target_pass_signals/target_program_signals: Use gdb::array_view
[deliverable/binutils-gdb.git] / gdb / record-full.c
1 /* Process record and replay target for GDB, the GNU debugger.
2
3 Copyright (C) 2013-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "regcache.h"
23 #include "gdbthread.h"
24 #include "inferior.h"
25 #include "event-top.h"
26 #include "completer.h"
27 #include "arch-utils.h"
28 #include "gdbcore.h"
29 #include "exec.h"
30 #include "record.h"
31 #include "record-full.h"
32 #include "elf-bfd.h"
33 #include "gcore.h"
34 #include "event-loop.h"
35 #include "inf-loop.h"
36 #include "gdb_bfd.h"
37 #include "observable.h"
38 #include "infrun.h"
39 #include "common/gdb_unlinker.h"
40 #include "common/byte-vector.h"
41
42 #include <signal.h>
43
44 /* This module implements "target record-full", also known as "process
45 record and replay". This target sits on top of a "normal" target
46 (a target that "has execution"), and provides a record and replay
47 functionality, including reverse debugging.
48
49 Target record has two modes: recording, and replaying.
50
51 In record mode, we intercept the resume and wait methods.
52 Whenever gdb resumes the target, we run the target in single step
53 mode, and we build up an execution log in which, for each executed
54 instruction, we record all changes in memory and register state.
55 This is invisible to the user, to whom it just looks like an
56 ordinary debugging session (except for performance degredation).
57
58 In replay mode, instead of actually letting the inferior run as a
59 process, we simulate its execution by playing back the recorded
60 execution log. For each instruction in the log, we simulate the
61 instruction's side effects by duplicating the changes that it would
62 have made on memory and registers. */
63
64 #define DEFAULT_RECORD_FULL_INSN_MAX_NUM 200000
65
66 #define RECORD_FULL_IS_REPLAY \
67 (record_full_list->next || ::execution_direction == EXEC_REVERSE)
68
69 #define RECORD_FULL_FILE_MAGIC netorder32(0x20091016)
70
71 /* These are the core structs of the process record functionality.
72
73 A record_full_entry is a record of the value change of a register
74 ("record_full_reg") or a part of memory ("record_full_mem"). And each
75 instruction must have a struct record_full_entry ("record_full_end")
76 that indicates that this is the last struct record_full_entry of this
77 instruction.
78
79 Each struct record_full_entry is linked to "record_full_list" by "prev"
80 and "next" pointers. */
81
82 struct record_full_mem_entry
83 {
84 CORE_ADDR addr;
85 int len;
86 /* Set this flag if target memory for this entry
87 can no longer be accessed. */
88 int mem_entry_not_accessible;
89 union
90 {
91 gdb_byte *ptr;
92 gdb_byte buf[sizeof (gdb_byte *)];
93 } u;
94 };
95
96 struct record_full_reg_entry
97 {
98 unsigned short num;
99 unsigned short len;
100 union
101 {
102 gdb_byte *ptr;
103 gdb_byte buf[2 * sizeof (gdb_byte *)];
104 } u;
105 };
106
107 struct record_full_end_entry
108 {
109 enum gdb_signal sigval;
110 ULONGEST insn_num;
111 };
112
113 enum record_full_type
114 {
115 record_full_end = 0,
116 record_full_reg,
117 record_full_mem
118 };
119
120 /* This is the data structure that makes up the execution log.
121
122 The execution log consists of a single linked list of entries
123 of type "struct record_full_entry". It is doubly linked so that it
124 can be traversed in either direction.
125
126 The start of the list is anchored by a struct called
127 "record_full_first". The pointer "record_full_list" either points
128 to the last entry that was added to the list (in record mode), or to
129 the next entry in the list that will be executed (in replay mode).
130
131 Each list element (struct record_full_entry), in addition to next
132 and prev pointers, consists of a union of three entry types: mem,
133 reg, and end. A field called "type" determines which entry type is
134 represented by a given list element.
135
136 Each instruction that is added to the execution log is represented
137 by a variable number of list elements ('entries'). The instruction
138 will have one "reg" entry for each register that is changed by
139 executing the instruction (including the PC in every case). It
140 will also have one "mem" entry for each memory change. Finally,
141 each instruction will have an "end" entry that separates it from
142 the changes associated with the next instruction. */
143
144 struct record_full_entry
145 {
146 struct record_full_entry *prev;
147 struct record_full_entry *next;
148 enum record_full_type type;
149 union
150 {
151 /* reg */
152 struct record_full_reg_entry reg;
153 /* mem */
154 struct record_full_mem_entry mem;
155 /* end */
156 struct record_full_end_entry end;
157 } u;
158 };
159
160 /* If true, query if PREC cannot record memory
161 change of next instruction. */
162 int record_full_memory_query = 0;
163
164 struct record_full_core_buf_entry
165 {
166 struct record_full_core_buf_entry *prev;
167 struct target_section *p;
168 bfd_byte *buf;
169 };
170
171 /* Record buf with core target. */
172 static detached_regcache *record_full_core_regbuf = NULL;
173 static struct target_section *record_full_core_start;
174 static struct target_section *record_full_core_end;
175 static struct record_full_core_buf_entry *record_full_core_buf_list = NULL;
176
177 /* The following variables are used for managing the linked list that
178 represents the execution log.
179
180 record_full_first is the anchor that holds down the beginning of
181 the list.
182
183 record_full_list serves two functions:
184 1) In record mode, it anchors the end of the list.
185 2) In replay mode, it traverses the list and points to
186 the next instruction that must be emulated.
187
188 record_full_arch_list_head and record_full_arch_list_tail are used
189 to manage a separate list, which is used to build up the change
190 elements of the currently executing instruction during record mode.
191 When this instruction has been completely annotated in the "arch
192 list", it will be appended to the main execution log. */
193
194 static struct record_full_entry record_full_first;
195 static struct record_full_entry *record_full_list = &record_full_first;
196 static struct record_full_entry *record_full_arch_list_head = NULL;
197 static struct record_full_entry *record_full_arch_list_tail = NULL;
198
199 /* 1 ask user. 0 auto delete the last struct record_full_entry. */
200 static int record_full_stop_at_limit = 1;
201 /* Maximum allowed number of insns in execution log. */
202 static unsigned int record_full_insn_max_num
203 = DEFAULT_RECORD_FULL_INSN_MAX_NUM;
204 /* Actual count of insns presently in execution log. */
205 static unsigned int record_full_insn_num = 0;
206 /* Count of insns logged so far (may be larger
207 than count of insns presently in execution log). */
208 static ULONGEST record_full_insn_count;
209
210 static const char record_longname[]
211 = N_("Process record and replay target");
212 static const char record_doc[]
213 = N_("Log program while executing and replay execution from log.");
214
215 /* Base class implementing functionality common to both the
216 "record-full" and "record-core" targets. */
217
218 class record_full_base_target : public target_ops
219 {
220 public:
221 const target_info &info () const override = 0;
222
223 strata stratum () const override { return record_stratum; }
224
225 void close () override;
226 void async (int) override;
227 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
228 bool stopped_by_watchpoint () override;
229 bool stopped_data_address (CORE_ADDR *) override;
230
231 bool stopped_by_sw_breakpoint () override;
232 bool supports_stopped_by_sw_breakpoint () override;
233
234 bool stopped_by_hw_breakpoint () override;
235 bool supports_stopped_by_hw_breakpoint () override;
236
237 bool can_execute_reverse () override;
238
239 /* Add bookmark target methods. */
240 gdb_byte *get_bookmark (const char *, int) override;
241 void goto_bookmark (const gdb_byte *, int) override;
242 enum exec_direction_kind execution_direction () override;
243 enum record_method record_method (ptid_t ptid) override;
244 void info_record () override;
245 void save_record (const char *filename) override;
246 bool supports_delete_record () override;
247 void delete_record () override;
248 bool record_is_replaying (ptid_t ptid) override;
249 bool record_will_replay (ptid_t ptid, int dir) override;
250 void record_stop_replaying () override;
251 void goto_record_begin () override;
252 void goto_record_end () override;
253 void goto_record (ULONGEST insn) override;
254 };
255
256 /* The "record-full" target. */
257
258 static const target_info record_full_target_info = {
259 "record-full",
260 record_longname,
261 record_doc,
262 };
263
264 class record_full_target final : public record_full_base_target
265 {
266 public:
267 const target_info &info () const override
268 { return record_full_target_info; }
269
270 void commit_resume () override;
271 void resume (ptid_t, int, enum gdb_signal) override;
272 void disconnect (const char *, int) override;
273 void detach (inferior *, int) override;
274 void mourn_inferior () override;
275 void kill () override;
276 void store_registers (struct regcache *, int) override;
277 enum target_xfer_status xfer_partial (enum target_object object,
278 const char *annex,
279 gdb_byte *readbuf,
280 const gdb_byte *writebuf,
281 ULONGEST offset, ULONGEST len,
282 ULONGEST *xfered_len) override;
283 int insert_breakpoint (struct gdbarch *,
284 struct bp_target_info *) override;
285 int remove_breakpoint (struct gdbarch *,
286 struct bp_target_info *,
287 enum remove_bp_reason) override;
288 };
289
290 /* The "record-core" target. */
291
292 static const target_info record_full_core_target_info = {
293 "record-core",
294 record_longname,
295 record_doc,
296 };
297
298 class record_full_core_target final : public record_full_base_target
299 {
300 public:
301 const target_info &info () const override
302 { return record_full_core_target_info; }
303
304 void resume (ptid_t, int, enum gdb_signal) override;
305 void disconnect (const char *, int) override;
306 void kill () override;
307 void fetch_registers (struct regcache *regcache, int regno) override;
308 void prepare_to_store (struct regcache *regcache) override;
309 void store_registers (struct regcache *, int) override;
310 enum target_xfer_status xfer_partial (enum target_object object,
311 const char *annex,
312 gdb_byte *readbuf,
313 const gdb_byte *writebuf,
314 ULONGEST offset, ULONGEST len,
315 ULONGEST *xfered_len) override;
316 int insert_breakpoint (struct gdbarch *,
317 struct bp_target_info *) override;
318 int remove_breakpoint (struct gdbarch *,
319 struct bp_target_info *,
320 enum remove_bp_reason) override;
321
322 bool has_execution (ptid_t) override;
323 };
324
325 static record_full_target record_full_ops;
326 static record_full_core_target record_full_core_ops;
327
328 void
329 record_full_target::detach (inferior *inf, int from_tty)
330 {
331 record_detach (this, inf, from_tty);
332 }
333
334 void
335 record_full_target::disconnect (const char *args, int from_tty)
336 {
337 record_disconnect (this, args, from_tty);
338 }
339
340 void
341 record_full_core_target::disconnect (const char *args, int from_tty)
342 {
343 record_disconnect (this, args, from_tty);
344 }
345
346 void
347 record_full_target::mourn_inferior ()
348 {
349 record_mourn_inferior (this);
350 }
351
352 void
353 record_full_target::kill ()
354 {
355 record_kill (this);
356 }
357
358 /* See record-full.h. */
359
360 int
361 record_full_is_used (void)
362 {
363 struct target_ops *t;
364
365 t = find_record_target ();
366 return (t == &record_full_ops
367 || t == &record_full_core_ops);
368 }
369
370
371 /* Command lists for "set/show record full". */
372 static struct cmd_list_element *set_record_full_cmdlist;
373 static struct cmd_list_element *show_record_full_cmdlist;
374
375 /* Command list for "record full". */
376 static struct cmd_list_element *record_full_cmdlist;
377
378 static void record_full_goto_insn (struct record_full_entry *entry,
379 enum exec_direction_kind dir);
380
381 /* Alloc and free functions for record_full_reg, record_full_mem, and
382 record_full_end entries. */
383
384 /* Alloc a record_full_reg record entry. */
385
386 static inline struct record_full_entry *
387 record_full_reg_alloc (struct regcache *regcache, int regnum)
388 {
389 struct record_full_entry *rec;
390 struct gdbarch *gdbarch = regcache->arch ();
391
392 rec = XCNEW (struct record_full_entry);
393 rec->type = record_full_reg;
394 rec->u.reg.num = regnum;
395 rec->u.reg.len = register_size (gdbarch, regnum);
396 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
397 rec->u.reg.u.ptr = (gdb_byte *) xmalloc (rec->u.reg.len);
398
399 return rec;
400 }
401
402 /* Free a record_full_reg record entry. */
403
404 static inline void
405 record_full_reg_release (struct record_full_entry *rec)
406 {
407 gdb_assert (rec->type == record_full_reg);
408 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
409 xfree (rec->u.reg.u.ptr);
410 xfree (rec);
411 }
412
413 /* Alloc a record_full_mem record entry. */
414
415 static inline struct record_full_entry *
416 record_full_mem_alloc (CORE_ADDR addr, int len)
417 {
418 struct record_full_entry *rec;
419
420 rec = XCNEW (struct record_full_entry);
421 rec->type = record_full_mem;
422 rec->u.mem.addr = addr;
423 rec->u.mem.len = len;
424 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
425 rec->u.mem.u.ptr = (gdb_byte *) xmalloc (len);
426
427 return rec;
428 }
429
430 /* Free a record_full_mem record entry. */
431
432 static inline void
433 record_full_mem_release (struct record_full_entry *rec)
434 {
435 gdb_assert (rec->type == record_full_mem);
436 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
437 xfree (rec->u.mem.u.ptr);
438 xfree (rec);
439 }
440
441 /* Alloc a record_full_end record entry. */
442
443 static inline struct record_full_entry *
444 record_full_end_alloc (void)
445 {
446 struct record_full_entry *rec;
447
448 rec = XCNEW (struct record_full_entry);
449 rec->type = record_full_end;
450
451 return rec;
452 }
453
454 /* Free a record_full_end record entry. */
455
456 static inline void
457 record_full_end_release (struct record_full_entry *rec)
458 {
459 xfree (rec);
460 }
461
462 /* Free one record entry, any type.
463 Return entry->type, in case caller wants to know. */
464
465 static inline enum record_full_type
466 record_full_entry_release (struct record_full_entry *rec)
467 {
468 enum record_full_type type = rec->type;
469
470 switch (type) {
471 case record_full_reg:
472 record_full_reg_release (rec);
473 break;
474 case record_full_mem:
475 record_full_mem_release (rec);
476 break;
477 case record_full_end:
478 record_full_end_release (rec);
479 break;
480 }
481 return type;
482 }
483
484 /* Free all record entries in list pointed to by REC. */
485
486 static void
487 record_full_list_release (struct record_full_entry *rec)
488 {
489 if (!rec)
490 return;
491
492 while (rec->next)
493 rec = rec->next;
494
495 while (rec->prev)
496 {
497 rec = rec->prev;
498 record_full_entry_release (rec->next);
499 }
500
501 if (rec == &record_full_first)
502 {
503 record_full_insn_num = 0;
504 record_full_first.next = NULL;
505 }
506 else
507 record_full_entry_release (rec);
508 }
509
510 /* Free all record entries forward of the given list position. */
511
512 static void
513 record_full_list_release_following (struct record_full_entry *rec)
514 {
515 struct record_full_entry *tmp = rec->next;
516
517 rec->next = NULL;
518 while (tmp)
519 {
520 rec = tmp->next;
521 if (record_full_entry_release (tmp) == record_full_end)
522 {
523 record_full_insn_num--;
524 record_full_insn_count--;
525 }
526 tmp = rec;
527 }
528 }
529
530 /* Delete the first instruction from the beginning of the log, to make
531 room for adding a new instruction at the end of the log.
532
533 Note -- this function does not modify record_full_insn_num. */
534
535 static void
536 record_full_list_release_first (void)
537 {
538 struct record_full_entry *tmp;
539
540 if (!record_full_first.next)
541 return;
542
543 /* Loop until a record_full_end. */
544 while (1)
545 {
546 /* Cut record_full_first.next out of the linked list. */
547 tmp = record_full_first.next;
548 record_full_first.next = tmp->next;
549 tmp->next->prev = &record_full_first;
550
551 /* tmp is now isolated, and can be deleted. */
552 if (record_full_entry_release (tmp) == record_full_end)
553 break; /* End loop at first record_full_end. */
554
555 if (!record_full_first.next)
556 {
557 gdb_assert (record_full_insn_num == 1);
558 break; /* End loop when list is empty. */
559 }
560 }
561 }
562
563 /* Add a struct record_full_entry to record_full_arch_list. */
564
565 static void
566 record_full_arch_list_add (struct record_full_entry *rec)
567 {
568 if (record_debug > 1)
569 fprintf_unfiltered (gdb_stdlog,
570 "Process record: record_full_arch_list_add %s.\n",
571 host_address_to_string (rec));
572
573 if (record_full_arch_list_tail)
574 {
575 record_full_arch_list_tail->next = rec;
576 rec->prev = record_full_arch_list_tail;
577 record_full_arch_list_tail = rec;
578 }
579 else
580 {
581 record_full_arch_list_head = rec;
582 record_full_arch_list_tail = rec;
583 }
584 }
585
586 /* Return the value storage location of a record entry. */
587 static inline gdb_byte *
588 record_full_get_loc (struct record_full_entry *rec)
589 {
590 switch (rec->type) {
591 case record_full_mem:
592 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
593 return rec->u.mem.u.ptr;
594 else
595 return rec->u.mem.u.buf;
596 case record_full_reg:
597 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
598 return rec->u.reg.u.ptr;
599 else
600 return rec->u.reg.u.buf;
601 case record_full_end:
602 default:
603 gdb_assert_not_reached ("unexpected record_full_entry type");
604 return NULL;
605 }
606 }
607
608 /* Record the value of a register NUM to record_full_arch_list. */
609
610 int
611 record_full_arch_list_add_reg (struct regcache *regcache, int regnum)
612 {
613 struct record_full_entry *rec;
614
615 if (record_debug > 1)
616 fprintf_unfiltered (gdb_stdlog,
617 "Process record: add register num = %d to "
618 "record list.\n",
619 regnum);
620
621 rec = record_full_reg_alloc (regcache, regnum);
622
623 regcache->raw_read (regnum, record_full_get_loc (rec));
624
625 record_full_arch_list_add (rec);
626
627 return 0;
628 }
629
630 /* Record the value of a region of memory whose address is ADDR and
631 length is LEN to record_full_arch_list. */
632
633 int
634 record_full_arch_list_add_mem (CORE_ADDR addr, int len)
635 {
636 struct record_full_entry *rec;
637
638 if (record_debug > 1)
639 fprintf_unfiltered (gdb_stdlog,
640 "Process record: add mem addr = %s len = %d to "
641 "record list.\n",
642 paddress (target_gdbarch (), addr), len);
643
644 if (!addr) /* FIXME: Why? Some arch must permit it... */
645 return 0;
646
647 rec = record_full_mem_alloc (addr, len);
648
649 if (record_read_memory (target_gdbarch (), addr,
650 record_full_get_loc (rec), len))
651 {
652 record_full_mem_release (rec);
653 return -1;
654 }
655
656 record_full_arch_list_add (rec);
657
658 return 0;
659 }
660
661 /* Add a record_full_end type struct record_full_entry to
662 record_full_arch_list. */
663
664 int
665 record_full_arch_list_add_end (void)
666 {
667 struct record_full_entry *rec;
668
669 if (record_debug > 1)
670 fprintf_unfiltered (gdb_stdlog,
671 "Process record: add end to arch list.\n");
672
673 rec = record_full_end_alloc ();
674 rec->u.end.sigval = GDB_SIGNAL_0;
675 rec->u.end.insn_num = ++record_full_insn_count;
676
677 record_full_arch_list_add (rec);
678
679 return 0;
680 }
681
682 static void
683 record_full_check_insn_num (void)
684 {
685 if (record_full_insn_num == record_full_insn_max_num)
686 {
687 /* Ask user what to do. */
688 if (record_full_stop_at_limit)
689 {
690 if (!yquery (_("Do you want to auto delete previous execution "
691 "log entries when record/replay buffer becomes "
692 "full (record full stop-at-limit)?")))
693 error (_("Process record: stopped by user."));
694 record_full_stop_at_limit = 0;
695 }
696 }
697 }
698
699 /* Before inferior step (when GDB record the running message, inferior
700 only can step), GDB will call this function to record the values to
701 record_full_list. This function will call gdbarch_process_record to
702 record the running message of inferior and set them to
703 record_full_arch_list, and add it to record_full_list. */
704
705 static void
706 record_full_message (struct regcache *regcache, enum gdb_signal signal)
707 {
708 int ret;
709 struct gdbarch *gdbarch = regcache->arch ();
710
711 TRY
712 {
713 record_full_arch_list_head = NULL;
714 record_full_arch_list_tail = NULL;
715
716 /* Check record_full_insn_num. */
717 record_full_check_insn_num ();
718
719 /* If gdb sends a signal value to target_resume,
720 save it in the 'end' field of the previous instruction.
721
722 Maybe process record should record what really happened,
723 rather than what gdb pretends has happened.
724
725 So if Linux delivered the signal to the child process during
726 the record mode, we will record it and deliver it again in
727 the replay mode.
728
729 If user says "ignore this signal" during the record mode, then
730 it will be ignored again during the replay mode (no matter if
731 the user says something different, like "deliver this signal"
732 during the replay mode).
733
734 User should understand that nothing he does during the replay
735 mode will change the behavior of the child. If he tries,
736 then that is a user error.
737
738 But we should still deliver the signal to gdb during the replay,
739 if we delivered it during the recording. Therefore we should
740 record the signal during record_full_wait, not
741 record_full_resume. */
742 if (record_full_list != &record_full_first) /* FIXME better way
743 to check */
744 {
745 gdb_assert (record_full_list->type == record_full_end);
746 record_full_list->u.end.sigval = signal;
747 }
748
749 if (signal == GDB_SIGNAL_0
750 || !gdbarch_process_record_signal_p (gdbarch))
751 ret = gdbarch_process_record (gdbarch,
752 regcache,
753 regcache_read_pc (regcache));
754 else
755 ret = gdbarch_process_record_signal (gdbarch,
756 regcache,
757 signal);
758
759 if (ret > 0)
760 error (_("Process record: inferior program stopped."));
761 if (ret < 0)
762 error (_("Process record: failed to record execution log."));
763 }
764 CATCH (ex, RETURN_MASK_ALL)
765 {
766 record_full_list_release (record_full_arch_list_tail);
767 throw_exception (ex);
768 }
769 END_CATCH
770
771 record_full_list->next = record_full_arch_list_head;
772 record_full_arch_list_head->prev = record_full_list;
773 record_full_list = record_full_arch_list_tail;
774
775 if (record_full_insn_num == record_full_insn_max_num)
776 record_full_list_release_first ();
777 else
778 record_full_insn_num++;
779 }
780
781 static bool
782 record_full_message_wrapper_safe (struct regcache *regcache,
783 enum gdb_signal signal)
784 {
785 TRY
786 {
787 record_full_message (regcache, signal);
788 }
789 CATCH (ex, RETURN_MASK_ALL)
790 {
791 exception_print (gdb_stderr, ex);
792 return false;
793 }
794 END_CATCH
795
796 return true;
797 }
798
799 /* Set to 1 if record_full_store_registers and record_full_xfer_partial
800 doesn't need record. */
801
802 static int record_full_gdb_operation_disable = 0;
803
804 scoped_restore_tmpl<int>
805 record_full_gdb_operation_disable_set (void)
806 {
807 return make_scoped_restore (&record_full_gdb_operation_disable, 1);
808 }
809
810 /* Flag set to TRUE for target_stopped_by_watchpoint. */
811 static enum target_stop_reason record_full_stop_reason
812 = TARGET_STOPPED_BY_NO_REASON;
813
814 /* Execute one instruction from the record log. Each instruction in
815 the log will be represented by an arbitrary sequence of register
816 entries and memory entries, followed by an 'end' entry. */
817
818 static inline void
819 record_full_exec_insn (struct regcache *regcache,
820 struct gdbarch *gdbarch,
821 struct record_full_entry *entry)
822 {
823 switch (entry->type)
824 {
825 case record_full_reg: /* reg */
826 {
827 gdb::byte_vector reg (entry->u.reg.len);
828
829 if (record_debug > 1)
830 fprintf_unfiltered (gdb_stdlog,
831 "Process record: record_full_reg %s to "
832 "inferior num = %d.\n",
833 host_address_to_string (entry),
834 entry->u.reg.num);
835
836 regcache->cooked_read (entry->u.reg.num, reg.data ());
837 regcache->cooked_write (entry->u.reg.num, record_full_get_loc (entry));
838 memcpy (record_full_get_loc (entry), reg.data (), entry->u.reg.len);
839 }
840 break;
841
842 case record_full_mem: /* mem */
843 {
844 /* Nothing to do if the entry is flagged not_accessible. */
845 if (!entry->u.mem.mem_entry_not_accessible)
846 {
847 gdb::byte_vector mem (entry->u.mem.len);
848
849 if (record_debug > 1)
850 fprintf_unfiltered (gdb_stdlog,
851 "Process record: record_full_mem %s to "
852 "inferior addr = %s len = %d.\n",
853 host_address_to_string (entry),
854 paddress (gdbarch, entry->u.mem.addr),
855 entry->u.mem.len);
856
857 if (record_read_memory (gdbarch,
858 entry->u.mem.addr, mem.data (),
859 entry->u.mem.len))
860 entry->u.mem.mem_entry_not_accessible = 1;
861 else
862 {
863 if (target_write_memory (entry->u.mem.addr,
864 record_full_get_loc (entry),
865 entry->u.mem.len))
866 {
867 entry->u.mem.mem_entry_not_accessible = 1;
868 if (record_debug)
869 warning (_("Process record: error writing memory at "
870 "addr = %s len = %d."),
871 paddress (gdbarch, entry->u.mem.addr),
872 entry->u.mem.len);
873 }
874 else
875 {
876 memcpy (record_full_get_loc (entry), mem.data (),
877 entry->u.mem.len);
878
879 /* We've changed memory --- check if a hardware
880 watchpoint should trap. Note that this
881 presently assumes the target beneath supports
882 continuable watchpoints. On non-continuable
883 watchpoints target, we'll want to check this
884 _before_ actually doing the memory change, and
885 not doing the change at all if the watchpoint
886 traps. */
887 if (hardware_watchpoint_inserted_in_range
888 (regcache->aspace (),
889 entry->u.mem.addr, entry->u.mem.len))
890 record_full_stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
891 }
892 }
893 }
894 }
895 break;
896 }
897 }
898
899 static void record_full_restore (void);
900
901 /* Asynchronous signal handle registered as event loop source for when
902 we have pending events ready to be passed to the core. */
903
904 static struct async_event_handler *record_full_async_inferior_event_token;
905
906 static void
907 record_full_async_inferior_event_handler (gdb_client_data data)
908 {
909 inferior_event_handler (INF_REG_EVENT, NULL);
910 }
911
912 /* Open the process record target for 'core' files. */
913
914 static void
915 record_full_core_open_1 (const char *name, int from_tty)
916 {
917 struct regcache *regcache = get_current_regcache ();
918 int regnum = gdbarch_num_regs (regcache->arch ());
919 int i;
920
921 /* Get record_full_core_regbuf. */
922 target_fetch_registers (regcache, -1);
923 record_full_core_regbuf = new detached_regcache (regcache->arch (), false);
924
925 for (i = 0; i < regnum; i ++)
926 record_full_core_regbuf->raw_supply (i, *regcache);
927
928 /* Get record_full_core_start and record_full_core_end. */
929 if (build_section_table (core_bfd, &record_full_core_start,
930 &record_full_core_end))
931 {
932 delete record_full_core_regbuf;
933 record_full_core_regbuf = NULL;
934 error (_("\"%s\": Can't find sections: %s"),
935 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
936 }
937
938 push_target (&record_full_core_ops);
939 record_full_restore ();
940 }
941
942 /* Open the process record target for 'live' processes. */
943
944 static void
945 record_full_open_1 (const char *name, int from_tty)
946 {
947 if (record_debug)
948 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open_1\n");
949
950 /* check exec */
951 if (!target_has_execution)
952 error (_("Process record: the program is not being run."));
953 if (non_stop)
954 error (_("Process record target can't debug inferior in non-stop mode "
955 "(non-stop)."));
956
957 if (!gdbarch_process_record_p (target_gdbarch ()))
958 error (_("Process record: the current architecture doesn't support "
959 "record function."));
960
961 push_target (&record_full_ops);
962 }
963
964 static void record_full_init_record_breakpoints (void);
965
966 /* Open the process record target. */
967
968 static void
969 record_full_open (const char *name, int from_tty)
970 {
971 if (record_debug)
972 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n");
973
974 record_preopen ();
975
976 /* Reset */
977 record_full_insn_num = 0;
978 record_full_insn_count = 0;
979 record_full_list = &record_full_first;
980 record_full_list->next = NULL;
981
982 if (core_bfd)
983 record_full_core_open_1 (name, from_tty);
984 else
985 record_full_open_1 (name, from_tty);
986
987 /* Register extra event sources in the event loop. */
988 record_full_async_inferior_event_token
989 = create_async_event_handler (record_full_async_inferior_event_handler,
990 NULL);
991
992 record_full_init_record_breakpoints ();
993
994 gdb::observers::record_changed.notify (current_inferior (), 1, "full", NULL);
995 }
996
997 /* "close" target method. Close the process record target. */
998
999 void
1000 record_full_base_target::close ()
1001 {
1002 struct record_full_core_buf_entry *entry;
1003
1004 if (record_debug)
1005 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_close\n");
1006
1007 record_full_list_release (record_full_list);
1008
1009 /* Release record_full_core_regbuf. */
1010 if (record_full_core_regbuf)
1011 {
1012 delete record_full_core_regbuf;
1013 record_full_core_regbuf = NULL;
1014 }
1015
1016 /* Release record_full_core_buf_list. */
1017 while (record_full_core_buf_list)
1018 {
1019 entry = record_full_core_buf_list;
1020 record_full_core_buf_list = record_full_core_buf_list->prev;
1021 xfree (entry);
1022 }
1023
1024 if (record_full_async_inferior_event_token)
1025 delete_async_event_handler (&record_full_async_inferior_event_token);
1026 }
1027
1028 /* "async" target method. */
1029
1030 void
1031 record_full_base_target::async (int enable)
1032 {
1033 if (enable)
1034 mark_async_event_handler (record_full_async_inferior_event_token);
1035 else
1036 clear_async_event_handler (record_full_async_inferior_event_token);
1037
1038 beneath ()->async (enable);
1039 }
1040
1041 static int record_full_resume_step = 0;
1042
1043 /* True if we've been resumed, and so each record_full_wait call should
1044 advance execution. If this is false, record_full_wait will return a
1045 TARGET_WAITKIND_IGNORE. */
1046 static int record_full_resumed = 0;
1047
1048 /* The execution direction of the last resume we got. This is
1049 necessary for async mode. Vis (order is not strictly accurate):
1050
1051 1. user has the global execution direction set to forward
1052 2. user does a reverse-step command
1053 3. record_full_resume is called with global execution direction
1054 temporarily switched to reverse
1055 4. GDB's execution direction is reverted back to forward
1056 5. target record notifies event loop there's an event to handle
1057 6. infrun asks the target which direction was it going, and switches
1058 the global execution direction accordingly (to reverse)
1059 7. infrun polls an event out of the record target, and handles it
1060 8. GDB goes back to the event loop, and goto #4.
1061 */
1062 static enum exec_direction_kind record_full_execution_dir = EXEC_FORWARD;
1063
1064 /* "resume" target method. Resume the process record target. */
1065
1066 void
1067 record_full_target::resume (ptid_t ptid, int step, enum gdb_signal signal)
1068 {
1069 record_full_resume_step = step;
1070 record_full_resumed = 1;
1071 record_full_execution_dir = ::execution_direction;
1072
1073 if (!RECORD_FULL_IS_REPLAY)
1074 {
1075 struct gdbarch *gdbarch = target_thread_architecture (ptid);
1076
1077 record_full_message (get_current_regcache (), signal);
1078
1079 if (!step)
1080 {
1081 /* This is not hard single step. */
1082 if (!gdbarch_software_single_step_p (gdbarch))
1083 {
1084 /* This is a normal continue. */
1085 step = 1;
1086 }
1087 else
1088 {
1089 /* This arch supports soft single step. */
1090 if (thread_has_single_step_breakpoints_set (inferior_thread ()))
1091 {
1092 /* This is a soft single step. */
1093 record_full_resume_step = 1;
1094 }
1095 else
1096 step = !insert_single_step_breakpoints (gdbarch);
1097 }
1098 }
1099
1100 /* Make sure the target beneath reports all signals. */
1101 target_pass_signals ({});
1102
1103 this->beneath ()->resume (ptid, step, signal);
1104 }
1105
1106 /* We are about to start executing the inferior (or simulate it),
1107 let's register it with the event loop. */
1108 if (target_can_async_p ())
1109 target_async (1);
1110 }
1111
1112 /* "commit_resume" method for process record target. */
1113
1114 void
1115 record_full_target::commit_resume ()
1116 {
1117 if (!RECORD_FULL_IS_REPLAY)
1118 beneath ()->commit_resume ();
1119 }
1120
1121 static int record_full_get_sig = 0;
1122
1123 /* SIGINT signal handler, registered by "wait" method. */
1124
1125 static void
1126 record_full_sig_handler (int signo)
1127 {
1128 if (record_debug)
1129 fprintf_unfiltered (gdb_stdlog, "Process record: get a signal\n");
1130
1131 /* It will break the running inferior in replay mode. */
1132 record_full_resume_step = 1;
1133
1134 /* It will let record_full_wait set inferior status to get the signal
1135 SIGINT. */
1136 record_full_get_sig = 1;
1137 }
1138
1139 /* "wait" target method for process record target.
1140
1141 In record mode, the target is always run in singlestep mode
1142 (even when gdb says to continue). The wait method intercepts
1143 the stop events and determines which ones are to be passed on to
1144 gdb. Most stop events are just singlestep events that gdb is not
1145 to know about, so the wait method just records them and keeps
1146 singlestepping.
1147
1148 In replay mode, this function emulates the recorded execution log,
1149 one instruction at a time (forward or backward), and determines
1150 where to stop. */
1151
1152 static ptid_t
1153 record_full_wait_1 (struct target_ops *ops,
1154 ptid_t ptid, struct target_waitstatus *status,
1155 int options)
1156 {
1157 scoped_restore restore_operation_disable
1158 = record_full_gdb_operation_disable_set ();
1159
1160 if (record_debug)
1161 fprintf_unfiltered (gdb_stdlog,
1162 "Process record: record_full_wait "
1163 "record_full_resume_step = %d, "
1164 "record_full_resumed = %d, direction=%s\n",
1165 record_full_resume_step, record_full_resumed,
1166 record_full_execution_dir == EXEC_FORWARD
1167 ? "forward" : "reverse");
1168
1169 if (!record_full_resumed)
1170 {
1171 gdb_assert ((options & TARGET_WNOHANG) != 0);
1172
1173 /* No interesting event. */
1174 status->kind = TARGET_WAITKIND_IGNORE;
1175 return minus_one_ptid;
1176 }
1177
1178 record_full_get_sig = 0;
1179 signal (SIGINT, record_full_sig_handler);
1180
1181 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1182
1183 if (!RECORD_FULL_IS_REPLAY && ops != &record_full_core_ops)
1184 {
1185 if (record_full_resume_step)
1186 {
1187 /* This is a single step. */
1188 return ops->beneath ()->wait (ptid, status, options);
1189 }
1190 else
1191 {
1192 /* This is not a single step. */
1193 ptid_t ret;
1194 CORE_ADDR tmp_pc;
1195 struct gdbarch *gdbarch = target_thread_architecture (inferior_ptid);
1196
1197 while (1)
1198 {
1199 ret = ops->beneath ()->wait (ptid, status, options);
1200 if (status->kind == TARGET_WAITKIND_IGNORE)
1201 {
1202 if (record_debug)
1203 fprintf_unfiltered (gdb_stdlog,
1204 "Process record: record_full_wait "
1205 "target beneath not done yet\n");
1206 return ret;
1207 }
1208
1209 for (thread_info *tp : all_non_exited_threads ())
1210 delete_single_step_breakpoints (tp);
1211
1212 if (record_full_resume_step)
1213 return ret;
1214
1215 /* Is this a SIGTRAP? */
1216 if (status->kind == TARGET_WAITKIND_STOPPED
1217 && status->value.sig == GDB_SIGNAL_TRAP)
1218 {
1219 struct regcache *regcache;
1220 enum target_stop_reason *stop_reason_p
1221 = &record_full_stop_reason;
1222
1223 /* Yes -- this is likely our single-step finishing,
1224 but check if there's any reason the core would be
1225 interested in the event. */
1226
1227 registers_changed ();
1228 regcache = get_current_regcache ();
1229 tmp_pc = regcache_read_pc (regcache);
1230 const struct address_space *aspace = regcache->aspace ();
1231
1232 if (target_stopped_by_watchpoint ())
1233 {
1234 /* Always interested in watchpoints. */
1235 }
1236 else if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1237 stop_reason_p))
1238 {
1239 /* There is a breakpoint here. Let the core
1240 handle it. */
1241 }
1242 else
1243 {
1244 /* This is a single-step trap. Record the
1245 insn and issue another step.
1246 FIXME: this part can be a random SIGTRAP too.
1247 But GDB cannot handle it. */
1248 int step = 1;
1249
1250 if (!record_full_message_wrapper_safe (regcache,
1251 GDB_SIGNAL_0))
1252 {
1253 status->kind = TARGET_WAITKIND_STOPPED;
1254 status->value.sig = GDB_SIGNAL_0;
1255 break;
1256 }
1257
1258 if (gdbarch_software_single_step_p (gdbarch))
1259 {
1260 /* Try to insert the software single step breakpoint.
1261 If insert success, set step to 0. */
1262 set_executing (inferior_ptid, 0);
1263 reinit_frame_cache ();
1264
1265 step = !insert_single_step_breakpoints (gdbarch);
1266
1267 set_executing (inferior_ptid, 1);
1268 }
1269
1270 if (record_debug)
1271 fprintf_unfiltered (gdb_stdlog,
1272 "Process record: record_full_wait "
1273 "issuing one more step in the "
1274 "target beneath\n");
1275 ops->beneath ()->resume (ptid, step, GDB_SIGNAL_0);
1276 ops->beneath ()->commit_resume ();
1277 continue;
1278 }
1279 }
1280
1281 /* The inferior is broken by a breakpoint or a signal. */
1282 break;
1283 }
1284
1285 return ret;
1286 }
1287 }
1288 else
1289 {
1290 struct regcache *regcache = get_current_regcache ();
1291 struct gdbarch *gdbarch = regcache->arch ();
1292 const struct address_space *aspace = regcache->aspace ();
1293 int continue_flag = 1;
1294 int first_record_full_end = 1;
1295
1296 TRY
1297 {
1298 CORE_ADDR tmp_pc;
1299
1300 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1301 status->kind = TARGET_WAITKIND_STOPPED;
1302
1303 /* Check breakpoint when forward execute. */
1304 if (execution_direction == EXEC_FORWARD)
1305 {
1306 tmp_pc = regcache_read_pc (regcache);
1307 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1308 &record_full_stop_reason))
1309 {
1310 if (record_debug)
1311 fprintf_unfiltered (gdb_stdlog,
1312 "Process record: break at %s.\n",
1313 paddress (gdbarch, tmp_pc));
1314 goto replay_out;
1315 }
1316 }
1317
1318 /* If GDB is in terminal_inferior mode, it will not get the
1319 signal. And in GDB replay mode, GDB doesn't need to be
1320 in terminal_inferior mode, because inferior will not
1321 executed. Then set it to terminal_ours to make GDB get
1322 the signal. */
1323 target_terminal::ours ();
1324
1325 /* In EXEC_FORWARD mode, record_full_list points to the tail of prev
1326 instruction. */
1327 if (execution_direction == EXEC_FORWARD && record_full_list->next)
1328 record_full_list = record_full_list->next;
1329
1330 /* Loop over the record_full_list, looking for the next place to
1331 stop. */
1332 do
1333 {
1334 /* Check for beginning and end of log. */
1335 if (execution_direction == EXEC_REVERSE
1336 && record_full_list == &record_full_first)
1337 {
1338 /* Hit beginning of record log in reverse. */
1339 status->kind = TARGET_WAITKIND_NO_HISTORY;
1340 break;
1341 }
1342 if (execution_direction != EXEC_REVERSE
1343 && !record_full_list->next)
1344 {
1345 /* Hit end of record log going forward. */
1346 status->kind = TARGET_WAITKIND_NO_HISTORY;
1347 break;
1348 }
1349
1350 record_full_exec_insn (regcache, gdbarch, record_full_list);
1351
1352 if (record_full_list->type == record_full_end)
1353 {
1354 if (record_debug > 1)
1355 fprintf_unfiltered
1356 (gdb_stdlog,
1357 "Process record: record_full_end %s to "
1358 "inferior.\n",
1359 host_address_to_string (record_full_list));
1360
1361 if (first_record_full_end
1362 && execution_direction == EXEC_REVERSE)
1363 {
1364 /* When reverse excute, the first
1365 record_full_end is the part of current
1366 instruction. */
1367 first_record_full_end = 0;
1368 }
1369 else
1370 {
1371 /* In EXEC_REVERSE mode, this is the
1372 record_full_end of prev instruction. In
1373 EXEC_FORWARD mode, this is the
1374 record_full_end of current instruction. */
1375 /* step */
1376 if (record_full_resume_step)
1377 {
1378 if (record_debug > 1)
1379 fprintf_unfiltered (gdb_stdlog,
1380 "Process record: step.\n");
1381 continue_flag = 0;
1382 }
1383
1384 /* check breakpoint */
1385 tmp_pc = regcache_read_pc (regcache);
1386 if (record_check_stopped_by_breakpoint
1387 (aspace, tmp_pc, &record_full_stop_reason))
1388 {
1389 if (record_debug)
1390 fprintf_unfiltered (gdb_stdlog,
1391 "Process record: break "
1392 "at %s.\n",
1393 paddress (gdbarch, tmp_pc));
1394
1395 continue_flag = 0;
1396 }
1397
1398 if (record_full_stop_reason
1399 == TARGET_STOPPED_BY_WATCHPOINT)
1400 {
1401 if (record_debug)
1402 fprintf_unfiltered (gdb_stdlog,
1403 "Process record: hit hw "
1404 "watchpoint.\n");
1405 continue_flag = 0;
1406 }
1407 /* Check target signal */
1408 if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1409 /* FIXME: better way to check */
1410 continue_flag = 0;
1411 }
1412 }
1413
1414 if (continue_flag)
1415 {
1416 if (execution_direction == EXEC_REVERSE)
1417 {
1418 if (record_full_list->prev)
1419 record_full_list = record_full_list->prev;
1420 }
1421 else
1422 {
1423 if (record_full_list->next)
1424 record_full_list = record_full_list->next;
1425 }
1426 }
1427 }
1428 while (continue_flag);
1429
1430 replay_out:
1431 if (record_full_get_sig)
1432 status->value.sig = GDB_SIGNAL_INT;
1433 else if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1434 /* FIXME: better way to check */
1435 status->value.sig = record_full_list->u.end.sigval;
1436 else
1437 status->value.sig = GDB_SIGNAL_TRAP;
1438 }
1439 CATCH (ex, RETURN_MASK_ALL)
1440 {
1441 if (execution_direction == EXEC_REVERSE)
1442 {
1443 if (record_full_list->next)
1444 record_full_list = record_full_list->next;
1445 }
1446 else
1447 record_full_list = record_full_list->prev;
1448
1449 throw_exception (ex);
1450 }
1451 END_CATCH
1452 }
1453
1454 signal (SIGINT, handle_sigint);
1455
1456 return inferior_ptid;
1457 }
1458
1459 ptid_t
1460 record_full_base_target::wait (ptid_t ptid, struct target_waitstatus *status,
1461 int options)
1462 {
1463 ptid_t return_ptid;
1464
1465 return_ptid = record_full_wait_1 (this, ptid, status, options);
1466 if (status->kind != TARGET_WAITKIND_IGNORE)
1467 {
1468 /* We're reporting a stop. Make sure any spurious
1469 target_wait(WNOHANG) doesn't advance the target until the
1470 core wants us resumed again. */
1471 record_full_resumed = 0;
1472 }
1473 return return_ptid;
1474 }
1475
1476 bool
1477 record_full_base_target::stopped_by_watchpoint ()
1478 {
1479 if (RECORD_FULL_IS_REPLAY)
1480 return record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
1481 else
1482 return beneath ()->stopped_by_watchpoint ();
1483 }
1484
1485 bool
1486 record_full_base_target::stopped_data_address (CORE_ADDR *addr_p)
1487 {
1488 if (RECORD_FULL_IS_REPLAY)
1489 return false;
1490 else
1491 return this->beneath ()->stopped_data_address (addr_p);
1492 }
1493
1494 /* The stopped_by_sw_breakpoint method of target record-full. */
1495
1496 bool
1497 record_full_base_target::stopped_by_sw_breakpoint ()
1498 {
1499 return record_full_stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
1500 }
1501
1502 /* The supports_stopped_by_sw_breakpoint method of target
1503 record-full. */
1504
1505 bool
1506 record_full_base_target::supports_stopped_by_sw_breakpoint ()
1507 {
1508 return true;
1509 }
1510
1511 /* The stopped_by_hw_breakpoint method of target record-full. */
1512
1513 bool
1514 record_full_base_target::stopped_by_hw_breakpoint ()
1515 {
1516 return record_full_stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
1517 }
1518
1519 /* The supports_stopped_by_sw_breakpoint method of target
1520 record-full. */
1521
1522 bool
1523 record_full_base_target::supports_stopped_by_hw_breakpoint ()
1524 {
1525 return true;
1526 }
1527
1528 /* Record registers change (by user or by GDB) to list as an instruction. */
1529
1530 static void
1531 record_full_registers_change (struct regcache *regcache, int regnum)
1532 {
1533 /* Check record_full_insn_num. */
1534 record_full_check_insn_num ();
1535
1536 record_full_arch_list_head = NULL;
1537 record_full_arch_list_tail = NULL;
1538
1539 if (regnum < 0)
1540 {
1541 int i;
1542
1543 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
1544 {
1545 if (record_full_arch_list_add_reg (regcache, i))
1546 {
1547 record_full_list_release (record_full_arch_list_tail);
1548 error (_("Process record: failed to record execution log."));
1549 }
1550 }
1551 }
1552 else
1553 {
1554 if (record_full_arch_list_add_reg (regcache, regnum))
1555 {
1556 record_full_list_release (record_full_arch_list_tail);
1557 error (_("Process record: failed to record execution log."));
1558 }
1559 }
1560 if (record_full_arch_list_add_end ())
1561 {
1562 record_full_list_release (record_full_arch_list_tail);
1563 error (_("Process record: failed to record execution log."));
1564 }
1565 record_full_list->next = record_full_arch_list_head;
1566 record_full_arch_list_head->prev = record_full_list;
1567 record_full_list = record_full_arch_list_tail;
1568
1569 if (record_full_insn_num == record_full_insn_max_num)
1570 record_full_list_release_first ();
1571 else
1572 record_full_insn_num++;
1573 }
1574
1575 /* "store_registers" method for process record target. */
1576
1577 void
1578 record_full_target::store_registers (struct regcache *regcache, int regno)
1579 {
1580 if (!record_full_gdb_operation_disable)
1581 {
1582 if (RECORD_FULL_IS_REPLAY)
1583 {
1584 int n;
1585
1586 /* Let user choose if he wants to write register or not. */
1587 if (regno < 0)
1588 n =
1589 query (_("Because GDB is in replay mode, changing the "
1590 "value of a register will make the execution "
1591 "log unusable from this point onward. "
1592 "Change all registers?"));
1593 else
1594 n =
1595 query (_("Because GDB is in replay mode, changing the value "
1596 "of a register will make the execution log unusable "
1597 "from this point onward. Change register %s?"),
1598 gdbarch_register_name (regcache->arch (),
1599 regno));
1600
1601 if (!n)
1602 {
1603 /* Invalidate the value of regcache that was set in function
1604 "regcache_raw_write". */
1605 if (regno < 0)
1606 {
1607 int i;
1608
1609 for (i = 0;
1610 i < gdbarch_num_regs (regcache->arch ());
1611 i++)
1612 regcache->invalidate (i);
1613 }
1614 else
1615 regcache->invalidate (regno);
1616
1617 error (_("Process record canceled the operation."));
1618 }
1619
1620 /* Destroy the record from here forward. */
1621 record_full_list_release_following (record_full_list);
1622 }
1623
1624 record_full_registers_change (regcache, regno);
1625 }
1626 this->beneath ()->store_registers (regcache, regno);
1627 }
1628
1629 /* "xfer_partial" method. Behavior is conditional on
1630 RECORD_FULL_IS_REPLAY.
1631 In replay mode, we cannot write memory unles we are willing to
1632 invalidate the record/replay log from this point forward. */
1633
1634 enum target_xfer_status
1635 record_full_target::xfer_partial (enum target_object object,
1636 const char *annex, gdb_byte *readbuf,
1637 const gdb_byte *writebuf, ULONGEST offset,
1638 ULONGEST len, ULONGEST *xfered_len)
1639 {
1640 if (!record_full_gdb_operation_disable
1641 && (object == TARGET_OBJECT_MEMORY
1642 || object == TARGET_OBJECT_RAW_MEMORY) && writebuf)
1643 {
1644 if (RECORD_FULL_IS_REPLAY)
1645 {
1646 /* Let user choose if he wants to write memory or not. */
1647 if (!query (_("Because GDB is in replay mode, writing to memory "
1648 "will make the execution log unusable from this "
1649 "point onward. Write memory at address %s?"),
1650 paddress (target_gdbarch (), offset)))
1651 error (_("Process record canceled the operation."));
1652
1653 /* Destroy the record from here forward. */
1654 record_full_list_release_following (record_full_list);
1655 }
1656
1657 /* Check record_full_insn_num */
1658 record_full_check_insn_num ();
1659
1660 /* Record registers change to list as an instruction. */
1661 record_full_arch_list_head = NULL;
1662 record_full_arch_list_tail = NULL;
1663 if (record_full_arch_list_add_mem (offset, len))
1664 {
1665 record_full_list_release (record_full_arch_list_tail);
1666 if (record_debug)
1667 fprintf_unfiltered (gdb_stdlog,
1668 "Process record: failed to record "
1669 "execution log.");
1670 return TARGET_XFER_E_IO;
1671 }
1672 if (record_full_arch_list_add_end ())
1673 {
1674 record_full_list_release (record_full_arch_list_tail);
1675 if (record_debug)
1676 fprintf_unfiltered (gdb_stdlog,
1677 "Process record: failed to record "
1678 "execution log.");
1679 return TARGET_XFER_E_IO;
1680 }
1681 record_full_list->next = record_full_arch_list_head;
1682 record_full_arch_list_head->prev = record_full_list;
1683 record_full_list = record_full_arch_list_tail;
1684
1685 if (record_full_insn_num == record_full_insn_max_num)
1686 record_full_list_release_first ();
1687 else
1688 record_full_insn_num++;
1689 }
1690
1691 return this->beneath ()->xfer_partial (object, annex, readbuf, writebuf,
1692 offset, len, xfered_len);
1693 }
1694
1695 /* This structure represents a breakpoint inserted while the record
1696 target is active. We use this to know when to install/remove
1697 breakpoints in/from the target beneath. For example, a breakpoint
1698 may be inserted while recording, but removed when not replaying nor
1699 recording. In that case, the breakpoint had not been inserted on
1700 the target beneath, so we should not try to remove it there. */
1701
1702 struct record_full_breakpoint
1703 {
1704 record_full_breakpoint (struct address_space *address_space_,
1705 CORE_ADDR addr_,
1706 bool in_target_beneath_)
1707 : address_space (address_space_),
1708 addr (addr_),
1709 in_target_beneath (in_target_beneath_)
1710 {
1711 }
1712
1713 /* The address and address space the breakpoint was set at. */
1714 struct address_space *address_space;
1715 CORE_ADDR addr;
1716
1717 /* True when the breakpoint has been also installed in the target
1718 beneath. This will be false for breakpoints set during replay or
1719 when recording. */
1720 bool in_target_beneath;
1721 };
1722
1723 /* The list of breakpoints inserted while the record target is
1724 active. */
1725 static std::vector<record_full_breakpoint> record_full_breakpoints;
1726
1727 static void
1728 record_full_sync_record_breakpoints (struct bp_location *loc, void *data)
1729 {
1730 if (loc->loc_type != bp_loc_software_breakpoint)
1731 return;
1732
1733 if (loc->inserted)
1734 {
1735 record_full_breakpoints.emplace_back
1736 (loc->target_info.placed_address_space,
1737 loc->target_info.placed_address,
1738 1);
1739 }
1740 }
1741
1742 /* Sync existing breakpoints to record_full_breakpoints. */
1743
1744 static void
1745 record_full_init_record_breakpoints (void)
1746 {
1747 record_full_breakpoints.clear ();
1748
1749 iterate_over_bp_locations (record_full_sync_record_breakpoints);
1750 }
1751
1752 /* Behavior is conditional on RECORD_FULL_IS_REPLAY. We will not actually
1753 insert or remove breakpoints in the real target when replaying, nor
1754 when recording. */
1755
1756 int
1757 record_full_target::insert_breakpoint (struct gdbarch *gdbarch,
1758 struct bp_target_info *bp_tgt)
1759 {
1760 bool in_target_beneath = false;
1761
1762 if (!RECORD_FULL_IS_REPLAY)
1763 {
1764 /* When recording, we currently always single-step, so we don't
1765 really need to install regular breakpoints in the inferior.
1766 However, we do have to insert software single-step
1767 breakpoints, in case the target can't hardware step. To keep
1768 things simple, we always insert. */
1769
1770 scoped_restore restore_operation_disable
1771 = record_full_gdb_operation_disable_set ();
1772
1773 int ret = this->beneath ()->insert_breakpoint (gdbarch, bp_tgt);
1774 if (ret != 0)
1775 return ret;
1776
1777 in_target_beneath = true;
1778 }
1779
1780 /* Use the existing entries if found in order to avoid duplication
1781 in record_full_breakpoints. */
1782
1783 for (const record_full_breakpoint &bp : record_full_breakpoints)
1784 {
1785 if (bp.addr == bp_tgt->placed_address
1786 && bp.address_space == bp_tgt->placed_address_space)
1787 {
1788 gdb_assert (bp.in_target_beneath == in_target_beneath);
1789 return 0;
1790 }
1791 }
1792
1793 record_full_breakpoints.emplace_back (bp_tgt->placed_address_space,
1794 bp_tgt->placed_address,
1795 in_target_beneath);
1796 return 0;
1797 }
1798
1799 /* "remove_breakpoint" method for process record target. */
1800
1801 int
1802 record_full_target::remove_breakpoint (struct gdbarch *gdbarch,
1803 struct bp_target_info *bp_tgt,
1804 enum remove_bp_reason reason)
1805 {
1806 for (auto iter = record_full_breakpoints.begin ();
1807 iter != record_full_breakpoints.end ();
1808 ++iter)
1809 {
1810 struct record_full_breakpoint &bp = *iter;
1811
1812 if (bp.addr == bp_tgt->placed_address
1813 && bp.address_space == bp_tgt->placed_address_space)
1814 {
1815 if (bp.in_target_beneath)
1816 {
1817 scoped_restore restore_operation_disable
1818 = record_full_gdb_operation_disable_set ();
1819
1820 int ret = this->beneath ()->remove_breakpoint (gdbarch, bp_tgt,
1821 reason);
1822 if (ret != 0)
1823 return ret;
1824 }
1825
1826 if (reason == REMOVE_BREAKPOINT)
1827 unordered_remove (record_full_breakpoints, iter);
1828 return 0;
1829 }
1830 }
1831
1832 gdb_assert_not_reached ("removing unknown breakpoint");
1833 }
1834
1835 /* "can_execute_reverse" method for process record target. */
1836
1837 bool
1838 record_full_base_target::can_execute_reverse ()
1839 {
1840 return true;
1841 }
1842
1843 /* "get_bookmark" method for process record and prec over core. */
1844
1845 gdb_byte *
1846 record_full_base_target::get_bookmark (const char *args, int from_tty)
1847 {
1848 char *ret = NULL;
1849
1850 /* Return stringified form of instruction count. */
1851 if (record_full_list && record_full_list->type == record_full_end)
1852 ret = xstrdup (pulongest (record_full_list->u.end.insn_num));
1853
1854 if (record_debug)
1855 {
1856 if (ret)
1857 fprintf_unfiltered (gdb_stdlog,
1858 "record_full_get_bookmark returns %s\n", ret);
1859 else
1860 fprintf_unfiltered (gdb_stdlog,
1861 "record_full_get_bookmark returns NULL\n");
1862 }
1863 return (gdb_byte *) ret;
1864 }
1865
1866 /* "goto_bookmark" method for process record and prec over core. */
1867
1868 void
1869 record_full_base_target::goto_bookmark (const gdb_byte *raw_bookmark,
1870 int from_tty)
1871 {
1872 const char *bookmark = (const char *) raw_bookmark;
1873
1874 if (record_debug)
1875 fprintf_unfiltered (gdb_stdlog,
1876 "record_full_goto_bookmark receives %s\n", bookmark);
1877
1878 std::string name_holder;
1879 if (bookmark[0] == '\'' || bookmark[0] == '\"')
1880 {
1881 if (bookmark[strlen (bookmark) - 1] != bookmark[0])
1882 error (_("Unbalanced quotes: %s"), bookmark);
1883
1884 name_holder = std::string (bookmark + 1, strlen (bookmark) - 2);
1885 bookmark = name_holder.c_str ();
1886 }
1887
1888 record_goto (bookmark);
1889 }
1890
1891 enum exec_direction_kind
1892 record_full_base_target::execution_direction ()
1893 {
1894 return record_full_execution_dir;
1895 }
1896
1897 /* The record_method method of target record-full. */
1898
1899 enum record_method
1900 record_full_base_target::record_method (ptid_t ptid)
1901 {
1902 return RECORD_METHOD_FULL;
1903 }
1904
1905 void
1906 record_full_base_target::info_record ()
1907 {
1908 struct record_full_entry *p;
1909
1910 if (RECORD_FULL_IS_REPLAY)
1911 printf_filtered (_("Replay mode:\n"));
1912 else
1913 printf_filtered (_("Record mode:\n"));
1914
1915 /* Find entry for first actual instruction in the log. */
1916 for (p = record_full_first.next;
1917 p != NULL && p->type != record_full_end;
1918 p = p->next)
1919 ;
1920
1921 /* Do we have a log at all? */
1922 if (p != NULL && p->type == record_full_end)
1923 {
1924 /* Display instruction number for first instruction in the log. */
1925 printf_filtered (_("Lowest recorded instruction number is %s.\n"),
1926 pulongest (p->u.end.insn_num));
1927
1928 /* If in replay mode, display where we are in the log. */
1929 if (RECORD_FULL_IS_REPLAY)
1930 printf_filtered (_("Current instruction number is %s.\n"),
1931 pulongest (record_full_list->u.end.insn_num));
1932
1933 /* Display instruction number for last instruction in the log. */
1934 printf_filtered (_("Highest recorded instruction number is %s.\n"),
1935 pulongest (record_full_insn_count));
1936
1937 /* Display log count. */
1938 printf_filtered (_("Log contains %u instructions.\n"),
1939 record_full_insn_num);
1940 }
1941 else
1942 printf_filtered (_("No instructions have been logged.\n"));
1943
1944 /* Display max log size. */
1945 printf_filtered (_("Max logged instructions is %u.\n"),
1946 record_full_insn_max_num);
1947 }
1948
1949 bool
1950 record_full_base_target::supports_delete_record ()
1951 {
1952 return true;
1953 }
1954
1955 /* The "delete_record" target method. */
1956
1957 void
1958 record_full_base_target::delete_record ()
1959 {
1960 record_full_list_release_following (record_full_list);
1961 }
1962
1963 /* The "record_is_replaying" target method. */
1964
1965 bool
1966 record_full_base_target::record_is_replaying (ptid_t ptid)
1967 {
1968 return RECORD_FULL_IS_REPLAY;
1969 }
1970
1971 /* The "record_will_replay" target method. */
1972
1973 bool
1974 record_full_base_target::record_will_replay (ptid_t ptid, int dir)
1975 {
1976 /* We can currently only record when executing forwards. Should we be able
1977 to record when executing backwards on targets that support reverse
1978 execution, this needs to be changed. */
1979
1980 return RECORD_FULL_IS_REPLAY || dir == EXEC_REVERSE;
1981 }
1982
1983 /* Go to a specific entry. */
1984
1985 static void
1986 record_full_goto_entry (struct record_full_entry *p)
1987 {
1988 if (p == NULL)
1989 error (_("Target insn not found."));
1990 else if (p == record_full_list)
1991 error (_("Already at target insn."));
1992 else if (p->u.end.insn_num > record_full_list->u.end.insn_num)
1993 {
1994 printf_filtered (_("Go forward to insn number %s\n"),
1995 pulongest (p->u.end.insn_num));
1996 record_full_goto_insn (p, EXEC_FORWARD);
1997 }
1998 else
1999 {
2000 printf_filtered (_("Go backward to insn number %s\n"),
2001 pulongest (p->u.end.insn_num));
2002 record_full_goto_insn (p, EXEC_REVERSE);
2003 }
2004
2005 registers_changed ();
2006 reinit_frame_cache ();
2007 inferior_thread ()->suspend.stop_pc
2008 = regcache_read_pc (get_current_regcache ());
2009 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2010 }
2011
2012 /* The "goto_record_begin" target method. */
2013
2014 void
2015 record_full_base_target::goto_record_begin ()
2016 {
2017 struct record_full_entry *p = NULL;
2018
2019 for (p = &record_full_first; p != NULL; p = p->next)
2020 if (p->type == record_full_end)
2021 break;
2022
2023 record_full_goto_entry (p);
2024 }
2025
2026 /* The "goto_record_end" target method. */
2027
2028 void
2029 record_full_base_target::goto_record_end ()
2030 {
2031 struct record_full_entry *p = NULL;
2032
2033 for (p = record_full_list; p->next != NULL; p = p->next)
2034 ;
2035 for (; p!= NULL; p = p->prev)
2036 if (p->type == record_full_end)
2037 break;
2038
2039 record_full_goto_entry (p);
2040 }
2041
2042 /* The "goto_record" target method. */
2043
2044 void
2045 record_full_base_target::goto_record (ULONGEST target_insn)
2046 {
2047 struct record_full_entry *p = NULL;
2048
2049 for (p = &record_full_first; p != NULL; p = p->next)
2050 if (p->type == record_full_end && p->u.end.insn_num == target_insn)
2051 break;
2052
2053 record_full_goto_entry (p);
2054 }
2055
2056 /* The "record_stop_replaying" target method. */
2057
2058 void
2059 record_full_base_target::record_stop_replaying ()
2060 {
2061 goto_record_end ();
2062 }
2063
2064 /* "resume" method for prec over corefile. */
2065
2066 void
2067 record_full_core_target::resume (ptid_t ptid, int step,
2068 enum gdb_signal signal)
2069 {
2070 record_full_resume_step = step;
2071 record_full_resumed = 1;
2072 record_full_execution_dir = ::execution_direction;
2073
2074 /* We are about to start executing the inferior (or simulate it),
2075 let's register it with the event loop. */
2076 if (target_can_async_p ())
2077 target_async (1);
2078 }
2079
2080 /* "kill" method for prec over corefile. */
2081
2082 void
2083 record_full_core_target::kill ()
2084 {
2085 if (record_debug)
2086 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_core_kill\n");
2087
2088 unpush_target (this);
2089 }
2090
2091 /* "fetch_registers" method for prec over corefile. */
2092
2093 void
2094 record_full_core_target::fetch_registers (struct regcache *regcache,
2095 int regno)
2096 {
2097 if (regno < 0)
2098 {
2099 int num = gdbarch_num_regs (regcache->arch ());
2100 int i;
2101
2102 for (i = 0; i < num; i ++)
2103 regcache->raw_supply (i, *record_full_core_regbuf);
2104 }
2105 else
2106 regcache->raw_supply (regno, *record_full_core_regbuf);
2107 }
2108
2109 /* "prepare_to_store" method for prec over corefile. */
2110
2111 void
2112 record_full_core_target::prepare_to_store (struct regcache *regcache)
2113 {
2114 }
2115
2116 /* "store_registers" method for prec over corefile. */
2117
2118 void
2119 record_full_core_target::store_registers (struct regcache *regcache,
2120 int regno)
2121 {
2122 if (record_full_gdb_operation_disable)
2123 record_full_core_regbuf->raw_supply (regno, *regcache);
2124 else
2125 error (_("You can't do that without a process to debug."));
2126 }
2127
2128 /* "xfer_partial" method for prec over corefile. */
2129
2130 enum target_xfer_status
2131 record_full_core_target::xfer_partial (enum target_object object,
2132 const char *annex, gdb_byte *readbuf,
2133 const gdb_byte *writebuf, ULONGEST offset,
2134 ULONGEST len, ULONGEST *xfered_len)
2135 {
2136 if (object == TARGET_OBJECT_MEMORY)
2137 {
2138 if (record_full_gdb_operation_disable || !writebuf)
2139 {
2140 struct target_section *p;
2141
2142 for (p = record_full_core_start; p < record_full_core_end; p++)
2143 {
2144 if (offset >= p->addr)
2145 {
2146 struct record_full_core_buf_entry *entry;
2147 ULONGEST sec_offset;
2148
2149 if (offset >= p->endaddr)
2150 continue;
2151
2152 if (offset + len > p->endaddr)
2153 len = p->endaddr - offset;
2154
2155 sec_offset = offset - p->addr;
2156
2157 /* Read readbuf or write writebuf p, offset, len. */
2158 /* Check flags. */
2159 if (p->the_bfd_section->flags & SEC_CONSTRUCTOR
2160 || (p->the_bfd_section->flags & SEC_HAS_CONTENTS) == 0)
2161 {
2162 if (readbuf)
2163 memset (readbuf, 0, len);
2164
2165 *xfered_len = len;
2166 return TARGET_XFER_OK;
2167 }
2168 /* Get record_full_core_buf_entry. */
2169 for (entry = record_full_core_buf_list; entry;
2170 entry = entry->prev)
2171 if (entry->p == p)
2172 break;
2173 if (writebuf)
2174 {
2175 if (!entry)
2176 {
2177 /* Add a new entry. */
2178 entry = XNEW (struct record_full_core_buf_entry);
2179 entry->p = p;
2180 if (!bfd_malloc_and_get_section
2181 (p->the_bfd_section->owner,
2182 p->the_bfd_section,
2183 &entry->buf))
2184 {
2185 xfree (entry);
2186 return TARGET_XFER_EOF;
2187 }
2188 entry->prev = record_full_core_buf_list;
2189 record_full_core_buf_list = entry;
2190 }
2191
2192 memcpy (entry->buf + sec_offset, writebuf,
2193 (size_t) len);
2194 }
2195 else
2196 {
2197 if (!entry)
2198 return this->beneath ()->xfer_partial (object, annex,
2199 readbuf, writebuf,
2200 offset, len,
2201 xfered_len);
2202
2203 memcpy (readbuf, entry->buf + sec_offset,
2204 (size_t) len);
2205 }
2206
2207 *xfered_len = len;
2208 return TARGET_XFER_OK;
2209 }
2210 }
2211
2212 return TARGET_XFER_E_IO;
2213 }
2214 else
2215 error (_("You can't do that without a process to debug."));
2216 }
2217
2218 return this->beneath ()->xfer_partial (object, annex,
2219 readbuf, writebuf, offset, len,
2220 xfered_len);
2221 }
2222
2223 /* "insert_breakpoint" method for prec over corefile. */
2224
2225 int
2226 record_full_core_target::insert_breakpoint (struct gdbarch *gdbarch,
2227 struct bp_target_info *bp_tgt)
2228 {
2229 return 0;
2230 }
2231
2232 /* "remove_breakpoint" method for prec over corefile. */
2233
2234 int
2235 record_full_core_target::remove_breakpoint (struct gdbarch *gdbarch,
2236 struct bp_target_info *bp_tgt,
2237 enum remove_bp_reason reason)
2238 {
2239 return 0;
2240 }
2241
2242 /* "has_execution" method for prec over corefile. */
2243
2244 bool
2245 record_full_core_target::has_execution (ptid_t the_ptid)
2246 {
2247 return true;
2248 }
2249
2250 /* Record log save-file format
2251 Version 1 (never released)
2252
2253 Header:
2254 4 bytes: magic number htonl(0x20090829).
2255 NOTE: be sure to change whenever this file format changes!
2256
2257 Records:
2258 record_full_end:
2259 1 byte: record type (record_full_end, see enum record_full_type).
2260 record_full_reg:
2261 1 byte: record type (record_full_reg, see enum record_full_type).
2262 8 bytes: register id (network byte order).
2263 MAX_REGISTER_SIZE bytes: register value.
2264 record_full_mem:
2265 1 byte: record type (record_full_mem, see enum record_full_type).
2266 8 bytes: memory length (network byte order).
2267 8 bytes: memory address (network byte order).
2268 n bytes: memory value (n == memory length).
2269
2270 Version 2
2271 4 bytes: magic number netorder32(0x20091016).
2272 NOTE: be sure to change whenever this file format changes!
2273
2274 Records:
2275 record_full_end:
2276 1 byte: record type (record_full_end, see enum record_full_type).
2277 4 bytes: signal
2278 4 bytes: instruction count
2279 record_full_reg:
2280 1 byte: record type (record_full_reg, see enum record_full_type).
2281 4 bytes: register id (network byte order).
2282 n bytes: register value (n == actual register size).
2283 (eg. 4 bytes for x86 general registers).
2284 record_full_mem:
2285 1 byte: record type (record_full_mem, see enum record_full_type).
2286 4 bytes: memory length (network byte order).
2287 8 bytes: memory address (network byte order).
2288 n bytes: memory value (n == memory length).
2289
2290 */
2291
2292 /* bfdcore_read -- read bytes from a core file section. */
2293
2294 static inline void
2295 bfdcore_read (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2296 {
2297 int ret = bfd_get_section_contents (obfd, osec, buf, *offset, len);
2298
2299 if (ret)
2300 *offset += len;
2301 else
2302 error (_("Failed to read %d bytes from core file %s ('%s')."),
2303 len, bfd_get_filename (obfd),
2304 bfd_errmsg (bfd_get_error ()));
2305 }
2306
2307 static inline uint64_t
2308 netorder64 (uint64_t input)
2309 {
2310 uint64_t ret;
2311
2312 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2313 BFD_ENDIAN_BIG, input);
2314 return ret;
2315 }
2316
2317 static inline uint32_t
2318 netorder32 (uint32_t input)
2319 {
2320 uint32_t ret;
2321
2322 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2323 BFD_ENDIAN_BIG, input);
2324 return ret;
2325 }
2326
2327 /* Restore the execution log from a core_bfd file. */
2328 static void
2329 record_full_restore (void)
2330 {
2331 uint32_t magic;
2332 struct record_full_entry *rec;
2333 asection *osec;
2334 uint32_t osec_size;
2335 int bfd_offset = 0;
2336 struct regcache *regcache;
2337
2338 /* We restore the execution log from the open core bfd,
2339 if there is one. */
2340 if (core_bfd == NULL)
2341 return;
2342
2343 /* "record_full_restore" can only be called when record list is empty. */
2344 gdb_assert (record_full_first.next == NULL);
2345
2346 if (record_debug)
2347 fprintf_unfiltered (gdb_stdlog, "Restoring recording from core file.\n");
2348
2349 /* Now need to find our special note section. */
2350 osec = bfd_get_section_by_name (core_bfd, "null0");
2351 if (record_debug)
2352 fprintf_unfiltered (gdb_stdlog, "Find precord section %s.\n",
2353 osec ? "succeeded" : "failed");
2354 if (osec == NULL)
2355 return;
2356 osec_size = bfd_section_size (core_bfd, osec);
2357 if (record_debug)
2358 fprintf_unfiltered (gdb_stdlog, "%s", bfd_section_name (core_bfd, osec));
2359
2360 /* Check the magic code. */
2361 bfdcore_read (core_bfd, osec, &magic, sizeof (magic), &bfd_offset);
2362 if (magic != RECORD_FULL_FILE_MAGIC)
2363 error (_("Version mis-match or file format error in core file %s."),
2364 bfd_get_filename (core_bfd));
2365 if (record_debug)
2366 fprintf_unfiltered (gdb_stdlog,
2367 " Reading 4-byte magic cookie "
2368 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2369 phex_nz (netorder32 (magic), 4));
2370
2371 /* Restore the entries in recfd into record_full_arch_list_head and
2372 record_full_arch_list_tail. */
2373 record_full_arch_list_head = NULL;
2374 record_full_arch_list_tail = NULL;
2375 record_full_insn_num = 0;
2376
2377 TRY
2378 {
2379 regcache = get_current_regcache ();
2380
2381 while (1)
2382 {
2383 uint8_t rectype;
2384 uint32_t regnum, len, signal, count;
2385 uint64_t addr;
2386
2387 /* We are finished when offset reaches osec_size. */
2388 if (bfd_offset >= osec_size)
2389 break;
2390 bfdcore_read (core_bfd, osec, &rectype, sizeof (rectype), &bfd_offset);
2391
2392 switch (rectype)
2393 {
2394 case record_full_reg: /* reg */
2395 /* Get register number to regnum. */
2396 bfdcore_read (core_bfd, osec, &regnum,
2397 sizeof (regnum), &bfd_offset);
2398 regnum = netorder32 (regnum);
2399
2400 rec = record_full_reg_alloc (regcache, regnum);
2401
2402 /* Get val. */
2403 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2404 rec->u.reg.len, &bfd_offset);
2405
2406 if (record_debug)
2407 fprintf_unfiltered (gdb_stdlog,
2408 " Reading register %d (1 "
2409 "plus %lu plus %d bytes)\n",
2410 rec->u.reg.num,
2411 (unsigned long) sizeof (regnum),
2412 rec->u.reg.len);
2413 break;
2414
2415 case record_full_mem: /* mem */
2416 /* Get len. */
2417 bfdcore_read (core_bfd, osec, &len,
2418 sizeof (len), &bfd_offset);
2419 len = netorder32 (len);
2420
2421 /* Get addr. */
2422 bfdcore_read (core_bfd, osec, &addr,
2423 sizeof (addr), &bfd_offset);
2424 addr = netorder64 (addr);
2425
2426 rec = record_full_mem_alloc (addr, len);
2427
2428 /* Get val. */
2429 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2430 rec->u.mem.len, &bfd_offset);
2431
2432 if (record_debug)
2433 fprintf_unfiltered (gdb_stdlog,
2434 " Reading memory %s (1 plus "
2435 "%lu plus %lu plus %d bytes)\n",
2436 paddress (get_current_arch (),
2437 rec->u.mem.addr),
2438 (unsigned long) sizeof (addr),
2439 (unsigned long) sizeof (len),
2440 rec->u.mem.len);
2441 break;
2442
2443 case record_full_end: /* end */
2444 rec = record_full_end_alloc ();
2445 record_full_insn_num ++;
2446
2447 /* Get signal value. */
2448 bfdcore_read (core_bfd, osec, &signal,
2449 sizeof (signal), &bfd_offset);
2450 signal = netorder32 (signal);
2451 rec->u.end.sigval = (enum gdb_signal) signal;
2452
2453 /* Get insn count. */
2454 bfdcore_read (core_bfd, osec, &count,
2455 sizeof (count), &bfd_offset);
2456 count = netorder32 (count);
2457 rec->u.end.insn_num = count;
2458 record_full_insn_count = count + 1;
2459 if (record_debug)
2460 fprintf_unfiltered (gdb_stdlog,
2461 " Reading record_full_end (1 + "
2462 "%lu + %lu bytes), offset == %s\n",
2463 (unsigned long) sizeof (signal),
2464 (unsigned long) sizeof (count),
2465 paddress (get_current_arch (),
2466 bfd_offset));
2467 break;
2468
2469 default:
2470 error (_("Bad entry type in core file %s."),
2471 bfd_get_filename (core_bfd));
2472 break;
2473 }
2474
2475 /* Add rec to record arch list. */
2476 record_full_arch_list_add (rec);
2477 }
2478 }
2479 CATCH (ex, RETURN_MASK_ALL)
2480 {
2481 record_full_list_release (record_full_arch_list_tail);
2482 throw_exception (ex);
2483 }
2484 END_CATCH
2485
2486 /* Add record_full_arch_list_head to the end of record list. */
2487 record_full_first.next = record_full_arch_list_head;
2488 record_full_arch_list_head->prev = &record_full_first;
2489 record_full_arch_list_tail->next = NULL;
2490 record_full_list = &record_full_first;
2491
2492 /* Update record_full_insn_max_num. */
2493 if (record_full_insn_num > record_full_insn_max_num)
2494 {
2495 record_full_insn_max_num = record_full_insn_num;
2496 warning (_("Auto increase record/replay buffer limit to %u."),
2497 record_full_insn_max_num);
2498 }
2499
2500 /* Succeeded. */
2501 printf_filtered (_("Restored records from core file %s.\n"),
2502 bfd_get_filename (core_bfd));
2503
2504 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2505 }
2506
2507 /* bfdcore_write -- write bytes into a core file section. */
2508
2509 static inline void
2510 bfdcore_write (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2511 {
2512 int ret = bfd_set_section_contents (obfd, osec, buf, *offset, len);
2513
2514 if (ret)
2515 *offset += len;
2516 else
2517 error (_("Failed to write %d bytes to core file %s ('%s')."),
2518 len, bfd_get_filename (obfd),
2519 bfd_errmsg (bfd_get_error ()));
2520 }
2521
2522 /* Restore the execution log from a file. We use a modified elf
2523 corefile format, with an extra section for our data. */
2524
2525 static void
2526 cmd_record_full_restore (const char *args, int from_tty)
2527 {
2528 core_file_command (args, from_tty);
2529 record_full_open (args, from_tty);
2530 }
2531
2532 /* Save the execution log to a file. We use a modified elf corefile
2533 format, with an extra section for our data. */
2534
2535 void
2536 record_full_base_target::save_record (const char *recfilename)
2537 {
2538 struct record_full_entry *cur_record_full_list;
2539 uint32_t magic;
2540 struct regcache *regcache;
2541 struct gdbarch *gdbarch;
2542 int save_size = 0;
2543 asection *osec = NULL;
2544 int bfd_offset = 0;
2545
2546 /* Open the save file. */
2547 if (record_debug)
2548 fprintf_unfiltered (gdb_stdlog, "Saving execution log to core file '%s'\n",
2549 recfilename);
2550
2551 /* Open the output file. */
2552 gdb_bfd_ref_ptr obfd (create_gcore_bfd (recfilename));
2553
2554 /* Arrange to remove the output file on failure. */
2555 gdb::unlinker unlink_file (recfilename);
2556
2557 /* Save the current record entry to "cur_record_full_list". */
2558 cur_record_full_list = record_full_list;
2559
2560 /* Get the values of regcache and gdbarch. */
2561 regcache = get_current_regcache ();
2562 gdbarch = regcache->arch ();
2563
2564 /* Disable the GDB operation record. */
2565 scoped_restore restore_operation_disable
2566 = record_full_gdb_operation_disable_set ();
2567
2568 /* Reverse execute to the begin of record list. */
2569 while (1)
2570 {
2571 /* Check for beginning and end of log. */
2572 if (record_full_list == &record_full_first)
2573 break;
2574
2575 record_full_exec_insn (regcache, gdbarch, record_full_list);
2576
2577 if (record_full_list->prev)
2578 record_full_list = record_full_list->prev;
2579 }
2580
2581 /* Compute the size needed for the extra bfd section. */
2582 save_size = 4; /* magic cookie */
2583 for (record_full_list = record_full_first.next; record_full_list;
2584 record_full_list = record_full_list->next)
2585 switch (record_full_list->type)
2586 {
2587 case record_full_end:
2588 save_size += 1 + 4 + 4;
2589 break;
2590 case record_full_reg:
2591 save_size += 1 + 4 + record_full_list->u.reg.len;
2592 break;
2593 case record_full_mem:
2594 save_size += 1 + 4 + 8 + record_full_list->u.mem.len;
2595 break;
2596 }
2597
2598 /* Make the new bfd section. */
2599 osec = bfd_make_section_anyway_with_flags (obfd.get (), "precord",
2600 SEC_HAS_CONTENTS
2601 | SEC_READONLY);
2602 if (osec == NULL)
2603 error (_("Failed to create 'precord' section for corefile %s: %s"),
2604 recfilename,
2605 bfd_errmsg (bfd_get_error ()));
2606 bfd_set_section_size (obfd.get (), osec, save_size);
2607 bfd_set_section_vma (obfd.get (), osec, 0);
2608 bfd_set_section_alignment (obfd.get (), osec, 0);
2609 bfd_section_lma (obfd.get (), osec) = 0;
2610
2611 /* Save corefile state. */
2612 write_gcore_file (obfd.get ());
2613
2614 /* Write out the record log. */
2615 /* Write the magic code. */
2616 magic = RECORD_FULL_FILE_MAGIC;
2617 if (record_debug)
2618 fprintf_unfiltered (gdb_stdlog,
2619 " Writing 4-byte magic cookie "
2620 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2621 phex_nz (magic, 4));
2622 bfdcore_write (obfd.get (), osec, &magic, sizeof (magic), &bfd_offset);
2623
2624 /* Save the entries to recfd and forward execute to the end of
2625 record list. */
2626 record_full_list = &record_full_first;
2627 while (1)
2628 {
2629 /* Save entry. */
2630 if (record_full_list != &record_full_first)
2631 {
2632 uint8_t type;
2633 uint32_t regnum, len, signal, count;
2634 uint64_t addr;
2635
2636 type = record_full_list->type;
2637 bfdcore_write (obfd.get (), osec, &type, sizeof (type), &bfd_offset);
2638
2639 switch (record_full_list->type)
2640 {
2641 case record_full_reg: /* reg */
2642 if (record_debug)
2643 fprintf_unfiltered (gdb_stdlog,
2644 " Writing register %d (1 "
2645 "plus %lu plus %d bytes)\n",
2646 record_full_list->u.reg.num,
2647 (unsigned long) sizeof (regnum),
2648 record_full_list->u.reg.len);
2649
2650 /* Write regnum. */
2651 regnum = netorder32 (record_full_list->u.reg.num);
2652 bfdcore_write (obfd.get (), osec, &regnum,
2653 sizeof (regnum), &bfd_offset);
2654
2655 /* Write regval. */
2656 bfdcore_write (obfd.get (), osec,
2657 record_full_get_loc (record_full_list),
2658 record_full_list->u.reg.len, &bfd_offset);
2659 break;
2660
2661 case record_full_mem: /* mem */
2662 if (record_debug)
2663 fprintf_unfiltered (gdb_stdlog,
2664 " Writing memory %s (1 plus "
2665 "%lu plus %lu plus %d bytes)\n",
2666 paddress (gdbarch,
2667 record_full_list->u.mem.addr),
2668 (unsigned long) sizeof (addr),
2669 (unsigned long) sizeof (len),
2670 record_full_list->u.mem.len);
2671
2672 /* Write memlen. */
2673 len = netorder32 (record_full_list->u.mem.len);
2674 bfdcore_write (obfd.get (), osec, &len, sizeof (len),
2675 &bfd_offset);
2676
2677 /* Write memaddr. */
2678 addr = netorder64 (record_full_list->u.mem.addr);
2679 bfdcore_write (obfd.get (), osec, &addr,
2680 sizeof (addr), &bfd_offset);
2681
2682 /* Write memval. */
2683 bfdcore_write (obfd.get (), osec,
2684 record_full_get_loc (record_full_list),
2685 record_full_list->u.mem.len, &bfd_offset);
2686 break;
2687
2688 case record_full_end:
2689 if (record_debug)
2690 fprintf_unfiltered (gdb_stdlog,
2691 " Writing record_full_end (1 + "
2692 "%lu + %lu bytes)\n",
2693 (unsigned long) sizeof (signal),
2694 (unsigned long) sizeof (count));
2695 /* Write signal value. */
2696 signal = netorder32 (record_full_list->u.end.sigval);
2697 bfdcore_write (obfd.get (), osec, &signal,
2698 sizeof (signal), &bfd_offset);
2699
2700 /* Write insn count. */
2701 count = netorder32 (record_full_list->u.end.insn_num);
2702 bfdcore_write (obfd.get (), osec, &count,
2703 sizeof (count), &bfd_offset);
2704 break;
2705 }
2706 }
2707
2708 /* Execute entry. */
2709 record_full_exec_insn (regcache, gdbarch, record_full_list);
2710
2711 if (record_full_list->next)
2712 record_full_list = record_full_list->next;
2713 else
2714 break;
2715 }
2716
2717 /* Reverse execute to cur_record_full_list. */
2718 while (1)
2719 {
2720 /* Check for beginning and end of log. */
2721 if (record_full_list == cur_record_full_list)
2722 break;
2723
2724 record_full_exec_insn (regcache, gdbarch, record_full_list);
2725
2726 if (record_full_list->prev)
2727 record_full_list = record_full_list->prev;
2728 }
2729
2730 unlink_file.keep ();
2731
2732 /* Succeeded. */
2733 printf_filtered (_("Saved core file %s with execution log.\n"),
2734 recfilename);
2735 }
2736
2737 /* record_full_goto_insn -- rewind the record log (forward or backward,
2738 depending on DIR) to the given entry, changing the program state
2739 correspondingly. */
2740
2741 static void
2742 record_full_goto_insn (struct record_full_entry *entry,
2743 enum exec_direction_kind dir)
2744 {
2745 scoped_restore restore_operation_disable
2746 = record_full_gdb_operation_disable_set ();
2747 struct regcache *regcache = get_current_regcache ();
2748 struct gdbarch *gdbarch = regcache->arch ();
2749
2750 /* Assume everything is valid: we will hit the entry,
2751 and we will not hit the end of the recording. */
2752
2753 if (dir == EXEC_FORWARD)
2754 record_full_list = record_full_list->next;
2755
2756 do
2757 {
2758 record_full_exec_insn (regcache, gdbarch, record_full_list);
2759 if (dir == EXEC_REVERSE)
2760 record_full_list = record_full_list->prev;
2761 else
2762 record_full_list = record_full_list->next;
2763 } while (record_full_list != entry);
2764 }
2765
2766 /* Alias for "target record-full". */
2767
2768 static void
2769 cmd_record_full_start (const char *args, int from_tty)
2770 {
2771 execute_command ("target record-full", from_tty);
2772 }
2773
2774 static void
2775 set_record_full_insn_max_num (const char *args, int from_tty,
2776 struct cmd_list_element *c)
2777 {
2778 if (record_full_insn_num > record_full_insn_max_num)
2779 {
2780 /* Count down record_full_insn_num while releasing records from list. */
2781 while (record_full_insn_num > record_full_insn_max_num)
2782 {
2783 record_full_list_release_first ();
2784 record_full_insn_num--;
2785 }
2786 }
2787 }
2788
2789 /* The "set record full" command. */
2790
2791 static void
2792 set_record_full_command (const char *args, int from_tty)
2793 {
2794 printf_unfiltered (_("\"set record full\" must be followed "
2795 "by an appropriate subcommand.\n"));
2796 help_list (set_record_full_cmdlist, "set record full ", all_commands,
2797 gdb_stdout);
2798 }
2799
2800 /* The "show record full" command. */
2801
2802 static void
2803 show_record_full_command (const char *args, int from_tty)
2804 {
2805 cmd_show_list (show_record_full_cmdlist, from_tty, "");
2806 }
2807
2808 void
2809 _initialize_record_full (void)
2810 {
2811 struct cmd_list_element *c;
2812
2813 /* Init record_full_first. */
2814 record_full_first.prev = NULL;
2815 record_full_first.next = NULL;
2816 record_full_first.type = record_full_end;
2817
2818 add_target (record_full_target_info, record_full_open);
2819 add_deprecated_target_alias (record_full_target_info, "record");
2820 add_target (record_full_core_target_info, record_full_open);
2821
2822 add_prefix_cmd ("full", class_obscure, cmd_record_full_start,
2823 _("Start full execution recording."), &record_full_cmdlist,
2824 "record full ", 0, &record_cmdlist);
2825
2826 c = add_cmd ("restore", class_obscure, cmd_record_full_restore,
2827 _("Restore the execution log from a file.\n\
2828 Argument is filename. File must be created with 'record save'."),
2829 &record_full_cmdlist);
2830 set_cmd_completer (c, filename_completer);
2831
2832 /* Deprecate the old version without "full" prefix. */
2833 c = add_alias_cmd ("restore", "full restore", class_obscure, 1,
2834 &record_cmdlist);
2835 set_cmd_completer (c, filename_completer);
2836 deprecate_cmd (c, "record full restore");
2837
2838 add_prefix_cmd ("full", class_support, set_record_full_command,
2839 _("Set record options"), &set_record_full_cmdlist,
2840 "set record full ", 0, &set_record_cmdlist);
2841
2842 add_prefix_cmd ("full", class_support, show_record_full_command,
2843 _("Show record options"), &show_record_full_cmdlist,
2844 "show record full ", 0, &show_record_cmdlist);
2845
2846 /* Record instructions number limit command. */
2847 add_setshow_boolean_cmd ("stop-at-limit", no_class,
2848 &record_full_stop_at_limit, _("\
2849 Set whether record/replay stops when record/replay buffer becomes full."), _("\
2850 Show whether record/replay stops when record/replay buffer becomes full."),
2851 _("Default is ON.\n\
2852 When ON, if the record/replay buffer becomes full, ask user what to do.\n\
2853 When OFF, if the record/replay buffer becomes full,\n\
2854 delete the oldest recorded instruction to make room for each new one."),
2855 NULL, NULL,
2856 &set_record_full_cmdlist, &show_record_full_cmdlist);
2857
2858 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2859 &set_record_cmdlist);
2860 deprecate_cmd (c, "set record full stop-at-limit");
2861
2862 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2863 &show_record_cmdlist);
2864 deprecate_cmd (c, "show record full stop-at-limit");
2865
2866 add_setshow_uinteger_cmd ("insn-number-max", no_class,
2867 &record_full_insn_max_num,
2868 _("Set record/replay buffer limit."),
2869 _("Show record/replay buffer limit."), _("\
2870 Set the maximum number of instructions to be stored in the\n\
2871 record/replay buffer. A value of either \"unlimited\" or zero means no\n\
2872 limit. Default is 200000."),
2873 set_record_full_insn_max_num,
2874 NULL, &set_record_full_cmdlist,
2875 &show_record_full_cmdlist);
2876
2877 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2878 &set_record_cmdlist);
2879 deprecate_cmd (c, "set record full insn-number-max");
2880
2881 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2882 &show_record_cmdlist);
2883 deprecate_cmd (c, "show record full insn-number-max");
2884
2885 add_setshow_boolean_cmd ("memory-query", no_class,
2886 &record_full_memory_query, _("\
2887 Set whether query if PREC cannot record memory change of next instruction."),
2888 _("\
2889 Show whether query if PREC cannot record memory change of next instruction."),
2890 _("\
2891 Default is OFF.\n\
2892 When ON, query if PREC cannot record memory change of next instruction."),
2893 NULL, NULL,
2894 &set_record_full_cmdlist,
2895 &show_record_full_cmdlist);
2896
2897 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2898 &set_record_cmdlist);
2899 deprecate_cmd (c, "set record full memory-query");
2900
2901 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2902 &show_record_cmdlist);
2903 deprecate_cmd (c, "show record full memory-query");
2904 }
This page took 0.104492 seconds and 5 git commands to generate.