e4ff6a4e438694858bcf2eaec649f5fc03cc7886
[deliverable/binutils-gdb.git] / gdb / record-full.c
1 /* Process record and replay target for GDB, the GNU debugger.
2
3 Copyright (C) 2013-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "regcache.h"
23 #include "gdbthread.h"
24 #include "event-top.h"
25 #include "completer.h"
26 #include "arch-utils.h"
27 #include "gdbcore.h"
28 #include "exec.h"
29 #include "record.h"
30 #include "record-full.h"
31 #include "elf-bfd.h"
32 #include "gcore.h"
33 #include "event-loop.h"
34 #include "inf-loop.h"
35 #include "gdb_bfd.h"
36 #include "observer.h"
37 #include "infrun.h"
38
39 #include <signal.h>
40
41 /* This module implements "target record-full", also known as "process
42 record and replay". This target sits on top of a "normal" target
43 (a target that "has execution"), and provides a record and replay
44 functionality, including reverse debugging.
45
46 Target record has two modes: recording, and replaying.
47
48 In record mode, we intercept the to_resume and to_wait methods.
49 Whenever gdb resumes the target, we run the target in single step
50 mode, and we build up an execution log in which, for each executed
51 instruction, we record all changes in memory and register state.
52 This is invisible to the user, to whom it just looks like an
53 ordinary debugging session (except for performance degredation).
54
55 In replay mode, instead of actually letting the inferior run as a
56 process, we simulate its execution by playing back the recorded
57 execution log. For each instruction in the log, we simulate the
58 instruction's side effects by duplicating the changes that it would
59 have made on memory and registers. */
60
61 #define DEFAULT_RECORD_FULL_INSN_MAX_NUM 200000
62
63 #define RECORD_FULL_IS_REPLAY \
64 (record_full_list->next || execution_direction == EXEC_REVERSE)
65
66 #define RECORD_FULL_FILE_MAGIC netorder32(0x20091016)
67
68 /* These are the core structs of the process record functionality.
69
70 A record_full_entry is a record of the value change of a register
71 ("record_full_reg") or a part of memory ("record_full_mem"). And each
72 instruction must have a struct record_full_entry ("record_full_end")
73 that indicates that this is the last struct record_full_entry of this
74 instruction.
75
76 Each struct record_full_entry is linked to "record_full_list" by "prev"
77 and "next" pointers. */
78
79 struct record_full_mem_entry
80 {
81 CORE_ADDR addr;
82 int len;
83 /* Set this flag if target memory for this entry
84 can no longer be accessed. */
85 int mem_entry_not_accessible;
86 union
87 {
88 gdb_byte *ptr;
89 gdb_byte buf[sizeof (gdb_byte *)];
90 } u;
91 };
92
93 struct record_full_reg_entry
94 {
95 unsigned short num;
96 unsigned short len;
97 union
98 {
99 gdb_byte *ptr;
100 gdb_byte buf[2 * sizeof (gdb_byte *)];
101 } u;
102 };
103
104 struct record_full_end_entry
105 {
106 enum gdb_signal sigval;
107 ULONGEST insn_num;
108 };
109
110 enum record_full_type
111 {
112 record_full_end = 0,
113 record_full_reg,
114 record_full_mem
115 };
116
117 /* This is the data structure that makes up the execution log.
118
119 The execution log consists of a single linked list of entries
120 of type "struct record_full_entry". It is doubly linked so that it
121 can be traversed in either direction.
122
123 The start of the list is anchored by a struct called
124 "record_full_first". The pointer "record_full_list" either points
125 to the last entry that was added to the list (in record mode), or to
126 the next entry in the list that will be executed (in replay mode).
127
128 Each list element (struct record_full_entry), in addition to next
129 and prev pointers, consists of a union of three entry types: mem,
130 reg, and end. A field called "type" determines which entry type is
131 represented by a given list element.
132
133 Each instruction that is added to the execution log is represented
134 by a variable number of list elements ('entries'). The instruction
135 will have one "reg" entry for each register that is changed by
136 executing the instruction (including the PC in every case). It
137 will also have one "mem" entry for each memory change. Finally,
138 each instruction will have an "end" entry that separates it from
139 the changes associated with the next instruction. */
140
141 struct record_full_entry
142 {
143 struct record_full_entry *prev;
144 struct record_full_entry *next;
145 enum record_full_type type;
146 union
147 {
148 /* reg */
149 struct record_full_reg_entry reg;
150 /* mem */
151 struct record_full_mem_entry mem;
152 /* end */
153 struct record_full_end_entry end;
154 } u;
155 };
156
157 /* If true, query if PREC cannot record memory
158 change of next instruction. */
159 int record_full_memory_query = 0;
160
161 struct record_full_core_buf_entry
162 {
163 struct record_full_core_buf_entry *prev;
164 struct target_section *p;
165 bfd_byte *buf;
166 };
167
168 /* Record buf with core target. */
169 static gdb_byte *record_full_core_regbuf = NULL;
170 static struct target_section *record_full_core_start;
171 static struct target_section *record_full_core_end;
172 static struct record_full_core_buf_entry *record_full_core_buf_list = NULL;
173
174 /* The following variables are used for managing the linked list that
175 represents the execution log.
176
177 record_full_first is the anchor that holds down the beginning of
178 the list.
179
180 record_full_list serves two functions:
181 1) In record mode, it anchors the end of the list.
182 2) In replay mode, it traverses the list and points to
183 the next instruction that must be emulated.
184
185 record_full_arch_list_head and record_full_arch_list_tail are used
186 to manage a separate list, which is used to build up the change
187 elements of the currently executing instruction during record mode.
188 When this instruction has been completely annotated in the "arch
189 list", it will be appended to the main execution log. */
190
191 static struct record_full_entry record_full_first;
192 static struct record_full_entry *record_full_list = &record_full_first;
193 static struct record_full_entry *record_full_arch_list_head = NULL;
194 static struct record_full_entry *record_full_arch_list_tail = NULL;
195
196 /* 1 ask user. 0 auto delete the last struct record_full_entry. */
197 static int record_full_stop_at_limit = 1;
198 /* Maximum allowed number of insns in execution log. */
199 static unsigned int record_full_insn_max_num
200 = DEFAULT_RECORD_FULL_INSN_MAX_NUM;
201 /* Actual count of insns presently in execution log. */
202 static unsigned int record_full_insn_num = 0;
203 /* Count of insns logged so far (may be larger
204 than count of insns presently in execution log). */
205 static ULONGEST record_full_insn_count;
206
207 /* The target_ops of process record. */
208 static struct target_ops record_full_ops;
209 static struct target_ops record_full_core_ops;
210
211 /* See record-full.h. */
212
213 int
214 record_full_is_used (void)
215 {
216 struct target_ops *t;
217
218 t = find_record_target ();
219 return (t == &record_full_ops
220 || t == &record_full_core_ops);
221 }
222
223
224 /* Command lists for "set/show record full". */
225 static struct cmd_list_element *set_record_full_cmdlist;
226 static struct cmd_list_element *show_record_full_cmdlist;
227
228 /* Command list for "record full". */
229 static struct cmd_list_element *record_full_cmdlist;
230
231 static void record_full_goto_insn (struct record_full_entry *entry,
232 enum exec_direction_kind dir);
233 static void record_full_save (struct target_ops *self,
234 const char *recfilename);
235
236 /* Alloc and free functions for record_full_reg, record_full_mem, and
237 record_full_end entries. */
238
239 /* Alloc a record_full_reg record entry. */
240
241 static inline struct record_full_entry *
242 record_full_reg_alloc (struct regcache *regcache, int regnum)
243 {
244 struct record_full_entry *rec;
245 struct gdbarch *gdbarch = get_regcache_arch (regcache);
246
247 rec = XCNEW (struct record_full_entry);
248 rec->type = record_full_reg;
249 rec->u.reg.num = regnum;
250 rec->u.reg.len = register_size (gdbarch, regnum);
251 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
252 rec->u.reg.u.ptr = (gdb_byte *) xmalloc (rec->u.reg.len);
253
254 return rec;
255 }
256
257 /* Free a record_full_reg record entry. */
258
259 static inline void
260 record_full_reg_release (struct record_full_entry *rec)
261 {
262 gdb_assert (rec->type == record_full_reg);
263 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
264 xfree (rec->u.reg.u.ptr);
265 xfree (rec);
266 }
267
268 /* Alloc a record_full_mem record entry. */
269
270 static inline struct record_full_entry *
271 record_full_mem_alloc (CORE_ADDR addr, int len)
272 {
273 struct record_full_entry *rec;
274
275 rec = XCNEW (struct record_full_entry);
276 rec->type = record_full_mem;
277 rec->u.mem.addr = addr;
278 rec->u.mem.len = len;
279 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
280 rec->u.mem.u.ptr = (gdb_byte *) xmalloc (len);
281
282 return rec;
283 }
284
285 /* Free a record_full_mem record entry. */
286
287 static inline void
288 record_full_mem_release (struct record_full_entry *rec)
289 {
290 gdb_assert (rec->type == record_full_mem);
291 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
292 xfree (rec->u.mem.u.ptr);
293 xfree (rec);
294 }
295
296 /* Alloc a record_full_end record entry. */
297
298 static inline struct record_full_entry *
299 record_full_end_alloc (void)
300 {
301 struct record_full_entry *rec;
302
303 rec = XCNEW (struct record_full_entry);
304 rec->type = record_full_end;
305
306 return rec;
307 }
308
309 /* Free a record_full_end record entry. */
310
311 static inline void
312 record_full_end_release (struct record_full_entry *rec)
313 {
314 xfree (rec);
315 }
316
317 /* Free one record entry, any type.
318 Return entry->type, in case caller wants to know. */
319
320 static inline enum record_full_type
321 record_full_entry_release (struct record_full_entry *rec)
322 {
323 enum record_full_type type = rec->type;
324
325 switch (type) {
326 case record_full_reg:
327 record_full_reg_release (rec);
328 break;
329 case record_full_mem:
330 record_full_mem_release (rec);
331 break;
332 case record_full_end:
333 record_full_end_release (rec);
334 break;
335 }
336 return type;
337 }
338
339 /* Free all record entries in list pointed to by REC. */
340
341 static void
342 record_full_list_release (struct record_full_entry *rec)
343 {
344 if (!rec)
345 return;
346
347 while (rec->next)
348 rec = rec->next;
349
350 while (rec->prev)
351 {
352 rec = rec->prev;
353 record_full_entry_release (rec->next);
354 }
355
356 if (rec == &record_full_first)
357 {
358 record_full_insn_num = 0;
359 record_full_first.next = NULL;
360 }
361 else
362 record_full_entry_release (rec);
363 }
364
365 /* Free all record entries forward of the given list position. */
366
367 static void
368 record_full_list_release_following (struct record_full_entry *rec)
369 {
370 struct record_full_entry *tmp = rec->next;
371
372 rec->next = NULL;
373 while (tmp)
374 {
375 rec = tmp->next;
376 if (record_full_entry_release (tmp) == record_full_end)
377 {
378 record_full_insn_num--;
379 record_full_insn_count--;
380 }
381 tmp = rec;
382 }
383 }
384
385 /* Delete the first instruction from the beginning of the log, to make
386 room for adding a new instruction at the end of the log.
387
388 Note -- this function does not modify record_full_insn_num. */
389
390 static void
391 record_full_list_release_first (void)
392 {
393 struct record_full_entry *tmp;
394
395 if (!record_full_first.next)
396 return;
397
398 /* Loop until a record_full_end. */
399 while (1)
400 {
401 /* Cut record_full_first.next out of the linked list. */
402 tmp = record_full_first.next;
403 record_full_first.next = tmp->next;
404 tmp->next->prev = &record_full_first;
405
406 /* tmp is now isolated, and can be deleted. */
407 if (record_full_entry_release (tmp) == record_full_end)
408 break; /* End loop at first record_full_end. */
409
410 if (!record_full_first.next)
411 {
412 gdb_assert (record_full_insn_num == 1);
413 break; /* End loop when list is empty. */
414 }
415 }
416 }
417
418 /* Add a struct record_full_entry to record_full_arch_list. */
419
420 static void
421 record_full_arch_list_add (struct record_full_entry *rec)
422 {
423 if (record_debug > 1)
424 fprintf_unfiltered (gdb_stdlog,
425 "Process record: record_full_arch_list_add %s.\n",
426 host_address_to_string (rec));
427
428 if (record_full_arch_list_tail)
429 {
430 record_full_arch_list_tail->next = rec;
431 rec->prev = record_full_arch_list_tail;
432 record_full_arch_list_tail = rec;
433 }
434 else
435 {
436 record_full_arch_list_head = rec;
437 record_full_arch_list_tail = rec;
438 }
439 }
440
441 /* Return the value storage location of a record entry. */
442 static inline gdb_byte *
443 record_full_get_loc (struct record_full_entry *rec)
444 {
445 switch (rec->type) {
446 case record_full_mem:
447 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
448 return rec->u.mem.u.ptr;
449 else
450 return rec->u.mem.u.buf;
451 case record_full_reg:
452 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
453 return rec->u.reg.u.ptr;
454 else
455 return rec->u.reg.u.buf;
456 case record_full_end:
457 default:
458 gdb_assert_not_reached ("unexpected record_full_entry type");
459 return NULL;
460 }
461 }
462
463 /* Record the value of a register NUM to record_full_arch_list. */
464
465 int
466 record_full_arch_list_add_reg (struct regcache *regcache, int regnum)
467 {
468 struct record_full_entry *rec;
469
470 if (record_debug > 1)
471 fprintf_unfiltered (gdb_stdlog,
472 "Process record: add register num = %d to "
473 "record list.\n",
474 regnum);
475
476 rec = record_full_reg_alloc (regcache, regnum);
477
478 regcache_raw_read (regcache, regnum, record_full_get_loc (rec));
479
480 record_full_arch_list_add (rec);
481
482 return 0;
483 }
484
485 /* Record the value of a region of memory whose address is ADDR and
486 length is LEN to record_full_arch_list. */
487
488 int
489 record_full_arch_list_add_mem (CORE_ADDR addr, int len)
490 {
491 struct record_full_entry *rec;
492
493 if (record_debug > 1)
494 fprintf_unfiltered (gdb_stdlog,
495 "Process record: add mem addr = %s len = %d to "
496 "record list.\n",
497 paddress (target_gdbarch (), addr), len);
498
499 if (!addr) /* FIXME: Why? Some arch must permit it... */
500 return 0;
501
502 rec = record_full_mem_alloc (addr, len);
503
504 if (record_read_memory (target_gdbarch (), addr,
505 record_full_get_loc (rec), len))
506 {
507 record_full_mem_release (rec);
508 return -1;
509 }
510
511 record_full_arch_list_add (rec);
512
513 return 0;
514 }
515
516 /* Add a record_full_end type struct record_full_entry to
517 record_full_arch_list. */
518
519 int
520 record_full_arch_list_add_end (void)
521 {
522 struct record_full_entry *rec;
523
524 if (record_debug > 1)
525 fprintf_unfiltered (gdb_stdlog,
526 "Process record: add end to arch list.\n");
527
528 rec = record_full_end_alloc ();
529 rec->u.end.sigval = GDB_SIGNAL_0;
530 rec->u.end.insn_num = ++record_full_insn_count;
531
532 record_full_arch_list_add (rec);
533
534 return 0;
535 }
536
537 static void
538 record_full_check_insn_num (void)
539 {
540 if (record_full_insn_num == record_full_insn_max_num)
541 {
542 /* Ask user what to do. */
543 if (record_full_stop_at_limit)
544 {
545 if (!yquery (_("Do you want to auto delete previous execution "
546 "log entries when record/replay buffer becomes "
547 "full (record full stop-at-limit)?")))
548 error (_("Process record: stopped by user."));
549 record_full_stop_at_limit = 0;
550 }
551 }
552 }
553
554 static void
555 record_full_arch_list_cleanups (void *ignore)
556 {
557 record_full_list_release (record_full_arch_list_tail);
558 }
559
560 /* Before inferior step (when GDB record the running message, inferior
561 only can step), GDB will call this function to record the values to
562 record_full_list. This function will call gdbarch_process_record to
563 record the running message of inferior and set them to
564 record_full_arch_list, and add it to record_full_list. */
565
566 static int
567 record_full_message (struct regcache *regcache, enum gdb_signal signal)
568 {
569 int ret;
570 struct gdbarch *gdbarch = get_regcache_arch (regcache);
571 struct cleanup *old_cleanups
572 = make_cleanup (record_full_arch_list_cleanups, 0);
573
574 record_full_arch_list_head = NULL;
575 record_full_arch_list_tail = NULL;
576
577 /* Check record_full_insn_num. */
578 record_full_check_insn_num ();
579
580 /* If gdb sends a signal value to target_resume,
581 save it in the 'end' field of the previous instruction.
582
583 Maybe process record should record what really happened,
584 rather than what gdb pretends has happened.
585
586 So if Linux delivered the signal to the child process during
587 the record mode, we will record it and deliver it again in
588 the replay mode.
589
590 If user says "ignore this signal" during the record mode, then
591 it will be ignored again during the replay mode (no matter if
592 the user says something different, like "deliver this signal"
593 during the replay mode).
594
595 User should understand that nothing he does during the replay
596 mode will change the behavior of the child. If he tries,
597 then that is a user error.
598
599 But we should still deliver the signal to gdb during the replay,
600 if we delivered it during the recording. Therefore we should
601 record the signal during record_full_wait, not
602 record_full_resume. */
603 if (record_full_list != &record_full_first) /* FIXME better way to check */
604 {
605 gdb_assert (record_full_list->type == record_full_end);
606 record_full_list->u.end.sigval = signal;
607 }
608
609 if (signal == GDB_SIGNAL_0
610 || !gdbarch_process_record_signal_p (gdbarch))
611 ret = gdbarch_process_record (gdbarch,
612 regcache,
613 regcache_read_pc (regcache));
614 else
615 ret = gdbarch_process_record_signal (gdbarch,
616 regcache,
617 signal);
618
619 if (ret > 0)
620 error (_("Process record: inferior program stopped."));
621 if (ret < 0)
622 error (_("Process record: failed to record execution log."));
623
624 discard_cleanups (old_cleanups);
625
626 record_full_list->next = record_full_arch_list_head;
627 record_full_arch_list_head->prev = record_full_list;
628 record_full_list = record_full_arch_list_tail;
629
630 if (record_full_insn_num == record_full_insn_max_num)
631 record_full_list_release_first ();
632 else
633 record_full_insn_num++;
634
635 return 1;
636 }
637
638 struct record_full_message_args {
639 struct regcache *regcache;
640 enum gdb_signal signal;
641 };
642
643 static int
644 record_full_message_wrapper (void *args)
645 {
646 struct record_full_message_args *record_full_args
647 = (struct record_full_message_args *) args;
648
649 return record_full_message (record_full_args->regcache,
650 record_full_args->signal);
651 }
652
653 static int
654 record_full_message_wrapper_safe (struct regcache *regcache,
655 enum gdb_signal signal)
656 {
657 struct record_full_message_args args;
658
659 args.regcache = regcache;
660 args.signal = signal;
661
662 return catch_errors (record_full_message_wrapper, &args, "",
663 RETURN_MASK_ALL);
664 }
665
666 /* Set to 1 if record_full_store_registers and record_full_xfer_partial
667 doesn't need record. */
668
669 static int record_full_gdb_operation_disable = 0;
670
671 struct cleanup *
672 record_full_gdb_operation_disable_set (void)
673 {
674 struct cleanup *old_cleanups = NULL;
675
676 old_cleanups =
677 make_cleanup_restore_integer (&record_full_gdb_operation_disable);
678 record_full_gdb_operation_disable = 1;
679
680 return old_cleanups;
681 }
682
683 /* Flag set to TRUE for target_stopped_by_watchpoint. */
684 static enum target_stop_reason record_full_stop_reason
685 = TARGET_STOPPED_BY_NO_REASON;
686
687 /* Execute one instruction from the record log. Each instruction in
688 the log will be represented by an arbitrary sequence of register
689 entries and memory entries, followed by an 'end' entry. */
690
691 static inline void
692 record_full_exec_insn (struct regcache *regcache,
693 struct gdbarch *gdbarch,
694 struct record_full_entry *entry)
695 {
696 switch (entry->type)
697 {
698 case record_full_reg: /* reg */
699 {
700 gdb_byte reg[MAX_REGISTER_SIZE];
701
702 if (record_debug > 1)
703 fprintf_unfiltered (gdb_stdlog,
704 "Process record: record_full_reg %s to "
705 "inferior num = %d.\n",
706 host_address_to_string (entry),
707 entry->u.reg.num);
708
709 regcache_cooked_read (regcache, entry->u.reg.num, reg);
710 regcache_cooked_write (regcache, entry->u.reg.num,
711 record_full_get_loc (entry));
712 memcpy (record_full_get_loc (entry), reg, entry->u.reg.len);
713 }
714 break;
715
716 case record_full_mem: /* mem */
717 {
718 /* Nothing to do if the entry is flagged not_accessible. */
719 if (!entry->u.mem.mem_entry_not_accessible)
720 {
721 gdb_byte *mem = (gdb_byte *) xmalloc (entry->u.mem.len);
722 struct cleanup *cleanup = make_cleanup (xfree, mem);
723
724 if (record_debug > 1)
725 fprintf_unfiltered (gdb_stdlog,
726 "Process record: record_full_mem %s to "
727 "inferior addr = %s len = %d.\n",
728 host_address_to_string (entry),
729 paddress (gdbarch, entry->u.mem.addr),
730 entry->u.mem.len);
731
732 if (record_read_memory (gdbarch,
733 entry->u.mem.addr, mem, entry->u.mem.len))
734 entry->u.mem.mem_entry_not_accessible = 1;
735 else
736 {
737 if (target_write_memory (entry->u.mem.addr,
738 record_full_get_loc (entry),
739 entry->u.mem.len))
740 {
741 entry->u.mem.mem_entry_not_accessible = 1;
742 if (record_debug)
743 warning (_("Process record: error writing memory at "
744 "addr = %s len = %d."),
745 paddress (gdbarch, entry->u.mem.addr),
746 entry->u.mem.len);
747 }
748 else
749 {
750 memcpy (record_full_get_loc (entry), mem,
751 entry->u.mem.len);
752
753 /* We've changed memory --- check if a hardware
754 watchpoint should trap. Note that this
755 presently assumes the target beneath supports
756 continuable watchpoints. On non-continuable
757 watchpoints target, we'll want to check this
758 _before_ actually doing the memory change, and
759 not doing the change at all if the watchpoint
760 traps. */
761 if (hardware_watchpoint_inserted_in_range
762 (get_regcache_aspace (regcache),
763 entry->u.mem.addr, entry->u.mem.len))
764 record_full_stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
765 }
766 }
767
768 do_cleanups (cleanup);
769 }
770 }
771 break;
772 }
773 }
774
775 static void record_full_restore (void);
776
777 /* Asynchronous signal handle registered as event loop source for when
778 we have pending events ready to be passed to the core. */
779
780 static struct async_event_handler *record_full_async_inferior_event_token;
781
782 static void
783 record_full_async_inferior_event_handler (gdb_client_data data)
784 {
785 inferior_event_handler (INF_REG_EVENT, NULL);
786 }
787
788 /* Open the process record target. */
789
790 static void
791 record_full_core_open_1 (const char *name, int from_tty)
792 {
793 struct regcache *regcache = get_current_regcache ();
794 int regnum = gdbarch_num_regs (get_regcache_arch (regcache));
795 int i;
796
797 /* Get record_full_core_regbuf. */
798 target_fetch_registers (regcache, -1);
799 record_full_core_regbuf = (gdb_byte *) xmalloc (MAX_REGISTER_SIZE * regnum);
800 for (i = 0; i < regnum; i ++)
801 regcache_raw_collect (regcache, i,
802 record_full_core_regbuf + MAX_REGISTER_SIZE * i);
803
804 /* Get record_full_core_start and record_full_core_end. */
805 if (build_section_table (core_bfd, &record_full_core_start,
806 &record_full_core_end))
807 {
808 xfree (record_full_core_regbuf);
809 record_full_core_regbuf = NULL;
810 error (_("\"%s\": Can't find sections: %s"),
811 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
812 }
813
814 push_target (&record_full_core_ops);
815 record_full_restore ();
816 }
817
818 /* "to_open" target method for 'live' processes. */
819
820 static void
821 record_full_open_1 (const char *name, int from_tty)
822 {
823 if (record_debug)
824 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open_1\n");
825
826 /* check exec */
827 if (!target_has_execution)
828 error (_("Process record: the program is not being run."));
829 if (non_stop)
830 error (_("Process record target can't debug inferior in non-stop mode "
831 "(non-stop)."));
832
833 if (!gdbarch_process_record_p (target_gdbarch ()))
834 error (_("Process record: the current architecture doesn't support "
835 "record function."));
836
837 push_target (&record_full_ops);
838 }
839
840 static void record_full_init_record_breakpoints (void);
841
842 /* "to_open" target method. Open the process record target. */
843
844 static void
845 record_full_open (const char *name, int from_tty)
846 {
847 struct target_ops *t;
848
849 if (record_debug)
850 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n");
851
852 record_preopen ();
853
854 /* Reset */
855 record_full_insn_num = 0;
856 record_full_insn_count = 0;
857 record_full_list = &record_full_first;
858 record_full_list->next = NULL;
859
860 if (core_bfd)
861 record_full_core_open_1 (name, from_tty);
862 else
863 record_full_open_1 (name, from_tty);
864
865 /* Register extra event sources in the event loop. */
866 record_full_async_inferior_event_token
867 = create_async_event_handler (record_full_async_inferior_event_handler,
868 NULL);
869
870 record_full_init_record_breakpoints ();
871
872 observer_notify_record_changed (current_inferior (), 1, "full", NULL);
873 }
874
875 /* "to_close" target method. Close the process record target. */
876
877 static void
878 record_full_close (struct target_ops *self)
879 {
880 struct record_full_core_buf_entry *entry;
881
882 if (record_debug)
883 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_close\n");
884
885 record_full_list_release (record_full_list);
886
887 /* Release record_full_core_regbuf. */
888 if (record_full_core_regbuf)
889 {
890 xfree (record_full_core_regbuf);
891 record_full_core_regbuf = NULL;
892 }
893
894 /* Release record_full_core_buf_list. */
895 if (record_full_core_buf_list)
896 {
897 for (entry = record_full_core_buf_list->prev; entry;
898 entry = entry->prev)
899 {
900 xfree (record_full_core_buf_list);
901 record_full_core_buf_list = entry;
902 }
903 record_full_core_buf_list = NULL;
904 }
905
906 if (record_full_async_inferior_event_token)
907 delete_async_event_handler (&record_full_async_inferior_event_token);
908 }
909
910 /* "to_async" target method. */
911
912 static void
913 record_full_async (struct target_ops *ops, int enable)
914 {
915 if (enable)
916 mark_async_event_handler (record_full_async_inferior_event_token);
917 else
918 clear_async_event_handler (record_full_async_inferior_event_token);
919
920 ops->beneath->to_async (ops->beneath, enable);
921 }
922
923 static int record_full_resume_step = 0;
924
925 /* True if we've been resumed, and so each record_full_wait call should
926 advance execution. If this is false, record_full_wait will return a
927 TARGET_WAITKIND_IGNORE. */
928 static int record_full_resumed = 0;
929
930 /* The execution direction of the last resume we got. This is
931 necessary for async mode. Vis (order is not strictly accurate):
932
933 1. user has the global execution direction set to forward
934 2. user does a reverse-step command
935 3. record_full_resume is called with global execution direction
936 temporarily switched to reverse
937 4. GDB's execution direction is reverted back to forward
938 5. target record notifies event loop there's an event to handle
939 6. infrun asks the target which direction was it going, and switches
940 the global execution direction accordingly (to reverse)
941 7. infrun polls an event out of the record target, and handles it
942 8. GDB goes back to the event loop, and goto #4.
943 */
944 static enum exec_direction_kind record_full_execution_dir = EXEC_FORWARD;
945
946 /* "to_resume" target method. Resume the process record target. */
947
948 static void
949 record_full_resume (struct target_ops *ops, ptid_t ptid, int step,
950 enum gdb_signal signal)
951 {
952 record_full_resume_step = step;
953 record_full_resumed = 1;
954 record_full_execution_dir = execution_direction;
955
956 if (!RECORD_FULL_IS_REPLAY)
957 {
958 struct gdbarch *gdbarch = target_thread_architecture (ptid);
959
960 record_full_message (get_current_regcache (), signal);
961
962 if (!step)
963 {
964 /* This is not hard single step. */
965 if (!gdbarch_software_single_step_p (gdbarch))
966 {
967 /* This is a normal continue. */
968 step = 1;
969 }
970 else
971 {
972 /* This arch supports soft single step. */
973 if (thread_has_single_step_breakpoints_set (inferior_thread ()))
974 {
975 /* This is a soft single step. */
976 record_full_resume_step = 1;
977 }
978 else
979 step = !insert_single_step_breakpoints (gdbarch);
980 }
981 }
982
983 /* Make sure the target beneath reports all signals. */
984 target_pass_signals (0, NULL);
985
986 ops->beneath->to_resume (ops->beneath, ptid, step, signal);
987 }
988
989 /* We are about to start executing the inferior (or simulate it),
990 let's register it with the event loop. */
991 if (target_can_async_p ())
992 target_async (1);
993 }
994
995 /* "to_commit_resume" method for process record target. */
996
997 static void
998 record_full_commit_resume (struct target_ops *ops)
999 {
1000 if (!RECORD_FULL_IS_REPLAY)
1001 ops->beneath->to_commit_resume (ops->beneath);
1002 }
1003
1004 static int record_full_get_sig = 0;
1005
1006 /* SIGINT signal handler, registered by "to_wait" method. */
1007
1008 static void
1009 record_full_sig_handler (int signo)
1010 {
1011 if (record_debug)
1012 fprintf_unfiltered (gdb_stdlog, "Process record: get a signal\n");
1013
1014 /* It will break the running inferior in replay mode. */
1015 record_full_resume_step = 1;
1016
1017 /* It will let record_full_wait set inferior status to get the signal
1018 SIGINT. */
1019 record_full_get_sig = 1;
1020 }
1021
1022 static void
1023 record_full_wait_cleanups (void *ignore)
1024 {
1025 if (execution_direction == EXEC_REVERSE)
1026 {
1027 if (record_full_list->next)
1028 record_full_list = record_full_list->next;
1029 }
1030 else
1031 record_full_list = record_full_list->prev;
1032 }
1033
1034 /* "to_wait" target method for process record target.
1035
1036 In record mode, the target is always run in singlestep mode
1037 (even when gdb says to continue). The to_wait method intercepts
1038 the stop events and determines which ones are to be passed on to
1039 gdb. Most stop events are just singlestep events that gdb is not
1040 to know about, so the to_wait method just records them and keeps
1041 singlestepping.
1042
1043 In replay mode, this function emulates the recorded execution log,
1044 one instruction at a time (forward or backward), and determines
1045 where to stop. */
1046
1047 static ptid_t
1048 record_full_wait_1 (struct target_ops *ops,
1049 ptid_t ptid, struct target_waitstatus *status,
1050 int options)
1051 {
1052 struct cleanup *set_cleanups = record_full_gdb_operation_disable_set ();
1053
1054 if (record_debug)
1055 fprintf_unfiltered (gdb_stdlog,
1056 "Process record: record_full_wait "
1057 "record_full_resume_step = %d, "
1058 "record_full_resumed = %d, direction=%s\n",
1059 record_full_resume_step, record_full_resumed,
1060 record_full_execution_dir == EXEC_FORWARD
1061 ? "forward" : "reverse");
1062
1063 if (!record_full_resumed)
1064 {
1065 gdb_assert ((options & TARGET_WNOHANG) != 0);
1066
1067 /* No interesting event. */
1068 status->kind = TARGET_WAITKIND_IGNORE;
1069 return minus_one_ptid;
1070 }
1071
1072 record_full_get_sig = 0;
1073 signal (SIGINT, record_full_sig_handler);
1074
1075 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1076
1077 if (!RECORD_FULL_IS_REPLAY && ops != &record_full_core_ops)
1078 {
1079 if (record_full_resume_step)
1080 {
1081 /* This is a single step. */
1082 return ops->beneath->to_wait (ops->beneath, ptid, status, options);
1083 }
1084 else
1085 {
1086 /* This is not a single step. */
1087 ptid_t ret;
1088 CORE_ADDR tmp_pc;
1089 struct gdbarch *gdbarch = target_thread_architecture (inferior_ptid);
1090
1091 while (1)
1092 {
1093 struct thread_info *tp;
1094
1095 ret = ops->beneath->to_wait (ops->beneath, ptid, status, options);
1096 if (status->kind == TARGET_WAITKIND_IGNORE)
1097 {
1098 if (record_debug)
1099 fprintf_unfiltered (gdb_stdlog,
1100 "Process record: record_full_wait "
1101 "target beneath not done yet\n");
1102 return ret;
1103 }
1104
1105 ALL_NON_EXITED_THREADS (tp)
1106 delete_single_step_breakpoints (tp);
1107
1108 if (record_full_resume_step)
1109 return ret;
1110
1111 /* Is this a SIGTRAP? */
1112 if (status->kind == TARGET_WAITKIND_STOPPED
1113 && status->value.sig == GDB_SIGNAL_TRAP)
1114 {
1115 struct regcache *regcache;
1116 struct address_space *aspace;
1117 enum target_stop_reason *stop_reason_p
1118 = &record_full_stop_reason;
1119
1120 /* Yes -- this is likely our single-step finishing,
1121 but check if there's any reason the core would be
1122 interested in the event. */
1123
1124 registers_changed ();
1125 regcache = get_current_regcache ();
1126 tmp_pc = regcache_read_pc (regcache);
1127 aspace = get_regcache_aspace (regcache);
1128
1129 if (target_stopped_by_watchpoint ())
1130 {
1131 /* Always interested in watchpoints. */
1132 }
1133 else if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1134 stop_reason_p))
1135 {
1136 /* There is a breakpoint here. Let the core
1137 handle it. */
1138 }
1139 else
1140 {
1141 /* This is a single-step trap. Record the
1142 insn and issue another step.
1143 FIXME: this part can be a random SIGTRAP too.
1144 But GDB cannot handle it. */
1145 int step = 1;
1146
1147 if (!record_full_message_wrapper_safe (regcache,
1148 GDB_SIGNAL_0))
1149 {
1150 status->kind = TARGET_WAITKIND_STOPPED;
1151 status->value.sig = GDB_SIGNAL_0;
1152 break;
1153 }
1154
1155 if (gdbarch_software_single_step_p (gdbarch))
1156 {
1157 /* Try to insert the software single step breakpoint.
1158 If insert success, set step to 0. */
1159 set_executing (inferior_ptid, 0);
1160 reinit_frame_cache ();
1161
1162 step = !insert_single_step_breakpoints (gdbarch);
1163
1164 set_executing (inferior_ptid, 1);
1165 }
1166
1167 if (record_debug)
1168 fprintf_unfiltered (gdb_stdlog,
1169 "Process record: record_full_wait "
1170 "issuing one more step in the "
1171 "target beneath\n");
1172 ops->beneath->to_resume (ops->beneath, ptid, step,
1173 GDB_SIGNAL_0);
1174 ops->beneath->to_commit_resume (ops->beneath);
1175 continue;
1176 }
1177 }
1178
1179 /* The inferior is broken by a breakpoint or a signal. */
1180 break;
1181 }
1182
1183 return ret;
1184 }
1185 }
1186 else
1187 {
1188 struct regcache *regcache = get_current_regcache ();
1189 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1190 struct address_space *aspace = get_regcache_aspace (regcache);
1191 int continue_flag = 1;
1192 int first_record_full_end = 1;
1193 struct cleanup *old_cleanups
1194 = make_cleanup (record_full_wait_cleanups, 0);
1195 CORE_ADDR tmp_pc;
1196
1197 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1198 status->kind = TARGET_WAITKIND_STOPPED;
1199
1200 /* Check breakpoint when forward execute. */
1201 if (execution_direction == EXEC_FORWARD)
1202 {
1203 tmp_pc = regcache_read_pc (regcache);
1204 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1205 &record_full_stop_reason))
1206 {
1207 if (record_debug)
1208 fprintf_unfiltered (gdb_stdlog,
1209 "Process record: break at %s.\n",
1210 paddress (gdbarch, tmp_pc));
1211 goto replay_out;
1212 }
1213 }
1214
1215 /* If GDB is in terminal_inferior mode, it will not get the signal.
1216 And in GDB replay mode, GDB doesn't need to be in terminal_inferior
1217 mode, because inferior will not executed.
1218 Then set it to terminal_ours to make GDB get the signal. */
1219 target_terminal_ours ();
1220
1221 /* In EXEC_FORWARD mode, record_full_list points to the tail of prev
1222 instruction. */
1223 if (execution_direction == EXEC_FORWARD && record_full_list->next)
1224 record_full_list = record_full_list->next;
1225
1226 /* Loop over the record_full_list, looking for the next place to
1227 stop. */
1228 do
1229 {
1230 /* Check for beginning and end of log. */
1231 if (execution_direction == EXEC_REVERSE
1232 && record_full_list == &record_full_first)
1233 {
1234 /* Hit beginning of record log in reverse. */
1235 status->kind = TARGET_WAITKIND_NO_HISTORY;
1236 break;
1237 }
1238 if (execution_direction != EXEC_REVERSE && !record_full_list->next)
1239 {
1240 /* Hit end of record log going forward. */
1241 status->kind = TARGET_WAITKIND_NO_HISTORY;
1242 break;
1243 }
1244
1245 record_full_exec_insn (regcache, gdbarch, record_full_list);
1246
1247 if (record_full_list->type == record_full_end)
1248 {
1249 if (record_debug > 1)
1250 fprintf_unfiltered (gdb_stdlog,
1251 "Process record: record_full_end %s to "
1252 "inferior.\n",
1253 host_address_to_string (record_full_list));
1254
1255 if (first_record_full_end && execution_direction == EXEC_REVERSE)
1256 {
1257 /* When reverse excute, the first record_full_end is the
1258 part of current instruction. */
1259 first_record_full_end = 0;
1260 }
1261 else
1262 {
1263 /* In EXEC_REVERSE mode, this is the record_full_end of prev
1264 instruction.
1265 In EXEC_FORWARD mode, this is the record_full_end of
1266 current instruction. */
1267 /* step */
1268 if (record_full_resume_step)
1269 {
1270 if (record_debug > 1)
1271 fprintf_unfiltered (gdb_stdlog,
1272 "Process record: step.\n");
1273 continue_flag = 0;
1274 }
1275
1276 /* check breakpoint */
1277 tmp_pc = regcache_read_pc (regcache);
1278 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1279 &record_full_stop_reason))
1280 {
1281 if (record_debug)
1282 fprintf_unfiltered (gdb_stdlog,
1283 "Process record: break "
1284 "at %s.\n",
1285 paddress (gdbarch, tmp_pc));
1286
1287 continue_flag = 0;
1288 }
1289
1290 if (record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
1291 {
1292 if (record_debug)
1293 fprintf_unfiltered (gdb_stdlog,
1294 "Process record: hit hw "
1295 "watchpoint.\n");
1296 continue_flag = 0;
1297 }
1298 /* Check target signal */
1299 if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1300 /* FIXME: better way to check */
1301 continue_flag = 0;
1302 }
1303 }
1304
1305 if (continue_flag)
1306 {
1307 if (execution_direction == EXEC_REVERSE)
1308 {
1309 if (record_full_list->prev)
1310 record_full_list = record_full_list->prev;
1311 }
1312 else
1313 {
1314 if (record_full_list->next)
1315 record_full_list = record_full_list->next;
1316 }
1317 }
1318 }
1319 while (continue_flag);
1320
1321 replay_out:
1322 if (record_full_get_sig)
1323 status->value.sig = GDB_SIGNAL_INT;
1324 else if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1325 /* FIXME: better way to check */
1326 status->value.sig = record_full_list->u.end.sigval;
1327 else
1328 status->value.sig = GDB_SIGNAL_TRAP;
1329
1330 discard_cleanups (old_cleanups);
1331 }
1332
1333 signal (SIGINT, handle_sigint);
1334
1335 do_cleanups (set_cleanups);
1336 return inferior_ptid;
1337 }
1338
1339 static ptid_t
1340 record_full_wait (struct target_ops *ops,
1341 ptid_t ptid, struct target_waitstatus *status,
1342 int options)
1343 {
1344 ptid_t return_ptid;
1345
1346 return_ptid = record_full_wait_1 (ops, ptid, status, options);
1347 if (status->kind != TARGET_WAITKIND_IGNORE)
1348 {
1349 /* We're reporting a stop. Make sure any spurious
1350 target_wait(WNOHANG) doesn't advance the target until the
1351 core wants us resumed again. */
1352 record_full_resumed = 0;
1353 }
1354 return return_ptid;
1355 }
1356
1357 static int
1358 record_full_stopped_by_watchpoint (struct target_ops *ops)
1359 {
1360 if (RECORD_FULL_IS_REPLAY)
1361 return record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
1362 else
1363 return ops->beneath->to_stopped_by_watchpoint (ops->beneath);
1364 }
1365
1366 static int
1367 record_full_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
1368 {
1369 if (RECORD_FULL_IS_REPLAY)
1370 return 0;
1371 else
1372 return ops->beneath->to_stopped_data_address (ops->beneath, addr_p);
1373 }
1374
1375 /* The to_stopped_by_sw_breakpoint method of target record-full. */
1376
1377 static int
1378 record_full_stopped_by_sw_breakpoint (struct target_ops *ops)
1379 {
1380 return record_full_stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
1381 }
1382
1383 /* The to_supports_stopped_by_sw_breakpoint method of target
1384 record-full. */
1385
1386 static int
1387 record_full_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
1388 {
1389 return 1;
1390 }
1391
1392 /* The to_stopped_by_hw_breakpoint method of target record-full. */
1393
1394 static int
1395 record_full_stopped_by_hw_breakpoint (struct target_ops *ops)
1396 {
1397 return record_full_stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
1398 }
1399
1400 /* The to_supports_stopped_by_sw_breakpoint method of target
1401 record-full. */
1402
1403 static int
1404 record_full_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
1405 {
1406 return 1;
1407 }
1408
1409 /* Record registers change (by user or by GDB) to list as an instruction. */
1410
1411 static void
1412 record_full_registers_change (struct regcache *regcache, int regnum)
1413 {
1414 /* Check record_full_insn_num. */
1415 record_full_check_insn_num ();
1416
1417 record_full_arch_list_head = NULL;
1418 record_full_arch_list_tail = NULL;
1419
1420 if (regnum < 0)
1421 {
1422 int i;
1423
1424 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
1425 {
1426 if (record_full_arch_list_add_reg (regcache, i))
1427 {
1428 record_full_list_release (record_full_arch_list_tail);
1429 error (_("Process record: failed to record execution log."));
1430 }
1431 }
1432 }
1433 else
1434 {
1435 if (record_full_arch_list_add_reg (regcache, regnum))
1436 {
1437 record_full_list_release (record_full_arch_list_tail);
1438 error (_("Process record: failed to record execution log."));
1439 }
1440 }
1441 if (record_full_arch_list_add_end ())
1442 {
1443 record_full_list_release (record_full_arch_list_tail);
1444 error (_("Process record: failed to record execution log."));
1445 }
1446 record_full_list->next = record_full_arch_list_head;
1447 record_full_arch_list_head->prev = record_full_list;
1448 record_full_list = record_full_arch_list_tail;
1449
1450 if (record_full_insn_num == record_full_insn_max_num)
1451 record_full_list_release_first ();
1452 else
1453 record_full_insn_num++;
1454 }
1455
1456 /* "to_store_registers" method for process record target. */
1457
1458 static void
1459 record_full_store_registers (struct target_ops *ops,
1460 struct regcache *regcache,
1461 int regno)
1462 {
1463 if (!record_full_gdb_operation_disable)
1464 {
1465 if (RECORD_FULL_IS_REPLAY)
1466 {
1467 int n;
1468
1469 /* Let user choose if he wants to write register or not. */
1470 if (regno < 0)
1471 n =
1472 query (_("Because GDB is in replay mode, changing the "
1473 "value of a register will make the execution "
1474 "log unusable from this point onward. "
1475 "Change all registers?"));
1476 else
1477 n =
1478 query (_("Because GDB is in replay mode, changing the value "
1479 "of a register will make the execution log unusable "
1480 "from this point onward. Change register %s?"),
1481 gdbarch_register_name (get_regcache_arch (regcache),
1482 regno));
1483
1484 if (!n)
1485 {
1486 /* Invalidate the value of regcache that was set in function
1487 "regcache_raw_write". */
1488 if (regno < 0)
1489 {
1490 int i;
1491
1492 for (i = 0;
1493 i < gdbarch_num_regs (get_regcache_arch (regcache));
1494 i++)
1495 regcache_invalidate (regcache, i);
1496 }
1497 else
1498 regcache_invalidate (regcache, regno);
1499
1500 error (_("Process record canceled the operation."));
1501 }
1502
1503 /* Destroy the record from here forward. */
1504 record_full_list_release_following (record_full_list);
1505 }
1506
1507 record_full_registers_change (regcache, regno);
1508 }
1509 ops->beneath->to_store_registers (ops->beneath, regcache, regno);
1510 }
1511
1512 /* "to_xfer_partial" method. Behavior is conditional on
1513 RECORD_FULL_IS_REPLAY.
1514 In replay mode, we cannot write memory unles we are willing to
1515 invalidate the record/replay log from this point forward. */
1516
1517 static enum target_xfer_status
1518 record_full_xfer_partial (struct target_ops *ops, enum target_object object,
1519 const char *annex, gdb_byte *readbuf,
1520 const gdb_byte *writebuf, ULONGEST offset,
1521 ULONGEST len, ULONGEST *xfered_len)
1522 {
1523 if (!record_full_gdb_operation_disable
1524 && (object == TARGET_OBJECT_MEMORY
1525 || object == TARGET_OBJECT_RAW_MEMORY) && writebuf)
1526 {
1527 if (RECORD_FULL_IS_REPLAY)
1528 {
1529 /* Let user choose if he wants to write memory or not. */
1530 if (!query (_("Because GDB is in replay mode, writing to memory "
1531 "will make the execution log unusable from this "
1532 "point onward. Write memory at address %s?"),
1533 paddress (target_gdbarch (), offset)))
1534 error (_("Process record canceled the operation."));
1535
1536 /* Destroy the record from here forward. */
1537 record_full_list_release_following (record_full_list);
1538 }
1539
1540 /* Check record_full_insn_num */
1541 record_full_check_insn_num ();
1542
1543 /* Record registers change to list as an instruction. */
1544 record_full_arch_list_head = NULL;
1545 record_full_arch_list_tail = NULL;
1546 if (record_full_arch_list_add_mem (offset, len))
1547 {
1548 record_full_list_release (record_full_arch_list_tail);
1549 if (record_debug)
1550 fprintf_unfiltered (gdb_stdlog,
1551 "Process record: failed to record "
1552 "execution log.");
1553 return TARGET_XFER_E_IO;
1554 }
1555 if (record_full_arch_list_add_end ())
1556 {
1557 record_full_list_release (record_full_arch_list_tail);
1558 if (record_debug)
1559 fprintf_unfiltered (gdb_stdlog,
1560 "Process record: failed to record "
1561 "execution log.");
1562 return TARGET_XFER_E_IO;
1563 }
1564 record_full_list->next = record_full_arch_list_head;
1565 record_full_arch_list_head->prev = record_full_list;
1566 record_full_list = record_full_arch_list_tail;
1567
1568 if (record_full_insn_num == record_full_insn_max_num)
1569 record_full_list_release_first ();
1570 else
1571 record_full_insn_num++;
1572 }
1573
1574 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1575 readbuf, writebuf, offset,
1576 len, xfered_len);
1577 }
1578
1579 /* This structure represents a breakpoint inserted while the record
1580 target is active. We use this to know when to install/remove
1581 breakpoints in/from the target beneath. For example, a breakpoint
1582 may be inserted while recording, but removed when not replaying nor
1583 recording. In that case, the breakpoint had not been inserted on
1584 the target beneath, so we should not try to remove it there. */
1585
1586 struct record_full_breakpoint
1587 {
1588 /* The address and address space the breakpoint was set at. */
1589 struct address_space *address_space;
1590 CORE_ADDR addr;
1591
1592 /* True when the breakpoint has been also installed in the target
1593 beneath. This will be false for breakpoints set during replay or
1594 when recording. */
1595 int in_target_beneath;
1596 };
1597
1598 typedef struct record_full_breakpoint *record_full_breakpoint_p;
1599 DEF_VEC_P(record_full_breakpoint_p);
1600
1601 /* The list of breakpoints inserted while the record target is
1602 active. */
1603 VEC(record_full_breakpoint_p) *record_full_breakpoints = NULL;
1604
1605 static void
1606 record_full_sync_record_breakpoints (struct bp_location *loc, void *data)
1607 {
1608 if (loc->loc_type != bp_loc_software_breakpoint)
1609 return;
1610
1611 if (loc->inserted)
1612 {
1613 struct record_full_breakpoint *bp = XNEW (struct record_full_breakpoint);
1614
1615 bp->addr = loc->target_info.placed_address;
1616 bp->address_space = loc->target_info.placed_address_space;
1617
1618 bp->in_target_beneath = 1;
1619
1620 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp);
1621 }
1622 }
1623
1624 /* Sync existing breakpoints to record_full_breakpoints. */
1625
1626 static void
1627 record_full_init_record_breakpoints (void)
1628 {
1629 VEC_free (record_full_breakpoint_p, record_full_breakpoints);
1630
1631 iterate_over_bp_locations (record_full_sync_record_breakpoints);
1632 }
1633
1634 /* Behavior is conditional on RECORD_FULL_IS_REPLAY. We will not actually
1635 insert or remove breakpoints in the real target when replaying, nor
1636 when recording. */
1637
1638 static int
1639 record_full_insert_breakpoint (struct target_ops *ops,
1640 struct gdbarch *gdbarch,
1641 struct bp_target_info *bp_tgt)
1642 {
1643 struct record_full_breakpoint *bp;
1644 int in_target_beneath = 0;
1645 int ix;
1646
1647 if (!RECORD_FULL_IS_REPLAY)
1648 {
1649 /* When recording, we currently always single-step, so we don't
1650 really need to install regular breakpoints in the inferior.
1651 However, we do have to insert software single-step
1652 breakpoints, in case the target can't hardware step. To keep
1653 things simple, we always insert. */
1654 struct cleanup *old_cleanups;
1655 int ret;
1656
1657 old_cleanups = record_full_gdb_operation_disable_set ();
1658 ret = ops->beneath->to_insert_breakpoint (ops->beneath, gdbarch, bp_tgt);
1659 do_cleanups (old_cleanups);
1660
1661 if (ret != 0)
1662 return ret;
1663
1664 in_target_beneath = 1;
1665 }
1666
1667 /* Use the existing entries if found in order to avoid duplication
1668 in record_full_breakpoints. */
1669
1670 for (ix = 0;
1671 VEC_iterate (record_full_breakpoint_p,
1672 record_full_breakpoints, ix, bp);
1673 ++ix)
1674 {
1675 if (bp->addr == bp_tgt->placed_address
1676 && bp->address_space == bp_tgt->placed_address_space)
1677 {
1678 gdb_assert (bp->in_target_beneath == in_target_beneath);
1679 return 0;
1680 }
1681 }
1682
1683 bp = XNEW (struct record_full_breakpoint);
1684 bp->addr = bp_tgt->placed_address;
1685 bp->address_space = bp_tgt->placed_address_space;
1686 bp->in_target_beneath = in_target_beneath;
1687 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp);
1688 return 0;
1689 }
1690
1691 /* "to_remove_breakpoint" method for process record target. */
1692
1693 static int
1694 record_full_remove_breakpoint (struct target_ops *ops,
1695 struct gdbarch *gdbarch,
1696 struct bp_target_info *bp_tgt,
1697 enum remove_bp_reason reason)
1698 {
1699 struct record_full_breakpoint *bp;
1700 int ix;
1701
1702 for (ix = 0;
1703 VEC_iterate (record_full_breakpoint_p,
1704 record_full_breakpoints, ix, bp);
1705 ++ix)
1706 {
1707 if (bp->addr == bp_tgt->placed_address
1708 && bp->address_space == bp_tgt->placed_address_space)
1709 {
1710 if (bp->in_target_beneath)
1711 {
1712 struct cleanup *old_cleanups;
1713 int ret;
1714
1715 old_cleanups = record_full_gdb_operation_disable_set ();
1716 ret = ops->beneath->to_remove_breakpoint (ops->beneath, gdbarch,
1717 bp_tgt, reason);
1718 do_cleanups (old_cleanups);
1719
1720 if (ret != 0)
1721 return ret;
1722 }
1723
1724 if (reason == REMOVE_BREAKPOINT)
1725 {
1726 VEC_unordered_remove (record_full_breakpoint_p,
1727 record_full_breakpoints, ix);
1728 }
1729 return 0;
1730 }
1731 }
1732
1733 gdb_assert_not_reached ("removing unknown breakpoint");
1734 }
1735
1736 /* "to_can_execute_reverse" method for process record target. */
1737
1738 static int
1739 record_full_can_execute_reverse (struct target_ops *self)
1740 {
1741 return 1;
1742 }
1743
1744 /* "to_get_bookmark" method for process record and prec over core. */
1745
1746 static gdb_byte *
1747 record_full_get_bookmark (struct target_ops *self, const char *args,
1748 int from_tty)
1749 {
1750 char *ret = NULL;
1751
1752 /* Return stringified form of instruction count. */
1753 if (record_full_list && record_full_list->type == record_full_end)
1754 ret = xstrdup (pulongest (record_full_list->u.end.insn_num));
1755
1756 if (record_debug)
1757 {
1758 if (ret)
1759 fprintf_unfiltered (gdb_stdlog,
1760 "record_full_get_bookmark returns %s\n", ret);
1761 else
1762 fprintf_unfiltered (gdb_stdlog,
1763 "record_full_get_bookmark returns NULL\n");
1764 }
1765 return (gdb_byte *) ret;
1766 }
1767
1768 /* "to_goto_bookmark" method for process record and prec over core. */
1769
1770 static void
1771 record_full_goto_bookmark (struct target_ops *self,
1772 const gdb_byte *raw_bookmark, int from_tty)
1773 {
1774 const char *bookmark = (const char *) raw_bookmark;
1775 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1776
1777 if (record_debug)
1778 fprintf_unfiltered (gdb_stdlog,
1779 "record_full_goto_bookmark receives %s\n", bookmark);
1780
1781 if (bookmark[0] == '\'' || bookmark[0] == '\"')
1782 {
1783 char *copy;
1784
1785 if (bookmark[strlen (bookmark) - 1] != bookmark[0])
1786 error (_("Unbalanced quotes: %s"), bookmark);
1787
1788
1789 copy = savestring (bookmark + 1, strlen (bookmark) - 2);
1790 make_cleanup (xfree, copy);
1791 bookmark = copy;
1792 }
1793
1794 record_goto (bookmark);
1795
1796 do_cleanups (cleanup);
1797 }
1798
1799 static enum exec_direction_kind
1800 record_full_execution_direction (struct target_ops *self)
1801 {
1802 return record_full_execution_dir;
1803 }
1804
1805 static void
1806 record_full_info (struct target_ops *self)
1807 {
1808 struct record_full_entry *p;
1809
1810 if (RECORD_FULL_IS_REPLAY)
1811 printf_filtered (_("Replay mode:\n"));
1812 else
1813 printf_filtered (_("Record mode:\n"));
1814
1815 /* Find entry for first actual instruction in the log. */
1816 for (p = record_full_first.next;
1817 p != NULL && p->type != record_full_end;
1818 p = p->next)
1819 ;
1820
1821 /* Do we have a log at all? */
1822 if (p != NULL && p->type == record_full_end)
1823 {
1824 /* Display instruction number for first instruction in the log. */
1825 printf_filtered (_("Lowest recorded instruction number is %s.\n"),
1826 pulongest (p->u.end.insn_num));
1827
1828 /* If in replay mode, display where we are in the log. */
1829 if (RECORD_FULL_IS_REPLAY)
1830 printf_filtered (_("Current instruction number is %s.\n"),
1831 pulongest (record_full_list->u.end.insn_num));
1832
1833 /* Display instruction number for last instruction in the log. */
1834 printf_filtered (_("Highest recorded instruction number is %s.\n"),
1835 pulongest (record_full_insn_count));
1836
1837 /* Display log count. */
1838 printf_filtered (_("Log contains %u instructions.\n"),
1839 record_full_insn_num);
1840 }
1841 else
1842 printf_filtered (_("No instructions have been logged.\n"));
1843
1844 /* Display max log size. */
1845 printf_filtered (_("Max logged instructions is %u.\n"),
1846 record_full_insn_max_num);
1847 }
1848
1849 /* The "to_record_delete" target method. */
1850
1851 static void
1852 record_full_delete (struct target_ops *self)
1853 {
1854 record_full_list_release_following (record_full_list);
1855 }
1856
1857 /* The "to_record_is_replaying" target method. */
1858
1859 static int
1860 record_full_is_replaying (struct target_ops *self, ptid_t ptid)
1861 {
1862 return RECORD_FULL_IS_REPLAY;
1863 }
1864
1865 /* The "to_record_will_replay" target method. */
1866
1867 static int
1868 record_full_will_replay (struct target_ops *self, ptid_t ptid, int dir)
1869 {
1870 /* We can currently only record when executing forwards. Should we be able
1871 to record when executing backwards on targets that support reverse
1872 execution, this needs to be changed. */
1873
1874 return RECORD_FULL_IS_REPLAY || dir == EXEC_REVERSE;
1875 }
1876
1877 /* Go to a specific entry. */
1878
1879 static void
1880 record_full_goto_entry (struct record_full_entry *p)
1881 {
1882 if (p == NULL)
1883 error (_("Target insn not found."));
1884 else if (p == record_full_list)
1885 error (_("Already at target insn."));
1886 else if (p->u.end.insn_num > record_full_list->u.end.insn_num)
1887 {
1888 printf_filtered (_("Go forward to insn number %s\n"),
1889 pulongest (p->u.end.insn_num));
1890 record_full_goto_insn (p, EXEC_FORWARD);
1891 }
1892 else
1893 {
1894 printf_filtered (_("Go backward to insn number %s\n"),
1895 pulongest (p->u.end.insn_num));
1896 record_full_goto_insn (p, EXEC_REVERSE);
1897 }
1898
1899 registers_changed ();
1900 reinit_frame_cache ();
1901 stop_pc = regcache_read_pc (get_current_regcache ());
1902 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
1903 }
1904
1905 /* The "to_goto_record_begin" target method. */
1906
1907 static void
1908 record_full_goto_begin (struct target_ops *self)
1909 {
1910 struct record_full_entry *p = NULL;
1911
1912 for (p = &record_full_first; p != NULL; p = p->next)
1913 if (p->type == record_full_end)
1914 break;
1915
1916 record_full_goto_entry (p);
1917 }
1918
1919 /* The "to_goto_record_end" target method. */
1920
1921 static void
1922 record_full_goto_end (struct target_ops *self)
1923 {
1924 struct record_full_entry *p = NULL;
1925
1926 for (p = record_full_list; p->next != NULL; p = p->next)
1927 ;
1928 for (; p!= NULL; p = p->prev)
1929 if (p->type == record_full_end)
1930 break;
1931
1932 record_full_goto_entry (p);
1933 }
1934
1935 /* The "to_goto_record" target method. */
1936
1937 static void
1938 record_full_goto (struct target_ops *self, ULONGEST target_insn)
1939 {
1940 struct record_full_entry *p = NULL;
1941
1942 for (p = &record_full_first; p != NULL; p = p->next)
1943 if (p->type == record_full_end && p->u.end.insn_num == target_insn)
1944 break;
1945
1946 record_full_goto_entry (p);
1947 }
1948
1949 /* The "to_record_stop_replaying" target method. */
1950
1951 static void
1952 record_full_stop_replaying (struct target_ops *self)
1953 {
1954 record_full_goto_end (self);
1955 }
1956
1957 static void
1958 init_record_full_ops (void)
1959 {
1960 record_full_ops.to_shortname = "record-full";
1961 record_full_ops.to_longname = "Process record and replay target";
1962 record_full_ops.to_doc =
1963 "Log program while executing and replay execution from log.";
1964 record_full_ops.to_open = record_full_open;
1965 record_full_ops.to_close = record_full_close;
1966 record_full_ops.to_async = record_full_async;
1967 record_full_ops.to_resume = record_full_resume;
1968 record_full_ops.to_commit_resume = record_full_commit_resume;
1969 record_full_ops.to_wait = record_full_wait;
1970 record_full_ops.to_disconnect = record_disconnect;
1971 record_full_ops.to_detach = record_detach;
1972 record_full_ops.to_mourn_inferior = record_mourn_inferior;
1973 record_full_ops.to_kill = record_kill;
1974 record_full_ops.to_store_registers = record_full_store_registers;
1975 record_full_ops.to_xfer_partial = record_full_xfer_partial;
1976 record_full_ops.to_insert_breakpoint = record_full_insert_breakpoint;
1977 record_full_ops.to_remove_breakpoint = record_full_remove_breakpoint;
1978 record_full_ops.to_stopped_by_watchpoint = record_full_stopped_by_watchpoint;
1979 record_full_ops.to_stopped_data_address = record_full_stopped_data_address;
1980 record_full_ops.to_stopped_by_sw_breakpoint
1981 = record_full_stopped_by_sw_breakpoint;
1982 record_full_ops.to_supports_stopped_by_sw_breakpoint
1983 = record_full_supports_stopped_by_sw_breakpoint;
1984 record_full_ops.to_stopped_by_hw_breakpoint
1985 = record_full_stopped_by_hw_breakpoint;
1986 record_full_ops.to_supports_stopped_by_hw_breakpoint
1987 = record_full_supports_stopped_by_hw_breakpoint;
1988 record_full_ops.to_can_execute_reverse = record_full_can_execute_reverse;
1989 record_full_ops.to_stratum = record_stratum;
1990 /* Add bookmark target methods. */
1991 record_full_ops.to_get_bookmark = record_full_get_bookmark;
1992 record_full_ops.to_goto_bookmark = record_full_goto_bookmark;
1993 record_full_ops.to_execution_direction = record_full_execution_direction;
1994 record_full_ops.to_info_record = record_full_info;
1995 record_full_ops.to_save_record = record_full_save;
1996 record_full_ops.to_delete_record = record_full_delete;
1997 record_full_ops.to_record_is_replaying = record_full_is_replaying;
1998 record_full_ops.to_record_will_replay = record_full_will_replay;
1999 record_full_ops.to_record_stop_replaying = record_full_stop_replaying;
2000 record_full_ops.to_goto_record_begin = record_full_goto_begin;
2001 record_full_ops.to_goto_record_end = record_full_goto_end;
2002 record_full_ops.to_goto_record = record_full_goto;
2003 record_full_ops.to_magic = OPS_MAGIC;
2004 }
2005
2006 /* "to_resume" method for prec over corefile. */
2007
2008 static void
2009 record_full_core_resume (struct target_ops *ops, ptid_t ptid, int step,
2010 enum gdb_signal signal)
2011 {
2012 record_full_resume_step = step;
2013 record_full_resumed = 1;
2014 record_full_execution_dir = execution_direction;
2015
2016 /* We are about to start executing the inferior (or simulate it),
2017 let's register it with the event loop. */
2018 if (target_can_async_p ())
2019 target_async (1);
2020 }
2021
2022 /* "to_kill" method for prec over corefile. */
2023
2024 static void
2025 record_full_core_kill (struct target_ops *ops)
2026 {
2027 if (record_debug)
2028 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_core_kill\n");
2029
2030 unpush_target (&record_full_core_ops);
2031 }
2032
2033 /* "to_fetch_registers" method for prec over corefile. */
2034
2035 static void
2036 record_full_core_fetch_registers (struct target_ops *ops,
2037 struct regcache *regcache,
2038 int regno)
2039 {
2040 if (regno < 0)
2041 {
2042 int num = gdbarch_num_regs (get_regcache_arch (regcache));
2043 int i;
2044
2045 for (i = 0; i < num; i ++)
2046 regcache_raw_supply (regcache, i,
2047 record_full_core_regbuf + MAX_REGISTER_SIZE * i);
2048 }
2049 else
2050 regcache_raw_supply (regcache, regno,
2051 record_full_core_regbuf + MAX_REGISTER_SIZE * regno);
2052 }
2053
2054 /* "to_prepare_to_store" method for prec over corefile. */
2055
2056 static void
2057 record_full_core_prepare_to_store (struct target_ops *self,
2058 struct regcache *regcache)
2059 {
2060 }
2061
2062 /* "to_store_registers" method for prec over corefile. */
2063
2064 static void
2065 record_full_core_store_registers (struct target_ops *ops,
2066 struct regcache *regcache,
2067 int regno)
2068 {
2069 if (record_full_gdb_operation_disable)
2070 regcache_raw_collect (regcache, regno,
2071 record_full_core_regbuf + MAX_REGISTER_SIZE * regno);
2072 else
2073 error (_("You can't do that without a process to debug."));
2074 }
2075
2076 /* "to_xfer_partial" method for prec over corefile. */
2077
2078 static enum target_xfer_status
2079 record_full_core_xfer_partial (struct target_ops *ops,
2080 enum target_object object,
2081 const char *annex, gdb_byte *readbuf,
2082 const gdb_byte *writebuf, ULONGEST offset,
2083 ULONGEST len, ULONGEST *xfered_len)
2084 {
2085 if (object == TARGET_OBJECT_MEMORY)
2086 {
2087 if (record_full_gdb_operation_disable || !writebuf)
2088 {
2089 struct target_section *p;
2090
2091 for (p = record_full_core_start; p < record_full_core_end; p++)
2092 {
2093 if (offset >= p->addr)
2094 {
2095 struct record_full_core_buf_entry *entry;
2096 ULONGEST sec_offset;
2097
2098 if (offset >= p->endaddr)
2099 continue;
2100
2101 if (offset + len > p->endaddr)
2102 len = p->endaddr - offset;
2103
2104 sec_offset = offset - p->addr;
2105
2106 /* Read readbuf or write writebuf p, offset, len. */
2107 /* Check flags. */
2108 if (p->the_bfd_section->flags & SEC_CONSTRUCTOR
2109 || (p->the_bfd_section->flags & SEC_HAS_CONTENTS) == 0)
2110 {
2111 if (readbuf)
2112 memset (readbuf, 0, len);
2113
2114 *xfered_len = len;
2115 return TARGET_XFER_OK;
2116 }
2117 /* Get record_full_core_buf_entry. */
2118 for (entry = record_full_core_buf_list; entry;
2119 entry = entry->prev)
2120 if (entry->p == p)
2121 break;
2122 if (writebuf)
2123 {
2124 if (!entry)
2125 {
2126 /* Add a new entry. */
2127 entry = XNEW (struct record_full_core_buf_entry);
2128 entry->p = p;
2129 if (!bfd_malloc_and_get_section
2130 (p->the_bfd_section->owner,
2131 p->the_bfd_section,
2132 &entry->buf))
2133 {
2134 xfree (entry);
2135 return TARGET_XFER_EOF;
2136 }
2137 entry->prev = record_full_core_buf_list;
2138 record_full_core_buf_list = entry;
2139 }
2140
2141 memcpy (entry->buf + sec_offset, writebuf,
2142 (size_t) len);
2143 }
2144 else
2145 {
2146 if (!entry)
2147 return ops->beneath->to_xfer_partial (ops->beneath,
2148 object, annex,
2149 readbuf, writebuf,
2150 offset, len,
2151 xfered_len);
2152
2153 memcpy (readbuf, entry->buf + sec_offset,
2154 (size_t) len);
2155 }
2156
2157 *xfered_len = len;
2158 return TARGET_XFER_OK;
2159 }
2160 }
2161
2162 return TARGET_XFER_E_IO;
2163 }
2164 else
2165 error (_("You can't do that without a process to debug."));
2166 }
2167
2168 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
2169 readbuf, writebuf, offset, len,
2170 xfered_len);
2171 }
2172
2173 /* "to_insert_breakpoint" method for prec over corefile. */
2174
2175 static int
2176 record_full_core_insert_breakpoint (struct target_ops *ops,
2177 struct gdbarch *gdbarch,
2178 struct bp_target_info *bp_tgt)
2179 {
2180 return 0;
2181 }
2182
2183 /* "to_remove_breakpoint" method for prec over corefile. */
2184
2185 static int
2186 record_full_core_remove_breakpoint (struct target_ops *ops,
2187 struct gdbarch *gdbarch,
2188 struct bp_target_info *bp_tgt,
2189 enum remove_bp_reason reason)
2190 {
2191 return 0;
2192 }
2193
2194 /* "to_has_execution" method for prec over corefile. */
2195
2196 static int
2197 record_full_core_has_execution (struct target_ops *ops, ptid_t the_ptid)
2198 {
2199 return 1;
2200 }
2201
2202 static void
2203 init_record_full_core_ops (void)
2204 {
2205 record_full_core_ops.to_shortname = "record-core";
2206 record_full_core_ops.to_longname = "Process record and replay target";
2207 record_full_core_ops.to_doc =
2208 "Log program while executing and replay execution from log.";
2209 record_full_core_ops.to_open = record_full_open;
2210 record_full_core_ops.to_close = record_full_close;
2211 record_full_core_ops.to_async = record_full_async;
2212 record_full_core_ops.to_resume = record_full_core_resume;
2213 record_full_core_ops.to_wait = record_full_wait;
2214 record_full_core_ops.to_kill = record_full_core_kill;
2215 record_full_core_ops.to_fetch_registers = record_full_core_fetch_registers;
2216 record_full_core_ops.to_prepare_to_store = record_full_core_prepare_to_store;
2217 record_full_core_ops.to_store_registers = record_full_core_store_registers;
2218 record_full_core_ops.to_xfer_partial = record_full_core_xfer_partial;
2219 record_full_core_ops.to_insert_breakpoint
2220 = record_full_core_insert_breakpoint;
2221 record_full_core_ops.to_remove_breakpoint
2222 = record_full_core_remove_breakpoint;
2223 record_full_core_ops.to_stopped_by_watchpoint
2224 = record_full_stopped_by_watchpoint;
2225 record_full_core_ops.to_stopped_data_address
2226 = record_full_stopped_data_address;
2227 record_full_core_ops.to_stopped_by_sw_breakpoint
2228 = record_full_stopped_by_sw_breakpoint;
2229 record_full_core_ops.to_supports_stopped_by_sw_breakpoint
2230 = record_full_supports_stopped_by_sw_breakpoint;
2231 record_full_core_ops.to_stopped_by_hw_breakpoint
2232 = record_full_stopped_by_hw_breakpoint;
2233 record_full_core_ops.to_supports_stopped_by_hw_breakpoint
2234 = record_full_supports_stopped_by_hw_breakpoint;
2235 record_full_core_ops.to_can_execute_reverse
2236 = record_full_can_execute_reverse;
2237 record_full_core_ops.to_has_execution = record_full_core_has_execution;
2238 record_full_core_ops.to_stratum = record_stratum;
2239 /* Add bookmark target methods. */
2240 record_full_core_ops.to_get_bookmark = record_full_get_bookmark;
2241 record_full_core_ops.to_goto_bookmark = record_full_goto_bookmark;
2242 record_full_core_ops.to_execution_direction
2243 = record_full_execution_direction;
2244 record_full_core_ops.to_info_record = record_full_info;
2245 record_full_core_ops.to_delete_record = record_full_delete;
2246 record_full_core_ops.to_record_is_replaying = record_full_is_replaying;
2247 record_full_core_ops.to_record_will_replay = record_full_will_replay;
2248 record_full_core_ops.to_goto_record_begin = record_full_goto_begin;
2249 record_full_core_ops.to_goto_record_end = record_full_goto_end;
2250 record_full_core_ops.to_goto_record = record_full_goto;
2251 record_full_core_ops.to_magic = OPS_MAGIC;
2252 }
2253
2254 /* Record log save-file format
2255 Version 1 (never released)
2256
2257 Header:
2258 4 bytes: magic number htonl(0x20090829).
2259 NOTE: be sure to change whenever this file format changes!
2260
2261 Records:
2262 record_full_end:
2263 1 byte: record type (record_full_end, see enum record_full_type).
2264 record_full_reg:
2265 1 byte: record type (record_full_reg, see enum record_full_type).
2266 8 bytes: register id (network byte order).
2267 MAX_REGISTER_SIZE bytes: register value.
2268 record_full_mem:
2269 1 byte: record type (record_full_mem, see enum record_full_type).
2270 8 bytes: memory length (network byte order).
2271 8 bytes: memory address (network byte order).
2272 n bytes: memory value (n == memory length).
2273
2274 Version 2
2275 4 bytes: magic number netorder32(0x20091016).
2276 NOTE: be sure to change whenever this file format changes!
2277
2278 Records:
2279 record_full_end:
2280 1 byte: record type (record_full_end, see enum record_full_type).
2281 4 bytes: signal
2282 4 bytes: instruction count
2283 record_full_reg:
2284 1 byte: record type (record_full_reg, see enum record_full_type).
2285 4 bytes: register id (network byte order).
2286 n bytes: register value (n == actual register size).
2287 (eg. 4 bytes for x86 general registers).
2288 record_full_mem:
2289 1 byte: record type (record_full_mem, see enum record_full_type).
2290 4 bytes: memory length (network byte order).
2291 8 bytes: memory address (network byte order).
2292 n bytes: memory value (n == memory length).
2293
2294 */
2295
2296 /* bfdcore_read -- read bytes from a core file section. */
2297
2298 static inline void
2299 bfdcore_read (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2300 {
2301 int ret = bfd_get_section_contents (obfd, osec, buf, *offset, len);
2302
2303 if (ret)
2304 *offset += len;
2305 else
2306 error (_("Failed to read %d bytes from core file %s ('%s')."),
2307 len, bfd_get_filename (obfd),
2308 bfd_errmsg (bfd_get_error ()));
2309 }
2310
2311 static inline uint64_t
2312 netorder64 (uint64_t input)
2313 {
2314 uint64_t ret;
2315
2316 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2317 BFD_ENDIAN_BIG, input);
2318 return ret;
2319 }
2320
2321 static inline uint32_t
2322 netorder32 (uint32_t input)
2323 {
2324 uint32_t ret;
2325
2326 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2327 BFD_ENDIAN_BIG, input);
2328 return ret;
2329 }
2330
2331 static inline uint16_t
2332 netorder16 (uint16_t input)
2333 {
2334 uint16_t ret;
2335
2336 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2337 BFD_ENDIAN_BIG, input);
2338 return ret;
2339 }
2340
2341 /* Restore the execution log from a core_bfd file. */
2342 static void
2343 record_full_restore (void)
2344 {
2345 uint32_t magic;
2346 struct cleanup *old_cleanups;
2347 struct record_full_entry *rec;
2348 asection *osec;
2349 uint32_t osec_size;
2350 int bfd_offset = 0;
2351 struct regcache *regcache;
2352
2353 /* We restore the execution log from the open core bfd,
2354 if there is one. */
2355 if (core_bfd == NULL)
2356 return;
2357
2358 /* "record_full_restore" can only be called when record list is empty. */
2359 gdb_assert (record_full_first.next == NULL);
2360
2361 if (record_debug)
2362 fprintf_unfiltered (gdb_stdlog, "Restoring recording from core file.\n");
2363
2364 /* Now need to find our special note section. */
2365 osec = bfd_get_section_by_name (core_bfd, "null0");
2366 if (record_debug)
2367 fprintf_unfiltered (gdb_stdlog, "Find precord section %s.\n",
2368 osec ? "succeeded" : "failed");
2369 if (osec == NULL)
2370 return;
2371 osec_size = bfd_section_size (core_bfd, osec);
2372 if (record_debug)
2373 fprintf_unfiltered (gdb_stdlog, "%s", bfd_section_name (core_bfd, osec));
2374
2375 /* Check the magic code. */
2376 bfdcore_read (core_bfd, osec, &magic, sizeof (magic), &bfd_offset);
2377 if (magic != RECORD_FULL_FILE_MAGIC)
2378 error (_("Version mis-match or file format error in core file %s."),
2379 bfd_get_filename (core_bfd));
2380 if (record_debug)
2381 fprintf_unfiltered (gdb_stdlog,
2382 " Reading 4-byte magic cookie "
2383 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2384 phex_nz (netorder32 (magic), 4));
2385
2386 /* Restore the entries in recfd into record_full_arch_list_head and
2387 record_full_arch_list_tail. */
2388 record_full_arch_list_head = NULL;
2389 record_full_arch_list_tail = NULL;
2390 record_full_insn_num = 0;
2391 old_cleanups = make_cleanup (record_full_arch_list_cleanups, 0);
2392 regcache = get_current_regcache ();
2393
2394 while (1)
2395 {
2396 uint8_t rectype;
2397 uint32_t regnum, len, signal, count;
2398 uint64_t addr;
2399
2400 /* We are finished when offset reaches osec_size. */
2401 if (bfd_offset >= osec_size)
2402 break;
2403 bfdcore_read (core_bfd, osec, &rectype, sizeof (rectype), &bfd_offset);
2404
2405 switch (rectype)
2406 {
2407 case record_full_reg: /* reg */
2408 /* Get register number to regnum. */
2409 bfdcore_read (core_bfd, osec, &regnum,
2410 sizeof (regnum), &bfd_offset);
2411 regnum = netorder32 (regnum);
2412
2413 rec = record_full_reg_alloc (regcache, regnum);
2414
2415 /* Get val. */
2416 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2417 rec->u.reg.len, &bfd_offset);
2418
2419 if (record_debug)
2420 fprintf_unfiltered (gdb_stdlog,
2421 " Reading register %d (1 "
2422 "plus %lu plus %d bytes)\n",
2423 rec->u.reg.num,
2424 (unsigned long) sizeof (regnum),
2425 rec->u.reg.len);
2426 break;
2427
2428 case record_full_mem: /* mem */
2429 /* Get len. */
2430 bfdcore_read (core_bfd, osec, &len,
2431 sizeof (len), &bfd_offset);
2432 len = netorder32 (len);
2433
2434 /* Get addr. */
2435 bfdcore_read (core_bfd, osec, &addr,
2436 sizeof (addr), &bfd_offset);
2437 addr = netorder64 (addr);
2438
2439 rec = record_full_mem_alloc (addr, len);
2440
2441 /* Get val. */
2442 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2443 rec->u.mem.len, &bfd_offset);
2444
2445 if (record_debug)
2446 fprintf_unfiltered (gdb_stdlog,
2447 " Reading memory %s (1 plus "
2448 "%lu plus %lu plus %d bytes)\n",
2449 paddress (get_current_arch (),
2450 rec->u.mem.addr),
2451 (unsigned long) sizeof (addr),
2452 (unsigned long) sizeof (len),
2453 rec->u.mem.len);
2454 break;
2455
2456 case record_full_end: /* end */
2457 rec = record_full_end_alloc ();
2458 record_full_insn_num ++;
2459
2460 /* Get signal value. */
2461 bfdcore_read (core_bfd, osec, &signal,
2462 sizeof (signal), &bfd_offset);
2463 signal = netorder32 (signal);
2464 rec->u.end.sigval = (enum gdb_signal) signal;
2465
2466 /* Get insn count. */
2467 bfdcore_read (core_bfd, osec, &count,
2468 sizeof (count), &bfd_offset);
2469 count = netorder32 (count);
2470 rec->u.end.insn_num = count;
2471 record_full_insn_count = count + 1;
2472 if (record_debug)
2473 fprintf_unfiltered (gdb_stdlog,
2474 " Reading record_full_end (1 + "
2475 "%lu + %lu bytes), offset == %s\n",
2476 (unsigned long) sizeof (signal),
2477 (unsigned long) sizeof (count),
2478 paddress (get_current_arch (),
2479 bfd_offset));
2480 break;
2481
2482 default:
2483 error (_("Bad entry type in core file %s."),
2484 bfd_get_filename (core_bfd));
2485 break;
2486 }
2487
2488 /* Add rec to record arch list. */
2489 record_full_arch_list_add (rec);
2490 }
2491
2492 discard_cleanups (old_cleanups);
2493
2494 /* Add record_full_arch_list_head to the end of record list. */
2495 record_full_first.next = record_full_arch_list_head;
2496 record_full_arch_list_head->prev = &record_full_first;
2497 record_full_arch_list_tail->next = NULL;
2498 record_full_list = &record_full_first;
2499
2500 /* Update record_full_insn_max_num. */
2501 if (record_full_insn_num > record_full_insn_max_num)
2502 {
2503 record_full_insn_max_num = record_full_insn_num;
2504 warning (_("Auto increase record/replay buffer limit to %u."),
2505 record_full_insn_max_num);
2506 }
2507
2508 /* Succeeded. */
2509 printf_filtered (_("Restored records from core file %s.\n"),
2510 bfd_get_filename (core_bfd));
2511
2512 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2513 }
2514
2515 /* bfdcore_write -- write bytes into a core file section. */
2516
2517 static inline void
2518 bfdcore_write (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2519 {
2520 int ret = bfd_set_section_contents (obfd, osec, buf, *offset, len);
2521
2522 if (ret)
2523 *offset += len;
2524 else
2525 error (_("Failed to write %d bytes to core file %s ('%s')."),
2526 len, bfd_get_filename (obfd),
2527 bfd_errmsg (bfd_get_error ()));
2528 }
2529
2530 /* Restore the execution log from a file. We use a modified elf
2531 corefile format, with an extra section for our data. */
2532
2533 static void
2534 cmd_record_full_restore (char *args, int from_tty)
2535 {
2536 core_file_command (args, from_tty);
2537 record_full_open (args, from_tty);
2538 }
2539
2540 static void
2541 record_full_save_cleanups (void *data)
2542 {
2543 bfd *obfd = (bfd *) data;
2544 char *pathname = xstrdup (bfd_get_filename (obfd));
2545
2546 gdb_bfd_unref (obfd);
2547 unlink (pathname);
2548 xfree (pathname);
2549 }
2550
2551 /* Save the execution log to a file. We use a modified elf corefile
2552 format, with an extra section for our data. */
2553
2554 static void
2555 record_full_save (struct target_ops *self, const char *recfilename)
2556 {
2557 struct record_full_entry *cur_record_full_list;
2558 uint32_t magic;
2559 struct regcache *regcache;
2560 struct gdbarch *gdbarch;
2561 struct cleanup *old_cleanups;
2562 struct cleanup *set_cleanups;
2563 bfd *obfd;
2564 int save_size = 0;
2565 asection *osec = NULL;
2566 int bfd_offset = 0;
2567
2568 /* Open the save file. */
2569 if (record_debug)
2570 fprintf_unfiltered (gdb_stdlog, "Saving execution log to core file '%s'\n",
2571 recfilename);
2572
2573 /* Open the output file. */
2574 obfd = create_gcore_bfd (recfilename).release ();
2575 old_cleanups = make_cleanup (record_full_save_cleanups, obfd);
2576
2577 /* Save the current record entry to "cur_record_full_list". */
2578 cur_record_full_list = record_full_list;
2579
2580 /* Get the values of regcache and gdbarch. */
2581 regcache = get_current_regcache ();
2582 gdbarch = get_regcache_arch (regcache);
2583
2584 /* Disable the GDB operation record. */
2585 set_cleanups = record_full_gdb_operation_disable_set ();
2586
2587 /* Reverse execute to the begin of record list. */
2588 while (1)
2589 {
2590 /* Check for beginning and end of log. */
2591 if (record_full_list == &record_full_first)
2592 break;
2593
2594 record_full_exec_insn (regcache, gdbarch, record_full_list);
2595
2596 if (record_full_list->prev)
2597 record_full_list = record_full_list->prev;
2598 }
2599
2600 /* Compute the size needed for the extra bfd section. */
2601 save_size = 4; /* magic cookie */
2602 for (record_full_list = record_full_first.next; record_full_list;
2603 record_full_list = record_full_list->next)
2604 switch (record_full_list->type)
2605 {
2606 case record_full_end:
2607 save_size += 1 + 4 + 4;
2608 break;
2609 case record_full_reg:
2610 save_size += 1 + 4 + record_full_list->u.reg.len;
2611 break;
2612 case record_full_mem:
2613 save_size += 1 + 4 + 8 + record_full_list->u.mem.len;
2614 break;
2615 }
2616
2617 /* Make the new bfd section. */
2618 osec = bfd_make_section_anyway_with_flags (obfd, "precord",
2619 SEC_HAS_CONTENTS
2620 | SEC_READONLY);
2621 if (osec == NULL)
2622 error (_("Failed to create 'precord' section for corefile %s: %s"),
2623 recfilename,
2624 bfd_errmsg (bfd_get_error ()));
2625 bfd_set_section_size (obfd, osec, save_size);
2626 bfd_set_section_vma (obfd, osec, 0);
2627 bfd_set_section_alignment (obfd, osec, 0);
2628 bfd_section_lma (obfd, osec) = 0;
2629
2630 /* Save corefile state. */
2631 write_gcore_file (obfd);
2632
2633 /* Write out the record log. */
2634 /* Write the magic code. */
2635 magic = RECORD_FULL_FILE_MAGIC;
2636 if (record_debug)
2637 fprintf_unfiltered (gdb_stdlog,
2638 " Writing 4-byte magic cookie "
2639 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2640 phex_nz (magic, 4));
2641 bfdcore_write (obfd, osec, &magic, sizeof (magic), &bfd_offset);
2642
2643 /* Save the entries to recfd and forward execute to the end of
2644 record list. */
2645 record_full_list = &record_full_first;
2646 while (1)
2647 {
2648 /* Save entry. */
2649 if (record_full_list != &record_full_first)
2650 {
2651 uint8_t type;
2652 uint32_t regnum, len, signal, count;
2653 uint64_t addr;
2654
2655 type = record_full_list->type;
2656 bfdcore_write (obfd, osec, &type, sizeof (type), &bfd_offset);
2657
2658 switch (record_full_list->type)
2659 {
2660 case record_full_reg: /* reg */
2661 if (record_debug)
2662 fprintf_unfiltered (gdb_stdlog,
2663 " Writing register %d (1 "
2664 "plus %lu plus %d bytes)\n",
2665 record_full_list->u.reg.num,
2666 (unsigned long) sizeof (regnum),
2667 record_full_list->u.reg.len);
2668
2669 /* Write regnum. */
2670 regnum = netorder32 (record_full_list->u.reg.num);
2671 bfdcore_write (obfd, osec, &regnum,
2672 sizeof (regnum), &bfd_offset);
2673
2674 /* Write regval. */
2675 bfdcore_write (obfd, osec,
2676 record_full_get_loc (record_full_list),
2677 record_full_list->u.reg.len, &bfd_offset);
2678 break;
2679
2680 case record_full_mem: /* mem */
2681 if (record_debug)
2682 fprintf_unfiltered (gdb_stdlog,
2683 " Writing memory %s (1 plus "
2684 "%lu plus %lu plus %d bytes)\n",
2685 paddress (gdbarch,
2686 record_full_list->u.mem.addr),
2687 (unsigned long) sizeof (addr),
2688 (unsigned long) sizeof (len),
2689 record_full_list->u.mem.len);
2690
2691 /* Write memlen. */
2692 len = netorder32 (record_full_list->u.mem.len);
2693 bfdcore_write (obfd, osec, &len, sizeof (len), &bfd_offset);
2694
2695 /* Write memaddr. */
2696 addr = netorder64 (record_full_list->u.mem.addr);
2697 bfdcore_write (obfd, osec, &addr,
2698 sizeof (addr), &bfd_offset);
2699
2700 /* Write memval. */
2701 bfdcore_write (obfd, osec,
2702 record_full_get_loc (record_full_list),
2703 record_full_list->u.mem.len, &bfd_offset);
2704 break;
2705
2706 case record_full_end:
2707 if (record_debug)
2708 fprintf_unfiltered (gdb_stdlog,
2709 " Writing record_full_end (1 + "
2710 "%lu + %lu bytes)\n",
2711 (unsigned long) sizeof (signal),
2712 (unsigned long) sizeof (count));
2713 /* Write signal value. */
2714 signal = netorder32 (record_full_list->u.end.sigval);
2715 bfdcore_write (obfd, osec, &signal,
2716 sizeof (signal), &bfd_offset);
2717
2718 /* Write insn count. */
2719 count = netorder32 (record_full_list->u.end.insn_num);
2720 bfdcore_write (obfd, osec, &count,
2721 sizeof (count), &bfd_offset);
2722 break;
2723 }
2724 }
2725
2726 /* Execute entry. */
2727 record_full_exec_insn (regcache, gdbarch, record_full_list);
2728
2729 if (record_full_list->next)
2730 record_full_list = record_full_list->next;
2731 else
2732 break;
2733 }
2734
2735 /* Reverse execute to cur_record_full_list. */
2736 while (1)
2737 {
2738 /* Check for beginning and end of log. */
2739 if (record_full_list == cur_record_full_list)
2740 break;
2741
2742 record_full_exec_insn (regcache, gdbarch, record_full_list);
2743
2744 if (record_full_list->prev)
2745 record_full_list = record_full_list->prev;
2746 }
2747
2748 do_cleanups (set_cleanups);
2749 gdb_bfd_unref (obfd);
2750 discard_cleanups (old_cleanups);
2751
2752 /* Succeeded. */
2753 printf_filtered (_("Saved core file %s with execution log.\n"),
2754 recfilename);
2755 }
2756
2757 /* record_full_goto_insn -- rewind the record log (forward or backward,
2758 depending on DIR) to the given entry, changing the program state
2759 correspondingly. */
2760
2761 static void
2762 record_full_goto_insn (struct record_full_entry *entry,
2763 enum exec_direction_kind dir)
2764 {
2765 struct cleanup *set_cleanups = record_full_gdb_operation_disable_set ();
2766 struct regcache *regcache = get_current_regcache ();
2767 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2768
2769 /* Assume everything is valid: we will hit the entry,
2770 and we will not hit the end of the recording. */
2771
2772 if (dir == EXEC_FORWARD)
2773 record_full_list = record_full_list->next;
2774
2775 do
2776 {
2777 record_full_exec_insn (regcache, gdbarch, record_full_list);
2778 if (dir == EXEC_REVERSE)
2779 record_full_list = record_full_list->prev;
2780 else
2781 record_full_list = record_full_list->next;
2782 } while (record_full_list != entry);
2783 do_cleanups (set_cleanups);
2784 }
2785
2786 /* Alias for "target record-full". */
2787
2788 static void
2789 cmd_record_full_start (char *args, int from_tty)
2790 {
2791 execute_command ("target record-full", from_tty);
2792 }
2793
2794 static void
2795 set_record_full_insn_max_num (char *args, int from_tty,
2796 struct cmd_list_element *c)
2797 {
2798 if (record_full_insn_num > record_full_insn_max_num)
2799 {
2800 /* Count down record_full_insn_num while releasing records from list. */
2801 while (record_full_insn_num > record_full_insn_max_num)
2802 {
2803 record_full_list_release_first ();
2804 record_full_insn_num--;
2805 }
2806 }
2807 }
2808
2809 /* The "set record full" command. */
2810
2811 static void
2812 set_record_full_command (char *args, int from_tty)
2813 {
2814 printf_unfiltered (_("\"set record full\" must be followed "
2815 "by an apporpriate subcommand.\n"));
2816 help_list (set_record_full_cmdlist, "set record full ", all_commands,
2817 gdb_stdout);
2818 }
2819
2820 /* The "show record full" command. */
2821
2822 static void
2823 show_record_full_command (char *args, int from_tty)
2824 {
2825 cmd_show_list (show_record_full_cmdlist, from_tty, "");
2826 }
2827
2828 /* Provide a prototype to silence -Wmissing-prototypes. */
2829 extern initialize_file_ftype _initialize_record_full;
2830
2831 void
2832 _initialize_record_full (void)
2833 {
2834 struct cmd_list_element *c;
2835
2836 /* Init record_full_first. */
2837 record_full_first.prev = NULL;
2838 record_full_first.next = NULL;
2839 record_full_first.type = record_full_end;
2840
2841 init_record_full_ops ();
2842 add_target (&record_full_ops);
2843 add_deprecated_target_alias (&record_full_ops, "record");
2844 init_record_full_core_ops ();
2845 add_target (&record_full_core_ops);
2846
2847 add_prefix_cmd ("full", class_obscure, cmd_record_full_start,
2848 _("Start full execution recording."), &record_full_cmdlist,
2849 "record full ", 0, &record_cmdlist);
2850
2851 c = add_cmd ("restore", class_obscure, cmd_record_full_restore,
2852 _("Restore the execution log from a file.\n\
2853 Argument is filename. File must be created with 'record save'."),
2854 &record_full_cmdlist);
2855 set_cmd_completer (c, filename_completer);
2856
2857 /* Deprecate the old version without "full" prefix. */
2858 c = add_alias_cmd ("restore", "full restore", class_obscure, 1,
2859 &record_cmdlist);
2860 set_cmd_completer (c, filename_completer);
2861 deprecate_cmd (c, "record full restore");
2862
2863 add_prefix_cmd ("full", class_support, set_record_full_command,
2864 _("Set record options"), &set_record_full_cmdlist,
2865 "set record full ", 0, &set_record_cmdlist);
2866
2867 add_prefix_cmd ("full", class_support, show_record_full_command,
2868 _("Show record options"), &show_record_full_cmdlist,
2869 "show record full ", 0, &show_record_cmdlist);
2870
2871 /* Record instructions number limit command. */
2872 add_setshow_boolean_cmd ("stop-at-limit", no_class,
2873 &record_full_stop_at_limit, _("\
2874 Set whether record/replay stops when record/replay buffer becomes full."), _("\
2875 Show whether record/replay stops when record/replay buffer becomes full."),
2876 _("Default is ON.\n\
2877 When ON, if the record/replay buffer becomes full, ask user what to do.\n\
2878 When OFF, if the record/replay buffer becomes full,\n\
2879 delete the oldest recorded instruction to make room for each new one."),
2880 NULL, NULL,
2881 &set_record_full_cmdlist, &show_record_full_cmdlist);
2882
2883 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2884 &set_record_cmdlist);
2885 deprecate_cmd (c, "set record full stop-at-limit");
2886
2887 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2888 &show_record_cmdlist);
2889 deprecate_cmd (c, "show record full stop-at-limit");
2890
2891 add_setshow_uinteger_cmd ("insn-number-max", no_class,
2892 &record_full_insn_max_num,
2893 _("Set record/replay buffer limit."),
2894 _("Show record/replay buffer limit."), _("\
2895 Set the maximum number of instructions to be stored in the\n\
2896 record/replay buffer. A value of either \"unlimited\" or zero means no\n\
2897 limit. Default is 200000."),
2898 set_record_full_insn_max_num,
2899 NULL, &set_record_full_cmdlist,
2900 &show_record_full_cmdlist);
2901
2902 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2903 &set_record_cmdlist);
2904 deprecate_cmd (c, "set record full insn-number-max");
2905
2906 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2907 &show_record_cmdlist);
2908 deprecate_cmd (c, "show record full insn-number-max");
2909
2910 add_setshow_boolean_cmd ("memory-query", no_class,
2911 &record_full_memory_query, _("\
2912 Set whether query if PREC cannot record memory change of next instruction."),
2913 _("\
2914 Show whether query if PREC cannot record memory change of next instruction."),
2915 _("\
2916 Default is OFF.\n\
2917 When ON, query if PREC cannot record memory change of next instruction."),
2918 NULL, NULL,
2919 &set_record_full_cmdlist,
2920 &show_record_full_cmdlist);
2921
2922 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2923 &set_record_cmdlist);
2924 deprecate_cmd (c, "set record full memory-query");
2925
2926 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2927 &show_record_cmdlist);
2928 deprecate_cmd (c, "show record full memory-query");
2929 }
This page took 0.086869 seconds and 3 git commands to generate.