c921bddd5368a35da8bf5cbc94a24227a30338a3
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdbarch.h"
25 #include "gdbcmd.h"
26 #include "regcache.h"
27 #include "reggroups.h"
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "gdbcmd.h" /* For maintenanceprintlist. */
31 #include "observer.h"
32
33 /*
34 * DATA STRUCTURE
35 *
36 * Here is the actual register cache.
37 */
38
39 /* Per-architecture object describing the layout of a register cache.
40 Computed once when the architecture is created */
41
42 struct gdbarch_data *regcache_descr_handle;
43
44 struct regcache_descr
45 {
46 /* The architecture this descriptor belongs to. */
47 struct gdbarch *gdbarch;
48
49 /* The raw register cache. Each raw (or hard) register is supplied
50 by the target interface. The raw cache should not contain
51 redundant information - if the PC is constructed from two
52 registers then those registers and not the PC lives in the raw
53 cache. */
54 int nr_raw_registers;
55 long sizeof_raw_registers;
56 long sizeof_raw_register_valid_p;
57
58 /* The cooked register space. Each cooked register in the range
59 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
60 register. The remaining [NR_RAW_REGISTERS
61 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
62 both raw registers and memory by the architecture methods
63 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
64 int nr_cooked_registers;
65 long sizeof_cooked_registers;
66 long sizeof_cooked_register_valid_p;
67
68 /* Offset and size (in 8 bit bytes), of reach register in the
69 register cache. All registers (including those in the range
70 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an offset.
71 Assigning all registers an offset makes it possible to keep
72 legacy code, such as that found in read_register_bytes() and
73 write_register_bytes() working. */
74 long *register_offset;
75 long *sizeof_register;
76
77 /* Cached table containing the type of each register. */
78 struct type **register_type;
79 };
80
81 static void *
82 init_regcache_descr (struct gdbarch *gdbarch)
83 {
84 int i;
85 struct regcache_descr *descr;
86 gdb_assert (gdbarch != NULL);
87
88 /* Create an initial, zero filled, table. */
89 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
90 descr->gdbarch = gdbarch;
91
92 /* Total size of the register space. The raw registers are mapped
93 directly onto the raw register cache while the pseudo's are
94 either mapped onto raw-registers or memory. */
95 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
96 + gdbarch_num_pseudo_regs (gdbarch);
97 descr->sizeof_cooked_register_valid_p = gdbarch_num_regs (gdbarch)
98 + gdbarch_num_pseudo_regs
99 (gdbarch);
100
101 /* Fill in a table of register types. */
102 descr->register_type
103 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, struct type *);
104 for (i = 0; i < descr->nr_cooked_registers; i++)
105 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
106
107 /* Construct a strictly RAW register cache. Don't allow pseudo's
108 into the register cache. */
109 descr->nr_raw_registers = gdbarch_num_regs (gdbarch);
110
111 /* FIXME: cagney/2002-08-13: Overallocate the register_valid_p
112 array. This pretects GDB from erant code that accesses elements
113 of the global register_valid_p[] array in the range
114 [gdbarch_num_regs .. gdbarch_num_regs + gdbarch_num_pseudo_regs). */
115 descr->sizeof_raw_register_valid_p = descr->sizeof_cooked_register_valid_p;
116
117 /* Lay out the register cache.
118
119 NOTE: cagney/2002-05-22: Only register_type() is used when
120 constructing the register cache. It is assumed that the
121 register's raw size, virtual size and type length are all the
122 same. */
123
124 {
125 long offset = 0;
126 descr->sizeof_register
127 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
128 descr->register_offset
129 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
130 for (i = 0; i < descr->nr_cooked_registers; i++)
131 {
132 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
133 descr->register_offset[i] = offset;
134 offset += descr->sizeof_register[i];
135 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
136 }
137 /* Set the real size of the register cache buffer. */
138 descr->sizeof_cooked_registers = offset;
139 }
140
141 /* FIXME: cagney/2002-05-22: Should only need to allocate space for
142 the raw registers. Unfortunately some code still accesses the
143 register array directly using the global registers[]. Until that
144 code has been purged, play safe and over allocating the register
145 buffer. Ulgh! */
146 descr->sizeof_raw_registers = descr->sizeof_cooked_registers;
147
148 return descr;
149 }
150
151 static struct regcache_descr *
152 regcache_descr (struct gdbarch *gdbarch)
153 {
154 return gdbarch_data (gdbarch, regcache_descr_handle);
155 }
156
157 /* Utility functions returning useful register attributes stored in
158 the regcache descr. */
159
160 struct type *
161 register_type (struct gdbarch *gdbarch, int regnum)
162 {
163 struct regcache_descr *descr = regcache_descr (gdbarch);
164 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
165 return descr->register_type[regnum];
166 }
167
168 /* Utility functions returning useful register attributes stored in
169 the regcache descr. */
170
171 int
172 register_size (struct gdbarch *gdbarch, int regnum)
173 {
174 struct regcache_descr *descr = regcache_descr (gdbarch);
175 int size;
176 gdb_assert (regnum >= 0
177 && regnum < (gdbarch_num_regs (gdbarch)
178 + gdbarch_num_pseudo_regs (gdbarch)));
179 size = descr->sizeof_register[regnum];
180 return size;
181 }
182
183 /* The register cache for storing raw register values. */
184
185 struct regcache
186 {
187 struct regcache_descr *descr;
188 /* The register buffers. A read-only register cache can hold the
189 full [0 .. gdbarch_num_regs + gdbarch_num_pseudo_regs) while a read/write
190 register cache can only hold [0 .. gdbarch_num_regs). */
191 gdb_byte *registers;
192 /* Register cache status:
193 register_valid_p[REG] == 0 if REG value is not in the cache
194 > 0 if REG value is in the cache
195 < 0 if REG value is permanently unavailable */
196 signed char *register_valid_p;
197 /* Is this a read-only cache? A read-only cache is used for saving
198 the target's register state (e.g, across an inferior function
199 call or just before forcing a function return). A read-only
200 cache can only be updated via the methods regcache_dup() and
201 regcache_cpy(). The actual contents are determined by the
202 reggroup_save and reggroup_restore methods. */
203 int readonly_p;
204 /* If this is a read-write cache, which thread's registers is
205 it connected to? */
206 ptid_t ptid;
207 };
208
209 struct regcache *
210 regcache_xmalloc (struct gdbarch *gdbarch)
211 {
212 struct regcache_descr *descr;
213 struct regcache *regcache;
214 gdb_assert (gdbarch != NULL);
215 descr = regcache_descr (gdbarch);
216 regcache = XMALLOC (struct regcache);
217 regcache->descr = descr;
218 regcache->registers
219 = XCALLOC (descr->sizeof_raw_registers, gdb_byte);
220 regcache->register_valid_p
221 = XCALLOC (descr->sizeof_raw_register_valid_p, gdb_byte);
222 regcache->readonly_p = 1;
223 regcache->ptid = minus_one_ptid;
224 return regcache;
225 }
226
227 void
228 regcache_xfree (struct regcache *regcache)
229 {
230 if (regcache == NULL)
231 return;
232 xfree (regcache->registers);
233 xfree (regcache->register_valid_p);
234 xfree (regcache);
235 }
236
237 static void
238 do_regcache_xfree (void *data)
239 {
240 regcache_xfree (data);
241 }
242
243 struct cleanup *
244 make_cleanup_regcache_xfree (struct regcache *regcache)
245 {
246 return make_cleanup (do_regcache_xfree, regcache);
247 }
248
249 /* Return REGCACHE's architecture. */
250
251 struct gdbarch *
252 get_regcache_arch (const struct regcache *regcache)
253 {
254 return regcache->descr->gdbarch;
255 }
256
257 /* Return a pointer to register REGNUM's buffer cache. */
258
259 static gdb_byte *
260 register_buffer (const struct regcache *regcache, int regnum)
261 {
262 return regcache->registers + regcache->descr->register_offset[regnum];
263 }
264
265 void
266 regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read,
267 void *src)
268 {
269 struct gdbarch *gdbarch = dst->descr->gdbarch;
270 gdb_byte buf[MAX_REGISTER_SIZE];
271 int regnum;
272 /* The DST should be `read-only', if it wasn't then the save would
273 end up trying to write the register values back out to the
274 target. */
275 gdb_assert (dst->readonly_p);
276 /* Clear the dest. */
277 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers);
278 memset (dst->register_valid_p, 0, dst->descr->sizeof_cooked_register_valid_p);
279 /* Copy over any registers (identified by their membership in the
280 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
281 gdbarch_num_pseudo_regs) range is checked since some architectures need
282 to save/restore `cooked' registers that live in memory. */
283 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
284 {
285 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
286 {
287 int valid = cooked_read (src, regnum, buf);
288 if (valid)
289 {
290 memcpy (register_buffer (dst, regnum), buf,
291 register_size (gdbarch, regnum));
292 dst->register_valid_p[regnum] = 1;
293 }
294 }
295 }
296 }
297
298 void
299 regcache_restore (struct regcache *dst,
300 regcache_cooked_read_ftype *cooked_read,
301 void *cooked_read_context)
302 {
303 struct gdbarch *gdbarch = dst->descr->gdbarch;
304 gdb_byte buf[MAX_REGISTER_SIZE];
305 int regnum;
306 /* The dst had better not be read-only. If it is, the `restore'
307 doesn't make much sense. */
308 gdb_assert (!dst->readonly_p);
309 /* Copy over any registers, being careful to only restore those that
310 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
311 + gdbarch_num_pseudo_regs) range is checked since some architectures need
312 to save/restore `cooked' registers that live in memory. */
313 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
314 {
315 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
316 {
317 int valid = cooked_read (cooked_read_context, regnum, buf);
318 if (valid)
319 regcache_cooked_write (dst, regnum, buf);
320 }
321 }
322 }
323
324 static int
325 do_cooked_read (void *src, int regnum, gdb_byte *buf)
326 {
327 struct regcache *regcache = src;
328 if (!regcache->register_valid_p[regnum] && regcache->readonly_p)
329 /* Don't even think about fetching a register from a read-only
330 cache when the register isn't yet valid. There isn't a target
331 from which the register value can be fetched. */
332 return 0;
333 regcache_cooked_read (regcache, regnum, buf);
334 return 1;
335 }
336
337
338 void
339 regcache_cpy (struct regcache *dst, struct regcache *src)
340 {
341 int i;
342 gdb_byte *buf;
343 gdb_assert (src != NULL && dst != NULL);
344 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
345 gdb_assert (src != dst);
346 gdb_assert (src->readonly_p || dst->readonly_p);
347 if (!src->readonly_p)
348 regcache_save (dst, do_cooked_read, src);
349 else if (!dst->readonly_p)
350 regcache_restore (dst, do_cooked_read, src);
351 else
352 regcache_cpy_no_passthrough (dst, src);
353 }
354
355 void
356 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
357 {
358 int i;
359 gdb_assert (src != NULL && dst != NULL);
360 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
361 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
362 move of data into the current regcache. Doing this would be
363 silly - it would mean that valid_p would be completely invalid. */
364 gdb_assert (dst->readonly_p);
365 memcpy (dst->registers, src->registers, dst->descr->sizeof_raw_registers);
366 memcpy (dst->register_valid_p, src->register_valid_p,
367 dst->descr->sizeof_raw_register_valid_p);
368 }
369
370 struct regcache *
371 regcache_dup (struct regcache *src)
372 {
373 struct regcache *newbuf;
374 newbuf = regcache_xmalloc (src->descr->gdbarch);
375 regcache_cpy (newbuf, src);
376 return newbuf;
377 }
378
379 struct regcache *
380 regcache_dup_no_passthrough (struct regcache *src)
381 {
382 struct regcache *newbuf;
383 newbuf = regcache_xmalloc (src->descr->gdbarch);
384 regcache_cpy_no_passthrough (newbuf, src);
385 return newbuf;
386 }
387
388 int
389 regcache_valid_p (const struct regcache *regcache, int regnum)
390 {
391 gdb_assert (regcache != NULL);
392 gdb_assert (regnum >= 0);
393 if (regcache->readonly_p)
394 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
395 else
396 gdb_assert (regnum < regcache->descr->nr_raw_registers);
397
398 return regcache->register_valid_p[regnum];
399 }
400
401 void
402 regcache_invalidate (struct regcache *regcache, int regnum)
403 {
404 gdb_assert (regcache != NULL);
405 gdb_assert (regnum >= 0);
406 gdb_assert (!regcache->readonly_p);
407 gdb_assert (regnum < regcache->descr->nr_raw_registers);
408 regcache->register_valid_p[regnum] = 0;
409 }
410
411
412 /* Global structure containing the current regcache. */
413
414 /* NOTE: this is a write-through cache. There is no "dirty" bit for
415 recording if the register values have been changed (eg. by the
416 user). Therefore all registers must be written back to the
417 target when appropriate. */
418
419 struct regcache_list
420 {
421 struct regcache *regcache;
422 struct regcache_list *next;
423 };
424
425 static struct regcache_list *current_regcache;
426
427 struct regcache *
428 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
429 {
430 struct regcache_list *list;
431 struct regcache *new_regcache;
432
433 for (list = current_regcache; list; list = list->next)
434 if (ptid_equal (list->regcache->ptid, ptid)
435 && get_regcache_arch (list->regcache) == gdbarch)
436 return list->regcache;
437
438 new_regcache = regcache_xmalloc (gdbarch);
439 new_regcache->readonly_p = 0;
440 new_regcache->ptid = ptid;
441
442 list = xmalloc (sizeof (struct regcache_list));
443 list->regcache = new_regcache;
444 list->next = current_regcache;
445 current_regcache = list;
446
447 return new_regcache;
448 }
449
450 static ptid_t current_thread_ptid;
451 static struct gdbarch *current_thread_arch;
452
453 struct regcache *
454 get_thread_regcache (ptid_t ptid)
455 {
456 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
457 {
458 current_thread_ptid = ptid;
459 current_thread_arch = target_thread_architecture (ptid);
460 }
461
462 return get_thread_arch_regcache (ptid, current_thread_arch);
463 }
464
465 struct regcache *
466 get_current_regcache (void)
467 {
468 return get_thread_regcache (inferior_ptid);
469 }
470
471
472 /* Observer for the target_changed event. */
473
474 static void
475 regcache_observer_target_changed (struct target_ops *target)
476 {
477 registers_changed ();
478 }
479
480 /* Update global variables old ptids to hold NEW_PTID if they were
481 holding OLD_PTID. */
482 static void
483 regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
484 {
485 struct regcache_list *list;
486
487 for (list = current_regcache; list; list = list->next)
488 if (ptid_equal (list->regcache->ptid, old_ptid))
489 list->regcache->ptid = new_ptid;
490 }
491
492 /* Low level examining and depositing of registers.
493
494 The caller is responsible for making sure that the inferior is
495 stopped before calling the fetching routines, or it will get
496 garbage. (a change from GDB version 3, in which the caller got the
497 value from the last stop). */
498
499 /* REGISTERS_CHANGED ()
500
501 Indicate that registers may have changed, so invalidate the cache. */
502
503 void
504 registers_changed (void)
505 {
506 struct regcache_list *list, *next;
507
508 for (list = current_regcache; list; list = next)
509 {
510 next = list->next;
511 regcache_xfree (list->regcache);
512 xfree (list);
513 }
514
515 current_regcache = NULL;
516
517 current_thread_ptid = null_ptid;
518 current_thread_arch = NULL;
519
520 /* Need to forget about any frames we have cached, too. */
521 reinit_frame_cache ();
522
523 /* Force cleanup of any alloca areas if using C alloca instead of
524 a builtin alloca. This particular call is used to clean up
525 areas allocated by low level target code which may build up
526 during lengthy interactions between gdb and the target before
527 gdb gives control to the user (ie watchpoints). */
528 alloca (0);
529 }
530
531
532 void
533 regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf)
534 {
535 gdb_assert (regcache != NULL && buf != NULL);
536 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
537 /* Make certain that the register cache is up-to-date with respect
538 to the current thread. This switching shouldn't be necessary
539 only there is still only one target side register cache. Sigh!
540 On the bright side, at least there is a regcache object. */
541 if (!regcache->readonly_p)
542 {
543 if (!regcache_valid_p (regcache, regnum))
544 {
545 struct cleanup *old_chain = save_inferior_ptid ();
546 inferior_ptid = regcache->ptid;
547 target_fetch_registers (regcache, regnum);
548 do_cleanups (old_chain);
549 }
550 #if 0
551 /* FIXME: cagney/2004-08-07: At present a number of targets
552 forget (or didn't know that they needed) to set this leading to
553 panics. Also is the problem that targets need to indicate
554 that a register is in one of the possible states: valid,
555 undefined, unknown. The last of which isn't yet
556 possible. */
557 gdb_assert (regcache_valid_p (regcache, regnum));
558 #endif
559 }
560 /* Copy the value directly into the register cache. */
561 memcpy (buf, register_buffer (regcache, regnum),
562 regcache->descr->sizeof_register[regnum]);
563 }
564
565 void
566 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
567 {
568 gdb_byte *buf;
569 gdb_assert (regcache != NULL);
570 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
571 buf = alloca (regcache->descr->sizeof_register[regnum]);
572 regcache_raw_read (regcache, regnum, buf);
573 (*val) = extract_signed_integer
574 (buf, regcache->descr->sizeof_register[regnum],
575 gdbarch_byte_order (regcache->descr->gdbarch));
576 }
577
578 void
579 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
580 ULONGEST *val)
581 {
582 gdb_byte *buf;
583 gdb_assert (regcache != NULL);
584 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
585 buf = alloca (regcache->descr->sizeof_register[regnum]);
586 regcache_raw_read (regcache, regnum, buf);
587 (*val) = extract_unsigned_integer
588 (buf, regcache->descr->sizeof_register[regnum],
589 gdbarch_byte_order (regcache->descr->gdbarch));
590 }
591
592 void
593 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
594 {
595 void *buf;
596 gdb_assert (regcache != NULL);
597 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
598 buf = alloca (regcache->descr->sizeof_register[regnum]);
599 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
600 gdbarch_byte_order (regcache->descr->gdbarch), val);
601 regcache_raw_write (regcache, regnum, buf);
602 }
603
604 void
605 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
606 ULONGEST val)
607 {
608 void *buf;
609 gdb_assert (regcache != NULL);
610 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
611 buf = alloca (regcache->descr->sizeof_register[regnum]);
612 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
613 gdbarch_byte_order (regcache->descr->gdbarch), val);
614 regcache_raw_write (regcache, regnum, buf);
615 }
616
617 void
618 regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf)
619 {
620 gdb_assert (regnum >= 0);
621 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
622 if (regnum < regcache->descr->nr_raw_registers)
623 regcache_raw_read (regcache, regnum, buf);
624 else if (regcache->readonly_p
625 && regnum < regcache->descr->nr_cooked_registers
626 && regcache->register_valid_p[regnum])
627 /* Read-only register cache, perhaps the cooked value was cached? */
628 memcpy (buf, register_buffer (regcache, regnum),
629 regcache->descr->sizeof_register[regnum]);
630 else
631 gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache,
632 regnum, buf);
633 }
634
635 void
636 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
637 LONGEST *val)
638 {
639 gdb_byte *buf;
640 gdb_assert (regcache != NULL);
641 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
642 buf = alloca (regcache->descr->sizeof_register[regnum]);
643 regcache_cooked_read (regcache, regnum, buf);
644 (*val) = extract_signed_integer
645 (buf, regcache->descr->sizeof_register[regnum],
646 gdbarch_byte_order (regcache->descr->gdbarch));
647 }
648
649 void
650 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
651 ULONGEST *val)
652 {
653 gdb_byte *buf;
654 gdb_assert (regcache != NULL);
655 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
656 buf = alloca (regcache->descr->sizeof_register[regnum]);
657 regcache_cooked_read (regcache, regnum, buf);
658 (*val) = extract_unsigned_integer
659 (buf, regcache->descr->sizeof_register[regnum],
660 gdbarch_byte_order (regcache->descr->gdbarch));
661 }
662
663 void
664 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
665 LONGEST val)
666 {
667 void *buf;
668 gdb_assert (regcache != NULL);
669 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
670 buf = alloca (regcache->descr->sizeof_register[regnum]);
671 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
672 gdbarch_byte_order (regcache->descr->gdbarch), val);
673 regcache_cooked_write (regcache, regnum, buf);
674 }
675
676 void
677 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
678 ULONGEST val)
679 {
680 void *buf;
681 gdb_assert (regcache != NULL);
682 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
683 buf = alloca (regcache->descr->sizeof_register[regnum]);
684 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
685 gdbarch_byte_order (regcache->descr->gdbarch), val);
686 regcache_cooked_write (regcache, regnum, buf);
687 }
688
689 void
690 regcache_raw_write (struct regcache *regcache, int regnum,
691 const gdb_byte *buf)
692 {
693 struct cleanup *old_chain;
694
695 gdb_assert (regcache != NULL && buf != NULL);
696 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
697 gdb_assert (!regcache->readonly_p);
698
699 /* On the sparc, writing %g0 is a no-op, so we don't even want to
700 change the registers array if something writes to this register. */
701 if (gdbarch_cannot_store_register (get_regcache_arch (regcache), regnum))
702 return;
703
704 /* If we have a valid copy of the register, and new value == old
705 value, then don't bother doing the actual store. */
706 if (regcache_valid_p (regcache, regnum)
707 && (memcmp (register_buffer (regcache, regnum), buf,
708 regcache->descr->sizeof_register[regnum]) == 0))
709 return;
710
711 old_chain = save_inferior_ptid ();
712 inferior_ptid = regcache->ptid;
713
714 target_prepare_to_store (regcache);
715 memcpy (register_buffer (regcache, regnum), buf,
716 regcache->descr->sizeof_register[regnum]);
717 regcache->register_valid_p[regnum] = 1;
718 target_store_registers (regcache, regnum);
719
720 do_cleanups (old_chain);
721 }
722
723 void
724 regcache_cooked_write (struct regcache *regcache, int regnum,
725 const gdb_byte *buf)
726 {
727 gdb_assert (regnum >= 0);
728 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
729 if (regnum < regcache->descr->nr_raw_registers)
730 regcache_raw_write (regcache, regnum, buf);
731 else
732 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache,
733 regnum, buf);
734 }
735
736 /* Perform a partial register transfer using a read, modify, write
737 operation. */
738
739 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
740 void *buf);
741 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
742 const void *buf);
743
744 static void
745 regcache_xfer_part (struct regcache *regcache, int regnum,
746 int offset, int len, void *in, const void *out,
747 void (*read) (struct regcache *regcache, int regnum,
748 gdb_byte *buf),
749 void (*write) (struct regcache *regcache, int regnum,
750 const gdb_byte *buf))
751 {
752 struct regcache_descr *descr = regcache->descr;
753 gdb_byte reg[MAX_REGISTER_SIZE];
754 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]);
755 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]);
756 /* Something to do? */
757 if (offset + len == 0)
758 return;
759 /* Read (when needed) ... */
760 if (in != NULL
761 || offset > 0
762 || offset + len < descr->sizeof_register[regnum])
763 {
764 gdb_assert (read != NULL);
765 read (regcache, regnum, reg);
766 }
767 /* ... modify ... */
768 if (in != NULL)
769 memcpy (in, reg + offset, len);
770 if (out != NULL)
771 memcpy (reg + offset, out, len);
772 /* ... write (when needed). */
773 if (out != NULL)
774 {
775 gdb_assert (write != NULL);
776 write (regcache, regnum, reg);
777 }
778 }
779
780 void
781 regcache_raw_read_part (struct regcache *regcache, int regnum,
782 int offset, int len, gdb_byte *buf)
783 {
784 struct regcache_descr *descr = regcache->descr;
785 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
786 regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
787 regcache_raw_read, regcache_raw_write);
788 }
789
790 void
791 regcache_raw_write_part (struct regcache *regcache, int regnum,
792 int offset, int len, const gdb_byte *buf)
793 {
794 struct regcache_descr *descr = regcache->descr;
795 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
796 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
797 regcache_raw_read, regcache_raw_write);
798 }
799
800 void
801 regcache_cooked_read_part (struct regcache *regcache, int regnum,
802 int offset, int len, gdb_byte *buf)
803 {
804 struct regcache_descr *descr = regcache->descr;
805 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
806 regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
807 regcache_cooked_read, regcache_cooked_write);
808 }
809
810 void
811 regcache_cooked_write_part (struct regcache *regcache, int regnum,
812 int offset, int len, const gdb_byte *buf)
813 {
814 struct regcache_descr *descr = regcache->descr;
815 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
816 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
817 regcache_cooked_read, regcache_cooked_write);
818 }
819
820 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
821
822 void
823 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
824 {
825 void *regbuf;
826 size_t size;
827
828 gdb_assert (regcache != NULL);
829 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
830 gdb_assert (!regcache->readonly_p);
831
832 regbuf = register_buffer (regcache, regnum);
833 size = regcache->descr->sizeof_register[regnum];
834
835 if (buf)
836 memcpy (regbuf, buf, size);
837 else
838 memset (regbuf, 0, size);
839
840 /* Mark the register as cached. */
841 regcache->register_valid_p[regnum] = 1;
842 }
843
844 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
845
846 void
847 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
848 {
849 const void *regbuf;
850 size_t size;
851
852 gdb_assert (regcache != NULL && buf != NULL);
853 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
854
855 regbuf = register_buffer (regcache, regnum);
856 size = regcache->descr->sizeof_register[regnum];
857 memcpy (buf, regbuf, size);
858 }
859
860
861 /* Special handling for register PC. */
862
863 CORE_ADDR
864 regcache_read_pc (struct regcache *regcache)
865 {
866 struct gdbarch *gdbarch = get_regcache_arch (regcache);
867
868 CORE_ADDR pc_val;
869
870 if (gdbarch_read_pc_p (gdbarch))
871 pc_val = gdbarch_read_pc (gdbarch, regcache);
872 /* Else use per-frame method on get_current_frame. */
873 else if (gdbarch_pc_regnum (gdbarch) >= 0)
874 {
875 ULONGEST raw_val;
876 regcache_cooked_read_unsigned (regcache,
877 gdbarch_pc_regnum (gdbarch),
878 &raw_val);
879 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
880 }
881 else
882 internal_error (__FILE__, __LINE__,
883 _("regcache_read_pc: Unable to find PC"));
884 return pc_val;
885 }
886
887 void
888 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
889 {
890 struct gdbarch *gdbarch = get_regcache_arch (regcache);
891
892 if (gdbarch_write_pc_p (gdbarch))
893 gdbarch_write_pc (gdbarch, regcache, pc);
894 else if (gdbarch_pc_regnum (gdbarch) >= 0)
895 regcache_cooked_write_unsigned (regcache,
896 gdbarch_pc_regnum (gdbarch), pc);
897 else
898 internal_error (__FILE__, __LINE__,
899 _("regcache_write_pc: Unable to update PC"));
900
901 /* Writing the PC (for instance, from "load") invalidates the
902 current frame. */
903 reinit_frame_cache ();
904 }
905
906
907 static void
908 reg_flush_command (char *command, int from_tty)
909 {
910 /* Force-flush the register cache. */
911 registers_changed ();
912 if (from_tty)
913 printf_filtered (_("Register cache flushed.\n"));
914 }
915
916 static void
917 dump_endian_bytes (struct ui_file *file, enum bfd_endian endian,
918 const unsigned char *buf, long len)
919 {
920 int i;
921 switch (endian)
922 {
923 case BFD_ENDIAN_BIG:
924 for (i = 0; i < len; i++)
925 fprintf_unfiltered (file, "%02x", buf[i]);
926 break;
927 case BFD_ENDIAN_LITTLE:
928 for (i = len - 1; i >= 0; i--)
929 fprintf_unfiltered (file, "%02x", buf[i]);
930 break;
931 default:
932 internal_error (__FILE__, __LINE__, _("Bad switch"));
933 }
934 }
935
936 enum regcache_dump_what
937 {
938 regcache_dump_none, regcache_dump_raw, regcache_dump_cooked, regcache_dump_groups
939 };
940
941 static void
942 regcache_dump (struct regcache *regcache, struct ui_file *file,
943 enum regcache_dump_what what_to_dump)
944 {
945 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
946 struct gdbarch *gdbarch = regcache->descr->gdbarch;
947 int regnum;
948 int footnote_nr = 0;
949 int footnote_register_size = 0;
950 int footnote_register_offset = 0;
951 int footnote_register_type_name_null = 0;
952 long register_offset = 0;
953 unsigned char buf[MAX_REGISTER_SIZE];
954
955 #if 0
956 fprintf_unfiltered (file, "nr_raw_registers %d\n",
957 regcache->descr->nr_raw_registers);
958 fprintf_unfiltered (file, "nr_cooked_registers %d\n",
959 regcache->descr->nr_cooked_registers);
960 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n",
961 regcache->descr->sizeof_raw_registers);
962 fprintf_unfiltered (file, "sizeof_raw_register_valid_p %ld\n",
963 regcache->descr->sizeof_raw_register_valid_p);
964 fprintf_unfiltered (file, "gdbarch_num_regs %d\n",
965 gdbarch_num_regs (gdbarch));
966 fprintf_unfiltered (file, "gdbarch_num_pseudo_regs %d\n",
967 gdbarch_num_pseudo_regs (gdbarch));
968 #endif
969
970 gdb_assert (regcache->descr->nr_cooked_registers
971 == (gdbarch_num_regs (gdbarch)
972 + gdbarch_num_pseudo_regs (gdbarch)));
973
974 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++)
975 {
976 /* Name. */
977 if (regnum < 0)
978 fprintf_unfiltered (file, " %-10s", "Name");
979 else
980 {
981 const char *p = gdbarch_register_name (gdbarch, regnum);
982 if (p == NULL)
983 p = "";
984 else if (p[0] == '\0')
985 p = "''";
986 fprintf_unfiltered (file, " %-10s", p);
987 }
988
989 /* Number. */
990 if (regnum < 0)
991 fprintf_unfiltered (file, " %4s", "Nr");
992 else
993 fprintf_unfiltered (file, " %4d", regnum);
994
995 /* Relative number. */
996 if (regnum < 0)
997 fprintf_unfiltered (file, " %4s", "Rel");
998 else if (regnum < gdbarch_num_regs (gdbarch))
999 fprintf_unfiltered (file, " %4d", regnum);
1000 else
1001 fprintf_unfiltered (file, " %4d",
1002 (regnum - gdbarch_num_regs (gdbarch)));
1003
1004 /* Offset. */
1005 if (regnum < 0)
1006 fprintf_unfiltered (file, " %6s ", "Offset");
1007 else
1008 {
1009 fprintf_unfiltered (file, " %6ld",
1010 regcache->descr->register_offset[regnum]);
1011 if (register_offset != regcache->descr->register_offset[regnum]
1012 || (regnum > 0
1013 && (regcache->descr->register_offset[regnum]
1014 != (regcache->descr->register_offset[regnum - 1]
1015 + regcache->descr->sizeof_register[regnum - 1])))
1016 )
1017 {
1018 if (!footnote_register_offset)
1019 footnote_register_offset = ++footnote_nr;
1020 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1021 }
1022 else
1023 fprintf_unfiltered (file, " ");
1024 register_offset = (regcache->descr->register_offset[regnum]
1025 + regcache->descr->sizeof_register[regnum]);
1026 }
1027
1028 /* Size. */
1029 if (regnum < 0)
1030 fprintf_unfiltered (file, " %5s ", "Size");
1031 else
1032 fprintf_unfiltered (file, " %5ld",
1033 regcache->descr->sizeof_register[regnum]);
1034
1035 /* Type. */
1036 {
1037 const char *t;
1038 if (regnum < 0)
1039 t = "Type";
1040 else
1041 {
1042 static const char blt[] = "builtin_type";
1043 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum));
1044 if (t == NULL)
1045 {
1046 char *n;
1047 if (!footnote_register_type_name_null)
1048 footnote_register_type_name_null = ++footnote_nr;
1049 n = xstrprintf ("*%d", footnote_register_type_name_null);
1050 make_cleanup (xfree, n);
1051 t = n;
1052 }
1053 /* Chop a leading builtin_type. */
1054 if (strncmp (t, blt, strlen (blt)) == 0)
1055 t += strlen (blt);
1056 }
1057 fprintf_unfiltered (file, " %-15s", t);
1058 }
1059
1060 /* Leading space always present. */
1061 fprintf_unfiltered (file, " ");
1062
1063 /* Value, raw. */
1064 if (what_to_dump == regcache_dump_raw)
1065 {
1066 if (regnum < 0)
1067 fprintf_unfiltered (file, "Raw value");
1068 else if (regnum >= regcache->descr->nr_raw_registers)
1069 fprintf_unfiltered (file, "<cooked>");
1070 else if (!regcache_valid_p (regcache, regnum))
1071 fprintf_unfiltered (file, "<invalid>");
1072 else
1073 {
1074 regcache_raw_read (regcache, regnum, buf);
1075 fprintf_unfiltered (file, "0x");
1076 dump_endian_bytes (file,
1077 gdbarch_byte_order (gdbarch), buf,
1078 regcache->descr->sizeof_register[regnum]);
1079 }
1080 }
1081
1082 /* Value, cooked. */
1083 if (what_to_dump == regcache_dump_cooked)
1084 {
1085 if (regnum < 0)
1086 fprintf_unfiltered (file, "Cooked value");
1087 else
1088 {
1089 regcache_cooked_read (regcache, regnum, buf);
1090 fprintf_unfiltered (file, "0x");
1091 dump_endian_bytes (file,
1092 gdbarch_byte_order (gdbarch), buf,
1093 regcache->descr->sizeof_register[regnum]);
1094 }
1095 }
1096
1097 /* Group members. */
1098 if (what_to_dump == regcache_dump_groups)
1099 {
1100 if (regnum < 0)
1101 fprintf_unfiltered (file, "Groups");
1102 else
1103 {
1104 const char *sep = "";
1105 struct reggroup *group;
1106 for (group = reggroup_next (gdbarch, NULL);
1107 group != NULL;
1108 group = reggroup_next (gdbarch, group))
1109 {
1110 if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
1111 {
1112 fprintf_unfiltered (file, "%s%s", sep, reggroup_name (group));
1113 sep = ",";
1114 }
1115 }
1116 }
1117 }
1118
1119 fprintf_unfiltered (file, "\n");
1120 }
1121
1122 if (footnote_register_size)
1123 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
1124 footnote_register_size);
1125 if (footnote_register_offset)
1126 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1127 footnote_register_offset);
1128 if (footnote_register_type_name_null)
1129 fprintf_unfiltered (file,
1130 "*%d: Register type's name NULL.\n",
1131 footnote_register_type_name_null);
1132 do_cleanups (cleanups);
1133 }
1134
1135 static void
1136 regcache_print (char *args, enum regcache_dump_what what_to_dump)
1137 {
1138 if (args == NULL)
1139 regcache_dump (get_current_regcache (), gdb_stdout, what_to_dump);
1140 else
1141 {
1142 struct cleanup *cleanups;
1143 struct ui_file *file = gdb_fopen (args, "w");
1144 if (file == NULL)
1145 perror_with_name (_("maintenance print architecture"));
1146 cleanups = make_cleanup_ui_file_delete (file);
1147 regcache_dump (get_current_regcache (), file, what_to_dump);
1148 do_cleanups (cleanups);
1149 }
1150 }
1151
1152 static void
1153 maintenance_print_registers (char *args, int from_tty)
1154 {
1155 regcache_print (args, regcache_dump_none);
1156 }
1157
1158 static void
1159 maintenance_print_raw_registers (char *args, int from_tty)
1160 {
1161 regcache_print (args, regcache_dump_raw);
1162 }
1163
1164 static void
1165 maintenance_print_cooked_registers (char *args, int from_tty)
1166 {
1167 regcache_print (args, regcache_dump_cooked);
1168 }
1169
1170 static void
1171 maintenance_print_register_groups (char *args, int from_tty)
1172 {
1173 regcache_print (args, regcache_dump_groups);
1174 }
1175
1176 extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */
1177
1178 void
1179 _initialize_regcache (void)
1180 {
1181 regcache_descr_handle = gdbarch_data_register_post_init (init_regcache_descr);
1182
1183 observer_attach_target_changed (regcache_observer_target_changed);
1184 observer_attach_thread_ptid_changed (regcache_thread_ptid_changed);
1185
1186 add_com ("flushregs", class_maintenance, reg_flush_command,
1187 _("Force gdb to flush its register cache (maintainer command)"));
1188
1189 add_cmd ("registers", class_maintenance, maintenance_print_registers, _("\
1190 Print the internal register configuration.\n\
1191 Takes an optional file parameter."), &maintenanceprintlist);
1192 add_cmd ("raw-registers", class_maintenance,
1193 maintenance_print_raw_registers, _("\
1194 Print the internal register configuration including raw values.\n\
1195 Takes an optional file parameter."), &maintenanceprintlist);
1196 add_cmd ("cooked-registers", class_maintenance,
1197 maintenance_print_cooked_registers, _("\
1198 Print the internal register configuration including cooked values.\n\
1199 Takes an optional file parameter."), &maintenanceprintlist);
1200 add_cmd ("register-groups", class_maintenance,
1201 maintenance_print_register_groups, _("\
1202 Print the internal register configuration including each register's group.\n\
1203 Takes an optional file parameter."),
1204 &maintenanceprintlist);
1205
1206 }
This page took 0.056113 seconds and 3 git commands to generate.