33f6cd57aaf8aa824d35e1270b15f1f6fe6c4c3f
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78 #include <unordered_map>
79
80 /* The remote target. */
81
82 static const char remote_doc[] = N_("\
83 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
84 Specify the serial device it is connected to\n\
85 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
86
87 #define OPAQUETHREADBYTES 8
88
89 /* a 64 bit opaque identifier */
90 typedef unsigned char threadref[OPAQUETHREADBYTES];
91
92 struct gdb_ext_thread_info;
93 struct threads_listing_context;
94 typedef int (*rmt_thread_action) (threadref *ref, void *context);
95 struct protocol_feature;
96 struct packet_reg;
97
98 struct stop_reply;
99 static void stop_reply_xfree (struct stop_reply *);
100
101 struct stop_reply_deleter
102 {
103 void operator() (stop_reply *r) const
104 {
105 stop_reply_xfree (r);
106 }
107 };
108
109 typedef std::unique_ptr<stop_reply, stop_reply_deleter> stop_reply_up;
110
111 /* Generic configuration support for packets the stub optionally
112 supports. Allows the user to specify the use of the packet as well
113 as allowing GDB to auto-detect support in the remote stub. */
114
115 enum packet_support
116 {
117 PACKET_SUPPORT_UNKNOWN = 0,
118 PACKET_ENABLE,
119 PACKET_DISABLE
120 };
121
122 /* Analyze a packet's return value and update the packet config
123 accordingly. */
124
125 enum packet_result
126 {
127 PACKET_ERROR,
128 PACKET_OK,
129 PACKET_UNKNOWN
130 };
131
132 struct threads_listing_context;
133
134 /* Stub vCont actions support.
135
136 Each field is a boolean flag indicating whether the stub reports
137 support for the corresponding action. */
138
139 struct vCont_action_support
140 {
141 /* vCont;t */
142 bool t = false;
143
144 /* vCont;r */
145 bool r = false;
146
147 /* vCont;s */
148 bool s = false;
149
150 /* vCont;S */
151 bool S = false;
152 };
153
154 /* About this many threadisds fit in a packet. */
155
156 #define MAXTHREADLISTRESULTS 32
157
158 /* Data for the vFile:pread readahead cache. */
159
160 struct readahead_cache
161 {
162 /* Invalidate the readahead cache. */
163 void invalidate ();
164
165 /* Invalidate the readahead cache if it is holding data for FD. */
166 void invalidate_fd (int fd);
167
168 /* Serve pread from the readahead cache. Returns number of bytes
169 read, or 0 if the request can't be served from the cache. */
170 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
171
172 /* The file descriptor for the file that is being cached. -1 if the
173 cache is invalid. */
174 int fd = -1;
175
176 /* The offset into the file that the cache buffer corresponds
177 to. */
178 ULONGEST offset = 0;
179
180 /* The buffer holding the cache contents. */
181 gdb_byte *buf = nullptr;
182 /* The buffer's size. We try to read as much as fits into a packet
183 at a time. */
184 size_t bufsize = 0;
185
186 /* Cache hit and miss counters. */
187 ULONGEST hit_count = 0;
188 ULONGEST miss_count = 0;
189 };
190
191 /* Description of the remote protocol for a given architecture. */
192
193 struct packet_reg
194 {
195 long offset; /* Offset into G packet. */
196 long regnum; /* GDB's internal register number. */
197 LONGEST pnum; /* Remote protocol register number. */
198 int in_g_packet; /* Always part of G packet. */
199 /* long size in bytes; == register_size (target_gdbarch (), regnum);
200 at present. */
201 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
202 at present. */
203 };
204
205 struct remote_arch_state
206 {
207 explicit remote_arch_state (struct gdbarch *gdbarch);
208
209 /* Description of the remote protocol registers. */
210 long sizeof_g_packet;
211
212 /* Description of the remote protocol registers indexed by REGNUM
213 (making an array gdbarch_num_regs in size). */
214 std::unique_ptr<packet_reg[]> regs;
215
216 /* This is the size (in chars) of the first response to the ``g''
217 packet. It is used as a heuristic when determining the maximum
218 size of memory-read and memory-write packets. A target will
219 typically only reserve a buffer large enough to hold the ``g''
220 packet. The size does not include packet overhead (headers and
221 trailers). */
222 long actual_register_packet_size;
223
224 /* This is the maximum size (in chars) of a non read/write packet.
225 It is also used as a cap on the size of read/write packets. */
226 long remote_packet_size;
227 };
228
229 /* Description of the remote protocol state for the currently
230 connected target. This is per-target state, and independent of the
231 selected architecture. */
232
233 class remote_state
234 {
235 public:
236
237 remote_state ();
238 ~remote_state ();
239
240 /* Get the remote arch state for GDBARCH. */
241 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
242
243 public: /* data */
244
245 /* A buffer to use for incoming packets, and its current size. The
246 buffer is grown dynamically for larger incoming packets.
247 Outgoing packets may also be constructed in this buffer.
248 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
249 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
250 packets. */
251 char *buf;
252 long buf_size;
253
254 /* True if we're going through initial connection setup (finding out
255 about the remote side's threads, relocating symbols, etc.). */
256 bool starting_up = false;
257
258 /* If we negotiated packet size explicitly (and thus can bypass
259 heuristics for the largest packet size that will not overflow
260 a buffer in the stub), this will be set to that packet size.
261 Otherwise zero, meaning to use the guessed size. */
262 long explicit_packet_size = 0;
263
264 /* remote_wait is normally called when the target is running and
265 waits for a stop reply packet. But sometimes we need to call it
266 when the target is already stopped. We can send a "?" packet
267 and have remote_wait read the response. Or, if we already have
268 the response, we can stash it in BUF and tell remote_wait to
269 skip calling getpkt. This flag is set when BUF contains a
270 stop reply packet and the target is not waiting. */
271 int cached_wait_status = 0;
272
273 /* True, if in no ack mode. That is, neither GDB nor the stub will
274 expect acks from each other. The connection is assumed to be
275 reliable. */
276 bool noack_mode = false;
277
278 /* True if we're connected in extended remote mode. */
279 bool extended = false;
280
281 /* True if we resumed the target and we're waiting for the target to
282 stop. In the mean time, we can't start another command/query.
283 The remote server wouldn't be ready to process it, so we'd
284 timeout waiting for a reply that would never come and eventually
285 we'd close the connection. This can happen in asynchronous mode
286 because we allow GDB commands while the target is running. */
287 bool waiting_for_stop_reply = false;
288
289 /* The status of the stub support for the various vCont actions. */
290 vCont_action_support supports_vCont;
291
292 /* True if the user has pressed Ctrl-C, but the target hasn't
293 responded to that. */
294 bool ctrlc_pending_p = false;
295
296 /* True if we saw a Ctrl-C while reading or writing from/to the
297 remote descriptor. At that point it is not safe to send a remote
298 interrupt packet, so we instead remember we saw the Ctrl-C and
299 process it once we're done with sending/receiving the current
300 packet, which should be shortly. If however that takes too long,
301 and the user presses Ctrl-C again, we offer to disconnect. */
302 bool got_ctrlc_during_io = false;
303
304 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
305 remote_open knows that we don't have a file open when the program
306 starts. */
307 struct serial *remote_desc = nullptr;
308
309 /* These are the threads which we last sent to the remote system. The
310 TID member will be -1 for all or -2 for not sent yet. */
311 ptid_t general_thread = null_ptid;
312 ptid_t continue_thread = null_ptid;
313
314 /* This is the traceframe which we last selected on the remote system.
315 It will be -1 if no traceframe is selected. */
316 int remote_traceframe_number = -1;
317
318 char *last_pass_packet = nullptr;
319
320 /* The last QProgramSignals packet sent to the target. We bypass
321 sending a new program signals list down to the target if the new
322 packet is exactly the same as the last we sent. IOW, we only let
323 the target know about program signals list changes. */
324 char *last_program_signals_packet = nullptr;
325
326 gdb_signal last_sent_signal = GDB_SIGNAL_0;
327
328 bool last_sent_step = false;
329
330 /* The execution direction of the last resume we got. */
331 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
332
333 char *finished_object = nullptr;
334 char *finished_annex = nullptr;
335 ULONGEST finished_offset = 0;
336
337 /* Should we try the 'ThreadInfo' query packet?
338
339 This variable (NOT available to the user: auto-detect only!)
340 determines whether GDB will use the new, simpler "ThreadInfo"
341 query or the older, more complex syntax for thread queries.
342 This is an auto-detect variable (set to true at each connect,
343 and set to false when the target fails to recognize it). */
344 bool use_threadinfo_query = false;
345 bool use_threadextra_query = false;
346
347 threadref echo_nextthread {};
348 threadref nextthread {};
349 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
350
351 /* The state of remote notification. */
352 struct remote_notif_state *notif_state = nullptr;
353
354 /* The branch trace configuration. */
355 struct btrace_config btrace_config {};
356
357 /* The argument to the last "vFile:setfs:" packet we sent, used
358 to avoid sending repeated unnecessary "vFile:setfs:" packets.
359 Initialized to -1 to indicate that no "vFile:setfs:" packet
360 has yet been sent. */
361 int fs_pid = -1;
362
363 /* A readahead cache for vFile:pread. Often, reading a binary
364 involves a sequence of small reads. E.g., when parsing an ELF
365 file. A readahead cache helps mostly the case of remote
366 debugging on a connection with higher latency, due to the
367 request/reply nature of the RSP. We only cache data for a single
368 file descriptor at a time. */
369 struct readahead_cache readahead_cache;
370
371 /* The list of already fetched and acknowledged stop events. This
372 queue is used for notification Stop, and other notifications
373 don't need queue for their events, because the notification
374 events of Stop can't be consumed immediately, so that events
375 should be queued first, and be consumed by remote_wait_{ns,as}
376 one per time. Other notifications can consume their events
377 immediately, so queue is not needed for them. */
378 std::vector<stop_reply_up> stop_reply_queue;
379
380 /* Asynchronous signal handle registered as event loop source for
381 when we have pending events ready to be passed to the core. */
382 struct async_event_handler *remote_async_inferior_event_token = nullptr;
383
384 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
385 ``forever'' still use the normal timeout mechanism. This is
386 currently used by the ASYNC code to guarentee that target reads
387 during the initial connect always time-out. Once getpkt has been
388 modified to return a timeout indication and, in turn
389 remote_wait()/wait_for_inferior() have gained a timeout parameter
390 this can go away. */
391 int wait_forever_enabled_p = 1;
392
393 private:
394 /* Mapping of remote protocol data for each gdbarch. Usually there
395 is only one entry here, though we may see more with stubs that
396 support multi-process. */
397 std::unordered_map<struct gdbarch *, remote_arch_state>
398 m_arch_states;
399 };
400
401 static const target_info remote_target_info = {
402 "remote",
403 N_("Remote serial target in gdb-specific protocol"),
404 remote_doc
405 };
406
407 class remote_target : public target_ops
408 {
409 public:
410 remote_target ()
411 {
412 to_stratum = process_stratum;
413 }
414 ~remote_target () override;
415
416 const target_info &info () const override
417 { return remote_target_info; }
418
419 thread_control_capabilities get_thread_control_capabilities () override
420 { return tc_schedlock; }
421
422 /* Open a remote connection. */
423 static void open (const char *, int);
424
425 void close () override;
426
427 void detach (inferior *, int) override;
428 void disconnect (const char *, int) override;
429
430 void commit_resume () override;
431 void resume (ptid_t, int, enum gdb_signal) override;
432 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
433
434 void fetch_registers (struct regcache *, int) override;
435 void store_registers (struct regcache *, int) override;
436 void prepare_to_store (struct regcache *) override;
437
438 void files_info () override;
439
440 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
441
442 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
443 enum remove_bp_reason) override;
444
445
446 bool stopped_by_sw_breakpoint () override;
447 bool supports_stopped_by_sw_breakpoint () override;
448
449 bool stopped_by_hw_breakpoint () override;
450
451 bool supports_stopped_by_hw_breakpoint () override;
452
453 bool stopped_by_watchpoint () override;
454
455 bool stopped_data_address (CORE_ADDR *) override;
456
457 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
458
459 int can_use_hw_breakpoint (enum bptype, int, int) override;
460
461 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
464
465 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
466
467 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
468 struct expression *) override;
469
470 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
471 struct expression *) override;
472
473 void kill () override;
474
475 void load (const char *, int) override;
476
477 void mourn_inferior () override;
478
479 void pass_signals (int, unsigned char *) override;
480
481 int set_syscall_catchpoint (int, bool, int,
482 gdb::array_view<const int>) override;
483
484 void program_signals (int, unsigned char *) override;
485
486 bool thread_alive (ptid_t ptid) override;
487
488 const char *thread_name (struct thread_info *) override;
489
490 void update_thread_list () override;
491
492 const char *pid_to_str (ptid_t) override;
493
494 const char *extra_thread_info (struct thread_info *) override;
495
496 ptid_t get_ada_task_ptid (long lwp, long thread) override;
497
498 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
499 int handle_len,
500 inferior *inf) override;
501
502 void stop (ptid_t) override;
503
504 void interrupt () override;
505
506 void pass_ctrlc () override;
507
508 enum target_xfer_status xfer_partial (enum target_object object,
509 const char *annex,
510 gdb_byte *readbuf,
511 const gdb_byte *writebuf,
512 ULONGEST offset, ULONGEST len,
513 ULONGEST *xfered_len) override;
514
515 ULONGEST get_memory_xfer_limit () override;
516
517 void rcmd (const char *command, struct ui_file *output) override;
518
519 char *pid_to_exec_file (int pid) override;
520
521 void log_command (const char *cmd) override
522 {
523 serial_log_command (this, cmd);
524 }
525
526 CORE_ADDR get_thread_local_address (ptid_t ptid,
527 CORE_ADDR load_module_addr,
528 CORE_ADDR offset) override;
529
530 bool has_all_memory () override { return default_child_has_all_memory (); }
531 bool has_memory () override { return default_child_has_memory (); }
532 bool has_stack () override { return default_child_has_stack (); }
533 bool has_registers () override { return default_child_has_registers (); }
534 bool has_execution (ptid_t ptid) override { return default_child_has_execution (ptid); }
535
536 bool can_execute_reverse () override;
537
538 std::vector<mem_region> memory_map () override;
539
540 void flash_erase (ULONGEST address, LONGEST length) override;
541
542 void flash_done () override;
543
544 const struct target_desc *read_description () override;
545
546 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
547 const gdb_byte *pattern, ULONGEST pattern_len,
548 CORE_ADDR *found_addrp) override;
549
550 bool can_async_p () override;
551
552 bool is_async_p () override;
553
554 void async (int) override;
555
556 void thread_events (int) override;
557
558 int can_do_single_step () override;
559
560 void terminal_inferior () override;
561
562 void terminal_ours () override;
563
564 bool supports_non_stop () override;
565
566 bool supports_multi_process () override;
567
568 bool supports_disable_randomization () override;
569
570 bool filesystem_is_local () override;
571
572
573 int fileio_open (struct inferior *inf, const char *filename,
574 int flags, int mode, int warn_if_slow,
575 int *target_errno) override;
576
577 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
578 ULONGEST offset, int *target_errno) override;
579
580 int fileio_pread (int fd, gdb_byte *read_buf, int len,
581 ULONGEST offset, int *target_errno) override;
582
583 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
584
585 int fileio_close (int fd, int *target_errno) override;
586
587 int fileio_unlink (struct inferior *inf,
588 const char *filename,
589 int *target_errno) override;
590
591 gdb::optional<std::string>
592 fileio_readlink (struct inferior *inf,
593 const char *filename,
594 int *target_errno) override;
595
596 bool supports_enable_disable_tracepoint () override;
597
598 bool supports_string_tracing () override;
599
600 bool supports_evaluation_of_breakpoint_conditions () override;
601
602 bool can_run_breakpoint_commands () override;
603
604 void trace_init () override;
605
606 void download_tracepoint (struct bp_location *location) override;
607
608 bool can_download_tracepoint () override;
609
610 void download_trace_state_variable (const trace_state_variable &tsv) override;
611
612 void enable_tracepoint (struct bp_location *location) override;
613
614 void disable_tracepoint (struct bp_location *location) override;
615
616 void trace_set_readonly_regions () override;
617
618 void trace_start () override;
619
620 int get_trace_status (struct trace_status *ts) override;
621
622 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
623 override;
624
625 void trace_stop () override;
626
627 int trace_find (enum trace_find_type type, int num,
628 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
629
630 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
631
632 int save_trace_data (const char *filename) override;
633
634 int upload_tracepoints (struct uploaded_tp **utpp) override;
635
636 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
637
638 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
639
640 int get_min_fast_tracepoint_insn_len () override;
641
642 void set_disconnected_tracing (int val) override;
643
644 void set_circular_trace_buffer (int val) override;
645
646 void set_trace_buffer_size (LONGEST val) override;
647
648 bool set_trace_notes (const char *user, const char *notes,
649 const char *stopnotes) override;
650
651 int core_of_thread (ptid_t ptid) override;
652
653 int verify_memory (const gdb_byte *data,
654 CORE_ADDR memaddr, ULONGEST size) override;
655
656
657 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
658
659 void set_permissions () override;
660
661 bool static_tracepoint_marker_at (CORE_ADDR,
662 struct static_tracepoint_marker *marker)
663 override;
664
665 std::vector<static_tracepoint_marker>
666 static_tracepoint_markers_by_strid (const char *id) override;
667
668 traceframe_info_up traceframe_info () override;
669
670 bool use_agent (bool use) override;
671 bool can_use_agent () override;
672
673 struct btrace_target_info *enable_btrace (ptid_t ptid,
674 const struct btrace_config *conf) override;
675
676 void disable_btrace (struct btrace_target_info *tinfo) override;
677
678 void teardown_btrace (struct btrace_target_info *tinfo) override;
679
680 enum btrace_error read_btrace (struct btrace_data *data,
681 struct btrace_target_info *btinfo,
682 enum btrace_read_type type) override;
683
684 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
685 bool augmented_libraries_svr4_read () override;
686 int follow_fork (int, int) override;
687 void follow_exec (struct inferior *, char *) override;
688 int insert_fork_catchpoint (int) override;
689 int remove_fork_catchpoint (int) override;
690 int insert_vfork_catchpoint (int) override;
691 int remove_vfork_catchpoint (int) override;
692 int insert_exec_catchpoint (int) override;
693 int remove_exec_catchpoint (int) override;
694 enum exec_direction_kind execution_direction () override;
695
696 public: /* Remote specific methods. */
697
698 void remote_download_command_source (int num, ULONGEST addr,
699 struct command_line *cmds);
700
701 void remote_file_put (const char *local_file, const char *remote_file,
702 int from_tty);
703 void remote_file_get (const char *remote_file, const char *local_file,
704 int from_tty);
705 void remote_file_delete (const char *remote_file, int from_tty);
706
707 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
708 ULONGEST offset, int *remote_errno);
709 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
710 ULONGEST offset, int *remote_errno);
711 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
712 ULONGEST offset, int *remote_errno);
713
714 int remote_hostio_send_command (int command_bytes, int which_packet,
715 int *remote_errno, char **attachment,
716 int *attachment_len);
717 int remote_hostio_set_filesystem (struct inferior *inf,
718 int *remote_errno);
719 /* We should get rid of this and use fileio_open directly. */
720 int remote_hostio_open (struct inferior *inf, const char *filename,
721 int flags, int mode, int warn_if_slow,
722 int *remote_errno);
723 int remote_hostio_close (int fd, int *remote_errno);
724
725 int remote_hostio_unlink (inferior *inf, const char *filename,
726 int *remote_errno);
727
728 struct remote_state *get_remote_state ();
729
730 long get_remote_packet_size (void);
731 long get_memory_packet_size (struct memory_packet_config *config);
732
733 long get_memory_write_packet_size ();
734 long get_memory_read_packet_size ();
735
736 char *append_pending_thread_resumptions (char *p, char *endp,
737 ptid_t ptid);
738 static void open_1 (const char *name, int from_tty, int extended_p);
739 void start_remote (int from_tty, int extended_p);
740 void remote_detach_1 (struct inferior *inf, int from_tty);
741
742 char *append_resumption (char *p, char *endp,
743 ptid_t ptid, int step, gdb_signal siggnal);
744 int remote_resume_with_vcont (ptid_t ptid, int step,
745 gdb_signal siggnal);
746
747 void add_current_inferior_and_thread (char *wait_status);
748
749 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
750 int options);
751 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
752 int options);
753
754 ptid_t process_stop_reply (struct stop_reply *stop_reply,
755 target_waitstatus *status);
756
757 void remote_notice_new_inferior (ptid_t currthread, int executing);
758
759 void process_initial_stop_replies (int from_tty);
760
761 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
762
763 void btrace_sync_conf (const btrace_config *conf);
764
765 void remote_btrace_maybe_reopen ();
766
767 void remove_new_fork_children (threads_listing_context *context);
768 void kill_new_fork_children (int pid);
769 void discard_pending_stop_replies (struct inferior *inf);
770 int stop_reply_queue_length ();
771
772 void check_pending_events_prevent_wildcard_vcont
773 (int *may_global_wildcard_vcont);
774
775 void discard_pending_stop_replies_in_queue ();
776 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
777 struct stop_reply *queued_stop_reply (ptid_t ptid);
778 int peek_stop_reply (ptid_t ptid);
779 void remote_parse_stop_reply (char *buf, stop_reply *event);
780
781 void remote_stop_ns (ptid_t ptid);
782 void remote_interrupt_as ();
783 void remote_interrupt_ns ();
784
785 char *remote_get_noisy_reply ();
786 int remote_query_attached (int pid);
787 inferior *remote_add_inferior (int fake_pid_p, int pid, int attached,
788 int try_open_exec);
789
790 ptid_t remote_current_thread (ptid_t oldpid);
791 ptid_t get_current_thread (char *wait_status);
792
793 void set_thread (ptid_t ptid, int gen);
794 void set_general_thread (ptid_t ptid);
795 void set_continue_thread (ptid_t ptid);
796 void set_general_process ();
797
798 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
799
800 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
801 gdb_ext_thread_info *info);
802 int remote_get_threadinfo (threadref *threadid, int fieldset,
803 gdb_ext_thread_info *info);
804
805 int parse_threadlist_response (char *pkt, int result_limit,
806 threadref *original_echo,
807 threadref *resultlist,
808 int *doneflag);
809 int remote_get_threadlist (int startflag, threadref *nextthread,
810 int result_limit, int *done, int *result_count,
811 threadref *threadlist);
812
813 int remote_threadlist_iterator (rmt_thread_action stepfunction,
814 void *context, int looplimit);
815
816 int remote_get_threads_with_ql (threads_listing_context *context);
817 int remote_get_threads_with_qxfer (threads_listing_context *context);
818 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
819
820 void extended_remote_restart ();
821
822 void get_offsets ();
823
824 void remote_check_symbols ();
825
826 void remote_supported_packet (const struct protocol_feature *feature,
827 enum packet_support support,
828 const char *argument);
829
830 void remote_query_supported ();
831
832 void remote_packet_size (const protocol_feature *feature,
833 packet_support support, const char *value);
834
835 void remote_serial_quit_handler ();
836
837 void remote_detach_pid (int pid);
838
839 void remote_vcont_probe ();
840
841 void remote_resume_with_hc (ptid_t ptid, int step,
842 gdb_signal siggnal);
843
844 void send_interrupt_sequence ();
845 void interrupt_query ();
846
847 void remote_notif_get_pending_events (notif_client *nc);
848
849 int fetch_register_using_p (struct regcache *regcache,
850 packet_reg *reg);
851 int send_g_packet ();
852 void process_g_packet (struct regcache *regcache);
853 void fetch_registers_using_g (struct regcache *regcache);
854 int store_register_using_P (const struct regcache *regcache,
855 packet_reg *reg);
856 void store_registers_using_G (const struct regcache *regcache);
857
858 void set_remote_traceframe ();
859
860 void check_binary_download (CORE_ADDR addr);
861
862 target_xfer_status remote_write_bytes_aux (const char *header,
863 CORE_ADDR memaddr,
864 const gdb_byte *myaddr,
865 ULONGEST len_units,
866 int unit_size,
867 ULONGEST *xfered_len_units,
868 char packet_format,
869 int use_length);
870
871 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
872 const gdb_byte *myaddr, ULONGEST len,
873 int unit_size, ULONGEST *xfered_len);
874
875 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
876 ULONGEST len_units,
877 int unit_size, ULONGEST *xfered_len_units);
878
879 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
880 ULONGEST memaddr,
881 ULONGEST len,
882 int unit_size,
883 ULONGEST *xfered_len);
884
885 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
886 gdb_byte *myaddr, ULONGEST len,
887 int unit_size,
888 ULONGEST *xfered_len);
889
890 packet_result remote_send_printf (const char *format, ...)
891 ATTRIBUTE_PRINTF (2, 3);
892
893 target_xfer_status remote_flash_write (ULONGEST address,
894 ULONGEST length, ULONGEST *xfered_len,
895 const gdb_byte *data);
896
897 int readchar (int timeout);
898
899 void remote_serial_write (const char *str, int len);
900
901 int putpkt (const char *buf);
902 int putpkt_binary (const char *buf, int cnt);
903
904 void skip_frame ();
905 long read_frame (char **buf_p, long *sizeof_buf);
906 void getpkt (char **buf, long *sizeof_buf, int forever);
907 int getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
908 int expecting_notif, int *is_notif);
909 int getpkt_sane (char **buf, long *sizeof_buf, int forever);
910 int getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
911 int *is_notif);
912 int remote_vkill (int pid);
913 void remote_kill_k ();
914
915 void extended_remote_disable_randomization (int val);
916 int extended_remote_run (const std::string &args);
917
918 void send_environment_packet (const char *action,
919 const char *packet,
920 const char *value);
921
922 void extended_remote_environment_support ();
923 void extended_remote_set_inferior_cwd ();
924
925 target_xfer_status remote_write_qxfer (const char *object_name,
926 const char *annex,
927 const gdb_byte *writebuf,
928 ULONGEST offset, LONGEST len,
929 ULONGEST *xfered_len,
930 struct packet_config *packet);
931
932 target_xfer_status remote_read_qxfer (const char *object_name,
933 const char *annex,
934 gdb_byte *readbuf, ULONGEST offset,
935 LONGEST len,
936 ULONGEST *xfered_len,
937 struct packet_config *packet);
938
939 void push_stop_reply (struct stop_reply *new_event);
940
941 bool vcont_r_supported ();
942
943 void packet_command (const char *args, int from_tty);
944
945 private: /* data fields */
946
947 /* The remote state. Don't reference this directly. Use the
948 get_remote_state method instead. */
949 remote_state m_remote_state;
950 };
951
952 static const target_info extended_remote_target_info = {
953 "extended-remote",
954 N_("Extended remote serial target in gdb-specific protocol"),
955 remote_doc
956 };
957
958 /* Set up the extended remote target by extending the standard remote
959 target and adding to it. */
960
961 class extended_remote_target final : public remote_target
962 {
963 public:
964 const target_info &info () const override
965 { return extended_remote_target_info; }
966
967 /* Open an extended-remote connection. */
968 static void open (const char *, int);
969
970 bool can_create_inferior () override { return true; }
971 void create_inferior (const char *, const std::string &,
972 char **, int) override;
973
974 void detach (inferior *, int) override;
975
976 bool can_attach () override { return true; }
977 void attach (const char *, int) override;
978
979 void post_attach (int) override;
980 bool supports_disable_randomization () override;
981 };
982
983 /* Per-program-space data key. */
984 static const struct program_space_data *remote_pspace_data;
985
986 /* The variable registered as the control variable used by the
987 remote exec-file commands. While the remote exec-file setting is
988 per-program-space, the set/show machinery uses this as the
989 location of the remote exec-file value. */
990 static char *remote_exec_file_var;
991
992 /* The size to align memory write packets, when practical. The protocol
993 does not guarantee any alignment, and gdb will generate short
994 writes and unaligned writes, but even as a best-effort attempt this
995 can improve bulk transfers. For instance, if a write is misaligned
996 relative to the target's data bus, the stub may need to make an extra
997 round trip fetching data from the target. This doesn't make a
998 huge difference, but it's easy to do, so we try to be helpful.
999
1000 The alignment chosen is arbitrary; usually data bus width is
1001 important here, not the possibly larger cache line size. */
1002 enum { REMOTE_ALIGN_WRITES = 16 };
1003
1004 /* Prototypes for local functions. */
1005
1006 static int hexnumlen (ULONGEST num);
1007
1008 static int stubhex (int ch);
1009
1010 static int hexnumstr (char *, ULONGEST);
1011
1012 static int hexnumnstr (char *, ULONGEST, int);
1013
1014 static CORE_ADDR remote_address_masked (CORE_ADDR);
1015
1016 static void print_packet (const char *);
1017
1018 static int stub_unpack_int (char *buff, int fieldlength);
1019
1020 struct packet_config;
1021
1022 static void show_packet_config_cmd (struct packet_config *config);
1023
1024 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1025 int from_tty,
1026 struct cmd_list_element *c,
1027 const char *value);
1028
1029 static ptid_t read_ptid (const char *buf, const char **obuf);
1030
1031 static void remote_async_inferior_event_handler (gdb_client_data);
1032
1033 static int remote_read_description_p (struct target_ops *target);
1034
1035 static void remote_console_output (char *msg);
1036
1037 static void remote_btrace_reset (remote_state *rs);
1038
1039 static void remote_unpush_and_throw (void);
1040
1041 /* For "remote". */
1042
1043 static struct cmd_list_element *remote_cmdlist;
1044
1045 /* For "set remote" and "show remote". */
1046
1047 static struct cmd_list_element *remote_set_cmdlist;
1048 static struct cmd_list_element *remote_show_cmdlist;
1049
1050 /* Controls whether GDB is willing to use range stepping. */
1051
1052 static int use_range_stepping = 1;
1053
1054 /* The max number of chars in debug output. The rest of chars are
1055 omitted. */
1056
1057 #define REMOTE_DEBUG_MAX_CHAR 512
1058
1059 /* Private data that we'll store in (struct thread_info)->priv. */
1060 struct remote_thread_info : public private_thread_info
1061 {
1062 std::string extra;
1063 std::string name;
1064 int core = -1;
1065
1066 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1067 sequence of bytes. */
1068 gdb::byte_vector thread_handle;
1069
1070 /* Whether the target stopped for a breakpoint/watchpoint. */
1071 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1072
1073 /* This is set to the data address of the access causing the target
1074 to stop for a watchpoint. */
1075 CORE_ADDR watch_data_address = 0;
1076
1077 /* Fields used by the vCont action coalescing implemented in
1078 remote_resume / remote_commit_resume. remote_resume stores each
1079 thread's last resume request in these fields, so that a later
1080 remote_commit_resume knows which is the proper action for this
1081 thread to include in the vCont packet. */
1082
1083 /* True if the last target_resume call for this thread was a step
1084 request, false if a continue request. */
1085 int last_resume_step = 0;
1086
1087 /* The signal specified in the last target_resume call for this
1088 thread. */
1089 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1090
1091 /* Whether this thread was already vCont-resumed on the remote
1092 side. */
1093 int vcont_resumed = 0;
1094 };
1095
1096 remote_state::remote_state ()
1097 {
1098 /* The default buffer size is unimportant; it will be expanded
1099 whenever a larger buffer is needed. */
1100 this->buf_size = 400;
1101 this->buf = (char *) xmalloc (this->buf_size);
1102 }
1103
1104 remote_state::~remote_state ()
1105 {
1106 xfree (this->last_pass_packet);
1107 xfree (this->last_program_signals_packet);
1108 xfree (this->buf);
1109 xfree (this->finished_object);
1110 xfree (this->finished_annex);
1111 }
1112
1113 /* Utility: generate error from an incoming stub packet. */
1114 static void
1115 trace_error (char *buf)
1116 {
1117 if (*buf++ != 'E')
1118 return; /* not an error msg */
1119 switch (*buf)
1120 {
1121 case '1': /* malformed packet error */
1122 if (*++buf == '0') /* general case: */
1123 error (_("remote.c: error in outgoing packet."));
1124 else
1125 error (_("remote.c: error in outgoing packet at field #%ld."),
1126 strtol (buf, NULL, 16));
1127 default:
1128 error (_("Target returns error code '%s'."), buf);
1129 }
1130 }
1131
1132 /* Utility: wait for reply from stub, while accepting "O" packets. */
1133
1134 char *
1135 remote_target::remote_get_noisy_reply ()
1136 {
1137 struct remote_state *rs = get_remote_state ();
1138
1139 do /* Loop on reply from remote stub. */
1140 {
1141 char *buf;
1142
1143 QUIT; /* Allow user to bail out with ^C. */
1144 getpkt (&rs->buf, &rs->buf_size, 0);
1145 buf = rs->buf;
1146 if (buf[0] == 'E')
1147 trace_error (buf);
1148 else if (startswith (buf, "qRelocInsn:"))
1149 {
1150 ULONGEST ul;
1151 CORE_ADDR from, to, org_to;
1152 const char *p, *pp;
1153 int adjusted_size = 0;
1154 int relocated = 0;
1155
1156 p = buf + strlen ("qRelocInsn:");
1157 pp = unpack_varlen_hex (p, &ul);
1158 if (*pp != ';')
1159 error (_("invalid qRelocInsn packet: %s"), buf);
1160 from = ul;
1161
1162 p = pp + 1;
1163 unpack_varlen_hex (p, &ul);
1164 to = ul;
1165
1166 org_to = to;
1167
1168 TRY
1169 {
1170 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1171 relocated = 1;
1172 }
1173 CATCH (ex, RETURN_MASK_ALL)
1174 {
1175 if (ex.error == MEMORY_ERROR)
1176 {
1177 /* Propagate memory errors silently back to the
1178 target. The stub may have limited the range of
1179 addresses we can write to, for example. */
1180 }
1181 else
1182 {
1183 /* Something unexpectedly bad happened. Be verbose
1184 so we can tell what, and propagate the error back
1185 to the stub, so it doesn't get stuck waiting for
1186 a response. */
1187 exception_fprintf (gdb_stderr, ex,
1188 _("warning: relocating instruction: "));
1189 }
1190 putpkt ("E01");
1191 }
1192 END_CATCH
1193
1194 if (relocated)
1195 {
1196 adjusted_size = to - org_to;
1197
1198 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
1199 putpkt (buf);
1200 }
1201 }
1202 else if (buf[0] == 'O' && buf[1] != 'K')
1203 remote_console_output (buf + 1); /* 'O' message from stub */
1204 else
1205 return buf; /* Here's the actual reply. */
1206 }
1207 while (1);
1208 }
1209
1210 struct remote_arch_state *
1211 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1212 {
1213 remote_arch_state *rsa;
1214
1215 auto it = this->m_arch_states.find (gdbarch);
1216 if (it == this->m_arch_states.end ())
1217 {
1218 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1219 std::forward_as_tuple (gdbarch),
1220 std::forward_as_tuple (gdbarch));
1221 rsa = &p.first->second;
1222
1223 /* Make sure that the packet buffer is plenty big enough for
1224 this architecture. */
1225 if (this->buf_size < rsa->remote_packet_size)
1226 {
1227 this->buf_size = 2 * rsa->remote_packet_size;
1228 this->buf = (char *) xrealloc (this->buf, this->buf_size);
1229 }
1230 }
1231 else
1232 rsa = &it->second;
1233
1234 return rsa;
1235 }
1236
1237 /* Fetch the global remote target state. */
1238
1239 remote_state *
1240 remote_target::get_remote_state ()
1241 {
1242 /* Make sure that the remote architecture state has been
1243 initialized, because doing so might reallocate rs->buf. Any
1244 function which calls getpkt also needs to be mindful of changes
1245 to rs->buf, but this call limits the number of places which run
1246 into trouble. */
1247 m_remote_state.get_remote_arch_state (target_gdbarch ());
1248
1249 return &m_remote_state;
1250 }
1251
1252 /* Cleanup routine for the remote module's pspace data. */
1253
1254 static void
1255 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
1256 {
1257 char *remote_exec_file = (char *) arg;
1258
1259 xfree (remote_exec_file);
1260 }
1261
1262 /* Fetch the remote exec-file from the current program space. */
1263
1264 static const char *
1265 get_remote_exec_file (void)
1266 {
1267 char *remote_exec_file;
1268
1269 remote_exec_file
1270 = (char *) program_space_data (current_program_space,
1271 remote_pspace_data);
1272 if (remote_exec_file == NULL)
1273 return "";
1274
1275 return remote_exec_file;
1276 }
1277
1278 /* Set the remote exec file for PSPACE. */
1279
1280 static void
1281 set_pspace_remote_exec_file (struct program_space *pspace,
1282 char *remote_exec_file)
1283 {
1284 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
1285
1286 xfree (old_file);
1287 set_program_space_data (pspace, remote_pspace_data,
1288 xstrdup (remote_exec_file));
1289 }
1290
1291 /* The "set/show remote exec-file" set command hook. */
1292
1293 static void
1294 set_remote_exec_file (const char *ignored, int from_tty,
1295 struct cmd_list_element *c)
1296 {
1297 gdb_assert (remote_exec_file_var != NULL);
1298 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1299 }
1300
1301 /* The "set/show remote exec-file" show command hook. */
1302
1303 static void
1304 show_remote_exec_file (struct ui_file *file, int from_tty,
1305 struct cmd_list_element *cmd, const char *value)
1306 {
1307 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1308 }
1309
1310 static int
1311 compare_pnums (const void *lhs_, const void *rhs_)
1312 {
1313 const struct packet_reg * const *lhs
1314 = (const struct packet_reg * const *) lhs_;
1315 const struct packet_reg * const *rhs
1316 = (const struct packet_reg * const *) rhs_;
1317
1318 if ((*lhs)->pnum < (*rhs)->pnum)
1319 return -1;
1320 else if ((*lhs)->pnum == (*rhs)->pnum)
1321 return 0;
1322 else
1323 return 1;
1324 }
1325
1326 static int
1327 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1328 {
1329 int regnum, num_remote_regs, offset;
1330 struct packet_reg **remote_regs;
1331
1332 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1333 {
1334 struct packet_reg *r = &regs[regnum];
1335
1336 if (register_size (gdbarch, regnum) == 0)
1337 /* Do not try to fetch zero-sized (placeholder) registers. */
1338 r->pnum = -1;
1339 else
1340 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1341
1342 r->regnum = regnum;
1343 }
1344
1345 /* Define the g/G packet format as the contents of each register
1346 with a remote protocol number, in order of ascending protocol
1347 number. */
1348
1349 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1350 for (num_remote_regs = 0, regnum = 0;
1351 regnum < gdbarch_num_regs (gdbarch);
1352 regnum++)
1353 if (regs[regnum].pnum != -1)
1354 remote_regs[num_remote_regs++] = &regs[regnum];
1355
1356 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
1357 compare_pnums);
1358
1359 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1360 {
1361 remote_regs[regnum]->in_g_packet = 1;
1362 remote_regs[regnum]->offset = offset;
1363 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1364 }
1365
1366 return offset;
1367 }
1368
1369 /* Given the architecture described by GDBARCH, return the remote
1370 protocol register's number and the register's offset in the g/G
1371 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1372 If the target does not have a mapping for REGNUM, return false,
1373 otherwise, return true. */
1374
1375 int
1376 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1377 int *pnum, int *poffset)
1378 {
1379 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1380
1381 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1382
1383 map_regcache_remote_table (gdbarch, regs.data ());
1384
1385 *pnum = regs[regnum].pnum;
1386 *poffset = regs[regnum].offset;
1387
1388 return *pnum != -1;
1389 }
1390
1391 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1392 {
1393 /* Use the architecture to build a regnum<->pnum table, which will be
1394 1:1 unless a feature set specifies otherwise. */
1395 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1396
1397 /* Record the maximum possible size of the g packet - it may turn out
1398 to be smaller. */
1399 this->sizeof_g_packet
1400 = map_regcache_remote_table (gdbarch, this->regs.get ());
1401
1402 /* Default maximum number of characters in a packet body. Many
1403 remote stubs have a hardwired buffer size of 400 bytes
1404 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1405 as the maximum packet-size to ensure that the packet and an extra
1406 NUL character can always fit in the buffer. This stops GDB
1407 trashing stubs that try to squeeze an extra NUL into what is
1408 already a full buffer (As of 1999-12-04 that was most stubs). */
1409 this->remote_packet_size = 400 - 1;
1410
1411 /* This one is filled in when a ``g'' packet is received. */
1412 this->actual_register_packet_size = 0;
1413
1414 /* Should rsa->sizeof_g_packet needs more space than the
1415 default, adjust the size accordingly. Remember that each byte is
1416 encoded as two characters. 32 is the overhead for the packet
1417 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1418 (``$NN:G...#NN'') is a better guess, the below has been padded a
1419 little. */
1420 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1421 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1422 }
1423
1424 /* Get a pointer to the current remote target. If not connected to a
1425 remote target, return NULL. */
1426
1427 static remote_target *
1428 get_current_remote_target ()
1429 {
1430 target_ops *proc_target = find_target_at (process_stratum);
1431 return dynamic_cast<remote_target *> (proc_target);
1432 }
1433
1434 /* Return the current allowed size of a remote packet. This is
1435 inferred from the current architecture, and should be used to
1436 limit the length of outgoing packets. */
1437 long
1438 remote_target::get_remote_packet_size ()
1439 {
1440 struct remote_state *rs = get_remote_state ();
1441 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1442
1443 if (rs->explicit_packet_size)
1444 return rs->explicit_packet_size;
1445
1446 return rsa->remote_packet_size;
1447 }
1448
1449 static struct packet_reg *
1450 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1451 long regnum)
1452 {
1453 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1454 return NULL;
1455 else
1456 {
1457 struct packet_reg *r = &rsa->regs[regnum];
1458
1459 gdb_assert (r->regnum == regnum);
1460 return r;
1461 }
1462 }
1463
1464 static struct packet_reg *
1465 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1466 LONGEST pnum)
1467 {
1468 int i;
1469
1470 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1471 {
1472 struct packet_reg *r = &rsa->regs[i];
1473
1474 if (r->pnum == pnum)
1475 return r;
1476 }
1477 return NULL;
1478 }
1479
1480 /* Allow the user to specify what sequence to send to the remote
1481 when he requests a program interruption: Although ^C is usually
1482 what remote systems expect (this is the default, here), it is
1483 sometimes preferable to send a break. On other systems such
1484 as the Linux kernel, a break followed by g, which is Magic SysRq g
1485 is required in order to interrupt the execution. */
1486 const char interrupt_sequence_control_c[] = "Ctrl-C";
1487 const char interrupt_sequence_break[] = "BREAK";
1488 const char interrupt_sequence_break_g[] = "BREAK-g";
1489 static const char *const interrupt_sequence_modes[] =
1490 {
1491 interrupt_sequence_control_c,
1492 interrupt_sequence_break,
1493 interrupt_sequence_break_g,
1494 NULL
1495 };
1496 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1497
1498 static void
1499 show_interrupt_sequence (struct ui_file *file, int from_tty,
1500 struct cmd_list_element *c,
1501 const char *value)
1502 {
1503 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1504 fprintf_filtered (file,
1505 _("Send the ASCII ETX character (Ctrl-c) "
1506 "to the remote target to interrupt the "
1507 "execution of the program.\n"));
1508 else if (interrupt_sequence_mode == interrupt_sequence_break)
1509 fprintf_filtered (file,
1510 _("send a break signal to the remote target "
1511 "to interrupt the execution of the program.\n"));
1512 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1513 fprintf_filtered (file,
1514 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1515 "the remote target to interrupt the execution "
1516 "of Linux kernel.\n"));
1517 else
1518 internal_error (__FILE__, __LINE__,
1519 _("Invalid value for interrupt_sequence_mode: %s."),
1520 interrupt_sequence_mode);
1521 }
1522
1523 /* This boolean variable specifies whether interrupt_sequence is sent
1524 to the remote target when gdb connects to it.
1525 This is mostly needed when you debug the Linux kernel: The Linux kernel
1526 expects BREAK g which is Magic SysRq g for connecting gdb. */
1527 static int interrupt_on_connect = 0;
1528
1529 /* This variable is used to implement the "set/show remotebreak" commands.
1530 Since these commands are now deprecated in favor of "set/show remote
1531 interrupt-sequence", it no longer has any effect on the code. */
1532 static int remote_break;
1533
1534 static void
1535 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1536 {
1537 if (remote_break)
1538 interrupt_sequence_mode = interrupt_sequence_break;
1539 else
1540 interrupt_sequence_mode = interrupt_sequence_control_c;
1541 }
1542
1543 static void
1544 show_remotebreak (struct ui_file *file, int from_tty,
1545 struct cmd_list_element *c,
1546 const char *value)
1547 {
1548 }
1549
1550 /* This variable sets the number of bits in an address that are to be
1551 sent in a memory ("M" or "m") packet. Normally, after stripping
1552 leading zeros, the entire address would be sent. This variable
1553 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1554 initial implementation of remote.c restricted the address sent in
1555 memory packets to ``host::sizeof long'' bytes - (typically 32
1556 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1557 address was never sent. Since fixing this bug may cause a break in
1558 some remote targets this variable is principly provided to
1559 facilitate backward compatibility. */
1560
1561 static unsigned int remote_address_size;
1562
1563 \f
1564 /* User configurable variables for the number of characters in a
1565 memory read/write packet. MIN (rsa->remote_packet_size,
1566 rsa->sizeof_g_packet) is the default. Some targets need smaller
1567 values (fifo overruns, et.al.) and some users need larger values
1568 (speed up transfers). The variables ``preferred_*'' (the user
1569 request), ``current_*'' (what was actually set) and ``forced_*''
1570 (Positive - a soft limit, negative - a hard limit). */
1571
1572 struct memory_packet_config
1573 {
1574 const char *name;
1575 long size;
1576 int fixed_p;
1577 };
1578
1579 /* The default max memory-write-packet-size, when the setting is
1580 "fixed". The 16k is historical. (It came from older GDB's using
1581 alloca for buffers and the knowledge (folklore?) that some hosts
1582 don't cope very well with large alloca calls.) */
1583 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1584
1585 /* The minimum remote packet size for memory transfers. Ensures we
1586 can write at least one byte. */
1587 #define MIN_MEMORY_PACKET_SIZE 20
1588
1589 /* Get the memory packet size, assuming it is fixed. */
1590
1591 static long
1592 get_fixed_memory_packet_size (struct memory_packet_config *config)
1593 {
1594 gdb_assert (config->fixed_p);
1595
1596 if (config->size <= 0)
1597 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1598 else
1599 return config->size;
1600 }
1601
1602 /* Compute the current size of a read/write packet. Since this makes
1603 use of ``actual_register_packet_size'' the computation is dynamic. */
1604
1605 long
1606 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1607 {
1608 struct remote_state *rs = get_remote_state ();
1609 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1610
1611 long what_they_get;
1612 if (config->fixed_p)
1613 what_they_get = get_fixed_memory_packet_size (config);
1614 else
1615 {
1616 what_they_get = get_remote_packet_size ();
1617 /* Limit the packet to the size specified by the user. */
1618 if (config->size > 0
1619 && what_they_get > config->size)
1620 what_they_get = config->size;
1621
1622 /* Limit it to the size of the targets ``g'' response unless we have
1623 permission from the stub to use a larger packet size. */
1624 if (rs->explicit_packet_size == 0
1625 && rsa->actual_register_packet_size > 0
1626 && what_they_get > rsa->actual_register_packet_size)
1627 what_they_get = rsa->actual_register_packet_size;
1628 }
1629 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1630 what_they_get = MIN_MEMORY_PACKET_SIZE;
1631
1632 /* Make sure there is room in the global buffer for this packet
1633 (including its trailing NUL byte). */
1634 if (rs->buf_size < what_they_get + 1)
1635 {
1636 rs->buf_size = 2 * what_they_get;
1637 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1638 }
1639
1640 return what_they_get;
1641 }
1642
1643 /* Update the size of a read/write packet. If they user wants
1644 something really big then do a sanity check. */
1645
1646 static void
1647 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1648 {
1649 int fixed_p = config->fixed_p;
1650 long size = config->size;
1651
1652 if (args == NULL)
1653 error (_("Argument required (integer, `fixed' or `limited')."));
1654 else if (strcmp (args, "hard") == 0
1655 || strcmp (args, "fixed") == 0)
1656 fixed_p = 1;
1657 else if (strcmp (args, "soft") == 0
1658 || strcmp (args, "limit") == 0)
1659 fixed_p = 0;
1660 else
1661 {
1662 char *end;
1663
1664 size = strtoul (args, &end, 0);
1665 if (args == end)
1666 error (_("Invalid %s (bad syntax)."), config->name);
1667
1668 /* Instead of explicitly capping the size of a packet to or
1669 disallowing it, the user is allowed to set the size to
1670 something arbitrarily large. */
1671 }
1672
1673 /* Extra checks? */
1674 if (fixed_p && !config->fixed_p)
1675 {
1676 /* So that the query shows the correct value. */
1677 long query_size = (size <= 0
1678 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1679 : size);
1680
1681 if (! query (_("The target may not be able to correctly handle a %s\n"
1682 "of %ld bytes. Change the packet size? "),
1683 config->name, query_size))
1684 error (_("Packet size not changed."));
1685 }
1686 /* Update the config. */
1687 config->fixed_p = fixed_p;
1688 config->size = size;
1689 }
1690
1691 static void
1692 show_memory_packet_size (struct memory_packet_config *config)
1693 {
1694 if (config->size == 0)
1695 printf_filtered (_("The %s is 0 (default). "), config->name);
1696 else
1697 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1698 if (config->fixed_p)
1699 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1700 get_fixed_memory_packet_size (config));
1701 else
1702 {
1703 remote_target *remote = get_current_remote_target ();
1704
1705 if (remote != NULL)
1706 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1707 remote->get_memory_packet_size (config));
1708 else
1709 puts_filtered ("The actual limit will be further reduced "
1710 "dependent on the target.\n");
1711 }
1712 }
1713
1714 static struct memory_packet_config memory_write_packet_config =
1715 {
1716 "memory-write-packet-size",
1717 };
1718
1719 static void
1720 set_memory_write_packet_size (const char *args, int from_tty)
1721 {
1722 set_memory_packet_size (args, &memory_write_packet_config);
1723 }
1724
1725 static void
1726 show_memory_write_packet_size (const char *args, int from_tty)
1727 {
1728 show_memory_packet_size (&memory_write_packet_config);
1729 }
1730
1731 /* Show the number of hardware watchpoints that can be used. */
1732
1733 static void
1734 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1735 struct cmd_list_element *c,
1736 const char *value)
1737 {
1738 fprintf_filtered (file, _("The maximum number of target hardware "
1739 "watchpoints is %s.\n"), value);
1740 }
1741
1742 /* Show the length limit (in bytes) for hardware watchpoints. */
1743
1744 static void
1745 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1746 struct cmd_list_element *c,
1747 const char *value)
1748 {
1749 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1750 "hardware watchpoint is %s.\n"), value);
1751 }
1752
1753 /* Show the number of hardware breakpoints that can be used. */
1754
1755 static void
1756 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1757 struct cmd_list_element *c,
1758 const char *value)
1759 {
1760 fprintf_filtered (file, _("The maximum number of target hardware "
1761 "breakpoints is %s.\n"), value);
1762 }
1763
1764 long
1765 remote_target::get_memory_write_packet_size ()
1766 {
1767 return get_memory_packet_size (&memory_write_packet_config);
1768 }
1769
1770 static struct memory_packet_config memory_read_packet_config =
1771 {
1772 "memory-read-packet-size",
1773 };
1774
1775 static void
1776 set_memory_read_packet_size (const char *args, int from_tty)
1777 {
1778 set_memory_packet_size (args, &memory_read_packet_config);
1779 }
1780
1781 static void
1782 show_memory_read_packet_size (const char *args, int from_tty)
1783 {
1784 show_memory_packet_size (&memory_read_packet_config);
1785 }
1786
1787 long
1788 remote_target::get_memory_read_packet_size ()
1789 {
1790 long size = get_memory_packet_size (&memory_read_packet_config);
1791
1792 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1793 extra buffer size argument before the memory read size can be
1794 increased beyond this. */
1795 if (size > get_remote_packet_size ())
1796 size = get_remote_packet_size ();
1797 return size;
1798 }
1799
1800 \f
1801
1802 struct packet_config
1803 {
1804 const char *name;
1805 const char *title;
1806
1807 /* If auto, GDB auto-detects support for this packet or feature,
1808 either through qSupported, or by trying the packet and looking
1809 at the response. If true, GDB assumes the target supports this
1810 packet. If false, the packet is disabled. Configs that don't
1811 have an associated command always have this set to auto. */
1812 enum auto_boolean detect;
1813
1814 /* Does the target support this packet? */
1815 enum packet_support support;
1816 };
1817
1818 static enum packet_support packet_config_support (struct packet_config *config);
1819 static enum packet_support packet_support (int packet);
1820
1821 static void
1822 show_packet_config_cmd (struct packet_config *config)
1823 {
1824 const char *support = "internal-error";
1825
1826 switch (packet_config_support (config))
1827 {
1828 case PACKET_ENABLE:
1829 support = "enabled";
1830 break;
1831 case PACKET_DISABLE:
1832 support = "disabled";
1833 break;
1834 case PACKET_SUPPORT_UNKNOWN:
1835 support = "unknown";
1836 break;
1837 }
1838 switch (config->detect)
1839 {
1840 case AUTO_BOOLEAN_AUTO:
1841 printf_filtered (_("Support for the `%s' packet "
1842 "is auto-detected, currently %s.\n"),
1843 config->name, support);
1844 break;
1845 case AUTO_BOOLEAN_TRUE:
1846 case AUTO_BOOLEAN_FALSE:
1847 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1848 config->name, support);
1849 break;
1850 }
1851 }
1852
1853 static void
1854 add_packet_config_cmd (struct packet_config *config, const char *name,
1855 const char *title, int legacy)
1856 {
1857 char *set_doc;
1858 char *show_doc;
1859 char *cmd_name;
1860
1861 config->name = name;
1862 config->title = title;
1863 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1864 name, title);
1865 show_doc = xstrprintf ("Show current use of remote "
1866 "protocol `%s' (%s) packet",
1867 name, title);
1868 /* set/show TITLE-packet {auto,on,off} */
1869 cmd_name = xstrprintf ("%s-packet", title);
1870 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1871 &config->detect, set_doc,
1872 show_doc, NULL, /* help_doc */
1873 NULL,
1874 show_remote_protocol_packet_cmd,
1875 &remote_set_cmdlist, &remote_show_cmdlist);
1876 /* The command code copies the documentation strings. */
1877 xfree (set_doc);
1878 xfree (show_doc);
1879 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1880 if (legacy)
1881 {
1882 char *legacy_name;
1883
1884 legacy_name = xstrprintf ("%s-packet", name);
1885 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1886 &remote_set_cmdlist);
1887 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1888 &remote_show_cmdlist);
1889 }
1890 }
1891
1892 static enum packet_result
1893 packet_check_result (const char *buf)
1894 {
1895 if (buf[0] != '\0')
1896 {
1897 /* The stub recognized the packet request. Check that the
1898 operation succeeded. */
1899 if (buf[0] == 'E'
1900 && isxdigit (buf[1]) && isxdigit (buf[2])
1901 && buf[3] == '\0')
1902 /* "Enn" - definitly an error. */
1903 return PACKET_ERROR;
1904
1905 /* Always treat "E." as an error. This will be used for
1906 more verbose error messages, such as E.memtypes. */
1907 if (buf[0] == 'E' && buf[1] == '.')
1908 return PACKET_ERROR;
1909
1910 /* The packet may or may not be OK. Just assume it is. */
1911 return PACKET_OK;
1912 }
1913 else
1914 /* The stub does not support the packet. */
1915 return PACKET_UNKNOWN;
1916 }
1917
1918 static enum packet_result
1919 packet_ok (const char *buf, struct packet_config *config)
1920 {
1921 enum packet_result result;
1922
1923 if (config->detect != AUTO_BOOLEAN_TRUE
1924 && config->support == PACKET_DISABLE)
1925 internal_error (__FILE__, __LINE__,
1926 _("packet_ok: attempt to use a disabled packet"));
1927
1928 result = packet_check_result (buf);
1929 switch (result)
1930 {
1931 case PACKET_OK:
1932 case PACKET_ERROR:
1933 /* The stub recognized the packet request. */
1934 if (config->support == PACKET_SUPPORT_UNKNOWN)
1935 {
1936 if (remote_debug)
1937 fprintf_unfiltered (gdb_stdlog,
1938 "Packet %s (%s) is supported\n",
1939 config->name, config->title);
1940 config->support = PACKET_ENABLE;
1941 }
1942 break;
1943 case PACKET_UNKNOWN:
1944 /* The stub does not support the packet. */
1945 if (config->detect == AUTO_BOOLEAN_AUTO
1946 && config->support == PACKET_ENABLE)
1947 {
1948 /* If the stub previously indicated that the packet was
1949 supported then there is a protocol error. */
1950 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1951 config->name, config->title);
1952 }
1953 else if (config->detect == AUTO_BOOLEAN_TRUE)
1954 {
1955 /* The user set it wrong. */
1956 error (_("Enabled packet %s (%s) not recognized by stub"),
1957 config->name, config->title);
1958 }
1959
1960 if (remote_debug)
1961 fprintf_unfiltered (gdb_stdlog,
1962 "Packet %s (%s) is NOT supported\n",
1963 config->name, config->title);
1964 config->support = PACKET_DISABLE;
1965 break;
1966 }
1967
1968 return result;
1969 }
1970
1971 enum {
1972 PACKET_vCont = 0,
1973 PACKET_X,
1974 PACKET_qSymbol,
1975 PACKET_P,
1976 PACKET_p,
1977 PACKET_Z0,
1978 PACKET_Z1,
1979 PACKET_Z2,
1980 PACKET_Z3,
1981 PACKET_Z4,
1982 PACKET_vFile_setfs,
1983 PACKET_vFile_open,
1984 PACKET_vFile_pread,
1985 PACKET_vFile_pwrite,
1986 PACKET_vFile_close,
1987 PACKET_vFile_unlink,
1988 PACKET_vFile_readlink,
1989 PACKET_vFile_fstat,
1990 PACKET_qXfer_auxv,
1991 PACKET_qXfer_features,
1992 PACKET_qXfer_exec_file,
1993 PACKET_qXfer_libraries,
1994 PACKET_qXfer_libraries_svr4,
1995 PACKET_qXfer_memory_map,
1996 PACKET_qXfer_spu_read,
1997 PACKET_qXfer_spu_write,
1998 PACKET_qXfer_osdata,
1999 PACKET_qXfer_threads,
2000 PACKET_qXfer_statictrace_read,
2001 PACKET_qXfer_traceframe_info,
2002 PACKET_qXfer_uib,
2003 PACKET_qGetTIBAddr,
2004 PACKET_qGetTLSAddr,
2005 PACKET_qSupported,
2006 PACKET_qTStatus,
2007 PACKET_QPassSignals,
2008 PACKET_QCatchSyscalls,
2009 PACKET_QProgramSignals,
2010 PACKET_QSetWorkingDir,
2011 PACKET_QStartupWithShell,
2012 PACKET_QEnvironmentHexEncoded,
2013 PACKET_QEnvironmentReset,
2014 PACKET_QEnvironmentUnset,
2015 PACKET_qCRC,
2016 PACKET_qSearch_memory,
2017 PACKET_vAttach,
2018 PACKET_vRun,
2019 PACKET_QStartNoAckMode,
2020 PACKET_vKill,
2021 PACKET_qXfer_siginfo_read,
2022 PACKET_qXfer_siginfo_write,
2023 PACKET_qAttached,
2024
2025 /* Support for conditional tracepoints. */
2026 PACKET_ConditionalTracepoints,
2027
2028 /* Support for target-side breakpoint conditions. */
2029 PACKET_ConditionalBreakpoints,
2030
2031 /* Support for target-side breakpoint commands. */
2032 PACKET_BreakpointCommands,
2033
2034 /* Support for fast tracepoints. */
2035 PACKET_FastTracepoints,
2036
2037 /* Support for static tracepoints. */
2038 PACKET_StaticTracepoints,
2039
2040 /* Support for installing tracepoints while a trace experiment is
2041 running. */
2042 PACKET_InstallInTrace,
2043
2044 PACKET_bc,
2045 PACKET_bs,
2046 PACKET_TracepointSource,
2047 PACKET_QAllow,
2048 PACKET_qXfer_fdpic,
2049 PACKET_QDisableRandomization,
2050 PACKET_QAgent,
2051 PACKET_QTBuffer_size,
2052 PACKET_Qbtrace_off,
2053 PACKET_Qbtrace_bts,
2054 PACKET_Qbtrace_pt,
2055 PACKET_qXfer_btrace,
2056
2057 /* Support for the QNonStop packet. */
2058 PACKET_QNonStop,
2059
2060 /* Support for the QThreadEvents packet. */
2061 PACKET_QThreadEvents,
2062
2063 /* Support for multi-process extensions. */
2064 PACKET_multiprocess_feature,
2065
2066 /* Support for enabling and disabling tracepoints while a trace
2067 experiment is running. */
2068 PACKET_EnableDisableTracepoints_feature,
2069
2070 /* Support for collecting strings using the tracenz bytecode. */
2071 PACKET_tracenz_feature,
2072
2073 /* Support for continuing to run a trace experiment while GDB is
2074 disconnected. */
2075 PACKET_DisconnectedTracing_feature,
2076
2077 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2078 PACKET_augmented_libraries_svr4_read_feature,
2079
2080 /* Support for the qXfer:btrace-conf:read packet. */
2081 PACKET_qXfer_btrace_conf,
2082
2083 /* Support for the Qbtrace-conf:bts:size packet. */
2084 PACKET_Qbtrace_conf_bts_size,
2085
2086 /* Support for swbreak+ feature. */
2087 PACKET_swbreak_feature,
2088
2089 /* Support for hwbreak+ feature. */
2090 PACKET_hwbreak_feature,
2091
2092 /* Support for fork events. */
2093 PACKET_fork_event_feature,
2094
2095 /* Support for vfork events. */
2096 PACKET_vfork_event_feature,
2097
2098 /* Support for the Qbtrace-conf:pt:size packet. */
2099 PACKET_Qbtrace_conf_pt_size,
2100
2101 /* Support for exec events. */
2102 PACKET_exec_event_feature,
2103
2104 /* Support for query supported vCont actions. */
2105 PACKET_vContSupported,
2106
2107 /* Support remote CTRL-C. */
2108 PACKET_vCtrlC,
2109
2110 /* Support TARGET_WAITKIND_NO_RESUMED. */
2111 PACKET_no_resumed,
2112
2113 PACKET_MAX
2114 };
2115
2116 static struct packet_config remote_protocol_packets[PACKET_MAX];
2117
2118 /* Returns the packet's corresponding "set remote foo-packet" command
2119 state. See struct packet_config for more details. */
2120
2121 static enum auto_boolean
2122 packet_set_cmd_state (int packet)
2123 {
2124 return remote_protocol_packets[packet].detect;
2125 }
2126
2127 /* Returns whether a given packet or feature is supported. This takes
2128 into account the state of the corresponding "set remote foo-packet"
2129 command, which may be used to bypass auto-detection. */
2130
2131 static enum packet_support
2132 packet_config_support (struct packet_config *config)
2133 {
2134 switch (config->detect)
2135 {
2136 case AUTO_BOOLEAN_TRUE:
2137 return PACKET_ENABLE;
2138 case AUTO_BOOLEAN_FALSE:
2139 return PACKET_DISABLE;
2140 case AUTO_BOOLEAN_AUTO:
2141 return config->support;
2142 default:
2143 gdb_assert_not_reached (_("bad switch"));
2144 }
2145 }
2146
2147 /* Same as packet_config_support, but takes the packet's enum value as
2148 argument. */
2149
2150 static enum packet_support
2151 packet_support (int packet)
2152 {
2153 struct packet_config *config = &remote_protocol_packets[packet];
2154
2155 return packet_config_support (config);
2156 }
2157
2158 static void
2159 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2160 struct cmd_list_element *c,
2161 const char *value)
2162 {
2163 struct packet_config *packet;
2164
2165 for (packet = remote_protocol_packets;
2166 packet < &remote_protocol_packets[PACKET_MAX];
2167 packet++)
2168 {
2169 if (&packet->detect == c->var)
2170 {
2171 show_packet_config_cmd (packet);
2172 return;
2173 }
2174 }
2175 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2176 c->name);
2177 }
2178
2179 /* Should we try one of the 'Z' requests? */
2180
2181 enum Z_packet_type
2182 {
2183 Z_PACKET_SOFTWARE_BP,
2184 Z_PACKET_HARDWARE_BP,
2185 Z_PACKET_WRITE_WP,
2186 Z_PACKET_READ_WP,
2187 Z_PACKET_ACCESS_WP,
2188 NR_Z_PACKET_TYPES
2189 };
2190
2191 /* For compatibility with older distributions. Provide a ``set remote
2192 Z-packet ...'' command that updates all the Z packet types. */
2193
2194 static enum auto_boolean remote_Z_packet_detect;
2195
2196 static void
2197 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2198 struct cmd_list_element *c)
2199 {
2200 int i;
2201
2202 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2203 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2204 }
2205
2206 static void
2207 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2208 struct cmd_list_element *c,
2209 const char *value)
2210 {
2211 int i;
2212
2213 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2214 {
2215 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2216 }
2217 }
2218
2219 /* Returns true if the multi-process extensions are in effect. */
2220
2221 static int
2222 remote_multi_process_p (struct remote_state *rs)
2223 {
2224 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2225 }
2226
2227 /* Returns true if fork events are supported. */
2228
2229 static int
2230 remote_fork_event_p (struct remote_state *rs)
2231 {
2232 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2233 }
2234
2235 /* Returns true if vfork events are supported. */
2236
2237 static int
2238 remote_vfork_event_p (struct remote_state *rs)
2239 {
2240 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2241 }
2242
2243 /* Returns true if exec events are supported. */
2244
2245 static int
2246 remote_exec_event_p (struct remote_state *rs)
2247 {
2248 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2249 }
2250
2251 /* Insert fork catchpoint target routine. If fork events are enabled
2252 then return success, nothing more to do. */
2253
2254 int
2255 remote_target::insert_fork_catchpoint (int pid)
2256 {
2257 struct remote_state *rs = get_remote_state ();
2258
2259 return !remote_fork_event_p (rs);
2260 }
2261
2262 /* Remove fork catchpoint target routine. Nothing to do, just
2263 return success. */
2264
2265 int
2266 remote_target::remove_fork_catchpoint (int pid)
2267 {
2268 return 0;
2269 }
2270
2271 /* Insert vfork catchpoint target routine. If vfork events are enabled
2272 then return success, nothing more to do. */
2273
2274 int
2275 remote_target::insert_vfork_catchpoint (int pid)
2276 {
2277 struct remote_state *rs = get_remote_state ();
2278
2279 return !remote_vfork_event_p (rs);
2280 }
2281
2282 /* Remove vfork catchpoint target routine. Nothing to do, just
2283 return success. */
2284
2285 int
2286 remote_target::remove_vfork_catchpoint (int pid)
2287 {
2288 return 0;
2289 }
2290
2291 /* Insert exec catchpoint target routine. If exec events are
2292 enabled, just return success. */
2293
2294 int
2295 remote_target::insert_exec_catchpoint (int pid)
2296 {
2297 struct remote_state *rs = get_remote_state ();
2298
2299 return !remote_exec_event_p (rs);
2300 }
2301
2302 /* Remove exec catchpoint target routine. Nothing to do, just
2303 return success. */
2304
2305 int
2306 remote_target::remove_exec_catchpoint (int pid)
2307 {
2308 return 0;
2309 }
2310
2311 \f
2312
2313 static ptid_t magic_null_ptid;
2314 static ptid_t not_sent_ptid;
2315 static ptid_t any_thread_ptid;
2316
2317 /* Find out if the stub attached to PID (and hence GDB should offer to
2318 detach instead of killing it when bailing out). */
2319
2320 int
2321 remote_target::remote_query_attached (int pid)
2322 {
2323 struct remote_state *rs = get_remote_state ();
2324 size_t size = get_remote_packet_size ();
2325
2326 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2327 return 0;
2328
2329 if (remote_multi_process_p (rs))
2330 xsnprintf (rs->buf, size, "qAttached:%x", pid);
2331 else
2332 xsnprintf (rs->buf, size, "qAttached");
2333
2334 putpkt (rs->buf);
2335 getpkt (&rs->buf, &rs->buf_size, 0);
2336
2337 switch (packet_ok (rs->buf,
2338 &remote_protocol_packets[PACKET_qAttached]))
2339 {
2340 case PACKET_OK:
2341 if (strcmp (rs->buf, "1") == 0)
2342 return 1;
2343 break;
2344 case PACKET_ERROR:
2345 warning (_("Remote failure reply: %s"), rs->buf);
2346 break;
2347 case PACKET_UNKNOWN:
2348 break;
2349 }
2350
2351 return 0;
2352 }
2353
2354 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2355 has been invented by GDB, instead of reported by the target. Since
2356 we can be connected to a remote system before before knowing about
2357 any inferior, mark the target with execution when we find the first
2358 inferior. If ATTACHED is 1, then we had just attached to this
2359 inferior. If it is 0, then we just created this inferior. If it
2360 is -1, then try querying the remote stub to find out if it had
2361 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2362 attempt to open this inferior's executable as the main executable
2363 if no main executable is open already. */
2364
2365 inferior *
2366 remote_target::remote_add_inferior (int fake_pid_p, int pid, int attached,
2367 int try_open_exec)
2368 {
2369 struct inferior *inf;
2370
2371 /* Check whether this process we're learning about is to be
2372 considered attached, or if is to be considered to have been
2373 spawned by the stub. */
2374 if (attached == -1)
2375 attached = remote_query_attached (pid);
2376
2377 if (gdbarch_has_global_solist (target_gdbarch ()))
2378 {
2379 /* If the target shares code across all inferiors, then every
2380 attach adds a new inferior. */
2381 inf = add_inferior (pid);
2382
2383 /* ... and every inferior is bound to the same program space.
2384 However, each inferior may still have its own address
2385 space. */
2386 inf->aspace = maybe_new_address_space ();
2387 inf->pspace = current_program_space;
2388 }
2389 else
2390 {
2391 /* In the traditional debugging scenario, there's a 1-1 match
2392 between program/address spaces. We simply bind the inferior
2393 to the program space's address space. */
2394 inf = current_inferior ();
2395 inferior_appeared (inf, pid);
2396 }
2397
2398 inf->attach_flag = attached;
2399 inf->fake_pid_p = fake_pid_p;
2400
2401 /* If no main executable is currently open then attempt to
2402 open the file that was executed to create this inferior. */
2403 if (try_open_exec && get_exec_file (0) == NULL)
2404 exec_file_locate_attach (pid, 0, 1);
2405
2406 return inf;
2407 }
2408
2409 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2410 static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2411
2412 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2413 according to RUNNING. */
2414
2415 thread_info *
2416 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2417 {
2418 struct remote_state *rs = get_remote_state ();
2419 struct thread_info *thread;
2420
2421 /* GDB historically didn't pull threads in the initial connection
2422 setup. If the remote target doesn't even have a concept of
2423 threads (e.g., a bare-metal target), even if internally we
2424 consider that a single-threaded target, mentioning a new thread
2425 might be confusing to the user. Be silent then, preserving the
2426 age old behavior. */
2427 if (rs->starting_up)
2428 thread = add_thread_silent (ptid);
2429 else
2430 thread = add_thread (ptid);
2431
2432 get_remote_thread_info (thread)->vcont_resumed = executing;
2433 set_executing (ptid, executing);
2434 set_running (ptid, running);
2435
2436 return thread;
2437 }
2438
2439 /* Come here when we learn about a thread id from the remote target.
2440 It may be the first time we hear about such thread, so take the
2441 opportunity to add it to GDB's thread list. In case this is the
2442 first time we're noticing its corresponding inferior, add it to
2443 GDB's inferior list as well. EXECUTING indicates whether the
2444 thread is (internally) executing or stopped. */
2445
2446 void
2447 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2448 {
2449 /* In non-stop mode, we assume new found threads are (externally)
2450 running until proven otherwise with a stop reply. In all-stop,
2451 we can only get here if all threads are stopped. */
2452 int running = target_is_non_stop_p () ? 1 : 0;
2453
2454 /* If this is a new thread, add it to GDB's thread list.
2455 If we leave it up to WFI to do this, bad things will happen. */
2456
2457 thread_info *tp = find_thread_ptid (currthread);
2458 if (tp != NULL && tp->state == THREAD_EXITED)
2459 {
2460 /* We're seeing an event on a thread id we knew had exited.
2461 This has to be a new thread reusing the old id. Add it. */
2462 remote_add_thread (currthread, running, executing);
2463 return;
2464 }
2465
2466 if (!in_thread_list (currthread))
2467 {
2468 struct inferior *inf = NULL;
2469 int pid = currthread.pid ();
2470
2471 if (inferior_ptid.is_pid ()
2472 && pid == inferior_ptid.pid ())
2473 {
2474 /* inferior_ptid has no thread member yet. This can happen
2475 with the vAttach -> remote_wait,"TAAthread:" path if the
2476 stub doesn't support qC. This is the first stop reported
2477 after an attach, so this is the main thread. Update the
2478 ptid in the thread list. */
2479 if (in_thread_list (ptid_t (pid)))
2480 thread_change_ptid (inferior_ptid, currthread);
2481 else
2482 {
2483 remote_add_thread (currthread, running, executing);
2484 inferior_ptid = currthread;
2485 }
2486 return;
2487 }
2488
2489 if (magic_null_ptid == inferior_ptid)
2490 {
2491 /* inferior_ptid is not set yet. This can happen with the
2492 vRun -> remote_wait,"TAAthread:" path if the stub
2493 doesn't support qC. This is the first stop reported
2494 after an attach, so this is the main thread. Update the
2495 ptid in the thread list. */
2496 thread_change_ptid (inferior_ptid, currthread);
2497 return;
2498 }
2499
2500 /* When connecting to a target remote, or to a target
2501 extended-remote which already was debugging an inferior, we
2502 may not know about it yet. Add it before adding its child
2503 thread, so notifications are emitted in a sensible order. */
2504 if (find_inferior_pid (currthread.pid ()) == NULL)
2505 {
2506 struct remote_state *rs = get_remote_state ();
2507 int fake_pid_p = !remote_multi_process_p (rs);
2508
2509 inf = remote_add_inferior (fake_pid_p,
2510 currthread.pid (), -1, 1);
2511 }
2512
2513 /* This is really a new thread. Add it. */
2514 thread_info *new_thr
2515 = remote_add_thread (currthread, running, executing);
2516
2517 /* If we found a new inferior, let the common code do whatever
2518 it needs to with it (e.g., read shared libraries, insert
2519 breakpoints), unless we're just setting up an all-stop
2520 connection. */
2521 if (inf != NULL)
2522 {
2523 struct remote_state *rs = get_remote_state ();
2524
2525 if (!rs->starting_up)
2526 notice_new_inferior (new_thr, executing, 0);
2527 }
2528 }
2529 }
2530
2531 /* Return THREAD's private thread data, creating it if necessary. */
2532
2533 static remote_thread_info *
2534 get_remote_thread_info (thread_info *thread)
2535 {
2536 gdb_assert (thread != NULL);
2537
2538 if (thread->priv == NULL)
2539 thread->priv.reset (new remote_thread_info);
2540
2541 return static_cast<remote_thread_info *> (thread->priv.get ());
2542 }
2543
2544 static remote_thread_info *
2545 get_remote_thread_info (ptid_t ptid)
2546 {
2547 thread_info *thr = find_thread_ptid (ptid);
2548 return get_remote_thread_info (thr);
2549 }
2550
2551 /* Call this function as a result of
2552 1) A halt indication (T packet) containing a thread id
2553 2) A direct query of currthread
2554 3) Successful execution of set thread */
2555
2556 static void
2557 record_currthread (struct remote_state *rs, ptid_t currthread)
2558 {
2559 rs->general_thread = currthread;
2560 }
2561
2562 /* If 'QPassSignals' is supported, tell the remote stub what signals
2563 it can simply pass through to the inferior without reporting. */
2564
2565 void
2566 remote_target::pass_signals (int numsigs, unsigned char *pass_signals)
2567 {
2568 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2569 {
2570 char *pass_packet, *p;
2571 int count = 0, i;
2572 struct remote_state *rs = get_remote_state ();
2573
2574 gdb_assert (numsigs < 256);
2575 for (i = 0; i < numsigs; i++)
2576 {
2577 if (pass_signals[i])
2578 count++;
2579 }
2580 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2581 strcpy (pass_packet, "QPassSignals:");
2582 p = pass_packet + strlen (pass_packet);
2583 for (i = 0; i < numsigs; i++)
2584 {
2585 if (pass_signals[i])
2586 {
2587 if (i >= 16)
2588 *p++ = tohex (i >> 4);
2589 *p++ = tohex (i & 15);
2590 if (count)
2591 *p++ = ';';
2592 else
2593 break;
2594 count--;
2595 }
2596 }
2597 *p = 0;
2598 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2599 {
2600 putpkt (pass_packet);
2601 getpkt (&rs->buf, &rs->buf_size, 0);
2602 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2603 if (rs->last_pass_packet)
2604 xfree (rs->last_pass_packet);
2605 rs->last_pass_packet = pass_packet;
2606 }
2607 else
2608 xfree (pass_packet);
2609 }
2610 }
2611
2612 /* If 'QCatchSyscalls' is supported, tell the remote stub
2613 to report syscalls to GDB. */
2614
2615 int
2616 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2617 gdb::array_view<const int> syscall_counts)
2618 {
2619 const char *catch_packet;
2620 enum packet_result result;
2621 int n_sysno = 0;
2622
2623 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2624 {
2625 /* Not supported. */
2626 return 1;
2627 }
2628
2629 if (needed && any_count == 0)
2630 {
2631 /* Count how many syscalls are to be caught. */
2632 for (size_t i = 0; i < syscall_counts.size (); i++)
2633 {
2634 if (syscall_counts[i] != 0)
2635 n_sysno++;
2636 }
2637 }
2638
2639 if (remote_debug)
2640 {
2641 fprintf_unfiltered (gdb_stdlog,
2642 "remote_set_syscall_catchpoint "
2643 "pid %d needed %d any_count %d n_sysno %d\n",
2644 pid, needed, any_count, n_sysno);
2645 }
2646
2647 std::string built_packet;
2648 if (needed)
2649 {
2650 /* Prepare a packet with the sysno list, assuming max 8+1
2651 characters for a sysno. If the resulting packet size is too
2652 big, fallback on the non-selective packet. */
2653 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2654 built_packet.reserve (maxpktsz);
2655 built_packet = "QCatchSyscalls:1";
2656 if (any_count == 0)
2657 {
2658 /* Add in each syscall to be caught. */
2659 for (size_t i = 0; i < syscall_counts.size (); i++)
2660 {
2661 if (syscall_counts[i] != 0)
2662 string_appendf (built_packet, ";%zx", i);
2663 }
2664 }
2665 if (built_packet.size () > get_remote_packet_size ())
2666 {
2667 /* catch_packet too big. Fallback to less efficient
2668 non selective mode, with GDB doing the filtering. */
2669 catch_packet = "QCatchSyscalls:1";
2670 }
2671 else
2672 catch_packet = built_packet.c_str ();
2673 }
2674 else
2675 catch_packet = "QCatchSyscalls:0";
2676
2677 struct remote_state *rs = get_remote_state ();
2678
2679 putpkt (catch_packet);
2680 getpkt (&rs->buf, &rs->buf_size, 0);
2681 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2682 if (result == PACKET_OK)
2683 return 0;
2684 else
2685 return -1;
2686 }
2687
2688 /* If 'QProgramSignals' is supported, tell the remote stub what
2689 signals it should pass through to the inferior when detaching. */
2690
2691 void
2692 remote_target::program_signals (int numsigs, unsigned char *signals)
2693 {
2694 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2695 {
2696 char *packet, *p;
2697 int count = 0, i;
2698 struct remote_state *rs = get_remote_state ();
2699
2700 gdb_assert (numsigs < 256);
2701 for (i = 0; i < numsigs; i++)
2702 {
2703 if (signals[i])
2704 count++;
2705 }
2706 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2707 strcpy (packet, "QProgramSignals:");
2708 p = packet + strlen (packet);
2709 for (i = 0; i < numsigs; i++)
2710 {
2711 if (signal_pass_state (i))
2712 {
2713 if (i >= 16)
2714 *p++ = tohex (i >> 4);
2715 *p++ = tohex (i & 15);
2716 if (count)
2717 *p++ = ';';
2718 else
2719 break;
2720 count--;
2721 }
2722 }
2723 *p = 0;
2724 if (!rs->last_program_signals_packet
2725 || strcmp (rs->last_program_signals_packet, packet) != 0)
2726 {
2727 putpkt (packet);
2728 getpkt (&rs->buf, &rs->buf_size, 0);
2729 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2730 xfree (rs->last_program_signals_packet);
2731 rs->last_program_signals_packet = packet;
2732 }
2733 else
2734 xfree (packet);
2735 }
2736 }
2737
2738 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2739 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2740 thread. If GEN is set, set the general thread, if not, then set
2741 the step/continue thread. */
2742 void
2743 remote_target::set_thread (ptid_t ptid, int gen)
2744 {
2745 struct remote_state *rs = get_remote_state ();
2746 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2747 char *buf = rs->buf;
2748 char *endbuf = rs->buf + get_remote_packet_size ();
2749
2750 if (state == ptid)
2751 return;
2752
2753 *buf++ = 'H';
2754 *buf++ = gen ? 'g' : 'c';
2755 if (ptid == magic_null_ptid)
2756 xsnprintf (buf, endbuf - buf, "0");
2757 else if (ptid == any_thread_ptid)
2758 xsnprintf (buf, endbuf - buf, "0");
2759 else if (ptid == minus_one_ptid)
2760 xsnprintf (buf, endbuf - buf, "-1");
2761 else
2762 write_ptid (buf, endbuf, ptid);
2763 putpkt (rs->buf);
2764 getpkt (&rs->buf, &rs->buf_size, 0);
2765 if (gen)
2766 rs->general_thread = ptid;
2767 else
2768 rs->continue_thread = ptid;
2769 }
2770
2771 void
2772 remote_target::set_general_thread (ptid_t ptid)
2773 {
2774 set_thread (ptid, 1);
2775 }
2776
2777 void
2778 remote_target::set_continue_thread (ptid_t ptid)
2779 {
2780 set_thread (ptid, 0);
2781 }
2782
2783 /* Change the remote current process. Which thread within the process
2784 ends up selected isn't important, as long as it is the same process
2785 as what INFERIOR_PTID points to.
2786
2787 This comes from that fact that there is no explicit notion of
2788 "selected process" in the protocol. The selected process for
2789 general operations is the process the selected general thread
2790 belongs to. */
2791
2792 void
2793 remote_target::set_general_process ()
2794 {
2795 struct remote_state *rs = get_remote_state ();
2796
2797 /* If the remote can't handle multiple processes, don't bother. */
2798 if (!remote_multi_process_p (rs))
2799 return;
2800
2801 /* We only need to change the remote current thread if it's pointing
2802 at some other process. */
2803 if (rs->general_thread.pid () != inferior_ptid.pid ())
2804 set_general_thread (inferior_ptid);
2805 }
2806
2807 \f
2808 /* Return nonzero if this is the main thread that we made up ourselves
2809 to model non-threaded targets as single-threaded. */
2810
2811 static int
2812 remote_thread_always_alive (ptid_t ptid)
2813 {
2814 if (ptid == magic_null_ptid)
2815 /* The main thread is always alive. */
2816 return 1;
2817
2818 if (ptid.pid () != 0 && ptid.lwp () == 0)
2819 /* The main thread is always alive. This can happen after a
2820 vAttach, if the remote side doesn't support
2821 multi-threading. */
2822 return 1;
2823
2824 return 0;
2825 }
2826
2827 /* Return nonzero if the thread PTID is still alive on the remote
2828 system. */
2829
2830 bool
2831 remote_target::thread_alive (ptid_t ptid)
2832 {
2833 struct remote_state *rs = get_remote_state ();
2834 char *p, *endp;
2835
2836 /* Check if this is a thread that we made up ourselves to model
2837 non-threaded targets as single-threaded. */
2838 if (remote_thread_always_alive (ptid))
2839 return 1;
2840
2841 p = rs->buf;
2842 endp = rs->buf + get_remote_packet_size ();
2843
2844 *p++ = 'T';
2845 write_ptid (p, endp, ptid);
2846
2847 putpkt (rs->buf);
2848 getpkt (&rs->buf, &rs->buf_size, 0);
2849 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2850 }
2851
2852 /* Return a pointer to a thread name if we know it and NULL otherwise.
2853 The thread_info object owns the memory for the name. */
2854
2855 const char *
2856 remote_target::thread_name (struct thread_info *info)
2857 {
2858 if (info->priv != NULL)
2859 {
2860 const std::string &name = get_remote_thread_info (info)->name;
2861 return !name.empty () ? name.c_str () : NULL;
2862 }
2863
2864 return NULL;
2865 }
2866
2867 /* About these extended threadlist and threadinfo packets. They are
2868 variable length packets but, the fields within them are often fixed
2869 length. They are redundent enough to send over UDP as is the
2870 remote protocol in general. There is a matching unit test module
2871 in libstub. */
2872
2873 /* WARNING: This threadref data structure comes from the remote O.S.,
2874 libstub protocol encoding, and remote.c. It is not particularly
2875 changable. */
2876
2877 /* Right now, the internal structure is int. We want it to be bigger.
2878 Plan to fix this. */
2879
2880 typedef int gdb_threadref; /* Internal GDB thread reference. */
2881
2882 /* gdb_ext_thread_info is an internal GDB data structure which is
2883 equivalent to the reply of the remote threadinfo packet. */
2884
2885 struct gdb_ext_thread_info
2886 {
2887 threadref threadid; /* External form of thread reference. */
2888 int active; /* Has state interesting to GDB?
2889 regs, stack. */
2890 char display[256]; /* Brief state display, name,
2891 blocked/suspended. */
2892 char shortname[32]; /* To be used to name threads. */
2893 char more_display[256]; /* Long info, statistics, queue depth,
2894 whatever. */
2895 };
2896
2897 /* The volume of remote transfers can be limited by submitting
2898 a mask containing bits specifying the desired information.
2899 Use a union of these values as the 'selection' parameter to
2900 get_thread_info. FIXME: Make these TAG names more thread specific. */
2901
2902 #define TAG_THREADID 1
2903 #define TAG_EXISTS 2
2904 #define TAG_DISPLAY 4
2905 #define TAG_THREADNAME 8
2906 #define TAG_MOREDISPLAY 16
2907
2908 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2909
2910 static char *unpack_nibble (char *buf, int *val);
2911
2912 static char *unpack_byte (char *buf, int *value);
2913
2914 static char *pack_int (char *buf, int value);
2915
2916 static char *unpack_int (char *buf, int *value);
2917
2918 static char *unpack_string (char *src, char *dest, int length);
2919
2920 static char *pack_threadid (char *pkt, threadref *id);
2921
2922 static char *unpack_threadid (char *inbuf, threadref *id);
2923
2924 void int_to_threadref (threadref *id, int value);
2925
2926 static int threadref_to_int (threadref *ref);
2927
2928 static void copy_threadref (threadref *dest, threadref *src);
2929
2930 static int threadmatch (threadref *dest, threadref *src);
2931
2932 static char *pack_threadinfo_request (char *pkt, int mode,
2933 threadref *id);
2934
2935 static char *pack_threadlist_request (char *pkt, int startflag,
2936 int threadcount,
2937 threadref *nextthread);
2938
2939 static int remote_newthread_step (threadref *ref, void *context);
2940
2941
2942 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2943 buffer we're allowed to write to. Returns
2944 BUF+CHARACTERS_WRITTEN. */
2945
2946 char *
2947 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2948 {
2949 int pid, tid;
2950 struct remote_state *rs = get_remote_state ();
2951
2952 if (remote_multi_process_p (rs))
2953 {
2954 pid = ptid.pid ();
2955 if (pid < 0)
2956 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2957 else
2958 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2959 }
2960 tid = ptid.lwp ();
2961 if (tid < 0)
2962 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2963 else
2964 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2965
2966 return buf;
2967 }
2968
2969 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2970 last parsed char. Returns null_ptid if no thread id is found, and
2971 throws an error if the thread id has an invalid format. */
2972
2973 static ptid_t
2974 read_ptid (const char *buf, const char **obuf)
2975 {
2976 const char *p = buf;
2977 const char *pp;
2978 ULONGEST pid = 0, tid = 0;
2979
2980 if (*p == 'p')
2981 {
2982 /* Multi-process ptid. */
2983 pp = unpack_varlen_hex (p + 1, &pid);
2984 if (*pp != '.')
2985 error (_("invalid remote ptid: %s"), p);
2986
2987 p = pp;
2988 pp = unpack_varlen_hex (p + 1, &tid);
2989 if (obuf)
2990 *obuf = pp;
2991 return ptid_t (pid, tid, 0);
2992 }
2993
2994 /* No multi-process. Just a tid. */
2995 pp = unpack_varlen_hex (p, &tid);
2996
2997 /* Return null_ptid when no thread id is found. */
2998 if (p == pp)
2999 {
3000 if (obuf)
3001 *obuf = pp;
3002 return null_ptid;
3003 }
3004
3005 /* Since the stub is not sending a process id, then default to
3006 what's in inferior_ptid, unless it's null at this point. If so,
3007 then since there's no way to know the pid of the reported
3008 threads, use the magic number. */
3009 if (inferior_ptid == null_ptid)
3010 pid = magic_null_ptid.pid ();
3011 else
3012 pid = inferior_ptid.pid ();
3013
3014 if (obuf)
3015 *obuf = pp;
3016 return ptid_t (pid, tid, 0);
3017 }
3018
3019 static int
3020 stubhex (int ch)
3021 {
3022 if (ch >= 'a' && ch <= 'f')
3023 return ch - 'a' + 10;
3024 if (ch >= '0' && ch <= '9')
3025 return ch - '0';
3026 if (ch >= 'A' && ch <= 'F')
3027 return ch - 'A' + 10;
3028 return -1;
3029 }
3030
3031 static int
3032 stub_unpack_int (char *buff, int fieldlength)
3033 {
3034 int nibble;
3035 int retval = 0;
3036
3037 while (fieldlength)
3038 {
3039 nibble = stubhex (*buff++);
3040 retval |= nibble;
3041 fieldlength--;
3042 if (fieldlength)
3043 retval = retval << 4;
3044 }
3045 return retval;
3046 }
3047
3048 static char *
3049 unpack_nibble (char *buf, int *val)
3050 {
3051 *val = fromhex (*buf++);
3052 return buf;
3053 }
3054
3055 static char *
3056 unpack_byte (char *buf, int *value)
3057 {
3058 *value = stub_unpack_int (buf, 2);
3059 return buf + 2;
3060 }
3061
3062 static char *
3063 pack_int (char *buf, int value)
3064 {
3065 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3066 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3067 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3068 buf = pack_hex_byte (buf, (value & 0xff));
3069 return buf;
3070 }
3071
3072 static char *
3073 unpack_int (char *buf, int *value)
3074 {
3075 *value = stub_unpack_int (buf, 8);
3076 return buf + 8;
3077 }
3078
3079 #if 0 /* Currently unused, uncomment when needed. */
3080 static char *pack_string (char *pkt, char *string);
3081
3082 static char *
3083 pack_string (char *pkt, char *string)
3084 {
3085 char ch;
3086 int len;
3087
3088 len = strlen (string);
3089 if (len > 200)
3090 len = 200; /* Bigger than most GDB packets, junk??? */
3091 pkt = pack_hex_byte (pkt, len);
3092 while (len-- > 0)
3093 {
3094 ch = *string++;
3095 if ((ch == '\0') || (ch == '#'))
3096 ch = '*'; /* Protect encapsulation. */
3097 *pkt++ = ch;
3098 }
3099 return pkt;
3100 }
3101 #endif /* 0 (unused) */
3102
3103 static char *
3104 unpack_string (char *src, char *dest, int length)
3105 {
3106 while (length--)
3107 *dest++ = *src++;
3108 *dest = '\0';
3109 return src;
3110 }
3111
3112 static char *
3113 pack_threadid (char *pkt, threadref *id)
3114 {
3115 char *limit;
3116 unsigned char *altid;
3117
3118 altid = (unsigned char *) id;
3119 limit = pkt + BUF_THREAD_ID_SIZE;
3120 while (pkt < limit)
3121 pkt = pack_hex_byte (pkt, *altid++);
3122 return pkt;
3123 }
3124
3125
3126 static char *
3127 unpack_threadid (char *inbuf, threadref *id)
3128 {
3129 char *altref;
3130 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3131 int x, y;
3132
3133 altref = (char *) id;
3134
3135 while (inbuf < limit)
3136 {
3137 x = stubhex (*inbuf++);
3138 y = stubhex (*inbuf++);
3139 *altref++ = (x << 4) | y;
3140 }
3141 return inbuf;
3142 }
3143
3144 /* Externally, threadrefs are 64 bits but internally, they are still
3145 ints. This is due to a mismatch of specifications. We would like
3146 to use 64bit thread references internally. This is an adapter
3147 function. */
3148
3149 void
3150 int_to_threadref (threadref *id, int value)
3151 {
3152 unsigned char *scan;
3153
3154 scan = (unsigned char *) id;
3155 {
3156 int i = 4;
3157 while (i--)
3158 *scan++ = 0;
3159 }
3160 *scan++ = (value >> 24) & 0xff;
3161 *scan++ = (value >> 16) & 0xff;
3162 *scan++ = (value >> 8) & 0xff;
3163 *scan++ = (value & 0xff);
3164 }
3165
3166 static int
3167 threadref_to_int (threadref *ref)
3168 {
3169 int i, value = 0;
3170 unsigned char *scan;
3171
3172 scan = *ref;
3173 scan += 4;
3174 i = 4;
3175 while (i-- > 0)
3176 value = (value << 8) | ((*scan++) & 0xff);
3177 return value;
3178 }
3179
3180 static void
3181 copy_threadref (threadref *dest, threadref *src)
3182 {
3183 int i;
3184 unsigned char *csrc, *cdest;
3185
3186 csrc = (unsigned char *) src;
3187 cdest = (unsigned char *) dest;
3188 i = 8;
3189 while (i--)
3190 *cdest++ = *csrc++;
3191 }
3192
3193 static int
3194 threadmatch (threadref *dest, threadref *src)
3195 {
3196 /* Things are broken right now, so just assume we got a match. */
3197 #if 0
3198 unsigned char *srcp, *destp;
3199 int i, result;
3200 srcp = (char *) src;
3201 destp = (char *) dest;
3202
3203 result = 1;
3204 while (i-- > 0)
3205 result &= (*srcp++ == *destp++) ? 1 : 0;
3206 return result;
3207 #endif
3208 return 1;
3209 }
3210
3211 /*
3212 threadid:1, # always request threadid
3213 context_exists:2,
3214 display:4,
3215 unique_name:8,
3216 more_display:16
3217 */
3218
3219 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3220
3221 static char *
3222 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3223 {
3224 *pkt++ = 'q'; /* Info Query */
3225 *pkt++ = 'P'; /* process or thread info */
3226 pkt = pack_int (pkt, mode); /* mode */
3227 pkt = pack_threadid (pkt, id); /* threadid */
3228 *pkt = '\0'; /* terminate */
3229 return pkt;
3230 }
3231
3232 /* These values tag the fields in a thread info response packet. */
3233 /* Tagging the fields allows us to request specific fields and to
3234 add more fields as time goes by. */
3235
3236 #define TAG_THREADID 1 /* Echo the thread identifier. */
3237 #define TAG_EXISTS 2 /* Is this process defined enough to
3238 fetch registers and its stack? */
3239 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3240 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3241 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3242 the process. */
3243
3244 int
3245 remote_target::remote_unpack_thread_info_response (char *pkt,
3246 threadref *expectedref,
3247 gdb_ext_thread_info *info)
3248 {
3249 struct remote_state *rs = get_remote_state ();
3250 int mask, length;
3251 int tag;
3252 threadref ref;
3253 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
3254 int retval = 1;
3255
3256 /* info->threadid = 0; FIXME: implement zero_threadref. */
3257 info->active = 0;
3258 info->display[0] = '\0';
3259 info->shortname[0] = '\0';
3260 info->more_display[0] = '\0';
3261
3262 /* Assume the characters indicating the packet type have been
3263 stripped. */
3264 pkt = unpack_int (pkt, &mask); /* arg mask */
3265 pkt = unpack_threadid (pkt, &ref);
3266
3267 if (mask == 0)
3268 warning (_("Incomplete response to threadinfo request."));
3269 if (!threadmatch (&ref, expectedref))
3270 { /* This is an answer to a different request. */
3271 warning (_("ERROR RMT Thread info mismatch."));
3272 return 0;
3273 }
3274 copy_threadref (&info->threadid, &ref);
3275
3276 /* Loop on tagged fields , try to bail if somthing goes wrong. */
3277
3278 /* Packets are terminated with nulls. */
3279 while ((pkt < limit) && mask && *pkt)
3280 {
3281 pkt = unpack_int (pkt, &tag); /* tag */
3282 pkt = unpack_byte (pkt, &length); /* length */
3283 if (!(tag & mask)) /* Tags out of synch with mask. */
3284 {
3285 warning (_("ERROR RMT: threadinfo tag mismatch."));
3286 retval = 0;
3287 break;
3288 }
3289 if (tag == TAG_THREADID)
3290 {
3291 if (length != 16)
3292 {
3293 warning (_("ERROR RMT: length of threadid is not 16."));
3294 retval = 0;
3295 break;
3296 }
3297 pkt = unpack_threadid (pkt, &ref);
3298 mask = mask & ~TAG_THREADID;
3299 continue;
3300 }
3301 if (tag == TAG_EXISTS)
3302 {
3303 info->active = stub_unpack_int (pkt, length);
3304 pkt += length;
3305 mask = mask & ~(TAG_EXISTS);
3306 if (length > 8)
3307 {
3308 warning (_("ERROR RMT: 'exists' length too long."));
3309 retval = 0;
3310 break;
3311 }
3312 continue;
3313 }
3314 if (tag == TAG_THREADNAME)
3315 {
3316 pkt = unpack_string (pkt, &info->shortname[0], length);
3317 mask = mask & ~TAG_THREADNAME;
3318 continue;
3319 }
3320 if (tag == TAG_DISPLAY)
3321 {
3322 pkt = unpack_string (pkt, &info->display[0], length);
3323 mask = mask & ~TAG_DISPLAY;
3324 continue;
3325 }
3326 if (tag == TAG_MOREDISPLAY)
3327 {
3328 pkt = unpack_string (pkt, &info->more_display[0], length);
3329 mask = mask & ~TAG_MOREDISPLAY;
3330 continue;
3331 }
3332 warning (_("ERROR RMT: unknown thread info tag."));
3333 break; /* Not a tag we know about. */
3334 }
3335 return retval;
3336 }
3337
3338 int
3339 remote_target::remote_get_threadinfo (threadref *threadid,
3340 int fieldset,
3341 gdb_ext_thread_info *info)
3342 {
3343 struct remote_state *rs = get_remote_state ();
3344 int result;
3345
3346 pack_threadinfo_request (rs->buf, fieldset, threadid);
3347 putpkt (rs->buf);
3348 getpkt (&rs->buf, &rs->buf_size, 0);
3349
3350 if (rs->buf[0] == '\0')
3351 return 0;
3352
3353 result = remote_unpack_thread_info_response (rs->buf + 2,
3354 threadid, info);
3355 return result;
3356 }
3357
3358 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3359
3360 static char *
3361 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3362 threadref *nextthread)
3363 {
3364 *pkt++ = 'q'; /* info query packet */
3365 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3366 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3367 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3368 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3369 *pkt = '\0';
3370 return pkt;
3371 }
3372
3373 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3374
3375 int
3376 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3377 threadref *original_echo,
3378 threadref *resultlist,
3379 int *doneflag)
3380 {
3381 struct remote_state *rs = get_remote_state ();
3382 char *limit;
3383 int count, resultcount, done;
3384
3385 resultcount = 0;
3386 /* Assume the 'q' and 'M chars have been stripped. */
3387 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
3388 /* done parse past here */
3389 pkt = unpack_byte (pkt, &count); /* count field */
3390 pkt = unpack_nibble (pkt, &done);
3391 /* The first threadid is the argument threadid. */
3392 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3393 while ((count-- > 0) && (pkt < limit))
3394 {
3395 pkt = unpack_threadid (pkt, resultlist++);
3396 if (resultcount++ >= result_limit)
3397 break;
3398 }
3399 if (doneflag)
3400 *doneflag = done;
3401 return resultcount;
3402 }
3403
3404 /* Fetch the next batch of threads from the remote. Returns -1 if the
3405 qL packet is not supported, 0 on error and 1 on success. */
3406
3407 int
3408 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3409 int result_limit, int *done, int *result_count,
3410 threadref *threadlist)
3411 {
3412 struct remote_state *rs = get_remote_state ();
3413 int result = 1;
3414
3415 /* Trancate result limit to be smaller than the packet size. */
3416 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3417 >= get_remote_packet_size ())
3418 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3419
3420 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
3421 putpkt (rs->buf);
3422 getpkt (&rs->buf, &rs->buf_size, 0);
3423 if (*rs->buf == '\0')
3424 {
3425 /* Packet not supported. */
3426 return -1;
3427 }
3428
3429 *result_count =
3430 parse_threadlist_response (rs->buf + 2, result_limit,
3431 &rs->echo_nextthread, threadlist, done);
3432
3433 if (!threadmatch (&rs->echo_nextthread, nextthread))
3434 {
3435 /* FIXME: This is a good reason to drop the packet. */
3436 /* Possably, there is a duplicate response. */
3437 /* Possabilities :
3438 retransmit immediatly - race conditions
3439 retransmit after timeout - yes
3440 exit
3441 wait for packet, then exit
3442 */
3443 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3444 return 0; /* I choose simply exiting. */
3445 }
3446 if (*result_count <= 0)
3447 {
3448 if (*done != 1)
3449 {
3450 warning (_("RMT ERROR : failed to get remote thread list."));
3451 result = 0;
3452 }
3453 return result; /* break; */
3454 }
3455 if (*result_count > result_limit)
3456 {
3457 *result_count = 0;
3458 warning (_("RMT ERROR: threadlist response longer than requested."));
3459 return 0;
3460 }
3461 return result;
3462 }
3463
3464 /* Fetch the list of remote threads, with the qL packet, and call
3465 STEPFUNCTION for each thread found. Stops iterating and returns 1
3466 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3467 STEPFUNCTION returns false. If the packet is not supported,
3468 returns -1. */
3469
3470 int
3471 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3472 void *context, int looplimit)
3473 {
3474 struct remote_state *rs = get_remote_state ();
3475 int done, i, result_count;
3476 int startflag = 1;
3477 int result = 1;
3478 int loopcount = 0;
3479
3480 done = 0;
3481 while (!done)
3482 {
3483 if (loopcount++ > looplimit)
3484 {
3485 result = 0;
3486 warning (_("Remote fetch threadlist -infinite loop-."));
3487 break;
3488 }
3489 result = remote_get_threadlist (startflag, &rs->nextthread,
3490 MAXTHREADLISTRESULTS,
3491 &done, &result_count,
3492 rs->resultthreadlist);
3493 if (result <= 0)
3494 break;
3495 /* Clear for later iterations. */
3496 startflag = 0;
3497 /* Setup to resume next batch of thread references, set nextthread. */
3498 if (result_count >= 1)
3499 copy_threadref (&rs->nextthread,
3500 &rs->resultthreadlist[result_count - 1]);
3501 i = 0;
3502 while (result_count--)
3503 {
3504 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3505 {
3506 result = 0;
3507 break;
3508 }
3509 }
3510 }
3511 return result;
3512 }
3513
3514 /* A thread found on the remote target. */
3515
3516 struct thread_item
3517 {
3518 explicit thread_item (ptid_t ptid_)
3519 : ptid (ptid_)
3520 {}
3521
3522 thread_item (thread_item &&other) = default;
3523 thread_item &operator= (thread_item &&other) = default;
3524
3525 DISABLE_COPY_AND_ASSIGN (thread_item);
3526
3527 /* The thread's PTID. */
3528 ptid_t ptid;
3529
3530 /* The thread's extra info. */
3531 std::string extra;
3532
3533 /* The thread's name. */
3534 std::string name;
3535
3536 /* The core the thread was running on. -1 if not known. */
3537 int core = -1;
3538
3539 /* The thread handle associated with the thread. */
3540 gdb::byte_vector thread_handle;
3541 };
3542
3543 /* Context passed around to the various methods listing remote
3544 threads. As new threads are found, they're added to the ITEMS
3545 vector. */
3546
3547 struct threads_listing_context
3548 {
3549 /* Return true if this object contains an entry for a thread with ptid
3550 PTID. */
3551
3552 bool contains_thread (ptid_t ptid) const
3553 {
3554 auto match_ptid = [&] (const thread_item &item)
3555 {
3556 return item.ptid == ptid;
3557 };
3558
3559 auto it = std::find_if (this->items.begin (),
3560 this->items.end (),
3561 match_ptid);
3562
3563 return it != this->items.end ();
3564 }
3565
3566 /* Remove the thread with ptid PTID. */
3567
3568 void remove_thread (ptid_t ptid)
3569 {
3570 auto match_ptid = [&] (const thread_item &item)
3571 {
3572 return item.ptid == ptid;
3573 };
3574
3575 auto it = std::remove_if (this->items.begin (),
3576 this->items.end (),
3577 match_ptid);
3578
3579 if (it != this->items.end ())
3580 this->items.erase (it);
3581 }
3582
3583 /* The threads found on the remote target. */
3584 std::vector<thread_item> items;
3585 };
3586
3587 static int
3588 remote_newthread_step (threadref *ref, void *data)
3589 {
3590 struct threads_listing_context *context
3591 = (struct threads_listing_context *) data;
3592 int pid = inferior_ptid.pid ();
3593 int lwp = threadref_to_int (ref);
3594 ptid_t ptid (pid, lwp);
3595
3596 context->items.emplace_back (ptid);
3597
3598 return 1; /* continue iterator */
3599 }
3600
3601 #define CRAZY_MAX_THREADS 1000
3602
3603 ptid_t
3604 remote_target::remote_current_thread (ptid_t oldpid)
3605 {
3606 struct remote_state *rs = get_remote_state ();
3607
3608 putpkt ("qC");
3609 getpkt (&rs->buf, &rs->buf_size, 0);
3610 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3611 {
3612 const char *obuf;
3613 ptid_t result;
3614
3615 result = read_ptid (&rs->buf[2], &obuf);
3616 if (*obuf != '\0' && remote_debug)
3617 fprintf_unfiltered (gdb_stdlog,
3618 "warning: garbage in qC reply\n");
3619
3620 return result;
3621 }
3622 else
3623 return oldpid;
3624 }
3625
3626 /* List remote threads using the deprecated qL packet. */
3627
3628 int
3629 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3630 {
3631 if (remote_threadlist_iterator (remote_newthread_step, context,
3632 CRAZY_MAX_THREADS) >= 0)
3633 return 1;
3634
3635 return 0;
3636 }
3637
3638 #if defined(HAVE_LIBEXPAT)
3639
3640 static void
3641 start_thread (struct gdb_xml_parser *parser,
3642 const struct gdb_xml_element *element,
3643 void *user_data,
3644 std::vector<gdb_xml_value> &attributes)
3645 {
3646 struct threads_listing_context *data
3647 = (struct threads_listing_context *) user_data;
3648 struct gdb_xml_value *attr;
3649
3650 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3651 ptid_t ptid = read_ptid (id, NULL);
3652
3653 data->items.emplace_back (ptid);
3654 thread_item &item = data->items.back ();
3655
3656 attr = xml_find_attribute (attributes, "core");
3657 if (attr != NULL)
3658 item.core = *(ULONGEST *) attr->value.get ();
3659
3660 attr = xml_find_attribute (attributes, "name");
3661 if (attr != NULL)
3662 item.name = (const char *) attr->value.get ();
3663
3664 attr = xml_find_attribute (attributes, "handle");
3665 if (attr != NULL)
3666 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3667 }
3668
3669 static void
3670 end_thread (struct gdb_xml_parser *parser,
3671 const struct gdb_xml_element *element,
3672 void *user_data, const char *body_text)
3673 {
3674 struct threads_listing_context *data
3675 = (struct threads_listing_context *) user_data;
3676
3677 if (body_text != NULL && *body_text != '\0')
3678 data->items.back ().extra = body_text;
3679 }
3680
3681 const struct gdb_xml_attribute thread_attributes[] = {
3682 { "id", GDB_XML_AF_NONE, NULL, NULL },
3683 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3684 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3685 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3686 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3687 };
3688
3689 const struct gdb_xml_element thread_children[] = {
3690 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3691 };
3692
3693 const struct gdb_xml_element threads_children[] = {
3694 { "thread", thread_attributes, thread_children,
3695 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3696 start_thread, end_thread },
3697 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3698 };
3699
3700 const struct gdb_xml_element threads_elements[] = {
3701 { "threads", NULL, threads_children,
3702 GDB_XML_EF_NONE, NULL, NULL },
3703 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3704 };
3705
3706 #endif
3707
3708 /* List remote threads using qXfer:threads:read. */
3709
3710 int
3711 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3712 {
3713 #if defined(HAVE_LIBEXPAT)
3714 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3715 {
3716 gdb::optional<gdb::char_vector> xml
3717 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3718
3719 if (xml && (*xml)[0] != '\0')
3720 {
3721 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3722 threads_elements, xml->data (), context);
3723 }
3724
3725 return 1;
3726 }
3727 #endif
3728
3729 return 0;
3730 }
3731
3732 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3733
3734 int
3735 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3736 {
3737 struct remote_state *rs = get_remote_state ();
3738
3739 if (rs->use_threadinfo_query)
3740 {
3741 const char *bufp;
3742
3743 putpkt ("qfThreadInfo");
3744 getpkt (&rs->buf, &rs->buf_size, 0);
3745 bufp = rs->buf;
3746 if (bufp[0] != '\0') /* q packet recognized */
3747 {
3748 while (*bufp++ == 'm') /* reply contains one or more TID */
3749 {
3750 do
3751 {
3752 ptid_t ptid = read_ptid (bufp, &bufp);
3753 context->items.emplace_back (ptid);
3754 }
3755 while (*bufp++ == ','); /* comma-separated list */
3756 putpkt ("qsThreadInfo");
3757 getpkt (&rs->buf, &rs->buf_size, 0);
3758 bufp = rs->buf;
3759 }
3760 return 1;
3761 }
3762 else
3763 {
3764 /* Packet not recognized. */
3765 rs->use_threadinfo_query = 0;
3766 }
3767 }
3768
3769 return 0;
3770 }
3771
3772 /* Implement the to_update_thread_list function for the remote
3773 targets. */
3774
3775 void
3776 remote_target::update_thread_list ()
3777 {
3778 struct threads_listing_context context;
3779 int got_list = 0;
3780
3781 /* We have a few different mechanisms to fetch the thread list. Try
3782 them all, starting with the most preferred one first, falling
3783 back to older methods. */
3784 if (remote_get_threads_with_qxfer (&context)
3785 || remote_get_threads_with_qthreadinfo (&context)
3786 || remote_get_threads_with_ql (&context))
3787 {
3788 struct thread_info *tp, *tmp;
3789
3790 got_list = 1;
3791
3792 if (context.items.empty ()
3793 && remote_thread_always_alive (inferior_ptid))
3794 {
3795 /* Some targets don't really support threads, but still
3796 reply an (empty) thread list in response to the thread
3797 listing packets, instead of replying "packet not
3798 supported". Exit early so we don't delete the main
3799 thread. */
3800 return;
3801 }
3802
3803 /* CONTEXT now holds the current thread list on the remote
3804 target end. Delete GDB-side threads no longer found on the
3805 target. */
3806 ALL_THREADS_SAFE (tp, tmp)
3807 {
3808 if (!context.contains_thread (tp->ptid))
3809 {
3810 /* Not found. */
3811 delete_thread (tp);
3812 }
3813 }
3814
3815 /* Remove any unreported fork child threads from CONTEXT so
3816 that we don't interfere with follow fork, which is where
3817 creation of such threads is handled. */
3818 remove_new_fork_children (&context);
3819
3820 /* And now add threads we don't know about yet to our list. */
3821 for (thread_item &item : context.items)
3822 {
3823 if (item.ptid != null_ptid)
3824 {
3825 /* In non-stop mode, we assume new found threads are
3826 executing until proven otherwise with a stop reply.
3827 In all-stop, we can only get here if all threads are
3828 stopped. */
3829 int executing = target_is_non_stop_p () ? 1 : 0;
3830
3831 remote_notice_new_inferior (item.ptid, executing);
3832
3833 thread_info *tp = find_thread_ptid (item.ptid);
3834 remote_thread_info *info = get_remote_thread_info (tp);
3835 info->core = item.core;
3836 info->extra = std::move (item.extra);
3837 info->name = std::move (item.name);
3838 info->thread_handle = std::move (item.thread_handle);
3839 }
3840 }
3841 }
3842
3843 if (!got_list)
3844 {
3845 /* If no thread listing method is supported, then query whether
3846 each known thread is alive, one by one, with the T packet.
3847 If the target doesn't support threads at all, then this is a
3848 no-op. See remote_thread_alive. */
3849 prune_threads ();
3850 }
3851 }
3852
3853 /*
3854 * Collect a descriptive string about the given thread.
3855 * The target may say anything it wants to about the thread
3856 * (typically info about its blocked / runnable state, name, etc.).
3857 * This string will appear in the info threads display.
3858 *
3859 * Optional: targets are not required to implement this function.
3860 */
3861
3862 const char *
3863 remote_target::extra_thread_info (thread_info *tp)
3864 {
3865 struct remote_state *rs = get_remote_state ();
3866 int set;
3867 threadref id;
3868 struct gdb_ext_thread_info threadinfo;
3869
3870 if (rs->remote_desc == 0) /* paranoia */
3871 internal_error (__FILE__, __LINE__,
3872 _("remote_threads_extra_info"));
3873
3874 if (tp->ptid == magic_null_ptid
3875 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3876 /* This is the main thread which was added by GDB. The remote
3877 server doesn't know about it. */
3878 return NULL;
3879
3880 std::string &extra = get_remote_thread_info (tp)->extra;
3881
3882 /* If already have cached info, use it. */
3883 if (!extra.empty ())
3884 return extra.c_str ();
3885
3886 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3887 {
3888 /* If we're using qXfer:threads:read, then the extra info is
3889 included in the XML. So if we didn't have anything cached,
3890 it's because there's really no extra info. */
3891 return NULL;
3892 }
3893
3894 if (rs->use_threadextra_query)
3895 {
3896 char *b = rs->buf;
3897 char *endb = rs->buf + get_remote_packet_size ();
3898
3899 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3900 b += strlen (b);
3901 write_ptid (b, endb, tp->ptid);
3902
3903 putpkt (rs->buf);
3904 getpkt (&rs->buf, &rs->buf_size, 0);
3905 if (rs->buf[0] != 0)
3906 {
3907 extra.resize (strlen (rs->buf) / 2);
3908 hex2bin (rs->buf, (gdb_byte *) &extra[0], extra.size ());
3909 return extra.c_str ();
3910 }
3911 }
3912
3913 /* If the above query fails, fall back to the old method. */
3914 rs->use_threadextra_query = 0;
3915 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3916 | TAG_MOREDISPLAY | TAG_DISPLAY;
3917 int_to_threadref (&id, tp->ptid.lwp ());
3918 if (remote_get_threadinfo (&id, set, &threadinfo))
3919 if (threadinfo.active)
3920 {
3921 if (*threadinfo.shortname)
3922 string_appendf (extra, " Name: %s", threadinfo.shortname);
3923 if (*threadinfo.display)
3924 {
3925 if (!extra.empty ())
3926 extra += ',';
3927 string_appendf (extra, " State: %s", threadinfo.display);
3928 }
3929 if (*threadinfo.more_display)
3930 {
3931 if (!extra.empty ())
3932 extra += ',';
3933 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3934 }
3935 return extra.c_str ();
3936 }
3937 return NULL;
3938 }
3939 \f
3940
3941 bool
3942 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3943 struct static_tracepoint_marker *marker)
3944 {
3945 struct remote_state *rs = get_remote_state ();
3946 char *p = rs->buf;
3947
3948 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3949 p += strlen (p);
3950 p += hexnumstr (p, addr);
3951 putpkt (rs->buf);
3952 getpkt (&rs->buf, &rs->buf_size, 0);
3953 p = rs->buf;
3954
3955 if (*p == 'E')
3956 error (_("Remote failure reply: %s"), p);
3957
3958 if (*p++ == 'm')
3959 {
3960 parse_static_tracepoint_marker_definition (p, NULL, marker);
3961 return true;
3962 }
3963
3964 return false;
3965 }
3966
3967 std::vector<static_tracepoint_marker>
3968 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3969 {
3970 struct remote_state *rs = get_remote_state ();
3971 std::vector<static_tracepoint_marker> markers;
3972 const char *p;
3973 static_tracepoint_marker marker;
3974
3975 /* Ask for a first packet of static tracepoint marker
3976 definition. */
3977 putpkt ("qTfSTM");
3978 getpkt (&rs->buf, &rs->buf_size, 0);
3979 p = rs->buf;
3980 if (*p == 'E')
3981 error (_("Remote failure reply: %s"), p);
3982
3983 while (*p++ == 'm')
3984 {
3985 do
3986 {
3987 parse_static_tracepoint_marker_definition (p, &p, &marker);
3988
3989 if (strid == NULL || marker.str_id == strid)
3990 markers.push_back (std::move (marker));
3991 }
3992 while (*p++ == ','); /* comma-separated list */
3993 /* Ask for another packet of static tracepoint definition. */
3994 putpkt ("qTsSTM");
3995 getpkt (&rs->buf, &rs->buf_size, 0);
3996 p = rs->buf;
3997 }
3998
3999 return markers;
4000 }
4001
4002 \f
4003 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4004
4005 ptid_t
4006 remote_target::get_ada_task_ptid (long lwp, long thread)
4007 {
4008 return ptid_t (inferior_ptid.pid (), lwp, 0);
4009 }
4010 \f
4011
4012 /* Restart the remote side; this is an extended protocol operation. */
4013
4014 void
4015 remote_target::extended_remote_restart ()
4016 {
4017 struct remote_state *rs = get_remote_state ();
4018
4019 /* Send the restart command; for reasons I don't understand the
4020 remote side really expects a number after the "R". */
4021 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
4022 putpkt (rs->buf);
4023
4024 remote_fileio_reset ();
4025 }
4026 \f
4027 /* Clean up connection to a remote debugger. */
4028
4029 void
4030 remote_target::close ()
4031 {
4032 /* Make sure we leave stdin registered in the event loop. */
4033 terminal_ours ();
4034
4035 /* We don't have a connection to the remote stub anymore. Get rid
4036 of all the inferiors and their threads we were controlling.
4037 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4038 will be unable to find the thread corresponding to (pid, 0, 0). */
4039 inferior_ptid = null_ptid;
4040 discard_all_inferiors ();
4041
4042 trace_reset_local_state ();
4043
4044 delete this;
4045 }
4046
4047 remote_target::~remote_target ()
4048 {
4049 struct remote_state *rs = get_remote_state ();
4050
4051 /* Check for NULL because we may get here with a partially
4052 constructed target/connection. */
4053 if (rs->remote_desc == nullptr)
4054 return;
4055
4056 serial_close (rs->remote_desc);
4057
4058 /* We are destroying the remote target, so we should discard
4059 everything of this target. */
4060 discard_pending_stop_replies_in_queue ();
4061
4062 if (rs->remote_async_inferior_event_token)
4063 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4064
4065 remote_notif_state_xfree (rs->notif_state);
4066 }
4067
4068 /* Query the remote side for the text, data and bss offsets. */
4069
4070 void
4071 remote_target::get_offsets ()
4072 {
4073 struct remote_state *rs = get_remote_state ();
4074 char *buf;
4075 char *ptr;
4076 int lose, num_segments = 0, do_sections, do_segments;
4077 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4078 struct section_offsets *offs;
4079 struct symfile_segment_data *data;
4080
4081 if (symfile_objfile == NULL)
4082 return;
4083
4084 putpkt ("qOffsets");
4085 getpkt (&rs->buf, &rs->buf_size, 0);
4086 buf = rs->buf;
4087
4088 if (buf[0] == '\000')
4089 return; /* Return silently. Stub doesn't support
4090 this command. */
4091 if (buf[0] == 'E')
4092 {
4093 warning (_("Remote failure reply: %s"), buf);
4094 return;
4095 }
4096
4097 /* Pick up each field in turn. This used to be done with scanf, but
4098 scanf will make trouble if CORE_ADDR size doesn't match
4099 conversion directives correctly. The following code will work
4100 with any size of CORE_ADDR. */
4101 text_addr = data_addr = bss_addr = 0;
4102 ptr = buf;
4103 lose = 0;
4104
4105 if (startswith (ptr, "Text="))
4106 {
4107 ptr += 5;
4108 /* Don't use strtol, could lose on big values. */
4109 while (*ptr && *ptr != ';')
4110 text_addr = (text_addr << 4) + fromhex (*ptr++);
4111
4112 if (startswith (ptr, ";Data="))
4113 {
4114 ptr += 6;
4115 while (*ptr && *ptr != ';')
4116 data_addr = (data_addr << 4) + fromhex (*ptr++);
4117 }
4118 else
4119 lose = 1;
4120
4121 if (!lose && startswith (ptr, ";Bss="))
4122 {
4123 ptr += 5;
4124 while (*ptr && *ptr != ';')
4125 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4126
4127 if (bss_addr != data_addr)
4128 warning (_("Target reported unsupported offsets: %s"), buf);
4129 }
4130 else
4131 lose = 1;
4132 }
4133 else if (startswith (ptr, "TextSeg="))
4134 {
4135 ptr += 8;
4136 /* Don't use strtol, could lose on big values. */
4137 while (*ptr && *ptr != ';')
4138 text_addr = (text_addr << 4) + fromhex (*ptr++);
4139 num_segments = 1;
4140
4141 if (startswith (ptr, ";DataSeg="))
4142 {
4143 ptr += 9;
4144 while (*ptr && *ptr != ';')
4145 data_addr = (data_addr << 4) + fromhex (*ptr++);
4146 num_segments++;
4147 }
4148 }
4149 else
4150 lose = 1;
4151
4152 if (lose)
4153 error (_("Malformed response to offset query, %s"), buf);
4154 else if (*ptr != '\0')
4155 warning (_("Target reported unsupported offsets: %s"), buf);
4156
4157 offs = ((struct section_offsets *)
4158 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
4159 memcpy (offs, symfile_objfile->section_offsets,
4160 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
4161
4162 data = get_symfile_segment_data (symfile_objfile->obfd);
4163 do_segments = (data != NULL);
4164 do_sections = num_segments == 0;
4165
4166 if (num_segments > 0)
4167 {
4168 segments[0] = text_addr;
4169 segments[1] = data_addr;
4170 }
4171 /* If we have two segments, we can still try to relocate everything
4172 by assuming that the .text and .data offsets apply to the whole
4173 text and data segments. Convert the offsets given in the packet
4174 to base addresses for symfile_map_offsets_to_segments. */
4175 else if (data && data->num_segments == 2)
4176 {
4177 segments[0] = data->segment_bases[0] + text_addr;
4178 segments[1] = data->segment_bases[1] + data_addr;
4179 num_segments = 2;
4180 }
4181 /* If the object file has only one segment, assume that it is text
4182 rather than data; main programs with no writable data are rare,
4183 but programs with no code are useless. Of course the code might
4184 have ended up in the data segment... to detect that we would need
4185 the permissions here. */
4186 else if (data && data->num_segments == 1)
4187 {
4188 segments[0] = data->segment_bases[0] + text_addr;
4189 num_segments = 1;
4190 }
4191 /* There's no way to relocate by segment. */
4192 else
4193 do_segments = 0;
4194
4195 if (do_segments)
4196 {
4197 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4198 offs, num_segments, segments);
4199
4200 if (ret == 0 && !do_sections)
4201 error (_("Can not handle qOffsets TextSeg "
4202 "response with this symbol file"));
4203
4204 if (ret > 0)
4205 do_sections = 0;
4206 }
4207
4208 if (data)
4209 free_symfile_segment_data (data);
4210
4211 if (do_sections)
4212 {
4213 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4214
4215 /* This is a temporary kludge to force data and bss to use the
4216 same offsets because that's what nlmconv does now. The real
4217 solution requires changes to the stub and remote.c that I
4218 don't have time to do right now. */
4219
4220 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4221 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4222 }
4223
4224 objfile_relocate (symfile_objfile, offs);
4225 }
4226
4227 /* Send interrupt_sequence to remote target. */
4228
4229 void
4230 remote_target::send_interrupt_sequence ()
4231 {
4232 struct remote_state *rs = get_remote_state ();
4233
4234 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4235 remote_serial_write ("\x03", 1);
4236 else if (interrupt_sequence_mode == interrupt_sequence_break)
4237 serial_send_break (rs->remote_desc);
4238 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4239 {
4240 serial_send_break (rs->remote_desc);
4241 remote_serial_write ("g", 1);
4242 }
4243 else
4244 internal_error (__FILE__, __LINE__,
4245 _("Invalid value for interrupt_sequence_mode: %s."),
4246 interrupt_sequence_mode);
4247 }
4248
4249
4250 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4251 and extract the PTID. Returns NULL_PTID if not found. */
4252
4253 static ptid_t
4254 stop_reply_extract_thread (char *stop_reply)
4255 {
4256 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4257 {
4258 const char *p;
4259
4260 /* Txx r:val ; r:val (...) */
4261 p = &stop_reply[3];
4262
4263 /* Look for "register" named "thread". */
4264 while (*p != '\0')
4265 {
4266 const char *p1;
4267
4268 p1 = strchr (p, ':');
4269 if (p1 == NULL)
4270 return null_ptid;
4271
4272 if (strncmp (p, "thread", p1 - p) == 0)
4273 return read_ptid (++p1, &p);
4274
4275 p1 = strchr (p, ';');
4276 if (p1 == NULL)
4277 return null_ptid;
4278 p1++;
4279
4280 p = p1;
4281 }
4282 }
4283
4284 return null_ptid;
4285 }
4286
4287 /* Determine the remote side's current thread. If we have a stop
4288 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4289 "thread" register we can extract the current thread from. If not,
4290 ask the remote which is the current thread with qC. The former
4291 method avoids a roundtrip. */
4292
4293 ptid_t
4294 remote_target::get_current_thread (char *wait_status)
4295 {
4296 ptid_t ptid = null_ptid;
4297
4298 /* Note we don't use remote_parse_stop_reply as that makes use of
4299 the target architecture, which we haven't yet fully determined at
4300 this point. */
4301 if (wait_status != NULL)
4302 ptid = stop_reply_extract_thread (wait_status);
4303 if (ptid == null_ptid)
4304 ptid = remote_current_thread (inferior_ptid);
4305
4306 return ptid;
4307 }
4308
4309 /* Query the remote target for which is the current thread/process,
4310 add it to our tables, and update INFERIOR_PTID. The caller is
4311 responsible for setting the state such that the remote end is ready
4312 to return the current thread.
4313
4314 This function is called after handling the '?' or 'vRun' packets,
4315 whose response is a stop reply from which we can also try
4316 extracting the thread. If the target doesn't support the explicit
4317 qC query, we infer the current thread from that stop reply, passed
4318 in in WAIT_STATUS, which may be NULL. */
4319
4320 void
4321 remote_target::add_current_inferior_and_thread (char *wait_status)
4322 {
4323 struct remote_state *rs = get_remote_state ();
4324 int fake_pid_p = 0;
4325
4326 inferior_ptid = null_ptid;
4327
4328 /* Now, if we have thread information, update inferior_ptid. */
4329 ptid_t curr_ptid = get_current_thread (wait_status);
4330
4331 if (curr_ptid != null_ptid)
4332 {
4333 if (!remote_multi_process_p (rs))
4334 fake_pid_p = 1;
4335 }
4336 else
4337 {
4338 /* Without this, some commands which require an active target
4339 (such as kill) won't work. This variable serves (at least)
4340 double duty as both the pid of the target process (if it has
4341 such), and as a flag indicating that a target is active. */
4342 curr_ptid = magic_null_ptid;
4343 fake_pid_p = 1;
4344 }
4345
4346 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4347
4348 /* Add the main thread and switch to it. Don't try reading
4349 registers yet, since we haven't fetched the target description
4350 yet. */
4351 thread_info *tp = add_thread_silent (curr_ptid);
4352 switch_to_thread_no_regs (tp);
4353 }
4354
4355 /* Print info about a thread that was found already stopped on
4356 connection. */
4357
4358 static void
4359 print_one_stopped_thread (struct thread_info *thread)
4360 {
4361 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4362
4363 switch_to_thread (thread);
4364 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4365 set_current_sal_from_frame (get_current_frame ());
4366
4367 thread->suspend.waitstatus_pending_p = 0;
4368
4369 if (ws->kind == TARGET_WAITKIND_STOPPED)
4370 {
4371 enum gdb_signal sig = ws->value.sig;
4372
4373 if (signal_print_state (sig))
4374 gdb::observers::signal_received.notify (sig);
4375 }
4376 gdb::observers::normal_stop.notify (NULL, 1);
4377 }
4378
4379 /* Process all initial stop replies the remote side sent in response
4380 to the ? packet. These indicate threads that were already stopped
4381 on initial connection. We mark these threads as stopped and print
4382 their current frame before giving the user the prompt. */
4383
4384 void
4385 remote_target::process_initial_stop_replies (int from_tty)
4386 {
4387 int pending_stop_replies = stop_reply_queue_length ();
4388 struct inferior *inf;
4389 struct thread_info *thread;
4390 struct thread_info *selected = NULL;
4391 struct thread_info *lowest_stopped = NULL;
4392 struct thread_info *first = NULL;
4393
4394 /* Consume the initial pending events. */
4395 while (pending_stop_replies-- > 0)
4396 {
4397 ptid_t waiton_ptid = minus_one_ptid;
4398 ptid_t event_ptid;
4399 struct target_waitstatus ws;
4400 int ignore_event = 0;
4401 struct thread_info *thread;
4402
4403 memset (&ws, 0, sizeof (ws));
4404 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4405 if (remote_debug)
4406 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4407
4408 switch (ws.kind)
4409 {
4410 case TARGET_WAITKIND_IGNORE:
4411 case TARGET_WAITKIND_NO_RESUMED:
4412 case TARGET_WAITKIND_SIGNALLED:
4413 case TARGET_WAITKIND_EXITED:
4414 /* We shouldn't see these, but if we do, just ignore. */
4415 if (remote_debug)
4416 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4417 ignore_event = 1;
4418 break;
4419
4420 case TARGET_WAITKIND_EXECD:
4421 xfree (ws.value.execd_pathname);
4422 break;
4423 default:
4424 break;
4425 }
4426
4427 if (ignore_event)
4428 continue;
4429
4430 thread = find_thread_ptid (event_ptid);
4431
4432 if (ws.kind == TARGET_WAITKIND_STOPPED)
4433 {
4434 enum gdb_signal sig = ws.value.sig;
4435
4436 /* Stubs traditionally report SIGTRAP as initial signal,
4437 instead of signal 0. Suppress it. */
4438 if (sig == GDB_SIGNAL_TRAP)
4439 sig = GDB_SIGNAL_0;
4440 thread->suspend.stop_signal = sig;
4441 ws.value.sig = sig;
4442 }
4443
4444 thread->suspend.waitstatus = ws;
4445
4446 if (ws.kind != TARGET_WAITKIND_STOPPED
4447 || ws.value.sig != GDB_SIGNAL_0)
4448 thread->suspend.waitstatus_pending_p = 1;
4449
4450 set_executing (event_ptid, 0);
4451 set_running (event_ptid, 0);
4452 get_remote_thread_info (thread)->vcont_resumed = 0;
4453 }
4454
4455 /* "Notice" the new inferiors before anything related to
4456 registers/memory. */
4457 ALL_INFERIORS (inf)
4458 {
4459 if (inf->pid == 0)
4460 continue;
4461
4462 inf->needs_setup = 1;
4463
4464 if (non_stop)
4465 {
4466 thread = any_live_thread_of_inferior (inf);
4467 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4468 from_tty);
4469 }
4470 }
4471
4472 /* If all-stop on top of non-stop, pause all threads. Note this
4473 records the threads' stop pc, so must be done after "noticing"
4474 the inferiors. */
4475 if (!non_stop)
4476 {
4477 stop_all_threads ();
4478
4479 /* If all threads of an inferior were already stopped, we
4480 haven't setup the inferior yet. */
4481 ALL_INFERIORS (inf)
4482 {
4483 if (inf->pid == 0)
4484 continue;
4485
4486 if (inf->needs_setup)
4487 {
4488 thread = any_live_thread_of_inferior (inf);
4489 switch_to_thread_no_regs (thread);
4490 setup_inferior (0);
4491 }
4492 }
4493 }
4494
4495 /* Now go over all threads that are stopped, and print their current
4496 frame. If all-stop, then if there's a signalled thread, pick
4497 that as current. */
4498 ALL_NON_EXITED_THREADS (thread)
4499 {
4500 if (first == NULL)
4501 first = thread;
4502
4503 if (!non_stop)
4504 thread->set_running (false);
4505 else if (thread->state != THREAD_STOPPED)
4506 continue;
4507
4508 if (selected == NULL
4509 && thread->suspend.waitstatus_pending_p)
4510 selected = thread;
4511
4512 if (lowest_stopped == NULL
4513 || thread->inf->num < lowest_stopped->inf->num
4514 || thread->per_inf_num < lowest_stopped->per_inf_num)
4515 lowest_stopped = thread;
4516
4517 if (non_stop)
4518 print_one_stopped_thread (thread);
4519 }
4520
4521 /* In all-stop, we only print the status of one thread, and leave
4522 others with their status pending. */
4523 if (!non_stop)
4524 {
4525 thread = selected;
4526 if (thread == NULL)
4527 thread = lowest_stopped;
4528 if (thread == NULL)
4529 thread = first;
4530
4531 print_one_stopped_thread (thread);
4532 }
4533
4534 /* For "info program". */
4535 thread = inferior_thread ();
4536 if (thread->state == THREAD_STOPPED)
4537 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4538 }
4539
4540 /* Start the remote connection and sync state. */
4541
4542 void
4543 remote_target::start_remote (int from_tty, int extended_p)
4544 {
4545 struct remote_state *rs = get_remote_state ();
4546 struct packet_config *noack_config;
4547 char *wait_status = NULL;
4548
4549 /* Signal other parts that we're going through the initial setup,
4550 and so things may not be stable yet. E.g., we don't try to
4551 install tracepoints until we've relocated symbols. Also, a
4552 Ctrl-C before we're connected and synced up can't interrupt the
4553 target. Instead, it offers to drop the (potentially wedged)
4554 connection. */
4555 rs->starting_up = 1;
4556
4557 QUIT;
4558
4559 if (interrupt_on_connect)
4560 send_interrupt_sequence ();
4561
4562 /* Ack any packet which the remote side has already sent. */
4563 remote_serial_write ("+", 1);
4564
4565 /* The first packet we send to the target is the optional "supported
4566 packets" request. If the target can answer this, it will tell us
4567 which later probes to skip. */
4568 remote_query_supported ();
4569
4570 /* If the stub wants to get a QAllow, compose one and send it. */
4571 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4572 set_permissions ();
4573
4574 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4575 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4576 as a reply to known packet. For packet "vFile:setfs:" it is an
4577 invalid reply and GDB would return error in
4578 remote_hostio_set_filesystem, making remote files access impossible.
4579 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4580 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4581 {
4582 const char v_mustreplyempty[] = "vMustReplyEmpty";
4583
4584 putpkt (v_mustreplyempty);
4585 getpkt (&rs->buf, &rs->buf_size, 0);
4586 if (strcmp (rs->buf, "OK") == 0)
4587 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4588 else if (strcmp (rs->buf, "") != 0)
4589 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4590 rs->buf);
4591 }
4592
4593 /* Next, we possibly activate noack mode.
4594
4595 If the QStartNoAckMode packet configuration is set to AUTO,
4596 enable noack mode if the stub reported a wish for it with
4597 qSupported.
4598
4599 If set to TRUE, then enable noack mode even if the stub didn't
4600 report it in qSupported. If the stub doesn't reply OK, the
4601 session ends with an error.
4602
4603 If FALSE, then don't activate noack mode, regardless of what the
4604 stub claimed should be the default with qSupported. */
4605
4606 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4607 if (packet_config_support (noack_config) != PACKET_DISABLE)
4608 {
4609 putpkt ("QStartNoAckMode");
4610 getpkt (&rs->buf, &rs->buf_size, 0);
4611 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4612 rs->noack_mode = 1;
4613 }
4614
4615 if (extended_p)
4616 {
4617 /* Tell the remote that we are using the extended protocol. */
4618 putpkt ("!");
4619 getpkt (&rs->buf, &rs->buf_size, 0);
4620 }
4621
4622 /* Let the target know which signals it is allowed to pass down to
4623 the program. */
4624 update_signals_program_target ();
4625
4626 /* Next, if the target can specify a description, read it. We do
4627 this before anything involving memory or registers. */
4628 target_find_description ();
4629
4630 /* Next, now that we know something about the target, update the
4631 address spaces in the program spaces. */
4632 update_address_spaces ();
4633
4634 /* On OSs where the list of libraries is global to all
4635 processes, we fetch them early. */
4636 if (gdbarch_has_global_solist (target_gdbarch ()))
4637 solib_add (NULL, from_tty, auto_solib_add);
4638
4639 if (target_is_non_stop_p ())
4640 {
4641 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4642 error (_("Non-stop mode requested, but remote "
4643 "does not support non-stop"));
4644
4645 putpkt ("QNonStop:1");
4646 getpkt (&rs->buf, &rs->buf_size, 0);
4647
4648 if (strcmp (rs->buf, "OK") != 0)
4649 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4650
4651 /* Find about threads and processes the stub is already
4652 controlling. We default to adding them in the running state.
4653 The '?' query below will then tell us about which threads are
4654 stopped. */
4655 this->update_thread_list ();
4656 }
4657 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4658 {
4659 /* Don't assume that the stub can operate in all-stop mode.
4660 Request it explicitly. */
4661 putpkt ("QNonStop:0");
4662 getpkt (&rs->buf, &rs->buf_size, 0);
4663
4664 if (strcmp (rs->buf, "OK") != 0)
4665 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4666 }
4667
4668 /* Upload TSVs regardless of whether the target is running or not. The
4669 remote stub, such as GDBserver, may have some predefined or builtin
4670 TSVs, even if the target is not running. */
4671 if (get_trace_status (current_trace_status ()) != -1)
4672 {
4673 struct uploaded_tsv *uploaded_tsvs = NULL;
4674
4675 upload_trace_state_variables (&uploaded_tsvs);
4676 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4677 }
4678
4679 /* Check whether the target is running now. */
4680 putpkt ("?");
4681 getpkt (&rs->buf, &rs->buf_size, 0);
4682
4683 if (!target_is_non_stop_p ())
4684 {
4685 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4686 {
4687 if (!extended_p)
4688 error (_("The target is not running (try extended-remote?)"));
4689
4690 /* We're connected, but not running. Drop out before we
4691 call start_remote. */
4692 rs->starting_up = 0;
4693 return;
4694 }
4695 else
4696 {
4697 /* Save the reply for later. */
4698 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4699 strcpy (wait_status, rs->buf);
4700 }
4701
4702 /* Fetch thread list. */
4703 target_update_thread_list ();
4704
4705 /* Let the stub know that we want it to return the thread. */
4706 set_continue_thread (minus_one_ptid);
4707
4708 if (thread_count () == 0)
4709 {
4710 /* Target has no concept of threads at all. GDB treats
4711 non-threaded target as single-threaded; add a main
4712 thread. */
4713 add_current_inferior_and_thread (wait_status);
4714 }
4715 else
4716 {
4717 /* We have thread information; select the thread the target
4718 says should be current. If we're reconnecting to a
4719 multi-threaded program, this will ideally be the thread
4720 that last reported an event before GDB disconnected. */
4721 inferior_ptid = get_current_thread (wait_status);
4722 if (inferior_ptid == null_ptid)
4723 {
4724 /* Odd... The target was able to list threads, but not
4725 tell us which thread was current (no "thread"
4726 register in T stop reply?). Just pick the first
4727 thread in the thread list then. */
4728
4729 if (remote_debug)
4730 fprintf_unfiltered (gdb_stdlog,
4731 "warning: couldn't determine remote "
4732 "current thread; picking first in list.\n");
4733
4734 inferior_ptid = thread_list->ptid;
4735 }
4736 }
4737
4738 /* init_wait_for_inferior should be called before get_offsets in order
4739 to manage `inserted' flag in bp loc in a correct state.
4740 breakpoint_init_inferior, called from init_wait_for_inferior, set
4741 `inserted' flag to 0, while before breakpoint_re_set, called from
4742 start_remote, set `inserted' flag to 1. In the initialization of
4743 inferior, breakpoint_init_inferior should be called first, and then
4744 breakpoint_re_set can be called. If this order is broken, state of
4745 `inserted' flag is wrong, and cause some problems on breakpoint
4746 manipulation. */
4747 init_wait_for_inferior ();
4748
4749 get_offsets (); /* Get text, data & bss offsets. */
4750
4751 /* If we could not find a description using qXfer, and we know
4752 how to do it some other way, try again. This is not
4753 supported for non-stop; it could be, but it is tricky if
4754 there are no stopped threads when we connect. */
4755 if (remote_read_description_p (this)
4756 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4757 {
4758 target_clear_description ();
4759 target_find_description ();
4760 }
4761
4762 /* Use the previously fetched status. */
4763 gdb_assert (wait_status != NULL);
4764 strcpy (rs->buf, wait_status);
4765 rs->cached_wait_status = 1;
4766
4767 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4768 }
4769 else
4770 {
4771 /* Clear WFI global state. Do this before finding about new
4772 threads and inferiors, and setting the current inferior.
4773 Otherwise we would clear the proceed status of the current
4774 inferior when we want its stop_soon state to be preserved
4775 (see notice_new_inferior). */
4776 init_wait_for_inferior ();
4777
4778 /* In non-stop, we will either get an "OK", meaning that there
4779 are no stopped threads at this time; or, a regular stop
4780 reply. In the latter case, there may be more than one thread
4781 stopped --- we pull them all out using the vStopped
4782 mechanism. */
4783 if (strcmp (rs->buf, "OK") != 0)
4784 {
4785 struct notif_client *notif = &notif_client_stop;
4786
4787 /* remote_notif_get_pending_replies acks this one, and gets
4788 the rest out. */
4789 rs->notif_state->pending_event[notif_client_stop.id]
4790 = remote_notif_parse (this, notif, rs->buf);
4791 remote_notif_get_pending_events (notif);
4792 }
4793
4794 if (thread_count () == 0)
4795 {
4796 if (!extended_p)
4797 error (_("The target is not running (try extended-remote?)"));
4798
4799 /* We're connected, but not running. Drop out before we
4800 call start_remote. */
4801 rs->starting_up = 0;
4802 return;
4803 }
4804
4805 /* In non-stop mode, any cached wait status will be stored in
4806 the stop reply queue. */
4807 gdb_assert (wait_status == NULL);
4808
4809 /* Report all signals during attach/startup. */
4810 pass_signals (0, NULL);
4811
4812 /* If there are already stopped threads, mark them stopped and
4813 report their stops before giving the prompt to the user. */
4814 process_initial_stop_replies (from_tty);
4815
4816 if (target_can_async_p ())
4817 target_async (1);
4818 }
4819
4820 /* If we connected to a live target, do some additional setup. */
4821 if (target_has_execution)
4822 {
4823 if (symfile_objfile) /* No use without a symbol-file. */
4824 remote_check_symbols ();
4825 }
4826
4827 /* Possibly the target has been engaged in a trace run started
4828 previously; find out where things are at. */
4829 if (get_trace_status (current_trace_status ()) != -1)
4830 {
4831 struct uploaded_tp *uploaded_tps = NULL;
4832
4833 if (current_trace_status ()->running)
4834 printf_filtered (_("Trace is already running on the target.\n"));
4835
4836 upload_tracepoints (&uploaded_tps);
4837
4838 merge_uploaded_tracepoints (&uploaded_tps);
4839 }
4840
4841 /* Possibly the target has been engaged in a btrace record started
4842 previously; find out where things are at. */
4843 remote_btrace_maybe_reopen ();
4844
4845 /* The thread and inferior lists are now synchronized with the
4846 target, our symbols have been relocated, and we're merged the
4847 target's tracepoints with ours. We're done with basic start
4848 up. */
4849 rs->starting_up = 0;
4850
4851 /* Maybe breakpoints are global and need to be inserted now. */
4852 if (breakpoints_should_be_inserted_now ())
4853 insert_breakpoints ();
4854 }
4855
4856 /* Open a connection to a remote debugger.
4857 NAME is the filename used for communication. */
4858
4859 void
4860 remote_target::open (const char *name, int from_tty)
4861 {
4862 open_1 (name, from_tty, 0);
4863 }
4864
4865 /* Open a connection to a remote debugger using the extended
4866 remote gdb protocol. NAME is the filename used for communication. */
4867
4868 void
4869 extended_remote_target::open (const char *name, int from_tty)
4870 {
4871 open_1 (name, from_tty, 1 /*extended_p */);
4872 }
4873
4874 /* Reset all packets back to "unknown support". Called when opening a
4875 new connection to a remote target. */
4876
4877 static void
4878 reset_all_packet_configs_support (void)
4879 {
4880 int i;
4881
4882 for (i = 0; i < PACKET_MAX; i++)
4883 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4884 }
4885
4886 /* Initialize all packet configs. */
4887
4888 static void
4889 init_all_packet_configs (void)
4890 {
4891 int i;
4892
4893 for (i = 0; i < PACKET_MAX; i++)
4894 {
4895 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4896 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4897 }
4898 }
4899
4900 /* Symbol look-up. */
4901
4902 void
4903 remote_target::remote_check_symbols ()
4904 {
4905 char *msg, *reply, *tmp;
4906 int end;
4907 long reply_size;
4908 struct cleanup *old_chain;
4909
4910 /* The remote side has no concept of inferiors that aren't running
4911 yet, it only knows about running processes. If we're connected
4912 but our current inferior is not running, we should not invite the
4913 remote target to request symbol lookups related to its
4914 (unrelated) current process. */
4915 if (!target_has_execution)
4916 return;
4917
4918 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4919 return;
4920
4921 /* Make sure the remote is pointing at the right process. Note
4922 there's no way to select "no process". */
4923 set_general_process ();
4924
4925 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4926 because we need both at the same time. */
4927 msg = (char *) xmalloc (get_remote_packet_size ());
4928 old_chain = make_cleanup (xfree, msg);
4929 reply = (char *) xmalloc (get_remote_packet_size ());
4930 make_cleanup (free_current_contents, &reply);
4931 reply_size = get_remote_packet_size ();
4932
4933 /* Invite target to request symbol lookups. */
4934
4935 putpkt ("qSymbol::");
4936 getpkt (&reply, &reply_size, 0);
4937 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4938
4939 while (startswith (reply, "qSymbol:"))
4940 {
4941 struct bound_minimal_symbol sym;
4942
4943 tmp = &reply[8];
4944 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4945 msg[end] = '\0';
4946 sym = lookup_minimal_symbol (msg, NULL, NULL);
4947 if (sym.minsym == NULL)
4948 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4949 else
4950 {
4951 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4952 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4953
4954 /* If this is a function address, return the start of code
4955 instead of any data function descriptor. */
4956 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4957 sym_addr,
4958 current_top_target ());
4959
4960 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4961 phex_nz (sym_addr, addr_size), &reply[8]);
4962 }
4963
4964 putpkt (msg);
4965 getpkt (&reply, &reply_size, 0);
4966 }
4967
4968 do_cleanups (old_chain);
4969 }
4970
4971 static struct serial *
4972 remote_serial_open (const char *name)
4973 {
4974 static int udp_warning = 0;
4975
4976 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4977 of in ser-tcp.c, because it is the remote protocol assuming that the
4978 serial connection is reliable and not the serial connection promising
4979 to be. */
4980 if (!udp_warning && startswith (name, "udp:"))
4981 {
4982 warning (_("The remote protocol may be unreliable over UDP.\n"
4983 "Some events may be lost, rendering further debugging "
4984 "impossible."));
4985 udp_warning = 1;
4986 }
4987
4988 return serial_open (name);
4989 }
4990
4991 /* Inform the target of our permission settings. The permission flags
4992 work without this, but if the target knows the settings, it can do
4993 a couple things. First, it can add its own check, to catch cases
4994 that somehow manage to get by the permissions checks in target
4995 methods. Second, if the target is wired to disallow particular
4996 settings (for instance, a system in the field that is not set up to
4997 be able to stop at a breakpoint), it can object to any unavailable
4998 permissions. */
4999
5000 void
5001 remote_target::set_permissions ()
5002 {
5003 struct remote_state *rs = get_remote_state ();
5004
5005 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
5006 "WriteReg:%x;WriteMem:%x;"
5007 "InsertBreak:%x;InsertTrace:%x;"
5008 "InsertFastTrace:%x;Stop:%x",
5009 may_write_registers, may_write_memory,
5010 may_insert_breakpoints, may_insert_tracepoints,
5011 may_insert_fast_tracepoints, may_stop);
5012 putpkt (rs->buf);
5013 getpkt (&rs->buf, &rs->buf_size, 0);
5014
5015 /* If the target didn't like the packet, warn the user. Do not try
5016 to undo the user's settings, that would just be maddening. */
5017 if (strcmp (rs->buf, "OK") != 0)
5018 warning (_("Remote refused setting permissions with: %s"), rs->buf);
5019 }
5020
5021 /* This type describes each known response to the qSupported
5022 packet. */
5023 struct protocol_feature
5024 {
5025 /* The name of this protocol feature. */
5026 const char *name;
5027
5028 /* The default for this protocol feature. */
5029 enum packet_support default_support;
5030
5031 /* The function to call when this feature is reported, or after
5032 qSupported processing if the feature is not supported.
5033 The first argument points to this structure. The second
5034 argument indicates whether the packet requested support be
5035 enabled, disabled, or probed (or the default, if this function
5036 is being called at the end of processing and this feature was
5037 not reported). The third argument may be NULL; if not NULL, it
5038 is a NUL-terminated string taken from the packet following
5039 this feature's name and an equals sign. */
5040 void (*func) (remote_target *remote, const struct protocol_feature *,
5041 enum packet_support, const char *);
5042
5043 /* The corresponding packet for this feature. Only used if
5044 FUNC is remote_supported_packet. */
5045 int packet;
5046 };
5047
5048 static void
5049 remote_supported_packet (remote_target *remote,
5050 const struct protocol_feature *feature,
5051 enum packet_support support,
5052 const char *argument)
5053 {
5054 if (argument)
5055 {
5056 warning (_("Remote qSupported response supplied an unexpected value for"
5057 " \"%s\"."), feature->name);
5058 return;
5059 }
5060
5061 remote_protocol_packets[feature->packet].support = support;
5062 }
5063
5064 void
5065 remote_target::remote_packet_size (const protocol_feature *feature,
5066 enum packet_support support, const char *value)
5067 {
5068 struct remote_state *rs = get_remote_state ();
5069
5070 int packet_size;
5071 char *value_end;
5072
5073 if (support != PACKET_ENABLE)
5074 return;
5075
5076 if (value == NULL || *value == '\0')
5077 {
5078 warning (_("Remote target reported \"%s\" without a size."),
5079 feature->name);
5080 return;
5081 }
5082
5083 errno = 0;
5084 packet_size = strtol (value, &value_end, 16);
5085 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5086 {
5087 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5088 feature->name, value);
5089 return;
5090 }
5091
5092 /* Record the new maximum packet size. */
5093 rs->explicit_packet_size = packet_size;
5094 }
5095
5096 void
5097 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5098 enum packet_support support, const char *value)
5099 {
5100 remote->remote_packet_size (feature, support, value);
5101 }
5102
5103 static const struct protocol_feature remote_protocol_features[] = {
5104 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5105 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5106 PACKET_qXfer_auxv },
5107 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5108 PACKET_qXfer_exec_file },
5109 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5110 PACKET_qXfer_features },
5111 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5112 PACKET_qXfer_libraries },
5113 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5114 PACKET_qXfer_libraries_svr4 },
5115 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5116 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5117 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5118 PACKET_qXfer_memory_map },
5119 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
5120 PACKET_qXfer_spu_read },
5121 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
5122 PACKET_qXfer_spu_write },
5123 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5124 PACKET_qXfer_osdata },
5125 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5126 PACKET_qXfer_threads },
5127 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5128 PACKET_qXfer_traceframe_info },
5129 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5130 PACKET_QPassSignals },
5131 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5132 PACKET_QCatchSyscalls },
5133 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5134 PACKET_QProgramSignals },
5135 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_QSetWorkingDir },
5137 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_QStartupWithShell },
5139 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_QEnvironmentHexEncoded },
5141 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_QEnvironmentReset },
5143 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5144 PACKET_QEnvironmentUnset },
5145 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5146 PACKET_QStartNoAckMode },
5147 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5148 PACKET_multiprocess_feature },
5149 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5150 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5151 PACKET_qXfer_siginfo_read },
5152 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5153 PACKET_qXfer_siginfo_write },
5154 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5155 PACKET_ConditionalTracepoints },
5156 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5157 PACKET_ConditionalBreakpoints },
5158 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5159 PACKET_BreakpointCommands },
5160 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5161 PACKET_FastTracepoints },
5162 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5163 PACKET_StaticTracepoints },
5164 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5165 PACKET_InstallInTrace},
5166 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5167 PACKET_DisconnectedTracing_feature },
5168 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5169 PACKET_bc },
5170 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5171 PACKET_bs },
5172 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5173 PACKET_TracepointSource },
5174 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5175 PACKET_QAllow },
5176 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5177 PACKET_EnableDisableTracepoints_feature },
5178 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5179 PACKET_qXfer_fdpic },
5180 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5181 PACKET_qXfer_uib },
5182 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5183 PACKET_QDisableRandomization },
5184 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5185 { "QTBuffer:size", PACKET_DISABLE,
5186 remote_supported_packet, PACKET_QTBuffer_size},
5187 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5188 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5189 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5190 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5191 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5192 PACKET_qXfer_btrace },
5193 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5194 PACKET_qXfer_btrace_conf },
5195 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5196 PACKET_Qbtrace_conf_bts_size },
5197 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5198 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5199 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5200 PACKET_fork_event_feature },
5201 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5202 PACKET_vfork_event_feature },
5203 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5204 PACKET_exec_event_feature },
5205 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5206 PACKET_Qbtrace_conf_pt_size },
5207 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5208 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5209 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5210 };
5211
5212 static char *remote_support_xml;
5213
5214 /* Register string appended to "xmlRegisters=" in qSupported query. */
5215
5216 void
5217 register_remote_support_xml (const char *xml)
5218 {
5219 #if defined(HAVE_LIBEXPAT)
5220 if (remote_support_xml == NULL)
5221 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5222 else
5223 {
5224 char *copy = xstrdup (remote_support_xml + 13);
5225 char *p = strtok (copy, ",");
5226
5227 do
5228 {
5229 if (strcmp (p, xml) == 0)
5230 {
5231 /* already there */
5232 xfree (copy);
5233 return;
5234 }
5235 }
5236 while ((p = strtok (NULL, ",")) != NULL);
5237 xfree (copy);
5238
5239 remote_support_xml = reconcat (remote_support_xml,
5240 remote_support_xml, ",", xml,
5241 (char *) NULL);
5242 }
5243 #endif
5244 }
5245
5246 static void
5247 remote_query_supported_append (std::string *msg, const char *append)
5248 {
5249 if (!msg->empty ())
5250 msg->append (";");
5251 msg->append (append);
5252 }
5253
5254 void
5255 remote_target::remote_query_supported ()
5256 {
5257 struct remote_state *rs = get_remote_state ();
5258 char *next;
5259 int i;
5260 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5261
5262 /* The packet support flags are handled differently for this packet
5263 than for most others. We treat an error, a disabled packet, and
5264 an empty response identically: any features which must be reported
5265 to be used will be automatically disabled. An empty buffer
5266 accomplishes this, since that is also the representation for a list
5267 containing no features. */
5268
5269 rs->buf[0] = 0;
5270 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5271 {
5272 std::string q;
5273
5274 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5275 remote_query_supported_append (&q, "multiprocess+");
5276
5277 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5278 remote_query_supported_append (&q, "swbreak+");
5279 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5280 remote_query_supported_append (&q, "hwbreak+");
5281
5282 remote_query_supported_append (&q, "qRelocInsn+");
5283
5284 if (packet_set_cmd_state (PACKET_fork_event_feature)
5285 != AUTO_BOOLEAN_FALSE)
5286 remote_query_supported_append (&q, "fork-events+");
5287 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5288 != AUTO_BOOLEAN_FALSE)
5289 remote_query_supported_append (&q, "vfork-events+");
5290 if (packet_set_cmd_state (PACKET_exec_event_feature)
5291 != AUTO_BOOLEAN_FALSE)
5292 remote_query_supported_append (&q, "exec-events+");
5293
5294 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5295 remote_query_supported_append (&q, "vContSupported+");
5296
5297 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5298 remote_query_supported_append (&q, "QThreadEvents+");
5299
5300 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5301 remote_query_supported_append (&q, "no-resumed+");
5302
5303 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5304 the qSupported:xmlRegisters=i386 handling. */
5305 if (remote_support_xml != NULL
5306 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5307 remote_query_supported_append (&q, remote_support_xml);
5308
5309 q = "qSupported:" + q;
5310 putpkt (q.c_str ());
5311
5312 getpkt (&rs->buf, &rs->buf_size, 0);
5313
5314 /* If an error occured, warn, but do not return - just reset the
5315 buffer to empty and go on to disable features. */
5316 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5317 == PACKET_ERROR)
5318 {
5319 warning (_("Remote failure reply: %s"), rs->buf);
5320 rs->buf[0] = 0;
5321 }
5322 }
5323
5324 memset (seen, 0, sizeof (seen));
5325
5326 next = rs->buf;
5327 while (*next)
5328 {
5329 enum packet_support is_supported;
5330 char *p, *end, *name_end, *value;
5331
5332 /* First separate out this item from the rest of the packet. If
5333 there's another item after this, we overwrite the separator
5334 (terminated strings are much easier to work with). */
5335 p = next;
5336 end = strchr (p, ';');
5337 if (end == NULL)
5338 {
5339 end = p + strlen (p);
5340 next = end;
5341 }
5342 else
5343 {
5344 *end = '\0';
5345 next = end + 1;
5346
5347 if (end == p)
5348 {
5349 warning (_("empty item in \"qSupported\" response"));
5350 continue;
5351 }
5352 }
5353
5354 name_end = strchr (p, '=');
5355 if (name_end)
5356 {
5357 /* This is a name=value entry. */
5358 is_supported = PACKET_ENABLE;
5359 value = name_end + 1;
5360 *name_end = '\0';
5361 }
5362 else
5363 {
5364 value = NULL;
5365 switch (end[-1])
5366 {
5367 case '+':
5368 is_supported = PACKET_ENABLE;
5369 break;
5370
5371 case '-':
5372 is_supported = PACKET_DISABLE;
5373 break;
5374
5375 case '?':
5376 is_supported = PACKET_SUPPORT_UNKNOWN;
5377 break;
5378
5379 default:
5380 warning (_("unrecognized item \"%s\" "
5381 "in \"qSupported\" response"), p);
5382 continue;
5383 }
5384 end[-1] = '\0';
5385 }
5386
5387 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5388 if (strcmp (remote_protocol_features[i].name, p) == 0)
5389 {
5390 const struct protocol_feature *feature;
5391
5392 seen[i] = 1;
5393 feature = &remote_protocol_features[i];
5394 feature->func (this, feature, is_supported, value);
5395 break;
5396 }
5397 }
5398
5399 /* If we increased the packet size, make sure to increase the global
5400 buffer size also. We delay this until after parsing the entire
5401 qSupported packet, because this is the same buffer we were
5402 parsing. */
5403 if (rs->buf_size < rs->explicit_packet_size)
5404 {
5405 rs->buf_size = rs->explicit_packet_size;
5406 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
5407 }
5408
5409 /* Handle the defaults for unmentioned features. */
5410 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5411 if (!seen[i])
5412 {
5413 const struct protocol_feature *feature;
5414
5415 feature = &remote_protocol_features[i];
5416 feature->func (this, feature, feature->default_support, NULL);
5417 }
5418 }
5419
5420 /* Serial QUIT handler for the remote serial descriptor.
5421
5422 Defers handling a Ctrl-C until we're done with the current
5423 command/response packet sequence, unless:
5424
5425 - We're setting up the connection. Don't send a remote interrupt
5426 request, as we're not fully synced yet. Quit immediately
5427 instead.
5428
5429 - The target has been resumed in the foreground
5430 (target_terminal::is_ours is false) with a synchronous resume
5431 packet, and we're blocked waiting for the stop reply, thus a
5432 Ctrl-C should be immediately sent to the target.
5433
5434 - We get a second Ctrl-C while still within the same serial read or
5435 write. In that case the serial is seemingly wedged --- offer to
5436 quit/disconnect.
5437
5438 - We see a second Ctrl-C without target response, after having
5439 previously interrupted the target. In that case the target/stub
5440 is probably wedged --- offer to quit/disconnect.
5441 */
5442
5443 void
5444 remote_target::remote_serial_quit_handler ()
5445 {
5446 struct remote_state *rs = get_remote_state ();
5447
5448 if (check_quit_flag ())
5449 {
5450 /* If we're starting up, we're not fully synced yet. Quit
5451 immediately. */
5452 if (rs->starting_up)
5453 quit ();
5454 else if (rs->got_ctrlc_during_io)
5455 {
5456 if (query (_("The target is not responding to GDB commands.\n"
5457 "Stop debugging it? ")))
5458 remote_unpush_and_throw ();
5459 }
5460 /* If ^C has already been sent once, offer to disconnect. */
5461 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5462 interrupt_query ();
5463 /* All-stop protocol, and blocked waiting for stop reply. Send
5464 an interrupt request. */
5465 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5466 target_interrupt ();
5467 else
5468 rs->got_ctrlc_during_io = 1;
5469 }
5470 }
5471
5472 /* The remote_target that is current while the quit handler is
5473 overridden with remote_serial_quit_handler. */
5474 static remote_target *curr_quit_handler_target;
5475
5476 static void
5477 remote_serial_quit_handler ()
5478 {
5479 curr_quit_handler_target->remote_serial_quit_handler ();
5480 }
5481
5482 /* Remove any of the remote.c targets from target stack. Upper targets depend
5483 on it so remove them first. */
5484
5485 static void
5486 remote_unpush_target (void)
5487 {
5488 pop_all_targets_at_and_above (process_stratum);
5489 }
5490
5491 static void
5492 remote_unpush_and_throw (void)
5493 {
5494 remote_unpush_target ();
5495 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5496 }
5497
5498 void
5499 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5500 {
5501 remote_target *curr_remote = get_current_remote_target ();
5502
5503 if (name == 0)
5504 error (_("To open a remote debug connection, you need to specify what\n"
5505 "serial device is attached to the remote system\n"
5506 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5507
5508 /* If we're connected to a running target, target_preopen will kill it.
5509 Ask this question first, before target_preopen has a chance to kill
5510 anything. */
5511 if (curr_remote != NULL && !have_inferiors ())
5512 {
5513 if (from_tty
5514 && !query (_("Already connected to a remote target. Disconnect? ")))
5515 error (_("Still connected."));
5516 }
5517
5518 /* Here the possibly existing remote target gets unpushed. */
5519 target_preopen (from_tty);
5520
5521 remote_fileio_reset ();
5522 reopen_exec_file ();
5523 reread_symbols ();
5524
5525 remote_target *remote
5526 = (extended_p ? new extended_remote_target () : new remote_target ());
5527 target_ops_up target_holder (remote);
5528
5529 remote_state *rs = remote->get_remote_state ();
5530
5531 /* See FIXME above. */
5532 if (!target_async_permitted)
5533 rs->wait_forever_enabled_p = 1;
5534
5535 rs->remote_desc = remote_serial_open (name);
5536 if (!rs->remote_desc)
5537 perror_with_name (name);
5538
5539 if (baud_rate != -1)
5540 {
5541 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5542 {
5543 /* The requested speed could not be set. Error out to
5544 top level after closing remote_desc. Take care to
5545 set remote_desc to NULL to avoid closing remote_desc
5546 more than once. */
5547 serial_close (rs->remote_desc);
5548 rs->remote_desc = NULL;
5549 perror_with_name (name);
5550 }
5551 }
5552
5553 serial_setparity (rs->remote_desc, serial_parity);
5554 serial_raw (rs->remote_desc);
5555
5556 /* If there is something sitting in the buffer we might take it as a
5557 response to a command, which would be bad. */
5558 serial_flush_input (rs->remote_desc);
5559
5560 if (from_tty)
5561 {
5562 puts_filtered ("Remote debugging using ");
5563 puts_filtered (name);
5564 puts_filtered ("\n");
5565 }
5566
5567 /* Switch to using the remote target now. */
5568 push_target (remote);
5569 /* The target stack owns the target now. */
5570 target_holder.release ();
5571
5572 /* Register extra event sources in the event loop. */
5573 rs->remote_async_inferior_event_token
5574 = create_async_event_handler (remote_async_inferior_event_handler,
5575 remote);
5576 rs->notif_state = remote_notif_state_allocate (remote);
5577
5578 /* Reset the target state; these things will be queried either by
5579 remote_query_supported or as they are needed. */
5580 reset_all_packet_configs_support ();
5581 rs->cached_wait_status = 0;
5582 rs->explicit_packet_size = 0;
5583 rs->noack_mode = 0;
5584 rs->extended = extended_p;
5585 rs->waiting_for_stop_reply = 0;
5586 rs->ctrlc_pending_p = 0;
5587 rs->got_ctrlc_during_io = 0;
5588
5589 rs->general_thread = not_sent_ptid;
5590 rs->continue_thread = not_sent_ptid;
5591 rs->remote_traceframe_number = -1;
5592
5593 rs->last_resume_exec_dir = EXEC_FORWARD;
5594
5595 /* Probe for ability to use "ThreadInfo" query, as required. */
5596 rs->use_threadinfo_query = 1;
5597 rs->use_threadextra_query = 1;
5598
5599 rs->readahead_cache.invalidate ();
5600
5601 if (target_async_permitted)
5602 {
5603 /* FIXME: cagney/1999-09-23: During the initial connection it is
5604 assumed that the target is already ready and able to respond to
5605 requests. Unfortunately remote_start_remote() eventually calls
5606 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5607 around this. Eventually a mechanism that allows
5608 wait_for_inferior() to expect/get timeouts will be
5609 implemented. */
5610 rs->wait_forever_enabled_p = 0;
5611 }
5612
5613 /* First delete any symbols previously loaded from shared libraries. */
5614 no_shared_libraries (NULL, 0);
5615
5616 /* Start afresh. */
5617 init_thread_list ();
5618
5619 /* Start the remote connection. If error() or QUIT, discard this
5620 target (we'd otherwise be in an inconsistent state) and then
5621 propogate the error on up the exception chain. This ensures that
5622 the caller doesn't stumble along blindly assuming that the
5623 function succeeded. The CLI doesn't have this problem but other
5624 UI's, such as MI do.
5625
5626 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5627 this function should return an error indication letting the
5628 caller restore the previous state. Unfortunately the command
5629 ``target remote'' is directly wired to this function making that
5630 impossible. On a positive note, the CLI side of this problem has
5631 been fixed - the function set_cmd_context() makes it possible for
5632 all the ``target ....'' commands to share a common callback
5633 function. See cli-dump.c. */
5634 {
5635
5636 TRY
5637 {
5638 remote->start_remote (from_tty, extended_p);
5639 }
5640 CATCH (ex, RETURN_MASK_ALL)
5641 {
5642 /* Pop the partially set up target - unless something else did
5643 already before throwing the exception. */
5644 if (ex.error != TARGET_CLOSE_ERROR)
5645 remote_unpush_target ();
5646 throw_exception (ex);
5647 }
5648 END_CATCH
5649 }
5650
5651 remote_btrace_reset (rs);
5652
5653 if (target_async_permitted)
5654 rs->wait_forever_enabled_p = 1;
5655 }
5656
5657 /* Detach the specified process. */
5658
5659 void
5660 remote_target::remote_detach_pid (int pid)
5661 {
5662 struct remote_state *rs = get_remote_state ();
5663
5664 /* This should not be necessary, but the handling for D;PID in
5665 GDBserver versions prior to 8.2 incorrectly assumes that the
5666 selected process points to the same process we're detaching,
5667 leading to misbehavior (and possibly GDBserver crashing) when it
5668 does not. Since it's easy and cheap, work around it by forcing
5669 GDBserver to select GDB's current process. */
5670 set_general_process ();
5671
5672 if (remote_multi_process_p (rs))
5673 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5674 else
5675 strcpy (rs->buf, "D");
5676
5677 putpkt (rs->buf);
5678 getpkt (&rs->buf, &rs->buf_size, 0);
5679
5680 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5681 ;
5682 else if (rs->buf[0] == '\0')
5683 error (_("Remote doesn't know how to detach"));
5684 else
5685 error (_("Can't detach process."));
5686 }
5687
5688 /* This detaches a program to which we previously attached, using
5689 inferior_ptid to identify the process. After this is done, GDB
5690 can be used to debug some other program. We better not have left
5691 any breakpoints in the target program or it'll die when it hits
5692 one. */
5693
5694 void
5695 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5696 {
5697 int pid = inferior_ptid.pid ();
5698 struct remote_state *rs = get_remote_state ();
5699 int is_fork_parent;
5700
5701 if (!target_has_execution)
5702 error (_("No process to detach from."));
5703
5704 target_announce_detach (from_tty);
5705
5706 /* Tell the remote target to detach. */
5707 remote_detach_pid (pid);
5708
5709 /* Exit only if this is the only active inferior. */
5710 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5711 puts_filtered (_("Ending remote debugging.\n"));
5712
5713 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5714
5715 /* Check to see if we are detaching a fork parent. Note that if we
5716 are detaching a fork child, tp == NULL. */
5717 is_fork_parent = (tp != NULL
5718 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5719
5720 /* If doing detach-on-fork, we don't mourn, because that will delete
5721 breakpoints that should be available for the followed inferior. */
5722 if (!is_fork_parent)
5723 {
5724 /* Save the pid as a string before mourning, since that will
5725 unpush the remote target, and we need the string after. */
5726 std::string infpid = target_pid_to_str (ptid_t (pid));
5727
5728 target_mourn_inferior (inferior_ptid);
5729 if (print_inferior_events)
5730 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5731 inf->num, infpid.c_str ());
5732 }
5733 else
5734 {
5735 inferior_ptid = null_ptid;
5736 detach_inferior (current_inferior ());
5737 }
5738 }
5739
5740 void
5741 remote_target::detach (inferior *inf, int from_tty)
5742 {
5743 remote_detach_1 (inf, from_tty);
5744 }
5745
5746 void
5747 extended_remote_target::detach (inferior *inf, int from_tty)
5748 {
5749 remote_detach_1 (inf, from_tty);
5750 }
5751
5752 /* Target follow-fork function for remote targets. On entry, and
5753 at return, the current inferior is the fork parent.
5754
5755 Note that although this is currently only used for extended-remote,
5756 it is named remote_follow_fork in anticipation of using it for the
5757 remote target as well. */
5758
5759 int
5760 remote_target::follow_fork (int follow_child, int detach_fork)
5761 {
5762 struct remote_state *rs = get_remote_state ();
5763 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5764
5765 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5766 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5767 {
5768 /* When following the parent and detaching the child, we detach
5769 the child here. For the case of following the child and
5770 detaching the parent, the detach is done in the target-
5771 independent follow fork code in infrun.c. We can't use
5772 target_detach when detaching an unfollowed child because
5773 the client side doesn't know anything about the child. */
5774 if (detach_fork && !follow_child)
5775 {
5776 /* Detach the fork child. */
5777 ptid_t child_ptid;
5778 pid_t child_pid;
5779
5780 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5781 child_pid = child_ptid.pid ();
5782
5783 remote_detach_pid (child_pid);
5784 }
5785 }
5786 return 0;
5787 }
5788
5789 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5790 in the program space of the new inferior. On entry and at return the
5791 current inferior is the exec'ing inferior. INF is the new exec'd
5792 inferior, which may be the same as the exec'ing inferior unless
5793 follow-exec-mode is "new". */
5794
5795 void
5796 remote_target::follow_exec (struct inferior *inf, char *execd_pathname)
5797 {
5798 /* We know that this is a target file name, so if it has the "target:"
5799 prefix we strip it off before saving it in the program space. */
5800 if (is_target_filename (execd_pathname))
5801 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5802
5803 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5804 }
5805
5806 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5807
5808 void
5809 remote_target::disconnect (const char *args, int from_tty)
5810 {
5811 if (args)
5812 error (_("Argument given to \"disconnect\" when remotely debugging."));
5813
5814 /* Make sure we unpush even the extended remote targets. Calling
5815 target_mourn_inferior won't unpush, and remote_mourn won't
5816 unpush if there is more than one inferior left. */
5817 unpush_target (this);
5818 generic_mourn_inferior ();
5819
5820 if (from_tty)
5821 puts_filtered ("Ending remote debugging.\n");
5822 }
5823
5824 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5825 be chatty about it. */
5826
5827 void
5828 extended_remote_target::attach (const char *args, int from_tty)
5829 {
5830 struct remote_state *rs = get_remote_state ();
5831 int pid;
5832 char *wait_status = NULL;
5833
5834 pid = parse_pid_to_attach (args);
5835
5836 /* Remote PID can be freely equal to getpid, do not check it here the same
5837 way as in other targets. */
5838
5839 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5840 error (_("This target does not support attaching to a process"));
5841
5842 if (from_tty)
5843 {
5844 char *exec_file = get_exec_file (0);
5845
5846 if (exec_file)
5847 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5848 target_pid_to_str (ptid_t (pid)));
5849 else
5850 printf_unfiltered (_("Attaching to %s\n"),
5851 target_pid_to_str (ptid_t (pid)));
5852
5853 gdb_flush (gdb_stdout);
5854 }
5855
5856 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5857 putpkt (rs->buf);
5858 getpkt (&rs->buf, &rs->buf_size, 0);
5859
5860 switch (packet_ok (rs->buf,
5861 &remote_protocol_packets[PACKET_vAttach]))
5862 {
5863 case PACKET_OK:
5864 if (!target_is_non_stop_p ())
5865 {
5866 /* Save the reply for later. */
5867 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5868 strcpy (wait_status, rs->buf);
5869 }
5870 else if (strcmp (rs->buf, "OK") != 0)
5871 error (_("Attaching to %s failed with: %s"),
5872 target_pid_to_str (ptid_t (pid)),
5873 rs->buf);
5874 break;
5875 case PACKET_UNKNOWN:
5876 error (_("This target does not support attaching to a process"));
5877 default:
5878 error (_("Attaching to %s failed"),
5879 target_pid_to_str (ptid_t (pid)));
5880 }
5881
5882 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5883
5884 inferior_ptid = ptid_t (pid);
5885
5886 if (target_is_non_stop_p ())
5887 {
5888 struct thread_info *thread;
5889
5890 /* Get list of threads. */
5891 update_thread_list ();
5892
5893 thread = first_thread_of_inferior (current_inferior ());
5894 if (thread)
5895 inferior_ptid = thread->ptid;
5896 else
5897 inferior_ptid = ptid_t (pid);
5898
5899 /* Invalidate our notion of the remote current thread. */
5900 record_currthread (rs, minus_one_ptid);
5901 }
5902 else
5903 {
5904 /* Now, if we have thread information, update inferior_ptid. */
5905 inferior_ptid = remote_current_thread (inferior_ptid);
5906
5907 /* Add the main thread to the thread list. */
5908 thread_info *thr = add_thread_silent (inferior_ptid);
5909 /* Don't consider the thread stopped until we've processed the
5910 saved stop reply. */
5911 set_executing (thr->ptid, true);
5912 }
5913
5914 /* Next, if the target can specify a description, read it. We do
5915 this before anything involving memory or registers. */
5916 target_find_description ();
5917
5918 if (!target_is_non_stop_p ())
5919 {
5920 /* Use the previously fetched status. */
5921 gdb_assert (wait_status != NULL);
5922
5923 if (target_can_async_p ())
5924 {
5925 struct notif_event *reply
5926 = remote_notif_parse (this, &notif_client_stop, wait_status);
5927
5928 push_stop_reply ((struct stop_reply *) reply);
5929
5930 target_async (1);
5931 }
5932 else
5933 {
5934 gdb_assert (wait_status != NULL);
5935 strcpy (rs->buf, wait_status);
5936 rs->cached_wait_status = 1;
5937 }
5938 }
5939 else
5940 gdb_assert (wait_status == NULL);
5941 }
5942
5943 /* Implementation of the to_post_attach method. */
5944
5945 void
5946 extended_remote_target::post_attach (int pid)
5947 {
5948 /* Get text, data & bss offsets. */
5949 get_offsets ();
5950
5951 /* In certain cases GDB might not have had the chance to start
5952 symbol lookup up until now. This could happen if the debugged
5953 binary is not using shared libraries, the vsyscall page is not
5954 present (on Linux) and the binary itself hadn't changed since the
5955 debugging process was started. */
5956 if (symfile_objfile != NULL)
5957 remote_check_symbols();
5958 }
5959
5960 \f
5961 /* Check for the availability of vCont. This function should also check
5962 the response. */
5963
5964 void
5965 remote_target::remote_vcont_probe ()
5966 {
5967 remote_state *rs = get_remote_state ();
5968 char *buf;
5969
5970 strcpy (rs->buf, "vCont?");
5971 putpkt (rs->buf);
5972 getpkt (&rs->buf, &rs->buf_size, 0);
5973 buf = rs->buf;
5974
5975 /* Make sure that the features we assume are supported. */
5976 if (startswith (buf, "vCont"))
5977 {
5978 char *p = &buf[5];
5979 int support_c, support_C;
5980
5981 rs->supports_vCont.s = 0;
5982 rs->supports_vCont.S = 0;
5983 support_c = 0;
5984 support_C = 0;
5985 rs->supports_vCont.t = 0;
5986 rs->supports_vCont.r = 0;
5987 while (p && *p == ';')
5988 {
5989 p++;
5990 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5991 rs->supports_vCont.s = 1;
5992 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5993 rs->supports_vCont.S = 1;
5994 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5995 support_c = 1;
5996 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5997 support_C = 1;
5998 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5999 rs->supports_vCont.t = 1;
6000 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6001 rs->supports_vCont.r = 1;
6002
6003 p = strchr (p, ';');
6004 }
6005
6006 /* If c, and C are not all supported, we can't use vCont. Clearing
6007 BUF will make packet_ok disable the packet. */
6008 if (!support_c || !support_C)
6009 buf[0] = 0;
6010 }
6011
6012 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
6013 }
6014
6015 /* Helper function for building "vCont" resumptions. Write a
6016 resumption to P. ENDP points to one-passed-the-end of the buffer
6017 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6018 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6019 resumed thread should be single-stepped and/or signalled. If PTID
6020 equals minus_one_ptid, then all threads are resumed; if PTID
6021 represents a process, then all threads of the process are resumed;
6022 the thread to be stepped and/or signalled is given in the global
6023 INFERIOR_PTID. */
6024
6025 char *
6026 remote_target::append_resumption (char *p, char *endp,
6027 ptid_t ptid, int step, gdb_signal siggnal)
6028 {
6029 struct remote_state *rs = get_remote_state ();
6030
6031 if (step && siggnal != GDB_SIGNAL_0)
6032 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6033 else if (step
6034 /* GDB is willing to range step. */
6035 && use_range_stepping
6036 /* Target supports range stepping. */
6037 && rs->supports_vCont.r
6038 /* We don't currently support range stepping multiple
6039 threads with a wildcard (though the protocol allows it,
6040 so stubs shouldn't make an active effort to forbid
6041 it). */
6042 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6043 {
6044 struct thread_info *tp;
6045
6046 if (ptid == minus_one_ptid)
6047 {
6048 /* If we don't know about the target thread's tid, then
6049 we're resuming magic_null_ptid (see caller). */
6050 tp = find_thread_ptid (magic_null_ptid);
6051 }
6052 else
6053 tp = find_thread_ptid (ptid);
6054 gdb_assert (tp != NULL);
6055
6056 if (tp->control.may_range_step)
6057 {
6058 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6059
6060 p += xsnprintf (p, endp - p, ";r%s,%s",
6061 phex_nz (tp->control.step_range_start,
6062 addr_size),
6063 phex_nz (tp->control.step_range_end,
6064 addr_size));
6065 }
6066 else
6067 p += xsnprintf (p, endp - p, ";s");
6068 }
6069 else if (step)
6070 p += xsnprintf (p, endp - p, ";s");
6071 else if (siggnal != GDB_SIGNAL_0)
6072 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6073 else
6074 p += xsnprintf (p, endp - p, ";c");
6075
6076 if (remote_multi_process_p (rs) && ptid.is_pid ())
6077 {
6078 ptid_t nptid;
6079
6080 /* All (-1) threads of process. */
6081 nptid = ptid_t (ptid.pid (), -1, 0);
6082
6083 p += xsnprintf (p, endp - p, ":");
6084 p = write_ptid (p, endp, nptid);
6085 }
6086 else if (ptid != minus_one_ptid)
6087 {
6088 p += xsnprintf (p, endp - p, ":");
6089 p = write_ptid (p, endp, ptid);
6090 }
6091
6092 return p;
6093 }
6094
6095 /* Clear the thread's private info on resume. */
6096
6097 static void
6098 resume_clear_thread_private_info (struct thread_info *thread)
6099 {
6100 if (thread->priv != NULL)
6101 {
6102 remote_thread_info *priv = get_remote_thread_info (thread);
6103
6104 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6105 priv->watch_data_address = 0;
6106 }
6107 }
6108
6109 /* Append a vCont continue-with-signal action for threads that have a
6110 non-zero stop signal. */
6111
6112 char *
6113 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6114 ptid_t ptid)
6115 {
6116 struct thread_info *thread;
6117
6118 ALL_NON_EXITED_THREADS (thread)
6119 if (thread->ptid.matches (ptid)
6120 && inferior_ptid != thread->ptid
6121 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6122 {
6123 p = append_resumption (p, endp, thread->ptid,
6124 0, thread->suspend.stop_signal);
6125 thread->suspend.stop_signal = GDB_SIGNAL_0;
6126 resume_clear_thread_private_info (thread);
6127 }
6128
6129 return p;
6130 }
6131
6132 /* Set the target running, using the packets that use Hc
6133 (c/s/C/S). */
6134
6135 void
6136 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6137 gdb_signal siggnal)
6138 {
6139 struct remote_state *rs = get_remote_state ();
6140 struct thread_info *thread;
6141 char *buf;
6142
6143 rs->last_sent_signal = siggnal;
6144 rs->last_sent_step = step;
6145
6146 /* The c/s/C/S resume packets use Hc, so set the continue
6147 thread. */
6148 if (ptid == minus_one_ptid)
6149 set_continue_thread (any_thread_ptid);
6150 else
6151 set_continue_thread (ptid);
6152
6153 ALL_NON_EXITED_THREADS (thread)
6154 resume_clear_thread_private_info (thread);
6155
6156 buf = rs->buf;
6157 if (::execution_direction == EXEC_REVERSE)
6158 {
6159 /* We don't pass signals to the target in reverse exec mode. */
6160 if (info_verbose && siggnal != GDB_SIGNAL_0)
6161 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6162 siggnal);
6163
6164 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6165 error (_("Remote reverse-step not supported."));
6166 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6167 error (_("Remote reverse-continue not supported."));
6168
6169 strcpy (buf, step ? "bs" : "bc");
6170 }
6171 else if (siggnal != GDB_SIGNAL_0)
6172 {
6173 buf[0] = step ? 'S' : 'C';
6174 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6175 buf[2] = tohex (((int) siggnal) & 0xf);
6176 buf[3] = '\0';
6177 }
6178 else
6179 strcpy (buf, step ? "s" : "c");
6180
6181 putpkt (buf);
6182 }
6183
6184 /* Resume the remote inferior by using a "vCont" packet. The thread
6185 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6186 resumed thread should be single-stepped and/or signalled. If PTID
6187 equals minus_one_ptid, then all threads are resumed; the thread to
6188 be stepped and/or signalled is given in the global INFERIOR_PTID.
6189 This function returns non-zero iff it resumes the inferior.
6190
6191 This function issues a strict subset of all possible vCont commands
6192 at the moment. */
6193
6194 int
6195 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6196 enum gdb_signal siggnal)
6197 {
6198 struct remote_state *rs = get_remote_state ();
6199 char *p;
6200 char *endp;
6201
6202 /* No reverse execution actions defined for vCont. */
6203 if (::execution_direction == EXEC_REVERSE)
6204 return 0;
6205
6206 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6207 remote_vcont_probe ();
6208
6209 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6210 return 0;
6211
6212 p = rs->buf;
6213 endp = rs->buf + get_remote_packet_size ();
6214
6215 /* If we could generate a wider range of packets, we'd have to worry
6216 about overflowing BUF. Should there be a generic
6217 "multi-part-packet" packet? */
6218
6219 p += xsnprintf (p, endp - p, "vCont");
6220
6221 if (ptid == magic_null_ptid)
6222 {
6223 /* MAGIC_NULL_PTID means that we don't have any active threads,
6224 so we don't have any TID numbers the inferior will
6225 understand. Make sure to only send forms that do not specify
6226 a TID. */
6227 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6228 }
6229 else if (ptid == minus_one_ptid || ptid.is_pid ())
6230 {
6231 /* Resume all threads (of all processes, or of a single
6232 process), with preference for INFERIOR_PTID. This assumes
6233 inferior_ptid belongs to the set of all threads we are about
6234 to resume. */
6235 if (step || siggnal != GDB_SIGNAL_0)
6236 {
6237 /* Step inferior_ptid, with or without signal. */
6238 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6239 }
6240
6241 /* Also pass down any pending signaled resumption for other
6242 threads not the current. */
6243 p = append_pending_thread_resumptions (p, endp, ptid);
6244
6245 /* And continue others without a signal. */
6246 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6247 }
6248 else
6249 {
6250 /* Scheduler locking; resume only PTID. */
6251 append_resumption (p, endp, ptid, step, siggnal);
6252 }
6253
6254 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
6255 putpkt (rs->buf);
6256
6257 if (target_is_non_stop_p ())
6258 {
6259 /* In non-stop, the stub replies to vCont with "OK". The stop
6260 reply will be reported asynchronously by means of a `%Stop'
6261 notification. */
6262 getpkt (&rs->buf, &rs->buf_size, 0);
6263 if (strcmp (rs->buf, "OK") != 0)
6264 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
6265 }
6266
6267 return 1;
6268 }
6269
6270 /* Tell the remote machine to resume. */
6271
6272 void
6273 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6274 {
6275 struct remote_state *rs = get_remote_state ();
6276
6277 /* When connected in non-stop mode, the core resumes threads
6278 individually. Resuming remote threads directly in target_resume
6279 would thus result in sending one packet per thread. Instead, to
6280 minimize roundtrip latency, here we just store the resume
6281 request; the actual remote resumption will be done in
6282 target_commit_resume / remote_commit_resume, where we'll be able
6283 to do vCont action coalescing. */
6284 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6285 {
6286 remote_thread_info *remote_thr;
6287
6288 if (minus_one_ptid == ptid || ptid.is_pid ())
6289 remote_thr = get_remote_thread_info (inferior_ptid);
6290 else
6291 remote_thr = get_remote_thread_info (ptid);
6292
6293 remote_thr->last_resume_step = step;
6294 remote_thr->last_resume_sig = siggnal;
6295 return;
6296 }
6297
6298 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6299 (explained in remote-notif.c:handle_notification) so
6300 remote_notif_process is not called. We need find a place where
6301 it is safe to start a 'vNotif' sequence. It is good to do it
6302 before resuming inferior, because inferior was stopped and no RSP
6303 traffic at that moment. */
6304 if (!target_is_non_stop_p ())
6305 remote_notif_process (rs->notif_state, &notif_client_stop);
6306
6307 rs->last_resume_exec_dir = ::execution_direction;
6308
6309 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6310 if (!remote_resume_with_vcont (ptid, step, siggnal))
6311 remote_resume_with_hc (ptid, step, siggnal);
6312
6313 /* We are about to start executing the inferior, let's register it
6314 with the event loop. NOTE: this is the one place where all the
6315 execution commands end up. We could alternatively do this in each
6316 of the execution commands in infcmd.c. */
6317 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6318 into infcmd.c in order to allow inferior function calls to work
6319 NOT asynchronously. */
6320 if (target_can_async_p ())
6321 target_async (1);
6322
6323 /* We've just told the target to resume. The remote server will
6324 wait for the inferior to stop, and then send a stop reply. In
6325 the mean time, we can't start another command/query ourselves
6326 because the stub wouldn't be ready to process it. This applies
6327 only to the base all-stop protocol, however. In non-stop (which
6328 only supports vCont), the stub replies with an "OK", and is
6329 immediate able to process further serial input. */
6330 if (!target_is_non_stop_p ())
6331 rs->waiting_for_stop_reply = 1;
6332 }
6333
6334 static int is_pending_fork_parent_thread (struct thread_info *thread);
6335
6336 /* Private per-inferior info for target remote processes. */
6337
6338 struct remote_inferior : public private_inferior
6339 {
6340 /* Whether we can send a wildcard vCont for this process. */
6341 bool may_wildcard_vcont = true;
6342 };
6343
6344 /* Get the remote private inferior data associated to INF. */
6345
6346 static remote_inferior *
6347 get_remote_inferior (inferior *inf)
6348 {
6349 if (inf->priv == NULL)
6350 inf->priv.reset (new remote_inferior);
6351
6352 return static_cast<remote_inferior *> (inf->priv.get ());
6353 }
6354
6355 /* Class used to track the construction of a vCont packet in the
6356 outgoing packet buffer. This is used to send multiple vCont
6357 packets if we have more actions than would fit a single packet. */
6358
6359 class vcont_builder
6360 {
6361 public:
6362 explicit vcont_builder (remote_target *remote)
6363 : m_remote (remote)
6364 {
6365 restart ();
6366 }
6367
6368 void flush ();
6369 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6370
6371 private:
6372 void restart ();
6373
6374 /* The remote target. */
6375 remote_target *m_remote;
6376
6377 /* Pointer to the first action. P points here if no action has been
6378 appended yet. */
6379 char *m_first_action;
6380
6381 /* Where the next action will be appended. */
6382 char *m_p;
6383
6384 /* The end of the buffer. Must never write past this. */
6385 char *m_endp;
6386 };
6387
6388 /* Prepare the outgoing buffer for a new vCont packet. */
6389
6390 void
6391 vcont_builder::restart ()
6392 {
6393 struct remote_state *rs = m_remote->get_remote_state ();
6394
6395 m_p = rs->buf;
6396 m_endp = rs->buf + m_remote->get_remote_packet_size ();
6397 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6398 m_first_action = m_p;
6399 }
6400
6401 /* If the vCont packet being built has any action, send it to the
6402 remote end. */
6403
6404 void
6405 vcont_builder::flush ()
6406 {
6407 struct remote_state *rs;
6408
6409 if (m_p == m_first_action)
6410 return;
6411
6412 rs = m_remote->get_remote_state ();
6413 m_remote->putpkt (rs->buf);
6414 m_remote->getpkt (&rs->buf, &rs->buf_size, 0);
6415 if (strcmp (rs->buf, "OK") != 0)
6416 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
6417 }
6418
6419 /* The largest action is range-stepping, with its two addresses. This
6420 is more than sufficient. If a new, bigger action is created, it'll
6421 quickly trigger a failed assertion in append_resumption (and we'll
6422 just bump this). */
6423 #define MAX_ACTION_SIZE 200
6424
6425 /* Append a new vCont action in the outgoing packet being built. If
6426 the action doesn't fit the packet along with previous actions, push
6427 what we've got so far to the remote end and start over a new vCont
6428 packet (with the new action). */
6429
6430 void
6431 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6432 {
6433 char buf[MAX_ACTION_SIZE + 1];
6434
6435 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6436 ptid, step, siggnal);
6437
6438 /* Check whether this new action would fit in the vCont packet along
6439 with previous actions. If not, send what we've got so far and
6440 start a new vCont packet. */
6441 size_t rsize = endp - buf;
6442 if (rsize > m_endp - m_p)
6443 {
6444 flush ();
6445 restart ();
6446
6447 /* Should now fit. */
6448 gdb_assert (rsize <= m_endp - m_p);
6449 }
6450
6451 memcpy (m_p, buf, rsize);
6452 m_p += rsize;
6453 *m_p = '\0';
6454 }
6455
6456 /* to_commit_resume implementation. */
6457
6458 void
6459 remote_target::commit_resume ()
6460 {
6461 struct inferior *inf;
6462 struct thread_info *tp;
6463 int any_process_wildcard;
6464 int may_global_wildcard_vcont;
6465
6466 /* If connected in all-stop mode, we'd send the remote resume
6467 request directly from remote_resume. Likewise if
6468 reverse-debugging, as there are no defined vCont actions for
6469 reverse execution. */
6470 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6471 return;
6472
6473 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6474 instead of resuming all threads of each process individually.
6475 However, if any thread of a process must remain halted, we can't
6476 send wildcard resumes and must send one action per thread.
6477
6478 Care must be taken to not resume threads/processes the server
6479 side already told us are stopped, but the core doesn't know about
6480 yet, because the events are still in the vStopped notification
6481 queue. For example:
6482
6483 #1 => vCont s:p1.1;c
6484 #2 <= OK
6485 #3 <= %Stopped T05 p1.1
6486 #4 => vStopped
6487 #5 <= T05 p1.2
6488 #6 => vStopped
6489 #7 <= OK
6490 #8 (infrun handles the stop for p1.1 and continues stepping)
6491 #9 => vCont s:p1.1;c
6492
6493 The last vCont above would resume thread p1.2 by mistake, because
6494 the server has no idea that the event for p1.2 had not been
6495 handled yet.
6496
6497 The server side must similarly ignore resume actions for the
6498 thread that has a pending %Stopped notification (and any other
6499 threads with events pending), until GDB acks the notification
6500 with vStopped. Otherwise, e.g., the following case is
6501 mishandled:
6502
6503 #1 => g (or any other packet)
6504 #2 <= [registers]
6505 #3 <= %Stopped T05 p1.2
6506 #4 => vCont s:p1.1;c
6507 #5 <= OK
6508
6509 Above, the server must not resume thread p1.2. GDB can't know
6510 that p1.2 stopped until it acks the %Stopped notification, and
6511 since from GDB's perspective all threads should be running, it
6512 sends a "c" action.
6513
6514 Finally, special care must also be given to handling fork/vfork
6515 events. A (v)fork event actually tells us that two processes
6516 stopped -- the parent and the child. Until we follow the fork,
6517 we must not resume the child. Therefore, if we have a pending
6518 fork follow, we must not send a global wildcard resume action
6519 (vCont;c). We can still send process-wide wildcards though. */
6520
6521 /* Start by assuming a global wildcard (vCont;c) is possible. */
6522 may_global_wildcard_vcont = 1;
6523
6524 /* And assume every process is individually wildcard-able too. */
6525 ALL_NON_EXITED_INFERIORS (inf)
6526 {
6527 remote_inferior *priv = get_remote_inferior (inf);
6528
6529 priv->may_wildcard_vcont = true;
6530 }
6531
6532 /* Check for any pending events (not reported or processed yet) and
6533 disable process and global wildcard resumes appropriately. */
6534 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6535
6536 ALL_NON_EXITED_THREADS (tp)
6537 {
6538 /* If a thread of a process is not meant to be resumed, then we
6539 can't wildcard that process. */
6540 if (!tp->executing)
6541 {
6542 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6543
6544 /* And if we can't wildcard a process, we can't wildcard
6545 everything either. */
6546 may_global_wildcard_vcont = 0;
6547 continue;
6548 }
6549
6550 /* If a thread is the parent of an unfollowed fork, then we
6551 can't do a global wildcard, as that would resume the fork
6552 child. */
6553 if (is_pending_fork_parent_thread (tp))
6554 may_global_wildcard_vcont = 0;
6555 }
6556
6557 /* Now let's build the vCont packet(s). Actions must be appended
6558 from narrower to wider scopes (thread -> process -> global). If
6559 we end up with too many actions for a single packet vcont_builder
6560 flushes the current vCont packet to the remote side and starts a
6561 new one. */
6562 struct vcont_builder vcont_builder (this);
6563
6564 /* Threads first. */
6565 ALL_NON_EXITED_THREADS (tp)
6566 {
6567 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6568
6569 if (!tp->executing || remote_thr->vcont_resumed)
6570 continue;
6571
6572 gdb_assert (!thread_is_in_step_over_chain (tp));
6573
6574 if (!remote_thr->last_resume_step
6575 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6576 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6577 {
6578 /* We'll send a wildcard resume instead. */
6579 remote_thr->vcont_resumed = 1;
6580 continue;
6581 }
6582
6583 vcont_builder.push_action (tp->ptid,
6584 remote_thr->last_resume_step,
6585 remote_thr->last_resume_sig);
6586 remote_thr->vcont_resumed = 1;
6587 }
6588
6589 /* Now check whether we can send any process-wide wildcard. This is
6590 to avoid sending a global wildcard in the case nothing is
6591 supposed to be resumed. */
6592 any_process_wildcard = 0;
6593
6594 ALL_NON_EXITED_INFERIORS (inf)
6595 {
6596 if (get_remote_inferior (inf)->may_wildcard_vcont)
6597 {
6598 any_process_wildcard = 1;
6599 break;
6600 }
6601 }
6602
6603 if (any_process_wildcard)
6604 {
6605 /* If all processes are wildcard-able, then send a single "c"
6606 action, otherwise, send an "all (-1) threads of process"
6607 continue action for each running process, if any. */
6608 if (may_global_wildcard_vcont)
6609 {
6610 vcont_builder.push_action (minus_one_ptid,
6611 false, GDB_SIGNAL_0);
6612 }
6613 else
6614 {
6615 ALL_NON_EXITED_INFERIORS (inf)
6616 {
6617 if (get_remote_inferior (inf)->may_wildcard_vcont)
6618 {
6619 vcont_builder.push_action (ptid_t (inf->pid),
6620 false, GDB_SIGNAL_0);
6621 }
6622 }
6623 }
6624 }
6625
6626 vcont_builder.flush ();
6627 }
6628
6629 \f
6630
6631 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6632 thread, all threads of a remote process, or all threads of all
6633 processes. */
6634
6635 void
6636 remote_target::remote_stop_ns (ptid_t ptid)
6637 {
6638 struct remote_state *rs = get_remote_state ();
6639 char *p = rs->buf;
6640 char *endp = rs->buf + get_remote_packet_size ();
6641
6642 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6643 remote_vcont_probe ();
6644
6645 if (!rs->supports_vCont.t)
6646 error (_("Remote server does not support stopping threads"));
6647
6648 if (ptid == minus_one_ptid
6649 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6650 p += xsnprintf (p, endp - p, "vCont;t");
6651 else
6652 {
6653 ptid_t nptid;
6654
6655 p += xsnprintf (p, endp - p, "vCont;t:");
6656
6657 if (ptid.is_pid ())
6658 /* All (-1) threads of process. */
6659 nptid = ptid_t (ptid.pid (), -1, 0);
6660 else
6661 {
6662 /* Small optimization: if we already have a stop reply for
6663 this thread, no use in telling the stub we want this
6664 stopped. */
6665 if (peek_stop_reply (ptid))
6666 return;
6667
6668 nptid = ptid;
6669 }
6670
6671 write_ptid (p, endp, nptid);
6672 }
6673
6674 /* In non-stop, we get an immediate OK reply. The stop reply will
6675 come in asynchronously by notification. */
6676 putpkt (rs->buf);
6677 getpkt (&rs->buf, &rs->buf_size, 0);
6678 if (strcmp (rs->buf, "OK") != 0)
6679 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6680 }
6681
6682 /* All-stop version of target_interrupt. Sends a break or a ^C to
6683 interrupt the remote target. It is undefined which thread of which
6684 process reports the interrupt. */
6685
6686 void
6687 remote_target::remote_interrupt_as ()
6688 {
6689 struct remote_state *rs = get_remote_state ();
6690
6691 rs->ctrlc_pending_p = 1;
6692
6693 /* If the inferior is stopped already, but the core didn't know
6694 about it yet, just ignore the request. The cached wait status
6695 will be collected in remote_wait. */
6696 if (rs->cached_wait_status)
6697 return;
6698
6699 /* Send interrupt_sequence to remote target. */
6700 send_interrupt_sequence ();
6701 }
6702
6703 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6704 the remote target. It is undefined which thread of which process
6705 reports the interrupt. Throws an error if the packet is not
6706 supported by the server. */
6707
6708 void
6709 remote_target::remote_interrupt_ns ()
6710 {
6711 struct remote_state *rs = get_remote_state ();
6712 char *p = rs->buf;
6713 char *endp = rs->buf + get_remote_packet_size ();
6714
6715 xsnprintf (p, endp - p, "vCtrlC");
6716
6717 /* In non-stop, we get an immediate OK reply. The stop reply will
6718 come in asynchronously by notification. */
6719 putpkt (rs->buf);
6720 getpkt (&rs->buf, &rs->buf_size, 0);
6721
6722 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6723 {
6724 case PACKET_OK:
6725 break;
6726 case PACKET_UNKNOWN:
6727 error (_("No support for interrupting the remote target."));
6728 case PACKET_ERROR:
6729 error (_("Interrupting target failed: %s"), rs->buf);
6730 }
6731 }
6732
6733 /* Implement the to_stop function for the remote targets. */
6734
6735 void
6736 remote_target::stop (ptid_t ptid)
6737 {
6738 if (remote_debug)
6739 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6740
6741 if (target_is_non_stop_p ())
6742 remote_stop_ns (ptid);
6743 else
6744 {
6745 /* We don't currently have a way to transparently pause the
6746 remote target in all-stop mode. Interrupt it instead. */
6747 remote_interrupt_as ();
6748 }
6749 }
6750
6751 /* Implement the to_interrupt function for the remote targets. */
6752
6753 void
6754 remote_target::interrupt ()
6755 {
6756 if (remote_debug)
6757 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6758
6759 if (target_is_non_stop_p ())
6760 remote_interrupt_ns ();
6761 else
6762 remote_interrupt_as ();
6763 }
6764
6765 /* Implement the to_pass_ctrlc function for the remote targets. */
6766
6767 void
6768 remote_target::pass_ctrlc ()
6769 {
6770 struct remote_state *rs = get_remote_state ();
6771
6772 if (remote_debug)
6773 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6774
6775 /* If we're starting up, we're not fully synced yet. Quit
6776 immediately. */
6777 if (rs->starting_up)
6778 quit ();
6779 /* If ^C has already been sent once, offer to disconnect. */
6780 else if (rs->ctrlc_pending_p)
6781 interrupt_query ();
6782 else
6783 target_interrupt ();
6784 }
6785
6786 /* Ask the user what to do when an interrupt is received. */
6787
6788 void
6789 remote_target::interrupt_query ()
6790 {
6791 struct remote_state *rs = get_remote_state ();
6792
6793 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6794 {
6795 if (query (_("The target is not responding to interrupt requests.\n"
6796 "Stop debugging it? ")))
6797 {
6798 remote_unpush_target ();
6799 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6800 }
6801 }
6802 else
6803 {
6804 if (query (_("Interrupted while waiting for the program.\n"
6805 "Give up waiting? ")))
6806 quit ();
6807 }
6808 }
6809
6810 /* Enable/disable target terminal ownership. Most targets can use
6811 terminal groups to control terminal ownership. Remote targets are
6812 different in that explicit transfer of ownership to/from GDB/target
6813 is required. */
6814
6815 void
6816 remote_target::terminal_inferior ()
6817 {
6818 /* NOTE: At this point we could also register our selves as the
6819 recipient of all input. Any characters typed could then be
6820 passed on down to the target. */
6821 }
6822
6823 void
6824 remote_target::terminal_ours ()
6825 {
6826 }
6827
6828 static void
6829 remote_console_output (char *msg)
6830 {
6831 char *p;
6832
6833 for (p = msg; p[0] && p[1]; p += 2)
6834 {
6835 char tb[2];
6836 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6837
6838 tb[0] = c;
6839 tb[1] = 0;
6840 fputs_unfiltered (tb, gdb_stdtarg);
6841 }
6842 gdb_flush (gdb_stdtarg);
6843 }
6844
6845 DEF_VEC_O(cached_reg_t);
6846
6847 typedef struct stop_reply
6848 {
6849 struct notif_event base;
6850
6851 /* The identifier of the thread about this event */
6852 ptid_t ptid;
6853
6854 /* The remote state this event is associated with. When the remote
6855 connection, represented by a remote_state object, is closed,
6856 all the associated stop_reply events should be released. */
6857 struct remote_state *rs;
6858
6859 struct target_waitstatus ws;
6860
6861 /* The architecture associated with the expedited registers. */
6862 gdbarch *arch;
6863
6864 /* Expedited registers. This makes remote debugging a bit more
6865 efficient for those targets that provide critical registers as
6866 part of their normal status mechanism (as another roundtrip to
6867 fetch them is avoided). */
6868 VEC(cached_reg_t) *regcache;
6869
6870 enum target_stop_reason stop_reason;
6871
6872 CORE_ADDR watch_data_address;
6873
6874 int core;
6875 } *stop_reply_p;
6876
6877 static void
6878 stop_reply_xfree (struct stop_reply *r)
6879 {
6880 notif_event_xfree ((struct notif_event *) r);
6881 }
6882
6883 /* Return the length of the stop reply queue. */
6884
6885 int
6886 remote_target::stop_reply_queue_length ()
6887 {
6888 remote_state *rs = get_remote_state ();
6889 return rs->stop_reply_queue.size ();
6890 }
6891
6892 void
6893 remote_notif_stop_parse (remote_target *remote,
6894 struct notif_client *self, char *buf,
6895 struct notif_event *event)
6896 {
6897 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6898 }
6899
6900 static void
6901 remote_notif_stop_ack (remote_target *remote,
6902 struct notif_client *self, char *buf,
6903 struct notif_event *event)
6904 {
6905 struct stop_reply *stop_reply = (struct stop_reply *) event;
6906
6907 /* acknowledge */
6908 putpkt (remote, self->ack_command);
6909
6910 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6911 {
6912 /* We got an unknown stop reply. */
6913 error (_("Unknown stop reply"));
6914 }
6915
6916 remote->push_stop_reply (stop_reply);
6917 }
6918
6919 static int
6920 remote_notif_stop_can_get_pending_events (remote_target *remote,
6921 struct notif_client *self)
6922 {
6923 /* We can't get pending events in remote_notif_process for
6924 notification stop, and we have to do this in remote_wait_ns
6925 instead. If we fetch all queued events from stub, remote stub
6926 may exit and we have no chance to process them back in
6927 remote_wait_ns. */
6928 remote_state *rs = remote->get_remote_state ();
6929 mark_async_event_handler (rs->remote_async_inferior_event_token);
6930 return 0;
6931 }
6932
6933 static void
6934 stop_reply_dtr (struct notif_event *event)
6935 {
6936 struct stop_reply *r = (struct stop_reply *) event;
6937 cached_reg_t *reg;
6938 int ix;
6939
6940 for (ix = 0;
6941 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6942 ix++)
6943 xfree (reg->data);
6944
6945 VEC_free (cached_reg_t, r->regcache);
6946 }
6947
6948 static struct notif_event *
6949 remote_notif_stop_alloc_reply (void)
6950 {
6951 /* We cast to a pointer to the "base class". */
6952 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6953
6954 r->dtr = stop_reply_dtr;
6955
6956 return r;
6957 }
6958
6959 /* A client of notification Stop. */
6960
6961 struct notif_client notif_client_stop =
6962 {
6963 "Stop",
6964 "vStopped",
6965 remote_notif_stop_parse,
6966 remote_notif_stop_ack,
6967 remote_notif_stop_can_get_pending_events,
6968 remote_notif_stop_alloc_reply,
6969 REMOTE_NOTIF_STOP,
6970 };
6971
6972 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6973 the pid of the process that owns the threads we want to check, or
6974 -1 if we want to check all threads. */
6975
6976 static int
6977 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6978 ptid_t thread_ptid)
6979 {
6980 if (ws->kind == TARGET_WAITKIND_FORKED
6981 || ws->kind == TARGET_WAITKIND_VFORKED)
6982 {
6983 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6984 return 1;
6985 }
6986
6987 return 0;
6988 }
6989
6990 /* Return the thread's pending status used to determine whether the
6991 thread is a fork parent stopped at a fork event. */
6992
6993 static struct target_waitstatus *
6994 thread_pending_fork_status (struct thread_info *thread)
6995 {
6996 if (thread->suspend.waitstatus_pending_p)
6997 return &thread->suspend.waitstatus;
6998 else
6999 return &thread->pending_follow;
7000 }
7001
7002 /* Determine if THREAD is a pending fork parent thread. */
7003
7004 static int
7005 is_pending_fork_parent_thread (struct thread_info *thread)
7006 {
7007 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7008 int pid = -1;
7009
7010 return is_pending_fork_parent (ws, pid, thread->ptid);
7011 }
7012
7013 /* If CONTEXT contains any fork child threads that have not been
7014 reported yet, remove them from the CONTEXT list. If such a
7015 thread exists it is because we are stopped at a fork catchpoint
7016 and have not yet called follow_fork, which will set up the
7017 host-side data structures for the new process. */
7018
7019 void
7020 remote_target::remove_new_fork_children (threads_listing_context *context)
7021 {
7022 struct thread_info * thread;
7023 int pid = -1;
7024 struct notif_client *notif = &notif_client_stop;
7025
7026 /* For any threads stopped at a fork event, remove the corresponding
7027 fork child threads from the CONTEXT list. */
7028 ALL_NON_EXITED_THREADS (thread)
7029 {
7030 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7031
7032 if (is_pending_fork_parent (ws, pid, thread->ptid))
7033 context->remove_thread (ws->value.related_pid);
7034 }
7035
7036 /* Check for any pending fork events (not reported or processed yet)
7037 in process PID and remove those fork child threads from the
7038 CONTEXT list as well. */
7039 remote_notif_get_pending_events (notif);
7040 for (auto &event : get_remote_state ()->stop_reply_queue)
7041 if (event->ws.kind == TARGET_WAITKIND_FORKED
7042 || event->ws.kind == TARGET_WAITKIND_VFORKED
7043 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7044 context->remove_thread (event->ws.value.related_pid);
7045 }
7046
7047 /* Check whether any event pending in the vStopped queue would prevent
7048 a global or process wildcard vCont action. Clear
7049 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7050 and clear the event inferior's may_wildcard_vcont flag if we can't
7051 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7052
7053 void
7054 remote_target::check_pending_events_prevent_wildcard_vcont
7055 (int *may_global_wildcard)
7056 {
7057 struct notif_client *notif = &notif_client_stop;
7058
7059 remote_notif_get_pending_events (notif);
7060 for (auto &event : get_remote_state ()->stop_reply_queue)
7061 {
7062 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7063 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7064 continue;
7065
7066 if (event->ws.kind == TARGET_WAITKIND_FORKED
7067 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7068 *may_global_wildcard = 0;
7069
7070 struct inferior *inf = find_inferior_ptid (event->ptid);
7071
7072 /* This may be the first time we heard about this process.
7073 Regardless, we must not do a global wildcard resume, otherwise
7074 we'd resume this process too. */
7075 *may_global_wildcard = 0;
7076 if (inf != NULL)
7077 get_remote_inferior (inf)->may_wildcard_vcont = false;
7078 }
7079 }
7080
7081 /* Discard all pending stop replies of inferior INF. */
7082
7083 void
7084 remote_target::discard_pending_stop_replies (struct inferior *inf)
7085 {
7086 struct stop_reply *reply;
7087 struct remote_state *rs = get_remote_state ();
7088 struct remote_notif_state *rns = rs->notif_state;
7089
7090 /* This function can be notified when an inferior exists. When the
7091 target is not remote, the notification state is NULL. */
7092 if (rs->remote_desc == NULL)
7093 return;
7094
7095 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7096
7097 /* Discard the in-flight notification. */
7098 if (reply != NULL && reply->ptid.pid () == inf->pid)
7099 {
7100 stop_reply_xfree (reply);
7101 rns->pending_event[notif_client_stop.id] = NULL;
7102 }
7103
7104 /* Discard the stop replies we have already pulled with
7105 vStopped. */
7106 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7107 rs->stop_reply_queue.end (),
7108 [=] (const stop_reply_up &event)
7109 {
7110 return event->ptid.pid () == inf->pid;
7111 });
7112 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7113 }
7114
7115 /* Discard the stop replies for RS in stop_reply_queue. */
7116
7117 void
7118 remote_target::discard_pending_stop_replies_in_queue ()
7119 {
7120 remote_state *rs = get_remote_state ();
7121
7122 /* Discard the stop replies we have already pulled with
7123 vStopped. */
7124 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7125 rs->stop_reply_queue.end (),
7126 [=] (const stop_reply_up &event)
7127 {
7128 return event->rs == rs;
7129 });
7130 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7131 }
7132
7133 /* Remove the first reply in 'stop_reply_queue' which matches
7134 PTID. */
7135
7136 struct stop_reply *
7137 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7138 {
7139 remote_state *rs = get_remote_state ();
7140
7141 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7142 rs->stop_reply_queue.end (),
7143 [=] (const stop_reply_up &event)
7144 {
7145 return event->ptid.matches (ptid);
7146 });
7147 struct stop_reply *result;
7148 if (iter == rs->stop_reply_queue.end ())
7149 result = nullptr;
7150 else
7151 {
7152 result = iter->release ();
7153 rs->stop_reply_queue.erase (iter);
7154 }
7155
7156 if (notif_debug)
7157 fprintf_unfiltered (gdb_stdlog,
7158 "notif: discard queued event: 'Stop' in %s\n",
7159 target_pid_to_str (ptid));
7160
7161 return result;
7162 }
7163
7164 /* Look for a queued stop reply belonging to PTID. If one is found,
7165 remove it from the queue, and return it. Returns NULL if none is
7166 found. If there are still queued events left to process, tell the
7167 event loop to get back to target_wait soon. */
7168
7169 struct stop_reply *
7170 remote_target::queued_stop_reply (ptid_t ptid)
7171 {
7172 remote_state *rs = get_remote_state ();
7173 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7174
7175 if (!rs->stop_reply_queue.empty ())
7176 {
7177 /* There's still at least an event left. */
7178 mark_async_event_handler (rs->remote_async_inferior_event_token);
7179 }
7180
7181 return r;
7182 }
7183
7184 /* Push a fully parsed stop reply in the stop reply queue. Since we
7185 know that we now have at least one queued event left to pass to the
7186 core side, tell the event loop to get back to target_wait soon. */
7187
7188 void
7189 remote_target::push_stop_reply (struct stop_reply *new_event)
7190 {
7191 remote_state *rs = get_remote_state ();
7192 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7193
7194 if (notif_debug)
7195 fprintf_unfiltered (gdb_stdlog,
7196 "notif: push 'Stop' %s to queue %d\n",
7197 target_pid_to_str (new_event->ptid),
7198 int (rs->stop_reply_queue.size ()));
7199
7200 mark_async_event_handler (rs->remote_async_inferior_event_token);
7201 }
7202
7203 /* Returns true if we have a stop reply for PTID. */
7204
7205 int
7206 remote_target::peek_stop_reply (ptid_t ptid)
7207 {
7208 remote_state *rs = get_remote_state ();
7209 for (auto &event : rs->stop_reply_queue)
7210 if (ptid == event->ptid
7211 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7212 return 1;
7213 return 0;
7214 }
7215
7216 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7217 starting with P and ending with PEND matches PREFIX. */
7218
7219 static int
7220 strprefix (const char *p, const char *pend, const char *prefix)
7221 {
7222 for ( ; p < pend; p++, prefix++)
7223 if (*p != *prefix)
7224 return 0;
7225 return *prefix == '\0';
7226 }
7227
7228 /* Parse the stop reply in BUF. Either the function succeeds, and the
7229 result is stored in EVENT, or throws an error. */
7230
7231 void
7232 remote_target::remote_parse_stop_reply (char *buf, stop_reply *event)
7233 {
7234 remote_arch_state *rsa = NULL;
7235 ULONGEST addr;
7236 const char *p;
7237 int skipregs = 0;
7238
7239 event->ptid = null_ptid;
7240 event->rs = get_remote_state ();
7241 event->ws.kind = TARGET_WAITKIND_IGNORE;
7242 event->ws.value.integer = 0;
7243 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7244 event->regcache = NULL;
7245 event->core = -1;
7246
7247 switch (buf[0])
7248 {
7249 case 'T': /* Status with PC, SP, FP, ... */
7250 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7251 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7252 ss = signal number
7253 n... = register number
7254 r... = register contents
7255 */
7256
7257 p = &buf[3]; /* after Txx */
7258 while (*p)
7259 {
7260 const char *p1;
7261 int fieldsize;
7262
7263 p1 = strchr (p, ':');
7264 if (p1 == NULL)
7265 error (_("Malformed packet(a) (missing colon): %s\n\
7266 Packet: '%s'\n"),
7267 p, buf);
7268 if (p == p1)
7269 error (_("Malformed packet(a) (missing register number): %s\n\
7270 Packet: '%s'\n"),
7271 p, buf);
7272
7273 /* Some "registers" are actually extended stop information.
7274 Note if you're adding a new entry here: GDB 7.9 and
7275 earlier assume that all register "numbers" that start
7276 with an hex digit are real register numbers. Make sure
7277 the server only sends such a packet if it knows the
7278 client understands it. */
7279
7280 if (strprefix (p, p1, "thread"))
7281 event->ptid = read_ptid (++p1, &p);
7282 else if (strprefix (p, p1, "syscall_entry"))
7283 {
7284 ULONGEST sysno;
7285
7286 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7287 p = unpack_varlen_hex (++p1, &sysno);
7288 event->ws.value.syscall_number = (int) sysno;
7289 }
7290 else if (strprefix (p, p1, "syscall_return"))
7291 {
7292 ULONGEST sysno;
7293
7294 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7295 p = unpack_varlen_hex (++p1, &sysno);
7296 event->ws.value.syscall_number = (int) sysno;
7297 }
7298 else if (strprefix (p, p1, "watch")
7299 || strprefix (p, p1, "rwatch")
7300 || strprefix (p, p1, "awatch"))
7301 {
7302 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7303 p = unpack_varlen_hex (++p1, &addr);
7304 event->watch_data_address = (CORE_ADDR) addr;
7305 }
7306 else if (strprefix (p, p1, "swbreak"))
7307 {
7308 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7309
7310 /* Make sure the stub doesn't forget to indicate support
7311 with qSupported. */
7312 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7313 error (_("Unexpected swbreak stop reason"));
7314
7315 /* The value part is documented as "must be empty",
7316 though we ignore it, in case we ever decide to make
7317 use of it in a backward compatible way. */
7318 p = strchrnul (p1 + 1, ';');
7319 }
7320 else if (strprefix (p, p1, "hwbreak"))
7321 {
7322 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7323
7324 /* Make sure the stub doesn't forget to indicate support
7325 with qSupported. */
7326 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7327 error (_("Unexpected hwbreak stop reason"));
7328
7329 /* See above. */
7330 p = strchrnul (p1 + 1, ';');
7331 }
7332 else if (strprefix (p, p1, "library"))
7333 {
7334 event->ws.kind = TARGET_WAITKIND_LOADED;
7335 p = strchrnul (p1 + 1, ';');
7336 }
7337 else if (strprefix (p, p1, "replaylog"))
7338 {
7339 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7340 /* p1 will indicate "begin" or "end", but it makes
7341 no difference for now, so ignore it. */
7342 p = strchrnul (p1 + 1, ';');
7343 }
7344 else if (strprefix (p, p1, "core"))
7345 {
7346 ULONGEST c;
7347
7348 p = unpack_varlen_hex (++p1, &c);
7349 event->core = c;
7350 }
7351 else if (strprefix (p, p1, "fork"))
7352 {
7353 event->ws.value.related_pid = read_ptid (++p1, &p);
7354 event->ws.kind = TARGET_WAITKIND_FORKED;
7355 }
7356 else if (strprefix (p, p1, "vfork"))
7357 {
7358 event->ws.value.related_pid = read_ptid (++p1, &p);
7359 event->ws.kind = TARGET_WAITKIND_VFORKED;
7360 }
7361 else if (strprefix (p, p1, "vforkdone"))
7362 {
7363 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7364 p = strchrnul (p1 + 1, ';');
7365 }
7366 else if (strprefix (p, p1, "exec"))
7367 {
7368 ULONGEST ignored;
7369 char pathname[PATH_MAX];
7370 int pathlen;
7371
7372 /* Determine the length of the execd pathname. */
7373 p = unpack_varlen_hex (++p1, &ignored);
7374 pathlen = (p - p1) / 2;
7375
7376 /* Save the pathname for event reporting and for
7377 the next run command. */
7378 hex2bin (p1, (gdb_byte *) pathname, pathlen);
7379 pathname[pathlen] = '\0';
7380
7381 /* This is freed during event handling. */
7382 event->ws.value.execd_pathname = xstrdup (pathname);
7383 event->ws.kind = TARGET_WAITKIND_EXECD;
7384
7385 /* Skip the registers included in this packet, since
7386 they may be for an architecture different from the
7387 one used by the original program. */
7388 skipregs = 1;
7389 }
7390 else if (strprefix (p, p1, "create"))
7391 {
7392 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7393 p = strchrnul (p1 + 1, ';');
7394 }
7395 else
7396 {
7397 ULONGEST pnum;
7398 const char *p_temp;
7399
7400 if (skipregs)
7401 {
7402 p = strchrnul (p1 + 1, ';');
7403 p++;
7404 continue;
7405 }
7406
7407 /* Maybe a real ``P'' register number. */
7408 p_temp = unpack_varlen_hex (p, &pnum);
7409 /* If the first invalid character is the colon, we got a
7410 register number. Otherwise, it's an unknown stop
7411 reason. */
7412 if (p_temp == p1)
7413 {
7414 /* If we haven't parsed the event's thread yet, find
7415 it now, in order to find the architecture of the
7416 reported expedited registers. */
7417 if (event->ptid == null_ptid)
7418 {
7419 const char *thr = strstr (p1 + 1, ";thread:");
7420 if (thr != NULL)
7421 event->ptid = read_ptid (thr + strlen (";thread:"),
7422 NULL);
7423 else
7424 {
7425 /* Either the current thread hasn't changed,
7426 or the inferior is not multi-threaded.
7427 The event must be for the thread we last
7428 set as (or learned as being) current. */
7429 event->ptid = event->rs->general_thread;
7430 }
7431 }
7432
7433 if (rsa == NULL)
7434 {
7435 inferior *inf = (event->ptid == null_ptid
7436 ? NULL
7437 : find_inferior_ptid (event->ptid));
7438 /* If this is the first time we learn anything
7439 about this process, skip the registers
7440 included in this packet, since we don't yet
7441 know which architecture to use to parse them.
7442 We'll determine the architecture later when
7443 we process the stop reply and retrieve the
7444 target description, via
7445 remote_notice_new_inferior ->
7446 post_create_inferior. */
7447 if (inf == NULL)
7448 {
7449 p = strchrnul (p1 + 1, ';');
7450 p++;
7451 continue;
7452 }
7453
7454 event->arch = inf->gdbarch;
7455 rsa = event->rs->get_remote_arch_state (event->arch);
7456 }
7457
7458 packet_reg *reg
7459 = packet_reg_from_pnum (event->arch, rsa, pnum);
7460 cached_reg_t cached_reg;
7461
7462 if (reg == NULL)
7463 error (_("Remote sent bad register number %s: %s\n\
7464 Packet: '%s'\n"),
7465 hex_string (pnum), p, buf);
7466
7467 cached_reg.num = reg->regnum;
7468 cached_reg.data = (gdb_byte *)
7469 xmalloc (register_size (event->arch, reg->regnum));
7470
7471 p = p1 + 1;
7472 fieldsize = hex2bin (p, cached_reg.data,
7473 register_size (event->arch, reg->regnum));
7474 p += 2 * fieldsize;
7475 if (fieldsize < register_size (event->arch, reg->regnum))
7476 warning (_("Remote reply is too short: %s"), buf);
7477
7478 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
7479 }
7480 else
7481 {
7482 /* Not a number. Silently skip unknown optional
7483 info. */
7484 p = strchrnul (p1 + 1, ';');
7485 }
7486 }
7487
7488 if (*p != ';')
7489 error (_("Remote register badly formatted: %s\nhere: %s"),
7490 buf, p);
7491 ++p;
7492 }
7493
7494 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7495 break;
7496
7497 /* fall through */
7498 case 'S': /* Old style status, just signal only. */
7499 {
7500 int sig;
7501
7502 event->ws.kind = TARGET_WAITKIND_STOPPED;
7503 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7504 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7505 event->ws.value.sig = (enum gdb_signal) sig;
7506 else
7507 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7508 }
7509 break;
7510 case 'w': /* Thread exited. */
7511 {
7512 const char *p;
7513 ULONGEST value;
7514
7515 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7516 p = unpack_varlen_hex (&buf[1], &value);
7517 event->ws.value.integer = value;
7518 if (*p != ';')
7519 error (_("stop reply packet badly formatted: %s"), buf);
7520 event->ptid = read_ptid (++p, NULL);
7521 break;
7522 }
7523 case 'W': /* Target exited. */
7524 case 'X':
7525 {
7526 const char *p;
7527 int pid;
7528 ULONGEST value;
7529
7530 /* GDB used to accept only 2 hex chars here. Stubs should
7531 only send more if they detect GDB supports multi-process
7532 support. */
7533 p = unpack_varlen_hex (&buf[1], &value);
7534
7535 if (buf[0] == 'W')
7536 {
7537 /* The remote process exited. */
7538 event->ws.kind = TARGET_WAITKIND_EXITED;
7539 event->ws.value.integer = value;
7540 }
7541 else
7542 {
7543 /* The remote process exited with a signal. */
7544 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7545 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7546 event->ws.value.sig = (enum gdb_signal) value;
7547 else
7548 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7549 }
7550
7551 /* If no process is specified, assume inferior_ptid. */
7552 pid = inferior_ptid.pid ();
7553 if (*p == '\0')
7554 ;
7555 else if (*p == ';')
7556 {
7557 p++;
7558
7559 if (*p == '\0')
7560 ;
7561 else if (startswith (p, "process:"))
7562 {
7563 ULONGEST upid;
7564
7565 p += sizeof ("process:") - 1;
7566 unpack_varlen_hex (p, &upid);
7567 pid = upid;
7568 }
7569 else
7570 error (_("unknown stop reply packet: %s"), buf);
7571 }
7572 else
7573 error (_("unknown stop reply packet: %s"), buf);
7574 event->ptid = ptid_t (pid);
7575 }
7576 break;
7577 case 'N':
7578 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7579 event->ptid = minus_one_ptid;
7580 break;
7581 }
7582
7583 if (target_is_non_stop_p () && event->ptid == null_ptid)
7584 error (_("No process or thread specified in stop reply: %s"), buf);
7585 }
7586
7587 /* When the stub wants to tell GDB about a new notification reply, it
7588 sends a notification (%Stop, for example). Those can come it at
7589 any time, hence, we have to make sure that any pending
7590 putpkt/getpkt sequence we're making is finished, before querying
7591 the stub for more events with the corresponding ack command
7592 (vStopped, for example). E.g., if we started a vStopped sequence
7593 immediately upon receiving the notification, something like this
7594 could happen:
7595
7596 1.1) --> Hg 1
7597 1.2) <-- OK
7598 1.3) --> g
7599 1.4) <-- %Stop
7600 1.5) --> vStopped
7601 1.6) <-- (registers reply to step #1.3)
7602
7603 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7604 query.
7605
7606 To solve this, whenever we parse a %Stop notification successfully,
7607 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7608 doing whatever we were doing:
7609
7610 2.1) --> Hg 1
7611 2.2) <-- OK
7612 2.3) --> g
7613 2.4) <-- %Stop
7614 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7615 2.5) <-- (registers reply to step #2.3)
7616
7617 Eventualy after step #2.5, we return to the event loop, which
7618 notices there's an event on the
7619 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7620 associated callback --- the function below. At this point, we're
7621 always safe to start a vStopped sequence. :
7622
7623 2.6) --> vStopped
7624 2.7) <-- T05 thread:2
7625 2.8) --> vStopped
7626 2.9) --> OK
7627 */
7628
7629 void
7630 remote_target::remote_notif_get_pending_events (notif_client *nc)
7631 {
7632 struct remote_state *rs = get_remote_state ();
7633
7634 if (rs->notif_state->pending_event[nc->id] != NULL)
7635 {
7636 if (notif_debug)
7637 fprintf_unfiltered (gdb_stdlog,
7638 "notif: process: '%s' ack pending event\n",
7639 nc->name);
7640
7641 /* acknowledge */
7642 nc->ack (this, nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7643 rs->notif_state->pending_event[nc->id] = NULL;
7644
7645 while (1)
7646 {
7647 getpkt (&rs->buf, &rs->buf_size, 0);
7648 if (strcmp (rs->buf, "OK") == 0)
7649 break;
7650 else
7651 remote_notif_ack (this, nc, rs->buf);
7652 }
7653 }
7654 else
7655 {
7656 if (notif_debug)
7657 fprintf_unfiltered (gdb_stdlog,
7658 "notif: process: '%s' no pending reply\n",
7659 nc->name);
7660 }
7661 }
7662
7663 /* Wrapper around remote_target::remote_notif_get_pending_events to
7664 avoid having to export the whole remote_target class. */
7665
7666 void
7667 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7668 {
7669 remote->remote_notif_get_pending_events (nc);
7670 }
7671
7672 /* Called when it is decided that STOP_REPLY holds the info of the
7673 event that is to be returned to the core. This function always
7674 destroys STOP_REPLY. */
7675
7676 ptid_t
7677 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7678 struct target_waitstatus *status)
7679 {
7680 ptid_t ptid;
7681
7682 *status = stop_reply->ws;
7683 ptid = stop_reply->ptid;
7684
7685 /* If no thread/process was reported by the stub, assume the current
7686 inferior. */
7687 if (ptid == null_ptid)
7688 ptid = inferior_ptid;
7689
7690 if (status->kind != TARGET_WAITKIND_EXITED
7691 && status->kind != TARGET_WAITKIND_SIGNALLED
7692 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7693 {
7694 /* Expedited registers. */
7695 if (stop_reply->regcache)
7696 {
7697 struct regcache *regcache
7698 = get_thread_arch_regcache (ptid, stop_reply->arch);
7699 cached_reg_t *reg;
7700 int ix;
7701
7702 for (ix = 0;
7703 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7704 ix++)
7705 {
7706 regcache->raw_supply (reg->num, reg->data);
7707 xfree (reg->data);
7708 }
7709
7710 VEC_free (cached_reg_t, stop_reply->regcache);
7711 }
7712
7713 remote_notice_new_inferior (ptid, 0);
7714 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7715 remote_thr->core = stop_reply->core;
7716 remote_thr->stop_reason = stop_reply->stop_reason;
7717 remote_thr->watch_data_address = stop_reply->watch_data_address;
7718 remote_thr->vcont_resumed = 0;
7719 }
7720
7721 stop_reply_xfree (stop_reply);
7722 return ptid;
7723 }
7724
7725 /* The non-stop mode version of target_wait. */
7726
7727 ptid_t
7728 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7729 {
7730 struct remote_state *rs = get_remote_state ();
7731 struct stop_reply *stop_reply;
7732 int ret;
7733 int is_notif = 0;
7734
7735 /* If in non-stop mode, get out of getpkt even if a
7736 notification is received. */
7737
7738 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7739 0 /* forever */, &is_notif);
7740 while (1)
7741 {
7742 if (ret != -1 && !is_notif)
7743 switch (rs->buf[0])
7744 {
7745 case 'E': /* Error of some sort. */
7746 /* We're out of sync with the target now. Did it continue
7747 or not? We can't tell which thread it was in non-stop,
7748 so just ignore this. */
7749 warning (_("Remote failure reply: %s"), rs->buf);
7750 break;
7751 case 'O': /* Console output. */
7752 remote_console_output (rs->buf + 1);
7753 break;
7754 default:
7755 warning (_("Invalid remote reply: %s"), rs->buf);
7756 break;
7757 }
7758
7759 /* Acknowledge a pending stop reply that may have arrived in the
7760 mean time. */
7761 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7762 remote_notif_get_pending_events (&notif_client_stop);
7763
7764 /* If indeed we noticed a stop reply, we're done. */
7765 stop_reply = queued_stop_reply (ptid);
7766 if (stop_reply != NULL)
7767 return process_stop_reply (stop_reply, status);
7768
7769 /* Still no event. If we're just polling for an event, then
7770 return to the event loop. */
7771 if (options & TARGET_WNOHANG)
7772 {
7773 status->kind = TARGET_WAITKIND_IGNORE;
7774 return minus_one_ptid;
7775 }
7776
7777 /* Otherwise do a blocking wait. */
7778 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7779 1 /* forever */, &is_notif);
7780 }
7781 }
7782
7783 /* Wait until the remote machine stops, then return, storing status in
7784 STATUS just as `wait' would. */
7785
7786 ptid_t
7787 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7788 {
7789 struct remote_state *rs = get_remote_state ();
7790 ptid_t event_ptid = null_ptid;
7791 char *buf;
7792 struct stop_reply *stop_reply;
7793
7794 again:
7795
7796 status->kind = TARGET_WAITKIND_IGNORE;
7797 status->value.integer = 0;
7798
7799 stop_reply = queued_stop_reply (ptid);
7800 if (stop_reply != NULL)
7801 return process_stop_reply (stop_reply, status);
7802
7803 if (rs->cached_wait_status)
7804 /* Use the cached wait status, but only once. */
7805 rs->cached_wait_status = 0;
7806 else
7807 {
7808 int ret;
7809 int is_notif;
7810 int forever = ((options & TARGET_WNOHANG) == 0
7811 && rs->wait_forever_enabled_p);
7812
7813 if (!rs->waiting_for_stop_reply)
7814 {
7815 status->kind = TARGET_WAITKIND_NO_RESUMED;
7816 return minus_one_ptid;
7817 }
7818
7819 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7820 _never_ wait for ever -> test on target_is_async_p().
7821 However, before we do that we need to ensure that the caller
7822 knows how to take the target into/out of async mode. */
7823 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7824 forever, &is_notif);
7825
7826 /* GDB gets a notification. Return to core as this event is
7827 not interesting. */
7828 if (ret != -1 && is_notif)
7829 return minus_one_ptid;
7830
7831 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7832 return minus_one_ptid;
7833 }
7834
7835 buf = rs->buf;
7836
7837 /* Assume that the target has acknowledged Ctrl-C unless we receive
7838 an 'F' or 'O' packet. */
7839 if (buf[0] != 'F' && buf[0] != 'O')
7840 rs->ctrlc_pending_p = 0;
7841
7842 switch (buf[0])
7843 {
7844 case 'E': /* Error of some sort. */
7845 /* We're out of sync with the target now. Did it continue or
7846 not? Not is more likely, so report a stop. */
7847 rs->waiting_for_stop_reply = 0;
7848
7849 warning (_("Remote failure reply: %s"), buf);
7850 status->kind = TARGET_WAITKIND_STOPPED;
7851 status->value.sig = GDB_SIGNAL_0;
7852 break;
7853 case 'F': /* File-I/O request. */
7854 /* GDB may access the inferior memory while handling the File-I/O
7855 request, but we don't want GDB accessing memory while waiting
7856 for a stop reply. See the comments in putpkt_binary. Set
7857 waiting_for_stop_reply to 0 temporarily. */
7858 rs->waiting_for_stop_reply = 0;
7859 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7860 rs->ctrlc_pending_p = 0;
7861 /* GDB handled the File-I/O request, and the target is running
7862 again. Keep waiting for events. */
7863 rs->waiting_for_stop_reply = 1;
7864 break;
7865 case 'N': case 'T': case 'S': case 'X': case 'W':
7866 {
7867 struct stop_reply *stop_reply;
7868
7869 /* There is a stop reply to handle. */
7870 rs->waiting_for_stop_reply = 0;
7871
7872 stop_reply
7873 = (struct stop_reply *) remote_notif_parse (this,
7874 &notif_client_stop,
7875 rs->buf);
7876
7877 event_ptid = process_stop_reply (stop_reply, status);
7878 break;
7879 }
7880 case 'O': /* Console output. */
7881 remote_console_output (buf + 1);
7882 break;
7883 case '\0':
7884 if (rs->last_sent_signal != GDB_SIGNAL_0)
7885 {
7886 /* Zero length reply means that we tried 'S' or 'C' and the
7887 remote system doesn't support it. */
7888 target_terminal::ours_for_output ();
7889 printf_filtered
7890 ("Can't send signals to this remote system. %s not sent.\n",
7891 gdb_signal_to_name (rs->last_sent_signal));
7892 rs->last_sent_signal = GDB_SIGNAL_0;
7893 target_terminal::inferior ();
7894
7895 strcpy (buf, rs->last_sent_step ? "s" : "c");
7896 putpkt (buf);
7897 break;
7898 }
7899 /* fallthrough */
7900 default:
7901 warning (_("Invalid remote reply: %s"), buf);
7902 break;
7903 }
7904
7905 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7906 return minus_one_ptid;
7907 else if (status->kind == TARGET_WAITKIND_IGNORE)
7908 {
7909 /* Nothing interesting happened. If we're doing a non-blocking
7910 poll, we're done. Otherwise, go back to waiting. */
7911 if (options & TARGET_WNOHANG)
7912 return minus_one_ptid;
7913 else
7914 goto again;
7915 }
7916 else if (status->kind != TARGET_WAITKIND_EXITED
7917 && status->kind != TARGET_WAITKIND_SIGNALLED)
7918 {
7919 if (event_ptid != null_ptid)
7920 record_currthread (rs, event_ptid);
7921 else
7922 event_ptid = inferior_ptid;
7923 }
7924 else
7925 /* A process exit. Invalidate our notion of current thread. */
7926 record_currthread (rs, minus_one_ptid);
7927
7928 return event_ptid;
7929 }
7930
7931 /* Wait until the remote machine stops, then return, storing status in
7932 STATUS just as `wait' would. */
7933
7934 ptid_t
7935 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7936 {
7937 ptid_t event_ptid;
7938
7939 if (target_is_non_stop_p ())
7940 event_ptid = wait_ns (ptid, status, options);
7941 else
7942 event_ptid = wait_as (ptid, status, options);
7943
7944 if (target_is_async_p ())
7945 {
7946 remote_state *rs = get_remote_state ();
7947
7948 /* If there are are events left in the queue tell the event loop
7949 to return here. */
7950 if (!rs->stop_reply_queue.empty ())
7951 mark_async_event_handler (rs->remote_async_inferior_event_token);
7952 }
7953
7954 return event_ptid;
7955 }
7956
7957 /* Fetch a single register using a 'p' packet. */
7958
7959 int
7960 remote_target::fetch_register_using_p (struct regcache *regcache,
7961 packet_reg *reg)
7962 {
7963 struct gdbarch *gdbarch = regcache->arch ();
7964 struct remote_state *rs = get_remote_state ();
7965 char *buf, *p;
7966 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7967 int i;
7968
7969 if (packet_support (PACKET_p) == PACKET_DISABLE)
7970 return 0;
7971
7972 if (reg->pnum == -1)
7973 return 0;
7974
7975 p = rs->buf;
7976 *p++ = 'p';
7977 p += hexnumstr (p, reg->pnum);
7978 *p++ = '\0';
7979 putpkt (rs->buf);
7980 getpkt (&rs->buf, &rs->buf_size, 0);
7981
7982 buf = rs->buf;
7983
7984 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7985 {
7986 case PACKET_OK:
7987 break;
7988 case PACKET_UNKNOWN:
7989 return 0;
7990 case PACKET_ERROR:
7991 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7992 gdbarch_register_name (regcache->arch (),
7993 reg->regnum),
7994 buf);
7995 }
7996
7997 /* If this register is unfetchable, tell the regcache. */
7998 if (buf[0] == 'x')
7999 {
8000 regcache->raw_supply (reg->regnum, NULL);
8001 return 1;
8002 }
8003
8004 /* Otherwise, parse and supply the value. */
8005 p = buf;
8006 i = 0;
8007 while (p[0] != 0)
8008 {
8009 if (p[1] == 0)
8010 error (_("fetch_register_using_p: early buf termination"));
8011
8012 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8013 p += 2;
8014 }
8015 regcache->raw_supply (reg->regnum, regp);
8016 return 1;
8017 }
8018
8019 /* Fetch the registers included in the target's 'g' packet. */
8020
8021 int
8022 remote_target::send_g_packet ()
8023 {
8024 struct remote_state *rs = get_remote_state ();
8025 int buf_len;
8026
8027 xsnprintf (rs->buf, get_remote_packet_size (), "g");
8028 putpkt (rs->buf);
8029 getpkt (&rs->buf, &rs->buf_size, 0);
8030 if (packet_check_result (rs->buf) == PACKET_ERROR)
8031 error (_("Could not read registers; remote failure reply '%s'"),
8032 rs->buf);
8033
8034 /* We can get out of synch in various cases. If the first character
8035 in the buffer is not a hex character, assume that has happened
8036 and try to fetch another packet to read. */
8037 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8038 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8039 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8040 && rs->buf[0] != 'x') /* New: unavailable register value. */
8041 {
8042 if (remote_debug)
8043 fprintf_unfiltered (gdb_stdlog,
8044 "Bad register packet; fetching a new packet\n");
8045 getpkt (&rs->buf, &rs->buf_size, 0);
8046 }
8047
8048 buf_len = strlen (rs->buf);
8049
8050 /* Sanity check the received packet. */
8051 if (buf_len % 2 != 0)
8052 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
8053
8054 return buf_len / 2;
8055 }
8056
8057 void
8058 remote_target::process_g_packet (struct regcache *regcache)
8059 {
8060 struct gdbarch *gdbarch = regcache->arch ();
8061 struct remote_state *rs = get_remote_state ();
8062 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8063 int i, buf_len;
8064 char *p;
8065 char *regs;
8066
8067 buf_len = strlen (rs->buf);
8068
8069 /* Further sanity checks, with knowledge of the architecture. */
8070 if (buf_len > 2 * rsa->sizeof_g_packet)
8071 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8072 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
8073
8074 /* Save the size of the packet sent to us by the target. It is used
8075 as a heuristic when determining the max size of packets that the
8076 target can safely receive. */
8077 if (rsa->actual_register_packet_size == 0)
8078 rsa->actual_register_packet_size = buf_len;
8079
8080 /* If this is smaller than we guessed the 'g' packet would be,
8081 update our records. A 'g' reply that doesn't include a register's
8082 value implies either that the register is not available, or that
8083 the 'p' packet must be used. */
8084 if (buf_len < 2 * rsa->sizeof_g_packet)
8085 {
8086 long sizeof_g_packet = buf_len / 2;
8087
8088 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8089 {
8090 long offset = rsa->regs[i].offset;
8091 long reg_size = register_size (gdbarch, i);
8092
8093 if (rsa->regs[i].pnum == -1)
8094 continue;
8095
8096 if (offset >= sizeof_g_packet)
8097 rsa->regs[i].in_g_packet = 0;
8098 else if (offset + reg_size > sizeof_g_packet)
8099 error (_("Truncated register %d in remote 'g' packet"), i);
8100 else
8101 rsa->regs[i].in_g_packet = 1;
8102 }
8103
8104 /* Looks valid enough, we can assume this is the correct length
8105 for a 'g' packet. It's important not to adjust
8106 rsa->sizeof_g_packet if we have truncated registers otherwise
8107 this "if" won't be run the next time the method is called
8108 with a packet of the same size and one of the internal errors
8109 below will trigger instead. */
8110 rsa->sizeof_g_packet = sizeof_g_packet;
8111 }
8112
8113 regs = (char *) alloca (rsa->sizeof_g_packet);
8114
8115 /* Unimplemented registers read as all bits zero. */
8116 memset (regs, 0, rsa->sizeof_g_packet);
8117
8118 /* Reply describes registers byte by byte, each byte encoded as two
8119 hex characters. Suck them all up, then supply them to the
8120 register cacheing/storage mechanism. */
8121
8122 p = rs->buf;
8123 for (i = 0; i < rsa->sizeof_g_packet; i++)
8124 {
8125 if (p[0] == 0 || p[1] == 0)
8126 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8127 internal_error (__FILE__, __LINE__,
8128 _("unexpected end of 'g' packet reply"));
8129
8130 if (p[0] == 'x' && p[1] == 'x')
8131 regs[i] = 0; /* 'x' */
8132 else
8133 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8134 p += 2;
8135 }
8136
8137 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8138 {
8139 struct packet_reg *r = &rsa->regs[i];
8140 long reg_size = register_size (gdbarch, i);
8141
8142 if (r->in_g_packet)
8143 {
8144 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
8145 /* This shouldn't happen - we adjusted in_g_packet above. */
8146 internal_error (__FILE__, __LINE__,
8147 _("unexpected end of 'g' packet reply"));
8148 else if (rs->buf[r->offset * 2] == 'x')
8149 {
8150 gdb_assert (r->offset * 2 < strlen (rs->buf));
8151 /* The register isn't available, mark it as such (at
8152 the same time setting the value to zero). */
8153 regcache->raw_supply (r->regnum, NULL);
8154 }
8155 else
8156 regcache->raw_supply (r->regnum, regs + r->offset);
8157 }
8158 }
8159 }
8160
8161 void
8162 remote_target::fetch_registers_using_g (struct regcache *regcache)
8163 {
8164 send_g_packet ();
8165 process_g_packet (regcache);
8166 }
8167
8168 /* Make the remote selected traceframe match GDB's selected
8169 traceframe. */
8170
8171 void
8172 remote_target::set_remote_traceframe ()
8173 {
8174 int newnum;
8175 struct remote_state *rs = get_remote_state ();
8176
8177 if (rs->remote_traceframe_number == get_traceframe_number ())
8178 return;
8179
8180 /* Avoid recursion, remote_trace_find calls us again. */
8181 rs->remote_traceframe_number = get_traceframe_number ();
8182
8183 newnum = target_trace_find (tfind_number,
8184 get_traceframe_number (), 0, 0, NULL);
8185
8186 /* Should not happen. If it does, all bets are off. */
8187 if (newnum != get_traceframe_number ())
8188 warning (_("could not set remote traceframe"));
8189 }
8190
8191 void
8192 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8193 {
8194 struct gdbarch *gdbarch = regcache->arch ();
8195 struct remote_state *rs = get_remote_state ();
8196 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8197 int i;
8198
8199 set_remote_traceframe ();
8200 set_general_thread (regcache->ptid ());
8201
8202 if (regnum >= 0)
8203 {
8204 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8205
8206 gdb_assert (reg != NULL);
8207
8208 /* If this register might be in the 'g' packet, try that first -
8209 we are likely to read more than one register. If this is the
8210 first 'g' packet, we might be overly optimistic about its
8211 contents, so fall back to 'p'. */
8212 if (reg->in_g_packet)
8213 {
8214 fetch_registers_using_g (regcache);
8215 if (reg->in_g_packet)
8216 return;
8217 }
8218
8219 if (fetch_register_using_p (regcache, reg))
8220 return;
8221
8222 /* This register is not available. */
8223 regcache->raw_supply (reg->regnum, NULL);
8224
8225 return;
8226 }
8227
8228 fetch_registers_using_g (regcache);
8229
8230 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8231 if (!rsa->regs[i].in_g_packet)
8232 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8233 {
8234 /* This register is not available. */
8235 regcache->raw_supply (i, NULL);
8236 }
8237 }
8238
8239 /* Prepare to store registers. Since we may send them all (using a
8240 'G' request), we have to read out the ones we don't want to change
8241 first. */
8242
8243 void
8244 remote_target::prepare_to_store (struct regcache *regcache)
8245 {
8246 struct remote_state *rs = get_remote_state ();
8247 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8248 int i;
8249
8250 /* Make sure the entire registers array is valid. */
8251 switch (packet_support (PACKET_P))
8252 {
8253 case PACKET_DISABLE:
8254 case PACKET_SUPPORT_UNKNOWN:
8255 /* Make sure all the necessary registers are cached. */
8256 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8257 if (rsa->regs[i].in_g_packet)
8258 regcache->raw_update (rsa->regs[i].regnum);
8259 break;
8260 case PACKET_ENABLE:
8261 break;
8262 }
8263 }
8264
8265 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8266 packet was not recognized. */
8267
8268 int
8269 remote_target::store_register_using_P (const struct regcache *regcache,
8270 packet_reg *reg)
8271 {
8272 struct gdbarch *gdbarch = regcache->arch ();
8273 struct remote_state *rs = get_remote_state ();
8274 /* Try storing a single register. */
8275 char *buf = rs->buf;
8276 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8277 char *p;
8278
8279 if (packet_support (PACKET_P) == PACKET_DISABLE)
8280 return 0;
8281
8282 if (reg->pnum == -1)
8283 return 0;
8284
8285 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8286 p = buf + strlen (buf);
8287 regcache->raw_collect (reg->regnum, regp);
8288 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8289 putpkt (rs->buf);
8290 getpkt (&rs->buf, &rs->buf_size, 0);
8291
8292 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8293 {
8294 case PACKET_OK:
8295 return 1;
8296 case PACKET_ERROR:
8297 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8298 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
8299 case PACKET_UNKNOWN:
8300 return 0;
8301 default:
8302 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8303 }
8304 }
8305
8306 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8307 contents of the register cache buffer. FIXME: ignores errors. */
8308
8309 void
8310 remote_target::store_registers_using_G (const struct regcache *regcache)
8311 {
8312 struct remote_state *rs = get_remote_state ();
8313 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8314 gdb_byte *regs;
8315 char *p;
8316
8317 /* Extract all the registers in the regcache copying them into a
8318 local buffer. */
8319 {
8320 int i;
8321
8322 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8323 memset (regs, 0, rsa->sizeof_g_packet);
8324 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8325 {
8326 struct packet_reg *r = &rsa->regs[i];
8327
8328 if (r->in_g_packet)
8329 regcache->raw_collect (r->regnum, regs + r->offset);
8330 }
8331 }
8332
8333 /* Command describes registers byte by byte,
8334 each byte encoded as two hex characters. */
8335 p = rs->buf;
8336 *p++ = 'G';
8337 bin2hex (regs, p, rsa->sizeof_g_packet);
8338 putpkt (rs->buf);
8339 getpkt (&rs->buf, &rs->buf_size, 0);
8340 if (packet_check_result (rs->buf) == PACKET_ERROR)
8341 error (_("Could not write registers; remote failure reply '%s'"),
8342 rs->buf);
8343 }
8344
8345 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8346 of the register cache buffer. FIXME: ignores errors. */
8347
8348 void
8349 remote_target::store_registers (struct regcache *regcache, int regnum)
8350 {
8351 struct gdbarch *gdbarch = regcache->arch ();
8352 struct remote_state *rs = get_remote_state ();
8353 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8354 int i;
8355
8356 set_remote_traceframe ();
8357 set_general_thread (regcache->ptid ());
8358
8359 if (regnum >= 0)
8360 {
8361 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8362
8363 gdb_assert (reg != NULL);
8364
8365 /* Always prefer to store registers using the 'P' packet if
8366 possible; we often change only a small number of registers.
8367 Sometimes we change a larger number; we'd need help from a
8368 higher layer to know to use 'G'. */
8369 if (store_register_using_P (regcache, reg))
8370 return;
8371
8372 /* For now, don't complain if we have no way to write the
8373 register. GDB loses track of unavailable registers too
8374 easily. Some day, this may be an error. We don't have
8375 any way to read the register, either... */
8376 if (!reg->in_g_packet)
8377 return;
8378
8379 store_registers_using_G (regcache);
8380 return;
8381 }
8382
8383 store_registers_using_G (regcache);
8384
8385 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8386 if (!rsa->regs[i].in_g_packet)
8387 if (!store_register_using_P (regcache, &rsa->regs[i]))
8388 /* See above for why we do not issue an error here. */
8389 continue;
8390 }
8391 \f
8392
8393 /* Return the number of hex digits in num. */
8394
8395 static int
8396 hexnumlen (ULONGEST num)
8397 {
8398 int i;
8399
8400 for (i = 0; num != 0; i++)
8401 num >>= 4;
8402
8403 return std::max (i, 1);
8404 }
8405
8406 /* Set BUF to the minimum number of hex digits representing NUM. */
8407
8408 static int
8409 hexnumstr (char *buf, ULONGEST num)
8410 {
8411 int len = hexnumlen (num);
8412
8413 return hexnumnstr (buf, num, len);
8414 }
8415
8416
8417 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8418
8419 static int
8420 hexnumnstr (char *buf, ULONGEST num, int width)
8421 {
8422 int i;
8423
8424 buf[width] = '\0';
8425
8426 for (i = width - 1; i >= 0; i--)
8427 {
8428 buf[i] = "0123456789abcdef"[(num & 0xf)];
8429 num >>= 4;
8430 }
8431
8432 return width;
8433 }
8434
8435 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8436
8437 static CORE_ADDR
8438 remote_address_masked (CORE_ADDR addr)
8439 {
8440 unsigned int address_size = remote_address_size;
8441
8442 /* If "remoteaddresssize" was not set, default to target address size. */
8443 if (!address_size)
8444 address_size = gdbarch_addr_bit (target_gdbarch ());
8445
8446 if (address_size > 0
8447 && address_size < (sizeof (ULONGEST) * 8))
8448 {
8449 /* Only create a mask when that mask can safely be constructed
8450 in a ULONGEST variable. */
8451 ULONGEST mask = 1;
8452
8453 mask = (mask << address_size) - 1;
8454 addr &= mask;
8455 }
8456 return addr;
8457 }
8458
8459 /* Determine whether the remote target supports binary downloading.
8460 This is accomplished by sending a no-op memory write of zero length
8461 to the target at the specified address. It does not suffice to send
8462 the whole packet, since many stubs strip the eighth bit and
8463 subsequently compute a wrong checksum, which causes real havoc with
8464 remote_write_bytes.
8465
8466 NOTE: This can still lose if the serial line is not eight-bit
8467 clean. In cases like this, the user should clear "remote
8468 X-packet". */
8469
8470 void
8471 remote_target::check_binary_download (CORE_ADDR addr)
8472 {
8473 struct remote_state *rs = get_remote_state ();
8474
8475 switch (packet_support (PACKET_X))
8476 {
8477 case PACKET_DISABLE:
8478 break;
8479 case PACKET_ENABLE:
8480 break;
8481 case PACKET_SUPPORT_UNKNOWN:
8482 {
8483 char *p;
8484
8485 p = rs->buf;
8486 *p++ = 'X';
8487 p += hexnumstr (p, (ULONGEST) addr);
8488 *p++ = ',';
8489 p += hexnumstr (p, (ULONGEST) 0);
8490 *p++ = ':';
8491 *p = '\0';
8492
8493 putpkt_binary (rs->buf, (int) (p - rs->buf));
8494 getpkt (&rs->buf, &rs->buf_size, 0);
8495
8496 if (rs->buf[0] == '\0')
8497 {
8498 if (remote_debug)
8499 fprintf_unfiltered (gdb_stdlog,
8500 "binary downloading NOT "
8501 "supported by target\n");
8502 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8503 }
8504 else
8505 {
8506 if (remote_debug)
8507 fprintf_unfiltered (gdb_stdlog,
8508 "binary downloading supported by target\n");
8509 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8510 }
8511 break;
8512 }
8513 }
8514 }
8515
8516 /* Helper function to resize the payload in order to try to get a good
8517 alignment. We try to write an amount of data such that the next write will
8518 start on an address aligned on REMOTE_ALIGN_WRITES. */
8519
8520 static int
8521 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8522 {
8523 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8524 }
8525
8526 /* Write memory data directly to the remote machine.
8527 This does not inform the data cache; the data cache uses this.
8528 HEADER is the starting part of the packet.
8529 MEMADDR is the address in the remote memory space.
8530 MYADDR is the address of the buffer in our space.
8531 LEN_UNITS is the number of addressable units to write.
8532 UNIT_SIZE is the length in bytes of an addressable unit.
8533 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8534 should send data as binary ('X'), or hex-encoded ('M').
8535
8536 The function creates packet of the form
8537 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8538
8539 where encoding of <DATA> is terminated by PACKET_FORMAT.
8540
8541 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8542 are omitted.
8543
8544 Return the transferred status, error or OK (an
8545 'enum target_xfer_status' value). Save the number of addressable units
8546 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8547
8548 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8549 exchange between gdb and the stub could look like (?? in place of the
8550 checksum):
8551
8552 -> $m1000,4#??
8553 <- aaaabbbbccccdddd
8554
8555 -> $M1000,3:eeeeffffeeee#??
8556 <- OK
8557
8558 -> $m1000,4#??
8559 <- eeeeffffeeeedddd */
8560
8561 target_xfer_status
8562 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8563 const gdb_byte *myaddr,
8564 ULONGEST len_units,
8565 int unit_size,
8566 ULONGEST *xfered_len_units,
8567 char packet_format, int use_length)
8568 {
8569 struct remote_state *rs = get_remote_state ();
8570 char *p;
8571 char *plen = NULL;
8572 int plenlen = 0;
8573 int todo_units;
8574 int units_written;
8575 int payload_capacity_bytes;
8576 int payload_length_bytes;
8577
8578 if (packet_format != 'X' && packet_format != 'M')
8579 internal_error (__FILE__, __LINE__,
8580 _("remote_write_bytes_aux: bad packet format"));
8581
8582 if (len_units == 0)
8583 return TARGET_XFER_EOF;
8584
8585 payload_capacity_bytes = get_memory_write_packet_size ();
8586
8587 /* The packet buffer will be large enough for the payload;
8588 get_memory_packet_size ensures this. */
8589 rs->buf[0] = '\0';
8590
8591 /* Compute the size of the actual payload by subtracting out the
8592 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8593
8594 payload_capacity_bytes -= strlen ("$,:#NN");
8595 if (!use_length)
8596 /* The comma won't be used. */
8597 payload_capacity_bytes += 1;
8598 payload_capacity_bytes -= strlen (header);
8599 payload_capacity_bytes -= hexnumlen (memaddr);
8600
8601 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8602
8603 strcat (rs->buf, header);
8604 p = rs->buf + strlen (header);
8605
8606 /* Compute a best guess of the number of bytes actually transfered. */
8607 if (packet_format == 'X')
8608 {
8609 /* Best guess at number of bytes that will fit. */
8610 todo_units = std::min (len_units,
8611 (ULONGEST) payload_capacity_bytes / unit_size);
8612 if (use_length)
8613 payload_capacity_bytes -= hexnumlen (todo_units);
8614 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8615 }
8616 else
8617 {
8618 /* Number of bytes that will fit. */
8619 todo_units
8620 = std::min (len_units,
8621 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8622 if (use_length)
8623 payload_capacity_bytes -= hexnumlen (todo_units);
8624 todo_units = std::min (todo_units,
8625 (payload_capacity_bytes / unit_size) / 2);
8626 }
8627
8628 if (todo_units <= 0)
8629 internal_error (__FILE__, __LINE__,
8630 _("minimum packet size too small to write data"));
8631
8632 /* If we already need another packet, then try to align the end
8633 of this packet to a useful boundary. */
8634 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8635 todo_units = align_for_efficient_write (todo_units, memaddr);
8636
8637 /* Append "<memaddr>". */
8638 memaddr = remote_address_masked (memaddr);
8639 p += hexnumstr (p, (ULONGEST) memaddr);
8640
8641 if (use_length)
8642 {
8643 /* Append ",". */
8644 *p++ = ',';
8645
8646 /* Append the length and retain its location and size. It may need to be
8647 adjusted once the packet body has been created. */
8648 plen = p;
8649 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8650 p += plenlen;
8651 }
8652
8653 /* Append ":". */
8654 *p++ = ':';
8655 *p = '\0';
8656
8657 /* Append the packet body. */
8658 if (packet_format == 'X')
8659 {
8660 /* Binary mode. Send target system values byte by byte, in
8661 increasing byte addresses. Only escape certain critical
8662 characters. */
8663 payload_length_bytes =
8664 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8665 &units_written, payload_capacity_bytes);
8666
8667 /* If not all TODO units fit, then we'll need another packet. Make
8668 a second try to keep the end of the packet aligned. Don't do
8669 this if the packet is tiny. */
8670 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8671 {
8672 int new_todo_units;
8673
8674 new_todo_units = align_for_efficient_write (units_written, memaddr);
8675
8676 if (new_todo_units != units_written)
8677 payload_length_bytes =
8678 remote_escape_output (myaddr, new_todo_units, unit_size,
8679 (gdb_byte *) p, &units_written,
8680 payload_capacity_bytes);
8681 }
8682
8683 p += payload_length_bytes;
8684 if (use_length && units_written < todo_units)
8685 {
8686 /* Escape chars have filled up the buffer prematurely,
8687 and we have actually sent fewer units than planned.
8688 Fix-up the length field of the packet. Use the same
8689 number of characters as before. */
8690 plen += hexnumnstr (plen, (ULONGEST) units_written,
8691 plenlen);
8692 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8693 }
8694 }
8695 else
8696 {
8697 /* Normal mode: Send target system values byte by byte, in
8698 increasing byte addresses. Each byte is encoded as a two hex
8699 value. */
8700 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8701 units_written = todo_units;
8702 }
8703
8704 putpkt_binary (rs->buf, (int) (p - rs->buf));
8705 getpkt (&rs->buf, &rs->buf_size, 0);
8706
8707 if (rs->buf[0] == 'E')
8708 return TARGET_XFER_E_IO;
8709
8710 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8711 send fewer units than we'd planned. */
8712 *xfered_len_units = (ULONGEST) units_written;
8713 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8714 }
8715
8716 /* Write memory data directly to the remote machine.
8717 This does not inform the data cache; the data cache uses this.
8718 MEMADDR is the address in the remote memory space.
8719 MYADDR is the address of the buffer in our space.
8720 LEN is the number of bytes.
8721
8722 Return the transferred status, error or OK (an
8723 'enum target_xfer_status' value). Save the number of bytes
8724 transferred in *XFERED_LEN. Only transfer a single packet. */
8725
8726 target_xfer_status
8727 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8728 ULONGEST len, int unit_size,
8729 ULONGEST *xfered_len)
8730 {
8731 const char *packet_format = NULL;
8732
8733 /* Check whether the target supports binary download. */
8734 check_binary_download (memaddr);
8735
8736 switch (packet_support (PACKET_X))
8737 {
8738 case PACKET_ENABLE:
8739 packet_format = "X";
8740 break;
8741 case PACKET_DISABLE:
8742 packet_format = "M";
8743 break;
8744 case PACKET_SUPPORT_UNKNOWN:
8745 internal_error (__FILE__, __LINE__,
8746 _("remote_write_bytes: bad internal state"));
8747 default:
8748 internal_error (__FILE__, __LINE__, _("bad switch"));
8749 }
8750
8751 return remote_write_bytes_aux (packet_format,
8752 memaddr, myaddr, len, unit_size, xfered_len,
8753 packet_format[0], 1);
8754 }
8755
8756 /* Read memory data directly from the remote machine.
8757 This does not use the data cache; the data cache uses this.
8758 MEMADDR is the address in the remote memory space.
8759 MYADDR is the address of the buffer in our space.
8760 LEN_UNITS is the number of addressable memory units to read..
8761 UNIT_SIZE is the length in bytes of an addressable unit.
8762
8763 Return the transferred status, error or OK (an
8764 'enum target_xfer_status' value). Save the number of bytes
8765 transferred in *XFERED_LEN_UNITS.
8766
8767 See the comment of remote_write_bytes_aux for an example of
8768 memory read/write exchange between gdb and the stub. */
8769
8770 target_xfer_status
8771 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8772 ULONGEST len_units,
8773 int unit_size, ULONGEST *xfered_len_units)
8774 {
8775 struct remote_state *rs = get_remote_state ();
8776 int buf_size_bytes; /* Max size of packet output buffer. */
8777 char *p;
8778 int todo_units;
8779 int decoded_bytes;
8780
8781 buf_size_bytes = get_memory_read_packet_size ();
8782 /* The packet buffer will be large enough for the payload;
8783 get_memory_packet_size ensures this. */
8784
8785 /* Number of units that will fit. */
8786 todo_units = std::min (len_units,
8787 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8788
8789 /* Construct "m"<memaddr>","<len>". */
8790 memaddr = remote_address_masked (memaddr);
8791 p = rs->buf;
8792 *p++ = 'm';
8793 p += hexnumstr (p, (ULONGEST) memaddr);
8794 *p++ = ',';
8795 p += hexnumstr (p, (ULONGEST) todo_units);
8796 *p = '\0';
8797 putpkt (rs->buf);
8798 getpkt (&rs->buf, &rs->buf_size, 0);
8799 if (rs->buf[0] == 'E'
8800 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8801 && rs->buf[3] == '\0')
8802 return TARGET_XFER_E_IO;
8803 /* Reply describes memory byte by byte, each byte encoded as two hex
8804 characters. */
8805 p = rs->buf;
8806 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8807 /* Return what we have. Let higher layers handle partial reads. */
8808 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8809 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8810 }
8811
8812 /* Using the set of read-only target sections of remote, read live
8813 read-only memory.
8814
8815 For interface/parameters/return description see target.h,
8816 to_xfer_partial. */
8817
8818 target_xfer_status
8819 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8820 ULONGEST memaddr,
8821 ULONGEST len,
8822 int unit_size,
8823 ULONGEST *xfered_len)
8824 {
8825 struct target_section *secp;
8826 struct target_section_table *table;
8827
8828 secp = target_section_by_addr (this, memaddr);
8829 if (secp != NULL
8830 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8831 secp->the_bfd_section)
8832 & SEC_READONLY))
8833 {
8834 struct target_section *p;
8835 ULONGEST memend = memaddr + len;
8836
8837 table = target_get_section_table (this);
8838
8839 for (p = table->sections; p < table->sections_end; p++)
8840 {
8841 if (memaddr >= p->addr)
8842 {
8843 if (memend <= p->endaddr)
8844 {
8845 /* Entire transfer is within this section. */
8846 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8847 xfered_len);
8848 }
8849 else if (memaddr >= p->endaddr)
8850 {
8851 /* This section ends before the transfer starts. */
8852 continue;
8853 }
8854 else
8855 {
8856 /* This section overlaps the transfer. Just do half. */
8857 len = p->endaddr - memaddr;
8858 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8859 xfered_len);
8860 }
8861 }
8862 }
8863 }
8864
8865 return TARGET_XFER_EOF;
8866 }
8867
8868 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8869 first if the requested memory is unavailable in traceframe.
8870 Otherwise, fall back to remote_read_bytes_1. */
8871
8872 target_xfer_status
8873 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8874 gdb_byte *myaddr, ULONGEST len, int unit_size,
8875 ULONGEST *xfered_len)
8876 {
8877 if (len == 0)
8878 return TARGET_XFER_EOF;
8879
8880 if (get_traceframe_number () != -1)
8881 {
8882 std::vector<mem_range> available;
8883
8884 /* If we fail to get the set of available memory, then the
8885 target does not support querying traceframe info, and so we
8886 attempt reading from the traceframe anyway (assuming the
8887 target implements the old QTro packet then). */
8888 if (traceframe_available_memory (&available, memaddr, len))
8889 {
8890 if (available.empty () || available[0].start != memaddr)
8891 {
8892 enum target_xfer_status res;
8893
8894 /* Don't read into the traceframe's available
8895 memory. */
8896 if (!available.empty ())
8897 {
8898 LONGEST oldlen = len;
8899
8900 len = available[0].start - memaddr;
8901 gdb_assert (len <= oldlen);
8902 }
8903
8904 /* This goes through the topmost target again. */
8905 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8906 len, unit_size, xfered_len);
8907 if (res == TARGET_XFER_OK)
8908 return TARGET_XFER_OK;
8909 else
8910 {
8911 /* No use trying further, we know some memory starting
8912 at MEMADDR isn't available. */
8913 *xfered_len = len;
8914 return (*xfered_len != 0) ?
8915 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8916 }
8917 }
8918
8919 /* Don't try to read more than how much is available, in
8920 case the target implements the deprecated QTro packet to
8921 cater for older GDBs (the target's knowledge of read-only
8922 sections may be outdated by now). */
8923 len = available[0].length;
8924 }
8925 }
8926
8927 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8928 }
8929
8930 \f
8931
8932 /* Sends a packet with content determined by the printf format string
8933 FORMAT and the remaining arguments, then gets the reply. Returns
8934 whether the packet was a success, a failure, or unknown. */
8935
8936 packet_result
8937 remote_target::remote_send_printf (const char *format, ...)
8938 {
8939 struct remote_state *rs = get_remote_state ();
8940 int max_size = get_remote_packet_size ();
8941 va_list ap;
8942
8943 va_start (ap, format);
8944
8945 rs->buf[0] = '\0';
8946 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8947 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8948
8949 if (putpkt (rs->buf) < 0)
8950 error (_("Communication problem with target."));
8951
8952 rs->buf[0] = '\0';
8953 getpkt (&rs->buf, &rs->buf_size, 0);
8954
8955 return packet_check_result (rs->buf);
8956 }
8957
8958 /* Flash writing can take quite some time. We'll set
8959 effectively infinite timeout for flash operations.
8960 In future, we'll need to decide on a better approach. */
8961 static const int remote_flash_timeout = 1000;
8962
8963 void
8964 remote_target::flash_erase (ULONGEST address, LONGEST length)
8965 {
8966 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8967 enum packet_result ret;
8968 scoped_restore restore_timeout
8969 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8970
8971 ret = remote_send_printf ("vFlashErase:%s,%s",
8972 phex (address, addr_size),
8973 phex (length, 4));
8974 switch (ret)
8975 {
8976 case PACKET_UNKNOWN:
8977 error (_("Remote target does not support flash erase"));
8978 case PACKET_ERROR:
8979 error (_("Error erasing flash with vFlashErase packet"));
8980 default:
8981 break;
8982 }
8983 }
8984
8985 target_xfer_status
8986 remote_target::remote_flash_write (ULONGEST address,
8987 ULONGEST length, ULONGEST *xfered_len,
8988 const gdb_byte *data)
8989 {
8990 scoped_restore restore_timeout
8991 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8992 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8993 xfered_len,'X', 0);
8994 }
8995
8996 void
8997 remote_target::flash_done ()
8998 {
8999 int ret;
9000
9001 scoped_restore restore_timeout
9002 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9003
9004 ret = remote_send_printf ("vFlashDone");
9005
9006 switch (ret)
9007 {
9008 case PACKET_UNKNOWN:
9009 error (_("Remote target does not support vFlashDone"));
9010 case PACKET_ERROR:
9011 error (_("Error finishing flash operation"));
9012 default:
9013 break;
9014 }
9015 }
9016
9017 void
9018 remote_target::files_info ()
9019 {
9020 puts_filtered ("Debugging a target over a serial line.\n");
9021 }
9022 \f
9023 /* Stuff for dealing with the packets which are part of this protocol.
9024 See comment at top of file for details. */
9025
9026 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9027 error to higher layers. Called when a serial error is detected.
9028 The exception message is STRING, followed by a colon and a blank,
9029 the system error message for errno at function entry and final dot
9030 for output compatibility with throw_perror_with_name. */
9031
9032 static void
9033 unpush_and_perror (const char *string)
9034 {
9035 int saved_errno = errno;
9036
9037 remote_unpush_target ();
9038 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9039 safe_strerror (saved_errno));
9040 }
9041
9042 /* Read a single character from the remote end. The current quit
9043 handler is overridden to avoid quitting in the middle of packet
9044 sequence, as that would break communication with the remote server.
9045 See remote_serial_quit_handler for more detail. */
9046
9047 int
9048 remote_target::readchar (int timeout)
9049 {
9050 int ch;
9051 struct remote_state *rs = get_remote_state ();
9052
9053 {
9054 scoped_restore restore_quit_target
9055 = make_scoped_restore (&curr_quit_handler_target, this);
9056 scoped_restore restore_quit
9057 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9058
9059 rs->got_ctrlc_during_io = 0;
9060
9061 ch = serial_readchar (rs->remote_desc, timeout);
9062
9063 if (rs->got_ctrlc_during_io)
9064 set_quit_flag ();
9065 }
9066
9067 if (ch >= 0)
9068 return ch;
9069
9070 switch ((enum serial_rc) ch)
9071 {
9072 case SERIAL_EOF:
9073 remote_unpush_target ();
9074 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9075 /* no return */
9076 case SERIAL_ERROR:
9077 unpush_and_perror (_("Remote communication error. "
9078 "Target disconnected."));
9079 /* no return */
9080 case SERIAL_TIMEOUT:
9081 break;
9082 }
9083 return ch;
9084 }
9085
9086 /* Wrapper for serial_write that closes the target and throws if
9087 writing fails. The current quit handler is overridden to avoid
9088 quitting in the middle of packet sequence, as that would break
9089 communication with the remote server. See
9090 remote_serial_quit_handler for more detail. */
9091
9092 void
9093 remote_target::remote_serial_write (const char *str, int len)
9094 {
9095 struct remote_state *rs = get_remote_state ();
9096
9097 scoped_restore restore_quit_target
9098 = make_scoped_restore (&curr_quit_handler_target, this);
9099 scoped_restore restore_quit
9100 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9101
9102 rs->got_ctrlc_during_io = 0;
9103
9104 if (serial_write (rs->remote_desc, str, len))
9105 {
9106 unpush_and_perror (_("Remote communication error. "
9107 "Target disconnected."));
9108 }
9109
9110 if (rs->got_ctrlc_during_io)
9111 set_quit_flag ();
9112 }
9113
9114 /* Return a string representing an escaped version of BUF, of len N.
9115 E.g. \n is converted to \\n, \t to \\t, etc. */
9116
9117 static std::string
9118 escape_buffer (const char *buf, int n)
9119 {
9120 string_file stb;
9121
9122 stb.putstrn (buf, n, '\\');
9123 return std::move (stb.string ());
9124 }
9125
9126 /* Display a null-terminated packet on stdout, for debugging, using C
9127 string notation. */
9128
9129 static void
9130 print_packet (const char *buf)
9131 {
9132 puts_filtered ("\"");
9133 fputstr_filtered (buf, '"', gdb_stdout);
9134 puts_filtered ("\"");
9135 }
9136
9137 int
9138 remote_target::putpkt (const char *buf)
9139 {
9140 return putpkt_binary (buf, strlen (buf));
9141 }
9142
9143 /* Wrapper around remote_target::putpkt to avoid exporting
9144 remote_target. */
9145
9146 int
9147 putpkt (remote_target *remote, const char *buf)
9148 {
9149 return remote->putpkt (buf);
9150 }
9151
9152 /* Send a packet to the remote machine, with error checking. The data
9153 of the packet is in BUF. The string in BUF can be at most
9154 get_remote_packet_size () - 5 to account for the $, # and checksum,
9155 and for a possible /0 if we are debugging (remote_debug) and want
9156 to print the sent packet as a string. */
9157
9158 int
9159 remote_target::putpkt_binary (const char *buf, int cnt)
9160 {
9161 struct remote_state *rs = get_remote_state ();
9162 int i;
9163 unsigned char csum = 0;
9164 gdb::def_vector<char> data (cnt + 6);
9165 char *buf2 = data.data ();
9166
9167 int ch;
9168 int tcount = 0;
9169 char *p;
9170
9171 /* Catch cases like trying to read memory or listing threads while
9172 we're waiting for a stop reply. The remote server wouldn't be
9173 ready to handle this request, so we'd hang and timeout. We don't
9174 have to worry about this in synchronous mode, because in that
9175 case it's not possible to issue a command while the target is
9176 running. This is not a problem in non-stop mode, because in that
9177 case, the stub is always ready to process serial input. */
9178 if (!target_is_non_stop_p ()
9179 && target_is_async_p ()
9180 && rs->waiting_for_stop_reply)
9181 {
9182 error (_("Cannot execute this command while the target is running.\n"
9183 "Use the \"interrupt\" command to stop the target\n"
9184 "and then try again."));
9185 }
9186
9187 /* We're sending out a new packet. Make sure we don't look at a
9188 stale cached response. */
9189 rs->cached_wait_status = 0;
9190
9191 /* Copy the packet into buffer BUF2, encapsulating it
9192 and giving it a checksum. */
9193
9194 p = buf2;
9195 *p++ = '$';
9196
9197 for (i = 0; i < cnt; i++)
9198 {
9199 csum += buf[i];
9200 *p++ = buf[i];
9201 }
9202 *p++ = '#';
9203 *p++ = tohex ((csum >> 4) & 0xf);
9204 *p++ = tohex (csum & 0xf);
9205
9206 /* Send it over and over until we get a positive ack. */
9207
9208 while (1)
9209 {
9210 int started_error_output = 0;
9211
9212 if (remote_debug)
9213 {
9214 *p = '\0';
9215
9216 int len = (int) (p - buf2);
9217
9218 std::string str
9219 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
9220
9221 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9222
9223 if (len > REMOTE_DEBUG_MAX_CHAR)
9224 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9225 len - REMOTE_DEBUG_MAX_CHAR);
9226
9227 fprintf_unfiltered (gdb_stdlog, "...");
9228
9229 gdb_flush (gdb_stdlog);
9230 }
9231 remote_serial_write (buf2, p - buf2);
9232
9233 /* If this is a no acks version of the remote protocol, send the
9234 packet and move on. */
9235 if (rs->noack_mode)
9236 break;
9237
9238 /* Read until either a timeout occurs (-2) or '+' is read.
9239 Handle any notification that arrives in the mean time. */
9240 while (1)
9241 {
9242 ch = readchar (remote_timeout);
9243
9244 if (remote_debug)
9245 {
9246 switch (ch)
9247 {
9248 case '+':
9249 case '-':
9250 case SERIAL_TIMEOUT:
9251 case '$':
9252 case '%':
9253 if (started_error_output)
9254 {
9255 putchar_unfiltered ('\n');
9256 started_error_output = 0;
9257 }
9258 }
9259 }
9260
9261 switch (ch)
9262 {
9263 case '+':
9264 if (remote_debug)
9265 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9266 return 1;
9267 case '-':
9268 if (remote_debug)
9269 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9270 /* FALLTHROUGH */
9271 case SERIAL_TIMEOUT:
9272 tcount++;
9273 if (tcount > 3)
9274 return 0;
9275 break; /* Retransmit buffer. */
9276 case '$':
9277 {
9278 if (remote_debug)
9279 fprintf_unfiltered (gdb_stdlog,
9280 "Packet instead of Ack, ignoring it\n");
9281 /* It's probably an old response sent because an ACK
9282 was lost. Gobble up the packet and ack it so it
9283 doesn't get retransmitted when we resend this
9284 packet. */
9285 skip_frame ();
9286 remote_serial_write ("+", 1);
9287 continue; /* Now, go look for +. */
9288 }
9289
9290 case '%':
9291 {
9292 int val;
9293
9294 /* If we got a notification, handle it, and go back to looking
9295 for an ack. */
9296 /* We've found the start of a notification. Now
9297 collect the data. */
9298 val = read_frame (&rs->buf, &rs->buf_size);
9299 if (val >= 0)
9300 {
9301 if (remote_debug)
9302 {
9303 std::string str = escape_buffer (rs->buf, val);
9304
9305 fprintf_unfiltered (gdb_stdlog,
9306 " Notification received: %s\n",
9307 str.c_str ());
9308 }
9309 handle_notification (rs->notif_state, rs->buf);
9310 /* We're in sync now, rewait for the ack. */
9311 tcount = 0;
9312 }
9313 else
9314 {
9315 if (remote_debug)
9316 {
9317 if (!started_error_output)
9318 {
9319 started_error_output = 1;
9320 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9321 }
9322 fputc_unfiltered (ch & 0177, gdb_stdlog);
9323 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
9324 }
9325 }
9326 continue;
9327 }
9328 /* fall-through */
9329 default:
9330 if (remote_debug)
9331 {
9332 if (!started_error_output)
9333 {
9334 started_error_output = 1;
9335 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9336 }
9337 fputc_unfiltered (ch & 0177, gdb_stdlog);
9338 }
9339 continue;
9340 }
9341 break; /* Here to retransmit. */
9342 }
9343
9344 #if 0
9345 /* This is wrong. If doing a long backtrace, the user should be
9346 able to get out next time we call QUIT, without anything as
9347 violent as interrupt_query. If we want to provide a way out of
9348 here without getting to the next QUIT, it should be based on
9349 hitting ^C twice as in remote_wait. */
9350 if (quit_flag)
9351 {
9352 quit_flag = 0;
9353 interrupt_query ();
9354 }
9355 #endif
9356 }
9357
9358 return 0;
9359 }
9360
9361 /* Come here after finding the start of a frame when we expected an
9362 ack. Do our best to discard the rest of this packet. */
9363
9364 void
9365 remote_target::skip_frame ()
9366 {
9367 int c;
9368
9369 while (1)
9370 {
9371 c = readchar (remote_timeout);
9372 switch (c)
9373 {
9374 case SERIAL_TIMEOUT:
9375 /* Nothing we can do. */
9376 return;
9377 case '#':
9378 /* Discard the two bytes of checksum and stop. */
9379 c = readchar (remote_timeout);
9380 if (c >= 0)
9381 c = readchar (remote_timeout);
9382
9383 return;
9384 case '*': /* Run length encoding. */
9385 /* Discard the repeat count. */
9386 c = readchar (remote_timeout);
9387 if (c < 0)
9388 return;
9389 break;
9390 default:
9391 /* A regular character. */
9392 break;
9393 }
9394 }
9395 }
9396
9397 /* Come here after finding the start of the frame. Collect the rest
9398 into *BUF, verifying the checksum, length, and handling run-length
9399 compression. NUL terminate the buffer. If there is not enough room,
9400 expand *BUF using xrealloc.
9401
9402 Returns -1 on error, number of characters in buffer (ignoring the
9403 trailing NULL) on success. (could be extended to return one of the
9404 SERIAL status indications). */
9405
9406 long
9407 remote_target::read_frame (char **buf_p, long *sizeof_buf)
9408 {
9409 unsigned char csum;
9410 long bc;
9411 int c;
9412 char *buf = *buf_p;
9413 struct remote_state *rs = get_remote_state ();
9414
9415 csum = 0;
9416 bc = 0;
9417
9418 while (1)
9419 {
9420 c = readchar (remote_timeout);
9421 switch (c)
9422 {
9423 case SERIAL_TIMEOUT:
9424 if (remote_debug)
9425 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9426 return -1;
9427 case '$':
9428 if (remote_debug)
9429 fputs_filtered ("Saw new packet start in middle of old one\n",
9430 gdb_stdlog);
9431 return -1; /* Start a new packet, count retries. */
9432 case '#':
9433 {
9434 unsigned char pktcsum;
9435 int check_0 = 0;
9436 int check_1 = 0;
9437
9438 buf[bc] = '\0';
9439
9440 check_0 = readchar (remote_timeout);
9441 if (check_0 >= 0)
9442 check_1 = readchar (remote_timeout);
9443
9444 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9445 {
9446 if (remote_debug)
9447 fputs_filtered ("Timeout in checksum, retrying\n",
9448 gdb_stdlog);
9449 return -1;
9450 }
9451 else if (check_0 < 0 || check_1 < 0)
9452 {
9453 if (remote_debug)
9454 fputs_filtered ("Communication error in checksum\n",
9455 gdb_stdlog);
9456 return -1;
9457 }
9458
9459 /* Don't recompute the checksum; with no ack packets we
9460 don't have any way to indicate a packet retransmission
9461 is necessary. */
9462 if (rs->noack_mode)
9463 return bc;
9464
9465 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9466 if (csum == pktcsum)
9467 return bc;
9468
9469 if (remote_debug)
9470 {
9471 std::string str = escape_buffer (buf, bc);
9472
9473 fprintf_unfiltered (gdb_stdlog,
9474 "Bad checksum, sentsum=0x%x, "
9475 "csum=0x%x, buf=%s\n",
9476 pktcsum, csum, str.c_str ());
9477 }
9478 /* Number of characters in buffer ignoring trailing
9479 NULL. */
9480 return -1;
9481 }
9482 case '*': /* Run length encoding. */
9483 {
9484 int repeat;
9485
9486 csum += c;
9487 c = readchar (remote_timeout);
9488 csum += c;
9489 repeat = c - ' ' + 3; /* Compute repeat count. */
9490
9491 /* The character before ``*'' is repeated. */
9492
9493 if (repeat > 0 && repeat <= 255 && bc > 0)
9494 {
9495 if (bc + repeat - 1 >= *sizeof_buf - 1)
9496 {
9497 /* Make some more room in the buffer. */
9498 *sizeof_buf += repeat;
9499 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9500 buf = *buf_p;
9501 }
9502
9503 memset (&buf[bc], buf[bc - 1], repeat);
9504 bc += repeat;
9505 continue;
9506 }
9507
9508 buf[bc] = '\0';
9509 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9510 return -1;
9511 }
9512 default:
9513 if (bc >= *sizeof_buf - 1)
9514 {
9515 /* Make some more room in the buffer. */
9516 *sizeof_buf *= 2;
9517 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9518 buf = *buf_p;
9519 }
9520
9521 buf[bc++] = c;
9522 csum += c;
9523 continue;
9524 }
9525 }
9526 }
9527
9528 /* Read a packet from the remote machine, with error checking, and
9529 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9530 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9531 rather than timing out; this is used (in synchronous mode) to wait
9532 for a target that is is executing user code to stop. */
9533 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9534 don't have to change all the calls to getpkt to deal with the
9535 return value, because at the moment I don't know what the right
9536 thing to do it for those. */
9537
9538 void
9539 remote_target::getpkt (char **buf, long *sizeof_buf, int forever)
9540 {
9541 getpkt_sane (buf, sizeof_buf, forever);
9542 }
9543
9544
9545 /* Read a packet from the remote machine, with error checking, and
9546 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9547 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9548 rather than timing out; this is used (in synchronous mode) to wait
9549 for a target that is is executing user code to stop. If FOREVER ==
9550 0, this function is allowed to time out gracefully and return an
9551 indication of this to the caller. Otherwise return the number of
9552 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9553 enough reason to return to the caller. *IS_NOTIF is an output
9554 boolean that indicates whether *BUF holds a notification or not
9555 (a regular packet). */
9556
9557 int
9558 remote_target::getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf,
9559 int forever, int expecting_notif,
9560 int *is_notif)
9561 {
9562 struct remote_state *rs = get_remote_state ();
9563 int c;
9564 int tries;
9565 int timeout;
9566 int val = -1;
9567
9568 /* We're reading a new response. Make sure we don't look at a
9569 previously cached response. */
9570 rs->cached_wait_status = 0;
9571
9572 strcpy (*buf, "timeout");
9573
9574 if (forever)
9575 timeout = watchdog > 0 ? watchdog : -1;
9576 else if (expecting_notif)
9577 timeout = 0; /* There should already be a char in the buffer. If
9578 not, bail out. */
9579 else
9580 timeout = remote_timeout;
9581
9582 #define MAX_TRIES 3
9583
9584 /* Process any number of notifications, and then return when
9585 we get a packet. */
9586 for (;;)
9587 {
9588 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9589 times. */
9590 for (tries = 1; tries <= MAX_TRIES; tries++)
9591 {
9592 /* This can loop forever if the remote side sends us
9593 characters continuously, but if it pauses, we'll get
9594 SERIAL_TIMEOUT from readchar because of timeout. Then
9595 we'll count that as a retry.
9596
9597 Note that even when forever is set, we will only wait
9598 forever prior to the start of a packet. After that, we
9599 expect characters to arrive at a brisk pace. They should
9600 show up within remote_timeout intervals. */
9601 do
9602 c = readchar (timeout);
9603 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9604
9605 if (c == SERIAL_TIMEOUT)
9606 {
9607 if (expecting_notif)
9608 return -1; /* Don't complain, it's normal to not get
9609 anything in this case. */
9610
9611 if (forever) /* Watchdog went off? Kill the target. */
9612 {
9613 remote_unpush_target ();
9614 throw_error (TARGET_CLOSE_ERROR,
9615 _("Watchdog timeout has expired. "
9616 "Target detached."));
9617 }
9618 if (remote_debug)
9619 fputs_filtered ("Timed out.\n", gdb_stdlog);
9620 }
9621 else
9622 {
9623 /* We've found the start of a packet or notification.
9624 Now collect the data. */
9625 val = read_frame (buf, sizeof_buf);
9626 if (val >= 0)
9627 break;
9628 }
9629
9630 remote_serial_write ("-", 1);
9631 }
9632
9633 if (tries > MAX_TRIES)
9634 {
9635 /* We have tried hard enough, and just can't receive the
9636 packet/notification. Give up. */
9637 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9638
9639 /* Skip the ack char if we're in no-ack mode. */
9640 if (!rs->noack_mode)
9641 remote_serial_write ("+", 1);
9642 return -1;
9643 }
9644
9645 /* If we got an ordinary packet, return that to our caller. */
9646 if (c == '$')
9647 {
9648 if (remote_debug)
9649 {
9650 std::string str
9651 = escape_buffer (*buf,
9652 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9653
9654 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9655 str.c_str ());
9656
9657 if (val > REMOTE_DEBUG_MAX_CHAR)
9658 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9659 val - REMOTE_DEBUG_MAX_CHAR);
9660
9661 fprintf_unfiltered (gdb_stdlog, "\n");
9662 }
9663
9664 /* Skip the ack char if we're in no-ack mode. */
9665 if (!rs->noack_mode)
9666 remote_serial_write ("+", 1);
9667 if (is_notif != NULL)
9668 *is_notif = 0;
9669 return val;
9670 }
9671
9672 /* If we got a notification, handle it, and go back to looking
9673 for a packet. */
9674 else
9675 {
9676 gdb_assert (c == '%');
9677
9678 if (remote_debug)
9679 {
9680 std::string str = escape_buffer (*buf, val);
9681
9682 fprintf_unfiltered (gdb_stdlog,
9683 " Notification received: %s\n",
9684 str.c_str ());
9685 }
9686 if (is_notif != NULL)
9687 *is_notif = 1;
9688
9689 handle_notification (rs->notif_state, *buf);
9690
9691 /* Notifications require no acknowledgement. */
9692
9693 if (expecting_notif)
9694 return val;
9695 }
9696 }
9697 }
9698
9699 int
9700 remote_target::getpkt_sane (char **buf, long *sizeof_buf, int forever)
9701 {
9702 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9703 }
9704
9705 int
9706 remote_target::getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9707 int *is_notif)
9708 {
9709 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9710 is_notif);
9711 }
9712
9713 /* Kill any new fork children of process PID that haven't been
9714 processed by follow_fork. */
9715
9716 void
9717 remote_target::kill_new_fork_children (int pid)
9718 {
9719 remote_state *rs = get_remote_state ();
9720 struct thread_info *thread;
9721 struct notif_client *notif = &notif_client_stop;
9722
9723 /* Kill the fork child threads of any threads in process PID
9724 that are stopped at a fork event. */
9725 ALL_NON_EXITED_THREADS (thread)
9726 {
9727 struct target_waitstatus *ws = &thread->pending_follow;
9728
9729 if (is_pending_fork_parent (ws, pid, thread->ptid))
9730 {
9731 int child_pid = ws->value.related_pid.pid ();
9732 int res;
9733
9734 res = remote_vkill (child_pid);
9735 if (res != 0)
9736 error (_("Can't kill fork child process %d"), child_pid);
9737 }
9738 }
9739
9740 /* Check for any pending fork events (not reported or processed yet)
9741 in process PID and kill those fork child threads as well. */
9742 remote_notif_get_pending_events (notif);
9743 for (auto &event : rs->stop_reply_queue)
9744 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9745 {
9746 int child_pid = event->ws.value.related_pid.pid ();
9747 int res;
9748
9749 res = remote_vkill (child_pid);
9750 if (res != 0)
9751 error (_("Can't kill fork child process %d"), child_pid);
9752 }
9753 }
9754
9755 \f
9756 /* Target hook to kill the current inferior. */
9757
9758 void
9759 remote_target::kill ()
9760 {
9761 int res = -1;
9762 int pid = inferior_ptid.pid ();
9763 struct remote_state *rs = get_remote_state ();
9764
9765 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9766 {
9767 /* If we're stopped while forking and we haven't followed yet,
9768 kill the child task. We need to do this before killing the
9769 parent task because if this is a vfork then the parent will
9770 be sleeping. */
9771 kill_new_fork_children (pid);
9772
9773 res = remote_vkill (pid);
9774 if (res == 0)
9775 {
9776 target_mourn_inferior (inferior_ptid);
9777 return;
9778 }
9779 }
9780
9781 /* If we are in 'target remote' mode and we are killing the only
9782 inferior, then we will tell gdbserver to exit and unpush the
9783 target. */
9784 if (res == -1 && !remote_multi_process_p (rs)
9785 && number_of_live_inferiors () == 1)
9786 {
9787 remote_kill_k ();
9788
9789 /* We've killed the remote end, we get to mourn it. If we are
9790 not in extended mode, mourning the inferior also unpushes
9791 remote_ops from the target stack, which closes the remote
9792 connection. */
9793 target_mourn_inferior (inferior_ptid);
9794
9795 return;
9796 }
9797
9798 error (_("Can't kill process"));
9799 }
9800
9801 /* Send a kill request to the target using the 'vKill' packet. */
9802
9803 int
9804 remote_target::remote_vkill (int pid)
9805 {
9806 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9807 return -1;
9808
9809 remote_state *rs = get_remote_state ();
9810
9811 /* Tell the remote target to detach. */
9812 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9813 putpkt (rs->buf);
9814 getpkt (&rs->buf, &rs->buf_size, 0);
9815
9816 switch (packet_ok (rs->buf,
9817 &remote_protocol_packets[PACKET_vKill]))
9818 {
9819 case PACKET_OK:
9820 return 0;
9821 case PACKET_ERROR:
9822 return 1;
9823 case PACKET_UNKNOWN:
9824 return -1;
9825 default:
9826 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9827 }
9828 }
9829
9830 /* Send a kill request to the target using the 'k' packet. */
9831
9832 void
9833 remote_target::remote_kill_k ()
9834 {
9835 /* Catch errors so the user can quit from gdb even when we
9836 aren't on speaking terms with the remote system. */
9837 TRY
9838 {
9839 putpkt ("k");
9840 }
9841 CATCH (ex, RETURN_MASK_ERROR)
9842 {
9843 if (ex.error == TARGET_CLOSE_ERROR)
9844 {
9845 /* If we got an (EOF) error that caused the target
9846 to go away, then we're done, that's what we wanted.
9847 "k" is susceptible to cause a premature EOF, given
9848 that the remote server isn't actually required to
9849 reply to "k", and it can happen that it doesn't
9850 even get to reply ACK to the "k". */
9851 return;
9852 }
9853
9854 /* Otherwise, something went wrong. We didn't actually kill
9855 the target. Just propagate the exception, and let the
9856 user or higher layers decide what to do. */
9857 throw_exception (ex);
9858 }
9859 END_CATCH
9860 }
9861
9862 void
9863 remote_target::mourn_inferior ()
9864 {
9865 struct remote_state *rs = get_remote_state ();
9866
9867 /* We're no longer interested in notification events of an inferior
9868 that exited or was killed/detached. */
9869 discard_pending_stop_replies (current_inferior ());
9870
9871 /* In 'target remote' mode with one inferior, we close the connection. */
9872 if (!rs->extended && number_of_live_inferiors () <= 1)
9873 {
9874 unpush_target (this);
9875
9876 /* remote_close takes care of doing most of the clean up. */
9877 generic_mourn_inferior ();
9878 return;
9879 }
9880
9881 /* In case we got here due to an error, but we're going to stay
9882 connected. */
9883 rs->waiting_for_stop_reply = 0;
9884
9885 /* If the current general thread belonged to the process we just
9886 detached from or has exited, the remote side current general
9887 thread becomes undefined. Considering a case like this:
9888
9889 - We just got here due to a detach.
9890 - The process that we're detaching from happens to immediately
9891 report a global breakpoint being hit in non-stop mode, in the
9892 same thread we had selected before.
9893 - GDB attaches to this process again.
9894 - This event happens to be the next event we handle.
9895
9896 GDB would consider that the current general thread didn't need to
9897 be set on the stub side (with Hg), since for all it knew,
9898 GENERAL_THREAD hadn't changed.
9899
9900 Notice that although in all-stop mode, the remote server always
9901 sets the current thread to the thread reporting the stop event,
9902 that doesn't happen in non-stop mode; in non-stop, the stub *must
9903 not* change the current thread when reporting a breakpoint hit,
9904 due to the decoupling of event reporting and event handling.
9905
9906 To keep things simple, we always invalidate our notion of the
9907 current thread. */
9908 record_currthread (rs, minus_one_ptid);
9909
9910 /* Call common code to mark the inferior as not running. */
9911 generic_mourn_inferior ();
9912
9913 if (!have_inferiors ())
9914 {
9915 if (!remote_multi_process_p (rs))
9916 {
9917 /* Check whether the target is running now - some remote stubs
9918 automatically restart after kill. */
9919 putpkt ("?");
9920 getpkt (&rs->buf, &rs->buf_size, 0);
9921
9922 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9923 {
9924 /* Assume that the target has been restarted. Set
9925 inferior_ptid so that bits of core GDB realizes
9926 there's something here, e.g., so that the user can
9927 say "kill" again. */
9928 inferior_ptid = magic_null_ptid;
9929 }
9930 }
9931 }
9932 }
9933
9934 bool
9935 extended_remote_target::supports_disable_randomization ()
9936 {
9937 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9938 }
9939
9940 void
9941 remote_target::extended_remote_disable_randomization (int val)
9942 {
9943 struct remote_state *rs = get_remote_state ();
9944 char *reply;
9945
9946 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9947 val);
9948 putpkt (rs->buf);
9949 reply = remote_get_noisy_reply ();
9950 if (*reply == '\0')
9951 error (_("Target does not support QDisableRandomization."));
9952 if (strcmp (reply, "OK") != 0)
9953 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9954 }
9955
9956 int
9957 remote_target::extended_remote_run (const std::string &args)
9958 {
9959 struct remote_state *rs = get_remote_state ();
9960 int len;
9961 const char *remote_exec_file = get_remote_exec_file ();
9962
9963 /* If the user has disabled vRun support, or we have detected that
9964 support is not available, do not try it. */
9965 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9966 return -1;
9967
9968 strcpy (rs->buf, "vRun;");
9969 len = strlen (rs->buf);
9970
9971 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9972 error (_("Remote file name too long for run packet"));
9973 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9974 strlen (remote_exec_file));
9975
9976 if (!args.empty ())
9977 {
9978 int i;
9979
9980 gdb_argv argv (args.c_str ());
9981 for (i = 0; argv[i] != NULL; i++)
9982 {
9983 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9984 error (_("Argument list too long for run packet"));
9985 rs->buf[len++] = ';';
9986 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9987 strlen (argv[i]));
9988 }
9989 }
9990
9991 rs->buf[len++] = '\0';
9992
9993 putpkt (rs->buf);
9994 getpkt (&rs->buf, &rs->buf_size, 0);
9995
9996 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9997 {
9998 case PACKET_OK:
9999 /* We have a wait response. All is well. */
10000 return 0;
10001 case PACKET_UNKNOWN:
10002 return -1;
10003 case PACKET_ERROR:
10004 if (remote_exec_file[0] == '\0')
10005 error (_("Running the default executable on the remote target failed; "
10006 "try \"set remote exec-file\"?"));
10007 else
10008 error (_("Running \"%s\" on the remote target failed"),
10009 remote_exec_file);
10010 default:
10011 gdb_assert_not_reached (_("bad switch"));
10012 }
10013 }
10014
10015 /* Helper function to send set/unset environment packets. ACTION is
10016 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10017 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10018 sent. */
10019
10020 void
10021 remote_target::send_environment_packet (const char *action,
10022 const char *packet,
10023 const char *value)
10024 {
10025 remote_state *rs = get_remote_state ();
10026
10027 /* Convert the environment variable to an hex string, which
10028 is the best format to be transmitted over the wire. */
10029 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10030 strlen (value));
10031
10032 xsnprintf (rs->buf, get_remote_packet_size (),
10033 "%s:%s", packet, encoded_value.c_str ());
10034
10035 putpkt (rs->buf);
10036 getpkt (&rs->buf, &rs->buf_size, 0);
10037 if (strcmp (rs->buf, "OK") != 0)
10038 warning (_("Unable to %s environment variable '%s' on remote."),
10039 action, value);
10040 }
10041
10042 /* Helper function to handle the QEnvironment* packets. */
10043
10044 void
10045 remote_target::extended_remote_environment_support ()
10046 {
10047 remote_state *rs = get_remote_state ();
10048
10049 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10050 {
10051 putpkt ("QEnvironmentReset");
10052 getpkt (&rs->buf, &rs->buf_size, 0);
10053 if (strcmp (rs->buf, "OK") != 0)
10054 warning (_("Unable to reset environment on remote."));
10055 }
10056
10057 gdb_environ *e = &current_inferior ()->environment;
10058
10059 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10060 for (const std::string &el : e->user_set_env ())
10061 send_environment_packet ("set", "QEnvironmentHexEncoded",
10062 el.c_str ());
10063
10064 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10065 for (const std::string &el : e->user_unset_env ())
10066 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10067 }
10068
10069 /* Helper function to set the current working directory for the
10070 inferior in the remote target. */
10071
10072 void
10073 remote_target::extended_remote_set_inferior_cwd ()
10074 {
10075 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10076 {
10077 const char *inferior_cwd = get_inferior_cwd ();
10078 remote_state *rs = get_remote_state ();
10079
10080 if (inferior_cwd != NULL)
10081 {
10082 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10083 strlen (inferior_cwd));
10084
10085 xsnprintf (rs->buf, get_remote_packet_size (),
10086 "QSetWorkingDir:%s", hexpath.c_str ());
10087 }
10088 else
10089 {
10090 /* An empty inferior_cwd means that the user wants us to
10091 reset the remote server's inferior's cwd. */
10092 xsnprintf (rs->buf, get_remote_packet_size (),
10093 "QSetWorkingDir:");
10094 }
10095
10096 putpkt (rs->buf);
10097 getpkt (&rs->buf, &rs->buf_size, 0);
10098 if (packet_ok (rs->buf,
10099 &remote_protocol_packets[PACKET_QSetWorkingDir])
10100 != PACKET_OK)
10101 error (_("\
10102 Remote replied unexpectedly while setting the inferior's working\n\
10103 directory: %s"),
10104 rs->buf);
10105
10106 }
10107 }
10108
10109 /* In the extended protocol we want to be able to do things like
10110 "run" and have them basically work as expected. So we need
10111 a special create_inferior function. We support changing the
10112 executable file and the command line arguments, but not the
10113 environment. */
10114
10115 void
10116 extended_remote_target::create_inferior (const char *exec_file,
10117 const std::string &args,
10118 char **env, int from_tty)
10119 {
10120 int run_worked;
10121 char *stop_reply;
10122 struct remote_state *rs = get_remote_state ();
10123 const char *remote_exec_file = get_remote_exec_file ();
10124
10125 /* If running asynchronously, register the target file descriptor
10126 with the event loop. */
10127 if (target_can_async_p ())
10128 target_async (1);
10129
10130 /* Disable address space randomization if requested (and supported). */
10131 if (supports_disable_randomization ())
10132 extended_remote_disable_randomization (disable_randomization);
10133
10134 /* If startup-with-shell is on, we inform gdbserver to start the
10135 remote inferior using a shell. */
10136 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10137 {
10138 xsnprintf (rs->buf, get_remote_packet_size (),
10139 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10140 putpkt (rs->buf);
10141 getpkt (&rs->buf, &rs->buf_size, 0);
10142 if (strcmp (rs->buf, "OK") != 0)
10143 error (_("\
10144 Remote replied unexpectedly while setting startup-with-shell: %s"),
10145 rs->buf);
10146 }
10147
10148 extended_remote_environment_support ();
10149
10150 extended_remote_set_inferior_cwd ();
10151
10152 /* Now restart the remote server. */
10153 run_worked = extended_remote_run (args) != -1;
10154 if (!run_worked)
10155 {
10156 /* vRun was not supported. Fail if we need it to do what the
10157 user requested. */
10158 if (remote_exec_file[0])
10159 error (_("Remote target does not support \"set remote exec-file\""));
10160 if (!args.empty ())
10161 error (_("Remote target does not support \"set args\" or run <ARGS>"));
10162
10163 /* Fall back to "R". */
10164 extended_remote_restart ();
10165 }
10166
10167 if (!have_inferiors ())
10168 {
10169 /* Clean up from the last time we ran, before we mark the target
10170 running again. This will mark breakpoints uninserted, and
10171 get_offsets may insert breakpoints. */
10172 init_thread_list ();
10173 init_wait_for_inferior ();
10174 }
10175
10176 /* vRun's success return is a stop reply. */
10177 stop_reply = run_worked ? rs->buf : NULL;
10178 add_current_inferior_and_thread (stop_reply);
10179
10180 /* Get updated offsets, if the stub uses qOffsets. */
10181 get_offsets ();
10182 }
10183 \f
10184
10185 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10186 the list of conditions (in agent expression bytecode format), if any, the
10187 target needs to evaluate. The output is placed into the packet buffer
10188 started from BUF and ended at BUF_END. */
10189
10190 static int
10191 remote_add_target_side_condition (struct gdbarch *gdbarch,
10192 struct bp_target_info *bp_tgt, char *buf,
10193 char *buf_end)
10194 {
10195 if (bp_tgt->conditions.empty ())
10196 return 0;
10197
10198 buf += strlen (buf);
10199 xsnprintf (buf, buf_end - buf, "%s", ";");
10200 buf++;
10201
10202 /* Send conditions to the target. */
10203 for (agent_expr *aexpr : bp_tgt->conditions)
10204 {
10205 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10206 buf += strlen (buf);
10207 for (int i = 0; i < aexpr->len; ++i)
10208 buf = pack_hex_byte (buf, aexpr->buf[i]);
10209 *buf = '\0';
10210 }
10211 return 0;
10212 }
10213
10214 static void
10215 remote_add_target_side_commands (struct gdbarch *gdbarch,
10216 struct bp_target_info *bp_tgt, char *buf)
10217 {
10218 if (bp_tgt->tcommands.empty ())
10219 return;
10220
10221 buf += strlen (buf);
10222
10223 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10224 buf += strlen (buf);
10225
10226 /* Concatenate all the agent expressions that are commands into the
10227 cmds parameter. */
10228 for (agent_expr *aexpr : bp_tgt->tcommands)
10229 {
10230 sprintf (buf, "X%x,", aexpr->len);
10231 buf += strlen (buf);
10232 for (int i = 0; i < aexpr->len; ++i)
10233 buf = pack_hex_byte (buf, aexpr->buf[i]);
10234 *buf = '\0';
10235 }
10236 }
10237
10238 /* Insert a breakpoint. On targets that have software breakpoint
10239 support, we ask the remote target to do the work; on targets
10240 which don't, we insert a traditional memory breakpoint. */
10241
10242 int
10243 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10244 struct bp_target_info *bp_tgt)
10245 {
10246 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10247 If it succeeds, then set the support to PACKET_ENABLE. If it
10248 fails, and the user has explicitly requested the Z support then
10249 report an error, otherwise, mark it disabled and go on. */
10250
10251 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10252 {
10253 CORE_ADDR addr = bp_tgt->reqstd_address;
10254 struct remote_state *rs;
10255 char *p, *endbuf;
10256
10257 /* Make sure the remote is pointing at the right process, if
10258 necessary. */
10259 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10260 set_general_process ();
10261
10262 rs = get_remote_state ();
10263 p = rs->buf;
10264 endbuf = rs->buf + get_remote_packet_size ();
10265
10266 *(p++) = 'Z';
10267 *(p++) = '0';
10268 *(p++) = ',';
10269 addr = (ULONGEST) remote_address_masked (addr);
10270 p += hexnumstr (p, addr);
10271 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10272
10273 if (supports_evaluation_of_breakpoint_conditions ())
10274 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10275
10276 if (can_run_breakpoint_commands ())
10277 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10278
10279 putpkt (rs->buf);
10280 getpkt (&rs->buf, &rs->buf_size, 0);
10281
10282 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10283 {
10284 case PACKET_ERROR:
10285 return -1;
10286 case PACKET_OK:
10287 return 0;
10288 case PACKET_UNKNOWN:
10289 break;
10290 }
10291 }
10292
10293 /* If this breakpoint has target-side commands but this stub doesn't
10294 support Z0 packets, throw error. */
10295 if (!bp_tgt->tcommands.empty ())
10296 throw_error (NOT_SUPPORTED_ERROR, _("\
10297 Target doesn't support breakpoints that have target side commands."));
10298
10299 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10300 }
10301
10302 int
10303 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10304 struct bp_target_info *bp_tgt,
10305 enum remove_bp_reason reason)
10306 {
10307 CORE_ADDR addr = bp_tgt->placed_address;
10308 struct remote_state *rs = get_remote_state ();
10309
10310 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10311 {
10312 char *p = rs->buf;
10313 char *endbuf = rs->buf + get_remote_packet_size ();
10314
10315 /* Make sure the remote is pointing at the right process, if
10316 necessary. */
10317 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10318 set_general_process ();
10319
10320 *(p++) = 'z';
10321 *(p++) = '0';
10322 *(p++) = ',';
10323
10324 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10325 p += hexnumstr (p, addr);
10326 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10327
10328 putpkt (rs->buf);
10329 getpkt (&rs->buf, &rs->buf_size, 0);
10330
10331 return (rs->buf[0] == 'E');
10332 }
10333
10334 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10335 }
10336
10337 static enum Z_packet_type
10338 watchpoint_to_Z_packet (int type)
10339 {
10340 switch (type)
10341 {
10342 case hw_write:
10343 return Z_PACKET_WRITE_WP;
10344 break;
10345 case hw_read:
10346 return Z_PACKET_READ_WP;
10347 break;
10348 case hw_access:
10349 return Z_PACKET_ACCESS_WP;
10350 break;
10351 default:
10352 internal_error (__FILE__, __LINE__,
10353 _("hw_bp_to_z: bad watchpoint type %d"), type);
10354 }
10355 }
10356
10357 int
10358 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10359 enum target_hw_bp_type type, struct expression *cond)
10360 {
10361 struct remote_state *rs = get_remote_state ();
10362 char *endbuf = rs->buf + get_remote_packet_size ();
10363 char *p;
10364 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10365
10366 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10367 return 1;
10368
10369 /* Make sure the remote is pointing at the right process, if
10370 necessary. */
10371 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10372 set_general_process ();
10373
10374 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
10375 p = strchr (rs->buf, '\0');
10376 addr = remote_address_masked (addr);
10377 p += hexnumstr (p, (ULONGEST) addr);
10378 xsnprintf (p, endbuf - p, ",%x", len);
10379
10380 putpkt (rs->buf);
10381 getpkt (&rs->buf, &rs->buf_size, 0);
10382
10383 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10384 {
10385 case PACKET_ERROR:
10386 return -1;
10387 case PACKET_UNKNOWN:
10388 return 1;
10389 case PACKET_OK:
10390 return 0;
10391 }
10392 internal_error (__FILE__, __LINE__,
10393 _("remote_insert_watchpoint: reached end of function"));
10394 }
10395
10396 bool
10397 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10398 CORE_ADDR start, int length)
10399 {
10400 CORE_ADDR diff = remote_address_masked (addr - start);
10401
10402 return diff < length;
10403 }
10404
10405
10406 int
10407 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10408 enum target_hw_bp_type type, struct expression *cond)
10409 {
10410 struct remote_state *rs = get_remote_state ();
10411 char *endbuf = rs->buf + get_remote_packet_size ();
10412 char *p;
10413 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10414
10415 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10416 return -1;
10417
10418 /* Make sure the remote is pointing at the right process, if
10419 necessary. */
10420 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10421 set_general_process ();
10422
10423 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
10424 p = strchr (rs->buf, '\0');
10425 addr = remote_address_masked (addr);
10426 p += hexnumstr (p, (ULONGEST) addr);
10427 xsnprintf (p, endbuf - p, ",%x", len);
10428 putpkt (rs->buf);
10429 getpkt (&rs->buf, &rs->buf_size, 0);
10430
10431 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10432 {
10433 case PACKET_ERROR:
10434 case PACKET_UNKNOWN:
10435 return -1;
10436 case PACKET_OK:
10437 return 0;
10438 }
10439 internal_error (__FILE__, __LINE__,
10440 _("remote_remove_watchpoint: reached end of function"));
10441 }
10442
10443
10444 int remote_hw_watchpoint_limit = -1;
10445 int remote_hw_watchpoint_length_limit = -1;
10446 int remote_hw_breakpoint_limit = -1;
10447
10448 int
10449 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10450 {
10451 if (remote_hw_watchpoint_length_limit == 0)
10452 return 0;
10453 else if (remote_hw_watchpoint_length_limit < 0)
10454 return 1;
10455 else if (len <= remote_hw_watchpoint_length_limit)
10456 return 1;
10457 else
10458 return 0;
10459 }
10460
10461 int
10462 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10463 {
10464 if (type == bp_hardware_breakpoint)
10465 {
10466 if (remote_hw_breakpoint_limit == 0)
10467 return 0;
10468 else if (remote_hw_breakpoint_limit < 0)
10469 return 1;
10470 else if (cnt <= remote_hw_breakpoint_limit)
10471 return 1;
10472 }
10473 else
10474 {
10475 if (remote_hw_watchpoint_limit == 0)
10476 return 0;
10477 else if (remote_hw_watchpoint_limit < 0)
10478 return 1;
10479 else if (ot)
10480 return -1;
10481 else if (cnt <= remote_hw_watchpoint_limit)
10482 return 1;
10483 }
10484 return -1;
10485 }
10486
10487 /* The to_stopped_by_sw_breakpoint method of target remote. */
10488
10489 bool
10490 remote_target::stopped_by_sw_breakpoint ()
10491 {
10492 struct thread_info *thread = inferior_thread ();
10493
10494 return (thread->priv != NULL
10495 && (get_remote_thread_info (thread)->stop_reason
10496 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10497 }
10498
10499 /* The to_supports_stopped_by_sw_breakpoint method of target
10500 remote. */
10501
10502 bool
10503 remote_target::supports_stopped_by_sw_breakpoint ()
10504 {
10505 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10506 }
10507
10508 /* The to_stopped_by_hw_breakpoint method of target remote. */
10509
10510 bool
10511 remote_target::stopped_by_hw_breakpoint ()
10512 {
10513 struct thread_info *thread = inferior_thread ();
10514
10515 return (thread->priv != NULL
10516 && (get_remote_thread_info (thread)->stop_reason
10517 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10518 }
10519
10520 /* The to_supports_stopped_by_hw_breakpoint method of target
10521 remote. */
10522
10523 bool
10524 remote_target::supports_stopped_by_hw_breakpoint ()
10525 {
10526 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10527 }
10528
10529 bool
10530 remote_target::stopped_by_watchpoint ()
10531 {
10532 struct thread_info *thread = inferior_thread ();
10533
10534 return (thread->priv != NULL
10535 && (get_remote_thread_info (thread)->stop_reason
10536 == TARGET_STOPPED_BY_WATCHPOINT));
10537 }
10538
10539 bool
10540 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10541 {
10542 struct thread_info *thread = inferior_thread ();
10543
10544 if (thread->priv != NULL
10545 && (get_remote_thread_info (thread)->stop_reason
10546 == TARGET_STOPPED_BY_WATCHPOINT))
10547 {
10548 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10549 return true;
10550 }
10551
10552 return false;
10553 }
10554
10555
10556 int
10557 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10558 struct bp_target_info *bp_tgt)
10559 {
10560 CORE_ADDR addr = bp_tgt->reqstd_address;
10561 struct remote_state *rs;
10562 char *p, *endbuf;
10563 char *message;
10564
10565 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10566 return -1;
10567
10568 /* Make sure the remote is pointing at the right process, if
10569 necessary. */
10570 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10571 set_general_process ();
10572
10573 rs = get_remote_state ();
10574 p = rs->buf;
10575 endbuf = rs->buf + get_remote_packet_size ();
10576
10577 *(p++) = 'Z';
10578 *(p++) = '1';
10579 *(p++) = ',';
10580
10581 addr = remote_address_masked (addr);
10582 p += hexnumstr (p, (ULONGEST) addr);
10583 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10584
10585 if (supports_evaluation_of_breakpoint_conditions ())
10586 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10587
10588 if (can_run_breakpoint_commands ())
10589 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10590
10591 putpkt (rs->buf);
10592 getpkt (&rs->buf, &rs->buf_size, 0);
10593
10594 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10595 {
10596 case PACKET_ERROR:
10597 if (rs->buf[1] == '.')
10598 {
10599 message = strchr (rs->buf + 2, '.');
10600 if (message)
10601 error (_("Remote failure reply: %s"), message + 1);
10602 }
10603 return -1;
10604 case PACKET_UNKNOWN:
10605 return -1;
10606 case PACKET_OK:
10607 return 0;
10608 }
10609 internal_error (__FILE__, __LINE__,
10610 _("remote_insert_hw_breakpoint: reached end of function"));
10611 }
10612
10613
10614 int
10615 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10616 struct bp_target_info *bp_tgt)
10617 {
10618 CORE_ADDR addr;
10619 struct remote_state *rs = get_remote_state ();
10620 char *p = rs->buf;
10621 char *endbuf = rs->buf + get_remote_packet_size ();
10622
10623 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10624 return -1;
10625
10626 /* Make sure the remote is pointing at the right process, if
10627 necessary. */
10628 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10629 set_general_process ();
10630
10631 *(p++) = 'z';
10632 *(p++) = '1';
10633 *(p++) = ',';
10634
10635 addr = remote_address_masked (bp_tgt->placed_address);
10636 p += hexnumstr (p, (ULONGEST) addr);
10637 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10638
10639 putpkt (rs->buf);
10640 getpkt (&rs->buf, &rs->buf_size, 0);
10641
10642 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10643 {
10644 case PACKET_ERROR:
10645 case PACKET_UNKNOWN:
10646 return -1;
10647 case PACKET_OK:
10648 return 0;
10649 }
10650 internal_error (__FILE__, __LINE__,
10651 _("remote_remove_hw_breakpoint: reached end of function"));
10652 }
10653
10654 /* Verify memory using the "qCRC:" request. */
10655
10656 int
10657 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10658 {
10659 struct remote_state *rs = get_remote_state ();
10660 unsigned long host_crc, target_crc;
10661 char *tmp;
10662
10663 /* It doesn't make sense to use qCRC if the remote target is
10664 connected but not running. */
10665 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10666 {
10667 enum packet_result result;
10668
10669 /* Make sure the remote is pointing at the right process. */
10670 set_general_process ();
10671
10672 /* FIXME: assumes lma can fit into long. */
10673 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10674 (long) lma, (long) size);
10675 putpkt (rs->buf);
10676
10677 /* Be clever; compute the host_crc before waiting for target
10678 reply. */
10679 host_crc = xcrc32 (data, size, 0xffffffff);
10680
10681 getpkt (&rs->buf, &rs->buf_size, 0);
10682
10683 result = packet_ok (rs->buf,
10684 &remote_protocol_packets[PACKET_qCRC]);
10685 if (result == PACKET_ERROR)
10686 return -1;
10687 else if (result == PACKET_OK)
10688 {
10689 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10690 target_crc = target_crc * 16 + fromhex (*tmp);
10691
10692 return (host_crc == target_crc);
10693 }
10694 }
10695
10696 return simple_verify_memory (this, data, lma, size);
10697 }
10698
10699 /* compare-sections command
10700
10701 With no arguments, compares each loadable section in the exec bfd
10702 with the same memory range on the target, and reports mismatches.
10703 Useful for verifying the image on the target against the exec file. */
10704
10705 static void
10706 compare_sections_command (const char *args, int from_tty)
10707 {
10708 asection *s;
10709 const char *sectname;
10710 bfd_size_type size;
10711 bfd_vma lma;
10712 int matched = 0;
10713 int mismatched = 0;
10714 int res;
10715 int read_only = 0;
10716
10717 if (!exec_bfd)
10718 error (_("command cannot be used without an exec file"));
10719
10720 if (args != NULL && strcmp (args, "-r") == 0)
10721 {
10722 read_only = 1;
10723 args = NULL;
10724 }
10725
10726 for (s = exec_bfd->sections; s; s = s->next)
10727 {
10728 if (!(s->flags & SEC_LOAD))
10729 continue; /* Skip non-loadable section. */
10730
10731 if (read_only && (s->flags & SEC_READONLY) == 0)
10732 continue; /* Skip writeable sections */
10733
10734 size = bfd_get_section_size (s);
10735 if (size == 0)
10736 continue; /* Skip zero-length section. */
10737
10738 sectname = bfd_get_section_name (exec_bfd, s);
10739 if (args && strcmp (args, sectname) != 0)
10740 continue; /* Not the section selected by user. */
10741
10742 matched = 1; /* Do this section. */
10743 lma = s->lma;
10744
10745 gdb::byte_vector sectdata (size);
10746 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10747
10748 res = target_verify_memory (sectdata.data (), lma, size);
10749
10750 if (res == -1)
10751 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10752 paddress (target_gdbarch (), lma),
10753 paddress (target_gdbarch (), lma + size));
10754
10755 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10756 paddress (target_gdbarch (), lma),
10757 paddress (target_gdbarch (), lma + size));
10758 if (res)
10759 printf_filtered ("matched.\n");
10760 else
10761 {
10762 printf_filtered ("MIS-MATCHED!\n");
10763 mismatched++;
10764 }
10765 }
10766 if (mismatched > 0)
10767 warning (_("One or more sections of the target image does not match\n\
10768 the loaded file\n"));
10769 if (args && !matched)
10770 printf_filtered (_("No loaded section named '%s'.\n"), args);
10771 }
10772
10773 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10774 into remote target. The number of bytes written to the remote
10775 target is returned, or -1 for error. */
10776
10777 target_xfer_status
10778 remote_target::remote_write_qxfer (const char *object_name,
10779 const char *annex, const gdb_byte *writebuf,
10780 ULONGEST offset, LONGEST len,
10781 ULONGEST *xfered_len,
10782 struct packet_config *packet)
10783 {
10784 int i, buf_len;
10785 ULONGEST n;
10786 struct remote_state *rs = get_remote_state ();
10787 int max_size = get_memory_write_packet_size ();
10788
10789 if (packet_config_support (packet) == PACKET_DISABLE)
10790 return TARGET_XFER_E_IO;
10791
10792 /* Insert header. */
10793 i = snprintf (rs->buf, max_size,
10794 "qXfer:%s:write:%s:%s:",
10795 object_name, annex ? annex : "",
10796 phex_nz (offset, sizeof offset));
10797 max_size -= (i + 1);
10798
10799 /* Escape as much data as fits into rs->buf. */
10800 buf_len = remote_escape_output
10801 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10802
10803 if (putpkt_binary (rs->buf, i + buf_len) < 0
10804 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10805 || packet_ok (rs->buf, packet) != PACKET_OK)
10806 return TARGET_XFER_E_IO;
10807
10808 unpack_varlen_hex (rs->buf, &n);
10809
10810 *xfered_len = n;
10811 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10812 }
10813
10814 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10815 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10816 number of bytes read is returned, or 0 for EOF, or -1 for error.
10817 The number of bytes read may be less than LEN without indicating an
10818 EOF. PACKET is checked and updated to indicate whether the remote
10819 target supports this object. */
10820
10821 target_xfer_status
10822 remote_target::remote_read_qxfer (const char *object_name,
10823 const char *annex,
10824 gdb_byte *readbuf, ULONGEST offset,
10825 LONGEST len,
10826 ULONGEST *xfered_len,
10827 struct packet_config *packet)
10828 {
10829 struct remote_state *rs = get_remote_state ();
10830 LONGEST i, n, packet_len;
10831
10832 if (packet_config_support (packet) == PACKET_DISABLE)
10833 return TARGET_XFER_E_IO;
10834
10835 /* Check whether we've cached an end-of-object packet that matches
10836 this request. */
10837 if (rs->finished_object)
10838 {
10839 if (strcmp (object_name, rs->finished_object) == 0
10840 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10841 && offset == rs->finished_offset)
10842 return TARGET_XFER_EOF;
10843
10844
10845 /* Otherwise, we're now reading something different. Discard
10846 the cache. */
10847 xfree (rs->finished_object);
10848 xfree (rs->finished_annex);
10849 rs->finished_object = NULL;
10850 rs->finished_annex = NULL;
10851 }
10852
10853 /* Request only enough to fit in a single packet. The actual data
10854 may not, since we don't know how much of it will need to be escaped;
10855 the target is free to respond with slightly less data. We subtract
10856 five to account for the response type and the protocol frame. */
10857 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10858 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10859 object_name, annex ? annex : "",
10860 phex_nz (offset, sizeof offset),
10861 phex_nz (n, sizeof n));
10862 i = putpkt (rs->buf);
10863 if (i < 0)
10864 return TARGET_XFER_E_IO;
10865
10866 rs->buf[0] = '\0';
10867 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10868 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10869 return TARGET_XFER_E_IO;
10870
10871 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10872 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10873
10874 /* 'm' means there is (or at least might be) more data after this
10875 batch. That does not make sense unless there's at least one byte
10876 of data in this reply. */
10877 if (rs->buf[0] == 'm' && packet_len == 1)
10878 error (_("Remote qXfer reply contained no data."));
10879
10880 /* Got some data. */
10881 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10882 packet_len - 1, readbuf, n);
10883
10884 /* 'l' is an EOF marker, possibly including a final block of data,
10885 or possibly empty. If we have the final block of a non-empty
10886 object, record this fact to bypass a subsequent partial read. */
10887 if (rs->buf[0] == 'l' && offset + i > 0)
10888 {
10889 rs->finished_object = xstrdup (object_name);
10890 rs->finished_annex = xstrdup (annex ? annex : "");
10891 rs->finished_offset = offset + i;
10892 }
10893
10894 if (i == 0)
10895 return TARGET_XFER_EOF;
10896 else
10897 {
10898 *xfered_len = i;
10899 return TARGET_XFER_OK;
10900 }
10901 }
10902
10903 enum target_xfer_status
10904 remote_target::xfer_partial (enum target_object object,
10905 const char *annex, gdb_byte *readbuf,
10906 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10907 ULONGEST *xfered_len)
10908 {
10909 struct remote_state *rs;
10910 int i;
10911 char *p2;
10912 char query_type;
10913 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10914
10915 set_remote_traceframe ();
10916 set_general_thread (inferior_ptid);
10917
10918 rs = get_remote_state ();
10919
10920 /* Handle memory using the standard memory routines. */
10921 if (object == TARGET_OBJECT_MEMORY)
10922 {
10923 /* If the remote target is connected but not running, we should
10924 pass this request down to a lower stratum (e.g. the executable
10925 file). */
10926 if (!target_has_execution)
10927 return TARGET_XFER_EOF;
10928
10929 if (writebuf != NULL)
10930 return remote_write_bytes (offset, writebuf, len, unit_size,
10931 xfered_len);
10932 else
10933 return remote_read_bytes (offset, readbuf, len, unit_size,
10934 xfered_len);
10935 }
10936
10937 /* Handle SPU memory using qxfer packets. */
10938 if (object == TARGET_OBJECT_SPU)
10939 {
10940 if (readbuf)
10941 return remote_read_qxfer ("spu", annex, readbuf, offset, len,
10942 xfered_len, &remote_protocol_packets
10943 [PACKET_qXfer_spu_read]);
10944 else
10945 return remote_write_qxfer ("spu", annex, writebuf, offset, len,
10946 xfered_len, &remote_protocol_packets
10947 [PACKET_qXfer_spu_write]);
10948 }
10949
10950 /* Handle extra signal info using qxfer packets. */
10951 if (object == TARGET_OBJECT_SIGNAL_INFO)
10952 {
10953 if (readbuf)
10954 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10955 xfered_len, &remote_protocol_packets
10956 [PACKET_qXfer_siginfo_read]);
10957 else
10958 return remote_write_qxfer ("siginfo", annex,
10959 writebuf, offset, len, xfered_len,
10960 &remote_protocol_packets
10961 [PACKET_qXfer_siginfo_write]);
10962 }
10963
10964 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10965 {
10966 if (readbuf)
10967 return remote_read_qxfer ("statictrace", annex,
10968 readbuf, offset, len, xfered_len,
10969 &remote_protocol_packets
10970 [PACKET_qXfer_statictrace_read]);
10971 else
10972 return TARGET_XFER_E_IO;
10973 }
10974
10975 /* Only handle flash writes. */
10976 if (writebuf != NULL)
10977 {
10978 switch (object)
10979 {
10980 case TARGET_OBJECT_FLASH:
10981 return remote_flash_write (offset, len, xfered_len,
10982 writebuf);
10983
10984 default:
10985 return TARGET_XFER_E_IO;
10986 }
10987 }
10988
10989 /* Map pre-existing objects onto letters. DO NOT do this for new
10990 objects!!! Instead specify new query packets. */
10991 switch (object)
10992 {
10993 case TARGET_OBJECT_AVR:
10994 query_type = 'R';
10995 break;
10996
10997 case TARGET_OBJECT_AUXV:
10998 gdb_assert (annex == NULL);
10999 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11000 xfered_len,
11001 &remote_protocol_packets[PACKET_qXfer_auxv]);
11002
11003 case TARGET_OBJECT_AVAILABLE_FEATURES:
11004 return remote_read_qxfer
11005 ("features", annex, readbuf, offset, len, xfered_len,
11006 &remote_protocol_packets[PACKET_qXfer_features]);
11007
11008 case TARGET_OBJECT_LIBRARIES:
11009 return remote_read_qxfer
11010 ("libraries", annex, readbuf, offset, len, xfered_len,
11011 &remote_protocol_packets[PACKET_qXfer_libraries]);
11012
11013 case TARGET_OBJECT_LIBRARIES_SVR4:
11014 return remote_read_qxfer
11015 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11016 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11017
11018 case TARGET_OBJECT_MEMORY_MAP:
11019 gdb_assert (annex == NULL);
11020 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11021 xfered_len,
11022 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11023
11024 case TARGET_OBJECT_OSDATA:
11025 /* Should only get here if we're connected. */
11026 gdb_assert (rs->remote_desc);
11027 return remote_read_qxfer
11028 ("osdata", annex, readbuf, offset, len, xfered_len,
11029 &remote_protocol_packets[PACKET_qXfer_osdata]);
11030
11031 case TARGET_OBJECT_THREADS:
11032 gdb_assert (annex == NULL);
11033 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11034 xfered_len,
11035 &remote_protocol_packets[PACKET_qXfer_threads]);
11036
11037 case TARGET_OBJECT_TRACEFRAME_INFO:
11038 gdb_assert (annex == NULL);
11039 return remote_read_qxfer
11040 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11041 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11042
11043 case TARGET_OBJECT_FDPIC:
11044 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11045 xfered_len,
11046 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11047
11048 case TARGET_OBJECT_OPENVMS_UIB:
11049 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11050 xfered_len,
11051 &remote_protocol_packets[PACKET_qXfer_uib]);
11052
11053 case TARGET_OBJECT_BTRACE:
11054 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11055 xfered_len,
11056 &remote_protocol_packets[PACKET_qXfer_btrace]);
11057
11058 case TARGET_OBJECT_BTRACE_CONF:
11059 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11060 len, xfered_len,
11061 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11062
11063 case TARGET_OBJECT_EXEC_FILE:
11064 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11065 len, xfered_len,
11066 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11067
11068 default:
11069 return TARGET_XFER_E_IO;
11070 }
11071
11072 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11073 large enough let the caller deal with it. */
11074 if (len < get_remote_packet_size ())
11075 return TARGET_XFER_E_IO;
11076 len = get_remote_packet_size ();
11077
11078 /* Except for querying the minimum buffer size, target must be open. */
11079 if (!rs->remote_desc)
11080 error (_("remote query is only available after target open"));
11081
11082 gdb_assert (annex != NULL);
11083 gdb_assert (readbuf != NULL);
11084
11085 p2 = rs->buf;
11086 *p2++ = 'q';
11087 *p2++ = query_type;
11088
11089 /* We used one buffer char for the remote protocol q command and
11090 another for the query type. As the remote protocol encapsulation
11091 uses 4 chars plus one extra in case we are debugging
11092 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11093 string. */
11094 i = 0;
11095 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11096 {
11097 /* Bad caller may have sent forbidden characters. */
11098 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11099 *p2++ = annex[i];
11100 i++;
11101 }
11102 *p2 = '\0';
11103 gdb_assert (annex[i] == '\0');
11104
11105 i = putpkt (rs->buf);
11106 if (i < 0)
11107 return TARGET_XFER_E_IO;
11108
11109 getpkt (&rs->buf, &rs->buf_size, 0);
11110 strcpy ((char *) readbuf, rs->buf);
11111
11112 *xfered_len = strlen ((char *) readbuf);
11113 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11114 }
11115
11116 /* Implementation of to_get_memory_xfer_limit. */
11117
11118 ULONGEST
11119 remote_target::get_memory_xfer_limit ()
11120 {
11121 return get_memory_write_packet_size ();
11122 }
11123
11124 int
11125 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11126 const gdb_byte *pattern, ULONGEST pattern_len,
11127 CORE_ADDR *found_addrp)
11128 {
11129 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11130 struct remote_state *rs = get_remote_state ();
11131 int max_size = get_memory_write_packet_size ();
11132 struct packet_config *packet =
11133 &remote_protocol_packets[PACKET_qSearch_memory];
11134 /* Number of packet bytes used to encode the pattern;
11135 this could be more than PATTERN_LEN due to escape characters. */
11136 int escaped_pattern_len;
11137 /* Amount of pattern that was encodable in the packet. */
11138 int used_pattern_len;
11139 int i;
11140 int found;
11141 ULONGEST found_addr;
11142
11143 /* Don't go to the target if we don't have to. This is done before
11144 checking packet_config_support to avoid the possibility that a
11145 success for this edge case means the facility works in
11146 general. */
11147 if (pattern_len > search_space_len)
11148 return 0;
11149 if (pattern_len == 0)
11150 {
11151 *found_addrp = start_addr;
11152 return 1;
11153 }
11154
11155 /* If we already know the packet isn't supported, fall back to the simple
11156 way of searching memory. */
11157
11158 if (packet_config_support (packet) == PACKET_DISABLE)
11159 {
11160 /* Target doesn't provided special support, fall back and use the
11161 standard support (copy memory and do the search here). */
11162 return simple_search_memory (this, start_addr, search_space_len,
11163 pattern, pattern_len, found_addrp);
11164 }
11165
11166 /* Make sure the remote is pointing at the right process. */
11167 set_general_process ();
11168
11169 /* Insert header. */
11170 i = snprintf (rs->buf, max_size,
11171 "qSearch:memory:%s;%s;",
11172 phex_nz (start_addr, addr_size),
11173 phex_nz (search_space_len, sizeof (search_space_len)));
11174 max_size -= (i + 1);
11175
11176 /* Escape as much data as fits into rs->buf. */
11177 escaped_pattern_len =
11178 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
11179 &used_pattern_len, max_size);
11180
11181 /* Bail if the pattern is too large. */
11182 if (used_pattern_len != pattern_len)
11183 error (_("Pattern is too large to transmit to remote target."));
11184
11185 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
11186 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
11187 || packet_ok (rs->buf, packet) != PACKET_OK)
11188 {
11189 /* The request may not have worked because the command is not
11190 supported. If so, fall back to the simple way. */
11191 if (packet_config_support (packet) == PACKET_DISABLE)
11192 {
11193 return simple_search_memory (this, start_addr, search_space_len,
11194 pattern, pattern_len, found_addrp);
11195 }
11196 return -1;
11197 }
11198
11199 if (rs->buf[0] == '0')
11200 found = 0;
11201 else if (rs->buf[0] == '1')
11202 {
11203 found = 1;
11204 if (rs->buf[1] != ',')
11205 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
11206 unpack_varlen_hex (rs->buf + 2, &found_addr);
11207 *found_addrp = found_addr;
11208 }
11209 else
11210 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
11211
11212 return found;
11213 }
11214
11215 void
11216 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11217 {
11218 struct remote_state *rs = get_remote_state ();
11219 char *p = rs->buf;
11220
11221 if (!rs->remote_desc)
11222 error (_("remote rcmd is only available after target open"));
11223
11224 /* Send a NULL command across as an empty command. */
11225 if (command == NULL)
11226 command = "";
11227
11228 /* The query prefix. */
11229 strcpy (rs->buf, "qRcmd,");
11230 p = strchr (rs->buf, '\0');
11231
11232 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
11233 > get_remote_packet_size ())
11234 error (_("\"monitor\" command ``%s'' is too long."), command);
11235
11236 /* Encode the actual command. */
11237 bin2hex ((const gdb_byte *) command, p, strlen (command));
11238
11239 if (putpkt (rs->buf) < 0)
11240 error (_("Communication problem with target."));
11241
11242 /* get/display the response */
11243 while (1)
11244 {
11245 char *buf;
11246
11247 /* XXX - see also remote_get_noisy_reply(). */
11248 QUIT; /* Allow user to bail out with ^C. */
11249 rs->buf[0] = '\0';
11250 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
11251 {
11252 /* Timeout. Continue to (try to) read responses.
11253 This is better than stopping with an error, assuming the stub
11254 is still executing the (long) monitor command.
11255 If needed, the user can interrupt gdb using C-c, obtaining
11256 an effect similar to stop on timeout. */
11257 continue;
11258 }
11259 buf = rs->buf;
11260 if (buf[0] == '\0')
11261 error (_("Target does not support this command."));
11262 if (buf[0] == 'O' && buf[1] != 'K')
11263 {
11264 remote_console_output (buf + 1); /* 'O' message from stub. */
11265 continue;
11266 }
11267 if (strcmp (buf, "OK") == 0)
11268 break;
11269 if (strlen (buf) == 3 && buf[0] == 'E'
11270 && isdigit (buf[1]) && isdigit (buf[2]))
11271 {
11272 error (_("Protocol error with Rcmd"));
11273 }
11274 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11275 {
11276 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11277
11278 fputc_unfiltered (c, outbuf);
11279 }
11280 break;
11281 }
11282 }
11283
11284 std::vector<mem_region>
11285 remote_target::memory_map ()
11286 {
11287 std::vector<mem_region> result;
11288 gdb::optional<gdb::char_vector> text
11289 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11290
11291 if (text)
11292 result = parse_memory_map (text->data ());
11293
11294 return result;
11295 }
11296
11297 static void
11298 packet_command (const char *args, int from_tty)
11299 {
11300 remote_target *remote = get_current_remote_target ();
11301
11302 if (remote == nullptr)
11303 error (_("command can only be used with remote target"));
11304
11305 remote->packet_command (args, from_tty);
11306 }
11307
11308 void
11309 remote_target::packet_command (const char *args, int from_tty)
11310 {
11311 if (!args)
11312 error (_("remote-packet command requires packet text as argument"));
11313
11314 puts_filtered ("sending: ");
11315 print_packet (args);
11316 puts_filtered ("\n");
11317 putpkt (args);
11318
11319 remote_state *rs = get_remote_state ();
11320
11321 getpkt (&rs->buf, &rs->buf_size, 0);
11322 puts_filtered ("received: ");
11323 print_packet (rs->buf);
11324 puts_filtered ("\n");
11325 }
11326
11327 #if 0
11328 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11329
11330 static void display_thread_info (struct gdb_ext_thread_info *info);
11331
11332 static void threadset_test_cmd (char *cmd, int tty);
11333
11334 static void threadalive_test (char *cmd, int tty);
11335
11336 static void threadlist_test_cmd (char *cmd, int tty);
11337
11338 int get_and_display_threadinfo (threadref *ref);
11339
11340 static void threadinfo_test_cmd (char *cmd, int tty);
11341
11342 static int thread_display_step (threadref *ref, void *context);
11343
11344 static void threadlist_update_test_cmd (char *cmd, int tty);
11345
11346 static void init_remote_threadtests (void);
11347
11348 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11349
11350 static void
11351 threadset_test_cmd (const char *cmd, int tty)
11352 {
11353 int sample_thread = SAMPLE_THREAD;
11354
11355 printf_filtered (_("Remote threadset test\n"));
11356 set_general_thread (sample_thread);
11357 }
11358
11359
11360 static void
11361 threadalive_test (const char *cmd, int tty)
11362 {
11363 int sample_thread = SAMPLE_THREAD;
11364 int pid = inferior_ptid.pid ();
11365 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11366
11367 if (remote_thread_alive (ptid))
11368 printf_filtered ("PASS: Thread alive test\n");
11369 else
11370 printf_filtered ("FAIL: Thread alive test\n");
11371 }
11372
11373 void output_threadid (char *title, threadref *ref);
11374
11375 void
11376 output_threadid (char *title, threadref *ref)
11377 {
11378 char hexid[20];
11379
11380 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
11381 hexid[16] = 0;
11382 printf_filtered ("%s %s\n", title, (&hexid[0]));
11383 }
11384
11385 static void
11386 threadlist_test_cmd (const char *cmd, int tty)
11387 {
11388 int startflag = 1;
11389 threadref nextthread;
11390 int done, result_count;
11391 threadref threadlist[3];
11392
11393 printf_filtered ("Remote Threadlist test\n");
11394 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11395 &result_count, &threadlist[0]))
11396 printf_filtered ("FAIL: threadlist test\n");
11397 else
11398 {
11399 threadref *scan = threadlist;
11400 threadref *limit = scan + result_count;
11401
11402 while (scan < limit)
11403 output_threadid (" thread ", scan++);
11404 }
11405 }
11406
11407 void
11408 display_thread_info (struct gdb_ext_thread_info *info)
11409 {
11410 output_threadid ("Threadid: ", &info->threadid);
11411 printf_filtered ("Name: %s\n ", info->shortname);
11412 printf_filtered ("State: %s\n", info->display);
11413 printf_filtered ("other: %s\n\n", info->more_display);
11414 }
11415
11416 int
11417 get_and_display_threadinfo (threadref *ref)
11418 {
11419 int result;
11420 int set;
11421 struct gdb_ext_thread_info threadinfo;
11422
11423 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11424 | TAG_MOREDISPLAY | TAG_DISPLAY;
11425 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11426 display_thread_info (&threadinfo);
11427 return result;
11428 }
11429
11430 static void
11431 threadinfo_test_cmd (const char *cmd, int tty)
11432 {
11433 int athread = SAMPLE_THREAD;
11434 threadref thread;
11435 int set;
11436
11437 int_to_threadref (&thread, athread);
11438 printf_filtered ("Remote Threadinfo test\n");
11439 if (!get_and_display_threadinfo (&thread))
11440 printf_filtered ("FAIL cannot get thread info\n");
11441 }
11442
11443 static int
11444 thread_display_step (threadref *ref, void *context)
11445 {
11446 /* output_threadid(" threadstep ",ref); *//* simple test */
11447 return get_and_display_threadinfo (ref);
11448 }
11449
11450 static void
11451 threadlist_update_test_cmd (const char *cmd, int tty)
11452 {
11453 printf_filtered ("Remote Threadlist update test\n");
11454 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11455 }
11456
11457 static void
11458 init_remote_threadtests (void)
11459 {
11460 add_com ("tlist", class_obscure, threadlist_test_cmd,
11461 _("Fetch and print the remote list of "
11462 "thread identifiers, one pkt only"));
11463 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11464 _("Fetch and display info about one thread"));
11465 add_com ("tset", class_obscure, threadset_test_cmd,
11466 _("Test setting to a different thread"));
11467 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11468 _("Iterate through updating all remote thread info"));
11469 add_com ("talive", class_obscure, threadalive_test,
11470 _(" Remote thread alive test "));
11471 }
11472
11473 #endif /* 0 */
11474
11475 /* Convert a thread ID to a string. Returns the string in a static
11476 buffer. */
11477
11478 const char *
11479 remote_target::pid_to_str (ptid_t ptid)
11480 {
11481 static char buf[64];
11482 struct remote_state *rs = get_remote_state ();
11483
11484 if (ptid == null_ptid)
11485 return normal_pid_to_str (ptid);
11486 else if (ptid.is_pid ())
11487 {
11488 /* Printing an inferior target id. */
11489
11490 /* When multi-process extensions are off, there's no way in the
11491 remote protocol to know the remote process id, if there's any
11492 at all. There's one exception --- when we're connected with
11493 target extended-remote, and we manually attached to a process
11494 with "attach PID". We don't record anywhere a flag that
11495 allows us to distinguish that case from the case of
11496 connecting with extended-remote and the stub already being
11497 attached to a process, and reporting yes to qAttached, hence
11498 no smart special casing here. */
11499 if (!remote_multi_process_p (rs))
11500 {
11501 xsnprintf (buf, sizeof buf, "Remote target");
11502 return buf;
11503 }
11504
11505 return normal_pid_to_str (ptid);
11506 }
11507 else
11508 {
11509 if (magic_null_ptid == ptid)
11510 xsnprintf (buf, sizeof buf, "Thread <main>");
11511 else if (remote_multi_process_p (rs))
11512 if (ptid.lwp () == 0)
11513 return normal_pid_to_str (ptid);
11514 else
11515 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11516 ptid.pid (), ptid.lwp ());
11517 else
11518 xsnprintf (buf, sizeof buf, "Thread %ld",
11519 ptid.lwp ());
11520 return buf;
11521 }
11522 }
11523
11524 /* Get the address of the thread local variable in OBJFILE which is
11525 stored at OFFSET within the thread local storage for thread PTID. */
11526
11527 CORE_ADDR
11528 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11529 CORE_ADDR offset)
11530 {
11531 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11532 {
11533 struct remote_state *rs = get_remote_state ();
11534 char *p = rs->buf;
11535 char *endp = rs->buf + get_remote_packet_size ();
11536 enum packet_result result;
11537
11538 strcpy (p, "qGetTLSAddr:");
11539 p += strlen (p);
11540 p = write_ptid (p, endp, ptid);
11541 *p++ = ',';
11542 p += hexnumstr (p, offset);
11543 *p++ = ',';
11544 p += hexnumstr (p, lm);
11545 *p++ = '\0';
11546
11547 putpkt (rs->buf);
11548 getpkt (&rs->buf, &rs->buf_size, 0);
11549 result = packet_ok (rs->buf,
11550 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11551 if (result == PACKET_OK)
11552 {
11553 ULONGEST result;
11554
11555 unpack_varlen_hex (rs->buf, &result);
11556 return result;
11557 }
11558 else if (result == PACKET_UNKNOWN)
11559 throw_error (TLS_GENERIC_ERROR,
11560 _("Remote target doesn't support qGetTLSAddr packet"));
11561 else
11562 throw_error (TLS_GENERIC_ERROR,
11563 _("Remote target failed to process qGetTLSAddr request"));
11564 }
11565 else
11566 throw_error (TLS_GENERIC_ERROR,
11567 _("TLS not supported or disabled on this target"));
11568 /* Not reached. */
11569 return 0;
11570 }
11571
11572 /* Provide thread local base, i.e. Thread Information Block address.
11573 Returns 1 if ptid is found and thread_local_base is non zero. */
11574
11575 bool
11576 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11577 {
11578 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11579 {
11580 struct remote_state *rs = get_remote_state ();
11581 char *p = rs->buf;
11582 char *endp = rs->buf + get_remote_packet_size ();
11583 enum packet_result result;
11584
11585 strcpy (p, "qGetTIBAddr:");
11586 p += strlen (p);
11587 p = write_ptid (p, endp, ptid);
11588 *p++ = '\0';
11589
11590 putpkt (rs->buf);
11591 getpkt (&rs->buf, &rs->buf_size, 0);
11592 result = packet_ok (rs->buf,
11593 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11594 if (result == PACKET_OK)
11595 {
11596 ULONGEST result;
11597
11598 unpack_varlen_hex (rs->buf, &result);
11599 if (addr)
11600 *addr = (CORE_ADDR) result;
11601 return true;
11602 }
11603 else if (result == PACKET_UNKNOWN)
11604 error (_("Remote target doesn't support qGetTIBAddr packet"));
11605 else
11606 error (_("Remote target failed to process qGetTIBAddr request"));
11607 }
11608 else
11609 error (_("qGetTIBAddr not supported or disabled on this target"));
11610 /* Not reached. */
11611 return false;
11612 }
11613
11614 /* Support for inferring a target description based on the current
11615 architecture and the size of a 'g' packet. While the 'g' packet
11616 can have any size (since optional registers can be left off the
11617 end), some sizes are easily recognizable given knowledge of the
11618 approximate architecture. */
11619
11620 struct remote_g_packet_guess
11621 {
11622 int bytes;
11623 const struct target_desc *tdesc;
11624 };
11625 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11626 DEF_VEC_O(remote_g_packet_guess_s);
11627
11628 struct remote_g_packet_data
11629 {
11630 VEC(remote_g_packet_guess_s) *guesses;
11631 };
11632
11633 static struct gdbarch_data *remote_g_packet_data_handle;
11634
11635 static void *
11636 remote_g_packet_data_init (struct obstack *obstack)
11637 {
11638 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11639 }
11640
11641 void
11642 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11643 const struct target_desc *tdesc)
11644 {
11645 struct remote_g_packet_data *data
11646 = ((struct remote_g_packet_data *)
11647 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11648 struct remote_g_packet_guess new_guess, *guess;
11649 int ix;
11650
11651 gdb_assert (tdesc != NULL);
11652
11653 for (ix = 0;
11654 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11655 ix++)
11656 if (guess->bytes == bytes)
11657 internal_error (__FILE__, __LINE__,
11658 _("Duplicate g packet description added for size %d"),
11659 bytes);
11660
11661 new_guess.bytes = bytes;
11662 new_guess.tdesc = tdesc;
11663 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11664 }
11665
11666 /* Return 1 if remote_read_description would do anything on this target
11667 and architecture, 0 otherwise. */
11668
11669 static int
11670 remote_read_description_p (struct target_ops *target)
11671 {
11672 struct remote_g_packet_data *data
11673 = ((struct remote_g_packet_data *)
11674 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11675
11676 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11677 return 1;
11678
11679 return 0;
11680 }
11681
11682 const struct target_desc *
11683 remote_target::read_description ()
11684 {
11685 struct remote_g_packet_data *data
11686 = ((struct remote_g_packet_data *)
11687 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11688
11689 /* Do not try this during initial connection, when we do not know
11690 whether there is a running but stopped thread. */
11691 if (!target_has_execution || inferior_ptid == null_ptid)
11692 return beneath ()->read_description ();
11693
11694 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11695 {
11696 struct remote_g_packet_guess *guess;
11697 int ix;
11698 int bytes = send_g_packet ();
11699
11700 for (ix = 0;
11701 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11702 ix++)
11703 if (guess->bytes == bytes)
11704 return guess->tdesc;
11705
11706 /* We discard the g packet. A minor optimization would be to
11707 hold on to it, and fill the register cache once we have selected
11708 an architecture, but it's too tricky to do safely. */
11709 }
11710
11711 return beneath ()->read_description ();
11712 }
11713
11714 /* Remote file transfer support. This is host-initiated I/O, not
11715 target-initiated; for target-initiated, see remote-fileio.c. */
11716
11717 /* If *LEFT is at least the length of STRING, copy STRING to
11718 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11719 decrease *LEFT. Otherwise raise an error. */
11720
11721 static void
11722 remote_buffer_add_string (char **buffer, int *left, const char *string)
11723 {
11724 int len = strlen (string);
11725
11726 if (len > *left)
11727 error (_("Packet too long for target."));
11728
11729 memcpy (*buffer, string, len);
11730 *buffer += len;
11731 *left -= len;
11732
11733 /* NUL-terminate the buffer as a convenience, if there is
11734 room. */
11735 if (*left)
11736 **buffer = '\0';
11737 }
11738
11739 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11740 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11741 decrease *LEFT. Otherwise raise an error. */
11742
11743 static void
11744 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11745 int len)
11746 {
11747 if (2 * len > *left)
11748 error (_("Packet too long for target."));
11749
11750 bin2hex (bytes, *buffer, len);
11751 *buffer += 2 * len;
11752 *left -= 2 * len;
11753
11754 /* NUL-terminate the buffer as a convenience, if there is
11755 room. */
11756 if (*left)
11757 **buffer = '\0';
11758 }
11759
11760 /* If *LEFT is large enough, convert VALUE to hex and add it to
11761 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11762 decrease *LEFT. Otherwise raise an error. */
11763
11764 static void
11765 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11766 {
11767 int len = hexnumlen (value);
11768
11769 if (len > *left)
11770 error (_("Packet too long for target."));
11771
11772 hexnumstr (*buffer, value);
11773 *buffer += len;
11774 *left -= len;
11775
11776 /* NUL-terminate the buffer as a convenience, if there is
11777 room. */
11778 if (*left)
11779 **buffer = '\0';
11780 }
11781
11782 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11783 value, *REMOTE_ERRNO to the remote error number or zero if none
11784 was included, and *ATTACHMENT to point to the start of the annex
11785 if any. The length of the packet isn't needed here; there may
11786 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11787
11788 Return 0 if the packet could be parsed, -1 if it could not. If
11789 -1 is returned, the other variables may not be initialized. */
11790
11791 static int
11792 remote_hostio_parse_result (char *buffer, int *retcode,
11793 int *remote_errno, char **attachment)
11794 {
11795 char *p, *p2;
11796
11797 *remote_errno = 0;
11798 *attachment = NULL;
11799
11800 if (buffer[0] != 'F')
11801 return -1;
11802
11803 errno = 0;
11804 *retcode = strtol (&buffer[1], &p, 16);
11805 if (errno != 0 || p == &buffer[1])
11806 return -1;
11807
11808 /* Check for ",errno". */
11809 if (*p == ',')
11810 {
11811 errno = 0;
11812 *remote_errno = strtol (p + 1, &p2, 16);
11813 if (errno != 0 || p + 1 == p2)
11814 return -1;
11815 p = p2;
11816 }
11817
11818 /* Check for ";attachment". If there is no attachment, the
11819 packet should end here. */
11820 if (*p == ';')
11821 {
11822 *attachment = p + 1;
11823 return 0;
11824 }
11825 else if (*p == '\0')
11826 return 0;
11827 else
11828 return -1;
11829 }
11830
11831 /* Send a prepared I/O packet to the target and read its response.
11832 The prepared packet is in the global RS->BUF before this function
11833 is called, and the answer is there when we return.
11834
11835 COMMAND_BYTES is the length of the request to send, which may include
11836 binary data. WHICH_PACKET is the packet configuration to check
11837 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11838 is set to the error number and -1 is returned. Otherwise the value
11839 returned by the function is returned.
11840
11841 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11842 attachment is expected; an error will be reported if there's a
11843 mismatch. If one is found, *ATTACHMENT will be set to point into
11844 the packet buffer and *ATTACHMENT_LEN will be set to the
11845 attachment's length. */
11846
11847 int
11848 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11849 int *remote_errno, char **attachment,
11850 int *attachment_len)
11851 {
11852 struct remote_state *rs = get_remote_state ();
11853 int ret, bytes_read;
11854 char *attachment_tmp;
11855
11856 if (packet_support (which_packet) == PACKET_DISABLE)
11857 {
11858 *remote_errno = FILEIO_ENOSYS;
11859 return -1;
11860 }
11861
11862 putpkt_binary (rs->buf, command_bytes);
11863 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11864
11865 /* If it timed out, something is wrong. Don't try to parse the
11866 buffer. */
11867 if (bytes_read < 0)
11868 {
11869 *remote_errno = FILEIO_EINVAL;
11870 return -1;
11871 }
11872
11873 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11874 {
11875 case PACKET_ERROR:
11876 *remote_errno = FILEIO_EINVAL;
11877 return -1;
11878 case PACKET_UNKNOWN:
11879 *remote_errno = FILEIO_ENOSYS;
11880 return -1;
11881 case PACKET_OK:
11882 break;
11883 }
11884
11885 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11886 &attachment_tmp))
11887 {
11888 *remote_errno = FILEIO_EINVAL;
11889 return -1;
11890 }
11891
11892 /* Make sure we saw an attachment if and only if we expected one. */
11893 if ((attachment_tmp == NULL && attachment != NULL)
11894 || (attachment_tmp != NULL && attachment == NULL))
11895 {
11896 *remote_errno = FILEIO_EINVAL;
11897 return -1;
11898 }
11899
11900 /* If an attachment was found, it must point into the packet buffer;
11901 work out how many bytes there were. */
11902 if (attachment_tmp != NULL)
11903 {
11904 *attachment = attachment_tmp;
11905 *attachment_len = bytes_read - (*attachment - rs->buf);
11906 }
11907
11908 return ret;
11909 }
11910
11911 /* See declaration.h. */
11912
11913 void
11914 readahead_cache::invalidate ()
11915 {
11916 this->fd = -1;
11917 }
11918
11919 /* See declaration.h. */
11920
11921 void
11922 readahead_cache::invalidate_fd (int fd)
11923 {
11924 if (this->fd == fd)
11925 this->fd = -1;
11926 }
11927
11928 /* Set the filesystem remote_hostio functions that take FILENAME
11929 arguments will use. Return 0 on success, or -1 if an error
11930 occurs (and set *REMOTE_ERRNO). */
11931
11932 int
11933 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11934 int *remote_errno)
11935 {
11936 struct remote_state *rs = get_remote_state ();
11937 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11938 char *p = rs->buf;
11939 int left = get_remote_packet_size () - 1;
11940 char arg[9];
11941 int ret;
11942
11943 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11944 return 0;
11945
11946 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11947 return 0;
11948
11949 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11950
11951 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11952 remote_buffer_add_string (&p, &left, arg);
11953
11954 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11955 remote_errno, NULL, NULL);
11956
11957 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11958 return 0;
11959
11960 if (ret == 0)
11961 rs->fs_pid = required_pid;
11962
11963 return ret;
11964 }
11965
11966 /* Implementation of to_fileio_open. */
11967
11968 int
11969 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11970 int flags, int mode, int warn_if_slow,
11971 int *remote_errno)
11972 {
11973 struct remote_state *rs = get_remote_state ();
11974 char *p = rs->buf;
11975 int left = get_remote_packet_size () - 1;
11976
11977 if (warn_if_slow)
11978 {
11979 static int warning_issued = 0;
11980
11981 printf_unfiltered (_("Reading %s from remote target...\n"),
11982 filename);
11983
11984 if (!warning_issued)
11985 {
11986 warning (_("File transfers from remote targets can be slow."
11987 " Use \"set sysroot\" to access files locally"
11988 " instead."));
11989 warning_issued = 1;
11990 }
11991 }
11992
11993 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11994 return -1;
11995
11996 remote_buffer_add_string (&p, &left, "vFile:open:");
11997
11998 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11999 strlen (filename));
12000 remote_buffer_add_string (&p, &left, ",");
12001
12002 remote_buffer_add_int (&p, &left, flags);
12003 remote_buffer_add_string (&p, &left, ",");
12004
12005 remote_buffer_add_int (&p, &left, mode);
12006
12007 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
12008 remote_errno, NULL, NULL);
12009 }
12010
12011 int
12012 remote_target::fileio_open (struct inferior *inf, const char *filename,
12013 int flags, int mode, int warn_if_slow,
12014 int *remote_errno)
12015 {
12016 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12017 remote_errno);
12018 }
12019
12020 /* Implementation of to_fileio_pwrite. */
12021
12022 int
12023 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12024 ULONGEST offset, int *remote_errno)
12025 {
12026 struct remote_state *rs = get_remote_state ();
12027 char *p = rs->buf;
12028 int left = get_remote_packet_size ();
12029 int out_len;
12030
12031 rs->readahead_cache.invalidate_fd (fd);
12032
12033 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12034
12035 remote_buffer_add_int (&p, &left, fd);
12036 remote_buffer_add_string (&p, &left, ",");
12037
12038 remote_buffer_add_int (&p, &left, offset);
12039 remote_buffer_add_string (&p, &left, ",");
12040
12041 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12042 get_remote_packet_size () - (p - rs->buf));
12043
12044 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
12045 remote_errno, NULL, NULL);
12046 }
12047
12048 int
12049 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12050 ULONGEST offset, int *remote_errno)
12051 {
12052 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12053 }
12054
12055 /* Helper for the implementation of to_fileio_pread. Read the file
12056 from the remote side with vFile:pread. */
12057
12058 int
12059 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12060 ULONGEST offset, int *remote_errno)
12061 {
12062 struct remote_state *rs = get_remote_state ();
12063 char *p = rs->buf;
12064 char *attachment;
12065 int left = get_remote_packet_size ();
12066 int ret, attachment_len;
12067 int read_len;
12068
12069 remote_buffer_add_string (&p, &left, "vFile:pread:");
12070
12071 remote_buffer_add_int (&p, &left, fd);
12072 remote_buffer_add_string (&p, &left, ",");
12073
12074 remote_buffer_add_int (&p, &left, len);
12075 remote_buffer_add_string (&p, &left, ",");
12076
12077 remote_buffer_add_int (&p, &left, offset);
12078
12079 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
12080 remote_errno, &attachment,
12081 &attachment_len);
12082
12083 if (ret < 0)
12084 return ret;
12085
12086 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12087 read_buf, len);
12088 if (read_len != ret)
12089 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12090
12091 return ret;
12092 }
12093
12094 /* See declaration.h. */
12095
12096 int
12097 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12098 ULONGEST offset)
12099 {
12100 if (this->fd == fd
12101 && this->offset <= offset
12102 && offset < this->offset + this->bufsize)
12103 {
12104 ULONGEST max = this->offset + this->bufsize;
12105
12106 if (offset + len > max)
12107 len = max - offset;
12108
12109 memcpy (read_buf, this->buf + offset - this->offset, len);
12110 return len;
12111 }
12112
12113 return 0;
12114 }
12115
12116 /* Implementation of to_fileio_pread. */
12117
12118 int
12119 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12120 ULONGEST offset, int *remote_errno)
12121 {
12122 int ret;
12123 struct remote_state *rs = get_remote_state ();
12124 readahead_cache *cache = &rs->readahead_cache;
12125
12126 ret = cache->pread (fd, read_buf, len, offset);
12127 if (ret > 0)
12128 {
12129 cache->hit_count++;
12130
12131 if (remote_debug)
12132 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12133 pulongest (cache->hit_count));
12134 return ret;
12135 }
12136
12137 cache->miss_count++;
12138 if (remote_debug)
12139 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12140 pulongest (cache->miss_count));
12141
12142 cache->fd = fd;
12143 cache->offset = offset;
12144 cache->bufsize = get_remote_packet_size ();
12145 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12146
12147 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12148 cache->offset, remote_errno);
12149 if (ret <= 0)
12150 {
12151 cache->invalidate_fd (fd);
12152 return ret;
12153 }
12154
12155 cache->bufsize = ret;
12156 return cache->pread (fd, read_buf, len, offset);
12157 }
12158
12159 int
12160 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12161 ULONGEST offset, int *remote_errno)
12162 {
12163 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12164 }
12165
12166 /* Implementation of to_fileio_close. */
12167
12168 int
12169 remote_target::remote_hostio_close (int fd, int *remote_errno)
12170 {
12171 struct remote_state *rs = get_remote_state ();
12172 char *p = rs->buf;
12173 int left = get_remote_packet_size () - 1;
12174
12175 rs->readahead_cache.invalidate_fd (fd);
12176
12177 remote_buffer_add_string (&p, &left, "vFile:close:");
12178
12179 remote_buffer_add_int (&p, &left, fd);
12180
12181 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
12182 remote_errno, NULL, NULL);
12183 }
12184
12185 int
12186 remote_target::fileio_close (int fd, int *remote_errno)
12187 {
12188 return remote_hostio_close (fd, remote_errno);
12189 }
12190
12191 /* Implementation of to_fileio_unlink. */
12192
12193 int
12194 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12195 int *remote_errno)
12196 {
12197 struct remote_state *rs = get_remote_state ();
12198 char *p = rs->buf;
12199 int left = get_remote_packet_size () - 1;
12200
12201 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12202 return -1;
12203
12204 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12205
12206 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12207 strlen (filename));
12208
12209 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
12210 remote_errno, NULL, NULL);
12211 }
12212
12213 int
12214 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12215 int *remote_errno)
12216 {
12217 return remote_hostio_unlink (inf, filename, remote_errno);
12218 }
12219
12220 /* Implementation of to_fileio_readlink. */
12221
12222 gdb::optional<std::string>
12223 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12224 int *remote_errno)
12225 {
12226 struct remote_state *rs = get_remote_state ();
12227 char *p = rs->buf;
12228 char *attachment;
12229 int left = get_remote_packet_size ();
12230 int len, attachment_len;
12231 int read_len;
12232
12233 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12234 return {};
12235
12236 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12237
12238 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12239 strlen (filename));
12240
12241 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
12242 remote_errno, &attachment,
12243 &attachment_len);
12244
12245 if (len < 0)
12246 return {};
12247
12248 std::string ret (len, '\0');
12249
12250 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12251 (gdb_byte *) &ret[0], len);
12252 if (read_len != len)
12253 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12254
12255 return ret;
12256 }
12257
12258 /* Implementation of to_fileio_fstat. */
12259
12260 int
12261 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12262 {
12263 struct remote_state *rs = get_remote_state ();
12264 char *p = rs->buf;
12265 int left = get_remote_packet_size ();
12266 int attachment_len, ret;
12267 char *attachment;
12268 struct fio_stat fst;
12269 int read_len;
12270
12271 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12272
12273 remote_buffer_add_int (&p, &left, fd);
12274
12275 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
12276 remote_errno, &attachment,
12277 &attachment_len);
12278 if (ret < 0)
12279 {
12280 if (*remote_errno != FILEIO_ENOSYS)
12281 return ret;
12282
12283 /* Strictly we should return -1, ENOSYS here, but when
12284 "set sysroot remote:" was implemented in August 2008
12285 BFD's need for a stat function was sidestepped with
12286 this hack. This was not remedied until March 2015
12287 so we retain the previous behavior to avoid breaking
12288 compatibility.
12289
12290 Note that the memset is a March 2015 addition; older
12291 GDBs set st_size *and nothing else* so the structure
12292 would have garbage in all other fields. This might
12293 break something but retaining the previous behavior
12294 here would be just too wrong. */
12295
12296 memset (st, 0, sizeof (struct stat));
12297 st->st_size = INT_MAX;
12298 return 0;
12299 }
12300
12301 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12302 (gdb_byte *) &fst, sizeof (fst));
12303
12304 if (read_len != ret)
12305 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12306
12307 if (read_len != sizeof (fst))
12308 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12309 read_len, (int) sizeof (fst));
12310
12311 remote_fileio_to_host_stat (&fst, st);
12312
12313 return 0;
12314 }
12315
12316 /* Implementation of to_filesystem_is_local. */
12317
12318 bool
12319 remote_target::filesystem_is_local ()
12320 {
12321 /* Valgrind GDB presents itself as a remote target but works
12322 on the local filesystem: it does not implement remote get
12323 and users are not expected to set a sysroot. To handle
12324 this case we treat the remote filesystem as local if the
12325 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12326 does not support vFile:open. */
12327 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12328 {
12329 enum packet_support ps = packet_support (PACKET_vFile_open);
12330
12331 if (ps == PACKET_SUPPORT_UNKNOWN)
12332 {
12333 int fd, remote_errno;
12334
12335 /* Try opening a file to probe support. The supplied
12336 filename is irrelevant, we only care about whether
12337 the stub recognizes the packet or not. */
12338 fd = remote_hostio_open (NULL, "just probing",
12339 FILEIO_O_RDONLY, 0700, 0,
12340 &remote_errno);
12341
12342 if (fd >= 0)
12343 remote_hostio_close (fd, &remote_errno);
12344
12345 ps = packet_support (PACKET_vFile_open);
12346 }
12347
12348 if (ps == PACKET_DISABLE)
12349 {
12350 static int warning_issued = 0;
12351
12352 if (!warning_issued)
12353 {
12354 warning (_("remote target does not support file"
12355 " transfer, attempting to access files"
12356 " from local filesystem."));
12357 warning_issued = 1;
12358 }
12359
12360 return true;
12361 }
12362 }
12363
12364 return false;
12365 }
12366
12367 static int
12368 remote_fileio_errno_to_host (int errnum)
12369 {
12370 switch (errnum)
12371 {
12372 case FILEIO_EPERM:
12373 return EPERM;
12374 case FILEIO_ENOENT:
12375 return ENOENT;
12376 case FILEIO_EINTR:
12377 return EINTR;
12378 case FILEIO_EIO:
12379 return EIO;
12380 case FILEIO_EBADF:
12381 return EBADF;
12382 case FILEIO_EACCES:
12383 return EACCES;
12384 case FILEIO_EFAULT:
12385 return EFAULT;
12386 case FILEIO_EBUSY:
12387 return EBUSY;
12388 case FILEIO_EEXIST:
12389 return EEXIST;
12390 case FILEIO_ENODEV:
12391 return ENODEV;
12392 case FILEIO_ENOTDIR:
12393 return ENOTDIR;
12394 case FILEIO_EISDIR:
12395 return EISDIR;
12396 case FILEIO_EINVAL:
12397 return EINVAL;
12398 case FILEIO_ENFILE:
12399 return ENFILE;
12400 case FILEIO_EMFILE:
12401 return EMFILE;
12402 case FILEIO_EFBIG:
12403 return EFBIG;
12404 case FILEIO_ENOSPC:
12405 return ENOSPC;
12406 case FILEIO_ESPIPE:
12407 return ESPIPE;
12408 case FILEIO_EROFS:
12409 return EROFS;
12410 case FILEIO_ENOSYS:
12411 return ENOSYS;
12412 case FILEIO_ENAMETOOLONG:
12413 return ENAMETOOLONG;
12414 }
12415 return -1;
12416 }
12417
12418 static char *
12419 remote_hostio_error (int errnum)
12420 {
12421 int host_error = remote_fileio_errno_to_host (errnum);
12422
12423 if (host_error == -1)
12424 error (_("Unknown remote I/O error %d"), errnum);
12425 else
12426 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12427 }
12428
12429 /* A RAII wrapper around a remote file descriptor. */
12430
12431 class scoped_remote_fd
12432 {
12433 public:
12434 scoped_remote_fd (remote_target *remote, int fd)
12435 : m_remote (remote), m_fd (fd)
12436 {
12437 }
12438
12439 ~scoped_remote_fd ()
12440 {
12441 if (m_fd != -1)
12442 {
12443 try
12444 {
12445 int remote_errno;
12446 m_remote->remote_hostio_close (m_fd, &remote_errno);
12447 }
12448 catch (...)
12449 {
12450 /* Swallow exception before it escapes the dtor. If
12451 something goes wrong, likely the connection is gone,
12452 and there's nothing else that can be done. */
12453 }
12454 }
12455 }
12456
12457 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12458
12459 /* Release ownership of the file descriptor, and return it. */
12460 int release () noexcept
12461 {
12462 int fd = m_fd;
12463 m_fd = -1;
12464 return fd;
12465 }
12466
12467 /* Return the owned file descriptor. */
12468 int get () const noexcept
12469 {
12470 return m_fd;
12471 }
12472
12473 private:
12474 /* The remote target. */
12475 remote_target *m_remote;
12476
12477 /* The owned remote I/O file descriptor. */
12478 int m_fd;
12479 };
12480
12481 void
12482 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12483 {
12484 remote_target *remote = get_current_remote_target ();
12485
12486 if (remote == nullptr)
12487 error (_("command can only be used with remote target"));
12488
12489 remote->remote_file_put (local_file, remote_file, from_tty);
12490 }
12491
12492 void
12493 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12494 int from_tty)
12495 {
12496 int retcode, remote_errno, bytes, io_size;
12497 int bytes_in_buffer;
12498 int saw_eof;
12499 ULONGEST offset;
12500
12501 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12502 if (file == NULL)
12503 perror_with_name (local_file);
12504
12505 scoped_remote_fd fd
12506 (this, remote_hostio_open (NULL,
12507 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12508 | FILEIO_O_TRUNC),
12509 0700, 0, &remote_errno));
12510 if (fd.get () == -1)
12511 remote_hostio_error (remote_errno);
12512
12513 /* Send up to this many bytes at once. They won't all fit in the
12514 remote packet limit, so we'll transfer slightly fewer. */
12515 io_size = get_remote_packet_size ();
12516 gdb::byte_vector buffer (io_size);
12517
12518 bytes_in_buffer = 0;
12519 saw_eof = 0;
12520 offset = 0;
12521 while (bytes_in_buffer || !saw_eof)
12522 {
12523 if (!saw_eof)
12524 {
12525 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12526 io_size - bytes_in_buffer,
12527 file.get ());
12528 if (bytes == 0)
12529 {
12530 if (ferror (file.get ()))
12531 error (_("Error reading %s."), local_file);
12532 else
12533 {
12534 /* EOF. Unless there is something still in the
12535 buffer from the last iteration, we are done. */
12536 saw_eof = 1;
12537 if (bytes_in_buffer == 0)
12538 break;
12539 }
12540 }
12541 }
12542 else
12543 bytes = 0;
12544
12545 bytes += bytes_in_buffer;
12546 bytes_in_buffer = 0;
12547
12548 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12549 offset, &remote_errno);
12550
12551 if (retcode < 0)
12552 remote_hostio_error (remote_errno);
12553 else if (retcode == 0)
12554 error (_("Remote write of %d bytes returned 0!"), bytes);
12555 else if (retcode < bytes)
12556 {
12557 /* Short write. Save the rest of the read data for the next
12558 write. */
12559 bytes_in_buffer = bytes - retcode;
12560 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12561 }
12562
12563 offset += retcode;
12564 }
12565
12566 if (remote_hostio_close (fd.release (), &remote_errno))
12567 remote_hostio_error (remote_errno);
12568
12569 if (from_tty)
12570 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12571 }
12572
12573 void
12574 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12575 {
12576 remote_target *remote = get_current_remote_target ();
12577
12578 if (remote == nullptr)
12579 error (_("command can only be used with remote target"));
12580
12581 remote->remote_file_get (remote_file, local_file, from_tty);
12582 }
12583
12584 void
12585 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12586 int from_tty)
12587 {
12588 int remote_errno, bytes, io_size;
12589 ULONGEST offset;
12590
12591 scoped_remote_fd fd
12592 (this, remote_hostio_open (NULL,
12593 remote_file, FILEIO_O_RDONLY, 0, 0,
12594 &remote_errno));
12595 if (fd.get () == -1)
12596 remote_hostio_error (remote_errno);
12597
12598 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12599 if (file == NULL)
12600 perror_with_name (local_file);
12601
12602 /* Send up to this many bytes at once. They won't all fit in the
12603 remote packet limit, so we'll transfer slightly fewer. */
12604 io_size = get_remote_packet_size ();
12605 gdb::byte_vector buffer (io_size);
12606
12607 offset = 0;
12608 while (1)
12609 {
12610 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12611 &remote_errno);
12612 if (bytes == 0)
12613 /* Success, but no bytes, means end-of-file. */
12614 break;
12615 if (bytes == -1)
12616 remote_hostio_error (remote_errno);
12617
12618 offset += bytes;
12619
12620 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12621 if (bytes == 0)
12622 perror_with_name (local_file);
12623 }
12624
12625 if (remote_hostio_close (fd.release (), &remote_errno))
12626 remote_hostio_error (remote_errno);
12627
12628 if (from_tty)
12629 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12630 }
12631
12632 void
12633 remote_file_delete (const char *remote_file, int from_tty)
12634 {
12635 remote_target *remote = get_current_remote_target ();
12636
12637 if (remote == nullptr)
12638 error (_("command can only be used with remote target"));
12639
12640 remote->remote_file_delete (remote_file, from_tty);
12641 }
12642
12643 void
12644 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12645 {
12646 int retcode, remote_errno;
12647
12648 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12649 if (retcode == -1)
12650 remote_hostio_error (remote_errno);
12651
12652 if (from_tty)
12653 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12654 }
12655
12656 static void
12657 remote_put_command (const char *args, int from_tty)
12658 {
12659 if (args == NULL)
12660 error_no_arg (_("file to put"));
12661
12662 gdb_argv argv (args);
12663 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12664 error (_("Invalid parameters to remote put"));
12665
12666 remote_file_put (argv[0], argv[1], from_tty);
12667 }
12668
12669 static void
12670 remote_get_command (const char *args, int from_tty)
12671 {
12672 if (args == NULL)
12673 error_no_arg (_("file to get"));
12674
12675 gdb_argv argv (args);
12676 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12677 error (_("Invalid parameters to remote get"));
12678
12679 remote_file_get (argv[0], argv[1], from_tty);
12680 }
12681
12682 static void
12683 remote_delete_command (const char *args, int from_tty)
12684 {
12685 if (args == NULL)
12686 error_no_arg (_("file to delete"));
12687
12688 gdb_argv argv (args);
12689 if (argv[0] == NULL || argv[1] != NULL)
12690 error (_("Invalid parameters to remote delete"));
12691
12692 remote_file_delete (argv[0], from_tty);
12693 }
12694
12695 static void
12696 remote_command (const char *args, int from_tty)
12697 {
12698 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12699 }
12700
12701 bool
12702 remote_target::can_execute_reverse ()
12703 {
12704 if (packet_support (PACKET_bs) == PACKET_ENABLE
12705 || packet_support (PACKET_bc) == PACKET_ENABLE)
12706 return true;
12707 else
12708 return false;
12709 }
12710
12711 bool
12712 remote_target::supports_non_stop ()
12713 {
12714 return true;
12715 }
12716
12717 bool
12718 remote_target::supports_disable_randomization ()
12719 {
12720 /* Only supported in extended mode. */
12721 return false;
12722 }
12723
12724 bool
12725 remote_target::supports_multi_process ()
12726 {
12727 struct remote_state *rs = get_remote_state ();
12728
12729 return remote_multi_process_p (rs);
12730 }
12731
12732 static int
12733 remote_supports_cond_tracepoints ()
12734 {
12735 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12736 }
12737
12738 bool
12739 remote_target::supports_evaluation_of_breakpoint_conditions ()
12740 {
12741 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12742 }
12743
12744 static int
12745 remote_supports_fast_tracepoints ()
12746 {
12747 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12748 }
12749
12750 static int
12751 remote_supports_static_tracepoints ()
12752 {
12753 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12754 }
12755
12756 static int
12757 remote_supports_install_in_trace ()
12758 {
12759 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12760 }
12761
12762 bool
12763 remote_target::supports_enable_disable_tracepoint ()
12764 {
12765 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12766 == PACKET_ENABLE);
12767 }
12768
12769 bool
12770 remote_target::supports_string_tracing ()
12771 {
12772 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12773 }
12774
12775 bool
12776 remote_target::can_run_breakpoint_commands ()
12777 {
12778 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12779 }
12780
12781 void
12782 remote_target::trace_init ()
12783 {
12784 struct remote_state *rs = get_remote_state ();
12785
12786 putpkt ("QTinit");
12787 remote_get_noisy_reply ();
12788 if (strcmp (rs->buf, "OK") != 0)
12789 error (_("Target does not support this command."));
12790 }
12791
12792 /* Recursive routine to walk through command list including loops, and
12793 download packets for each command. */
12794
12795 void
12796 remote_target::remote_download_command_source (int num, ULONGEST addr,
12797 struct command_line *cmds)
12798 {
12799 struct remote_state *rs = get_remote_state ();
12800 struct command_line *cmd;
12801
12802 for (cmd = cmds; cmd; cmd = cmd->next)
12803 {
12804 QUIT; /* Allow user to bail out with ^C. */
12805 strcpy (rs->buf, "QTDPsrc:");
12806 encode_source_string (num, addr, "cmd", cmd->line,
12807 rs->buf + strlen (rs->buf),
12808 rs->buf_size - strlen (rs->buf));
12809 putpkt (rs->buf);
12810 remote_get_noisy_reply ();
12811 if (strcmp (rs->buf, "OK"))
12812 warning (_("Target does not support source download."));
12813
12814 if (cmd->control_type == while_control
12815 || cmd->control_type == while_stepping_control)
12816 {
12817 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12818
12819 QUIT; /* Allow user to bail out with ^C. */
12820 strcpy (rs->buf, "QTDPsrc:");
12821 encode_source_string (num, addr, "cmd", "end",
12822 rs->buf + strlen (rs->buf),
12823 rs->buf_size - strlen (rs->buf));
12824 putpkt (rs->buf);
12825 remote_get_noisy_reply ();
12826 if (strcmp (rs->buf, "OK"))
12827 warning (_("Target does not support source download."));
12828 }
12829 }
12830 }
12831
12832 void
12833 remote_target::download_tracepoint (struct bp_location *loc)
12834 {
12835 CORE_ADDR tpaddr;
12836 char addrbuf[40];
12837 std::vector<std::string> tdp_actions;
12838 std::vector<std::string> stepping_actions;
12839 char *pkt;
12840 struct breakpoint *b = loc->owner;
12841 struct tracepoint *t = (struct tracepoint *) b;
12842 struct remote_state *rs = get_remote_state ();
12843 int ret;
12844 char *err_msg = _("Tracepoint packet too large for target.");
12845 size_t size_left;
12846
12847 /* We use a buffer other than rs->buf because we'll build strings
12848 across multiple statements, and other statements in between could
12849 modify rs->buf. */
12850 gdb::char_vector buf (get_remote_packet_size ());
12851
12852 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12853
12854 tpaddr = loc->address;
12855 sprintf_vma (addrbuf, tpaddr);
12856 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12857 b->number, addrbuf, /* address */
12858 (b->enable_state == bp_enabled ? 'E' : 'D'),
12859 t->step_count, t->pass_count);
12860
12861 if (ret < 0 || ret >= buf.size ())
12862 error ("%s", err_msg);
12863
12864 /* Fast tracepoints are mostly handled by the target, but we can
12865 tell the target how big of an instruction block should be moved
12866 around. */
12867 if (b->type == bp_fast_tracepoint)
12868 {
12869 /* Only test for support at download time; we may not know
12870 target capabilities at definition time. */
12871 if (remote_supports_fast_tracepoints ())
12872 {
12873 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12874 NULL))
12875 {
12876 size_left = buf.size () - strlen (buf.data ());
12877 ret = snprintf (buf.data () + strlen (buf.data ()),
12878 size_left, ":F%x",
12879 gdb_insn_length (loc->gdbarch, tpaddr));
12880
12881 if (ret < 0 || ret >= size_left)
12882 error ("%s", err_msg);
12883 }
12884 else
12885 /* If it passed validation at definition but fails now,
12886 something is very wrong. */
12887 internal_error (__FILE__, __LINE__,
12888 _("Fast tracepoint not "
12889 "valid during download"));
12890 }
12891 else
12892 /* Fast tracepoints are functionally identical to regular
12893 tracepoints, so don't take lack of support as a reason to
12894 give up on the trace run. */
12895 warning (_("Target does not support fast tracepoints, "
12896 "downloading %d as regular tracepoint"), b->number);
12897 }
12898 else if (b->type == bp_static_tracepoint)
12899 {
12900 /* Only test for support at download time; we may not know
12901 target capabilities at definition time. */
12902 if (remote_supports_static_tracepoints ())
12903 {
12904 struct static_tracepoint_marker marker;
12905
12906 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12907 {
12908 size_left = buf.size () - strlen (buf.data ());
12909 ret = snprintf (buf.data () + strlen (buf.data ()),
12910 size_left, ":S");
12911
12912 if (ret < 0 || ret >= size_left)
12913 error ("%s", err_msg);
12914 }
12915 else
12916 error (_("Static tracepoint not valid during download"));
12917 }
12918 else
12919 /* Fast tracepoints are functionally identical to regular
12920 tracepoints, so don't take lack of support as a reason
12921 to give up on the trace run. */
12922 error (_("Target does not support static tracepoints"));
12923 }
12924 /* If the tracepoint has a conditional, make it into an agent
12925 expression and append to the definition. */
12926 if (loc->cond)
12927 {
12928 /* Only test support at download time, we may not know target
12929 capabilities at definition time. */
12930 if (remote_supports_cond_tracepoints ())
12931 {
12932 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12933 loc->cond.get ());
12934
12935 size_left = buf.size () - strlen (buf.data ());
12936
12937 ret = snprintf (buf.data () + strlen (buf.data ()),
12938 size_left, ":X%x,", aexpr->len);
12939
12940 if (ret < 0 || ret >= size_left)
12941 error ("%s", err_msg);
12942
12943 size_left = buf.size () - strlen (buf.data ());
12944
12945 /* Two bytes to encode each aexpr byte, plus the terminating
12946 null byte. */
12947 if (aexpr->len * 2 + 1 > size_left)
12948 error ("%s", err_msg);
12949
12950 pkt = buf.data () + strlen (buf.data ());
12951
12952 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12953 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12954 *pkt = '\0';
12955 }
12956 else
12957 warning (_("Target does not support conditional tracepoints, "
12958 "ignoring tp %d cond"), b->number);
12959 }
12960
12961 if (b->commands || *default_collect)
12962 {
12963 size_left = buf.size () - strlen (buf.data ());
12964
12965 ret = snprintf (buf.data () + strlen (buf.data ()),
12966 size_left, "-");
12967
12968 if (ret < 0 || ret >= size_left)
12969 error ("%s", err_msg);
12970 }
12971
12972 putpkt (buf.data ());
12973 remote_get_noisy_reply ();
12974 if (strcmp (rs->buf, "OK"))
12975 error (_("Target does not support tracepoints."));
12976
12977 /* do_single_steps (t); */
12978 for (auto action_it = tdp_actions.begin ();
12979 action_it != tdp_actions.end (); action_it++)
12980 {
12981 QUIT; /* Allow user to bail out with ^C. */
12982
12983 bool has_more = ((action_it + 1) != tdp_actions.end ()
12984 || !stepping_actions.empty ());
12985
12986 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12987 b->number, addrbuf, /* address */
12988 action_it->c_str (),
12989 has_more ? '-' : 0);
12990
12991 if (ret < 0 || ret >= buf.size ())
12992 error ("%s", err_msg);
12993
12994 putpkt (buf.data ());
12995 remote_get_noisy_reply ();
12996 if (strcmp (rs->buf, "OK"))
12997 error (_("Error on target while setting tracepoints."));
12998 }
12999
13000 for (auto action_it = stepping_actions.begin ();
13001 action_it != stepping_actions.end (); action_it++)
13002 {
13003 QUIT; /* Allow user to bail out with ^C. */
13004
13005 bool is_first = action_it == stepping_actions.begin ();
13006 bool has_more = (action_it + 1) != stepping_actions.end ();
13007
13008 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13009 b->number, addrbuf, /* address */
13010 is_first ? "S" : "",
13011 action_it->c_str (),
13012 has_more ? "-" : "");
13013
13014 if (ret < 0 || ret >= buf.size ())
13015 error ("%s", err_msg);
13016
13017 putpkt (buf.data ());
13018 remote_get_noisy_reply ();
13019 if (strcmp (rs->buf, "OK"))
13020 error (_("Error on target while setting tracepoints."));
13021 }
13022
13023 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13024 {
13025 if (b->location != NULL)
13026 {
13027 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13028
13029 if (ret < 0 || ret >= buf.size ())
13030 error ("%s", err_msg);
13031
13032 encode_source_string (b->number, loc->address, "at",
13033 event_location_to_string (b->location.get ()),
13034 buf.data () + strlen (buf.data ()),
13035 buf.size () - strlen (buf.data ()));
13036 putpkt (buf.data ());
13037 remote_get_noisy_reply ();
13038 if (strcmp (rs->buf, "OK"))
13039 warning (_("Target does not support source download."));
13040 }
13041 if (b->cond_string)
13042 {
13043 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13044
13045 if (ret < 0 || ret >= buf.size ())
13046 error ("%s", err_msg);
13047
13048 encode_source_string (b->number, loc->address,
13049 "cond", b->cond_string,
13050 buf.data () + strlen (buf.data ()),
13051 buf.size () - strlen (buf.data ()));
13052 putpkt (buf.data ());
13053 remote_get_noisy_reply ();
13054 if (strcmp (rs->buf, "OK"))
13055 warning (_("Target does not support source download."));
13056 }
13057 remote_download_command_source (b->number, loc->address,
13058 breakpoint_commands (b));
13059 }
13060 }
13061
13062 bool
13063 remote_target::can_download_tracepoint ()
13064 {
13065 struct remote_state *rs = get_remote_state ();
13066 struct trace_status *ts;
13067 int status;
13068
13069 /* Don't try to install tracepoints until we've relocated our
13070 symbols, and fetched and merged the target's tracepoint list with
13071 ours. */
13072 if (rs->starting_up)
13073 return false;
13074
13075 ts = current_trace_status ();
13076 status = get_trace_status (ts);
13077
13078 if (status == -1 || !ts->running_known || !ts->running)
13079 return false;
13080
13081 /* If we are in a tracing experiment, but remote stub doesn't support
13082 installing tracepoint in trace, we have to return. */
13083 if (!remote_supports_install_in_trace ())
13084 return false;
13085
13086 return true;
13087 }
13088
13089
13090 void
13091 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13092 {
13093 struct remote_state *rs = get_remote_state ();
13094 char *p;
13095
13096 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
13097 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13098 tsv.builtin);
13099 p = rs->buf + strlen (rs->buf);
13100 if ((p - rs->buf) + tsv.name.length () * 2 >= get_remote_packet_size ())
13101 error (_("Trace state variable name too long for tsv definition packet"));
13102 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13103 *p++ = '\0';
13104 putpkt (rs->buf);
13105 remote_get_noisy_reply ();
13106 if (*rs->buf == '\0')
13107 error (_("Target does not support this command."));
13108 if (strcmp (rs->buf, "OK") != 0)
13109 error (_("Error on target while downloading trace state variable."));
13110 }
13111
13112 void
13113 remote_target::enable_tracepoint (struct bp_location *location)
13114 {
13115 struct remote_state *rs = get_remote_state ();
13116 char addr_buf[40];
13117
13118 sprintf_vma (addr_buf, location->address);
13119 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
13120 location->owner->number, addr_buf);
13121 putpkt (rs->buf);
13122 remote_get_noisy_reply ();
13123 if (*rs->buf == '\0')
13124 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13125 if (strcmp (rs->buf, "OK") != 0)
13126 error (_("Error on target while enabling tracepoint."));
13127 }
13128
13129 void
13130 remote_target::disable_tracepoint (struct bp_location *location)
13131 {
13132 struct remote_state *rs = get_remote_state ();
13133 char addr_buf[40];
13134
13135 sprintf_vma (addr_buf, location->address);
13136 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
13137 location->owner->number, addr_buf);
13138 putpkt (rs->buf);
13139 remote_get_noisy_reply ();
13140 if (*rs->buf == '\0')
13141 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13142 if (strcmp (rs->buf, "OK") != 0)
13143 error (_("Error on target while disabling tracepoint."));
13144 }
13145
13146 void
13147 remote_target::trace_set_readonly_regions ()
13148 {
13149 asection *s;
13150 bfd *abfd = NULL;
13151 bfd_size_type size;
13152 bfd_vma vma;
13153 int anysecs = 0;
13154 int offset = 0;
13155
13156 if (!exec_bfd)
13157 return; /* No information to give. */
13158
13159 struct remote_state *rs = get_remote_state ();
13160
13161 strcpy (rs->buf, "QTro");
13162 offset = strlen (rs->buf);
13163 for (s = exec_bfd->sections; s; s = s->next)
13164 {
13165 char tmp1[40], tmp2[40];
13166 int sec_length;
13167
13168 if ((s->flags & SEC_LOAD) == 0 ||
13169 /* (s->flags & SEC_CODE) == 0 || */
13170 (s->flags & SEC_READONLY) == 0)
13171 continue;
13172
13173 anysecs = 1;
13174 vma = bfd_get_section_vma (abfd, s);
13175 size = bfd_get_section_size (s);
13176 sprintf_vma (tmp1, vma);
13177 sprintf_vma (tmp2, vma + size);
13178 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13179 if (offset + sec_length + 1 > rs->buf_size)
13180 {
13181 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13182 warning (_("\
13183 Too many sections for read-only sections definition packet."));
13184 break;
13185 }
13186 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
13187 tmp1, tmp2);
13188 offset += sec_length;
13189 }
13190 if (anysecs)
13191 {
13192 putpkt (rs->buf);
13193 getpkt (&rs->buf, &rs->buf_size, 0);
13194 }
13195 }
13196
13197 void
13198 remote_target::trace_start ()
13199 {
13200 struct remote_state *rs = get_remote_state ();
13201
13202 putpkt ("QTStart");
13203 remote_get_noisy_reply ();
13204 if (*rs->buf == '\0')
13205 error (_("Target does not support this command."));
13206 if (strcmp (rs->buf, "OK") != 0)
13207 error (_("Bogus reply from target: %s"), rs->buf);
13208 }
13209
13210 int
13211 remote_target::get_trace_status (struct trace_status *ts)
13212 {
13213 /* Initialize it just to avoid a GCC false warning. */
13214 char *p = NULL;
13215 /* FIXME we need to get register block size some other way. */
13216 extern int trace_regblock_size;
13217 enum packet_result result;
13218 struct remote_state *rs = get_remote_state ();
13219
13220 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13221 return -1;
13222
13223 trace_regblock_size
13224 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13225
13226 putpkt ("qTStatus");
13227
13228 TRY
13229 {
13230 p = remote_get_noisy_reply ();
13231 }
13232 CATCH (ex, RETURN_MASK_ERROR)
13233 {
13234 if (ex.error != TARGET_CLOSE_ERROR)
13235 {
13236 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13237 return -1;
13238 }
13239 throw_exception (ex);
13240 }
13241 END_CATCH
13242
13243 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13244
13245 /* If the remote target doesn't do tracing, flag it. */
13246 if (result == PACKET_UNKNOWN)
13247 return -1;
13248
13249 /* We're working with a live target. */
13250 ts->filename = NULL;
13251
13252 if (*p++ != 'T')
13253 error (_("Bogus trace status reply from target: %s"), rs->buf);
13254
13255 /* Function 'parse_trace_status' sets default value of each field of
13256 'ts' at first, so we don't have to do it here. */
13257 parse_trace_status (p, ts);
13258
13259 return ts->running;
13260 }
13261
13262 void
13263 remote_target::get_tracepoint_status (struct breakpoint *bp,
13264 struct uploaded_tp *utp)
13265 {
13266 struct remote_state *rs = get_remote_state ();
13267 char *reply;
13268 struct bp_location *loc;
13269 struct tracepoint *tp = (struct tracepoint *) bp;
13270 size_t size = get_remote_packet_size ();
13271
13272 if (tp)
13273 {
13274 tp->hit_count = 0;
13275 tp->traceframe_usage = 0;
13276 for (loc = tp->loc; loc; loc = loc->next)
13277 {
13278 /* If the tracepoint was never downloaded, don't go asking for
13279 any status. */
13280 if (tp->number_on_target == 0)
13281 continue;
13282 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
13283 phex_nz (loc->address, 0));
13284 putpkt (rs->buf);
13285 reply = remote_get_noisy_reply ();
13286 if (reply && *reply)
13287 {
13288 if (*reply == 'V')
13289 parse_tracepoint_status (reply + 1, bp, utp);
13290 }
13291 }
13292 }
13293 else if (utp)
13294 {
13295 utp->hit_count = 0;
13296 utp->traceframe_usage = 0;
13297 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
13298 phex_nz (utp->addr, 0));
13299 putpkt (rs->buf);
13300 reply = remote_get_noisy_reply ();
13301 if (reply && *reply)
13302 {
13303 if (*reply == 'V')
13304 parse_tracepoint_status (reply + 1, bp, utp);
13305 }
13306 }
13307 }
13308
13309 void
13310 remote_target::trace_stop ()
13311 {
13312 struct remote_state *rs = get_remote_state ();
13313
13314 putpkt ("QTStop");
13315 remote_get_noisy_reply ();
13316 if (*rs->buf == '\0')
13317 error (_("Target does not support this command."));
13318 if (strcmp (rs->buf, "OK") != 0)
13319 error (_("Bogus reply from target: %s"), rs->buf);
13320 }
13321
13322 int
13323 remote_target::trace_find (enum trace_find_type type, int num,
13324 CORE_ADDR addr1, CORE_ADDR addr2,
13325 int *tpp)
13326 {
13327 struct remote_state *rs = get_remote_state ();
13328 char *endbuf = rs->buf + get_remote_packet_size ();
13329 char *p, *reply;
13330 int target_frameno = -1, target_tracept = -1;
13331
13332 /* Lookups other than by absolute frame number depend on the current
13333 trace selected, so make sure it is correct on the remote end
13334 first. */
13335 if (type != tfind_number)
13336 set_remote_traceframe ();
13337
13338 p = rs->buf;
13339 strcpy (p, "QTFrame:");
13340 p = strchr (p, '\0');
13341 switch (type)
13342 {
13343 case tfind_number:
13344 xsnprintf (p, endbuf - p, "%x", num);
13345 break;
13346 case tfind_pc:
13347 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13348 break;
13349 case tfind_tp:
13350 xsnprintf (p, endbuf - p, "tdp:%x", num);
13351 break;
13352 case tfind_range:
13353 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13354 phex_nz (addr2, 0));
13355 break;
13356 case tfind_outside:
13357 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13358 phex_nz (addr2, 0));
13359 break;
13360 default:
13361 error (_("Unknown trace find type %d"), type);
13362 }
13363
13364 putpkt (rs->buf);
13365 reply = remote_get_noisy_reply ();
13366 if (*reply == '\0')
13367 error (_("Target does not support this command."));
13368
13369 while (reply && *reply)
13370 switch (*reply)
13371 {
13372 case 'F':
13373 p = ++reply;
13374 target_frameno = (int) strtol (p, &reply, 16);
13375 if (reply == p)
13376 error (_("Unable to parse trace frame number"));
13377 /* Don't update our remote traceframe number cache on failure
13378 to select a remote traceframe. */
13379 if (target_frameno == -1)
13380 return -1;
13381 break;
13382 case 'T':
13383 p = ++reply;
13384 target_tracept = (int) strtol (p, &reply, 16);
13385 if (reply == p)
13386 error (_("Unable to parse tracepoint number"));
13387 break;
13388 case 'O': /* "OK"? */
13389 if (reply[1] == 'K' && reply[2] == '\0')
13390 reply += 2;
13391 else
13392 error (_("Bogus reply from target: %s"), reply);
13393 break;
13394 default:
13395 error (_("Bogus reply from target: %s"), reply);
13396 }
13397 if (tpp)
13398 *tpp = target_tracept;
13399
13400 rs->remote_traceframe_number = target_frameno;
13401 return target_frameno;
13402 }
13403
13404 bool
13405 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13406 {
13407 struct remote_state *rs = get_remote_state ();
13408 char *reply;
13409 ULONGEST uval;
13410
13411 set_remote_traceframe ();
13412
13413 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
13414 putpkt (rs->buf);
13415 reply = remote_get_noisy_reply ();
13416 if (reply && *reply)
13417 {
13418 if (*reply == 'V')
13419 {
13420 unpack_varlen_hex (reply + 1, &uval);
13421 *val = (LONGEST) uval;
13422 return true;
13423 }
13424 }
13425 return false;
13426 }
13427
13428 int
13429 remote_target::save_trace_data (const char *filename)
13430 {
13431 struct remote_state *rs = get_remote_state ();
13432 char *p, *reply;
13433
13434 p = rs->buf;
13435 strcpy (p, "QTSave:");
13436 p += strlen (p);
13437 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
13438 error (_("Remote file name too long for trace save packet"));
13439 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13440 *p++ = '\0';
13441 putpkt (rs->buf);
13442 reply = remote_get_noisy_reply ();
13443 if (*reply == '\0')
13444 error (_("Target does not support this command."));
13445 if (strcmp (reply, "OK") != 0)
13446 error (_("Bogus reply from target: %s"), reply);
13447 return 0;
13448 }
13449
13450 /* This is basically a memory transfer, but needs to be its own packet
13451 because we don't know how the target actually organizes its trace
13452 memory, plus we want to be able to ask for as much as possible, but
13453 not be unhappy if we don't get as much as we ask for. */
13454
13455 LONGEST
13456 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13457 {
13458 struct remote_state *rs = get_remote_state ();
13459 char *reply;
13460 char *p;
13461 int rslt;
13462
13463 p = rs->buf;
13464 strcpy (p, "qTBuffer:");
13465 p += strlen (p);
13466 p += hexnumstr (p, offset);
13467 *p++ = ',';
13468 p += hexnumstr (p, len);
13469 *p++ = '\0';
13470
13471 putpkt (rs->buf);
13472 reply = remote_get_noisy_reply ();
13473 if (reply && *reply)
13474 {
13475 /* 'l' by itself means we're at the end of the buffer and
13476 there is nothing more to get. */
13477 if (*reply == 'l')
13478 return 0;
13479
13480 /* Convert the reply into binary. Limit the number of bytes to
13481 convert according to our passed-in buffer size, rather than
13482 what was returned in the packet; if the target is
13483 unexpectedly generous and gives us a bigger reply than we
13484 asked for, we don't want to crash. */
13485 rslt = hex2bin (reply, buf, len);
13486 return rslt;
13487 }
13488
13489 /* Something went wrong, flag as an error. */
13490 return -1;
13491 }
13492
13493 void
13494 remote_target::set_disconnected_tracing (int val)
13495 {
13496 struct remote_state *rs = get_remote_state ();
13497
13498 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13499 {
13500 char *reply;
13501
13502 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
13503 putpkt (rs->buf);
13504 reply = remote_get_noisy_reply ();
13505 if (*reply == '\0')
13506 error (_("Target does not support this command."));
13507 if (strcmp (reply, "OK") != 0)
13508 error (_("Bogus reply from target: %s"), reply);
13509 }
13510 else if (val)
13511 warning (_("Target does not support disconnected tracing."));
13512 }
13513
13514 int
13515 remote_target::core_of_thread (ptid_t ptid)
13516 {
13517 struct thread_info *info = find_thread_ptid (ptid);
13518
13519 if (info != NULL && info->priv != NULL)
13520 return get_remote_thread_info (info)->core;
13521
13522 return -1;
13523 }
13524
13525 void
13526 remote_target::set_circular_trace_buffer (int val)
13527 {
13528 struct remote_state *rs = get_remote_state ();
13529 char *reply;
13530
13531 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
13532 putpkt (rs->buf);
13533 reply = remote_get_noisy_reply ();
13534 if (*reply == '\0')
13535 error (_("Target does not support this command."));
13536 if (strcmp (reply, "OK") != 0)
13537 error (_("Bogus reply from target: %s"), reply);
13538 }
13539
13540 traceframe_info_up
13541 remote_target::traceframe_info ()
13542 {
13543 gdb::optional<gdb::char_vector> text
13544 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13545 NULL);
13546 if (text)
13547 return parse_traceframe_info (text->data ());
13548
13549 return NULL;
13550 }
13551
13552 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13553 instruction on which a fast tracepoint may be placed. Returns -1
13554 if the packet is not supported, and 0 if the minimum instruction
13555 length is unknown. */
13556
13557 int
13558 remote_target::get_min_fast_tracepoint_insn_len ()
13559 {
13560 struct remote_state *rs = get_remote_state ();
13561 char *reply;
13562
13563 /* If we're not debugging a process yet, the IPA can't be
13564 loaded. */
13565 if (!target_has_execution)
13566 return 0;
13567
13568 /* Make sure the remote is pointing at the right process. */
13569 set_general_process ();
13570
13571 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
13572 putpkt (rs->buf);
13573 reply = remote_get_noisy_reply ();
13574 if (*reply == '\0')
13575 return -1;
13576 else
13577 {
13578 ULONGEST min_insn_len;
13579
13580 unpack_varlen_hex (reply, &min_insn_len);
13581
13582 return (int) min_insn_len;
13583 }
13584 }
13585
13586 void
13587 remote_target::set_trace_buffer_size (LONGEST val)
13588 {
13589 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13590 {
13591 struct remote_state *rs = get_remote_state ();
13592 char *buf = rs->buf;
13593 char *endbuf = rs->buf + get_remote_packet_size ();
13594 enum packet_result result;
13595
13596 gdb_assert (val >= 0 || val == -1);
13597 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13598 /* Send -1 as literal "-1" to avoid host size dependency. */
13599 if (val < 0)
13600 {
13601 *buf++ = '-';
13602 buf += hexnumstr (buf, (ULONGEST) -val);
13603 }
13604 else
13605 buf += hexnumstr (buf, (ULONGEST) val);
13606
13607 putpkt (rs->buf);
13608 remote_get_noisy_reply ();
13609 result = packet_ok (rs->buf,
13610 &remote_protocol_packets[PACKET_QTBuffer_size]);
13611
13612 if (result != PACKET_OK)
13613 warning (_("Bogus reply from target: %s"), rs->buf);
13614 }
13615 }
13616
13617 bool
13618 remote_target::set_trace_notes (const char *user, const char *notes,
13619 const char *stop_notes)
13620 {
13621 struct remote_state *rs = get_remote_state ();
13622 char *reply;
13623 char *buf = rs->buf;
13624 char *endbuf = rs->buf + get_remote_packet_size ();
13625 int nbytes;
13626
13627 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13628 if (user)
13629 {
13630 buf += xsnprintf (buf, endbuf - buf, "user:");
13631 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13632 buf += 2 * nbytes;
13633 *buf++ = ';';
13634 }
13635 if (notes)
13636 {
13637 buf += xsnprintf (buf, endbuf - buf, "notes:");
13638 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13639 buf += 2 * nbytes;
13640 *buf++ = ';';
13641 }
13642 if (stop_notes)
13643 {
13644 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13645 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13646 buf += 2 * nbytes;
13647 *buf++ = ';';
13648 }
13649 /* Ensure the buffer is terminated. */
13650 *buf = '\0';
13651
13652 putpkt (rs->buf);
13653 reply = remote_get_noisy_reply ();
13654 if (*reply == '\0')
13655 return false;
13656
13657 if (strcmp (reply, "OK") != 0)
13658 error (_("Bogus reply from target: %s"), reply);
13659
13660 return true;
13661 }
13662
13663 bool
13664 remote_target::use_agent (bool use)
13665 {
13666 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13667 {
13668 struct remote_state *rs = get_remote_state ();
13669
13670 /* If the stub supports QAgent. */
13671 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13672 putpkt (rs->buf);
13673 getpkt (&rs->buf, &rs->buf_size, 0);
13674
13675 if (strcmp (rs->buf, "OK") == 0)
13676 {
13677 ::use_agent = use;
13678 return true;
13679 }
13680 }
13681
13682 return false;
13683 }
13684
13685 bool
13686 remote_target::can_use_agent ()
13687 {
13688 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13689 }
13690
13691 struct btrace_target_info
13692 {
13693 /* The ptid of the traced thread. */
13694 ptid_t ptid;
13695
13696 /* The obtained branch trace configuration. */
13697 struct btrace_config conf;
13698 };
13699
13700 /* Reset our idea of our target's btrace configuration. */
13701
13702 static void
13703 remote_btrace_reset (remote_state *rs)
13704 {
13705 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13706 }
13707
13708 /* Synchronize the configuration with the target. */
13709
13710 void
13711 remote_target::btrace_sync_conf (const btrace_config *conf)
13712 {
13713 struct packet_config *packet;
13714 struct remote_state *rs;
13715 char *buf, *pos, *endbuf;
13716
13717 rs = get_remote_state ();
13718 buf = rs->buf;
13719 endbuf = buf + get_remote_packet_size ();
13720
13721 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13722 if (packet_config_support (packet) == PACKET_ENABLE
13723 && conf->bts.size != rs->btrace_config.bts.size)
13724 {
13725 pos = buf;
13726 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13727 conf->bts.size);
13728
13729 putpkt (buf);
13730 getpkt (&buf, &rs->buf_size, 0);
13731
13732 if (packet_ok (buf, packet) == PACKET_ERROR)
13733 {
13734 if (buf[0] == 'E' && buf[1] == '.')
13735 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13736 else
13737 error (_("Failed to configure the BTS buffer size."));
13738 }
13739
13740 rs->btrace_config.bts.size = conf->bts.size;
13741 }
13742
13743 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13744 if (packet_config_support (packet) == PACKET_ENABLE
13745 && conf->pt.size != rs->btrace_config.pt.size)
13746 {
13747 pos = buf;
13748 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13749 conf->pt.size);
13750
13751 putpkt (buf);
13752 getpkt (&buf, &rs->buf_size, 0);
13753
13754 if (packet_ok (buf, packet) == PACKET_ERROR)
13755 {
13756 if (buf[0] == 'E' && buf[1] == '.')
13757 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13758 else
13759 error (_("Failed to configure the trace buffer size."));
13760 }
13761
13762 rs->btrace_config.pt.size = conf->pt.size;
13763 }
13764 }
13765
13766 /* Read the current thread's btrace configuration from the target and
13767 store it into CONF. */
13768
13769 static void
13770 btrace_read_config (struct btrace_config *conf)
13771 {
13772 gdb::optional<gdb::char_vector> xml
13773 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13774 if (xml)
13775 parse_xml_btrace_conf (conf, xml->data ());
13776 }
13777
13778 /* Maybe reopen target btrace. */
13779
13780 void
13781 remote_target::remote_btrace_maybe_reopen ()
13782 {
13783 struct remote_state *rs = get_remote_state ();
13784 struct thread_info *tp;
13785 int btrace_target_pushed = 0;
13786 #if !defined (HAVE_LIBIPT)
13787 int warned = 0;
13788 #endif
13789
13790 scoped_restore_current_thread restore_thread;
13791
13792 ALL_NON_EXITED_THREADS (tp)
13793 {
13794 set_general_thread (tp->ptid);
13795
13796 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13797 btrace_read_config (&rs->btrace_config);
13798
13799 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13800 continue;
13801
13802 #if !defined (HAVE_LIBIPT)
13803 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13804 {
13805 if (!warned)
13806 {
13807 warned = 1;
13808 warning (_("Target is recording using Intel Processor Trace "
13809 "but support was disabled at compile time."));
13810 }
13811
13812 continue;
13813 }
13814 #endif /* !defined (HAVE_LIBIPT) */
13815
13816 /* Push target, once, but before anything else happens. This way our
13817 changes to the threads will be cleaned up by unpushing the target
13818 in case btrace_read_config () throws. */
13819 if (!btrace_target_pushed)
13820 {
13821 btrace_target_pushed = 1;
13822 record_btrace_push_target ();
13823 printf_filtered (_("Target is recording using %s.\n"),
13824 btrace_format_string (rs->btrace_config.format));
13825 }
13826
13827 tp->btrace.target = XCNEW (struct btrace_target_info);
13828 tp->btrace.target->ptid = tp->ptid;
13829 tp->btrace.target->conf = rs->btrace_config;
13830 }
13831 }
13832
13833 /* Enable branch tracing. */
13834
13835 struct btrace_target_info *
13836 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13837 {
13838 struct btrace_target_info *tinfo = NULL;
13839 struct packet_config *packet = NULL;
13840 struct remote_state *rs = get_remote_state ();
13841 char *buf = rs->buf;
13842 char *endbuf = rs->buf + get_remote_packet_size ();
13843
13844 switch (conf->format)
13845 {
13846 case BTRACE_FORMAT_BTS:
13847 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13848 break;
13849
13850 case BTRACE_FORMAT_PT:
13851 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13852 break;
13853 }
13854
13855 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13856 error (_("Target does not support branch tracing."));
13857
13858 btrace_sync_conf (conf);
13859
13860 set_general_thread (ptid);
13861
13862 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13863 putpkt (rs->buf);
13864 getpkt (&rs->buf, &rs->buf_size, 0);
13865
13866 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13867 {
13868 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13869 error (_("Could not enable branch tracing for %s: %s"),
13870 target_pid_to_str (ptid), rs->buf + 2);
13871 else
13872 error (_("Could not enable branch tracing for %s."),
13873 target_pid_to_str (ptid));
13874 }
13875
13876 tinfo = XCNEW (struct btrace_target_info);
13877 tinfo->ptid = ptid;
13878
13879 /* If we fail to read the configuration, we lose some information, but the
13880 tracing itself is not impacted. */
13881 TRY
13882 {
13883 btrace_read_config (&tinfo->conf);
13884 }
13885 CATCH (err, RETURN_MASK_ERROR)
13886 {
13887 if (err.message != NULL)
13888 warning ("%s", err.message);
13889 }
13890 END_CATCH
13891
13892 return tinfo;
13893 }
13894
13895 /* Disable branch tracing. */
13896
13897 void
13898 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13899 {
13900 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13901 struct remote_state *rs = get_remote_state ();
13902 char *buf = rs->buf;
13903 char *endbuf = rs->buf + get_remote_packet_size ();
13904
13905 if (packet_config_support (packet) != PACKET_ENABLE)
13906 error (_("Target does not support branch tracing."));
13907
13908 set_general_thread (tinfo->ptid);
13909
13910 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13911 putpkt (rs->buf);
13912 getpkt (&rs->buf, &rs->buf_size, 0);
13913
13914 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13915 {
13916 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13917 error (_("Could not disable branch tracing for %s: %s"),
13918 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13919 else
13920 error (_("Could not disable branch tracing for %s."),
13921 target_pid_to_str (tinfo->ptid));
13922 }
13923
13924 xfree (tinfo);
13925 }
13926
13927 /* Teardown branch tracing. */
13928
13929 void
13930 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13931 {
13932 /* We must not talk to the target during teardown. */
13933 xfree (tinfo);
13934 }
13935
13936 /* Read the branch trace. */
13937
13938 enum btrace_error
13939 remote_target::read_btrace (struct btrace_data *btrace,
13940 struct btrace_target_info *tinfo,
13941 enum btrace_read_type type)
13942 {
13943 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13944 const char *annex;
13945
13946 if (packet_config_support (packet) != PACKET_ENABLE)
13947 error (_("Target does not support branch tracing."));
13948
13949 #if !defined(HAVE_LIBEXPAT)
13950 error (_("Cannot process branch tracing result. XML parsing not supported."));
13951 #endif
13952
13953 switch (type)
13954 {
13955 case BTRACE_READ_ALL:
13956 annex = "all";
13957 break;
13958 case BTRACE_READ_NEW:
13959 annex = "new";
13960 break;
13961 case BTRACE_READ_DELTA:
13962 annex = "delta";
13963 break;
13964 default:
13965 internal_error (__FILE__, __LINE__,
13966 _("Bad branch tracing read type: %u."),
13967 (unsigned int) type);
13968 }
13969
13970 gdb::optional<gdb::char_vector> xml
13971 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13972 if (!xml)
13973 return BTRACE_ERR_UNKNOWN;
13974
13975 parse_xml_btrace (btrace, xml->data ());
13976
13977 return BTRACE_ERR_NONE;
13978 }
13979
13980 const struct btrace_config *
13981 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13982 {
13983 return &tinfo->conf;
13984 }
13985
13986 bool
13987 remote_target::augmented_libraries_svr4_read ()
13988 {
13989 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13990 == PACKET_ENABLE);
13991 }
13992
13993 /* Implementation of to_load. */
13994
13995 void
13996 remote_target::load (const char *name, int from_tty)
13997 {
13998 generic_load (name, from_tty);
13999 }
14000
14001 /* Accepts an integer PID; returns a string representing a file that
14002 can be opened on the remote side to get the symbols for the child
14003 process. Returns NULL if the operation is not supported. */
14004
14005 char *
14006 remote_target::pid_to_exec_file (int pid)
14007 {
14008 static gdb::optional<gdb::char_vector> filename;
14009 struct inferior *inf;
14010 char *annex = NULL;
14011
14012 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14013 return NULL;
14014
14015 inf = find_inferior_pid (pid);
14016 if (inf == NULL)
14017 internal_error (__FILE__, __LINE__,
14018 _("not currently attached to process %d"), pid);
14019
14020 if (!inf->fake_pid_p)
14021 {
14022 const int annex_size = 9;
14023
14024 annex = (char *) alloca (annex_size);
14025 xsnprintf (annex, annex_size, "%x", pid);
14026 }
14027
14028 filename = target_read_stralloc (current_top_target (),
14029 TARGET_OBJECT_EXEC_FILE, annex);
14030
14031 return filename ? filename->data () : nullptr;
14032 }
14033
14034 /* Implement the to_can_do_single_step target_ops method. */
14035
14036 int
14037 remote_target::can_do_single_step ()
14038 {
14039 /* We can only tell whether target supports single step or not by
14040 supported s and S vCont actions if the stub supports vContSupported
14041 feature. If the stub doesn't support vContSupported feature,
14042 we have conservatively to think target doesn't supports single
14043 step. */
14044 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14045 {
14046 struct remote_state *rs = get_remote_state ();
14047
14048 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14049 remote_vcont_probe ();
14050
14051 return rs->supports_vCont.s && rs->supports_vCont.S;
14052 }
14053 else
14054 return 0;
14055 }
14056
14057 /* Implementation of the to_execution_direction method for the remote
14058 target. */
14059
14060 enum exec_direction_kind
14061 remote_target::execution_direction ()
14062 {
14063 struct remote_state *rs = get_remote_state ();
14064
14065 return rs->last_resume_exec_dir;
14066 }
14067
14068 /* Return pointer to the thread_info struct which corresponds to
14069 THREAD_HANDLE (having length HANDLE_LEN). */
14070
14071 thread_info *
14072 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14073 int handle_len,
14074 inferior *inf)
14075 {
14076 struct thread_info *tp;
14077
14078 ALL_NON_EXITED_THREADS (tp)
14079 {
14080 remote_thread_info *priv = get_remote_thread_info (tp);
14081
14082 if (tp->inf == inf && priv != NULL)
14083 {
14084 if (handle_len != priv->thread_handle.size ())
14085 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14086 handle_len, priv->thread_handle.size ());
14087 if (memcmp (thread_handle, priv->thread_handle.data (),
14088 handle_len) == 0)
14089 return tp;
14090 }
14091 }
14092
14093 return NULL;
14094 }
14095
14096 bool
14097 remote_target::can_async_p ()
14098 {
14099 struct remote_state *rs = get_remote_state ();
14100
14101 /* We don't go async if the user has explicitly prevented it with the
14102 "maint set target-async" command. */
14103 if (!target_async_permitted)
14104 return false;
14105
14106 /* We're async whenever the serial device is. */
14107 return serial_can_async_p (rs->remote_desc);
14108 }
14109
14110 bool
14111 remote_target::is_async_p ()
14112 {
14113 struct remote_state *rs = get_remote_state ();
14114
14115 if (!target_async_permitted)
14116 /* We only enable async when the user specifically asks for it. */
14117 return false;
14118
14119 /* We're async whenever the serial device is. */
14120 return serial_is_async_p (rs->remote_desc);
14121 }
14122
14123 /* Pass the SERIAL event on and up to the client. One day this code
14124 will be able to delay notifying the client of an event until the
14125 point where an entire packet has been received. */
14126
14127 static serial_event_ftype remote_async_serial_handler;
14128
14129 static void
14130 remote_async_serial_handler (struct serial *scb, void *context)
14131 {
14132 /* Don't propogate error information up to the client. Instead let
14133 the client find out about the error by querying the target. */
14134 inferior_event_handler (INF_REG_EVENT, NULL);
14135 }
14136
14137 static void
14138 remote_async_inferior_event_handler (gdb_client_data data)
14139 {
14140 inferior_event_handler (INF_REG_EVENT, data);
14141 }
14142
14143 void
14144 remote_target::async (int enable)
14145 {
14146 struct remote_state *rs = get_remote_state ();
14147
14148 if (enable)
14149 {
14150 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14151
14152 /* If there are pending events in the stop reply queue tell the
14153 event loop to process them. */
14154 if (!rs->stop_reply_queue.empty ())
14155 mark_async_event_handler (rs->remote_async_inferior_event_token);
14156 /* For simplicity, below we clear the pending events token
14157 without remembering whether it is marked, so here we always
14158 mark it. If there's actually no pending notification to
14159 process, this ends up being a no-op (other than a spurious
14160 event-loop wakeup). */
14161 if (target_is_non_stop_p ())
14162 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14163 }
14164 else
14165 {
14166 serial_async (rs->remote_desc, NULL, NULL);
14167 /* If the core is disabling async, it doesn't want to be
14168 disturbed with target events. Clear all async event sources
14169 too. */
14170 clear_async_event_handler (rs->remote_async_inferior_event_token);
14171 if (target_is_non_stop_p ())
14172 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14173 }
14174 }
14175
14176 /* Implementation of the to_thread_events method. */
14177
14178 void
14179 remote_target::thread_events (int enable)
14180 {
14181 struct remote_state *rs = get_remote_state ();
14182 size_t size = get_remote_packet_size ();
14183
14184 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14185 return;
14186
14187 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
14188 putpkt (rs->buf);
14189 getpkt (&rs->buf, &rs->buf_size, 0);
14190
14191 switch (packet_ok (rs->buf,
14192 &remote_protocol_packets[PACKET_QThreadEvents]))
14193 {
14194 case PACKET_OK:
14195 if (strcmp (rs->buf, "OK") != 0)
14196 error (_("Remote refused setting thread events: %s"), rs->buf);
14197 break;
14198 case PACKET_ERROR:
14199 warning (_("Remote failure reply: %s"), rs->buf);
14200 break;
14201 case PACKET_UNKNOWN:
14202 break;
14203 }
14204 }
14205
14206 static void
14207 set_remote_cmd (const char *args, int from_tty)
14208 {
14209 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14210 }
14211
14212 static void
14213 show_remote_cmd (const char *args, int from_tty)
14214 {
14215 /* We can't just use cmd_show_list here, because we want to skip
14216 the redundant "show remote Z-packet" and the legacy aliases. */
14217 struct cmd_list_element *list = remote_show_cmdlist;
14218 struct ui_out *uiout = current_uiout;
14219
14220 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14221 for (; list != NULL; list = list->next)
14222 if (strcmp (list->name, "Z-packet") == 0)
14223 continue;
14224 else if (list->type == not_set_cmd)
14225 /* Alias commands are exactly like the original, except they
14226 don't have the normal type. */
14227 continue;
14228 else
14229 {
14230 ui_out_emit_tuple option_emitter (uiout, "option");
14231
14232 uiout->field_string ("name", list->name);
14233 uiout->text (": ");
14234 if (list->type == show_cmd)
14235 do_show_command (NULL, from_tty, list);
14236 else
14237 cmd_func (list, NULL, from_tty);
14238 }
14239 }
14240
14241
14242 /* Function to be called whenever a new objfile (shlib) is detected. */
14243 static void
14244 remote_new_objfile (struct objfile *objfile)
14245 {
14246 remote_target *remote = get_current_remote_target ();
14247
14248 if (remote != NULL) /* Have a remote connection. */
14249 remote->remote_check_symbols ();
14250 }
14251
14252 /* Pull all the tracepoints defined on the target and create local
14253 data structures representing them. We don't want to create real
14254 tracepoints yet, we don't want to mess up the user's existing
14255 collection. */
14256
14257 int
14258 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14259 {
14260 struct remote_state *rs = get_remote_state ();
14261 char *p;
14262
14263 /* Ask for a first packet of tracepoint definition. */
14264 putpkt ("qTfP");
14265 getpkt (&rs->buf, &rs->buf_size, 0);
14266 p = rs->buf;
14267 while (*p && *p != 'l')
14268 {
14269 parse_tracepoint_definition (p, utpp);
14270 /* Ask for another packet of tracepoint definition. */
14271 putpkt ("qTsP");
14272 getpkt (&rs->buf, &rs->buf_size, 0);
14273 p = rs->buf;
14274 }
14275 return 0;
14276 }
14277
14278 int
14279 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14280 {
14281 struct remote_state *rs = get_remote_state ();
14282 char *p;
14283
14284 /* Ask for a first packet of variable definition. */
14285 putpkt ("qTfV");
14286 getpkt (&rs->buf, &rs->buf_size, 0);
14287 p = rs->buf;
14288 while (*p && *p != 'l')
14289 {
14290 parse_tsv_definition (p, utsvp);
14291 /* Ask for another packet of variable definition. */
14292 putpkt ("qTsV");
14293 getpkt (&rs->buf, &rs->buf_size, 0);
14294 p = rs->buf;
14295 }
14296 return 0;
14297 }
14298
14299 /* The "set/show range-stepping" show hook. */
14300
14301 static void
14302 show_range_stepping (struct ui_file *file, int from_tty,
14303 struct cmd_list_element *c,
14304 const char *value)
14305 {
14306 fprintf_filtered (file,
14307 _("Debugger's willingness to use range stepping "
14308 "is %s.\n"), value);
14309 }
14310
14311 /* Return true if the vCont;r action is supported by the remote
14312 stub. */
14313
14314 bool
14315 remote_target::vcont_r_supported ()
14316 {
14317 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14318 remote_vcont_probe ();
14319
14320 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14321 && get_remote_state ()->supports_vCont.r);
14322 }
14323
14324 /* The "set/show range-stepping" set hook. */
14325
14326 static void
14327 set_range_stepping (const char *ignore_args, int from_tty,
14328 struct cmd_list_element *c)
14329 {
14330 /* When enabling, check whether range stepping is actually supported
14331 by the target, and warn if not. */
14332 if (use_range_stepping)
14333 {
14334 remote_target *remote = get_current_remote_target ();
14335 if (remote == NULL
14336 || !remote->vcont_r_supported ())
14337 warning (_("Range stepping is not supported by the current target"));
14338 }
14339 }
14340
14341 void
14342 _initialize_remote (void)
14343 {
14344 struct cmd_list_element *cmd;
14345 const char *cmd_name;
14346
14347 /* architecture specific data */
14348 remote_g_packet_data_handle =
14349 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14350
14351 remote_pspace_data
14352 = register_program_space_data_with_cleanup (NULL,
14353 remote_pspace_data_cleanup);
14354
14355 add_target (remote_target_info, remote_target::open);
14356 add_target (extended_remote_target_info, extended_remote_target::open);
14357
14358 /* Hook into new objfile notification. */
14359 gdb::observers::new_objfile.attach (remote_new_objfile);
14360
14361 #if 0
14362 init_remote_threadtests ();
14363 #endif
14364
14365 /* set/show remote ... */
14366
14367 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14368 Remote protocol specific variables\n\
14369 Configure various remote-protocol specific variables such as\n\
14370 the packets being used"),
14371 &remote_set_cmdlist, "set remote ",
14372 0 /* allow-unknown */, &setlist);
14373 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14374 Remote protocol specific variables\n\
14375 Configure various remote-protocol specific variables such as\n\
14376 the packets being used"),
14377 &remote_show_cmdlist, "show remote ",
14378 0 /* allow-unknown */, &showlist);
14379
14380 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14381 Compare section data on target to the exec file.\n\
14382 Argument is a single section name (default: all loaded sections).\n\
14383 To compare only read-only loaded sections, specify the -r option."),
14384 &cmdlist);
14385
14386 add_cmd ("packet", class_maintenance, packet_command, _("\
14387 Send an arbitrary packet to a remote target.\n\
14388 maintenance packet TEXT\n\
14389 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14390 this command sends the string TEXT to the inferior, and displays the\n\
14391 response packet. GDB supplies the initial `$' character, and the\n\
14392 terminating `#' character and checksum."),
14393 &maintenancelist);
14394
14395 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14396 Set whether to send break if interrupted."), _("\
14397 Show whether to send break if interrupted."), _("\
14398 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14399 set_remotebreak, show_remotebreak,
14400 &setlist, &showlist);
14401 cmd_name = "remotebreak";
14402 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14403 deprecate_cmd (cmd, "set remote interrupt-sequence");
14404 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14405 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14406 deprecate_cmd (cmd, "show remote interrupt-sequence");
14407
14408 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14409 interrupt_sequence_modes, &interrupt_sequence_mode,
14410 _("\
14411 Set interrupt sequence to remote target."), _("\
14412 Show interrupt sequence to remote target."), _("\
14413 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14414 NULL, show_interrupt_sequence,
14415 &remote_set_cmdlist,
14416 &remote_show_cmdlist);
14417
14418 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14419 &interrupt_on_connect, _("\
14420 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14421 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14422 If set, interrupt sequence is sent to remote target."),
14423 NULL, NULL,
14424 &remote_set_cmdlist, &remote_show_cmdlist);
14425
14426 /* Install commands for configuring memory read/write packets. */
14427
14428 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14429 Set the maximum number of bytes per memory write packet (deprecated)."),
14430 &setlist);
14431 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14432 Show the maximum number of bytes per memory write packet (deprecated)."),
14433 &showlist);
14434 add_cmd ("memory-write-packet-size", no_class,
14435 set_memory_write_packet_size, _("\
14436 Set the maximum number of bytes per memory-write packet.\n\
14437 Specify the number of bytes in a packet or 0 (zero) for the\n\
14438 default packet size. The actual limit is further reduced\n\
14439 dependent on the target. Specify ``fixed'' to disable the\n\
14440 further restriction and ``limit'' to enable that restriction."),
14441 &remote_set_cmdlist);
14442 add_cmd ("memory-read-packet-size", no_class,
14443 set_memory_read_packet_size, _("\
14444 Set the maximum number of bytes per memory-read packet.\n\
14445 Specify the number of bytes in a packet or 0 (zero) for the\n\
14446 default packet size. The actual limit is further reduced\n\
14447 dependent on the target. Specify ``fixed'' to disable the\n\
14448 further restriction and ``limit'' to enable that restriction."),
14449 &remote_set_cmdlist);
14450 add_cmd ("memory-write-packet-size", no_class,
14451 show_memory_write_packet_size,
14452 _("Show the maximum number of bytes per memory-write packet."),
14453 &remote_show_cmdlist);
14454 add_cmd ("memory-read-packet-size", no_class,
14455 show_memory_read_packet_size,
14456 _("Show the maximum number of bytes per memory-read packet."),
14457 &remote_show_cmdlist);
14458
14459 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14460 &remote_hw_watchpoint_limit, _("\
14461 Set the maximum number of target hardware watchpoints."), _("\
14462 Show the maximum number of target hardware watchpoints."), _("\
14463 Specify \"unlimited\" for unlimited hardware watchpoints."),
14464 NULL, show_hardware_watchpoint_limit,
14465 &remote_set_cmdlist,
14466 &remote_show_cmdlist);
14467 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14468 no_class,
14469 &remote_hw_watchpoint_length_limit, _("\
14470 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14471 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14472 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14473 NULL, show_hardware_watchpoint_length_limit,
14474 &remote_set_cmdlist, &remote_show_cmdlist);
14475 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14476 &remote_hw_breakpoint_limit, _("\
14477 Set the maximum number of target hardware breakpoints."), _("\
14478 Show the maximum number of target hardware breakpoints."), _("\
14479 Specify \"unlimited\" for unlimited hardware breakpoints."),
14480 NULL, show_hardware_breakpoint_limit,
14481 &remote_set_cmdlist, &remote_show_cmdlist);
14482
14483 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14484 &remote_address_size, _("\
14485 Set the maximum size of the address (in bits) in a memory packet."), _("\
14486 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14487 NULL,
14488 NULL, /* FIXME: i18n: */
14489 &setlist, &showlist);
14490
14491 init_all_packet_configs ();
14492
14493 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14494 "X", "binary-download", 1);
14495
14496 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14497 "vCont", "verbose-resume", 0);
14498
14499 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14500 "QPassSignals", "pass-signals", 0);
14501
14502 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14503 "QCatchSyscalls", "catch-syscalls", 0);
14504
14505 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14506 "QProgramSignals", "program-signals", 0);
14507
14508 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14509 "QSetWorkingDir", "set-working-dir", 0);
14510
14511 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14512 "QStartupWithShell", "startup-with-shell", 0);
14513
14514 add_packet_config_cmd (&remote_protocol_packets
14515 [PACKET_QEnvironmentHexEncoded],
14516 "QEnvironmentHexEncoded", "environment-hex-encoded",
14517 0);
14518
14519 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14520 "QEnvironmentReset", "environment-reset",
14521 0);
14522
14523 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14524 "QEnvironmentUnset", "environment-unset",
14525 0);
14526
14527 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14528 "qSymbol", "symbol-lookup", 0);
14529
14530 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14531 "P", "set-register", 1);
14532
14533 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14534 "p", "fetch-register", 1);
14535
14536 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14537 "Z0", "software-breakpoint", 0);
14538
14539 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14540 "Z1", "hardware-breakpoint", 0);
14541
14542 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14543 "Z2", "write-watchpoint", 0);
14544
14545 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14546 "Z3", "read-watchpoint", 0);
14547
14548 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14549 "Z4", "access-watchpoint", 0);
14550
14551 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14552 "qXfer:auxv:read", "read-aux-vector", 0);
14553
14554 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14555 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14556
14557 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14558 "qXfer:features:read", "target-features", 0);
14559
14560 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14561 "qXfer:libraries:read", "library-info", 0);
14562
14563 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14564 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14565
14566 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14567 "qXfer:memory-map:read", "memory-map", 0);
14568
14569 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14570 "qXfer:spu:read", "read-spu-object", 0);
14571
14572 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14573 "qXfer:spu:write", "write-spu-object", 0);
14574
14575 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14576 "qXfer:osdata:read", "osdata", 0);
14577
14578 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14579 "qXfer:threads:read", "threads", 0);
14580
14581 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14582 "qXfer:siginfo:read", "read-siginfo-object", 0);
14583
14584 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14585 "qXfer:siginfo:write", "write-siginfo-object", 0);
14586
14587 add_packet_config_cmd
14588 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14589 "qXfer:traceframe-info:read", "traceframe-info", 0);
14590
14591 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14592 "qXfer:uib:read", "unwind-info-block", 0);
14593
14594 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14595 "qGetTLSAddr", "get-thread-local-storage-address",
14596 0);
14597
14598 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14599 "qGetTIBAddr", "get-thread-information-block-address",
14600 0);
14601
14602 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14603 "bc", "reverse-continue", 0);
14604
14605 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14606 "bs", "reverse-step", 0);
14607
14608 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14609 "qSupported", "supported-packets", 0);
14610
14611 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14612 "qSearch:memory", "search-memory", 0);
14613
14614 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14615 "qTStatus", "trace-status", 0);
14616
14617 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14618 "vFile:setfs", "hostio-setfs", 0);
14619
14620 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14621 "vFile:open", "hostio-open", 0);
14622
14623 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14624 "vFile:pread", "hostio-pread", 0);
14625
14626 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14627 "vFile:pwrite", "hostio-pwrite", 0);
14628
14629 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14630 "vFile:close", "hostio-close", 0);
14631
14632 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14633 "vFile:unlink", "hostio-unlink", 0);
14634
14635 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14636 "vFile:readlink", "hostio-readlink", 0);
14637
14638 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14639 "vFile:fstat", "hostio-fstat", 0);
14640
14641 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14642 "vAttach", "attach", 0);
14643
14644 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14645 "vRun", "run", 0);
14646
14647 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14648 "QStartNoAckMode", "noack", 0);
14649
14650 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14651 "vKill", "kill", 0);
14652
14653 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14654 "qAttached", "query-attached", 0);
14655
14656 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14657 "ConditionalTracepoints",
14658 "conditional-tracepoints", 0);
14659
14660 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14661 "ConditionalBreakpoints",
14662 "conditional-breakpoints", 0);
14663
14664 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14665 "BreakpointCommands",
14666 "breakpoint-commands", 0);
14667
14668 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14669 "FastTracepoints", "fast-tracepoints", 0);
14670
14671 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14672 "TracepointSource", "TracepointSource", 0);
14673
14674 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14675 "QAllow", "allow", 0);
14676
14677 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14678 "StaticTracepoints", "static-tracepoints", 0);
14679
14680 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14681 "InstallInTrace", "install-in-trace", 0);
14682
14683 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14684 "qXfer:statictrace:read", "read-sdata-object", 0);
14685
14686 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14687 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14688
14689 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14690 "QDisableRandomization", "disable-randomization", 0);
14691
14692 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14693 "QAgent", "agent", 0);
14694
14695 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14696 "QTBuffer:size", "trace-buffer-size", 0);
14697
14698 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14699 "Qbtrace:off", "disable-btrace", 0);
14700
14701 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14702 "Qbtrace:bts", "enable-btrace-bts", 0);
14703
14704 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14705 "Qbtrace:pt", "enable-btrace-pt", 0);
14706
14707 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14708 "qXfer:btrace", "read-btrace", 0);
14709
14710 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14711 "qXfer:btrace-conf", "read-btrace-conf", 0);
14712
14713 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14714 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14715
14716 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14717 "multiprocess-feature", "multiprocess-feature", 0);
14718
14719 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14720 "swbreak-feature", "swbreak-feature", 0);
14721
14722 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14723 "hwbreak-feature", "hwbreak-feature", 0);
14724
14725 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14726 "fork-event-feature", "fork-event-feature", 0);
14727
14728 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14729 "vfork-event-feature", "vfork-event-feature", 0);
14730
14731 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14732 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14733
14734 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14735 "vContSupported", "verbose-resume-supported", 0);
14736
14737 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14738 "exec-event-feature", "exec-event-feature", 0);
14739
14740 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14741 "vCtrlC", "ctrl-c", 0);
14742
14743 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14744 "QThreadEvents", "thread-events", 0);
14745
14746 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14747 "N stop reply", "no-resumed-stop-reply", 0);
14748
14749 /* Assert that we've registered "set remote foo-packet" commands
14750 for all packet configs. */
14751 {
14752 int i;
14753
14754 for (i = 0; i < PACKET_MAX; i++)
14755 {
14756 /* Ideally all configs would have a command associated. Some
14757 still don't though. */
14758 int excepted;
14759
14760 switch (i)
14761 {
14762 case PACKET_QNonStop:
14763 case PACKET_EnableDisableTracepoints_feature:
14764 case PACKET_tracenz_feature:
14765 case PACKET_DisconnectedTracing_feature:
14766 case PACKET_augmented_libraries_svr4_read_feature:
14767 case PACKET_qCRC:
14768 /* Additions to this list need to be well justified:
14769 pre-existing packets are OK; new packets are not. */
14770 excepted = 1;
14771 break;
14772 default:
14773 excepted = 0;
14774 break;
14775 }
14776
14777 /* This catches both forgetting to add a config command, and
14778 forgetting to remove a packet from the exception list. */
14779 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14780 }
14781 }
14782
14783 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14784 Z sub-packet has its own set and show commands, but users may
14785 have sets to this variable in their .gdbinit files (or in their
14786 documentation). */
14787 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14788 &remote_Z_packet_detect, _("\
14789 Set use of remote protocol `Z' packets"), _("\
14790 Show use of remote protocol `Z' packets "), _("\
14791 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14792 packets."),
14793 set_remote_protocol_Z_packet_cmd,
14794 show_remote_protocol_Z_packet_cmd,
14795 /* FIXME: i18n: Use of remote protocol
14796 `Z' packets is %s. */
14797 &remote_set_cmdlist, &remote_show_cmdlist);
14798
14799 add_prefix_cmd ("remote", class_files, remote_command, _("\
14800 Manipulate files on the remote system\n\
14801 Transfer files to and from the remote target system."),
14802 &remote_cmdlist, "remote ",
14803 0 /* allow-unknown */, &cmdlist);
14804
14805 add_cmd ("put", class_files, remote_put_command,
14806 _("Copy a local file to the remote system."),
14807 &remote_cmdlist);
14808
14809 add_cmd ("get", class_files, remote_get_command,
14810 _("Copy a remote file to the local system."),
14811 &remote_cmdlist);
14812
14813 add_cmd ("delete", class_files, remote_delete_command,
14814 _("Delete a remote file."),
14815 &remote_cmdlist);
14816
14817 add_setshow_string_noescape_cmd ("exec-file", class_files,
14818 &remote_exec_file_var, _("\
14819 Set the remote pathname for \"run\""), _("\
14820 Show the remote pathname for \"run\""), NULL,
14821 set_remote_exec_file,
14822 show_remote_exec_file,
14823 &remote_set_cmdlist,
14824 &remote_show_cmdlist);
14825
14826 add_setshow_boolean_cmd ("range-stepping", class_run,
14827 &use_range_stepping, _("\
14828 Enable or disable range stepping."), _("\
14829 Show whether target-assisted range stepping is enabled."), _("\
14830 If on, and the target supports it, when stepping a source line, GDB\n\
14831 tells the target to step the corresponding range of addresses itself instead\n\
14832 of issuing multiple single-steps. This speeds up source level\n\
14833 stepping. If off, GDB always issues single-steps, even if range\n\
14834 stepping is supported by the target. The default is on."),
14835 set_range_stepping,
14836 show_range_stepping,
14837 &setlist,
14838 &showlist);
14839
14840 /* Eventually initialize fileio. See fileio.c */
14841 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14842
14843 /* Take advantage of the fact that the TID field is not used, to tag
14844 special ptids with it set to != 0. */
14845 magic_null_ptid = ptid_t (42000, -1, 1);
14846 not_sent_ptid = ptid_t (42000, -2, 1);
14847 any_thread_ptid = ptid_t (42000, 0, 1);
14848 }
This page took 0.405574 seconds and 3 git commands to generate.