Remove regcache_cooked_read_part
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbarch.h"
24 #include "gdbcmd.h"
25 #include "regcache.h"
26 #include "reggroups.h"
27 #include "observable.h"
28 #include "regset.h"
29 #include <forward_list>
30
31 /*
32 * DATA STRUCTURE
33 *
34 * Here is the actual register cache.
35 */
36
37 /* Per-architecture object describing the layout of a register cache.
38 Computed once when the architecture is created. */
39
40 struct gdbarch_data *regcache_descr_handle;
41
42 struct regcache_descr
43 {
44 /* The architecture this descriptor belongs to. */
45 struct gdbarch *gdbarch;
46
47 /* The raw register cache. Each raw (or hard) register is supplied
48 by the target interface. The raw cache should not contain
49 redundant information - if the PC is constructed from two
50 registers then those registers and not the PC lives in the raw
51 cache. */
52 long sizeof_raw_registers;
53
54 /* The cooked register space. Each cooked register in the range
55 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
56 register. The remaining [NR_RAW_REGISTERS
57 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
58 both raw registers and memory by the architecture methods
59 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
60 int nr_cooked_registers;
61 long sizeof_cooked_registers;
62
63 /* Offset and size (in 8 bit bytes), of each register in the
64 register cache. All registers (including those in the range
65 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
66 offset. */
67 long *register_offset;
68 long *sizeof_register;
69
70 /* Cached table containing the type of each register. */
71 struct type **register_type;
72 };
73
74 static void *
75 init_regcache_descr (struct gdbarch *gdbarch)
76 {
77 int i;
78 struct regcache_descr *descr;
79 gdb_assert (gdbarch != NULL);
80
81 /* Create an initial, zero filled, table. */
82 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
83 descr->gdbarch = gdbarch;
84
85 /* Total size of the register space. The raw registers are mapped
86 directly onto the raw register cache while the pseudo's are
87 either mapped onto raw-registers or memory. */
88 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
89 + gdbarch_num_pseudo_regs (gdbarch);
90
91 /* Fill in a table of register types. */
92 descr->register_type
93 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
94 struct type *);
95 for (i = 0; i < descr->nr_cooked_registers; i++)
96 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
97
98 /* Construct a strictly RAW register cache. Don't allow pseudo's
99 into the register cache. */
100
101 /* Lay out the register cache.
102
103 NOTE: cagney/2002-05-22: Only register_type() is used when
104 constructing the register cache. It is assumed that the
105 register's raw size, virtual size and type length are all the
106 same. */
107
108 {
109 long offset = 0;
110
111 descr->sizeof_register
112 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
113 descr->register_offset
114 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
115 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
116 {
117 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
118 descr->register_offset[i] = offset;
119 offset += descr->sizeof_register[i];
120 }
121 /* Set the real size of the raw register cache buffer. */
122 descr->sizeof_raw_registers = offset;
123
124 for (; i < descr->nr_cooked_registers; i++)
125 {
126 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
127 descr->register_offset[i] = offset;
128 offset += descr->sizeof_register[i];
129 }
130 /* Set the real size of the readonly register cache buffer. */
131 descr->sizeof_cooked_registers = offset;
132 }
133
134 return descr;
135 }
136
137 static struct regcache_descr *
138 regcache_descr (struct gdbarch *gdbarch)
139 {
140 return (struct regcache_descr *) gdbarch_data (gdbarch,
141 regcache_descr_handle);
142 }
143
144 /* Utility functions returning useful register attributes stored in
145 the regcache descr. */
146
147 struct type *
148 register_type (struct gdbarch *gdbarch, int regnum)
149 {
150 struct regcache_descr *descr = regcache_descr (gdbarch);
151
152 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
153 return descr->register_type[regnum];
154 }
155
156 /* Utility functions returning useful register attributes stored in
157 the regcache descr. */
158
159 int
160 register_size (struct gdbarch *gdbarch, int regnum)
161 {
162 struct regcache_descr *descr = regcache_descr (gdbarch);
163 int size;
164
165 gdb_assert (regnum >= 0
166 && regnum < (gdbarch_num_regs (gdbarch)
167 + gdbarch_num_pseudo_regs (gdbarch)));
168 size = descr->sizeof_register[regnum];
169 return size;
170 }
171
172 /* See common/common-regcache.h. */
173
174 int
175 regcache_register_size (const struct regcache *regcache, int n)
176 {
177 return register_size (regcache->arch (), n);
178 }
179
180 reg_buffer::reg_buffer (gdbarch *gdbarch, bool has_pseudo)
181 : m_has_pseudo (has_pseudo)
182 {
183 gdb_assert (gdbarch != NULL);
184 m_descr = regcache_descr (gdbarch);
185
186 if (has_pseudo)
187 {
188 m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_cooked_registers);
189 m_register_status = XCNEWVEC (signed char,
190 m_descr->nr_cooked_registers);
191 }
192 else
193 {
194 m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_raw_registers);
195 m_register_status = XCNEWVEC (signed char, gdbarch_num_regs (gdbarch));
196 }
197 }
198
199 regcache::regcache (gdbarch *gdbarch, const address_space *aspace_)
200 /* The register buffers. A read/write register cache can only hold
201 [0 .. gdbarch_num_regs). */
202 : detached_regcache (gdbarch, false), m_aspace (aspace_)
203 {
204 m_ptid = minus_one_ptid;
205 }
206
207 static enum register_status
208 do_cooked_read (void *src, int regnum, gdb_byte *buf)
209 {
210 struct regcache *regcache = (struct regcache *) src;
211
212 return regcache->cooked_read (regnum, buf);
213 }
214
215 readonly_detached_regcache::readonly_detached_regcache (const regcache &src)
216 : readonly_detached_regcache (src.arch (), do_cooked_read, (void *) &src)
217 {
218 }
219
220 gdbarch *
221 reg_buffer::arch () const
222 {
223 return m_descr->gdbarch;
224 }
225
226 /* Cleanup class for invalidating a register. */
227
228 class regcache_invalidator
229 {
230 public:
231
232 regcache_invalidator (struct regcache *regcache, int regnum)
233 : m_regcache (regcache),
234 m_regnum (regnum)
235 {
236 }
237
238 ~regcache_invalidator ()
239 {
240 if (m_regcache != nullptr)
241 m_regcache->invalidate (m_regnum);
242 }
243
244 DISABLE_COPY_AND_ASSIGN (regcache_invalidator);
245
246 void release ()
247 {
248 m_regcache = nullptr;
249 }
250
251 private:
252
253 struct regcache *m_regcache;
254 int m_regnum;
255 };
256
257 /* Return a pointer to register REGNUM's buffer cache. */
258
259 gdb_byte *
260 reg_buffer::register_buffer (int regnum) const
261 {
262 return m_registers + m_descr->register_offset[regnum];
263 }
264
265 void
266 reg_buffer::save (regcache_cooked_read_ftype *cooked_read,
267 void *src)
268 {
269 struct gdbarch *gdbarch = m_descr->gdbarch;
270 int regnum;
271
272 /* It should have pseudo registers. */
273 gdb_assert (m_has_pseudo);
274 /* Clear the dest. */
275 memset (m_registers, 0, m_descr->sizeof_cooked_registers);
276 memset (m_register_status, 0, m_descr->nr_cooked_registers);
277 /* Copy over any registers (identified by their membership in the
278 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
279 gdbarch_num_pseudo_regs) range is checked since some architectures need
280 to save/restore `cooked' registers that live in memory. */
281 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
282 {
283 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
284 {
285 gdb_byte *dst_buf = register_buffer (regnum);
286 enum register_status status = cooked_read (src, regnum, dst_buf);
287
288 gdb_assert (status != REG_UNKNOWN);
289
290 if (status != REG_VALID)
291 memset (dst_buf, 0, register_size (gdbarch, regnum));
292
293 m_register_status[regnum] = status;
294 }
295 }
296 }
297
298 void
299 regcache::restore (readonly_detached_regcache *src)
300 {
301 struct gdbarch *gdbarch = m_descr->gdbarch;
302 int regnum;
303
304 gdb_assert (src != NULL);
305 gdb_assert (src->m_has_pseudo);
306
307 gdb_assert (gdbarch == src->arch ());
308
309 /* Copy over any registers, being careful to only restore those that
310 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
311 + gdbarch_num_pseudo_regs) range is checked since some architectures need
312 to save/restore `cooked' registers that live in memory. */
313 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
314 {
315 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
316 {
317 if (src->m_register_status[regnum] == REG_VALID)
318 cooked_write (regnum, src->register_buffer (regnum));
319 }
320 }
321 }
322
323 enum register_status
324 reg_buffer::get_register_status (int regnum) const
325 {
326 assert_regnum (regnum);
327
328 return (enum register_status) m_register_status[regnum];
329 }
330
331 void
332 detached_regcache::invalidate (int regnum)
333 {
334 assert_regnum (regnum);
335 m_register_status[regnum] = REG_UNKNOWN;
336 }
337
338 void
339 reg_buffer::assert_regnum (int regnum) const
340 {
341 gdb_assert (regnum >= 0);
342 if (m_has_pseudo)
343 gdb_assert (regnum < m_descr->nr_cooked_registers);
344 else
345 gdb_assert (regnum < gdbarch_num_regs (arch ()));
346 }
347
348 /* Global structure containing the current regcache. */
349
350 /* NOTE: this is a write-through cache. There is no "dirty" bit for
351 recording if the register values have been changed (eg. by the
352 user). Therefore all registers must be written back to the
353 target when appropriate. */
354 std::forward_list<regcache *> regcache::current_regcache;
355
356 struct regcache *
357 get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
358 struct address_space *aspace)
359 {
360 for (const auto &regcache : regcache::current_regcache)
361 if (ptid_equal (regcache->ptid (), ptid) && regcache->arch () == gdbarch)
362 return regcache;
363
364 regcache *new_regcache = new regcache (gdbarch, aspace);
365
366 regcache::current_regcache.push_front (new_regcache);
367 new_regcache->set_ptid (ptid);
368
369 return new_regcache;
370 }
371
372 struct regcache *
373 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
374 {
375 address_space *aspace = target_thread_address_space (ptid);
376
377 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
378 }
379
380 static ptid_t current_thread_ptid;
381 static struct gdbarch *current_thread_arch;
382
383 struct regcache *
384 get_thread_regcache (ptid_t ptid)
385 {
386 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
387 {
388 current_thread_ptid = ptid;
389 current_thread_arch = target_thread_architecture (ptid);
390 }
391
392 return get_thread_arch_regcache (ptid, current_thread_arch);
393 }
394
395 struct regcache *
396 get_current_regcache (void)
397 {
398 return get_thread_regcache (inferior_ptid);
399 }
400
401 /* See common/common-regcache.h. */
402
403 struct regcache *
404 get_thread_regcache_for_ptid (ptid_t ptid)
405 {
406 return get_thread_regcache (ptid);
407 }
408
409 /* Observer for the target_changed event. */
410
411 static void
412 regcache_observer_target_changed (struct target_ops *target)
413 {
414 registers_changed ();
415 }
416
417 /* Update global variables old ptids to hold NEW_PTID if they were
418 holding OLD_PTID. */
419 void
420 regcache::regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
421 {
422 for (auto &regcache : regcache::current_regcache)
423 {
424 if (ptid_equal (regcache->ptid (), old_ptid))
425 regcache->set_ptid (new_ptid);
426 }
427 }
428
429 /* Low level examining and depositing of registers.
430
431 The caller is responsible for making sure that the inferior is
432 stopped before calling the fetching routines, or it will get
433 garbage. (a change from GDB version 3, in which the caller got the
434 value from the last stop). */
435
436 /* REGISTERS_CHANGED ()
437
438 Indicate that registers may have changed, so invalidate the cache. */
439
440 void
441 registers_changed_ptid (ptid_t ptid)
442 {
443 for (auto oit = regcache::current_regcache.before_begin (),
444 it = std::next (oit);
445 it != regcache::current_regcache.end ();
446 )
447 {
448 if (ptid_match ((*it)->ptid (), ptid))
449 {
450 delete *it;
451 it = regcache::current_regcache.erase_after (oit);
452 }
453 else
454 oit = it++;
455 }
456
457 if (ptid_match (current_thread_ptid, ptid))
458 {
459 current_thread_ptid = null_ptid;
460 current_thread_arch = NULL;
461 }
462
463 if (ptid_match (inferior_ptid, ptid))
464 {
465 /* We just deleted the regcache of the current thread. Need to
466 forget about any frames we have cached, too. */
467 reinit_frame_cache ();
468 }
469 }
470
471 void
472 registers_changed (void)
473 {
474 registers_changed_ptid (minus_one_ptid);
475
476 /* Force cleanup of any alloca areas if using C alloca instead of
477 a builtin alloca. This particular call is used to clean up
478 areas allocated by low level target code which may build up
479 during lengthy interactions between gdb and the target before
480 gdb gives control to the user (ie watchpoints). */
481 alloca (0);
482 }
483
484 void
485 regcache::raw_update (int regnum)
486 {
487 assert_regnum (regnum);
488
489 /* Make certain that the register cache is up-to-date with respect
490 to the current thread. This switching shouldn't be necessary
491 only there is still only one target side register cache. Sigh!
492 On the bright side, at least there is a regcache object. */
493
494 if (get_register_status (regnum) == REG_UNKNOWN)
495 {
496 target_fetch_registers (this, regnum);
497
498 /* A number of targets can't access the whole set of raw
499 registers (because the debug API provides no means to get at
500 them). */
501 if (m_register_status[regnum] == REG_UNKNOWN)
502 m_register_status[regnum] = REG_UNAVAILABLE;
503 }
504 }
505
506 enum register_status
507 readable_regcache::raw_read (int regnum, gdb_byte *buf)
508 {
509 gdb_assert (buf != NULL);
510 raw_update (regnum);
511
512 if (m_register_status[regnum] != REG_VALID)
513 memset (buf, 0, m_descr->sizeof_register[regnum]);
514 else
515 memcpy (buf, register_buffer (regnum),
516 m_descr->sizeof_register[regnum]);
517
518 return (enum register_status) m_register_status[regnum];
519 }
520
521 enum register_status
522 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
523 {
524 gdb_assert (regcache != NULL);
525 return regcache->raw_read (regnum, val);
526 }
527
528 template<typename T, typename>
529 enum register_status
530 readable_regcache::raw_read (int regnum, T *val)
531 {
532 gdb_byte *buf;
533 enum register_status status;
534
535 assert_regnum (regnum);
536 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
537 status = raw_read (regnum, buf);
538 if (status == REG_VALID)
539 *val = extract_integer<T> (buf,
540 m_descr->sizeof_register[regnum],
541 gdbarch_byte_order (m_descr->gdbarch));
542 else
543 *val = 0;
544 return status;
545 }
546
547 enum register_status
548 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
549 ULONGEST *val)
550 {
551 gdb_assert (regcache != NULL);
552 return regcache->raw_read (regnum, val);
553 }
554
555 void
556 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
557 {
558 gdb_assert (regcache != NULL);
559 regcache->raw_write (regnum, val);
560 }
561
562 template<typename T, typename>
563 void
564 regcache::raw_write (int regnum, T val)
565 {
566 gdb_byte *buf;
567
568 assert_regnum (regnum);
569 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
570 store_integer (buf, m_descr->sizeof_register[regnum],
571 gdbarch_byte_order (m_descr->gdbarch), val);
572 raw_write (regnum, buf);
573 }
574
575 void
576 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
577 ULONGEST val)
578 {
579 gdb_assert (regcache != NULL);
580 regcache->raw_write (regnum, val);
581 }
582
583 LONGEST
584 regcache_raw_get_signed (struct regcache *regcache, int regnum)
585 {
586 LONGEST value;
587 enum register_status status;
588
589 status = regcache_raw_read_signed (regcache, regnum, &value);
590 if (status == REG_UNAVAILABLE)
591 throw_error (NOT_AVAILABLE_ERROR,
592 _("Register %d is not available"), regnum);
593 return value;
594 }
595
596 enum register_status
597 readable_regcache::cooked_read (int regnum, gdb_byte *buf)
598 {
599 gdb_assert (regnum >= 0);
600 gdb_assert (regnum < m_descr->nr_cooked_registers);
601 if (regnum < num_raw_registers ())
602 return raw_read (regnum, buf);
603 else if (m_has_pseudo
604 && m_register_status[regnum] != REG_UNKNOWN)
605 {
606 if (m_register_status[regnum] == REG_VALID)
607 memcpy (buf, register_buffer (regnum),
608 m_descr->sizeof_register[regnum]);
609 else
610 memset (buf, 0, m_descr->sizeof_register[regnum]);
611
612 return (enum register_status) m_register_status[regnum];
613 }
614 else if (gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
615 {
616 struct value *mark, *computed;
617 enum register_status result = REG_VALID;
618
619 mark = value_mark ();
620
621 computed = gdbarch_pseudo_register_read_value (m_descr->gdbarch,
622 this, regnum);
623 if (value_entirely_available (computed))
624 memcpy (buf, value_contents_raw (computed),
625 m_descr->sizeof_register[regnum]);
626 else
627 {
628 memset (buf, 0, m_descr->sizeof_register[regnum]);
629 result = REG_UNAVAILABLE;
630 }
631
632 value_free_to_mark (mark);
633
634 return result;
635 }
636 else
637 return gdbarch_pseudo_register_read (m_descr->gdbarch, this,
638 regnum, buf);
639 }
640
641 struct value *
642 readable_regcache::cooked_read_value (int regnum)
643 {
644 gdb_assert (regnum >= 0);
645 gdb_assert (regnum < m_descr->nr_cooked_registers);
646
647 if (regnum < num_raw_registers ()
648 || (m_has_pseudo && m_register_status[regnum] != REG_UNKNOWN)
649 || !gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
650 {
651 struct value *result;
652
653 result = allocate_value (register_type (m_descr->gdbarch, regnum));
654 VALUE_LVAL (result) = lval_register;
655 VALUE_REGNUM (result) = regnum;
656
657 /* It is more efficient in general to do this delegation in this
658 direction than in the other one, even though the value-based
659 API is preferred. */
660 if (cooked_read (regnum,
661 value_contents_raw (result)) == REG_UNAVAILABLE)
662 mark_value_bytes_unavailable (result, 0,
663 TYPE_LENGTH (value_type (result)));
664
665 return result;
666 }
667 else
668 return gdbarch_pseudo_register_read_value (m_descr->gdbarch,
669 this, regnum);
670 }
671
672 enum register_status
673 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
674 LONGEST *val)
675 {
676 gdb_assert (regcache != NULL);
677 return regcache->cooked_read (regnum, val);
678 }
679
680 template<typename T, typename>
681 enum register_status
682 readable_regcache::cooked_read (int regnum, T *val)
683 {
684 enum register_status status;
685 gdb_byte *buf;
686
687 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
688 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
689 status = cooked_read (regnum, buf);
690 if (status == REG_VALID)
691 *val = extract_integer<T> (buf, m_descr->sizeof_register[regnum],
692 gdbarch_byte_order (m_descr->gdbarch));
693 else
694 *val = 0;
695 return status;
696 }
697
698 enum register_status
699 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
700 ULONGEST *val)
701 {
702 gdb_assert (regcache != NULL);
703 return regcache->cooked_read (regnum, val);
704 }
705
706 void
707 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
708 LONGEST val)
709 {
710 gdb_assert (regcache != NULL);
711 regcache->cooked_write (regnum, val);
712 }
713
714 template<typename T, typename>
715 void
716 regcache::cooked_write (int regnum, T val)
717 {
718 gdb_byte *buf;
719
720 gdb_assert (regnum >=0 && regnum < m_descr->nr_cooked_registers);
721 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
722 store_integer (buf, m_descr->sizeof_register[regnum],
723 gdbarch_byte_order (m_descr->gdbarch), val);
724 cooked_write (regnum, buf);
725 }
726
727 void
728 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
729 ULONGEST val)
730 {
731 gdb_assert (regcache != NULL);
732 regcache->cooked_write (regnum, val);
733 }
734
735 void
736 regcache::raw_write (int regnum, const gdb_byte *buf)
737 {
738
739 gdb_assert (buf != NULL);
740 assert_regnum (regnum);
741
742 /* On the sparc, writing %g0 is a no-op, so we don't even want to
743 change the registers array if something writes to this register. */
744 if (gdbarch_cannot_store_register (arch (), regnum))
745 return;
746
747 /* If we have a valid copy of the register, and new value == old
748 value, then don't bother doing the actual store. */
749 if (get_register_status (regnum) == REG_VALID
750 && (memcmp (register_buffer (regnum), buf,
751 m_descr->sizeof_register[regnum]) == 0))
752 return;
753
754 target_prepare_to_store (this);
755 raw_supply (regnum, buf);
756
757 /* Invalidate the register after it is written, in case of a
758 failure. */
759 regcache_invalidator invalidator (this, regnum);
760
761 target_store_registers (this, regnum);
762
763 /* The target did not throw an error so we can discard invalidating
764 the register. */
765 invalidator.release ();
766 }
767
768 void
769 regcache::cooked_write (int regnum, const gdb_byte *buf)
770 {
771 gdb_assert (regnum >= 0);
772 gdb_assert (regnum < m_descr->nr_cooked_registers);
773 if (regnum < num_raw_registers ())
774 raw_write (regnum, buf);
775 else
776 gdbarch_pseudo_register_write (m_descr->gdbarch, this,
777 regnum, buf);
778 }
779
780 /* Perform a partial register transfer using a read, modify, write
781 operation. */
782
783 enum register_status
784 readable_regcache::read_part (int regnum, int offset, int len, void *in,
785 bool is_raw)
786 {
787 struct gdbarch *gdbarch = arch ();
788 gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
789
790 gdb_assert (in != NULL);
791 gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]);
792 gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]);
793 /* Something to do? */
794 if (offset + len == 0)
795 return REG_VALID;
796 /* Read (when needed) ... */
797 enum register_status status;
798
799 if (is_raw)
800 status = raw_read (regnum, reg);
801 else
802 status = cooked_read (regnum, reg);
803 if (status != REG_VALID)
804 return status;
805
806 /* ... modify ... */
807 memcpy (in, reg + offset, len);
808
809 return REG_VALID;
810 }
811
812 enum register_status
813 regcache::write_part (int regnum, int offset, int len,
814 const void *out, bool is_raw)
815 {
816 struct gdbarch *gdbarch = arch ();
817 gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
818
819 gdb_assert (out != NULL);
820 gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]);
821 gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]);
822 /* Something to do? */
823 if (offset + len == 0)
824 return REG_VALID;
825 /* Read (when needed) ... */
826 if (offset > 0
827 || offset + len < m_descr->sizeof_register[regnum])
828 {
829 enum register_status status;
830
831 if (is_raw)
832 status = raw_read (regnum, reg);
833 else
834 status = cooked_read (regnum, reg);
835 if (status != REG_VALID)
836 return status;
837 }
838
839 memcpy (reg + offset, out, len);
840 /* ... write (when needed). */
841 if (is_raw)
842 raw_write (regnum, reg);
843 else
844 cooked_write (regnum, reg);
845
846 return REG_VALID;
847 }
848
849 enum register_status
850 readable_regcache::raw_read_part (int regnum, int offset, int len, gdb_byte *buf)
851 {
852 assert_regnum (regnum);
853 return read_part (regnum, offset, len, buf, true);
854 }
855
856 /* See regcache.h. */
857
858 void
859 regcache::raw_write_part (int regnum, int offset, int len,
860 const gdb_byte *buf)
861 {
862 assert_regnum (regnum);
863 write_part (regnum, offset, len, buf, true);
864 }
865
866 enum register_status
867 readable_regcache::cooked_read_part (int regnum, int offset, int len,
868 gdb_byte *buf)
869 {
870 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
871 return read_part (regnum, offset, len, buf, false);
872 }
873
874 void
875 regcache_cooked_write_part (struct regcache *regcache, int regnum,
876 int offset, int len, const gdb_byte *buf)
877 {
878 regcache->cooked_write_part (regnum, offset, len, buf);
879 }
880
881 void
882 regcache::cooked_write_part (int regnum, int offset, int len,
883 const gdb_byte *buf)
884 {
885 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
886 write_part (regnum, offset, len, buf, false);
887 }
888
889 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
890
891 void
892 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
893 {
894 gdb_assert (regcache != NULL);
895 regcache->raw_supply (regnum, buf);
896 }
897
898 void
899 detached_regcache::raw_supply (int regnum, const void *buf)
900 {
901 void *regbuf;
902 size_t size;
903
904 assert_regnum (regnum);
905
906 regbuf = register_buffer (regnum);
907 size = m_descr->sizeof_register[regnum];
908
909 if (buf)
910 {
911 memcpy (regbuf, buf, size);
912 m_register_status[regnum] = REG_VALID;
913 }
914 else
915 {
916 /* This memset not strictly necessary, but better than garbage
917 in case the register value manages to escape somewhere (due
918 to a bug, no less). */
919 memset (regbuf, 0, size);
920 m_register_status[regnum] = REG_UNAVAILABLE;
921 }
922 }
923
924 /* Supply register REGNUM to REGCACHE. Value to supply is an integer stored at
925 address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED. If
926 the register size is greater than ADDR_LEN, then the integer will be sign or
927 zero extended. If the register size is smaller than the integer, then the
928 most significant bytes of the integer will be truncated. */
929
930 void
931 detached_regcache::raw_supply_integer (int regnum, const gdb_byte *addr,
932 int addr_len, bool is_signed)
933 {
934 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
935 gdb_byte *regbuf;
936 size_t regsize;
937
938 assert_regnum (regnum);
939
940 regbuf = register_buffer (regnum);
941 regsize = m_descr->sizeof_register[regnum];
942
943 copy_integer_to_size (regbuf, regsize, addr, addr_len, is_signed,
944 byte_order);
945 m_register_status[regnum] = REG_VALID;
946 }
947
948 /* Supply register REGNUM with zeroed value to REGCACHE. This is not the same
949 as calling raw_supply with NULL (which will set the state to
950 unavailable). */
951
952 void
953 detached_regcache::raw_supply_zeroed (int regnum)
954 {
955 void *regbuf;
956 size_t size;
957
958 assert_regnum (regnum);
959
960 regbuf = register_buffer (regnum);
961 size = m_descr->sizeof_register[regnum];
962
963 memset (regbuf, 0, size);
964 m_register_status[regnum] = REG_VALID;
965 }
966
967 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
968
969 void
970 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
971 {
972 gdb_assert (regcache != NULL && buf != NULL);
973 regcache->raw_collect (regnum, buf);
974 }
975
976 void
977 regcache::raw_collect (int regnum, void *buf) const
978 {
979 const void *regbuf;
980 size_t size;
981
982 gdb_assert (buf != NULL);
983 assert_regnum (regnum);
984
985 regbuf = register_buffer (regnum);
986 size = m_descr->sizeof_register[regnum];
987 memcpy (buf, regbuf, size);
988 }
989
990 /* Transfer a single or all registers belonging to a certain register
991 set to or from a buffer. This is the main worker function for
992 regcache_supply_regset and regcache_collect_regset. */
993
994 /* Collect register REGNUM from REGCACHE. Store collected value as an integer
995 at address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED.
996 If ADDR_LEN is greater than the register size, then the integer will be sign
997 or zero extended. If ADDR_LEN is smaller than the register size, then the
998 most significant bytes of the integer will be truncated. */
999
1000 void
1001 regcache::raw_collect_integer (int regnum, gdb_byte *addr, int addr_len,
1002 bool is_signed) const
1003 {
1004 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
1005 const gdb_byte *regbuf;
1006 size_t regsize;
1007
1008 assert_regnum (regnum);
1009
1010 regbuf = register_buffer (regnum);
1011 regsize = m_descr->sizeof_register[regnum];
1012
1013 copy_integer_to_size (addr, addr_len, regbuf, regsize, is_signed,
1014 byte_order);
1015 }
1016
1017 void
1018 regcache::transfer_regset (const struct regset *regset,
1019 struct regcache *out_regcache,
1020 int regnum, const void *in_buf,
1021 void *out_buf, size_t size) const
1022 {
1023 const struct regcache_map_entry *map;
1024 int offs = 0, count;
1025
1026 for (map = (const struct regcache_map_entry *) regset->regmap;
1027 (count = map->count) != 0;
1028 map++)
1029 {
1030 int regno = map->regno;
1031 int slot_size = map->size;
1032
1033 if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
1034 slot_size = m_descr->sizeof_register[regno];
1035
1036 if (regno == REGCACHE_MAP_SKIP
1037 || (regnum != -1
1038 && (regnum < regno || regnum >= regno + count)))
1039 offs += count * slot_size;
1040
1041 else if (regnum == -1)
1042 for (; count--; regno++, offs += slot_size)
1043 {
1044 if (offs + slot_size > size)
1045 break;
1046
1047 if (out_buf)
1048 raw_collect (regno, (gdb_byte *) out_buf + offs);
1049 else
1050 out_regcache->raw_supply (regno, in_buf
1051 ? (const gdb_byte *) in_buf + offs
1052 : NULL);
1053 }
1054 else
1055 {
1056 /* Transfer a single register and return. */
1057 offs += (regnum - regno) * slot_size;
1058 if (offs + slot_size > size)
1059 return;
1060
1061 if (out_buf)
1062 raw_collect (regnum, (gdb_byte *) out_buf + offs);
1063 else
1064 out_regcache->raw_supply (regnum, in_buf
1065 ? (const gdb_byte *) in_buf + offs
1066 : NULL);
1067 return;
1068 }
1069 }
1070 }
1071
1072 /* Supply register REGNUM from BUF to REGCACHE, using the register map
1073 in REGSET. If REGNUM is -1, do this for all registers in REGSET.
1074 If BUF is NULL, set the register(s) to "unavailable" status. */
1075
1076 void
1077 regcache_supply_regset (const struct regset *regset,
1078 struct regcache *regcache,
1079 int regnum, const void *buf, size_t size)
1080 {
1081 regcache->supply_regset (regset, regnum, buf, size);
1082 }
1083
1084 void
1085 regcache::supply_regset (const struct regset *regset,
1086 int regnum, const void *buf, size_t size)
1087 {
1088 transfer_regset (regset, this, regnum, buf, NULL, size);
1089 }
1090
1091 /* Collect register REGNUM from REGCACHE to BUF, using the register
1092 map in REGSET. If REGNUM is -1, do this for all registers in
1093 REGSET. */
1094
1095 void
1096 regcache_collect_regset (const struct regset *regset,
1097 const struct regcache *regcache,
1098 int regnum, void *buf, size_t size)
1099 {
1100 regcache->collect_regset (regset, regnum, buf, size);
1101 }
1102
1103 void
1104 regcache::collect_regset (const struct regset *regset,
1105 int regnum, void *buf, size_t size) const
1106 {
1107 transfer_regset (regset, NULL, regnum, NULL, buf, size);
1108 }
1109
1110
1111 /* Special handling for register PC. */
1112
1113 CORE_ADDR
1114 regcache_read_pc (struct regcache *regcache)
1115 {
1116 struct gdbarch *gdbarch = regcache->arch ();
1117
1118 CORE_ADDR pc_val;
1119
1120 if (gdbarch_read_pc_p (gdbarch))
1121 pc_val = gdbarch_read_pc (gdbarch, regcache);
1122 /* Else use per-frame method on get_current_frame. */
1123 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1124 {
1125 ULONGEST raw_val;
1126
1127 if (regcache_cooked_read_unsigned (regcache,
1128 gdbarch_pc_regnum (gdbarch),
1129 &raw_val) == REG_UNAVAILABLE)
1130 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1131
1132 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
1133 }
1134 else
1135 internal_error (__FILE__, __LINE__,
1136 _("regcache_read_pc: Unable to find PC"));
1137 return pc_val;
1138 }
1139
1140 void
1141 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
1142 {
1143 struct gdbarch *gdbarch = regcache->arch ();
1144
1145 if (gdbarch_write_pc_p (gdbarch))
1146 gdbarch_write_pc (gdbarch, regcache, pc);
1147 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1148 regcache_cooked_write_unsigned (regcache,
1149 gdbarch_pc_regnum (gdbarch), pc);
1150 else
1151 internal_error (__FILE__, __LINE__,
1152 _("regcache_write_pc: Unable to update PC"));
1153
1154 /* Writing the PC (for instance, from "load") invalidates the
1155 current frame. */
1156 reinit_frame_cache ();
1157 }
1158
1159 int
1160 reg_buffer::num_raw_registers () const
1161 {
1162 return gdbarch_num_regs (arch ());
1163 }
1164
1165 void
1166 regcache::debug_print_register (const char *func, int regno)
1167 {
1168 struct gdbarch *gdbarch = arch ();
1169
1170 fprintf_unfiltered (gdb_stdlog, "%s ", func);
1171 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
1172 && gdbarch_register_name (gdbarch, regno) != NULL
1173 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
1174 fprintf_unfiltered (gdb_stdlog, "(%s)",
1175 gdbarch_register_name (gdbarch, regno));
1176 else
1177 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
1178 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
1179 {
1180 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1181 int size = register_size (gdbarch, regno);
1182 gdb_byte *buf = register_buffer (regno);
1183
1184 fprintf_unfiltered (gdb_stdlog, " = ");
1185 for (int i = 0; i < size; i++)
1186 {
1187 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1188 }
1189 if (size <= sizeof (LONGEST))
1190 {
1191 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
1192
1193 fprintf_unfiltered (gdb_stdlog, " %s %s",
1194 core_addr_to_string_nz (val), plongest (val));
1195 }
1196 }
1197 fprintf_unfiltered (gdb_stdlog, "\n");
1198 }
1199
1200 static void
1201 reg_flush_command (const char *command, int from_tty)
1202 {
1203 /* Force-flush the register cache. */
1204 registers_changed ();
1205 if (from_tty)
1206 printf_filtered (_("Register cache flushed.\n"));
1207 }
1208
1209 void
1210 register_dump::dump (ui_file *file)
1211 {
1212 auto descr = regcache_descr (m_gdbarch);
1213 int regnum;
1214 int footnote_nr = 0;
1215 int footnote_register_offset = 0;
1216 int footnote_register_type_name_null = 0;
1217 long register_offset = 0;
1218
1219 gdb_assert (descr->nr_cooked_registers
1220 == (gdbarch_num_regs (m_gdbarch)
1221 + gdbarch_num_pseudo_regs (m_gdbarch)));
1222
1223 for (regnum = -1; regnum < descr->nr_cooked_registers; regnum++)
1224 {
1225 /* Name. */
1226 if (regnum < 0)
1227 fprintf_unfiltered (file, " %-10s", "Name");
1228 else
1229 {
1230 const char *p = gdbarch_register_name (m_gdbarch, regnum);
1231
1232 if (p == NULL)
1233 p = "";
1234 else if (p[0] == '\0')
1235 p = "''";
1236 fprintf_unfiltered (file, " %-10s", p);
1237 }
1238
1239 /* Number. */
1240 if (regnum < 0)
1241 fprintf_unfiltered (file, " %4s", "Nr");
1242 else
1243 fprintf_unfiltered (file, " %4d", regnum);
1244
1245 /* Relative number. */
1246 if (regnum < 0)
1247 fprintf_unfiltered (file, " %4s", "Rel");
1248 else if (regnum < gdbarch_num_regs (m_gdbarch))
1249 fprintf_unfiltered (file, " %4d", regnum);
1250 else
1251 fprintf_unfiltered (file, " %4d",
1252 (regnum - gdbarch_num_regs (m_gdbarch)));
1253
1254 /* Offset. */
1255 if (regnum < 0)
1256 fprintf_unfiltered (file, " %6s ", "Offset");
1257 else
1258 {
1259 fprintf_unfiltered (file, " %6ld",
1260 descr->register_offset[regnum]);
1261 if (register_offset != descr->register_offset[regnum]
1262 || (regnum > 0
1263 && (descr->register_offset[regnum]
1264 != (descr->register_offset[regnum - 1]
1265 + descr->sizeof_register[regnum - 1])))
1266 )
1267 {
1268 if (!footnote_register_offset)
1269 footnote_register_offset = ++footnote_nr;
1270 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1271 }
1272 else
1273 fprintf_unfiltered (file, " ");
1274 register_offset = (descr->register_offset[regnum]
1275 + descr->sizeof_register[regnum]);
1276 }
1277
1278 /* Size. */
1279 if (regnum < 0)
1280 fprintf_unfiltered (file, " %5s ", "Size");
1281 else
1282 fprintf_unfiltered (file, " %5ld", descr->sizeof_register[regnum]);
1283
1284 /* Type. */
1285 {
1286 const char *t;
1287 std::string name_holder;
1288
1289 if (regnum < 0)
1290 t = "Type";
1291 else
1292 {
1293 static const char blt[] = "builtin_type";
1294
1295 t = TYPE_NAME (register_type (m_gdbarch, regnum));
1296 if (t == NULL)
1297 {
1298 if (!footnote_register_type_name_null)
1299 footnote_register_type_name_null = ++footnote_nr;
1300 name_holder = string_printf ("*%d",
1301 footnote_register_type_name_null);
1302 t = name_holder.c_str ();
1303 }
1304 /* Chop a leading builtin_type. */
1305 if (startswith (t, blt))
1306 t += strlen (blt);
1307 }
1308 fprintf_unfiltered (file, " %-15s", t);
1309 }
1310
1311 /* Leading space always present. */
1312 fprintf_unfiltered (file, " ");
1313
1314 dump_reg (file, regnum);
1315
1316 fprintf_unfiltered (file, "\n");
1317 }
1318
1319 if (footnote_register_offset)
1320 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1321 footnote_register_offset);
1322 if (footnote_register_type_name_null)
1323 fprintf_unfiltered (file,
1324 "*%d: Register type's name NULL.\n",
1325 footnote_register_type_name_null);
1326 }
1327
1328 #if GDB_SELF_TEST
1329 #include "selftest.h"
1330 #include "selftest-arch.h"
1331 #include "gdbthread.h"
1332 #include "target-float.h"
1333
1334 namespace selftests {
1335
1336 class regcache_access : public regcache
1337 {
1338 public:
1339
1340 /* Return the number of elements in current_regcache. */
1341
1342 static size_t
1343 current_regcache_size ()
1344 {
1345 return std::distance (regcache::current_regcache.begin (),
1346 regcache::current_regcache.end ());
1347 }
1348 };
1349
1350 static void
1351 current_regcache_test (void)
1352 {
1353 /* It is empty at the start. */
1354 SELF_CHECK (regcache_access::current_regcache_size () == 0);
1355
1356 ptid_t ptid1 (1), ptid2 (2), ptid3 (3);
1357
1358 /* Get regcache from ptid1, a new regcache is added to
1359 current_regcache. */
1360 regcache *regcache = get_thread_arch_aspace_regcache (ptid1,
1361 target_gdbarch (),
1362 NULL);
1363
1364 SELF_CHECK (regcache != NULL);
1365 SELF_CHECK (regcache->ptid () == ptid1);
1366 SELF_CHECK (regcache_access::current_regcache_size () == 1);
1367
1368 /* Get regcache from ptid2, a new regcache is added to
1369 current_regcache. */
1370 regcache = get_thread_arch_aspace_regcache (ptid2,
1371 target_gdbarch (),
1372 NULL);
1373 SELF_CHECK (regcache != NULL);
1374 SELF_CHECK (regcache->ptid () == ptid2);
1375 SELF_CHECK (regcache_access::current_regcache_size () == 2);
1376
1377 /* Get regcache from ptid3, a new regcache is added to
1378 current_regcache. */
1379 regcache = get_thread_arch_aspace_regcache (ptid3,
1380 target_gdbarch (),
1381 NULL);
1382 SELF_CHECK (regcache != NULL);
1383 SELF_CHECK (regcache->ptid () == ptid3);
1384 SELF_CHECK (regcache_access::current_regcache_size () == 3);
1385
1386 /* Get regcache from ptid2 again, nothing is added to
1387 current_regcache. */
1388 regcache = get_thread_arch_aspace_regcache (ptid2,
1389 target_gdbarch (),
1390 NULL);
1391 SELF_CHECK (regcache != NULL);
1392 SELF_CHECK (regcache->ptid () == ptid2);
1393 SELF_CHECK (regcache_access::current_regcache_size () == 3);
1394
1395 /* Mark ptid2 is changed, so regcache of ptid2 should be removed from
1396 current_regcache. */
1397 registers_changed_ptid (ptid2);
1398 SELF_CHECK (regcache_access::current_regcache_size () == 2);
1399 }
1400
1401 class target_ops_no_register : public test_target_ops
1402 {
1403 public:
1404 target_ops_no_register ()
1405 : test_target_ops {}
1406 {}
1407
1408 void reset ()
1409 {
1410 fetch_registers_called = 0;
1411 store_registers_called = 0;
1412 xfer_partial_called = 0;
1413 }
1414
1415 void fetch_registers (regcache *regs, int regno) override;
1416 void store_registers (regcache *regs, int regno) override;
1417
1418 enum target_xfer_status xfer_partial (enum target_object object,
1419 const char *annex, gdb_byte *readbuf,
1420 const gdb_byte *writebuf,
1421 ULONGEST offset, ULONGEST len,
1422 ULONGEST *xfered_len) override;
1423
1424 unsigned int fetch_registers_called = 0;
1425 unsigned int store_registers_called = 0;
1426 unsigned int xfer_partial_called = 0;
1427 };
1428
1429 void
1430 target_ops_no_register::fetch_registers (regcache *regs, int regno)
1431 {
1432 /* Mark register available. */
1433 regs->raw_supply_zeroed (regno);
1434 this->fetch_registers_called++;
1435 }
1436
1437 void
1438 target_ops_no_register::store_registers (regcache *regs, int regno)
1439 {
1440 this->store_registers_called++;
1441 }
1442
1443 enum target_xfer_status
1444 target_ops_no_register::xfer_partial (enum target_object object,
1445 const char *annex, gdb_byte *readbuf,
1446 const gdb_byte *writebuf,
1447 ULONGEST offset, ULONGEST len,
1448 ULONGEST *xfered_len)
1449 {
1450 this->xfer_partial_called++;
1451
1452 *xfered_len = len;
1453 return TARGET_XFER_OK;
1454 }
1455
1456 class readwrite_regcache : public regcache
1457 {
1458 public:
1459 readwrite_regcache (struct gdbarch *gdbarch)
1460 : regcache (gdbarch, nullptr)
1461 {}
1462 };
1463
1464 /* Test regcache::cooked_read gets registers from raw registers and
1465 memory instead of target to_{fetch,store}_registers. */
1466
1467 static void
1468 cooked_read_test (struct gdbarch *gdbarch)
1469 {
1470 /* Error out if debugging something, because we're going to push the
1471 test target, which would pop any existing target. */
1472 if (target_stack->to_stratum >= process_stratum)
1473 error (_("target already pushed"));
1474
1475 /* Create a mock environment. An inferior with a thread, with a
1476 process_stratum target pushed. */
1477
1478 target_ops_no_register mock_target;
1479 ptid_t mock_ptid (1, 1);
1480 inferior mock_inferior (mock_ptid.pid ());
1481 address_space mock_aspace {};
1482 mock_inferior.gdbarch = gdbarch;
1483 mock_inferior.aspace = &mock_aspace;
1484 thread_info mock_thread (&mock_inferior, mock_ptid);
1485
1486 scoped_restore restore_thread_list
1487 = make_scoped_restore (&thread_list, &mock_thread);
1488
1489 /* Add the mock inferior to the inferior list so that look ups by
1490 target+ptid can find it. */
1491 scoped_restore restore_inferior_list
1492 = make_scoped_restore (&inferior_list);
1493 inferior_list = &mock_inferior;
1494
1495 /* Switch to the mock inferior. */
1496 scoped_restore_current_inferior restore_current_inferior;
1497 set_current_inferior (&mock_inferior);
1498
1499 /* Push the process_stratum target so we can mock accessing
1500 registers. */
1501 push_target (&mock_target);
1502
1503 /* Pop it again on exit (return/exception). */
1504 struct on_exit
1505 {
1506 ~on_exit ()
1507 {
1508 pop_all_targets_at_and_above (process_stratum);
1509 }
1510 } pop_targets;
1511
1512 /* Switch to the mock thread. */
1513 scoped_restore restore_inferior_ptid
1514 = make_scoped_restore (&inferior_ptid, mock_ptid);
1515
1516 /* Test that read one raw register from regcache_no_target will go
1517 to the target layer. */
1518 int regnum;
1519
1520 /* Find a raw register which size isn't zero. */
1521 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1522 {
1523 if (register_size (gdbarch, regnum) != 0)
1524 break;
1525 }
1526
1527 readwrite_regcache readwrite (gdbarch);
1528 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1529
1530 readwrite.raw_read (regnum, buf.data ());
1531
1532 /* raw_read calls target_fetch_registers. */
1533 SELF_CHECK (mock_target.fetch_registers_called > 0);
1534 mock_target.reset ();
1535
1536 /* Mark all raw registers valid, so the following raw registers
1537 accesses won't go to target. */
1538 for (auto i = 0; i < gdbarch_num_regs (gdbarch); i++)
1539 readwrite.raw_update (i);
1540
1541 mock_target.reset ();
1542 /* Then, read all raw and pseudo registers, and don't expect calling
1543 to_{fetch,store}_registers. */
1544 for (int regnum = 0;
1545 regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1546 regnum++)
1547 {
1548 if (register_size (gdbarch, regnum) == 0)
1549 continue;
1550
1551 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1552
1553 SELF_CHECK (REG_VALID == readwrite.cooked_read (regnum, buf.data ()));
1554
1555 SELF_CHECK (mock_target.fetch_registers_called == 0);
1556 SELF_CHECK (mock_target.store_registers_called == 0);
1557
1558 /* Some SPU pseudo registers are got via TARGET_OBJECT_SPU. */
1559 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1560 SELF_CHECK (mock_target.xfer_partial_called == 0);
1561
1562 mock_target.reset ();
1563 }
1564
1565 readonly_detached_regcache readonly (readwrite);
1566
1567 /* GDB may go to target layer to fetch all registers and memory for
1568 readonly regcache. */
1569 mock_target.reset ();
1570
1571 for (int regnum = 0;
1572 regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1573 regnum++)
1574 {
1575 if (register_size (gdbarch, regnum) == 0)
1576 continue;
1577
1578 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1579 enum register_status status = readonly.cooked_read (regnum,
1580 buf.data ());
1581
1582 if (regnum < gdbarch_num_regs (gdbarch))
1583 {
1584 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1585
1586 if (bfd_arch == bfd_arch_frv || bfd_arch == bfd_arch_h8300
1587 || bfd_arch == bfd_arch_m32c || bfd_arch == bfd_arch_sh
1588 || bfd_arch == bfd_arch_alpha || bfd_arch == bfd_arch_v850
1589 || bfd_arch == bfd_arch_msp430 || bfd_arch == bfd_arch_mep
1590 || bfd_arch == bfd_arch_mips || bfd_arch == bfd_arch_v850_rh850
1591 || bfd_arch == bfd_arch_tic6x || bfd_arch == bfd_arch_mn10300
1592 || bfd_arch == bfd_arch_rl78 || bfd_arch == bfd_arch_score
1593 || bfd_arch == bfd_arch_riscv)
1594 {
1595 /* Raw registers. If raw registers are not in save_reggroup,
1596 their status are unknown. */
1597 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1598 SELF_CHECK (status == REG_VALID);
1599 else
1600 SELF_CHECK (status == REG_UNKNOWN);
1601 }
1602 else
1603 SELF_CHECK (status == REG_VALID);
1604 }
1605 else
1606 {
1607 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1608 SELF_CHECK (status == REG_VALID);
1609 else
1610 {
1611 /* If pseudo registers are not in save_reggroup, some of
1612 them can be computed from saved raw registers, but some
1613 of them are unknown. */
1614 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1615
1616 if (bfd_arch == bfd_arch_frv
1617 || bfd_arch == bfd_arch_m32c
1618 || bfd_arch == bfd_arch_mep
1619 || bfd_arch == bfd_arch_sh)
1620 SELF_CHECK (status == REG_VALID || status == REG_UNKNOWN);
1621 else if (bfd_arch == bfd_arch_mips
1622 || bfd_arch == bfd_arch_h8300)
1623 SELF_CHECK (status == REG_UNKNOWN);
1624 else
1625 SELF_CHECK (status == REG_VALID);
1626 }
1627 }
1628
1629 SELF_CHECK (mock_target.fetch_registers_called == 0);
1630 SELF_CHECK (mock_target.store_registers_called == 0);
1631 SELF_CHECK (mock_target.xfer_partial_called == 0);
1632
1633 mock_target.reset ();
1634 }
1635 }
1636
1637 /* Test regcache::cooked_write by writing some expected contents to
1638 registers, and checking that contents read from registers and the
1639 expected contents are the same. */
1640
1641 static void
1642 cooked_write_test (struct gdbarch *gdbarch)
1643 {
1644 /* Error out if debugging something, because we're going to push the
1645 test target, which would pop any existing target. */
1646 if (target_stack->to_stratum >= process_stratum)
1647 error (_("target already pushed"));
1648
1649 /* Create a mock environment. A process_stratum target pushed. */
1650
1651 target_ops_no_register mock_target;
1652
1653 /* Push the process_stratum target so we can mock accessing
1654 registers. */
1655 push_target (&mock_target);
1656
1657 /* Pop it again on exit (return/exception). */
1658 struct on_exit
1659 {
1660 ~on_exit ()
1661 {
1662 pop_all_targets_at_and_above (process_stratum);
1663 }
1664 } pop_targets;
1665
1666 readwrite_regcache readwrite (gdbarch);
1667
1668 const int num_regs = (gdbarch_num_regs (gdbarch)
1669 + gdbarch_num_pseudo_regs (gdbarch));
1670
1671 for (auto regnum = 0; regnum < num_regs; regnum++)
1672 {
1673 if (register_size (gdbarch, regnum) == 0
1674 || gdbarch_cannot_store_register (gdbarch, regnum))
1675 continue;
1676
1677 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1678
1679 if ((bfd_arch == bfd_arch_sparc
1680 /* SPARC64_CWP_REGNUM, SPARC64_PSTATE_REGNUM,
1681 SPARC64_ASI_REGNUM and SPARC64_CCR_REGNUM are hard to test. */
1682 && gdbarch_ptr_bit (gdbarch) == 64
1683 && (regnum >= gdbarch_num_regs (gdbarch)
1684 && regnum <= gdbarch_num_regs (gdbarch) + 4))
1685 || (bfd_arch == bfd_arch_spu
1686 /* SPU pseudo registers except SPU_SP_REGNUM are got by
1687 TARGET_OBJECT_SPU. */
1688 && regnum >= gdbarch_num_regs (gdbarch) && regnum != 130))
1689 continue;
1690
1691 std::vector<gdb_byte> expected (register_size (gdbarch, regnum), 0);
1692 std::vector<gdb_byte> buf (register_size (gdbarch, regnum), 0);
1693 const auto type = register_type (gdbarch, regnum);
1694
1695 if (TYPE_CODE (type) == TYPE_CODE_FLT
1696 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1697 {
1698 /* Generate valid float format. */
1699 target_float_from_string (expected.data (), type, "1.25");
1700 }
1701 else if (TYPE_CODE (type) == TYPE_CODE_INT
1702 || TYPE_CODE (type) == TYPE_CODE_ARRAY
1703 || TYPE_CODE (type) == TYPE_CODE_PTR
1704 || TYPE_CODE (type) == TYPE_CODE_UNION
1705 || TYPE_CODE (type) == TYPE_CODE_STRUCT)
1706 {
1707 if (bfd_arch == bfd_arch_ia64
1708 || (regnum >= gdbarch_num_regs (gdbarch)
1709 && (bfd_arch == bfd_arch_xtensa
1710 || bfd_arch == bfd_arch_bfin
1711 || bfd_arch == bfd_arch_m32c
1712 /* m68hc11 pseudo registers are in memory. */
1713 || bfd_arch == bfd_arch_m68hc11
1714 || bfd_arch == bfd_arch_m68hc12
1715 || bfd_arch == bfd_arch_s390))
1716 || (bfd_arch == bfd_arch_frv
1717 /* FRV pseudo registers except iacc0. */
1718 && regnum > gdbarch_num_regs (gdbarch)))
1719 {
1720 /* Skip setting the expected values for some architecture
1721 registers. */
1722 }
1723 else if (bfd_arch == bfd_arch_rl78 && regnum == 40)
1724 {
1725 /* RL78_PC_REGNUM */
1726 for (auto j = 0; j < register_size (gdbarch, regnum) - 1; j++)
1727 expected[j] = j;
1728 }
1729 else
1730 {
1731 for (auto j = 0; j < register_size (gdbarch, regnum); j++)
1732 expected[j] = j;
1733 }
1734 }
1735 else if (TYPE_CODE (type) == TYPE_CODE_FLAGS)
1736 {
1737 /* No idea how to test flags. */
1738 continue;
1739 }
1740 else
1741 {
1742 /* If we don't know how to create the expected value for the
1743 this type, make it fail. */
1744 SELF_CHECK (0);
1745 }
1746
1747 readwrite.cooked_write (regnum, expected.data ());
1748
1749 SELF_CHECK (readwrite.cooked_read (regnum, buf.data ()) == REG_VALID);
1750 SELF_CHECK (expected == buf);
1751 }
1752 }
1753
1754 } // namespace selftests
1755 #endif /* GDB_SELF_TEST */
1756
1757 void
1758 _initialize_regcache (void)
1759 {
1760 regcache_descr_handle
1761 = gdbarch_data_register_post_init (init_regcache_descr);
1762
1763 gdb::observers::target_changed.attach (regcache_observer_target_changed);
1764 gdb::observers::thread_ptid_changed.attach
1765 (regcache::regcache_thread_ptid_changed);
1766
1767 add_com ("flushregs", class_maintenance, reg_flush_command,
1768 _("Force gdb to flush its register cache (maintainer command)"));
1769
1770 #if GDB_SELF_TEST
1771 selftests::register_test ("current_regcache", selftests::current_regcache_test);
1772
1773 selftests::register_test_foreach_arch ("regcache::cooked_read_test",
1774 selftests::cooked_read_test);
1775 selftests::register_test_foreach_arch ("regcache::cooked_write_test",
1776 selftests::cooked_write_test);
1777 #endif
1778 }
This page took 0.11368 seconds and 5 git commands to generate.