Pass Ctrl-C to the target in target_terminal_inferior
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observer.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73
74 /* Temp hacks for tracepoint encoding migration. */
75 static char *target_buf;
76 static long target_buf_size;
77
78 /* Per-program-space data key. */
79 static const struct program_space_data *remote_pspace_data;
80
81 /* The variable registered as the control variable used by the
82 remote exec-file commands. While the remote exec-file setting is
83 per-program-space, the set/show machinery uses this as the
84 location of the remote exec-file value. */
85 static char *remote_exec_file_var;
86
87 /* The size to align memory write packets, when practical. The protocol
88 does not guarantee any alignment, and gdb will generate short
89 writes and unaligned writes, but even as a best-effort attempt this
90 can improve bulk transfers. For instance, if a write is misaligned
91 relative to the target's data bus, the stub may need to make an extra
92 round trip fetching data from the target. This doesn't make a
93 huge difference, but it's easy to do, so we try to be helpful.
94
95 The alignment chosen is arbitrary; usually data bus width is
96 important here, not the possibly larger cache line size. */
97 enum { REMOTE_ALIGN_WRITES = 16 };
98
99 /* Prototypes for local functions. */
100 static void async_cleanup_sigint_signal_handler (void *dummy);
101 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
102 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
103 int forever, int *is_notif);
104
105 static void async_handle_remote_sigint (int);
106 static void async_handle_remote_sigint_twice (int);
107
108 static void remote_files_info (struct target_ops *ignore);
109
110 static void remote_prepare_to_store (struct target_ops *self,
111 struct regcache *regcache);
112
113 static void remote_open_1 (const char *, int, struct target_ops *,
114 int extended_p);
115
116 static void remote_close (struct target_ops *self);
117
118 struct remote_state;
119
120 static int remote_vkill (int pid, struct remote_state *rs);
121
122 static void remote_kill_k (void);
123
124 static void remote_mourn (struct target_ops *ops);
125
126 static void extended_remote_restart (void);
127
128 static void remote_send (char **buf, long *sizeof_buf_p);
129
130 static int readchar (int timeout);
131
132 static void remote_serial_write (const char *str, int len);
133
134 static void remote_kill (struct target_ops *ops);
135
136 static int remote_can_async_p (struct target_ops *);
137
138 static int remote_is_async_p (struct target_ops *);
139
140 static void remote_async (struct target_ops *ops, int enable);
141
142 static void remote_thread_events (struct target_ops *ops, int enable);
143
144 static void sync_remote_interrupt_twice (int signo);
145
146 static void interrupt_query (void);
147
148 static void set_general_thread (struct ptid ptid);
149 static void set_continue_thread (struct ptid ptid);
150
151 static void get_offsets (void);
152
153 static void skip_frame (void);
154
155 static long read_frame (char **buf_p, long *sizeof_buf);
156
157 static int hexnumlen (ULONGEST num);
158
159 static void init_remote_ops (void);
160
161 static void init_extended_remote_ops (void);
162
163 static void remote_stop (struct target_ops *self, ptid_t);
164
165 static int stubhex (int ch);
166
167 static int hexnumstr (char *, ULONGEST);
168
169 static int hexnumnstr (char *, ULONGEST, int);
170
171 static CORE_ADDR remote_address_masked (CORE_ADDR);
172
173 static void print_packet (const char *);
174
175 static void compare_sections_command (char *, int);
176
177 static void packet_command (char *, int);
178
179 static int stub_unpack_int (char *buff, int fieldlength);
180
181 static ptid_t remote_current_thread (ptid_t oldptid);
182
183 static int putpkt_binary (const char *buf, int cnt);
184
185 static void check_binary_download (CORE_ADDR addr);
186
187 struct packet_config;
188
189 static void show_packet_config_cmd (struct packet_config *config);
190
191 static void show_remote_protocol_packet_cmd (struct ui_file *file,
192 int from_tty,
193 struct cmd_list_element *c,
194 const char *value);
195
196 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
197 static ptid_t read_ptid (char *buf, char **obuf);
198
199 static void remote_set_permissions (struct target_ops *self);
200
201 static int remote_get_trace_status (struct target_ops *self,
202 struct trace_status *ts);
203
204 static int remote_upload_tracepoints (struct target_ops *self,
205 struct uploaded_tp **utpp);
206
207 static int remote_upload_trace_state_variables (struct target_ops *self,
208 struct uploaded_tsv **utsvp);
209
210 static void remote_query_supported (void);
211
212 static void remote_check_symbols (void);
213
214 void _initialize_remote (void);
215
216 struct stop_reply;
217 static void stop_reply_xfree (struct stop_reply *);
218 static void remote_parse_stop_reply (char *, struct stop_reply *);
219 static void push_stop_reply (struct stop_reply *);
220 static void discard_pending_stop_replies_in_queue (struct remote_state *);
221 static int peek_stop_reply (ptid_t ptid);
222
223 struct threads_listing_context;
224 static void remove_new_fork_children (struct threads_listing_context *);
225
226 static void remote_async_inferior_event_handler (gdb_client_data);
227
228 static void remote_terminal_ours (struct target_ops *self);
229
230 static int remote_read_description_p (struct target_ops *target);
231
232 static void remote_console_output (char *msg);
233
234 static int remote_supports_cond_breakpoints (struct target_ops *self);
235
236 static int remote_can_run_breakpoint_commands (struct target_ops *self);
237
238 static void remote_btrace_reset (void);
239
240 static int stop_reply_queue_length (void);
241
242 static void readahead_cache_invalidate (void);
243
244 /* For "remote". */
245
246 static struct cmd_list_element *remote_cmdlist;
247
248 /* For "set remote" and "show remote". */
249
250 static struct cmd_list_element *remote_set_cmdlist;
251 static struct cmd_list_element *remote_show_cmdlist;
252
253 /* Stub vCont actions support.
254
255 Each field is a boolean flag indicating whether the stub reports
256 support for the corresponding action. */
257
258 struct vCont_action_support
259 {
260 /* vCont;t */
261 int t;
262
263 /* vCont;r */
264 int r;
265
266 /* vCont;s */
267 int s;
268
269 /* vCont;S */
270 int S;
271 };
272
273 /* Controls whether GDB is willing to use range stepping. */
274
275 static int use_range_stepping = 1;
276
277 #define OPAQUETHREADBYTES 8
278
279 /* a 64 bit opaque identifier */
280 typedef unsigned char threadref[OPAQUETHREADBYTES];
281
282 /* About this many threadisds fit in a packet. */
283
284 #define MAXTHREADLISTRESULTS 32
285
286 /* Data for the vFile:pread readahead cache. */
287
288 struct readahead_cache
289 {
290 /* The file descriptor for the file that is being cached. -1 if the
291 cache is invalid. */
292 int fd;
293
294 /* The offset into the file that the cache buffer corresponds
295 to. */
296 ULONGEST offset;
297
298 /* The buffer holding the cache contents. */
299 gdb_byte *buf;
300 /* The buffer's size. We try to read as much as fits into a packet
301 at a time. */
302 size_t bufsize;
303
304 /* Cache hit and miss counters. */
305 ULONGEST hit_count;
306 ULONGEST miss_count;
307 };
308
309 /* Description of the remote protocol state for the currently
310 connected target. This is per-target state, and independent of the
311 selected architecture. */
312
313 struct remote_state
314 {
315 /* A buffer to use for incoming packets, and its current size. The
316 buffer is grown dynamically for larger incoming packets.
317 Outgoing packets may also be constructed in this buffer.
318 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
319 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
320 packets. */
321 char *buf;
322 long buf_size;
323
324 /* True if we're going through initial connection setup (finding out
325 about the remote side's threads, relocating symbols, etc.). */
326 int starting_up;
327
328 /* If we negotiated packet size explicitly (and thus can bypass
329 heuristics for the largest packet size that will not overflow
330 a buffer in the stub), this will be set to that packet size.
331 Otherwise zero, meaning to use the guessed size. */
332 long explicit_packet_size;
333
334 /* remote_wait is normally called when the target is running and
335 waits for a stop reply packet. But sometimes we need to call it
336 when the target is already stopped. We can send a "?" packet
337 and have remote_wait read the response. Or, if we already have
338 the response, we can stash it in BUF and tell remote_wait to
339 skip calling getpkt. This flag is set when BUF contains a
340 stop reply packet and the target is not waiting. */
341 int cached_wait_status;
342
343 /* True, if in no ack mode. That is, neither GDB nor the stub will
344 expect acks from each other. The connection is assumed to be
345 reliable. */
346 int noack_mode;
347
348 /* True if we're connected in extended remote mode. */
349 int extended;
350
351 /* True if we resumed the target and we're waiting for the target to
352 stop. In the mean time, we can't start another command/query.
353 The remote server wouldn't be ready to process it, so we'd
354 timeout waiting for a reply that would never come and eventually
355 we'd close the connection. This can happen in asynchronous mode
356 because we allow GDB commands while the target is running. */
357 int waiting_for_stop_reply;
358
359 /* The status of the stub support for the various vCont actions. */
360 struct vCont_action_support supports_vCont;
361
362 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
363 responded to that. */
364 int ctrlc_pending_p;
365
366 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
367 remote_open knows that we don't have a file open when the program
368 starts. */
369 struct serial *remote_desc;
370
371 /* These are the threads which we last sent to the remote system. The
372 TID member will be -1 for all or -2 for not sent yet. */
373 ptid_t general_thread;
374 ptid_t continue_thread;
375
376 /* This is the traceframe which we last selected on the remote system.
377 It will be -1 if no traceframe is selected. */
378 int remote_traceframe_number;
379
380 char *last_pass_packet;
381
382 /* The last QProgramSignals packet sent to the target. We bypass
383 sending a new program signals list down to the target if the new
384 packet is exactly the same as the last we sent. IOW, we only let
385 the target know about program signals list changes. */
386 char *last_program_signals_packet;
387
388 enum gdb_signal last_sent_signal;
389
390 int last_sent_step;
391
392 char *finished_object;
393 char *finished_annex;
394 ULONGEST finished_offset;
395
396 /* Should we try the 'ThreadInfo' query packet?
397
398 This variable (NOT available to the user: auto-detect only!)
399 determines whether GDB will use the new, simpler "ThreadInfo"
400 query or the older, more complex syntax for thread queries.
401 This is an auto-detect variable (set to true at each connect,
402 and set to false when the target fails to recognize it). */
403 int use_threadinfo_query;
404 int use_threadextra_query;
405
406 threadref echo_nextthread;
407 threadref nextthread;
408 threadref resultthreadlist[MAXTHREADLISTRESULTS];
409
410 /* The state of remote notification. */
411 struct remote_notif_state *notif_state;
412
413 /* The branch trace configuration. */
414 struct btrace_config btrace_config;
415
416 /* The argument to the last "vFile:setfs:" packet we sent, used
417 to avoid sending repeated unnecessary "vFile:setfs:" packets.
418 Initialized to -1 to indicate that no "vFile:setfs:" packet
419 has yet been sent. */
420 int fs_pid;
421
422 /* A readahead cache for vFile:pread. Often, reading a binary
423 involves a sequence of small reads. E.g., when parsing an ELF
424 file. A readahead cache helps mostly the case of remote
425 debugging on a connection with higher latency, due to the
426 request/reply nature of the RSP. We only cache data for a single
427 file descriptor at a time. */
428 struct readahead_cache readahead_cache;
429 };
430
431 /* Private data that we'll store in (struct thread_info)->private. */
432 struct private_thread_info
433 {
434 char *extra;
435 char *name;
436 int core;
437
438 /* Whether the target stopped for a breakpoint/watchpoint. */
439 enum target_stop_reason stop_reason;
440
441 /* This is set to the data address of the access causing the target
442 to stop for a watchpoint. */
443 CORE_ADDR watch_data_address;
444 };
445
446 static void
447 free_private_thread_info (struct private_thread_info *info)
448 {
449 xfree (info->extra);
450 xfree (info->name);
451 xfree (info);
452 }
453
454 /* This data could be associated with a target, but we do not always
455 have access to the current target when we need it, so for now it is
456 static. This will be fine for as long as only one target is in use
457 at a time. */
458 static struct remote_state *remote_state;
459
460 static struct remote_state *
461 get_remote_state_raw (void)
462 {
463 return remote_state;
464 }
465
466 /* Allocate a new struct remote_state with xmalloc, initialize it, and
467 return it. */
468
469 static struct remote_state *
470 new_remote_state (void)
471 {
472 struct remote_state *result = XCNEW (struct remote_state);
473
474 /* The default buffer size is unimportant; it will be expanded
475 whenever a larger buffer is needed. */
476 result->buf_size = 400;
477 result->buf = (char *) xmalloc (result->buf_size);
478 result->remote_traceframe_number = -1;
479 result->last_sent_signal = GDB_SIGNAL_0;
480 result->fs_pid = -1;
481
482 return result;
483 }
484
485 /* Description of the remote protocol for a given architecture. */
486
487 struct packet_reg
488 {
489 long offset; /* Offset into G packet. */
490 long regnum; /* GDB's internal register number. */
491 LONGEST pnum; /* Remote protocol register number. */
492 int in_g_packet; /* Always part of G packet. */
493 /* long size in bytes; == register_size (target_gdbarch (), regnum);
494 at present. */
495 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
496 at present. */
497 };
498
499 struct remote_arch_state
500 {
501 /* Description of the remote protocol registers. */
502 long sizeof_g_packet;
503
504 /* Description of the remote protocol registers indexed by REGNUM
505 (making an array gdbarch_num_regs in size). */
506 struct packet_reg *regs;
507
508 /* This is the size (in chars) of the first response to the ``g''
509 packet. It is used as a heuristic when determining the maximum
510 size of memory-read and memory-write packets. A target will
511 typically only reserve a buffer large enough to hold the ``g''
512 packet. The size does not include packet overhead (headers and
513 trailers). */
514 long actual_register_packet_size;
515
516 /* This is the maximum size (in chars) of a non read/write packet.
517 It is also used as a cap on the size of read/write packets. */
518 long remote_packet_size;
519 };
520
521 /* Utility: generate error from an incoming stub packet. */
522 static void
523 trace_error (char *buf)
524 {
525 if (*buf++ != 'E')
526 return; /* not an error msg */
527 switch (*buf)
528 {
529 case '1': /* malformed packet error */
530 if (*++buf == '0') /* general case: */
531 error (_("remote.c: error in outgoing packet."));
532 else
533 error (_("remote.c: error in outgoing packet at field #%ld."),
534 strtol (buf, NULL, 16));
535 default:
536 error (_("Target returns error code '%s'."), buf);
537 }
538 }
539
540 /* Utility: wait for reply from stub, while accepting "O" packets. */
541 static char *
542 remote_get_noisy_reply (char **buf_p,
543 long *sizeof_buf)
544 {
545 do /* Loop on reply from remote stub. */
546 {
547 char *buf;
548
549 QUIT; /* Allow user to bail out with ^C. */
550 getpkt (buf_p, sizeof_buf, 0);
551 buf = *buf_p;
552 if (buf[0] == 'E')
553 trace_error (buf);
554 else if (startswith (buf, "qRelocInsn:"))
555 {
556 ULONGEST ul;
557 CORE_ADDR from, to, org_to;
558 char *p, *pp;
559 int adjusted_size = 0;
560 int relocated = 0;
561
562 p = buf + strlen ("qRelocInsn:");
563 pp = unpack_varlen_hex (p, &ul);
564 if (*pp != ';')
565 error (_("invalid qRelocInsn packet: %s"), buf);
566 from = ul;
567
568 p = pp + 1;
569 unpack_varlen_hex (p, &ul);
570 to = ul;
571
572 org_to = to;
573
574 TRY
575 {
576 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
577 relocated = 1;
578 }
579 CATCH (ex, RETURN_MASK_ALL)
580 {
581 if (ex.error == MEMORY_ERROR)
582 {
583 /* Propagate memory errors silently back to the
584 target. The stub may have limited the range of
585 addresses we can write to, for example. */
586 }
587 else
588 {
589 /* Something unexpectedly bad happened. Be verbose
590 so we can tell what, and propagate the error back
591 to the stub, so it doesn't get stuck waiting for
592 a response. */
593 exception_fprintf (gdb_stderr, ex,
594 _("warning: relocating instruction: "));
595 }
596 putpkt ("E01");
597 }
598 END_CATCH
599
600 if (relocated)
601 {
602 adjusted_size = to - org_to;
603
604 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
605 putpkt (buf);
606 }
607 }
608 else if (buf[0] == 'O' && buf[1] != 'K')
609 remote_console_output (buf + 1); /* 'O' message from stub */
610 else
611 return buf; /* Here's the actual reply. */
612 }
613 while (1);
614 }
615
616 /* Handle for retreving the remote protocol data from gdbarch. */
617 static struct gdbarch_data *remote_gdbarch_data_handle;
618
619 static struct remote_arch_state *
620 get_remote_arch_state (void)
621 {
622 gdb_assert (target_gdbarch () != NULL);
623 return ((struct remote_arch_state *)
624 gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle));
625 }
626
627 /* Fetch the global remote target state. */
628
629 static struct remote_state *
630 get_remote_state (void)
631 {
632 /* Make sure that the remote architecture state has been
633 initialized, because doing so might reallocate rs->buf. Any
634 function which calls getpkt also needs to be mindful of changes
635 to rs->buf, but this call limits the number of places which run
636 into trouble. */
637 get_remote_arch_state ();
638
639 return get_remote_state_raw ();
640 }
641
642 /* Cleanup routine for the remote module's pspace data. */
643
644 static void
645 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
646 {
647 char *remote_exec_file = (char *) arg;
648
649 xfree (remote_exec_file);
650 }
651
652 /* Fetch the remote exec-file from the current program space. */
653
654 static const char *
655 get_remote_exec_file (void)
656 {
657 char *remote_exec_file;
658
659 remote_exec_file
660 = (char *) program_space_data (current_program_space,
661 remote_pspace_data);
662 if (remote_exec_file == NULL)
663 return "";
664
665 return remote_exec_file;
666 }
667
668 /* Set the remote exec file for PSPACE. */
669
670 static void
671 set_pspace_remote_exec_file (struct program_space *pspace,
672 char *remote_exec_file)
673 {
674 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
675
676 xfree (old_file);
677 set_program_space_data (pspace, remote_pspace_data,
678 xstrdup (remote_exec_file));
679 }
680
681 /* The "set/show remote exec-file" set command hook. */
682
683 static void
684 set_remote_exec_file (char *ignored, int from_tty,
685 struct cmd_list_element *c)
686 {
687 gdb_assert (remote_exec_file_var != NULL);
688 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
689 }
690
691 /* The "set/show remote exec-file" show command hook. */
692
693 static void
694 show_remote_exec_file (struct ui_file *file, int from_tty,
695 struct cmd_list_element *cmd, const char *value)
696 {
697 fprintf_filtered (file, "%s\n", remote_exec_file_var);
698 }
699
700 static int
701 compare_pnums (const void *lhs_, const void *rhs_)
702 {
703 const struct packet_reg * const *lhs
704 = (const struct packet_reg * const *) lhs_;
705 const struct packet_reg * const *rhs
706 = (const struct packet_reg * const *) rhs_;
707
708 if ((*lhs)->pnum < (*rhs)->pnum)
709 return -1;
710 else if ((*lhs)->pnum == (*rhs)->pnum)
711 return 0;
712 else
713 return 1;
714 }
715
716 static int
717 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
718 {
719 int regnum, num_remote_regs, offset;
720 struct packet_reg **remote_regs;
721
722 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
723 {
724 struct packet_reg *r = &regs[regnum];
725
726 if (register_size (gdbarch, regnum) == 0)
727 /* Do not try to fetch zero-sized (placeholder) registers. */
728 r->pnum = -1;
729 else
730 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
731
732 r->regnum = regnum;
733 }
734
735 /* Define the g/G packet format as the contents of each register
736 with a remote protocol number, in order of ascending protocol
737 number. */
738
739 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
740 for (num_remote_regs = 0, regnum = 0;
741 regnum < gdbarch_num_regs (gdbarch);
742 regnum++)
743 if (regs[regnum].pnum != -1)
744 remote_regs[num_remote_regs++] = &regs[regnum];
745
746 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
747 compare_pnums);
748
749 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
750 {
751 remote_regs[regnum]->in_g_packet = 1;
752 remote_regs[regnum]->offset = offset;
753 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
754 }
755
756 return offset;
757 }
758
759 /* Given the architecture described by GDBARCH, return the remote
760 protocol register's number and the register's offset in the g/G
761 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
762 If the target does not have a mapping for REGNUM, return false,
763 otherwise, return true. */
764
765 int
766 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
767 int *pnum, int *poffset)
768 {
769 struct packet_reg *regs;
770 struct cleanup *old_chain;
771
772 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
773
774 regs = XCNEWVEC (struct packet_reg, gdbarch_num_regs (gdbarch));
775 old_chain = make_cleanup (xfree, regs);
776
777 map_regcache_remote_table (gdbarch, regs);
778
779 *pnum = regs[regnum].pnum;
780 *poffset = regs[regnum].offset;
781
782 do_cleanups (old_chain);
783
784 return *pnum != -1;
785 }
786
787 static void *
788 init_remote_state (struct gdbarch *gdbarch)
789 {
790 struct remote_state *rs = get_remote_state_raw ();
791 struct remote_arch_state *rsa;
792
793 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
794
795 /* Use the architecture to build a regnum<->pnum table, which will be
796 1:1 unless a feature set specifies otherwise. */
797 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
798 gdbarch_num_regs (gdbarch),
799 struct packet_reg);
800
801 /* Record the maximum possible size of the g packet - it may turn out
802 to be smaller. */
803 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
804
805 /* Default maximum number of characters in a packet body. Many
806 remote stubs have a hardwired buffer size of 400 bytes
807 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
808 as the maximum packet-size to ensure that the packet and an extra
809 NUL character can always fit in the buffer. This stops GDB
810 trashing stubs that try to squeeze an extra NUL into what is
811 already a full buffer (As of 1999-12-04 that was most stubs). */
812 rsa->remote_packet_size = 400 - 1;
813
814 /* This one is filled in when a ``g'' packet is received. */
815 rsa->actual_register_packet_size = 0;
816
817 /* Should rsa->sizeof_g_packet needs more space than the
818 default, adjust the size accordingly. Remember that each byte is
819 encoded as two characters. 32 is the overhead for the packet
820 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
821 (``$NN:G...#NN'') is a better guess, the below has been padded a
822 little. */
823 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
824 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
825
826 /* Make sure that the packet buffer is plenty big enough for
827 this architecture. */
828 if (rs->buf_size < rsa->remote_packet_size)
829 {
830 rs->buf_size = 2 * rsa->remote_packet_size;
831 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
832 }
833
834 return rsa;
835 }
836
837 /* Return the current allowed size of a remote packet. This is
838 inferred from the current architecture, and should be used to
839 limit the length of outgoing packets. */
840 static long
841 get_remote_packet_size (void)
842 {
843 struct remote_state *rs = get_remote_state ();
844 struct remote_arch_state *rsa = get_remote_arch_state ();
845
846 if (rs->explicit_packet_size)
847 return rs->explicit_packet_size;
848
849 return rsa->remote_packet_size;
850 }
851
852 static struct packet_reg *
853 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
854 {
855 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ()))
856 return NULL;
857 else
858 {
859 struct packet_reg *r = &rsa->regs[regnum];
860
861 gdb_assert (r->regnum == regnum);
862 return r;
863 }
864 }
865
866 static struct packet_reg *
867 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
868 {
869 int i;
870
871 for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++)
872 {
873 struct packet_reg *r = &rsa->regs[i];
874
875 if (r->pnum == pnum)
876 return r;
877 }
878 return NULL;
879 }
880
881 static struct target_ops remote_ops;
882
883 static struct target_ops extended_remote_ops;
884
885 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
886 ``forever'' still use the normal timeout mechanism. This is
887 currently used by the ASYNC code to guarentee that target reads
888 during the initial connect always time-out. Once getpkt has been
889 modified to return a timeout indication and, in turn
890 remote_wait()/wait_for_inferior() have gained a timeout parameter
891 this can go away. */
892 static int wait_forever_enabled_p = 1;
893
894 /* Allow the user to specify what sequence to send to the remote
895 when he requests a program interruption: Although ^C is usually
896 what remote systems expect (this is the default, here), it is
897 sometimes preferable to send a break. On other systems such
898 as the Linux kernel, a break followed by g, which is Magic SysRq g
899 is required in order to interrupt the execution. */
900 const char interrupt_sequence_control_c[] = "Ctrl-C";
901 const char interrupt_sequence_break[] = "BREAK";
902 const char interrupt_sequence_break_g[] = "BREAK-g";
903 static const char *const interrupt_sequence_modes[] =
904 {
905 interrupt_sequence_control_c,
906 interrupt_sequence_break,
907 interrupt_sequence_break_g,
908 NULL
909 };
910 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
911
912 static void
913 show_interrupt_sequence (struct ui_file *file, int from_tty,
914 struct cmd_list_element *c,
915 const char *value)
916 {
917 if (interrupt_sequence_mode == interrupt_sequence_control_c)
918 fprintf_filtered (file,
919 _("Send the ASCII ETX character (Ctrl-c) "
920 "to the remote target to interrupt the "
921 "execution of the program.\n"));
922 else if (interrupt_sequence_mode == interrupt_sequence_break)
923 fprintf_filtered (file,
924 _("send a break signal to the remote target "
925 "to interrupt the execution of the program.\n"));
926 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
927 fprintf_filtered (file,
928 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
929 "the remote target to interrupt the execution "
930 "of Linux kernel.\n"));
931 else
932 internal_error (__FILE__, __LINE__,
933 _("Invalid value for interrupt_sequence_mode: %s."),
934 interrupt_sequence_mode);
935 }
936
937 /* This boolean variable specifies whether interrupt_sequence is sent
938 to the remote target when gdb connects to it.
939 This is mostly needed when you debug the Linux kernel: The Linux kernel
940 expects BREAK g which is Magic SysRq g for connecting gdb. */
941 static int interrupt_on_connect = 0;
942
943 /* This variable is used to implement the "set/show remotebreak" commands.
944 Since these commands are now deprecated in favor of "set/show remote
945 interrupt-sequence", it no longer has any effect on the code. */
946 static int remote_break;
947
948 static void
949 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
950 {
951 if (remote_break)
952 interrupt_sequence_mode = interrupt_sequence_break;
953 else
954 interrupt_sequence_mode = interrupt_sequence_control_c;
955 }
956
957 static void
958 show_remotebreak (struct ui_file *file, int from_tty,
959 struct cmd_list_element *c,
960 const char *value)
961 {
962 }
963
964 /* This variable sets the number of bits in an address that are to be
965 sent in a memory ("M" or "m") packet. Normally, after stripping
966 leading zeros, the entire address would be sent. This variable
967 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
968 initial implementation of remote.c restricted the address sent in
969 memory packets to ``host::sizeof long'' bytes - (typically 32
970 bits). Consequently, for 64 bit targets, the upper 32 bits of an
971 address was never sent. Since fixing this bug may cause a break in
972 some remote targets this variable is principly provided to
973 facilitate backward compatibility. */
974
975 static unsigned int remote_address_size;
976
977 /* Temporary to track who currently owns the terminal. See
978 remote_terminal_* for more details. */
979
980 static int remote_async_terminal_ours_p;
981
982 \f
983 /* User configurable variables for the number of characters in a
984 memory read/write packet. MIN (rsa->remote_packet_size,
985 rsa->sizeof_g_packet) is the default. Some targets need smaller
986 values (fifo overruns, et.al.) and some users need larger values
987 (speed up transfers). The variables ``preferred_*'' (the user
988 request), ``current_*'' (what was actually set) and ``forced_*''
989 (Positive - a soft limit, negative - a hard limit). */
990
991 struct memory_packet_config
992 {
993 char *name;
994 long size;
995 int fixed_p;
996 };
997
998 /* The default max memory-write-packet-size. The 16k is historical.
999 (It came from older GDB's using alloca for buffers and the
1000 knowledge (folklore?) that some hosts don't cope very well with
1001 large alloca calls.) */
1002 #define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1003
1004 /* The minimum remote packet size for memory transfers. Ensures we
1005 can write at least one byte. */
1006 #define MIN_MEMORY_PACKET_SIZE 20
1007
1008 /* Compute the current size of a read/write packet. Since this makes
1009 use of ``actual_register_packet_size'' the computation is dynamic. */
1010
1011 static long
1012 get_memory_packet_size (struct memory_packet_config *config)
1013 {
1014 struct remote_state *rs = get_remote_state ();
1015 struct remote_arch_state *rsa = get_remote_arch_state ();
1016
1017 long what_they_get;
1018 if (config->fixed_p)
1019 {
1020 if (config->size <= 0)
1021 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1022 else
1023 what_they_get = config->size;
1024 }
1025 else
1026 {
1027 what_they_get = get_remote_packet_size ();
1028 /* Limit the packet to the size specified by the user. */
1029 if (config->size > 0
1030 && what_they_get > config->size)
1031 what_they_get = config->size;
1032
1033 /* Limit it to the size of the targets ``g'' response unless we have
1034 permission from the stub to use a larger packet size. */
1035 if (rs->explicit_packet_size == 0
1036 && rsa->actual_register_packet_size > 0
1037 && what_they_get > rsa->actual_register_packet_size)
1038 what_they_get = rsa->actual_register_packet_size;
1039 }
1040 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1041 what_they_get = MIN_MEMORY_PACKET_SIZE;
1042
1043 /* Make sure there is room in the global buffer for this packet
1044 (including its trailing NUL byte). */
1045 if (rs->buf_size < what_they_get + 1)
1046 {
1047 rs->buf_size = 2 * what_they_get;
1048 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1049 }
1050
1051 return what_they_get;
1052 }
1053
1054 /* Update the size of a read/write packet. If they user wants
1055 something really big then do a sanity check. */
1056
1057 static void
1058 set_memory_packet_size (char *args, struct memory_packet_config *config)
1059 {
1060 int fixed_p = config->fixed_p;
1061 long size = config->size;
1062
1063 if (args == NULL)
1064 error (_("Argument required (integer, `fixed' or `limited')."));
1065 else if (strcmp (args, "hard") == 0
1066 || strcmp (args, "fixed") == 0)
1067 fixed_p = 1;
1068 else if (strcmp (args, "soft") == 0
1069 || strcmp (args, "limit") == 0)
1070 fixed_p = 0;
1071 else
1072 {
1073 char *end;
1074
1075 size = strtoul (args, &end, 0);
1076 if (args == end)
1077 error (_("Invalid %s (bad syntax)."), config->name);
1078
1079 /* Instead of explicitly capping the size of a packet to or
1080 disallowing it, the user is allowed to set the size to
1081 something arbitrarily large. */
1082 }
1083
1084 /* So that the query shows the correct value. */
1085 if (size <= 0)
1086 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1087
1088 /* Extra checks? */
1089 if (fixed_p && !config->fixed_p)
1090 {
1091 if (! query (_("The target may not be able to correctly handle a %s\n"
1092 "of %ld bytes. Change the packet size? "),
1093 config->name, size))
1094 error (_("Packet size not changed."));
1095 }
1096 /* Update the config. */
1097 config->fixed_p = fixed_p;
1098 config->size = size;
1099 }
1100
1101 static void
1102 show_memory_packet_size (struct memory_packet_config *config)
1103 {
1104 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1105 if (config->fixed_p)
1106 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1107 get_memory_packet_size (config));
1108 else
1109 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1110 get_memory_packet_size (config));
1111 }
1112
1113 static struct memory_packet_config memory_write_packet_config =
1114 {
1115 "memory-write-packet-size",
1116 };
1117
1118 static void
1119 set_memory_write_packet_size (char *args, int from_tty)
1120 {
1121 set_memory_packet_size (args, &memory_write_packet_config);
1122 }
1123
1124 static void
1125 show_memory_write_packet_size (char *args, int from_tty)
1126 {
1127 show_memory_packet_size (&memory_write_packet_config);
1128 }
1129
1130 static long
1131 get_memory_write_packet_size (void)
1132 {
1133 return get_memory_packet_size (&memory_write_packet_config);
1134 }
1135
1136 static struct memory_packet_config memory_read_packet_config =
1137 {
1138 "memory-read-packet-size",
1139 };
1140
1141 static void
1142 set_memory_read_packet_size (char *args, int from_tty)
1143 {
1144 set_memory_packet_size (args, &memory_read_packet_config);
1145 }
1146
1147 static void
1148 show_memory_read_packet_size (char *args, int from_tty)
1149 {
1150 show_memory_packet_size (&memory_read_packet_config);
1151 }
1152
1153 static long
1154 get_memory_read_packet_size (void)
1155 {
1156 long size = get_memory_packet_size (&memory_read_packet_config);
1157
1158 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1159 extra buffer size argument before the memory read size can be
1160 increased beyond this. */
1161 if (size > get_remote_packet_size ())
1162 size = get_remote_packet_size ();
1163 return size;
1164 }
1165
1166 \f
1167 /* Generic configuration support for packets the stub optionally
1168 supports. Allows the user to specify the use of the packet as well
1169 as allowing GDB to auto-detect support in the remote stub. */
1170
1171 enum packet_support
1172 {
1173 PACKET_SUPPORT_UNKNOWN = 0,
1174 PACKET_ENABLE,
1175 PACKET_DISABLE
1176 };
1177
1178 struct packet_config
1179 {
1180 const char *name;
1181 const char *title;
1182
1183 /* If auto, GDB auto-detects support for this packet or feature,
1184 either through qSupported, or by trying the packet and looking
1185 at the response. If true, GDB assumes the target supports this
1186 packet. If false, the packet is disabled. Configs that don't
1187 have an associated command always have this set to auto. */
1188 enum auto_boolean detect;
1189
1190 /* Does the target support this packet? */
1191 enum packet_support support;
1192 };
1193
1194 /* Analyze a packet's return value and update the packet config
1195 accordingly. */
1196
1197 enum packet_result
1198 {
1199 PACKET_ERROR,
1200 PACKET_OK,
1201 PACKET_UNKNOWN
1202 };
1203
1204 static enum packet_support packet_config_support (struct packet_config *config);
1205 static enum packet_support packet_support (int packet);
1206
1207 static void
1208 show_packet_config_cmd (struct packet_config *config)
1209 {
1210 char *support = "internal-error";
1211
1212 switch (packet_config_support (config))
1213 {
1214 case PACKET_ENABLE:
1215 support = "enabled";
1216 break;
1217 case PACKET_DISABLE:
1218 support = "disabled";
1219 break;
1220 case PACKET_SUPPORT_UNKNOWN:
1221 support = "unknown";
1222 break;
1223 }
1224 switch (config->detect)
1225 {
1226 case AUTO_BOOLEAN_AUTO:
1227 printf_filtered (_("Support for the `%s' packet "
1228 "is auto-detected, currently %s.\n"),
1229 config->name, support);
1230 break;
1231 case AUTO_BOOLEAN_TRUE:
1232 case AUTO_BOOLEAN_FALSE:
1233 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1234 config->name, support);
1235 break;
1236 }
1237 }
1238
1239 static void
1240 add_packet_config_cmd (struct packet_config *config, const char *name,
1241 const char *title, int legacy)
1242 {
1243 char *set_doc;
1244 char *show_doc;
1245 char *cmd_name;
1246
1247 config->name = name;
1248 config->title = title;
1249 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1250 name, title);
1251 show_doc = xstrprintf ("Show current use of remote "
1252 "protocol `%s' (%s) packet",
1253 name, title);
1254 /* set/show TITLE-packet {auto,on,off} */
1255 cmd_name = xstrprintf ("%s-packet", title);
1256 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1257 &config->detect, set_doc,
1258 show_doc, NULL, /* help_doc */
1259 NULL,
1260 show_remote_protocol_packet_cmd,
1261 &remote_set_cmdlist, &remote_show_cmdlist);
1262 /* The command code copies the documentation strings. */
1263 xfree (set_doc);
1264 xfree (show_doc);
1265 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1266 if (legacy)
1267 {
1268 char *legacy_name;
1269
1270 legacy_name = xstrprintf ("%s-packet", name);
1271 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1272 &remote_set_cmdlist);
1273 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1274 &remote_show_cmdlist);
1275 }
1276 }
1277
1278 static enum packet_result
1279 packet_check_result (const char *buf)
1280 {
1281 if (buf[0] != '\0')
1282 {
1283 /* The stub recognized the packet request. Check that the
1284 operation succeeded. */
1285 if (buf[0] == 'E'
1286 && isxdigit (buf[1]) && isxdigit (buf[2])
1287 && buf[3] == '\0')
1288 /* "Enn" - definitly an error. */
1289 return PACKET_ERROR;
1290
1291 /* Always treat "E." as an error. This will be used for
1292 more verbose error messages, such as E.memtypes. */
1293 if (buf[0] == 'E' && buf[1] == '.')
1294 return PACKET_ERROR;
1295
1296 /* The packet may or may not be OK. Just assume it is. */
1297 return PACKET_OK;
1298 }
1299 else
1300 /* The stub does not support the packet. */
1301 return PACKET_UNKNOWN;
1302 }
1303
1304 static enum packet_result
1305 packet_ok (const char *buf, struct packet_config *config)
1306 {
1307 enum packet_result result;
1308
1309 if (config->detect != AUTO_BOOLEAN_TRUE
1310 && config->support == PACKET_DISABLE)
1311 internal_error (__FILE__, __LINE__,
1312 _("packet_ok: attempt to use a disabled packet"));
1313
1314 result = packet_check_result (buf);
1315 switch (result)
1316 {
1317 case PACKET_OK:
1318 case PACKET_ERROR:
1319 /* The stub recognized the packet request. */
1320 if (config->support == PACKET_SUPPORT_UNKNOWN)
1321 {
1322 if (remote_debug)
1323 fprintf_unfiltered (gdb_stdlog,
1324 "Packet %s (%s) is supported\n",
1325 config->name, config->title);
1326 config->support = PACKET_ENABLE;
1327 }
1328 break;
1329 case PACKET_UNKNOWN:
1330 /* The stub does not support the packet. */
1331 if (config->detect == AUTO_BOOLEAN_AUTO
1332 && config->support == PACKET_ENABLE)
1333 {
1334 /* If the stub previously indicated that the packet was
1335 supported then there is a protocol error. */
1336 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1337 config->name, config->title);
1338 }
1339 else if (config->detect == AUTO_BOOLEAN_TRUE)
1340 {
1341 /* The user set it wrong. */
1342 error (_("Enabled packet %s (%s) not recognized by stub"),
1343 config->name, config->title);
1344 }
1345
1346 if (remote_debug)
1347 fprintf_unfiltered (gdb_stdlog,
1348 "Packet %s (%s) is NOT supported\n",
1349 config->name, config->title);
1350 config->support = PACKET_DISABLE;
1351 break;
1352 }
1353
1354 return result;
1355 }
1356
1357 enum {
1358 PACKET_vCont = 0,
1359 PACKET_X,
1360 PACKET_qSymbol,
1361 PACKET_P,
1362 PACKET_p,
1363 PACKET_Z0,
1364 PACKET_Z1,
1365 PACKET_Z2,
1366 PACKET_Z3,
1367 PACKET_Z4,
1368 PACKET_vFile_setfs,
1369 PACKET_vFile_open,
1370 PACKET_vFile_pread,
1371 PACKET_vFile_pwrite,
1372 PACKET_vFile_close,
1373 PACKET_vFile_unlink,
1374 PACKET_vFile_readlink,
1375 PACKET_vFile_fstat,
1376 PACKET_qXfer_auxv,
1377 PACKET_qXfer_features,
1378 PACKET_qXfer_exec_file,
1379 PACKET_qXfer_libraries,
1380 PACKET_qXfer_libraries_svr4,
1381 PACKET_qXfer_memory_map,
1382 PACKET_qXfer_spu_read,
1383 PACKET_qXfer_spu_write,
1384 PACKET_qXfer_osdata,
1385 PACKET_qXfer_threads,
1386 PACKET_qXfer_statictrace_read,
1387 PACKET_qXfer_traceframe_info,
1388 PACKET_qXfer_uib,
1389 PACKET_qGetTIBAddr,
1390 PACKET_qGetTLSAddr,
1391 PACKET_qSupported,
1392 PACKET_qTStatus,
1393 PACKET_QPassSignals,
1394 PACKET_QCatchSyscalls,
1395 PACKET_QProgramSignals,
1396 PACKET_qCRC,
1397 PACKET_qSearch_memory,
1398 PACKET_vAttach,
1399 PACKET_vRun,
1400 PACKET_QStartNoAckMode,
1401 PACKET_vKill,
1402 PACKET_qXfer_siginfo_read,
1403 PACKET_qXfer_siginfo_write,
1404 PACKET_qAttached,
1405
1406 /* Support for conditional tracepoints. */
1407 PACKET_ConditionalTracepoints,
1408
1409 /* Support for target-side breakpoint conditions. */
1410 PACKET_ConditionalBreakpoints,
1411
1412 /* Support for target-side breakpoint commands. */
1413 PACKET_BreakpointCommands,
1414
1415 /* Support for fast tracepoints. */
1416 PACKET_FastTracepoints,
1417
1418 /* Support for static tracepoints. */
1419 PACKET_StaticTracepoints,
1420
1421 /* Support for installing tracepoints while a trace experiment is
1422 running. */
1423 PACKET_InstallInTrace,
1424
1425 PACKET_bc,
1426 PACKET_bs,
1427 PACKET_TracepointSource,
1428 PACKET_QAllow,
1429 PACKET_qXfer_fdpic,
1430 PACKET_QDisableRandomization,
1431 PACKET_QAgent,
1432 PACKET_QTBuffer_size,
1433 PACKET_Qbtrace_off,
1434 PACKET_Qbtrace_bts,
1435 PACKET_Qbtrace_pt,
1436 PACKET_qXfer_btrace,
1437
1438 /* Support for the QNonStop packet. */
1439 PACKET_QNonStop,
1440
1441 /* Support for the QThreadEvents packet. */
1442 PACKET_QThreadEvents,
1443
1444 /* Support for multi-process extensions. */
1445 PACKET_multiprocess_feature,
1446
1447 /* Support for enabling and disabling tracepoints while a trace
1448 experiment is running. */
1449 PACKET_EnableDisableTracepoints_feature,
1450
1451 /* Support for collecting strings using the tracenz bytecode. */
1452 PACKET_tracenz_feature,
1453
1454 /* Support for continuing to run a trace experiment while GDB is
1455 disconnected. */
1456 PACKET_DisconnectedTracing_feature,
1457
1458 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1459 PACKET_augmented_libraries_svr4_read_feature,
1460
1461 /* Support for the qXfer:btrace-conf:read packet. */
1462 PACKET_qXfer_btrace_conf,
1463
1464 /* Support for the Qbtrace-conf:bts:size packet. */
1465 PACKET_Qbtrace_conf_bts_size,
1466
1467 /* Support for swbreak+ feature. */
1468 PACKET_swbreak_feature,
1469
1470 /* Support for hwbreak+ feature. */
1471 PACKET_hwbreak_feature,
1472
1473 /* Support for fork events. */
1474 PACKET_fork_event_feature,
1475
1476 /* Support for vfork events. */
1477 PACKET_vfork_event_feature,
1478
1479 /* Support for the Qbtrace-conf:pt:size packet. */
1480 PACKET_Qbtrace_conf_pt_size,
1481
1482 /* Support for exec events. */
1483 PACKET_exec_event_feature,
1484
1485 /* Support for query supported vCont actions. */
1486 PACKET_vContSupported,
1487
1488 /* Support remote CTRL-C. */
1489 PACKET_vCtrlC,
1490
1491 /* Support TARGET_WAITKIND_NO_RESUMED. */
1492 PACKET_no_resumed,
1493
1494 PACKET_MAX
1495 };
1496
1497 static struct packet_config remote_protocol_packets[PACKET_MAX];
1498
1499 /* Returns the packet's corresponding "set remote foo-packet" command
1500 state. See struct packet_config for more details. */
1501
1502 static enum auto_boolean
1503 packet_set_cmd_state (int packet)
1504 {
1505 return remote_protocol_packets[packet].detect;
1506 }
1507
1508 /* Returns whether a given packet or feature is supported. This takes
1509 into account the state of the corresponding "set remote foo-packet"
1510 command, which may be used to bypass auto-detection. */
1511
1512 static enum packet_support
1513 packet_config_support (struct packet_config *config)
1514 {
1515 switch (config->detect)
1516 {
1517 case AUTO_BOOLEAN_TRUE:
1518 return PACKET_ENABLE;
1519 case AUTO_BOOLEAN_FALSE:
1520 return PACKET_DISABLE;
1521 case AUTO_BOOLEAN_AUTO:
1522 return config->support;
1523 default:
1524 gdb_assert_not_reached (_("bad switch"));
1525 }
1526 }
1527
1528 /* Same as packet_config_support, but takes the packet's enum value as
1529 argument. */
1530
1531 static enum packet_support
1532 packet_support (int packet)
1533 {
1534 struct packet_config *config = &remote_protocol_packets[packet];
1535
1536 return packet_config_support (config);
1537 }
1538
1539 static void
1540 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1541 struct cmd_list_element *c,
1542 const char *value)
1543 {
1544 struct packet_config *packet;
1545
1546 for (packet = remote_protocol_packets;
1547 packet < &remote_protocol_packets[PACKET_MAX];
1548 packet++)
1549 {
1550 if (&packet->detect == c->var)
1551 {
1552 show_packet_config_cmd (packet);
1553 return;
1554 }
1555 }
1556 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1557 c->name);
1558 }
1559
1560 /* Should we try one of the 'Z' requests? */
1561
1562 enum Z_packet_type
1563 {
1564 Z_PACKET_SOFTWARE_BP,
1565 Z_PACKET_HARDWARE_BP,
1566 Z_PACKET_WRITE_WP,
1567 Z_PACKET_READ_WP,
1568 Z_PACKET_ACCESS_WP,
1569 NR_Z_PACKET_TYPES
1570 };
1571
1572 /* For compatibility with older distributions. Provide a ``set remote
1573 Z-packet ...'' command that updates all the Z packet types. */
1574
1575 static enum auto_boolean remote_Z_packet_detect;
1576
1577 static void
1578 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1579 struct cmd_list_element *c)
1580 {
1581 int i;
1582
1583 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1584 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1585 }
1586
1587 static void
1588 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1589 struct cmd_list_element *c,
1590 const char *value)
1591 {
1592 int i;
1593
1594 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1595 {
1596 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1597 }
1598 }
1599
1600 /* Returns true if the multi-process extensions are in effect. */
1601
1602 static int
1603 remote_multi_process_p (struct remote_state *rs)
1604 {
1605 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1606 }
1607
1608 /* Returns true if fork events are supported. */
1609
1610 static int
1611 remote_fork_event_p (struct remote_state *rs)
1612 {
1613 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1614 }
1615
1616 /* Returns true if vfork events are supported. */
1617
1618 static int
1619 remote_vfork_event_p (struct remote_state *rs)
1620 {
1621 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1622 }
1623
1624 /* Returns true if exec events are supported. */
1625
1626 static int
1627 remote_exec_event_p (struct remote_state *rs)
1628 {
1629 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1630 }
1631
1632 /* Insert fork catchpoint target routine. If fork events are enabled
1633 then return success, nothing more to do. */
1634
1635 static int
1636 remote_insert_fork_catchpoint (struct target_ops *ops, int pid)
1637 {
1638 struct remote_state *rs = get_remote_state ();
1639
1640 return !remote_fork_event_p (rs);
1641 }
1642
1643 /* Remove fork catchpoint target routine. Nothing to do, just
1644 return success. */
1645
1646 static int
1647 remote_remove_fork_catchpoint (struct target_ops *ops, int pid)
1648 {
1649 return 0;
1650 }
1651
1652 /* Insert vfork catchpoint target routine. If vfork events are enabled
1653 then return success, nothing more to do. */
1654
1655 static int
1656 remote_insert_vfork_catchpoint (struct target_ops *ops, int pid)
1657 {
1658 struct remote_state *rs = get_remote_state ();
1659
1660 return !remote_vfork_event_p (rs);
1661 }
1662
1663 /* Remove vfork catchpoint target routine. Nothing to do, just
1664 return success. */
1665
1666 static int
1667 remote_remove_vfork_catchpoint (struct target_ops *ops, int pid)
1668 {
1669 return 0;
1670 }
1671
1672 /* Insert exec catchpoint target routine. If exec events are
1673 enabled, just return success. */
1674
1675 static int
1676 remote_insert_exec_catchpoint (struct target_ops *ops, int pid)
1677 {
1678 struct remote_state *rs = get_remote_state ();
1679
1680 return !remote_exec_event_p (rs);
1681 }
1682
1683 /* Remove exec catchpoint target routine. Nothing to do, just
1684 return success. */
1685
1686 static int
1687 remote_remove_exec_catchpoint (struct target_ops *ops, int pid)
1688 {
1689 return 0;
1690 }
1691
1692 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1693 static struct async_signal_handler *async_sigint_remote_twice_token;
1694 static struct async_signal_handler *async_sigint_remote_token;
1695
1696 \f
1697 /* Asynchronous signal handle registered as event loop source for
1698 when we have pending events ready to be passed to the core. */
1699
1700 static struct async_event_handler *remote_async_inferior_event_token;
1701
1702 \f
1703
1704 static ptid_t magic_null_ptid;
1705 static ptid_t not_sent_ptid;
1706 static ptid_t any_thread_ptid;
1707
1708 /* Find out if the stub attached to PID (and hence GDB should offer to
1709 detach instead of killing it when bailing out). */
1710
1711 static int
1712 remote_query_attached (int pid)
1713 {
1714 struct remote_state *rs = get_remote_state ();
1715 size_t size = get_remote_packet_size ();
1716
1717 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
1718 return 0;
1719
1720 if (remote_multi_process_p (rs))
1721 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1722 else
1723 xsnprintf (rs->buf, size, "qAttached");
1724
1725 putpkt (rs->buf);
1726 getpkt (&rs->buf, &rs->buf_size, 0);
1727
1728 switch (packet_ok (rs->buf,
1729 &remote_protocol_packets[PACKET_qAttached]))
1730 {
1731 case PACKET_OK:
1732 if (strcmp (rs->buf, "1") == 0)
1733 return 1;
1734 break;
1735 case PACKET_ERROR:
1736 warning (_("Remote failure reply: %s"), rs->buf);
1737 break;
1738 case PACKET_UNKNOWN:
1739 break;
1740 }
1741
1742 return 0;
1743 }
1744
1745 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1746 has been invented by GDB, instead of reported by the target. Since
1747 we can be connected to a remote system before before knowing about
1748 any inferior, mark the target with execution when we find the first
1749 inferior. If ATTACHED is 1, then we had just attached to this
1750 inferior. If it is 0, then we just created this inferior. If it
1751 is -1, then try querying the remote stub to find out if it had
1752 attached to the inferior or not. If TRY_OPEN_EXEC is true then
1753 attempt to open this inferior's executable as the main executable
1754 if no main executable is open already. */
1755
1756 static struct inferior *
1757 remote_add_inferior (int fake_pid_p, int pid, int attached,
1758 int try_open_exec)
1759 {
1760 struct inferior *inf;
1761
1762 /* Check whether this process we're learning about is to be
1763 considered attached, or if is to be considered to have been
1764 spawned by the stub. */
1765 if (attached == -1)
1766 attached = remote_query_attached (pid);
1767
1768 if (gdbarch_has_global_solist (target_gdbarch ()))
1769 {
1770 /* If the target shares code across all inferiors, then every
1771 attach adds a new inferior. */
1772 inf = add_inferior (pid);
1773
1774 /* ... and every inferior is bound to the same program space.
1775 However, each inferior may still have its own address
1776 space. */
1777 inf->aspace = maybe_new_address_space ();
1778 inf->pspace = current_program_space;
1779 }
1780 else
1781 {
1782 /* In the traditional debugging scenario, there's a 1-1 match
1783 between program/address spaces. We simply bind the inferior
1784 to the program space's address space. */
1785 inf = current_inferior ();
1786 inferior_appeared (inf, pid);
1787 }
1788
1789 inf->attach_flag = attached;
1790 inf->fake_pid_p = fake_pid_p;
1791
1792 /* If no main executable is currently open then attempt to
1793 open the file that was executed to create this inferior. */
1794 if (try_open_exec && get_exec_file (0) == NULL)
1795 exec_file_locate_attach (pid, 1);
1796
1797 return inf;
1798 }
1799
1800 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1801 according to RUNNING. */
1802
1803 static void
1804 remote_add_thread (ptid_t ptid, int running, int executing)
1805 {
1806 struct remote_state *rs = get_remote_state ();
1807
1808 /* GDB historically didn't pull threads in the initial connection
1809 setup. If the remote target doesn't even have a concept of
1810 threads (e.g., a bare-metal target), even if internally we
1811 consider that a single-threaded target, mentioning a new thread
1812 might be confusing to the user. Be silent then, preserving the
1813 age old behavior. */
1814 if (rs->starting_up)
1815 add_thread_silent (ptid);
1816 else
1817 add_thread (ptid);
1818
1819 set_executing (ptid, executing);
1820 set_running (ptid, running);
1821 }
1822
1823 /* Come here when we learn about a thread id from the remote target.
1824 It may be the first time we hear about such thread, so take the
1825 opportunity to add it to GDB's thread list. In case this is the
1826 first time we're noticing its corresponding inferior, add it to
1827 GDB's inferior list as well. EXECUTING indicates whether the
1828 thread is (internally) executing or stopped. */
1829
1830 static void
1831 remote_notice_new_inferior (ptid_t currthread, int executing)
1832 {
1833 /* In non-stop mode, we assume new found threads are (externally)
1834 running until proven otherwise with a stop reply. In all-stop,
1835 we can only get here if all threads are stopped. */
1836 int running = target_is_non_stop_p () ? 1 : 0;
1837
1838 /* If this is a new thread, add it to GDB's thread list.
1839 If we leave it up to WFI to do this, bad things will happen. */
1840
1841 if (in_thread_list (currthread) && is_exited (currthread))
1842 {
1843 /* We're seeing an event on a thread id we knew had exited.
1844 This has to be a new thread reusing the old id. Add it. */
1845 remote_add_thread (currthread, running, executing);
1846 return;
1847 }
1848
1849 if (!in_thread_list (currthread))
1850 {
1851 struct inferior *inf = NULL;
1852 int pid = ptid_get_pid (currthread);
1853
1854 if (ptid_is_pid (inferior_ptid)
1855 && pid == ptid_get_pid (inferior_ptid))
1856 {
1857 /* inferior_ptid has no thread member yet. This can happen
1858 with the vAttach -> remote_wait,"TAAthread:" path if the
1859 stub doesn't support qC. This is the first stop reported
1860 after an attach, so this is the main thread. Update the
1861 ptid in the thread list. */
1862 if (in_thread_list (pid_to_ptid (pid)))
1863 thread_change_ptid (inferior_ptid, currthread);
1864 else
1865 {
1866 remote_add_thread (currthread, running, executing);
1867 inferior_ptid = currthread;
1868 }
1869 return;
1870 }
1871
1872 if (ptid_equal (magic_null_ptid, inferior_ptid))
1873 {
1874 /* inferior_ptid is not set yet. This can happen with the
1875 vRun -> remote_wait,"TAAthread:" path if the stub
1876 doesn't support qC. This is the first stop reported
1877 after an attach, so this is the main thread. Update the
1878 ptid in the thread list. */
1879 thread_change_ptid (inferior_ptid, currthread);
1880 return;
1881 }
1882
1883 /* When connecting to a target remote, or to a target
1884 extended-remote which already was debugging an inferior, we
1885 may not know about it yet. Add it before adding its child
1886 thread, so notifications are emitted in a sensible order. */
1887 if (!in_inferior_list (ptid_get_pid (currthread)))
1888 {
1889 struct remote_state *rs = get_remote_state ();
1890 int fake_pid_p = !remote_multi_process_p (rs);
1891
1892 inf = remote_add_inferior (fake_pid_p,
1893 ptid_get_pid (currthread), -1, 1);
1894 }
1895
1896 /* This is really a new thread. Add it. */
1897 remote_add_thread (currthread, running, executing);
1898
1899 /* If we found a new inferior, let the common code do whatever
1900 it needs to with it (e.g., read shared libraries, insert
1901 breakpoints), unless we're just setting up an all-stop
1902 connection. */
1903 if (inf != NULL)
1904 {
1905 struct remote_state *rs = get_remote_state ();
1906
1907 if (!rs->starting_up)
1908 notice_new_inferior (currthread, executing, 0);
1909 }
1910 }
1911 }
1912
1913 /* Return the private thread data, creating it if necessary. */
1914
1915 static struct private_thread_info *
1916 demand_private_info (ptid_t ptid)
1917 {
1918 struct thread_info *info = find_thread_ptid (ptid);
1919
1920 gdb_assert (info);
1921
1922 if (!info->priv)
1923 {
1924 info->priv = XNEW (struct private_thread_info);
1925 info->private_dtor = free_private_thread_info;
1926 info->priv->core = -1;
1927 info->priv->extra = NULL;
1928 info->priv->name = NULL;
1929 }
1930
1931 return info->priv;
1932 }
1933
1934 /* Call this function as a result of
1935 1) A halt indication (T packet) containing a thread id
1936 2) A direct query of currthread
1937 3) Successful execution of set thread */
1938
1939 static void
1940 record_currthread (struct remote_state *rs, ptid_t currthread)
1941 {
1942 rs->general_thread = currthread;
1943 }
1944
1945 /* If 'QPassSignals' is supported, tell the remote stub what signals
1946 it can simply pass through to the inferior without reporting. */
1947
1948 static void
1949 remote_pass_signals (struct target_ops *self,
1950 int numsigs, unsigned char *pass_signals)
1951 {
1952 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
1953 {
1954 char *pass_packet, *p;
1955 int count = 0, i;
1956 struct remote_state *rs = get_remote_state ();
1957
1958 gdb_assert (numsigs < 256);
1959 for (i = 0; i < numsigs; i++)
1960 {
1961 if (pass_signals[i])
1962 count++;
1963 }
1964 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1965 strcpy (pass_packet, "QPassSignals:");
1966 p = pass_packet + strlen (pass_packet);
1967 for (i = 0; i < numsigs; i++)
1968 {
1969 if (pass_signals[i])
1970 {
1971 if (i >= 16)
1972 *p++ = tohex (i >> 4);
1973 *p++ = tohex (i & 15);
1974 if (count)
1975 *p++ = ';';
1976 else
1977 break;
1978 count--;
1979 }
1980 }
1981 *p = 0;
1982 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
1983 {
1984 putpkt (pass_packet);
1985 getpkt (&rs->buf, &rs->buf_size, 0);
1986 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
1987 if (rs->last_pass_packet)
1988 xfree (rs->last_pass_packet);
1989 rs->last_pass_packet = pass_packet;
1990 }
1991 else
1992 xfree (pass_packet);
1993 }
1994 }
1995
1996 /* If 'QCatchSyscalls' is supported, tell the remote stub
1997 to report syscalls to GDB. */
1998
1999 static int
2000 remote_set_syscall_catchpoint (struct target_ops *self,
2001 int pid, int needed, int any_count,
2002 int table_size, int *table)
2003 {
2004 char *catch_packet;
2005 enum packet_result result;
2006 int n_sysno = 0;
2007
2008 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2009 {
2010 /* Not supported. */
2011 return 1;
2012 }
2013
2014 if (needed && !any_count)
2015 {
2016 int i;
2017
2018 /* Count how many syscalls are to be caught (table[sysno] != 0). */
2019 for (i = 0; i < table_size; i++)
2020 {
2021 if (table[i] != 0)
2022 n_sysno++;
2023 }
2024 }
2025
2026 if (remote_debug)
2027 {
2028 fprintf_unfiltered (gdb_stdlog,
2029 "remote_set_syscall_catchpoint "
2030 "pid %d needed %d any_count %d n_sysno %d\n",
2031 pid, needed, any_count, n_sysno);
2032 }
2033
2034 if (needed)
2035 {
2036 /* Prepare a packet with the sysno list, assuming max 8+1
2037 characters for a sysno. If the resulting packet size is too
2038 big, fallback on the non-selective packet. */
2039 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2040
2041 catch_packet = (char *) xmalloc (maxpktsz);
2042 strcpy (catch_packet, "QCatchSyscalls:1");
2043 if (!any_count)
2044 {
2045 int i;
2046 char *p;
2047
2048 p = catch_packet;
2049 p += strlen (p);
2050
2051 /* Add in catch_packet each syscall to be caught (table[i] != 0). */
2052 for (i = 0; i < table_size; i++)
2053 {
2054 if (table[i] != 0)
2055 p += xsnprintf (p, catch_packet + maxpktsz - p, ";%x", i);
2056 }
2057 }
2058 if (strlen (catch_packet) > get_remote_packet_size ())
2059 {
2060 /* catch_packet too big. Fallback to less efficient
2061 non selective mode, with GDB doing the filtering. */
2062 catch_packet[sizeof ("QCatchSyscalls:1") - 1] = 0;
2063 }
2064 }
2065 else
2066 catch_packet = xstrdup ("QCatchSyscalls:0");
2067
2068 {
2069 struct cleanup *old_chain = make_cleanup (xfree, catch_packet);
2070 struct remote_state *rs = get_remote_state ();
2071
2072 putpkt (catch_packet);
2073 getpkt (&rs->buf, &rs->buf_size, 0);
2074 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2075 do_cleanups (old_chain);
2076 if (result == PACKET_OK)
2077 return 0;
2078 else
2079 return -1;
2080 }
2081 }
2082
2083 /* If 'QProgramSignals' is supported, tell the remote stub what
2084 signals it should pass through to the inferior when detaching. */
2085
2086 static void
2087 remote_program_signals (struct target_ops *self,
2088 int numsigs, unsigned char *signals)
2089 {
2090 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2091 {
2092 char *packet, *p;
2093 int count = 0, i;
2094 struct remote_state *rs = get_remote_state ();
2095
2096 gdb_assert (numsigs < 256);
2097 for (i = 0; i < numsigs; i++)
2098 {
2099 if (signals[i])
2100 count++;
2101 }
2102 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2103 strcpy (packet, "QProgramSignals:");
2104 p = packet + strlen (packet);
2105 for (i = 0; i < numsigs; i++)
2106 {
2107 if (signal_pass_state (i))
2108 {
2109 if (i >= 16)
2110 *p++ = tohex (i >> 4);
2111 *p++ = tohex (i & 15);
2112 if (count)
2113 *p++ = ';';
2114 else
2115 break;
2116 count--;
2117 }
2118 }
2119 *p = 0;
2120 if (!rs->last_program_signals_packet
2121 || strcmp (rs->last_program_signals_packet, packet) != 0)
2122 {
2123 putpkt (packet);
2124 getpkt (&rs->buf, &rs->buf_size, 0);
2125 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2126 xfree (rs->last_program_signals_packet);
2127 rs->last_program_signals_packet = packet;
2128 }
2129 else
2130 xfree (packet);
2131 }
2132 }
2133
2134 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2135 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2136 thread. If GEN is set, set the general thread, if not, then set
2137 the step/continue thread. */
2138 static void
2139 set_thread (struct ptid ptid, int gen)
2140 {
2141 struct remote_state *rs = get_remote_state ();
2142 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2143 char *buf = rs->buf;
2144 char *endbuf = rs->buf + get_remote_packet_size ();
2145
2146 if (ptid_equal (state, ptid))
2147 return;
2148
2149 *buf++ = 'H';
2150 *buf++ = gen ? 'g' : 'c';
2151 if (ptid_equal (ptid, magic_null_ptid))
2152 xsnprintf (buf, endbuf - buf, "0");
2153 else if (ptid_equal (ptid, any_thread_ptid))
2154 xsnprintf (buf, endbuf - buf, "0");
2155 else if (ptid_equal (ptid, minus_one_ptid))
2156 xsnprintf (buf, endbuf - buf, "-1");
2157 else
2158 write_ptid (buf, endbuf, ptid);
2159 putpkt (rs->buf);
2160 getpkt (&rs->buf, &rs->buf_size, 0);
2161 if (gen)
2162 rs->general_thread = ptid;
2163 else
2164 rs->continue_thread = ptid;
2165 }
2166
2167 static void
2168 set_general_thread (struct ptid ptid)
2169 {
2170 set_thread (ptid, 1);
2171 }
2172
2173 static void
2174 set_continue_thread (struct ptid ptid)
2175 {
2176 set_thread (ptid, 0);
2177 }
2178
2179 /* Change the remote current process. Which thread within the process
2180 ends up selected isn't important, as long as it is the same process
2181 as what INFERIOR_PTID points to.
2182
2183 This comes from that fact that there is no explicit notion of
2184 "selected process" in the protocol. The selected process for
2185 general operations is the process the selected general thread
2186 belongs to. */
2187
2188 static void
2189 set_general_process (void)
2190 {
2191 struct remote_state *rs = get_remote_state ();
2192
2193 /* If the remote can't handle multiple processes, don't bother. */
2194 if (!remote_multi_process_p (rs))
2195 return;
2196
2197 /* We only need to change the remote current thread if it's pointing
2198 at some other process. */
2199 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2200 set_general_thread (inferior_ptid);
2201 }
2202
2203 \f
2204 /* Return nonzero if this is the main thread that we made up ourselves
2205 to model non-threaded targets as single-threaded. */
2206
2207 static int
2208 remote_thread_always_alive (struct target_ops *ops, ptid_t ptid)
2209 {
2210 if (ptid_equal (ptid, magic_null_ptid))
2211 /* The main thread is always alive. */
2212 return 1;
2213
2214 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2215 /* The main thread is always alive. This can happen after a
2216 vAttach, if the remote side doesn't support
2217 multi-threading. */
2218 return 1;
2219
2220 return 0;
2221 }
2222
2223 /* Return nonzero if the thread PTID is still alive on the remote
2224 system. */
2225
2226 static int
2227 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
2228 {
2229 struct remote_state *rs = get_remote_state ();
2230 char *p, *endp;
2231
2232 /* Check if this is a thread that we made up ourselves to model
2233 non-threaded targets as single-threaded. */
2234 if (remote_thread_always_alive (ops, ptid))
2235 return 1;
2236
2237 p = rs->buf;
2238 endp = rs->buf + get_remote_packet_size ();
2239
2240 *p++ = 'T';
2241 write_ptid (p, endp, ptid);
2242
2243 putpkt (rs->buf);
2244 getpkt (&rs->buf, &rs->buf_size, 0);
2245 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2246 }
2247
2248 /* Return a pointer to a thread name if we know it and NULL otherwise.
2249 The thread_info object owns the memory for the name. */
2250
2251 static const char *
2252 remote_thread_name (struct target_ops *ops, struct thread_info *info)
2253 {
2254 if (info->priv != NULL)
2255 return info->priv->name;
2256
2257 return NULL;
2258 }
2259
2260 /* About these extended threadlist and threadinfo packets. They are
2261 variable length packets but, the fields within them are often fixed
2262 length. They are redundent enough to send over UDP as is the
2263 remote protocol in general. There is a matching unit test module
2264 in libstub. */
2265
2266 /* WARNING: This threadref data structure comes from the remote O.S.,
2267 libstub protocol encoding, and remote.c. It is not particularly
2268 changable. */
2269
2270 /* Right now, the internal structure is int. We want it to be bigger.
2271 Plan to fix this. */
2272
2273 typedef int gdb_threadref; /* Internal GDB thread reference. */
2274
2275 /* gdb_ext_thread_info is an internal GDB data structure which is
2276 equivalent to the reply of the remote threadinfo packet. */
2277
2278 struct gdb_ext_thread_info
2279 {
2280 threadref threadid; /* External form of thread reference. */
2281 int active; /* Has state interesting to GDB?
2282 regs, stack. */
2283 char display[256]; /* Brief state display, name,
2284 blocked/suspended. */
2285 char shortname[32]; /* To be used to name threads. */
2286 char more_display[256]; /* Long info, statistics, queue depth,
2287 whatever. */
2288 };
2289
2290 /* The volume of remote transfers can be limited by submitting
2291 a mask containing bits specifying the desired information.
2292 Use a union of these values as the 'selection' parameter to
2293 get_thread_info. FIXME: Make these TAG names more thread specific. */
2294
2295 #define TAG_THREADID 1
2296 #define TAG_EXISTS 2
2297 #define TAG_DISPLAY 4
2298 #define TAG_THREADNAME 8
2299 #define TAG_MOREDISPLAY 16
2300
2301 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2302
2303 static char *unpack_nibble (char *buf, int *val);
2304
2305 static char *unpack_byte (char *buf, int *value);
2306
2307 static char *pack_int (char *buf, int value);
2308
2309 static char *unpack_int (char *buf, int *value);
2310
2311 static char *unpack_string (char *src, char *dest, int length);
2312
2313 static char *pack_threadid (char *pkt, threadref *id);
2314
2315 static char *unpack_threadid (char *inbuf, threadref *id);
2316
2317 void int_to_threadref (threadref *id, int value);
2318
2319 static int threadref_to_int (threadref *ref);
2320
2321 static void copy_threadref (threadref *dest, threadref *src);
2322
2323 static int threadmatch (threadref *dest, threadref *src);
2324
2325 static char *pack_threadinfo_request (char *pkt, int mode,
2326 threadref *id);
2327
2328 static int remote_unpack_thread_info_response (char *pkt,
2329 threadref *expectedref,
2330 struct gdb_ext_thread_info
2331 *info);
2332
2333
2334 static int remote_get_threadinfo (threadref *threadid,
2335 int fieldset, /*TAG mask */
2336 struct gdb_ext_thread_info *info);
2337
2338 static char *pack_threadlist_request (char *pkt, int startflag,
2339 int threadcount,
2340 threadref *nextthread);
2341
2342 static int parse_threadlist_response (char *pkt,
2343 int result_limit,
2344 threadref *original_echo,
2345 threadref *resultlist,
2346 int *doneflag);
2347
2348 static int remote_get_threadlist (int startflag,
2349 threadref *nextthread,
2350 int result_limit,
2351 int *done,
2352 int *result_count,
2353 threadref *threadlist);
2354
2355 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2356
2357 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2358 void *context, int looplimit);
2359
2360 static int remote_newthread_step (threadref *ref, void *context);
2361
2362
2363 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2364 buffer we're allowed to write to. Returns
2365 BUF+CHARACTERS_WRITTEN. */
2366
2367 static char *
2368 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2369 {
2370 int pid, tid;
2371 struct remote_state *rs = get_remote_state ();
2372
2373 if (remote_multi_process_p (rs))
2374 {
2375 pid = ptid_get_pid (ptid);
2376 if (pid < 0)
2377 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2378 else
2379 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2380 }
2381 tid = ptid_get_lwp (ptid);
2382 if (tid < 0)
2383 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2384 else
2385 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2386
2387 return buf;
2388 }
2389
2390 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
2391 passed the last parsed char. Returns null_ptid on error. */
2392
2393 static ptid_t
2394 read_ptid (char *buf, char **obuf)
2395 {
2396 char *p = buf;
2397 char *pp;
2398 ULONGEST pid = 0, tid = 0;
2399
2400 if (*p == 'p')
2401 {
2402 /* Multi-process ptid. */
2403 pp = unpack_varlen_hex (p + 1, &pid);
2404 if (*pp != '.')
2405 error (_("invalid remote ptid: %s"), p);
2406
2407 p = pp;
2408 pp = unpack_varlen_hex (p + 1, &tid);
2409 if (obuf)
2410 *obuf = pp;
2411 return ptid_build (pid, tid, 0);
2412 }
2413
2414 /* No multi-process. Just a tid. */
2415 pp = unpack_varlen_hex (p, &tid);
2416
2417 /* Return null_ptid when no thread id is found. */
2418 if (p == pp)
2419 {
2420 if (obuf)
2421 *obuf = pp;
2422 return null_ptid;
2423 }
2424
2425 /* Since the stub is not sending a process id, then default to
2426 what's in inferior_ptid, unless it's null at this point. If so,
2427 then since there's no way to know the pid of the reported
2428 threads, use the magic number. */
2429 if (ptid_equal (inferior_ptid, null_ptid))
2430 pid = ptid_get_pid (magic_null_ptid);
2431 else
2432 pid = ptid_get_pid (inferior_ptid);
2433
2434 if (obuf)
2435 *obuf = pp;
2436 return ptid_build (pid, tid, 0);
2437 }
2438
2439 static int
2440 stubhex (int ch)
2441 {
2442 if (ch >= 'a' && ch <= 'f')
2443 return ch - 'a' + 10;
2444 if (ch >= '0' && ch <= '9')
2445 return ch - '0';
2446 if (ch >= 'A' && ch <= 'F')
2447 return ch - 'A' + 10;
2448 return -1;
2449 }
2450
2451 static int
2452 stub_unpack_int (char *buff, int fieldlength)
2453 {
2454 int nibble;
2455 int retval = 0;
2456
2457 while (fieldlength)
2458 {
2459 nibble = stubhex (*buff++);
2460 retval |= nibble;
2461 fieldlength--;
2462 if (fieldlength)
2463 retval = retval << 4;
2464 }
2465 return retval;
2466 }
2467
2468 static char *
2469 unpack_nibble (char *buf, int *val)
2470 {
2471 *val = fromhex (*buf++);
2472 return buf;
2473 }
2474
2475 static char *
2476 unpack_byte (char *buf, int *value)
2477 {
2478 *value = stub_unpack_int (buf, 2);
2479 return buf + 2;
2480 }
2481
2482 static char *
2483 pack_int (char *buf, int value)
2484 {
2485 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2486 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2487 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2488 buf = pack_hex_byte (buf, (value & 0xff));
2489 return buf;
2490 }
2491
2492 static char *
2493 unpack_int (char *buf, int *value)
2494 {
2495 *value = stub_unpack_int (buf, 8);
2496 return buf + 8;
2497 }
2498
2499 #if 0 /* Currently unused, uncomment when needed. */
2500 static char *pack_string (char *pkt, char *string);
2501
2502 static char *
2503 pack_string (char *pkt, char *string)
2504 {
2505 char ch;
2506 int len;
2507
2508 len = strlen (string);
2509 if (len > 200)
2510 len = 200; /* Bigger than most GDB packets, junk??? */
2511 pkt = pack_hex_byte (pkt, len);
2512 while (len-- > 0)
2513 {
2514 ch = *string++;
2515 if ((ch == '\0') || (ch == '#'))
2516 ch = '*'; /* Protect encapsulation. */
2517 *pkt++ = ch;
2518 }
2519 return pkt;
2520 }
2521 #endif /* 0 (unused) */
2522
2523 static char *
2524 unpack_string (char *src, char *dest, int length)
2525 {
2526 while (length--)
2527 *dest++ = *src++;
2528 *dest = '\0';
2529 return src;
2530 }
2531
2532 static char *
2533 pack_threadid (char *pkt, threadref *id)
2534 {
2535 char *limit;
2536 unsigned char *altid;
2537
2538 altid = (unsigned char *) id;
2539 limit = pkt + BUF_THREAD_ID_SIZE;
2540 while (pkt < limit)
2541 pkt = pack_hex_byte (pkt, *altid++);
2542 return pkt;
2543 }
2544
2545
2546 static char *
2547 unpack_threadid (char *inbuf, threadref *id)
2548 {
2549 char *altref;
2550 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2551 int x, y;
2552
2553 altref = (char *) id;
2554
2555 while (inbuf < limit)
2556 {
2557 x = stubhex (*inbuf++);
2558 y = stubhex (*inbuf++);
2559 *altref++ = (x << 4) | y;
2560 }
2561 return inbuf;
2562 }
2563
2564 /* Externally, threadrefs are 64 bits but internally, they are still
2565 ints. This is due to a mismatch of specifications. We would like
2566 to use 64bit thread references internally. This is an adapter
2567 function. */
2568
2569 void
2570 int_to_threadref (threadref *id, int value)
2571 {
2572 unsigned char *scan;
2573
2574 scan = (unsigned char *) id;
2575 {
2576 int i = 4;
2577 while (i--)
2578 *scan++ = 0;
2579 }
2580 *scan++ = (value >> 24) & 0xff;
2581 *scan++ = (value >> 16) & 0xff;
2582 *scan++ = (value >> 8) & 0xff;
2583 *scan++ = (value & 0xff);
2584 }
2585
2586 static int
2587 threadref_to_int (threadref *ref)
2588 {
2589 int i, value = 0;
2590 unsigned char *scan;
2591
2592 scan = *ref;
2593 scan += 4;
2594 i = 4;
2595 while (i-- > 0)
2596 value = (value << 8) | ((*scan++) & 0xff);
2597 return value;
2598 }
2599
2600 static void
2601 copy_threadref (threadref *dest, threadref *src)
2602 {
2603 int i;
2604 unsigned char *csrc, *cdest;
2605
2606 csrc = (unsigned char *) src;
2607 cdest = (unsigned char *) dest;
2608 i = 8;
2609 while (i--)
2610 *cdest++ = *csrc++;
2611 }
2612
2613 static int
2614 threadmatch (threadref *dest, threadref *src)
2615 {
2616 /* Things are broken right now, so just assume we got a match. */
2617 #if 0
2618 unsigned char *srcp, *destp;
2619 int i, result;
2620 srcp = (char *) src;
2621 destp = (char *) dest;
2622
2623 result = 1;
2624 while (i-- > 0)
2625 result &= (*srcp++ == *destp++) ? 1 : 0;
2626 return result;
2627 #endif
2628 return 1;
2629 }
2630
2631 /*
2632 threadid:1, # always request threadid
2633 context_exists:2,
2634 display:4,
2635 unique_name:8,
2636 more_display:16
2637 */
2638
2639 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2640
2641 static char *
2642 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2643 {
2644 *pkt++ = 'q'; /* Info Query */
2645 *pkt++ = 'P'; /* process or thread info */
2646 pkt = pack_int (pkt, mode); /* mode */
2647 pkt = pack_threadid (pkt, id); /* threadid */
2648 *pkt = '\0'; /* terminate */
2649 return pkt;
2650 }
2651
2652 /* These values tag the fields in a thread info response packet. */
2653 /* Tagging the fields allows us to request specific fields and to
2654 add more fields as time goes by. */
2655
2656 #define TAG_THREADID 1 /* Echo the thread identifier. */
2657 #define TAG_EXISTS 2 /* Is this process defined enough to
2658 fetch registers and its stack? */
2659 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2660 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2661 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2662 the process. */
2663
2664 static int
2665 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2666 struct gdb_ext_thread_info *info)
2667 {
2668 struct remote_state *rs = get_remote_state ();
2669 int mask, length;
2670 int tag;
2671 threadref ref;
2672 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2673 int retval = 1;
2674
2675 /* info->threadid = 0; FIXME: implement zero_threadref. */
2676 info->active = 0;
2677 info->display[0] = '\0';
2678 info->shortname[0] = '\0';
2679 info->more_display[0] = '\0';
2680
2681 /* Assume the characters indicating the packet type have been
2682 stripped. */
2683 pkt = unpack_int (pkt, &mask); /* arg mask */
2684 pkt = unpack_threadid (pkt, &ref);
2685
2686 if (mask == 0)
2687 warning (_("Incomplete response to threadinfo request."));
2688 if (!threadmatch (&ref, expectedref))
2689 { /* This is an answer to a different request. */
2690 warning (_("ERROR RMT Thread info mismatch."));
2691 return 0;
2692 }
2693 copy_threadref (&info->threadid, &ref);
2694
2695 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2696
2697 /* Packets are terminated with nulls. */
2698 while ((pkt < limit) && mask && *pkt)
2699 {
2700 pkt = unpack_int (pkt, &tag); /* tag */
2701 pkt = unpack_byte (pkt, &length); /* length */
2702 if (!(tag & mask)) /* Tags out of synch with mask. */
2703 {
2704 warning (_("ERROR RMT: threadinfo tag mismatch."));
2705 retval = 0;
2706 break;
2707 }
2708 if (tag == TAG_THREADID)
2709 {
2710 if (length != 16)
2711 {
2712 warning (_("ERROR RMT: length of threadid is not 16."));
2713 retval = 0;
2714 break;
2715 }
2716 pkt = unpack_threadid (pkt, &ref);
2717 mask = mask & ~TAG_THREADID;
2718 continue;
2719 }
2720 if (tag == TAG_EXISTS)
2721 {
2722 info->active = stub_unpack_int (pkt, length);
2723 pkt += length;
2724 mask = mask & ~(TAG_EXISTS);
2725 if (length > 8)
2726 {
2727 warning (_("ERROR RMT: 'exists' length too long."));
2728 retval = 0;
2729 break;
2730 }
2731 continue;
2732 }
2733 if (tag == TAG_THREADNAME)
2734 {
2735 pkt = unpack_string (pkt, &info->shortname[0], length);
2736 mask = mask & ~TAG_THREADNAME;
2737 continue;
2738 }
2739 if (tag == TAG_DISPLAY)
2740 {
2741 pkt = unpack_string (pkt, &info->display[0], length);
2742 mask = mask & ~TAG_DISPLAY;
2743 continue;
2744 }
2745 if (tag == TAG_MOREDISPLAY)
2746 {
2747 pkt = unpack_string (pkt, &info->more_display[0], length);
2748 mask = mask & ~TAG_MOREDISPLAY;
2749 continue;
2750 }
2751 warning (_("ERROR RMT: unknown thread info tag."));
2752 break; /* Not a tag we know about. */
2753 }
2754 return retval;
2755 }
2756
2757 static int
2758 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2759 struct gdb_ext_thread_info *info)
2760 {
2761 struct remote_state *rs = get_remote_state ();
2762 int result;
2763
2764 pack_threadinfo_request (rs->buf, fieldset, threadid);
2765 putpkt (rs->buf);
2766 getpkt (&rs->buf, &rs->buf_size, 0);
2767
2768 if (rs->buf[0] == '\0')
2769 return 0;
2770
2771 result = remote_unpack_thread_info_response (rs->buf + 2,
2772 threadid, info);
2773 return result;
2774 }
2775
2776 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2777
2778 static char *
2779 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2780 threadref *nextthread)
2781 {
2782 *pkt++ = 'q'; /* info query packet */
2783 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2784 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2785 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2786 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2787 *pkt = '\0';
2788 return pkt;
2789 }
2790
2791 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2792
2793 static int
2794 parse_threadlist_response (char *pkt, int result_limit,
2795 threadref *original_echo, threadref *resultlist,
2796 int *doneflag)
2797 {
2798 struct remote_state *rs = get_remote_state ();
2799 char *limit;
2800 int count, resultcount, done;
2801
2802 resultcount = 0;
2803 /* Assume the 'q' and 'M chars have been stripped. */
2804 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2805 /* done parse past here */
2806 pkt = unpack_byte (pkt, &count); /* count field */
2807 pkt = unpack_nibble (pkt, &done);
2808 /* The first threadid is the argument threadid. */
2809 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2810 while ((count-- > 0) && (pkt < limit))
2811 {
2812 pkt = unpack_threadid (pkt, resultlist++);
2813 if (resultcount++ >= result_limit)
2814 break;
2815 }
2816 if (doneflag)
2817 *doneflag = done;
2818 return resultcount;
2819 }
2820
2821 /* Fetch the next batch of threads from the remote. Returns -1 if the
2822 qL packet is not supported, 0 on error and 1 on success. */
2823
2824 static int
2825 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2826 int *done, int *result_count, threadref *threadlist)
2827 {
2828 struct remote_state *rs = get_remote_state ();
2829 int result = 1;
2830
2831 /* Trancate result limit to be smaller than the packet size. */
2832 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2833 >= get_remote_packet_size ())
2834 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2835
2836 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2837 putpkt (rs->buf);
2838 getpkt (&rs->buf, &rs->buf_size, 0);
2839 if (*rs->buf == '\0')
2840 {
2841 /* Packet not supported. */
2842 return -1;
2843 }
2844
2845 *result_count =
2846 parse_threadlist_response (rs->buf + 2, result_limit,
2847 &rs->echo_nextthread, threadlist, done);
2848
2849 if (!threadmatch (&rs->echo_nextthread, nextthread))
2850 {
2851 /* FIXME: This is a good reason to drop the packet. */
2852 /* Possably, there is a duplicate response. */
2853 /* Possabilities :
2854 retransmit immediatly - race conditions
2855 retransmit after timeout - yes
2856 exit
2857 wait for packet, then exit
2858 */
2859 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2860 return 0; /* I choose simply exiting. */
2861 }
2862 if (*result_count <= 0)
2863 {
2864 if (*done != 1)
2865 {
2866 warning (_("RMT ERROR : failed to get remote thread list."));
2867 result = 0;
2868 }
2869 return result; /* break; */
2870 }
2871 if (*result_count > result_limit)
2872 {
2873 *result_count = 0;
2874 warning (_("RMT ERROR: threadlist response longer than requested."));
2875 return 0;
2876 }
2877 return result;
2878 }
2879
2880 /* Fetch the list of remote threads, with the qL packet, and call
2881 STEPFUNCTION for each thread found. Stops iterating and returns 1
2882 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
2883 STEPFUNCTION returns false. If the packet is not supported,
2884 returns -1. */
2885
2886 static int
2887 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2888 int looplimit)
2889 {
2890 struct remote_state *rs = get_remote_state ();
2891 int done, i, result_count;
2892 int startflag = 1;
2893 int result = 1;
2894 int loopcount = 0;
2895
2896 done = 0;
2897 while (!done)
2898 {
2899 if (loopcount++ > looplimit)
2900 {
2901 result = 0;
2902 warning (_("Remote fetch threadlist -infinite loop-."));
2903 break;
2904 }
2905 result = remote_get_threadlist (startflag, &rs->nextthread,
2906 MAXTHREADLISTRESULTS,
2907 &done, &result_count,
2908 rs->resultthreadlist);
2909 if (result <= 0)
2910 break;
2911 /* Clear for later iterations. */
2912 startflag = 0;
2913 /* Setup to resume next batch of thread references, set nextthread. */
2914 if (result_count >= 1)
2915 copy_threadref (&rs->nextthread,
2916 &rs->resultthreadlist[result_count - 1]);
2917 i = 0;
2918 while (result_count--)
2919 {
2920 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
2921 {
2922 result = 0;
2923 break;
2924 }
2925 }
2926 }
2927 return result;
2928 }
2929
2930 /* A thread found on the remote target. */
2931
2932 typedef struct thread_item
2933 {
2934 /* The thread's PTID. */
2935 ptid_t ptid;
2936
2937 /* The thread's extra info. May be NULL. */
2938 char *extra;
2939
2940 /* The thread's name. May be NULL. */
2941 char *name;
2942
2943 /* The core the thread was running on. -1 if not known. */
2944 int core;
2945 } thread_item_t;
2946 DEF_VEC_O(thread_item_t);
2947
2948 /* Context passed around to the various methods listing remote
2949 threads. As new threads are found, they're added to the ITEMS
2950 vector. */
2951
2952 struct threads_listing_context
2953 {
2954 /* The threads found on the remote target. */
2955 VEC (thread_item_t) *items;
2956 };
2957
2958 /* Discard the contents of the constructed thread listing context. */
2959
2960 static void
2961 clear_threads_listing_context (void *p)
2962 {
2963 struct threads_listing_context *context
2964 = (struct threads_listing_context *) p;
2965 int i;
2966 struct thread_item *item;
2967
2968 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2969 {
2970 xfree (item->extra);
2971 xfree (item->name);
2972 }
2973
2974 VEC_free (thread_item_t, context->items);
2975 }
2976
2977 /* Remove the thread specified as the related_pid field of WS
2978 from the CONTEXT list. */
2979
2980 static void
2981 threads_listing_context_remove (struct target_waitstatus *ws,
2982 struct threads_listing_context *context)
2983 {
2984 struct thread_item *item;
2985 int i;
2986 ptid_t child_ptid = ws->value.related_pid;
2987
2988 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2989 {
2990 if (ptid_equal (item->ptid, child_ptid))
2991 {
2992 VEC_ordered_remove (thread_item_t, context->items, i);
2993 break;
2994 }
2995 }
2996 }
2997
2998 static int
2999 remote_newthread_step (threadref *ref, void *data)
3000 {
3001 struct threads_listing_context *context
3002 = (struct threads_listing_context *) data;
3003 struct thread_item item;
3004 int pid = ptid_get_pid (inferior_ptid);
3005
3006 item.ptid = ptid_build (pid, threadref_to_int (ref), 0);
3007 item.core = -1;
3008 item.name = NULL;
3009 item.extra = NULL;
3010
3011 VEC_safe_push (thread_item_t, context->items, &item);
3012
3013 return 1; /* continue iterator */
3014 }
3015
3016 #define CRAZY_MAX_THREADS 1000
3017
3018 static ptid_t
3019 remote_current_thread (ptid_t oldpid)
3020 {
3021 struct remote_state *rs = get_remote_state ();
3022
3023 putpkt ("qC");
3024 getpkt (&rs->buf, &rs->buf_size, 0);
3025 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3026 {
3027 char *obuf;
3028 ptid_t result;
3029
3030 result = read_ptid (&rs->buf[2], &obuf);
3031 if (*obuf != '\0' && remote_debug)
3032 fprintf_unfiltered (gdb_stdlog,
3033 "warning: garbage in qC reply\n");
3034
3035 return result;
3036 }
3037 else
3038 return oldpid;
3039 }
3040
3041 /* List remote threads using the deprecated qL packet. */
3042
3043 static int
3044 remote_get_threads_with_ql (struct target_ops *ops,
3045 struct threads_listing_context *context)
3046 {
3047 if (remote_threadlist_iterator (remote_newthread_step, context,
3048 CRAZY_MAX_THREADS) >= 0)
3049 return 1;
3050
3051 return 0;
3052 }
3053
3054 #if defined(HAVE_LIBEXPAT)
3055
3056 static void
3057 start_thread (struct gdb_xml_parser *parser,
3058 const struct gdb_xml_element *element,
3059 void *user_data, VEC(gdb_xml_value_s) *attributes)
3060 {
3061 struct threads_listing_context *data
3062 = (struct threads_listing_context *) user_data;
3063
3064 struct thread_item item;
3065 char *id;
3066 struct gdb_xml_value *attr;
3067
3068 id = (char *) xml_find_attribute (attributes, "id")->value;
3069 item.ptid = read_ptid (id, NULL);
3070
3071 attr = xml_find_attribute (attributes, "core");
3072 if (attr != NULL)
3073 item.core = *(ULONGEST *) attr->value;
3074 else
3075 item.core = -1;
3076
3077 attr = xml_find_attribute (attributes, "name");
3078 item.name = attr != NULL ? xstrdup ((const char *) attr->value) : NULL;
3079
3080 item.extra = 0;
3081
3082 VEC_safe_push (thread_item_t, data->items, &item);
3083 }
3084
3085 static void
3086 end_thread (struct gdb_xml_parser *parser,
3087 const struct gdb_xml_element *element,
3088 void *user_data, const char *body_text)
3089 {
3090 struct threads_listing_context *data
3091 = (struct threads_listing_context *) user_data;
3092
3093 if (body_text && *body_text)
3094 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
3095 }
3096
3097 const struct gdb_xml_attribute thread_attributes[] = {
3098 { "id", GDB_XML_AF_NONE, NULL, NULL },
3099 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3100 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3101 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3102 };
3103
3104 const struct gdb_xml_element thread_children[] = {
3105 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3106 };
3107
3108 const struct gdb_xml_element threads_children[] = {
3109 { "thread", thread_attributes, thread_children,
3110 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3111 start_thread, end_thread },
3112 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3113 };
3114
3115 const struct gdb_xml_element threads_elements[] = {
3116 { "threads", NULL, threads_children,
3117 GDB_XML_EF_NONE, NULL, NULL },
3118 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3119 };
3120
3121 #endif
3122
3123 /* List remote threads using qXfer:threads:read. */
3124
3125 static int
3126 remote_get_threads_with_qxfer (struct target_ops *ops,
3127 struct threads_listing_context *context)
3128 {
3129 #if defined(HAVE_LIBEXPAT)
3130 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3131 {
3132 char *xml = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3133 struct cleanup *back_to = make_cleanup (xfree, xml);
3134
3135 if (xml != NULL && *xml != '\0')
3136 {
3137 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3138 threads_elements, xml, context);
3139 }
3140
3141 do_cleanups (back_to);
3142 return 1;
3143 }
3144 #endif
3145
3146 return 0;
3147 }
3148
3149 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3150
3151 static int
3152 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3153 struct threads_listing_context *context)
3154 {
3155 struct remote_state *rs = get_remote_state ();
3156
3157 if (rs->use_threadinfo_query)
3158 {
3159 char *bufp;
3160
3161 putpkt ("qfThreadInfo");
3162 getpkt (&rs->buf, &rs->buf_size, 0);
3163 bufp = rs->buf;
3164 if (bufp[0] != '\0') /* q packet recognized */
3165 {
3166 while (*bufp++ == 'm') /* reply contains one or more TID */
3167 {
3168 do
3169 {
3170 struct thread_item item;
3171
3172 item.ptid = read_ptid (bufp, &bufp);
3173 item.core = -1;
3174 item.name = NULL;
3175 item.extra = NULL;
3176
3177 VEC_safe_push (thread_item_t, context->items, &item);
3178 }
3179 while (*bufp++ == ','); /* comma-separated list */
3180 putpkt ("qsThreadInfo");
3181 getpkt (&rs->buf, &rs->buf_size, 0);
3182 bufp = rs->buf;
3183 }
3184 return 1;
3185 }
3186 else
3187 {
3188 /* Packet not recognized. */
3189 rs->use_threadinfo_query = 0;
3190 }
3191 }
3192
3193 return 0;
3194 }
3195
3196 /* Implement the to_update_thread_list function for the remote
3197 targets. */
3198
3199 static void
3200 remote_update_thread_list (struct target_ops *ops)
3201 {
3202 struct threads_listing_context context;
3203 struct cleanup *old_chain;
3204 int got_list = 0;
3205
3206 context.items = NULL;
3207 old_chain = make_cleanup (clear_threads_listing_context, &context);
3208
3209 /* We have a few different mechanisms to fetch the thread list. Try
3210 them all, starting with the most preferred one first, falling
3211 back to older methods. */
3212 if (remote_get_threads_with_qxfer (ops, &context)
3213 || remote_get_threads_with_qthreadinfo (ops, &context)
3214 || remote_get_threads_with_ql (ops, &context))
3215 {
3216 int i;
3217 struct thread_item *item;
3218 struct thread_info *tp, *tmp;
3219
3220 got_list = 1;
3221
3222 if (VEC_empty (thread_item_t, context.items)
3223 && remote_thread_always_alive (ops, inferior_ptid))
3224 {
3225 /* Some targets don't really support threads, but still
3226 reply an (empty) thread list in response to the thread
3227 listing packets, instead of replying "packet not
3228 supported". Exit early so we don't delete the main
3229 thread. */
3230 do_cleanups (old_chain);
3231 return;
3232 }
3233
3234 /* CONTEXT now holds the current thread list on the remote
3235 target end. Delete GDB-side threads no longer found on the
3236 target. */
3237 ALL_THREADS_SAFE (tp, tmp)
3238 {
3239 for (i = 0;
3240 VEC_iterate (thread_item_t, context.items, i, item);
3241 ++i)
3242 {
3243 if (ptid_equal (item->ptid, tp->ptid))
3244 break;
3245 }
3246
3247 if (i == VEC_length (thread_item_t, context.items))
3248 {
3249 /* Not found. */
3250 delete_thread (tp->ptid);
3251 }
3252 }
3253
3254 /* Remove any unreported fork child threads from CONTEXT so
3255 that we don't interfere with follow fork, which is where
3256 creation of such threads is handled. */
3257 remove_new_fork_children (&context);
3258
3259 /* And now add threads we don't know about yet to our list. */
3260 for (i = 0;
3261 VEC_iterate (thread_item_t, context.items, i, item);
3262 ++i)
3263 {
3264 if (!ptid_equal (item->ptid, null_ptid))
3265 {
3266 struct private_thread_info *info;
3267 /* In non-stop mode, we assume new found threads are
3268 executing until proven otherwise with a stop reply.
3269 In all-stop, we can only get here if all threads are
3270 stopped. */
3271 int executing = target_is_non_stop_p () ? 1 : 0;
3272
3273 remote_notice_new_inferior (item->ptid, executing);
3274
3275 info = demand_private_info (item->ptid);
3276 info->core = item->core;
3277 info->extra = item->extra;
3278 item->extra = NULL;
3279 info->name = item->name;
3280 item->name = NULL;
3281 }
3282 }
3283 }
3284
3285 if (!got_list)
3286 {
3287 /* If no thread listing method is supported, then query whether
3288 each known thread is alive, one by one, with the T packet.
3289 If the target doesn't support threads at all, then this is a
3290 no-op. See remote_thread_alive. */
3291 prune_threads ();
3292 }
3293
3294 do_cleanups (old_chain);
3295 }
3296
3297 /*
3298 * Collect a descriptive string about the given thread.
3299 * The target may say anything it wants to about the thread
3300 * (typically info about its blocked / runnable state, name, etc.).
3301 * This string will appear in the info threads display.
3302 *
3303 * Optional: targets are not required to implement this function.
3304 */
3305
3306 static char *
3307 remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
3308 {
3309 struct remote_state *rs = get_remote_state ();
3310 int result;
3311 int set;
3312 threadref id;
3313 struct gdb_ext_thread_info threadinfo;
3314 static char display_buf[100]; /* arbitrary... */
3315 int n = 0; /* position in display_buf */
3316
3317 if (rs->remote_desc == 0) /* paranoia */
3318 internal_error (__FILE__, __LINE__,
3319 _("remote_threads_extra_info"));
3320
3321 if (ptid_equal (tp->ptid, magic_null_ptid)
3322 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3323 /* This is the main thread which was added by GDB. The remote
3324 server doesn't know about it. */
3325 return NULL;
3326
3327 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3328 {
3329 struct thread_info *info = find_thread_ptid (tp->ptid);
3330
3331 if (info && info->priv)
3332 return info->priv->extra;
3333 else
3334 return NULL;
3335 }
3336
3337 if (rs->use_threadextra_query)
3338 {
3339 char *b = rs->buf;
3340 char *endb = rs->buf + get_remote_packet_size ();
3341
3342 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3343 b += strlen (b);
3344 write_ptid (b, endb, tp->ptid);
3345
3346 putpkt (rs->buf);
3347 getpkt (&rs->buf, &rs->buf_size, 0);
3348 if (rs->buf[0] != 0)
3349 {
3350 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
3351 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3352 display_buf [result] = '\0';
3353 return display_buf;
3354 }
3355 }
3356
3357 /* If the above query fails, fall back to the old method. */
3358 rs->use_threadextra_query = 0;
3359 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3360 | TAG_MOREDISPLAY | TAG_DISPLAY;
3361 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3362 if (remote_get_threadinfo (&id, set, &threadinfo))
3363 if (threadinfo.active)
3364 {
3365 if (*threadinfo.shortname)
3366 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3367 " Name: %s,", threadinfo.shortname);
3368 if (*threadinfo.display)
3369 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3370 " State: %s,", threadinfo.display);
3371 if (*threadinfo.more_display)
3372 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3373 " Priority: %s", threadinfo.more_display);
3374
3375 if (n > 0)
3376 {
3377 /* For purely cosmetic reasons, clear up trailing commas. */
3378 if (',' == display_buf[n-1])
3379 display_buf[n-1] = ' ';
3380 return display_buf;
3381 }
3382 }
3383 return NULL;
3384 }
3385 \f
3386
3387 static int
3388 remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
3389 struct static_tracepoint_marker *marker)
3390 {
3391 struct remote_state *rs = get_remote_state ();
3392 char *p = rs->buf;
3393
3394 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3395 p += strlen (p);
3396 p += hexnumstr (p, addr);
3397 putpkt (rs->buf);
3398 getpkt (&rs->buf, &rs->buf_size, 0);
3399 p = rs->buf;
3400
3401 if (*p == 'E')
3402 error (_("Remote failure reply: %s"), p);
3403
3404 if (*p++ == 'm')
3405 {
3406 parse_static_tracepoint_marker_definition (p, &p, marker);
3407 return 1;
3408 }
3409
3410 return 0;
3411 }
3412
3413 static VEC(static_tracepoint_marker_p) *
3414 remote_static_tracepoint_markers_by_strid (struct target_ops *self,
3415 const char *strid)
3416 {
3417 struct remote_state *rs = get_remote_state ();
3418 VEC(static_tracepoint_marker_p) *markers = NULL;
3419 struct static_tracepoint_marker *marker = NULL;
3420 struct cleanup *old_chain;
3421 char *p;
3422
3423 /* Ask for a first packet of static tracepoint marker
3424 definition. */
3425 putpkt ("qTfSTM");
3426 getpkt (&rs->buf, &rs->buf_size, 0);
3427 p = rs->buf;
3428 if (*p == 'E')
3429 error (_("Remote failure reply: %s"), p);
3430
3431 old_chain = make_cleanup (free_current_marker, &marker);
3432
3433 while (*p++ == 'm')
3434 {
3435 if (marker == NULL)
3436 marker = XCNEW (struct static_tracepoint_marker);
3437
3438 do
3439 {
3440 parse_static_tracepoint_marker_definition (p, &p, marker);
3441
3442 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
3443 {
3444 VEC_safe_push (static_tracepoint_marker_p,
3445 markers, marker);
3446 marker = NULL;
3447 }
3448 else
3449 {
3450 release_static_tracepoint_marker (marker);
3451 memset (marker, 0, sizeof (*marker));
3452 }
3453 }
3454 while (*p++ == ','); /* comma-separated list */
3455 /* Ask for another packet of static tracepoint definition. */
3456 putpkt ("qTsSTM");
3457 getpkt (&rs->buf, &rs->buf_size, 0);
3458 p = rs->buf;
3459 }
3460
3461 do_cleanups (old_chain);
3462 return markers;
3463 }
3464
3465 \f
3466 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3467
3468 static ptid_t
3469 remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
3470 {
3471 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3472 }
3473 \f
3474
3475 /* Restart the remote side; this is an extended protocol operation. */
3476
3477 static void
3478 extended_remote_restart (void)
3479 {
3480 struct remote_state *rs = get_remote_state ();
3481
3482 /* Send the restart command; for reasons I don't understand the
3483 remote side really expects a number after the "R". */
3484 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3485 putpkt (rs->buf);
3486
3487 remote_fileio_reset ();
3488 }
3489 \f
3490 /* Clean up connection to a remote debugger. */
3491
3492 static void
3493 remote_close (struct target_ops *self)
3494 {
3495 struct remote_state *rs = get_remote_state ();
3496
3497 if (rs->remote_desc == NULL)
3498 return; /* already closed */
3499
3500 /* Make sure we leave stdin registered in the event loop, and we
3501 don't leave the async SIGINT signal handler installed. */
3502 remote_terminal_ours (self);
3503
3504 serial_close (rs->remote_desc);
3505 rs->remote_desc = NULL;
3506
3507 /* We don't have a connection to the remote stub anymore. Get rid
3508 of all the inferiors and their threads we were controlling.
3509 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3510 will be unable to find the thread corresponding to (pid, 0, 0). */
3511 inferior_ptid = null_ptid;
3512 discard_all_inferiors ();
3513
3514 /* We are closing the remote target, so we should discard
3515 everything of this target. */
3516 discard_pending_stop_replies_in_queue (rs);
3517
3518 if (remote_async_inferior_event_token)
3519 delete_async_event_handler (&remote_async_inferior_event_token);
3520
3521 remote_notif_state_xfree (rs->notif_state);
3522
3523 trace_reset_local_state ();
3524 }
3525
3526 /* Query the remote side for the text, data and bss offsets. */
3527
3528 static void
3529 get_offsets (void)
3530 {
3531 struct remote_state *rs = get_remote_state ();
3532 char *buf;
3533 char *ptr;
3534 int lose, num_segments = 0, do_sections, do_segments;
3535 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3536 struct section_offsets *offs;
3537 struct symfile_segment_data *data;
3538
3539 if (symfile_objfile == NULL)
3540 return;
3541
3542 putpkt ("qOffsets");
3543 getpkt (&rs->buf, &rs->buf_size, 0);
3544 buf = rs->buf;
3545
3546 if (buf[0] == '\000')
3547 return; /* Return silently. Stub doesn't support
3548 this command. */
3549 if (buf[0] == 'E')
3550 {
3551 warning (_("Remote failure reply: %s"), buf);
3552 return;
3553 }
3554
3555 /* Pick up each field in turn. This used to be done with scanf, but
3556 scanf will make trouble if CORE_ADDR size doesn't match
3557 conversion directives correctly. The following code will work
3558 with any size of CORE_ADDR. */
3559 text_addr = data_addr = bss_addr = 0;
3560 ptr = buf;
3561 lose = 0;
3562
3563 if (startswith (ptr, "Text="))
3564 {
3565 ptr += 5;
3566 /* Don't use strtol, could lose on big values. */
3567 while (*ptr && *ptr != ';')
3568 text_addr = (text_addr << 4) + fromhex (*ptr++);
3569
3570 if (startswith (ptr, ";Data="))
3571 {
3572 ptr += 6;
3573 while (*ptr && *ptr != ';')
3574 data_addr = (data_addr << 4) + fromhex (*ptr++);
3575 }
3576 else
3577 lose = 1;
3578
3579 if (!lose && startswith (ptr, ";Bss="))
3580 {
3581 ptr += 5;
3582 while (*ptr && *ptr != ';')
3583 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3584
3585 if (bss_addr != data_addr)
3586 warning (_("Target reported unsupported offsets: %s"), buf);
3587 }
3588 else
3589 lose = 1;
3590 }
3591 else if (startswith (ptr, "TextSeg="))
3592 {
3593 ptr += 8;
3594 /* Don't use strtol, could lose on big values. */
3595 while (*ptr && *ptr != ';')
3596 text_addr = (text_addr << 4) + fromhex (*ptr++);
3597 num_segments = 1;
3598
3599 if (startswith (ptr, ";DataSeg="))
3600 {
3601 ptr += 9;
3602 while (*ptr && *ptr != ';')
3603 data_addr = (data_addr << 4) + fromhex (*ptr++);
3604 num_segments++;
3605 }
3606 }
3607 else
3608 lose = 1;
3609
3610 if (lose)
3611 error (_("Malformed response to offset query, %s"), buf);
3612 else if (*ptr != '\0')
3613 warning (_("Target reported unsupported offsets: %s"), buf);
3614
3615 offs = ((struct section_offsets *)
3616 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3617 memcpy (offs, symfile_objfile->section_offsets,
3618 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3619
3620 data = get_symfile_segment_data (symfile_objfile->obfd);
3621 do_segments = (data != NULL);
3622 do_sections = num_segments == 0;
3623
3624 if (num_segments > 0)
3625 {
3626 segments[0] = text_addr;
3627 segments[1] = data_addr;
3628 }
3629 /* If we have two segments, we can still try to relocate everything
3630 by assuming that the .text and .data offsets apply to the whole
3631 text and data segments. Convert the offsets given in the packet
3632 to base addresses for symfile_map_offsets_to_segments. */
3633 else if (data && data->num_segments == 2)
3634 {
3635 segments[0] = data->segment_bases[0] + text_addr;
3636 segments[1] = data->segment_bases[1] + data_addr;
3637 num_segments = 2;
3638 }
3639 /* If the object file has only one segment, assume that it is text
3640 rather than data; main programs with no writable data are rare,
3641 but programs with no code are useless. Of course the code might
3642 have ended up in the data segment... to detect that we would need
3643 the permissions here. */
3644 else if (data && data->num_segments == 1)
3645 {
3646 segments[0] = data->segment_bases[0] + text_addr;
3647 num_segments = 1;
3648 }
3649 /* There's no way to relocate by segment. */
3650 else
3651 do_segments = 0;
3652
3653 if (do_segments)
3654 {
3655 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3656 offs, num_segments, segments);
3657
3658 if (ret == 0 && !do_sections)
3659 error (_("Can not handle qOffsets TextSeg "
3660 "response with this symbol file"));
3661
3662 if (ret > 0)
3663 do_sections = 0;
3664 }
3665
3666 if (data)
3667 free_symfile_segment_data (data);
3668
3669 if (do_sections)
3670 {
3671 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3672
3673 /* This is a temporary kludge to force data and bss to use the
3674 same offsets because that's what nlmconv does now. The real
3675 solution requires changes to the stub and remote.c that I
3676 don't have time to do right now. */
3677
3678 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3679 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3680 }
3681
3682 objfile_relocate (symfile_objfile, offs);
3683 }
3684
3685 /* Send interrupt_sequence to remote target. */
3686 static void
3687 send_interrupt_sequence (void)
3688 {
3689 struct remote_state *rs = get_remote_state ();
3690
3691 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3692 remote_serial_write ("\x03", 1);
3693 else if (interrupt_sequence_mode == interrupt_sequence_break)
3694 serial_send_break (rs->remote_desc);
3695 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3696 {
3697 serial_send_break (rs->remote_desc);
3698 remote_serial_write ("g", 1);
3699 }
3700 else
3701 internal_error (__FILE__, __LINE__,
3702 _("Invalid value for interrupt_sequence_mode: %s."),
3703 interrupt_sequence_mode);
3704 }
3705
3706
3707 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3708 and extract the PTID. Returns NULL_PTID if not found. */
3709
3710 static ptid_t
3711 stop_reply_extract_thread (char *stop_reply)
3712 {
3713 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3714 {
3715 char *p;
3716
3717 /* Txx r:val ; r:val (...) */
3718 p = &stop_reply[3];
3719
3720 /* Look for "register" named "thread". */
3721 while (*p != '\0')
3722 {
3723 char *p1;
3724
3725 p1 = strchr (p, ':');
3726 if (p1 == NULL)
3727 return null_ptid;
3728
3729 if (strncmp (p, "thread", p1 - p) == 0)
3730 return read_ptid (++p1, &p);
3731
3732 p1 = strchr (p, ';');
3733 if (p1 == NULL)
3734 return null_ptid;
3735 p1++;
3736
3737 p = p1;
3738 }
3739 }
3740
3741 return null_ptid;
3742 }
3743
3744 /* Determine the remote side's current thread. If we have a stop
3745 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3746 "thread" register we can extract the current thread from. If not,
3747 ask the remote which is the current thread with qC. The former
3748 method avoids a roundtrip. */
3749
3750 static ptid_t
3751 get_current_thread (char *wait_status)
3752 {
3753 ptid_t ptid = null_ptid;
3754
3755 /* Note we don't use remote_parse_stop_reply as that makes use of
3756 the target architecture, which we haven't yet fully determined at
3757 this point. */
3758 if (wait_status != NULL)
3759 ptid = stop_reply_extract_thread (wait_status);
3760 if (ptid_equal (ptid, null_ptid))
3761 ptid = remote_current_thread (inferior_ptid);
3762
3763 return ptid;
3764 }
3765
3766 /* Query the remote target for which is the current thread/process,
3767 add it to our tables, and update INFERIOR_PTID. The caller is
3768 responsible for setting the state such that the remote end is ready
3769 to return the current thread.
3770
3771 This function is called after handling the '?' or 'vRun' packets,
3772 whose response is a stop reply from which we can also try
3773 extracting the thread. If the target doesn't support the explicit
3774 qC query, we infer the current thread from that stop reply, passed
3775 in in WAIT_STATUS, which may be NULL. */
3776
3777 static void
3778 add_current_inferior_and_thread (char *wait_status)
3779 {
3780 struct remote_state *rs = get_remote_state ();
3781 int fake_pid_p = 0;
3782 ptid_t ptid;
3783
3784 inferior_ptid = null_ptid;
3785
3786 /* Now, if we have thread information, update inferior_ptid. */
3787 ptid = get_current_thread (wait_status);
3788
3789 if (!ptid_equal (ptid, null_ptid))
3790 {
3791 if (!remote_multi_process_p (rs))
3792 fake_pid_p = 1;
3793
3794 inferior_ptid = ptid;
3795 }
3796 else
3797 {
3798 /* Without this, some commands which require an active target
3799 (such as kill) won't work. This variable serves (at least)
3800 double duty as both the pid of the target process (if it has
3801 such), and as a flag indicating that a target is active. */
3802 inferior_ptid = magic_null_ptid;
3803 fake_pid_p = 1;
3804 }
3805
3806 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1, 1);
3807
3808 /* Add the main thread. */
3809 add_thread_silent (inferior_ptid);
3810 }
3811
3812 /* Print info about a thread that was found already stopped on
3813 connection. */
3814
3815 static void
3816 print_one_stopped_thread (struct thread_info *thread)
3817 {
3818 struct target_waitstatus *ws = &thread->suspend.waitstatus;
3819
3820 switch_to_thread (thread->ptid);
3821 stop_pc = get_frame_pc (get_current_frame ());
3822 set_current_sal_from_frame (get_current_frame ());
3823
3824 thread->suspend.waitstatus_pending_p = 0;
3825
3826 if (ws->kind == TARGET_WAITKIND_STOPPED)
3827 {
3828 enum gdb_signal sig = ws->value.sig;
3829
3830 if (signal_print_state (sig))
3831 observer_notify_signal_received (sig);
3832 }
3833 observer_notify_normal_stop (NULL, 1);
3834 }
3835
3836 /* Process all initial stop replies the remote side sent in response
3837 to the ? packet. These indicate threads that were already stopped
3838 on initial connection. We mark these threads as stopped and print
3839 their current frame before giving the user the prompt. */
3840
3841 static void
3842 process_initial_stop_replies (int from_tty)
3843 {
3844 int pending_stop_replies = stop_reply_queue_length ();
3845 struct inferior *inf;
3846 struct thread_info *thread;
3847 struct thread_info *selected = NULL;
3848 struct thread_info *lowest_stopped = NULL;
3849 struct thread_info *first = NULL;
3850
3851 /* Consume the initial pending events. */
3852 while (pending_stop_replies-- > 0)
3853 {
3854 ptid_t waiton_ptid = minus_one_ptid;
3855 ptid_t event_ptid;
3856 struct target_waitstatus ws;
3857 int ignore_event = 0;
3858 struct thread_info *thread;
3859
3860 memset (&ws, 0, sizeof (ws));
3861 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
3862 if (remote_debug)
3863 print_target_wait_results (waiton_ptid, event_ptid, &ws);
3864
3865 switch (ws.kind)
3866 {
3867 case TARGET_WAITKIND_IGNORE:
3868 case TARGET_WAITKIND_NO_RESUMED:
3869 case TARGET_WAITKIND_SIGNALLED:
3870 case TARGET_WAITKIND_EXITED:
3871 /* We shouldn't see these, but if we do, just ignore. */
3872 if (remote_debug)
3873 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
3874 ignore_event = 1;
3875 break;
3876
3877 case TARGET_WAITKIND_EXECD:
3878 xfree (ws.value.execd_pathname);
3879 break;
3880 default:
3881 break;
3882 }
3883
3884 if (ignore_event)
3885 continue;
3886
3887 thread = find_thread_ptid (event_ptid);
3888
3889 if (ws.kind == TARGET_WAITKIND_STOPPED)
3890 {
3891 enum gdb_signal sig = ws.value.sig;
3892
3893 /* Stubs traditionally report SIGTRAP as initial signal,
3894 instead of signal 0. Suppress it. */
3895 if (sig == GDB_SIGNAL_TRAP)
3896 sig = GDB_SIGNAL_0;
3897 thread->suspend.stop_signal = sig;
3898 ws.value.sig = sig;
3899 }
3900
3901 thread->suspend.waitstatus = ws;
3902
3903 if (ws.kind != TARGET_WAITKIND_STOPPED
3904 || ws.value.sig != GDB_SIGNAL_0)
3905 thread->suspend.waitstatus_pending_p = 1;
3906
3907 set_executing (event_ptid, 0);
3908 set_running (event_ptid, 0);
3909 }
3910
3911 /* "Notice" the new inferiors before anything related to
3912 registers/memory. */
3913 ALL_INFERIORS (inf)
3914 {
3915 if (inf->pid == 0)
3916 continue;
3917
3918 inf->needs_setup = 1;
3919
3920 if (non_stop)
3921 {
3922 thread = any_live_thread_of_process (inf->pid);
3923 notice_new_inferior (thread->ptid,
3924 thread->state == THREAD_RUNNING,
3925 from_tty);
3926 }
3927 }
3928
3929 /* If all-stop on top of non-stop, pause all threads. Note this
3930 records the threads' stop pc, so must be done after "noticing"
3931 the inferiors. */
3932 if (!non_stop)
3933 {
3934 stop_all_threads ();
3935
3936 /* If all threads of an inferior were already stopped, we
3937 haven't setup the inferior yet. */
3938 ALL_INFERIORS (inf)
3939 {
3940 if (inf->pid == 0)
3941 continue;
3942
3943 if (inf->needs_setup)
3944 {
3945 thread = any_live_thread_of_process (inf->pid);
3946 switch_to_thread_no_regs (thread);
3947 setup_inferior (0);
3948 }
3949 }
3950 }
3951
3952 /* Now go over all threads that are stopped, and print their current
3953 frame. If all-stop, then if there's a signalled thread, pick
3954 that as current. */
3955 ALL_NON_EXITED_THREADS (thread)
3956 {
3957 if (first == NULL)
3958 first = thread;
3959
3960 if (!non_stop)
3961 set_running (thread->ptid, 0);
3962 else if (thread->state != THREAD_STOPPED)
3963 continue;
3964
3965 if (selected == NULL
3966 && thread->suspend.waitstatus_pending_p)
3967 selected = thread;
3968
3969 if (lowest_stopped == NULL
3970 || thread->inf->num < lowest_stopped->inf->num
3971 || thread->per_inf_num < lowest_stopped->per_inf_num)
3972 lowest_stopped = thread;
3973
3974 if (non_stop)
3975 print_one_stopped_thread (thread);
3976 }
3977
3978 /* In all-stop, we only print the status of one thread, and leave
3979 others with their status pending. */
3980 if (!non_stop)
3981 {
3982 thread = selected;
3983 if (thread == NULL)
3984 thread = lowest_stopped;
3985 if (thread == NULL)
3986 thread = first;
3987
3988 print_one_stopped_thread (thread);
3989 }
3990
3991 /* For "info program". */
3992 thread = inferior_thread ();
3993 if (thread->state == THREAD_STOPPED)
3994 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
3995 }
3996
3997 static void
3998 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3999 {
4000 struct remote_state *rs = get_remote_state ();
4001 struct packet_config *noack_config;
4002 char *wait_status = NULL;
4003
4004 immediate_quit++; /* Allow user to interrupt it. */
4005 QUIT;
4006
4007 if (interrupt_on_connect)
4008 send_interrupt_sequence ();
4009
4010 /* Ack any packet which the remote side has already sent. */
4011 serial_write (rs->remote_desc, "+", 1);
4012
4013 /* Signal other parts that we're going through the initial setup,
4014 and so things may not be stable yet. */
4015 rs->starting_up = 1;
4016
4017 /* The first packet we send to the target is the optional "supported
4018 packets" request. If the target can answer this, it will tell us
4019 which later probes to skip. */
4020 remote_query_supported ();
4021
4022 /* If the stub wants to get a QAllow, compose one and send it. */
4023 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4024 remote_set_permissions (target);
4025
4026 /* Next, we possibly activate noack mode.
4027
4028 If the QStartNoAckMode packet configuration is set to AUTO,
4029 enable noack mode if the stub reported a wish for it with
4030 qSupported.
4031
4032 If set to TRUE, then enable noack mode even if the stub didn't
4033 report it in qSupported. If the stub doesn't reply OK, the
4034 session ends with an error.
4035
4036 If FALSE, then don't activate noack mode, regardless of what the
4037 stub claimed should be the default with qSupported. */
4038
4039 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4040 if (packet_config_support (noack_config) != PACKET_DISABLE)
4041 {
4042 putpkt ("QStartNoAckMode");
4043 getpkt (&rs->buf, &rs->buf_size, 0);
4044 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4045 rs->noack_mode = 1;
4046 }
4047
4048 if (extended_p)
4049 {
4050 /* Tell the remote that we are using the extended protocol. */
4051 putpkt ("!");
4052 getpkt (&rs->buf, &rs->buf_size, 0);
4053 }
4054
4055 /* Let the target know which signals it is allowed to pass down to
4056 the program. */
4057 update_signals_program_target ();
4058
4059 /* Next, if the target can specify a description, read it. We do
4060 this before anything involving memory or registers. */
4061 target_find_description ();
4062
4063 /* Next, now that we know something about the target, update the
4064 address spaces in the program spaces. */
4065 update_address_spaces ();
4066
4067 /* On OSs where the list of libraries is global to all
4068 processes, we fetch them early. */
4069 if (gdbarch_has_global_solist (target_gdbarch ()))
4070 solib_add (NULL, from_tty, target, auto_solib_add);
4071
4072 if (target_is_non_stop_p ())
4073 {
4074 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4075 error (_("Non-stop mode requested, but remote "
4076 "does not support non-stop"));
4077
4078 putpkt ("QNonStop:1");
4079 getpkt (&rs->buf, &rs->buf_size, 0);
4080
4081 if (strcmp (rs->buf, "OK") != 0)
4082 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4083
4084 /* Find about threads and processes the stub is already
4085 controlling. We default to adding them in the running state.
4086 The '?' query below will then tell us about which threads are
4087 stopped. */
4088 remote_update_thread_list (target);
4089 }
4090 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4091 {
4092 /* Don't assume that the stub can operate in all-stop mode.
4093 Request it explicitly. */
4094 putpkt ("QNonStop:0");
4095 getpkt (&rs->buf, &rs->buf_size, 0);
4096
4097 if (strcmp (rs->buf, "OK") != 0)
4098 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4099 }
4100
4101 /* Upload TSVs regardless of whether the target is running or not. The
4102 remote stub, such as GDBserver, may have some predefined or builtin
4103 TSVs, even if the target is not running. */
4104 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4105 {
4106 struct uploaded_tsv *uploaded_tsvs = NULL;
4107
4108 remote_upload_trace_state_variables (target, &uploaded_tsvs);
4109 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4110 }
4111
4112 /* Check whether the target is running now. */
4113 putpkt ("?");
4114 getpkt (&rs->buf, &rs->buf_size, 0);
4115
4116 if (!target_is_non_stop_p ())
4117 {
4118 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4119 {
4120 if (!extended_p)
4121 error (_("The target is not running (try extended-remote?)"));
4122
4123 /* We're connected, but not running. Drop out before we
4124 call start_remote. */
4125 rs->starting_up = 0;
4126 return;
4127 }
4128 else
4129 {
4130 /* Save the reply for later. */
4131 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4132 strcpy (wait_status, rs->buf);
4133 }
4134
4135 /* Fetch thread list. */
4136 target_update_thread_list ();
4137
4138 /* Let the stub know that we want it to return the thread. */
4139 set_continue_thread (minus_one_ptid);
4140
4141 if (thread_count () == 0)
4142 {
4143 /* Target has no concept of threads at all. GDB treats
4144 non-threaded target as single-threaded; add a main
4145 thread. */
4146 add_current_inferior_and_thread (wait_status);
4147 }
4148 else
4149 {
4150 /* We have thread information; select the thread the target
4151 says should be current. If we're reconnecting to a
4152 multi-threaded program, this will ideally be the thread
4153 that last reported an event before GDB disconnected. */
4154 inferior_ptid = get_current_thread (wait_status);
4155 if (ptid_equal (inferior_ptid, null_ptid))
4156 {
4157 /* Odd... The target was able to list threads, but not
4158 tell us which thread was current (no "thread"
4159 register in T stop reply?). Just pick the first
4160 thread in the thread list then. */
4161
4162 if (remote_debug)
4163 fprintf_unfiltered (gdb_stdlog,
4164 "warning: couldn't determine remote "
4165 "current thread; picking first in list.\n");
4166
4167 inferior_ptid = thread_list->ptid;
4168 }
4169 }
4170
4171 /* init_wait_for_inferior should be called before get_offsets in order
4172 to manage `inserted' flag in bp loc in a correct state.
4173 breakpoint_init_inferior, called from init_wait_for_inferior, set
4174 `inserted' flag to 0, while before breakpoint_re_set, called from
4175 start_remote, set `inserted' flag to 1. In the initialization of
4176 inferior, breakpoint_init_inferior should be called first, and then
4177 breakpoint_re_set can be called. If this order is broken, state of
4178 `inserted' flag is wrong, and cause some problems on breakpoint
4179 manipulation. */
4180 init_wait_for_inferior ();
4181
4182 get_offsets (); /* Get text, data & bss offsets. */
4183
4184 /* If we could not find a description using qXfer, and we know
4185 how to do it some other way, try again. This is not
4186 supported for non-stop; it could be, but it is tricky if
4187 there are no stopped threads when we connect. */
4188 if (remote_read_description_p (target)
4189 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4190 {
4191 target_clear_description ();
4192 target_find_description ();
4193 }
4194
4195 /* Use the previously fetched status. */
4196 gdb_assert (wait_status != NULL);
4197 strcpy (rs->buf, wait_status);
4198 rs->cached_wait_status = 1;
4199
4200 immediate_quit--;
4201 start_remote (from_tty); /* Initialize gdb process mechanisms. */
4202 }
4203 else
4204 {
4205 /* Clear WFI global state. Do this before finding about new
4206 threads and inferiors, and setting the current inferior.
4207 Otherwise we would clear the proceed status of the current
4208 inferior when we want its stop_soon state to be preserved
4209 (see notice_new_inferior). */
4210 init_wait_for_inferior ();
4211
4212 /* In non-stop, we will either get an "OK", meaning that there
4213 are no stopped threads at this time; or, a regular stop
4214 reply. In the latter case, there may be more than one thread
4215 stopped --- we pull them all out using the vStopped
4216 mechanism. */
4217 if (strcmp (rs->buf, "OK") != 0)
4218 {
4219 struct notif_client *notif = &notif_client_stop;
4220
4221 /* remote_notif_get_pending_replies acks this one, and gets
4222 the rest out. */
4223 rs->notif_state->pending_event[notif_client_stop.id]
4224 = remote_notif_parse (notif, rs->buf);
4225 remote_notif_get_pending_events (notif);
4226 }
4227
4228 if (thread_count () == 0)
4229 {
4230 if (!extended_p)
4231 error (_("The target is not running (try extended-remote?)"));
4232
4233 /* We're connected, but not running. Drop out before we
4234 call start_remote. */
4235 rs->starting_up = 0;
4236 return;
4237 }
4238
4239 /* In non-stop mode, any cached wait status will be stored in
4240 the stop reply queue. */
4241 gdb_assert (wait_status == NULL);
4242
4243 /* Report all signals during attach/startup. */
4244 remote_pass_signals (target, 0, NULL);
4245
4246 /* If there are already stopped threads, mark them stopped and
4247 report their stops before giving the prompt to the user. */
4248 process_initial_stop_replies (from_tty);
4249
4250 if (target_can_async_p ())
4251 target_async (1);
4252 }
4253
4254 /* If we connected to a live target, do some additional setup. */
4255 if (target_has_execution)
4256 {
4257 if (symfile_objfile) /* No use without a symbol-file. */
4258 remote_check_symbols ();
4259 }
4260
4261 /* Possibly the target has been engaged in a trace run started
4262 previously; find out where things are at. */
4263 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4264 {
4265 struct uploaded_tp *uploaded_tps = NULL;
4266
4267 if (current_trace_status ()->running)
4268 printf_filtered (_("Trace is already running on the target.\n"));
4269
4270 remote_upload_tracepoints (target, &uploaded_tps);
4271
4272 merge_uploaded_tracepoints (&uploaded_tps);
4273 }
4274
4275 /* The thread and inferior lists are now synchronized with the
4276 target, our symbols have been relocated, and we're merged the
4277 target's tracepoints with ours. We're done with basic start
4278 up. */
4279 rs->starting_up = 0;
4280
4281 /* Maybe breakpoints are global and need to be inserted now. */
4282 if (breakpoints_should_be_inserted_now ())
4283 insert_breakpoints ();
4284 }
4285
4286 /* Open a connection to a remote debugger.
4287 NAME is the filename used for communication. */
4288
4289 static void
4290 remote_open (const char *name, int from_tty)
4291 {
4292 remote_open_1 (name, from_tty, &remote_ops, 0);
4293 }
4294
4295 /* Open a connection to a remote debugger using the extended
4296 remote gdb protocol. NAME is the filename used for communication. */
4297
4298 static void
4299 extended_remote_open (const char *name, int from_tty)
4300 {
4301 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
4302 }
4303
4304 /* Reset all packets back to "unknown support". Called when opening a
4305 new connection to a remote target. */
4306
4307 static void
4308 reset_all_packet_configs_support (void)
4309 {
4310 int i;
4311
4312 for (i = 0; i < PACKET_MAX; i++)
4313 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4314 }
4315
4316 /* Initialize all packet configs. */
4317
4318 static void
4319 init_all_packet_configs (void)
4320 {
4321 int i;
4322
4323 for (i = 0; i < PACKET_MAX; i++)
4324 {
4325 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4326 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4327 }
4328 }
4329
4330 /* Symbol look-up. */
4331
4332 static void
4333 remote_check_symbols (void)
4334 {
4335 struct remote_state *rs = get_remote_state ();
4336 char *msg, *reply, *tmp;
4337 int end;
4338 long reply_size;
4339 struct cleanup *old_chain;
4340
4341 /* The remote side has no concept of inferiors that aren't running
4342 yet, it only knows about running processes. If we're connected
4343 but our current inferior is not running, we should not invite the
4344 remote target to request symbol lookups related to its
4345 (unrelated) current process. */
4346 if (!target_has_execution)
4347 return;
4348
4349 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4350 return;
4351
4352 /* Make sure the remote is pointing at the right process. Note
4353 there's no way to select "no process". */
4354 set_general_process ();
4355
4356 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4357 because we need both at the same time. */
4358 msg = (char *) xmalloc (get_remote_packet_size ());
4359 old_chain = make_cleanup (xfree, msg);
4360 reply = (char *) xmalloc (get_remote_packet_size ());
4361 make_cleanup (free_current_contents, &reply);
4362 reply_size = get_remote_packet_size ();
4363
4364 /* Invite target to request symbol lookups. */
4365
4366 putpkt ("qSymbol::");
4367 getpkt (&reply, &reply_size, 0);
4368 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4369
4370 while (startswith (reply, "qSymbol:"))
4371 {
4372 struct bound_minimal_symbol sym;
4373
4374 tmp = &reply[8];
4375 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4376 msg[end] = '\0';
4377 sym = lookup_minimal_symbol (msg, NULL, NULL);
4378 if (sym.minsym == NULL)
4379 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4380 else
4381 {
4382 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4383 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4384
4385 /* If this is a function address, return the start of code
4386 instead of any data function descriptor. */
4387 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4388 sym_addr,
4389 &current_target);
4390
4391 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4392 phex_nz (sym_addr, addr_size), &reply[8]);
4393 }
4394
4395 putpkt (msg);
4396 getpkt (&reply, &reply_size, 0);
4397 }
4398
4399 do_cleanups (old_chain);
4400 }
4401
4402 static struct serial *
4403 remote_serial_open (const char *name)
4404 {
4405 static int udp_warning = 0;
4406
4407 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4408 of in ser-tcp.c, because it is the remote protocol assuming that the
4409 serial connection is reliable and not the serial connection promising
4410 to be. */
4411 if (!udp_warning && startswith (name, "udp:"))
4412 {
4413 warning (_("The remote protocol may be unreliable over UDP.\n"
4414 "Some events may be lost, rendering further debugging "
4415 "impossible."));
4416 udp_warning = 1;
4417 }
4418
4419 return serial_open (name);
4420 }
4421
4422 /* Inform the target of our permission settings. The permission flags
4423 work without this, but if the target knows the settings, it can do
4424 a couple things. First, it can add its own check, to catch cases
4425 that somehow manage to get by the permissions checks in target
4426 methods. Second, if the target is wired to disallow particular
4427 settings (for instance, a system in the field that is not set up to
4428 be able to stop at a breakpoint), it can object to any unavailable
4429 permissions. */
4430
4431 void
4432 remote_set_permissions (struct target_ops *self)
4433 {
4434 struct remote_state *rs = get_remote_state ();
4435
4436 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4437 "WriteReg:%x;WriteMem:%x;"
4438 "InsertBreak:%x;InsertTrace:%x;"
4439 "InsertFastTrace:%x;Stop:%x",
4440 may_write_registers, may_write_memory,
4441 may_insert_breakpoints, may_insert_tracepoints,
4442 may_insert_fast_tracepoints, may_stop);
4443 putpkt (rs->buf);
4444 getpkt (&rs->buf, &rs->buf_size, 0);
4445
4446 /* If the target didn't like the packet, warn the user. Do not try
4447 to undo the user's settings, that would just be maddening. */
4448 if (strcmp (rs->buf, "OK") != 0)
4449 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4450 }
4451
4452 /* This type describes each known response to the qSupported
4453 packet. */
4454 struct protocol_feature
4455 {
4456 /* The name of this protocol feature. */
4457 const char *name;
4458
4459 /* The default for this protocol feature. */
4460 enum packet_support default_support;
4461
4462 /* The function to call when this feature is reported, or after
4463 qSupported processing if the feature is not supported.
4464 The first argument points to this structure. The second
4465 argument indicates whether the packet requested support be
4466 enabled, disabled, or probed (or the default, if this function
4467 is being called at the end of processing and this feature was
4468 not reported). The third argument may be NULL; if not NULL, it
4469 is a NUL-terminated string taken from the packet following
4470 this feature's name and an equals sign. */
4471 void (*func) (const struct protocol_feature *, enum packet_support,
4472 const char *);
4473
4474 /* The corresponding packet for this feature. Only used if
4475 FUNC is remote_supported_packet. */
4476 int packet;
4477 };
4478
4479 static void
4480 remote_supported_packet (const struct protocol_feature *feature,
4481 enum packet_support support,
4482 const char *argument)
4483 {
4484 if (argument)
4485 {
4486 warning (_("Remote qSupported response supplied an unexpected value for"
4487 " \"%s\"."), feature->name);
4488 return;
4489 }
4490
4491 remote_protocol_packets[feature->packet].support = support;
4492 }
4493
4494 static void
4495 remote_packet_size (const struct protocol_feature *feature,
4496 enum packet_support support, const char *value)
4497 {
4498 struct remote_state *rs = get_remote_state ();
4499
4500 int packet_size;
4501 char *value_end;
4502
4503 if (support != PACKET_ENABLE)
4504 return;
4505
4506 if (value == NULL || *value == '\0')
4507 {
4508 warning (_("Remote target reported \"%s\" without a size."),
4509 feature->name);
4510 return;
4511 }
4512
4513 errno = 0;
4514 packet_size = strtol (value, &value_end, 16);
4515 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4516 {
4517 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4518 feature->name, value);
4519 return;
4520 }
4521
4522 /* Record the new maximum packet size. */
4523 rs->explicit_packet_size = packet_size;
4524 }
4525
4526 static const struct protocol_feature remote_protocol_features[] = {
4527 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4528 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4529 PACKET_qXfer_auxv },
4530 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4531 PACKET_qXfer_exec_file },
4532 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4533 PACKET_qXfer_features },
4534 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4535 PACKET_qXfer_libraries },
4536 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4537 PACKET_qXfer_libraries_svr4 },
4538 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4539 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4540 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4541 PACKET_qXfer_memory_map },
4542 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4543 PACKET_qXfer_spu_read },
4544 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4545 PACKET_qXfer_spu_write },
4546 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4547 PACKET_qXfer_osdata },
4548 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4549 PACKET_qXfer_threads },
4550 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4551 PACKET_qXfer_traceframe_info },
4552 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4553 PACKET_QPassSignals },
4554 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4555 PACKET_QCatchSyscalls },
4556 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4557 PACKET_QProgramSignals },
4558 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4559 PACKET_QStartNoAckMode },
4560 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4561 PACKET_multiprocess_feature },
4562 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4563 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4564 PACKET_qXfer_siginfo_read },
4565 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4566 PACKET_qXfer_siginfo_write },
4567 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4568 PACKET_ConditionalTracepoints },
4569 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4570 PACKET_ConditionalBreakpoints },
4571 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4572 PACKET_BreakpointCommands },
4573 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4574 PACKET_FastTracepoints },
4575 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4576 PACKET_StaticTracepoints },
4577 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4578 PACKET_InstallInTrace},
4579 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4580 PACKET_DisconnectedTracing_feature },
4581 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4582 PACKET_bc },
4583 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4584 PACKET_bs },
4585 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4586 PACKET_TracepointSource },
4587 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4588 PACKET_QAllow },
4589 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4590 PACKET_EnableDisableTracepoints_feature },
4591 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4592 PACKET_qXfer_fdpic },
4593 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4594 PACKET_qXfer_uib },
4595 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4596 PACKET_QDisableRandomization },
4597 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4598 { "QTBuffer:size", PACKET_DISABLE,
4599 remote_supported_packet, PACKET_QTBuffer_size},
4600 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4601 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4602 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4603 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4604 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4605 PACKET_qXfer_btrace },
4606 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4607 PACKET_qXfer_btrace_conf },
4608 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4609 PACKET_Qbtrace_conf_bts_size },
4610 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4611 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4612 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4613 PACKET_fork_event_feature },
4614 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4615 PACKET_vfork_event_feature },
4616 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4617 PACKET_exec_event_feature },
4618 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4619 PACKET_Qbtrace_conf_pt_size },
4620 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4621 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4622 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4623 };
4624
4625 static char *remote_support_xml;
4626
4627 /* Register string appended to "xmlRegisters=" in qSupported query. */
4628
4629 void
4630 register_remote_support_xml (const char *xml)
4631 {
4632 #if defined(HAVE_LIBEXPAT)
4633 if (remote_support_xml == NULL)
4634 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4635 else
4636 {
4637 char *copy = xstrdup (remote_support_xml + 13);
4638 char *p = strtok (copy, ",");
4639
4640 do
4641 {
4642 if (strcmp (p, xml) == 0)
4643 {
4644 /* already there */
4645 xfree (copy);
4646 return;
4647 }
4648 }
4649 while ((p = strtok (NULL, ",")) != NULL);
4650 xfree (copy);
4651
4652 remote_support_xml = reconcat (remote_support_xml,
4653 remote_support_xml, ",", xml,
4654 (char *) NULL);
4655 }
4656 #endif
4657 }
4658
4659 static char *
4660 remote_query_supported_append (char *msg, const char *append)
4661 {
4662 if (msg)
4663 return reconcat (msg, msg, ";", append, (char *) NULL);
4664 else
4665 return xstrdup (append);
4666 }
4667
4668 static void
4669 remote_query_supported (void)
4670 {
4671 struct remote_state *rs = get_remote_state ();
4672 char *next;
4673 int i;
4674 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4675
4676 /* The packet support flags are handled differently for this packet
4677 than for most others. We treat an error, a disabled packet, and
4678 an empty response identically: any features which must be reported
4679 to be used will be automatically disabled. An empty buffer
4680 accomplishes this, since that is also the representation for a list
4681 containing no features. */
4682
4683 rs->buf[0] = 0;
4684 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4685 {
4686 char *q = NULL;
4687 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4688
4689 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
4690 q = remote_query_supported_append (q, "multiprocess+");
4691
4692 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
4693 q = remote_query_supported_append (q, "swbreak+");
4694 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
4695 q = remote_query_supported_append (q, "hwbreak+");
4696
4697 q = remote_query_supported_append (q, "qRelocInsn+");
4698
4699 if (packet_set_cmd_state (PACKET_fork_event_feature)
4700 != AUTO_BOOLEAN_FALSE)
4701 q = remote_query_supported_append (q, "fork-events+");
4702 if (packet_set_cmd_state (PACKET_vfork_event_feature)
4703 != AUTO_BOOLEAN_FALSE)
4704 q = remote_query_supported_append (q, "vfork-events+");
4705 if (packet_set_cmd_state (PACKET_exec_event_feature)
4706 != AUTO_BOOLEAN_FALSE)
4707 q = remote_query_supported_append (q, "exec-events+");
4708
4709 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
4710 q = remote_query_supported_append (q, "vContSupported+");
4711
4712 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
4713 q = remote_query_supported_append (q, "QThreadEvents+");
4714
4715 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
4716 q = remote_query_supported_append (q, "no-resumed+");
4717
4718 /* Keep this one last to work around a gdbserver <= 7.10 bug in
4719 the qSupported:xmlRegisters=i386 handling. */
4720 if (remote_support_xml != NULL)
4721 q = remote_query_supported_append (q, remote_support_xml);
4722
4723 q = reconcat (q, "qSupported:", q, (char *) NULL);
4724 putpkt (q);
4725
4726 do_cleanups (old_chain);
4727
4728 getpkt (&rs->buf, &rs->buf_size, 0);
4729
4730 /* If an error occured, warn, but do not return - just reset the
4731 buffer to empty and go on to disable features. */
4732 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4733 == PACKET_ERROR)
4734 {
4735 warning (_("Remote failure reply: %s"), rs->buf);
4736 rs->buf[0] = 0;
4737 }
4738 }
4739
4740 memset (seen, 0, sizeof (seen));
4741
4742 next = rs->buf;
4743 while (*next)
4744 {
4745 enum packet_support is_supported;
4746 char *p, *end, *name_end, *value;
4747
4748 /* First separate out this item from the rest of the packet. If
4749 there's another item after this, we overwrite the separator
4750 (terminated strings are much easier to work with). */
4751 p = next;
4752 end = strchr (p, ';');
4753 if (end == NULL)
4754 {
4755 end = p + strlen (p);
4756 next = end;
4757 }
4758 else
4759 {
4760 *end = '\0';
4761 next = end + 1;
4762
4763 if (end == p)
4764 {
4765 warning (_("empty item in \"qSupported\" response"));
4766 continue;
4767 }
4768 }
4769
4770 name_end = strchr (p, '=');
4771 if (name_end)
4772 {
4773 /* This is a name=value entry. */
4774 is_supported = PACKET_ENABLE;
4775 value = name_end + 1;
4776 *name_end = '\0';
4777 }
4778 else
4779 {
4780 value = NULL;
4781 switch (end[-1])
4782 {
4783 case '+':
4784 is_supported = PACKET_ENABLE;
4785 break;
4786
4787 case '-':
4788 is_supported = PACKET_DISABLE;
4789 break;
4790
4791 case '?':
4792 is_supported = PACKET_SUPPORT_UNKNOWN;
4793 break;
4794
4795 default:
4796 warning (_("unrecognized item \"%s\" "
4797 "in \"qSupported\" response"), p);
4798 continue;
4799 }
4800 end[-1] = '\0';
4801 }
4802
4803 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4804 if (strcmp (remote_protocol_features[i].name, p) == 0)
4805 {
4806 const struct protocol_feature *feature;
4807
4808 seen[i] = 1;
4809 feature = &remote_protocol_features[i];
4810 feature->func (feature, is_supported, value);
4811 break;
4812 }
4813 }
4814
4815 /* If we increased the packet size, make sure to increase the global
4816 buffer size also. We delay this until after parsing the entire
4817 qSupported packet, because this is the same buffer we were
4818 parsing. */
4819 if (rs->buf_size < rs->explicit_packet_size)
4820 {
4821 rs->buf_size = rs->explicit_packet_size;
4822 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
4823 }
4824
4825 /* Handle the defaults for unmentioned features. */
4826 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4827 if (!seen[i])
4828 {
4829 const struct protocol_feature *feature;
4830
4831 feature = &remote_protocol_features[i];
4832 feature->func (feature, feature->default_support, NULL);
4833 }
4834 }
4835
4836 /* Remove any of the remote.c targets from target stack. Upper targets depend
4837 on it so remove them first. */
4838
4839 static void
4840 remote_unpush_target (void)
4841 {
4842 pop_all_targets_at_and_above (process_stratum);
4843 }
4844
4845 static void
4846 remote_open_1 (const char *name, int from_tty,
4847 struct target_ops *target, int extended_p)
4848 {
4849 struct remote_state *rs = get_remote_state ();
4850
4851 if (name == 0)
4852 error (_("To open a remote debug connection, you need to specify what\n"
4853 "serial device is attached to the remote system\n"
4854 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4855
4856 /* See FIXME above. */
4857 if (!target_async_permitted)
4858 wait_forever_enabled_p = 1;
4859
4860 /* If we're connected to a running target, target_preopen will kill it.
4861 Ask this question first, before target_preopen has a chance to kill
4862 anything. */
4863 if (rs->remote_desc != NULL && !have_inferiors ())
4864 {
4865 if (from_tty
4866 && !query (_("Already connected to a remote target. Disconnect? ")))
4867 error (_("Still connected."));
4868 }
4869
4870 /* Here the possibly existing remote target gets unpushed. */
4871 target_preopen (from_tty);
4872
4873 /* Make sure we send the passed signals list the next time we resume. */
4874 xfree (rs->last_pass_packet);
4875 rs->last_pass_packet = NULL;
4876
4877 /* Make sure we send the program signals list the next time we
4878 resume. */
4879 xfree (rs->last_program_signals_packet);
4880 rs->last_program_signals_packet = NULL;
4881
4882 remote_fileio_reset ();
4883 reopen_exec_file ();
4884 reread_symbols ();
4885
4886 rs->remote_desc = remote_serial_open (name);
4887 if (!rs->remote_desc)
4888 perror_with_name (name);
4889
4890 if (baud_rate != -1)
4891 {
4892 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4893 {
4894 /* The requested speed could not be set. Error out to
4895 top level after closing remote_desc. Take care to
4896 set remote_desc to NULL to avoid closing remote_desc
4897 more than once. */
4898 serial_close (rs->remote_desc);
4899 rs->remote_desc = NULL;
4900 perror_with_name (name);
4901 }
4902 }
4903
4904 serial_setparity (rs->remote_desc, serial_parity);
4905 serial_raw (rs->remote_desc);
4906
4907 /* If there is something sitting in the buffer we might take it as a
4908 response to a command, which would be bad. */
4909 serial_flush_input (rs->remote_desc);
4910
4911 if (from_tty)
4912 {
4913 puts_filtered ("Remote debugging using ");
4914 puts_filtered (name);
4915 puts_filtered ("\n");
4916 }
4917 push_target (target); /* Switch to using remote target now. */
4918
4919 /* Register extra event sources in the event loop. */
4920 remote_async_inferior_event_token
4921 = create_async_event_handler (remote_async_inferior_event_handler,
4922 NULL);
4923 rs->notif_state = remote_notif_state_allocate ();
4924
4925 /* Reset the target state; these things will be queried either by
4926 remote_query_supported or as they are needed. */
4927 reset_all_packet_configs_support ();
4928 rs->cached_wait_status = 0;
4929 rs->explicit_packet_size = 0;
4930 rs->noack_mode = 0;
4931 rs->extended = extended_p;
4932 rs->waiting_for_stop_reply = 0;
4933 rs->ctrlc_pending_p = 0;
4934
4935 rs->general_thread = not_sent_ptid;
4936 rs->continue_thread = not_sent_ptid;
4937 rs->remote_traceframe_number = -1;
4938
4939 /* Probe for ability to use "ThreadInfo" query, as required. */
4940 rs->use_threadinfo_query = 1;
4941 rs->use_threadextra_query = 1;
4942
4943 readahead_cache_invalidate ();
4944
4945 if (target_async_permitted)
4946 {
4947 /* With this target we start out by owning the terminal. */
4948 remote_async_terminal_ours_p = 1;
4949
4950 /* FIXME: cagney/1999-09-23: During the initial connection it is
4951 assumed that the target is already ready and able to respond to
4952 requests. Unfortunately remote_start_remote() eventually calls
4953 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4954 around this. Eventually a mechanism that allows
4955 wait_for_inferior() to expect/get timeouts will be
4956 implemented. */
4957 wait_forever_enabled_p = 0;
4958 }
4959
4960 /* First delete any symbols previously loaded from shared libraries. */
4961 no_shared_libraries (NULL, 0);
4962
4963 /* Start afresh. */
4964 init_thread_list ();
4965
4966 /* Start the remote connection. If error() or QUIT, discard this
4967 target (we'd otherwise be in an inconsistent state) and then
4968 propogate the error on up the exception chain. This ensures that
4969 the caller doesn't stumble along blindly assuming that the
4970 function succeeded. The CLI doesn't have this problem but other
4971 UI's, such as MI do.
4972
4973 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4974 this function should return an error indication letting the
4975 caller restore the previous state. Unfortunately the command
4976 ``target remote'' is directly wired to this function making that
4977 impossible. On a positive note, the CLI side of this problem has
4978 been fixed - the function set_cmd_context() makes it possible for
4979 all the ``target ....'' commands to share a common callback
4980 function. See cli-dump.c. */
4981 {
4982
4983 TRY
4984 {
4985 remote_start_remote (from_tty, target, extended_p);
4986 }
4987 CATCH (ex, RETURN_MASK_ALL)
4988 {
4989 /* Pop the partially set up target - unless something else did
4990 already before throwing the exception. */
4991 if (rs->remote_desc != NULL)
4992 remote_unpush_target ();
4993 if (target_async_permitted)
4994 wait_forever_enabled_p = 1;
4995 throw_exception (ex);
4996 }
4997 END_CATCH
4998 }
4999
5000 remote_btrace_reset ();
5001
5002 if (target_async_permitted)
5003 wait_forever_enabled_p = 1;
5004 }
5005
5006 /* Detach the specified process. */
5007
5008 static void
5009 remote_detach_pid (int pid)
5010 {
5011 struct remote_state *rs = get_remote_state ();
5012
5013 if (remote_multi_process_p (rs))
5014 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5015 else
5016 strcpy (rs->buf, "D");
5017
5018 putpkt (rs->buf);
5019 getpkt (&rs->buf, &rs->buf_size, 0);
5020
5021 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5022 ;
5023 else if (rs->buf[0] == '\0')
5024 error (_("Remote doesn't know how to detach"));
5025 else
5026 error (_("Can't detach process."));
5027 }
5028
5029 /* This detaches a program to which we previously attached, using
5030 inferior_ptid to identify the process. After this is done, GDB
5031 can be used to debug some other program. We better not have left
5032 any breakpoints in the target program or it'll die when it hits
5033 one. */
5034
5035 static void
5036 remote_detach_1 (const char *args, int from_tty)
5037 {
5038 int pid = ptid_get_pid (inferior_ptid);
5039 struct remote_state *rs = get_remote_state ();
5040 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5041 int is_fork_parent;
5042
5043 if (args)
5044 error (_("Argument given to \"detach\" when remotely debugging."));
5045
5046 if (!target_has_execution)
5047 error (_("No process to detach from."));
5048
5049 if (from_tty)
5050 {
5051 char *exec_file = get_exec_file (0);
5052 if (exec_file == NULL)
5053 exec_file = "";
5054 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
5055 target_pid_to_str (pid_to_ptid (pid)));
5056 gdb_flush (gdb_stdout);
5057 }
5058
5059 /* Tell the remote target to detach. */
5060 remote_detach_pid (pid);
5061
5062 /* Exit only if this is the only active inferior. */
5063 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5064 puts_filtered (_("Ending remote debugging.\n"));
5065
5066 /* Check to see if we are detaching a fork parent. Note that if we
5067 are detaching a fork child, tp == NULL. */
5068 is_fork_parent = (tp != NULL
5069 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5070
5071 /* If doing detach-on-fork, we don't mourn, because that will delete
5072 breakpoints that should be available for the followed inferior. */
5073 if (!is_fork_parent)
5074 target_mourn_inferior ();
5075 else
5076 {
5077 inferior_ptid = null_ptid;
5078 detach_inferior (pid);
5079 }
5080 }
5081
5082 static void
5083 remote_detach (struct target_ops *ops, const char *args, int from_tty)
5084 {
5085 remote_detach_1 (args, from_tty);
5086 }
5087
5088 static void
5089 extended_remote_detach (struct target_ops *ops, const char *args, int from_tty)
5090 {
5091 remote_detach_1 (args, from_tty);
5092 }
5093
5094 /* Target follow-fork function for remote targets. On entry, and
5095 at return, the current inferior is the fork parent.
5096
5097 Note that although this is currently only used for extended-remote,
5098 it is named remote_follow_fork in anticipation of using it for the
5099 remote target as well. */
5100
5101 static int
5102 remote_follow_fork (struct target_ops *ops, int follow_child,
5103 int detach_fork)
5104 {
5105 struct remote_state *rs = get_remote_state ();
5106 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5107
5108 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5109 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5110 {
5111 /* When following the parent and detaching the child, we detach
5112 the child here. For the case of following the child and
5113 detaching the parent, the detach is done in the target-
5114 independent follow fork code in infrun.c. We can't use
5115 target_detach when detaching an unfollowed child because
5116 the client side doesn't know anything about the child. */
5117 if (detach_fork && !follow_child)
5118 {
5119 /* Detach the fork child. */
5120 ptid_t child_ptid;
5121 pid_t child_pid;
5122
5123 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5124 child_pid = ptid_get_pid (child_ptid);
5125
5126 remote_detach_pid (child_pid);
5127 detach_inferior (child_pid);
5128 }
5129 }
5130 return 0;
5131 }
5132
5133 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5134 in the program space of the new inferior. On entry and at return the
5135 current inferior is the exec'ing inferior. INF is the new exec'd
5136 inferior, which may be the same as the exec'ing inferior unless
5137 follow-exec-mode is "new". */
5138
5139 static void
5140 remote_follow_exec (struct target_ops *ops,
5141 struct inferior *inf, char *execd_pathname)
5142 {
5143 /* We know that this is a target file name, so if it has the "target:"
5144 prefix we strip it off before saving it in the program space. */
5145 if (is_target_filename (execd_pathname))
5146 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5147
5148 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5149 }
5150
5151 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5152
5153 static void
5154 remote_disconnect (struct target_ops *target, const char *args, int from_tty)
5155 {
5156 if (args)
5157 error (_("Argument given to \"disconnect\" when remotely debugging."));
5158
5159 /* Make sure we unpush even the extended remote targets. Calling
5160 target_mourn_inferior won't unpush, and remote_mourn won't
5161 unpush if there is more than one inferior left. */
5162 unpush_target (target);
5163 generic_mourn_inferior ();
5164
5165 if (from_tty)
5166 puts_filtered ("Ending remote debugging.\n");
5167 }
5168
5169 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5170 be chatty about it. */
5171
5172 static void
5173 extended_remote_attach (struct target_ops *target, const char *args,
5174 int from_tty)
5175 {
5176 struct remote_state *rs = get_remote_state ();
5177 int pid;
5178 char *wait_status = NULL;
5179
5180 pid = parse_pid_to_attach (args);
5181
5182 /* Remote PID can be freely equal to getpid, do not check it here the same
5183 way as in other targets. */
5184
5185 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5186 error (_("This target does not support attaching to a process"));
5187
5188 if (from_tty)
5189 {
5190 char *exec_file = get_exec_file (0);
5191
5192 if (exec_file)
5193 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5194 target_pid_to_str (pid_to_ptid (pid)));
5195 else
5196 printf_unfiltered (_("Attaching to %s\n"),
5197 target_pid_to_str (pid_to_ptid (pid)));
5198
5199 gdb_flush (gdb_stdout);
5200 }
5201
5202 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5203 putpkt (rs->buf);
5204 getpkt (&rs->buf, &rs->buf_size, 0);
5205
5206 switch (packet_ok (rs->buf,
5207 &remote_protocol_packets[PACKET_vAttach]))
5208 {
5209 case PACKET_OK:
5210 if (!target_is_non_stop_p ())
5211 {
5212 /* Save the reply for later. */
5213 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5214 strcpy (wait_status, rs->buf);
5215 }
5216 else if (strcmp (rs->buf, "OK") != 0)
5217 error (_("Attaching to %s failed with: %s"),
5218 target_pid_to_str (pid_to_ptid (pid)),
5219 rs->buf);
5220 break;
5221 case PACKET_UNKNOWN:
5222 error (_("This target does not support attaching to a process"));
5223 default:
5224 error (_("Attaching to %s failed"),
5225 target_pid_to_str (pid_to_ptid (pid)));
5226 }
5227
5228 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5229
5230 inferior_ptid = pid_to_ptid (pid);
5231
5232 if (target_is_non_stop_p ())
5233 {
5234 struct thread_info *thread;
5235
5236 /* Get list of threads. */
5237 remote_update_thread_list (target);
5238
5239 thread = first_thread_of_process (pid);
5240 if (thread)
5241 inferior_ptid = thread->ptid;
5242 else
5243 inferior_ptid = pid_to_ptid (pid);
5244
5245 /* Invalidate our notion of the remote current thread. */
5246 record_currthread (rs, minus_one_ptid);
5247 }
5248 else
5249 {
5250 /* Now, if we have thread information, update inferior_ptid. */
5251 inferior_ptid = remote_current_thread (inferior_ptid);
5252
5253 /* Add the main thread to the thread list. */
5254 add_thread_silent (inferior_ptid);
5255 }
5256
5257 /* Next, if the target can specify a description, read it. We do
5258 this before anything involving memory or registers. */
5259 target_find_description ();
5260
5261 if (!target_is_non_stop_p ())
5262 {
5263 /* Use the previously fetched status. */
5264 gdb_assert (wait_status != NULL);
5265
5266 if (target_can_async_p ())
5267 {
5268 struct notif_event *reply
5269 = remote_notif_parse (&notif_client_stop, wait_status);
5270
5271 push_stop_reply ((struct stop_reply *) reply);
5272
5273 target_async (1);
5274 }
5275 else
5276 {
5277 gdb_assert (wait_status != NULL);
5278 strcpy (rs->buf, wait_status);
5279 rs->cached_wait_status = 1;
5280 }
5281 }
5282 else
5283 gdb_assert (wait_status == NULL);
5284 }
5285
5286 /* Implementation of the to_post_attach method. */
5287
5288 static void
5289 extended_remote_post_attach (struct target_ops *ops, int pid)
5290 {
5291 /* Get text, data & bss offsets. */
5292 get_offsets ();
5293
5294 /* In certain cases GDB might not have had the chance to start
5295 symbol lookup up until now. This could happen if the debugged
5296 binary is not using shared libraries, the vsyscall page is not
5297 present (on Linux) and the binary itself hadn't changed since the
5298 debugging process was started. */
5299 if (symfile_objfile != NULL)
5300 remote_check_symbols();
5301 }
5302
5303 \f
5304 /* Check for the availability of vCont. This function should also check
5305 the response. */
5306
5307 static void
5308 remote_vcont_probe (struct remote_state *rs)
5309 {
5310 char *buf;
5311
5312 strcpy (rs->buf, "vCont?");
5313 putpkt (rs->buf);
5314 getpkt (&rs->buf, &rs->buf_size, 0);
5315 buf = rs->buf;
5316
5317 /* Make sure that the features we assume are supported. */
5318 if (startswith (buf, "vCont"))
5319 {
5320 char *p = &buf[5];
5321 int support_c, support_C;
5322
5323 rs->supports_vCont.s = 0;
5324 rs->supports_vCont.S = 0;
5325 support_c = 0;
5326 support_C = 0;
5327 rs->supports_vCont.t = 0;
5328 rs->supports_vCont.r = 0;
5329 while (p && *p == ';')
5330 {
5331 p++;
5332 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5333 rs->supports_vCont.s = 1;
5334 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5335 rs->supports_vCont.S = 1;
5336 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5337 support_c = 1;
5338 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5339 support_C = 1;
5340 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5341 rs->supports_vCont.t = 1;
5342 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5343 rs->supports_vCont.r = 1;
5344
5345 p = strchr (p, ';');
5346 }
5347
5348 /* If c, and C are not all supported, we can't use vCont. Clearing
5349 BUF will make packet_ok disable the packet. */
5350 if (!support_c || !support_C)
5351 buf[0] = 0;
5352 }
5353
5354 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5355 }
5356
5357 /* Helper function for building "vCont" resumptions. Write a
5358 resumption to P. ENDP points to one-passed-the-end of the buffer
5359 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5360 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5361 resumed thread should be single-stepped and/or signalled. If PTID
5362 equals minus_one_ptid, then all threads are resumed; if PTID
5363 represents a process, then all threads of the process are resumed;
5364 the thread to be stepped and/or signalled is given in the global
5365 INFERIOR_PTID. */
5366
5367 static char *
5368 append_resumption (char *p, char *endp,
5369 ptid_t ptid, int step, enum gdb_signal siggnal)
5370 {
5371 struct remote_state *rs = get_remote_state ();
5372
5373 if (step && siggnal != GDB_SIGNAL_0)
5374 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5375 else if (step
5376 /* GDB is willing to range step. */
5377 && use_range_stepping
5378 /* Target supports range stepping. */
5379 && rs->supports_vCont.r
5380 /* We don't currently support range stepping multiple
5381 threads with a wildcard (though the protocol allows it,
5382 so stubs shouldn't make an active effort to forbid
5383 it). */
5384 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5385 {
5386 struct thread_info *tp;
5387
5388 if (ptid_equal (ptid, minus_one_ptid))
5389 {
5390 /* If we don't know about the target thread's tid, then
5391 we're resuming magic_null_ptid (see caller). */
5392 tp = find_thread_ptid (magic_null_ptid);
5393 }
5394 else
5395 tp = find_thread_ptid (ptid);
5396 gdb_assert (tp != NULL);
5397
5398 if (tp->control.may_range_step)
5399 {
5400 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5401
5402 p += xsnprintf (p, endp - p, ";r%s,%s",
5403 phex_nz (tp->control.step_range_start,
5404 addr_size),
5405 phex_nz (tp->control.step_range_end,
5406 addr_size));
5407 }
5408 else
5409 p += xsnprintf (p, endp - p, ";s");
5410 }
5411 else if (step)
5412 p += xsnprintf (p, endp - p, ";s");
5413 else if (siggnal != GDB_SIGNAL_0)
5414 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5415 else
5416 p += xsnprintf (p, endp - p, ";c");
5417
5418 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5419 {
5420 ptid_t nptid;
5421
5422 /* All (-1) threads of process. */
5423 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5424
5425 p += xsnprintf (p, endp - p, ":");
5426 p = write_ptid (p, endp, nptid);
5427 }
5428 else if (!ptid_equal (ptid, minus_one_ptid))
5429 {
5430 p += xsnprintf (p, endp - p, ":");
5431 p = write_ptid (p, endp, ptid);
5432 }
5433
5434 return p;
5435 }
5436
5437 /* Clear the thread's private info on resume. */
5438
5439 static void
5440 resume_clear_thread_private_info (struct thread_info *thread)
5441 {
5442 if (thread->priv != NULL)
5443 {
5444 thread->priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5445 thread->priv->watch_data_address = 0;
5446 }
5447 }
5448
5449 /* Append a vCont continue-with-signal action for threads that have a
5450 non-zero stop signal. */
5451
5452 static char *
5453 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5454 {
5455 struct thread_info *thread;
5456
5457 ALL_NON_EXITED_THREADS (thread)
5458 if (ptid_match (thread->ptid, ptid)
5459 && !ptid_equal (inferior_ptid, thread->ptid)
5460 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5461 {
5462 p = append_resumption (p, endp, thread->ptid,
5463 0, thread->suspend.stop_signal);
5464 thread->suspend.stop_signal = GDB_SIGNAL_0;
5465 resume_clear_thread_private_info (thread);
5466 }
5467
5468 return p;
5469 }
5470
5471 /* Resume the remote inferior by using a "vCont" packet. The thread
5472 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5473 resumed thread should be single-stepped and/or signalled. If PTID
5474 equals minus_one_ptid, then all threads are resumed; the thread to
5475 be stepped and/or signalled is given in the global INFERIOR_PTID.
5476 This function returns non-zero iff it resumes the inferior.
5477
5478 This function issues a strict subset of all possible vCont commands at the
5479 moment. */
5480
5481 static int
5482 remote_vcont_resume (ptid_t ptid, int step, enum gdb_signal siggnal)
5483 {
5484 struct remote_state *rs = get_remote_state ();
5485 char *p;
5486 char *endp;
5487
5488 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5489 remote_vcont_probe (rs);
5490
5491 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5492 return 0;
5493
5494 p = rs->buf;
5495 endp = rs->buf + get_remote_packet_size ();
5496
5497 /* If we could generate a wider range of packets, we'd have to worry
5498 about overflowing BUF. Should there be a generic
5499 "multi-part-packet" packet? */
5500
5501 p += xsnprintf (p, endp - p, "vCont");
5502
5503 if (ptid_equal (ptid, magic_null_ptid))
5504 {
5505 /* MAGIC_NULL_PTID means that we don't have any active threads,
5506 so we don't have any TID numbers the inferior will
5507 understand. Make sure to only send forms that do not specify
5508 a TID. */
5509 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5510 }
5511 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5512 {
5513 /* Resume all threads (of all processes, or of a single
5514 process), with preference for INFERIOR_PTID. This assumes
5515 inferior_ptid belongs to the set of all threads we are about
5516 to resume. */
5517 if (step || siggnal != GDB_SIGNAL_0)
5518 {
5519 /* Step inferior_ptid, with or without signal. */
5520 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5521 }
5522
5523 /* Also pass down any pending signaled resumption for other
5524 threads not the current. */
5525 p = append_pending_thread_resumptions (p, endp, ptid);
5526
5527 /* And continue others without a signal. */
5528 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5529 }
5530 else
5531 {
5532 /* Scheduler locking; resume only PTID. */
5533 append_resumption (p, endp, ptid, step, siggnal);
5534 }
5535
5536 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5537 putpkt (rs->buf);
5538
5539 if (target_is_non_stop_p ())
5540 {
5541 /* In non-stop, the stub replies to vCont with "OK". The stop
5542 reply will be reported asynchronously by means of a `%Stop'
5543 notification. */
5544 getpkt (&rs->buf, &rs->buf_size, 0);
5545 if (strcmp (rs->buf, "OK") != 0)
5546 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5547 }
5548
5549 return 1;
5550 }
5551
5552 /* Tell the remote machine to resume. */
5553
5554 static void
5555 remote_resume (struct target_ops *ops,
5556 ptid_t ptid, int step, enum gdb_signal siggnal)
5557 {
5558 struct remote_state *rs = get_remote_state ();
5559 char *buf;
5560 struct thread_info *thread;
5561
5562 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
5563 (explained in remote-notif.c:handle_notification) so
5564 remote_notif_process is not called. We need find a place where
5565 it is safe to start a 'vNotif' sequence. It is good to do it
5566 before resuming inferior, because inferior was stopped and no RSP
5567 traffic at that moment. */
5568 if (!target_is_non_stop_p ())
5569 remote_notif_process (rs->notif_state, &notif_client_stop);
5570
5571 rs->last_sent_signal = siggnal;
5572 rs->last_sent_step = step;
5573
5574 /* The vCont packet doesn't need to specify threads via Hc. */
5575 /* No reverse support (yet) for vCont. */
5576 if (execution_direction != EXEC_REVERSE)
5577 if (remote_vcont_resume (ptid, step, siggnal))
5578 goto done;
5579
5580 /* All other supported resume packets do use Hc, so set the continue
5581 thread. */
5582 if (ptid_equal (ptid, minus_one_ptid))
5583 set_continue_thread (any_thread_ptid);
5584 else
5585 set_continue_thread (ptid);
5586
5587 ALL_NON_EXITED_THREADS (thread)
5588 resume_clear_thread_private_info (thread);
5589
5590 buf = rs->buf;
5591 if (execution_direction == EXEC_REVERSE)
5592 {
5593 /* We don't pass signals to the target in reverse exec mode. */
5594 if (info_verbose && siggnal != GDB_SIGNAL_0)
5595 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5596 siggnal);
5597
5598 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5599 error (_("Remote reverse-step not supported."));
5600 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5601 error (_("Remote reverse-continue not supported."));
5602
5603 strcpy (buf, step ? "bs" : "bc");
5604 }
5605 else if (siggnal != GDB_SIGNAL_0)
5606 {
5607 buf[0] = step ? 'S' : 'C';
5608 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5609 buf[2] = tohex (((int) siggnal) & 0xf);
5610 buf[3] = '\0';
5611 }
5612 else
5613 strcpy (buf, step ? "s" : "c");
5614
5615 putpkt (buf);
5616
5617 done:
5618 /* We are about to start executing the inferior, let's register it
5619 with the event loop. NOTE: this is the one place where all the
5620 execution commands end up. We could alternatively do this in each
5621 of the execution commands in infcmd.c. */
5622 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5623 into infcmd.c in order to allow inferior function calls to work
5624 NOT asynchronously. */
5625 if (target_can_async_p ())
5626 target_async (1);
5627
5628 /* We've just told the target to resume. The remote server will
5629 wait for the inferior to stop, and then send a stop reply. In
5630 the mean time, we can't start another command/query ourselves
5631 because the stub wouldn't be ready to process it. This applies
5632 only to the base all-stop protocol, however. In non-stop (which
5633 only supports vCont), the stub replies with an "OK", and is
5634 immediate able to process further serial input. */
5635 if (!target_is_non_stop_p ())
5636 rs->waiting_for_stop_reply = 1;
5637 }
5638 \f
5639
5640 /* Set up the signal handler for SIGINT, while the target is
5641 executing, ovewriting the 'regular' SIGINT signal handler. */
5642 static void
5643 async_initialize_sigint_signal_handler (void)
5644 {
5645 signal (SIGINT, async_handle_remote_sigint);
5646 }
5647
5648 /* Signal handler for SIGINT, while the target is executing. */
5649 static void
5650 async_handle_remote_sigint (int sig)
5651 {
5652 signal (sig, async_handle_remote_sigint_twice);
5653 /* Note we need to go through gdb_call_async_signal_handler in order
5654 to wake up the event loop on Windows. */
5655 gdb_call_async_signal_handler (async_sigint_remote_token, 0);
5656 }
5657
5658 /* Signal handler for SIGINT, installed after SIGINT has already been
5659 sent once. It will take effect the second time that the user sends
5660 a ^C. */
5661 static void
5662 async_handle_remote_sigint_twice (int sig)
5663 {
5664 signal (sig, async_handle_remote_sigint);
5665 /* See note in async_handle_remote_sigint. */
5666 gdb_call_async_signal_handler (async_sigint_remote_twice_token, 0);
5667 }
5668
5669 /* Implementation of to_check_pending_interrupt. */
5670
5671 static void
5672 remote_check_pending_interrupt (struct target_ops *self)
5673 {
5674 struct async_signal_handler *token = async_sigint_remote_twice_token;
5675
5676 if (async_signal_handler_is_marked (token))
5677 {
5678 clear_async_signal_handler (token);
5679 call_async_signal_handler (token);
5680 }
5681 }
5682
5683 /* Perform the real interruption of the target execution, in response
5684 to a ^C. */
5685 static void
5686 async_remote_interrupt (gdb_client_data arg)
5687 {
5688 if (remote_debug)
5689 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt called\n");
5690
5691 target_interrupt (inferior_ptid);
5692 }
5693
5694 /* Perform interrupt, if the first attempt did not succeed. Just give
5695 up on the target alltogether. */
5696 static void
5697 async_remote_interrupt_twice (gdb_client_data arg)
5698 {
5699 if (remote_debug)
5700 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt_twice called\n");
5701
5702 interrupt_query ();
5703 }
5704
5705 /* Reinstall the usual SIGINT handlers, after the target has
5706 stopped. */
5707 static void
5708 async_cleanup_sigint_signal_handler (void *dummy)
5709 {
5710 signal (SIGINT, handle_sigint);
5711 }
5712
5713 /* Send ^C to target to halt it. Target will respond, and send us a
5714 packet. */
5715 static void (*ofunc) (int);
5716
5717 /* The command line interface's interrupt routine. This function is installed
5718 as a signal handler for SIGINT. The first time a user requests an
5719 interrupt, we call remote_interrupt to send a break or ^C. If there is no
5720 response from the target (it didn't stop when the user requested it),
5721 we ask the user if he'd like to detach from the target. */
5722
5723 static void
5724 sync_remote_interrupt (int signo)
5725 {
5726 /* If this doesn't work, try more severe steps. */
5727 signal (signo, sync_remote_interrupt_twice);
5728
5729 gdb_call_async_signal_handler (async_sigint_remote_token, 1);
5730 }
5731
5732 /* The user typed ^C twice. */
5733
5734 static void
5735 sync_remote_interrupt_twice (int signo)
5736 {
5737 signal (signo, ofunc);
5738 gdb_call_async_signal_handler (async_sigint_remote_twice_token, 1);
5739 signal (signo, sync_remote_interrupt);
5740 }
5741
5742 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
5743 thread, all threads of a remote process, or all threads of all
5744 processes. */
5745
5746 static void
5747 remote_stop_ns (ptid_t ptid)
5748 {
5749 struct remote_state *rs = get_remote_state ();
5750 char *p = rs->buf;
5751 char *endp = rs->buf + get_remote_packet_size ();
5752
5753 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5754 remote_vcont_probe (rs);
5755
5756 if (!rs->supports_vCont.t)
5757 error (_("Remote server does not support stopping threads"));
5758
5759 if (ptid_equal (ptid, minus_one_ptid)
5760 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5761 p += xsnprintf (p, endp - p, "vCont;t");
5762 else
5763 {
5764 ptid_t nptid;
5765
5766 p += xsnprintf (p, endp - p, "vCont;t:");
5767
5768 if (ptid_is_pid (ptid))
5769 /* All (-1) threads of process. */
5770 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5771 else
5772 {
5773 /* Small optimization: if we already have a stop reply for
5774 this thread, no use in telling the stub we want this
5775 stopped. */
5776 if (peek_stop_reply (ptid))
5777 return;
5778
5779 nptid = ptid;
5780 }
5781
5782 write_ptid (p, endp, nptid);
5783 }
5784
5785 /* In non-stop, we get an immediate OK reply. The stop reply will
5786 come in asynchronously by notification. */
5787 putpkt (rs->buf);
5788 getpkt (&rs->buf, &rs->buf_size, 0);
5789 if (strcmp (rs->buf, "OK") != 0)
5790 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
5791 }
5792
5793 /* All-stop version of target_interrupt. Sends a break or a ^C to
5794 interrupt the remote target. It is undefined which thread of which
5795 process reports the interrupt. */
5796
5797 static void
5798 remote_interrupt_as (void)
5799 {
5800 struct remote_state *rs = get_remote_state ();
5801
5802 rs->ctrlc_pending_p = 1;
5803
5804 /* If the inferior is stopped already, but the core didn't know
5805 about it yet, just ignore the request. The cached wait status
5806 will be collected in remote_wait. */
5807 if (rs->cached_wait_status)
5808 return;
5809
5810 /* Send interrupt_sequence to remote target. */
5811 send_interrupt_sequence ();
5812 }
5813
5814 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
5815 the remote target. It is undefined which thread of which process
5816 reports the interrupt. Throws an error if the packet is not
5817 supported by the server. */
5818
5819 static void
5820 remote_interrupt_ns (void)
5821 {
5822 struct remote_state *rs = get_remote_state ();
5823 char *p = rs->buf;
5824 char *endp = rs->buf + get_remote_packet_size ();
5825
5826 xsnprintf (p, endp - p, "vCtrlC");
5827
5828 /* In non-stop, we get an immediate OK reply. The stop reply will
5829 come in asynchronously by notification. */
5830 putpkt (rs->buf);
5831 getpkt (&rs->buf, &rs->buf_size, 0);
5832
5833 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
5834 {
5835 case PACKET_OK:
5836 break;
5837 case PACKET_UNKNOWN:
5838 error (_("No support for interrupting the remote target."));
5839 case PACKET_ERROR:
5840 error (_("Interrupting target failed: %s"), rs->buf);
5841 }
5842 }
5843
5844 /* Implement the to_stop function for the remote targets. */
5845
5846 static void
5847 remote_stop (struct target_ops *self, ptid_t ptid)
5848 {
5849 if (remote_debug)
5850 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
5851
5852 if (target_is_non_stop_p ())
5853 remote_stop_ns (ptid);
5854 else
5855 {
5856 /* We don't currently have a way to transparently pause the
5857 remote target in all-stop mode. Interrupt it instead. */
5858 remote_interrupt_as ();
5859 }
5860 }
5861
5862 /* Implement the to_interrupt function for the remote targets. */
5863
5864 static void
5865 remote_interrupt (struct target_ops *self, ptid_t ptid)
5866 {
5867 struct remote_state *rs = get_remote_state ();
5868
5869 if (remote_debug)
5870 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
5871
5872 if (target_is_non_stop_p ())
5873 remote_interrupt_ns ();
5874 else
5875 remote_interrupt_as ();
5876 }
5877
5878 /* Implement the to_pass_ctrlc function for the remote targets. */
5879
5880 static void
5881 remote_pass_ctrlc (struct target_ops *self)
5882 {
5883 struct remote_state *rs = get_remote_state ();
5884
5885 if (remote_debug)
5886 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
5887
5888 /* If we're starting up, we're not fully synced yet. Quit
5889 immediately. */
5890 if (rs->starting_up)
5891 quit ();
5892 /* If ^C has already been sent once, offer to disconnect. */
5893 else if (rs->ctrlc_pending_p)
5894 interrupt_query ();
5895 else
5896 target_interrupt (inferior_ptid);
5897 }
5898
5899 /* Ask the user what to do when an interrupt is received. */
5900
5901 static void
5902 interrupt_query (void)
5903 {
5904 struct remote_state *rs = get_remote_state ();
5905 struct cleanup *old_chain;
5906
5907 old_chain = make_cleanup_restore_target_terminal ();
5908 target_terminal_ours ();
5909
5910 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
5911 {
5912 if (query (_("The target is not responding to interrupt requests.\n"
5913 "Stop debugging it? ")))
5914 {
5915 remote_unpush_target ();
5916 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5917 }
5918 }
5919 else
5920 {
5921 if (query (_("Interrupted while waiting for the program.\n"
5922 "Give up waiting? ")))
5923 quit ();
5924 }
5925
5926 do_cleanups (old_chain);
5927 }
5928
5929 /* Enable/disable target terminal ownership. Most targets can use
5930 terminal groups to control terminal ownership. Remote targets are
5931 different in that explicit transfer of ownership to/from GDB/target
5932 is required. */
5933
5934 static void
5935 remote_terminal_inferior (struct target_ops *self)
5936 {
5937 if (!target_async_permitted)
5938 /* Nothing to do. */
5939 return;
5940
5941 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
5942 idempotent. The event-loop GDB talking to an asynchronous target
5943 with a synchronous command calls this function from both
5944 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
5945 transfer the terminal to the target when it shouldn't this guard
5946 can go away. */
5947 if (!remote_async_terminal_ours_p)
5948 return;
5949 delete_file_handler (input_fd);
5950 remote_async_terminal_ours_p = 0;
5951 async_initialize_sigint_signal_handler ();
5952 /* NOTE: At this point we could also register our selves as the
5953 recipient of all input. Any characters typed could then be
5954 passed on down to the target. */
5955 }
5956
5957 static void
5958 remote_terminal_ours (struct target_ops *self)
5959 {
5960 if (!target_async_permitted)
5961 /* Nothing to do. */
5962 return;
5963
5964 /* See FIXME in remote_terminal_inferior. */
5965 if (remote_async_terminal_ours_p)
5966 return;
5967 async_cleanup_sigint_signal_handler (NULL);
5968 add_file_handler (input_fd, stdin_event_handler, 0);
5969 remote_async_terminal_ours_p = 1;
5970 }
5971
5972 static void
5973 remote_console_output (char *msg)
5974 {
5975 char *p;
5976
5977 for (p = msg; p[0] && p[1]; p += 2)
5978 {
5979 char tb[2];
5980 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
5981
5982 tb[0] = c;
5983 tb[1] = 0;
5984 fputs_unfiltered (tb, gdb_stdtarg);
5985 }
5986 gdb_flush (gdb_stdtarg);
5987 }
5988
5989 typedef struct cached_reg
5990 {
5991 int num;
5992 gdb_byte data[MAX_REGISTER_SIZE];
5993 } cached_reg_t;
5994
5995 DEF_VEC_O(cached_reg_t);
5996
5997 typedef struct stop_reply
5998 {
5999 struct notif_event base;
6000
6001 /* The identifier of the thread about this event */
6002 ptid_t ptid;
6003
6004 /* The remote state this event is associated with. When the remote
6005 connection, represented by a remote_state object, is closed,
6006 all the associated stop_reply events should be released. */
6007 struct remote_state *rs;
6008
6009 struct target_waitstatus ws;
6010
6011 /* Expedited registers. This makes remote debugging a bit more
6012 efficient for those targets that provide critical registers as
6013 part of their normal status mechanism (as another roundtrip to
6014 fetch them is avoided). */
6015 VEC(cached_reg_t) *regcache;
6016
6017 enum target_stop_reason stop_reason;
6018
6019 CORE_ADDR watch_data_address;
6020
6021 int core;
6022 } *stop_reply_p;
6023
6024 DECLARE_QUEUE_P (stop_reply_p);
6025 DEFINE_QUEUE_P (stop_reply_p);
6026 /* The list of already fetched and acknowledged stop events. This
6027 queue is used for notification Stop, and other notifications
6028 don't need queue for their events, because the notification events
6029 of Stop can't be consumed immediately, so that events should be
6030 queued first, and be consumed by remote_wait_{ns,as} one per
6031 time. Other notifications can consume their events immediately,
6032 so queue is not needed for them. */
6033 static QUEUE (stop_reply_p) *stop_reply_queue;
6034
6035 static void
6036 stop_reply_xfree (struct stop_reply *r)
6037 {
6038 notif_event_xfree ((struct notif_event *) r);
6039 }
6040
6041 /* Return the length of the stop reply queue. */
6042
6043 static int
6044 stop_reply_queue_length (void)
6045 {
6046 return QUEUE_length (stop_reply_p, stop_reply_queue);
6047 }
6048
6049 static void
6050 remote_notif_stop_parse (struct notif_client *self, char *buf,
6051 struct notif_event *event)
6052 {
6053 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6054 }
6055
6056 static void
6057 remote_notif_stop_ack (struct notif_client *self, char *buf,
6058 struct notif_event *event)
6059 {
6060 struct stop_reply *stop_reply = (struct stop_reply *) event;
6061
6062 /* acknowledge */
6063 putpkt ((char *) self->ack_command);
6064
6065 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6066 /* We got an unknown stop reply. */
6067 error (_("Unknown stop reply"));
6068
6069 push_stop_reply (stop_reply);
6070 }
6071
6072 static int
6073 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6074 {
6075 /* We can't get pending events in remote_notif_process for
6076 notification stop, and we have to do this in remote_wait_ns
6077 instead. If we fetch all queued events from stub, remote stub
6078 may exit and we have no chance to process them back in
6079 remote_wait_ns. */
6080 mark_async_event_handler (remote_async_inferior_event_token);
6081 return 0;
6082 }
6083
6084 static void
6085 stop_reply_dtr (struct notif_event *event)
6086 {
6087 struct stop_reply *r = (struct stop_reply *) event;
6088
6089 VEC_free (cached_reg_t, r->regcache);
6090 }
6091
6092 static struct notif_event *
6093 remote_notif_stop_alloc_reply (void)
6094 {
6095 /* We cast to a pointer to the "base class". */
6096 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6097
6098 r->dtr = stop_reply_dtr;
6099
6100 return r;
6101 }
6102
6103 /* A client of notification Stop. */
6104
6105 struct notif_client notif_client_stop =
6106 {
6107 "Stop",
6108 "vStopped",
6109 remote_notif_stop_parse,
6110 remote_notif_stop_ack,
6111 remote_notif_stop_can_get_pending_events,
6112 remote_notif_stop_alloc_reply,
6113 REMOTE_NOTIF_STOP,
6114 };
6115
6116 /* A parameter to pass data in and out. */
6117
6118 struct queue_iter_param
6119 {
6120 void *input;
6121 struct stop_reply *output;
6122 };
6123
6124 /* Determine if THREAD is a pending fork parent thread. ARG contains
6125 the pid of the process that owns the threads we want to check, or
6126 -1 if we want to check all threads. */
6127
6128 static int
6129 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6130 ptid_t thread_ptid)
6131 {
6132 if (ws->kind == TARGET_WAITKIND_FORKED
6133 || ws->kind == TARGET_WAITKIND_VFORKED)
6134 {
6135 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6136 return 1;
6137 }
6138
6139 return 0;
6140 }
6141
6142 /* Check whether EVENT is a fork event, and if it is, remove the
6143 fork child from the context list passed in DATA. */
6144
6145 static int
6146 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6147 QUEUE_ITER (stop_reply_p) *iter,
6148 stop_reply_p event,
6149 void *data)
6150 {
6151 struct queue_iter_param *param = (struct queue_iter_param *) data;
6152 struct threads_listing_context *context
6153 = (struct threads_listing_context *) param->input;
6154
6155 if (event->ws.kind == TARGET_WAITKIND_FORKED
6156 || event->ws.kind == TARGET_WAITKIND_VFORKED
6157 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6158 threads_listing_context_remove (&event->ws, context);
6159
6160 return 1;
6161 }
6162
6163 /* If CONTEXT contains any fork child threads that have not been
6164 reported yet, remove them from the CONTEXT list. If such a
6165 thread exists it is because we are stopped at a fork catchpoint
6166 and have not yet called follow_fork, which will set up the
6167 host-side data structures for the new process. */
6168
6169 static void
6170 remove_new_fork_children (struct threads_listing_context *context)
6171 {
6172 struct thread_info * thread;
6173 int pid = -1;
6174 struct notif_client *notif = &notif_client_stop;
6175 struct queue_iter_param param;
6176
6177 /* For any threads stopped at a fork event, remove the corresponding
6178 fork child threads from the CONTEXT list. */
6179 ALL_NON_EXITED_THREADS (thread)
6180 {
6181 struct target_waitstatus *ws;
6182
6183 if (thread->suspend.waitstatus_pending_p)
6184 ws = &thread->suspend.waitstatus;
6185 else
6186 ws = &thread->pending_follow;
6187
6188 if (is_pending_fork_parent (ws, pid, thread->ptid))
6189 {
6190 threads_listing_context_remove (ws, context);
6191 }
6192 }
6193
6194 /* Check for any pending fork events (not reported or processed yet)
6195 in process PID and remove those fork child threads from the
6196 CONTEXT list as well. */
6197 remote_notif_get_pending_events (notif);
6198 param.input = context;
6199 param.output = NULL;
6200 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6201 remove_child_of_pending_fork, &param);
6202 }
6203
6204 /* Remove stop replies in the queue if its pid is equal to the given
6205 inferior's pid. */
6206
6207 static int
6208 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6209 QUEUE_ITER (stop_reply_p) *iter,
6210 stop_reply_p event,
6211 void *data)
6212 {
6213 struct queue_iter_param *param = (struct queue_iter_param *) data;
6214 struct inferior *inf = (struct inferior *) param->input;
6215
6216 if (ptid_get_pid (event->ptid) == inf->pid)
6217 {
6218 stop_reply_xfree (event);
6219 QUEUE_remove_elem (stop_reply_p, q, iter);
6220 }
6221
6222 return 1;
6223 }
6224
6225 /* Discard all pending stop replies of inferior INF. */
6226
6227 static void
6228 discard_pending_stop_replies (struct inferior *inf)
6229 {
6230 struct queue_iter_param param;
6231 struct stop_reply *reply;
6232 struct remote_state *rs = get_remote_state ();
6233 struct remote_notif_state *rns = rs->notif_state;
6234
6235 /* This function can be notified when an inferior exists. When the
6236 target is not remote, the notification state is NULL. */
6237 if (rs->remote_desc == NULL)
6238 return;
6239
6240 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6241
6242 /* Discard the in-flight notification. */
6243 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6244 {
6245 stop_reply_xfree (reply);
6246 rns->pending_event[notif_client_stop.id] = NULL;
6247 }
6248
6249 param.input = inf;
6250 param.output = NULL;
6251 /* Discard the stop replies we have already pulled with
6252 vStopped. */
6253 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6254 remove_stop_reply_for_inferior, &param);
6255 }
6256
6257 /* If its remote state is equal to the given remote state,
6258 remove EVENT from the stop reply queue. */
6259
6260 static int
6261 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6262 QUEUE_ITER (stop_reply_p) *iter,
6263 stop_reply_p event,
6264 void *data)
6265 {
6266 struct queue_iter_param *param = (struct queue_iter_param *) data;
6267 struct remote_state *rs = (struct remote_state *) param->input;
6268
6269 if (event->rs == rs)
6270 {
6271 stop_reply_xfree (event);
6272 QUEUE_remove_elem (stop_reply_p, q, iter);
6273 }
6274
6275 return 1;
6276 }
6277
6278 /* Discard the stop replies for RS in stop_reply_queue. */
6279
6280 static void
6281 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6282 {
6283 struct queue_iter_param param;
6284
6285 param.input = rs;
6286 param.output = NULL;
6287 /* Discard the stop replies we have already pulled with
6288 vStopped. */
6289 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6290 remove_stop_reply_of_remote_state, &param);
6291 }
6292
6293 /* A parameter to pass data in and out. */
6294
6295 static int
6296 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6297 QUEUE_ITER (stop_reply_p) *iter,
6298 stop_reply_p event,
6299 void *data)
6300 {
6301 struct queue_iter_param *param = (struct queue_iter_param *) data;
6302 ptid_t *ptid = (ptid_t *) param->input;
6303
6304 if (ptid_match (event->ptid, *ptid))
6305 {
6306 param->output = event;
6307 QUEUE_remove_elem (stop_reply_p, q, iter);
6308 return 0;
6309 }
6310
6311 return 1;
6312 }
6313
6314 /* Remove the first reply in 'stop_reply_queue' which matches
6315 PTID. */
6316
6317 static struct stop_reply *
6318 remote_notif_remove_queued_reply (ptid_t ptid)
6319 {
6320 struct queue_iter_param param;
6321
6322 param.input = &ptid;
6323 param.output = NULL;
6324
6325 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6326 remote_notif_remove_once_on_match, &param);
6327 if (notif_debug)
6328 fprintf_unfiltered (gdb_stdlog,
6329 "notif: discard queued event: 'Stop' in %s\n",
6330 target_pid_to_str (ptid));
6331
6332 return param.output;
6333 }
6334
6335 /* Look for a queued stop reply belonging to PTID. If one is found,
6336 remove it from the queue, and return it. Returns NULL if none is
6337 found. If there are still queued events left to process, tell the
6338 event loop to get back to target_wait soon. */
6339
6340 static struct stop_reply *
6341 queued_stop_reply (ptid_t ptid)
6342 {
6343 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6344
6345 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6346 /* There's still at least an event left. */
6347 mark_async_event_handler (remote_async_inferior_event_token);
6348
6349 return r;
6350 }
6351
6352 /* Push a fully parsed stop reply in the stop reply queue. Since we
6353 know that we now have at least one queued event left to pass to the
6354 core side, tell the event loop to get back to target_wait soon. */
6355
6356 static void
6357 push_stop_reply (struct stop_reply *new_event)
6358 {
6359 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6360
6361 if (notif_debug)
6362 fprintf_unfiltered (gdb_stdlog,
6363 "notif: push 'Stop' %s to queue %d\n",
6364 target_pid_to_str (new_event->ptid),
6365 QUEUE_length (stop_reply_p,
6366 stop_reply_queue));
6367
6368 mark_async_event_handler (remote_async_inferior_event_token);
6369 }
6370
6371 static int
6372 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
6373 QUEUE_ITER (stop_reply_p) *iter,
6374 struct stop_reply *event,
6375 void *data)
6376 {
6377 ptid_t *ptid = (ptid_t *) data;
6378
6379 return !(ptid_equal (*ptid, event->ptid)
6380 && event->ws.kind == TARGET_WAITKIND_STOPPED);
6381 }
6382
6383 /* Returns true if we have a stop reply for PTID. */
6384
6385 static int
6386 peek_stop_reply (ptid_t ptid)
6387 {
6388 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
6389 stop_reply_match_ptid_and_ws, &ptid);
6390 }
6391
6392 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
6393 starting with P and ending with PEND matches PREFIX. */
6394
6395 static int
6396 strprefix (const char *p, const char *pend, const char *prefix)
6397 {
6398 for ( ; p < pend; p++, prefix++)
6399 if (*p != *prefix)
6400 return 0;
6401 return *prefix == '\0';
6402 }
6403
6404 /* Parse the stop reply in BUF. Either the function succeeds, and the
6405 result is stored in EVENT, or throws an error. */
6406
6407 static void
6408 remote_parse_stop_reply (char *buf, struct stop_reply *event)
6409 {
6410 struct remote_arch_state *rsa = get_remote_arch_state ();
6411 ULONGEST addr;
6412 char *p;
6413 int skipregs = 0;
6414
6415 event->ptid = null_ptid;
6416 event->rs = get_remote_state ();
6417 event->ws.kind = TARGET_WAITKIND_IGNORE;
6418 event->ws.value.integer = 0;
6419 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6420 event->regcache = NULL;
6421 event->core = -1;
6422
6423 switch (buf[0])
6424 {
6425 case 'T': /* Status with PC, SP, FP, ... */
6426 /* Expedited reply, containing Signal, {regno, reg} repeat. */
6427 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
6428 ss = signal number
6429 n... = register number
6430 r... = register contents
6431 */
6432
6433 p = &buf[3]; /* after Txx */
6434 while (*p)
6435 {
6436 char *p1;
6437 int fieldsize;
6438
6439 p1 = strchr (p, ':');
6440 if (p1 == NULL)
6441 error (_("Malformed packet(a) (missing colon): %s\n\
6442 Packet: '%s'\n"),
6443 p, buf);
6444 if (p == p1)
6445 error (_("Malformed packet(a) (missing register number): %s\n\
6446 Packet: '%s'\n"),
6447 p, buf);
6448
6449 /* Some "registers" are actually extended stop information.
6450 Note if you're adding a new entry here: GDB 7.9 and
6451 earlier assume that all register "numbers" that start
6452 with an hex digit are real register numbers. Make sure
6453 the server only sends such a packet if it knows the
6454 client understands it. */
6455
6456 if (strprefix (p, p1, "thread"))
6457 event->ptid = read_ptid (++p1, &p);
6458 else if (strprefix (p, p1, "syscall_entry"))
6459 {
6460 ULONGEST sysno;
6461
6462 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
6463 p = unpack_varlen_hex (++p1, &sysno);
6464 event->ws.value.syscall_number = (int) sysno;
6465 }
6466 else if (strprefix (p, p1, "syscall_return"))
6467 {
6468 ULONGEST sysno;
6469
6470 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
6471 p = unpack_varlen_hex (++p1, &sysno);
6472 event->ws.value.syscall_number = (int) sysno;
6473 }
6474 else if (strprefix (p, p1, "watch")
6475 || strprefix (p, p1, "rwatch")
6476 || strprefix (p, p1, "awatch"))
6477 {
6478 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
6479 p = unpack_varlen_hex (++p1, &addr);
6480 event->watch_data_address = (CORE_ADDR) addr;
6481 }
6482 else if (strprefix (p, p1, "swbreak"))
6483 {
6484 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
6485
6486 /* Make sure the stub doesn't forget to indicate support
6487 with qSupported. */
6488 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
6489 error (_("Unexpected swbreak stop reason"));
6490
6491 /* The value part is documented as "must be empty",
6492 though we ignore it, in case we ever decide to make
6493 use of it in a backward compatible way. */
6494 p = strchrnul (p1 + 1, ';');
6495 }
6496 else if (strprefix (p, p1, "hwbreak"))
6497 {
6498 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
6499
6500 /* Make sure the stub doesn't forget to indicate support
6501 with qSupported. */
6502 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
6503 error (_("Unexpected hwbreak stop reason"));
6504
6505 /* See above. */
6506 p = strchrnul (p1 + 1, ';');
6507 }
6508 else if (strprefix (p, p1, "library"))
6509 {
6510 event->ws.kind = TARGET_WAITKIND_LOADED;
6511 p = strchrnul (p1 + 1, ';');
6512 }
6513 else if (strprefix (p, p1, "replaylog"))
6514 {
6515 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
6516 /* p1 will indicate "begin" or "end", but it makes
6517 no difference for now, so ignore it. */
6518 p = strchrnul (p1 + 1, ';');
6519 }
6520 else if (strprefix (p, p1, "core"))
6521 {
6522 ULONGEST c;
6523
6524 p = unpack_varlen_hex (++p1, &c);
6525 event->core = c;
6526 }
6527 else if (strprefix (p, p1, "fork"))
6528 {
6529 event->ws.value.related_pid = read_ptid (++p1, &p);
6530 event->ws.kind = TARGET_WAITKIND_FORKED;
6531 }
6532 else if (strprefix (p, p1, "vfork"))
6533 {
6534 event->ws.value.related_pid = read_ptid (++p1, &p);
6535 event->ws.kind = TARGET_WAITKIND_VFORKED;
6536 }
6537 else if (strprefix (p, p1, "vforkdone"))
6538 {
6539 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
6540 p = strchrnul (p1 + 1, ';');
6541 }
6542 else if (strprefix (p, p1, "exec"))
6543 {
6544 ULONGEST ignored;
6545 char pathname[PATH_MAX];
6546 int pathlen;
6547
6548 /* Determine the length of the execd pathname. */
6549 p = unpack_varlen_hex (++p1, &ignored);
6550 pathlen = (p - p1) / 2;
6551
6552 /* Save the pathname for event reporting and for
6553 the next run command. */
6554 hex2bin (p1, (gdb_byte *) pathname, pathlen);
6555 pathname[pathlen] = '\0';
6556
6557 /* This is freed during event handling. */
6558 event->ws.value.execd_pathname = xstrdup (pathname);
6559 event->ws.kind = TARGET_WAITKIND_EXECD;
6560
6561 /* Skip the registers included in this packet, since
6562 they may be for an architecture different from the
6563 one used by the original program. */
6564 skipregs = 1;
6565 }
6566 else if (strprefix (p, p1, "create"))
6567 {
6568 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
6569 p = strchrnul (p1 + 1, ';');
6570 }
6571 else
6572 {
6573 ULONGEST pnum;
6574 char *p_temp;
6575
6576 if (skipregs)
6577 {
6578 p = strchrnul (p1 + 1, ';');
6579 p++;
6580 continue;
6581 }
6582
6583 /* Maybe a real ``P'' register number. */
6584 p_temp = unpack_varlen_hex (p, &pnum);
6585 /* If the first invalid character is the colon, we got a
6586 register number. Otherwise, it's an unknown stop
6587 reason. */
6588 if (p_temp == p1)
6589 {
6590 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
6591 cached_reg_t cached_reg;
6592
6593 if (reg == NULL)
6594 error (_("Remote sent bad register number %s: %s\n\
6595 Packet: '%s'\n"),
6596 hex_string (pnum), p, buf);
6597
6598 cached_reg.num = reg->regnum;
6599
6600 p = p1 + 1;
6601 fieldsize = hex2bin (p, cached_reg.data,
6602 register_size (target_gdbarch (),
6603 reg->regnum));
6604 p += 2 * fieldsize;
6605 if (fieldsize < register_size (target_gdbarch (),
6606 reg->regnum))
6607 warning (_("Remote reply is too short: %s"), buf);
6608
6609 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
6610 }
6611 else
6612 {
6613 /* Not a number. Silently skip unknown optional
6614 info. */
6615 p = strchrnul (p1 + 1, ';');
6616 }
6617 }
6618
6619 if (*p != ';')
6620 error (_("Remote register badly formatted: %s\nhere: %s"),
6621 buf, p);
6622 ++p;
6623 }
6624
6625 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
6626 break;
6627
6628 /* fall through */
6629 case 'S': /* Old style status, just signal only. */
6630 {
6631 int sig;
6632
6633 event->ws.kind = TARGET_WAITKIND_STOPPED;
6634 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
6635 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
6636 event->ws.value.sig = (enum gdb_signal) sig;
6637 else
6638 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
6639 }
6640 break;
6641 case 'w': /* Thread exited. */
6642 {
6643 char *p;
6644 ULONGEST value;
6645
6646 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
6647 p = unpack_varlen_hex (&buf[1], &value);
6648 event->ws.value.integer = value;
6649 if (*p != ';')
6650 error (_("stop reply packet badly formatted: %s"), buf);
6651 event->ptid = read_ptid (++p, NULL);
6652 break;
6653 }
6654 case 'W': /* Target exited. */
6655 case 'X':
6656 {
6657 char *p;
6658 int pid;
6659 ULONGEST value;
6660
6661 /* GDB used to accept only 2 hex chars here. Stubs should
6662 only send more if they detect GDB supports multi-process
6663 support. */
6664 p = unpack_varlen_hex (&buf[1], &value);
6665
6666 if (buf[0] == 'W')
6667 {
6668 /* The remote process exited. */
6669 event->ws.kind = TARGET_WAITKIND_EXITED;
6670 event->ws.value.integer = value;
6671 }
6672 else
6673 {
6674 /* The remote process exited with a signal. */
6675 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
6676 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
6677 event->ws.value.sig = (enum gdb_signal) value;
6678 else
6679 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
6680 }
6681
6682 /* If no process is specified, assume inferior_ptid. */
6683 pid = ptid_get_pid (inferior_ptid);
6684 if (*p == '\0')
6685 ;
6686 else if (*p == ';')
6687 {
6688 p++;
6689
6690 if (*p == '\0')
6691 ;
6692 else if (startswith (p, "process:"))
6693 {
6694 ULONGEST upid;
6695
6696 p += sizeof ("process:") - 1;
6697 unpack_varlen_hex (p, &upid);
6698 pid = upid;
6699 }
6700 else
6701 error (_("unknown stop reply packet: %s"), buf);
6702 }
6703 else
6704 error (_("unknown stop reply packet: %s"), buf);
6705 event->ptid = pid_to_ptid (pid);
6706 }
6707 break;
6708 case 'N':
6709 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
6710 event->ptid = minus_one_ptid;
6711 break;
6712 }
6713
6714 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
6715 error (_("No process or thread specified in stop reply: %s"), buf);
6716 }
6717
6718 /* When the stub wants to tell GDB about a new notification reply, it
6719 sends a notification (%Stop, for example). Those can come it at
6720 any time, hence, we have to make sure that any pending
6721 putpkt/getpkt sequence we're making is finished, before querying
6722 the stub for more events with the corresponding ack command
6723 (vStopped, for example). E.g., if we started a vStopped sequence
6724 immediately upon receiving the notification, something like this
6725 could happen:
6726
6727 1.1) --> Hg 1
6728 1.2) <-- OK
6729 1.3) --> g
6730 1.4) <-- %Stop
6731 1.5) --> vStopped
6732 1.6) <-- (registers reply to step #1.3)
6733
6734 Obviously, the reply in step #1.6 would be unexpected to a vStopped
6735 query.
6736
6737 To solve this, whenever we parse a %Stop notification successfully,
6738 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
6739 doing whatever we were doing:
6740
6741 2.1) --> Hg 1
6742 2.2) <-- OK
6743 2.3) --> g
6744 2.4) <-- %Stop
6745 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
6746 2.5) <-- (registers reply to step #2.3)
6747
6748 Eventualy after step #2.5, we return to the event loop, which
6749 notices there's an event on the
6750 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
6751 associated callback --- the function below. At this point, we're
6752 always safe to start a vStopped sequence. :
6753
6754 2.6) --> vStopped
6755 2.7) <-- T05 thread:2
6756 2.8) --> vStopped
6757 2.9) --> OK
6758 */
6759
6760 void
6761 remote_notif_get_pending_events (struct notif_client *nc)
6762 {
6763 struct remote_state *rs = get_remote_state ();
6764
6765 if (rs->notif_state->pending_event[nc->id] != NULL)
6766 {
6767 if (notif_debug)
6768 fprintf_unfiltered (gdb_stdlog,
6769 "notif: process: '%s' ack pending event\n",
6770 nc->name);
6771
6772 /* acknowledge */
6773 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
6774 rs->notif_state->pending_event[nc->id] = NULL;
6775
6776 while (1)
6777 {
6778 getpkt (&rs->buf, &rs->buf_size, 0);
6779 if (strcmp (rs->buf, "OK") == 0)
6780 break;
6781 else
6782 remote_notif_ack (nc, rs->buf);
6783 }
6784 }
6785 else
6786 {
6787 if (notif_debug)
6788 fprintf_unfiltered (gdb_stdlog,
6789 "notif: process: '%s' no pending reply\n",
6790 nc->name);
6791 }
6792 }
6793
6794 /* Called when it is decided that STOP_REPLY holds the info of the
6795 event that is to be returned to the core. This function always
6796 destroys STOP_REPLY. */
6797
6798 static ptid_t
6799 process_stop_reply (struct stop_reply *stop_reply,
6800 struct target_waitstatus *status)
6801 {
6802 ptid_t ptid;
6803
6804 *status = stop_reply->ws;
6805 ptid = stop_reply->ptid;
6806
6807 /* If no thread/process was reported by the stub, assume the current
6808 inferior. */
6809 if (ptid_equal (ptid, null_ptid))
6810 ptid = inferior_ptid;
6811
6812 if (status->kind != TARGET_WAITKIND_EXITED
6813 && status->kind != TARGET_WAITKIND_SIGNALLED
6814 && status->kind != TARGET_WAITKIND_NO_RESUMED)
6815 {
6816 struct private_thread_info *remote_thr;
6817
6818 /* Expedited registers. */
6819 if (stop_reply->regcache)
6820 {
6821 struct regcache *regcache
6822 = get_thread_arch_regcache (ptid, target_gdbarch ());
6823 cached_reg_t *reg;
6824 int ix;
6825
6826 for (ix = 0;
6827 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
6828 ix++)
6829 regcache_raw_supply (regcache, reg->num, reg->data);
6830 VEC_free (cached_reg_t, stop_reply->regcache);
6831 }
6832
6833 remote_notice_new_inferior (ptid, 0);
6834 remote_thr = demand_private_info (ptid);
6835 remote_thr->core = stop_reply->core;
6836 remote_thr->stop_reason = stop_reply->stop_reason;
6837 remote_thr->watch_data_address = stop_reply->watch_data_address;
6838 }
6839
6840 stop_reply_xfree (stop_reply);
6841 return ptid;
6842 }
6843
6844 /* The non-stop mode version of target_wait. */
6845
6846 static ptid_t
6847 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
6848 {
6849 struct remote_state *rs = get_remote_state ();
6850 struct stop_reply *stop_reply;
6851 int ret;
6852 int is_notif = 0;
6853
6854 /* If in non-stop mode, get out of getpkt even if a
6855 notification is received. */
6856
6857 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
6858 0 /* forever */, &is_notif);
6859 while (1)
6860 {
6861 if (ret != -1 && !is_notif)
6862 switch (rs->buf[0])
6863 {
6864 case 'E': /* Error of some sort. */
6865 /* We're out of sync with the target now. Did it continue
6866 or not? We can't tell which thread it was in non-stop,
6867 so just ignore this. */
6868 warning (_("Remote failure reply: %s"), rs->buf);
6869 break;
6870 case 'O': /* Console output. */
6871 remote_console_output (rs->buf + 1);
6872 break;
6873 default:
6874 warning (_("Invalid remote reply: %s"), rs->buf);
6875 break;
6876 }
6877
6878 /* Acknowledge a pending stop reply that may have arrived in the
6879 mean time. */
6880 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
6881 remote_notif_get_pending_events (&notif_client_stop);
6882
6883 /* If indeed we noticed a stop reply, we're done. */
6884 stop_reply = queued_stop_reply (ptid);
6885 if (stop_reply != NULL)
6886 return process_stop_reply (stop_reply, status);
6887
6888 /* Still no event. If we're just polling for an event, then
6889 return to the event loop. */
6890 if (options & TARGET_WNOHANG)
6891 {
6892 status->kind = TARGET_WAITKIND_IGNORE;
6893 return minus_one_ptid;
6894 }
6895
6896 /* Otherwise do a blocking wait. */
6897 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
6898 1 /* forever */, &is_notif);
6899 }
6900 }
6901
6902 /* Wait until the remote machine stops, then return, storing status in
6903 STATUS just as `wait' would. */
6904
6905 static ptid_t
6906 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
6907 {
6908 struct remote_state *rs = get_remote_state ();
6909 ptid_t event_ptid = null_ptid;
6910 char *buf;
6911 struct stop_reply *stop_reply;
6912
6913 again:
6914
6915 status->kind = TARGET_WAITKIND_IGNORE;
6916 status->value.integer = 0;
6917
6918 stop_reply = queued_stop_reply (ptid);
6919 if (stop_reply != NULL)
6920 return process_stop_reply (stop_reply, status);
6921
6922 if (rs->cached_wait_status)
6923 /* Use the cached wait status, but only once. */
6924 rs->cached_wait_status = 0;
6925 else
6926 {
6927 int ret;
6928 int is_notif;
6929 int forever = ((options & TARGET_WNOHANG) == 0
6930 && wait_forever_enabled_p);
6931
6932 if (!rs->waiting_for_stop_reply)
6933 {
6934 status->kind = TARGET_WAITKIND_NO_RESUMED;
6935 return minus_one_ptid;
6936 }
6937
6938 if (!target_is_async_p ())
6939 {
6940 ofunc = signal (SIGINT, sync_remote_interrupt);
6941 /* If the user hit C-c before this packet, or between packets,
6942 pretend that it was hit right here. */
6943 if (check_quit_flag ())
6944 sync_remote_interrupt (SIGINT);
6945 }
6946
6947 /* FIXME: cagney/1999-09-27: If we're in async mode we should
6948 _never_ wait for ever -> test on target_is_async_p().
6949 However, before we do that we need to ensure that the caller
6950 knows how to take the target into/out of async mode. */
6951 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
6952 forever, &is_notif);
6953
6954 if (!target_is_async_p ())
6955 signal (SIGINT, ofunc);
6956
6957 /* GDB gets a notification. Return to core as this event is
6958 not interesting. */
6959 if (ret != -1 && is_notif)
6960 return minus_one_ptid;
6961
6962 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
6963 return minus_one_ptid;
6964 }
6965
6966 buf = rs->buf;
6967
6968 /* Assume that the target has acknowledged Ctrl-C unless we receive
6969 an 'F' or 'O' packet. */
6970 if (buf[0] != 'F' && buf[0] != 'O')
6971 rs->ctrlc_pending_p = 0;
6972
6973 switch (buf[0])
6974 {
6975 case 'E': /* Error of some sort. */
6976 /* We're out of sync with the target now. Did it continue or
6977 not? Not is more likely, so report a stop. */
6978 rs->waiting_for_stop_reply = 0;
6979
6980 warning (_("Remote failure reply: %s"), buf);
6981 status->kind = TARGET_WAITKIND_STOPPED;
6982 status->value.sig = GDB_SIGNAL_0;
6983 break;
6984 case 'F': /* File-I/O request. */
6985 /* GDB may access the inferior memory while handling the File-I/O
6986 request, but we don't want GDB accessing memory while waiting
6987 for a stop reply. See the comments in putpkt_binary. Set
6988 waiting_for_stop_reply to 0 temporarily. */
6989 rs->waiting_for_stop_reply = 0;
6990 remote_fileio_request (buf, rs->ctrlc_pending_p);
6991 rs->ctrlc_pending_p = 0;
6992 /* GDB handled the File-I/O request, and the target is running
6993 again. Keep waiting for events. */
6994 rs->waiting_for_stop_reply = 1;
6995 break;
6996 case 'N': case 'T': case 'S': case 'X': case 'W':
6997 {
6998 struct stop_reply *stop_reply;
6999
7000 /* There is a stop reply to handle. */
7001 rs->waiting_for_stop_reply = 0;
7002
7003 stop_reply
7004 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7005 rs->buf);
7006
7007 event_ptid = process_stop_reply (stop_reply, status);
7008 break;
7009 }
7010 case 'O': /* Console output. */
7011 remote_console_output (buf + 1);
7012 break;
7013 case '\0':
7014 if (rs->last_sent_signal != GDB_SIGNAL_0)
7015 {
7016 /* Zero length reply means that we tried 'S' or 'C' and the
7017 remote system doesn't support it. */
7018 target_terminal_ours_for_output ();
7019 printf_filtered
7020 ("Can't send signals to this remote system. %s not sent.\n",
7021 gdb_signal_to_name (rs->last_sent_signal));
7022 rs->last_sent_signal = GDB_SIGNAL_0;
7023 target_terminal_inferior ();
7024
7025 strcpy ((char *) buf, rs->last_sent_step ? "s" : "c");
7026 putpkt ((char *) buf);
7027 break;
7028 }
7029 /* else fallthrough */
7030 default:
7031 warning (_("Invalid remote reply: %s"), buf);
7032 break;
7033 }
7034
7035 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7036 return minus_one_ptid;
7037 else if (status->kind == TARGET_WAITKIND_IGNORE)
7038 {
7039 /* Nothing interesting happened. If we're doing a non-blocking
7040 poll, we're done. Otherwise, go back to waiting. */
7041 if (options & TARGET_WNOHANG)
7042 return minus_one_ptid;
7043 else
7044 goto again;
7045 }
7046 else if (status->kind != TARGET_WAITKIND_EXITED
7047 && status->kind != TARGET_WAITKIND_SIGNALLED)
7048 {
7049 if (!ptid_equal (event_ptid, null_ptid))
7050 record_currthread (rs, event_ptid);
7051 else
7052 event_ptid = inferior_ptid;
7053 }
7054 else
7055 /* A process exit. Invalidate our notion of current thread. */
7056 record_currthread (rs, minus_one_ptid);
7057
7058 return event_ptid;
7059 }
7060
7061 /* Wait until the remote machine stops, then return, storing status in
7062 STATUS just as `wait' would. */
7063
7064 static ptid_t
7065 remote_wait (struct target_ops *ops,
7066 ptid_t ptid, struct target_waitstatus *status, int options)
7067 {
7068 ptid_t event_ptid;
7069
7070 if (target_is_non_stop_p ())
7071 event_ptid = remote_wait_ns (ptid, status, options);
7072 else
7073 event_ptid = remote_wait_as (ptid, status, options);
7074
7075 if (target_is_async_p ())
7076 {
7077 /* If there are are events left in the queue tell the event loop
7078 to return here. */
7079 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7080 mark_async_event_handler (remote_async_inferior_event_token);
7081 }
7082
7083 return event_ptid;
7084 }
7085
7086 /* Fetch a single register using a 'p' packet. */
7087
7088 static int
7089 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7090 {
7091 struct remote_state *rs = get_remote_state ();
7092 char *buf, *p;
7093 char regp[MAX_REGISTER_SIZE];
7094 int i;
7095
7096 if (packet_support (PACKET_p) == PACKET_DISABLE)
7097 return 0;
7098
7099 if (reg->pnum == -1)
7100 return 0;
7101
7102 p = rs->buf;
7103 *p++ = 'p';
7104 p += hexnumstr (p, reg->pnum);
7105 *p++ = '\0';
7106 putpkt (rs->buf);
7107 getpkt (&rs->buf, &rs->buf_size, 0);
7108
7109 buf = rs->buf;
7110
7111 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7112 {
7113 case PACKET_OK:
7114 break;
7115 case PACKET_UNKNOWN:
7116 return 0;
7117 case PACKET_ERROR:
7118 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7119 gdbarch_register_name (get_regcache_arch (regcache),
7120 reg->regnum),
7121 buf);
7122 }
7123
7124 /* If this register is unfetchable, tell the regcache. */
7125 if (buf[0] == 'x')
7126 {
7127 regcache_raw_supply (regcache, reg->regnum, NULL);
7128 return 1;
7129 }
7130
7131 /* Otherwise, parse and supply the value. */
7132 p = buf;
7133 i = 0;
7134 while (p[0] != 0)
7135 {
7136 if (p[1] == 0)
7137 error (_("fetch_register_using_p: early buf termination"));
7138
7139 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7140 p += 2;
7141 }
7142 regcache_raw_supply (regcache, reg->regnum, regp);
7143 return 1;
7144 }
7145
7146 /* Fetch the registers included in the target's 'g' packet. */
7147
7148 static int
7149 send_g_packet (void)
7150 {
7151 struct remote_state *rs = get_remote_state ();
7152 int buf_len;
7153
7154 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7155 remote_send (&rs->buf, &rs->buf_size);
7156
7157 /* We can get out of synch in various cases. If the first character
7158 in the buffer is not a hex character, assume that has happened
7159 and try to fetch another packet to read. */
7160 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7161 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7162 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7163 && rs->buf[0] != 'x') /* New: unavailable register value. */
7164 {
7165 if (remote_debug)
7166 fprintf_unfiltered (gdb_stdlog,
7167 "Bad register packet; fetching a new packet\n");
7168 getpkt (&rs->buf, &rs->buf_size, 0);
7169 }
7170
7171 buf_len = strlen (rs->buf);
7172
7173 /* Sanity check the received packet. */
7174 if (buf_len % 2 != 0)
7175 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7176
7177 return buf_len / 2;
7178 }
7179
7180 static void
7181 process_g_packet (struct regcache *regcache)
7182 {
7183 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7184 struct remote_state *rs = get_remote_state ();
7185 struct remote_arch_state *rsa = get_remote_arch_state ();
7186 int i, buf_len;
7187 char *p;
7188 char *regs;
7189
7190 buf_len = strlen (rs->buf);
7191
7192 /* Further sanity checks, with knowledge of the architecture. */
7193 if (buf_len > 2 * rsa->sizeof_g_packet)
7194 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
7195
7196 /* Save the size of the packet sent to us by the target. It is used
7197 as a heuristic when determining the max size of packets that the
7198 target can safely receive. */
7199 if (rsa->actual_register_packet_size == 0)
7200 rsa->actual_register_packet_size = buf_len;
7201
7202 /* If this is smaller than we guessed the 'g' packet would be,
7203 update our records. A 'g' reply that doesn't include a register's
7204 value implies either that the register is not available, or that
7205 the 'p' packet must be used. */
7206 if (buf_len < 2 * rsa->sizeof_g_packet)
7207 {
7208 rsa->sizeof_g_packet = buf_len / 2;
7209
7210 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7211 {
7212 if (rsa->regs[i].pnum == -1)
7213 continue;
7214
7215 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
7216 rsa->regs[i].in_g_packet = 0;
7217 else
7218 rsa->regs[i].in_g_packet = 1;
7219 }
7220 }
7221
7222 regs = (char *) alloca (rsa->sizeof_g_packet);
7223
7224 /* Unimplemented registers read as all bits zero. */
7225 memset (regs, 0, rsa->sizeof_g_packet);
7226
7227 /* Reply describes registers byte by byte, each byte encoded as two
7228 hex characters. Suck them all up, then supply them to the
7229 register cacheing/storage mechanism. */
7230
7231 p = rs->buf;
7232 for (i = 0; i < rsa->sizeof_g_packet; i++)
7233 {
7234 if (p[0] == 0 || p[1] == 0)
7235 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7236 internal_error (__FILE__, __LINE__,
7237 _("unexpected end of 'g' packet reply"));
7238
7239 if (p[0] == 'x' && p[1] == 'x')
7240 regs[i] = 0; /* 'x' */
7241 else
7242 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7243 p += 2;
7244 }
7245
7246 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7247 {
7248 struct packet_reg *r = &rsa->regs[i];
7249
7250 if (r->in_g_packet)
7251 {
7252 if (r->offset * 2 >= strlen (rs->buf))
7253 /* This shouldn't happen - we adjusted in_g_packet above. */
7254 internal_error (__FILE__, __LINE__,
7255 _("unexpected end of 'g' packet reply"));
7256 else if (rs->buf[r->offset * 2] == 'x')
7257 {
7258 gdb_assert (r->offset * 2 < strlen (rs->buf));
7259 /* The register isn't available, mark it as such (at
7260 the same time setting the value to zero). */
7261 regcache_raw_supply (regcache, r->regnum, NULL);
7262 }
7263 else
7264 regcache_raw_supply (regcache, r->regnum,
7265 regs + r->offset);
7266 }
7267 }
7268 }
7269
7270 static void
7271 fetch_registers_using_g (struct regcache *regcache)
7272 {
7273 send_g_packet ();
7274 process_g_packet (regcache);
7275 }
7276
7277 /* Make the remote selected traceframe match GDB's selected
7278 traceframe. */
7279
7280 static void
7281 set_remote_traceframe (void)
7282 {
7283 int newnum;
7284 struct remote_state *rs = get_remote_state ();
7285
7286 if (rs->remote_traceframe_number == get_traceframe_number ())
7287 return;
7288
7289 /* Avoid recursion, remote_trace_find calls us again. */
7290 rs->remote_traceframe_number = get_traceframe_number ();
7291
7292 newnum = target_trace_find (tfind_number,
7293 get_traceframe_number (), 0, 0, NULL);
7294
7295 /* Should not happen. If it does, all bets are off. */
7296 if (newnum != get_traceframe_number ())
7297 warning (_("could not set remote traceframe"));
7298 }
7299
7300 static void
7301 remote_fetch_registers (struct target_ops *ops,
7302 struct regcache *regcache, int regnum)
7303 {
7304 struct remote_arch_state *rsa = get_remote_arch_state ();
7305 int i;
7306
7307 set_remote_traceframe ();
7308 set_general_thread (inferior_ptid);
7309
7310 if (regnum >= 0)
7311 {
7312 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
7313
7314 gdb_assert (reg != NULL);
7315
7316 /* If this register might be in the 'g' packet, try that first -
7317 we are likely to read more than one register. If this is the
7318 first 'g' packet, we might be overly optimistic about its
7319 contents, so fall back to 'p'. */
7320 if (reg->in_g_packet)
7321 {
7322 fetch_registers_using_g (regcache);
7323 if (reg->in_g_packet)
7324 return;
7325 }
7326
7327 if (fetch_register_using_p (regcache, reg))
7328 return;
7329
7330 /* This register is not available. */
7331 regcache_raw_supply (regcache, reg->regnum, NULL);
7332
7333 return;
7334 }
7335
7336 fetch_registers_using_g (regcache);
7337
7338 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7339 if (!rsa->regs[i].in_g_packet)
7340 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
7341 {
7342 /* This register is not available. */
7343 regcache_raw_supply (regcache, i, NULL);
7344 }
7345 }
7346
7347 /* Prepare to store registers. Since we may send them all (using a
7348 'G' request), we have to read out the ones we don't want to change
7349 first. */
7350
7351 static void
7352 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
7353 {
7354 struct remote_arch_state *rsa = get_remote_arch_state ();
7355 int i;
7356 gdb_byte buf[MAX_REGISTER_SIZE];
7357
7358 /* Make sure the entire registers array is valid. */
7359 switch (packet_support (PACKET_P))
7360 {
7361 case PACKET_DISABLE:
7362 case PACKET_SUPPORT_UNKNOWN:
7363 /* Make sure all the necessary registers are cached. */
7364 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7365 if (rsa->regs[i].in_g_packet)
7366 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
7367 break;
7368 case PACKET_ENABLE:
7369 break;
7370 }
7371 }
7372
7373 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
7374 packet was not recognized. */
7375
7376 static int
7377 store_register_using_P (const struct regcache *regcache,
7378 struct packet_reg *reg)
7379 {
7380 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7381 struct remote_state *rs = get_remote_state ();
7382 /* Try storing a single register. */
7383 char *buf = rs->buf;
7384 gdb_byte regp[MAX_REGISTER_SIZE];
7385 char *p;
7386
7387 if (packet_support (PACKET_P) == PACKET_DISABLE)
7388 return 0;
7389
7390 if (reg->pnum == -1)
7391 return 0;
7392
7393 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
7394 p = buf + strlen (buf);
7395 regcache_raw_collect (regcache, reg->regnum, regp);
7396 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
7397 putpkt (rs->buf);
7398 getpkt (&rs->buf, &rs->buf_size, 0);
7399
7400 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
7401 {
7402 case PACKET_OK:
7403 return 1;
7404 case PACKET_ERROR:
7405 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
7406 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
7407 case PACKET_UNKNOWN:
7408 return 0;
7409 default:
7410 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
7411 }
7412 }
7413
7414 /* Store register REGNUM, or all registers if REGNUM == -1, from the
7415 contents of the register cache buffer. FIXME: ignores errors. */
7416
7417 static void
7418 store_registers_using_G (const struct regcache *regcache)
7419 {
7420 struct remote_state *rs = get_remote_state ();
7421 struct remote_arch_state *rsa = get_remote_arch_state ();
7422 gdb_byte *regs;
7423 char *p;
7424
7425 /* Extract all the registers in the regcache copying them into a
7426 local buffer. */
7427 {
7428 int i;
7429
7430 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
7431 memset (regs, 0, rsa->sizeof_g_packet);
7432 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7433 {
7434 struct packet_reg *r = &rsa->regs[i];
7435
7436 if (r->in_g_packet)
7437 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
7438 }
7439 }
7440
7441 /* Command describes registers byte by byte,
7442 each byte encoded as two hex characters. */
7443 p = rs->buf;
7444 *p++ = 'G';
7445 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
7446 updated. */
7447 bin2hex (regs, p, rsa->sizeof_g_packet);
7448 putpkt (rs->buf);
7449 getpkt (&rs->buf, &rs->buf_size, 0);
7450 if (packet_check_result (rs->buf) == PACKET_ERROR)
7451 error (_("Could not write registers; remote failure reply '%s'"),
7452 rs->buf);
7453 }
7454
7455 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
7456 of the register cache buffer. FIXME: ignores errors. */
7457
7458 static void
7459 remote_store_registers (struct target_ops *ops,
7460 struct regcache *regcache, int regnum)
7461 {
7462 struct remote_arch_state *rsa = get_remote_arch_state ();
7463 int i;
7464
7465 set_remote_traceframe ();
7466 set_general_thread (inferior_ptid);
7467
7468 if (regnum >= 0)
7469 {
7470 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
7471
7472 gdb_assert (reg != NULL);
7473
7474 /* Always prefer to store registers using the 'P' packet if
7475 possible; we often change only a small number of registers.
7476 Sometimes we change a larger number; we'd need help from a
7477 higher layer to know to use 'G'. */
7478 if (store_register_using_P (regcache, reg))
7479 return;
7480
7481 /* For now, don't complain if we have no way to write the
7482 register. GDB loses track of unavailable registers too
7483 easily. Some day, this may be an error. We don't have
7484 any way to read the register, either... */
7485 if (!reg->in_g_packet)
7486 return;
7487
7488 store_registers_using_G (regcache);
7489 return;
7490 }
7491
7492 store_registers_using_G (regcache);
7493
7494 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7495 if (!rsa->regs[i].in_g_packet)
7496 if (!store_register_using_P (regcache, &rsa->regs[i]))
7497 /* See above for why we do not issue an error here. */
7498 continue;
7499 }
7500 \f
7501
7502 /* Return the number of hex digits in num. */
7503
7504 static int
7505 hexnumlen (ULONGEST num)
7506 {
7507 int i;
7508
7509 for (i = 0; num != 0; i++)
7510 num >>= 4;
7511
7512 return max (i, 1);
7513 }
7514
7515 /* Set BUF to the minimum number of hex digits representing NUM. */
7516
7517 static int
7518 hexnumstr (char *buf, ULONGEST num)
7519 {
7520 int len = hexnumlen (num);
7521
7522 return hexnumnstr (buf, num, len);
7523 }
7524
7525
7526 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
7527
7528 static int
7529 hexnumnstr (char *buf, ULONGEST num, int width)
7530 {
7531 int i;
7532
7533 buf[width] = '\0';
7534
7535 for (i = width - 1; i >= 0; i--)
7536 {
7537 buf[i] = "0123456789abcdef"[(num & 0xf)];
7538 num >>= 4;
7539 }
7540
7541 return width;
7542 }
7543
7544 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
7545
7546 static CORE_ADDR
7547 remote_address_masked (CORE_ADDR addr)
7548 {
7549 unsigned int address_size = remote_address_size;
7550
7551 /* If "remoteaddresssize" was not set, default to target address size. */
7552 if (!address_size)
7553 address_size = gdbarch_addr_bit (target_gdbarch ());
7554
7555 if (address_size > 0
7556 && address_size < (sizeof (ULONGEST) * 8))
7557 {
7558 /* Only create a mask when that mask can safely be constructed
7559 in a ULONGEST variable. */
7560 ULONGEST mask = 1;
7561
7562 mask = (mask << address_size) - 1;
7563 addr &= mask;
7564 }
7565 return addr;
7566 }
7567
7568 /* Determine whether the remote target supports binary downloading.
7569 This is accomplished by sending a no-op memory write of zero length
7570 to the target at the specified address. It does not suffice to send
7571 the whole packet, since many stubs strip the eighth bit and
7572 subsequently compute a wrong checksum, which causes real havoc with
7573 remote_write_bytes.
7574
7575 NOTE: This can still lose if the serial line is not eight-bit
7576 clean. In cases like this, the user should clear "remote
7577 X-packet". */
7578
7579 static void
7580 check_binary_download (CORE_ADDR addr)
7581 {
7582 struct remote_state *rs = get_remote_state ();
7583
7584 switch (packet_support (PACKET_X))
7585 {
7586 case PACKET_DISABLE:
7587 break;
7588 case PACKET_ENABLE:
7589 break;
7590 case PACKET_SUPPORT_UNKNOWN:
7591 {
7592 char *p;
7593
7594 p = rs->buf;
7595 *p++ = 'X';
7596 p += hexnumstr (p, (ULONGEST) addr);
7597 *p++ = ',';
7598 p += hexnumstr (p, (ULONGEST) 0);
7599 *p++ = ':';
7600 *p = '\0';
7601
7602 putpkt_binary (rs->buf, (int) (p - rs->buf));
7603 getpkt (&rs->buf, &rs->buf_size, 0);
7604
7605 if (rs->buf[0] == '\0')
7606 {
7607 if (remote_debug)
7608 fprintf_unfiltered (gdb_stdlog,
7609 "binary downloading NOT "
7610 "supported by target\n");
7611 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
7612 }
7613 else
7614 {
7615 if (remote_debug)
7616 fprintf_unfiltered (gdb_stdlog,
7617 "binary downloading supported by target\n");
7618 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
7619 }
7620 break;
7621 }
7622 }
7623 }
7624
7625 /* Helper function to resize the payload in order to try to get a good
7626 alignment. We try to write an amount of data such that the next write will
7627 start on an address aligned on REMOTE_ALIGN_WRITES. */
7628
7629 static int
7630 align_for_efficient_write (int todo, CORE_ADDR memaddr)
7631 {
7632 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
7633 }
7634
7635 /* Write memory data directly to the remote machine.
7636 This does not inform the data cache; the data cache uses this.
7637 HEADER is the starting part of the packet.
7638 MEMADDR is the address in the remote memory space.
7639 MYADDR is the address of the buffer in our space.
7640 LEN_UNITS is the number of addressable units to write.
7641 UNIT_SIZE is the length in bytes of an addressable unit.
7642 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
7643 should send data as binary ('X'), or hex-encoded ('M').
7644
7645 The function creates packet of the form
7646 <HEADER><ADDRESS>,<LENGTH>:<DATA>
7647
7648 where encoding of <DATA> is terminated by PACKET_FORMAT.
7649
7650 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
7651 are omitted.
7652
7653 Return the transferred status, error or OK (an
7654 'enum target_xfer_status' value). Save the number of addressable units
7655 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
7656
7657 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
7658 exchange between gdb and the stub could look like (?? in place of the
7659 checksum):
7660
7661 -> $m1000,4#??
7662 <- aaaabbbbccccdddd
7663
7664 -> $M1000,3:eeeeffffeeee#??
7665 <- OK
7666
7667 -> $m1000,4#??
7668 <- eeeeffffeeeedddd */
7669
7670 static enum target_xfer_status
7671 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
7672 const gdb_byte *myaddr, ULONGEST len_units,
7673 int unit_size, ULONGEST *xfered_len_units,
7674 char packet_format, int use_length)
7675 {
7676 struct remote_state *rs = get_remote_state ();
7677 char *p;
7678 char *plen = NULL;
7679 int plenlen = 0;
7680 int todo_units;
7681 int units_written;
7682 int payload_capacity_bytes;
7683 int payload_length_bytes;
7684
7685 if (packet_format != 'X' && packet_format != 'M')
7686 internal_error (__FILE__, __LINE__,
7687 _("remote_write_bytes_aux: bad packet format"));
7688
7689 if (len_units == 0)
7690 return TARGET_XFER_EOF;
7691
7692 payload_capacity_bytes = get_memory_write_packet_size ();
7693
7694 /* The packet buffer will be large enough for the payload;
7695 get_memory_packet_size ensures this. */
7696 rs->buf[0] = '\0';
7697
7698 /* Compute the size of the actual payload by subtracting out the
7699 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
7700
7701 payload_capacity_bytes -= strlen ("$,:#NN");
7702 if (!use_length)
7703 /* The comma won't be used. */
7704 payload_capacity_bytes += 1;
7705 payload_capacity_bytes -= strlen (header);
7706 payload_capacity_bytes -= hexnumlen (memaddr);
7707
7708 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
7709
7710 strcat (rs->buf, header);
7711 p = rs->buf + strlen (header);
7712
7713 /* Compute a best guess of the number of bytes actually transfered. */
7714 if (packet_format == 'X')
7715 {
7716 /* Best guess at number of bytes that will fit. */
7717 todo_units = min (len_units, payload_capacity_bytes / unit_size);
7718 if (use_length)
7719 payload_capacity_bytes -= hexnumlen (todo_units);
7720 todo_units = min (todo_units, payload_capacity_bytes / unit_size);
7721 }
7722 else
7723 {
7724 /* Number of bytes that will fit. */
7725 todo_units = min (len_units, (payload_capacity_bytes / unit_size) / 2);
7726 if (use_length)
7727 payload_capacity_bytes -= hexnumlen (todo_units);
7728 todo_units = min (todo_units, (payload_capacity_bytes / unit_size) / 2);
7729 }
7730
7731 if (todo_units <= 0)
7732 internal_error (__FILE__, __LINE__,
7733 _("minimum packet size too small to write data"));
7734
7735 /* If we already need another packet, then try to align the end
7736 of this packet to a useful boundary. */
7737 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
7738 todo_units = align_for_efficient_write (todo_units, memaddr);
7739
7740 /* Append "<memaddr>". */
7741 memaddr = remote_address_masked (memaddr);
7742 p += hexnumstr (p, (ULONGEST) memaddr);
7743
7744 if (use_length)
7745 {
7746 /* Append ",". */
7747 *p++ = ',';
7748
7749 /* Append the length and retain its location and size. It may need to be
7750 adjusted once the packet body has been created. */
7751 plen = p;
7752 plenlen = hexnumstr (p, (ULONGEST) todo_units);
7753 p += plenlen;
7754 }
7755
7756 /* Append ":". */
7757 *p++ = ':';
7758 *p = '\0';
7759
7760 /* Append the packet body. */
7761 if (packet_format == 'X')
7762 {
7763 /* Binary mode. Send target system values byte by byte, in
7764 increasing byte addresses. Only escape certain critical
7765 characters. */
7766 payload_length_bytes =
7767 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
7768 &units_written, payload_capacity_bytes);
7769
7770 /* If not all TODO units fit, then we'll need another packet. Make
7771 a second try to keep the end of the packet aligned. Don't do
7772 this if the packet is tiny. */
7773 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
7774 {
7775 int new_todo_units;
7776
7777 new_todo_units = align_for_efficient_write (units_written, memaddr);
7778
7779 if (new_todo_units != units_written)
7780 payload_length_bytes =
7781 remote_escape_output (myaddr, new_todo_units, unit_size,
7782 (gdb_byte *) p, &units_written,
7783 payload_capacity_bytes);
7784 }
7785
7786 p += payload_length_bytes;
7787 if (use_length && units_written < todo_units)
7788 {
7789 /* Escape chars have filled up the buffer prematurely,
7790 and we have actually sent fewer units than planned.
7791 Fix-up the length field of the packet. Use the same
7792 number of characters as before. */
7793 plen += hexnumnstr (plen, (ULONGEST) units_written,
7794 plenlen);
7795 *plen = ':'; /* overwrite \0 from hexnumnstr() */
7796 }
7797 }
7798 else
7799 {
7800 /* Normal mode: Send target system values byte by byte, in
7801 increasing byte addresses. Each byte is encoded as a two hex
7802 value. */
7803 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
7804 units_written = todo_units;
7805 }
7806
7807 putpkt_binary (rs->buf, (int) (p - rs->buf));
7808 getpkt (&rs->buf, &rs->buf_size, 0);
7809
7810 if (rs->buf[0] == 'E')
7811 return TARGET_XFER_E_IO;
7812
7813 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
7814 send fewer units than we'd planned. */
7815 *xfered_len_units = (ULONGEST) units_written;
7816 return TARGET_XFER_OK;
7817 }
7818
7819 /* Write memory data directly to the remote machine.
7820 This does not inform the data cache; the data cache uses this.
7821 MEMADDR is the address in the remote memory space.
7822 MYADDR is the address of the buffer in our space.
7823 LEN is the number of bytes.
7824
7825 Return the transferred status, error or OK (an
7826 'enum target_xfer_status' value). Save the number of bytes
7827 transferred in *XFERED_LEN. Only transfer a single packet. */
7828
7829 static enum target_xfer_status
7830 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
7831 int unit_size, ULONGEST *xfered_len)
7832 {
7833 char *packet_format = 0;
7834
7835 /* Check whether the target supports binary download. */
7836 check_binary_download (memaddr);
7837
7838 switch (packet_support (PACKET_X))
7839 {
7840 case PACKET_ENABLE:
7841 packet_format = "X";
7842 break;
7843 case PACKET_DISABLE:
7844 packet_format = "M";
7845 break;
7846 case PACKET_SUPPORT_UNKNOWN:
7847 internal_error (__FILE__, __LINE__,
7848 _("remote_write_bytes: bad internal state"));
7849 default:
7850 internal_error (__FILE__, __LINE__, _("bad switch"));
7851 }
7852
7853 return remote_write_bytes_aux (packet_format,
7854 memaddr, myaddr, len, unit_size, xfered_len,
7855 packet_format[0], 1);
7856 }
7857
7858 /* Read memory data directly from the remote machine.
7859 This does not use the data cache; the data cache uses this.
7860 MEMADDR is the address in the remote memory space.
7861 MYADDR is the address of the buffer in our space.
7862 LEN_UNITS is the number of addressable memory units to read..
7863 UNIT_SIZE is the length in bytes of an addressable unit.
7864
7865 Return the transferred status, error or OK (an
7866 'enum target_xfer_status' value). Save the number of bytes
7867 transferred in *XFERED_LEN_UNITS.
7868
7869 See the comment of remote_write_bytes_aux for an example of
7870 memory read/write exchange between gdb and the stub. */
7871
7872 static enum target_xfer_status
7873 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
7874 int unit_size, ULONGEST *xfered_len_units)
7875 {
7876 struct remote_state *rs = get_remote_state ();
7877 int buf_size_bytes; /* Max size of packet output buffer. */
7878 char *p;
7879 int todo_units;
7880 int decoded_bytes;
7881
7882 buf_size_bytes = get_memory_read_packet_size ();
7883 /* The packet buffer will be large enough for the payload;
7884 get_memory_packet_size ensures this. */
7885
7886 /* Number of units that will fit. */
7887 todo_units = min (len_units, (buf_size_bytes / unit_size) / 2);
7888
7889 /* Construct "m"<memaddr>","<len>". */
7890 memaddr = remote_address_masked (memaddr);
7891 p = rs->buf;
7892 *p++ = 'm';
7893 p += hexnumstr (p, (ULONGEST) memaddr);
7894 *p++ = ',';
7895 p += hexnumstr (p, (ULONGEST) todo_units);
7896 *p = '\0';
7897 putpkt (rs->buf);
7898 getpkt (&rs->buf, &rs->buf_size, 0);
7899 if (rs->buf[0] == 'E'
7900 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
7901 && rs->buf[3] == '\0')
7902 return TARGET_XFER_E_IO;
7903 /* Reply describes memory byte by byte, each byte encoded as two hex
7904 characters. */
7905 p = rs->buf;
7906 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
7907 /* Return what we have. Let higher layers handle partial reads. */
7908 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
7909 return TARGET_XFER_OK;
7910 }
7911
7912 /* Using the set of read-only target sections of remote, read live
7913 read-only memory.
7914
7915 For interface/parameters/return description see target.h,
7916 to_xfer_partial. */
7917
7918 static enum target_xfer_status
7919 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
7920 ULONGEST memaddr, ULONGEST len,
7921 int unit_size, ULONGEST *xfered_len)
7922 {
7923 struct target_section *secp;
7924 struct target_section_table *table;
7925
7926 secp = target_section_by_addr (ops, memaddr);
7927 if (secp != NULL
7928 && (bfd_get_section_flags (secp->the_bfd_section->owner,
7929 secp->the_bfd_section)
7930 & SEC_READONLY))
7931 {
7932 struct target_section *p;
7933 ULONGEST memend = memaddr + len;
7934
7935 table = target_get_section_table (ops);
7936
7937 for (p = table->sections; p < table->sections_end; p++)
7938 {
7939 if (memaddr >= p->addr)
7940 {
7941 if (memend <= p->endaddr)
7942 {
7943 /* Entire transfer is within this section. */
7944 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
7945 xfered_len);
7946 }
7947 else if (memaddr >= p->endaddr)
7948 {
7949 /* This section ends before the transfer starts. */
7950 continue;
7951 }
7952 else
7953 {
7954 /* This section overlaps the transfer. Just do half. */
7955 len = p->endaddr - memaddr;
7956 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
7957 xfered_len);
7958 }
7959 }
7960 }
7961 }
7962
7963 return TARGET_XFER_EOF;
7964 }
7965
7966 /* Similar to remote_read_bytes_1, but it reads from the remote stub
7967 first if the requested memory is unavailable in traceframe.
7968 Otherwise, fall back to remote_read_bytes_1. */
7969
7970 static enum target_xfer_status
7971 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
7972 gdb_byte *myaddr, ULONGEST len, int unit_size,
7973 ULONGEST *xfered_len)
7974 {
7975 if (len == 0)
7976 return TARGET_XFER_EOF;
7977
7978 if (get_traceframe_number () != -1)
7979 {
7980 VEC(mem_range_s) *available;
7981
7982 /* If we fail to get the set of available memory, then the
7983 target does not support querying traceframe info, and so we
7984 attempt reading from the traceframe anyway (assuming the
7985 target implements the old QTro packet then). */
7986 if (traceframe_available_memory (&available, memaddr, len))
7987 {
7988 struct cleanup *old_chain;
7989
7990 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
7991
7992 if (VEC_empty (mem_range_s, available)
7993 || VEC_index (mem_range_s, available, 0)->start != memaddr)
7994 {
7995 enum target_xfer_status res;
7996
7997 /* Don't read into the traceframe's available
7998 memory. */
7999 if (!VEC_empty (mem_range_s, available))
8000 {
8001 LONGEST oldlen = len;
8002
8003 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
8004 gdb_assert (len <= oldlen);
8005 }
8006
8007 do_cleanups (old_chain);
8008
8009 /* This goes through the topmost target again. */
8010 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8011 len, unit_size, xfered_len);
8012 if (res == TARGET_XFER_OK)
8013 return TARGET_XFER_OK;
8014 else
8015 {
8016 /* No use trying further, we know some memory starting
8017 at MEMADDR isn't available. */
8018 *xfered_len = len;
8019 return TARGET_XFER_UNAVAILABLE;
8020 }
8021 }
8022
8023 /* Don't try to read more than how much is available, in
8024 case the target implements the deprecated QTro packet to
8025 cater for older GDBs (the target's knowledge of read-only
8026 sections may be outdated by now). */
8027 len = VEC_index (mem_range_s, available, 0)->length;
8028
8029 do_cleanups (old_chain);
8030 }
8031 }
8032
8033 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8034 }
8035
8036 \f
8037
8038 /* Sends a packet with content determined by the printf format string
8039 FORMAT and the remaining arguments, then gets the reply. Returns
8040 whether the packet was a success, a failure, or unknown. */
8041
8042 static enum packet_result remote_send_printf (const char *format, ...)
8043 ATTRIBUTE_PRINTF (1, 2);
8044
8045 static enum packet_result
8046 remote_send_printf (const char *format, ...)
8047 {
8048 struct remote_state *rs = get_remote_state ();
8049 int max_size = get_remote_packet_size ();
8050 va_list ap;
8051
8052 va_start (ap, format);
8053
8054 rs->buf[0] = '\0';
8055 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8056 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8057
8058 if (putpkt (rs->buf) < 0)
8059 error (_("Communication problem with target."));
8060
8061 rs->buf[0] = '\0';
8062 getpkt (&rs->buf, &rs->buf_size, 0);
8063
8064 return packet_check_result (rs->buf);
8065 }
8066
8067 static void
8068 restore_remote_timeout (void *p)
8069 {
8070 int value = *(int *)p;
8071
8072 remote_timeout = value;
8073 }
8074
8075 /* Flash writing can take quite some time. We'll set
8076 effectively infinite timeout for flash operations.
8077 In future, we'll need to decide on a better approach. */
8078 static const int remote_flash_timeout = 1000;
8079
8080 static void
8081 remote_flash_erase (struct target_ops *ops,
8082 ULONGEST address, LONGEST length)
8083 {
8084 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8085 int saved_remote_timeout = remote_timeout;
8086 enum packet_result ret;
8087 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
8088 &saved_remote_timeout);
8089
8090 remote_timeout = remote_flash_timeout;
8091
8092 ret = remote_send_printf ("vFlashErase:%s,%s",
8093 phex (address, addr_size),
8094 phex (length, 4));
8095 switch (ret)
8096 {
8097 case PACKET_UNKNOWN:
8098 error (_("Remote target does not support flash erase"));
8099 case PACKET_ERROR:
8100 error (_("Error erasing flash with vFlashErase packet"));
8101 default:
8102 break;
8103 }
8104
8105 do_cleanups (back_to);
8106 }
8107
8108 static enum target_xfer_status
8109 remote_flash_write (struct target_ops *ops, ULONGEST address,
8110 ULONGEST length, ULONGEST *xfered_len,
8111 const gdb_byte *data)
8112 {
8113 int saved_remote_timeout = remote_timeout;
8114 enum target_xfer_status ret;
8115 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
8116 &saved_remote_timeout);
8117
8118 remote_timeout = remote_flash_timeout;
8119 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8120 xfered_len,'X', 0);
8121 do_cleanups (back_to);
8122
8123 return ret;
8124 }
8125
8126 static void
8127 remote_flash_done (struct target_ops *ops)
8128 {
8129 int saved_remote_timeout = remote_timeout;
8130 int ret;
8131 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
8132 &saved_remote_timeout);
8133
8134 remote_timeout = remote_flash_timeout;
8135 ret = remote_send_printf ("vFlashDone");
8136 do_cleanups (back_to);
8137
8138 switch (ret)
8139 {
8140 case PACKET_UNKNOWN:
8141 error (_("Remote target does not support vFlashDone"));
8142 case PACKET_ERROR:
8143 error (_("Error finishing flash operation"));
8144 default:
8145 break;
8146 }
8147 }
8148
8149 static void
8150 remote_files_info (struct target_ops *ignore)
8151 {
8152 puts_filtered ("Debugging a target over a serial line.\n");
8153 }
8154 \f
8155 /* Stuff for dealing with the packets which are part of this protocol.
8156 See comment at top of file for details. */
8157
8158 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8159 error to higher layers. Called when a serial error is detected.
8160 The exception message is STRING, followed by a colon and a blank,
8161 the system error message for errno at function entry and final dot
8162 for output compatibility with throw_perror_with_name. */
8163
8164 static void
8165 unpush_and_perror (const char *string)
8166 {
8167 int saved_errno = errno;
8168
8169 remote_unpush_target ();
8170 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8171 safe_strerror (saved_errno));
8172 }
8173
8174 /* Read a single character from the remote end. */
8175
8176 static int
8177 readchar (int timeout)
8178 {
8179 int ch;
8180 struct remote_state *rs = get_remote_state ();
8181
8182 ch = serial_readchar (rs->remote_desc, timeout);
8183
8184 if (ch >= 0)
8185 return ch;
8186
8187 switch ((enum serial_rc) ch)
8188 {
8189 case SERIAL_EOF:
8190 remote_unpush_target ();
8191 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8192 /* no return */
8193 case SERIAL_ERROR:
8194 unpush_and_perror (_("Remote communication error. "
8195 "Target disconnected."));
8196 /* no return */
8197 case SERIAL_TIMEOUT:
8198 break;
8199 }
8200 return ch;
8201 }
8202
8203 /* Wrapper for serial_write that closes the target and throws if
8204 writing fails. */
8205
8206 static void
8207 remote_serial_write (const char *str, int len)
8208 {
8209 struct remote_state *rs = get_remote_state ();
8210
8211 if (serial_write (rs->remote_desc, str, len))
8212 {
8213 unpush_and_perror (_("Remote communication error. "
8214 "Target disconnected."));
8215 }
8216 }
8217
8218 /* Send the command in *BUF to the remote machine, and read the reply
8219 into *BUF. Report an error if we get an error reply. Resize
8220 *BUF using xrealloc if necessary to hold the result, and update
8221 *SIZEOF_BUF. */
8222
8223 static void
8224 remote_send (char **buf,
8225 long *sizeof_buf)
8226 {
8227 putpkt (*buf);
8228 getpkt (buf, sizeof_buf, 0);
8229
8230 if ((*buf)[0] == 'E')
8231 error (_("Remote failure reply: %s"), *buf);
8232 }
8233
8234 /* Return a pointer to an xmalloc'ed string representing an escaped
8235 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
8236 etc. The caller is responsible for releasing the returned
8237 memory. */
8238
8239 static char *
8240 escape_buffer (const char *buf, int n)
8241 {
8242 struct cleanup *old_chain;
8243 struct ui_file *stb;
8244 char *str;
8245
8246 stb = mem_fileopen ();
8247 old_chain = make_cleanup_ui_file_delete (stb);
8248
8249 fputstrn_unfiltered (buf, n, '\\', stb);
8250 str = ui_file_xstrdup (stb, NULL);
8251 do_cleanups (old_chain);
8252 return str;
8253 }
8254
8255 /* Display a null-terminated packet on stdout, for debugging, using C
8256 string notation. */
8257
8258 static void
8259 print_packet (const char *buf)
8260 {
8261 puts_filtered ("\"");
8262 fputstr_filtered (buf, '"', gdb_stdout);
8263 puts_filtered ("\"");
8264 }
8265
8266 int
8267 putpkt (const char *buf)
8268 {
8269 return putpkt_binary (buf, strlen (buf));
8270 }
8271
8272 /* Send a packet to the remote machine, with error checking. The data
8273 of the packet is in BUF. The string in BUF can be at most
8274 get_remote_packet_size () - 5 to account for the $, # and checksum,
8275 and for a possible /0 if we are debugging (remote_debug) and want
8276 to print the sent packet as a string. */
8277
8278 static int
8279 putpkt_binary (const char *buf, int cnt)
8280 {
8281 struct remote_state *rs = get_remote_state ();
8282 int i;
8283 unsigned char csum = 0;
8284 char *buf2 = (char *) xmalloc (cnt + 6);
8285 struct cleanup *old_chain = make_cleanup (xfree, buf2);
8286
8287 int ch;
8288 int tcount = 0;
8289 char *p;
8290
8291 /* Catch cases like trying to read memory or listing threads while
8292 we're waiting for a stop reply. The remote server wouldn't be
8293 ready to handle this request, so we'd hang and timeout. We don't
8294 have to worry about this in synchronous mode, because in that
8295 case it's not possible to issue a command while the target is
8296 running. This is not a problem in non-stop mode, because in that
8297 case, the stub is always ready to process serial input. */
8298 if (!target_is_non_stop_p ()
8299 && target_is_async_p ()
8300 && rs->waiting_for_stop_reply)
8301 {
8302 error (_("Cannot execute this command while the target is running.\n"
8303 "Use the \"interrupt\" command to stop the target\n"
8304 "and then try again."));
8305 }
8306
8307 /* We're sending out a new packet. Make sure we don't look at a
8308 stale cached response. */
8309 rs->cached_wait_status = 0;
8310
8311 /* Copy the packet into buffer BUF2, encapsulating it
8312 and giving it a checksum. */
8313
8314 p = buf2;
8315 *p++ = '$';
8316
8317 for (i = 0; i < cnt; i++)
8318 {
8319 csum += buf[i];
8320 *p++ = buf[i];
8321 }
8322 *p++ = '#';
8323 *p++ = tohex ((csum >> 4) & 0xf);
8324 *p++ = tohex (csum & 0xf);
8325
8326 /* Send it over and over until we get a positive ack. */
8327
8328 while (1)
8329 {
8330 int started_error_output = 0;
8331
8332 if (remote_debug)
8333 {
8334 struct cleanup *old_chain;
8335 char *str;
8336
8337 *p = '\0';
8338 str = escape_buffer (buf2, p - buf2);
8339 old_chain = make_cleanup (xfree, str);
8340 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
8341 gdb_flush (gdb_stdlog);
8342 do_cleanups (old_chain);
8343 }
8344 remote_serial_write (buf2, p - buf2);
8345
8346 /* If this is a no acks version of the remote protocol, send the
8347 packet and move on. */
8348 if (rs->noack_mode)
8349 break;
8350
8351 /* Read until either a timeout occurs (-2) or '+' is read.
8352 Handle any notification that arrives in the mean time. */
8353 while (1)
8354 {
8355 ch = readchar (remote_timeout);
8356
8357 if (remote_debug)
8358 {
8359 switch (ch)
8360 {
8361 case '+':
8362 case '-':
8363 case SERIAL_TIMEOUT:
8364 case '$':
8365 case '%':
8366 if (started_error_output)
8367 {
8368 putchar_unfiltered ('\n');
8369 started_error_output = 0;
8370 }
8371 }
8372 }
8373
8374 switch (ch)
8375 {
8376 case '+':
8377 if (remote_debug)
8378 fprintf_unfiltered (gdb_stdlog, "Ack\n");
8379 do_cleanups (old_chain);
8380 return 1;
8381 case '-':
8382 if (remote_debug)
8383 fprintf_unfiltered (gdb_stdlog, "Nak\n");
8384 /* FALLTHROUGH */
8385 case SERIAL_TIMEOUT:
8386 tcount++;
8387 if (tcount > 3)
8388 {
8389 do_cleanups (old_chain);
8390 return 0;
8391 }
8392 break; /* Retransmit buffer. */
8393 case '$':
8394 {
8395 if (remote_debug)
8396 fprintf_unfiltered (gdb_stdlog,
8397 "Packet instead of Ack, ignoring it\n");
8398 /* It's probably an old response sent because an ACK
8399 was lost. Gobble up the packet and ack it so it
8400 doesn't get retransmitted when we resend this
8401 packet. */
8402 skip_frame ();
8403 remote_serial_write ("+", 1);
8404 continue; /* Now, go look for +. */
8405 }
8406
8407 case '%':
8408 {
8409 int val;
8410
8411 /* If we got a notification, handle it, and go back to looking
8412 for an ack. */
8413 /* We've found the start of a notification. Now
8414 collect the data. */
8415 val = read_frame (&rs->buf, &rs->buf_size);
8416 if (val >= 0)
8417 {
8418 if (remote_debug)
8419 {
8420 struct cleanup *old_chain;
8421 char *str;
8422
8423 str = escape_buffer (rs->buf, val);
8424 old_chain = make_cleanup (xfree, str);
8425 fprintf_unfiltered (gdb_stdlog,
8426 " Notification received: %s\n",
8427 str);
8428 do_cleanups (old_chain);
8429 }
8430 handle_notification (rs->notif_state, rs->buf);
8431 /* We're in sync now, rewait for the ack. */
8432 tcount = 0;
8433 }
8434 else
8435 {
8436 if (remote_debug)
8437 {
8438 if (!started_error_output)
8439 {
8440 started_error_output = 1;
8441 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8442 }
8443 fputc_unfiltered (ch & 0177, gdb_stdlog);
8444 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
8445 }
8446 }
8447 continue;
8448 }
8449 /* fall-through */
8450 default:
8451 if (remote_debug)
8452 {
8453 if (!started_error_output)
8454 {
8455 started_error_output = 1;
8456 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8457 }
8458 fputc_unfiltered (ch & 0177, gdb_stdlog);
8459 }
8460 continue;
8461 }
8462 break; /* Here to retransmit. */
8463 }
8464
8465 #if 0
8466 /* This is wrong. If doing a long backtrace, the user should be
8467 able to get out next time we call QUIT, without anything as
8468 violent as interrupt_query. If we want to provide a way out of
8469 here without getting to the next QUIT, it should be based on
8470 hitting ^C twice as in remote_wait. */
8471 if (quit_flag)
8472 {
8473 quit_flag = 0;
8474 interrupt_query ();
8475 }
8476 #endif
8477 }
8478
8479 do_cleanups (old_chain);
8480 return 0;
8481 }
8482
8483 /* Come here after finding the start of a frame when we expected an
8484 ack. Do our best to discard the rest of this packet. */
8485
8486 static void
8487 skip_frame (void)
8488 {
8489 int c;
8490
8491 while (1)
8492 {
8493 c = readchar (remote_timeout);
8494 switch (c)
8495 {
8496 case SERIAL_TIMEOUT:
8497 /* Nothing we can do. */
8498 return;
8499 case '#':
8500 /* Discard the two bytes of checksum and stop. */
8501 c = readchar (remote_timeout);
8502 if (c >= 0)
8503 c = readchar (remote_timeout);
8504
8505 return;
8506 case '*': /* Run length encoding. */
8507 /* Discard the repeat count. */
8508 c = readchar (remote_timeout);
8509 if (c < 0)
8510 return;
8511 break;
8512 default:
8513 /* A regular character. */
8514 break;
8515 }
8516 }
8517 }
8518
8519 /* Come here after finding the start of the frame. Collect the rest
8520 into *BUF, verifying the checksum, length, and handling run-length
8521 compression. NUL terminate the buffer. If there is not enough room,
8522 expand *BUF using xrealloc.
8523
8524 Returns -1 on error, number of characters in buffer (ignoring the
8525 trailing NULL) on success. (could be extended to return one of the
8526 SERIAL status indications). */
8527
8528 static long
8529 read_frame (char **buf_p,
8530 long *sizeof_buf)
8531 {
8532 unsigned char csum;
8533 long bc;
8534 int c;
8535 char *buf = *buf_p;
8536 struct remote_state *rs = get_remote_state ();
8537
8538 csum = 0;
8539 bc = 0;
8540
8541 while (1)
8542 {
8543 c = readchar (remote_timeout);
8544 switch (c)
8545 {
8546 case SERIAL_TIMEOUT:
8547 if (remote_debug)
8548 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
8549 return -1;
8550 case '$':
8551 if (remote_debug)
8552 fputs_filtered ("Saw new packet start in middle of old one\n",
8553 gdb_stdlog);
8554 return -1; /* Start a new packet, count retries. */
8555 case '#':
8556 {
8557 unsigned char pktcsum;
8558 int check_0 = 0;
8559 int check_1 = 0;
8560
8561 buf[bc] = '\0';
8562
8563 check_0 = readchar (remote_timeout);
8564 if (check_0 >= 0)
8565 check_1 = readchar (remote_timeout);
8566
8567 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
8568 {
8569 if (remote_debug)
8570 fputs_filtered ("Timeout in checksum, retrying\n",
8571 gdb_stdlog);
8572 return -1;
8573 }
8574 else if (check_0 < 0 || check_1 < 0)
8575 {
8576 if (remote_debug)
8577 fputs_filtered ("Communication error in checksum\n",
8578 gdb_stdlog);
8579 return -1;
8580 }
8581
8582 /* Don't recompute the checksum; with no ack packets we
8583 don't have any way to indicate a packet retransmission
8584 is necessary. */
8585 if (rs->noack_mode)
8586 return bc;
8587
8588 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
8589 if (csum == pktcsum)
8590 return bc;
8591
8592 if (remote_debug)
8593 {
8594 struct cleanup *old_chain;
8595 char *str;
8596
8597 str = escape_buffer (buf, bc);
8598 old_chain = make_cleanup (xfree, str);
8599 fprintf_unfiltered (gdb_stdlog,
8600 "Bad checksum, sentsum=0x%x, "
8601 "csum=0x%x, buf=%s\n",
8602 pktcsum, csum, str);
8603 do_cleanups (old_chain);
8604 }
8605 /* Number of characters in buffer ignoring trailing
8606 NULL. */
8607 return -1;
8608 }
8609 case '*': /* Run length encoding. */
8610 {
8611 int repeat;
8612
8613 csum += c;
8614 c = readchar (remote_timeout);
8615 csum += c;
8616 repeat = c - ' ' + 3; /* Compute repeat count. */
8617
8618 /* The character before ``*'' is repeated. */
8619
8620 if (repeat > 0 && repeat <= 255 && bc > 0)
8621 {
8622 if (bc + repeat - 1 >= *sizeof_buf - 1)
8623 {
8624 /* Make some more room in the buffer. */
8625 *sizeof_buf += repeat;
8626 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
8627 buf = *buf_p;
8628 }
8629
8630 memset (&buf[bc], buf[bc - 1], repeat);
8631 bc += repeat;
8632 continue;
8633 }
8634
8635 buf[bc] = '\0';
8636 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
8637 return -1;
8638 }
8639 default:
8640 if (bc >= *sizeof_buf - 1)
8641 {
8642 /* Make some more room in the buffer. */
8643 *sizeof_buf *= 2;
8644 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
8645 buf = *buf_p;
8646 }
8647
8648 buf[bc++] = c;
8649 csum += c;
8650 continue;
8651 }
8652 }
8653 }
8654
8655 /* Read a packet from the remote machine, with error checking, and
8656 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
8657 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
8658 rather than timing out; this is used (in synchronous mode) to wait
8659 for a target that is is executing user code to stop. */
8660 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
8661 don't have to change all the calls to getpkt to deal with the
8662 return value, because at the moment I don't know what the right
8663 thing to do it for those. */
8664 void
8665 getpkt (char **buf,
8666 long *sizeof_buf,
8667 int forever)
8668 {
8669 getpkt_sane (buf, sizeof_buf, forever);
8670 }
8671
8672
8673 /* Read a packet from the remote machine, with error checking, and
8674 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
8675 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
8676 rather than timing out; this is used (in synchronous mode) to wait
8677 for a target that is is executing user code to stop. If FOREVER ==
8678 0, this function is allowed to time out gracefully and return an
8679 indication of this to the caller. Otherwise return the number of
8680 bytes read. If EXPECTING_NOTIF, consider receiving a notification
8681 enough reason to return to the caller. *IS_NOTIF is an output
8682 boolean that indicates whether *BUF holds a notification or not
8683 (a regular packet). */
8684
8685 static int
8686 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
8687 int expecting_notif, int *is_notif)
8688 {
8689 struct remote_state *rs = get_remote_state ();
8690 int c;
8691 int tries;
8692 int timeout;
8693 int val = -1;
8694
8695 /* We're reading a new response. Make sure we don't look at a
8696 previously cached response. */
8697 rs->cached_wait_status = 0;
8698
8699 strcpy (*buf, "timeout");
8700
8701 if (forever)
8702 timeout = watchdog > 0 ? watchdog : -1;
8703 else if (expecting_notif)
8704 timeout = 0; /* There should already be a char in the buffer. If
8705 not, bail out. */
8706 else
8707 timeout = remote_timeout;
8708
8709 #define MAX_TRIES 3
8710
8711 /* Process any number of notifications, and then return when
8712 we get a packet. */
8713 for (;;)
8714 {
8715 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
8716 times. */
8717 for (tries = 1; tries <= MAX_TRIES; tries++)
8718 {
8719 /* This can loop forever if the remote side sends us
8720 characters continuously, but if it pauses, we'll get
8721 SERIAL_TIMEOUT from readchar because of timeout. Then
8722 we'll count that as a retry.
8723
8724 Note that even when forever is set, we will only wait
8725 forever prior to the start of a packet. After that, we
8726 expect characters to arrive at a brisk pace. They should
8727 show up within remote_timeout intervals. */
8728 do
8729 c = readchar (timeout);
8730 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
8731
8732 if (c == SERIAL_TIMEOUT)
8733 {
8734 if (expecting_notif)
8735 return -1; /* Don't complain, it's normal to not get
8736 anything in this case. */
8737
8738 if (forever) /* Watchdog went off? Kill the target. */
8739 {
8740 QUIT;
8741 remote_unpush_target ();
8742 throw_error (TARGET_CLOSE_ERROR,
8743 _("Watchdog timeout has expired. "
8744 "Target detached."));
8745 }
8746 if (remote_debug)
8747 fputs_filtered ("Timed out.\n", gdb_stdlog);
8748 }
8749 else
8750 {
8751 /* We've found the start of a packet or notification.
8752 Now collect the data. */
8753 val = read_frame (buf, sizeof_buf);
8754 if (val >= 0)
8755 break;
8756 }
8757
8758 remote_serial_write ("-", 1);
8759 }
8760
8761 if (tries > MAX_TRIES)
8762 {
8763 /* We have tried hard enough, and just can't receive the
8764 packet/notification. Give up. */
8765 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
8766
8767 /* Skip the ack char if we're in no-ack mode. */
8768 if (!rs->noack_mode)
8769 remote_serial_write ("+", 1);
8770 return -1;
8771 }
8772
8773 /* If we got an ordinary packet, return that to our caller. */
8774 if (c == '$')
8775 {
8776 if (remote_debug)
8777 {
8778 struct cleanup *old_chain;
8779 char *str;
8780
8781 str = escape_buffer (*buf, val);
8782 old_chain = make_cleanup (xfree, str);
8783 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
8784 do_cleanups (old_chain);
8785 }
8786
8787 /* Skip the ack char if we're in no-ack mode. */
8788 if (!rs->noack_mode)
8789 remote_serial_write ("+", 1);
8790 if (is_notif != NULL)
8791 *is_notif = 0;
8792 return val;
8793 }
8794
8795 /* If we got a notification, handle it, and go back to looking
8796 for a packet. */
8797 else
8798 {
8799 gdb_assert (c == '%');
8800
8801 if (remote_debug)
8802 {
8803 struct cleanup *old_chain;
8804 char *str;
8805
8806 str = escape_buffer (*buf, val);
8807 old_chain = make_cleanup (xfree, str);
8808 fprintf_unfiltered (gdb_stdlog,
8809 " Notification received: %s\n",
8810 str);
8811 do_cleanups (old_chain);
8812 }
8813 if (is_notif != NULL)
8814 *is_notif = 1;
8815
8816 handle_notification (rs->notif_state, *buf);
8817
8818 /* Notifications require no acknowledgement. */
8819
8820 if (expecting_notif)
8821 return val;
8822 }
8823 }
8824 }
8825
8826 static int
8827 getpkt_sane (char **buf, long *sizeof_buf, int forever)
8828 {
8829 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
8830 }
8831
8832 static int
8833 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
8834 int *is_notif)
8835 {
8836 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
8837 is_notif);
8838 }
8839
8840 /* Check whether EVENT is a fork event for the process specified
8841 by the pid passed in DATA, and if it is, kill the fork child. */
8842
8843 static int
8844 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
8845 QUEUE_ITER (stop_reply_p) *iter,
8846 stop_reply_p event,
8847 void *data)
8848 {
8849 struct queue_iter_param *param = (struct queue_iter_param *) data;
8850 int parent_pid = *(int *) param->input;
8851
8852 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
8853 {
8854 struct remote_state *rs = get_remote_state ();
8855 int child_pid = ptid_get_pid (event->ws.value.related_pid);
8856 int res;
8857
8858 res = remote_vkill (child_pid, rs);
8859 if (res != 0)
8860 error (_("Can't kill fork child process %d"), child_pid);
8861 }
8862
8863 return 1;
8864 }
8865
8866 /* Kill any new fork children of process PID that haven't been
8867 processed by follow_fork. */
8868
8869 static void
8870 kill_new_fork_children (int pid, struct remote_state *rs)
8871 {
8872 struct thread_info *thread;
8873 struct notif_client *notif = &notif_client_stop;
8874 struct queue_iter_param param;
8875
8876 /* Kill the fork child threads of any threads in process PID
8877 that are stopped at a fork event. */
8878 ALL_NON_EXITED_THREADS (thread)
8879 {
8880 struct target_waitstatus *ws = &thread->pending_follow;
8881
8882 if (is_pending_fork_parent (ws, pid, thread->ptid))
8883 {
8884 struct remote_state *rs = get_remote_state ();
8885 int child_pid = ptid_get_pid (ws->value.related_pid);
8886 int res;
8887
8888 res = remote_vkill (child_pid, rs);
8889 if (res != 0)
8890 error (_("Can't kill fork child process %d"), child_pid);
8891 }
8892 }
8893
8894 /* Check for any pending fork events (not reported or processed yet)
8895 in process PID and kill those fork child threads as well. */
8896 remote_notif_get_pending_events (notif);
8897 param.input = &pid;
8898 param.output = NULL;
8899 QUEUE_iterate (stop_reply_p, stop_reply_queue,
8900 kill_child_of_pending_fork, &param);
8901 }
8902
8903 \f
8904 /* Target hook to kill the current inferior. */
8905
8906 static void
8907 remote_kill (struct target_ops *ops)
8908 {
8909 int res = -1;
8910 int pid = ptid_get_pid (inferior_ptid);
8911 struct remote_state *rs = get_remote_state ();
8912
8913 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
8914 {
8915 /* If we're stopped while forking and we haven't followed yet,
8916 kill the child task. We need to do this before killing the
8917 parent task because if this is a vfork then the parent will
8918 be sleeping. */
8919 kill_new_fork_children (pid, rs);
8920
8921 res = remote_vkill (pid, rs);
8922 if (res == 0)
8923 {
8924 target_mourn_inferior ();
8925 return;
8926 }
8927 }
8928
8929 /* If we are in 'target remote' mode and we are killing the only
8930 inferior, then we will tell gdbserver to exit and unpush the
8931 target. */
8932 if (res == -1 && !remote_multi_process_p (rs)
8933 && number_of_live_inferiors () == 1)
8934 {
8935 remote_kill_k ();
8936
8937 /* We've killed the remote end, we get to mourn it. If we are
8938 not in extended mode, mourning the inferior also unpushes
8939 remote_ops from the target stack, which closes the remote
8940 connection. */
8941 target_mourn_inferior ();
8942
8943 return;
8944 }
8945
8946 error (_("Can't kill process"));
8947 }
8948
8949 /* Send a kill request to the target using the 'vKill' packet. */
8950
8951 static int
8952 remote_vkill (int pid, struct remote_state *rs)
8953 {
8954 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
8955 return -1;
8956
8957 /* Tell the remote target to detach. */
8958 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
8959 putpkt (rs->buf);
8960 getpkt (&rs->buf, &rs->buf_size, 0);
8961
8962 switch (packet_ok (rs->buf,
8963 &remote_protocol_packets[PACKET_vKill]))
8964 {
8965 case PACKET_OK:
8966 return 0;
8967 case PACKET_ERROR:
8968 return 1;
8969 case PACKET_UNKNOWN:
8970 return -1;
8971 default:
8972 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8973 }
8974 }
8975
8976 /* Send a kill request to the target using the 'k' packet. */
8977
8978 static void
8979 remote_kill_k (void)
8980 {
8981 /* Catch errors so the user can quit from gdb even when we
8982 aren't on speaking terms with the remote system. */
8983 TRY
8984 {
8985 putpkt ("k");
8986 }
8987 CATCH (ex, RETURN_MASK_ERROR)
8988 {
8989 if (ex.error == TARGET_CLOSE_ERROR)
8990 {
8991 /* If we got an (EOF) error that caused the target
8992 to go away, then we're done, that's what we wanted.
8993 "k" is susceptible to cause a premature EOF, given
8994 that the remote server isn't actually required to
8995 reply to "k", and it can happen that it doesn't
8996 even get to reply ACK to the "k". */
8997 return;
8998 }
8999
9000 /* Otherwise, something went wrong. We didn't actually kill
9001 the target. Just propagate the exception, and let the
9002 user or higher layers decide what to do. */
9003 throw_exception (ex);
9004 }
9005 END_CATCH
9006 }
9007
9008 static void
9009 remote_mourn (struct target_ops *target)
9010 {
9011 struct remote_state *rs = get_remote_state ();
9012
9013 /* In 'target remote' mode with one inferior, we close the connection. */
9014 if (!rs->extended && number_of_live_inferiors () <= 1)
9015 {
9016 unpush_target (target);
9017
9018 /* remote_close takes care of doing most of the clean up. */
9019 generic_mourn_inferior ();
9020 return;
9021 }
9022
9023 /* In case we got here due to an error, but we're going to stay
9024 connected. */
9025 rs->waiting_for_stop_reply = 0;
9026
9027 /* If the current general thread belonged to the process we just
9028 detached from or has exited, the remote side current general
9029 thread becomes undefined. Considering a case like this:
9030
9031 - We just got here due to a detach.
9032 - The process that we're detaching from happens to immediately
9033 report a global breakpoint being hit in non-stop mode, in the
9034 same thread we had selected before.
9035 - GDB attaches to this process again.
9036 - This event happens to be the next event we handle.
9037
9038 GDB would consider that the current general thread didn't need to
9039 be set on the stub side (with Hg), since for all it knew,
9040 GENERAL_THREAD hadn't changed.
9041
9042 Notice that although in all-stop mode, the remote server always
9043 sets the current thread to the thread reporting the stop event,
9044 that doesn't happen in non-stop mode; in non-stop, the stub *must
9045 not* change the current thread when reporting a breakpoint hit,
9046 due to the decoupling of event reporting and event handling.
9047
9048 To keep things simple, we always invalidate our notion of the
9049 current thread. */
9050 record_currthread (rs, minus_one_ptid);
9051
9052 /* Call common code to mark the inferior as not running. */
9053 generic_mourn_inferior ();
9054
9055 if (!have_inferiors ())
9056 {
9057 if (!remote_multi_process_p (rs))
9058 {
9059 /* Check whether the target is running now - some remote stubs
9060 automatically restart after kill. */
9061 putpkt ("?");
9062 getpkt (&rs->buf, &rs->buf_size, 0);
9063
9064 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9065 {
9066 /* Assume that the target has been restarted. Set
9067 inferior_ptid so that bits of core GDB realizes
9068 there's something here, e.g., so that the user can
9069 say "kill" again. */
9070 inferior_ptid = magic_null_ptid;
9071 }
9072 }
9073 }
9074 }
9075
9076 static int
9077 extended_remote_supports_disable_randomization (struct target_ops *self)
9078 {
9079 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9080 }
9081
9082 static void
9083 extended_remote_disable_randomization (int val)
9084 {
9085 struct remote_state *rs = get_remote_state ();
9086 char *reply;
9087
9088 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9089 val);
9090 putpkt (rs->buf);
9091 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
9092 if (*reply == '\0')
9093 error (_("Target does not support QDisableRandomization."));
9094 if (strcmp (reply, "OK") != 0)
9095 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9096 }
9097
9098 static int
9099 extended_remote_run (char *args)
9100 {
9101 struct remote_state *rs = get_remote_state ();
9102 int len;
9103 const char *remote_exec_file = get_remote_exec_file ();
9104
9105 /* If the user has disabled vRun support, or we have detected that
9106 support is not available, do not try it. */
9107 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9108 return -1;
9109
9110 strcpy (rs->buf, "vRun;");
9111 len = strlen (rs->buf);
9112
9113 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9114 error (_("Remote file name too long for run packet"));
9115 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9116 strlen (remote_exec_file));
9117
9118 gdb_assert (args != NULL);
9119 if (*args)
9120 {
9121 struct cleanup *back_to;
9122 int i;
9123 char **argv;
9124
9125 argv = gdb_buildargv (args);
9126 back_to = make_cleanup_freeargv (argv);
9127 for (i = 0; argv[i] != NULL; i++)
9128 {
9129 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9130 error (_("Argument list too long for run packet"));
9131 rs->buf[len++] = ';';
9132 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9133 strlen (argv[i]));
9134 }
9135 do_cleanups (back_to);
9136 }
9137
9138 rs->buf[len++] = '\0';
9139
9140 putpkt (rs->buf);
9141 getpkt (&rs->buf, &rs->buf_size, 0);
9142
9143 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9144 {
9145 case PACKET_OK:
9146 /* We have a wait response. All is well. */
9147 return 0;
9148 case PACKET_UNKNOWN:
9149 return -1;
9150 case PACKET_ERROR:
9151 if (remote_exec_file[0] == '\0')
9152 error (_("Running the default executable on the remote target failed; "
9153 "try \"set remote exec-file\"?"));
9154 else
9155 error (_("Running \"%s\" on the remote target failed"),
9156 remote_exec_file);
9157 default:
9158 gdb_assert_not_reached (_("bad switch"));
9159 }
9160 }
9161
9162 /* In the extended protocol we want to be able to do things like
9163 "run" and have them basically work as expected. So we need
9164 a special create_inferior function. We support changing the
9165 executable file and the command line arguments, but not the
9166 environment. */
9167
9168 static void
9169 extended_remote_create_inferior (struct target_ops *ops,
9170 char *exec_file, char *args,
9171 char **env, int from_tty)
9172 {
9173 int run_worked;
9174 char *stop_reply;
9175 struct remote_state *rs = get_remote_state ();
9176 const char *remote_exec_file = get_remote_exec_file ();
9177
9178 /* If running asynchronously, register the target file descriptor
9179 with the event loop. */
9180 if (target_can_async_p ())
9181 target_async (1);
9182
9183 /* Disable address space randomization if requested (and supported). */
9184 if (extended_remote_supports_disable_randomization (ops))
9185 extended_remote_disable_randomization (disable_randomization);
9186
9187 /* Now restart the remote server. */
9188 run_worked = extended_remote_run (args) != -1;
9189 if (!run_worked)
9190 {
9191 /* vRun was not supported. Fail if we need it to do what the
9192 user requested. */
9193 if (remote_exec_file[0])
9194 error (_("Remote target does not support \"set remote exec-file\""));
9195 if (args[0])
9196 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9197
9198 /* Fall back to "R". */
9199 extended_remote_restart ();
9200 }
9201
9202 if (!have_inferiors ())
9203 {
9204 /* Clean up from the last time we ran, before we mark the target
9205 running again. This will mark breakpoints uninserted, and
9206 get_offsets may insert breakpoints. */
9207 init_thread_list ();
9208 init_wait_for_inferior ();
9209 }
9210
9211 /* vRun's success return is a stop reply. */
9212 stop_reply = run_worked ? rs->buf : NULL;
9213 add_current_inferior_and_thread (stop_reply);
9214
9215 /* Get updated offsets, if the stub uses qOffsets. */
9216 get_offsets ();
9217 }
9218 \f
9219
9220 /* Given a location's target info BP_TGT and the packet buffer BUF, output
9221 the list of conditions (in agent expression bytecode format), if any, the
9222 target needs to evaluate. The output is placed into the packet buffer
9223 started from BUF and ended at BUF_END. */
9224
9225 static int
9226 remote_add_target_side_condition (struct gdbarch *gdbarch,
9227 struct bp_target_info *bp_tgt, char *buf,
9228 char *buf_end)
9229 {
9230 struct agent_expr *aexpr = NULL;
9231 int i, ix;
9232
9233 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
9234 return 0;
9235
9236 buf += strlen (buf);
9237 xsnprintf (buf, buf_end - buf, "%s", ";");
9238 buf++;
9239
9240 /* Send conditions to the target and free the vector. */
9241 for (ix = 0;
9242 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
9243 ix++)
9244 {
9245 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
9246 buf += strlen (buf);
9247 for (i = 0; i < aexpr->len; ++i)
9248 buf = pack_hex_byte (buf, aexpr->buf[i]);
9249 *buf = '\0';
9250 }
9251 return 0;
9252 }
9253
9254 static void
9255 remote_add_target_side_commands (struct gdbarch *gdbarch,
9256 struct bp_target_info *bp_tgt, char *buf)
9257 {
9258 struct agent_expr *aexpr = NULL;
9259 int i, ix;
9260
9261 if (VEC_empty (agent_expr_p, bp_tgt->tcommands))
9262 return;
9263
9264 buf += strlen (buf);
9265
9266 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
9267 buf += strlen (buf);
9268
9269 /* Concatenate all the agent expressions that are commands into the
9270 cmds parameter. */
9271 for (ix = 0;
9272 VEC_iterate (agent_expr_p, bp_tgt->tcommands, ix, aexpr);
9273 ix++)
9274 {
9275 sprintf (buf, "X%x,", aexpr->len);
9276 buf += strlen (buf);
9277 for (i = 0; i < aexpr->len; ++i)
9278 buf = pack_hex_byte (buf, aexpr->buf[i]);
9279 *buf = '\0';
9280 }
9281 }
9282
9283 /* Insert a breakpoint. On targets that have software breakpoint
9284 support, we ask the remote target to do the work; on targets
9285 which don't, we insert a traditional memory breakpoint. */
9286
9287 static int
9288 remote_insert_breakpoint (struct target_ops *ops,
9289 struct gdbarch *gdbarch,
9290 struct bp_target_info *bp_tgt)
9291 {
9292 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
9293 If it succeeds, then set the support to PACKET_ENABLE. If it
9294 fails, and the user has explicitly requested the Z support then
9295 report an error, otherwise, mark it disabled and go on. */
9296
9297 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9298 {
9299 CORE_ADDR addr = bp_tgt->reqstd_address;
9300 struct remote_state *rs;
9301 char *p, *endbuf;
9302 int bpsize;
9303
9304 /* Make sure the remote is pointing at the right process, if
9305 necessary. */
9306 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9307 set_general_process ();
9308
9309 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
9310
9311 rs = get_remote_state ();
9312 p = rs->buf;
9313 endbuf = rs->buf + get_remote_packet_size ();
9314
9315 *(p++) = 'Z';
9316 *(p++) = '0';
9317 *(p++) = ',';
9318 addr = (ULONGEST) remote_address_masked (addr);
9319 p += hexnumstr (p, addr);
9320 xsnprintf (p, endbuf - p, ",%d", bpsize);
9321
9322 if (remote_supports_cond_breakpoints (ops))
9323 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
9324
9325 if (remote_can_run_breakpoint_commands (ops))
9326 remote_add_target_side_commands (gdbarch, bp_tgt, p);
9327
9328 putpkt (rs->buf);
9329 getpkt (&rs->buf, &rs->buf_size, 0);
9330
9331 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
9332 {
9333 case PACKET_ERROR:
9334 return -1;
9335 case PACKET_OK:
9336 bp_tgt->placed_address = addr;
9337 bp_tgt->placed_size = bpsize;
9338 return 0;
9339 case PACKET_UNKNOWN:
9340 break;
9341 }
9342 }
9343
9344 /* If this breakpoint has target-side commands but this stub doesn't
9345 support Z0 packets, throw error. */
9346 if (!VEC_empty (agent_expr_p, bp_tgt->tcommands))
9347 throw_error (NOT_SUPPORTED_ERROR, _("\
9348 Target doesn't support breakpoints that have target side commands."));
9349
9350 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
9351 }
9352
9353 static int
9354 remote_remove_breakpoint (struct target_ops *ops,
9355 struct gdbarch *gdbarch,
9356 struct bp_target_info *bp_tgt)
9357 {
9358 CORE_ADDR addr = bp_tgt->placed_address;
9359 struct remote_state *rs = get_remote_state ();
9360
9361 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9362 {
9363 char *p = rs->buf;
9364 char *endbuf = rs->buf + get_remote_packet_size ();
9365
9366 /* Make sure the remote is pointing at the right process, if
9367 necessary. */
9368 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9369 set_general_process ();
9370
9371 *(p++) = 'z';
9372 *(p++) = '0';
9373 *(p++) = ',';
9374
9375 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
9376 p += hexnumstr (p, addr);
9377 xsnprintf (p, endbuf - p, ",%d", bp_tgt->placed_size);
9378
9379 putpkt (rs->buf);
9380 getpkt (&rs->buf, &rs->buf_size, 0);
9381
9382 return (rs->buf[0] == 'E');
9383 }
9384
9385 return memory_remove_breakpoint (ops, gdbarch, bp_tgt);
9386 }
9387
9388 static enum Z_packet_type
9389 watchpoint_to_Z_packet (int type)
9390 {
9391 switch (type)
9392 {
9393 case hw_write:
9394 return Z_PACKET_WRITE_WP;
9395 break;
9396 case hw_read:
9397 return Z_PACKET_READ_WP;
9398 break;
9399 case hw_access:
9400 return Z_PACKET_ACCESS_WP;
9401 break;
9402 default:
9403 internal_error (__FILE__, __LINE__,
9404 _("hw_bp_to_z: bad watchpoint type %d"), type);
9405 }
9406 }
9407
9408 static int
9409 remote_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9410 enum target_hw_bp_type type, struct expression *cond)
9411 {
9412 struct remote_state *rs = get_remote_state ();
9413 char *endbuf = rs->buf + get_remote_packet_size ();
9414 char *p;
9415 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9416
9417 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9418 return 1;
9419
9420 /* Make sure the remote is pointing at the right process, if
9421 necessary. */
9422 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9423 set_general_process ();
9424
9425 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
9426 p = strchr (rs->buf, '\0');
9427 addr = remote_address_masked (addr);
9428 p += hexnumstr (p, (ULONGEST) addr);
9429 xsnprintf (p, endbuf - p, ",%x", len);
9430
9431 putpkt (rs->buf);
9432 getpkt (&rs->buf, &rs->buf_size, 0);
9433
9434 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9435 {
9436 case PACKET_ERROR:
9437 return -1;
9438 case PACKET_UNKNOWN:
9439 return 1;
9440 case PACKET_OK:
9441 return 0;
9442 }
9443 internal_error (__FILE__, __LINE__,
9444 _("remote_insert_watchpoint: reached end of function"));
9445 }
9446
9447 static int
9448 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
9449 CORE_ADDR start, int length)
9450 {
9451 CORE_ADDR diff = remote_address_masked (addr - start);
9452
9453 return diff < length;
9454 }
9455
9456
9457 static int
9458 remote_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9459 enum target_hw_bp_type type, struct expression *cond)
9460 {
9461 struct remote_state *rs = get_remote_state ();
9462 char *endbuf = rs->buf + get_remote_packet_size ();
9463 char *p;
9464 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9465
9466 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9467 return -1;
9468
9469 /* Make sure the remote is pointing at the right process, if
9470 necessary. */
9471 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9472 set_general_process ();
9473
9474 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
9475 p = strchr (rs->buf, '\0');
9476 addr = remote_address_masked (addr);
9477 p += hexnumstr (p, (ULONGEST) addr);
9478 xsnprintf (p, endbuf - p, ",%x", len);
9479 putpkt (rs->buf);
9480 getpkt (&rs->buf, &rs->buf_size, 0);
9481
9482 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9483 {
9484 case PACKET_ERROR:
9485 case PACKET_UNKNOWN:
9486 return -1;
9487 case PACKET_OK:
9488 return 0;
9489 }
9490 internal_error (__FILE__, __LINE__,
9491 _("remote_remove_watchpoint: reached end of function"));
9492 }
9493
9494
9495 int remote_hw_watchpoint_limit = -1;
9496 int remote_hw_watchpoint_length_limit = -1;
9497 int remote_hw_breakpoint_limit = -1;
9498
9499 static int
9500 remote_region_ok_for_hw_watchpoint (struct target_ops *self,
9501 CORE_ADDR addr, int len)
9502 {
9503 if (remote_hw_watchpoint_length_limit == 0)
9504 return 0;
9505 else if (remote_hw_watchpoint_length_limit < 0)
9506 return 1;
9507 else if (len <= remote_hw_watchpoint_length_limit)
9508 return 1;
9509 else
9510 return 0;
9511 }
9512
9513 static int
9514 remote_check_watch_resources (struct target_ops *self,
9515 enum bptype type, int cnt, int ot)
9516 {
9517 if (type == bp_hardware_breakpoint)
9518 {
9519 if (remote_hw_breakpoint_limit == 0)
9520 return 0;
9521 else if (remote_hw_breakpoint_limit < 0)
9522 return 1;
9523 else if (cnt <= remote_hw_breakpoint_limit)
9524 return 1;
9525 }
9526 else
9527 {
9528 if (remote_hw_watchpoint_limit == 0)
9529 return 0;
9530 else if (remote_hw_watchpoint_limit < 0)
9531 return 1;
9532 else if (ot)
9533 return -1;
9534 else if (cnt <= remote_hw_watchpoint_limit)
9535 return 1;
9536 }
9537 return -1;
9538 }
9539
9540 /* The to_stopped_by_sw_breakpoint method of target remote. */
9541
9542 static int
9543 remote_stopped_by_sw_breakpoint (struct target_ops *ops)
9544 {
9545 struct thread_info *thread = inferior_thread ();
9546
9547 return (thread->priv != NULL
9548 && thread->priv->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
9549 }
9550
9551 /* The to_supports_stopped_by_sw_breakpoint method of target
9552 remote. */
9553
9554 static int
9555 remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
9556 {
9557 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
9558 }
9559
9560 /* The to_stopped_by_hw_breakpoint method of target remote. */
9561
9562 static int
9563 remote_stopped_by_hw_breakpoint (struct target_ops *ops)
9564 {
9565 struct thread_info *thread = inferior_thread ();
9566
9567 return (thread->priv != NULL
9568 && thread->priv->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
9569 }
9570
9571 /* The to_supports_stopped_by_hw_breakpoint method of target
9572 remote. */
9573
9574 static int
9575 remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
9576 {
9577 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
9578 }
9579
9580 static int
9581 remote_stopped_by_watchpoint (struct target_ops *ops)
9582 {
9583 struct thread_info *thread = inferior_thread ();
9584
9585 return (thread->priv != NULL
9586 && thread->priv->stop_reason == TARGET_STOPPED_BY_WATCHPOINT);
9587 }
9588
9589 static int
9590 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
9591 {
9592 struct thread_info *thread = inferior_thread ();
9593
9594 if (thread->priv != NULL
9595 && thread->priv->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
9596 {
9597 *addr_p = thread->priv->watch_data_address;
9598 return 1;
9599 }
9600
9601 return 0;
9602 }
9603
9604
9605 static int
9606 remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
9607 struct bp_target_info *bp_tgt)
9608 {
9609 CORE_ADDR addr = bp_tgt->reqstd_address;
9610 struct remote_state *rs;
9611 char *p, *endbuf;
9612 char *message;
9613 int bpsize;
9614
9615 /* The length field should be set to the size of a breakpoint
9616 instruction, even though we aren't inserting one ourselves. */
9617
9618 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
9619
9620 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
9621 return -1;
9622
9623 /* Make sure the remote is pointing at the right process, if
9624 necessary. */
9625 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9626 set_general_process ();
9627
9628 rs = get_remote_state ();
9629 p = rs->buf;
9630 endbuf = rs->buf + get_remote_packet_size ();
9631
9632 *(p++) = 'Z';
9633 *(p++) = '1';
9634 *(p++) = ',';
9635
9636 addr = remote_address_masked (addr);
9637 p += hexnumstr (p, (ULONGEST) addr);
9638 xsnprintf (p, endbuf - p, ",%x", bpsize);
9639
9640 if (remote_supports_cond_breakpoints (self))
9641 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
9642
9643 if (remote_can_run_breakpoint_commands (self))
9644 remote_add_target_side_commands (gdbarch, bp_tgt, p);
9645
9646 putpkt (rs->buf);
9647 getpkt (&rs->buf, &rs->buf_size, 0);
9648
9649 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
9650 {
9651 case PACKET_ERROR:
9652 if (rs->buf[1] == '.')
9653 {
9654 message = strchr (rs->buf + 2, '.');
9655 if (message)
9656 error (_("Remote failure reply: %s"), message + 1);
9657 }
9658 return -1;
9659 case PACKET_UNKNOWN:
9660 return -1;
9661 case PACKET_OK:
9662 bp_tgt->placed_address = addr;
9663 bp_tgt->placed_size = bpsize;
9664 return 0;
9665 }
9666 internal_error (__FILE__, __LINE__,
9667 _("remote_insert_hw_breakpoint: reached end of function"));
9668 }
9669
9670
9671 static int
9672 remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
9673 struct bp_target_info *bp_tgt)
9674 {
9675 CORE_ADDR addr;
9676 struct remote_state *rs = get_remote_state ();
9677 char *p = rs->buf;
9678 char *endbuf = rs->buf + get_remote_packet_size ();
9679
9680 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
9681 return -1;
9682
9683 /* Make sure the remote is pointing at the right process, if
9684 necessary. */
9685 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9686 set_general_process ();
9687
9688 *(p++) = 'z';
9689 *(p++) = '1';
9690 *(p++) = ',';
9691
9692 addr = remote_address_masked (bp_tgt->placed_address);
9693 p += hexnumstr (p, (ULONGEST) addr);
9694 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
9695
9696 putpkt (rs->buf);
9697 getpkt (&rs->buf, &rs->buf_size, 0);
9698
9699 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
9700 {
9701 case PACKET_ERROR:
9702 case PACKET_UNKNOWN:
9703 return -1;
9704 case PACKET_OK:
9705 return 0;
9706 }
9707 internal_error (__FILE__, __LINE__,
9708 _("remote_remove_hw_breakpoint: reached end of function"));
9709 }
9710
9711 /* Verify memory using the "qCRC:" request. */
9712
9713 static int
9714 remote_verify_memory (struct target_ops *ops,
9715 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
9716 {
9717 struct remote_state *rs = get_remote_state ();
9718 unsigned long host_crc, target_crc;
9719 char *tmp;
9720
9721 /* It doesn't make sense to use qCRC if the remote target is
9722 connected but not running. */
9723 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
9724 {
9725 enum packet_result result;
9726
9727 /* Make sure the remote is pointing at the right process. */
9728 set_general_process ();
9729
9730 /* FIXME: assumes lma can fit into long. */
9731 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
9732 (long) lma, (long) size);
9733 putpkt (rs->buf);
9734
9735 /* Be clever; compute the host_crc before waiting for target
9736 reply. */
9737 host_crc = xcrc32 (data, size, 0xffffffff);
9738
9739 getpkt (&rs->buf, &rs->buf_size, 0);
9740
9741 result = packet_ok (rs->buf,
9742 &remote_protocol_packets[PACKET_qCRC]);
9743 if (result == PACKET_ERROR)
9744 return -1;
9745 else if (result == PACKET_OK)
9746 {
9747 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
9748 target_crc = target_crc * 16 + fromhex (*tmp);
9749
9750 return (host_crc == target_crc);
9751 }
9752 }
9753
9754 return simple_verify_memory (ops, data, lma, size);
9755 }
9756
9757 /* compare-sections command
9758
9759 With no arguments, compares each loadable section in the exec bfd
9760 with the same memory range on the target, and reports mismatches.
9761 Useful for verifying the image on the target against the exec file. */
9762
9763 static void
9764 compare_sections_command (char *args, int from_tty)
9765 {
9766 asection *s;
9767 struct cleanup *old_chain;
9768 gdb_byte *sectdata;
9769 const char *sectname;
9770 bfd_size_type size;
9771 bfd_vma lma;
9772 int matched = 0;
9773 int mismatched = 0;
9774 int res;
9775 int read_only = 0;
9776
9777 if (!exec_bfd)
9778 error (_("command cannot be used without an exec file"));
9779
9780 /* Make sure the remote is pointing at the right process. */
9781 set_general_process ();
9782
9783 if (args != NULL && strcmp (args, "-r") == 0)
9784 {
9785 read_only = 1;
9786 args = NULL;
9787 }
9788
9789 for (s = exec_bfd->sections; s; s = s->next)
9790 {
9791 if (!(s->flags & SEC_LOAD))
9792 continue; /* Skip non-loadable section. */
9793
9794 if (read_only && (s->flags & SEC_READONLY) == 0)
9795 continue; /* Skip writeable sections */
9796
9797 size = bfd_get_section_size (s);
9798 if (size == 0)
9799 continue; /* Skip zero-length section. */
9800
9801 sectname = bfd_get_section_name (exec_bfd, s);
9802 if (args && strcmp (args, sectname) != 0)
9803 continue; /* Not the section selected by user. */
9804
9805 matched = 1; /* Do this section. */
9806 lma = s->lma;
9807
9808 sectdata = (gdb_byte *) xmalloc (size);
9809 old_chain = make_cleanup (xfree, sectdata);
9810 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
9811
9812 res = target_verify_memory (sectdata, lma, size);
9813
9814 if (res == -1)
9815 error (_("target memory fault, section %s, range %s -- %s"), sectname,
9816 paddress (target_gdbarch (), lma),
9817 paddress (target_gdbarch (), lma + size));
9818
9819 printf_filtered ("Section %s, range %s -- %s: ", sectname,
9820 paddress (target_gdbarch (), lma),
9821 paddress (target_gdbarch (), lma + size));
9822 if (res)
9823 printf_filtered ("matched.\n");
9824 else
9825 {
9826 printf_filtered ("MIS-MATCHED!\n");
9827 mismatched++;
9828 }
9829
9830 do_cleanups (old_chain);
9831 }
9832 if (mismatched > 0)
9833 warning (_("One or more sections of the target image does not match\n\
9834 the loaded file\n"));
9835 if (args && !matched)
9836 printf_filtered (_("No loaded section named '%s'.\n"), args);
9837 }
9838
9839 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
9840 into remote target. The number of bytes written to the remote
9841 target is returned, or -1 for error. */
9842
9843 static enum target_xfer_status
9844 remote_write_qxfer (struct target_ops *ops, const char *object_name,
9845 const char *annex, const gdb_byte *writebuf,
9846 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
9847 struct packet_config *packet)
9848 {
9849 int i, buf_len;
9850 ULONGEST n;
9851 struct remote_state *rs = get_remote_state ();
9852 int max_size = get_memory_write_packet_size ();
9853
9854 if (packet->support == PACKET_DISABLE)
9855 return TARGET_XFER_E_IO;
9856
9857 /* Insert header. */
9858 i = snprintf (rs->buf, max_size,
9859 "qXfer:%s:write:%s:%s:",
9860 object_name, annex ? annex : "",
9861 phex_nz (offset, sizeof offset));
9862 max_size -= (i + 1);
9863
9864 /* Escape as much data as fits into rs->buf. */
9865 buf_len = remote_escape_output
9866 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
9867
9868 if (putpkt_binary (rs->buf, i + buf_len) < 0
9869 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
9870 || packet_ok (rs->buf, packet) != PACKET_OK)
9871 return TARGET_XFER_E_IO;
9872
9873 unpack_varlen_hex (rs->buf, &n);
9874
9875 *xfered_len = n;
9876 return TARGET_XFER_OK;
9877 }
9878
9879 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
9880 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
9881 number of bytes read is returned, or 0 for EOF, or -1 for error.
9882 The number of bytes read may be less than LEN without indicating an
9883 EOF. PACKET is checked and updated to indicate whether the remote
9884 target supports this object. */
9885
9886 static enum target_xfer_status
9887 remote_read_qxfer (struct target_ops *ops, const char *object_name,
9888 const char *annex,
9889 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
9890 ULONGEST *xfered_len,
9891 struct packet_config *packet)
9892 {
9893 struct remote_state *rs = get_remote_state ();
9894 LONGEST i, n, packet_len;
9895
9896 if (packet->support == PACKET_DISABLE)
9897 return TARGET_XFER_E_IO;
9898
9899 /* Check whether we've cached an end-of-object packet that matches
9900 this request. */
9901 if (rs->finished_object)
9902 {
9903 if (strcmp (object_name, rs->finished_object) == 0
9904 && strcmp (annex ? annex : "", rs->finished_annex) == 0
9905 && offset == rs->finished_offset)
9906 return TARGET_XFER_EOF;
9907
9908
9909 /* Otherwise, we're now reading something different. Discard
9910 the cache. */
9911 xfree (rs->finished_object);
9912 xfree (rs->finished_annex);
9913 rs->finished_object = NULL;
9914 rs->finished_annex = NULL;
9915 }
9916
9917 /* Request only enough to fit in a single packet. The actual data
9918 may not, since we don't know how much of it will need to be escaped;
9919 the target is free to respond with slightly less data. We subtract
9920 five to account for the response type and the protocol frame. */
9921 n = min (get_remote_packet_size () - 5, len);
9922 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
9923 object_name, annex ? annex : "",
9924 phex_nz (offset, sizeof offset),
9925 phex_nz (n, sizeof n));
9926 i = putpkt (rs->buf);
9927 if (i < 0)
9928 return TARGET_XFER_E_IO;
9929
9930 rs->buf[0] = '\0';
9931 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9932 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
9933 return TARGET_XFER_E_IO;
9934
9935 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
9936 error (_("Unknown remote qXfer reply: %s"), rs->buf);
9937
9938 /* 'm' means there is (or at least might be) more data after this
9939 batch. That does not make sense unless there's at least one byte
9940 of data in this reply. */
9941 if (rs->buf[0] == 'm' && packet_len == 1)
9942 error (_("Remote qXfer reply contained no data."));
9943
9944 /* Got some data. */
9945 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
9946 packet_len - 1, readbuf, n);
9947
9948 /* 'l' is an EOF marker, possibly including a final block of data,
9949 or possibly empty. If we have the final block of a non-empty
9950 object, record this fact to bypass a subsequent partial read. */
9951 if (rs->buf[0] == 'l' && offset + i > 0)
9952 {
9953 rs->finished_object = xstrdup (object_name);
9954 rs->finished_annex = xstrdup (annex ? annex : "");
9955 rs->finished_offset = offset + i;
9956 }
9957
9958 if (i == 0)
9959 return TARGET_XFER_EOF;
9960 else
9961 {
9962 *xfered_len = i;
9963 return TARGET_XFER_OK;
9964 }
9965 }
9966
9967 static enum target_xfer_status
9968 remote_xfer_partial (struct target_ops *ops, enum target_object object,
9969 const char *annex, gdb_byte *readbuf,
9970 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
9971 ULONGEST *xfered_len)
9972 {
9973 struct remote_state *rs;
9974 int i;
9975 char *p2;
9976 char query_type;
9977 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
9978
9979 set_remote_traceframe ();
9980 set_general_thread (inferior_ptid);
9981
9982 rs = get_remote_state ();
9983
9984 /* Handle memory using the standard memory routines. */
9985 if (object == TARGET_OBJECT_MEMORY)
9986 {
9987 /* If the remote target is connected but not running, we should
9988 pass this request down to a lower stratum (e.g. the executable
9989 file). */
9990 if (!target_has_execution)
9991 return TARGET_XFER_EOF;
9992
9993 if (writebuf != NULL)
9994 return remote_write_bytes (offset, writebuf, len, unit_size,
9995 xfered_len);
9996 else
9997 return remote_read_bytes (ops, offset, readbuf, len, unit_size,
9998 xfered_len);
9999 }
10000
10001 /* Handle SPU memory using qxfer packets. */
10002 if (object == TARGET_OBJECT_SPU)
10003 {
10004 if (readbuf)
10005 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
10006 xfered_len, &remote_protocol_packets
10007 [PACKET_qXfer_spu_read]);
10008 else
10009 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
10010 xfered_len, &remote_protocol_packets
10011 [PACKET_qXfer_spu_write]);
10012 }
10013
10014 /* Handle extra signal info using qxfer packets. */
10015 if (object == TARGET_OBJECT_SIGNAL_INFO)
10016 {
10017 if (readbuf)
10018 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
10019 xfered_len, &remote_protocol_packets
10020 [PACKET_qXfer_siginfo_read]);
10021 else
10022 return remote_write_qxfer (ops, "siginfo", annex,
10023 writebuf, offset, len, xfered_len,
10024 &remote_protocol_packets
10025 [PACKET_qXfer_siginfo_write]);
10026 }
10027
10028 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10029 {
10030 if (readbuf)
10031 return remote_read_qxfer (ops, "statictrace", annex,
10032 readbuf, offset, len, xfered_len,
10033 &remote_protocol_packets
10034 [PACKET_qXfer_statictrace_read]);
10035 else
10036 return TARGET_XFER_E_IO;
10037 }
10038
10039 /* Only handle flash writes. */
10040 if (writebuf != NULL)
10041 {
10042 switch (object)
10043 {
10044 case TARGET_OBJECT_FLASH:
10045 return remote_flash_write (ops, offset, len, xfered_len,
10046 writebuf);
10047
10048 default:
10049 return TARGET_XFER_E_IO;
10050 }
10051 }
10052
10053 /* Map pre-existing objects onto letters. DO NOT do this for new
10054 objects!!! Instead specify new query packets. */
10055 switch (object)
10056 {
10057 case TARGET_OBJECT_AVR:
10058 query_type = 'R';
10059 break;
10060
10061 case TARGET_OBJECT_AUXV:
10062 gdb_assert (annex == NULL);
10063 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
10064 xfered_len,
10065 &remote_protocol_packets[PACKET_qXfer_auxv]);
10066
10067 case TARGET_OBJECT_AVAILABLE_FEATURES:
10068 return remote_read_qxfer
10069 (ops, "features", annex, readbuf, offset, len, xfered_len,
10070 &remote_protocol_packets[PACKET_qXfer_features]);
10071
10072 case TARGET_OBJECT_LIBRARIES:
10073 return remote_read_qxfer
10074 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
10075 &remote_protocol_packets[PACKET_qXfer_libraries]);
10076
10077 case TARGET_OBJECT_LIBRARIES_SVR4:
10078 return remote_read_qxfer
10079 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
10080 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10081
10082 case TARGET_OBJECT_MEMORY_MAP:
10083 gdb_assert (annex == NULL);
10084 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
10085 xfered_len,
10086 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10087
10088 case TARGET_OBJECT_OSDATA:
10089 /* Should only get here if we're connected. */
10090 gdb_assert (rs->remote_desc);
10091 return remote_read_qxfer
10092 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
10093 &remote_protocol_packets[PACKET_qXfer_osdata]);
10094
10095 case TARGET_OBJECT_THREADS:
10096 gdb_assert (annex == NULL);
10097 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
10098 xfered_len,
10099 &remote_protocol_packets[PACKET_qXfer_threads]);
10100
10101 case TARGET_OBJECT_TRACEFRAME_INFO:
10102 gdb_assert (annex == NULL);
10103 return remote_read_qxfer
10104 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
10105 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10106
10107 case TARGET_OBJECT_FDPIC:
10108 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
10109 xfered_len,
10110 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10111
10112 case TARGET_OBJECT_OPENVMS_UIB:
10113 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
10114 xfered_len,
10115 &remote_protocol_packets[PACKET_qXfer_uib]);
10116
10117 case TARGET_OBJECT_BTRACE:
10118 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
10119 xfered_len,
10120 &remote_protocol_packets[PACKET_qXfer_btrace]);
10121
10122 case TARGET_OBJECT_BTRACE_CONF:
10123 return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset,
10124 len, xfered_len,
10125 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10126
10127 case TARGET_OBJECT_EXEC_FILE:
10128 return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset,
10129 len, xfered_len,
10130 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10131
10132 default:
10133 return TARGET_XFER_E_IO;
10134 }
10135
10136 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10137 large enough let the caller deal with it. */
10138 if (len < get_remote_packet_size ())
10139 return TARGET_XFER_E_IO;
10140 len = get_remote_packet_size ();
10141
10142 /* Except for querying the minimum buffer size, target must be open. */
10143 if (!rs->remote_desc)
10144 error (_("remote query is only available after target open"));
10145
10146 gdb_assert (annex != NULL);
10147 gdb_assert (readbuf != NULL);
10148
10149 p2 = rs->buf;
10150 *p2++ = 'q';
10151 *p2++ = query_type;
10152
10153 /* We used one buffer char for the remote protocol q command and
10154 another for the query type. As the remote protocol encapsulation
10155 uses 4 chars plus one extra in case we are debugging
10156 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10157 string. */
10158 i = 0;
10159 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10160 {
10161 /* Bad caller may have sent forbidden characters. */
10162 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10163 *p2++ = annex[i];
10164 i++;
10165 }
10166 *p2 = '\0';
10167 gdb_assert (annex[i] == '\0');
10168
10169 i = putpkt (rs->buf);
10170 if (i < 0)
10171 return TARGET_XFER_E_IO;
10172
10173 getpkt (&rs->buf, &rs->buf_size, 0);
10174 strcpy ((char *) readbuf, rs->buf);
10175
10176 *xfered_len = strlen ((char *) readbuf);
10177 return TARGET_XFER_OK;
10178 }
10179
10180 static int
10181 remote_search_memory (struct target_ops* ops,
10182 CORE_ADDR start_addr, ULONGEST search_space_len,
10183 const gdb_byte *pattern, ULONGEST pattern_len,
10184 CORE_ADDR *found_addrp)
10185 {
10186 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10187 struct remote_state *rs = get_remote_state ();
10188 int max_size = get_memory_write_packet_size ();
10189 struct packet_config *packet =
10190 &remote_protocol_packets[PACKET_qSearch_memory];
10191 /* Number of packet bytes used to encode the pattern;
10192 this could be more than PATTERN_LEN due to escape characters. */
10193 int escaped_pattern_len;
10194 /* Amount of pattern that was encodable in the packet. */
10195 int used_pattern_len;
10196 int i;
10197 int found;
10198 ULONGEST found_addr;
10199
10200 /* Don't go to the target if we don't have to.
10201 This is done before checking packet->support to avoid the possibility that
10202 a success for this edge case means the facility works in general. */
10203 if (pattern_len > search_space_len)
10204 return 0;
10205 if (pattern_len == 0)
10206 {
10207 *found_addrp = start_addr;
10208 return 1;
10209 }
10210
10211 /* If we already know the packet isn't supported, fall back to the simple
10212 way of searching memory. */
10213
10214 if (packet_config_support (packet) == PACKET_DISABLE)
10215 {
10216 /* Target doesn't provided special support, fall back and use the
10217 standard support (copy memory and do the search here). */
10218 return simple_search_memory (ops, start_addr, search_space_len,
10219 pattern, pattern_len, found_addrp);
10220 }
10221
10222 /* Make sure the remote is pointing at the right process. */
10223 set_general_process ();
10224
10225 /* Insert header. */
10226 i = snprintf (rs->buf, max_size,
10227 "qSearch:memory:%s;%s;",
10228 phex_nz (start_addr, addr_size),
10229 phex_nz (search_space_len, sizeof (search_space_len)));
10230 max_size -= (i + 1);
10231
10232 /* Escape as much data as fits into rs->buf. */
10233 escaped_pattern_len =
10234 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10235 &used_pattern_len, max_size);
10236
10237 /* Bail if the pattern is too large. */
10238 if (used_pattern_len != pattern_len)
10239 error (_("Pattern is too large to transmit to remote target."));
10240
10241 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10242 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10243 || packet_ok (rs->buf, packet) != PACKET_OK)
10244 {
10245 /* The request may not have worked because the command is not
10246 supported. If so, fall back to the simple way. */
10247 if (packet->support == PACKET_DISABLE)
10248 {
10249 return simple_search_memory (ops, start_addr, search_space_len,
10250 pattern, pattern_len, found_addrp);
10251 }
10252 return -1;
10253 }
10254
10255 if (rs->buf[0] == '0')
10256 found = 0;
10257 else if (rs->buf[0] == '1')
10258 {
10259 found = 1;
10260 if (rs->buf[1] != ',')
10261 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10262 unpack_varlen_hex (rs->buf + 2, &found_addr);
10263 *found_addrp = found_addr;
10264 }
10265 else
10266 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10267
10268 return found;
10269 }
10270
10271 static void
10272 remote_rcmd (struct target_ops *self, const char *command,
10273 struct ui_file *outbuf)
10274 {
10275 struct remote_state *rs = get_remote_state ();
10276 char *p = rs->buf;
10277
10278 if (!rs->remote_desc)
10279 error (_("remote rcmd is only available after target open"));
10280
10281 /* Send a NULL command across as an empty command. */
10282 if (command == NULL)
10283 command = "";
10284
10285 /* The query prefix. */
10286 strcpy (rs->buf, "qRcmd,");
10287 p = strchr (rs->buf, '\0');
10288
10289 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
10290 > get_remote_packet_size ())
10291 error (_("\"monitor\" command ``%s'' is too long."), command);
10292
10293 /* Encode the actual command. */
10294 bin2hex ((const gdb_byte *) command, p, strlen (command));
10295
10296 if (putpkt (rs->buf) < 0)
10297 error (_("Communication problem with target."));
10298
10299 /* get/display the response */
10300 while (1)
10301 {
10302 char *buf;
10303
10304 /* XXX - see also remote_get_noisy_reply(). */
10305 QUIT; /* Allow user to bail out with ^C. */
10306 rs->buf[0] = '\0';
10307 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
10308 {
10309 /* Timeout. Continue to (try to) read responses.
10310 This is better than stopping with an error, assuming the stub
10311 is still executing the (long) monitor command.
10312 If needed, the user can interrupt gdb using C-c, obtaining
10313 an effect similar to stop on timeout. */
10314 continue;
10315 }
10316 buf = rs->buf;
10317 if (buf[0] == '\0')
10318 error (_("Target does not support this command."));
10319 if (buf[0] == 'O' && buf[1] != 'K')
10320 {
10321 remote_console_output (buf + 1); /* 'O' message from stub. */
10322 continue;
10323 }
10324 if (strcmp (buf, "OK") == 0)
10325 break;
10326 if (strlen (buf) == 3 && buf[0] == 'E'
10327 && isdigit (buf[1]) && isdigit (buf[2]))
10328 {
10329 error (_("Protocol error with Rcmd"));
10330 }
10331 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
10332 {
10333 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
10334
10335 fputc_unfiltered (c, outbuf);
10336 }
10337 break;
10338 }
10339 }
10340
10341 static VEC(mem_region_s) *
10342 remote_memory_map (struct target_ops *ops)
10343 {
10344 VEC(mem_region_s) *result = NULL;
10345 char *text = target_read_stralloc (&current_target,
10346 TARGET_OBJECT_MEMORY_MAP, NULL);
10347
10348 if (text)
10349 {
10350 struct cleanup *back_to = make_cleanup (xfree, text);
10351
10352 result = parse_memory_map (text);
10353 do_cleanups (back_to);
10354 }
10355
10356 return result;
10357 }
10358
10359 static void
10360 packet_command (char *args, int from_tty)
10361 {
10362 struct remote_state *rs = get_remote_state ();
10363
10364 if (!rs->remote_desc)
10365 error (_("command can only be used with remote target"));
10366
10367 if (!args)
10368 error (_("remote-packet command requires packet text as argument"));
10369
10370 puts_filtered ("sending: ");
10371 print_packet (args);
10372 puts_filtered ("\n");
10373 putpkt (args);
10374
10375 getpkt (&rs->buf, &rs->buf_size, 0);
10376 puts_filtered ("received: ");
10377 print_packet (rs->buf);
10378 puts_filtered ("\n");
10379 }
10380
10381 #if 0
10382 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
10383
10384 static void display_thread_info (struct gdb_ext_thread_info *info);
10385
10386 static void threadset_test_cmd (char *cmd, int tty);
10387
10388 static void threadalive_test (char *cmd, int tty);
10389
10390 static void threadlist_test_cmd (char *cmd, int tty);
10391
10392 int get_and_display_threadinfo (threadref *ref);
10393
10394 static void threadinfo_test_cmd (char *cmd, int tty);
10395
10396 static int thread_display_step (threadref *ref, void *context);
10397
10398 static void threadlist_update_test_cmd (char *cmd, int tty);
10399
10400 static void init_remote_threadtests (void);
10401
10402 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
10403
10404 static void
10405 threadset_test_cmd (char *cmd, int tty)
10406 {
10407 int sample_thread = SAMPLE_THREAD;
10408
10409 printf_filtered (_("Remote threadset test\n"));
10410 set_general_thread (sample_thread);
10411 }
10412
10413
10414 static void
10415 threadalive_test (char *cmd, int tty)
10416 {
10417 int sample_thread = SAMPLE_THREAD;
10418 int pid = ptid_get_pid (inferior_ptid);
10419 ptid_t ptid = ptid_build (pid, sample_thread, 0);
10420
10421 if (remote_thread_alive (ptid))
10422 printf_filtered ("PASS: Thread alive test\n");
10423 else
10424 printf_filtered ("FAIL: Thread alive test\n");
10425 }
10426
10427 void output_threadid (char *title, threadref *ref);
10428
10429 void
10430 output_threadid (char *title, threadref *ref)
10431 {
10432 char hexid[20];
10433
10434 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
10435 hexid[16] = 0;
10436 printf_filtered ("%s %s\n", title, (&hexid[0]));
10437 }
10438
10439 static void
10440 threadlist_test_cmd (char *cmd, int tty)
10441 {
10442 int startflag = 1;
10443 threadref nextthread;
10444 int done, result_count;
10445 threadref threadlist[3];
10446
10447 printf_filtered ("Remote Threadlist test\n");
10448 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
10449 &result_count, &threadlist[0]))
10450 printf_filtered ("FAIL: threadlist test\n");
10451 else
10452 {
10453 threadref *scan = threadlist;
10454 threadref *limit = scan + result_count;
10455
10456 while (scan < limit)
10457 output_threadid (" thread ", scan++);
10458 }
10459 }
10460
10461 void
10462 display_thread_info (struct gdb_ext_thread_info *info)
10463 {
10464 output_threadid ("Threadid: ", &info->threadid);
10465 printf_filtered ("Name: %s\n ", info->shortname);
10466 printf_filtered ("State: %s\n", info->display);
10467 printf_filtered ("other: %s\n\n", info->more_display);
10468 }
10469
10470 int
10471 get_and_display_threadinfo (threadref *ref)
10472 {
10473 int result;
10474 int set;
10475 struct gdb_ext_thread_info threadinfo;
10476
10477 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
10478 | TAG_MOREDISPLAY | TAG_DISPLAY;
10479 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
10480 display_thread_info (&threadinfo);
10481 return result;
10482 }
10483
10484 static void
10485 threadinfo_test_cmd (char *cmd, int tty)
10486 {
10487 int athread = SAMPLE_THREAD;
10488 threadref thread;
10489 int set;
10490
10491 int_to_threadref (&thread, athread);
10492 printf_filtered ("Remote Threadinfo test\n");
10493 if (!get_and_display_threadinfo (&thread))
10494 printf_filtered ("FAIL cannot get thread info\n");
10495 }
10496
10497 static int
10498 thread_display_step (threadref *ref, void *context)
10499 {
10500 /* output_threadid(" threadstep ",ref); *//* simple test */
10501 return get_and_display_threadinfo (ref);
10502 }
10503
10504 static void
10505 threadlist_update_test_cmd (char *cmd, int tty)
10506 {
10507 printf_filtered ("Remote Threadlist update test\n");
10508 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
10509 }
10510
10511 static void
10512 init_remote_threadtests (void)
10513 {
10514 add_com ("tlist", class_obscure, threadlist_test_cmd,
10515 _("Fetch and print the remote list of "
10516 "thread identifiers, one pkt only"));
10517 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
10518 _("Fetch and display info about one thread"));
10519 add_com ("tset", class_obscure, threadset_test_cmd,
10520 _("Test setting to a different thread"));
10521 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
10522 _("Iterate through updating all remote thread info"));
10523 add_com ("talive", class_obscure, threadalive_test,
10524 _(" Remote thread alive test "));
10525 }
10526
10527 #endif /* 0 */
10528
10529 /* Convert a thread ID to a string. Returns the string in a static
10530 buffer. */
10531
10532 static char *
10533 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
10534 {
10535 static char buf[64];
10536 struct remote_state *rs = get_remote_state ();
10537
10538 if (ptid_equal (ptid, null_ptid))
10539 return normal_pid_to_str (ptid);
10540 else if (ptid_is_pid (ptid))
10541 {
10542 /* Printing an inferior target id. */
10543
10544 /* When multi-process extensions are off, there's no way in the
10545 remote protocol to know the remote process id, if there's any
10546 at all. There's one exception --- when we're connected with
10547 target extended-remote, and we manually attached to a process
10548 with "attach PID". We don't record anywhere a flag that
10549 allows us to distinguish that case from the case of
10550 connecting with extended-remote and the stub already being
10551 attached to a process, and reporting yes to qAttached, hence
10552 no smart special casing here. */
10553 if (!remote_multi_process_p (rs))
10554 {
10555 xsnprintf (buf, sizeof buf, "Remote target");
10556 return buf;
10557 }
10558
10559 return normal_pid_to_str (ptid);
10560 }
10561 else
10562 {
10563 if (ptid_equal (magic_null_ptid, ptid))
10564 xsnprintf (buf, sizeof buf, "Thread <main>");
10565 else if (remote_multi_process_p (rs))
10566 if (ptid_get_lwp (ptid) == 0)
10567 return normal_pid_to_str (ptid);
10568 else
10569 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
10570 ptid_get_pid (ptid), ptid_get_lwp (ptid));
10571 else
10572 xsnprintf (buf, sizeof buf, "Thread %ld",
10573 ptid_get_lwp (ptid));
10574 return buf;
10575 }
10576 }
10577
10578 /* Get the address of the thread local variable in OBJFILE which is
10579 stored at OFFSET within the thread local storage for thread PTID. */
10580
10581 static CORE_ADDR
10582 remote_get_thread_local_address (struct target_ops *ops,
10583 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
10584 {
10585 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
10586 {
10587 struct remote_state *rs = get_remote_state ();
10588 char *p = rs->buf;
10589 char *endp = rs->buf + get_remote_packet_size ();
10590 enum packet_result result;
10591
10592 strcpy (p, "qGetTLSAddr:");
10593 p += strlen (p);
10594 p = write_ptid (p, endp, ptid);
10595 *p++ = ',';
10596 p += hexnumstr (p, offset);
10597 *p++ = ',';
10598 p += hexnumstr (p, lm);
10599 *p++ = '\0';
10600
10601 putpkt (rs->buf);
10602 getpkt (&rs->buf, &rs->buf_size, 0);
10603 result = packet_ok (rs->buf,
10604 &remote_protocol_packets[PACKET_qGetTLSAddr]);
10605 if (result == PACKET_OK)
10606 {
10607 ULONGEST result;
10608
10609 unpack_varlen_hex (rs->buf, &result);
10610 return result;
10611 }
10612 else if (result == PACKET_UNKNOWN)
10613 throw_error (TLS_GENERIC_ERROR,
10614 _("Remote target doesn't support qGetTLSAddr packet"));
10615 else
10616 throw_error (TLS_GENERIC_ERROR,
10617 _("Remote target failed to process qGetTLSAddr request"));
10618 }
10619 else
10620 throw_error (TLS_GENERIC_ERROR,
10621 _("TLS not supported or disabled on this target"));
10622 /* Not reached. */
10623 return 0;
10624 }
10625
10626 /* Provide thread local base, i.e. Thread Information Block address.
10627 Returns 1 if ptid is found and thread_local_base is non zero. */
10628
10629 static int
10630 remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
10631 {
10632 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
10633 {
10634 struct remote_state *rs = get_remote_state ();
10635 char *p = rs->buf;
10636 char *endp = rs->buf + get_remote_packet_size ();
10637 enum packet_result result;
10638
10639 strcpy (p, "qGetTIBAddr:");
10640 p += strlen (p);
10641 p = write_ptid (p, endp, ptid);
10642 *p++ = '\0';
10643
10644 putpkt (rs->buf);
10645 getpkt (&rs->buf, &rs->buf_size, 0);
10646 result = packet_ok (rs->buf,
10647 &remote_protocol_packets[PACKET_qGetTIBAddr]);
10648 if (result == PACKET_OK)
10649 {
10650 ULONGEST result;
10651
10652 unpack_varlen_hex (rs->buf, &result);
10653 if (addr)
10654 *addr = (CORE_ADDR) result;
10655 return 1;
10656 }
10657 else if (result == PACKET_UNKNOWN)
10658 error (_("Remote target doesn't support qGetTIBAddr packet"));
10659 else
10660 error (_("Remote target failed to process qGetTIBAddr request"));
10661 }
10662 else
10663 error (_("qGetTIBAddr not supported or disabled on this target"));
10664 /* Not reached. */
10665 return 0;
10666 }
10667
10668 /* Support for inferring a target description based on the current
10669 architecture and the size of a 'g' packet. While the 'g' packet
10670 can have any size (since optional registers can be left off the
10671 end), some sizes are easily recognizable given knowledge of the
10672 approximate architecture. */
10673
10674 struct remote_g_packet_guess
10675 {
10676 int bytes;
10677 const struct target_desc *tdesc;
10678 };
10679 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
10680 DEF_VEC_O(remote_g_packet_guess_s);
10681
10682 struct remote_g_packet_data
10683 {
10684 VEC(remote_g_packet_guess_s) *guesses;
10685 };
10686
10687 static struct gdbarch_data *remote_g_packet_data_handle;
10688
10689 static void *
10690 remote_g_packet_data_init (struct obstack *obstack)
10691 {
10692 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
10693 }
10694
10695 void
10696 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
10697 const struct target_desc *tdesc)
10698 {
10699 struct remote_g_packet_data *data
10700 = ((struct remote_g_packet_data *)
10701 gdbarch_data (gdbarch, remote_g_packet_data_handle));
10702 struct remote_g_packet_guess new_guess, *guess;
10703 int ix;
10704
10705 gdb_assert (tdesc != NULL);
10706
10707 for (ix = 0;
10708 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
10709 ix++)
10710 if (guess->bytes == bytes)
10711 internal_error (__FILE__, __LINE__,
10712 _("Duplicate g packet description added for size %d"),
10713 bytes);
10714
10715 new_guess.bytes = bytes;
10716 new_guess.tdesc = tdesc;
10717 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
10718 }
10719
10720 /* Return 1 if remote_read_description would do anything on this target
10721 and architecture, 0 otherwise. */
10722
10723 static int
10724 remote_read_description_p (struct target_ops *target)
10725 {
10726 struct remote_g_packet_data *data
10727 = ((struct remote_g_packet_data *)
10728 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
10729
10730 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
10731 return 1;
10732
10733 return 0;
10734 }
10735
10736 static const struct target_desc *
10737 remote_read_description (struct target_ops *target)
10738 {
10739 struct remote_g_packet_data *data
10740 = ((struct remote_g_packet_data *)
10741 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
10742
10743 /* Do not try this during initial connection, when we do not know
10744 whether there is a running but stopped thread. */
10745 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
10746 return target->beneath->to_read_description (target->beneath);
10747
10748 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
10749 {
10750 struct remote_g_packet_guess *guess;
10751 int ix;
10752 int bytes = send_g_packet ();
10753
10754 for (ix = 0;
10755 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
10756 ix++)
10757 if (guess->bytes == bytes)
10758 return guess->tdesc;
10759
10760 /* We discard the g packet. A minor optimization would be to
10761 hold on to it, and fill the register cache once we have selected
10762 an architecture, but it's too tricky to do safely. */
10763 }
10764
10765 return target->beneath->to_read_description (target->beneath);
10766 }
10767
10768 /* Remote file transfer support. This is host-initiated I/O, not
10769 target-initiated; for target-initiated, see remote-fileio.c. */
10770
10771 /* If *LEFT is at least the length of STRING, copy STRING to
10772 *BUFFER, update *BUFFER to point to the new end of the buffer, and
10773 decrease *LEFT. Otherwise raise an error. */
10774
10775 static void
10776 remote_buffer_add_string (char **buffer, int *left, char *string)
10777 {
10778 int len = strlen (string);
10779
10780 if (len > *left)
10781 error (_("Packet too long for target."));
10782
10783 memcpy (*buffer, string, len);
10784 *buffer += len;
10785 *left -= len;
10786
10787 /* NUL-terminate the buffer as a convenience, if there is
10788 room. */
10789 if (*left)
10790 **buffer = '\0';
10791 }
10792
10793 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
10794 *BUFFER, update *BUFFER to point to the new end of the buffer, and
10795 decrease *LEFT. Otherwise raise an error. */
10796
10797 static void
10798 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
10799 int len)
10800 {
10801 if (2 * len > *left)
10802 error (_("Packet too long for target."));
10803
10804 bin2hex (bytes, *buffer, len);
10805 *buffer += 2 * len;
10806 *left -= 2 * len;
10807
10808 /* NUL-terminate the buffer as a convenience, if there is
10809 room. */
10810 if (*left)
10811 **buffer = '\0';
10812 }
10813
10814 /* If *LEFT is large enough, convert VALUE to hex and add it to
10815 *BUFFER, update *BUFFER to point to the new end of the buffer, and
10816 decrease *LEFT. Otherwise raise an error. */
10817
10818 static void
10819 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
10820 {
10821 int len = hexnumlen (value);
10822
10823 if (len > *left)
10824 error (_("Packet too long for target."));
10825
10826 hexnumstr (*buffer, value);
10827 *buffer += len;
10828 *left -= len;
10829
10830 /* NUL-terminate the buffer as a convenience, if there is
10831 room. */
10832 if (*left)
10833 **buffer = '\0';
10834 }
10835
10836 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
10837 value, *REMOTE_ERRNO to the remote error number or zero if none
10838 was included, and *ATTACHMENT to point to the start of the annex
10839 if any. The length of the packet isn't needed here; there may
10840 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
10841
10842 Return 0 if the packet could be parsed, -1 if it could not. If
10843 -1 is returned, the other variables may not be initialized. */
10844
10845 static int
10846 remote_hostio_parse_result (char *buffer, int *retcode,
10847 int *remote_errno, char **attachment)
10848 {
10849 char *p, *p2;
10850
10851 *remote_errno = 0;
10852 *attachment = NULL;
10853
10854 if (buffer[0] != 'F')
10855 return -1;
10856
10857 errno = 0;
10858 *retcode = strtol (&buffer[1], &p, 16);
10859 if (errno != 0 || p == &buffer[1])
10860 return -1;
10861
10862 /* Check for ",errno". */
10863 if (*p == ',')
10864 {
10865 errno = 0;
10866 *remote_errno = strtol (p + 1, &p2, 16);
10867 if (errno != 0 || p + 1 == p2)
10868 return -1;
10869 p = p2;
10870 }
10871
10872 /* Check for ";attachment". If there is no attachment, the
10873 packet should end here. */
10874 if (*p == ';')
10875 {
10876 *attachment = p + 1;
10877 return 0;
10878 }
10879 else if (*p == '\0')
10880 return 0;
10881 else
10882 return -1;
10883 }
10884
10885 /* Send a prepared I/O packet to the target and read its response.
10886 The prepared packet is in the global RS->BUF before this function
10887 is called, and the answer is there when we return.
10888
10889 COMMAND_BYTES is the length of the request to send, which may include
10890 binary data. WHICH_PACKET is the packet configuration to check
10891 before attempting a packet. If an error occurs, *REMOTE_ERRNO
10892 is set to the error number and -1 is returned. Otherwise the value
10893 returned by the function is returned.
10894
10895 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
10896 attachment is expected; an error will be reported if there's a
10897 mismatch. If one is found, *ATTACHMENT will be set to point into
10898 the packet buffer and *ATTACHMENT_LEN will be set to the
10899 attachment's length. */
10900
10901 static int
10902 remote_hostio_send_command (int command_bytes, int which_packet,
10903 int *remote_errno, char **attachment,
10904 int *attachment_len)
10905 {
10906 struct remote_state *rs = get_remote_state ();
10907 int ret, bytes_read;
10908 char *attachment_tmp;
10909
10910 if (!rs->remote_desc
10911 || packet_support (which_packet) == PACKET_DISABLE)
10912 {
10913 *remote_errno = FILEIO_ENOSYS;
10914 return -1;
10915 }
10916
10917 putpkt_binary (rs->buf, command_bytes);
10918 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10919
10920 /* If it timed out, something is wrong. Don't try to parse the
10921 buffer. */
10922 if (bytes_read < 0)
10923 {
10924 *remote_errno = FILEIO_EINVAL;
10925 return -1;
10926 }
10927
10928 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
10929 {
10930 case PACKET_ERROR:
10931 *remote_errno = FILEIO_EINVAL;
10932 return -1;
10933 case PACKET_UNKNOWN:
10934 *remote_errno = FILEIO_ENOSYS;
10935 return -1;
10936 case PACKET_OK:
10937 break;
10938 }
10939
10940 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
10941 &attachment_tmp))
10942 {
10943 *remote_errno = FILEIO_EINVAL;
10944 return -1;
10945 }
10946
10947 /* Make sure we saw an attachment if and only if we expected one. */
10948 if ((attachment_tmp == NULL && attachment != NULL)
10949 || (attachment_tmp != NULL && attachment == NULL))
10950 {
10951 *remote_errno = FILEIO_EINVAL;
10952 return -1;
10953 }
10954
10955 /* If an attachment was found, it must point into the packet buffer;
10956 work out how many bytes there were. */
10957 if (attachment_tmp != NULL)
10958 {
10959 *attachment = attachment_tmp;
10960 *attachment_len = bytes_read - (*attachment - rs->buf);
10961 }
10962
10963 return ret;
10964 }
10965
10966 /* Invalidate the readahead cache. */
10967
10968 static void
10969 readahead_cache_invalidate (void)
10970 {
10971 struct remote_state *rs = get_remote_state ();
10972
10973 rs->readahead_cache.fd = -1;
10974 }
10975
10976 /* Invalidate the readahead cache if it is holding data for FD. */
10977
10978 static void
10979 readahead_cache_invalidate_fd (int fd)
10980 {
10981 struct remote_state *rs = get_remote_state ();
10982
10983 if (rs->readahead_cache.fd == fd)
10984 rs->readahead_cache.fd = -1;
10985 }
10986
10987 /* Set the filesystem remote_hostio functions that take FILENAME
10988 arguments will use. Return 0 on success, or -1 if an error
10989 occurs (and set *REMOTE_ERRNO). */
10990
10991 static int
10992 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
10993 {
10994 struct remote_state *rs = get_remote_state ();
10995 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
10996 char *p = rs->buf;
10997 int left = get_remote_packet_size () - 1;
10998 char arg[9];
10999 int ret;
11000
11001 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11002 return 0;
11003
11004 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11005 return 0;
11006
11007 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11008
11009 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11010 remote_buffer_add_string (&p, &left, arg);
11011
11012 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11013 remote_errno, NULL, NULL);
11014
11015 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11016 return 0;
11017
11018 if (ret == 0)
11019 rs->fs_pid = required_pid;
11020
11021 return ret;
11022 }
11023
11024 /* Implementation of to_fileio_open. */
11025
11026 static int
11027 remote_hostio_open (struct target_ops *self,
11028 struct inferior *inf, const char *filename,
11029 int flags, int mode, int warn_if_slow,
11030 int *remote_errno)
11031 {
11032 struct remote_state *rs = get_remote_state ();
11033 char *p = rs->buf;
11034 int left = get_remote_packet_size () - 1;
11035
11036 if (warn_if_slow)
11037 {
11038 static int warning_issued = 0;
11039
11040 printf_unfiltered (_("Reading %s from remote target...\n"),
11041 filename);
11042
11043 if (!warning_issued)
11044 {
11045 warning (_("File transfers from remote targets can be slow."
11046 " Use \"set sysroot\" to access files locally"
11047 " instead."));
11048 warning_issued = 1;
11049 }
11050 }
11051
11052 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11053 return -1;
11054
11055 remote_buffer_add_string (&p, &left, "vFile:open:");
11056
11057 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11058 strlen (filename));
11059 remote_buffer_add_string (&p, &left, ",");
11060
11061 remote_buffer_add_int (&p, &left, flags);
11062 remote_buffer_add_string (&p, &left, ",");
11063
11064 remote_buffer_add_int (&p, &left, mode);
11065
11066 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11067 remote_errno, NULL, NULL);
11068 }
11069
11070 /* Implementation of to_fileio_pwrite. */
11071
11072 static int
11073 remote_hostio_pwrite (struct target_ops *self,
11074 int fd, const gdb_byte *write_buf, int len,
11075 ULONGEST offset, int *remote_errno)
11076 {
11077 struct remote_state *rs = get_remote_state ();
11078 char *p = rs->buf;
11079 int left = get_remote_packet_size ();
11080 int out_len;
11081
11082 readahead_cache_invalidate_fd (fd);
11083
11084 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11085
11086 remote_buffer_add_int (&p, &left, fd);
11087 remote_buffer_add_string (&p, &left, ",");
11088
11089 remote_buffer_add_int (&p, &left, offset);
11090 remote_buffer_add_string (&p, &left, ",");
11091
11092 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11093 get_remote_packet_size () - (p - rs->buf));
11094
11095 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11096 remote_errno, NULL, NULL);
11097 }
11098
11099 /* Helper for the implementation of to_fileio_pread. Read the file
11100 from the remote side with vFile:pread. */
11101
11102 static int
11103 remote_hostio_pread_vFile (struct target_ops *self,
11104 int fd, gdb_byte *read_buf, int len,
11105 ULONGEST offset, int *remote_errno)
11106 {
11107 struct remote_state *rs = get_remote_state ();
11108 char *p = rs->buf;
11109 char *attachment;
11110 int left = get_remote_packet_size ();
11111 int ret, attachment_len;
11112 int read_len;
11113
11114 remote_buffer_add_string (&p, &left, "vFile:pread:");
11115
11116 remote_buffer_add_int (&p, &left, fd);
11117 remote_buffer_add_string (&p, &left, ",");
11118
11119 remote_buffer_add_int (&p, &left, len);
11120 remote_buffer_add_string (&p, &left, ",");
11121
11122 remote_buffer_add_int (&p, &left, offset);
11123
11124 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11125 remote_errno, &attachment,
11126 &attachment_len);
11127
11128 if (ret < 0)
11129 return ret;
11130
11131 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11132 read_buf, len);
11133 if (read_len != ret)
11134 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11135
11136 return ret;
11137 }
11138
11139 /* Serve pread from the readahead cache. Returns number of bytes
11140 read, or 0 if the request can't be served from the cache. */
11141
11142 static int
11143 remote_hostio_pread_from_cache (struct remote_state *rs,
11144 int fd, gdb_byte *read_buf, size_t len,
11145 ULONGEST offset)
11146 {
11147 struct readahead_cache *cache = &rs->readahead_cache;
11148
11149 if (cache->fd == fd
11150 && cache->offset <= offset
11151 && offset < cache->offset + cache->bufsize)
11152 {
11153 ULONGEST max = cache->offset + cache->bufsize;
11154
11155 if (offset + len > max)
11156 len = max - offset;
11157
11158 memcpy (read_buf, cache->buf + offset - cache->offset, len);
11159 return len;
11160 }
11161
11162 return 0;
11163 }
11164
11165 /* Implementation of to_fileio_pread. */
11166
11167 static int
11168 remote_hostio_pread (struct target_ops *self,
11169 int fd, gdb_byte *read_buf, int len,
11170 ULONGEST offset, int *remote_errno)
11171 {
11172 int ret;
11173 struct remote_state *rs = get_remote_state ();
11174 struct readahead_cache *cache = &rs->readahead_cache;
11175
11176 ret = remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11177 if (ret > 0)
11178 {
11179 cache->hit_count++;
11180
11181 if (remote_debug)
11182 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11183 pulongest (cache->hit_count));
11184 return ret;
11185 }
11186
11187 cache->miss_count++;
11188 if (remote_debug)
11189 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11190 pulongest (cache->miss_count));
11191
11192 cache->fd = fd;
11193 cache->offset = offset;
11194 cache->bufsize = get_remote_packet_size ();
11195 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11196
11197 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11198 cache->offset, remote_errno);
11199 if (ret <= 0)
11200 {
11201 readahead_cache_invalidate_fd (fd);
11202 return ret;
11203 }
11204
11205 cache->bufsize = ret;
11206 return remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11207 }
11208
11209 /* Implementation of to_fileio_close. */
11210
11211 static int
11212 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11213 {
11214 struct remote_state *rs = get_remote_state ();
11215 char *p = rs->buf;
11216 int left = get_remote_packet_size () - 1;
11217
11218 readahead_cache_invalidate_fd (fd);
11219
11220 remote_buffer_add_string (&p, &left, "vFile:close:");
11221
11222 remote_buffer_add_int (&p, &left, fd);
11223
11224 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11225 remote_errno, NULL, NULL);
11226 }
11227
11228 /* Implementation of to_fileio_unlink. */
11229
11230 static int
11231 remote_hostio_unlink (struct target_ops *self,
11232 struct inferior *inf, const char *filename,
11233 int *remote_errno)
11234 {
11235 struct remote_state *rs = get_remote_state ();
11236 char *p = rs->buf;
11237 int left = get_remote_packet_size () - 1;
11238
11239 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11240 return -1;
11241
11242 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11243
11244 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11245 strlen (filename));
11246
11247 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
11248 remote_errno, NULL, NULL);
11249 }
11250
11251 /* Implementation of to_fileio_readlink. */
11252
11253 static char *
11254 remote_hostio_readlink (struct target_ops *self,
11255 struct inferior *inf, const char *filename,
11256 int *remote_errno)
11257 {
11258 struct remote_state *rs = get_remote_state ();
11259 char *p = rs->buf;
11260 char *attachment;
11261 int left = get_remote_packet_size ();
11262 int len, attachment_len;
11263 int read_len;
11264 char *ret;
11265
11266 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11267 return NULL;
11268
11269 remote_buffer_add_string (&p, &left, "vFile:readlink:");
11270
11271 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11272 strlen (filename));
11273
11274 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
11275 remote_errno, &attachment,
11276 &attachment_len);
11277
11278 if (len < 0)
11279 return NULL;
11280
11281 ret = (char *) xmalloc (len + 1);
11282
11283 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11284 (gdb_byte *) ret, len);
11285 if (read_len != len)
11286 error (_("Readlink returned %d, but %d bytes."), len, read_len);
11287
11288 ret[len] = '\0';
11289 return ret;
11290 }
11291
11292 /* Implementation of to_fileio_fstat. */
11293
11294 static int
11295 remote_hostio_fstat (struct target_ops *self,
11296 int fd, struct stat *st,
11297 int *remote_errno)
11298 {
11299 struct remote_state *rs = get_remote_state ();
11300 char *p = rs->buf;
11301 int left = get_remote_packet_size ();
11302 int attachment_len, ret;
11303 char *attachment;
11304 struct fio_stat fst;
11305 int read_len;
11306
11307 remote_buffer_add_string (&p, &left, "vFile:fstat:");
11308
11309 remote_buffer_add_int (&p, &left, fd);
11310
11311 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
11312 remote_errno, &attachment,
11313 &attachment_len);
11314 if (ret < 0)
11315 {
11316 if (*remote_errno != FILEIO_ENOSYS)
11317 return ret;
11318
11319 /* Strictly we should return -1, ENOSYS here, but when
11320 "set sysroot remote:" was implemented in August 2008
11321 BFD's need for a stat function was sidestepped with
11322 this hack. This was not remedied until March 2015
11323 so we retain the previous behavior to avoid breaking
11324 compatibility.
11325
11326 Note that the memset is a March 2015 addition; older
11327 GDBs set st_size *and nothing else* so the structure
11328 would have garbage in all other fields. This might
11329 break something but retaining the previous behavior
11330 here would be just too wrong. */
11331
11332 memset (st, 0, sizeof (struct stat));
11333 st->st_size = INT_MAX;
11334 return 0;
11335 }
11336
11337 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11338 (gdb_byte *) &fst, sizeof (fst));
11339
11340 if (read_len != ret)
11341 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
11342
11343 if (read_len != sizeof (fst))
11344 error (_("vFile:fstat returned %d bytes, but expecting %d."),
11345 read_len, (int) sizeof (fst));
11346
11347 remote_fileio_to_host_stat (&fst, st);
11348
11349 return 0;
11350 }
11351
11352 /* Implementation of to_filesystem_is_local. */
11353
11354 static int
11355 remote_filesystem_is_local (struct target_ops *self)
11356 {
11357 /* Valgrind GDB presents itself as a remote target but works
11358 on the local filesystem: it does not implement remote get
11359 and users are not expected to set a sysroot. To handle
11360 this case we treat the remote filesystem as local if the
11361 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
11362 does not support vFile:open. */
11363 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
11364 {
11365 enum packet_support ps = packet_support (PACKET_vFile_open);
11366
11367 if (ps == PACKET_SUPPORT_UNKNOWN)
11368 {
11369 int fd, remote_errno;
11370
11371 /* Try opening a file to probe support. The supplied
11372 filename is irrelevant, we only care about whether
11373 the stub recognizes the packet or not. */
11374 fd = remote_hostio_open (self, NULL, "just probing",
11375 FILEIO_O_RDONLY, 0700, 0,
11376 &remote_errno);
11377
11378 if (fd >= 0)
11379 remote_hostio_close (self, fd, &remote_errno);
11380
11381 ps = packet_support (PACKET_vFile_open);
11382 }
11383
11384 if (ps == PACKET_DISABLE)
11385 {
11386 static int warning_issued = 0;
11387
11388 if (!warning_issued)
11389 {
11390 warning (_("remote target does not support file"
11391 " transfer, attempting to access files"
11392 " from local filesystem."));
11393 warning_issued = 1;
11394 }
11395
11396 return 1;
11397 }
11398 }
11399
11400 return 0;
11401 }
11402
11403 static int
11404 remote_fileio_errno_to_host (int errnum)
11405 {
11406 switch (errnum)
11407 {
11408 case FILEIO_EPERM:
11409 return EPERM;
11410 case FILEIO_ENOENT:
11411 return ENOENT;
11412 case FILEIO_EINTR:
11413 return EINTR;
11414 case FILEIO_EIO:
11415 return EIO;
11416 case FILEIO_EBADF:
11417 return EBADF;
11418 case FILEIO_EACCES:
11419 return EACCES;
11420 case FILEIO_EFAULT:
11421 return EFAULT;
11422 case FILEIO_EBUSY:
11423 return EBUSY;
11424 case FILEIO_EEXIST:
11425 return EEXIST;
11426 case FILEIO_ENODEV:
11427 return ENODEV;
11428 case FILEIO_ENOTDIR:
11429 return ENOTDIR;
11430 case FILEIO_EISDIR:
11431 return EISDIR;
11432 case FILEIO_EINVAL:
11433 return EINVAL;
11434 case FILEIO_ENFILE:
11435 return ENFILE;
11436 case FILEIO_EMFILE:
11437 return EMFILE;
11438 case FILEIO_EFBIG:
11439 return EFBIG;
11440 case FILEIO_ENOSPC:
11441 return ENOSPC;
11442 case FILEIO_ESPIPE:
11443 return ESPIPE;
11444 case FILEIO_EROFS:
11445 return EROFS;
11446 case FILEIO_ENOSYS:
11447 return ENOSYS;
11448 case FILEIO_ENAMETOOLONG:
11449 return ENAMETOOLONG;
11450 }
11451 return -1;
11452 }
11453
11454 static char *
11455 remote_hostio_error (int errnum)
11456 {
11457 int host_error = remote_fileio_errno_to_host (errnum);
11458
11459 if (host_error == -1)
11460 error (_("Unknown remote I/O error %d"), errnum);
11461 else
11462 error (_("Remote I/O error: %s"), safe_strerror (host_error));
11463 }
11464
11465 static void
11466 remote_hostio_close_cleanup (void *opaque)
11467 {
11468 int fd = *(int *) opaque;
11469 int remote_errno;
11470
11471 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
11472 }
11473
11474 void
11475 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
11476 {
11477 struct cleanup *back_to, *close_cleanup;
11478 int retcode, fd, remote_errno, bytes, io_size;
11479 FILE *file;
11480 gdb_byte *buffer;
11481 int bytes_in_buffer;
11482 int saw_eof;
11483 ULONGEST offset;
11484 struct remote_state *rs = get_remote_state ();
11485
11486 if (!rs->remote_desc)
11487 error (_("command can only be used with remote target"));
11488
11489 file = gdb_fopen_cloexec (local_file, "rb");
11490 if (file == NULL)
11491 perror_with_name (local_file);
11492 back_to = make_cleanup_fclose (file);
11493
11494 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
11495 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
11496 | FILEIO_O_TRUNC),
11497 0700, 0, &remote_errno);
11498 if (fd == -1)
11499 remote_hostio_error (remote_errno);
11500
11501 /* Send up to this many bytes at once. They won't all fit in the
11502 remote packet limit, so we'll transfer slightly fewer. */
11503 io_size = get_remote_packet_size ();
11504 buffer = (gdb_byte *) xmalloc (io_size);
11505 make_cleanup (xfree, buffer);
11506
11507 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
11508
11509 bytes_in_buffer = 0;
11510 saw_eof = 0;
11511 offset = 0;
11512 while (bytes_in_buffer || !saw_eof)
11513 {
11514 if (!saw_eof)
11515 {
11516 bytes = fread (buffer + bytes_in_buffer, 1,
11517 io_size - bytes_in_buffer,
11518 file);
11519 if (bytes == 0)
11520 {
11521 if (ferror (file))
11522 error (_("Error reading %s."), local_file);
11523 else
11524 {
11525 /* EOF. Unless there is something still in the
11526 buffer from the last iteration, we are done. */
11527 saw_eof = 1;
11528 if (bytes_in_buffer == 0)
11529 break;
11530 }
11531 }
11532 }
11533 else
11534 bytes = 0;
11535
11536 bytes += bytes_in_buffer;
11537 bytes_in_buffer = 0;
11538
11539 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
11540 fd, buffer, bytes,
11541 offset, &remote_errno);
11542
11543 if (retcode < 0)
11544 remote_hostio_error (remote_errno);
11545 else if (retcode == 0)
11546 error (_("Remote write of %d bytes returned 0!"), bytes);
11547 else if (retcode < bytes)
11548 {
11549 /* Short write. Save the rest of the read data for the next
11550 write. */
11551 bytes_in_buffer = bytes - retcode;
11552 memmove (buffer, buffer + retcode, bytes_in_buffer);
11553 }
11554
11555 offset += retcode;
11556 }
11557
11558 discard_cleanups (close_cleanup);
11559 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
11560 remote_hostio_error (remote_errno);
11561
11562 if (from_tty)
11563 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
11564 do_cleanups (back_to);
11565 }
11566
11567 void
11568 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
11569 {
11570 struct cleanup *back_to, *close_cleanup;
11571 int fd, remote_errno, bytes, io_size;
11572 FILE *file;
11573 gdb_byte *buffer;
11574 ULONGEST offset;
11575 struct remote_state *rs = get_remote_state ();
11576
11577 if (!rs->remote_desc)
11578 error (_("command can only be used with remote target"));
11579
11580 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
11581 remote_file, FILEIO_O_RDONLY, 0, 0,
11582 &remote_errno);
11583 if (fd == -1)
11584 remote_hostio_error (remote_errno);
11585
11586 file = gdb_fopen_cloexec (local_file, "wb");
11587 if (file == NULL)
11588 perror_with_name (local_file);
11589 back_to = make_cleanup_fclose (file);
11590
11591 /* Send up to this many bytes at once. They won't all fit in the
11592 remote packet limit, so we'll transfer slightly fewer. */
11593 io_size = get_remote_packet_size ();
11594 buffer = (gdb_byte *) xmalloc (io_size);
11595 make_cleanup (xfree, buffer);
11596
11597 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
11598
11599 offset = 0;
11600 while (1)
11601 {
11602 bytes = remote_hostio_pread (find_target_at (process_stratum),
11603 fd, buffer, io_size, offset, &remote_errno);
11604 if (bytes == 0)
11605 /* Success, but no bytes, means end-of-file. */
11606 break;
11607 if (bytes == -1)
11608 remote_hostio_error (remote_errno);
11609
11610 offset += bytes;
11611
11612 bytes = fwrite (buffer, 1, bytes, file);
11613 if (bytes == 0)
11614 perror_with_name (local_file);
11615 }
11616
11617 discard_cleanups (close_cleanup);
11618 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
11619 remote_hostio_error (remote_errno);
11620
11621 if (from_tty)
11622 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
11623 do_cleanups (back_to);
11624 }
11625
11626 void
11627 remote_file_delete (const char *remote_file, int from_tty)
11628 {
11629 int retcode, remote_errno;
11630 struct remote_state *rs = get_remote_state ();
11631
11632 if (!rs->remote_desc)
11633 error (_("command can only be used with remote target"));
11634
11635 retcode = remote_hostio_unlink (find_target_at (process_stratum),
11636 NULL, remote_file, &remote_errno);
11637 if (retcode == -1)
11638 remote_hostio_error (remote_errno);
11639
11640 if (from_tty)
11641 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
11642 }
11643
11644 static void
11645 remote_put_command (char *args, int from_tty)
11646 {
11647 struct cleanup *back_to;
11648 char **argv;
11649
11650 if (args == NULL)
11651 error_no_arg (_("file to put"));
11652
11653 argv = gdb_buildargv (args);
11654 back_to = make_cleanup_freeargv (argv);
11655 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
11656 error (_("Invalid parameters to remote put"));
11657
11658 remote_file_put (argv[0], argv[1], from_tty);
11659
11660 do_cleanups (back_to);
11661 }
11662
11663 static void
11664 remote_get_command (char *args, int from_tty)
11665 {
11666 struct cleanup *back_to;
11667 char **argv;
11668
11669 if (args == NULL)
11670 error_no_arg (_("file to get"));
11671
11672 argv = gdb_buildargv (args);
11673 back_to = make_cleanup_freeargv (argv);
11674 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
11675 error (_("Invalid parameters to remote get"));
11676
11677 remote_file_get (argv[0], argv[1], from_tty);
11678
11679 do_cleanups (back_to);
11680 }
11681
11682 static void
11683 remote_delete_command (char *args, int from_tty)
11684 {
11685 struct cleanup *back_to;
11686 char **argv;
11687
11688 if (args == NULL)
11689 error_no_arg (_("file to delete"));
11690
11691 argv = gdb_buildargv (args);
11692 back_to = make_cleanup_freeargv (argv);
11693 if (argv[0] == NULL || argv[1] != NULL)
11694 error (_("Invalid parameters to remote delete"));
11695
11696 remote_file_delete (argv[0], from_tty);
11697
11698 do_cleanups (back_to);
11699 }
11700
11701 static void
11702 remote_command (char *args, int from_tty)
11703 {
11704 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
11705 }
11706
11707 static int
11708 remote_can_execute_reverse (struct target_ops *self)
11709 {
11710 if (packet_support (PACKET_bs) == PACKET_ENABLE
11711 || packet_support (PACKET_bc) == PACKET_ENABLE)
11712 return 1;
11713 else
11714 return 0;
11715 }
11716
11717 static int
11718 remote_supports_non_stop (struct target_ops *self)
11719 {
11720 return 1;
11721 }
11722
11723 static int
11724 remote_supports_disable_randomization (struct target_ops *self)
11725 {
11726 /* Only supported in extended mode. */
11727 return 0;
11728 }
11729
11730 static int
11731 remote_supports_multi_process (struct target_ops *self)
11732 {
11733 struct remote_state *rs = get_remote_state ();
11734
11735 return remote_multi_process_p (rs);
11736 }
11737
11738 static int
11739 remote_supports_cond_tracepoints (void)
11740 {
11741 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
11742 }
11743
11744 static int
11745 remote_supports_cond_breakpoints (struct target_ops *self)
11746 {
11747 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
11748 }
11749
11750 static int
11751 remote_supports_fast_tracepoints (void)
11752 {
11753 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
11754 }
11755
11756 static int
11757 remote_supports_static_tracepoints (void)
11758 {
11759 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
11760 }
11761
11762 static int
11763 remote_supports_install_in_trace (void)
11764 {
11765 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
11766 }
11767
11768 static int
11769 remote_supports_enable_disable_tracepoint (struct target_ops *self)
11770 {
11771 return (packet_support (PACKET_EnableDisableTracepoints_feature)
11772 == PACKET_ENABLE);
11773 }
11774
11775 static int
11776 remote_supports_string_tracing (struct target_ops *self)
11777 {
11778 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
11779 }
11780
11781 static int
11782 remote_can_run_breakpoint_commands (struct target_ops *self)
11783 {
11784 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
11785 }
11786
11787 static void
11788 remote_trace_init (struct target_ops *self)
11789 {
11790 putpkt ("QTinit");
11791 remote_get_noisy_reply (&target_buf, &target_buf_size);
11792 if (strcmp (target_buf, "OK") != 0)
11793 error (_("Target does not support this command."));
11794 }
11795
11796 static void free_actions_list (char **actions_list);
11797 static void free_actions_list_cleanup_wrapper (void *);
11798 static void
11799 free_actions_list_cleanup_wrapper (void *al)
11800 {
11801 free_actions_list ((char **) al);
11802 }
11803
11804 static void
11805 free_actions_list (char **actions_list)
11806 {
11807 int ndx;
11808
11809 if (actions_list == 0)
11810 return;
11811
11812 for (ndx = 0; actions_list[ndx]; ndx++)
11813 xfree (actions_list[ndx]);
11814
11815 xfree (actions_list);
11816 }
11817
11818 /* Recursive routine to walk through command list including loops, and
11819 download packets for each command. */
11820
11821 static void
11822 remote_download_command_source (int num, ULONGEST addr,
11823 struct command_line *cmds)
11824 {
11825 struct remote_state *rs = get_remote_state ();
11826 struct command_line *cmd;
11827
11828 for (cmd = cmds; cmd; cmd = cmd->next)
11829 {
11830 QUIT; /* Allow user to bail out with ^C. */
11831 strcpy (rs->buf, "QTDPsrc:");
11832 encode_source_string (num, addr, "cmd", cmd->line,
11833 rs->buf + strlen (rs->buf),
11834 rs->buf_size - strlen (rs->buf));
11835 putpkt (rs->buf);
11836 remote_get_noisy_reply (&target_buf, &target_buf_size);
11837 if (strcmp (target_buf, "OK"))
11838 warning (_("Target does not support source download."));
11839
11840 if (cmd->control_type == while_control
11841 || cmd->control_type == while_stepping_control)
11842 {
11843 remote_download_command_source (num, addr, *cmd->body_list);
11844
11845 QUIT; /* Allow user to bail out with ^C. */
11846 strcpy (rs->buf, "QTDPsrc:");
11847 encode_source_string (num, addr, "cmd", "end",
11848 rs->buf + strlen (rs->buf),
11849 rs->buf_size - strlen (rs->buf));
11850 putpkt (rs->buf);
11851 remote_get_noisy_reply (&target_buf, &target_buf_size);
11852 if (strcmp (target_buf, "OK"))
11853 warning (_("Target does not support source download."));
11854 }
11855 }
11856 }
11857
11858 static void
11859 remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
11860 {
11861 #define BUF_SIZE 2048
11862
11863 CORE_ADDR tpaddr;
11864 char addrbuf[40];
11865 char buf[BUF_SIZE];
11866 char **tdp_actions;
11867 char **stepping_actions;
11868 int ndx;
11869 struct cleanup *old_chain = NULL;
11870 struct agent_expr *aexpr;
11871 struct cleanup *aexpr_chain = NULL;
11872 char *pkt;
11873 struct breakpoint *b = loc->owner;
11874 struct tracepoint *t = (struct tracepoint *) b;
11875
11876 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
11877 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
11878 tdp_actions);
11879 (void) make_cleanup (free_actions_list_cleanup_wrapper,
11880 stepping_actions);
11881
11882 tpaddr = loc->address;
11883 sprintf_vma (addrbuf, tpaddr);
11884 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
11885 addrbuf, /* address */
11886 (b->enable_state == bp_enabled ? 'E' : 'D'),
11887 t->step_count, t->pass_count);
11888 /* Fast tracepoints are mostly handled by the target, but we can
11889 tell the target how big of an instruction block should be moved
11890 around. */
11891 if (b->type == bp_fast_tracepoint)
11892 {
11893 /* Only test for support at download time; we may not know
11894 target capabilities at definition time. */
11895 if (remote_supports_fast_tracepoints ())
11896 {
11897 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
11898 NULL))
11899 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
11900 gdb_insn_length (loc->gdbarch, tpaddr));
11901 else
11902 /* If it passed validation at definition but fails now,
11903 something is very wrong. */
11904 internal_error (__FILE__, __LINE__,
11905 _("Fast tracepoint not "
11906 "valid during download"));
11907 }
11908 else
11909 /* Fast tracepoints are functionally identical to regular
11910 tracepoints, so don't take lack of support as a reason to
11911 give up on the trace run. */
11912 warning (_("Target does not support fast tracepoints, "
11913 "downloading %d as regular tracepoint"), b->number);
11914 }
11915 else if (b->type == bp_static_tracepoint)
11916 {
11917 /* Only test for support at download time; we may not know
11918 target capabilities at definition time. */
11919 if (remote_supports_static_tracepoints ())
11920 {
11921 struct static_tracepoint_marker marker;
11922
11923 if (target_static_tracepoint_marker_at (tpaddr, &marker))
11924 strcat (buf, ":S");
11925 else
11926 error (_("Static tracepoint not valid during download"));
11927 }
11928 else
11929 /* Fast tracepoints are functionally identical to regular
11930 tracepoints, so don't take lack of support as a reason
11931 to give up on the trace run. */
11932 error (_("Target does not support static tracepoints"));
11933 }
11934 /* If the tracepoint has a conditional, make it into an agent
11935 expression and append to the definition. */
11936 if (loc->cond)
11937 {
11938 /* Only test support at download time, we may not know target
11939 capabilities at definition time. */
11940 if (remote_supports_cond_tracepoints ())
11941 {
11942 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
11943 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
11944 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
11945 aexpr->len);
11946 pkt = buf + strlen (buf);
11947 for (ndx = 0; ndx < aexpr->len; ++ndx)
11948 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
11949 *pkt = '\0';
11950 do_cleanups (aexpr_chain);
11951 }
11952 else
11953 warning (_("Target does not support conditional tracepoints, "
11954 "ignoring tp %d cond"), b->number);
11955 }
11956
11957 if (b->commands || *default_collect)
11958 strcat (buf, "-");
11959 putpkt (buf);
11960 remote_get_noisy_reply (&target_buf, &target_buf_size);
11961 if (strcmp (target_buf, "OK"))
11962 error (_("Target does not support tracepoints."));
11963
11964 /* do_single_steps (t); */
11965 if (tdp_actions)
11966 {
11967 for (ndx = 0; tdp_actions[ndx]; ndx++)
11968 {
11969 QUIT; /* Allow user to bail out with ^C. */
11970 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
11971 b->number, addrbuf, /* address */
11972 tdp_actions[ndx],
11973 ((tdp_actions[ndx + 1] || stepping_actions)
11974 ? '-' : 0));
11975 putpkt (buf);
11976 remote_get_noisy_reply (&target_buf,
11977 &target_buf_size);
11978 if (strcmp (target_buf, "OK"))
11979 error (_("Error on target while setting tracepoints."));
11980 }
11981 }
11982 if (stepping_actions)
11983 {
11984 for (ndx = 0; stepping_actions[ndx]; ndx++)
11985 {
11986 QUIT; /* Allow user to bail out with ^C. */
11987 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
11988 b->number, addrbuf, /* address */
11989 ((ndx == 0) ? "S" : ""),
11990 stepping_actions[ndx],
11991 (stepping_actions[ndx + 1] ? "-" : ""));
11992 putpkt (buf);
11993 remote_get_noisy_reply (&target_buf,
11994 &target_buf_size);
11995 if (strcmp (target_buf, "OK"))
11996 error (_("Error on target while setting tracepoints."));
11997 }
11998 }
11999
12000 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12001 {
12002 if (b->location != NULL)
12003 {
12004 strcpy (buf, "QTDPsrc:");
12005 encode_source_string (b->number, loc->address, "at",
12006 event_location_to_string (b->location),
12007 buf + strlen (buf), 2048 - strlen (buf));
12008 putpkt (buf);
12009 remote_get_noisy_reply (&target_buf, &target_buf_size);
12010 if (strcmp (target_buf, "OK"))
12011 warning (_("Target does not support source download."));
12012 }
12013 if (b->cond_string)
12014 {
12015 strcpy (buf, "QTDPsrc:");
12016 encode_source_string (b->number, loc->address,
12017 "cond", b->cond_string, buf + strlen (buf),
12018 2048 - strlen (buf));
12019 putpkt (buf);
12020 remote_get_noisy_reply (&target_buf, &target_buf_size);
12021 if (strcmp (target_buf, "OK"))
12022 warning (_("Target does not support source download."));
12023 }
12024 remote_download_command_source (b->number, loc->address,
12025 breakpoint_commands (b));
12026 }
12027
12028 do_cleanups (old_chain);
12029 }
12030
12031 static int
12032 remote_can_download_tracepoint (struct target_ops *self)
12033 {
12034 struct remote_state *rs = get_remote_state ();
12035 struct trace_status *ts;
12036 int status;
12037
12038 /* Don't try to install tracepoints until we've relocated our
12039 symbols, and fetched and merged the target's tracepoint list with
12040 ours. */
12041 if (rs->starting_up)
12042 return 0;
12043
12044 ts = current_trace_status ();
12045 status = remote_get_trace_status (self, ts);
12046
12047 if (status == -1 || !ts->running_known || !ts->running)
12048 return 0;
12049
12050 /* If we are in a tracing experiment, but remote stub doesn't support
12051 installing tracepoint in trace, we have to return. */
12052 if (!remote_supports_install_in_trace ())
12053 return 0;
12054
12055 return 1;
12056 }
12057
12058
12059 static void
12060 remote_download_trace_state_variable (struct target_ops *self,
12061 struct trace_state_variable *tsv)
12062 {
12063 struct remote_state *rs = get_remote_state ();
12064 char *p;
12065
12066 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12067 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
12068 tsv->builtin);
12069 p = rs->buf + strlen (rs->buf);
12070 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
12071 error (_("Trace state variable name too long for tsv definition packet"));
12072 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, strlen (tsv->name));
12073 *p++ = '\0';
12074 putpkt (rs->buf);
12075 remote_get_noisy_reply (&target_buf, &target_buf_size);
12076 if (*target_buf == '\0')
12077 error (_("Target does not support this command."));
12078 if (strcmp (target_buf, "OK") != 0)
12079 error (_("Error on target while downloading trace state variable."));
12080 }
12081
12082 static void
12083 remote_enable_tracepoint (struct target_ops *self,
12084 struct bp_location *location)
12085 {
12086 struct remote_state *rs = get_remote_state ();
12087 char addr_buf[40];
12088
12089 sprintf_vma (addr_buf, location->address);
12090 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12091 location->owner->number, addr_buf);
12092 putpkt (rs->buf);
12093 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
12094 if (*rs->buf == '\0')
12095 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12096 if (strcmp (rs->buf, "OK") != 0)
12097 error (_("Error on target while enabling tracepoint."));
12098 }
12099
12100 static void
12101 remote_disable_tracepoint (struct target_ops *self,
12102 struct bp_location *location)
12103 {
12104 struct remote_state *rs = get_remote_state ();
12105 char addr_buf[40];
12106
12107 sprintf_vma (addr_buf, location->address);
12108 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12109 location->owner->number, addr_buf);
12110 putpkt (rs->buf);
12111 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
12112 if (*rs->buf == '\0')
12113 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12114 if (strcmp (rs->buf, "OK") != 0)
12115 error (_("Error on target while disabling tracepoint."));
12116 }
12117
12118 static void
12119 remote_trace_set_readonly_regions (struct target_ops *self)
12120 {
12121 asection *s;
12122 bfd *abfd = NULL;
12123 bfd_size_type size;
12124 bfd_vma vma;
12125 int anysecs = 0;
12126 int offset = 0;
12127
12128 if (!exec_bfd)
12129 return; /* No information to give. */
12130
12131 strcpy (target_buf, "QTro");
12132 offset = strlen (target_buf);
12133 for (s = exec_bfd->sections; s; s = s->next)
12134 {
12135 char tmp1[40], tmp2[40];
12136 int sec_length;
12137
12138 if ((s->flags & SEC_LOAD) == 0 ||
12139 /* (s->flags & SEC_CODE) == 0 || */
12140 (s->flags & SEC_READONLY) == 0)
12141 continue;
12142
12143 anysecs = 1;
12144 vma = bfd_get_section_vma (abfd, s);
12145 size = bfd_get_section_size (s);
12146 sprintf_vma (tmp1, vma);
12147 sprintf_vma (tmp2, vma + size);
12148 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12149 if (offset + sec_length + 1 > target_buf_size)
12150 {
12151 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12152 warning (_("\
12153 Too many sections for read-only sections definition packet."));
12154 break;
12155 }
12156 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
12157 tmp1, tmp2);
12158 offset += sec_length;
12159 }
12160 if (anysecs)
12161 {
12162 putpkt (target_buf);
12163 getpkt (&target_buf, &target_buf_size, 0);
12164 }
12165 }
12166
12167 static void
12168 remote_trace_start (struct target_ops *self)
12169 {
12170 putpkt ("QTStart");
12171 remote_get_noisy_reply (&target_buf, &target_buf_size);
12172 if (*target_buf == '\0')
12173 error (_("Target does not support this command."));
12174 if (strcmp (target_buf, "OK") != 0)
12175 error (_("Bogus reply from target: %s"), target_buf);
12176 }
12177
12178 static int
12179 remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
12180 {
12181 /* Initialize it just to avoid a GCC false warning. */
12182 char *p = NULL;
12183 /* FIXME we need to get register block size some other way. */
12184 extern int trace_regblock_size;
12185 enum packet_result result;
12186
12187 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12188 return -1;
12189
12190 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
12191
12192 putpkt ("qTStatus");
12193
12194 TRY
12195 {
12196 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
12197 }
12198 CATCH (ex, RETURN_MASK_ERROR)
12199 {
12200 if (ex.error != TARGET_CLOSE_ERROR)
12201 {
12202 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12203 return -1;
12204 }
12205 throw_exception (ex);
12206 }
12207 END_CATCH
12208
12209 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12210
12211 /* If the remote target doesn't do tracing, flag it. */
12212 if (result == PACKET_UNKNOWN)
12213 return -1;
12214
12215 /* We're working with a live target. */
12216 ts->filename = NULL;
12217
12218 if (*p++ != 'T')
12219 error (_("Bogus trace status reply from target: %s"), target_buf);
12220
12221 /* Function 'parse_trace_status' sets default value of each field of
12222 'ts' at first, so we don't have to do it here. */
12223 parse_trace_status (p, ts);
12224
12225 return ts->running;
12226 }
12227
12228 static void
12229 remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
12230 struct uploaded_tp *utp)
12231 {
12232 struct remote_state *rs = get_remote_state ();
12233 char *reply;
12234 struct bp_location *loc;
12235 struct tracepoint *tp = (struct tracepoint *) bp;
12236 size_t size = get_remote_packet_size ();
12237
12238 if (tp)
12239 {
12240 tp->base.hit_count = 0;
12241 tp->traceframe_usage = 0;
12242 for (loc = tp->base.loc; loc; loc = loc->next)
12243 {
12244 /* If the tracepoint was never downloaded, don't go asking for
12245 any status. */
12246 if (tp->number_on_target == 0)
12247 continue;
12248 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12249 phex_nz (loc->address, 0));
12250 putpkt (rs->buf);
12251 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12252 if (reply && *reply)
12253 {
12254 if (*reply == 'V')
12255 parse_tracepoint_status (reply + 1, bp, utp);
12256 }
12257 }
12258 }
12259 else if (utp)
12260 {
12261 utp->hit_count = 0;
12262 utp->traceframe_usage = 0;
12263 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
12264 phex_nz (utp->addr, 0));
12265 putpkt (rs->buf);
12266 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12267 if (reply && *reply)
12268 {
12269 if (*reply == 'V')
12270 parse_tracepoint_status (reply + 1, bp, utp);
12271 }
12272 }
12273 }
12274
12275 static void
12276 remote_trace_stop (struct target_ops *self)
12277 {
12278 putpkt ("QTStop");
12279 remote_get_noisy_reply (&target_buf, &target_buf_size);
12280 if (*target_buf == '\0')
12281 error (_("Target does not support this command."));
12282 if (strcmp (target_buf, "OK") != 0)
12283 error (_("Bogus reply from target: %s"), target_buf);
12284 }
12285
12286 static int
12287 remote_trace_find (struct target_ops *self,
12288 enum trace_find_type type, int num,
12289 CORE_ADDR addr1, CORE_ADDR addr2,
12290 int *tpp)
12291 {
12292 struct remote_state *rs = get_remote_state ();
12293 char *endbuf = rs->buf + get_remote_packet_size ();
12294 char *p, *reply;
12295 int target_frameno = -1, target_tracept = -1;
12296
12297 /* Lookups other than by absolute frame number depend on the current
12298 trace selected, so make sure it is correct on the remote end
12299 first. */
12300 if (type != tfind_number)
12301 set_remote_traceframe ();
12302
12303 p = rs->buf;
12304 strcpy (p, "QTFrame:");
12305 p = strchr (p, '\0');
12306 switch (type)
12307 {
12308 case tfind_number:
12309 xsnprintf (p, endbuf - p, "%x", num);
12310 break;
12311 case tfind_pc:
12312 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
12313 break;
12314 case tfind_tp:
12315 xsnprintf (p, endbuf - p, "tdp:%x", num);
12316 break;
12317 case tfind_range:
12318 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
12319 phex_nz (addr2, 0));
12320 break;
12321 case tfind_outside:
12322 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
12323 phex_nz (addr2, 0));
12324 break;
12325 default:
12326 error (_("Unknown trace find type %d"), type);
12327 }
12328
12329 putpkt (rs->buf);
12330 reply = remote_get_noisy_reply (&(rs->buf), &rs->buf_size);
12331 if (*reply == '\0')
12332 error (_("Target does not support this command."));
12333
12334 while (reply && *reply)
12335 switch (*reply)
12336 {
12337 case 'F':
12338 p = ++reply;
12339 target_frameno = (int) strtol (p, &reply, 16);
12340 if (reply == p)
12341 error (_("Unable to parse trace frame number"));
12342 /* Don't update our remote traceframe number cache on failure
12343 to select a remote traceframe. */
12344 if (target_frameno == -1)
12345 return -1;
12346 break;
12347 case 'T':
12348 p = ++reply;
12349 target_tracept = (int) strtol (p, &reply, 16);
12350 if (reply == p)
12351 error (_("Unable to parse tracepoint number"));
12352 break;
12353 case 'O': /* "OK"? */
12354 if (reply[1] == 'K' && reply[2] == '\0')
12355 reply += 2;
12356 else
12357 error (_("Bogus reply from target: %s"), reply);
12358 break;
12359 default:
12360 error (_("Bogus reply from target: %s"), reply);
12361 }
12362 if (tpp)
12363 *tpp = target_tracept;
12364
12365 rs->remote_traceframe_number = target_frameno;
12366 return target_frameno;
12367 }
12368
12369 static int
12370 remote_get_trace_state_variable_value (struct target_ops *self,
12371 int tsvnum, LONGEST *val)
12372 {
12373 struct remote_state *rs = get_remote_state ();
12374 char *reply;
12375 ULONGEST uval;
12376
12377 set_remote_traceframe ();
12378
12379 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
12380 putpkt (rs->buf);
12381 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12382 if (reply && *reply)
12383 {
12384 if (*reply == 'V')
12385 {
12386 unpack_varlen_hex (reply + 1, &uval);
12387 *val = (LONGEST) uval;
12388 return 1;
12389 }
12390 }
12391 return 0;
12392 }
12393
12394 static int
12395 remote_save_trace_data (struct target_ops *self, const char *filename)
12396 {
12397 struct remote_state *rs = get_remote_state ();
12398 char *p, *reply;
12399
12400 p = rs->buf;
12401 strcpy (p, "QTSave:");
12402 p += strlen (p);
12403 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
12404 error (_("Remote file name too long for trace save packet"));
12405 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
12406 *p++ = '\0';
12407 putpkt (rs->buf);
12408 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12409 if (*reply == '\0')
12410 error (_("Target does not support this command."));
12411 if (strcmp (reply, "OK") != 0)
12412 error (_("Bogus reply from target: %s"), reply);
12413 return 0;
12414 }
12415
12416 /* This is basically a memory transfer, but needs to be its own packet
12417 because we don't know how the target actually organizes its trace
12418 memory, plus we want to be able to ask for as much as possible, but
12419 not be unhappy if we don't get as much as we ask for. */
12420
12421 static LONGEST
12422 remote_get_raw_trace_data (struct target_ops *self,
12423 gdb_byte *buf, ULONGEST offset, LONGEST len)
12424 {
12425 struct remote_state *rs = get_remote_state ();
12426 char *reply;
12427 char *p;
12428 int rslt;
12429
12430 p = rs->buf;
12431 strcpy (p, "qTBuffer:");
12432 p += strlen (p);
12433 p += hexnumstr (p, offset);
12434 *p++ = ',';
12435 p += hexnumstr (p, len);
12436 *p++ = '\0';
12437
12438 putpkt (rs->buf);
12439 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12440 if (reply && *reply)
12441 {
12442 /* 'l' by itself means we're at the end of the buffer and
12443 there is nothing more to get. */
12444 if (*reply == 'l')
12445 return 0;
12446
12447 /* Convert the reply into binary. Limit the number of bytes to
12448 convert according to our passed-in buffer size, rather than
12449 what was returned in the packet; if the target is
12450 unexpectedly generous and gives us a bigger reply than we
12451 asked for, we don't want to crash. */
12452 rslt = hex2bin (target_buf, buf, len);
12453 return rslt;
12454 }
12455
12456 /* Something went wrong, flag as an error. */
12457 return -1;
12458 }
12459
12460 static void
12461 remote_set_disconnected_tracing (struct target_ops *self, int val)
12462 {
12463 struct remote_state *rs = get_remote_state ();
12464
12465 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
12466 {
12467 char *reply;
12468
12469 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
12470 putpkt (rs->buf);
12471 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12472 if (*reply == '\0')
12473 error (_("Target does not support this command."));
12474 if (strcmp (reply, "OK") != 0)
12475 error (_("Bogus reply from target: %s"), reply);
12476 }
12477 else if (val)
12478 warning (_("Target does not support disconnected tracing."));
12479 }
12480
12481 static int
12482 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
12483 {
12484 struct thread_info *info = find_thread_ptid (ptid);
12485
12486 if (info && info->priv)
12487 return info->priv->core;
12488 return -1;
12489 }
12490
12491 static void
12492 remote_set_circular_trace_buffer (struct target_ops *self, int val)
12493 {
12494 struct remote_state *rs = get_remote_state ();
12495 char *reply;
12496
12497 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
12498 putpkt (rs->buf);
12499 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12500 if (*reply == '\0')
12501 error (_("Target does not support this command."));
12502 if (strcmp (reply, "OK") != 0)
12503 error (_("Bogus reply from target: %s"), reply);
12504 }
12505
12506 static struct traceframe_info *
12507 remote_traceframe_info (struct target_ops *self)
12508 {
12509 char *text;
12510
12511 text = target_read_stralloc (&current_target,
12512 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
12513 if (text != NULL)
12514 {
12515 struct traceframe_info *info;
12516 struct cleanup *back_to = make_cleanup (xfree, text);
12517
12518 info = parse_traceframe_info (text);
12519 do_cleanups (back_to);
12520 return info;
12521 }
12522
12523 return NULL;
12524 }
12525
12526 /* Handle the qTMinFTPILen packet. Returns the minimum length of
12527 instruction on which a fast tracepoint may be placed. Returns -1
12528 if the packet is not supported, and 0 if the minimum instruction
12529 length is unknown. */
12530
12531 static int
12532 remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
12533 {
12534 struct remote_state *rs = get_remote_state ();
12535 char *reply;
12536
12537 /* If we're not debugging a process yet, the IPA can't be
12538 loaded. */
12539 if (!target_has_execution)
12540 return 0;
12541
12542 /* Make sure the remote is pointing at the right process. */
12543 set_general_process ();
12544
12545 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
12546 putpkt (rs->buf);
12547 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12548 if (*reply == '\0')
12549 return -1;
12550 else
12551 {
12552 ULONGEST min_insn_len;
12553
12554 unpack_varlen_hex (reply, &min_insn_len);
12555
12556 return (int) min_insn_len;
12557 }
12558 }
12559
12560 static void
12561 remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
12562 {
12563 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
12564 {
12565 struct remote_state *rs = get_remote_state ();
12566 char *buf = rs->buf;
12567 char *endbuf = rs->buf + get_remote_packet_size ();
12568 enum packet_result result;
12569
12570 gdb_assert (val >= 0 || val == -1);
12571 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
12572 /* Send -1 as literal "-1" to avoid host size dependency. */
12573 if (val < 0)
12574 {
12575 *buf++ = '-';
12576 buf += hexnumstr (buf, (ULONGEST) -val);
12577 }
12578 else
12579 buf += hexnumstr (buf, (ULONGEST) val);
12580
12581 putpkt (rs->buf);
12582 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
12583 result = packet_ok (rs->buf,
12584 &remote_protocol_packets[PACKET_QTBuffer_size]);
12585
12586 if (result != PACKET_OK)
12587 warning (_("Bogus reply from target: %s"), rs->buf);
12588 }
12589 }
12590
12591 static int
12592 remote_set_trace_notes (struct target_ops *self,
12593 const char *user, const char *notes,
12594 const char *stop_notes)
12595 {
12596 struct remote_state *rs = get_remote_state ();
12597 char *reply;
12598 char *buf = rs->buf;
12599 char *endbuf = rs->buf + get_remote_packet_size ();
12600 int nbytes;
12601
12602 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
12603 if (user)
12604 {
12605 buf += xsnprintf (buf, endbuf - buf, "user:");
12606 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
12607 buf += 2 * nbytes;
12608 *buf++ = ';';
12609 }
12610 if (notes)
12611 {
12612 buf += xsnprintf (buf, endbuf - buf, "notes:");
12613 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
12614 buf += 2 * nbytes;
12615 *buf++ = ';';
12616 }
12617 if (stop_notes)
12618 {
12619 buf += xsnprintf (buf, endbuf - buf, "tstop:");
12620 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
12621 buf += 2 * nbytes;
12622 *buf++ = ';';
12623 }
12624 /* Ensure the buffer is terminated. */
12625 *buf = '\0';
12626
12627 putpkt (rs->buf);
12628 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12629 if (*reply == '\0')
12630 return 0;
12631
12632 if (strcmp (reply, "OK") != 0)
12633 error (_("Bogus reply from target: %s"), reply);
12634
12635 return 1;
12636 }
12637
12638 static int
12639 remote_use_agent (struct target_ops *self, int use)
12640 {
12641 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
12642 {
12643 struct remote_state *rs = get_remote_state ();
12644
12645 /* If the stub supports QAgent. */
12646 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
12647 putpkt (rs->buf);
12648 getpkt (&rs->buf, &rs->buf_size, 0);
12649
12650 if (strcmp (rs->buf, "OK") == 0)
12651 {
12652 use_agent = use;
12653 return 1;
12654 }
12655 }
12656
12657 return 0;
12658 }
12659
12660 static int
12661 remote_can_use_agent (struct target_ops *self)
12662 {
12663 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
12664 }
12665
12666 struct btrace_target_info
12667 {
12668 /* The ptid of the traced thread. */
12669 ptid_t ptid;
12670
12671 /* The obtained branch trace configuration. */
12672 struct btrace_config conf;
12673 };
12674
12675 /* Reset our idea of our target's btrace configuration. */
12676
12677 static void
12678 remote_btrace_reset (void)
12679 {
12680 struct remote_state *rs = get_remote_state ();
12681
12682 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
12683 }
12684
12685 /* Check whether the target supports branch tracing. */
12686
12687 static int
12688 remote_supports_btrace (struct target_ops *self, enum btrace_format format)
12689 {
12690 if (packet_support (PACKET_Qbtrace_off) != PACKET_ENABLE)
12691 return 0;
12692 if (packet_support (PACKET_qXfer_btrace) != PACKET_ENABLE)
12693 return 0;
12694
12695 switch (format)
12696 {
12697 case BTRACE_FORMAT_NONE:
12698 return 0;
12699
12700 case BTRACE_FORMAT_BTS:
12701 return (packet_support (PACKET_Qbtrace_bts) == PACKET_ENABLE);
12702
12703 case BTRACE_FORMAT_PT:
12704 /* The trace is decoded on the host. Even if our target supports it,
12705 we still need to have libipt to decode the trace. */
12706 #if defined (HAVE_LIBIPT)
12707 return (packet_support (PACKET_Qbtrace_pt) == PACKET_ENABLE);
12708 #else /* !defined (HAVE_LIBIPT) */
12709 return 0;
12710 #endif /* !defined (HAVE_LIBIPT) */
12711 }
12712
12713 internal_error (__FILE__, __LINE__, _("Unknown branch trace format"));
12714 }
12715
12716 /* Synchronize the configuration with the target. */
12717
12718 static void
12719 btrace_sync_conf (const struct btrace_config *conf)
12720 {
12721 struct packet_config *packet;
12722 struct remote_state *rs;
12723 char *buf, *pos, *endbuf;
12724
12725 rs = get_remote_state ();
12726 buf = rs->buf;
12727 endbuf = buf + get_remote_packet_size ();
12728
12729 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
12730 if (packet_config_support (packet) == PACKET_ENABLE
12731 && conf->bts.size != rs->btrace_config.bts.size)
12732 {
12733 pos = buf;
12734 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
12735 conf->bts.size);
12736
12737 putpkt (buf);
12738 getpkt (&buf, &rs->buf_size, 0);
12739
12740 if (packet_ok (buf, packet) == PACKET_ERROR)
12741 {
12742 if (buf[0] == 'E' && buf[1] == '.')
12743 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
12744 else
12745 error (_("Failed to configure the BTS buffer size."));
12746 }
12747
12748 rs->btrace_config.bts.size = conf->bts.size;
12749 }
12750
12751 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
12752 if (packet_config_support (packet) == PACKET_ENABLE
12753 && conf->pt.size != rs->btrace_config.pt.size)
12754 {
12755 pos = buf;
12756 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
12757 conf->pt.size);
12758
12759 putpkt (buf);
12760 getpkt (&buf, &rs->buf_size, 0);
12761
12762 if (packet_ok (buf, packet) == PACKET_ERROR)
12763 {
12764 if (buf[0] == 'E' && buf[1] == '.')
12765 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
12766 else
12767 error (_("Failed to configure the trace buffer size."));
12768 }
12769
12770 rs->btrace_config.pt.size = conf->pt.size;
12771 }
12772 }
12773
12774 /* Read the current thread's btrace configuration from the target and
12775 store it into CONF. */
12776
12777 static void
12778 btrace_read_config (struct btrace_config *conf)
12779 {
12780 char *xml;
12781
12782 xml = target_read_stralloc (&current_target,
12783 TARGET_OBJECT_BTRACE_CONF, "");
12784 if (xml != NULL)
12785 {
12786 struct cleanup *cleanup;
12787
12788 cleanup = make_cleanup (xfree, xml);
12789 parse_xml_btrace_conf (conf, xml);
12790 do_cleanups (cleanup);
12791 }
12792 }
12793
12794 /* Enable branch tracing. */
12795
12796 static struct btrace_target_info *
12797 remote_enable_btrace (struct target_ops *self, ptid_t ptid,
12798 const struct btrace_config *conf)
12799 {
12800 struct btrace_target_info *tinfo = NULL;
12801 struct packet_config *packet = NULL;
12802 struct remote_state *rs = get_remote_state ();
12803 char *buf = rs->buf;
12804 char *endbuf = rs->buf + get_remote_packet_size ();
12805
12806 switch (conf->format)
12807 {
12808 case BTRACE_FORMAT_BTS:
12809 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
12810 break;
12811
12812 case BTRACE_FORMAT_PT:
12813 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
12814 break;
12815 }
12816
12817 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
12818 error (_("Target does not support branch tracing."));
12819
12820 btrace_sync_conf (conf);
12821
12822 set_general_thread (ptid);
12823
12824 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
12825 putpkt (rs->buf);
12826 getpkt (&rs->buf, &rs->buf_size, 0);
12827
12828 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
12829 {
12830 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
12831 error (_("Could not enable branch tracing for %s: %s"),
12832 target_pid_to_str (ptid), rs->buf + 2);
12833 else
12834 error (_("Could not enable branch tracing for %s."),
12835 target_pid_to_str (ptid));
12836 }
12837
12838 tinfo = XCNEW (struct btrace_target_info);
12839 tinfo->ptid = ptid;
12840
12841 /* If we fail to read the configuration, we lose some information, but the
12842 tracing itself is not impacted. */
12843 TRY
12844 {
12845 btrace_read_config (&tinfo->conf);
12846 }
12847 CATCH (err, RETURN_MASK_ERROR)
12848 {
12849 if (err.message != NULL)
12850 warning ("%s", err.message);
12851 }
12852 END_CATCH
12853
12854 return tinfo;
12855 }
12856
12857 /* Disable branch tracing. */
12858
12859 static void
12860 remote_disable_btrace (struct target_ops *self,
12861 struct btrace_target_info *tinfo)
12862 {
12863 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
12864 struct remote_state *rs = get_remote_state ();
12865 char *buf = rs->buf;
12866 char *endbuf = rs->buf + get_remote_packet_size ();
12867
12868 if (packet_config_support (packet) != PACKET_ENABLE)
12869 error (_("Target does not support branch tracing."));
12870
12871 set_general_thread (tinfo->ptid);
12872
12873 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
12874 putpkt (rs->buf);
12875 getpkt (&rs->buf, &rs->buf_size, 0);
12876
12877 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
12878 {
12879 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
12880 error (_("Could not disable branch tracing for %s: %s"),
12881 target_pid_to_str (tinfo->ptid), rs->buf + 2);
12882 else
12883 error (_("Could not disable branch tracing for %s."),
12884 target_pid_to_str (tinfo->ptid));
12885 }
12886
12887 xfree (tinfo);
12888 }
12889
12890 /* Teardown branch tracing. */
12891
12892 static void
12893 remote_teardown_btrace (struct target_ops *self,
12894 struct btrace_target_info *tinfo)
12895 {
12896 /* We must not talk to the target during teardown. */
12897 xfree (tinfo);
12898 }
12899
12900 /* Read the branch trace. */
12901
12902 static enum btrace_error
12903 remote_read_btrace (struct target_ops *self,
12904 struct btrace_data *btrace,
12905 struct btrace_target_info *tinfo,
12906 enum btrace_read_type type)
12907 {
12908 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
12909 struct cleanup *cleanup;
12910 const char *annex;
12911 char *xml;
12912
12913 if (packet_config_support (packet) != PACKET_ENABLE)
12914 error (_("Target does not support branch tracing."));
12915
12916 #if !defined(HAVE_LIBEXPAT)
12917 error (_("Cannot process branch tracing result. XML parsing not supported."));
12918 #endif
12919
12920 switch (type)
12921 {
12922 case BTRACE_READ_ALL:
12923 annex = "all";
12924 break;
12925 case BTRACE_READ_NEW:
12926 annex = "new";
12927 break;
12928 case BTRACE_READ_DELTA:
12929 annex = "delta";
12930 break;
12931 default:
12932 internal_error (__FILE__, __LINE__,
12933 _("Bad branch tracing read type: %u."),
12934 (unsigned int) type);
12935 }
12936
12937 xml = target_read_stralloc (&current_target,
12938 TARGET_OBJECT_BTRACE, annex);
12939 if (xml == NULL)
12940 return BTRACE_ERR_UNKNOWN;
12941
12942 cleanup = make_cleanup (xfree, xml);
12943 parse_xml_btrace (btrace, xml);
12944 do_cleanups (cleanup);
12945
12946 return BTRACE_ERR_NONE;
12947 }
12948
12949 static const struct btrace_config *
12950 remote_btrace_conf (struct target_ops *self,
12951 const struct btrace_target_info *tinfo)
12952 {
12953 return &tinfo->conf;
12954 }
12955
12956 static int
12957 remote_augmented_libraries_svr4_read (struct target_ops *self)
12958 {
12959 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
12960 == PACKET_ENABLE);
12961 }
12962
12963 /* Implementation of to_load. */
12964
12965 static void
12966 remote_load (struct target_ops *self, const char *name, int from_tty)
12967 {
12968 generic_load (name, from_tty);
12969 }
12970
12971 /* Accepts an integer PID; returns a string representing a file that
12972 can be opened on the remote side to get the symbols for the child
12973 process. Returns NULL if the operation is not supported. */
12974
12975 static char *
12976 remote_pid_to_exec_file (struct target_ops *self, int pid)
12977 {
12978 static char *filename = NULL;
12979 struct inferior *inf;
12980 char *annex = NULL;
12981
12982 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
12983 return NULL;
12984
12985 if (filename != NULL)
12986 xfree (filename);
12987
12988 inf = find_inferior_pid (pid);
12989 if (inf == NULL)
12990 internal_error (__FILE__, __LINE__,
12991 _("not currently attached to process %d"), pid);
12992
12993 if (!inf->fake_pid_p)
12994 {
12995 const int annex_size = 9;
12996
12997 annex = (char *) alloca (annex_size);
12998 xsnprintf (annex, annex_size, "%x", pid);
12999 }
13000
13001 filename = target_read_stralloc (&current_target,
13002 TARGET_OBJECT_EXEC_FILE, annex);
13003
13004 return filename;
13005 }
13006
13007 /* Implement the to_can_do_single_step target_ops method. */
13008
13009 static int
13010 remote_can_do_single_step (struct target_ops *ops)
13011 {
13012 /* We can only tell whether target supports single step or not by
13013 supported s and S vCont actions if the stub supports vContSupported
13014 feature. If the stub doesn't support vContSupported feature,
13015 we have conservatively to think target doesn't supports single
13016 step. */
13017 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13018 {
13019 struct remote_state *rs = get_remote_state ();
13020
13021 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13022 remote_vcont_probe (rs);
13023
13024 return rs->supports_vCont.s && rs->supports_vCont.S;
13025 }
13026 else
13027 return 0;
13028 }
13029
13030 static void
13031 init_remote_ops (void)
13032 {
13033 remote_ops.to_shortname = "remote";
13034 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
13035 remote_ops.to_doc =
13036 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13037 Specify the serial device it is connected to\n\
13038 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
13039 remote_ops.to_open = remote_open;
13040 remote_ops.to_close = remote_close;
13041 remote_ops.to_detach = remote_detach;
13042 remote_ops.to_disconnect = remote_disconnect;
13043 remote_ops.to_resume = remote_resume;
13044 remote_ops.to_wait = remote_wait;
13045 remote_ops.to_fetch_registers = remote_fetch_registers;
13046 remote_ops.to_store_registers = remote_store_registers;
13047 remote_ops.to_prepare_to_store = remote_prepare_to_store;
13048 remote_ops.to_files_info = remote_files_info;
13049 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
13050 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
13051 remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint;
13052 remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint;
13053 remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint;
13054 remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint;
13055 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
13056 remote_ops.to_stopped_data_address = remote_stopped_data_address;
13057 remote_ops.to_watchpoint_addr_within_range =
13058 remote_watchpoint_addr_within_range;
13059 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
13060 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
13061 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
13062 remote_ops.to_region_ok_for_hw_watchpoint
13063 = remote_region_ok_for_hw_watchpoint;
13064 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
13065 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
13066 remote_ops.to_kill = remote_kill;
13067 remote_ops.to_load = remote_load;
13068 remote_ops.to_mourn_inferior = remote_mourn;
13069 remote_ops.to_pass_signals = remote_pass_signals;
13070 remote_ops.to_set_syscall_catchpoint = remote_set_syscall_catchpoint;
13071 remote_ops.to_program_signals = remote_program_signals;
13072 remote_ops.to_thread_alive = remote_thread_alive;
13073 remote_ops.to_thread_name = remote_thread_name;
13074 remote_ops.to_update_thread_list = remote_update_thread_list;
13075 remote_ops.to_pid_to_str = remote_pid_to_str;
13076 remote_ops.to_extra_thread_info = remote_threads_extra_info;
13077 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
13078 remote_ops.to_stop = remote_stop;
13079 remote_ops.to_interrupt = remote_interrupt;
13080 remote_ops.to_pass_ctrlc = remote_pass_ctrlc;
13081 remote_ops.to_check_pending_interrupt = remote_check_pending_interrupt;
13082 remote_ops.to_xfer_partial = remote_xfer_partial;
13083 remote_ops.to_rcmd = remote_rcmd;
13084 remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file;
13085 remote_ops.to_log_command = serial_log_command;
13086 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
13087 remote_ops.to_stratum = process_stratum;
13088 remote_ops.to_has_all_memory = default_child_has_all_memory;
13089 remote_ops.to_has_memory = default_child_has_memory;
13090 remote_ops.to_has_stack = default_child_has_stack;
13091 remote_ops.to_has_registers = default_child_has_registers;
13092 remote_ops.to_has_execution = default_child_has_execution;
13093 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
13094 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
13095 remote_ops.to_magic = OPS_MAGIC;
13096 remote_ops.to_memory_map = remote_memory_map;
13097 remote_ops.to_flash_erase = remote_flash_erase;
13098 remote_ops.to_flash_done = remote_flash_done;
13099 remote_ops.to_read_description = remote_read_description;
13100 remote_ops.to_search_memory = remote_search_memory;
13101 remote_ops.to_can_async_p = remote_can_async_p;
13102 remote_ops.to_is_async_p = remote_is_async_p;
13103 remote_ops.to_async = remote_async;
13104 remote_ops.to_thread_events = remote_thread_events;
13105 remote_ops.to_can_do_single_step = remote_can_do_single_step;
13106 remote_ops.to_terminal_inferior = remote_terminal_inferior;
13107 remote_ops.to_terminal_ours = remote_terminal_ours;
13108 remote_ops.to_supports_non_stop = remote_supports_non_stop;
13109 remote_ops.to_supports_multi_process = remote_supports_multi_process;
13110 remote_ops.to_supports_disable_randomization
13111 = remote_supports_disable_randomization;
13112 remote_ops.to_filesystem_is_local = remote_filesystem_is_local;
13113 remote_ops.to_fileio_open = remote_hostio_open;
13114 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
13115 remote_ops.to_fileio_pread = remote_hostio_pread;
13116 remote_ops.to_fileio_fstat = remote_hostio_fstat;
13117 remote_ops.to_fileio_close = remote_hostio_close;
13118 remote_ops.to_fileio_unlink = remote_hostio_unlink;
13119 remote_ops.to_fileio_readlink = remote_hostio_readlink;
13120 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
13121 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
13122 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
13123 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
13124 remote_ops.to_trace_init = remote_trace_init;
13125 remote_ops.to_download_tracepoint = remote_download_tracepoint;
13126 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
13127 remote_ops.to_download_trace_state_variable
13128 = remote_download_trace_state_variable;
13129 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
13130 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
13131 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
13132 remote_ops.to_trace_start = remote_trace_start;
13133 remote_ops.to_get_trace_status = remote_get_trace_status;
13134 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
13135 remote_ops.to_trace_stop = remote_trace_stop;
13136 remote_ops.to_trace_find = remote_trace_find;
13137 remote_ops.to_get_trace_state_variable_value
13138 = remote_get_trace_state_variable_value;
13139 remote_ops.to_save_trace_data = remote_save_trace_data;
13140 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
13141 remote_ops.to_upload_trace_state_variables
13142 = remote_upload_trace_state_variables;
13143 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
13144 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
13145 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
13146 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
13147 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
13148 remote_ops.to_set_trace_notes = remote_set_trace_notes;
13149 remote_ops.to_core_of_thread = remote_core_of_thread;
13150 remote_ops.to_verify_memory = remote_verify_memory;
13151 remote_ops.to_get_tib_address = remote_get_tib_address;
13152 remote_ops.to_set_permissions = remote_set_permissions;
13153 remote_ops.to_static_tracepoint_marker_at
13154 = remote_static_tracepoint_marker_at;
13155 remote_ops.to_static_tracepoint_markers_by_strid
13156 = remote_static_tracepoint_markers_by_strid;
13157 remote_ops.to_traceframe_info = remote_traceframe_info;
13158 remote_ops.to_use_agent = remote_use_agent;
13159 remote_ops.to_can_use_agent = remote_can_use_agent;
13160 remote_ops.to_supports_btrace = remote_supports_btrace;
13161 remote_ops.to_enable_btrace = remote_enable_btrace;
13162 remote_ops.to_disable_btrace = remote_disable_btrace;
13163 remote_ops.to_teardown_btrace = remote_teardown_btrace;
13164 remote_ops.to_read_btrace = remote_read_btrace;
13165 remote_ops.to_btrace_conf = remote_btrace_conf;
13166 remote_ops.to_augmented_libraries_svr4_read =
13167 remote_augmented_libraries_svr4_read;
13168 remote_ops.to_follow_fork = remote_follow_fork;
13169 remote_ops.to_follow_exec = remote_follow_exec;
13170 remote_ops.to_insert_fork_catchpoint = remote_insert_fork_catchpoint;
13171 remote_ops.to_remove_fork_catchpoint = remote_remove_fork_catchpoint;
13172 remote_ops.to_insert_vfork_catchpoint = remote_insert_vfork_catchpoint;
13173 remote_ops.to_remove_vfork_catchpoint = remote_remove_vfork_catchpoint;
13174 remote_ops.to_insert_exec_catchpoint = remote_insert_exec_catchpoint;
13175 remote_ops.to_remove_exec_catchpoint = remote_remove_exec_catchpoint;
13176 }
13177
13178 /* Set up the extended remote vector by making a copy of the standard
13179 remote vector and adding to it. */
13180
13181 static void
13182 init_extended_remote_ops (void)
13183 {
13184 extended_remote_ops = remote_ops;
13185
13186 extended_remote_ops.to_shortname = "extended-remote";
13187 extended_remote_ops.to_longname =
13188 "Extended remote serial target in gdb-specific protocol";
13189 extended_remote_ops.to_doc =
13190 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13191 Specify the serial device it is connected to (e.g. /dev/ttya).";
13192 extended_remote_ops.to_open = extended_remote_open;
13193 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
13194 extended_remote_ops.to_detach = extended_remote_detach;
13195 extended_remote_ops.to_attach = extended_remote_attach;
13196 extended_remote_ops.to_post_attach = extended_remote_post_attach;
13197 extended_remote_ops.to_supports_disable_randomization
13198 = extended_remote_supports_disable_randomization;
13199 }
13200
13201 static int
13202 remote_can_async_p (struct target_ops *ops)
13203 {
13204 struct remote_state *rs = get_remote_state ();
13205
13206 if (!target_async_permitted)
13207 /* We only enable async when the user specifically asks for it. */
13208 return 0;
13209
13210 /* We're async whenever the serial device is. */
13211 return serial_can_async_p (rs->remote_desc);
13212 }
13213
13214 static int
13215 remote_is_async_p (struct target_ops *ops)
13216 {
13217 struct remote_state *rs = get_remote_state ();
13218
13219 if (!target_async_permitted)
13220 /* We only enable async when the user specifically asks for it. */
13221 return 0;
13222
13223 /* We're async whenever the serial device is. */
13224 return serial_is_async_p (rs->remote_desc);
13225 }
13226
13227 /* Pass the SERIAL event on and up to the client. One day this code
13228 will be able to delay notifying the client of an event until the
13229 point where an entire packet has been received. */
13230
13231 static serial_event_ftype remote_async_serial_handler;
13232
13233 static void
13234 remote_async_serial_handler (struct serial *scb, void *context)
13235 {
13236 /* Don't propogate error information up to the client. Instead let
13237 the client find out about the error by querying the target. */
13238 inferior_event_handler (INF_REG_EVENT, NULL);
13239 }
13240
13241 static void
13242 remote_async_inferior_event_handler (gdb_client_data data)
13243 {
13244 inferior_event_handler (INF_REG_EVENT, NULL);
13245 }
13246
13247 static void
13248 remote_async (struct target_ops *ops, int enable)
13249 {
13250 struct remote_state *rs = get_remote_state ();
13251
13252 if (enable)
13253 {
13254 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13255
13256 /* If there are pending events in the stop reply queue tell the
13257 event loop to process them. */
13258 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13259 mark_async_event_handler (remote_async_inferior_event_token);
13260 /* For simplicity, below we clear the pending events token
13261 without remembering whether it is marked, so here we always
13262 mark it. If there's actually no pending notification to
13263 process, this ends up being a no-op (other than a spurious
13264 event-loop wakeup). */
13265 if (target_is_non_stop_p ())
13266 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13267 }
13268 else
13269 {
13270 serial_async (rs->remote_desc, NULL, NULL);
13271 /* If the core is disabling async, it doesn't want to be
13272 disturbed with target events. Clear all async event sources
13273 too. */
13274 clear_async_event_handler (remote_async_inferior_event_token);
13275 if (target_is_non_stop_p ())
13276 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13277 }
13278 }
13279
13280 /* Implementation of the to_thread_events method. */
13281
13282 static void
13283 remote_thread_events (struct target_ops *ops, int enable)
13284 {
13285 struct remote_state *rs = get_remote_state ();
13286 size_t size = get_remote_packet_size ();
13287
13288 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13289 return;
13290
13291 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13292 putpkt (rs->buf);
13293 getpkt (&rs->buf, &rs->buf_size, 0);
13294
13295 switch (packet_ok (rs->buf,
13296 &remote_protocol_packets[PACKET_QThreadEvents]))
13297 {
13298 case PACKET_OK:
13299 if (strcmp (rs->buf, "OK") != 0)
13300 error (_("Remote refused setting thread events: %s"), rs->buf);
13301 break;
13302 case PACKET_ERROR:
13303 warning (_("Remote failure reply: %s"), rs->buf);
13304 break;
13305 case PACKET_UNKNOWN:
13306 break;
13307 }
13308 }
13309
13310 static void
13311 set_remote_cmd (char *args, int from_tty)
13312 {
13313 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13314 }
13315
13316 static void
13317 show_remote_cmd (char *args, int from_tty)
13318 {
13319 /* We can't just use cmd_show_list here, because we want to skip
13320 the redundant "show remote Z-packet" and the legacy aliases. */
13321 struct cleanup *showlist_chain;
13322 struct cmd_list_element *list = remote_show_cmdlist;
13323 struct ui_out *uiout = current_uiout;
13324
13325 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
13326 for (; list != NULL; list = list->next)
13327 if (strcmp (list->name, "Z-packet") == 0)
13328 continue;
13329 else if (list->type == not_set_cmd)
13330 /* Alias commands are exactly like the original, except they
13331 don't have the normal type. */
13332 continue;
13333 else
13334 {
13335 struct cleanup *option_chain
13336 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
13337
13338 ui_out_field_string (uiout, "name", list->name);
13339 ui_out_text (uiout, ": ");
13340 if (list->type == show_cmd)
13341 do_show_command ((char *) NULL, from_tty, list);
13342 else
13343 cmd_func (list, NULL, from_tty);
13344 /* Close the tuple. */
13345 do_cleanups (option_chain);
13346 }
13347
13348 /* Close the tuple. */
13349 do_cleanups (showlist_chain);
13350 }
13351
13352
13353 /* Function to be called whenever a new objfile (shlib) is detected. */
13354 static void
13355 remote_new_objfile (struct objfile *objfile)
13356 {
13357 struct remote_state *rs = get_remote_state ();
13358
13359 if (rs->remote_desc != 0) /* Have a remote connection. */
13360 remote_check_symbols ();
13361 }
13362
13363 /* Pull all the tracepoints defined on the target and create local
13364 data structures representing them. We don't want to create real
13365 tracepoints yet, we don't want to mess up the user's existing
13366 collection. */
13367
13368 static int
13369 remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
13370 {
13371 struct remote_state *rs = get_remote_state ();
13372 char *p;
13373
13374 /* Ask for a first packet of tracepoint definition. */
13375 putpkt ("qTfP");
13376 getpkt (&rs->buf, &rs->buf_size, 0);
13377 p = rs->buf;
13378 while (*p && *p != 'l')
13379 {
13380 parse_tracepoint_definition (p, utpp);
13381 /* Ask for another packet of tracepoint definition. */
13382 putpkt ("qTsP");
13383 getpkt (&rs->buf, &rs->buf_size, 0);
13384 p = rs->buf;
13385 }
13386 return 0;
13387 }
13388
13389 static int
13390 remote_upload_trace_state_variables (struct target_ops *self,
13391 struct uploaded_tsv **utsvp)
13392 {
13393 struct remote_state *rs = get_remote_state ();
13394 char *p;
13395
13396 /* Ask for a first packet of variable definition. */
13397 putpkt ("qTfV");
13398 getpkt (&rs->buf, &rs->buf_size, 0);
13399 p = rs->buf;
13400 while (*p && *p != 'l')
13401 {
13402 parse_tsv_definition (p, utsvp);
13403 /* Ask for another packet of variable definition. */
13404 putpkt ("qTsV");
13405 getpkt (&rs->buf, &rs->buf_size, 0);
13406 p = rs->buf;
13407 }
13408 return 0;
13409 }
13410
13411 /* The "set/show range-stepping" show hook. */
13412
13413 static void
13414 show_range_stepping (struct ui_file *file, int from_tty,
13415 struct cmd_list_element *c,
13416 const char *value)
13417 {
13418 fprintf_filtered (file,
13419 _("Debugger's willingness to use range stepping "
13420 "is %s.\n"), value);
13421 }
13422
13423 /* The "set/show range-stepping" set hook. */
13424
13425 static void
13426 set_range_stepping (char *ignore_args, int from_tty,
13427 struct cmd_list_element *c)
13428 {
13429 struct remote_state *rs = get_remote_state ();
13430
13431 /* Whene enabling, check whether range stepping is actually
13432 supported by the target, and warn if not. */
13433 if (use_range_stepping)
13434 {
13435 if (rs->remote_desc != NULL)
13436 {
13437 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13438 remote_vcont_probe (rs);
13439
13440 if (packet_support (PACKET_vCont) == PACKET_ENABLE
13441 && rs->supports_vCont.r)
13442 return;
13443 }
13444
13445 warning (_("Range stepping is not supported by the current target"));
13446 }
13447 }
13448
13449 void
13450 _initialize_remote (void)
13451 {
13452 struct cmd_list_element *cmd;
13453 const char *cmd_name;
13454
13455 /* architecture specific data */
13456 remote_gdbarch_data_handle =
13457 gdbarch_data_register_post_init (init_remote_state);
13458 remote_g_packet_data_handle =
13459 gdbarch_data_register_pre_init (remote_g_packet_data_init);
13460
13461 remote_pspace_data
13462 = register_program_space_data_with_cleanup (NULL,
13463 remote_pspace_data_cleanup);
13464
13465 /* Initialize the per-target state. At the moment there is only one
13466 of these, not one per target. Only one target is active at a
13467 time. */
13468 remote_state = new_remote_state ();
13469
13470 init_remote_ops ();
13471 add_target (&remote_ops);
13472
13473 init_extended_remote_ops ();
13474 add_target (&extended_remote_ops);
13475
13476 /* Hook into new objfile notification. */
13477 observer_attach_new_objfile (remote_new_objfile);
13478 /* We're no longer interested in notification events of an inferior
13479 when it exits. */
13480 observer_attach_inferior_exit (discard_pending_stop_replies);
13481
13482 /* Set up signal handlers. */
13483 async_sigint_remote_token =
13484 create_async_signal_handler (async_remote_interrupt, NULL);
13485 async_sigint_remote_twice_token =
13486 create_async_signal_handler (async_remote_interrupt_twice, NULL);
13487
13488 #if 0
13489 init_remote_threadtests ();
13490 #endif
13491
13492 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
13493 /* set/show remote ... */
13494
13495 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
13496 Remote protocol specific variables\n\
13497 Configure various remote-protocol specific variables such as\n\
13498 the packets being used"),
13499 &remote_set_cmdlist, "set remote ",
13500 0 /* allow-unknown */, &setlist);
13501 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
13502 Remote protocol specific variables\n\
13503 Configure various remote-protocol specific variables such as\n\
13504 the packets being used"),
13505 &remote_show_cmdlist, "show remote ",
13506 0 /* allow-unknown */, &showlist);
13507
13508 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
13509 Compare section data on target to the exec file.\n\
13510 Argument is a single section name (default: all loaded sections).\n\
13511 To compare only read-only loaded sections, specify the -r option."),
13512 &cmdlist);
13513
13514 add_cmd ("packet", class_maintenance, packet_command, _("\
13515 Send an arbitrary packet to a remote target.\n\
13516 maintenance packet TEXT\n\
13517 If GDB is talking to an inferior via the GDB serial protocol, then\n\
13518 this command sends the string TEXT to the inferior, and displays the\n\
13519 response packet. GDB supplies the initial `$' character, and the\n\
13520 terminating `#' character and checksum."),
13521 &maintenancelist);
13522
13523 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
13524 Set whether to send break if interrupted."), _("\
13525 Show whether to send break if interrupted."), _("\
13526 If set, a break, instead of a cntrl-c, is sent to the remote target."),
13527 set_remotebreak, show_remotebreak,
13528 &setlist, &showlist);
13529 cmd_name = "remotebreak";
13530 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
13531 deprecate_cmd (cmd, "set remote interrupt-sequence");
13532 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
13533 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
13534 deprecate_cmd (cmd, "show remote interrupt-sequence");
13535
13536 add_setshow_enum_cmd ("interrupt-sequence", class_support,
13537 interrupt_sequence_modes, &interrupt_sequence_mode,
13538 _("\
13539 Set interrupt sequence to remote target."), _("\
13540 Show interrupt sequence to remote target."), _("\
13541 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
13542 NULL, show_interrupt_sequence,
13543 &remote_set_cmdlist,
13544 &remote_show_cmdlist);
13545
13546 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
13547 &interrupt_on_connect, _("\
13548 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
13549 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
13550 If set, interrupt sequence is sent to remote target."),
13551 NULL, NULL,
13552 &remote_set_cmdlist, &remote_show_cmdlist);
13553
13554 /* Install commands for configuring memory read/write packets. */
13555
13556 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
13557 Set the maximum number of bytes per memory write packet (deprecated)."),
13558 &setlist);
13559 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
13560 Show the maximum number of bytes per memory write packet (deprecated)."),
13561 &showlist);
13562 add_cmd ("memory-write-packet-size", no_class,
13563 set_memory_write_packet_size, _("\
13564 Set the maximum number of bytes per memory-write packet.\n\
13565 Specify the number of bytes in a packet or 0 (zero) for the\n\
13566 default packet size. The actual limit is further reduced\n\
13567 dependent on the target. Specify ``fixed'' to disable the\n\
13568 further restriction and ``limit'' to enable that restriction."),
13569 &remote_set_cmdlist);
13570 add_cmd ("memory-read-packet-size", no_class,
13571 set_memory_read_packet_size, _("\
13572 Set the maximum number of bytes per memory-read packet.\n\
13573 Specify the number of bytes in a packet or 0 (zero) for the\n\
13574 default packet size. The actual limit is further reduced\n\
13575 dependent on the target. Specify ``fixed'' to disable the\n\
13576 further restriction and ``limit'' to enable that restriction."),
13577 &remote_set_cmdlist);
13578 add_cmd ("memory-write-packet-size", no_class,
13579 show_memory_write_packet_size,
13580 _("Show the maximum number of bytes per memory-write packet."),
13581 &remote_show_cmdlist);
13582 add_cmd ("memory-read-packet-size", no_class,
13583 show_memory_read_packet_size,
13584 _("Show the maximum number of bytes per memory-read packet."),
13585 &remote_show_cmdlist);
13586
13587 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
13588 &remote_hw_watchpoint_limit, _("\
13589 Set the maximum number of target hardware watchpoints."), _("\
13590 Show the maximum number of target hardware watchpoints."), _("\
13591 Specify a negative limit for unlimited."),
13592 NULL, NULL, /* FIXME: i18n: The maximum
13593 number of target hardware
13594 watchpoints is %s. */
13595 &remote_set_cmdlist, &remote_show_cmdlist);
13596 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
13597 &remote_hw_watchpoint_length_limit, _("\
13598 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
13599 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
13600 Specify a negative limit for unlimited."),
13601 NULL, NULL, /* FIXME: i18n: The maximum
13602 length (in bytes) of a target
13603 hardware watchpoint is %s. */
13604 &remote_set_cmdlist, &remote_show_cmdlist);
13605 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
13606 &remote_hw_breakpoint_limit, _("\
13607 Set the maximum number of target hardware breakpoints."), _("\
13608 Show the maximum number of target hardware breakpoints."), _("\
13609 Specify a negative limit for unlimited."),
13610 NULL, NULL, /* FIXME: i18n: The maximum
13611 number of target hardware
13612 breakpoints is %s. */
13613 &remote_set_cmdlist, &remote_show_cmdlist);
13614
13615 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
13616 &remote_address_size, _("\
13617 Set the maximum size of the address (in bits) in a memory packet."), _("\
13618 Show the maximum size of the address (in bits) in a memory packet."), NULL,
13619 NULL,
13620 NULL, /* FIXME: i18n: */
13621 &setlist, &showlist);
13622
13623 init_all_packet_configs ();
13624
13625 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
13626 "X", "binary-download", 1);
13627
13628 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
13629 "vCont", "verbose-resume", 0);
13630
13631 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
13632 "QPassSignals", "pass-signals", 0);
13633
13634 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
13635 "QCatchSyscalls", "catch-syscalls", 0);
13636
13637 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
13638 "QProgramSignals", "program-signals", 0);
13639
13640 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
13641 "qSymbol", "symbol-lookup", 0);
13642
13643 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
13644 "P", "set-register", 1);
13645
13646 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
13647 "p", "fetch-register", 1);
13648
13649 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
13650 "Z0", "software-breakpoint", 0);
13651
13652 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
13653 "Z1", "hardware-breakpoint", 0);
13654
13655 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
13656 "Z2", "write-watchpoint", 0);
13657
13658 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
13659 "Z3", "read-watchpoint", 0);
13660
13661 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
13662 "Z4", "access-watchpoint", 0);
13663
13664 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
13665 "qXfer:auxv:read", "read-aux-vector", 0);
13666
13667 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
13668 "qXfer:exec-file:read", "pid-to-exec-file", 0);
13669
13670 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
13671 "qXfer:features:read", "target-features", 0);
13672
13673 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
13674 "qXfer:libraries:read", "library-info", 0);
13675
13676 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
13677 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
13678
13679 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
13680 "qXfer:memory-map:read", "memory-map", 0);
13681
13682 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
13683 "qXfer:spu:read", "read-spu-object", 0);
13684
13685 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
13686 "qXfer:spu:write", "write-spu-object", 0);
13687
13688 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
13689 "qXfer:osdata:read", "osdata", 0);
13690
13691 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
13692 "qXfer:threads:read", "threads", 0);
13693
13694 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
13695 "qXfer:siginfo:read", "read-siginfo-object", 0);
13696
13697 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
13698 "qXfer:siginfo:write", "write-siginfo-object", 0);
13699
13700 add_packet_config_cmd
13701 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
13702 "qXfer:traceframe-info:read", "traceframe-info", 0);
13703
13704 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
13705 "qXfer:uib:read", "unwind-info-block", 0);
13706
13707 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
13708 "qGetTLSAddr", "get-thread-local-storage-address",
13709 0);
13710
13711 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
13712 "qGetTIBAddr", "get-thread-information-block-address",
13713 0);
13714
13715 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
13716 "bc", "reverse-continue", 0);
13717
13718 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
13719 "bs", "reverse-step", 0);
13720
13721 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
13722 "qSupported", "supported-packets", 0);
13723
13724 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
13725 "qSearch:memory", "search-memory", 0);
13726
13727 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
13728 "qTStatus", "trace-status", 0);
13729
13730 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
13731 "vFile:setfs", "hostio-setfs", 0);
13732
13733 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
13734 "vFile:open", "hostio-open", 0);
13735
13736 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
13737 "vFile:pread", "hostio-pread", 0);
13738
13739 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
13740 "vFile:pwrite", "hostio-pwrite", 0);
13741
13742 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
13743 "vFile:close", "hostio-close", 0);
13744
13745 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
13746 "vFile:unlink", "hostio-unlink", 0);
13747
13748 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
13749 "vFile:readlink", "hostio-readlink", 0);
13750
13751 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
13752 "vFile:fstat", "hostio-fstat", 0);
13753
13754 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
13755 "vAttach", "attach", 0);
13756
13757 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
13758 "vRun", "run", 0);
13759
13760 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
13761 "QStartNoAckMode", "noack", 0);
13762
13763 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
13764 "vKill", "kill", 0);
13765
13766 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
13767 "qAttached", "query-attached", 0);
13768
13769 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
13770 "ConditionalTracepoints",
13771 "conditional-tracepoints", 0);
13772
13773 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
13774 "ConditionalBreakpoints",
13775 "conditional-breakpoints", 0);
13776
13777 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
13778 "BreakpointCommands",
13779 "breakpoint-commands", 0);
13780
13781 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
13782 "FastTracepoints", "fast-tracepoints", 0);
13783
13784 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
13785 "TracepointSource", "TracepointSource", 0);
13786
13787 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
13788 "QAllow", "allow", 0);
13789
13790 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
13791 "StaticTracepoints", "static-tracepoints", 0);
13792
13793 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
13794 "InstallInTrace", "install-in-trace", 0);
13795
13796 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
13797 "qXfer:statictrace:read", "read-sdata-object", 0);
13798
13799 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
13800 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
13801
13802 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
13803 "QDisableRandomization", "disable-randomization", 0);
13804
13805 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
13806 "QAgent", "agent", 0);
13807
13808 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
13809 "QTBuffer:size", "trace-buffer-size", 0);
13810
13811 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
13812 "Qbtrace:off", "disable-btrace", 0);
13813
13814 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
13815 "Qbtrace:bts", "enable-btrace-bts", 0);
13816
13817 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
13818 "Qbtrace:pt", "enable-btrace-pt", 0);
13819
13820 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
13821 "qXfer:btrace", "read-btrace", 0);
13822
13823 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
13824 "qXfer:btrace-conf", "read-btrace-conf", 0);
13825
13826 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
13827 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
13828
13829 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
13830 "multiprocess-feature", "multiprocess-feature", 0);
13831
13832 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
13833 "swbreak-feature", "swbreak-feature", 0);
13834
13835 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
13836 "hwbreak-feature", "hwbreak-feature", 0);
13837
13838 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
13839 "fork-event-feature", "fork-event-feature", 0);
13840
13841 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
13842 "vfork-event-feature", "vfork-event-feature", 0);
13843
13844 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
13845 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
13846
13847 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
13848 "vContSupported", "verbose-resume-supported", 0);
13849
13850 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
13851 "exec-event-feature", "exec-event-feature", 0);
13852
13853 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
13854 "vCtrlC", "ctrl-c", 0);
13855
13856 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
13857 "QThreadEvents", "thread-events", 0);
13858
13859 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
13860 "N stop reply", "no-resumed-stop-reply", 0);
13861
13862 /* Assert that we've registered "set remote foo-packet" commands
13863 for all packet configs. */
13864 {
13865 int i;
13866
13867 for (i = 0; i < PACKET_MAX; i++)
13868 {
13869 /* Ideally all configs would have a command associated. Some
13870 still don't though. */
13871 int excepted;
13872
13873 switch (i)
13874 {
13875 case PACKET_QNonStop:
13876 case PACKET_EnableDisableTracepoints_feature:
13877 case PACKET_tracenz_feature:
13878 case PACKET_DisconnectedTracing_feature:
13879 case PACKET_augmented_libraries_svr4_read_feature:
13880 case PACKET_qCRC:
13881 /* Additions to this list need to be well justified:
13882 pre-existing packets are OK; new packets are not. */
13883 excepted = 1;
13884 break;
13885 default:
13886 excepted = 0;
13887 break;
13888 }
13889
13890 /* This catches both forgetting to add a config command, and
13891 forgetting to remove a packet from the exception list. */
13892 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
13893 }
13894 }
13895
13896 /* Keep the old ``set remote Z-packet ...'' working. Each individual
13897 Z sub-packet has its own set and show commands, but users may
13898 have sets to this variable in their .gdbinit files (or in their
13899 documentation). */
13900 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
13901 &remote_Z_packet_detect, _("\
13902 Set use of remote protocol `Z' packets"), _("\
13903 Show use of remote protocol `Z' packets "), _("\
13904 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
13905 packets."),
13906 set_remote_protocol_Z_packet_cmd,
13907 show_remote_protocol_Z_packet_cmd,
13908 /* FIXME: i18n: Use of remote protocol
13909 `Z' packets is %s. */
13910 &remote_set_cmdlist, &remote_show_cmdlist);
13911
13912 add_prefix_cmd ("remote", class_files, remote_command, _("\
13913 Manipulate files on the remote system\n\
13914 Transfer files to and from the remote target system."),
13915 &remote_cmdlist, "remote ",
13916 0 /* allow-unknown */, &cmdlist);
13917
13918 add_cmd ("put", class_files, remote_put_command,
13919 _("Copy a local file to the remote system."),
13920 &remote_cmdlist);
13921
13922 add_cmd ("get", class_files, remote_get_command,
13923 _("Copy a remote file to the local system."),
13924 &remote_cmdlist);
13925
13926 add_cmd ("delete", class_files, remote_delete_command,
13927 _("Delete a remote file."),
13928 &remote_cmdlist);
13929
13930 add_setshow_string_noescape_cmd ("exec-file", class_files,
13931 &remote_exec_file_var, _("\
13932 Set the remote pathname for \"run\""), _("\
13933 Show the remote pathname for \"run\""), NULL,
13934 set_remote_exec_file,
13935 show_remote_exec_file,
13936 &remote_set_cmdlist,
13937 &remote_show_cmdlist);
13938
13939 add_setshow_boolean_cmd ("range-stepping", class_run,
13940 &use_range_stepping, _("\
13941 Enable or disable range stepping."), _("\
13942 Show whether target-assisted range stepping is enabled."), _("\
13943 If on, and the target supports it, when stepping a source line, GDB\n\
13944 tells the target to step the corresponding range of addresses itself instead\n\
13945 of issuing multiple single-steps. This speeds up source level\n\
13946 stepping. If off, GDB always issues single-steps, even if range\n\
13947 stepping is supported by the target. The default is on."),
13948 set_range_stepping,
13949 show_range_stepping,
13950 &setlist,
13951 &showlist);
13952
13953 /* Eventually initialize fileio. See fileio.c */
13954 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
13955
13956 /* Take advantage of the fact that the TID field is not used, to tag
13957 special ptids with it set to != 0. */
13958 magic_null_ptid = ptid_build (42000, -1, 1);
13959 not_sent_ptid = ptid_build (42000, -2, 1);
13960 any_thread_ptid = ptid_build (42000, 0, 1);
13961
13962 target_buf_size = 2048;
13963 target_buf = (char *) xmalloc (target_buf_size);
13964 }
13965
This page took 0.347506 seconds and 4 git commands to generate.