49013848d5553dd1da0b014d3ef8001bfb65ca89
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78
79 /* Per-program-space data key. */
80 static const struct program_space_data *remote_pspace_data;
81
82 /* The variable registered as the control variable used by the
83 remote exec-file commands. While the remote exec-file setting is
84 per-program-space, the set/show machinery uses this as the
85 location of the remote exec-file value. */
86 static char *remote_exec_file_var;
87
88 /* The size to align memory write packets, when practical. The protocol
89 does not guarantee any alignment, and gdb will generate short
90 writes and unaligned writes, but even as a best-effort attempt this
91 can improve bulk transfers. For instance, if a write is misaligned
92 relative to the target's data bus, the stub may need to make an extra
93 round trip fetching data from the target. This doesn't make a
94 huge difference, but it's easy to do, so we try to be helpful.
95
96 The alignment chosen is arbitrary; usually data bus width is
97 important here, not the possibly larger cache line size. */
98 enum { REMOTE_ALIGN_WRITES = 16 };
99
100 /* Prototypes for local functions. */
101 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
102 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
103 int forever, int *is_notif);
104
105 static void remote_files_info (struct target_ops *ignore);
106
107 static void remote_prepare_to_store (struct target_ops *self,
108 struct regcache *regcache);
109
110 static void remote_open_1 (const char *, int, struct target_ops *,
111 int extended_p);
112
113 static void remote_close (struct target_ops *self);
114
115 struct remote_state;
116
117 static int remote_vkill (int pid, struct remote_state *rs);
118
119 static void remote_kill_k (void);
120
121 static void remote_mourn (struct target_ops *ops);
122
123 static void extended_remote_restart (void);
124
125 static void remote_send (char **buf, long *sizeof_buf_p);
126
127 static int readchar (int timeout);
128
129 static void remote_serial_write (const char *str, int len);
130
131 static void remote_kill (struct target_ops *ops);
132
133 static int remote_can_async_p (struct target_ops *);
134
135 static int remote_is_async_p (struct target_ops *);
136
137 static void remote_async (struct target_ops *ops, int enable);
138
139 static void remote_thread_events (struct target_ops *ops, int enable);
140
141 static void interrupt_query (void);
142
143 static void set_general_thread (ptid_t ptid);
144 static void set_continue_thread (ptid_t ptid);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (struct target_ops *self, ptid_t);
159
160 static int stubhex (int ch);
161
162 static int hexnumstr (char *, ULONGEST);
163
164 static int hexnumnstr (char *, ULONGEST, int);
165
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
167
168 static void print_packet (const char *);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static int putpkt_binary (const char *buf, int cnt);
175
176 static void check_binary_download (CORE_ADDR addr);
177
178 struct packet_config;
179
180 static void show_packet_config_cmd (struct packet_config *config);
181
182 static void show_remote_protocol_packet_cmd (struct ui_file *file,
183 int from_tty,
184 struct cmd_list_element *c,
185 const char *value);
186
187 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
188 static ptid_t read_ptid (const char *buf, const char **obuf);
189
190 static void remote_set_permissions (struct target_ops *self);
191
192 static int remote_get_trace_status (struct target_ops *self,
193 struct trace_status *ts);
194
195 static int remote_upload_tracepoints (struct target_ops *self,
196 struct uploaded_tp **utpp);
197
198 static int remote_upload_trace_state_variables (struct target_ops *self,
199 struct uploaded_tsv **utsvp);
200
201 static void remote_query_supported (void);
202
203 static void remote_check_symbols (void);
204
205 struct stop_reply;
206 static void stop_reply_xfree (struct stop_reply *);
207 static void remote_parse_stop_reply (char *, struct stop_reply *);
208 static void push_stop_reply (struct stop_reply *);
209 static void discard_pending_stop_replies_in_queue (struct remote_state *);
210 static int peek_stop_reply (ptid_t ptid);
211
212 struct threads_listing_context;
213 static void remove_new_fork_children (struct threads_listing_context *);
214
215 static void remote_async_inferior_event_handler (gdb_client_data);
216
217 static void remote_terminal_ours (struct target_ops *self);
218
219 static int remote_read_description_p (struct target_ops *target);
220
221 static void remote_console_output (char *msg);
222
223 static int remote_supports_cond_breakpoints (struct target_ops *self);
224
225 static int remote_can_run_breakpoint_commands (struct target_ops *self);
226
227 static void remote_btrace_reset (void);
228
229 static void remote_btrace_maybe_reopen (void);
230
231 static int stop_reply_queue_length (void);
232
233 static void readahead_cache_invalidate (void);
234
235 static void remote_unpush_and_throw (void);
236
237 static struct remote_state *get_remote_state (void);
238
239 /* For "remote". */
240
241 static struct cmd_list_element *remote_cmdlist;
242
243 /* For "set remote" and "show remote". */
244
245 static struct cmd_list_element *remote_set_cmdlist;
246 static struct cmd_list_element *remote_show_cmdlist;
247
248 /* Stub vCont actions support.
249
250 Each field is a boolean flag indicating whether the stub reports
251 support for the corresponding action. */
252
253 struct vCont_action_support
254 {
255 /* vCont;t */
256 int t;
257
258 /* vCont;r */
259 int r;
260
261 /* vCont;s */
262 int s;
263
264 /* vCont;S */
265 int S;
266 };
267
268 /* Controls whether GDB is willing to use range stepping. */
269
270 static int use_range_stepping = 1;
271
272 #define OPAQUETHREADBYTES 8
273
274 /* a 64 bit opaque identifier */
275 typedef unsigned char threadref[OPAQUETHREADBYTES];
276
277 /* About this many threadisds fit in a packet. */
278
279 #define MAXTHREADLISTRESULTS 32
280
281 /* The max number of chars in debug output. The rest of chars are
282 omitted. */
283
284 #define REMOTE_DEBUG_MAX_CHAR 512
285
286 /* Data for the vFile:pread readahead cache. */
287
288 struct readahead_cache
289 {
290 /* The file descriptor for the file that is being cached. -1 if the
291 cache is invalid. */
292 int fd;
293
294 /* The offset into the file that the cache buffer corresponds
295 to. */
296 ULONGEST offset;
297
298 /* The buffer holding the cache contents. */
299 gdb_byte *buf;
300 /* The buffer's size. We try to read as much as fits into a packet
301 at a time. */
302 size_t bufsize;
303
304 /* Cache hit and miss counters. */
305 ULONGEST hit_count;
306 ULONGEST miss_count;
307 };
308
309 /* Description of the remote protocol state for the currently
310 connected target. This is per-target state, and independent of the
311 selected architecture. */
312
313 struct remote_state
314 {
315 /* A buffer to use for incoming packets, and its current size. The
316 buffer is grown dynamically for larger incoming packets.
317 Outgoing packets may also be constructed in this buffer.
318 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
319 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
320 packets. */
321 char *buf;
322 long buf_size;
323
324 /* True if we're going through initial connection setup (finding out
325 about the remote side's threads, relocating symbols, etc.). */
326 int starting_up;
327
328 /* If we negotiated packet size explicitly (and thus can bypass
329 heuristics for the largest packet size that will not overflow
330 a buffer in the stub), this will be set to that packet size.
331 Otherwise zero, meaning to use the guessed size. */
332 long explicit_packet_size;
333
334 /* remote_wait is normally called when the target is running and
335 waits for a stop reply packet. But sometimes we need to call it
336 when the target is already stopped. We can send a "?" packet
337 and have remote_wait read the response. Or, if we already have
338 the response, we can stash it in BUF and tell remote_wait to
339 skip calling getpkt. This flag is set when BUF contains a
340 stop reply packet and the target is not waiting. */
341 int cached_wait_status;
342
343 /* True, if in no ack mode. That is, neither GDB nor the stub will
344 expect acks from each other. The connection is assumed to be
345 reliable. */
346 int noack_mode;
347
348 /* True if we're connected in extended remote mode. */
349 int extended;
350
351 /* True if we resumed the target and we're waiting for the target to
352 stop. In the mean time, we can't start another command/query.
353 The remote server wouldn't be ready to process it, so we'd
354 timeout waiting for a reply that would never come and eventually
355 we'd close the connection. This can happen in asynchronous mode
356 because we allow GDB commands while the target is running. */
357 int waiting_for_stop_reply;
358
359 /* The status of the stub support for the various vCont actions. */
360 struct vCont_action_support supports_vCont;
361
362 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
363 responded to that. */
364 int ctrlc_pending_p;
365
366 /* True if we saw a Ctrl-C while reading or writing from/to the
367 remote descriptor. At that point it is not safe to send a remote
368 interrupt packet, so we instead remember we saw the Ctrl-C and
369 process it once we're done with sending/receiving the current
370 packet, which should be shortly. If however that takes too long,
371 and the user presses Ctrl-C again, we offer to disconnect. */
372 int got_ctrlc_during_io;
373
374 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
375 remote_open knows that we don't have a file open when the program
376 starts. */
377 struct serial *remote_desc;
378
379 /* These are the threads which we last sent to the remote system. The
380 TID member will be -1 for all or -2 for not sent yet. */
381 ptid_t general_thread;
382 ptid_t continue_thread;
383
384 /* This is the traceframe which we last selected on the remote system.
385 It will be -1 if no traceframe is selected. */
386 int remote_traceframe_number;
387
388 char *last_pass_packet;
389
390 /* The last QProgramSignals packet sent to the target. We bypass
391 sending a new program signals list down to the target if the new
392 packet is exactly the same as the last we sent. IOW, we only let
393 the target know about program signals list changes. */
394 char *last_program_signals_packet;
395
396 enum gdb_signal last_sent_signal;
397
398 int last_sent_step;
399
400 /* The execution direction of the last resume we got. */
401 enum exec_direction_kind last_resume_exec_dir;
402
403 char *finished_object;
404 char *finished_annex;
405 ULONGEST finished_offset;
406
407 /* Should we try the 'ThreadInfo' query packet?
408
409 This variable (NOT available to the user: auto-detect only!)
410 determines whether GDB will use the new, simpler "ThreadInfo"
411 query or the older, more complex syntax for thread queries.
412 This is an auto-detect variable (set to true at each connect,
413 and set to false when the target fails to recognize it). */
414 int use_threadinfo_query;
415 int use_threadextra_query;
416
417 threadref echo_nextthread;
418 threadref nextthread;
419 threadref resultthreadlist[MAXTHREADLISTRESULTS];
420
421 /* The state of remote notification. */
422 struct remote_notif_state *notif_state;
423
424 /* The branch trace configuration. */
425 struct btrace_config btrace_config;
426
427 /* The argument to the last "vFile:setfs:" packet we sent, used
428 to avoid sending repeated unnecessary "vFile:setfs:" packets.
429 Initialized to -1 to indicate that no "vFile:setfs:" packet
430 has yet been sent. */
431 int fs_pid;
432
433 /* A readahead cache for vFile:pread. Often, reading a binary
434 involves a sequence of small reads. E.g., when parsing an ELF
435 file. A readahead cache helps mostly the case of remote
436 debugging on a connection with higher latency, due to the
437 request/reply nature of the RSP. We only cache data for a single
438 file descriptor at a time. */
439 struct readahead_cache readahead_cache;
440 };
441
442 /* Private data that we'll store in (struct thread_info)->priv. */
443 struct remote_thread_info : public private_thread_info
444 {
445 std::string extra;
446 std::string name;
447 int core = -1;
448
449 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
450 sequence of bytes. */
451 gdb::byte_vector thread_handle;
452
453 /* Whether the target stopped for a breakpoint/watchpoint. */
454 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
455
456 /* This is set to the data address of the access causing the target
457 to stop for a watchpoint. */
458 CORE_ADDR watch_data_address = 0;
459
460 /* Fields used by the vCont action coalescing implemented in
461 remote_resume / remote_commit_resume. remote_resume stores each
462 thread's last resume request in these fields, so that a later
463 remote_commit_resume knows which is the proper action for this
464 thread to include in the vCont packet. */
465
466 /* True if the last target_resume call for this thread was a step
467 request, false if a continue request. */
468 int last_resume_step = 0;
469
470 /* The signal specified in the last target_resume call for this
471 thread. */
472 gdb_signal last_resume_sig = GDB_SIGNAL_0;
473
474 /* Whether this thread was already vCont-resumed on the remote
475 side. */
476 int vcont_resumed = 0;
477 };
478
479 /* This data could be associated with a target, but we do not always
480 have access to the current target when we need it, so for now it is
481 static. This will be fine for as long as only one target is in use
482 at a time. */
483 static struct remote_state *remote_state;
484
485 static struct remote_state *
486 get_remote_state_raw (void)
487 {
488 return remote_state;
489 }
490
491 /* Allocate a new struct remote_state with xmalloc, initialize it, and
492 return it. */
493
494 static struct remote_state *
495 new_remote_state (void)
496 {
497 struct remote_state *result = XCNEW (struct remote_state);
498
499 /* The default buffer size is unimportant; it will be expanded
500 whenever a larger buffer is needed. */
501 result->buf_size = 400;
502 result->buf = (char *) xmalloc (result->buf_size);
503 result->remote_traceframe_number = -1;
504 result->last_sent_signal = GDB_SIGNAL_0;
505 result->last_resume_exec_dir = EXEC_FORWARD;
506 result->fs_pid = -1;
507
508 return result;
509 }
510
511 /* Description of the remote protocol for a given architecture. */
512
513 struct packet_reg
514 {
515 long offset; /* Offset into G packet. */
516 long regnum; /* GDB's internal register number. */
517 LONGEST pnum; /* Remote protocol register number. */
518 int in_g_packet; /* Always part of G packet. */
519 /* long size in bytes; == register_size (target_gdbarch (), regnum);
520 at present. */
521 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
522 at present. */
523 };
524
525 struct remote_arch_state
526 {
527 /* Description of the remote protocol registers. */
528 long sizeof_g_packet;
529
530 /* Description of the remote protocol registers indexed by REGNUM
531 (making an array gdbarch_num_regs in size). */
532 struct packet_reg *regs;
533
534 /* This is the size (in chars) of the first response to the ``g''
535 packet. It is used as a heuristic when determining the maximum
536 size of memory-read and memory-write packets. A target will
537 typically only reserve a buffer large enough to hold the ``g''
538 packet. The size does not include packet overhead (headers and
539 trailers). */
540 long actual_register_packet_size;
541
542 /* This is the maximum size (in chars) of a non read/write packet.
543 It is also used as a cap on the size of read/write packets. */
544 long remote_packet_size;
545 };
546
547 /* Utility: generate error from an incoming stub packet. */
548 static void
549 trace_error (char *buf)
550 {
551 if (*buf++ != 'E')
552 return; /* not an error msg */
553 switch (*buf)
554 {
555 case '1': /* malformed packet error */
556 if (*++buf == '0') /* general case: */
557 error (_("remote.c: error in outgoing packet."));
558 else
559 error (_("remote.c: error in outgoing packet at field #%ld."),
560 strtol (buf, NULL, 16));
561 default:
562 error (_("Target returns error code '%s'."), buf);
563 }
564 }
565
566 /* Utility: wait for reply from stub, while accepting "O" packets. */
567
568 static char *
569 remote_get_noisy_reply ()
570 {
571 struct remote_state *rs = get_remote_state ();
572
573 do /* Loop on reply from remote stub. */
574 {
575 char *buf;
576
577 QUIT; /* Allow user to bail out with ^C. */
578 getpkt (&rs->buf, &rs->buf_size, 0);
579 buf = rs->buf;
580 if (buf[0] == 'E')
581 trace_error (buf);
582 else if (startswith (buf, "qRelocInsn:"))
583 {
584 ULONGEST ul;
585 CORE_ADDR from, to, org_to;
586 const char *p, *pp;
587 int adjusted_size = 0;
588 int relocated = 0;
589
590 p = buf + strlen ("qRelocInsn:");
591 pp = unpack_varlen_hex (p, &ul);
592 if (*pp != ';')
593 error (_("invalid qRelocInsn packet: %s"), buf);
594 from = ul;
595
596 p = pp + 1;
597 unpack_varlen_hex (p, &ul);
598 to = ul;
599
600 org_to = to;
601
602 TRY
603 {
604 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
605 relocated = 1;
606 }
607 CATCH (ex, RETURN_MASK_ALL)
608 {
609 if (ex.error == MEMORY_ERROR)
610 {
611 /* Propagate memory errors silently back to the
612 target. The stub may have limited the range of
613 addresses we can write to, for example. */
614 }
615 else
616 {
617 /* Something unexpectedly bad happened. Be verbose
618 so we can tell what, and propagate the error back
619 to the stub, so it doesn't get stuck waiting for
620 a response. */
621 exception_fprintf (gdb_stderr, ex,
622 _("warning: relocating instruction: "));
623 }
624 putpkt ("E01");
625 }
626 END_CATCH
627
628 if (relocated)
629 {
630 adjusted_size = to - org_to;
631
632 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
633 putpkt (buf);
634 }
635 }
636 else if (buf[0] == 'O' && buf[1] != 'K')
637 remote_console_output (buf + 1); /* 'O' message from stub */
638 else
639 return buf; /* Here's the actual reply. */
640 }
641 while (1);
642 }
643
644 /* Handle for retreving the remote protocol data from gdbarch. */
645 static struct gdbarch_data *remote_gdbarch_data_handle;
646
647 static struct remote_arch_state *
648 get_remote_arch_state (struct gdbarch *gdbarch)
649 {
650 gdb_assert (gdbarch != NULL);
651 return ((struct remote_arch_state *)
652 gdbarch_data (gdbarch, remote_gdbarch_data_handle));
653 }
654
655 /* Fetch the global remote target state. */
656
657 static struct remote_state *
658 get_remote_state (void)
659 {
660 /* Make sure that the remote architecture state has been
661 initialized, because doing so might reallocate rs->buf. Any
662 function which calls getpkt also needs to be mindful of changes
663 to rs->buf, but this call limits the number of places which run
664 into trouble. */
665 get_remote_arch_state (target_gdbarch ());
666
667 return get_remote_state_raw ();
668 }
669
670 /* Cleanup routine for the remote module's pspace data. */
671
672 static void
673 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
674 {
675 char *remote_exec_file = (char *) arg;
676
677 xfree (remote_exec_file);
678 }
679
680 /* Fetch the remote exec-file from the current program space. */
681
682 static const char *
683 get_remote_exec_file (void)
684 {
685 char *remote_exec_file;
686
687 remote_exec_file
688 = (char *) program_space_data (current_program_space,
689 remote_pspace_data);
690 if (remote_exec_file == NULL)
691 return "";
692
693 return remote_exec_file;
694 }
695
696 /* Set the remote exec file for PSPACE. */
697
698 static void
699 set_pspace_remote_exec_file (struct program_space *pspace,
700 char *remote_exec_file)
701 {
702 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
703
704 xfree (old_file);
705 set_program_space_data (pspace, remote_pspace_data,
706 xstrdup (remote_exec_file));
707 }
708
709 /* The "set/show remote exec-file" set command hook. */
710
711 static void
712 set_remote_exec_file (const char *ignored, int from_tty,
713 struct cmd_list_element *c)
714 {
715 gdb_assert (remote_exec_file_var != NULL);
716 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
717 }
718
719 /* The "set/show remote exec-file" show command hook. */
720
721 static void
722 show_remote_exec_file (struct ui_file *file, int from_tty,
723 struct cmd_list_element *cmd, const char *value)
724 {
725 fprintf_filtered (file, "%s\n", remote_exec_file_var);
726 }
727
728 static int
729 compare_pnums (const void *lhs_, const void *rhs_)
730 {
731 const struct packet_reg * const *lhs
732 = (const struct packet_reg * const *) lhs_;
733 const struct packet_reg * const *rhs
734 = (const struct packet_reg * const *) rhs_;
735
736 if ((*lhs)->pnum < (*rhs)->pnum)
737 return -1;
738 else if ((*lhs)->pnum == (*rhs)->pnum)
739 return 0;
740 else
741 return 1;
742 }
743
744 static int
745 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
746 {
747 int regnum, num_remote_regs, offset;
748 struct packet_reg **remote_regs;
749
750 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
751 {
752 struct packet_reg *r = &regs[regnum];
753
754 if (register_size (gdbarch, regnum) == 0)
755 /* Do not try to fetch zero-sized (placeholder) registers. */
756 r->pnum = -1;
757 else
758 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
759
760 r->regnum = regnum;
761 }
762
763 /* Define the g/G packet format as the contents of each register
764 with a remote protocol number, in order of ascending protocol
765 number. */
766
767 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
768 for (num_remote_regs = 0, regnum = 0;
769 regnum < gdbarch_num_regs (gdbarch);
770 regnum++)
771 if (regs[regnum].pnum != -1)
772 remote_regs[num_remote_regs++] = &regs[regnum];
773
774 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
775 compare_pnums);
776
777 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
778 {
779 remote_regs[regnum]->in_g_packet = 1;
780 remote_regs[regnum]->offset = offset;
781 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
782 }
783
784 return offset;
785 }
786
787 /* Given the architecture described by GDBARCH, return the remote
788 protocol register's number and the register's offset in the g/G
789 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
790 If the target does not have a mapping for REGNUM, return false,
791 otherwise, return true. */
792
793 int
794 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
795 int *pnum, int *poffset)
796 {
797 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
798
799 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
800
801 map_regcache_remote_table (gdbarch, regs.data ());
802
803 *pnum = regs[regnum].pnum;
804 *poffset = regs[regnum].offset;
805
806 return *pnum != -1;
807 }
808
809 static void *
810 init_remote_state (struct gdbarch *gdbarch)
811 {
812 struct remote_state *rs = get_remote_state_raw ();
813 struct remote_arch_state *rsa;
814
815 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
816
817 /* Use the architecture to build a regnum<->pnum table, which will be
818 1:1 unless a feature set specifies otherwise. */
819 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
820 gdbarch_num_regs (gdbarch),
821 struct packet_reg);
822
823 /* Record the maximum possible size of the g packet - it may turn out
824 to be smaller. */
825 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
826
827 /* Default maximum number of characters in a packet body. Many
828 remote stubs have a hardwired buffer size of 400 bytes
829 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
830 as the maximum packet-size to ensure that the packet and an extra
831 NUL character can always fit in the buffer. This stops GDB
832 trashing stubs that try to squeeze an extra NUL into what is
833 already a full buffer (As of 1999-12-04 that was most stubs). */
834 rsa->remote_packet_size = 400 - 1;
835
836 /* This one is filled in when a ``g'' packet is received. */
837 rsa->actual_register_packet_size = 0;
838
839 /* Should rsa->sizeof_g_packet needs more space than the
840 default, adjust the size accordingly. Remember that each byte is
841 encoded as two characters. 32 is the overhead for the packet
842 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
843 (``$NN:G...#NN'') is a better guess, the below has been padded a
844 little. */
845 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
846 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
847
848 /* Make sure that the packet buffer is plenty big enough for
849 this architecture. */
850 if (rs->buf_size < rsa->remote_packet_size)
851 {
852 rs->buf_size = 2 * rsa->remote_packet_size;
853 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
854 }
855
856 return rsa;
857 }
858
859 /* Return the current allowed size of a remote packet. This is
860 inferred from the current architecture, and should be used to
861 limit the length of outgoing packets. */
862 static long
863 get_remote_packet_size (void)
864 {
865 struct remote_state *rs = get_remote_state ();
866 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
867
868 if (rs->explicit_packet_size)
869 return rs->explicit_packet_size;
870
871 return rsa->remote_packet_size;
872 }
873
874 static struct packet_reg *
875 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
876 long regnum)
877 {
878 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
879 return NULL;
880 else
881 {
882 struct packet_reg *r = &rsa->regs[regnum];
883
884 gdb_assert (r->regnum == regnum);
885 return r;
886 }
887 }
888
889 static struct packet_reg *
890 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
891 LONGEST pnum)
892 {
893 int i;
894
895 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
896 {
897 struct packet_reg *r = &rsa->regs[i];
898
899 if (r->pnum == pnum)
900 return r;
901 }
902 return NULL;
903 }
904
905 static struct target_ops remote_ops;
906
907 static struct target_ops extended_remote_ops;
908
909 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
910 ``forever'' still use the normal timeout mechanism. This is
911 currently used by the ASYNC code to guarentee that target reads
912 during the initial connect always time-out. Once getpkt has been
913 modified to return a timeout indication and, in turn
914 remote_wait()/wait_for_inferior() have gained a timeout parameter
915 this can go away. */
916 static int wait_forever_enabled_p = 1;
917
918 /* Allow the user to specify what sequence to send to the remote
919 when he requests a program interruption: Although ^C is usually
920 what remote systems expect (this is the default, here), it is
921 sometimes preferable to send a break. On other systems such
922 as the Linux kernel, a break followed by g, which is Magic SysRq g
923 is required in order to interrupt the execution. */
924 const char interrupt_sequence_control_c[] = "Ctrl-C";
925 const char interrupt_sequence_break[] = "BREAK";
926 const char interrupt_sequence_break_g[] = "BREAK-g";
927 static const char *const interrupt_sequence_modes[] =
928 {
929 interrupt_sequence_control_c,
930 interrupt_sequence_break,
931 interrupt_sequence_break_g,
932 NULL
933 };
934 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
935
936 static void
937 show_interrupt_sequence (struct ui_file *file, int from_tty,
938 struct cmd_list_element *c,
939 const char *value)
940 {
941 if (interrupt_sequence_mode == interrupt_sequence_control_c)
942 fprintf_filtered (file,
943 _("Send the ASCII ETX character (Ctrl-c) "
944 "to the remote target to interrupt the "
945 "execution of the program.\n"));
946 else if (interrupt_sequence_mode == interrupt_sequence_break)
947 fprintf_filtered (file,
948 _("send a break signal to the remote target "
949 "to interrupt the execution of the program.\n"));
950 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
951 fprintf_filtered (file,
952 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
953 "the remote target to interrupt the execution "
954 "of Linux kernel.\n"));
955 else
956 internal_error (__FILE__, __LINE__,
957 _("Invalid value for interrupt_sequence_mode: %s."),
958 interrupt_sequence_mode);
959 }
960
961 /* This boolean variable specifies whether interrupt_sequence is sent
962 to the remote target when gdb connects to it.
963 This is mostly needed when you debug the Linux kernel: The Linux kernel
964 expects BREAK g which is Magic SysRq g for connecting gdb. */
965 static int interrupt_on_connect = 0;
966
967 /* This variable is used to implement the "set/show remotebreak" commands.
968 Since these commands are now deprecated in favor of "set/show remote
969 interrupt-sequence", it no longer has any effect on the code. */
970 static int remote_break;
971
972 static void
973 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
974 {
975 if (remote_break)
976 interrupt_sequence_mode = interrupt_sequence_break;
977 else
978 interrupt_sequence_mode = interrupt_sequence_control_c;
979 }
980
981 static void
982 show_remotebreak (struct ui_file *file, int from_tty,
983 struct cmd_list_element *c,
984 const char *value)
985 {
986 }
987
988 /* This variable sets the number of bits in an address that are to be
989 sent in a memory ("M" or "m") packet. Normally, after stripping
990 leading zeros, the entire address would be sent. This variable
991 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
992 initial implementation of remote.c restricted the address sent in
993 memory packets to ``host::sizeof long'' bytes - (typically 32
994 bits). Consequently, for 64 bit targets, the upper 32 bits of an
995 address was never sent. Since fixing this bug may cause a break in
996 some remote targets this variable is principly provided to
997 facilitate backward compatibility. */
998
999 static unsigned int remote_address_size;
1000
1001 \f
1002 /* User configurable variables for the number of characters in a
1003 memory read/write packet. MIN (rsa->remote_packet_size,
1004 rsa->sizeof_g_packet) is the default. Some targets need smaller
1005 values (fifo overruns, et.al.) and some users need larger values
1006 (speed up transfers). The variables ``preferred_*'' (the user
1007 request), ``current_*'' (what was actually set) and ``forced_*''
1008 (Positive - a soft limit, negative - a hard limit). */
1009
1010 struct memory_packet_config
1011 {
1012 const char *name;
1013 long size;
1014 int fixed_p;
1015 };
1016
1017 /* The default max memory-write-packet-size. The 16k is historical.
1018 (It came from older GDB's using alloca for buffers and the
1019 knowledge (folklore?) that some hosts don't cope very well with
1020 large alloca calls.) */
1021 #define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1022
1023 /* The minimum remote packet size for memory transfers. Ensures we
1024 can write at least one byte. */
1025 #define MIN_MEMORY_PACKET_SIZE 20
1026
1027 /* Compute the current size of a read/write packet. Since this makes
1028 use of ``actual_register_packet_size'' the computation is dynamic. */
1029
1030 static long
1031 get_memory_packet_size (struct memory_packet_config *config)
1032 {
1033 struct remote_state *rs = get_remote_state ();
1034 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
1035
1036 long what_they_get;
1037 if (config->fixed_p)
1038 {
1039 if (config->size <= 0)
1040 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1041 else
1042 what_they_get = config->size;
1043 }
1044 else
1045 {
1046 what_they_get = get_remote_packet_size ();
1047 /* Limit the packet to the size specified by the user. */
1048 if (config->size > 0
1049 && what_they_get > config->size)
1050 what_they_get = config->size;
1051
1052 /* Limit it to the size of the targets ``g'' response unless we have
1053 permission from the stub to use a larger packet size. */
1054 if (rs->explicit_packet_size == 0
1055 && rsa->actual_register_packet_size > 0
1056 && what_they_get > rsa->actual_register_packet_size)
1057 what_they_get = rsa->actual_register_packet_size;
1058 }
1059 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1060 what_they_get = MIN_MEMORY_PACKET_SIZE;
1061
1062 /* Make sure there is room in the global buffer for this packet
1063 (including its trailing NUL byte). */
1064 if (rs->buf_size < what_they_get + 1)
1065 {
1066 rs->buf_size = 2 * what_they_get;
1067 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1068 }
1069
1070 return what_they_get;
1071 }
1072
1073 /* Update the size of a read/write packet. If they user wants
1074 something really big then do a sanity check. */
1075
1076 static void
1077 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1078 {
1079 int fixed_p = config->fixed_p;
1080 long size = config->size;
1081
1082 if (args == NULL)
1083 error (_("Argument required (integer, `fixed' or `limited')."));
1084 else if (strcmp (args, "hard") == 0
1085 || strcmp (args, "fixed") == 0)
1086 fixed_p = 1;
1087 else if (strcmp (args, "soft") == 0
1088 || strcmp (args, "limit") == 0)
1089 fixed_p = 0;
1090 else
1091 {
1092 char *end;
1093
1094 size = strtoul (args, &end, 0);
1095 if (args == end)
1096 error (_("Invalid %s (bad syntax)."), config->name);
1097
1098 /* Instead of explicitly capping the size of a packet to or
1099 disallowing it, the user is allowed to set the size to
1100 something arbitrarily large. */
1101 }
1102
1103 /* So that the query shows the correct value. */
1104 if (size <= 0)
1105 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1106
1107 /* Extra checks? */
1108 if (fixed_p && !config->fixed_p)
1109 {
1110 if (! query (_("The target may not be able to correctly handle a %s\n"
1111 "of %ld bytes. Change the packet size? "),
1112 config->name, size))
1113 error (_("Packet size not changed."));
1114 }
1115 /* Update the config. */
1116 config->fixed_p = fixed_p;
1117 config->size = size;
1118 }
1119
1120 static void
1121 show_memory_packet_size (struct memory_packet_config *config)
1122 {
1123 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1124 if (config->fixed_p)
1125 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1126 get_memory_packet_size (config));
1127 else
1128 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1129 get_memory_packet_size (config));
1130 }
1131
1132 static struct memory_packet_config memory_write_packet_config =
1133 {
1134 "memory-write-packet-size",
1135 };
1136
1137 static void
1138 set_memory_write_packet_size (const char *args, int from_tty)
1139 {
1140 set_memory_packet_size (args, &memory_write_packet_config);
1141 }
1142
1143 static void
1144 show_memory_write_packet_size (const char *args, int from_tty)
1145 {
1146 show_memory_packet_size (&memory_write_packet_config);
1147 }
1148
1149 static long
1150 get_memory_write_packet_size (void)
1151 {
1152 return get_memory_packet_size (&memory_write_packet_config);
1153 }
1154
1155 static struct memory_packet_config memory_read_packet_config =
1156 {
1157 "memory-read-packet-size",
1158 };
1159
1160 static void
1161 set_memory_read_packet_size (const char *args, int from_tty)
1162 {
1163 set_memory_packet_size (args, &memory_read_packet_config);
1164 }
1165
1166 static void
1167 show_memory_read_packet_size (const char *args, int from_tty)
1168 {
1169 show_memory_packet_size (&memory_read_packet_config);
1170 }
1171
1172 static long
1173 get_memory_read_packet_size (void)
1174 {
1175 long size = get_memory_packet_size (&memory_read_packet_config);
1176
1177 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1178 extra buffer size argument before the memory read size can be
1179 increased beyond this. */
1180 if (size > get_remote_packet_size ())
1181 size = get_remote_packet_size ();
1182 return size;
1183 }
1184
1185 \f
1186 /* Generic configuration support for packets the stub optionally
1187 supports. Allows the user to specify the use of the packet as well
1188 as allowing GDB to auto-detect support in the remote stub. */
1189
1190 enum packet_support
1191 {
1192 PACKET_SUPPORT_UNKNOWN = 0,
1193 PACKET_ENABLE,
1194 PACKET_DISABLE
1195 };
1196
1197 struct packet_config
1198 {
1199 const char *name;
1200 const char *title;
1201
1202 /* If auto, GDB auto-detects support for this packet or feature,
1203 either through qSupported, or by trying the packet and looking
1204 at the response. If true, GDB assumes the target supports this
1205 packet. If false, the packet is disabled. Configs that don't
1206 have an associated command always have this set to auto. */
1207 enum auto_boolean detect;
1208
1209 /* Does the target support this packet? */
1210 enum packet_support support;
1211 };
1212
1213 /* Analyze a packet's return value and update the packet config
1214 accordingly. */
1215
1216 enum packet_result
1217 {
1218 PACKET_ERROR,
1219 PACKET_OK,
1220 PACKET_UNKNOWN
1221 };
1222
1223 static enum packet_support packet_config_support (struct packet_config *config);
1224 static enum packet_support packet_support (int packet);
1225
1226 static void
1227 show_packet_config_cmd (struct packet_config *config)
1228 {
1229 const char *support = "internal-error";
1230
1231 switch (packet_config_support (config))
1232 {
1233 case PACKET_ENABLE:
1234 support = "enabled";
1235 break;
1236 case PACKET_DISABLE:
1237 support = "disabled";
1238 break;
1239 case PACKET_SUPPORT_UNKNOWN:
1240 support = "unknown";
1241 break;
1242 }
1243 switch (config->detect)
1244 {
1245 case AUTO_BOOLEAN_AUTO:
1246 printf_filtered (_("Support for the `%s' packet "
1247 "is auto-detected, currently %s.\n"),
1248 config->name, support);
1249 break;
1250 case AUTO_BOOLEAN_TRUE:
1251 case AUTO_BOOLEAN_FALSE:
1252 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1253 config->name, support);
1254 break;
1255 }
1256 }
1257
1258 static void
1259 add_packet_config_cmd (struct packet_config *config, const char *name,
1260 const char *title, int legacy)
1261 {
1262 char *set_doc;
1263 char *show_doc;
1264 char *cmd_name;
1265
1266 config->name = name;
1267 config->title = title;
1268 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1269 name, title);
1270 show_doc = xstrprintf ("Show current use of remote "
1271 "protocol `%s' (%s) packet",
1272 name, title);
1273 /* set/show TITLE-packet {auto,on,off} */
1274 cmd_name = xstrprintf ("%s-packet", title);
1275 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1276 &config->detect, set_doc,
1277 show_doc, NULL, /* help_doc */
1278 NULL,
1279 show_remote_protocol_packet_cmd,
1280 &remote_set_cmdlist, &remote_show_cmdlist);
1281 /* The command code copies the documentation strings. */
1282 xfree (set_doc);
1283 xfree (show_doc);
1284 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1285 if (legacy)
1286 {
1287 char *legacy_name;
1288
1289 legacy_name = xstrprintf ("%s-packet", name);
1290 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1291 &remote_set_cmdlist);
1292 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1293 &remote_show_cmdlist);
1294 }
1295 }
1296
1297 static enum packet_result
1298 packet_check_result (const char *buf)
1299 {
1300 if (buf[0] != '\0')
1301 {
1302 /* The stub recognized the packet request. Check that the
1303 operation succeeded. */
1304 if (buf[0] == 'E'
1305 && isxdigit (buf[1]) && isxdigit (buf[2])
1306 && buf[3] == '\0')
1307 /* "Enn" - definitly an error. */
1308 return PACKET_ERROR;
1309
1310 /* Always treat "E." as an error. This will be used for
1311 more verbose error messages, such as E.memtypes. */
1312 if (buf[0] == 'E' && buf[1] == '.')
1313 return PACKET_ERROR;
1314
1315 /* The packet may or may not be OK. Just assume it is. */
1316 return PACKET_OK;
1317 }
1318 else
1319 /* The stub does not support the packet. */
1320 return PACKET_UNKNOWN;
1321 }
1322
1323 static enum packet_result
1324 packet_ok (const char *buf, struct packet_config *config)
1325 {
1326 enum packet_result result;
1327
1328 if (config->detect != AUTO_BOOLEAN_TRUE
1329 && config->support == PACKET_DISABLE)
1330 internal_error (__FILE__, __LINE__,
1331 _("packet_ok: attempt to use a disabled packet"));
1332
1333 result = packet_check_result (buf);
1334 switch (result)
1335 {
1336 case PACKET_OK:
1337 case PACKET_ERROR:
1338 /* The stub recognized the packet request. */
1339 if (config->support == PACKET_SUPPORT_UNKNOWN)
1340 {
1341 if (remote_debug)
1342 fprintf_unfiltered (gdb_stdlog,
1343 "Packet %s (%s) is supported\n",
1344 config->name, config->title);
1345 config->support = PACKET_ENABLE;
1346 }
1347 break;
1348 case PACKET_UNKNOWN:
1349 /* The stub does not support the packet. */
1350 if (config->detect == AUTO_BOOLEAN_AUTO
1351 && config->support == PACKET_ENABLE)
1352 {
1353 /* If the stub previously indicated that the packet was
1354 supported then there is a protocol error. */
1355 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1356 config->name, config->title);
1357 }
1358 else if (config->detect == AUTO_BOOLEAN_TRUE)
1359 {
1360 /* The user set it wrong. */
1361 error (_("Enabled packet %s (%s) not recognized by stub"),
1362 config->name, config->title);
1363 }
1364
1365 if (remote_debug)
1366 fprintf_unfiltered (gdb_stdlog,
1367 "Packet %s (%s) is NOT supported\n",
1368 config->name, config->title);
1369 config->support = PACKET_DISABLE;
1370 break;
1371 }
1372
1373 return result;
1374 }
1375
1376 enum {
1377 PACKET_vCont = 0,
1378 PACKET_X,
1379 PACKET_qSymbol,
1380 PACKET_P,
1381 PACKET_p,
1382 PACKET_Z0,
1383 PACKET_Z1,
1384 PACKET_Z2,
1385 PACKET_Z3,
1386 PACKET_Z4,
1387 PACKET_vFile_setfs,
1388 PACKET_vFile_open,
1389 PACKET_vFile_pread,
1390 PACKET_vFile_pwrite,
1391 PACKET_vFile_close,
1392 PACKET_vFile_unlink,
1393 PACKET_vFile_readlink,
1394 PACKET_vFile_fstat,
1395 PACKET_qXfer_auxv,
1396 PACKET_qXfer_features,
1397 PACKET_qXfer_exec_file,
1398 PACKET_qXfer_libraries,
1399 PACKET_qXfer_libraries_svr4,
1400 PACKET_qXfer_memory_map,
1401 PACKET_qXfer_spu_read,
1402 PACKET_qXfer_spu_write,
1403 PACKET_qXfer_osdata,
1404 PACKET_qXfer_threads,
1405 PACKET_qXfer_statictrace_read,
1406 PACKET_qXfer_traceframe_info,
1407 PACKET_qXfer_uib,
1408 PACKET_qGetTIBAddr,
1409 PACKET_qGetTLSAddr,
1410 PACKET_qSupported,
1411 PACKET_qTStatus,
1412 PACKET_QPassSignals,
1413 PACKET_QCatchSyscalls,
1414 PACKET_QProgramSignals,
1415 PACKET_QSetWorkingDir,
1416 PACKET_QStartupWithShell,
1417 PACKET_QEnvironmentHexEncoded,
1418 PACKET_QEnvironmentReset,
1419 PACKET_QEnvironmentUnset,
1420 PACKET_qCRC,
1421 PACKET_qSearch_memory,
1422 PACKET_vAttach,
1423 PACKET_vRun,
1424 PACKET_QStartNoAckMode,
1425 PACKET_vKill,
1426 PACKET_qXfer_siginfo_read,
1427 PACKET_qXfer_siginfo_write,
1428 PACKET_qAttached,
1429
1430 /* Support for conditional tracepoints. */
1431 PACKET_ConditionalTracepoints,
1432
1433 /* Support for target-side breakpoint conditions. */
1434 PACKET_ConditionalBreakpoints,
1435
1436 /* Support for target-side breakpoint commands. */
1437 PACKET_BreakpointCommands,
1438
1439 /* Support for fast tracepoints. */
1440 PACKET_FastTracepoints,
1441
1442 /* Support for static tracepoints. */
1443 PACKET_StaticTracepoints,
1444
1445 /* Support for installing tracepoints while a trace experiment is
1446 running. */
1447 PACKET_InstallInTrace,
1448
1449 PACKET_bc,
1450 PACKET_bs,
1451 PACKET_TracepointSource,
1452 PACKET_QAllow,
1453 PACKET_qXfer_fdpic,
1454 PACKET_QDisableRandomization,
1455 PACKET_QAgent,
1456 PACKET_QTBuffer_size,
1457 PACKET_Qbtrace_off,
1458 PACKET_Qbtrace_bts,
1459 PACKET_Qbtrace_pt,
1460 PACKET_qXfer_btrace,
1461
1462 /* Support for the QNonStop packet. */
1463 PACKET_QNonStop,
1464
1465 /* Support for the QThreadEvents packet. */
1466 PACKET_QThreadEvents,
1467
1468 /* Support for multi-process extensions. */
1469 PACKET_multiprocess_feature,
1470
1471 /* Support for enabling and disabling tracepoints while a trace
1472 experiment is running. */
1473 PACKET_EnableDisableTracepoints_feature,
1474
1475 /* Support for collecting strings using the tracenz bytecode. */
1476 PACKET_tracenz_feature,
1477
1478 /* Support for continuing to run a trace experiment while GDB is
1479 disconnected. */
1480 PACKET_DisconnectedTracing_feature,
1481
1482 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1483 PACKET_augmented_libraries_svr4_read_feature,
1484
1485 /* Support for the qXfer:btrace-conf:read packet. */
1486 PACKET_qXfer_btrace_conf,
1487
1488 /* Support for the Qbtrace-conf:bts:size packet. */
1489 PACKET_Qbtrace_conf_bts_size,
1490
1491 /* Support for swbreak+ feature. */
1492 PACKET_swbreak_feature,
1493
1494 /* Support for hwbreak+ feature. */
1495 PACKET_hwbreak_feature,
1496
1497 /* Support for fork events. */
1498 PACKET_fork_event_feature,
1499
1500 /* Support for vfork events. */
1501 PACKET_vfork_event_feature,
1502
1503 /* Support for the Qbtrace-conf:pt:size packet. */
1504 PACKET_Qbtrace_conf_pt_size,
1505
1506 /* Support for exec events. */
1507 PACKET_exec_event_feature,
1508
1509 /* Support for query supported vCont actions. */
1510 PACKET_vContSupported,
1511
1512 /* Support remote CTRL-C. */
1513 PACKET_vCtrlC,
1514
1515 /* Support TARGET_WAITKIND_NO_RESUMED. */
1516 PACKET_no_resumed,
1517
1518 PACKET_MAX
1519 };
1520
1521 static struct packet_config remote_protocol_packets[PACKET_MAX];
1522
1523 /* Returns the packet's corresponding "set remote foo-packet" command
1524 state. See struct packet_config for more details. */
1525
1526 static enum auto_boolean
1527 packet_set_cmd_state (int packet)
1528 {
1529 return remote_protocol_packets[packet].detect;
1530 }
1531
1532 /* Returns whether a given packet or feature is supported. This takes
1533 into account the state of the corresponding "set remote foo-packet"
1534 command, which may be used to bypass auto-detection. */
1535
1536 static enum packet_support
1537 packet_config_support (struct packet_config *config)
1538 {
1539 switch (config->detect)
1540 {
1541 case AUTO_BOOLEAN_TRUE:
1542 return PACKET_ENABLE;
1543 case AUTO_BOOLEAN_FALSE:
1544 return PACKET_DISABLE;
1545 case AUTO_BOOLEAN_AUTO:
1546 return config->support;
1547 default:
1548 gdb_assert_not_reached (_("bad switch"));
1549 }
1550 }
1551
1552 /* Same as packet_config_support, but takes the packet's enum value as
1553 argument. */
1554
1555 static enum packet_support
1556 packet_support (int packet)
1557 {
1558 struct packet_config *config = &remote_protocol_packets[packet];
1559
1560 return packet_config_support (config);
1561 }
1562
1563 static void
1564 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1565 struct cmd_list_element *c,
1566 const char *value)
1567 {
1568 struct packet_config *packet;
1569
1570 for (packet = remote_protocol_packets;
1571 packet < &remote_protocol_packets[PACKET_MAX];
1572 packet++)
1573 {
1574 if (&packet->detect == c->var)
1575 {
1576 show_packet_config_cmd (packet);
1577 return;
1578 }
1579 }
1580 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1581 c->name);
1582 }
1583
1584 /* Should we try one of the 'Z' requests? */
1585
1586 enum Z_packet_type
1587 {
1588 Z_PACKET_SOFTWARE_BP,
1589 Z_PACKET_HARDWARE_BP,
1590 Z_PACKET_WRITE_WP,
1591 Z_PACKET_READ_WP,
1592 Z_PACKET_ACCESS_WP,
1593 NR_Z_PACKET_TYPES
1594 };
1595
1596 /* For compatibility with older distributions. Provide a ``set remote
1597 Z-packet ...'' command that updates all the Z packet types. */
1598
1599 static enum auto_boolean remote_Z_packet_detect;
1600
1601 static void
1602 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
1603 struct cmd_list_element *c)
1604 {
1605 int i;
1606
1607 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1608 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1609 }
1610
1611 static void
1612 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1613 struct cmd_list_element *c,
1614 const char *value)
1615 {
1616 int i;
1617
1618 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1619 {
1620 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1621 }
1622 }
1623
1624 /* Returns true if the multi-process extensions are in effect. */
1625
1626 static int
1627 remote_multi_process_p (struct remote_state *rs)
1628 {
1629 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1630 }
1631
1632 /* Returns true if fork events are supported. */
1633
1634 static int
1635 remote_fork_event_p (struct remote_state *rs)
1636 {
1637 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1638 }
1639
1640 /* Returns true if vfork events are supported. */
1641
1642 static int
1643 remote_vfork_event_p (struct remote_state *rs)
1644 {
1645 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1646 }
1647
1648 /* Returns true if exec events are supported. */
1649
1650 static int
1651 remote_exec_event_p (struct remote_state *rs)
1652 {
1653 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1654 }
1655
1656 /* Insert fork catchpoint target routine. If fork events are enabled
1657 then return success, nothing more to do. */
1658
1659 static int
1660 remote_insert_fork_catchpoint (struct target_ops *ops, int pid)
1661 {
1662 struct remote_state *rs = get_remote_state ();
1663
1664 return !remote_fork_event_p (rs);
1665 }
1666
1667 /* Remove fork catchpoint target routine. Nothing to do, just
1668 return success. */
1669
1670 static int
1671 remote_remove_fork_catchpoint (struct target_ops *ops, int pid)
1672 {
1673 return 0;
1674 }
1675
1676 /* Insert vfork catchpoint target routine. If vfork events are enabled
1677 then return success, nothing more to do. */
1678
1679 static int
1680 remote_insert_vfork_catchpoint (struct target_ops *ops, int pid)
1681 {
1682 struct remote_state *rs = get_remote_state ();
1683
1684 return !remote_vfork_event_p (rs);
1685 }
1686
1687 /* Remove vfork catchpoint target routine. Nothing to do, just
1688 return success. */
1689
1690 static int
1691 remote_remove_vfork_catchpoint (struct target_ops *ops, int pid)
1692 {
1693 return 0;
1694 }
1695
1696 /* Insert exec catchpoint target routine. If exec events are
1697 enabled, just return success. */
1698
1699 static int
1700 remote_insert_exec_catchpoint (struct target_ops *ops, int pid)
1701 {
1702 struct remote_state *rs = get_remote_state ();
1703
1704 return !remote_exec_event_p (rs);
1705 }
1706
1707 /* Remove exec catchpoint target routine. Nothing to do, just
1708 return success. */
1709
1710 static int
1711 remote_remove_exec_catchpoint (struct target_ops *ops, int pid)
1712 {
1713 return 0;
1714 }
1715
1716 \f
1717 /* Asynchronous signal handle registered as event loop source for
1718 when we have pending events ready to be passed to the core. */
1719
1720 static struct async_event_handler *remote_async_inferior_event_token;
1721
1722 \f
1723
1724 static ptid_t magic_null_ptid;
1725 static ptid_t not_sent_ptid;
1726 static ptid_t any_thread_ptid;
1727
1728 /* Find out if the stub attached to PID (and hence GDB should offer to
1729 detach instead of killing it when bailing out). */
1730
1731 static int
1732 remote_query_attached (int pid)
1733 {
1734 struct remote_state *rs = get_remote_state ();
1735 size_t size = get_remote_packet_size ();
1736
1737 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
1738 return 0;
1739
1740 if (remote_multi_process_p (rs))
1741 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1742 else
1743 xsnprintf (rs->buf, size, "qAttached");
1744
1745 putpkt (rs->buf);
1746 getpkt (&rs->buf, &rs->buf_size, 0);
1747
1748 switch (packet_ok (rs->buf,
1749 &remote_protocol_packets[PACKET_qAttached]))
1750 {
1751 case PACKET_OK:
1752 if (strcmp (rs->buf, "1") == 0)
1753 return 1;
1754 break;
1755 case PACKET_ERROR:
1756 warning (_("Remote failure reply: %s"), rs->buf);
1757 break;
1758 case PACKET_UNKNOWN:
1759 break;
1760 }
1761
1762 return 0;
1763 }
1764
1765 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1766 has been invented by GDB, instead of reported by the target. Since
1767 we can be connected to a remote system before before knowing about
1768 any inferior, mark the target with execution when we find the first
1769 inferior. If ATTACHED is 1, then we had just attached to this
1770 inferior. If it is 0, then we just created this inferior. If it
1771 is -1, then try querying the remote stub to find out if it had
1772 attached to the inferior or not. If TRY_OPEN_EXEC is true then
1773 attempt to open this inferior's executable as the main executable
1774 if no main executable is open already. */
1775
1776 static struct inferior *
1777 remote_add_inferior (int fake_pid_p, int pid, int attached,
1778 int try_open_exec)
1779 {
1780 struct inferior *inf;
1781
1782 /* Check whether this process we're learning about is to be
1783 considered attached, or if is to be considered to have been
1784 spawned by the stub. */
1785 if (attached == -1)
1786 attached = remote_query_attached (pid);
1787
1788 if (gdbarch_has_global_solist (target_gdbarch ()))
1789 {
1790 /* If the target shares code across all inferiors, then every
1791 attach adds a new inferior. */
1792 inf = add_inferior (pid);
1793
1794 /* ... and every inferior is bound to the same program space.
1795 However, each inferior may still have its own address
1796 space. */
1797 inf->aspace = maybe_new_address_space ();
1798 inf->pspace = current_program_space;
1799 }
1800 else
1801 {
1802 /* In the traditional debugging scenario, there's a 1-1 match
1803 between program/address spaces. We simply bind the inferior
1804 to the program space's address space. */
1805 inf = current_inferior ();
1806 inferior_appeared (inf, pid);
1807 }
1808
1809 inf->attach_flag = attached;
1810 inf->fake_pid_p = fake_pid_p;
1811
1812 /* If no main executable is currently open then attempt to
1813 open the file that was executed to create this inferior. */
1814 if (try_open_exec && get_exec_file (0) == NULL)
1815 exec_file_locate_attach (pid, 0, 1);
1816
1817 return inf;
1818 }
1819
1820 static remote_thread_info *get_remote_thread_info (thread_info *thread);
1821
1822 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1823 according to RUNNING. */
1824
1825 static void
1826 remote_add_thread (ptid_t ptid, int running, int executing)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829 struct thread_info *thread;
1830
1831 /* GDB historically didn't pull threads in the initial connection
1832 setup. If the remote target doesn't even have a concept of
1833 threads (e.g., a bare-metal target), even if internally we
1834 consider that a single-threaded target, mentioning a new thread
1835 might be confusing to the user. Be silent then, preserving the
1836 age old behavior. */
1837 if (rs->starting_up)
1838 thread = add_thread_silent (ptid);
1839 else
1840 thread = add_thread (ptid);
1841
1842 get_remote_thread_info (thread)->vcont_resumed = executing;
1843 set_executing (ptid, executing);
1844 set_running (ptid, running);
1845 }
1846
1847 /* Come here when we learn about a thread id from the remote target.
1848 It may be the first time we hear about such thread, so take the
1849 opportunity to add it to GDB's thread list. In case this is the
1850 first time we're noticing its corresponding inferior, add it to
1851 GDB's inferior list as well. EXECUTING indicates whether the
1852 thread is (internally) executing or stopped. */
1853
1854 static void
1855 remote_notice_new_inferior (ptid_t currthread, int executing)
1856 {
1857 /* In non-stop mode, we assume new found threads are (externally)
1858 running until proven otherwise with a stop reply. In all-stop,
1859 we can only get here if all threads are stopped. */
1860 int running = target_is_non_stop_p () ? 1 : 0;
1861
1862 /* If this is a new thread, add it to GDB's thread list.
1863 If we leave it up to WFI to do this, bad things will happen. */
1864
1865 if (in_thread_list (currthread) && is_exited (currthread))
1866 {
1867 /* We're seeing an event on a thread id we knew had exited.
1868 This has to be a new thread reusing the old id. Add it. */
1869 remote_add_thread (currthread, running, executing);
1870 return;
1871 }
1872
1873 if (!in_thread_list (currthread))
1874 {
1875 struct inferior *inf = NULL;
1876 int pid = ptid_get_pid (currthread);
1877
1878 if (ptid_is_pid (inferior_ptid)
1879 && pid == ptid_get_pid (inferior_ptid))
1880 {
1881 /* inferior_ptid has no thread member yet. This can happen
1882 with the vAttach -> remote_wait,"TAAthread:" path if the
1883 stub doesn't support qC. This is the first stop reported
1884 after an attach, so this is the main thread. Update the
1885 ptid in the thread list. */
1886 if (in_thread_list (pid_to_ptid (pid)))
1887 thread_change_ptid (inferior_ptid, currthread);
1888 else
1889 {
1890 remote_add_thread (currthread, running, executing);
1891 inferior_ptid = currthread;
1892 }
1893 return;
1894 }
1895
1896 if (ptid_equal (magic_null_ptid, inferior_ptid))
1897 {
1898 /* inferior_ptid is not set yet. This can happen with the
1899 vRun -> remote_wait,"TAAthread:" path if the stub
1900 doesn't support qC. This is the first stop reported
1901 after an attach, so this is the main thread. Update the
1902 ptid in the thread list. */
1903 thread_change_ptid (inferior_ptid, currthread);
1904 return;
1905 }
1906
1907 /* When connecting to a target remote, or to a target
1908 extended-remote which already was debugging an inferior, we
1909 may not know about it yet. Add it before adding its child
1910 thread, so notifications are emitted in a sensible order. */
1911 if (!in_inferior_list (ptid_get_pid (currthread)))
1912 {
1913 struct remote_state *rs = get_remote_state ();
1914 int fake_pid_p = !remote_multi_process_p (rs);
1915
1916 inf = remote_add_inferior (fake_pid_p,
1917 ptid_get_pid (currthread), -1, 1);
1918 }
1919
1920 /* This is really a new thread. Add it. */
1921 remote_add_thread (currthread, running, executing);
1922
1923 /* If we found a new inferior, let the common code do whatever
1924 it needs to with it (e.g., read shared libraries, insert
1925 breakpoints), unless we're just setting up an all-stop
1926 connection. */
1927 if (inf != NULL)
1928 {
1929 struct remote_state *rs = get_remote_state ();
1930
1931 if (!rs->starting_up)
1932 notice_new_inferior (currthread, executing, 0);
1933 }
1934 }
1935 }
1936
1937 /* Return THREAD's private thread data, creating it if necessary. */
1938
1939 static remote_thread_info *
1940 get_remote_thread_info (thread_info *thread)
1941 {
1942 gdb_assert (thread != NULL);
1943
1944 if (thread->priv == NULL)
1945 thread->priv.reset (new remote_thread_info);
1946
1947 return static_cast<remote_thread_info *> (thread->priv.get ());
1948 }
1949
1950 /* Return PTID's private thread data, creating it if necessary. */
1951
1952 static remote_thread_info *
1953 get_remote_thread_info (ptid_t ptid)
1954 {
1955 struct thread_info *info = find_thread_ptid (ptid);
1956
1957 return get_remote_thread_info (info);
1958 }
1959
1960 /* Call this function as a result of
1961 1) A halt indication (T packet) containing a thread id
1962 2) A direct query of currthread
1963 3) Successful execution of set thread */
1964
1965 static void
1966 record_currthread (struct remote_state *rs, ptid_t currthread)
1967 {
1968 rs->general_thread = currthread;
1969 }
1970
1971 /* If 'QPassSignals' is supported, tell the remote stub what signals
1972 it can simply pass through to the inferior without reporting. */
1973
1974 static void
1975 remote_pass_signals (struct target_ops *self,
1976 int numsigs, unsigned char *pass_signals)
1977 {
1978 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
1979 {
1980 char *pass_packet, *p;
1981 int count = 0, i;
1982 struct remote_state *rs = get_remote_state ();
1983
1984 gdb_assert (numsigs < 256);
1985 for (i = 0; i < numsigs; i++)
1986 {
1987 if (pass_signals[i])
1988 count++;
1989 }
1990 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1991 strcpy (pass_packet, "QPassSignals:");
1992 p = pass_packet + strlen (pass_packet);
1993 for (i = 0; i < numsigs; i++)
1994 {
1995 if (pass_signals[i])
1996 {
1997 if (i >= 16)
1998 *p++ = tohex (i >> 4);
1999 *p++ = tohex (i & 15);
2000 if (count)
2001 *p++ = ';';
2002 else
2003 break;
2004 count--;
2005 }
2006 }
2007 *p = 0;
2008 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2009 {
2010 putpkt (pass_packet);
2011 getpkt (&rs->buf, &rs->buf_size, 0);
2012 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2013 if (rs->last_pass_packet)
2014 xfree (rs->last_pass_packet);
2015 rs->last_pass_packet = pass_packet;
2016 }
2017 else
2018 xfree (pass_packet);
2019 }
2020 }
2021
2022 /* If 'QCatchSyscalls' is supported, tell the remote stub
2023 to report syscalls to GDB. */
2024
2025 static int
2026 remote_set_syscall_catchpoint (struct target_ops *self,
2027 int pid, bool needed, int any_count,
2028 gdb::array_view<const int> syscall_counts)
2029 {
2030 const char *catch_packet;
2031 enum packet_result result;
2032 int n_sysno = 0;
2033
2034 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2035 {
2036 /* Not supported. */
2037 return 1;
2038 }
2039
2040 if (needed && any_count == 0)
2041 {
2042 /* Count how many syscalls are to be caught. */
2043 for (size_t i = 0; i < syscall_counts.size (); i++)
2044 {
2045 if (syscall_counts[i] != 0)
2046 n_sysno++;
2047 }
2048 }
2049
2050 if (remote_debug)
2051 {
2052 fprintf_unfiltered (gdb_stdlog,
2053 "remote_set_syscall_catchpoint "
2054 "pid %d needed %d any_count %d n_sysno %d\n",
2055 pid, needed, any_count, n_sysno);
2056 }
2057
2058 std::string built_packet;
2059 if (needed)
2060 {
2061 /* Prepare a packet with the sysno list, assuming max 8+1
2062 characters for a sysno. If the resulting packet size is too
2063 big, fallback on the non-selective packet. */
2064 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2065 built_packet.reserve (maxpktsz);
2066 built_packet = "QCatchSyscalls:1";
2067 if (any_count == 0)
2068 {
2069 /* Add in each syscall to be caught. */
2070 for (size_t i = 0; i < syscall_counts.size (); i++)
2071 {
2072 if (syscall_counts[i] != 0)
2073 string_appendf (built_packet, ";%zx", i);
2074 }
2075 }
2076 if (built_packet.size () > get_remote_packet_size ())
2077 {
2078 /* catch_packet too big. Fallback to less efficient
2079 non selective mode, with GDB doing the filtering. */
2080 catch_packet = "QCatchSyscalls:1";
2081 }
2082 else
2083 catch_packet = built_packet.c_str ();
2084 }
2085 else
2086 catch_packet = "QCatchSyscalls:0";
2087
2088 struct remote_state *rs = get_remote_state ();
2089
2090 putpkt (catch_packet);
2091 getpkt (&rs->buf, &rs->buf_size, 0);
2092 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2093 if (result == PACKET_OK)
2094 return 0;
2095 else
2096 return -1;
2097 }
2098
2099 /* If 'QProgramSignals' is supported, tell the remote stub what
2100 signals it should pass through to the inferior when detaching. */
2101
2102 static void
2103 remote_program_signals (struct target_ops *self,
2104 int numsigs, unsigned char *signals)
2105 {
2106 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2107 {
2108 char *packet, *p;
2109 int count = 0, i;
2110 struct remote_state *rs = get_remote_state ();
2111
2112 gdb_assert (numsigs < 256);
2113 for (i = 0; i < numsigs; i++)
2114 {
2115 if (signals[i])
2116 count++;
2117 }
2118 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2119 strcpy (packet, "QProgramSignals:");
2120 p = packet + strlen (packet);
2121 for (i = 0; i < numsigs; i++)
2122 {
2123 if (signal_pass_state (i))
2124 {
2125 if (i >= 16)
2126 *p++ = tohex (i >> 4);
2127 *p++ = tohex (i & 15);
2128 if (count)
2129 *p++ = ';';
2130 else
2131 break;
2132 count--;
2133 }
2134 }
2135 *p = 0;
2136 if (!rs->last_program_signals_packet
2137 || strcmp (rs->last_program_signals_packet, packet) != 0)
2138 {
2139 putpkt (packet);
2140 getpkt (&rs->buf, &rs->buf_size, 0);
2141 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2142 xfree (rs->last_program_signals_packet);
2143 rs->last_program_signals_packet = packet;
2144 }
2145 else
2146 xfree (packet);
2147 }
2148 }
2149
2150 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2151 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2152 thread. If GEN is set, set the general thread, if not, then set
2153 the step/continue thread. */
2154 static void
2155 set_thread (ptid_t ptid, int gen)
2156 {
2157 struct remote_state *rs = get_remote_state ();
2158 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2159 char *buf = rs->buf;
2160 char *endbuf = rs->buf + get_remote_packet_size ();
2161
2162 if (ptid_equal (state, ptid))
2163 return;
2164
2165 *buf++ = 'H';
2166 *buf++ = gen ? 'g' : 'c';
2167 if (ptid_equal (ptid, magic_null_ptid))
2168 xsnprintf (buf, endbuf - buf, "0");
2169 else if (ptid_equal (ptid, any_thread_ptid))
2170 xsnprintf (buf, endbuf - buf, "0");
2171 else if (ptid_equal (ptid, minus_one_ptid))
2172 xsnprintf (buf, endbuf - buf, "-1");
2173 else
2174 write_ptid (buf, endbuf, ptid);
2175 putpkt (rs->buf);
2176 getpkt (&rs->buf, &rs->buf_size, 0);
2177 if (gen)
2178 rs->general_thread = ptid;
2179 else
2180 rs->continue_thread = ptid;
2181 }
2182
2183 static void
2184 set_general_thread (ptid_t ptid)
2185 {
2186 set_thread (ptid, 1);
2187 }
2188
2189 static void
2190 set_continue_thread (ptid_t ptid)
2191 {
2192 set_thread (ptid, 0);
2193 }
2194
2195 /* Change the remote current process. Which thread within the process
2196 ends up selected isn't important, as long as it is the same process
2197 as what INFERIOR_PTID points to.
2198
2199 This comes from that fact that there is no explicit notion of
2200 "selected process" in the protocol. The selected process for
2201 general operations is the process the selected general thread
2202 belongs to. */
2203
2204 static void
2205 set_general_process (void)
2206 {
2207 struct remote_state *rs = get_remote_state ();
2208
2209 /* If the remote can't handle multiple processes, don't bother. */
2210 if (!remote_multi_process_p (rs))
2211 return;
2212
2213 /* We only need to change the remote current thread if it's pointing
2214 at some other process. */
2215 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2216 set_general_thread (inferior_ptid);
2217 }
2218
2219 \f
2220 /* Return nonzero if this is the main thread that we made up ourselves
2221 to model non-threaded targets as single-threaded. */
2222
2223 static int
2224 remote_thread_always_alive (struct target_ops *ops, ptid_t ptid)
2225 {
2226 if (ptid_equal (ptid, magic_null_ptid))
2227 /* The main thread is always alive. */
2228 return 1;
2229
2230 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2231 /* The main thread is always alive. This can happen after a
2232 vAttach, if the remote side doesn't support
2233 multi-threading. */
2234 return 1;
2235
2236 return 0;
2237 }
2238
2239 /* Return nonzero if the thread PTID is still alive on the remote
2240 system. */
2241
2242 static int
2243 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
2244 {
2245 struct remote_state *rs = get_remote_state ();
2246 char *p, *endp;
2247
2248 /* Check if this is a thread that we made up ourselves to model
2249 non-threaded targets as single-threaded. */
2250 if (remote_thread_always_alive (ops, ptid))
2251 return 1;
2252
2253 p = rs->buf;
2254 endp = rs->buf + get_remote_packet_size ();
2255
2256 *p++ = 'T';
2257 write_ptid (p, endp, ptid);
2258
2259 putpkt (rs->buf);
2260 getpkt (&rs->buf, &rs->buf_size, 0);
2261 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2262 }
2263
2264 /* Return a pointer to a thread name if we know it and NULL otherwise.
2265 The thread_info object owns the memory for the name. */
2266
2267 static const char *
2268 remote_thread_name (struct target_ops *ops, struct thread_info *info)
2269 {
2270 if (info->priv != NULL)
2271 {
2272 const std::string &name = get_remote_thread_info (info)->name;
2273 return !name.empty () ? name.c_str () : NULL;
2274 }
2275
2276 return NULL;
2277 }
2278
2279 /* About these extended threadlist and threadinfo packets. They are
2280 variable length packets but, the fields within them are often fixed
2281 length. They are redundent enough to send over UDP as is the
2282 remote protocol in general. There is a matching unit test module
2283 in libstub. */
2284
2285 /* WARNING: This threadref data structure comes from the remote O.S.,
2286 libstub protocol encoding, and remote.c. It is not particularly
2287 changable. */
2288
2289 /* Right now, the internal structure is int. We want it to be bigger.
2290 Plan to fix this. */
2291
2292 typedef int gdb_threadref; /* Internal GDB thread reference. */
2293
2294 /* gdb_ext_thread_info is an internal GDB data structure which is
2295 equivalent to the reply of the remote threadinfo packet. */
2296
2297 struct gdb_ext_thread_info
2298 {
2299 threadref threadid; /* External form of thread reference. */
2300 int active; /* Has state interesting to GDB?
2301 regs, stack. */
2302 char display[256]; /* Brief state display, name,
2303 blocked/suspended. */
2304 char shortname[32]; /* To be used to name threads. */
2305 char more_display[256]; /* Long info, statistics, queue depth,
2306 whatever. */
2307 };
2308
2309 /* The volume of remote transfers can be limited by submitting
2310 a mask containing bits specifying the desired information.
2311 Use a union of these values as the 'selection' parameter to
2312 get_thread_info. FIXME: Make these TAG names more thread specific. */
2313
2314 #define TAG_THREADID 1
2315 #define TAG_EXISTS 2
2316 #define TAG_DISPLAY 4
2317 #define TAG_THREADNAME 8
2318 #define TAG_MOREDISPLAY 16
2319
2320 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2321
2322 static char *unpack_nibble (char *buf, int *val);
2323
2324 static char *unpack_byte (char *buf, int *value);
2325
2326 static char *pack_int (char *buf, int value);
2327
2328 static char *unpack_int (char *buf, int *value);
2329
2330 static char *unpack_string (char *src, char *dest, int length);
2331
2332 static char *pack_threadid (char *pkt, threadref *id);
2333
2334 static char *unpack_threadid (char *inbuf, threadref *id);
2335
2336 void int_to_threadref (threadref *id, int value);
2337
2338 static int threadref_to_int (threadref *ref);
2339
2340 static void copy_threadref (threadref *dest, threadref *src);
2341
2342 static int threadmatch (threadref *dest, threadref *src);
2343
2344 static char *pack_threadinfo_request (char *pkt, int mode,
2345 threadref *id);
2346
2347 static int remote_unpack_thread_info_response (char *pkt,
2348 threadref *expectedref,
2349 struct gdb_ext_thread_info
2350 *info);
2351
2352
2353 static int remote_get_threadinfo (threadref *threadid,
2354 int fieldset, /*TAG mask */
2355 struct gdb_ext_thread_info *info);
2356
2357 static char *pack_threadlist_request (char *pkt, int startflag,
2358 int threadcount,
2359 threadref *nextthread);
2360
2361 static int parse_threadlist_response (char *pkt,
2362 int result_limit,
2363 threadref *original_echo,
2364 threadref *resultlist,
2365 int *doneflag);
2366
2367 static int remote_get_threadlist (int startflag,
2368 threadref *nextthread,
2369 int result_limit,
2370 int *done,
2371 int *result_count,
2372 threadref *threadlist);
2373
2374 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2375
2376 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2377 void *context, int looplimit);
2378
2379 static int remote_newthread_step (threadref *ref, void *context);
2380
2381
2382 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2383 buffer we're allowed to write to. Returns
2384 BUF+CHARACTERS_WRITTEN. */
2385
2386 static char *
2387 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2388 {
2389 int pid, tid;
2390 struct remote_state *rs = get_remote_state ();
2391
2392 if (remote_multi_process_p (rs))
2393 {
2394 pid = ptid_get_pid (ptid);
2395 if (pid < 0)
2396 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2397 else
2398 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2399 }
2400 tid = ptid_get_lwp (ptid);
2401 if (tid < 0)
2402 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2403 else
2404 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2405
2406 return buf;
2407 }
2408
2409 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2410 last parsed char. Returns null_ptid if no thread id is found, and
2411 throws an error if the thread id has an invalid format. */
2412
2413 static ptid_t
2414 read_ptid (const char *buf, const char **obuf)
2415 {
2416 const char *p = buf;
2417 const char *pp;
2418 ULONGEST pid = 0, tid = 0;
2419
2420 if (*p == 'p')
2421 {
2422 /* Multi-process ptid. */
2423 pp = unpack_varlen_hex (p + 1, &pid);
2424 if (*pp != '.')
2425 error (_("invalid remote ptid: %s"), p);
2426
2427 p = pp;
2428 pp = unpack_varlen_hex (p + 1, &tid);
2429 if (obuf)
2430 *obuf = pp;
2431 return ptid_build (pid, tid, 0);
2432 }
2433
2434 /* No multi-process. Just a tid. */
2435 pp = unpack_varlen_hex (p, &tid);
2436
2437 /* Return null_ptid when no thread id is found. */
2438 if (p == pp)
2439 {
2440 if (obuf)
2441 *obuf = pp;
2442 return null_ptid;
2443 }
2444
2445 /* Since the stub is not sending a process id, then default to
2446 what's in inferior_ptid, unless it's null at this point. If so,
2447 then since there's no way to know the pid of the reported
2448 threads, use the magic number. */
2449 if (ptid_equal (inferior_ptid, null_ptid))
2450 pid = ptid_get_pid (magic_null_ptid);
2451 else
2452 pid = ptid_get_pid (inferior_ptid);
2453
2454 if (obuf)
2455 *obuf = pp;
2456 return ptid_build (pid, tid, 0);
2457 }
2458
2459 static int
2460 stubhex (int ch)
2461 {
2462 if (ch >= 'a' && ch <= 'f')
2463 return ch - 'a' + 10;
2464 if (ch >= '0' && ch <= '9')
2465 return ch - '0';
2466 if (ch >= 'A' && ch <= 'F')
2467 return ch - 'A' + 10;
2468 return -1;
2469 }
2470
2471 static int
2472 stub_unpack_int (char *buff, int fieldlength)
2473 {
2474 int nibble;
2475 int retval = 0;
2476
2477 while (fieldlength)
2478 {
2479 nibble = stubhex (*buff++);
2480 retval |= nibble;
2481 fieldlength--;
2482 if (fieldlength)
2483 retval = retval << 4;
2484 }
2485 return retval;
2486 }
2487
2488 static char *
2489 unpack_nibble (char *buf, int *val)
2490 {
2491 *val = fromhex (*buf++);
2492 return buf;
2493 }
2494
2495 static char *
2496 unpack_byte (char *buf, int *value)
2497 {
2498 *value = stub_unpack_int (buf, 2);
2499 return buf + 2;
2500 }
2501
2502 static char *
2503 pack_int (char *buf, int value)
2504 {
2505 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2506 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2507 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2508 buf = pack_hex_byte (buf, (value & 0xff));
2509 return buf;
2510 }
2511
2512 static char *
2513 unpack_int (char *buf, int *value)
2514 {
2515 *value = stub_unpack_int (buf, 8);
2516 return buf + 8;
2517 }
2518
2519 #if 0 /* Currently unused, uncomment when needed. */
2520 static char *pack_string (char *pkt, char *string);
2521
2522 static char *
2523 pack_string (char *pkt, char *string)
2524 {
2525 char ch;
2526 int len;
2527
2528 len = strlen (string);
2529 if (len > 200)
2530 len = 200; /* Bigger than most GDB packets, junk??? */
2531 pkt = pack_hex_byte (pkt, len);
2532 while (len-- > 0)
2533 {
2534 ch = *string++;
2535 if ((ch == '\0') || (ch == '#'))
2536 ch = '*'; /* Protect encapsulation. */
2537 *pkt++ = ch;
2538 }
2539 return pkt;
2540 }
2541 #endif /* 0 (unused) */
2542
2543 static char *
2544 unpack_string (char *src, char *dest, int length)
2545 {
2546 while (length--)
2547 *dest++ = *src++;
2548 *dest = '\0';
2549 return src;
2550 }
2551
2552 static char *
2553 pack_threadid (char *pkt, threadref *id)
2554 {
2555 char *limit;
2556 unsigned char *altid;
2557
2558 altid = (unsigned char *) id;
2559 limit = pkt + BUF_THREAD_ID_SIZE;
2560 while (pkt < limit)
2561 pkt = pack_hex_byte (pkt, *altid++);
2562 return pkt;
2563 }
2564
2565
2566 static char *
2567 unpack_threadid (char *inbuf, threadref *id)
2568 {
2569 char *altref;
2570 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2571 int x, y;
2572
2573 altref = (char *) id;
2574
2575 while (inbuf < limit)
2576 {
2577 x = stubhex (*inbuf++);
2578 y = stubhex (*inbuf++);
2579 *altref++ = (x << 4) | y;
2580 }
2581 return inbuf;
2582 }
2583
2584 /* Externally, threadrefs are 64 bits but internally, they are still
2585 ints. This is due to a mismatch of specifications. We would like
2586 to use 64bit thread references internally. This is an adapter
2587 function. */
2588
2589 void
2590 int_to_threadref (threadref *id, int value)
2591 {
2592 unsigned char *scan;
2593
2594 scan = (unsigned char *) id;
2595 {
2596 int i = 4;
2597 while (i--)
2598 *scan++ = 0;
2599 }
2600 *scan++ = (value >> 24) & 0xff;
2601 *scan++ = (value >> 16) & 0xff;
2602 *scan++ = (value >> 8) & 0xff;
2603 *scan++ = (value & 0xff);
2604 }
2605
2606 static int
2607 threadref_to_int (threadref *ref)
2608 {
2609 int i, value = 0;
2610 unsigned char *scan;
2611
2612 scan = *ref;
2613 scan += 4;
2614 i = 4;
2615 while (i-- > 0)
2616 value = (value << 8) | ((*scan++) & 0xff);
2617 return value;
2618 }
2619
2620 static void
2621 copy_threadref (threadref *dest, threadref *src)
2622 {
2623 int i;
2624 unsigned char *csrc, *cdest;
2625
2626 csrc = (unsigned char *) src;
2627 cdest = (unsigned char *) dest;
2628 i = 8;
2629 while (i--)
2630 *cdest++ = *csrc++;
2631 }
2632
2633 static int
2634 threadmatch (threadref *dest, threadref *src)
2635 {
2636 /* Things are broken right now, so just assume we got a match. */
2637 #if 0
2638 unsigned char *srcp, *destp;
2639 int i, result;
2640 srcp = (char *) src;
2641 destp = (char *) dest;
2642
2643 result = 1;
2644 while (i-- > 0)
2645 result &= (*srcp++ == *destp++) ? 1 : 0;
2646 return result;
2647 #endif
2648 return 1;
2649 }
2650
2651 /*
2652 threadid:1, # always request threadid
2653 context_exists:2,
2654 display:4,
2655 unique_name:8,
2656 more_display:16
2657 */
2658
2659 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2660
2661 static char *
2662 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2663 {
2664 *pkt++ = 'q'; /* Info Query */
2665 *pkt++ = 'P'; /* process or thread info */
2666 pkt = pack_int (pkt, mode); /* mode */
2667 pkt = pack_threadid (pkt, id); /* threadid */
2668 *pkt = '\0'; /* terminate */
2669 return pkt;
2670 }
2671
2672 /* These values tag the fields in a thread info response packet. */
2673 /* Tagging the fields allows us to request specific fields and to
2674 add more fields as time goes by. */
2675
2676 #define TAG_THREADID 1 /* Echo the thread identifier. */
2677 #define TAG_EXISTS 2 /* Is this process defined enough to
2678 fetch registers and its stack? */
2679 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2680 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2681 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2682 the process. */
2683
2684 static int
2685 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2686 struct gdb_ext_thread_info *info)
2687 {
2688 struct remote_state *rs = get_remote_state ();
2689 int mask, length;
2690 int tag;
2691 threadref ref;
2692 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2693 int retval = 1;
2694
2695 /* info->threadid = 0; FIXME: implement zero_threadref. */
2696 info->active = 0;
2697 info->display[0] = '\0';
2698 info->shortname[0] = '\0';
2699 info->more_display[0] = '\0';
2700
2701 /* Assume the characters indicating the packet type have been
2702 stripped. */
2703 pkt = unpack_int (pkt, &mask); /* arg mask */
2704 pkt = unpack_threadid (pkt, &ref);
2705
2706 if (mask == 0)
2707 warning (_("Incomplete response to threadinfo request."));
2708 if (!threadmatch (&ref, expectedref))
2709 { /* This is an answer to a different request. */
2710 warning (_("ERROR RMT Thread info mismatch."));
2711 return 0;
2712 }
2713 copy_threadref (&info->threadid, &ref);
2714
2715 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2716
2717 /* Packets are terminated with nulls. */
2718 while ((pkt < limit) && mask && *pkt)
2719 {
2720 pkt = unpack_int (pkt, &tag); /* tag */
2721 pkt = unpack_byte (pkt, &length); /* length */
2722 if (!(tag & mask)) /* Tags out of synch with mask. */
2723 {
2724 warning (_("ERROR RMT: threadinfo tag mismatch."));
2725 retval = 0;
2726 break;
2727 }
2728 if (tag == TAG_THREADID)
2729 {
2730 if (length != 16)
2731 {
2732 warning (_("ERROR RMT: length of threadid is not 16."));
2733 retval = 0;
2734 break;
2735 }
2736 pkt = unpack_threadid (pkt, &ref);
2737 mask = mask & ~TAG_THREADID;
2738 continue;
2739 }
2740 if (tag == TAG_EXISTS)
2741 {
2742 info->active = stub_unpack_int (pkt, length);
2743 pkt += length;
2744 mask = mask & ~(TAG_EXISTS);
2745 if (length > 8)
2746 {
2747 warning (_("ERROR RMT: 'exists' length too long."));
2748 retval = 0;
2749 break;
2750 }
2751 continue;
2752 }
2753 if (tag == TAG_THREADNAME)
2754 {
2755 pkt = unpack_string (pkt, &info->shortname[0], length);
2756 mask = mask & ~TAG_THREADNAME;
2757 continue;
2758 }
2759 if (tag == TAG_DISPLAY)
2760 {
2761 pkt = unpack_string (pkt, &info->display[0], length);
2762 mask = mask & ~TAG_DISPLAY;
2763 continue;
2764 }
2765 if (tag == TAG_MOREDISPLAY)
2766 {
2767 pkt = unpack_string (pkt, &info->more_display[0], length);
2768 mask = mask & ~TAG_MOREDISPLAY;
2769 continue;
2770 }
2771 warning (_("ERROR RMT: unknown thread info tag."));
2772 break; /* Not a tag we know about. */
2773 }
2774 return retval;
2775 }
2776
2777 static int
2778 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2779 struct gdb_ext_thread_info *info)
2780 {
2781 struct remote_state *rs = get_remote_state ();
2782 int result;
2783
2784 pack_threadinfo_request (rs->buf, fieldset, threadid);
2785 putpkt (rs->buf);
2786 getpkt (&rs->buf, &rs->buf_size, 0);
2787
2788 if (rs->buf[0] == '\0')
2789 return 0;
2790
2791 result = remote_unpack_thread_info_response (rs->buf + 2,
2792 threadid, info);
2793 return result;
2794 }
2795
2796 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2797
2798 static char *
2799 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2800 threadref *nextthread)
2801 {
2802 *pkt++ = 'q'; /* info query packet */
2803 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2804 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2805 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2806 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2807 *pkt = '\0';
2808 return pkt;
2809 }
2810
2811 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2812
2813 static int
2814 parse_threadlist_response (char *pkt, int result_limit,
2815 threadref *original_echo, threadref *resultlist,
2816 int *doneflag)
2817 {
2818 struct remote_state *rs = get_remote_state ();
2819 char *limit;
2820 int count, resultcount, done;
2821
2822 resultcount = 0;
2823 /* Assume the 'q' and 'M chars have been stripped. */
2824 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2825 /* done parse past here */
2826 pkt = unpack_byte (pkt, &count); /* count field */
2827 pkt = unpack_nibble (pkt, &done);
2828 /* The first threadid is the argument threadid. */
2829 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2830 while ((count-- > 0) && (pkt < limit))
2831 {
2832 pkt = unpack_threadid (pkt, resultlist++);
2833 if (resultcount++ >= result_limit)
2834 break;
2835 }
2836 if (doneflag)
2837 *doneflag = done;
2838 return resultcount;
2839 }
2840
2841 /* Fetch the next batch of threads from the remote. Returns -1 if the
2842 qL packet is not supported, 0 on error and 1 on success. */
2843
2844 static int
2845 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2846 int *done, int *result_count, threadref *threadlist)
2847 {
2848 struct remote_state *rs = get_remote_state ();
2849 int result = 1;
2850
2851 /* Trancate result limit to be smaller than the packet size. */
2852 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2853 >= get_remote_packet_size ())
2854 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2855
2856 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2857 putpkt (rs->buf);
2858 getpkt (&rs->buf, &rs->buf_size, 0);
2859 if (*rs->buf == '\0')
2860 {
2861 /* Packet not supported. */
2862 return -1;
2863 }
2864
2865 *result_count =
2866 parse_threadlist_response (rs->buf + 2, result_limit,
2867 &rs->echo_nextthread, threadlist, done);
2868
2869 if (!threadmatch (&rs->echo_nextthread, nextthread))
2870 {
2871 /* FIXME: This is a good reason to drop the packet. */
2872 /* Possably, there is a duplicate response. */
2873 /* Possabilities :
2874 retransmit immediatly - race conditions
2875 retransmit after timeout - yes
2876 exit
2877 wait for packet, then exit
2878 */
2879 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2880 return 0; /* I choose simply exiting. */
2881 }
2882 if (*result_count <= 0)
2883 {
2884 if (*done != 1)
2885 {
2886 warning (_("RMT ERROR : failed to get remote thread list."));
2887 result = 0;
2888 }
2889 return result; /* break; */
2890 }
2891 if (*result_count > result_limit)
2892 {
2893 *result_count = 0;
2894 warning (_("RMT ERROR: threadlist response longer than requested."));
2895 return 0;
2896 }
2897 return result;
2898 }
2899
2900 /* Fetch the list of remote threads, with the qL packet, and call
2901 STEPFUNCTION for each thread found. Stops iterating and returns 1
2902 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
2903 STEPFUNCTION returns false. If the packet is not supported,
2904 returns -1. */
2905
2906 static int
2907 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2908 int looplimit)
2909 {
2910 struct remote_state *rs = get_remote_state ();
2911 int done, i, result_count;
2912 int startflag = 1;
2913 int result = 1;
2914 int loopcount = 0;
2915
2916 done = 0;
2917 while (!done)
2918 {
2919 if (loopcount++ > looplimit)
2920 {
2921 result = 0;
2922 warning (_("Remote fetch threadlist -infinite loop-."));
2923 break;
2924 }
2925 result = remote_get_threadlist (startflag, &rs->nextthread,
2926 MAXTHREADLISTRESULTS,
2927 &done, &result_count,
2928 rs->resultthreadlist);
2929 if (result <= 0)
2930 break;
2931 /* Clear for later iterations. */
2932 startflag = 0;
2933 /* Setup to resume next batch of thread references, set nextthread. */
2934 if (result_count >= 1)
2935 copy_threadref (&rs->nextthread,
2936 &rs->resultthreadlist[result_count - 1]);
2937 i = 0;
2938 while (result_count--)
2939 {
2940 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
2941 {
2942 result = 0;
2943 break;
2944 }
2945 }
2946 }
2947 return result;
2948 }
2949
2950 /* A thread found on the remote target. */
2951
2952 struct thread_item
2953 {
2954 explicit thread_item (ptid_t ptid_)
2955 : ptid (ptid_)
2956 {}
2957
2958 thread_item (thread_item &&other) = default;
2959 thread_item &operator= (thread_item &&other) = default;
2960
2961 DISABLE_COPY_AND_ASSIGN (thread_item);
2962
2963 /* The thread's PTID. */
2964 ptid_t ptid;
2965
2966 /* The thread's extra info. */
2967 std::string extra;
2968
2969 /* The thread's name. */
2970 std::string name;
2971
2972 /* The core the thread was running on. -1 if not known. */
2973 int core = -1;
2974
2975 /* The thread handle associated with the thread. */
2976 gdb::byte_vector thread_handle;
2977 };
2978
2979 /* Context passed around to the various methods listing remote
2980 threads. As new threads are found, they're added to the ITEMS
2981 vector. */
2982
2983 struct threads_listing_context
2984 {
2985 /* Return true if this object contains an entry for a thread with ptid
2986 PTID. */
2987
2988 bool contains_thread (ptid_t ptid) const
2989 {
2990 auto match_ptid = [&] (const thread_item &item)
2991 {
2992 return item.ptid == ptid;
2993 };
2994
2995 auto it = std::find_if (this->items.begin (),
2996 this->items.end (),
2997 match_ptid);
2998
2999 return it != this->items.end ();
3000 }
3001
3002 /* Remove the thread with ptid PTID. */
3003
3004 void remove_thread (ptid_t ptid)
3005 {
3006 auto match_ptid = [&] (const thread_item &item)
3007 {
3008 return item.ptid == ptid;
3009 };
3010
3011 auto it = std::remove_if (this->items.begin (),
3012 this->items.end (),
3013 match_ptid);
3014
3015 if (it != this->items.end ())
3016 this->items.erase (it);
3017 }
3018
3019 /* The threads found on the remote target. */
3020 std::vector<thread_item> items;
3021 };
3022
3023 static int
3024 remote_newthread_step (threadref *ref, void *data)
3025 {
3026 struct threads_listing_context *context
3027 = (struct threads_listing_context *) data;
3028 int pid = inferior_ptid.pid ();
3029 int lwp = threadref_to_int (ref);
3030 ptid_t ptid (pid, lwp);
3031
3032 context->items.emplace_back (ptid);
3033
3034 return 1; /* continue iterator */
3035 }
3036
3037 #define CRAZY_MAX_THREADS 1000
3038
3039 static ptid_t
3040 remote_current_thread (ptid_t oldpid)
3041 {
3042 struct remote_state *rs = get_remote_state ();
3043
3044 putpkt ("qC");
3045 getpkt (&rs->buf, &rs->buf_size, 0);
3046 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3047 {
3048 const char *obuf;
3049 ptid_t result;
3050
3051 result = read_ptid (&rs->buf[2], &obuf);
3052 if (*obuf != '\0' && remote_debug)
3053 fprintf_unfiltered (gdb_stdlog,
3054 "warning: garbage in qC reply\n");
3055
3056 return result;
3057 }
3058 else
3059 return oldpid;
3060 }
3061
3062 /* List remote threads using the deprecated qL packet. */
3063
3064 static int
3065 remote_get_threads_with_ql (struct target_ops *ops,
3066 struct threads_listing_context *context)
3067 {
3068 if (remote_threadlist_iterator (remote_newthread_step, context,
3069 CRAZY_MAX_THREADS) >= 0)
3070 return 1;
3071
3072 return 0;
3073 }
3074
3075 #if defined(HAVE_LIBEXPAT)
3076
3077 static void
3078 start_thread (struct gdb_xml_parser *parser,
3079 const struct gdb_xml_element *element,
3080 void *user_data,
3081 std::vector<gdb_xml_value> &attributes)
3082 {
3083 struct threads_listing_context *data
3084 = (struct threads_listing_context *) user_data;
3085 struct gdb_xml_value *attr;
3086
3087 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3088 ptid_t ptid = read_ptid (id, NULL);
3089
3090 data->items.emplace_back (ptid);
3091 thread_item &item = data->items.back ();
3092
3093 attr = xml_find_attribute (attributes, "core");
3094 if (attr != NULL)
3095 item.core = *(ULONGEST *) attr->value.get ();
3096
3097 attr = xml_find_attribute (attributes, "name");
3098 if (attr != NULL)
3099 item.name = (const char *) attr->value.get ();
3100
3101 attr = xml_find_attribute (attributes, "handle");
3102 if (attr != NULL)
3103 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3104 }
3105
3106 static void
3107 end_thread (struct gdb_xml_parser *parser,
3108 const struct gdb_xml_element *element,
3109 void *user_data, const char *body_text)
3110 {
3111 struct threads_listing_context *data
3112 = (struct threads_listing_context *) user_data;
3113
3114 if (body_text != NULL && *body_text != '\0')
3115 data->items.back ().extra = body_text;
3116 }
3117
3118 const struct gdb_xml_attribute thread_attributes[] = {
3119 { "id", GDB_XML_AF_NONE, NULL, NULL },
3120 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3121 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3122 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3123 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3124 };
3125
3126 const struct gdb_xml_element thread_children[] = {
3127 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3128 };
3129
3130 const struct gdb_xml_element threads_children[] = {
3131 { "thread", thread_attributes, thread_children,
3132 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3133 start_thread, end_thread },
3134 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3135 };
3136
3137 const struct gdb_xml_element threads_elements[] = {
3138 { "threads", NULL, threads_children,
3139 GDB_XML_EF_NONE, NULL, NULL },
3140 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3141 };
3142
3143 #endif
3144
3145 /* List remote threads using qXfer:threads:read. */
3146
3147 static int
3148 remote_get_threads_with_qxfer (struct target_ops *ops,
3149 struct threads_listing_context *context)
3150 {
3151 #if defined(HAVE_LIBEXPAT)
3152 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3153 {
3154 gdb::optional<gdb::char_vector> xml
3155 = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3156
3157 if (xml && (*xml)[0] != '\0')
3158 {
3159 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3160 threads_elements, xml->data (), context);
3161 }
3162
3163 return 1;
3164 }
3165 #endif
3166
3167 return 0;
3168 }
3169
3170 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3171
3172 static int
3173 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3174 struct threads_listing_context *context)
3175 {
3176 struct remote_state *rs = get_remote_state ();
3177
3178 if (rs->use_threadinfo_query)
3179 {
3180 const char *bufp;
3181
3182 putpkt ("qfThreadInfo");
3183 getpkt (&rs->buf, &rs->buf_size, 0);
3184 bufp = rs->buf;
3185 if (bufp[0] != '\0') /* q packet recognized */
3186 {
3187 while (*bufp++ == 'm') /* reply contains one or more TID */
3188 {
3189 do
3190 {
3191 ptid_t ptid = read_ptid (bufp, &bufp);
3192 context->items.emplace_back (ptid);
3193 }
3194 while (*bufp++ == ','); /* comma-separated list */
3195 putpkt ("qsThreadInfo");
3196 getpkt (&rs->buf, &rs->buf_size, 0);
3197 bufp = rs->buf;
3198 }
3199 return 1;
3200 }
3201 else
3202 {
3203 /* Packet not recognized. */
3204 rs->use_threadinfo_query = 0;
3205 }
3206 }
3207
3208 return 0;
3209 }
3210
3211 /* Implement the to_update_thread_list function for the remote
3212 targets. */
3213
3214 static void
3215 remote_update_thread_list (struct target_ops *ops)
3216 {
3217 struct threads_listing_context context;
3218 int got_list = 0;
3219
3220 /* We have a few different mechanisms to fetch the thread list. Try
3221 them all, starting with the most preferred one first, falling
3222 back to older methods. */
3223 if (remote_get_threads_with_qxfer (ops, &context)
3224 || remote_get_threads_with_qthreadinfo (ops, &context)
3225 || remote_get_threads_with_ql (ops, &context))
3226 {
3227 struct thread_info *tp, *tmp;
3228
3229 got_list = 1;
3230
3231 if (context.items.empty ()
3232 && remote_thread_always_alive (ops, inferior_ptid))
3233 {
3234 /* Some targets don't really support threads, but still
3235 reply an (empty) thread list in response to the thread
3236 listing packets, instead of replying "packet not
3237 supported". Exit early so we don't delete the main
3238 thread. */
3239 return;
3240 }
3241
3242 /* CONTEXT now holds the current thread list on the remote
3243 target end. Delete GDB-side threads no longer found on the
3244 target. */
3245 ALL_THREADS_SAFE (tp, tmp)
3246 {
3247 if (!context.contains_thread (tp->ptid))
3248 {
3249 /* Not found. */
3250 delete_thread (tp->ptid);
3251 }
3252 }
3253
3254 /* Remove any unreported fork child threads from CONTEXT so
3255 that we don't interfere with follow fork, which is where
3256 creation of such threads is handled. */
3257 remove_new_fork_children (&context);
3258
3259 /* And now add threads we don't know about yet to our list. */
3260 for (thread_item &item : context.items)
3261 {
3262 if (item.ptid != null_ptid)
3263 {
3264 /* In non-stop mode, we assume new found threads are
3265 executing until proven otherwise with a stop reply.
3266 In all-stop, we can only get here if all threads are
3267 stopped. */
3268 int executing = target_is_non_stop_p () ? 1 : 0;
3269
3270 remote_notice_new_inferior (item.ptid, executing);
3271
3272 remote_thread_info *info = get_remote_thread_info (item.ptid);
3273 info->core = item.core;
3274 info->extra = std::move (item.extra);
3275 info->name = std::move (item.name);
3276 info->thread_handle = std::move (item.thread_handle);
3277 }
3278 }
3279 }
3280
3281 if (!got_list)
3282 {
3283 /* If no thread listing method is supported, then query whether
3284 each known thread is alive, one by one, with the T packet.
3285 If the target doesn't support threads at all, then this is a
3286 no-op. See remote_thread_alive. */
3287 prune_threads ();
3288 }
3289 }
3290
3291 /*
3292 * Collect a descriptive string about the given thread.
3293 * The target may say anything it wants to about the thread
3294 * (typically info about its blocked / runnable state, name, etc.).
3295 * This string will appear in the info threads display.
3296 *
3297 * Optional: targets are not required to implement this function.
3298 */
3299
3300 static const char *
3301 remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
3302 {
3303 struct remote_state *rs = get_remote_state ();
3304 int result;
3305 int set;
3306 threadref id;
3307 struct gdb_ext_thread_info threadinfo;
3308 static char display_buf[100]; /* arbitrary... */
3309 int n = 0; /* position in display_buf */
3310
3311 if (rs->remote_desc == 0) /* paranoia */
3312 internal_error (__FILE__, __LINE__,
3313 _("remote_threads_extra_info"));
3314
3315 if (ptid_equal (tp->ptid, magic_null_ptid)
3316 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3317 /* This is the main thread which was added by GDB. The remote
3318 server doesn't know about it. */
3319 return NULL;
3320
3321 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3322 {
3323 struct thread_info *info = find_thread_ptid (tp->ptid);
3324
3325 if (info != NULL && info->priv != NULL)
3326 {
3327 const std::string &extra = get_remote_thread_info (info)->extra;
3328 return !extra.empty () ? extra.c_str () : NULL;
3329 }
3330 else
3331 return NULL;
3332 }
3333
3334 if (rs->use_threadextra_query)
3335 {
3336 char *b = rs->buf;
3337 char *endb = rs->buf + get_remote_packet_size ();
3338
3339 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3340 b += strlen (b);
3341 write_ptid (b, endb, tp->ptid);
3342
3343 putpkt (rs->buf);
3344 getpkt (&rs->buf, &rs->buf_size, 0);
3345 if (rs->buf[0] != 0)
3346 {
3347 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3348 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3349 display_buf [result] = '\0';
3350 return display_buf;
3351 }
3352 }
3353
3354 /* If the above query fails, fall back to the old method. */
3355 rs->use_threadextra_query = 0;
3356 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3357 | TAG_MOREDISPLAY | TAG_DISPLAY;
3358 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3359 if (remote_get_threadinfo (&id, set, &threadinfo))
3360 if (threadinfo.active)
3361 {
3362 if (*threadinfo.shortname)
3363 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3364 " Name: %s,", threadinfo.shortname);
3365 if (*threadinfo.display)
3366 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3367 " State: %s,", threadinfo.display);
3368 if (*threadinfo.more_display)
3369 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3370 " Priority: %s", threadinfo.more_display);
3371
3372 if (n > 0)
3373 {
3374 /* For purely cosmetic reasons, clear up trailing commas. */
3375 if (',' == display_buf[n-1])
3376 display_buf[n-1] = ' ';
3377 return display_buf;
3378 }
3379 }
3380 return NULL;
3381 }
3382 \f
3383
3384 static bool
3385 remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
3386 struct static_tracepoint_marker *marker)
3387 {
3388 struct remote_state *rs = get_remote_state ();
3389 char *p = rs->buf;
3390
3391 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3392 p += strlen (p);
3393 p += hexnumstr (p, addr);
3394 putpkt (rs->buf);
3395 getpkt (&rs->buf, &rs->buf_size, 0);
3396 p = rs->buf;
3397
3398 if (*p == 'E')
3399 error (_("Remote failure reply: %s"), p);
3400
3401 if (*p++ == 'm')
3402 {
3403 parse_static_tracepoint_marker_definition (p, NULL, marker);
3404 return true;
3405 }
3406
3407 return false;
3408 }
3409
3410 static std::vector<static_tracepoint_marker>
3411 remote_static_tracepoint_markers_by_strid (struct target_ops *self,
3412 const char *strid)
3413 {
3414 struct remote_state *rs = get_remote_state ();
3415 std::vector<static_tracepoint_marker> markers;
3416 const char *p;
3417 static_tracepoint_marker marker;
3418
3419 /* Ask for a first packet of static tracepoint marker
3420 definition. */
3421 putpkt ("qTfSTM");
3422 getpkt (&rs->buf, &rs->buf_size, 0);
3423 p = rs->buf;
3424 if (*p == 'E')
3425 error (_("Remote failure reply: %s"), p);
3426
3427 while (*p++ == 'm')
3428 {
3429 do
3430 {
3431 parse_static_tracepoint_marker_definition (p, &p, &marker);
3432
3433 if (strid == NULL || marker.str_id == strid)
3434 markers.push_back (std::move (marker));
3435 }
3436 while (*p++ == ','); /* comma-separated list */
3437 /* Ask for another packet of static tracepoint definition. */
3438 putpkt ("qTsSTM");
3439 getpkt (&rs->buf, &rs->buf_size, 0);
3440 p = rs->buf;
3441 }
3442
3443 return markers;
3444 }
3445
3446 \f
3447 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3448
3449 static ptid_t
3450 remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
3451 {
3452 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3453 }
3454 \f
3455
3456 /* Restart the remote side; this is an extended protocol operation. */
3457
3458 static void
3459 extended_remote_restart (void)
3460 {
3461 struct remote_state *rs = get_remote_state ();
3462
3463 /* Send the restart command; for reasons I don't understand the
3464 remote side really expects a number after the "R". */
3465 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3466 putpkt (rs->buf);
3467
3468 remote_fileio_reset ();
3469 }
3470 \f
3471 /* Clean up connection to a remote debugger. */
3472
3473 static void
3474 remote_close (struct target_ops *self)
3475 {
3476 struct remote_state *rs = get_remote_state ();
3477
3478 if (rs->remote_desc == NULL)
3479 return; /* already closed */
3480
3481 /* Make sure we leave stdin registered in the event loop. */
3482 remote_terminal_ours (self);
3483
3484 serial_close (rs->remote_desc);
3485 rs->remote_desc = NULL;
3486
3487 /* We don't have a connection to the remote stub anymore. Get rid
3488 of all the inferiors and their threads we were controlling.
3489 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3490 will be unable to find the thread corresponding to (pid, 0, 0). */
3491 inferior_ptid = null_ptid;
3492 discard_all_inferiors ();
3493
3494 /* We are closing the remote target, so we should discard
3495 everything of this target. */
3496 discard_pending_stop_replies_in_queue (rs);
3497
3498 if (remote_async_inferior_event_token)
3499 delete_async_event_handler (&remote_async_inferior_event_token);
3500
3501 remote_notif_state_xfree (rs->notif_state);
3502
3503 trace_reset_local_state ();
3504 }
3505
3506 /* Query the remote side for the text, data and bss offsets. */
3507
3508 static void
3509 get_offsets (void)
3510 {
3511 struct remote_state *rs = get_remote_state ();
3512 char *buf;
3513 char *ptr;
3514 int lose, num_segments = 0, do_sections, do_segments;
3515 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3516 struct section_offsets *offs;
3517 struct symfile_segment_data *data;
3518
3519 if (symfile_objfile == NULL)
3520 return;
3521
3522 putpkt ("qOffsets");
3523 getpkt (&rs->buf, &rs->buf_size, 0);
3524 buf = rs->buf;
3525
3526 if (buf[0] == '\000')
3527 return; /* Return silently. Stub doesn't support
3528 this command. */
3529 if (buf[0] == 'E')
3530 {
3531 warning (_("Remote failure reply: %s"), buf);
3532 return;
3533 }
3534
3535 /* Pick up each field in turn. This used to be done with scanf, but
3536 scanf will make trouble if CORE_ADDR size doesn't match
3537 conversion directives correctly. The following code will work
3538 with any size of CORE_ADDR. */
3539 text_addr = data_addr = bss_addr = 0;
3540 ptr = buf;
3541 lose = 0;
3542
3543 if (startswith (ptr, "Text="))
3544 {
3545 ptr += 5;
3546 /* Don't use strtol, could lose on big values. */
3547 while (*ptr && *ptr != ';')
3548 text_addr = (text_addr << 4) + fromhex (*ptr++);
3549
3550 if (startswith (ptr, ";Data="))
3551 {
3552 ptr += 6;
3553 while (*ptr && *ptr != ';')
3554 data_addr = (data_addr << 4) + fromhex (*ptr++);
3555 }
3556 else
3557 lose = 1;
3558
3559 if (!lose && startswith (ptr, ";Bss="))
3560 {
3561 ptr += 5;
3562 while (*ptr && *ptr != ';')
3563 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3564
3565 if (bss_addr != data_addr)
3566 warning (_("Target reported unsupported offsets: %s"), buf);
3567 }
3568 else
3569 lose = 1;
3570 }
3571 else if (startswith (ptr, "TextSeg="))
3572 {
3573 ptr += 8;
3574 /* Don't use strtol, could lose on big values. */
3575 while (*ptr && *ptr != ';')
3576 text_addr = (text_addr << 4) + fromhex (*ptr++);
3577 num_segments = 1;
3578
3579 if (startswith (ptr, ";DataSeg="))
3580 {
3581 ptr += 9;
3582 while (*ptr && *ptr != ';')
3583 data_addr = (data_addr << 4) + fromhex (*ptr++);
3584 num_segments++;
3585 }
3586 }
3587 else
3588 lose = 1;
3589
3590 if (lose)
3591 error (_("Malformed response to offset query, %s"), buf);
3592 else if (*ptr != '\0')
3593 warning (_("Target reported unsupported offsets: %s"), buf);
3594
3595 offs = ((struct section_offsets *)
3596 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3597 memcpy (offs, symfile_objfile->section_offsets,
3598 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3599
3600 data = get_symfile_segment_data (symfile_objfile->obfd);
3601 do_segments = (data != NULL);
3602 do_sections = num_segments == 0;
3603
3604 if (num_segments > 0)
3605 {
3606 segments[0] = text_addr;
3607 segments[1] = data_addr;
3608 }
3609 /* If we have two segments, we can still try to relocate everything
3610 by assuming that the .text and .data offsets apply to the whole
3611 text and data segments. Convert the offsets given in the packet
3612 to base addresses for symfile_map_offsets_to_segments. */
3613 else if (data && data->num_segments == 2)
3614 {
3615 segments[0] = data->segment_bases[0] + text_addr;
3616 segments[1] = data->segment_bases[1] + data_addr;
3617 num_segments = 2;
3618 }
3619 /* If the object file has only one segment, assume that it is text
3620 rather than data; main programs with no writable data are rare,
3621 but programs with no code are useless. Of course the code might
3622 have ended up in the data segment... to detect that we would need
3623 the permissions here. */
3624 else if (data && data->num_segments == 1)
3625 {
3626 segments[0] = data->segment_bases[0] + text_addr;
3627 num_segments = 1;
3628 }
3629 /* There's no way to relocate by segment. */
3630 else
3631 do_segments = 0;
3632
3633 if (do_segments)
3634 {
3635 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3636 offs, num_segments, segments);
3637
3638 if (ret == 0 && !do_sections)
3639 error (_("Can not handle qOffsets TextSeg "
3640 "response with this symbol file"));
3641
3642 if (ret > 0)
3643 do_sections = 0;
3644 }
3645
3646 if (data)
3647 free_symfile_segment_data (data);
3648
3649 if (do_sections)
3650 {
3651 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3652
3653 /* This is a temporary kludge to force data and bss to use the
3654 same offsets because that's what nlmconv does now. The real
3655 solution requires changes to the stub and remote.c that I
3656 don't have time to do right now. */
3657
3658 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3659 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3660 }
3661
3662 objfile_relocate (symfile_objfile, offs);
3663 }
3664
3665 /* Send interrupt_sequence to remote target. */
3666 static void
3667 send_interrupt_sequence (void)
3668 {
3669 struct remote_state *rs = get_remote_state ();
3670
3671 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3672 remote_serial_write ("\x03", 1);
3673 else if (interrupt_sequence_mode == interrupt_sequence_break)
3674 serial_send_break (rs->remote_desc);
3675 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3676 {
3677 serial_send_break (rs->remote_desc);
3678 remote_serial_write ("g", 1);
3679 }
3680 else
3681 internal_error (__FILE__, __LINE__,
3682 _("Invalid value for interrupt_sequence_mode: %s."),
3683 interrupt_sequence_mode);
3684 }
3685
3686
3687 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3688 and extract the PTID. Returns NULL_PTID if not found. */
3689
3690 static ptid_t
3691 stop_reply_extract_thread (char *stop_reply)
3692 {
3693 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3694 {
3695 const char *p;
3696
3697 /* Txx r:val ; r:val (...) */
3698 p = &stop_reply[3];
3699
3700 /* Look for "register" named "thread". */
3701 while (*p != '\0')
3702 {
3703 const char *p1;
3704
3705 p1 = strchr (p, ':');
3706 if (p1 == NULL)
3707 return null_ptid;
3708
3709 if (strncmp (p, "thread", p1 - p) == 0)
3710 return read_ptid (++p1, &p);
3711
3712 p1 = strchr (p, ';');
3713 if (p1 == NULL)
3714 return null_ptid;
3715 p1++;
3716
3717 p = p1;
3718 }
3719 }
3720
3721 return null_ptid;
3722 }
3723
3724 /* Determine the remote side's current thread. If we have a stop
3725 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3726 "thread" register we can extract the current thread from. If not,
3727 ask the remote which is the current thread with qC. The former
3728 method avoids a roundtrip. */
3729
3730 static ptid_t
3731 get_current_thread (char *wait_status)
3732 {
3733 ptid_t ptid = null_ptid;
3734
3735 /* Note we don't use remote_parse_stop_reply as that makes use of
3736 the target architecture, which we haven't yet fully determined at
3737 this point. */
3738 if (wait_status != NULL)
3739 ptid = stop_reply_extract_thread (wait_status);
3740 if (ptid_equal (ptid, null_ptid))
3741 ptid = remote_current_thread (inferior_ptid);
3742
3743 return ptid;
3744 }
3745
3746 /* Query the remote target for which is the current thread/process,
3747 add it to our tables, and update INFERIOR_PTID. The caller is
3748 responsible for setting the state such that the remote end is ready
3749 to return the current thread.
3750
3751 This function is called after handling the '?' or 'vRun' packets,
3752 whose response is a stop reply from which we can also try
3753 extracting the thread. If the target doesn't support the explicit
3754 qC query, we infer the current thread from that stop reply, passed
3755 in in WAIT_STATUS, which may be NULL. */
3756
3757 static void
3758 add_current_inferior_and_thread (char *wait_status)
3759 {
3760 struct remote_state *rs = get_remote_state ();
3761 int fake_pid_p = 0;
3762
3763 inferior_ptid = null_ptid;
3764
3765 /* Now, if we have thread information, update inferior_ptid. */
3766 ptid_t curr_ptid = get_current_thread (wait_status);
3767
3768 if (curr_ptid != null_ptid)
3769 {
3770 if (!remote_multi_process_p (rs))
3771 fake_pid_p = 1;
3772 }
3773 else
3774 {
3775 /* Without this, some commands which require an active target
3776 (such as kill) won't work. This variable serves (at least)
3777 double duty as both the pid of the target process (if it has
3778 such), and as a flag indicating that a target is active. */
3779 curr_ptid = magic_null_ptid;
3780 fake_pid_p = 1;
3781 }
3782
3783 remote_add_inferior (fake_pid_p, ptid_get_pid (curr_ptid), -1, 1);
3784
3785 /* Add the main thread and switch to it. Don't try reading
3786 registers yet, since we haven't fetched the target description
3787 yet. */
3788 thread_info *tp = add_thread_silent (curr_ptid);
3789 switch_to_thread_no_regs (tp);
3790 }
3791
3792 /* Print info about a thread that was found already stopped on
3793 connection. */
3794
3795 static void
3796 print_one_stopped_thread (struct thread_info *thread)
3797 {
3798 struct target_waitstatus *ws = &thread->suspend.waitstatus;
3799
3800 switch_to_thread (thread->ptid);
3801 stop_pc = get_frame_pc (get_current_frame ());
3802 set_current_sal_from_frame (get_current_frame ());
3803
3804 thread->suspend.waitstatus_pending_p = 0;
3805
3806 if (ws->kind == TARGET_WAITKIND_STOPPED)
3807 {
3808 enum gdb_signal sig = ws->value.sig;
3809
3810 if (signal_print_state (sig))
3811 gdb::observers::signal_received.notify (sig);
3812 }
3813 gdb::observers::normal_stop.notify (NULL, 1);
3814 }
3815
3816 /* Process all initial stop replies the remote side sent in response
3817 to the ? packet. These indicate threads that were already stopped
3818 on initial connection. We mark these threads as stopped and print
3819 their current frame before giving the user the prompt. */
3820
3821 static void
3822 process_initial_stop_replies (int from_tty)
3823 {
3824 int pending_stop_replies = stop_reply_queue_length ();
3825 struct inferior *inf;
3826 struct thread_info *thread;
3827 struct thread_info *selected = NULL;
3828 struct thread_info *lowest_stopped = NULL;
3829 struct thread_info *first = NULL;
3830
3831 /* Consume the initial pending events. */
3832 while (pending_stop_replies-- > 0)
3833 {
3834 ptid_t waiton_ptid = minus_one_ptid;
3835 ptid_t event_ptid;
3836 struct target_waitstatus ws;
3837 int ignore_event = 0;
3838 struct thread_info *thread;
3839
3840 memset (&ws, 0, sizeof (ws));
3841 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
3842 if (remote_debug)
3843 print_target_wait_results (waiton_ptid, event_ptid, &ws);
3844
3845 switch (ws.kind)
3846 {
3847 case TARGET_WAITKIND_IGNORE:
3848 case TARGET_WAITKIND_NO_RESUMED:
3849 case TARGET_WAITKIND_SIGNALLED:
3850 case TARGET_WAITKIND_EXITED:
3851 /* We shouldn't see these, but if we do, just ignore. */
3852 if (remote_debug)
3853 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
3854 ignore_event = 1;
3855 break;
3856
3857 case TARGET_WAITKIND_EXECD:
3858 xfree (ws.value.execd_pathname);
3859 break;
3860 default:
3861 break;
3862 }
3863
3864 if (ignore_event)
3865 continue;
3866
3867 thread = find_thread_ptid (event_ptid);
3868
3869 if (ws.kind == TARGET_WAITKIND_STOPPED)
3870 {
3871 enum gdb_signal sig = ws.value.sig;
3872
3873 /* Stubs traditionally report SIGTRAP as initial signal,
3874 instead of signal 0. Suppress it. */
3875 if (sig == GDB_SIGNAL_TRAP)
3876 sig = GDB_SIGNAL_0;
3877 thread->suspend.stop_signal = sig;
3878 ws.value.sig = sig;
3879 }
3880
3881 thread->suspend.waitstatus = ws;
3882
3883 if (ws.kind != TARGET_WAITKIND_STOPPED
3884 || ws.value.sig != GDB_SIGNAL_0)
3885 thread->suspend.waitstatus_pending_p = 1;
3886
3887 set_executing (event_ptid, 0);
3888 set_running (event_ptid, 0);
3889 get_remote_thread_info (thread)->vcont_resumed = 0;
3890 }
3891
3892 /* "Notice" the new inferiors before anything related to
3893 registers/memory. */
3894 ALL_INFERIORS (inf)
3895 {
3896 if (inf->pid == 0)
3897 continue;
3898
3899 inf->needs_setup = 1;
3900
3901 if (non_stop)
3902 {
3903 thread = any_live_thread_of_process (inf->pid);
3904 notice_new_inferior (thread->ptid,
3905 thread->state == THREAD_RUNNING,
3906 from_tty);
3907 }
3908 }
3909
3910 /* If all-stop on top of non-stop, pause all threads. Note this
3911 records the threads' stop pc, so must be done after "noticing"
3912 the inferiors. */
3913 if (!non_stop)
3914 {
3915 stop_all_threads ();
3916
3917 /* If all threads of an inferior were already stopped, we
3918 haven't setup the inferior yet. */
3919 ALL_INFERIORS (inf)
3920 {
3921 if (inf->pid == 0)
3922 continue;
3923
3924 if (inf->needs_setup)
3925 {
3926 thread = any_live_thread_of_process (inf->pid);
3927 switch_to_thread_no_regs (thread);
3928 setup_inferior (0);
3929 }
3930 }
3931 }
3932
3933 /* Now go over all threads that are stopped, and print their current
3934 frame. If all-stop, then if there's a signalled thread, pick
3935 that as current. */
3936 ALL_NON_EXITED_THREADS (thread)
3937 {
3938 if (first == NULL)
3939 first = thread;
3940
3941 if (!non_stop)
3942 set_running (thread->ptid, 0);
3943 else if (thread->state != THREAD_STOPPED)
3944 continue;
3945
3946 if (selected == NULL
3947 && thread->suspend.waitstatus_pending_p)
3948 selected = thread;
3949
3950 if (lowest_stopped == NULL
3951 || thread->inf->num < lowest_stopped->inf->num
3952 || thread->per_inf_num < lowest_stopped->per_inf_num)
3953 lowest_stopped = thread;
3954
3955 if (non_stop)
3956 print_one_stopped_thread (thread);
3957 }
3958
3959 /* In all-stop, we only print the status of one thread, and leave
3960 others with their status pending. */
3961 if (!non_stop)
3962 {
3963 thread = selected;
3964 if (thread == NULL)
3965 thread = lowest_stopped;
3966 if (thread == NULL)
3967 thread = first;
3968
3969 print_one_stopped_thread (thread);
3970 }
3971
3972 /* For "info program". */
3973 thread = inferior_thread ();
3974 if (thread->state == THREAD_STOPPED)
3975 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
3976 }
3977
3978 /* Start the remote connection and sync state. */
3979
3980 static void
3981 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3982 {
3983 struct remote_state *rs = get_remote_state ();
3984 struct packet_config *noack_config;
3985 char *wait_status = NULL;
3986
3987 /* Signal other parts that we're going through the initial setup,
3988 and so things may not be stable yet. E.g., we don't try to
3989 install tracepoints until we've relocated symbols. Also, a
3990 Ctrl-C before we're connected and synced up can't interrupt the
3991 target. Instead, it offers to drop the (potentially wedged)
3992 connection. */
3993 rs->starting_up = 1;
3994
3995 QUIT;
3996
3997 if (interrupt_on_connect)
3998 send_interrupt_sequence ();
3999
4000 /* Ack any packet which the remote side has already sent. */
4001 remote_serial_write ("+", 1);
4002
4003 /* The first packet we send to the target is the optional "supported
4004 packets" request. If the target can answer this, it will tell us
4005 which later probes to skip. */
4006 remote_query_supported ();
4007
4008 /* If the stub wants to get a QAllow, compose one and send it. */
4009 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4010 remote_set_permissions (target);
4011
4012 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4013 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4014 as a reply to known packet. For packet "vFile:setfs:" it is an
4015 invalid reply and GDB would return error in
4016 remote_hostio_set_filesystem, making remote files access impossible.
4017 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4018 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4019 {
4020 const char v_mustreplyempty[] = "vMustReplyEmpty";
4021
4022 putpkt (v_mustreplyempty);
4023 getpkt (&rs->buf, &rs->buf_size, 0);
4024 if (strcmp (rs->buf, "OK") == 0)
4025 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4026 else if (strcmp (rs->buf, "") != 0)
4027 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4028 rs->buf);
4029 }
4030
4031 /* Next, we possibly activate noack mode.
4032
4033 If the QStartNoAckMode packet configuration is set to AUTO,
4034 enable noack mode if the stub reported a wish for it with
4035 qSupported.
4036
4037 If set to TRUE, then enable noack mode even if the stub didn't
4038 report it in qSupported. If the stub doesn't reply OK, the
4039 session ends with an error.
4040
4041 If FALSE, then don't activate noack mode, regardless of what the
4042 stub claimed should be the default with qSupported. */
4043
4044 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4045 if (packet_config_support (noack_config) != PACKET_DISABLE)
4046 {
4047 putpkt ("QStartNoAckMode");
4048 getpkt (&rs->buf, &rs->buf_size, 0);
4049 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4050 rs->noack_mode = 1;
4051 }
4052
4053 if (extended_p)
4054 {
4055 /* Tell the remote that we are using the extended protocol. */
4056 putpkt ("!");
4057 getpkt (&rs->buf, &rs->buf_size, 0);
4058 }
4059
4060 /* Let the target know which signals it is allowed to pass down to
4061 the program. */
4062 update_signals_program_target ();
4063
4064 /* Next, if the target can specify a description, read it. We do
4065 this before anything involving memory or registers. */
4066 target_find_description ();
4067
4068 /* Next, now that we know something about the target, update the
4069 address spaces in the program spaces. */
4070 update_address_spaces ();
4071
4072 /* On OSs where the list of libraries is global to all
4073 processes, we fetch them early. */
4074 if (gdbarch_has_global_solist (target_gdbarch ()))
4075 solib_add (NULL, from_tty, auto_solib_add);
4076
4077 if (target_is_non_stop_p ())
4078 {
4079 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4080 error (_("Non-stop mode requested, but remote "
4081 "does not support non-stop"));
4082
4083 putpkt ("QNonStop:1");
4084 getpkt (&rs->buf, &rs->buf_size, 0);
4085
4086 if (strcmp (rs->buf, "OK") != 0)
4087 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4088
4089 /* Find about threads and processes the stub is already
4090 controlling. We default to adding them in the running state.
4091 The '?' query below will then tell us about which threads are
4092 stopped. */
4093 remote_update_thread_list (target);
4094 }
4095 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4096 {
4097 /* Don't assume that the stub can operate in all-stop mode.
4098 Request it explicitly. */
4099 putpkt ("QNonStop:0");
4100 getpkt (&rs->buf, &rs->buf_size, 0);
4101
4102 if (strcmp (rs->buf, "OK") != 0)
4103 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4104 }
4105
4106 /* Upload TSVs regardless of whether the target is running or not. The
4107 remote stub, such as GDBserver, may have some predefined or builtin
4108 TSVs, even if the target is not running. */
4109 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4110 {
4111 struct uploaded_tsv *uploaded_tsvs = NULL;
4112
4113 remote_upload_trace_state_variables (target, &uploaded_tsvs);
4114 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4115 }
4116
4117 /* Check whether the target is running now. */
4118 putpkt ("?");
4119 getpkt (&rs->buf, &rs->buf_size, 0);
4120
4121 if (!target_is_non_stop_p ())
4122 {
4123 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4124 {
4125 if (!extended_p)
4126 error (_("The target is not running (try extended-remote?)"));
4127
4128 /* We're connected, but not running. Drop out before we
4129 call start_remote. */
4130 rs->starting_up = 0;
4131 return;
4132 }
4133 else
4134 {
4135 /* Save the reply for later. */
4136 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4137 strcpy (wait_status, rs->buf);
4138 }
4139
4140 /* Fetch thread list. */
4141 target_update_thread_list ();
4142
4143 /* Let the stub know that we want it to return the thread. */
4144 set_continue_thread (minus_one_ptid);
4145
4146 if (thread_count () == 0)
4147 {
4148 /* Target has no concept of threads at all. GDB treats
4149 non-threaded target as single-threaded; add a main
4150 thread. */
4151 add_current_inferior_and_thread (wait_status);
4152 }
4153 else
4154 {
4155 /* We have thread information; select the thread the target
4156 says should be current. If we're reconnecting to a
4157 multi-threaded program, this will ideally be the thread
4158 that last reported an event before GDB disconnected. */
4159 inferior_ptid = get_current_thread (wait_status);
4160 if (ptid_equal (inferior_ptid, null_ptid))
4161 {
4162 /* Odd... The target was able to list threads, but not
4163 tell us which thread was current (no "thread"
4164 register in T stop reply?). Just pick the first
4165 thread in the thread list then. */
4166
4167 if (remote_debug)
4168 fprintf_unfiltered (gdb_stdlog,
4169 "warning: couldn't determine remote "
4170 "current thread; picking first in list.\n");
4171
4172 inferior_ptid = thread_list->ptid;
4173 }
4174 }
4175
4176 /* init_wait_for_inferior should be called before get_offsets in order
4177 to manage `inserted' flag in bp loc in a correct state.
4178 breakpoint_init_inferior, called from init_wait_for_inferior, set
4179 `inserted' flag to 0, while before breakpoint_re_set, called from
4180 start_remote, set `inserted' flag to 1. In the initialization of
4181 inferior, breakpoint_init_inferior should be called first, and then
4182 breakpoint_re_set can be called. If this order is broken, state of
4183 `inserted' flag is wrong, and cause some problems on breakpoint
4184 manipulation. */
4185 init_wait_for_inferior ();
4186
4187 get_offsets (); /* Get text, data & bss offsets. */
4188
4189 /* If we could not find a description using qXfer, and we know
4190 how to do it some other way, try again. This is not
4191 supported for non-stop; it could be, but it is tricky if
4192 there are no stopped threads when we connect. */
4193 if (remote_read_description_p (target)
4194 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4195 {
4196 target_clear_description ();
4197 target_find_description ();
4198 }
4199
4200 /* Use the previously fetched status. */
4201 gdb_assert (wait_status != NULL);
4202 strcpy (rs->buf, wait_status);
4203 rs->cached_wait_status = 1;
4204
4205 start_remote (from_tty); /* Initialize gdb process mechanisms. */
4206 }
4207 else
4208 {
4209 /* Clear WFI global state. Do this before finding about new
4210 threads and inferiors, and setting the current inferior.
4211 Otherwise we would clear the proceed status of the current
4212 inferior when we want its stop_soon state to be preserved
4213 (see notice_new_inferior). */
4214 init_wait_for_inferior ();
4215
4216 /* In non-stop, we will either get an "OK", meaning that there
4217 are no stopped threads at this time; or, a regular stop
4218 reply. In the latter case, there may be more than one thread
4219 stopped --- we pull them all out using the vStopped
4220 mechanism. */
4221 if (strcmp (rs->buf, "OK") != 0)
4222 {
4223 struct notif_client *notif = &notif_client_stop;
4224
4225 /* remote_notif_get_pending_replies acks this one, and gets
4226 the rest out. */
4227 rs->notif_state->pending_event[notif_client_stop.id]
4228 = remote_notif_parse (notif, rs->buf);
4229 remote_notif_get_pending_events (notif);
4230 }
4231
4232 if (thread_count () == 0)
4233 {
4234 if (!extended_p)
4235 error (_("The target is not running (try extended-remote?)"));
4236
4237 /* We're connected, but not running. Drop out before we
4238 call start_remote. */
4239 rs->starting_up = 0;
4240 return;
4241 }
4242
4243 /* In non-stop mode, any cached wait status will be stored in
4244 the stop reply queue. */
4245 gdb_assert (wait_status == NULL);
4246
4247 /* Report all signals during attach/startup. */
4248 remote_pass_signals (target, 0, NULL);
4249
4250 /* If there are already stopped threads, mark them stopped and
4251 report their stops before giving the prompt to the user. */
4252 process_initial_stop_replies (from_tty);
4253
4254 if (target_can_async_p ())
4255 target_async (1);
4256 }
4257
4258 /* If we connected to a live target, do some additional setup. */
4259 if (target_has_execution)
4260 {
4261 if (symfile_objfile) /* No use without a symbol-file. */
4262 remote_check_symbols ();
4263 }
4264
4265 /* Possibly the target has been engaged in a trace run started
4266 previously; find out where things are at. */
4267 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4268 {
4269 struct uploaded_tp *uploaded_tps = NULL;
4270
4271 if (current_trace_status ()->running)
4272 printf_filtered (_("Trace is already running on the target.\n"));
4273
4274 remote_upload_tracepoints (target, &uploaded_tps);
4275
4276 merge_uploaded_tracepoints (&uploaded_tps);
4277 }
4278
4279 /* Possibly the target has been engaged in a btrace record started
4280 previously; find out where things are at. */
4281 remote_btrace_maybe_reopen ();
4282
4283 /* The thread and inferior lists are now synchronized with the
4284 target, our symbols have been relocated, and we're merged the
4285 target's tracepoints with ours. We're done with basic start
4286 up. */
4287 rs->starting_up = 0;
4288
4289 /* Maybe breakpoints are global and need to be inserted now. */
4290 if (breakpoints_should_be_inserted_now ())
4291 insert_breakpoints ();
4292 }
4293
4294 /* Open a connection to a remote debugger.
4295 NAME is the filename used for communication. */
4296
4297 static void
4298 remote_open (const char *name, int from_tty)
4299 {
4300 remote_open_1 (name, from_tty, &remote_ops, 0);
4301 }
4302
4303 /* Open a connection to a remote debugger using the extended
4304 remote gdb protocol. NAME is the filename used for communication. */
4305
4306 static void
4307 extended_remote_open (const char *name, int from_tty)
4308 {
4309 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
4310 }
4311
4312 /* Reset all packets back to "unknown support". Called when opening a
4313 new connection to a remote target. */
4314
4315 static void
4316 reset_all_packet_configs_support (void)
4317 {
4318 int i;
4319
4320 for (i = 0; i < PACKET_MAX; i++)
4321 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4322 }
4323
4324 /* Initialize all packet configs. */
4325
4326 static void
4327 init_all_packet_configs (void)
4328 {
4329 int i;
4330
4331 for (i = 0; i < PACKET_MAX; i++)
4332 {
4333 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4334 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4335 }
4336 }
4337
4338 /* Symbol look-up. */
4339
4340 static void
4341 remote_check_symbols (void)
4342 {
4343 char *msg, *reply, *tmp;
4344 int end;
4345 long reply_size;
4346 struct cleanup *old_chain;
4347
4348 /* The remote side has no concept of inferiors that aren't running
4349 yet, it only knows about running processes. If we're connected
4350 but our current inferior is not running, we should not invite the
4351 remote target to request symbol lookups related to its
4352 (unrelated) current process. */
4353 if (!target_has_execution)
4354 return;
4355
4356 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4357 return;
4358
4359 /* Make sure the remote is pointing at the right process. Note
4360 there's no way to select "no process". */
4361 set_general_process ();
4362
4363 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4364 because we need both at the same time. */
4365 msg = (char *) xmalloc (get_remote_packet_size ());
4366 old_chain = make_cleanup (xfree, msg);
4367 reply = (char *) xmalloc (get_remote_packet_size ());
4368 make_cleanup (free_current_contents, &reply);
4369 reply_size = get_remote_packet_size ();
4370
4371 /* Invite target to request symbol lookups. */
4372
4373 putpkt ("qSymbol::");
4374 getpkt (&reply, &reply_size, 0);
4375 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4376
4377 while (startswith (reply, "qSymbol:"))
4378 {
4379 struct bound_minimal_symbol sym;
4380
4381 tmp = &reply[8];
4382 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4383 msg[end] = '\0';
4384 sym = lookup_minimal_symbol (msg, NULL, NULL);
4385 if (sym.minsym == NULL)
4386 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4387 else
4388 {
4389 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4390 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4391
4392 /* If this is a function address, return the start of code
4393 instead of any data function descriptor. */
4394 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4395 sym_addr,
4396 &current_target);
4397
4398 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4399 phex_nz (sym_addr, addr_size), &reply[8]);
4400 }
4401
4402 putpkt (msg);
4403 getpkt (&reply, &reply_size, 0);
4404 }
4405
4406 do_cleanups (old_chain);
4407 }
4408
4409 static struct serial *
4410 remote_serial_open (const char *name)
4411 {
4412 static int udp_warning = 0;
4413
4414 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4415 of in ser-tcp.c, because it is the remote protocol assuming that the
4416 serial connection is reliable and not the serial connection promising
4417 to be. */
4418 if (!udp_warning && startswith (name, "udp:"))
4419 {
4420 warning (_("The remote protocol may be unreliable over UDP.\n"
4421 "Some events may be lost, rendering further debugging "
4422 "impossible."));
4423 udp_warning = 1;
4424 }
4425
4426 return serial_open (name);
4427 }
4428
4429 /* Inform the target of our permission settings. The permission flags
4430 work without this, but if the target knows the settings, it can do
4431 a couple things. First, it can add its own check, to catch cases
4432 that somehow manage to get by the permissions checks in target
4433 methods. Second, if the target is wired to disallow particular
4434 settings (for instance, a system in the field that is not set up to
4435 be able to stop at a breakpoint), it can object to any unavailable
4436 permissions. */
4437
4438 void
4439 remote_set_permissions (struct target_ops *self)
4440 {
4441 struct remote_state *rs = get_remote_state ();
4442
4443 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4444 "WriteReg:%x;WriteMem:%x;"
4445 "InsertBreak:%x;InsertTrace:%x;"
4446 "InsertFastTrace:%x;Stop:%x",
4447 may_write_registers, may_write_memory,
4448 may_insert_breakpoints, may_insert_tracepoints,
4449 may_insert_fast_tracepoints, may_stop);
4450 putpkt (rs->buf);
4451 getpkt (&rs->buf, &rs->buf_size, 0);
4452
4453 /* If the target didn't like the packet, warn the user. Do not try
4454 to undo the user's settings, that would just be maddening. */
4455 if (strcmp (rs->buf, "OK") != 0)
4456 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4457 }
4458
4459 /* This type describes each known response to the qSupported
4460 packet. */
4461 struct protocol_feature
4462 {
4463 /* The name of this protocol feature. */
4464 const char *name;
4465
4466 /* The default for this protocol feature. */
4467 enum packet_support default_support;
4468
4469 /* The function to call when this feature is reported, or after
4470 qSupported processing if the feature is not supported.
4471 The first argument points to this structure. The second
4472 argument indicates whether the packet requested support be
4473 enabled, disabled, or probed (or the default, if this function
4474 is being called at the end of processing and this feature was
4475 not reported). The third argument may be NULL; if not NULL, it
4476 is a NUL-terminated string taken from the packet following
4477 this feature's name and an equals sign. */
4478 void (*func) (const struct protocol_feature *, enum packet_support,
4479 const char *);
4480
4481 /* The corresponding packet for this feature. Only used if
4482 FUNC is remote_supported_packet. */
4483 int packet;
4484 };
4485
4486 static void
4487 remote_supported_packet (const struct protocol_feature *feature,
4488 enum packet_support support,
4489 const char *argument)
4490 {
4491 if (argument)
4492 {
4493 warning (_("Remote qSupported response supplied an unexpected value for"
4494 " \"%s\"."), feature->name);
4495 return;
4496 }
4497
4498 remote_protocol_packets[feature->packet].support = support;
4499 }
4500
4501 static void
4502 remote_packet_size (const struct protocol_feature *feature,
4503 enum packet_support support, const char *value)
4504 {
4505 struct remote_state *rs = get_remote_state ();
4506
4507 int packet_size;
4508 char *value_end;
4509
4510 if (support != PACKET_ENABLE)
4511 return;
4512
4513 if (value == NULL || *value == '\0')
4514 {
4515 warning (_("Remote target reported \"%s\" without a size."),
4516 feature->name);
4517 return;
4518 }
4519
4520 errno = 0;
4521 packet_size = strtol (value, &value_end, 16);
4522 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4523 {
4524 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4525 feature->name, value);
4526 return;
4527 }
4528
4529 /* Record the new maximum packet size. */
4530 rs->explicit_packet_size = packet_size;
4531 }
4532
4533 static const struct protocol_feature remote_protocol_features[] = {
4534 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4535 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4536 PACKET_qXfer_auxv },
4537 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4538 PACKET_qXfer_exec_file },
4539 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4540 PACKET_qXfer_features },
4541 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4542 PACKET_qXfer_libraries },
4543 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4544 PACKET_qXfer_libraries_svr4 },
4545 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4546 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4547 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4548 PACKET_qXfer_memory_map },
4549 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4550 PACKET_qXfer_spu_read },
4551 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4552 PACKET_qXfer_spu_write },
4553 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4554 PACKET_qXfer_osdata },
4555 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4556 PACKET_qXfer_threads },
4557 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4558 PACKET_qXfer_traceframe_info },
4559 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4560 PACKET_QPassSignals },
4561 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4562 PACKET_QCatchSyscalls },
4563 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4564 PACKET_QProgramSignals },
4565 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
4566 PACKET_QSetWorkingDir },
4567 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
4568 PACKET_QStartupWithShell },
4569 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
4570 PACKET_QEnvironmentHexEncoded },
4571 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
4572 PACKET_QEnvironmentReset },
4573 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
4574 PACKET_QEnvironmentUnset },
4575 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4576 PACKET_QStartNoAckMode },
4577 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4578 PACKET_multiprocess_feature },
4579 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4580 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4581 PACKET_qXfer_siginfo_read },
4582 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4583 PACKET_qXfer_siginfo_write },
4584 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4585 PACKET_ConditionalTracepoints },
4586 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4587 PACKET_ConditionalBreakpoints },
4588 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4589 PACKET_BreakpointCommands },
4590 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4591 PACKET_FastTracepoints },
4592 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4593 PACKET_StaticTracepoints },
4594 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4595 PACKET_InstallInTrace},
4596 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4597 PACKET_DisconnectedTracing_feature },
4598 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4599 PACKET_bc },
4600 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4601 PACKET_bs },
4602 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4603 PACKET_TracepointSource },
4604 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4605 PACKET_QAllow },
4606 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4607 PACKET_EnableDisableTracepoints_feature },
4608 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4609 PACKET_qXfer_fdpic },
4610 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4611 PACKET_qXfer_uib },
4612 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4613 PACKET_QDisableRandomization },
4614 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4615 { "QTBuffer:size", PACKET_DISABLE,
4616 remote_supported_packet, PACKET_QTBuffer_size},
4617 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4618 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4619 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4620 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4621 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4622 PACKET_qXfer_btrace },
4623 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4624 PACKET_qXfer_btrace_conf },
4625 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4626 PACKET_Qbtrace_conf_bts_size },
4627 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4628 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4629 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4630 PACKET_fork_event_feature },
4631 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4632 PACKET_vfork_event_feature },
4633 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4634 PACKET_exec_event_feature },
4635 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4636 PACKET_Qbtrace_conf_pt_size },
4637 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4638 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4639 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4640 };
4641
4642 static char *remote_support_xml;
4643
4644 /* Register string appended to "xmlRegisters=" in qSupported query. */
4645
4646 void
4647 register_remote_support_xml (const char *xml)
4648 {
4649 #if defined(HAVE_LIBEXPAT)
4650 if (remote_support_xml == NULL)
4651 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4652 else
4653 {
4654 char *copy = xstrdup (remote_support_xml + 13);
4655 char *p = strtok (copy, ",");
4656
4657 do
4658 {
4659 if (strcmp (p, xml) == 0)
4660 {
4661 /* already there */
4662 xfree (copy);
4663 return;
4664 }
4665 }
4666 while ((p = strtok (NULL, ",")) != NULL);
4667 xfree (copy);
4668
4669 remote_support_xml = reconcat (remote_support_xml,
4670 remote_support_xml, ",", xml,
4671 (char *) NULL);
4672 }
4673 #endif
4674 }
4675
4676 static char *
4677 remote_query_supported_append (char *msg, const char *append)
4678 {
4679 if (msg)
4680 return reconcat (msg, msg, ";", append, (char *) NULL);
4681 else
4682 return xstrdup (append);
4683 }
4684
4685 static void
4686 remote_query_supported (void)
4687 {
4688 struct remote_state *rs = get_remote_state ();
4689 char *next;
4690 int i;
4691 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4692
4693 /* The packet support flags are handled differently for this packet
4694 than for most others. We treat an error, a disabled packet, and
4695 an empty response identically: any features which must be reported
4696 to be used will be automatically disabled. An empty buffer
4697 accomplishes this, since that is also the representation for a list
4698 containing no features. */
4699
4700 rs->buf[0] = 0;
4701 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4702 {
4703 char *q = NULL;
4704 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4705
4706 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
4707 q = remote_query_supported_append (q, "multiprocess+");
4708
4709 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
4710 q = remote_query_supported_append (q, "swbreak+");
4711 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
4712 q = remote_query_supported_append (q, "hwbreak+");
4713
4714 q = remote_query_supported_append (q, "qRelocInsn+");
4715
4716 if (packet_set_cmd_state (PACKET_fork_event_feature)
4717 != AUTO_BOOLEAN_FALSE)
4718 q = remote_query_supported_append (q, "fork-events+");
4719 if (packet_set_cmd_state (PACKET_vfork_event_feature)
4720 != AUTO_BOOLEAN_FALSE)
4721 q = remote_query_supported_append (q, "vfork-events+");
4722 if (packet_set_cmd_state (PACKET_exec_event_feature)
4723 != AUTO_BOOLEAN_FALSE)
4724 q = remote_query_supported_append (q, "exec-events+");
4725
4726 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
4727 q = remote_query_supported_append (q, "vContSupported+");
4728
4729 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
4730 q = remote_query_supported_append (q, "QThreadEvents+");
4731
4732 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
4733 q = remote_query_supported_append (q, "no-resumed+");
4734
4735 /* Keep this one last to work around a gdbserver <= 7.10 bug in
4736 the qSupported:xmlRegisters=i386 handling. */
4737 if (remote_support_xml != NULL
4738 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
4739 q = remote_query_supported_append (q, remote_support_xml);
4740
4741 q = reconcat (q, "qSupported:", q, (char *) NULL);
4742 putpkt (q);
4743
4744 do_cleanups (old_chain);
4745
4746 getpkt (&rs->buf, &rs->buf_size, 0);
4747
4748 /* If an error occured, warn, but do not return - just reset the
4749 buffer to empty and go on to disable features. */
4750 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4751 == PACKET_ERROR)
4752 {
4753 warning (_("Remote failure reply: %s"), rs->buf);
4754 rs->buf[0] = 0;
4755 }
4756 }
4757
4758 memset (seen, 0, sizeof (seen));
4759
4760 next = rs->buf;
4761 while (*next)
4762 {
4763 enum packet_support is_supported;
4764 char *p, *end, *name_end, *value;
4765
4766 /* First separate out this item from the rest of the packet. If
4767 there's another item after this, we overwrite the separator
4768 (terminated strings are much easier to work with). */
4769 p = next;
4770 end = strchr (p, ';');
4771 if (end == NULL)
4772 {
4773 end = p + strlen (p);
4774 next = end;
4775 }
4776 else
4777 {
4778 *end = '\0';
4779 next = end + 1;
4780
4781 if (end == p)
4782 {
4783 warning (_("empty item in \"qSupported\" response"));
4784 continue;
4785 }
4786 }
4787
4788 name_end = strchr (p, '=');
4789 if (name_end)
4790 {
4791 /* This is a name=value entry. */
4792 is_supported = PACKET_ENABLE;
4793 value = name_end + 1;
4794 *name_end = '\0';
4795 }
4796 else
4797 {
4798 value = NULL;
4799 switch (end[-1])
4800 {
4801 case '+':
4802 is_supported = PACKET_ENABLE;
4803 break;
4804
4805 case '-':
4806 is_supported = PACKET_DISABLE;
4807 break;
4808
4809 case '?':
4810 is_supported = PACKET_SUPPORT_UNKNOWN;
4811 break;
4812
4813 default:
4814 warning (_("unrecognized item \"%s\" "
4815 "in \"qSupported\" response"), p);
4816 continue;
4817 }
4818 end[-1] = '\0';
4819 }
4820
4821 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4822 if (strcmp (remote_protocol_features[i].name, p) == 0)
4823 {
4824 const struct protocol_feature *feature;
4825
4826 seen[i] = 1;
4827 feature = &remote_protocol_features[i];
4828 feature->func (feature, is_supported, value);
4829 break;
4830 }
4831 }
4832
4833 /* If we increased the packet size, make sure to increase the global
4834 buffer size also. We delay this until after parsing the entire
4835 qSupported packet, because this is the same buffer we were
4836 parsing. */
4837 if (rs->buf_size < rs->explicit_packet_size)
4838 {
4839 rs->buf_size = rs->explicit_packet_size;
4840 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
4841 }
4842
4843 /* Handle the defaults for unmentioned features. */
4844 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4845 if (!seen[i])
4846 {
4847 const struct protocol_feature *feature;
4848
4849 feature = &remote_protocol_features[i];
4850 feature->func (feature, feature->default_support, NULL);
4851 }
4852 }
4853
4854 /* Serial QUIT handler for the remote serial descriptor.
4855
4856 Defers handling a Ctrl-C until we're done with the current
4857 command/response packet sequence, unless:
4858
4859 - We're setting up the connection. Don't send a remote interrupt
4860 request, as we're not fully synced yet. Quit immediately
4861 instead.
4862
4863 - The target has been resumed in the foreground
4864 (target_terminal::is_ours is false) with a synchronous resume
4865 packet, and we're blocked waiting for the stop reply, thus a
4866 Ctrl-C should be immediately sent to the target.
4867
4868 - We get a second Ctrl-C while still within the same serial read or
4869 write. In that case the serial is seemingly wedged --- offer to
4870 quit/disconnect.
4871
4872 - We see a second Ctrl-C without target response, after having
4873 previously interrupted the target. In that case the target/stub
4874 is probably wedged --- offer to quit/disconnect.
4875 */
4876
4877 static void
4878 remote_serial_quit_handler (void)
4879 {
4880 struct remote_state *rs = get_remote_state ();
4881
4882 if (check_quit_flag ())
4883 {
4884 /* If we're starting up, we're not fully synced yet. Quit
4885 immediately. */
4886 if (rs->starting_up)
4887 quit ();
4888 else if (rs->got_ctrlc_during_io)
4889 {
4890 if (query (_("The target is not responding to GDB commands.\n"
4891 "Stop debugging it? ")))
4892 remote_unpush_and_throw ();
4893 }
4894 /* If ^C has already been sent once, offer to disconnect. */
4895 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
4896 interrupt_query ();
4897 /* All-stop protocol, and blocked waiting for stop reply. Send
4898 an interrupt request. */
4899 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
4900 target_interrupt ();
4901 else
4902 rs->got_ctrlc_during_io = 1;
4903 }
4904 }
4905
4906 /* Remove any of the remote.c targets from target stack. Upper targets depend
4907 on it so remove them first. */
4908
4909 static void
4910 remote_unpush_target (void)
4911 {
4912 pop_all_targets_at_and_above (process_stratum);
4913 }
4914
4915 static void
4916 remote_unpush_and_throw (void)
4917 {
4918 remote_unpush_target ();
4919 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
4920 }
4921
4922 static void
4923 remote_open_1 (const char *name, int from_tty,
4924 struct target_ops *target, int extended_p)
4925 {
4926 struct remote_state *rs = get_remote_state ();
4927
4928 if (name == 0)
4929 error (_("To open a remote debug connection, you need to specify what\n"
4930 "serial device is attached to the remote system\n"
4931 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4932
4933 /* See FIXME above. */
4934 if (!target_async_permitted)
4935 wait_forever_enabled_p = 1;
4936
4937 /* If we're connected to a running target, target_preopen will kill it.
4938 Ask this question first, before target_preopen has a chance to kill
4939 anything. */
4940 if (rs->remote_desc != NULL && !have_inferiors ())
4941 {
4942 if (from_tty
4943 && !query (_("Already connected to a remote target. Disconnect? ")))
4944 error (_("Still connected."));
4945 }
4946
4947 /* Here the possibly existing remote target gets unpushed. */
4948 target_preopen (from_tty);
4949
4950 /* Make sure we send the passed signals list the next time we resume. */
4951 xfree (rs->last_pass_packet);
4952 rs->last_pass_packet = NULL;
4953
4954 /* Make sure we send the program signals list the next time we
4955 resume. */
4956 xfree (rs->last_program_signals_packet);
4957 rs->last_program_signals_packet = NULL;
4958
4959 remote_fileio_reset ();
4960 reopen_exec_file ();
4961 reread_symbols ();
4962
4963 rs->remote_desc = remote_serial_open (name);
4964 if (!rs->remote_desc)
4965 perror_with_name (name);
4966
4967 if (baud_rate != -1)
4968 {
4969 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4970 {
4971 /* The requested speed could not be set. Error out to
4972 top level after closing remote_desc. Take care to
4973 set remote_desc to NULL to avoid closing remote_desc
4974 more than once. */
4975 serial_close (rs->remote_desc);
4976 rs->remote_desc = NULL;
4977 perror_with_name (name);
4978 }
4979 }
4980
4981 serial_setparity (rs->remote_desc, serial_parity);
4982 serial_raw (rs->remote_desc);
4983
4984 /* If there is something sitting in the buffer we might take it as a
4985 response to a command, which would be bad. */
4986 serial_flush_input (rs->remote_desc);
4987
4988 if (from_tty)
4989 {
4990 puts_filtered ("Remote debugging using ");
4991 puts_filtered (name);
4992 puts_filtered ("\n");
4993 }
4994 push_target (target); /* Switch to using remote target now. */
4995
4996 /* Register extra event sources in the event loop. */
4997 remote_async_inferior_event_token
4998 = create_async_event_handler (remote_async_inferior_event_handler,
4999 NULL);
5000 rs->notif_state = remote_notif_state_allocate ();
5001
5002 /* Reset the target state; these things will be queried either by
5003 remote_query_supported or as they are needed. */
5004 reset_all_packet_configs_support ();
5005 rs->cached_wait_status = 0;
5006 rs->explicit_packet_size = 0;
5007 rs->noack_mode = 0;
5008 rs->extended = extended_p;
5009 rs->waiting_for_stop_reply = 0;
5010 rs->ctrlc_pending_p = 0;
5011 rs->got_ctrlc_during_io = 0;
5012
5013 rs->general_thread = not_sent_ptid;
5014 rs->continue_thread = not_sent_ptid;
5015 rs->remote_traceframe_number = -1;
5016
5017 rs->last_resume_exec_dir = EXEC_FORWARD;
5018
5019 /* Probe for ability to use "ThreadInfo" query, as required. */
5020 rs->use_threadinfo_query = 1;
5021 rs->use_threadextra_query = 1;
5022
5023 readahead_cache_invalidate ();
5024
5025 if (target_async_permitted)
5026 {
5027 /* FIXME: cagney/1999-09-23: During the initial connection it is
5028 assumed that the target is already ready and able to respond to
5029 requests. Unfortunately remote_start_remote() eventually calls
5030 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5031 around this. Eventually a mechanism that allows
5032 wait_for_inferior() to expect/get timeouts will be
5033 implemented. */
5034 wait_forever_enabled_p = 0;
5035 }
5036
5037 /* First delete any symbols previously loaded from shared libraries. */
5038 no_shared_libraries (NULL, 0);
5039
5040 /* Start afresh. */
5041 init_thread_list ();
5042
5043 /* Start the remote connection. If error() or QUIT, discard this
5044 target (we'd otherwise be in an inconsistent state) and then
5045 propogate the error on up the exception chain. This ensures that
5046 the caller doesn't stumble along blindly assuming that the
5047 function succeeded. The CLI doesn't have this problem but other
5048 UI's, such as MI do.
5049
5050 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5051 this function should return an error indication letting the
5052 caller restore the previous state. Unfortunately the command
5053 ``target remote'' is directly wired to this function making that
5054 impossible. On a positive note, the CLI side of this problem has
5055 been fixed - the function set_cmd_context() makes it possible for
5056 all the ``target ....'' commands to share a common callback
5057 function. See cli-dump.c. */
5058 {
5059
5060 TRY
5061 {
5062 remote_start_remote (from_tty, target, extended_p);
5063 }
5064 CATCH (ex, RETURN_MASK_ALL)
5065 {
5066 /* Pop the partially set up target - unless something else did
5067 already before throwing the exception. */
5068 if (rs->remote_desc != NULL)
5069 remote_unpush_target ();
5070 if (target_async_permitted)
5071 wait_forever_enabled_p = 1;
5072 throw_exception (ex);
5073 }
5074 END_CATCH
5075 }
5076
5077 remote_btrace_reset ();
5078
5079 if (target_async_permitted)
5080 wait_forever_enabled_p = 1;
5081 }
5082
5083 /* Detach the specified process. */
5084
5085 static void
5086 remote_detach_pid (int pid)
5087 {
5088 struct remote_state *rs = get_remote_state ();
5089
5090 if (remote_multi_process_p (rs))
5091 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5092 else
5093 strcpy (rs->buf, "D");
5094
5095 putpkt (rs->buf);
5096 getpkt (&rs->buf, &rs->buf_size, 0);
5097
5098 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5099 ;
5100 else if (rs->buf[0] == '\0')
5101 error (_("Remote doesn't know how to detach"));
5102 else
5103 error (_("Can't detach process."));
5104 }
5105
5106 /* This detaches a program to which we previously attached, using
5107 inferior_ptid to identify the process. After this is done, GDB
5108 can be used to debug some other program. We better not have left
5109 any breakpoints in the target program or it'll die when it hits
5110 one. */
5111
5112 static void
5113 remote_detach_1 (int from_tty, inferior *inf)
5114 {
5115 int pid = ptid_get_pid (inferior_ptid);
5116 struct remote_state *rs = get_remote_state ();
5117 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5118 int is_fork_parent;
5119
5120 if (!target_has_execution)
5121 error (_("No process to detach from."));
5122
5123 target_announce_detach (from_tty);
5124
5125 /* Tell the remote target to detach. */
5126 remote_detach_pid (pid);
5127
5128 /* Exit only if this is the only active inferior. */
5129 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5130 puts_filtered (_("Ending remote debugging.\n"));
5131
5132 /* Check to see if we are detaching a fork parent. Note that if we
5133 are detaching a fork child, tp == NULL. */
5134 is_fork_parent = (tp != NULL
5135 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5136
5137 /* If doing detach-on-fork, we don't mourn, because that will delete
5138 breakpoints that should be available for the followed inferior. */
5139 if (!is_fork_parent)
5140 target_mourn_inferior (inferior_ptid);
5141 else
5142 {
5143 inferior_ptid = null_ptid;
5144 detach_inferior (pid);
5145 }
5146 }
5147
5148 static void
5149 remote_detach (struct target_ops *ops, inferior *inf, int from_tty)
5150 {
5151 remote_detach_1 (from_tty, inf);
5152 }
5153
5154 static void
5155 extended_remote_detach (struct target_ops *ops, inferior *inf, int from_tty)
5156 {
5157 remote_detach_1 (from_tty, inf);
5158 }
5159
5160 /* Target follow-fork function for remote targets. On entry, and
5161 at return, the current inferior is the fork parent.
5162
5163 Note that although this is currently only used for extended-remote,
5164 it is named remote_follow_fork in anticipation of using it for the
5165 remote target as well. */
5166
5167 static int
5168 remote_follow_fork (struct target_ops *ops, int follow_child,
5169 int detach_fork)
5170 {
5171 struct remote_state *rs = get_remote_state ();
5172 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5173
5174 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5175 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5176 {
5177 /* When following the parent and detaching the child, we detach
5178 the child here. For the case of following the child and
5179 detaching the parent, the detach is done in the target-
5180 independent follow fork code in infrun.c. We can't use
5181 target_detach when detaching an unfollowed child because
5182 the client side doesn't know anything about the child. */
5183 if (detach_fork && !follow_child)
5184 {
5185 /* Detach the fork child. */
5186 ptid_t child_ptid;
5187 pid_t child_pid;
5188
5189 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5190 child_pid = ptid_get_pid (child_ptid);
5191
5192 remote_detach_pid (child_pid);
5193 }
5194 }
5195 return 0;
5196 }
5197
5198 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5199 in the program space of the new inferior. On entry and at return the
5200 current inferior is the exec'ing inferior. INF is the new exec'd
5201 inferior, which may be the same as the exec'ing inferior unless
5202 follow-exec-mode is "new". */
5203
5204 static void
5205 remote_follow_exec (struct target_ops *ops,
5206 struct inferior *inf, char *execd_pathname)
5207 {
5208 /* We know that this is a target file name, so if it has the "target:"
5209 prefix we strip it off before saving it in the program space. */
5210 if (is_target_filename (execd_pathname))
5211 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5212
5213 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5214 }
5215
5216 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5217
5218 static void
5219 remote_disconnect (struct target_ops *target, const char *args, int from_tty)
5220 {
5221 if (args)
5222 error (_("Argument given to \"disconnect\" when remotely debugging."));
5223
5224 /* Make sure we unpush even the extended remote targets. Calling
5225 target_mourn_inferior won't unpush, and remote_mourn won't
5226 unpush if there is more than one inferior left. */
5227 unpush_target (target);
5228 generic_mourn_inferior ();
5229
5230 if (from_tty)
5231 puts_filtered ("Ending remote debugging.\n");
5232 }
5233
5234 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5235 be chatty about it. */
5236
5237 static void
5238 extended_remote_attach (struct target_ops *target, const char *args,
5239 int from_tty)
5240 {
5241 struct remote_state *rs = get_remote_state ();
5242 int pid;
5243 char *wait_status = NULL;
5244
5245 pid = parse_pid_to_attach (args);
5246
5247 /* Remote PID can be freely equal to getpid, do not check it here the same
5248 way as in other targets. */
5249
5250 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5251 error (_("This target does not support attaching to a process"));
5252
5253 if (from_tty)
5254 {
5255 char *exec_file = get_exec_file (0);
5256
5257 if (exec_file)
5258 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5259 target_pid_to_str (pid_to_ptid (pid)));
5260 else
5261 printf_unfiltered (_("Attaching to %s\n"),
5262 target_pid_to_str (pid_to_ptid (pid)));
5263
5264 gdb_flush (gdb_stdout);
5265 }
5266
5267 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5268 putpkt (rs->buf);
5269 getpkt (&rs->buf, &rs->buf_size, 0);
5270
5271 switch (packet_ok (rs->buf,
5272 &remote_protocol_packets[PACKET_vAttach]))
5273 {
5274 case PACKET_OK:
5275 if (!target_is_non_stop_p ())
5276 {
5277 /* Save the reply for later. */
5278 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5279 strcpy (wait_status, rs->buf);
5280 }
5281 else if (strcmp (rs->buf, "OK") != 0)
5282 error (_("Attaching to %s failed with: %s"),
5283 target_pid_to_str (pid_to_ptid (pid)),
5284 rs->buf);
5285 break;
5286 case PACKET_UNKNOWN:
5287 error (_("This target does not support attaching to a process"));
5288 default:
5289 error (_("Attaching to %s failed"),
5290 target_pid_to_str (pid_to_ptid (pid)));
5291 }
5292
5293 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5294
5295 inferior_ptid = pid_to_ptid (pid);
5296
5297 if (target_is_non_stop_p ())
5298 {
5299 struct thread_info *thread;
5300
5301 /* Get list of threads. */
5302 remote_update_thread_list (target);
5303
5304 thread = first_thread_of_process (pid);
5305 if (thread)
5306 inferior_ptid = thread->ptid;
5307 else
5308 inferior_ptid = pid_to_ptid (pid);
5309
5310 /* Invalidate our notion of the remote current thread. */
5311 record_currthread (rs, minus_one_ptid);
5312 }
5313 else
5314 {
5315 /* Now, if we have thread information, update inferior_ptid. */
5316 inferior_ptid = remote_current_thread (inferior_ptid);
5317
5318 /* Add the main thread to the thread list. */
5319 thread_info *thr = add_thread_silent (inferior_ptid);
5320 /* Don't consider the thread stopped until we've processed the
5321 saved stop reply. */
5322 set_executing (thr->ptid, true);
5323 }
5324
5325 /* Next, if the target can specify a description, read it. We do
5326 this before anything involving memory or registers. */
5327 target_find_description ();
5328
5329 if (!target_is_non_stop_p ())
5330 {
5331 /* Use the previously fetched status. */
5332 gdb_assert (wait_status != NULL);
5333
5334 if (target_can_async_p ())
5335 {
5336 struct notif_event *reply
5337 = remote_notif_parse (&notif_client_stop, wait_status);
5338
5339 push_stop_reply ((struct stop_reply *) reply);
5340
5341 target_async (1);
5342 }
5343 else
5344 {
5345 gdb_assert (wait_status != NULL);
5346 strcpy (rs->buf, wait_status);
5347 rs->cached_wait_status = 1;
5348 }
5349 }
5350 else
5351 gdb_assert (wait_status == NULL);
5352 }
5353
5354 /* Implementation of the to_post_attach method. */
5355
5356 static void
5357 extended_remote_post_attach (struct target_ops *ops, int pid)
5358 {
5359 /* Get text, data & bss offsets. */
5360 get_offsets ();
5361
5362 /* In certain cases GDB might not have had the chance to start
5363 symbol lookup up until now. This could happen if the debugged
5364 binary is not using shared libraries, the vsyscall page is not
5365 present (on Linux) and the binary itself hadn't changed since the
5366 debugging process was started. */
5367 if (symfile_objfile != NULL)
5368 remote_check_symbols();
5369 }
5370
5371 \f
5372 /* Check for the availability of vCont. This function should also check
5373 the response. */
5374
5375 static void
5376 remote_vcont_probe (struct remote_state *rs)
5377 {
5378 char *buf;
5379
5380 strcpy (rs->buf, "vCont?");
5381 putpkt (rs->buf);
5382 getpkt (&rs->buf, &rs->buf_size, 0);
5383 buf = rs->buf;
5384
5385 /* Make sure that the features we assume are supported. */
5386 if (startswith (buf, "vCont"))
5387 {
5388 char *p = &buf[5];
5389 int support_c, support_C;
5390
5391 rs->supports_vCont.s = 0;
5392 rs->supports_vCont.S = 0;
5393 support_c = 0;
5394 support_C = 0;
5395 rs->supports_vCont.t = 0;
5396 rs->supports_vCont.r = 0;
5397 while (p && *p == ';')
5398 {
5399 p++;
5400 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5401 rs->supports_vCont.s = 1;
5402 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5403 rs->supports_vCont.S = 1;
5404 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5405 support_c = 1;
5406 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5407 support_C = 1;
5408 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5409 rs->supports_vCont.t = 1;
5410 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5411 rs->supports_vCont.r = 1;
5412
5413 p = strchr (p, ';');
5414 }
5415
5416 /* If c, and C are not all supported, we can't use vCont. Clearing
5417 BUF will make packet_ok disable the packet. */
5418 if (!support_c || !support_C)
5419 buf[0] = 0;
5420 }
5421
5422 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5423 }
5424
5425 /* Helper function for building "vCont" resumptions. Write a
5426 resumption to P. ENDP points to one-passed-the-end of the buffer
5427 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5428 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5429 resumed thread should be single-stepped and/or signalled. If PTID
5430 equals minus_one_ptid, then all threads are resumed; if PTID
5431 represents a process, then all threads of the process are resumed;
5432 the thread to be stepped and/or signalled is given in the global
5433 INFERIOR_PTID. */
5434
5435 static char *
5436 append_resumption (char *p, char *endp,
5437 ptid_t ptid, int step, enum gdb_signal siggnal)
5438 {
5439 struct remote_state *rs = get_remote_state ();
5440
5441 if (step && siggnal != GDB_SIGNAL_0)
5442 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5443 else if (step
5444 /* GDB is willing to range step. */
5445 && use_range_stepping
5446 /* Target supports range stepping. */
5447 && rs->supports_vCont.r
5448 /* We don't currently support range stepping multiple
5449 threads with a wildcard (though the protocol allows it,
5450 so stubs shouldn't make an active effort to forbid
5451 it). */
5452 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5453 {
5454 struct thread_info *tp;
5455
5456 if (ptid_equal (ptid, minus_one_ptid))
5457 {
5458 /* If we don't know about the target thread's tid, then
5459 we're resuming magic_null_ptid (see caller). */
5460 tp = find_thread_ptid (magic_null_ptid);
5461 }
5462 else
5463 tp = find_thread_ptid (ptid);
5464 gdb_assert (tp != NULL);
5465
5466 if (tp->control.may_range_step)
5467 {
5468 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5469
5470 p += xsnprintf (p, endp - p, ";r%s,%s",
5471 phex_nz (tp->control.step_range_start,
5472 addr_size),
5473 phex_nz (tp->control.step_range_end,
5474 addr_size));
5475 }
5476 else
5477 p += xsnprintf (p, endp - p, ";s");
5478 }
5479 else if (step)
5480 p += xsnprintf (p, endp - p, ";s");
5481 else if (siggnal != GDB_SIGNAL_0)
5482 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5483 else
5484 p += xsnprintf (p, endp - p, ";c");
5485
5486 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5487 {
5488 ptid_t nptid;
5489
5490 /* All (-1) threads of process. */
5491 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5492
5493 p += xsnprintf (p, endp - p, ":");
5494 p = write_ptid (p, endp, nptid);
5495 }
5496 else if (!ptid_equal (ptid, minus_one_ptid))
5497 {
5498 p += xsnprintf (p, endp - p, ":");
5499 p = write_ptid (p, endp, ptid);
5500 }
5501
5502 return p;
5503 }
5504
5505 /* Clear the thread's private info on resume. */
5506
5507 static void
5508 resume_clear_thread_private_info (struct thread_info *thread)
5509 {
5510 if (thread->priv != NULL)
5511 {
5512 remote_thread_info *priv = get_remote_thread_info (thread);
5513
5514 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5515 priv->watch_data_address = 0;
5516 }
5517 }
5518
5519 /* Append a vCont continue-with-signal action for threads that have a
5520 non-zero stop signal. */
5521
5522 static char *
5523 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5524 {
5525 struct thread_info *thread;
5526
5527 ALL_NON_EXITED_THREADS (thread)
5528 if (ptid_match (thread->ptid, ptid)
5529 && !ptid_equal (inferior_ptid, thread->ptid)
5530 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5531 {
5532 p = append_resumption (p, endp, thread->ptid,
5533 0, thread->suspend.stop_signal);
5534 thread->suspend.stop_signal = GDB_SIGNAL_0;
5535 resume_clear_thread_private_info (thread);
5536 }
5537
5538 return p;
5539 }
5540
5541 /* Set the target running, using the packets that use Hc
5542 (c/s/C/S). */
5543
5544 static void
5545 remote_resume_with_hc (struct target_ops *ops,
5546 ptid_t ptid, int step, enum gdb_signal siggnal)
5547 {
5548 struct remote_state *rs = get_remote_state ();
5549 struct thread_info *thread;
5550 char *buf;
5551
5552 rs->last_sent_signal = siggnal;
5553 rs->last_sent_step = step;
5554
5555 /* The c/s/C/S resume packets use Hc, so set the continue
5556 thread. */
5557 if (ptid_equal (ptid, minus_one_ptid))
5558 set_continue_thread (any_thread_ptid);
5559 else
5560 set_continue_thread (ptid);
5561
5562 ALL_NON_EXITED_THREADS (thread)
5563 resume_clear_thread_private_info (thread);
5564
5565 buf = rs->buf;
5566 if (execution_direction == EXEC_REVERSE)
5567 {
5568 /* We don't pass signals to the target in reverse exec mode. */
5569 if (info_verbose && siggnal != GDB_SIGNAL_0)
5570 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5571 siggnal);
5572
5573 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5574 error (_("Remote reverse-step not supported."));
5575 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5576 error (_("Remote reverse-continue not supported."));
5577
5578 strcpy (buf, step ? "bs" : "bc");
5579 }
5580 else if (siggnal != GDB_SIGNAL_0)
5581 {
5582 buf[0] = step ? 'S' : 'C';
5583 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5584 buf[2] = tohex (((int) siggnal) & 0xf);
5585 buf[3] = '\0';
5586 }
5587 else
5588 strcpy (buf, step ? "s" : "c");
5589
5590 putpkt (buf);
5591 }
5592
5593 /* Resume the remote inferior by using a "vCont" packet. The thread
5594 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5595 resumed thread should be single-stepped and/or signalled. If PTID
5596 equals minus_one_ptid, then all threads are resumed; the thread to
5597 be stepped and/or signalled is given in the global INFERIOR_PTID.
5598 This function returns non-zero iff it resumes the inferior.
5599
5600 This function issues a strict subset of all possible vCont commands
5601 at the moment. */
5602
5603 static int
5604 remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5605 {
5606 struct remote_state *rs = get_remote_state ();
5607 char *p;
5608 char *endp;
5609
5610 /* No reverse execution actions defined for vCont. */
5611 if (execution_direction == EXEC_REVERSE)
5612 return 0;
5613
5614 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5615 remote_vcont_probe (rs);
5616
5617 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5618 return 0;
5619
5620 p = rs->buf;
5621 endp = rs->buf + get_remote_packet_size ();
5622
5623 /* If we could generate a wider range of packets, we'd have to worry
5624 about overflowing BUF. Should there be a generic
5625 "multi-part-packet" packet? */
5626
5627 p += xsnprintf (p, endp - p, "vCont");
5628
5629 if (ptid_equal (ptid, magic_null_ptid))
5630 {
5631 /* MAGIC_NULL_PTID means that we don't have any active threads,
5632 so we don't have any TID numbers the inferior will
5633 understand. Make sure to only send forms that do not specify
5634 a TID. */
5635 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5636 }
5637 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5638 {
5639 /* Resume all threads (of all processes, or of a single
5640 process), with preference for INFERIOR_PTID. This assumes
5641 inferior_ptid belongs to the set of all threads we are about
5642 to resume. */
5643 if (step || siggnal != GDB_SIGNAL_0)
5644 {
5645 /* Step inferior_ptid, with or without signal. */
5646 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5647 }
5648
5649 /* Also pass down any pending signaled resumption for other
5650 threads not the current. */
5651 p = append_pending_thread_resumptions (p, endp, ptid);
5652
5653 /* And continue others without a signal. */
5654 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5655 }
5656 else
5657 {
5658 /* Scheduler locking; resume only PTID. */
5659 append_resumption (p, endp, ptid, step, siggnal);
5660 }
5661
5662 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5663 putpkt (rs->buf);
5664
5665 if (target_is_non_stop_p ())
5666 {
5667 /* In non-stop, the stub replies to vCont with "OK". The stop
5668 reply will be reported asynchronously by means of a `%Stop'
5669 notification. */
5670 getpkt (&rs->buf, &rs->buf_size, 0);
5671 if (strcmp (rs->buf, "OK") != 0)
5672 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5673 }
5674
5675 return 1;
5676 }
5677
5678 /* Tell the remote machine to resume. */
5679
5680 static void
5681 remote_resume (struct target_ops *ops,
5682 ptid_t ptid, int step, enum gdb_signal siggnal)
5683 {
5684 struct remote_state *rs = get_remote_state ();
5685
5686 /* When connected in non-stop mode, the core resumes threads
5687 individually. Resuming remote threads directly in target_resume
5688 would thus result in sending one packet per thread. Instead, to
5689 minimize roundtrip latency, here we just store the resume
5690 request; the actual remote resumption will be done in
5691 target_commit_resume / remote_commit_resume, where we'll be able
5692 to do vCont action coalescing. */
5693 if (target_is_non_stop_p () && execution_direction != EXEC_REVERSE)
5694 {
5695 remote_thread_info *remote_thr;
5696
5697 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
5698 remote_thr = get_remote_thread_info (inferior_ptid);
5699 else
5700 remote_thr = get_remote_thread_info (ptid);
5701
5702 remote_thr->last_resume_step = step;
5703 remote_thr->last_resume_sig = siggnal;
5704 return;
5705 }
5706
5707 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
5708 (explained in remote-notif.c:handle_notification) so
5709 remote_notif_process is not called. We need find a place where
5710 it is safe to start a 'vNotif' sequence. It is good to do it
5711 before resuming inferior, because inferior was stopped and no RSP
5712 traffic at that moment. */
5713 if (!target_is_non_stop_p ())
5714 remote_notif_process (rs->notif_state, &notif_client_stop);
5715
5716 rs->last_resume_exec_dir = execution_direction;
5717
5718 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
5719 if (!remote_resume_with_vcont (ptid, step, siggnal))
5720 remote_resume_with_hc (ops, ptid, step, siggnal);
5721
5722 /* We are about to start executing the inferior, let's register it
5723 with the event loop. NOTE: this is the one place where all the
5724 execution commands end up. We could alternatively do this in each
5725 of the execution commands in infcmd.c. */
5726 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5727 into infcmd.c in order to allow inferior function calls to work
5728 NOT asynchronously. */
5729 if (target_can_async_p ())
5730 target_async (1);
5731
5732 /* We've just told the target to resume. The remote server will
5733 wait for the inferior to stop, and then send a stop reply. In
5734 the mean time, we can't start another command/query ourselves
5735 because the stub wouldn't be ready to process it. This applies
5736 only to the base all-stop protocol, however. In non-stop (which
5737 only supports vCont), the stub replies with an "OK", and is
5738 immediate able to process further serial input. */
5739 if (!target_is_non_stop_p ())
5740 rs->waiting_for_stop_reply = 1;
5741 }
5742
5743 static void check_pending_events_prevent_wildcard_vcont
5744 (int *may_global_wildcard_vcont);
5745 static int is_pending_fork_parent_thread (struct thread_info *thread);
5746
5747 /* Private per-inferior info for target remote processes. */
5748
5749 struct remote_inferior : public private_inferior
5750 {
5751 /* Whether we can send a wildcard vCont for this process. */
5752 bool may_wildcard_vcont = true;
5753 };
5754
5755 /* Get the remote private inferior data associated to INF. */
5756
5757 static remote_inferior *
5758 get_remote_inferior (inferior *inf)
5759 {
5760 if (inf->priv == NULL)
5761 inf->priv.reset (new remote_inferior);
5762
5763 return static_cast<remote_inferior *> (inf->priv.get ());
5764 }
5765
5766 /* Structure used to track the construction of a vCont packet in the
5767 outgoing packet buffer. This is used to send multiple vCont
5768 packets if we have more actions than would fit a single packet. */
5769
5770 struct vcont_builder
5771 {
5772 /* Pointer to the first action. P points here if no action has been
5773 appended yet. */
5774 char *first_action;
5775
5776 /* Where the next action will be appended. */
5777 char *p;
5778
5779 /* The end of the buffer. Must never write past this. */
5780 char *endp;
5781 };
5782
5783 /* Prepare the outgoing buffer for a new vCont packet. */
5784
5785 static void
5786 vcont_builder_restart (struct vcont_builder *builder)
5787 {
5788 struct remote_state *rs = get_remote_state ();
5789
5790 builder->p = rs->buf;
5791 builder->endp = rs->buf + get_remote_packet_size ();
5792 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
5793 builder->first_action = builder->p;
5794 }
5795
5796 /* If the vCont packet being built has any action, send it to the
5797 remote end. */
5798
5799 static void
5800 vcont_builder_flush (struct vcont_builder *builder)
5801 {
5802 struct remote_state *rs;
5803
5804 if (builder->p == builder->first_action)
5805 return;
5806
5807 rs = get_remote_state ();
5808 putpkt (rs->buf);
5809 getpkt (&rs->buf, &rs->buf_size, 0);
5810 if (strcmp (rs->buf, "OK") != 0)
5811 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5812 }
5813
5814 /* The largest action is range-stepping, with its two addresses. This
5815 is more than sufficient. If a new, bigger action is created, it'll
5816 quickly trigger a failed assertion in append_resumption (and we'll
5817 just bump this). */
5818 #define MAX_ACTION_SIZE 200
5819
5820 /* Append a new vCont action in the outgoing packet being built. If
5821 the action doesn't fit the packet along with previous actions, push
5822 what we've got so far to the remote end and start over a new vCont
5823 packet (with the new action). */
5824
5825 static void
5826 vcont_builder_push_action (struct vcont_builder *builder,
5827 ptid_t ptid, int step, enum gdb_signal siggnal)
5828 {
5829 char buf[MAX_ACTION_SIZE + 1];
5830 char *endp;
5831 size_t rsize;
5832
5833 endp = append_resumption (buf, buf + sizeof (buf),
5834 ptid, step, siggnal);
5835
5836 /* Check whether this new action would fit in the vCont packet along
5837 with previous actions. If not, send what we've got so far and
5838 start a new vCont packet. */
5839 rsize = endp - buf;
5840 if (rsize > builder->endp - builder->p)
5841 {
5842 vcont_builder_flush (builder);
5843 vcont_builder_restart (builder);
5844
5845 /* Should now fit. */
5846 gdb_assert (rsize <= builder->endp - builder->p);
5847 }
5848
5849 memcpy (builder->p, buf, rsize);
5850 builder->p += rsize;
5851 *builder->p = '\0';
5852 }
5853
5854 /* to_commit_resume implementation. */
5855
5856 static void
5857 remote_commit_resume (struct target_ops *ops)
5858 {
5859 struct inferior *inf;
5860 struct thread_info *tp;
5861 int any_process_wildcard;
5862 int may_global_wildcard_vcont;
5863 struct vcont_builder vcont_builder;
5864
5865 /* If connected in all-stop mode, we'd send the remote resume
5866 request directly from remote_resume. Likewise if
5867 reverse-debugging, as there are no defined vCont actions for
5868 reverse execution. */
5869 if (!target_is_non_stop_p () || execution_direction == EXEC_REVERSE)
5870 return;
5871
5872 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
5873 instead of resuming all threads of each process individually.
5874 However, if any thread of a process must remain halted, we can't
5875 send wildcard resumes and must send one action per thread.
5876
5877 Care must be taken to not resume threads/processes the server
5878 side already told us are stopped, but the core doesn't know about
5879 yet, because the events are still in the vStopped notification
5880 queue. For example:
5881
5882 #1 => vCont s:p1.1;c
5883 #2 <= OK
5884 #3 <= %Stopped T05 p1.1
5885 #4 => vStopped
5886 #5 <= T05 p1.2
5887 #6 => vStopped
5888 #7 <= OK
5889 #8 (infrun handles the stop for p1.1 and continues stepping)
5890 #9 => vCont s:p1.1;c
5891
5892 The last vCont above would resume thread p1.2 by mistake, because
5893 the server has no idea that the event for p1.2 had not been
5894 handled yet.
5895
5896 The server side must similarly ignore resume actions for the
5897 thread that has a pending %Stopped notification (and any other
5898 threads with events pending), until GDB acks the notification
5899 with vStopped. Otherwise, e.g., the following case is
5900 mishandled:
5901
5902 #1 => g (or any other packet)
5903 #2 <= [registers]
5904 #3 <= %Stopped T05 p1.2
5905 #4 => vCont s:p1.1;c
5906 #5 <= OK
5907
5908 Above, the server must not resume thread p1.2. GDB can't know
5909 that p1.2 stopped until it acks the %Stopped notification, and
5910 since from GDB's perspective all threads should be running, it
5911 sends a "c" action.
5912
5913 Finally, special care must also be given to handling fork/vfork
5914 events. A (v)fork event actually tells us that two processes
5915 stopped -- the parent and the child. Until we follow the fork,
5916 we must not resume the child. Therefore, if we have a pending
5917 fork follow, we must not send a global wildcard resume action
5918 (vCont;c). We can still send process-wide wildcards though. */
5919
5920 /* Start by assuming a global wildcard (vCont;c) is possible. */
5921 may_global_wildcard_vcont = 1;
5922
5923 /* And assume every process is individually wildcard-able too. */
5924 ALL_NON_EXITED_INFERIORS (inf)
5925 {
5926 remote_inferior *priv = get_remote_inferior (inf);
5927
5928 priv->may_wildcard_vcont = true;
5929 }
5930
5931 /* Check for any pending events (not reported or processed yet) and
5932 disable process and global wildcard resumes appropriately. */
5933 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
5934
5935 ALL_NON_EXITED_THREADS (tp)
5936 {
5937 /* If a thread of a process is not meant to be resumed, then we
5938 can't wildcard that process. */
5939 if (!tp->executing)
5940 {
5941 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
5942
5943 /* And if we can't wildcard a process, we can't wildcard
5944 everything either. */
5945 may_global_wildcard_vcont = 0;
5946 continue;
5947 }
5948
5949 /* If a thread is the parent of an unfollowed fork, then we
5950 can't do a global wildcard, as that would resume the fork
5951 child. */
5952 if (is_pending_fork_parent_thread (tp))
5953 may_global_wildcard_vcont = 0;
5954 }
5955
5956 /* Now let's build the vCont packet(s). Actions must be appended
5957 from narrower to wider scopes (thread -> process -> global). If
5958 we end up with too many actions for a single packet vcont_builder
5959 flushes the current vCont packet to the remote side and starts a
5960 new one. */
5961 vcont_builder_restart (&vcont_builder);
5962
5963 /* Threads first. */
5964 ALL_NON_EXITED_THREADS (tp)
5965 {
5966 remote_thread_info *remote_thr = get_remote_thread_info (tp);
5967
5968 if (!tp->executing || remote_thr->vcont_resumed)
5969 continue;
5970
5971 gdb_assert (!thread_is_in_step_over_chain (tp));
5972
5973 if (!remote_thr->last_resume_step
5974 && remote_thr->last_resume_sig == GDB_SIGNAL_0
5975 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
5976 {
5977 /* We'll send a wildcard resume instead. */
5978 remote_thr->vcont_resumed = 1;
5979 continue;
5980 }
5981
5982 vcont_builder_push_action (&vcont_builder, tp->ptid,
5983 remote_thr->last_resume_step,
5984 remote_thr->last_resume_sig);
5985 remote_thr->vcont_resumed = 1;
5986 }
5987
5988 /* Now check whether we can send any process-wide wildcard. This is
5989 to avoid sending a global wildcard in the case nothing is
5990 supposed to be resumed. */
5991 any_process_wildcard = 0;
5992
5993 ALL_NON_EXITED_INFERIORS (inf)
5994 {
5995 if (get_remote_inferior (inf)->may_wildcard_vcont)
5996 {
5997 any_process_wildcard = 1;
5998 break;
5999 }
6000 }
6001
6002 if (any_process_wildcard)
6003 {
6004 /* If all processes are wildcard-able, then send a single "c"
6005 action, otherwise, send an "all (-1) threads of process"
6006 continue action for each running process, if any. */
6007 if (may_global_wildcard_vcont)
6008 {
6009 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6010 0, GDB_SIGNAL_0);
6011 }
6012 else
6013 {
6014 ALL_NON_EXITED_INFERIORS (inf)
6015 {
6016 if (get_remote_inferior (inf)->may_wildcard_vcont)
6017 {
6018 vcont_builder_push_action (&vcont_builder,
6019 pid_to_ptid (inf->pid),
6020 0, GDB_SIGNAL_0);
6021 }
6022 }
6023 }
6024 }
6025
6026 vcont_builder_flush (&vcont_builder);
6027 }
6028
6029 \f
6030
6031 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6032 thread, all threads of a remote process, or all threads of all
6033 processes. */
6034
6035 static void
6036 remote_stop_ns (ptid_t ptid)
6037 {
6038 struct remote_state *rs = get_remote_state ();
6039 char *p = rs->buf;
6040 char *endp = rs->buf + get_remote_packet_size ();
6041
6042 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6043 remote_vcont_probe (rs);
6044
6045 if (!rs->supports_vCont.t)
6046 error (_("Remote server does not support stopping threads"));
6047
6048 if (ptid_equal (ptid, minus_one_ptid)
6049 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6050 p += xsnprintf (p, endp - p, "vCont;t");
6051 else
6052 {
6053 ptid_t nptid;
6054
6055 p += xsnprintf (p, endp - p, "vCont;t:");
6056
6057 if (ptid_is_pid (ptid))
6058 /* All (-1) threads of process. */
6059 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6060 else
6061 {
6062 /* Small optimization: if we already have a stop reply for
6063 this thread, no use in telling the stub we want this
6064 stopped. */
6065 if (peek_stop_reply (ptid))
6066 return;
6067
6068 nptid = ptid;
6069 }
6070
6071 write_ptid (p, endp, nptid);
6072 }
6073
6074 /* In non-stop, we get an immediate OK reply. The stop reply will
6075 come in asynchronously by notification. */
6076 putpkt (rs->buf);
6077 getpkt (&rs->buf, &rs->buf_size, 0);
6078 if (strcmp (rs->buf, "OK") != 0)
6079 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6080 }
6081
6082 /* All-stop version of target_interrupt. Sends a break or a ^C to
6083 interrupt the remote target. It is undefined which thread of which
6084 process reports the interrupt. */
6085
6086 static void
6087 remote_interrupt_as (void)
6088 {
6089 struct remote_state *rs = get_remote_state ();
6090
6091 rs->ctrlc_pending_p = 1;
6092
6093 /* If the inferior is stopped already, but the core didn't know
6094 about it yet, just ignore the request. The cached wait status
6095 will be collected in remote_wait. */
6096 if (rs->cached_wait_status)
6097 return;
6098
6099 /* Send interrupt_sequence to remote target. */
6100 send_interrupt_sequence ();
6101 }
6102
6103 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6104 the remote target. It is undefined which thread of which process
6105 reports the interrupt. Throws an error if the packet is not
6106 supported by the server. */
6107
6108 static void
6109 remote_interrupt_ns (void)
6110 {
6111 struct remote_state *rs = get_remote_state ();
6112 char *p = rs->buf;
6113 char *endp = rs->buf + get_remote_packet_size ();
6114
6115 xsnprintf (p, endp - p, "vCtrlC");
6116
6117 /* In non-stop, we get an immediate OK reply. The stop reply will
6118 come in asynchronously by notification. */
6119 putpkt (rs->buf);
6120 getpkt (&rs->buf, &rs->buf_size, 0);
6121
6122 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6123 {
6124 case PACKET_OK:
6125 break;
6126 case PACKET_UNKNOWN:
6127 error (_("No support for interrupting the remote target."));
6128 case PACKET_ERROR:
6129 error (_("Interrupting target failed: %s"), rs->buf);
6130 }
6131 }
6132
6133 /* Implement the to_stop function for the remote targets. */
6134
6135 static void
6136 remote_stop (struct target_ops *self, ptid_t ptid)
6137 {
6138 if (remote_debug)
6139 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6140
6141 if (target_is_non_stop_p ())
6142 remote_stop_ns (ptid);
6143 else
6144 {
6145 /* We don't currently have a way to transparently pause the
6146 remote target in all-stop mode. Interrupt it instead. */
6147 remote_interrupt_as ();
6148 }
6149 }
6150
6151 /* Implement the to_interrupt function for the remote targets. */
6152
6153 static void
6154 remote_interrupt (struct target_ops *self)
6155 {
6156 if (remote_debug)
6157 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6158
6159 if (target_is_non_stop_p ())
6160 remote_interrupt_ns ();
6161 else
6162 remote_interrupt_as ();
6163 }
6164
6165 /* Implement the to_pass_ctrlc function for the remote targets. */
6166
6167 static void
6168 remote_pass_ctrlc (struct target_ops *self)
6169 {
6170 struct remote_state *rs = get_remote_state ();
6171
6172 if (remote_debug)
6173 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6174
6175 /* If we're starting up, we're not fully synced yet. Quit
6176 immediately. */
6177 if (rs->starting_up)
6178 quit ();
6179 /* If ^C has already been sent once, offer to disconnect. */
6180 else if (rs->ctrlc_pending_p)
6181 interrupt_query ();
6182 else
6183 target_interrupt ();
6184 }
6185
6186 /* Ask the user what to do when an interrupt is received. */
6187
6188 static void
6189 interrupt_query (void)
6190 {
6191 struct remote_state *rs = get_remote_state ();
6192
6193 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6194 {
6195 if (query (_("The target is not responding to interrupt requests.\n"
6196 "Stop debugging it? ")))
6197 {
6198 remote_unpush_target ();
6199 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6200 }
6201 }
6202 else
6203 {
6204 if (query (_("Interrupted while waiting for the program.\n"
6205 "Give up waiting? ")))
6206 quit ();
6207 }
6208 }
6209
6210 /* Enable/disable target terminal ownership. Most targets can use
6211 terminal groups to control terminal ownership. Remote targets are
6212 different in that explicit transfer of ownership to/from GDB/target
6213 is required. */
6214
6215 static void
6216 remote_terminal_inferior (struct target_ops *self)
6217 {
6218 /* NOTE: At this point we could also register our selves as the
6219 recipient of all input. Any characters typed could then be
6220 passed on down to the target. */
6221 }
6222
6223 static void
6224 remote_terminal_ours (struct target_ops *self)
6225 {
6226 }
6227
6228 static void
6229 remote_console_output (char *msg)
6230 {
6231 char *p;
6232
6233 for (p = msg; p[0] && p[1]; p += 2)
6234 {
6235 char tb[2];
6236 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6237
6238 tb[0] = c;
6239 tb[1] = 0;
6240 fputs_unfiltered (tb, gdb_stdtarg);
6241 }
6242 gdb_flush (gdb_stdtarg);
6243 }
6244
6245 DEF_VEC_O(cached_reg_t);
6246
6247 typedef struct stop_reply
6248 {
6249 struct notif_event base;
6250
6251 /* The identifier of the thread about this event */
6252 ptid_t ptid;
6253
6254 /* The remote state this event is associated with. When the remote
6255 connection, represented by a remote_state object, is closed,
6256 all the associated stop_reply events should be released. */
6257 struct remote_state *rs;
6258
6259 struct target_waitstatus ws;
6260
6261 /* The architecture associated with the expedited registers. */
6262 gdbarch *arch;
6263
6264 /* Expedited registers. This makes remote debugging a bit more
6265 efficient for those targets that provide critical registers as
6266 part of their normal status mechanism (as another roundtrip to
6267 fetch them is avoided). */
6268 VEC(cached_reg_t) *regcache;
6269
6270 enum target_stop_reason stop_reason;
6271
6272 CORE_ADDR watch_data_address;
6273
6274 int core;
6275 } *stop_reply_p;
6276
6277 DECLARE_QUEUE_P (stop_reply_p);
6278 DEFINE_QUEUE_P (stop_reply_p);
6279 /* The list of already fetched and acknowledged stop events. This
6280 queue is used for notification Stop, and other notifications
6281 don't need queue for their events, because the notification events
6282 of Stop can't be consumed immediately, so that events should be
6283 queued first, and be consumed by remote_wait_{ns,as} one per
6284 time. Other notifications can consume their events immediately,
6285 so queue is not needed for them. */
6286 static QUEUE (stop_reply_p) *stop_reply_queue;
6287
6288 static void
6289 stop_reply_xfree (struct stop_reply *r)
6290 {
6291 notif_event_xfree ((struct notif_event *) r);
6292 }
6293
6294 /* Return the length of the stop reply queue. */
6295
6296 static int
6297 stop_reply_queue_length (void)
6298 {
6299 return QUEUE_length (stop_reply_p, stop_reply_queue);
6300 }
6301
6302 static void
6303 remote_notif_stop_parse (struct notif_client *self, char *buf,
6304 struct notif_event *event)
6305 {
6306 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6307 }
6308
6309 static void
6310 remote_notif_stop_ack (struct notif_client *self, char *buf,
6311 struct notif_event *event)
6312 {
6313 struct stop_reply *stop_reply = (struct stop_reply *) event;
6314
6315 /* acknowledge */
6316 putpkt (self->ack_command);
6317
6318 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6319 /* We got an unknown stop reply. */
6320 error (_("Unknown stop reply"));
6321
6322 push_stop_reply (stop_reply);
6323 }
6324
6325 static int
6326 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6327 {
6328 /* We can't get pending events in remote_notif_process for
6329 notification stop, and we have to do this in remote_wait_ns
6330 instead. If we fetch all queued events from stub, remote stub
6331 may exit and we have no chance to process them back in
6332 remote_wait_ns. */
6333 mark_async_event_handler (remote_async_inferior_event_token);
6334 return 0;
6335 }
6336
6337 static void
6338 stop_reply_dtr (struct notif_event *event)
6339 {
6340 struct stop_reply *r = (struct stop_reply *) event;
6341 cached_reg_t *reg;
6342 int ix;
6343
6344 for (ix = 0;
6345 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6346 ix++)
6347 xfree (reg->data);
6348
6349 VEC_free (cached_reg_t, r->regcache);
6350 }
6351
6352 static struct notif_event *
6353 remote_notif_stop_alloc_reply (void)
6354 {
6355 /* We cast to a pointer to the "base class". */
6356 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6357
6358 r->dtr = stop_reply_dtr;
6359
6360 return r;
6361 }
6362
6363 /* A client of notification Stop. */
6364
6365 struct notif_client notif_client_stop =
6366 {
6367 "Stop",
6368 "vStopped",
6369 remote_notif_stop_parse,
6370 remote_notif_stop_ack,
6371 remote_notif_stop_can_get_pending_events,
6372 remote_notif_stop_alloc_reply,
6373 REMOTE_NOTIF_STOP,
6374 };
6375
6376 /* A parameter to pass data in and out. */
6377
6378 struct queue_iter_param
6379 {
6380 void *input;
6381 struct stop_reply *output;
6382 };
6383
6384 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6385 the pid of the process that owns the threads we want to check, or
6386 -1 if we want to check all threads. */
6387
6388 static int
6389 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6390 ptid_t thread_ptid)
6391 {
6392 if (ws->kind == TARGET_WAITKIND_FORKED
6393 || ws->kind == TARGET_WAITKIND_VFORKED)
6394 {
6395 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6396 return 1;
6397 }
6398
6399 return 0;
6400 }
6401
6402 /* Return the thread's pending status used to determine whether the
6403 thread is a fork parent stopped at a fork event. */
6404
6405 static struct target_waitstatus *
6406 thread_pending_fork_status (struct thread_info *thread)
6407 {
6408 if (thread->suspend.waitstatus_pending_p)
6409 return &thread->suspend.waitstatus;
6410 else
6411 return &thread->pending_follow;
6412 }
6413
6414 /* Determine if THREAD is a pending fork parent thread. */
6415
6416 static int
6417 is_pending_fork_parent_thread (struct thread_info *thread)
6418 {
6419 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6420 int pid = -1;
6421
6422 return is_pending_fork_parent (ws, pid, thread->ptid);
6423 }
6424
6425 /* Check whether EVENT is a fork event, and if it is, remove the
6426 fork child from the context list passed in DATA. */
6427
6428 static int
6429 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6430 QUEUE_ITER (stop_reply_p) *iter,
6431 stop_reply_p event,
6432 void *data)
6433 {
6434 struct queue_iter_param *param = (struct queue_iter_param *) data;
6435 struct threads_listing_context *context
6436 = (struct threads_listing_context *) param->input;
6437
6438 if (event->ws.kind == TARGET_WAITKIND_FORKED
6439 || event->ws.kind == TARGET_WAITKIND_VFORKED
6440 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6441 context->remove_thread (event->ws.value.related_pid);
6442
6443 return 1;
6444 }
6445
6446 /* If CONTEXT contains any fork child threads that have not been
6447 reported yet, remove them from the CONTEXT list. If such a
6448 thread exists it is because we are stopped at a fork catchpoint
6449 and have not yet called follow_fork, which will set up the
6450 host-side data structures for the new process. */
6451
6452 static void
6453 remove_new_fork_children (struct threads_listing_context *context)
6454 {
6455 struct thread_info * thread;
6456 int pid = -1;
6457 struct notif_client *notif = &notif_client_stop;
6458 struct queue_iter_param param;
6459
6460 /* For any threads stopped at a fork event, remove the corresponding
6461 fork child threads from the CONTEXT list. */
6462 ALL_NON_EXITED_THREADS (thread)
6463 {
6464 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6465
6466 if (is_pending_fork_parent (ws, pid, thread->ptid))
6467 context->remove_thread (ws->value.related_pid);
6468 }
6469
6470 /* Check for any pending fork events (not reported or processed yet)
6471 in process PID and remove those fork child threads from the
6472 CONTEXT list as well. */
6473 remote_notif_get_pending_events (notif);
6474 param.input = context;
6475 param.output = NULL;
6476 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6477 remove_child_of_pending_fork, &param);
6478 }
6479
6480 /* Check whether EVENT would prevent a global or process wildcard
6481 vCont action. */
6482
6483 static int
6484 check_pending_event_prevents_wildcard_vcont_callback
6485 (QUEUE (stop_reply_p) *q,
6486 QUEUE_ITER (stop_reply_p) *iter,
6487 stop_reply_p event,
6488 void *data)
6489 {
6490 struct inferior *inf;
6491 int *may_global_wildcard_vcont = (int *) data;
6492
6493 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6494 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6495 return 1;
6496
6497 if (event->ws.kind == TARGET_WAITKIND_FORKED
6498 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6499 *may_global_wildcard_vcont = 0;
6500
6501 inf = find_inferior_ptid (event->ptid);
6502
6503 /* This may be the first time we heard about this process.
6504 Regardless, we must not do a global wildcard resume, otherwise
6505 we'd resume this process too. */
6506 *may_global_wildcard_vcont = 0;
6507 if (inf != NULL)
6508 get_remote_inferior (inf)->may_wildcard_vcont = false;
6509
6510 return 1;
6511 }
6512
6513 /* Check whether any event pending in the vStopped queue would prevent
6514 a global or process wildcard vCont action. Clear
6515 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6516 and clear the event inferior's may_wildcard_vcont flag if we can't
6517 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6518
6519 static void
6520 check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6521 {
6522 struct notif_client *notif = &notif_client_stop;
6523
6524 remote_notif_get_pending_events (notif);
6525 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6526 check_pending_event_prevents_wildcard_vcont_callback,
6527 may_global_wildcard);
6528 }
6529
6530 /* Remove stop replies in the queue if its pid is equal to the given
6531 inferior's pid. */
6532
6533 static int
6534 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6535 QUEUE_ITER (stop_reply_p) *iter,
6536 stop_reply_p event,
6537 void *data)
6538 {
6539 struct queue_iter_param *param = (struct queue_iter_param *) data;
6540 struct inferior *inf = (struct inferior *) param->input;
6541
6542 if (ptid_get_pid (event->ptid) == inf->pid)
6543 {
6544 stop_reply_xfree (event);
6545 QUEUE_remove_elem (stop_reply_p, q, iter);
6546 }
6547
6548 return 1;
6549 }
6550
6551 /* Discard all pending stop replies of inferior INF. */
6552
6553 static void
6554 discard_pending_stop_replies (struct inferior *inf)
6555 {
6556 struct queue_iter_param param;
6557 struct stop_reply *reply;
6558 struct remote_state *rs = get_remote_state ();
6559 struct remote_notif_state *rns = rs->notif_state;
6560
6561 /* This function can be notified when an inferior exists. When the
6562 target is not remote, the notification state is NULL. */
6563 if (rs->remote_desc == NULL)
6564 return;
6565
6566 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6567
6568 /* Discard the in-flight notification. */
6569 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6570 {
6571 stop_reply_xfree (reply);
6572 rns->pending_event[notif_client_stop.id] = NULL;
6573 }
6574
6575 param.input = inf;
6576 param.output = NULL;
6577 /* Discard the stop replies we have already pulled with
6578 vStopped. */
6579 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6580 remove_stop_reply_for_inferior, &param);
6581 }
6582
6583 /* If its remote state is equal to the given remote state,
6584 remove EVENT from the stop reply queue. */
6585
6586 static int
6587 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6588 QUEUE_ITER (stop_reply_p) *iter,
6589 stop_reply_p event,
6590 void *data)
6591 {
6592 struct queue_iter_param *param = (struct queue_iter_param *) data;
6593 struct remote_state *rs = (struct remote_state *) param->input;
6594
6595 if (event->rs == rs)
6596 {
6597 stop_reply_xfree (event);
6598 QUEUE_remove_elem (stop_reply_p, q, iter);
6599 }
6600
6601 return 1;
6602 }
6603
6604 /* Discard the stop replies for RS in stop_reply_queue. */
6605
6606 static void
6607 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6608 {
6609 struct queue_iter_param param;
6610
6611 param.input = rs;
6612 param.output = NULL;
6613 /* Discard the stop replies we have already pulled with
6614 vStopped. */
6615 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6616 remove_stop_reply_of_remote_state, &param);
6617 }
6618
6619 /* A parameter to pass data in and out. */
6620
6621 static int
6622 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6623 QUEUE_ITER (stop_reply_p) *iter,
6624 stop_reply_p event,
6625 void *data)
6626 {
6627 struct queue_iter_param *param = (struct queue_iter_param *) data;
6628 ptid_t *ptid = (ptid_t *) param->input;
6629
6630 if (ptid_match (event->ptid, *ptid))
6631 {
6632 param->output = event;
6633 QUEUE_remove_elem (stop_reply_p, q, iter);
6634 return 0;
6635 }
6636
6637 return 1;
6638 }
6639
6640 /* Remove the first reply in 'stop_reply_queue' which matches
6641 PTID. */
6642
6643 static struct stop_reply *
6644 remote_notif_remove_queued_reply (ptid_t ptid)
6645 {
6646 struct queue_iter_param param;
6647
6648 param.input = &ptid;
6649 param.output = NULL;
6650
6651 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6652 remote_notif_remove_once_on_match, &param);
6653 if (notif_debug)
6654 fprintf_unfiltered (gdb_stdlog,
6655 "notif: discard queued event: 'Stop' in %s\n",
6656 target_pid_to_str (ptid));
6657
6658 return param.output;
6659 }
6660
6661 /* Look for a queued stop reply belonging to PTID. If one is found,
6662 remove it from the queue, and return it. Returns NULL if none is
6663 found. If there are still queued events left to process, tell the
6664 event loop to get back to target_wait soon. */
6665
6666 static struct stop_reply *
6667 queued_stop_reply (ptid_t ptid)
6668 {
6669 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6670
6671 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6672 /* There's still at least an event left. */
6673 mark_async_event_handler (remote_async_inferior_event_token);
6674
6675 return r;
6676 }
6677
6678 /* Push a fully parsed stop reply in the stop reply queue. Since we
6679 know that we now have at least one queued event left to pass to the
6680 core side, tell the event loop to get back to target_wait soon. */
6681
6682 static void
6683 push_stop_reply (struct stop_reply *new_event)
6684 {
6685 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6686
6687 if (notif_debug)
6688 fprintf_unfiltered (gdb_stdlog,
6689 "notif: push 'Stop' %s to queue %d\n",
6690 target_pid_to_str (new_event->ptid),
6691 QUEUE_length (stop_reply_p,
6692 stop_reply_queue));
6693
6694 mark_async_event_handler (remote_async_inferior_event_token);
6695 }
6696
6697 static int
6698 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
6699 QUEUE_ITER (stop_reply_p) *iter,
6700 struct stop_reply *event,
6701 void *data)
6702 {
6703 ptid_t *ptid = (ptid_t *) data;
6704
6705 return !(ptid_equal (*ptid, event->ptid)
6706 && event->ws.kind == TARGET_WAITKIND_STOPPED);
6707 }
6708
6709 /* Returns true if we have a stop reply for PTID. */
6710
6711 static int
6712 peek_stop_reply (ptid_t ptid)
6713 {
6714 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
6715 stop_reply_match_ptid_and_ws, &ptid);
6716 }
6717
6718 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
6719 starting with P and ending with PEND matches PREFIX. */
6720
6721 static int
6722 strprefix (const char *p, const char *pend, const char *prefix)
6723 {
6724 for ( ; p < pend; p++, prefix++)
6725 if (*p != *prefix)
6726 return 0;
6727 return *prefix == '\0';
6728 }
6729
6730 /* Parse the stop reply in BUF. Either the function succeeds, and the
6731 result is stored in EVENT, or throws an error. */
6732
6733 static void
6734 remote_parse_stop_reply (char *buf, struct stop_reply *event)
6735 {
6736 remote_arch_state *rsa = NULL;
6737 ULONGEST addr;
6738 const char *p;
6739 int skipregs = 0;
6740
6741 event->ptid = null_ptid;
6742 event->rs = get_remote_state ();
6743 event->ws.kind = TARGET_WAITKIND_IGNORE;
6744 event->ws.value.integer = 0;
6745 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6746 event->regcache = NULL;
6747 event->core = -1;
6748
6749 switch (buf[0])
6750 {
6751 case 'T': /* Status with PC, SP, FP, ... */
6752 /* Expedited reply, containing Signal, {regno, reg} repeat. */
6753 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
6754 ss = signal number
6755 n... = register number
6756 r... = register contents
6757 */
6758
6759 p = &buf[3]; /* after Txx */
6760 while (*p)
6761 {
6762 const char *p1;
6763 int fieldsize;
6764
6765 p1 = strchr (p, ':');
6766 if (p1 == NULL)
6767 error (_("Malformed packet(a) (missing colon): %s\n\
6768 Packet: '%s'\n"),
6769 p, buf);
6770 if (p == p1)
6771 error (_("Malformed packet(a) (missing register number): %s\n\
6772 Packet: '%s'\n"),
6773 p, buf);
6774
6775 /* Some "registers" are actually extended stop information.
6776 Note if you're adding a new entry here: GDB 7.9 and
6777 earlier assume that all register "numbers" that start
6778 with an hex digit are real register numbers. Make sure
6779 the server only sends such a packet if it knows the
6780 client understands it. */
6781
6782 if (strprefix (p, p1, "thread"))
6783 event->ptid = read_ptid (++p1, &p);
6784 else if (strprefix (p, p1, "syscall_entry"))
6785 {
6786 ULONGEST sysno;
6787
6788 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
6789 p = unpack_varlen_hex (++p1, &sysno);
6790 event->ws.value.syscall_number = (int) sysno;
6791 }
6792 else if (strprefix (p, p1, "syscall_return"))
6793 {
6794 ULONGEST sysno;
6795
6796 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
6797 p = unpack_varlen_hex (++p1, &sysno);
6798 event->ws.value.syscall_number = (int) sysno;
6799 }
6800 else if (strprefix (p, p1, "watch")
6801 || strprefix (p, p1, "rwatch")
6802 || strprefix (p, p1, "awatch"))
6803 {
6804 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
6805 p = unpack_varlen_hex (++p1, &addr);
6806 event->watch_data_address = (CORE_ADDR) addr;
6807 }
6808 else if (strprefix (p, p1, "swbreak"))
6809 {
6810 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
6811
6812 /* Make sure the stub doesn't forget to indicate support
6813 with qSupported. */
6814 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
6815 error (_("Unexpected swbreak stop reason"));
6816
6817 /* The value part is documented as "must be empty",
6818 though we ignore it, in case we ever decide to make
6819 use of it in a backward compatible way. */
6820 p = strchrnul (p1 + 1, ';');
6821 }
6822 else if (strprefix (p, p1, "hwbreak"))
6823 {
6824 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
6825
6826 /* Make sure the stub doesn't forget to indicate support
6827 with qSupported. */
6828 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
6829 error (_("Unexpected hwbreak stop reason"));
6830
6831 /* See above. */
6832 p = strchrnul (p1 + 1, ';');
6833 }
6834 else if (strprefix (p, p1, "library"))
6835 {
6836 event->ws.kind = TARGET_WAITKIND_LOADED;
6837 p = strchrnul (p1 + 1, ';');
6838 }
6839 else if (strprefix (p, p1, "replaylog"))
6840 {
6841 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
6842 /* p1 will indicate "begin" or "end", but it makes
6843 no difference for now, so ignore it. */
6844 p = strchrnul (p1 + 1, ';');
6845 }
6846 else if (strprefix (p, p1, "core"))
6847 {
6848 ULONGEST c;
6849
6850 p = unpack_varlen_hex (++p1, &c);
6851 event->core = c;
6852 }
6853 else if (strprefix (p, p1, "fork"))
6854 {
6855 event->ws.value.related_pid = read_ptid (++p1, &p);
6856 event->ws.kind = TARGET_WAITKIND_FORKED;
6857 }
6858 else if (strprefix (p, p1, "vfork"))
6859 {
6860 event->ws.value.related_pid = read_ptid (++p1, &p);
6861 event->ws.kind = TARGET_WAITKIND_VFORKED;
6862 }
6863 else if (strprefix (p, p1, "vforkdone"))
6864 {
6865 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
6866 p = strchrnul (p1 + 1, ';');
6867 }
6868 else if (strprefix (p, p1, "exec"))
6869 {
6870 ULONGEST ignored;
6871 char pathname[PATH_MAX];
6872 int pathlen;
6873
6874 /* Determine the length of the execd pathname. */
6875 p = unpack_varlen_hex (++p1, &ignored);
6876 pathlen = (p - p1) / 2;
6877
6878 /* Save the pathname for event reporting and for
6879 the next run command. */
6880 hex2bin (p1, (gdb_byte *) pathname, pathlen);
6881 pathname[pathlen] = '\0';
6882
6883 /* This is freed during event handling. */
6884 event->ws.value.execd_pathname = xstrdup (pathname);
6885 event->ws.kind = TARGET_WAITKIND_EXECD;
6886
6887 /* Skip the registers included in this packet, since
6888 they may be for an architecture different from the
6889 one used by the original program. */
6890 skipregs = 1;
6891 }
6892 else if (strprefix (p, p1, "create"))
6893 {
6894 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
6895 p = strchrnul (p1 + 1, ';');
6896 }
6897 else
6898 {
6899 ULONGEST pnum;
6900 const char *p_temp;
6901
6902 if (skipregs)
6903 {
6904 p = strchrnul (p1 + 1, ';');
6905 p++;
6906 continue;
6907 }
6908
6909 /* Maybe a real ``P'' register number. */
6910 p_temp = unpack_varlen_hex (p, &pnum);
6911 /* If the first invalid character is the colon, we got a
6912 register number. Otherwise, it's an unknown stop
6913 reason. */
6914 if (p_temp == p1)
6915 {
6916 /* If we haven't parsed the event's thread yet, find
6917 it now, in order to find the architecture of the
6918 reported expedited registers. */
6919 if (event->ptid == null_ptid)
6920 {
6921 const char *thr = strstr (p1 + 1, ";thread:");
6922 if (thr != NULL)
6923 event->ptid = read_ptid (thr + strlen (";thread:"),
6924 NULL);
6925 else
6926 {
6927 /* Either the current thread hasn't changed,
6928 or the inferior is not multi-threaded.
6929 The event must be for the thread we last
6930 set as (or learned as being) current. */
6931 event->ptid = event->rs->general_thread;
6932 }
6933 }
6934
6935 if (rsa == NULL)
6936 {
6937 inferior *inf = (event->ptid == null_ptid
6938 ? NULL
6939 : find_inferior_ptid (event->ptid));
6940 /* If this is the first time we learn anything
6941 about this process, skip the registers
6942 included in this packet, since we don't yet
6943 know which architecture to use to parse them.
6944 We'll determine the architecture later when
6945 we process the stop reply and retrieve the
6946 target description, via
6947 remote_notice_new_inferior ->
6948 post_create_inferior. */
6949 if (inf == NULL)
6950 {
6951 p = strchrnul (p1 + 1, ';');
6952 p++;
6953 continue;
6954 }
6955
6956 event->arch = inf->gdbarch;
6957 rsa = get_remote_arch_state (event->arch);
6958 }
6959
6960 packet_reg *reg
6961 = packet_reg_from_pnum (event->arch, rsa, pnum);
6962 cached_reg_t cached_reg;
6963
6964 if (reg == NULL)
6965 error (_("Remote sent bad register number %s: %s\n\
6966 Packet: '%s'\n"),
6967 hex_string (pnum), p, buf);
6968
6969 cached_reg.num = reg->regnum;
6970 cached_reg.data = (gdb_byte *)
6971 xmalloc (register_size (event->arch, reg->regnum));
6972
6973 p = p1 + 1;
6974 fieldsize = hex2bin (p, cached_reg.data,
6975 register_size (event->arch, reg->regnum));
6976 p += 2 * fieldsize;
6977 if (fieldsize < register_size (event->arch, reg->regnum))
6978 warning (_("Remote reply is too short: %s"), buf);
6979
6980 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
6981 }
6982 else
6983 {
6984 /* Not a number. Silently skip unknown optional
6985 info. */
6986 p = strchrnul (p1 + 1, ';');
6987 }
6988 }
6989
6990 if (*p != ';')
6991 error (_("Remote register badly formatted: %s\nhere: %s"),
6992 buf, p);
6993 ++p;
6994 }
6995
6996 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
6997 break;
6998
6999 /* fall through */
7000 case 'S': /* Old style status, just signal only. */
7001 {
7002 int sig;
7003
7004 event->ws.kind = TARGET_WAITKIND_STOPPED;
7005 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7006 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7007 event->ws.value.sig = (enum gdb_signal) sig;
7008 else
7009 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7010 }
7011 break;
7012 case 'w': /* Thread exited. */
7013 {
7014 const char *p;
7015 ULONGEST value;
7016
7017 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7018 p = unpack_varlen_hex (&buf[1], &value);
7019 event->ws.value.integer = value;
7020 if (*p != ';')
7021 error (_("stop reply packet badly formatted: %s"), buf);
7022 event->ptid = read_ptid (++p, NULL);
7023 break;
7024 }
7025 case 'W': /* Target exited. */
7026 case 'X':
7027 {
7028 const char *p;
7029 int pid;
7030 ULONGEST value;
7031
7032 /* GDB used to accept only 2 hex chars here. Stubs should
7033 only send more if they detect GDB supports multi-process
7034 support. */
7035 p = unpack_varlen_hex (&buf[1], &value);
7036
7037 if (buf[0] == 'W')
7038 {
7039 /* The remote process exited. */
7040 event->ws.kind = TARGET_WAITKIND_EXITED;
7041 event->ws.value.integer = value;
7042 }
7043 else
7044 {
7045 /* The remote process exited with a signal. */
7046 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7047 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7048 event->ws.value.sig = (enum gdb_signal) value;
7049 else
7050 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7051 }
7052
7053 /* If no process is specified, assume inferior_ptid. */
7054 pid = ptid_get_pid (inferior_ptid);
7055 if (*p == '\0')
7056 ;
7057 else if (*p == ';')
7058 {
7059 p++;
7060
7061 if (*p == '\0')
7062 ;
7063 else if (startswith (p, "process:"))
7064 {
7065 ULONGEST upid;
7066
7067 p += sizeof ("process:") - 1;
7068 unpack_varlen_hex (p, &upid);
7069 pid = upid;
7070 }
7071 else
7072 error (_("unknown stop reply packet: %s"), buf);
7073 }
7074 else
7075 error (_("unknown stop reply packet: %s"), buf);
7076 event->ptid = pid_to_ptid (pid);
7077 }
7078 break;
7079 case 'N':
7080 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7081 event->ptid = minus_one_ptid;
7082 break;
7083 }
7084
7085 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7086 error (_("No process or thread specified in stop reply: %s"), buf);
7087 }
7088
7089 /* When the stub wants to tell GDB about a new notification reply, it
7090 sends a notification (%Stop, for example). Those can come it at
7091 any time, hence, we have to make sure that any pending
7092 putpkt/getpkt sequence we're making is finished, before querying
7093 the stub for more events with the corresponding ack command
7094 (vStopped, for example). E.g., if we started a vStopped sequence
7095 immediately upon receiving the notification, something like this
7096 could happen:
7097
7098 1.1) --> Hg 1
7099 1.2) <-- OK
7100 1.3) --> g
7101 1.4) <-- %Stop
7102 1.5) --> vStopped
7103 1.6) <-- (registers reply to step #1.3)
7104
7105 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7106 query.
7107
7108 To solve this, whenever we parse a %Stop notification successfully,
7109 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7110 doing whatever we were doing:
7111
7112 2.1) --> Hg 1
7113 2.2) <-- OK
7114 2.3) --> g
7115 2.4) <-- %Stop
7116 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7117 2.5) <-- (registers reply to step #2.3)
7118
7119 Eventualy after step #2.5, we return to the event loop, which
7120 notices there's an event on the
7121 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7122 associated callback --- the function below. At this point, we're
7123 always safe to start a vStopped sequence. :
7124
7125 2.6) --> vStopped
7126 2.7) <-- T05 thread:2
7127 2.8) --> vStopped
7128 2.9) --> OK
7129 */
7130
7131 void
7132 remote_notif_get_pending_events (struct notif_client *nc)
7133 {
7134 struct remote_state *rs = get_remote_state ();
7135
7136 if (rs->notif_state->pending_event[nc->id] != NULL)
7137 {
7138 if (notif_debug)
7139 fprintf_unfiltered (gdb_stdlog,
7140 "notif: process: '%s' ack pending event\n",
7141 nc->name);
7142
7143 /* acknowledge */
7144 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7145 rs->notif_state->pending_event[nc->id] = NULL;
7146
7147 while (1)
7148 {
7149 getpkt (&rs->buf, &rs->buf_size, 0);
7150 if (strcmp (rs->buf, "OK") == 0)
7151 break;
7152 else
7153 remote_notif_ack (nc, rs->buf);
7154 }
7155 }
7156 else
7157 {
7158 if (notif_debug)
7159 fprintf_unfiltered (gdb_stdlog,
7160 "notif: process: '%s' no pending reply\n",
7161 nc->name);
7162 }
7163 }
7164
7165 /* Called when it is decided that STOP_REPLY holds the info of the
7166 event that is to be returned to the core. This function always
7167 destroys STOP_REPLY. */
7168
7169 static ptid_t
7170 process_stop_reply (struct stop_reply *stop_reply,
7171 struct target_waitstatus *status)
7172 {
7173 ptid_t ptid;
7174
7175 *status = stop_reply->ws;
7176 ptid = stop_reply->ptid;
7177
7178 /* If no thread/process was reported by the stub, assume the current
7179 inferior. */
7180 if (ptid_equal (ptid, null_ptid))
7181 ptid = inferior_ptid;
7182
7183 if (status->kind != TARGET_WAITKIND_EXITED
7184 && status->kind != TARGET_WAITKIND_SIGNALLED
7185 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7186 {
7187 /* Expedited registers. */
7188 if (stop_reply->regcache)
7189 {
7190 struct regcache *regcache
7191 = get_thread_arch_regcache (ptid, stop_reply->arch);
7192 cached_reg_t *reg;
7193 int ix;
7194
7195 for (ix = 0;
7196 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7197 ix++)
7198 {
7199 regcache_raw_supply (regcache, reg->num, reg->data);
7200 xfree (reg->data);
7201 }
7202
7203 VEC_free (cached_reg_t, stop_reply->regcache);
7204 }
7205
7206 remote_notice_new_inferior (ptid, 0);
7207 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7208 remote_thr->core = stop_reply->core;
7209 remote_thr->stop_reason = stop_reply->stop_reason;
7210 remote_thr->watch_data_address = stop_reply->watch_data_address;
7211 remote_thr->vcont_resumed = 0;
7212 }
7213
7214 stop_reply_xfree (stop_reply);
7215 return ptid;
7216 }
7217
7218 /* The non-stop mode version of target_wait. */
7219
7220 static ptid_t
7221 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7222 {
7223 struct remote_state *rs = get_remote_state ();
7224 struct stop_reply *stop_reply;
7225 int ret;
7226 int is_notif = 0;
7227
7228 /* If in non-stop mode, get out of getpkt even if a
7229 notification is received. */
7230
7231 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7232 0 /* forever */, &is_notif);
7233 while (1)
7234 {
7235 if (ret != -1 && !is_notif)
7236 switch (rs->buf[0])
7237 {
7238 case 'E': /* Error of some sort. */
7239 /* We're out of sync with the target now. Did it continue
7240 or not? We can't tell which thread it was in non-stop,
7241 so just ignore this. */
7242 warning (_("Remote failure reply: %s"), rs->buf);
7243 break;
7244 case 'O': /* Console output. */
7245 remote_console_output (rs->buf + 1);
7246 break;
7247 default:
7248 warning (_("Invalid remote reply: %s"), rs->buf);
7249 break;
7250 }
7251
7252 /* Acknowledge a pending stop reply that may have arrived in the
7253 mean time. */
7254 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7255 remote_notif_get_pending_events (&notif_client_stop);
7256
7257 /* If indeed we noticed a stop reply, we're done. */
7258 stop_reply = queued_stop_reply (ptid);
7259 if (stop_reply != NULL)
7260 return process_stop_reply (stop_reply, status);
7261
7262 /* Still no event. If we're just polling for an event, then
7263 return to the event loop. */
7264 if (options & TARGET_WNOHANG)
7265 {
7266 status->kind = TARGET_WAITKIND_IGNORE;
7267 return minus_one_ptid;
7268 }
7269
7270 /* Otherwise do a blocking wait. */
7271 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7272 1 /* forever */, &is_notif);
7273 }
7274 }
7275
7276 /* Wait until the remote machine stops, then return, storing status in
7277 STATUS just as `wait' would. */
7278
7279 static ptid_t
7280 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7281 {
7282 struct remote_state *rs = get_remote_state ();
7283 ptid_t event_ptid = null_ptid;
7284 char *buf;
7285 struct stop_reply *stop_reply;
7286
7287 again:
7288
7289 status->kind = TARGET_WAITKIND_IGNORE;
7290 status->value.integer = 0;
7291
7292 stop_reply = queued_stop_reply (ptid);
7293 if (stop_reply != NULL)
7294 return process_stop_reply (stop_reply, status);
7295
7296 if (rs->cached_wait_status)
7297 /* Use the cached wait status, but only once. */
7298 rs->cached_wait_status = 0;
7299 else
7300 {
7301 int ret;
7302 int is_notif;
7303 int forever = ((options & TARGET_WNOHANG) == 0
7304 && wait_forever_enabled_p);
7305
7306 if (!rs->waiting_for_stop_reply)
7307 {
7308 status->kind = TARGET_WAITKIND_NO_RESUMED;
7309 return minus_one_ptid;
7310 }
7311
7312 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7313 _never_ wait for ever -> test on target_is_async_p().
7314 However, before we do that we need to ensure that the caller
7315 knows how to take the target into/out of async mode. */
7316 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7317 forever, &is_notif);
7318
7319 /* GDB gets a notification. Return to core as this event is
7320 not interesting. */
7321 if (ret != -1 && is_notif)
7322 return minus_one_ptid;
7323
7324 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7325 return minus_one_ptid;
7326 }
7327
7328 buf = rs->buf;
7329
7330 /* Assume that the target has acknowledged Ctrl-C unless we receive
7331 an 'F' or 'O' packet. */
7332 if (buf[0] != 'F' && buf[0] != 'O')
7333 rs->ctrlc_pending_p = 0;
7334
7335 switch (buf[0])
7336 {
7337 case 'E': /* Error of some sort. */
7338 /* We're out of sync with the target now. Did it continue or
7339 not? Not is more likely, so report a stop. */
7340 rs->waiting_for_stop_reply = 0;
7341
7342 warning (_("Remote failure reply: %s"), buf);
7343 status->kind = TARGET_WAITKIND_STOPPED;
7344 status->value.sig = GDB_SIGNAL_0;
7345 break;
7346 case 'F': /* File-I/O request. */
7347 /* GDB may access the inferior memory while handling the File-I/O
7348 request, but we don't want GDB accessing memory while waiting
7349 for a stop reply. See the comments in putpkt_binary. Set
7350 waiting_for_stop_reply to 0 temporarily. */
7351 rs->waiting_for_stop_reply = 0;
7352 remote_fileio_request (buf, rs->ctrlc_pending_p);
7353 rs->ctrlc_pending_p = 0;
7354 /* GDB handled the File-I/O request, and the target is running
7355 again. Keep waiting for events. */
7356 rs->waiting_for_stop_reply = 1;
7357 break;
7358 case 'N': case 'T': case 'S': case 'X': case 'W':
7359 {
7360 struct stop_reply *stop_reply;
7361
7362 /* There is a stop reply to handle. */
7363 rs->waiting_for_stop_reply = 0;
7364
7365 stop_reply
7366 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7367 rs->buf);
7368
7369 event_ptid = process_stop_reply (stop_reply, status);
7370 break;
7371 }
7372 case 'O': /* Console output. */
7373 remote_console_output (buf + 1);
7374 break;
7375 case '\0':
7376 if (rs->last_sent_signal != GDB_SIGNAL_0)
7377 {
7378 /* Zero length reply means that we tried 'S' or 'C' and the
7379 remote system doesn't support it. */
7380 target_terminal::ours_for_output ();
7381 printf_filtered
7382 ("Can't send signals to this remote system. %s not sent.\n",
7383 gdb_signal_to_name (rs->last_sent_signal));
7384 rs->last_sent_signal = GDB_SIGNAL_0;
7385 target_terminal::inferior ();
7386
7387 strcpy (buf, rs->last_sent_step ? "s" : "c");
7388 putpkt (buf);
7389 break;
7390 }
7391 /* else fallthrough */
7392 default:
7393 warning (_("Invalid remote reply: %s"), buf);
7394 break;
7395 }
7396
7397 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7398 return minus_one_ptid;
7399 else if (status->kind == TARGET_WAITKIND_IGNORE)
7400 {
7401 /* Nothing interesting happened. If we're doing a non-blocking
7402 poll, we're done. Otherwise, go back to waiting. */
7403 if (options & TARGET_WNOHANG)
7404 return minus_one_ptid;
7405 else
7406 goto again;
7407 }
7408 else if (status->kind != TARGET_WAITKIND_EXITED
7409 && status->kind != TARGET_WAITKIND_SIGNALLED)
7410 {
7411 if (!ptid_equal (event_ptid, null_ptid))
7412 record_currthread (rs, event_ptid);
7413 else
7414 event_ptid = inferior_ptid;
7415 }
7416 else
7417 /* A process exit. Invalidate our notion of current thread. */
7418 record_currthread (rs, minus_one_ptid);
7419
7420 return event_ptid;
7421 }
7422
7423 /* Wait until the remote machine stops, then return, storing status in
7424 STATUS just as `wait' would. */
7425
7426 static ptid_t
7427 remote_wait (struct target_ops *ops,
7428 ptid_t ptid, struct target_waitstatus *status, int options)
7429 {
7430 ptid_t event_ptid;
7431
7432 if (target_is_non_stop_p ())
7433 event_ptid = remote_wait_ns (ptid, status, options);
7434 else
7435 event_ptid = remote_wait_as (ptid, status, options);
7436
7437 if (target_is_async_p ())
7438 {
7439 /* If there are are events left in the queue tell the event loop
7440 to return here. */
7441 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7442 mark_async_event_handler (remote_async_inferior_event_token);
7443 }
7444
7445 return event_ptid;
7446 }
7447
7448 /* Fetch a single register using a 'p' packet. */
7449
7450 static int
7451 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7452 {
7453 struct gdbarch *gdbarch = regcache->arch ();
7454 struct remote_state *rs = get_remote_state ();
7455 char *buf, *p;
7456 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7457 int i;
7458
7459 if (packet_support (PACKET_p) == PACKET_DISABLE)
7460 return 0;
7461
7462 if (reg->pnum == -1)
7463 return 0;
7464
7465 p = rs->buf;
7466 *p++ = 'p';
7467 p += hexnumstr (p, reg->pnum);
7468 *p++ = '\0';
7469 putpkt (rs->buf);
7470 getpkt (&rs->buf, &rs->buf_size, 0);
7471
7472 buf = rs->buf;
7473
7474 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7475 {
7476 case PACKET_OK:
7477 break;
7478 case PACKET_UNKNOWN:
7479 return 0;
7480 case PACKET_ERROR:
7481 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7482 gdbarch_register_name (regcache->arch (),
7483 reg->regnum),
7484 buf);
7485 }
7486
7487 /* If this register is unfetchable, tell the regcache. */
7488 if (buf[0] == 'x')
7489 {
7490 regcache_raw_supply (regcache, reg->regnum, NULL);
7491 return 1;
7492 }
7493
7494 /* Otherwise, parse and supply the value. */
7495 p = buf;
7496 i = 0;
7497 while (p[0] != 0)
7498 {
7499 if (p[1] == 0)
7500 error (_("fetch_register_using_p: early buf termination"));
7501
7502 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7503 p += 2;
7504 }
7505 regcache_raw_supply (regcache, reg->regnum, regp);
7506 return 1;
7507 }
7508
7509 /* Fetch the registers included in the target's 'g' packet. */
7510
7511 static int
7512 send_g_packet (void)
7513 {
7514 struct remote_state *rs = get_remote_state ();
7515 int buf_len;
7516
7517 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7518 remote_send (&rs->buf, &rs->buf_size);
7519
7520 /* We can get out of synch in various cases. If the first character
7521 in the buffer is not a hex character, assume that has happened
7522 and try to fetch another packet to read. */
7523 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7524 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7525 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7526 && rs->buf[0] != 'x') /* New: unavailable register value. */
7527 {
7528 if (remote_debug)
7529 fprintf_unfiltered (gdb_stdlog,
7530 "Bad register packet; fetching a new packet\n");
7531 getpkt (&rs->buf, &rs->buf_size, 0);
7532 }
7533
7534 buf_len = strlen (rs->buf);
7535
7536 /* Sanity check the received packet. */
7537 if (buf_len % 2 != 0)
7538 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7539
7540 return buf_len / 2;
7541 }
7542
7543 static void
7544 process_g_packet (struct regcache *regcache)
7545 {
7546 struct gdbarch *gdbarch = regcache->arch ();
7547 struct remote_state *rs = get_remote_state ();
7548 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7549 int i, buf_len;
7550 char *p;
7551 char *regs;
7552
7553 buf_len = strlen (rs->buf);
7554
7555 /* Further sanity checks, with knowledge of the architecture. */
7556 if (buf_len > 2 * rsa->sizeof_g_packet)
7557 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7558 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
7559
7560 /* Save the size of the packet sent to us by the target. It is used
7561 as a heuristic when determining the max size of packets that the
7562 target can safely receive. */
7563 if (rsa->actual_register_packet_size == 0)
7564 rsa->actual_register_packet_size = buf_len;
7565
7566 /* If this is smaller than we guessed the 'g' packet would be,
7567 update our records. A 'g' reply that doesn't include a register's
7568 value implies either that the register is not available, or that
7569 the 'p' packet must be used. */
7570 if (buf_len < 2 * rsa->sizeof_g_packet)
7571 {
7572 long sizeof_g_packet = buf_len / 2;
7573
7574 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7575 {
7576 long offset = rsa->regs[i].offset;
7577 long reg_size = register_size (gdbarch, i);
7578
7579 if (rsa->regs[i].pnum == -1)
7580 continue;
7581
7582 if (offset >= sizeof_g_packet)
7583 rsa->regs[i].in_g_packet = 0;
7584 else if (offset + reg_size > sizeof_g_packet)
7585 error (_("Truncated register %d in remote 'g' packet"), i);
7586 else
7587 rsa->regs[i].in_g_packet = 1;
7588 }
7589
7590 /* Looks valid enough, we can assume this is the correct length
7591 for a 'g' packet. It's important not to adjust
7592 rsa->sizeof_g_packet if we have truncated registers otherwise
7593 this "if" won't be run the next time the method is called
7594 with a packet of the same size and one of the internal errors
7595 below will trigger instead. */
7596 rsa->sizeof_g_packet = sizeof_g_packet;
7597 }
7598
7599 regs = (char *) alloca (rsa->sizeof_g_packet);
7600
7601 /* Unimplemented registers read as all bits zero. */
7602 memset (regs, 0, rsa->sizeof_g_packet);
7603
7604 /* Reply describes registers byte by byte, each byte encoded as two
7605 hex characters. Suck them all up, then supply them to the
7606 register cacheing/storage mechanism. */
7607
7608 p = rs->buf;
7609 for (i = 0; i < rsa->sizeof_g_packet; i++)
7610 {
7611 if (p[0] == 0 || p[1] == 0)
7612 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7613 internal_error (__FILE__, __LINE__,
7614 _("unexpected end of 'g' packet reply"));
7615
7616 if (p[0] == 'x' && p[1] == 'x')
7617 regs[i] = 0; /* 'x' */
7618 else
7619 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7620 p += 2;
7621 }
7622
7623 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7624 {
7625 struct packet_reg *r = &rsa->regs[i];
7626 long reg_size = register_size (gdbarch, i);
7627
7628 if (r->in_g_packet)
7629 {
7630 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7631 /* This shouldn't happen - we adjusted in_g_packet above. */
7632 internal_error (__FILE__, __LINE__,
7633 _("unexpected end of 'g' packet reply"));
7634 else if (rs->buf[r->offset * 2] == 'x')
7635 {
7636 gdb_assert (r->offset * 2 < strlen (rs->buf));
7637 /* The register isn't available, mark it as such (at
7638 the same time setting the value to zero). */
7639 regcache_raw_supply (regcache, r->regnum, NULL);
7640 }
7641 else
7642 regcache_raw_supply (regcache, r->regnum,
7643 regs + r->offset);
7644 }
7645 }
7646 }
7647
7648 static void
7649 fetch_registers_using_g (struct regcache *regcache)
7650 {
7651 send_g_packet ();
7652 process_g_packet (regcache);
7653 }
7654
7655 /* Make the remote selected traceframe match GDB's selected
7656 traceframe. */
7657
7658 static void
7659 set_remote_traceframe (void)
7660 {
7661 int newnum;
7662 struct remote_state *rs = get_remote_state ();
7663
7664 if (rs->remote_traceframe_number == get_traceframe_number ())
7665 return;
7666
7667 /* Avoid recursion, remote_trace_find calls us again. */
7668 rs->remote_traceframe_number = get_traceframe_number ();
7669
7670 newnum = target_trace_find (tfind_number,
7671 get_traceframe_number (), 0, 0, NULL);
7672
7673 /* Should not happen. If it does, all bets are off. */
7674 if (newnum != get_traceframe_number ())
7675 warning (_("could not set remote traceframe"));
7676 }
7677
7678 static void
7679 remote_fetch_registers (struct target_ops *ops,
7680 struct regcache *regcache, int regnum)
7681 {
7682 struct gdbarch *gdbarch = regcache->arch ();
7683 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7684 int i;
7685
7686 set_remote_traceframe ();
7687 set_general_thread (regcache_get_ptid (regcache));
7688
7689 if (regnum >= 0)
7690 {
7691 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7692
7693 gdb_assert (reg != NULL);
7694
7695 /* If this register might be in the 'g' packet, try that first -
7696 we are likely to read more than one register. If this is the
7697 first 'g' packet, we might be overly optimistic about its
7698 contents, so fall back to 'p'. */
7699 if (reg->in_g_packet)
7700 {
7701 fetch_registers_using_g (regcache);
7702 if (reg->in_g_packet)
7703 return;
7704 }
7705
7706 if (fetch_register_using_p (regcache, reg))
7707 return;
7708
7709 /* This register is not available. */
7710 regcache_raw_supply (regcache, reg->regnum, NULL);
7711
7712 return;
7713 }
7714
7715 fetch_registers_using_g (regcache);
7716
7717 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7718 if (!rsa->regs[i].in_g_packet)
7719 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
7720 {
7721 /* This register is not available. */
7722 regcache_raw_supply (regcache, i, NULL);
7723 }
7724 }
7725
7726 /* Prepare to store registers. Since we may send them all (using a
7727 'G' request), we have to read out the ones we don't want to change
7728 first. */
7729
7730 static void
7731 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
7732 {
7733 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7734 int i;
7735
7736 /* Make sure the entire registers array is valid. */
7737 switch (packet_support (PACKET_P))
7738 {
7739 case PACKET_DISABLE:
7740 case PACKET_SUPPORT_UNKNOWN:
7741 /* Make sure all the necessary registers are cached. */
7742 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7743 if (rsa->regs[i].in_g_packet)
7744 regcache_raw_update (regcache, rsa->regs[i].regnum);
7745 break;
7746 case PACKET_ENABLE:
7747 break;
7748 }
7749 }
7750
7751 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
7752 packet was not recognized. */
7753
7754 static int
7755 store_register_using_P (const struct regcache *regcache,
7756 struct packet_reg *reg)
7757 {
7758 struct gdbarch *gdbarch = regcache->arch ();
7759 struct remote_state *rs = get_remote_state ();
7760 /* Try storing a single register. */
7761 char *buf = rs->buf;
7762 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7763 char *p;
7764
7765 if (packet_support (PACKET_P) == PACKET_DISABLE)
7766 return 0;
7767
7768 if (reg->pnum == -1)
7769 return 0;
7770
7771 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
7772 p = buf + strlen (buf);
7773 regcache_raw_collect (regcache, reg->regnum, regp);
7774 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
7775 putpkt (rs->buf);
7776 getpkt (&rs->buf, &rs->buf_size, 0);
7777
7778 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
7779 {
7780 case PACKET_OK:
7781 return 1;
7782 case PACKET_ERROR:
7783 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
7784 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
7785 case PACKET_UNKNOWN:
7786 return 0;
7787 default:
7788 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
7789 }
7790 }
7791
7792 /* Store register REGNUM, or all registers if REGNUM == -1, from the
7793 contents of the register cache buffer. FIXME: ignores errors. */
7794
7795 static void
7796 store_registers_using_G (const struct regcache *regcache)
7797 {
7798 struct remote_state *rs = get_remote_state ();
7799 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7800 gdb_byte *regs;
7801 char *p;
7802
7803 /* Extract all the registers in the regcache copying them into a
7804 local buffer. */
7805 {
7806 int i;
7807
7808 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
7809 memset (regs, 0, rsa->sizeof_g_packet);
7810 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7811 {
7812 struct packet_reg *r = &rsa->regs[i];
7813
7814 if (r->in_g_packet)
7815 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
7816 }
7817 }
7818
7819 /* Command describes registers byte by byte,
7820 each byte encoded as two hex characters. */
7821 p = rs->buf;
7822 *p++ = 'G';
7823 bin2hex (regs, p, rsa->sizeof_g_packet);
7824 putpkt (rs->buf);
7825 getpkt (&rs->buf, &rs->buf_size, 0);
7826 if (packet_check_result (rs->buf) == PACKET_ERROR)
7827 error (_("Could not write registers; remote failure reply '%s'"),
7828 rs->buf);
7829 }
7830
7831 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
7832 of the register cache buffer. FIXME: ignores errors. */
7833
7834 static void
7835 remote_store_registers (struct target_ops *ops,
7836 struct regcache *regcache, int regnum)
7837 {
7838 struct gdbarch *gdbarch = regcache->arch ();
7839 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7840 int i;
7841
7842 set_remote_traceframe ();
7843 set_general_thread (regcache_get_ptid (regcache));
7844
7845 if (regnum >= 0)
7846 {
7847 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7848
7849 gdb_assert (reg != NULL);
7850
7851 /* Always prefer to store registers using the 'P' packet if
7852 possible; we often change only a small number of registers.
7853 Sometimes we change a larger number; we'd need help from a
7854 higher layer to know to use 'G'. */
7855 if (store_register_using_P (regcache, reg))
7856 return;
7857
7858 /* For now, don't complain if we have no way to write the
7859 register. GDB loses track of unavailable registers too
7860 easily. Some day, this may be an error. We don't have
7861 any way to read the register, either... */
7862 if (!reg->in_g_packet)
7863 return;
7864
7865 store_registers_using_G (regcache);
7866 return;
7867 }
7868
7869 store_registers_using_G (regcache);
7870
7871 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7872 if (!rsa->regs[i].in_g_packet)
7873 if (!store_register_using_P (regcache, &rsa->regs[i]))
7874 /* See above for why we do not issue an error here. */
7875 continue;
7876 }
7877 \f
7878
7879 /* Return the number of hex digits in num. */
7880
7881 static int
7882 hexnumlen (ULONGEST num)
7883 {
7884 int i;
7885
7886 for (i = 0; num != 0; i++)
7887 num >>= 4;
7888
7889 return std::max (i, 1);
7890 }
7891
7892 /* Set BUF to the minimum number of hex digits representing NUM. */
7893
7894 static int
7895 hexnumstr (char *buf, ULONGEST num)
7896 {
7897 int len = hexnumlen (num);
7898
7899 return hexnumnstr (buf, num, len);
7900 }
7901
7902
7903 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
7904
7905 static int
7906 hexnumnstr (char *buf, ULONGEST num, int width)
7907 {
7908 int i;
7909
7910 buf[width] = '\0';
7911
7912 for (i = width - 1; i >= 0; i--)
7913 {
7914 buf[i] = "0123456789abcdef"[(num & 0xf)];
7915 num >>= 4;
7916 }
7917
7918 return width;
7919 }
7920
7921 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
7922
7923 static CORE_ADDR
7924 remote_address_masked (CORE_ADDR addr)
7925 {
7926 unsigned int address_size = remote_address_size;
7927
7928 /* If "remoteaddresssize" was not set, default to target address size. */
7929 if (!address_size)
7930 address_size = gdbarch_addr_bit (target_gdbarch ());
7931
7932 if (address_size > 0
7933 && address_size < (sizeof (ULONGEST) * 8))
7934 {
7935 /* Only create a mask when that mask can safely be constructed
7936 in a ULONGEST variable. */
7937 ULONGEST mask = 1;
7938
7939 mask = (mask << address_size) - 1;
7940 addr &= mask;
7941 }
7942 return addr;
7943 }
7944
7945 /* Determine whether the remote target supports binary downloading.
7946 This is accomplished by sending a no-op memory write of zero length
7947 to the target at the specified address. It does not suffice to send
7948 the whole packet, since many stubs strip the eighth bit and
7949 subsequently compute a wrong checksum, which causes real havoc with
7950 remote_write_bytes.
7951
7952 NOTE: This can still lose if the serial line is not eight-bit
7953 clean. In cases like this, the user should clear "remote
7954 X-packet". */
7955
7956 static void
7957 check_binary_download (CORE_ADDR addr)
7958 {
7959 struct remote_state *rs = get_remote_state ();
7960
7961 switch (packet_support (PACKET_X))
7962 {
7963 case PACKET_DISABLE:
7964 break;
7965 case PACKET_ENABLE:
7966 break;
7967 case PACKET_SUPPORT_UNKNOWN:
7968 {
7969 char *p;
7970
7971 p = rs->buf;
7972 *p++ = 'X';
7973 p += hexnumstr (p, (ULONGEST) addr);
7974 *p++ = ',';
7975 p += hexnumstr (p, (ULONGEST) 0);
7976 *p++ = ':';
7977 *p = '\0';
7978
7979 putpkt_binary (rs->buf, (int) (p - rs->buf));
7980 getpkt (&rs->buf, &rs->buf_size, 0);
7981
7982 if (rs->buf[0] == '\0')
7983 {
7984 if (remote_debug)
7985 fprintf_unfiltered (gdb_stdlog,
7986 "binary downloading NOT "
7987 "supported by target\n");
7988 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
7989 }
7990 else
7991 {
7992 if (remote_debug)
7993 fprintf_unfiltered (gdb_stdlog,
7994 "binary downloading supported by target\n");
7995 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
7996 }
7997 break;
7998 }
7999 }
8000 }
8001
8002 /* Helper function to resize the payload in order to try to get a good
8003 alignment. We try to write an amount of data such that the next write will
8004 start on an address aligned on REMOTE_ALIGN_WRITES. */
8005
8006 static int
8007 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8008 {
8009 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8010 }
8011
8012 /* Write memory data directly to the remote machine.
8013 This does not inform the data cache; the data cache uses this.
8014 HEADER is the starting part of the packet.
8015 MEMADDR is the address in the remote memory space.
8016 MYADDR is the address of the buffer in our space.
8017 LEN_UNITS is the number of addressable units to write.
8018 UNIT_SIZE is the length in bytes of an addressable unit.
8019 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8020 should send data as binary ('X'), or hex-encoded ('M').
8021
8022 The function creates packet of the form
8023 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8024
8025 where encoding of <DATA> is terminated by PACKET_FORMAT.
8026
8027 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8028 are omitted.
8029
8030 Return the transferred status, error or OK (an
8031 'enum target_xfer_status' value). Save the number of addressable units
8032 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8033
8034 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8035 exchange between gdb and the stub could look like (?? in place of the
8036 checksum):
8037
8038 -> $m1000,4#??
8039 <- aaaabbbbccccdddd
8040
8041 -> $M1000,3:eeeeffffeeee#??
8042 <- OK
8043
8044 -> $m1000,4#??
8045 <- eeeeffffeeeedddd */
8046
8047 static enum target_xfer_status
8048 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8049 const gdb_byte *myaddr, ULONGEST len_units,
8050 int unit_size, ULONGEST *xfered_len_units,
8051 char packet_format, int use_length)
8052 {
8053 struct remote_state *rs = get_remote_state ();
8054 char *p;
8055 char *plen = NULL;
8056 int plenlen = 0;
8057 int todo_units;
8058 int units_written;
8059 int payload_capacity_bytes;
8060 int payload_length_bytes;
8061
8062 if (packet_format != 'X' && packet_format != 'M')
8063 internal_error (__FILE__, __LINE__,
8064 _("remote_write_bytes_aux: bad packet format"));
8065
8066 if (len_units == 0)
8067 return TARGET_XFER_EOF;
8068
8069 payload_capacity_bytes = get_memory_write_packet_size ();
8070
8071 /* The packet buffer will be large enough for the payload;
8072 get_memory_packet_size ensures this. */
8073 rs->buf[0] = '\0';
8074
8075 /* Compute the size of the actual payload by subtracting out the
8076 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8077
8078 payload_capacity_bytes -= strlen ("$,:#NN");
8079 if (!use_length)
8080 /* The comma won't be used. */
8081 payload_capacity_bytes += 1;
8082 payload_capacity_bytes -= strlen (header);
8083 payload_capacity_bytes -= hexnumlen (memaddr);
8084
8085 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8086
8087 strcat (rs->buf, header);
8088 p = rs->buf + strlen (header);
8089
8090 /* Compute a best guess of the number of bytes actually transfered. */
8091 if (packet_format == 'X')
8092 {
8093 /* Best guess at number of bytes that will fit. */
8094 todo_units = std::min (len_units,
8095 (ULONGEST) payload_capacity_bytes / unit_size);
8096 if (use_length)
8097 payload_capacity_bytes -= hexnumlen (todo_units);
8098 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8099 }
8100 else
8101 {
8102 /* Number of bytes that will fit. */
8103 todo_units
8104 = std::min (len_units,
8105 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8106 if (use_length)
8107 payload_capacity_bytes -= hexnumlen (todo_units);
8108 todo_units = std::min (todo_units,
8109 (payload_capacity_bytes / unit_size) / 2);
8110 }
8111
8112 if (todo_units <= 0)
8113 internal_error (__FILE__, __LINE__,
8114 _("minimum packet size too small to write data"));
8115
8116 /* If we already need another packet, then try to align the end
8117 of this packet to a useful boundary. */
8118 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8119 todo_units = align_for_efficient_write (todo_units, memaddr);
8120
8121 /* Append "<memaddr>". */
8122 memaddr = remote_address_masked (memaddr);
8123 p += hexnumstr (p, (ULONGEST) memaddr);
8124
8125 if (use_length)
8126 {
8127 /* Append ",". */
8128 *p++ = ',';
8129
8130 /* Append the length and retain its location and size. It may need to be
8131 adjusted once the packet body has been created. */
8132 plen = p;
8133 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8134 p += plenlen;
8135 }
8136
8137 /* Append ":". */
8138 *p++ = ':';
8139 *p = '\0';
8140
8141 /* Append the packet body. */
8142 if (packet_format == 'X')
8143 {
8144 /* Binary mode. Send target system values byte by byte, in
8145 increasing byte addresses. Only escape certain critical
8146 characters. */
8147 payload_length_bytes =
8148 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8149 &units_written, payload_capacity_bytes);
8150
8151 /* If not all TODO units fit, then we'll need another packet. Make
8152 a second try to keep the end of the packet aligned. Don't do
8153 this if the packet is tiny. */
8154 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8155 {
8156 int new_todo_units;
8157
8158 new_todo_units = align_for_efficient_write (units_written, memaddr);
8159
8160 if (new_todo_units != units_written)
8161 payload_length_bytes =
8162 remote_escape_output (myaddr, new_todo_units, unit_size,
8163 (gdb_byte *) p, &units_written,
8164 payload_capacity_bytes);
8165 }
8166
8167 p += payload_length_bytes;
8168 if (use_length && units_written < todo_units)
8169 {
8170 /* Escape chars have filled up the buffer prematurely,
8171 and we have actually sent fewer units than planned.
8172 Fix-up the length field of the packet. Use the same
8173 number of characters as before. */
8174 plen += hexnumnstr (plen, (ULONGEST) units_written,
8175 plenlen);
8176 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8177 }
8178 }
8179 else
8180 {
8181 /* Normal mode: Send target system values byte by byte, in
8182 increasing byte addresses. Each byte is encoded as a two hex
8183 value. */
8184 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8185 units_written = todo_units;
8186 }
8187
8188 putpkt_binary (rs->buf, (int) (p - rs->buf));
8189 getpkt (&rs->buf, &rs->buf_size, 0);
8190
8191 if (rs->buf[0] == 'E')
8192 return TARGET_XFER_E_IO;
8193
8194 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8195 send fewer units than we'd planned. */
8196 *xfered_len_units = (ULONGEST) units_written;
8197 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8198 }
8199
8200 /* Write memory data directly to the remote machine.
8201 This does not inform the data cache; the data cache uses this.
8202 MEMADDR is the address in the remote memory space.
8203 MYADDR is the address of the buffer in our space.
8204 LEN is the number of bytes.
8205
8206 Return the transferred status, error or OK (an
8207 'enum target_xfer_status' value). Save the number of bytes
8208 transferred in *XFERED_LEN. Only transfer a single packet. */
8209
8210 static enum target_xfer_status
8211 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8212 int unit_size, ULONGEST *xfered_len)
8213 {
8214 const char *packet_format = NULL;
8215
8216 /* Check whether the target supports binary download. */
8217 check_binary_download (memaddr);
8218
8219 switch (packet_support (PACKET_X))
8220 {
8221 case PACKET_ENABLE:
8222 packet_format = "X";
8223 break;
8224 case PACKET_DISABLE:
8225 packet_format = "M";
8226 break;
8227 case PACKET_SUPPORT_UNKNOWN:
8228 internal_error (__FILE__, __LINE__,
8229 _("remote_write_bytes: bad internal state"));
8230 default:
8231 internal_error (__FILE__, __LINE__, _("bad switch"));
8232 }
8233
8234 return remote_write_bytes_aux (packet_format,
8235 memaddr, myaddr, len, unit_size, xfered_len,
8236 packet_format[0], 1);
8237 }
8238
8239 /* Read memory data directly from the remote machine.
8240 This does not use the data cache; the data cache uses this.
8241 MEMADDR is the address in the remote memory space.
8242 MYADDR is the address of the buffer in our space.
8243 LEN_UNITS is the number of addressable memory units to read..
8244 UNIT_SIZE is the length in bytes of an addressable unit.
8245
8246 Return the transferred status, error or OK (an
8247 'enum target_xfer_status' value). Save the number of bytes
8248 transferred in *XFERED_LEN_UNITS.
8249
8250 See the comment of remote_write_bytes_aux for an example of
8251 memory read/write exchange between gdb and the stub. */
8252
8253 static enum target_xfer_status
8254 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8255 int unit_size, ULONGEST *xfered_len_units)
8256 {
8257 struct remote_state *rs = get_remote_state ();
8258 int buf_size_bytes; /* Max size of packet output buffer. */
8259 char *p;
8260 int todo_units;
8261 int decoded_bytes;
8262
8263 buf_size_bytes = get_memory_read_packet_size ();
8264 /* The packet buffer will be large enough for the payload;
8265 get_memory_packet_size ensures this. */
8266
8267 /* Number of units that will fit. */
8268 todo_units = std::min (len_units,
8269 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8270
8271 /* Construct "m"<memaddr>","<len>". */
8272 memaddr = remote_address_masked (memaddr);
8273 p = rs->buf;
8274 *p++ = 'm';
8275 p += hexnumstr (p, (ULONGEST) memaddr);
8276 *p++ = ',';
8277 p += hexnumstr (p, (ULONGEST) todo_units);
8278 *p = '\0';
8279 putpkt (rs->buf);
8280 getpkt (&rs->buf, &rs->buf_size, 0);
8281 if (rs->buf[0] == 'E'
8282 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8283 && rs->buf[3] == '\0')
8284 return TARGET_XFER_E_IO;
8285 /* Reply describes memory byte by byte, each byte encoded as two hex
8286 characters. */
8287 p = rs->buf;
8288 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8289 /* Return what we have. Let higher layers handle partial reads. */
8290 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8291 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8292 }
8293
8294 /* Using the set of read-only target sections of remote, read live
8295 read-only memory.
8296
8297 For interface/parameters/return description see target.h,
8298 to_xfer_partial. */
8299
8300 static enum target_xfer_status
8301 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8302 ULONGEST memaddr, ULONGEST len,
8303 int unit_size, ULONGEST *xfered_len)
8304 {
8305 struct target_section *secp;
8306 struct target_section_table *table;
8307
8308 secp = target_section_by_addr (ops, memaddr);
8309 if (secp != NULL
8310 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8311 secp->the_bfd_section)
8312 & SEC_READONLY))
8313 {
8314 struct target_section *p;
8315 ULONGEST memend = memaddr + len;
8316
8317 table = target_get_section_table (ops);
8318
8319 for (p = table->sections; p < table->sections_end; p++)
8320 {
8321 if (memaddr >= p->addr)
8322 {
8323 if (memend <= p->endaddr)
8324 {
8325 /* Entire transfer is within this section. */
8326 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8327 xfered_len);
8328 }
8329 else if (memaddr >= p->endaddr)
8330 {
8331 /* This section ends before the transfer starts. */
8332 continue;
8333 }
8334 else
8335 {
8336 /* This section overlaps the transfer. Just do half. */
8337 len = p->endaddr - memaddr;
8338 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8339 xfered_len);
8340 }
8341 }
8342 }
8343 }
8344
8345 return TARGET_XFER_EOF;
8346 }
8347
8348 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8349 first if the requested memory is unavailable in traceframe.
8350 Otherwise, fall back to remote_read_bytes_1. */
8351
8352 static enum target_xfer_status
8353 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8354 gdb_byte *myaddr, ULONGEST len, int unit_size,
8355 ULONGEST *xfered_len)
8356 {
8357 if (len == 0)
8358 return TARGET_XFER_EOF;
8359
8360 if (get_traceframe_number () != -1)
8361 {
8362 std::vector<mem_range> available;
8363
8364 /* If we fail to get the set of available memory, then the
8365 target does not support querying traceframe info, and so we
8366 attempt reading from the traceframe anyway (assuming the
8367 target implements the old QTro packet then). */
8368 if (traceframe_available_memory (&available, memaddr, len))
8369 {
8370 if (available.empty () || available[0].start != memaddr)
8371 {
8372 enum target_xfer_status res;
8373
8374 /* Don't read into the traceframe's available
8375 memory. */
8376 if (!available.empty ())
8377 {
8378 LONGEST oldlen = len;
8379
8380 len = available[0].start - memaddr;
8381 gdb_assert (len <= oldlen);
8382 }
8383
8384 /* This goes through the topmost target again. */
8385 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8386 len, unit_size, xfered_len);
8387 if (res == TARGET_XFER_OK)
8388 return TARGET_XFER_OK;
8389 else
8390 {
8391 /* No use trying further, we know some memory starting
8392 at MEMADDR isn't available. */
8393 *xfered_len = len;
8394 return (*xfered_len != 0) ?
8395 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8396 }
8397 }
8398
8399 /* Don't try to read more than how much is available, in
8400 case the target implements the deprecated QTro packet to
8401 cater for older GDBs (the target's knowledge of read-only
8402 sections may be outdated by now). */
8403 len = available[0].length;
8404 }
8405 }
8406
8407 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8408 }
8409
8410 \f
8411
8412 /* Sends a packet with content determined by the printf format string
8413 FORMAT and the remaining arguments, then gets the reply. Returns
8414 whether the packet was a success, a failure, or unknown. */
8415
8416 static enum packet_result remote_send_printf (const char *format, ...)
8417 ATTRIBUTE_PRINTF (1, 2);
8418
8419 static enum packet_result
8420 remote_send_printf (const char *format, ...)
8421 {
8422 struct remote_state *rs = get_remote_state ();
8423 int max_size = get_remote_packet_size ();
8424 va_list ap;
8425
8426 va_start (ap, format);
8427
8428 rs->buf[0] = '\0';
8429 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8430 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8431
8432 if (putpkt (rs->buf) < 0)
8433 error (_("Communication problem with target."));
8434
8435 rs->buf[0] = '\0';
8436 getpkt (&rs->buf, &rs->buf_size, 0);
8437
8438 return packet_check_result (rs->buf);
8439 }
8440
8441 /* Flash writing can take quite some time. We'll set
8442 effectively infinite timeout for flash operations.
8443 In future, we'll need to decide on a better approach. */
8444 static const int remote_flash_timeout = 1000;
8445
8446 static void
8447 remote_flash_erase (struct target_ops *ops,
8448 ULONGEST address, LONGEST length)
8449 {
8450 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8451 enum packet_result ret;
8452 scoped_restore restore_timeout
8453 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8454
8455 ret = remote_send_printf ("vFlashErase:%s,%s",
8456 phex (address, addr_size),
8457 phex (length, 4));
8458 switch (ret)
8459 {
8460 case PACKET_UNKNOWN:
8461 error (_("Remote target does not support flash erase"));
8462 case PACKET_ERROR:
8463 error (_("Error erasing flash with vFlashErase packet"));
8464 default:
8465 break;
8466 }
8467 }
8468
8469 static enum target_xfer_status
8470 remote_flash_write (struct target_ops *ops, ULONGEST address,
8471 ULONGEST length, ULONGEST *xfered_len,
8472 const gdb_byte *data)
8473 {
8474 scoped_restore restore_timeout
8475 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8476 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8477 xfered_len,'X', 0);
8478 }
8479
8480 static void
8481 remote_flash_done (struct target_ops *ops)
8482 {
8483 int ret;
8484
8485 scoped_restore restore_timeout
8486 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8487
8488 ret = remote_send_printf ("vFlashDone");
8489
8490 switch (ret)
8491 {
8492 case PACKET_UNKNOWN:
8493 error (_("Remote target does not support vFlashDone"));
8494 case PACKET_ERROR:
8495 error (_("Error finishing flash operation"));
8496 default:
8497 break;
8498 }
8499 }
8500
8501 static void
8502 remote_files_info (struct target_ops *ignore)
8503 {
8504 puts_filtered ("Debugging a target over a serial line.\n");
8505 }
8506 \f
8507 /* Stuff for dealing with the packets which are part of this protocol.
8508 See comment at top of file for details. */
8509
8510 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8511 error to higher layers. Called when a serial error is detected.
8512 The exception message is STRING, followed by a colon and a blank,
8513 the system error message for errno at function entry and final dot
8514 for output compatibility with throw_perror_with_name. */
8515
8516 static void
8517 unpush_and_perror (const char *string)
8518 {
8519 int saved_errno = errno;
8520
8521 remote_unpush_target ();
8522 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8523 safe_strerror (saved_errno));
8524 }
8525
8526 /* Read a single character from the remote end. The current quit
8527 handler is overridden to avoid quitting in the middle of packet
8528 sequence, as that would break communication with the remote server.
8529 See remote_serial_quit_handler for more detail. */
8530
8531 static int
8532 readchar (int timeout)
8533 {
8534 int ch;
8535 struct remote_state *rs = get_remote_state ();
8536
8537 {
8538 scoped_restore restore_quit
8539 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8540
8541 rs->got_ctrlc_during_io = 0;
8542
8543 ch = serial_readchar (rs->remote_desc, timeout);
8544
8545 if (rs->got_ctrlc_during_io)
8546 set_quit_flag ();
8547 }
8548
8549 if (ch >= 0)
8550 return ch;
8551
8552 switch ((enum serial_rc) ch)
8553 {
8554 case SERIAL_EOF:
8555 remote_unpush_target ();
8556 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8557 /* no return */
8558 case SERIAL_ERROR:
8559 unpush_and_perror (_("Remote communication error. "
8560 "Target disconnected."));
8561 /* no return */
8562 case SERIAL_TIMEOUT:
8563 break;
8564 }
8565 return ch;
8566 }
8567
8568 /* Wrapper for serial_write that closes the target and throws if
8569 writing fails. The current quit handler is overridden to avoid
8570 quitting in the middle of packet sequence, as that would break
8571 communication with the remote server. See
8572 remote_serial_quit_handler for more detail. */
8573
8574 static void
8575 remote_serial_write (const char *str, int len)
8576 {
8577 struct remote_state *rs = get_remote_state ();
8578
8579 scoped_restore restore_quit
8580 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8581
8582 rs->got_ctrlc_during_io = 0;
8583
8584 if (serial_write (rs->remote_desc, str, len))
8585 {
8586 unpush_and_perror (_("Remote communication error. "
8587 "Target disconnected."));
8588 }
8589
8590 if (rs->got_ctrlc_during_io)
8591 set_quit_flag ();
8592 }
8593
8594 /* Send the command in *BUF to the remote machine, and read the reply
8595 into *BUF. Report an error if we get an error reply. Resize
8596 *BUF using xrealloc if necessary to hold the result, and update
8597 *SIZEOF_BUF. */
8598
8599 static void
8600 remote_send (char **buf,
8601 long *sizeof_buf)
8602 {
8603 putpkt (*buf);
8604 getpkt (buf, sizeof_buf, 0);
8605
8606 if ((*buf)[0] == 'E')
8607 error (_("Remote failure reply: %s"), *buf);
8608 }
8609
8610 /* Return a string representing an escaped version of BUF, of len N.
8611 E.g. \n is converted to \\n, \t to \\t, etc. */
8612
8613 static std::string
8614 escape_buffer (const char *buf, int n)
8615 {
8616 string_file stb;
8617
8618 stb.putstrn (buf, n, '\\');
8619 return std::move (stb.string ());
8620 }
8621
8622 /* Display a null-terminated packet on stdout, for debugging, using C
8623 string notation. */
8624
8625 static void
8626 print_packet (const char *buf)
8627 {
8628 puts_filtered ("\"");
8629 fputstr_filtered (buf, '"', gdb_stdout);
8630 puts_filtered ("\"");
8631 }
8632
8633 int
8634 putpkt (const char *buf)
8635 {
8636 return putpkt_binary (buf, strlen (buf));
8637 }
8638
8639 /* Send a packet to the remote machine, with error checking. The data
8640 of the packet is in BUF. The string in BUF can be at most
8641 get_remote_packet_size () - 5 to account for the $, # and checksum,
8642 and for a possible /0 if we are debugging (remote_debug) and want
8643 to print the sent packet as a string. */
8644
8645 static int
8646 putpkt_binary (const char *buf, int cnt)
8647 {
8648 struct remote_state *rs = get_remote_state ();
8649 int i;
8650 unsigned char csum = 0;
8651 gdb::def_vector<char> data (cnt + 6);
8652 char *buf2 = data.data ();
8653
8654 int ch;
8655 int tcount = 0;
8656 char *p;
8657
8658 /* Catch cases like trying to read memory or listing threads while
8659 we're waiting for a stop reply. The remote server wouldn't be
8660 ready to handle this request, so we'd hang and timeout. We don't
8661 have to worry about this in synchronous mode, because in that
8662 case it's not possible to issue a command while the target is
8663 running. This is not a problem in non-stop mode, because in that
8664 case, the stub is always ready to process serial input. */
8665 if (!target_is_non_stop_p ()
8666 && target_is_async_p ()
8667 && rs->waiting_for_stop_reply)
8668 {
8669 error (_("Cannot execute this command while the target is running.\n"
8670 "Use the \"interrupt\" command to stop the target\n"
8671 "and then try again."));
8672 }
8673
8674 /* We're sending out a new packet. Make sure we don't look at a
8675 stale cached response. */
8676 rs->cached_wait_status = 0;
8677
8678 /* Copy the packet into buffer BUF2, encapsulating it
8679 and giving it a checksum. */
8680
8681 p = buf2;
8682 *p++ = '$';
8683
8684 for (i = 0; i < cnt; i++)
8685 {
8686 csum += buf[i];
8687 *p++ = buf[i];
8688 }
8689 *p++ = '#';
8690 *p++ = tohex ((csum >> 4) & 0xf);
8691 *p++ = tohex (csum & 0xf);
8692
8693 /* Send it over and over until we get a positive ack. */
8694
8695 while (1)
8696 {
8697 int started_error_output = 0;
8698
8699 if (remote_debug)
8700 {
8701 *p = '\0';
8702
8703 int len = (int) (p - buf2);
8704
8705 std::string str
8706 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
8707
8708 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
8709
8710 if (len > REMOTE_DEBUG_MAX_CHAR)
8711 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
8712 len - REMOTE_DEBUG_MAX_CHAR);
8713
8714 fprintf_unfiltered (gdb_stdlog, "...");
8715
8716 gdb_flush (gdb_stdlog);
8717 }
8718 remote_serial_write (buf2, p - buf2);
8719
8720 /* If this is a no acks version of the remote protocol, send the
8721 packet and move on. */
8722 if (rs->noack_mode)
8723 break;
8724
8725 /* Read until either a timeout occurs (-2) or '+' is read.
8726 Handle any notification that arrives in the mean time. */
8727 while (1)
8728 {
8729 ch = readchar (remote_timeout);
8730
8731 if (remote_debug)
8732 {
8733 switch (ch)
8734 {
8735 case '+':
8736 case '-':
8737 case SERIAL_TIMEOUT:
8738 case '$':
8739 case '%':
8740 if (started_error_output)
8741 {
8742 putchar_unfiltered ('\n');
8743 started_error_output = 0;
8744 }
8745 }
8746 }
8747
8748 switch (ch)
8749 {
8750 case '+':
8751 if (remote_debug)
8752 fprintf_unfiltered (gdb_stdlog, "Ack\n");
8753 return 1;
8754 case '-':
8755 if (remote_debug)
8756 fprintf_unfiltered (gdb_stdlog, "Nak\n");
8757 /* FALLTHROUGH */
8758 case SERIAL_TIMEOUT:
8759 tcount++;
8760 if (tcount > 3)
8761 return 0;
8762 break; /* Retransmit buffer. */
8763 case '$':
8764 {
8765 if (remote_debug)
8766 fprintf_unfiltered (gdb_stdlog,
8767 "Packet instead of Ack, ignoring it\n");
8768 /* It's probably an old response sent because an ACK
8769 was lost. Gobble up the packet and ack it so it
8770 doesn't get retransmitted when we resend this
8771 packet. */
8772 skip_frame ();
8773 remote_serial_write ("+", 1);
8774 continue; /* Now, go look for +. */
8775 }
8776
8777 case '%':
8778 {
8779 int val;
8780
8781 /* If we got a notification, handle it, and go back to looking
8782 for an ack. */
8783 /* We've found the start of a notification. Now
8784 collect the data. */
8785 val = read_frame (&rs->buf, &rs->buf_size);
8786 if (val >= 0)
8787 {
8788 if (remote_debug)
8789 {
8790 std::string str = escape_buffer (rs->buf, val);
8791
8792 fprintf_unfiltered (gdb_stdlog,
8793 " Notification received: %s\n",
8794 str.c_str ());
8795 }
8796 handle_notification (rs->notif_state, rs->buf);
8797 /* We're in sync now, rewait for the ack. */
8798 tcount = 0;
8799 }
8800 else
8801 {
8802 if (remote_debug)
8803 {
8804 if (!started_error_output)
8805 {
8806 started_error_output = 1;
8807 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8808 }
8809 fputc_unfiltered (ch & 0177, gdb_stdlog);
8810 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
8811 }
8812 }
8813 continue;
8814 }
8815 /* fall-through */
8816 default:
8817 if (remote_debug)
8818 {
8819 if (!started_error_output)
8820 {
8821 started_error_output = 1;
8822 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8823 }
8824 fputc_unfiltered (ch & 0177, gdb_stdlog);
8825 }
8826 continue;
8827 }
8828 break; /* Here to retransmit. */
8829 }
8830
8831 #if 0
8832 /* This is wrong. If doing a long backtrace, the user should be
8833 able to get out next time we call QUIT, without anything as
8834 violent as interrupt_query. If we want to provide a way out of
8835 here without getting to the next QUIT, it should be based on
8836 hitting ^C twice as in remote_wait. */
8837 if (quit_flag)
8838 {
8839 quit_flag = 0;
8840 interrupt_query ();
8841 }
8842 #endif
8843 }
8844
8845 return 0;
8846 }
8847
8848 /* Come here after finding the start of a frame when we expected an
8849 ack. Do our best to discard the rest of this packet. */
8850
8851 static void
8852 skip_frame (void)
8853 {
8854 int c;
8855
8856 while (1)
8857 {
8858 c = readchar (remote_timeout);
8859 switch (c)
8860 {
8861 case SERIAL_TIMEOUT:
8862 /* Nothing we can do. */
8863 return;
8864 case '#':
8865 /* Discard the two bytes of checksum and stop. */
8866 c = readchar (remote_timeout);
8867 if (c >= 0)
8868 c = readchar (remote_timeout);
8869
8870 return;
8871 case '*': /* Run length encoding. */
8872 /* Discard the repeat count. */
8873 c = readchar (remote_timeout);
8874 if (c < 0)
8875 return;
8876 break;
8877 default:
8878 /* A regular character. */
8879 break;
8880 }
8881 }
8882 }
8883
8884 /* Come here after finding the start of the frame. Collect the rest
8885 into *BUF, verifying the checksum, length, and handling run-length
8886 compression. NUL terminate the buffer. If there is not enough room,
8887 expand *BUF using xrealloc.
8888
8889 Returns -1 on error, number of characters in buffer (ignoring the
8890 trailing NULL) on success. (could be extended to return one of the
8891 SERIAL status indications). */
8892
8893 static long
8894 read_frame (char **buf_p,
8895 long *sizeof_buf)
8896 {
8897 unsigned char csum;
8898 long bc;
8899 int c;
8900 char *buf = *buf_p;
8901 struct remote_state *rs = get_remote_state ();
8902
8903 csum = 0;
8904 bc = 0;
8905
8906 while (1)
8907 {
8908 c = readchar (remote_timeout);
8909 switch (c)
8910 {
8911 case SERIAL_TIMEOUT:
8912 if (remote_debug)
8913 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
8914 return -1;
8915 case '$':
8916 if (remote_debug)
8917 fputs_filtered ("Saw new packet start in middle of old one\n",
8918 gdb_stdlog);
8919 return -1; /* Start a new packet, count retries. */
8920 case '#':
8921 {
8922 unsigned char pktcsum;
8923 int check_0 = 0;
8924 int check_1 = 0;
8925
8926 buf[bc] = '\0';
8927
8928 check_0 = readchar (remote_timeout);
8929 if (check_0 >= 0)
8930 check_1 = readchar (remote_timeout);
8931
8932 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
8933 {
8934 if (remote_debug)
8935 fputs_filtered ("Timeout in checksum, retrying\n",
8936 gdb_stdlog);
8937 return -1;
8938 }
8939 else if (check_0 < 0 || check_1 < 0)
8940 {
8941 if (remote_debug)
8942 fputs_filtered ("Communication error in checksum\n",
8943 gdb_stdlog);
8944 return -1;
8945 }
8946
8947 /* Don't recompute the checksum; with no ack packets we
8948 don't have any way to indicate a packet retransmission
8949 is necessary. */
8950 if (rs->noack_mode)
8951 return bc;
8952
8953 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
8954 if (csum == pktcsum)
8955 return bc;
8956
8957 if (remote_debug)
8958 {
8959 std::string str = escape_buffer (buf, bc);
8960
8961 fprintf_unfiltered (gdb_stdlog,
8962 "Bad checksum, sentsum=0x%x, "
8963 "csum=0x%x, buf=%s\n",
8964 pktcsum, csum, str.c_str ());
8965 }
8966 /* Number of characters in buffer ignoring trailing
8967 NULL. */
8968 return -1;
8969 }
8970 case '*': /* Run length encoding. */
8971 {
8972 int repeat;
8973
8974 csum += c;
8975 c = readchar (remote_timeout);
8976 csum += c;
8977 repeat = c - ' ' + 3; /* Compute repeat count. */
8978
8979 /* The character before ``*'' is repeated. */
8980
8981 if (repeat > 0 && repeat <= 255 && bc > 0)
8982 {
8983 if (bc + repeat - 1 >= *sizeof_buf - 1)
8984 {
8985 /* Make some more room in the buffer. */
8986 *sizeof_buf += repeat;
8987 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
8988 buf = *buf_p;
8989 }
8990
8991 memset (&buf[bc], buf[bc - 1], repeat);
8992 bc += repeat;
8993 continue;
8994 }
8995
8996 buf[bc] = '\0';
8997 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
8998 return -1;
8999 }
9000 default:
9001 if (bc >= *sizeof_buf - 1)
9002 {
9003 /* Make some more room in the buffer. */
9004 *sizeof_buf *= 2;
9005 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9006 buf = *buf_p;
9007 }
9008
9009 buf[bc++] = c;
9010 csum += c;
9011 continue;
9012 }
9013 }
9014 }
9015
9016 /* Read a packet from the remote machine, with error checking, and
9017 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9018 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9019 rather than timing out; this is used (in synchronous mode) to wait
9020 for a target that is is executing user code to stop. */
9021 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9022 don't have to change all the calls to getpkt to deal with the
9023 return value, because at the moment I don't know what the right
9024 thing to do it for those. */
9025 void
9026 getpkt (char **buf,
9027 long *sizeof_buf,
9028 int forever)
9029 {
9030 getpkt_sane (buf, sizeof_buf, forever);
9031 }
9032
9033
9034 /* Read a packet from the remote machine, with error checking, and
9035 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9036 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9037 rather than timing out; this is used (in synchronous mode) to wait
9038 for a target that is is executing user code to stop. If FOREVER ==
9039 0, this function is allowed to time out gracefully and return an
9040 indication of this to the caller. Otherwise return the number of
9041 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9042 enough reason to return to the caller. *IS_NOTIF is an output
9043 boolean that indicates whether *BUF holds a notification or not
9044 (a regular packet). */
9045
9046 static int
9047 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9048 int expecting_notif, int *is_notif)
9049 {
9050 struct remote_state *rs = get_remote_state ();
9051 int c;
9052 int tries;
9053 int timeout;
9054 int val = -1;
9055
9056 /* We're reading a new response. Make sure we don't look at a
9057 previously cached response. */
9058 rs->cached_wait_status = 0;
9059
9060 strcpy (*buf, "timeout");
9061
9062 if (forever)
9063 timeout = watchdog > 0 ? watchdog : -1;
9064 else if (expecting_notif)
9065 timeout = 0; /* There should already be a char in the buffer. If
9066 not, bail out. */
9067 else
9068 timeout = remote_timeout;
9069
9070 #define MAX_TRIES 3
9071
9072 /* Process any number of notifications, and then return when
9073 we get a packet. */
9074 for (;;)
9075 {
9076 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9077 times. */
9078 for (tries = 1; tries <= MAX_TRIES; tries++)
9079 {
9080 /* This can loop forever if the remote side sends us
9081 characters continuously, but if it pauses, we'll get
9082 SERIAL_TIMEOUT from readchar because of timeout. Then
9083 we'll count that as a retry.
9084
9085 Note that even when forever is set, we will only wait
9086 forever prior to the start of a packet. After that, we
9087 expect characters to arrive at a brisk pace. They should
9088 show up within remote_timeout intervals. */
9089 do
9090 c = readchar (timeout);
9091 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9092
9093 if (c == SERIAL_TIMEOUT)
9094 {
9095 if (expecting_notif)
9096 return -1; /* Don't complain, it's normal to not get
9097 anything in this case. */
9098
9099 if (forever) /* Watchdog went off? Kill the target. */
9100 {
9101 remote_unpush_target ();
9102 throw_error (TARGET_CLOSE_ERROR,
9103 _("Watchdog timeout has expired. "
9104 "Target detached."));
9105 }
9106 if (remote_debug)
9107 fputs_filtered ("Timed out.\n", gdb_stdlog);
9108 }
9109 else
9110 {
9111 /* We've found the start of a packet or notification.
9112 Now collect the data. */
9113 val = read_frame (buf, sizeof_buf);
9114 if (val >= 0)
9115 break;
9116 }
9117
9118 remote_serial_write ("-", 1);
9119 }
9120
9121 if (tries > MAX_TRIES)
9122 {
9123 /* We have tried hard enough, and just can't receive the
9124 packet/notification. Give up. */
9125 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9126
9127 /* Skip the ack char if we're in no-ack mode. */
9128 if (!rs->noack_mode)
9129 remote_serial_write ("+", 1);
9130 return -1;
9131 }
9132
9133 /* If we got an ordinary packet, return that to our caller. */
9134 if (c == '$')
9135 {
9136 if (remote_debug)
9137 {
9138 std::string str
9139 = escape_buffer (*buf,
9140 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9141
9142 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9143 str.c_str ());
9144
9145 if (val > REMOTE_DEBUG_MAX_CHAR)
9146 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9147 val - REMOTE_DEBUG_MAX_CHAR);
9148
9149 fprintf_unfiltered (gdb_stdlog, "\n");
9150 }
9151
9152 /* Skip the ack char if we're in no-ack mode. */
9153 if (!rs->noack_mode)
9154 remote_serial_write ("+", 1);
9155 if (is_notif != NULL)
9156 *is_notif = 0;
9157 return val;
9158 }
9159
9160 /* If we got a notification, handle it, and go back to looking
9161 for a packet. */
9162 else
9163 {
9164 gdb_assert (c == '%');
9165
9166 if (remote_debug)
9167 {
9168 std::string str = escape_buffer (*buf, val);
9169
9170 fprintf_unfiltered (gdb_stdlog,
9171 " Notification received: %s\n",
9172 str.c_str ());
9173 }
9174 if (is_notif != NULL)
9175 *is_notif = 1;
9176
9177 handle_notification (rs->notif_state, *buf);
9178
9179 /* Notifications require no acknowledgement. */
9180
9181 if (expecting_notif)
9182 return val;
9183 }
9184 }
9185 }
9186
9187 static int
9188 getpkt_sane (char **buf, long *sizeof_buf, int forever)
9189 {
9190 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9191 }
9192
9193 static int
9194 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9195 int *is_notif)
9196 {
9197 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9198 is_notif);
9199 }
9200
9201 /* Check whether EVENT is a fork event for the process specified
9202 by the pid passed in DATA, and if it is, kill the fork child. */
9203
9204 static int
9205 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9206 QUEUE_ITER (stop_reply_p) *iter,
9207 stop_reply_p event,
9208 void *data)
9209 {
9210 struct queue_iter_param *param = (struct queue_iter_param *) data;
9211 int parent_pid = *(int *) param->input;
9212
9213 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9214 {
9215 struct remote_state *rs = get_remote_state ();
9216 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9217 int res;
9218
9219 res = remote_vkill (child_pid, rs);
9220 if (res != 0)
9221 error (_("Can't kill fork child process %d"), child_pid);
9222 }
9223
9224 return 1;
9225 }
9226
9227 /* Kill any new fork children of process PID that haven't been
9228 processed by follow_fork. */
9229
9230 static void
9231 kill_new_fork_children (int pid, struct remote_state *rs)
9232 {
9233 struct thread_info *thread;
9234 struct notif_client *notif = &notif_client_stop;
9235 struct queue_iter_param param;
9236
9237 /* Kill the fork child threads of any threads in process PID
9238 that are stopped at a fork event. */
9239 ALL_NON_EXITED_THREADS (thread)
9240 {
9241 struct target_waitstatus *ws = &thread->pending_follow;
9242
9243 if (is_pending_fork_parent (ws, pid, thread->ptid))
9244 {
9245 struct remote_state *rs = get_remote_state ();
9246 int child_pid = ptid_get_pid (ws->value.related_pid);
9247 int res;
9248
9249 res = remote_vkill (child_pid, rs);
9250 if (res != 0)
9251 error (_("Can't kill fork child process %d"), child_pid);
9252 }
9253 }
9254
9255 /* Check for any pending fork events (not reported or processed yet)
9256 in process PID and kill those fork child threads as well. */
9257 remote_notif_get_pending_events (notif);
9258 param.input = &pid;
9259 param.output = NULL;
9260 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9261 kill_child_of_pending_fork, &param);
9262 }
9263
9264 \f
9265 /* Target hook to kill the current inferior. */
9266
9267 static void
9268 remote_kill (struct target_ops *ops)
9269 {
9270 int res = -1;
9271 int pid = ptid_get_pid (inferior_ptid);
9272 struct remote_state *rs = get_remote_state ();
9273
9274 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9275 {
9276 /* If we're stopped while forking and we haven't followed yet,
9277 kill the child task. We need to do this before killing the
9278 parent task because if this is a vfork then the parent will
9279 be sleeping. */
9280 kill_new_fork_children (pid, rs);
9281
9282 res = remote_vkill (pid, rs);
9283 if (res == 0)
9284 {
9285 target_mourn_inferior (inferior_ptid);
9286 return;
9287 }
9288 }
9289
9290 /* If we are in 'target remote' mode and we are killing the only
9291 inferior, then we will tell gdbserver to exit and unpush the
9292 target. */
9293 if (res == -1 && !remote_multi_process_p (rs)
9294 && number_of_live_inferiors () == 1)
9295 {
9296 remote_kill_k ();
9297
9298 /* We've killed the remote end, we get to mourn it. If we are
9299 not in extended mode, mourning the inferior also unpushes
9300 remote_ops from the target stack, which closes the remote
9301 connection. */
9302 target_mourn_inferior (inferior_ptid);
9303
9304 return;
9305 }
9306
9307 error (_("Can't kill process"));
9308 }
9309
9310 /* Send a kill request to the target using the 'vKill' packet. */
9311
9312 static int
9313 remote_vkill (int pid, struct remote_state *rs)
9314 {
9315 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9316 return -1;
9317
9318 /* Tell the remote target to detach. */
9319 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9320 putpkt (rs->buf);
9321 getpkt (&rs->buf, &rs->buf_size, 0);
9322
9323 switch (packet_ok (rs->buf,
9324 &remote_protocol_packets[PACKET_vKill]))
9325 {
9326 case PACKET_OK:
9327 return 0;
9328 case PACKET_ERROR:
9329 return 1;
9330 case PACKET_UNKNOWN:
9331 return -1;
9332 default:
9333 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9334 }
9335 }
9336
9337 /* Send a kill request to the target using the 'k' packet. */
9338
9339 static void
9340 remote_kill_k (void)
9341 {
9342 /* Catch errors so the user can quit from gdb even when we
9343 aren't on speaking terms with the remote system. */
9344 TRY
9345 {
9346 putpkt ("k");
9347 }
9348 CATCH (ex, RETURN_MASK_ERROR)
9349 {
9350 if (ex.error == TARGET_CLOSE_ERROR)
9351 {
9352 /* If we got an (EOF) error that caused the target
9353 to go away, then we're done, that's what we wanted.
9354 "k" is susceptible to cause a premature EOF, given
9355 that the remote server isn't actually required to
9356 reply to "k", and it can happen that it doesn't
9357 even get to reply ACK to the "k". */
9358 return;
9359 }
9360
9361 /* Otherwise, something went wrong. We didn't actually kill
9362 the target. Just propagate the exception, and let the
9363 user or higher layers decide what to do. */
9364 throw_exception (ex);
9365 }
9366 END_CATCH
9367 }
9368
9369 static void
9370 remote_mourn (struct target_ops *target)
9371 {
9372 struct remote_state *rs = get_remote_state ();
9373
9374 /* In 'target remote' mode with one inferior, we close the connection. */
9375 if (!rs->extended && number_of_live_inferiors () <= 1)
9376 {
9377 unpush_target (target);
9378
9379 /* remote_close takes care of doing most of the clean up. */
9380 generic_mourn_inferior ();
9381 return;
9382 }
9383
9384 /* In case we got here due to an error, but we're going to stay
9385 connected. */
9386 rs->waiting_for_stop_reply = 0;
9387
9388 /* If the current general thread belonged to the process we just
9389 detached from or has exited, the remote side current general
9390 thread becomes undefined. Considering a case like this:
9391
9392 - We just got here due to a detach.
9393 - The process that we're detaching from happens to immediately
9394 report a global breakpoint being hit in non-stop mode, in the
9395 same thread we had selected before.
9396 - GDB attaches to this process again.
9397 - This event happens to be the next event we handle.
9398
9399 GDB would consider that the current general thread didn't need to
9400 be set on the stub side (with Hg), since for all it knew,
9401 GENERAL_THREAD hadn't changed.
9402
9403 Notice that although in all-stop mode, the remote server always
9404 sets the current thread to the thread reporting the stop event,
9405 that doesn't happen in non-stop mode; in non-stop, the stub *must
9406 not* change the current thread when reporting a breakpoint hit,
9407 due to the decoupling of event reporting and event handling.
9408
9409 To keep things simple, we always invalidate our notion of the
9410 current thread. */
9411 record_currthread (rs, minus_one_ptid);
9412
9413 /* Call common code to mark the inferior as not running. */
9414 generic_mourn_inferior ();
9415
9416 if (!have_inferiors ())
9417 {
9418 if (!remote_multi_process_p (rs))
9419 {
9420 /* Check whether the target is running now - some remote stubs
9421 automatically restart after kill. */
9422 putpkt ("?");
9423 getpkt (&rs->buf, &rs->buf_size, 0);
9424
9425 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9426 {
9427 /* Assume that the target has been restarted. Set
9428 inferior_ptid so that bits of core GDB realizes
9429 there's something here, e.g., so that the user can
9430 say "kill" again. */
9431 inferior_ptid = magic_null_ptid;
9432 }
9433 }
9434 }
9435 }
9436
9437 static int
9438 extended_remote_supports_disable_randomization (struct target_ops *self)
9439 {
9440 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9441 }
9442
9443 static void
9444 extended_remote_disable_randomization (int val)
9445 {
9446 struct remote_state *rs = get_remote_state ();
9447 char *reply;
9448
9449 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9450 val);
9451 putpkt (rs->buf);
9452 reply = remote_get_noisy_reply ();
9453 if (*reply == '\0')
9454 error (_("Target does not support QDisableRandomization."));
9455 if (strcmp (reply, "OK") != 0)
9456 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9457 }
9458
9459 static int
9460 extended_remote_run (const std::string &args)
9461 {
9462 struct remote_state *rs = get_remote_state ();
9463 int len;
9464 const char *remote_exec_file = get_remote_exec_file ();
9465
9466 /* If the user has disabled vRun support, or we have detected that
9467 support is not available, do not try it. */
9468 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9469 return -1;
9470
9471 strcpy (rs->buf, "vRun;");
9472 len = strlen (rs->buf);
9473
9474 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9475 error (_("Remote file name too long for run packet"));
9476 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9477 strlen (remote_exec_file));
9478
9479 if (!args.empty ())
9480 {
9481 int i;
9482
9483 gdb_argv argv (args.c_str ());
9484 for (i = 0; argv[i] != NULL; i++)
9485 {
9486 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9487 error (_("Argument list too long for run packet"));
9488 rs->buf[len++] = ';';
9489 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9490 strlen (argv[i]));
9491 }
9492 }
9493
9494 rs->buf[len++] = '\0';
9495
9496 putpkt (rs->buf);
9497 getpkt (&rs->buf, &rs->buf_size, 0);
9498
9499 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9500 {
9501 case PACKET_OK:
9502 /* We have a wait response. All is well. */
9503 return 0;
9504 case PACKET_UNKNOWN:
9505 return -1;
9506 case PACKET_ERROR:
9507 if (remote_exec_file[0] == '\0')
9508 error (_("Running the default executable on the remote target failed; "
9509 "try \"set remote exec-file\"?"));
9510 else
9511 error (_("Running \"%s\" on the remote target failed"),
9512 remote_exec_file);
9513 default:
9514 gdb_assert_not_reached (_("bad switch"));
9515 }
9516 }
9517
9518 /* Helper function to send set/unset environment packets. ACTION is
9519 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9520 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9521 sent. */
9522
9523 static void
9524 send_environment_packet (struct remote_state *rs,
9525 const char *action,
9526 const char *packet,
9527 const char *value)
9528 {
9529 /* Convert the environment variable to an hex string, which
9530 is the best format to be transmitted over the wire. */
9531 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9532 strlen (value));
9533
9534 xsnprintf (rs->buf, get_remote_packet_size (),
9535 "%s:%s", packet, encoded_value.c_str ());
9536
9537 putpkt (rs->buf);
9538 getpkt (&rs->buf, &rs->buf_size, 0);
9539 if (strcmp (rs->buf, "OK") != 0)
9540 warning (_("Unable to %s environment variable '%s' on remote."),
9541 action, value);
9542 }
9543
9544 /* Helper function to handle the QEnvironment* packets. */
9545
9546 static void
9547 extended_remote_environment_support (struct remote_state *rs)
9548 {
9549 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9550 {
9551 putpkt ("QEnvironmentReset");
9552 getpkt (&rs->buf, &rs->buf_size, 0);
9553 if (strcmp (rs->buf, "OK") != 0)
9554 warning (_("Unable to reset environment on remote."));
9555 }
9556
9557 gdb_environ *e = &current_inferior ()->environment;
9558
9559 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9560 for (const std::string &el : e->user_set_env ())
9561 send_environment_packet (rs, "set", "QEnvironmentHexEncoded",
9562 el.c_str ());
9563
9564 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9565 for (const std::string &el : e->user_unset_env ())
9566 send_environment_packet (rs, "unset", "QEnvironmentUnset", el.c_str ());
9567 }
9568
9569 /* Helper function to set the current working directory for the
9570 inferior in the remote target. */
9571
9572 static void
9573 extended_remote_set_inferior_cwd (struct remote_state *rs)
9574 {
9575 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
9576 {
9577 const char *inferior_cwd = get_inferior_cwd ();
9578
9579 if (inferior_cwd != NULL)
9580 {
9581 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
9582 strlen (inferior_cwd));
9583
9584 xsnprintf (rs->buf, get_remote_packet_size (),
9585 "QSetWorkingDir:%s", hexpath.c_str ());
9586 }
9587 else
9588 {
9589 /* An empty inferior_cwd means that the user wants us to
9590 reset the remote server's inferior's cwd. */
9591 xsnprintf (rs->buf, get_remote_packet_size (),
9592 "QSetWorkingDir:");
9593 }
9594
9595 putpkt (rs->buf);
9596 getpkt (&rs->buf, &rs->buf_size, 0);
9597 if (packet_ok (rs->buf,
9598 &remote_protocol_packets[PACKET_QSetWorkingDir])
9599 != PACKET_OK)
9600 error (_("\
9601 Remote replied unexpectedly while setting the inferior's working\n\
9602 directory: %s"),
9603 rs->buf);
9604
9605 }
9606 }
9607
9608 /* In the extended protocol we want to be able to do things like
9609 "run" and have them basically work as expected. So we need
9610 a special create_inferior function. We support changing the
9611 executable file and the command line arguments, but not the
9612 environment. */
9613
9614 static void
9615 extended_remote_create_inferior (struct target_ops *ops,
9616 const char *exec_file,
9617 const std::string &args,
9618 char **env, int from_tty)
9619 {
9620 int run_worked;
9621 char *stop_reply;
9622 struct remote_state *rs = get_remote_state ();
9623 const char *remote_exec_file = get_remote_exec_file ();
9624
9625 /* If running asynchronously, register the target file descriptor
9626 with the event loop. */
9627 if (target_can_async_p ())
9628 target_async (1);
9629
9630 /* Disable address space randomization if requested (and supported). */
9631 if (extended_remote_supports_disable_randomization (ops))
9632 extended_remote_disable_randomization (disable_randomization);
9633
9634 /* If startup-with-shell is on, we inform gdbserver to start the
9635 remote inferior using a shell. */
9636 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
9637 {
9638 xsnprintf (rs->buf, get_remote_packet_size (),
9639 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
9640 putpkt (rs->buf);
9641 getpkt (&rs->buf, &rs->buf_size, 0);
9642 if (strcmp (rs->buf, "OK") != 0)
9643 error (_("\
9644 Remote replied unexpectedly while setting startup-with-shell: %s"),
9645 rs->buf);
9646 }
9647
9648 extended_remote_environment_support (rs);
9649
9650 extended_remote_set_inferior_cwd (rs);
9651
9652 /* Now restart the remote server. */
9653 run_worked = extended_remote_run (args) != -1;
9654 if (!run_worked)
9655 {
9656 /* vRun was not supported. Fail if we need it to do what the
9657 user requested. */
9658 if (remote_exec_file[0])
9659 error (_("Remote target does not support \"set remote exec-file\""));
9660 if (!args.empty ())
9661 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9662
9663 /* Fall back to "R". */
9664 extended_remote_restart ();
9665 }
9666
9667 if (!have_inferiors ())
9668 {
9669 /* Clean up from the last time we ran, before we mark the target
9670 running again. This will mark breakpoints uninserted, and
9671 get_offsets may insert breakpoints. */
9672 init_thread_list ();
9673 init_wait_for_inferior ();
9674 }
9675
9676 /* vRun's success return is a stop reply. */
9677 stop_reply = run_worked ? rs->buf : NULL;
9678 add_current_inferior_and_thread (stop_reply);
9679
9680 /* Get updated offsets, if the stub uses qOffsets. */
9681 get_offsets ();
9682 }
9683 \f
9684
9685 /* Given a location's target info BP_TGT and the packet buffer BUF, output
9686 the list of conditions (in agent expression bytecode format), if any, the
9687 target needs to evaluate. The output is placed into the packet buffer
9688 started from BUF and ended at BUF_END. */
9689
9690 static int
9691 remote_add_target_side_condition (struct gdbarch *gdbarch,
9692 struct bp_target_info *bp_tgt, char *buf,
9693 char *buf_end)
9694 {
9695 if (bp_tgt->conditions.empty ())
9696 return 0;
9697
9698 buf += strlen (buf);
9699 xsnprintf (buf, buf_end - buf, "%s", ";");
9700 buf++;
9701
9702 /* Send conditions to the target. */
9703 for (agent_expr *aexpr : bp_tgt->conditions)
9704 {
9705 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
9706 buf += strlen (buf);
9707 for (int i = 0; i < aexpr->len; ++i)
9708 buf = pack_hex_byte (buf, aexpr->buf[i]);
9709 *buf = '\0';
9710 }
9711 return 0;
9712 }
9713
9714 static void
9715 remote_add_target_side_commands (struct gdbarch *gdbarch,
9716 struct bp_target_info *bp_tgt, char *buf)
9717 {
9718 if (bp_tgt->tcommands.empty ())
9719 return;
9720
9721 buf += strlen (buf);
9722
9723 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
9724 buf += strlen (buf);
9725
9726 /* Concatenate all the agent expressions that are commands into the
9727 cmds parameter. */
9728 for (agent_expr *aexpr : bp_tgt->tcommands)
9729 {
9730 sprintf (buf, "X%x,", aexpr->len);
9731 buf += strlen (buf);
9732 for (int i = 0; i < aexpr->len; ++i)
9733 buf = pack_hex_byte (buf, aexpr->buf[i]);
9734 *buf = '\0';
9735 }
9736 }
9737
9738 /* Insert a breakpoint. On targets that have software breakpoint
9739 support, we ask the remote target to do the work; on targets
9740 which don't, we insert a traditional memory breakpoint. */
9741
9742 static int
9743 remote_insert_breakpoint (struct target_ops *ops,
9744 struct gdbarch *gdbarch,
9745 struct bp_target_info *bp_tgt)
9746 {
9747 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
9748 If it succeeds, then set the support to PACKET_ENABLE. If it
9749 fails, and the user has explicitly requested the Z support then
9750 report an error, otherwise, mark it disabled and go on. */
9751
9752 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9753 {
9754 CORE_ADDR addr = bp_tgt->reqstd_address;
9755 struct remote_state *rs;
9756 char *p, *endbuf;
9757
9758 /* Make sure the remote is pointing at the right process, if
9759 necessary. */
9760 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9761 set_general_process ();
9762
9763 rs = get_remote_state ();
9764 p = rs->buf;
9765 endbuf = rs->buf + get_remote_packet_size ();
9766
9767 *(p++) = 'Z';
9768 *(p++) = '0';
9769 *(p++) = ',';
9770 addr = (ULONGEST) remote_address_masked (addr);
9771 p += hexnumstr (p, addr);
9772 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9773
9774 if (remote_supports_cond_breakpoints (ops))
9775 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
9776
9777 if (remote_can_run_breakpoint_commands (ops))
9778 remote_add_target_side_commands (gdbarch, bp_tgt, p);
9779
9780 putpkt (rs->buf);
9781 getpkt (&rs->buf, &rs->buf_size, 0);
9782
9783 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
9784 {
9785 case PACKET_ERROR:
9786 return -1;
9787 case PACKET_OK:
9788 return 0;
9789 case PACKET_UNKNOWN:
9790 break;
9791 }
9792 }
9793
9794 /* If this breakpoint has target-side commands but this stub doesn't
9795 support Z0 packets, throw error. */
9796 if (!bp_tgt->tcommands.empty ())
9797 throw_error (NOT_SUPPORTED_ERROR, _("\
9798 Target doesn't support breakpoints that have target side commands."));
9799
9800 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
9801 }
9802
9803 static int
9804 remote_remove_breakpoint (struct target_ops *ops,
9805 struct gdbarch *gdbarch,
9806 struct bp_target_info *bp_tgt,
9807 enum remove_bp_reason reason)
9808 {
9809 CORE_ADDR addr = bp_tgt->placed_address;
9810 struct remote_state *rs = get_remote_state ();
9811
9812 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9813 {
9814 char *p = rs->buf;
9815 char *endbuf = rs->buf + get_remote_packet_size ();
9816
9817 /* Make sure the remote is pointing at the right process, if
9818 necessary. */
9819 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9820 set_general_process ();
9821
9822 *(p++) = 'z';
9823 *(p++) = '0';
9824 *(p++) = ',';
9825
9826 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
9827 p += hexnumstr (p, addr);
9828 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9829
9830 putpkt (rs->buf);
9831 getpkt (&rs->buf, &rs->buf_size, 0);
9832
9833 return (rs->buf[0] == 'E');
9834 }
9835
9836 return memory_remove_breakpoint (ops, gdbarch, bp_tgt, reason);
9837 }
9838
9839 static enum Z_packet_type
9840 watchpoint_to_Z_packet (int type)
9841 {
9842 switch (type)
9843 {
9844 case hw_write:
9845 return Z_PACKET_WRITE_WP;
9846 break;
9847 case hw_read:
9848 return Z_PACKET_READ_WP;
9849 break;
9850 case hw_access:
9851 return Z_PACKET_ACCESS_WP;
9852 break;
9853 default:
9854 internal_error (__FILE__, __LINE__,
9855 _("hw_bp_to_z: bad watchpoint type %d"), type);
9856 }
9857 }
9858
9859 static int
9860 remote_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9861 enum target_hw_bp_type type, struct expression *cond)
9862 {
9863 struct remote_state *rs = get_remote_state ();
9864 char *endbuf = rs->buf + get_remote_packet_size ();
9865 char *p;
9866 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9867
9868 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9869 return 1;
9870
9871 /* Make sure the remote is pointing at the right process, if
9872 necessary. */
9873 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9874 set_general_process ();
9875
9876 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
9877 p = strchr (rs->buf, '\0');
9878 addr = remote_address_masked (addr);
9879 p += hexnumstr (p, (ULONGEST) addr);
9880 xsnprintf (p, endbuf - p, ",%x", len);
9881
9882 putpkt (rs->buf);
9883 getpkt (&rs->buf, &rs->buf_size, 0);
9884
9885 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9886 {
9887 case PACKET_ERROR:
9888 return -1;
9889 case PACKET_UNKNOWN:
9890 return 1;
9891 case PACKET_OK:
9892 return 0;
9893 }
9894 internal_error (__FILE__, __LINE__,
9895 _("remote_insert_watchpoint: reached end of function"));
9896 }
9897
9898 static int
9899 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
9900 CORE_ADDR start, int length)
9901 {
9902 CORE_ADDR diff = remote_address_masked (addr - start);
9903
9904 return diff < length;
9905 }
9906
9907
9908 static int
9909 remote_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9910 enum target_hw_bp_type type, struct expression *cond)
9911 {
9912 struct remote_state *rs = get_remote_state ();
9913 char *endbuf = rs->buf + get_remote_packet_size ();
9914 char *p;
9915 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9916
9917 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9918 return -1;
9919
9920 /* Make sure the remote is pointing at the right process, if
9921 necessary. */
9922 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9923 set_general_process ();
9924
9925 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
9926 p = strchr (rs->buf, '\0');
9927 addr = remote_address_masked (addr);
9928 p += hexnumstr (p, (ULONGEST) addr);
9929 xsnprintf (p, endbuf - p, ",%x", len);
9930 putpkt (rs->buf);
9931 getpkt (&rs->buf, &rs->buf_size, 0);
9932
9933 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9934 {
9935 case PACKET_ERROR:
9936 case PACKET_UNKNOWN:
9937 return -1;
9938 case PACKET_OK:
9939 return 0;
9940 }
9941 internal_error (__FILE__, __LINE__,
9942 _("remote_remove_watchpoint: reached end of function"));
9943 }
9944
9945
9946 int remote_hw_watchpoint_limit = -1;
9947 int remote_hw_watchpoint_length_limit = -1;
9948 int remote_hw_breakpoint_limit = -1;
9949
9950 static int
9951 remote_region_ok_for_hw_watchpoint (struct target_ops *self,
9952 CORE_ADDR addr, int len)
9953 {
9954 if (remote_hw_watchpoint_length_limit == 0)
9955 return 0;
9956 else if (remote_hw_watchpoint_length_limit < 0)
9957 return 1;
9958 else if (len <= remote_hw_watchpoint_length_limit)
9959 return 1;
9960 else
9961 return 0;
9962 }
9963
9964 static int
9965 remote_check_watch_resources (struct target_ops *self,
9966 enum bptype type, int cnt, int ot)
9967 {
9968 if (type == bp_hardware_breakpoint)
9969 {
9970 if (remote_hw_breakpoint_limit == 0)
9971 return 0;
9972 else if (remote_hw_breakpoint_limit < 0)
9973 return 1;
9974 else if (cnt <= remote_hw_breakpoint_limit)
9975 return 1;
9976 }
9977 else
9978 {
9979 if (remote_hw_watchpoint_limit == 0)
9980 return 0;
9981 else if (remote_hw_watchpoint_limit < 0)
9982 return 1;
9983 else if (ot)
9984 return -1;
9985 else if (cnt <= remote_hw_watchpoint_limit)
9986 return 1;
9987 }
9988 return -1;
9989 }
9990
9991 /* The to_stopped_by_sw_breakpoint method of target remote. */
9992
9993 static int
9994 remote_stopped_by_sw_breakpoint (struct target_ops *ops)
9995 {
9996 struct thread_info *thread = inferior_thread ();
9997
9998 return (thread->priv != NULL
9999 && (get_remote_thread_info (thread)->stop_reason
10000 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10001 }
10002
10003 /* The to_supports_stopped_by_sw_breakpoint method of target
10004 remote. */
10005
10006 static int
10007 remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
10008 {
10009 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10010 }
10011
10012 /* The to_stopped_by_hw_breakpoint method of target remote. */
10013
10014 static int
10015 remote_stopped_by_hw_breakpoint (struct target_ops *ops)
10016 {
10017 struct thread_info *thread = inferior_thread ();
10018
10019 return (thread->priv != NULL
10020 && (get_remote_thread_info (thread)->stop_reason
10021 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10022 }
10023
10024 /* The to_supports_stopped_by_hw_breakpoint method of target
10025 remote. */
10026
10027 static int
10028 remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
10029 {
10030 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10031 }
10032
10033 static int
10034 remote_stopped_by_watchpoint (struct target_ops *ops)
10035 {
10036 struct thread_info *thread = inferior_thread ();
10037
10038 return (thread->priv != NULL
10039 && (get_remote_thread_info (thread)->stop_reason
10040 == TARGET_STOPPED_BY_WATCHPOINT));
10041 }
10042
10043 static int
10044 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
10045 {
10046 struct thread_info *thread = inferior_thread ();
10047
10048 if (thread->priv != NULL
10049 && (get_remote_thread_info (thread)->stop_reason
10050 == TARGET_STOPPED_BY_WATCHPOINT))
10051 {
10052 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10053 return 1;
10054 }
10055
10056 return 0;
10057 }
10058
10059
10060 static int
10061 remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10062 struct bp_target_info *bp_tgt)
10063 {
10064 CORE_ADDR addr = bp_tgt->reqstd_address;
10065 struct remote_state *rs;
10066 char *p, *endbuf;
10067 char *message;
10068
10069 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10070 return -1;
10071
10072 /* Make sure the remote is pointing at the right process, if
10073 necessary. */
10074 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10075 set_general_process ();
10076
10077 rs = get_remote_state ();
10078 p = rs->buf;
10079 endbuf = rs->buf + get_remote_packet_size ();
10080
10081 *(p++) = 'Z';
10082 *(p++) = '1';
10083 *(p++) = ',';
10084
10085 addr = remote_address_masked (addr);
10086 p += hexnumstr (p, (ULONGEST) addr);
10087 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10088
10089 if (remote_supports_cond_breakpoints (self))
10090 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10091
10092 if (remote_can_run_breakpoint_commands (self))
10093 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10094
10095 putpkt (rs->buf);
10096 getpkt (&rs->buf, &rs->buf_size, 0);
10097
10098 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10099 {
10100 case PACKET_ERROR:
10101 if (rs->buf[1] == '.')
10102 {
10103 message = strchr (rs->buf + 2, '.');
10104 if (message)
10105 error (_("Remote failure reply: %s"), message + 1);
10106 }
10107 return -1;
10108 case PACKET_UNKNOWN:
10109 return -1;
10110 case PACKET_OK:
10111 return 0;
10112 }
10113 internal_error (__FILE__, __LINE__,
10114 _("remote_insert_hw_breakpoint: reached end of function"));
10115 }
10116
10117
10118 static int
10119 remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10120 struct bp_target_info *bp_tgt)
10121 {
10122 CORE_ADDR addr;
10123 struct remote_state *rs = get_remote_state ();
10124 char *p = rs->buf;
10125 char *endbuf = rs->buf + get_remote_packet_size ();
10126
10127 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10128 return -1;
10129
10130 /* Make sure the remote is pointing at the right process, if
10131 necessary. */
10132 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10133 set_general_process ();
10134
10135 *(p++) = 'z';
10136 *(p++) = '1';
10137 *(p++) = ',';
10138
10139 addr = remote_address_masked (bp_tgt->placed_address);
10140 p += hexnumstr (p, (ULONGEST) addr);
10141 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10142
10143 putpkt (rs->buf);
10144 getpkt (&rs->buf, &rs->buf_size, 0);
10145
10146 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10147 {
10148 case PACKET_ERROR:
10149 case PACKET_UNKNOWN:
10150 return -1;
10151 case PACKET_OK:
10152 return 0;
10153 }
10154 internal_error (__FILE__, __LINE__,
10155 _("remote_remove_hw_breakpoint: reached end of function"));
10156 }
10157
10158 /* Verify memory using the "qCRC:" request. */
10159
10160 static int
10161 remote_verify_memory (struct target_ops *ops,
10162 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10163 {
10164 struct remote_state *rs = get_remote_state ();
10165 unsigned long host_crc, target_crc;
10166 char *tmp;
10167
10168 /* It doesn't make sense to use qCRC if the remote target is
10169 connected but not running. */
10170 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10171 {
10172 enum packet_result result;
10173
10174 /* Make sure the remote is pointing at the right process. */
10175 set_general_process ();
10176
10177 /* FIXME: assumes lma can fit into long. */
10178 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10179 (long) lma, (long) size);
10180 putpkt (rs->buf);
10181
10182 /* Be clever; compute the host_crc before waiting for target
10183 reply. */
10184 host_crc = xcrc32 (data, size, 0xffffffff);
10185
10186 getpkt (&rs->buf, &rs->buf_size, 0);
10187
10188 result = packet_ok (rs->buf,
10189 &remote_protocol_packets[PACKET_qCRC]);
10190 if (result == PACKET_ERROR)
10191 return -1;
10192 else if (result == PACKET_OK)
10193 {
10194 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10195 target_crc = target_crc * 16 + fromhex (*tmp);
10196
10197 return (host_crc == target_crc);
10198 }
10199 }
10200
10201 return simple_verify_memory (ops, data, lma, size);
10202 }
10203
10204 /* compare-sections command
10205
10206 With no arguments, compares each loadable section in the exec bfd
10207 with the same memory range on the target, and reports mismatches.
10208 Useful for verifying the image on the target against the exec file. */
10209
10210 static void
10211 compare_sections_command (const char *args, int from_tty)
10212 {
10213 asection *s;
10214 const char *sectname;
10215 bfd_size_type size;
10216 bfd_vma lma;
10217 int matched = 0;
10218 int mismatched = 0;
10219 int res;
10220 int read_only = 0;
10221
10222 if (!exec_bfd)
10223 error (_("command cannot be used without an exec file"));
10224
10225 /* Make sure the remote is pointing at the right process. */
10226 set_general_process ();
10227
10228 if (args != NULL && strcmp (args, "-r") == 0)
10229 {
10230 read_only = 1;
10231 args = NULL;
10232 }
10233
10234 for (s = exec_bfd->sections; s; s = s->next)
10235 {
10236 if (!(s->flags & SEC_LOAD))
10237 continue; /* Skip non-loadable section. */
10238
10239 if (read_only && (s->flags & SEC_READONLY) == 0)
10240 continue; /* Skip writeable sections */
10241
10242 size = bfd_get_section_size (s);
10243 if (size == 0)
10244 continue; /* Skip zero-length section. */
10245
10246 sectname = bfd_get_section_name (exec_bfd, s);
10247 if (args && strcmp (args, sectname) != 0)
10248 continue; /* Not the section selected by user. */
10249
10250 matched = 1; /* Do this section. */
10251 lma = s->lma;
10252
10253 gdb::byte_vector sectdata (size);
10254 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10255
10256 res = target_verify_memory (sectdata.data (), lma, size);
10257
10258 if (res == -1)
10259 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10260 paddress (target_gdbarch (), lma),
10261 paddress (target_gdbarch (), lma + size));
10262
10263 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10264 paddress (target_gdbarch (), lma),
10265 paddress (target_gdbarch (), lma + size));
10266 if (res)
10267 printf_filtered ("matched.\n");
10268 else
10269 {
10270 printf_filtered ("MIS-MATCHED!\n");
10271 mismatched++;
10272 }
10273 }
10274 if (mismatched > 0)
10275 warning (_("One or more sections of the target image does not match\n\
10276 the loaded file\n"));
10277 if (args && !matched)
10278 printf_filtered (_("No loaded section named '%s'.\n"), args);
10279 }
10280
10281 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10282 into remote target. The number of bytes written to the remote
10283 target is returned, or -1 for error. */
10284
10285 static enum target_xfer_status
10286 remote_write_qxfer (struct target_ops *ops, const char *object_name,
10287 const char *annex, const gdb_byte *writebuf,
10288 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10289 struct packet_config *packet)
10290 {
10291 int i, buf_len;
10292 ULONGEST n;
10293 struct remote_state *rs = get_remote_state ();
10294 int max_size = get_memory_write_packet_size ();
10295
10296 if (packet_config_support (packet) == PACKET_DISABLE)
10297 return TARGET_XFER_E_IO;
10298
10299 /* Insert header. */
10300 i = snprintf (rs->buf, max_size,
10301 "qXfer:%s:write:%s:%s:",
10302 object_name, annex ? annex : "",
10303 phex_nz (offset, sizeof offset));
10304 max_size -= (i + 1);
10305
10306 /* Escape as much data as fits into rs->buf. */
10307 buf_len = remote_escape_output
10308 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10309
10310 if (putpkt_binary (rs->buf, i + buf_len) < 0
10311 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10312 || packet_ok (rs->buf, packet) != PACKET_OK)
10313 return TARGET_XFER_E_IO;
10314
10315 unpack_varlen_hex (rs->buf, &n);
10316
10317 *xfered_len = n;
10318 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10319 }
10320
10321 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10322 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10323 number of bytes read is returned, or 0 for EOF, or -1 for error.
10324 The number of bytes read may be less than LEN without indicating an
10325 EOF. PACKET is checked and updated to indicate whether the remote
10326 target supports this object. */
10327
10328 static enum target_xfer_status
10329 remote_read_qxfer (struct target_ops *ops, const char *object_name,
10330 const char *annex,
10331 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10332 ULONGEST *xfered_len,
10333 struct packet_config *packet)
10334 {
10335 struct remote_state *rs = get_remote_state ();
10336 LONGEST i, n, packet_len;
10337
10338 if (packet_config_support (packet) == PACKET_DISABLE)
10339 return TARGET_XFER_E_IO;
10340
10341 /* Check whether we've cached an end-of-object packet that matches
10342 this request. */
10343 if (rs->finished_object)
10344 {
10345 if (strcmp (object_name, rs->finished_object) == 0
10346 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10347 && offset == rs->finished_offset)
10348 return TARGET_XFER_EOF;
10349
10350
10351 /* Otherwise, we're now reading something different. Discard
10352 the cache. */
10353 xfree (rs->finished_object);
10354 xfree (rs->finished_annex);
10355 rs->finished_object = NULL;
10356 rs->finished_annex = NULL;
10357 }
10358
10359 /* Request only enough to fit in a single packet. The actual data
10360 may not, since we don't know how much of it will need to be escaped;
10361 the target is free to respond with slightly less data. We subtract
10362 five to account for the response type and the protocol frame. */
10363 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10364 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10365 object_name, annex ? annex : "",
10366 phex_nz (offset, sizeof offset),
10367 phex_nz (n, sizeof n));
10368 i = putpkt (rs->buf);
10369 if (i < 0)
10370 return TARGET_XFER_E_IO;
10371
10372 rs->buf[0] = '\0';
10373 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10374 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10375 return TARGET_XFER_E_IO;
10376
10377 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10378 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10379
10380 /* 'm' means there is (or at least might be) more data after this
10381 batch. That does not make sense unless there's at least one byte
10382 of data in this reply. */
10383 if (rs->buf[0] == 'm' && packet_len == 1)
10384 error (_("Remote qXfer reply contained no data."));
10385
10386 /* Got some data. */
10387 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10388 packet_len - 1, readbuf, n);
10389
10390 /* 'l' is an EOF marker, possibly including a final block of data,
10391 or possibly empty. If we have the final block of a non-empty
10392 object, record this fact to bypass a subsequent partial read. */
10393 if (rs->buf[0] == 'l' && offset + i > 0)
10394 {
10395 rs->finished_object = xstrdup (object_name);
10396 rs->finished_annex = xstrdup (annex ? annex : "");
10397 rs->finished_offset = offset + i;
10398 }
10399
10400 if (i == 0)
10401 return TARGET_XFER_EOF;
10402 else
10403 {
10404 *xfered_len = i;
10405 return TARGET_XFER_OK;
10406 }
10407 }
10408
10409 static enum target_xfer_status
10410 remote_xfer_partial (struct target_ops *ops, enum target_object object,
10411 const char *annex, gdb_byte *readbuf,
10412 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10413 ULONGEST *xfered_len)
10414 {
10415 struct remote_state *rs;
10416 int i;
10417 char *p2;
10418 char query_type;
10419 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10420
10421 set_remote_traceframe ();
10422 set_general_thread (inferior_ptid);
10423
10424 rs = get_remote_state ();
10425
10426 /* Handle memory using the standard memory routines. */
10427 if (object == TARGET_OBJECT_MEMORY)
10428 {
10429 /* If the remote target is connected but not running, we should
10430 pass this request down to a lower stratum (e.g. the executable
10431 file). */
10432 if (!target_has_execution)
10433 return TARGET_XFER_EOF;
10434
10435 if (writebuf != NULL)
10436 return remote_write_bytes (offset, writebuf, len, unit_size,
10437 xfered_len);
10438 else
10439 return remote_read_bytes (ops, offset, readbuf, len, unit_size,
10440 xfered_len);
10441 }
10442
10443 /* Handle SPU memory using qxfer packets. */
10444 if (object == TARGET_OBJECT_SPU)
10445 {
10446 if (readbuf)
10447 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
10448 xfered_len, &remote_protocol_packets
10449 [PACKET_qXfer_spu_read]);
10450 else
10451 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
10452 xfered_len, &remote_protocol_packets
10453 [PACKET_qXfer_spu_write]);
10454 }
10455
10456 /* Handle extra signal info using qxfer packets. */
10457 if (object == TARGET_OBJECT_SIGNAL_INFO)
10458 {
10459 if (readbuf)
10460 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
10461 xfered_len, &remote_protocol_packets
10462 [PACKET_qXfer_siginfo_read]);
10463 else
10464 return remote_write_qxfer (ops, "siginfo", annex,
10465 writebuf, offset, len, xfered_len,
10466 &remote_protocol_packets
10467 [PACKET_qXfer_siginfo_write]);
10468 }
10469
10470 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10471 {
10472 if (readbuf)
10473 return remote_read_qxfer (ops, "statictrace", annex,
10474 readbuf, offset, len, xfered_len,
10475 &remote_protocol_packets
10476 [PACKET_qXfer_statictrace_read]);
10477 else
10478 return TARGET_XFER_E_IO;
10479 }
10480
10481 /* Only handle flash writes. */
10482 if (writebuf != NULL)
10483 {
10484 switch (object)
10485 {
10486 case TARGET_OBJECT_FLASH:
10487 return remote_flash_write (ops, offset, len, xfered_len,
10488 writebuf);
10489
10490 default:
10491 return TARGET_XFER_E_IO;
10492 }
10493 }
10494
10495 /* Map pre-existing objects onto letters. DO NOT do this for new
10496 objects!!! Instead specify new query packets. */
10497 switch (object)
10498 {
10499 case TARGET_OBJECT_AVR:
10500 query_type = 'R';
10501 break;
10502
10503 case TARGET_OBJECT_AUXV:
10504 gdb_assert (annex == NULL);
10505 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
10506 xfered_len,
10507 &remote_protocol_packets[PACKET_qXfer_auxv]);
10508
10509 case TARGET_OBJECT_AVAILABLE_FEATURES:
10510 return remote_read_qxfer
10511 (ops, "features", annex, readbuf, offset, len, xfered_len,
10512 &remote_protocol_packets[PACKET_qXfer_features]);
10513
10514 case TARGET_OBJECT_LIBRARIES:
10515 return remote_read_qxfer
10516 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
10517 &remote_protocol_packets[PACKET_qXfer_libraries]);
10518
10519 case TARGET_OBJECT_LIBRARIES_SVR4:
10520 return remote_read_qxfer
10521 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
10522 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10523
10524 case TARGET_OBJECT_MEMORY_MAP:
10525 gdb_assert (annex == NULL);
10526 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
10527 xfered_len,
10528 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10529
10530 case TARGET_OBJECT_OSDATA:
10531 /* Should only get here if we're connected. */
10532 gdb_assert (rs->remote_desc);
10533 return remote_read_qxfer
10534 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
10535 &remote_protocol_packets[PACKET_qXfer_osdata]);
10536
10537 case TARGET_OBJECT_THREADS:
10538 gdb_assert (annex == NULL);
10539 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
10540 xfered_len,
10541 &remote_protocol_packets[PACKET_qXfer_threads]);
10542
10543 case TARGET_OBJECT_TRACEFRAME_INFO:
10544 gdb_assert (annex == NULL);
10545 return remote_read_qxfer
10546 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
10547 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10548
10549 case TARGET_OBJECT_FDPIC:
10550 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
10551 xfered_len,
10552 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10553
10554 case TARGET_OBJECT_OPENVMS_UIB:
10555 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
10556 xfered_len,
10557 &remote_protocol_packets[PACKET_qXfer_uib]);
10558
10559 case TARGET_OBJECT_BTRACE:
10560 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
10561 xfered_len,
10562 &remote_protocol_packets[PACKET_qXfer_btrace]);
10563
10564 case TARGET_OBJECT_BTRACE_CONF:
10565 return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset,
10566 len, xfered_len,
10567 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10568
10569 case TARGET_OBJECT_EXEC_FILE:
10570 return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset,
10571 len, xfered_len,
10572 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10573
10574 default:
10575 return TARGET_XFER_E_IO;
10576 }
10577
10578 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10579 large enough let the caller deal with it. */
10580 if (len < get_remote_packet_size ())
10581 return TARGET_XFER_E_IO;
10582 len = get_remote_packet_size ();
10583
10584 /* Except for querying the minimum buffer size, target must be open. */
10585 if (!rs->remote_desc)
10586 error (_("remote query is only available after target open"));
10587
10588 gdb_assert (annex != NULL);
10589 gdb_assert (readbuf != NULL);
10590
10591 p2 = rs->buf;
10592 *p2++ = 'q';
10593 *p2++ = query_type;
10594
10595 /* We used one buffer char for the remote protocol q command and
10596 another for the query type. As the remote protocol encapsulation
10597 uses 4 chars plus one extra in case we are debugging
10598 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10599 string. */
10600 i = 0;
10601 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10602 {
10603 /* Bad caller may have sent forbidden characters. */
10604 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10605 *p2++ = annex[i];
10606 i++;
10607 }
10608 *p2 = '\0';
10609 gdb_assert (annex[i] == '\0');
10610
10611 i = putpkt (rs->buf);
10612 if (i < 0)
10613 return TARGET_XFER_E_IO;
10614
10615 getpkt (&rs->buf, &rs->buf_size, 0);
10616 strcpy ((char *) readbuf, rs->buf);
10617
10618 *xfered_len = strlen ((char *) readbuf);
10619 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10620 }
10621
10622 /* Implementation of to_get_memory_xfer_limit. */
10623
10624 static ULONGEST
10625 remote_get_memory_xfer_limit (struct target_ops *ops)
10626 {
10627 return get_memory_write_packet_size ();
10628 }
10629
10630 static int
10631 remote_search_memory (struct target_ops* ops,
10632 CORE_ADDR start_addr, ULONGEST search_space_len,
10633 const gdb_byte *pattern, ULONGEST pattern_len,
10634 CORE_ADDR *found_addrp)
10635 {
10636 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10637 struct remote_state *rs = get_remote_state ();
10638 int max_size = get_memory_write_packet_size ();
10639 struct packet_config *packet =
10640 &remote_protocol_packets[PACKET_qSearch_memory];
10641 /* Number of packet bytes used to encode the pattern;
10642 this could be more than PATTERN_LEN due to escape characters. */
10643 int escaped_pattern_len;
10644 /* Amount of pattern that was encodable in the packet. */
10645 int used_pattern_len;
10646 int i;
10647 int found;
10648 ULONGEST found_addr;
10649
10650 /* Don't go to the target if we don't have to. This is done before
10651 checking packet_config_support to avoid the possibility that a
10652 success for this edge case means the facility works in
10653 general. */
10654 if (pattern_len > search_space_len)
10655 return 0;
10656 if (pattern_len == 0)
10657 {
10658 *found_addrp = start_addr;
10659 return 1;
10660 }
10661
10662 /* If we already know the packet isn't supported, fall back to the simple
10663 way of searching memory. */
10664
10665 if (packet_config_support (packet) == PACKET_DISABLE)
10666 {
10667 /* Target doesn't provided special support, fall back and use the
10668 standard support (copy memory and do the search here). */
10669 return simple_search_memory (ops, start_addr, search_space_len,
10670 pattern, pattern_len, found_addrp);
10671 }
10672
10673 /* Make sure the remote is pointing at the right process. */
10674 set_general_process ();
10675
10676 /* Insert header. */
10677 i = snprintf (rs->buf, max_size,
10678 "qSearch:memory:%s;%s;",
10679 phex_nz (start_addr, addr_size),
10680 phex_nz (search_space_len, sizeof (search_space_len)));
10681 max_size -= (i + 1);
10682
10683 /* Escape as much data as fits into rs->buf. */
10684 escaped_pattern_len =
10685 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10686 &used_pattern_len, max_size);
10687
10688 /* Bail if the pattern is too large. */
10689 if (used_pattern_len != pattern_len)
10690 error (_("Pattern is too large to transmit to remote target."));
10691
10692 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10693 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10694 || packet_ok (rs->buf, packet) != PACKET_OK)
10695 {
10696 /* The request may not have worked because the command is not
10697 supported. If so, fall back to the simple way. */
10698 if (packet_config_support (packet) == PACKET_DISABLE)
10699 {
10700 return simple_search_memory (ops, start_addr, search_space_len,
10701 pattern, pattern_len, found_addrp);
10702 }
10703 return -1;
10704 }
10705
10706 if (rs->buf[0] == '0')
10707 found = 0;
10708 else if (rs->buf[0] == '1')
10709 {
10710 found = 1;
10711 if (rs->buf[1] != ',')
10712 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10713 unpack_varlen_hex (rs->buf + 2, &found_addr);
10714 *found_addrp = found_addr;
10715 }
10716 else
10717 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10718
10719 return found;
10720 }
10721
10722 static void
10723 remote_rcmd (struct target_ops *self, const char *command,
10724 struct ui_file *outbuf)
10725 {
10726 struct remote_state *rs = get_remote_state ();
10727 char *p = rs->buf;
10728
10729 if (!rs->remote_desc)
10730 error (_("remote rcmd is only available after target open"));
10731
10732 /* Send a NULL command across as an empty command. */
10733 if (command == NULL)
10734 command = "";
10735
10736 /* The query prefix. */
10737 strcpy (rs->buf, "qRcmd,");
10738 p = strchr (rs->buf, '\0');
10739
10740 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
10741 > get_remote_packet_size ())
10742 error (_("\"monitor\" command ``%s'' is too long."), command);
10743
10744 /* Encode the actual command. */
10745 bin2hex ((const gdb_byte *) command, p, strlen (command));
10746
10747 if (putpkt (rs->buf) < 0)
10748 error (_("Communication problem with target."));
10749
10750 /* get/display the response */
10751 while (1)
10752 {
10753 char *buf;
10754
10755 /* XXX - see also remote_get_noisy_reply(). */
10756 QUIT; /* Allow user to bail out with ^C. */
10757 rs->buf[0] = '\0';
10758 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
10759 {
10760 /* Timeout. Continue to (try to) read responses.
10761 This is better than stopping with an error, assuming the stub
10762 is still executing the (long) monitor command.
10763 If needed, the user can interrupt gdb using C-c, obtaining
10764 an effect similar to stop on timeout. */
10765 continue;
10766 }
10767 buf = rs->buf;
10768 if (buf[0] == '\0')
10769 error (_("Target does not support this command."));
10770 if (buf[0] == 'O' && buf[1] != 'K')
10771 {
10772 remote_console_output (buf + 1); /* 'O' message from stub. */
10773 continue;
10774 }
10775 if (strcmp (buf, "OK") == 0)
10776 break;
10777 if (strlen (buf) == 3 && buf[0] == 'E'
10778 && isdigit (buf[1]) && isdigit (buf[2]))
10779 {
10780 error (_("Protocol error with Rcmd"));
10781 }
10782 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
10783 {
10784 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
10785
10786 fputc_unfiltered (c, outbuf);
10787 }
10788 break;
10789 }
10790 }
10791
10792 static std::vector<mem_region>
10793 remote_memory_map (struct target_ops *ops)
10794 {
10795 std::vector<mem_region> result;
10796 gdb::optional<gdb::char_vector> text
10797 = target_read_stralloc (&current_target, TARGET_OBJECT_MEMORY_MAP, NULL);
10798
10799 if (text)
10800 result = parse_memory_map (text->data ());
10801
10802 return result;
10803 }
10804
10805 static void
10806 packet_command (const char *args, int from_tty)
10807 {
10808 struct remote_state *rs = get_remote_state ();
10809
10810 if (!rs->remote_desc)
10811 error (_("command can only be used with remote target"));
10812
10813 if (!args)
10814 error (_("remote-packet command requires packet text as argument"));
10815
10816 puts_filtered ("sending: ");
10817 print_packet (args);
10818 puts_filtered ("\n");
10819 putpkt (args);
10820
10821 getpkt (&rs->buf, &rs->buf_size, 0);
10822 puts_filtered ("received: ");
10823 print_packet (rs->buf);
10824 puts_filtered ("\n");
10825 }
10826
10827 #if 0
10828 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
10829
10830 static void display_thread_info (struct gdb_ext_thread_info *info);
10831
10832 static void threadset_test_cmd (char *cmd, int tty);
10833
10834 static void threadalive_test (char *cmd, int tty);
10835
10836 static void threadlist_test_cmd (char *cmd, int tty);
10837
10838 int get_and_display_threadinfo (threadref *ref);
10839
10840 static void threadinfo_test_cmd (char *cmd, int tty);
10841
10842 static int thread_display_step (threadref *ref, void *context);
10843
10844 static void threadlist_update_test_cmd (char *cmd, int tty);
10845
10846 static void init_remote_threadtests (void);
10847
10848 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
10849
10850 static void
10851 threadset_test_cmd (const char *cmd, int tty)
10852 {
10853 int sample_thread = SAMPLE_THREAD;
10854
10855 printf_filtered (_("Remote threadset test\n"));
10856 set_general_thread (sample_thread);
10857 }
10858
10859
10860 static void
10861 threadalive_test (const char *cmd, int tty)
10862 {
10863 int sample_thread = SAMPLE_THREAD;
10864 int pid = ptid_get_pid (inferior_ptid);
10865 ptid_t ptid = ptid_build (pid, sample_thread, 0);
10866
10867 if (remote_thread_alive (ptid))
10868 printf_filtered ("PASS: Thread alive test\n");
10869 else
10870 printf_filtered ("FAIL: Thread alive test\n");
10871 }
10872
10873 void output_threadid (char *title, threadref *ref);
10874
10875 void
10876 output_threadid (char *title, threadref *ref)
10877 {
10878 char hexid[20];
10879
10880 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
10881 hexid[16] = 0;
10882 printf_filtered ("%s %s\n", title, (&hexid[0]));
10883 }
10884
10885 static void
10886 threadlist_test_cmd (const char *cmd, int tty)
10887 {
10888 int startflag = 1;
10889 threadref nextthread;
10890 int done, result_count;
10891 threadref threadlist[3];
10892
10893 printf_filtered ("Remote Threadlist test\n");
10894 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
10895 &result_count, &threadlist[0]))
10896 printf_filtered ("FAIL: threadlist test\n");
10897 else
10898 {
10899 threadref *scan = threadlist;
10900 threadref *limit = scan + result_count;
10901
10902 while (scan < limit)
10903 output_threadid (" thread ", scan++);
10904 }
10905 }
10906
10907 void
10908 display_thread_info (struct gdb_ext_thread_info *info)
10909 {
10910 output_threadid ("Threadid: ", &info->threadid);
10911 printf_filtered ("Name: %s\n ", info->shortname);
10912 printf_filtered ("State: %s\n", info->display);
10913 printf_filtered ("other: %s\n\n", info->more_display);
10914 }
10915
10916 int
10917 get_and_display_threadinfo (threadref *ref)
10918 {
10919 int result;
10920 int set;
10921 struct gdb_ext_thread_info threadinfo;
10922
10923 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
10924 | TAG_MOREDISPLAY | TAG_DISPLAY;
10925 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
10926 display_thread_info (&threadinfo);
10927 return result;
10928 }
10929
10930 static void
10931 threadinfo_test_cmd (const char *cmd, int tty)
10932 {
10933 int athread = SAMPLE_THREAD;
10934 threadref thread;
10935 int set;
10936
10937 int_to_threadref (&thread, athread);
10938 printf_filtered ("Remote Threadinfo test\n");
10939 if (!get_and_display_threadinfo (&thread))
10940 printf_filtered ("FAIL cannot get thread info\n");
10941 }
10942
10943 static int
10944 thread_display_step (threadref *ref, void *context)
10945 {
10946 /* output_threadid(" threadstep ",ref); *//* simple test */
10947 return get_and_display_threadinfo (ref);
10948 }
10949
10950 static void
10951 threadlist_update_test_cmd (const char *cmd, int tty)
10952 {
10953 printf_filtered ("Remote Threadlist update test\n");
10954 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
10955 }
10956
10957 static void
10958 init_remote_threadtests (void)
10959 {
10960 add_com ("tlist", class_obscure, threadlist_test_cmd,
10961 _("Fetch and print the remote list of "
10962 "thread identifiers, one pkt only"));
10963 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
10964 _("Fetch and display info about one thread"));
10965 add_com ("tset", class_obscure, threadset_test_cmd,
10966 _("Test setting to a different thread"));
10967 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
10968 _("Iterate through updating all remote thread info"));
10969 add_com ("talive", class_obscure, threadalive_test,
10970 _(" Remote thread alive test "));
10971 }
10972
10973 #endif /* 0 */
10974
10975 /* Convert a thread ID to a string. Returns the string in a static
10976 buffer. */
10977
10978 static const char *
10979 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
10980 {
10981 static char buf[64];
10982 struct remote_state *rs = get_remote_state ();
10983
10984 if (ptid_equal (ptid, null_ptid))
10985 return normal_pid_to_str (ptid);
10986 else if (ptid_is_pid (ptid))
10987 {
10988 /* Printing an inferior target id. */
10989
10990 /* When multi-process extensions are off, there's no way in the
10991 remote protocol to know the remote process id, if there's any
10992 at all. There's one exception --- when we're connected with
10993 target extended-remote, and we manually attached to a process
10994 with "attach PID". We don't record anywhere a flag that
10995 allows us to distinguish that case from the case of
10996 connecting with extended-remote and the stub already being
10997 attached to a process, and reporting yes to qAttached, hence
10998 no smart special casing here. */
10999 if (!remote_multi_process_p (rs))
11000 {
11001 xsnprintf (buf, sizeof buf, "Remote target");
11002 return buf;
11003 }
11004
11005 return normal_pid_to_str (ptid);
11006 }
11007 else
11008 {
11009 if (ptid_equal (magic_null_ptid, ptid))
11010 xsnprintf (buf, sizeof buf, "Thread <main>");
11011 else if (remote_multi_process_p (rs))
11012 if (ptid_get_lwp (ptid) == 0)
11013 return normal_pid_to_str (ptid);
11014 else
11015 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11016 ptid_get_pid (ptid), ptid_get_lwp (ptid));
11017 else
11018 xsnprintf (buf, sizeof buf, "Thread %ld",
11019 ptid_get_lwp (ptid));
11020 return buf;
11021 }
11022 }
11023
11024 /* Get the address of the thread local variable in OBJFILE which is
11025 stored at OFFSET within the thread local storage for thread PTID. */
11026
11027 static CORE_ADDR
11028 remote_get_thread_local_address (struct target_ops *ops,
11029 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
11030 {
11031 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11032 {
11033 struct remote_state *rs = get_remote_state ();
11034 char *p = rs->buf;
11035 char *endp = rs->buf + get_remote_packet_size ();
11036 enum packet_result result;
11037
11038 strcpy (p, "qGetTLSAddr:");
11039 p += strlen (p);
11040 p = write_ptid (p, endp, ptid);
11041 *p++ = ',';
11042 p += hexnumstr (p, offset);
11043 *p++ = ',';
11044 p += hexnumstr (p, lm);
11045 *p++ = '\0';
11046
11047 putpkt (rs->buf);
11048 getpkt (&rs->buf, &rs->buf_size, 0);
11049 result = packet_ok (rs->buf,
11050 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11051 if (result == PACKET_OK)
11052 {
11053 ULONGEST result;
11054
11055 unpack_varlen_hex (rs->buf, &result);
11056 return result;
11057 }
11058 else if (result == PACKET_UNKNOWN)
11059 throw_error (TLS_GENERIC_ERROR,
11060 _("Remote target doesn't support qGetTLSAddr packet"));
11061 else
11062 throw_error (TLS_GENERIC_ERROR,
11063 _("Remote target failed to process qGetTLSAddr request"));
11064 }
11065 else
11066 throw_error (TLS_GENERIC_ERROR,
11067 _("TLS not supported or disabled on this target"));
11068 /* Not reached. */
11069 return 0;
11070 }
11071
11072 /* Provide thread local base, i.e. Thread Information Block address.
11073 Returns 1 if ptid is found and thread_local_base is non zero. */
11074
11075 static int
11076 remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
11077 {
11078 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11079 {
11080 struct remote_state *rs = get_remote_state ();
11081 char *p = rs->buf;
11082 char *endp = rs->buf + get_remote_packet_size ();
11083 enum packet_result result;
11084
11085 strcpy (p, "qGetTIBAddr:");
11086 p += strlen (p);
11087 p = write_ptid (p, endp, ptid);
11088 *p++ = '\0';
11089
11090 putpkt (rs->buf);
11091 getpkt (&rs->buf, &rs->buf_size, 0);
11092 result = packet_ok (rs->buf,
11093 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11094 if (result == PACKET_OK)
11095 {
11096 ULONGEST result;
11097
11098 unpack_varlen_hex (rs->buf, &result);
11099 if (addr)
11100 *addr = (CORE_ADDR) result;
11101 return 1;
11102 }
11103 else if (result == PACKET_UNKNOWN)
11104 error (_("Remote target doesn't support qGetTIBAddr packet"));
11105 else
11106 error (_("Remote target failed to process qGetTIBAddr request"));
11107 }
11108 else
11109 error (_("qGetTIBAddr not supported or disabled on this target"));
11110 /* Not reached. */
11111 return 0;
11112 }
11113
11114 /* Support for inferring a target description based on the current
11115 architecture and the size of a 'g' packet. While the 'g' packet
11116 can have any size (since optional registers can be left off the
11117 end), some sizes are easily recognizable given knowledge of the
11118 approximate architecture. */
11119
11120 struct remote_g_packet_guess
11121 {
11122 int bytes;
11123 const struct target_desc *tdesc;
11124 };
11125 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11126 DEF_VEC_O(remote_g_packet_guess_s);
11127
11128 struct remote_g_packet_data
11129 {
11130 VEC(remote_g_packet_guess_s) *guesses;
11131 };
11132
11133 static struct gdbarch_data *remote_g_packet_data_handle;
11134
11135 static void *
11136 remote_g_packet_data_init (struct obstack *obstack)
11137 {
11138 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11139 }
11140
11141 void
11142 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11143 const struct target_desc *tdesc)
11144 {
11145 struct remote_g_packet_data *data
11146 = ((struct remote_g_packet_data *)
11147 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11148 struct remote_g_packet_guess new_guess, *guess;
11149 int ix;
11150
11151 gdb_assert (tdesc != NULL);
11152
11153 for (ix = 0;
11154 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11155 ix++)
11156 if (guess->bytes == bytes)
11157 internal_error (__FILE__, __LINE__,
11158 _("Duplicate g packet description added for size %d"),
11159 bytes);
11160
11161 new_guess.bytes = bytes;
11162 new_guess.tdesc = tdesc;
11163 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11164 }
11165
11166 /* Return 1 if remote_read_description would do anything on this target
11167 and architecture, 0 otherwise. */
11168
11169 static int
11170 remote_read_description_p (struct target_ops *target)
11171 {
11172 struct remote_g_packet_data *data
11173 = ((struct remote_g_packet_data *)
11174 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11175
11176 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11177 return 1;
11178
11179 return 0;
11180 }
11181
11182 static const struct target_desc *
11183 remote_read_description (struct target_ops *target)
11184 {
11185 struct remote_g_packet_data *data
11186 = ((struct remote_g_packet_data *)
11187 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11188
11189 /* Do not try this during initial connection, when we do not know
11190 whether there is a running but stopped thread. */
11191 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11192 return target->beneath->to_read_description (target->beneath);
11193
11194 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11195 {
11196 struct remote_g_packet_guess *guess;
11197 int ix;
11198 int bytes = send_g_packet ();
11199
11200 for (ix = 0;
11201 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11202 ix++)
11203 if (guess->bytes == bytes)
11204 return guess->tdesc;
11205
11206 /* We discard the g packet. A minor optimization would be to
11207 hold on to it, and fill the register cache once we have selected
11208 an architecture, but it's too tricky to do safely. */
11209 }
11210
11211 return target->beneath->to_read_description (target->beneath);
11212 }
11213
11214 /* Remote file transfer support. This is host-initiated I/O, not
11215 target-initiated; for target-initiated, see remote-fileio.c. */
11216
11217 /* If *LEFT is at least the length of STRING, copy STRING to
11218 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11219 decrease *LEFT. Otherwise raise an error. */
11220
11221 static void
11222 remote_buffer_add_string (char **buffer, int *left, const char *string)
11223 {
11224 int len = strlen (string);
11225
11226 if (len > *left)
11227 error (_("Packet too long for target."));
11228
11229 memcpy (*buffer, string, len);
11230 *buffer += len;
11231 *left -= len;
11232
11233 /* NUL-terminate the buffer as a convenience, if there is
11234 room. */
11235 if (*left)
11236 **buffer = '\0';
11237 }
11238
11239 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11240 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11241 decrease *LEFT. Otherwise raise an error. */
11242
11243 static void
11244 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11245 int len)
11246 {
11247 if (2 * len > *left)
11248 error (_("Packet too long for target."));
11249
11250 bin2hex (bytes, *buffer, len);
11251 *buffer += 2 * len;
11252 *left -= 2 * len;
11253
11254 /* NUL-terminate the buffer as a convenience, if there is
11255 room. */
11256 if (*left)
11257 **buffer = '\0';
11258 }
11259
11260 /* If *LEFT is large enough, convert VALUE to hex and add it to
11261 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11262 decrease *LEFT. Otherwise raise an error. */
11263
11264 static void
11265 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11266 {
11267 int len = hexnumlen (value);
11268
11269 if (len > *left)
11270 error (_("Packet too long for target."));
11271
11272 hexnumstr (*buffer, value);
11273 *buffer += len;
11274 *left -= len;
11275
11276 /* NUL-terminate the buffer as a convenience, if there is
11277 room. */
11278 if (*left)
11279 **buffer = '\0';
11280 }
11281
11282 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11283 value, *REMOTE_ERRNO to the remote error number or zero if none
11284 was included, and *ATTACHMENT to point to the start of the annex
11285 if any. The length of the packet isn't needed here; there may
11286 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11287
11288 Return 0 if the packet could be parsed, -1 if it could not. If
11289 -1 is returned, the other variables may not be initialized. */
11290
11291 static int
11292 remote_hostio_parse_result (char *buffer, int *retcode,
11293 int *remote_errno, char **attachment)
11294 {
11295 char *p, *p2;
11296
11297 *remote_errno = 0;
11298 *attachment = NULL;
11299
11300 if (buffer[0] != 'F')
11301 return -1;
11302
11303 errno = 0;
11304 *retcode = strtol (&buffer[1], &p, 16);
11305 if (errno != 0 || p == &buffer[1])
11306 return -1;
11307
11308 /* Check for ",errno". */
11309 if (*p == ',')
11310 {
11311 errno = 0;
11312 *remote_errno = strtol (p + 1, &p2, 16);
11313 if (errno != 0 || p + 1 == p2)
11314 return -1;
11315 p = p2;
11316 }
11317
11318 /* Check for ";attachment". If there is no attachment, the
11319 packet should end here. */
11320 if (*p == ';')
11321 {
11322 *attachment = p + 1;
11323 return 0;
11324 }
11325 else if (*p == '\0')
11326 return 0;
11327 else
11328 return -1;
11329 }
11330
11331 /* Send a prepared I/O packet to the target and read its response.
11332 The prepared packet is in the global RS->BUF before this function
11333 is called, and the answer is there when we return.
11334
11335 COMMAND_BYTES is the length of the request to send, which may include
11336 binary data. WHICH_PACKET is the packet configuration to check
11337 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11338 is set to the error number and -1 is returned. Otherwise the value
11339 returned by the function is returned.
11340
11341 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11342 attachment is expected; an error will be reported if there's a
11343 mismatch. If one is found, *ATTACHMENT will be set to point into
11344 the packet buffer and *ATTACHMENT_LEN will be set to the
11345 attachment's length. */
11346
11347 static int
11348 remote_hostio_send_command (int command_bytes, int which_packet,
11349 int *remote_errno, char **attachment,
11350 int *attachment_len)
11351 {
11352 struct remote_state *rs = get_remote_state ();
11353 int ret, bytes_read;
11354 char *attachment_tmp;
11355
11356 if (packet_support (which_packet) == PACKET_DISABLE)
11357 {
11358 *remote_errno = FILEIO_ENOSYS;
11359 return -1;
11360 }
11361
11362 putpkt_binary (rs->buf, command_bytes);
11363 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11364
11365 /* If it timed out, something is wrong. Don't try to parse the
11366 buffer. */
11367 if (bytes_read < 0)
11368 {
11369 *remote_errno = FILEIO_EINVAL;
11370 return -1;
11371 }
11372
11373 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11374 {
11375 case PACKET_ERROR:
11376 *remote_errno = FILEIO_EINVAL;
11377 return -1;
11378 case PACKET_UNKNOWN:
11379 *remote_errno = FILEIO_ENOSYS;
11380 return -1;
11381 case PACKET_OK:
11382 break;
11383 }
11384
11385 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11386 &attachment_tmp))
11387 {
11388 *remote_errno = FILEIO_EINVAL;
11389 return -1;
11390 }
11391
11392 /* Make sure we saw an attachment if and only if we expected one. */
11393 if ((attachment_tmp == NULL && attachment != NULL)
11394 || (attachment_tmp != NULL && attachment == NULL))
11395 {
11396 *remote_errno = FILEIO_EINVAL;
11397 return -1;
11398 }
11399
11400 /* If an attachment was found, it must point into the packet buffer;
11401 work out how many bytes there were. */
11402 if (attachment_tmp != NULL)
11403 {
11404 *attachment = attachment_tmp;
11405 *attachment_len = bytes_read - (*attachment - rs->buf);
11406 }
11407
11408 return ret;
11409 }
11410
11411 /* Invalidate the readahead cache. */
11412
11413 static void
11414 readahead_cache_invalidate (void)
11415 {
11416 struct remote_state *rs = get_remote_state ();
11417
11418 rs->readahead_cache.fd = -1;
11419 }
11420
11421 /* Invalidate the readahead cache if it is holding data for FD. */
11422
11423 static void
11424 readahead_cache_invalidate_fd (int fd)
11425 {
11426 struct remote_state *rs = get_remote_state ();
11427
11428 if (rs->readahead_cache.fd == fd)
11429 rs->readahead_cache.fd = -1;
11430 }
11431
11432 /* Set the filesystem remote_hostio functions that take FILENAME
11433 arguments will use. Return 0 on success, or -1 if an error
11434 occurs (and set *REMOTE_ERRNO). */
11435
11436 static int
11437 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11438 {
11439 struct remote_state *rs = get_remote_state ();
11440 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11441 char *p = rs->buf;
11442 int left = get_remote_packet_size () - 1;
11443 char arg[9];
11444 int ret;
11445
11446 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11447 return 0;
11448
11449 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11450 return 0;
11451
11452 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11453
11454 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11455 remote_buffer_add_string (&p, &left, arg);
11456
11457 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11458 remote_errno, NULL, NULL);
11459
11460 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11461 return 0;
11462
11463 if (ret == 0)
11464 rs->fs_pid = required_pid;
11465
11466 return ret;
11467 }
11468
11469 /* Implementation of to_fileio_open. */
11470
11471 static int
11472 remote_hostio_open (struct target_ops *self,
11473 struct inferior *inf, const char *filename,
11474 int flags, int mode, int warn_if_slow,
11475 int *remote_errno)
11476 {
11477 struct remote_state *rs = get_remote_state ();
11478 char *p = rs->buf;
11479 int left = get_remote_packet_size () - 1;
11480
11481 if (warn_if_slow)
11482 {
11483 static int warning_issued = 0;
11484
11485 printf_unfiltered (_("Reading %s from remote target...\n"),
11486 filename);
11487
11488 if (!warning_issued)
11489 {
11490 warning (_("File transfers from remote targets can be slow."
11491 " Use \"set sysroot\" to access files locally"
11492 " instead."));
11493 warning_issued = 1;
11494 }
11495 }
11496
11497 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11498 return -1;
11499
11500 remote_buffer_add_string (&p, &left, "vFile:open:");
11501
11502 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11503 strlen (filename));
11504 remote_buffer_add_string (&p, &left, ",");
11505
11506 remote_buffer_add_int (&p, &left, flags);
11507 remote_buffer_add_string (&p, &left, ",");
11508
11509 remote_buffer_add_int (&p, &left, mode);
11510
11511 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11512 remote_errno, NULL, NULL);
11513 }
11514
11515 /* Implementation of to_fileio_pwrite. */
11516
11517 static int
11518 remote_hostio_pwrite (struct target_ops *self,
11519 int fd, const gdb_byte *write_buf, int len,
11520 ULONGEST offset, int *remote_errno)
11521 {
11522 struct remote_state *rs = get_remote_state ();
11523 char *p = rs->buf;
11524 int left = get_remote_packet_size ();
11525 int out_len;
11526
11527 readahead_cache_invalidate_fd (fd);
11528
11529 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11530
11531 remote_buffer_add_int (&p, &left, fd);
11532 remote_buffer_add_string (&p, &left, ",");
11533
11534 remote_buffer_add_int (&p, &left, offset);
11535 remote_buffer_add_string (&p, &left, ",");
11536
11537 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11538 get_remote_packet_size () - (p - rs->buf));
11539
11540 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11541 remote_errno, NULL, NULL);
11542 }
11543
11544 /* Helper for the implementation of to_fileio_pread. Read the file
11545 from the remote side with vFile:pread. */
11546
11547 static int
11548 remote_hostio_pread_vFile (struct target_ops *self,
11549 int fd, gdb_byte *read_buf, int len,
11550 ULONGEST offset, int *remote_errno)
11551 {
11552 struct remote_state *rs = get_remote_state ();
11553 char *p = rs->buf;
11554 char *attachment;
11555 int left = get_remote_packet_size ();
11556 int ret, attachment_len;
11557 int read_len;
11558
11559 remote_buffer_add_string (&p, &left, "vFile:pread:");
11560
11561 remote_buffer_add_int (&p, &left, fd);
11562 remote_buffer_add_string (&p, &left, ",");
11563
11564 remote_buffer_add_int (&p, &left, len);
11565 remote_buffer_add_string (&p, &left, ",");
11566
11567 remote_buffer_add_int (&p, &left, offset);
11568
11569 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11570 remote_errno, &attachment,
11571 &attachment_len);
11572
11573 if (ret < 0)
11574 return ret;
11575
11576 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11577 read_buf, len);
11578 if (read_len != ret)
11579 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11580
11581 return ret;
11582 }
11583
11584 /* Serve pread from the readahead cache. Returns number of bytes
11585 read, or 0 if the request can't be served from the cache. */
11586
11587 static int
11588 remote_hostio_pread_from_cache (struct remote_state *rs,
11589 int fd, gdb_byte *read_buf, size_t len,
11590 ULONGEST offset)
11591 {
11592 struct readahead_cache *cache = &rs->readahead_cache;
11593
11594 if (cache->fd == fd
11595 && cache->offset <= offset
11596 && offset < cache->offset + cache->bufsize)
11597 {
11598 ULONGEST max = cache->offset + cache->bufsize;
11599
11600 if (offset + len > max)
11601 len = max - offset;
11602
11603 memcpy (read_buf, cache->buf + offset - cache->offset, len);
11604 return len;
11605 }
11606
11607 return 0;
11608 }
11609
11610 /* Implementation of to_fileio_pread. */
11611
11612 static int
11613 remote_hostio_pread (struct target_ops *self,
11614 int fd, gdb_byte *read_buf, int len,
11615 ULONGEST offset, int *remote_errno)
11616 {
11617 int ret;
11618 struct remote_state *rs = get_remote_state ();
11619 struct readahead_cache *cache = &rs->readahead_cache;
11620
11621 ret = remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11622 if (ret > 0)
11623 {
11624 cache->hit_count++;
11625
11626 if (remote_debug)
11627 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11628 pulongest (cache->hit_count));
11629 return ret;
11630 }
11631
11632 cache->miss_count++;
11633 if (remote_debug)
11634 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11635 pulongest (cache->miss_count));
11636
11637 cache->fd = fd;
11638 cache->offset = offset;
11639 cache->bufsize = get_remote_packet_size ();
11640 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11641
11642 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11643 cache->offset, remote_errno);
11644 if (ret <= 0)
11645 {
11646 readahead_cache_invalidate_fd (fd);
11647 return ret;
11648 }
11649
11650 cache->bufsize = ret;
11651 return remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11652 }
11653
11654 /* Implementation of to_fileio_close. */
11655
11656 static int
11657 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11658 {
11659 struct remote_state *rs = get_remote_state ();
11660 char *p = rs->buf;
11661 int left = get_remote_packet_size () - 1;
11662
11663 readahead_cache_invalidate_fd (fd);
11664
11665 remote_buffer_add_string (&p, &left, "vFile:close:");
11666
11667 remote_buffer_add_int (&p, &left, fd);
11668
11669 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11670 remote_errno, NULL, NULL);
11671 }
11672
11673 /* Implementation of to_fileio_unlink. */
11674
11675 static int
11676 remote_hostio_unlink (struct target_ops *self,
11677 struct inferior *inf, const char *filename,
11678 int *remote_errno)
11679 {
11680 struct remote_state *rs = get_remote_state ();
11681 char *p = rs->buf;
11682 int left = get_remote_packet_size () - 1;
11683
11684 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11685 return -1;
11686
11687 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11688
11689 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11690 strlen (filename));
11691
11692 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
11693 remote_errno, NULL, NULL);
11694 }
11695
11696 /* Implementation of to_fileio_readlink. */
11697
11698 static gdb::optional<std::string>
11699 remote_hostio_readlink (struct target_ops *self,
11700 struct inferior *inf, const char *filename,
11701 int *remote_errno)
11702 {
11703 struct remote_state *rs = get_remote_state ();
11704 char *p = rs->buf;
11705 char *attachment;
11706 int left = get_remote_packet_size ();
11707 int len, attachment_len;
11708 int read_len;
11709
11710 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11711 return {};
11712
11713 remote_buffer_add_string (&p, &left, "vFile:readlink:");
11714
11715 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11716 strlen (filename));
11717
11718 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
11719 remote_errno, &attachment,
11720 &attachment_len);
11721
11722 if (len < 0)
11723 return {};
11724
11725 std::string ret (len, '\0');
11726
11727 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11728 (gdb_byte *) &ret[0], len);
11729 if (read_len != len)
11730 error (_("Readlink returned %d, but %d bytes."), len, read_len);
11731
11732 return ret;
11733 }
11734
11735 /* Implementation of to_fileio_fstat. */
11736
11737 static int
11738 remote_hostio_fstat (struct target_ops *self,
11739 int fd, struct stat *st,
11740 int *remote_errno)
11741 {
11742 struct remote_state *rs = get_remote_state ();
11743 char *p = rs->buf;
11744 int left = get_remote_packet_size ();
11745 int attachment_len, ret;
11746 char *attachment;
11747 struct fio_stat fst;
11748 int read_len;
11749
11750 remote_buffer_add_string (&p, &left, "vFile:fstat:");
11751
11752 remote_buffer_add_int (&p, &left, fd);
11753
11754 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
11755 remote_errno, &attachment,
11756 &attachment_len);
11757 if (ret < 0)
11758 {
11759 if (*remote_errno != FILEIO_ENOSYS)
11760 return ret;
11761
11762 /* Strictly we should return -1, ENOSYS here, but when
11763 "set sysroot remote:" was implemented in August 2008
11764 BFD's need for a stat function was sidestepped with
11765 this hack. This was not remedied until March 2015
11766 so we retain the previous behavior to avoid breaking
11767 compatibility.
11768
11769 Note that the memset is a March 2015 addition; older
11770 GDBs set st_size *and nothing else* so the structure
11771 would have garbage in all other fields. This might
11772 break something but retaining the previous behavior
11773 here would be just too wrong. */
11774
11775 memset (st, 0, sizeof (struct stat));
11776 st->st_size = INT_MAX;
11777 return 0;
11778 }
11779
11780 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11781 (gdb_byte *) &fst, sizeof (fst));
11782
11783 if (read_len != ret)
11784 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
11785
11786 if (read_len != sizeof (fst))
11787 error (_("vFile:fstat returned %d bytes, but expecting %d."),
11788 read_len, (int) sizeof (fst));
11789
11790 remote_fileio_to_host_stat (&fst, st);
11791
11792 return 0;
11793 }
11794
11795 /* Implementation of to_filesystem_is_local. */
11796
11797 static int
11798 remote_filesystem_is_local (struct target_ops *self)
11799 {
11800 /* Valgrind GDB presents itself as a remote target but works
11801 on the local filesystem: it does not implement remote get
11802 and users are not expected to set a sysroot. To handle
11803 this case we treat the remote filesystem as local if the
11804 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
11805 does not support vFile:open. */
11806 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
11807 {
11808 enum packet_support ps = packet_support (PACKET_vFile_open);
11809
11810 if (ps == PACKET_SUPPORT_UNKNOWN)
11811 {
11812 int fd, remote_errno;
11813
11814 /* Try opening a file to probe support. The supplied
11815 filename is irrelevant, we only care about whether
11816 the stub recognizes the packet or not. */
11817 fd = remote_hostio_open (self, NULL, "just probing",
11818 FILEIO_O_RDONLY, 0700, 0,
11819 &remote_errno);
11820
11821 if (fd >= 0)
11822 remote_hostio_close (self, fd, &remote_errno);
11823
11824 ps = packet_support (PACKET_vFile_open);
11825 }
11826
11827 if (ps == PACKET_DISABLE)
11828 {
11829 static int warning_issued = 0;
11830
11831 if (!warning_issued)
11832 {
11833 warning (_("remote target does not support file"
11834 " transfer, attempting to access files"
11835 " from local filesystem."));
11836 warning_issued = 1;
11837 }
11838
11839 return 1;
11840 }
11841 }
11842
11843 return 0;
11844 }
11845
11846 static int
11847 remote_fileio_errno_to_host (int errnum)
11848 {
11849 switch (errnum)
11850 {
11851 case FILEIO_EPERM:
11852 return EPERM;
11853 case FILEIO_ENOENT:
11854 return ENOENT;
11855 case FILEIO_EINTR:
11856 return EINTR;
11857 case FILEIO_EIO:
11858 return EIO;
11859 case FILEIO_EBADF:
11860 return EBADF;
11861 case FILEIO_EACCES:
11862 return EACCES;
11863 case FILEIO_EFAULT:
11864 return EFAULT;
11865 case FILEIO_EBUSY:
11866 return EBUSY;
11867 case FILEIO_EEXIST:
11868 return EEXIST;
11869 case FILEIO_ENODEV:
11870 return ENODEV;
11871 case FILEIO_ENOTDIR:
11872 return ENOTDIR;
11873 case FILEIO_EISDIR:
11874 return EISDIR;
11875 case FILEIO_EINVAL:
11876 return EINVAL;
11877 case FILEIO_ENFILE:
11878 return ENFILE;
11879 case FILEIO_EMFILE:
11880 return EMFILE;
11881 case FILEIO_EFBIG:
11882 return EFBIG;
11883 case FILEIO_ENOSPC:
11884 return ENOSPC;
11885 case FILEIO_ESPIPE:
11886 return ESPIPE;
11887 case FILEIO_EROFS:
11888 return EROFS;
11889 case FILEIO_ENOSYS:
11890 return ENOSYS;
11891 case FILEIO_ENAMETOOLONG:
11892 return ENAMETOOLONG;
11893 }
11894 return -1;
11895 }
11896
11897 static char *
11898 remote_hostio_error (int errnum)
11899 {
11900 int host_error = remote_fileio_errno_to_host (errnum);
11901
11902 if (host_error == -1)
11903 error (_("Unknown remote I/O error %d"), errnum);
11904 else
11905 error (_("Remote I/O error: %s"), safe_strerror (host_error));
11906 }
11907
11908 static void
11909 remote_hostio_close_cleanup (void *opaque)
11910 {
11911 int fd = *(int *) opaque;
11912 int remote_errno;
11913
11914 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
11915 }
11916
11917 void
11918 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
11919 {
11920 struct cleanup *back_to, *close_cleanup;
11921 int retcode, fd, remote_errno, bytes, io_size;
11922 gdb_byte *buffer;
11923 int bytes_in_buffer;
11924 int saw_eof;
11925 ULONGEST offset;
11926 struct remote_state *rs = get_remote_state ();
11927
11928 if (!rs->remote_desc)
11929 error (_("command can only be used with remote target"));
11930
11931 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
11932 if (file == NULL)
11933 perror_with_name (local_file);
11934
11935 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
11936 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
11937 | FILEIO_O_TRUNC),
11938 0700, 0, &remote_errno);
11939 if (fd == -1)
11940 remote_hostio_error (remote_errno);
11941
11942 /* Send up to this many bytes at once. They won't all fit in the
11943 remote packet limit, so we'll transfer slightly fewer. */
11944 io_size = get_remote_packet_size ();
11945 buffer = (gdb_byte *) xmalloc (io_size);
11946 back_to = make_cleanup (xfree, buffer);
11947
11948 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
11949
11950 bytes_in_buffer = 0;
11951 saw_eof = 0;
11952 offset = 0;
11953 while (bytes_in_buffer || !saw_eof)
11954 {
11955 if (!saw_eof)
11956 {
11957 bytes = fread (buffer + bytes_in_buffer, 1,
11958 io_size - bytes_in_buffer,
11959 file.get ());
11960 if (bytes == 0)
11961 {
11962 if (ferror (file.get ()))
11963 error (_("Error reading %s."), local_file);
11964 else
11965 {
11966 /* EOF. Unless there is something still in the
11967 buffer from the last iteration, we are done. */
11968 saw_eof = 1;
11969 if (bytes_in_buffer == 0)
11970 break;
11971 }
11972 }
11973 }
11974 else
11975 bytes = 0;
11976
11977 bytes += bytes_in_buffer;
11978 bytes_in_buffer = 0;
11979
11980 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
11981 fd, buffer, bytes,
11982 offset, &remote_errno);
11983
11984 if (retcode < 0)
11985 remote_hostio_error (remote_errno);
11986 else if (retcode == 0)
11987 error (_("Remote write of %d bytes returned 0!"), bytes);
11988 else if (retcode < bytes)
11989 {
11990 /* Short write. Save the rest of the read data for the next
11991 write. */
11992 bytes_in_buffer = bytes - retcode;
11993 memmove (buffer, buffer + retcode, bytes_in_buffer);
11994 }
11995
11996 offset += retcode;
11997 }
11998
11999 discard_cleanups (close_cleanup);
12000 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12001 remote_hostio_error (remote_errno);
12002
12003 if (from_tty)
12004 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12005 do_cleanups (back_to);
12006 }
12007
12008 void
12009 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12010 {
12011 struct cleanup *back_to, *close_cleanup;
12012 int fd, remote_errno, bytes, io_size;
12013 gdb_byte *buffer;
12014 ULONGEST offset;
12015 struct remote_state *rs = get_remote_state ();
12016
12017 if (!rs->remote_desc)
12018 error (_("command can only be used with remote target"));
12019
12020 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
12021 remote_file, FILEIO_O_RDONLY, 0, 0,
12022 &remote_errno);
12023 if (fd == -1)
12024 remote_hostio_error (remote_errno);
12025
12026 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12027 if (file == NULL)
12028 perror_with_name (local_file);
12029
12030 /* Send up to this many bytes at once. They won't all fit in the
12031 remote packet limit, so we'll transfer slightly fewer. */
12032 io_size = get_remote_packet_size ();
12033 buffer = (gdb_byte *) xmalloc (io_size);
12034 back_to = make_cleanup (xfree, buffer);
12035
12036 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
12037
12038 offset = 0;
12039 while (1)
12040 {
12041 bytes = remote_hostio_pread (find_target_at (process_stratum),
12042 fd, buffer, io_size, offset, &remote_errno);
12043 if (bytes == 0)
12044 /* Success, but no bytes, means end-of-file. */
12045 break;
12046 if (bytes == -1)
12047 remote_hostio_error (remote_errno);
12048
12049 offset += bytes;
12050
12051 bytes = fwrite (buffer, 1, bytes, file.get ());
12052 if (bytes == 0)
12053 perror_with_name (local_file);
12054 }
12055
12056 discard_cleanups (close_cleanup);
12057 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12058 remote_hostio_error (remote_errno);
12059
12060 if (from_tty)
12061 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12062 do_cleanups (back_to);
12063 }
12064
12065 void
12066 remote_file_delete (const char *remote_file, int from_tty)
12067 {
12068 int retcode, remote_errno;
12069 struct remote_state *rs = get_remote_state ();
12070
12071 if (!rs->remote_desc)
12072 error (_("command can only be used with remote target"));
12073
12074 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12075 NULL, remote_file, &remote_errno);
12076 if (retcode == -1)
12077 remote_hostio_error (remote_errno);
12078
12079 if (from_tty)
12080 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12081 }
12082
12083 static void
12084 remote_put_command (const char *args, int from_tty)
12085 {
12086 if (args == NULL)
12087 error_no_arg (_("file to put"));
12088
12089 gdb_argv argv (args);
12090 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12091 error (_("Invalid parameters to remote put"));
12092
12093 remote_file_put (argv[0], argv[1], from_tty);
12094 }
12095
12096 static void
12097 remote_get_command (const char *args, int from_tty)
12098 {
12099 if (args == NULL)
12100 error_no_arg (_("file to get"));
12101
12102 gdb_argv argv (args);
12103 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12104 error (_("Invalid parameters to remote get"));
12105
12106 remote_file_get (argv[0], argv[1], from_tty);
12107 }
12108
12109 static void
12110 remote_delete_command (const char *args, int from_tty)
12111 {
12112 if (args == NULL)
12113 error_no_arg (_("file to delete"));
12114
12115 gdb_argv argv (args);
12116 if (argv[0] == NULL || argv[1] != NULL)
12117 error (_("Invalid parameters to remote delete"));
12118
12119 remote_file_delete (argv[0], from_tty);
12120 }
12121
12122 static void
12123 remote_command (const char *args, int from_tty)
12124 {
12125 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12126 }
12127
12128 static int
12129 remote_can_execute_reverse (struct target_ops *self)
12130 {
12131 if (packet_support (PACKET_bs) == PACKET_ENABLE
12132 || packet_support (PACKET_bc) == PACKET_ENABLE)
12133 return 1;
12134 else
12135 return 0;
12136 }
12137
12138 static int
12139 remote_supports_non_stop (struct target_ops *self)
12140 {
12141 return 1;
12142 }
12143
12144 static int
12145 remote_supports_disable_randomization (struct target_ops *self)
12146 {
12147 /* Only supported in extended mode. */
12148 return 0;
12149 }
12150
12151 static int
12152 remote_supports_multi_process (struct target_ops *self)
12153 {
12154 struct remote_state *rs = get_remote_state ();
12155
12156 return remote_multi_process_p (rs);
12157 }
12158
12159 static int
12160 remote_supports_cond_tracepoints (void)
12161 {
12162 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12163 }
12164
12165 static int
12166 remote_supports_cond_breakpoints (struct target_ops *self)
12167 {
12168 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12169 }
12170
12171 static int
12172 remote_supports_fast_tracepoints (void)
12173 {
12174 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12175 }
12176
12177 static int
12178 remote_supports_static_tracepoints (void)
12179 {
12180 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12181 }
12182
12183 static int
12184 remote_supports_install_in_trace (void)
12185 {
12186 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12187 }
12188
12189 static int
12190 remote_supports_enable_disable_tracepoint (struct target_ops *self)
12191 {
12192 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12193 == PACKET_ENABLE);
12194 }
12195
12196 static int
12197 remote_supports_string_tracing (struct target_ops *self)
12198 {
12199 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12200 }
12201
12202 static int
12203 remote_can_run_breakpoint_commands (struct target_ops *self)
12204 {
12205 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12206 }
12207
12208 static void
12209 remote_trace_init (struct target_ops *self)
12210 {
12211 struct remote_state *rs = get_remote_state ();
12212
12213 putpkt ("QTinit");
12214 remote_get_noisy_reply ();
12215 if (strcmp (rs->buf, "OK") != 0)
12216 error (_("Target does not support this command."));
12217 }
12218
12219 /* Recursive routine to walk through command list including loops, and
12220 download packets for each command. */
12221
12222 static void
12223 remote_download_command_source (int num, ULONGEST addr,
12224 struct command_line *cmds)
12225 {
12226 struct remote_state *rs = get_remote_state ();
12227 struct command_line *cmd;
12228
12229 for (cmd = cmds; cmd; cmd = cmd->next)
12230 {
12231 QUIT; /* Allow user to bail out with ^C. */
12232 strcpy (rs->buf, "QTDPsrc:");
12233 encode_source_string (num, addr, "cmd", cmd->line,
12234 rs->buf + strlen (rs->buf),
12235 rs->buf_size - strlen (rs->buf));
12236 putpkt (rs->buf);
12237 remote_get_noisy_reply ();
12238 if (strcmp (rs->buf, "OK"))
12239 warning (_("Target does not support source download."));
12240
12241 if (cmd->control_type == while_control
12242 || cmd->control_type == while_stepping_control)
12243 {
12244 remote_download_command_source (num, addr, *cmd->body_list);
12245
12246 QUIT; /* Allow user to bail out with ^C. */
12247 strcpy (rs->buf, "QTDPsrc:");
12248 encode_source_string (num, addr, "cmd", "end",
12249 rs->buf + strlen (rs->buf),
12250 rs->buf_size - strlen (rs->buf));
12251 putpkt (rs->buf);
12252 remote_get_noisy_reply ();
12253 if (strcmp (rs->buf, "OK"))
12254 warning (_("Target does not support source download."));
12255 }
12256 }
12257 }
12258
12259 static void
12260 remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
12261 {
12262 #define BUF_SIZE 2048
12263
12264 CORE_ADDR tpaddr;
12265 char addrbuf[40];
12266 char buf[BUF_SIZE];
12267 std::vector<std::string> tdp_actions;
12268 std::vector<std::string> stepping_actions;
12269 char *pkt;
12270 struct breakpoint *b = loc->owner;
12271 struct tracepoint *t = (struct tracepoint *) b;
12272 struct remote_state *rs = get_remote_state ();
12273
12274 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12275
12276 tpaddr = loc->address;
12277 sprintf_vma (addrbuf, tpaddr);
12278 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12279 addrbuf, /* address */
12280 (b->enable_state == bp_enabled ? 'E' : 'D'),
12281 t->step_count, t->pass_count);
12282 /* Fast tracepoints are mostly handled by the target, but we can
12283 tell the target how big of an instruction block should be moved
12284 around. */
12285 if (b->type == bp_fast_tracepoint)
12286 {
12287 /* Only test for support at download time; we may not know
12288 target capabilities at definition time. */
12289 if (remote_supports_fast_tracepoints ())
12290 {
12291 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12292 NULL))
12293 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12294 gdb_insn_length (loc->gdbarch, tpaddr));
12295 else
12296 /* If it passed validation at definition but fails now,
12297 something is very wrong. */
12298 internal_error (__FILE__, __LINE__,
12299 _("Fast tracepoint not "
12300 "valid during download"));
12301 }
12302 else
12303 /* Fast tracepoints are functionally identical to regular
12304 tracepoints, so don't take lack of support as a reason to
12305 give up on the trace run. */
12306 warning (_("Target does not support fast tracepoints, "
12307 "downloading %d as regular tracepoint"), b->number);
12308 }
12309 else if (b->type == bp_static_tracepoint)
12310 {
12311 /* Only test for support at download time; we may not know
12312 target capabilities at definition time. */
12313 if (remote_supports_static_tracepoints ())
12314 {
12315 struct static_tracepoint_marker marker;
12316
12317 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12318 strcat (buf, ":S");
12319 else
12320 error (_("Static tracepoint not valid during download"));
12321 }
12322 else
12323 /* Fast tracepoints are functionally identical to regular
12324 tracepoints, so don't take lack of support as a reason
12325 to give up on the trace run. */
12326 error (_("Target does not support static tracepoints"));
12327 }
12328 /* If the tracepoint has a conditional, make it into an agent
12329 expression and append to the definition. */
12330 if (loc->cond)
12331 {
12332 /* Only test support at download time, we may not know target
12333 capabilities at definition time. */
12334 if (remote_supports_cond_tracepoints ())
12335 {
12336 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12337 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12338 aexpr->len);
12339 pkt = buf + strlen (buf);
12340 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12341 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12342 *pkt = '\0';
12343 }
12344 else
12345 warning (_("Target does not support conditional tracepoints, "
12346 "ignoring tp %d cond"), b->number);
12347 }
12348
12349 if (b->commands || *default_collect)
12350 strcat (buf, "-");
12351 putpkt (buf);
12352 remote_get_noisy_reply ();
12353 if (strcmp (rs->buf, "OK"))
12354 error (_("Target does not support tracepoints."));
12355
12356 /* do_single_steps (t); */
12357 for (auto action_it = tdp_actions.begin ();
12358 action_it != tdp_actions.end (); action_it++)
12359 {
12360 QUIT; /* Allow user to bail out with ^C. */
12361
12362 bool has_more = (action_it != tdp_actions.end ()
12363 || !stepping_actions.empty ());
12364
12365 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12366 b->number, addrbuf, /* address */
12367 action_it->c_str (),
12368 has_more ? '-' : 0);
12369 putpkt (buf);
12370 remote_get_noisy_reply ();
12371 if (strcmp (rs->buf, "OK"))
12372 error (_("Error on target while setting tracepoints."));
12373 }
12374
12375 for (auto action_it = stepping_actions.begin ();
12376 action_it != stepping_actions.end (); action_it++)
12377 {
12378 QUIT; /* Allow user to bail out with ^C. */
12379
12380 bool is_first = action_it == stepping_actions.begin ();
12381 bool has_more = action_it != stepping_actions.end ();
12382
12383 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12384 b->number, addrbuf, /* address */
12385 is_first ? "S" : "",
12386 action_it->c_str (),
12387 has_more ? "-" : "");
12388 putpkt (buf);
12389 remote_get_noisy_reply ();
12390 if (strcmp (rs->buf, "OK"))
12391 error (_("Error on target while setting tracepoints."));
12392 }
12393
12394 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12395 {
12396 if (b->location != NULL)
12397 {
12398 strcpy (buf, "QTDPsrc:");
12399 encode_source_string (b->number, loc->address, "at",
12400 event_location_to_string (b->location.get ()),
12401 buf + strlen (buf), 2048 - strlen (buf));
12402 putpkt (buf);
12403 remote_get_noisy_reply ();
12404 if (strcmp (rs->buf, "OK"))
12405 warning (_("Target does not support source download."));
12406 }
12407 if (b->cond_string)
12408 {
12409 strcpy (buf, "QTDPsrc:");
12410 encode_source_string (b->number, loc->address,
12411 "cond", b->cond_string, buf + strlen (buf),
12412 2048 - strlen (buf));
12413 putpkt (buf);
12414 remote_get_noisy_reply ();
12415 if (strcmp (rs->buf, "OK"))
12416 warning (_("Target does not support source download."));
12417 }
12418 remote_download_command_source (b->number, loc->address,
12419 breakpoint_commands (b));
12420 }
12421 }
12422
12423 static int
12424 remote_can_download_tracepoint (struct target_ops *self)
12425 {
12426 struct remote_state *rs = get_remote_state ();
12427 struct trace_status *ts;
12428 int status;
12429
12430 /* Don't try to install tracepoints until we've relocated our
12431 symbols, and fetched and merged the target's tracepoint list with
12432 ours. */
12433 if (rs->starting_up)
12434 return 0;
12435
12436 ts = current_trace_status ();
12437 status = remote_get_trace_status (self, ts);
12438
12439 if (status == -1 || !ts->running_known || !ts->running)
12440 return 0;
12441
12442 /* If we are in a tracing experiment, but remote stub doesn't support
12443 installing tracepoint in trace, we have to return. */
12444 if (!remote_supports_install_in_trace ())
12445 return 0;
12446
12447 return 1;
12448 }
12449
12450
12451 static void
12452 remote_download_trace_state_variable (struct target_ops *self,
12453 const trace_state_variable &tsv)
12454 {
12455 struct remote_state *rs = get_remote_state ();
12456 char *p;
12457
12458 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12459 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
12460 tsv.builtin);
12461 p = rs->buf + strlen (rs->buf);
12462 if ((p - rs->buf) + tsv.name.length () * 2 >= get_remote_packet_size ())
12463 error (_("Trace state variable name too long for tsv definition packet"));
12464 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
12465 *p++ = '\0';
12466 putpkt (rs->buf);
12467 remote_get_noisy_reply ();
12468 if (*rs->buf == '\0')
12469 error (_("Target does not support this command."));
12470 if (strcmp (rs->buf, "OK") != 0)
12471 error (_("Error on target while downloading trace state variable."));
12472 }
12473
12474 static void
12475 remote_enable_tracepoint (struct target_ops *self,
12476 struct bp_location *location)
12477 {
12478 struct remote_state *rs = get_remote_state ();
12479 char addr_buf[40];
12480
12481 sprintf_vma (addr_buf, location->address);
12482 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12483 location->owner->number, addr_buf);
12484 putpkt (rs->buf);
12485 remote_get_noisy_reply ();
12486 if (*rs->buf == '\0')
12487 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12488 if (strcmp (rs->buf, "OK") != 0)
12489 error (_("Error on target while enabling tracepoint."));
12490 }
12491
12492 static void
12493 remote_disable_tracepoint (struct target_ops *self,
12494 struct bp_location *location)
12495 {
12496 struct remote_state *rs = get_remote_state ();
12497 char addr_buf[40];
12498
12499 sprintf_vma (addr_buf, location->address);
12500 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12501 location->owner->number, addr_buf);
12502 putpkt (rs->buf);
12503 remote_get_noisy_reply ();
12504 if (*rs->buf == '\0')
12505 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12506 if (strcmp (rs->buf, "OK") != 0)
12507 error (_("Error on target while disabling tracepoint."));
12508 }
12509
12510 static void
12511 remote_trace_set_readonly_regions (struct target_ops *self)
12512 {
12513 asection *s;
12514 bfd *abfd = NULL;
12515 bfd_size_type size;
12516 bfd_vma vma;
12517 int anysecs = 0;
12518 int offset = 0;
12519
12520 if (!exec_bfd)
12521 return; /* No information to give. */
12522
12523 struct remote_state *rs = get_remote_state ();
12524
12525 strcpy (rs->buf, "QTro");
12526 offset = strlen (rs->buf);
12527 for (s = exec_bfd->sections; s; s = s->next)
12528 {
12529 char tmp1[40], tmp2[40];
12530 int sec_length;
12531
12532 if ((s->flags & SEC_LOAD) == 0 ||
12533 /* (s->flags & SEC_CODE) == 0 || */
12534 (s->flags & SEC_READONLY) == 0)
12535 continue;
12536
12537 anysecs = 1;
12538 vma = bfd_get_section_vma (abfd, s);
12539 size = bfd_get_section_size (s);
12540 sprintf_vma (tmp1, vma);
12541 sprintf_vma (tmp2, vma + size);
12542 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12543 if (offset + sec_length + 1 > rs->buf_size)
12544 {
12545 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12546 warning (_("\
12547 Too many sections for read-only sections definition packet."));
12548 break;
12549 }
12550 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
12551 tmp1, tmp2);
12552 offset += sec_length;
12553 }
12554 if (anysecs)
12555 {
12556 putpkt (rs->buf);
12557 getpkt (&rs->buf, &rs->buf_size, 0);
12558 }
12559 }
12560
12561 static void
12562 remote_trace_start (struct target_ops *self)
12563 {
12564 struct remote_state *rs = get_remote_state ();
12565
12566 putpkt ("QTStart");
12567 remote_get_noisy_reply ();
12568 if (*rs->buf == '\0')
12569 error (_("Target does not support this command."));
12570 if (strcmp (rs->buf, "OK") != 0)
12571 error (_("Bogus reply from target: %s"), rs->buf);
12572 }
12573
12574 static int
12575 remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
12576 {
12577 /* Initialize it just to avoid a GCC false warning. */
12578 char *p = NULL;
12579 /* FIXME we need to get register block size some other way. */
12580 extern int trace_regblock_size;
12581 enum packet_result result;
12582 struct remote_state *rs = get_remote_state ();
12583
12584 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12585 return -1;
12586
12587 trace_regblock_size
12588 = get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
12589
12590 putpkt ("qTStatus");
12591
12592 TRY
12593 {
12594 p = remote_get_noisy_reply ();
12595 }
12596 CATCH (ex, RETURN_MASK_ERROR)
12597 {
12598 if (ex.error != TARGET_CLOSE_ERROR)
12599 {
12600 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12601 return -1;
12602 }
12603 throw_exception (ex);
12604 }
12605 END_CATCH
12606
12607 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12608
12609 /* If the remote target doesn't do tracing, flag it. */
12610 if (result == PACKET_UNKNOWN)
12611 return -1;
12612
12613 /* We're working with a live target. */
12614 ts->filename = NULL;
12615
12616 if (*p++ != 'T')
12617 error (_("Bogus trace status reply from target: %s"), rs->buf);
12618
12619 /* Function 'parse_trace_status' sets default value of each field of
12620 'ts' at first, so we don't have to do it here. */
12621 parse_trace_status (p, ts);
12622
12623 return ts->running;
12624 }
12625
12626 static void
12627 remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
12628 struct uploaded_tp *utp)
12629 {
12630 struct remote_state *rs = get_remote_state ();
12631 char *reply;
12632 struct bp_location *loc;
12633 struct tracepoint *tp = (struct tracepoint *) bp;
12634 size_t size = get_remote_packet_size ();
12635
12636 if (tp)
12637 {
12638 tp->hit_count = 0;
12639 tp->traceframe_usage = 0;
12640 for (loc = tp->loc; loc; loc = loc->next)
12641 {
12642 /* If the tracepoint was never downloaded, don't go asking for
12643 any status. */
12644 if (tp->number_on_target == 0)
12645 continue;
12646 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12647 phex_nz (loc->address, 0));
12648 putpkt (rs->buf);
12649 reply = remote_get_noisy_reply ();
12650 if (reply && *reply)
12651 {
12652 if (*reply == 'V')
12653 parse_tracepoint_status (reply + 1, bp, utp);
12654 }
12655 }
12656 }
12657 else if (utp)
12658 {
12659 utp->hit_count = 0;
12660 utp->traceframe_usage = 0;
12661 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
12662 phex_nz (utp->addr, 0));
12663 putpkt (rs->buf);
12664 reply = remote_get_noisy_reply ();
12665 if (reply && *reply)
12666 {
12667 if (*reply == 'V')
12668 parse_tracepoint_status (reply + 1, bp, utp);
12669 }
12670 }
12671 }
12672
12673 static void
12674 remote_trace_stop (struct target_ops *self)
12675 {
12676 struct remote_state *rs = get_remote_state ();
12677
12678 putpkt ("QTStop");
12679 remote_get_noisy_reply ();
12680 if (*rs->buf == '\0')
12681 error (_("Target does not support this command."));
12682 if (strcmp (rs->buf, "OK") != 0)
12683 error (_("Bogus reply from target: %s"), rs->buf);
12684 }
12685
12686 static int
12687 remote_trace_find (struct target_ops *self,
12688 enum trace_find_type type, int num,
12689 CORE_ADDR addr1, CORE_ADDR addr2,
12690 int *tpp)
12691 {
12692 struct remote_state *rs = get_remote_state ();
12693 char *endbuf = rs->buf + get_remote_packet_size ();
12694 char *p, *reply;
12695 int target_frameno = -1, target_tracept = -1;
12696
12697 /* Lookups other than by absolute frame number depend on the current
12698 trace selected, so make sure it is correct on the remote end
12699 first. */
12700 if (type != tfind_number)
12701 set_remote_traceframe ();
12702
12703 p = rs->buf;
12704 strcpy (p, "QTFrame:");
12705 p = strchr (p, '\0');
12706 switch (type)
12707 {
12708 case tfind_number:
12709 xsnprintf (p, endbuf - p, "%x", num);
12710 break;
12711 case tfind_pc:
12712 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
12713 break;
12714 case tfind_tp:
12715 xsnprintf (p, endbuf - p, "tdp:%x", num);
12716 break;
12717 case tfind_range:
12718 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
12719 phex_nz (addr2, 0));
12720 break;
12721 case tfind_outside:
12722 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
12723 phex_nz (addr2, 0));
12724 break;
12725 default:
12726 error (_("Unknown trace find type %d"), type);
12727 }
12728
12729 putpkt (rs->buf);
12730 reply = remote_get_noisy_reply ();
12731 if (*reply == '\0')
12732 error (_("Target does not support this command."));
12733
12734 while (reply && *reply)
12735 switch (*reply)
12736 {
12737 case 'F':
12738 p = ++reply;
12739 target_frameno = (int) strtol (p, &reply, 16);
12740 if (reply == p)
12741 error (_("Unable to parse trace frame number"));
12742 /* Don't update our remote traceframe number cache on failure
12743 to select a remote traceframe. */
12744 if (target_frameno == -1)
12745 return -1;
12746 break;
12747 case 'T':
12748 p = ++reply;
12749 target_tracept = (int) strtol (p, &reply, 16);
12750 if (reply == p)
12751 error (_("Unable to parse tracepoint number"));
12752 break;
12753 case 'O': /* "OK"? */
12754 if (reply[1] == 'K' && reply[2] == '\0')
12755 reply += 2;
12756 else
12757 error (_("Bogus reply from target: %s"), reply);
12758 break;
12759 default:
12760 error (_("Bogus reply from target: %s"), reply);
12761 }
12762 if (tpp)
12763 *tpp = target_tracept;
12764
12765 rs->remote_traceframe_number = target_frameno;
12766 return target_frameno;
12767 }
12768
12769 static int
12770 remote_get_trace_state_variable_value (struct target_ops *self,
12771 int tsvnum, LONGEST *val)
12772 {
12773 struct remote_state *rs = get_remote_state ();
12774 char *reply;
12775 ULONGEST uval;
12776
12777 set_remote_traceframe ();
12778
12779 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
12780 putpkt (rs->buf);
12781 reply = remote_get_noisy_reply ();
12782 if (reply && *reply)
12783 {
12784 if (*reply == 'V')
12785 {
12786 unpack_varlen_hex (reply + 1, &uval);
12787 *val = (LONGEST) uval;
12788 return 1;
12789 }
12790 }
12791 return 0;
12792 }
12793
12794 static int
12795 remote_save_trace_data (struct target_ops *self, const char *filename)
12796 {
12797 struct remote_state *rs = get_remote_state ();
12798 char *p, *reply;
12799
12800 p = rs->buf;
12801 strcpy (p, "QTSave:");
12802 p += strlen (p);
12803 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
12804 error (_("Remote file name too long for trace save packet"));
12805 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
12806 *p++ = '\0';
12807 putpkt (rs->buf);
12808 reply = remote_get_noisy_reply ();
12809 if (*reply == '\0')
12810 error (_("Target does not support this command."));
12811 if (strcmp (reply, "OK") != 0)
12812 error (_("Bogus reply from target: %s"), reply);
12813 return 0;
12814 }
12815
12816 /* This is basically a memory transfer, but needs to be its own packet
12817 because we don't know how the target actually organizes its trace
12818 memory, plus we want to be able to ask for as much as possible, but
12819 not be unhappy if we don't get as much as we ask for. */
12820
12821 static LONGEST
12822 remote_get_raw_trace_data (struct target_ops *self,
12823 gdb_byte *buf, ULONGEST offset, LONGEST len)
12824 {
12825 struct remote_state *rs = get_remote_state ();
12826 char *reply;
12827 char *p;
12828 int rslt;
12829
12830 p = rs->buf;
12831 strcpy (p, "qTBuffer:");
12832 p += strlen (p);
12833 p += hexnumstr (p, offset);
12834 *p++ = ',';
12835 p += hexnumstr (p, len);
12836 *p++ = '\0';
12837
12838 putpkt (rs->buf);
12839 reply = remote_get_noisy_reply ();
12840 if (reply && *reply)
12841 {
12842 /* 'l' by itself means we're at the end of the buffer and
12843 there is nothing more to get. */
12844 if (*reply == 'l')
12845 return 0;
12846
12847 /* Convert the reply into binary. Limit the number of bytes to
12848 convert according to our passed-in buffer size, rather than
12849 what was returned in the packet; if the target is
12850 unexpectedly generous and gives us a bigger reply than we
12851 asked for, we don't want to crash. */
12852 rslt = hex2bin (reply, buf, len);
12853 return rslt;
12854 }
12855
12856 /* Something went wrong, flag as an error. */
12857 return -1;
12858 }
12859
12860 static void
12861 remote_set_disconnected_tracing (struct target_ops *self, int val)
12862 {
12863 struct remote_state *rs = get_remote_state ();
12864
12865 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
12866 {
12867 char *reply;
12868
12869 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
12870 putpkt (rs->buf);
12871 reply = remote_get_noisy_reply ();
12872 if (*reply == '\0')
12873 error (_("Target does not support this command."));
12874 if (strcmp (reply, "OK") != 0)
12875 error (_("Bogus reply from target: %s"), reply);
12876 }
12877 else if (val)
12878 warning (_("Target does not support disconnected tracing."));
12879 }
12880
12881 static int
12882 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
12883 {
12884 struct thread_info *info = find_thread_ptid (ptid);
12885
12886 if (info != NULL && info->priv != NULL)
12887 return get_remote_thread_info (info)->core;
12888
12889 return -1;
12890 }
12891
12892 static void
12893 remote_set_circular_trace_buffer (struct target_ops *self, int val)
12894 {
12895 struct remote_state *rs = get_remote_state ();
12896 char *reply;
12897
12898 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
12899 putpkt (rs->buf);
12900 reply = remote_get_noisy_reply ();
12901 if (*reply == '\0')
12902 error (_("Target does not support this command."));
12903 if (strcmp (reply, "OK") != 0)
12904 error (_("Bogus reply from target: %s"), reply);
12905 }
12906
12907 static traceframe_info_up
12908 remote_traceframe_info (struct target_ops *self)
12909 {
12910 gdb::optional<gdb::char_vector> text
12911 = target_read_stralloc (&current_target, TARGET_OBJECT_TRACEFRAME_INFO,
12912 NULL);
12913 if (text)
12914 return parse_traceframe_info (text->data ());
12915
12916 return NULL;
12917 }
12918
12919 /* Handle the qTMinFTPILen packet. Returns the minimum length of
12920 instruction on which a fast tracepoint may be placed. Returns -1
12921 if the packet is not supported, and 0 if the minimum instruction
12922 length is unknown. */
12923
12924 static int
12925 remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
12926 {
12927 struct remote_state *rs = get_remote_state ();
12928 char *reply;
12929
12930 /* If we're not debugging a process yet, the IPA can't be
12931 loaded. */
12932 if (!target_has_execution)
12933 return 0;
12934
12935 /* Make sure the remote is pointing at the right process. */
12936 set_general_process ();
12937
12938 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
12939 putpkt (rs->buf);
12940 reply = remote_get_noisy_reply ();
12941 if (*reply == '\0')
12942 return -1;
12943 else
12944 {
12945 ULONGEST min_insn_len;
12946
12947 unpack_varlen_hex (reply, &min_insn_len);
12948
12949 return (int) min_insn_len;
12950 }
12951 }
12952
12953 static void
12954 remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
12955 {
12956 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
12957 {
12958 struct remote_state *rs = get_remote_state ();
12959 char *buf = rs->buf;
12960 char *endbuf = rs->buf + get_remote_packet_size ();
12961 enum packet_result result;
12962
12963 gdb_assert (val >= 0 || val == -1);
12964 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
12965 /* Send -1 as literal "-1" to avoid host size dependency. */
12966 if (val < 0)
12967 {
12968 *buf++ = '-';
12969 buf += hexnumstr (buf, (ULONGEST) -val);
12970 }
12971 else
12972 buf += hexnumstr (buf, (ULONGEST) val);
12973
12974 putpkt (rs->buf);
12975 remote_get_noisy_reply ();
12976 result = packet_ok (rs->buf,
12977 &remote_protocol_packets[PACKET_QTBuffer_size]);
12978
12979 if (result != PACKET_OK)
12980 warning (_("Bogus reply from target: %s"), rs->buf);
12981 }
12982 }
12983
12984 static int
12985 remote_set_trace_notes (struct target_ops *self,
12986 const char *user, const char *notes,
12987 const char *stop_notes)
12988 {
12989 struct remote_state *rs = get_remote_state ();
12990 char *reply;
12991 char *buf = rs->buf;
12992 char *endbuf = rs->buf + get_remote_packet_size ();
12993 int nbytes;
12994
12995 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
12996 if (user)
12997 {
12998 buf += xsnprintf (buf, endbuf - buf, "user:");
12999 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13000 buf += 2 * nbytes;
13001 *buf++ = ';';
13002 }
13003 if (notes)
13004 {
13005 buf += xsnprintf (buf, endbuf - buf, "notes:");
13006 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13007 buf += 2 * nbytes;
13008 *buf++ = ';';
13009 }
13010 if (stop_notes)
13011 {
13012 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13013 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13014 buf += 2 * nbytes;
13015 *buf++ = ';';
13016 }
13017 /* Ensure the buffer is terminated. */
13018 *buf = '\0';
13019
13020 putpkt (rs->buf);
13021 reply = remote_get_noisy_reply ();
13022 if (*reply == '\0')
13023 return 0;
13024
13025 if (strcmp (reply, "OK") != 0)
13026 error (_("Bogus reply from target: %s"), reply);
13027
13028 return 1;
13029 }
13030
13031 static int
13032 remote_use_agent (struct target_ops *self, int use)
13033 {
13034 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13035 {
13036 struct remote_state *rs = get_remote_state ();
13037
13038 /* If the stub supports QAgent. */
13039 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13040 putpkt (rs->buf);
13041 getpkt (&rs->buf, &rs->buf_size, 0);
13042
13043 if (strcmp (rs->buf, "OK") == 0)
13044 {
13045 use_agent = use;
13046 return 1;
13047 }
13048 }
13049
13050 return 0;
13051 }
13052
13053 static int
13054 remote_can_use_agent (struct target_ops *self)
13055 {
13056 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13057 }
13058
13059 struct btrace_target_info
13060 {
13061 /* The ptid of the traced thread. */
13062 ptid_t ptid;
13063
13064 /* The obtained branch trace configuration. */
13065 struct btrace_config conf;
13066 };
13067
13068 /* Reset our idea of our target's btrace configuration. */
13069
13070 static void
13071 remote_btrace_reset (void)
13072 {
13073 struct remote_state *rs = get_remote_state ();
13074
13075 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13076 }
13077
13078 /* Synchronize the configuration with the target. */
13079
13080 static void
13081 btrace_sync_conf (const struct btrace_config *conf)
13082 {
13083 struct packet_config *packet;
13084 struct remote_state *rs;
13085 char *buf, *pos, *endbuf;
13086
13087 rs = get_remote_state ();
13088 buf = rs->buf;
13089 endbuf = buf + get_remote_packet_size ();
13090
13091 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13092 if (packet_config_support (packet) == PACKET_ENABLE
13093 && conf->bts.size != rs->btrace_config.bts.size)
13094 {
13095 pos = buf;
13096 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13097 conf->bts.size);
13098
13099 putpkt (buf);
13100 getpkt (&buf, &rs->buf_size, 0);
13101
13102 if (packet_ok (buf, packet) == PACKET_ERROR)
13103 {
13104 if (buf[0] == 'E' && buf[1] == '.')
13105 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13106 else
13107 error (_("Failed to configure the BTS buffer size."));
13108 }
13109
13110 rs->btrace_config.bts.size = conf->bts.size;
13111 }
13112
13113 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13114 if (packet_config_support (packet) == PACKET_ENABLE
13115 && conf->pt.size != rs->btrace_config.pt.size)
13116 {
13117 pos = buf;
13118 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13119 conf->pt.size);
13120
13121 putpkt (buf);
13122 getpkt (&buf, &rs->buf_size, 0);
13123
13124 if (packet_ok (buf, packet) == PACKET_ERROR)
13125 {
13126 if (buf[0] == 'E' && buf[1] == '.')
13127 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13128 else
13129 error (_("Failed to configure the trace buffer size."));
13130 }
13131
13132 rs->btrace_config.pt.size = conf->pt.size;
13133 }
13134 }
13135
13136 /* Read the current thread's btrace configuration from the target and
13137 store it into CONF. */
13138
13139 static void
13140 btrace_read_config (struct btrace_config *conf)
13141 {
13142 gdb::optional<gdb::char_vector> xml
13143 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE_CONF, "");
13144 if (xml)
13145 parse_xml_btrace_conf (conf, xml->data ());
13146 }
13147
13148 /* Maybe reopen target btrace. */
13149
13150 static void
13151 remote_btrace_maybe_reopen (void)
13152 {
13153 struct remote_state *rs = get_remote_state ();
13154 struct thread_info *tp;
13155 int btrace_target_pushed = 0;
13156 int warned = 0;
13157
13158 scoped_restore_current_thread restore_thread;
13159
13160 ALL_NON_EXITED_THREADS (tp)
13161 {
13162 set_general_thread (tp->ptid);
13163
13164 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13165 btrace_read_config (&rs->btrace_config);
13166
13167 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13168 continue;
13169
13170 #if !defined (HAVE_LIBIPT)
13171 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13172 {
13173 if (!warned)
13174 {
13175 warned = 1;
13176 warning (_("Target is recording using Intel Processor Trace "
13177 "but support was disabled at compile time."));
13178 }
13179
13180 continue;
13181 }
13182 #endif /* !defined (HAVE_LIBIPT) */
13183
13184 /* Push target, once, but before anything else happens. This way our
13185 changes to the threads will be cleaned up by unpushing the target
13186 in case btrace_read_config () throws. */
13187 if (!btrace_target_pushed)
13188 {
13189 btrace_target_pushed = 1;
13190 record_btrace_push_target ();
13191 printf_filtered (_("Target is recording using %s.\n"),
13192 btrace_format_string (rs->btrace_config.format));
13193 }
13194
13195 tp->btrace.target = XCNEW (struct btrace_target_info);
13196 tp->btrace.target->ptid = tp->ptid;
13197 tp->btrace.target->conf = rs->btrace_config;
13198 }
13199 }
13200
13201 /* Enable branch tracing. */
13202
13203 static struct btrace_target_info *
13204 remote_enable_btrace (struct target_ops *self, ptid_t ptid,
13205 const struct btrace_config *conf)
13206 {
13207 struct btrace_target_info *tinfo = NULL;
13208 struct packet_config *packet = NULL;
13209 struct remote_state *rs = get_remote_state ();
13210 char *buf = rs->buf;
13211 char *endbuf = rs->buf + get_remote_packet_size ();
13212
13213 switch (conf->format)
13214 {
13215 case BTRACE_FORMAT_BTS:
13216 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13217 break;
13218
13219 case BTRACE_FORMAT_PT:
13220 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13221 break;
13222 }
13223
13224 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13225 error (_("Target does not support branch tracing."));
13226
13227 btrace_sync_conf (conf);
13228
13229 set_general_thread (ptid);
13230
13231 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13232 putpkt (rs->buf);
13233 getpkt (&rs->buf, &rs->buf_size, 0);
13234
13235 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13236 {
13237 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13238 error (_("Could not enable branch tracing for %s: %s"),
13239 target_pid_to_str (ptid), rs->buf + 2);
13240 else
13241 error (_("Could not enable branch tracing for %s."),
13242 target_pid_to_str (ptid));
13243 }
13244
13245 tinfo = XCNEW (struct btrace_target_info);
13246 tinfo->ptid = ptid;
13247
13248 /* If we fail to read the configuration, we lose some information, but the
13249 tracing itself is not impacted. */
13250 TRY
13251 {
13252 btrace_read_config (&tinfo->conf);
13253 }
13254 CATCH (err, RETURN_MASK_ERROR)
13255 {
13256 if (err.message != NULL)
13257 warning ("%s", err.message);
13258 }
13259 END_CATCH
13260
13261 return tinfo;
13262 }
13263
13264 /* Disable branch tracing. */
13265
13266 static void
13267 remote_disable_btrace (struct target_ops *self,
13268 struct btrace_target_info *tinfo)
13269 {
13270 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13271 struct remote_state *rs = get_remote_state ();
13272 char *buf = rs->buf;
13273 char *endbuf = rs->buf + get_remote_packet_size ();
13274
13275 if (packet_config_support (packet) != PACKET_ENABLE)
13276 error (_("Target does not support branch tracing."));
13277
13278 set_general_thread (tinfo->ptid);
13279
13280 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13281 putpkt (rs->buf);
13282 getpkt (&rs->buf, &rs->buf_size, 0);
13283
13284 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13285 {
13286 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13287 error (_("Could not disable branch tracing for %s: %s"),
13288 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13289 else
13290 error (_("Could not disable branch tracing for %s."),
13291 target_pid_to_str (tinfo->ptid));
13292 }
13293
13294 xfree (tinfo);
13295 }
13296
13297 /* Teardown branch tracing. */
13298
13299 static void
13300 remote_teardown_btrace (struct target_ops *self,
13301 struct btrace_target_info *tinfo)
13302 {
13303 /* We must not talk to the target during teardown. */
13304 xfree (tinfo);
13305 }
13306
13307 /* Read the branch trace. */
13308
13309 static enum btrace_error
13310 remote_read_btrace (struct target_ops *self,
13311 struct btrace_data *btrace,
13312 struct btrace_target_info *tinfo,
13313 enum btrace_read_type type)
13314 {
13315 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13316 const char *annex;
13317
13318 if (packet_config_support (packet) != PACKET_ENABLE)
13319 error (_("Target does not support branch tracing."));
13320
13321 #if !defined(HAVE_LIBEXPAT)
13322 error (_("Cannot process branch tracing result. XML parsing not supported."));
13323 #endif
13324
13325 switch (type)
13326 {
13327 case BTRACE_READ_ALL:
13328 annex = "all";
13329 break;
13330 case BTRACE_READ_NEW:
13331 annex = "new";
13332 break;
13333 case BTRACE_READ_DELTA:
13334 annex = "delta";
13335 break;
13336 default:
13337 internal_error (__FILE__, __LINE__,
13338 _("Bad branch tracing read type: %u."),
13339 (unsigned int) type);
13340 }
13341
13342 gdb::optional<gdb::char_vector> xml
13343 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE, annex);
13344 if (!xml)
13345 return BTRACE_ERR_UNKNOWN;
13346
13347 parse_xml_btrace (btrace, xml->data ());
13348
13349 return BTRACE_ERR_NONE;
13350 }
13351
13352 static const struct btrace_config *
13353 remote_btrace_conf (struct target_ops *self,
13354 const struct btrace_target_info *tinfo)
13355 {
13356 return &tinfo->conf;
13357 }
13358
13359 static int
13360 remote_augmented_libraries_svr4_read (struct target_ops *self)
13361 {
13362 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13363 == PACKET_ENABLE);
13364 }
13365
13366 /* Implementation of to_load. */
13367
13368 static void
13369 remote_load (struct target_ops *self, const char *name, int from_tty)
13370 {
13371 generic_load (name, from_tty);
13372 }
13373
13374 /* Accepts an integer PID; returns a string representing a file that
13375 can be opened on the remote side to get the symbols for the child
13376 process. Returns NULL if the operation is not supported. */
13377
13378 static char *
13379 remote_pid_to_exec_file (struct target_ops *self, int pid)
13380 {
13381 static gdb::optional<gdb::char_vector> filename;
13382 struct inferior *inf;
13383 char *annex = NULL;
13384
13385 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13386 return NULL;
13387
13388 inf = find_inferior_pid (pid);
13389 if (inf == NULL)
13390 internal_error (__FILE__, __LINE__,
13391 _("not currently attached to process %d"), pid);
13392
13393 if (!inf->fake_pid_p)
13394 {
13395 const int annex_size = 9;
13396
13397 annex = (char *) alloca (annex_size);
13398 xsnprintf (annex, annex_size, "%x", pid);
13399 }
13400
13401 filename = target_read_stralloc (&current_target,
13402 TARGET_OBJECT_EXEC_FILE, annex);
13403
13404 return filename ? filename->data () : nullptr;
13405 }
13406
13407 /* Implement the to_can_do_single_step target_ops method. */
13408
13409 static int
13410 remote_can_do_single_step (struct target_ops *ops)
13411 {
13412 /* We can only tell whether target supports single step or not by
13413 supported s and S vCont actions if the stub supports vContSupported
13414 feature. If the stub doesn't support vContSupported feature,
13415 we have conservatively to think target doesn't supports single
13416 step. */
13417 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13418 {
13419 struct remote_state *rs = get_remote_state ();
13420
13421 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13422 remote_vcont_probe (rs);
13423
13424 return rs->supports_vCont.s && rs->supports_vCont.S;
13425 }
13426 else
13427 return 0;
13428 }
13429
13430 /* Implementation of the to_execution_direction method for the remote
13431 target. */
13432
13433 static enum exec_direction_kind
13434 remote_execution_direction (struct target_ops *self)
13435 {
13436 struct remote_state *rs = get_remote_state ();
13437
13438 return rs->last_resume_exec_dir;
13439 }
13440
13441 /* Return pointer to the thread_info struct which corresponds to
13442 THREAD_HANDLE (having length HANDLE_LEN). */
13443
13444 static struct thread_info *
13445 remote_thread_handle_to_thread_info (struct target_ops *ops,
13446 const gdb_byte *thread_handle,
13447 int handle_len,
13448 struct inferior *inf)
13449 {
13450 struct thread_info *tp;
13451
13452 ALL_NON_EXITED_THREADS (tp)
13453 {
13454 remote_thread_info *priv = get_remote_thread_info (tp);
13455
13456 if (tp->inf == inf && priv != NULL)
13457 {
13458 if (handle_len != priv->thread_handle.size ())
13459 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13460 handle_len, priv->thread_handle.size ());
13461 if (memcmp (thread_handle, priv->thread_handle.data (),
13462 handle_len) == 0)
13463 return tp;
13464 }
13465 }
13466
13467 return NULL;
13468 }
13469
13470 static void
13471 init_remote_ops (void)
13472 {
13473 remote_ops.to_shortname = "remote";
13474 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
13475 remote_ops.to_doc =
13476 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13477 Specify the serial device it is connected to\n\
13478 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
13479 remote_ops.to_open = remote_open;
13480 remote_ops.to_close = remote_close;
13481 remote_ops.to_detach = remote_detach;
13482 remote_ops.to_disconnect = remote_disconnect;
13483 remote_ops.to_resume = remote_resume;
13484 remote_ops.to_commit_resume = remote_commit_resume;
13485 remote_ops.to_wait = remote_wait;
13486 remote_ops.to_fetch_registers = remote_fetch_registers;
13487 remote_ops.to_store_registers = remote_store_registers;
13488 remote_ops.to_prepare_to_store = remote_prepare_to_store;
13489 remote_ops.to_files_info = remote_files_info;
13490 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
13491 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
13492 remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint;
13493 remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint;
13494 remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint;
13495 remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint;
13496 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
13497 remote_ops.to_stopped_data_address = remote_stopped_data_address;
13498 remote_ops.to_watchpoint_addr_within_range =
13499 remote_watchpoint_addr_within_range;
13500 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
13501 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
13502 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
13503 remote_ops.to_region_ok_for_hw_watchpoint
13504 = remote_region_ok_for_hw_watchpoint;
13505 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
13506 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
13507 remote_ops.to_kill = remote_kill;
13508 remote_ops.to_load = remote_load;
13509 remote_ops.to_mourn_inferior = remote_mourn;
13510 remote_ops.to_pass_signals = remote_pass_signals;
13511 remote_ops.to_set_syscall_catchpoint = remote_set_syscall_catchpoint;
13512 remote_ops.to_program_signals = remote_program_signals;
13513 remote_ops.to_thread_alive = remote_thread_alive;
13514 remote_ops.to_thread_name = remote_thread_name;
13515 remote_ops.to_update_thread_list = remote_update_thread_list;
13516 remote_ops.to_pid_to_str = remote_pid_to_str;
13517 remote_ops.to_extra_thread_info = remote_threads_extra_info;
13518 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
13519 remote_ops.to_stop = remote_stop;
13520 remote_ops.to_interrupt = remote_interrupt;
13521 remote_ops.to_pass_ctrlc = remote_pass_ctrlc;
13522 remote_ops.to_xfer_partial = remote_xfer_partial;
13523 remote_ops.to_get_memory_xfer_limit = remote_get_memory_xfer_limit;
13524 remote_ops.to_rcmd = remote_rcmd;
13525 remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file;
13526 remote_ops.to_log_command = serial_log_command;
13527 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
13528 remote_ops.to_stratum = process_stratum;
13529 remote_ops.to_has_all_memory = default_child_has_all_memory;
13530 remote_ops.to_has_memory = default_child_has_memory;
13531 remote_ops.to_has_stack = default_child_has_stack;
13532 remote_ops.to_has_registers = default_child_has_registers;
13533 remote_ops.to_has_execution = default_child_has_execution;
13534 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
13535 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
13536 remote_ops.to_magic = OPS_MAGIC;
13537 remote_ops.to_memory_map = remote_memory_map;
13538 remote_ops.to_flash_erase = remote_flash_erase;
13539 remote_ops.to_flash_done = remote_flash_done;
13540 remote_ops.to_read_description = remote_read_description;
13541 remote_ops.to_search_memory = remote_search_memory;
13542 remote_ops.to_can_async_p = remote_can_async_p;
13543 remote_ops.to_is_async_p = remote_is_async_p;
13544 remote_ops.to_async = remote_async;
13545 remote_ops.to_thread_events = remote_thread_events;
13546 remote_ops.to_can_do_single_step = remote_can_do_single_step;
13547 remote_ops.to_terminal_inferior = remote_terminal_inferior;
13548 remote_ops.to_terminal_ours = remote_terminal_ours;
13549 remote_ops.to_supports_non_stop = remote_supports_non_stop;
13550 remote_ops.to_supports_multi_process = remote_supports_multi_process;
13551 remote_ops.to_supports_disable_randomization
13552 = remote_supports_disable_randomization;
13553 remote_ops.to_filesystem_is_local = remote_filesystem_is_local;
13554 remote_ops.to_fileio_open = remote_hostio_open;
13555 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
13556 remote_ops.to_fileio_pread = remote_hostio_pread;
13557 remote_ops.to_fileio_fstat = remote_hostio_fstat;
13558 remote_ops.to_fileio_close = remote_hostio_close;
13559 remote_ops.to_fileio_unlink = remote_hostio_unlink;
13560 remote_ops.to_fileio_readlink = remote_hostio_readlink;
13561 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
13562 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
13563 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
13564 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
13565 remote_ops.to_trace_init = remote_trace_init;
13566 remote_ops.to_download_tracepoint = remote_download_tracepoint;
13567 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
13568 remote_ops.to_download_trace_state_variable
13569 = remote_download_trace_state_variable;
13570 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
13571 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
13572 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
13573 remote_ops.to_trace_start = remote_trace_start;
13574 remote_ops.to_get_trace_status = remote_get_trace_status;
13575 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
13576 remote_ops.to_trace_stop = remote_trace_stop;
13577 remote_ops.to_trace_find = remote_trace_find;
13578 remote_ops.to_get_trace_state_variable_value
13579 = remote_get_trace_state_variable_value;
13580 remote_ops.to_save_trace_data = remote_save_trace_data;
13581 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
13582 remote_ops.to_upload_trace_state_variables
13583 = remote_upload_trace_state_variables;
13584 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
13585 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
13586 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
13587 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
13588 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
13589 remote_ops.to_set_trace_notes = remote_set_trace_notes;
13590 remote_ops.to_core_of_thread = remote_core_of_thread;
13591 remote_ops.to_verify_memory = remote_verify_memory;
13592 remote_ops.to_get_tib_address = remote_get_tib_address;
13593 remote_ops.to_set_permissions = remote_set_permissions;
13594 remote_ops.to_static_tracepoint_marker_at
13595 = remote_static_tracepoint_marker_at;
13596 remote_ops.to_static_tracepoint_markers_by_strid
13597 = remote_static_tracepoint_markers_by_strid;
13598 remote_ops.to_traceframe_info = remote_traceframe_info;
13599 remote_ops.to_use_agent = remote_use_agent;
13600 remote_ops.to_can_use_agent = remote_can_use_agent;
13601 remote_ops.to_enable_btrace = remote_enable_btrace;
13602 remote_ops.to_disable_btrace = remote_disable_btrace;
13603 remote_ops.to_teardown_btrace = remote_teardown_btrace;
13604 remote_ops.to_read_btrace = remote_read_btrace;
13605 remote_ops.to_btrace_conf = remote_btrace_conf;
13606 remote_ops.to_augmented_libraries_svr4_read =
13607 remote_augmented_libraries_svr4_read;
13608 remote_ops.to_follow_fork = remote_follow_fork;
13609 remote_ops.to_follow_exec = remote_follow_exec;
13610 remote_ops.to_insert_fork_catchpoint = remote_insert_fork_catchpoint;
13611 remote_ops.to_remove_fork_catchpoint = remote_remove_fork_catchpoint;
13612 remote_ops.to_insert_vfork_catchpoint = remote_insert_vfork_catchpoint;
13613 remote_ops.to_remove_vfork_catchpoint = remote_remove_vfork_catchpoint;
13614 remote_ops.to_insert_exec_catchpoint = remote_insert_exec_catchpoint;
13615 remote_ops.to_remove_exec_catchpoint = remote_remove_exec_catchpoint;
13616 remote_ops.to_execution_direction = remote_execution_direction;
13617 remote_ops.to_thread_handle_to_thread_info =
13618 remote_thread_handle_to_thread_info;
13619 }
13620
13621 /* Set up the extended remote vector by making a copy of the standard
13622 remote vector and adding to it. */
13623
13624 static void
13625 init_extended_remote_ops (void)
13626 {
13627 extended_remote_ops = remote_ops;
13628
13629 extended_remote_ops.to_shortname = "extended-remote";
13630 extended_remote_ops.to_longname =
13631 "Extended remote serial target in gdb-specific protocol";
13632 extended_remote_ops.to_doc =
13633 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13634 Specify the serial device it is connected to (e.g. /dev/ttya).";
13635 extended_remote_ops.to_open = extended_remote_open;
13636 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
13637 extended_remote_ops.to_detach = extended_remote_detach;
13638 extended_remote_ops.to_attach = extended_remote_attach;
13639 extended_remote_ops.to_post_attach = extended_remote_post_attach;
13640 extended_remote_ops.to_supports_disable_randomization
13641 = extended_remote_supports_disable_randomization;
13642 }
13643
13644 static int
13645 remote_can_async_p (struct target_ops *ops)
13646 {
13647 struct remote_state *rs = get_remote_state ();
13648
13649 /* We don't go async if the user has explicitly prevented it with the
13650 "maint set target-async" command. */
13651 if (!target_async_permitted)
13652 return 0;
13653
13654 /* We're async whenever the serial device is. */
13655 return serial_can_async_p (rs->remote_desc);
13656 }
13657
13658 static int
13659 remote_is_async_p (struct target_ops *ops)
13660 {
13661 struct remote_state *rs = get_remote_state ();
13662
13663 if (!target_async_permitted)
13664 /* We only enable async when the user specifically asks for it. */
13665 return 0;
13666
13667 /* We're async whenever the serial device is. */
13668 return serial_is_async_p (rs->remote_desc);
13669 }
13670
13671 /* Pass the SERIAL event on and up to the client. One day this code
13672 will be able to delay notifying the client of an event until the
13673 point where an entire packet has been received. */
13674
13675 static serial_event_ftype remote_async_serial_handler;
13676
13677 static void
13678 remote_async_serial_handler (struct serial *scb, void *context)
13679 {
13680 /* Don't propogate error information up to the client. Instead let
13681 the client find out about the error by querying the target. */
13682 inferior_event_handler (INF_REG_EVENT, NULL);
13683 }
13684
13685 static void
13686 remote_async_inferior_event_handler (gdb_client_data data)
13687 {
13688 inferior_event_handler (INF_REG_EVENT, NULL);
13689 }
13690
13691 static void
13692 remote_async (struct target_ops *ops, int enable)
13693 {
13694 struct remote_state *rs = get_remote_state ();
13695
13696 if (enable)
13697 {
13698 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13699
13700 /* If there are pending events in the stop reply queue tell the
13701 event loop to process them. */
13702 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13703 mark_async_event_handler (remote_async_inferior_event_token);
13704 /* For simplicity, below we clear the pending events token
13705 without remembering whether it is marked, so here we always
13706 mark it. If there's actually no pending notification to
13707 process, this ends up being a no-op (other than a spurious
13708 event-loop wakeup). */
13709 if (target_is_non_stop_p ())
13710 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13711 }
13712 else
13713 {
13714 serial_async (rs->remote_desc, NULL, NULL);
13715 /* If the core is disabling async, it doesn't want to be
13716 disturbed with target events. Clear all async event sources
13717 too. */
13718 clear_async_event_handler (remote_async_inferior_event_token);
13719 if (target_is_non_stop_p ())
13720 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13721 }
13722 }
13723
13724 /* Implementation of the to_thread_events method. */
13725
13726 static void
13727 remote_thread_events (struct target_ops *ops, int enable)
13728 {
13729 struct remote_state *rs = get_remote_state ();
13730 size_t size = get_remote_packet_size ();
13731
13732 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13733 return;
13734
13735 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13736 putpkt (rs->buf);
13737 getpkt (&rs->buf, &rs->buf_size, 0);
13738
13739 switch (packet_ok (rs->buf,
13740 &remote_protocol_packets[PACKET_QThreadEvents]))
13741 {
13742 case PACKET_OK:
13743 if (strcmp (rs->buf, "OK") != 0)
13744 error (_("Remote refused setting thread events: %s"), rs->buf);
13745 break;
13746 case PACKET_ERROR:
13747 warning (_("Remote failure reply: %s"), rs->buf);
13748 break;
13749 case PACKET_UNKNOWN:
13750 break;
13751 }
13752 }
13753
13754 static void
13755 set_remote_cmd (const char *args, int from_tty)
13756 {
13757 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13758 }
13759
13760 static void
13761 show_remote_cmd (const char *args, int from_tty)
13762 {
13763 /* We can't just use cmd_show_list here, because we want to skip
13764 the redundant "show remote Z-packet" and the legacy aliases. */
13765 struct cmd_list_element *list = remote_show_cmdlist;
13766 struct ui_out *uiout = current_uiout;
13767
13768 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
13769 for (; list != NULL; list = list->next)
13770 if (strcmp (list->name, "Z-packet") == 0)
13771 continue;
13772 else if (list->type == not_set_cmd)
13773 /* Alias commands are exactly like the original, except they
13774 don't have the normal type. */
13775 continue;
13776 else
13777 {
13778 ui_out_emit_tuple option_emitter (uiout, "option");
13779
13780 uiout->field_string ("name", list->name);
13781 uiout->text (": ");
13782 if (list->type == show_cmd)
13783 do_show_command (NULL, from_tty, list);
13784 else
13785 cmd_func (list, NULL, from_tty);
13786 }
13787 }
13788
13789
13790 /* Function to be called whenever a new objfile (shlib) is detected. */
13791 static void
13792 remote_new_objfile (struct objfile *objfile)
13793 {
13794 struct remote_state *rs = get_remote_state ();
13795
13796 if (rs->remote_desc != 0) /* Have a remote connection. */
13797 remote_check_symbols ();
13798 }
13799
13800 /* Pull all the tracepoints defined on the target and create local
13801 data structures representing them. We don't want to create real
13802 tracepoints yet, we don't want to mess up the user's existing
13803 collection. */
13804
13805 static int
13806 remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
13807 {
13808 struct remote_state *rs = get_remote_state ();
13809 char *p;
13810
13811 /* Ask for a first packet of tracepoint definition. */
13812 putpkt ("qTfP");
13813 getpkt (&rs->buf, &rs->buf_size, 0);
13814 p = rs->buf;
13815 while (*p && *p != 'l')
13816 {
13817 parse_tracepoint_definition (p, utpp);
13818 /* Ask for another packet of tracepoint definition. */
13819 putpkt ("qTsP");
13820 getpkt (&rs->buf, &rs->buf_size, 0);
13821 p = rs->buf;
13822 }
13823 return 0;
13824 }
13825
13826 static int
13827 remote_upload_trace_state_variables (struct target_ops *self,
13828 struct uploaded_tsv **utsvp)
13829 {
13830 struct remote_state *rs = get_remote_state ();
13831 char *p;
13832
13833 /* Ask for a first packet of variable definition. */
13834 putpkt ("qTfV");
13835 getpkt (&rs->buf, &rs->buf_size, 0);
13836 p = rs->buf;
13837 while (*p && *p != 'l')
13838 {
13839 parse_tsv_definition (p, utsvp);
13840 /* Ask for another packet of variable definition. */
13841 putpkt ("qTsV");
13842 getpkt (&rs->buf, &rs->buf_size, 0);
13843 p = rs->buf;
13844 }
13845 return 0;
13846 }
13847
13848 /* The "set/show range-stepping" show hook. */
13849
13850 static void
13851 show_range_stepping (struct ui_file *file, int from_tty,
13852 struct cmd_list_element *c,
13853 const char *value)
13854 {
13855 fprintf_filtered (file,
13856 _("Debugger's willingness to use range stepping "
13857 "is %s.\n"), value);
13858 }
13859
13860 /* The "set/show range-stepping" set hook. */
13861
13862 static void
13863 set_range_stepping (const char *ignore_args, int from_tty,
13864 struct cmd_list_element *c)
13865 {
13866 struct remote_state *rs = get_remote_state ();
13867
13868 /* Whene enabling, check whether range stepping is actually
13869 supported by the target, and warn if not. */
13870 if (use_range_stepping)
13871 {
13872 if (rs->remote_desc != NULL)
13873 {
13874 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13875 remote_vcont_probe (rs);
13876
13877 if (packet_support (PACKET_vCont) == PACKET_ENABLE
13878 && rs->supports_vCont.r)
13879 return;
13880 }
13881
13882 warning (_("Range stepping is not supported by the current target"));
13883 }
13884 }
13885
13886 void
13887 _initialize_remote (void)
13888 {
13889 struct cmd_list_element *cmd;
13890 const char *cmd_name;
13891
13892 /* architecture specific data */
13893 remote_gdbarch_data_handle =
13894 gdbarch_data_register_post_init (init_remote_state);
13895 remote_g_packet_data_handle =
13896 gdbarch_data_register_pre_init (remote_g_packet_data_init);
13897
13898 remote_pspace_data
13899 = register_program_space_data_with_cleanup (NULL,
13900 remote_pspace_data_cleanup);
13901
13902 /* Initialize the per-target state. At the moment there is only one
13903 of these, not one per target. Only one target is active at a
13904 time. */
13905 remote_state = new_remote_state ();
13906
13907 init_remote_ops ();
13908 add_target (&remote_ops);
13909
13910 init_extended_remote_ops ();
13911 add_target (&extended_remote_ops);
13912
13913 /* Hook into new objfile notification. */
13914 gdb::observers::new_objfile.attach (remote_new_objfile);
13915 /* We're no longer interested in notification events of an inferior
13916 when it exits. */
13917 gdb::observers::inferior_exit.attach (discard_pending_stop_replies);
13918
13919 #if 0
13920 init_remote_threadtests ();
13921 #endif
13922
13923 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
13924 /* set/show remote ... */
13925
13926 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
13927 Remote protocol specific variables\n\
13928 Configure various remote-protocol specific variables such as\n\
13929 the packets being used"),
13930 &remote_set_cmdlist, "set remote ",
13931 0 /* allow-unknown */, &setlist);
13932 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
13933 Remote protocol specific variables\n\
13934 Configure various remote-protocol specific variables such as\n\
13935 the packets being used"),
13936 &remote_show_cmdlist, "show remote ",
13937 0 /* allow-unknown */, &showlist);
13938
13939 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
13940 Compare section data on target to the exec file.\n\
13941 Argument is a single section name (default: all loaded sections).\n\
13942 To compare only read-only loaded sections, specify the -r option."),
13943 &cmdlist);
13944
13945 add_cmd ("packet", class_maintenance, packet_command, _("\
13946 Send an arbitrary packet to a remote target.\n\
13947 maintenance packet TEXT\n\
13948 If GDB is talking to an inferior via the GDB serial protocol, then\n\
13949 this command sends the string TEXT to the inferior, and displays the\n\
13950 response packet. GDB supplies the initial `$' character, and the\n\
13951 terminating `#' character and checksum."),
13952 &maintenancelist);
13953
13954 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
13955 Set whether to send break if interrupted."), _("\
13956 Show whether to send break if interrupted."), _("\
13957 If set, a break, instead of a cntrl-c, is sent to the remote target."),
13958 set_remotebreak, show_remotebreak,
13959 &setlist, &showlist);
13960 cmd_name = "remotebreak";
13961 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
13962 deprecate_cmd (cmd, "set remote interrupt-sequence");
13963 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
13964 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
13965 deprecate_cmd (cmd, "show remote interrupt-sequence");
13966
13967 add_setshow_enum_cmd ("interrupt-sequence", class_support,
13968 interrupt_sequence_modes, &interrupt_sequence_mode,
13969 _("\
13970 Set interrupt sequence to remote target."), _("\
13971 Show interrupt sequence to remote target."), _("\
13972 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
13973 NULL, show_interrupt_sequence,
13974 &remote_set_cmdlist,
13975 &remote_show_cmdlist);
13976
13977 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
13978 &interrupt_on_connect, _("\
13979 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
13980 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
13981 If set, interrupt sequence is sent to remote target."),
13982 NULL, NULL,
13983 &remote_set_cmdlist, &remote_show_cmdlist);
13984
13985 /* Install commands for configuring memory read/write packets. */
13986
13987 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
13988 Set the maximum number of bytes per memory write packet (deprecated)."),
13989 &setlist);
13990 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
13991 Show the maximum number of bytes per memory write packet (deprecated)."),
13992 &showlist);
13993 add_cmd ("memory-write-packet-size", no_class,
13994 set_memory_write_packet_size, _("\
13995 Set the maximum number of bytes per memory-write packet.\n\
13996 Specify the number of bytes in a packet or 0 (zero) for the\n\
13997 default packet size. The actual limit is further reduced\n\
13998 dependent on the target. Specify ``fixed'' to disable the\n\
13999 further restriction and ``limit'' to enable that restriction."),
14000 &remote_set_cmdlist);
14001 add_cmd ("memory-read-packet-size", no_class,
14002 set_memory_read_packet_size, _("\
14003 Set the maximum number of bytes per memory-read packet.\n\
14004 Specify the number of bytes in a packet or 0 (zero) for the\n\
14005 default packet size. The actual limit is further reduced\n\
14006 dependent on the target. Specify ``fixed'' to disable the\n\
14007 further restriction and ``limit'' to enable that restriction."),
14008 &remote_set_cmdlist);
14009 add_cmd ("memory-write-packet-size", no_class,
14010 show_memory_write_packet_size,
14011 _("Show the maximum number of bytes per memory-write packet."),
14012 &remote_show_cmdlist);
14013 add_cmd ("memory-read-packet-size", no_class,
14014 show_memory_read_packet_size,
14015 _("Show the maximum number of bytes per memory-read packet."),
14016 &remote_show_cmdlist);
14017
14018 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14019 &remote_hw_watchpoint_limit, _("\
14020 Set the maximum number of target hardware watchpoints."), _("\
14021 Show the maximum number of target hardware watchpoints."), _("\
14022 Specify a negative limit for unlimited."),
14023 NULL, NULL, /* FIXME: i18n: The maximum
14024 number of target hardware
14025 watchpoints is %s. */
14026 &remote_set_cmdlist, &remote_show_cmdlist);
14027 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14028 &remote_hw_watchpoint_length_limit, _("\
14029 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14030 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14031 Specify a negative limit for unlimited."),
14032 NULL, NULL, /* FIXME: i18n: The maximum
14033 length (in bytes) of a target
14034 hardware watchpoint is %s. */
14035 &remote_set_cmdlist, &remote_show_cmdlist);
14036 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14037 &remote_hw_breakpoint_limit, _("\
14038 Set the maximum number of target hardware breakpoints."), _("\
14039 Show the maximum number of target hardware breakpoints."), _("\
14040 Specify a negative limit for unlimited."),
14041 NULL, NULL, /* FIXME: i18n: The maximum
14042 number of target hardware
14043 breakpoints is %s. */
14044 &remote_set_cmdlist, &remote_show_cmdlist);
14045
14046 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14047 &remote_address_size, _("\
14048 Set the maximum size of the address (in bits) in a memory packet."), _("\
14049 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14050 NULL,
14051 NULL, /* FIXME: i18n: */
14052 &setlist, &showlist);
14053
14054 init_all_packet_configs ();
14055
14056 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14057 "X", "binary-download", 1);
14058
14059 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14060 "vCont", "verbose-resume", 0);
14061
14062 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14063 "QPassSignals", "pass-signals", 0);
14064
14065 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14066 "QCatchSyscalls", "catch-syscalls", 0);
14067
14068 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14069 "QProgramSignals", "program-signals", 0);
14070
14071 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14072 "QSetWorkingDir", "set-working-dir", 0);
14073
14074 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14075 "QStartupWithShell", "startup-with-shell", 0);
14076
14077 add_packet_config_cmd (&remote_protocol_packets
14078 [PACKET_QEnvironmentHexEncoded],
14079 "QEnvironmentHexEncoded", "environment-hex-encoded",
14080 0);
14081
14082 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14083 "QEnvironmentReset", "environment-reset",
14084 0);
14085
14086 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14087 "QEnvironmentUnset", "environment-unset",
14088 0);
14089
14090 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14091 "qSymbol", "symbol-lookup", 0);
14092
14093 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14094 "P", "set-register", 1);
14095
14096 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14097 "p", "fetch-register", 1);
14098
14099 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14100 "Z0", "software-breakpoint", 0);
14101
14102 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14103 "Z1", "hardware-breakpoint", 0);
14104
14105 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14106 "Z2", "write-watchpoint", 0);
14107
14108 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14109 "Z3", "read-watchpoint", 0);
14110
14111 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14112 "Z4", "access-watchpoint", 0);
14113
14114 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14115 "qXfer:auxv:read", "read-aux-vector", 0);
14116
14117 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14118 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14119
14120 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14121 "qXfer:features:read", "target-features", 0);
14122
14123 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14124 "qXfer:libraries:read", "library-info", 0);
14125
14126 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14127 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14128
14129 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14130 "qXfer:memory-map:read", "memory-map", 0);
14131
14132 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14133 "qXfer:spu:read", "read-spu-object", 0);
14134
14135 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14136 "qXfer:spu:write", "write-spu-object", 0);
14137
14138 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14139 "qXfer:osdata:read", "osdata", 0);
14140
14141 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14142 "qXfer:threads:read", "threads", 0);
14143
14144 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14145 "qXfer:siginfo:read", "read-siginfo-object", 0);
14146
14147 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14148 "qXfer:siginfo:write", "write-siginfo-object", 0);
14149
14150 add_packet_config_cmd
14151 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14152 "qXfer:traceframe-info:read", "traceframe-info", 0);
14153
14154 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14155 "qXfer:uib:read", "unwind-info-block", 0);
14156
14157 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14158 "qGetTLSAddr", "get-thread-local-storage-address",
14159 0);
14160
14161 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14162 "qGetTIBAddr", "get-thread-information-block-address",
14163 0);
14164
14165 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14166 "bc", "reverse-continue", 0);
14167
14168 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14169 "bs", "reverse-step", 0);
14170
14171 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14172 "qSupported", "supported-packets", 0);
14173
14174 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14175 "qSearch:memory", "search-memory", 0);
14176
14177 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14178 "qTStatus", "trace-status", 0);
14179
14180 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14181 "vFile:setfs", "hostio-setfs", 0);
14182
14183 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14184 "vFile:open", "hostio-open", 0);
14185
14186 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14187 "vFile:pread", "hostio-pread", 0);
14188
14189 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14190 "vFile:pwrite", "hostio-pwrite", 0);
14191
14192 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14193 "vFile:close", "hostio-close", 0);
14194
14195 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14196 "vFile:unlink", "hostio-unlink", 0);
14197
14198 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14199 "vFile:readlink", "hostio-readlink", 0);
14200
14201 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14202 "vFile:fstat", "hostio-fstat", 0);
14203
14204 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14205 "vAttach", "attach", 0);
14206
14207 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14208 "vRun", "run", 0);
14209
14210 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14211 "QStartNoAckMode", "noack", 0);
14212
14213 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14214 "vKill", "kill", 0);
14215
14216 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14217 "qAttached", "query-attached", 0);
14218
14219 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14220 "ConditionalTracepoints",
14221 "conditional-tracepoints", 0);
14222
14223 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14224 "ConditionalBreakpoints",
14225 "conditional-breakpoints", 0);
14226
14227 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14228 "BreakpointCommands",
14229 "breakpoint-commands", 0);
14230
14231 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14232 "FastTracepoints", "fast-tracepoints", 0);
14233
14234 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14235 "TracepointSource", "TracepointSource", 0);
14236
14237 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14238 "QAllow", "allow", 0);
14239
14240 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14241 "StaticTracepoints", "static-tracepoints", 0);
14242
14243 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14244 "InstallInTrace", "install-in-trace", 0);
14245
14246 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14247 "qXfer:statictrace:read", "read-sdata-object", 0);
14248
14249 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14250 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14251
14252 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14253 "QDisableRandomization", "disable-randomization", 0);
14254
14255 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14256 "QAgent", "agent", 0);
14257
14258 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14259 "QTBuffer:size", "trace-buffer-size", 0);
14260
14261 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14262 "Qbtrace:off", "disable-btrace", 0);
14263
14264 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14265 "Qbtrace:bts", "enable-btrace-bts", 0);
14266
14267 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14268 "Qbtrace:pt", "enable-btrace-pt", 0);
14269
14270 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14271 "qXfer:btrace", "read-btrace", 0);
14272
14273 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14274 "qXfer:btrace-conf", "read-btrace-conf", 0);
14275
14276 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14277 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14278
14279 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14280 "multiprocess-feature", "multiprocess-feature", 0);
14281
14282 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14283 "swbreak-feature", "swbreak-feature", 0);
14284
14285 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14286 "hwbreak-feature", "hwbreak-feature", 0);
14287
14288 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14289 "fork-event-feature", "fork-event-feature", 0);
14290
14291 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14292 "vfork-event-feature", "vfork-event-feature", 0);
14293
14294 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14295 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14296
14297 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14298 "vContSupported", "verbose-resume-supported", 0);
14299
14300 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14301 "exec-event-feature", "exec-event-feature", 0);
14302
14303 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14304 "vCtrlC", "ctrl-c", 0);
14305
14306 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14307 "QThreadEvents", "thread-events", 0);
14308
14309 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14310 "N stop reply", "no-resumed-stop-reply", 0);
14311
14312 /* Assert that we've registered "set remote foo-packet" commands
14313 for all packet configs. */
14314 {
14315 int i;
14316
14317 for (i = 0; i < PACKET_MAX; i++)
14318 {
14319 /* Ideally all configs would have a command associated. Some
14320 still don't though. */
14321 int excepted;
14322
14323 switch (i)
14324 {
14325 case PACKET_QNonStop:
14326 case PACKET_EnableDisableTracepoints_feature:
14327 case PACKET_tracenz_feature:
14328 case PACKET_DisconnectedTracing_feature:
14329 case PACKET_augmented_libraries_svr4_read_feature:
14330 case PACKET_qCRC:
14331 /* Additions to this list need to be well justified:
14332 pre-existing packets are OK; new packets are not. */
14333 excepted = 1;
14334 break;
14335 default:
14336 excepted = 0;
14337 break;
14338 }
14339
14340 /* This catches both forgetting to add a config command, and
14341 forgetting to remove a packet from the exception list. */
14342 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14343 }
14344 }
14345
14346 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14347 Z sub-packet has its own set and show commands, but users may
14348 have sets to this variable in their .gdbinit files (or in their
14349 documentation). */
14350 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14351 &remote_Z_packet_detect, _("\
14352 Set use of remote protocol `Z' packets"), _("\
14353 Show use of remote protocol `Z' packets "), _("\
14354 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14355 packets."),
14356 set_remote_protocol_Z_packet_cmd,
14357 show_remote_protocol_Z_packet_cmd,
14358 /* FIXME: i18n: Use of remote protocol
14359 `Z' packets is %s. */
14360 &remote_set_cmdlist, &remote_show_cmdlist);
14361
14362 add_prefix_cmd ("remote", class_files, remote_command, _("\
14363 Manipulate files on the remote system\n\
14364 Transfer files to and from the remote target system."),
14365 &remote_cmdlist, "remote ",
14366 0 /* allow-unknown */, &cmdlist);
14367
14368 add_cmd ("put", class_files, remote_put_command,
14369 _("Copy a local file to the remote system."),
14370 &remote_cmdlist);
14371
14372 add_cmd ("get", class_files, remote_get_command,
14373 _("Copy a remote file to the local system."),
14374 &remote_cmdlist);
14375
14376 add_cmd ("delete", class_files, remote_delete_command,
14377 _("Delete a remote file."),
14378 &remote_cmdlist);
14379
14380 add_setshow_string_noescape_cmd ("exec-file", class_files,
14381 &remote_exec_file_var, _("\
14382 Set the remote pathname for \"run\""), _("\
14383 Show the remote pathname for \"run\""), NULL,
14384 set_remote_exec_file,
14385 show_remote_exec_file,
14386 &remote_set_cmdlist,
14387 &remote_show_cmdlist);
14388
14389 add_setshow_boolean_cmd ("range-stepping", class_run,
14390 &use_range_stepping, _("\
14391 Enable or disable range stepping."), _("\
14392 Show whether target-assisted range stepping is enabled."), _("\
14393 If on, and the target supports it, when stepping a source line, GDB\n\
14394 tells the target to step the corresponding range of addresses itself instead\n\
14395 of issuing multiple single-steps. This speeds up source level\n\
14396 stepping. If off, GDB always issues single-steps, even if range\n\
14397 stepping is supported by the target. The default is on."),
14398 set_range_stepping,
14399 show_range_stepping,
14400 &setlist,
14401 &showlist);
14402
14403 /* Eventually initialize fileio. See fileio.c */
14404 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14405
14406 /* Take advantage of the fact that the TID field is not used, to tag
14407 special ptids with it set to != 0. */
14408 magic_null_ptid = ptid_build (42000, -1, 1);
14409 not_sent_ptid = ptid_build (42000, -2, 1);
14410 any_thread_ptid = ptid_build (42000, 0, 1);
14411 }
This page took 0.505848 seconds and 4 git commands to generate.