered (d->exp_string);
1975 annotate_display_expression_end ();
1976
1977 printf_filtered (" = ");
1978
1979 annotate_display_expression ();
1980
1981 get_formatted_print_options (&opts, d->format.format);
1982 opts.raw = d->format.raw;
1983
1984 TRY
1985 {
1986 struct value *val;
1987
1988 val = evaluate_expression (d->exp.get ());
1989 print_formatted (val, d->format.size, &opts, gdb_stdout);
1990 }
1991 CATCH (ex, RETURN_MASK_ERROR)
1992 {
1993 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
1994 }
1995 END_CATCH
1996
1997 printf_filtered ("\n");
1998 }
1999
2000 annotate_display_end ();
2001
2002 gdb_flush (gdb_stdout);
2003 }
2004
2005 /* Display all of the values on the auto-display chain which can be
2006 evaluated in the current scope. */
2007
2008 void
2009 do_displays (void)
2010 {
2011 struct display *d;
2012
2013 for (d = display_chain; d; d = d->next)
2014 do_one_display (d);
2015 }
2016
2017 /* Delete the auto-display which we were in the process of displaying.
2018 This is done when there is an error or a signal. */
2019
2020 void
2021 disable_display (int num)
2022 {
2023 struct display *d;
2024
2025 for (d = display_chain; d; d = d->next)
2026 if (d->number == num)
2027 {
2028 d->enabled_p = 0;
2029 return;
2030 }
2031 printf_unfiltered (_("No display number %d.\n"), num);
2032 }
2033
2034 void
2035 disable_current_display (void)
2036 {
2037 if (current_display_number >= 0)
2038 {
2039 disable_display (current_display_number);
2040 fprintf_unfiltered (gdb_stderr,
2041 _("Disabling display %d to "
2042 "avoid infinite recursion.\n"),
2043 current_display_number);
2044 }
2045 current_display_number = -1;
2046 }
2047
2048 static void
2049 info_display_command (const char *ignore, int from_tty)
2050 {
2051 struct display *d;
2052
2053 if (!display_chain)
2054 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2055 else
2056 printf_filtered (_("Auto-display expressions now in effect:\n\
2057 Num Enb Expression\n"));
2058
2059 for (d = display_chain; d; d = d->next)
2060 {
2061 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2062 if (d->format.size)
2063 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2064 d->format.format);
2065 else if (d->format.format)
2066 printf_filtered ("/%c ", d->format.format);
2067 puts_filtered (d->exp_string);
2068 if (d->block && !contained_in (get_selected_block (0), d->block))
2069 printf_filtered (_(" (cannot be evaluated in the current context)"));
2070 printf_filtered ("\n");
2071 gdb_flush (gdb_stdout);
2072 }
2073 }
2074
2075 /* Callback fo map_display_numbers, that enables or disables the
2076 passed in display D. */
2077
2078 static void
2079 do_enable_disable_display (struct display *d, void *data)
2080 {
2081 d->enabled_p = *(int *) data;
2082 }
2083
2084 /* Implamentation of both the "disable display" and "enable display"
2085 commands. ENABLE decides what to do. */
2086
2087 static void
2088 enable_disable_display_command (const char *args, int from_tty, int enable)
2089 {
2090 if (args == NULL)
2091 {
2092 struct display *d;
2093
2094 ALL_DISPLAYS (d)
2095 d->enabled_p = enable;
2096 return;
2097 }
2098
2099 map_display_numbers (args, do_enable_disable_display, &enable);
2100 }
2101
2102 /* The "enable display" command. */
2103
2104 static void
2105 enable_display_command (const char *args, int from_tty)
2106 {
2107 enable_disable_display_command (args, from_tty, 1);
2108 }
2109
2110 /* The "disable display" command. */
2111
2112 static void
2113 disable_display_command (const char *args, int from_tty)
2114 {
2115 enable_disable_display_command (args, from_tty, 0);
2116 }
2117
2118 /* display_chain items point to blocks and expressions. Some expressions in
2119 turn may point to symbols.
2120 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2121 obstack_free'd when a shared library is unloaded.
2122 Clear pointers that are about to become dangling.
2123 Both .exp and .block fields will be restored next time we need to display
2124 an item by re-parsing .exp_string field in the new execution context. */
2125
2126 static void
2127 clear_dangling_display_expressions (struct objfile *objfile)
2128 {
2129 struct display *d;
2130 struct program_space *pspace;
2131
2132 /* With no symbol file we cannot have a block or expression from it. */
2133 if (objfile == NULL)
2134 return;
2135 pspace = objfile->pspace;
2136 if (objfile->separate_debug_objfile_backlink)
2137 {
2138 objfile = objfile->separate_debug_objfile_backlink;
2139 gdb_assert (objfile->pspace == pspace);
2140 }
2141
2142 for (d = display_chain; d != NULL; d = d->next)
2143 {
2144 if (d->pspace != pspace)
2145 continue;
2146
2147 if (lookup_objfile_from_block (d->block) == objfile
2148 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2149 {
2150 d->exp.reset ();
2151 d->block = NULL;
2152 }
2153 }
2154 }
2155 \f
2156
2157 /* Print the value in stack frame FRAME of a variable specified by a
2158 struct symbol. NAME is the name to print; if NULL then VAR's print
2159 name will be used. STREAM is the ui_file on which to print the
2160 value. INDENT specifies the number of indent levels to print
2161 before printing the variable name.
2162
2163 This function invalidates FRAME. */
2164
2165 void
2166 print_variable_and_value (const char *name, struct symbol *var,
2167 struct frame_info *frame,
2168 struct ui_file *stream, int indent)
2169 {
2170
2171 if (!name)
2172 name = SYMBOL_PRINT_NAME (var);
2173
2174 fputs_filtered (n_spaces (2 * indent), stream);
2175 fputs_styled (name, variable_name_style.style (), stream);
2176 fputs_filtered (" = ", stream);
2177
2178 TRY
2179 {
2180 struct value *val;
2181 struct value_print_options opts;
2182
2183 /* READ_VAR_VALUE needs a block in order to deal with non-local
2184 references (i.e. to handle nested functions). In this context, we
2185 print variables that are local to this frame, so we can avoid passing
2186 a block to it. */
2187 val = read_var_value (var, NULL, frame);
2188 get_user_print_options (&opts);
2189 opts.deref_ref = 1;
2190 common_val_print (val, stream, indent, &opts, current_language);
2191
2192 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2193 function. */
2194 frame = NULL;
2195 }
2196 CATCH (except, RETURN_MASK_ERROR)
2197 {
2198 fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
2199 except.message);
2200 }
2201 END_CATCH
2202
2203 fprintf_filtered (stream, "\n");
2204 }
2205
2206 /* Subroutine of ui_printf to simplify it.
2207 Print VALUE to STREAM using FORMAT.
2208 VALUE is a C-style string on the target. */
2209
2210 static void
2211 printf_c_string (struct ui_file *stream, const char *format,
2212 struct value *value)
2213 {
2214 gdb_byte *str;
2215 CORE_ADDR tem;
2216 int j;
2217
2218 tem = value_as_address (value);
2219 if (tem == 0)
2220 {
2221 DIAGNOSTIC_PUSH
2222 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2223 fprintf_filtered (stream, format, "(null)");
2224 DIAGNOSTIC_POP
2225 return;
2226 }
2227
2228 /* This is a %s argument. Find the length of the string. */
2229 for (j = 0;; j++)
2230 {
2231 gdb_byte c;
2232
2233 QUIT;
2234 read_memory (tem + j, &c, 1);
2235 if (c == 0)
2236 break;
2237 }
2238
2239 /* Copy the string contents into a string inside GDB. */
2240 str = (gdb_byte *) alloca (j + 1);
2241 if (j != 0)
2242 read_memory (tem, str, j);
2243 str[j] = 0;
2244
2245 DIAGNOSTIC_PUSH
2246 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2247 fprintf_filtered (stream, format, (char *) str);
2248 DIAGNOSTIC_POP
2249 }
2250
2251 /* Subroutine of ui_printf to simplify it.
2252 Print VALUE to STREAM using FORMAT.
2253 VALUE is a wide C-style string on the target. */
2254
2255 static void
2256 printf_wide_c_string (struct ui_file *stream, const char *format,
2257 struct value *value)
2258 {
2259 gdb_byte *str;
2260 CORE_ADDR tem;
2261 int j;
2262 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2263 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2264 struct type *wctype = lookup_typename (current_language, gdbarch,
2265 "wchar_t", NULL, 0);
2266 int wcwidth = TYPE_LENGTH (wctype);
2267 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2268
2269 tem = value_as_address (value);
2270 if (tem == 0)
2271 {
2272 DIAGNOSTIC_PUSH
2273 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2274 fprintf_filtered (stream, format, "(null)");
2275 DIAGNOSTIC_POP
2276 return;
2277 }
2278
2279 /* This is a %s argument. Find the length of the string. */
2280 for (j = 0;; j += wcwidth)
2281 {
2282 QUIT;
2283 read_memory (tem + j, buf, wcwidth);
2284 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2285 break;
2286 }
2287
2288 /* Copy the string contents into a string inside GDB. */
2289 str = (gdb_byte *) alloca (j + wcwidth);
2290 if (j != 0)
2291 read_memory (tem, str, j);
2292 memset (&str[j], 0, wcwidth);
2293
2294 auto_obstack output;
2295
2296 convert_between_encodings (target_wide_charset (gdbarch),
2297 host_charset (),
2298 str, j, wcwidth,
2299 &output, translit_char);
2300 obstack_grow_str0 (&output, "");
2301
2302 DIAGNOSTIC_PUSH
2303 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2304 fprintf_filtered (stream, format, obstack_base (&output));
2305 DIAGNOSTIC_POP
2306 }
2307
2308 /* Subroutine of ui_printf to simplify it.
2309 Print VALUE, a floating point value, to STREAM using FORMAT. */
2310
2311 static void
2312 printf_floating (struct ui_file *stream, const char *format,
2313 struct value *value, enum argclass argclass)
2314 {
2315 /* Parameter data. */
2316 struct type *param_type = value_type (value);
2317 struct gdbarch *gdbarch = get_type_arch (param_type);
2318
2319 /* Determine target type corresponding to the format string. */
2320 struct type *fmt_type;
2321 switch (argclass)
2322 {
2323 case double_arg:
2324 fmt_type = builtin_type (gdbarch)->builtin_double;
2325 break;
2326 case long_double_arg:
2327 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2328 break;
2329 case dec32float_arg:
2330 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2331 break;
2332 case dec64float_arg:
2333 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2334 break;
2335 case dec128float_arg:
2336 fmt_type = builtin_type (gdbarch)->builtin_declong;
2337 break;
2338 default:
2339 gdb_assert_not_reached ("unexpected argument class");
2340 }
2341
2342 /* To match the traditional GDB behavior, the conversion is
2343 done differently depending on the type of the parameter:
2344
2345 - if the parameter has floating-point type, it's value
2346 is converted to the target type;
2347
2348 - otherwise, if the parameter has a type that is of the
2349 same size as a built-in floating-point type, the value
2350 bytes are interpreted as if they were of that type, and
2351 then converted to the target type (this is not done for
2352 decimal floating-point argument classes);
2353
2354 - otherwise, if the source value has an integer value,
2355 it's value is converted to the target type;
2356
2357 - otherwise, an error is raised.
2358
2359 In either case, the result of the conversion is a byte buffer
2360 formatted in the target format for the target type. */
2361
2362 if (TYPE_CODE (fmt_type) == TYPE_CODE_FLT)
2363 {
2364 param_type = float_type_from_length (param_type);
2365 if (param_type != value_type (value))
2366 value = value_from_contents (param_type, value_contents (value));
2367 }
2368
2369 value = value_cast (fmt_type, value);
2370
2371 /* Convert the value to a string and print it. */
2372 std::string str
2373 = target_float_to_string (value_contents (value), fmt_type, format);
2374 fputs_filtered (str.c_str (), stream);
2375 }
2376
2377 /* Subroutine of ui_printf to simplify it.
2378 Print VALUE, a target pointer, to STREAM using FORMAT. */
2379
2380 static void
2381 printf_pointer (struct ui_file *stream, const char *format,
2382 struct value *value)
2383 {
2384 /* We avoid the host's %p because pointers are too
2385 likely to be the wrong size. The only interesting
2386 modifier for %p is a width; extract that, and then
2387 handle %p as glibc would: %#x or a literal "(nil)". */
2388
2389 const char *p;
2390 char *fmt, *fmt_p;
2391 #ifdef PRINTF_HAS_LONG_LONG
2392 long long val = value_as_long (value);
2393 #else
2394 long val = value_as_long (value);
2395 #endif
2396
2397 fmt = (char *) alloca (strlen (format) + 5);
2398
2399 /* Copy up to the leading %. */
2400 p = format;
2401 fmt_p = fmt;
2402 while (*p)
2403 {
2404 int is_percent = (*p == '%');
2405
2406 *fmt_p++ = *p++;
2407 if (is_percent)
2408 {
2409 if (*p == '%')
2410 *fmt_p++ = *p++;
2411 else
2412 break;
2413 }
2414 }
2415
2416 if (val != 0)
2417 *fmt_p++ = '#';
2418
2419 /* Copy any width or flags. Only the "-" flag is valid for pointers
2420 -- see the format_pieces constructor. */
2421 while (*p == '-' || (*p >= '0' && *p < '9'))
2422 *fmt_p++ = *p++;
2423
2424 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2425 if (val != 0)
2426 {
2427 #ifdef PRINTF_HAS_LONG_LONG
2428 *fmt_p++ = 'l';
2429 #endif
2430 *fmt_p++ = 'l';
2431 *fmt_p++ = 'x';
2432 *fmt_p++ = '\0';
2433 DIAGNOSTIC_PUSH
2434 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2435 fprintf_filtered (stream, fmt, val);
2436 DIAGNOSTIC_POP
2437 }
2438 else
2439 {
2440 *fmt_p++ = 's';
2441 *fmt_p++ = '\0';
2442 DIAGNOSTIC_PUSH
2443 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2444 fprintf_filtered (stream, fmt, "(nil)");
2445 DIAGNOSTIC_POP
2446 }
2447 }
2448
2449 /* printf "printf format string" ARG to STREAM. */
2450
2451 static void
2452 ui_printf (const char *arg, struct ui_file *stream)
2453 {
2454 const char *s = arg;
2455 std::vector<struct value *> val_args;
2456
2457 if (s == 0)
2458 error_no_arg (_("format-control string and values to print"));
2459
2460 s = skip_spaces (s);
2461
2462 /* A format string should follow, enveloped in double quotes. */
2463 if (*s++ != '"')
2464 error (_("Bad format string, missing '\"'."));
2465
2466 format_pieces fpieces (&s);
2467
2468 if (*s++ != '"')
2469 error (_("Bad format string, non-terminated '\"'."));
2470
2471 s = skip_spaces (s);
2472
2473 if (*s != ',' && *s != 0)
2474 error (_("Invalid argument syntax"));
2475
2476 if (*s == ',')
2477 s++;
2478 s = skip_spaces (s);
2479
2480 {
2481 int nargs_wanted;
2482 int i;
2483 const char *current_substring;
2484
2485 nargs_wanted = 0;
2486 for (auto &&piece : fpieces)
2487 if (piece.argclass != literal_piece)
2488 ++nargs_wanted;
2489
2490 /* Now, parse all arguments and evaluate them.
2491 Store the VALUEs in VAL_ARGS. */
2492
2493 while (*s != '\0')
2494 {
2495 const char *s1;
2496
2497 s1 = s;
2498 val_args.push_back (parse_to_comma_and_eval (&s1));
2499
2500 s = s1;
2501 if (*s == ',')
2502 s++;
2503 }
2504
2505 if (val_args.size () != nargs_wanted)
2506 error (_("Wrong number of arguments for specified format-string"));
2507
2508 /* Now actually print them. */
2509 i = 0;
2510 for (auto &&piece : fpieces)
2511 {
2512 current_substring = piece.string;
2513 switch (piece.argclass)
2514 {
2515 case string_arg:
2516 printf_c_string (stream, current_substring, val_args[i]);
2517 break;
2518 case wide_string_arg:
2519 printf_wide_c_string (stream, current_substring, val_args[i]);
2520 break;
2521 case wide_char_arg:
2522 {
2523 struct gdbarch *gdbarch
2524 = get_type_arch (value_type (val_args[i]));
2525 struct type *wctype = lookup_typename (current_language, gdbarch,
2526 "wchar_t", NULL, 0);
2527 struct type *valtype;
2528 const gdb_byte *bytes;
2529
2530 valtype = value_type (val_args[i]);
2531 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2532 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2533 error (_("expected wchar_t argument for %%lc"));
2534
2535 bytes = value_contents (val_args[i]);
2536
2537 auto_obstack output;
2538
2539 convert_between_encodings (target_wide_charset (gdbarch),
2540 host_charset (),
2541 bytes, TYPE_LENGTH (valtype),
2542 TYPE_LENGTH (valtype),
2543 &output, translit_char);
2544 obstack_grow_str0 (&output, "");
2545
2546 DIAGNOSTIC_PUSH
2547 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2548 fprintf_filtered (stream, current_substring,
2549 obstack_base (&output));
2550 DIAGNOSTIC_POP
2551 }
2552 break;
2553 case long_long_arg:
2554 #ifdef PRINTF_HAS_LONG_LONG
2555 {
2556 long long val = value_as_long (val_args[i]);
2557
2558 DIAGNOSTIC_PUSH
2559 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2560 fprintf_filtered (stream, current_substring, val);
2561 DIAGNOSTIC_POP
2562 break;
2563 }
2564 #else
2565 error (_("long long not supported in printf"));
2566 #endif
2567 case int_arg:
2568 {
2569 int val = value_as_long (val_args[i]);
2570
2571 DIAGNOSTIC_PUSH
2572 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2573 fprintf_filtered (stream, current_substring, val);
2574 DIAGNOSTIC_POP
2575 break;
2576 }
2577 case long_arg:
2578 {
2579 long val = value_as_long (val_args[i]);
2580
2581 DIAGNOSTIC_PUSH
2582 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2583 fprintf_filtered (stream, current_substring, val);
2584 DIAGNOSTIC_POP
2585 break;
2586 }
2587 /* Handles floating-point values. */
2588 case double_arg:
2589 case long_double_arg:
2590 case dec32float_arg:
2591 case dec64float_arg:
2592 case dec128float_arg:
2593 printf_floating (stream, current_substring, val_args[i],
2594 piece.argclass);
2595 break;
2596 case ptr_arg:
2597 printf_pointer (stream, current_substring, val_args[i]);
2598 break;
2599 case literal_piece:
2600 /* Print a portion of the format string that has no
2601 directives. Note that this will not include any
2602 ordinary %-specs, but it might include "%%". That is
2603 why we use printf_filtered and not puts_filtered here.
2604 Also, we pass a dummy argument because some platforms
2605 have modified GCC to include -Wformat-security by
2606 default, which will warn here if there is no
2607 argument. */
2608 DIAGNOSTIC_PUSH
2609 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2610 fprintf_filtered (stream, current_substring, 0);
2611 DIAGNOSTIC_POP
2612 break;
2613 default:
2614 internal_error (__FILE__, __LINE__,
2615 _("failed internal consistency check"));
2616 }
2617 /* Maybe advance to the next argument. */
2618 if (piece.argclass != literal_piece)
2619 ++i;
2620 }
2621 }
2622 }
2623
2624 /* Implement the "printf" command. */
2625
2626 static void
2627 printf_command (const char *arg, int from_tty)
2628 {
2629 ui_printf (arg, gdb_stdout);
2630 reset_terminal_style (gdb_stdout);
2631 wrap_here ("");
2632 gdb_flush (gdb_stdout);
2633 }
2634
2635 /* Implement the "eval" command. */
2636
2637 static void
2638 eval_command (const char *arg, int from_tty)
2639 {
2640 string_file stb;
2641
2642 ui_printf (arg, &stb);
2643
2644 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2645
2646 execute_command (expanded.c_str (), from_tty);
2647 }
2648
2649 void
2650 _initialize_printcmd (void)
2651 {
2652 struct cmd_list_element *c;
2653
2654 current_display_number = -1;
2655
2656 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2657
2658 add_info ("address", info_address_command,
2659 _("Describe where symbol SYM is stored."));
2660
2661 add_info ("symbol", info_symbol_command, _("\
2662 Describe what symbol is at location ADDR.\n\
2663 Only for symbols with fixed locations (global or static scope)."));
2664
2665 add_com ("x", class_vars, x_command, _("\
2666 Examine memory: x/FMT ADDRESS.\n\
2667 ADDRESS is an expression for the memory address to examine.\n\
2668 FMT is a repeat count followed by a format letter and a size letter.\n\
2669 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2670 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2671 and z(hex, zero padded on the left).\n\
2672 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2673 The specified number of objects of the specified size are printed\n\
2674 according to the format. If a negative number is specified, memory is\n\
2675 examined backward from the address.\n\n\
2676 Defaults for format and size letters are those previously used.\n\
2677 Default count is 1. Default address is following last thing printed\n\
2678 with this command or \"print\"."));
2679
2680 #if 0
2681 add_com ("whereis", class_vars, whereis_command,
2682 _("Print line number and file of definition of variable."));
2683 #endif
2684
2685 add_info ("display", info_display_command, _("\
2686 Expressions to display when program stops, with code numbers."));
2687
2688 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2689 Cancel some expressions to be displayed when program stops.\n\
2690 Arguments are the code numbers of the expressions to stop displaying.\n\
2691 No argument means cancel all automatic-display expressions.\n\
2692 \"delete display\" has the same effect as this command.\n\
2693 Do \"info display\" to see current list of code numbers."),
2694 &cmdlist);
2695
2696 add_com ("display", class_vars, display_command, _("\
2697 Print value of expression EXP each time the program stops.\n\
2698 /FMT may be used before EXP as in the \"print\" command.\n\
2699 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2700 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2701 and examining is done as in the \"x\" command.\n\n\
2702 With no argument, display all currently requested auto-display expressions.\n\
2703 Use \"undisplay\" to cancel display requests previously made."));
2704
2705 add_cmd ("display", class_vars, enable_display_command, _("\
2706 Enable some expressions to be displayed when program stops.\n\
2707 Arguments are the code numbers of the expressions to resume displaying.\n\
2708 No argument means enable all automatic-display expressions.\n\
2709 Do \"info display\" to see current list of code numbers."), &enablelist);
2710
2711 add_cmd ("display", class_vars, disable_display_command, _("\
2712 Disable some expressions to be displayed when program stops.\n\
2713 Arguments are the code numbers of the expressions to stop displaying.\n\
2714 No argument means disable all automatic-display expressions.\n\
2715 Do \"info display\" to see current list of code numbers."), &disablelist);
2716
2717 add_cmd ("display", class_vars, undisplay_command, _("\
2718 Cancel some expressions to be displayed when program stops.\n\
2719 Arguments are the code numbers of the expressions to stop displaying.\n\
2720 No argument means cancel all automatic-display expressions.\n\
2721 Do \"info display\" to see current list of code numbers."), &deletelist);
2722
2723 add_com ("printf", class_vars, printf_command, _("\
2724 Formatted printing, like the C \"printf\" function.\n\
2725 Usage: printf \"format string\", arg1, arg2, arg3, ..., argn\n\
2726 This supports most C printf format specifications, like %s, %d, etc."));
2727
2728 add_com ("output", class_vars, output_command, _("\
2729 Like \"print\" but don't put in value history and don't print newline.\n\
2730 This is useful in user-defined commands."));
2731
2732 add_prefix_cmd ("set", class_vars, set_command, _("\
2733 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2734 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2735 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2736 with $), a register (a few standard names starting with $), or an actual\n\
2737 variable in the program being debugged. EXP is any valid expression.\n\
2738 Use \"set variable\" for variables with names identical to set subcommands.\n\
2739 \n\
2740 With a subcommand, this command modifies parts of the gdb environment.\n\
2741 You can see these environment settings with the \"show\" command."),
2742 &setlist, "set ", 1, &cmdlist);
2743 if (dbx_commands)
2744 add_com ("assign", class_vars, set_command, _("\
2745 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2746 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2747 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2748 with $), a register (a few standard names starting with $), or an actual\n\
2749 variable in the program being debugged. EXP is any valid expression.\n\
2750 Use \"set variable\" for variables with names identical to set subcommands.\n\
2751 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2752 You can see these environment settings with the \"show\" command."));
2753
2754 /* "call" is the same as "set", but handy for dbx users to call fns. */
2755 c = add_com ("call", class_vars, call_command, _("\
2756 Call a function in the program.\n\
2757 The argument is the function name and arguments, in the notation of the\n\
2758 current working language. The result is printed and saved in the value\n\
2759 history, if it is not void."));
2760 set_cmd_completer (c, expression_completer);
2761
2762 add_cmd ("variable", class_vars, set_command, _("\
2763 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2764 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2765 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2766 with $), a register (a few standard names starting with $), or an actual\n\
2767 variable in the program being debugged. EXP is any valid expression.\n\
2768 This may usually be abbreviated to simply \"set\"."),
2769 &setlist);
2770 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2771
2772 c = add_com ("print", class_vars, print_command, _("\
2773 Print value of expression EXP.\n\
2774 Variables accessible are those of the lexical environment of the selected\n\
2775 stack frame, plus all those whose scope is global or an entire file.\n\
2776 \n\
2777 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2778 $$NUM refers to NUM'th value back from the last one.\n\
2779 Names starting with $ refer to registers (with the values they would have\n\
2780 if the program were to return to the stack frame now selected, restoring\n\
2781 all registers saved by frames farther in) or else to debugger\n\
2782 \"convenience\" variables (any such name not a known register).\n\
2783 Use assignment expressions to give values to convenience variables.\n\
2784 \n\
2785 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2786 @ is a binary operator for treating consecutive data objects\n\
2787 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2788 element is FOO, whose second element is stored in the space following\n\
2789 where FOO is stored, etc. FOO must be an expression whose value\n\
2790 resides in memory.\n\
2791 \n\
2792 EXP may be preceded with /FMT, where FMT is a format letter\n\
2793 but no count or size letter (see \"x\" command)."));
2794 set_cmd_completer (c, expression_completer);
2795 add_com_alias ("p", "print", class_vars, 1);
2796 add_com_alias ("inspect", "print", class_vars, 1);
2797
2798 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2799 &max_symbolic_offset, _("\
2800 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2801 Show the largest offset that will be printed in <symbol+1234> form."), _("\
2802 Tell GDB to only display the symbolic form of an address if the\n\
2803 offset between the closest earlier symbol and the address is less than\n\
2804 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2805 to always print the symbolic form of an address if any symbol precedes\n\
2806 it. Zero is equivalent to \"unlimited\"."),
2807 NULL,
2808 show_max_symbolic_offset,
2809 &setprintlist, &showprintlist);
2810 add_setshow_boolean_cmd ("symbol-filename", no_class,
2811 &print_symbol_filename, _("\
2812 Set printing of source filename and line number with <symbol>."), _("\
2813 Show printing of source filename and line number with <symbol>."), NULL,
2814 NULL,
2815 show_print_symbol_filename,
2816 &setprintlist, &showprintlist);
2817
2818 add_com ("eval", no_class, eval_command, _("\
2819 Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\
2820 a command line, and call it."));
2821 }
This page took 0.142518 seconds and 5 git commands to generate.