gdb: Support printf 'z' size modifier
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "c-lang.h"
27 #include "expression.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "breakpoint.h"
32 #include "demangle.h"
33 #include "gdb-demangle.h"
34 #include "valprint.h"
35 #include "annotate.h"
36 #include "symfile.h" /* for overlay functions */
37 #include "objfiles.h" /* ditto */
38 #include "completer.h" /* for completion functions */
39 #include "ui-out.h"
40 #include "block.h"
41 #include "disasm.h"
42 #include "target-float.h"
43 #include "observable.h"
44 #include "solist.h"
45 #include "parser-defs.h"
46 #include "charset.h"
47 #include "arch-utils.h"
48 #include "cli/cli-utils.h"
49 #include "cli/cli-option.h"
50 #include "cli/cli-script.h"
51 #include "cli/cli-style.h"
52 #include "gdbsupport/format.h"
53 #include "source.h"
54 #include "gdbsupport/byte-vector.h"
55 #include "gdbsupport/gdb_optional.h"
56
57 /* Last specified output format. */
58
59 static char last_format = 0;
60
61 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
62
63 static char last_size = 'w';
64
65 /* Last specified count for the 'x' command. */
66
67 static int last_count;
68
69 /* Default address to examine next, and associated architecture. */
70
71 static struct gdbarch *next_gdbarch;
72 static CORE_ADDR next_address;
73
74 /* Number of delay instructions following current disassembled insn. */
75
76 static int branch_delay_insns;
77
78 /* Last address examined. */
79
80 static CORE_ADDR last_examine_address;
81
82 /* Contents of last address examined.
83 This is not valid past the end of the `x' command! */
84
85 static value_ref_ptr last_examine_value;
86
87 /* Largest offset between a symbolic value and an address, that will be
88 printed as `0x1234 <symbol+offset>'. */
89
90 static unsigned int max_symbolic_offset = UINT_MAX;
91 static void
92 show_max_symbolic_offset (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94 {
95 fprintf_filtered (file,
96 _("The largest offset that will be "
97 "printed in <symbol+1234> form is %s.\n"),
98 value);
99 }
100
101 /* Append the source filename and linenumber of the symbol when
102 printing a symbolic value as `<symbol at filename:linenum>' if set. */
103 static bool print_symbol_filename = false;
104 static void
105 show_print_symbol_filename (struct ui_file *file, int from_tty,
106 struct cmd_list_element *c, const char *value)
107 {
108 fprintf_filtered (file, _("Printing of source filename and "
109 "line number with <symbol> is %s.\n"),
110 value);
111 }
112
113 /* Number of auto-display expression currently being displayed.
114 So that we can disable it if we get a signal within it.
115 -1 when not doing one. */
116
117 static int current_display_number;
118
119 struct display
120 {
121 /* Chain link to next auto-display item. */
122 struct display *next;
123
124 /* The expression as the user typed it. */
125 char *exp_string;
126
127 /* Expression to be evaluated and displayed. */
128 expression_up exp;
129
130 /* Item number of this auto-display item. */
131 int number;
132
133 /* Display format specified. */
134 struct format_data format;
135
136 /* Program space associated with `block'. */
137 struct program_space *pspace;
138
139 /* Innermost block required by this expression when evaluated. */
140 const struct block *block;
141
142 /* Status of this display (enabled or disabled). */
143 int enabled_p;
144 };
145
146 /* Chain of expressions whose values should be displayed
147 automatically each time the program stops. */
148
149 static struct display *display_chain;
150
151 static int display_number;
152
153 /* Walk the following statement or block through all displays.
154 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
155 display. */
156
157 #define ALL_DISPLAYS(B) \
158 for (B = display_chain; B; B = B->next)
159
160 #define ALL_DISPLAYS_SAFE(B,TMP) \
161 for (B = display_chain; \
162 B ? (TMP = B->next, 1): 0; \
163 B = TMP)
164
165 /* Prototypes for local functions. */
166
167 static void do_one_display (struct display *);
168 \f
169
170 /* Decode a format specification. *STRING_PTR should point to it.
171 OFORMAT and OSIZE are used as defaults for the format and size
172 if none are given in the format specification.
173 If OSIZE is zero, then the size field of the returned value
174 should be set only if a size is explicitly specified by the
175 user.
176 The structure returned describes all the data
177 found in the specification. In addition, *STRING_PTR is advanced
178 past the specification and past all whitespace following it. */
179
180 static struct format_data
181 decode_format (const char **string_ptr, int oformat, int osize)
182 {
183 struct format_data val;
184 const char *p = *string_ptr;
185
186 val.format = '?';
187 val.size = '?';
188 val.count = 1;
189 val.raw = 0;
190
191 if (*p == '-')
192 {
193 val.count = -1;
194 p++;
195 }
196 if (*p >= '0' && *p <= '9')
197 val.count *= atoi (p);
198 while (*p >= '0' && *p <= '9')
199 p++;
200
201 /* Now process size or format letters that follow. */
202
203 while (1)
204 {
205 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
206 val.size = *p++;
207 else if (*p == 'r')
208 {
209 val.raw = 1;
210 p++;
211 }
212 else if (*p >= 'a' && *p <= 'z')
213 val.format = *p++;
214 else
215 break;
216 }
217
218 *string_ptr = skip_spaces (p);
219
220 /* Set defaults for format and size if not specified. */
221 if (val.format == '?')
222 {
223 if (val.size == '?')
224 {
225 /* Neither has been specified. */
226 val.format = oformat;
227 val.size = osize;
228 }
229 else
230 /* If a size is specified, any format makes a reasonable
231 default except 'i'. */
232 val.format = oformat == 'i' ? 'x' : oformat;
233 }
234 else if (val.size == '?')
235 switch (val.format)
236 {
237 case 'a':
238 /* Pick the appropriate size for an address. This is deferred
239 until do_examine when we know the actual architecture to use.
240 A special size value of 'a' is used to indicate this case. */
241 val.size = osize ? 'a' : osize;
242 break;
243 case 'f':
244 /* Floating point has to be word or giantword. */
245 if (osize == 'w' || osize == 'g')
246 val.size = osize;
247 else
248 /* Default it to giantword if the last used size is not
249 appropriate. */
250 val.size = osize ? 'g' : osize;
251 break;
252 case 'c':
253 /* Characters default to one byte. */
254 val.size = osize ? 'b' : osize;
255 break;
256 case 's':
257 /* Display strings with byte size chars unless explicitly
258 specified. */
259 val.size = '\0';
260 break;
261
262 default:
263 /* The default is the size most recently specified. */
264 val.size = osize;
265 }
266
267 return val;
268 }
269 \f
270 /* Print value VAL on stream according to OPTIONS.
271 Do not end with a newline.
272 SIZE is the letter for the size of datum being printed.
273 This is used to pad hex numbers so they line up. SIZE is 0
274 for print / output and set for examine. */
275
276 static void
277 print_formatted (struct value *val, int size,
278 const struct value_print_options *options,
279 struct ui_file *stream)
280 {
281 struct type *type = check_typedef (value_type (val));
282 int len = TYPE_LENGTH (type);
283
284 if (VALUE_LVAL (val) == lval_memory)
285 next_address = value_address (val) + len;
286
287 if (size)
288 {
289 switch (options->format)
290 {
291 case 's':
292 {
293 struct type *elttype = value_type (val);
294
295 next_address = (value_address (val)
296 + val_print_string (elttype, NULL,
297 value_address (val), -1,
298 stream, options) * len);
299 }
300 return;
301
302 case 'i':
303 /* We often wrap here if there are long symbolic names. */
304 wrap_here (" ");
305 next_address = (value_address (val)
306 + gdb_print_insn (get_type_arch (type),
307 value_address (val), stream,
308 &branch_delay_insns));
309 return;
310 }
311 }
312
313 if (options->format == 0 || options->format == 's'
314 || TYPE_CODE (type) == TYPE_CODE_REF
315 || TYPE_CODE (type) == TYPE_CODE_ARRAY
316 || TYPE_CODE (type) == TYPE_CODE_STRING
317 || TYPE_CODE (type) == TYPE_CODE_STRUCT
318 || TYPE_CODE (type) == TYPE_CODE_UNION
319 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
320 value_print (val, stream, options);
321 else
322 /* User specified format, so don't look to the type to tell us
323 what to do. */
324 val_print_scalar_formatted (type,
325 value_embedded_offset (val),
326 val,
327 options, size, stream);
328 }
329
330 /* Return builtin floating point type of same length as TYPE.
331 If no such type is found, return TYPE itself. */
332 static struct type *
333 float_type_from_length (struct type *type)
334 {
335 struct gdbarch *gdbarch = get_type_arch (type);
336 const struct builtin_type *builtin = builtin_type (gdbarch);
337
338 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
339 type = builtin->builtin_float;
340 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
341 type = builtin->builtin_double;
342 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
343 type = builtin->builtin_long_double;
344
345 return type;
346 }
347
348 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
349 according to OPTIONS and SIZE on STREAM. Formats s and i are not
350 supported at this level. */
351
352 void
353 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
354 const struct value_print_options *options,
355 int size, struct ui_file *stream)
356 {
357 struct gdbarch *gdbarch = get_type_arch (type);
358 unsigned int len = TYPE_LENGTH (type);
359 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
360
361 /* String printing should go through val_print_scalar_formatted. */
362 gdb_assert (options->format != 's');
363
364 /* If the value is a pointer, and pointers and addresses are not the
365 same, then at this point, the value's length (in target bytes) is
366 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
367 if (TYPE_CODE (type) == TYPE_CODE_PTR)
368 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
369
370 /* If we are printing it as unsigned, truncate it in case it is actually
371 a negative signed value (e.g. "print/u (short)-1" should print 65535
372 (if shorts are 16 bits) instead of 4294967295). */
373 if (options->format != 'c'
374 && (options->format != 'd' || TYPE_UNSIGNED (type)))
375 {
376 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
377 valaddr += TYPE_LENGTH (type) - len;
378 }
379
380 if (size != 0 && (options->format == 'x' || options->format == 't'))
381 {
382 /* Truncate to fit. */
383 unsigned newlen;
384 switch (size)
385 {
386 case 'b':
387 newlen = 1;
388 break;
389 case 'h':
390 newlen = 2;
391 break;
392 case 'w':
393 newlen = 4;
394 break;
395 case 'g':
396 newlen = 8;
397 break;
398 default:
399 error (_("Undefined output size \"%c\"."), size);
400 }
401 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
402 valaddr += len - newlen;
403 len = newlen;
404 }
405
406 /* Historically gdb has printed floats by first casting them to a
407 long, and then printing the long. PR cli/16242 suggests changing
408 this to using C-style hex float format.
409
410 Biased range types must also be unbiased here; the unbiasing is
411 done by unpack_long. */
412 gdb::byte_vector converted_bytes;
413 /* Some cases below will unpack the value again. In the biased
414 range case, we want to avoid this, so we store the unpacked value
415 here for possible use later. */
416 gdb::optional<LONGEST> val_long;
417 if ((TYPE_CODE (type) == TYPE_CODE_FLT
418 && (options->format == 'o'
419 || options->format == 'x'
420 || options->format == 't'
421 || options->format == 'z'
422 || options->format == 'd'
423 || options->format == 'u'))
424 || (TYPE_CODE (type) == TYPE_CODE_RANGE
425 && TYPE_RANGE_DATA (type)->bias != 0))
426 {
427 val_long.emplace (unpack_long (type, valaddr));
428 converted_bytes.resize (TYPE_LENGTH (type));
429 store_signed_integer (converted_bytes.data (), TYPE_LENGTH (type),
430 byte_order, *val_long);
431 valaddr = converted_bytes.data ();
432 }
433
434 /* Printing a non-float type as 'f' will interpret the data as if it were
435 of a floating-point type of the same length, if that exists. Otherwise,
436 the data is printed as integer. */
437 char format = options->format;
438 if (format == 'f' && TYPE_CODE (type) != TYPE_CODE_FLT)
439 {
440 type = float_type_from_length (type);
441 if (TYPE_CODE (type) != TYPE_CODE_FLT)
442 format = 0;
443 }
444
445 switch (format)
446 {
447 case 'o':
448 print_octal_chars (stream, valaddr, len, byte_order);
449 break;
450 case 'd':
451 print_decimal_chars (stream, valaddr, len, true, byte_order);
452 break;
453 case 'u':
454 print_decimal_chars (stream, valaddr, len, false, byte_order);
455 break;
456 case 0:
457 if (TYPE_CODE (type) != TYPE_CODE_FLT)
458 {
459 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
460 byte_order);
461 break;
462 }
463 /* FALLTHROUGH */
464 case 'f':
465 print_floating (valaddr, type, stream);
466 break;
467
468 case 't':
469 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
470 break;
471 case 'x':
472 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
473 break;
474 case 'z':
475 print_hex_chars (stream, valaddr, len, byte_order, true);
476 break;
477 case 'c':
478 {
479 struct value_print_options opts = *options;
480
481 if (!val_long.has_value ())
482 val_long.emplace (unpack_long (type, valaddr));
483
484 opts.format = 0;
485 if (TYPE_UNSIGNED (type))
486 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
487 else
488 type = builtin_type (gdbarch)->builtin_true_char;
489
490 value_print (value_from_longest (type, *val_long), stream, &opts);
491 }
492 break;
493
494 case 'a':
495 {
496 if (!val_long.has_value ())
497 val_long.emplace (unpack_long (type, valaddr));
498 print_address (gdbarch, *val_long, stream);
499 }
500 break;
501
502 default:
503 error (_("Undefined output format \"%c\"."), format);
504 }
505 }
506
507 /* Specify default address for `x' command.
508 The `info lines' command uses this. */
509
510 void
511 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
512 {
513 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
514
515 next_gdbarch = gdbarch;
516 next_address = addr;
517
518 /* Make address available to the user as $_. */
519 set_internalvar (lookup_internalvar ("_"),
520 value_from_pointer (ptr_type, addr));
521 }
522
523 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
524 after LEADIN. Print nothing if no symbolic name is found nearby.
525 Optionally also print source file and line number, if available.
526 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
527 or to interpret it as a possible C++ name and convert it back to source
528 form. However note that DO_DEMANGLE can be overridden by the specific
529 settings of the demangle and asm_demangle variables. Returns
530 non-zero if anything was printed; zero otherwise. */
531
532 int
533 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
534 struct ui_file *stream,
535 int do_demangle, const char *leadin)
536 {
537 std::string name, filename;
538 int unmapped = 0;
539 int offset = 0;
540 int line = 0;
541
542 if (build_address_symbolic (gdbarch, addr, do_demangle, false, &name,
543 &offset, &filename, &line, &unmapped))
544 return 0;
545
546 fputs_filtered (leadin, stream);
547 if (unmapped)
548 fputs_filtered ("<*", stream);
549 else
550 fputs_filtered ("<", stream);
551 fputs_styled (name.c_str (), function_name_style.style (), stream);
552 if (offset != 0)
553 fprintf_filtered (stream, "%+d", offset);
554
555 /* Append source filename and line number if desired. Give specific
556 line # of this addr, if we have it; else line # of the nearest symbol. */
557 if (print_symbol_filename && !filename.empty ())
558 {
559 fputs_filtered (line == -1 ? " in " : " at ", stream);
560 fputs_styled (filename.c_str (), file_name_style.style (), stream);
561 if (line != -1)
562 fprintf_filtered (stream, ":%d", line);
563 }
564 if (unmapped)
565 fputs_filtered ("*>", stream);
566 else
567 fputs_filtered (">", stream);
568
569 return 1;
570 }
571
572 /* See valprint.h. */
573
574 int
575 build_address_symbolic (struct gdbarch *gdbarch,
576 CORE_ADDR addr, /* IN */
577 bool do_demangle, /* IN */
578 bool prefer_sym_over_minsym, /* IN */
579 std::string *name, /* OUT */
580 int *offset, /* OUT */
581 std::string *filename, /* OUT */
582 int *line, /* OUT */
583 int *unmapped) /* OUT */
584 {
585 struct bound_minimal_symbol msymbol;
586 struct symbol *symbol;
587 CORE_ADDR name_location = 0;
588 struct obj_section *section = NULL;
589 const char *name_temp = "";
590
591 /* Let's say it is mapped (not unmapped). */
592 *unmapped = 0;
593
594 /* Determine if the address is in an overlay, and whether it is
595 mapped. */
596 if (overlay_debugging)
597 {
598 section = find_pc_overlay (addr);
599 if (pc_in_unmapped_range (addr, section))
600 {
601 *unmapped = 1;
602 addr = overlay_mapped_address (addr, section);
603 }
604 }
605
606 /* Try to find the address in both the symbol table and the minsyms.
607 In most cases, we'll prefer to use the symbol instead of the
608 minsym. However, there are cases (see below) where we'll choose
609 to use the minsym instead. */
610
611 /* This is defective in the sense that it only finds text symbols. So
612 really this is kind of pointless--we should make sure that the
613 minimal symbols have everything we need (by changing that we could
614 save some memory, but for many debug format--ELF/DWARF or
615 anything/stabs--it would be inconvenient to eliminate those minimal
616 symbols anyway). */
617 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
618 symbol = find_pc_sect_function (addr, section);
619
620 if (symbol)
621 {
622 /* If this is a function (i.e. a code address), strip out any
623 non-address bits. For instance, display a pointer to the
624 first instruction of a Thumb function as <function>; the
625 second instruction will be <function+2>, even though the
626 pointer is <function+3>. This matches the ISA behavior. */
627 addr = gdbarch_addr_bits_remove (gdbarch, addr);
628
629 name_location = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (symbol));
630 if (do_demangle || asm_demangle)
631 name_temp = SYMBOL_PRINT_NAME (symbol);
632 else
633 name_temp = SYMBOL_LINKAGE_NAME (symbol);
634 }
635
636 if (msymbol.minsym != NULL
637 && MSYMBOL_HAS_SIZE (msymbol.minsym)
638 && MSYMBOL_SIZE (msymbol.minsym) == 0
639 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
640 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
641 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
642 msymbol.minsym = NULL;
643
644 if (msymbol.minsym != NULL)
645 {
646 /* Use the minsym if no symbol is found.
647
648 Additionally, use the minsym instead of a (found) symbol if
649 the following conditions all hold:
650 1) The prefer_sym_over_minsym flag is false.
651 2) The minsym address is identical to that of the address under
652 consideration.
653 3) The symbol address is not identical to that of the address
654 under consideration. */
655 if (symbol == NULL ||
656 (!prefer_sym_over_minsym
657 && BMSYMBOL_VALUE_ADDRESS (msymbol) == addr
658 && name_location != addr))
659 {
660 /* If this is a function (i.e. a code address), strip out any
661 non-address bits. For instance, display a pointer to the
662 first instruction of a Thumb function as <function>; the
663 second instruction will be <function+2>, even though the
664 pointer is <function+3>. This matches the ISA behavior. */
665 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
666 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
667 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
668 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
669 addr = gdbarch_addr_bits_remove (gdbarch, addr);
670
671 symbol = 0;
672 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
673 if (do_demangle || asm_demangle)
674 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
675 else
676 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
677 }
678 }
679 if (symbol == NULL && msymbol.minsym == NULL)
680 return 1;
681
682 /* If the nearest symbol is too far away, don't print anything symbolic. */
683
684 /* For when CORE_ADDR is larger than unsigned int, we do math in
685 CORE_ADDR. But when we detect unsigned wraparound in the
686 CORE_ADDR math, we ignore this test and print the offset,
687 because addr+max_symbolic_offset has wrapped through the end
688 of the address space back to the beginning, giving bogus comparison. */
689 if (addr > name_location + max_symbolic_offset
690 && name_location + max_symbolic_offset > name_location)
691 return 1;
692
693 *offset = (LONGEST) addr - name_location;
694
695 *name = name_temp;
696
697 if (print_symbol_filename)
698 {
699 struct symtab_and_line sal;
700
701 sal = find_pc_sect_line (addr, section, 0);
702
703 if (sal.symtab)
704 {
705 *filename = symtab_to_filename_for_display (sal.symtab);
706 *line = sal.line;
707 }
708 }
709 return 0;
710 }
711
712
713 /* Print address ADDR symbolically on STREAM.
714 First print it as a number. Then perhaps print
715 <SYMBOL + OFFSET> after the number. */
716
717 void
718 print_address (struct gdbarch *gdbarch,
719 CORE_ADDR addr, struct ui_file *stream)
720 {
721 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
722 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
723 }
724
725 /* Return a prefix for instruction address:
726 "=> " for current instruction, else " ". */
727
728 const char *
729 pc_prefix (CORE_ADDR addr)
730 {
731 if (has_stack_frames ())
732 {
733 struct frame_info *frame;
734 CORE_ADDR pc;
735
736 frame = get_selected_frame (NULL);
737 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
738 return "=> ";
739 }
740 return " ";
741 }
742
743 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
744 controls whether to print the symbolic name "raw" or demangled.
745 Return non-zero if anything was printed; zero otherwise. */
746
747 int
748 print_address_demangle (const struct value_print_options *opts,
749 struct gdbarch *gdbarch, CORE_ADDR addr,
750 struct ui_file *stream, int do_demangle)
751 {
752 if (opts->addressprint)
753 {
754 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
755 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
756 }
757 else
758 {
759 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
760 }
761 return 1;
762 }
763 \f
764
765 /* Find the address of the instruction that is INST_COUNT instructions before
766 the instruction at ADDR.
767 Since some architectures have variable-length instructions, we can't just
768 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
769 number information to locate the nearest known instruction boundary,
770 and disassemble forward from there. If we go out of the symbol range
771 during disassembling, we return the lowest address we've got so far and
772 set the number of instructions read to INST_READ. */
773
774 static CORE_ADDR
775 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
776 int inst_count, int *inst_read)
777 {
778 /* The vector PCS is used to store instruction addresses within
779 a pc range. */
780 CORE_ADDR loop_start, loop_end, p;
781 std::vector<CORE_ADDR> pcs;
782 struct symtab_and_line sal;
783
784 *inst_read = 0;
785 loop_start = loop_end = addr;
786
787 /* In each iteration of the outer loop, we get a pc range that ends before
788 LOOP_START, then we count and store every instruction address of the range
789 iterated in the loop.
790 If the number of instructions counted reaches INST_COUNT, return the
791 stored address that is located INST_COUNT instructions back from ADDR.
792 If INST_COUNT is not reached, we subtract the number of counted
793 instructions from INST_COUNT, and go to the next iteration. */
794 do
795 {
796 pcs.clear ();
797 sal = find_pc_sect_line (loop_start, NULL, 1);
798 if (sal.line <= 0)
799 {
800 /* We reach here when line info is not available. In this case,
801 we print a message and just exit the loop. The return value
802 is calculated after the loop. */
803 printf_filtered (_("No line number information available "
804 "for address "));
805 wrap_here (" ");
806 print_address (gdbarch, loop_start - 1, gdb_stdout);
807 printf_filtered ("\n");
808 break;
809 }
810
811 loop_end = loop_start;
812 loop_start = sal.pc;
813
814 /* This loop pushes instruction addresses in the range from
815 LOOP_START to LOOP_END. */
816 for (p = loop_start; p < loop_end;)
817 {
818 pcs.push_back (p);
819 p += gdb_insn_length (gdbarch, p);
820 }
821
822 inst_count -= pcs.size ();
823 *inst_read += pcs.size ();
824 }
825 while (inst_count > 0);
826
827 /* After the loop, the vector PCS has instruction addresses of the last
828 source line we processed, and INST_COUNT has a negative value.
829 We return the address at the index of -INST_COUNT in the vector for
830 the reason below.
831 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
832 Line X of File
833 0x4000
834 0x4001
835 0x4005
836 Line Y of File
837 0x4009
838 0x400c
839 => 0x400e
840 0x4011
841 find_instruction_backward is called with INST_COUNT = 4 and expected to
842 return 0x4001. When we reach here, INST_COUNT is set to -1 because
843 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
844 4001 is located at the index 1 of the last iterated line (= Line X),
845 which is simply calculated by -INST_COUNT.
846 The case when the length of PCS is 0 means that we reached an area for
847 which line info is not available. In such case, we return LOOP_START,
848 which was the lowest instruction address that had line info. */
849 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
850
851 /* INST_READ includes all instruction addresses in a pc range. Need to
852 exclude the beginning part up to the address we're returning. That
853 is, exclude {0x4000} in the example above. */
854 if (inst_count < 0)
855 *inst_read += inst_count;
856
857 return p;
858 }
859
860 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
861 placing the results in GDB's memory from MYADDR + LEN. Returns
862 a count of the bytes actually read. */
863
864 static int
865 read_memory_backward (struct gdbarch *gdbarch,
866 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
867 {
868 int errcode;
869 int nread; /* Number of bytes actually read. */
870
871 /* First try a complete read. */
872 errcode = target_read_memory (memaddr, myaddr, len);
873 if (errcode == 0)
874 {
875 /* Got it all. */
876 nread = len;
877 }
878 else
879 {
880 /* Loop, reading one byte at a time until we get as much as we can. */
881 memaddr += len;
882 myaddr += len;
883 for (nread = 0; nread < len; ++nread)
884 {
885 errcode = target_read_memory (--memaddr, --myaddr, 1);
886 if (errcode != 0)
887 {
888 /* The read was unsuccessful, so exit the loop. */
889 printf_filtered (_("Cannot access memory at address %s\n"),
890 paddress (gdbarch, memaddr));
891 break;
892 }
893 }
894 }
895 return nread;
896 }
897
898 /* Returns true if X (which is LEN bytes wide) is the number zero. */
899
900 static int
901 integer_is_zero (const gdb_byte *x, int len)
902 {
903 int i = 0;
904
905 while (i < len && x[i] == 0)
906 ++i;
907 return (i == len);
908 }
909
910 /* Find the start address of a string in which ADDR is included.
911 Basically we search for '\0' and return the next address,
912 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
913 we stop searching and return the address to print characters as many as
914 PRINT_MAX from the string. */
915
916 static CORE_ADDR
917 find_string_backward (struct gdbarch *gdbarch,
918 CORE_ADDR addr, int count, int char_size,
919 const struct value_print_options *options,
920 int *strings_counted)
921 {
922 const int chunk_size = 0x20;
923 int read_error = 0;
924 int chars_read = 0;
925 int chars_to_read = chunk_size;
926 int chars_counted = 0;
927 int count_original = count;
928 CORE_ADDR string_start_addr = addr;
929
930 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
931 gdb::byte_vector buffer (chars_to_read * char_size);
932 while (count > 0 && read_error == 0)
933 {
934 int i;
935
936 addr -= chars_to_read * char_size;
937 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
938 chars_to_read * char_size);
939 chars_read /= char_size;
940 read_error = (chars_read == chars_to_read) ? 0 : 1;
941 /* Searching for '\0' from the end of buffer in backward direction. */
942 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
943 {
944 int offset = (chars_to_read - i - 1) * char_size;
945
946 if (integer_is_zero (&buffer[offset], char_size)
947 || chars_counted == options->print_max)
948 {
949 /* Found '\0' or reached print_max. As OFFSET is the offset to
950 '\0', we add CHAR_SIZE to return the start address of
951 a string. */
952 --count;
953 string_start_addr = addr + offset + char_size;
954 chars_counted = 0;
955 }
956 }
957 }
958
959 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
960 *strings_counted = count_original - count;
961
962 if (read_error != 0)
963 {
964 /* In error case, STRING_START_ADDR is pointing to the string that
965 was last successfully loaded. Rewind the partially loaded string. */
966 string_start_addr -= chars_counted * char_size;
967 }
968
969 return string_start_addr;
970 }
971
972 /* Examine data at address ADDR in format FMT.
973 Fetch it from memory and print on gdb_stdout. */
974
975 static void
976 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
977 {
978 char format = 0;
979 char size;
980 int count = 1;
981 struct type *val_type = NULL;
982 int i;
983 int maxelts;
984 struct value_print_options opts;
985 int need_to_update_next_address = 0;
986 CORE_ADDR addr_rewound = 0;
987
988 format = fmt.format;
989 size = fmt.size;
990 count = fmt.count;
991 next_gdbarch = gdbarch;
992 next_address = addr;
993
994 /* Instruction format implies fetch single bytes
995 regardless of the specified size.
996 The case of strings is handled in decode_format, only explicit
997 size operator are not changed to 'b'. */
998 if (format == 'i')
999 size = 'b';
1000
1001 if (size == 'a')
1002 {
1003 /* Pick the appropriate size for an address. */
1004 if (gdbarch_ptr_bit (next_gdbarch) == 64)
1005 size = 'g';
1006 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
1007 size = 'w';
1008 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
1009 size = 'h';
1010 else
1011 /* Bad value for gdbarch_ptr_bit. */
1012 internal_error (__FILE__, __LINE__,
1013 _("failed internal consistency check"));
1014 }
1015
1016 if (size == 'b')
1017 val_type = builtin_type (next_gdbarch)->builtin_int8;
1018 else if (size == 'h')
1019 val_type = builtin_type (next_gdbarch)->builtin_int16;
1020 else if (size == 'w')
1021 val_type = builtin_type (next_gdbarch)->builtin_int32;
1022 else if (size == 'g')
1023 val_type = builtin_type (next_gdbarch)->builtin_int64;
1024
1025 if (format == 's')
1026 {
1027 struct type *char_type = NULL;
1028
1029 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1030 if type is not found. */
1031 if (size == 'h')
1032 char_type = builtin_type (next_gdbarch)->builtin_char16;
1033 else if (size == 'w')
1034 char_type = builtin_type (next_gdbarch)->builtin_char32;
1035 if (char_type)
1036 val_type = char_type;
1037 else
1038 {
1039 if (size != '\0' && size != 'b')
1040 warning (_("Unable to display strings with "
1041 "size '%c', using 'b' instead."), size);
1042 size = 'b';
1043 val_type = builtin_type (next_gdbarch)->builtin_int8;
1044 }
1045 }
1046
1047 maxelts = 8;
1048 if (size == 'w')
1049 maxelts = 4;
1050 if (size == 'g')
1051 maxelts = 2;
1052 if (format == 's' || format == 'i')
1053 maxelts = 1;
1054
1055 get_formatted_print_options (&opts, format);
1056
1057 if (count < 0)
1058 {
1059 /* This is the negative repeat count case.
1060 We rewind the address based on the given repeat count and format,
1061 then examine memory from there in forward direction. */
1062
1063 count = -count;
1064 if (format == 'i')
1065 {
1066 next_address = find_instruction_backward (gdbarch, addr, count,
1067 &count);
1068 }
1069 else if (format == 's')
1070 {
1071 next_address = find_string_backward (gdbarch, addr, count,
1072 TYPE_LENGTH (val_type),
1073 &opts, &count);
1074 }
1075 else
1076 {
1077 next_address = addr - count * TYPE_LENGTH (val_type);
1078 }
1079
1080 /* The following call to print_formatted updates next_address in every
1081 iteration. In backward case, we store the start address here
1082 and update next_address with it before exiting the function. */
1083 addr_rewound = (format == 's'
1084 ? next_address - TYPE_LENGTH (val_type)
1085 : next_address);
1086 need_to_update_next_address = 1;
1087 }
1088
1089 /* Print as many objects as specified in COUNT, at most maxelts per line,
1090 with the address of the next one at the start of each line. */
1091
1092 while (count > 0)
1093 {
1094 QUIT;
1095 if (format == 'i')
1096 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1097 print_address (next_gdbarch, next_address, gdb_stdout);
1098 printf_filtered (":");
1099 for (i = maxelts;
1100 i > 0 && count > 0;
1101 i--, count--)
1102 {
1103 printf_filtered ("\t");
1104 /* Note that print_formatted sets next_address for the next
1105 object. */
1106 last_examine_address = next_address;
1107
1108 /* The value to be displayed is not fetched greedily.
1109 Instead, to avoid the possibility of a fetched value not
1110 being used, its retrieval is delayed until the print code
1111 uses it. When examining an instruction stream, the
1112 disassembler will perform its own memory fetch using just
1113 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1114 the disassembler be modified so that LAST_EXAMINE_VALUE
1115 is left with the byte sequence from the last complete
1116 instruction fetched from memory? */
1117 last_examine_value
1118 = release_value (value_at_lazy (val_type, next_address));
1119
1120 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1121
1122 /* Display any branch delay slots following the final insn. */
1123 if (format == 'i' && count == 1)
1124 count += branch_delay_insns;
1125 }
1126 printf_filtered ("\n");
1127 }
1128
1129 if (need_to_update_next_address)
1130 next_address = addr_rewound;
1131 }
1132 \f
1133 static void
1134 validate_format (struct format_data fmt, const char *cmdname)
1135 {
1136 if (fmt.size != 0)
1137 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1138 if (fmt.count != 1)
1139 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1140 cmdname);
1141 if (fmt.format == 'i')
1142 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1143 fmt.format, cmdname);
1144 }
1145
1146 /* Parse print command format string into *OPTS and update *EXPP.
1147 CMDNAME should name the current command. */
1148
1149 void
1150 print_command_parse_format (const char **expp, const char *cmdname,
1151 value_print_options *opts)
1152 {
1153 const char *exp = *expp;
1154
1155 if (exp && *exp == '/')
1156 {
1157 format_data fmt;
1158
1159 exp++;
1160 fmt = decode_format (&exp, last_format, 0);
1161 validate_format (fmt, cmdname);
1162 last_format = fmt.format;
1163
1164 opts->format = fmt.format;
1165 opts->raw = fmt.raw;
1166 }
1167 else
1168 {
1169 opts->format = 0;
1170 opts->raw = 0;
1171 }
1172
1173 *expp = exp;
1174 }
1175
1176 /* See valprint.h. */
1177
1178 void
1179 print_value (value *val, const value_print_options &opts)
1180 {
1181 int histindex = record_latest_value (val);
1182
1183 annotate_value_history_begin (histindex, value_type (val));
1184
1185 printf_filtered ("$%d = ", histindex);
1186
1187 annotate_value_history_value ();
1188
1189 print_formatted (val, 0, &opts, gdb_stdout);
1190 printf_filtered ("\n");
1191
1192 annotate_value_history_end ();
1193 }
1194
1195 /* Implementation of the "print" and "call" commands. */
1196
1197 static void
1198 print_command_1 (const char *args, int voidprint)
1199 {
1200 struct value *val;
1201 value_print_options print_opts;
1202
1203 get_user_print_options (&print_opts);
1204 /* Override global settings with explicit options, if any. */
1205 auto group = make_value_print_options_def_group (&print_opts);
1206 gdb::option::process_options
1207 (&args, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group);
1208
1209 print_command_parse_format (&args, "print", &print_opts);
1210
1211 const char *exp = args;
1212
1213 if (exp != nullptr && *exp)
1214 {
1215 expression_up expr = parse_expression (exp);
1216 val = evaluate_expression (expr.get ());
1217 }
1218 else
1219 val = access_value_history (0);
1220
1221 if (voidprint || (val && value_type (val) &&
1222 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1223 print_value (val, print_opts);
1224 }
1225
1226 /* See valprint.h. */
1227
1228 void
1229 print_command_completer (struct cmd_list_element *ignore,
1230 completion_tracker &tracker,
1231 const char *text, const char * /*word*/)
1232 {
1233 const auto group = make_value_print_options_def_group (nullptr);
1234 if (gdb::option::complete_options
1235 (tracker, &text, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group))
1236 return;
1237
1238 const char *word = advance_to_expression_complete_word_point (tracker, text);
1239 expression_completer (ignore, tracker, text, word);
1240 }
1241
1242 static void
1243 print_command (const char *exp, int from_tty)
1244 {
1245 print_command_1 (exp, 1);
1246 }
1247
1248 /* Same as print, except it doesn't print void results. */
1249 static void
1250 call_command (const char *exp, int from_tty)
1251 {
1252 print_command_1 (exp, 0);
1253 }
1254
1255 /* Implementation of the "output" command. */
1256
1257 void
1258 output_command (const char *exp, int from_tty)
1259 {
1260 char format = 0;
1261 struct value *val;
1262 struct format_data fmt;
1263 struct value_print_options opts;
1264
1265 fmt.size = 0;
1266 fmt.raw = 0;
1267
1268 if (exp && *exp == '/')
1269 {
1270 exp++;
1271 fmt = decode_format (&exp, 0, 0);
1272 validate_format (fmt, "output");
1273 format = fmt.format;
1274 }
1275
1276 expression_up expr = parse_expression (exp);
1277
1278 val = evaluate_expression (expr.get ());
1279
1280 annotate_value_begin (value_type (val));
1281
1282 get_formatted_print_options (&opts, format);
1283 opts.raw = fmt.raw;
1284 print_formatted (val, fmt.size, &opts, gdb_stdout);
1285
1286 annotate_value_end ();
1287
1288 wrap_here ("");
1289 gdb_flush (gdb_stdout);
1290 }
1291
1292 static void
1293 set_command (const char *exp, int from_tty)
1294 {
1295 expression_up expr = parse_expression (exp);
1296
1297 if (expr->nelts >= 1)
1298 switch (expr->elts[0].opcode)
1299 {
1300 case UNOP_PREINCREMENT:
1301 case UNOP_POSTINCREMENT:
1302 case UNOP_PREDECREMENT:
1303 case UNOP_POSTDECREMENT:
1304 case BINOP_ASSIGN:
1305 case BINOP_ASSIGN_MODIFY:
1306 case BINOP_COMMA:
1307 break;
1308 default:
1309 warning
1310 (_("Expression is not an assignment (and might have no effect)"));
1311 }
1312
1313 evaluate_expression (expr.get ());
1314 }
1315
1316 static void
1317 info_symbol_command (const char *arg, int from_tty)
1318 {
1319 struct minimal_symbol *msymbol;
1320 struct obj_section *osect;
1321 CORE_ADDR addr, sect_addr;
1322 int matches = 0;
1323 unsigned int offset;
1324
1325 if (!arg)
1326 error_no_arg (_("address"));
1327
1328 addr = parse_and_eval_address (arg);
1329 for (objfile *objfile : current_program_space->objfiles ())
1330 ALL_OBJFILE_OSECTIONS (objfile, osect)
1331 {
1332 /* Only process each object file once, even if there's a separate
1333 debug file. */
1334 if (objfile->separate_debug_objfile_backlink)
1335 continue;
1336
1337 sect_addr = overlay_mapped_address (addr, osect);
1338
1339 if (obj_section_addr (osect) <= sect_addr
1340 && sect_addr < obj_section_endaddr (osect)
1341 && (msymbol
1342 = lookup_minimal_symbol_by_pc_section (sect_addr,
1343 osect).minsym))
1344 {
1345 const char *obj_name, *mapped, *sec_name, *msym_name;
1346 const char *loc_string;
1347
1348 matches = 1;
1349 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1350 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1351 sec_name = osect->the_bfd_section->name;
1352 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1353
1354 /* Don't print the offset if it is zero.
1355 We assume there's no need to handle i18n of "sym + offset". */
1356 std::string string_holder;
1357 if (offset)
1358 {
1359 string_holder = string_printf ("%s + %u", msym_name, offset);
1360 loc_string = string_holder.c_str ();
1361 }
1362 else
1363 loc_string = msym_name;
1364
1365 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1366 obj_name = objfile_name (osect->objfile);
1367
1368 if (MULTI_OBJFILE_P ())
1369 if (pc_in_unmapped_range (addr, osect))
1370 if (section_is_overlay (osect))
1371 printf_filtered (_("%s in load address range of "
1372 "%s overlay section %s of %s\n"),
1373 loc_string, mapped, sec_name, obj_name);
1374 else
1375 printf_filtered (_("%s in load address range of "
1376 "section %s of %s\n"),
1377 loc_string, sec_name, obj_name);
1378 else
1379 if (section_is_overlay (osect))
1380 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1381 loc_string, mapped, sec_name, obj_name);
1382 else
1383 printf_filtered (_("%s in section %s of %s\n"),
1384 loc_string, sec_name, obj_name);
1385 else
1386 if (pc_in_unmapped_range (addr, osect))
1387 if (section_is_overlay (osect))
1388 printf_filtered (_("%s in load address range of %s overlay "
1389 "section %s\n"),
1390 loc_string, mapped, sec_name);
1391 else
1392 printf_filtered
1393 (_("%s in load address range of section %s\n"),
1394 loc_string, sec_name);
1395 else
1396 if (section_is_overlay (osect))
1397 printf_filtered (_("%s in %s overlay section %s\n"),
1398 loc_string, mapped, sec_name);
1399 else
1400 printf_filtered (_("%s in section %s\n"),
1401 loc_string, sec_name);
1402 }
1403 }
1404 if (matches == 0)
1405 printf_filtered (_("No symbol matches %s.\n"), arg);
1406 }
1407
1408 static void
1409 info_address_command (const char *exp, int from_tty)
1410 {
1411 struct gdbarch *gdbarch;
1412 int regno;
1413 struct symbol *sym;
1414 struct bound_minimal_symbol msymbol;
1415 long val;
1416 struct obj_section *section;
1417 CORE_ADDR load_addr, context_pc = 0;
1418 struct field_of_this_result is_a_field_of_this;
1419
1420 if (exp == 0)
1421 error (_("Argument required."));
1422
1423 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1424 &is_a_field_of_this).symbol;
1425 if (sym == NULL)
1426 {
1427 if (is_a_field_of_this.type != NULL)
1428 {
1429 printf_filtered ("Symbol \"");
1430 fprintf_symbol_filtered (gdb_stdout, exp,
1431 current_language->la_language, DMGL_ANSI);
1432 printf_filtered ("\" is a field of the local class variable ");
1433 if (current_language->la_language == language_objc)
1434 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1435 else
1436 printf_filtered ("`this'\n");
1437 return;
1438 }
1439
1440 msymbol = lookup_bound_minimal_symbol (exp);
1441
1442 if (msymbol.minsym != NULL)
1443 {
1444 struct objfile *objfile = msymbol.objfile;
1445
1446 gdbarch = get_objfile_arch (objfile);
1447 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1448
1449 printf_filtered ("Symbol \"");
1450 fprintf_symbol_filtered (gdb_stdout, exp,
1451 current_language->la_language, DMGL_ANSI);
1452 printf_filtered ("\" is at ");
1453 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1454 gdb_stdout);
1455 printf_filtered (" in a file compiled without debugging");
1456 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1457 if (section_is_overlay (section))
1458 {
1459 load_addr = overlay_unmapped_address (load_addr, section);
1460 printf_filtered (",\n -- loaded at ");
1461 fputs_styled (paddress (gdbarch, load_addr),
1462 address_style.style (),
1463 gdb_stdout);
1464 printf_filtered (" in overlay section %s",
1465 section->the_bfd_section->name);
1466 }
1467 printf_filtered (".\n");
1468 }
1469 else
1470 error (_("No symbol \"%s\" in current context."), exp);
1471 return;
1472 }
1473
1474 printf_filtered ("Symbol \"");
1475 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1476 current_language->la_language, DMGL_ANSI);
1477 printf_filtered ("\" is ");
1478 val = SYMBOL_VALUE (sym);
1479 if (SYMBOL_OBJFILE_OWNED (sym))
1480 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1481 else
1482 section = NULL;
1483 gdbarch = symbol_arch (sym);
1484
1485 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1486 {
1487 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1488 gdb_stdout);
1489 printf_filtered (".\n");
1490 return;
1491 }
1492
1493 switch (SYMBOL_CLASS (sym))
1494 {
1495 case LOC_CONST:
1496 case LOC_CONST_BYTES:
1497 printf_filtered ("constant");
1498 break;
1499
1500 case LOC_LABEL:
1501 printf_filtered ("a label at address ");
1502 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1503 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1504 gdb_stdout);
1505 if (section_is_overlay (section))
1506 {
1507 load_addr = overlay_unmapped_address (load_addr, section);
1508 printf_filtered (",\n -- loaded at ");
1509 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1510 gdb_stdout);
1511 printf_filtered (" in overlay section %s",
1512 section->the_bfd_section->name);
1513 }
1514 break;
1515
1516 case LOC_COMPUTED:
1517 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1518
1519 case LOC_REGISTER:
1520 /* GDBARCH is the architecture associated with the objfile the symbol
1521 is defined in; the target architecture may be different, and may
1522 provide additional registers. However, we do not know the target
1523 architecture at this point. We assume the objfile architecture
1524 will contain all the standard registers that occur in debug info
1525 in that objfile. */
1526 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1527
1528 if (SYMBOL_IS_ARGUMENT (sym))
1529 printf_filtered (_("an argument in register %s"),
1530 gdbarch_register_name (gdbarch, regno));
1531 else
1532 printf_filtered (_("a variable in register %s"),
1533 gdbarch_register_name (gdbarch, regno));
1534 break;
1535
1536 case LOC_STATIC:
1537 printf_filtered (_("static storage at address "));
1538 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1539 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1540 gdb_stdout);
1541 if (section_is_overlay (section))
1542 {
1543 load_addr = overlay_unmapped_address (load_addr, section);
1544 printf_filtered (_(",\n -- loaded at "));
1545 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1546 gdb_stdout);
1547 printf_filtered (_(" in overlay section %s"),
1548 section->the_bfd_section->name);
1549 }
1550 break;
1551
1552 case LOC_REGPARM_ADDR:
1553 /* Note comment at LOC_REGISTER. */
1554 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1555 printf_filtered (_("address of an argument in register %s"),
1556 gdbarch_register_name (gdbarch, regno));
1557 break;
1558
1559 case LOC_ARG:
1560 printf_filtered (_("an argument at offset %ld"), val);
1561 break;
1562
1563 case LOC_LOCAL:
1564 printf_filtered (_("a local variable at frame offset %ld"), val);
1565 break;
1566
1567 case LOC_REF_ARG:
1568 printf_filtered (_("a reference argument at offset %ld"), val);
1569 break;
1570
1571 case LOC_TYPEDEF:
1572 printf_filtered (_("a typedef"));
1573 break;
1574
1575 case LOC_BLOCK:
1576 printf_filtered (_("a function at address "));
1577 load_addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1578 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1579 gdb_stdout);
1580 if (section_is_overlay (section))
1581 {
1582 load_addr = overlay_unmapped_address (load_addr, section);
1583 printf_filtered (_(",\n -- loaded at "));
1584 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1585 gdb_stdout);
1586 printf_filtered (_(" in overlay section %s"),
1587 section->the_bfd_section->name);
1588 }
1589 break;
1590
1591 case LOC_UNRESOLVED:
1592 {
1593 struct bound_minimal_symbol msym;
1594
1595 msym = lookup_bound_minimal_symbol (SYMBOL_LINKAGE_NAME (sym));
1596 if (msym.minsym == NULL)
1597 printf_filtered ("unresolved");
1598 else
1599 {
1600 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1601
1602 if (section
1603 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1604 {
1605 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1606 printf_filtered (_("a thread-local variable at offset %s "
1607 "in the thread-local storage for `%s'"),
1608 paddress (gdbarch, load_addr),
1609 objfile_name (section->objfile));
1610 }
1611 else
1612 {
1613 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1614 printf_filtered (_("static storage at address "));
1615 fputs_styled (paddress (gdbarch, load_addr),
1616 address_style.style (), gdb_stdout);
1617 if (section_is_overlay (section))
1618 {
1619 load_addr = overlay_unmapped_address (load_addr, section);
1620 printf_filtered (_(",\n -- loaded at "));
1621 fputs_styled (paddress (gdbarch, load_addr),
1622 address_style.style (),
1623 gdb_stdout);
1624 printf_filtered (_(" in overlay section %s"),
1625 section->the_bfd_section->name);
1626 }
1627 }
1628 }
1629 }
1630 break;
1631
1632 case LOC_OPTIMIZED_OUT:
1633 printf_filtered (_("optimized out"));
1634 break;
1635
1636 default:
1637 printf_filtered (_("of unknown (botched) type"));
1638 break;
1639 }
1640 printf_filtered (".\n");
1641 }
1642 \f
1643
1644 static void
1645 x_command (const char *exp, int from_tty)
1646 {
1647 struct format_data fmt;
1648 struct value *val;
1649
1650 fmt.format = last_format ? last_format : 'x';
1651 fmt.size = last_size;
1652 fmt.count = 1;
1653 fmt.raw = 0;
1654
1655 /* If there is no expression and no format, use the most recent
1656 count. */
1657 if (exp == nullptr && last_count > 0)
1658 fmt.count = last_count;
1659
1660 if (exp && *exp == '/')
1661 {
1662 const char *tmp = exp + 1;
1663
1664 fmt = decode_format (&tmp, last_format, last_size);
1665 exp = (char *) tmp;
1666 }
1667
1668 last_count = fmt.count;
1669
1670 /* If we have an expression, evaluate it and use it as the address. */
1671
1672 if (exp != 0 && *exp != 0)
1673 {
1674 expression_up expr = parse_expression (exp);
1675 /* Cause expression not to be there any more if this command is
1676 repeated with Newline. But don't clobber a user-defined
1677 command's definition. */
1678 if (from_tty)
1679 set_repeat_arguments ("");
1680 val = evaluate_expression (expr.get ());
1681 if (TYPE_IS_REFERENCE (value_type (val)))
1682 val = coerce_ref (val);
1683 /* In rvalue contexts, such as this, functions are coerced into
1684 pointers to functions. This makes "x/i main" work. */
1685 if (/* last_format == 'i' && */
1686 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1687 && VALUE_LVAL (val) == lval_memory)
1688 next_address = value_address (val);
1689 else
1690 next_address = value_as_address (val);
1691
1692 next_gdbarch = expr->gdbarch;
1693 }
1694
1695 if (!next_gdbarch)
1696 error_no_arg (_("starting display address"));
1697
1698 do_examine (fmt, next_gdbarch, next_address);
1699
1700 /* If the examine succeeds, we remember its size and format for next
1701 time. Set last_size to 'b' for strings. */
1702 if (fmt.format == 's')
1703 last_size = 'b';
1704 else
1705 last_size = fmt.size;
1706 last_format = fmt.format;
1707
1708 /* Set a couple of internal variables if appropriate. */
1709 if (last_examine_value != nullptr)
1710 {
1711 /* Make last address examined available to the user as $_. Use
1712 the correct pointer type. */
1713 struct type *pointer_type
1714 = lookup_pointer_type (value_type (last_examine_value.get ()));
1715 set_internalvar (lookup_internalvar ("_"),
1716 value_from_pointer (pointer_type,
1717 last_examine_address));
1718
1719 /* Make contents of last address examined available to the user
1720 as $__. If the last value has not been fetched from memory
1721 then don't fetch it now; instead mark it by voiding the $__
1722 variable. */
1723 if (value_lazy (last_examine_value.get ()))
1724 clear_internalvar (lookup_internalvar ("__"));
1725 else
1726 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1727 }
1728 }
1729 \f
1730
1731 /* Add an expression to the auto-display chain.
1732 Specify the expression. */
1733
1734 static void
1735 display_command (const char *arg, int from_tty)
1736 {
1737 struct format_data fmt;
1738 struct display *newobj;
1739 const char *exp = arg;
1740
1741 if (exp == 0)
1742 {
1743 do_displays ();
1744 return;
1745 }
1746
1747 if (*exp == '/')
1748 {
1749 exp++;
1750 fmt = decode_format (&exp, 0, 0);
1751 if (fmt.size && fmt.format == 0)
1752 fmt.format = 'x';
1753 if (fmt.format == 'i' || fmt.format == 's')
1754 fmt.size = 'b';
1755 }
1756 else
1757 {
1758 fmt.format = 0;
1759 fmt.size = 0;
1760 fmt.count = 0;
1761 fmt.raw = 0;
1762 }
1763
1764 innermost_block_tracker tracker;
1765 expression_up expr = parse_expression (exp, &tracker);
1766
1767 newobj = new display ();
1768
1769 newobj->exp_string = xstrdup (exp);
1770 newobj->exp = std::move (expr);
1771 newobj->block = tracker.block ();
1772 newobj->pspace = current_program_space;
1773 newobj->number = ++display_number;
1774 newobj->format = fmt;
1775 newobj->enabled_p = 1;
1776 newobj->next = NULL;
1777
1778 if (display_chain == NULL)
1779 display_chain = newobj;
1780 else
1781 {
1782 struct display *last;
1783
1784 for (last = display_chain; last->next != NULL; last = last->next)
1785 ;
1786 last->next = newobj;
1787 }
1788
1789 if (from_tty)
1790 do_one_display (newobj);
1791
1792 dont_repeat ();
1793 }
1794
1795 static void
1796 free_display (struct display *d)
1797 {
1798 xfree (d->exp_string);
1799 delete d;
1800 }
1801
1802 /* Clear out the display_chain. Done when new symtabs are loaded,
1803 since this invalidates the types stored in many expressions. */
1804
1805 void
1806 clear_displays (void)
1807 {
1808 struct display *d;
1809
1810 while ((d = display_chain) != NULL)
1811 {
1812 display_chain = d->next;
1813 free_display (d);
1814 }
1815 }
1816
1817 /* Delete the auto-display DISPLAY. */
1818
1819 static void
1820 delete_display (struct display *display)
1821 {
1822 struct display *d;
1823
1824 gdb_assert (display != NULL);
1825
1826 if (display_chain == display)
1827 display_chain = display->next;
1828
1829 ALL_DISPLAYS (d)
1830 if (d->next == display)
1831 {
1832 d->next = display->next;
1833 break;
1834 }
1835
1836 free_display (display);
1837 }
1838
1839 /* Call FUNCTION on each of the displays whose numbers are given in
1840 ARGS. DATA is passed unmodified to FUNCTION. */
1841
1842 static void
1843 map_display_numbers (const char *args,
1844 void (*function) (struct display *,
1845 void *),
1846 void *data)
1847 {
1848 int num;
1849
1850 if (args == NULL)
1851 error_no_arg (_("one or more display numbers"));
1852
1853 number_or_range_parser parser (args);
1854
1855 while (!parser.finished ())
1856 {
1857 const char *p = parser.cur_tok ();
1858
1859 num = parser.get_number ();
1860 if (num == 0)
1861 warning (_("bad display number at or near '%s'"), p);
1862 else
1863 {
1864 struct display *d, *tmp;
1865
1866 ALL_DISPLAYS_SAFE (d, tmp)
1867 if (d->number == num)
1868 break;
1869 if (d == NULL)
1870 printf_unfiltered (_("No display number %d.\n"), num);
1871 else
1872 function (d, data);
1873 }
1874 }
1875 }
1876
1877 /* Callback for map_display_numbers, that deletes a display. */
1878
1879 static void
1880 do_delete_display (struct display *d, void *data)
1881 {
1882 delete_display (d);
1883 }
1884
1885 /* "undisplay" command. */
1886
1887 static void
1888 undisplay_command (const char *args, int from_tty)
1889 {
1890 if (args == NULL)
1891 {
1892 if (query (_("Delete all auto-display expressions? ")))
1893 clear_displays ();
1894 dont_repeat ();
1895 return;
1896 }
1897
1898 map_display_numbers (args, do_delete_display, NULL);
1899 dont_repeat ();
1900 }
1901
1902 /* Display a single auto-display.
1903 Do nothing if the display cannot be printed in the current context,
1904 or if the display is disabled. */
1905
1906 static void
1907 do_one_display (struct display *d)
1908 {
1909 int within_current_scope;
1910
1911 if (d->enabled_p == 0)
1912 return;
1913
1914 /* The expression carries the architecture that was used at parse time.
1915 This is a problem if the expression depends on architecture features
1916 (e.g. register numbers), and the current architecture is now different.
1917 For example, a display statement like "display/i $pc" is expected to
1918 display the PC register of the current architecture, not the arch at
1919 the time the display command was given. Therefore, we re-parse the
1920 expression if the current architecture has changed. */
1921 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1922 {
1923 d->exp.reset ();
1924 d->block = NULL;
1925 }
1926
1927 if (d->exp == NULL)
1928 {
1929
1930 try
1931 {
1932 innermost_block_tracker tracker;
1933 d->exp = parse_expression (d->exp_string, &tracker);
1934 d->block = tracker.block ();
1935 }
1936 catch (const gdb_exception &ex)
1937 {
1938 /* Can't re-parse the expression. Disable this display item. */
1939 d->enabled_p = 0;
1940 warning (_("Unable to display \"%s\": %s"),
1941 d->exp_string, ex.what ());
1942 return;
1943 }
1944 }
1945
1946 if (d->block)
1947 {
1948 if (d->pspace == current_program_space)
1949 within_current_scope = contained_in (get_selected_block (0), d->block,
1950 true);
1951 else
1952 within_current_scope = 0;
1953 }
1954 else
1955 within_current_scope = 1;
1956 if (!within_current_scope)
1957 return;
1958
1959 scoped_restore save_display_number
1960 = make_scoped_restore (&current_display_number, d->number);
1961
1962 annotate_display_begin ();
1963 printf_filtered ("%d", d->number);
1964 annotate_display_number_end ();
1965 printf_filtered (": ");
1966 if (d->format.size)
1967 {
1968
1969 annotate_display_format ();
1970
1971 printf_filtered ("x/");
1972 if (d->format.count != 1)
1973 printf_filtered ("%d", d->format.count);
1974 printf_filtered ("%c", d->format.format);
1975 if (d->format.format != 'i' && d->format.format != 's')
1976 printf_filtered ("%c", d->format.size);
1977 printf_filtered (" ");
1978
1979 annotate_display_expression ();
1980
1981 puts_filtered (d->exp_string);
1982 annotate_display_expression_end ();
1983
1984 if (d->format.count != 1 || d->format.format == 'i')
1985 printf_filtered ("\n");
1986 else
1987 printf_filtered (" ");
1988
1989 annotate_display_value ();
1990
1991 try
1992 {
1993 struct value *val;
1994 CORE_ADDR addr;
1995
1996 val = evaluate_expression (d->exp.get ());
1997 addr = value_as_address (val);
1998 if (d->format.format == 'i')
1999 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
2000 do_examine (d->format, d->exp->gdbarch, addr);
2001 }
2002 catch (const gdb_exception_error &ex)
2003 {
2004 fprintf_filtered (gdb_stdout, _("%p[<error: %s>%p]\n"),
2005 metadata_style.style ().ptr (), ex.what (),
2006 nullptr);
2007 }
2008 }
2009 else
2010 {
2011 struct value_print_options opts;
2012
2013 annotate_display_format ();
2014
2015 if (d->format.format)
2016 printf_filtered ("/%c ", d->format.format);
2017
2018 annotate_display_expression ();
2019
2020 puts_filtered (d->exp_string);
2021 annotate_display_expression_end ();
2022
2023 printf_filtered (" = ");
2024
2025 annotate_display_expression ();
2026
2027 get_formatted_print_options (&opts, d->format.format);
2028 opts.raw = d->format.raw;
2029
2030 try
2031 {
2032 struct value *val;
2033
2034 val = evaluate_expression (d->exp.get ());
2035 print_formatted (val, d->format.size, &opts, gdb_stdout);
2036 }
2037 catch (const gdb_exception_error &ex)
2038 {
2039 fprintf_styled (gdb_stdout, metadata_style.style (),
2040 _("<error: %s>"), ex.what ());
2041 }
2042
2043 printf_filtered ("\n");
2044 }
2045
2046 annotate_display_end ();
2047
2048 gdb_flush (gdb_stdout);
2049 }
2050
2051 /* Display all of the values on the auto-display chain which can be
2052 evaluated in the current scope. */
2053
2054 void
2055 do_displays (void)
2056 {
2057 struct display *d;
2058
2059 for (d = display_chain; d; d = d->next)
2060 do_one_display (d);
2061 }
2062
2063 /* Delete the auto-display which we were in the process of displaying.
2064 This is done when there is an error or a signal. */
2065
2066 void
2067 disable_display (int num)
2068 {
2069 struct display *d;
2070
2071 for (d = display_chain; d; d = d->next)
2072 if (d->number == num)
2073 {
2074 d->enabled_p = 0;
2075 return;
2076 }
2077 printf_unfiltered (_("No display number %d.\n"), num);
2078 }
2079
2080 void
2081 disable_current_display (void)
2082 {
2083 if (current_display_number >= 0)
2084 {
2085 disable_display (current_display_number);
2086 fprintf_unfiltered (gdb_stderr,
2087 _("Disabling display %d to "
2088 "avoid infinite recursion.\n"),
2089 current_display_number);
2090 }
2091 current_display_number = -1;
2092 }
2093
2094 static void
2095 info_display_command (const char *ignore, int from_tty)
2096 {
2097 struct display *d;
2098
2099 if (!display_chain)
2100 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2101 else
2102 printf_filtered (_("Auto-display expressions now in effect:\n\
2103 Num Enb Expression\n"));
2104
2105 for (d = display_chain; d; d = d->next)
2106 {
2107 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2108 if (d->format.size)
2109 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2110 d->format.format);
2111 else if (d->format.format)
2112 printf_filtered ("/%c ", d->format.format);
2113 puts_filtered (d->exp_string);
2114 if (d->block && !contained_in (get_selected_block (0), d->block, true))
2115 printf_filtered (_(" (cannot be evaluated in the current context)"));
2116 printf_filtered ("\n");
2117 }
2118 }
2119
2120 /* Callback fo map_display_numbers, that enables or disables the
2121 passed in display D. */
2122
2123 static void
2124 do_enable_disable_display (struct display *d, void *data)
2125 {
2126 d->enabled_p = *(int *) data;
2127 }
2128
2129 /* Implementation of both the "disable display" and "enable display"
2130 commands. ENABLE decides what to do. */
2131
2132 static void
2133 enable_disable_display_command (const char *args, int from_tty, int enable)
2134 {
2135 if (args == NULL)
2136 {
2137 struct display *d;
2138
2139 ALL_DISPLAYS (d)
2140 d->enabled_p = enable;
2141 return;
2142 }
2143
2144 map_display_numbers (args, do_enable_disable_display, &enable);
2145 }
2146
2147 /* The "enable display" command. */
2148
2149 static void
2150 enable_display_command (const char *args, int from_tty)
2151 {
2152 enable_disable_display_command (args, from_tty, 1);
2153 }
2154
2155 /* The "disable display" command. */
2156
2157 static void
2158 disable_display_command (const char *args, int from_tty)
2159 {
2160 enable_disable_display_command (args, from_tty, 0);
2161 }
2162
2163 /* display_chain items point to blocks and expressions. Some expressions in
2164 turn may point to symbols.
2165 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2166 obstack_free'd when a shared library is unloaded.
2167 Clear pointers that are about to become dangling.
2168 Both .exp and .block fields will be restored next time we need to display
2169 an item by re-parsing .exp_string field in the new execution context. */
2170
2171 static void
2172 clear_dangling_display_expressions (struct objfile *objfile)
2173 {
2174 struct display *d;
2175 struct program_space *pspace;
2176
2177 /* With no symbol file we cannot have a block or expression from it. */
2178 if (objfile == NULL)
2179 return;
2180 pspace = objfile->pspace;
2181 if (objfile->separate_debug_objfile_backlink)
2182 {
2183 objfile = objfile->separate_debug_objfile_backlink;
2184 gdb_assert (objfile->pspace == pspace);
2185 }
2186
2187 for (d = display_chain; d != NULL; d = d->next)
2188 {
2189 if (d->pspace != pspace)
2190 continue;
2191
2192 if (lookup_objfile_from_block (d->block) == objfile
2193 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2194 {
2195 d->exp.reset ();
2196 d->block = NULL;
2197 }
2198 }
2199 }
2200 \f
2201
2202 /* Print the value in stack frame FRAME of a variable specified by a
2203 struct symbol. NAME is the name to print; if NULL then VAR's print
2204 name will be used. STREAM is the ui_file on which to print the
2205 value. INDENT specifies the number of indent levels to print
2206 before printing the variable name.
2207
2208 This function invalidates FRAME. */
2209
2210 void
2211 print_variable_and_value (const char *name, struct symbol *var,
2212 struct frame_info *frame,
2213 struct ui_file *stream, int indent)
2214 {
2215
2216 if (!name)
2217 name = SYMBOL_PRINT_NAME (var);
2218
2219 fprintf_filtered (stream, "%s%ps = ", n_spaces (2 * indent),
2220 styled_string (variable_name_style.style (), name));
2221
2222 try
2223 {
2224 struct value *val;
2225 struct value_print_options opts;
2226
2227 /* READ_VAR_VALUE needs a block in order to deal with non-local
2228 references (i.e. to handle nested functions). In this context, we
2229 print variables that are local to this frame, so we can avoid passing
2230 a block to it. */
2231 val = read_var_value (var, NULL, frame);
2232 get_user_print_options (&opts);
2233 opts.deref_ref = 1;
2234 common_val_print (val, stream, indent, &opts, current_language);
2235
2236 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2237 function. */
2238 frame = NULL;
2239 }
2240 catch (const gdb_exception_error &except)
2241 {
2242 fprintf_styled (stream, metadata_style.style (),
2243 "<error reading variable %s (%s)>", name,
2244 except.what ());
2245 }
2246
2247 fprintf_filtered (stream, "\n");
2248 }
2249
2250 /* Subroutine of ui_printf to simplify it.
2251 Print VALUE to STREAM using FORMAT.
2252 VALUE is a C-style string either on the target or
2253 in a GDB internal variable. */
2254
2255 static void
2256 printf_c_string (struct ui_file *stream, const char *format,
2257 struct value *value)
2258 {
2259 const gdb_byte *str;
2260
2261 if (VALUE_LVAL (value) == lval_internalvar
2262 && c_is_string_type_p (value_type (value)))
2263 {
2264 size_t len = TYPE_LENGTH (value_type (value));
2265
2266 /* Copy the internal var value to TEM_STR and append a terminating null
2267 character. This protects against corrupted C-style strings that lack
2268 the terminating null char. It also allows Ada-style strings (not
2269 null terminated) to be printed without problems. */
2270 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2271
2272 memcpy (tem_str, value_contents (value), len);
2273 tem_str [len] = 0;
2274 str = tem_str;
2275 }
2276 else
2277 {
2278 CORE_ADDR tem = value_as_address (value);;
2279
2280 if (tem == 0)
2281 {
2282 DIAGNOSTIC_PUSH
2283 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2284 fprintf_filtered (stream, format, "(null)");
2285 DIAGNOSTIC_POP
2286 return;
2287 }
2288
2289 /* This is a %s argument. Find the length of the string. */
2290 size_t len;
2291
2292 for (len = 0;; len++)
2293 {
2294 gdb_byte c;
2295
2296 QUIT;
2297 read_memory (tem + len, &c, 1);
2298 if (c == 0)
2299 break;
2300 }
2301
2302 /* Copy the string contents into a string inside GDB. */
2303 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2304
2305 if (len != 0)
2306 read_memory (tem, tem_str, len);
2307 tem_str[len] = 0;
2308 str = tem_str;
2309 }
2310
2311 DIAGNOSTIC_PUSH
2312 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2313 fprintf_filtered (stream, format, (char *) str);
2314 DIAGNOSTIC_POP
2315 }
2316
2317 /* Subroutine of ui_printf to simplify it.
2318 Print VALUE to STREAM using FORMAT.
2319 VALUE is a wide C-style string on the target or
2320 in a GDB internal variable. */
2321
2322 static void
2323 printf_wide_c_string (struct ui_file *stream, const char *format,
2324 struct value *value)
2325 {
2326 const gdb_byte *str;
2327 size_t len;
2328 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2329 struct type *wctype = lookup_typename (current_language, gdbarch,
2330 "wchar_t", NULL, 0);
2331 int wcwidth = TYPE_LENGTH (wctype);
2332
2333 if (VALUE_LVAL (value) == lval_internalvar
2334 && c_is_string_type_p (value_type (value)))
2335 {
2336 str = value_contents (value);
2337 len = TYPE_LENGTH (value_type (value));
2338 }
2339 else
2340 {
2341 CORE_ADDR tem = value_as_address (value);
2342
2343 if (tem == 0)
2344 {
2345 DIAGNOSTIC_PUSH
2346 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2347 fprintf_filtered (stream, format, "(null)");
2348 DIAGNOSTIC_POP
2349 return;
2350 }
2351
2352 /* This is a %s argument. Find the length of the string. */
2353 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2354 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2355
2356 for (len = 0;; len += wcwidth)
2357 {
2358 QUIT;
2359 read_memory (tem + len, buf, wcwidth);
2360 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2361 break;
2362 }
2363
2364 /* Copy the string contents into a string inside GDB. */
2365 gdb_byte *tem_str = (gdb_byte *) alloca (len + wcwidth);
2366
2367 if (len != 0)
2368 read_memory (tem, tem_str, len);
2369 memset (&tem_str[len], 0, wcwidth);
2370 str = tem_str;
2371 }
2372
2373 auto_obstack output;
2374
2375 convert_between_encodings (target_wide_charset (gdbarch),
2376 host_charset (),
2377 str, len, wcwidth,
2378 &output, translit_char);
2379 obstack_grow_str0 (&output, "");
2380
2381 DIAGNOSTIC_PUSH
2382 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2383 fprintf_filtered (stream, format, obstack_base (&output));
2384 DIAGNOSTIC_POP
2385 }
2386
2387 /* Subroutine of ui_printf to simplify it.
2388 Print VALUE, a floating point value, to STREAM using FORMAT. */
2389
2390 static void
2391 printf_floating (struct ui_file *stream, const char *format,
2392 struct value *value, enum argclass argclass)
2393 {
2394 /* Parameter data. */
2395 struct type *param_type = value_type (value);
2396 struct gdbarch *gdbarch = get_type_arch (param_type);
2397
2398 /* Determine target type corresponding to the format string. */
2399 struct type *fmt_type;
2400 switch (argclass)
2401 {
2402 case double_arg:
2403 fmt_type = builtin_type (gdbarch)->builtin_double;
2404 break;
2405 case long_double_arg:
2406 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2407 break;
2408 case dec32float_arg:
2409 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2410 break;
2411 case dec64float_arg:
2412 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2413 break;
2414 case dec128float_arg:
2415 fmt_type = builtin_type (gdbarch)->builtin_declong;
2416 break;
2417 default:
2418 gdb_assert_not_reached ("unexpected argument class");
2419 }
2420
2421 /* To match the traditional GDB behavior, the conversion is
2422 done differently depending on the type of the parameter:
2423
2424 - if the parameter has floating-point type, it's value
2425 is converted to the target type;
2426
2427 - otherwise, if the parameter has a type that is of the
2428 same size as a built-in floating-point type, the value
2429 bytes are interpreted as if they were of that type, and
2430 then converted to the target type (this is not done for
2431 decimal floating-point argument classes);
2432
2433 - otherwise, if the source value has an integer value,
2434 it's value is converted to the target type;
2435
2436 - otherwise, an error is raised.
2437
2438 In either case, the result of the conversion is a byte buffer
2439 formatted in the target format for the target type. */
2440
2441 if (TYPE_CODE (fmt_type) == TYPE_CODE_FLT)
2442 {
2443 param_type = float_type_from_length (param_type);
2444 if (param_type != value_type (value))
2445 value = value_from_contents (param_type, value_contents (value));
2446 }
2447
2448 value = value_cast (fmt_type, value);
2449
2450 /* Convert the value to a string and print it. */
2451 std::string str
2452 = target_float_to_string (value_contents (value), fmt_type, format);
2453 fputs_filtered (str.c_str (), stream);
2454 }
2455
2456 /* Subroutine of ui_printf to simplify it.
2457 Print VALUE, a target pointer, to STREAM using FORMAT. */
2458
2459 static void
2460 printf_pointer (struct ui_file *stream, const char *format,
2461 struct value *value)
2462 {
2463 /* We avoid the host's %p because pointers are too
2464 likely to be the wrong size. The only interesting
2465 modifier for %p is a width; extract that, and then
2466 handle %p as glibc would: %#x or a literal "(nil)". */
2467
2468 const char *p;
2469 char *fmt, *fmt_p;
2470 #ifdef PRINTF_HAS_LONG_LONG
2471 long long val = value_as_long (value);
2472 #else
2473 long val = value_as_long (value);
2474 #endif
2475
2476 fmt = (char *) alloca (strlen (format) + 5);
2477
2478 /* Copy up to the leading %. */
2479 p = format;
2480 fmt_p = fmt;
2481 while (*p)
2482 {
2483 int is_percent = (*p == '%');
2484
2485 *fmt_p++ = *p++;
2486 if (is_percent)
2487 {
2488 if (*p == '%')
2489 *fmt_p++ = *p++;
2490 else
2491 break;
2492 }
2493 }
2494
2495 if (val != 0)
2496 *fmt_p++ = '#';
2497
2498 /* Copy any width or flags. Only the "-" flag is valid for pointers
2499 -- see the format_pieces constructor. */
2500 while (*p == '-' || (*p >= '0' && *p < '9'))
2501 *fmt_p++ = *p++;
2502
2503 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2504 if (val != 0)
2505 {
2506 #ifdef PRINTF_HAS_LONG_LONG
2507 *fmt_p++ = 'l';
2508 #endif
2509 *fmt_p++ = 'l';
2510 *fmt_p++ = 'x';
2511 *fmt_p++ = '\0';
2512 DIAGNOSTIC_PUSH
2513 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2514 fprintf_filtered (stream, fmt, val);
2515 DIAGNOSTIC_POP
2516 }
2517 else
2518 {
2519 *fmt_p++ = 's';
2520 *fmt_p++ = '\0';
2521 DIAGNOSTIC_PUSH
2522 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2523 fprintf_filtered (stream, fmt, "(nil)");
2524 DIAGNOSTIC_POP
2525 }
2526 }
2527
2528 /* printf "printf format string" ARG to STREAM. */
2529
2530 static void
2531 ui_printf (const char *arg, struct ui_file *stream)
2532 {
2533 const char *s = arg;
2534 std::vector<struct value *> val_args;
2535
2536 if (s == 0)
2537 error_no_arg (_("format-control string and values to print"));
2538
2539 s = skip_spaces (s);
2540
2541 /* A format string should follow, enveloped in double quotes. */
2542 if (*s++ != '"')
2543 error (_("Bad format string, missing '\"'."));
2544
2545 format_pieces fpieces (&s);
2546
2547 if (*s++ != '"')
2548 error (_("Bad format string, non-terminated '\"'."));
2549
2550 s = skip_spaces (s);
2551
2552 if (*s != ',' && *s != 0)
2553 error (_("Invalid argument syntax"));
2554
2555 if (*s == ',')
2556 s++;
2557 s = skip_spaces (s);
2558
2559 {
2560 int nargs_wanted;
2561 int i;
2562 const char *current_substring;
2563
2564 nargs_wanted = 0;
2565 for (auto &&piece : fpieces)
2566 if (piece.argclass != literal_piece)
2567 ++nargs_wanted;
2568
2569 /* Now, parse all arguments and evaluate them.
2570 Store the VALUEs in VAL_ARGS. */
2571
2572 while (*s != '\0')
2573 {
2574 const char *s1;
2575
2576 s1 = s;
2577 val_args.push_back (parse_to_comma_and_eval (&s1));
2578
2579 s = s1;
2580 if (*s == ',')
2581 s++;
2582 }
2583
2584 if (val_args.size () != nargs_wanted)
2585 error (_("Wrong number of arguments for specified format-string"));
2586
2587 /* Now actually print them. */
2588 i = 0;
2589 for (auto &&piece : fpieces)
2590 {
2591 current_substring = piece.string;
2592 switch (piece.argclass)
2593 {
2594 case string_arg:
2595 printf_c_string (stream, current_substring, val_args[i]);
2596 break;
2597 case wide_string_arg:
2598 printf_wide_c_string (stream, current_substring, val_args[i]);
2599 break;
2600 case wide_char_arg:
2601 {
2602 struct gdbarch *gdbarch
2603 = get_type_arch (value_type (val_args[i]));
2604 struct type *wctype = lookup_typename (current_language, gdbarch,
2605 "wchar_t", NULL, 0);
2606 struct type *valtype;
2607 const gdb_byte *bytes;
2608
2609 valtype = value_type (val_args[i]);
2610 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2611 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2612 error (_("expected wchar_t argument for %%lc"));
2613
2614 bytes = value_contents (val_args[i]);
2615
2616 auto_obstack output;
2617
2618 convert_between_encodings (target_wide_charset (gdbarch),
2619 host_charset (),
2620 bytes, TYPE_LENGTH (valtype),
2621 TYPE_LENGTH (valtype),
2622 &output, translit_char);
2623 obstack_grow_str0 (&output, "");
2624
2625 DIAGNOSTIC_PUSH
2626 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2627 fprintf_filtered (stream, current_substring,
2628 obstack_base (&output));
2629 DIAGNOSTIC_POP
2630 }
2631 break;
2632 case long_long_arg:
2633 #ifdef PRINTF_HAS_LONG_LONG
2634 {
2635 long long val = value_as_long (val_args[i]);
2636
2637 DIAGNOSTIC_PUSH
2638 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2639 fprintf_filtered (stream, current_substring, val);
2640 DIAGNOSTIC_POP
2641 break;
2642 }
2643 #else
2644 error (_("long long not supported in printf"));
2645 #endif
2646 case int_arg:
2647 {
2648 int val = value_as_long (val_args[i]);
2649
2650 DIAGNOSTIC_PUSH
2651 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2652 fprintf_filtered (stream, current_substring, val);
2653 DIAGNOSTIC_POP
2654 break;
2655 }
2656 case long_arg:
2657 {
2658 long val = value_as_long (val_args[i]);
2659
2660 DIAGNOSTIC_PUSH
2661 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2662 fprintf_filtered (stream, current_substring, val);
2663 DIAGNOSTIC_POP
2664 break;
2665 }
2666 case size_t_arg:
2667 {
2668 size_t val = value_as_long (val_args[i]);
2669
2670 DIAGNOSTIC_PUSH
2671 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2672 fprintf_filtered (stream, current_substring, val);
2673 DIAGNOSTIC_POP
2674 break;
2675 }
2676 /* Handles floating-point values. */
2677 case double_arg:
2678 case long_double_arg:
2679 case dec32float_arg:
2680 case dec64float_arg:
2681 case dec128float_arg:
2682 printf_floating (stream, current_substring, val_args[i],
2683 piece.argclass);
2684 break;
2685 case ptr_arg:
2686 printf_pointer (stream, current_substring, val_args[i]);
2687 break;
2688 case literal_piece:
2689 /* Print a portion of the format string that has no
2690 directives. Note that this will not include any
2691 ordinary %-specs, but it might include "%%". That is
2692 why we use printf_filtered and not puts_filtered here.
2693 Also, we pass a dummy argument because some platforms
2694 have modified GCC to include -Wformat-security by
2695 default, which will warn here if there is no
2696 argument. */
2697 DIAGNOSTIC_PUSH
2698 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2699 fprintf_filtered (stream, current_substring, 0);
2700 DIAGNOSTIC_POP
2701 break;
2702 default:
2703 internal_error (__FILE__, __LINE__,
2704 _("failed internal consistency check"));
2705 }
2706 /* Maybe advance to the next argument. */
2707 if (piece.argclass != literal_piece)
2708 ++i;
2709 }
2710 }
2711 }
2712
2713 /* Implement the "printf" command. */
2714
2715 static void
2716 printf_command (const char *arg, int from_tty)
2717 {
2718 ui_printf (arg, gdb_stdout);
2719 reset_terminal_style (gdb_stdout);
2720 wrap_here ("");
2721 gdb_flush (gdb_stdout);
2722 }
2723
2724 /* Implement the "eval" command. */
2725
2726 static void
2727 eval_command (const char *arg, int from_tty)
2728 {
2729 string_file stb;
2730
2731 ui_printf (arg, &stb);
2732
2733 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2734
2735 execute_command (expanded.c_str (), from_tty);
2736 }
2737
2738 void
2739 _initialize_printcmd (void)
2740 {
2741 struct cmd_list_element *c;
2742
2743 current_display_number = -1;
2744
2745 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2746
2747 add_info ("address", info_address_command,
2748 _("Describe where symbol SYM is stored.\n\
2749 Usage: info address SYM"));
2750
2751 add_info ("symbol", info_symbol_command, _("\
2752 Describe what symbol is at location ADDR.\n\
2753 Usage: info symbol ADDR\n\
2754 Only for symbols with fixed locations (global or static scope)."));
2755
2756 add_com ("x", class_vars, x_command, _("\
2757 Examine memory: x/FMT ADDRESS.\n\
2758 ADDRESS is an expression for the memory address to examine.\n\
2759 FMT is a repeat count followed by a format letter and a size letter.\n\
2760 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2761 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2762 and z(hex, zero padded on the left).\n\
2763 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2764 The specified number of objects of the specified size are printed\n\
2765 according to the format. If a negative number is specified, memory is\n\
2766 examined backward from the address.\n\n\
2767 Defaults for format and size letters are those previously used.\n\
2768 Default count is 1. Default address is following last thing printed\n\
2769 with this command or \"print\"."));
2770
2771 add_info ("display", info_display_command, _("\
2772 Expressions to display when program stops, with code numbers.\n\
2773 Usage: info display"));
2774
2775 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2776 Cancel some expressions to be displayed when program stops.\n\
2777 Usage: undisplay [NUM]...\n\
2778 Arguments are the code numbers of the expressions to stop displaying.\n\
2779 No argument means cancel all automatic-display expressions.\n\
2780 \"delete display\" has the same effect as this command.\n\
2781 Do \"info display\" to see current list of code numbers."),
2782 &cmdlist);
2783
2784 add_com ("display", class_vars, display_command, _("\
2785 Print value of expression EXP each time the program stops.\n\
2786 Usage: display[/FMT] EXP\n\
2787 /FMT may be used before EXP as in the \"print\" command.\n\
2788 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2789 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2790 and examining is done as in the \"x\" command.\n\n\
2791 With no argument, display all currently requested auto-display expressions.\n\
2792 Use \"undisplay\" to cancel display requests previously made."));
2793
2794 add_cmd ("display", class_vars, enable_display_command, _("\
2795 Enable some expressions to be displayed when program stops.\n\
2796 Usage: enable display [NUM]...\n\
2797 Arguments are the code numbers of the expressions to resume displaying.\n\
2798 No argument means enable all automatic-display expressions.\n\
2799 Do \"info display\" to see current list of code numbers."), &enablelist);
2800
2801 add_cmd ("display", class_vars, disable_display_command, _("\
2802 Disable some expressions to be displayed when program stops.\n\
2803 Usage: disable display [NUM]...\n\
2804 Arguments are the code numbers of the expressions to stop displaying.\n\
2805 No argument means disable all automatic-display expressions.\n\
2806 Do \"info display\" to see current list of code numbers."), &disablelist);
2807
2808 add_cmd ("display", class_vars, undisplay_command, _("\
2809 Cancel some expressions to be displayed when program stops.\n\
2810 Usage: delete display [NUM]...\n\
2811 Arguments are the code numbers of the expressions to stop displaying.\n\
2812 No argument means cancel all automatic-display expressions.\n\
2813 Do \"info display\" to see current list of code numbers."), &deletelist);
2814
2815 add_com ("printf", class_vars, printf_command, _("\
2816 Formatted printing, like the C \"printf\" function.\n\
2817 Usage: printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2818 This supports most C printf format specifications, like %s, %d, etc."));
2819
2820 add_com ("output", class_vars, output_command, _("\
2821 Like \"print\" but don't put in value history and don't print newline.\n\
2822 Usage: output EXP\n\
2823 This is useful in user-defined commands."));
2824
2825 add_prefix_cmd ("set", class_vars, set_command, _("\
2826 Evaluate expression EXP and assign result to variable VAR.\n\
2827 Usage: set VAR = EXP\n\
2828 This uses assignment syntax appropriate for the current language\n\
2829 (VAR = EXP or VAR := EXP for example).\n\
2830 VAR may be a debugger \"convenience\" variable (names starting\n\
2831 with $), a register (a few standard names starting with $), or an actual\n\
2832 variable in the program being debugged. EXP is any valid expression.\n\
2833 Use \"set variable\" for variables with names identical to set subcommands.\n\
2834 \n\
2835 With a subcommand, this command modifies parts of the gdb environment.\n\
2836 You can see these environment settings with the \"show\" command."),
2837 &setlist, "set ", 1, &cmdlist);
2838 if (dbx_commands)
2839 add_com ("assign", class_vars, set_command, _("\
2840 Evaluate expression EXP and assign result to variable VAR.\n\
2841 Usage: assign VAR = EXP\n\
2842 This uses assignment syntax appropriate for the current language\n\
2843 (VAR = EXP or VAR := EXP for example).\n\
2844 VAR may be a debugger \"convenience\" variable (names starting\n\
2845 with $), a register (a few standard names starting with $), or an actual\n\
2846 variable in the program being debugged. EXP is any valid expression.\n\
2847 Use \"set variable\" for variables with names identical to set subcommands.\n\
2848 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2849 You can see these environment settings with the \"show\" command."));
2850
2851 /* "call" is the same as "set", but handy for dbx users to call fns. */
2852 c = add_com ("call", class_vars, call_command, _("\
2853 Call a function in the program.\n\
2854 Usage: call EXP\n\
2855 The argument is the function name and arguments, in the notation of the\n\
2856 current working language. The result is printed and saved in the value\n\
2857 history, if it is not void."));
2858 set_cmd_completer_handle_brkchars (c, print_command_completer);
2859
2860 add_cmd ("variable", class_vars, set_command, _("\
2861 Evaluate expression EXP and assign result to variable VAR.\n\
2862 Usage: set variable VAR = EXP\n\
2863 This uses assignment syntax appropriate for the current language\n\
2864 (VAR = EXP or VAR := EXP for example).\n\
2865 VAR may be a debugger \"convenience\" variable (names starting\n\
2866 with $), a register (a few standard names starting with $), or an actual\n\
2867 variable in the program being debugged. EXP is any valid expression.\n\
2868 This may usually be abbreviated to simply \"set\"."),
2869 &setlist);
2870 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2871
2872 const auto print_opts = make_value_print_options_def_group (nullptr);
2873
2874 static const std::string print_help = gdb::option::build_help (_("\
2875 Print value of expression EXP.\n\
2876 Usage: print [[OPTION]... --] [/FMT] [EXP]\n\
2877 \n\
2878 Options:\n\
2879 %OPTIONS%\n\
2880 \n\
2881 Note: because this command accepts arbitrary expressions, if you\n\
2882 specify any command option, you must use a double dash (\"--\")\n\
2883 to mark the end of option processing. E.g.: \"print -o -- myobj\".\n\
2884 \n\
2885 Variables accessible are those of the lexical environment of the selected\n\
2886 stack frame, plus all those whose scope is global or an entire file.\n\
2887 \n\
2888 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2889 $$NUM refers to NUM'th value back from the last one.\n\
2890 Names starting with $ refer to registers (with the values they would have\n\
2891 if the program were to return to the stack frame now selected, restoring\n\
2892 all registers saved by frames farther in) or else to debugger\n\
2893 \"convenience\" variables (any such name not a known register).\n\
2894 Use assignment expressions to give values to convenience variables.\n\
2895 \n\
2896 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2897 @ is a binary operator for treating consecutive data objects\n\
2898 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2899 element is FOO, whose second element is stored in the space following\n\
2900 where FOO is stored, etc. FOO must be an expression whose value\n\
2901 resides in memory.\n\
2902 \n\
2903 EXP may be preceded with /FMT, where FMT is a format letter\n\
2904 but no count or size letter (see \"x\" command)."),
2905 print_opts);
2906
2907 c = add_com ("print", class_vars, print_command, print_help.c_str ());
2908 set_cmd_completer_handle_brkchars (c, print_command_completer);
2909 add_com_alias ("p", "print", class_vars, 1);
2910 add_com_alias ("inspect", "print", class_vars, 1);
2911
2912 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2913 &max_symbolic_offset, _("\
2914 Set the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2915 Show the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2916 Tell GDB to only display the symbolic form of an address if the\n\
2917 offset between the closest earlier symbol and the address is less than\n\
2918 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2919 to always print the symbolic form of an address if any symbol precedes\n\
2920 it. Zero is equivalent to \"unlimited\"."),
2921 NULL,
2922 show_max_symbolic_offset,
2923 &setprintlist, &showprintlist);
2924 add_setshow_boolean_cmd ("symbol-filename", no_class,
2925 &print_symbol_filename, _("\
2926 Set printing of source filename and line number with <SYMBOL>."), _("\
2927 Show printing of source filename and line number with <SYMBOL>."), NULL,
2928 NULL,
2929 show_print_symbol_filename,
2930 &setprintlist, &showprintlist);
2931
2932 add_com ("eval", no_class, eval_command, _("\
2933 Construct a GDB command and then evaluate it.\n\
2934 Usage: eval \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2935 Convert the arguments to a string as \"printf\" would, but then\n\
2936 treat this string as a command line, and evaluate it."));
2937 }
This page took 0.093387 seconds and 5 git commands to generate.