Remove mt port
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbarch.h"
24 #include "gdbcmd.h"
25 #include "regcache.h"
26 #include "reggroups.h"
27 #include "observer.h"
28 #include "remote.h"
29 #include "valprint.h"
30 #include "regset.h"
31 #include <forward_list>
32
33 /*
34 * DATA STRUCTURE
35 *
36 * Here is the actual register cache.
37 */
38
39 /* Per-architecture object describing the layout of a register cache.
40 Computed once when the architecture is created. */
41
42 struct gdbarch_data *regcache_descr_handle;
43
44 struct regcache_descr
45 {
46 /* The architecture this descriptor belongs to. */
47 struct gdbarch *gdbarch;
48
49 /* The raw register cache. Each raw (or hard) register is supplied
50 by the target interface. The raw cache should not contain
51 redundant information - if the PC is constructed from two
52 registers then those registers and not the PC lives in the raw
53 cache. */
54 long sizeof_raw_registers;
55
56 /* The cooked register space. Each cooked register in the range
57 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
58 register. The remaining [NR_RAW_REGISTERS
59 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
60 both raw registers and memory by the architecture methods
61 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
62 int nr_cooked_registers;
63 long sizeof_cooked_registers;
64
65 /* Offset and size (in 8 bit bytes), of each register in the
66 register cache. All registers (including those in the range
67 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
68 offset. */
69 long *register_offset;
70 long *sizeof_register;
71
72 /* Cached table containing the type of each register. */
73 struct type **register_type;
74 };
75
76 static void *
77 init_regcache_descr (struct gdbarch *gdbarch)
78 {
79 int i;
80 struct regcache_descr *descr;
81 gdb_assert (gdbarch != NULL);
82
83 /* Create an initial, zero filled, table. */
84 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
85 descr->gdbarch = gdbarch;
86
87 /* Total size of the register space. The raw registers are mapped
88 directly onto the raw register cache while the pseudo's are
89 either mapped onto raw-registers or memory. */
90 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
91 + gdbarch_num_pseudo_regs (gdbarch);
92
93 /* Fill in a table of register types. */
94 descr->register_type
95 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
96 struct type *);
97 for (i = 0; i < descr->nr_cooked_registers; i++)
98 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
99
100 /* Construct a strictly RAW register cache. Don't allow pseudo's
101 into the register cache. */
102
103 /* Lay out the register cache.
104
105 NOTE: cagney/2002-05-22: Only register_type() is used when
106 constructing the register cache. It is assumed that the
107 register's raw size, virtual size and type length are all the
108 same. */
109
110 {
111 long offset = 0;
112
113 descr->sizeof_register
114 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
115 descr->register_offset
116 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
117 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
118 {
119 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
120 descr->register_offset[i] = offset;
121 offset += descr->sizeof_register[i];
122 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
123 }
124 /* Set the real size of the raw register cache buffer. */
125 descr->sizeof_raw_registers = offset;
126
127 for (; i < descr->nr_cooked_registers; i++)
128 {
129 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
130 descr->register_offset[i] = offset;
131 offset += descr->sizeof_register[i];
132 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
133 }
134 /* Set the real size of the readonly register cache buffer. */
135 descr->sizeof_cooked_registers = offset;
136 }
137
138 return descr;
139 }
140
141 static struct regcache_descr *
142 regcache_descr (struct gdbarch *gdbarch)
143 {
144 return (struct regcache_descr *) gdbarch_data (gdbarch,
145 regcache_descr_handle);
146 }
147
148 /* Utility functions returning useful register attributes stored in
149 the regcache descr. */
150
151 struct type *
152 register_type (struct gdbarch *gdbarch, int regnum)
153 {
154 struct regcache_descr *descr = regcache_descr (gdbarch);
155
156 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
157 return descr->register_type[regnum];
158 }
159
160 /* Utility functions returning useful register attributes stored in
161 the regcache descr. */
162
163 int
164 register_size (struct gdbarch *gdbarch, int regnum)
165 {
166 struct regcache_descr *descr = regcache_descr (gdbarch);
167 int size;
168
169 gdb_assert (regnum >= 0
170 && regnum < (gdbarch_num_regs (gdbarch)
171 + gdbarch_num_pseudo_regs (gdbarch)));
172 size = descr->sizeof_register[regnum];
173 return size;
174 }
175
176 /* See common/common-regcache.h. */
177
178 int
179 regcache_register_size (const struct regcache *regcache, int n)
180 {
181 return register_size (regcache->arch (), n);
182 }
183
184 regcache::regcache (gdbarch *gdbarch, const address_space *aspace_,
185 bool readonly_p_)
186 : m_aspace (aspace_), m_readonly_p (readonly_p_)
187 {
188 gdb_assert (gdbarch != NULL);
189 m_descr = regcache_descr (gdbarch);
190
191 if (m_readonly_p)
192 {
193 m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_cooked_registers);
194 m_register_status = XCNEWVEC (signed char,
195 m_descr->nr_cooked_registers);
196 }
197 else
198 {
199 m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_raw_registers);
200 m_register_status = XCNEWVEC (signed char, gdbarch_num_regs (gdbarch));
201 }
202 m_ptid = minus_one_ptid;
203 }
204
205 static enum register_status
206 do_cooked_read (void *src, int regnum, gdb_byte *buf)
207 {
208 struct regcache *regcache = (struct regcache *) src;
209
210 return regcache_cooked_read (regcache, regnum, buf);
211 }
212
213 regcache::regcache (readonly_t, const regcache &src)
214 : regcache (src.arch (), nullptr, true)
215 {
216 gdb_assert (!src.m_readonly_p);
217 save (do_cooked_read, (void *) &src);
218 }
219
220 gdbarch *
221 regcache::arch () const
222 {
223 return m_descr->gdbarch;
224 }
225
226 /* See regcache.h. */
227
228 ptid_t
229 regcache_get_ptid (const struct regcache *regcache)
230 {
231 gdb_assert (!ptid_equal (regcache->ptid (), minus_one_ptid));
232
233 return regcache->ptid ();
234 }
235
236 /* Cleanup class for invalidating a register. */
237
238 class regcache_invalidator
239 {
240 public:
241
242 regcache_invalidator (struct regcache *regcache, int regnum)
243 : m_regcache (regcache),
244 m_regnum (regnum)
245 {
246 }
247
248 ~regcache_invalidator ()
249 {
250 if (m_regcache != nullptr)
251 regcache_invalidate (m_regcache, m_regnum);
252 }
253
254 DISABLE_COPY_AND_ASSIGN (regcache_invalidator);
255
256 void release ()
257 {
258 m_regcache = nullptr;
259 }
260
261 private:
262
263 struct regcache *m_regcache;
264 int m_regnum;
265 };
266
267 /* Return a pointer to register REGNUM's buffer cache. */
268
269 gdb_byte *
270 regcache::register_buffer (int regnum) const
271 {
272 return m_registers + m_descr->register_offset[regnum];
273 }
274
275 void
276 regcache_save (struct regcache *regcache,
277 regcache_cooked_read_ftype *cooked_read, void *src)
278 {
279 regcache->save (cooked_read, src);
280 }
281
282 void
283 regcache::save (regcache_cooked_read_ftype *cooked_read,
284 void *src)
285 {
286 struct gdbarch *gdbarch = m_descr->gdbarch;
287 int regnum;
288
289 /* The DST should be `read-only', if it wasn't then the save would
290 end up trying to write the register values back out to the
291 target. */
292 gdb_assert (m_readonly_p);
293 /* Clear the dest. */
294 memset (m_registers, 0, m_descr->sizeof_cooked_registers);
295 memset (m_register_status, 0, m_descr->nr_cooked_registers);
296 /* Copy over any registers (identified by their membership in the
297 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
298 gdbarch_num_pseudo_regs) range is checked since some architectures need
299 to save/restore `cooked' registers that live in memory. */
300 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
301 {
302 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
303 {
304 gdb_byte *dst_buf = register_buffer (regnum);
305 enum register_status status = cooked_read (src, regnum, dst_buf);
306
307 gdb_assert (status != REG_UNKNOWN);
308
309 if (status != REG_VALID)
310 memset (dst_buf, 0, register_size (gdbarch, regnum));
311
312 m_register_status[regnum] = status;
313 }
314 }
315 }
316
317 void
318 regcache::restore (struct regcache *src)
319 {
320 struct gdbarch *gdbarch = m_descr->gdbarch;
321 int regnum;
322
323 /* The dst had better not be read-only. If it is, the `restore'
324 doesn't make much sense. */
325 gdb_assert (!m_readonly_p);
326 gdb_assert (src->m_readonly_p);
327 /* Copy over any registers, being careful to only restore those that
328 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
329 + gdbarch_num_pseudo_regs) range is checked since some architectures need
330 to save/restore `cooked' registers that live in memory. */
331 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
332 {
333 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
334 {
335 if (src->m_register_status[regnum] == REG_VALID)
336 cooked_write (regnum, src->register_buffer (regnum));
337 }
338 }
339 }
340
341 void
342 regcache_cpy (struct regcache *dst, struct regcache *src)
343 {
344 gdb_assert (src != NULL && dst != NULL);
345 gdb_assert (src->m_descr->gdbarch == dst->m_descr->gdbarch);
346 gdb_assert (src != dst);
347 gdb_assert (src->m_readonly_p && !dst->m_readonly_p);
348
349 dst->restore (src);
350 }
351
352 struct regcache *
353 regcache_dup (struct regcache *src)
354 {
355 return new regcache (regcache::readonly, *src);
356 }
357
358 enum register_status
359 regcache_register_status (const struct regcache *regcache, int regnum)
360 {
361 gdb_assert (regcache != NULL);
362 return regcache->get_register_status (regnum);
363 }
364
365 enum register_status
366 regcache::get_register_status (int regnum) const
367 {
368 gdb_assert (regnum >= 0);
369 if (m_readonly_p)
370 gdb_assert (regnum < m_descr->nr_cooked_registers);
371 else
372 gdb_assert (regnum < num_raw_registers ());
373
374 return (enum register_status) m_register_status[regnum];
375 }
376
377 void
378 regcache_invalidate (struct regcache *regcache, int regnum)
379 {
380 gdb_assert (regcache != NULL);
381 regcache->invalidate (regnum);
382 }
383
384 void
385 regcache::invalidate (int regnum)
386 {
387 gdb_assert (!m_readonly_p);
388 assert_regnum (regnum);
389 m_register_status[regnum] = REG_UNKNOWN;
390 }
391
392 void
393 regcache::assert_regnum (int regnum) const
394 {
395 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (arch ()));
396 }
397
398 /* Global structure containing the current regcache. */
399
400 /* NOTE: this is a write-through cache. There is no "dirty" bit for
401 recording if the register values have been changed (eg. by the
402 user). Therefore all registers must be written back to the
403 target when appropriate. */
404 std::forward_list<regcache *> regcache::current_regcache;
405
406 struct regcache *
407 get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
408 struct address_space *aspace)
409 {
410 for (const auto &regcache : regcache::current_regcache)
411 if (ptid_equal (regcache->ptid (), ptid) && regcache->arch () == gdbarch)
412 return regcache;
413
414 regcache *new_regcache = new regcache (gdbarch, aspace, false);
415
416 regcache::current_regcache.push_front (new_regcache);
417 new_regcache->set_ptid (ptid);
418
419 return new_regcache;
420 }
421
422 struct regcache *
423 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
424 {
425 address_space *aspace = target_thread_address_space (ptid);
426
427 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
428 }
429
430 static ptid_t current_thread_ptid;
431 static struct gdbarch *current_thread_arch;
432
433 struct regcache *
434 get_thread_regcache (ptid_t ptid)
435 {
436 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
437 {
438 current_thread_ptid = ptid;
439 current_thread_arch = target_thread_architecture (ptid);
440 }
441
442 return get_thread_arch_regcache (ptid, current_thread_arch);
443 }
444
445 struct regcache *
446 get_current_regcache (void)
447 {
448 return get_thread_regcache (inferior_ptid);
449 }
450
451 /* See common/common-regcache.h. */
452
453 struct regcache *
454 get_thread_regcache_for_ptid (ptid_t ptid)
455 {
456 return get_thread_regcache (ptid);
457 }
458
459 /* Observer for the target_changed event. */
460
461 static void
462 regcache_observer_target_changed (struct target_ops *target)
463 {
464 registers_changed ();
465 }
466
467 /* Update global variables old ptids to hold NEW_PTID if they were
468 holding OLD_PTID. */
469 void
470 regcache::regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
471 {
472 for (auto &regcache : regcache::current_regcache)
473 {
474 if (ptid_equal (regcache->ptid (), old_ptid))
475 regcache->set_ptid (new_ptid);
476 }
477 }
478
479 /* Low level examining and depositing of registers.
480
481 The caller is responsible for making sure that the inferior is
482 stopped before calling the fetching routines, or it will get
483 garbage. (a change from GDB version 3, in which the caller got the
484 value from the last stop). */
485
486 /* REGISTERS_CHANGED ()
487
488 Indicate that registers may have changed, so invalidate the cache. */
489
490 void
491 registers_changed_ptid (ptid_t ptid)
492 {
493 for (auto oit = regcache::current_regcache.before_begin (),
494 it = std::next (oit);
495 it != regcache::current_regcache.end ();
496 )
497 {
498 if (ptid_match ((*it)->ptid (), ptid))
499 {
500 delete *it;
501 it = regcache::current_regcache.erase_after (oit);
502 }
503 else
504 oit = it++;
505 }
506
507 if (ptid_match (current_thread_ptid, ptid))
508 {
509 current_thread_ptid = null_ptid;
510 current_thread_arch = NULL;
511 }
512
513 if (ptid_match (inferior_ptid, ptid))
514 {
515 /* We just deleted the regcache of the current thread. Need to
516 forget about any frames we have cached, too. */
517 reinit_frame_cache ();
518 }
519 }
520
521 void
522 registers_changed (void)
523 {
524 registers_changed_ptid (minus_one_ptid);
525
526 /* Force cleanup of any alloca areas if using C alloca instead of
527 a builtin alloca. This particular call is used to clean up
528 areas allocated by low level target code which may build up
529 during lengthy interactions between gdb and the target before
530 gdb gives control to the user (ie watchpoints). */
531 alloca (0);
532 }
533
534 void
535 regcache_raw_update (struct regcache *regcache, int regnum)
536 {
537 gdb_assert (regcache != NULL);
538
539 regcache->raw_update (regnum);
540 }
541
542 void
543 regcache::raw_update (int regnum)
544 {
545 assert_regnum (regnum);
546
547 /* Make certain that the register cache is up-to-date with respect
548 to the current thread. This switching shouldn't be necessary
549 only there is still only one target side register cache. Sigh!
550 On the bright side, at least there is a regcache object. */
551
552 if (!m_readonly_p && get_register_status (regnum) == REG_UNKNOWN)
553 {
554 target_fetch_registers (this, regnum);
555
556 /* A number of targets can't access the whole set of raw
557 registers (because the debug API provides no means to get at
558 them). */
559 if (m_register_status[regnum] == REG_UNKNOWN)
560 m_register_status[regnum] = REG_UNAVAILABLE;
561 }
562 }
563
564 enum register_status
565 regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf)
566 {
567 return regcache->raw_read (regnum, buf);
568 }
569
570 enum register_status
571 regcache::raw_read (int regnum, gdb_byte *buf)
572 {
573 gdb_assert (buf != NULL);
574 raw_update (regnum);
575
576 if (m_register_status[regnum] != REG_VALID)
577 memset (buf, 0, m_descr->sizeof_register[regnum]);
578 else
579 memcpy (buf, register_buffer (regnum),
580 m_descr->sizeof_register[regnum]);
581
582 return (enum register_status) m_register_status[regnum];
583 }
584
585 enum register_status
586 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
587 {
588 gdb_assert (regcache != NULL);
589 return regcache->raw_read (regnum, val);
590 }
591
592 template<typename T, typename>
593 enum register_status
594 regcache::raw_read (int regnum, T *val)
595 {
596 gdb_byte *buf;
597 enum register_status status;
598
599 assert_regnum (regnum);
600 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
601 status = raw_read (regnum, buf);
602 if (status == REG_VALID)
603 *val = extract_integer<T> (buf,
604 m_descr->sizeof_register[regnum],
605 gdbarch_byte_order (m_descr->gdbarch));
606 else
607 *val = 0;
608 return status;
609 }
610
611 enum register_status
612 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
613 ULONGEST *val)
614 {
615 gdb_assert (regcache != NULL);
616 return regcache->raw_read (regnum, val);
617 }
618
619 void
620 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
621 {
622 gdb_assert (regcache != NULL);
623 regcache->raw_write (regnum, val);
624 }
625
626 template<typename T, typename>
627 void
628 regcache::raw_write (int regnum, T val)
629 {
630 gdb_byte *buf;
631
632 assert_regnum (regnum);
633 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
634 store_integer (buf, m_descr->sizeof_register[regnum],
635 gdbarch_byte_order (m_descr->gdbarch), val);
636 raw_write (regnum, buf);
637 }
638
639 void
640 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
641 ULONGEST val)
642 {
643 gdb_assert (regcache != NULL);
644 regcache->raw_write (regnum, val);
645 }
646
647 LONGEST
648 regcache_raw_get_signed (struct regcache *regcache, int regnum)
649 {
650 LONGEST value;
651 enum register_status status;
652
653 status = regcache_raw_read_signed (regcache, regnum, &value);
654 if (status == REG_UNAVAILABLE)
655 throw_error (NOT_AVAILABLE_ERROR,
656 _("Register %d is not available"), regnum);
657 return value;
658 }
659
660 enum register_status
661 regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf)
662 {
663 return regcache->cooked_read (regnum, buf);
664 }
665
666 enum register_status
667 regcache::cooked_read (int regnum, gdb_byte *buf)
668 {
669 gdb_assert (regnum >= 0);
670 gdb_assert (regnum < m_descr->nr_cooked_registers);
671 if (regnum < num_raw_registers ())
672 return raw_read (regnum, buf);
673 else if (m_readonly_p
674 && m_register_status[regnum] != REG_UNKNOWN)
675 {
676 /* Read-only register cache, perhaps the cooked value was
677 cached? */
678 if (m_register_status[regnum] == REG_VALID)
679 memcpy (buf, register_buffer (regnum),
680 m_descr->sizeof_register[regnum]);
681 else
682 memset (buf, 0, m_descr->sizeof_register[regnum]);
683
684 return (enum register_status) m_register_status[regnum];
685 }
686 else if (gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
687 {
688 struct value *mark, *computed;
689 enum register_status result = REG_VALID;
690
691 mark = value_mark ();
692
693 computed = gdbarch_pseudo_register_read_value (m_descr->gdbarch,
694 this, regnum);
695 if (value_entirely_available (computed))
696 memcpy (buf, value_contents_raw (computed),
697 m_descr->sizeof_register[regnum]);
698 else
699 {
700 memset (buf, 0, m_descr->sizeof_register[regnum]);
701 result = REG_UNAVAILABLE;
702 }
703
704 value_free_to_mark (mark);
705
706 return result;
707 }
708 else
709 return gdbarch_pseudo_register_read (m_descr->gdbarch, this,
710 regnum, buf);
711 }
712
713 struct value *
714 regcache_cooked_read_value (struct regcache *regcache, int regnum)
715 {
716 return regcache->cooked_read_value (regnum);
717 }
718
719 struct value *
720 regcache::cooked_read_value (int regnum)
721 {
722 gdb_assert (regnum >= 0);
723 gdb_assert (regnum < m_descr->nr_cooked_registers);
724
725 if (regnum < num_raw_registers ()
726 || (m_readonly_p && m_register_status[regnum] != REG_UNKNOWN)
727 || !gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
728 {
729 struct value *result;
730
731 result = allocate_value (register_type (m_descr->gdbarch, regnum));
732 VALUE_LVAL (result) = lval_register;
733 VALUE_REGNUM (result) = regnum;
734
735 /* It is more efficient in general to do this delegation in this
736 direction than in the other one, even though the value-based
737 API is preferred. */
738 if (cooked_read (regnum,
739 value_contents_raw (result)) == REG_UNAVAILABLE)
740 mark_value_bytes_unavailable (result, 0,
741 TYPE_LENGTH (value_type (result)));
742
743 return result;
744 }
745 else
746 return gdbarch_pseudo_register_read_value (m_descr->gdbarch,
747 this, regnum);
748 }
749
750 enum register_status
751 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
752 LONGEST *val)
753 {
754 gdb_assert (regcache != NULL);
755 return regcache->cooked_read (regnum, val);
756 }
757
758 template<typename T, typename>
759 enum register_status
760 regcache::cooked_read (int regnum, T *val)
761 {
762 enum register_status status;
763 gdb_byte *buf;
764
765 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
766 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
767 status = cooked_read (regnum, buf);
768 if (status == REG_VALID)
769 *val = extract_integer<T> (buf, m_descr->sizeof_register[regnum],
770 gdbarch_byte_order (m_descr->gdbarch));
771 else
772 *val = 0;
773 return status;
774 }
775
776 enum register_status
777 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
778 ULONGEST *val)
779 {
780 gdb_assert (regcache != NULL);
781 return regcache->cooked_read (regnum, val);
782 }
783
784 void
785 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
786 LONGEST val)
787 {
788 gdb_assert (regcache != NULL);
789 regcache->cooked_write (regnum, val);
790 }
791
792 template<typename T, typename>
793 void
794 regcache::cooked_write (int regnum, T val)
795 {
796 gdb_byte *buf;
797
798 gdb_assert (regnum >=0 && regnum < m_descr->nr_cooked_registers);
799 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
800 store_integer (buf, m_descr->sizeof_register[regnum],
801 gdbarch_byte_order (m_descr->gdbarch), val);
802 cooked_write (regnum, buf);
803 }
804
805 void
806 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
807 ULONGEST val)
808 {
809 gdb_assert (regcache != NULL);
810 regcache->cooked_write (regnum, val);
811 }
812
813 /* See regcache.h. */
814
815 void
816 regcache_raw_set_cached_value (struct regcache *regcache, int regnum,
817 const gdb_byte *buf)
818 {
819 regcache->raw_set_cached_value (regnum, buf);
820 }
821
822 void
823 regcache::raw_set_cached_value (int regnum, const gdb_byte *buf)
824 {
825 memcpy (register_buffer (regnum), buf,
826 m_descr->sizeof_register[regnum]);
827 m_register_status[regnum] = REG_VALID;
828 }
829
830 void
831 regcache_raw_write (struct regcache *regcache, int regnum,
832 const gdb_byte *buf)
833 {
834 gdb_assert (regcache != NULL && buf != NULL);
835 regcache->raw_write (regnum, buf);
836 }
837
838 void
839 regcache::raw_write (int regnum, const gdb_byte *buf)
840 {
841
842 gdb_assert (buf != NULL);
843 assert_regnum (regnum);
844 gdb_assert (!m_readonly_p);
845
846 /* On the sparc, writing %g0 is a no-op, so we don't even want to
847 change the registers array if something writes to this register. */
848 if (gdbarch_cannot_store_register (arch (), regnum))
849 return;
850
851 /* If we have a valid copy of the register, and new value == old
852 value, then don't bother doing the actual store. */
853 if (get_register_status (regnum) == REG_VALID
854 && (memcmp (register_buffer (regnum), buf,
855 m_descr->sizeof_register[regnum]) == 0))
856 return;
857
858 target_prepare_to_store (this);
859 raw_set_cached_value (regnum, buf);
860
861 /* Invalidate the register after it is written, in case of a
862 failure. */
863 regcache_invalidator invalidator (this, regnum);
864
865 target_store_registers (this, regnum);
866
867 /* The target did not throw an error so we can discard invalidating
868 the register. */
869 invalidator.release ();
870 }
871
872 void
873 regcache_cooked_write (struct regcache *regcache, int regnum,
874 const gdb_byte *buf)
875 {
876 regcache->cooked_write (regnum, buf);
877 }
878
879 void
880 regcache::cooked_write (int regnum, const gdb_byte *buf)
881 {
882 gdb_assert (regnum >= 0);
883 gdb_assert (regnum < m_descr->nr_cooked_registers);
884 if (regnum < num_raw_registers ())
885 raw_write (regnum, buf);
886 else
887 gdbarch_pseudo_register_write (m_descr->gdbarch, this,
888 regnum, buf);
889 }
890
891 /* Perform a partial register transfer using a read, modify, write
892 operation. */
893
894 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
895 void *buf);
896 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
897 const void *buf);
898
899 enum register_status
900 regcache::xfer_part (int regnum, int offset, int len, void *in,
901 const void *out, bool is_raw)
902 {
903 struct gdbarch *gdbarch = arch ();
904 gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
905
906 gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]);
907 gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]);
908 /* Something to do? */
909 if (offset + len == 0)
910 return REG_VALID;
911 /* Read (when needed) ... */
912 if (in != NULL
913 || offset > 0
914 || offset + len < m_descr->sizeof_register[regnum])
915 {
916 enum register_status status;
917
918 if (is_raw)
919 status = raw_read (regnum, reg);
920 else
921 status = cooked_read (regnum, reg);
922 if (status != REG_VALID)
923 return status;
924 }
925 /* ... modify ... */
926 if (in != NULL)
927 memcpy (in, reg + offset, len);
928 if (out != NULL)
929 memcpy (reg + offset, out, len);
930 /* ... write (when needed). */
931 if (out != NULL)
932 {
933 if (is_raw)
934 raw_write (regnum, reg);
935 else
936 cooked_write (regnum, reg);
937 }
938
939 return REG_VALID;
940 }
941
942 enum register_status
943 regcache_raw_read_part (struct regcache *regcache, int regnum,
944 int offset, int len, gdb_byte *buf)
945 {
946 return regcache->raw_read_part (regnum, offset, len, buf);
947 }
948
949 enum register_status
950 regcache::raw_read_part (int regnum, int offset, int len, gdb_byte *buf)
951 {
952 assert_regnum (regnum);
953 return xfer_part (regnum, offset, len, buf, NULL, true);
954 }
955
956 void
957 regcache_raw_write_part (struct regcache *regcache, int regnum,
958 int offset, int len, const gdb_byte *buf)
959 {
960 regcache->raw_write_part (regnum, offset, len, buf);
961 }
962
963 void
964 regcache::raw_write_part (int regnum, int offset, int len,
965 const gdb_byte *buf)
966 {
967 assert_regnum (regnum);
968 xfer_part (regnum, offset, len, NULL, buf, true);
969 }
970
971 enum register_status
972 regcache_cooked_read_part (struct regcache *regcache, int regnum,
973 int offset, int len, gdb_byte *buf)
974 {
975 return regcache->cooked_read_part (regnum, offset, len, buf);
976 }
977
978
979 enum register_status
980 regcache::cooked_read_part (int regnum, int offset, int len, gdb_byte *buf)
981 {
982 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
983 return xfer_part (regnum, offset, len, buf, NULL, false);
984 }
985
986 void
987 regcache_cooked_write_part (struct regcache *regcache, int regnum,
988 int offset, int len, const gdb_byte *buf)
989 {
990 regcache->cooked_write_part (regnum, offset, len, buf);
991 }
992
993 void
994 regcache::cooked_write_part (int regnum, int offset, int len,
995 const gdb_byte *buf)
996 {
997 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
998 xfer_part (regnum, offset, len, NULL, buf, false);
999 }
1000
1001 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
1002
1003 void
1004 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
1005 {
1006 gdb_assert (regcache != NULL);
1007 regcache->raw_supply (regnum, buf);
1008 }
1009
1010 void
1011 regcache::raw_supply (int regnum, const void *buf)
1012 {
1013 void *regbuf;
1014 size_t size;
1015
1016 assert_regnum (regnum);
1017 gdb_assert (!m_readonly_p);
1018
1019 regbuf = register_buffer (regnum);
1020 size = m_descr->sizeof_register[regnum];
1021
1022 if (buf)
1023 {
1024 memcpy (regbuf, buf, size);
1025 m_register_status[regnum] = REG_VALID;
1026 }
1027 else
1028 {
1029 /* This memset not strictly necessary, but better than garbage
1030 in case the register value manages to escape somewhere (due
1031 to a bug, no less). */
1032 memset (regbuf, 0, size);
1033 m_register_status[regnum] = REG_UNAVAILABLE;
1034 }
1035 }
1036
1037 /* Supply register REGNUM to REGCACHE. Value to supply is an integer stored at
1038 address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED. If
1039 the register size is greater than ADDR_LEN, then the integer will be sign or
1040 zero extended. If the register size is smaller than the integer, then the
1041 most significant bytes of the integer will be truncated. */
1042
1043 void
1044 regcache::raw_supply_integer (int regnum, const gdb_byte *addr, int addr_len,
1045 bool is_signed)
1046 {
1047 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
1048 gdb_byte *regbuf;
1049 size_t regsize;
1050
1051 assert_regnum (regnum);
1052 gdb_assert (!m_readonly_p);
1053
1054 regbuf = register_buffer (regnum);
1055 regsize = m_descr->sizeof_register[regnum];
1056
1057 copy_integer_to_size (regbuf, regsize, addr, addr_len, is_signed,
1058 byte_order);
1059 m_register_status[regnum] = REG_VALID;
1060 }
1061
1062 /* Supply register REGNUM with zeroed value to REGCACHE. This is not the same
1063 as calling raw_supply with NULL (which will set the state to
1064 unavailable). */
1065
1066 void
1067 regcache::raw_supply_zeroed (int regnum)
1068 {
1069 void *regbuf;
1070 size_t size;
1071
1072 assert_regnum (regnum);
1073 gdb_assert (!m_readonly_p);
1074
1075 regbuf = register_buffer (regnum);
1076 size = m_descr->sizeof_register[regnum];
1077
1078 memset (regbuf, 0, size);
1079 m_register_status[regnum] = REG_VALID;
1080 }
1081
1082 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
1083
1084 void
1085 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
1086 {
1087 gdb_assert (regcache != NULL && buf != NULL);
1088 regcache->raw_collect (regnum, buf);
1089 }
1090
1091 void
1092 regcache::raw_collect (int regnum, void *buf) const
1093 {
1094 const void *regbuf;
1095 size_t size;
1096
1097 gdb_assert (buf != NULL);
1098 assert_regnum (regnum);
1099
1100 regbuf = register_buffer (regnum);
1101 size = m_descr->sizeof_register[regnum];
1102 memcpy (buf, regbuf, size);
1103 }
1104
1105 /* Transfer a single or all registers belonging to a certain register
1106 set to or from a buffer. This is the main worker function for
1107 regcache_supply_regset and regcache_collect_regset. */
1108
1109 /* Collect register REGNUM from REGCACHE. Store collected value as an integer
1110 at address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED.
1111 If ADDR_LEN is greater than the register size, then the integer will be sign
1112 or zero extended. If ADDR_LEN is smaller than the register size, then the
1113 most significant bytes of the integer will be truncated. */
1114
1115 void
1116 regcache::raw_collect_integer (int regnum, gdb_byte *addr, int addr_len,
1117 bool is_signed) const
1118 {
1119 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
1120 const gdb_byte *regbuf;
1121 size_t regsize;
1122
1123 assert_regnum (regnum);
1124
1125 regbuf = register_buffer (regnum);
1126 regsize = m_descr->sizeof_register[regnum];
1127
1128 copy_integer_to_size (addr, addr_len, regbuf, regsize, is_signed,
1129 byte_order);
1130 }
1131
1132 void
1133 regcache::transfer_regset (const struct regset *regset,
1134 struct regcache *out_regcache,
1135 int regnum, const void *in_buf,
1136 void *out_buf, size_t size) const
1137 {
1138 const struct regcache_map_entry *map;
1139 int offs = 0, count;
1140
1141 for (map = (const struct regcache_map_entry *) regset->regmap;
1142 (count = map->count) != 0;
1143 map++)
1144 {
1145 int regno = map->regno;
1146 int slot_size = map->size;
1147
1148 if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
1149 slot_size = m_descr->sizeof_register[regno];
1150
1151 if (regno == REGCACHE_MAP_SKIP
1152 || (regnum != -1
1153 && (regnum < regno || regnum >= regno + count)))
1154 offs += count * slot_size;
1155
1156 else if (regnum == -1)
1157 for (; count--; regno++, offs += slot_size)
1158 {
1159 if (offs + slot_size > size)
1160 break;
1161
1162 if (out_buf)
1163 raw_collect (regno, (gdb_byte *) out_buf + offs);
1164 else
1165 out_regcache->raw_supply (regno, in_buf
1166 ? (const gdb_byte *) in_buf + offs
1167 : NULL);
1168 }
1169 else
1170 {
1171 /* Transfer a single register and return. */
1172 offs += (regnum - regno) * slot_size;
1173 if (offs + slot_size > size)
1174 return;
1175
1176 if (out_buf)
1177 raw_collect (regnum, (gdb_byte *) out_buf + offs);
1178 else
1179 out_regcache->raw_supply (regnum, in_buf
1180 ? (const gdb_byte *) in_buf + offs
1181 : NULL);
1182 return;
1183 }
1184 }
1185 }
1186
1187 /* Supply register REGNUM from BUF to REGCACHE, using the register map
1188 in REGSET. If REGNUM is -1, do this for all registers in REGSET.
1189 If BUF is NULL, set the register(s) to "unavailable" status. */
1190
1191 void
1192 regcache_supply_regset (const struct regset *regset,
1193 struct regcache *regcache,
1194 int regnum, const void *buf, size_t size)
1195 {
1196 regcache->supply_regset (regset, regnum, buf, size);
1197 }
1198
1199 void
1200 regcache::supply_regset (const struct regset *regset,
1201 int regnum, const void *buf, size_t size)
1202 {
1203 transfer_regset (regset, this, regnum, buf, NULL, size);
1204 }
1205
1206 /* Collect register REGNUM from REGCACHE to BUF, using the register
1207 map in REGSET. If REGNUM is -1, do this for all registers in
1208 REGSET. */
1209
1210 void
1211 regcache_collect_regset (const struct regset *regset,
1212 const struct regcache *regcache,
1213 int regnum, void *buf, size_t size)
1214 {
1215 regcache->collect_regset (regset, regnum, buf, size);
1216 }
1217
1218 void
1219 regcache::collect_regset (const struct regset *regset,
1220 int regnum, void *buf, size_t size) const
1221 {
1222 transfer_regset (regset, NULL, regnum, NULL, buf, size);
1223 }
1224
1225
1226 /* Special handling for register PC. */
1227
1228 CORE_ADDR
1229 regcache_read_pc (struct regcache *regcache)
1230 {
1231 struct gdbarch *gdbarch = regcache->arch ();
1232
1233 CORE_ADDR pc_val;
1234
1235 if (gdbarch_read_pc_p (gdbarch))
1236 pc_val = gdbarch_read_pc (gdbarch, regcache);
1237 /* Else use per-frame method on get_current_frame. */
1238 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1239 {
1240 ULONGEST raw_val;
1241
1242 if (regcache_cooked_read_unsigned (regcache,
1243 gdbarch_pc_regnum (gdbarch),
1244 &raw_val) == REG_UNAVAILABLE)
1245 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1246
1247 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
1248 }
1249 else
1250 internal_error (__FILE__, __LINE__,
1251 _("regcache_read_pc: Unable to find PC"));
1252 return pc_val;
1253 }
1254
1255 void
1256 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
1257 {
1258 struct gdbarch *gdbarch = regcache->arch ();
1259
1260 if (gdbarch_write_pc_p (gdbarch))
1261 gdbarch_write_pc (gdbarch, regcache, pc);
1262 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1263 regcache_cooked_write_unsigned (regcache,
1264 gdbarch_pc_regnum (gdbarch), pc);
1265 else
1266 internal_error (__FILE__, __LINE__,
1267 _("regcache_write_pc: Unable to update PC"));
1268
1269 /* Writing the PC (for instance, from "load") invalidates the
1270 current frame. */
1271 reinit_frame_cache ();
1272 }
1273
1274 int
1275 regcache::num_raw_registers () const
1276 {
1277 return gdbarch_num_regs (arch ());
1278 }
1279
1280 void
1281 regcache::debug_print_register (const char *func, int regno)
1282 {
1283 struct gdbarch *gdbarch = arch ();
1284
1285 fprintf_unfiltered (gdb_stdlog, "%s ", func);
1286 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
1287 && gdbarch_register_name (gdbarch, regno) != NULL
1288 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
1289 fprintf_unfiltered (gdb_stdlog, "(%s)",
1290 gdbarch_register_name (gdbarch, regno));
1291 else
1292 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
1293 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
1294 {
1295 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1296 int size = register_size (gdbarch, regno);
1297 gdb_byte *buf = register_buffer (regno);
1298
1299 fprintf_unfiltered (gdb_stdlog, " = ");
1300 for (int i = 0; i < size; i++)
1301 {
1302 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1303 }
1304 if (size <= sizeof (LONGEST))
1305 {
1306 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
1307
1308 fprintf_unfiltered (gdb_stdlog, " %s %s",
1309 core_addr_to_string_nz (val), plongest (val));
1310 }
1311 }
1312 fprintf_unfiltered (gdb_stdlog, "\n");
1313 }
1314
1315 static void
1316 reg_flush_command (const char *command, int from_tty)
1317 {
1318 /* Force-flush the register cache. */
1319 registers_changed ();
1320 if (from_tty)
1321 printf_filtered (_("Register cache flushed.\n"));
1322 }
1323
1324 void
1325 regcache::dump (ui_file *file, enum regcache_dump_what what_to_dump)
1326 {
1327 struct gdbarch *gdbarch = m_descr->gdbarch;
1328 int regnum;
1329 int footnote_nr = 0;
1330 int footnote_register_offset = 0;
1331 int footnote_register_type_name_null = 0;
1332 long register_offset = 0;
1333
1334 gdb_assert (m_descr->nr_cooked_registers
1335 == (gdbarch_num_regs (gdbarch)
1336 + gdbarch_num_pseudo_regs (gdbarch)));
1337
1338 for (regnum = -1; regnum < m_descr->nr_cooked_registers; regnum++)
1339 {
1340 /* Name. */
1341 if (regnum < 0)
1342 fprintf_unfiltered (file, " %-10s", "Name");
1343 else
1344 {
1345 const char *p = gdbarch_register_name (gdbarch, regnum);
1346
1347 if (p == NULL)
1348 p = "";
1349 else if (p[0] == '\0')
1350 p = "''";
1351 fprintf_unfiltered (file, " %-10s", p);
1352 }
1353
1354 /* Number. */
1355 if (regnum < 0)
1356 fprintf_unfiltered (file, " %4s", "Nr");
1357 else
1358 fprintf_unfiltered (file, " %4d", regnum);
1359
1360 /* Relative number. */
1361 if (regnum < 0)
1362 fprintf_unfiltered (file, " %4s", "Rel");
1363 else if (regnum < gdbarch_num_regs (gdbarch))
1364 fprintf_unfiltered (file, " %4d", regnum);
1365 else
1366 fprintf_unfiltered (file, " %4d",
1367 (regnum - gdbarch_num_regs (gdbarch)));
1368
1369 /* Offset. */
1370 if (regnum < 0)
1371 fprintf_unfiltered (file, " %6s ", "Offset");
1372 else
1373 {
1374 fprintf_unfiltered (file, " %6ld",
1375 m_descr->register_offset[regnum]);
1376 if (register_offset != m_descr->register_offset[regnum]
1377 || (regnum > 0
1378 && (m_descr->register_offset[regnum]
1379 != (m_descr->register_offset[regnum - 1]
1380 + m_descr->sizeof_register[regnum - 1])))
1381 )
1382 {
1383 if (!footnote_register_offset)
1384 footnote_register_offset = ++footnote_nr;
1385 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1386 }
1387 else
1388 fprintf_unfiltered (file, " ");
1389 register_offset = (m_descr->register_offset[regnum]
1390 + m_descr->sizeof_register[regnum]);
1391 }
1392
1393 /* Size. */
1394 if (regnum < 0)
1395 fprintf_unfiltered (file, " %5s ", "Size");
1396 else
1397 fprintf_unfiltered (file, " %5ld", m_descr->sizeof_register[regnum]);
1398
1399 /* Type. */
1400 {
1401 const char *t;
1402 std::string name_holder;
1403
1404 if (regnum < 0)
1405 t = "Type";
1406 else
1407 {
1408 static const char blt[] = "builtin_type";
1409
1410 t = TYPE_NAME (register_type (arch (), regnum));
1411 if (t == NULL)
1412 {
1413 if (!footnote_register_type_name_null)
1414 footnote_register_type_name_null = ++footnote_nr;
1415 name_holder = string_printf ("*%d",
1416 footnote_register_type_name_null);
1417 t = name_holder.c_str ();
1418 }
1419 /* Chop a leading builtin_type. */
1420 if (startswith (t, blt))
1421 t += strlen (blt);
1422 }
1423 fprintf_unfiltered (file, " %-15s", t);
1424 }
1425
1426 /* Leading space always present. */
1427 fprintf_unfiltered (file, " ");
1428
1429 /* Value, raw. */
1430 if (what_to_dump == regcache_dump_raw)
1431 {
1432 if (regnum < 0)
1433 fprintf_unfiltered (file, "Raw value");
1434 else if (regnum >= num_raw_registers ())
1435 fprintf_unfiltered (file, "<cooked>");
1436 else if (get_register_status (regnum) == REG_UNKNOWN)
1437 fprintf_unfiltered (file, "<invalid>");
1438 else if (get_register_status (regnum) == REG_UNAVAILABLE)
1439 fprintf_unfiltered (file, "<unavailable>");
1440 else
1441 {
1442 raw_update (regnum);
1443 print_hex_chars (file, register_buffer (regnum),
1444 m_descr->sizeof_register[regnum],
1445 gdbarch_byte_order (gdbarch), true);
1446 }
1447 }
1448
1449 /* Value, cooked. */
1450 if (what_to_dump == regcache_dump_cooked)
1451 {
1452 if (regnum < 0)
1453 fprintf_unfiltered (file, "Cooked value");
1454 else
1455 {
1456 const gdb_byte *buf = NULL;
1457 enum register_status status;
1458 struct value *value = NULL;
1459
1460 if (regnum < num_raw_registers ())
1461 {
1462 raw_update (regnum);
1463 status = get_register_status (regnum);
1464 buf = register_buffer (regnum);
1465 }
1466 else
1467 {
1468 value = cooked_read_value (regnum);
1469
1470 if (!value_optimized_out (value)
1471 && value_entirely_available (value))
1472 {
1473 status = REG_VALID;
1474 buf = value_contents_all (value);
1475 }
1476 else
1477 status = REG_UNAVAILABLE;
1478 }
1479
1480 if (status == REG_UNKNOWN)
1481 fprintf_unfiltered (file, "<invalid>");
1482 else if (status == REG_UNAVAILABLE)
1483 fprintf_unfiltered (file, "<unavailable>");
1484 else
1485 print_hex_chars (file, buf,
1486 m_descr->sizeof_register[regnum],
1487 gdbarch_byte_order (gdbarch), true);
1488
1489 if (value != NULL)
1490 {
1491 release_value (value);
1492 value_free (value);
1493 }
1494 }
1495 }
1496
1497 /* Group members. */
1498 if (what_to_dump == regcache_dump_groups)
1499 {
1500 if (regnum < 0)
1501 fprintf_unfiltered (file, "Groups");
1502 else
1503 {
1504 const char *sep = "";
1505 struct reggroup *group;
1506
1507 for (group = reggroup_next (gdbarch, NULL);
1508 group != NULL;
1509 group = reggroup_next (gdbarch, group))
1510 {
1511 if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
1512 {
1513 fprintf_unfiltered (file,
1514 "%s%s", sep, reggroup_name (group));
1515 sep = ",";
1516 }
1517 }
1518 }
1519 }
1520
1521 /* Remote packet configuration. */
1522 if (what_to_dump == regcache_dump_remote)
1523 {
1524 if (regnum < 0)
1525 {
1526 fprintf_unfiltered (file, "Rmt Nr g/G Offset");
1527 }
1528 else if (regnum < num_raw_registers ())
1529 {
1530 int pnum, poffset;
1531
1532 if (remote_register_number_and_offset (arch (), regnum,
1533 &pnum, &poffset))
1534 fprintf_unfiltered (file, "%7d %11d", pnum, poffset);
1535 }
1536 }
1537
1538 fprintf_unfiltered (file, "\n");
1539 }
1540
1541 if (footnote_register_offset)
1542 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1543 footnote_register_offset);
1544 if (footnote_register_type_name_null)
1545 fprintf_unfiltered (file,
1546 "*%d: Register type's name NULL.\n",
1547 footnote_register_type_name_null);
1548 }
1549
1550 static void
1551 regcache_print (const char *args, enum regcache_dump_what what_to_dump)
1552 {
1553 /* Where to send output. */
1554 stdio_file file;
1555 ui_file *out;
1556
1557 if (args == NULL)
1558 out = gdb_stdout;
1559 else
1560 {
1561 if (!file.open (args, "w"))
1562 perror_with_name (_("maintenance print architecture"));
1563 out = &file;
1564 }
1565
1566 if (target_has_registers)
1567 get_current_regcache ()->dump (out, what_to_dump);
1568 else
1569 {
1570 /* For the benefit of "maint print registers" & co when
1571 debugging an executable, allow dumping a regcache even when
1572 there is no thread selected / no registers. */
1573 regcache dummy_regs (target_gdbarch ());
1574 dummy_regs.dump (out, what_to_dump);
1575 }
1576 }
1577
1578 static void
1579 maintenance_print_registers (const char *args, int from_tty)
1580 {
1581 regcache_print (args, regcache_dump_none);
1582 }
1583
1584 static void
1585 maintenance_print_raw_registers (const char *args, int from_tty)
1586 {
1587 regcache_print (args, regcache_dump_raw);
1588 }
1589
1590 static void
1591 maintenance_print_cooked_registers (const char *args, int from_tty)
1592 {
1593 regcache_print (args, regcache_dump_cooked);
1594 }
1595
1596 static void
1597 maintenance_print_register_groups (const char *args, int from_tty)
1598 {
1599 regcache_print (args, regcache_dump_groups);
1600 }
1601
1602 static void
1603 maintenance_print_remote_registers (const char *args, int from_tty)
1604 {
1605 regcache_print (args, regcache_dump_remote);
1606 }
1607
1608 #if GDB_SELF_TEST
1609 #include "selftest.h"
1610 #include "selftest-arch.h"
1611 #include "gdbthread.h"
1612
1613 namespace selftests {
1614
1615 class regcache_access : public regcache
1616 {
1617 public:
1618
1619 /* Return the number of elements in current_regcache. */
1620
1621 static size_t
1622 current_regcache_size ()
1623 {
1624 return std::distance (regcache::current_regcache.begin (),
1625 regcache::current_regcache.end ());
1626 }
1627 };
1628
1629 static void
1630 current_regcache_test (void)
1631 {
1632 /* It is empty at the start. */
1633 SELF_CHECK (regcache_access::current_regcache_size () == 0);
1634
1635 ptid_t ptid1 (1), ptid2 (2), ptid3 (3);
1636
1637 /* Get regcache from ptid1, a new regcache is added to
1638 current_regcache. */
1639 regcache *regcache = get_thread_arch_aspace_regcache (ptid1,
1640 target_gdbarch (),
1641 NULL);
1642
1643 SELF_CHECK (regcache != NULL);
1644 SELF_CHECK (regcache->ptid () == ptid1);
1645 SELF_CHECK (regcache_access::current_regcache_size () == 1);
1646
1647 /* Get regcache from ptid2, a new regcache is added to
1648 current_regcache. */
1649 regcache = get_thread_arch_aspace_regcache (ptid2,
1650 target_gdbarch (),
1651 NULL);
1652 SELF_CHECK (regcache != NULL);
1653 SELF_CHECK (regcache->ptid () == ptid2);
1654 SELF_CHECK (regcache_access::current_regcache_size () == 2);
1655
1656 /* Get regcache from ptid3, a new regcache is added to
1657 current_regcache. */
1658 regcache = get_thread_arch_aspace_regcache (ptid3,
1659 target_gdbarch (),
1660 NULL);
1661 SELF_CHECK (regcache != NULL);
1662 SELF_CHECK (regcache->ptid () == ptid3);
1663 SELF_CHECK (regcache_access::current_regcache_size () == 3);
1664
1665 /* Get regcache from ptid2 again, nothing is added to
1666 current_regcache. */
1667 regcache = get_thread_arch_aspace_regcache (ptid2,
1668 target_gdbarch (),
1669 NULL);
1670 SELF_CHECK (regcache != NULL);
1671 SELF_CHECK (regcache->ptid () == ptid2);
1672 SELF_CHECK (regcache_access::current_regcache_size () == 3);
1673
1674 /* Mark ptid2 is changed, so regcache of ptid2 should be removed from
1675 current_regcache. */
1676 registers_changed_ptid (ptid2);
1677 SELF_CHECK (regcache_access::current_regcache_size () == 2);
1678 }
1679
1680 static void test_target_fetch_registers (target_ops *self, regcache *regs,
1681 int regno);
1682 static void test_target_store_registers (target_ops *self, regcache *regs,
1683 int regno);
1684 static enum target_xfer_status
1685 test_target_xfer_partial (struct target_ops *ops,
1686 enum target_object object,
1687 const char *annex, gdb_byte *readbuf,
1688 const gdb_byte *writebuf,
1689 ULONGEST offset, ULONGEST len,
1690 ULONGEST *xfered_len);
1691
1692 class target_ops_no_register : public test_target_ops
1693 {
1694 public:
1695 target_ops_no_register ()
1696 : test_target_ops {}
1697 {
1698 to_fetch_registers = test_target_fetch_registers;
1699 to_store_registers = test_target_store_registers;
1700 to_xfer_partial = test_target_xfer_partial;
1701
1702 to_data = this;
1703 }
1704
1705 void reset ()
1706 {
1707 fetch_registers_called = 0;
1708 store_registers_called = 0;
1709 xfer_partial_called = 0;
1710 }
1711
1712 unsigned int fetch_registers_called = 0;
1713 unsigned int store_registers_called = 0;
1714 unsigned int xfer_partial_called = 0;
1715 };
1716
1717 static void
1718 test_target_fetch_registers (target_ops *self, regcache *regs, int regno)
1719 {
1720 auto ops = static_cast<target_ops_no_register *> (self->to_data);
1721
1722 /* Mark register available. */
1723 regs->raw_supply_zeroed (regno);
1724 ops->fetch_registers_called++;
1725 }
1726
1727 static void
1728 test_target_store_registers (target_ops *self, regcache *regs, int regno)
1729 {
1730 auto ops = static_cast<target_ops_no_register *> (self->to_data);
1731
1732 ops->store_registers_called++;
1733 }
1734
1735 static enum target_xfer_status
1736 test_target_xfer_partial (struct target_ops *self, enum target_object object,
1737 const char *annex, gdb_byte *readbuf,
1738 const gdb_byte *writebuf,
1739 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
1740 {
1741 auto ops = static_cast<target_ops_no_register *> (self->to_data);
1742
1743 ops->xfer_partial_called++;
1744
1745 *xfered_len = len;
1746 return TARGET_XFER_OK;
1747 }
1748
1749 class readwrite_regcache : public regcache
1750 {
1751 public:
1752 readwrite_regcache (struct gdbarch *gdbarch)
1753 : regcache (gdbarch, nullptr, false)
1754 {}
1755 };
1756
1757 /* Test regcache::cooked_read gets registers from raw registers and
1758 memory instead of target to_{fetch,store}_registers. */
1759
1760 static void
1761 cooked_read_test (struct gdbarch *gdbarch)
1762 {
1763 /* Error out if debugging something, because we're going to push the
1764 test target, which would pop any existing target. */
1765 if (current_target.to_stratum >= process_stratum)
1766 error (_("target already pushed"));
1767
1768 /* Create a mock environment. An inferior with a thread, with a
1769 process_stratum target pushed. */
1770
1771 target_ops_no_register mock_target;
1772 ptid_t mock_ptid (1, 1);
1773 inferior mock_inferior (mock_ptid.pid ());
1774 address_space mock_aspace {};
1775 mock_inferior.gdbarch = gdbarch;
1776 mock_inferior.aspace = &mock_aspace;
1777 thread_info mock_thread (&mock_inferior, mock_ptid);
1778
1779 scoped_restore restore_thread_list
1780 = make_scoped_restore (&thread_list, &mock_thread);
1781
1782 /* Add the mock inferior to the inferior list so that look ups by
1783 target+ptid can find it. */
1784 scoped_restore restore_inferior_list
1785 = make_scoped_restore (&inferior_list);
1786 inferior_list = &mock_inferior;
1787
1788 /* Switch to the mock inferior. */
1789 scoped_restore_current_inferior restore_current_inferior;
1790 set_current_inferior (&mock_inferior);
1791
1792 /* Push the process_stratum target so we can mock accessing
1793 registers. */
1794 push_target (&mock_target);
1795
1796 /* Pop it again on exit (return/exception). */
1797 struct on_exit
1798 {
1799 ~on_exit ()
1800 {
1801 pop_all_targets_at_and_above (process_stratum);
1802 }
1803 } pop_targets;
1804
1805 /* Switch to the mock thread. */
1806 scoped_restore restore_inferior_ptid
1807 = make_scoped_restore (&inferior_ptid, mock_ptid);
1808
1809 /* Test that read one raw register from regcache_no_target will go
1810 to the target layer. */
1811 int regnum;
1812
1813 /* Find a raw register which size isn't zero. */
1814 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1815 {
1816 if (register_size (gdbarch, regnum) != 0)
1817 break;
1818 }
1819
1820 readwrite_regcache readwrite (gdbarch);
1821 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1822
1823 readwrite.raw_read (regnum, buf.data ());
1824
1825 /* raw_read calls target_fetch_registers. */
1826 SELF_CHECK (mock_target.fetch_registers_called > 0);
1827 mock_target.reset ();
1828
1829 /* Mark all raw registers valid, so the following raw registers
1830 accesses won't go to target. */
1831 for (auto i = 0; i < gdbarch_num_regs (gdbarch); i++)
1832 readwrite.raw_update (i);
1833
1834 mock_target.reset ();
1835 /* Then, read all raw and pseudo registers, and don't expect calling
1836 to_{fetch,store}_registers. */
1837 for (int regnum = 0;
1838 regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1839 regnum++)
1840 {
1841 if (register_size (gdbarch, regnum) == 0)
1842 continue;
1843
1844 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1845
1846 SELF_CHECK (REG_VALID == readwrite.cooked_read (regnum, buf.data ()));
1847
1848 SELF_CHECK (mock_target.fetch_registers_called == 0);
1849 SELF_CHECK (mock_target.store_registers_called == 0);
1850
1851 /* Some SPU pseudo registers are got via TARGET_OBJECT_SPU. */
1852 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1853 SELF_CHECK (mock_target.xfer_partial_called == 0);
1854
1855 mock_target.reset ();
1856 }
1857
1858 regcache readonly (regcache::readonly, readwrite);
1859
1860 /* GDB may go to target layer to fetch all registers and memory for
1861 readonly regcache. */
1862 mock_target.reset ();
1863
1864 for (int regnum = 0;
1865 regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1866 regnum++)
1867 {
1868 if (register_size (gdbarch, regnum) == 0)
1869 continue;
1870
1871 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1872 enum register_status status = readonly.cooked_read (regnum,
1873 buf.data ());
1874
1875 if (regnum < gdbarch_num_regs (gdbarch))
1876 {
1877 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1878
1879 if (bfd_arch == bfd_arch_frv || bfd_arch == bfd_arch_h8300
1880 || bfd_arch == bfd_arch_m32c || bfd_arch == bfd_arch_sh
1881 || bfd_arch == bfd_arch_alpha || bfd_arch == bfd_arch_v850
1882 || bfd_arch == bfd_arch_msp430 || bfd_arch == bfd_arch_mep
1883 || bfd_arch == bfd_arch_mips || bfd_arch == bfd_arch_v850_rh850
1884 || bfd_arch == bfd_arch_tic6x || bfd_arch == bfd_arch_mn10300
1885 || bfd_arch == bfd_arch_rl78 || bfd_arch == bfd_arch_score)
1886 {
1887 /* Raw registers. If raw registers are not in save_reggroup,
1888 their status are unknown. */
1889 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1890 SELF_CHECK (status == REG_VALID);
1891 else
1892 SELF_CHECK (status == REG_UNKNOWN);
1893 }
1894 else
1895 SELF_CHECK (status == REG_VALID);
1896 }
1897 else
1898 {
1899 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1900 SELF_CHECK (status == REG_VALID);
1901 else
1902 {
1903 /* If pseudo registers are not in save_reggroup, some of
1904 them can be computed from saved raw registers, but some
1905 of them are unknown. */
1906 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1907
1908 if (bfd_arch == bfd_arch_frv
1909 || bfd_arch == bfd_arch_m32c
1910 || bfd_arch == bfd_arch_mep
1911 || bfd_arch == bfd_arch_sh)
1912 SELF_CHECK (status == REG_VALID || status == REG_UNKNOWN);
1913 else if (bfd_arch == bfd_arch_mips
1914 || bfd_arch == bfd_arch_h8300)
1915 SELF_CHECK (status == REG_UNKNOWN);
1916 else
1917 SELF_CHECK (status == REG_VALID);
1918 }
1919 }
1920
1921 SELF_CHECK (mock_target.fetch_registers_called == 0);
1922 SELF_CHECK (mock_target.store_registers_called == 0);
1923 SELF_CHECK (mock_target.xfer_partial_called == 0);
1924
1925 mock_target.reset ();
1926 }
1927 }
1928
1929 } // namespace selftests
1930 #endif /* GDB_SELF_TEST */
1931
1932 void
1933 _initialize_regcache (void)
1934 {
1935 regcache_descr_handle
1936 = gdbarch_data_register_post_init (init_regcache_descr);
1937
1938 observer_attach_target_changed (regcache_observer_target_changed);
1939 observer_attach_thread_ptid_changed (regcache::regcache_thread_ptid_changed);
1940
1941 add_com ("flushregs", class_maintenance, reg_flush_command,
1942 _("Force gdb to flush its register cache (maintainer command)"));
1943
1944 add_cmd ("registers", class_maintenance, maintenance_print_registers,
1945 _("Print the internal register configuration.\n"
1946 "Takes an optional file parameter."), &maintenanceprintlist);
1947 add_cmd ("raw-registers", class_maintenance,
1948 maintenance_print_raw_registers,
1949 _("Print the internal register configuration "
1950 "including raw values.\n"
1951 "Takes an optional file parameter."), &maintenanceprintlist);
1952 add_cmd ("cooked-registers", class_maintenance,
1953 maintenance_print_cooked_registers,
1954 _("Print the internal register configuration "
1955 "including cooked values.\n"
1956 "Takes an optional file parameter."), &maintenanceprintlist);
1957 add_cmd ("register-groups", class_maintenance,
1958 maintenance_print_register_groups,
1959 _("Print the internal register configuration "
1960 "including each register's group.\n"
1961 "Takes an optional file parameter."),
1962 &maintenanceprintlist);
1963 add_cmd ("remote-registers", class_maintenance,
1964 maintenance_print_remote_registers, _("\
1965 Print the internal register configuration including each register's\n\
1966 remote register number and buffer offset in the g/G packets.\n\
1967 Takes an optional file parameter."),
1968 &maintenanceprintlist);
1969
1970 #if GDB_SELF_TEST
1971 selftests::register_test ("current_regcache", selftests::current_regcache_test);
1972
1973 selftests::register_test_foreach_arch ("regcache::cooked_read_test",
1974 selftests::cooked_read_test);
1975 #endif
1976 }
This page took 0.070558 seconds and 4 git commands to generate.