merge from gcc
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000,
4 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "inferior.h"
25 #include "target.h"
26 #include "gdbarch.h"
27 #include "gdbcmd.h"
28 #include "regcache.h"
29 #include "gdb_assert.h"
30
31 /*
32 * DATA STRUCTURE
33 *
34 * Here is the actual register cache.
35 */
36
37 /* Per-architecture object describing the layout of a register cache.
38 Computed once when the architecture is created */
39
40 struct gdbarch_data *regcache_descr_handle;
41
42 struct regcache_descr
43 {
44 /* The architecture this descriptor belongs to. */
45 struct gdbarch *gdbarch;
46
47 /* Is this a ``legacy'' register cache? Such caches reserve space
48 for raw and pseudo registers and allow access to both. */
49 int legacy_p;
50
51 /* The raw register cache. This should contain just [0
52 .. NUM_RAW_REGISTERS). However, for older targets, it contains
53 space for the full [0 .. NUM_RAW_REGISTERS +
54 NUM_PSEUDO_REGISTERS). */
55 int nr_raw_registers;
56 long sizeof_raw_registers;
57 long sizeof_raw_register_valid_p;
58
59 /* Offset, in bytes, of reach register in the raw register cache.
60 Pseudo registers have an offset even though they don't
61 (shouldn't) have a correspoinding space in the register cache.
62 It is to keep existing code, that relies on
63 write/write_register_bytes working. */
64 long *register_offset;
65
66 /* The cooked / frame / virtual register space. The registers in
67 the range [0..NR_RAW_REGISTERS) should be mapped directly onto
68 the corresponding raw register. The next [NR_RAW_REGISTERS
69 .. NR_REGISTERS) should have been mapped, via
70 gdbarch_register_read/write onto either raw registers or memory. */
71 int nr_registers;
72 long *sizeof_register;
73 long max_register_size;
74
75 };
76
77 static void *
78 init_legacy_regcache_descr (struct gdbarch *gdbarch)
79 {
80 int i;
81 struct regcache_descr *descr;
82 /* FIXME: cagney/2002-05-11: gdbarch_data() should take that
83 ``gdbarch'' as a parameter. */
84 gdb_assert (gdbarch != NULL);
85
86 descr = XMALLOC (struct regcache_descr);
87 descr->gdbarch = gdbarch;
88 descr->legacy_p = 1;
89
90 /* FIXME: cagney/2002-05-11: Shouldn't be including pseudo-registers
91 in the register buffer. Unfortunatly some architectures do. */
92 descr->nr_registers = NUM_REGS + NUM_PSEUDO_REGS;
93 descr->nr_raw_registers = descr->nr_registers;
94 descr->sizeof_raw_register_valid_p = descr->nr_registers;
95
96 /* FIXME: cagney/2002-05-11: Instead of using REGISTER_BYTE() this
97 code should compute the offets et.al. at runtime. This currently
98 isn't possible because some targets overlap register locations -
99 see the mess in read_register_bytes() and write_register_bytes()
100 registers. */
101 descr->sizeof_register = XCALLOC (descr->nr_registers, long);
102 descr->register_offset = XCALLOC (descr->nr_registers, long);
103 descr->max_register_size = 0;
104 for (i = 0; i < descr->nr_registers; i++)
105 {
106 descr->register_offset[i] = REGISTER_BYTE (i);
107 descr->sizeof_register[i] = REGISTER_RAW_SIZE (i);
108 if (descr->max_register_size < REGISTER_RAW_SIZE (i))
109 descr->max_register_size = REGISTER_RAW_SIZE (i);
110 }
111
112 /* Come up with the real size of the registers buffer. */
113 descr->sizeof_raw_registers = REGISTER_BYTES; /* OK use. */
114 for (i = 0; i < descr->nr_registers; i++)
115 {
116 long regend;
117 /* Keep extending the buffer so that there is always enough
118 space for all registers. The comparison is necessary since
119 legacy code is free to put registers in random places in the
120 buffer separated by holes. Once REGISTER_BYTE() is killed
121 this can be greatly simplified. */
122 /* FIXME: cagney/2001-12-04: This code shouldn't need to use
123 REGISTER_BYTE(). Unfortunatly, legacy code likes to lay the
124 buffer out so that certain registers just happen to overlap.
125 Ulgh! New targets use gdbarch's register read/write and
126 entirely avoid this uglyness. */
127 regend = descr->register_offset[i] + descr->sizeof_register[i];
128 if (descr->sizeof_raw_registers < regend)
129 descr->sizeof_raw_registers = regend;
130 }
131 return descr;
132 }
133
134 static void *
135 init_regcache_descr (struct gdbarch *gdbarch)
136 {
137 int i;
138 struct regcache_descr *descr;
139 gdb_assert (gdbarch != NULL);
140
141 /* If an old style architecture, construct the register cache
142 description using all the register macros. */
143 if (!gdbarch_register_read_p (gdbarch)
144 && !gdbarch_register_write_p (gdbarch))
145 return init_legacy_regcache_descr (gdbarch);
146
147 descr = XMALLOC (struct regcache_descr);
148 descr->gdbarch = gdbarch;
149 descr->legacy_p = 0;
150
151 /* Total size of the register space. The raw registers should
152 directly map onto the raw register cache while the pseudo's are
153 either mapped onto raw-registers or memory. */
154 descr->nr_registers = NUM_REGS + NUM_PSEUDO_REGS;
155
156 /* Construct a strictly RAW register cache. Don't allow pseudo's
157 into the register cache. */
158 descr->nr_raw_registers = NUM_REGS;
159 descr->sizeof_raw_register_valid_p = NUM_REGS;
160
161 /* Lay out the register cache. The pseud-registers are included in
162 the layout even though their value isn't stored in the register
163 cache. Some code, via read_register_bytes() access a register
164 using an offset/length rather than a register number.
165
166 NOTE: cagney/2002-05-22: Only REGISTER_VIRTUAL_TYPE() needs to be
167 used when constructing the register cache. It is assumed that
168 register raw size, virtual size and type length of the type are
169 all the same. */
170
171 {
172 long offset = 0;
173 descr->sizeof_register = XCALLOC (descr->nr_registers, long);
174 descr->register_offset = XCALLOC (descr->nr_registers, long);
175 descr->max_register_size = 0;
176 for (i = 0; i < descr->nr_registers; i++)
177 {
178 descr->sizeof_register[i] = TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (i));
179 descr->register_offset[i] = offset;
180 offset += descr->sizeof_register[i];
181 if (descr->max_register_size < descr->sizeof_register[i])
182 descr->max_register_size = descr->sizeof_register[i];
183 }
184 /* Set the real size of the register cache buffer. */
185 /* FIXME: cagney/2002-05-22: Should only need to allocate space
186 for the raw registers. Unfortunatly some code still accesses
187 the register array directly using the global registers[].
188 Until that code has been purged, play safe and over allocating
189 the register buffer. Ulgh! */
190 descr->sizeof_raw_registers = offset;
191 /* = descr->register_offset[descr->nr_raw_registers]; */
192 }
193
194 #if 0
195 /* Sanity check. Confirm that the assumptions about gdbarch are
196 true. The REGCACHE_DESCR_HANDLE is set before doing the checks
197 so that targets using the generic methods supplied by regcache
198 don't go into infinite recursion trying to, again, create the
199 regcache. */
200 set_gdbarch_data (gdbarch, regcache_descr_handle, descr);
201 for (i = 0; i < descr->nr_registers; i++)
202 {
203 gdb_assert (descr->sizeof_register[i] == REGISTER_RAW_SIZE (i));
204 gdb_assert (descr->sizeof_register[i] == REGISTER_VIRTUAL_SIZE (i));
205 gdb_assert (descr->register_offset[i] == REGISTER_BYTE (i));
206 }
207 /* gdb_assert (descr->sizeof_raw_registers == REGISTER_BYTES (i)); */
208 #endif
209
210 return descr;
211 }
212
213 static struct regcache_descr *
214 regcache_descr (struct gdbarch *gdbarch)
215 {
216 return gdbarch_data (gdbarch, regcache_descr_handle);
217 }
218
219 static void
220 xfree_regcache_descr (struct gdbarch *gdbarch, void *ptr)
221 {
222 struct regcache_descr *descr = ptr;
223 if (descr == NULL)
224 return;
225 xfree (descr->register_offset);
226 xfree (descr->sizeof_register);
227 descr->register_offset = NULL;
228 descr->sizeof_register = NULL;
229 xfree (descr);
230 }
231
232 /* The register cache for storing raw register values. */
233
234 struct regcache
235 {
236 struct regcache_descr *descr;
237 char *raw_registers;
238 char *raw_register_valid_p;
239 /* If a value isn't in the cache should the corresponding target be
240 queried for a value. */
241 int passthrough_p;
242 };
243
244 struct regcache *
245 regcache_xmalloc (struct gdbarch *gdbarch)
246 {
247 struct regcache_descr *descr;
248 struct regcache *regcache;
249 gdb_assert (gdbarch != NULL);
250 descr = regcache_descr (gdbarch);
251 regcache = XMALLOC (struct regcache);
252 regcache->descr = descr;
253 regcache->raw_registers
254 = XCALLOC (descr->sizeof_raw_registers, char);
255 regcache->raw_register_valid_p
256 = XCALLOC (descr->sizeof_raw_register_valid_p, char);
257 regcache->passthrough_p = 0;
258 return regcache;
259 }
260
261 void
262 regcache_xfree (struct regcache *regcache)
263 {
264 if (regcache == NULL)
265 return;
266 xfree (regcache->raw_registers);
267 xfree (regcache->raw_register_valid_p);
268 xfree (regcache);
269 }
270
271 void
272 do_regcache_xfree (void *data)
273 {
274 regcache_xfree (data);
275 }
276
277 struct cleanup *
278 make_cleanup_regcache_xfree (struct regcache *regcache)
279 {
280 return make_cleanup (do_regcache_xfree, regcache);
281 }
282
283 void
284 regcache_cpy (struct regcache *dst, struct regcache *src)
285 {
286 int i;
287 char *buf;
288 gdb_assert (src != NULL && dst != NULL);
289 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
290 gdb_assert (src != dst);
291 /* FIXME: cagney/2002-05-17: To say this bit is bad is being polite.
292 It keeps the existing code working where things rely on going
293 through to the register cache. */
294 if (src == current_regcache && src->descr->legacy_p)
295 {
296 /* ULGH!!!! Old way. Use REGISTER bytes and let code below
297 untangle fetch. */
298 read_register_bytes (0, dst->raw_registers, REGISTER_BYTES);
299 return;
300 }
301 /* FIXME: cagney/2002-05-17: To say this bit is bad is being polite.
302 It keeps the existing code working where things rely on going
303 through to the register cache. */
304 if (dst == current_regcache && dst->descr->legacy_p)
305 {
306 /* ULGH!!!! Old way. Use REGISTER bytes and let code below
307 untangle fetch. */
308 write_register_bytes (0, src->raw_registers, REGISTER_BYTES);
309 return;
310 }
311 buf = alloca (src->descr->max_register_size);
312 for (i = 0; i < src->descr->nr_raw_registers; i++)
313 {
314 /* Should we worry about the valid bit here? */
315 regcache_raw_read (src, i, buf);
316 regcache_raw_write (dst, i, buf);
317 }
318 }
319
320 void
321 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
322 {
323 int i;
324 gdb_assert (src != NULL && dst != NULL);
325 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
326 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
327 move of data into the current_regcache(). Doing this would be
328 silly - it would mean that valid_p would be completly invalid. */
329 gdb_assert (dst != current_regcache);
330 memcpy (dst->raw_registers, src->raw_registers,
331 dst->descr->sizeof_raw_registers);
332 memcpy (dst->raw_register_valid_p, src->raw_register_valid_p,
333 dst->descr->sizeof_raw_register_valid_p);
334 }
335
336 struct regcache *
337 regcache_dup (struct regcache *src)
338 {
339 struct regcache *newbuf;
340 gdb_assert (current_regcache != NULL);
341 newbuf = regcache_xmalloc (src->descr->gdbarch);
342 regcache_cpy (newbuf, src);
343 return newbuf;
344 }
345
346 struct regcache *
347 regcache_dup_no_passthrough (struct regcache *src)
348 {
349 struct regcache *newbuf;
350 gdb_assert (current_regcache != NULL);
351 newbuf = regcache_xmalloc (src->descr->gdbarch);
352 regcache_cpy_no_passthrough (newbuf, src);
353 return newbuf;
354 }
355
356 int
357 regcache_valid_p (struct regcache *regcache, int regnum)
358 {
359 gdb_assert (regcache != NULL);
360 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
361 return regcache->raw_register_valid_p[regnum];
362 }
363
364 CORE_ADDR
365 regcache_raw_read_as_address (struct regcache *regcache, int regnum)
366 {
367 char *buf;
368 gdb_assert (regcache != NULL);
369 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
370 buf = alloca (regcache->descr->sizeof_register[regnum]);
371 regcache_raw_read (regcache, regnum, buf);
372 return extract_address (buf, regcache->descr->sizeof_register[regnum]);
373 }
374
375 char *
376 deprecated_grub_regcache_for_registers (struct regcache *regcache)
377 {
378 return regcache->raw_registers;
379 }
380
381 char *
382 deprecated_grub_regcache_for_register_valid (struct regcache *regcache)
383 {
384 return regcache->raw_register_valid_p;
385 }
386
387 /* Global structure containing the current regcache. */
388 /* FIXME: cagney/2002-05-11: The two global arrays registers[] and
389 register_valid[] currently point into this structure. */
390 struct regcache *current_regcache;
391
392 /* NOTE: this is a write-through cache. There is no "dirty" bit for
393 recording if the register values have been changed (eg. by the
394 user). Therefore all registers must be written back to the
395 target when appropriate. */
396
397 /* REGISTERS contains the cached register values (in target byte order). */
398
399 char *registers;
400
401 /* REGISTER_VALID is 0 if the register needs to be fetched,
402 1 if it has been fetched, and
403 -1 if the register value was not available.
404
405 "Not available" indicates that the target is not not able to supply
406 the register at this state. The register may become available at a
407 later time (after the next resume). This often occures when GDB is
408 manipulating a target that contains only a snapshot of the entire
409 system being debugged - some of the registers in such a system may
410 not have been saved. */
411
412 signed char *register_valid;
413
414 /* The thread/process associated with the current set of registers. */
415
416 static ptid_t registers_ptid;
417
418 /*
419 * FUNCTIONS:
420 */
421
422 /* REGISTER_CACHED()
423
424 Returns 0 if the value is not in the cache (needs fetch).
425 >0 if the value is in the cache.
426 <0 if the value is permanently unavailable (don't ask again). */
427
428 int
429 register_cached (int regnum)
430 {
431 return register_valid[regnum];
432 }
433
434 /* Record that REGNUM's value is cached if STATE is >0, uncached but
435 fetchable if STATE is 0, and uncached and unfetchable if STATE is <0. */
436
437 void
438 set_register_cached (int regnum, int state)
439 {
440 register_valid[regnum] = state;
441 }
442
443 /* REGISTER_CHANGED
444
445 invalidate a single register REGNUM in the cache */
446 void
447 register_changed (int regnum)
448 {
449 set_register_cached (regnum, 0);
450 }
451
452 /* If REGNUM >= 0, return a pointer to register REGNUM's cache buffer area,
453 else return a pointer to the start of the cache buffer. */
454
455 static char *
456 register_buffer (struct regcache *regcache, int regnum)
457 {
458 return regcache->raw_registers + regcache->descr->register_offset[regnum];
459 }
460
461 /* Return whether register REGNUM is a real register. */
462
463 static int
464 real_register (int regnum)
465 {
466 return regnum >= 0 && regnum < NUM_REGS;
467 }
468
469 /* Return whether register REGNUM is a pseudo register. */
470
471 static int
472 pseudo_register (int regnum)
473 {
474 return regnum >= NUM_REGS && regnum < NUM_REGS + NUM_PSEUDO_REGS;
475 }
476
477 /* Fetch register REGNUM into the cache. */
478
479 static void
480 fetch_register (int regnum)
481 {
482 /* NOTE: cagney/2001-12-04: Legacy targets were using fetch/store
483 pseudo-register as a way of handling registers that needed to be
484 constructed from one or more raw registers. New targets instead
485 use gdbarch register read/write. */
486 if (FETCH_PSEUDO_REGISTER_P ()
487 && pseudo_register (regnum))
488 FETCH_PSEUDO_REGISTER (regnum);
489 else
490 target_fetch_registers (regnum);
491 }
492
493 /* Write register REGNUM cached value to the target. */
494
495 static void
496 store_register (int regnum)
497 {
498 /* NOTE: cagney/2001-12-04: Legacy targets were using fetch/store
499 pseudo-register as a way of handling registers that needed to be
500 constructed from one or more raw registers. New targets instead
501 use gdbarch register read/write. */
502 if (STORE_PSEUDO_REGISTER_P ()
503 && pseudo_register (regnum))
504 STORE_PSEUDO_REGISTER (regnum);
505 else
506 target_store_registers (regnum);
507 }
508
509 /* Low level examining and depositing of registers.
510
511 The caller is responsible for making sure that the inferior is
512 stopped before calling the fetching routines, or it will get
513 garbage. (a change from GDB version 3, in which the caller got the
514 value from the last stop). */
515
516 /* REGISTERS_CHANGED ()
517
518 Indicate that registers may have changed, so invalidate the cache. */
519
520 void
521 registers_changed (void)
522 {
523 int i;
524
525 registers_ptid = pid_to_ptid (-1);
526
527 /* Force cleanup of any alloca areas if using C alloca instead of
528 a builtin alloca. This particular call is used to clean up
529 areas allocated by low level target code which may build up
530 during lengthy interactions between gdb and the target before
531 gdb gives control to the user (ie watchpoints). */
532 alloca (0);
533
534 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
535 set_register_cached (i, 0);
536
537 if (registers_changed_hook)
538 registers_changed_hook ();
539 }
540
541 /* REGISTERS_FETCHED ()
542
543 Indicate that all registers have been fetched, so mark them all valid. */
544
545 /* NOTE: cagney/2001-12-04: This function does not set valid on the
546 pseudo-register range since pseudo registers are always supplied
547 using supply_register(). */
548 /* FIXME: cagney/2001-12-04: This function is DEPRECATED. The target
549 code was blatting the registers[] array and then calling this.
550 Since targets should only be using supply_register() the need for
551 this function/hack is eliminated. */
552
553 void
554 registers_fetched (void)
555 {
556 int i;
557
558 for (i = 0; i < NUM_REGS; i++)
559 set_register_cached (i, 1);
560 /* Do not assume that the pseudo-regs have also been fetched.
561 Fetching all real regs NEVER accounts for pseudo-regs. */
562 }
563
564 /* read_register_bytes and write_register_bytes are generally a *BAD*
565 idea. They are inefficient because they need to check for partial
566 updates, which can only be done by scanning through all of the
567 registers and seeing if the bytes that are being read/written fall
568 inside of an invalid register. [The main reason this is necessary
569 is that register sizes can vary, so a simple index won't suffice.]
570 It is far better to call read_register_gen and write_register_gen
571 if you want to get at the raw register contents, as it only takes a
572 regnum as an argument, and therefore can't do a partial register
573 update.
574
575 Prior to the recent fixes to check for partial updates, both read
576 and write_register_bytes always checked to see if any registers
577 were stale, and then called target_fetch_registers (-1) to update
578 the whole set. This caused really slowed things down for remote
579 targets. */
580
581 /* Copy INLEN bytes of consecutive data from registers
582 starting with the INREGBYTE'th byte of register data
583 into memory at MYADDR. */
584
585 void
586 read_register_bytes (int in_start, char *in_buf, int in_len)
587 {
588 int in_end = in_start + in_len;
589 int regnum;
590 char *reg_buf = alloca (MAX_REGISTER_RAW_SIZE);
591
592 /* See if we are trying to read bytes from out-of-date registers. If so,
593 update just those registers. */
594
595 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
596 {
597 int reg_start;
598 int reg_end;
599 int reg_len;
600 int start;
601 int end;
602 int byte;
603
604 reg_start = REGISTER_BYTE (regnum);
605 reg_len = REGISTER_RAW_SIZE (regnum);
606 reg_end = reg_start + reg_len;
607
608 if (reg_end <= in_start || in_end <= reg_start)
609 /* The range the user wants to read doesn't overlap with regnum. */
610 continue;
611
612 if (REGISTER_NAME (regnum) != NULL && *REGISTER_NAME (regnum) != '\0')
613 /* Force the cache to fetch the entire register. */
614 read_register_gen (regnum, reg_buf);
615 else
616 /* Legacy note: even though this register is ``invalid'' we
617 still need to return something. It would appear that some
618 code relies on apparent gaps in the register array also
619 being returned. */
620 /* FIXME: cagney/2001-08-18: This is just silly. It defeats
621 the entire register read/write flow of control. Must
622 resist temptation to return 0xdeadbeef. */
623 memcpy (reg_buf, registers + reg_start, reg_len);
624
625 /* Legacy note: This function, for some reason, allows a NULL
626 input buffer. If the buffer is NULL, the registers are still
627 fetched, just the final transfer is skipped. */
628 if (in_buf == NULL)
629 continue;
630
631 /* start = max (reg_start, in_start) */
632 if (reg_start > in_start)
633 start = reg_start;
634 else
635 start = in_start;
636
637 /* end = min (reg_end, in_end) */
638 if (reg_end < in_end)
639 end = reg_end;
640 else
641 end = in_end;
642
643 /* Transfer just the bytes common to both IN_BUF and REG_BUF */
644 for (byte = start; byte < end; byte++)
645 {
646 in_buf[byte - in_start] = reg_buf[byte - reg_start];
647 }
648 }
649 }
650
651 /* Read register REGNUM into memory at MYADDR, which must be large
652 enough for REGISTER_RAW_BYTES (REGNUM). Target byte-order. If the
653 register is known to be the size of a CORE_ADDR or smaller,
654 read_register can be used instead. */
655
656 static void
657 legacy_read_register_gen (int regnum, char *myaddr)
658 {
659 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
660 if (! ptid_equal (registers_ptid, inferior_ptid))
661 {
662 registers_changed ();
663 registers_ptid = inferior_ptid;
664 }
665
666 if (!register_cached (regnum))
667 fetch_register (regnum);
668
669 memcpy (myaddr, register_buffer (current_regcache, regnum),
670 REGISTER_RAW_SIZE (regnum));
671 }
672
673 void
674 regcache_raw_read (struct regcache *regcache, int regnum, void *buf)
675 {
676 gdb_assert (regcache != NULL && buf != NULL);
677 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
678 if (regcache->descr->legacy_p
679 && regcache->passthrough_p)
680 {
681 gdb_assert (regcache == current_regcache);
682 /* For moment, just use underlying legacy code. Ulgh!!! This
683 silently and very indirectly updates the regcache's regcache
684 via the global register_valid[]. */
685 legacy_read_register_gen (regnum, buf);
686 return;
687 }
688 /* Make certain that the register cache is up-to-date with respect
689 to the current thread. This switching shouldn't be necessary
690 only there is still only one target side register cache. Sigh!
691 On the bright side, at least there is a regcache object. */
692 if (regcache->passthrough_p)
693 {
694 gdb_assert (regcache == current_regcache);
695 if (! ptid_equal (registers_ptid, inferior_ptid))
696 {
697 registers_changed ();
698 registers_ptid = inferior_ptid;
699 }
700 if (!register_cached (regnum))
701 fetch_register (regnum);
702 }
703 /* Copy the value directly into the register cache. */
704 memcpy (buf, (regcache->raw_registers
705 + regcache->descr->register_offset[regnum]),
706 regcache->descr->sizeof_register[regnum]);
707 }
708
709 void
710 read_register_gen (int regnum, char *buf)
711 {
712 gdb_assert (current_regcache != NULL);
713 gdb_assert (current_regcache->descr->gdbarch == current_gdbarch);
714 if (current_regcache->descr->legacy_p)
715 {
716 legacy_read_register_gen (regnum, buf);
717 return;
718 }
719 gdbarch_register_read (current_gdbarch, regnum, buf);
720 }
721
722
723 /* Write register REGNUM at MYADDR to the target. MYADDR points at
724 REGISTER_RAW_BYTES(REGNUM), which must be in target byte-order. */
725
726 static void
727 legacy_write_register_gen (int regnum, const void *myaddr)
728 {
729 int size;
730 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
731
732 /* On the sparc, writing %g0 is a no-op, so we don't even want to
733 change the registers array if something writes to this register. */
734 if (CANNOT_STORE_REGISTER (regnum))
735 return;
736
737 if (! ptid_equal (registers_ptid, inferior_ptid))
738 {
739 registers_changed ();
740 registers_ptid = inferior_ptid;
741 }
742
743 size = REGISTER_RAW_SIZE (regnum);
744
745 if (real_register (regnum))
746 {
747 /* If we have a valid copy of the register, and new value == old
748 value, then don't bother doing the actual store. */
749 if (register_cached (regnum)
750 && (memcmp (register_buffer (current_regcache, regnum), myaddr, size)
751 == 0))
752 return;
753 else
754 target_prepare_to_store ();
755 }
756
757 memcpy (register_buffer (current_regcache, regnum), myaddr, size);
758
759 set_register_cached (regnum, 1);
760 store_register (regnum);
761 }
762
763 void
764 regcache_raw_write (struct regcache *regcache, int regnum, const void *buf)
765 {
766 gdb_assert (regcache != NULL && buf != NULL);
767 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
768
769 if (regcache->passthrough_p
770 && regcache->descr->legacy_p)
771 {
772 /* For moment, just use underlying legacy code. Ulgh!!! This
773 silently and very indirectly updates the regcache's buffers
774 via the globals register_valid[] and registers[]. */
775 gdb_assert (regcache == current_regcache);
776 legacy_write_register_gen (regnum, buf);
777 return;
778 }
779
780 /* On the sparc, writing %g0 is a no-op, so we don't even want to
781 change the registers array if something writes to this register. */
782 if (CANNOT_STORE_REGISTER (regnum))
783 return;
784
785 /* Handle the simple case first -> not write through so just store
786 value in cache. */
787 if (!regcache->passthrough_p)
788 {
789 memcpy ((regcache->raw_registers
790 + regcache->descr->register_offset[regnum]), buf,
791 regcache->descr->sizeof_register[regnum]);
792 regcache->raw_register_valid_p[regnum] = 1;
793 return;
794 }
795
796 /* Make certain that the correct cache is selected. */
797 gdb_assert (regcache == current_regcache);
798 if (! ptid_equal (registers_ptid, inferior_ptid))
799 {
800 registers_changed ();
801 registers_ptid = inferior_ptid;
802 }
803
804 /* If we have a valid copy of the register, and new value == old
805 value, then don't bother doing the actual store. */
806 if (regcache_valid_p (regcache, regnum)
807 && (memcmp (register_buffer (regcache, regnum), buf,
808 regcache->descr->sizeof_register[regnum]) == 0))
809 return;
810
811 target_prepare_to_store ();
812 memcpy (register_buffer (regcache, regnum), buf,
813 regcache->descr->sizeof_register[regnum]);
814 regcache->raw_register_valid_p[regnum] = 1;
815 store_register (regnum);
816 }
817
818 void
819 write_register_gen (int regnum, char *buf)
820 {
821 gdb_assert (current_regcache != NULL);
822 gdb_assert (current_regcache->descr->gdbarch == current_gdbarch);
823 if (current_regcache->descr->legacy_p)
824 {
825 legacy_write_register_gen (regnum, buf);
826 return;
827 }
828 gdbarch_register_write (current_gdbarch, regnum, buf);
829 }
830
831 /* Copy INLEN bytes of consecutive data from memory at MYADDR
832 into registers starting with the MYREGSTART'th byte of register data. */
833
834 void
835 write_register_bytes (int myregstart, char *myaddr, int inlen)
836 {
837 int myregend = myregstart + inlen;
838 int regnum;
839
840 target_prepare_to_store ();
841
842 /* Scan through the registers updating any that are covered by the
843 range myregstart<=>myregend using write_register_gen, which does
844 nice things like handling threads, and avoiding updates when the
845 new and old contents are the same. */
846
847 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
848 {
849 int regstart, regend;
850
851 regstart = REGISTER_BYTE (regnum);
852 regend = regstart + REGISTER_RAW_SIZE (regnum);
853
854 /* Is this register completely outside the range the user is writing? */
855 if (myregend <= regstart || regend <= myregstart)
856 /* do nothing */ ;
857
858 /* Is this register completely within the range the user is writing? */
859 else if (myregstart <= regstart && regend <= myregend)
860 write_register_gen (regnum, myaddr + (regstart - myregstart));
861
862 /* The register partially overlaps the range being written. */
863 else
864 {
865 char *regbuf = (char*) alloca (MAX_REGISTER_RAW_SIZE);
866 /* What's the overlap between this register's bytes and
867 those the caller wants to write? */
868 int overlapstart = max (regstart, myregstart);
869 int overlapend = min (regend, myregend);
870
871 /* We may be doing a partial update of an invalid register.
872 Update it from the target before scribbling on it. */
873 read_register_gen (regnum, regbuf);
874
875 memcpy (registers + overlapstart,
876 myaddr + (overlapstart - myregstart),
877 overlapend - overlapstart);
878
879 store_register (regnum);
880 }
881 }
882 }
883
884
885 /* Return the contents of register REGNUM as an unsigned integer. */
886
887 ULONGEST
888 read_register (int regnum)
889 {
890 char *buf = alloca (REGISTER_RAW_SIZE (regnum));
891 read_register_gen (regnum, buf);
892 return (extract_unsigned_integer (buf, REGISTER_RAW_SIZE (regnum)));
893 }
894
895 ULONGEST
896 read_register_pid (int regnum, ptid_t ptid)
897 {
898 ptid_t save_ptid;
899 int save_pid;
900 CORE_ADDR retval;
901
902 if (ptid_equal (ptid, inferior_ptid))
903 return read_register (regnum);
904
905 save_ptid = inferior_ptid;
906
907 inferior_ptid = ptid;
908
909 retval = read_register (regnum);
910
911 inferior_ptid = save_ptid;
912
913 return retval;
914 }
915
916 /* Return the contents of register REGNUM as a signed integer. */
917
918 LONGEST
919 read_signed_register (int regnum)
920 {
921 void *buf = alloca (REGISTER_RAW_SIZE (regnum));
922 read_register_gen (regnum, buf);
923 return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum)));
924 }
925
926 LONGEST
927 read_signed_register_pid (int regnum, ptid_t ptid)
928 {
929 ptid_t save_ptid;
930 LONGEST retval;
931
932 if (ptid_equal (ptid, inferior_ptid))
933 return read_signed_register (regnum);
934
935 save_ptid = inferior_ptid;
936
937 inferior_ptid = ptid;
938
939 retval = read_signed_register (regnum);
940
941 inferior_ptid = save_ptid;
942
943 return retval;
944 }
945
946 /* Store VALUE into the raw contents of register number REGNUM. */
947
948 void
949 write_register (int regnum, LONGEST val)
950 {
951 void *buf;
952 int size;
953 size = REGISTER_RAW_SIZE (regnum);
954 buf = alloca (size);
955 store_signed_integer (buf, size, (LONGEST) val);
956 write_register_gen (regnum, buf);
957 }
958
959 void
960 write_register_pid (int regnum, CORE_ADDR val, ptid_t ptid)
961 {
962 ptid_t save_ptid;
963
964 if (ptid_equal (ptid, inferior_ptid))
965 {
966 write_register (regnum, val);
967 return;
968 }
969
970 save_ptid = inferior_ptid;
971
972 inferior_ptid = ptid;
973
974 write_register (regnum, val);
975
976 inferior_ptid = save_ptid;
977 }
978
979 /* SUPPLY_REGISTER()
980
981 Record that register REGNUM contains VAL. This is used when the
982 value is obtained from the inferior or core dump, so there is no
983 need to store the value there.
984
985 If VAL is a NULL pointer, then it's probably an unsupported register.
986 We just set its value to all zeros. We might want to record this
987 fact, and report it to the users of read_register and friends. */
988
989 void
990 supply_register (int regnum, const void *val)
991 {
992 #if 1
993 if (! ptid_equal (registers_ptid, inferior_ptid))
994 {
995 registers_changed ();
996 registers_ptid = inferior_ptid;
997 }
998 #endif
999
1000 set_register_cached (regnum, 1);
1001 if (val)
1002 memcpy (register_buffer (current_regcache, regnum), val,
1003 REGISTER_RAW_SIZE (regnum));
1004 else
1005 memset (register_buffer (current_regcache, regnum), '\000',
1006 REGISTER_RAW_SIZE (regnum));
1007
1008 /* On some architectures, e.g. HPPA, there are a few stray bits in
1009 some registers, that the rest of the code would like to ignore. */
1010
1011 /* NOTE: cagney/2001-03-16: The macro CLEAN_UP_REGISTER_VALUE is
1012 going to be deprecated. Instead architectures will leave the raw
1013 register value as is and instead clean things up as they pass
1014 through the method gdbarch_register_read() clean up the
1015 values. */
1016
1017 #ifdef DEPRECATED_CLEAN_UP_REGISTER_VALUE
1018 DEPRECATED_CLEAN_UP_REGISTER_VALUE \
1019 (regnum, register_buffer (current_regcache, regnum));
1020 #endif
1021 }
1022
1023 void
1024 regcache_collect (int regnum, void *buf)
1025 {
1026 memcpy (buf, register_buffer (current_regcache, regnum),
1027 REGISTER_RAW_SIZE (regnum));
1028 }
1029
1030
1031 /* read_pc, write_pc, read_sp, write_sp, read_fp, etc. Special
1032 handling for registers PC, SP, and FP. */
1033
1034 /* NOTE: cagney/2001-02-18: The functions generic_target_read_pc(),
1035 read_pc_pid(), read_pc(), generic_target_write_pc(),
1036 write_pc_pid(), write_pc(), generic_target_read_sp(), read_sp(),
1037 generic_target_write_sp(), write_sp(), generic_target_read_fp() and
1038 read_fp(), will eventually be moved out of the reg-cache into
1039 either frame.[hc] or to the multi-arch framework. The are not part
1040 of the raw register cache. */
1041
1042 /* This routine is getting awfully cluttered with #if's. It's probably
1043 time to turn this into READ_PC and define it in the tm.h file.
1044 Ditto for write_pc.
1045
1046 1999-06-08: The following were re-written so that it assumes the
1047 existence of a TARGET_READ_PC et.al. macro. A default generic
1048 version of that macro is made available where needed.
1049
1050 Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled
1051 by the multi-arch framework, it will eventually be possible to
1052 eliminate the intermediate read_pc_pid(). The client would call
1053 TARGET_READ_PC directly. (cagney). */
1054
1055 CORE_ADDR
1056 generic_target_read_pc (ptid_t ptid)
1057 {
1058 #ifdef PC_REGNUM
1059 if (PC_REGNUM >= 0)
1060 {
1061 CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, ptid));
1062 return pc_val;
1063 }
1064 #endif
1065 internal_error (__FILE__, __LINE__,
1066 "generic_target_read_pc");
1067 return 0;
1068 }
1069
1070 CORE_ADDR
1071 read_pc_pid (ptid_t ptid)
1072 {
1073 ptid_t saved_inferior_ptid;
1074 CORE_ADDR pc_val;
1075
1076 /* In case ptid != inferior_ptid. */
1077 saved_inferior_ptid = inferior_ptid;
1078 inferior_ptid = ptid;
1079
1080 pc_val = TARGET_READ_PC (ptid);
1081
1082 inferior_ptid = saved_inferior_ptid;
1083 return pc_val;
1084 }
1085
1086 CORE_ADDR
1087 read_pc (void)
1088 {
1089 return read_pc_pid (inferior_ptid);
1090 }
1091
1092 void
1093 generic_target_write_pc (CORE_ADDR pc, ptid_t ptid)
1094 {
1095 #ifdef PC_REGNUM
1096 if (PC_REGNUM >= 0)
1097 write_register_pid (PC_REGNUM, pc, ptid);
1098 if (NPC_REGNUM >= 0)
1099 write_register_pid (NPC_REGNUM, pc + 4, ptid);
1100 #else
1101 internal_error (__FILE__, __LINE__,
1102 "generic_target_write_pc");
1103 #endif
1104 }
1105
1106 void
1107 write_pc_pid (CORE_ADDR pc, ptid_t ptid)
1108 {
1109 ptid_t saved_inferior_ptid;
1110
1111 /* In case ptid != inferior_ptid. */
1112 saved_inferior_ptid = inferior_ptid;
1113 inferior_ptid = ptid;
1114
1115 TARGET_WRITE_PC (pc, ptid);
1116
1117 inferior_ptid = saved_inferior_ptid;
1118 }
1119
1120 void
1121 write_pc (CORE_ADDR pc)
1122 {
1123 write_pc_pid (pc, inferior_ptid);
1124 }
1125
1126 /* Cope with strage ways of getting to the stack and frame pointers */
1127
1128 CORE_ADDR
1129 generic_target_read_sp (void)
1130 {
1131 #ifdef SP_REGNUM
1132 if (SP_REGNUM >= 0)
1133 return read_register (SP_REGNUM);
1134 #endif
1135 internal_error (__FILE__, __LINE__,
1136 "generic_target_read_sp");
1137 }
1138
1139 CORE_ADDR
1140 read_sp (void)
1141 {
1142 return TARGET_READ_SP ();
1143 }
1144
1145 void
1146 generic_target_write_sp (CORE_ADDR val)
1147 {
1148 #ifdef SP_REGNUM
1149 if (SP_REGNUM >= 0)
1150 {
1151 write_register (SP_REGNUM, val);
1152 return;
1153 }
1154 #endif
1155 internal_error (__FILE__, __LINE__,
1156 "generic_target_write_sp");
1157 }
1158
1159 void
1160 write_sp (CORE_ADDR val)
1161 {
1162 TARGET_WRITE_SP (val);
1163 }
1164
1165 CORE_ADDR
1166 generic_target_read_fp (void)
1167 {
1168 #ifdef FP_REGNUM
1169 if (FP_REGNUM >= 0)
1170 return read_register (FP_REGNUM);
1171 #endif
1172 internal_error (__FILE__, __LINE__,
1173 "generic_target_read_fp");
1174 }
1175
1176 CORE_ADDR
1177 read_fp (void)
1178 {
1179 return TARGET_READ_FP ();
1180 }
1181
1182 /* ARGSUSED */
1183 static void
1184 reg_flush_command (char *command, int from_tty)
1185 {
1186 /* Force-flush the register cache. */
1187 registers_changed ();
1188 if (from_tty)
1189 printf_filtered ("Register cache flushed.\n");
1190 }
1191
1192 static void
1193 build_regcache (void)
1194 {
1195 current_regcache = regcache_xmalloc (current_gdbarch);
1196 current_regcache->passthrough_p = 1;
1197 registers = deprecated_grub_regcache_for_registers (current_regcache);
1198 register_valid = deprecated_grub_regcache_for_register_valid (current_regcache);
1199 }
1200
1201 void
1202 _initialize_regcache (void)
1203 {
1204 regcache_descr_handle = register_gdbarch_data (init_regcache_descr,
1205 xfree_regcache_descr);
1206 REGISTER_GDBARCH_SWAP (current_regcache);
1207 register_gdbarch_swap (&registers, sizeof (registers), NULL);
1208 register_gdbarch_swap (&register_valid, sizeof (register_valid), NULL);
1209 register_gdbarch_swap (NULL, 0, build_regcache);
1210
1211 add_com ("flushregs", class_maintenance, reg_flush_command,
1212 "Force gdb to flush its register cache (maintainer command)");
1213
1214 /* Initialize the thread/process associated with the current set of
1215 registers. For now, -1 is special, and means `no current process'. */
1216 registers_ptid = pid_to_ptid (-1);
1217 }
This page took 0.058062 seconds and 5 git commands to generate.