* elfread.c (elf_symtab_read): Avoid use of SECT_OFF_MAX.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* See the GDB User Guide for details of the GDB remote protocol. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <fcntl.h>
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42
43 #include <ctype.h>
44 #include <sys/time.h>
45 #ifdef USG
46 #include <sys/types.h>
47 #endif
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 /* Prototypes for local functions */
59 static void cleanup_sigint_signal_handler (void *dummy);
60 static void initialize_sigint_signal_handler (void);
61 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
62
63 static void handle_remote_sigint (int);
64 static void handle_remote_sigint_twice (int);
65 static void async_remote_interrupt (gdb_client_data);
66 void async_remote_interrupt_twice (gdb_client_data);
67
68 static void build_remote_gdbarch_data (void);
69
70 static int remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len);
71
72 static int remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len);
73
74 static void remote_files_info (struct target_ops *ignore);
75
76 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
77 int len, int should_write,
78 struct mem_attrib *attrib,
79 struct target_ops *target);
80
81 static void remote_prepare_to_store (void);
82
83 static void remote_fetch_registers (int regno);
84
85 static void remote_resume (ptid_t ptid, int step,
86 enum target_signal siggnal);
87 static void remote_async_resume (ptid_t ptid, int step,
88 enum target_signal siggnal);
89 static int remote_start_remote (struct ui_out *uiout, void *dummy);
90
91 static void remote_open (char *name, int from_tty);
92 static void remote_async_open (char *name, int from_tty);
93
94 static void extended_remote_open (char *name, int from_tty);
95 static void extended_remote_async_open (char *name, int from_tty);
96
97 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
98 int async_p);
99
100 static void remote_close (int quitting);
101
102 static void remote_store_registers (int regno);
103
104 static void remote_mourn (void);
105 static void remote_async_mourn (void);
106
107 static void extended_remote_restart (void);
108
109 static void extended_remote_mourn (void);
110
111 static void extended_remote_create_inferior (char *, char *, char **);
112 static void extended_remote_async_create_inferior (char *, char *, char **);
113
114 static void remote_mourn_1 (struct target_ops *);
115
116 static void remote_send (char *buf, long sizeof_buf);
117
118 static int readchar (int timeout);
119
120 static ptid_t remote_wait (ptid_t ptid,
121 struct target_waitstatus *status);
122 static ptid_t remote_async_wait (ptid_t ptid,
123 struct target_waitstatus *status);
124
125 static void remote_kill (void);
126 static void remote_async_kill (void);
127
128 static int tohex (int nib);
129
130 static void remote_detach (char *args, int from_tty);
131 static void remote_async_detach (char *args, int from_tty);
132
133 static void remote_interrupt (int signo);
134
135 static void remote_interrupt_twice (int signo);
136
137 static void interrupt_query (void);
138
139 static void set_thread (int, int);
140
141 static int remote_thread_alive (ptid_t);
142
143 static void get_offsets (void);
144
145 static long read_frame (char *buf, long sizeof_buf);
146
147 static int remote_insert_breakpoint (CORE_ADDR, char *);
148
149 static int remote_remove_breakpoint (CORE_ADDR, char *);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void init_remote_cisco_ops (void);
158
159 static struct target_ops remote_cisco_ops;
160
161 static void remote_stop (void);
162
163 static int ishex (int ch, int *val);
164
165 static int stubhex (int ch);
166
167 static int remote_query (int /*char */ , char *, char *, int *);
168
169 static int hexnumstr (char *, ULONGEST);
170
171 static int hexnumnstr (char *, ULONGEST, int);
172
173 static CORE_ADDR remote_address_masked (CORE_ADDR);
174
175 static void print_packet (char *);
176
177 static unsigned long crc32 (unsigned char *, int, unsigned int);
178
179 static void compare_sections_command (char *, int);
180
181 static void packet_command (char *, int);
182
183 static int stub_unpack_int (char *buff, int fieldlength);
184
185 static ptid_t remote_current_thread (ptid_t oldptid);
186
187 static void remote_find_new_threads (void);
188
189 static void record_currthread (int currthread);
190
191 static int fromhex (int a);
192
193 static int hex2bin (const char *hex, char *bin, int count);
194
195 static int bin2hex (const char *bin, char *hex, int count);
196
197 static int putpkt_binary (char *buf, int cnt);
198
199 static void check_binary_download (CORE_ADDR addr);
200
201 struct packet_config;
202
203 static void show_packet_config_cmd (struct packet_config *config);
204
205 static void update_packet_config (struct packet_config *config);
206
207 void _initialize_remote (void);
208
209 /* Description of the remote protocol. Strictly speaking, when the
210 target is open()ed, remote.c should create a per-target description
211 of the remote protocol using that target's architecture.
212 Unfortunatly, the target stack doesn't include local state. For
213 the moment keep the information in the target's architecture
214 object. Sigh.. */
215
216 struct packet_reg
217 {
218 long offset; /* Offset into G packet. */
219 long regnum; /* GDB's internal register number. */
220 LONGEST pnum; /* Remote protocol register number. */
221 int in_g_packet; /* Always part of G packet. */
222 /* long size in bytes; == REGISTER_RAW_SIZE (regnum); at present. */
223 /* char *name; == REGISTER_NAME (regnum); at present. */
224 };
225
226 struct remote_state
227 {
228 /* Description of the remote protocol registers. */
229 long sizeof_g_packet;
230
231 /* Description of the remote protocol registers indexed by REGNUM
232 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
233 struct packet_reg *regs;
234
235 /* This is the size (in chars) of the first response to the ``g''
236 packet. It is used as a heuristic when determining the maximum
237 size of memory-read and memory-write packets. A target will
238 typically only reserve a buffer large enough to hold the ``g''
239 packet. The size does not include packet overhead (headers and
240 trailers). */
241 long actual_register_packet_size;
242
243 /* This is the maximum size (in chars) of a non read/write packet.
244 It is also used as a cap on the size of read/write packets. */
245 long remote_packet_size;
246 };
247
248
249 /* Handle for retreving the remote protocol data from gdbarch. */
250 static struct gdbarch_data *remote_gdbarch_data_handle;
251
252 static struct remote_state *
253 get_remote_state (void)
254 {
255 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
256 }
257
258 static void *
259 init_remote_state (struct gdbarch *gdbarch)
260 {
261 int regnum;
262 struct remote_state *rs = xmalloc (sizeof (struct remote_state));
263
264 if (DEPRECATED_REGISTER_BYTES != 0)
265 rs->sizeof_g_packet = DEPRECATED_REGISTER_BYTES;
266 else
267 rs->sizeof_g_packet = 0;
268
269 /* Assume a 1:1 regnum<->pnum table. */
270 rs->regs = xcalloc (NUM_REGS + NUM_PSEUDO_REGS, sizeof (struct packet_reg));
271 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
272 {
273 struct packet_reg *r = &rs->regs[regnum];
274 r->pnum = regnum;
275 r->regnum = regnum;
276 r->offset = REGISTER_BYTE (regnum);
277 r->in_g_packet = (regnum < NUM_REGS);
278 /* ...name = REGISTER_NAME (regnum); */
279
280 /* Compute packet size by accumulating the size of all registers. */
281 if (DEPRECATED_REGISTER_BYTES == 0)
282 rs->sizeof_g_packet += register_size (current_gdbarch, regnum);
283 }
284
285 /* Default maximum number of characters in a packet body. Many
286 remote stubs have a hardwired buffer size of 400 bytes
287 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
288 as the maximum packet-size to ensure that the packet and an extra
289 NUL character can always fit in the buffer. This stops GDB
290 trashing stubs that try to squeeze an extra NUL into what is
291 already a full buffer (As of 1999-12-04 that was most stubs. */
292 rs->remote_packet_size = 400 - 1;
293
294 /* Should rs->sizeof_g_packet needs more space than the
295 default, adjust the size accordingly. Remember that each byte is
296 encoded as two characters. 32 is the overhead for the packet
297 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
298 (``$NN:G...#NN'') is a better guess, the below has been padded a
299 little. */
300 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
301 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
302
303 /* This one is filled in when a ``g'' packet is received. */
304 rs->actual_register_packet_size = 0;
305
306 return rs;
307 }
308
309 static void
310 free_remote_state (struct gdbarch *gdbarch, void *pointer)
311 {
312 struct remote_state *data = pointer;
313 xfree (data->regs);
314 xfree (data);
315 }
316
317 static struct packet_reg *
318 packet_reg_from_regnum (struct remote_state *rs, long regnum)
319 {
320 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
321 return NULL;
322 else
323 {
324 struct packet_reg *r = &rs->regs[regnum];
325 gdb_assert (r->regnum == regnum);
326 return r;
327 }
328 }
329
330 static struct packet_reg *
331 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
332 {
333 int i;
334 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
335 {
336 struct packet_reg *r = &rs->regs[i];
337 if (r->pnum == pnum)
338 return r;
339 }
340 return NULL;
341 }
342
343 /* FIXME: graces/2002-08-08: These variables should eventually be
344 bound to an instance of the target object (as in gdbarch-tdep()),
345 when such a thing exists. */
346
347 /* This is set to the data address of the access causing the target
348 to stop for a watchpoint. */
349 static CORE_ADDR remote_watch_data_address;
350
351 /* This is non-zero if taregt stopped for a watchpoint. */
352 static int remote_stopped_by_watchpoint_p;
353
354
355 static struct target_ops remote_ops;
356
357 static struct target_ops extended_remote_ops;
358
359 /* Temporary target ops. Just like the remote_ops and
360 extended_remote_ops, but with asynchronous support. */
361 static struct target_ops remote_async_ops;
362
363 static struct target_ops extended_async_remote_ops;
364
365 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
366 ``forever'' still use the normal timeout mechanism. This is
367 currently used by the ASYNC code to guarentee that target reads
368 during the initial connect always time-out. Once getpkt has been
369 modified to return a timeout indication and, in turn
370 remote_wait()/wait_for_inferior() have gained a timeout parameter
371 this can go away. */
372 static int wait_forever_enabled_p = 1;
373
374
375 /* This variable chooses whether to send a ^C or a break when the user
376 requests program interruption. Although ^C is usually what remote
377 systems expect, and that is the default here, sometimes a break is
378 preferable instead. */
379
380 static int remote_break;
381
382 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
383 remote_open knows that we don't have a file open when the program
384 starts. */
385 static struct serial *remote_desc = NULL;
386
387 /* This is set by the target (thru the 'S' message)
388 to denote that the target is in kernel mode. */
389 static int cisco_kernel_mode = 0;
390
391 /* This variable sets the number of bits in an address that are to be
392 sent in a memory ("M" or "m") packet. Normally, after stripping
393 leading zeros, the entire address would be sent. This variable
394 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
395 initial implementation of remote.c restricted the address sent in
396 memory packets to ``host::sizeof long'' bytes - (typically 32
397 bits). Consequently, for 64 bit targets, the upper 32 bits of an
398 address was never sent. Since fixing this bug may cause a break in
399 some remote targets this variable is principly provided to
400 facilitate backward compatibility. */
401
402 static int remote_address_size;
403
404 /* Tempoary to track who currently owns the terminal. See
405 target_async_terminal_* for more details. */
406
407 static int remote_async_terminal_ours_p;
408
409 \f
410 /* User configurable variables for the number of characters in a
411 memory read/write packet. MIN ((rs->remote_packet_size),
412 rs->sizeof_g_packet) is the default. Some targets need smaller
413 values (fifo overruns, et.al.) and some users need larger values
414 (speed up transfers). The variables ``preferred_*'' (the user
415 request), ``current_*'' (what was actually set) and ``forced_*''
416 (Positive - a soft limit, negative - a hard limit). */
417
418 struct memory_packet_config
419 {
420 char *name;
421 long size;
422 int fixed_p;
423 };
424
425 /* Compute the current size of a read/write packet. Since this makes
426 use of ``actual_register_packet_size'' the computation is dynamic. */
427
428 static long
429 get_memory_packet_size (struct memory_packet_config *config)
430 {
431 struct remote_state *rs = get_remote_state ();
432 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
433 law?) that some hosts don't cope very well with large alloca()
434 calls. Eventually the alloca() code will be replaced by calls to
435 xmalloc() and make_cleanups() allowing this restriction to either
436 be lifted or removed. */
437 #ifndef MAX_REMOTE_PACKET_SIZE
438 #define MAX_REMOTE_PACKET_SIZE 16384
439 #endif
440 /* NOTE: 16 is just chosen at random. */
441 #ifndef MIN_REMOTE_PACKET_SIZE
442 #define MIN_REMOTE_PACKET_SIZE 16
443 #endif
444 long what_they_get;
445 if (config->fixed_p)
446 {
447 if (config->size <= 0)
448 what_they_get = MAX_REMOTE_PACKET_SIZE;
449 else
450 what_they_get = config->size;
451 }
452 else
453 {
454 what_they_get = (rs->remote_packet_size);
455 /* Limit the packet to the size specified by the user. */
456 if (config->size > 0
457 && what_they_get > config->size)
458 what_they_get = config->size;
459 /* Limit it to the size of the targets ``g'' response. */
460 if ((rs->actual_register_packet_size) > 0
461 && what_they_get > (rs->actual_register_packet_size))
462 what_they_get = (rs->actual_register_packet_size);
463 }
464 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
465 what_they_get = MAX_REMOTE_PACKET_SIZE;
466 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
467 what_they_get = MIN_REMOTE_PACKET_SIZE;
468 return what_they_get;
469 }
470
471 /* Update the size of a read/write packet. If they user wants
472 something really big then do a sanity check. */
473
474 static void
475 set_memory_packet_size (char *args, struct memory_packet_config *config)
476 {
477 int fixed_p = config->fixed_p;
478 long size = config->size;
479 if (args == NULL)
480 error ("Argument required (integer, `fixed' or `limited').");
481 else if (strcmp (args, "hard") == 0
482 || strcmp (args, "fixed") == 0)
483 fixed_p = 1;
484 else if (strcmp (args, "soft") == 0
485 || strcmp (args, "limit") == 0)
486 fixed_p = 0;
487 else
488 {
489 char *end;
490 size = strtoul (args, &end, 0);
491 if (args == end)
492 error ("Invalid %s (bad syntax).", config->name);
493 #if 0
494 /* Instead of explicitly capping the size of a packet to
495 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
496 instead allowed to set the size to something arbitrarily
497 large. */
498 if (size > MAX_REMOTE_PACKET_SIZE)
499 error ("Invalid %s (too large).", config->name);
500 #endif
501 }
502 /* Extra checks? */
503 if (fixed_p && !config->fixed_p)
504 {
505 if (! query ("The target may not be able to correctly handle a %s\n"
506 "of %ld bytes. Change the packet size? ",
507 config->name, size))
508 error ("Packet size not changed.");
509 }
510 /* Update the config. */
511 config->fixed_p = fixed_p;
512 config->size = size;
513 }
514
515 static void
516 show_memory_packet_size (struct memory_packet_config *config)
517 {
518 printf_filtered ("The %s is %ld. ", config->name, config->size);
519 if (config->fixed_p)
520 printf_filtered ("Packets are fixed at %ld bytes.\n",
521 get_memory_packet_size (config));
522 else
523 printf_filtered ("Packets are limited to %ld bytes.\n",
524 get_memory_packet_size (config));
525 }
526
527 static struct memory_packet_config memory_write_packet_config =
528 {
529 "memory-write-packet-size",
530 };
531
532 static void
533 set_memory_write_packet_size (char *args, int from_tty)
534 {
535 set_memory_packet_size (args, &memory_write_packet_config);
536 }
537
538 static void
539 show_memory_write_packet_size (char *args, int from_tty)
540 {
541 show_memory_packet_size (&memory_write_packet_config);
542 }
543
544 static long
545 get_memory_write_packet_size (void)
546 {
547 return get_memory_packet_size (&memory_write_packet_config);
548 }
549
550 static struct memory_packet_config memory_read_packet_config =
551 {
552 "memory-read-packet-size",
553 };
554
555 static void
556 set_memory_read_packet_size (char *args, int from_tty)
557 {
558 set_memory_packet_size (args, &memory_read_packet_config);
559 }
560
561 static void
562 show_memory_read_packet_size (char *args, int from_tty)
563 {
564 show_memory_packet_size (&memory_read_packet_config);
565 }
566
567 static long
568 get_memory_read_packet_size (void)
569 {
570 struct remote_state *rs = get_remote_state ();
571 long size = get_memory_packet_size (&memory_read_packet_config);
572 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
573 extra buffer size argument before the memory read size can be
574 increased beyond (rs->remote_packet_size). */
575 if (size > (rs->remote_packet_size))
576 size = (rs->remote_packet_size);
577 return size;
578 }
579
580 \f
581 /* Generic configuration support for packets the stub optionally
582 supports. Allows the user to specify the use of the packet as well
583 as allowing GDB to auto-detect support in the remote stub. */
584
585 enum packet_support
586 {
587 PACKET_SUPPORT_UNKNOWN = 0,
588 PACKET_ENABLE,
589 PACKET_DISABLE
590 };
591
592 struct packet_config
593 {
594 char *name;
595 char *title;
596 enum auto_boolean detect;
597 enum packet_support support;
598 };
599
600 /* Analyze a packet's return value and update the packet config
601 accordingly. */
602
603 enum packet_result
604 {
605 PACKET_ERROR,
606 PACKET_OK,
607 PACKET_UNKNOWN
608 };
609
610 static void
611 update_packet_config (struct packet_config *config)
612 {
613 switch (config->detect)
614 {
615 case AUTO_BOOLEAN_TRUE:
616 config->support = PACKET_ENABLE;
617 break;
618 case AUTO_BOOLEAN_FALSE:
619 config->support = PACKET_DISABLE;
620 break;
621 case AUTO_BOOLEAN_AUTO:
622 config->support = PACKET_SUPPORT_UNKNOWN;
623 break;
624 }
625 }
626
627 static void
628 show_packet_config_cmd (struct packet_config *config)
629 {
630 char *support = "internal-error";
631 switch (config->support)
632 {
633 case PACKET_ENABLE:
634 support = "enabled";
635 break;
636 case PACKET_DISABLE:
637 support = "disabled";
638 break;
639 case PACKET_SUPPORT_UNKNOWN:
640 support = "unknown";
641 break;
642 }
643 switch (config->detect)
644 {
645 case AUTO_BOOLEAN_AUTO:
646 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
647 config->name, config->title, support);
648 break;
649 case AUTO_BOOLEAN_TRUE:
650 case AUTO_BOOLEAN_FALSE:
651 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
652 config->name, config->title, support);
653 break;
654 }
655 }
656
657 static void
658 add_packet_config_cmd (struct packet_config *config,
659 char *name,
660 char *title,
661 cmd_sfunc_ftype *set_func,
662 cmd_sfunc_ftype *show_func,
663 struct cmd_list_element **set_remote_list,
664 struct cmd_list_element **show_remote_list,
665 int legacy)
666 {
667 struct cmd_list_element *set_cmd;
668 struct cmd_list_element *show_cmd;
669 char *set_doc;
670 char *show_doc;
671 char *cmd_name;
672 config->name = name;
673 config->title = title;
674 config->detect = AUTO_BOOLEAN_AUTO;
675 config->support = PACKET_SUPPORT_UNKNOWN;
676 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
677 name, title);
678 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
679 name, title);
680 /* set/show TITLE-packet {auto,on,off} */
681 xasprintf (&cmd_name, "%s-packet", title);
682 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
683 &config->detect, set_doc, show_doc,
684 set_func, show_func,
685 set_remote_list, show_remote_list);
686 /* set/show remote NAME-packet {auto,on,off} -- legacy */
687 if (legacy)
688 {
689 char *legacy_name;
690 xasprintf (&legacy_name, "%s-packet", name);
691 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
692 set_remote_list);
693 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
694 show_remote_list);
695 }
696 }
697
698 static enum packet_result
699 packet_ok (const char *buf, struct packet_config *config)
700 {
701 if (buf[0] != '\0')
702 {
703 /* The stub recognized the packet request. Check that the
704 operation succeeded. */
705 switch (config->support)
706 {
707 case PACKET_SUPPORT_UNKNOWN:
708 if (remote_debug)
709 fprintf_unfiltered (gdb_stdlog,
710 "Packet %s (%s) is supported\n",
711 config->name, config->title);
712 config->support = PACKET_ENABLE;
713 break;
714 case PACKET_DISABLE:
715 internal_error (__FILE__, __LINE__,
716 "packet_ok: attempt to use a disabled packet");
717 break;
718 case PACKET_ENABLE:
719 break;
720 }
721 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
722 /* "OK" - definitly OK. */
723 return PACKET_OK;
724 if (buf[0] == 'E'
725 && isxdigit (buf[1]) && isxdigit (buf[2])
726 && buf[3] == '\0')
727 /* "Enn" - definitly an error. */
728 return PACKET_ERROR;
729 /* The packet may or may not be OK. Just assume it is */
730 return PACKET_OK;
731 }
732 else
733 {
734 /* The stub does not support the packet. */
735 switch (config->support)
736 {
737 case PACKET_ENABLE:
738 if (config->detect == AUTO_BOOLEAN_AUTO)
739 /* If the stub previously indicated that the packet was
740 supported then there is a protocol error.. */
741 error ("Protocol error: %s (%s) conflicting enabled responses.",
742 config->name, config->title);
743 else
744 /* The user set it wrong. */
745 error ("Enabled packet %s (%s) not recognized by stub",
746 config->name, config->title);
747 break;
748 case PACKET_SUPPORT_UNKNOWN:
749 if (remote_debug)
750 fprintf_unfiltered (gdb_stdlog,
751 "Packet %s (%s) is NOT supported\n",
752 config->name, config->title);
753 config->support = PACKET_DISABLE;
754 break;
755 case PACKET_DISABLE:
756 break;
757 }
758 return PACKET_UNKNOWN;
759 }
760 }
761
762 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
763 static struct packet_config remote_protocol_qSymbol;
764
765 static void
766 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
767 struct cmd_list_element *c)
768 {
769 update_packet_config (&remote_protocol_qSymbol);
770 }
771
772 static void
773 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
774 struct cmd_list_element *c)
775 {
776 show_packet_config_cmd (&remote_protocol_qSymbol);
777 }
778
779 /* Should we try the 'e' (step over range) request? */
780 static struct packet_config remote_protocol_e;
781
782 static void
783 set_remote_protocol_e_packet_cmd (char *args, int from_tty,
784 struct cmd_list_element *c)
785 {
786 update_packet_config (&remote_protocol_e);
787 }
788
789 static void
790 show_remote_protocol_e_packet_cmd (char *args, int from_tty,
791 struct cmd_list_element *c)
792 {
793 show_packet_config_cmd (&remote_protocol_e);
794 }
795
796
797 /* Should we try the 'E' (step over range / w signal #) request? */
798 static struct packet_config remote_protocol_E;
799
800 static void
801 set_remote_protocol_E_packet_cmd (char *args, int from_tty,
802 struct cmd_list_element *c)
803 {
804 update_packet_config (&remote_protocol_E);
805 }
806
807 static void
808 show_remote_protocol_E_packet_cmd (char *args, int from_tty,
809 struct cmd_list_element *c)
810 {
811 show_packet_config_cmd (&remote_protocol_E);
812 }
813
814
815 /* Should we try the 'P' (set register) request? */
816
817 static struct packet_config remote_protocol_P;
818
819 static void
820 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
821 struct cmd_list_element *c)
822 {
823 update_packet_config (&remote_protocol_P);
824 }
825
826 static void
827 show_remote_protocol_P_packet_cmd (char *args, int from_tty,
828 struct cmd_list_element *c)
829 {
830 show_packet_config_cmd (&remote_protocol_P);
831 }
832
833 /* Should we try one of the 'Z' requests? */
834
835 enum Z_packet_type
836 {
837 Z_PACKET_SOFTWARE_BP,
838 Z_PACKET_HARDWARE_BP,
839 Z_PACKET_WRITE_WP,
840 Z_PACKET_READ_WP,
841 Z_PACKET_ACCESS_WP,
842 NR_Z_PACKET_TYPES
843 };
844
845 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
846
847 /* FIXME: Instead of having all these boiler plate functions, the
848 command callback should include a context argument. */
849
850 static void
851 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
852 struct cmd_list_element *c)
853 {
854 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
855 }
856
857 static void
858 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
859 struct cmd_list_element *c)
860 {
861 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
862 }
863
864 static void
865 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
866 struct cmd_list_element *c)
867 {
868 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
869 }
870
871 static void
872 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
873 struct cmd_list_element *c)
874 {
875 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
876 }
877
878 static void
879 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
880 struct cmd_list_element *c)
881 {
882 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
883 }
884
885 static void
886 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
887 struct cmd_list_element *c)
888 {
889 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
890 }
891
892 static void
893 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
894 struct cmd_list_element *c)
895 {
896 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
897 }
898
899 static void
900 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
901 struct cmd_list_element *c)
902 {
903 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
904 }
905
906 static void
907 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
908 struct cmd_list_element *c)
909 {
910 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
911 }
912
913 static void
914 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
915 struct cmd_list_element *c)
916 {
917 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
918 }
919
920 /* For compatibility with older distributions. Provide a ``set remote
921 Z-packet ...'' command that updates all the Z packet types. */
922
923 static enum auto_boolean remote_Z_packet_detect;
924
925 static void
926 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
927 struct cmd_list_element *c)
928 {
929 int i;
930 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
931 {
932 remote_protocol_Z[i].detect = remote_Z_packet_detect;
933 update_packet_config (&remote_protocol_Z[i]);
934 }
935 }
936
937 static void
938 show_remote_protocol_Z_packet_cmd (char *args, int from_tty,
939 struct cmd_list_element *c)
940 {
941 int i;
942 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
943 {
944 show_packet_config_cmd (&remote_protocol_Z[i]);
945 }
946 }
947
948 /* Should we try the 'X' (remote binary download) packet?
949
950 This variable (available to the user via "set remote X-packet")
951 dictates whether downloads are sent in binary (via the 'X' packet).
952 We assume that the stub can, and attempt to do it. This will be
953 cleared if the stub does not understand it. This switch is still
954 needed, though in cases when the packet is supported in the stub,
955 but the connection does not allow it (i.e., 7-bit serial connection
956 only). */
957
958 static struct packet_config remote_protocol_binary_download;
959
960 /* Should we try the 'ThreadInfo' query packet?
961
962 This variable (NOT available to the user: auto-detect only!)
963 determines whether GDB will use the new, simpler "ThreadInfo"
964 query or the older, more complex syntax for thread queries.
965 This is an auto-detect variable (set to true at each connect,
966 and set to false when the target fails to recognize it). */
967
968 static int use_threadinfo_query;
969 static int use_threadextra_query;
970
971 static void
972 set_remote_protocol_binary_download_cmd (char *args,
973 int from_tty,
974 struct cmd_list_element *c)
975 {
976 update_packet_config (&remote_protocol_binary_download);
977 }
978
979 static void
980 show_remote_protocol_binary_download_cmd (char *args, int from_tty,
981 struct cmd_list_element *c)
982 {
983 show_packet_config_cmd (&remote_protocol_binary_download);
984 }
985
986
987 /* Tokens for use by the asynchronous signal handlers for SIGINT */
988 static void *sigint_remote_twice_token;
989 static void *sigint_remote_token;
990
991 /* These are pointers to hook functions that may be set in order to
992 modify resume/wait behavior for a particular architecture. */
993
994 void (*target_resume_hook) (void);
995 void (*target_wait_loop_hook) (void);
996 \f
997
998
999 /* These are the threads which we last sent to the remote system.
1000 -1 for all or -2 for not sent yet. */
1001 static int general_thread;
1002 static int continue_thread;
1003
1004 /* Call this function as a result of
1005 1) A halt indication (T packet) containing a thread id
1006 2) A direct query of currthread
1007 3) Successful execution of set thread
1008 */
1009
1010 static void
1011 record_currthread (int currthread)
1012 {
1013 general_thread = currthread;
1014
1015 /* If this is a new thread, add it to GDB's thread list.
1016 If we leave it up to WFI to do this, bad things will happen. */
1017 if (!in_thread_list (pid_to_ptid (currthread)))
1018 {
1019 add_thread (pid_to_ptid (currthread));
1020 ui_out_text (uiout, "[New ");
1021 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1022 ui_out_text (uiout, "]\n");
1023 }
1024 }
1025
1026 #define MAGIC_NULL_PID 42000
1027
1028 static void
1029 set_thread (int th, int gen)
1030 {
1031 struct remote_state *rs = get_remote_state ();
1032 char *buf = alloca (rs->remote_packet_size);
1033 int state = gen ? general_thread : continue_thread;
1034
1035 if (state == th)
1036 return;
1037
1038 buf[0] = 'H';
1039 buf[1] = gen ? 'g' : 'c';
1040 if (th == MAGIC_NULL_PID)
1041 {
1042 buf[2] = '0';
1043 buf[3] = '\0';
1044 }
1045 else if (th < 0)
1046 sprintf (&buf[2], "-%x", -th);
1047 else
1048 sprintf (&buf[2], "%x", th);
1049 putpkt (buf);
1050 getpkt (buf, (rs->remote_packet_size), 0);
1051 if (gen)
1052 general_thread = th;
1053 else
1054 continue_thread = th;
1055 }
1056 \f
1057 /* Return nonzero if the thread TH is still alive on the remote system. */
1058
1059 static int
1060 remote_thread_alive (ptid_t ptid)
1061 {
1062 int tid = PIDGET (ptid);
1063 char buf[16];
1064
1065 if (tid < 0)
1066 sprintf (buf, "T-%08x", -tid);
1067 else
1068 sprintf (buf, "T%08x", tid);
1069 putpkt (buf);
1070 getpkt (buf, sizeof (buf), 0);
1071 return (buf[0] == 'O' && buf[1] == 'K');
1072 }
1073
1074 /* About these extended threadlist and threadinfo packets. They are
1075 variable length packets but, the fields within them are often fixed
1076 length. They are redundent enough to send over UDP as is the
1077 remote protocol in general. There is a matching unit test module
1078 in libstub. */
1079
1080 #define OPAQUETHREADBYTES 8
1081
1082 /* a 64 bit opaque identifier */
1083 typedef unsigned char threadref[OPAQUETHREADBYTES];
1084
1085 /* WARNING: This threadref data structure comes from the remote O.S., libstub
1086 protocol encoding, and remote.c. it is not particularly changable */
1087
1088 /* Right now, the internal structure is int. We want it to be bigger.
1089 Plan to fix this.
1090 */
1091
1092 typedef int gdb_threadref; /* internal GDB thread reference */
1093
1094 /* gdb_ext_thread_info is an internal GDB data structure which is
1095 equivalint to the reply of the remote threadinfo packet */
1096
1097 struct gdb_ext_thread_info
1098 {
1099 threadref threadid; /* External form of thread reference */
1100 int active; /* Has state interesting to GDB? , regs, stack */
1101 char display[256]; /* Brief state display, name, blocked/syspended */
1102 char shortname[32]; /* To be used to name threads */
1103 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1104 };
1105
1106 /* The volume of remote transfers can be limited by submitting
1107 a mask containing bits specifying the desired information.
1108 Use a union of these values as the 'selection' parameter to
1109 get_thread_info. FIXME: Make these TAG names more thread specific.
1110 */
1111
1112 #define TAG_THREADID 1
1113 #define TAG_EXISTS 2
1114 #define TAG_DISPLAY 4
1115 #define TAG_THREADNAME 8
1116 #define TAG_MOREDISPLAY 16
1117
1118 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1119
1120 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1121
1122 static char *unpack_nibble (char *buf, int *val);
1123
1124 static char *pack_nibble (char *buf, int nibble);
1125
1126 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1127
1128 static char *unpack_byte (char *buf, int *value);
1129
1130 static char *pack_int (char *buf, int value);
1131
1132 static char *unpack_int (char *buf, int *value);
1133
1134 static char *unpack_string (char *src, char *dest, int length);
1135
1136 static char *pack_threadid (char *pkt, threadref * id);
1137
1138 static char *unpack_threadid (char *inbuf, threadref * id);
1139
1140 void int_to_threadref (threadref * id, int value);
1141
1142 static int threadref_to_int (threadref * ref);
1143
1144 static void copy_threadref (threadref * dest, threadref * src);
1145
1146 static int threadmatch (threadref * dest, threadref * src);
1147
1148 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1149
1150 static int remote_unpack_thread_info_response (char *pkt,
1151 threadref * expectedref,
1152 struct gdb_ext_thread_info
1153 *info);
1154
1155
1156 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1157 struct gdb_ext_thread_info *info);
1158
1159 static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1160 int selection,
1161 struct gdb_ext_thread_info *info);
1162
1163 static char *pack_threadlist_request (char *pkt, int startflag,
1164 int threadcount,
1165 threadref * nextthread);
1166
1167 static int parse_threadlist_response (char *pkt,
1168 int result_limit,
1169 threadref * original_echo,
1170 threadref * resultlist, int *doneflag);
1171
1172 static int remote_get_threadlist (int startflag,
1173 threadref * nextthread,
1174 int result_limit,
1175 int *done,
1176 int *result_count, threadref * threadlist);
1177
1178 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1179
1180 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1181 void *context, int looplimit);
1182
1183 static int remote_newthread_step (threadref * ref, void *context);
1184
1185 /* encode 64 bits in 16 chars of hex */
1186
1187 static const char hexchars[] = "0123456789abcdef";
1188
1189 static int
1190 ishex (int ch, int *val)
1191 {
1192 if ((ch >= 'a') && (ch <= 'f'))
1193 {
1194 *val = ch - 'a' + 10;
1195 return 1;
1196 }
1197 if ((ch >= 'A') && (ch <= 'F'))
1198 {
1199 *val = ch - 'A' + 10;
1200 return 1;
1201 }
1202 if ((ch >= '0') && (ch <= '9'))
1203 {
1204 *val = ch - '0';
1205 return 1;
1206 }
1207 return 0;
1208 }
1209
1210 static int
1211 stubhex (int ch)
1212 {
1213 if (ch >= 'a' && ch <= 'f')
1214 return ch - 'a' + 10;
1215 if (ch >= '0' && ch <= '9')
1216 return ch - '0';
1217 if (ch >= 'A' && ch <= 'F')
1218 return ch - 'A' + 10;
1219 return -1;
1220 }
1221
1222 static int
1223 stub_unpack_int (char *buff, int fieldlength)
1224 {
1225 int nibble;
1226 int retval = 0;
1227
1228 while (fieldlength)
1229 {
1230 nibble = stubhex (*buff++);
1231 retval |= nibble;
1232 fieldlength--;
1233 if (fieldlength)
1234 retval = retval << 4;
1235 }
1236 return retval;
1237 }
1238
1239 char *
1240 unpack_varlen_hex (char *buff, /* packet to parse */
1241 ULONGEST *result)
1242 {
1243 int nibble;
1244 int retval = 0;
1245
1246 while (ishex (*buff, &nibble))
1247 {
1248 buff++;
1249 retval = retval << 4;
1250 retval |= nibble & 0x0f;
1251 }
1252 *result = retval;
1253 return buff;
1254 }
1255
1256 static char *
1257 unpack_nibble (char *buf, int *val)
1258 {
1259 ishex (*buf++, val);
1260 return buf;
1261 }
1262
1263 static char *
1264 pack_nibble (char *buf, int nibble)
1265 {
1266 *buf++ = hexchars[(nibble & 0x0f)];
1267 return buf;
1268 }
1269
1270 static char *
1271 pack_hex_byte (char *pkt, int byte)
1272 {
1273 *pkt++ = hexchars[(byte >> 4) & 0xf];
1274 *pkt++ = hexchars[(byte & 0xf)];
1275 return pkt;
1276 }
1277
1278 static char *
1279 unpack_byte (char *buf, int *value)
1280 {
1281 *value = stub_unpack_int (buf, 2);
1282 return buf + 2;
1283 }
1284
1285 static char *
1286 pack_int (char *buf, int value)
1287 {
1288 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1289 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1290 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1291 buf = pack_hex_byte (buf, (value & 0xff));
1292 return buf;
1293 }
1294
1295 static char *
1296 unpack_int (char *buf, int *value)
1297 {
1298 *value = stub_unpack_int (buf, 8);
1299 return buf + 8;
1300 }
1301
1302 #if 0 /* currently unused, uncomment when needed */
1303 static char *pack_string (char *pkt, char *string);
1304
1305 static char *
1306 pack_string (char *pkt, char *string)
1307 {
1308 char ch;
1309 int len;
1310
1311 len = strlen (string);
1312 if (len > 200)
1313 len = 200; /* Bigger than most GDB packets, junk??? */
1314 pkt = pack_hex_byte (pkt, len);
1315 while (len-- > 0)
1316 {
1317 ch = *string++;
1318 if ((ch == '\0') || (ch == '#'))
1319 ch = '*'; /* Protect encapsulation */
1320 *pkt++ = ch;
1321 }
1322 return pkt;
1323 }
1324 #endif /* 0 (unused) */
1325
1326 static char *
1327 unpack_string (char *src, char *dest, int length)
1328 {
1329 while (length--)
1330 *dest++ = *src++;
1331 *dest = '\0';
1332 return src;
1333 }
1334
1335 static char *
1336 pack_threadid (char *pkt, threadref *id)
1337 {
1338 char *limit;
1339 unsigned char *altid;
1340
1341 altid = (unsigned char *) id;
1342 limit = pkt + BUF_THREAD_ID_SIZE;
1343 while (pkt < limit)
1344 pkt = pack_hex_byte (pkt, *altid++);
1345 return pkt;
1346 }
1347
1348
1349 static char *
1350 unpack_threadid (char *inbuf, threadref *id)
1351 {
1352 char *altref;
1353 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1354 int x, y;
1355
1356 altref = (char *) id;
1357
1358 while (inbuf < limit)
1359 {
1360 x = stubhex (*inbuf++);
1361 y = stubhex (*inbuf++);
1362 *altref++ = (x << 4) | y;
1363 }
1364 return inbuf;
1365 }
1366
1367 /* Externally, threadrefs are 64 bits but internally, they are still
1368 ints. This is due to a mismatch of specifications. We would like
1369 to use 64bit thread references internally. This is an adapter
1370 function. */
1371
1372 void
1373 int_to_threadref (threadref *id, int value)
1374 {
1375 unsigned char *scan;
1376
1377 scan = (unsigned char *) id;
1378 {
1379 int i = 4;
1380 while (i--)
1381 *scan++ = 0;
1382 }
1383 *scan++ = (value >> 24) & 0xff;
1384 *scan++ = (value >> 16) & 0xff;
1385 *scan++ = (value >> 8) & 0xff;
1386 *scan++ = (value & 0xff);
1387 }
1388
1389 static int
1390 threadref_to_int (threadref *ref)
1391 {
1392 int i, value = 0;
1393 unsigned char *scan;
1394
1395 scan = (char *) ref;
1396 scan += 4;
1397 i = 4;
1398 while (i-- > 0)
1399 value = (value << 8) | ((*scan++) & 0xff);
1400 return value;
1401 }
1402
1403 static void
1404 copy_threadref (threadref *dest, threadref *src)
1405 {
1406 int i;
1407 unsigned char *csrc, *cdest;
1408
1409 csrc = (unsigned char *) src;
1410 cdest = (unsigned char *) dest;
1411 i = 8;
1412 while (i--)
1413 *cdest++ = *csrc++;
1414 }
1415
1416 static int
1417 threadmatch (threadref *dest, threadref *src)
1418 {
1419 /* things are broken right now, so just assume we got a match */
1420 #if 0
1421 unsigned char *srcp, *destp;
1422 int i, result;
1423 srcp = (char *) src;
1424 destp = (char *) dest;
1425
1426 result = 1;
1427 while (i-- > 0)
1428 result &= (*srcp++ == *destp++) ? 1 : 0;
1429 return result;
1430 #endif
1431 return 1;
1432 }
1433
1434 /*
1435 threadid:1, # always request threadid
1436 context_exists:2,
1437 display:4,
1438 unique_name:8,
1439 more_display:16
1440 */
1441
1442 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1443
1444 static char *
1445 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1446 {
1447 *pkt++ = 'q'; /* Info Query */
1448 *pkt++ = 'P'; /* process or thread info */
1449 pkt = pack_int (pkt, mode); /* mode */
1450 pkt = pack_threadid (pkt, id); /* threadid */
1451 *pkt = '\0'; /* terminate */
1452 return pkt;
1453 }
1454
1455 /* These values tag the fields in a thread info response packet */
1456 /* Tagging the fields allows us to request specific fields and to
1457 add more fields as time goes by */
1458
1459 #define TAG_THREADID 1 /* Echo the thread identifier */
1460 #define TAG_EXISTS 2 /* Is this process defined enough to
1461 fetch registers and its stack */
1462 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1463 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1464 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1465 the process */
1466
1467 static int
1468 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1469 struct gdb_ext_thread_info *info)
1470 {
1471 struct remote_state *rs = get_remote_state ();
1472 int mask, length;
1473 unsigned int tag;
1474 threadref ref;
1475 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1476 int retval = 1;
1477
1478 /* info->threadid = 0; FIXME: implement zero_threadref */
1479 info->active = 0;
1480 info->display[0] = '\0';
1481 info->shortname[0] = '\0';
1482 info->more_display[0] = '\0';
1483
1484 /* Assume the characters indicating the packet type have been stripped */
1485 pkt = unpack_int (pkt, &mask); /* arg mask */
1486 pkt = unpack_threadid (pkt, &ref);
1487
1488 if (mask == 0)
1489 warning ("Incomplete response to threadinfo request\n");
1490 if (!threadmatch (&ref, expectedref))
1491 { /* This is an answer to a different request */
1492 warning ("ERROR RMT Thread info mismatch\n");
1493 return 0;
1494 }
1495 copy_threadref (&info->threadid, &ref);
1496
1497 /* Loop on tagged fields , try to bail if somthing goes wrong */
1498
1499 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1500 {
1501 pkt = unpack_int (pkt, &tag); /* tag */
1502 pkt = unpack_byte (pkt, &length); /* length */
1503 if (!(tag & mask)) /* tags out of synch with mask */
1504 {
1505 warning ("ERROR RMT: threadinfo tag mismatch\n");
1506 retval = 0;
1507 break;
1508 }
1509 if (tag == TAG_THREADID)
1510 {
1511 if (length != 16)
1512 {
1513 warning ("ERROR RMT: length of threadid is not 16\n");
1514 retval = 0;
1515 break;
1516 }
1517 pkt = unpack_threadid (pkt, &ref);
1518 mask = mask & ~TAG_THREADID;
1519 continue;
1520 }
1521 if (tag == TAG_EXISTS)
1522 {
1523 info->active = stub_unpack_int (pkt, length);
1524 pkt += length;
1525 mask = mask & ~(TAG_EXISTS);
1526 if (length > 8)
1527 {
1528 warning ("ERROR RMT: 'exists' length too long\n");
1529 retval = 0;
1530 break;
1531 }
1532 continue;
1533 }
1534 if (tag == TAG_THREADNAME)
1535 {
1536 pkt = unpack_string (pkt, &info->shortname[0], length);
1537 mask = mask & ~TAG_THREADNAME;
1538 continue;
1539 }
1540 if (tag == TAG_DISPLAY)
1541 {
1542 pkt = unpack_string (pkt, &info->display[0], length);
1543 mask = mask & ~TAG_DISPLAY;
1544 continue;
1545 }
1546 if (tag == TAG_MOREDISPLAY)
1547 {
1548 pkt = unpack_string (pkt, &info->more_display[0], length);
1549 mask = mask & ~TAG_MOREDISPLAY;
1550 continue;
1551 }
1552 warning ("ERROR RMT: unknown thread info tag\n");
1553 break; /* Not a tag we know about */
1554 }
1555 return retval;
1556 }
1557
1558 static int
1559 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1560 struct gdb_ext_thread_info *info)
1561 {
1562 struct remote_state *rs = get_remote_state ();
1563 int result;
1564 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1565
1566 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1567 putpkt (threadinfo_pkt);
1568 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1569 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1570 info);
1571 return result;
1572 }
1573
1574 /* Unfortunately, 61 bit thread-ids are bigger than the internal
1575 representation of a threadid. */
1576
1577 static int
1578 adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1579 struct gdb_ext_thread_info *info)
1580 {
1581 threadref lclref;
1582
1583 int_to_threadref (&lclref, *ref);
1584 return remote_get_threadinfo (&lclref, selection, info);
1585 }
1586
1587 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1588
1589 static char *
1590 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1591 threadref *nextthread)
1592 {
1593 *pkt++ = 'q'; /* info query packet */
1594 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1595 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1596 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1597 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1598 *pkt = '\0';
1599 return pkt;
1600 }
1601
1602 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1603
1604 static int
1605 parse_threadlist_response (char *pkt, int result_limit,
1606 threadref *original_echo, threadref *resultlist,
1607 int *doneflag)
1608 {
1609 struct remote_state *rs = get_remote_state ();
1610 char *limit;
1611 int count, resultcount, done;
1612
1613 resultcount = 0;
1614 /* Assume the 'q' and 'M chars have been stripped. */
1615 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1616 pkt = unpack_byte (pkt, &count); /* count field */
1617 pkt = unpack_nibble (pkt, &done);
1618 /* The first threadid is the argument threadid. */
1619 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1620 while ((count-- > 0) && (pkt < limit))
1621 {
1622 pkt = unpack_threadid (pkt, resultlist++);
1623 if (resultcount++ >= result_limit)
1624 break;
1625 }
1626 if (doneflag)
1627 *doneflag = done;
1628 return resultcount;
1629 }
1630
1631 static int
1632 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1633 int *done, int *result_count, threadref *threadlist)
1634 {
1635 struct remote_state *rs = get_remote_state ();
1636 static threadref echo_nextthread;
1637 char *threadlist_packet = alloca (rs->remote_packet_size);
1638 char *t_response = alloca (rs->remote_packet_size);
1639 int result = 1;
1640
1641 /* Trancate result limit to be smaller than the packet size */
1642 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1643 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1644
1645 pack_threadlist_request (threadlist_packet,
1646 startflag, result_limit, nextthread);
1647 putpkt (threadlist_packet);
1648 getpkt (t_response, (rs->remote_packet_size), 0);
1649
1650 *result_count =
1651 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1652 threadlist, done);
1653
1654 if (!threadmatch (&echo_nextthread, nextthread))
1655 {
1656 /* FIXME: This is a good reason to drop the packet */
1657 /* Possably, there is a duplicate response */
1658 /* Possabilities :
1659 retransmit immediatly - race conditions
1660 retransmit after timeout - yes
1661 exit
1662 wait for packet, then exit
1663 */
1664 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1665 return 0; /* I choose simply exiting */
1666 }
1667 if (*result_count <= 0)
1668 {
1669 if (*done != 1)
1670 {
1671 warning ("RMT ERROR : failed to get remote thread list\n");
1672 result = 0;
1673 }
1674 return result; /* break; */
1675 }
1676 if (*result_count > result_limit)
1677 {
1678 *result_count = 0;
1679 warning ("RMT ERROR: threadlist response longer than requested\n");
1680 return 0;
1681 }
1682 return result;
1683 }
1684
1685 /* This is the interface between remote and threads, remotes upper interface */
1686
1687 /* remote_find_new_threads retrieves the thread list and for each
1688 thread in the list, looks up the thread in GDB's internal list,
1689 ading the thread if it does not already exist. This involves
1690 getting partial thread lists from the remote target so, polling the
1691 quit_flag is required. */
1692
1693
1694 /* About this many threadisds fit in a packet. */
1695
1696 #define MAXTHREADLISTRESULTS 32
1697
1698 static int
1699 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1700 int looplimit)
1701 {
1702 int done, i, result_count;
1703 int startflag = 1;
1704 int result = 1;
1705 int loopcount = 0;
1706 static threadref nextthread;
1707 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1708
1709 done = 0;
1710 while (!done)
1711 {
1712 if (loopcount++ > looplimit)
1713 {
1714 result = 0;
1715 warning ("Remote fetch threadlist -infinite loop-\n");
1716 break;
1717 }
1718 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1719 &done, &result_count, resultthreadlist))
1720 {
1721 result = 0;
1722 break;
1723 }
1724 /* clear for later iterations */
1725 startflag = 0;
1726 /* Setup to resume next batch of thread references, set nextthread. */
1727 if (result_count >= 1)
1728 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1729 i = 0;
1730 while (result_count--)
1731 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1732 break;
1733 }
1734 return result;
1735 }
1736
1737 static int
1738 remote_newthread_step (threadref *ref, void *context)
1739 {
1740 ptid_t ptid;
1741
1742 ptid = pid_to_ptid (threadref_to_int (ref));
1743
1744 if (!in_thread_list (ptid))
1745 add_thread (ptid);
1746 return 1; /* continue iterator */
1747 }
1748
1749 #define CRAZY_MAX_THREADS 1000
1750
1751 static ptid_t
1752 remote_current_thread (ptid_t oldpid)
1753 {
1754 struct remote_state *rs = get_remote_state ();
1755 char *buf = alloca (rs->remote_packet_size);
1756
1757 putpkt ("qC");
1758 getpkt (buf, (rs->remote_packet_size), 0);
1759 if (buf[0] == 'Q' && buf[1] == 'C')
1760 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1761 else
1762 return oldpid;
1763 }
1764
1765 /* Find new threads for info threads command.
1766 * Original version, using John Metzler's thread protocol.
1767 */
1768
1769 static void
1770 remote_find_new_threads (void)
1771 {
1772 remote_threadlist_iterator (remote_newthread_step, 0,
1773 CRAZY_MAX_THREADS);
1774 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1775 inferior_ptid = remote_current_thread (inferior_ptid);
1776 }
1777
1778 /*
1779 * Find all threads for info threads command.
1780 * Uses new thread protocol contributed by Cisco.
1781 * Falls back and attempts to use the older method (above)
1782 * if the target doesn't respond to the new method.
1783 */
1784
1785 static void
1786 remote_threads_info (void)
1787 {
1788 struct remote_state *rs = get_remote_state ();
1789 char *buf = alloca (rs->remote_packet_size);
1790 char *bufp;
1791 int tid;
1792
1793 if (remote_desc == 0) /* paranoia */
1794 error ("Command can only be used when connected to the remote target.");
1795
1796 if (use_threadinfo_query)
1797 {
1798 putpkt ("qfThreadInfo");
1799 bufp = buf;
1800 getpkt (bufp, (rs->remote_packet_size), 0);
1801 if (bufp[0] != '\0') /* q packet recognized */
1802 {
1803 while (*bufp++ == 'm') /* reply contains one or more TID */
1804 {
1805 do
1806 {
1807 tid = strtol (bufp, &bufp, 16);
1808 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1809 add_thread (pid_to_ptid (tid));
1810 }
1811 while (*bufp++ == ','); /* comma-separated list */
1812 putpkt ("qsThreadInfo");
1813 bufp = buf;
1814 getpkt (bufp, (rs->remote_packet_size), 0);
1815 }
1816 return; /* done */
1817 }
1818 }
1819
1820 /* Else fall back to old method based on jmetzler protocol. */
1821 use_threadinfo_query = 0;
1822 remote_find_new_threads ();
1823 return;
1824 }
1825
1826 /*
1827 * Collect a descriptive string about the given thread.
1828 * The target may say anything it wants to about the thread
1829 * (typically info about its blocked / runnable state, name, etc.).
1830 * This string will appear in the info threads display.
1831 *
1832 * Optional: targets are not required to implement this function.
1833 */
1834
1835 static char *
1836 remote_threads_extra_info (struct thread_info *tp)
1837 {
1838 struct remote_state *rs = get_remote_state ();
1839 int result;
1840 int set;
1841 threadref id;
1842 struct gdb_ext_thread_info threadinfo;
1843 static char display_buf[100]; /* arbitrary... */
1844 char *bufp = alloca (rs->remote_packet_size);
1845 int n = 0; /* position in display_buf */
1846
1847 if (remote_desc == 0) /* paranoia */
1848 internal_error (__FILE__, __LINE__,
1849 "remote_threads_extra_info");
1850
1851 if (use_threadextra_query)
1852 {
1853 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1854 putpkt (bufp);
1855 getpkt (bufp, (rs->remote_packet_size), 0);
1856 if (bufp[0] != 0)
1857 {
1858 n = min (strlen (bufp) / 2, sizeof (display_buf));
1859 result = hex2bin (bufp, display_buf, n);
1860 display_buf [result] = '\0';
1861 return display_buf;
1862 }
1863 }
1864
1865 /* If the above query fails, fall back to the old method. */
1866 use_threadextra_query = 0;
1867 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1868 | TAG_MOREDISPLAY | TAG_DISPLAY;
1869 int_to_threadref (&id, PIDGET (tp->ptid));
1870 if (remote_get_threadinfo (&id, set, &threadinfo))
1871 if (threadinfo.active)
1872 {
1873 if (*threadinfo.shortname)
1874 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1875 if (*threadinfo.display)
1876 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1877 if (*threadinfo.more_display)
1878 n += sprintf(&display_buf[n], " Priority: %s",
1879 threadinfo.more_display);
1880
1881 if (n > 0)
1882 {
1883 /* for purely cosmetic reasons, clear up trailing commas */
1884 if (',' == display_buf[n-1])
1885 display_buf[n-1] = ' ';
1886 return display_buf;
1887 }
1888 }
1889 return NULL;
1890 }
1891
1892 \f
1893
1894 /* Restart the remote side; this is an extended protocol operation. */
1895
1896 static void
1897 extended_remote_restart (void)
1898 {
1899 struct remote_state *rs = get_remote_state ();
1900 char *buf = alloca (rs->remote_packet_size);
1901
1902 /* Send the restart command; for reasons I don't understand the
1903 remote side really expects a number after the "R". */
1904 buf[0] = 'R';
1905 sprintf (&buf[1], "%x", 0);
1906 putpkt (buf);
1907
1908 /* Now query for status so this looks just like we restarted
1909 gdbserver from scratch. */
1910 putpkt ("?");
1911 getpkt (buf, (rs->remote_packet_size), 0);
1912 }
1913 \f
1914 /* Clean up connection to a remote debugger. */
1915
1916 /* ARGSUSED */
1917 static void
1918 remote_close (int quitting)
1919 {
1920 if (remote_desc)
1921 serial_close (remote_desc);
1922 remote_desc = NULL;
1923 }
1924
1925 /* Query the remote side for the text, data and bss offsets. */
1926
1927 static void
1928 get_offsets (void)
1929 {
1930 struct remote_state *rs = get_remote_state ();
1931 char *buf = alloca (rs->remote_packet_size);
1932 char *ptr;
1933 int lose;
1934 CORE_ADDR text_addr, data_addr, bss_addr;
1935 struct section_offsets *offs;
1936
1937 putpkt ("qOffsets");
1938
1939 getpkt (buf, (rs->remote_packet_size), 0);
1940
1941 if (buf[0] == '\000')
1942 return; /* Return silently. Stub doesn't support
1943 this command. */
1944 if (buf[0] == 'E')
1945 {
1946 warning ("Remote failure reply: %s", buf);
1947 return;
1948 }
1949
1950 /* Pick up each field in turn. This used to be done with scanf, but
1951 scanf will make trouble if CORE_ADDR size doesn't match
1952 conversion directives correctly. The following code will work
1953 with any size of CORE_ADDR. */
1954 text_addr = data_addr = bss_addr = 0;
1955 ptr = buf;
1956 lose = 0;
1957
1958 if (strncmp (ptr, "Text=", 5) == 0)
1959 {
1960 ptr += 5;
1961 /* Don't use strtol, could lose on big values. */
1962 while (*ptr && *ptr != ';')
1963 text_addr = (text_addr << 4) + fromhex (*ptr++);
1964 }
1965 else
1966 lose = 1;
1967
1968 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1969 {
1970 ptr += 6;
1971 while (*ptr && *ptr != ';')
1972 data_addr = (data_addr << 4) + fromhex (*ptr++);
1973 }
1974 else
1975 lose = 1;
1976
1977 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1978 {
1979 ptr += 5;
1980 while (*ptr && *ptr != ';')
1981 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1982 }
1983 else
1984 lose = 1;
1985
1986 if (lose)
1987 error ("Malformed response to offset query, %s", buf);
1988
1989 if (symfile_objfile == NULL)
1990 return;
1991
1992 offs = ((struct section_offsets *)
1993 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
1994 memcpy (offs, symfile_objfile->section_offsets,
1995 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
1996
1997 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1998
1999 /* This is a temporary kludge to force data and bss to use the same offsets
2000 because that's what nlmconv does now. The real solution requires changes
2001 to the stub and remote.c that I don't have time to do right now. */
2002
2003 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2004 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2005
2006 objfile_relocate (symfile_objfile, offs);
2007 }
2008
2009 /*
2010 * Cisco version of section offsets:
2011 *
2012 * Instead of having GDB query the target for the section offsets,
2013 * Cisco lets the target volunteer the information! It's also in
2014 * a different format, so here are the functions that will decode
2015 * a section offset packet from a Cisco target.
2016 */
2017
2018 /*
2019 * Function: remote_cisco_section_offsets
2020 *
2021 * Returns: zero for success, non-zero for failure
2022 */
2023
2024 static int
2025 remote_cisco_section_offsets (bfd_vma text_addr,
2026 bfd_vma data_addr,
2027 bfd_vma bss_addr,
2028 bfd_signed_vma *text_offs,
2029 bfd_signed_vma *data_offs,
2030 bfd_signed_vma *bss_offs)
2031 {
2032 bfd_vma text_base, data_base, bss_base;
2033 struct minimal_symbol *start;
2034 asection *sect;
2035 bfd *abfd;
2036 int len;
2037
2038 if (symfile_objfile == NULL)
2039 return -1; /* no can do nothin' */
2040
2041 start = lookup_minimal_symbol ("_start", NULL, NULL);
2042 if (start == NULL)
2043 return -1; /* Can't find "_start" symbol */
2044
2045 data_base = bss_base = 0;
2046 text_base = SYMBOL_VALUE_ADDRESS (start);
2047
2048 abfd = symfile_objfile->obfd;
2049 for (sect = abfd->sections;
2050 sect != 0;
2051 sect = sect->next)
2052 {
2053 const char *p = bfd_get_section_name (abfd, sect);
2054 len = strlen (p);
2055 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
2056 if (data_base == 0 ||
2057 data_base > bfd_get_section_vma (abfd, sect))
2058 data_base = bfd_get_section_vma (abfd, sect);
2059 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
2060 if (bss_base == 0 ||
2061 bss_base > bfd_get_section_vma (abfd, sect))
2062 bss_base = bfd_get_section_vma (abfd, sect);
2063 }
2064 *text_offs = text_addr - text_base;
2065 *data_offs = data_addr - data_base;
2066 *bss_offs = bss_addr - bss_base;
2067 if (remote_debug)
2068 {
2069 char tmp[128];
2070
2071 sprintf (tmp, "VMA: text = 0x");
2072 sprintf_vma (tmp + strlen (tmp), text_addr);
2073 sprintf (tmp + strlen (tmp), " data = 0x");
2074 sprintf_vma (tmp + strlen (tmp), data_addr);
2075 sprintf (tmp + strlen (tmp), " bss = 0x");
2076 sprintf_vma (tmp + strlen (tmp), bss_addr);
2077 fprintf_filtered (gdb_stdlog, tmp);
2078 fprintf_filtered (gdb_stdlog,
2079 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
2080 paddr_nz (*text_offs),
2081 paddr_nz (*data_offs),
2082 paddr_nz (*bss_offs));
2083 }
2084
2085 return 0;
2086 }
2087
2088 /*
2089 * Function: remote_cisco_objfile_relocate
2090 *
2091 * Relocate the symbol file for a remote target.
2092 */
2093
2094 void
2095 remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
2096 bfd_signed_vma bss_off)
2097 {
2098 struct section_offsets *offs;
2099
2100 if (text_off != 0 || data_off != 0 || bss_off != 0)
2101 {
2102 /* FIXME: This code assumes gdb-stabs.h is being used; it's
2103 broken for xcoff, dwarf, sdb-coff, etc. But there is no
2104 simple canonical representation for this stuff. */
2105
2106 offs = (struct section_offsets *)
2107 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2108 memcpy (offs, symfile_objfile->section_offsets,
2109 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2110
2111 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
2112 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
2113 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
2114
2115 /* First call the standard objfile_relocate. */
2116 objfile_relocate (symfile_objfile, offs);
2117
2118 /* Now we need to fix up the section entries already attached to
2119 the exec target. These entries will control memory transfers
2120 from the exec file. */
2121
2122 exec_set_section_offsets (text_off, data_off, bss_off);
2123 }
2124 }
2125
2126 /* Stub for catch_errors. */
2127
2128 static int
2129 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
2130 {
2131 start_remote (); /* Initialize gdb process mechanisms */
2132 /* NOTE: Return something >=0. A -ve value is reserved for
2133 catch_exceptions. */
2134 return 1;
2135 }
2136
2137 static int
2138 remote_start_remote (struct ui_out *uiout, void *dummy)
2139 {
2140 immediate_quit++; /* Allow user to interrupt it */
2141
2142 /* Ack any packet which the remote side has already sent. */
2143 serial_write (remote_desc, "+", 1);
2144
2145 /* Let the stub know that we want it to return the thread. */
2146 set_thread (-1, 0);
2147
2148 inferior_ptid = remote_current_thread (inferior_ptid);
2149
2150 get_offsets (); /* Get text, data & bss offsets */
2151
2152 putpkt ("?"); /* initiate a query from remote machine */
2153 immediate_quit--;
2154
2155 /* NOTE: See comment above in remote_start_remote_dummy(). This
2156 function returns something >=0. */
2157 return remote_start_remote_dummy (uiout, dummy);
2158 }
2159
2160 /* Open a connection to a remote debugger.
2161 NAME is the filename used for communication. */
2162
2163 static void
2164 remote_open (char *name, int from_tty)
2165 {
2166 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2167 }
2168
2169 /* Just like remote_open, but with asynchronous support. */
2170 static void
2171 remote_async_open (char *name, int from_tty)
2172 {
2173 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2174 }
2175
2176 /* Open a connection to a remote debugger using the extended
2177 remote gdb protocol. NAME is the filename used for communication. */
2178
2179 static void
2180 extended_remote_open (char *name, int from_tty)
2181 {
2182 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2183 0 /* async_p */);
2184 }
2185
2186 /* Just like extended_remote_open, but with asynchronous support. */
2187 static void
2188 extended_remote_async_open (char *name, int from_tty)
2189 {
2190 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2191 1 /*extended_p */, 1 /* async_p */);
2192 }
2193
2194 /* Generic code for opening a connection to a remote target. */
2195
2196 static void
2197 init_all_packet_configs (void)
2198 {
2199 int i;
2200 update_packet_config (&remote_protocol_e);
2201 update_packet_config (&remote_protocol_E);
2202 update_packet_config (&remote_protocol_P);
2203 update_packet_config (&remote_protocol_qSymbol);
2204 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2205 update_packet_config (&remote_protocol_Z[i]);
2206 /* Force remote_write_bytes to check whether target supports binary
2207 downloading. */
2208 update_packet_config (&remote_protocol_binary_download);
2209 }
2210
2211 /* Symbol look-up. */
2212
2213 static void
2214 remote_check_symbols (struct objfile *objfile)
2215 {
2216 struct remote_state *rs = get_remote_state ();
2217 char *msg, *reply, *tmp;
2218 struct minimal_symbol *sym;
2219 int end;
2220
2221 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2222 return;
2223
2224 msg = alloca (rs->remote_packet_size);
2225 reply = alloca (rs->remote_packet_size);
2226
2227 /* Invite target to request symbol lookups. */
2228
2229 putpkt ("qSymbol::");
2230 getpkt (reply, (rs->remote_packet_size), 0);
2231 packet_ok (reply, &remote_protocol_qSymbol);
2232
2233 while (strncmp (reply, "qSymbol:", 8) == 0)
2234 {
2235 tmp = &reply[8];
2236 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2237 msg[end] = '\0';
2238 sym = lookup_minimal_symbol (msg, NULL, NULL);
2239 if (sym == NULL)
2240 sprintf (msg, "qSymbol::%s", &reply[8]);
2241 else
2242 sprintf (msg, "qSymbol:%s:%s",
2243 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2244 &reply[8]);
2245 putpkt (msg);
2246 getpkt (reply, (rs->remote_packet_size), 0);
2247 }
2248 }
2249
2250 static struct serial *
2251 remote_serial_open (char *name)
2252 {
2253 static int udp_warning = 0;
2254
2255 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2256 of in ser-tcp.c, because it is the remote protocol assuming that the
2257 serial connection is reliable and not the serial connection promising
2258 to be. */
2259 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2260 {
2261 warning ("The remote protocol may be unreliable over UDP.");
2262 warning ("Some events may be lost, rendering further debugging "
2263 "impossible.");
2264 udp_warning = 1;
2265 }
2266
2267 return serial_open (name);
2268 }
2269
2270 static void
2271 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2272 int extended_p, int async_p)
2273 {
2274 int ex;
2275 struct remote_state *rs = get_remote_state ();
2276 if (name == 0)
2277 error ("To open a remote debug connection, you need to specify what\n"
2278 "serial device is attached to the remote system\n"
2279 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2280
2281 /* See FIXME above */
2282 if (!async_p)
2283 wait_forever_enabled_p = 1;
2284
2285 target_preopen (from_tty);
2286
2287 unpush_target (target);
2288
2289 remote_desc = remote_serial_open (name);
2290 if (!remote_desc)
2291 perror_with_name (name);
2292
2293 if (baud_rate != -1)
2294 {
2295 if (serial_setbaudrate (remote_desc, baud_rate))
2296 {
2297 serial_close (remote_desc);
2298 perror_with_name (name);
2299 }
2300 }
2301
2302 serial_raw (remote_desc);
2303
2304 /* If there is something sitting in the buffer we might take it as a
2305 response to a command, which would be bad. */
2306 serial_flush_input (remote_desc);
2307
2308 if (from_tty)
2309 {
2310 puts_filtered ("Remote debugging using ");
2311 puts_filtered (name);
2312 puts_filtered ("\n");
2313 }
2314 push_target (target); /* Switch to using remote target now */
2315
2316 init_all_packet_configs ();
2317
2318 general_thread = -2;
2319 continue_thread = -2;
2320
2321 /* Probe for ability to use "ThreadInfo" query, as required. */
2322 use_threadinfo_query = 1;
2323 use_threadextra_query = 1;
2324
2325 /* Without this, some commands which require an active target (such
2326 as kill) won't work. This variable serves (at least) double duty
2327 as both the pid of the target process (if it has such), and as a
2328 flag indicating that a target is active. These functions should
2329 be split out into seperate variables, especially since GDB will
2330 someday have a notion of debugging several processes. */
2331
2332 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2333
2334 if (async_p)
2335 {
2336 /* With this target we start out by owning the terminal. */
2337 remote_async_terminal_ours_p = 1;
2338
2339 /* FIXME: cagney/1999-09-23: During the initial connection it is
2340 assumed that the target is already ready and able to respond to
2341 requests. Unfortunately remote_start_remote() eventually calls
2342 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2343 around this. Eventually a mechanism that allows
2344 wait_for_inferior() to expect/get timeouts will be
2345 implemented. */
2346 wait_forever_enabled_p = 0;
2347 }
2348
2349 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2350 /* First delete any symbols previously loaded from shared libraries. */
2351 no_shared_libraries (NULL, 0);
2352 #endif
2353
2354 /* Start the remote connection. If error() or QUIT, discard this
2355 target (we'd otherwise be in an inconsistent state) and then
2356 propogate the error on up the exception chain. This ensures that
2357 the caller doesn't stumble along blindly assuming that the
2358 function succeeded. The CLI doesn't have this problem but other
2359 UI's, such as MI do.
2360
2361 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2362 this function should return an error indication letting the
2363 caller restore the previous state. Unfortunatly the command
2364 ``target remote'' is directly wired to this function making that
2365 impossible. On a positive note, the CLI side of this problem has
2366 been fixed - the function set_cmd_context() makes it possible for
2367 all the ``target ....'' commands to share a common callback
2368 function. See cli-dump.c. */
2369 ex = catch_exceptions (uiout,
2370 remote_start_remote, NULL,
2371 "Couldn't establish connection to remote"
2372 " target\n",
2373 RETURN_MASK_ALL);
2374 if (ex < 0)
2375 {
2376 pop_target ();
2377 if (async_p)
2378 wait_forever_enabled_p = 1;
2379 throw_exception (ex);
2380 }
2381
2382 if (async_p)
2383 wait_forever_enabled_p = 1;
2384
2385 if (extended_p)
2386 {
2387 /* Tell the remote that we are using the extended protocol. */
2388 char *buf = alloca (rs->remote_packet_size);
2389 putpkt ("!");
2390 getpkt (buf, (rs->remote_packet_size), 0);
2391 }
2392 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2393 /* FIXME: need a master target_open vector from which all
2394 remote_opens can be called, so that stuff like this can
2395 go there. Failing that, the following code must be copied
2396 to the open function for any remote target that wants to
2397 support svr4 shared libraries. */
2398
2399 /* Set up to detect and load shared libraries. */
2400 if (exec_bfd) /* No use without an exec file. */
2401 {
2402 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2403 remote_check_symbols (symfile_objfile);
2404 }
2405 #endif
2406 }
2407
2408 /* This takes a program previously attached to and detaches it. After
2409 this is done, GDB can be used to debug some other program. We
2410 better not have left any breakpoints in the target program or it'll
2411 die when it hits one. */
2412
2413 static void
2414 remote_detach (char *args, int from_tty)
2415 {
2416 struct remote_state *rs = get_remote_state ();
2417 char *buf = alloca (rs->remote_packet_size);
2418
2419 if (args)
2420 error ("Argument given to \"detach\" when remotely debugging.");
2421
2422 /* Tell the remote target to detach. */
2423 strcpy (buf, "D");
2424 remote_send (buf, (rs->remote_packet_size));
2425
2426 target_mourn_inferior ();
2427 if (from_tty)
2428 puts_filtered ("Ending remote debugging.\n");
2429
2430 }
2431
2432 /* Same as remote_detach, but with async support. */
2433 static void
2434 remote_async_detach (char *args, int from_tty)
2435 {
2436 struct remote_state *rs = get_remote_state ();
2437 char *buf = alloca (rs->remote_packet_size);
2438
2439 if (args)
2440 error ("Argument given to \"detach\" when remotely debugging.");
2441
2442 /* Tell the remote target to detach. */
2443 strcpy (buf, "D");
2444 remote_send (buf, (rs->remote_packet_size));
2445
2446 /* Unregister the file descriptor from the event loop. */
2447 if (target_is_async_p ())
2448 serial_async (remote_desc, NULL, 0);
2449
2450 target_mourn_inferior ();
2451 if (from_tty)
2452 puts_filtered ("Ending remote debugging.\n");
2453 }
2454
2455 /* Convert hex digit A to a number. */
2456
2457 static int
2458 fromhex (int a)
2459 {
2460 if (a >= '0' && a <= '9')
2461 return a - '0';
2462 else if (a >= 'a' && a <= 'f')
2463 return a - 'a' + 10;
2464 else if (a >= 'A' && a <= 'F')
2465 return a - 'A' + 10;
2466 else
2467 error ("Reply contains invalid hex digit %d", a);
2468 }
2469
2470 static int
2471 hex2bin (const char *hex, char *bin, int count)
2472 {
2473 int i;
2474
2475 for (i = 0; i < count; i++)
2476 {
2477 if (hex[0] == 0 || hex[1] == 0)
2478 {
2479 /* Hex string is short, or of uneven length.
2480 Return the count that has been converted so far. */
2481 return i;
2482 }
2483 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2484 hex += 2;
2485 }
2486 return i;
2487 }
2488
2489 /* Convert number NIB to a hex digit. */
2490
2491 static int
2492 tohex (int nib)
2493 {
2494 if (nib < 10)
2495 return '0' + nib;
2496 else
2497 return 'a' + nib - 10;
2498 }
2499
2500 static int
2501 bin2hex (const char *bin, char *hex, int count)
2502 {
2503 int i;
2504 /* May use a length, or a nul-terminated string as input. */
2505 if (count == 0)
2506 count = strlen (bin);
2507
2508 for (i = 0; i < count; i++)
2509 {
2510 *hex++ = tohex ((*bin >> 4) & 0xf);
2511 *hex++ = tohex (*bin++ & 0xf);
2512 }
2513 *hex = 0;
2514 return i;
2515 }
2516 \f
2517 /* Tell the remote machine to resume. */
2518
2519 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2520
2521 static int last_sent_step;
2522
2523 static void
2524 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2525 {
2526 struct remote_state *rs = get_remote_state ();
2527 char *buf = alloca (rs->remote_packet_size);
2528 int pid = PIDGET (ptid);
2529 char *p;
2530
2531 if (pid == -1)
2532 set_thread (0, 0); /* run any thread */
2533 else
2534 set_thread (pid, 0); /* run this thread */
2535
2536 last_sent_signal = siggnal;
2537 last_sent_step = step;
2538
2539 /* A hook for when we need to do something at the last moment before
2540 resumption. */
2541 if (target_resume_hook)
2542 (*target_resume_hook) ();
2543
2544
2545 /* The s/S/c/C packets do not return status. So if the target does
2546 not support the S or C packets, the debug agent returns an empty
2547 string which is detected in remote_wait(). This protocol defect
2548 is fixed in the e/E packets. */
2549
2550 if (step && step_range_end)
2551 {
2552 /* If the target does not support the 'E' packet, we try the 'S'
2553 packet. Ideally we would fall back to the 'e' packet if that
2554 too is not supported. But that would require another copy of
2555 the code to issue the 'e' packet (and fall back to 's' if not
2556 supported) in remote_wait(). */
2557
2558 if (siggnal != TARGET_SIGNAL_0)
2559 {
2560 if (remote_protocol_E.support != PACKET_DISABLE)
2561 {
2562 p = buf;
2563 *p++ = 'E';
2564 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2565 *p++ = tohex (((int) siggnal) & 0xf);
2566 *p++ = ',';
2567 p += hexnumstr (p, (ULONGEST) step_range_start);
2568 *p++ = ',';
2569 p += hexnumstr (p, (ULONGEST) step_range_end);
2570 *p++ = 0;
2571
2572 putpkt (buf);
2573 getpkt (buf, (rs->remote_packet_size), 0);
2574
2575 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2576 return;
2577 }
2578 }
2579 else
2580 {
2581 if (remote_protocol_e.support != PACKET_DISABLE)
2582 {
2583 p = buf;
2584 *p++ = 'e';
2585 p += hexnumstr (p, (ULONGEST) step_range_start);
2586 *p++ = ',';
2587 p += hexnumstr (p, (ULONGEST) step_range_end);
2588 *p++ = 0;
2589
2590 putpkt (buf);
2591 getpkt (buf, (rs->remote_packet_size), 0);
2592
2593 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2594 return;
2595 }
2596 }
2597 }
2598
2599 if (siggnal != TARGET_SIGNAL_0)
2600 {
2601 buf[0] = step ? 'S' : 'C';
2602 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2603 buf[2] = tohex (((int) siggnal) & 0xf);
2604 buf[3] = '\0';
2605 }
2606 else
2607 strcpy (buf, step ? "s" : "c");
2608
2609 putpkt (buf);
2610 }
2611
2612 /* Same as remote_resume, but with async support. */
2613 static void
2614 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2615 {
2616 struct remote_state *rs = get_remote_state ();
2617 char *buf = alloca (rs->remote_packet_size);
2618 int pid = PIDGET (ptid);
2619 char *p;
2620
2621 if (pid == -1)
2622 set_thread (0, 0); /* run any thread */
2623 else
2624 set_thread (pid, 0); /* run this thread */
2625
2626 last_sent_signal = siggnal;
2627 last_sent_step = step;
2628
2629 /* A hook for when we need to do something at the last moment before
2630 resumption. */
2631 if (target_resume_hook)
2632 (*target_resume_hook) ();
2633
2634 /* The s/S/c/C packets do not return status. So if the target does
2635 not support the S or C packets, the debug agent returns an empty
2636 string which is detected in remote_wait(). This protocol defect
2637 is fixed in the e/E packets. */
2638
2639 if (step && step_range_end)
2640 {
2641 /* If the target does not support the 'E' packet, we try the 'S'
2642 packet. Ideally we would fall back to the 'e' packet if that
2643 too is not supported. But that would require another copy of
2644 the code to issue the 'e' packet (and fall back to 's' if not
2645 supported) in remote_wait(). */
2646
2647 if (siggnal != TARGET_SIGNAL_0)
2648 {
2649 if (remote_protocol_E.support != PACKET_DISABLE)
2650 {
2651 p = buf;
2652 *p++ = 'E';
2653 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2654 *p++ = tohex (((int) siggnal) & 0xf);
2655 *p++ = ',';
2656 p += hexnumstr (p, (ULONGEST) step_range_start);
2657 *p++ = ',';
2658 p += hexnumstr (p, (ULONGEST) step_range_end);
2659 *p++ = 0;
2660
2661 putpkt (buf);
2662 getpkt (buf, (rs->remote_packet_size), 0);
2663
2664 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2665 goto register_event_loop;
2666 }
2667 }
2668 else
2669 {
2670 if (remote_protocol_e.support != PACKET_DISABLE)
2671 {
2672 p = buf;
2673 *p++ = 'e';
2674 p += hexnumstr (p, (ULONGEST) step_range_start);
2675 *p++ = ',';
2676 p += hexnumstr (p, (ULONGEST) step_range_end);
2677 *p++ = 0;
2678
2679 putpkt (buf);
2680 getpkt (buf, (rs->remote_packet_size), 0);
2681
2682 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2683 goto register_event_loop;
2684 }
2685 }
2686 }
2687
2688 if (siggnal != TARGET_SIGNAL_0)
2689 {
2690 buf[0] = step ? 'S' : 'C';
2691 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2692 buf[2] = tohex ((int) siggnal & 0xf);
2693 buf[3] = '\0';
2694 }
2695 else
2696 strcpy (buf, step ? "s" : "c");
2697
2698 putpkt (buf);
2699
2700 register_event_loop:
2701 /* We are about to start executing the inferior, let's register it
2702 with the event loop. NOTE: this is the one place where all the
2703 execution commands end up. We could alternatively do this in each
2704 of the execution commands in infcmd.c.*/
2705 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2706 into infcmd.c in order to allow inferior function calls to work
2707 NOT asynchronously. */
2708 if (event_loop_p && target_can_async_p ())
2709 target_async (inferior_event_handler, 0);
2710 /* Tell the world that the target is now executing. */
2711 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2712 this? Instead, should the client of target just assume (for
2713 async targets) that the target is going to start executing? Is
2714 this information already found in the continuation block? */
2715 if (target_is_async_p ())
2716 target_executing = 1;
2717 }
2718 \f
2719
2720 /* Set up the signal handler for SIGINT, while the target is
2721 executing, ovewriting the 'regular' SIGINT signal handler. */
2722 static void
2723 initialize_sigint_signal_handler (void)
2724 {
2725 sigint_remote_token =
2726 create_async_signal_handler (async_remote_interrupt, NULL);
2727 signal (SIGINT, handle_remote_sigint);
2728 }
2729
2730 /* Signal handler for SIGINT, while the target is executing. */
2731 static void
2732 handle_remote_sigint (int sig)
2733 {
2734 signal (sig, handle_remote_sigint_twice);
2735 sigint_remote_twice_token =
2736 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2737 mark_async_signal_handler_wrapper (sigint_remote_token);
2738 }
2739
2740 /* Signal handler for SIGINT, installed after SIGINT has already been
2741 sent once. It will take effect the second time that the user sends
2742 a ^C. */
2743 static void
2744 handle_remote_sigint_twice (int sig)
2745 {
2746 signal (sig, handle_sigint);
2747 sigint_remote_twice_token =
2748 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2749 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2750 }
2751
2752 /* Perform the real interruption of the target execution, in response
2753 to a ^C. */
2754 static void
2755 async_remote_interrupt (gdb_client_data arg)
2756 {
2757 if (remote_debug)
2758 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2759
2760 target_stop ();
2761 }
2762
2763 /* Perform interrupt, if the first attempt did not succeed. Just give
2764 up on the target alltogether. */
2765 void
2766 async_remote_interrupt_twice (gdb_client_data arg)
2767 {
2768 if (remote_debug)
2769 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2770 /* Do something only if the target was not killed by the previous
2771 cntl-C. */
2772 if (target_executing)
2773 {
2774 interrupt_query ();
2775 signal (SIGINT, handle_remote_sigint);
2776 }
2777 }
2778
2779 /* Reinstall the usual SIGINT handlers, after the target has
2780 stopped. */
2781 static void
2782 cleanup_sigint_signal_handler (void *dummy)
2783 {
2784 signal (SIGINT, handle_sigint);
2785 if (sigint_remote_twice_token)
2786 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2787 if (sigint_remote_token)
2788 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2789 }
2790
2791 /* Send ^C to target to halt it. Target will respond, and send us a
2792 packet. */
2793 static void (*ofunc) (int);
2794
2795 /* The command line interface's stop routine. This function is installed
2796 as a signal handler for SIGINT. The first time a user requests a
2797 stop, we call remote_stop to send a break or ^C. If there is no
2798 response from the target (it didn't stop when the user requested it),
2799 we ask the user if he'd like to detach from the target. */
2800 static void
2801 remote_interrupt (int signo)
2802 {
2803 /* If this doesn't work, try more severe steps. */
2804 signal (signo, remote_interrupt_twice);
2805
2806 if (remote_debug)
2807 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2808
2809 target_stop ();
2810 }
2811
2812 /* The user typed ^C twice. */
2813
2814 static void
2815 remote_interrupt_twice (int signo)
2816 {
2817 signal (signo, ofunc);
2818 interrupt_query ();
2819 signal (signo, remote_interrupt);
2820 }
2821
2822 /* This is the generic stop called via the target vector. When a target
2823 interrupt is requested, either by the command line or the GUI, we
2824 will eventually end up here. */
2825 static void
2826 remote_stop (void)
2827 {
2828 /* Send a break or a ^C, depending on user preference. */
2829 if (remote_debug)
2830 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2831
2832 if (remote_break)
2833 serial_send_break (remote_desc);
2834 else
2835 serial_write (remote_desc, "\003", 1);
2836 }
2837
2838 /* Ask the user what to do when an interrupt is received. */
2839
2840 static void
2841 interrupt_query (void)
2842 {
2843 target_terminal_ours ();
2844
2845 if (query ("Interrupted while waiting for the program.\n\
2846 Give up (and stop debugging it)? "))
2847 {
2848 target_mourn_inferior ();
2849 throw_exception (RETURN_QUIT);
2850 }
2851
2852 target_terminal_inferior ();
2853 }
2854
2855 /* Enable/disable target terminal ownership. Most targets can use
2856 terminal groups to control terminal ownership. Remote targets are
2857 different in that explicit transfer of ownership to/from GDB/target
2858 is required. */
2859
2860 static void
2861 remote_async_terminal_inferior (void)
2862 {
2863 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2864 sync_execution here. This function should only be called when
2865 GDB is resuming the inferior in the forground. A background
2866 resume (``run&'') should leave GDB in control of the terminal and
2867 consequently should not call this code. */
2868 if (!sync_execution)
2869 return;
2870 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2871 calls target_terminal_*() idenpotent. The event-loop GDB talking
2872 to an asynchronous target with a synchronous command calls this
2873 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2874 stops trying to transfer the terminal to the target when it
2875 shouldn't this guard can go away. */
2876 if (!remote_async_terminal_ours_p)
2877 return;
2878 delete_file_handler (input_fd);
2879 remote_async_terminal_ours_p = 0;
2880 initialize_sigint_signal_handler ();
2881 /* NOTE: At this point we could also register our selves as the
2882 recipient of all input. Any characters typed could then be
2883 passed on down to the target. */
2884 }
2885
2886 static void
2887 remote_async_terminal_ours (void)
2888 {
2889 /* See FIXME in remote_async_terminal_inferior. */
2890 if (!sync_execution)
2891 return;
2892 /* See FIXME in remote_async_terminal_inferior. */
2893 if (remote_async_terminal_ours_p)
2894 return;
2895 cleanup_sigint_signal_handler (NULL);
2896 add_file_handler (input_fd, stdin_event_handler, 0);
2897 remote_async_terminal_ours_p = 1;
2898 }
2899
2900 /* If nonzero, ignore the next kill. */
2901
2902 int kill_kludge;
2903
2904 void
2905 remote_console_output (char *msg)
2906 {
2907 char *p;
2908
2909 for (p = msg; p[0] && p[1]; p += 2)
2910 {
2911 char tb[2];
2912 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2913 tb[0] = c;
2914 tb[1] = 0;
2915 fputs_unfiltered (tb, gdb_stdtarg);
2916 }
2917 gdb_flush (gdb_stdtarg);
2918 }
2919
2920 /* Wait until the remote machine stops, then return,
2921 storing status in STATUS just as `wait' would.
2922 Returns "pid", which in the case of a multi-threaded
2923 remote OS, is the thread-id. */
2924
2925 static ptid_t
2926 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2927 {
2928 struct remote_state *rs = get_remote_state ();
2929 unsigned char *buf = alloca (rs->remote_packet_size);
2930 ULONGEST thread_num = -1;
2931 ULONGEST addr;
2932
2933 status->kind = TARGET_WAITKIND_EXITED;
2934 status->value.integer = 0;
2935
2936 while (1)
2937 {
2938 unsigned char *p;
2939
2940 ofunc = signal (SIGINT, remote_interrupt);
2941 getpkt (buf, (rs->remote_packet_size), 1);
2942 signal (SIGINT, ofunc);
2943
2944 /* This is a hook for when we need to do something (perhaps the
2945 collection of trace data) every time the target stops. */
2946 if (target_wait_loop_hook)
2947 (*target_wait_loop_hook) ();
2948
2949 remote_stopped_by_watchpoint_p = 0;
2950
2951 switch (buf[0])
2952 {
2953 case 'E': /* Error of some sort */
2954 warning ("Remote failure reply: %s", buf);
2955 continue;
2956 case 'T': /* Status with PC, SP, FP, ... */
2957 {
2958 int i;
2959 char regs[MAX_REGISTER_SIZE];
2960
2961 /* Expedited reply, containing Signal, {regno, reg} repeat */
2962 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2963 ss = signal number
2964 n... = register number
2965 r... = register contents
2966 */
2967 p = &buf[3]; /* after Txx */
2968
2969 while (*p)
2970 {
2971 unsigned char *p1;
2972 char *p_temp;
2973 int fieldsize;
2974 LONGEST pnum = 0;
2975
2976 /* If the packet contains a register number save it in pnum
2977 and set p1 to point to the character following it.
2978 Otherwise p1 points to p. */
2979
2980 /* If this packet is an awatch packet, don't parse the 'a'
2981 as a register number. */
2982
2983 if (strncmp (p, "awatch", strlen("awatch")) != 0)
2984 {
2985 /* Read the ``P'' register number. */
2986 pnum = strtol (p, &p_temp, 16);
2987 p1 = (unsigned char *) p_temp;
2988 }
2989 else
2990 p1 = p;
2991
2992 if (p1 == p) /* No register number present here */
2993 {
2994 p1 = (unsigned char *) strchr (p, ':');
2995 if (p1 == NULL)
2996 warning ("Malformed packet(a) (missing colon): %s\n\
2997 Packet: '%s'\n",
2998 p, buf);
2999 if (strncmp (p, "thread", p1 - p) == 0)
3000 {
3001 p_temp = unpack_varlen_hex (++p1, &thread_num);
3002 record_currthread (thread_num);
3003 p = (unsigned char *) p_temp;
3004 }
3005 else if ((strncmp (p, "watch", p1 - p) == 0)
3006 || (strncmp (p, "rwatch", p1 - p) == 0)
3007 || (strncmp (p, "awatch", p1 - p) == 0))
3008 {
3009 remote_stopped_by_watchpoint_p = 1;
3010 p = unpack_varlen_hex (++p1, &addr);
3011 remote_watch_data_address = (CORE_ADDR)addr;
3012 }
3013 else
3014 {
3015 /* Silently skip unknown optional info. */
3016 p_temp = strchr (p1 + 1, ';');
3017 if (p_temp)
3018 p = (unsigned char *) p_temp;
3019 }
3020 }
3021 else
3022 {
3023 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3024 p = p1;
3025
3026 if (*p++ != ':')
3027 warning ("Malformed packet(b) (missing colon): %s\n\
3028 Packet: '%s'\n",
3029 p, buf);
3030
3031 if (reg == NULL)
3032 warning ("Remote sent bad register number %s: %s\n\
3033 Packet: '%s'\n",
3034 phex_nz (pnum, 0), p, buf);
3035
3036 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3037 p += 2 * fieldsize;
3038 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3039 warning ("Remote reply is too short: %s", buf);
3040 supply_register (reg->regnum, regs);
3041 }
3042
3043 if (*p++ != ';')
3044 {
3045 warning ("Remote register badly formatted: %s", buf);
3046 warning (" here: %s", p);
3047 }
3048 }
3049 }
3050 /* fall through */
3051 case 'S': /* Old style status, just signal only */
3052 status->kind = TARGET_WAITKIND_STOPPED;
3053 status->value.sig = (enum target_signal)
3054 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3055
3056 if (buf[3] == 'p')
3057 {
3058 /* Export Cisco kernel mode as a convenience variable
3059 (so that it can be used in the GDB prompt if desired). */
3060
3061 if (cisco_kernel_mode == 1)
3062 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3063 value_from_string ("PDEBUG-"));
3064 cisco_kernel_mode = 0;
3065 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3066 record_currthread (thread_num);
3067 }
3068 else if (buf[3] == 'k')
3069 {
3070 /* Export Cisco kernel mode as a convenience variable
3071 (so that it can be used in the GDB prompt if desired). */
3072
3073 if (cisco_kernel_mode == 1)
3074 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3075 value_from_string ("KDEBUG-"));
3076 cisco_kernel_mode = 1;
3077 }
3078 goto got_status;
3079 case 'N': /* Cisco special: status and offsets */
3080 {
3081 bfd_vma text_addr, data_addr, bss_addr;
3082 bfd_signed_vma text_off, data_off, bss_off;
3083 unsigned char *p1;
3084
3085 status->kind = TARGET_WAITKIND_STOPPED;
3086 status->value.sig = (enum target_signal)
3087 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3088
3089 if (symfile_objfile == NULL)
3090 {
3091 warning ("Relocation packet received with no symbol file. \
3092 Packet Dropped");
3093 goto got_status;
3094 }
3095
3096 /* Relocate object file. Buffer format is NAATT;DD;BB
3097 * where AA is the signal number, TT is the new text
3098 * address, DD * is the new data address, and BB is the
3099 * new bss address. */
3100
3101 p = &buf[3];
3102 text_addr = strtoul (p, (char **) &p1, 16);
3103 if (p1 == p || *p1 != ';')
3104 warning ("Malformed relocation packet: Packet '%s'", buf);
3105 p = p1 + 1;
3106 data_addr = strtoul (p, (char **) &p1, 16);
3107 if (p1 == p || *p1 != ';')
3108 warning ("Malformed relocation packet: Packet '%s'", buf);
3109 p = p1 + 1;
3110 bss_addr = strtoul (p, (char **) &p1, 16);
3111 if (p1 == p)
3112 warning ("Malformed relocation packet: Packet '%s'", buf);
3113
3114 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3115 &text_off, &data_off, &bss_off)
3116 == 0)
3117 if (text_off != 0 || data_off != 0 || bss_off != 0)
3118 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3119
3120 goto got_status;
3121 }
3122 case 'W': /* Target exited */
3123 {
3124 /* The remote process exited. */
3125 status->kind = TARGET_WAITKIND_EXITED;
3126 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3127 goto got_status;
3128 }
3129 case 'X':
3130 status->kind = TARGET_WAITKIND_SIGNALLED;
3131 status->value.sig = (enum target_signal)
3132 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3133 kill_kludge = 1;
3134
3135 goto got_status;
3136 case 'O': /* Console output */
3137 remote_console_output (buf + 1);
3138 continue;
3139 case '\0':
3140 if (last_sent_signal != TARGET_SIGNAL_0)
3141 {
3142 /* Zero length reply means that we tried 'S' or 'C' and
3143 the remote system doesn't support it. */
3144 target_terminal_ours_for_output ();
3145 printf_filtered
3146 ("Can't send signals to this remote system. %s not sent.\n",
3147 target_signal_to_name (last_sent_signal));
3148 last_sent_signal = TARGET_SIGNAL_0;
3149 target_terminal_inferior ();
3150
3151 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3152 putpkt ((char *) buf);
3153 continue;
3154 }
3155 /* else fallthrough */
3156 default:
3157 warning ("Invalid remote reply: %s", buf);
3158 continue;
3159 }
3160 }
3161 got_status:
3162 if (thread_num != -1)
3163 {
3164 return pid_to_ptid (thread_num);
3165 }
3166 return inferior_ptid;
3167 }
3168
3169 /* Async version of remote_wait. */
3170 static ptid_t
3171 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3172 {
3173 struct remote_state *rs = get_remote_state ();
3174 unsigned char *buf = alloca (rs->remote_packet_size);
3175 ULONGEST thread_num = -1;
3176 ULONGEST addr;
3177
3178 status->kind = TARGET_WAITKIND_EXITED;
3179 status->value.integer = 0;
3180
3181 remote_stopped_by_watchpoint_p = 0;
3182
3183 while (1)
3184 {
3185 unsigned char *p;
3186
3187 if (!target_is_async_p ())
3188 ofunc = signal (SIGINT, remote_interrupt);
3189 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3190 _never_ wait for ever -> test on target_is_async_p().
3191 However, before we do that we need to ensure that the caller
3192 knows how to take the target into/out of async mode. */
3193 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3194 if (!target_is_async_p ())
3195 signal (SIGINT, ofunc);
3196
3197 /* This is a hook for when we need to do something (perhaps the
3198 collection of trace data) every time the target stops. */
3199 if (target_wait_loop_hook)
3200 (*target_wait_loop_hook) ();
3201
3202 switch (buf[0])
3203 {
3204 case 'E': /* Error of some sort */
3205 warning ("Remote failure reply: %s", buf);
3206 continue;
3207 case 'T': /* Status with PC, SP, FP, ... */
3208 {
3209 int i;
3210 char regs[MAX_REGISTER_SIZE];
3211
3212 /* Expedited reply, containing Signal, {regno, reg} repeat */
3213 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3214 ss = signal number
3215 n... = register number
3216 r... = register contents
3217 */
3218 p = &buf[3]; /* after Txx */
3219
3220 while (*p)
3221 {
3222 unsigned char *p1;
3223 char *p_temp;
3224 int fieldsize;
3225 long pnum = 0;
3226
3227 /* If the packet contains a register number, save it in pnum
3228 and set p1 to point to the character following it.
3229 Otherwise p1 points to p. */
3230
3231 /* If this packet is an awatch packet, don't parse the 'a'
3232 as a register number. */
3233
3234 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3235 {
3236 /* Read the register number. */
3237 pnum = strtol (p, &p_temp, 16);
3238 p1 = (unsigned char *) p_temp;
3239 }
3240 else
3241 p1 = p;
3242
3243 if (p1 == p) /* No register number present here */
3244 {
3245 p1 = (unsigned char *) strchr (p, ':');
3246 if (p1 == NULL)
3247 warning ("Malformed packet(a) (missing colon): %s\n\
3248 Packet: '%s'\n",
3249 p, buf);
3250 if (strncmp (p, "thread", p1 - p) == 0)
3251 {
3252 p_temp = unpack_varlen_hex (++p1, &thread_num);
3253 record_currthread (thread_num);
3254 p = (unsigned char *) p_temp;
3255 }
3256 else if ((strncmp (p, "watch", p1 - p) == 0)
3257 || (strncmp (p, "rwatch", p1 - p) == 0)
3258 || (strncmp (p, "awatch", p1 - p) == 0))
3259 {
3260 remote_stopped_by_watchpoint_p = 1;
3261 p = unpack_varlen_hex (++p1, &addr);
3262 remote_watch_data_address = (CORE_ADDR)addr;
3263 }
3264 else
3265 {
3266 /* Silently skip unknown optional info. */
3267 p_temp = (unsigned char *) strchr (p1 + 1, ';');
3268 if (p_temp)
3269 p = p_temp;
3270 }
3271 }
3272
3273 else
3274 {
3275 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3276 p = p1;
3277 if (*p++ != ':')
3278 warning ("Malformed packet(b) (missing colon): %s\n\
3279 Packet: '%s'\n",
3280 p, buf);
3281
3282 if (reg == NULL)
3283 warning ("Remote sent bad register number %ld: %s\n\
3284 Packet: '%s'\n",
3285 pnum, p, buf);
3286
3287 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3288 p += 2 * fieldsize;
3289 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3290 warning ("Remote reply is too short: %s", buf);
3291 supply_register (reg->regnum, regs);
3292 }
3293
3294 if (*p++ != ';')
3295 {
3296 warning ("Remote register badly formatted: %s", buf);
3297 warning (" here: %s", p);
3298 }
3299 }
3300 }
3301 /* fall through */
3302 case 'S': /* Old style status, just signal only */
3303 status->kind = TARGET_WAITKIND_STOPPED;
3304 status->value.sig = (enum target_signal)
3305 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3306
3307 if (buf[3] == 'p')
3308 {
3309 /* Export Cisco kernel mode as a convenience variable
3310 (so that it can be used in the GDB prompt if desired). */
3311
3312 if (cisco_kernel_mode == 1)
3313 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3314 value_from_string ("PDEBUG-"));
3315 cisco_kernel_mode = 0;
3316 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3317 record_currthread (thread_num);
3318 }
3319 else if (buf[3] == 'k')
3320 {
3321 /* Export Cisco kernel mode as a convenience variable
3322 (so that it can be used in the GDB prompt if desired). */
3323
3324 if (cisco_kernel_mode == 1)
3325 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3326 value_from_string ("KDEBUG-"));
3327 cisco_kernel_mode = 1;
3328 }
3329 goto got_status;
3330 case 'N': /* Cisco special: status and offsets */
3331 {
3332 bfd_vma text_addr, data_addr, bss_addr;
3333 bfd_signed_vma text_off, data_off, bss_off;
3334 unsigned char *p1;
3335
3336 status->kind = TARGET_WAITKIND_STOPPED;
3337 status->value.sig = (enum target_signal)
3338 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3339
3340 if (symfile_objfile == NULL)
3341 {
3342 warning ("Relocation packet recieved with no symbol file. \
3343 Packet Dropped");
3344 goto got_status;
3345 }
3346
3347 /* Relocate object file. Buffer format is NAATT;DD;BB
3348 * where AA is the signal number, TT is the new text
3349 * address, DD * is the new data address, and BB is the
3350 * new bss address. */
3351
3352 p = &buf[3];
3353 text_addr = strtoul (p, (char **) &p1, 16);
3354 if (p1 == p || *p1 != ';')
3355 warning ("Malformed relocation packet: Packet '%s'", buf);
3356 p = p1 + 1;
3357 data_addr = strtoul (p, (char **) &p1, 16);
3358 if (p1 == p || *p1 != ';')
3359 warning ("Malformed relocation packet: Packet '%s'", buf);
3360 p = p1 + 1;
3361 bss_addr = strtoul (p, (char **) &p1, 16);
3362 if (p1 == p)
3363 warning ("Malformed relocation packet: Packet '%s'", buf);
3364
3365 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3366 &text_off, &data_off, &bss_off)
3367 == 0)
3368 if (text_off != 0 || data_off != 0 || bss_off != 0)
3369 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3370
3371 goto got_status;
3372 }
3373 case 'W': /* Target exited */
3374 {
3375 /* The remote process exited. */
3376 status->kind = TARGET_WAITKIND_EXITED;
3377 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3378 goto got_status;
3379 }
3380 case 'X':
3381 status->kind = TARGET_WAITKIND_SIGNALLED;
3382 status->value.sig = (enum target_signal)
3383 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3384 kill_kludge = 1;
3385
3386 goto got_status;
3387 case 'O': /* Console output */
3388 remote_console_output (buf + 1);
3389 /* Return immediately to the event loop. The event loop will
3390 still be waiting on the inferior afterwards. */
3391 status->kind = TARGET_WAITKIND_IGNORE;
3392 goto got_status;
3393 case '\0':
3394 if (last_sent_signal != TARGET_SIGNAL_0)
3395 {
3396 /* Zero length reply means that we tried 'S' or 'C' and
3397 the remote system doesn't support it. */
3398 target_terminal_ours_for_output ();
3399 printf_filtered
3400 ("Can't send signals to this remote system. %s not sent.\n",
3401 target_signal_to_name (last_sent_signal));
3402 last_sent_signal = TARGET_SIGNAL_0;
3403 target_terminal_inferior ();
3404
3405 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3406 putpkt ((char *) buf);
3407 continue;
3408 }
3409 /* else fallthrough */
3410 default:
3411 warning ("Invalid remote reply: %s", buf);
3412 continue;
3413 }
3414 }
3415 got_status:
3416 if (thread_num != -1)
3417 {
3418 return pid_to_ptid (thread_num);
3419 }
3420 return inferior_ptid;
3421 }
3422
3423 /* Number of bytes of registers this stub implements. */
3424
3425 static int register_bytes_found;
3426
3427 /* Read the remote registers into the block REGS. */
3428 /* Currently we just read all the registers, so we don't use regnum. */
3429
3430 /* ARGSUSED */
3431 static void
3432 remote_fetch_registers (int regnum)
3433 {
3434 struct remote_state *rs = get_remote_state ();
3435 char *buf = alloca (rs->remote_packet_size);
3436 int i;
3437 char *p;
3438 char *regs = alloca (rs->sizeof_g_packet);
3439
3440 set_thread (PIDGET (inferior_ptid), 1);
3441
3442 if (regnum >= 0)
3443 {
3444 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3445 gdb_assert (reg != NULL);
3446 if (!reg->in_g_packet)
3447 internal_error (__FILE__, __LINE__,
3448 "Attempt to fetch a non G-packet register when this "
3449 "remote.c does not support the p-packet.");
3450 }
3451
3452 sprintf (buf, "g");
3453 remote_send (buf, (rs->remote_packet_size));
3454
3455 /* Save the size of the packet sent to us by the target. Its used
3456 as a heuristic when determining the max size of packets that the
3457 target can safely receive. */
3458 if ((rs->actual_register_packet_size) == 0)
3459 (rs->actual_register_packet_size) = strlen (buf);
3460
3461 /* Unimplemented registers read as all bits zero. */
3462 memset (regs, 0, rs->sizeof_g_packet);
3463
3464 /* We can get out of synch in various cases. If the first character
3465 in the buffer is not a hex character, assume that has happened
3466 and try to fetch another packet to read. */
3467 while ((buf[0] < '0' || buf[0] > '9')
3468 && (buf[0] < 'a' || buf[0] > 'f')
3469 && buf[0] != 'x') /* New: unavailable register value */
3470 {
3471 if (remote_debug)
3472 fprintf_unfiltered (gdb_stdlog,
3473 "Bad register packet; fetching a new packet\n");
3474 getpkt (buf, (rs->remote_packet_size), 0);
3475 }
3476
3477 /* Reply describes registers byte by byte, each byte encoded as two
3478 hex characters. Suck them all up, then supply them to the
3479 register cacheing/storage mechanism. */
3480
3481 p = buf;
3482 for (i = 0; i < rs->sizeof_g_packet; i++)
3483 {
3484 if (p[0] == 0)
3485 break;
3486 if (p[1] == 0)
3487 {
3488 warning ("Remote reply is of odd length: %s", buf);
3489 /* Don't change register_bytes_found in this case, and don't
3490 print a second warning. */
3491 goto supply_them;
3492 }
3493 if (p[0] == 'x' && p[1] == 'x')
3494 regs[i] = 0; /* 'x' */
3495 else
3496 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3497 p += 2;
3498 }
3499
3500 if (i != register_bytes_found)
3501 {
3502 register_bytes_found = i;
3503 if (REGISTER_BYTES_OK_P ()
3504 && !REGISTER_BYTES_OK (i))
3505 warning ("Remote reply is too short: %s", buf);
3506 }
3507
3508 supply_them:
3509 {
3510 int i;
3511 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3512 {
3513 struct packet_reg *r = &rs->regs[i];
3514 if (r->in_g_packet)
3515 {
3516 supply_register (r->regnum, regs + r->offset);
3517 if (buf[r->offset * 2] == 'x')
3518 set_register_cached (i, -1);
3519 }
3520 }
3521 }
3522 }
3523
3524 /* Prepare to store registers. Since we may send them all (using a
3525 'G' request), we have to read out the ones we don't want to change
3526 first. */
3527
3528 static void
3529 remote_prepare_to_store (void)
3530 {
3531 /* Make sure the entire registers array is valid. */
3532 switch (remote_protocol_P.support)
3533 {
3534 case PACKET_DISABLE:
3535 case PACKET_SUPPORT_UNKNOWN:
3536 /* NOTE: This isn't rs->sizeof_g_packet because here, we are
3537 forcing the register cache to read its and not the target
3538 registers. */
3539 deprecated_read_register_bytes (0, (char *) NULL,
3540 DEPRECATED_REGISTER_BYTES); /* OK */
3541 break;
3542 case PACKET_ENABLE:
3543 break;
3544 }
3545 }
3546
3547 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3548 packet was not recognized. */
3549
3550 static int
3551 store_register_using_P (int regnum)
3552 {
3553 struct remote_state *rs = get_remote_state ();
3554 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3555 /* Try storing a single register. */
3556 char *buf = alloca (rs->remote_packet_size);
3557 char regp[MAX_REGISTER_SIZE];
3558 char *p;
3559 int i;
3560
3561 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3562 p = buf + strlen (buf);
3563 regcache_collect (reg->regnum, regp);
3564 bin2hex (regp, p, REGISTER_RAW_SIZE (reg->regnum));
3565 remote_send (buf, rs->remote_packet_size);
3566
3567 return buf[0] != '\0';
3568 }
3569
3570
3571 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3572 of the register cache buffer. FIXME: ignores errors. */
3573
3574 static void
3575 remote_store_registers (int regnum)
3576 {
3577 struct remote_state *rs = get_remote_state ();
3578 char *buf;
3579 char *regs;
3580 int i;
3581 char *p;
3582
3583 set_thread (PIDGET (inferior_ptid), 1);
3584
3585 if (regnum >= 0)
3586 {
3587 switch (remote_protocol_P.support)
3588 {
3589 case PACKET_DISABLE:
3590 break;
3591 case PACKET_ENABLE:
3592 if (store_register_using_P (regnum))
3593 return;
3594 else
3595 error ("Protocol error: P packet not recognized by stub");
3596 case PACKET_SUPPORT_UNKNOWN:
3597 if (store_register_using_P (regnum))
3598 {
3599 /* The stub recognized the 'P' packet. Remember this. */
3600 remote_protocol_P.support = PACKET_ENABLE;
3601 return;
3602 }
3603 else
3604 {
3605 /* The stub does not support the 'P' packet. Use 'G'
3606 instead, and don't try using 'P' in the future (it
3607 will just waste our time). */
3608 remote_protocol_P.support = PACKET_DISABLE;
3609 break;
3610 }
3611 }
3612 }
3613
3614 /* Extract all the registers in the regcache copying them into a
3615 local buffer. */
3616 {
3617 int i;
3618 regs = alloca (rs->sizeof_g_packet);
3619 memset (regs, rs->sizeof_g_packet, 0);
3620 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3621 {
3622 struct packet_reg *r = &rs->regs[i];
3623 if (r->in_g_packet)
3624 regcache_collect (r->regnum, regs + r->offset);
3625 }
3626 }
3627
3628 /* Command describes registers byte by byte,
3629 each byte encoded as two hex characters. */
3630 buf = alloca (rs->remote_packet_size);
3631 p = buf;
3632 *p++ = 'G';
3633 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3634 bin2hex (regs, p, register_bytes_found);
3635 remote_send (buf, (rs->remote_packet_size));
3636 }
3637 \f
3638
3639 /* Return the number of hex digits in num. */
3640
3641 static int
3642 hexnumlen (ULONGEST num)
3643 {
3644 int i;
3645
3646 for (i = 0; num != 0; i++)
3647 num >>= 4;
3648
3649 return max (i, 1);
3650 }
3651
3652 /* Set BUF to the minimum number of hex digits representing NUM. */
3653
3654 static int
3655 hexnumstr (char *buf, ULONGEST num)
3656 {
3657 int len = hexnumlen (num);
3658 return hexnumnstr (buf, num, len);
3659 }
3660
3661
3662 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3663
3664 static int
3665 hexnumnstr (char *buf, ULONGEST num, int width)
3666 {
3667 int i;
3668
3669 buf[width] = '\0';
3670
3671 for (i = width - 1; i >= 0; i--)
3672 {
3673 buf[i] = "0123456789abcdef"[(num & 0xf)];
3674 num >>= 4;
3675 }
3676
3677 return width;
3678 }
3679
3680 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3681
3682 static CORE_ADDR
3683 remote_address_masked (CORE_ADDR addr)
3684 {
3685 if (remote_address_size > 0
3686 && remote_address_size < (sizeof (ULONGEST) * 8))
3687 {
3688 /* Only create a mask when that mask can safely be constructed
3689 in a ULONGEST variable. */
3690 ULONGEST mask = 1;
3691 mask = (mask << remote_address_size) - 1;
3692 addr &= mask;
3693 }
3694 return addr;
3695 }
3696
3697 /* Determine whether the remote target supports binary downloading.
3698 This is accomplished by sending a no-op memory write of zero length
3699 to the target at the specified address. It does not suffice to send
3700 the whole packet, since many stubs strip the eighth bit and subsequently
3701 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3702
3703 NOTE: This can still lose if the serial line is not eight-bit
3704 clean. In cases like this, the user should clear "remote
3705 X-packet". */
3706
3707 static void
3708 check_binary_download (CORE_ADDR addr)
3709 {
3710 struct remote_state *rs = get_remote_state ();
3711 switch (remote_protocol_binary_download.support)
3712 {
3713 case PACKET_DISABLE:
3714 break;
3715 case PACKET_ENABLE:
3716 break;
3717 case PACKET_SUPPORT_UNKNOWN:
3718 {
3719 char *buf = alloca (rs->remote_packet_size);
3720 char *p;
3721
3722 p = buf;
3723 *p++ = 'X';
3724 p += hexnumstr (p, (ULONGEST) addr);
3725 *p++ = ',';
3726 p += hexnumstr (p, (ULONGEST) 0);
3727 *p++ = ':';
3728 *p = '\0';
3729
3730 putpkt_binary (buf, (int) (p - buf));
3731 getpkt (buf, (rs->remote_packet_size), 0);
3732
3733 if (buf[0] == '\0')
3734 {
3735 if (remote_debug)
3736 fprintf_unfiltered (gdb_stdlog,
3737 "binary downloading NOT suppported by target\n");
3738 remote_protocol_binary_download.support = PACKET_DISABLE;
3739 }
3740 else
3741 {
3742 if (remote_debug)
3743 fprintf_unfiltered (gdb_stdlog,
3744 "binary downloading suppported by target\n");
3745 remote_protocol_binary_download.support = PACKET_ENABLE;
3746 }
3747 break;
3748 }
3749 }
3750 }
3751
3752 /* Write memory data directly to the remote machine.
3753 This does not inform the data cache; the data cache uses this.
3754 MEMADDR is the address in the remote memory space.
3755 MYADDR is the address of the buffer in our space.
3756 LEN is the number of bytes.
3757
3758 Returns number of bytes transferred, or 0 (setting errno) for
3759 error. Only transfer a single packet. */
3760
3761 static int
3762 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3763 {
3764 unsigned char *buf;
3765 int max_buf_size; /* Max size of packet output buffer */
3766 unsigned char *p;
3767 unsigned char *plen;
3768 long sizeof_buf;
3769 int plenlen;
3770 int todo;
3771 int nr_bytes;
3772
3773 /* Verify that the target can support a binary download */
3774 check_binary_download (memaddr);
3775
3776 /* Determine the max packet size. */
3777 max_buf_size = get_memory_write_packet_size ();
3778 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3779 buf = alloca (sizeof_buf);
3780
3781 /* Subtract header overhead from max payload size - $M<memaddr>,<len>:#nn */
3782 max_buf_size -= 2 + hexnumlen (memaddr + len - 1) + 1 + hexnumlen (len) + 4;
3783
3784 /* construct "M"<memaddr>","<len>":" */
3785 /* sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, todo); */
3786 p = buf;
3787
3788 /* Append [XM]. Compute a best guess of the number of bytes
3789 actually transfered. */
3790 switch (remote_protocol_binary_download.support)
3791 {
3792 case PACKET_ENABLE:
3793 *p++ = 'X';
3794 /* Best guess at number of bytes that will fit. */
3795 todo = min (len, max_buf_size);
3796 break;
3797 case PACKET_DISABLE:
3798 *p++ = 'M';
3799 /* num bytes that will fit */
3800 todo = min (len, max_buf_size / 2);
3801 break;
3802 case PACKET_SUPPORT_UNKNOWN:
3803 internal_error (__FILE__, __LINE__,
3804 "remote_write_bytes: bad internal state");
3805 default:
3806 internal_error (__FILE__, __LINE__, "bad switch");
3807 }
3808
3809 /* Append <memaddr> */
3810 memaddr = remote_address_masked (memaddr);
3811 p += hexnumstr (p, (ULONGEST) memaddr);
3812 *p++ = ',';
3813
3814 /* Append <len>. Retain the location/size of <len>. It may
3815 need to be adjusted once the packet body has been created. */
3816 plen = p;
3817 plenlen = hexnumstr (p, (ULONGEST) todo);
3818 p += plenlen;
3819 *p++ = ':';
3820 *p = '\0';
3821
3822 /* Append the packet body. */
3823 switch (remote_protocol_binary_download.support)
3824 {
3825 case PACKET_ENABLE:
3826 /* Binary mode. Send target system values byte by byte, in
3827 increasing byte addresses. Only escape certain critical
3828 characters. */
3829 for (nr_bytes = 0;
3830 (nr_bytes < todo) && (p - buf) < (max_buf_size - 2);
3831 nr_bytes++)
3832 {
3833 switch (myaddr[nr_bytes] & 0xff)
3834 {
3835 case '$':
3836 case '#':
3837 case 0x7d:
3838 /* These must be escaped */
3839 *p++ = 0x7d;
3840 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3841 break;
3842 default:
3843 *p++ = myaddr[nr_bytes] & 0xff;
3844 break;
3845 }
3846 }
3847 if (nr_bytes < todo)
3848 {
3849 /* Escape chars have filled up the buffer prematurely,
3850 and we have actually sent fewer bytes than planned.
3851 Fix-up the length field of the packet. Use the same
3852 number of characters as before. */
3853
3854 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3855 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3856 }
3857 break;
3858 case PACKET_DISABLE:
3859 /* Normal mode: Send target system values byte by byte, in
3860 increasing byte addresses. Each byte is encoded as a two hex
3861 value. */
3862 nr_bytes = bin2hex (myaddr, p, todo);
3863 p += 2 * nr_bytes;
3864 break;
3865 case PACKET_SUPPORT_UNKNOWN:
3866 internal_error (__FILE__, __LINE__,
3867 "remote_write_bytes: bad internal state");
3868 default:
3869 internal_error (__FILE__, __LINE__, "bad switch");
3870 }
3871
3872 putpkt_binary (buf, (int) (p - buf));
3873 getpkt (buf, sizeof_buf, 0);
3874
3875 if (buf[0] == 'E')
3876 {
3877 /* There is no correspondance between what the remote protocol
3878 uses for errors and errno codes. We would like a cleaner way
3879 of representing errors (big enough to include errno codes,
3880 bfd_error codes, and others). But for now just return EIO. */
3881 errno = EIO;
3882 return 0;
3883 }
3884
3885 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3886 bytes than we'd planned. */
3887 return nr_bytes;
3888 }
3889
3890 /* Read memory data directly from the remote machine.
3891 This does not use the data cache; the data cache uses this.
3892 MEMADDR is the address in the remote memory space.
3893 MYADDR is the address of the buffer in our space.
3894 LEN is the number of bytes.
3895
3896 Returns number of bytes transferred, or 0 for error. */
3897
3898 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3899 remote targets) shouldn't attempt to read the entire buffer.
3900 Instead it should read a single packet worth of data and then
3901 return the byte size of that packet to the caller. The caller (its
3902 caller and its callers caller ;-) already contains code for
3903 handling partial reads. */
3904
3905 static int
3906 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3907 {
3908 char *buf;
3909 int max_buf_size; /* Max size of packet output buffer */
3910 long sizeof_buf;
3911 int origlen;
3912
3913 /* Create a buffer big enough for this packet. */
3914 max_buf_size = get_memory_read_packet_size ();
3915 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3916 buf = alloca (sizeof_buf);
3917
3918 origlen = len;
3919 while (len > 0)
3920 {
3921 char *p;
3922 int todo;
3923 int i;
3924
3925 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3926
3927 /* construct "m"<memaddr>","<len>" */
3928 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3929 memaddr = remote_address_masked (memaddr);
3930 p = buf;
3931 *p++ = 'm';
3932 p += hexnumstr (p, (ULONGEST) memaddr);
3933 *p++ = ',';
3934 p += hexnumstr (p, (ULONGEST) todo);
3935 *p = '\0';
3936
3937 putpkt (buf);
3938 getpkt (buf, sizeof_buf, 0);
3939
3940 if (buf[0] == 'E'
3941 && isxdigit (buf[1]) && isxdigit (buf[2])
3942 && buf[3] == '\0')
3943 {
3944 /* There is no correspondance between what the remote protocol uses
3945 for errors and errno codes. We would like a cleaner way of
3946 representing errors (big enough to include errno codes, bfd_error
3947 codes, and others). But for now just return EIO. */
3948 errno = EIO;
3949 return 0;
3950 }
3951
3952 /* Reply describes memory byte by byte,
3953 each byte encoded as two hex characters. */
3954
3955 p = buf;
3956 if ((i = hex2bin (p, myaddr, todo)) < todo)
3957 {
3958 /* Reply is short. This means that we were able to read
3959 only part of what we wanted to. */
3960 return i + (origlen - len);
3961 }
3962 myaddr += todo;
3963 memaddr += todo;
3964 len -= todo;
3965 }
3966 return origlen;
3967 }
3968 \f
3969 /* Read or write LEN bytes from inferior memory at MEMADDR,
3970 transferring to or from debugger address BUFFER. Write to inferior if
3971 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3972 for error. TARGET is unused. */
3973
3974 /* ARGSUSED */
3975 static int
3976 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3977 int should_write, struct mem_attrib *attrib,
3978 struct target_ops *target)
3979 {
3980 CORE_ADDR targ_addr;
3981 int targ_len;
3982 int res;
3983
3984 /* Should this be the selected frame? */
3985 gdbarch_remote_translate_xfer_address (current_gdbarch, current_regcache,
3986 mem_addr, mem_len,
3987 &targ_addr, &targ_len);
3988 if (targ_len <= 0)
3989 return 0;
3990
3991 if (should_write)
3992 res = remote_write_bytes (targ_addr, buffer, targ_len);
3993 else
3994 res = remote_read_bytes (targ_addr, buffer, targ_len);
3995
3996 return res;
3997 }
3998
3999
4000 #if 0
4001 /* Enable after 4.12. */
4002
4003 void
4004 remote_search (int len, char *data, char *mask, CORE_ADDR startaddr,
4005 int increment, CORE_ADDR lorange, CORE_ADDR hirange,
4006 CORE_ADDR *addr_found, char *data_found)
4007 {
4008 if (increment == -4 && len == 4)
4009 {
4010 long mask_long, data_long;
4011 long data_found_long;
4012 CORE_ADDR addr_we_found;
4013 char *buf = alloca (rs->remote_packet_size);
4014 long returned_long[2];
4015 char *p;
4016
4017 mask_long = extract_unsigned_integer (mask, len);
4018 data_long = extract_unsigned_integer (data, len);
4019 sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
4020 putpkt (buf);
4021 getpkt (buf, (rs->remote_packet_size), 0);
4022 if (buf[0] == '\0')
4023 {
4024 /* The stub doesn't support the 't' request. We might want to
4025 remember this fact, but on the other hand the stub could be
4026 switched on us. Maybe we should remember it only until
4027 the next "target remote". */
4028 generic_search (len, data, mask, startaddr, increment, lorange,
4029 hirange, addr_found, data_found);
4030 return;
4031 }
4032
4033 if (buf[0] == 'E')
4034 /* There is no correspondance between what the remote protocol uses
4035 for errors and errno codes. We would like a cleaner way of
4036 representing errors (big enough to include errno codes, bfd_error
4037 codes, and others). But for now just use EIO. */
4038 memory_error (EIO, startaddr);
4039 p = buf;
4040 addr_we_found = 0;
4041 while (*p != '\0' && *p != ',')
4042 addr_we_found = (addr_we_found << 4) + fromhex (*p++);
4043 if (*p == '\0')
4044 error ("Protocol error: short return for search");
4045
4046 data_found_long = 0;
4047 while (*p != '\0' && *p != ',')
4048 data_found_long = (data_found_long << 4) + fromhex (*p++);
4049 /* Ignore anything after this comma, for future extensions. */
4050
4051 if (addr_we_found < lorange || addr_we_found >= hirange)
4052 {
4053 *addr_found = 0;
4054 return;
4055 }
4056
4057 *addr_found = addr_we_found;
4058 *data_found = store_unsigned_integer (data_we_found, len);
4059 return;
4060 }
4061 generic_search (len, data, mask, startaddr, increment, lorange,
4062 hirange, addr_found, data_found);
4063 }
4064 #endif /* 0 */
4065 \f
4066 static void
4067 remote_files_info (struct target_ops *ignore)
4068 {
4069 puts_filtered ("Debugging a target over a serial line.\n");
4070 }
4071 \f
4072 /* Stuff for dealing with the packets which are part of this protocol.
4073 See comment at top of file for details. */
4074
4075 /* Read a single character from the remote end, masking it down to 7 bits. */
4076
4077 static int
4078 readchar (int timeout)
4079 {
4080 int ch;
4081
4082 ch = serial_readchar (remote_desc, timeout);
4083
4084 if (ch >= 0)
4085 return (ch & 0x7f);
4086
4087 switch ((enum serial_rc) ch)
4088 {
4089 case SERIAL_EOF:
4090 target_mourn_inferior ();
4091 error ("Remote connection closed");
4092 /* no return */
4093 case SERIAL_ERROR:
4094 perror_with_name ("Remote communication error");
4095 /* no return */
4096 case SERIAL_TIMEOUT:
4097 break;
4098 }
4099 return ch;
4100 }
4101
4102 /* Send the command in BUF to the remote machine, and read the reply
4103 into BUF. Report an error if we get an error reply. */
4104
4105 static void
4106 remote_send (char *buf,
4107 long sizeof_buf)
4108 {
4109 putpkt (buf);
4110 getpkt (buf, sizeof_buf, 0);
4111
4112 if (buf[0] == 'E')
4113 error ("Remote failure reply: %s", buf);
4114 }
4115
4116 /* Display a null-terminated packet on stdout, for debugging, using C
4117 string notation. */
4118
4119 static void
4120 print_packet (char *buf)
4121 {
4122 puts_filtered ("\"");
4123 fputstr_filtered (buf, '"', gdb_stdout);
4124 puts_filtered ("\"");
4125 }
4126
4127 int
4128 putpkt (char *buf)
4129 {
4130 return putpkt_binary (buf, strlen (buf));
4131 }
4132
4133 /* Send a packet to the remote machine, with error checking. The data
4134 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
4135 to account for the $, # and checksum, and for a possible /0 if we are
4136 debugging (remote_debug) and want to print the sent packet as a string */
4137
4138 static int
4139 putpkt_binary (char *buf, int cnt)
4140 {
4141 struct remote_state *rs = get_remote_state ();
4142 int i;
4143 unsigned char csum = 0;
4144 char *buf2 = alloca (cnt + 6);
4145 long sizeof_junkbuf = (rs->remote_packet_size);
4146 char *junkbuf = alloca (sizeof_junkbuf);
4147
4148 int ch;
4149 int tcount = 0;
4150 char *p;
4151
4152 /* Copy the packet into buffer BUF2, encapsulating it
4153 and giving it a checksum. */
4154
4155 p = buf2;
4156 *p++ = '$';
4157
4158 for (i = 0; i < cnt; i++)
4159 {
4160 csum += buf[i];
4161 *p++ = buf[i];
4162 }
4163 *p++ = '#';
4164 *p++ = tohex ((csum >> 4) & 0xf);
4165 *p++ = tohex (csum & 0xf);
4166
4167 /* Send it over and over until we get a positive ack. */
4168
4169 while (1)
4170 {
4171 int started_error_output = 0;
4172
4173 if (remote_debug)
4174 {
4175 *p = '\0';
4176 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4177 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4178 fprintf_unfiltered (gdb_stdlog, "...");
4179 gdb_flush (gdb_stdlog);
4180 }
4181 if (serial_write (remote_desc, buf2, p - buf2))
4182 perror_with_name ("putpkt: write failed");
4183
4184 /* read until either a timeout occurs (-2) or '+' is read */
4185 while (1)
4186 {
4187 ch = readchar (remote_timeout);
4188
4189 if (remote_debug)
4190 {
4191 switch (ch)
4192 {
4193 case '+':
4194 case '-':
4195 case SERIAL_TIMEOUT:
4196 case '$':
4197 if (started_error_output)
4198 {
4199 putchar_unfiltered ('\n');
4200 started_error_output = 0;
4201 }
4202 }
4203 }
4204
4205 switch (ch)
4206 {
4207 case '+':
4208 if (remote_debug)
4209 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4210 return 1;
4211 case '-':
4212 if (remote_debug)
4213 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4214 case SERIAL_TIMEOUT:
4215 tcount++;
4216 if (tcount > 3)
4217 return 0;
4218 break; /* Retransmit buffer */
4219 case '$':
4220 {
4221 if (remote_debug)
4222 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
4223 /* It's probably an old response, and we're out of sync.
4224 Just gobble up the packet and ignore it. */
4225 read_frame (junkbuf, sizeof_junkbuf);
4226 continue; /* Now, go look for + */
4227 }
4228 default:
4229 if (remote_debug)
4230 {
4231 if (!started_error_output)
4232 {
4233 started_error_output = 1;
4234 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4235 }
4236 fputc_unfiltered (ch & 0177, gdb_stdlog);
4237 }
4238 continue;
4239 }
4240 break; /* Here to retransmit */
4241 }
4242
4243 #if 0
4244 /* This is wrong. If doing a long backtrace, the user should be
4245 able to get out next time we call QUIT, without anything as
4246 violent as interrupt_query. If we want to provide a way out of
4247 here without getting to the next QUIT, it should be based on
4248 hitting ^C twice as in remote_wait. */
4249 if (quit_flag)
4250 {
4251 quit_flag = 0;
4252 interrupt_query ();
4253 }
4254 #endif
4255 }
4256 }
4257
4258 static int remote_cisco_mode;
4259
4260 /* Come here after finding the start of the frame. Collect the rest
4261 into BUF, verifying the checksum, length, and handling run-length
4262 compression. No more than sizeof_buf-1 characters are read so that
4263 the buffer can be NUL terminated.
4264
4265 Returns -1 on error, number of characters in buffer (ignoring the
4266 trailing NULL) on success. (could be extended to return one of the
4267 SERIAL status indications). */
4268
4269 static long
4270 read_frame (char *buf,
4271 long sizeof_buf)
4272 {
4273 unsigned char csum;
4274 long bc;
4275 int c;
4276
4277 csum = 0;
4278 bc = 0;
4279
4280 while (1)
4281 {
4282 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4283 c = readchar (remote_timeout);
4284 switch (c)
4285 {
4286 case SERIAL_TIMEOUT:
4287 if (remote_debug)
4288 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4289 return -1;
4290 case '$':
4291 if (remote_debug)
4292 fputs_filtered ("Saw new packet start in middle of old one\n",
4293 gdb_stdlog);
4294 return -1; /* Start a new packet, count retries */
4295 case '#':
4296 {
4297 unsigned char pktcsum;
4298 int check_0 = 0;
4299 int check_1 = 0;
4300
4301 buf[bc] = '\0';
4302
4303 check_0 = readchar (remote_timeout);
4304 if (check_0 >= 0)
4305 check_1 = readchar (remote_timeout);
4306
4307 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4308 {
4309 if (remote_debug)
4310 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4311 return -1;
4312 }
4313 else if (check_0 < 0 || check_1 < 0)
4314 {
4315 if (remote_debug)
4316 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4317 return -1;
4318 }
4319
4320 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4321 if (csum == pktcsum)
4322 return bc;
4323
4324 if (remote_debug)
4325 {
4326 fprintf_filtered (gdb_stdlog,
4327 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4328 pktcsum, csum);
4329 fputs_filtered (buf, gdb_stdlog);
4330 fputs_filtered ("\n", gdb_stdlog);
4331 }
4332 /* Number of characters in buffer ignoring trailing
4333 NUL. */
4334 return -1;
4335 }
4336 case '*': /* Run length encoding */
4337 {
4338 int repeat;
4339 csum += c;
4340
4341 if (remote_cisco_mode == 0)
4342 {
4343 c = readchar (remote_timeout);
4344 csum += c;
4345 repeat = c - ' ' + 3; /* Compute repeat count */
4346 }
4347 else
4348 {
4349 /* Cisco's run-length encoding variant uses two
4350 hex chars to represent the repeat count. */
4351
4352 c = readchar (remote_timeout);
4353 csum += c;
4354 repeat = fromhex (c) << 4;
4355 c = readchar (remote_timeout);
4356 csum += c;
4357 repeat += fromhex (c);
4358 }
4359
4360 /* The character before ``*'' is repeated. */
4361
4362 if (repeat > 0 && repeat <= 255
4363 && bc > 0
4364 && bc + repeat - 1 < sizeof_buf - 1)
4365 {
4366 memset (&buf[bc], buf[bc - 1], repeat);
4367 bc += repeat;
4368 continue;
4369 }
4370
4371 buf[bc] = '\0';
4372 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4373 puts_filtered (buf);
4374 puts_filtered ("\n");
4375 return -1;
4376 }
4377 default:
4378 if (bc < sizeof_buf - 1)
4379 {
4380 buf[bc++] = c;
4381 csum += c;
4382 continue;
4383 }
4384
4385 buf[bc] = '\0';
4386 puts_filtered ("Remote packet too long: ");
4387 puts_filtered (buf);
4388 puts_filtered ("\n");
4389
4390 return -1;
4391 }
4392 }
4393 }
4394
4395 /* Read a packet from the remote machine, with error checking, and
4396 store it in BUF. If FOREVER, wait forever rather than timing out;
4397 this is used (in synchronous mode) to wait for a target that is is
4398 executing user code to stop. */
4399 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4400 don't have to change all the calls to getpkt to deal with the
4401 return value, because at the moment I don't know what the right
4402 thing to do it for those. */
4403 void
4404 getpkt (char *buf,
4405 long sizeof_buf,
4406 int forever)
4407 {
4408 int timed_out;
4409
4410 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4411 }
4412
4413
4414 /* Read a packet from the remote machine, with error checking, and
4415 store it in BUF. If FOREVER, wait forever rather than timing out;
4416 this is used (in synchronous mode) to wait for a target that is is
4417 executing user code to stop. If FOREVER == 0, this function is
4418 allowed to time out gracefully and return an indication of this to
4419 the caller. */
4420 static int
4421 getpkt_sane (char *buf,
4422 long sizeof_buf,
4423 int forever)
4424 {
4425 int c;
4426 int tries;
4427 int timeout;
4428 int val;
4429
4430 strcpy (buf, "timeout");
4431
4432 if (forever)
4433 {
4434 timeout = watchdog > 0 ? watchdog : -1;
4435 }
4436
4437 else
4438 timeout = remote_timeout;
4439
4440 #define MAX_TRIES 3
4441
4442 for (tries = 1; tries <= MAX_TRIES; tries++)
4443 {
4444 /* This can loop forever if the remote side sends us characters
4445 continuously, but if it pauses, we'll get a zero from readchar
4446 because of timeout. Then we'll count that as a retry. */
4447
4448 /* Note that we will only wait forever prior to the start of a packet.
4449 After that, we expect characters to arrive at a brisk pace. They
4450 should show up within remote_timeout intervals. */
4451
4452 do
4453 {
4454 c = readchar (timeout);
4455
4456 if (c == SERIAL_TIMEOUT)
4457 {
4458 if (forever) /* Watchdog went off? Kill the target. */
4459 {
4460 QUIT;
4461 target_mourn_inferior ();
4462 error ("Watchdog has expired. Target detached.\n");
4463 }
4464 if (remote_debug)
4465 fputs_filtered ("Timed out.\n", gdb_stdlog);
4466 goto retry;
4467 }
4468 }
4469 while (c != '$');
4470
4471 /* We've found the start of a packet, now collect the data. */
4472
4473 val = read_frame (buf, sizeof_buf);
4474
4475 if (val >= 0)
4476 {
4477 if (remote_debug)
4478 {
4479 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4480 fputstr_unfiltered (buf, 0, gdb_stdlog);
4481 fprintf_unfiltered (gdb_stdlog, "\n");
4482 }
4483 serial_write (remote_desc, "+", 1);
4484 return 0;
4485 }
4486
4487 /* Try the whole thing again. */
4488 retry:
4489 serial_write (remote_desc, "-", 1);
4490 }
4491
4492 /* We have tried hard enough, and just can't receive the packet. Give up. */
4493
4494 printf_unfiltered ("Ignoring packet error, continuing...\n");
4495 serial_write (remote_desc, "+", 1);
4496 return 1;
4497 }
4498 \f
4499 static void
4500 remote_kill (void)
4501 {
4502 /* For some mysterious reason, wait_for_inferior calls kill instead of
4503 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4504 if (kill_kludge)
4505 {
4506 kill_kludge = 0;
4507 target_mourn_inferior ();
4508 return;
4509 }
4510
4511 /* Use catch_errors so the user can quit from gdb even when we aren't on
4512 speaking terms with the remote system. */
4513 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4514
4515 /* Don't wait for it to die. I'm not really sure it matters whether
4516 we do or not. For the existing stubs, kill is a noop. */
4517 target_mourn_inferior ();
4518 }
4519
4520 /* Async version of remote_kill. */
4521 static void
4522 remote_async_kill (void)
4523 {
4524 /* Unregister the file descriptor from the event loop. */
4525 if (target_is_async_p ())
4526 serial_async (remote_desc, NULL, 0);
4527
4528 /* For some mysterious reason, wait_for_inferior calls kill instead of
4529 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4530 if (kill_kludge)
4531 {
4532 kill_kludge = 0;
4533 target_mourn_inferior ();
4534 return;
4535 }
4536
4537 /* Use catch_errors so the user can quit from gdb even when we aren't on
4538 speaking terms with the remote system. */
4539 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4540
4541 /* Don't wait for it to die. I'm not really sure it matters whether
4542 we do or not. For the existing stubs, kill is a noop. */
4543 target_mourn_inferior ();
4544 }
4545
4546 static void
4547 remote_mourn (void)
4548 {
4549 remote_mourn_1 (&remote_ops);
4550 }
4551
4552 static void
4553 remote_async_mourn (void)
4554 {
4555 remote_mourn_1 (&remote_async_ops);
4556 }
4557
4558 static void
4559 extended_remote_mourn (void)
4560 {
4561 /* We do _not_ want to mourn the target like this; this will
4562 remove the extended remote target from the target stack,
4563 and the next time the user says "run" it'll fail.
4564
4565 FIXME: What is the right thing to do here? */
4566 #if 0
4567 remote_mourn_1 (&extended_remote_ops);
4568 #endif
4569 }
4570
4571 /* Worker function for remote_mourn. */
4572 static void
4573 remote_mourn_1 (struct target_ops *target)
4574 {
4575 unpush_target (target);
4576 generic_mourn_inferior ();
4577 }
4578
4579 /* In the extended protocol we want to be able to do things like
4580 "run" and have them basically work as expected. So we need
4581 a special create_inferior function.
4582
4583 FIXME: One day add support for changing the exec file
4584 we're debugging, arguments and an environment. */
4585
4586 static void
4587 extended_remote_create_inferior (char *exec_file, char *args, char **env)
4588 {
4589 /* Rip out the breakpoints; we'll reinsert them after restarting
4590 the remote server. */
4591 remove_breakpoints ();
4592
4593 /* Now restart the remote server. */
4594 extended_remote_restart ();
4595
4596 /* Now put the breakpoints back in. This way we're safe if the
4597 restart function works via a unix fork on the remote side. */
4598 insert_breakpoints ();
4599
4600 /* Clean up from the last time we were running. */
4601 clear_proceed_status ();
4602
4603 /* Let the remote process run. */
4604 proceed (-1, TARGET_SIGNAL_0, 0);
4605 }
4606
4607 /* Async version of extended_remote_create_inferior. */
4608 static void
4609 extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4610 {
4611 /* Rip out the breakpoints; we'll reinsert them after restarting
4612 the remote server. */
4613 remove_breakpoints ();
4614
4615 /* If running asynchronously, register the target file descriptor
4616 with the event loop. */
4617 if (event_loop_p && target_can_async_p ())
4618 target_async (inferior_event_handler, 0);
4619
4620 /* Now restart the remote server. */
4621 extended_remote_restart ();
4622
4623 /* Now put the breakpoints back in. This way we're safe if the
4624 restart function works via a unix fork on the remote side. */
4625 insert_breakpoints ();
4626
4627 /* Clean up from the last time we were running. */
4628 clear_proceed_status ();
4629
4630 /* Let the remote process run. */
4631 proceed (-1, TARGET_SIGNAL_0, 0);
4632 }
4633 \f
4634
4635 /* On some machines, e.g. 68k, we may use a different breakpoint
4636 instruction than other targets; in those use REMOTE_BREAKPOINT
4637 instead of just BREAKPOINT_FROM_PC. Also, bi-endian targets may
4638 define LITTLE_REMOTE_BREAKPOINT and BIG_REMOTE_BREAKPOINT. If none
4639 of these are defined, we just call the standard routines that are
4640 in mem-break.c. */
4641
4642 /* FIXME, these ought to be done in a more dynamic fashion. For instance,
4643 the choice of breakpoint instruction affects target program design and
4644 vice versa, and by making it user-tweakable, the special code here
4645 goes away and we need fewer special GDB configurations. */
4646
4647 #if defined (LITTLE_REMOTE_BREAKPOINT) && defined (BIG_REMOTE_BREAKPOINT) && !defined(REMOTE_BREAKPOINT)
4648 #define REMOTE_BREAKPOINT
4649 #endif
4650
4651 #ifdef REMOTE_BREAKPOINT
4652
4653 /* If the target isn't bi-endian, just pretend it is. */
4654 #if !defined (LITTLE_REMOTE_BREAKPOINT) && !defined (BIG_REMOTE_BREAKPOINT)
4655 #define LITTLE_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4656 #define BIG_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4657 #endif
4658
4659 static unsigned char big_break_insn[] = BIG_REMOTE_BREAKPOINT;
4660 static unsigned char little_break_insn[] = LITTLE_REMOTE_BREAKPOINT;
4661
4662 #endif /* REMOTE_BREAKPOINT */
4663
4664 /* Insert a breakpoint on targets that don't have any better
4665 breakpoint support. We read the contents of the target location
4666 and stash it, then overwrite it with a breakpoint instruction.
4667 ADDR is the target location in the target machine. CONTENTS_CACHE
4668 is a pointer to memory allocated for saving the target contents.
4669 It is guaranteed by the caller to be long enough to save the number
4670 of bytes returned by BREAKPOINT_FROM_PC. */
4671
4672 static int
4673 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4674 {
4675 struct remote_state *rs = get_remote_state ();
4676 #ifdef REMOTE_BREAKPOINT
4677 int val;
4678 #endif
4679 int bp_size;
4680
4681 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4682 If it succeeds, then set the support to PACKET_ENABLE. If it
4683 fails, and the user has explicitly requested the Z support then
4684 report an error, otherwise, mark it disabled and go on. */
4685
4686 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4687 {
4688 char *buf = alloca (rs->remote_packet_size);
4689 char *p = buf;
4690
4691 addr = remote_address_masked (addr);
4692 *(p++) = 'Z';
4693 *(p++) = '0';
4694 *(p++) = ',';
4695 p += hexnumstr (p, (ULONGEST) addr);
4696 BREAKPOINT_FROM_PC (&addr, &bp_size);
4697 sprintf (p, ",%d", bp_size);
4698
4699 putpkt (buf);
4700 getpkt (buf, (rs->remote_packet_size), 0);
4701
4702 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4703 {
4704 case PACKET_ERROR:
4705 return -1;
4706 case PACKET_OK:
4707 return 0;
4708 case PACKET_UNKNOWN:
4709 break;
4710 }
4711 }
4712
4713 #ifdef REMOTE_BREAKPOINT
4714 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4715
4716 if (val == 0)
4717 {
4718 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4719 val = target_write_memory (addr, (char *) big_break_insn,
4720 sizeof big_break_insn);
4721 else
4722 val = target_write_memory (addr, (char *) little_break_insn,
4723 sizeof little_break_insn);
4724 }
4725
4726 return val;
4727 #else
4728 return memory_insert_breakpoint (addr, contents_cache);
4729 #endif /* REMOTE_BREAKPOINT */
4730 }
4731
4732 static int
4733 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4734 {
4735 struct remote_state *rs = get_remote_state ();
4736 int bp_size;
4737
4738 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4739 {
4740 char *buf = alloca (rs->remote_packet_size);
4741 char *p = buf;
4742
4743 *(p++) = 'z';
4744 *(p++) = '0';
4745 *(p++) = ',';
4746
4747 addr = remote_address_masked (addr);
4748 p += hexnumstr (p, (ULONGEST) addr);
4749 BREAKPOINT_FROM_PC (&addr, &bp_size);
4750 sprintf (p, ",%d", bp_size);
4751
4752 putpkt (buf);
4753 getpkt (buf, (rs->remote_packet_size), 0);
4754
4755 return (buf[0] == 'E');
4756 }
4757
4758 #ifdef REMOTE_BREAKPOINT
4759 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4760 #else
4761 return memory_remove_breakpoint (addr, contents_cache);
4762 #endif /* REMOTE_BREAKPOINT */
4763 }
4764
4765 static int
4766 watchpoint_to_Z_packet (int type)
4767 {
4768 switch (type)
4769 {
4770 case hw_write:
4771 return 2;
4772 break;
4773 case hw_read:
4774 return 3;
4775 break;
4776 case hw_access:
4777 return 4;
4778 break;
4779 default:
4780 internal_error (__FILE__, __LINE__,
4781 "hw_bp_to_z: bad watchpoint type %d", type);
4782 }
4783 }
4784
4785 static int
4786 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4787 {
4788 struct remote_state *rs = get_remote_state ();
4789 char *buf = alloca (rs->remote_packet_size);
4790 char *p;
4791 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4792
4793 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4794 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4795 remote_protocol_Z[packet].name,
4796 remote_protocol_Z[packet].title);
4797
4798 sprintf (buf, "Z%x,", packet);
4799 p = strchr (buf, '\0');
4800 addr = remote_address_masked (addr);
4801 p += hexnumstr (p, (ULONGEST) addr);
4802 sprintf (p, ",%x", len);
4803
4804 putpkt (buf);
4805 getpkt (buf, (rs->remote_packet_size), 0);
4806
4807 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4808 {
4809 case PACKET_ERROR:
4810 case PACKET_UNKNOWN:
4811 return -1;
4812 case PACKET_OK:
4813 return 0;
4814 }
4815 internal_error (__FILE__, __LINE__,
4816 "remote_insert_watchpoint: reached end of function");
4817 }
4818
4819
4820 static int
4821 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4822 {
4823 struct remote_state *rs = get_remote_state ();
4824 char *buf = alloca (rs->remote_packet_size);
4825 char *p;
4826 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4827
4828 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4829 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4830 remote_protocol_Z[packet].name,
4831 remote_protocol_Z[packet].title);
4832
4833 sprintf (buf, "z%x,", packet);
4834 p = strchr (buf, '\0');
4835 addr = remote_address_masked (addr);
4836 p += hexnumstr (p, (ULONGEST) addr);
4837 sprintf (p, ",%x", len);
4838 putpkt (buf);
4839 getpkt (buf, (rs->remote_packet_size), 0);
4840
4841 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4842 {
4843 case PACKET_ERROR:
4844 case PACKET_UNKNOWN:
4845 return -1;
4846 case PACKET_OK:
4847 return 0;
4848 }
4849 internal_error (__FILE__, __LINE__,
4850 "remote_remove_watchpoint: reached end of function");
4851 }
4852
4853
4854 int remote_hw_watchpoint_limit = -1;
4855 int remote_hw_breakpoint_limit = -1;
4856
4857 int
4858 remote_check_watch_resources (int type, int cnt, int ot)
4859 {
4860 if (type == bp_hardware_breakpoint)
4861 {
4862 if (remote_hw_breakpoint_limit == 0)
4863 return 0;
4864 else if (remote_hw_breakpoint_limit < 0)
4865 return 1;
4866 else if (cnt <= remote_hw_breakpoint_limit)
4867 return 1;
4868 }
4869 else
4870 {
4871 if (remote_hw_watchpoint_limit == 0)
4872 return 0;
4873 else if (remote_hw_watchpoint_limit < 0)
4874 return 1;
4875 else if (ot)
4876 return -1;
4877 else if (cnt <= remote_hw_watchpoint_limit)
4878 return 1;
4879 }
4880 return -1;
4881 }
4882
4883 int
4884 remote_stopped_by_watchpoint (void)
4885 {
4886 return remote_stopped_by_watchpoint_p;
4887 }
4888
4889 CORE_ADDR
4890 remote_stopped_data_address (void)
4891 {
4892 if (remote_stopped_by_watchpoint ())
4893 return remote_watch_data_address;
4894 return (CORE_ADDR)0;
4895 }
4896
4897
4898 static int
4899 remote_insert_hw_breakpoint (CORE_ADDR addr, char *shadow)
4900 {
4901 int len = 0;
4902 struct remote_state *rs = get_remote_state ();
4903 char *buf = alloca (rs->remote_packet_size);
4904 char *p = buf;
4905
4906 /* The length field should be set to the size of a breakpoint
4907 instruction. */
4908
4909 BREAKPOINT_FROM_PC (&addr, &len);
4910
4911 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4912 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4913 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4914 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4915
4916 *(p++) = 'Z';
4917 *(p++) = '1';
4918 *(p++) = ',';
4919
4920 addr = remote_address_masked (addr);
4921 p += hexnumstr (p, (ULONGEST) addr);
4922 sprintf (p, ",%x", len);
4923
4924 putpkt (buf);
4925 getpkt (buf, (rs->remote_packet_size), 0);
4926
4927 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4928 {
4929 case PACKET_ERROR:
4930 case PACKET_UNKNOWN:
4931 return -1;
4932 case PACKET_OK:
4933 return 0;
4934 }
4935 internal_error (__FILE__, __LINE__,
4936 "remote_insert_hw_breakpoint: reached end of function");
4937 }
4938
4939
4940 static int
4941 remote_remove_hw_breakpoint (CORE_ADDR addr, char *shadow)
4942 {
4943 int len;
4944 struct remote_state *rs = get_remote_state ();
4945 char *buf = alloca (rs->remote_packet_size);
4946 char *p = buf;
4947
4948 /* The length field should be set to the size of a breakpoint
4949 instruction. */
4950
4951 BREAKPOINT_FROM_PC (&addr, &len);
4952
4953 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4954 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4955 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4956 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4957
4958 *(p++) = 'z';
4959 *(p++) = '1';
4960 *(p++) = ',';
4961
4962 addr = remote_address_masked (addr);
4963 p += hexnumstr (p, (ULONGEST) addr);
4964 sprintf (p, ",%x", len);
4965
4966 putpkt(buf);
4967 getpkt (buf, (rs->remote_packet_size), 0);
4968
4969 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4970 {
4971 case PACKET_ERROR:
4972 case PACKET_UNKNOWN:
4973 return -1;
4974 case PACKET_OK:
4975 return 0;
4976 }
4977 internal_error (__FILE__, __LINE__,
4978 "remote_remove_hw_breakpoint: reached end of function");
4979 }
4980
4981 /* Some targets are only capable of doing downloads, and afterwards
4982 they switch to the remote serial protocol. This function provides
4983 a clean way to get from the download target to the remote target.
4984 It's basically just a wrapper so that we don't have to expose any
4985 of the internal workings of remote.c.
4986
4987 Prior to calling this routine, you should shutdown the current
4988 target code, else you will get the "A program is being debugged
4989 already..." message. Usually a call to pop_target() suffices. */
4990
4991 void
4992 push_remote_target (char *name, int from_tty)
4993 {
4994 printf_filtered ("Switching to remote protocol\n");
4995 remote_open (name, from_tty);
4996 }
4997
4998 /* Table used by the crc32 function to calcuate the checksum. */
4999
5000 static unsigned long crc32_table[256] =
5001 {0, 0};
5002
5003 static unsigned long
5004 crc32 (unsigned char *buf, int len, unsigned int crc)
5005 {
5006 if (!crc32_table[1])
5007 {
5008 /* Initialize the CRC table and the decoding table. */
5009 int i, j;
5010 unsigned int c;
5011
5012 for (i = 0; i < 256; i++)
5013 {
5014 for (c = i << 24, j = 8; j > 0; --j)
5015 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5016 crc32_table[i] = c;
5017 }
5018 }
5019
5020 while (len--)
5021 {
5022 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5023 buf++;
5024 }
5025 return crc;
5026 }
5027
5028 /* compare-sections command
5029
5030 With no arguments, compares each loadable section in the exec bfd
5031 with the same memory range on the target, and reports mismatches.
5032 Useful for verifying the image on the target against the exec file.
5033 Depends on the target understanding the new "qCRC:" request. */
5034
5035 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5036 target method (target verify memory) and generic version of the
5037 actual command. This will allow other high-level code (especially
5038 generic_load()) to make use of this target functionality. */
5039
5040 static void
5041 compare_sections_command (char *args, int from_tty)
5042 {
5043 struct remote_state *rs = get_remote_state ();
5044 asection *s;
5045 unsigned long host_crc, target_crc;
5046 extern bfd *exec_bfd;
5047 struct cleanup *old_chain;
5048 char *tmp;
5049 char *sectdata;
5050 const char *sectname;
5051 char *buf = alloca (rs->remote_packet_size);
5052 bfd_size_type size;
5053 bfd_vma lma;
5054 int matched = 0;
5055 int mismatched = 0;
5056
5057 if (!exec_bfd)
5058 error ("command cannot be used without an exec file");
5059 if (!current_target.to_shortname ||
5060 strcmp (current_target.to_shortname, "remote") != 0)
5061 error ("command can only be used with remote target");
5062
5063 for (s = exec_bfd->sections; s; s = s->next)
5064 {
5065 if (!(s->flags & SEC_LOAD))
5066 continue; /* skip non-loadable section */
5067
5068 size = bfd_get_section_size_before_reloc (s);
5069 if (size == 0)
5070 continue; /* skip zero-length section */
5071
5072 sectname = bfd_get_section_name (exec_bfd, s);
5073 if (args && strcmp (args, sectname) != 0)
5074 continue; /* not the section selected by user */
5075
5076 matched = 1; /* do this section */
5077 lma = s->lma;
5078 /* FIXME: assumes lma can fit into long */
5079 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
5080 putpkt (buf);
5081
5082 /* be clever; compute the host_crc before waiting for target reply */
5083 sectdata = xmalloc (size);
5084 old_chain = make_cleanup (xfree, sectdata);
5085 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5086 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5087
5088 getpkt (buf, (rs->remote_packet_size), 0);
5089 if (buf[0] == 'E')
5090 error ("target memory fault, section %s, range 0x%s -- 0x%s",
5091 sectname, paddr (lma), paddr (lma + size));
5092 if (buf[0] != 'C')
5093 error ("remote target does not support this operation");
5094
5095 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
5096 target_crc = target_crc * 16 + fromhex (*tmp);
5097
5098 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5099 sectname, paddr (lma), paddr (lma + size));
5100 if (host_crc == target_crc)
5101 printf_filtered ("matched.\n");
5102 else
5103 {
5104 printf_filtered ("MIS-MATCHED!\n");
5105 mismatched++;
5106 }
5107
5108 do_cleanups (old_chain);
5109 }
5110 if (mismatched > 0)
5111 warning ("One or more sections of the remote executable does not match\n\
5112 the loaded file\n");
5113 if (args && !matched)
5114 printf_filtered ("No loaded section named '%s'.\n", args);
5115 }
5116
5117 static int
5118 remote_query (int query_type, char *buf, char *outbuf, int *bufsiz)
5119 {
5120 struct remote_state *rs = get_remote_state ();
5121 int i;
5122 char *buf2 = alloca (rs->remote_packet_size);
5123 char *p2 = &buf2[0];
5124
5125 if (!bufsiz)
5126 error ("null pointer to remote bufer size specified");
5127
5128 /* minimum outbuf size is (rs->remote_packet_size) - if bufsiz is not large enough let
5129 the caller know and return what the minimum size is */
5130 /* Note: a zero bufsiz can be used to query the minimum buffer size */
5131 if (*bufsiz < (rs->remote_packet_size))
5132 {
5133 *bufsiz = (rs->remote_packet_size);
5134 return -1;
5135 }
5136
5137 /* except for querying the minimum buffer size, target must be open */
5138 if (!remote_desc)
5139 error ("remote query is only available after target open");
5140
5141 /* we only take uppercase letters as query types, at least for now */
5142 if ((query_type < 'A') || (query_type > 'Z'))
5143 error ("invalid remote query type");
5144
5145 if (!buf)
5146 error ("null remote query specified");
5147
5148 if (!outbuf)
5149 error ("remote query requires a buffer to receive data");
5150
5151 outbuf[0] = '\0';
5152
5153 *p2++ = 'q';
5154 *p2++ = query_type;
5155
5156 /* we used one buffer char for the remote protocol q command and another
5157 for the query type. As the remote protocol encapsulation uses 4 chars
5158 plus one extra in case we are debugging (remote_debug),
5159 we have PBUFZIZ - 7 left to pack the query string */
5160 i = 0;
5161 while (buf[i] && (i < ((rs->remote_packet_size) - 8)))
5162 {
5163 /* bad caller may have sent forbidden characters */
5164 if ((!isprint (buf[i])) || (buf[i] == '$') || (buf[i] == '#'))
5165 error ("illegal characters in query string");
5166
5167 *p2++ = buf[i];
5168 i++;
5169 }
5170 *p2 = buf[i];
5171
5172 if (buf[i])
5173 error ("query larger than available buffer");
5174
5175 i = putpkt (buf2);
5176 if (i < 0)
5177 return i;
5178
5179 getpkt (outbuf, *bufsiz, 0);
5180
5181 return 0;
5182 }
5183
5184 static void
5185 remote_rcmd (char *command,
5186 struct ui_file *outbuf)
5187 {
5188 struct remote_state *rs = get_remote_state ();
5189 int i;
5190 char *buf = alloca (rs->remote_packet_size);
5191 char *p = buf;
5192
5193 if (!remote_desc)
5194 error ("remote rcmd is only available after target open");
5195
5196 /* Send a NULL command across as an empty command */
5197 if (command == NULL)
5198 command = "";
5199
5200 /* The query prefix */
5201 strcpy (buf, "qRcmd,");
5202 p = strchr (buf, '\0');
5203
5204 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5205 error ("\"monitor\" command ``%s'' is too long\n", command);
5206
5207 /* Encode the actual command */
5208 bin2hex (command, p, 0);
5209
5210 if (putpkt (buf) < 0)
5211 error ("Communication problem with target\n");
5212
5213 /* get/display the response */
5214 while (1)
5215 {
5216 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
5217 buf[0] = '\0';
5218 getpkt (buf, (rs->remote_packet_size), 0);
5219 if (buf[0] == '\0')
5220 error ("Target does not support this command\n");
5221 if (buf[0] == 'O' && buf[1] != 'K')
5222 {
5223 remote_console_output (buf + 1); /* 'O' message from stub */
5224 continue;
5225 }
5226 if (strcmp (buf, "OK") == 0)
5227 break;
5228 if (strlen (buf) == 3 && buf[0] == 'E'
5229 && isdigit (buf[1]) && isdigit (buf[2]))
5230 {
5231 error ("Protocol error with Rcmd");
5232 }
5233 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5234 {
5235 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5236 fputc_unfiltered (c, outbuf);
5237 }
5238 break;
5239 }
5240 }
5241
5242 static void
5243 packet_command (char *args, int from_tty)
5244 {
5245 struct remote_state *rs = get_remote_state ();
5246 char *buf = alloca (rs->remote_packet_size);
5247
5248 if (!remote_desc)
5249 error ("command can only be used with remote target");
5250
5251 if (!args)
5252 error ("remote-packet command requires packet text as argument");
5253
5254 puts_filtered ("sending: ");
5255 print_packet (args);
5256 puts_filtered ("\n");
5257 putpkt (args);
5258
5259 getpkt (buf, (rs->remote_packet_size), 0);
5260 puts_filtered ("received: ");
5261 print_packet (buf);
5262 puts_filtered ("\n");
5263 }
5264
5265 #if 0
5266 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
5267
5268 static void display_thread_info (struct gdb_ext_thread_info *info);
5269
5270 static void threadset_test_cmd (char *cmd, int tty);
5271
5272 static void threadalive_test (char *cmd, int tty);
5273
5274 static void threadlist_test_cmd (char *cmd, int tty);
5275
5276 int get_and_display_threadinfo (threadref * ref);
5277
5278 static void threadinfo_test_cmd (char *cmd, int tty);
5279
5280 static int thread_display_step (threadref * ref, void *context);
5281
5282 static void threadlist_update_test_cmd (char *cmd, int tty);
5283
5284 static void init_remote_threadtests (void);
5285
5286 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
5287
5288 static void
5289 threadset_test_cmd (char *cmd, int tty)
5290 {
5291 int sample_thread = SAMPLE_THREAD;
5292
5293 printf_filtered ("Remote threadset test\n");
5294 set_thread (sample_thread, 1);
5295 }
5296
5297
5298 static void
5299 threadalive_test (char *cmd, int tty)
5300 {
5301 int sample_thread = SAMPLE_THREAD;
5302
5303 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5304 printf_filtered ("PASS: Thread alive test\n");
5305 else
5306 printf_filtered ("FAIL: Thread alive test\n");
5307 }
5308
5309 void output_threadid (char *title, threadref * ref);
5310
5311 void
5312 output_threadid (char *title, threadref *ref)
5313 {
5314 char hexid[20];
5315
5316 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5317 hexid[16] = 0;
5318 printf_filtered ("%s %s\n", title, (&hexid[0]));
5319 }
5320
5321 static void
5322 threadlist_test_cmd (char *cmd, int tty)
5323 {
5324 int startflag = 1;
5325 threadref nextthread;
5326 int done, result_count;
5327 threadref threadlist[3];
5328
5329 printf_filtered ("Remote Threadlist test\n");
5330 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5331 &result_count, &threadlist[0]))
5332 printf_filtered ("FAIL: threadlist test\n");
5333 else
5334 {
5335 threadref *scan = threadlist;
5336 threadref *limit = scan + result_count;
5337
5338 while (scan < limit)
5339 output_threadid (" thread ", scan++);
5340 }
5341 }
5342
5343 void
5344 display_thread_info (struct gdb_ext_thread_info *info)
5345 {
5346 output_threadid ("Threadid: ", &info->threadid);
5347 printf_filtered ("Name: %s\n ", info->shortname);
5348 printf_filtered ("State: %s\n", info->display);
5349 printf_filtered ("other: %s\n\n", info->more_display);
5350 }
5351
5352 int
5353 get_and_display_threadinfo (threadref *ref)
5354 {
5355 int result;
5356 int set;
5357 struct gdb_ext_thread_info threadinfo;
5358
5359 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5360 | TAG_MOREDISPLAY | TAG_DISPLAY;
5361 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5362 display_thread_info (&threadinfo);
5363 return result;
5364 }
5365
5366 static void
5367 threadinfo_test_cmd (char *cmd, int tty)
5368 {
5369 int athread = SAMPLE_THREAD;
5370 threadref thread;
5371 int set;
5372
5373 int_to_threadref (&thread, athread);
5374 printf_filtered ("Remote Threadinfo test\n");
5375 if (!get_and_display_threadinfo (&thread))
5376 printf_filtered ("FAIL cannot get thread info\n");
5377 }
5378
5379 static int
5380 thread_display_step (threadref *ref, void *context)
5381 {
5382 /* output_threadid(" threadstep ",ref); *//* simple test */
5383 return get_and_display_threadinfo (ref);
5384 }
5385
5386 static void
5387 threadlist_update_test_cmd (char *cmd, int tty)
5388 {
5389 printf_filtered ("Remote Threadlist update test\n");
5390 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5391 }
5392
5393 static void
5394 init_remote_threadtests (void)
5395 {
5396 add_com ("tlist", class_obscure, threadlist_test_cmd,
5397 "Fetch and print the remote list of thread identifiers, one pkt only");
5398 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5399 "Fetch and display info about one thread");
5400 add_com ("tset", class_obscure, threadset_test_cmd,
5401 "Test setting to a different thread");
5402 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5403 "Iterate through updating all remote thread info");
5404 add_com ("talive", class_obscure, threadalive_test,
5405 " Remote thread alive test ");
5406 }
5407
5408 #endif /* 0 */
5409
5410 /* Convert a thread ID to a string. Returns the string in a static
5411 buffer. */
5412
5413 static char *
5414 remote_pid_to_str (ptid_t ptid)
5415 {
5416 static char buf[30];
5417
5418 sprintf (buf, "Thread %d", PIDGET (ptid));
5419 return buf;
5420 }
5421
5422 static void
5423 init_remote_ops (void)
5424 {
5425 remote_ops.to_shortname = "remote";
5426 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5427 remote_ops.to_doc =
5428 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5429 Specify the serial device it is connected to\n\
5430 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5431 remote_ops.to_open = remote_open;
5432 remote_ops.to_close = remote_close;
5433 remote_ops.to_detach = remote_detach;
5434 remote_ops.to_resume = remote_resume;
5435 remote_ops.to_wait = remote_wait;
5436 remote_ops.to_fetch_registers = remote_fetch_registers;
5437 remote_ops.to_store_registers = remote_store_registers;
5438 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5439 remote_ops.to_xfer_memory = remote_xfer_memory;
5440 remote_ops.to_files_info = remote_files_info;
5441 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5442 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5443 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5444 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5445 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5446 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5447 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5448 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5449 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5450 remote_ops.to_kill = remote_kill;
5451 remote_ops.to_load = generic_load;
5452 remote_ops.to_mourn_inferior = remote_mourn;
5453 remote_ops.to_thread_alive = remote_thread_alive;
5454 remote_ops.to_find_new_threads = remote_threads_info;
5455 remote_ops.to_pid_to_str = remote_pid_to_str;
5456 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5457 remote_ops.to_stop = remote_stop;
5458 remote_ops.to_query = remote_query;
5459 remote_ops.to_rcmd = remote_rcmd;
5460 remote_ops.to_stratum = process_stratum;
5461 remote_ops.to_has_all_memory = 1;
5462 remote_ops.to_has_memory = 1;
5463 remote_ops.to_has_stack = 1;
5464 remote_ops.to_has_registers = 1;
5465 remote_ops.to_has_execution = 1;
5466 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5467 remote_ops.to_magic = OPS_MAGIC;
5468 }
5469
5470 /* Set up the extended remote vector by making a copy of the standard
5471 remote vector and adding to it. */
5472
5473 static void
5474 init_extended_remote_ops (void)
5475 {
5476 extended_remote_ops = remote_ops;
5477
5478 extended_remote_ops.to_shortname = "extended-remote";
5479 extended_remote_ops.to_longname =
5480 "Extended remote serial target in gdb-specific protocol";
5481 extended_remote_ops.to_doc =
5482 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5483 Specify the serial device it is connected to (e.g. /dev/ttya).",
5484 extended_remote_ops.to_open = extended_remote_open;
5485 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5486 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5487 }
5488
5489 /*
5490 * Command: info remote-process
5491 *
5492 * This implements Cisco's version of the "info proc" command.
5493 *
5494 * This query allows the target stub to return an arbitrary string
5495 * (or strings) giving arbitrary information about the target process.
5496 * This is optional; the target stub isn't required to implement it.
5497 *
5498 * Syntax: qfProcessInfo request first string
5499 * qsProcessInfo request subsequent string
5500 * reply: 'O'<hex-encoded-string>
5501 * 'l' last reply (empty)
5502 */
5503
5504 static void
5505 remote_info_process (char *args, int from_tty)
5506 {
5507 struct remote_state *rs = get_remote_state ();
5508 char *buf = alloca (rs->remote_packet_size);
5509
5510 if (remote_desc == 0)
5511 error ("Command can only be used when connected to the remote target.");
5512
5513 putpkt ("qfProcessInfo");
5514 getpkt (buf, (rs->remote_packet_size), 0);
5515 if (buf[0] == 0)
5516 return; /* Silently: target does not support this feature. */
5517
5518 if (buf[0] == 'E')
5519 error ("info proc: target error.");
5520
5521 while (buf[0] == 'O') /* Capitol-O packet */
5522 {
5523 remote_console_output (&buf[1]);
5524 putpkt ("qsProcessInfo");
5525 getpkt (buf, (rs->remote_packet_size), 0);
5526 }
5527 }
5528
5529 /*
5530 * Target Cisco
5531 */
5532
5533 static void
5534 remote_cisco_open (char *name, int from_tty)
5535 {
5536 int ex;
5537 if (name == 0)
5538 error ("To open a remote debug connection, you need to specify what \n"
5539 "device is attached to the remote system (e.g. host:port).");
5540
5541 /* See FIXME above */
5542 wait_forever_enabled_p = 1;
5543
5544 target_preopen (from_tty);
5545
5546 unpush_target (&remote_cisco_ops);
5547
5548 remote_desc = remote_serial_open (name);
5549 if (!remote_desc)
5550 perror_with_name (name);
5551
5552 /*
5553 * If a baud rate was specified on the gdb command line it will
5554 * be greater than the initial value of -1. If it is, use it otherwise
5555 * default to 9600
5556 */
5557
5558 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5559 if (serial_setbaudrate (remote_desc, baud_rate))
5560 {
5561 serial_close (remote_desc);
5562 perror_with_name (name);
5563 }
5564
5565 serial_raw (remote_desc);
5566
5567 /* If there is something sitting in the buffer we might take it as a
5568 response to a command, which would be bad. */
5569 serial_flush_input (remote_desc);
5570
5571 if (from_tty)
5572 {
5573 puts_filtered ("Remote debugging using ");
5574 puts_filtered (name);
5575 puts_filtered ("\n");
5576 }
5577
5578 remote_cisco_mode = 1;
5579
5580 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5581
5582 init_all_packet_configs ();
5583
5584 general_thread = -2;
5585 continue_thread = -2;
5586
5587 /* Probe for ability to use "ThreadInfo" query, as required. */
5588 use_threadinfo_query = 1;
5589 use_threadextra_query = 1;
5590
5591 /* Without this, some commands which require an active target (such
5592 as kill) won't work. This variable serves (at least) double duty
5593 as both the pid of the target process (if it has such), and as a
5594 flag indicating that a target is active. These functions should
5595 be split out into seperate variables, especially since GDB will
5596 someday have a notion of debugging several processes. */
5597 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5598
5599 /* Start the remote connection; if error, discard this target. See
5600 the comments in remote_open_1() for further details such as the
5601 need to re-throw the exception. */
5602 ex = catch_exceptions (uiout,
5603 remote_start_remote_dummy, NULL,
5604 "Couldn't establish connection to remote"
5605 " target\n",
5606 RETURN_MASK_ALL);
5607 if (ex < 0)
5608 {
5609 pop_target ();
5610 throw_exception (ex);
5611 }
5612 }
5613
5614 static void
5615 remote_cisco_close (int quitting)
5616 {
5617 remote_cisco_mode = 0;
5618 remote_close (quitting);
5619 }
5620
5621 static void
5622 remote_cisco_mourn (void)
5623 {
5624 remote_mourn_1 (&remote_cisco_ops);
5625 }
5626
5627 enum
5628 {
5629 READ_MORE,
5630 FATAL_ERROR,
5631 ENTER_DEBUG,
5632 DISCONNECT_TELNET
5633 }
5634 minitelnet_return;
5635
5636 /* Shared between readsocket() and readtty(). The size is arbitrary,
5637 however all targets are known to support a 400 character packet. */
5638 static char tty_input[400];
5639
5640 static int escape_count;
5641 static int echo_check;
5642 extern int quit_flag;
5643
5644 static int
5645 readsocket (void)
5646 {
5647 int data;
5648
5649 /* Loop until the socket doesn't have any more data */
5650
5651 while ((data = readchar (0)) >= 0)
5652 {
5653 /* Check for the escape sequence */
5654 if (data == '|')
5655 {
5656 /* If this is the fourth escape, get out */
5657 if (++escape_count == 4)
5658 {
5659 return ENTER_DEBUG;
5660 }
5661 else
5662 { /* This is a '|', but not the fourth in a row.
5663 Continue without echoing it. If it isn't actually
5664 one of four in a row, it'll be echoed later. */
5665 continue;
5666 }
5667 }
5668 else
5669 /* Not a '|' */
5670 {
5671 /* Ensure any pending '|'s are flushed. */
5672
5673 for (; escape_count > 0; escape_count--)
5674 putchar ('|');
5675 }
5676
5677 if (data == '\r') /* If this is a return character, */
5678 continue; /* - just supress it. */
5679
5680 if (echo_check != -1) /* Check for echo of user input. */
5681 {
5682 if (tty_input[echo_check] == data)
5683 {
5684 gdb_assert (echo_check <= sizeof (tty_input));
5685 echo_check++; /* Character matched user input: */
5686 continue; /* Continue without echoing it. */
5687 }
5688 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5689 { /* End of the line (and of echo checking). */
5690 echo_check = -1; /* No more echo supression */
5691 continue; /* Continue without echoing. */
5692 }
5693 else
5694 { /* Failed check for echo of user input.
5695 We now have some suppressed output to flush! */
5696 int j;
5697
5698 for (j = 0; j < echo_check; j++)
5699 putchar (tty_input[j]);
5700 echo_check = -1;
5701 }
5702 }
5703 putchar (data); /* Default case: output the char. */
5704 }
5705
5706 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5707 return READ_MORE; /* Try to read some more */
5708 else
5709 return FATAL_ERROR; /* Trouble, bail out */
5710 }
5711
5712 static int
5713 readtty (void)
5714 {
5715 int tty_bytecount;
5716
5717 /* First, read a buffer full from the terminal */
5718 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5719 if (tty_bytecount == -1)
5720 {
5721 perror ("readtty: read failed");
5722 return FATAL_ERROR;
5723 }
5724
5725 /* Remove a quoted newline. */
5726 if (tty_input[tty_bytecount - 1] == '\n' &&
5727 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5728 {
5729 tty_input[--tty_bytecount] = 0; /* remove newline */
5730 tty_input[--tty_bytecount] = 0; /* remove backslash */
5731 }
5732
5733 /* Turn trailing newlines into returns */
5734 if (tty_input[tty_bytecount - 1] == '\n')
5735 tty_input[tty_bytecount - 1] = '\r';
5736
5737 /* If the line consists of a ~, enter debugging mode. */
5738 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5739 return ENTER_DEBUG;
5740
5741 /* Make this a zero terminated string and write it out */
5742 tty_input[tty_bytecount] = 0;
5743 if (serial_write (remote_desc, tty_input, tty_bytecount))
5744 {
5745 perror_with_name ("readtty: write failed");
5746 return FATAL_ERROR;
5747 }
5748
5749 return READ_MORE;
5750 }
5751
5752 static int
5753 minitelnet (void)
5754 {
5755 fd_set input; /* file descriptors for select */
5756 int tablesize; /* max number of FDs for select */
5757 int status;
5758 int quit_count = 0;
5759
5760 escape_count = 0;
5761 echo_check = -1;
5762
5763 tablesize = 8 * sizeof (input);
5764
5765 for (;;)
5766 {
5767 /* Check for anything from our socket - doesn't block. Note that
5768 this must be done *before* the select as there may be
5769 buffered I/O waiting to be processed. */
5770
5771 if ((status = readsocket ()) == FATAL_ERROR)
5772 {
5773 error ("Debugging terminated by communications error");
5774 }
5775 else if (status != READ_MORE)
5776 {
5777 return (status);
5778 }
5779
5780 fflush (stdout); /* Flush output before blocking */
5781
5782 /* Now block on more socket input or TTY input */
5783
5784 FD_ZERO (&input);
5785 FD_SET (fileno (stdin), &input);
5786 FD_SET (deprecated_serial_fd (remote_desc), &input);
5787
5788 status = select (tablesize, &input, 0, 0, 0);
5789 if ((status == -1) && (errno != EINTR))
5790 {
5791 error ("Communications error on select %d", errno);
5792 }
5793
5794 /* Handle Control-C typed */
5795
5796 if (quit_flag)
5797 {
5798 if ((++quit_count) == 2)
5799 {
5800 if (query ("Interrupt GDB? "))
5801 {
5802 printf_filtered ("Interrupted by user.\n");
5803 throw_exception (RETURN_QUIT);
5804 }
5805 quit_count = 0;
5806 }
5807 quit_flag = 0;
5808
5809 if (remote_break)
5810 serial_send_break (remote_desc);
5811 else
5812 serial_write (remote_desc, "\003", 1);
5813
5814 continue;
5815 }
5816
5817 /* Handle console input */
5818
5819 if (FD_ISSET (fileno (stdin), &input))
5820 {
5821 quit_count = 0;
5822 echo_check = 0;
5823 status = readtty ();
5824 if (status == READ_MORE)
5825 continue;
5826
5827 return status; /* telnet session ended */
5828 }
5829 }
5830 }
5831
5832 static ptid_t
5833 remote_cisco_wait (ptid_t ptid, struct target_waitstatus *status)
5834 {
5835 if (minitelnet () != ENTER_DEBUG)
5836 {
5837 error ("Debugging session terminated by protocol error");
5838 }
5839 putpkt ("?");
5840 return remote_wait (ptid, status);
5841 }
5842
5843 static void
5844 init_remote_cisco_ops (void)
5845 {
5846 remote_cisco_ops.to_shortname = "cisco";
5847 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5848 remote_cisco_ops.to_doc =
5849 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5850 Specify the serial device it is connected to (e.g. host:2020).";
5851 remote_cisco_ops.to_open = remote_cisco_open;
5852 remote_cisco_ops.to_close = remote_cisco_close;
5853 remote_cisco_ops.to_detach = remote_detach;
5854 remote_cisco_ops.to_resume = remote_resume;
5855 remote_cisco_ops.to_wait = remote_cisco_wait;
5856 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5857 remote_cisco_ops.to_store_registers = remote_store_registers;
5858 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5859 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5860 remote_cisco_ops.to_files_info = remote_files_info;
5861 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5862 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5863 remote_cisco_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5864 remote_cisco_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5865 remote_cisco_ops.to_insert_watchpoint = remote_insert_watchpoint;
5866 remote_cisco_ops.to_remove_watchpoint = remote_remove_watchpoint;
5867 remote_cisco_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5868 remote_cisco_ops.to_stopped_data_address = remote_stopped_data_address;
5869 remote_cisco_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5870 remote_cisco_ops.to_kill = remote_kill;
5871 remote_cisco_ops.to_load = generic_load;
5872 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5873 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5874 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5875 remote_cisco_ops.to_pid_to_str = remote_pid_to_str;
5876 remote_cisco_ops.to_extra_thread_info = remote_threads_extra_info;
5877 remote_cisco_ops.to_stratum = process_stratum;
5878 remote_cisco_ops.to_has_all_memory = 1;
5879 remote_cisco_ops.to_has_memory = 1;
5880 remote_cisco_ops.to_has_stack = 1;
5881 remote_cisco_ops.to_has_registers = 1;
5882 remote_cisco_ops.to_has_execution = 1;
5883 remote_cisco_ops.to_magic = OPS_MAGIC;
5884 }
5885
5886 static int
5887 remote_can_async_p (void)
5888 {
5889 /* We're async whenever the serial device is. */
5890 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5891 }
5892
5893 static int
5894 remote_is_async_p (void)
5895 {
5896 /* We're async whenever the serial device is. */
5897 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5898 }
5899
5900 /* Pass the SERIAL event on and up to the client. One day this code
5901 will be able to delay notifying the client of an event until the
5902 point where an entire packet has been received. */
5903
5904 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5905 static void *async_client_context;
5906 static serial_event_ftype remote_async_serial_handler;
5907
5908 static void
5909 remote_async_serial_handler (struct serial *scb, void *context)
5910 {
5911 /* Don't propogate error information up to the client. Instead let
5912 the client find out about the error by querying the target. */
5913 async_client_callback (INF_REG_EVENT, async_client_context);
5914 }
5915
5916 static void
5917 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5918 {
5919 if (current_target.to_async_mask_value == 0)
5920 internal_error (__FILE__, __LINE__,
5921 "Calling remote_async when async is masked");
5922
5923 if (callback != NULL)
5924 {
5925 serial_async (remote_desc, remote_async_serial_handler, NULL);
5926 async_client_callback = callback;
5927 async_client_context = context;
5928 }
5929 else
5930 serial_async (remote_desc, NULL, NULL);
5931 }
5932
5933 /* Target async and target extended-async.
5934
5935 This are temporary targets, until it is all tested. Eventually
5936 async support will be incorporated int the usual 'remote'
5937 target. */
5938
5939 static void
5940 init_remote_async_ops (void)
5941 {
5942 remote_async_ops.to_shortname = "async";
5943 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5944 remote_async_ops.to_doc =
5945 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5946 Specify the serial device it is connected to (e.g. /dev/ttya).";
5947 remote_async_ops.to_open = remote_async_open;
5948 remote_async_ops.to_close = remote_close;
5949 remote_async_ops.to_detach = remote_async_detach;
5950 remote_async_ops.to_resume = remote_async_resume;
5951 remote_async_ops.to_wait = remote_async_wait;
5952 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5953 remote_async_ops.to_store_registers = remote_store_registers;
5954 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5955 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5956 remote_async_ops.to_files_info = remote_files_info;
5957 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5958 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5959 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5960 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5961 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5962 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5963 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5964 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5965 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5966 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5967 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5968 remote_async_ops.to_kill = remote_async_kill;
5969 remote_async_ops.to_load = generic_load;
5970 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5971 remote_async_ops.to_thread_alive = remote_thread_alive;
5972 remote_async_ops.to_find_new_threads = remote_threads_info;
5973 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5974 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5975 remote_async_ops.to_stop = remote_stop;
5976 remote_async_ops.to_query = remote_query;
5977 remote_async_ops.to_rcmd = remote_rcmd;
5978 remote_async_ops.to_stratum = process_stratum;
5979 remote_async_ops.to_has_all_memory = 1;
5980 remote_async_ops.to_has_memory = 1;
5981 remote_async_ops.to_has_stack = 1;
5982 remote_async_ops.to_has_registers = 1;
5983 remote_async_ops.to_has_execution = 1;
5984 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5985 remote_async_ops.to_can_async_p = remote_can_async_p;
5986 remote_async_ops.to_is_async_p = remote_is_async_p;
5987 remote_async_ops.to_async = remote_async;
5988 remote_async_ops.to_async_mask_value = 1;
5989 remote_async_ops.to_magic = OPS_MAGIC;
5990 }
5991
5992 /* Set up the async extended remote vector by making a copy of the standard
5993 remote vector and adding to it. */
5994
5995 static void
5996 init_extended_async_remote_ops (void)
5997 {
5998 extended_async_remote_ops = remote_async_ops;
5999
6000 extended_async_remote_ops.to_shortname = "extended-async";
6001 extended_async_remote_ops.to_longname =
6002 "Extended remote serial target in async gdb-specific protocol";
6003 extended_async_remote_ops.to_doc =
6004 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6005 Specify the serial device it is connected to (e.g. /dev/ttya).",
6006 extended_async_remote_ops.to_open = extended_remote_async_open;
6007 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6008 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6009 }
6010
6011 static void
6012 set_remote_cmd (char *args, int from_tty)
6013 {
6014 }
6015
6016 static void
6017 show_remote_cmd (char *args, int from_tty)
6018 {
6019 /* FIXME: cagney/2002-06-15: This function should iterate over
6020 remote_show_cmdlist for a list of sub commands to show. */
6021 show_remote_protocol_Z_packet_cmd (args, from_tty, NULL);
6022 show_remote_protocol_e_packet_cmd (args, from_tty, NULL);
6023 show_remote_protocol_E_packet_cmd (args, from_tty, NULL);
6024 show_remote_protocol_P_packet_cmd (args, from_tty, NULL);
6025 show_remote_protocol_qSymbol_packet_cmd (args, from_tty, NULL);
6026 show_remote_protocol_binary_download_cmd (args, from_tty, NULL);
6027 }
6028
6029 static void
6030 build_remote_gdbarch_data (void)
6031 {
6032 remote_address_size = TARGET_ADDR_BIT;
6033 }
6034
6035 /* Saved pointer to previous owner of the new_objfile event. */
6036 static void (*remote_new_objfile_chain) (struct objfile *);
6037
6038 /* Function to be called whenever a new objfile (shlib) is detected. */
6039 static void
6040 remote_new_objfile (struct objfile *objfile)
6041 {
6042 if (remote_desc != 0) /* Have a remote connection */
6043 {
6044 remote_check_symbols (objfile);
6045 }
6046 /* Call predecessor on chain, if any. */
6047 if (remote_new_objfile_chain != 0 &&
6048 remote_desc == 0)
6049 remote_new_objfile_chain (objfile);
6050 }
6051
6052 void
6053 _initialize_remote (void)
6054 {
6055 static struct cmd_list_element *remote_set_cmdlist;
6056 static struct cmd_list_element *remote_show_cmdlist;
6057 struct cmd_list_element *tmpcmd;
6058
6059 /* architecture specific data */
6060 remote_gdbarch_data_handle = register_gdbarch_data (init_remote_state,
6061 free_remote_state);
6062
6063 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6064 that the remote protocol has been initialized. */
6065 register_gdbarch_swap (&remote_address_size,
6066 sizeof (&remote_address_size), NULL);
6067 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6068
6069 init_remote_ops ();
6070 add_target (&remote_ops);
6071
6072 init_extended_remote_ops ();
6073 add_target (&extended_remote_ops);
6074
6075 init_remote_async_ops ();
6076 add_target (&remote_async_ops);
6077
6078 init_extended_async_remote_ops ();
6079 add_target (&extended_async_remote_ops);
6080
6081 init_remote_cisco_ops ();
6082 add_target (&remote_cisco_ops);
6083
6084 /* Hook into new objfile notification. */
6085 remote_new_objfile_chain = target_new_objfile_hook;
6086 target_new_objfile_hook = remote_new_objfile;
6087
6088 #if 0
6089 init_remote_threadtests ();
6090 #endif
6091
6092 /* set/show remote ... */
6093
6094 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
6095 Remote protocol specific variables\n\
6096 Configure various remote-protocol specific variables such as\n\
6097 the packets being used",
6098 &remote_set_cmdlist, "set remote ",
6099 0/*allow-unknown*/, &setlist);
6100 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
6101 Remote protocol specific variables\n\
6102 Configure various remote-protocol specific variables such as\n\
6103 the packets being used",
6104 &remote_show_cmdlist, "show remote ",
6105 0/*allow-unknown*/, &showlist);
6106
6107 add_cmd ("compare-sections", class_obscure, compare_sections_command,
6108 "Compare section data on target to the exec file.\n\
6109 Argument is a single section name (default: all loaded sections).",
6110 &cmdlist);
6111
6112 add_cmd ("packet", class_maintenance, packet_command,
6113 "Send an arbitrary packet to a remote target.\n\
6114 maintenance packet TEXT\n\
6115 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6116 this command sends the string TEXT to the inferior, and displays the\n\
6117 response packet. GDB supplies the initial `$' character, and the\n\
6118 terminating `#' character and checksum.",
6119 &maintenancelist);
6120
6121 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break,
6122 "Set whether to send break if interrupted.\n",
6123 "Show whether to send break if interrupted.\n",
6124 NULL, NULL,
6125 &setlist, &showlist);
6126
6127 /* Install commands for configuring memory read/write packets. */
6128
6129 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
6130 "Set the maximum number of bytes per memory write packet (deprecated).\n",
6131 &setlist);
6132 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
6133 "Show the maximum number of bytes per memory write packet (deprecated).\n",
6134 &showlist);
6135 add_cmd ("memory-write-packet-size", no_class,
6136 set_memory_write_packet_size,
6137 "Set the maximum number of bytes per memory-write packet.\n"
6138 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6139 "default packet size. The actual limit is further reduced\n"
6140 "dependent on the target. Specify ``fixed'' to disable the\n"
6141 "further restriction and ``limit'' to enable that restriction\n",
6142 &remote_set_cmdlist);
6143 add_cmd ("memory-read-packet-size", no_class,
6144 set_memory_read_packet_size,
6145 "Set the maximum number of bytes per memory-read packet.\n"
6146 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6147 "default packet size. The actual limit is further reduced\n"
6148 "dependent on the target. Specify ``fixed'' to disable the\n"
6149 "further restriction and ``limit'' to enable that restriction\n",
6150 &remote_set_cmdlist);
6151 add_cmd ("memory-write-packet-size", no_class,
6152 show_memory_write_packet_size,
6153 "Show the maximum number of bytes per memory-write packet.\n",
6154 &remote_show_cmdlist);
6155 add_cmd ("memory-read-packet-size", no_class,
6156 show_memory_read_packet_size,
6157 "Show the maximum number of bytes per memory-read packet.\n",
6158 &remote_show_cmdlist);
6159
6160 add_setshow_cmd ("hardware-watchpoint-limit", no_class,
6161 var_zinteger, &remote_hw_watchpoint_limit, "\
6162 Set the maximum number of target hardware watchpoints.\n\
6163 Specify a negative limit for unlimited.", "\
6164 Show the maximum number of target hardware watchpoints.\n",
6165 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
6166 add_setshow_cmd ("hardware-breakpoint-limit", no_class,
6167 var_zinteger, &remote_hw_breakpoint_limit, "\
6168 Set the maximum number of target hardware breakpoints.\n\
6169 Specify a negative limit for unlimited.", "\
6170 Show the maximum number of target hardware breakpoints.\n",
6171 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
6172
6173 add_show_from_set
6174 (add_set_cmd ("remoteaddresssize", class_obscure,
6175 var_integer, (char *) &remote_address_size,
6176 "Set the maximum size of the address (in bits) \
6177 in a memory packet.\n",
6178 &setlist),
6179 &showlist);
6180
6181 add_packet_config_cmd (&remote_protocol_binary_download,
6182 "X", "binary-download",
6183 set_remote_protocol_binary_download_cmd,
6184 show_remote_protocol_binary_download_cmd,
6185 &remote_set_cmdlist, &remote_show_cmdlist,
6186 1);
6187 #if 0
6188 /* XXXX - should ``set remotebinarydownload'' be retained for
6189 compatibility. */
6190 add_show_from_set
6191 (add_set_cmd ("remotebinarydownload", no_class,
6192 var_boolean, (char *) &remote_binary_download,
6193 "Set binary downloads.\n", &setlist),
6194 &showlist);
6195 #endif
6196
6197 add_info ("remote-process", remote_info_process,
6198 "Query the remote system for process info.");
6199
6200 add_packet_config_cmd (&remote_protocol_qSymbol,
6201 "qSymbol", "symbol-lookup",
6202 set_remote_protocol_qSymbol_packet_cmd,
6203 show_remote_protocol_qSymbol_packet_cmd,
6204 &remote_set_cmdlist, &remote_show_cmdlist,
6205 0);
6206
6207 add_packet_config_cmd (&remote_protocol_e,
6208 "e", "step-over-range",
6209 set_remote_protocol_e_packet_cmd,
6210 show_remote_protocol_e_packet_cmd,
6211 &remote_set_cmdlist, &remote_show_cmdlist,
6212 0);
6213 /* Disable by default. The ``e'' packet has nasty interactions with
6214 the threading code - it relies on global state. */
6215 remote_protocol_e.detect = AUTO_BOOLEAN_FALSE;
6216 update_packet_config (&remote_protocol_e);
6217
6218 add_packet_config_cmd (&remote_protocol_E,
6219 "E", "step-over-range-w-signal",
6220 set_remote_protocol_E_packet_cmd,
6221 show_remote_protocol_E_packet_cmd,
6222 &remote_set_cmdlist, &remote_show_cmdlist,
6223 0);
6224 /* Disable by default. The ``e'' packet has nasty interactions with
6225 the threading code - it relies on global state. */
6226 remote_protocol_E.detect = AUTO_BOOLEAN_FALSE;
6227 update_packet_config (&remote_protocol_E);
6228
6229 add_packet_config_cmd (&remote_protocol_P,
6230 "P", "set-register",
6231 set_remote_protocol_P_packet_cmd,
6232 show_remote_protocol_P_packet_cmd,
6233 &remote_set_cmdlist, &remote_show_cmdlist,
6234 1);
6235
6236 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
6237 "Z0", "software-breakpoint",
6238 set_remote_protocol_Z_software_bp_packet_cmd,
6239 show_remote_protocol_Z_software_bp_packet_cmd,
6240 &remote_set_cmdlist, &remote_show_cmdlist,
6241 0);
6242
6243 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
6244 "Z1", "hardware-breakpoint",
6245 set_remote_protocol_Z_hardware_bp_packet_cmd,
6246 show_remote_protocol_Z_hardware_bp_packet_cmd,
6247 &remote_set_cmdlist, &remote_show_cmdlist,
6248 0);
6249
6250 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
6251 "Z2", "write-watchpoint",
6252 set_remote_protocol_Z_write_wp_packet_cmd,
6253 show_remote_protocol_Z_write_wp_packet_cmd,
6254 &remote_set_cmdlist, &remote_show_cmdlist,
6255 0);
6256
6257 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
6258 "Z3", "read-watchpoint",
6259 set_remote_protocol_Z_read_wp_packet_cmd,
6260 show_remote_protocol_Z_read_wp_packet_cmd,
6261 &remote_set_cmdlist, &remote_show_cmdlist,
6262 0);
6263
6264 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
6265 "Z4", "access-watchpoint",
6266 set_remote_protocol_Z_access_wp_packet_cmd,
6267 show_remote_protocol_Z_access_wp_packet_cmd,
6268 &remote_set_cmdlist, &remote_show_cmdlist,
6269 0);
6270
6271 /* Keep the old ``set remote Z-packet ...'' working. */
6272 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6273 &remote_Z_packet_detect, "\
6274 Set use of remote protocol `Z' packets",
6275 "Show use of remote protocol `Z' packets ",
6276 set_remote_protocol_Z_packet_cmd,
6277 show_remote_protocol_Z_packet_cmd,
6278 &remote_set_cmdlist, &remote_show_cmdlist);
6279 }
This page took 0.190581 seconds and 4 git commands to generate.