Remove regcache_cooked_read_value
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbarch.h"
24 #include "gdbcmd.h"
25 #include "regcache.h"
26 #include "reggroups.h"
27 #include "observable.h"
28 #include "regset.h"
29 #include <forward_list>
30
31 /*
32 * DATA STRUCTURE
33 *
34 * Here is the actual register cache.
35 */
36
37 /* Per-architecture object describing the layout of a register cache.
38 Computed once when the architecture is created. */
39
40 struct gdbarch_data *regcache_descr_handle;
41
42 struct regcache_descr
43 {
44 /* The architecture this descriptor belongs to. */
45 struct gdbarch *gdbarch;
46
47 /* The raw register cache. Each raw (or hard) register is supplied
48 by the target interface. The raw cache should not contain
49 redundant information - if the PC is constructed from two
50 registers then those registers and not the PC lives in the raw
51 cache. */
52 long sizeof_raw_registers;
53
54 /* The cooked register space. Each cooked register in the range
55 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
56 register. The remaining [NR_RAW_REGISTERS
57 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
58 both raw registers and memory by the architecture methods
59 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
60 int nr_cooked_registers;
61 long sizeof_cooked_registers;
62
63 /* Offset and size (in 8 bit bytes), of each register in the
64 register cache. All registers (including those in the range
65 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
66 offset. */
67 long *register_offset;
68 long *sizeof_register;
69
70 /* Cached table containing the type of each register. */
71 struct type **register_type;
72 };
73
74 static void *
75 init_regcache_descr (struct gdbarch *gdbarch)
76 {
77 int i;
78 struct regcache_descr *descr;
79 gdb_assert (gdbarch != NULL);
80
81 /* Create an initial, zero filled, table. */
82 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
83 descr->gdbarch = gdbarch;
84
85 /* Total size of the register space. The raw registers are mapped
86 directly onto the raw register cache while the pseudo's are
87 either mapped onto raw-registers or memory. */
88 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
89 + gdbarch_num_pseudo_regs (gdbarch);
90
91 /* Fill in a table of register types. */
92 descr->register_type
93 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
94 struct type *);
95 for (i = 0; i < descr->nr_cooked_registers; i++)
96 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
97
98 /* Construct a strictly RAW register cache. Don't allow pseudo's
99 into the register cache. */
100
101 /* Lay out the register cache.
102
103 NOTE: cagney/2002-05-22: Only register_type() is used when
104 constructing the register cache. It is assumed that the
105 register's raw size, virtual size and type length are all the
106 same. */
107
108 {
109 long offset = 0;
110
111 descr->sizeof_register
112 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
113 descr->register_offset
114 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
115 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
116 {
117 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
118 descr->register_offset[i] = offset;
119 offset += descr->sizeof_register[i];
120 }
121 /* Set the real size of the raw register cache buffer. */
122 descr->sizeof_raw_registers = offset;
123
124 for (; i < descr->nr_cooked_registers; i++)
125 {
126 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
127 descr->register_offset[i] = offset;
128 offset += descr->sizeof_register[i];
129 }
130 /* Set the real size of the readonly register cache buffer. */
131 descr->sizeof_cooked_registers = offset;
132 }
133
134 return descr;
135 }
136
137 static struct regcache_descr *
138 regcache_descr (struct gdbarch *gdbarch)
139 {
140 return (struct regcache_descr *) gdbarch_data (gdbarch,
141 regcache_descr_handle);
142 }
143
144 /* Utility functions returning useful register attributes stored in
145 the regcache descr. */
146
147 struct type *
148 register_type (struct gdbarch *gdbarch, int regnum)
149 {
150 struct regcache_descr *descr = regcache_descr (gdbarch);
151
152 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
153 return descr->register_type[regnum];
154 }
155
156 /* Utility functions returning useful register attributes stored in
157 the regcache descr. */
158
159 int
160 register_size (struct gdbarch *gdbarch, int regnum)
161 {
162 struct regcache_descr *descr = regcache_descr (gdbarch);
163 int size;
164
165 gdb_assert (regnum >= 0
166 && regnum < (gdbarch_num_regs (gdbarch)
167 + gdbarch_num_pseudo_regs (gdbarch)));
168 size = descr->sizeof_register[regnum];
169 return size;
170 }
171
172 /* See common/common-regcache.h. */
173
174 int
175 regcache_register_size (const struct regcache *regcache, int n)
176 {
177 return register_size (regcache->arch (), n);
178 }
179
180 reg_buffer::reg_buffer (gdbarch *gdbarch, bool has_pseudo)
181 : m_has_pseudo (has_pseudo)
182 {
183 gdb_assert (gdbarch != NULL);
184 m_descr = regcache_descr (gdbarch);
185
186 if (has_pseudo)
187 {
188 m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_cooked_registers);
189 m_register_status = XCNEWVEC (signed char,
190 m_descr->nr_cooked_registers);
191 }
192 else
193 {
194 m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_raw_registers);
195 m_register_status = XCNEWVEC (signed char, gdbarch_num_regs (gdbarch));
196 }
197 }
198
199 regcache::regcache (gdbarch *gdbarch, const address_space *aspace_)
200 /* The register buffers. A read/write register cache can only hold
201 [0 .. gdbarch_num_regs). */
202 : detached_regcache (gdbarch, false), m_aspace (aspace_)
203 {
204 m_ptid = minus_one_ptid;
205 }
206
207 static enum register_status
208 do_cooked_read (void *src, int regnum, gdb_byte *buf)
209 {
210 struct regcache *regcache = (struct regcache *) src;
211
212 return regcache->cooked_read (regnum, buf);
213 }
214
215 readonly_detached_regcache::readonly_detached_regcache (const regcache &src)
216 : readonly_detached_regcache (src.arch (), do_cooked_read, (void *) &src)
217 {
218 }
219
220 gdbarch *
221 reg_buffer::arch () const
222 {
223 return m_descr->gdbarch;
224 }
225
226 /* Cleanup class for invalidating a register. */
227
228 class regcache_invalidator
229 {
230 public:
231
232 regcache_invalidator (struct regcache *regcache, int regnum)
233 : m_regcache (regcache),
234 m_regnum (regnum)
235 {
236 }
237
238 ~regcache_invalidator ()
239 {
240 if (m_regcache != nullptr)
241 m_regcache->invalidate (m_regnum);
242 }
243
244 DISABLE_COPY_AND_ASSIGN (regcache_invalidator);
245
246 void release ()
247 {
248 m_regcache = nullptr;
249 }
250
251 private:
252
253 struct regcache *m_regcache;
254 int m_regnum;
255 };
256
257 /* Return a pointer to register REGNUM's buffer cache. */
258
259 gdb_byte *
260 reg_buffer::register_buffer (int regnum) const
261 {
262 return m_registers + m_descr->register_offset[regnum];
263 }
264
265 void
266 reg_buffer::save (regcache_cooked_read_ftype *cooked_read,
267 void *src)
268 {
269 struct gdbarch *gdbarch = m_descr->gdbarch;
270 int regnum;
271
272 /* It should have pseudo registers. */
273 gdb_assert (m_has_pseudo);
274 /* Clear the dest. */
275 memset (m_registers, 0, m_descr->sizeof_cooked_registers);
276 memset (m_register_status, 0, m_descr->nr_cooked_registers);
277 /* Copy over any registers (identified by their membership in the
278 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
279 gdbarch_num_pseudo_regs) range is checked since some architectures need
280 to save/restore `cooked' registers that live in memory. */
281 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
282 {
283 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
284 {
285 gdb_byte *dst_buf = register_buffer (regnum);
286 enum register_status status = cooked_read (src, regnum, dst_buf);
287
288 gdb_assert (status != REG_UNKNOWN);
289
290 if (status != REG_VALID)
291 memset (dst_buf, 0, register_size (gdbarch, regnum));
292
293 m_register_status[regnum] = status;
294 }
295 }
296 }
297
298 void
299 regcache::restore (readonly_detached_regcache *src)
300 {
301 struct gdbarch *gdbarch = m_descr->gdbarch;
302 int regnum;
303
304 gdb_assert (src != NULL);
305 gdb_assert (src->m_has_pseudo);
306
307 gdb_assert (gdbarch == src->arch ());
308
309 /* Copy over any registers, being careful to only restore those that
310 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
311 + gdbarch_num_pseudo_regs) range is checked since some architectures need
312 to save/restore `cooked' registers that live in memory. */
313 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
314 {
315 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
316 {
317 if (src->m_register_status[regnum] == REG_VALID)
318 cooked_write (regnum, src->register_buffer (regnum));
319 }
320 }
321 }
322
323 enum register_status
324 reg_buffer::get_register_status (int regnum) const
325 {
326 assert_regnum (regnum);
327
328 return (enum register_status) m_register_status[regnum];
329 }
330
331 void
332 detached_regcache::invalidate (int regnum)
333 {
334 assert_regnum (regnum);
335 m_register_status[regnum] = REG_UNKNOWN;
336 }
337
338 void
339 reg_buffer::assert_regnum (int regnum) const
340 {
341 gdb_assert (regnum >= 0);
342 if (m_has_pseudo)
343 gdb_assert (regnum < m_descr->nr_cooked_registers);
344 else
345 gdb_assert (regnum < gdbarch_num_regs (arch ()));
346 }
347
348 /* Global structure containing the current regcache. */
349
350 /* NOTE: this is a write-through cache. There is no "dirty" bit for
351 recording if the register values have been changed (eg. by the
352 user). Therefore all registers must be written back to the
353 target when appropriate. */
354 std::forward_list<regcache *> regcache::current_regcache;
355
356 struct regcache *
357 get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
358 struct address_space *aspace)
359 {
360 for (const auto &regcache : regcache::current_regcache)
361 if (ptid_equal (regcache->ptid (), ptid) && regcache->arch () == gdbarch)
362 return regcache;
363
364 regcache *new_regcache = new regcache (gdbarch, aspace);
365
366 regcache::current_regcache.push_front (new_regcache);
367 new_regcache->set_ptid (ptid);
368
369 return new_regcache;
370 }
371
372 struct regcache *
373 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
374 {
375 address_space *aspace = target_thread_address_space (ptid);
376
377 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
378 }
379
380 static ptid_t current_thread_ptid;
381 static struct gdbarch *current_thread_arch;
382
383 struct regcache *
384 get_thread_regcache (ptid_t ptid)
385 {
386 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
387 {
388 current_thread_ptid = ptid;
389 current_thread_arch = target_thread_architecture (ptid);
390 }
391
392 return get_thread_arch_regcache (ptid, current_thread_arch);
393 }
394
395 struct regcache *
396 get_current_regcache (void)
397 {
398 return get_thread_regcache (inferior_ptid);
399 }
400
401 /* See common/common-regcache.h. */
402
403 struct regcache *
404 get_thread_regcache_for_ptid (ptid_t ptid)
405 {
406 return get_thread_regcache (ptid);
407 }
408
409 /* Observer for the target_changed event. */
410
411 static void
412 regcache_observer_target_changed (struct target_ops *target)
413 {
414 registers_changed ();
415 }
416
417 /* Update global variables old ptids to hold NEW_PTID if they were
418 holding OLD_PTID. */
419 void
420 regcache::regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
421 {
422 for (auto &regcache : regcache::current_regcache)
423 {
424 if (ptid_equal (regcache->ptid (), old_ptid))
425 regcache->set_ptid (new_ptid);
426 }
427 }
428
429 /* Low level examining and depositing of registers.
430
431 The caller is responsible for making sure that the inferior is
432 stopped before calling the fetching routines, or it will get
433 garbage. (a change from GDB version 3, in which the caller got the
434 value from the last stop). */
435
436 /* REGISTERS_CHANGED ()
437
438 Indicate that registers may have changed, so invalidate the cache. */
439
440 void
441 registers_changed_ptid (ptid_t ptid)
442 {
443 for (auto oit = regcache::current_regcache.before_begin (),
444 it = std::next (oit);
445 it != regcache::current_regcache.end ();
446 )
447 {
448 if (ptid_match ((*it)->ptid (), ptid))
449 {
450 delete *it;
451 it = regcache::current_regcache.erase_after (oit);
452 }
453 else
454 oit = it++;
455 }
456
457 if (ptid_match (current_thread_ptid, ptid))
458 {
459 current_thread_ptid = null_ptid;
460 current_thread_arch = NULL;
461 }
462
463 if (ptid_match (inferior_ptid, ptid))
464 {
465 /* We just deleted the regcache of the current thread. Need to
466 forget about any frames we have cached, too. */
467 reinit_frame_cache ();
468 }
469 }
470
471 void
472 registers_changed (void)
473 {
474 registers_changed_ptid (minus_one_ptid);
475
476 /* Force cleanup of any alloca areas if using C alloca instead of
477 a builtin alloca. This particular call is used to clean up
478 areas allocated by low level target code which may build up
479 during lengthy interactions between gdb and the target before
480 gdb gives control to the user (ie watchpoints). */
481 alloca (0);
482 }
483
484 void
485 regcache::raw_update (int regnum)
486 {
487 assert_regnum (regnum);
488
489 /* Make certain that the register cache is up-to-date with respect
490 to the current thread. This switching shouldn't be necessary
491 only there is still only one target side register cache. Sigh!
492 On the bright side, at least there is a regcache object. */
493
494 if (get_register_status (regnum) == REG_UNKNOWN)
495 {
496 target_fetch_registers (this, regnum);
497
498 /* A number of targets can't access the whole set of raw
499 registers (because the debug API provides no means to get at
500 them). */
501 if (m_register_status[regnum] == REG_UNKNOWN)
502 m_register_status[regnum] = REG_UNAVAILABLE;
503 }
504 }
505
506 enum register_status
507 readable_regcache::raw_read (int regnum, gdb_byte *buf)
508 {
509 gdb_assert (buf != NULL);
510 raw_update (regnum);
511
512 if (m_register_status[regnum] != REG_VALID)
513 memset (buf, 0, m_descr->sizeof_register[regnum]);
514 else
515 memcpy (buf, register_buffer (regnum),
516 m_descr->sizeof_register[regnum]);
517
518 return (enum register_status) m_register_status[regnum];
519 }
520
521 enum register_status
522 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
523 {
524 gdb_assert (regcache != NULL);
525 return regcache->raw_read (regnum, val);
526 }
527
528 template<typename T, typename>
529 enum register_status
530 readable_regcache::raw_read (int regnum, T *val)
531 {
532 gdb_byte *buf;
533 enum register_status status;
534
535 assert_regnum (regnum);
536 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
537 status = raw_read (regnum, buf);
538 if (status == REG_VALID)
539 *val = extract_integer<T> (buf,
540 m_descr->sizeof_register[regnum],
541 gdbarch_byte_order (m_descr->gdbarch));
542 else
543 *val = 0;
544 return status;
545 }
546
547 enum register_status
548 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
549 ULONGEST *val)
550 {
551 gdb_assert (regcache != NULL);
552 return regcache->raw_read (regnum, val);
553 }
554
555 void
556 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
557 {
558 gdb_assert (regcache != NULL);
559 regcache->raw_write (regnum, val);
560 }
561
562 template<typename T, typename>
563 void
564 regcache::raw_write (int regnum, T val)
565 {
566 gdb_byte *buf;
567
568 assert_regnum (regnum);
569 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
570 store_integer (buf, m_descr->sizeof_register[regnum],
571 gdbarch_byte_order (m_descr->gdbarch), val);
572 raw_write (regnum, buf);
573 }
574
575 void
576 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
577 ULONGEST val)
578 {
579 gdb_assert (regcache != NULL);
580 regcache->raw_write (regnum, val);
581 }
582
583 LONGEST
584 regcache_raw_get_signed (struct regcache *regcache, int regnum)
585 {
586 LONGEST value;
587 enum register_status status;
588
589 status = regcache_raw_read_signed (regcache, regnum, &value);
590 if (status == REG_UNAVAILABLE)
591 throw_error (NOT_AVAILABLE_ERROR,
592 _("Register %d is not available"), regnum);
593 return value;
594 }
595
596 enum register_status
597 readable_regcache::cooked_read (int regnum, gdb_byte *buf)
598 {
599 gdb_assert (regnum >= 0);
600 gdb_assert (regnum < m_descr->nr_cooked_registers);
601 if (regnum < num_raw_registers ())
602 return raw_read (regnum, buf);
603 else if (m_has_pseudo
604 && m_register_status[regnum] != REG_UNKNOWN)
605 {
606 if (m_register_status[regnum] == REG_VALID)
607 memcpy (buf, register_buffer (regnum),
608 m_descr->sizeof_register[regnum]);
609 else
610 memset (buf, 0, m_descr->sizeof_register[regnum]);
611
612 return (enum register_status) m_register_status[regnum];
613 }
614 else if (gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
615 {
616 struct value *mark, *computed;
617 enum register_status result = REG_VALID;
618
619 mark = value_mark ();
620
621 computed = gdbarch_pseudo_register_read_value (m_descr->gdbarch,
622 this, regnum);
623 if (value_entirely_available (computed))
624 memcpy (buf, value_contents_raw (computed),
625 m_descr->sizeof_register[regnum]);
626 else
627 {
628 memset (buf, 0, m_descr->sizeof_register[regnum]);
629 result = REG_UNAVAILABLE;
630 }
631
632 value_free_to_mark (mark);
633
634 return result;
635 }
636 else
637 return gdbarch_pseudo_register_read (m_descr->gdbarch, this,
638 regnum, buf);
639 }
640
641 struct value *
642 readable_regcache::cooked_read_value (int regnum)
643 {
644 gdb_assert (regnum >= 0);
645 gdb_assert (regnum < m_descr->nr_cooked_registers);
646
647 if (regnum < num_raw_registers ()
648 || (m_has_pseudo && m_register_status[regnum] != REG_UNKNOWN)
649 || !gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
650 {
651 struct value *result;
652
653 result = allocate_value (register_type (m_descr->gdbarch, regnum));
654 VALUE_LVAL (result) = lval_register;
655 VALUE_REGNUM (result) = regnum;
656
657 /* It is more efficient in general to do this delegation in this
658 direction than in the other one, even though the value-based
659 API is preferred. */
660 if (cooked_read (regnum,
661 value_contents_raw (result)) == REG_UNAVAILABLE)
662 mark_value_bytes_unavailable (result, 0,
663 TYPE_LENGTH (value_type (result)));
664
665 return result;
666 }
667 else
668 return gdbarch_pseudo_register_read_value (m_descr->gdbarch,
669 this, regnum);
670 }
671
672 enum register_status
673 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
674 LONGEST *val)
675 {
676 gdb_assert (regcache != NULL);
677 return regcache->cooked_read (regnum, val);
678 }
679
680 template<typename T, typename>
681 enum register_status
682 readable_regcache::cooked_read (int regnum, T *val)
683 {
684 enum register_status status;
685 gdb_byte *buf;
686
687 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
688 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
689 status = cooked_read (regnum, buf);
690 if (status == REG_VALID)
691 *val = extract_integer<T> (buf, m_descr->sizeof_register[regnum],
692 gdbarch_byte_order (m_descr->gdbarch));
693 else
694 *val = 0;
695 return status;
696 }
697
698 enum register_status
699 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
700 ULONGEST *val)
701 {
702 gdb_assert (regcache != NULL);
703 return regcache->cooked_read (regnum, val);
704 }
705
706 void
707 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
708 LONGEST val)
709 {
710 gdb_assert (regcache != NULL);
711 regcache->cooked_write (regnum, val);
712 }
713
714 template<typename T, typename>
715 void
716 regcache::cooked_write (int regnum, T val)
717 {
718 gdb_byte *buf;
719
720 gdb_assert (regnum >=0 && regnum < m_descr->nr_cooked_registers);
721 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
722 store_integer (buf, m_descr->sizeof_register[regnum],
723 gdbarch_byte_order (m_descr->gdbarch), val);
724 cooked_write (regnum, buf);
725 }
726
727 void
728 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
729 ULONGEST val)
730 {
731 gdb_assert (regcache != NULL);
732 regcache->cooked_write (regnum, val);
733 }
734
735 void
736 regcache::raw_write (int regnum, const gdb_byte *buf)
737 {
738
739 gdb_assert (buf != NULL);
740 assert_regnum (regnum);
741
742 /* On the sparc, writing %g0 is a no-op, so we don't even want to
743 change the registers array if something writes to this register. */
744 if (gdbarch_cannot_store_register (arch (), regnum))
745 return;
746
747 /* If we have a valid copy of the register, and new value == old
748 value, then don't bother doing the actual store. */
749 if (get_register_status (regnum) == REG_VALID
750 && (memcmp (register_buffer (regnum), buf,
751 m_descr->sizeof_register[regnum]) == 0))
752 return;
753
754 target_prepare_to_store (this);
755 raw_supply (regnum, buf);
756
757 /* Invalidate the register after it is written, in case of a
758 failure. */
759 regcache_invalidator invalidator (this, regnum);
760
761 target_store_registers (this, regnum);
762
763 /* The target did not throw an error so we can discard invalidating
764 the register. */
765 invalidator.release ();
766 }
767
768 void
769 regcache::cooked_write (int regnum, const gdb_byte *buf)
770 {
771 gdb_assert (regnum >= 0);
772 gdb_assert (regnum < m_descr->nr_cooked_registers);
773 if (regnum < num_raw_registers ())
774 raw_write (regnum, buf);
775 else
776 gdbarch_pseudo_register_write (m_descr->gdbarch, this,
777 regnum, buf);
778 }
779
780 /* Perform a partial register transfer using a read, modify, write
781 operation. */
782
783 enum register_status
784 readable_regcache::read_part (int regnum, int offset, int len, void *in,
785 bool is_raw)
786 {
787 struct gdbarch *gdbarch = arch ();
788 gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
789
790 gdb_assert (in != NULL);
791 gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]);
792 gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]);
793 /* Something to do? */
794 if (offset + len == 0)
795 return REG_VALID;
796 /* Read (when needed) ... */
797 enum register_status status;
798
799 if (is_raw)
800 status = raw_read (regnum, reg);
801 else
802 status = cooked_read (regnum, reg);
803 if (status != REG_VALID)
804 return status;
805
806 /* ... modify ... */
807 memcpy (in, reg + offset, len);
808
809 return REG_VALID;
810 }
811
812 enum register_status
813 regcache::write_part (int regnum, int offset, int len,
814 const void *out, bool is_raw)
815 {
816 struct gdbarch *gdbarch = arch ();
817 gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
818
819 gdb_assert (out != NULL);
820 gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]);
821 gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]);
822 /* Something to do? */
823 if (offset + len == 0)
824 return REG_VALID;
825 /* Read (when needed) ... */
826 if (offset > 0
827 || offset + len < m_descr->sizeof_register[regnum])
828 {
829 enum register_status status;
830
831 if (is_raw)
832 status = raw_read (regnum, reg);
833 else
834 status = cooked_read (regnum, reg);
835 if (status != REG_VALID)
836 return status;
837 }
838
839 memcpy (reg + offset, out, len);
840 /* ... write (when needed). */
841 if (is_raw)
842 raw_write (regnum, reg);
843 else
844 cooked_write (regnum, reg);
845
846 return REG_VALID;
847 }
848
849 enum register_status
850 readable_regcache::raw_read_part (int regnum, int offset, int len, gdb_byte *buf)
851 {
852 assert_regnum (regnum);
853 return read_part (regnum, offset, len, buf, true);
854 }
855
856 /* See regcache.h. */
857
858 void
859 regcache::raw_write_part (int regnum, int offset, int len,
860 const gdb_byte *buf)
861 {
862 assert_regnum (regnum);
863 write_part (regnum, offset, len, buf, true);
864 }
865
866 enum register_status
867 regcache_cooked_read_part (struct regcache *regcache, int regnum,
868 int offset, int len, gdb_byte *buf)
869 {
870 return regcache->cooked_read_part (regnum, offset, len, buf);
871 }
872
873
874 enum register_status
875 readable_regcache::cooked_read_part (int regnum, int offset, int len,
876 gdb_byte *buf)
877 {
878 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
879 return read_part (regnum, offset, len, buf, false);
880 }
881
882 void
883 regcache_cooked_write_part (struct regcache *regcache, int regnum,
884 int offset, int len, const gdb_byte *buf)
885 {
886 regcache->cooked_write_part (regnum, offset, len, buf);
887 }
888
889 void
890 regcache::cooked_write_part (int regnum, int offset, int len,
891 const gdb_byte *buf)
892 {
893 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
894 write_part (regnum, offset, len, buf, false);
895 }
896
897 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
898
899 void
900 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
901 {
902 gdb_assert (regcache != NULL);
903 regcache->raw_supply (regnum, buf);
904 }
905
906 void
907 detached_regcache::raw_supply (int regnum, const void *buf)
908 {
909 void *regbuf;
910 size_t size;
911
912 assert_regnum (regnum);
913
914 regbuf = register_buffer (regnum);
915 size = m_descr->sizeof_register[regnum];
916
917 if (buf)
918 {
919 memcpy (regbuf, buf, size);
920 m_register_status[regnum] = REG_VALID;
921 }
922 else
923 {
924 /* This memset not strictly necessary, but better than garbage
925 in case the register value manages to escape somewhere (due
926 to a bug, no less). */
927 memset (regbuf, 0, size);
928 m_register_status[regnum] = REG_UNAVAILABLE;
929 }
930 }
931
932 /* Supply register REGNUM to REGCACHE. Value to supply is an integer stored at
933 address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED. If
934 the register size is greater than ADDR_LEN, then the integer will be sign or
935 zero extended. If the register size is smaller than the integer, then the
936 most significant bytes of the integer will be truncated. */
937
938 void
939 detached_regcache::raw_supply_integer (int regnum, const gdb_byte *addr,
940 int addr_len, bool is_signed)
941 {
942 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
943 gdb_byte *regbuf;
944 size_t regsize;
945
946 assert_regnum (regnum);
947
948 regbuf = register_buffer (regnum);
949 regsize = m_descr->sizeof_register[regnum];
950
951 copy_integer_to_size (regbuf, regsize, addr, addr_len, is_signed,
952 byte_order);
953 m_register_status[regnum] = REG_VALID;
954 }
955
956 /* Supply register REGNUM with zeroed value to REGCACHE. This is not the same
957 as calling raw_supply with NULL (which will set the state to
958 unavailable). */
959
960 void
961 detached_regcache::raw_supply_zeroed (int regnum)
962 {
963 void *regbuf;
964 size_t size;
965
966 assert_regnum (regnum);
967
968 regbuf = register_buffer (regnum);
969 size = m_descr->sizeof_register[regnum];
970
971 memset (regbuf, 0, size);
972 m_register_status[regnum] = REG_VALID;
973 }
974
975 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
976
977 void
978 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
979 {
980 gdb_assert (regcache != NULL && buf != NULL);
981 regcache->raw_collect (regnum, buf);
982 }
983
984 void
985 regcache::raw_collect (int regnum, void *buf) const
986 {
987 const void *regbuf;
988 size_t size;
989
990 gdb_assert (buf != NULL);
991 assert_regnum (regnum);
992
993 regbuf = register_buffer (regnum);
994 size = m_descr->sizeof_register[regnum];
995 memcpy (buf, regbuf, size);
996 }
997
998 /* Transfer a single or all registers belonging to a certain register
999 set to or from a buffer. This is the main worker function for
1000 regcache_supply_regset and regcache_collect_regset. */
1001
1002 /* Collect register REGNUM from REGCACHE. Store collected value as an integer
1003 at address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED.
1004 If ADDR_LEN is greater than the register size, then the integer will be sign
1005 or zero extended. If ADDR_LEN is smaller than the register size, then the
1006 most significant bytes of the integer will be truncated. */
1007
1008 void
1009 regcache::raw_collect_integer (int regnum, gdb_byte *addr, int addr_len,
1010 bool is_signed) const
1011 {
1012 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
1013 const gdb_byte *regbuf;
1014 size_t regsize;
1015
1016 assert_regnum (regnum);
1017
1018 regbuf = register_buffer (regnum);
1019 regsize = m_descr->sizeof_register[regnum];
1020
1021 copy_integer_to_size (addr, addr_len, regbuf, regsize, is_signed,
1022 byte_order);
1023 }
1024
1025 void
1026 regcache::transfer_regset (const struct regset *regset,
1027 struct regcache *out_regcache,
1028 int regnum, const void *in_buf,
1029 void *out_buf, size_t size) const
1030 {
1031 const struct regcache_map_entry *map;
1032 int offs = 0, count;
1033
1034 for (map = (const struct regcache_map_entry *) regset->regmap;
1035 (count = map->count) != 0;
1036 map++)
1037 {
1038 int regno = map->regno;
1039 int slot_size = map->size;
1040
1041 if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
1042 slot_size = m_descr->sizeof_register[regno];
1043
1044 if (regno == REGCACHE_MAP_SKIP
1045 || (regnum != -1
1046 && (regnum < regno || regnum >= regno + count)))
1047 offs += count * slot_size;
1048
1049 else if (regnum == -1)
1050 for (; count--; regno++, offs += slot_size)
1051 {
1052 if (offs + slot_size > size)
1053 break;
1054
1055 if (out_buf)
1056 raw_collect (regno, (gdb_byte *) out_buf + offs);
1057 else
1058 out_regcache->raw_supply (regno, in_buf
1059 ? (const gdb_byte *) in_buf + offs
1060 : NULL);
1061 }
1062 else
1063 {
1064 /* Transfer a single register and return. */
1065 offs += (regnum - regno) * slot_size;
1066 if (offs + slot_size > size)
1067 return;
1068
1069 if (out_buf)
1070 raw_collect (regnum, (gdb_byte *) out_buf + offs);
1071 else
1072 out_regcache->raw_supply (regnum, in_buf
1073 ? (const gdb_byte *) in_buf + offs
1074 : NULL);
1075 return;
1076 }
1077 }
1078 }
1079
1080 /* Supply register REGNUM from BUF to REGCACHE, using the register map
1081 in REGSET. If REGNUM is -1, do this for all registers in REGSET.
1082 If BUF is NULL, set the register(s) to "unavailable" status. */
1083
1084 void
1085 regcache_supply_regset (const struct regset *regset,
1086 struct regcache *regcache,
1087 int regnum, const void *buf, size_t size)
1088 {
1089 regcache->supply_regset (regset, regnum, buf, size);
1090 }
1091
1092 void
1093 regcache::supply_regset (const struct regset *regset,
1094 int regnum, const void *buf, size_t size)
1095 {
1096 transfer_regset (regset, this, regnum, buf, NULL, size);
1097 }
1098
1099 /* Collect register REGNUM from REGCACHE to BUF, using the register
1100 map in REGSET. If REGNUM is -1, do this for all registers in
1101 REGSET. */
1102
1103 void
1104 regcache_collect_regset (const struct regset *regset,
1105 const struct regcache *regcache,
1106 int regnum, void *buf, size_t size)
1107 {
1108 regcache->collect_regset (regset, regnum, buf, size);
1109 }
1110
1111 void
1112 regcache::collect_regset (const struct regset *regset,
1113 int regnum, void *buf, size_t size) const
1114 {
1115 transfer_regset (regset, NULL, regnum, NULL, buf, size);
1116 }
1117
1118
1119 /* Special handling for register PC. */
1120
1121 CORE_ADDR
1122 regcache_read_pc (struct regcache *regcache)
1123 {
1124 struct gdbarch *gdbarch = regcache->arch ();
1125
1126 CORE_ADDR pc_val;
1127
1128 if (gdbarch_read_pc_p (gdbarch))
1129 pc_val = gdbarch_read_pc (gdbarch, regcache);
1130 /* Else use per-frame method on get_current_frame. */
1131 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1132 {
1133 ULONGEST raw_val;
1134
1135 if (regcache_cooked_read_unsigned (regcache,
1136 gdbarch_pc_regnum (gdbarch),
1137 &raw_val) == REG_UNAVAILABLE)
1138 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1139
1140 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
1141 }
1142 else
1143 internal_error (__FILE__, __LINE__,
1144 _("regcache_read_pc: Unable to find PC"));
1145 return pc_val;
1146 }
1147
1148 void
1149 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
1150 {
1151 struct gdbarch *gdbarch = regcache->arch ();
1152
1153 if (gdbarch_write_pc_p (gdbarch))
1154 gdbarch_write_pc (gdbarch, regcache, pc);
1155 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1156 regcache_cooked_write_unsigned (regcache,
1157 gdbarch_pc_regnum (gdbarch), pc);
1158 else
1159 internal_error (__FILE__, __LINE__,
1160 _("regcache_write_pc: Unable to update PC"));
1161
1162 /* Writing the PC (for instance, from "load") invalidates the
1163 current frame. */
1164 reinit_frame_cache ();
1165 }
1166
1167 int
1168 reg_buffer::num_raw_registers () const
1169 {
1170 return gdbarch_num_regs (arch ());
1171 }
1172
1173 void
1174 regcache::debug_print_register (const char *func, int regno)
1175 {
1176 struct gdbarch *gdbarch = arch ();
1177
1178 fprintf_unfiltered (gdb_stdlog, "%s ", func);
1179 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
1180 && gdbarch_register_name (gdbarch, regno) != NULL
1181 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
1182 fprintf_unfiltered (gdb_stdlog, "(%s)",
1183 gdbarch_register_name (gdbarch, regno));
1184 else
1185 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
1186 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
1187 {
1188 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1189 int size = register_size (gdbarch, regno);
1190 gdb_byte *buf = register_buffer (regno);
1191
1192 fprintf_unfiltered (gdb_stdlog, " = ");
1193 for (int i = 0; i < size; i++)
1194 {
1195 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1196 }
1197 if (size <= sizeof (LONGEST))
1198 {
1199 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
1200
1201 fprintf_unfiltered (gdb_stdlog, " %s %s",
1202 core_addr_to_string_nz (val), plongest (val));
1203 }
1204 }
1205 fprintf_unfiltered (gdb_stdlog, "\n");
1206 }
1207
1208 static void
1209 reg_flush_command (const char *command, int from_tty)
1210 {
1211 /* Force-flush the register cache. */
1212 registers_changed ();
1213 if (from_tty)
1214 printf_filtered (_("Register cache flushed.\n"));
1215 }
1216
1217 void
1218 register_dump::dump (ui_file *file)
1219 {
1220 auto descr = regcache_descr (m_gdbarch);
1221 int regnum;
1222 int footnote_nr = 0;
1223 int footnote_register_offset = 0;
1224 int footnote_register_type_name_null = 0;
1225 long register_offset = 0;
1226
1227 gdb_assert (descr->nr_cooked_registers
1228 == (gdbarch_num_regs (m_gdbarch)
1229 + gdbarch_num_pseudo_regs (m_gdbarch)));
1230
1231 for (regnum = -1; regnum < descr->nr_cooked_registers; regnum++)
1232 {
1233 /* Name. */
1234 if (regnum < 0)
1235 fprintf_unfiltered (file, " %-10s", "Name");
1236 else
1237 {
1238 const char *p = gdbarch_register_name (m_gdbarch, regnum);
1239
1240 if (p == NULL)
1241 p = "";
1242 else if (p[0] == '\0')
1243 p = "''";
1244 fprintf_unfiltered (file, " %-10s", p);
1245 }
1246
1247 /* Number. */
1248 if (regnum < 0)
1249 fprintf_unfiltered (file, " %4s", "Nr");
1250 else
1251 fprintf_unfiltered (file, " %4d", regnum);
1252
1253 /* Relative number. */
1254 if (regnum < 0)
1255 fprintf_unfiltered (file, " %4s", "Rel");
1256 else if (regnum < gdbarch_num_regs (m_gdbarch))
1257 fprintf_unfiltered (file, " %4d", regnum);
1258 else
1259 fprintf_unfiltered (file, " %4d",
1260 (regnum - gdbarch_num_regs (m_gdbarch)));
1261
1262 /* Offset. */
1263 if (regnum < 0)
1264 fprintf_unfiltered (file, " %6s ", "Offset");
1265 else
1266 {
1267 fprintf_unfiltered (file, " %6ld",
1268 descr->register_offset[regnum]);
1269 if (register_offset != descr->register_offset[regnum]
1270 || (regnum > 0
1271 && (descr->register_offset[regnum]
1272 != (descr->register_offset[regnum - 1]
1273 + descr->sizeof_register[regnum - 1])))
1274 )
1275 {
1276 if (!footnote_register_offset)
1277 footnote_register_offset = ++footnote_nr;
1278 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1279 }
1280 else
1281 fprintf_unfiltered (file, " ");
1282 register_offset = (descr->register_offset[regnum]
1283 + descr->sizeof_register[regnum]);
1284 }
1285
1286 /* Size. */
1287 if (regnum < 0)
1288 fprintf_unfiltered (file, " %5s ", "Size");
1289 else
1290 fprintf_unfiltered (file, " %5ld", descr->sizeof_register[regnum]);
1291
1292 /* Type. */
1293 {
1294 const char *t;
1295 std::string name_holder;
1296
1297 if (regnum < 0)
1298 t = "Type";
1299 else
1300 {
1301 static const char blt[] = "builtin_type";
1302
1303 t = TYPE_NAME (register_type (m_gdbarch, regnum));
1304 if (t == NULL)
1305 {
1306 if (!footnote_register_type_name_null)
1307 footnote_register_type_name_null = ++footnote_nr;
1308 name_holder = string_printf ("*%d",
1309 footnote_register_type_name_null);
1310 t = name_holder.c_str ();
1311 }
1312 /* Chop a leading builtin_type. */
1313 if (startswith (t, blt))
1314 t += strlen (blt);
1315 }
1316 fprintf_unfiltered (file, " %-15s", t);
1317 }
1318
1319 /* Leading space always present. */
1320 fprintf_unfiltered (file, " ");
1321
1322 dump_reg (file, regnum);
1323
1324 fprintf_unfiltered (file, "\n");
1325 }
1326
1327 if (footnote_register_offset)
1328 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1329 footnote_register_offset);
1330 if (footnote_register_type_name_null)
1331 fprintf_unfiltered (file,
1332 "*%d: Register type's name NULL.\n",
1333 footnote_register_type_name_null);
1334 }
1335
1336 #if GDB_SELF_TEST
1337 #include "selftest.h"
1338 #include "selftest-arch.h"
1339 #include "gdbthread.h"
1340 #include "target-float.h"
1341
1342 namespace selftests {
1343
1344 class regcache_access : public regcache
1345 {
1346 public:
1347
1348 /* Return the number of elements in current_regcache. */
1349
1350 static size_t
1351 current_regcache_size ()
1352 {
1353 return std::distance (regcache::current_regcache.begin (),
1354 regcache::current_regcache.end ());
1355 }
1356 };
1357
1358 static void
1359 current_regcache_test (void)
1360 {
1361 /* It is empty at the start. */
1362 SELF_CHECK (regcache_access::current_regcache_size () == 0);
1363
1364 ptid_t ptid1 (1), ptid2 (2), ptid3 (3);
1365
1366 /* Get regcache from ptid1, a new regcache is added to
1367 current_regcache. */
1368 regcache *regcache = get_thread_arch_aspace_regcache (ptid1,
1369 target_gdbarch (),
1370 NULL);
1371
1372 SELF_CHECK (regcache != NULL);
1373 SELF_CHECK (regcache->ptid () == ptid1);
1374 SELF_CHECK (regcache_access::current_regcache_size () == 1);
1375
1376 /* Get regcache from ptid2, a new regcache is added to
1377 current_regcache. */
1378 regcache = get_thread_arch_aspace_regcache (ptid2,
1379 target_gdbarch (),
1380 NULL);
1381 SELF_CHECK (regcache != NULL);
1382 SELF_CHECK (regcache->ptid () == ptid2);
1383 SELF_CHECK (regcache_access::current_regcache_size () == 2);
1384
1385 /* Get regcache from ptid3, a new regcache is added to
1386 current_regcache. */
1387 regcache = get_thread_arch_aspace_regcache (ptid3,
1388 target_gdbarch (),
1389 NULL);
1390 SELF_CHECK (regcache != NULL);
1391 SELF_CHECK (regcache->ptid () == ptid3);
1392 SELF_CHECK (regcache_access::current_regcache_size () == 3);
1393
1394 /* Get regcache from ptid2 again, nothing is added to
1395 current_regcache. */
1396 regcache = get_thread_arch_aspace_regcache (ptid2,
1397 target_gdbarch (),
1398 NULL);
1399 SELF_CHECK (regcache != NULL);
1400 SELF_CHECK (regcache->ptid () == ptid2);
1401 SELF_CHECK (regcache_access::current_regcache_size () == 3);
1402
1403 /* Mark ptid2 is changed, so regcache of ptid2 should be removed from
1404 current_regcache. */
1405 registers_changed_ptid (ptid2);
1406 SELF_CHECK (regcache_access::current_regcache_size () == 2);
1407 }
1408
1409 class target_ops_no_register : public test_target_ops
1410 {
1411 public:
1412 target_ops_no_register ()
1413 : test_target_ops {}
1414 {}
1415
1416 void reset ()
1417 {
1418 fetch_registers_called = 0;
1419 store_registers_called = 0;
1420 xfer_partial_called = 0;
1421 }
1422
1423 void fetch_registers (regcache *regs, int regno) override;
1424 void store_registers (regcache *regs, int regno) override;
1425
1426 enum target_xfer_status xfer_partial (enum target_object object,
1427 const char *annex, gdb_byte *readbuf,
1428 const gdb_byte *writebuf,
1429 ULONGEST offset, ULONGEST len,
1430 ULONGEST *xfered_len) override;
1431
1432 unsigned int fetch_registers_called = 0;
1433 unsigned int store_registers_called = 0;
1434 unsigned int xfer_partial_called = 0;
1435 };
1436
1437 void
1438 target_ops_no_register::fetch_registers (regcache *regs, int regno)
1439 {
1440 /* Mark register available. */
1441 regs->raw_supply_zeroed (regno);
1442 this->fetch_registers_called++;
1443 }
1444
1445 void
1446 target_ops_no_register::store_registers (regcache *regs, int regno)
1447 {
1448 this->store_registers_called++;
1449 }
1450
1451 enum target_xfer_status
1452 target_ops_no_register::xfer_partial (enum target_object object,
1453 const char *annex, gdb_byte *readbuf,
1454 const gdb_byte *writebuf,
1455 ULONGEST offset, ULONGEST len,
1456 ULONGEST *xfered_len)
1457 {
1458 this->xfer_partial_called++;
1459
1460 *xfered_len = len;
1461 return TARGET_XFER_OK;
1462 }
1463
1464 class readwrite_regcache : public regcache
1465 {
1466 public:
1467 readwrite_regcache (struct gdbarch *gdbarch)
1468 : regcache (gdbarch, nullptr)
1469 {}
1470 };
1471
1472 /* Test regcache::cooked_read gets registers from raw registers and
1473 memory instead of target to_{fetch,store}_registers. */
1474
1475 static void
1476 cooked_read_test (struct gdbarch *gdbarch)
1477 {
1478 /* Error out if debugging something, because we're going to push the
1479 test target, which would pop any existing target. */
1480 if (target_stack->to_stratum >= process_stratum)
1481 error (_("target already pushed"));
1482
1483 /* Create a mock environment. An inferior with a thread, with a
1484 process_stratum target pushed. */
1485
1486 target_ops_no_register mock_target;
1487 ptid_t mock_ptid (1, 1);
1488 inferior mock_inferior (mock_ptid.pid ());
1489 address_space mock_aspace {};
1490 mock_inferior.gdbarch = gdbarch;
1491 mock_inferior.aspace = &mock_aspace;
1492 thread_info mock_thread (&mock_inferior, mock_ptid);
1493
1494 scoped_restore restore_thread_list
1495 = make_scoped_restore (&thread_list, &mock_thread);
1496
1497 /* Add the mock inferior to the inferior list so that look ups by
1498 target+ptid can find it. */
1499 scoped_restore restore_inferior_list
1500 = make_scoped_restore (&inferior_list);
1501 inferior_list = &mock_inferior;
1502
1503 /* Switch to the mock inferior. */
1504 scoped_restore_current_inferior restore_current_inferior;
1505 set_current_inferior (&mock_inferior);
1506
1507 /* Push the process_stratum target so we can mock accessing
1508 registers. */
1509 push_target (&mock_target);
1510
1511 /* Pop it again on exit (return/exception). */
1512 struct on_exit
1513 {
1514 ~on_exit ()
1515 {
1516 pop_all_targets_at_and_above (process_stratum);
1517 }
1518 } pop_targets;
1519
1520 /* Switch to the mock thread. */
1521 scoped_restore restore_inferior_ptid
1522 = make_scoped_restore (&inferior_ptid, mock_ptid);
1523
1524 /* Test that read one raw register from regcache_no_target will go
1525 to the target layer. */
1526 int regnum;
1527
1528 /* Find a raw register which size isn't zero. */
1529 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1530 {
1531 if (register_size (gdbarch, regnum) != 0)
1532 break;
1533 }
1534
1535 readwrite_regcache readwrite (gdbarch);
1536 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1537
1538 readwrite.raw_read (regnum, buf.data ());
1539
1540 /* raw_read calls target_fetch_registers. */
1541 SELF_CHECK (mock_target.fetch_registers_called > 0);
1542 mock_target.reset ();
1543
1544 /* Mark all raw registers valid, so the following raw registers
1545 accesses won't go to target. */
1546 for (auto i = 0; i < gdbarch_num_regs (gdbarch); i++)
1547 readwrite.raw_update (i);
1548
1549 mock_target.reset ();
1550 /* Then, read all raw and pseudo registers, and don't expect calling
1551 to_{fetch,store}_registers. */
1552 for (int regnum = 0;
1553 regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1554 regnum++)
1555 {
1556 if (register_size (gdbarch, regnum) == 0)
1557 continue;
1558
1559 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1560
1561 SELF_CHECK (REG_VALID == readwrite.cooked_read (regnum, buf.data ()));
1562
1563 SELF_CHECK (mock_target.fetch_registers_called == 0);
1564 SELF_CHECK (mock_target.store_registers_called == 0);
1565
1566 /* Some SPU pseudo registers are got via TARGET_OBJECT_SPU. */
1567 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1568 SELF_CHECK (mock_target.xfer_partial_called == 0);
1569
1570 mock_target.reset ();
1571 }
1572
1573 readonly_detached_regcache readonly (readwrite);
1574
1575 /* GDB may go to target layer to fetch all registers and memory for
1576 readonly regcache. */
1577 mock_target.reset ();
1578
1579 for (int regnum = 0;
1580 regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1581 regnum++)
1582 {
1583 if (register_size (gdbarch, regnum) == 0)
1584 continue;
1585
1586 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1587 enum register_status status = readonly.cooked_read (regnum,
1588 buf.data ());
1589
1590 if (regnum < gdbarch_num_regs (gdbarch))
1591 {
1592 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1593
1594 if (bfd_arch == bfd_arch_frv || bfd_arch == bfd_arch_h8300
1595 || bfd_arch == bfd_arch_m32c || bfd_arch == bfd_arch_sh
1596 || bfd_arch == bfd_arch_alpha || bfd_arch == bfd_arch_v850
1597 || bfd_arch == bfd_arch_msp430 || bfd_arch == bfd_arch_mep
1598 || bfd_arch == bfd_arch_mips || bfd_arch == bfd_arch_v850_rh850
1599 || bfd_arch == bfd_arch_tic6x || bfd_arch == bfd_arch_mn10300
1600 || bfd_arch == bfd_arch_rl78 || bfd_arch == bfd_arch_score
1601 || bfd_arch == bfd_arch_riscv)
1602 {
1603 /* Raw registers. If raw registers are not in save_reggroup,
1604 their status are unknown. */
1605 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1606 SELF_CHECK (status == REG_VALID);
1607 else
1608 SELF_CHECK (status == REG_UNKNOWN);
1609 }
1610 else
1611 SELF_CHECK (status == REG_VALID);
1612 }
1613 else
1614 {
1615 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1616 SELF_CHECK (status == REG_VALID);
1617 else
1618 {
1619 /* If pseudo registers are not in save_reggroup, some of
1620 them can be computed from saved raw registers, but some
1621 of them are unknown. */
1622 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1623
1624 if (bfd_arch == bfd_arch_frv
1625 || bfd_arch == bfd_arch_m32c
1626 || bfd_arch == bfd_arch_mep
1627 || bfd_arch == bfd_arch_sh)
1628 SELF_CHECK (status == REG_VALID || status == REG_UNKNOWN);
1629 else if (bfd_arch == bfd_arch_mips
1630 || bfd_arch == bfd_arch_h8300)
1631 SELF_CHECK (status == REG_UNKNOWN);
1632 else
1633 SELF_CHECK (status == REG_VALID);
1634 }
1635 }
1636
1637 SELF_CHECK (mock_target.fetch_registers_called == 0);
1638 SELF_CHECK (mock_target.store_registers_called == 0);
1639 SELF_CHECK (mock_target.xfer_partial_called == 0);
1640
1641 mock_target.reset ();
1642 }
1643 }
1644
1645 /* Test regcache::cooked_write by writing some expected contents to
1646 registers, and checking that contents read from registers and the
1647 expected contents are the same. */
1648
1649 static void
1650 cooked_write_test (struct gdbarch *gdbarch)
1651 {
1652 /* Error out if debugging something, because we're going to push the
1653 test target, which would pop any existing target. */
1654 if (target_stack->to_stratum >= process_stratum)
1655 error (_("target already pushed"));
1656
1657 /* Create a mock environment. A process_stratum target pushed. */
1658
1659 target_ops_no_register mock_target;
1660
1661 /* Push the process_stratum target so we can mock accessing
1662 registers. */
1663 push_target (&mock_target);
1664
1665 /* Pop it again on exit (return/exception). */
1666 struct on_exit
1667 {
1668 ~on_exit ()
1669 {
1670 pop_all_targets_at_and_above (process_stratum);
1671 }
1672 } pop_targets;
1673
1674 readwrite_regcache readwrite (gdbarch);
1675
1676 const int num_regs = (gdbarch_num_regs (gdbarch)
1677 + gdbarch_num_pseudo_regs (gdbarch));
1678
1679 for (auto regnum = 0; regnum < num_regs; regnum++)
1680 {
1681 if (register_size (gdbarch, regnum) == 0
1682 || gdbarch_cannot_store_register (gdbarch, regnum))
1683 continue;
1684
1685 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1686
1687 if ((bfd_arch == bfd_arch_sparc
1688 /* SPARC64_CWP_REGNUM, SPARC64_PSTATE_REGNUM,
1689 SPARC64_ASI_REGNUM and SPARC64_CCR_REGNUM are hard to test. */
1690 && gdbarch_ptr_bit (gdbarch) == 64
1691 && (regnum >= gdbarch_num_regs (gdbarch)
1692 && regnum <= gdbarch_num_regs (gdbarch) + 4))
1693 || (bfd_arch == bfd_arch_spu
1694 /* SPU pseudo registers except SPU_SP_REGNUM are got by
1695 TARGET_OBJECT_SPU. */
1696 && regnum >= gdbarch_num_regs (gdbarch) && regnum != 130))
1697 continue;
1698
1699 std::vector<gdb_byte> expected (register_size (gdbarch, regnum), 0);
1700 std::vector<gdb_byte> buf (register_size (gdbarch, regnum), 0);
1701 const auto type = register_type (gdbarch, regnum);
1702
1703 if (TYPE_CODE (type) == TYPE_CODE_FLT
1704 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1705 {
1706 /* Generate valid float format. */
1707 target_float_from_string (expected.data (), type, "1.25");
1708 }
1709 else if (TYPE_CODE (type) == TYPE_CODE_INT
1710 || TYPE_CODE (type) == TYPE_CODE_ARRAY
1711 || TYPE_CODE (type) == TYPE_CODE_PTR
1712 || TYPE_CODE (type) == TYPE_CODE_UNION
1713 || TYPE_CODE (type) == TYPE_CODE_STRUCT)
1714 {
1715 if (bfd_arch == bfd_arch_ia64
1716 || (regnum >= gdbarch_num_regs (gdbarch)
1717 && (bfd_arch == bfd_arch_xtensa
1718 || bfd_arch == bfd_arch_bfin
1719 || bfd_arch == bfd_arch_m32c
1720 /* m68hc11 pseudo registers are in memory. */
1721 || bfd_arch == bfd_arch_m68hc11
1722 || bfd_arch == bfd_arch_m68hc12
1723 || bfd_arch == bfd_arch_s390))
1724 || (bfd_arch == bfd_arch_frv
1725 /* FRV pseudo registers except iacc0. */
1726 && regnum > gdbarch_num_regs (gdbarch)))
1727 {
1728 /* Skip setting the expected values for some architecture
1729 registers. */
1730 }
1731 else if (bfd_arch == bfd_arch_rl78 && regnum == 40)
1732 {
1733 /* RL78_PC_REGNUM */
1734 for (auto j = 0; j < register_size (gdbarch, regnum) - 1; j++)
1735 expected[j] = j;
1736 }
1737 else
1738 {
1739 for (auto j = 0; j < register_size (gdbarch, regnum); j++)
1740 expected[j] = j;
1741 }
1742 }
1743 else if (TYPE_CODE (type) == TYPE_CODE_FLAGS)
1744 {
1745 /* No idea how to test flags. */
1746 continue;
1747 }
1748 else
1749 {
1750 /* If we don't know how to create the expected value for the
1751 this type, make it fail. */
1752 SELF_CHECK (0);
1753 }
1754
1755 readwrite.cooked_write (regnum, expected.data ());
1756
1757 SELF_CHECK (readwrite.cooked_read (regnum, buf.data ()) == REG_VALID);
1758 SELF_CHECK (expected == buf);
1759 }
1760 }
1761
1762 } // namespace selftests
1763 #endif /* GDB_SELF_TEST */
1764
1765 void
1766 _initialize_regcache (void)
1767 {
1768 regcache_descr_handle
1769 = gdbarch_data_register_post_init (init_regcache_descr);
1770
1771 gdb::observers::target_changed.attach (regcache_observer_target_changed);
1772 gdb::observers::thread_ptid_changed.attach
1773 (regcache::regcache_thread_ptid_changed);
1774
1775 add_com ("flushregs", class_maintenance, reg_flush_command,
1776 _("Force gdb to flush its register cache (maintainer command)"));
1777
1778 #if GDB_SELF_TEST
1779 selftests::register_test ("current_regcache", selftests::current_regcache_test);
1780
1781 selftests::register_test_foreach_arch ("regcache::cooked_read_test",
1782 selftests::cooked_read_test);
1783 selftests::register_test_foreach_arch ("regcache::cooked_write_test",
1784 selftests::cooked_write_test);
1785 #endif
1786 }
This page took 0.095151 seconds and 5 git commands to generate.