Introduce process_stratum_target
[deliverable/binutils-gdb.git] / gdb / remote-sim.c
1 /* Generic remote debugging interface for simulators.
2
3 Copyright (C) 1993-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6 Steve Chamberlain (sac@cygnus.com).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_bfd.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "value.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include <signal.h>
31 #include <setjmp.h>
32 #include "terminal.h"
33 #include "target.h"
34 #include "process-stratum-target.h"
35 #include "gdbcore.h"
36 #include "gdb/callback.h"
37 #include "gdb/remote-sim.h"
38 #include "command.h"
39 #include "regcache.h"
40 #include "sim-regno.h"
41 #include "arch-utils.h"
42 #include "readline/readline.h"
43 #include "gdbthread.h"
44 #include "common/byte-vector.h"
45
46 /* Prototypes */
47
48 static void init_callbacks (void);
49
50 static void end_callbacks (void);
51
52 static int gdb_os_write_stdout (host_callback *, const char *, int);
53
54 static void gdb_os_flush_stdout (host_callback *);
55
56 static int gdb_os_write_stderr (host_callback *, const char *, int);
57
58 static void gdb_os_flush_stderr (host_callback *);
59
60 static int gdb_os_poll_quit (host_callback *);
61
62 /* printf_filtered is depreciated. */
63 static void gdb_os_printf_filtered (host_callback *, const char *, ...);
64
65 static void gdb_os_vprintf_filtered (host_callback *, const char *, va_list);
66
67 static void gdb_os_evprintf_filtered (host_callback *, const char *, va_list);
68
69 static void gdb_os_error (host_callback *, const char *, ...)
70 ATTRIBUTE_NORETURN;
71
72 void simulator_command (char *args, int from_tty);
73
74 /* Naming convention:
75
76 sim_* are the interface to the simulator (see remote-sim.h).
77 gdbsim_* are stuff which is internal to gdb. */
78
79 static const target_info gdbsim_target_info = {
80 "sim",
81 N_("simulator"),
82 N_("Use the compiled-in simulator.")
83 };
84
85 struct gdbsim_target final
86 : public memory_breakpoint_target<process_stratum_target>
87 {
88 gdbsim_target () = default;
89
90 const target_info &info () const override
91 { return gdbsim_target_info; }
92
93 void close () override;
94
95 void detach (inferior *inf, int) override;
96
97 void resume (ptid_t, int, enum gdb_signal) override;
98 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
99
100 void fetch_registers (struct regcache *, int) override;
101 void store_registers (struct regcache *, int) override;
102 void prepare_to_store (struct regcache *) override;
103
104 enum target_xfer_status xfer_partial (enum target_object object,
105 const char *annex,
106 gdb_byte *readbuf,
107 const gdb_byte *writebuf,
108 ULONGEST offset, ULONGEST len,
109 ULONGEST *xfered_len) override;
110
111 void files_info () override;
112
113 void kill () override;
114
115 void load (const char *, int) override;
116
117 bool can_create_inferior () override { return true; }
118 void create_inferior (const char *, const std::string &,
119 char **, int) override;
120
121 void mourn_inferior () override;
122
123 void interrupt () override;
124
125 bool thread_alive (ptid_t ptid) override;
126
127 const char *pid_to_str (ptid_t) override;
128
129 bool has_all_memory () override;
130 bool has_memory () override;
131
132 bool has_stack () override
133 { return default_child_has_stack (); }
134
135 bool has_registers () override
136 { return default_child_has_registers (); }
137
138 bool has_execution (ptid_t ptid) override
139 { return default_child_has_execution (ptid); }
140 };
141
142 static struct gdbsim_target gdbsim_ops;
143
144 static const struct inferior_data *sim_inferior_data_key;
145
146 /* Simulator-specific, per-inferior state. */
147 struct sim_inferior_data {
148 /* Flag which indicates whether or not the program has been loaded. */
149 int program_loaded;
150
151 /* Simulator descriptor for this inferior. */
152 SIM_DESC gdbsim_desc;
153
154 /* This is the ptid we use for this particular simulator instance. Its
155 value is somewhat arbitrary, as the simulator target don't have a
156 notion of tasks or threads, but we need something non-null to place
157 in inferior_ptid. For simulators which permit multiple instances,
158 we also need a unique identifier to use for each inferior. */
159 ptid_t remote_sim_ptid;
160
161 /* Signal with which to resume. */
162 enum gdb_signal resume_siggnal;
163
164 /* Flag which indicates whether resume should step or not. */
165 int resume_step;
166 };
167
168 /* Flag indicating the "open" status of this module. It's set to 1
169 in gdbsim_open() and 0 in gdbsim_close(). */
170 static int gdbsim_is_open = 0;
171
172 /* Value of the next pid to allocate for an inferior. As indicated
173 elsewhere, its initial value is somewhat arbitrary; it's critical
174 though that it's not zero or negative. */
175 static int next_pid;
176 #define INITIAL_PID 42000
177
178 /* Argument list to pass to sim_open(). It is allocated in gdbsim_open()
179 and deallocated in gdbsim_close(). The lifetime needs to extend beyond
180 the call to gdbsim_open() due to the fact that other sim instances other
181 than the first will be allocated after the gdbsim_open() call. */
182 static char **sim_argv = NULL;
183
184 /* OS-level callback functions for write, flush, etc. */
185 static host_callback gdb_callback;
186 static int callbacks_initialized = 0;
187
188 /* Callback for iterate_over_inferiors. It checks to see if the sim
189 descriptor passed via ARG is the same as that for the inferior
190 designated by INF. Return true if so; false otherwise. */
191
192 static int
193 check_for_duplicate_sim_descriptor (struct inferior *inf, void *arg)
194 {
195 struct sim_inferior_data *sim_data;
196 SIM_DESC new_sim_desc = (SIM_DESC) arg;
197
198 sim_data = ((struct sim_inferior_data *)
199 inferior_data (inf, sim_inferior_data_key));
200
201 return (sim_data != NULL && sim_data->gdbsim_desc == new_sim_desc);
202 }
203
204 /* Flags indicating whether or not a sim instance is needed. One of these
205 flags should be passed to get_sim_inferior_data(). */
206
207 enum {SIM_INSTANCE_NOT_NEEDED = 0, SIM_INSTANCE_NEEDED = 1};
208
209 /* Obtain pointer to per-inferior simulator data, allocating it if necessary.
210 Attempt to open the sim if SIM_INSTANCE_NEEDED is true. */
211
212 static struct sim_inferior_data *
213 get_sim_inferior_data (struct inferior *inf, int sim_instance_needed)
214 {
215 SIM_DESC sim_desc = NULL;
216 struct sim_inferior_data *sim_data
217 = (struct sim_inferior_data *) inferior_data (inf, sim_inferior_data_key);
218
219 /* Try to allocate a new sim instance, if needed. We do this ahead of
220 a potential allocation of a sim_inferior_data struct in order to
221 avoid needlessly allocating that struct in the event that the sim
222 instance allocation fails. */
223 if (sim_instance_needed == SIM_INSTANCE_NEEDED
224 && (sim_data == NULL || sim_data->gdbsim_desc == NULL))
225 {
226 struct inferior *idup;
227 sim_desc = sim_open (SIM_OPEN_DEBUG, &gdb_callback, exec_bfd, sim_argv);
228 if (sim_desc == NULL)
229 error (_("Unable to create simulator instance for inferior %d."),
230 inf->num);
231
232 idup = iterate_over_inferiors (check_for_duplicate_sim_descriptor,
233 sim_desc);
234 if (idup != NULL)
235 {
236 /* We don't close the descriptor due to the fact that it's
237 shared with some other inferior. If we were to close it,
238 that might needlessly muck up the other inferior. Of
239 course, it's possible that the damage has already been
240 done... Note that it *will* ultimately be closed during
241 cleanup of the other inferior. */
242 sim_desc = NULL;
243 error (
244 _("Inferior %d and inferior %d would have identical simulator state.\n"
245 "(This simulator does not support the running of more than one inferior.)"),
246 inf->num, idup->num);
247 }
248 }
249
250 if (sim_data == NULL)
251 {
252 sim_data = XCNEW(struct sim_inferior_data);
253 set_inferior_data (inf, sim_inferior_data_key, sim_data);
254
255 /* Allocate a ptid for this inferior. */
256 sim_data->remote_sim_ptid = ptid_t (next_pid, 0, next_pid);
257 next_pid++;
258
259 /* Initialize the other instance variables. */
260 sim_data->program_loaded = 0;
261 sim_data->gdbsim_desc = sim_desc;
262 sim_data->resume_siggnal = GDB_SIGNAL_0;
263 sim_data->resume_step = 0;
264 }
265 else if (sim_desc)
266 {
267 /* This handles the case where sim_data was allocated prior to
268 needing a sim instance. */
269 sim_data->gdbsim_desc = sim_desc;
270 }
271
272
273 return sim_data;
274 }
275
276 /* Return pointer to per-inferior simulator data using PTID to find the
277 inferior in question. Return NULL when no inferior is found or
278 when ptid has a zero or negative pid component. */
279
280 static struct sim_inferior_data *
281 get_sim_inferior_data_by_ptid (ptid_t ptid, int sim_instance_needed)
282 {
283 struct inferior *inf;
284 int pid = ptid.pid ();
285
286 if (pid <= 0)
287 return NULL;
288
289 inf = find_inferior_pid (pid);
290
291 if (inf)
292 return get_sim_inferior_data (inf, sim_instance_needed);
293 else
294 return NULL;
295 }
296
297 /* Free the per-inferior simulator data. */
298
299 static void
300 sim_inferior_data_cleanup (struct inferior *inf, void *data)
301 {
302 struct sim_inferior_data *sim_data = (struct sim_inferior_data *) data;
303
304 if (sim_data != NULL)
305 {
306 if (sim_data->gdbsim_desc)
307 {
308 sim_close (sim_data->gdbsim_desc, 0);
309 sim_data->gdbsim_desc = NULL;
310 }
311 xfree (sim_data);
312 }
313 }
314
315 static void
316 dump_mem (const gdb_byte *buf, int len)
317 {
318 fputs_unfiltered ("\t", gdb_stdlog);
319
320 if (len == 8 || len == 4)
321 {
322 uint32_t l[2];
323
324 memcpy (l, buf, len);
325 fprintf_unfiltered (gdb_stdlog, "0x%08x", l[0]);
326 if (len == 8)
327 fprintf_unfiltered (gdb_stdlog, " 0x%08x", l[1]);
328 }
329 else
330 {
331 int i;
332
333 for (i = 0; i < len; i++)
334 fprintf_unfiltered (gdb_stdlog, "0x%02x ", buf[i]);
335 }
336
337 fputs_unfiltered ("\n", gdb_stdlog);
338 }
339
340 /* Initialize gdb_callback. */
341
342 static void
343 init_callbacks (void)
344 {
345 if (!callbacks_initialized)
346 {
347 gdb_callback = default_callback;
348 gdb_callback.init (&gdb_callback);
349 gdb_callback.write_stdout = gdb_os_write_stdout;
350 gdb_callback.flush_stdout = gdb_os_flush_stdout;
351 gdb_callback.write_stderr = gdb_os_write_stderr;
352 gdb_callback.flush_stderr = gdb_os_flush_stderr;
353 gdb_callback.printf_filtered = gdb_os_printf_filtered;
354 gdb_callback.vprintf_filtered = gdb_os_vprintf_filtered;
355 gdb_callback.evprintf_filtered = gdb_os_evprintf_filtered;
356 gdb_callback.error = gdb_os_error;
357 gdb_callback.poll_quit = gdb_os_poll_quit;
358 gdb_callback.magic = HOST_CALLBACK_MAGIC;
359 callbacks_initialized = 1;
360 }
361 }
362
363 /* Release callbacks (free resources used by them). */
364
365 static void
366 end_callbacks (void)
367 {
368 if (callbacks_initialized)
369 {
370 gdb_callback.shutdown (&gdb_callback);
371 callbacks_initialized = 0;
372 }
373 }
374
375 /* GDB version of os_write_stdout callback. */
376
377 static int
378 gdb_os_write_stdout (host_callback *p, const char *buf, int len)
379 {
380 ui_file_write (gdb_stdtarg, buf, len);
381 return len;
382 }
383
384 /* GDB version of os_flush_stdout callback. */
385
386 static void
387 gdb_os_flush_stdout (host_callback *p)
388 {
389 gdb_flush (gdb_stdtarg);
390 }
391
392 /* GDB version of os_write_stderr callback. */
393
394 static int
395 gdb_os_write_stderr (host_callback *p, const char *buf, int len)
396 {
397 int i;
398 char b[2];
399
400 for (i = 0; i < len; i++)
401 {
402 b[0] = buf[i];
403 b[1] = 0;
404 fputs_unfiltered (b, gdb_stdtargerr);
405 }
406 return len;
407 }
408
409 /* GDB version of os_flush_stderr callback. */
410
411 static void
412 gdb_os_flush_stderr (host_callback *p)
413 {
414 gdb_flush (gdb_stdtargerr);
415 }
416
417 /* GDB version of printf_filtered callback. */
418
419 static void ATTRIBUTE_PRINTF (2, 3)
420 gdb_os_printf_filtered (host_callback * p, const char *format, ...)
421 {
422 va_list args;
423
424 va_start (args, format);
425 vfprintf_filtered (gdb_stdout, format, args);
426 va_end (args);
427 }
428
429 /* GDB version of error vprintf_filtered. */
430
431 static void ATTRIBUTE_PRINTF (2, 0)
432 gdb_os_vprintf_filtered (host_callback * p, const char *format, va_list ap)
433 {
434 vfprintf_filtered (gdb_stdout, format, ap);
435 }
436
437 /* GDB version of error evprintf_filtered. */
438
439 static void ATTRIBUTE_PRINTF (2, 0)
440 gdb_os_evprintf_filtered (host_callback * p, const char *format, va_list ap)
441 {
442 vfprintf_filtered (gdb_stderr, format, ap);
443 }
444
445 /* GDB version of error callback. */
446
447 static void ATTRIBUTE_PRINTF (2, 3)
448 gdb_os_error (host_callback * p, const char *format, ...)
449 {
450 va_list args;
451
452 va_start (args, format);
453 verror (format, args);
454 va_end (args);
455 }
456
457 int
458 one2one_register_sim_regno (struct gdbarch *gdbarch, int regnum)
459 {
460 /* Only makes sense to supply raw registers. */
461 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
462 return regnum;
463 }
464
465 void
466 gdbsim_target::fetch_registers (struct regcache *regcache, int regno)
467 {
468 struct gdbarch *gdbarch = regcache->arch ();
469 struct inferior *inf = find_inferior_ptid (regcache->ptid ());
470 struct sim_inferior_data *sim_data
471 = get_sim_inferior_data (inf, SIM_INSTANCE_NEEDED);
472
473 if (regno == -1)
474 {
475 for (regno = 0; regno < gdbarch_num_regs (gdbarch); regno++)
476 fetch_registers (regcache, regno);
477 return;
478 }
479
480 switch (gdbarch_register_sim_regno (gdbarch, regno))
481 {
482 case LEGACY_SIM_REGNO_IGNORE:
483 break;
484 case SIM_REGNO_DOES_NOT_EXIST:
485 {
486 /* For moment treat a `does not exist' register the same way
487 as an ``unavailable'' register. */
488 regcache->raw_supply_zeroed (regno);
489 break;
490 }
491
492 default:
493 {
494 static int warn_user = 1;
495 int regsize = register_size (gdbarch, regno);
496 gdb::byte_vector buf (regsize, 0);
497 int nr_bytes;
498
499 gdb_assert (regno >= 0 && regno < gdbarch_num_regs (gdbarch));
500 nr_bytes = sim_fetch_register (sim_data->gdbsim_desc,
501 gdbarch_register_sim_regno
502 (gdbarch, regno),
503 buf.data (), regsize);
504 if (nr_bytes > 0 && nr_bytes != regsize && warn_user)
505 {
506 fprintf_unfiltered (gdb_stderr,
507 "Size of register %s (%d/%d) "
508 "incorrect (%d instead of %d))",
509 gdbarch_register_name (gdbarch, regno),
510 regno,
511 gdbarch_register_sim_regno (gdbarch, regno),
512 nr_bytes, regsize);
513 warn_user = 0;
514 }
515 /* FIXME: cagney/2002-05-27: Should check `nr_bytes == 0'
516 indicating that GDB and the SIM have different ideas about
517 which registers are fetchable. */
518 /* Else if (nr_bytes < 0): an old simulator, that doesn't
519 think to return the register size. Just assume all is ok. */
520 regcache->raw_supply (regno, buf.data ());
521 if (remote_debug)
522 {
523 fprintf_unfiltered (gdb_stdlog,
524 "gdbsim_fetch_register: %d", regno);
525 /* FIXME: We could print something more intelligible. */
526 dump_mem (buf.data (), regsize);
527 }
528 break;
529 }
530 }
531 }
532
533
534 void
535 gdbsim_target::store_registers (struct regcache *regcache, int regno)
536 {
537 struct gdbarch *gdbarch = regcache->arch ();
538 struct inferior *inf = find_inferior_ptid (regcache->ptid ());
539 struct sim_inferior_data *sim_data
540 = get_sim_inferior_data (inf, SIM_INSTANCE_NEEDED);
541
542 if (regno == -1)
543 {
544 for (regno = 0; regno < gdbarch_num_regs (gdbarch); regno++)
545 store_registers (regcache, regno);
546 return;
547 }
548 else if (gdbarch_register_sim_regno (gdbarch, regno) >= 0)
549 {
550 int regsize = register_size (gdbarch, regno);
551 gdb::byte_vector tmp (regsize);
552 int nr_bytes;
553
554 regcache->cooked_read (regno, tmp.data ());
555 nr_bytes = sim_store_register (sim_data->gdbsim_desc,
556 gdbarch_register_sim_regno
557 (gdbarch, regno),
558 tmp.data (), regsize);
559
560 if (nr_bytes > 0 && nr_bytes != regsize)
561 internal_error (__FILE__, __LINE__,
562 _("Register size different to expected"));
563 if (nr_bytes < 0)
564 internal_error (__FILE__, __LINE__,
565 _("Register %d not updated"), regno);
566 if (nr_bytes == 0)
567 warning (_("Register %s not updated"),
568 gdbarch_register_name (gdbarch, regno));
569
570 if (remote_debug)
571 {
572 fprintf_unfiltered (gdb_stdlog, "gdbsim_store_register: %d", regno);
573 /* FIXME: We could print something more intelligible. */
574 dump_mem (tmp.data (), regsize);
575 }
576 }
577 }
578
579 /* Kill the running program. This may involve closing any open files
580 and releasing other resources acquired by the simulated program. */
581
582 void
583 gdbsim_target::kill ()
584 {
585 if (remote_debug)
586 fprintf_unfiltered (gdb_stdlog, "gdbsim_kill\n");
587
588 /* There is no need to `kill' running simulator - the simulator is
589 not running. Mourning it is enough. */
590 target_mourn_inferior (inferior_ptid);
591 }
592
593 /* Load an executable file into the target process. This is expected to
594 not only bring new code into the target process, but also to update
595 GDB's symbol tables to match. */
596
597 void
598 gdbsim_target::load (const char *args, int fromtty)
599 {
600 const char *prog;
601 struct sim_inferior_data *sim_data
602 = get_sim_inferior_data (current_inferior (), SIM_INSTANCE_NEEDED);
603
604 if (args == NULL)
605 error_no_arg (_("program to load"));
606
607 gdb_argv argv (args);
608
609 prog = tilde_expand (argv[0]);
610
611 if (argv[1] != NULL)
612 error (_("GDB sim does not yet support a load offset."));
613
614 if (remote_debug)
615 fprintf_unfiltered (gdb_stdlog, "gdbsim_load: prog \"%s\"\n", prog);
616
617 /* FIXME: We will print two messages on error.
618 Need error to either not print anything if passed NULL or need
619 another routine that doesn't take any arguments. */
620 if (sim_load (sim_data->gdbsim_desc, prog, NULL, fromtty) == SIM_RC_FAIL)
621 error (_("unable to load program"));
622
623 /* FIXME: If a load command should reset the targets registers then
624 a call to sim_create_inferior() should go here. */
625
626 sim_data->program_loaded = 1;
627 }
628
629
630 /* Start an inferior process and set inferior_ptid to its pid.
631 EXEC_FILE is the file to run.
632 ARGS is a string containing the arguments to the program.
633 ENV is the environment vector to pass. Errors reported with error().
634 On VxWorks and various standalone systems, we ignore exec_file. */
635 /* This is called not only when we first attach, but also when the
636 user types "run" after having attached. */
637
638 void
639 gdbsim_target::create_inferior (const char *exec_file,
640 const std::string &allargs,
641 char **env, int from_tty)
642 {
643 struct sim_inferior_data *sim_data
644 = get_sim_inferior_data (current_inferior (), SIM_INSTANCE_NEEDED);
645 int len;
646 char *arg_buf;
647 const char *args = allargs.c_str ();
648
649 if (exec_file == 0 || exec_bfd == 0)
650 warning (_("No executable file specified."));
651 if (!sim_data->program_loaded)
652 warning (_("No program loaded."));
653
654 if (remote_debug)
655 fprintf_unfiltered (gdb_stdlog,
656 "gdbsim_create_inferior: exec_file \"%s\", args \"%s\"\n",
657 (exec_file ? exec_file : "(NULL)"),
658 args);
659
660 if (inferior_ptid == sim_data->remote_sim_ptid)
661 kill ();
662 remove_breakpoints ();
663 init_wait_for_inferior ();
664
665 gdb_argv built_argv;
666 if (exec_file != NULL)
667 {
668 len = strlen (exec_file) + 1 + allargs.size () + 1 + /*slop */ 10;
669 arg_buf = (char *) alloca (len);
670 arg_buf[0] = '\0';
671 strcat (arg_buf, exec_file);
672 strcat (arg_buf, " ");
673 strcat (arg_buf, args);
674 built_argv.reset (arg_buf);
675 }
676
677 if (sim_create_inferior (sim_data->gdbsim_desc, exec_bfd,
678 built_argv.get (), env)
679 != SIM_RC_OK)
680 error (_("Unable to create sim inferior."));
681
682 inferior_ptid = sim_data->remote_sim_ptid;
683 inferior_appeared (current_inferior (), inferior_ptid.pid ());
684 add_thread_silent (inferior_ptid);
685
686 insert_breakpoints (); /* Needed to get correct instruction
687 in cache. */
688
689 clear_proceed_status (0);
690 }
691
692 /* The open routine takes the rest of the parameters from the command,
693 and (if successful) pushes a new target onto the stack.
694 Targets should supply this routine, if only to provide an error message. */
695 /* Called when selecting the simulator. E.g. (gdb) target sim name. */
696
697 static void
698 gdbsim_target_open (const char *args, int from_tty)
699 {
700 int len;
701 char *arg_buf;
702 struct sim_inferior_data *sim_data;
703 const char *sysroot;
704 SIM_DESC gdbsim_desc;
705
706 sysroot = gdb_sysroot;
707 if (is_target_filename (sysroot))
708 sysroot += strlen (TARGET_SYSROOT_PREFIX);
709
710 if (remote_debug)
711 fprintf_unfiltered (gdb_stdlog,
712 "gdbsim_open: args \"%s\"\n", args ? args : "(null)");
713
714 /* Ensure that the sim target is not on the target stack. This is
715 necessary, because if it is on the target stack, the call to
716 push_target below will invoke sim_close(), thus freeing various
717 state (including a sim instance) that we allocate prior to
718 invoking push_target(). We want to delay the push_target()
719 operation until after we complete those operations which could
720 error out. */
721 if (gdbsim_is_open)
722 unpush_target (&gdbsim_ops);
723
724 len = (7 + 1 /* gdbsim */
725 + strlen (" -E little")
726 + strlen (" --architecture=xxxxxxxxxx")
727 + strlen (" --sysroot=") + strlen (sysroot) +
728 + (args ? strlen (args) : 0)
729 + 50) /* slack */ ;
730 arg_buf = (char *) alloca (len);
731 strcpy (arg_buf, "gdbsim"); /* 7 */
732 /* Specify the byte order for the target when it is explicitly
733 specified by the user (not auto detected). */
734 switch (selected_byte_order ())
735 {
736 case BFD_ENDIAN_BIG:
737 strcat (arg_buf, " -E big");
738 break;
739 case BFD_ENDIAN_LITTLE:
740 strcat (arg_buf, " -E little");
741 break;
742 case BFD_ENDIAN_UNKNOWN:
743 break;
744 }
745 /* Specify the architecture of the target when it has been
746 explicitly specified */
747 if (selected_architecture_name () != NULL)
748 {
749 strcat (arg_buf, " --architecture=");
750 strcat (arg_buf, selected_architecture_name ());
751 }
752 /* Pass along gdb's concept of the sysroot. */
753 strcat (arg_buf, " --sysroot=");
754 strcat (arg_buf, sysroot);
755 /* finally, any explicit args */
756 if (args)
757 {
758 strcat (arg_buf, " "); /* 1 */
759 strcat (arg_buf, args);
760 }
761
762 gdb_argv argv (arg_buf);
763 sim_argv = argv.get ();
764
765 init_callbacks ();
766 gdbsim_desc = sim_open (SIM_OPEN_DEBUG, &gdb_callback, exec_bfd, sim_argv);
767
768 if (gdbsim_desc == 0)
769 {
770 sim_argv = NULL;
771 error (_("unable to create simulator instance"));
772 }
773
774 argv.release ();
775
776 /* Reset the pid numberings for this batch of sim instances. */
777 next_pid = INITIAL_PID;
778
779 /* Allocate the inferior data, but do not allocate a sim instance
780 since we've already just done that. */
781 sim_data = get_sim_inferior_data (current_inferior (),
782 SIM_INSTANCE_NOT_NEEDED);
783
784 sim_data->gdbsim_desc = gdbsim_desc;
785
786 push_target (&gdbsim_ops);
787 printf_filtered ("Connected to the simulator.\n");
788
789 /* There's nothing running after "target sim" or "load"; not until
790 "run". */
791 inferior_ptid = null_ptid;
792
793 gdbsim_is_open = 1;
794 }
795
796 /* Callback for iterate_over_inferiors. Called (indirectly) by
797 gdbsim_close(). */
798
799 static int
800 gdbsim_close_inferior (struct inferior *inf, void *arg)
801 {
802 struct sim_inferior_data *sim_data
803 = (struct sim_inferior_data *) inferior_data (inf, sim_inferior_data_key);
804 if (sim_data != NULL)
805 {
806 ptid_t ptid = sim_data->remote_sim_ptid;
807
808 sim_inferior_data_cleanup (inf, sim_data);
809 set_inferior_data (inf, sim_inferior_data_key, NULL);
810
811 /* Having a ptid allocated and stored in remote_sim_ptid does
812 not mean that a corresponding inferior was ever created.
813 Thus we need to verify the existence of an inferior using the
814 pid in question before setting inferior_ptid via
815 switch_to_thread() or mourning the inferior. */
816 if (find_inferior_ptid (ptid) != NULL)
817 {
818 switch_to_thread (ptid);
819 generic_mourn_inferior ();
820 }
821 }
822
823 return 0;
824 }
825
826 /* Close out all files and local state before this target loses control. */
827
828 void
829 gdbsim_target::close ()
830 {
831 if (remote_debug)
832 fprintf_unfiltered (gdb_stdlog, "gdbsim_close\n");
833
834 iterate_over_inferiors (gdbsim_close_inferior, NULL);
835
836 if (sim_argv != NULL)
837 {
838 freeargv (sim_argv);
839 sim_argv = NULL;
840 }
841
842 end_callbacks ();
843
844 gdbsim_is_open = 0;
845 }
846
847 /* Takes a program previously attached to and detaches it.
848 The program may resume execution (some targets do, some don't) and will
849 no longer stop on signals, etc. We better not have left any breakpoints
850 in the program or it'll die when it hits one. FROM_TTY says whether to be
851 verbose or not. */
852 /* Terminate the open connection to the remote debugger.
853 Use this when you want to detach and do something else with your gdb. */
854
855 void
856 gdbsim_target::detach (inferior *inf, int from_tty)
857 {
858 if (remote_debug)
859 fprintf_unfiltered (gdb_stdlog, "gdbsim_detach\n");
860
861 unpush_target (this); /* calls gdbsim_close to do the real work */
862 if (from_tty)
863 printf_filtered ("Ending simulator %s debugging\n", target_shortname);
864 }
865
866 /* Resume execution of the target process. STEP says whether to single-step
867 or to run free; SIGGNAL is the signal value (e.g. SIGINT) to be given
868 to the target, or zero for no signal. */
869
870 struct resume_data
871 {
872 enum gdb_signal siggnal;
873 int step;
874 };
875
876 static int
877 gdbsim_resume_inferior (struct inferior *inf, void *arg)
878 {
879 struct sim_inferior_data *sim_data
880 = get_sim_inferior_data (inf, SIM_INSTANCE_NOT_NEEDED);
881 struct resume_data *rd = (struct resume_data *) arg;
882
883 if (sim_data)
884 {
885 sim_data->resume_siggnal = rd->siggnal;
886 sim_data->resume_step = rd->step;
887
888 if (remote_debug)
889 fprintf_unfiltered (gdb_stdlog,
890 _("gdbsim_resume: pid %d, step %d, signal %d\n"),
891 inf->pid, rd->step, rd->siggnal);
892 }
893
894 /* When called from iterate_over_inferiors, a zero return causes the
895 iteration process to proceed until there are no more inferiors to
896 consider. */
897 return 0;
898 }
899
900 void
901 gdbsim_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
902 {
903 struct resume_data rd;
904 struct sim_inferior_data *sim_data
905 = get_sim_inferior_data_by_ptid (ptid, SIM_INSTANCE_NOT_NEEDED);
906
907 rd.siggnal = siggnal;
908 rd.step = step;
909
910 /* We don't access any sim_data members within this function.
911 What's of interest is whether or not the call to
912 get_sim_inferior_data_by_ptid(), above, is able to obtain a
913 non-NULL pointer. If it managed to obtain a non-NULL pointer, we
914 know we have a single inferior to consider. If it's NULL, we
915 either have multiple inferiors to resume or an error condition. */
916
917 if (sim_data)
918 gdbsim_resume_inferior (find_inferior_ptid (ptid), &rd);
919 else if (ptid == minus_one_ptid)
920 iterate_over_inferiors (gdbsim_resume_inferior, &rd);
921 else
922 error (_("The program is not being run."));
923 }
924
925 /* Notify the simulator of an asynchronous request to interrupt.
926
927 The simulator shall ensure that the interrupt request is eventually
928 delivered to the simulator. If the call is made while the
929 simulator is not running then the interrupt request is processed when
930 the simulator is next resumed.
931
932 For simulators that do not support this operation, just abort. */
933
934 static int
935 gdbsim_interrupt_inferior (struct inferior *inf, void *arg)
936 {
937 struct sim_inferior_data *sim_data
938 = get_sim_inferior_data (inf, SIM_INSTANCE_NEEDED);
939
940 if (sim_data)
941 {
942 if (!sim_stop (sim_data->gdbsim_desc))
943 {
944 quit ();
945 }
946 }
947
948 /* When called from iterate_over_inferiors, a zero return causes the
949 iteration process to proceed until there are no more inferiors to
950 consider. */
951 return 0;
952 }
953
954 void
955 gdbsim_target::interrupt ()
956 {
957 iterate_over_inferiors (gdbsim_interrupt_inferior, NULL);
958 }
959
960 /* GDB version of os_poll_quit callback.
961 Taken from gdb/util.c - should be in a library. */
962
963 static int
964 gdb_os_poll_quit (host_callback *p)
965 {
966 if (deprecated_ui_loop_hook != NULL)
967 deprecated_ui_loop_hook (0);
968
969 if (check_quit_flag ()) /* gdb's idea of quit */
970 return 1;
971 return 0;
972 }
973
974 /* Wait for inferior process to do something. Return pid of child,
975 or -1 in case of error; store status through argument pointer STATUS,
976 just as `wait' would. */
977
978 static void
979 gdbsim_cntrl_c (int signo)
980 {
981 gdbsim_ops.interrupt ();
982 }
983
984 ptid_t
985 gdbsim_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
986 {
987 struct sim_inferior_data *sim_data;
988 static sighandler_t prev_sigint;
989 int sigrc = 0;
990 enum sim_stop reason = sim_running;
991
992 /* This target isn't able to (yet) resume more than one inferior at a time.
993 When ptid is minus_one_ptid, just use the current inferior. If we're
994 given an explicit pid, we'll try to find it and use that instead. */
995 if (ptid == minus_one_ptid)
996 sim_data = get_sim_inferior_data (current_inferior (),
997 SIM_INSTANCE_NEEDED);
998 else
999 {
1000 sim_data = get_sim_inferior_data_by_ptid (ptid, SIM_INSTANCE_NEEDED);
1001 if (sim_data == NULL)
1002 error (_("Unable to wait for pid %d. Inferior not found."),
1003 ptid.pid ());
1004 inferior_ptid = ptid;
1005 }
1006
1007 if (remote_debug)
1008 fprintf_unfiltered (gdb_stdlog, "gdbsim_wait\n");
1009
1010 #if defined (HAVE_SIGACTION) && defined (SA_RESTART)
1011 {
1012 struct sigaction sa, osa;
1013 sa.sa_handler = gdbsim_cntrl_c;
1014 sigemptyset (&sa.sa_mask);
1015 sa.sa_flags = 0;
1016 sigaction (SIGINT, &sa, &osa);
1017 prev_sigint = osa.sa_handler;
1018 }
1019 #else
1020 prev_sigint = signal (SIGINT, gdbsim_cntrl_c);
1021 #endif
1022 sim_resume (sim_data->gdbsim_desc, sim_data->resume_step,
1023 sim_data->resume_siggnal);
1024
1025 signal (SIGINT, prev_sigint);
1026 sim_data->resume_step = 0;
1027
1028 sim_stop_reason (sim_data->gdbsim_desc, &reason, &sigrc);
1029
1030 switch (reason)
1031 {
1032 case sim_exited:
1033 status->kind = TARGET_WAITKIND_EXITED;
1034 status->value.integer = sigrc;
1035 break;
1036 case sim_stopped:
1037 switch (sigrc)
1038 {
1039 case GDB_SIGNAL_ABRT:
1040 quit ();
1041 break;
1042 case GDB_SIGNAL_INT:
1043 case GDB_SIGNAL_TRAP:
1044 default:
1045 status->kind = TARGET_WAITKIND_STOPPED;
1046 status->value.sig = (enum gdb_signal) sigrc;
1047 break;
1048 }
1049 break;
1050 case sim_signalled:
1051 status->kind = TARGET_WAITKIND_SIGNALLED;
1052 status->value.sig = (enum gdb_signal) sigrc;
1053 break;
1054 case sim_running:
1055 case sim_polling:
1056 /* FIXME: Is this correct? */
1057 break;
1058 }
1059
1060 return inferior_ptid;
1061 }
1062
1063 /* Get ready to modify the registers array. On machines which store
1064 individual registers, this doesn't need to do anything. On machines
1065 which store all the registers in one fell swoop, this makes sure
1066 that registers contains all the registers from the program being
1067 debugged. */
1068
1069 void
1070 gdbsim_target::prepare_to_store (struct regcache *regcache)
1071 {
1072 /* Do nothing, since we can store individual regs. */
1073 }
1074
1075 /* Helper for gdbsim_xfer_partial that handles memory transfers.
1076 Arguments are like target_xfer_partial. */
1077
1078 static enum target_xfer_status
1079 gdbsim_xfer_memory (struct target_ops *target,
1080 gdb_byte *readbuf, const gdb_byte *writebuf,
1081 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1082 {
1083 struct sim_inferior_data *sim_data
1084 = get_sim_inferior_data (current_inferior (), SIM_INSTANCE_NOT_NEEDED);
1085 int l;
1086
1087 /* If this target doesn't have memory yet, return 0 causing the
1088 request to be passed to a lower target, hopefully an exec
1089 file. */
1090 if (!target->has_memory ())
1091 return TARGET_XFER_EOF;
1092
1093 if (!sim_data->program_loaded)
1094 error (_("No program loaded."));
1095
1096 /* Note that we obtained the sim_data pointer above using
1097 SIM_INSTANCE_NOT_NEEDED. We do this so that we don't needlessly
1098 allocate a sim instance prior to loading a program. If we
1099 get to this point in the code though, gdbsim_desc should be
1100 non-NULL. (Note that a sim instance is needed in order to load
1101 the program...) */
1102 gdb_assert (sim_data->gdbsim_desc != NULL);
1103
1104 if (remote_debug)
1105 fprintf_unfiltered (gdb_stdlog,
1106 "gdbsim_xfer_memory: readbuf %s, writebuf %s, "
1107 "memaddr %s, len %s\n",
1108 host_address_to_string (readbuf),
1109 host_address_to_string (writebuf),
1110 paddress (target_gdbarch (), memaddr),
1111 pulongest (len));
1112
1113 if (writebuf)
1114 {
1115 if (remote_debug && len > 0)
1116 dump_mem (writebuf, len);
1117 l = sim_write (sim_data->gdbsim_desc, memaddr, writebuf, len);
1118 }
1119 else
1120 {
1121 l = sim_read (sim_data->gdbsim_desc, memaddr, readbuf, len);
1122 if (remote_debug && len > 0)
1123 dump_mem (readbuf, len);
1124 }
1125 if (l > 0)
1126 {
1127 *xfered_len = (ULONGEST) l;
1128 return TARGET_XFER_OK;
1129 }
1130 else if (l == 0)
1131 return TARGET_XFER_EOF;
1132 else
1133 return TARGET_XFER_E_IO;
1134 }
1135
1136 /* Target to_xfer_partial implementation. */
1137
1138 enum target_xfer_status
1139 gdbsim_target::xfer_partial (enum target_object object,
1140 const char *annex, gdb_byte *readbuf,
1141 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
1142 ULONGEST *xfered_len)
1143 {
1144 switch (object)
1145 {
1146 case TARGET_OBJECT_MEMORY:
1147 return gdbsim_xfer_memory (this, readbuf, writebuf, offset, len,
1148 xfered_len);
1149
1150 default:
1151 return TARGET_XFER_E_IO;
1152 }
1153 }
1154
1155 void
1156 gdbsim_target::files_info ()
1157 {
1158 struct sim_inferior_data *sim_data
1159 = get_sim_inferior_data (current_inferior (), SIM_INSTANCE_NEEDED);
1160 const char *file = "nothing";
1161
1162 if (exec_bfd)
1163 file = bfd_get_filename (exec_bfd);
1164
1165 if (remote_debug)
1166 fprintf_unfiltered (gdb_stdlog, "gdbsim_files_info: file \"%s\"\n", file);
1167
1168 if (exec_bfd)
1169 {
1170 fprintf_unfiltered (gdb_stdlog, "\tAttached to %s running program %s\n",
1171 target_shortname, file);
1172 sim_info (sim_data->gdbsim_desc, 0);
1173 }
1174 }
1175
1176 /* Clear the simulator's notion of what the break points are. */
1177
1178 void
1179 gdbsim_target::mourn_inferior ()
1180 {
1181 if (remote_debug)
1182 fprintf_unfiltered (gdb_stdlog, "gdbsim_mourn_inferior:\n");
1183
1184 remove_breakpoints ();
1185 generic_mourn_inferior ();
1186 }
1187
1188 /* Pass the command argument through to the simulator verbatim. The
1189 simulator must do any command interpretation work. */
1190
1191 void
1192 simulator_command (const char *args, int from_tty)
1193 {
1194 struct sim_inferior_data *sim_data;
1195
1196 /* We use inferior_data() instead of get_sim_inferior_data() here in
1197 order to avoid attaching a sim_inferior_data struct to an
1198 inferior unnecessarily. The reason we take such care here is due
1199 to the fact that this function, simulator_command(), may be called
1200 even when the sim target is not active. If we were to use
1201 get_sim_inferior_data() here, it is possible that this call would
1202 be made either prior to gdbsim_open() or after gdbsim_close(),
1203 thus allocating memory that would not be garbage collected until
1204 the ultimate destruction of the associated inferior. */
1205
1206 sim_data = ((struct sim_inferior_data *)
1207 inferior_data (current_inferior (), sim_inferior_data_key));
1208 if (sim_data == NULL || sim_data->gdbsim_desc == NULL)
1209 {
1210
1211 /* PREVIOUSLY: The user may give a command before the simulator
1212 is opened. [...] (??? assuming of course one wishes to
1213 continue to allow commands to be sent to unopened simulators,
1214 which isn't entirely unreasonable). */
1215
1216 /* The simulator is a builtin abstraction of a remote target.
1217 Consistent with that model, access to the simulator, via sim
1218 commands, is restricted to the period when the channel to the
1219 simulator is open. */
1220
1221 error (_("Not connected to the simulator target"));
1222 }
1223
1224 sim_do_command (sim_data->gdbsim_desc, args);
1225
1226 /* Invalidate the register cache, in case the simulator command does
1227 something funny. */
1228 registers_changed ();
1229 }
1230
1231 static void
1232 sim_command_completer (struct cmd_list_element *ignore,
1233 completion_tracker &tracker,
1234 const char *text, const char *word)
1235 {
1236 struct sim_inferior_data *sim_data;
1237
1238 sim_data = ((struct sim_inferior_data *)
1239 inferior_data (current_inferior (), sim_inferior_data_key));
1240 if (sim_data == NULL || sim_data->gdbsim_desc == NULL)
1241 return;
1242
1243 /* sim_complete_command returns a NULL-terminated malloc'ed array of
1244 malloc'ed strings. */
1245 struct sim_completions_deleter
1246 {
1247 void operator() (char **ptr) const
1248 {
1249 for (size_t i = 0; ptr[i] != NULL; i++)
1250 xfree (ptr[i]);
1251 xfree (ptr);
1252 }
1253 };
1254
1255 std::unique_ptr<char *[], sim_completions_deleter> sim_completions
1256 (sim_complete_command (sim_data->gdbsim_desc, text, word));
1257 if (sim_completions == NULL)
1258 return;
1259
1260 /* Count the elements and add completions from tail to head because
1261 below we'll swap elements out of the array in case add_completion
1262 throws and the deleter deletes until it finds a NULL element. */
1263 size_t count = 0;
1264 while (sim_completions[count] != NULL)
1265 count++;
1266
1267 for (size_t i = count; i > 0; i--)
1268 {
1269 gdb::unique_xmalloc_ptr<char> match (sim_completions[i - 1]);
1270 sim_completions[i - 1] = NULL;
1271 tracker.add_completion (std::move (match));
1272 }
1273 }
1274
1275 /* Check to see if a thread is still alive. */
1276
1277 bool
1278 gdbsim_target::thread_alive (ptid_t ptid)
1279 {
1280 struct sim_inferior_data *sim_data
1281 = get_sim_inferior_data_by_ptid (ptid, SIM_INSTANCE_NOT_NEEDED);
1282
1283 if (sim_data == NULL)
1284 return false;
1285
1286 if (ptid == sim_data->remote_sim_ptid)
1287 /* The simulators' task is always alive. */
1288 return true;
1289
1290 return false;
1291 }
1292
1293 /* Convert a thread ID to a string. Returns the string in a static
1294 buffer. */
1295
1296 const char *
1297 gdbsim_target::pid_to_str (ptid_t ptid)
1298 {
1299 return normal_pid_to_str (ptid);
1300 }
1301
1302 /* Simulator memory may be accessed after the program has been loaded. */
1303
1304 bool
1305 gdbsim_target::has_all_memory ()
1306 {
1307 struct sim_inferior_data *sim_data
1308 = get_sim_inferior_data (current_inferior (), SIM_INSTANCE_NOT_NEEDED);
1309
1310 if (!sim_data->program_loaded)
1311 return false;
1312
1313 return true;
1314 }
1315
1316 bool
1317 gdbsim_target::has_memory ()
1318 {
1319 struct sim_inferior_data *sim_data
1320 = get_sim_inferior_data (current_inferior (), SIM_INSTANCE_NOT_NEEDED);
1321
1322 if (!sim_data->program_loaded)
1323 return false;
1324
1325 return true;
1326 }
1327
1328 void
1329 _initialize_remote_sim (void)
1330 {
1331 struct cmd_list_element *c;
1332
1333 add_target (gdbsim_target_info, gdbsim_target_open);
1334
1335 c = add_com ("sim", class_obscure, simulator_command,
1336 _("Send a command to the simulator."));
1337 set_cmd_completer (c, sim_command_completer);
1338
1339 sim_inferior_data_key
1340 = register_inferior_data_with_cleanup (NULL, sim_inferior_data_cleanup);
1341 }
This page took 0.055994 seconds and 5 git commands to generate.