2009-10-19 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdbarch.h"
25 #include "gdbcmd.h"
26 #include "regcache.h"
27 #include "reggroups.h"
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "gdbcmd.h" /* For maintenanceprintlist. */
31 #include "observer.h"
32
33 /*
34 * DATA STRUCTURE
35 *
36 * Here is the actual register cache.
37 */
38
39 /* Per-architecture object describing the layout of a register cache.
40 Computed once when the architecture is created */
41
42 struct gdbarch_data *regcache_descr_handle;
43
44 struct regcache_descr
45 {
46 /* The architecture this descriptor belongs to. */
47 struct gdbarch *gdbarch;
48
49 /* The raw register cache. Each raw (or hard) register is supplied
50 by the target interface. The raw cache should not contain
51 redundant information - if the PC is constructed from two
52 registers then those registers and not the PC lives in the raw
53 cache. */
54 int nr_raw_registers;
55 long sizeof_raw_registers;
56 long sizeof_raw_register_valid_p;
57
58 /* The cooked register space. Each cooked register in the range
59 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
60 register. The remaining [NR_RAW_REGISTERS
61 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
62 both raw registers and memory by the architecture methods
63 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
64 int nr_cooked_registers;
65 long sizeof_cooked_registers;
66 long sizeof_cooked_register_valid_p;
67
68 /* Offset and size (in 8 bit bytes), of reach register in the
69 register cache. All registers (including those in the range
70 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an offset.
71 Assigning all registers an offset makes it possible to keep
72 legacy code, such as that found in read_register_bytes() and
73 write_register_bytes() working. */
74 long *register_offset;
75 long *sizeof_register;
76
77 /* Cached table containing the type of each register. */
78 struct type **register_type;
79 };
80
81 static void *
82 init_regcache_descr (struct gdbarch *gdbarch)
83 {
84 int i;
85 struct regcache_descr *descr;
86 gdb_assert (gdbarch != NULL);
87
88 /* Create an initial, zero filled, table. */
89 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
90 descr->gdbarch = gdbarch;
91
92 /* Total size of the register space. The raw registers are mapped
93 directly onto the raw register cache while the pseudo's are
94 either mapped onto raw-registers or memory. */
95 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
96 + gdbarch_num_pseudo_regs (gdbarch);
97 descr->sizeof_cooked_register_valid_p = gdbarch_num_regs (gdbarch)
98 + gdbarch_num_pseudo_regs
99 (gdbarch);
100
101 /* Fill in a table of register types. */
102 descr->register_type
103 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, struct type *);
104 for (i = 0; i < descr->nr_cooked_registers; i++)
105 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
106
107 /* Construct a strictly RAW register cache. Don't allow pseudo's
108 into the register cache. */
109 descr->nr_raw_registers = gdbarch_num_regs (gdbarch);
110
111 /* FIXME: cagney/2002-08-13: Overallocate the register_valid_p
112 array. This pretects GDB from erant code that accesses elements
113 of the global register_valid_p[] array in the range
114 [gdbarch_num_regs .. gdbarch_num_regs + gdbarch_num_pseudo_regs). */
115 descr->sizeof_raw_register_valid_p = descr->sizeof_cooked_register_valid_p;
116
117 /* Lay out the register cache.
118
119 NOTE: cagney/2002-05-22: Only register_type() is used when
120 constructing the register cache. It is assumed that the
121 register's raw size, virtual size and type length are all the
122 same. */
123
124 {
125 long offset = 0;
126 descr->sizeof_register
127 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
128 descr->register_offset
129 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
130 for (i = 0; i < descr->nr_cooked_registers; i++)
131 {
132 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
133 descr->register_offset[i] = offset;
134 offset += descr->sizeof_register[i];
135 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
136 }
137 /* Set the real size of the register cache buffer. */
138 descr->sizeof_cooked_registers = offset;
139 }
140
141 /* FIXME: cagney/2002-05-22: Should only need to allocate space for
142 the raw registers. Unfortunately some code still accesses the
143 register array directly using the global registers[]. Until that
144 code has been purged, play safe and over allocating the register
145 buffer. Ulgh! */
146 descr->sizeof_raw_registers = descr->sizeof_cooked_registers;
147
148 return descr;
149 }
150
151 static struct regcache_descr *
152 regcache_descr (struct gdbarch *gdbarch)
153 {
154 return gdbarch_data (gdbarch, regcache_descr_handle);
155 }
156
157 /* Utility functions returning useful register attributes stored in
158 the regcache descr. */
159
160 struct type *
161 register_type (struct gdbarch *gdbarch, int regnum)
162 {
163 struct regcache_descr *descr = regcache_descr (gdbarch);
164 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
165 return descr->register_type[regnum];
166 }
167
168 /* Utility functions returning useful register attributes stored in
169 the regcache descr. */
170
171 int
172 register_size (struct gdbarch *gdbarch, int regnum)
173 {
174 struct regcache_descr *descr = regcache_descr (gdbarch);
175 int size;
176 gdb_assert (regnum >= 0
177 && regnum < (gdbarch_num_regs (gdbarch)
178 + gdbarch_num_pseudo_regs (gdbarch)));
179 size = descr->sizeof_register[regnum];
180 return size;
181 }
182
183 /* The register cache for storing raw register values. */
184
185 struct regcache
186 {
187 struct regcache_descr *descr;
188
189 /* The address space of this register cache (for registers where it
190 makes sense, like PC or SP). */
191 struct address_space *aspace;
192
193 /* The register buffers. A read-only register cache can hold the
194 full [0 .. gdbarch_num_regs + gdbarch_num_pseudo_regs) while a read/write
195 register cache can only hold [0 .. gdbarch_num_regs). */
196 gdb_byte *registers;
197 /* Register cache status:
198 register_valid_p[REG] == 0 if REG value is not in the cache
199 > 0 if REG value is in the cache
200 < 0 if REG value is permanently unavailable */
201 signed char *register_valid_p;
202 /* Is this a read-only cache? A read-only cache is used for saving
203 the target's register state (e.g, across an inferior function
204 call or just before forcing a function return). A read-only
205 cache can only be updated via the methods regcache_dup() and
206 regcache_cpy(). The actual contents are determined by the
207 reggroup_save and reggroup_restore methods. */
208 int readonly_p;
209 /* If this is a read-write cache, which thread's registers is
210 it connected to? */
211 ptid_t ptid;
212 };
213
214 struct regcache *
215 regcache_xmalloc (struct gdbarch *gdbarch)
216 {
217 struct regcache_descr *descr;
218 struct regcache *regcache;
219 gdb_assert (gdbarch != NULL);
220 descr = regcache_descr (gdbarch);
221 regcache = XMALLOC (struct regcache);
222 regcache->descr = descr;
223 regcache->registers
224 = XCALLOC (descr->sizeof_raw_registers, gdb_byte);
225 regcache->register_valid_p
226 = XCALLOC (descr->sizeof_raw_register_valid_p, gdb_byte);
227 regcache->aspace = NULL;
228 regcache->readonly_p = 1;
229 regcache->ptid = minus_one_ptid;
230 return regcache;
231 }
232
233 void
234 regcache_xfree (struct regcache *regcache)
235 {
236 if (regcache == NULL)
237 return;
238 xfree (regcache->registers);
239 xfree (regcache->register_valid_p);
240 xfree (regcache);
241 }
242
243 static void
244 do_regcache_xfree (void *data)
245 {
246 regcache_xfree (data);
247 }
248
249 struct cleanup *
250 make_cleanup_regcache_xfree (struct regcache *regcache)
251 {
252 return make_cleanup (do_regcache_xfree, regcache);
253 }
254
255 /* Return REGCACHE's architecture. */
256
257 struct gdbarch *
258 get_regcache_arch (const struct regcache *regcache)
259 {
260 return regcache->descr->gdbarch;
261 }
262
263 struct address_space *
264 get_regcache_aspace (const struct regcache *regcache)
265 {
266 return regcache->aspace;
267 }
268
269 /* Return a pointer to register REGNUM's buffer cache. */
270
271 static gdb_byte *
272 register_buffer (const struct regcache *regcache, int regnum)
273 {
274 return regcache->registers + regcache->descr->register_offset[regnum];
275 }
276
277 void
278 regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read,
279 void *src)
280 {
281 struct gdbarch *gdbarch = dst->descr->gdbarch;
282 gdb_byte buf[MAX_REGISTER_SIZE];
283 int regnum;
284 /* The DST should be `read-only', if it wasn't then the save would
285 end up trying to write the register values back out to the
286 target. */
287 gdb_assert (dst->readonly_p);
288 /* Clear the dest. */
289 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers);
290 memset (dst->register_valid_p, 0, dst->descr->sizeof_cooked_register_valid_p);
291 /* Copy over any registers (identified by their membership in the
292 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
293 gdbarch_num_pseudo_regs) range is checked since some architectures need
294 to save/restore `cooked' registers that live in memory. */
295 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
296 {
297 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
298 {
299 int valid = cooked_read (src, regnum, buf);
300 if (valid)
301 {
302 memcpy (register_buffer (dst, regnum), buf,
303 register_size (gdbarch, regnum));
304 dst->register_valid_p[regnum] = 1;
305 }
306 }
307 }
308 }
309
310 void
311 regcache_restore (struct regcache *dst,
312 regcache_cooked_read_ftype *cooked_read,
313 void *cooked_read_context)
314 {
315 struct gdbarch *gdbarch = dst->descr->gdbarch;
316 gdb_byte buf[MAX_REGISTER_SIZE];
317 int regnum;
318 /* The dst had better not be read-only. If it is, the `restore'
319 doesn't make much sense. */
320 gdb_assert (!dst->readonly_p);
321 /* Copy over any registers, being careful to only restore those that
322 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
323 + gdbarch_num_pseudo_regs) range is checked since some architectures need
324 to save/restore `cooked' registers that live in memory. */
325 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
326 {
327 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
328 {
329 int valid = cooked_read (cooked_read_context, regnum, buf);
330 if (valid)
331 regcache_cooked_write (dst, regnum, buf);
332 }
333 }
334 }
335
336 static int
337 do_cooked_read (void *src, int regnum, gdb_byte *buf)
338 {
339 struct regcache *regcache = src;
340 if (!regcache->register_valid_p[regnum] && regcache->readonly_p)
341 /* Don't even think about fetching a register from a read-only
342 cache when the register isn't yet valid. There isn't a target
343 from which the register value can be fetched. */
344 return 0;
345 regcache_cooked_read (regcache, regnum, buf);
346 return 1;
347 }
348
349
350 void
351 regcache_cpy (struct regcache *dst, struct regcache *src)
352 {
353 int i;
354 gdb_byte *buf;
355
356 gdb_assert (src != NULL && dst != NULL);
357 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
358 gdb_assert (src != dst);
359 gdb_assert (src->readonly_p || dst->readonly_p);
360
361 dst->aspace = src->aspace;
362
363 if (!src->readonly_p)
364 regcache_save (dst, do_cooked_read, src);
365 else if (!dst->readonly_p)
366 regcache_restore (dst, do_cooked_read, src);
367 else
368 regcache_cpy_no_passthrough (dst, src);
369 }
370
371 void
372 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
373 {
374 int i;
375 gdb_assert (src != NULL && dst != NULL);
376 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
377 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
378 move of data into the current regcache. Doing this would be
379 silly - it would mean that valid_p would be completely invalid. */
380 gdb_assert (dst->readonly_p);
381
382 dst->aspace = src->aspace;
383 memcpy (dst->registers, src->registers, dst->descr->sizeof_raw_registers);
384 memcpy (dst->register_valid_p, src->register_valid_p,
385 dst->descr->sizeof_raw_register_valid_p);
386 }
387
388 struct regcache *
389 regcache_dup (struct regcache *src)
390 {
391 struct regcache *newbuf;
392 newbuf = regcache_xmalloc (src->descr->gdbarch);
393 regcache_cpy (newbuf, src);
394 return newbuf;
395 }
396
397 struct regcache *
398 regcache_dup_no_passthrough (struct regcache *src)
399 {
400 struct regcache *newbuf;
401 newbuf = regcache_xmalloc (src->descr->gdbarch);
402 regcache_cpy_no_passthrough (newbuf, src);
403 return newbuf;
404 }
405
406 int
407 regcache_valid_p (const struct regcache *regcache, int regnum)
408 {
409 gdb_assert (regcache != NULL);
410 gdb_assert (regnum >= 0);
411 if (regcache->readonly_p)
412 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
413 else
414 gdb_assert (regnum < regcache->descr->nr_raw_registers);
415
416 return regcache->register_valid_p[regnum];
417 }
418
419 void
420 regcache_invalidate (struct regcache *regcache, int regnum)
421 {
422 gdb_assert (regcache != NULL);
423 gdb_assert (regnum >= 0);
424 gdb_assert (!regcache->readonly_p);
425 gdb_assert (regnum < regcache->descr->nr_raw_registers);
426 regcache->register_valid_p[regnum] = 0;
427 }
428
429
430 /* Global structure containing the current regcache. */
431
432 /* NOTE: this is a write-through cache. There is no "dirty" bit for
433 recording if the register values have been changed (eg. by the
434 user). Therefore all registers must be written back to the
435 target when appropriate. */
436
437 struct regcache_list
438 {
439 struct regcache *regcache;
440 struct regcache_list *next;
441 };
442
443 static struct regcache_list *current_regcache;
444
445 struct regcache *
446 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
447 {
448 struct regcache_list *list;
449 struct regcache *new_regcache;
450
451 for (list = current_regcache; list; list = list->next)
452 if (ptid_equal (list->regcache->ptid, ptid)
453 && get_regcache_arch (list->regcache) == gdbarch)
454 return list->regcache;
455
456 new_regcache = regcache_xmalloc (gdbarch);
457 new_regcache->readonly_p = 0;
458 new_regcache->ptid = ptid;
459 new_regcache->aspace = target_thread_address_space (ptid);
460 gdb_assert (new_regcache->aspace != NULL);
461
462 list = xmalloc (sizeof (struct regcache_list));
463 list->regcache = new_regcache;
464 list->next = current_regcache;
465 current_regcache = list;
466
467 return new_regcache;
468 }
469
470 static ptid_t current_thread_ptid;
471 static struct gdbarch *current_thread_arch;
472
473 struct regcache *
474 get_thread_regcache (ptid_t ptid)
475 {
476 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
477 {
478 current_thread_ptid = ptid;
479 current_thread_arch = target_thread_architecture (ptid);
480 }
481
482 return get_thread_arch_regcache (ptid, current_thread_arch);
483 }
484
485 struct regcache *
486 get_current_regcache (void)
487 {
488 return get_thread_regcache (inferior_ptid);
489 }
490
491
492 /* Observer for the target_changed event. */
493
494 static void
495 regcache_observer_target_changed (struct target_ops *target)
496 {
497 registers_changed ();
498 }
499
500 /* Update global variables old ptids to hold NEW_PTID if they were
501 holding OLD_PTID. */
502 static void
503 regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
504 {
505 struct regcache_list *list;
506
507 for (list = current_regcache; list; list = list->next)
508 if (ptid_equal (list->regcache->ptid, old_ptid))
509 list->regcache->ptid = new_ptid;
510 }
511
512 /* Low level examining and depositing of registers.
513
514 The caller is responsible for making sure that the inferior is
515 stopped before calling the fetching routines, or it will get
516 garbage. (a change from GDB version 3, in which the caller got the
517 value from the last stop). */
518
519 /* REGISTERS_CHANGED ()
520
521 Indicate that registers may have changed, so invalidate the cache. */
522
523 void
524 registers_changed (void)
525 {
526 struct regcache_list *list, *next;
527
528 for (list = current_regcache; list; list = next)
529 {
530 next = list->next;
531 regcache_xfree (list->regcache);
532 xfree (list);
533 }
534
535 current_regcache = NULL;
536
537 current_thread_ptid = null_ptid;
538 current_thread_arch = NULL;
539
540 /* Need to forget about any frames we have cached, too. */
541 reinit_frame_cache ();
542
543 /* Force cleanup of any alloca areas if using C alloca instead of
544 a builtin alloca. This particular call is used to clean up
545 areas allocated by low level target code which may build up
546 during lengthy interactions between gdb and the target before
547 gdb gives control to the user (ie watchpoints). */
548 alloca (0);
549 }
550
551
552 void
553 regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf)
554 {
555 gdb_assert (regcache != NULL && buf != NULL);
556 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
557 /* Make certain that the register cache is up-to-date with respect
558 to the current thread. This switching shouldn't be necessary
559 only there is still only one target side register cache. Sigh!
560 On the bright side, at least there is a regcache object. */
561 if (!regcache->readonly_p)
562 {
563 if (!regcache_valid_p (regcache, regnum))
564 {
565 struct cleanup *old_chain = save_inferior_ptid ();
566 inferior_ptid = regcache->ptid;
567 target_fetch_registers (regcache, regnum);
568 do_cleanups (old_chain);
569 }
570 #if 0
571 /* FIXME: cagney/2004-08-07: At present a number of targets
572 forget (or didn't know that they needed) to set this leading to
573 panics. Also is the problem that targets need to indicate
574 that a register is in one of the possible states: valid,
575 undefined, unknown. The last of which isn't yet
576 possible. */
577 gdb_assert (regcache_valid_p (regcache, regnum));
578 #endif
579 }
580 /* Copy the value directly into the register cache. */
581 memcpy (buf, register_buffer (regcache, regnum),
582 regcache->descr->sizeof_register[regnum]);
583 }
584
585 void
586 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
587 {
588 gdb_byte *buf;
589 gdb_assert (regcache != NULL);
590 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
591 buf = alloca (regcache->descr->sizeof_register[regnum]);
592 regcache_raw_read (regcache, regnum, buf);
593 (*val) = extract_signed_integer
594 (buf, regcache->descr->sizeof_register[regnum],
595 gdbarch_byte_order (regcache->descr->gdbarch));
596 }
597
598 void
599 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
600 ULONGEST *val)
601 {
602 gdb_byte *buf;
603 gdb_assert (regcache != NULL);
604 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
605 buf = alloca (regcache->descr->sizeof_register[regnum]);
606 regcache_raw_read (regcache, regnum, buf);
607 (*val) = extract_unsigned_integer
608 (buf, regcache->descr->sizeof_register[regnum],
609 gdbarch_byte_order (regcache->descr->gdbarch));
610 }
611
612 void
613 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
614 {
615 void *buf;
616 gdb_assert (regcache != NULL);
617 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
618 buf = alloca (regcache->descr->sizeof_register[regnum]);
619 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
620 gdbarch_byte_order (regcache->descr->gdbarch), val);
621 regcache_raw_write (regcache, regnum, buf);
622 }
623
624 void
625 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
626 ULONGEST val)
627 {
628 void *buf;
629 gdb_assert (regcache != NULL);
630 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
631 buf = alloca (regcache->descr->sizeof_register[regnum]);
632 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
633 gdbarch_byte_order (regcache->descr->gdbarch), val);
634 regcache_raw_write (regcache, regnum, buf);
635 }
636
637 void
638 regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf)
639 {
640 gdb_assert (regnum >= 0);
641 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
642 if (regnum < regcache->descr->nr_raw_registers)
643 regcache_raw_read (regcache, regnum, buf);
644 else if (regcache->readonly_p
645 && regnum < regcache->descr->nr_cooked_registers
646 && regcache->register_valid_p[regnum])
647 /* Read-only register cache, perhaps the cooked value was cached? */
648 memcpy (buf, register_buffer (regcache, regnum),
649 regcache->descr->sizeof_register[regnum]);
650 else
651 gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache,
652 regnum, buf);
653 }
654
655 void
656 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
657 LONGEST *val)
658 {
659 gdb_byte *buf;
660 gdb_assert (regcache != NULL);
661 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
662 buf = alloca (regcache->descr->sizeof_register[regnum]);
663 regcache_cooked_read (regcache, regnum, buf);
664 (*val) = extract_signed_integer
665 (buf, regcache->descr->sizeof_register[regnum],
666 gdbarch_byte_order (regcache->descr->gdbarch));
667 }
668
669 void
670 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
671 ULONGEST *val)
672 {
673 gdb_byte *buf;
674 gdb_assert (regcache != NULL);
675 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
676 buf = alloca (regcache->descr->sizeof_register[regnum]);
677 regcache_cooked_read (regcache, regnum, buf);
678 (*val) = extract_unsigned_integer
679 (buf, regcache->descr->sizeof_register[regnum],
680 gdbarch_byte_order (regcache->descr->gdbarch));
681 }
682
683 void
684 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
685 LONGEST val)
686 {
687 void *buf;
688 gdb_assert (regcache != NULL);
689 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
690 buf = alloca (regcache->descr->sizeof_register[regnum]);
691 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
692 gdbarch_byte_order (regcache->descr->gdbarch), val);
693 regcache_cooked_write (regcache, regnum, buf);
694 }
695
696 void
697 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
698 ULONGEST val)
699 {
700 void *buf;
701 gdb_assert (regcache != NULL);
702 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
703 buf = alloca (regcache->descr->sizeof_register[regnum]);
704 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
705 gdbarch_byte_order (regcache->descr->gdbarch), val);
706 regcache_cooked_write (regcache, regnum, buf);
707 }
708
709 void
710 regcache_raw_write (struct regcache *regcache, int regnum,
711 const gdb_byte *buf)
712 {
713 struct cleanup *old_chain;
714
715 gdb_assert (regcache != NULL && buf != NULL);
716 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
717 gdb_assert (!regcache->readonly_p);
718
719 /* On the sparc, writing %g0 is a no-op, so we don't even want to
720 change the registers array if something writes to this register. */
721 if (gdbarch_cannot_store_register (get_regcache_arch (regcache), regnum))
722 return;
723
724 /* If we have a valid copy of the register, and new value == old
725 value, then don't bother doing the actual store. */
726 if (regcache_valid_p (regcache, regnum)
727 && (memcmp (register_buffer (regcache, regnum), buf,
728 regcache->descr->sizeof_register[regnum]) == 0))
729 return;
730
731 old_chain = save_inferior_ptid ();
732 inferior_ptid = regcache->ptid;
733
734 target_prepare_to_store (regcache);
735 memcpy (register_buffer (regcache, regnum), buf,
736 regcache->descr->sizeof_register[regnum]);
737 regcache->register_valid_p[regnum] = 1;
738 target_store_registers (regcache, regnum);
739
740 do_cleanups (old_chain);
741 }
742
743 void
744 regcache_cooked_write (struct regcache *regcache, int regnum,
745 const gdb_byte *buf)
746 {
747 gdb_assert (regnum >= 0);
748 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
749 if (regnum < regcache->descr->nr_raw_registers)
750 regcache_raw_write (regcache, regnum, buf);
751 else
752 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache,
753 regnum, buf);
754 }
755
756 /* Perform a partial register transfer using a read, modify, write
757 operation. */
758
759 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
760 void *buf);
761 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
762 const void *buf);
763
764 static void
765 regcache_xfer_part (struct regcache *regcache, int regnum,
766 int offset, int len, void *in, const void *out,
767 void (*read) (struct regcache *regcache, int regnum,
768 gdb_byte *buf),
769 void (*write) (struct regcache *regcache, int regnum,
770 const gdb_byte *buf))
771 {
772 struct regcache_descr *descr = regcache->descr;
773 gdb_byte reg[MAX_REGISTER_SIZE];
774 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]);
775 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]);
776 /* Something to do? */
777 if (offset + len == 0)
778 return;
779 /* Read (when needed) ... */
780 if (in != NULL
781 || offset > 0
782 || offset + len < descr->sizeof_register[regnum])
783 {
784 gdb_assert (read != NULL);
785 read (regcache, regnum, reg);
786 }
787 /* ... modify ... */
788 if (in != NULL)
789 memcpy (in, reg + offset, len);
790 if (out != NULL)
791 memcpy (reg + offset, out, len);
792 /* ... write (when needed). */
793 if (out != NULL)
794 {
795 gdb_assert (write != NULL);
796 write (regcache, regnum, reg);
797 }
798 }
799
800 void
801 regcache_raw_read_part (struct regcache *regcache, int regnum,
802 int offset, int len, gdb_byte *buf)
803 {
804 struct regcache_descr *descr = regcache->descr;
805 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
806 regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
807 regcache_raw_read, regcache_raw_write);
808 }
809
810 void
811 regcache_raw_write_part (struct regcache *regcache, int regnum,
812 int offset, int len, const gdb_byte *buf)
813 {
814 struct regcache_descr *descr = regcache->descr;
815 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
816 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
817 regcache_raw_read, regcache_raw_write);
818 }
819
820 void
821 regcache_cooked_read_part (struct regcache *regcache, int regnum,
822 int offset, int len, gdb_byte *buf)
823 {
824 struct regcache_descr *descr = regcache->descr;
825 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
826 regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
827 regcache_cooked_read, regcache_cooked_write);
828 }
829
830 void
831 regcache_cooked_write_part (struct regcache *regcache, int regnum,
832 int offset, int len, const gdb_byte *buf)
833 {
834 struct regcache_descr *descr = regcache->descr;
835 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
836 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
837 regcache_cooked_read, regcache_cooked_write);
838 }
839
840 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
841
842 void
843 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
844 {
845 void *regbuf;
846 size_t size;
847
848 gdb_assert (regcache != NULL);
849 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
850 gdb_assert (!regcache->readonly_p);
851
852 regbuf = register_buffer (regcache, regnum);
853 size = regcache->descr->sizeof_register[regnum];
854
855 if (buf)
856 memcpy (regbuf, buf, size);
857 else
858 memset (regbuf, 0, size);
859
860 /* Mark the register as cached. */
861 regcache->register_valid_p[regnum] = 1;
862 }
863
864 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
865
866 void
867 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
868 {
869 const void *regbuf;
870 size_t size;
871
872 gdb_assert (regcache != NULL && buf != NULL);
873 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
874
875 regbuf = register_buffer (regcache, regnum);
876 size = regcache->descr->sizeof_register[regnum];
877 memcpy (buf, regbuf, size);
878 }
879
880
881 /* Special handling for register PC. */
882
883 CORE_ADDR
884 regcache_read_pc (struct regcache *regcache)
885 {
886 struct gdbarch *gdbarch = get_regcache_arch (regcache);
887
888 CORE_ADDR pc_val;
889
890 if (gdbarch_read_pc_p (gdbarch))
891 pc_val = gdbarch_read_pc (gdbarch, regcache);
892 /* Else use per-frame method on get_current_frame. */
893 else if (gdbarch_pc_regnum (gdbarch) >= 0)
894 {
895 ULONGEST raw_val;
896 regcache_cooked_read_unsigned (regcache,
897 gdbarch_pc_regnum (gdbarch),
898 &raw_val);
899 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
900 }
901 else
902 internal_error (__FILE__, __LINE__,
903 _("regcache_read_pc: Unable to find PC"));
904 return pc_val;
905 }
906
907 void
908 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
909 {
910 struct gdbarch *gdbarch = get_regcache_arch (regcache);
911
912 if (gdbarch_write_pc_p (gdbarch))
913 gdbarch_write_pc (gdbarch, regcache, pc);
914 else if (gdbarch_pc_regnum (gdbarch) >= 0)
915 regcache_cooked_write_unsigned (regcache,
916 gdbarch_pc_regnum (gdbarch), pc);
917 else
918 internal_error (__FILE__, __LINE__,
919 _("regcache_write_pc: Unable to update PC"));
920
921 /* Writing the PC (for instance, from "load") invalidates the
922 current frame. */
923 reinit_frame_cache ();
924 }
925
926
927 static void
928 reg_flush_command (char *command, int from_tty)
929 {
930 /* Force-flush the register cache. */
931 registers_changed ();
932 if (from_tty)
933 printf_filtered (_("Register cache flushed.\n"));
934 }
935
936 static void
937 dump_endian_bytes (struct ui_file *file, enum bfd_endian endian,
938 const unsigned char *buf, long len)
939 {
940 int i;
941 switch (endian)
942 {
943 case BFD_ENDIAN_BIG:
944 for (i = 0; i < len; i++)
945 fprintf_unfiltered (file, "%02x", buf[i]);
946 break;
947 case BFD_ENDIAN_LITTLE:
948 for (i = len - 1; i >= 0; i--)
949 fprintf_unfiltered (file, "%02x", buf[i]);
950 break;
951 default:
952 internal_error (__FILE__, __LINE__, _("Bad switch"));
953 }
954 }
955
956 enum regcache_dump_what
957 {
958 regcache_dump_none, regcache_dump_raw, regcache_dump_cooked, regcache_dump_groups
959 };
960
961 static void
962 regcache_dump (struct regcache *regcache, struct ui_file *file,
963 enum regcache_dump_what what_to_dump)
964 {
965 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
966 struct gdbarch *gdbarch = regcache->descr->gdbarch;
967 int regnum;
968 int footnote_nr = 0;
969 int footnote_register_size = 0;
970 int footnote_register_offset = 0;
971 int footnote_register_type_name_null = 0;
972 long register_offset = 0;
973 unsigned char buf[MAX_REGISTER_SIZE];
974
975 #if 0
976 fprintf_unfiltered (file, "nr_raw_registers %d\n",
977 regcache->descr->nr_raw_registers);
978 fprintf_unfiltered (file, "nr_cooked_registers %d\n",
979 regcache->descr->nr_cooked_registers);
980 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n",
981 regcache->descr->sizeof_raw_registers);
982 fprintf_unfiltered (file, "sizeof_raw_register_valid_p %ld\n",
983 regcache->descr->sizeof_raw_register_valid_p);
984 fprintf_unfiltered (file, "gdbarch_num_regs %d\n",
985 gdbarch_num_regs (gdbarch));
986 fprintf_unfiltered (file, "gdbarch_num_pseudo_regs %d\n",
987 gdbarch_num_pseudo_regs (gdbarch));
988 #endif
989
990 gdb_assert (regcache->descr->nr_cooked_registers
991 == (gdbarch_num_regs (gdbarch)
992 + gdbarch_num_pseudo_regs (gdbarch)));
993
994 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++)
995 {
996 /* Name. */
997 if (regnum < 0)
998 fprintf_unfiltered (file, " %-10s", "Name");
999 else
1000 {
1001 const char *p = gdbarch_register_name (gdbarch, regnum);
1002 if (p == NULL)
1003 p = "";
1004 else if (p[0] == '\0')
1005 p = "''";
1006 fprintf_unfiltered (file, " %-10s", p);
1007 }
1008
1009 /* Number. */
1010 if (regnum < 0)
1011 fprintf_unfiltered (file, " %4s", "Nr");
1012 else
1013 fprintf_unfiltered (file, " %4d", regnum);
1014
1015 /* Relative number. */
1016 if (regnum < 0)
1017 fprintf_unfiltered (file, " %4s", "Rel");
1018 else if (regnum < gdbarch_num_regs (gdbarch))
1019 fprintf_unfiltered (file, " %4d", regnum);
1020 else
1021 fprintf_unfiltered (file, " %4d",
1022 (regnum - gdbarch_num_regs (gdbarch)));
1023
1024 /* Offset. */
1025 if (regnum < 0)
1026 fprintf_unfiltered (file, " %6s ", "Offset");
1027 else
1028 {
1029 fprintf_unfiltered (file, " %6ld",
1030 regcache->descr->register_offset[regnum]);
1031 if (register_offset != regcache->descr->register_offset[regnum]
1032 || (regnum > 0
1033 && (regcache->descr->register_offset[regnum]
1034 != (regcache->descr->register_offset[regnum - 1]
1035 + regcache->descr->sizeof_register[regnum - 1])))
1036 )
1037 {
1038 if (!footnote_register_offset)
1039 footnote_register_offset = ++footnote_nr;
1040 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1041 }
1042 else
1043 fprintf_unfiltered (file, " ");
1044 register_offset = (regcache->descr->register_offset[regnum]
1045 + regcache->descr->sizeof_register[regnum]);
1046 }
1047
1048 /* Size. */
1049 if (regnum < 0)
1050 fprintf_unfiltered (file, " %5s ", "Size");
1051 else
1052 fprintf_unfiltered (file, " %5ld",
1053 regcache->descr->sizeof_register[regnum]);
1054
1055 /* Type. */
1056 {
1057 const char *t;
1058 if (regnum < 0)
1059 t = "Type";
1060 else
1061 {
1062 static const char blt[] = "builtin_type";
1063 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum));
1064 if (t == NULL)
1065 {
1066 char *n;
1067 if (!footnote_register_type_name_null)
1068 footnote_register_type_name_null = ++footnote_nr;
1069 n = xstrprintf ("*%d", footnote_register_type_name_null);
1070 make_cleanup (xfree, n);
1071 t = n;
1072 }
1073 /* Chop a leading builtin_type. */
1074 if (strncmp (t, blt, strlen (blt)) == 0)
1075 t += strlen (blt);
1076 }
1077 fprintf_unfiltered (file, " %-15s", t);
1078 }
1079
1080 /* Leading space always present. */
1081 fprintf_unfiltered (file, " ");
1082
1083 /* Value, raw. */
1084 if (what_to_dump == regcache_dump_raw)
1085 {
1086 if (regnum < 0)
1087 fprintf_unfiltered (file, "Raw value");
1088 else if (regnum >= regcache->descr->nr_raw_registers)
1089 fprintf_unfiltered (file, "<cooked>");
1090 else if (!regcache_valid_p (regcache, regnum))
1091 fprintf_unfiltered (file, "<invalid>");
1092 else
1093 {
1094 regcache_raw_read (regcache, regnum, buf);
1095 fprintf_unfiltered (file, "0x");
1096 dump_endian_bytes (file,
1097 gdbarch_byte_order (gdbarch), buf,
1098 regcache->descr->sizeof_register[regnum]);
1099 }
1100 }
1101
1102 /* Value, cooked. */
1103 if (what_to_dump == regcache_dump_cooked)
1104 {
1105 if (regnum < 0)
1106 fprintf_unfiltered (file, "Cooked value");
1107 else
1108 {
1109 regcache_cooked_read (regcache, regnum, buf);
1110 fprintf_unfiltered (file, "0x");
1111 dump_endian_bytes (file,
1112 gdbarch_byte_order (gdbarch), buf,
1113 regcache->descr->sizeof_register[regnum]);
1114 }
1115 }
1116
1117 /* Group members. */
1118 if (what_to_dump == regcache_dump_groups)
1119 {
1120 if (regnum < 0)
1121 fprintf_unfiltered (file, "Groups");
1122 else
1123 {
1124 const char *sep = "";
1125 struct reggroup *group;
1126 for (group = reggroup_next (gdbarch, NULL);
1127 group != NULL;
1128 group = reggroup_next (gdbarch, group))
1129 {
1130 if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
1131 {
1132 fprintf_unfiltered (file, "%s%s", sep, reggroup_name (group));
1133 sep = ",";
1134 }
1135 }
1136 }
1137 }
1138
1139 fprintf_unfiltered (file, "\n");
1140 }
1141
1142 if (footnote_register_size)
1143 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
1144 footnote_register_size);
1145 if (footnote_register_offset)
1146 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1147 footnote_register_offset);
1148 if (footnote_register_type_name_null)
1149 fprintf_unfiltered (file,
1150 "*%d: Register type's name NULL.\n",
1151 footnote_register_type_name_null);
1152 do_cleanups (cleanups);
1153 }
1154
1155 static void
1156 regcache_print (char *args, enum regcache_dump_what what_to_dump)
1157 {
1158 if (args == NULL)
1159 regcache_dump (get_current_regcache (), gdb_stdout, what_to_dump);
1160 else
1161 {
1162 struct cleanup *cleanups;
1163 struct ui_file *file = gdb_fopen (args, "w");
1164 if (file == NULL)
1165 perror_with_name (_("maintenance print architecture"));
1166 cleanups = make_cleanup_ui_file_delete (file);
1167 regcache_dump (get_current_regcache (), file, what_to_dump);
1168 do_cleanups (cleanups);
1169 }
1170 }
1171
1172 static void
1173 maintenance_print_registers (char *args, int from_tty)
1174 {
1175 regcache_print (args, regcache_dump_none);
1176 }
1177
1178 static void
1179 maintenance_print_raw_registers (char *args, int from_tty)
1180 {
1181 regcache_print (args, regcache_dump_raw);
1182 }
1183
1184 static void
1185 maintenance_print_cooked_registers (char *args, int from_tty)
1186 {
1187 regcache_print (args, regcache_dump_cooked);
1188 }
1189
1190 static void
1191 maintenance_print_register_groups (char *args, int from_tty)
1192 {
1193 regcache_print (args, regcache_dump_groups);
1194 }
1195
1196 extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */
1197
1198 void
1199 _initialize_regcache (void)
1200 {
1201 regcache_descr_handle = gdbarch_data_register_post_init (init_regcache_descr);
1202
1203 observer_attach_target_changed (regcache_observer_target_changed);
1204 observer_attach_thread_ptid_changed (regcache_thread_ptid_changed);
1205
1206 add_com ("flushregs", class_maintenance, reg_flush_command,
1207 _("Force gdb to flush its register cache (maintainer command)"));
1208
1209 add_cmd ("registers", class_maintenance, maintenance_print_registers, _("\
1210 Print the internal register configuration.\n\
1211 Takes an optional file parameter."), &maintenanceprintlist);
1212 add_cmd ("raw-registers", class_maintenance,
1213 maintenance_print_raw_registers, _("\
1214 Print the internal register configuration including raw values.\n\
1215 Takes an optional file parameter."), &maintenanceprintlist);
1216 add_cmd ("cooked-registers", class_maintenance,
1217 maintenance_print_cooked_registers, _("\
1218 Print the internal register configuration including cooked values.\n\
1219 Takes an optional file parameter."), &maintenanceprintlist);
1220 add_cmd ("register-groups", class_maintenance,
1221 maintenance_print_register_groups, _("\
1222 Print the internal register configuration including each register's group.\n\
1223 Takes an optional file parameter."),
1224 &maintenanceprintlist);
1225
1226 }
This page took 0.0697 seconds and 4 git commands to generate.