Add method/format information to =record-started
[deliverable/binutils-gdb.git] / gdb / record-full.c
1 /* Process record and replay target for GDB, the GNU debugger.
2
3 Copyright (C) 2013-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "regcache.h"
23 #include "gdbthread.h"
24 #include "event-top.h"
25 #include "completer.h"
26 #include "arch-utils.h"
27 #include "gdbcore.h"
28 #include "exec.h"
29 #include "record.h"
30 #include "record-full.h"
31 #include "elf-bfd.h"
32 #include "gcore.h"
33 #include "event-loop.h"
34 #include "inf-loop.h"
35 #include "gdb_bfd.h"
36 #include "observer.h"
37 #include "infrun.h"
38
39 #include <signal.h>
40
41 /* This module implements "target record-full", also known as "process
42 record and replay". This target sits on top of a "normal" target
43 (a target that "has execution"), and provides a record and replay
44 functionality, including reverse debugging.
45
46 Target record has two modes: recording, and replaying.
47
48 In record mode, we intercept the to_resume and to_wait methods.
49 Whenever gdb resumes the target, we run the target in single step
50 mode, and we build up an execution log in which, for each executed
51 instruction, we record all changes in memory and register state.
52 This is invisible to the user, to whom it just looks like an
53 ordinary debugging session (except for performance degredation).
54
55 In replay mode, instead of actually letting the inferior run as a
56 process, we simulate its execution by playing back the recorded
57 execution log. For each instruction in the log, we simulate the
58 instruction's side effects by duplicating the changes that it would
59 have made on memory and registers. */
60
61 #define DEFAULT_RECORD_FULL_INSN_MAX_NUM 200000
62
63 #define RECORD_FULL_IS_REPLAY \
64 (record_full_list->next || execution_direction == EXEC_REVERSE)
65
66 #define RECORD_FULL_FILE_MAGIC netorder32(0x20091016)
67
68 /* These are the core structs of the process record functionality.
69
70 A record_full_entry is a record of the value change of a register
71 ("record_full_reg") or a part of memory ("record_full_mem"). And each
72 instruction must have a struct record_full_entry ("record_full_end")
73 that indicates that this is the last struct record_full_entry of this
74 instruction.
75
76 Each struct record_full_entry is linked to "record_full_list" by "prev"
77 and "next" pointers. */
78
79 struct record_full_mem_entry
80 {
81 CORE_ADDR addr;
82 int len;
83 /* Set this flag if target memory for this entry
84 can no longer be accessed. */
85 int mem_entry_not_accessible;
86 union
87 {
88 gdb_byte *ptr;
89 gdb_byte buf[sizeof (gdb_byte *)];
90 } u;
91 };
92
93 struct record_full_reg_entry
94 {
95 unsigned short num;
96 unsigned short len;
97 union
98 {
99 gdb_byte *ptr;
100 gdb_byte buf[2 * sizeof (gdb_byte *)];
101 } u;
102 };
103
104 struct record_full_end_entry
105 {
106 enum gdb_signal sigval;
107 ULONGEST insn_num;
108 };
109
110 enum record_full_type
111 {
112 record_full_end = 0,
113 record_full_reg,
114 record_full_mem
115 };
116
117 /* This is the data structure that makes up the execution log.
118
119 The execution log consists of a single linked list of entries
120 of type "struct record_full_entry". It is doubly linked so that it
121 can be traversed in either direction.
122
123 The start of the list is anchored by a struct called
124 "record_full_first". The pointer "record_full_list" either points
125 to the last entry that was added to the list (in record mode), or to
126 the next entry in the list that will be executed (in replay mode).
127
128 Each list element (struct record_full_entry), in addition to next
129 and prev pointers, consists of a union of three entry types: mem,
130 reg, and end. A field called "type" determines which entry type is
131 represented by a given list element.
132
133 Each instruction that is added to the execution log is represented
134 by a variable number of list elements ('entries'). The instruction
135 will have one "reg" entry for each register that is changed by
136 executing the instruction (including the PC in every case). It
137 will also have one "mem" entry for each memory change. Finally,
138 each instruction will have an "end" entry that separates it from
139 the changes associated with the next instruction. */
140
141 struct record_full_entry
142 {
143 struct record_full_entry *prev;
144 struct record_full_entry *next;
145 enum record_full_type type;
146 union
147 {
148 /* reg */
149 struct record_full_reg_entry reg;
150 /* mem */
151 struct record_full_mem_entry mem;
152 /* end */
153 struct record_full_end_entry end;
154 } u;
155 };
156
157 /* If true, query if PREC cannot record memory
158 change of next instruction. */
159 int record_full_memory_query = 0;
160
161 struct record_full_core_buf_entry
162 {
163 struct record_full_core_buf_entry *prev;
164 struct target_section *p;
165 bfd_byte *buf;
166 };
167
168 /* Record buf with core target. */
169 static gdb_byte *record_full_core_regbuf = NULL;
170 static struct target_section *record_full_core_start;
171 static struct target_section *record_full_core_end;
172 static struct record_full_core_buf_entry *record_full_core_buf_list = NULL;
173
174 /* The following variables are used for managing the linked list that
175 represents the execution log.
176
177 record_full_first is the anchor that holds down the beginning of
178 the list.
179
180 record_full_list serves two functions:
181 1) In record mode, it anchors the end of the list.
182 2) In replay mode, it traverses the list and points to
183 the next instruction that must be emulated.
184
185 record_full_arch_list_head and record_full_arch_list_tail are used
186 to manage a separate list, which is used to build up the change
187 elements of the currently executing instruction during record mode.
188 When this instruction has been completely annotated in the "arch
189 list", it will be appended to the main execution log. */
190
191 static struct record_full_entry record_full_first;
192 static struct record_full_entry *record_full_list = &record_full_first;
193 static struct record_full_entry *record_full_arch_list_head = NULL;
194 static struct record_full_entry *record_full_arch_list_tail = NULL;
195
196 /* 1 ask user. 0 auto delete the last struct record_full_entry. */
197 static int record_full_stop_at_limit = 1;
198 /* Maximum allowed number of insns in execution log. */
199 static unsigned int record_full_insn_max_num
200 = DEFAULT_RECORD_FULL_INSN_MAX_NUM;
201 /* Actual count of insns presently in execution log. */
202 static unsigned int record_full_insn_num = 0;
203 /* Count of insns logged so far (may be larger
204 than count of insns presently in execution log). */
205 static ULONGEST record_full_insn_count;
206
207 /* The target_ops of process record. */
208 static struct target_ops record_full_ops;
209 static struct target_ops record_full_core_ops;
210
211 /* See record-full.h. */
212
213 int
214 record_full_is_used (void)
215 {
216 struct target_ops *t;
217
218 t = find_record_target ();
219 return (t == &record_full_ops
220 || t == &record_full_core_ops);
221 }
222
223
224 /* Command lists for "set/show record full". */
225 static struct cmd_list_element *set_record_full_cmdlist;
226 static struct cmd_list_element *show_record_full_cmdlist;
227
228 /* Command list for "record full". */
229 static struct cmd_list_element *record_full_cmdlist;
230
231 static void record_full_goto_insn (struct record_full_entry *entry,
232 enum exec_direction_kind dir);
233 static void record_full_save (struct target_ops *self,
234 const char *recfilename);
235
236 /* Alloc and free functions for record_full_reg, record_full_mem, and
237 record_full_end entries. */
238
239 /* Alloc a record_full_reg record entry. */
240
241 static inline struct record_full_entry *
242 record_full_reg_alloc (struct regcache *regcache, int regnum)
243 {
244 struct record_full_entry *rec;
245 struct gdbarch *gdbarch = get_regcache_arch (regcache);
246
247 rec = XCNEW (struct record_full_entry);
248 rec->type = record_full_reg;
249 rec->u.reg.num = regnum;
250 rec->u.reg.len = register_size (gdbarch, regnum);
251 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
252 rec->u.reg.u.ptr = (gdb_byte *) xmalloc (rec->u.reg.len);
253
254 return rec;
255 }
256
257 /* Free a record_full_reg record entry. */
258
259 static inline void
260 record_full_reg_release (struct record_full_entry *rec)
261 {
262 gdb_assert (rec->type == record_full_reg);
263 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
264 xfree (rec->u.reg.u.ptr);
265 xfree (rec);
266 }
267
268 /* Alloc a record_full_mem record entry. */
269
270 static inline struct record_full_entry *
271 record_full_mem_alloc (CORE_ADDR addr, int len)
272 {
273 struct record_full_entry *rec;
274
275 rec = XCNEW (struct record_full_entry);
276 rec->type = record_full_mem;
277 rec->u.mem.addr = addr;
278 rec->u.mem.len = len;
279 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
280 rec->u.mem.u.ptr = (gdb_byte *) xmalloc (len);
281
282 return rec;
283 }
284
285 /* Free a record_full_mem record entry. */
286
287 static inline void
288 record_full_mem_release (struct record_full_entry *rec)
289 {
290 gdb_assert (rec->type == record_full_mem);
291 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
292 xfree (rec->u.mem.u.ptr);
293 xfree (rec);
294 }
295
296 /* Alloc a record_full_end record entry. */
297
298 static inline struct record_full_entry *
299 record_full_end_alloc (void)
300 {
301 struct record_full_entry *rec;
302
303 rec = XCNEW (struct record_full_entry);
304 rec->type = record_full_end;
305
306 return rec;
307 }
308
309 /* Free a record_full_end record entry. */
310
311 static inline void
312 record_full_end_release (struct record_full_entry *rec)
313 {
314 xfree (rec);
315 }
316
317 /* Free one record entry, any type.
318 Return entry->type, in case caller wants to know. */
319
320 static inline enum record_full_type
321 record_full_entry_release (struct record_full_entry *rec)
322 {
323 enum record_full_type type = rec->type;
324
325 switch (type) {
326 case record_full_reg:
327 record_full_reg_release (rec);
328 break;
329 case record_full_mem:
330 record_full_mem_release (rec);
331 break;
332 case record_full_end:
333 record_full_end_release (rec);
334 break;
335 }
336 return type;
337 }
338
339 /* Free all record entries in list pointed to by REC. */
340
341 static void
342 record_full_list_release (struct record_full_entry *rec)
343 {
344 if (!rec)
345 return;
346
347 while (rec->next)
348 rec = rec->next;
349
350 while (rec->prev)
351 {
352 rec = rec->prev;
353 record_full_entry_release (rec->next);
354 }
355
356 if (rec == &record_full_first)
357 {
358 record_full_insn_num = 0;
359 record_full_first.next = NULL;
360 }
361 else
362 record_full_entry_release (rec);
363 }
364
365 /* Free all record entries forward of the given list position. */
366
367 static void
368 record_full_list_release_following (struct record_full_entry *rec)
369 {
370 struct record_full_entry *tmp = rec->next;
371
372 rec->next = NULL;
373 while (tmp)
374 {
375 rec = tmp->next;
376 if (record_full_entry_release (tmp) == record_full_end)
377 {
378 record_full_insn_num--;
379 record_full_insn_count--;
380 }
381 tmp = rec;
382 }
383 }
384
385 /* Delete the first instruction from the beginning of the log, to make
386 room for adding a new instruction at the end of the log.
387
388 Note -- this function does not modify record_full_insn_num. */
389
390 static void
391 record_full_list_release_first (void)
392 {
393 struct record_full_entry *tmp;
394
395 if (!record_full_first.next)
396 return;
397
398 /* Loop until a record_full_end. */
399 while (1)
400 {
401 /* Cut record_full_first.next out of the linked list. */
402 tmp = record_full_first.next;
403 record_full_first.next = tmp->next;
404 tmp->next->prev = &record_full_first;
405
406 /* tmp is now isolated, and can be deleted. */
407 if (record_full_entry_release (tmp) == record_full_end)
408 break; /* End loop at first record_full_end. */
409
410 if (!record_full_first.next)
411 {
412 gdb_assert (record_full_insn_num == 1);
413 break; /* End loop when list is empty. */
414 }
415 }
416 }
417
418 /* Add a struct record_full_entry to record_full_arch_list. */
419
420 static void
421 record_full_arch_list_add (struct record_full_entry *rec)
422 {
423 if (record_debug > 1)
424 fprintf_unfiltered (gdb_stdlog,
425 "Process record: record_full_arch_list_add %s.\n",
426 host_address_to_string (rec));
427
428 if (record_full_arch_list_tail)
429 {
430 record_full_arch_list_tail->next = rec;
431 rec->prev = record_full_arch_list_tail;
432 record_full_arch_list_tail = rec;
433 }
434 else
435 {
436 record_full_arch_list_head = rec;
437 record_full_arch_list_tail = rec;
438 }
439 }
440
441 /* Return the value storage location of a record entry. */
442 static inline gdb_byte *
443 record_full_get_loc (struct record_full_entry *rec)
444 {
445 switch (rec->type) {
446 case record_full_mem:
447 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
448 return rec->u.mem.u.ptr;
449 else
450 return rec->u.mem.u.buf;
451 case record_full_reg:
452 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
453 return rec->u.reg.u.ptr;
454 else
455 return rec->u.reg.u.buf;
456 case record_full_end:
457 default:
458 gdb_assert_not_reached ("unexpected record_full_entry type");
459 return NULL;
460 }
461 }
462
463 /* Record the value of a register NUM to record_full_arch_list. */
464
465 int
466 record_full_arch_list_add_reg (struct regcache *regcache, int regnum)
467 {
468 struct record_full_entry *rec;
469
470 if (record_debug > 1)
471 fprintf_unfiltered (gdb_stdlog,
472 "Process record: add register num = %d to "
473 "record list.\n",
474 regnum);
475
476 rec = record_full_reg_alloc (regcache, regnum);
477
478 regcache_raw_read (regcache, regnum, record_full_get_loc (rec));
479
480 record_full_arch_list_add (rec);
481
482 return 0;
483 }
484
485 /* Record the value of a region of memory whose address is ADDR and
486 length is LEN to record_full_arch_list. */
487
488 int
489 record_full_arch_list_add_mem (CORE_ADDR addr, int len)
490 {
491 struct record_full_entry *rec;
492
493 if (record_debug > 1)
494 fprintf_unfiltered (gdb_stdlog,
495 "Process record: add mem addr = %s len = %d to "
496 "record list.\n",
497 paddress (target_gdbarch (), addr), len);
498
499 if (!addr) /* FIXME: Why? Some arch must permit it... */
500 return 0;
501
502 rec = record_full_mem_alloc (addr, len);
503
504 if (record_read_memory (target_gdbarch (), addr,
505 record_full_get_loc (rec), len))
506 {
507 record_full_mem_release (rec);
508 return -1;
509 }
510
511 record_full_arch_list_add (rec);
512
513 return 0;
514 }
515
516 /* Add a record_full_end type struct record_full_entry to
517 record_full_arch_list. */
518
519 int
520 record_full_arch_list_add_end (void)
521 {
522 struct record_full_entry *rec;
523
524 if (record_debug > 1)
525 fprintf_unfiltered (gdb_stdlog,
526 "Process record: add end to arch list.\n");
527
528 rec = record_full_end_alloc ();
529 rec->u.end.sigval = GDB_SIGNAL_0;
530 rec->u.end.insn_num = ++record_full_insn_count;
531
532 record_full_arch_list_add (rec);
533
534 return 0;
535 }
536
537 static void
538 record_full_check_insn_num (void)
539 {
540 if (record_full_insn_num == record_full_insn_max_num)
541 {
542 /* Ask user what to do. */
543 if (record_full_stop_at_limit)
544 {
545 if (!yquery (_("Do you want to auto delete previous execution "
546 "log entries when record/replay buffer becomes "
547 "full (record full stop-at-limit)?")))
548 error (_("Process record: stopped by user."));
549 record_full_stop_at_limit = 0;
550 }
551 }
552 }
553
554 static void
555 record_full_arch_list_cleanups (void *ignore)
556 {
557 record_full_list_release (record_full_arch_list_tail);
558 }
559
560 /* Before inferior step (when GDB record the running message, inferior
561 only can step), GDB will call this function to record the values to
562 record_full_list. This function will call gdbarch_process_record to
563 record the running message of inferior and set them to
564 record_full_arch_list, and add it to record_full_list. */
565
566 static int
567 record_full_message (struct regcache *regcache, enum gdb_signal signal)
568 {
569 int ret;
570 struct gdbarch *gdbarch = get_regcache_arch (regcache);
571 struct cleanup *old_cleanups
572 = make_cleanup (record_full_arch_list_cleanups, 0);
573
574 record_full_arch_list_head = NULL;
575 record_full_arch_list_tail = NULL;
576
577 /* Check record_full_insn_num. */
578 record_full_check_insn_num ();
579
580 /* If gdb sends a signal value to target_resume,
581 save it in the 'end' field of the previous instruction.
582
583 Maybe process record should record what really happened,
584 rather than what gdb pretends has happened.
585
586 So if Linux delivered the signal to the child process during
587 the record mode, we will record it and deliver it again in
588 the replay mode.
589
590 If user says "ignore this signal" during the record mode, then
591 it will be ignored again during the replay mode (no matter if
592 the user says something different, like "deliver this signal"
593 during the replay mode).
594
595 User should understand that nothing he does during the replay
596 mode will change the behavior of the child. If he tries,
597 then that is a user error.
598
599 But we should still deliver the signal to gdb during the replay,
600 if we delivered it during the recording. Therefore we should
601 record the signal during record_full_wait, not
602 record_full_resume. */
603 if (record_full_list != &record_full_first) /* FIXME better way to check */
604 {
605 gdb_assert (record_full_list->type == record_full_end);
606 record_full_list->u.end.sigval = signal;
607 }
608
609 if (signal == GDB_SIGNAL_0
610 || !gdbarch_process_record_signal_p (gdbarch))
611 ret = gdbarch_process_record (gdbarch,
612 regcache,
613 regcache_read_pc (regcache));
614 else
615 ret = gdbarch_process_record_signal (gdbarch,
616 regcache,
617 signal);
618
619 if (ret > 0)
620 error (_("Process record: inferior program stopped."));
621 if (ret < 0)
622 error (_("Process record: failed to record execution log."));
623
624 discard_cleanups (old_cleanups);
625
626 record_full_list->next = record_full_arch_list_head;
627 record_full_arch_list_head->prev = record_full_list;
628 record_full_list = record_full_arch_list_tail;
629
630 if (record_full_insn_num == record_full_insn_max_num)
631 record_full_list_release_first ();
632 else
633 record_full_insn_num++;
634
635 return 1;
636 }
637
638 struct record_full_message_args {
639 struct regcache *regcache;
640 enum gdb_signal signal;
641 };
642
643 static int
644 record_full_message_wrapper (void *args)
645 {
646 struct record_full_message_args *record_full_args
647 = (struct record_full_message_args *) args;
648
649 return record_full_message (record_full_args->regcache,
650 record_full_args->signal);
651 }
652
653 static int
654 record_full_message_wrapper_safe (struct regcache *regcache,
655 enum gdb_signal signal)
656 {
657 struct record_full_message_args args;
658
659 args.regcache = regcache;
660 args.signal = signal;
661
662 return catch_errors (record_full_message_wrapper, &args, "",
663 RETURN_MASK_ALL);
664 }
665
666 /* Set to 1 if record_full_store_registers and record_full_xfer_partial
667 doesn't need record. */
668
669 static int record_full_gdb_operation_disable = 0;
670
671 struct cleanup *
672 record_full_gdb_operation_disable_set (void)
673 {
674 struct cleanup *old_cleanups = NULL;
675
676 old_cleanups =
677 make_cleanup_restore_integer (&record_full_gdb_operation_disable);
678 record_full_gdb_operation_disable = 1;
679
680 return old_cleanups;
681 }
682
683 /* Flag set to TRUE for target_stopped_by_watchpoint. */
684 static enum target_stop_reason record_full_stop_reason
685 = TARGET_STOPPED_BY_NO_REASON;
686
687 /* Execute one instruction from the record log. Each instruction in
688 the log will be represented by an arbitrary sequence of register
689 entries and memory entries, followed by an 'end' entry. */
690
691 static inline void
692 record_full_exec_insn (struct regcache *regcache,
693 struct gdbarch *gdbarch,
694 struct record_full_entry *entry)
695 {
696 switch (entry->type)
697 {
698 case record_full_reg: /* reg */
699 {
700 gdb_byte reg[MAX_REGISTER_SIZE];
701
702 if (record_debug > 1)
703 fprintf_unfiltered (gdb_stdlog,
704 "Process record: record_full_reg %s to "
705 "inferior num = %d.\n",
706 host_address_to_string (entry),
707 entry->u.reg.num);
708
709 regcache_cooked_read (regcache, entry->u.reg.num, reg);
710 regcache_cooked_write (regcache, entry->u.reg.num,
711 record_full_get_loc (entry));
712 memcpy (record_full_get_loc (entry), reg, entry->u.reg.len);
713 }
714 break;
715
716 case record_full_mem: /* mem */
717 {
718 /* Nothing to do if the entry is flagged not_accessible. */
719 if (!entry->u.mem.mem_entry_not_accessible)
720 {
721 gdb_byte *mem = (gdb_byte *) xmalloc (entry->u.mem.len);
722 struct cleanup *cleanup = make_cleanup (xfree, mem);
723
724 if (record_debug > 1)
725 fprintf_unfiltered (gdb_stdlog,
726 "Process record: record_full_mem %s to "
727 "inferior addr = %s len = %d.\n",
728 host_address_to_string (entry),
729 paddress (gdbarch, entry->u.mem.addr),
730 entry->u.mem.len);
731
732 if (record_read_memory (gdbarch,
733 entry->u.mem.addr, mem, entry->u.mem.len))
734 entry->u.mem.mem_entry_not_accessible = 1;
735 else
736 {
737 if (target_write_memory (entry->u.mem.addr,
738 record_full_get_loc (entry),
739 entry->u.mem.len))
740 {
741 entry->u.mem.mem_entry_not_accessible = 1;
742 if (record_debug)
743 warning (_("Process record: error writing memory at "
744 "addr = %s len = %d."),
745 paddress (gdbarch, entry->u.mem.addr),
746 entry->u.mem.len);
747 }
748 else
749 {
750 memcpy (record_full_get_loc (entry), mem,
751 entry->u.mem.len);
752
753 /* We've changed memory --- check if a hardware
754 watchpoint should trap. Note that this
755 presently assumes the target beneath supports
756 continuable watchpoints. On non-continuable
757 watchpoints target, we'll want to check this
758 _before_ actually doing the memory change, and
759 not doing the change at all if the watchpoint
760 traps. */
761 if (hardware_watchpoint_inserted_in_range
762 (get_regcache_aspace (regcache),
763 entry->u.mem.addr, entry->u.mem.len))
764 record_full_stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
765 }
766 }
767
768 do_cleanups (cleanup);
769 }
770 }
771 break;
772 }
773 }
774
775 static void record_full_restore (void);
776
777 /* Asynchronous signal handle registered as event loop source for when
778 we have pending events ready to be passed to the core. */
779
780 static struct async_event_handler *record_full_async_inferior_event_token;
781
782 static void
783 record_full_async_inferior_event_handler (gdb_client_data data)
784 {
785 inferior_event_handler (INF_REG_EVENT, NULL);
786 }
787
788 /* Open the process record target. */
789
790 static void
791 record_full_core_open_1 (const char *name, int from_tty)
792 {
793 struct regcache *regcache = get_current_regcache ();
794 int regnum = gdbarch_num_regs (get_regcache_arch (regcache));
795 int i;
796
797 /* Get record_full_core_regbuf. */
798 target_fetch_registers (regcache, -1);
799 record_full_core_regbuf = (gdb_byte *) xmalloc (MAX_REGISTER_SIZE * regnum);
800 for (i = 0; i < regnum; i ++)
801 regcache_raw_collect (regcache, i,
802 record_full_core_regbuf + MAX_REGISTER_SIZE * i);
803
804 /* Get record_full_core_start and record_full_core_end. */
805 if (build_section_table (core_bfd, &record_full_core_start,
806 &record_full_core_end))
807 {
808 xfree (record_full_core_regbuf);
809 record_full_core_regbuf = NULL;
810 error (_("\"%s\": Can't find sections: %s"),
811 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
812 }
813
814 push_target (&record_full_core_ops);
815 record_full_restore ();
816 }
817
818 /* "to_open" target method for 'live' processes. */
819
820 static void
821 record_full_open_1 (const char *name, int from_tty)
822 {
823 if (record_debug)
824 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n");
825
826 /* check exec */
827 if (!target_has_execution)
828 error (_("Process record: the program is not being run."));
829 if (non_stop)
830 error (_("Process record target can't debug inferior in non-stop mode "
831 "(non-stop)."));
832
833 if (!gdbarch_process_record_p (target_gdbarch ()))
834 error (_("Process record: the current architecture doesn't support "
835 "record function."));
836
837 push_target (&record_full_ops);
838 }
839
840 static void record_full_init_record_breakpoints (void);
841
842 /* "to_open" target method. Open the process record target. */
843
844 static void
845 record_full_open (const char *name, int from_tty)
846 {
847 struct target_ops *t;
848
849 if (record_debug)
850 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n");
851
852 record_preopen ();
853
854 /* Reset */
855 record_full_insn_num = 0;
856 record_full_insn_count = 0;
857 record_full_list = &record_full_first;
858 record_full_list->next = NULL;
859
860 if (core_bfd)
861 record_full_core_open_1 (name, from_tty);
862 else
863 record_full_open_1 (name, from_tty);
864
865 /* Register extra event sources in the event loop. */
866 record_full_async_inferior_event_token
867 = create_async_event_handler (record_full_async_inferior_event_handler,
868 NULL);
869
870 record_full_init_record_breakpoints ();
871
872 observer_notify_record_changed (current_inferior (), 1, "full", NULL);
873 }
874
875 /* "to_close" target method. Close the process record target. */
876
877 static void
878 record_full_close (struct target_ops *self)
879 {
880 struct record_full_core_buf_entry *entry;
881
882 if (record_debug)
883 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_close\n");
884
885 record_full_list_release (record_full_list);
886
887 /* Release record_full_core_regbuf. */
888 if (record_full_core_regbuf)
889 {
890 xfree (record_full_core_regbuf);
891 record_full_core_regbuf = NULL;
892 }
893
894 /* Release record_full_core_buf_list. */
895 if (record_full_core_buf_list)
896 {
897 for (entry = record_full_core_buf_list->prev; entry;
898 entry = entry->prev)
899 {
900 xfree (record_full_core_buf_list);
901 record_full_core_buf_list = entry;
902 }
903 record_full_core_buf_list = NULL;
904 }
905
906 if (record_full_async_inferior_event_token)
907 delete_async_event_handler (&record_full_async_inferior_event_token);
908 }
909
910 /* "to_async" target method. */
911
912 static void
913 record_full_async (struct target_ops *ops, int enable)
914 {
915 if (enable)
916 mark_async_event_handler (record_full_async_inferior_event_token);
917 else
918 clear_async_event_handler (record_full_async_inferior_event_token);
919
920 ops->beneath->to_async (ops->beneath, enable);
921 }
922
923 static int record_full_resume_step = 0;
924
925 /* True if we've been resumed, and so each record_full_wait call should
926 advance execution. If this is false, record_full_wait will return a
927 TARGET_WAITKIND_IGNORE. */
928 static int record_full_resumed = 0;
929
930 /* The execution direction of the last resume we got. This is
931 necessary for async mode. Vis (order is not strictly accurate):
932
933 1. user has the global execution direction set to forward
934 2. user does a reverse-step command
935 3. record_full_resume is called with global execution direction
936 temporarily switched to reverse
937 4. GDB's execution direction is reverted back to forward
938 5. target record notifies event loop there's an event to handle
939 6. infrun asks the target which direction was it going, and switches
940 the global execution direction accordingly (to reverse)
941 7. infrun polls an event out of the record target, and handles it
942 8. GDB goes back to the event loop, and goto #4.
943 */
944 static enum exec_direction_kind record_full_execution_dir = EXEC_FORWARD;
945
946 /* "to_resume" target method. Resume the process record target. */
947
948 static void
949 record_full_resume (struct target_ops *ops, ptid_t ptid, int step,
950 enum gdb_signal signal)
951 {
952 record_full_resume_step = step;
953 record_full_resumed = 1;
954 record_full_execution_dir = execution_direction;
955
956 if (!RECORD_FULL_IS_REPLAY)
957 {
958 struct gdbarch *gdbarch = target_thread_architecture (ptid);
959
960 record_full_message (get_current_regcache (), signal);
961
962 if (!step)
963 {
964 /* This is not hard single step. */
965 if (!gdbarch_software_single_step_p (gdbarch))
966 {
967 /* This is a normal continue. */
968 step = 1;
969 }
970 else
971 {
972 /* This arch support soft sigle step. */
973 if (thread_has_single_step_breakpoints_set (inferior_thread ()))
974 {
975 /* This is a soft single step. */
976 record_full_resume_step = 1;
977 }
978 else
979 {
980 /* This is a continue.
981 Try to insert a soft single step breakpoint. */
982 if (!gdbarch_software_single_step (gdbarch,
983 get_current_frame ()))
984 {
985 /* This system don't want use soft single step.
986 Use hard sigle step. */
987 step = 1;
988 }
989 }
990 }
991 }
992
993 /* Make sure the target beneath reports all signals. */
994 target_pass_signals (0, NULL);
995
996 ops->beneath->to_resume (ops->beneath, ptid, step, signal);
997 }
998
999 /* We are about to start executing the inferior (or simulate it),
1000 let's register it with the event loop. */
1001 if (target_can_async_p ())
1002 target_async (1);
1003 }
1004
1005 static int record_full_get_sig = 0;
1006
1007 /* SIGINT signal handler, registered by "to_wait" method. */
1008
1009 static void
1010 record_full_sig_handler (int signo)
1011 {
1012 if (record_debug)
1013 fprintf_unfiltered (gdb_stdlog, "Process record: get a signal\n");
1014
1015 /* It will break the running inferior in replay mode. */
1016 record_full_resume_step = 1;
1017
1018 /* It will let record_full_wait set inferior status to get the signal
1019 SIGINT. */
1020 record_full_get_sig = 1;
1021 }
1022
1023 static void
1024 record_full_wait_cleanups (void *ignore)
1025 {
1026 if (execution_direction == EXEC_REVERSE)
1027 {
1028 if (record_full_list->next)
1029 record_full_list = record_full_list->next;
1030 }
1031 else
1032 record_full_list = record_full_list->prev;
1033 }
1034
1035 /* "to_wait" target method for process record target.
1036
1037 In record mode, the target is always run in singlestep mode
1038 (even when gdb says to continue). The to_wait method intercepts
1039 the stop events and determines which ones are to be passed on to
1040 gdb. Most stop events are just singlestep events that gdb is not
1041 to know about, so the to_wait method just records them and keeps
1042 singlestepping.
1043
1044 In replay mode, this function emulates the recorded execution log,
1045 one instruction at a time (forward or backward), and determines
1046 where to stop. */
1047
1048 static ptid_t
1049 record_full_wait_1 (struct target_ops *ops,
1050 ptid_t ptid, struct target_waitstatus *status,
1051 int options)
1052 {
1053 struct cleanup *set_cleanups = record_full_gdb_operation_disable_set ();
1054
1055 if (record_debug)
1056 fprintf_unfiltered (gdb_stdlog,
1057 "Process record: record_full_wait "
1058 "record_full_resume_step = %d, "
1059 "record_full_resumed = %d, direction=%s\n",
1060 record_full_resume_step, record_full_resumed,
1061 record_full_execution_dir == EXEC_FORWARD
1062 ? "forward" : "reverse");
1063
1064 if (!record_full_resumed)
1065 {
1066 gdb_assert ((options & TARGET_WNOHANG) != 0);
1067
1068 /* No interesting event. */
1069 status->kind = TARGET_WAITKIND_IGNORE;
1070 return minus_one_ptid;
1071 }
1072
1073 record_full_get_sig = 0;
1074 signal (SIGINT, record_full_sig_handler);
1075
1076 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1077
1078 if (!RECORD_FULL_IS_REPLAY && ops != &record_full_core_ops)
1079 {
1080 if (record_full_resume_step)
1081 {
1082 /* This is a single step. */
1083 return ops->beneath->to_wait (ops->beneath, ptid, status, options);
1084 }
1085 else
1086 {
1087 /* This is not a single step. */
1088 ptid_t ret;
1089 CORE_ADDR tmp_pc;
1090 struct gdbarch *gdbarch = target_thread_architecture (inferior_ptid);
1091
1092 while (1)
1093 {
1094 struct thread_info *tp;
1095
1096 ret = ops->beneath->to_wait (ops->beneath, ptid, status, options);
1097 if (status->kind == TARGET_WAITKIND_IGNORE)
1098 {
1099 if (record_debug)
1100 fprintf_unfiltered (gdb_stdlog,
1101 "Process record: record_full_wait "
1102 "target beneath not done yet\n");
1103 return ret;
1104 }
1105
1106 ALL_NON_EXITED_THREADS (tp)
1107 delete_single_step_breakpoints (tp);
1108
1109 if (record_full_resume_step)
1110 return ret;
1111
1112 /* Is this a SIGTRAP? */
1113 if (status->kind == TARGET_WAITKIND_STOPPED
1114 && status->value.sig == GDB_SIGNAL_TRAP)
1115 {
1116 struct regcache *regcache;
1117 struct address_space *aspace;
1118 enum target_stop_reason *stop_reason_p
1119 = &record_full_stop_reason;
1120
1121 /* Yes -- this is likely our single-step finishing,
1122 but check if there's any reason the core would be
1123 interested in the event. */
1124
1125 registers_changed ();
1126 regcache = get_current_regcache ();
1127 tmp_pc = regcache_read_pc (regcache);
1128 aspace = get_regcache_aspace (regcache);
1129
1130 if (target_stopped_by_watchpoint ())
1131 {
1132 /* Always interested in watchpoints. */
1133 }
1134 else if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1135 stop_reason_p))
1136 {
1137 /* There is a breakpoint here. Let the core
1138 handle it. */
1139 }
1140 else
1141 {
1142 /* This is a single-step trap. Record the
1143 insn and issue another step.
1144 FIXME: this part can be a random SIGTRAP too.
1145 But GDB cannot handle it. */
1146 int step = 1;
1147
1148 if (!record_full_message_wrapper_safe (regcache,
1149 GDB_SIGNAL_0))
1150 {
1151 status->kind = TARGET_WAITKIND_STOPPED;
1152 status->value.sig = GDB_SIGNAL_0;
1153 break;
1154 }
1155
1156 if (gdbarch_software_single_step_p (gdbarch))
1157 {
1158 /* Try to insert the software single step breakpoint.
1159 If insert success, set step to 0. */
1160 set_executing (inferior_ptid, 0);
1161 reinit_frame_cache ();
1162 if (gdbarch_software_single_step (gdbarch,
1163 get_current_frame ()))
1164 step = 0;
1165 set_executing (inferior_ptid, 1);
1166 }
1167
1168 if (record_debug)
1169 fprintf_unfiltered (gdb_stdlog,
1170 "Process record: record_full_wait "
1171 "issuing one more step in the "
1172 "target beneath\n");
1173 ops->beneath->to_resume (ops->beneath, ptid, step,
1174 GDB_SIGNAL_0);
1175 continue;
1176 }
1177 }
1178
1179 /* The inferior is broken by a breakpoint or a signal. */
1180 break;
1181 }
1182
1183 return ret;
1184 }
1185 }
1186 else
1187 {
1188 struct regcache *regcache = get_current_regcache ();
1189 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1190 struct address_space *aspace = get_regcache_aspace (regcache);
1191 int continue_flag = 1;
1192 int first_record_full_end = 1;
1193 struct cleanup *old_cleanups
1194 = make_cleanup (record_full_wait_cleanups, 0);
1195 CORE_ADDR tmp_pc;
1196
1197 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1198 status->kind = TARGET_WAITKIND_STOPPED;
1199
1200 /* Check breakpoint when forward execute. */
1201 if (execution_direction == EXEC_FORWARD)
1202 {
1203 tmp_pc = regcache_read_pc (regcache);
1204 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1205 &record_full_stop_reason))
1206 {
1207 if (record_debug)
1208 fprintf_unfiltered (gdb_stdlog,
1209 "Process record: break at %s.\n",
1210 paddress (gdbarch, tmp_pc));
1211 goto replay_out;
1212 }
1213 }
1214
1215 /* If GDB is in terminal_inferior mode, it will not get the signal.
1216 And in GDB replay mode, GDB doesn't need to be in terminal_inferior
1217 mode, because inferior will not executed.
1218 Then set it to terminal_ours to make GDB get the signal. */
1219 target_terminal_ours ();
1220
1221 /* In EXEC_FORWARD mode, record_full_list points to the tail of prev
1222 instruction. */
1223 if (execution_direction == EXEC_FORWARD && record_full_list->next)
1224 record_full_list = record_full_list->next;
1225
1226 /* Loop over the record_full_list, looking for the next place to
1227 stop. */
1228 do
1229 {
1230 /* Check for beginning and end of log. */
1231 if (execution_direction == EXEC_REVERSE
1232 && record_full_list == &record_full_first)
1233 {
1234 /* Hit beginning of record log in reverse. */
1235 status->kind = TARGET_WAITKIND_NO_HISTORY;
1236 break;
1237 }
1238 if (execution_direction != EXEC_REVERSE && !record_full_list->next)
1239 {
1240 /* Hit end of record log going forward. */
1241 status->kind = TARGET_WAITKIND_NO_HISTORY;
1242 break;
1243 }
1244
1245 record_full_exec_insn (regcache, gdbarch, record_full_list);
1246
1247 if (record_full_list->type == record_full_end)
1248 {
1249 if (record_debug > 1)
1250 fprintf_unfiltered (gdb_stdlog,
1251 "Process record: record_full_end %s to "
1252 "inferior.\n",
1253 host_address_to_string (record_full_list));
1254
1255 if (first_record_full_end && execution_direction == EXEC_REVERSE)
1256 {
1257 /* When reverse excute, the first record_full_end is the
1258 part of current instruction. */
1259 first_record_full_end = 0;
1260 }
1261 else
1262 {
1263 /* In EXEC_REVERSE mode, this is the record_full_end of prev
1264 instruction.
1265 In EXEC_FORWARD mode, this is the record_full_end of
1266 current instruction. */
1267 /* step */
1268 if (record_full_resume_step)
1269 {
1270 if (record_debug > 1)
1271 fprintf_unfiltered (gdb_stdlog,
1272 "Process record: step.\n");
1273 continue_flag = 0;
1274 }
1275
1276 /* check breakpoint */
1277 tmp_pc = regcache_read_pc (regcache);
1278 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1279 &record_full_stop_reason))
1280 {
1281 if (record_debug)
1282 fprintf_unfiltered (gdb_stdlog,
1283 "Process record: break "
1284 "at %s.\n",
1285 paddress (gdbarch, tmp_pc));
1286
1287 continue_flag = 0;
1288 }
1289
1290 if (record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
1291 {
1292 if (record_debug)
1293 fprintf_unfiltered (gdb_stdlog,
1294 "Process record: hit hw "
1295 "watchpoint.\n");
1296 continue_flag = 0;
1297 }
1298 /* Check target signal */
1299 if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1300 /* FIXME: better way to check */
1301 continue_flag = 0;
1302 }
1303 }
1304
1305 if (continue_flag)
1306 {
1307 if (execution_direction == EXEC_REVERSE)
1308 {
1309 if (record_full_list->prev)
1310 record_full_list = record_full_list->prev;
1311 }
1312 else
1313 {
1314 if (record_full_list->next)
1315 record_full_list = record_full_list->next;
1316 }
1317 }
1318 }
1319 while (continue_flag);
1320
1321 replay_out:
1322 if (record_full_get_sig)
1323 status->value.sig = GDB_SIGNAL_INT;
1324 else if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1325 /* FIXME: better way to check */
1326 status->value.sig = record_full_list->u.end.sigval;
1327 else
1328 status->value.sig = GDB_SIGNAL_TRAP;
1329
1330 discard_cleanups (old_cleanups);
1331 }
1332
1333 signal (SIGINT, handle_sigint);
1334
1335 do_cleanups (set_cleanups);
1336 return inferior_ptid;
1337 }
1338
1339 static ptid_t
1340 record_full_wait (struct target_ops *ops,
1341 ptid_t ptid, struct target_waitstatus *status,
1342 int options)
1343 {
1344 ptid_t return_ptid;
1345
1346 return_ptid = record_full_wait_1 (ops, ptid, status, options);
1347 if (status->kind != TARGET_WAITKIND_IGNORE)
1348 {
1349 /* We're reporting a stop. Make sure any spurious
1350 target_wait(WNOHANG) doesn't advance the target until the
1351 core wants us resumed again. */
1352 record_full_resumed = 0;
1353 }
1354 return return_ptid;
1355 }
1356
1357 static int
1358 record_full_stopped_by_watchpoint (struct target_ops *ops)
1359 {
1360 if (RECORD_FULL_IS_REPLAY)
1361 return record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
1362 else
1363 return ops->beneath->to_stopped_by_watchpoint (ops->beneath);
1364 }
1365
1366 static int
1367 record_full_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
1368 {
1369 if (RECORD_FULL_IS_REPLAY)
1370 return 0;
1371 else
1372 return ops->beneath->to_stopped_data_address (ops->beneath, addr_p);
1373 }
1374
1375 /* The to_stopped_by_sw_breakpoint method of target record-full. */
1376
1377 static int
1378 record_full_stopped_by_sw_breakpoint (struct target_ops *ops)
1379 {
1380 return record_full_stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
1381 }
1382
1383 /* The to_supports_stopped_by_sw_breakpoint method of target
1384 record-full. */
1385
1386 static int
1387 record_full_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
1388 {
1389 return 1;
1390 }
1391
1392 /* The to_stopped_by_hw_breakpoint method of target record-full. */
1393
1394 static int
1395 record_full_stopped_by_hw_breakpoint (struct target_ops *ops)
1396 {
1397 return record_full_stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
1398 }
1399
1400 /* The to_supports_stopped_by_sw_breakpoint method of target
1401 record-full. */
1402
1403 static int
1404 record_full_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
1405 {
1406 return 1;
1407 }
1408
1409 /* Record registers change (by user or by GDB) to list as an instruction. */
1410
1411 static void
1412 record_full_registers_change (struct regcache *regcache, int regnum)
1413 {
1414 /* Check record_full_insn_num. */
1415 record_full_check_insn_num ();
1416
1417 record_full_arch_list_head = NULL;
1418 record_full_arch_list_tail = NULL;
1419
1420 if (regnum < 0)
1421 {
1422 int i;
1423
1424 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
1425 {
1426 if (record_full_arch_list_add_reg (regcache, i))
1427 {
1428 record_full_list_release (record_full_arch_list_tail);
1429 error (_("Process record: failed to record execution log."));
1430 }
1431 }
1432 }
1433 else
1434 {
1435 if (record_full_arch_list_add_reg (regcache, regnum))
1436 {
1437 record_full_list_release (record_full_arch_list_tail);
1438 error (_("Process record: failed to record execution log."));
1439 }
1440 }
1441 if (record_full_arch_list_add_end ())
1442 {
1443 record_full_list_release (record_full_arch_list_tail);
1444 error (_("Process record: failed to record execution log."));
1445 }
1446 record_full_list->next = record_full_arch_list_head;
1447 record_full_arch_list_head->prev = record_full_list;
1448 record_full_list = record_full_arch_list_tail;
1449
1450 if (record_full_insn_num == record_full_insn_max_num)
1451 record_full_list_release_first ();
1452 else
1453 record_full_insn_num++;
1454 }
1455
1456 /* "to_store_registers" method for process record target. */
1457
1458 static void
1459 record_full_store_registers (struct target_ops *ops,
1460 struct regcache *regcache,
1461 int regno)
1462 {
1463 if (!record_full_gdb_operation_disable)
1464 {
1465 if (RECORD_FULL_IS_REPLAY)
1466 {
1467 int n;
1468
1469 /* Let user choose if he wants to write register or not. */
1470 if (regno < 0)
1471 n =
1472 query (_("Because GDB is in replay mode, changing the "
1473 "value of a register will make the execution "
1474 "log unusable from this point onward. "
1475 "Change all registers?"));
1476 else
1477 n =
1478 query (_("Because GDB is in replay mode, changing the value "
1479 "of a register will make the execution log unusable "
1480 "from this point onward. Change register %s?"),
1481 gdbarch_register_name (get_regcache_arch (regcache),
1482 regno));
1483
1484 if (!n)
1485 {
1486 /* Invalidate the value of regcache that was set in function
1487 "regcache_raw_write". */
1488 if (regno < 0)
1489 {
1490 int i;
1491
1492 for (i = 0;
1493 i < gdbarch_num_regs (get_regcache_arch (regcache));
1494 i++)
1495 regcache_invalidate (regcache, i);
1496 }
1497 else
1498 regcache_invalidate (regcache, regno);
1499
1500 error (_("Process record canceled the operation."));
1501 }
1502
1503 /* Destroy the record from here forward. */
1504 record_full_list_release_following (record_full_list);
1505 }
1506
1507 record_full_registers_change (regcache, regno);
1508 }
1509 ops->beneath->to_store_registers (ops->beneath, regcache, regno);
1510 }
1511
1512 /* "to_xfer_partial" method. Behavior is conditional on
1513 RECORD_FULL_IS_REPLAY.
1514 In replay mode, we cannot write memory unles we are willing to
1515 invalidate the record/replay log from this point forward. */
1516
1517 static enum target_xfer_status
1518 record_full_xfer_partial (struct target_ops *ops, enum target_object object,
1519 const char *annex, gdb_byte *readbuf,
1520 const gdb_byte *writebuf, ULONGEST offset,
1521 ULONGEST len, ULONGEST *xfered_len)
1522 {
1523 if (!record_full_gdb_operation_disable
1524 && (object == TARGET_OBJECT_MEMORY
1525 || object == TARGET_OBJECT_RAW_MEMORY) && writebuf)
1526 {
1527 if (RECORD_FULL_IS_REPLAY)
1528 {
1529 /* Let user choose if he wants to write memory or not. */
1530 if (!query (_("Because GDB is in replay mode, writing to memory "
1531 "will make the execution log unusable from this "
1532 "point onward. Write memory at address %s?"),
1533 paddress (target_gdbarch (), offset)))
1534 error (_("Process record canceled the operation."));
1535
1536 /* Destroy the record from here forward. */
1537 record_full_list_release_following (record_full_list);
1538 }
1539
1540 /* Check record_full_insn_num */
1541 record_full_check_insn_num ();
1542
1543 /* Record registers change to list as an instruction. */
1544 record_full_arch_list_head = NULL;
1545 record_full_arch_list_tail = NULL;
1546 if (record_full_arch_list_add_mem (offset, len))
1547 {
1548 record_full_list_release (record_full_arch_list_tail);
1549 if (record_debug)
1550 fprintf_unfiltered (gdb_stdlog,
1551 "Process record: failed to record "
1552 "execution log.");
1553 return TARGET_XFER_E_IO;
1554 }
1555 if (record_full_arch_list_add_end ())
1556 {
1557 record_full_list_release (record_full_arch_list_tail);
1558 if (record_debug)
1559 fprintf_unfiltered (gdb_stdlog,
1560 "Process record: failed to record "
1561 "execution log.");
1562 return TARGET_XFER_E_IO;
1563 }
1564 record_full_list->next = record_full_arch_list_head;
1565 record_full_arch_list_head->prev = record_full_list;
1566 record_full_list = record_full_arch_list_tail;
1567
1568 if (record_full_insn_num == record_full_insn_max_num)
1569 record_full_list_release_first ();
1570 else
1571 record_full_insn_num++;
1572 }
1573
1574 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1575 readbuf, writebuf, offset,
1576 len, xfered_len);
1577 }
1578
1579 /* This structure represents a breakpoint inserted while the record
1580 target is active. We use this to know when to install/remove
1581 breakpoints in/from the target beneath. For example, a breakpoint
1582 may be inserted while recording, but removed when not replaying nor
1583 recording. In that case, the breakpoint had not been inserted on
1584 the target beneath, so we should not try to remove it there. */
1585
1586 struct record_full_breakpoint
1587 {
1588 /* The address and address space the breakpoint was set at. */
1589 struct address_space *address_space;
1590 CORE_ADDR addr;
1591
1592 /* True when the breakpoint has been also installed in the target
1593 beneath. This will be false for breakpoints set during replay or
1594 when recording. */
1595 int in_target_beneath;
1596 };
1597
1598 typedef struct record_full_breakpoint *record_full_breakpoint_p;
1599 DEF_VEC_P(record_full_breakpoint_p);
1600
1601 /* The list of breakpoints inserted while the record target is
1602 active. */
1603 VEC(record_full_breakpoint_p) *record_full_breakpoints = NULL;
1604
1605 static void
1606 record_full_sync_record_breakpoints (struct bp_location *loc, void *data)
1607 {
1608 if (loc->loc_type != bp_loc_software_breakpoint)
1609 return;
1610
1611 if (loc->inserted)
1612 {
1613 struct record_full_breakpoint *bp = XNEW (struct record_full_breakpoint);
1614
1615 bp->addr = loc->target_info.placed_address;
1616 bp->address_space = loc->target_info.placed_address_space;
1617
1618 bp->in_target_beneath = 1;
1619
1620 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp);
1621 }
1622 }
1623
1624 /* Sync existing breakpoints to record_full_breakpoints. */
1625
1626 static void
1627 record_full_init_record_breakpoints (void)
1628 {
1629 VEC_free (record_full_breakpoint_p, record_full_breakpoints);
1630
1631 iterate_over_bp_locations (record_full_sync_record_breakpoints);
1632 }
1633
1634 /* Behavior is conditional on RECORD_FULL_IS_REPLAY. We will not actually
1635 insert or remove breakpoints in the real target when replaying, nor
1636 when recording. */
1637
1638 static int
1639 record_full_insert_breakpoint (struct target_ops *ops,
1640 struct gdbarch *gdbarch,
1641 struct bp_target_info *bp_tgt)
1642 {
1643 struct record_full_breakpoint *bp;
1644 int in_target_beneath = 0;
1645 int ix;
1646
1647 if (!RECORD_FULL_IS_REPLAY)
1648 {
1649 /* When recording, we currently always single-step, so we don't
1650 really need to install regular breakpoints in the inferior.
1651 However, we do have to insert software single-step
1652 breakpoints, in case the target can't hardware step. To keep
1653 things single, we always insert. */
1654 struct cleanup *old_cleanups;
1655 int ret;
1656
1657 old_cleanups = record_full_gdb_operation_disable_set ();
1658 ret = ops->beneath->to_insert_breakpoint (ops->beneath, gdbarch, bp_tgt);
1659 do_cleanups (old_cleanups);
1660
1661 if (ret != 0)
1662 return ret;
1663
1664 in_target_beneath = 1;
1665 }
1666 else
1667 {
1668 CORE_ADDR addr = bp_tgt->reqstd_address;
1669 int bplen;
1670
1671 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
1672
1673 bp_tgt->placed_address = addr;
1674 bp_tgt->placed_size = bplen;
1675 }
1676
1677 /* Use the existing entries if found in order to avoid duplication
1678 in record_full_breakpoints. */
1679
1680 for (ix = 0;
1681 VEC_iterate (record_full_breakpoint_p,
1682 record_full_breakpoints, ix, bp);
1683 ++ix)
1684 {
1685 if (bp->addr == bp_tgt->placed_address
1686 && bp->address_space == bp_tgt->placed_address_space)
1687 {
1688 gdb_assert (bp->in_target_beneath == in_target_beneath);
1689 return 0;
1690 }
1691 }
1692
1693 bp = XNEW (struct record_full_breakpoint);
1694 bp->addr = bp_tgt->placed_address;
1695 bp->address_space = bp_tgt->placed_address_space;
1696 bp->in_target_beneath = in_target_beneath;
1697 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp);
1698 return 0;
1699 }
1700
1701 /* "to_remove_breakpoint" method for process record target. */
1702
1703 static int
1704 record_full_remove_breakpoint (struct target_ops *ops,
1705 struct gdbarch *gdbarch,
1706 struct bp_target_info *bp_tgt)
1707 {
1708 struct record_full_breakpoint *bp;
1709 int ix;
1710
1711 for (ix = 0;
1712 VEC_iterate (record_full_breakpoint_p,
1713 record_full_breakpoints, ix, bp);
1714 ++ix)
1715 {
1716 if (bp->addr == bp_tgt->placed_address
1717 && bp->address_space == bp_tgt->placed_address_space)
1718 {
1719 if (bp->in_target_beneath)
1720 {
1721 struct cleanup *old_cleanups;
1722 int ret;
1723
1724 old_cleanups = record_full_gdb_operation_disable_set ();
1725 ret = ops->beneath->to_remove_breakpoint (ops->beneath, gdbarch,
1726 bp_tgt);
1727 do_cleanups (old_cleanups);
1728
1729 if (ret != 0)
1730 return ret;
1731 }
1732
1733 VEC_unordered_remove (record_full_breakpoint_p,
1734 record_full_breakpoints, ix);
1735 return 0;
1736 }
1737 }
1738
1739 gdb_assert_not_reached ("removing unknown breakpoint");
1740 }
1741
1742 /* "to_can_execute_reverse" method for process record target. */
1743
1744 static int
1745 record_full_can_execute_reverse (struct target_ops *self)
1746 {
1747 return 1;
1748 }
1749
1750 /* "to_get_bookmark" method for process record and prec over core. */
1751
1752 static gdb_byte *
1753 record_full_get_bookmark (struct target_ops *self, const char *args,
1754 int from_tty)
1755 {
1756 char *ret = NULL;
1757
1758 /* Return stringified form of instruction count. */
1759 if (record_full_list && record_full_list->type == record_full_end)
1760 ret = xstrdup (pulongest (record_full_list->u.end.insn_num));
1761
1762 if (record_debug)
1763 {
1764 if (ret)
1765 fprintf_unfiltered (gdb_stdlog,
1766 "record_full_get_bookmark returns %s\n", ret);
1767 else
1768 fprintf_unfiltered (gdb_stdlog,
1769 "record_full_get_bookmark returns NULL\n");
1770 }
1771 return (gdb_byte *) ret;
1772 }
1773
1774 /* "to_goto_bookmark" method for process record and prec over core. */
1775
1776 static void
1777 record_full_goto_bookmark (struct target_ops *self,
1778 const gdb_byte *raw_bookmark, int from_tty)
1779 {
1780 const char *bookmark = (const char *) raw_bookmark;
1781 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1782
1783 if (record_debug)
1784 fprintf_unfiltered (gdb_stdlog,
1785 "record_full_goto_bookmark receives %s\n", bookmark);
1786
1787 if (bookmark[0] == '\'' || bookmark[0] == '\"')
1788 {
1789 char *copy;
1790
1791 if (bookmark[strlen (bookmark) - 1] != bookmark[0])
1792 error (_("Unbalanced quotes: %s"), bookmark);
1793
1794
1795 copy = savestring (bookmark + 1, strlen (bookmark) - 2);
1796 make_cleanup (xfree, copy);
1797 bookmark = copy;
1798 }
1799
1800 record_goto (bookmark);
1801
1802 do_cleanups (cleanup);
1803 }
1804
1805 static enum exec_direction_kind
1806 record_full_execution_direction (struct target_ops *self)
1807 {
1808 return record_full_execution_dir;
1809 }
1810
1811 static void
1812 record_full_info (struct target_ops *self)
1813 {
1814 struct record_full_entry *p;
1815
1816 if (RECORD_FULL_IS_REPLAY)
1817 printf_filtered (_("Replay mode:\n"));
1818 else
1819 printf_filtered (_("Record mode:\n"));
1820
1821 /* Find entry for first actual instruction in the log. */
1822 for (p = record_full_first.next;
1823 p != NULL && p->type != record_full_end;
1824 p = p->next)
1825 ;
1826
1827 /* Do we have a log at all? */
1828 if (p != NULL && p->type == record_full_end)
1829 {
1830 /* Display instruction number for first instruction in the log. */
1831 printf_filtered (_("Lowest recorded instruction number is %s.\n"),
1832 pulongest (p->u.end.insn_num));
1833
1834 /* If in replay mode, display where we are in the log. */
1835 if (RECORD_FULL_IS_REPLAY)
1836 printf_filtered (_("Current instruction number is %s.\n"),
1837 pulongest (record_full_list->u.end.insn_num));
1838
1839 /* Display instruction number for last instruction in the log. */
1840 printf_filtered (_("Highest recorded instruction number is %s.\n"),
1841 pulongest (record_full_insn_count));
1842
1843 /* Display log count. */
1844 printf_filtered (_("Log contains %u instructions.\n"),
1845 record_full_insn_num);
1846 }
1847 else
1848 printf_filtered (_("No instructions have been logged.\n"));
1849
1850 /* Display max log size. */
1851 printf_filtered (_("Max logged instructions is %u.\n"),
1852 record_full_insn_max_num);
1853 }
1854
1855 /* The "to_record_delete" target method. */
1856
1857 static void
1858 record_full_delete (struct target_ops *self)
1859 {
1860 record_full_list_release_following (record_full_list);
1861 }
1862
1863 /* The "to_record_is_replaying" target method. */
1864
1865 static int
1866 record_full_is_replaying (struct target_ops *self, ptid_t ptid)
1867 {
1868 return RECORD_FULL_IS_REPLAY;
1869 }
1870
1871 /* The "to_record_will_replay" target method. */
1872
1873 static int
1874 record_full_will_replay (struct target_ops *self, ptid_t ptid, int dir)
1875 {
1876 /* We can currently only record when executing forwards. Should we be able
1877 to record when executing backwards on targets that support reverse
1878 execution, this needs to be changed. */
1879
1880 return RECORD_FULL_IS_REPLAY || dir == EXEC_REVERSE;
1881 }
1882
1883 /* Go to a specific entry. */
1884
1885 static void
1886 record_full_goto_entry (struct record_full_entry *p)
1887 {
1888 if (p == NULL)
1889 error (_("Target insn not found."));
1890 else if (p == record_full_list)
1891 error (_("Already at target insn."));
1892 else if (p->u.end.insn_num > record_full_list->u.end.insn_num)
1893 {
1894 printf_filtered (_("Go forward to insn number %s\n"),
1895 pulongest (p->u.end.insn_num));
1896 record_full_goto_insn (p, EXEC_FORWARD);
1897 }
1898 else
1899 {
1900 printf_filtered (_("Go backward to insn number %s\n"),
1901 pulongest (p->u.end.insn_num));
1902 record_full_goto_insn (p, EXEC_REVERSE);
1903 }
1904
1905 registers_changed ();
1906 reinit_frame_cache ();
1907 stop_pc = regcache_read_pc (get_current_regcache ());
1908 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
1909 }
1910
1911 /* The "to_goto_record_begin" target method. */
1912
1913 static void
1914 record_full_goto_begin (struct target_ops *self)
1915 {
1916 struct record_full_entry *p = NULL;
1917
1918 for (p = &record_full_first; p != NULL; p = p->next)
1919 if (p->type == record_full_end)
1920 break;
1921
1922 record_full_goto_entry (p);
1923 }
1924
1925 /* The "to_goto_record_end" target method. */
1926
1927 static void
1928 record_full_goto_end (struct target_ops *self)
1929 {
1930 struct record_full_entry *p = NULL;
1931
1932 for (p = record_full_list; p->next != NULL; p = p->next)
1933 ;
1934 for (; p!= NULL; p = p->prev)
1935 if (p->type == record_full_end)
1936 break;
1937
1938 record_full_goto_entry (p);
1939 }
1940
1941 /* The "to_goto_record" target method. */
1942
1943 static void
1944 record_full_goto (struct target_ops *self, ULONGEST target_insn)
1945 {
1946 struct record_full_entry *p = NULL;
1947
1948 for (p = &record_full_first; p != NULL; p = p->next)
1949 if (p->type == record_full_end && p->u.end.insn_num == target_insn)
1950 break;
1951
1952 record_full_goto_entry (p);
1953 }
1954
1955 /* The "to_record_stop_replaying" target method. */
1956
1957 static void
1958 record_full_stop_replaying (struct target_ops *self)
1959 {
1960 record_full_goto_end (self);
1961 }
1962
1963 static void
1964 init_record_full_ops (void)
1965 {
1966 record_full_ops.to_shortname = "record-full";
1967 record_full_ops.to_longname = "Process record and replay target";
1968 record_full_ops.to_doc =
1969 "Log program while executing and replay execution from log.";
1970 record_full_ops.to_open = record_full_open;
1971 record_full_ops.to_close = record_full_close;
1972 record_full_ops.to_async = record_full_async;
1973 record_full_ops.to_resume = record_full_resume;
1974 record_full_ops.to_wait = record_full_wait;
1975 record_full_ops.to_disconnect = record_disconnect;
1976 record_full_ops.to_detach = record_detach;
1977 record_full_ops.to_mourn_inferior = record_mourn_inferior;
1978 record_full_ops.to_kill = record_kill;
1979 record_full_ops.to_store_registers = record_full_store_registers;
1980 record_full_ops.to_xfer_partial = record_full_xfer_partial;
1981 record_full_ops.to_insert_breakpoint = record_full_insert_breakpoint;
1982 record_full_ops.to_remove_breakpoint = record_full_remove_breakpoint;
1983 record_full_ops.to_stopped_by_watchpoint = record_full_stopped_by_watchpoint;
1984 record_full_ops.to_stopped_data_address = record_full_stopped_data_address;
1985 record_full_ops.to_stopped_by_sw_breakpoint
1986 = record_full_stopped_by_sw_breakpoint;
1987 record_full_ops.to_supports_stopped_by_sw_breakpoint
1988 = record_full_supports_stopped_by_sw_breakpoint;
1989 record_full_ops.to_stopped_by_hw_breakpoint
1990 = record_full_stopped_by_hw_breakpoint;
1991 record_full_ops.to_supports_stopped_by_hw_breakpoint
1992 = record_full_supports_stopped_by_hw_breakpoint;
1993 record_full_ops.to_can_execute_reverse = record_full_can_execute_reverse;
1994 record_full_ops.to_stratum = record_stratum;
1995 /* Add bookmark target methods. */
1996 record_full_ops.to_get_bookmark = record_full_get_bookmark;
1997 record_full_ops.to_goto_bookmark = record_full_goto_bookmark;
1998 record_full_ops.to_execution_direction = record_full_execution_direction;
1999 record_full_ops.to_info_record = record_full_info;
2000 record_full_ops.to_save_record = record_full_save;
2001 record_full_ops.to_delete_record = record_full_delete;
2002 record_full_ops.to_record_is_replaying = record_full_is_replaying;
2003 record_full_ops.to_record_will_replay = record_full_will_replay;
2004 record_full_ops.to_record_stop_replaying = record_full_stop_replaying;
2005 record_full_ops.to_goto_record_begin = record_full_goto_begin;
2006 record_full_ops.to_goto_record_end = record_full_goto_end;
2007 record_full_ops.to_goto_record = record_full_goto;
2008 record_full_ops.to_magic = OPS_MAGIC;
2009 }
2010
2011 /* "to_resume" method for prec over corefile. */
2012
2013 static void
2014 record_full_core_resume (struct target_ops *ops, ptid_t ptid, int step,
2015 enum gdb_signal signal)
2016 {
2017 record_full_resume_step = step;
2018 record_full_resumed = 1;
2019 record_full_execution_dir = execution_direction;
2020
2021 /* We are about to start executing the inferior (or simulate it),
2022 let's register it with the event loop. */
2023 if (target_can_async_p ())
2024 target_async (1);
2025 }
2026
2027 /* "to_kill" method for prec over corefile. */
2028
2029 static void
2030 record_full_core_kill (struct target_ops *ops)
2031 {
2032 if (record_debug)
2033 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_core_kill\n");
2034
2035 unpush_target (&record_full_core_ops);
2036 }
2037
2038 /* "to_fetch_registers" method for prec over corefile. */
2039
2040 static void
2041 record_full_core_fetch_registers (struct target_ops *ops,
2042 struct regcache *regcache,
2043 int regno)
2044 {
2045 if (regno < 0)
2046 {
2047 int num = gdbarch_num_regs (get_regcache_arch (regcache));
2048 int i;
2049
2050 for (i = 0; i < num; i ++)
2051 regcache_raw_supply (regcache, i,
2052 record_full_core_regbuf + MAX_REGISTER_SIZE * i);
2053 }
2054 else
2055 regcache_raw_supply (regcache, regno,
2056 record_full_core_regbuf + MAX_REGISTER_SIZE * regno);
2057 }
2058
2059 /* "to_prepare_to_store" method for prec over corefile. */
2060
2061 static void
2062 record_full_core_prepare_to_store (struct target_ops *self,
2063 struct regcache *regcache)
2064 {
2065 }
2066
2067 /* "to_store_registers" method for prec over corefile. */
2068
2069 static void
2070 record_full_core_store_registers (struct target_ops *ops,
2071 struct regcache *regcache,
2072 int regno)
2073 {
2074 if (record_full_gdb_operation_disable)
2075 regcache_raw_collect (regcache, regno,
2076 record_full_core_regbuf + MAX_REGISTER_SIZE * regno);
2077 else
2078 error (_("You can't do that without a process to debug."));
2079 }
2080
2081 /* "to_xfer_partial" method for prec over corefile. */
2082
2083 static enum target_xfer_status
2084 record_full_core_xfer_partial (struct target_ops *ops,
2085 enum target_object object,
2086 const char *annex, gdb_byte *readbuf,
2087 const gdb_byte *writebuf, ULONGEST offset,
2088 ULONGEST len, ULONGEST *xfered_len)
2089 {
2090 if (object == TARGET_OBJECT_MEMORY)
2091 {
2092 if (record_full_gdb_operation_disable || !writebuf)
2093 {
2094 struct target_section *p;
2095
2096 for (p = record_full_core_start; p < record_full_core_end; p++)
2097 {
2098 if (offset >= p->addr)
2099 {
2100 struct record_full_core_buf_entry *entry;
2101 ULONGEST sec_offset;
2102
2103 if (offset >= p->endaddr)
2104 continue;
2105
2106 if (offset + len > p->endaddr)
2107 len = p->endaddr - offset;
2108
2109 sec_offset = offset - p->addr;
2110
2111 /* Read readbuf or write writebuf p, offset, len. */
2112 /* Check flags. */
2113 if (p->the_bfd_section->flags & SEC_CONSTRUCTOR
2114 || (p->the_bfd_section->flags & SEC_HAS_CONTENTS) == 0)
2115 {
2116 if (readbuf)
2117 memset (readbuf, 0, len);
2118
2119 *xfered_len = len;
2120 return TARGET_XFER_OK;
2121 }
2122 /* Get record_full_core_buf_entry. */
2123 for (entry = record_full_core_buf_list; entry;
2124 entry = entry->prev)
2125 if (entry->p == p)
2126 break;
2127 if (writebuf)
2128 {
2129 if (!entry)
2130 {
2131 /* Add a new entry. */
2132 entry = XNEW (struct record_full_core_buf_entry);
2133 entry->p = p;
2134 if (!bfd_malloc_and_get_section
2135 (p->the_bfd_section->owner,
2136 p->the_bfd_section,
2137 &entry->buf))
2138 {
2139 xfree (entry);
2140 return TARGET_XFER_EOF;
2141 }
2142 entry->prev = record_full_core_buf_list;
2143 record_full_core_buf_list = entry;
2144 }
2145
2146 memcpy (entry->buf + sec_offset, writebuf,
2147 (size_t) len);
2148 }
2149 else
2150 {
2151 if (!entry)
2152 return ops->beneath->to_xfer_partial (ops->beneath,
2153 object, annex,
2154 readbuf, writebuf,
2155 offset, len,
2156 xfered_len);
2157
2158 memcpy (readbuf, entry->buf + sec_offset,
2159 (size_t) len);
2160 }
2161
2162 *xfered_len = len;
2163 return TARGET_XFER_OK;
2164 }
2165 }
2166
2167 return TARGET_XFER_E_IO;
2168 }
2169 else
2170 error (_("You can't do that without a process to debug."));
2171 }
2172
2173 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
2174 readbuf, writebuf, offset, len,
2175 xfered_len);
2176 }
2177
2178 /* "to_insert_breakpoint" method for prec over corefile. */
2179
2180 static int
2181 record_full_core_insert_breakpoint (struct target_ops *ops,
2182 struct gdbarch *gdbarch,
2183 struct bp_target_info *bp_tgt)
2184 {
2185 return 0;
2186 }
2187
2188 /* "to_remove_breakpoint" method for prec over corefile. */
2189
2190 static int
2191 record_full_core_remove_breakpoint (struct target_ops *ops,
2192 struct gdbarch *gdbarch,
2193 struct bp_target_info *bp_tgt)
2194 {
2195 return 0;
2196 }
2197
2198 /* "to_has_execution" method for prec over corefile. */
2199
2200 static int
2201 record_full_core_has_execution (struct target_ops *ops, ptid_t the_ptid)
2202 {
2203 return 1;
2204 }
2205
2206 static void
2207 init_record_full_core_ops (void)
2208 {
2209 record_full_core_ops.to_shortname = "record-core";
2210 record_full_core_ops.to_longname = "Process record and replay target";
2211 record_full_core_ops.to_doc =
2212 "Log program while executing and replay execution from log.";
2213 record_full_core_ops.to_open = record_full_open;
2214 record_full_core_ops.to_close = record_full_close;
2215 record_full_core_ops.to_async = record_full_async;
2216 record_full_core_ops.to_resume = record_full_core_resume;
2217 record_full_core_ops.to_wait = record_full_wait;
2218 record_full_core_ops.to_kill = record_full_core_kill;
2219 record_full_core_ops.to_fetch_registers = record_full_core_fetch_registers;
2220 record_full_core_ops.to_prepare_to_store = record_full_core_prepare_to_store;
2221 record_full_core_ops.to_store_registers = record_full_core_store_registers;
2222 record_full_core_ops.to_xfer_partial = record_full_core_xfer_partial;
2223 record_full_core_ops.to_insert_breakpoint
2224 = record_full_core_insert_breakpoint;
2225 record_full_core_ops.to_remove_breakpoint
2226 = record_full_core_remove_breakpoint;
2227 record_full_core_ops.to_stopped_by_watchpoint
2228 = record_full_stopped_by_watchpoint;
2229 record_full_core_ops.to_stopped_data_address
2230 = record_full_stopped_data_address;
2231 record_full_core_ops.to_stopped_by_sw_breakpoint
2232 = record_full_stopped_by_sw_breakpoint;
2233 record_full_core_ops.to_supports_stopped_by_sw_breakpoint
2234 = record_full_supports_stopped_by_sw_breakpoint;
2235 record_full_core_ops.to_stopped_by_hw_breakpoint
2236 = record_full_stopped_by_hw_breakpoint;
2237 record_full_core_ops.to_supports_stopped_by_hw_breakpoint
2238 = record_full_supports_stopped_by_hw_breakpoint;
2239 record_full_core_ops.to_can_execute_reverse
2240 = record_full_can_execute_reverse;
2241 record_full_core_ops.to_has_execution = record_full_core_has_execution;
2242 record_full_core_ops.to_stratum = record_stratum;
2243 /* Add bookmark target methods. */
2244 record_full_core_ops.to_get_bookmark = record_full_get_bookmark;
2245 record_full_core_ops.to_goto_bookmark = record_full_goto_bookmark;
2246 record_full_core_ops.to_execution_direction
2247 = record_full_execution_direction;
2248 record_full_core_ops.to_info_record = record_full_info;
2249 record_full_core_ops.to_delete_record = record_full_delete;
2250 record_full_core_ops.to_record_is_replaying = record_full_is_replaying;
2251 record_full_core_ops.to_record_will_replay = record_full_will_replay;
2252 record_full_core_ops.to_goto_record_begin = record_full_goto_begin;
2253 record_full_core_ops.to_goto_record_end = record_full_goto_end;
2254 record_full_core_ops.to_goto_record = record_full_goto;
2255 record_full_core_ops.to_magic = OPS_MAGIC;
2256 }
2257
2258 /* Record log save-file format
2259 Version 1 (never released)
2260
2261 Header:
2262 4 bytes: magic number htonl(0x20090829).
2263 NOTE: be sure to change whenever this file format changes!
2264
2265 Records:
2266 record_full_end:
2267 1 byte: record type (record_full_end, see enum record_full_type).
2268 record_full_reg:
2269 1 byte: record type (record_full_reg, see enum record_full_type).
2270 8 bytes: register id (network byte order).
2271 MAX_REGISTER_SIZE bytes: register value.
2272 record_full_mem:
2273 1 byte: record type (record_full_mem, see enum record_full_type).
2274 8 bytes: memory length (network byte order).
2275 8 bytes: memory address (network byte order).
2276 n bytes: memory value (n == memory length).
2277
2278 Version 2
2279 4 bytes: magic number netorder32(0x20091016).
2280 NOTE: be sure to change whenever this file format changes!
2281
2282 Records:
2283 record_full_end:
2284 1 byte: record type (record_full_end, see enum record_full_type).
2285 4 bytes: signal
2286 4 bytes: instruction count
2287 record_full_reg:
2288 1 byte: record type (record_full_reg, see enum record_full_type).
2289 4 bytes: register id (network byte order).
2290 n bytes: register value (n == actual register size).
2291 (eg. 4 bytes for x86 general registers).
2292 record_full_mem:
2293 1 byte: record type (record_full_mem, see enum record_full_type).
2294 4 bytes: memory length (network byte order).
2295 8 bytes: memory address (network byte order).
2296 n bytes: memory value (n == memory length).
2297
2298 */
2299
2300 /* bfdcore_read -- read bytes from a core file section. */
2301
2302 static inline void
2303 bfdcore_read (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2304 {
2305 int ret = bfd_get_section_contents (obfd, osec, buf, *offset, len);
2306
2307 if (ret)
2308 *offset += len;
2309 else
2310 error (_("Failed to read %d bytes from core file %s ('%s')."),
2311 len, bfd_get_filename (obfd),
2312 bfd_errmsg (bfd_get_error ()));
2313 }
2314
2315 static inline uint64_t
2316 netorder64 (uint64_t input)
2317 {
2318 uint64_t ret;
2319
2320 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2321 BFD_ENDIAN_BIG, input);
2322 return ret;
2323 }
2324
2325 static inline uint32_t
2326 netorder32 (uint32_t input)
2327 {
2328 uint32_t ret;
2329
2330 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2331 BFD_ENDIAN_BIG, input);
2332 return ret;
2333 }
2334
2335 static inline uint16_t
2336 netorder16 (uint16_t input)
2337 {
2338 uint16_t ret;
2339
2340 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2341 BFD_ENDIAN_BIG, input);
2342 return ret;
2343 }
2344
2345 /* Restore the execution log from a core_bfd file. */
2346 static void
2347 record_full_restore (void)
2348 {
2349 uint32_t magic;
2350 struct cleanup *old_cleanups;
2351 struct record_full_entry *rec;
2352 asection *osec;
2353 uint32_t osec_size;
2354 int bfd_offset = 0;
2355 struct regcache *regcache;
2356
2357 /* We restore the execution log from the open core bfd,
2358 if there is one. */
2359 if (core_bfd == NULL)
2360 return;
2361
2362 /* "record_full_restore" can only be called when record list is empty. */
2363 gdb_assert (record_full_first.next == NULL);
2364
2365 if (record_debug)
2366 fprintf_unfiltered (gdb_stdlog, "Restoring recording from core file.\n");
2367
2368 /* Now need to find our special note section. */
2369 osec = bfd_get_section_by_name (core_bfd, "null0");
2370 if (record_debug)
2371 fprintf_unfiltered (gdb_stdlog, "Find precord section %s.\n",
2372 osec ? "succeeded" : "failed");
2373 if (osec == NULL)
2374 return;
2375 osec_size = bfd_section_size (core_bfd, osec);
2376 if (record_debug)
2377 fprintf_unfiltered (gdb_stdlog, "%s", bfd_section_name (core_bfd, osec));
2378
2379 /* Check the magic code. */
2380 bfdcore_read (core_bfd, osec, &magic, sizeof (magic), &bfd_offset);
2381 if (magic != RECORD_FULL_FILE_MAGIC)
2382 error (_("Version mis-match or file format error in core file %s."),
2383 bfd_get_filename (core_bfd));
2384 if (record_debug)
2385 fprintf_unfiltered (gdb_stdlog,
2386 " Reading 4-byte magic cookie "
2387 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2388 phex_nz (netorder32 (magic), 4));
2389
2390 /* Restore the entries in recfd into record_full_arch_list_head and
2391 record_full_arch_list_tail. */
2392 record_full_arch_list_head = NULL;
2393 record_full_arch_list_tail = NULL;
2394 record_full_insn_num = 0;
2395 old_cleanups = make_cleanup (record_full_arch_list_cleanups, 0);
2396 regcache = get_current_regcache ();
2397
2398 while (1)
2399 {
2400 uint8_t rectype;
2401 uint32_t regnum, len, signal, count;
2402 uint64_t addr;
2403
2404 /* We are finished when offset reaches osec_size. */
2405 if (bfd_offset >= osec_size)
2406 break;
2407 bfdcore_read (core_bfd, osec, &rectype, sizeof (rectype), &bfd_offset);
2408
2409 switch (rectype)
2410 {
2411 case record_full_reg: /* reg */
2412 /* Get register number to regnum. */
2413 bfdcore_read (core_bfd, osec, &regnum,
2414 sizeof (regnum), &bfd_offset);
2415 regnum = netorder32 (regnum);
2416
2417 rec = record_full_reg_alloc (regcache, regnum);
2418
2419 /* Get val. */
2420 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2421 rec->u.reg.len, &bfd_offset);
2422
2423 if (record_debug)
2424 fprintf_unfiltered (gdb_stdlog,
2425 " Reading register %d (1 "
2426 "plus %lu plus %d bytes)\n",
2427 rec->u.reg.num,
2428 (unsigned long) sizeof (regnum),
2429 rec->u.reg.len);
2430 break;
2431
2432 case record_full_mem: /* mem */
2433 /* Get len. */
2434 bfdcore_read (core_bfd, osec, &len,
2435 sizeof (len), &bfd_offset);
2436 len = netorder32 (len);
2437
2438 /* Get addr. */
2439 bfdcore_read (core_bfd, osec, &addr,
2440 sizeof (addr), &bfd_offset);
2441 addr = netorder64 (addr);
2442
2443 rec = record_full_mem_alloc (addr, len);
2444
2445 /* Get val. */
2446 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2447 rec->u.mem.len, &bfd_offset);
2448
2449 if (record_debug)
2450 fprintf_unfiltered (gdb_stdlog,
2451 " Reading memory %s (1 plus "
2452 "%lu plus %lu plus %d bytes)\n",
2453 paddress (get_current_arch (),
2454 rec->u.mem.addr),
2455 (unsigned long) sizeof (addr),
2456 (unsigned long) sizeof (len),
2457 rec->u.mem.len);
2458 break;
2459
2460 case record_full_end: /* end */
2461 rec = record_full_end_alloc ();
2462 record_full_insn_num ++;
2463
2464 /* Get signal value. */
2465 bfdcore_read (core_bfd, osec, &signal,
2466 sizeof (signal), &bfd_offset);
2467 signal = netorder32 (signal);
2468 rec->u.end.sigval = (enum gdb_signal) signal;
2469
2470 /* Get insn count. */
2471 bfdcore_read (core_bfd, osec, &count,
2472 sizeof (count), &bfd_offset);
2473 count = netorder32 (count);
2474 rec->u.end.insn_num = count;
2475 record_full_insn_count = count + 1;
2476 if (record_debug)
2477 fprintf_unfiltered (gdb_stdlog,
2478 " Reading record_full_end (1 + "
2479 "%lu + %lu bytes), offset == %s\n",
2480 (unsigned long) sizeof (signal),
2481 (unsigned long) sizeof (count),
2482 paddress (get_current_arch (),
2483 bfd_offset));
2484 break;
2485
2486 default:
2487 error (_("Bad entry type in core file %s."),
2488 bfd_get_filename (core_bfd));
2489 break;
2490 }
2491
2492 /* Add rec to record arch list. */
2493 record_full_arch_list_add (rec);
2494 }
2495
2496 discard_cleanups (old_cleanups);
2497
2498 /* Add record_full_arch_list_head to the end of record list. */
2499 record_full_first.next = record_full_arch_list_head;
2500 record_full_arch_list_head->prev = &record_full_first;
2501 record_full_arch_list_tail->next = NULL;
2502 record_full_list = &record_full_first;
2503
2504 /* Update record_full_insn_max_num. */
2505 if (record_full_insn_num > record_full_insn_max_num)
2506 {
2507 record_full_insn_max_num = record_full_insn_num;
2508 warning (_("Auto increase record/replay buffer limit to %u."),
2509 record_full_insn_max_num);
2510 }
2511
2512 /* Succeeded. */
2513 printf_filtered (_("Restored records from core file %s.\n"),
2514 bfd_get_filename (core_bfd));
2515
2516 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2517 }
2518
2519 /* bfdcore_write -- write bytes into a core file section. */
2520
2521 static inline void
2522 bfdcore_write (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2523 {
2524 int ret = bfd_set_section_contents (obfd, osec, buf, *offset, len);
2525
2526 if (ret)
2527 *offset += len;
2528 else
2529 error (_("Failed to write %d bytes to core file %s ('%s')."),
2530 len, bfd_get_filename (obfd),
2531 bfd_errmsg (bfd_get_error ()));
2532 }
2533
2534 /* Restore the execution log from a file. We use a modified elf
2535 corefile format, with an extra section for our data. */
2536
2537 static void
2538 cmd_record_full_restore (char *args, int from_tty)
2539 {
2540 core_file_command (args, from_tty);
2541 record_full_open (args, from_tty);
2542 }
2543
2544 static void
2545 record_full_save_cleanups (void *data)
2546 {
2547 bfd *obfd = (bfd *) data;
2548 char *pathname = xstrdup (bfd_get_filename (obfd));
2549
2550 gdb_bfd_unref (obfd);
2551 unlink (pathname);
2552 xfree (pathname);
2553 }
2554
2555 /* Save the execution log to a file. We use a modified elf corefile
2556 format, with an extra section for our data. */
2557
2558 static void
2559 record_full_save (struct target_ops *self, const char *recfilename)
2560 {
2561 struct record_full_entry *cur_record_full_list;
2562 uint32_t magic;
2563 struct regcache *regcache;
2564 struct gdbarch *gdbarch;
2565 struct cleanup *old_cleanups;
2566 struct cleanup *set_cleanups;
2567 bfd *obfd;
2568 int save_size = 0;
2569 asection *osec = NULL;
2570 int bfd_offset = 0;
2571
2572 /* Open the save file. */
2573 if (record_debug)
2574 fprintf_unfiltered (gdb_stdlog, "Saving execution log to core file '%s'\n",
2575 recfilename);
2576
2577 /* Open the output file. */
2578 obfd = create_gcore_bfd (recfilename);
2579 old_cleanups = make_cleanup (record_full_save_cleanups, obfd);
2580
2581 /* Save the current record entry to "cur_record_full_list". */
2582 cur_record_full_list = record_full_list;
2583
2584 /* Get the values of regcache and gdbarch. */
2585 regcache = get_current_regcache ();
2586 gdbarch = get_regcache_arch (regcache);
2587
2588 /* Disable the GDB operation record. */
2589 set_cleanups = record_full_gdb_operation_disable_set ();
2590
2591 /* Reverse execute to the begin of record list. */
2592 while (1)
2593 {
2594 /* Check for beginning and end of log. */
2595 if (record_full_list == &record_full_first)
2596 break;
2597
2598 record_full_exec_insn (regcache, gdbarch, record_full_list);
2599
2600 if (record_full_list->prev)
2601 record_full_list = record_full_list->prev;
2602 }
2603
2604 /* Compute the size needed for the extra bfd section. */
2605 save_size = 4; /* magic cookie */
2606 for (record_full_list = record_full_first.next; record_full_list;
2607 record_full_list = record_full_list->next)
2608 switch (record_full_list->type)
2609 {
2610 case record_full_end:
2611 save_size += 1 + 4 + 4;
2612 break;
2613 case record_full_reg:
2614 save_size += 1 + 4 + record_full_list->u.reg.len;
2615 break;
2616 case record_full_mem:
2617 save_size += 1 + 4 + 8 + record_full_list->u.mem.len;
2618 break;
2619 }
2620
2621 /* Make the new bfd section. */
2622 osec = bfd_make_section_anyway_with_flags (obfd, "precord",
2623 SEC_HAS_CONTENTS
2624 | SEC_READONLY);
2625 if (osec == NULL)
2626 error (_("Failed to create 'precord' section for corefile %s: %s"),
2627 recfilename,
2628 bfd_errmsg (bfd_get_error ()));
2629 bfd_set_section_size (obfd, osec, save_size);
2630 bfd_set_section_vma (obfd, osec, 0);
2631 bfd_set_section_alignment (obfd, osec, 0);
2632 bfd_section_lma (obfd, osec) = 0;
2633
2634 /* Save corefile state. */
2635 write_gcore_file (obfd);
2636
2637 /* Write out the record log. */
2638 /* Write the magic code. */
2639 magic = RECORD_FULL_FILE_MAGIC;
2640 if (record_debug)
2641 fprintf_unfiltered (gdb_stdlog,
2642 " Writing 4-byte magic cookie "
2643 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2644 phex_nz (magic, 4));
2645 bfdcore_write (obfd, osec, &magic, sizeof (magic), &bfd_offset);
2646
2647 /* Save the entries to recfd and forward execute to the end of
2648 record list. */
2649 record_full_list = &record_full_first;
2650 while (1)
2651 {
2652 /* Save entry. */
2653 if (record_full_list != &record_full_first)
2654 {
2655 uint8_t type;
2656 uint32_t regnum, len, signal, count;
2657 uint64_t addr;
2658
2659 type = record_full_list->type;
2660 bfdcore_write (obfd, osec, &type, sizeof (type), &bfd_offset);
2661
2662 switch (record_full_list->type)
2663 {
2664 case record_full_reg: /* reg */
2665 if (record_debug)
2666 fprintf_unfiltered (gdb_stdlog,
2667 " Writing register %d (1 "
2668 "plus %lu plus %d bytes)\n",
2669 record_full_list->u.reg.num,
2670 (unsigned long) sizeof (regnum),
2671 record_full_list->u.reg.len);
2672
2673 /* Write regnum. */
2674 regnum = netorder32 (record_full_list->u.reg.num);
2675 bfdcore_write (obfd, osec, &regnum,
2676 sizeof (regnum), &bfd_offset);
2677
2678 /* Write regval. */
2679 bfdcore_write (obfd, osec,
2680 record_full_get_loc (record_full_list),
2681 record_full_list->u.reg.len, &bfd_offset);
2682 break;
2683
2684 case record_full_mem: /* mem */
2685 if (record_debug)
2686 fprintf_unfiltered (gdb_stdlog,
2687 " Writing memory %s (1 plus "
2688 "%lu plus %lu plus %d bytes)\n",
2689 paddress (gdbarch,
2690 record_full_list->u.mem.addr),
2691 (unsigned long) sizeof (addr),
2692 (unsigned long) sizeof (len),
2693 record_full_list->u.mem.len);
2694
2695 /* Write memlen. */
2696 len = netorder32 (record_full_list->u.mem.len);
2697 bfdcore_write (obfd, osec, &len, sizeof (len), &bfd_offset);
2698
2699 /* Write memaddr. */
2700 addr = netorder64 (record_full_list->u.mem.addr);
2701 bfdcore_write (obfd, osec, &addr,
2702 sizeof (addr), &bfd_offset);
2703
2704 /* Write memval. */
2705 bfdcore_write (obfd, osec,
2706 record_full_get_loc (record_full_list),
2707 record_full_list->u.mem.len, &bfd_offset);
2708 break;
2709
2710 case record_full_end:
2711 if (record_debug)
2712 fprintf_unfiltered (gdb_stdlog,
2713 " Writing record_full_end (1 + "
2714 "%lu + %lu bytes)\n",
2715 (unsigned long) sizeof (signal),
2716 (unsigned long) sizeof (count));
2717 /* Write signal value. */
2718 signal = netorder32 (record_full_list->u.end.sigval);
2719 bfdcore_write (obfd, osec, &signal,
2720 sizeof (signal), &bfd_offset);
2721
2722 /* Write insn count. */
2723 count = netorder32 (record_full_list->u.end.insn_num);
2724 bfdcore_write (obfd, osec, &count,
2725 sizeof (count), &bfd_offset);
2726 break;
2727 }
2728 }
2729
2730 /* Execute entry. */
2731 record_full_exec_insn (regcache, gdbarch, record_full_list);
2732
2733 if (record_full_list->next)
2734 record_full_list = record_full_list->next;
2735 else
2736 break;
2737 }
2738
2739 /* Reverse execute to cur_record_full_list. */
2740 while (1)
2741 {
2742 /* Check for beginning and end of log. */
2743 if (record_full_list == cur_record_full_list)
2744 break;
2745
2746 record_full_exec_insn (regcache, gdbarch, record_full_list);
2747
2748 if (record_full_list->prev)
2749 record_full_list = record_full_list->prev;
2750 }
2751
2752 do_cleanups (set_cleanups);
2753 gdb_bfd_unref (obfd);
2754 discard_cleanups (old_cleanups);
2755
2756 /* Succeeded. */
2757 printf_filtered (_("Saved core file %s with execution log.\n"),
2758 recfilename);
2759 }
2760
2761 /* record_full_goto_insn -- rewind the record log (forward or backward,
2762 depending on DIR) to the given entry, changing the program state
2763 correspondingly. */
2764
2765 static void
2766 record_full_goto_insn (struct record_full_entry *entry,
2767 enum exec_direction_kind dir)
2768 {
2769 struct cleanup *set_cleanups = record_full_gdb_operation_disable_set ();
2770 struct regcache *regcache = get_current_regcache ();
2771 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2772
2773 /* Assume everything is valid: we will hit the entry,
2774 and we will not hit the end of the recording. */
2775
2776 if (dir == EXEC_FORWARD)
2777 record_full_list = record_full_list->next;
2778
2779 do
2780 {
2781 record_full_exec_insn (regcache, gdbarch, record_full_list);
2782 if (dir == EXEC_REVERSE)
2783 record_full_list = record_full_list->prev;
2784 else
2785 record_full_list = record_full_list->next;
2786 } while (record_full_list != entry);
2787 do_cleanups (set_cleanups);
2788 }
2789
2790 /* Alias for "target record-full". */
2791
2792 static void
2793 cmd_record_full_start (char *args, int from_tty)
2794 {
2795 execute_command ("target record-full", from_tty);
2796 }
2797
2798 static void
2799 set_record_full_insn_max_num (char *args, int from_tty,
2800 struct cmd_list_element *c)
2801 {
2802 if (record_full_insn_num > record_full_insn_max_num)
2803 {
2804 /* Count down record_full_insn_num while releasing records from list. */
2805 while (record_full_insn_num > record_full_insn_max_num)
2806 {
2807 record_full_list_release_first ();
2808 record_full_insn_num--;
2809 }
2810 }
2811 }
2812
2813 /* The "set record full" command. */
2814
2815 static void
2816 set_record_full_command (char *args, int from_tty)
2817 {
2818 printf_unfiltered (_("\"set record full\" must be followed "
2819 "by an apporpriate subcommand.\n"));
2820 help_list (set_record_full_cmdlist, "set record full ", all_commands,
2821 gdb_stdout);
2822 }
2823
2824 /* The "show record full" command. */
2825
2826 static void
2827 show_record_full_command (char *args, int from_tty)
2828 {
2829 cmd_show_list (show_record_full_cmdlist, from_tty, "");
2830 }
2831
2832 /* Provide a prototype to silence -Wmissing-prototypes. */
2833 extern initialize_file_ftype _initialize_record_full;
2834
2835 void
2836 _initialize_record_full (void)
2837 {
2838 struct cmd_list_element *c;
2839
2840 /* Init record_full_first. */
2841 record_full_first.prev = NULL;
2842 record_full_first.next = NULL;
2843 record_full_first.type = record_full_end;
2844
2845 init_record_full_ops ();
2846 add_target (&record_full_ops);
2847 add_deprecated_target_alias (&record_full_ops, "record");
2848 init_record_full_core_ops ();
2849 add_target (&record_full_core_ops);
2850
2851 add_prefix_cmd ("full", class_obscure, cmd_record_full_start,
2852 _("Start full execution recording."), &record_full_cmdlist,
2853 "record full ", 0, &record_cmdlist);
2854
2855 c = add_cmd ("restore", class_obscure, cmd_record_full_restore,
2856 _("Restore the execution log from a file.\n\
2857 Argument is filename. File must be created with 'record save'."),
2858 &record_full_cmdlist);
2859 set_cmd_completer (c, filename_completer);
2860
2861 /* Deprecate the old version without "full" prefix. */
2862 c = add_alias_cmd ("restore", "full restore", class_obscure, 1,
2863 &record_cmdlist);
2864 set_cmd_completer (c, filename_completer);
2865 deprecate_cmd (c, "record full restore");
2866
2867 add_prefix_cmd ("full", class_support, set_record_full_command,
2868 _("Set record options"), &set_record_full_cmdlist,
2869 "set record full ", 0, &set_record_cmdlist);
2870
2871 add_prefix_cmd ("full", class_support, show_record_full_command,
2872 _("Show record options"), &show_record_full_cmdlist,
2873 "show record full ", 0, &show_record_cmdlist);
2874
2875 /* Record instructions number limit command. */
2876 add_setshow_boolean_cmd ("stop-at-limit", no_class,
2877 &record_full_stop_at_limit, _("\
2878 Set whether record/replay stops when record/replay buffer becomes full."), _("\
2879 Show whether record/replay stops when record/replay buffer becomes full."),
2880 _("Default is ON.\n\
2881 When ON, if the record/replay buffer becomes full, ask user what to do.\n\
2882 When OFF, if the record/replay buffer becomes full,\n\
2883 delete the oldest recorded instruction to make room for each new one."),
2884 NULL, NULL,
2885 &set_record_full_cmdlist, &show_record_full_cmdlist);
2886
2887 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2888 &set_record_cmdlist);
2889 deprecate_cmd (c, "set record full stop-at-limit");
2890
2891 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2892 &show_record_cmdlist);
2893 deprecate_cmd (c, "show record full stop-at-limit");
2894
2895 add_setshow_uinteger_cmd ("insn-number-max", no_class,
2896 &record_full_insn_max_num,
2897 _("Set record/replay buffer limit."),
2898 _("Show record/replay buffer limit."), _("\
2899 Set the maximum number of instructions to be stored in the\n\
2900 record/replay buffer. A value of either \"unlimited\" or zero means no\n\
2901 limit. Default is 200000."),
2902 set_record_full_insn_max_num,
2903 NULL, &set_record_full_cmdlist,
2904 &show_record_full_cmdlist);
2905
2906 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2907 &set_record_cmdlist);
2908 deprecate_cmd (c, "set record full insn-number-max");
2909
2910 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2911 &show_record_cmdlist);
2912 deprecate_cmd (c, "show record full insn-number-max");
2913
2914 add_setshow_boolean_cmd ("memory-query", no_class,
2915 &record_full_memory_query, _("\
2916 Set whether query if PREC cannot record memory change of next instruction."),
2917 _("\
2918 Show whether query if PREC cannot record memory change of next instruction."),
2919 _("\
2920 Default is OFF.\n\
2921 When ON, query if PREC cannot record memory change of next instruction."),
2922 NULL, NULL,
2923 &set_record_full_cmdlist,
2924 &show_record_full_cmdlist);
2925
2926 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2927 &set_record_cmdlist);
2928 deprecate_cmd (c, "set record full memory-query");
2929
2930 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2931 &show_record_cmdlist);
2932 deprecate_cmd (c, "show record full memory-query");
2933 }
This page took 0.085406 seconds and 5 git commands to generate.