8d47fdac532b2f6e055115d4030b76cdf8876a14
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbarch.h"
24 #include "gdbcmd.h"
25 #include "regcache.h"
26 #include "reggroups.h"
27 #include "observable.h"
28 #include "regset.h"
29 #include <forward_list>
30
31 /*
32 * DATA STRUCTURE
33 *
34 * Here is the actual register cache.
35 */
36
37 /* Per-architecture object describing the layout of a register cache.
38 Computed once when the architecture is created. */
39
40 struct gdbarch_data *regcache_descr_handle;
41
42 struct regcache_descr
43 {
44 /* The architecture this descriptor belongs to. */
45 struct gdbarch *gdbarch;
46
47 /* The raw register cache. Each raw (or hard) register is supplied
48 by the target interface. The raw cache should not contain
49 redundant information - if the PC is constructed from two
50 registers then those registers and not the PC lives in the raw
51 cache. */
52 long sizeof_raw_registers;
53
54 /* The cooked register space. Each cooked register in the range
55 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
56 register. The remaining [NR_RAW_REGISTERS
57 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
58 both raw registers and memory by the architecture methods
59 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
60 int nr_cooked_registers;
61 long sizeof_cooked_registers;
62
63 /* Offset and size (in 8 bit bytes), of each register in the
64 register cache. All registers (including those in the range
65 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
66 offset. */
67 long *register_offset;
68 long *sizeof_register;
69
70 /* Cached table containing the type of each register. */
71 struct type **register_type;
72 };
73
74 static void *
75 init_regcache_descr (struct gdbarch *gdbarch)
76 {
77 int i;
78 struct regcache_descr *descr;
79 gdb_assert (gdbarch != NULL);
80
81 /* Create an initial, zero filled, table. */
82 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
83 descr->gdbarch = gdbarch;
84
85 /* Total size of the register space. The raw registers are mapped
86 directly onto the raw register cache while the pseudo's are
87 either mapped onto raw-registers or memory. */
88 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
89 + gdbarch_num_pseudo_regs (gdbarch);
90
91 /* Fill in a table of register types. */
92 descr->register_type
93 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
94 struct type *);
95 for (i = 0; i < descr->nr_cooked_registers; i++)
96 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
97
98 /* Construct a strictly RAW register cache. Don't allow pseudo's
99 into the register cache. */
100
101 /* Lay out the register cache.
102
103 NOTE: cagney/2002-05-22: Only register_type() is used when
104 constructing the register cache. It is assumed that the
105 register's raw size, virtual size and type length are all the
106 same. */
107
108 {
109 long offset = 0;
110
111 descr->sizeof_register
112 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
113 descr->register_offset
114 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
115 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
116 {
117 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
118 descr->register_offset[i] = offset;
119 offset += descr->sizeof_register[i];
120 }
121 /* Set the real size of the raw register cache buffer. */
122 descr->sizeof_raw_registers = offset;
123
124 for (; i < descr->nr_cooked_registers; i++)
125 {
126 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
127 descr->register_offset[i] = offset;
128 offset += descr->sizeof_register[i];
129 }
130 /* Set the real size of the readonly register cache buffer. */
131 descr->sizeof_cooked_registers = offset;
132 }
133
134 return descr;
135 }
136
137 static struct regcache_descr *
138 regcache_descr (struct gdbarch *gdbarch)
139 {
140 return (struct regcache_descr *) gdbarch_data (gdbarch,
141 regcache_descr_handle);
142 }
143
144 /* Utility functions returning useful register attributes stored in
145 the regcache descr. */
146
147 struct type *
148 register_type (struct gdbarch *gdbarch, int regnum)
149 {
150 struct regcache_descr *descr = regcache_descr (gdbarch);
151
152 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
153 return descr->register_type[regnum];
154 }
155
156 /* Utility functions returning useful register attributes stored in
157 the regcache descr. */
158
159 int
160 register_size (struct gdbarch *gdbarch, int regnum)
161 {
162 struct regcache_descr *descr = regcache_descr (gdbarch);
163 int size;
164
165 gdb_assert (regnum >= 0
166 && regnum < (gdbarch_num_regs (gdbarch)
167 + gdbarch_num_pseudo_regs (gdbarch)));
168 size = descr->sizeof_register[regnum];
169 return size;
170 }
171
172 /* See common/common-regcache.h. */
173
174 int
175 regcache_register_size (const struct regcache *regcache, int n)
176 {
177 return register_size (regcache->arch (), n);
178 }
179
180 reg_buffer::reg_buffer (gdbarch *gdbarch, bool has_pseudo)
181 : m_has_pseudo (has_pseudo)
182 {
183 gdb_assert (gdbarch != NULL);
184 m_descr = regcache_descr (gdbarch);
185
186 if (has_pseudo)
187 {
188 m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_cooked_registers);
189 m_register_status = XCNEWVEC (signed char,
190 m_descr->nr_cooked_registers);
191 }
192 else
193 {
194 m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_raw_registers);
195 m_register_status = XCNEWVEC (signed char, gdbarch_num_regs (gdbarch));
196 }
197 }
198
199 regcache::regcache (gdbarch *gdbarch, const address_space *aspace_)
200 /* The register buffers. A read/write register cache can only hold
201 [0 .. gdbarch_num_regs). */
202 : detached_regcache (gdbarch, false), m_aspace (aspace_)
203 {
204 m_ptid = minus_one_ptid;
205 }
206
207 static enum register_status
208 do_cooked_read (void *src, int regnum, gdb_byte *buf)
209 {
210 struct regcache *regcache = (struct regcache *) src;
211
212 return regcache->cooked_read (regnum, buf);
213 }
214
215 readonly_detached_regcache::readonly_detached_regcache (const regcache &src)
216 : readonly_detached_regcache (src.arch (), do_cooked_read, (void *) &src)
217 {
218 }
219
220 gdbarch *
221 reg_buffer::arch () const
222 {
223 return m_descr->gdbarch;
224 }
225
226 /* Cleanup class for invalidating a register. */
227
228 class regcache_invalidator
229 {
230 public:
231
232 regcache_invalidator (struct regcache *regcache, int regnum)
233 : m_regcache (regcache),
234 m_regnum (regnum)
235 {
236 }
237
238 ~regcache_invalidator ()
239 {
240 if (m_regcache != nullptr)
241 m_regcache->invalidate (m_regnum);
242 }
243
244 DISABLE_COPY_AND_ASSIGN (regcache_invalidator);
245
246 void release ()
247 {
248 m_regcache = nullptr;
249 }
250
251 private:
252
253 struct regcache *m_regcache;
254 int m_regnum;
255 };
256
257 /* Return a pointer to register REGNUM's buffer cache. */
258
259 gdb_byte *
260 reg_buffer::register_buffer (int regnum) const
261 {
262 return m_registers + m_descr->register_offset[regnum];
263 }
264
265 void
266 reg_buffer::save (regcache_cooked_read_ftype *cooked_read,
267 void *src)
268 {
269 struct gdbarch *gdbarch = m_descr->gdbarch;
270 int regnum;
271
272 /* It should have pseudo registers. */
273 gdb_assert (m_has_pseudo);
274 /* Clear the dest. */
275 memset (m_registers, 0, m_descr->sizeof_cooked_registers);
276 memset (m_register_status, 0, m_descr->nr_cooked_registers);
277 /* Copy over any registers (identified by their membership in the
278 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
279 gdbarch_num_pseudo_regs) range is checked since some architectures need
280 to save/restore `cooked' registers that live in memory. */
281 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
282 {
283 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
284 {
285 gdb_byte *dst_buf = register_buffer (regnum);
286 enum register_status status = cooked_read (src, regnum, dst_buf);
287
288 gdb_assert (status != REG_UNKNOWN);
289
290 if (status != REG_VALID)
291 memset (dst_buf, 0, register_size (gdbarch, regnum));
292
293 m_register_status[regnum] = status;
294 }
295 }
296 }
297
298 void
299 regcache::restore (readonly_detached_regcache *src)
300 {
301 struct gdbarch *gdbarch = m_descr->gdbarch;
302 int regnum;
303
304 gdb_assert (src != NULL);
305 gdb_assert (src->m_has_pseudo);
306
307 gdb_assert (gdbarch == src->arch ());
308
309 /* Copy over any registers, being careful to only restore those that
310 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
311 + gdbarch_num_pseudo_regs) range is checked since some architectures need
312 to save/restore `cooked' registers that live in memory. */
313 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
314 {
315 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
316 {
317 if (src->m_register_status[regnum] == REG_VALID)
318 cooked_write (regnum, src->register_buffer (regnum));
319 }
320 }
321 }
322
323 enum register_status
324 reg_buffer::get_register_status (int regnum) const
325 {
326 assert_regnum (regnum);
327
328 return (enum register_status) m_register_status[regnum];
329 }
330
331 void
332 detached_regcache::invalidate (int regnum)
333 {
334 assert_regnum (regnum);
335 m_register_status[regnum] = REG_UNKNOWN;
336 }
337
338 void
339 reg_buffer::assert_regnum (int regnum) const
340 {
341 gdb_assert (regnum >= 0);
342 if (m_has_pseudo)
343 gdb_assert (regnum < m_descr->nr_cooked_registers);
344 else
345 gdb_assert (regnum < gdbarch_num_regs (arch ()));
346 }
347
348 /* Global structure containing the current regcache. */
349
350 /* NOTE: this is a write-through cache. There is no "dirty" bit for
351 recording if the register values have been changed (eg. by the
352 user). Therefore all registers must be written back to the
353 target when appropriate. */
354 std::forward_list<regcache *> regcache::current_regcache;
355
356 struct regcache *
357 get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
358 struct address_space *aspace)
359 {
360 for (const auto &regcache : regcache::current_regcache)
361 if (ptid_equal (regcache->ptid (), ptid) && regcache->arch () == gdbarch)
362 return regcache;
363
364 regcache *new_regcache = new regcache (gdbarch, aspace);
365
366 regcache::current_regcache.push_front (new_regcache);
367 new_regcache->set_ptid (ptid);
368
369 return new_regcache;
370 }
371
372 struct regcache *
373 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
374 {
375 address_space *aspace = target_thread_address_space (ptid);
376
377 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
378 }
379
380 static ptid_t current_thread_ptid;
381 static struct gdbarch *current_thread_arch;
382
383 struct regcache *
384 get_thread_regcache (ptid_t ptid)
385 {
386 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
387 {
388 current_thread_ptid = ptid;
389 current_thread_arch = target_thread_architecture (ptid);
390 }
391
392 return get_thread_arch_regcache (ptid, current_thread_arch);
393 }
394
395 struct regcache *
396 get_current_regcache (void)
397 {
398 return get_thread_regcache (inferior_ptid);
399 }
400
401 /* See common/common-regcache.h. */
402
403 struct regcache *
404 get_thread_regcache_for_ptid (ptid_t ptid)
405 {
406 return get_thread_regcache (ptid);
407 }
408
409 /* Observer for the target_changed event. */
410
411 static void
412 regcache_observer_target_changed (struct target_ops *target)
413 {
414 registers_changed ();
415 }
416
417 /* Update global variables old ptids to hold NEW_PTID if they were
418 holding OLD_PTID. */
419 void
420 regcache::regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
421 {
422 for (auto &regcache : regcache::current_regcache)
423 {
424 if (ptid_equal (regcache->ptid (), old_ptid))
425 regcache->set_ptid (new_ptid);
426 }
427 }
428
429 /* Low level examining and depositing of registers.
430
431 The caller is responsible for making sure that the inferior is
432 stopped before calling the fetching routines, or it will get
433 garbage. (a change from GDB version 3, in which the caller got the
434 value from the last stop). */
435
436 /* REGISTERS_CHANGED ()
437
438 Indicate that registers may have changed, so invalidate the cache. */
439
440 void
441 registers_changed_ptid (ptid_t ptid)
442 {
443 for (auto oit = regcache::current_regcache.before_begin (),
444 it = std::next (oit);
445 it != regcache::current_regcache.end ();
446 )
447 {
448 if (ptid_match ((*it)->ptid (), ptid))
449 {
450 delete *it;
451 it = regcache::current_regcache.erase_after (oit);
452 }
453 else
454 oit = it++;
455 }
456
457 if (ptid_match (current_thread_ptid, ptid))
458 {
459 current_thread_ptid = null_ptid;
460 current_thread_arch = NULL;
461 }
462
463 if (ptid_match (inferior_ptid, ptid))
464 {
465 /* We just deleted the regcache of the current thread. Need to
466 forget about any frames we have cached, too. */
467 reinit_frame_cache ();
468 }
469 }
470
471 void
472 registers_changed (void)
473 {
474 registers_changed_ptid (minus_one_ptid);
475
476 /* Force cleanup of any alloca areas if using C alloca instead of
477 a builtin alloca. This particular call is used to clean up
478 areas allocated by low level target code which may build up
479 during lengthy interactions between gdb and the target before
480 gdb gives control to the user (ie watchpoints). */
481 alloca (0);
482 }
483
484 void
485 regcache::raw_update (int regnum)
486 {
487 assert_regnum (regnum);
488
489 /* Make certain that the register cache is up-to-date with respect
490 to the current thread. This switching shouldn't be necessary
491 only there is still only one target side register cache. Sigh!
492 On the bright side, at least there is a regcache object. */
493
494 if (get_register_status (regnum) == REG_UNKNOWN)
495 {
496 target_fetch_registers (this, regnum);
497
498 /* A number of targets can't access the whole set of raw
499 registers (because the debug API provides no means to get at
500 them). */
501 if (m_register_status[regnum] == REG_UNKNOWN)
502 m_register_status[regnum] = REG_UNAVAILABLE;
503 }
504 }
505
506 enum register_status
507 readable_regcache::raw_read (int regnum, gdb_byte *buf)
508 {
509 gdb_assert (buf != NULL);
510 raw_update (regnum);
511
512 if (m_register_status[regnum] != REG_VALID)
513 memset (buf, 0, m_descr->sizeof_register[regnum]);
514 else
515 memcpy (buf, register_buffer (regnum),
516 m_descr->sizeof_register[regnum]);
517
518 return (enum register_status) m_register_status[regnum];
519 }
520
521 enum register_status
522 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
523 {
524 gdb_assert (regcache != NULL);
525 return regcache->raw_read (regnum, val);
526 }
527
528 template<typename T, typename>
529 enum register_status
530 readable_regcache::raw_read (int regnum, T *val)
531 {
532 gdb_byte *buf;
533 enum register_status status;
534
535 assert_regnum (regnum);
536 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
537 status = raw_read (regnum, buf);
538 if (status == REG_VALID)
539 *val = extract_integer<T> (buf,
540 m_descr->sizeof_register[regnum],
541 gdbarch_byte_order (m_descr->gdbarch));
542 else
543 *val = 0;
544 return status;
545 }
546
547 enum register_status
548 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
549 ULONGEST *val)
550 {
551 gdb_assert (regcache != NULL);
552 return regcache->raw_read (regnum, val);
553 }
554
555 void
556 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
557 {
558 gdb_assert (regcache != NULL);
559 regcache->raw_write (regnum, val);
560 }
561
562 template<typename T, typename>
563 void
564 regcache::raw_write (int regnum, T val)
565 {
566 gdb_byte *buf;
567
568 assert_regnum (regnum);
569 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
570 store_integer (buf, m_descr->sizeof_register[regnum],
571 gdbarch_byte_order (m_descr->gdbarch), val);
572 raw_write (regnum, buf);
573 }
574
575 void
576 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
577 ULONGEST val)
578 {
579 gdb_assert (regcache != NULL);
580 regcache->raw_write (regnum, val);
581 }
582
583 LONGEST
584 regcache_raw_get_signed (struct regcache *regcache, int regnum)
585 {
586 LONGEST value;
587 enum register_status status;
588
589 status = regcache_raw_read_signed (regcache, regnum, &value);
590 if (status == REG_UNAVAILABLE)
591 throw_error (NOT_AVAILABLE_ERROR,
592 _("Register %d is not available"), regnum);
593 return value;
594 }
595
596 enum register_status
597 readable_regcache::cooked_read (int regnum, gdb_byte *buf)
598 {
599 gdb_assert (regnum >= 0);
600 gdb_assert (regnum < m_descr->nr_cooked_registers);
601 if (regnum < num_raw_registers ())
602 return raw_read (regnum, buf);
603 else if (m_has_pseudo
604 && m_register_status[regnum] != REG_UNKNOWN)
605 {
606 if (m_register_status[regnum] == REG_VALID)
607 memcpy (buf, register_buffer (regnum),
608 m_descr->sizeof_register[regnum]);
609 else
610 memset (buf, 0, m_descr->sizeof_register[regnum]);
611
612 return (enum register_status) m_register_status[regnum];
613 }
614 else if (gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
615 {
616 struct value *mark, *computed;
617 enum register_status result = REG_VALID;
618
619 mark = value_mark ();
620
621 computed = gdbarch_pseudo_register_read_value (m_descr->gdbarch,
622 this, regnum);
623 if (value_entirely_available (computed))
624 memcpy (buf, value_contents_raw (computed),
625 m_descr->sizeof_register[regnum]);
626 else
627 {
628 memset (buf, 0, m_descr->sizeof_register[regnum]);
629 result = REG_UNAVAILABLE;
630 }
631
632 value_free_to_mark (mark);
633
634 return result;
635 }
636 else
637 return gdbarch_pseudo_register_read (m_descr->gdbarch, this,
638 regnum, buf);
639 }
640
641 struct value *
642 readable_regcache::cooked_read_value (int regnum)
643 {
644 gdb_assert (regnum >= 0);
645 gdb_assert (regnum < m_descr->nr_cooked_registers);
646
647 if (regnum < num_raw_registers ()
648 || (m_has_pseudo && m_register_status[regnum] != REG_UNKNOWN)
649 || !gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
650 {
651 struct value *result;
652
653 result = allocate_value (register_type (m_descr->gdbarch, regnum));
654 VALUE_LVAL (result) = lval_register;
655 VALUE_REGNUM (result) = regnum;
656
657 /* It is more efficient in general to do this delegation in this
658 direction than in the other one, even though the value-based
659 API is preferred. */
660 if (cooked_read (regnum,
661 value_contents_raw (result)) == REG_UNAVAILABLE)
662 mark_value_bytes_unavailable (result, 0,
663 TYPE_LENGTH (value_type (result)));
664
665 return result;
666 }
667 else
668 return gdbarch_pseudo_register_read_value (m_descr->gdbarch,
669 this, regnum);
670 }
671
672 enum register_status
673 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
674 LONGEST *val)
675 {
676 gdb_assert (regcache != NULL);
677 return regcache->cooked_read (regnum, val);
678 }
679
680 template<typename T, typename>
681 enum register_status
682 readable_regcache::cooked_read (int regnum, T *val)
683 {
684 enum register_status status;
685 gdb_byte *buf;
686
687 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
688 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
689 status = cooked_read (regnum, buf);
690 if (status == REG_VALID)
691 *val = extract_integer<T> (buf, m_descr->sizeof_register[regnum],
692 gdbarch_byte_order (m_descr->gdbarch));
693 else
694 *val = 0;
695 return status;
696 }
697
698 enum register_status
699 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
700 ULONGEST *val)
701 {
702 gdb_assert (regcache != NULL);
703 return regcache->cooked_read (regnum, val);
704 }
705
706 void
707 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
708 LONGEST val)
709 {
710 gdb_assert (regcache != NULL);
711 regcache->cooked_write (regnum, val);
712 }
713
714 template<typename T, typename>
715 void
716 regcache::cooked_write (int regnum, T val)
717 {
718 gdb_byte *buf;
719
720 gdb_assert (regnum >=0 && regnum < m_descr->nr_cooked_registers);
721 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
722 store_integer (buf, m_descr->sizeof_register[regnum],
723 gdbarch_byte_order (m_descr->gdbarch), val);
724 cooked_write (regnum, buf);
725 }
726
727 void
728 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
729 ULONGEST val)
730 {
731 gdb_assert (regcache != NULL);
732 regcache->cooked_write (regnum, val);
733 }
734
735 void
736 regcache::raw_write (int regnum, const gdb_byte *buf)
737 {
738
739 gdb_assert (buf != NULL);
740 assert_regnum (regnum);
741
742 /* On the sparc, writing %g0 is a no-op, so we don't even want to
743 change the registers array if something writes to this register. */
744 if (gdbarch_cannot_store_register (arch (), regnum))
745 return;
746
747 /* If we have a valid copy of the register, and new value == old
748 value, then don't bother doing the actual store. */
749 if (get_register_status (regnum) == REG_VALID
750 && (memcmp (register_buffer (regnum), buf,
751 m_descr->sizeof_register[regnum]) == 0))
752 return;
753
754 target_prepare_to_store (this);
755 raw_supply (regnum, buf);
756
757 /* Invalidate the register after it is written, in case of a
758 failure. */
759 regcache_invalidator invalidator (this, regnum);
760
761 target_store_registers (this, regnum);
762
763 /* The target did not throw an error so we can discard invalidating
764 the register. */
765 invalidator.release ();
766 }
767
768 void
769 regcache::cooked_write (int regnum, const gdb_byte *buf)
770 {
771 gdb_assert (regnum >= 0);
772 gdb_assert (regnum < m_descr->nr_cooked_registers);
773 if (regnum < num_raw_registers ())
774 raw_write (regnum, buf);
775 else
776 gdbarch_pseudo_register_write (m_descr->gdbarch, this,
777 regnum, buf);
778 }
779
780 /* Perform a partial register transfer using a read, modify, write
781 operation. */
782
783 enum register_status
784 readable_regcache::read_part (int regnum, int offset, int len, void *in,
785 bool is_raw)
786 {
787 struct gdbarch *gdbarch = arch ();
788 gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
789
790 gdb_assert (in != NULL);
791 gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]);
792 gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]);
793 /* Something to do? */
794 if (offset + len == 0)
795 return REG_VALID;
796 /* Read (when needed) ... */
797 enum register_status status;
798
799 if (is_raw)
800 status = raw_read (regnum, reg);
801 else
802 status = cooked_read (regnum, reg);
803 if (status != REG_VALID)
804 return status;
805
806 /* ... modify ... */
807 memcpy (in, reg + offset, len);
808
809 return REG_VALID;
810 }
811
812 enum register_status
813 regcache::write_part (int regnum, int offset, int len,
814 const void *out, bool is_raw)
815 {
816 struct gdbarch *gdbarch = arch ();
817 gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
818
819 gdb_assert (out != NULL);
820 gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]);
821 gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]);
822 /* Something to do? */
823 if (offset + len == 0)
824 return REG_VALID;
825 /* Read (when needed) ... */
826 if (offset > 0
827 || offset + len < m_descr->sizeof_register[regnum])
828 {
829 enum register_status status;
830
831 if (is_raw)
832 status = raw_read (regnum, reg);
833 else
834 status = cooked_read (regnum, reg);
835 if (status != REG_VALID)
836 return status;
837 }
838
839 memcpy (reg + offset, out, len);
840 /* ... write (when needed). */
841 if (is_raw)
842 raw_write (regnum, reg);
843 else
844 cooked_write (regnum, reg);
845
846 return REG_VALID;
847 }
848
849 enum register_status
850 readable_regcache::raw_read_part (int regnum, int offset, int len, gdb_byte *buf)
851 {
852 assert_regnum (regnum);
853 return read_part (regnum, offset, len, buf, true);
854 }
855
856 /* See regcache.h. */
857
858 void
859 regcache::raw_write_part (int regnum, int offset, int len,
860 const gdb_byte *buf)
861 {
862 assert_regnum (regnum);
863 write_part (regnum, offset, len, buf, true);
864 }
865
866 enum register_status
867 readable_regcache::cooked_read_part (int regnum, int offset, int len,
868 gdb_byte *buf)
869 {
870 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
871 return read_part (regnum, offset, len, buf, false);
872 }
873
874 void
875 regcache::cooked_write_part (int regnum, int offset, int len,
876 const gdb_byte *buf)
877 {
878 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
879 write_part (regnum, offset, len, buf, false);
880 }
881
882 void
883 detached_regcache::raw_supply (int regnum, const void *buf)
884 {
885 void *regbuf;
886 size_t size;
887
888 assert_regnum (regnum);
889
890 regbuf = register_buffer (regnum);
891 size = m_descr->sizeof_register[regnum];
892
893 if (buf)
894 {
895 memcpy (regbuf, buf, size);
896 m_register_status[regnum] = REG_VALID;
897 }
898 else
899 {
900 /* This memset not strictly necessary, but better than garbage
901 in case the register value manages to escape somewhere (due
902 to a bug, no less). */
903 memset (regbuf, 0, size);
904 m_register_status[regnum] = REG_UNAVAILABLE;
905 }
906 }
907
908 /* Supply register REGNUM to REGCACHE. Value to supply is an integer stored at
909 address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED. If
910 the register size is greater than ADDR_LEN, then the integer will be sign or
911 zero extended. If the register size is smaller than the integer, then the
912 most significant bytes of the integer will be truncated. */
913
914 void
915 detached_regcache::raw_supply_integer (int regnum, const gdb_byte *addr,
916 int addr_len, bool is_signed)
917 {
918 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
919 gdb_byte *regbuf;
920 size_t regsize;
921
922 assert_regnum (regnum);
923
924 regbuf = register_buffer (regnum);
925 regsize = m_descr->sizeof_register[regnum];
926
927 copy_integer_to_size (regbuf, regsize, addr, addr_len, is_signed,
928 byte_order);
929 m_register_status[regnum] = REG_VALID;
930 }
931
932 /* Supply register REGNUM with zeroed value to REGCACHE. This is not the same
933 as calling raw_supply with NULL (which will set the state to
934 unavailable). */
935
936 void
937 detached_regcache::raw_supply_zeroed (int regnum)
938 {
939 void *regbuf;
940 size_t size;
941
942 assert_regnum (regnum);
943
944 regbuf = register_buffer (regnum);
945 size = m_descr->sizeof_register[regnum];
946
947 memset (regbuf, 0, size);
948 m_register_status[regnum] = REG_VALID;
949 }
950
951 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
952
953 void
954 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
955 {
956 gdb_assert (regcache != NULL && buf != NULL);
957 regcache->raw_collect (regnum, buf);
958 }
959
960 void
961 regcache::raw_collect (int regnum, void *buf) const
962 {
963 const void *regbuf;
964 size_t size;
965
966 gdb_assert (buf != NULL);
967 assert_regnum (regnum);
968
969 regbuf = register_buffer (regnum);
970 size = m_descr->sizeof_register[regnum];
971 memcpy (buf, regbuf, size);
972 }
973
974 /* Transfer a single or all registers belonging to a certain register
975 set to or from a buffer. This is the main worker function for
976 regcache_supply_regset and regcache_collect_regset. */
977
978 /* Collect register REGNUM from REGCACHE. Store collected value as an integer
979 at address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED.
980 If ADDR_LEN is greater than the register size, then the integer will be sign
981 or zero extended. If ADDR_LEN is smaller than the register size, then the
982 most significant bytes of the integer will be truncated. */
983
984 void
985 regcache::raw_collect_integer (int regnum, gdb_byte *addr, int addr_len,
986 bool is_signed) const
987 {
988 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
989 const gdb_byte *regbuf;
990 size_t regsize;
991
992 assert_regnum (regnum);
993
994 regbuf = register_buffer (regnum);
995 regsize = m_descr->sizeof_register[regnum];
996
997 copy_integer_to_size (addr, addr_len, regbuf, regsize, is_signed,
998 byte_order);
999 }
1000
1001 void
1002 regcache::transfer_regset (const struct regset *regset,
1003 struct regcache *out_regcache,
1004 int regnum, const void *in_buf,
1005 void *out_buf, size_t size) const
1006 {
1007 const struct regcache_map_entry *map;
1008 int offs = 0, count;
1009
1010 for (map = (const struct regcache_map_entry *) regset->regmap;
1011 (count = map->count) != 0;
1012 map++)
1013 {
1014 int regno = map->regno;
1015 int slot_size = map->size;
1016
1017 if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
1018 slot_size = m_descr->sizeof_register[regno];
1019
1020 if (regno == REGCACHE_MAP_SKIP
1021 || (regnum != -1
1022 && (regnum < regno || regnum >= regno + count)))
1023 offs += count * slot_size;
1024
1025 else if (regnum == -1)
1026 for (; count--; regno++, offs += slot_size)
1027 {
1028 if (offs + slot_size > size)
1029 break;
1030
1031 if (out_buf)
1032 raw_collect (regno, (gdb_byte *) out_buf + offs);
1033 else
1034 out_regcache->raw_supply (regno, in_buf
1035 ? (const gdb_byte *) in_buf + offs
1036 : NULL);
1037 }
1038 else
1039 {
1040 /* Transfer a single register and return. */
1041 offs += (regnum - regno) * slot_size;
1042 if (offs + slot_size > size)
1043 return;
1044
1045 if (out_buf)
1046 raw_collect (regnum, (gdb_byte *) out_buf + offs);
1047 else
1048 out_regcache->raw_supply (regnum, in_buf
1049 ? (const gdb_byte *) in_buf + offs
1050 : NULL);
1051 return;
1052 }
1053 }
1054 }
1055
1056 /* Supply register REGNUM from BUF to REGCACHE, using the register map
1057 in REGSET. If REGNUM is -1, do this for all registers in REGSET.
1058 If BUF is NULL, set the register(s) to "unavailable" status. */
1059
1060 void
1061 regcache_supply_regset (const struct regset *regset,
1062 struct regcache *regcache,
1063 int regnum, const void *buf, size_t size)
1064 {
1065 regcache->supply_regset (regset, regnum, buf, size);
1066 }
1067
1068 void
1069 regcache::supply_regset (const struct regset *regset,
1070 int regnum, const void *buf, size_t size)
1071 {
1072 transfer_regset (regset, this, regnum, buf, NULL, size);
1073 }
1074
1075 /* Collect register REGNUM from REGCACHE to BUF, using the register
1076 map in REGSET. If REGNUM is -1, do this for all registers in
1077 REGSET. */
1078
1079 void
1080 regcache_collect_regset (const struct regset *regset,
1081 const struct regcache *regcache,
1082 int regnum, void *buf, size_t size)
1083 {
1084 regcache->collect_regset (regset, regnum, buf, size);
1085 }
1086
1087 void
1088 regcache::collect_regset (const struct regset *regset,
1089 int regnum, void *buf, size_t size) const
1090 {
1091 transfer_regset (regset, NULL, regnum, NULL, buf, size);
1092 }
1093
1094
1095 /* Special handling for register PC. */
1096
1097 CORE_ADDR
1098 regcache_read_pc (struct regcache *regcache)
1099 {
1100 struct gdbarch *gdbarch = regcache->arch ();
1101
1102 CORE_ADDR pc_val;
1103
1104 if (gdbarch_read_pc_p (gdbarch))
1105 pc_val = gdbarch_read_pc (gdbarch, regcache);
1106 /* Else use per-frame method on get_current_frame. */
1107 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1108 {
1109 ULONGEST raw_val;
1110
1111 if (regcache_cooked_read_unsigned (regcache,
1112 gdbarch_pc_regnum (gdbarch),
1113 &raw_val) == REG_UNAVAILABLE)
1114 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1115
1116 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
1117 }
1118 else
1119 internal_error (__FILE__, __LINE__,
1120 _("regcache_read_pc: Unable to find PC"));
1121 return pc_val;
1122 }
1123
1124 void
1125 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
1126 {
1127 struct gdbarch *gdbarch = regcache->arch ();
1128
1129 if (gdbarch_write_pc_p (gdbarch))
1130 gdbarch_write_pc (gdbarch, regcache, pc);
1131 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1132 regcache_cooked_write_unsigned (regcache,
1133 gdbarch_pc_regnum (gdbarch), pc);
1134 else
1135 internal_error (__FILE__, __LINE__,
1136 _("regcache_write_pc: Unable to update PC"));
1137
1138 /* Writing the PC (for instance, from "load") invalidates the
1139 current frame. */
1140 reinit_frame_cache ();
1141 }
1142
1143 int
1144 reg_buffer::num_raw_registers () const
1145 {
1146 return gdbarch_num_regs (arch ());
1147 }
1148
1149 void
1150 regcache::debug_print_register (const char *func, int regno)
1151 {
1152 struct gdbarch *gdbarch = arch ();
1153
1154 fprintf_unfiltered (gdb_stdlog, "%s ", func);
1155 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
1156 && gdbarch_register_name (gdbarch, regno) != NULL
1157 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
1158 fprintf_unfiltered (gdb_stdlog, "(%s)",
1159 gdbarch_register_name (gdbarch, regno));
1160 else
1161 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
1162 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
1163 {
1164 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1165 int size = register_size (gdbarch, regno);
1166 gdb_byte *buf = register_buffer (regno);
1167
1168 fprintf_unfiltered (gdb_stdlog, " = ");
1169 for (int i = 0; i < size; i++)
1170 {
1171 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1172 }
1173 if (size <= sizeof (LONGEST))
1174 {
1175 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
1176
1177 fprintf_unfiltered (gdb_stdlog, " %s %s",
1178 core_addr_to_string_nz (val), plongest (val));
1179 }
1180 }
1181 fprintf_unfiltered (gdb_stdlog, "\n");
1182 }
1183
1184 static void
1185 reg_flush_command (const char *command, int from_tty)
1186 {
1187 /* Force-flush the register cache. */
1188 registers_changed ();
1189 if (from_tty)
1190 printf_filtered (_("Register cache flushed.\n"));
1191 }
1192
1193 void
1194 register_dump::dump (ui_file *file)
1195 {
1196 auto descr = regcache_descr (m_gdbarch);
1197 int regnum;
1198 int footnote_nr = 0;
1199 int footnote_register_offset = 0;
1200 int footnote_register_type_name_null = 0;
1201 long register_offset = 0;
1202
1203 gdb_assert (descr->nr_cooked_registers
1204 == (gdbarch_num_regs (m_gdbarch)
1205 + gdbarch_num_pseudo_regs (m_gdbarch)));
1206
1207 for (regnum = -1; regnum < descr->nr_cooked_registers; regnum++)
1208 {
1209 /* Name. */
1210 if (regnum < 0)
1211 fprintf_unfiltered (file, " %-10s", "Name");
1212 else
1213 {
1214 const char *p = gdbarch_register_name (m_gdbarch, regnum);
1215
1216 if (p == NULL)
1217 p = "";
1218 else if (p[0] == '\0')
1219 p = "''";
1220 fprintf_unfiltered (file, " %-10s", p);
1221 }
1222
1223 /* Number. */
1224 if (regnum < 0)
1225 fprintf_unfiltered (file, " %4s", "Nr");
1226 else
1227 fprintf_unfiltered (file, " %4d", regnum);
1228
1229 /* Relative number. */
1230 if (regnum < 0)
1231 fprintf_unfiltered (file, " %4s", "Rel");
1232 else if (regnum < gdbarch_num_regs (m_gdbarch))
1233 fprintf_unfiltered (file, " %4d", regnum);
1234 else
1235 fprintf_unfiltered (file, " %4d",
1236 (regnum - gdbarch_num_regs (m_gdbarch)));
1237
1238 /* Offset. */
1239 if (regnum < 0)
1240 fprintf_unfiltered (file, " %6s ", "Offset");
1241 else
1242 {
1243 fprintf_unfiltered (file, " %6ld",
1244 descr->register_offset[regnum]);
1245 if (register_offset != descr->register_offset[regnum]
1246 || (regnum > 0
1247 && (descr->register_offset[regnum]
1248 != (descr->register_offset[regnum - 1]
1249 + descr->sizeof_register[regnum - 1])))
1250 )
1251 {
1252 if (!footnote_register_offset)
1253 footnote_register_offset = ++footnote_nr;
1254 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1255 }
1256 else
1257 fprintf_unfiltered (file, " ");
1258 register_offset = (descr->register_offset[regnum]
1259 + descr->sizeof_register[regnum]);
1260 }
1261
1262 /* Size. */
1263 if (regnum < 0)
1264 fprintf_unfiltered (file, " %5s ", "Size");
1265 else
1266 fprintf_unfiltered (file, " %5ld", descr->sizeof_register[regnum]);
1267
1268 /* Type. */
1269 {
1270 const char *t;
1271 std::string name_holder;
1272
1273 if (regnum < 0)
1274 t = "Type";
1275 else
1276 {
1277 static const char blt[] = "builtin_type";
1278
1279 t = TYPE_NAME (register_type (m_gdbarch, regnum));
1280 if (t == NULL)
1281 {
1282 if (!footnote_register_type_name_null)
1283 footnote_register_type_name_null = ++footnote_nr;
1284 name_holder = string_printf ("*%d",
1285 footnote_register_type_name_null);
1286 t = name_holder.c_str ();
1287 }
1288 /* Chop a leading builtin_type. */
1289 if (startswith (t, blt))
1290 t += strlen (blt);
1291 }
1292 fprintf_unfiltered (file, " %-15s", t);
1293 }
1294
1295 /* Leading space always present. */
1296 fprintf_unfiltered (file, " ");
1297
1298 dump_reg (file, regnum);
1299
1300 fprintf_unfiltered (file, "\n");
1301 }
1302
1303 if (footnote_register_offset)
1304 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1305 footnote_register_offset);
1306 if (footnote_register_type_name_null)
1307 fprintf_unfiltered (file,
1308 "*%d: Register type's name NULL.\n",
1309 footnote_register_type_name_null);
1310 }
1311
1312 #if GDB_SELF_TEST
1313 #include "selftest.h"
1314 #include "selftest-arch.h"
1315 #include "gdbthread.h"
1316 #include "target-float.h"
1317
1318 namespace selftests {
1319
1320 class regcache_access : public regcache
1321 {
1322 public:
1323
1324 /* Return the number of elements in current_regcache. */
1325
1326 static size_t
1327 current_regcache_size ()
1328 {
1329 return std::distance (regcache::current_regcache.begin (),
1330 regcache::current_regcache.end ());
1331 }
1332 };
1333
1334 static void
1335 current_regcache_test (void)
1336 {
1337 /* It is empty at the start. */
1338 SELF_CHECK (regcache_access::current_regcache_size () == 0);
1339
1340 ptid_t ptid1 (1), ptid2 (2), ptid3 (3);
1341
1342 /* Get regcache from ptid1, a new regcache is added to
1343 current_regcache. */
1344 regcache *regcache = get_thread_arch_aspace_regcache (ptid1,
1345 target_gdbarch (),
1346 NULL);
1347
1348 SELF_CHECK (regcache != NULL);
1349 SELF_CHECK (regcache->ptid () == ptid1);
1350 SELF_CHECK (regcache_access::current_regcache_size () == 1);
1351
1352 /* Get regcache from ptid2, a new regcache is added to
1353 current_regcache. */
1354 regcache = get_thread_arch_aspace_regcache (ptid2,
1355 target_gdbarch (),
1356 NULL);
1357 SELF_CHECK (regcache != NULL);
1358 SELF_CHECK (regcache->ptid () == ptid2);
1359 SELF_CHECK (regcache_access::current_regcache_size () == 2);
1360
1361 /* Get regcache from ptid3, a new regcache is added to
1362 current_regcache. */
1363 regcache = get_thread_arch_aspace_regcache (ptid3,
1364 target_gdbarch (),
1365 NULL);
1366 SELF_CHECK (regcache != NULL);
1367 SELF_CHECK (regcache->ptid () == ptid3);
1368 SELF_CHECK (regcache_access::current_regcache_size () == 3);
1369
1370 /* Get regcache from ptid2 again, nothing is added to
1371 current_regcache. */
1372 regcache = get_thread_arch_aspace_regcache (ptid2,
1373 target_gdbarch (),
1374 NULL);
1375 SELF_CHECK (regcache != NULL);
1376 SELF_CHECK (regcache->ptid () == ptid2);
1377 SELF_CHECK (regcache_access::current_regcache_size () == 3);
1378
1379 /* Mark ptid2 is changed, so regcache of ptid2 should be removed from
1380 current_regcache. */
1381 registers_changed_ptid (ptid2);
1382 SELF_CHECK (regcache_access::current_regcache_size () == 2);
1383 }
1384
1385 class target_ops_no_register : public test_target_ops
1386 {
1387 public:
1388 target_ops_no_register ()
1389 : test_target_ops {}
1390 {}
1391
1392 void reset ()
1393 {
1394 fetch_registers_called = 0;
1395 store_registers_called = 0;
1396 xfer_partial_called = 0;
1397 }
1398
1399 void fetch_registers (regcache *regs, int regno) override;
1400 void store_registers (regcache *regs, int regno) override;
1401
1402 enum target_xfer_status xfer_partial (enum target_object object,
1403 const char *annex, gdb_byte *readbuf,
1404 const gdb_byte *writebuf,
1405 ULONGEST offset, ULONGEST len,
1406 ULONGEST *xfered_len) override;
1407
1408 unsigned int fetch_registers_called = 0;
1409 unsigned int store_registers_called = 0;
1410 unsigned int xfer_partial_called = 0;
1411 };
1412
1413 void
1414 target_ops_no_register::fetch_registers (regcache *regs, int regno)
1415 {
1416 /* Mark register available. */
1417 regs->raw_supply_zeroed (regno);
1418 this->fetch_registers_called++;
1419 }
1420
1421 void
1422 target_ops_no_register::store_registers (regcache *regs, int regno)
1423 {
1424 this->store_registers_called++;
1425 }
1426
1427 enum target_xfer_status
1428 target_ops_no_register::xfer_partial (enum target_object object,
1429 const char *annex, gdb_byte *readbuf,
1430 const gdb_byte *writebuf,
1431 ULONGEST offset, ULONGEST len,
1432 ULONGEST *xfered_len)
1433 {
1434 this->xfer_partial_called++;
1435
1436 *xfered_len = len;
1437 return TARGET_XFER_OK;
1438 }
1439
1440 class readwrite_regcache : public regcache
1441 {
1442 public:
1443 readwrite_regcache (struct gdbarch *gdbarch)
1444 : regcache (gdbarch, nullptr)
1445 {}
1446 };
1447
1448 /* Test regcache::cooked_read gets registers from raw registers and
1449 memory instead of target to_{fetch,store}_registers. */
1450
1451 static void
1452 cooked_read_test (struct gdbarch *gdbarch)
1453 {
1454 /* Error out if debugging something, because we're going to push the
1455 test target, which would pop any existing target. */
1456 if (target_stack->to_stratum >= process_stratum)
1457 error (_("target already pushed"));
1458
1459 /* Create a mock environment. An inferior with a thread, with a
1460 process_stratum target pushed. */
1461
1462 target_ops_no_register mock_target;
1463 ptid_t mock_ptid (1, 1);
1464 inferior mock_inferior (mock_ptid.pid ());
1465 address_space mock_aspace {};
1466 mock_inferior.gdbarch = gdbarch;
1467 mock_inferior.aspace = &mock_aspace;
1468 thread_info mock_thread (&mock_inferior, mock_ptid);
1469
1470 scoped_restore restore_thread_list
1471 = make_scoped_restore (&thread_list, &mock_thread);
1472
1473 /* Add the mock inferior to the inferior list so that look ups by
1474 target+ptid can find it. */
1475 scoped_restore restore_inferior_list
1476 = make_scoped_restore (&inferior_list);
1477 inferior_list = &mock_inferior;
1478
1479 /* Switch to the mock inferior. */
1480 scoped_restore_current_inferior restore_current_inferior;
1481 set_current_inferior (&mock_inferior);
1482
1483 /* Push the process_stratum target so we can mock accessing
1484 registers. */
1485 push_target (&mock_target);
1486
1487 /* Pop it again on exit (return/exception). */
1488 struct on_exit
1489 {
1490 ~on_exit ()
1491 {
1492 pop_all_targets_at_and_above (process_stratum);
1493 }
1494 } pop_targets;
1495
1496 /* Switch to the mock thread. */
1497 scoped_restore restore_inferior_ptid
1498 = make_scoped_restore (&inferior_ptid, mock_ptid);
1499
1500 /* Test that read one raw register from regcache_no_target will go
1501 to the target layer. */
1502 int regnum;
1503
1504 /* Find a raw register which size isn't zero. */
1505 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1506 {
1507 if (register_size (gdbarch, regnum) != 0)
1508 break;
1509 }
1510
1511 readwrite_regcache readwrite (gdbarch);
1512 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1513
1514 readwrite.raw_read (regnum, buf.data ());
1515
1516 /* raw_read calls target_fetch_registers. */
1517 SELF_CHECK (mock_target.fetch_registers_called > 0);
1518 mock_target.reset ();
1519
1520 /* Mark all raw registers valid, so the following raw registers
1521 accesses won't go to target. */
1522 for (auto i = 0; i < gdbarch_num_regs (gdbarch); i++)
1523 readwrite.raw_update (i);
1524
1525 mock_target.reset ();
1526 /* Then, read all raw and pseudo registers, and don't expect calling
1527 to_{fetch,store}_registers. */
1528 for (int regnum = 0;
1529 regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1530 regnum++)
1531 {
1532 if (register_size (gdbarch, regnum) == 0)
1533 continue;
1534
1535 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1536
1537 SELF_CHECK (REG_VALID == readwrite.cooked_read (regnum, buf.data ()));
1538
1539 SELF_CHECK (mock_target.fetch_registers_called == 0);
1540 SELF_CHECK (mock_target.store_registers_called == 0);
1541
1542 /* Some SPU pseudo registers are got via TARGET_OBJECT_SPU. */
1543 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1544 SELF_CHECK (mock_target.xfer_partial_called == 0);
1545
1546 mock_target.reset ();
1547 }
1548
1549 readonly_detached_regcache readonly (readwrite);
1550
1551 /* GDB may go to target layer to fetch all registers and memory for
1552 readonly regcache. */
1553 mock_target.reset ();
1554
1555 for (int regnum = 0;
1556 regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1557 regnum++)
1558 {
1559 if (register_size (gdbarch, regnum) == 0)
1560 continue;
1561
1562 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1563 enum register_status status = readonly.cooked_read (regnum,
1564 buf.data ());
1565
1566 if (regnum < gdbarch_num_regs (gdbarch))
1567 {
1568 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1569
1570 if (bfd_arch == bfd_arch_frv || bfd_arch == bfd_arch_h8300
1571 || bfd_arch == bfd_arch_m32c || bfd_arch == bfd_arch_sh
1572 || bfd_arch == bfd_arch_alpha || bfd_arch == bfd_arch_v850
1573 || bfd_arch == bfd_arch_msp430 || bfd_arch == bfd_arch_mep
1574 || bfd_arch == bfd_arch_mips || bfd_arch == bfd_arch_v850_rh850
1575 || bfd_arch == bfd_arch_tic6x || bfd_arch == bfd_arch_mn10300
1576 || bfd_arch == bfd_arch_rl78 || bfd_arch == bfd_arch_score
1577 || bfd_arch == bfd_arch_riscv)
1578 {
1579 /* Raw registers. If raw registers are not in save_reggroup,
1580 their status are unknown. */
1581 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1582 SELF_CHECK (status == REG_VALID);
1583 else
1584 SELF_CHECK (status == REG_UNKNOWN);
1585 }
1586 else
1587 SELF_CHECK (status == REG_VALID);
1588 }
1589 else
1590 {
1591 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1592 SELF_CHECK (status == REG_VALID);
1593 else
1594 {
1595 /* If pseudo registers are not in save_reggroup, some of
1596 them can be computed from saved raw registers, but some
1597 of them are unknown. */
1598 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1599
1600 if (bfd_arch == bfd_arch_frv
1601 || bfd_arch == bfd_arch_m32c
1602 || bfd_arch == bfd_arch_mep
1603 || bfd_arch == bfd_arch_sh)
1604 SELF_CHECK (status == REG_VALID || status == REG_UNKNOWN);
1605 else if (bfd_arch == bfd_arch_mips
1606 || bfd_arch == bfd_arch_h8300)
1607 SELF_CHECK (status == REG_UNKNOWN);
1608 else
1609 SELF_CHECK (status == REG_VALID);
1610 }
1611 }
1612
1613 SELF_CHECK (mock_target.fetch_registers_called == 0);
1614 SELF_CHECK (mock_target.store_registers_called == 0);
1615 SELF_CHECK (mock_target.xfer_partial_called == 0);
1616
1617 mock_target.reset ();
1618 }
1619 }
1620
1621 /* Test regcache::cooked_write by writing some expected contents to
1622 registers, and checking that contents read from registers and the
1623 expected contents are the same. */
1624
1625 static void
1626 cooked_write_test (struct gdbarch *gdbarch)
1627 {
1628 /* Error out if debugging something, because we're going to push the
1629 test target, which would pop any existing target. */
1630 if (target_stack->to_stratum >= process_stratum)
1631 error (_("target already pushed"));
1632
1633 /* Create a mock environment. A process_stratum target pushed. */
1634
1635 target_ops_no_register mock_target;
1636
1637 /* Push the process_stratum target so we can mock accessing
1638 registers. */
1639 push_target (&mock_target);
1640
1641 /* Pop it again on exit (return/exception). */
1642 struct on_exit
1643 {
1644 ~on_exit ()
1645 {
1646 pop_all_targets_at_and_above (process_stratum);
1647 }
1648 } pop_targets;
1649
1650 readwrite_regcache readwrite (gdbarch);
1651
1652 const int num_regs = (gdbarch_num_regs (gdbarch)
1653 + gdbarch_num_pseudo_regs (gdbarch));
1654
1655 for (auto regnum = 0; regnum < num_regs; regnum++)
1656 {
1657 if (register_size (gdbarch, regnum) == 0
1658 || gdbarch_cannot_store_register (gdbarch, regnum))
1659 continue;
1660
1661 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1662
1663 if ((bfd_arch == bfd_arch_sparc
1664 /* SPARC64_CWP_REGNUM, SPARC64_PSTATE_REGNUM,
1665 SPARC64_ASI_REGNUM and SPARC64_CCR_REGNUM are hard to test. */
1666 && gdbarch_ptr_bit (gdbarch) == 64
1667 && (regnum >= gdbarch_num_regs (gdbarch)
1668 && regnum <= gdbarch_num_regs (gdbarch) + 4))
1669 || (bfd_arch == bfd_arch_spu
1670 /* SPU pseudo registers except SPU_SP_REGNUM are got by
1671 TARGET_OBJECT_SPU. */
1672 && regnum >= gdbarch_num_regs (gdbarch) && regnum != 130))
1673 continue;
1674
1675 std::vector<gdb_byte> expected (register_size (gdbarch, regnum), 0);
1676 std::vector<gdb_byte> buf (register_size (gdbarch, regnum), 0);
1677 const auto type = register_type (gdbarch, regnum);
1678
1679 if (TYPE_CODE (type) == TYPE_CODE_FLT
1680 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1681 {
1682 /* Generate valid float format. */
1683 target_float_from_string (expected.data (), type, "1.25");
1684 }
1685 else if (TYPE_CODE (type) == TYPE_CODE_INT
1686 || TYPE_CODE (type) == TYPE_CODE_ARRAY
1687 || TYPE_CODE (type) == TYPE_CODE_PTR
1688 || TYPE_CODE (type) == TYPE_CODE_UNION
1689 || TYPE_CODE (type) == TYPE_CODE_STRUCT)
1690 {
1691 if (bfd_arch == bfd_arch_ia64
1692 || (regnum >= gdbarch_num_regs (gdbarch)
1693 && (bfd_arch == bfd_arch_xtensa
1694 || bfd_arch == bfd_arch_bfin
1695 || bfd_arch == bfd_arch_m32c
1696 /* m68hc11 pseudo registers are in memory. */
1697 || bfd_arch == bfd_arch_m68hc11
1698 || bfd_arch == bfd_arch_m68hc12
1699 || bfd_arch == bfd_arch_s390))
1700 || (bfd_arch == bfd_arch_frv
1701 /* FRV pseudo registers except iacc0. */
1702 && regnum > gdbarch_num_regs (gdbarch)))
1703 {
1704 /* Skip setting the expected values for some architecture
1705 registers. */
1706 }
1707 else if (bfd_arch == bfd_arch_rl78 && regnum == 40)
1708 {
1709 /* RL78_PC_REGNUM */
1710 for (auto j = 0; j < register_size (gdbarch, regnum) - 1; j++)
1711 expected[j] = j;
1712 }
1713 else
1714 {
1715 for (auto j = 0; j < register_size (gdbarch, regnum); j++)
1716 expected[j] = j;
1717 }
1718 }
1719 else if (TYPE_CODE (type) == TYPE_CODE_FLAGS)
1720 {
1721 /* No idea how to test flags. */
1722 continue;
1723 }
1724 else
1725 {
1726 /* If we don't know how to create the expected value for the
1727 this type, make it fail. */
1728 SELF_CHECK (0);
1729 }
1730
1731 readwrite.cooked_write (regnum, expected.data ());
1732
1733 SELF_CHECK (readwrite.cooked_read (regnum, buf.data ()) == REG_VALID);
1734 SELF_CHECK (expected == buf);
1735 }
1736 }
1737
1738 } // namespace selftests
1739 #endif /* GDB_SELF_TEST */
1740
1741 void
1742 _initialize_regcache (void)
1743 {
1744 regcache_descr_handle
1745 = gdbarch_data_register_post_init (init_regcache_descr);
1746
1747 gdb::observers::target_changed.attach (regcache_observer_target_changed);
1748 gdb::observers::thread_ptid_changed.attach
1749 (regcache::regcache_thread_ptid_changed);
1750
1751 add_com ("flushregs", class_maintenance, reg_flush_command,
1752 _("Force gdb to flush its register cache (maintainer command)"));
1753
1754 #if GDB_SELF_TEST
1755 selftests::register_test ("current_regcache", selftests::current_regcache_test);
1756
1757 selftests::register_test_foreach_arch ("regcache::cooked_read_test",
1758 selftests::cooked_read_test);
1759 selftests::register_test_foreach_arch ("regcache::cooked_write_test",
1760 selftests::cooked_write_test);
1761 #endif
1762 }
This page took 0.090831 seconds and 3 git commands to generate.