* gdb_assert.h (gdb_assert_not_reached): New macro.
[deliverable/binutils-gdb.git] / gdb / prologue-value.c
1 /* Prologue value handling for GDB.
2 Copyright 2003, 2004, 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "gdb_assert.h"
23 #include "prologue-value.h"
24 #include "regcache.h"
25
26 \f
27 /* Constructors. */
28
29 pv_t
30 pv_unknown (void)
31 {
32 pv_t v = { pvk_unknown, 0, 0 };
33
34 return v;
35 }
36
37
38 pv_t
39 pv_constant (CORE_ADDR k)
40 {
41 pv_t v;
42
43 v.kind = pvk_constant;
44 v.reg = -1; /* for debugging */
45 v.k = k;
46
47 return v;
48 }
49
50
51 pv_t
52 pv_register (int reg, CORE_ADDR k)
53 {
54 pv_t v;
55
56 v.kind = pvk_register;
57 v.reg = reg;
58 v.k = k;
59
60 return v;
61 }
62
63
64 \f
65 /* Arithmetic operations. */
66
67 /* If one of *A and *B is a constant, and the other isn't, swap the
68 values as necessary to ensure that *B is the constant. This can
69 reduce the number of cases we need to analyze in the functions
70 below. */
71 static void
72 constant_last (pv_t *a, pv_t *b)
73 {
74 if (a->kind == pvk_constant
75 && b->kind != pvk_constant)
76 {
77 pv_t temp = *a;
78 *a = *b;
79 *b = temp;
80 }
81 }
82
83
84 pv_t
85 pv_add (pv_t a, pv_t b)
86 {
87 constant_last (&a, &b);
88
89 /* We can add a constant to a register. */
90 if (a.kind == pvk_register
91 && b.kind == pvk_constant)
92 return pv_register (a.reg, a.k + b.k);
93
94 /* We can add a constant to another constant. */
95 else if (a.kind == pvk_constant
96 && b.kind == pvk_constant)
97 return pv_constant (a.k + b.k);
98
99 /* Anything else we don't know how to add. We don't have a
100 representation for, say, the sum of two registers, or a multiple
101 of a register's value (adding a register to itself). */
102 else
103 return pv_unknown ();
104 }
105
106
107 pv_t
108 pv_add_constant (pv_t v, CORE_ADDR k)
109 {
110 /* Rather than thinking of all the cases we can and can't handle,
111 we'll just let pv_add take care of that for us. */
112 return pv_add (v, pv_constant (k));
113 }
114
115
116 pv_t
117 pv_subtract (pv_t a, pv_t b)
118 {
119 /* This isn't quite the same as negating B and adding it to A, since
120 we don't have a representation for the negation of anything but a
121 constant. For example, we can't negate { pvk_register, R1, 10 },
122 but we do know that { pvk_register, R1, 10 } minus { pvk_register,
123 R1, 5 } is { pvk_constant, <ignored>, 5 }.
124
125 This means, for example, that we could subtract two stack
126 addresses; they're both relative to the original SP. Since the
127 frame pointer is set based on the SP, its value will be the
128 original SP plus some constant (probably zero), so we can use its
129 value just fine, too. */
130
131 constant_last (&a, &b);
132
133 /* We can subtract two constants. */
134 if (a.kind == pvk_constant
135 && b.kind == pvk_constant)
136 return pv_constant (a.k - b.k);
137
138 /* We can subtract a constant from a register. */
139 else if (a.kind == pvk_register
140 && b.kind == pvk_constant)
141 return pv_register (a.reg, a.k - b.k);
142
143 /* We can subtract a register from itself, yielding a constant. */
144 else if (a.kind == pvk_register
145 && b.kind == pvk_register
146 && a.reg == b.reg)
147 return pv_constant (a.k - b.k);
148
149 /* We don't know how to subtract anything else. */
150 else
151 return pv_unknown ();
152 }
153
154
155 pv_t
156 pv_logical_and (pv_t a, pv_t b)
157 {
158 constant_last (&a, &b);
159
160 /* We can 'and' two constants. */
161 if (a.kind == pvk_constant
162 && b.kind == pvk_constant)
163 return pv_constant (a.k & b.k);
164
165 /* We can 'and' anything with the constant zero. */
166 else if (b.kind == pvk_constant
167 && b.k == 0)
168 return pv_constant (0);
169
170 /* We can 'and' anything with ~0. */
171 else if (b.kind == pvk_constant
172 && b.k == ~ (CORE_ADDR) 0)
173 return a;
174
175 /* We can 'and' a register with itself. */
176 else if (a.kind == pvk_register
177 && b.kind == pvk_register
178 && a.reg == b.reg
179 && a.k == b.k)
180 return a;
181
182 /* Otherwise, we don't know. */
183 else
184 return pv_unknown ();
185 }
186
187
188 \f
189 /* Examining prologue values. */
190
191 int
192 pv_is_identical (pv_t a, pv_t b)
193 {
194 if (a.kind != b.kind)
195 return 0;
196
197 switch (a.kind)
198 {
199 case pvk_unknown:
200 return 1;
201 case pvk_constant:
202 return (a.k == b.k);
203 case pvk_register:
204 return (a.reg == b.reg && a.k == b.k);
205 default:
206 gdb_assert_not_reached ("unexpected prologue value kind");
207 }
208 }
209
210
211 int
212 pv_is_constant (pv_t a)
213 {
214 return (a.kind == pvk_constant);
215 }
216
217
218 int
219 pv_is_register (pv_t a, int r)
220 {
221 return (a.kind == pvk_register
222 && a.reg == r);
223 }
224
225
226 int
227 pv_is_register_k (pv_t a, int r, CORE_ADDR k)
228 {
229 return (a.kind == pvk_register
230 && a.reg == r
231 && a.k == k);
232 }
233
234
235 enum pv_boolean
236 pv_is_array_ref (pv_t addr, CORE_ADDR size,
237 pv_t array_addr, CORE_ADDR array_len,
238 CORE_ADDR elt_size,
239 int *i)
240 {
241 /* Note that, since .k is a CORE_ADDR, and CORE_ADDR is unsigned, if
242 addr is *before* the start of the array, then this isn't going to
243 be negative... */
244 pv_t offset = pv_subtract (addr, array_addr);
245
246 if (offset.kind == pvk_constant)
247 {
248 /* This is a rather odd test. We want to know if the SIZE bytes
249 at ADDR don't overlap the array at all, so you'd expect it to
250 be an || expression: "if we're completely before || we're
251 completely after". But with unsigned arithmetic, things are
252 different: since it's a number circle, not a number line, the
253 right values for offset.k are actually one contiguous range. */
254 if (offset.k <= -size
255 && offset.k >= array_len * elt_size)
256 return pv_definite_no;
257 else if (offset.k % elt_size != 0
258 || size != elt_size)
259 return pv_maybe;
260 else
261 {
262 *i = offset.k / elt_size;
263 return pv_definite_yes;
264 }
265 }
266 else
267 return pv_maybe;
268 }
269
270
271 \f
272 /* Areas. */
273
274
275 /* A particular value known to be stored in an area.
276
277 Entries form a ring, sorted by unsigned offset from the area's base
278 register's value. Since entries can straddle the wrap-around point,
279 unsigned offsets form a circle, not a number line, so the list
280 itself is structured the same way --- there is no inherent head.
281 The entry with the lowest offset simply follows the entry with the
282 highest offset. Entries may abut, but never overlap. The area's
283 'entry' pointer points to an arbitrary node in the ring. */
284 struct area_entry
285 {
286 /* Links in the doubly-linked ring. */
287 struct area_entry *prev, *next;
288
289 /* Offset of this entry's address from the value of the base
290 register. */
291 CORE_ADDR offset;
292
293 /* The size of this entry. Note that an entry may wrap around from
294 the end of the address space to the beginning. */
295 CORE_ADDR size;
296
297 /* The value stored here. */
298 pv_t value;
299 };
300
301
302 struct pv_area
303 {
304 /* This area's base register. */
305 int base_reg;
306
307 /* The mask to apply to addresses, to make the wrap-around happen at
308 the right place. */
309 CORE_ADDR addr_mask;
310
311 /* An element of the doubly-linked ring of entries, or zero if we
312 have none. */
313 struct area_entry *entry;
314 };
315
316
317 struct pv_area *
318 make_pv_area (int base_reg, int addr_bit)
319 {
320 struct pv_area *a = (struct pv_area *) xmalloc (sizeof (*a));
321
322 memset (a, 0, sizeof (*a));
323
324 a->base_reg = base_reg;
325 a->entry = 0;
326
327 /* Remember that shift amounts equal to the type's width are
328 undefined. */
329 a->addr_mask = ((((CORE_ADDR) 1 << (addr_bit - 1)) - 1) << 1) | 1;
330
331 return a;
332 }
333
334
335 /* Delete all entries from AREA. */
336 static void
337 clear_entries (struct pv_area *area)
338 {
339 struct area_entry *e = area->entry;
340
341 if (e)
342 {
343 /* This needs to be a do-while loop, in order to actually
344 process the node being checked for in the terminating
345 condition. */
346 do
347 {
348 struct area_entry *next = e->next;
349
350 xfree (e);
351 e = next;
352 }
353 while (e != area->entry);
354
355 area->entry = 0;
356 }
357 }
358
359
360 void
361 free_pv_area (struct pv_area *area)
362 {
363 clear_entries (area);
364 xfree (area);
365 }
366
367
368 static void
369 do_free_pv_area_cleanup (void *arg)
370 {
371 free_pv_area ((struct pv_area *) arg);
372 }
373
374
375 struct cleanup *
376 make_cleanup_free_pv_area (struct pv_area *area)
377 {
378 return make_cleanup (do_free_pv_area_cleanup, (void *) area);
379 }
380
381
382 int
383 pv_area_store_would_trash (struct pv_area *area, pv_t addr)
384 {
385 /* It may seem odd that pvk_constant appears here --- after all,
386 that's the case where we know the most about the address! But
387 pv_areas are always relative to a register, and we don't know the
388 value of the register, so we can't compare entry addresses to
389 constants. */
390 return (addr.kind == pvk_unknown
391 || addr.kind == pvk_constant
392 || (addr.kind == pvk_register && addr.reg != area->base_reg));
393 }
394
395
396 /* Return a pointer to the first entry we hit in AREA starting at
397 OFFSET and going forward.
398
399 This may return zero, if AREA has no entries.
400
401 And since the entries are a ring, this may return an entry that
402 entirely preceeds OFFSET. This is the correct behavior: depending
403 on the sizes involved, we could still overlap such an area, with
404 wrap-around. */
405 static struct area_entry *
406 find_entry (struct pv_area *area, CORE_ADDR offset)
407 {
408 struct area_entry *e = area->entry;
409
410 if (! e)
411 return 0;
412
413 /* If the next entry would be better than the current one, then scan
414 forward. Since we use '<' in this loop, it always terminates.
415
416 Note that, even setting aside the addr_mask stuff, we must not
417 simplify this, in high school algebra fashion, to
418 (e->next->offset < e->offset), because of the way < interacts
419 with wrap-around. We have to subtract offset from both sides to
420 make sure both things we're comparing are on the same side of the
421 discontinuity. */
422 while (((e->next->offset - offset) & area->addr_mask)
423 < ((e->offset - offset) & area->addr_mask))
424 e = e->next;
425
426 /* If the previous entry would be better than the current one, then
427 scan backwards. */
428 while (((e->prev->offset - offset) & area->addr_mask)
429 < ((e->offset - offset) & area->addr_mask))
430 e = e->prev;
431
432 /* In case there's some locality to the searches, set the area's
433 pointer to the entry we've found. */
434 area->entry = e;
435
436 return e;
437 }
438
439
440 /* Return non-zero if the SIZE bytes at OFFSET would overlap ENTRY;
441 return zero otherwise. AREA is the area to which ENTRY belongs. */
442 static int
443 overlaps (struct pv_area *area,
444 struct area_entry *entry,
445 CORE_ADDR offset,
446 CORE_ADDR size)
447 {
448 /* Think carefully about wrap-around before simplifying this. */
449 return (((entry->offset - offset) & area->addr_mask) < size
450 || ((offset - entry->offset) & area->addr_mask) < entry->size);
451 }
452
453
454 void
455 pv_area_store (struct pv_area *area,
456 pv_t addr,
457 CORE_ADDR size,
458 pv_t value)
459 {
460 /* Remove any (potentially) overlapping entries. */
461 if (pv_area_store_would_trash (area, addr))
462 clear_entries (area);
463 else
464 {
465 CORE_ADDR offset = addr.k;
466 struct area_entry *e = find_entry (area, offset);
467
468 /* Delete all entries that we would overlap. */
469 while (e && overlaps (area, e, offset, size))
470 {
471 struct area_entry *next = (e->next == e) ? 0 : e->next;
472
473 e->prev->next = e->next;
474 e->next->prev = e->prev;
475
476 xfree (e);
477 e = next;
478 }
479
480 /* Move the area's pointer to the next remaining entry. This
481 will also zero the pointer if we've deleted all the entries. */
482 area->entry = e;
483 }
484
485 /* Now, there are no entries overlapping us, and area->entry is
486 either zero or pointing at the closest entry after us. We can
487 just insert ourselves before that.
488
489 But if we're storing an unknown value, don't bother --- that's
490 the default. */
491 if (value.kind == pvk_unknown)
492 return;
493 else
494 {
495 CORE_ADDR offset = addr.k;
496 struct area_entry *e = (struct area_entry *) xmalloc (sizeof (*e));
497
498 e->offset = offset;
499 e->size = size;
500 e->value = value;
501
502 if (area->entry)
503 {
504 e->prev = area->entry->prev;
505 e->next = area->entry;
506 e->prev->next = e->next->prev = e;
507 }
508 else
509 {
510 e->prev = e->next = e;
511 area->entry = e;
512 }
513 }
514 }
515
516
517 pv_t
518 pv_area_fetch (struct pv_area *area, pv_t addr, CORE_ADDR size)
519 {
520 /* If we have no entries, or we can't decide how ADDR relates to the
521 entries we do have, then the value is unknown. */
522 if (! area->entry
523 || pv_area_store_would_trash (area, addr))
524 return pv_unknown ();
525 else
526 {
527 CORE_ADDR offset = addr.k;
528 struct area_entry *e = find_entry (area, offset);
529
530 /* If this entry exactly matches what we're looking for, then
531 we're set. Otherwise, say it's unknown. */
532 if (e->offset == offset && e->size == size)
533 return e->value;
534 else
535 return pv_unknown ();
536 }
537 }
538
539
540 int
541 pv_area_find_reg (struct pv_area *area,
542 struct gdbarch *gdbarch,
543 int reg,
544 CORE_ADDR *offset_p)
545 {
546 struct area_entry *e = area->entry;
547
548 if (e)
549 do
550 {
551 if (e->value.kind == pvk_register
552 && e->value.reg == reg
553 && e->value.k == 0
554 && e->size == register_size (gdbarch, reg))
555 {
556 if (offset_p)
557 *offset_p = e->offset;
558 return 1;
559 }
560
561 e = e->next;
562 }
563 while (e != area->entry);
564
565 return 0;
566 }
567
568
569 void
570 pv_area_scan (struct pv_area *area,
571 void (*func) (void *closure,
572 pv_t addr,
573 CORE_ADDR size,
574 pv_t value),
575 void *closure)
576 {
577 struct area_entry *e = area->entry;
578 pv_t addr;
579
580 addr.kind = pvk_register;
581 addr.reg = area->base_reg;
582
583 if (e)
584 do
585 {
586 addr.k = e->offset;
587 func (closure, addr, e->size, e->value);
588 e = e->next;
589 }
590 while (e != area->entry);
591 }
This page took 0.041567 seconds and 5 git commands to generate.