[gdb/testsuite] Fix gdb.base/coredump-filter-build-id.exp with older eu-unstrip
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbthread.h"
23 #include "target.h"
24 #include "test-target.h"
25 #include "scoped-mock-context.h"
26 #include "gdbarch.h"
27 #include "gdbcmd.h"
28 #include "regcache.h"
29 #include "reggroups.h"
30 #include "observable.h"
31 #include "regset.h"
32 #include <unordered_map>
33 #include "cli/cli-cmds.h"
34
35 /*
36 * DATA STRUCTURE
37 *
38 * Here is the actual register cache.
39 */
40
41 /* Per-architecture object describing the layout of a register cache.
42 Computed once when the architecture is created. */
43
44 static struct gdbarch_data *regcache_descr_handle;
45
46 struct regcache_descr
47 {
48 /* The architecture this descriptor belongs to. */
49 struct gdbarch *gdbarch;
50
51 /* The raw register cache. Each raw (or hard) register is supplied
52 by the target interface. The raw cache should not contain
53 redundant information - if the PC is constructed from two
54 registers then those registers and not the PC lives in the raw
55 cache. */
56 long sizeof_raw_registers;
57
58 /* The cooked register space. Each cooked register in the range
59 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
60 register. The remaining [NR_RAW_REGISTERS
61 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
62 both raw registers and memory by the architecture methods
63 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
64 int nr_cooked_registers;
65 long sizeof_cooked_registers;
66
67 /* Offset and size (in 8 bit bytes), of each register in the
68 register cache. All registers (including those in the range
69 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
70 offset. */
71 long *register_offset;
72 long *sizeof_register;
73
74 /* Cached table containing the type of each register. */
75 struct type **register_type;
76 };
77
78 static void *
79 init_regcache_descr (struct gdbarch *gdbarch)
80 {
81 int i;
82 struct regcache_descr *descr;
83 gdb_assert (gdbarch != NULL);
84
85 /* Create an initial, zero filled, table. */
86 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
87 descr->gdbarch = gdbarch;
88
89 /* Total size of the register space. The raw registers are mapped
90 directly onto the raw register cache while the pseudo's are
91 either mapped onto raw-registers or memory. */
92 descr->nr_cooked_registers = gdbarch_num_cooked_regs (gdbarch);
93
94 /* Fill in a table of register types. */
95 descr->register_type
96 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
97 struct type *);
98 for (i = 0; i < descr->nr_cooked_registers; i++)
99 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
100
101 /* Construct a strictly RAW register cache. Don't allow pseudo's
102 into the register cache. */
103
104 /* Lay out the register cache.
105
106 NOTE: cagney/2002-05-22: Only register_type () is used when
107 constructing the register cache. It is assumed that the
108 register's raw size, virtual size and type length are all the
109 same. */
110
111 {
112 long offset = 0;
113
114 descr->sizeof_register
115 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
116 descr->register_offset
117 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
118 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
119 {
120 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
121 descr->register_offset[i] = offset;
122 offset += descr->sizeof_register[i];
123 }
124 /* Set the real size of the raw register cache buffer. */
125 descr->sizeof_raw_registers = offset;
126
127 for (; i < descr->nr_cooked_registers; i++)
128 {
129 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
130 descr->register_offset[i] = offset;
131 offset += descr->sizeof_register[i];
132 }
133 /* Set the real size of the readonly register cache buffer. */
134 descr->sizeof_cooked_registers = offset;
135 }
136
137 return descr;
138 }
139
140 static struct regcache_descr *
141 regcache_descr (struct gdbarch *gdbarch)
142 {
143 return (struct regcache_descr *) gdbarch_data (gdbarch,
144 regcache_descr_handle);
145 }
146
147 /* Utility functions returning useful register attributes stored in
148 the regcache descr. */
149
150 struct type *
151 register_type (struct gdbarch *gdbarch, int regnum)
152 {
153 struct regcache_descr *descr = regcache_descr (gdbarch);
154
155 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
156 return descr->register_type[regnum];
157 }
158
159 /* Utility functions returning useful register attributes stored in
160 the regcache descr. */
161
162 int
163 register_size (struct gdbarch *gdbarch, int regnum)
164 {
165 struct regcache_descr *descr = regcache_descr (gdbarch);
166 int size;
167
168 gdb_assert (regnum >= 0 && regnum < gdbarch_num_cooked_regs (gdbarch));
169 size = descr->sizeof_register[regnum];
170 return size;
171 }
172
173 /* See gdbsupport/common-regcache.h. */
174
175 int
176 regcache_register_size (const struct regcache *regcache, int n)
177 {
178 return register_size (regcache->arch (), n);
179 }
180
181 reg_buffer::reg_buffer (gdbarch *gdbarch, bool has_pseudo)
182 : m_has_pseudo (has_pseudo)
183 {
184 gdb_assert (gdbarch != NULL);
185 m_descr = regcache_descr (gdbarch);
186
187 /* We don't zero-initialize the M_REGISTERS array, as the bytes it contains
188 aren't meaningful as long as the corresponding register status is not
189 REG_VALID. */
190 if (has_pseudo)
191 {
192 m_registers.reset (new gdb_byte[m_descr->sizeof_cooked_registers]);
193 m_register_status.reset
194 (new register_status[m_descr->nr_cooked_registers] ());
195 }
196 else
197 {
198 m_registers.reset (new gdb_byte[m_descr->sizeof_raw_registers]);
199 m_register_status.reset
200 (new register_status[gdbarch_num_regs (gdbarch)] ());
201 }
202 }
203
204 regcache::regcache (process_stratum_target *target, gdbarch *gdbarch,
205 const address_space *aspace_)
206 /* The register buffers. A read/write register cache can only hold
207 [0 .. gdbarch_num_regs). */
208 : detached_regcache (gdbarch, false), m_aspace (aspace_), m_target (target)
209 {
210 m_ptid = minus_one_ptid;
211 }
212
213 readonly_detached_regcache::readonly_detached_regcache (regcache &src)
214 : readonly_detached_regcache (src.arch (),
215 [&src] (int regnum, gdb_byte *buf)
216 {
217 return src.cooked_read (regnum, buf);
218 })
219 {
220 }
221
222 gdbarch *
223 reg_buffer::arch () const
224 {
225 return m_descr->gdbarch;
226 }
227
228 /* Return a pointer to register REGNUM's buffer cache. */
229
230 gdb_byte *
231 reg_buffer::register_buffer (int regnum) const
232 {
233 return m_registers.get () + m_descr->register_offset[regnum];
234 }
235
236 void
237 reg_buffer::save (register_read_ftype cooked_read)
238 {
239 struct gdbarch *gdbarch = m_descr->gdbarch;
240 int regnum;
241
242 /* It should have pseudo registers. */
243 gdb_assert (m_has_pseudo);
244 /* Clear the dest. */
245 memset (m_registers.get (), 0, m_descr->sizeof_cooked_registers);
246 memset (m_register_status.get (), REG_UNKNOWN, m_descr->nr_cooked_registers);
247 /* Copy over any registers (identified by their membership in the
248 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
249 gdbarch_num_pseudo_regs) range is checked since some architectures need
250 to save/restore `cooked' registers that live in memory. */
251 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
252 {
253 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
254 {
255 gdb_byte *dst_buf = register_buffer (regnum);
256 enum register_status status = cooked_read (regnum, dst_buf);
257
258 gdb_assert (status != REG_UNKNOWN);
259
260 if (status != REG_VALID)
261 memset (dst_buf, 0, register_size (gdbarch, regnum));
262
263 m_register_status[regnum] = status;
264 }
265 }
266 }
267
268 void
269 regcache::restore (readonly_detached_regcache *src)
270 {
271 struct gdbarch *gdbarch = m_descr->gdbarch;
272 int regnum;
273
274 gdb_assert (src != NULL);
275 gdb_assert (src->m_has_pseudo);
276
277 gdb_assert (gdbarch == src->arch ());
278
279 /* Copy over any registers, being careful to only restore those that
280 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
281 + gdbarch_num_pseudo_regs) range is checked since some architectures need
282 to save/restore `cooked' registers that live in memory. */
283 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
284 {
285 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
286 {
287 if (src->m_register_status[regnum] == REG_VALID)
288 cooked_write (regnum, src->register_buffer (regnum));
289 }
290 }
291 }
292
293 /* See gdbsupport/common-regcache.h. */
294
295 enum register_status
296 reg_buffer::get_register_status (int regnum) const
297 {
298 assert_regnum (regnum);
299
300 return m_register_status[regnum];
301 }
302
303 void
304 reg_buffer::invalidate (int regnum)
305 {
306 assert_regnum (regnum);
307 m_register_status[regnum] = REG_UNKNOWN;
308 }
309
310 void
311 reg_buffer::assert_regnum (int regnum) const
312 {
313 gdb_assert (regnum >= 0);
314 if (m_has_pseudo)
315 gdb_assert (regnum < m_descr->nr_cooked_registers);
316 else
317 gdb_assert (regnum < gdbarch_num_regs (arch ()));
318 }
319
320 /* Type to map a ptid to a list of regcaches (one thread may have multiple
321 regcaches, associated to different gdbarches). */
322
323 using ptid_regcache_map
324 = std::unordered_multimap<ptid_t, regcache_up, hash_ptid>;
325
326 /* Type holding regcaches for a given pid. */
327
328 using pid_ptid_regcache_map = std::unordered_map<int, ptid_regcache_map>;
329
330 /* Type holding regcaches for a given target. */
331
332 using target_pid_ptid_regcache_map
333 = std::unordered_map<process_stratum_target *, pid_ptid_regcache_map>;
334
335 /* Global structure containing the existing regcaches. */
336
337 /* NOTE: this is a write-through cache. There is no "dirty" bit for
338 recording if the register values have been changed (eg. by the
339 user). Therefore all registers must be written back to the
340 target when appropriate. */
341 static target_pid_ptid_regcache_map regcaches;
342
343 struct regcache *
344 get_thread_arch_aspace_regcache (process_stratum_target *target,
345 ptid_t ptid, gdbarch *arch,
346 struct address_space *aspace)
347 {
348 gdb_assert (target != nullptr);
349
350 /* Find the map for this target. */
351 pid_ptid_regcache_map &pid_ptid_regc_map = regcaches[target];
352
353 /* Find the map for this pid. */
354 ptid_regcache_map &ptid_regc_map = pid_ptid_regc_map[ptid.pid ()];
355
356 /* Check first if a regcache for this arch already exists. */
357 auto range = ptid_regc_map.equal_range (ptid);
358 for (auto it = range.first; it != range.second; ++it)
359 {
360 if (it->second->arch () == arch)
361 return it->second.get ();
362 }
363
364 /* It does not exist, create it. */
365 regcache *new_regcache = new regcache (target, arch, aspace);
366 new_regcache->set_ptid (ptid);
367 /* Work around a problem with g++ 4.8 (PR96537): Call the regcache_up
368 constructor explictly instead of implicitly. */
369 ptid_regc_map.insert (std::make_pair (ptid, regcache_up (new_regcache)));
370
371 return new_regcache;
372 }
373
374 struct regcache *
375 get_thread_arch_regcache (process_stratum_target *target, ptid_t ptid,
376 struct gdbarch *gdbarch)
377 {
378 scoped_restore_current_inferior restore_current_inferior;
379 set_current_inferior (find_inferior_ptid (target, ptid));
380 address_space *aspace = target_thread_address_space (ptid);
381
382 return get_thread_arch_aspace_regcache (target, ptid, gdbarch, aspace);
383 }
384
385 static process_stratum_target *current_thread_target;
386 static ptid_t current_thread_ptid;
387 static struct gdbarch *current_thread_arch;
388
389 struct regcache *
390 get_thread_regcache (process_stratum_target *target, ptid_t ptid)
391 {
392 if (!current_thread_arch
393 || target != current_thread_target
394 || current_thread_ptid != ptid)
395 {
396 gdb_assert (ptid != null_ptid);
397
398 current_thread_ptid = ptid;
399 current_thread_target = target;
400
401 scoped_restore_current_inferior restore_current_inferior;
402 set_current_inferior (find_inferior_ptid (target, ptid));
403 current_thread_arch = target_thread_architecture (ptid);
404 }
405
406 return get_thread_arch_regcache (target, ptid, current_thread_arch);
407 }
408
409 /* See regcache.h. */
410
411 struct regcache *
412 get_thread_regcache (thread_info *thread)
413 {
414 return get_thread_regcache (thread->inf->process_target (),
415 thread->ptid);
416 }
417
418 struct regcache *
419 get_current_regcache (void)
420 {
421 return get_thread_regcache (inferior_thread ());
422 }
423
424 /* See gdbsupport/common-regcache.h. */
425
426 struct regcache *
427 get_thread_regcache_for_ptid (ptid_t ptid)
428 {
429 /* This function doesn't take a process_stratum_target parameter
430 because it's a gdbsupport/ routine implemented by both gdb and
431 gdbserver. It always refers to a ptid of the current target. */
432 process_stratum_target *proc_target = current_inferior ()->process_target ();
433 return get_thread_regcache (proc_target, ptid);
434 }
435
436 /* Observer for the target_changed event. */
437
438 static void
439 regcache_observer_target_changed (struct target_ops *target)
440 {
441 registers_changed ();
442 }
443
444 /* Update regcaches related to OLD_PTID to now use NEW_PTID. */
445 static void
446 regcache_thread_ptid_changed (process_stratum_target *target,
447 ptid_t old_ptid, ptid_t new_ptid)
448 {
449 /* Look up map for target. */
450 auto pid_ptid_regc_map_it = regcaches.find (target);
451 if (pid_ptid_regc_map_it == regcaches.end ())
452 return;
453
454 /* Look up map for pid. */
455 pid_ptid_regcache_map &pid_ptid_regc_map = pid_ptid_regc_map_it->second;
456 auto ptid_regc_map_it = pid_ptid_regc_map.find (old_ptid.pid ());
457 if (ptid_regc_map_it == pid_ptid_regc_map.end ())
458 return;
459
460 /* Update all regcaches belonging to old_ptid. */
461 ptid_regcache_map &ptid_regc_map = ptid_regc_map_it->second;
462 auto range = ptid_regc_map.equal_range (old_ptid);
463 for (auto it = range.first; it != range.second;)
464 {
465 regcache_up rc = std::move (it->second);
466 rc->set_ptid (new_ptid);
467
468 /* Remove old before inserting new, to avoid rehashing,
469 which would invalidate iterators. */
470 it = ptid_regc_map.erase (it);
471 ptid_regc_map.insert (std::make_pair (new_ptid, std::move (rc)));
472 }
473 }
474
475 /* Low level examining and depositing of registers.
476
477 The caller is responsible for making sure that the inferior is
478 stopped before calling the fetching routines, or it will get
479 garbage. (a change from GDB version 3, in which the caller got the
480 value from the last stop). */
481
482 /* REGISTERS_CHANGED ()
483
484 Indicate that registers may have changed, so invalidate the cache. */
485
486 void
487 registers_changed_ptid (process_stratum_target *target, ptid_t ptid)
488 {
489 if (target == nullptr)
490 {
491 /* Since there can be ptid clashes between targets, it's not valid to
492 pass a ptid without saying to which target it belongs. */
493 gdb_assert (ptid == minus_one_ptid);
494
495 /* Delete all the regcaches of all targets. */
496 regcaches.clear ();
497 }
498 else if (ptid.is_pid ())
499 {
500 /* Non-NULL target and pid ptid, delete all regcaches belonging
501 to this (TARGET, PID). */
502
503 /* Look up map for target. */
504 auto pid_ptid_regc_map_it = regcaches.find (target);
505 if (pid_ptid_regc_map_it != regcaches.end ())
506 {
507 pid_ptid_regcache_map &pid_ptid_regc_map
508 = pid_ptid_regc_map_it->second;
509
510 pid_ptid_regc_map.erase (ptid.pid ());
511 }
512 }
513 else if (ptid != minus_one_ptid)
514 {
515 /* Non-NULL target and non-minus_one_ptid, delete all regcaches belonging
516 to this (TARGET, PTID). */
517
518 /* Look up map for target. */
519 auto pid_ptid_regc_map_it = regcaches.find (target);
520 if (pid_ptid_regc_map_it != regcaches.end ())
521 {
522 pid_ptid_regcache_map &pid_ptid_regc_map
523 = pid_ptid_regc_map_it->second;
524
525 /* Look up map for pid. */
526 auto ptid_regc_map_it
527 = pid_ptid_regc_map.find (ptid.pid ());
528 if (ptid_regc_map_it != pid_ptid_regc_map.end ())
529 {
530 ptid_regcache_map &ptid_regc_map
531 = ptid_regc_map_it->second;
532
533 ptid_regc_map.erase (ptid);
534 }
535 }
536 }
537 else
538 {
539 /* Non-NULL target and minus_one_ptid, delete all regcaches
540 associated to this target. */
541 regcaches.erase (target);
542 }
543
544 if ((target == nullptr || current_thread_target == target)
545 && current_thread_ptid.matches (ptid))
546 {
547 current_thread_target = NULL;
548 current_thread_ptid = null_ptid;
549 current_thread_arch = NULL;
550 }
551
552 if ((target == nullptr || current_inferior ()->process_target () == target)
553 && inferior_ptid.matches (ptid))
554 {
555 /* We just deleted the regcache of the current thread. Need to
556 forget about any frames we have cached, too. */
557 reinit_frame_cache ();
558 }
559 }
560
561 /* See regcache.h. */
562
563 void
564 registers_changed_thread (thread_info *thread)
565 {
566 registers_changed_ptid (thread->inf->process_target (), thread->ptid);
567 }
568
569 void
570 registers_changed (void)
571 {
572 registers_changed_ptid (nullptr, minus_one_ptid);
573 }
574
575 void
576 regcache::raw_update (int regnum)
577 {
578 assert_regnum (regnum);
579
580 /* Make certain that the register cache is up-to-date with respect
581 to the current thread. This switching shouldn't be necessary
582 only there is still only one target side register cache. Sigh!
583 On the bright side, at least there is a regcache object. */
584
585 if (get_register_status (regnum) == REG_UNKNOWN)
586 {
587 target_fetch_registers (this, regnum);
588
589 /* A number of targets can't access the whole set of raw
590 registers (because the debug API provides no means to get at
591 them). */
592 if (m_register_status[regnum] == REG_UNKNOWN)
593 m_register_status[regnum] = REG_UNAVAILABLE;
594 }
595 }
596
597 enum register_status
598 readable_regcache::raw_read (int regnum, gdb_byte *buf)
599 {
600 gdb_assert (buf != NULL);
601 raw_update (regnum);
602
603 if (m_register_status[regnum] != REG_VALID)
604 memset (buf, 0, m_descr->sizeof_register[regnum]);
605 else
606 memcpy (buf, register_buffer (regnum),
607 m_descr->sizeof_register[regnum]);
608
609 return m_register_status[regnum];
610 }
611
612 enum register_status
613 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
614 {
615 gdb_assert (regcache != NULL);
616 return regcache->raw_read (regnum, val);
617 }
618
619 template<typename T, typename>
620 enum register_status
621 readable_regcache::raw_read (int regnum, T *val)
622 {
623 gdb_byte *buf;
624 enum register_status status;
625
626 assert_regnum (regnum);
627 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
628 status = raw_read (regnum, buf);
629 if (status == REG_VALID)
630 *val = extract_integer<T> (buf,
631 m_descr->sizeof_register[regnum],
632 gdbarch_byte_order (m_descr->gdbarch));
633 else
634 *val = 0;
635 return status;
636 }
637
638 enum register_status
639 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
640 ULONGEST *val)
641 {
642 gdb_assert (regcache != NULL);
643 return regcache->raw_read (regnum, val);
644 }
645
646 void
647 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
648 {
649 gdb_assert (regcache != NULL);
650 regcache->raw_write (regnum, val);
651 }
652
653 template<typename T, typename>
654 void
655 regcache::raw_write (int regnum, T val)
656 {
657 gdb_byte *buf;
658
659 assert_regnum (regnum);
660 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
661 store_integer (buf, m_descr->sizeof_register[regnum],
662 gdbarch_byte_order (m_descr->gdbarch), val);
663 raw_write (regnum, buf);
664 }
665
666 void
667 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
668 ULONGEST val)
669 {
670 gdb_assert (regcache != NULL);
671 regcache->raw_write (regnum, val);
672 }
673
674 LONGEST
675 regcache_raw_get_signed (struct regcache *regcache, int regnum)
676 {
677 LONGEST value;
678 enum register_status status;
679
680 status = regcache_raw_read_signed (regcache, regnum, &value);
681 if (status == REG_UNAVAILABLE)
682 throw_error (NOT_AVAILABLE_ERROR,
683 _("Register %d is not available"), regnum);
684 return value;
685 }
686
687 enum register_status
688 readable_regcache::cooked_read (int regnum, gdb_byte *buf)
689 {
690 gdb_assert (regnum >= 0);
691 gdb_assert (regnum < m_descr->nr_cooked_registers);
692 if (regnum < num_raw_registers ())
693 return raw_read (regnum, buf);
694 else if (m_has_pseudo
695 && m_register_status[regnum] != REG_UNKNOWN)
696 {
697 if (m_register_status[regnum] == REG_VALID)
698 memcpy (buf, register_buffer (regnum),
699 m_descr->sizeof_register[regnum]);
700 else
701 memset (buf, 0, m_descr->sizeof_register[regnum]);
702
703 return m_register_status[regnum];
704 }
705 else if (gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
706 {
707 struct value *mark, *computed;
708 enum register_status result = REG_VALID;
709
710 mark = value_mark ();
711
712 computed = gdbarch_pseudo_register_read_value (m_descr->gdbarch,
713 this, regnum);
714 if (value_entirely_available (computed))
715 memcpy (buf, value_contents_raw (computed),
716 m_descr->sizeof_register[regnum]);
717 else
718 {
719 memset (buf, 0, m_descr->sizeof_register[regnum]);
720 result = REG_UNAVAILABLE;
721 }
722
723 value_free_to_mark (mark);
724
725 return result;
726 }
727 else
728 return gdbarch_pseudo_register_read (m_descr->gdbarch, this,
729 regnum, buf);
730 }
731
732 struct value *
733 readable_regcache::cooked_read_value (int regnum)
734 {
735 gdb_assert (regnum >= 0);
736 gdb_assert (regnum < m_descr->nr_cooked_registers);
737
738 if (regnum < num_raw_registers ()
739 || (m_has_pseudo && m_register_status[regnum] != REG_UNKNOWN)
740 || !gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
741 {
742 struct value *result;
743
744 result = allocate_value (register_type (m_descr->gdbarch, regnum));
745 VALUE_LVAL (result) = lval_register;
746 VALUE_REGNUM (result) = regnum;
747
748 /* It is more efficient in general to do this delegation in this
749 direction than in the other one, even though the value-based
750 API is preferred. */
751 if (cooked_read (regnum,
752 value_contents_raw (result)) == REG_UNAVAILABLE)
753 mark_value_bytes_unavailable (result, 0,
754 TYPE_LENGTH (value_type (result)));
755
756 return result;
757 }
758 else
759 return gdbarch_pseudo_register_read_value (m_descr->gdbarch,
760 this, regnum);
761 }
762
763 enum register_status
764 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
765 LONGEST *val)
766 {
767 gdb_assert (regcache != NULL);
768 return regcache->cooked_read (regnum, val);
769 }
770
771 template<typename T, typename>
772 enum register_status
773 readable_regcache::cooked_read (int regnum, T *val)
774 {
775 enum register_status status;
776 gdb_byte *buf;
777
778 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
779 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
780 status = cooked_read (regnum, buf);
781 if (status == REG_VALID)
782 *val = extract_integer<T> (buf, m_descr->sizeof_register[regnum],
783 gdbarch_byte_order (m_descr->gdbarch));
784 else
785 *val = 0;
786 return status;
787 }
788
789 enum register_status
790 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
791 ULONGEST *val)
792 {
793 gdb_assert (regcache != NULL);
794 return regcache->cooked_read (regnum, val);
795 }
796
797 void
798 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
799 LONGEST val)
800 {
801 gdb_assert (regcache != NULL);
802 regcache->cooked_write (regnum, val);
803 }
804
805 template<typename T, typename>
806 void
807 regcache::cooked_write (int regnum, T val)
808 {
809 gdb_byte *buf;
810
811 gdb_assert (regnum >=0 && regnum < m_descr->nr_cooked_registers);
812 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
813 store_integer (buf, m_descr->sizeof_register[regnum],
814 gdbarch_byte_order (m_descr->gdbarch), val);
815 cooked_write (regnum, buf);
816 }
817
818 void
819 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
820 ULONGEST val)
821 {
822 gdb_assert (regcache != NULL);
823 regcache->cooked_write (regnum, val);
824 }
825
826 void
827 regcache::raw_write (int regnum, const gdb_byte *buf)
828 {
829
830 gdb_assert (buf != NULL);
831 assert_regnum (regnum);
832
833 /* On the sparc, writing %g0 is a no-op, so we don't even want to
834 change the registers array if something writes to this register. */
835 if (gdbarch_cannot_store_register (arch (), regnum))
836 return;
837
838 /* If we have a valid copy of the register, and new value == old
839 value, then don't bother doing the actual store. */
840 if (get_register_status (regnum) == REG_VALID
841 && (memcmp (register_buffer (regnum), buf,
842 m_descr->sizeof_register[regnum]) == 0))
843 return;
844
845 target_prepare_to_store (this);
846 raw_supply (regnum, buf);
847
848 /* Invalidate the register after it is written, in case of a
849 failure. */
850 auto invalidator
851 = make_scope_exit ([&] { this->invalidate (regnum); });
852
853 target_store_registers (this, regnum);
854
855 /* The target did not throw an error so we can discard invalidating
856 the register. */
857 invalidator.release ();
858 }
859
860 void
861 regcache::cooked_write (int regnum, const gdb_byte *buf)
862 {
863 gdb_assert (regnum >= 0);
864 gdb_assert (regnum < m_descr->nr_cooked_registers);
865 if (regnum < num_raw_registers ())
866 raw_write (regnum, buf);
867 else
868 gdbarch_pseudo_register_write (m_descr->gdbarch, this,
869 regnum, buf);
870 }
871
872 /* See regcache.h. */
873
874 enum register_status
875 readable_regcache::read_part (int regnum, int offset, int len,
876 gdb_byte *out, bool is_raw)
877 {
878 int reg_size = register_size (arch (), regnum);
879
880 gdb_assert (out != NULL);
881 gdb_assert (offset >= 0 && offset <= reg_size);
882 gdb_assert (len >= 0 && offset + len <= reg_size);
883
884 if (offset == 0 && len == 0)
885 {
886 /* Nothing to do. */
887 return REG_VALID;
888 }
889
890 if (offset == 0 && len == reg_size)
891 {
892 /* Read the full register. */
893 return (is_raw) ? raw_read (regnum, out) : cooked_read (regnum, out);
894 }
895
896 enum register_status status;
897 gdb_byte *reg = (gdb_byte *) alloca (reg_size);
898
899 /* Read full register to buffer. */
900 status = (is_raw) ? raw_read (regnum, reg) : cooked_read (regnum, reg);
901 if (status != REG_VALID)
902 return status;
903
904 /* Copy out. */
905 memcpy (out, reg + offset, len);
906 return REG_VALID;
907 }
908
909 /* See regcache.h. */
910
911 void
912 reg_buffer::raw_collect_part (int regnum, int offset, int len,
913 gdb_byte *out) const
914 {
915 int reg_size = register_size (arch (), regnum);
916
917 gdb_assert (out != nullptr);
918 gdb_assert (offset >= 0 && offset <= reg_size);
919 gdb_assert (len >= 0 && offset + len <= reg_size);
920
921 if (offset == 0 && len == 0)
922 {
923 /* Nothing to do. */
924 return;
925 }
926
927 if (offset == 0 && len == reg_size)
928 {
929 /* Collect the full register. */
930 return raw_collect (regnum, out);
931 }
932
933 /* Read to buffer, then write out. */
934 gdb_byte *reg = (gdb_byte *) alloca (reg_size);
935 raw_collect (regnum, reg);
936 memcpy (out, reg + offset, len);
937 }
938
939 /* See regcache.h. */
940
941 enum register_status
942 regcache::write_part (int regnum, int offset, int len,
943 const gdb_byte *in, bool is_raw)
944 {
945 int reg_size = register_size (arch (), regnum);
946
947 gdb_assert (in != NULL);
948 gdb_assert (offset >= 0 && offset <= reg_size);
949 gdb_assert (len >= 0 && offset + len <= reg_size);
950
951 if (offset == 0 && len == 0)
952 {
953 /* Nothing to do. */
954 return REG_VALID;
955 }
956
957 if (offset == 0 && len == reg_size)
958 {
959 /* Write the full register. */
960 (is_raw) ? raw_write (regnum, in) : cooked_write (regnum, in);
961 return REG_VALID;
962 }
963
964 enum register_status status;
965 gdb_byte *reg = (gdb_byte *) alloca (reg_size);
966
967 /* Read existing register to buffer. */
968 status = (is_raw) ? raw_read (regnum, reg) : cooked_read (regnum, reg);
969 if (status != REG_VALID)
970 return status;
971
972 /* Update buffer, then write back to regcache. */
973 memcpy (reg + offset, in, len);
974 is_raw ? raw_write (regnum, reg) : cooked_write (regnum, reg);
975 return REG_VALID;
976 }
977
978 /* See regcache.h. */
979
980 void
981 reg_buffer::raw_supply_part (int regnum, int offset, int len,
982 const gdb_byte *in)
983 {
984 int reg_size = register_size (arch (), regnum);
985
986 gdb_assert (in != nullptr);
987 gdb_assert (offset >= 0 && offset <= reg_size);
988 gdb_assert (len >= 0 && offset + len <= reg_size);
989
990 if (offset == 0 && len == 0)
991 {
992 /* Nothing to do. */
993 return;
994 }
995
996 if (offset == 0 && len == reg_size)
997 {
998 /* Supply the full register. */
999 return raw_supply (regnum, in);
1000 }
1001
1002 gdb_byte *reg = (gdb_byte *) alloca (reg_size);
1003
1004 /* Read existing value to buffer. */
1005 raw_collect (regnum, reg);
1006
1007 /* Write to buffer, then write out. */
1008 memcpy (reg + offset, in, len);
1009 raw_supply (regnum, reg);
1010 }
1011
1012 enum register_status
1013 readable_regcache::raw_read_part (int regnum, int offset, int len,
1014 gdb_byte *buf)
1015 {
1016 assert_regnum (regnum);
1017 return read_part (regnum, offset, len, buf, true);
1018 }
1019
1020 /* See regcache.h. */
1021
1022 void
1023 regcache::raw_write_part (int regnum, int offset, int len,
1024 const gdb_byte *buf)
1025 {
1026 assert_regnum (regnum);
1027 write_part (regnum, offset, len, buf, true);
1028 }
1029
1030 /* See regcache.h. */
1031
1032 enum register_status
1033 readable_regcache::cooked_read_part (int regnum, int offset, int len,
1034 gdb_byte *buf)
1035 {
1036 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
1037 return read_part (regnum, offset, len, buf, false);
1038 }
1039
1040 /* See regcache.h. */
1041
1042 void
1043 regcache::cooked_write_part (int regnum, int offset, int len,
1044 const gdb_byte *buf)
1045 {
1046 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
1047 write_part (regnum, offset, len, buf, false);
1048 }
1049
1050 /* See gdbsupport/common-regcache.h. */
1051
1052 void
1053 reg_buffer::raw_supply (int regnum, const void *buf)
1054 {
1055 void *regbuf;
1056 size_t size;
1057
1058 assert_regnum (regnum);
1059
1060 regbuf = register_buffer (regnum);
1061 size = m_descr->sizeof_register[regnum];
1062
1063 if (buf)
1064 {
1065 memcpy (regbuf, buf, size);
1066 m_register_status[regnum] = REG_VALID;
1067 }
1068 else
1069 {
1070 /* This memset not strictly necessary, but better than garbage
1071 in case the register value manages to escape somewhere (due
1072 to a bug, no less). */
1073 memset (regbuf, 0, size);
1074 m_register_status[regnum] = REG_UNAVAILABLE;
1075 }
1076 }
1077
1078 /* See regcache.h. */
1079
1080 void
1081 reg_buffer::raw_supply_integer (int regnum, const gdb_byte *addr,
1082 int addr_len, bool is_signed)
1083 {
1084 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
1085 gdb_byte *regbuf;
1086 size_t regsize;
1087
1088 assert_regnum (regnum);
1089
1090 regbuf = register_buffer (regnum);
1091 regsize = m_descr->sizeof_register[regnum];
1092
1093 copy_integer_to_size (regbuf, regsize, addr, addr_len, is_signed,
1094 byte_order);
1095 m_register_status[regnum] = REG_VALID;
1096 }
1097
1098 /* See regcache.h. */
1099
1100 void
1101 reg_buffer::raw_supply_zeroed (int regnum)
1102 {
1103 void *regbuf;
1104 size_t size;
1105
1106 assert_regnum (regnum);
1107
1108 regbuf = register_buffer (regnum);
1109 size = m_descr->sizeof_register[regnum];
1110
1111 memset (regbuf, 0, size);
1112 m_register_status[regnum] = REG_VALID;
1113 }
1114
1115 /* See gdbsupport/common-regcache.h. */
1116
1117 void
1118 reg_buffer::raw_collect (int regnum, void *buf) const
1119 {
1120 const void *regbuf;
1121 size_t size;
1122
1123 gdb_assert (buf != NULL);
1124 assert_regnum (regnum);
1125
1126 regbuf = register_buffer (regnum);
1127 size = m_descr->sizeof_register[regnum];
1128 memcpy (buf, regbuf, size);
1129 }
1130
1131 /* See regcache.h. */
1132
1133 void
1134 reg_buffer::raw_collect_integer (int regnum, gdb_byte *addr, int addr_len,
1135 bool is_signed) const
1136 {
1137 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
1138 const gdb_byte *regbuf;
1139 size_t regsize;
1140
1141 assert_regnum (regnum);
1142
1143 regbuf = register_buffer (regnum);
1144 regsize = m_descr->sizeof_register[regnum];
1145
1146 copy_integer_to_size (addr, addr_len, regbuf, regsize, is_signed,
1147 byte_order);
1148 }
1149
1150 /* See regcache.h. */
1151
1152 void
1153 regcache::transfer_regset_register (struct regcache *out_regcache, int regnum,
1154 const gdb_byte *in_buf, gdb_byte *out_buf,
1155 int slot_size, int offs) const
1156 {
1157 struct gdbarch *gdbarch = arch ();
1158 int reg_size = std::min (register_size (gdbarch, regnum), slot_size);
1159
1160 /* Use part versions and reg_size to prevent possible buffer overflows when
1161 accessing the regcache. */
1162
1163 if (out_buf != nullptr)
1164 {
1165 raw_collect_part (regnum, 0, reg_size, out_buf + offs);
1166
1167 /* Ensure any additional space is cleared. */
1168 if (slot_size > reg_size)
1169 memset (out_buf + offs + reg_size, 0, slot_size - reg_size);
1170 }
1171 else if (in_buf != nullptr)
1172 out_regcache->raw_supply_part (regnum, 0, reg_size, in_buf + offs);
1173 else
1174 {
1175 /* Invalidate the register. */
1176 out_regcache->raw_supply (regnum, nullptr);
1177 }
1178 }
1179
1180 /* See regcache.h. */
1181
1182 void
1183 regcache::transfer_regset (const struct regset *regset,
1184 struct regcache *out_regcache,
1185 int regnum, const gdb_byte *in_buf,
1186 gdb_byte *out_buf, size_t size) const
1187 {
1188 const struct regcache_map_entry *map;
1189 int offs = 0, count;
1190
1191 for (map = (const struct regcache_map_entry *) regset->regmap;
1192 (count = map->count) != 0;
1193 map++)
1194 {
1195 int regno = map->regno;
1196 int slot_size = map->size;
1197
1198 if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
1199 slot_size = m_descr->sizeof_register[regno];
1200
1201 if (regno == REGCACHE_MAP_SKIP
1202 || (regnum != -1
1203 && (regnum < regno || regnum >= regno + count)))
1204 offs += count * slot_size;
1205
1206 else if (regnum == -1)
1207 for (; count--; regno++, offs += slot_size)
1208 {
1209 if (offs + slot_size > size)
1210 break;
1211
1212 transfer_regset_register (out_regcache, regno, in_buf, out_buf,
1213 slot_size, offs);
1214 }
1215 else
1216 {
1217 /* Transfer a single register and return. */
1218 offs += (regnum - regno) * slot_size;
1219 if (offs + slot_size > size)
1220 return;
1221
1222 transfer_regset_register (out_regcache, regnum, in_buf, out_buf,
1223 slot_size, offs);
1224 return;
1225 }
1226 }
1227 }
1228
1229 /* Supply register REGNUM from BUF to REGCACHE, using the register map
1230 in REGSET. If REGNUM is -1, do this for all registers in REGSET.
1231 If BUF is NULL, set the register(s) to "unavailable" status. */
1232
1233 void
1234 regcache_supply_regset (const struct regset *regset,
1235 struct regcache *regcache,
1236 int regnum, const void *buf, size_t size)
1237 {
1238 regcache->supply_regset (regset, regnum, (const gdb_byte *) buf, size);
1239 }
1240
1241 void
1242 regcache::supply_regset (const struct regset *regset,
1243 int regnum, const void *buf, size_t size)
1244 {
1245 transfer_regset (regset, this, regnum, (const gdb_byte *) buf, nullptr, size);
1246 }
1247
1248 /* Collect register REGNUM from REGCACHE to BUF, using the register
1249 map in REGSET. If REGNUM is -1, do this for all registers in
1250 REGSET. */
1251
1252 void
1253 regcache_collect_regset (const struct regset *regset,
1254 const struct regcache *regcache,
1255 int regnum, void *buf, size_t size)
1256 {
1257 regcache->collect_regset (regset, regnum, (gdb_byte *) buf, size);
1258 }
1259
1260 void
1261 regcache::collect_regset (const struct regset *regset,
1262 int regnum, void *buf, size_t size) const
1263 {
1264 transfer_regset (regset, nullptr, regnum, nullptr, (gdb_byte *) buf, size);
1265 }
1266
1267 /* See gdbsupport/common-regcache.h. */
1268
1269 bool
1270 reg_buffer::raw_compare (int regnum, const void *buf, int offset) const
1271 {
1272 gdb_assert (buf != NULL);
1273 assert_regnum (regnum);
1274
1275 const char *regbuf = (const char *) register_buffer (regnum);
1276 size_t size = m_descr->sizeof_register[regnum];
1277 gdb_assert (size >= offset);
1278
1279 return (memcmp (buf, regbuf + offset, size - offset) == 0);
1280 }
1281
1282 /* Special handling for register PC. */
1283
1284 CORE_ADDR
1285 regcache_read_pc (struct regcache *regcache)
1286 {
1287 struct gdbarch *gdbarch = regcache->arch ();
1288
1289 CORE_ADDR pc_val;
1290
1291 if (gdbarch_read_pc_p (gdbarch))
1292 pc_val = gdbarch_read_pc (gdbarch, regcache);
1293 /* Else use per-frame method on get_current_frame. */
1294 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1295 {
1296 ULONGEST raw_val;
1297
1298 if (regcache_cooked_read_unsigned (regcache,
1299 gdbarch_pc_regnum (gdbarch),
1300 &raw_val) == REG_UNAVAILABLE)
1301 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1302
1303 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
1304 }
1305 else
1306 internal_error (__FILE__, __LINE__,
1307 _("regcache_read_pc: Unable to find PC"));
1308 return pc_val;
1309 }
1310
1311 /* See gdbsupport/common-regcache.h. */
1312
1313 CORE_ADDR
1314 regcache_read_pc_protected (regcache *regcache)
1315 {
1316 CORE_ADDR pc;
1317 try
1318 {
1319 pc = regcache_read_pc (regcache);
1320 }
1321 catch (const gdb_exception_error &ex)
1322 {
1323 pc = 0;
1324 }
1325
1326 return pc;
1327 }
1328
1329 void
1330 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
1331 {
1332 struct gdbarch *gdbarch = regcache->arch ();
1333
1334 if (gdbarch_write_pc_p (gdbarch))
1335 gdbarch_write_pc (gdbarch, regcache, pc);
1336 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1337 regcache_cooked_write_unsigned (regcache,
1338 gdbarch_pc_regnum (gdbarch), pc);
1339 else
1340 internal_error (__FILE__, __LINE__,
1341 _("regcache_write_pc: Unable to update PC"));
1342
1343 /* Writing the PC (for instance, from "load") invalidates the
1344 current frame. */
1345 reinit_frame_cache ();
1346 }
1347
1348 int
1349 reg_buffer::num_raw_registers () const
1350 {
1351 return gdbarch_num_regs (arch ());
1352 }
1353
1354 void
1355 regcache::debug_print_register (const char *func, int regno)
1356 {
1357 struct gdbarch *gdbarch = arch ();
1358
1359 fprintf_unfiltered (gdb_stdlog, "%s ", func);
1360 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
1361 && gdbarch_register_name (gdbarch, regno) != NULL
1362 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
1363 fprintf_unfiltered (gdb_stdlog, "(%s)",
1364 gdbarch_register_name (gdbarch, regno));
1365 else
1366 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
1367 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
1368 {
1369 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1370 int size = register_size (gdbarch, regno);
1371 gdb_byte *buf = register_buffer (regno);
1372
1373 fprintf_unfiltered (gdb_stdlog, " = ");
1374 for (int i = 0; i < size; i++)
1375 {
1376 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1377 }
1378 if (size <= sizeof (LONGEST))
1379 {
1380 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
1381
1382 fprintf_unfiltered (gdb_stdlog, " %s %s",
1383 core_addr_to_string_nz (val), plongest (val));
1384 }
1385 }
1386 fprintf_unfiltered (gdb_stdlog, "\n");
1387 }
1388
1389 /* Implement 'maint flush register-cache' command. */
1390
1391 static void
1392 reg_flush_command (const char *command, int from_tty)
1393 {
1394 /* Force-flush the register cache. */
1395 registers_changed ();
1396 if (from_tty)
1397 printf_filtered (_("Register cache flushed.\n"));
1398 }
1399
1400 void
1401 register_dump::dump (ui_file *file)
1402 {
1403 auto descr = regcache_descr (m_gdbarch);
1404 int regnum;
1405 int footnote_nr = 0;
1406 int footnote_register_offset = 0;
1407 int footnote_register_type_name_null = 0;
1408 long register_offset = 0;
1409
1410 gdb_assert (descr->nr_cooked_registers
1411 == gdbarch_num_cooked_regs (m_gdbarch));
1412
1413 for (regnum = -1; regnum < descr->nr_cooked_registers; regnum++)
1414 {
1415 /* Name. */
1416 if (regnum < 0)
1417 fprintf_unfiltered (file, " %-10s", "Name");
1418 else
1419 {
1420 const char *p = gdbarch_register_name (m_gdbarch, regnum);
1421
1422 if (p == NULL)
1423 p = "";
1424 else if (p[0] == '\0')
1425 p = "''";
1426 fprintf_unfiltered (file, " %-10s", p);
1427 }
1428
1429 /* Number. */
1430 if (regnum < 0)
1431 fprintf_unfiltered (file, " %4s", "Nr");
1432 else
1433 fprintf_unfiltered (file, " %4d", regnum);
1434
1435 /* Relative number. */
1436 if (regnum < 0)
1437 fprintf_unfiltered (file, " %4s", "Rel");
1438 else if (regnum < gdbarch_num_regs (m_gdbarch))
1439 fprintf_unfiltered (file, " %4d", regnum);
1440 else
1441 fprintf_unfiltered (file, " %4d",
1442 (regnum - gdbarch_num_regs (m_gdbarch)));
1443
1444 /* Offset. */
1445 if (regnum < 0)
1446 fprintf_unfiltered (file, " %6s ", "Offset");
1447 else
1448 {
1449 fprintf_unfiltered (file, " %6ld",
1450 descr->register_offset[regnum]);
1451 if (register_offset != descr->register_offset[regnum]
1452 || (regnum > 0
1453 && (descr->register_offset[regnum]
1454 != (descr->register_offset[regnum - 1]
1455 + descr->sizeof_register[regnum - 1])))
1456 )
1457 {
1458 if (!footnote_register_offset)
1459 footnote_register_offset = ++footnote_nr;
1460 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1461 }
1462 else
1463 fprintf_unfiltered (file, " ");
1464 register_offset = (descr->register_offset[regnum]
1465 + descr->sizeof_register[regnum]);
1466 }
1467
1468 /* Size. */
1469 if (regnum < 0)
1470 fprintf_unfiltered (file, " %5s ", "Size");
1471 else
1472 fprintf_unfiltered (file, " %5ld", descr->sizeof_register[regnum]);
1473
1474 /* Type. */
1475 {
1476 const char *t;
1477 std::string name_holder;
1478
1479 if (regnum < 0)
1480 t = "Type";
1481 else
1482 {
1483 static const char blt[] = "builtin_type";
1484
1485 t = register_type (m_gdbarch, regnum)->name ();
1486 if (t == NULL)
1487 {
1488 if (!footnote_register_type_name_null)
1489 footnote_register_type_name_null = ++footnote_nr;
1490 name_holder = string_printf ("*%d",
1491 footnote_register_type_name_null);
1492 t = name_holder.c_str ();
1493 }
1494 /* Chop a leading builtin_type. */
1495 if (startswith (t, blt))
1496 t += strlen (blt);
1497 }
1498 fprintf_unfiltered (file, " %-15s", t);
1499 }
1500
1501 /* Leading space always present. */
1502 fprintf_unfiltered (file, " ");
1503
1504 dump_reg (file, regnum);
1505
1506 fprintf_unfiltered (file, "\n");
1507 }
1508
1509 if (footnote_register_offset)
1510 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1511 footnote_register_offset);
1512 if (footnote_register_type_name_null)
1513 fprintf_unfiltered (file,
1514 "*%d: Register type's name NULL.\n",
1515 footnote_register_type_name_null);
1516 }
1517
1518 #if GDB_SELF_TEST
1519 #include "gdbsupport/selftest.h"
1520 #include "selftest-arch.h"
1521 #include "target-float.h"
1522
1523 namespace selftests {
1524
1525 static size_t
1526 regcaches_size ()
1527 {
1528 size_t size = 0;
1529
1530 for (auto pid_ptid_regc_map_it = regcaches.cbegin ();
1531 pid_ptid_regc_map_it != regcaches.cend ();
1532 ++pid_ptid_regc_map_it)
1533 {
1534 const pid_ptid_regcache_map &pid_ptid_regc_map
1535 = pid_ptid_regc_map_it->second;
1536
1537 for (auto ptid_regc_map_it = pid_ptid_regc_map.cbegin ();
1538 ptid_regc_map_it != pid_ptid_regc_map.cend ();
1539 ++ptid_regc_map_it)
1540 {
1541 const ptid_regcache_map &ptid_regc_map
1542 = ptid_regc_map_it->second;
1543
1544 size += ptid_regc_map.size ();
1545 }
1546 }
1547
1548 return size;
1549 }
1550
1551 /* Return the count of regcaches for (TARGET, PTID) in REGCACHES. */
1552
1553 static int
1554 regcache_count (process_stratum_target *target, ptid_t ptid)
1555 {
1556 /* Look up map for target. */
1557 auto pid_ptid_regc_map_it = regcaches.find (target);
1558 if (pid_ptid_regc_map_it != regcaches.end ())
1559 {
1560 pid_ptid_regcache_map &pid_ptid_regc_map = pid_ptid_regc_map_it->second;
1561
1562 /* Look map for pid. */
1563 auto ptid_regc_map_it = pid_ptid_regc_map.find (ptid.pid ());
1564 if (ptid_regc_map_it != pid_ptid_regc_map.end ())
1565 {
1566 ptid_regcache_map &ptid_regc_map = ptid_regc_map_it->second;
1567 auto range = ptid_regc_map.equal_range (ptid);
1568
1569 return std::distance (range.first, range.second);
1570 }
1571 }
1572
1573 return 0;
1574 };
1575
1576 /* Wrapper around get_thread_arch_aspace_regcache that does some self checks. */
1577
1578 static void
1579 get_thread_arch_aspace_regcache_and_check (process_stratum_target *target,
1580 ptid_t ptid)
1581 {
1582 /* We currently only test with a single gdbarch. Any gdbarch will do, so use
1583 the current inferior's gdbarch. Also use the current inferior's address
1584 space. */
1585 gdbarch *arch = current_inferior ()->gdbarch;
1586 address_space *aspace = current_inferior ()->aspace;
1587 regcache *regcache
1588 = get_thread_arch_aspace_regcache (target, ptid, arch, aspace);
1589
1590 SELF_CHECK (regcache != NULL);
1591 SELF_CHECK (regcache->target () == target);
1592 SELF_CHECK (regcache->ptid () == ptid);
1593 SELF_CHECK (regcache->arch () == arch);
1594 SELF_CHECK (regcache->aspace () == aspace);
1595 }
1596
1597 /* The data that the regcaches selftests must hold onto for the duration of the
1598 test. */
1599
1600 struct regcache_test_data
1601 {
1602 regcache_test_data ()
1603 {
1604 /* Ensure the regcaches container is empty at the start. */
1605 registers_changed ();
1606 }
1607
1608 ~regcache_test_data ()
1609 {
1610 /* Make sure to leave the global regcaches container empty. */
1611 registers_changed ();
1612 }
1613
1614 test_target_ops test_target1;
1615 test_target_ops test_target2;
1616 };
1617
1618 using regcache_test_data_up = std::unique_ptr<regcache_test_data>;
1619
1620 /* Set up a few regcaches from two different targets, for use in
1621 regcache-management tests.
1622
1623 Return a pointer, because the `regcache_test_data` type is not moveable. */
1624
1625 static regcache_test_data_up
1626 populate_regcaches_for_test ()
1627 {
1628 regcache_test_data_up data (new regcache_test_data);
1629 size_t expected_regcache_size = 0;
1630
1631 SELF_CHECK (regcaches_size () == 0);
1632
1633 /* Populate the regcache container with a few regcaches for the two test
1634 targets. */
1635 for (int pid : { 1, 2 })
1636 {
1637 for (long lwp : { 1, 2, 3 })
1638 {
1639 get_thread_arch_aspace_regcache_and_check
1640 (&data->test_target1, ptid_t (pid, lwp));
1641 expected_regcache_size++;
1642 SELF_CHECK (regcaches_size () == expected_regcache_size);
1643
1644 get_thread_arch_aspace_regcache_and_check
1645 (&data->test_target2, ptid_t (pid, lwp));
1646 expected_regcache_size++;
1647 SELF_CHECK (regcaches_size () == expected_regcache_size);
1648 }
1649 }
1650
1651 return data;
1652 }
1653
1654 static void
1655 get_thread_arch_aspace_regcache_test ()
1656 {
1657 /* populate_regcaches_for_test already tests most of the
1658 get_thread_arch_aspace_regcache functionality. */
1659 regcache_test_data_up data = populate_regcaches_for_test ();
1660 size_t regcaches_size_before = regcaches_size ();
1661
1662 /* Test that getting an existing regcache doesn't create a new one. */
1663 get_thread_arch_aspace_regcache_and_check (&data->test_target1, ptid_t (2, 2));
1664 SELF_CHECK (regcaches_size () == regcaches_size_before);
1665 }
1666
1667 /* Test marking all regcaches of all targets as changed. */
1668
1669 static void
1670 registers_changed_ptid_all_test ()
1671 {
1672 regcache_test_data_up data = populate_regcaches_for_test ();
1673
1674 registers_changed_ptid (nullptr, minus_one_ptid);
1675 SELF_CHECK (regcaches_size () == 0);
1676 }
1677
1678 /* Test marking regcaches of a specific target as changed. */
1679
1680 static void
1681 registers_changed_ptid_target_test ()
1682 {
1683 regcache_test_data_up data = populate_regcaches_for_test ();
1684
1685 registers_changed_ptid (&data->test_target1, minus_one_ptid);
1686 SELF_CHECK (regcaches_size () == 6);
1687
1688 /* Check that we deleted the regcache for the right target. */
1689 SELF_CHECK (regcache_count (&data->test_target1, ptid_t (2, 2)) == 0);
1690 SELF_CHECK (regcache_count (&data->test_target2, ptid_t (2, 2)) == 1);
1691 }
1692
1693 /* Test marking regcaches of a specific (target, pid) as changed. */
1694
1695 static void
1696 registers_changed_ptid_target_pid_test ()
1697 {
1698 regcache_test_data_up data = populate_regcaches_for_test ();
1699
1700 registers_changed_ptid (&data->test_target1, ptid_t (2));
1701 SELF_CHECK (regcaches_size () == 9);
1702
1703 /* Regcaches from target1 should not exist, while regcaches from target2
1704 should exist. */
1705 SELF_CHECK (regcache_count (&data->test_target1, ptid_t (2, 2)) == 0);
1706 SELF_CHECK (regcache_count (&data->test_target2, ptid_t (2, 2)) == 1);
1707 }
1708
1709 /* Test marking regcaches of a specific (target, ptid) as changed. */
1710
1711 static void
1712 registers_changed_ptid_target_ptid_test ()
1713 {
1714 regcache_test_data_up data = populate_regcaches_for_test ();
1715
1716 registers_changed_ptid (&data->test_target1, ptid_t (2, 2));
1717 SELF_CHECK (regcaches_size () == 11);
1718
1719 /* Check that we deleted the regcache for the right target. */
1720 SELF_CHECK (regcache_count (&data->test_target1, ptid_t (2, 2)) == 0);
1721 SELF_CHECK (regcache_count (&data->test_target2, ptid_t (2, 2)) == 1);
1722 }
1723
1724 class target_ops_no_register : public test_target_ops
1725 {
1726 public:
1727 target_ops_no_register ()
1728 : test_target_ops {}
1729 {}
1730
1731 void reset ()
1732 {
1733 fetch_registers_called = 0;
1734 store_registers_called = 0;
1735 xfer_partial_called = 0;
1736 }
1737
1738 void fetch_registers (regcache *regs, int regno) override;
1739 void store_registers (regcache *regs, int regno) override;
1740
1741 enum target_xfer_status xfer_partial (enum target_object object,
1742 const char *annex, gdb_byte *readbuf,
1743 const gdb_byte *writebuf,
1744 ULONGEST offset, ULONGEST len,
1745 ULONGEST *xfered_len) override;
1746
1747 unsigned int fetch_registers_called = 0;
1748 unsigned int store_registers_called = 0;
1749 unsigned int xfer_partial_called = 0;
1750 };
1751
1752 void
1753 target_ops_no_register::fetch_registers (regcache *regs, int regno)
1754 {
1755 /* Mark register available. */
1756 regs->raw_supply_zeroed (regno);
1757 this->fetch_registers_called++;
1758 }
1759
1760 void
1761 target_ops_no_register::store_registers (regcache *regs, int regno)
1762 {
1763 this->store_registers_called++;
1764 }
1765
1766 enum target_xfer_status
1767 target_ops_no_register::xfer_partial (enum target_object object,
1768 const char *annex, gdb_byte *readbuf,
1769 const gdb_byte *writebuf,
1770 ULONGEST offset, ULONGEST len,
1771 ULONGEST *xfered_len)
1772 {
1773 this->xfer_partial_called++;
1774
1775 *xfered_len = len;
1776 return TARGET_XFER_OK;
1777 }
1778
1779 class readwrite_regcache : public regcache
1780 {
1781 public:
1782 readwrite_regcache (process_stratum_target *target,
1783 struct gdbarch *gdbarch)
1784 : regcache (target, gdbarch, nullptr)
1785 {}
1786 };
1787
1788 /* Test regcache::cooked_read gets registers from raw registers and
1789 memory instead of target to_{fetch,store}_registers. */
1790
1791 static void
1792 cooked_read_test (struct gdbarch *gdbarch)
1793 {
1794 scoped_mock_context<target_ops_no_register> mockctx (gdbarch);
1795
1796 /* Test that read one raw register from regcache_no_target will go
1797 to the target layer. */
1798
1799 /* Find a raw register which size isn't zero. */
1800 int nonzero_regnum;
1801 for (nonzero_regnum = 0;
1802 nonzero_regnum < gdbarch_num_regs (gdbarch);
1803 nonzero_regnum++)
1804 {
1805 if (register_size (gdbarch, nonzero_regnum) != 0)
1806 break;
1807 }
1808
1809 readwrite_regcache readwrite (&mockctx.mock_target, gdbarch);
1810 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, nonzero_regnum));
1811
1812 readwrite.raw_read (nonzero_regnum, buf.data ());
1813
1814 /* raw_read calls target_fetch_registers. */
1815 SELF_CHECK (mockctx.mock_target.fetch_registers_called > 0);
1816 mockctx.mock_target.reset ();
1817
1818 /* Mark all raw registers valid, so the following raw registers
1819 accesses won't go to target. */
1820 for (auto i = 0; i < gdbarch_num_regs (gdbarch); i++)
1821 readwrite.raw_update (i);
1822
1823 mockctx.mock_target.reset ();
1824 /* Then, read all raw and pseudo registers, and don't expect calling
1825 to_{fetch,store}_registers. */
1826 for (int regnum = 0; regnum < gdbarch_num_cooked_regs (gdbarch); regnum++)
1827 {
1828 if (register_size (gdbarch, regnum) == 0)
1829 continue;
1830
1831 gdb::def_vector<gdb_byte> inner_buf (register_size (gdbarch, regnum));
1832
1833 SELF_CHECK (REG_VALID == readwrite.cooked_read (regnum,
1834 inner_buf.data ()));
1835
1836 SELF_CHECK (mockctx.mock_target.fetch_registers_called == 0);
1837 SELF_CHECK (mockctx.mock_target.store_registers_called == 0);
1838 SELF_CHECK (mockctx.mock_target.xfer_partial_called == 0);
1839
1840 mockctx.mock_target.reset ();
1841 }
1842
1843 readonly_detached_regcache readonly (readwrite);
1844
1845 /* GDB may go to target layer to fetch all registers and memory for
1846 readonly regcache. */
1847 mockctx.mock_target.reset ();
1848
1849 for (int regnum = 0; regnum < gdbarch_num_cooked_regs (gdbarch); regnum++)
1850 {
1851 if (register_size (gdbarch, regnum) == 0)
1852 continue;
1853
1854 gdb::def_vector<gdb_byte> inner_buf (register_size (gdbarch, regnum));
1855 enum register_status status = readonly.cooked_read (regnum,
1856 inner_buf.data ());
1857
1858 if (regnum < gdbarch_num_regs (gdbarch))
1859 {
1860 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1861
1862 if (bfd_arch == bfd_arch_frv || bfd_arch == bfd_arch_h8300
1863 || bfd_arch == bfd_arch_m32c || bfd_arch == bfd_arch_sh
1864 || bfd_arch == bfd_arch_alpha || bfd_arch == bfd_arch_v850
1865 || bfd_arch == bfd_arch_msp430 || bfd_arch == bfd_arch_mep
1866 || bfd_arch == bfd_arch_mips || bfd_arch == bfd_arch_v850_rh850
1867 || bfd_arch == bfd_arch_tic6x || bfd_arch == bfd_arch_mn10300
1868 || bfd_arch == bfd_arch_rl78 || bfd_arch == bfd_arch_score
1869 || bfd_arch == bfd_arch_riscv || bfd_arch == bfd_arch_csky)
1870 {
1871 /* Raw registers. If raw registers are not in save_reggroup,
1872 their status are unknown. */
1873 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1874 SELF_CHECK (status == REG_VALID);
1875 else
1876 SELF_CHECK (status == REG_UNKNOWN);
1877 }
1878 else
1879 SELF_CHECK (status == REG_VALID);
1880 }
1881 else
1882 {
1883 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1884 SELF_CHECK (status == REG_VALID);
1885 else
1886 {
1887 /* If pseudo registers are not in save_reggroup, some of
1888 them can be computed from saved raw registers, but some
1889 of them are unknown. */
1890 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1891
1892 if (bfd_arch == bfd_arch_frv
1893 || bfd_arch == bfd_arch_m32c
1894 || bfd_arch == bfd_arch_mep
1895 || bfd_arch == bfd_arch_sh)
1896 SELF_CHECK (status == REG_VALID || status == REG_UNKNOWN);
1897 else if (bfd_arch == bfd_arch_mips
1898 || bfd_arch == bfd_arch_h8300)
1899 SELF_CHECK (status == REG_UNKNOWN);
1900 else
1901 SELF_CHECK (status == REG_VALID);
1902 }
1903 }
1904
1905 SELF_CHECK (mockctx.mock_target.fetch_registers_called == 0);
1906 SELF_CHECK (mockctx.mock_target.store_registers_called == 0);
1907 SELF_CHECK (mockctx.mock_target.xfer_partial_called == 0);
1908
1909 mockctx.mock_target.reset ();
1910 }
1911 }
1912
1913 /* Test regcache::cooked_write by writing some expected contents to
1914 registers, and checking that contents read from registers and the
1915 expected contents are the same. */
1916
1917 static void
1918 cooked_write_test (struct gdbarch *gdbarch)
1919 {
1920 /* Error out if debugging something, because we're going to push the
1921 test target, which would pop any existing target. */
1922 if (current_inferior ()->top_target ()->stratum () >= process_stratum)
1923 error (_("target already pushed"));
1924
1925 /* Create a mock environment. A process_stratum target pushed. */
1926
1927 target_ops_no_register mock_target;
1928
1929 /* Push the process_stratum target so we can mock accessing
1930 registers. */
1931 current_inferior ()->push_target (&mock_target);
1932
1933 /* Pop it again on exit (return/exception). */
1934 struct on_exit
1935 {
1936 ~on_exit ()
1937 {
1938 pop_all_targets_at_and_above (process_stratum);
1939 }
1940 } pop_targets;
1941
1942 readwrite_regcache readwrite (&mock_target, gdbarch);
1943
1944 const int num_regs = gdbarch_num_cooked_regs (gdbarch);
1945
1946 for (auto regnum = 0; regnum < num_regs; regnum++)
1947 {
1948 if (register_size (gdbarch, regnum) == 0
1949 || gdbarch_cannot_store_register (gdbarch, regnum))
1950 continue;
1951
1952 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1953
1954 if (bfd_arch == bfd_arch_sparc
1955 /* SPARC64_CWP_REGNUM, SPARC64_PSTATE_REGNUM,
1956 SPARC64_ASI_REGNUM and SPARC64_CCR_REGNUM are hard to test. */
1957 && gdbarch_ptr_bit (gdbarch) == 64
1958 && (regnum >= gdbarch_num_regs (gdbarch)
1959 && regnum <= gdbarch_num_regs (gdbarch) + 4))
1960 continue;
1961
1962 std::vector<gdb_byte> expected (register_size (gdbarch, regnum), 0);
1963 std::vector<gdb_byte> buf (register_size (gdbarch, regnum), 0);
1964 const auto type = register_type (gdbarch, regnum);
1965
1966 if (type->code () == TYPE_CODE_FLT
1967 || type->code () == TYPE_CODE_DECFLOAT)
1968 {
1969 /* Generate valid float format. */
1970 target_float_from_string (expected.data (), type, "1.25");
1971 }
1972 else if (type->code () == TYPE_CODE_INT
1973 || type->code () == TYPE_CODE_ARRAY
1974 || type->code () == TYPE_CODE_PTR
1975 || type->code () == TYPE_CODE_UNION
1976 || type->code () == TYPE_CODE_STRUCT)
1977 {
1978 if (bfd_arch == bfd_arch_ia64
1979 || (regnum >= gdbarch_num_regs (gdbarch)
1980 && (bfd_arch == bfd_arch_xtensa
1981 || bfd_arch == bfd_arch_bfin
1982 || bfd_arch == bfd_arch_m32c
1983 /* m68hc11 pseudo registers are in memory. */
1984 || bfd_arch == bfd_arch_m68hc11
1985 || bfd_arch == bfd_arch_m68hc12
1986 || bfd_arch == bfd_arch_s390))
1987 || (bfd_arch == bfd_arch_frv
1988 /* FRV pseudo registers except iacc0. */
1989 && regnum > gdbarch_num_regs (gdbarch)))
1990 {
1991 /* Skip setting the expected values for some architecture
1992 registers. */
1993 }
1994 else if (bfd_arch == bfd_arch_rl78 && regnum == 40)
1995 {
1996 /* RL78_PC_REGNUM */
1997 for (auto j = 0; j < register_size (gdbarch, regnum) - 1; j++)
1998 expected[j] = j;
1999 }
2000 else
2001 {
2002 for (auto j = 0; j < register_size (gdbarch, regnum); j++)
2003 expected[j] = j;
2004 }
2005 }
2006 else if (type->code () == TYPE_CODE_FLAGS)
2007 {
2008 /* No idea how to test flags. */
2009 continue;
2010 }
2011 else
2012 {
2013 /* If we don't know how to create the expected value for the
2014 this type, make it fail. */
2015 SELF_CHECK (0);
2016 }
2017
2018 readwrite.cooked_write (regnum, expected.data ());
2019
2020 SELF_CHECK (readwrite.cooked_read (regnum, buf.data ()) == REG_VALID);
2021 SELF_CHECK (expected == buf);
2022 }
2023 }
2024
2025 /* Verify that when two threads with the same ptid exist (from two different
2026 targets) and one of them changes ptid, we only update the appropriate
2027 regcaches. */
2028
2029 static void
2030 regcache_thread_ptid_changed ()
2031 {
2032 /* This test relies on the global regcache list to initially be empty. */
2033 registers_changed ();
2034
2035 /* Any arch will do. */
2036 gdbarch *arch = current_inferior ()->gdbarch;
2037
2038 /* Prepare two targets with one thread each, with the same ptid. */
2039 scoped_mock_context<test_target_ops> target1 (arch);
2040 scoped_mock_context<test_target_ops> target2 (arch);
2041 target2.mock_inferior.next = &target1.mock_inferior;
2042
2043 ptid_t old_ptid (111, 222);
2044 ptid_t new_ptid (111, 333);
2045
2046 target1.mock_inferior.pid = old_ptid.pid ();
2047 target1.mock_thread.ptid = old_ptid;
2048 target2.mock_inferior.pid = old_ptid.pid ();
2049 target2.mock_thread.ptid = old_ptid;
2050
2051 gdb_assert (regcaches.empty ());
2052
2053 /* Populate the regcaches container. */
2054 get_thread_arch_aspace_regcache (&target1.mock_target, old_ptid, arch,
2055 nullptr);
2056 get_thread_arch_aspace_regcache (&target2.mock_target, old_ptid, arch,
2057 nullptr);
2058
2059 gdb_assert (regcaches.size () == 2);
2060 gdb_assert (regcache_count (&target1.mock_target, old_ptid) == 1);
2061 gdb_assert (regcache_count (&target1.mock_target, new_ptid) == 0);
2062 gdb_assert (regcache_count (&target2.mock_target, old_ptid) == 1);
2063 gdb_assert (regcache_count (&target2.mock_target, new_ptid) == 0);
2064
2065 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
2066
2067 gdb_assert (regcaches.size () == 2);
2068 gdb_assert (regcache_count (&target1.mock_target, old_ptid) == 0);
2069 gdb_assert (regcache_count (&target1.mock_target, new_ptid) == 1);
2070 gdb_assert (regcache_count (&target2.mock_target, old_ptid) == 1);
2071 gdb_assert (regcache_count (&target2.mock_target, new_ptid) == 0);
2072
2073 /* Leave the regcache list empty. */
2074 registers_changed ();
2075 gdb_assert (regcaches.empty ());
2076 }
2077
2078 } // namespace selftests
2079 #endif /* GDB_SELF_TEST */
2080
2081 void _initialize_regcache ();
2082 void
2083 _initialize_regcache ()
2084 {
2085 struct cmd_list_element *c;
2086
2087 regcache_descr_handle
2088 = gdbarch_data_register_post_init (init_regcache_descr);
2089
2090 gdb::observers::target_changed.attach (regcache_observer_target_changed,
2091 "regcache");
2092 gdb::observers::thread_ptid_changed.attach (regcache_thread_ptid_changed,
2093 "regcache");
2094
2095 cmd_list_element *maintenance_flush_register_cache_cmd
2096 = add_cmd ("register-cache", class_maintenance, reg_flush_command,
2097 _("Force gdb to flush its register and frame cache."),
2098 &maintenanceflushlist);
2099 c = add_com_alias ("flushregs", maintenance_flush_register_cache_cmd,
2100 class_maintenance, 0);
2101 deprecate_cmd (c, "maintenance flush register-cache");
2102
2103 #if GDB_SELF_TEST
2104 selftests::register_test ("get_thread_arch_aspace_regcache",
2105 selftests::get_thread_arch_aspace_regcache_test);
2106 selftests::register_test ("registers_changed_ptid_all",
2107 selftests::registers_changed_ptid_all_test);
2108 selftests::register_test ("registers_changed_ptid_target",
2109 selftests::registers_changed_ptid_target_test);
2110 selftests::register_test ("registers_changed_ptid_target_pid",
2111 selftests::registers_changed_ptid_target_pid_test);
2112 selftests::register_test ("registers_changed_ptid_target_ptid",
2113 selftests::registers_changed_ptid_target_ptid_test);
2114
2115 selftests::register_test_foreach_arch ("regcache::cooked_read_test",
2116 selftests::cooked_read_test);
2117 selftests::register_test_foreach_arch ("regcache::cooked_write_test",
2118 selftests::cooked_write_test);
2119 selftests::register_test ("regcache_thread_ptid_changed",
2120 selftests::regcache_thread_ptid_changed);
2121 #endif
2122 }
This page took 0.076675 seconds and 4 git commands to generate.