Phase 1 of the ptid_t changes.
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "inferior.h"
24 #include "target.h"
25 #include "gdbarch.h"
26 #include "gdbcmd.h"
27 #include "regcache.h"
28 #include "gdb_assert.h"
29
30 /*
31 * DATA STRUCTURE
32 *
33 * Here is the actual register cache.
34 */
35
36 /* NOTE: this is a write-through cache. There is no "dirty" bit for
37 recording if the register values have been changed (eg. by the
38 user). Therefore all registers must be written back to the
39 target when appropriate. */
40
41 /* REGISTERS contains the cached register values (in target byte order). */
42
43 char *registers;
44
45 /* REGISTER_VALID is 0 if the register needs to be fetched,
46 1 if it has been fetched, and
47 -1 if the register value was not available.
48 "Not available" means don't try to fetch it again. */
49
50 signed char *register_valid;
51
52 /* The thread/process associated with the current set of registers. */
53
54 static ptid_t registers_ptid;
55
56 /*
57 * FUNCTIONS:
58 */
59
60 /* REGISTER_CACHED()
61
62 Returns 0 if the value is not in the cache (needs fetch).
63 >0 if the value is in the cache.
64 <0 if the value is permanently unavailable (don't ask again). */
65
66 int
67 register_cached (int regnum)
68 {
69 return register_valid[regnum];
70 }
71
72 /* Record that REGNUM's value is cached if STATE is >0, uncached but
73 fetchable if STATE is 0, and uncached and unfetchable if STATE is <0. */
74
75 void
76 set_register_cached (int regnum, int state)
77 {
78 register_valid[regnum] = state;
79 }
80
81 /* REGISTER_CHANGED
82
83 invalidate a single register REGNUM in the cache */
84 void
85 register_changed (int regnum)
86 {
87 set_register_cached (regnum, 0);
88 }
89
90 /* If REGNUM >= 0, return a pointer to register REGNUM's cache buffer area,
91 else return a pointer to the start of the cache buffer. */
92
93 char *
94 register_buffer (int regnum)
95 {
96 if (regnum < 0)
97 return registers;
98 else
99 return &registers[REGISTER_BYTE (regnum)];
100 }
101
102 /* Return whether register REGNUM is a real register. */
103
104 static int
105 real_register (int regnum)
106 {
107 return regnum >= 0 && regnum < NUM_REGS;
108 }
109
110 /* Return whether register REGNUM is a pseudo register. */
111
112 static int
113 pseudo_register (int regnum)
114 {
115 return regnum >= NUM_REGS && regnum < NUM_REGS + NUM_PSEUDO_REGS;
116 }
117
118 /* Fetch register REGNUM into the cache. */
119
120 static void
121 fetch_register (int regnum)
122 {
123 if (real_register (regnum))
124 target_fetch_registers (regnum);
125 else if (pseudo_register (regnum))
126 FETCH_PSEUDO_REGISTER (regnum);
127 }
128
129 /* Write register REGNUM cached value to the target. */
130
131 static void
132 store_register (int regnum)
133 {
134 if (real_register (regnum))
135 target_store_registers (regnum);
136 else if (pseudo_register (regnum))
137 STORE_PSEUDO_REGISTER (regnum);
138 }
139
140 /* Low level examining and depositing of registers.
141
142 The caller is responsible for making sure that the inferior is
143 stopped before calling the fetching routines, or it will get
144 garbage. (a change from GDB version 3, in which the caller got the
145 value from the last stop). */
146
147 /* REGISTERS_CHANGED ()
148
149 Indicate that registers may have changed, so invalidate the cache. */
150
151 void
152 registers_changed (void)
153 {
154 int i;
155
156 registers_ptid = pid_to_ptid (-1);
157
158 /* Force cleanup of any alloca areas if using C alloca instead of
159 a builtin alloca. This particular call is used to clean up
160 areas allocated by low level target code which may build up
161 during lengthy interactions between gdb and the target before
162 gdb gives control to the user (ie watchpoints). */
163 alloca (0);
164
165 for (i = 0; i < NUM_REGS; i++)
166 set_register_cached (i, 0);
167
168 /* Assume that if all the hardware regs have changed,
169 then so have the pseudo-registers. */
170 for (i = NUM_REGS; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
171 set_register_cached (i, 0);
172
173 if (registers_changed_hook)
174 registers_changed_hook ();
175 }
176
177 /* REGISTERS_FETCHED ()
178
179 Indicate that all registers have been fetched, so mark them all valid. */
180
181
182 void
183 registers_fetched (void)
184 {
185 int i;
186
187 for (i = 0; i < NUM_REGS; i++)
188 set_register_cached (i, 1);
189 /* Do not assume that the pseudo-regs have also been fetched.
190 Fetching all real regs might not account for all pseudo-regs. */
191 }
192
193 /* read_register_bytes and write_register_bytes are generally a *BAD*
194 idea. They are inefficient because they need to check for partial
195 updates, which can only be done by scanning through all of the
196 registers and seeing if the bytes that are being read/written fall
197 inside of an invalid register. [The main reason this is necessary
198 is that register sizes can vary, so a simple index won't suffice.]
199 It is far better to call read_register_gen and write_register_gen
200 if you want to get at the raw register contents, as it only takes a
201 regnum as an argument, and therefore can't do a partial register
202 update.
203
204 Prior to the recent fixes to check for partial updates, both read
205 and write_register_bytes always checked to see if any registers
206 were stale, and then called target_fetch_registers (-1) to update
207 the whole set. This caused really slowed things down for remote
208 targets. */
209
210 /* Copy INLEN bytes of consecutive data from registers
211 starting with the INREGBYTE'th byte of register data
212 into memory at MYADDR. */
213
214 void
215 read_register_bytes (int in_start, char *in_buf, int in_len)
216 {
217 int in_end = in_start + in_len;
218 int regnum;
219 char *reg_buf = alloca (MAX_REGISTER_RAW_SIZE);
220
221 /* See if we are trying to read bytes from out-of-date registers. If so,
222 update just those registers. */
223
224 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
225 {
226 int reg_start;
227 int reg_end;
228 int reg_len;
229 int start;
230 int end;
231 int byte;
232
233 if (REGISTER_NAME (regnum) == NULL || *REGISTER_NAME (regnum) == '\0')
234 continue;
235
236 reg_start = REGISTER_BYTE (regnum);
237 reg_len = REGISTER_RAW_SIZE (regnum);
238 reg_end = reg_start + reg_len;
239
240 if (reg_end <= in_start || in_end <= reg_start)
241 /* The range the user wants to read doesn't overlap with regnum. */
242 continue;
243
244 /* Force the cache to fetch the entire register. */
245 read_register_gen (regnum, reg_buf);
246
247 /* Legacy note: This function, for some reason, allows a NULL
248 input buffer. If the buffer is NULL, the registers are still
249 fetched, just the final transfer is skipped. */
250 if (in_buf == NULL)
251 continue;
252
253 /* start = max (reg_start, in_start) */
254 if (reg_start > in_start)
255 start = reg_start;
256 else
257 start = in_start;
258
259 /* end = min (reg_end, in_end) */
260 if (reg_end < in_end)
261 end = reg_end;
262 else
263 end = in_end;
264
265 /* Transfer just the bytes common to both IN_BUF and REG_BUF */
266 for (byte = start; byte < end; byte++)
267 {
268 in_buf[byte - in_start] = reg_buf[byte - reg_start];
269 }
270 }
271 }
272
273 /* Read register REGNUM into memory at MYADDR, which must be large
274 enough for REGISTER_RAW_BYTES (REGNUM). Target byte-order. If the
275 register is known to be the size of a CORE_ADDR or smaller,
276 read_register can be used instead. */
277
278 static void
279 legacy_read_register_gen (int regnum, char *myaddr)
280 {
281 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
282 if (! ptid_equal (registers_ptid, inferior_ptid))
283 {
284 registers_changed ();
285 registers_ptid = inferior_ptid;
286 }
287
288 if (!register_cached (regnum))
289 fetch_register (regnum);
290
291 memcpy (myaddr, register_buffer (regnum),
292 REGISTER_RAW_SIZE (regnum));
293 }
294
295 void
296 regcache_read (int rawnum, char *buf)
297 {
298 gdb_assert (rawnum >= 0 && rawnum < NUM_REGS);
299 /* For moment, just use underlying legacy code. Ulgh!!! */
300 legacy_read_register_gen (rawnum, buf);
301 }
302
303 void
304 read_register_gen (int regnum, char *buf)
305 {
306 if (! gdbarch_register_read_p (current_gdbarch))
307 {
308 legacy_read_register_gen (regnum, buf);
309 return;
310 }
311 gdbarch_register_read (current_gdbarch, regnum, buf);
312 }
313
314
315 /* Write register REGNUM at MYADDR to the target. MYADDR points at
316 REGISTER_RAW_BYTES(REGNUM), which must be in target byte-order. */
317
318 /* Registers we shouldn't try to store. */
319 #if !defined (CANNOT_STORE_REGISTER)
320 #define CANNOT_STORE_REGISTER(regnum) 0
321 #endif
322
323 static void
324 legacy_write_register_gen (int regnum, char *myaddr)
325 {
326 int size;
327 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
328
329 /* On the sparc, writing %g0 is a no-op, so we don't even want to
330 change the registers array if something writes to this register. */
331 if (CANNOT_STORE_REGISTER (regnum))
332 return;
333
334 if (! ptid_equal (registers_ptid, inferior_ptid))
335 {
336 registers_changed ();
337 registers_ptid = inferior_ptid;
338 }
339
340 size = REGISTER_RAW_SIZE (regnum);
341
342 /* If we have a valid copy of the register, and new value == old value,
343 then don't bother doing the actual store. */
344
345 if (register_cached (regnum)
346 && memcmp (register_buffer (regnum), myaddr, size) == 0)
347 return;
348
349 if (real_register (regnum))
350 target_prepare_to_store ();
351
352 memcpy (register_buffer (regnum), myaddr, size);
353
354 set_register_cached (regnum, 1);
355 store_register (regnum);
356 }
357
358 void
359 regcache_write (int rawnum, char *buf)
360 {
361 gdb_assert (rawnum >= 0 && rawnum < NUM_REGS);
362 /* For moment, just use underlying legacy code. Ulgh!!! */
363 legacy_write_register_gen (rawnum, buf);
364 }
365
366 void
367 write_register_gen (int regnum, char *buf)
368 {
369 if (! gdbarch_register_write_p (current_gdbarch))
370 {
371 legacy_write_register_gen (regnum, buf);
372 return;
373 }
374 gdbarch_register_write (current_gdbarch, regnum, buf);
375 }
376
377 /* Copy INLEN bytes of consecutive data from memory at MYADDR
378 into registers starting with the MYREGSTART'th byte of register data. */
379
380 void
381 write_register_bytes (int myregstart, char *myaddr, int inlen)
382 {
383 int myregend = myregstart + inlen;
384 int regnum;
385
386 target_prepare_to_store ();
387
388 /* Scan through the registers updating any that are covered by the
389 range myregstart<=>myregend using write_register_gen, which does
390 nice things like handling threads, and avoiding updates when the
391 new and old contents are the same. */
392
393 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
394 {
395 int regstart, regend;
396
397 regstart = REGISTER_BYTE (regnum);
398 regend = regstart + REGISTER_RAW_SIZE (regnum);
399
400 /* Is this register completely outside the range the user is writing? */
401 if (myregend <= regstart || regend <= myregstart)
402 /* do nothing */ ;
403
404 /* Is this register completely within the range the user is writing? */
405 else if (myregstart <= regstart && regend <= myregend)
406 write_register_gen (regnum, myaddr + (regstart - myregstart));
407
408 /* The register partially overlaps the range being written. */
409 else
410 {
411 char *regbuf = (char*) alloca (MAX_REGISTER_RAW_SIZE);
412 /* What's the overlap between this register's bytes and
413 those the caller wants to write? */
414 int overlapstart = max (regstart, myregstart);
415 int overlapend = min (regend, myregend);
416
417 /* We may be doing a partial update of an invalid register.
418 Update it from the target before scribbling on it. */
419 read_register_gen (regnum, regbuf);
420
421 memcpy (registers + overlapstart,
422 myaddr + (overlapstart - myregstart),
423 overlapend - overlapstart);
424
425 store_register (regnum);
426 }
427 }
428 }
429
430
431 /* Return the contents of register REGNUM as an unsigned integer. */
432
433 ULONGEST
434 read_register (int regnum)
435 {
436 char *buf = alloca (REGISTER_RAW_SIZE (regnum));
437 read_register_gen (regnum, buf);
438 return (extract_unsigned_integer (buf, REGISTER_RAW_SIZE (regnum)));
439 }
440
441 ULONGEST
442 read_register_pid (int regnum, ptid_t ptid)
443 {
444 ptid_t save_ptid;
445 int save_pid;
446 CORE_ADDR retval;
447
448 if (ptid_equal (ptid, inferior_ptid))
449 return read_register (regnum);
450
451 save_ptid = inferior_ptid;
452
453 inferior_ptid = ptid;
454
455 retval = read_register (regnum);
456
457 inferior_ptid = save_ptid;
458
459 return retval;
460 }
461
462 /* Return the contents of register REGNUM as a signed integer. */
463
464 LONGEST
465 read_signed_register (int regnum)
466 {
467 void *buf = alloca (REGISTER_RAW_SIZE (regnum));
468 read_register_gen (regnum, buf);
469 return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum)));
470 }
471
472 LONGEST
473 read_signed_register_pid (int regnum, ptid_t ptid)
474 {
475 ptid_t save_ptid;
476 LONGEST retval;
477
478 if (ptid_equal (ptid, inferior_ptid))
479 return read_signed_register (regnum);
480
481 save_ptid = inferior_ptid;
482
483 inferior_ptid = ptid;
484
485 retval = read_signed_register (regnum);
486
487 inferior_ptid = save_ptid;
488
489 return retval;
490 }
491
492 /* Store VALUE into the raw contents of register number REGNUM. */
493
494 void
495 write_register (int regnum, LONGEST val)
496 {
497 void *buf;
498 int size;
499 size = REGISTER_RAW_SIZE (regnum);
500 buf = alloca (size);
501 store_signed_integer (buf, size, (LONGEST) val);
502 write_register_gen (regnum, buf);
503 }
504
505 void
506 write_register_pid (int regnum, CORE_ADDR val, ptid_t ptid)
507 {
508 ptid_t save_ptid;
509
510 if (ptid_equal (ptid, inferior_ptid))
511 {
512 write_register (regnum, val);
513 return;
514 }
515
516 save_ptid = inferior_ptid;
517
518 inferior_ptid = ptid;
519
520 write_register (regnum, val);
521
522 inferior_ptid = save_ptid;
523 }
524
525 /* SUPPLY_REGISTER()
526
527 Record that register REGNUM contains VAL. This is used when the
528 value is obtained from the inferior or core dump, so there is no
529 need to store the value there.
530
531 If VAL is a NULL pointer, then it's probably an unsupported register.
532 We just set its value to all zeros. We might want to record this
533 fact, and report it to the users of read_register and friends. */
534
535 void
536 supply_register (int regnum, char *val)
537 {
538 #if 1
539 if (! ptid_equal (registers_ptid, inferior_ptid))
540 {
541 registers_changed ();
542 registers_ptid = inferior_ptid;
543 }
544 #endif
545
546 set_register_cached (regnum, 1);
547 if (val)
548 memcpy (register_buffer (regnum), val,
549 REGISTER_RAW_SIZE (regnum));
550 else
551 memset (register_buffer (regnum), '\000',
552 REGISTER_RAW_SIZE (regnum));
553
554 /* On some architectures, e.g. HPPA, there are a few stray bits in
555 some registers, that the rest of the code would like to ignore. */
556
557 /* NOTE: cagney/2001-03-16: The macro CLEAN_UP_REGISTER_VALUE is
558 going to be deprecated. Instead architectures will leave the raw
559 register value as is and instead clean things up as they pass
560 through the method gdbarch_register_read() clean up the
561 values. */
562
563 #ifdef CLEAN_UP_REGISTER_VALUE
564 CLEAN_UP_REGISTER_VALUE (regnum, register_buffer (regnum));
565 #endif
566 }
567
568 /* read_pc, write_pc, read_sp, write_sp, read_fp, write_fp, etc.
569 Special handling for registers PC, SP, and FP. */
570
571 /* NOTE: cagney/2001-02-18: The functions generic_target_read_pc(),
572 read_pc_pid(), read_pc(), generic_target_write_pc(),
573 write_pc_pid(), write_pc(), generic_target_read_sp(), read_sp(),
574 generic_target_write_sp(), write_sp(), generic_target_read_fp(),
575 read_fp(), generic_target_write_fp(), write_fp will eventually be
576 moved out of the reg-cache into either frame.[hc] or to the
577 multi-arch framework. The are not part of the raw register cache. */
578
579 /* This routine is getting awfully cluttered with #if's. It's probably
580 time to turn this into READ_PC and define it in the tm.h file.
581 Ditto for write_pc.
582
583 1999-06-08: The following were re-written so that it assumes the
584 existence of a TARGET_READ_PC et.al. macro. A default generic
585 version of that macro is made available where needed.
586
587 Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled
588 by the multi-arch framework, it will eventually be possible to
589 eliminate the intermediate read_pc_pid(). The client would call
590 TARGET_READ_PC directly. (cagney). */
591
592 CORE_ADDR
593 generic_target_read_pc (ptid_t ptid)
594 {
595 #ifdef PC_REGNUM
596 if (PC_REGNUM >= 0)
597 {
598 CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, ptid));
599 return pc_val;
600 }
601 #endif
602 internal_error (__FILE__, __LINE__,
603 "generic_target_read_pc");
604 return 0;
605 }
606
607 CORE_ADDR
608 read_pc_pid (ptid_t ptid)
609 {
610 ptid_t saved_inferior_ptid;
611 CORE_ADDR pc_val;
612
613 /* In case ptid != inferior_ptid. */
614 saved_inferior_ptid = inferior_ptid;
615 inferior_ptid = ptid;
616
617 pc_val = TARGET_READ_PC (ptid);
618
619 inferior_ptid = saved_inferior_ptid;
620 return pc_val;
621 }
622
623 CORE_ADDR
624 read_pc (void)
625 {
626 return read_pc_pid (inferior_ptid);
627 }
628
629 void
630 generic_target_write_pc (CORE_ADDR pc, ptid_t ptid)
631 {
632 #ifdef PC_REGNUM
633 if (PC_REGNUM >= 0)
634 write_register_pid (PC_REGNUM, pc, ptid);
635 if (NPC_REGNUM >= 0)
636 write_register_pid (NPC_REGNUM, pc + 4, ptid);
637 if (NNPC_REGNUM >= 0)
638 write_register_pid (NNPC_REGNUM, pc + 8, ptid);
639 #else
640 internal_error (__FILE__, __LINE__,
641 "generic_target_write_pc");
642 #endif
643 }
644
645 void
646 write_pc_pid (CORE_ADDR pc, ptid_t ptid)
647 {
648 ptid_t saved_inferior_ptid;
649
650 /* In case ptid != inferior_ptid. */
651 saved_inferior_ptid = inferior_ptid;
652 inferior_ptid = ptid;
653
654 TARGET_WRITE_PC (pc, ptid);
655
656 inferior_ptid = saved_inferior_ptid;
657 }
658
659 void
660 write_pc (CORE_ADDR pc)
661 {
662 write_pc_pid (pc, inferior_ptid);
663 }
664
665 /* Cope with strage ways of getting to the stack and frame pointers */
666
667 CORE_ADDR
668 generic_target_read_sp (void)
669 {
670 #ifdef SP_REGNUM
671 if (SP_REGNUM >= 0)
672 return read_register (SP_REGNUM);
673 #endif
674 internal_error (__FILE__, __LINE__,
675 "generic_target_read_sp");
676 }
677
678 CORE_ADDR
679 read_sp (void)
680 {
681 return TARGET_READ_SP ();
682 }
683
684 void
685 generic_target_write_sp (CORE_ADDR val)
686 {
687 #ifdef SP_REGNUM
688 if (SP_REGNUM >= 0)
689 {
690 write_register (SP_REGNUM, val);
691 return;
692 }
693 #endif
694 internal_error (__FILE__, __LINE__,
695 "generic_target_write_sp");
696 }
697
698 void
699 write_sp (CORE_ADDR val)
700 {
701 TARGET_WRITE_SP (val);
702 }
703
704 CORE_ADDR
705 generic_target_read_fp (void)
706 {
707 #ifdef FP_REGNUM
708 if (FP_REGNUM >= 0)
709 return read_register (FP_REGNUM);
710 #endif
711 internal_error (__FILE__, __LINE__,
712 "generic_target_read_fp");
713 }
714
715 CORE_ADDR
716 read_fp (void)
717 {
718 return TARGET_READ_FP ();
719 }
720
721 void
722 generic_target_write_fp (CORE_ADDR val)
723 {
724 #ifdef FP_REGNUM
725 if (FP_REGNUM >= 0)
726 {
727 write_register (FP_REGNUM, val);
728 return;
729 }
730 #endif
731 internal_error (__FILE__, __LINE__,
732 "generic_target_write_fp");
733 }
734
735 void
736 write_fp (CORE_ADDR val)
737 {
738 TARGET_WRITE_FP (val);
739 }
740
741 /* ARGSUSED */
742 static void
743 reg_flush_command (char *command, int from_tty)
744 {
745 /* Force-flush the register cache. */
746 registers_changed ();
747 if (from_tty)
748 printf_filtered ("Register cache flushed.\n");
749 }
750
751
752 static void
753 build_regcache (void)
754 {
755 /* We allocate some extra slop since we do a lot of memcpy's around
756 `registers', and failing-soft is better than failing hard. */
757 int sizeof_registers = REGISTER_BYTES + /* SLOP */ 256;
758 int sizeof_register_valid =
759 (NUM_REGS + NUM_PSEUDO_REGS) * sizeof (*register_valid);
760 registers = xmalloc (sizeof_registers);
761 memset (registers, 0, sizeof_registers);
762 register_valid = xmalloc (sizeof_register_valid);
763 memset (register_valid, 0, sizeof_register_valid);
764 }
765
766 void
767 _initialize_regcache (void)
768 {
769 build_regcache ();
770
771 register_gdbarch_swap (&registers, sizeof (registers), NULL);
772 register_gdbarch_swap (&register_valid, sizeof (register_valid), NULL);
773 register_gdbarch_swap (NULL, 0, build_regcache);
774
775 add_com ("flushregs", class_maintenance, reg_flush_command,
776 "Force gdb to flush its register cache (maintainer command)");
777
778 /* Initialize the thread/process associated with the current set of
779 registers. For now, -1 is special, and means `no current process'. */
780 registers_ptid = pid_to_ptid (-1);
781 }
This page took 0.04639 seconds and 4 git commands to generate.