Remove regcache_raw_collect
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbarch.h"
24 #include "gdbcmd.h"
25 #include "regcache.h"
26 #include "reggroups.h"
27 #include "observable.h"
28 #include "regset.h"
29 #include <forward_list>
30
31 /*
32 * DATA STRUCTURE
33 *
34 * Here is the actual register cache.
35 */
36
37 /* Per-architecture object describing the layout of a register cache.
38 Computed once when the architecture is created. */
39
40 struct gdbarch_data *regcache_descr_handle;
41
42 struct regcache_descr
43 {
44 /* The architecture this descriptor belongs to. */
45 struct gdbarch *gdbarch;
46
47 /* The raw register cache. Each raw (or hard) register is supplied
48 by the target interface. The raw cache should not contain
49 redundant information - if the PC is constructed from two
50 registers then those registers and not the PC lives in the raw
51 cache. */
52 long sizeof_raw_registers;
53
54 /* The cooked register space. Each cooked register in the range
55 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
56 register. The remaining [NR_RAW_REGISTERS
57 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
58 both raw registers and memory by the architecture methods
59 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
60 int nr_cooked_registers;
61 long sizeof_cooked_registers;
62
63 /* Offset and size (in 8 bit bytes), of each register in the
64 register cache. All registers (including those in the range
65 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
66 offset. */
67 long *register_offset;
68 long *sizeof_register;
69
70 /* Cached table containing the type of each register. */
71 struct type **register_type;
72 };
73
74 static void *
75 init_regcache_descr (struct gdbarch *gdbarch)
76 {
77 int i;
78 struct regcache_descr *descr;
79 gdb_assert (gdbarch != NULL);
80
81 /* Create an initial, zero filled, table. */
82 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
83 descr->gdbarch = gdbarch;
84
85 /* Total size of the register space. The raw registers are mapped
86 directly onto the raw register cache while the pseudo's are
87 either mapped onto raw-registers or memory. */
88 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
89 + gdbarch_num_pseudo_regs (gdbarch);
90
91 /* Fill in a table of register types. */
92 descr->register_type
93 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
94 struct type *);
95 for (i = 0; i < descr->nr_cooked_registers; i++)
96 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
97
98 /* Construct a strictly RAW register cache. Don't allow pseudo's
99 into the register cache. */
100
101 /* Lay out the register cache.
102
103 NOTE: cagney/2002-05-22: Only register_type() is used when
104 constructing the register cache. It is assumed that the
105 register's raw size, virtual size and type length are all the
106 same. */
107
108 {
109 long offset = 0;
110
111 descr->sizeof_register
112 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
113 descr->register_offset
114 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
115 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
116 {
117 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
118 descr->register_offset[i] = offset;
119 offset += descr->sizeof_register[i];
120 }
121 /* Set the real size of the raw register cache buffer. */
122 descr->sizeof_raw_registers = offset;
123
124 for (; i < descr->nr_cooked_registers; i++)
125 {
126 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
127 descr->register_offset[i] = offset;
128 offset += descr->sizeof_register[i];
129 }
130 /* Set the real size of the readonly register cache buffer. */
131 descr->sizeof_cooked_registers = offset;
132 }
133
134 return descr;
135 }
136
137 static struct regcache_descr *
138 regcache_descr (struct gdbarch *gdbarch)
139 {
140 return (struct regcache_descr *) gdbarch_data (gdbarch,
141 regcache_descr_handle);
142 }
143
144 /* Utility functions returning useful register attributes stored in
145 the regcache descr. */
146
147 struct type *
148 register_type (struct gdbarch *gdbarch, int regnum)
149 {
150 struct regcache_descr *descr = regcache_descr (gdbarch);
151
152 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
153 return descr->register_type[regnum];
154 }
155
156 /* Utility functions returning useful register attributes stored in
157 the regcache descr. */
158
159 int
160 register_size (struct gdbarch *gdbarch, int regnum)
161 {
162 struct regcache_descr *descr = regcache_descr (gdbarch);
163 int size;
164
165 gdb_assert (regnum >= 0
166 && regnum < (gdbarch_num_regs (gdbarch)
167 + gdbarch_num_pseudo_regs (gdbarch)));
168 size = descr->sizeof_register[regnum];
169 return size;
170 }
171
172 /* See common/common-regcache.h. */
173
174 int
175 regcache_register_size (const struct regcache *regcache, int n)
176 {
177 return register_size (regcache->arch (), n);
178 }
179
180 reg_buffer::reg_buffer (gdbarch *gdbarch, bool has_pseudo)
181 : m_has_pseudo (has_pseudo)
182 {
183 gdb_assert (gdbarch != NULL);
184 m_descr = regcache_descr (gdbarch);
185
186 if (has_pseudo)
187 {
188 m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_cooked_registers);
189 m_register_status = XCNEWVEC (signed char,
190 m_descr->nr_cooked_registers);
191 }
192 else
193 {
194 m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_raw_registers);
195 m_register_status = XCNEWVEC (signed char, gdbarch_num_regs (gdbarch));
196 }
197 }
198
199 regcache::regcache (gdbarch *gdbarch, const address_space *aspace_)
200 /* The register buffers. A read/write register cache can only hold
201 [0 .. gdbarch_num_regs). */
202 : detached_regcache (gdbarch, false), m_aspace (aspace_)
203 {
204 m_ptid = minus_one_ptid;
205 }
206
207 static enum register_status
208 do_cooked_read (void *src, int regnum, gdb_byte *buf)
209 {
210 struct regcache *regcache = (struct regcache *) src;
211
212 return regcache->cooked_read (regnum, buf);
213 }
214
215 readonly_detached_regcache::readonly_detached_regcache (const regcache &src)
216 : readonly_detached_regcache (src.arch (), do_cooked_read, (void *) &src)
217 {
218 }
219
220 gdbarch *
221 reg_buffer::arch () const
222 {
223 return m_descr->gdbarch;
224 }
225
226 /* Cleanup class for invalidating a register. */
227
228 class regcache_invalidator
229 {
230 public:
231
232 regcache_invalidator (struct regcache *regcache, int regnum)
233 : m_regcache (regcache),
234 m_regnum (regnum)
235 {
236 }
237
238 ~regcache_invalidator ()
239 {
240 if (m_regcache != nullptr)
241 m_regcache->invalidate (m_regnum);
242 }
243
244 DISABLE_COPY_AND_ASSIGN (regcache_invalidator);
245
246 void release ()
247 {
248 m_regcache = nullptr;
249 }
250
251 private:
252
253 struct regcache *m_regcache;
254 int m_regnum;
255 };
256
257 /* Return a pointer to register REGNUM's buffer cache. */
258
259 gdb_byte *
260 reg_buffer::register_buffer (int regnum) const
261 {
262 return m_registers + m_descr->register_offset[regnum];
263 }
264
265 void
266 reg_buffer::save (regcache_cooked_read_ftype *cooked_read,
267 void *src)
268 {
269 struct gdbarch *gdbarch = m_descr->gdbarch;
270 int regnum;
271
272 /* It should have pseudo registers. */
273 gdb_assert (m_has_pseudo);
274 /* Clear the dest. */
275 memset (m_registers, 0, m_descr->sizeof_cooked_registers);
276 memset (m_register_status, 0, m_descr->nr_cooked_registers);
277 /* Copy over any registers (identified by their membership in the
278 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
279 gdbarch_num_pseudo_regs) range is checked since some architectures need
280 to save/restore `cooked' registers that live in memory. */
281 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
282 {
283 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
284 {
285 gdb_byte *dst_buf = register_buffer (regnum);
286 enum register_status status = cooked_read (src, regnum, dst_buf);
287
288 gdb_assert (status != REG_UNKNOWN);
289
290 if (status != REG_VALID)
291 memset (dst_buf, 0, register_size (gdbarch, regnum));
292
293 m_register_status[regnum] = status;
294 }
295 }
296 }
297
298 void
299 regcache::restore (readonly_detached_regcache *src)
300 {
301 struct gdbarch *gdbarch = m_descr->gdbarch;
302 int regnum;
303
304 gdb_assert (src != NULL);
305 gdb_assert (src->m_has_pseudo);
306
307 gdb_assert (gdbarch == src->arch ());
308
309 /* Copy over any registers, being careful to only restore those that
310 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
311 + gdbarch_num_pseudo_regs) range is checked since some architectures need
312 to save/restore `cooked' registers that live in memory. */
313 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
314 {
315 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
316 {
317 if (src->m_register_status[regnum] == REG_VALID)
318 cooked_write (regnum, src->register_buffer (regnum));
319 }
320 }
321 }
322
323 enum register_status
324 reg_buffer::get_register_status (int regnum) const
325 {
326 assert_regnum (regnum);
327
328 return (enum register_status) m_register_status[regnum];
329 }
330
331 void
332 detached_regcache::invalidate (int regnum)
333 {
334 assert_regnum (regnum);
335 m_register_status[regnum] = REG_UNKNOWN;
336 }
337
338 void
339 reg_buffer::assert_regnum (int regnum) const
340 {
341 gdb_assert (regnum >= 0);
342 if (m_has_pseudo)
343 gdb_assert (regnum < m_descr->nr_cooked_registers);
344 else
345 gdb_assert (regnum < gdbarch_num_regs (arch ()));
346 }
347
348 /* Global structure containing the current regcache. */
349
350 /* NOTE: this is a write-through cache. There is no "dirty" bit for
351 recording if the register values have been changed (eg. by the
352 user). Therefore all registers must be written back to the
353 target when appropriate. */
354 std::forward_list<regcache *> regcache::current_regcache;
355
356 struct regcache *
357 get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
358 struct address_space *aspace)
359 {
360 for (const auto &regcache : regcache::current_regcache)
361 if (ptid_equal (regcache->ptid (), ptid) && regcache->arch () == gdbarch)
362 return regcache;
363
364 regcache *new_regcache = new regcache (gdbarch, aspace);
365
366 regcache::current_regcache.push_front (new_regcache);
367 new_regcache->set_ptid (ptid);
368
369 return new_regcache;
370 }
371
372 struct regcache *
373 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
374 {
375 address_space *aspace = target_thread_address_space (ptid);
376
377 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
378 }
379
380 static ptid_t current_thread_ptid;
381 static struct gdbarch *current_thread_arch;
382
383 struct regcache *
384 get_thread_regcache (ptid_t ptid)
385 {
386 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
387 {
388 current_thread_ptid = ptid;
389 current_thread_arch = target_thread_architecture (ptid);
390 }
391
392 return get_thread_arch_regcache (ptid, current_thread_arch);
393 }
394
395 struct regcache *
396 get_current_regcache (void)
397 {
398 return get_thread_regcache (inferior_ptid);
399 }
400
401 /* See common/common-regcache.h. */
402
403 struct regcache *
404 get_thread_regcache_for_ptid (ptid_t ptid)
405 {
406 return get_thread_regcache (ptid);
407 }
408
409 /* Observer for the target_changed event. */
410
411 static void
412 regcache_observer_target_changed (struct target_ops *target)
413 {
414 registers_changed ();
415 }
416
417 /* Update global variables old ptids to hold NEW_PTID if they were
418 holding OLD_PTID. */
419 void
420 regcache::regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
421 {
422 for (auto &regcache : regcache::current_regcache)
423 {
424 if (ptid_equal (regcache->ptid (), old_ptid))
425 regcache->set_ptid (new_ptid);
426 }
427 }
428
429 /* Low level examining and depositing of registers.
430
431 The caller is responsible for making sure that the inferior is
432 stopped before calling the fetching routines, or it will get
433 garbage. (a change from GDB version 3, in which the caller got the
434 value from the last stop). */
435
436 /* REGISTERS_CHANGED ()
437
438 Indicate that registers may have changed, so invalidate the cache. */
439
440 void
441 registers_changed_ptid (ptid_t ptid)
442 {
443 for (auto oit = regcache::current_regcache.before_begin (),
444 it = std::next (oit);
445 it != regcache::current_regcache.end ();
446 )
447 {
448 if (ptid_match ((*it)->ptid (), ptid))
449 {
450 delete *it;
451 it = regcache::current_regcache.erase_after (oit);
452 }
453 else
454 oit = it++;
455 }
456
457 if (ptid_match (current_thread_ptid, ptid))
458 {
459 current_thread_ptid = null_ptid;
460 current_thread_arch = NULL;
461 }
462
463 if (ptid_match (inferior_ptid, ptid))
464 {
465 /* We just deleted the regcache of the current thread. Need to
466 forget about any frames we have cached, too. */
467 reinit_frame_cache ();
468 }
469 }
470
471 void
472 registers_changed (void)
473 {
474 registers_changed_ptid (minus_one_ptid);
475
476 /* Force cleanup of any alloca areas if using C alloca instead of
477 a builtin alloca. This particular call is used to clean up
478 areas allocated by low level target code which may build up
479 during lengthy interactions between gdb and the target before
480 gdb gives control to the user (ie watchpoints). */
481 alloca (0);
482 }
483
484 void
485 regcache::raw_update (int regnum)
486 {
487 assert_regnum (regnum);
488
489 /* Make certain that the register cache is up-to-date with respect
490 to the current thread. This switching shouldn't be necessary
491 only there is still only one target side register cache. Sigh!
492 On the bright side, at least there is a regcache object. */
493
494 if (get_register_status (regnum) == REG_UNKNOWN)
495 {
496 target_fetch_registers (this, regnum);
497
498 /* A number of targets can't access the whole set of raw
499 registers (because the debug API provides no means to get at
500 them). */
501 if (m_register_status[regnum] == REG_UNKNOWN)
502 m_register_status[regnum] = REG_UNAVAILABLE;
503 }
504 }
505
506 enum register_status
507 readable_regcache::raw_read (int regnum, gdb_byte *buf)
508 {
509 gdb_assert (buf != NULL);
510 raw_update (regnum);
511
512 if (m_register_status[regnum] != REG_VALID)
513 memset (buf, 0, m_descr->sizeof_register[regnum]);
514 else
515 memcpy (buf, register_buffer (regnum),
516 m_descr->sizeof_register[regnum]);
517
518 return (enum register_status) m_register_status[regnum];
519 }
520
521 enum register_status
522 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
523 {
524 gdb_assert (regcache != NULL);
525 return regcache->raw_read (regnum, val);
526 }
527
528 template<typename T, typename>
529 enum register_status
530 readable_regcache::raw_read (int regnum, T *val)
531 {
532 gdb_byte *buf;
533 enum register_status status;
534
535 assert_regnum (regnum);
536 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
537 status = raw_read (regnum, buf);
538 if (status == REG_VALID)
539 *val = extract_integer<T> (buf,
540 m_descr->sizeof_register[regnum],
541 gdbarch_byte_order (m_descr->gdbarch));
542 else
543 *val = 0;
544 return status;
545 }
546
547 enum register_status
548 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
549 ULONGEST *val)
550 {
551 gdb_assert (regcache != NULL);
552 return regcache->raw_read (regnum, val);
553 }
554
555 void
556 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
557 {
558 gdb_assert (regcache != NULL);
559 regcache->raw_write (regnum, val);
560 }
561
562 template<typename T, typename>
563 void
564 regcache::raw_write (int regnum, T val)
565 {
566 gdb_byte *buf;
567
568 assert_regnum (regnum);
569 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
570 store_integer (buf, m_descr->sizeof_register[regnum],
571 gdbarch_byte_order (m_descr->gdbarch), val);
572 raw_write (regnum, buf);
573 }
574
575 void
576 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
577 ULONGEST val)
578 {
579 gdb_assert (regcache != NULL);
580 regcache->raw_write (regnum, val);
581 }
582
583 LONGEST
584 regcache_raw_get_signed (struct regcache *regcache, int regnum)
585 {
586 LONGEST value;
587 enum register_status status;
588
589 status = regcache_raw_read_signed (regcache, regnum, &value);
590 if (status == REG_UNAVAILABLE)
591 throw_error (NOT_AVAILABLE_ERROR,
592 _("Register %d is not available"), regnum);
593 return value;
594 }
595
596 enum register_status
597 readable_regcache::cooked_read (int regnum, gdb_byte *buf)
598 {
599 gdb_assert (regnum >= 0);
600 gdb_assert (regnum < m_descr->nr_cooked_registers);
601 if (regnum < num_raw_registers ())
602 return raw_read (regnum, buf);
603 else if (m_has_pseudo
604 && m_register_status[regnum] != REG_UNKNOWN)
605 {
606 if (m_register_status[regnum] == REG_VALID)
607 memcpy (buf, register_buffer (regnum),
608 m_descr->sizeof_register[regnum]);
609 else
610 memset (buf, 0, m_descr->sizeof_register[regnum]);
611
612 return (enum register_status) m_register_status[regnum];
613 }
614 else if (gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
615 {
616 struct value *mark, *computed;
617 enum register_status result = REG_VALID;
618
619 mark = value_mark ();
620
621 computed = gdbarch_pseudo_register_read_value (m_descr->gdbarch,
622 this, regnum);
623 if (value_entirely_available (computed))
624 memcpy (buf, value_contents_raw (computed),
625 m_descr->sizeof_register[regnum]);
626 else
627 {
628 memset (buf, 0, m_descr->sizeof_register[regnum]);
629 result = REG_UNAVAILABLE;
630 }
631
632 value_free_to_mark (mark);
633
634 return result;
635 }
636 else
637 return gdbarch_pseudo_register_read (m_descr->gdbarch, this,
638 regnum, buf);
639 }
640
641 struct value *
642 readable_regcache::cooked_read_value (int regnum)
643 {
644 gdb_assert (regnum >= 0);
645 gdb_assert (regnum < m_descr->nr_cooked_registers);
646
647 if (regnum < num_raw_registers ()
648 || (m_has_pseudo && m_register_status[regnum] != REG_UNKNOWN)
649 || !gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
650 {
651 struct value *result;
652
653 result = allocate_value (register_type (m_descr->gdbarch, regnum));
654 VALUE_LVAL (result) = lval_register;
655 VALUE_REGNUM (result) = regnum;
656
657 /* It is more efficient in general to do this delegation in this
658 direction than in the other one, even though the value-based
659 API is preferred. */
660 if (cooked_read (regnum,
661 value_contents_raw (result)) == REG_UNAVAILABLE)
662 mark_value_bytes_unavailable (result, 0,
663 TYPE_LENGTH (value_type (result)));
664
665 return result;
666 }
667 else
668 return gdbarch_pseudo_register_read_value (m_descr->gdbarch,
669 this, regnum);
670 }
671
672 enum register_status
673 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
674 LONGEST *val)
675 {
676 gdb_assert (regcache != NULL);
677 return regcache->cooked_read (regnum, val);
678 }
679
680 template<typename T, typename>
681 enum register_status
682 readable_regcache::cooked_read (int regnum, T *val)
683 {
684 enum register_status status;
685 gdb_byte *buf;
686
687 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
688 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
689 status = cooked_read (regnum, buf);
690 if (status == REG_VALID)
691 *val = extract_integer<T> (buf, m_descr->sizeof_register[regnum],
692 gdbarch_byte_order (m_descr->gdbarch));
693 else
694 *val = 0;
695 return status;
696 }
697
698 enum register_status
699 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
700 ULONGEST *val)
701 {
702 gdb_assert (regcache != NULL);
703 return regcache->cooked_read (regnum, val);
704 }
705
706 void
707 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
708 LONGEST val)
709 {
710 gdb_assert (regcache != NULL);
711 regcache->cooked_write (regnum, val);
712 }
713
714 template<typename T, typename>
715 void
716 regcache::cooked_write (int regnum, T val)
717 {
718 gdb_byte *buf;
719
720 gdb_assert (regnum >=0 && regnum < m_descr->nr_cooked_registers);
721 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
722 store_integer (buf, m_descr->sizeof_register[regnum],
723 gdbarch_byte_order (m_descr->gdbarch), val);
724 cooked_write (regnum, buf);
725 }
726
727 void
728 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
729 ULONGEST val)
730 {
731 gdb_assert (regcache != NULL);
732 regcache->cooked_write (regnum, val);
733 }
734
735 void
736 regcache::raw_write (int regnum, const gdb_byte *buf)
737 {
738
739 gdb_assert (buf != NULL);
740 assert_regnum (regnum);
741
742 /* On the sparc, writing %g0 is a no-op, so we don't even want to
743 change the registers array if something writes to this register. */
744 if (gdbarch_cannot_store_register (arch (), regnum))
745 return;
746
747 /* If we have a valid copy of the register, and new value == old
748 value, then don't bother doing the actual store. */
749 if (get_register_status (regnum) == REG_VALID
750 && (memcmp (register_buffer (regnum), buf,
751 m_descr->sizeof_register[regnum]) == 0))
752 return;
753
754 target_prepare_to_store (this);
755 raw_supply (regnum, buf);
756
757 /* Invalidate the register after it is written, in case of a
758 failure. */
759 regcache_invalidator invalidator (this, regnum);
760
761 target_store_registers (this, regnum);
762
763 /* The target did not throw an error so we can discard invalidating
764 the register. */
765 invalidator.release ();
766 }
767
768 void
769 regcache::cooked_write (int regnum, const gdb_byte *buf)
770 {
771 gdb_assert (regnum >= 0);
772 gdb_assert (regnum < m_descr->nr_cooked_registers);
773 if (regnum < num_raw_registers ())
774 raw_write (regnum, buf);
775 else
776 gdbarch_pseudo_register_write (m_descr->gdbarch, this,
777 regnum, buf);
778 }
779
780 /* Perform a partial register transfer using a read, modify, write
781 operation. */
782
783 enum register_status
784 readable_regcache::read_part (int regnum, int offset, int len, void *in,
785 bool is_raw)
786 {
787 struct gdbarch *gdbarch = arch ();
788 gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
789
790 gdb_assert (in != NULL);
791 gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]);
792 gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]);
793 /* Something to do? */
794 if (offset + len == 0)
795 return REG_VALID;
796 /* Read (when needed) ... */
797 enum register_status status;
798
799 if (is_raw)
800 status = raw_read (regnum, reg);
801 else
802 status = cooked_read (regnum, reg);
803 if (status != REG_VALID)
804 return status;
805
806 /* ... modify ... */
807 memcpy (in, reg + offset, len);
808
809 return REG_VALID;
810 }
811
812 enum register_status
813 regcache::write_part (int regnum, int offset, int len,
814 const void *out, bool is_raw)
815 {
816 struct gdbarch *gdbarch = arch ();
817 gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
818
819 gdb_assert (out != NULL);
820 gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]);
821 gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]);
822 /* Something to do? */
823 if (offset + len == 0)
824 return REG_VALID;
825 /* Read (when needed) ... */
826 if (offset > 0
827 || offset + len < m_descr->sizeof_register[regnum])
828 {
829 enum register_status status;
830
831 if (is_raw)
832 status = raw_read (regnum, reg);
833 else
834 status = cooked_read (regnum, reg);
835 if (status != REG_VALID)
836 return status;
837 }
838
839 memcpy (reg + offset, out, len);
840 /* ... write (when needed). */
841 if (is_raw)
842 raw_write (regnum, reg);
843 else
844 cooked_write (regnum, reg);
845
846 return REG_VALID;
847 }
848
849 enum register_status
850 readable_regcache::raw_read_part (int regnum, int offset, int len, gdb_byte *buf)
851 {
852 assert_regnum (regnum);
853 return read_part (regnum, offset, len, buf, true);
854 }
855
856 /* See regcache.h. */
857
858 void
859 regcache::raw_write_part (int regnum, int offset, int len,
860 const gdb_byte *buf)
861 {
862 assert_regnum (regnum);
863 write_part (regnum, offset, len, buf, true);
864 }
865
866 enum register_status
867 readable_regcache::cooked_read_part (int regnum, int offset, int len,
868 gdb_byte *buf)
869 {
870 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
871 return read_part (regnum, offset, len, buf, false);
872 }
873
874 void
875 regcache::cooked_write_part (int regnum, int offset, int len,
876 const gdb_byte *buf)
877 {
878 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
879 write_part (regnum, offset, len, buf, false);
880 }
881
882 void
883 detached_regcache::raw_supply (int regnum, const void *buf)
884 {
885 void *regbuf;
886 size_t size;
887
888 assert_regnum (regnum);
889
890 regbuf = register_buffer (regnum);
891 size = m_descr->sizeof_register[regnum];
892
893 if (buf)
894 {
895 memcpy (regbuf, buf, size);
896 m_register_status[regnum] = REG_VALID;
897 }
898 else
899 {
900 /* This memset not strictly necessary, but better than garbage
901 in case the register value manages to escape somewhere (due
902 to a bug, no less). */
903 memset (regbuf, 0, size);
904 m_register_status[regnum] = REG_UNAVAILABLE;
905 }
906 }
907
908 /* Supply register REGNUM to REGCACHE. Value to supply is an integer stored at
909 address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED. If
910 the register size is greater than ADDR_LEN, then the integer will be sign or
911 zero extended. If the register size is smaller than the integer, then the
912 most significant bytes of the integer will be truncated. */
913
914 void
915 detached_regcache::raw_supply_integer (int regnum, const gdb_byte *addr,
916 int addr_len, bool is_signed)
917 {
918 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
919 gdb_byte *regbuf;
920 size_t regsize;
921
922 assert_regnum (regnum);
923
924 regbuf = register_buffer (regnum);
925 regsize = m_descr->sizeof_register[regnum];
926
927 copy_integer_to_size (regbuf, regsize, addr, addr_len, is_signed,
928 byte_order);
929 m_register_status[regnum] = REG_VALID;
930 }
931
932 /* Supply register REGNUM with zeroed value to REGCACHE. This is not the same
933 as calling raw_supply with NULL (which will set the state to
934 unavailable). */
935
936 void
937 detached_regcache::raw_supply_zeroed (int regnum)
938 {
939 void *regbuf;
940 size_t size;
941
942 assert_regnum (regnum);
943
944 regbuf = register_buffer (regnum);
945 size = m_descr->sizeof_register[regnum];
946
947 memset (regbuf, 0, size);
948 m_register_status[regnum] = REG_VALID;
949 }
950
951 void
952 regcache::raw_collect (int regnum, void *buf) const
953 {
954 const void *regbuf;
955 size_t size;
956
957 gdb_assert (buf != NULL);
958 assert_regnum (regnum);
959
960 regbuf = register_buffer (regnum);
961 size = m_descr->sizeof_register[regnum];
962 memcpy (buf, regbuf, size);
963 }
964
965 /* Transfer a single or all registers belonging to a certain register
966 set to or from a buffer. This is the main worker function for
967 regcache_supply_regset and regcache_collect_regset. */
968
969 /* Collect register REGNUM from REGCACHE. Store collected value as an integer
970 at address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED.
971 If ADDR_LEN is greater than the register size, then the integer will be sign
972 or zero extended. If ADDR_LEN is smaller than the register size, then the
973 most significant bytes of the integer will be truncated. */
974
975 void
976 regcache::raw_collect_integer (int regnum, gdb_byte *addr, int addr_len,
977 bool is_signed) const
978 {
979 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
980 const gdb_byte *regbuf;
981 size_t regsize;
982
983 assert_regnum (regnum);
984
985 regbuf = register_buffer (regnum);
986 regsize = m_descr->sizeof_register[regnum];
987
988 copy_integer_to_size (addr, addr_len, regbuf, regsize, is_signed,
989 byte_order);
990 }
991
992 void
993 regcache::transfer_regset (const struct regset *regset,
994 struct regcache *out_regcache,
995 int regnum, const void *in_buf,
996 void *out_buf, size_t size) const
997 {
998 const struct regcache_map_entry *map;
999 int offs = 0, count;
1000
1001 for (map = (const struct regcache_map_entry *) regset->regmap;
1002 (count = map->count) != 0;
1003 map++)
1004 {
1005 int regno = map->regno;
1006 int slot_size = map->size;
1007
1008 if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
1009 slot_size = m_descr->sizeof_register[regno];
1010
1011 if (regno == REGCACHE_MAP_SKIP
1012 || (regnum != -1
1013 && (regnum < regno || regnum >= regno + count)))
1014 offs += count * slot_size;
1015
1016 else if (regnum == -1)
1017 for (; count--; regno++, offs += slot_size)
1018 {
1019 if (offs + slot_size > size)
1020 break;
1021
1022 if (out_buf)
1023 raw_collect (regno, (gdb_byte *) out_buf + offs);
1024 else
1025 out_regcache->raw_supply (regno, in_buf
1026 ? (const gdb_byte *) in_buf + offs
1027 : NULL);
1028 }
1029 else
1030 {
1031 /* Transfer a single register and return. */
1032 offs += (regnum - regno) * slot_size;
1033 if (offs + slot_size > size)
1034 return;
1035
1036 if (out_buf)
1037 raw_collect (regnum, (gdb_byte *) out_buf + offs);
1038 else
1039 out_regcache->raw_supply (regnum, in_buf
1040 ? (const gdb_byte *) in_buf + offs
1041 : NULL);
1042 return;
1043 }
1044 }
1045 }
1046
1047 /* Supply register REGNUM from BUF to REGCACHE, using the register map
1048 in REGSET. If REGNUM is -1, do this for all registers in REGSET.
1049 If BUF is NULL, set the register(s) to "unavailable" status. */
1050
1051 void
1052 regcache_supply_regset (const struct regset *regset,
1053 struct regcache *regcache,
1054 int regnum, const void *buf, size_t size)
1055 {
1056 regcache->supply_regset (regset, regnum, buf, size);
1057 }
1058
1059 void
1060 regcache::supply_regset (const struct regset *regset,
1061 int regnum, const void *buf, size_t size)
1062 {
1063 transfer_regset (regset, this, regnum, buf, NULL, size);
1064 }
1065
1066 /* Collect register REGNUM from REGCACHE to BUF, using the register
1067 map in REGSET. If REGNUM is -1, do this for all registers in
1068 REGSET. */
1069
1070 void
1071 regcache_collect_regset (const struct regset *regset,
1072 const struct regcache *regcache,
1073 int regnum, void *buf, size_t size)
1074 {
1075 regcache->collect_regset (regset, regnum, buf, size);
1076 }
1077
1078 void
1079 regcache::collect_regset (const struct regset *regset,
1080 int regnum, void *buf, size_t size) const
1081 {
1082 transfer_regset (regset, NULL, regnum, NULL, buf, size);
1083 }
1084
1085
1086 /* Special handling for register PC. */
1087
1088 CORE_ADDR
1089 regcache_read_pc (struct regcache *regcache)
1090 {
1091 struct gdbarch *gdbarch = regcache->arch ();
1092
1093 CORE_ADDR pc_val;
1094
1095 if (gdbarch_read_pc_p (gdbarch))
1096 pc_val = gdbarch_read_pc (gdbarch, regcache);
1097 /* Else use per-frame method on get_current_frame. */
1098 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1099 {
1100 ULONGEST raw_val;
1101
1102 if (regcache_cooked_read_unsigned (regcache,
1103 gdbarch_pc_regnum (gdbarch),
1104 &raw_val) == REG_UNAVAILABLE)
1105 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1106
1107 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
1108 }
1109 else
1110 internal_error (__FILE__, __LINE__,
1111 _("regcache_read_pc: Unable to find PC"));
1112 return pc_val;
1113 }
1114
1115 void
1116 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
1117 {
1118 struct gdbarch *gdbarch = regcache->arch ();
1119
1120 if (gdbarch_write_pc_p (gdbarch))
1121 gdbarch_write_pc (gdbarch, regcache, pc);
1122 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1123 regcache_cooked_write_unsigned (regcache,
1124 gdbarch_pc_regnum (gdbarch), pc);
1125 else
1126 internal_error (__FILE__, __LINE__,
1127 _("regcache_write_pc: Unable to update PC"));
1128
1129 /* Writing the PC (for instance, from "load") invalidates the
1130 current frame. */
1131 reinit_frame_cache ();
1132 }
1133
1134 int
1135 reg_buffer::num_raw_registers () const
1136 {
1137 return gdbarch_num_regs (arch ());
1138 }
1139
1140 void
1141 regcache::debug_print_register (const char *func, int regno)
1142 {
1143 struct gdbarch *gdbarch = arch ();
1144
1145 fprintf_unfiltered (gdb_stdlog, "%s ", func);
1146 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
1147 && gdbarch_register_name (gdbarch, regno) != NULL
1148 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
1149 fprintf_unfiltered (gdb_stdlog, "(%s)",
1150 gdbarch_register_name (gdbarch, regno));
1151 else
1152 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
1153 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
1154 {
1155 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1156 int size = register_size (gdbarch, regno);
1157 gdb_byte *buf = register_buffer (regno);
1158
1159 fprintf_unfiltered (gdb_stdlog, " = ");
1160 for (int i = 0; i < size; i++)
1161 {
1162 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1163 }
1164 if (size <= sizeof (LONGEST))
1165 {
1166 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
1167
1168 fprintf_unfiltered (gdb_stdlog, " %s %s",
1169 core_addr_to_string_nz (val), plongest (val));
1170 }
1171 }
1172 fprintf_unfiltered (gdb_stdlog, "\n");
1173 }
1174
1175 static void
1176 reg_flush_command (const char *command, int from_tty)
1177 {
1178 /* Force-flush the register cache. */
1179 registers_changed ();
1180 if (from_tty)
1181 printf_filtered (_("Register cache flushed.\n"));
1182 }
1183
1184 void
1185 register_dump::dump (ui_file *file)
1186 {
1187 auto descr = regcache_descr (m_gdbarch);
1188 int regnum;
1189 int footnote_nr = 0;
1190 int footnote_register_offset = 0;
1191 int footnote_register_type_name_null = 0;
1192 long register_offset = 0;
1193
1194 gdb_assert (descr->nr_cooked_registers
1195 == (gdbarch_num_regs (m_gdbarch)
1196 + gdbarch_num_pseudo_regs (m_gdbarch)));
1197
1198 for (regnum = -1; regnum < descr->nr_cooked_registers; regnum++)
1199 {
1200 /* Name. */
1201 if (regnum < 0)
1202 fprintf_unfiltered (file, " %-10s", "Name");
1203 else
1204 {
1205 const char *p = gdbarch_register_name (m_gdbarch, regnum);
1206
1207 if (p == NULL)
1208 p = "";
1209 else if (p[0] == '\0')
1210 p = "''";
1211 fprintf_unfiltered (file, " %-10s", p);
1212 }
1213
1214 /* Number. */
1215 if (regnum < 0)
1216 fprintf_unfiltered (file, " %4s", "Nr");
1217 else
1218 fprintf_unfiltered (file, " %4d", regnum);
1219
1220 /* Relative number. */
1221 if (regnum < 0)
1222 fprintf_unfiltered (file, " %4s", "Rel");
1223 else if (regnum < gdbarch_num_regs (m_gdbarch))
1224 fprintf_unfiltered (file, " %4d", regnum);
1225 else
1226 fprintf_unfiltered (file, " %4d",
1227 (regnum - gdbarch_num_regs (m_gdbarch)));
1228
1229 /* Offset. */
1230 if (regnum < 0)
1231 fprintf_unfiltered (file, " %6s ", "Offset");
1232 else
1233 {
1234 fprintf_unfiltered (file, " %6ld",
1235 descr->register_offset[regnum]);
1236 if (register_offset != descr->register_offset[regnum]
1237 || (regnum > 0
1238 && (descr->register_offset[regnum]
1239 != (descr->register_offset[regnum - 1]
1240 + descr->sizeof_register[regnum - 1])))
1241 )
1242 {
1243 if (!footnote_register_offset)
1244 footnote_register_offset = ++footnote_nr;
1245 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1246 }
1247 else
1248 fprintf_unfiltered (file, " ");
1249 register_offset = (descr->register_offset[regnum]
1250 + descr->sizeof_register[regnum]);
1251 }
1252
1253 /* Size. */
1254 if (regnum < 0)
1255 fprintf_unfiltered (file, " %5s ", "Size");
1256 else
1257 fprintf_unfiltered (file, " %5ld", descr->sizeof_register[regnum]);
1258
1259 /* Type. */
1260 {
1261 const char *t;
1262 std::string name_holder;
1263
1264 if (regnum < 0)
1265 t = "Type";
1266 else
1267 {
1268 static const char blt[] = "builtin_type";
1269
1270 t = TYPE_NAME (register_type (m_gdbarch, regnum));
1271 if (t == NULL)
1272 {
1273 if (!footnote_register_type_name_null)
1274 footnote_register_type_name_null = ++footnote_nr;
1275 name_holder = string_printf ("*%d",
1276 footnote_register_type_name_null);
1277 t = name_holder.c_str ();
1278 }
1279 /* Chop a leading builtin_type. */
1280 if (startswith (t, blt))
1281 t += strlen (blt);
1282 }
1283 fprintf_unfiltered (file, " %-15s", t);
1284 }
1285
1286 /* Leading space always present. */
1287 fprintf_unfiltered (file, " ");
1288
1289 dump_reg (file, regnum);
1290
1291 fprintf_unfiltered (file, "\n");
1292 }
1293
1294 if (footnote_register_offset)
1295 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1296 footnote_register_offset);
1297 if (footnote_register_type_name_null)
1298 fprintf_unfiltered (file,
1299 "*%d: Register type's name NULL.\n",
1300 footnote_register_type_name_null);
1301 }
1302
1303 #if GDB_SELF_TEST
1304 #include "selftest.h"
1305 #include "selftest-arch.h"
1306 #include "gdbthread.h"
1307 #include "target-float.h"
1308
1309 namespace selftests {
1310
1311 class regcache_access : public regcache
1312 {
1313 public:
1314
1315 /* Return the number of elements in current_regcache. */
1316
1317 static size_t
1318 current_regcache_size ()
1319 {
1320 return std::distance (regcache::current_regcache.begin (),
1321 regcache::current_regcache.end ());
1322 }
1323 };
1324
1325 static void
1326 current_regcache_test (void)
1327 {
1328 /* It is empty at the start. */
1329 SELF_CHECK (regcache_access::current_regcache_size () == 0);
1330
1331 ptid_t ptid1 (1), ptid2 (2), ptid3 (3);
1332
1333 /* Get regcache from ptid1, a new regcache is added to
1334 current_regcache. */
1335 regcache *regcache = get_thread_arch_aspace_regcache (ptid1,
1336 target_gdbarch (),
1337 NULL);
1338
1339 SELF_CHECK (regcache != NULL);
1340 SELF_CHECK (regcache->ptid () == ptid1);
1341 SELF_CHECK (regcache_access::current_regcache_size () == 1);
1342
1343 /* Get regcache from ptid2, a new regcache is added to
1344 current_regcache. */
1345 regcache = get_thread_arch_aspace_regcache (ptid2,
1346 target_gdbarch (),
1347 NULL);
1348 SELF_CHECK (regcache != NULL);
1349 SELF_CHECK (regcache->ptid () == ptid2);
1350 SELF_CHECK (regcache_access::current_regcache_size () == 2);
1351
1352 /* Get regcache from ptid3, a new regcache is added to
1353 current_regcache. */
1354 regcache = get_thread_arch_aspace_regcache (ptid3,
1355 target_gdbarch (),
1356 NULL);
1357 SELF_CHECK (regcache != NULL);
1358 SELF_CHECK (regcache->ptid () == ptid3);
1359 SELF_CHECK (regcache_access::current_regcache_size () == 3);
1360
1361 /* Get regcache from ptid2 again, nothing is added to
1362 current_regcache. */
1363 regcache = get_thread_arch_aspace_regcache (ptid2,
1364 target_gdbarch (),
1365 NULL);
1366 SELF_CHECK (regcache != NULL);
1367 SELF_CHECK (regcache->ptid () == ptid2);
1368 SELF_CHECK (regcache_access::current_regcache_size () == 3);
1369
1370 /* Mark ptid2 is changed, so regcache of ptid2 should be removed from
1371 current_regcache. */
1372 registers_changed_ptid (ptid2);
1373 SELF_CHECK (regcache_access::current_regcache_size () == 2);
1374 }
1375
1376 class target_ops_no_register : public test_target_ops
1377 {
1378 public:
1379 target_ops_no_register ()
1380 : test_target_ops {}
1381 {}
1382
1383 void reset ()
1384 {
1385 fetch_registers_called = 0;
1386 store_registers_called = 0;
1387 xfer_partial_called = 0;
1388 }
1389
1390 void fetch_registers (regcache *regs, int regno) override;
1391 void store_registers (regcache *regs, int regno) override;
1392
1393 enum target_xfer_status xfer_partial (enum target_object object,
1394 const char *annex, gdb_byte *readbuf,
1395 const gdb_byte *writebuf,
1396 ULONGEST offset, ULONGEST len,
1397 ULONGEST *xfered_len) override;
1398
1399 unsigned int fetch_registers_called = 0;
1400 unsigned int store_registers_called = 0;
1401 unsigned int xfer_partial_called = 0;
1402 };
1403
1404 void
1405 target_ops_no_register::fetch_registers (regcache *regs, int regno)
1406 {
1407 /* Mark register available. */
1408 regs->raw_supply_zeroed (regno);
1409 this->fetch_registers_called++;
1410 }
1411
1412 void
1413 target_ops_no_register::store_registers (regcache *regs, int regno)
1414 {
1415 this->store_registers_called++;
1416 }
1417
1418 enum target_xfer_status
1419 target_ops_no_register::xfer_partial (enum target_object object,
1420 const char *annex, gdb_byte *readbuf,
1421 const gdb_byte *writebuf,
1422 ULONGEST offset, ULONGEST len,
1423 ULONGEST *xfered_len)
1424 {
1425 this->xfer_partial_called++;
1426
1427 *xfered_len = len;
1428 return TARGET_XFER_OK;
1429 }
1430
1431 class readwrite_regcache : public regcache
1432 {
1433 public:
1434 readwrite_regcache (struct gdbarch *gdbarch)
1435 : regcache (gdbarch, nullptr)
1436 {}
1437 };
1438
1439 /* Test regcache::cooked_read gets registers from raw registers and
1440 memory instead of target to_{fetch,store}_registers. */
1441
1442 static void
1443 cooked_read_test (struct gdbarch *gdbarch)
1444 {
1445 /* Error out if debugging something, because we're going to push the
1446 test target, which would pop any existing target. */
1447 if (target_stack->to_stratum >= process_stratum)
1448 error (_("target already pushed"));
1449
1450 /* Create a mock environment. An inferior with a thread, with a
1451 process_stratum target pushed. */
1452
1453 target_ops_no_register mock_target;
1454 ptid_t mock_ptid (1, 1);
1455 inferior mock_inferior (mock_ptid.pid ());
1456 address_space mock_aspace {};
1457 mock_inferior.gdbarch = gdbarch;
1458 mock_inferior.aspace = &mock_aspace;
1459 thread_info mock_thread (&mock_inferior, mock_ptid);
1460
1461 scoped_restore restore_thread_list
1462 = make_scoped_restore (&thread_list, &mock_thread);
1463
1464 /* Add the mock inferior to the inferior list so that look ups by
1465 target+ptid can find it. */
1466 scoped_restore restore_inferior_list
1467 = make_scoped_restore (&inferior_list);
1468 inferior_list = &mock_inferior;
1469
1470 /* Switch to the mock inferior. */
1471 scoped_restore_current_inferior restore_current_inferior;
1472 set_current_inferior (&mock_inferior);
1473
1474 /* Push the process_stratum target so we can mock accessing
1475 registers. */
1476 push_target (&mock_target);
1477
1478 /* Pop it again on exit (return/exception). */
1479 struct on_exit
1480 {
1481 ~on_exit ()
1482 {
1483 pop_all_targets_at_and_above (process_stratum);
1484 }
1485 } pop_targets;
1486
1487 /* Switch to the mock thread. */
1488 scoped_restore restore_inferior_ptid
1489 = make_scoped_restore (&inferior_ptid, mock_ptid);
1490
1491 /* Test that read one raw register from regcache_no_target will go
1492 to the target layer. */
1493 int regnum;
1494
1495 /* Find a raw register which size isn't zero. */
1496 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1497 {
1498 if (register_size (gdbarch, regnum) != 0)
1499 break;
1500 }
1501
1502 readwrite_regcache readwrite (gdbarch);
1503 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1504
1505 readwrite.raw_read (regnum, buf.data ());
1506
1507 /* raw_read calls target_fetch_registers. */
1508 SELF_CHECK (mock_target.fetch_registers_called > 0);
1509 mock_target.reset ();
1510
1511 /* Mark all raw registers valid, so the following raw registers
1512 accesses won't go to target. */
1513 for (auto i = 0; i < gdbarch_num_regs (gdbarch); i++)
1514 readwrite.raw_update (i);
1515
1516 mock_target.reset ();
1517 /* Then, read all raw and pseudo registers, and don't expect calling
1518 to_{fetch,store}_registers. */
1519 for (int regnum = 0;
1520 regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1521 regnum++)
1522 {
1523 if (register_size (gdbarch, regnum) == 0)
1524 continue;
1525
1526 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1527
1528 SELF_CHECK (REG_VALID == readwrite.cooked_read (regnum, buf.data ()));
1529
1530 SELF_CHECK (mock_target.fetch_registers_called == 0);
1531 SELF_CHECK (mock_target.store_registers_called == 0);
1532
1533 /* Some SPU pseudo registers are got via TARGET_OBJECT_SPU. */
1534 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1535 SELF_CHECK (mock_target.xfer_partial_called == 0);
1536
1537 mock_target.reset ();
1538 }
1539
1540 readonly_detached_regcache readonly (readwrite);
1541
1542 /* GDB may go to target layer to fetch all registers and memory for
1543 readonly regcache. */
1544 mock_target.reset ();
1545
1546 for (int regnum = 0;
1547 regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1548 regnum++)
1549 {
1550 if (register_size (gdbarch, regnum) == 0)
1551 continue;
1552
1553 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1554 enum register_status status = readonly.cooked_read (regnum,
1555 buf.data ());
1556
1557 if (regnum < gdbarch_num_regs (gdbarch))
1558 {
1559 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1560
1561 if (bfd_arch == bfd_arch_frv || bfd_arch == bfd_arch_h8300
1562 || bfd_arch == bfd_arch_m32c || bfd_arch == bfd_arch_sh
1563 || bfd_arch == bfd_arch_alpha || bfd_arch == bfd_arch_v850
1564 || bfd_arch == bfd_arch_msp430 || bfd_arch == bfd_arch_mep
1565 || bfd_arch == bfd_arch_mips || bfd_arch == bfd_arch_v850_rh850
1566 || bfd_arch == bfd_arch_tic6x || bfd_arch == bfd_arch_mn10300
1567 || bfd_arch == bfd_arch_rl78 || bfd_arch == bfd_arch_score
1568 || bfd_arch == bfd_arch_riscv)
1569 {
1570 /* Raw registers. If raw registers are not in save_reggroup,
1571 their status are unknown. */
1572 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1573 SELF_CHECK (status == REG_VALID);
1574 else
1575 SELF_CHECK (status == REG_UNKNOWN);
1576 }
1577 else
1578 SELF_CHECK (status == REG_VALID);
1579 }
1580 else
1581 {
1582 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1583 SELF_CHECK (status == REG_VALID);
1584 else
1585 {
1586 /* If pseudo registers are not in save_reggroup, some of
1587 them can be computed from saved raw registers, but some
1588 of them are unknown. */
1589 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1590
1591 if (bfd_arch == bfd_arch_frv
1592 || bfd_arch == bfd_arch_m32c
1593 || bfd_arch == bfd_arch_mep
1594 || bfd_arch == bfd_arch_sh)
1595 SELF_CHECK (status == REG_VALID || status == REG_UNKNOWN);
1596 else if (bfd_arch == bfd_arch_mips
1597 || bfd_arch == bfd_arch_h8300)
1598 SELF_CHECK (status == REG_UNKNOWN);
1599 else
1600 SELF_CHECK (status == REG_VALID);
1601 }
1602 }
1603
1604 SELF_CHECK (mock_target.fetch_registers_called == 0);
1605 SELF_CHECK (mock_target.store_registers_called == 0);
1606 SELF_CHECK (mock_target.xfer_partial_called == 0);
1607
1608 mock_target.reset ();
1609 }
1610 }
1611
1612 /* Test regcache::cooked_write by writing some expected contents to
1613 registers, and checking that contents read from registers and the
1614 expected contents are the same. */
1615
1616 static void
1617 cooked_write_test (struct gdbarch *gdbarch)
1618 {
1619 /* Error out if debugging something, because we're going to push the
1620 test target, which would pop any existing target. */
1621 if (target_stack->to_stratum >= process_stratum)
1622 error (_("target already pushed"));
1623
1624 /* Create a mock environment. A process_stratum target pushed. */
1625
1626 target_ops_no_register mock_target;
1627
1628 /* Push the process_stratum target so we can mock accessing
1629 registers. */
1630 push_target (&mock_target);
1631
1632 /* Pop it again on exit (return/exception). */
1633 struct on_exit
1634 {
1635 ~on_exit ()
1636 {
1637 pop_all_targets_at_and_above (process_stratum);
1638 }
1639 } pop_targets;
1640
1641 readwrite_regcache readwrite (gdbarch);
1642
1643 const int num_regs = (gdbarch_num_regs (gdbarch)
1644 + gdbarch_num_pseudo_regs (gdbarch));
1645
1646 for (auto regnum = 0; regnum < num_regs; regnum++)
1647 {
1648 if (register_size (gdbarch, regnum) == 0
1649 || gdbarch_cannot_store_register (gdbarch, regnum))
1650 continue;
1651
1652 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1653
1654 if ((bfd_arch == bfd_arch_sparc
1655 /* SPARC64_CWP_REGNUM, SPARC64_PSTATE_REGNUM,
1656 SPARC64_ASI_REGNUM and SPARC64_CCR_REGNUM are hard to test. */
1657 && gdbarch_ptr_bit (gdbarch) == 64
1658 && (regnum >= gdbarch_num_regs (gdbarch)
1659 && regnum <= gdbarch_num_regs (gdbarch) + 4))
1660 || (bfd_arch == bfd_arch_spu
1661 /* SPU pseudo registers except SPU_SP_REGNUM are got by
1662 TARGET_OBJECT_SPU. */
1663 && regnum >= gdbarch_num_regs (gdbarch) && regnum != 130))
1664 continue;
1665
1666 std::vector<gdb_byte> expected (register_size (gdbarch, regnum), 0);
1667 std::vector<gdb_byte> buf (register_size (gdbarch, regnum), 0);
1668 const auto type = register_type (gdbarch, regnum);
1669
1670 if (TYPE_CODE (type) == TYPE_CODE_FLT
1671 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1672 {
1673 /* Generate valid float format. */
1674 target_float_from_string (expected.data (), type, "1.25");
1675 }
1676 else if (TYPE_CODE (type) == TYPE_CODE_INT
1677 || TYPE_CODE (type) == TYPE_CODE_ARRAY
1678 || TYPE_CODE (type) == TYPE_CODE_PTR
1679 || TYPE_CODE (type) == TYPE_CODE_UNION
1680 || TYPE_CODE (type) == TYPE_CODE_STRUCT)
1681 {
1682 if (bfd_arch == bfd_arch_ia64
1683 || (regnum >= gdbarch_num_regs (gdbarch)
1684 && (bfd_arch == bfd_arch_xtensa
1685 || bfd_arch == bfd_arch_bfin
1686 || bfd_arch == bfd_arch_m32c
1687 /* m68hc11 pseudo registers are in memory. */
1688 || bfd_arch == bfd_arch_m68hc11
1689 || bfd_arch == bfd_arch_m68hc12
1690 || bfd_arch == bfd_arch_s390))
1691 || (bfd_arch == bfd_arch_frv
1692 /* FRV pseudo registers except iacc0. */
1693 && regnum > gdbarch_num_regs (gdbarch)))
1694 {
1695 /* Skip setting the expected values for some architecture
1696 registers. */
1697 }
1698 else if (bfd_arch == bfd_arch_rl78 && regnum == 40)
1699 {
1700 /* RL78_PC_REGNUM */
1701 for (auto j = 0; j < register_size (gdbarch, regnum) - 1; j++)
1702 expected[j] = j;
1703 }
1704 else
1705 {
1706 for (auto j = 0; j < register_size (gdbarch, regnum); j++)
1707 expected[j] = j;
1708 }
1709 }
1710 else if (TYPE_CODE (type) == TYPE_CODE_FLAGS)
1711 {
1712 /* No idea how to test flags. */
1713 continue;
1714 }
1715 else
1716 {
1717 /* If we don't know how to create the expected value for the
1718 this type, make it fail. */
1719 SELF_CHECK (0);
1720 }
1721
1722 readwrite.cooked_write (regnum, expected.data ());
1723
1724 SELF_CHECK (readwrite.cooked_read (regnum, buf.data ()) == REG_VALID);
1725 SELF_CHECK (expected == buf);
1726 }
1727 }
1728
1729 } // namespace selftests
1730 #endif /* GDB_SELF_TEST */
1731
1732 void
1733 _initialize_regcache (void)
1734 {
1735 regcache_descr_handle
1736 = gdbarch_data_register_post_init (init_regcache_descr);
1737
1738 gdb::observers::target_changed.attach (regcache_observer_target_changed);
1739 gdb::observers::thread_ptid_changed.attach
1740 (regcache::regcache_thread_ptid_changed);
1741
1742 add_com ("flushregs", class_maintenance, reg_flush_command,
1743 _("Force gdb to flush its register cache (maintainer command)"));
1744
1745 #if GDB_SELF_TEST
1746 selftests::register_test ("current_regcache", selftests::current_regcache_test);
1747
1748 selftests::register_test_foreach_arch ("regcache::cooked_read_test",
1749 selftests::cooked_read_test);
1750 selftests::register_test_foreach_arch ("regcache::cooked_write_test",
1751 selftests::cooked_write_test);
1752 #endif
1753 }
This page took 0.068096 seconds and 5 git commands to generate.