* progspace.c (remove_program_space): Delete, unused.
[deliverable/binutils-gdb.git] / gdb / progspace.c
1 /* Program and address space management, for GDB, the GNU debugger.
2
3 Copyright (C) 2009-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "objfiles.h"
23 #include "arch-utils.h"
24 #include "gdbcore.h"
25 #include "solib.h"
26 #include "gdbthread.h"
27
28 /* The last program space number assigned. */
29 int last_program_space_num = 0;
30
31 /* The head of the program spaces list. */
32 struct program_space *program_spaces;
33
34 /* Pointer to the current program space. */
35 struct program_space *current_program_space;
36
37 /* The last address space number assigned. */
38 static int highest_address_space_num;
39
40 \f
41
42 /* Keep a registry of per-program_space data-pointers required by other GDB
43 modules. */
44
45 DEFINE_REGISTRY (program_space, REGISTRY_ACCESS_FIELD)
46
47 /* An address space. It is used for comparing if pspaces/inferior/threads
48 see the same address space and for associating caches to each address
49 space. */
50
51 struct address_space
52 {
53 int num;
54
55 /* Per aspace data-pointers required by other GDB modules. */
56 REGISTRY_FIELDS;
57 };
58
59 /* Keep a registry of per-address_space data-pointers required by other GDB
60 modules. */
61
62 DEFINE_REGISTRY (address_space, REGISTRY_ACCESS_FIELD)
63
64 \f
65
66 /* Create a new address space object, and add it to the list. */
67
68 struct address_space *
69 new_address_space (void)
70 {
71 struct address_space *aspace;
72
73 aspace = XCNEW (struct address_space);
74 aspace->num = ++highest_address_space_num;
75 address_space_alloc_data (aspace);
76
77 return aspace;
78 }
79
80 /* Maybe create a new address space object, and add it to the list, or
81 return a pointer to an existing address space, in case inferiors
82 share an address space on this target system. */
83
84 struct address_space *
85 maybe_new_address_space (void)
86 {
87 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
88
89 if (shared_aspace)
90 {
91 /* Just return the first in the list. */
92 return program_spaces->aspace;
93 }
94
95 return new_address_space ();
96 }
97
98 static void
99 free_address_space (struct address_space *aspace)
100 {
101 address_space_free_data (aspace);
102 xfree (aspace);
103 }
104
105 int
106 address_space_num (struct address_space *aspace)
107 {
108 return aspace->num;
109 }
110
111 /* Start counting over from scratch. */
112
113 static void
114 init_address_spaces (void)
115 {
116 highest_address_space_num = 0;
117 }
118
119 \f
120
121 /* Adds a new empty program space to the program space list, and binds
122 it to ASPACE. Returns the pointer to the new object. */
123
124 struct program_space *
125 add_program_space (struct address_space *aspace)
126 {
127 struct program_space *pspace;
128
129 pspace = XCNEW (struct program_space);
130
131 pspace->num = ++last_program_space_num;
132 pspace->aspace = aspace;
133
134 program_space_alloc_data (pspace);
135
136 pspace->next = program_spaces;
137 program_spaces = pspace;
138
139 return pspace;
140 }
141
142 /* Releases program space PSPACE, and all its contents (shared
143 libraries, objfiles, and any other references to the PSPACE in
144 other modules). It is an internal error to call this when PSPACE
145 is the current program space, since there should always be a
146 program space. */
147
148 static void
149 release_program_space (struct program_space *pspace)
150 {
151 struct cleanup *old_chain = save_current_program_space ();
152
153 gdb_assert (pspace != current_program_space);
154
155 set_current_program_space (pspace);
156
157 breakpoint_program_space_exit (pspace);
158 no_shared_libraries (NULL, 0);
159 exec_close ();
160 free_all_objfiles ();
161 if (!gdbarch_has_shared_address_space (target_gdbarch ()))
162 free_address_space (pspace->aspace);
163 resize_section_table (&pspace->target_sections,
164 -resize_section_table (&pspace->target_sections, 0));
165 clear_program_space_solib_cache (pspace);
166 /* Discard any data modules have associated with the PSPACE. */
167 program_space_free_data (pspace);
168 xfree (pspace);
169
170 do_cleanups (old_chain);
171 }
172
173 /* Copies program space SRC to DEST. Copies the main executable file,
174 and the main symbol file. Returns DEST. */
175
176 struct program_space *
177 clone_program_space (struct program_space *dest, struct program_space *src)
178 {
179 struct cleanup *old_chain;
180
181 old_chain = save_current_program_space ();
182
183 set_current_program_space (dest);
184
185 if (src->pspace_exec_filename != NULL)
186 exec_file_attach (src->pspace_exec_filename, 0);
187
188 if (src->symfile_object_file != NULL)
189 symbol_file_add_main (objfile_name (src->symfile_object_file), 0);
190
191 do_cleanups (old_chain);
192 return dest;
193 }
194
195 /* Sets PSPACE as the current program space. It is the caller's
196 responsibility to make sure that the currently selected
197 inferior/thread matches the selected program space. */
198
199 void
200 set_current_program_space (struct program_space *pspace)
201 {
202 if (current_program_space == pspace)
203 return;
204
205 gdb_assert (pspace != NULL);
206
207 current_program_space = pspace;
208
209 /* Different symbols change our view of the frame chain. */
210 reinit_frame_cache ();
211 }
212
213 /* A cleanups callback, helper for save_current_program_space
214 below. */
215
216 static void
217 restore_program_space (void *arg)
218 {
219 struct program_space *saved_pspace = arg;
220
221 set_current_program_space (saved_pspace);
222 }
223
224 /* Save the current program space so that it may be restored by a later
225 call to do_cleanups. Returns the struct cleanup pointer needed for
226 later doing the cleanup. */
227
228 struct cleanup *
229 save_current_program_space (void)
230 {
231 struct cleanup *old_chain = make_cleanup (restore_program_space,
232 current_program_space);
233
234 return old_chain;
235 }
236
237 /* Returns true iff there's no inferior bound to PSPACE. */
238
239 static int
240 pspace_empty_p (struct program_space *pspace)
241 {
242 if (find_inferior_for_program_space (pspace) != NULL)
243 return 0;
244
245 return 1;
246 }
247
248 /* Prune away automatically added program spaces that aren't required
249 anymore. */
250
251 void
252 prune_program_spaces (void)
253 {
254 struct program_space *ss, **ss_link;
255 struct program_space *current = current_program_space;
256
257 ss = program_spaces;
258 ss_link = &program_spaces;
259 while (ss)
260 {
261 if (ss == current || !pspace_empty_p (ss))
262 {
263 ss_link = &ss->next;
264 ss = *ss_link;
265 continue;
266 }
267
268 *ss_link = ss->next;
269 release_program_space (ss);
270 ss = *ss_link;
271 }
272 }
273
274 /* Prints the list of program spaces and their details on UIOUT. If
275 REQUESTED is not -1, it's the ID of the pspace that should be
276 printed. Otherwise, all spaces are printed. */
277
278 static void
279 print_program_space (struct ui_out *uiout, int requested)
280 {
281 struct program_space *pspace;
282 int count = 0;
283 struct cleanup *old_chain;
284
285 /* Might as well prune away unneeded ones, so the user doesn't even
286 seem them. */
287 prune_program_spaces ();
288
289 /* Compute number of pspaces we will print. */
290 ALL_PSPACES (pspace)
291 {
292 if (requested != -1 && pspace->num != requested)
293 continue;
294
295 ++count;
296 }
297
298 /* There should always be at least one. */
299 gdb_assert (count > 0);
300
301 old_chain = make_cleanup_ui_out_table_begin_end (uiout, 3, count, "pspaces");
302 ui_out_table_header (uiout, 1, ui_left, "current", "");
303 ui_out_table_header (uiout, 4, ui_left, "id", "Id");
304 ui_out_table_header (uiout, 17, ui_left, "exec", "Executable");
305 ui_out_table_body (uiout);
306
307 ALL_PSPACES (pspace)
308 {
309 struct cleanup *chain2;
310 struct inferior *inf;
311 int printed_header;
312
313 if (requested != -1 && requested != pspace->num)
314 continue;
315
316 chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
317
318 if (pspace == current_program_space)
319 ui_out_field_string (uiout, "current", "*");
320 else
321 ui_out_field_skip (uiout, "current");
322
323 ui_out_field_int (uiout, "id", pspace->num);
324
325 if (pspace->pspace_exec_filename)
326 ui_out_field_string (uiout, "exec", pspace->pspace_exec_filename);
327 else
328 ui_out_field_skip (uiout, "exec");
329
330 /* Print extra info that doesn't really fit in tabular form.
331 Currently, we print the list of inferiors bound to a pspace.
332 There can be more than one inferior bound to the same pspace,
333 e.g., both parent/child inferiors in a vfork, or, on targets
334 that share pspaces between inferiors. */
335 printed_header = 0;
336 for (inf = inferior_list; inf; inf = inf->next)
337 if (inf->pspace == pspace)
338 {
339 if (!printed_header)
340 {
341 printed_header = 1;
342 printf_filtered ("\n\tBound inferiors: ID %d (%s)",
343 inf->num,
344 target_pid_to_str (pid_to_ptid (inf->pid)));
345 }
346 else
347 printf_filtered (", ID %d (%s)",
348 inf->num,
349 target_pid_to_str (pid_to_ptid (inf->pid)));
350 }
351
352 ui_out_text (uiout, "\n");
353 do_cleanups (chain2);
354 }
355
356 do_cleanups (old_chain);
357 }
358
359 /* Boolean test for an already-known program space id. */
360
361 static int
362 valid_program_space_id (int num)
363 {
364 struct program_space *pspace;
365
366 ALL_PSPACES (pspace)
367 if (pspace->num == num)
368 return 1;
369
370 return 0;
371 }
372
373 /* If ARGS is NULL or empty, print information about all program
374 spaces. Otherwise, ARGS is a text representation of a LONG
375 indicating which the program space to print information about. */
376
377 static void
378 maintenance_info_program_spaces_command (char *args, int from_tty)
379 {
380 int requested = -1;
381
382 if (args && *args)
383 {
384 requested = parse_and_eval_long (args);
385 if (!valid_program_space_id (requested))
386 error (_("program space ID %d not known."), requested);
387 }
388
389 print_program_space (current_uiout, requested);
390 }
391
392 /* Simply returns the count of program spaces. */
393
394 int
395 number_of_program_spaces (void)
396 {
397 struct program_space *pspace;
398 int count = 0;
399
400 ALL_PSPACES (pspace)
401 count++;
402
403 return count;
404 }
405
406 /* Update all program spaces matching to address spaces. The user may
407 have created several program spaces, and loaded executables into
408 them before connecting to the target interface that will create the
409 inferiors. All that happens before GDB has a chance to know if the
410 inferiors will share an address space or not. Call this after
411 having connected to the target interface and having fetched the
412 target description, to fixup the program/address spaces mappings.
413
414 It is assumed that there are no bound inferiors yet, otherwise,
415 they'd be left with stale referenced to released aspaces. */
416
417 void
418 update_address_spaces (void)
419 {
420 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
421 struct program_space *pspace;
422 struct inferior *inf;
423
424 init_address_spaces ();
425
426 if (shared_aspace)
427 {
428 struct address_space *aspace = new_address_space ();
429
430 free_address_space (current_program_space->aspace);
431 ALL_PSPACES (pspace)
432 pspace->aspace = aspace;
433 }
434 else
435 ALL_PSPACES (pspace)
436 {
437 free_address_space (pspace->aspace);
438 pspace->aspace = new_address_space ();
439 }
440
441 for (inf = inferior_list; inf; inf = inf->next)
442 if (gdbarch_has_global_solist (target_gdbarch ()))
443 inf->aspace = maybe_new_address_space ();
444 else
445 inf->aspace = inf->pspace->aspace;
446 }
447
448 /* Save the current program space so that it may be restored by a later
449 call to do_cleanups. Returns the struct cleanup pointer needed for
450 later doing the cleanup. */
451
452 struct cleanup *
453 save_current_space_and_thread (void)
454 {
455 struct cleanup *old_chain;
456
457 /* If restoring to null thread, we need to restore the pspace as
458 well, hence, we need to save the current program space first. */
459 old_chain = save_current_program_space ();
460 /* There's no need to save the current inferior here.
461 That is handled by make_cleanup_restore_current_thread. */
462 make_cleanup_restore_current_thread ();
463
464 return old_chain;
465 }
466
467 /* Switches full context to program space PSPACE. Switches to the
468 first thread found bound to PSPACE. */
469
470 void
471 switch_to_program_space_and_thread (struct program_space *pspace)
472 {
473 struct inferior *inf;
474
475 inf = find_inferior_for_program_space (pspace);
476 if (inf != NULL)
477 {
478 struct thread_info *tp;
479
480 tp = any_live_thread_of_process (inf->pid);
481 if (tp != NULL)
482 {
483 switch_to_thread (tp->ptid);
484 /* Switching thread switches pspace implicitly. We're
485 done. */
486 return;
487 }
488 }
489
490 switch_to_thread (null_ptid);
491 set_current_program_space (pspace);
492 }
493
494 \f
495
496 /* See progspace.h. */
497
498 void
499 clear_program_space_solib_cache (struct program_space *pspace)
500 {
501 VEC_free (so_list_ptr, pspace->added_solibs);
502
503 free_char_ptr_vec (pspace->deleted_solibs);
504 pspace->deleted_solibs = NULL;
505 }
506
507 \f
508
509 void
510 initialize_progspace (void)
511 {
512 add_cmd ("program-spaces", class_maintenance,
513 maintenance_info_program_spaces_command,
514 _("Info about currently known program spaces."),
515 &maintenanceinfolist);
516
517 /* There's always one program space. Note that this function isn't
518 an automatic _initialize_foo function, since other
519 _initialize_foo routines may need to install their per-pspace
520 data keys. We can only allocate a progspace when all those
521 modules have done that. Do this before
522 initialize_current_architecture, because that accesses exec_bfd,
523 which in turn dereferences current_program_space. */
524 current_program_space = add_program_space (new_address_space ());
525 }
This page took 0.05185 seconds and 4 git commands to generate.