4b3f2907b43806c158e6fda33e7e1a2d97ac40d1
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78 #include <unordered_map>
79
80 /* The remote target. */
81
82 static const char remote_doc[] = N_("\
83 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
84 Specify the serial device it is connected to\n\
85 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
86
87 #define OPAQUETHREADBYTES 8
88
89 /* a 64 bit opaque identifier */
90 typedef unsigned char threadref[OPAQUETHREADBYTES];
91
92 struct gdb_ext_thread_info;
93 struct threads_listing_context;
94 typedef int (*rmt_thread_action) (threadref *ref, void *context);
95 struct protocol_feature;
96 struct packet_reg;
97
98 struct stop_reply;
99 static void stop_reply_xfree (struct stop_reply *);
100
101 struct stop_reply_deleter
102 {
103 void operator() (stop_reply *r) const
104 {
105 stop_reply_xfree (r);
106 }
107 };
108
109 typedef std::unique_ptr<stop_reply, stop_reply_deleter> stop_reply_up;
110
111 /* Generic configuration support for packets the stub optionally
112 supports. Allows the user to specify the use of the packet as well
113 as allowing GDB to auto-detect support in the remote stub. */
114
115 enum packet_support
116 {
117 PACKET_SUPPORT_UNKNOWN = 0,
118 PACKET_ENABLE,
119 PACKET_DISABLE
120 };
121
122 /* Analyze a packet's return value and update the packet config
123 accordingly. */
124
125 enum packet_result
126 {
127 PACKET_ERROR,
128 PACKET_OK,
129 PACKET_UNKNOWN
130 };
131
132 struct threads_listing_context;
133
134 /* Stub vCont actions support.
135
136 Each field is a boolean flag indicating whether the stub reports
137 support for the corresponding action. */
138
139 struct vCont_action_support
140 {
141 /* vCont;t */
142 bool t = false;
143
144 /* vCont;r */
145 bool r = false;
146
147 /* vCont;s */
148 bool s = false;
149
150 /* vCont;S */
151 bool S = false;
152 };
153
154 /* About this many threadisds fit in a packet. */
155
156 #define MAXTHREADLISTRESULTS 32
157
158 /* Data for the vFile:pread readahead cache. */
159
160 struct readahead_cache
161 {
162 /* Invalidate the readahead cache. */
163 void invalidate ();
164
165 /* Invalidate the readahead cache if it is holding data for FD. */
166 void invalidate_fd (int fd);
167
168 /* Serve pread from the readahead cache. Returns number of bytes
169 read, or 0 if the request can't be served from the cache. */
170 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
171
172 /* The file descriptor for the file that is being cached. -1 if the
173 cache is invalid. */
174 int fd = -1;
175
176 /* The offset into the file that the cache buffer corresponds
177 to. */
178 ULONGEST offset = 0;
179
180 /* The buffer holding the cache contents. */
181 gdb_byte *buf = nullptr;
182 /* The buffer's size. We try to read as much as fits into a packet
183 at a time. */
184 size_t bufsize = 0;
185
186 /* Cache hit and miss counters. */
187 ULONGEST hit_count = 0;
188 ULONGEST miss_count = 0;
189 };
190
191 /* Description of the remote protocol for a given architecture. */
192
193 struct packet_reg
194 {
195 long offset; /* Offset into G packet. */
196 long regnum; /* GDB's internal register number. */
197 LONGEST pnum; /* Remote protocol register number. */
198 int in_g_packet; /* Always part of G packet. */
199 /* long size in bytes; == register_size (target_gdbarch (), regnum);
200 at present. */
201 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
202 at present. */
203 };
204
205 struct remote_arch_state
206 {
207 explicit remote_arch_state (struct gdbarch *gdbarch);
208
209 /* Description of the remote protocol registers. */
210 long sizeof_g_packet;
211
212 /* Description of the remote protocol registers indexed by REGNUM
213 (making an array gdbarch_num_regs in size). */
214 std::unique_ptr<packet_reg[]> regs;
215
216 /* This is the size (in chars) of the first response to the ``g''
217 packet. It is used as a heuristic when determining the maximum
218 size of memory-read and memory-write packets. A target will
219 typically only reserve a buffer large enough to hold the ``g''
220 packet. The size does not include packet overhead (headers and
221 trailers). */
222 long actual_register_packet_size;
223
224 /* This is the maximum size (in chars) of a non read/write packet.
225 It is also used as a cap on the size of read/write packets. */
226 long remote_packet_size;
227 };
228
229 /* Description of the remote protocol state for the currently
230 connected target. This is per-target state, and independent of the
231 selected architecture. */
232
233 class remote_state
234 {
235 public:
236
237 remote_state ();
238 ~remote_state ();
239
240 /* Get the remote arch state for GDBARCH. */
241 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
242
243 public: /* data */
244
245 /* A buffer to use for incoming packets, and its current size. The
246 buffer is grown dynamically for larger incoming packets.
247 Outgoing packets may also be constructed in this buffer.
248 The size of the buffer is always at least REMOTE_PACKET_SIZE;
249 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
250 packets. */
251 gdb::char_vector buf;
252
253 /* True if we're going through initial connection setup (finding out
254 about the remote side's threads, relocating symbols, etc.). */
255 bool starting_up = false;
256
257 /* If we negotiated packet size explicitly (and thus can bypass
258 heuristics for the largest packet size that will not overflow
259 a buffer in the stub), this will be set to that packet size.
260 Otherwise zero, meaning to use the guessed size. */
261 long explicit_packet_size = 0;
262
263 /* remote_wait is normally called when the target is running and
264 waits for a stop reply packet. But sometimes we need to call it
265 when the target is already stopped. We can send a "?" packet
266 and have remote_wait read the response. Or, if we already have
267 the response, we can stash it in BUF and tell remote_wait to
268 skip calling getpkt. This flag is set when BUF contains a
269 stop reply packet and the target is not waiting. */
270 int cached_wait_status = 0;
271
272 /* True, if in no ack mode. That is, neither GDB nor the stub will
273 expect acks from each other. The connection is assumed to be
274 reliable. */
275 bool noack_mode = false;
276
277 /* True if we're connected in extended remote mode. */
278 bool extended = false;
279
280 /* True if we resumed the target and we're waiting for the target to
281 stop. In the mean time, we can't start another command/query.
282 The remote server wouldn't be ready to process it, so we'd
283 timeout waiting for a reply that would never come and eventually
284 we'd close the connection. This can happen in asynchronous mode
285 because we allow GDB commands while the target is running. */
286 bool waiting_for_stop_reply = false;
287
288 /* The status of the stub support for the various vCont actions. */
289 vCont_action_support supports_vCont;
290
291 /* True if the user has pressed Ctrl-C, but the target hasn't
292 responded to that. */
293 bool ctrlc_pending_p = false;
294
295 /* True if we saw a Ctrl-C while reading or writing from/to the
296 remote descriptor. At that point it is not safe to send a remote
297 interrupt packet, so we instead remember we saw the Ctrl-C and
298 process it once we're done with sending/receiving the current
299 packet, which should be shortly. If however that takes too long,
300 and the user presses Ctrl-C again, we offer to disconnect. */
301 bool got_ctrlc_during_io = false;
302
303 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
304 remote_open knows that we don't have a file open when the program
305 starts. */
306 struct serial *remote_desc = nullptr;
307
308 /* These are the threads which we last sent to the remote system. The
309 TID member will be -1 for all or -2 for not sent yet. */
310 ptid_t general_thread = null_ptid;
311 ptid_t continue_thread = null_ptid;
312
313 /* This is the traceframe which we last selected on the remote system.
314 It will be -1 if no traceframe is selected. */
315 int remote_traceframe_number = -1;
316
317 char *last_pass_packet = nullptr;
318
319 /* The last QProgramSignals packet sent to the target. We bypass
320 sending a new program signals list down to the target if the new
321 packet is exactly the same as the last we sent. IOW, we only let
322 the target know about program signals list changes. */
323 char *last_program_signals_packet = nullptr;
324
325 gdb_signal last_sent_signal = GDB_SIGNAL_0;
326
327 bool last_sent_step = false;
328
329 /* The execution direction of the last resume we got. */
330 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
331
332 char *finished_object = nullptr;
333 char *finished_annex = nullptr;
334 ULONGEST finished_offset = 0;
335
336 /* Should we try the 'ThreadInfo' query packet?
337
338 This variable (NOT available to the user: auto-detect only!)
339 determines whether GDB will use the new, simpler "ThreadInfo"
340 query or the older, more complex syntax for thread queries.
341 This is an auto-detect variable (set to true at each connect,
342 and set to false when the target fails to recognize it). */
343 bool use_threadinfo_query = false;
344 bool use_threadextra_query = false;
345
346 threadref echo_nextthread {};
347 threadref nextthread {};
348 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
349
350 /* The state of remote notification. */
351 struct remote_notif_state *notif_state = nullptr;
352
353 /* The branch trace configuration. */
354 struct btrace_config btrace_config {};
355
356 /* The argument to the last "vFile:setfs:" packet we sent, used
357 to avoid sending repeated unnecessary "vFile:setfs:" packets.
358 Initialized to -1 to indicate that no "vFile:setfs:" packet
359 has yet been sent. */
360 int fs_pid = -1;
361
362 /* A readahead cache for vFile:pread. Often, reading a binary
363 involves a sequence of small reads. E.g., when parsing an ELF
364 file. A readahead cache helps mostly the case of remote
365 debugging on a connection with higher latency, due to the
366 request/reply nature of the RSP. We only cache data for a single
367 file descriptor at a time. */
368 struct readahead_cache readahead_cache;
369
370 /* The list of already fetched and acknowledged stop events. This
371 queue is used for notification Stop, and other notifications
372 don't need queue for their events, because the notification
373 events of Stop can't be consumed immediately, so that events
374 should be queued first, and be consumed by remote_wait_{ns,as}
375 one per time. Other notifications can consume their events
376 immediately, so queue is not needed for them. */
377 std::vector<stop_reply_up> stop_reply_queue;
378
379 /* Asynchronous signal handle registered as event loop source for
380 when we have pending events ready to be passed to the core. */
381 struct async_event_handler *remote_async_inferior_event_token = nullptr;
382
383 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
384 ``forever'' still use the normal timeout mechanism. This is
385 currently used by the ASYNC code to guarentee that target reads
386 during the initial connect always time-out. Once getpkt has been
387 modified to return a timeout indication and, in turn
388 remote_wait()/wait_for_inferior() have gained a timeout parameter
389 this can go away. */
390 int wait_forever_enabled_p = 1;
391
392 private:
393 /* Mapping of remote protocol data for each gdbarch. Usually there
394 is only one entry here, though we may see more with stubs that
395 support multi-process. */
396 std::unordered_map<struct gdbarch *, remote_arch_state>
397 m_arch_states;
398 };
399
400 static const target_info remote_target_info = {
401 "remote",
402 N_("Remote serial target in gdb-specific protocol"),
403 remote_doc
404 };
405
406 class remote_target : public process_stratum_target
407 {
408 public:
409 remote_target () = default;
410 ~remote_target () override;
411
412 const target_info &info () const override
413 { return remote_target_info; }
414
415 thread_control_capabilities get_thread_control_capabilities () override
416 { return tc_schedlock; }
417
418 /* Open a remote connection. */
419 static void open (const char *, int);
420
421 void close () override;
422
423 void detach (inferior *, int) override;
424 void disconnect (const char *, int) override;
425
426 void commit_resume () override;
427 void resume (ptid_t, int, enum gdb_signal) override;
428 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
429
430 void fetch_registers (struct regcache *, int) override;
431 void store_registers (struct regcache *, int) override;
432 void prepare_to_store (struct regcache *) override;
433
434 void files_info () override;
435
436 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
437
438 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
439 enum remove_bp_reason) override;
440
441
442 bool stopped_by_sw_breakpoint () override;
443 bool supports_stopped_by_sw_breakpoint () override;
444
445 bool stopped_by_hw_breakpoint () override;
446
447 bool supports_stopped_by_hw_breakpoint () override;
448
449 bool stopped_by_watchpoint () override;
450
451 bool stopped_data_address (CORE_ADDR *) override;
452
453 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
454
455 int can_use_hw_breakpoint (enum bptype, int, int) override;
456
457 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
458
459 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
460
461 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
462
463 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
464 struct expression *) override;
465
466 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
467 struct expression *) override;
468
469 void kill () override;
470
471 void load (const char *, int) override;
472
473 void mourn_inferior () override;
474
475 void pass_signals (int, const unsigned char *) override;
476
477 int set_syscall_catchpoint (int, bool, int,
478 gdb::array_view<const int>) override;
479
480 void program_signals (int, const unsigned char *) override;
481
482 bool thread_alive (ptid_t ptid) override;
483
484 const char *thread_name (struct thread_info *) override;
485
486 void update_thread_list () override;
487
488 const char *pid_to_str (ptid_t) override;
489
490 const char *extra_thread_info (struct thread_info *) override;
491
492 ptid_t get_ada_task_ptid (long lwp, long thread) override;
493
494 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
495 int handle_len,
496 inferior *inf) override;
497
498 void stop (ptid_t) override;
499
500 void interrupt () override;
501
502 void pass_ctrlc () override;
503
504 enum target_xfer_status xfer_partial (enum target_object object,
505 const char *annex,
506 gdb_byte *readbuf,
507 const gdb_byte *writebuf,
508 ULONGEST offset, ULONGEST len,
509 ULONGEST *xfered_len) override;
510
511 ULONGEST get_memory_xfer_limit () override;
512
513 void rcmd (const char *command, struct ui_file *output) override;
514
515 char *pid_to_exec_file (int pid) override;
516
517 void log_command (const char *cmd) override
518 {
519 serial_log_command (this, cmd);
520 }
521
522 CORE_ADDR get_thread_local_address (ptid_t ptid,
523 CORE_ADDR load_module_addr,
524 CORE_ADDR offset) override;
525
526 bool can_execute_reverse () override;
527
528 std::vector<mem_region> memory_map () override;
529
530 void flash_erase (ULONGEST address, LONGEST length) override;
531
532 void flash_done () override;
533
534 const struct target_desc *read_description () override;
535
536 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
537 const gdb_byte *pattern, ULONGEST pattern_len,
538 CORE_ADDR *found_addrp) override;
539
540 bool can_async_p () override;
541
542 bool is_async_p () override;
543
544 void async (int) override;
545
546 void thread_events (int) override;
547
548 int can_do_single_step () override;
549
550 void terminal_inferior () override;
551
552 void terminal_ours () override;
553
554 bool supports_non_stop () override;
555
556 bool supports_multi_process () override;
557
558 bool supports_disable_randomization () override;
559
560 bool filesystem_is_local () override;
561
562
563 int fileio_open (struct inferior *inf, const char *filename,
564 int flags, int mode, int warn_if_slow,
565 int *target_errno) override;
566
567 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
568 ULONGEST offset, int *target_errno) override;
569
570 int fileio_pread (int fd, gdb_byte *read_buf, int len,
571 ULONGEST offset, int *target_errno) override;
572
573 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
574
575 int fileio_close (int fd, int *target_errno) override;
576
577 int fileio_unlink (struct inferior *inf,
578 const char *filename,
579 int *target_errno) override;
580
581 gdb::optional<std::string>
582 fileio_readlink (struct inferior *inf,
583 const char *filename,
584 int *target_errno) override;
585
586 bool supports_enable_disable_tracepoint () override;
587
588 bool supports_string_tracing () override;
589
590 bool supports_evaluation_of_breakpoint_conditions () override;
591
592 bool can_run_breakpoint_commands () override;
593
594 void trace_init () override;
595
596 void download_tracepoint (struct bp_location *location) override;
597
598 bool can_download_tracepoint () override;
599
600 void download_trace_state_variable (const trace_state_variable &tsv) override;
601
602 void enable_tracepoint (struct bp_location *location) override;
603
604 void disable_tracepoint (struct bp_location *location) override;
605
606 void trace_set_readonly_regions () override;
607
608 void trace_start () override;
609
610 int get_trace_status (struct trace_status *ts) override;
611
612 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
613 override;
614
615 void trace_stop () override;
616
617 int trace_find (enum trace_find_type type, int num,
618 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
619
620 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
621
622 int save_trace_data (const char *filename) override;
623
624 int upload_tracepoints (struct uploaded_tp **utpp) override;
625
626 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
627
628 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
629
630 int get_min_fast_tracepoint_insn_len () override;
631
632 void set_disconnected_tracing (int val) override;
633
634 void set_circular_trace_buffer (int val) override;
635
636 void set_trace_buffer_size (LONGEST val) override;
637
638 bool set_trace_notes (const char *user, const char *notes,
639 const char *stopnotes) override;
640
641 int core_of_thread (ptid_t ptid) override;
642
643 int verify_memory (const gdb_byte *data,
644 CORE_ADDR memaddr, ULONGEST size) override;
645
646
647 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
648
649 void set_permissions () override;
650
651 bool static_tracepoint_marker_at (CORE_ADDR,
652 struct static_tracepoint_marker *marker)
653 override;
654
655 std::vector<static_tracepoint_marker>
656 static_tracepoint_markers_by_strid (const char *id) override;
657
658 traceframe_info_up traceframe_info () override;
659
660 bool use_agent (bool use) override;
661 bool can_use_agent () override;
662
663 struct btrace_target_info *enable_btrace (ptid_t ptid,
664 const struct btrace_config *conf) override;
665
666 void disable_btrace (struct btrace_target_info *tinfo) override;
667
668 void teardown_btrace (struct btrace_target_info *tinfo) override;
669
670 enum btrace_error read_btrace (struct btrace_data *data,
671 struct btrace_target_info *btinfo,
672 enum btrace_read_type type) override;
673
674 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
675 bool augmented_libraries_svr4_read () override;
676 int follow_fork (int, int) override;
677 void follow_exec (struct inferior *, char *) override;
678 int insert_fork_catchpoint (int) override;
679 int remove_fork_catchpoint (int) override;
680 int insert_vfork_catchpoint (int) override;
681 int remove_vfork_catchpoint (int) override;
682 int insert_exec_catchpoint (int) override;
683 int remove_exec_catchpoint (int) override;
684 enum exec_direction_kind execution_direction () override;
685
686 public: /* Remote specific methods. */
687
688 void remote_download_command_source (int num, ULONGEST addr,
689 struct command_line *cmds);
690
691 void remote_file_put (const char *local_file, const char *remote_file,
692 int from_tty);
693 void remote_file_get (const char *remote_file, const char *local_file,
694 int from_tty);
695 void remote_file_delete (const char *remote_file, int from_tty);
696
697 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
698 ULONGEST offset, int *remote_errno);
699 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
700 ULONGEST offset, int *remote_errno);
701 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
702 ULONGEST offset, int *remote_errno);
703
704 int remote_hostio_send_command (int command_bytes, int which_packet,
705 int *remote_errno, char **attachment,
706 int *attachment_len);
707 int remote_hostio_set_filesystem (struct inferior *inf,
708 int *remote_errno);
709 /* We should get rid of this and use fileio_open directly. */
710 int remote_hostio_open (struct inferior *inf, const char *filename,
711 int flags, int mode, int warn_if_slow,
712 int *remote_errno);
713 int remote_hostio_close (int fd, int *remote_errno);
714
715 int remote_hostio_unlink (inferior *inf, const char *filename,
716 int *remote_errno);
717
718 struct remote_state *get_remote_state ();
719
720 long get_remote_packet_size (void);
721 long get_memory_packet_size (struct memory_packet_config *config);
722
723 long get_memory_write_packet_size ();
724 long get_memory_read_packet_size ();
725
726 char *append_pending_thread_resumptions (char *p, char *endp,
727 ptid_t ptid);
728 static void open_1 (const char *name, int from_tty, int extended_p);
729 void start_remote (int from_tty, int extended_p);
730 void remote_detach_1 (struct inferior *inf, int from_tty);
731
732 char *append_resumption (char *p, char *endp,
733 ptid_t ptid, int step, gdb_signal siggnal);
734 int remote_resume_with_vcont (ptid_t ptid, int step,
735 gdb_signal siggnal);
736
737 void add_current_inferior_and_thread (char *wait_status);
738
739 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
740 int options);
741 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
742 int options);
743
744 ptid_t process_stop_reply (struct stop_reply *stop_reply,
745 target_waitstatus *status);
746
747 void remote_notice_new_inferior (ptid_t currthread, int executing);
748
749 void process_initial_stop_replies (int from_tty);
750
751 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
752
753 void btrace_sync_conf (const btrace_config *conf);
754
755 void remote_btrace_maybe_reopen ();
756
757 void remove_new_fork_children (threads_listing_context *context);
758 void kill_new_fork_children (int pid);
759 void discard_pending_stop_replies (struct inferior *inf);
760 int stop_reply_queue_length ();
761
762 void check_pending_events_prevent_wildcard_vcont
763 (int *may_global_wildcard_vcont);
764
765 void discard_pending_stop_replies_in_queue ();
766 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
767 struct stop_reply *queued_stop_reply (ptid_t ptid);
768 int peek_stop_reply (ptid_t ptid);
769 void remote_parse_stop_reply (const char *buf, stop_reply *event);
770
771 void remote_stop_ns (ptid_t ptid);
772 void remote_interrupt_as ();
773 void remote_interrupt_ns ();
774
775 char *remote_get_noisy_reply ();
776 int remote_query_attached (int pid);
777 inferior *remote_add_inferior (int fake_pid_p, int pid, int attached,
778 int try_open_exec);
779
780 ptid_t remote_current_thread (ptid_t oldpid);
781 ptid_t get_current_thread (char *wait_status);
782
783 void set_thread (ptid_t ptid, int gen);
784 void set_general_thread (ptid_t ptid);
785 void set_continue_thread (ptid_t ptid);
786 void set_general_process ();
787
788 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
789
790 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
791 gdb_ext_thread_info *info);
792 int remote_get_threadinfo (threadref *threadid, int fieldset,
793 gdb_ext_thread_info *info);
794
795 int parse_threadlist_response (char *pkt, int result_limit,
796 threadref *original_echo,
797 threadref *resultlist,
798 int *doneflag);
799 int remote_get_threadlist (int startflag, threadref *nextthread,
800 int result_limit, int *done, int *result_count,
801 threadref *threadlist);
802
803 int remote_threadlist_iterator (rmt_thread_action stepfunction,
804 void *context, int looplimit);
805
806 int remote_get_threads_with_ql (threads_listing_context *context);
807 int remote_get_threads_with_qxfer (threads_listing_context *context);
808 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
809
810 void extended_remote_restart ();
811
812 void get_offsets ();
813
814 void remote_check_symbols ();
815
816 void remote_supported_packet (const struct protocol_feature *feature,
817 enum packet_support support,
818 const char *argument);
819
820 void remote_query_supported ();
821
822 void remote_packet_size (const protocol_feature *feature,
823 packet_support support, const char *value);
824
825 void remote_serial_quit_handler ();
826
827 void remote_detach_pid (int pid);
828
829 void remote_vcont_probe ();
830
831 void remote_resume_with_hc (ptid_t ptid, int step,
832 gdb_signal siggnal);
833
834 void send_interrupt_sequence ();
835 void interrupt_query ();
836
837 void remote_notif_get_pending_events (notif_client *nc);
838
839 int fetch_register_using_p (struct regcache *regcache,
840 packet_reg *reg);
841 int send_g_packet ();
842 void process_g_packet (struct regcache *regcache);
843 void fetch_registers_using_g (struct regcache *regcache);
844 int store_register_using_P (const struct regcache *regcache,
845 packet_reg *reg);
846 void store_registers_using_G (const struct regcache *regcache);
847
848 void set_remote_traceframe ();
849
850 void check_binary_download (CORE_ADDR addr);
851
852 target_xfer_status remote_write_bytes_aux (const char *header,
853 CORE_ADDR memaddr,
854 const gdb_byte *myaddr,
855 ULONGEST len_units,
856 int unit_size,
857 ULONGEST *xfered_len_units,
858 char packet_format,
859 int use_length);
860
861 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
862 const gdb_byte *myaddr, ULONGEST len,
863 int unit_size, ULONGEST *xfered_len);
864
865 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
866 ULONGEST len_units,
867 int unit_size, ULONGEST *xfered_len_units);
868
869 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
870 ULONGEST memaddr,
871 ULONGEST len,
872 int unit_size,
873 ULONGEST *xfered_len);
874
875 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
876 gdb_byte *myaddr, ULONGEST len,
877 int unit_size,
878 ULONGEST *xfered_len);
879
880 packet_result remote_send_printf (const char *format, ...)
881 ATTRIBUTE_PRINTF (2, 3);
882
883 target_xfer_status remote_flash_write (ULONGEST address,
884 ULONGEST length, ULONGEST *xfered_len,
885 const gdb_byte *data);
886
887 int readchar (int timeout);
888
889 void remote_serial_write (const char *str, int len);
890
891 int putpkt (const char *buf);
892 int putpkt_binary (const char *buf, int cnt);
893
894 int putpkt (const gdb::char_vector &buf)
895 {
896 return putpkt (buf.data ());
897 }
898
899 void skip_frame ();
900 long read_frame (gdb::char_vector *buf_p);
901 void getpkt (gdb::char_vector *buf, int forever);
902 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
903 int expecting_notif, int *is_notif);
904 int getpkt_sane (gdb::char_vector *buf, int forever);
905 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
906 int *is_notif);
907 int remote_vkill (int pid);
908 void remote_kill_k ();
909
910 void extended_remote_disable_randomization (int val);
911 int extended_remote_run (const std::string &args);
912
913 void send_environment_packet (const char *action,
914 const char *packet,
915 const char *value);
916
917 void extended_remote_environment_support ();
918 void extended_remote_set_inferior_cwd ();
919
920 target_xfer_status remote_write_qxfer (const char *object_name,
921 const char *annex,
922 const gdb_byte *writebuf,
923 ULONGEST offset, LONGEST len,
924 ULONGEST *xfered_len,
925 struct packet_config *packet);
926
927 target_xfer_status remote_read_qxfer (const char *object_name,
928 const char *annex,
929 gdb_byte *readbuf, ULONGEST offset,
930 LONGEST len,
931 ULONGEST *xfered_len,
932 struct packet_config *packet);
933
934 void push_stop_reply (struct stop_reply *new_event);
935
936 bool vcont_r_supported ();
937
938 void packet_command (const char *args, int from_tty);
939
940 private: /* data fields */
941
942 /* The remote state. Don't reference this directly. Use the
943 get_remote_state method instead. */
944 remote_state m_remote_state;
945 };
946
947 static const target_info extended_remote_target_info = {
948 "extended-remote",
949 N_("Extended remote serial target in gdb-specific protocol"),
950 remote_doc
951 };
952
953 /* Set up the extended remote target by extending the standard remote
954 target and adding to it. */
955
956 class extended_remote_target final : public remote_target
957 {
958 public:
959 const target_info &info () const override
960 { return extended_remote_target_info; }
961
962 /* Open an extended-remote connection. */
963 static void open (const char *, int);
964
965 bool can_create_inferior () override { return true; }
966 void create_inferior (const char *, const std::string &,
967 char **, int) override;
968
969 void detach (inferior *, int) override;
970
971 bool can_attach () override { return true; }
972 void attach (const char *, int) override;
973
974 void post_attach (int) override;
975 bool supports_disable_randomization () override;
976 };
977
978 /* Per-program-space data key. */
979 static const struct program_space_data *remote_pspace_data;
980
981 /* The variable registered as the control variable used by the
982 remote exec-file commands. While the remote exec-file setting is
983 per-program-space, the set/show machinery uses this as the
984 location of the remote exec-file value. */
985 static char *remote_exec_file_var;
986
987 /* The size to align memory write packets, when practical. The protocol
988 does not guarantee any alignment, and gdb will generate short
989 writes and unaligned writes, but even as a best-effort attempt this
990 can improve bulk transfers. For instance, if a write is misaligned
991 relative to the target's data bus, the stub may need to make an extra
992 round trip fetching data from the target. This doesn't make a
993 huge difference, but it's easy to do, so we try to be helpful.
994
995 The alignment chosen is arbitrary; usually data bus width is
996 important here, not the possibly larger cache line size. */
997 enum { REMOTE_ALIGN_WRITES = 16 };
998
999 /* Prototypes for local functions. */
1000
1001 static int hexnumlen (ULONGEST num);
1002
1003 static int stubhex (int ch);
1004
1005 static int hexnumstr (char *, ULONGEST);
1006
1007 static int hexnumnstr (char *, ULONGEST, int);
1008
1009 static CORE_ADDR remote_address_masked (CORE_ADDR);
1010
1011 static void print_packet (const char *);
1012
1013 static int stub_unpack_int (char *buff, int fieldlength);
1014
1015 struct packet_config;
1016
1017 static void show_packet_config_cmd (struct packet_config *config);
1018
1019 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1020 int from_tty,
1021 struct cmd_list_element *c,
1022 const char *value);
1023
1024 static ptid_t read_ptid (const char *buf, const char **obuf);
1025
1026 static void remote_async_inferior_event_handler (gdb_client_data);
1027
1028 static bool remote_read_description_p (struct target_ops *target);
1029
1030 static void remote_console_output (const char *msg);
1031
1032 static void remote_btrace_reset (remote_state *rs);
1033
1034 static void remote_unpush_and_throw (void);
1035
1036 /* For "remote". */
1037
1038 static struct cmd_list_element *remote_cmdlist;
1039
1040 /* For "set remote" and "show remote". */
1041
1042 static struct cmd_list_element *remote_set_cmdlist;
1043 static struct cmd_list_element *remote_show_cmdlist;
1044
1045 /* Controls whether GDB is willing to use range stepping. */
1046
1047 static int use_range_stepping = 1;
1048
1049 /* The max number of chars in debug output. The rest of chars are
1050 omitted. */
1051
1052 #define REMOTE_DEBUG_MAX_CHAR 512
1053
1054 /* Private data that we'll store in (struct thread_info)->priv. */
1055 struct remote_thread_info : public private_thread_info
1056 {
1057 std::string extra;
1058 std::string name;
1059 int core = -1;
1060
1061 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1062 sequence of bytes. */
1063 gdb::byte_vector thread_handle;
1064
1065 /* Whether the target stopped for a breakpoint/watchpoint. */
1066 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1067
1068 /* This is set to the data address of the access causing the target
1069 to stop for a watchpoint. */
1070 CORE_ADDR watch_data_address = 0;
1071
1072 /* Fields used by the vCont action coalescing implemented in
1073 remote_resume / remote_commit_resume. remote_resume stores each
1074 thread's last resume request in these fields, so that a later
1075 remote_commit_resume knows which is the proper action for this
1076 thread to include in the vCont packet. */
1077
1078 /* True if the last target_resume call for this thread was a step
1079 request, false if a continue request. */
1080 int last_resume_step = 0;
1081
1082 /* The signal specified in the last target_resume call for this
1083 thread. */
1084 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1085
1086 /* Whether this thread was already vCont-resumed on the remote
1087 side. */
1088 int vcont_resumed = 0;
1089 };
1090
1091 remote_state::remote_state ()
1092 : buf (400)
1093 {
1094 }
1095
1096 remote_state::~remote_state ()
1097 {
1098 xfree (this->last_pass_packet);
1099 xfree (this->last_program_signals_packet);
1100 xfree (this->finished_object);
1101 xfree (this->finished_annex);
1102 }
1103
1104 /* Utility: generate error from an incoming stub packet. */
1105 static void
1106 trace_error (char *buf)
1107 {
1108 if (*buf++ != 'E')
1109 return; /* not an error msg */
1110 switch (*buf)
1111 {
1112 case '1': /* malformed packet error */
1113 if (*++buf == '0') /* general case: */
1114 error (_("remote.c: error in outgoing packet."));
1115 else
1116 error (_("remote.c: error in outgoing packet at field #%ld."),
1117 strtol (buf, NULL, 16));
1118 default:
1119 error (_("Target returns error code '%s'."), buf);
1120 }
1121 }
1122
1123 /* Utility: wait for reply from stub, while accepting "O" packets. */
1124
1125 char *
1126 remote_target::remote_get_noisy_reply ()
1127 {
1128 struct remote_state *rs = get_remote_state ();
1129
1130 do /* Loop on reply from remote stub. */
1131 {
1132 char *buf;
1133
1134 QUIT; /* Allow user to bail out with ^C. */
1135 getpkt (&rs->buf, 0);
1136 buf = rs->buf.data ();
1137 if (buf[0] == 'E')
1138 trace_error (buf);
1139 else if (startswith (buf, "qRelocInsn:"))
1140 {
1141 ULONGEST ul;
1142 CORE_ADDR from, to, org_to;
1143 const char *p, *pp;
1144 int adjusted_size = 0;
1145 int relocated = 0;
1146
1147 p = buf + strlen ("qRelocInsn:");
1148 pp = unpack_varlen_hex (p, &ul);
1149 if (*pp != ';')
1150 error (_("invalid qRelocInsn packet: %s"), buf);
1151 from = ul;
1152
1153 p = pp + 1;
1154 unpack_varlen_hex (p, &ul);
1155 to = ul;
1156
1157 org_to = to;
1158
1159 TRY
1160 {
1161 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1162 relocated = 1;
1163 }
1164 CATCH (ex, RETURN_MASK_ALL)
1165 {
1166 if (ex.error == MEMORY_ERROR)
1167 {
1168 /* Propagate memory errors silently back to the
1169 target. The stub may have limited the range of
1170 addresses we can write to, for example. */
1171 }
1172 else
1173 {
1174 /* Something unexpectedly bad happened. Be verbose
1175 so we can tell what, and propagate the error back
1176 to the stub, so it doesn't get stuck waiting for
1177 a response. */
1178 exception_fprintf (gdb_stderr, ex,
1179 _("warning: relocating instruction: "));
1180 }
1181 putpkt ("E01");
1182 }
1183 END_CATCH
1184
1185 if (relocated)
1186 {
1187 adjusted_size = to - org_to;
1188
1189 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1190 putpkt (buf);
1191 }
1192 }
1193 else if (buf[0] == 'O' && buf[1] != 'K')
1194 remote_console_output (buf + 1); /* 'O' message from stub */
1195 else
1196 return buf; /* Here's the actual reply. */
1197 }
1198 while (1);
1199 }
1200
1201 struct remote_arch_state *
1202 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1203 {
1204 remote_arch_state *rsa;
1205
1206 auto it = this->m_arch_states.find (gdbarch);
1207 if (it == this->m_arch_states.end ())
1208 {
1209 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1210 std::forward_as_tuple (gdbarch),
1211 std::forward_as_tuple (gdbarch));
1212 rsa = &p.first->second;
1213
1214 /* Make sure that the packet buffer is plenty big enough for
1215 this architecture. */
1216 if (this->buf.size () < rsa->remote_packet_size)
1217 this->buf.resize (2 * rsa->remote_packet_size);
1218 }
1219 else
1220 rsa = &it->second;
1221
1222 return rsa;
1223 }
1224
1225 /* Fetch the global remote target state. */
1226
1227 remote_state *
1228 remote_target::get_remote_state ()
1229 {
1230 /* Make sure that the remote architecture state has been
1231 initialized, because doing so might reallocate rs->buf. Any
1232 function which calls getpkt also needs to be mindful of changes
1233 to rs->buf, but this call limits the number of places which run
1234 into trouble. */
1235 m_remote_state.get_remote_arch_state (target_gdbarch ());
1236
1237 return &m_remote_state;
1238 }
1239
1240 /* Cleanup routine for the remote module's pspace data. */
1241
1242 static void
1243 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
1244 {
1245 char *remote_exec_file = (char *) arg;
1246
1247 xfree (remote_exec_file);
1248 }
1249
1250 /* Fetch the remote exec-file from the current program space. */
1251
1252 static const char *
1253 get_remote_exec_file (void)
1254 {
1255 char *remote_exec_file;
1256
1257 remote_exec_file
1258 = (char *) program_space_data (current_program_space,
1259 remote_pspace_data);
1260 if (remote_exec_file == NULL)
1261 return "";
1262
1263 return remote_exec_file;
1264 }
1265
1266 /* Set the remote exec file for PSPACE. */
1267
1268 static void
1269 set_pspace_remote_exec_file (struct program_space *pspace,
1270 char *remote_exec_file)
1271 {
1272 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
1273
1274 xfree (old_file);
1275 set_program_space_data (pspace, remote_pspace_data,
1276 xstrdup (remote_exec_file));
1277 }
1278
1279 /* The "set/show remote exec-file" set command hook. */
1280
1281 static void
1282 set_remote_exec_file (const char *ignored, int from_tty,
1283 struct cmd_list_element *c)
1284 {
1285 gdb_assert (remote_exec_file_var != NULL);
1286 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1287 }
1288
1289 /* The "set/show remote exec-file" show command hook. */
1290
1291 static void
1292 show_remote_exec_file (struct ui_file *file, int from_tty,
1293 struct cmd_list_element *cmd, const char *value)
1294 {
1295 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1296 }
1297
1298 static int
1299 compare_pnums (const void *lhs_, const void *rhs_)
1300 {
1301 const struct packet_reg * const *lhs
1302 = (const struct packet_reg * const *) lhs_;
1303 const struct packet_reg * const *rhs
1304 = (const struct packet_reg * const *) rhs_;
1305
1306 if ((*lhs)->pnum < (*rhs)->pnum)
1307 return -1;
1308 else if ((*lhs)->pnum == (*rhs)->pnum)
1309 return 0;
1310 else
1311 return 1;
1312 }
1313
1314 static int
1315 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1316 {
1317 int regnum, num_remote_regs, offset;
1318 struct packet_reg **remote_regs;
1319
1320 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1321 {
1322 struct packet_reg *r = &regs[regnum];
1323
1324 if (register_size (gdbarch, regnum) == 0)
1325 /* Do not try to fetch zero-sized (placeholder) registers. */
1326 r->pnum = -1;
1327 else
1328 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1329
1330 r->regnum = regnum;
1331 }
1332
1333 /* Define the g/G packet format as the contents of each register
1334 with a remote protocol number, in order of ascending protocol
1335 number. */
1336
1337 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1338 for (num_remote_regs = 0, regnum = 0;
1339 regnum < gdbarch_num_regs (gdbarch);
1340 regnum++)
1341 if (regs[regnum].pnum != -1)
1342 remote_regs[num_remote_regs++] = &regs[regnum];
1343
1344 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
1345 compare_pnums);
1346
1347 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1348 {
1349 remote_regs[regnum]->in_g_packet = 1;
1350 remote_regs[regnum]->offset = offset;
1351 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1352 }
1353
1354 return offset;
1355 }
1356
1357 /* Given the architecture described by GDBARCH, return the remote
1358 protocol register's number and the register's offset in the g/G
1359 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1360 If the target does not have a mapping for REGNUM, return false,
1361 otherwise, return true. */
1362
1363 int
1364 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1365 int *pnum, int *poffset)
1366 {
1367 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1368
1369 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1370
1371 map_regcache_remote_table (gdbarch, regs.data ());
1372
1373 *pnum = regs[regnum].pnum;
1374 *poffset = regs[regnum].offset;
1375
1376 return *pnum != -1;
1377 }
1378
1379 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1380 {
1381 /* Use the architecture to build a regnum<->pnum table, which will be
1382 1:1 unless a feature set specifies otherwise. */
1383 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1384
1385 /* Record the maximum possible size of the g packet - it may turn out
1386 to be smaller. */
1387 this->sizeof_g_packet
1388 = map_regcache_remote_table (gdbarch, this->regs.get ());
1389
1390 /* Default maximum number of characters in a packet body. Many
1391 remote stubs have a hardwired buffer size of 400 bytes
1392 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1393 as the maximum packet-size to ensure that the packet and an extra
1394 NUL character can always fit in the buffer. This stops GDB
1395 trashing stubs that try to squeeze an extra NUL into what is
1396 already a full buffer (As of 1999-12-04 that was most stubs). */
1397 this->remote_packet_size = 400 - 1;
1398
1399 /* This one is filled in when a ``g'' packet is received. */
1400 this->actual_register_packet_size = 0;
1401
1402 /* Should rsa->sizeof_g_packet needs more space than the
1403 default, adjust the size accordingly. Remember that each byte is
1404 encoded as two characters. 32 is the overhead for the packet
1405 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1406 (``$NN:G...#NN'') is a better guess, the below has been padded a
1407 little. */
1408 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1409 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1410 }
1411
1412 /* Get a pointer to the current remote target. If not connected to a
1413 remote target, return NULL. */
1414
1415 static remote_target *
1416 get_current_remote_target ()
1417 {
1418 target_ops *proc_target = find_target_at (process_stratum);
1419 return dynamic_cast<remote_target *> (proc_target);
1420 }
1421
1422 /* Return the current allowed size of a remote packet. This is
1423 inferred from the current architecture, and should be used to
1424 limit the length of outgoing packets. */
1425 long
1426 remote_target::get_remote_packet_size ()
1427 {
1428 struct remote_state *rs = get_remote_state ();
1429 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1430
1431 if (rs->explicit_packet_size)
1432 return rs->explicit_packet_size;
1433
1434 return rsa->remote_packet_size;
1435 }
1436
1437 static struct packet_reg *
1438 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1439 long regnum)
1440 {
1441 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1442 return NULL;
1443 else
1444 {
1445 struct packet_reg *r = &rsa->regs[regnum];
1446
1447 gdb_assert (r->regnum == regnum);
1448 return r;
1449 }
1450 }
1451
1452 static struct packet_reg *
1453 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1454 LONGEST pnum)
1455 {
1456 int i;
1457
1458 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1459 {
1460 struct packet_reg *r = &rsa->regs[i];
1461
1462 if (r->pnum == pnum)
1463 return r;
1464 }
1465 return NULL;
1466 }
1467
1468 /* Allow the user to specify what sequence to send to the remote
1469 when he requests a program interruption: Although ^C is usually
1470 what remote systems expect (this is the default, here), it is
1471 sometimes preferable to send a break. On other systems such
1472 as the Linux kernel, a break followed by g, which is Magic SysRq g
1473 is required in order to interrupt the execution. */
1474 const char interrupt_sequence_control_c[] = "Ctrl-C";
1475 const char interrupt_sequence_break[] = "BREAK";
1476 const char interrupt_sequence_break_g[] = "BREAK-g";
1477 static const char *const interrupt_sequence_modes[] =
1478 {
1479 interrupt_sequence_control_c,
1480 interrupt_sequence_break,
1481 interrupt_sequence_break_g,
1482 NULL
1483 };
1484 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1485
1486 static void
1487 show_interrupt_sequence (struct ui_file *file, int from_tty,
1488 struct cmd_list_element *c,
1489 const char *value)
1490 {
1491 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1492 fprintf_filtered (file,
1493 _("Send the ASCII ETX character (Ctrl-c) "
1494 "to the remote target to interrupt the "
1495 "execution of the program.\n"));
1496 else if (interrupt_sequence_mode == interrupt_sequence_break)
1497 fprintf_filtered (file,
1498 _("send a break signal to the remote target "
1499 "to interrupt the execution of the program.\n"));
1500 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1501 fprintf_filtered (file,
1502 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1503 "the remote target to interrupt the execution "
1504 "of Linux kernel.\n"));
1505 else
1506 internal_error (__FILE__, __LINE__,
1507 _("Invalid value for interrupt_sequence_mode: %s."),
1508 interrupt_sequence_mode);
1509 }
1510
1511 /* This boolean variable specifies whether interrupt_sequence is sent
1512 to the remote target when gdb connects to it.
1513 This is mostly needed when you debug the Linux kernel: The Linux kernel
1514 expects BREAK g which is Magic SysRq g for connecting gdb. */
1515 static int interrupt_on_connect = 0;
1516
1517 /* This variable is used to implement the "set/show remotebreak" commands.
1518 Since these commands are now deprecated in favor of "set/show remote
1519 interrupt-sequence", it no longer has any effect on the code. */
1520 static int remote_break;
1521
1522 static void
1523 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1524 {
1525 if (remote_break)
1526 interrupt_sequence_mode = interrupt_sequence_break;
1527 else
1528 interrupt_sequence_mode = interrupt_sequence_control_c;
1529 }
1530
1531 static void
1532 show_remotebreak (struct ui_file *file, int from_tty,
1533 struct cmd_list_element *c,
1534 const char *value)
1535 {
1536 }
1537
1538 /* This variable sets the number of bits in an address that are to be
1539 sent in a memory ("M" or "m") packet. Normally, after stripping
1540 leading zeros, the entire address would be sent. This variable
1541 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1542 initial implementation of remote.c restricted the address sent in
1543 memory packets to ``host::sizeof long'' bytes - (typically 32
1544 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1545 address was never sent. Since fixing this bug may cause a break in
1546 some remote targets this variable is principly provided to
1547 facilitate backward compatibility. */
1548
1549 static unsigned int remote_address_size;
1550
1551 \f
1552 /* User configurable variables for the number of characters in a
1553 memory read/write packet. MIN (rsa->remote_packet_size,
1554 rsa->sizeof_g_packet) is the default. Some targets need smaller
1555 values (fifo overruns, et.al.) and some users need larger values
1556 (speed up transfers). The variables ``preferred_*'' (the user
1557 request), ``current_*'' (what was actually set) and ``forced_*''
1558 (Positive - a soft limit, negative - a hard limit). */
1559
1560 struct memory_packet_config
1561 {
1562 const char *name;
1563 long size;
1564 int fixed_p;
1565 };
1566
1567 /* The default max memory-write-packet-size, when the setting is
1568 "fixed". The 16k is historical. (It came from older GDB's using
1569 alloca for buffers and the knowledge (folklore?) that some hosts
1570 don't cope very well with large alloca calls.) */
1571 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1572
1573 /* The minimum remote packet size for memory transfers. Ensures we
1574 can write at least one byte. */
1575 #define MIN_MEMORY_PACKET_SIZE 20
1576
1577 /* Get the memory packet size, assuming it is fixed. */
1578
1579 static long
1580 get_fixed_memory_packet_size (struct memory_packet_config *config)
1581 {
1582 gdb_assert (config->fixed_p);
1583
1584 if (config->size <= 0)
1585 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1586 else
1587 return config->size;
1588 }
1589
1590 /* Compute the current size of a read/write packet. Since this makes
1591 use of ``actual_register_packet_size'' the computation is dynamic. */
1592
1593 long
1594 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1595 {
1596 struct remote_state *rs = get_remote_state ();
1597 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1598
1599 long what_they_get;
1600 if (config->fixed_p)
1601 what_they_get = get_fixed_memory_packet_size (config);
1602 else
1603 {
1604 what_they_get = get_remote_packet_size ();
1605 /* Limit the packet to the size specified by the user. */
1606 if (config->size > 0
1607 && what_they_get > config->size)
1608 what_they_get = config->size;
1609
1610 /* Limit it to the size of the targets ``g'' response unless we have
1611 permission from the stub to use a larger packet size. */
1612 if (rs->explicit_packet_size == 0
1613 && rsa->actual_register_packet_size > 0
1614 && what_they_get > rsa->actual_register_packet_size)
1615 what_they_get = rsa->actual_register_packet_size;
1616 }
1617 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1618 what_they_get = MIN_MEMORY_PACKET_SIZE;
1619
1620 /* Make sure there is room in the global buffer for this packet
1621 (including its trailing NUL byte). */
1622 if (rs->buf.size () < what_they_get + 1)
1623 rs->buf.resize (2 * what_they_get);
1624
1625 return what_they_get;
1626 }
1627
1628 /* Update the size of a read/write packet. If they user wants
1629 something really big then do a sanity check. */
1630
1631 static void
1632 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1633 {
1634 int fixed_p = config->fixed_p;
1635 long size = config->size;
1636
1637 if (args == NULL)
1638 error (_("Argument required (integer, `fixed' or `limited')."));
1639 else if (strcmp (args, "hard") == 0
1640 || strcmp (args, "fixed") == 0)
1641 fixed_p = 1;
1642 else if (strcmp (args, "soft") == 0
1643 || strcmp (args, "limit") == 0)
1644 fixed_p = 0;
1645 else
1646 {
1647 char *end;
1648
1649 size = strtoul (args, &end, 0);
1650 if (args == end)
1651 error (_("Invalid %s (bad syntax)."), config->name);
1652
1653 /* Instead of explicitly capping the size of a packet to or
1654 disallowing it, the user is allowed to set the size to
1655 something arbitrarily large. */
1656 }
1657
1658 /* Extra checks? */
1659 if (fixed_p && !config->fixed_p)
1660 {
1661 /* So that the query shows the correct value. */
1662 long query_size = (size <= 0
1663 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1664 : size);
1665
1666 if (! query (_("The target may not be able to correctly handle a %s\n"
1667 "of %ld bytes. Change the packet size? "),
1668 config->name, query_size))
1669 error (_("Packet size not changed."));
1670 }
1671 /* Update the config. */
1672 config->fixed_p = fixed_p;
1673 config->size = size;
1674 }
1675
1676 static void
1677 show_memory_packet_size (struct memory_packet_config *config)
1678 {
1679 if (config->size == 0)
1680 printf_filtered (_("The %s is 0 (default). "), config->name);
1681 else
1682 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1683 if (config->fixed_p)
1684 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1685 get_fixed_memory_packet_size (config));
1686 else
1687 {
1688 remote_target *remote = get_current_remote_target ();
1689
1690 if (remote != NULL)
1691 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1692 remote->get_memory_packet_size (config));
1693 else
1694 puts_filtered ("The actual limit will be further reduced "
1695 "dependent on the target.\n");
1696 }
1697 }
1698
1699 static struct memory_packet_config memory_write_packet_config =
1700 {
1701 "memory-write-packet-size",
1702 };
1703
1704 static void
1705 set_memory_write_packet_size (const char *args, int from_tty)
1706 {
1707 set_memory_packet_size (args, &memory_write_packet_config);
1708 }
1709
1710 static void
1711 show_memory_write_packet_size (const char *args, int from_tty)
1712 {
1713 show_memory_packet_size (&memory_write_packet_config);
1714 }
1715
1716 /* Show the number of hardware watchpoints that can be used. */
1717
1718 static void
1719 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1720 struct cmd_list_element *c,
1721 const char *value)
1722 {
1723 fprintf_filtered (file, _("The maximum number of target hardware "
1724 "watchpoints is %s.\n"), value);
1725 }
1726
1727 /* Show the length limit (in bytes) for hardware watchpoints. */
1728
1729 static void
1730 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1731 struct cmd_list_element *c,
1732 const char *value)
1733 {
1734 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1735 "hardware watchpoint is %s.\n"), value);
1736 }
1737
1738 /* Show the number of hardware breakpoints that can be used. */
1739
1740 static void
1741 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1742 struct cmd_list_element *c,
1743 const char *value)
1744 {
1745 fprintf_filtered (file, _("The maximum number of target hardware "
1746 "breakpoints is %s.\n"), value);
1747 }
1748
1749 long
1750 remote_target::get_memory_write_packet_size ()
1751 {
1752 return get_memory_packet_size (&memory_write_packet_config);
1753 }
1754
1755 static struct memory_packet_config memory_read_packet_config =
1756 {
1757 "memory-read-packet-size",
1758 };
1759
1760 static void
1761 set_memory_read_packet_size (const char *args, int from_tty)
1762 {
1763 set_memory_packet_size (args, &memory_read_packet_config);
1764 }
1765
1766 static void
1767 show_memory_read_packet_size (const char *args, int from_tty)
1768 {
1769 show_memory_packet_size (&memory_read_packet_config);
1770 }
1771
1772 long
1773 remote_target::get_memory_read_packet_size ()
1774 {
1775 long size = get_memory_packet_size (&memory_read_packet_config);
1776
1777 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1778 extra buffer size argument before the memory read size can be
1779 increased beyond this. */
1780 if (size > get_remote_packet_size ())
1781 size = get_remote_packet_size ();
1782 return size;
1783 }
1784
1785 \f
1786
1787 struct packet_config
1788 {
1789 const char *name;
1790 const char *title;
1791
1792 /* If auto, GDB auto-detects support for this packet or feature,
1793 either through qSupported, or by trying the packet and looking
1794 at the response. If true, GDB assumes the target supports this
1795 packet. If false, the packet is disabled. Configs that don't
1796 have an associated command always have this set to auto. */
1797 enum auto_boolean detect;
1798
1799 /* Does the target support this packet? */
1800 enum packet_support support;
1801 };
1802
1803 static enum packet_support packet_config_support (struct packet_config *config);
1804 static enum packet_support packet_support (int packet);
1805
1806 static void
1807 show_packet_config_cmd (struct packet_config *config)
1808 {
1809 const char *support = "internal-error";
1810
1811 switch (packet_config_support (config))
1812 {
1813 case PACKET_ENABLE:
1814 support = "enabled";
1815 break;
1816 case PACKET_DISABLE:
1817 support = "disabled";
1818 break;
1819 case PACKET_SUPPORT_UNKNOWN:
1820 support = "unknown";
1821 break;
1822 }
1823 switch (config->detect)
1824 {
1825 case AUTO_BOOLEAN_AUTO:
1826 printf_filtered (_("Support for the `%s' packet "
1827 "is auto-detected, currently %s.\n"),
1828 config->name, support);
1829 break;
1830 case AUTO_BOOLEAN_TRUE:
1831 case AUTO_BOOLEAN_FALSE:
1832 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1833 config->name, support);
1834 break;
1835 }
1836 }
1837
1838 static void
1839 add_packet_config_cmd (struct packet_config *config, const char *name,
1840 const char *title, int legacy)
1841 {
1842 char *set_doc;
1843 char *show_doc;
1844 char *cmd_name;
1845
1846 config->name = name;
1847 config->title = title;
1848 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1849 name, title);
1850 show_doc = xstrprintf ("Show current use of remote "
1851 "protocol `%s' (%s) packet",
1852 name, title);
1853 /* set/show TITLE-packet {auto,on,off} */
1854 cmd_name = xstrprintf ("%s-packet", title);
1855 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1856 &config->detect, set_doc,
1857 show_doc, NULL, /* help_doc */
1858 NULL,
1859 show_remote_protocol_packet_cmd,
1860 &remote_set_cmdlist, &remote_show_cmdlist);
1861 /* The command code copies the documentation strings. */
1862 xfree (set_doc);
1863 xfree (show_doc);
1864 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1865 if (legacy)
1866 {
1867 char *legacy_name;
1868
1869 legacy_name = xstrprintf ("%s-packet", name);
1870 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1871 &remote_set_cmdlist);
1872 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1873 &remote_show_cmdlist);
1874 }
1875 }
1876
1877 static enum packet_result
1878 packet_check_result (const char *buf)
1879 {
1880 if (buf[0] != '\0')
1881 {
1882 /* The stub recognized the packet request. Check that the
1883 operation succeeded. */
1884 if (buf[0] == 'E'
1885 && isxdigit (buf[1]) && isxdigit (buf[2])
1886 && buf[3] == '\0')
1887 /* "Enn" - definitly an error. */
1888 return PACKET_ERROR;
1889
1890 /* Always treat "E." as an error. This will be used for
1891 more verbose error messages, such as E.memtypes. */
1892 if (buf[0] == 'E' && buf[1] == '.')
1893 return PACKET_ERROR;
1894
1895 /* The packet may or may not be OK. Just assume it is. */
1896 return PACKET_OK;
1897 }
1898 else
1899 /* The stub does not support the packet. */
1900 return PACKET_UNKNOWN;
1901 }
1902
1903 static enum packet_result
1904 packet_check_result (const gdb::char_vector &buf)
1905 {
1906 return packet_check_result (buf.data ());
1907 }
1908
1909 static enum packet_result
1910 packet_ok (const char *buf, struct packet_config *config)
1911 {
1912 enum packet_result result;
1913
1914 if (config->detect != AUTO_BOOLEAN_TRUE
1915 && config->support == PACKET_DISABLE)
1916 internal_error (__FILE__, __LINE__,
1917 _("packet_ok: attempt to use a disabled packet"));
1918
1919 result = packet_check_result (buf);
1920 switch (result)
1921 {
1922 case PACKET_OK:
1923 case PACKET_ERROR:
1924 /* The stub recognized the packet request. */
1925 if (config->support == PACKET_SUPPORT_UNKNOWN)
1926 {
1927 if (remote_debug)
1928 fprintf_unfiltered (gdb_stdlog,
1929 "Packet %s (%s) is supported\n",
1930 config->name, config->title);
1931 config->support = PACKET_ENABLE;
1932 }
1933 break;
1934 case PACKET_UNKNOWN:
1935 /* The stub does not support the packet. */
1936 if (config->detect == AUTO_BOOLEAN_AUTO
1937 && config->support == PACKET_ENABLE)
1938 {
1939 /* If the stub previously indicated that the packet was
1940 supported then there is a protocol error. */
1941 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1942 config->name, config->title);
1943 }
1944 else if (config->detect == AUTO_BOOLEAN_TRUE)
1945 {
1946 /* The user set it wrong. */
1947 error (_("Enabled packet %s (%s) not recognized by stub"),
1948 config->name, config->title);
1949 }
1950
1951 if (remote_debug)
1952 fprintf_unfiltered (gdb_stdlog,
1953 "Packet %s (%s) is NOT supported\n",
1954 config->name, config->title);
1955 config->support = PACKET_DISABLE;
1956 break;
1957 }
1958
1959 return result;
1960 }
1961
1962 static enum packet_result
1963 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1964 {
1965 return packet_ok (buf.data (), config);
1966 }
1967
1968 enum {
1969 PACKET_vCont = 0,
1970 PACKET_X,
1971 PACKET_qSymbol,
1972 PACKET_P,
1973 PACKET_p,
1974 PACKET_Z0,
1975 PACKET_Z1,
1976 PACKET_Z2,
1977 PACKET_Z3,
1978 PACKET_Z4,
1979 PACKET_vFile_setfs,
1980 PACKET_vFile_open,
1981 PACKET_vFile_pread,
1982 PACKET_vFile_pwrite,
1983 PACKET_vFile_close,
1984 PACKET_vFile_unlink,
1985 PACKET_vFile_readlink,
1986 PACKET_vFile_fstat,
1987 PACKET_qXfer_auxv,
1988 PACKET_qXfer_features,
1989 PACKET_qXfer_exec_file,
1990 PACKET_qXfer_libraries,
1991 PACKET_qXfer_libraries_svr4,
1992 PACKET_qXfer_memory_map,
1993 PACKET_qXfer_spu_read,
1994 PACKET_qXfer_spu_write,
1995 PACKET_qXfer_osdata,
1996 PACKET_qXfer_threads,
1997 PACKET_qXfer_statictrace_read,
1998 PACKET_qXfer_traceframe_info,
1999 PACKET_qXfer_uib,
2000 PACKET_qGetTIBAddr,
2001 PACKET_qGetTLSAddr,
2002 PACKET_qSupported,
2003 PACKET_qTStatus,
2004 PACKET_QPassSignals,
2005 PACKET_QCatchSyscalls,
2006 PACKET_QProgramSignals,
2007 PACKET_QSetWorkingDir,
2008 PACKET_QStartupWithShell,
2009 PACKET_QEnvironmentHexEncoded,
2010 PACKET_QEnvironmentReset,
2011 PACKET_QEnvironmentUnset,
2012 PACKET_qCRC,
2013 PACKET_qSearch_memory,
2014 PACKET_vAttach,
2015 PACKET_vRun,
2016 PACKET_QStartNoAckMode,
2017 PACKET_vKill,
2018 PACKET_qXfer_siginfo_read,
2019 PACKET_qXfer_siginfo_write,
2020 PACKET_qAttached,
2021
2022 /* Support for conditional tracepoints. */
2023 PACKET_ConditionalTracepoints,
2024
2025 /* Support for target-side breakpoint conditions. */
2026 PACKET_ConditionalBreakpoints,
2027
2028 /* Support for target-side breakpoint commands. */
2029 PACKET_BreakpointCommands,
2030
2031 /* Support for fast tracepoints. */
2032 PACKET_FastTracepoints,
2033
2034 /* Support for static tracepoints. */
2035 PACKET_StaticTracepoints,
2036
2037 /* Support for installing tracepoints while a trace experiment is
2038 running. */
2039 PACKET_InstallInTrace,
2040
2041 PACKET_bc,
2042 PACKET_bs,
2043 PACKET_TracepointSource,
2044 PACKET_QAllow,
2045 PACKET_qXfer_fdpic,
2046 PACKET_QDisableRandomization,
2047 PACKET_QAgent,
2048 PACKET_QTBuffer_size,
2049 PACKET_Qbtrace_off,
2050 PACKET_Qbtrace_bts,
2051 PACKET_Qbtrace_pt,
2052 PACKET_qXfer_btrace,
2053
2054 /* Support for the QNonStop packet. */
2055 PACKET_QNonStop,
2056
2057 /* Support for the QThreadEvents packet. */
2058 PACKET_QThreadEvents,
2059
2060 /* Support for multi-process extensions. */
2061 PACKET_multiprocess_feature,
2062
2063 /* Support for enabling and disabling tracepoints while a trace
2064 experiment is running. */
2065 PACKET_EnableDisableTracepoints_feature,
2066
2067 /* Support for collecting strings using the tracenz bytecode. */
2068 PACKET_tracenz_feature,
2069
2070 /* Support for continuing to run a trace experiment while GDB is
2071 disconnected. */
2072 PACKET_DisconnectedTracing_feature,
2073
2074 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2075 PACKET_augmented_libraries_svr4_read_feature,
2076
2077 /* Support for the qXfer:btrace-conf:read packet. */
2078 PACKET_qXfer_btrace_conf,
2079
2080 /* Support for the Qbtrace-conf:bts:size packet. */
2081 PACKET_Qbtrace_conf_bts_size,
2082
2083 /* Support for swbreak+ feature. */
2084 PACKET_swbreak_feature,
2085
2086 /* Support for hwbreak+ feature. */
2087 PACKET_hwbreak_feature,
2088
2089 /* Support for fork events. */
2090 PACKET_fork_event_feature,
2091
2092 /* Support for vfork events. */
2093 PACKET_vfork_event_feature,
2094
2095 /* Support for the Qbtrace-conf:pt:size packet. */
2096 PACKET_Qbtrace_conf_pt_size,
2097
2098 /* Support for exec events. */
2099 PACKET_exec_event_feature,
2100
2101 /* Support for query supported vCont actions. */
2102 PACKET_vContSupported,
2103
2104 /* Support remote CTRL-C. */
2105 PACKET_vCtrlC,
2106
2107 /* Support TARGET_WAITKIND_NO_RESUMED. */
2108 PACKET_no_resumed,
2109
2110 PACKET_MAX
2111 };
2112
2113 static struct packet_config remote_protocol_packets[PACKET_MAX];
2114
2115 /* Returns the packet's corresponding "set remote foo-packet" command
2116 state. See struct packet_config for more details. */
2117
2118 static enum auto_boolean
2119 packet_set_cmd_state (int packet)
2120 {
2121 return remote_protocol_packets[packet].detect;
2122 }
2123
2124 /* Returns whether a given packet or feature is supported. This takes
2125 into account the state of the corresponding "set remote foo-packet"
2126 command, which may be used to bypass auto-detection. */
2127
2128 static enum packet_support
2129 packet_config_support (struct packet_config *config)
2130 {
2131 switch (config->detect)
2132 {
2133 case AUTO_BOOLEAN_TRUE:
2134 return PACKET_ENABLE;
2135 case AUTO_BOOLEAN_FALSE:
2136 return PACKET_DISABLE;
2137 case AUTO_BOOLEAN_AUTO:
2138 return config->support;
2139 default:
2140 gdb_assert_not_reached (_("bad switch"));
2141 }
2142 }
2143
2144 /* Same as packet_config_support, but takes the packet's enum value as
2145 argument. */
2146
2147 static enum packet_support
2148 packet_support (int packet)
2149 {
2150 struct packet_config *config = &remote_protocol_packets[packet];
2151
2152 return packet_config_support (config);
2153 }
2154
2155 static void
2156 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2157 struct cmd_list_element *c,
2158 const char *value)
2159 {
2160 struct packet_config *packet;
2161
2162 for (packet = remote_protocol_packets;
2163 packet < &remote_protocol_packets[PACKET_MAX];
2164 packet++)
2165 {
2166 if (&packet->detect == c->var)
2167 {
2168 show_packet_config_cmd (packet);
2169 return;
2170 }
2171 }
2172 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2173 c->name);
2174 }
2175
2176 /* Should we try one of the 'Z' requests? */
2177
2178 enum Z_packet_type
2179 {
2180 Z_PACKET_SOFTWARE_BP,
2181 Z_PACKET_HARDWARE_BP,
2182 Z_PACKET_WRITE_WP,
2183 Z_PACKET_READ_WP,
2184 Z_PACKET_ACCESS_WP,
2185 NR_Z_PACKET_TYPES
2186 };
2187
2188 /* For compatibility with older distributions. Provide a ``set remote
2189 Z-packet ...'' command that updates all the Z packet types. */
2190
2191 static enum auto_boolean remote_Z_packet_detect;
2192
2193 static void
2194 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2195 struct cmd_list_element *c)
2196 {
2197 int i;
2198
2199 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2200 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2201 }
2202
2203 static void
2204 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2205 struct cmd_list_element *c,
2206 const char *value)
2207 {
2208 int i;
2209
2210 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2211 {
2212 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2213 }
2214 }
2215
2216 /* Returns true if the multi-process extensions are in effect. */
2217
2218 static int
2219 remote_multi_process_p (struct remote_state *rs)
2220 {
2221 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2222 }
2223
2224 /* Returns true if fork events are supported. */
2225
2226 static int
2227 remote_fork_event_p (struct remote_state *rs)
2228 {
2229 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2230 }
2231
2232 /* Returns true if vfork events are supported. */
2233
2234 static int
2235 remote_vfork_event_p (struct remote_state *rs)
2236 {
2237 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2238 }
2239
2240 /* Returns true if exec events are supported. */
2241
2242 static int
2243 remote_exec_event_p (struct remote_state *rs)
2244 {
2245 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2246 }
2247
2248 /* Insert fork catchpoint target routine. If fork events are enabled
2249 then return success, nothing more to do. */
2250
2251 int
2252 remote_target::insert_fork_catchpoint (int pid)
2253 {
2254 struct remote_state *rs = get_remote_state ();
2255
2256 return !remote_fork_event_p (rs);
2257 }
2258
2259 /* Remove fork catchpoint target routine. Nothing to do, just
2260 return success. */
2261
2262 int
2263 remote_target::remove_fork_catchpoint (int pid)
2264 {
2265 return 0;
2266 }
2267
2268 /* Insert vfork catchpoint target routine. If vfork events are enabled
2269 then return success, nothing more to do. */
2270
2271 int
2272 remote_target::insert_vfork_catchpoint (int pid)
2273 {
2274 struct remote_state *rs = get_remote_state ();
2275
2276 return !remote_vfork_event_p (rs);
2277 }
2278
2279 /* Remove vfork catchpoint target routine. Nothing to do, just
2280 return success. */
2281
2282 int
2283 remote_target::remove_vfork_catchpoint (int pid)
2284 {
2285 return 0;
2286 }
2287
2288 /* Insert exec catchpoint target routine. If exec events are
2289 enabled, just return success. */
2290
2291 int
2292 remote_target::insert_exec_catchpoint (int pid)
2293 {
2294 struct remote_state *rs = get_remote_state ();
2295
2296 return !remote_exec_event_p (rs);
2297 }
2298
2299 /* Remove exec catchpoint target routine. Nothing to do, just
2300 return success. */
2301
2302 int
2303 remote_target::remove_exec_catchpoint (int pid)
2304 {
2305 return 0;
2306 }
2307
2308 \f
2309
2310 static ptid_t magic_null_ptid;
2311 static ptid_t not_sent_ptid;
2312 static ptid_t any_thread_ptid;
2313
2314 /* Find out if the stub attached to PID (and hence GDB should offer to
2315 detach instead of killing it when bailing out). */
2316
2317 int
2318 remote_target::remote_query_attached (int pid)
2319 {
2320 struct remote_state *rs = get_remote_state ();
2321 size_t size = get_remote_packet_size ();
2322
2323 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2324 return 0;
2325
2326 if (remote_multi_process_p (rs))
2327 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2328 else
2329 xsnprintf (rs->buf.data (), size, "qAttached");
2330
2331 putpkt (rs->buf);
2332 getpkt (&rs->buf, 0);
2333
2334 switch (packet_ok (rs->buf,
2335 &remote_protocol_packets[PACKET_qAttached]))
2336 {
2337 case PACKET_OK:
2338 if (strcmp (rs->buf.data (), "1") == 0)
2339 return 1;
2340 break;
2341 case PACKET_ERROR:
2342 warning (_("Remote failure reply: %s"), rs->buf.data ());
2343 break;
2344 case PACKET_UNKNOWN:
2345 break;
2346 }
2347
2348 return 0;
2349 }
2350
2351 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2352 has been invented by GDB, instead of reported by the target. Since
2353 we can be connected to a remote system before before knowing about
2354 any inferior, mark the target with execution when we find the first
2355 inferior. If ATTACHED is 1, then we had just attached to this
2356 inferior. If it is 0, then we just created this inferior. If it
2357 is -1, then try querying the remote stub to find out if it had
2358 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2359 attempt to open this inferior's executable as the main executable
2360 if no main executable is open already. */
2361
2362 inferior *
2363 remote_target::remote_add_inferior (int fake_pid_p, int pid, int attached,
2364 int try_open_exec)
2365 {
2366 struct inferior *inf;
2367
2368 /* Check whether this process we're learning about is to be
2369 considered attached, or if is to be considered to have been
2370 spawned by the stub. */
2371 if (attached == -1)
2372 attached = remote_query_attached (pid);
2373
2374 if (gdbarch_has_global_solist (target_gdbarch ()))
2375 {
2376 /* If the target shares code across all inferiors, then every
2377 attach adds a new inferior. */
2378 inf = add_inferior (pid);
2379
2380 /* ... and every inferior is bound to the same program space.
2381 However, each inferior may still have its own address
2382 space. */
2383 inf->aspace = maybe_new_address_space ();
2384 inf->pspace = current_program_space;
2385 }
2386 else
2387 {
2388 /* In the traditional debugging scenario, there's a 1-1 match
2389 between program/address spaces. We simply bind the inferior
2390 to the program space's address space. */
2391 inf = current_inferior ();
2392 inferior_appeared (inf, pid);
2393 }
2394
2395 inf->attach_flag = attached;
2396 inf->fake_pid_p = fake_pid_p;
2397
2398 /* If no main executable is currently open then attempt to
2399 open the file that was executed to create this inferior. */
2400 if (try_open_exec && get_exec_file (0) == NULL)
2401 exec_file_locate_attach (pid, 0, 1);
2402
2403 return inf;
2404 }
2405
2406 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2407 static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2408
2409 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2410 according to RUNNING. */
2411
2412 thread_info *
2413 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2414 {
2415 struct remote_state *rs = get_remote_state ();
2416 struct thread_info *thread;
2417
2418 /* GDB historically didn't pull threads in the initial connection
2419 setup. If the remote target doesn't even have a concept of
2420 threads (e.g., a bare-metal target), even if internally we
2421 consider that a single-threaded target, mentioning a new thread
2422 might be confusing to the user. Be silent then, preserving the
2423 age old behavior. */
2424 if (rs->starting_up)
2425 thread = add_thread_silent (ptid);
2426 else
2427 thread = add_thread (ptid);
2428
2429 get_remote_thread_info (thread)->vcont_resumed = executing;
2430 set_executing (ptid, executing);
2431 set_running (ptid, running);
2432
2433 return thread;
2434 }
2435
2436 /* Come here when we learn about a thread id from the remote target.
2437 It may be the first time we hear about such thread, so take the
2438 opportunity to add it to GDB's thread list. In case this is the
2439 first time we're noticing its corresponding inferior, add it to
2440 GDB's inferior list as well. EXECUTING indicates whether the
2441 thread is (internally) executing or stopped. */
2442
2443 void
2444 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2445 {
2446 /* In non-stop mode, we assume new found threads are (externally)
2447 running until proven otherwise with a stop reply. In all-stop,
2448 we can only get here if all threads are stopped. */
2449 int running = target_is_non_stop_p () ? 1 : 0;
2450
2451 /* If this is a new thread, add it to GDB's thread list.
2452 If we leave it up to WFI to do this, bad things will happen. */
2453
2454 thread_info *tp = find_thread_ptid (currthread);
2455 if (tp != NULL && tp->state == THREAD_EXITED)
2456 {
2457 /* We're seeing an event on a thread id we knew had exited.
2458 This has to be a new thread reusing the old id. Add it. */
2459 remote_add_thread (currthread, running, executing);
2460 return;
2461 }
2462
2463 if (!in_thread_list (currthread))
2464 {
2465 struct inferior *inf = NULL;
2466 int pid = currthread.pid ();
2467
2468 if (inferior_ptid.is_pid ()
2469 && pid == inferior_ptid.pid ())
2470 {
2471 /* inferior_ptid has no thread member yet. This can happen
2472 with the vAttach -> remote_wait,"TAAthread:" path if the
2473 stub doesn't support qC. This is the first stop reported
2474 after an attach, so this is the main thread. Update the
2475 ptid in the thread list. */
2476 if (in_thread_list (ptid_t (pid)))
2477 thread_change_ptid (inferior_ptid, currthread);
2478 else
2479 {
2480 remote_add_thread (currthread, running, executing);
2481 inferior_ptid = currthread;
2482 }
2483 return;
2484 }
2485
2486 if (magic_null_ptid == inferior_ptid)
2487 {
2488 /* inferior_ptid is not set yet. This can happen with the
2489 vRun -> remote_wait,"TAAthread:" path if the stub
2490 doesn't support qC. This is the first stop reported
2491 after an attach, so this is the main thread. Update the
2492 ptid in the thread list. */
2493 thread_change_ptid (inferior_ptid, currthread);
2494 return;
2495 }
2496
2497 /* When connecting to a target remote, or to a target
2498 extended-remote which already was debugging an inferior, we
2499 may not know about it yet. Add it before adding its child
2500 thread, so notifications are emitted in a sensible order. */
2501 if (find_inferior_pid (currthread.pid ()) == NULL)
2502 {
2503 struct remote_state *rs = get_remote_state ();
2504 int fake_pid_p = !remote_multi_process_p (rs);
2505
2506 inf = remote_add_inferior (fake_pid_p,
2507 currthread.pid (), -1, 1);
2508 }
2509
2510 /* This is really a new thread. Add it. */
2511 thread_info *new_thr
2512 = remote_add_thread (currthread, running, executing);
2513
2514 /* If we found a new inferior, let the common code do whatever
2515 it needs to with it (e.g., read shared libraries, insert
2516 breakpoints), unless we're just setting up an all-stop
2517 connection. */
2518 if (inf != NULL)
2519 {
2520 struct remote_state *rs = get_remote_state ();
2521
2522 if (!rs->starting_up)
2523 notice_new_inferior (new_thr, executing, 0);
2524 }
2525 }
2526 }
2527
2528 /* Return THREAD's private thread data, creating it if necessary. */
2529
2530 static remote_thread_info *
2531 get_remote_thread_info (thread_info *thread)
2532 {
2533 gdb_assert (thread != NULL);
2534
2535 if (thread->priv == NULL)
2536 thread->priv.reset (new remote_thread_info);
2537
2538 return static_cast<remote_thread_info *> (thread->priv.get ());
2539 }
2540
2541 static remote_thread_info *
2542 get_remote_thread_info (ptid_t ptid)
2543 {
2544 thread_info *thr = find_thread_ptid (ptid);
2545 return get_remote_thread_info (thr);
2546 }
2547
2548 /* Call this function as a result of
2549 1) A halt indication (T packet) containing a thread id
2550 2) A direct query of currthread
2551 3) Successful execution of set thread */
2552
2553 static void
2554 record_currthread (struct remote_state *rs, ptid_t currthread)
2555 {
2556 rs->general_thread = currthread;
2557 }
2558
2559 /* If 'QPassSignals' is supported, tell the remote stub what signals
2560 it can simply pass through to the inferior without reporting. */
2561
2562 void
2563 remote_target::pass_signals (int numsigs, const unsigned char *pass_signals)
2564 {
2565 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2566 {
2567 char *pass_packet, *p;
2568 int count = 0, i;
2569 struct remote_state *rs = get_remote_state ();
2570
2571 gdb_assert (numsigs < 256);
2572 for (i = 0; i < numsigs; i++)
2573 {
2574 if (pass_signals[i])
2575 count++;
2576 }
2577 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2578 strcpy (pass_packet, "QPassSignals:");
2579 p = pass_packet + strlen (pass_packet);
2580 for (i = 0; i < numsigs; i++)
2581 {
2582 if (pass_signals[i])
2583 {
2584 if (i >= 16)
2585 *p++ = tohex (i >> 4);
2586 *p++ = tohex (i & 15);
2587 if (count)
2588 *p++ = ';';
2589 else
2590 break;
2591 count--;
2592 }
2593 }
2594 *p = 0;
2595 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2596 {
2597 putpkt (pass_packet);
2598 getpkt (&rs->buf, 0);
2599 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2600 if (rs->last_pass_packet)
2601 xfree (rs->last_pass_packet);
2602 rs->last_pass_packet = pass_packet;
2603 }
2604 else
2605 xfree (pass_packet);
2606 }
2607 }
2608
2609 /* If 'QCatchSyscalls' is supported, tell the remote stub
2610 to report syscalls to GDB. */
2611
2612 int
2613 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2614 gdb::array_view<const int> syscall_counts)
2615 {
2616 const char *catch_packet;
2617 enum packet_result result;
2618 int n_sysno = 0;
2619
2620 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2621 {
2622 /* Not supported. */
2623 return 1;
2624 }
2625
2626 if (needed && any_count == 0)
2627 {
2628 /* Count how many syscalls are to be caught. */
2629 for (size_t i = 0; i < syscall_counts.size (); i++)
2630 {
2631 if (syscall_counts[i] != 0)
2632 n_sysno++;
2633 }
2634 }
2635
2636 if (remote_debug)
2637 {
2638 fprintf_unfiltered (gdb_stdlog,
2639 "remote_set_syscall_catchpoint "
2640 "pid %d needed %d any_count %d n_sysno %d\n",
2641 pid, needed, any_count, n_sysno);
2642 }
2643
2644 std::string built_packet;
2645 if (needed)
2646 {
2647 /* Prepare a packet with the sysno list, assuming max 8+1
2648 characters for a sysno. If the resulting packet size is too
2649 big, fallback on the non-selective packet. */
2650 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2651 built_packet.reserve (maxpktsz);
2652 built_packet = "QCatchSyscalls:1";
2653 if (any_count == 0)
2654 {
2655 /* Add in each syscall to be caught. */
2656 for (size_t i = 0; i < syscall_counts.size (); i++)
2657 {
2658 if (syscall_counts[i] != 0)
2659 string_appendf (built_packet, ";%zx", i);
2660 }
2661 }
2662 if (built_packet.size () > get_remote_packet_size ())
2663 {
2664 /* catch_packet too big. Fallback to less efficient
2665 non selective mode, with GDB doing the filtering. */
2666 catch_packet = "QCatchSyscalls:1";
2667 }
2668 else
2669 catch_packet = built_packet.c_str ();
2670 }
2671 else
2672 catch_packet = "QCatchSyscalls:0";
2673
2674 struct remote_state *rs = get_remote_state ();
2675
2676 putpkt (catch_packet);
2677 getpkt (&rs->buf, 0);
2678 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2679 if (result == PACKET_OK)
2680 return 0;
2681 else
2682 return -1;
2683 }
2684
2685 /* If 'QProgramSignals' is supported, tell the remote stub what
2686 signals it should pass through to the inferior when detaching. */
2687
2688 void
2689 remote_target::program_signals (int numsigs, const unsigned char *signals)
2690 {
2691 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2692 {
2693 char *packet, *p;
2694 int count = 0, i;
2695 struct remote_state *rs = get_remote_state ();
2696
2697 gdb_assert (numsigs < 256);
2698 for (i = 0; i < numsigs; i++)
2699 {
2700 if (signals[i])
2701 count++;
2702 }
2703 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2704 strcpy (packet, "QProgramSignals:");
2705 p = packet + strlen (packet);
2706 for (i = 0; i < numsigs; i++)
2707 {
2708 if (signal_pass_state (i))
2709 {
2710 if (i >= 16)
2711 *p++ = tohex (i >> 4);
2712 *p++ = tohex (i & 15);
2713 if (count)
2714 *p++ = ';';
2715 else
2716 break;
2717 count--;
2718 }
2719 }
2720 *p = 0;
2721 if (!rs->last_program_signals_packet
2722 || strcmp (rs->last_program_signals_packet, packet) != 0)
2723 {
2724 putpkt (packet);
2725 getpkt (&rs->buf, 0);
2726 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2727 xfree (rs->last_program_signals_packet);
2728 rs->last_program_signals_packet = packet;
2729 }
2730 else
2731 xfree (packet);
2732 }
2733 }
2734
2735 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2736 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2737 thread. If GEN is set, set the general thread, if not, then set
2738 the step/continue thread. */
2739 void
2740 remote_target::set_thread (ptid_t ptid, int gen)
2741 {
2742 struct remote_state *rs = get_remote_state ();
2743 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2744 char *buf = rs->buf.data ();
2745 char *endbuf = buf + get_remote_packet_size ();
2746
2747 if (state == ptid)
2748 return;
2749
2750 *buf++ = 'H';
2751 *buf++ = gen ? 'g' : 'c';
2752 if (ptid == magic_null_ptid)
2753 xsnprintf (buf, endbuf - buf, "0");
2754 else if (ptid == any_thread_ptid)
2755 xsnprintf (buf, endbuf - buf, "0");
2756 else if (ptid == minus_one_ptid)
2757 xsnprintf (buf, endbuf - buf, "-1");
2758 else
2759 write_ptid (buf, endbuf, ptid);
2760 putpkt (rs->buf);
2761 getpkt (&rs->buf, 0);
2762 if (gen)
2763 rs->general_thread = ptid;
2764 else
2765 rs->continue_thread = ptid;
2766 }
2767
2768 void
2769 remote_target::set_general_thread (ptid_t ptid)
2770 {
2771 set_thread (ptid, 1);
2772 }
2773
2774 void
2775 remote_target::set_continue_thread (ptid_t ptid)
2776 {
2777 set_thread (ptid, 0);
2778 }
2779
2780 /* Change the remote current process. Which thread within the process
2781 ends up selected isn't important, as long as it is the same process
2782 as what INFERIOR_PTID points to.
2783
2784 This comes from that fact that there is no explicit notion of
2785 "selected process" in the protocol. The selected process for
2786 general operations is the process the selected general thread
2787 belongs to. */
2788
2789 void
2790 remote_target::set_general_process ()
2791 {
2792 struct remote_state *rs = get_remote_state ();
2793
2794 /* If the remote can't handle multiple processes, don't bother. */
2795 if (!remote_multi_process_p (rs))
2796 return;
2797
2798 /* We only need to change the remote current thread if it's pointing
2799 at some other process. */
2800 if (rs->general_thread.pid () != inferior_ptid.pid ())
2801 set_general_thread (inferior_ptid);
2802 }
2803
2804 \f
2805 /* Return nonzero if this is the main thread that we made up ourselves
2806 to model non-threaded targets as single-threaded. */
2807
2808 static int
2809 remote_thread_always_alive (ptid_t ptid)
2810 {
2811 if (ptid == magic_null_ptid)
2812 /* The main thread is always alive. */
2813 return 1;
2814
2815 if (ptid.pid () != 0 && ptid.lwp () == 0)
2816 /* The main thread is always alive. This can happen after a
2817 vAttach, if the remote side doesn't support
2818 multi-threading. */
2819 return 1;
2820
2821 return 0;
2822 }
2823
2824 /* Return nonzero if the thread PTID is still alive on the remote
2825 system. */
2826
2827 bool
2828 remote_target::thread_alive (ptid_t ptid)
2829 {
2830 struct remote_state *rs = get_remote_state ();
2831 char *p, *endp;
2832
2833 /* Check if this is a thread that we made up ourselves to model
2834 non-threaded targets as single-threaded. */
2835 if (remote_thread_always_alive (ptid))
2836 return 1;
2837
2838 p = rs->buf.data ();
2839 endp = p + get_remote_packet_size ();
2840
2841 *p++ = 'T';
2842 write_ptid (p, endp, ptid);
2843
2844 putpkt (rs->buf);
2845 getpkt (&rs->buf, 0);
2846 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2847 }
2848
2849 /* Return a pointer to a thread name if we know it and NULL otherwise.
2850 The thread_info object owns the memory for the name. */
2851
2852 const char *
2853 remote_target::thread_name (struct thread_info *info)
2854 {
2855 if (info->priv != NULL)
2856 {
2857 const std::string &name = get_remote_thread_info (info)->name;
2858 return !name.empty () ? name.c_str () : NULL;
2859 }
2860
2861 return NULL;
2862 }
2863
2864 /* About these extended threadlist and threadinfo packets. They are
2865 variable length packets but, the fields within them are often fixed
2866 length. They are redundent enough to send over UDP as is the
2867 remote protocol in general. There is a matching unit test module
2868 in libstub. */
2869
2870 /* WARNING: This threadref data structure comes from the remote O.S.,
2871 libstub protocol encoding, and remote.c. It is not particularly
2872 changable. */
2873
2874 /* Right now, the internal structure is int. We want it to be bigger.
2875 Plan to fix this. */
2876
2877 typedef int gdb_threadref; /* Internal GDB thread reference. */
2878
2879 /* gdb_ext_thread_info is an internal GDB data structure which is
2880 equivalent to the reply of the remote threadinfo packet. */
2881
2882 struct gdb_ext_thread_info
2883 {
2884 threadref threadid; /* External form of thread reference. */
2885 int active; /* Has state interesting to GDB?
2886 regs, stack. */
2887 char display[256]; /* Brief state display, name,
2888 blocked/suspended. */
2889 char shortname[32]; /* To be used to name threads. */
2890 char more_display[256]; /* Long info, statistics, queue depth,
2891 whatever. */
2892 };
2893
2894 /* The volume of remote transfers can be limited by submitting
2895 a mask containing bits specifying the desired information.
2896 Use a union of these values as the 'selection' parameter to
2897 get_thread_info. FIXME: Make these TAG names more thread specific. */
2898
2899 #define TAG_THREADID 1
2900 #define TAG_EXISTS 2
2901 #define TAG_DISPLAY 4
2902 #define TAG_THREADNAME 8
2903 #define TAG_MOREDISPLAY 16
2904
2905 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2906
2907 static char *unpack_nibble (char *buf, int *val);
2908
2909 static char *unpack_byte (char *buf, int *value);
2910
2911 static char *pack_int (char *buf, int value);
2912
2913 static char *unpack_int (char *buf, int *value);
2914
2915 static char *unpack_string (char *src, char *dest, int length);
2916
2917 static char *pack_threadid (char *pkt, threadref *id);
2918
2919 static char *unpack_threadid (char *inbuf, threadref *id);
2920
2921 void int_to_threadref (threadref *id, int value);
2922
2923 static int threadref_to_int (threadref *ref);
2924
2925 static void copy_threadref (threadref *dest, threadref *src);
2926
2927 static int threadmatch (threadref *dest, threadref *src);
2928
2929 static char *pack_threadinfo_request (char *pkt, int mode,
2930 threadref *id);
2931
2932 static char *pack_threadlist_request (char *pkt, int startflag,
2933 int threadcount,
2934 threadref *nextthread);
2935
2936 static int remote_newthread_step (threadref *ref, void *context);
2937
2938
2939 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2940 buffer we're allowed to write to. Returns
2941 BUF+CHARACTERS_WRITTEN. */
2942
2943 char *
2944 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2945 {
2946 int pid, tid;
2947 struct remote_state *rs = get_remote_state ();
2948
2949 if (remote_multi_process_p (rs))
2950 {
2951 pid = ptid.pid ();
2952 if (pid < 0)
2953 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2954 else
2955 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2956 }
2957 tid = ptid.lwp ();
2958 if (tid < 0)
2959 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2960 else
2961 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2962
2963 return buf;
2964 }
2965
2966 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2967 last parsed char. Returns null_ptid if no thread id is found, and
2968 throws an error if the thread id has an invalid format. */
2969
2970 static ptid_t
2971 read_ptid (const char *buf, const char **obuf)
2972 {
2973 const char *p = buf;
2974 const char *pp;
2975 ULONGEST pid = 0, tid = 0;
2976
2977 if (*p == 'p')
2978 {
2979 /* Multi-process ptid. */
2980 pp = unpack_varlen_hex (p + 1, &pid);
2981 if (*pp != '.')
2982 error (_("invalid remote ptid: %s"), p);
2983
2984 p = pp;
2985 pp = unpack_varlen_hex (p + 1, &tid);
2986 if (obuf)
2987 *obuf = pp;
2988 return ptid_t (pid, tid, 0);
2989 }
2990
2991 /* No multi-process. Just a tid. */
2992 pp = unpack_varlen_hex (p, &tid);
2993
2994 /* Return null_ptid when no thread id is found. */
2995 if (p == pp)
2996 {
2997 if (obuf)
2998 *obuf = pp;
2999 return null_ptid;
3000 }
3001
3002 /* Since the stub is not sending a process id, then default to
3003 what's in inferior_ptid, unless it's null at this point. If so,
3004 then since there's no way to know the pid of the reported
3005 threads, use the magic number. */
3006 if (inferior_ptid == null_ptid)
3007 pid = magic_null_ptid.pid ();
3008 else
3009 pid = inferior_ptid.pid ();
3010
3011 if (obuf)
3012 *obuf = pp;
3013 return ptid_t (pid, tid, 0);
3014 }
3015
3016 static int
3017 stubhex (int ch)
3018 {
3019 if (ch >= 'a' && ch <= 'f')
3020 return ch - 'a' + 10;
3021 if (ch >= '0' && ch <= '9')
3022 return ch - '0';
3023 if (ch >= 'A' && ch <= 'F')
3024 return ch - 'A' + 10;
3025 return -1;
3026 }
3027
3028 static int
3029 stub_unpack_int (char *buff, int fieldlength)
3030 {
3031 int nibble;
3032 int retval = 0;
3033
3034 while (fieldlength)
3035 {
3036 nibble = stubhex (*buff++);
3037 retval |= nibble;
3038 fieldlength--;
3039 if (fieldlength)
3040 retval = retval << 4;
3041 }
3042 return retval;
3043 }
3044
3045 static char *
3046 unpack_nibble (char *buf, int *val)
3047 {
3048 *val = fromhex (*buf++);
3049 return buf;
3050 }
3051
3052 static char *
3053 unpack_byte (char *buf, int *value)
3054 {
3055 *value = stub_unpack_int (buf, 2);
3056 return buf + 2;
3057 }
3058
3059 static char *
3060 pack_int (char *buf, int value)
3061 {
3062 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3063 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3064 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3065 buf = pack_hex_byte (buf, (value & 0xff));
3066 return buf;
3067 }
3068
3069 static char *
3070 unpack_int (char *buf, int *value)
3071 {
3072 *value = stub_unpack_int (buf, 8);
3073 return buf + 8;
3074 }
3075
3076 #if 0 /* Currently unused, uncomment when needed. */
3077 static char *pack_string (char *pkt, char *string);
3078
3079 static char *
3080 pack_string (char *pkt, char *string)
3081 {
3082 char ch;
3083 int len;
3084
3085 len = strlen (string);
3086 if (len > 200)
3087 len = 200; /* Bigger than most GDB packets, junk??? */
3088 pkt = pack_hex_byte (pkt, len);
3089 while (len-- > 0)
3090 {
3091 ch = *string++;
3092 if ((ch == '\0') || (ch == '#'))
3093 ch = '*'; /* Protect encapsulation. */
3094 *pkt++ = ch;
3095 }
3096 return pkt;
3097 }
3098 #endif /* 0 (unused) */
3099
3100 static char *
3101 unpack_string (char *src, char *dest, int length)
3102 {
3103 while (length--)
3104 *dest++ = *src++;
3105 *dest = '\0';
3106 return src;
3107 }
3108
3109 static char *
3110 pack_threadid (char *pkt, threadref *id)
3111 {
3112 char *limit;
3113 unsigned char *altid;
3114
3115 altid = (unsigned char *) id;
3116 limit = pkt + BUF_THREAD_ID_SIZE;
3117 while (pkt < limit)
3118 pkt = pack_hex_byte (pkt, *altid++);
3119 return pkt;
3120 }
3121
3122
3123 static char *
3124 unpack_threadid (char *inbuf, threadref *id)
3125 {
3126 char *altref;
3127 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3128 int x, y;
3129
3130 altref = (char *) id;
3131
3132 while (inbuf < limit)
3133 {
3134 x = stubhex (*inbuf++);
3135 y = stubhex (*inbuf++);
3136 *altref++ = (x << 4) | y;
3137 }
3138 return inbuf;
3139 }
3140
3141 /* Externally, threadrefs are 64 bits but internally, they are still
3142 ints. This is due to a mismatch of specifications. We would like
3143 to use 64bit thread references internally. This is an adapter
3144 function. */
3145
3146 void
3147 int_to_threadref (threadref *id, int value)
3148 {
3149 unsigned char *scan;
3150
3151 scan = (unsigned char *) id;
3152 {
3153 int i = 4;
3154 while (i--)
3155 *scan++ = 0;
3156 }
3157 *scan++ = (value >> 24) & 0xff;
3158 *scan++ = (value >> 16) & 0xff;
3159 *scan++ = (value >> 8) & 0xff;
3160 *scan++ = (value & 0xff);
3161 }
3162
3163 static int
3164 threadref_to_int (threadref *ref)
3165 {
3166 int i, value = 0;
3167 unsigned char *scan;
3168
3169 scan = *ref;
3170 scan += 4;
3171 i = 4;
3172 while (i-- > 0)
3173 value = (value << 8) | ((*scan++) & 0xff);
3174 return value;
3175 }
3176
3177 static void
3178 copy_threadref (threadref *dest, threadref *src)
3179 {
3180 int i;
3181 unsigned char *csrc, *cdest;
3182
3183 csrc = (unsigned char *) src;
3184 cdest = (unsigned char *) dest;
3185 i = 8;
3186 while (i--)
3187 *cdest++ = *csrc++;
3188 }
3189
3190 static int
3191 threadmatch (threadref *dest, threadref *src)
3192 {
3193 /* Things are broken right now, so just assume we got a match. */
3194 #if 0
3195 unsigned char *srcp, *destp;
3196 int i, result;
3197 srcp = (char *) src;
3198 destp = (char *) dest;
3199
3200 result = 1;
3201 while (i-- > 0)
3202 result &= (*srcp++ == *destp++) ? 1 : 0;
3203 return result;
3204 #endif
3205 return 1;
3206 }
3207
3208 /*
3209 threadid:1, # always request threadid
3210 context_exists:2,
3211 display:4,
3212 unique_name:8,
3213 more_display:16
3214 */
3215
3216 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3217
3218 static char *
3219 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3220 {
3221 *pkt++ = 'q'; /* Info Query */
3222 *pkt++ = 'P'; /* process or thread info */
3223 pkt = pack_int (pkt, mode); /* mode */
3224 pkt = pack_threadid (pkt, id); /* threadid */
3225 *pkt = '\0'; /* terminate */
3226 return pkt;
3227 }
3228
3229 /* These values tag the fields in a thread info response packet. */
3230 /* Tagging the fields allows us to request specific fields and to
3231 add more fields as time goes by. */
3232
3233 #define TAG_THREADID 1 /* Echo the thread identifier. */
3234 #define TAG_EXISTS 2 /* Is this process defined enough to
3235 fetch registers and its stack? */
3236 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3237 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3238 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3239 the process. */
3240
3241 int
3242 remote_target::remote_unpack_thread_info_response (char *pkt,
3243 threadref *expectedref,
3244 gdb_ext_thread_info *info)
3245 {
3246 struct remote_state *rs = get_remote_state ();
3247 int mask, length;
3248 int tag;
3249 threadref ref;
3250 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3251 int retval = 1;
3252
3253 /* info->threadid = 0; FIXME: implement zero_threadref. */
3254 info->active = 0;
3255 info->display[0] = '\0';
3256 info->shortname[0] = '\0';
3257 info->more_display[0] = '\0';
3258
3259 /* Assume the characters indicating the packet type have been
3260 stripped. */
3261 pkt = unpack_int (pkt, &mask); /* arg mask */
3262 pkt = unpack_threadid (pkt, &ref);
3263
3264 if (mask == 0)
3265 warning (_("Incomplete response to threadinfo request."));
3266 if (!threadmatch (&ref, expectedref))
3267 { /* This is an answer to a different request. */
3268 warning (_("ERROR RMT Thread info mismatch."));
3269 return 0;
3270 }
3271 copy_threadref (&info->threadid, &ref);
3272
3273 /* Loop on tagged fields , try to bail if somthing goes wrong. */
3274
3275 /* Packets are terminated with nulls. */
3276 while ((pkt < limit) && mask && *pkt)
3277 {
3278 pkt = unpack_int (pkt, &tag); /* tag */
3279 pkt = unpack_byte (pkt, &length); /* length */
3280 if (!(tag & mask)) /* Tags out of synch with mask. */
3281 {
3282 warning (_("ERROR RMT: threadinfo tag mismatch."));
3283 retval = 0;
3284 break;
3285 }
3286 if (tag == TAG_THREADID)
3287 {
3288 if (length != 16)
3289 {
3290 warning (_("ERROR RMT: length of threadid is not 16."));
3291 retval = 0;
3292 break;
3293 }
3294 pkt = unpack_threadid (pkt, &ref);
3295 mask = mask & ~TAG_THREADID;
3296 continue;
3297 }
3298 if (tag == TAG_EXISTS)
3299 {
3300 info->active = stub_unpack_int (pkt, length);
3301 pkt += length;
3302 mask = mask & ~(TAG_EXISTS);
3303 if (length > 8)
3304 {
3305 warning (_("ERROR RMT: 'exists' length too long."));
3306 retval = 0;
3307 break;
3308 }
3309 continue;
3310 }
3311 if (tag == TAG_THREADNAME)
3312 {
3313 pkt = unpack_string (pkt, &info->shortname[0], length);
3314 mask = mask & ~TAG_THREADNAME;
3315 continue;
3316 }
3317 if (tag == TAG_DISPLAY)
3318 {
3319 pkt = unpack_string (pkt, &info->display[0], length);
3320 mask = mask & ~TAG_DISPLAY;
3321 continue;
3322 }
3323 if (tag == TAG_MOREDISPLAY)
3324 {
3325 pkt = unpack_string (pkt, &info->more_display[0], length);
3326 mask = mask & ~TAG_MOREDISPLAY;
3327 continue;
3328 }
3329 warning (_("ERROR RMT: unknown thread info tag."));
3330 break; /* Not a tag we know about. */
3331 }
3332 return retval;
3333 }
3334
3335 int
3336 remote_target::remote_get_threadinfo (threadref *threadid,
3337 int fieldset,
3338 gdb_ext_thread_info *info)
3339 {
3340 struct remote_state *rs = get_remote_state ();
3341 int result;
3342
3343 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3344 putpkt (rs->buf);
3345 getpkt (&rs->buf, 0);
3346
3347 if (rs->buf[0] == '\0')
3348 return 0;
3349
3350 result = remote_unpack_thread_info_response (&rs->buf[2],
3351 threadid, info);
3352 return result;
3353 }
3354
3355 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3356
3357 static char *
3358 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3359 threadref *nextthread)
3360 {
3361 *pkt++ = 'q'; /* info query packet */
3362 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3363 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3364 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3365 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3366 *pkt = '\0';
3367 return pkt;
3368 }
3369
3370 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3371
3372 int
3373 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3374 threadref *original_echo,
3375 threadref *resultlist,
3376 int *doneflag)
3377 {
3378 struct remote_state *rs = get_remote_state ();
3379 char *limit;
3380 int count, resultcount, done;
3381
3382 resultcount = 0;
3383 /* Assume the 'q' and 'M chars have been stripped. */
3384 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3385 /* done parse past here */
3386 pkt = unpack_byte (pkt, &count); /* count field */
3387 pkt = unpack_nibble (pkt, &done);
3388 /* The first threadid is the argument threadid. */
3389 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3390 while ((count-- > 0) && (pkt < limit))
3391 {
3392 pkt = unpack_threadid (pkt, resultlist++);
3393 if (resultcount++ >= result_limit)
3394 break;
3395 }
3396 if (doneflag)
3397 *doneflag = done;
3398 return resultcount;
3399 }
3400
3401 /* Fetch the next batch of threads from the remote. Returns -1 if the
3402 qL packet is not supported, 0 on error and 1 on success. */
3403
3404 int
3405 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3406 int result_limit, int *done, int *result_count,
3407 threadref *threadlist)
3408 {
3409 struct remote_state *rs = get_remote_state ();
3410 int result = 1;
3411
3412 /* Trancate result limit to be smaller than the packet size. */
3413 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3414 >= get_remote_packet_size ())
3415 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3416
3417 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3418 nextthread);
3419 putpkt (rs->buf);
3420 getpkt (&rs->buf, 0);
3421 if (rs->buf[0] == '\0')
3422 {
3423 /* Packet not supported. */
3424 return -1;
3425 }
3426
3427 *result_count =
3428 parse_threadlist_response (&rs->buf[2], result_limit,
3429 &rs->echo_nextthread, threadlist, done);
3430
3431 if (!threadmatch (&rs->echo_nextthread, nextthread))
3432 {
3433 /* FIXME: This is a good reason to drop the packet. */
3434 /* Possably, there is a duplicate response. */
3435 /* Possabilities :
3436 retransmit immediatly - race conditions
3437 retransmit after timeout - yes
3438 exit
3439 wait for packet, then exit
3440 */
3441 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3442 return 0; /* I choose simply exiting. */
3443 }
3444 if (*result_count <= 0)
3445 {
3446 if (*done != 1)
3447 {
3448 warning (_("RMT ERROR : failed to get remote thread list."));
3449 result = 0;
3450 }
3451 return result; /* break; */
3452 }
3453 if (*result_count > result_limit)
3454 {
3455 *result_count = 0;
3456 warning (_("RMT ERROR: threadlist response longer than requested."));
3457 return 0;
3458 }
3459 return result;
3460 }
3461
3462 /* Fetch the list of remote threads, with the qL packet, and call
3463 STEPFUNCTION for each thread found. Stops iterating and returns 1
3464 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3465 STEPFUNCTION returns false. If the packet is not supported,
3466 returns -1. */
3467
3468 int
3469 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3470 void *context, int looplimit)
3471 {
3472 struct remote_state *rs = get_remote_state ();
3473 int done, i, result_count;
3474 int startflag = 1;
3475 int result = 1;
3476 int loopcount = 0;
3477
3478 done = 0;
3479 while (!done)
3480 {
3481 if (loopcount++ > looplimit)
3482 {
3483 result = 0;
3484 warning (_("Remote fetch threadlist -infinite loop-."));
3485 break;
3486 }
3487 result = remote_get_threadlist (startflag, &rs->nextthread,
3488 MAXTHREADLISTRESULTS,
3489 &done, &result_count,
3490 rs->resultthreadlist);
3491 if (result <= 0)
3492 break;
3493 /* Clear for later iterations. */
3494 startflag = 0;
3495 /* Setup to resume next batch of thread references, set nextthread. */
3496 if (result_count >= 1)
3497 copy_threadref (&rs->nextthread,
3498 &rs->resultthreadlist[result_count - 1]);
3499 i = 0;
3500 while (result_count--)
3501 {
3502 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3503 {
3504 result = 0;
3505 break;
3506 }
3507 }
3508 }
3509 return result;
3510 }
3511
3512 /* A thread found on the remote target. */
3513
3514 struct thread_item
3515 {
3516 explicit thread_item (ptid_t ptid_)
3517 : ptid (ptid_)
3518 {}
3519
3520 thread_item (thread_item &&other) = default;
3521 thread_item &operator= (thread_item &&other) = default;
3522
3523 DISABLE_COPY_AND_ASSIGN (thread_item);
3524
3525 /* The thread's PTID. */
3526 ptid_t ptid;
3527
3528 /* The thread's extra info. */
3529 std::string extra;
3530
3531 /* The thread's name. */
3532 std::string name;
3533
3534 /* The core the thread was running on. -1 if not known. */
3535 int core = -1;
3536
3537 /* The thread handle associated with the thread. */
3538 gdb::byte_vector thread_handle;
3539 };
3540
3541 /* Context passed around to the various methods listing remote
3542 threads. As new threads are found, they're added to the ITEMS
3543 vector. */
3544
3545 struct threads_listing_context
3546 {
3547 /* Return true if this object contains an entry for a thread with ptid
3548 PTID. */
3549
3550 bool contains_thread (ptid_t ptid) const
3551 {
3552 auto match_ptid = [&] (const thread_item &item)
3553 {
3554 return item.ptid == ptid;
3555 };
3556
3557 auto it = std::find_if (this->items.begin (),
3558 this->items.end (),
3559 match_ptid);
3560
3561 return it != this->items.end ();
3562 }
3563
3564 /* Remove the thread with ptid PTID. */
3565
3566 void remove_thread (ptid_t ptid)
3567 {
3568 auto match_ptid = [&] (const thread_item &item)
3569 {
3570 return item.ptid == ptid;
3571 };
3572
3573 auto it = std::remove_if (this->items.begin (),
3574 this->items.end (),
3575 match_ptid);
3576
3577 if (it != this->items.end ())
3578 this->items.erase (it);
3579 }
3580
3581 /* The threads found on the remote target. */
3582 std::vector<thread_item> items;
3583 };
3584
3585 static int
3586 remote_newthread_step (threadref *ref, void *data)
3587 {
3588 struct threads_listing_context *context
3589 = (struct threads_listing_context *) data;
3590 int pid = inferior_ptid.pid ();
3591 int lwp = threadref_to_int (ref);
3592 ptid_t ptid (pid, lwp);
3593
3594 context->items.emplace_back (ptid);
3595
3596 return 1; /* continue iterator */
3597 }
3598
3599 #define CRAZY_MAX_THREADS 1000
3600
3601 ptid_t
3602 remote_target::remote_current_thread (ptid_t oldpid)
3603 {
3604 struct remote_state *rs = get_remote_state ();
3605
3606 putpkt ("qC");
3607 getpkt (&rs->buf, 0);
3608 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3609 {
3610 const char *obuf;
3611 ptid_t result;
3612
3613 result = read_ptid (&rs->buf[2], &obuf);
3614 if (*obuf != '\0' && remote_debug)
3615 fprintf_unfiltered (gdb_stdlog,
3616 "warning: garbage in qC reply\n");
3617
3618 return result;
3619 }
3620 else
3621 return oldpid;
3622 }
3623
3624 /* List remote threads using the deprecated qL packet. */
3625
3626 int
3627 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3628 {
3629 if (remote_threadlist_iterator (remote_newthread_step, context,
3630 CRAZY_MAX_THREADS) >= 0)
3631 return 1;
3632
3633 return 0;
3634 }
3635
3636 #if defined(HAVE_LIBEXPAT)
3637
3638 static void
3639 start_thread (struct gdb_xml_parser *parser,
3640 const struct gdb_xml_element *element,
3641 void *user_data,
3642 std::vector<gdb_xml_value> &attributes)
3643 {
3644 struct threads_listing_context *data
3645 = (struct threads_listing_context *) user_data;
3646 struct gdb_xml_value *attr;
3647
3648 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3649 ptid_t ptid = read_ptid (id, NULL);
3650
3651 data->items.emplace_back (ptid);
3652 thread_item &item = data->items.back ();
3653
3654 attr = xml_find_attribute (attributes, "core");
3655 if (attr != NULL)
3656 item.core = *(ULONGEST *) attr->value.get ();
3657
3658 attr = xml_find_attribute (attributes, "name");
3659 if (attr != NULL)
3660 item.name = (const char *) attr->value.get ();
3661
3662 attr = xml_find_attribute (attributes, "handle");
3663 if (attr != NULL)
3664 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3665 }
3666
3667 static void
3668 end_thread (struct gdb_xml_parser *parser,
3669 const struct gdb_xml_element *element,
3670 void *user_data, const char *body_text)
3671 {
3672 struct threads_listing_context *data
3673 = (struct threads_listing_context *) user_data;
3674
3675 if (body_text != NULL && *body_text != '\0')
3676 data->items.back ().extra = body_text;
3677 }
3678
3679 const struct gdb_xml_attribute thread_attributes[] = {
3680 { "id", GDB_XML_AF_NONE, NULL, NULL },
3681 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3682 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3683 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3684 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3685 };
3686
3687 const struct gdb_xml_element thread_children[] = {
3688 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3689 };
3690
3691 const struct gdb_xml_element threads_children[] = {
3692 { "thread", thread_attributes, thread_children,
3693 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3694 start_thread, end_thread },
3695 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3696 };
3697
3698 const struct gdb_xml_element threads_elements[] = {
3699 { "threads", NULL, threads_children,
3700 GDB_XML_EF_NONE, NULL, NULL },
3701 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3702 };
3703
3704 #endif
3705
3706 /* List remote threads using qXfer:threads:read. */
3707
3708 int
3709 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3710 {
3711 #if defined(HAVE_LIBEXPAT)
3712 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3713 {
3714 gdb::optional<gdb::char_vector> xml
3715 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3716
3717 if (xml && (*xml)[0] != '\0')
3718 {
3719 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3720 threads_elements, xml->data (), context);
3721 }
3722
3723 return 1;
3724 }
3725 #endif
3726
3727 return 0;
3728 }
3729
3730 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3731
3732 int
3733 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3734 {
3735 struct remote_state *rs = get_remote_state ();
3736
3737 if (rs->use_threadinfo_query)
3738 {
3739 const char *bufp;
3740
3741 putpkt ("qfThreadInfo");
3742 getpkt (&rs->buf, 0);
3743 bufp = rs->buf.data ();
3744 if (bufp[0] != '\0') /* q packet recognized */
3745 {
3746 while (*bufp++ == 'm') /* reply contains one or more TID */
3747 {
3748 do
3749 {
3750 ptid_t ptid = read_ptid (bufp, &bufp);
3751 context->items.emplace_back (ptid);
3752 }
3753 while (*bufp++ == ','); /* comma-separated list */
3754 putpkt ("qsThreadInfo");
3755 getpkt (&rs->buf, 0);
3756 bufp = rs->buf.data ();
3757 }
3758 return 1;
3759 }
3760 else
3761 {
3762 /* Packet not recognized. */
3763 rs->use_threadinfo_query = 0;
3764 }
3765 }
3766
3767 return 0;
3768 }
3769
3770 /* Implement the to_update_thread_list function for the remote
3771 targets. */
3772
3773 void
3774 remote_target::update_thread_list ()
3775 {
3776 struct threads_listing_context context;
3777 int got_list = 0;
3778
3779 /* We have a few different mechanisms to fetch the thread list. Try
3780 them all, starting with the most preferred one first, falling
3781 back to older methods. */
3782 if (remote_get_threads_with_qxfer (&context)
3783 || remote_get_threads_with_qthreadinfo (&context)
3784 || remote_get_threads_with_ql (&context))
3785 {
3786 got_list = 1;
3787
3788 if (context.items.empty ()
3789 && remote_thread_always_alive (inferior_ptid))
3790 {
3791 /* Some targets don't really support threads, but still
3792 reply an (empty) thread list in response to the thread
3793 listing packets, instead of replying "packet not
3794 supported". Exit early so we don't delete the main
3795 thread. */
3796 return;
3797 }
3798
3799 /* CONTEXT now holds the current thread list on the remote
3800 target end. Delete GDB-side threads no longer found on the
3801 target. */
3802 for (thread_info *tp : all_threads_safe ())
3803 {
3804 if (!context.contains_thread (tp->ptid))
3805 {
3806 /* Not found. */
3807 delete_thread (tp);
3808 }
3809 }
3810
3811 /* Remove any unreported fork child threads from CONTEXT so
3812 that we don't interfere with follow fork, which is where
3813 creation of such threads is handled. */
3814 remove_new_fork_children (&context);
3815
3816 /* And now add threads we don't know about yet to our list. */
3817 for (thread_item &item : context.items)
3818 {
3819 if (item.ptid != null_ptid)
3820 {
3821 /* In non-stop mode, we assume new found threads are
3822 executing until proven otherwise with a stop reply.
3823 In all-stop, we can only get here if all threads are
3824 stopped. */
3825 int executing = target_is_non_stop_p () ? 1 : 0;
3826
3827 remote_notice_new_inferior (item.ptid, executing);
3828
3829 thread_info *tp = find_thread_ptid (item.ptid);
3830 remote_thread_info *info = get_remote_thread_info (tp);
3831 info->core = item.core;
3832 info->extra = std::move (item.extra);
3833 info->name = std::move (item.name);
3834 info->thread_handle = std::move (item.thread_handle);
3835 }
3836 }
3837 }
3838
3839 if (!got_list)
3840 {
3841 /* If no thread listing method is supported, then query whether
3842 each known thread is alive, one by one, with the T packet.
3843 If the target doesn't support threads at all, then this is a
3844 no-op. See remote_thread_alive. */
3845 prune_threads ();
3846 }
3847 }
3848
3849 /*
3850 * Collect a descriptive string about the given thread.
3851 * The target may say anything it wants to about the thread
3852 * (typically info about its blocked / runnable state, name, etc.).
3853 * This string will appear in the info threads display.
3854 *
3855 * Optional: targets are not required to implement this function.
3856 */
3857
3858 const char *
3859 remote_target::extra_thread_info (thread_info *tp)
3860 {
3861 struct remote_state *rs = get_remote_state ();
3862 int set;
3863 threadref id;
3864 struct gdb_ext_thread_info threadinfo;
3865
3866 if (rs->remote_desc == 0) /* paranoia */
3867 internal_error (__FILE__, __LINE__,
3868 _("remote_threads_extra_info"));
3869
3870 if (tp->ptid == magic_null_ptid
3871 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3872 /* This is the main thread which was added by GDB. The remote
3873 server doesn't know about it. */
3874 return NULL;
3875
3876 std::string &extra = get_remote_thread_info (tp)->extra;
3877
3878 /* If already have cached info, use it. */
3879 if (!extra.empty ())
3880 return extra.c_str ();
3881
3882 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3883 {
3884 /* If we're using qXfer:threads:read, then the extra info is
3885 included in the XML. So if we didn't have anything cached,
3886 it's because there's really no extra info. */
3887 return NULL;
3888 }
3889
3890 if (rs->use_threadextra_query)
3891 {
3892 char *b = rs->buf.data ();
3893 char *endb = b + get_remote_packet_size ();
3894
3895 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3896 b += strlen (b);
3897 write_ptid (b, endb, tp->ptid);
3898
3899 putpkt (rs->buf);
3900 getpkt (&rs->buf, 0);
3901 if (rs->buf[0] != 0)
3902 {
3903 extra.resize (strlen (rs->buf.data ()) / 2);
3904 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3905 return extra.c_str ();
3906 }
3907 }
3908
3909 /* If the above query fails, fall back to the old method. */
3910 rs->use_threadextra_query = 0;
3911 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3912 | TAG_MOREDISPLAY | TAG_DISPLAY;
3913 int_to_threadref (&id, tp->ptid.lwp ());
3914 if (remote_get_threadinfo (&id, set, &threadinfo))
3915 if (threadinfo.active)
3916 {
3917 if (*threadinfo.shortname)
3918 string_appendf (extra, " Name: %s", threadinfo.shortname);
3919 if (*threadinfo.display)
3920 {
3921 if (!extra.empty ())
3922 extra += ',';
3923 string_appendf (extra, " State: %s", threadinfo.display);
3924 }
3925 if (*threadinfo.more_display)
3926 {
3927 if (!extra.empty ())
3928 extra += ',';
3929 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3930 }
3931 return extra.c_str ();
3932 }
3933 return NULL;
3934 }
3935 \f
3936
3937 bool
3938 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3939 struct static_tracepoint_marker *marker)
3940 {
3941 struct remote_state *rs = get_remote_state ();
3942 char *p = rs->buf.data ();
3943
3944 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3945 p += strlen (p);
3946 p += hexnumstr (p, addr);
3947 putpkt (rs->buf);
3948 getpkt (&rs->buf, 0);
3949 p = rs->buf.data ();
3950
3951 if (*p == 'E')
3952 error (_("Remote failure reply: %s"), p);
3953
3954 if (*p++ == 'm')
3955 {
3956 parse_static_tracepoint_marker_definition (p, NULL, marker);
3957 return true;
3958 }
3959
3960 return false;
3961 }
3962
3963 std::vector<static_tracepoint_marker>
3964 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3965 {
3966 struct remote_state *rs = get_remote_state ();
3967 std::vector<static_tracepoint_marker> markers;
3968 const char *p;
3969 static_tracepoint_marker marker;
3970
3971 /* Ask for a first packet of static tracepoint marker
3972 definition. */
3973 putpkt ("qTfSTM");
3974 getpkt (&rs->buf, 0);
3975 p = rs->buf.data ();
3976 if (*p == 'E')
3977 error (_("Remote failure reply: %s"), p);
3978
3979 while (*p++ == 'm')
3980 {
3981 do
3982 {
3983 parse_static_tracepoint_marker_definition (p, &p, &marker);
3984
3985 if (strid == NULL || marker.str_id == strid)
3986 markers.push_back (std::move (marker));
3987 }
3988 while (*p++ == ','); /* comma-separated list */
3989 /* Ask for another packet of static tracepoint definition. */
3990 putpkt ("qTsSTM");
3991 getpkt (&rs->buf, 0);
3992 p = rs->buf.data ();
3993 }
3994
3995 return markers;
3996 }
3997
3998 \f
3999 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4000
4001 ptid_t
4002 remote_target::get_ada_task_ptid (long lwp, long thread)
4003 {
4004 return ptid_t (inferior_ptid.pid (), lwp, 0);
4005 }
4006 \f
4007
4008 /* Restart the remote side; this is an extended protocol operation. */
4009
4010 void
4011 remote_target::extended_remote_restart ()
4012 {
4013 struct remote_state *rs = get_remote_state ();
4014
4015 /* Send the restart command; for reasons I don't understand the
4016 remote side really expects a number after the "R". */
4017 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4018 putpkt (rs->buf);
4019
4020 remote_fileio_reset ();
4021 }
4022 \f
4023 /* Clean up connection to a remote debugger. */
4024
4025 void
4026 remote_target::close ()
4027 {
4028 /* Make sure we leave stdin registered in the event loop. */
4029 terminal_ours ();
4030
4031 /* We don't have a connection to the remote stub anymore. Get rid
4032 of all the inferiors and their threads we were controlling.
4033 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4034 will be unable to find the thread corresponding to (pid, 0, 0). */
4035 inferior_ptid = null_ptid;
4036 discard_all_inferiors ();
4037
4038 trace_reset_local_state ();
4039
4040 delete this;
4041 }
4042
4043 remote_target::~remote_target ()
4044 {
4045 struct remote_state *rs = get_remote_state ();
4046
4047 /* Check for NULL because we may get here with a partially
4048 constructed target/connection. */
4049 if (rs->remote_desc == nullptr)
4050 return;
4051
4052 serial_close (rs->remote_desc);
4053
4054 /* We are destroying the remote target, so we should discard
4055 everything of this target. */
4056 discard_pending_stop_replies_in_queue ();
4057
4058 if (rs->remote_async_inferior_event_token)
4059 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4060
4061 remote_notif_state_xfree (rs->notif_state);
4062 }
4063
4064 /* Query the remote side for the text, data and bss offsets. */
4065
4066 void
4067 remote_target::get_offsets ()
4068 {
4069 struct remote_state *rs = get_remote_state ();
4070 char *buf;
4071 char *ptr;
4072 int lose, num_segments = 0, do_sections, do_segments;
4073 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4074 struct section_offsets *offs;
4075 struct symfile_segment_data *data;
4076
4077 if (symfile_objfile == NULL)
4078 return;
4079
4080 putpkt ("qOffsets");
4081 getpkt (&rs->buf, 0);
4082 buf = rs->buf.data ();
4083
4084 if (buf[0] == '\000')
4085 return; /* Return silently. Stub doesn't support
4086 this command. */
4087 if (buf[0] == 'E')
4088 {
4089 warning (_("Remote failure reply: %s"), buf);
4090 return;
4091 }
4092
4093 /* Pick up each field in turn. This used to be done with scanf, but
4094 scanf will make trouble if CORE_ADDR size doesn't match
4095 conversion directives correctly. The following code will work
4096 with any size of CORE_ADDR. */
4097 text_addr = data_addr = bss_addr = 0;
4098 ptr = buf;
4099 lose = 0;
4100
4101 if (startswith (ptr, "Text="))
4102 {
4103 ptr += 5;
4104 /* Don't use strtol, could lose on big values. */
4105 while (*ptr && *ptr != ';')
4106 text_addr = (text_addr << 4) + fromhex (*ptr++);
4107
4108 if (startswith (ptr, ";Data="))
4109 {
4110 ptr += 6;
4111 while (*ptr && *ptr != ';')
4112 data_addr = (data_addr << 4) + fromhex (*ptr++);
4113 }
4114 else
4115 lose = 1;
4116
4117 if (!lose && startswith (ptr, ";Bss="))
4118 {
4119 ptr += 5;
4120 while (*ptr && *ptr != ';')
4121 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4122
4123 if (bss_addr != data_addr)
4124 warning (_("Target reported unsupported offsets: %s"), buf);
4125 }
4126 else
4127 lose = 1;
4128 }
4129 else if (startswith (ptr, "TextSeg="))
4130 {
4131 ptr += 8;
4132 /* Don't use strtol, could lose on big values. */
4133 while (*ptr && *ptr != ';')
4134 text_addr = (text_addr << 4) + fromhex (*ptr++);
4135 num_segments = 1;
4136
4137 if (startswith (ptr, ";DataSeg="))
4138 {
4139 ptr += 9;
4140 while (*ptr && *ptr != ';')
4141 data_addr = (data_addr << 4) + fromhex (*ptr++);
4142 num_segments++;
4143 }
4144 }
4145 else
4146 lose = 1;
4147
4148 if (lose)
4149 error (_("Malformed response to offset query, %s"), buf);
4150 else if (*ptr != '\0')
4151 warning (_("Target reported unsupported offsets: %s"), buf);
4152
4153 offs = ((struct section_offsets *)
4154 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
4155 memcpy (offs, symfile_objfile->section_offsets,
4156 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
4157
4158 data = get_symfile_segment_data (symfile_objfile->obfd);
4159 do_segments = (data != NULL);
4160 do_sections = num_segments == 0;
4161
4162 if (num_segments > 0)
4163 {
4164 segments[0] = text_addr;
4165 segments[1] = data_addr;
4166 }
4167 /* If we have two segments, we can still try to relocate everything
4168 by assuming that the .text and .data offsets apply to the whole
4169 text and data segments. Convert the offsets given in the packet
4170 to base addresses for symfile_map_offsets_to_segments. */
4171 else if (data && data->num_segments == 2)
4172 {
4173 segments[0] = data->segment_bases[0] + text_addr;
4174 segments[1] = data->segment_bases[1] + data_addr;
4175 num_segments = 2;
4176 }
4177 /* If the object file has only one segment, assume that it is text
4178 rather than data; main programs with no writable data are rare,
4179 but programs with no code are useless. Of course the code might
4180 have ended up in the data segment... to detect that we would need
4181 the permissions here. */
4182 else if (data && data->num_segments == 1)
4183 {
4184 segments[0] = data->segment_bases[0] + text_addr;
4185 num_segments = 1;
4186 }
4187 /* There's no way to relocate by segment. */
4188 else
4189 do_segments = 0;
4190
4191 if (do_segments)
4192 {
4193 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4194 offs, num_segments, segments);
4195
4196 if (ret == 0 && !do_sections)
4197 error (_("Can not handle qOffsets TextSeg "
4198 "response with this symbol file"));
4199
4200 if (ret > 0)
4201 do_sections = 0;
4202 }
4203
4204 if (data)
4205 free_symfile_segment_data (data);
4206
4207 if (do_sections)
4208 {
4209 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4210
4211 /* This is a temporary kludge to force data and bss to use the
4212 same offsets because that's what nlmconv does now. The real
4213 solution requires changes to the stub and remote.c that I
4214 don't have time to do right now. */
4215
4216 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4217 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4218 }
4219
4220 objfile_relocate (symfile_objfile, offs);
4221 }
4222
4223 /* Send interrupt_sequence to remote target. */
4224
4225 void
4226 remote_target::send_interrupt_sequence ()
4227 {
4228 struct remote_state *rs = get_remote_state ();
4229
4230 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4231 remote_serial_write ("\x03", 1);
4232 else if (interrupt_sequence_mode == interrupt_sequence_break)
4233 serial_send_break (rs->remote_desc);
4234 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4235 {
4236 serial_send_break (rs->remote_desc);
4237 remote_serial_write ("g", 1);
4238 }
4239 else
4240 internal_error (__FILE__, __LINE__,
4241 _("Invalid value for interrupt_sequence_mode: %s."),
4242 interrupt_sequence_mode);
4243 }
4244
4245
4246 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4247 and extract the PTID. Returns NULL_PTID if not found. */
4248
4249 static ptid_t
4250 stop_reply_extract_thread (char *stop_reply)
4251 {
4252 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4253 {
4254 const char *p;
4255
4256 /* Txx r:val ; r:val (...) */
4257 p = &stop_reply[3];
4258
4259 /* Look for "register" named "thread". */
4260 while (*p != '\0')
4261 {
4262 const char *p1;
4263
4264 p1 = strchr (p, ':');
4265 if (p1 == NULL)
4266 return null_ptid;
4267
4268 if (strncmp (p, "thread", p1 - p) == 0)
4269 return read_ptid (++p1, &p);
4270
4271 p1 = strchr (p, ';');
4272 if (p1 == NULL)
4273 return null_ptid;
4274 p1++;
4275
4276 p = p1;
4277 }
4278 }
4279
4280 return null_ptid;
4281 }
4282
4283 /* Determine the remote side's current thread. If we have a stop
4284 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4285 "thread" register we can extract the current thread from. If not,
4286 ask the remote which is the current thread with qC. The former
4287 method avoids a roundtrip. */
4288
4289 ptid_t
4290 remote_target::get_current_thread (char *wait_status)
4291 {
4292 ptid_t ptid = null_ptid;
4293
4294 /* Note we don't use remote_parse_stop_reply as that makes use of
4295 the target architecture, which we haven't yet fully determined at
4296 this point. */
4297 if (wait_status != NULL)
4298 ptid = stop_reply_extract_thread (wait_status);
4299 if (ptid == null_ptid)
4300 ptid = remote_current_thread (inferior_ptid);
4301
4302 return ptid;
4303 }
4304
4305 /* Query the remote target for which is the current thread/process,
4306 add it to our tables, and update INFERIOR_PTID. The caller is
4307 responsible for setting the state such that the remote end is ready
4308 to return the current thread.
4309
4310 This function is called after handling the '?' or 'vRun' packets,
4311 whose response is a stop reply from which we can also try
4312 extracting the thread. If the target doesn't support the explicit
4313 qC query, we infer the current thread from that stop reply, passed
4314 in in WAIT_STATUS, which may be NULL. */
4315
4316 void
4317 remote_target::add_current_inferior_and_thread (char *wait_status)
4318 {
4319 struct remote_state *rs = get_remote_state ();
4320 int fake_pid_p = 0;
4321
4322 inferior_ptid = null_ptid;
4323
4324 /* Now, if we have thread information, update inferior_ptid. */
4325 ptid_t curr_ptid = get_current_thread (wait_status);
4326
4327 if (curr_ptid != null_ptid)
4328 {
4329 if (!remote_multi_process_p (rs))
4330 fake_pid_p = 1;
4331 }
4332 else
4333 {
4334 /* Without this, some commands which require an active target
4335 (such as kill) won't work. This variable serves (at least)
4336 double duty as both the pid of the target process (if it has
4337 such), and as a flag indicating that a target is active. */
4338 curr_ptid = magic_null_ptid;
4339 fake_pid_p = 1;
4340 }
4341
4342 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4343
4344 /* Add the main thread and switch to it. Don't try reading
4345 registers yet, since we haven't fetched the target description
4346 yet. */
4347 thread_info *tp = add_thread_silent (curr_ptid);
4348 switch_to_thread_no_regs (tp);
4349 }
4350
4351 /* Print info about a thread that was found already stopped on
4352 connection. */
4353
4354 static void
4355 print_one_stopped_thread (struct thread_info *thread)
4356 {
4357 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4358
4359 switch_to_thread (thread);
4360 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4361 set_current_sal_from_frame (get_current_frame ());
4362
4363 thread->suspend.waitstatus_pending_p = 0;
4364
4365 if (ws->kind == TARGET_WAITKIND_STOPPED)
4366 {
4367 enum gdb_signal sig = ws->value.sig;
4368
4369 if (signal_print_state (sig))
4370 gdb::observers::signal_received.notify (sig);
4371 }
4372 gdb::observers::normal_stop.notify (NULL, 1);
4373 }
4374
4375 /* Process all initial stop replies the remote side sent in response
4376 to the ? packet. These indicate threads that were already stopped
4377 on initial connection. We mark these threads as stopped and print
4378 their current frame before giving the user the prompt. */
4379
4380 void
4381 remote_target::process_initial_stop_replies (int from_tty)
4382 {
4383 int pending_stop_replies = stop_reply_queue_length ();
4384 struct thread_info *selected = NULL;
4385 struct thread_info *lowest_stopped = NULL;
4386 struct thread_info *first = NULL;
4387
4388 /* Consume the initial pending events. */
4389 while (pending_stop_replies-- > 0)
4390 {
4391 ptid_t waiton_ptid = minus_one_ptid;
4392 ptid_t event_ptid;
4393 struct target_waitstatus ws;
4394 int ignore_event = 0;
4395
4396 memset (&ws, 0, sizeof (ws));
4397 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4398 if (remote_debug)
4399 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4400
4401 switch (ws.kind)
4402 {
4403 case TARGET_WAITKIND_IGNORE:
4404 case TARGET_WAITKIND_NO_RESUMED:
4405 case TARGET_WAITKIND_SIGNALLED:
4406 case TARGET_WAITKIND_EXITED:
4407 /* We shouldn't see these, but if we do, just ignore. */
4408 if (remote_debug)
4409 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4410 ignore_event = 1;
4411 break;
4412
4413 case TARGET_WAITKIND_EXECD:
4414 xfree (ws.value.execd_pathname);
4415 break;
4416 default:
4417 break;
4418 }
4419
4420 if (ignore_event)
4421 continue;
4422
4423 struct thread_info *evthread = find_thread_ptid (event_ptid);
4424
4425 if (ws.kind == TARGET_WAITKIND_STOPPED)
4426 {
4427 enum gdb_signal sig = ws.value.sig;
4428
4429 /* Stubs traditionally report SIGTRAP as initial signal,
4430 instead of signal 0. Suppress it. */
4431 if (sig == GDB_SIGNAL_TRAP)
4432 sig = GDB_SIGNAL_0;
4433 evthread->suspend.stop_signal = sig;
4434 ws.value.sig = sig;
4435 }
4436
4437 evthread->suspend.waitstatus = ws;
4438
4439 if (ws.kind != TARGET_WAITKIND_STOPPED
4440 || ws.value.sig != GDB_SIGNAL_0)
4441 evthread->suspend.waitstatus_pending_p = 1;
4442
4443 set_executing (event_ptid, 0);
4444 set_running (event_ptid, 0);
4445 get_remote_thread_info (evthread)->vcont_resumed = 0;
4446 }
4447
4448 /* "Notice" the new inferiors before anything related to
4449 registers/memory. */
4450 for (inferior *inf : all_non_exited_inferiors ())
4451 {
4452 inf->needs_setup = 1;
4453
4454 if (non_stop)
4455 {
4456 thread_info *thread = any_live_thread_of_inferior (inf);
4457 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4458 from_tty);
4459 }
4460 }
4461
4462 /* If all-stop on top of non-stop, pause all threads. Note this
4463 records the threads' stop pc, so must be done after "noticing"
4464 the inferiors. */
4465 if (!non_stop)
4466 {
4467 stop_all_threads ();
4468
4469 /* If all threads of an inferior were already stopped, we
4470 haven't setup the inferior yet. */
4471 for (inferior *inf : all_non_exited_inferiors ())
4472 {
4473 if (inf->needs_setup)
4474 {
4475 thread_info *thread = any_live_thread_of_inferior (inf);
4476 switch_to_thread_no_regs (thread);
4477 setup_inferior (0);
4478 }
4479 }
4480 }
4481
4482 /* Now go over all threads that are stopped, and print their current
4483 frame. If all-stop, then if there's a signalled thread, pick
4484 that as current. */
4485 for (thread_info *thread : all_non_exited_threads ())
4486 {
4487 if (first == NULL)
4488 first = thread;
4489
4490 if (!non_stop)
4491 thread->set_running (false);
4492 else if (thread->state != THREAD_STOPPED)
4493 continue;
4494
4495 if (selected == NULL
4496 && thread->suspend.waitstatus_pending_p)
4497 selected = thread;
4498
4499 if (lowest_stopped == NULL
4500 || thread->inf->num < lowest_stopped->inf->num
4501 || thread->per_inf_num < lowest_stopped->per_inf_num)
4502 lowest_stopped = thread;
4503
4504 if (non_stop)
4505 print_one_stopped_thread (thread);
4506 }
4507
4508 /* In all-stop, we only print the status of one thread, and leave
4509 others with their status pending. */
4510 if (!non_stop)
4511 {
4512 thread_info *thread = selected;
4513 if (thread == NULL)
4514 thread = lowest_stopped;
4515 if (thread == NULL)
4516 thread = first;
4517
4518 print_one_stopped_thread (thread);
4519 }
4520
4521 /* For "info program". */
4522 thread_info *thread = inferior_thread ();
4523 if (thread->state == THREAD_STOPPED)
4524 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4525 }
4526
4527 /* Start the remote connection and sync state. */
4528
4529 void
4530 remote_target::start_remote (int from_tty, int extended_p)
4531 {
4532 struct remote_state *rs = get_remote_state ();
4533 struct packet_config *noack_config;
4534 char *wait_status = NULL;
4535
4536 /* Signal other parts that we're going through the initial setup,
4537 and so things may not be stable yet. E.g., we don't try to
4538 install tracepoints until we've relocated symbols. Also, a
4539 Ctrl-C before we're connected and synced up can't interrupt the
4540 target. Instead, it offers to drop the (potentially wedged)
4541 connection. */
4542 rs->starting_up = 1;
4543
4544 QUIT;
4545
4546 if (interrupt_on_connect)
4547 send_interrupt_sequence ();
4548
4549 /* Ack any packet which the remote side has already sent. */
4550 remote_serial_write ("+", 1);
4551
4552 /* The first packet we send to the target is the optional "supported
4553 packets" request. If the target can answer this, it will tell us
4554 which later probes to skip. */
4555 remote_query_supported ();
4556
4557 /* If the stub wants to get a QAllow, compose one and send it. */
4558 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4559 set_permissions ();
4560
4561 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4562 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4563 as a reply to known packet. For packet "vFile:setfs:" it is an
4564 invalid reply and GDB would return error in
4565 remote_hostio_set_filesystem, making remote files access impossible.
4566 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4567 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4568 {
4569 const char v_mustreplyempty[] = "vMustReplyEmpty";
4570
4571 putpkt (v_mustreplyempty);
4572 getpkt (&rs->buf, 0);
4573 if (strcmp (rs->buf.data (), "OK") == 0)
4574 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4575 else if (strcmp (rs->buf.data (), "") != 0)
4576 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4577 rs->buf.data ());
4578 }
4579
4580 /* Next, we possibly activate noack mode.
4581
4582 If the QStartNoAckMode packet configuration is set to AUTO,
4583 enable noack mode if the stub reported a wish for it with
4584 qSupported.
4585
4586 If set to TRUE, then enable noack mode even if the stub didn't
4587 report it in qSupported. If the stub doesn't reply OK, the
4588 session ends with an error.
4589
4590 If FALSE, then don't activate noack mode, regardless of what the
4591 stub claimed should be the default with qSupported. */
4592
4593 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4594 if (packet_config_support (noack_config) != PACKET_DISABLE)
4595 {
4596 putpkt ("QStartNoAckMode");
4597 getpkt (&rs->buf, 0);
4598 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4599 rs->noack_mode = 1;
4600 }
4601
4602 if (extended_p)
4603 {
4604 /* Tell the remote that we are using the extended protocol. */
4605 putpkt ("!");
4606 getpkt (&rs->buf, 0);
4607 }
4608
4609 /* Let the target know which signals it is allowed to pass down to
4610 the program. */
4611 update_signals_program_target ();
4612
4613 /* Next, if the target can specify a description, read it. We do
4614 this before anything involving memory or registers. */
4615 target_find_description ();
4616
4617 /* Next, now that we know something about the target, update the
4618 address spaces in the program spaces. */
4619 update_address_spaces ();
4620
4621 /* On OSs where the list of libraries is global to all
4622 processes, we fetch them early. */
4623 if (gdbarch_has_global_solist (target_gdbarch ()))
4624 solib_add (NULL, from_tty, auto_solib_add);
4625
4626 if (target_is_non_stop_p ())
4627 {
4628 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4629 error (_("Non-stop mode requested, but remote "
4630 "does not support non-stop"));
4631
4632 putpkt ("QNonStop:1");
4633 getpkt (&rs->buf, 0);
4634
4635 if (strcmp (rs->buf.data (), "OK") != 0)
4636 error (_("Remote refused setting non-stop mode with: %s"),
4637 rs->buf.data ());
4638
4639 /* Find about threads and processes the stub is already
4640 controlling. We default to adding them in the running state.
4641 The '?' query below will then tell us about which threads are
4642 stopped. */
4643 this->update_thread_list ();
4644 }
4645 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4646 {
4647 /* Don't assume that the stub can operate in all-stop mode.
4648 Request it explicitly. */
4649 putpkt ("QNonStop:0");
4650 getpkt (&rs->buf, 0);
4651
4652 if (strcmp (rs->buf.data (), "OK") != 0)
4653 error (_("Remote refused setting all-stop mode with: %s"),
4654 rs->buf.data ());
4655 }
4656
4657 /* Upload TSVs regardless of whether the target is running or not. The
4658 remote stub, such as GDBserver, may have some predefined or builtin
4659 TSVs, even if the target is not running. */
4660 if (get_trace_status (current_trace_status ()) != -1)
4661 {
4662 struct uploaded_tsv *uploaded_tsvs = NULL;
4663
4664 upload_trace_state_variables (&uploaded_tsvs);
4665 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4666 }
4667
4668 /* Check whether the target is running now. */
4669 putpkt ("?");
4670 getpkt (&rs->buf, 0);
4671
4672 if (!target_is_non_stop_p ())
4673 {
4674 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4675 {
4676 if (!extended_p)
4677 error (_("The target is not running (try extended-remote?)"));
4678
4679 /* We're connected, but not running. Drop out before we
4680 call start_remote. */
4681 rs->starting_up = 0;
4682 return;
4683 }
4684 else
4685 {
4686 /* Save the reply for later. */
4687 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4688 strcpy (wait_status, rs->buf.data ());
4689 }
4690
4691 /* Fetch thread list. */
4692 target_update_thread_list ();
4693
4694 /* Let the stub know that we want it to return the thread. */
4695 set_continue_thread (minus_one_ptid);
4696
4697 if (thread_count () == 0)
4698 {
4699 /* Target has no concept of threads at all. GDB treats
4700 non-threaded target as single-threaded; add a main
4701 thread. */
4702 add_current_inferior_and_thread (wait_status);
4703 }
4704 else
4705 {
4706 /* We have thread information; select the thread the target
4707 says should be current. If we're reconnecting to a
4708 multi-threaded program, this will ideally be the thread
4709 that last reported an event before GDB disconnected. */
4710 inferior_ptid = get_current_thread (wait_status);
4711 if (inferior_ptid == null_ptid)
4712 {
4713 /* Odd... The target was able to list threads, but not
4714 tell us which thread was current (no "thread"
4715 register in T stop reply?). Just pick the first
4716 thread in the thread list then. */
4717
4718 if (remote_debug)
4719 fprintf_unfiltered (gdb_stdlog,
4720 "warning: couldn't determine remote "
4721 "current thread; picking first in list.\n");
4722
4723 inferior_ptid = inferior_list->thread_list->ptid;
4724 }
4725 }
4726
4727 /* init_wait_for_inferior should be called before get_offsets in order
4728 to manage `inserted' flag in bp loc in a correct state.
4729 breakpoint_init_inferior, called from init_wait_for_inferior, set
4730 `inserted' flag to 0, while before breakpoint_re_set, called from
4731 start_remote, set `inserted' flag to 1. In the initialization of
4732 inferior, breakpoint_init_inferior should be called first, and then
4733 breakpoint_re_set can be called. If this order is broken, state of
4734 `inserted' flag is wrong, and cause some problems on breakpoint
4735 manipulation. */
4736 init_wait_for_inferior ();
4737
4738 get_offsets (); /* Get text, data & bss offsets. */
4739
4740 /* If we could not find a description using qXfer, and we know
4741 how to do it some other way, try again. This is not
4742 supported for non-stop; it could be, but it is tricky if
4743 there are no stopped threads when we connect. */
4744 if (remote_read_description_p (this)
4745 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4746 {
4747 target_clear_description ();
4748 target_find_description ();
4749 }
4750
4751 /* Use the previously fetched status. */
4752 gdb_assert (wait_status != NULL);
4753 strcpy (rs->buf.data (), wait_status);
4754 rs->cached_wait_status = 1;
4755
4756 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4757 }
4758 else
4759 {
4760 /* Clear WFI global state. Do this before finding about new
4761 threads and inferiors, and setting the current inferior.
4762 Otherwise we would clear the proceed status of the current
4763 inferior when we want its stop_soon state to be preserved
4764 (see notice_new_inferior). */
4765 init_wait_for_inferior ();
4766
4767 /* In non-stop, we will either get an "OK", meaning that there
4768 are no stopped threads at this time; or, a regular stop
4769 reply. In the latter case, there may be more than one thread
4770 stopped --- we pull them all out using the vStopped
4771 mechanism. */
4772 if (strcmp (rs->buf.data (), "OK") != 0)
4773 {
4774 struct notif_client *notif = &notif_client_stop;
4775
4776 /* remote_notif_get_pending_replies acks this one, and gets
4777 the rest out. */
4778 rs->notif_state->pending_event[notif_client_stop.id]
4779 = remote_notif_parse (this, notif, rs->buf.data ());
4780 remote_notif_get_pending_events (notif);
4781 }
4782
4783 if (thread_count () == 0)
4784 {
4785 if (!extended_p)
4786 error (_("The target is not running (try extended-remote?)"));
4787
4788 /* We're connected, but not running. Drop out before we
4789 call start_remote. */
4790 rs->starting_up = 0;
4791 return;
4792 }
4793
4794 /* In non-stop mode, any cached wait status will be stored in
4795 the stop reply queue. */
4796 gdb_assert (wait_status == NULL);
4797
4798 /* Report all signals during attach/startup. */
4799 pass_signals (0, NULL);
4800
4801 /* If there are already stopped threads, mark them stopped and
4802 report their stops before giving the prompt to the user. */
4803 process_initial_stop_replies (from_tty);
4804
4805 if (target_can_async_p ())
4806 target_async (1);
4807 }
4808
4809 /* If we connected to a live target, do some additional setup. */
4810 if (target_has_execution)
4811 {
4812 if (symfile_objfile) /* No use without a symbol-file. */
4813 remote_check_symbols ();
4814 }
4815
4816 /* Possibly the target has been engaged in a trace run started
4817 previously; find out where things are at. */
4818 if (get_trace_status (current_trace_status ()) != -1)
4819 {
4820 struct uploaded_tp *uploaded_tps = NULL;
4821
4822 if (current_trace_status ()->running)
4823 printf_filtered (_("Trace is already running on the target.\n"));
4824
4825 upload_tracepoints (&uploaded_tps);
4826
4827 merge_uploaded_tracepoints (&uploaded_tps);
4828 }
4829
4830 /* Possibly the target has been engaged in a btrace record started
4831 previously; find out where things are at. */
4832 remote_btrace_maybe_reopen ();
4833
4834 /* The thread and inferior lists are now synchronized with the
4835 target, our symbols have been relocated, and we're merged the
4836 target's tracepoints with ours. We're done with basic start
4837 up. */
4838 rs->starting_up = 0;
4839
4840 /* Maybe breakpoints are global and need to be inserted now. */
4841 if (breakpoints_should_be_inserted_now ())
4842 insert_breakpoints ();
4843 }
4844
4845 /* Open a connection to a remote debugger.
4846 NAME is the filename used for communication. */
4847
4848 void
4849 remote_target::open (const char *name, int from_tty)
4850 {
4851 open_1 (name, from_tty, 0);
4852 }
4853
4854 /* Open a connection to a remote debugger using the extended
4855 remote gdb protocol. NAME is the filename used for communication. */
4856
4857 void
4858 extended_remote_target::open (const char *name, int from_tty)
4859 {
4860 open_1 (name, from_tty, 1 /*extended_p */);
4861 }
4862
4863 /* Reset all packets back to "unknown support". Called when opening a
4864 new connection to a remote target. */
4865
4866 static void
4867 reset_all_packet_configs_support (void)
4868 {
4869 int i;
4870
4871 for (i = 0; i < PACKET_MAX; i++)
4872 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4873 }
4874
4875 /* Initialize all packet configs. */
4876
4877 static void
4878 init_all_packet_configs (void)
4879 {
4880 int i;
4881
4882 for (i = 0; i < PACKET_MAX; i++)
4883 {
4884 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4885 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4886 }
4887 }
4888
4889 /* Symbol look-up. */
4890
4891 void
4892 remote_target::remote_check_symbols ()
4893 {
4894 char *tmp;
4895 int end;
4896
4897 /* The remote side has no concept of inferiors that aren't running
4898 yet, it only knows about running processes. If we're connected
4899 but our current inferior is not running, we should not invite the
4900 remote target to request symbol lookups related to its
4901 (unrelated) current process. */
4902 if (!target_has_execution)
4903 return;
4904
4905 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4906 return;
4907
4908 /* Make sure the remote is pointing at the right process. Note
4909 there's no way to select "no process". */
4910 set_general_process ();
4911
4912 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4913 because we need both at the same time. */
4914 gdb::char_vector msg (get_remote_packet_size ());
4915 gdb::char_vector reply (get_remote_packet_size ());
4916
4917 /* Invite target to request symbol lookups. */
4918
4919 putpkt ("qSymbol::");
4920 getpkt (&reply, 0);
4921 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4922
4923 while (startswith (reply.data (), "qSymbol:"))
4924 {
4925 struct bound_minimal_symbol sym;
4926
4927 tmp = &reply[8];
4928 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4929 strlen (tmp) / 2);
4930 msg[end] = '\0';
4931 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4932 if (sym.minsym == NULL)
4933 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4934 &reply[8]);
4935 else
4936 {
4937 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4938 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4939
4940 /* If this is a function address, return the start of code
4941 instead of any data function descriptor. */
4942 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4943 sym_addr,
4944 current_top_target ());
4945
4946 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4947 phex_nz (sym_addr, addr_size), &reply[8]);
4948 }
4949
4950 putpkt (msg.data ());
4951 getpkt (&reply, 0);
4952 }
4953 }
4954
4955 static struct serial *
4956 remote_serial_open (const char *name)
4957 {
4958 static int udp_warning = 0;
4959
4960 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4961 of in ser-tcp.c, because it is the remote protocol assuming that the
4962 serial connection is reliable and not the serial connection promising
4963 to be. */
4964 if (!udp_warning && startswith (name, "udp:"))
4965 {
4966 warning (_("The remote protocol may be unreliable over UDP.\n"
4967 "Some events may be lost, rendering further debugging "
4968 "impossible."));
4969 udp_warning = 1;
4970 }
4971
4972 return serial_open (name);
4973 }
4974
4975 /* Inform the target of our permission settings. The permission flags
4976 work without this, but if the target knows the settings, it can do
4977 a couple things. First, it can add its own check, to catch cases
4978 that somehow manage to get by the permissions checks in target
4979 methods. Second, if the target is wired to disallow particular
4980 settings (for instance, a system in the field that is not set up to
4981 be able to stop at a breakpoint), it can object to any unavailable
4982 permissions. */
4983
4984 void
4985 remote_target::set_permissions ()
4986 {
4987 struct remote_state *rs = get_remote_state ();
4988
4989 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
4990 "WriteReg:%x;WriteMem:%x;"
4991 "InsertBreak:%x;InsertTrace:%x;"
4992 "InsertFastTrace:%x;Stop:%x",
4993 may_write_registers, may_write_memory,
4994 may_insert_breakpoints, may_insert_tracepoints,
4995 may_insert_fast_tracepoints, may_stop);
4996 putpkt (rs->buf);
4997 getpkt (&rs->buf, 0);
4998
4999 /* If the target didn't like the packet, warn the user. Do not try
5000 to undo the user's settings, that would just be maddening. */
5001 if (strcmp (rs->buf.data (), "OK") != 0)
5002 warning (_("Remote refused setting permissions with: %s"),
5003 rs->buf.data ());
5004 }
5005
5006 /* This type describes each known response to the qSupported
5007 packet. */
5008 struct protocol_feature
5009 {
5010 /* The name of this protocol feature. */
5011 const char *name;
5012
5013 /* The default for this protocol feature. */
5014 enum packet_support default_support;
5015
5016 /* The function to call when this feature is reported, or after
5017 qSupported processing if the feature is not supported.
5018 The first argument points to this structure. The second
5019 argument indicates whether the packet requested support be
5020 enabled, disabled, or probed (or the default, if this function
5021 is being called at the end of processing and this feature was
5022 not reported). The third argument may be NULL; if not NULL, it
5023 is a NUL-terminated string taken from the packet following
5024 this feature's name and an equals sign. */
5025 void (*func) (remote_target *remote, const struct protocol_feature *,
5026 enum packet_support, const char *);
5027
5028 /* The corresponding packet for this feature. Only used if
5029 FUNC is remote_supported_packet. */
5030 int packet;
5031 };
5032
5033 static void
5034 remote_supported_packet (remote_target *remote,
5035 const struct protocol_feature *feature,
5036 enum packet_support support,
5037 const char *argument)
5038 {
5039 if (argument)
5040 {
5041 warning (_("Remote qSupported response supplied an unexpected value for"
5042 " \"%s\"."), feature->name);
5043 return;
5044 }
5045
5046 remote_protocol_packets[feature->packet].support = support;
5047 }
5048
5049 void
5050 remote_target::remote_packet_size (const protocol_feature *feature,
5051 enum packet_support support, const char *value)
5052 {
5053 struct remote_state *rs = get_remote_state ();
5054
5055 int packet_size;
5056 char *value_end;
5057
5058 if (support != PACKET_ENABLE)
5059 return;
5060
5061 if (value == NULL || *value == '\0')
5062 {
5063 warning (_("Remote target reported \"%s\" without a size."),
5064 feature->name);
5065 return;
5066 }
5067
5068 errno = 0;
5069 packet_size = strtol (value, &value_end, 16);
5070 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5071 {
5072 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5073 feature->name, value);
5074 return;
5075 }
5076
5077 /* Record the new maximum packet size. */
5078 rs->explicit_packet_size = packet_size;
5079 }
5080
5081 void
5082 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5083 enum packet_support support, const char *value)
5084 {
5085 remote->remote_packet_size (feature, support, value);
5086 }
5087
5088 static const struct protocol_feature remote_protocol_features[] = {
5089 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5090 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5091 PACKET_qXfer_auxv },
5092 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5093 PACKET_qXfer_exec_file },
5094 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5095 PACKET_qXfer_features },
5096 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5097 PACKET_qXfer_libraries },
5098 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5099 PACKET_qXfer_libraries_svr4 },
5100 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5101 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5102 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5103 PACKET_qXfer_memory_map },
5104 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
5105 PACKET_qXfer_spu_read },
5106 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
5107 PACKET_qXfer_spu_write },
5108 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5109 PACKET_qXfer_osdata },
5110 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5111 PACKET_qXfer_threads },
5112 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5113 PACKET_qXfer_traceframe_info },
5114 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5115 PACKET_QPassSignals },
5116 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5117 PACKET_QCatchSyscalls },
5118 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5119 PACKET_QProgramSignals },
5120 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5121 PACKET_QSetWorkingDir },
5122 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5123 PACKET_QStartupWithShell },
5124 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5125 PACKET_QEnvironmentHexEncoded },
5126 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5127 PACKET_QEnvironmentReset },
5128 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5129 PACKET_QEnvironmentUnset },
5130 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5131 PACKET_QStartNoAckMode },
5132 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5133 PACKET_multiprocess_feature },
5134 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5135 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_qXfer_siginfo_read },
5137 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_qXfer_siginfo_write },
5139 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_ConditionalTracepoints },
5141 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_ConditionalBreakpoints },
5143 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5144 PACKET_BreakpointCommands },
5145 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5146 PACKET_FastTracepoints },
5147 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5148 PACKET_StaticTracepoints },
5149 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5150 PACKET_InstallInTrace},
5151 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5152 PACKET_DisconnectedTracing_feature },
5153 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5154 PACKET_bc },
5155 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5156 PACKET_bs },
5157 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5158 PACKET_TracepointSource },
5159 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5160 PACKET_QAllow },
5161 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5162 PACKET_EnableDisableTracepoints_feature },
5163 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5164 PACKET_qXfer_fdpic },
5165 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5166 PACKET_qXfer_uib },
5167 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5168 PACKET_QDisableRandomization },
5169 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5170 { "QTBuffer:size", PACKET_DISABLE,
5171 remote_supported_packet, PACKET_QTBuffer_size},
5172 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5173 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5174 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5175 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5176 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5177 PACKET_qXfer_btrace },
5178 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5179 PACKET_qXfer_btrace_conf },
5180 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5181 PACKET_Qbtrace_conf_bts_size },
5182 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5183 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5184 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5185 PACKET_fork_event_feature },
5186 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5187 PACKET_vfork_event_feature },
5188 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5189 PACKET_exec_event_feature },
5190 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5191 PACKET_Qbtrace_conf_pt_size },
5192 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5193 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5194 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5195 };
5196
5197 static char *remote_support_xml;
5198
5199 /* Register string appended to "xmlRegisters=" in qSupported query. */
5200
5201 void
5202 register_remote_support_xml (const char *xml)
5203 {
5204 #if defined(HAVE_LIBEXPAT)
5205 if (remote_support_xml == NULL)
5206 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5207 else
5208 {
5209 char *copy = xstrdup (remote_support_xml + 13);
5210 char *p = strtok (copy, ",");
5211
5212 do
5213 {
5214 if (strcmp (p, xml) == 0)
5215 {
5216 /* already there */
5217 xfree (copy);
5218 return;
5219 }
5220 }
5221 while ((p = strtok (NULL, ",")) != NULL);
5222 xfree (copy);
5223
5224 remote_support_xml = reconcat (remote_support_xml,
5225 remote_support_xml, ",", xml,
5226 (char *) NULL);
5227 }
5228 #endif
5229 }
5230
5231 static void
5232 remote_query_supported_append (std::string *msg, const char *append)
5233 {
5234 if (!msg->empty ())
5235 msg->append (";");
5236 msg->append (append);
5237 }
5238
5239 void
5240 remote_target::remote_query_supported ()
5241 {
5242 struct remote_state *rs = get_remote_state ();
5243 char *next;
5244 int i;
5245 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5246
5247 /* The packet support flags are handled differently for this packet
5248 than for most others. We treat an error, a disabled packet, and
5249 an empty response identically: any features which must be reported
5250 to be used will be automatically disabled. An empty buffer
5251 accomplishes this, since that is also the representation for a list
5252 containing no features. */
5253
5254 rs->buf[0] = 0;
5255 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5256 {
5257 std::string q;
5258
5259 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5260 remote_query_supported_append (&q, "multiprocess+");
5261
5262 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5263 remote_query_supported_append (&q, "swbreak+");
5264 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5265 remote_query_supported_append (&q, "hwbreak+");
5266
5267 remote_query_supported_append (&q, "qRelocInsn+");
5268
5269 if (packet_set_cmd_state (PACKET_fork_event_feature)
5270 != AUTO_BOOLEAN_FALSE)
5271 remote_query_supported_append (&q, "fork-events+");
5272 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5273 != AUTO_BOOLEAN_FALSE)
5274 remote_query_supported_append (&q, "vfork-events+");
5275 if (packet_set_cmd_state (PACKET_exec_event_feature)
5276 != AUTO_BOOLEAN_FALSE)
5277 remote_query_supported_append (&q, "exec-events+");
5278
5279 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5280 remote_query_supported_append (&q, "vContSupported+");
5281
5282 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5283 remote_query_supported_append (&q, "QThreadEvents+");
5284
5285 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5286 remote_query_supported_append (&q, "no-resumed+");
5287
5288 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5289 the qSupported:xmlRegisters=i386 handling. */
5290 if (remote_support_xml != NULL
5291 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5292 remote_query_supported_append (&q, remote_support_xml);
5293
5294 q = "qSupported:" + q;
5295 putpkt (q.c_str ());
5296
5297 getpkt (&rs->buf, 0);
5298
5299 /* If an error occured, warn, but do not return - just reset the
5300 buffer to empty and go on to disable features. */
5301 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5302 == PACKET_ERROR)
5303 {
5304 warning (_("Remote failure reply: %s"), rs->buf.data ());
5305 rs->buf[0] = 0;
5306 }
5307 }
5308
5309 memset (seen, 0, sizeof (seen));
5310
5311 next = rs->buf.data ();
5312 while (*next)
5313 {
5314 enum packet_support is_supported;
5315 char *p, *end, *name_end, *value;
5316
5317 /* First separate out this item from the rest of the packet. If
5318 there's another item after this, we overwrite the separator
5319 (terminated strings are much easier to work with). */
5320 p = next;
5321 end = strchr (p, ';');
5322 if (end == NULL)
5323 {
5324 end = p + strlen (p);
5325 next = end;
5326 }
5327 else
5328 {
5329 *end = '\0';
5330 next = end + 1;
5331
5332 if (end == p)
5333 {
5334 warning (_("empty item in \"qSupported\" response"));
5335 continue;
5336 }
5337 }
5338
5339 name_end = strchr (p, '=');
5340 if (name_end)
5341 {
5342 /* This is a name=value entry. */
5343 is_supported = PACKET_ENABLE;
5344 value = name_end + 1;
5345 *name_end = '\0';
5346 }
5347 else
5348 {
5349 value = NULL;
5350 switch (end[-1])
5351 {
5352 case '+':
5353 is_supported = PACKET_ENABLE;
5354 break;
5355
5356 case '-':
5357 is_supported = PACKET_DISABLE;
5358 break;
5359
5360 case '?':
5361 is_supported = PACKET_SUPPORT_UNKNOWN;
5362 break;
5363
5364 default:
5365 warning (_("unrecognized item \"%s\" "
5366 "in \"qSupported\" response"), p);
5367 continue;
5368 }
5369 end[-1] = '\0';
5370 }
5371
5372 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5373 if (strcmp (remote_protocol_features[i].name, p) == 0)
5374 {
5375 const struct protocol_feature *feature;
5376
5377 seen[i] = 1;
5378 feature = &remote_protocol_features[i];
5379 feature->func (this, feature, is_supported, value);
5380 break;
5381 }
5382 }
5383
5384 /* If we increased the packet size, make sure to increase the global
5385 buffer size also. We delay this until after parsing the entire
5386 qSupported packet, because this is the same buffer we were
5387 parsing. */
5388 if (rs->buf.size () < rs->explicit_packet_size)
5389 rs->buf.resize (rs->explicit_packet_size);
5390
5391 /* Handle the defaults for unmentioned features. */
5392 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5393 if (!seen[i])
5394 {
5395 const struct protocol_feature *feature;
5396
5397 feature = &remote_protocol_features[i];
5398 feature->func (this, feature, feature->default_support, NULL);
5399 }
5400 }
5401
5402 /* Serial QUIT handler for the remote serial descriptor.
5403
5404 Defers handling a Ctrl-C until we're done with the current
5405 command/response packet sequence, unless:
5406
5407 - We're setting up the connection. Don't send a remote interrupt
5408 request, as we're not fully synced yet. Quit immediately
5409 instead.
5410
5411 - The target has been resumed in the foreground
5412 (target_terminal::is_ours is false) with a synchronous resume
5413 packet, and we're blocked waiting for the stop reply, thus a
5414 Ctrl-C should be immediately sent to the target.
5415
5416 - We get a second Ctrl-C while still within the same serial read or
5417 write. In that case the serial is seemingly wedged --- offer to
5418 quit/disconnect.
5419
5420 - We see a second Ctrl-C without target response, after having
5421 previously interrupted the target. In that case the target/stub
5422 is probably wedged --- offer to quit/disconnect.
5423 */
5424
5425 void
5426 remote_target::remote_serial_quit_handler ()
5427 {
5428 struct remote_state *rs = get_remote_state ();
5429
5430 if (check_quit_flag ())
5431 {
5432 /* If we're starting up, we're not fully synced yet. Quit
5433 immediately. */
5434 if (rs->starting_up)
5435 quit ();
5436 else if (rs->got_ctrlc_during_io)
5437 {
5438 if (query (_("The target is not responding to GDB commands.\n"
5439 "Stop debugging it? ")))
5440 remote_unpush_and_throw ();
5441 }
5442 /* If ^C has already been sent once, offer to disconnect. */
5443 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5444 interrupt_query ();
5445 /* All-stop protocol, and blocked waiting for stop reply. Send
5446 an interrupt request. */
5447 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5448 target_interrupt ();
5449 else
5450 rs->got_ctrlc_during_io = 1;
5451 }
5452 }
5453
5454 /* The remote_target that is current while the quit handler is
5455 overridden with remote_serial_quit_handler. */
5456 static remote_target *curr_quit_handler_target;
5457
5458 static void
5459 remote_serial_quit_handler ()
5460 {
5461 curr_quit_handler_target->remote_serial_quit_handler ();
5462 }
5463
5464 /* Remove any of the remote.c targets from target stack. Upper targets depend
5465 on it so remove them first. */
5466
5467 static void
5468 remote_unpush_target (void)
5469 {
5470 pop_all_targets_at_and_above (process_stratum);
5471 }
5472
5473 static void
5474 remote_unpush_and_throw (void)
5475 {
5476 remote_unpush_target ();
5477 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5478 }
5479
5480 void
5481 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5482 {
5483 remote_target *curr_remote = get_current_remote_target ();
5484
5485 if (name == 0)
5486 error (_("To open a remote debug connection, you need to specify what\n"
5487 "serial device is attached to the remote system\n"
5488 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5489
5490 /* If we're connected to a running target, target_preopen will kill it.
5491 Ask this question first, before target_preopen has a chance to kill
5492 anything. */
5493 if (curr_remote != NULL && !have_inferiors ())
5494 {
5495 if (from_tty
5496 && !query (_("Already connected to a remote target. Disconnect? ")))
5497 error (_("Still connected."));
5498 }
5499
5500 /* Here the possibly existing remote target gets unpushed. */
5501 target_preopen (from_tty);
5502
5503 remote_fileio_reset ();
5504 reopen_exec_file ();
5505 reread_symbols ();
5506
5507 remote_target *remote
5508 = (extended_p ? new extended_remote_target () : new remote_target ());
5509 target_ops_up target_holder (remote);
5510
5511 remote_state *rs = remote->get_remote_state ();
5512
5513 /* See FIXME above. */
5514 if (!target_async_permitted)
5515 rs->wait_forever_enabled_p = 1;
5516
5517 rs->remote_desc = remote_serial_open (name);
5518 if (!rs->remote_desc)
5519 perror_with_name (name);
5520
5521 if (baud_rate != -1)
5522 {
5523 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5524 {
5525 /* The requested speed could not be set. Error out to
5526 top level after closing remote_desc. Take care to
5527 set remote_desc to NULL to avoid closing remote_desc
5528 more than once. */
5529 serial_close (rs->remote_desc);
5530 rs->remote_desc = NULL;
5531 perror_with_name (name);
5532 }
5533 }
5534
5535 serial_setparity (rs->remote_desc, serial_parity);
5536 serial_raw (rs->remote_desc);
5537
5538 /* If there is something sitting in the buffer we might take it as a
5539 response to a command, which would be bad. */
5540 serial_flush_input (rs->remote_desc);
5541
5542 if (from_tty)
5543 {
5544 puts_filtered ("Remote debugging using ");
5545 puts_filtered (name);
5546 puts_filtered ("\n");
5547 }
5548
5549 /* Switch to using the remote target now. */
5550 push_target (remote);
5551 /* The target stack owns the target now. */
5552 target_holder.release ();
5553
5554 /* Register extra event sources in the event loop. */
5555 rs->remote_async_inferior_event_token
5556 = create_async_event_handler (remote_async_inferior_event_handler,
5557 remote);
5558 rs->notif_state = remote_notif_state_allocate (remote);
5559
5560 /* Reset the target state; these things will be queried either by
5561 remote_query_supported or as they are needed. */
5562 reset_all_packet_configs_support ();
5563 rs->cached_wait_status = 0;
5564 rs->explicit_packet_size = 0;
5565 rs->noack_mode = 0;
5566 rs->extended = extended_p;
5567 rs->waiting_for_stop_reply = 0;
5568 rs->ctrlc_pending_p = 0;
5569 rs->got_ctrlc_during_io = 0;
5570
5571 rs->general_thread = not_sent_ptid;
5572 rs->continue_thread = not_sent_ptid;
5573 rs->remote_traceframe_number = -1;
5574
5575 rs->last_resume_exec_dir = EXEC_FORWARD;
5576
5577 /* Probe for ability to use "ThreadInfo" query, as required. */
5578 rs->use_threadinfo_query = 1;
5579 rs->use_threadextra_query = 1;
5580
5581 rs->readahead_cache.invalidate ();
5582
5583 if (target_async_permitted)
5584 {
5585 /* FIXME: cagney/1999-09-23: During the initial connection it is
5586 assumed that the target is already ready and able to respond to
5587 requests. Unfortunately remote_start_remote() eventually calls
5588 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5589 around this. Eventually a mechanism that allows
5590 wait_for_inferior() to expect/get timeouts will be
5591 implemented. */
5592 rs->wait_forever_enabled_p = 0;
5593 }
5594
5595 /* First delete any symbols previously loaded from shared libraries. */
5596 no_shared_libraries (NULL, 0);
5597
5598 /* Start the remote connection. If error() or QUIT, discard this
5599 target (we'd otherwise be in an inconsistent state) and then
5600 propogate the error on up the exception chain. This ensures that
5601 the caller doesn't stumble along blindly assuming that the
5602 function succeeded. The CLI doesn't have this problem but other
5603 UI's, such as MI do.
5604
5605 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5606 this function should return an error indication letting the
5607 caller restore the previous state. Unfortunately the command
5608 ``target remote'' is directly wired to this function making that
5609 impossible. On a positive note, the CLI side of this problem has
5610 been fixed - the function set_cmd_context() makes it possible for
5611 all the ``target ....'' commands to share a common callback
5612 function. See cli-dump.c. */
5613 {
5614
5615 TRY
5616 {
5617 remote->start_remote (from_tty, extended_p);
5618 }
5619 CATCH (ex, RETURN_MASK_ALL)
5620 {
5621 /* Pop the partially set up target - unless something else did
5622 already before throwing the exception. */
5623 if (ex.error != TARGET_CLOSE_ERROR)
5624 remote_unpush_target ();
5625 throw_exception (ex);
5626 }
5627 END_CATCH
5628 }
5629
5630 remote_btrace_reset (rs);
5631
5632 if (target_async_permitted)
5633 rs->wait_forever_enabled_p = 1;
5634 }
5635
5636 /* Detach the specified process. */
5637
5638 void
5639 remote_target::remote_detach_pid (int pid)
5640 {
5641 struct remote_state *rs = get_remote_state ();
5642
5643 /* This should not be necessary, but the handling for D;PID in
5644 GDBserver versions prior to 8.2 incorrectly assumes that the
5645 selected process points to the same process we're detaching,
5646 leading to misbehavior (and possibly GDBserver crashing) when it
5647 does not. Since it's easy and cheap, work around it by forcing
5648 GDBserver to select GDB's current process. */
5649 set_general_process ();
5650
5651 if (remote_multi_process_p (rs))
5652 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5653 else
5654 strcpy (rs->buf.data (), "D");
5655
5656 putpkt (rs->buf);
5657 getpkt (&rs->buf, 0);
5658
5659 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5660 ;
5661 else if (rs->buf[0] == '\0')
5662 error (_("Remote doesn't know how to detach"));
5663 else
5664 error (_("Can't detach process."));
5665 }
5666
5667 /* This detaches a program to which we previously attached, using
5668 inferior_ptid to identify the process. After this is done, GDB
5669 can be used to debug some other program. We better not have left
5670 any breakpoints in the target program or it'll die when it hits
5671 one. */
5672
5673 void
5674 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5675 {
5676 int pid = inferior_ptid.pid ();
5677 struct remote_state *rs = get_remote_state ();
5678 int is_fork_parent;
5679
5680 if (!target_has_execution)
5681 error (_("No process to detach from."));
5682
5683 target_announce_detach (from_tty);
5684
5685 /* Tell the remote target to detach. */
5686 remote_detach_pid (pid);
5687
5688 /* Exit only if this is the only active inferior. */
5689 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5690 puts_filtered (_("Ending remote debugging.\n"));
5691
5692 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5693
5694 /* Check to see if we are detaching a fork parent. Note that if we
5695 are detaching a fork child, tp == NULL. */
5696 is_fork_parent = (tp != NULL
5697 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5698
5699 /* If doing detach-on-fork, we don't mourn, because that will delete
5700 breakpoints that should be available for the followed inferior. */
5701 if (!is_fork_parent)
5702 {
5703 /* Save the pid as a string before mourning, since that will
5704 unpush the remote target, and we need the string after. */
5705 std::string infpid = target_pid_to_str (ptid_t (pid));
5706
5707 target_mourn_inferior (inferior_ptid);
5708 if (print_inferior_events)
5709 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5710 inf->num, infpid.c_str ());
5711 }
5712 else
5713 {
5714 inferior_ptid = null_ptid;
5715 detach_inferior (current_inferior ());
5716 }
5717 }
5718
5719 void
5720 remote_target::detach (inferior *inf, int from_tty)
5721 {
5722 remote_detach_1 (inf, from_tty);
5723 }
5724
5725 void
5726 extended_remote_target::detach (inferior *inf, int from_tty)
5727 {
5728 remote_detach_1 (inf, from_tty);
5729 }
5730
5731 /* Target follow-fork function for remote targets. On entry, and
5732 at return, the current inferior is the fork parent.
5733
5734 Note that although this is currently only used for extended-remote,
5735 it is named remote_follow_fork in anticipation of using it for the
5736 remote target as well. */
5737
5738 int
5739 remote_target::follow_fork (int follow_child, int detach_fork)
5740 {
5741 struct remote_state *rs = get_remote_state ();
5742 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5743
5744 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5745 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5746 {
5747 /* When following the parent and detaching the child, we detach
5748 the child here. For the case of following the child and
5749 detaching the parent, the detach is done in the target-
5750 independent follow fork code in infrun.c. We can't use
5751 target_detach when detaching an unfollowed child because
5752 the client side doesn't know anything about the child. */
5753 if (detach_fork && !follow_child)
5754 {
5755 /* Detach the fork child. */
5756 ptid_t child_ptid;
5757 pid_t child_pid;
5758
5759 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5760 child_pid = child_ptid.pid ();
5761
5762 remote_detach_pid (child_pid);
5763 }
5764 }
5765 return 0;
5766 }
5767
5768 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5769 in the program space of the new inferior. On entry and at return the
5770 current inferior is the exec'ing inferior. INF is the new exec'd
5771 inferior, which may be the same as the exec'ing inferior unless
5772 follow-exec-mode is "new". */
5773
5774 void
5775 remote_target::follow_exec (struct inferior *inf, char *execd_pathname)
5776 {
5777 /* We know that this is a target file name, so if it has the "target:"
5778 prefix we strip it off before saving it in the program space. */
5779 if (is_target_filename (execd_pathname))
5780 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5781
5782 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5783 }
5784
5785 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5786
5787 void
5788 remote_target::disconnect (const char *args, int from_tty)
5789 {
5790 if (args)
5791 error (_("Argument given to \"disconnect\" when remotely debugging."));
5792
5793 /* Make sure we unpush even the extended remote targets. Calling
5794 target_mourn_inferior won't unpush, and remote_mourn won't
5795 unpush if there is more than one inferior left. */
5796 unpush_target (this);
5797 generic_mourn_inferior ();
5798
5799 if (from_tty)
5800 puts_filtered ("Ending remote debugging.\n");
5801 }
5802
5803 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5804 be chatty about it. */
5805
5806 void
5807 extended_remote_target::attach (const char *args, int from_tty)
5808 {
5809 struct remote_state *rs = get_remote_state ();
5810 int pid;
5811 char *wait_status = NULL;
5812
5813 pid = parse_pid_to_attach (args);
5814
5815 /* Remote PID can be freely equal to getpid, do not check it here the same
5816 way as in other targets. */
5817
5818 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5819 error (_("This target does not support attaching to a process"));
5820
5821 if (from_tty)
5822 {
5823 char *exec_file = get_exec_file (0);
5824
5825 if (exec_file)
5826 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5827 target_pid_to_str (ptid_t (pid)));
5828 else
5829 printf_unfiltered (_("Attaching to %s\n"),
5830 target_pid_to_str (ptid_t (pid)));
5831
5832 gdb_flush (gdb_stdout);
5833 }
5834
5835 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5836 putpkt (rs->buf);
5837 getpkt (&rs->buf, 0);
5838
5839 switch (packet_ok (rs->buf,
5840 &remote_protocol_packets[PACKET_vAttach]))
5841 {
5842 case PACKET_OK:
5843 if (!target_is_non_stop_p ())
5844 {
5845 /* Save the reply for later. */
5846 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5847 strcpy (wait_status, rs->buf.data ());
5848 }
5849 else if (strcmp (rs->buf.data (), "OK") != 0)
5850 error (_("Attaching to %s failed with: %s"),
5851 target_pid_to_str (ptid_t (pid)),
5852 rs->buf.data ());
5853 break;
5854 case PACKET_UNKNOWN:
5855 error (_("This target does not support attaching to a process"));
5856 default:
5857 error (_("Attaching to %s failed"),
5858 target_pid_to_str (ptid_t (pid)));
5859 }
5860
5861 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5862
5863 inferior_ptid = ptid_t (pid);
5864
5865 if (target_is_non_stop_p ())
5866 {
5867 struct thread_info *thread;
5868
5869 /* Get list of threads. */
5870 update_thread_list ();
5871
5872 thread = first_thread_of_inferior (current_inferior ());
5873 if (thread)
5874 inferior_ptid = thread->ptid;
5875 else
5876 inferior_ptid = ptid_t (pid);
5877
5878 /* Invalidate our notion of the remote current thread. */
5879 record_currthread (rs, minus_one_ptid);
5880 }
5881 else
5882 {
5883 /* Now, if we have thread information, update inferior_ptid. */
5884 inferior_ptid = remote_current_thread (inferior_ptid);
5885
5886 /* Add the main thread to the thread list. */
5887 thread_info *thr = add_thread_silent (inferior_ptid);
5888 /* Don't consider the thread stopped until we've processed the
5889 saved stop reply. */
5890 set_executing (thr->ptid, true);
5891 }
5892
5893 /* Next, if the target can specify a description, read it. We do
5894 this before anything involving memory or registers. */
5895 target_find_description ();
5896
5897 if (!target_is_non_stop_p ())
5898 {
5899 /* Use the previously fetched status. */
5900 gdb_assert (wait_status != NULL);
5901
5902 if (target_can_async_p ())
5903 {
5904 struct notif_event *reply
5905 = remote_notif_parse (this, &notif_client_stop, wait_status);
5906
5907 push_stop_reply ((struct stop_reply *) reply);
5908
5909 target_async (1);
5910 }
5911 else
5912 {
5913 gdb_assert (wait_status != NULL);
5914 strcpy (rs->buf.data (), wait_status);
5915 rs->cached_wait_status = 1;
5916 }
5917 }
5918 else
5919 gdb_assert (wait_status == NULL);
5920 }
5921
5922 /* Implementation of the to_post_attach method. */
5923
5924 void
5925 extended_remote_target::post_attach (int pid)
5926 {
5927 /* Get text, data & bss offsets. */
5928 get_offsets ();
5929
5930 /* In certain cases GDB might not have had the chance to start
5931 symbol lookup up until now. This could happen if the debugged
5932 binary is not using shared libraries, the vsyscall page is not
5933 present (on Linux) and the binary itself hadn't changed since the
5934 debugging process was started. */
5935 if (symfile_objfile != NULL)
5936 remote_check_symbols();
5937 }
5938
5939 \f
5940 /* Check for the availability of vCont. This function should also check
5941 the response. */
5942
5943 void
5944 remote_target::remote_vcont_probe ()
5945 {
5946 remote_state *rs = get_remote_state ();
5947 char *buf;
5948
5949 strcpy (rs->buf.data (), "vCont?");
5950 putpkt (rs->buf);
5951 getpkt (&rs->buf, 0);
5952 buf = rs->buf.data ();
5953
5954 /* Make sure that the features we assume are supported. */
5955 if (startswith (buf, "vCont"))
5956 {
5957 char *p = &buf[5];
5958 int support_c, support_C;
5959
5960 rs->supports_vCont.s = 0;
5961 rs->supports_vCont.S = 0;
5962 support_c = 0;
5963 support_C = 0;
5964 rs->supports_vCont.t = 0;
5965 rs->supports_vCont.r = 0;
5966 while (p && *p == ';')
5967 {
5968 p++;
5969 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5970 rs->supports_vCont.s = 1;
5971 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5972 rs->supports_vCont.S = 1;
5973 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5974 support_c = 1;
5975 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5976 support_C = 1;
5977 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5978 rs->supports_vCont.t = 1;
5979 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5980 rs->supports_vCont.r = 1;
5981
5982 p = strchr (p, ';');
5983 }
5984
5985 /* If c, and C are not all supported, we can't use vCont. Clearing
5986 BUF will make packet_ok disable the packet. */
5987 if (!support_c || !support_C)
5988 buf[0] = 0;
5989 }
5990
5991 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
5992 }
5993
5994 /* Helper function for building "vCont" resumptions. Write a
5995 resumption to P. ENDP points to one-passed-the-end of the buffer
5996 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5997 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5998 resumed thread should be single-stepped and/or signalled. If PTID
5999 equals minus_one_ptid, then all threads are resumed; if PTID
6000 represents a process, then all threads of the process are resumed;
6001 the thread to be stepped and/or signalled is given in the global
6002 INFERIOR_PTID. */
6003
6004 char *
6005 remote_target::append_resumption (char *p, char *endp,
6006 ptid_t ptid, int step, gdb_signal siggnal)
6007 {
6008 struct remote_state *rs = get_remote_state ();
6009
6010 if (step && siggnal != GDB_SIGNAL_0)
6011 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6012 else if (step
6013 /* GDB is willing to range step. */
6014 && use_range_stepping
6015 /* Target supports range stepping. */
6016 && rs->supports_vCont.r
6017 /* We don't currently support range stepping multiple
6018 threads with a wildcard (though the protocol allows it,
6019 so stubs shouldn't make an active effort to forbid
6020 it). */
6021 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6022 {
6023 struct thread_info *tp;
6024
6025 if (ptid == minus_one_ptid)
6026 {
6027 /* If we don't know about the target thread's tid, then
6028 we're resuming magic_null_ptid (see caller). */
6029 tp = find_thread_ptid (magic_null_ptid);
6030 }
6031 else
6032 tp = find_thread_ptid (ptid);
6033 gdb_assert (tp != NULL);
6034
6035 if (tp->control.may_range_step)
6036 {
6037 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6038
6039 p += xsnprintf (p, endp - p, ";r%s,%s",
6040 phex_nz (tp->control.step_range_start,
6041 addr_size),
6042 phex_nz (tp->control.step_range_end,
6043 addr_size));
6044 }
6045 else
6046 p += xsnprintf (p, endp - p, ";s");
6047 }
6048 else if (step)
6049 p += xsnprintf (p, endp - p, ";s");
6050 else if (siggnal != GDB_SIGNAL_0)
6051 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6052 else
6053 p += xsnprintf (p, endp - p, ";c");
6054
6055 if (remote_multi_process_p (rs) && ptid.is_pid ())
6056 {
6057 ptid_t nptid;
6058
6059 /* All (-1) threads of process. */
6060 nptid = ptid_t (ptid.pid (), -1, 0);
6061
6062 p += xsnprintf (p, endp - p, ":");
6063 p = write_ptid (p, endp, nptid);
6064 }
6065 else if (ptid != minus_one_ptid)
6066 {
6067 p += xsnprintf (p, endp - p, ":");
6068 p = write_ptid (p, endp, ptid);
6069 }
6070
6071 return p;
6072 }
6073
6074 /* Clear the thread's private info on resume. */
6075
6076 static void
6077 resume_clear_thread_private_info (struct thread_info *thread)
6078 {
6079 if (thread->priv != NULL)
6080 {
6081 remote_thread_info *priv = get_remote_thread_info (thread);
6082
6083 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6084 priv->watch_data_address = 0;
6085 }
6086 }
6087
6088 /* Append a vCont continue-with-signal action for threads that have a
6089 non-zero stop signal. */
6090
6091 char *
6092 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6093 ptid_t ptid)
6094 {
6095 for (thread_info *thread : all_non_exited_threads (ptid))
6096 if (inferior_ptid != thread->ptid
6097 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6098 {
6099 p = append_resumption (p, endp, thread->ptid,
6100 0, thread->suspend.stop_signal);
6101 thread->suspend.stop_signal = GDB_SIGNAL_0;
6102 resume_clear_thread_private_info (thread);
6103 }
6104
6105 return p;
6106 }
6107
6108 /* Set the target running, using the packets that use Hc
6109 (c/s/C/S). */
6110
6111 void
6112 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6113 gdb_signal siggnal)
6114 {
6115 struct remote_state *rs = get_remote_state ();
6116 char *buf;
6117
6118 rs->last_sent_signal = siggnal;
6119 rs->last_sent_step = step;
6120
6121 /* The c/s/C/S resume packets use Hc, so set the continue
6122 thread. */
6123 if (ptid == minus_one_ptid)
6124 set_continue_thread (any_thread_ptid);
6125 else
6126 set_continue_thread (ptid);
6127
6128 for (thread_info *thread : all_non_exited_threads ())
6129 resume_clear_thread_private_info (thread);
6130
6131 buf = rs->buf.data ();
6132 if (::execution_direction == EXEC_REVERSE)
6133 {
6134 /* We don't pass signals to the target in reverse exec mode. */
6135 if (info_verbose && siggnal != GDB_SIGNAL_0)
6136 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6137 siggnal);
6138
6139 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6140 error (_("Remote reverse-step not supported."));
6141 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6142 error (_("Remote reverse-continue not supported."));
6143
6144 strcpy (buf, step ? "bs" : "bc");
6145 }
6146 else if (siggnal != GDB_SIGNAL_0)
6147 {
6148 buf[0] = step ? 'S' : 'C';
6149 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6150 buf[2] = tohex (((int) siggnal) & 0xf);
6151 buf[3] = '\0';
6152 }
6153 else
6154 strcpy (buf, step ? "s" : "c");
6155
6156 putpkt (buf);
6157 }
6158
6159 /* Resume the remote inferior by using a "vCont" packet. The thread
6160 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6161 resumed thread should be single-stepped and/or signalled. If PTID
6162 equals minus_one_ptid, then all threads are resumed; the thread to
6163 be stepped and/or signalled is given in the global INFERIOR_PTID.
6164 This function returns non-zero iff it resumes the inferior.
6165
6166 This function issues a strict subset of all possible vCont commands
6167 at the moment. */
6168
6169 int
6170 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6171 enum gdb_signal siggnal)
6172 {
6173 struct remote_state *rs = get_remote_state ();
6174 char *p;
6175 char *endp;
6176
6177 /* No reverse execution actions defined for vCont. */
6178 if (::execution_direction == EXEC_REVERSE)
6179 return 0;
6180
6181 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6182 remote_vcont_probe ();
6183
6184 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6185 return 0;
6186
6187 p = rs->buf.data ();
6188 endp = p + get_remote_packet_size ();
6189
6190 /* If we could generate a wider range of packets, we'd have to worry
6191 about overflowing BUF. Should there be a generic
6192 "multi-part-packet" packet? */
6193
6194 p += xsnprintf (p, endp - p, "vCont");
6195
6196 if (ptid == magic_null_ptid)
6197 {
6198 /* MAGIC_NULL_PTID means that we don't have any active threads,
6199 so we don't have any TID numbers the inferior will
6200 understand. Make sure to only send forms that do not specify
6201 a TID. */
6202 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6203 }
6204 else if (ptid == minus_one_ptid || ptid.is_pid ())
6205 {
6206 /* Resume all threads (of all processes, or of a single
6207 process), with preference for INFERIOR_PTID. This assumes
6208 inferior_ptid belongs to the set of all threads we are about
6209 to resume. */
6210 if (step || siggnal != GDB_SIGNAL_0)
6211 {
6212 /* Step inferior_ptid, with or without signal. */
6213 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6214 }
6215
6216 /* Also pass down any pending signaled resumption for other
6217 threads not the current. */
6218 p = append_pending_thread_resumptions (p, endp, ptid);
6219
6220 /* And continue others without a signal. */
6221 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6222 }
6223 else
6224 {
6225 /* Scheduler locking; resume only PTID. */
6226 append_resumption (p, endp, ptid, step, siggnal);
6227 }
6228
6229 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6230 putpkt (rs->buf);
6231
6232 if (target_is_non_stop_p ())
6233 {
6234 /* In non-stop, the stub replies to vCont with "OK". The stop
6235 reply will be reported asynchronously by means of a `%Stop'
6236 notification. */
6237 getpkt (&rs->buf, 0);
6238 if (strcmp (rs->buf.data (), "OK") != 0)
6239 error (_("Unexpected vCont reply in non-stop mode: %s"),
6240 rs->buf.data ());
6241 }
6242
6243 return 1;
6244 }
6245
6246 /* Tell the remote machine to resume. */
6247
6248 void
6249 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6250 {
6251 struct remote_state *rs = get_remote_state ();
6252
6253 /* When connected in non-stop mode, the core resumes threads
6254 individually. Resuming remote threads directly in target_resume
6255 would thus result in sending one packet per thread. Instead, to
6256 minimize roundtrip latency, here we just store the resume
6257 request; the actual remote resumption will be done in
6258 target_commit_resume / remote_commit_resume, where we'll be able
6259 to do vCont action coalescing. */
6260 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6261 {
6262 remote_thread_info *remote_thr;
6263
6264 if (minus_one_ptid == ptid || ptid.is_pid ())
6265 remote_thr = get_remote_thread_info (inferior_ptid);
6266 else
6267 remote_thr = get_remote_thread_info (ptid);
6268
6269 remote_thr->last_resume_step = step;
6270 remote_thr->last_resume_sig = siggnal;
6271 return;
6272 }
6273
6274 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6275 (explained in remote-notif.c:handle_notification) so
6276 remote_notif_process is not called. We need find a place where
6277 it is safe to start a 'vNotif' sequence. It is good to do it
6278 before resuming inferior, because inferior was stopped and no RSP
6279 traffic at that moment. */
6280 if (!target_is_non_stop_p ())
6281 remote_notif_process (rs->notif_state, &notif_client_stop);
6282
6283 rs->last_resume_exec_dir = ::execution_direction;
6284
6285 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6286 if (!remote_resume_with_vcont (ptid, step, siggnal))
6287 remote_resume_with_hc (ptid, step, siggnal);
6288
6289 /* We are about to start executing the inferior, let's register it
6290 with the event loop. NOTE: this is the one place where all the
6291 execution commands end up. We could alternatively do this in each
6292 of the execution commands in infcmd.c. */
6293 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6294 into infcmd.c in order to allow inferior function calls to work
6295 NOT asynchronously. */
6296 if (target_can_async_p ())
6297 target_async (1);
6298
6299 /* We've just told the target to resume. The remote server will
6300 wait for the inferior to stop, and then send a stop reply. In
6301 the mean time, we can't start another command/query ourselves
6302 because the stub wouldn't be ready to process it. This applies
6303 only to the base all-stop protocol, however. In non-stop (which
6304 only supports vCont), the stub replies with an "OK", and is
6305 immediate able to process further serial input. */
6306 if (!target_is_non_stop_p ())
6307 rs->waiting_for_stop_reply = 1;
6308 }
6309
6310 static int is_pending_fork_parent_thread (struct thread_info *thread);
6311
6312 /* Private per-inferior info for target remote processes. */
6313
6314 struct remote_inferior : public private_inferior
6315 {
6316 /* Whether we can send a wildcard vCont for this process. */
6317 bool may_wildcard_vcont = true;
6318 };
6319
6320 /* Get the remote private inferior data associated to INF. */
6321
6322 static remote_inferior *
6323 get_remote_inferior (inferior *inf)
6324 {
6325 if (inf->priv == NULL)
6326 inf->priv.reset (new remote_inferior);
6327
6328 return static_cast<remote_inferior *> (inf->priv.get ());
6329 }
6330
6331 /* Class used to track the construction of a vCont packet in the
6332 outgoing packet buffer. This is used to send multiple vCont
6333 packets if we have more actions than would fit a single packet. */
6334
6335 class vcont_builder
6336 {
6337 public:
6338 explicit vcont_builder (remote_target *remote)
6339 : m_remote (remote)
6340 {
6341 restart ();
6342 }
6343
6344 void flush ();
6345 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6346
6347 private:
6348 void restart ();
6349
6350 /* The remote target. */
6351 remote_target *m_remote;
6352
6353 /* Pointer to the first action. P points here if no action has been
6354 appended yet. */
6355 char *m_first_action;
6356
6357 /* Where the next action will be appended. */
6358 char *m_p;
6359
6360 /* The end of the buffer. Must never write past this. */
6361 char *m_endp;
6362 };
6363
6364 /* Prepare the outgoing buffer for a new vCont packet. */
6365
6366 void
6367 vcont_builder::restart ()
6368 {
6369 struct remote_state *rs = m_remote->get_remote_state ();
6370
6371 m_p = rs->buf.data ();
6372 m_endp = m_p + m_remote->get_remote_packet_size ();
6373 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6374 m_first_action = m_p;
6375 }
6376
6377 /* If the vCont packet being built has any action, send it to the
6378 remote end. */
6379
6380 void
6381 vcont_builder::flush ()
6382 {
6383 struct remote_state *rs;
6384
6385 if (m_p == m_first_action)
6386 return;
6387
6388 rs = m_remote->get_remote_state ();
6389 m_remote->putpkt (rs->buf);
6390 m_remote->getpkt (&rs->buf, 0);
6391 if (strcmp (rs->buf.data (), "OK") != 0)
6392 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6393 }
6394
6395 /* The largest action is range-stepping, with its two addresses. This
6396 is more than sufficient. If a new, bigger action is created, it'll
6397 quickly trigger a failed assertion in append_resumption (and we'll
6398 just bump this). */
6399 #define MAX_ACTION_SIZE 200
6400
6401 /* Append a new vCont action in the outgoing packet being built. If
6402 the action doesn't fit the packet along with previous actions, push
6403 what we've got so far to the remote end and start over a new vCont
6404 packet (with the new action). */
6405
6406 void
6407 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6408 {
6409 char buf[MAX_ACTION_SIZE + 1];
6410
6411 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6412 ptid, step, siggnal);
6413
6414 /* Check whether this new action would fit in the vCont packet along
6415 with previous actions. If not, send what we've got so far and
6416 start a new vCont packet. */
6417 size_t rsize = endp - buf;
6418 if (rsize > m_endp - m_p)
6419 {
6420 flush ();
6421 restart ();
6422
6423 /* Should now fit. */
6424 gdb_assert (rsize <= m_endp - m_p);
6425 }
6426
6427 memcpy (m_p, buf, rsize);
6428 m_p += rsize;
6429 *m_p = '\0';
6430 }
6431
6432 /* to_commit_resume implementation. */
6433
6434 void
6435 remote_target::commit_resume ()
6436 {
6437 int any_process_wildcard;
6438 int may_global_wildcard_vcont;
6439
6440 /* If connected in all-stop mode, we'd send the remote resume
6441 request directly from remote_resume. Likewise if
6442 reverse-debugging, as there are no defined vCont actions for
6443 reverse execution. */
6444 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6445 return;
6446
6447 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6448 instead of resuming all threads of each process individually.
6449 However, if any thread of a process must remain halted, we can't
6450 send wildcard resumes and must send one action per thread.
6451
6452 Care must be taken to not resume threads/processes the server
6453 side already told us are stopped, but the core doesn't know about
6454 yet, because the events are still in the vStopped notification
6455 queue. For example:
6456
6457 #1 => vCont s:p1.1;c
6458 #2 <= OK
6459 #3 <= %Stopped T05 p1.1
6460 #4 => vStopped
6461 #5 <= T05 p1.2
6462 #6 => vStopped
6463 #7 <= OK
6464 #8 (infrun handles the stop for p1.1 and continues stepping)
6465 #9 => vCont s:p1.1;c
6466
6467 The last vCont above would resume thread p1.2 by mistake, because
6468 the server has no idea that the event for p1.2 had not been
6469 handled yet.
6470
6471 The server side must similarly ignore resume actions for the
6472 thread that has a pending %Stopped notification (and any other
6473 threads with events pending), until GDB acks the notification
6474 with vStopped. Otherwise, e.g., the following case is
6475 mishandled:
6476
6477 #1 => g (or any other packet)
6478 #2 <= [registers]
6479 #3 <= %Stopped T05 p1.2
6480 #4 => vCont s:p1.1;c
6481 #5 <= OK
6482
6483 Above, the server must not resume thread p1.2. GDB can't know
6484 that p1.2 stopped until it acks the %Stopped notification, and
6485 since from GDB's perspective all threads should be running, it
6486 sends a "c" action.
6487
6488 Finally, special care must also be given to handling fork/vfork
6489 events. A (v)fork event actually tells us that two processes
6490 stopped -- the parent and the child. Until we follow the fork,
6491 we must not resume the child. Therefore, if we have a pending
6492 fork follow, we must not send a global wildcard resume action
6493 (vCont;c). We can still send process-wide wildcards though. */
6494
6495 /* Start by assuming a global wildcard (vCont;c) is possible. */
6496 may_global_wildcard_vcont = 1;
6497
6498 /* And assume every process is individually wildcard-able too. */
6499 for (inferior *inf : all_non_exited_inferiors ())
6500 {
6501 remote_inferior *priv = get_remote_inferior (inf);
6502
6503 priv->may_wildcard_vcont = true;
6504 }
6505
6506 /* Check for any pending events (not reported or processed yet) and
6507 disable process and global wildcard resumes appropriately. */
6508 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6509
6510 for (thread_info *tp : all_non_exited_threads ())
6511 {
6512 /* If a thread of a process is not meant to be resumed, then we
6513 can't wildcard that process. */
6514 if (!tp->executing)
6515 {
6516 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6517
6518 /* And if we can't wildcard a process, we can't wildcard
6519 everything either. */
6520 may_global_wildcard_vcont = 0;
6521 continue;
6522 }
6523
6524 /* If a thread is the parent of an unfollowed fork, then we
6525 can't do a global wildcard, as that would resume the fork
6526 child. */
6527 if (is_pending_fork_parent_thread (tp))
6528 may_global_wildcard_vcont = 0;
6529 }
6530
6531 /* Now let's build the vCont packet(s). Actions must be appended
6532 from narrower to wider scopes (thread -> process -> global). If
6533 we end up with too many actions for a single packet vcont_builder
6534 flushes the current vCont packet to the remote side and starts a
6535 new one. */
6536 struct vcont_builder vcont_builder (this);
6537
6538 /* Threads first. */
6539 for (thread_info *tp : all_non_exited_threads ())
6540 {
6541 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6542
6543 if (!tp->executing || remote_thr->vcont_resumed)
6544 continue;
6545
6546 gdb_assert (!thread_is_in_step_over_chain (tp));
6547
6548 if (!remote_thr->last_resume_step
6549 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6550 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6551 {
6552 /* We'll send a wildcard resume instead. */
6553 remote_thr->vcont_resumed = 1;
6554 continue;
6555 }
6556
6557 vcont_builder.push_action (tp->ptid,
6558 remote_thr->last_resume_step,
6559 remote_thr->last_resume_sig);
6560 remote_thr->vcont_resumed = 1;
6561 }
6562
6563 /* Now check whether we can send any process-wide wildcard. This is
6564 to avoid sending a global wildcard in the case nothing is
6565 supposed to be resumed. */
6566 any_process_wildcard = 0;
6567
6568 for (inferior *inf : all_non_exited_inferiors ())
6569 {
6570 if (get_remote_inferior (inf)->may_wildcard_vcont)
6571 {
6572 any_process_wildcard = 1;
6573 break;
6574 }
6575 }
6576
6577 if (any_process_wildcard)
6578 {
6579 /* If all processes are wildcard-able, then send a single "c"
6580 action, otherwise, send an "all (-1) threads of process"
6581 continue action for each running process, if any. */
6582 if (may_global_wildcard_vcont)
6583 {
6584 vcont_builder.push_action (minus_one_ptid,
6585 false, GDB_SIGNAL_0);
6586 }
6587 else
6588 {
6589 for (inferior *inf : all_non_exited_inferiors ())
6590 {
6591 if (get_remote_inferior (inf)->may_wildcard_vcont)
6592 {
6593 vcont_builder.push_action (ptid_t (inf->pid),
6594 false, GDB_SIGNAL_0);
6595 }
6596 }
6597 }
6598 }
6599
6600 vcont_builder.flush ();
6601 }
6602
6603 \f
6604
6605 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6606 thread, all threads of a remote process, or all threads of all
6607 processes. */
6608
6609 void
6610 remote_target::remote_stop_ns (ptid_t ptid)
6611 {
6612 struct remote_state *rs = get_remote_state ();
6613 char *p = rs->buf.data ();
6614 char *endp = p + get_remote_packet_size ();
6615
6616 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6617 remote_vcont_probe ();
6618
6619 if (!rs->supports_vCont.t)
6620 error (_("Remote server does not support stopping threads"));
6621
6622 if (ptid == minus_one_ptid
6623 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6624 p += xsnprintf (p, endp - p, "vCont;t");
6625 else
6626 {
6627 ptid_t nptid;
6628
6629 p += xsnprintf (p, endp - p, "vCont;t:");
6630
6631 if (ptid.is_pid ())
6632 /* All (-1) threads of process. */
6633 nptid = ptid_t (ptid.pid (), -1, 0);
6634 else
6635 {
6636 /* Small optimization: if we already have a stop reply for
6637 this thread, no use in telling the stub we want this
6638 stopped. */
6639 if (peek_stop_reply (ptid))
6640 return;
6641
6642 nptid = ptid;
6643 }
6644
6645 write_ptid (p, endp, nptid);
6646 }
6647
6648 /* In non-stop, we get an immediate OK reply. The stop reply will
6649 come in asynchronously by notification. */
6650 putpkt (rs->buf);
6651 getpkt (&rs->buf, 0);
6652 if (strcmp (rs->buf.data (), "OK") != 0)
6653 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid),
6654 rs->buf.data ());
6655 }
6656
6657 /* All-stop version of target_interrupt. Sends a break or a ^C to
6658 interrupt the remote target. It is undefined which thread of which
6659 process reports the interrupt. */
6660
6661 void
6662 remote_target::remote_interrupt_as ()
6663 {
6664 struct remote_state *rs = get_remote_state ();
6665
6666 rs->ctrlc_pending_p = 1;
6667
6668 /* If the inferior is stopped already, but the core didn't know
6669 about it yet, just ignore the request. The cached wait status
6670 will be collected in remote_wait. */
6671 if (rs->cached_wait_status)
6672 return;
6673
6674 /* Send interrupt_sequence to remote target. */
6675 send_interrupt_sequence ();
6676 }
6677
6678 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6679 the remote target. It is undefined which thread of which process
6680 reports the interrupt. Throws an error if the packet is not
6681 supported by the server. */
6682
6683 void
6684 remote_target::remote_interrupt_ns ()
6685 {
6686 struct remote_state *rs = get_remote_state ();
6687 char *p = rs->buf.data ();
6688 char *endp = p + get_remote_packet_size ();
6689
6690 xsnprintf (p, endp - p, "vCtrlC");
6691
6692 /* In non-stop, we get an immediate OK reply. The stop reply will
6693 come in asynchronously by notification. */
6694 putpkt (rs->buf);
6695 getpkt (&rs->buf, 0);
6696
6697 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6698 {
6699 case PACKET_OK:
6700 break;
6701 case PACKET_UNKNOWN:
6702 error (_("No support for interrupting the remote target."));
6703 case PACKET_ERROR:
6704 error (_("Interrupting target failed: %s"), rs->buf.data ());
6705 }
6706 }
6707
6708 /* Implement the to_stop function for the remote targets. */
6709
6710 void
6711 remote_target::stop (ptid_t ptid)
6712 {
6713 if (remote_debug)
6714 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6715
6716 if (target_is_non_stop_p ())
6717 remote_stop_ns (ptid);
6718 else
6719 {
6720 /* We don't currently have a way to transparently pause the
6721 remote target in all-stop mode. Interrupt it instead. */
6722 remote_interrupt_as ();
6723 }
6724 }
6725
6726 /* Implement the to_interrupt function for the remote targets. */
6727
6728 void
6729 remote_target::interrupt ()
6730 {
6731 if (remote_debug)
6732 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6733
6734 if (target_is_non_stop_p ())
6735 remote_interrupt_ns ();
6736 else
6737 remote_interrupt_as ();
6738 }
6739
6740 /* Implement the to_pass_ctrlc function for the remote targets. */
6741
6742 void
6743 remote_target::pass_ctrlc ()
6744 {
6745 struct remote_state *rs = get_remote_state ();
6746
6747 if (remote_debug)
6748 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6749
6750 /* If we're starting up, we're not fully synced yet. Quit
6751 immediately. */
6752 if (rs->starting_up)
6753 quit ();
6754 /* If ^C has already been sent once, offer to disconnect. */
6755 else if (rs->ctrlc_pending_p)
6756 interrupt_query ();
6757 else
6758 target_interrupt ();
6759 }
6760
6761 /* Ask the user what to do when an interrupt is received. */
6762
6763 void
6764 remote_target::interrupt_query ()
6765 {
6766 struct remote_state *rs = get_remote_state ();
6767
6768 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6769 {
6770 if (query (_("The target is not responding to interrupt requests.\n"
6771 "Stop debugging it? ")))
6772 {
6773 remote_unpush_target ();
6774 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6775 }
6776 }
6777 else
6778 {
6779 if (query (_("Interrupted while waiting for the program.\n"
6780 "Give up waiting? ")))
6781 quit ();
6782 }
6783 }
6784
6785 /* Enable/disable target terminal ownership. Most targets can use
6786 terminal groups to control terminal ownership. Remote targets are
6787 different in that explicit transfer of ownership to/from GDB/target
6788 is required. */
6789
6790 void
6791 remote_target::terminal_inferior ()
6792 {
6793 /* NOTE: At this point we could also register our selves as the
6794 recipient of all input. Any characters typed could then be
6795 passed on down to the target. */
6796 }
6797
6798 void
6799 remote_target::terminal_ours ()
6800 {
6801 }
6802
6803 static void
6804 remote_console_output (const char *msg)
6805 {
6806 const char *p;
6807
6808 for (p = msg; p[0] && p[1]; p += 2)
6809 {
6810 char tb[2];
6811 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6812
6813 tb[0] = c;
6814 tb[1] = 0;
6815 fputs_unfiltered (tb, gdb_stdtarg);
6816 }
6817 gdb_flush (gdb_stdtarg);
6818 }
6819
6820 DEF_VEC_O(cached_reg_t);
6821
6822 typedef struct stop_reply
6823 {
6824 struct notif_event base;
6825
6826 /* The identifier of the thread about this event */
6827 ptid_t ptid;
6828
6829 /* The remote state this event is associated with. When the remote
6830 connection, represented by a remote_state object, is closed,
6831 all the associated stop_reply events should be released. */
6832 struct remote_state *rs;
6833
6834 struct target_waitstatus ws;
6835
6836 /* The architecture associated with the expedited registers. */
6837 gdbarch *arch;
6838
6839 /* Expedited registers. This makes remote debugging a bit more
6840 efficient for those targets that provide critical registers as
6841 part of their normal status mechanism (as another roundtrip to
6842 fetch them is avoided). */
6843 VEC(cached_reg_t) *regcache;
6844
6845 enum target_stop_reason stop_reason;
6846
6847 CORE_ADDR watch_data_address;
6848
6849 int core;
6850 } *stop_reply_p;
6851
6852 static void
6853 stop_reply_xfree (struct stop_reply *r)
6854 {
6855 notif_event_xfree ((struct notif_event *) r);
6856 }
6857
6858 /* Return the length of the stop reply queue. */
6859
6860 int
6861 remote_target::stop_reply_queue_length ()
6862 {
6863 remote_state *rs = get_remote_state ();
6864 return rs->stop_reply_queue.size ();
6865 }
6866
6867 void
6868 remote_notif_stop_parse (remote_target *remote,
6869 struct notif_client *self, const char *buf,
6870 struct notif_event *event)
6871 {
6872 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6873 }
6874
6875 static void
6876 remote_notif_stop_ack (remote_target *remote,
6877 struct notif_client *self, const char *buf,
6878 struct notif_event *event)
6879 {
6880 struct stop_reply *stop_reply = (struct stop_reply *) event;
6881
6882 /* acknowledge */
6883 putpkt (remote, self->ack_command);
6884
6885 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6886 {
6887 /* We got an unknown stop reply. */
6888 error (_("Unknown stop reply"));
6889 }
6890
6891 remote->push_stop_reply (stop_reply);
6892 }
6893
6894 static int
6895 remote_notif_stop_can_get_pending_events (remote_target *remote,
6896 struct notif_client *self)
6897 {
6898 /* We can't get pending events in remote_notif_process for
6899 notification stop, and we have to do this in remote_wait_ns
6900 instead. If we fetch all queued events from stub, remote stub
6901 may exit and we have no chance to process them back in
6902 remote_wait_ns. */
6903 remote_state *rs = remote->get_remote_state ();
6904 mark_async_event_handler (rs->remote_async_inferior_event_token);
6905 return 0;
6906 }
6907
6908 static void
6909 stop_reply_dtr (struct notif_event *event)
6910 {
6911 struct stop_reply *r = (struct stop_reply *) event;
6912 cached_reg_t *reg;
6913 int ix;
6914
6915 for (ix = 0;
6916 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6917 ix++)
6918 xfree (reg->data);
6919
6920 VEC_free (cached_reg_t, r->regcache);
6921 }
6922
6923 static struct notif_event *
6924 remote_notif_stop_alloc_reply (void)
6925 {
6926 /* We cast to a pointer to the "base class". */
6927 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6928
6929 r->dtr = stop_reply_dtr;
6930
6931 return r;
6932 }
6933
6934 /* A client of notification Stop. */
6935
6936 struct notif_client notif_client_stop =
6937 {
6938 "Stop",
6939 "vStopped",
6940 remote_notif_stop_parse,
6941 remote_notif_stop_ack,
6942 remote_notif_stop_can_get_pending_events,
6943 remote_notif_stop_alloc_reply,
6944 REMOTE_NOTIF_STOP,
6945 };
6946
6947 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6948 the pid of the process that owns the threads we want to check, or
6949 -1 if we want to check all threads. */
6950
6951 static int
6952 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6953 ptid_t thread_ptid)
6954 {
6955 if (ws->kind == TARGET_WAITKIND_FORKED
6956 || ws->kind == TARGET_WAITKIND_VFORKED)
6957 {
6958 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6959 return 1;
6960 }
6961
6962 return 0;
6963 }
6964
6965 /* Return the thread's pending status used to determine whether the
6966 thread is a fork parent stopped at a fork event. */
6967
6968 static struct target_waitstatus *
6969 thread_pending_fork_status (struct thread_info *thread)
6970 {
6971 if (thread->suspend.waitstatus_pending_p)
6972 return &thread->suspend.waitstatus;
6973 else
6974 return &thread->pending_follow;
6975 }
6976
6977 /* Determine if THREAD is a pending fork parent thread. */
6978
6979 static int
6980 is_pending_fork_parent_thread (struct thread_info *thread)
6981 {
6982 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6983 int pid = -1;
6984
6985 return is_pending_fork_parent (ws, pid, thread->ptid);
6986 }
6987
6988 /* If CONTEXT contains any fork child threads that have not been
6989 reported yet, remove them from the CONTEXT list. If such a
6990 thread exists it is because we are stopped at a fork catchpoint
6991 and have not yet called follow_fork, which will set up the
6992 host-side data structures for the new process. */
6993
6994 void
6995 remote_target::remove_new_fork_children (threads_listing_context *context)
6996 {
6997 int pid = -1;
6998 struct notif_client *notif = &notif_client_stop;
6999
7000 /* For any threads stopped at a fork event, remove the corresponding
7001 fork child threads from the CONTEXT list. */
7002 for (thread_info *thread : all_non_exited_threads ())
7003 {
7004 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7005
7006 if (is_pending_fork_parent (ws, pid, thread->ptid))
7007 context->remove_thread (ws->value.related_pid);
7008 }
7009
7010 /* Check for any pending fork events (not reported or processed yet)
7011 in process PID and remove those fork child threads from the
7012 CONTEXT list as well. */
7013 remote_notif_get_pending_events (notif);
7014 for (auto &event : get_remote_state ()->stop_reply_queue)
7015 if (event->ws.kind == TARGET_WAITKIND_FORKED
7016 || event->ws.kind == TARGET_WAITKIND_VFORKED
7017 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7018 context->remove_thread (event->ws.value.related_pid);
7019 }
7020
7021 /* Check whether any event pending in the vStopped queue would prevent
7022 a global or process wildcard vCont action. Clear
7023 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7024 and clear the event inferior's may_wildcard_vcont flag if we can't
7025 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7026
7027 void
7028 remote_target::check_pending_events_prevent_wildcard_vcont
7029 (int *may_global_wildcard)
7030 {
7031 struct notif_client *notif = &notif_client_stop;
7032
7033 remote_notif_get_pending_events (notif);
7034 for (auto &event : get_remote_state ()->stop_reply_queue)
7035 {
7036 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7037 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7038 continue;
7039
7040 if (event->ws.kind == TARGET_WAITKIND_FORKED
7041 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7042 *may_global_wildcard = 0;
7043
7044 struct inferior *inf = find_inferior_ptid (event->ptid);
7045
7046 /* This may be the first time we heard about this process.
7047 Regardless, we must not do a global wildcard resume, otherwise
7048 we'd resume this process too. */
7049 *may_global_wildcard = 0;
7050 if (inf != NULL)
7051 get_remote_inferior (inf)->may_wildcard_vcont = false;
7052 }
7053 }
7054
7055 /* Discard all pending stop replies of inferior INF. */
7056
7057 void
7058 remote_target::discard_pending_stop_replies (struct inferior *inf)
7059 {
7060 struct stop_reply *reply;
7061 struct remote_state *rs = get_remote_state ();
7062 struct remote_notif_state *rns = rs->notif_state;
7063
7064 /* This function can be notified when an inferior exists. When the
7065 target is not remote, the notification state is NULL. */
7066 if (rs->remote_desc == NULL)
7067 return;
7068
7069 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7070
7071 /* Discard the in-flight notification. */
7072 if (reply != NULL && reply->ptid.pid () == inf->pid)
7073 {
7074 stop_reply_xfree (reply);
7075 rns->pending_event[notif_client_stop.id] = NULL;
7076 }
7077
7078 /* Discard the stop replies we have already pulled with
7079 vStopped. */
7080 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7081 rs->stop_reply_queue.end (),
7082 [=] (const stop_reply_up &event)
7083 {
7084 return event->ptid.pid () == inf->pid;
7085 });
7086 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7087 }
7088
7089 /* Discard the stop replies for RS in stop_reply_queue. */
7090
7091 void
7092 remote_target::discard_pending_stop_replies_in_queue ()
7093 {
7094 remote_state *rs = get_remote_state ();
7095
7096 /* Discard the stop replies we have already pulled with
7097 vStopped. */
7098 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7099 rs->stop_reply_queue.end (),
7100 [=] (const stop_reply_up &event)
7101 {
7102 return event->rs == rs;
7103 });
7104 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7105 }
7106
7107 /* Remove the first reply in 'stop_reply_queue' which matches
7108 PTID. */
7109
7110 struct stop_reply *
7111 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7112 {
7113 remote_state *rs = get_remote_state ();
7114
7115 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7116 rs->stop_reply_queue.end (),
7117 [=] (const stop_reply_up &event)
7118 {
7119 return event->ptid.matches (ptid);
7120 });
7121 struct stop_reply *result;
7122 if (iter == rs->stop_reply_queue.end ())
7123 result = nullptr;
7124 else
7125 {
7126 result = iter->release ();
7127 rs->stop_reply_queue.erase (iter);
7128 }
7129
7130 if (notif_debug)
7131 fprintf_unfiltered (gdb_stdlog,
7132 "notif: discard queued event: 'Stop' in %s\n",
7133 target_pid_to_str (ptid));
7134
7135 return result;
7136 }
7137
7138 /* Look for a queued stop reply belonging to PTID. If one is found,
7139 remove it from the queue, and return it. Returns NULL if none is
7140 found. If there are still queued events left to process, tell the
7141 event loop to get back to target_wait soon. */
7142
7143 struct stop_reply *
7144 remote_target::queued_stop_reply (ptid_t ptid)
7145 {
7146 remote_state *rs = get_remote_state ();
7147 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7148
7149 if (!rs->stop_reply_queue.empty ())
7150 {
7151 /* There's still at least an event left. */
7152 mark_async_event_handler (rs->remote_async_inferior_event_token);
7153 }
7154
7155 return r;
7156 }
7157
7158 /* Push a fully parsed stop reply in the stop reply queue. Since we
7159 know that we now have at least one queued event left to pass to the
7160 core side, tell the event loop to get back to target_wait soon. */
7161
7162 void
7163 remote_target::push_stop_reply (struct stop_reply *new_event)
7164 {
7165 remote_state *rs = get_remote_state ();
7166 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7167
7168 if (notif_debug)
7169 fprintf_unfiltered (gdb_stdlog,
7170 "notif: push 'Stop' %s to queue %d\n",
7171 target_pid_to_str (new_event->ptid),
7172 int (rs->stop_reply_queue.size ()));
7173
7174 mark_async_event_handler (rs->remote_async_inferior_event_token);
7175 }
7176
7177 /* Returns true if we have a stop reply for PTID. */
7178
7179 int
7180 remote_target::peek_stop_reply (ptid_t ptid)
7181 {
7182 remote_state *rs = get_remote_state ();
7183 for (auto &event : rs->stop_reply_queue)
7184 if (ptid == event->ptid
7185 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7186 return 1;
7187 return 0;
7188 }
7189
7190 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7191 starting with P and ending with PEND matches PREFIX. */
7192
7193 static int
7194 strprefix (const char *p, const char *pend, const char *prefix)
7195 {
7196 for ( ; p < pend; p++, prefix++)
7197 if (*p != *prefix)
7198 return 0;
7199 return *prefix == '\0';
7200 }
7201
7202 /* Parse the stop reply in BUF. Either the function succeeds, and the
7203 result is stored in EVENT, or throws an error. */
7204
7205 void
7206 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7207 {
7208 remote_arch_state *rsa = NULL;
7209 ULONGEST addr;
7210 const char *p;
7211 int skipregs = 0;
7212
7213 event->ptid = null_ptid;
7214 event->rs = get_remote_state ();
7215 event->ws.kind = TARGET_WAITKIND_IGNORE;
7216 event->ws.value.integer = 0;
7217 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7218 event->regcache = NULL;
7219 event->core = -1;
7220
7221 switch (buf[0])
7222 {
7223 case 'T': /* Status with PC, SP, FP, ... */
7224 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7225 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7226 ss = signal number
7227 n... = register number
7228 r... = register contents
7229 */
7230
7231 p = &buf[3]; /* after Txx */
7232 while (*p)
7233 {
7234 const char *p1;
7235 int fieldsize;
7236
7237 p1 = strchr (p, ':');
7238 if (p1 == NULL)
7239 error (_("Malformed packet(a) (missing colon): %s\n\
7240 Packet: '%s'\n"),
7241 p, buf);
7242 if (p == p1)
7243 error (_("Malformed packet(a) (missing register number): %s\n\
7244 Packet: '%s'\n"),
7245 p, buf);
7246
7247 /* Some "registers" are actually extended stop information.
7248 Note if you're adding a new entry here: GDB 7.9 and
7249 earlier assume that all register "numbers" that start
7250 with an hex digit are real register numbers. Make sure
7251 the server only sends such a packet if it knows the
7252 client understands it. */
7253
7254 if (strprefix (p, p1, "thread"))
7255 event->ptid = read_ptid (++p1, &p);
7256 else if (strprefix (p, p1, "syscall_entry"))
7257 {
7258 ULONGEST sysno;
7259
7260 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7261 p = unpack_varlen_hex (++p1, &sysno);
7262 event->ws.value.syscall_number = (int) sysno;
7263 }
7264 else if (strprefix (p, p1, "syscall_return"))
7265 {
7266 ULONGEST sysno;
7267
7268 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7269 p = unpack_varlen_hex (++p1, &sysno);
7270 event->ws.value.syscall_number = (int) sysno;
7271 }
7272 else if (strprefix (p, p1, "watch")
7273 || strprefix (p, p1, "rwatch")
7274 || strprefix (p, p1, "awatch"))
7275 {
7276 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7277 p = unpack_varlen_hex (++p1, &addr);
7278 event->watch_data_address = (CORE_ADDR) addr;
7279 }
7280 else if (strprefix (p, p1, "swbreak"))
7281 {
7282 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7283
7284 /* Make sure the stub doesn't forget to indicate support
7285 with qSupported. */
7286 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7287 error (_("Unexpected swbreak stop reason"));
7288
7289 /* The value part is documented as "must be empty",
7290 though we ignore it, in case we ever decide to make
7291 use of it in a backward compatible way. */
7292 p = strchrnul (p1 + 1, ';');
7293 }
7294 else if (strprefix (p, p1, "hwbreak"))
7295 {
7296 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7297
7298 /* Make sure the stub doesn't forget to indicate support
7299 with qSupported. */
7300 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7301 error (_("Unexpected hwbreak stop reason"));
7302
7303 /* See above. */
7304 p = strchrnul (p1 + 1, ';');
7305 }
7306 else if (strprefix (p, p1, "library"))
7307 {
7308 event->ws.kind = TARGET_WAITKIND_LOADED;
7309 p = strchrnul (p1 + 1, ';');
7310 }
7311 else if (strprefix (p, p1, "replaylog"))
7312 {
7313 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7314 /* p1 will indicate "begin" or "end", but it makes
7315 no difference for now, so ignore it. */
7316 p = strchrnul (p1 + 1, ';');
7317 }
7318 else if (strprefix (p, p1, "core"))
7319 {
7320 ULONGEST c;
7321
7322 p = unpack_varlen_hex (++p1, &c);
7323 event->core = c;
7324 }
7325 else if (strprefix (p, p1, "fork"))
7326 {
7327 event->ws.value.related_pid = read_ptid (++p1, &p);
7328 event->ws.kind = TARGET_WAITKIND_FORKED;
7329 }
7330 else if (strprefix (p, p1, "vfork"))
7331 {
7332 event->ws.value.related_pid = read_ptid (++p1, &p);
7333 event->ws.kind = TARGET_WAITKIND_VFORKED;
7334 }
7335 else if (strprefix (p, p1, "vforkdone"))
7336 {
7337 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7338 p = strchrnul (p1 + 1, ';');
7339 }
7340 else if (strprefix (p, p1, "exec"))
7341 {
7342 ULONGEST ignored;
7343 char pathname[PATH_MAX];
7344 int pathlen;
7345
7346 /* Determine the length of the execd pathname. */
7347 p = unpack_varlen_hex (++p1, &ignored);
7348 pathlen = (p - p1) / 2;
7349
7350 /* Save the pathname for event reporting and for
7351 the next run command. */
7352 hex2bin (p1, (gdb_byte *) pathname, pathlen);
7353 pathname[pathlen] = '\0';
7354
7355 /* This is freed during event handling. */
7356 event->ws.value.execd_pathname = xstrdup (pathname);
7357 event->ws.kind = TARGET_WAITKIND_EXECD;
7358
7359 /* Skip the registers included in this packet, since
7360 they may be for an architecture different from the
7361 one used by the original program. */
7362 skipregs = 1;
7363 }
7364 else if (strprefix (p, p1, "create"))
7365 {
7366 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7367 p = strchrnul (p1 + 1, ';');
7368 }
7369 else
7370 {
7371 ULONGEST pnum;
7372 const char *p_temp;
7373
7374 if (skipregs)
7375 {
7376 p = strchrnul (p1 + 1, ';');
7377 p++;
7378 continue;
7379 }
7380
7381 /* Maybe a real ``P'' register number. */
7382 p_temp = unpack_varlen_hex (p, &pnum);
7383 /* If the first invalid character is the colon, we got a
7384 register number. Otherwise, it's an unknown stop
7385 reason. */
7386 if (p_temp == p1)
7387 {
7388 /* If we haven't parsed the event's thread yet, find
7389 it now, in order to find the architecture of the
7390 reported expedited registers. */
7391 if (event->ptid == null_ptid)
7392 {
7393 const char *thr = strstr (p1 + 1, ";thread:");
7394 if (thr != NULL)
7395 event->ptid = read_ptid (thr + strlen (";thread:"),
7396 NULL);
7397 else
7398 {
7399 /* Either the current thread hasn't changed,
7400 or the inferior is not multi-threaded.
7401 The event must be for the thread we last
7402 set as (or learned as being) current. */
7403 event->ptid = event->rs->general_thread;
7404 }
7405 }
7406
7407 if (rsa == NULL)
7408 {
7409 inferior *inf = (event->ptid == null_ptid
7410 ? NULL
7411 : find_inferior_ptid (event->ptid));
7412 /* If this is the first time we learn anything
7413 about this process, skip the registers
7414 included in this packet, since we don't yet
7415 know which architecture to use to parse them.
7416 We'll determine the architecture later when
7417 we process the stop reply and retrieve the
7418 target description, via
7419 remote_notice_new_inferior ->
7420 post_create_inferior. */
7421 if (inf == NULL)
7422 {
7423 p = strchrnul (p1 + 1, ';');
7424 p++;
7425 continue;
7426 }
7427
7428 event->arch = inf->gdbarch;
7429 rsa = event->rs->get_remote_arch_state (event->arch);
7430 }
7431
7432 packet_reg *reg
7433 = packet_reg_from_pnum (event->arch, rsa, pnum);
7434 cached_reg_t cached_reg;
7435
7436 if (reg == NULL)
7437 error (_("Remote sent bad register number %s: %s\n\
7438 Packet: '%s'\n"),
7439 hex_string (pnum), p, buf);
7440
7441 cached_reg.num = reg->regnum;
7442 cached_reg.data = (gdb_byte *)
7443 xmalloc (register_size (event->arch, reg->regnum));
7444
7445 p = p1 + 1;
7446 fieldsize = hex2bin (p, cached_reg.data,
7447 register_size (event->arch, reg->regnum));
7448 p += 2 * fieldsize;
7449 if (fieldsize < register_size (event->arch, reg->regnum))
7450 warning (_("Remote reply is too short: %s"), buf);
7451
7452 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
7453 }
7454 else
7455 {
7456 /* Not a number. Silently skip unknown optional
7457 info. */
7458 p = strchrnul (p1 + 1, ';');
7459 }
7460 }
7461
7462 if (*p != ';')
7463 error (_("Remote register badly formatted: %s\nhere: %s"),
7464 buf, p);
7465 ++p;
7466 }
7467
7468 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7469 break;
7470
7471 /* fall through */
7472 case 'S': /* Old style status, just signal only. */
7473 {
7474 int sig;
7475
7476 event->ws.kind = TARGET_WAITKIND_STOPPED;
7477 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7478 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7479 event->ws.value.sig = (enum gdb_signal) sig;
7480 else
7481 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7482 }
7483 break;
7484 case 'w': /* Thread exited. */
7485 {
7486 ULONGEST value;
7487
7488 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7489 p = unpack_varlen_hex (&buf[1], &value);
7490 event->ws.value.integer = value;
7491 if (*p != ';')
7492 error (_("stop reply packet badly formatted: %s"), buf);
7493 event->ptid = read_ptid (++p, NULL);
7494 break;
7495 }
7496 case 'W': /* Target exited. */
7497 case 'X':
7498 {
7499 int pid;
7500 ULONGEST value;
7501
7502 /* GDB used to accept only 2 hex chars here. Stubs should
7503 only send more if they detect GDB supports multi-process
7504 support. */
7505 p = unpack_varlen_hex (&buf[1], &value);
7506
7507 if (buf[0] == 'W')
7508 {
7509 /* The remote process exited. */
7510 event->ws.kind = TARGET_WAITKIND_EXITED;
7511 event->ws.value.integer = value;
7512 }
7513 else
7514 {
7515 /* The remote process exited with a signal. */
7516 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7517 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7518 event->ws.value.sig = (enum gdb_signal) value;
7519 else
7520 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7521 }
7522
7523 /* If no process is specified, assume inferior_ptid. */
7524 pid = inferior_ptid.pid ();
7525 if (*p == '\0')
7526 ;
7527 else if (*p == ';')
7528 {
7529 p++;
7530
7531 if (*p == '\0')
7532 ;
7533 else if (startswith (p, "process:"))
7534 {
7535 ULONGEST upid;
7536
7537 p += sizeof ("process:") - 1;
7538 unpack_varlen_hex (p, &upid);
7539 pid = upid;
7540 }
7541 else
7542 error (_("unknown stop reply packet: %s"), buf);
7543 }
7544 else
7545 error (_("unknown stop reply packet: %s"), buf);
7546 event->ptid = ptid_t (pid);
7547 }
7548 break;
7549 case 'N':
7550 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7551 event->ptid = minus_one_ptid;
7552 break;
7553 }
7554
7555 if (target_is_non_stop_p () && event->ptid == null_ptid)
7556 error (_("No process or thread specified in stop reply: %s"), buf);
7557 }
7558
7559 /* When the stub wants to tell GDB about a new notification reply, it
7560 sends a notification (%Stop, for example). Those can come it at
7561 any time, hence, we have to make sure that any pending
7562 putpkt/getpkt sequence we're making is finished, before querying
7563 the stub for more events with the corresponding ack command
7564 (vStopped, for example). E.g., if we started a vStopped sequence
7565 immediately upon receiving the notification, something like this
7566 could happen:
7567
7568 1.1) --> Hg 1
7569 1.2) <-- OK
7570 1.3) --> g
7571 1.4) <-- %Stop
7572 1.5) --> vStopped
7573 1.6) <-- (registers reply to step #1.3)
7574
7575 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7576 query.
7577
7578 To solve this, whenever we parse a %Stop notification successfully,
7579 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7580 doing whatever we were doing:
7581
7582 2.1) --> Hg 1
7583 2.2) <-- OK
7584 2.3) --> g
7585 2.4) <-- %Stop
7586 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7587 2.5) <-- (registers reply to step #2.3)
7588
7589 Eventualy after step #2.5, we return to the event loop, which
7590 notices there's an event on the
7591 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7592 associated callback --- the function below. At this point, we're
7593 always safe to start a vStopped sequence. :
7594
7595 2.6) --> vStopped
7596 2.7) <-- T05 thread:2
7597 2.8) --> vStopped
7598 2.9) --> OK
7599 */
7600
7601 void
7602 remote_target::remote_notif_get_pending_events (notif_client *nc)
7603 {
7604 struct remote_state *rs = get_remote_state ();
7605
7606 if (rs->notif_state->pending_event[nc->id] != NULL)
7607 {
7608 if (notif_debug)
7609 fprintf_unfiltered (gdb_stdlog,
7610 "notif: process: '%s' ack pending event\n",
7611 nc->name);
7612
7613 /* acknowledge */
7614 nc->ack (this, nc, rs->buf.data (),
7615 rs->notif_state->pending_event[nc->id]);
7616 rs->notif_state->pending_event[nc->id] = NULL;
7617
7618 while (1)
7619 {
7620 getpkt (&rs->buf, 0);
7621 if (strcmp (rs->buf.data (), "OK") == 0)
7622 break;
7623 else
7624 remote_notif_ack (this, nc, rs->buf.data ());
7625 }
7626 }
7627 else
7628 {
7629 if (notif_debug)
7630 fprintf_unfiltered (gdb_stdlog,
7631 "notif: process: '%s' no pending reply\n",
7632 nc->name);
7633 }
7634 }
7635
7636 /* Wrapper around remote_target::remote_notif_get_pending_events to
7637 avoid having to export the whole remote_target class. */
7638
7639 void
7640 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7641 {
7642 remote->remote_notif_get_pending_events (nc);
7643 }
7644
7645 /* Called when it is decided that STOP_REPLY holds the info of the
7646 event that is to be returned to the core. This function always
7647 destroys STOP_REPLY. */
7648
7649 ptid_t
7650 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7651 struct target_waitstatus *status)
7652 {
7653 ptid_t ptid;
7654
7655 *status = stop_reply->ws;
7656 ptid = stop_reply->ptid;
7657
7658 /* If no thread/process was reported by the stub, assume the current
7659 inferior. */
7660 if (ptid == null_ptid)
7661 ptid = inferior_ptid;
7662
7663 if (status->kind != TARGET_WAITKIND_EXITED
7664 && status->kind != TARGET_WAITKIND_SIGNALLED
7665 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7666 {
7667 /* Expedited registers. */
7668 if (stop_reply->regcache)
7669 {
7670 struct regcache *regcache
7671 = get_thread_arch_regcache (ptid, stop_reply->arch);
7672 cached_reg_t *reg;
7673 int ix;
7674
7675 for (ix = 0;
7676 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7677 ix++)
7678 {
7679 regcache->raw_supply (reg->num, reg->data);
7680 xfree (reg->data);
7681 }
7682
7683 VEC_free (cached_reg_t, stop_reply->regcache);
7684 }
7685
7686 remote_notice_new_inferior (ptid, 0);
7687 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7688 remote_thr->core = stop_reply->core;
7689 remote_thr->stop_reason = stop_reply->stop_reason;
7690 remote_thr->watch_data_address = stop_reply->watch_data_address;
7691 remote_thr->vcont_resumed = 0;
7692 }
7693
7694 stop_reply_xfree (stop_reply);
7695 return ptid;
7696 }
7697
7698 /* The non-stop mode version of target_wait. */
7699
7700 ptid_t
7701 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7702 {
7703 struct remote_state *rs = get_remote_state ();
7704 struct stop_reply *stop_reply;
7705 int ret;
7706 int is_notif = 0;
7707
7708 /* If in non-stop mode, get out of getpkt even if a
7709 notification is received. */
7710
7711 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7712 while (1)
7713 {
7714 if (ret != -1 && !is_notif)
7715 switch (rs->buf[0])
7716 {
7717 case 'E': /* Error of some sort. */
7718 /* We're out of sync with the target now. Did it continue
7719 or not? We can't tell which thread it was in non-stop,
7720 so just ignore this. */
7721 warning (_("Remote failure reply: %s"), rs->buf.data ());
7722 break;
7723 case 'O': /* Console output. */
7724 remote_console_output (&rs->buf[1]);
7725 break;
7726 default:
7727 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7728 break;
7729 }
7730
7731 /* Acknowledge a pending stop reply that may have arrived in the
7732 mean time. */
7733 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7734 remote_notif_get_pending_events (&notif_client_stop);
7735
7736 /* If indeed we noticed a stop reply, we're done. */
7737 stop_reply = queued_stop_reply (ptid);
7738 if (stop_reply != NULL)
7739 return process_stop_reply (stop_reply, status);
7740
7741 /* Still no event. If we're just polling for an event, then
7742 return to the event loop. */
7743 if (options & TARGET_WNOHANG)
7744 {
7745 status->kind = TARGET_WAITKIND_IGNORE;
7746 return minus_one_ptid;
7747 }
7748
7749 /* Otherwise do a blocking wait. */
7750 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7751 }
7752 }
7753
7754 /* Wait until the remote machine stops, then return, storing status in
7755 STATUS just as `wait' would. */
7756
7757 ptid_t
7758 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7759 {
7760 struct remote_state *rs = get_remote_state ();
7761 ptid_t event_ptid = null_ptid;
7762 char *buf;
7763 struct stop_reply *stop_reply;
7764
7765 again:
7766
7767 status->kind = TARGET_WAITKIND_IGNORE;
7768 status->value.integer = 0;
7769
7770 stop_reply = queued_stop_reply (ptid);
7771 if (stop_reply != NULL)
7772 return process_stop_reply (stop_reply, status);
7773
7774 if (rs->cached_wait_status)
7775 /* Use the cached wait status, but only once. */
7776 rs->cached_wait_status = 0;
7777 else
7778 {
7779 int ret;
7780 int is_notif;
7781 int forever = ((options & TARGET_WNOHANG) == 0
7782 && rs->wait_forever_enabled_p);
7783
7784 if (!rs->waiting_for_stop_reply)
7785 {
7786 status->kind = TARGET_WAITKIND_NO_RESUMED;
7787 return minus_one_ptid;
7788 }
7789
7790 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7791 _never_ wait for ever -> test on target_is_async_p().
7792 However, before we do that we need to ensure that the caller
7793 knows how to take the target into/out of async mode. */
7794 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7795
7796 /* GDB gets a notification. Return to core as this event is
7797 not interesting. */
7798 if (ret != -1 && is_notif)
7799 return minus_one_ptid;
7800
7801 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7802 return minus_one_ptid;
7803 }
7804
7805 buf = rs->buf.data ();
7806
7807 /* Assume that the target has acknowledged Ctrl-C unless we receive
7808 an 'F' or 'O' packet. */
7809 if (buf[0] != 'F' && buf[0] != 'O')
7810 rs->ctrlc_pending_p = 0;
7811
7812 switch (buf[0])
7813 {
7814 case 'E': /* Error of some sort. */
7815 /* We're out of sync with the target now. Did it continue or
7816 not? Not is more likely, so report a stop. */
7817 rs->waiting_for_stop_reply = 0;
7818
7819 warning (_("Remote failure reply: %s"), buf);
7820 status->kind = TARGET_WAITKIND_STOPPED;
7821 status->value.sig = GDB_SIGNAL_0;
7822 break;
7823 case 'F': /* File-I/O request. */
7824 /* GDB may access the inferior memory while handling the File-I/O
7825 request, but we don't want GDB accessing memory while waiting
7826 for a stop reply. See the comments in putpkt_binary. Set
7827 waiting_for_stop_reply to 0 temporarily. */
7828 rs->waiting_for_stop_reply = 0;
7829 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7830 rs->ctrlc_pending_p = 0;
7831 /* GDB handled the File-I/O request, and the target is running
7832 again. Keep waiting for events. */
7833 rs->waiting_for_stop_reply = 1;
7834 break;
7835 case 'N': case 'T': case 'S': case 'X': case 'W':
7836 {
7837 /* There is a stop reply to handle. */
7838 rs->waiting_for_stop_reply = 0;
7839
7840 stop_reply
7841 = (struct stop_reply *) remote_notif_parse (this,
7842 &notif_client_stop,
7843 rs->buf.data ());
7844
7845 event_ptid = process_stop_reply (stop_reply, status);
7846 break;
7847 }
7848 case 'O': /* Console output. */
7849 remote_console_output (buf + 1);
7850 break;
7851 case '\0':
7852 if (rs->last_sent_signal != GDB_SIGNAL_0)
7853 {
7854 /* Zero length reply means that we tried 'S' or 'C' and the
7855 remote system doesn't support it. */
7856 target_terminal::ours_for_output ();
7857 printf_filtered
7858 ("Can't send signals to this remote system. %s not sent.\n",
7859 gdb_signal_to_name (rs->last_sent_signal));
7860 rs->last_sent_signal = GDB_SIGNAL_0;
7861 target_terminal::inferior ();
7862
7863 strcpy (buf, rs->last_sent_step ? "s" : "c");
7864 putpkt (buf);
7865 break;
7866 }
7867 /* fallthrough */
7868 default:
7869 warning (_("Invalid remote reply: %s"), buf);
7870 break;
7871 }
7872
7873 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7874 return minus_one_ptid;
7875 else if (status->kind == TARGET_WAITKIND_IGNORE)
7876 {
7877 /* Nothing interesting happened. If we're doing a non-blocking
7878 poll, we're done. Otherwise, go back to waiting. */
7879 if (options & TARGET_WNOHANG)
7880 return minus_one_ptid;
7881 else
7882 goto again;
7883 }
7884 else if (status->kind != TARGET_WAITKIND_EXITED
7885 && status->kind != TARGET_WAITKIND_SIGNALLED)
7886 {
7887 if (event_ptid != null_ptid)
7888 record_currthread (rs, event_ptid);
7889 else
7890 event_ptid = inferior_ptid;
7891 }
7892 else
7893 /* A process exit. Invalidate our notion of current thread. */
7894 record_currthread (rs, minus_one_ptid);
7895
7896 return event_ptid;
7897 }
7898
7899 /* Wait until the remote machine stops, then return, storing status in
7900 STATUS just as `wait' would. */
7901
7902 ptid_t
7903 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7904 {
7905 ptid_t event_ptid;
7906
7907 if (target_is_non_stop_p ())
7908 event_ptid = wait_ns (ptid, status, options);
7909 else
7910 event_ptid = wait_as (ptid, status, options);
7911
7912 if (target_is_async_p ())
7913 {
7914 remote_state *rs = get_remote_state ();
7915
7916 /* If there are are events left in the queue tell the event loop
7917 to return here. */
7918 if (!rs->stop_reply_queue.empty ())
7919 mark_async_event_handler (rs->remote_async_inferior_event_token);
7920 }
7921
7922 return event_ptid;
7923 }
7924
7925 /* Fetch a single register using a 'p' packet. */
7926
7927 int
7928 remote_target::fetch_register_using_p (struct regcache *regcache,
7929 packet_reg *reg)
7930 {
7931 struct gdbarch *gdbarch = regcache->arch ();
7932 struct remote_state *rs = get_remote_state ();
7933 char *buf, *p;
7934 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7935 int i;
7936
7937 if (packet_support (PACKET_p) == PACKET_DISABLE)
7938 return 0;
7939
7940 if (reg->pnum == -1)
7941 return 0;
7942
7943 p = rs->buf.data ();
7944 *p++ = 'p';
7945 p += hexnumstr (p, reg->pnum);
7946 *p++ = '\0';
7947 putpkt (rs->buf);
7948 getpkt (&rs->buf, 0);
7949
7950 buf = rs->buf.data ();
7951
7952 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
7953 {
7954 case PACKET_OK:
7955 break;
7956 case PACKET_UNKNOWN:
7957 return 0;
7958 case PACKET_ERROR:
7959 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7960 gdbarch_register_name (regcache->arch (),
7961 reg->regnum),
7962 buf);
7963 }
7964
7965 /* If this register is unfetchable, tell the regcache. */
7966 if (buf[0] == 'x')
7967 {
7968 regcache->raw_supply (reg->regnum, NULL);
7969 return 1;
7970 }
7971
7972 /* Otherwise, parse and supply the value. */
7973 p = buf;
7974 i = 0;
7975 while (p[0] != 0)
7976 {
7977 if (p[1] == 0)
7978 error (_("fetch_register_using_p: early buf termination"));
7979
7980 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7981 p += 2;
7982 }
7983 regcache->raw_supply (reg->regnum, regp);
7984 return 1;
7985 }
7986
7987 /* Fetch the registers included in the target's 'g' packet. */
7988
7989 int
7990 remote_target::send_g_packet ()
7991 {
7992 struct remote_state *rs = get_remote_state ();
7993 int buf_len;
7994
7995 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
7996 putpkt (rs->buf);
7997 getpkt (&rs->buf, 0);
7998 if (packet_check_result (rs->buf) == PACKET_ERROR)
7999 error (_("Could not read registers; remote failure reply '%s'"),
8000 rs->buf.data ());
8001
8002 /* We can get out of synch in various cases. If the first character
8003 in the buffer is not a hex character, assume that has happened
8004 and try to fetch another packet to read. */
8005 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8006 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8007 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8008 && rs->buf[0] != 'x') /* New: unavailable register value. */
8009 {
8010 if (remote_debug)
8011 fprintf_unfiltered (gdb_stdlog,
8012 "Bad register packet; fetching a new packet\n");
8013 getpkt (&rs->buf, 0);
8014 }
8015
8016 buf_len = strlen (rs->buf.data ());
8017
8018 /* Sanity check the received packet. */
8019 if (buf_len % 2 != 0)
8020 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8021
8022 return buf_len / 2;
8023 }
8024
8025 void
8026 remote_target::process_g_packet (struct regcache *regcache)
8027 {
8028 struct gdbarch *gdbarch = regcache->arch ();
8029 struct remote_state *rs = get_remote_state ();
8030 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8031 int i, buf_len;
8032 char *p;
8033 char *regs;
8034
8035 buf_len = strlen (rs->buf.data ());
8036
8037 /* Further sanity checks, with knowledge of the architecture. */
8038 if (buf_len > 2 * rsa->sizeof_g_packet)
8039 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8040 "bytes): %s"),
8041 rsa->sizeof_g_packet, buf_len / 2,
8042 rs->buf.data ());
8043
8044 /* Save the size of the packet sent to us by the target. It is used
8045 as a heuristic when determining the max size of packets that the
8046 target can safely receive. */
8047 if (rsa->actual_register_packet_size == 0)
8048 rsa->actual_register_packet_size = buf_len;
8049
8050 /* If this is smaller than we guessed the 'g' packet would be,
8051 update our records. A 'g' reply that doesn't include a register's
8052 value implies either that the register is not available, or that
8053 the 'p' packet must be used. */
8054 if (buf_len < 2 * rsa->sizeof_g_packet)
8055 {
8056 long sizeof_g_packet = buf_len / 2;
8057
8058 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8059 {
8060 long offset = rsa->regs[i].offset;
8061 long reg_size = register_size (gdbarch, i);
8062
8063 if (rsa->regs[i].pnum == -1)
8064 continue;
8065
8066 if (offset >= sizeof_g_packet)
8067 rsa->regs[i].in_g_packet = 0;
8068 else if (offset + reg_size > sizeof_g_packet)
8069 error (_("Truncated register %d in remote 'g' packet"), i);
8070 else
8071 rsa->regs[i].in_g_packet = 1;
8072 }
8073
8074 /* Looks valid enough, we can assume this is the correct length
8075 for a 'g' packet. It's important not to adjust
8076 rsa->sizeof_g_packet if we have truncated registers otherwise
8077 this "if" won't be run the next time the method is called
8078 with a packet of the same size and one of the internal errors
8079 below will trigger instead. */
8080 rsa->sizeof_g_packet = sizeof_g_packet;
8081 }
8082
8083 regs = (char *) alloca (rsa->sizeof_g_packet);
8084
8085 /* Unimplemented registers read as all bits zero. */
8086 memset (regs, 0, rsa->sizeof_g_packet);
8087
8088 /* Reply describes registers byte by byte, each byte encoded as two
8089 hex characters. Suck them all up, then supply them to the
8090 register cacheing/storage mechanism. */
8091
8092 p = rs->buf.data ();
8093 for (i = 0; i < rsa->sizeof_g_packet; i++)
8094 {
8095 if (p[0] == 0 || p[1] == 0)
8096 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8097 internal_error (__FILE__, __LINE__,
8098 _("unexpected end of 'g' packet reply"));
8099
8100 if (p[0] == 'x' && p[1] == 'x')
8101 regs[i] = 0; /* 'x' */
8102 else
8103 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8104 p += 2;
8105 }
8106
8107 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8108 {
8109 struct packet_reg *r = &rsa->regs[i];
8110 long reg_size = register_size (gdbarch, i);
8111
8112 if (r->in_g_packet)
8113 {
8114 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8115 /* This shouldn't happen - we adjusted in_g_packet above. */
8116 internal_error (__FILE__, __LINE__,
8117 _("unexpected end of 'g' packet reply"));
8118 else if (rs->buf[r->offset * 2] == 'x')
8119 {
8120 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8121 /* The register isn't available, mark it as such (at
8122 the same time setting the value to zero). */
8123 regcache->raw_supply (r->regnum, NULL);
8124 }
8125 else
8126 regcache->raw_supply (r->regnum, regs + r->offset);
8127 }
8128 }
8129 }
8130
8131 void
8132 remote_target::fetch_registers_using_g (struct regcache *regcache)
8133 {
8134 send_g_packet ();
8135 process_g_packet (regcache);
8136 }
8137
8138 /* Make the remote selected traceframe match GDB's selected
8139 traceframe. */
8140
8141 void
8142 remote_target::set_remote_traceframe ()
8143 {
8144 int newnum;
8145 struct remote_state *rs = get_remote_state ();
8146
8147 if (rs->remote_traceframe_number == get_traceframe_number ())
8148 return;
8149
8150 /* Avoid recursion, remote_trace_find calls us again. */
8151 rs->remote_traceframe_number = get_traceframe_number ();
8152
8153 newnum = target_trace_find (tfind_number,
8154 get_traceframe_number (), 0, 0, NULL);
8155
8156 /* Should not happen. If it does, all bets are off. */
8157 if (newnum != get_traceframe_number ())
8158 warning (_("could not set remote traceframe"));
8159 }
8160
8161 void
8162 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8163 {
8164 struct gdbarch *gdbarch = regcache->arch ();
8165 struct remote_state *rs = get_remote_state ();
8166 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8167 int i;
8168
8169 set_remote_traceframe ();
8170 set_general_thread (regcache->ptid ());
8171
8172 if (regnum >= 0)
8173 {
8174 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8175
8176 gdb_assert (reg != NULL);
8177
8178 /* If this register might be in the 'g' packet, try that first -
8179 we are likely to read more than one register. If this is the
8180 first 'g' packet, we might be overly optimistic about its
8181 contents, so fall back to 'p'. */
8182 if (reg->in_g_packet)
8183 {
8184 fetch_registers_using_g (regcache);
8185 if (reg->in_g_packet)
8186 return;
8187 }
8188
8189 if (fetch_register_using_p (regcache, reg))
8190 return;
8191
8192 /* This register is not available. */
8193 regcache->raw_supply (reg->regnum, NULL);
8194
8195 return;
8196 }
8197
8198 fetch_registers_using_g (regcache);
8199
8200 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8201 if (!rsa->regs[i].in_g_packet)
8202 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8203 {
8204 /* This register is not available. */
8205 regcache->raw_supply (i, NULL);
8206 }
8207 }
8208
8209 /* Prepare to store registers. Since we may send them all (using a
8210 'G' request), we have to read out the ones we don't want to change
8211 first. */
8212
8213 void
8214 remote_target::prepare_to_store (struct regcache *regcache)
8215 {
8216 struct remote_state *rs = get_remote_state ();
8217 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8218 int i;
8219
8220 /* Make sure the entire registers array is valid. */
8221 switch (packet_support (PACKET_P))
8222 {
8223 case PACKET_DISABLE:
8224 case PACKET_SUPPORT_UNKNOWN:
8225 /* Make sure all the necessary registers are cached. */
8226 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8227 if (rsa->regs[i].in_g_packet)
8228 regcache->raw_update (rsa->regs[i].regnum);
8229 break;
8230 case PACKET_ENABLE:
8231 break;
8232 }
8233 }
8234
8235 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8236 packet was not recognized. */
8237
8238 int
8239 remote_target::store_register_using_P (const struct regcache *regcache,
8240 packet_reg *reg)
8241 {
8242 struct gdbarch *gdbarch = regcache->arch ();
8243 struct remote_state *rs = get_remote_state ();
8244 /* Try storing a single register. */
8245 char *buf = rs->buf.data ();
8246 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8247 char *p;
8248
8249 if (packet_support (PACKET_P) == PACKET_DISABLE)
8250 return 0;
8251
8252 if (reg->pnum == -1)
8253 return 0;
8254
8255 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8256 p = buf + strlen (buf);
8257 regcache->raw_collect (reg->regnum, regp);
8258 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8259 putpkt (rs->buf);
8260 getpkt (&rs->buf, 0);
8261
8262 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8263 {
8264 case PACKET_OK:
8265 return 1;
8266 case PACKET_ERROR:
8267 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8268 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8269 case PACKET_UNKNOWN:
8270 return 0;
8271 default:
8272 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8273 }
8274 }
8275
8276 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8277 contents of the register cache buffer. FIXME: ignores errors. */
8278
8279 void
8280 remote_target::store_registers_using_G (const struct regcache *regcache)
8281 {
8282 struct remote_state *rs = get_remote_state ();
8283 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8284 gdb_byte *regs;
8285 char *p;
8286
8287 /* Extract all the registers in the regcache copying them into a
8288 local buffer. */
8289 {
8290 int i;
8291
8292 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8293 memset (regs, 0, rsa->sizeof_g_packet);
8294 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8295 {
8296 struct packet_reg *r = &rsa->regs[i];
8297
8298 if (r->in_g_packet)
8299 regcache->raw_collect (r->regnum, regs + r->offset);
8300 }
8301 }
8302
8303 /* Command describes registers byte by byte,
8304 each byte encoded as two hex characters. */
8305 p = rs->buf.data ();
8306 *p++ = 'G';
8307 bin2hex (regs, p, rsa->sizeof_g_packet);
8308 putpkt (rs->buf);
8309 getpkt (&rs->buf, 0);
8310 if (packet_check_result (rs->buf) == PACKET_ERROR)
8311 error (_("Could not write registers; remote failure reply '%s'"),
8312 rs->buf.data ());
8313 }
8314
8315 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8316 of the register cache buffer. FIXME: ignores errors. */
8317
8318 void
8319 remote_target::store_registers (struct regcache *regcache, int regnum)
8320 {
8321 struct gdbarch *gdbarch = regcache->arch ();
8322 struct remote_state *rs = get_remote_state ();
8323 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8324 int i;
8325
8326 set_remote_traceframe ();
8327 set_general_thread (regcache->ptid ());
8328
8329 if (regnum >= 0)
8330 {
8331 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8332
8333 gdb_assert (reg != NULL);
8334
8335 /* Always prefer to store registers using the 'P' packet if
8336 possible; we often change only a small number of registers.
8337 Sometimes we change a larger number; we'd need help from a
8338 higher layer to know to use 'G'. */
8339 if (store_register_using_P (regcache, reg))
8340 return;
8341
8342 /* For now, don't complain if we have no way to write the
8343 register. GDB loses track of unavailable registers too
8344 easily. Some day, this may be an error. We don't have
8345 any way to read the register, either... */
8346 if (!reg->in_g_packet)
8347 return;
8348
8349 store_registers_using_G (regcache);
8350 return;
8351 }
8352
8353 store_registers_using_G (regcache);
8354
8355 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8356 if (!rsa->regs[i].in_g_packet)
8357 if (!store_register_using_P (regcache, &rsa->regs[i]))
8358 /* See above for why we do not issue an error here. */
8359 continue;
8360 }
8361 \f
8362
8363 /* Return the number of hex digits in num. */
8364
8365 static int
8366 hexnumlen (ULONGEST num)
8367 {
8368 int i;
8369
8370 for (i = 0; num != 0; i++)
8371 num >>= 4;
8372
8373 return std::max (i, 1);
8374 }
8375
8376 /* Set BUF to the minimum number of hex digits representing NUM. */
8377
8378 static int
8379 hexnumstr (char *buf, ULONGEST num)
8380 {
8381 int len = hexnumlen (num);
8382
8383 return hexnumnstr (buf, num, len);
8384 }
8385
8386
8387 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8388
8389 static int
8390 hexnumnstr (char *buf, ULONGEST num, int width)
8391 {
8392 int i;
8393
8394 buf[width] = '\0';
8395
8396 for (i = width - 1; i >= 0; i--)
8397 {
8398 buf[i] = "0123456789abcdef"[(num & 0xf)];
8399 num >>= 4;
8400 }
8401
8402 return width;
8403 }
8404
8405 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8406
8407 static CORE_ADDR
8408 remote_address_masked (CORE_ADDR addr)
8409 {
8410 unsigned int address_size = remote_address_size;
8411
8412 /* If "remoteaddresssize" was not set, default to target address size. */
8413 if (!address_size)
8414 address_size = gdbarch_addr_bit (target_gdbarch ());
8415
8416 if (address_size > 0
8417 && address_size < (sizeof (ULONGEST) * 8))
8418 {
8419 /* Only create a mask when that mask can safely be constructed
8420 in a ULONGEST variable. */
8421 ULONGEST mask = 1;
8422
8423 mask = (mask << address_size) - 1;
8424 addr &= mask;
8425 }
8426 return addr;
8427 }
8428
8429 /* Determine whether the remote target supports binary downloading.
8430 This is accomplished by sending a no-op memory write of zero length
8431 to the target at the specified address. It does not suffice to send
8432 the whole packet, since many stubs strip the eighth bit and
8433 subsequently compute a wrong checksum, which causes real havoc with
8434 remote_write_bytes.
8435
8436 NOTE: This can still lose if the serial line is not eight-bit
8437 clean. In cases like this, the user should clear "remote
8438 X-packet". */
8439
8440 void
8441 remote_target::check_binary_download (CORE_ADDR addr)
8442 {
8443 struct remote_state *rs = get_remote_state ();
8444
8445 switch (packet_support (PACKET_X))
8446 {
8447 case PACKET_DISABLE:
8448 break;
8449 case PACKET_ENABLE:
8450 break;
8451 case PACKET_SUPPORT_UNKNOWN:
8452 {
8453 char *p;
8454
8455 p = rs->buf.data ();
8456 *p++ = 'X';
8457 p += hexnumstr (p, (ULONGEST) addr);
8458 *p++ = ',';
8459 p += hexnumstr (p, (ULONGEST) 0);
8460 *p++ = ':';
8461 *p = '\0';
8462
8463 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8464 getpkt (&rs->buf, 0);
8465
8466 if (rs->buf[0] == '\0')
8467 {
8468 if (remote_debug)
8469 fprintf_unfiltered (gdb_stdlog,
8470 "binary downloading NOT "
8471 "supported by target\n");
8472 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8473 }
8474 else
8475 {
8476 if (remote_debug)
8477 fprintf_unfiltered (gdb_stdlog,
8478 "binary downloading supported by target\n");
8479 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8480 }
8481 break;
8482 }
8483 }
8484 }
8485
8486 /* Helper function to resize the payload in order to try to get a good
8487 alignment. We try to write an amount of data such that the next write will
8488 start on an address aligned on REMOTE_ALIGN_WRITES. */
8489
8490 static int
8491 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8492 {
8493 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8494 }
8495
8496 /* Write memory data directly to the remote machine.
8497 This does not inform the data cache; the data cache uses this.
8498 HEADER is the starting part of the packet.
8499 MEMADDR is the address in the remote memory space.
8500 MYADDR is the address of the buffer in our space.
8501 LEN_UNITS is the number of addressable units to write.
8502 UNIT_SIZE is the length in bytes of an addressable unit.
8503 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8504 should send data as binary ('X'), or hex-encoded ('M').
8505
8506 The function creates packet of the form
8507 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8508
8509 where encoding of <DATA> is terminated by PACKET_FORMAT.
8510
8511 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8512 are omitted.
8513
8514 Return the transferred status, error or OK (an
8515 'enum target_xfer_status' value). Save the number of addressable units
8516 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8517
8518 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8519 exchange between gdb and the stub could look like (?? in place of the
8520 checksum):
8521
8522 -> $m1000,4#??
8523 <- aaaabbbbccccdddd
8524
8525 -> $M1000,3:eeeeffffeeee#??
8526 <- OK
8527
8528 -> $m1000,4#??
8529 <- eeeeffffeeeedddd */
8530
8531 target_xfer_status
8532 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8533 const gdb_byte *myaddr,
8534 ULONGEST len_units,
8535 int unit_size,
8536 ULONGEST *xfered_len_units,
8537 char packet_format, int use_length)
8538 {
8539 struct remote_state *rs = get_remote_state ();
8540 char *p;
8541 char *plen = NULL;
8542 int plenlen = 0;
8543 int todo_units;
8544 int units_written;
8545 int payload_capacity_bytes;
8546 int payload_length_bytes;
8547
8548 if (packet_format != 'X' && packet_format != 'M')
8549 internal_error (__FILE__, __LINE__,
8550 _("remote_write_bytes_aux: bad packet format"));
8551
8552 if (len_units == 0)
8553 return TARGET_XFER_EOF;
8554
8555 payload_capacity_bytes = get_memory_write_packet_size ();
8556
8557 /* The packet buffer will be large enough for the payload;
8558 get_memory_packet_size ensures this. */
8559 rs->buf[0] = '\0';
8560
8561 /* Compute the size of the actual payload by subtracting out the
8562 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8563
8564 payload_capacity_bytes -= strlen ("$,:#NN");
8565 if (!use_length)
8566 /* The comma won't be used. */
8567 payload_capacity_bytes += 1;
8568 payload_capacity_bytes -= strlen (header);
8569 payload_capacity_bytes -= hexnumlen (memaddr);
8570
8571 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8572
8573 strcat (rs->buf.data (), header);
8574 p = rs->buf.data () + strlen (header);
8575
8576 /* Compute a best guess of the number of bytes actually transfered. */
8577 if (packet_format == 'X')
8578 {
8579 /* Best guess at number of bytes that will fit. */
8580 todo_units = std::min (len_units,
8581 (ULONGEST) payload_capacity_bytes / unit_size);
8582 if (use_length)
8583 payload_capacity_bytes -= hexnumlen (todo_units);
8584 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8585 }
8586 else
8587 {
8588 /* Number of bytes that will fit. */
8589 todo_units
8590 = std::min (len_units,
8591 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8592 if (use_length)
8593 payload_capacity_bytes -= hexnumlen (todo_units);
8594 todo_units = std::min (todo_units,
8595 (payload_capacity_bytes / unit_size) / 2);
8596 }
8597
8598 if (todo_units <= 0)
8599 internal_error (__FILE__, __LINE__,
8600 _("minimum packet size too small to write data"));
8601
8602 /* If we already need another packet, then try to align the end
8603 of this packet to a useful boundary. */
8604 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8605 todo_units = align_for_efficient_write (todo_units, memaddr);
8606
8607 /* Append "<memaddr>". */
8608 memaddr = remote_address_masked (memaddr);
8609 p += hexnumstr (p, (ULONGEST) memaddr);
8610
8611 if (use_length)
8612 {
8613 /* Append ",". */
8614 *p++ = ',';
8615
8616 /* Append the length and retain its location and size. It may need to be
8617 adjusted once the packet body has been created. */
8618 plen = p;
8619 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8620 p += plenlen;
8621 }
8622
8623 /* Append ":". */
8624 *p++ = ':';
8625 *p = '\0';
8626
8627 /* Append the packet body. */
8628 if (packet_format == 'X')
8629 {
8630 /* Binary mode. Send target system values byte by byte, in
8631 increasing byte addresses. Only escape certain critical
8632 characters. */
8633 payload_length_bytes =
8634 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8635 &units_written, payload_capacity_bytes);
8636
8637 /* If not all TODO units fit, then we'll need another packet. Make
8638 a second try to keep the end of the packet aligned. Don't do
8639 this if the packet is tiny. */
8640 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8641 {
8642 int new_todo_units;
8643
8644 new_todo_units = align_for_efficient_write (units_written, memaddr);
8645
8646 if (new_todo_units != units_written)
8647 payload_length_bytes =
8648 remote_escape_output (myaddr, new_todo_units, unit_size,
8649 (gdb_byte *) p, &units_written,
8650 payload_capacity_bytes);
8651 }
8652
8653 p += payload_length_bytes;
8654 if (use_length && units_written < todo_units)
8655 {
8656 /* Escape chars have filled up the buffer prematurely,
8657 and we have actually sent fewer units than planned.
8658 Fix-up the length field of the packet. Use the same
8659 number of characters as before. */
8660 plen += hexnumnstr (plen, (ULONGEST) units_written,
8661 plenlen);
8662 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8663 }
8664 }
8665 else
8666 {
8667 /* Normal mode: Send target system values byte by byte, in
8668 increasing byte addresses. Each byte is encoded as a two hex
8669 value. */
8670 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8671 units_written = todo_units;
8672 }
8673
8674 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8675 getpkt (&rs->buf, 0);
8676
8677 if (rs->buf[0] == 'E')
8678 return TARGET_XFER_E_IO;
8679
8680 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8681 send fewer units than we'd planned. */
8682 *xfered_len_units = (ULONGEST) units_written;
8683 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8684 }
8685
8686 /* Write memory data directly to the remote machine.
8687 This does not inform the data cache; the data cache uses this.
8688 MEMADDR is the address in the remote memory space.
8689 MYADDR is the address of the buffer in our space.
8690 LEN is the number of bytes.
8691
8692 Return the transferred status, error or OK (an
8693 'enum target_xfer_status' value). Save the number of bytes
8694 transferred in *XFERED_LEN. Only transfer a single packet. */
8695
8696 target_xfer_status
8697 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8698 ULONGEST len, int unit_size,
8699 ULONGEST *xfered_len)
8700 {
8701 const char *packet_format = NULL;
8702
8703 /* Check whether the target supports binary download. */
8704 check_binary_download (memaddr);
8705
8706 switch (packet_support (PACKET_X))
8707 {
8708 case PACKET_ENABLE:
8709 packet_format = "X";
8710 break;
8711 case PACKET_DISABLE:
8712 packet_format = "M";
8713 break;
8714 case PACKET_SUPPORT_UNKNOWN:
8715 internal_error (__FILE__, __LINE__,
8716 _("remote_write_bytes: bad internal state"));
8717 default:
8718 internal_error (__FILE__, __LINE__, _("bad switch"));
8719 }
8720
8721 return remote_write_bytes_aux (packet_format,
8722 memaddr, myaddr, len, unit_size, xfered_len,
8723 packet_format[0], 1);
8724 }
8725
8726 /* Read memory data directly from the remote machine.
8727 This does not use the data cache; the data cache uses this.
8728 MEMADDR is the address in the remote memory space.
8729 MYADDR is the address of the buffer in our space.
8730 LEN_UNITS is the number of addressable memory units to read..
8731 UNIT_SIZE is the length in bytes of an addressable unit.
8732
8733 Return the transferred status, error or OK (an
8734 'enum target_xfer_status' value). Save the number of bytes
8735 transferred in *XFERED_LEN_UNITS.
8736
8737 See the comment of remote_write_bytes_aux for an example of
8738 memory read/write exchange between gdb and the stub. */
8739
8740 target_xfer_status
8741 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8742 ULONGEST len_units,
8743 int unit_size, ULONGEST *xfered_len_units)
8744 {
8745 struct remote_state *rs = get_remote_state ();
8746 int buf_size_bytes; /* Max size of packet output buffer. */
8747 char *p;
8748 int todo_units;
8749 int decoded_bytes;
8750
8751 buf_size_bytes = get_memory_read_packet_size ();
8752 /* The packet buffer will be large enough for the payload;
8753 get_memory_packet_size ensures this. */
8754
8755 /* Number of units that will fit. */
8756 todo_units = std::min (len_units,
8757 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8758
8759 /* Construct "m"<memaddr>","<len>". */
8760 memaddr = remote_address_masked (memaddr);
8761 p = rs->buf.data ();
8762 *p++ = 'm';
8763 p += hexnumstr (p, (ULONGEST) memaddr);
8764 *p++ = ',';
8765 p += hexnumstr (p, (ULONGEST) todo_units);
8766 *p = '\0';
8767 putpkt (rs->buf);
8768 getpkt (&rs->buf, 0);
8769 if (rs->buf[0] == 'E'
8770 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8771 && rs->buf[3] == '\0')
8772 return TARGET_XFER_E_IO;
8773 /* Reply describes memory byte by byte, each byte encoded as two hex
8774 characters. */
8775 p = rs->buf.data ();
8776 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8777 /* Return what we have. Let higher layers handle partial reads. */
8778 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8779 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8780 }
8781
8782 /* Using the set of read-only target sections of remote, read live
8783 read-only memory.
8784
8785 For interface/parameters/return description see target.h,
8786 to_xfer_partial. */
8787
8788 target_xfer_status
8789 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8790 ULONGEST memaddr,
8791 ULONGEST len,
8792 int unit_size,
8793 ULONGEST *xfered_len)
8794 {
8795 struct target_section *secp;
8796 struct target_section_table *table;
8797
8798 secp = target_section_by_addr (this, memaddr);
8799 if (secp != NULL
8800 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8801 secp->the_bfd_section)
8802 & SEC_READONLY))
8803 {
8804 struct target_section *p;
8805 ULONGEST memend = memaddr + len;
8806
8807 table = target_get_section_table (this);
8808
8809 for (p = table->sections; p < table->sections_end; p++)
8810 {
8811 if (memaddr >= p->addr)
8812 {
8813 if (memend <= p->endaddr)
8814 {
8815 /* Entire transfer is within this section. */
8816 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8817 xfered_len);
8818 }
8819 else if (memaddr >= p->endaddr)
8820 {
8821 /* This section ends before the transfer starts. */
8822 continue;
8823 }
8824 else
8825 {
8826 /* This section overlaps the transfer. Just do half. */
8827 len = p->endaddr - memaddr;
8828 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8829 xfered_len);
8830 }
8831 }
8832 }
8833 }
8834
8835 return TARGET_XFER_EOF;
8836 }
8837
8838 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8839 first if the requested memory is unavailable in traceframe.
8840 Otherwise, fall back to remote_read_bytes_1. */
8841
8842 target_xfer_status
8843 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8844 gdb_byte *myaddr, ULONGEST len, int unit_size,
8845 ULONGEST *xfered_len)
8846 {
8847 if (len == 0)
8848 return TARGET_XFER_EOF;
8849
8850 if (get_traceframe_number () != -1)
8851 {
8852 std::vector<mem_range> available;
8853
8854 /* If we fail to get the set of available memory, then the
8855 target does not support querying traceframe info, and so we
8856 attempt reading from the traceframe anyway (assuming the
8857 target implements the old QTro packet then). */
8858 if (traceframe_available_memory (&available, memaddr, len))
8859 {
8860 if (available.empty () || available[0].start != memaddr)
8861 {
8862 enum target_xfer_status res;
8863
8864 /* Don't read into the traceframe's available
8865 memory. */
8866 if (!available.empty ())
8867 {
8868 LONGEST oldlen = len;
8869
8870 len = available[0].start - memaddr;
8871 gdb_assert (len <= oldlen);
8872 }
8873
8874 /* This goes through the topmost target again. */
8875 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8876 len, unit_size, xfered_len);
8877 if (res == TARGET_XFER_OK)
8878 return TARGET_XFER_OK;
8879 else
8880 {
8881 /* No use trying further, we know some memory starting
8882 at MEMADDR isn't available. */
8883 *xfered_len = len;
8884 return (*xfered_len != 0) ?
8885 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8886 }
8887 }
8888
8889 /* Don't try to read more than how much is available, in
8890 case the target implements the deprecated QTro packet to
8891 cater for older GDBs (the target's knowledge of read-only
8892 sections may be outdated by now). */
8893 len = available[0].length;
8894 }
8895 }
8896
8897 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8898 }
8899
8900 \f
8901
8902 /* Sends a packet with content determined by the printf format string
8903 FORMAT and the remaining arguments, then gets the reply. Returns
8904 whether the packet was a success, a failure, or unknown. */
8905
8906 packet_result
8907 remote_target::remote_send_printf (const char *format, ...)
8908 {
8909 struct remote_state *rs = get_remote_state ();
8910 int max_size = get_remote_packet_size ();
8911 va_list ap;
8912
8913 va_start (ap, format);
8914
8915 rs->buf[0] = '\0';
8916 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8917
8918 va_end (ap);
8919
8920 if (size >= max_size)
8921 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8922
8923 if (putpkt (rs->buf) < 0)
8924 error (_("Communication problem with target."));
8925
8926 rs->buf[0] = '\0';
8927 getpkt (&rs->buf, 0);
8928
8929 return packet_check_result (rs->buf);
8930 }
8931
8932 /* Flash writing can take quite some time. We'll set
8933 effectively infinite timeout for flash operations.
8934 In future, we'll need to decide on a better approach. */
8935 static const int remote_flash_timeout = 1000;
8936
8937 void
8938 remote_target::flash_erase (ULONGEST address, LONGEST length)
8939 {
8940 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8941 enum packet_result ret;
8942 scoped_restore restore_timeout
8943 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8944
8945 ret = remote_send_printf ("vFlashErase:%s,%s",
8946 phex (address, addr_size),
8947 phex (length, 4));
8948 switch (ret)
8949 {
8950 case PACKET_UNKNOWN:
8951 error (_("Remote target does not support flash erase"));
8952 case PACKET_ERROR:
8953 error (_("Error erasing flash with vFlashErase packet"));
8954 default:
8955 break;
8956 }
8957 }
8958
8959 target_xfer_status
8960 remote_target::remote_flash_write (ULONGEST address,
8961 ULONGEST length, ULONGEST *xfered_len,
8962 const gdb_byte *data)
8963 {
8964 scoped_restore restore_timeout
8965 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8966 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8967 xfered_len,'X', 0);
8968 }
8969
8970 void
8971 remote_target::flash_done ()
8972 {
8973 int ret;
8974
8975 scoped_restore restore_timeout
8976 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8977
8978 ret = remote_send_printf ("vFlashDone");
8979
8980 switch (ret)
8981 {
8982 case PACKET_UNKNOWN:
8983 error (_("Remote target does not support vFlashDone"));
8984 case PACKET_ERROR:
8985 error (_("Error finishing flash operation"));
8986 default:
8987 break;
8988 }
8989 }
8990
8991 void
8992 remote_target::files_info ()
8993 {
8994 puts_filtered ("Debugging a target over a serial line.\n");
8995 }
8996 \f
8997 /* Stuff for dealing with the packets which are part of this protocol.
8998 See comment at top of file for details. */
8999
9000 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9001 error to higher layers. Called when a serial error is detected.
9002 The exception message is STRING, followed by a colon and a blank,
9003 the system error message for errno at function entry and final dot
9004 for output compatibility with throw_perror_with_name. */
9005
9006 static void
9007 unpush_and_perror (const char *string)
9008 {
9009 int saved_errno = errno;
9010
9011 remote_unpush_target ();
9012 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9013 safe_strerror (saved_errno));
9014 }
9015
9016 /* Read a single character from the remote end. The current quit
9017 handler is overridden to avoid quitting in the middle of packet
9018 sequence, as that would break communication with the remote server.
9019 See remote_serial_quit_handler for more detail. */
9020
9021 int
9022 remote_target::readchar (int timeout)
9023 {
9024 int ch;
9025 struct remote_state *rs = get_remote_state ();
9026
9027 {
9028 scoped_restore restore_quit_target
9029 = make_scoped_restore (&curr_quit_handler_target, this);
9030 scoped_restore restore_quit
9031 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9032
9033 rs->got_ctrlc_during_io = 0;
9034
9035 ch = serial_readchar (rs->remote_desc, timeout);
9036
9037 if (rs->got_ctrlc_during_io)
9038 set_quit_flag ();
9039 }
9040
9041 if (ch >= 0)
9042 return ch;
9043
9044 switch ((enum serial_rc) ch)
9045 {
9046 case SERIAL_EOF:
9047 remote_unpush_target ();
9048 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9049 /* no return */
9050 case SERIAL_ERROR:
9051 unpush_and_perror (_("Remote communication error. "
9052 "Target disconnected."));
9053 /* no return */
9054 case SERIAL_TIMEOUT:
9055 break;
9056 }
9057 return ch;
9058 }
9059
9060 /* Wrapper for serial_write that closes the target and throws if
9061 writing fails. The current quit handler is overridden to avoid
9062 quitting in the middle of packet sequence, as that would break
9063 communication with the remote server. See
9064 remote_serial_quit_handler for more detail. */
9065
9066 void
9067 remote_target::remote_serial_write (const char *str, int len)
9068 {
9069 struct remote_state *rs = get_remote_state ();
9070
9071 scoped_restore restore_quit_target
9072 = make_scoped_restore (&curr_quit_handler_target, this);
9073 scoped_restore restore_quit
9074 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9075
9076 rs->got_ctrlc_during_io = 0;
9077
9078 if (serial_write (rs->remote_desc, str, len))
9079 {
9080 unpush_and_perror (_("Remote communication error. "
9081 "Target disconnected."));
9082 }
9083
9084 if (rs->got_ctrlc_during_io)
9085 set_quit_flag ();
9086 }
9087
9088 /* Return a string representing an escaped version of BUF, of len N.
9089 E.g. \n is converted to \\n, \t to \\t, etc. */
9090
9091 static std::string
9092 escape_buffer (const char *buf, int n)
9093 {
9094 string_file stb;
9095
9096 stb.putstrn (buf, n, '\\');
9097 return std::move (stb.string ());
9098 }
9099
9100 /* Display a null-terminated packet on stdout, for debugging, using C
9101 string notation. */
9102
9103 static void
9104 print_packet (const char *buf)
9105 {
9106 puts_filtered ("\"");
9107 fputstr_filtered (buf, '"', gdb_stdout);
9108 puts_filtered ("\"");
9109 }
9110
9111 int
9112 remote_target::putpkt (const char *buf)
9113 {
9114 return putpkt_binary (buf, strlen (buf));
9115 }
9116
9117 /* Wrapper around remote_target::putpkt to avoid exporting
9118 remote_target. */
9119
9120 int
9121 putpkt (remote_target *remote, const char *buf)
9122 {
9123 return remote->putpkt (buf);
9124 }
9125
9126 /* Send a packet to the remote machine, with error checking. The data
9127 of the packet is in BUF. The string in BUF can be at most
9128 get_remote_packet_size () - 5 to account for the $, # and checksum,
9129 and for a possible /0 if we are debugging (remote_debug) and want
9130 to print the sent packet as a string. */
9131
9132 int
9133 remote_target::putpkt_binary (const char *buf, int cnt)
9134 {
9135 struct remote_state *rs = get_remote_state ();
9136 int i;
9137 unsigned char csum = 0;
9138 gdb::def_vector<char> data (cnt + 6);
9139 char *buf2 = data.data ();
9140
9141 int ch;
9142 int tcount = 0;
9143 char *p;
9144
9145 /* Catch cases like trying to read memory or listing threads while
9146 we're waiting for a stop reply. The remote server wouldn't be
9147 ready to handle this request, so we'd hang and timeout. We don't
9148 have to worry about this in synchronous mode, because in that
9149 case it's not possible to issue a command while the target is
9150 running. This is not a problem in non-stop mode, because in that
9151 case, the stub is always ready to process serial input. */
9152 if (!target_is_non_stop_p ()
9153 && target_is_async_p ()
9154 && rs->waiting_for_stop_reply)
9155 {
9156 error (_("Cannot execute this command while the target is running.\n"
9157 "Use the \"interrupt\" command to stop the target\n"
9158 "and then try again."));
9159 }
9160
9161 /* We're sending out a new packet. Make sure we don't look at a
9162 stale cached response. */
9163 rs->cached_wait_status = 0;
9164
9165 /* Copy the packet into buffer BUF2, encapsulating it
9166 and giving it a checksum. */
9167
9168 p = buf2;
9169 *p++ = '$';
9170
9171 for (i = 0; i < cnt; i++)
9172 {
9173 csum += buf[i];
9174 *p++ = buf[i];
9175 }
9176 *p++ = '#';
9177 *p++ = tohex ((csum >> 4) & 0xf);
9178 *p++ = tohex (csum & 0xf);
9179
9180 /* Send it over and over until we get a positive ack. */
9181
9182 while (1)
9183 {
9184 int started_error_output = 0;
9185
9186 if (remote_debug)
9187 {
9188 *p = '\0';
9189
9190 int len = (int) (p - buf2);
9191
9192 std::string str
9193 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
9194
9195 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9196
9197 if (len > REMOTE_DEBUG_MAX_CHAR)
9198 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9199 len - REMOTE_DEBUG_MAX_CHAR);
9200
9201 fprintf_unfiltered (gdb_stdlog, "...");
9202
9203 gdb_flush (gdb_stdlog);
9204 }
9205 remote_serial_write (buf2, p - buf2);
9206
9207 /* If this is a no acks version of the remote protocol, send the
9208 packet and move on. */
9209 if (rs->noack_mode)
9210 break;
9211
9212 /* Read until either a timeout occurs (-2) or '+' is read.
9213 Handle any notification that arrives in the mean time. */
9214 while (1)
9215 {
9216 ch = readchar (remote_timeout);
9217
9218 if (remote_debug)
9219 {
9220 switch (ch)
9221 {
9222 case '+':
9223 case '-':
9224 case SERIAL_TIMEOUT:
9225 case '$':
9226 case '%':
9227 if (started_error_output)
9228 {
9229 putchar_unfiltered ('\n');
9230 started_error_output = 0;
9231 }
9232 }
9233 }
9234
9235 switch (ch)
9236 {
9237 case '+':
9238 if (remote_debug)
9239 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9240 return 1;
9241 case '-':
9242 if (remote_debug)
9243 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9244 /* FALLTHROUGH */
9245 case SERIAL_TIMEOUT:
9246 tcount++;
9247 if (tcount > 3)
9248 return 0;
9249 break; /* Retransmit buffer. */
9250 case '$':
9251 {
9252 if (remote_debug)
9253 fprintf_unfiltered (gdb_stdlog,
9254 "Packet instead of Ack, ignoring it\n");
9255 /* It's probably an old response sent because an ACK
9256 was lost. Gobble up the packet and ack it so it
9257 doesn't get retransmitted when we resend this
9258 packet. */
9259 skip_frame ();
9260 remote_serial_write ("+", 1);
9261 continue; /* Now, go look for +. */
9262 }
9263
9264 case '%':
9265 {
9266 int val;
9267
9268 /* If we got a notification, handle it, and go back to looking
9269 for an ack. */
9270 /* We've found the start of a notification. Now
9271 collect the data. */
9272 val = read_frame (&rs->buf);
9273 if (val >= 0)
9274 {
9275 if (remote_debug)
9276 {
9277 std::string str = escape_buffer (rs->buf.data (), val);
9278
9279 fprintf_unfiltered (gdb_stdlog,
9280 " Notification received: %s\n",
9281 str.c_str ());
9282 }
9283 handle_notification (rs->notif_state, rs->buf.data ());
9284 /* We're in sync now, rewait for the ack. */
9285 tcount = 0;
9286 }
9287 else
9288 {
9289 if (remote_debug)
9290 {
9291 if (!started_error_output)
9292 {
9293 started_error_output = 1;
9294 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9295 }
9296 fputc_unfiltered (ch & 0177, gdb_stdlog);
9297 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9298 }
9299 }
9300 continue;
9301 }
9302 /* fall-through */
9303 default:
9304 if (remote_debug)
9305 {
9306 if (!started_error_output)
9307 {
9308 started_error_output = 1;
9309 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9310 }
9311 fputc_unfiltered (ch & 0177, gdb_stdlog);
9312 }
9313 continue;
9314 }
9315 break; /* Here to retransmit. */
9316 }
9317
9318 #if 0
9319 /* This is wrong. If doing a long backtrace, the user should be
9320 able to get out next time we call QUIT, without anything as
9321 violent as interrupt_query. If we want to provide a way out of
9322 here without getting to the next QUIT, it should be based on
9323 hitting ^C twice as in remote_wait. */
9324 if (quit_flag)
9325 {
9326 quit_flag = 0;
9327 interrupt_query ();
9328 }
9329 #endif
9330 }
9331
9332 return 0;
9333 }
9334
9335 /* Come here after finding the start of a frame when we expected an
9336 ack. Do our best to discard the rest of this packet. */
9337
9338 void
9339 remote_target::skip_frame ()
9340 {
9341 int c;
9342
9343 while (1)
9344 {
9345 c = readchar (remote_timeout);
9346 switch (c)
9347 {
9348 case SERIAL_TIMEOUT:
9349 /* Nothing we can do. */
9350 return;
9351 case '#':
9352 /* Discard the two bytes of checksum and stop. */
9353 c = readchar (remote_timeout);
9354 if (c >= 0)
9355 c = readchar (remote_timeout);
9356
9357 return;
9358 case '*': /* Run length encoding. */
9359 /* Discard the repeat count. */
9360 c = readchar (remote_timeout);
9361 if (c < 0)
9362 return;
9363 break;
9364 default:
9365 /* A regular character. */
9366 break;
9367 }
9368 }
9369 }
9370
9371 /* Come here after finding the start of the frame. Collect the rest
9372 into *BUF, verifying the checksum, length, and handling run-length
9373 compression. NUL terminate the buffer. If there is not enough room,
9374 expand *BUF.
9375
9376 Returns -1 on error, number of characters in buffer (ignoring the
9377 trailing NULL) on success. (could be extended to return one of the
9378 SERIAL status indications). */
9379
9380 long
9381 remote_target::read_frame (gdb::char_vector *buf_p)
9382 {
9383 unsigned char csum;
9384 long bc;
9385 int c;
9386 char *buf = buf_p->data ();
9387 struct remote_state *rs = get_remote_state ();
9388
9389 csum = 0;
9390 bc = 0;
9391
9392 while (1)
9393 {
9394 c = readchar (remote_timeout);
9395 switch (c)
9396 {
9397 case SERIAL_TIMEOUT:
9398 if (remote_debug)
9399 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9400 return -1;
9401 case '$':
9402 if (remote_debug)
9403 fputs_filtered ("Saw new packet start in middle of old one\n",
9404 gdb_stdlog);
9405 return -1; /* Start a new packet, count retries. */
9406 case '#':
9407 {
9408 unsigned char pktcsum;
9409 int check_0 = 0;
9410 int check_1 = 0;
9411
9412 buf[bc] = '\0';
9413
9414 check_0 = readchar (remote_timeout);
9415 if (check_0 >= 0)
9416 check_1 = readchar (remote_timeout);
9417
9418 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9419 {
9420 if (remote_debug)
9421 fputs_filtered ("Timeout in checksum, retrying\n",
9422 gdb_stdlog);
9423 return -1;
9424 }
9425 else if (check_0 < 0 || check_1 < 0)
9426 {
9427 if (remote_debug)
9428 fputs_filtered ("Communication error in checksum\n",
9429 gdb_stdlog);
9430 return -1;
9431 }
9432
9433 /* Don't recompute the checksum; with no ack packets we
9434 don't have any way to indicate a packet retransmission
9435 is necessary. */
9436 if (rs->noack_mode)
9437 return bc;
9438
9439 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9440 if (csum == pktcsum)
9441 return bc;
9442
9443 if (remote_debug)
9444 {
9445 std::string str = escape_buffer (buf, bc);
9446
9447 fprintf_unfiltered (gdb_stdlog,
9448 "Bad checksum, sentsum=0x%x, "
9449 "csum=0x%x, buf=%s\n",
9450 pktcsum, csum, str.c_str ());
9451 }
9452 /* Number of characters in buffer ignoring trailing
9453 NULL. */
9454 return -1;
9455 }
9456 case '*': /* Run length encoding. */
9457 {
9458 int repeat;
9459
9460 csum += c;
9461 c = readchar (remote_timeout);
9462 csum += c;
9463 repeat = c - ' ' + 3; /* Compute repeat count. */
9464
9465 /* The character before ``*'' is repeated. */
9466
9467 if (repeat > 0 && repeat <= 255 && bc > 0)
9468 {
9469 if (bc + repeat - 1 >= buf_p->size () - 1)
9470 {
9471 /* Make some more room in the buffer. */
9472 buf_p->resize (buf_p->size () + repeat);
9473 buf = buf_p->data ();
9474 }
9475
9476 memset (&buf[bc], buf[bc - 1], repeat);
9477 bc += repeat;
9478 continue;
9479 }
9480
9481 buf[bc] = '\0';
9482 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9483 return -1;
9484 }
9485 default:
9486 if (bc >= buf_p->size () - 1)
9487 {
9488 /* Make some more room in the buffer. */
9489 buf_p->resize (buf_p->size () * 2);
9490 buf = buf_p->data ();
9491 }
9492
9493 buf[bc++] = c;
9494 csum += c;
9495 continue;
9496 }
9497 }
9498 }
9499
9500 /* Read a packet from the remote machine, with error checking, and
9501 store it in *BUF. Resize *BUF if necessary to hold the result. If
9502 FOREVER, wait forever rather than timing out; this is used (in
9503 synchronous mode) to wait for a target that is is executing user
9504 code to stop. */
9505 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9506 don't have to change all the calls to getpkt to deal with the
9507 return value, because at the moment I don't know what the right
9508 thing to do it for those. */
9509
9510 void
9511 remote_target::getpkt (gdb::char_vector *buf, int forever)
9512 {
9513 getpkt_sane (buf, forever);
9514 }
9515
9516
9517 /* Read a packet from the remote machine, with error checking, and
9518 store it in *BUF. Resize *BUF if necessary to hold the result. If
9519 FOREVER, wait forever rather than timing out; this is used (in
9520 synchronous mode) to wait for a target that is is executing user
9521 code to stop. If FOREVER == 0, this function is allowed to time
9522 out gracefully and return an indication of this to the caller.
9523 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9524 consider receiving a notification enough reason to return to the
9525 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9526 holds a notification or not (a regular packet). */
9527
9528 int
9529 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9530 int forever, int expecting_notif,
9531 int *is_notif)
9532 {
9533 struct remote_state *rs = get_remote_state ();
9534 int c;
9535 int tries;
9536 int timeout;
9537 int val = -1;
9538
9539 /* We're reading a new response. Make sure we don't look at a
9540 previously cached response. */
9541 rs->cached_wait_status = 0;
9542
9543 strcpy (buf->data (), "timeout");
9544
9545 if (forever)
9546 timeout = watchdog > 0 ? watchdog : -1;
9547 else if (expecting_notif)
9548 timeout = 0; /* There should already be a char in the buffer. If
9549 not, bail out. */
9550 else
9551 timeout = remote_timeout;
9552
9553 #define MAX_TRIES 3
9554
9555 /* Process any number of notifications, and then return when
9556 we get a packet. */
9557 for (;;)
9558 {
9559 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9560 times. */
9561 for (tries = 1; tries <= MAX_TRIES; tries++)
9562 {
9563 /* This can loop forever if the remote side sends us
9564 characters continuously, but if it pauses, we'll get
9565 SERIAL_TIMEOUT from readchar because of timeout. Then
9566 we'll count that as a retry.
9567
9568 Note that even when forever is set, we will only wait
9569 forever prior to the start of a packet. After that, we
9570 expect characters to arrive at a brisk pace. They should
9571 show up within remote_timeout intervals. */
9572 do
9573 c = readchar (timeout);
9574 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9575
9576 if (c == SERIAL_TIMEOUT)
9577 {
9578 if (expecting_notif)
9579 return -1; /* Don't complain, it's normal to not get
9580 anything in this case. */
9581
9582 if (forever) /* Watchdog went off? Kill the target. */
9583 {
9584 remote_unpush_target ();
9585 throw_error (TARGET_CLOSE_ERROR,
9586 _("Watchdog timeout has expired. "
9587 "Target detached."));
9588 }
9589 if (remote_debug)
9590 fputs_filtered ("Timed out.\n", gdb_stdlog);
9591 }
9592 else
9593 {
9594 /* We've found the start of a packet or notification.
9595 Now collect the data. */
9596 val = read_frame (buf);
9597 if (val >= 0)
9598 break;
9599 }
9600
9601 remote_serial_write ("-", 1);
9602 }
9603
9604 if (tries > MAX_TRIES)
9605 {
9606 /* We have tried hard enough, and just can't receive the
9607 packet/notification. Give up. */
9608 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9609
9610 /* Skip the ack char if we're in no-ack mode. */
9611 if (!rs->noack_mode)
9612 remote_serial_write ("+", 1);
9613 return -1;
9614 }
9615
9616 /* If we got an ordinary packet, return that to our caller. */
9617 if (c == '$')
9618 {
9619 if (remote_debug)
9620 {
9621 std::string str
9622 = escape_buffer (buf->data (),
9623 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9624
9625 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9626 str.c_str ());
9627
9628 if (val > REMOTE_DEBUG_MAX_CHAR)
9629 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9630 val - REMOTE_DEBUG_MAX_CHAR);
9631
9632 fprintf_unfiltered (gdb_stdlog, "\n");
9633 }
9634
9635 /* Skip the ack char if we're in no-ack mode. */
9636 if (!rs->noack_mode)
9637 remote_serial_write ("+", 1);
9638 if (is_notif != NULL)
9639 *is_notif = 0;
9640 return val;
9641 }
9642
9643 /* If we got a notification, handle it, and go back to looking
9644 for a packet. */
9645 else
9646 {
9647 gdb_assert (c == '%');
9648
9649 if (remote_debug)
9650 {
9651 std::string str = escape_buffer (buf->data (), val);
9652
9653 fprintf_unfiltered (gdb_stdlog,
9654 " Notification received: %s\n",
9655 str.c_str ());
9656 }
9657 if (is_notif != NULL)
9658 *is_notif = 1;
9659
9660 handle_notification (rs->notif_state, buf->data ());
9661
9662 /* Notifications require no acknowledgement. */
9663
9664 if (expecting_notif)
9665 return val;
9666 }
9667 }
9668 }
9669
9670 int
9671 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9672 {
9673 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9674 }
9675
9676 int
9677 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9678 int *is_notif)
9679 {
9680 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9681 }
9682
9683 /* Kill any new fork children of process PID that haven't been
9684 processed by follow_fork. */
9685
9686 void
9687 remote_target::kill_new_fork_children (int pid)
9688 {
9689 remote_state *rs = get_remote_state ();
9690 struct notif_client *notif = &notif_client_stop;
9691
9692 /* Kill the fork child threads of any threads in process PID
9693 that are stopped at a fork event. */
9694 for (thread_info *thread : all_non_exited_threads ())
9695 {
9696 struct target_waitstatus *ws = &thread->pending_follow;
9697
9698 if (is_pending_fork_parent (ws, pid, thread->ptid))
9699 {
9700 int child_pid = ws->value.related_pid.pid ();
9701 int res;
9702
9703 res = remote_vkill (child_pid);
9704 if (res != 0)
9705 error (_("Can't kill fork child process %d"), child_pid);
9706 }
9707 }
9708
9709 /* Check for any pending fork events (not reported or processed yet)
9710 in process PID and kill those fork child threads as well. */
9711 remote_notif_get_pending_events (notif);
9712 for (auto &event : rs->stop_reply_queue)
9713 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9714 {
9715 int child_pid = event->ws.value.related_pid.pid ();
9716 int res;
9717
9718 res = remote_vkill (child_pid);
9719 if (res != 0)
9720 error (_("Can't kill fork child process %d"), child_pid);
9721 }
9722 }
9723
9724 \f
9725 /* Target hook to kill the current inferior. */
9726
9727 void
9728 remote_target::kill ()
9729 {
9730 int res = -1;
9731 int pid = inferior_ptid.pid ();
9732 struct remote_state *rs = get_remote_state ();
9733
9734 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9735 {
9736 /* If we're stopped while forking and we haven't followed yet,
9737 kill the child task. We need to do this before killing the
9738 parent task because if this is a vfork then the parent will
9739 be sleeping. */
9740 kill_new_fork_children (pid);
9741
9742 res = remote_vkill (pid);
9743 if (res == 0)
9744 {
9745 target_mourn_inferior (inferior_ptid);
9746 return;
9747 }
9748 }
9749
9750 /* If we are in 'target remote' mode and we are killing the only
9751 inferior, then we will tell gdbserver to exit and unpush the
9752 target. */
9753 if (res == -1 && !remote_multi_process_p (rs)
9754 && number_of_live_inferiors () == 1)
9755 {
9756 remote_kill_k ();
9757
9758 /* We've killed the remote end, we get to mourn it. If we are
9759 not in extended mode, mourning the inferior also unpushes
9760 remote_ops from the target stack, which closes the remote
9761 connection. */
9762 target_mourn_inferior (inferior_ptid);
9763
9764 return;
9765 }
9766
9767 error (_("Can't kill process"));
9768 }
9769
9770 /* Send a kill request to the target using the 'vKill' packet. */
9771
9772 int
9773 remote_target::remote_vkill (int pid)
9774 {
9775 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9776 return -1;
9777
9778 remote_state *rs = get_remote_state ();
9779
9780 /* Tell the remote target to detach. */
9781 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9782 putpkt (rs->buf);
9783 getpkt (&rs->buf, 0);
9784
9785 switch (packet_ok (rs->buf,
9786 &remote_protocol_packets[PACKET_vKill]))
9787 {
9788 case PACKET_OK:
9789 return 0;
9790 case PACKET_ERROR:
9791 return 1;
9792 case PACKET_UNKNOWN:
9793 return -1;
9794 default:
9795 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9796 }
9797 }
9798
9799 /* Send a kill request to the target using the 'k' packet. */
9800
9801 void
9802 remote_target::remote_kill_k ()
9803 {
9804 /* Catch errors so the user can quit from gdb even when we
9805 aren't on speaking terms with the remote system. */
9806 TRY
9807 {
9808 putpkt ("k");
9809 }
9810 CATCH (ex, RETURN_MASK_ERROR)
9811 {
9812 if (ex.error == TARGET_CLOSE_ERROR)
9813 {
9814 /* If we got an (EOF) error that caused the target
9815 to go away, then we're done, that's what we wanted.
9816 "k" is susceptible to cause a premature EOF, given
9817 that the remote server isn't actually required to
9818 reply to "k", and it can happen that it doesn't
9819 even get to reply ACK to the "k". */
9820 return;
9821 }
9822
9823 /* Otherwise, something went wrong. We didn't actually kill
9824 the target. Just propagate the exception, and let the
9825 user or higher layers decide what to do. */
9826 throw_exception (ex);
9827 }
9828 END_CATCH
9829 }
9830
9831 void
9832 remote_target::mourn_inferior ()
9833 {
9834 struct remote_state *rs = get_remote_state ();
9835
9836 /* We're no longer interested in notification events of an inferior
9837 that exited or was killed/detached. */
9838 discard_pending_stop_replies (current_inferior ());
9839
9840 /* In 'target remote' mode with one inferior, we close the connection. */
9841 if (!rs->extended && number_of_live_inferiors () <= 1)
9842 {
9843 unpush_target (this);
9844
9845 /* remote_close takes care of doing most of the clean up. */
9846 generic_mourn_inferior ();
9847 return;
9848 }
9849
9850 /* In case we got here due to an error, but we're going to stay
9851 connected. */
9852 rs->waiting_for_stop_reply = 0;
9853
9854 /* If the current general thread belonged to the process we just
9855 detached from or has exited, the remote side current general
9856 thread becomes undefined. Considering a case like this:
9857
9858 - We just got here due to a detach.
9859 - The process that we're detaching from happens to immediately
9860 report a global breakpoint being hit in non-stop mode, in the
9861 same thread we had selected before.
9862 - GDB attaches to this process again.
9863 - This event happens to be the next event we handle.
9864
9865 GDB would consider that the current general thread didn't need to
9866 be set on the stub side (with Hg), since for all it knew,
9867 GENERAL_THREAD hadn't changed.
9868
9869 Notice that although in all-stop mode, the remote server always
9870 sets the current thread to the thread reporting the stop event,
9871 that doesn't happen in non-stop mode; in non-stop, the stub *must
9872 not* change the current thread when reporting a breakpoint hit,
9873 due to the decoupling of event reporting and event handling.
9874
9875 To keep things simple, we always invalidate our notion of the
9876 current thread. */
9877 record_currthread (rs, minus_one_ptid);
9878
9879 /* Call common code to mark the inferior as not running. */
9880 generic_mourn_inferior ();
9881
9882 if (!have_inferiors ())
9883 {
9884 if (!remote_multi_process_p (rs))
9885 {
9886 /* Check whether the target is running now - some remote stubs
9887 automatically restart after kill. */
9888 putpkt ("?");
9889 getpkt (&rs->buf, 0);
9890
9891 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9892 {
9893 /* Assume that the target has been restarted. Set
9894 inferior_ptid so that bits of core GDB realizes
9895 there's something here, e.g., so that the user can
9896 say "kill" again. */
9897 inferior_ptid = magic_null_ptid;
9898 }
9899 }
9900 }
9901 }
9902
9903 bool
9904 extended_remote_target::supports_disable_randomization ()
9905 {
9906 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9907 }
9908
9909 void
9910 remote_target::extended_remote_disable_randomization (int val)
9911 {
9912 struct remote_state *rs = get_remote_state ();
9913 char *reply;
9914
9915 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9916 "QDisableRandomization:%x", val);
9917 putpkt (rs->buf);
9918 reply = remote_get_noisy_reply ();
9919 if (*reply == '\0')
9920 error (_("Target does not support QDisableRandomization."));
9921 if (strcmp (reply, "OK") != 0)
9922 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9923 }
9924
9925 int
9926 remote_target::extended_remote_run (const std::string &args)
9927 {
9928 struct remote_state *rs = get_remote_state ();
9929 int len;
9930 const char *remote_exec_file = get_remote_exec_file ();
9931
9932 /* If the user has disabled vRun support, or we have detected that
9933 support is not available, do not try it. */
9934 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9935 return -1;
9936
9937 strcpy (rs->buf.data (), "vRun;");
9938 len = strlen (rs->buf.data ());
9939
9940 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9941 error (_("Remote file name too long for run packet"));
9942 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
9943 strlen (remote_exec_file));
9944
9945 if (!args.empty ())
9946 {
9947 int i;
9948
9949 gdb_argv argv (args.c_str ());
9950 for (i = 0; argv[i] != NULL; i++)
9951 {
9952 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9953 error (_("Argument list too long for run packet"));
9954 rs->buf[len++] = ';';
9955 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
9956 strlen (argv[i]));
9957 }
9958 }
9959
9960 rs->buf[len++] = '\0';
9961
9962 putpkt (rs->buf);
9963 getpkt (&rs->buf, 0);
9964
9965 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9966 {
9967 case PACKET_OK:
9968 /* We have a wait response. All is well. */
9969 return 0;
9970 case PACKET_UNKNOWN:
9971 return -1;
9972 case PACKET_ERROR:
9973 if (remote_exec_file[0] == '\0')
9974 error (_("Running the default executable on the remote target failed; "
9975 "try \"set remote exec-file\"?"));
9976 else
9977 error (_("Running \"%s\" on the remote target failed"),
9978 remote_exec_file);
9979 default:
9980 gdb_assert_not_reached (_("bad switch"));
9981 }
9982 }
9983
9984 /* Helper function to send set/unset environment packets. ACTION is
9985 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9986 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9987 sent. */
9988
9989 void
9990 remote_target::send_environment_packet (const char *action,
9991 const char *packet,
9992 const char *value)
9993 {
9994 remote_state *rs = get_remote_state ();
9995
9996 /* Convert the environment variable to an hex string, which
9997 is the best format to be transmitted over the wire. */
9998 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9999 strlen (value));
10000
10001 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10002 "%s:%s", packet, encoded_value.c_str ());
10003
10004 putpkt (rs->buf);
10005 getpkt (&rs->buf, 0);
10006 if (strcmp (rs->buf.data (), "OK") != 0)
10007 warning (_("Unable to %s environment variable '%s' on remote."),
10008 action, value);
10009 }
10010
10011 /* Helper function to handle the QEnvironment* packets. */
10012
10013 void
10014 remote_target::extended_remote_environment_support ()
10015 {
10016 remote_state *rs = get_remote_state ();
10017
10018 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10019 {
10020 putpkt ("QEnvironmentReset");
10021 getpkt (&rs->buf, 0);
10022 if (strcmp (rs->buf.data (), "OK") != 0)
10023 warning (_("Unable to reset environment on remote."));
10024 }
10025
10026 gdb_environ *e = &current_inferior ()->environment;
10027
10028 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10029 for (const std::string &el : e->user_set_env ())
10030 send_environment_packet ("set", "QEnvironmentHexEncoded",
10031 el.c_str ());
10032
10033 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10034 for (const std::string &el : e->user_unset_env ())
10035 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10036 }
10037
10038 /* Helper function to set the current working directory for the
10039 inferior in the remote target. */
10040
10041 void
10042 remote_target::extended_remote_set_inferior_cwd ()
10043 {
10044 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10045 {
10046 const char *inferior_cwd = get_inferior_cwd ();
10047 remote_state *rs = get_remote_state ();
10048
10049 if (inferior_cwd != NULL)
10050 {
10051 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10052 strlen (inferior_cwd));
10053
10054 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10055 "QSetWorkingDir:%s", hexpath.c_str ());
10056 }
10057 else
10058 {
10059 /* An empty inferior_cwd means that the user wants us to
10060 reset the remote server's inferior's cwd. */
10061 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10062 "QSetWorkingDir:");
10063 }
10064
10065 putpkt (rs->buf);
10066 getpkt (&rs->buf, 0);
10067 if (packet_ok (rs->buf,
10068 &remote_protocol_packets[PACKET_QSetWorkingDir])
10069 != PACKET_OK)
10070 error (_("\
10071 Remote replied unexpectedly while setting the inferior's working\n\
10072 directory: %s"),
10073 rs->buf.data ());
10074
10075 }
10076 }
10077
10078 /* In the extended protocol we want to be able to do things like
10079 "run" and have them basically work as expected. So we need
10080 a special create_inferior function. We support changing the
10081 executable file and the command line arguments, but not the
10082 environment. */
10083
10084 void
10085 extended_remote_target::create_inferior (const char *exec_file,
10086 const std::string &args,
10087 char **env, int from_tty)
10088 {
10089 int run_worked;
10090 char *stop_reply;
10091 struct remote_state *rs = get_remote_state ();
10092 const char *remote_exec_file = get_remote_exec_file ();
10093
10094 /* If running asynchronously, register the target file descriptor
10095 with the event loop. */
10096 if (target_can_async_p ())
10097 target_async (1);
10098
10099 /* Disable address space randomization if requested (and supported). */
10100 if (supports_disable_randomization ())
10101 extended_remote_disable_randomization (disable_randomization);
10102
10103 /* If startup-with-shell is on, we inform gdbserver to start the
10104 remote inferior using a shell. */
10105 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10106 {
10107 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10108 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10109 putpkt (rs->buf);
10110 getpkt (&rs->buf, 0);
10111 if (strcmp (rs->buf.data (), "OK") != 0)
10112 error (_("\
10113 Remote replied unexpectedly while setting startup-with-shell: %s"),
10114 rs->buf.data ());
10115 }
10116
10117 extended_remote_environment_support ();
10118
10119 extended_remote_set_inferior_cwd ();
10120
10121 /* Now restart the remote server. */
10122 run_worked = extended_remote_run (args) != -1;
10123 if (!run_worked)
10124 {
10125 /* vRun was not supported. Fail if we need it to do what the
10126 user requested. */
10127 if (remote_exec_file[0])
10128 error (_("Remote target does not support \"set remote exec-file\""));
10129 if (!args.empty ())
10130 error (_("Remote target does not support \"set args\" or run ARGS"));
10131
10132 /* Fall back to "R". */
10133 extended_remote_restart ();
10134 }
10135
10136 /* vRun's success return is a stop reply. */
10137 stop_reply = run_worked ? rs->buf.data () : NULL;
10138 add_current_inferior_and_thread (stop_reply);
10139
10140 /* Get updated offsets, if the stub uses qOffsets. */
10141 get_offsets ();
10142 }
10143 \f
10144
10145 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10146 the list of conditions (in agent expression bytecode format), if any, the
10147 target needs to evaluate. The output is placed into the packet buffer
10148 started from BUF and ended at BUF_END. */
10149
10150 static int
10151 remote_add_target_side_condition (struct gdbarch *gdbarch,
10152 struct bp_target_info *bp_tgt, char *buf,
10153 char *buf_end)
10154 {
10155 if (bp_tgt->conditions.empty ())
10156 return 0;
10157
10158 buf += strlen (buf);
10159 xsnprintf (buf, buf_end - buf, "%s", ";");
10160 buf++;
10161
10162 /* Send conditions to the target. */
10163 for (agent_expr *aexpr : bp_tgt->conditions)
10164 {
10165 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10166 buf += strlen (buf);
10167 for (int i = 0; i < aexpr->len; ++i)
10168 buf = pack_hex_byte (buf, aexpr->buf[i]);
10169 *buf = '\0';
10170 }
10171 return 0;
10172 }
10173
10174 static void
10175 remote_add_target_side_commands (struct gdbarch *gdbarch,
10176 struct bp_target_info *bp_tgt, char *buf)
10177 {
10178 if (bp_tgt->tcommands.empty ())
10179 return;
10180
10181 buf += strlen (buf);
10182
10183 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10184 buf += strlen (buf);
10185
10186 /* Concatenate all the agent expressions that are commands into the
10187 cmds parameter. */
10188 for (agent_expr *aexpr : bp_tgt->tcommands)
10189 {
10190 sprintf (buf, "X%x,", aexpr->len);
10191 buf += strlen (buf);
10192 for (int i = 0; i < aexpr->len; ++i)
10193 buf = pack_hex_byte (buf, aexpr->buf[i]);
10194 *buf = '\0';
10195 }
10196 }
10197
10198 /* Insert a breakpoint. On targets that have software breakpoint
10199 support, we ask the remote target to do the work; on targets
10200 which don't, we insert a traditional memory breakpoint. */
10201
10202 int
10203 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10204 struct bp_target_info *bp_tgt)
10205 {
10206 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10207 If it succeeds, then set the support to PACKET_ENABLE. If it
10208 fails, and the user has explicitly requested the Z support then
10209 report an error, otherwise, mark it disabled and go on. */
10210
10211 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10212 {
10213 CORE_ADDR addr = bp_tgt->reqstd_address;
10214 struct remote_state *rs;
10215 char *p, *endbuf;
10216
10217 /* Make sure the remote is pointing at the right process, if
10218 necessary. */
10219 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10220 set_general_process ();
10221
10222 rs = get_remote_state ();
10223 p = rs->buf.data ();
10224 endbuf = p + get_remote_packet_size ();
10225
10226 *(p++) = 'Z';
10227 *(p++) = '0';
10228 *(p++) = ',';
10229 addr = (ULONGEST) remote_address_masked (addr);
10230 p += hexnumstr (p, addr);
10231 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10232
10233 if (supports_evaluation_of_breakpoint_conditions ())
10234 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10235
10236 if (can_run_breakpoint_commands ())
10237 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10238
10239 putpkt (rs->buf);
10240 getpkt (&rs->buf, 0);
10241
10242 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10243 {
10244 case PACKET_ERROR:
10245 return -1;
10246 case PACKET_OK:
10247 return 0;
10248 case PACKET_UNKNOWN:
10249 break;
10250 }
10251 }
10252
10253 /* If this breakpoint has target-side commands but this stub doesn't
10254 support Z0 packets, throw error. */
10255 if (!bp_tgt->tcommands.empty ())
10256 throw_error (NOT_SUPPORTED_ERROR, _("\
10257 Target doesn't support breakpoints that have target side commands."));
10258
10259 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10260 }
10261
10262 int
10263 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10264 struct bp_target_info *bp_tgt,
10265 enum remove_bp_reason reason)
10266 {
10267 CORE_ADDR addr = bp_tgt->placed_address;
10268 struct remote_state *rs = get_remote_state ();
10269
10270 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10271 {
10272 char *p = rs->buf.data ();
10273 char *endbuf = p + get_remote_packet_size ();
10274
10275 /* Make sure the remote is pointing at the right process, if
10276 necessary. */
10277 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10278 set_general_process ();
10279
10280 *(p++) = 'z';
10281 *(p++) = '0';
10282 *(p++) = ',';
10283
10284 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10285 p += hexnumstr (p, addr);
10286 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10287
10288 putpkt (rs->buf);
10289 getpkt (&rs->buf, 0);
10290
10291 return (rs->buf[0] == 'E');
10292 }
10293
10294 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10295 }
10296
10297 static enum Z_packet_type
10298 watchpoint_to_Z_packet (int type)
10299 {
10300 switch (type)
10301 {
10302 case hw_write:
10303 return Z_PACKET_WRITE_WP;
10304 break;
10305 case hw_read:
10306 return Z_PACKET_READ_WP;
10307 break;
10308 case hw_access:
10309 return Z_PACKET_ACCESS_WP;
10310 break;
10311 default:
10312 internal_error (__FILE__, __LINE__,
10313 _("hw_bp_to_z: bad watchpoint type %d"), type);
10314 }
10315 }
10316
10317 int
10318 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10319 enum target_hw_bp_type type, struct expression *cond)
10320 {
10321 struct remote_state *rs = get_remote_state ();
10322 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10323 char *p;
10324 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10325
10326 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10327 return 1;
10328
10329 /* Make sure the remote is pointing at the right process, if
10330 necessary. */
10331 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10332 set_general_process ();
10333
10334 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10335 p = strchr (rs->buf.data (), '\0');
10336 addr = remote_address_masked (addr);
10337 p += hexnumstr (p, (ULONGEST) addr);
10338 xsnprintf (p, endbuf - p, ",%x", len);
10339
10340 putpkt (rs->buf);
10341 getpkt (&rs->buf, 0);
10342
10343 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10344 {
10345 case PACKET_ERROR:
10346 return -1;
10347 case PACKET_UNKNOWN:
10348 return 1;
10349 case PACKET_OK:
10350 return 0;
10351 }
10352 internal_error (__FILE__, __LINE__,
10353 _("remote_insert_watchpoint: reached end of function"));
10354 }
10355
10356 bool
10357 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10358 CORE_ADDR start, int length)
10359 {
10360 CORE_ADDR diff = remote_address_masked (addr - start);
10361
10362 return diff < length;
10363 }
10364
10365
10366 int
10367 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10368 enum target_hw_bp_type type, struct expression *cond)
10369 {
10370 struct remote_state *rs = get_remote_state ();
10371 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10372 char *p;
10373 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10374
10375 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10376 return -1;
10377
10378 /* Make sure the remote is pointing at the right process, if
10379 necessary. */
10380 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10381 set_general_process ();
10382
10383 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10384 p = strchr (rs->buf.data (), '\0');
10385 addr = remote_address_masked (addr);
10386 p += hexnumstr (p, (ULONGEST) addr);
10387 xsnprintf (p, endbuf - p, ",%x", len);
10388 putpkt (rs->buf);
10389 getpkt (&rs->buf, 0);
10390
10391 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10392 {
10393 case PACKET_ERROR:
10394 case PACKET_UNKNOWN:
10395 return -1;
10396 case PACKET_OK:
10397 return 0;
10398 }
10399 internal_error (__FILE__, __LINE__,
10400 _("remote_remove_watchpoint: reached end of function"));
10401 }
10402
10403
10404 int remote_hw_watchpoint_limit = -1;
10405 int remote_hw_watchpoint_length_limit = -1;
10406 int remote_hw_breakpoint_limit = -1;
10407
10408 int
10409 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10410 {
10411 if (remote_hw_watchpoint_length_limit == 0)
10412 return 0;
10413 else if (remote_hw_watchpoint_length_limit < 0)
10414 return 1;
10415 else if (len <= remote_hw_watchpoint_length_limit)
10416 return 1;
10417 else
10418 return 0;
10419 }
10420
10421 int
10422 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10423 {
10424 if (type == bp_hardware_breakpoint)
10425 {
10426 if (remote_hw_breakpoint_limit == 0)
10427 return 0;
10428 else if (remote_hw_breakpoint_limit < 0)
10429 return 1;
10430 else if (cnt <= remote_hw_breakpoint_limit)
10431 return 1;
10432 }
10433 else
10434 {
10435 if (remote_hw_watchpoint_limit == 0)
10436 return 0;
10437 else if (remote_hw_watchpoint_limit < 0)
10438 return 1;
10439 else if (ot)
10440 return -1;
10441 else if (cnt <= remote_hw_watchpoint_limit)
10442 return 1;
10443 }
10444 return -1;
10445 }
10446
10447 /* The to_stopped_by_sw_breakpoint method of target remote. */
10448
10449 bool
10450 remote_target::stopped_by_sw_breakpoint ()
10451 {
10452 struct thread_info *thread = inferior_thread ();
10453
10454 return (thread->priv != NULL
10455 && (get_remote_thread_info (thread)->stop_reason
10456 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10457 }
10458
10459 /* The to_supports_stopped_by_sw_breakpoint method of target
10460 remote. */
10461
10462 bool
10463 remote_target::supports_stopped_by_sw_breakpoint ()
10464 {
10465 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10466 }
10467
10468 /* The to_stopped_by_hw_breakpoint method of target remote. */
10469
10470 bool
10471 remote_target::stopped_by_hw_breakpoint ()
10472 {
10473 struct thread_info *thread = inferior_thread ();
10474
10475 return (thread->priv != NULL
10476 && (get_remote_thread_info (thread)->stop_reason
10477 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10478 }
10479
10480 /* The to_supports_stopped_by_hw_breakpoint method of target
10481 remote. */
10482
10483 bool
10484 remote_target::supports_stopped_by_hw_breakpoint ()
10485 {
10486 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10487 }
10488
10489 bool
10490 remote_target::stopped_by_watchpoint ()
10491 {
10492 struct thread_info *thread = inferior_thread ();
10493
10494 return (thread->priv != NULL
10495 && (get_remote_thread_info (thread)->stop_reason
10496 == TARGET_STOPPED_BY_WATCHPOINT));
10497 }
10498
10499 bool
10500 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10501 {
10502 struct thread_info *thread = inferior_thread ();
10503
10504 if (thread->priv != NULL
10505 && (get_remote_thread_info (thread)->stop_reason
10506 == TARGET_STOPPED_BY_WATCHPOINT))
10507 {
10508 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10509 return true;
10510 }
10511
10512 return false;
10513 }
10514
10515
10516 int
10517 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10518 struct bp_target_info *bp_tgt)
10519 {
10520 CORE_ADDR addr = bp_tgt->reqstd_address;
10521 struct remote_state *rs;
10522 char *p, *endbuf;
10523 char *message;
10524
10525 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10526 return -1;
10527
10528 /* Make sure the remote is pointing at the right process, if
10529 necessary. */
10530 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10531 set_general_process ();
10532
10533 rs = get_remote_state ();
10534 p = rs->buf.data ();
10535 endbuf = p + get_remote_packet_size ();
10536
10537 *(p++) = 'Z';
10538 *(p++) = '1';
10539 *(p++) = ',';
10540
10541 addr = remote_address_masked (addr);
10542 p += hexnumstr (p, (ULONGEST) addr);
10543 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10544
10545 if (supports_evaluation_of_breakpoint_conditions ())
10546 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10547
10548 if (can_run_breakpoint_commands ())
10549 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10550
10551 putpkt (rs->buf);
10552 getpkt (&rs->buf, 0);
10553
10554 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10555 {
10556 case PACKET_ERROR:
10557 if (rs->buf[1] == '.')
10558 {
10559 message = strchr (&rs->buf[2], '.');
10560 if (message)
10561 error (_("Remote failure reply: %s"), message + 1);
10562 }
10563 return -1;
10564 case PACKET_UNKNOWN:
10565 return -1;
10566 case PACKET_OK:
10567 return 0;
10568 }
10569 internal_error (__FILE__, __LINE__,
10570 _("remote_insert_hw_breakpoint: reached end of function"));
10571 }
10572
10573
10574 int
10575 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10576 struct bp_target_info *bp_tgt)
10577 {
10578 CORE_ADDR addr;
10579 struct remote_state *rs = get_remote_state ();
10580 char *p = rs->buf.data ();
10581 char *endbuf = p + get_remote_packet_size ();
10582
10583 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10584 return -1;
10585
10586 /* Make sure the remote is pointing at the right process, if
10587 necessary. */
10588 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10589 set_general_process ();
10590
10591 *(p++) = 'z';
10592 *(p++) = '1';
10593 *(p++) = ',';
10594
10595 addr = remote_address_masked (bp_tgt->placed_address);
10596 p += hexnumstr (p, (ULONGEST) addr);
10597 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10598
10599 putpkt (rs->buf);
10600 getpkt (&rs->buf, 0);
10601
10602 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10603 {
10604 case PACKET_ERROR:
10605 case PACKET_UNKNOWN:
10606 return -1;
10607 case PACKET_OK:
10608 return 0;
10609 }
10610 internal_error (__FILE__, __LINE__,
10611 _("remote_remove_hw_breakpoint: reached end of function"));
10612 }
10613
10614 /* Verify memory using the "qCRC:" request. */
10615
10616 int
10617 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10618 {
10619 struct remote_state *rs = get_remote_state ();
10620 unsigned long host_crc, target_crc;
10621 char *tmp;
10622
10623 /* It doesn't make sense to use qCRC if the remote target is
10624 connected but not running. */
10625 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10626 {
10627 enum packet_result result;
10628
10629 /* Make sure the remote is pointing at the right process. */
10630 set_general_process ();
10631
10632 /* FIXME: assumes lma can fit into long. */
10633 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10634 (long) lma, (long) size);
10635 putpkt (rs->buf);
10636
10637 /* Be clever; compute the host_crc before waiting for target
10638 reply. */
10639 host_crc = xcrc32 (data, size, 0xffffffff);
10640
10641 getpkt (&rs->buf, 0);
10642
10643 result = packet_ok (rs->buf,
10644 &remote_protocol_packets[PACKET_qCRC]);
10645 if (result == PACKET_ERROR)
10646 return -1;
10647 else if (result == PACKET_OK)
10648 {
10649 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10650 target_crc = target_crc * 16 + fromhex (*tmp);
10651
10652 return (host_crc == target_crc);
10653 }
10654 }
10655
10656 return simple_verify_memory (this, data, lma, size);
10657 }
10658
10659 /* compare-sections command
10660
10661 With no arguments, compares each loadable section in the exec bfd
10662 with the same memory range on the target, and reports mismatches.
10663 Useful for verifying the image on the target against the exec file. */
10664
10665 static void
10666 compare_sections_command (const char *args, int from_tty)
10667 {
10668 asection *s;
10669 const char *sectname;
10670 bfd_size_type size;
10671 bfd_vma lma;
10672 int matched = 0;
10673 int mismatched = 0;
10674 int res;
10675 int read_only = 0;
10676
10677 if (!exec_bfd)
10678 error (_("command cannot be used without an exec file"));
10679
10680 if (args != NULL && strcmp (args, "-r") == 0)
10681 {
10682 read_only = 1;
10683 args = NULL;
10684 }
10685
10686 for (s = exec_bfd->sections; s; s = s->next)
10687 {
10688 if (!(s->flags & SEC_LOAD))
10689 continue; /* Skip non-loadable section. */
10690
10691 if (read_only && (s->flags & SEC_READONLY) == 0)
10692 continue; /* Skip writeable sections */
10693
10694 size = bfd_get_section_size (s);
10695 if (size == 0)
10696 continue; /* Skip zero-length section. */
10697
10698 sectname = bfd_get_section_name (exec_bfd, s);
10699 if (args && strcmp (args, sectname) != 0)
10700 continue; /* Not the section selected by user. */
10701
10702 matched = 1; /* Do this section. */
10703 lma = s->lma;
10704
10705 gdb::byte_vector sectdata (size);
10706 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10707
10708 res = target_verify_memory (sectdata.data (), lma, size);
10709
10710 if (res == -1)
10711 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10712 paddress (target_gdbarch (), lma),
10713 paddress (target_gdbarch (), lma + size));
10714
10715 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10716 paddress (target_gdbarch (), lma),
10717 paddress (target_gdbarch (), lma + size));
10718 if (res)
10719 printf_filtered ("matched.\n");
10720 else
10721 {
10722 printf_filtered ("MIS-MATCHED!\n");
10723 mismatched++;
10724 }
10725 }
10726 if (mismatched > 0)
10727 warning (_("One or more sections of the target image does not match\n\
10728 the loaded file\n"));
10729 if (args && !matched)
10730 printf_filtered (_("No loaded section named '%s'.\n"), args);
10731 }
10732
10733 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10734 into remote target. The number of bytes written to the remote
10735 target is returned, or -1 for error. */
10736
10737 target_xfer_status
10738 remote_target::remote_write_qxfer (const char *object_name,
10739 const char *annex, const gdb_byte *writebuf,
10740 ULONGEST offset, LONGEST len,
10741 ULONGEST *xfered_len,
10742 struct packet_config *packet)
10743 {
10744 int i, buf_len;
10745 ULONGEST n;
10746 struct remote_state *rs = get_remote_state ();
10747 int max_size = get_memory_write_packet_size ();
10748
10749 if (packet_config_support (packet) == PACKET_DISABLE)
10750 return TARGET_XFER_E_IO;
10751
10752 /* Insert header. */
10753 i = snprintf (rs->buf.data (), max_size,
10754 "qXfer:%s:write:%s:%s:",
10755 object_name, annex ? annex : "",
10756 phex_nz (offset, sizeof offset));
10757 max_size -= (i + 1);
10758
10759 /* Escape as much data as fits into rs->buf. */
10760 buf_len = remote_escape_output
10761 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10762
10763 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10764 || getpkt_sane (&rs->buf, 0) < 0
10765 || packet_ok (rs->buf, packet) != PACKET_OK)
10766 return TARGET_XFER_E_IO;
10767
10768 unpack_varlen_hex (rs->buf.data (), &n);
10769
10770 *xfered_len = n;
10771 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10772 }
10773
10774 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10775 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10776 number of bytes read is returned, or 0 for EOF, or -1 for error.
10777 The number of bytes read may be less than LEN without indicating an
10778 EOF. PACKET is checked and updated to indicate whether the remote
10779 target supports this object. */
10780
10781 target_xfer_status
10782 remote_target::remote_read_qxfer (const char *object_name,
10783 const char *annex,
10784 gdb_byte *readbuf, ULONGEST offset,
10785 LONGEST len,
10786 ULONGEST *xfered_len,
10787 struct packet_config *packet)
10788 {
10789 struct remote_state *rs = get_remote_state ();
10790 LONGEST i, n, packet_len;
10791
10792 if (packet_config_support (packet) == PACKET_DISABLE)
10793 return TARGET_XFER_E_IO;
10794
10795 /* Check whether we've cached an end-of-object packet that matches
10796 this request. */
10797 if (rs->finished_object)
10798 {
10799 if (strcmp (object_name, rs->finished_object) == 0
10800 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10801 && offset == rs->finished_offset)
10802 return TARGET_XFER_EOF;
10803
10804
10805 /* Otherwise, we're now reading something different. Discard
10806 the cache. */
10807 xfree (rs->finished_object);
10808 xfree (rs->finished_annex);
10809 rs->finished_object = NULL;
10810 rs->finished_annex = NULL;
10811 }
10812
10813 /* Request only enough to fit in a single packet. The actual data
10814 may not, since we don't know how much of it will need to be escaped;
10815 the target is free to respond with slightly less data. We subtract
10816 five to account for the response type and the protocol frame. */
10817 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10818 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10819 "qXfer:%s:read:%s:%s,%s",
10820 object_name, annex ? annex : "",
10821 phex_nz (offset, sizeof offset),
10822 phex_nz (n, sizeof n));
10823 i = putpkt (rs->buf);
10824 if (i < 0)
10825 return TARGET_XFER_E_IO;
10826
10827 rs->buf[0] = '\0';
10828 packet_len = getpkt_sane (&rs->buf, 0);
10829 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10830 return TARGET_XFER_E_IO;
10831
10832 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10833 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10834
10835 /* 'm' means there is (or at least might be) more data after this
10836 batch. That does not make sense unless there's at least one byte
10837 of data in this reply. */
10838 if (rs->buf[0] == 'm' && packet_len == 1)
10839 error (_("Remote qXfer reply contained no data."));
10840
10841 /* Got some data. */
10842 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10843 packet_len - 1, readbuf, n);
10844
10845 /* 'l' is an EOF marker, possibly including a final block of data,
10846 or possibly empty. If we have the final block of a non-empty
10847 object, record this fact to bypass a subsequent partial read. */
10848 if (rs->buf[0] == 'l' && offset + i > 0)
10849 {
10850 rs->finished_object = xstrdup (object_name);
10851 rs->finished_annex = xstrdup (annex ? annex : "");
10852 rs->finished_offset = offset + i;
10853 }
10854
10855 if (i == 0)
10856 return TARGET_XFER_EOF;
10857 else
10858 {
10859 *xfered_len = i;
10860 return TARGET_XFER_OK;
10861 }
10862 }
10863
10864 enum target_xfer_status
10865 remote_target::xfer_partial (enum target_object object,
10866 const char *annex, gdb_byte *readbuf,
10867 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10868 ULONGEST *xfered_len)
10869 {
10870 struct remote_state *rs;
10871 int i;
10872 char *p2;
10873 char query_type;
10874 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10875
10876 set_remote_traceframe ();
10877 set_general_thread (inferior_ptid);
10878
10879 rs = get_remote_state ();
10880
10881 /* Handle memory using the standard memory routines. */
10882 if (object == TARGET_OBJECT_MEMORY)
10883 {
10884 /* If the remote target is connected but not running, we should
10885 pass this request down to a lower stratum (e.g. the executable
10886 file). */
10887 if (!target_has_execution)
10888 return TARGET_XFER_EOF;
10889
10890 if (writebuf != NULL)
10891 return remote_write_bytes (offset, writebuf, len, unit_size,
10892 xfered_len);
10893 else
10894 return remote_read_bytes (offset, readbuf, len, unit_size,
10895 xfered_len);
10896 }
10897
10898 /* Handle SPU memory using qxfer packets. */
10899 if (object == TARGET_OBJECT_SPU)
10900 {
10901 if (readbuf)
10902 return remote_read_qxfer ("spu", annex, readbuf, offset, len,
10903 xfered_len, &remote_protocol_packets
10904 [PACKET_qXfer_spu_read]);
10905 else
10906 return remote_write_qxfer ("spu", annex, writebuf, offset, len,
10907 xfered_len, &remote_protocol_packets
10908 [PACKET_qXfer_spu_write]);
10909 }
10910
10911 /* Handle extra signal info using qxfer packets. */
10912 if (object == TARGET_OBJECT_SIGNAL_INFO)
10913 {
10914 if (readbuf)
10915 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10916 xfered_len, &remote_protocol_packets
10917 [PACKET_qXfer_siginfo_read]);
10918 else
10919 return remote_write_qxfer ("siginfo", annex,
10920 writebuf, offset, len, xfered_len,
10921 &remote_protocol_packets
10922 [PACKET_qXfer_siginfo_write]);
10923 }
10924
10925 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10926 {
10927 if (readbuf)
10928 return remote_read_qxfer ("statictrace", annex,
10929 readbuf, offset, len, xfered_len,
10930 &remote_protocol_packets
10931 [PACKET_qXfer_statictrace_read]);
10932 else
10933 return TARGET_XFER_E_IO;
10934 }
10935
10936 /* Only handle flash writes. */
10937 if (writebuf != NULL)
10938 {
10939 switch (object)
10940 {
10941 case TARGET_OBJECT_FLASH:
10942 return remote_flash_write (offset, len, xfered_len,
10943 writebuf);
10944
10945 default:
10946 return TARGET_XFER_E_IO;
10947 }
10948 }
10949
10950 /* Map pre-existing objects onto letters. DO NOT do this for new
10951 objects!!! Instead specify new query packets. */
10952 switch (object)
10953 {
10954 case TARGET_OBJECT_AVR:
10955 query_type = 'R';
10956 break;
10957
10958 case TARGET_OBJECT_AUXV:
10959 gdb_assert (annex == NULL);
10960 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10961 xfered_len,
10962 &remote_protocol_packets[PACKET_qXfer_auxv]);
10963
10964 case TARGET_OBJECT_AVAILABLE_FEATURES:
10965 return remote_read_qxfer
10966 ("features", annex, readbuf, offset, len, xfered_len,
10967 &remote_protocol_packets[PACKET_qXfer_features]);
10968
10969 case TARGET_OBJECT_LIBRARIES:
10970 return remote_read_qxfer
10971 ("libraries", annex, readbuf, offset, len, xfered_len,
10972 &remote_protocol_packets[PACKET_qXfer_libraries]);
10973
10974 case TARGET_OBJECT_LIBRARIES_SVR4:
10975 return remote_read_qxfer
10976 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10977 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10978
10979 case TARGET_OBJECT_MEMORY_MAP:
10980 gdb_assert (annex == NULL);
10981 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10982 xfered_len,
10983 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10984
10985 case TARGET_OBJECT_OSDATA:
10986 /* Should only get here if we're connected. */
10987 gdb_assert (rs->remote_desc);
10988 return remote_read_qxfer
10989 ("osdata", annex, readbuf, offset, len, xfered_len,
10990 &remote_protocol_packets[PACKET_qXfer_osdata]);
10991
10992 case TARGET_OBJECT_THREADS:
10993 gdb_assert (annex == NULL);
10994 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10995 xfered_len,
10996 &remote_protocol_packets[PACKET_qXfer_threads]);
10997
10998 case TARGET_OBJECT_TRACEFRAME_INFO:
10999 gdb_assert (annex == NULL);
11000 return remote_read_qxfer
11001 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11002 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11003
11004 case TARGET_OBJECT_FDPIC:
11005 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11006 xfered_len,
11007 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11008
11009 case TARGET_OBJECT_OPENVMS_UIB:
11010 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11011 xfered_len,
11012 &remote_protocol_packets[PACKET_qXfer_uib]);
11013
11014 case TARGET_OBJECT_BTRACE:
11015 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11016 xfered_len,
11017 &remote_protocol_packets[PACKET_qXfer_btrace]);
11018
11019 case TARGET_OBJECT_BTRACE_CONF:
11020 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11021 len, xfered_len,
11022 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11023
11024 case TARGET_OBJECT_EXEC_FILE:
11025 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11026 len, xfered_len,
11027 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11028
11029 default:
11030 return TARGET_XFER_E_IO;
11031 }
11032
11033 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11034 large enough let the caller deal with it. */
11035 if (len < get_remote_packet_size ())
11036 return TARGET_XFER_E_IO;
11037 len = get_remote_packet_size ();
11038
11039 /* Except for querying the minimum buffer size, target must be open. */
11040 if (!rs->remote_desc)
11041 error (_("remote query is only available after target open"));
11042
11043 gdb_assert (annex != NULL);
11044 gdb_assert (readbuf != NULL);
11045
11046 p2 = rs->buf.data ();
11047 *p2++ = 'q';
11048 *p2++ = query_type;
11049
11050 /* We used one buffer char for the remote protocol q command and
11051 another for the query type. As the remote protocol encapsulation
11052 uses 4 chars plus one extra in case we are debugging
11053 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11054 string. */
11055 i = 0;
11056 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11057 {
11058 /* Bad caller may have sent forbidden characters. */
11059 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11060 *p2++ = annex[i];
11061 i++;
11062 }
11063 *p2 = '\0';
11064 gdb_assert (annex[i] == '\0');
11065
11066 i = putpkt (rs->buf);
11067 if (i < 0)
11068 return TARGET_XFER_E_IO;
11069
11070 getpkt (&rs->buf, 0);
11071 strcpy ((char *) readbuf, rs->buf.data ());
11072
11073 *xfered_len = strlen ((char *) readbuf);
11074 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11075 }
11076
11077 /* Implementation of to_get_memory_xfer_limit. */
11078
11079 ULONGEST
11080 remote_target::get_memory_xfer_limit ()
11081 {
11082 return get_memory_write_packet_size ();
11083 }
11084
11085 int
11086 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11087 const gdb_byte *pattern, ULONGEST pattern_len,
11088 CORE_ADDR *found_addrp)
11089 {
11090 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11091 struct remote_state *rs = get_remote_state ();
11092 int max_size = get_memory_write_packet_size ();
11093 struct packet_config *packet =
11094 &remote_protocol_packets[PACKET_qSearch_memory];
11095 /* Number of packet bytes used to encode the pattern;
11096 this could be more than PATTERN_LEN due to escape characters. */
11097 int escaped_pattern_len;
11098 /* Amount of pattern that was encodable in the packet. */
11099 int used_pattern_len;
11100 int i;
11101 int found;
11102 ULONGEST found_addr;
11103
11104 /* Don't go to the target if we don't have to. This is done before
11105 checking packet_config_support to avoid the possibility that a
11106 success for this edge case means the facility works in
11107 general. */
11108 if (pattern_len > search_space_len)
11109 return 0;
11110 if (pattern_len == 0)
11111 {
11112 *found_addrp = start_addr;
11113 return 1;
11114 }
11115
11116 /* If we already know the packet isn't supported, fall back to the simple
11117 way of searching memory. */
11118
11119 if (packet_config_support (packet) == PACKET_DISABLE)
11120 {
11121 /* Target doesn't provided special support, fall back and use the
11122 standard support (copy memory and do the search here). */
11123 return simple_search_memory (this, start_addr, search_space_len,
11124 pattern, pattern_len, found_addrp);
11125 }
11126
11127 /* Make sure the remote is pointing at the right process. */
11128 set_general_process ();
11129
11130 /* Insert header. */
11131 i = snprintf (rs->buf.data (), max_size,
11132 "qSearch:memory:%s;%s;",
11133 phex_nz (start_addr, addr_size),
11134 phex_nz (search_space_len, sizeof (search_space_len)));
11135 max_size -= (i + 1);
11136
11137 /* Escape as much data as fits into rs->buf. */
11138 escaped_pattern_len =
11139 remote_escape_output (pattern, pattern_len, 1,
11140 (gdb_byte *) rs->buf.data () + i,
11141 &used_pattern_len, max_size);
11142
11143 /* Bail if the pattern is too large. */
11144 if (used_pattern_len != pattern_len)
11145 error (_("Pattern is too large to transmit to remote target."));
11146
11147 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11148 || getpkt_sane (&rs->buf, 0) < 0
11149 || packet_ok (rs->buf, packet) != PACKET_OK)
11150 {
11151 /* The request may not have worked because the command is not
11152 supported. If so, fall back to the simple way. */
11153 if (packet_config_support (packet) == PACKET_DISABLE)
11154 {
11155 return simple_search_memory (this, start_addr, search_space_len,
11156 pattern, pattern_len, found_addrp);
11157 }
11158 return -1;
11159 }
11160
11161 if (rs->buf[0] == '0')
11162 found = 0;
11163 else if (rs->buf[0] == '1')
11164 {
11165 found = 1;
11166 if (rs->buf[1] != ',')
11167 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11168 unpack_varlen_hex (&rs->buf[2], &found_addr);
11169 *found_addrp = found_addr;
11170 }
11171 else
11172 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11173
11174 return found;
11175 }
11176
11177 void
11178 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11179 {
11180 struct remote_state *rs = get_remote_state ();
11181 char *p = rs->buf.data ();
11182
11183 if (!rs->remote_desc)
11184 error (_("remote rcmd is only available after target open"));
11185
11186 /* Send a NULL command across as an empty command. */
11187 if (command == NULL)
11188 command = "";
11189
11190 /* The query prefix. */
11191 strcpy (rs->buf.data (), "qRcmd,");
11192 p = strchr (rs->buf.data (), '\0');
11193
11194 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11195 > get_remote_packet_size ())
11196 error (_("\"monitor\" command ``%s'' is too long."), command);
11197
11198 /* Encode the actual command. */
11199 bin2hex ((const gdb_byte *) command, p, strlen (command));
11200
11201 if (putpkt (rs->buf) < 0)
11202 error (_("Communication problem with target."));
11203
11204 /* get/display the response */
11205 while (1)
11206 {
11207 char *buf;
11208
11209 /* XXX - see also remote_get_noisy_reply(). */
11210 QUIT; /* Allow user to bail out with ^C. */
11211 rs->buf[0] = '\0';
11212 if (getpkt_sane (&rs->buf, 0) == -1)
11213 {
11214 /* Timeout. Continue to (try to) read responses.
11215 This is better than stopping with an error, assuming the stub
11216 is still executing the (long) monitor command.
11217 If needed, the user can interrupt gdb using C-c, obtaining
11218 an effect similar to stop on timeout. */
11219 continue;
11220 }
11221 buf = rs->buf.data ();
11222 if (buf[0] == '\0')
11223 error (_("Target does not support this command."));
11224 if (buf[0] == 'O' && buf[1] != 'K')
11225 {
11226 remote_console_output (buf + 1); /* 'O' message from stub. */
11227 continue;
11228 }
11229 if (strcmp (buf, "OK") == 0)
11230 break;
11231 if (strlen (buf) == 3 && buf[0] == 'E'
11232 && isdigit (buf[1]) && isdigit (buf[2]))
11233 {
11234 error (_("Protocol error with Rcmd"));
11235 }
11236 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11237 {
11238 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11239
11240 fputc_unfiltered (c, outbuf);
11241 }
11242 break;
11243 }
11244 }
11245
11246 std::vector<mem_region>
11247 remote_target::memory_map ()
11248 {
11249 std::vector<mem_region> result;
11250 gdb::optional<gdb::char_vector> text
11251 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11252
11253 if (text)
11254 result = parse_memory_map (text->data ());
11255
11256 return result;
11257 }
11258
11259 static void
11260 packet_command (const char *args, int from_tty)
11261 {
11262 remote_target *remote = get_current_remote_target ();
11263
11264 if (remote == nullptr)
11265 error (_("command can only be used with remote target"));
11266
11267 remote->packet_command (args, from_tty);
11268 }
11269
11270 void
11271 remote_target::packet_command (const char *args, int from_tty)
11272 {
11273 if (!args)
11274 error (_("remote-packet command requires packet text as argument"));
11275
11276 puts_filtered ("sending: ");
11277 print_packet (args);
11278 puts_filtered ("\n");
11279 putpkt (args);
11280
11281 remote_state *rs = get_remote_state ();
11282
11283 getpkt (&rs->buf, 0);
11284 puts_filtered ("received: ");
11285 print_packet (rs->buf.data ());
11286 puts_filtered ("\n");
11287 }
11288
11289 #if 0
11290 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11291
11292 static void display_thread_info (struct gdb_ext_thread_info *info);
11293
11294 static void threadset_test_cmd (char *cmd, int tty);
11295
11296 static void threadalive_test (char *cmd, int tty);
11297
11298 static void threadlist_test_cmd (char *cmd, int tty);
11299
11300 int get_and_display_threadinfo (threadref *ref);
11301
11302 static void threadinfo_test_cmd (char *cmd, int tty);
11303
11304 static int thread_display_step (threadref *ref, void *context);
11305
11306 static void threadlist_update_test_cmd (char *cmd, int tty);
11307
11308 static void init_remote_threadtests (void);
11309
11310 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11311
11312 static void
11313 threadset_test_cmd (const char *cmd, int tty)
11314 {
11315 int sample_thread = SAMPLE_THREAD;
11316
11317 printf_filtered (_("Remote threadset test\n"));
11318 set_general_thread (sample_thread);
11319 }
11320
11321
11322 static void
11323 threadalive_test (const char *cmd, int tty)
11324 {
11325 int sample_thread = SAMPLE_THREAD;
11326 int pid = inferior_ptid.pid ();
11327 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11328
11329 if (remote_thread_alive (ptid))
11330 printf_filtered ("PASS: Thread alive test\n");
11331 else
11332 printf_filtered ("FAIL: Thread alive test\n");
11333 }
11334
11335 void output_threadid (char *title, threadref *ref);
11336
11337 void
11338 output_threadid (char *title, threadref *ref)
11339 {
11340 char hexid[20];
11341
11342 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
11343 hexid[16] = 0;
11344 printf_filtered ("%s %s\n", title, (&hexid[0]));
11345 }
11346
11347 static void
11348 threadlist_test_cmd (const char *cmd, int tty)
11349 {
11350 int startflag = 1;
11351 threadref nextthread;
11352 int done, result_count;
11353 threadref threadlist[3];
11354
11355 printf_filtered ("Remote Threadlist test\n");
11356 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11357 &result_count, &threadlist[0]))
11358 printf_filtered ("FAIL: threadlist test\n");
11359 else
11360 {
11361 threadref *scan = threadlist;
11362 threadref *limit = scan + result_count;
11363
11364 while (scan < limit)
11365 output_threadid (" thread ", scan++);
11366 }
11367 }
11368
11369 void
11370 display_thread_info (struct gdb_ext_thread_info *info)
11371 {
11372 output_threadid ("Threadid: ", &info->threadid);
11373 printf_filtered ("Name: %s\n ", info->shortname);
11374 printf_filtered ("State: %s\n", info->display);
11375 printf_filtered ("other: %s\n\n", info->more_display);
11376 }
11377
11378 int
11379 get_and_display_threadinfo (threadref *ref)
11380 {
11381 int result;
11382 int set;
11383 struct gdb_ext_thread_info threadinfo;
11384
11385 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11386 | TAG_MOREDISPLAY | TAG_DISPLAY;
11387 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11388 display_thread_info (&threadinfo);
11389 return result;
11390 }
11391
11392 static void
11393 threadinfo_test_cmd (const char *cmd, int tty)
11394 {
11395 int athread = SAMPLE_THREAD;
11396 threadref thread;
11397 int set;
11398
11399 int_to_threadref (&thread, athread);
11400 printf_filtered ("Remote Threadinfo test\n");
11401 if (!get_and_display_threadinfo (&thread))
11402 printf_filtered ("FAIL cannot get thread info\n");
11403 }
11404
11405 static int
11406 thread_display_step (threadref *ref, void *context)
11407 {
11408 /* output_threadid(" threadstep ",ref); *//* simple test */
11409 return get_and_display_threadinfo (ref);
11410 }
11411
11412 static void
11413 threadlist_update_test_cmd (const char *cmd, int tty)
11414 {
11415 printf_filtered ("Remote Threadlist update test\n");
11416 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11417 }
11418
11419 static void
11420 init_remote_threadtests (void)
11421 {
11422 add_com ("tlist", class_obscure, threadlist_test_cmd,
11423 _("Fetch and print the remote list of "
11424 "thread identifiers, one pkt only"));
11425 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11426 _("Fetch and display info about one thread"));
11427 add_com ("tset", class_obscure, threadset_test_cmd,
11428 _("Test setting to a different thread"));
11429 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11430 _("Iterate through updating all remote thread info"));
11431 add_com ("talive", class_obscure, threadalive_test,
11432 _(" Remote thread alive test "));
11433 }
11434
11435 #endif /* 0 */
11436
11437 /* Convert a thread ID to a string. Returns the string in a static
11438 buffer. */
11439
11440 const char *
11441 remote_target::pid_to_str (ptid_t ptid)
11442 {
11443 static char buf[64];
11444 struct remote_state *rs = get_remote_state ();
11445
11446 if (ptid == null_ptid)
11447 return normal_pid_to_str (ptid);
11448 else if (ptid.is_pid ())
11449 {
11450 /* Printing an inferior target id. */
11451
11452 /* When multi-process extensions are off, there's no way in the
11453 remote protocol to know the remote process id, if there's any
11454 at all. There's one exception --- when we're connected with
11455 target extended-remote, and we manually attached to a process
11456 with "attach PID". We don't record anywhere a flag that
11457 allows us to distinguish that case from the case of
11458 connecting with extended-remote and the stub already being
11459 attached to a process, and reporting yes to qAttached, hence
11460 no smart special casing here. */
11461 if (!remote_multi_process_p (rs))
11462 {
11463 xsnprintf (buf, sizeof buf, "Remote target");
11464 return buf;
11465 }
11466
11467 return normal_pid_to_str (ptid);
11468 }
11469 else
11470 {
11471 if (magic_null_ptid == ptid)
11472 xsnprintf (buf, sizeof buf, "Thread <main>");
11473 else if (remote_multi_process_p (rs))
11474 if (ptid.lwp () == 0)
11475 return normal_pid_to_str (ptid);
11476 else
11477 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11478 ptid.pid (), ptid.lwp ());
11479 else
11480 xsnprintf (buf, sizeof buf, "Thread %ld",
11481 ptid.lwp ());
11482 return buf;
11483 }
11484 }
11485
11486 /* Get the address of the thread local variable in OBJFILE which is
11487 stored at OFFSET within the thread local storage for thread PTID. */
11488
11489 CORE_ADDR
11490 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11491 CORE_ADDR offset)
11492 {
11493 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11494 {
11495 struct remote_state *rs = get_remote_state ();
11496 char *p = rs->buf.data ();
11497 char *endp = p + get_remote_packet_size ();
11498 enum packet_result result;
11499
11500 strcpy (p, "qGetTLSAddr:");
11501 p += strlen (p);
11502 p = write_ptid (p, endp, ptid);
11503 *p++ = ',';
11504 p += hexnumstr (p, offset);
11505 *p++ = ',';
11506 p += hexnumstr (p, lm);
11507 *p++ = '\0';
11508
11509 putpkt (rs->buf);
11510 getpkt (&rs->buf, 0);
11511 result = packet_ok (rs->buf,
11512 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11513 if (result == PACKET_OK)
11514 {
11515 ULONGEST addr;
11516
11517 unpack_varlen_hex (rs->buf.data (), &addr);
11518 return addr;
11519 }
11520 else if (result == PACKET_UNKNOWN)
11521 throw_error (TLS_GENERIC_ERROR,
11522 _("Remote target doesn't support qGetTLSAddr packet"));
11523 else
11524 throw_error (TLS_GENERIC_ERROR,
11525 _("Remote target failed to process qGetTLSAddr request"));
11526 }
11527 else
11528 throw_error (TLS_GENERIC_ERROR,
11529 _("TLS not supported or disabled on this target"));
11530 /* Not reached. */
11531 return 0;
11532 }
11533
11534 /* Provide thread local base, i.e. Thread Information Block address.
11535 Returns 1 if ptid is found and thread_local_base is non zero. */
11536
11537 bool
11538 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11539 {
11540 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11541 {
11542 struct remote_state *rs = get_remote_state ();
11543 char *p = rs->buf.data ();
11544 char *endp = p + get_remote_packet_size ();
11545 enum packet_result result;
11546
11547 strcpy (p, "qGetTIBAddr:");
11548 p += strlen (p);
11549 p = write_ptid (p, endp, ptid);
11550 *p++ = '\0';
11551
11552 putpkt (rs->buf);
11553 getpkt (&rs->buf, 0);
11554 result = packet_ok (rs->buf,
11555 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11556 if (result == PACKET_OK)
11557 {
11558 ULONGEST val;
11559 unpack_varlen_hex (rs->buf.data (), &val);
11560 if (addr)
11561 *addr = (CORE_ADDR) val;
11562 return true;
11563 }
11564 else if (result == PACKET_UNKNOWN)
11565 error (_("Remote target doesn't support qGetTIBAddr packet"));
11566 else
11567 error (_("Remote target failed to process qGetTIBAddr request"));
11568 }
11569 else
11570 error (_("qGetTIBAddr not supported or disabled on this target"));
11571 /* Not reached. */
11572 return false;
11573 }
11574
11575 /* Support for inferring a target description based on the current
11576 architecture and the size of a 'g' packet. While the 'g' packet
11577 can have any size (since optional registers can be left off the
11578 end), some sizes are easily recognizable given knowledge of the
11579 approximate architecture. */
11580
11581 struct remote_g_packet_guess
11582 {
11583 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11584 : bytes (bytes_),
11585 tdesc (tdesc_)
11586 {
11587 }
11588
11589 int bytes;
11590 const struct target_desc *tdesc;
11591 };
11592
11593 struct remote_g_packet_data : public allocate_on_obstack
11594 {
11595 std::vector<remote_g_packet_guess> guesses;
11596 };
11597
11598 static struct gdbarch_data *remote_g_packet_data_handle;
11599
11600 static void *
11601 remote_g_packet_data_init (struct obstack *obstack)
11602 {
11603 return new (obstack) remote_g_packet_data;
11604 }
11605
11606 void
11607 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11608 const struct target_desc *tdesc)
11609 {
11610 struct remote_g_packet_data *data
11611 = ((struct remote_g_packet_data *)
11612 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11613
11614 gdb_assert (tdesc != NULL);
11615
11616 for (const remote_g_packet_guess &guess : data->guesses)
11617 if (guess.bytes == bytes)
11618 internal_error (__FILE__, __LINE__,
11619 _("Duplicate g packet description added for size %d"),
11620 bytes);
11621
11622 data->guesses.emplace_back (bytes, tdesc);
11623 }
11624
11625 /* Return true if remote_read_description would do anything on this target
11626 and architecture, false otherwise. */
11627
11628 static bool
11629 remote_read_description_p (struct target_ops *target)
11630 {
11631 struct remote_g_packet_data *data
11632 = ((struct remote_g_packet_data *)
11633 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11634
11635 return !data->guesses.empty ();
11636 }
11637
11638 const struct target_desc *
11639 remote_target::read_description ()
11640 {
11641 struct remote_g_packet_data *data
11642 = ((struct remote_g_packet_data *)
11643 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11644
11645 /* Do not try this during initial connection, when we do not know
11646 whether there is a running but stopped thread. */
11647 if (!target_has_execution || inferior_ptid == null_ptid)
11648 return beneath ()->read_description ();
11649
11650 if (!data->guesses.empty ())
11651 {
11652 int bytes = send_g_packet ();
11653
11654 for (const remote_g_packet_guess &guess : data->guesses)
11655 if (guess.bytes == bytes)
11656 return guess.tdesc;
11657
11658 /* We discard the g packet. A minor optimization would be to
11659 hold on to it, and fill the register cache once we have selected
11660 an architecture, but it's too tricky to do safely. */
11661 }
11662
11663 return beneath ()->read_description ();
11664 }
11665
11666 /* Remote file transfer support. This is host-initiated I/O, not
11667 target-initiated; for target-initiated, see remote-fileio.c. */
11668
11669 /* If *LEFT is at least the length of STRING, copy STRING to
11670 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11671 decrease *LEFT. Otherwise raise an error. */
11672
11673 static void
11674 remote_buffer_add_string (char **buffer, int *left, const char *string)
11675 {
11676 int len = strlen (string);
11677
11678 if (len > *left)
11679 error (_("Packet too long for target."));
11680
11681 memcpy (*buffer, string, len);
11682 *buffer += len;
11683 *left -= len;
11684
11685 /* NUL-terminate the buffer as a convenience, if there is
11686 room. */
11687 if (*left)
11688 **buffer = '\0';
11689 }
11690
11691 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11692 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11693 decrease *LEFT. Otherwise raise an error. */
11694
11695 static void
11696 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11697 int len)
11698 {
11699 if (2 * len > *left)
11700 error (_("Packet too long for target."));
11701
11702 bin2hex (bytes, *buffer, len);
11703 *buffer += 2 * len;
11704 *left -= 2 * len;
11705
11706 /* NUL-terminate the buffer as a convenience, if there is
11707 room. */
11708 if (*left)
11709 **buffer = '\0';
11710 }
11711
11712 /* If *LEFT is large enough, convert VALUE to hex and add it to
11713 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11714 decrease *LEFT. Otherwise raise an error. */
11715
11716 static void
11717 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11718 {
11719 int len = hexnumlen (value);
11720
11721 if (len > *left)
11722 error (_("Packet too long for target."));
11723
11724 hexnumstr (*buffer, value);
11725 *buffer += len;
11726 *left -= len;
11727
11728 /* NUL-terminate the buffer as a convenience, if there is
11729 room. */
11730 if (*left)
11731 **buffer = '\0';
11732 }
11733
11734 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11735 value, *REMOTE_ERRNO to the remote error number or zero if none
11736 was included, and *ATTACHMENT to point to the start of the annex
11737 if any. The length of the packet isn't needed here; there may
11738 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11739
11740 Return 0 if the packet could be parsed, -1 if it could not. If
11741 -1 is returned, the other variables may not be initialized. */
11742
11743 static int
11744 remote_hostio_parse_result (char *buffer, int *retcode,
11745 int *remote_errno, char **attachment)
11746 {
11747 char *p, *p2;
11748
11749 *remote_errno = 0;
11750 *attachment = NULL;
11751
11752 if (buffer[0] != 'F')
11753 return -1;
11754
11755 errno = 0;
11756 *retcode = strtol (&buffer[1], &p, 16);
11757 if (errno != 0 || p == &buffer[1])
11758 return -1;
11759
11760 /* Check for ",errno". */
11761 if (*p == ',')
11762 {
11763 errno = 0;
11764 *remote_errno = strtol (p + 1, &p2, 16);
11765 if (errno != 0 || p + 1 == p2)
11766 return -1;
11767 p = p2;
11768 }
11769
11770 /* Check for ";attachment". If there is no attachment, the
11771 packet should end here. */
11772 if (*p == ';')
11773 {
11774 *attachment = p + 1;
11775 return 0;
11776 }
11777 else if (*p == '\0')
11778 return 0;
11779 else
11780 return -1;
11781 }
11782
11783 /* Send a prepared I/O packet to the target and read its response.
11784 The prepared packet is in the global RS->BUF before this function
11785 is called, and the answer is there when we return.
11786
11787 COMMAND_BYTES is the length of the request to send, which may include
11788 binary data. WHICH_PACKET is the packet configuration to check
11789 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11790 is set to the error number and -1 is returned. Otherwise the value
11791 returned by the function is returned.
11792
11793 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11794 attachment is expected; an error will be reported if there's a
11795 mismatch. If one is found, *ATTACHMENT will be set to point into
11796 the packet buffer and *ATTACHMENT_LEN will be set to the
11797 attachment's length. */
11798
11799 int
11800 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11801 int *remote_errno, char **attachment,
11802 int *attachment_len)
11803 {
11804 struct remote_state *rs = get_remote_state ();
11805 int ret, bytes_read;
11806 char *attachment_tmp;
11807
11808 if (packet_support (which_packet) == PACKET_DISABLE)
11809 {
11810 *remote_errno = FILEIO_ENOSYS;
11811 return -1;
11812 }
11813
11814 putpkt_binary (rs->buf.data (), command_bytes);
11815 bytes_read = getpkt_sane (&rs->buf, 0);
11816
11817 /* If it timed out, something is wrong. Don't try to parse the
11818 buffer. */
11819 if (bytes_read < 0)
11820 {
11821 *remote_errno = FILEIO_EINVAL;
11822 return -1;
11823 }
11824
11825 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11826 {
11827 case PACKET_ERROR:
11828 *remote_errno = FILEIO_EINVAL;
11829 return -1;
11830 case PACKET_UNKNOWN:
11831 *remote_errno = FILEIO_ENOSYS;
11832 return -1;
11833 case PACKET_OK:
11834 break;
11835 }
11836
11837 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11838 &attachment_tmp))
11839 {
11840 *remote_errno = FILEIO_EINVAL;
11841 return -1;
11842 }
11843
11844 /* Make sure we saw an attachment if and only if we expected one. */
11845 if ((attachment_tmp == NULL && attachment != NULL)
11846 || (attachment_tmp != NULL && attachment == NULL))
11847 {
11848 *remote_errno = FILEIO_EINVAL;
11849 return -1;
11850 }
11851
11852 /* If an attachment was found, it must point into the packet buffer;
11853 work out how many bytes there were. */
11854 if (attachment_tmp != NULL)
11855 {
11856 *attachment = attachment_tmp;
11857 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11858 }
11859
11860 return ret;
11861 }
11862
11863 /* See declaration.h. */
11864
11865 void
11866 readahead_cache::invalidate ()
11867 {
11868 this->fd = -1;
11869 }
11870
11871 /* See declaration.h. */
11872
11873 void
11874 readahead_cache::invalidate_fd (int fd)
11875 {
11876 if (this->fd == fd)
11877 this->fd = -1;
11878 }
11879
11880 /* Set the filesystem remote_hostio functions that take FILENAME
11881 arguments will use. Return 0 on success, or -1 if an error
11882 occurs (and set *REMOTE_ERRNO). */
11883
11884 int
11885 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11886 int *remote_errno)
11887 {
11888 struct remote_state *rs = get_remote_state ();
11889 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11890 char *p = rs->buf.data ();
11891 int left = get_remote_packet_size () - 1;
11892 char arg[9];
11893 int ret;
11894
11895 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11896 return 0;
11897
11898 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11899 return 0;
11900
11901 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11902
11903 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11904 remote_buffer_add_string (&p, &left, arg);
11905
11906 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11907 remote_errno, NULL, NULL);
11908
11909 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11910 return 0;
11911
11912 if (ret == 0)
11913 rs->fs_pid = required_pid;
11914
11915 return ret;
11916 }
11917
11918 /* Implementation of to_fileio_open. */
11919
11920 int
11921 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11922 int flags, int mode, int warn_if_slow,
11923 int *remote_errno)
11924 {
11925 struct remote_state *rs = get_remote_state ();
11926 char *p = rs->buf.data ();
11927 int left = get_remote_packet_size () - 1;
11928
11929 if (warn_if_slow)
11930 {
11931 static int warning_issued = 0;
11932
11933 printf_unfiltered (_("Reading %s from remote target...\n"),
11934 filename);
11935
11936 if (!warning_issued)
11937 {
11938 warning (_("File transfers from remote targets can be slow."
11939 " Use \"set sysroot\" to access files locally"
11940 " instead."));
11941 warning_issued = 1;
11942 }
11943 }
11944
11945 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11946 return -1;
11947
11948 remote_buffer_add_string (&p, &left, "vFile:open:");
11949
11950 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11951 strlen (filename));
11952 remote_buffer_add_string (&p, &left, ",");
11953
11954 remote_buffer_add_int (&p, &left, flags);
11955 remote_buffer_add_string (&p, &left, ",");
11956
11957 remote_buffer_add_int (&p, &left, mode);
11958
11959 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
11960 remote_errno, NULL, NULL);
11961 }
11962
11963 int
11964 remote_target::fileio_open (struct inferior *inf, const char *filename,
11965 int flags, int mode, int warn_if_slow,
11966 int *remote_errno)
11967 {
11968 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
11969 remote_errno);
11970 }
11971
11972 /* Implementation of to_fileio_pwrite. */
11973
11974 int
11975 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
11976 ULONGEST offset, int *remote_errno)
11977 {
11978 struct remote_state *rs = get_remote_state ();
11979 char *p = rs->buf.data ();
11980 int left = get_remote_packet_size ();
11981 int out_len;
11982
11983 rs->readahead_cache.invalidate_fd (fd);
11984
11985 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11986
11987 remote_buffer_add_int (&p, &left, fd);
11988 remote_buffer_add_string (&p, &left, ",");
11989
11990 remote_buffer_add_int (&p, &left, offset);
11991 remote_buffer_add_string (&p, &left, ",");
11992
11993 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11994 (get_remote_packet_size ()
11995 - (p - rs->buf.data ())));
11996
11997 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
11998 remote_errno, NULL, NULL);
11999 }
12000
12001 int
12002 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12003 ULONGEST offset, int *remote_errno)
12004 {
12005 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12006 }
12007
12008 /* Helper for the implementation of to_fileio_pread. Read the file
12009 from the remote side with vFile:pread. */
12010
12011 int
12012 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12013 ULONGEST offset, int *remote_errno)
12014 {
12015 struct remote_state *rs = get_remote_state ();
12016 char *p = rs->buf.data ();
12017 char *attachment;
12018 int left = get_remote_packet_size ();
12019 int ret, attachment_len;
12020 int read_len;
12021
12022 remote_buffer_add_string (&p, &left, "vFile:pread:");
12023
12024 remote_buffer_add_int (&p, &left, fd);
12025 remote_buffer_add_string (&p, &left, ",");
12026
12027 remote_buffer_add_int (&p, &left, len);
12028 remote_buffer_add_string (&p, &left, ",");
12029
12030 remote_buffer_add_int (&p, &left, offset);
12031
12032 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12033 remote_errno, &attachment,
12034 &attachment_len);
12035
12036 if (ret < 0)
12037 return ret;
12038
12039 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12040 read_buf, len);
12041 if (read_len != ret)
12042 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12043
12044 return ret;
12045 }
12046
12047 /* See declaration.h. */
12048
12049 int
12050 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12051 ULONGEST offset)
12052 {
12053 if (this->fd == fd
12054 && this->offset <= offset
12055 && offset < this->offset + this->bufsize)
12056 {
12057 ULONGEST max = this->offset + this->bufsize;
12058
12059 if (offset + len > max)
12060 len = max - offset;
12061
12062 memcpy (read_buf, this->buf + offset - this->offset, len);
12063 return len;
12064 }
12065
12066 return 0;
12067 }
12068
12069 /* Implementation of to_fileio_pread. */
12070
12071 int
12072 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12073 ULONGEST offset, int *remote_errno)
12074 {
12075 int ret;
12076 struct remote_state *rs = get_remote_state ();
12077 readahead_cache *cache = &rs->readahead_cache;
12078
12079 ret = cache->pread (fd, read_buf, len, offset);
12080 if (ret > 0)
12081 {
12082 cache->hit_count++;
12083
12084 if (remote_debug)
12085 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12086 pulongest (cache->hit_count));
12087 return ret;
12088 }
12089
12090 cache->miss_count++;
12091 if (remote_debug)
12092 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12093 pulongest (cache->miss_count));
12094
12095 cache->fd = fd;
12096 cache->offset = offset;
12097 cache->bufsize = get_remote_packet_size ();
12098 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12099
12100 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12101 cache->offset, remote_errno);
12102 if (ret <= 0)
12103 {
12104 cache->invalidate_fd (fd);
12105 return ret;
12106 }
12107
12108 cache->bufsize = ret;
12109 return cache->pread (fd, read_buf, len, offset);
12110 }
12111
12112 int
12113 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12114 ULONGEST offset, int *remote_errno)
12115 {
12116 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12117 }
12118
12119 /* Implementation of to_fileio_close. */
12120
12121 int
12122 remote_target::remote_hostio_close (int fd, int *remote_errno)
12123 {
12124 struct remote_state *rs = get_remote_state ();
12125 char *p = rs->buf.data ();
12126 int left = get_remote_packet_size () - 1;
12127
12128 rs->readahead_cache.invalidate_fd (fd);
12129
12130 remote_buffer_add_string (&p, &left, "vFile:close:");
12131
12132 remote_buffer_add_int (&p, &left, fd);
12133
12134 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12135 remote_errno, NULL, NULL);
12136 }
12137
12138 int
12139 remote_target::fileio_close (int fd, int *remote_errno)
12140 {
12141 return remote_hostio_close (fd, remote_errno);
12142 }
12143
12144 /* Implementation of to_fileio_unlink. */
12145
12146 int
12147 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12148 int *remote_errno)
12149 {
12150 struct remote_state *rs = get_remote_state ();
12151 char *p = rs->buf.data ();
12152 int left = get_remote_packet_size () - 1;
12153
12154 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12155 return -1;
12156
12157 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12158
12159 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12160 strlen (filename));
12161
12162 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12163 remote_errno, NULL, NULL);
12164 }
12165
12166 int
12167 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12168 int *remote_errno)
12169 {
12170 return remote_hostio_unlink (inf, filename, remote_errno);
12171 }
12172
12173 /* Implementation of to_fileio_readlink. */
12174
12175 gdb::optional<std::string>
12176 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12177 int *remote_errno)
12178 {
12179 struct remote_state *rs = get_remote_state ();
12180 char *p = rs->buf.data ();
12181 char *attachment;
12182 int left = get_remote_packet_size ();
12183 int len, attachment_len;
12184 int read_len;
12185
12186 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12187 return {};
12188
12189 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12190
12191 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12192 strlen (filename));
12193
12194 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12195 remote_errno, &attachment,
12196 &attachment_len);
12197
12198 if (len < 0)
12199 return {};
12200
12201 std::string ret (len, '\0');
12202
12203 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12204 (gdb_byte *) &ret[0], len);
12205 if (read_len != len)
12206 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12207
12208 return ret;
12209 }
12210
12211 /* Implementation of to_fileio_fstat. */
12212
12213 int
12214 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12215 {
12216 struct remote_state *rs = get_remote_state ();
12217 char *p = rs->buf.data ();
12218 int left = get_remote_packet_size ();
12219 int attachment_len, ret;
12220 char *attachment;
12221 struct fio_stat fst;
12222 int read_len;
12223
12224 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12225
12226 remote_buffer_add_int (&p, &left, fd);
12227
12228 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12229 remote_errno, &attachment,
12230 &attachment_len);
12231 if (ret < 0)
12232 {
12233 if (*remote_errno != FILEIO_ENOSYS)
12234 return ret;
12235
12236 /* Strictly we should return -1, ENOSYS here, but when
12237 "set sysroot remote:" was implemented in August 2008
12238 BFD's need for a stat function was sidestepped with
12239 this hack. This was not remedied until March 2015
12240 so we retain the previous behavior to avoid breaking
12241 compatibility.
12242
12243 Note that the memset is a March 2015 addition; older
12244 GDBs set st_size *and nothing else* so the structure
12245 would have garbage in all other fields. This might
12246 break something but retaining the previous behavior
12247 here would be just too wrong. */
12248
12249 memset (st, 0, sizeof (struct stat));
12250 st->st_size = INT_MAX;
12251 return 0;
12252 }
12253
12254 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12255 (gdb_byte *) &fst, sizeof (fst));
12256
12257 if (read_len != ret)
12258 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12259
12260 if (read_len != sizeof (fst))
12261 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12262 read_len, (int) sizeof (fst));
12263
12264 remote_fileio_to_host_stat (&fst, st);
12265
12266 return 0;
12267 }
12268
12269 /* Implementation of to_filesystem_is_local. */
12270
12271 bool
12272 remote_target::filesystem_is_local ()
12273 {
12274 /* Valgrind GDB presents itself as a remote target but works
12275 on the local filesystem: it does not implement remote get
12276 and users are not expected to set a sysroot. To handle
12277 this case we treat the remote filesystem as local if the
12278 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12279 does not support vFile:open. */
12280 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12281 {
12282 enum packet_support ps = packet_support (PACKET_vFile_open);
12283
12284 if (ps == PACKET_SUPPORT_UNKNOWN)
12285 {
12286 int fd, remote_errno;
12287
12288 /* Try opening a file to probe support. The supplied
12289 filename is irrelevant, we only care about whether
12290 the stub recognizes the packet or not. */
12291 fd = remote_hostio_open (NULL, "just probing",
12292 FILEIO_O_RDONLY, 0700, 0,
12293 &remote_errno);
12294
12295 if (fd >= 0)
12296 remote_hostio_close (fd, &remote_errno);
12297
12298 ps = packet_support (PACKET_vFile_open);
12299 }
12300
12301 if (ps == PACKET_DISABLE)
12302 {
12303 static int warning_issued = 0;
12304
12305 if (!warning_issued)
12306 {
12307 warning (_("remote target does not support file"
12308 " transfer, attempting to access files"
12309 " from local filesystem."));
12310 warning_issued = 1;
12311 }
12312
12313 return true;
12314 }
12315 }
12316
12317 return false;
12318 }
12319
12320 static int
12321 remote_fileio_errno_to_host (int errnum)
12322 {
12323 switch (errnum)
12324 {
12325 case FILEIO_EPERM:
12326 return EPERM;
12327 case FILEIO_ENOENT:
12328 return ENOENT;
12329 case FILEIO_EINTR:
12330 return EINTR;
12331 case FILEIO_EIO:
12332 return EIO;
12333 case FILEIO_EBADF:
12334 return EBADF;
12335 case FILEIO_EACCES:
12336 return EACCES;
12337 case FILEIO_EFAULT:
12338 return EFAULT;
12339 case FILEIO_EBUSY:
12340 return EBUSY;
12341 case FILEIO_EEXIST:
12342 return EEXIST;
12343 case FILEIO_ENODEV:
12344 return ENODEV;
12345 case FILEIO_ENOTDIR:
12346 return ENOTDIR;
12347 case FILEIO_EISDIR:
12348 return EISDIR;
12349 case FILEIO_EINVAL:
12350 return EINVAL;
12351 case FILEIO_ENFILE:
12352 return ENFILE;
12353 case FILEIO_EMFILE:
12354 return EMFILE;
12355 case FILEIO_EFBIG:
12356 return EFBIG;
12357 case FILEIO_ENOSPC:
12358 return ENOSPC;
12359 case FILEIO_ESPIPE:
12360 return ESPIPE;
12361 case FILEIO_EROFS:
12362 return EROFS;
12363 case FILEIO_ENOSYS:
12364 return ENOSYS;
12365 case FILEIO_ENAMETOOLONG:
12366 return ENAMETOOLONG;
12367 }
12368 return -1;
12369 }
12370
12371 static char *
12372 remote_hostio_error (int errnum)
12373 {
12374 int host_error = remote_fileio_errno_to_host (errnum);
12375
12376 if (host_error == -1)
12377 error (_("Unknown remote I/O error %d"), errnum);
12378 else
12379 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12380 }
12381
12382 /* A RAII wrapper around a remote file descriptor. */
12383
12384 class scoped_remote_fd
12385 {
12386 public:
12387 scoped_remote_fd (remote_target *remote, int fd)
12388 : m_remote (remote), m_fd (fd)
12389 {
12390 }
12391
12392 ~scoped_remote_fd ()
12393 {
12394 if (m_fd != -1)
12395 {
12396 try
12397 {
12398 int remote_errno;
12399 m_remote->remote_hostio_close (m_fd, &remote_errno);
12400 }
12401 catch (...)
12402 {
12403 /* Swallow exception before it escapes the dtor. If
12404 something goes wrong, likely the connection is gone,
12405 and there's nothing else that can be done. */
12406 }
12407 }
12408 }
12409
12410 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12411
12412 /* Release ownership of the file descriptor, and return it. */
12413 int release () noexcept
12414 {
12415 int fd = m_fd;
12416 m_fd = -1;
12417 return fd;
12418 }
12419
12420 /* Return the owned file descriptor. */
12421 int get () const noexcept
12422 {
12423 return m_fd;
12424 }
12425
12426 private:
12427 /* The remote target. */
12428 remote_target *m_remote;
12429
12430 /* The owned remote I/O file descriptor. */
12431 int m_fd;
12432 };
12433
12434 void
12435 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12436 {
12437 remote_target *remote = get_current_remote_target ();
12438
12439 if (remote == nullptr)
12440 error (_("command can only be used with remote target"));
12441
12442 remote->remote_file_put (local_file, remote_file, from_tty);
12443 }
12444
12445 void
12446 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12447 int from_tty)
12448 {
12449 int retcode, remote_errno, bytes, io_size;
12450 int bytes_in_buffer;
12451 int saw_eof;
12452 ULONGEST offset;
12453
12454 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12455 if (file == NULL)
12456 perror_with_name (local_file);
12457
12458 scoped_remote_fd fd
12459 (this, remote_hostio_open (NULL,
12460 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12461 | FILEIO_O_TRUNC),
12462 0700, 0, &remote_errno));
12463 if (fd.get () == -1)
12464 remote_hostio_error (remote_errno);
12465
12466 /* Send up to this many bytes at once. They won't all fit in the
12467 remote packet limit, so we'll transfer slightly fewer. */
12468 io_size = get_remote_packet_size ();
12469 gdb::byte_vector buffer (io_size);
12470
12471 bytes_in_buffer = 0;
12472 saw_eof = 0;
12473 offset = 0;
12474 while (bytes_in_buffer || !saw_eof)
12475 {
12476 if (!saw_eof)
12477 {
12478 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12479 io_size - bytes_in_buffer,
12480 file.get ());
12481 if (bytes == 0)
12482 {
12483 if (ferror (file.get ()))
12484 error (_("Error reading %s."), local_file);
12485 else
12486 {
12487 /* EOF. Unless there is something still in the
12488 buffer from the last iteration, we are done. */
12489 saw_eof = 1;
12490 if (bytes_in_buffer == 0)
12491 break;
12492 }
12493 }
12494 }
12495 else
12496 bytes = 0;
12497
12498 bytes += bytes_in_buffer;
12499 bytes_in_buffer = 0;
12500
12501 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12502 offset, &remote_errno);
12503
12504 if (retcode < 0)
12505 remote_hostio_error (remote_errno);
12506 else if (retcode == 0)
12507 error (_("Remote write of %d bytes returned 0!"), bytes);
12508 else if (retcode < bytes)
12509 {
12510 /* Short write. Save the rest of the read data for the next
12511 write. */
12512 bytes_in_buffer = bytes - retcode;
12513 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12514 }
12515
12516 offset += retcode;
12517 }
12518
12519 if (remote_hostio_close (fd.release (), &remote_errno))
12520 remote_hostio_error (remote_errno);
12521
12522 if (from_tty)
12523 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12524 }
12525
12526 void
12527 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12528 {
12529 remote_target *remote = get_current_remote_target ();
12530
12531 if (remote == nullptr)
12532 error (_("command can only be used with remote target"));
12533
12534 remote->remote_file_get (remote_file, local_file, from_tty);
12535 }
12536
12537 void
12538 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12539 int from_tty)
12540 {
12541 int remote_errno, bytes, io_size;
12542 ULONGEST offset;
12543
12544 scoped_remote_fd fd
12545 (this, remote_hostio_open (NULL,
12546 remote_file, FILEIO_O_RDONLY, 0, 0,
12547 &remote_errno));
12548 if (fd.get () == -1)
12549 remote_hostio_error (remote_errno);
12550
12551 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12552 if (file == NULL)
12553 perror_with_name (local_file);
12554
12555 /* Send up to this many bytes at once. They won't all fit in the
12556 remote packet limit, so we'll transfer slightly fewer. */
12557 io_size = get_remote_packet_size ();
12558 gdb::byte_vector buffer (io_size);
12559
12560 offset = 0;
12561 while (1)
12562 {
12563 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12564 &remote_errno);
12565 if (bytes == 0)
12566 /* Success, but no bytes, means end-of-file. */
12567 break;
12568 if (bytes == -1)
12569 remote_hostio_error (remote_errno);
12570
12571 offset += bytes;
12572
12573 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12574 if (bytes == 0)
12575 perror_with_name (local_file);
12576 }
12577
12578 if (remote_hostio_close (fd.release (), &remote_errno))
12579 remote_hostio_error (remote_errno);
12580
12581 if (from_tty)
12582 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12583 }
12584
12585 void
12586 remote_file_delete (const char *remote_file, int from_tty)
12587 {
12588 remote_target *remote = get_current_remote_target ();
12589
12590 if (remote == nullptr)
12591 error (_("command can only be used with remote target"));
12592
12593 remote->remote_file_delete (remote_file, from_tty);
12594 }
12595
12596 void
12597 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12598 {
12599 int retcode, remote_errno;
12600
12601 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12602 if (retcode == -1)
12603 remote_hostio_error (remote_errno);
12604
12605 if (from_tty)
12606 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12607 }
12608
12609 static void
12610 remote_put_command (const char *args, int from_tty)
12611 {
12612 if (args == NULL)
12613 error_no_arg (_("file to put"));
12614
12615 gdb_argv argv (args);
12616 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12617 error (_("Invalid parameters to remote put"));
12618
12619 remote_file_put (argv[0], argv[1], from_tty);
12620 }
12621
12622 static void
12623 remote_get_command (const char *args, int from_tty)
12624 {
12625 if (args == NULL)
12626 error_no_arg (_("file to get"));
12627
12628 gdb_argv argv (args);
12629 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12630 error (_("Invalid parameters to remote get"));
12631
12632 remote_file_get (argv[0], argv[1], from_tty);
12633 }
12634
12635 static void
12636 remote_delete_command (const char *args, int from_tty)
12637 {
12638 if (args == NULL)
12639 error_no_arg (_("file to delete"));
12640
12641 gdb_argv argv (args);
12642 if (argv[0] == NULL || argv[1] != NULL)
12643 error (_("Invalid parameters to remote delete"));
12644
12645 remote_file_delete (argv[0], from_tty);
12646 }
12647
12648 static void
12649 remote_command (const char *args, int from_tty)
12650 {
12651 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12652 }
12653
12654 bool
12655 remote_target::can_execute_reverse ()
12656 {
12657 if (packet_support (PACKET_bs) == PACKET_ENABLE
12658 || packet_support (PACKET_bc) == PACKET_ENABLE)
12659 return true;
12660 else
12661 return false;
12662 }
12663
12664 bool
12665 remote_target::supports_non_stop ()
12666 {
12667 return true;
12668 }
12669
12670 bool
12671 remote_target::supports_disable_randomization ()
12672 {
12673 /* Only supported in extended mode. */
12674 return false;
12675 }
12676
12677 bool
12678 remote_target::supports_multi_process ()
12679 {
12680 struct remote_state *rs = get_remote_state ();
12681
12682 return remote_multi_process_p (rs);
12683 }
12684
12685 static int
12686 remote_supports_cond_tracepoints ()
12687 {
12688 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12689 }
12690
12691 bool
12692 remote_target::supports_evaluation_of_breakpoint_conditions ()
12693 {
12694 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12695 }
12696
12697 static int
12698 remote_supports_fast_tracepoints ()
12699 {
12700 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12701 }
12702
12703 static int
12704 remote_supports_static_tracepoints ()
12705 {
12706 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12707 }
12708
12709 static int
12710 remote_supports_install_in_trace ()
12711 {
12712 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12713 }
12714
12715 bool
12716 remote_target::supports_enable_disable_tracepoint ()
12717 {
12718 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12719 == PACKET_ENABLE);
12720 }
12721
12722 bool
12723 remote_target::supports_string_tracing ()
12724 {
12725 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12726 }
12727
12728 bool
12729 remote_target::can_run_breakpoint_commands ()
12730 {
12731 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12732 }
12733
12734 void
12735 remote_target::trace_init ()
12736 {
12737 struct remote_state *rs = get_remote_state ();
12738
12739 putpkt ("QTinit");
12740 remote_get_noisy_reply ();
12741 if (strcmp (rs->buf.data (), "OK") != 0)
12742 error (_("Target does not support this command."));
12743 }
12744
12745 /* Recursive routine to walk through command list including loops, and
12746 download packets for each command. */
12747
12748 void
12749 remote_target::remote_download_command_source (int num, ULONGEST addr,
12750 struct command_line *cmds)
12751 {
12752 struct remote_state *rs = get_remote_state ();
12753 struct command_line *cmd;
12754
12755 for (cmd = cmds; cmd; cmd = cmd->next)
12756 {
12757 QUIT; /* Allow user to bail out with ^C. */
12758 strcpy (rs->buf.data (), "QTDPsrc:");
12759 encode_source_string (num, addr, "cmd", cmd->line,
12760 rs->buf.data () + strlen (rs->buf.data ()),
12761 rs->buf.size () - strlen (rs->buf.data ()));
12762 putpkt (rs->buf);
12763 remote_get_noisy_reply ();
12764 if (strcmp (rs->buf.data (), "OK"))
12765 warning (_("Target does not support source download."));
12766
12767 if (cmd->control_type == while_control
12768 || cmd->control_type == while_stepping_control)
12769 {
12770 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12771
12772 QUIT; /* Allow user to bail out with ^C. */
12773 strcpy (rs->buf.data (), "QTDPsrc:");
12774 encode_source_string (num, addr, "cmd", "end",
12775 rs->buf.data () + strlen (rs->buf.data ()),
12776 rs->buf.size () - strlen (rs->buf.data ()));
12777 putpkt (rs->buf);
12778 remote_get_noisy_reply ();
12779 if (strcmp (rs->buf.data (), "OK"))
12780 warning (_("Target does not support source download."));
12781 }
12782 }
12783 }
12784
12785 void
12786 remote_target::download_tracepoint (struct bp_location *loc)
12787 {
12788 CORE_ADDR tpaddr;
12789 char addrbuf[40];
12790 std::vector<std::string> tdp_actions;
12791 std::vector<std::string> stepping_actions;
12792 char *pkt;
12793 struct breakpoint *b = loc->owner;
12794 struct tracepoint *t = (struct tracepoint *) b;
12795 struct remote_state *rs = get_remote_state ();
12796 int ret;
12797 const char *err_msg = _("Tracepoint packet too large for target.");
12798 size_t size_left;
12799
12800 /* We use a buffer other than rs->buf because we'll build strings
12801 across multiple statements, and other statements in between could
12802 modify rs->buf. */
12803 gdb::char_vector buf (get_remote_packet_size ());
12804
12805 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12806
12807 tpaddr = loc->address;
12808 sprintf_vma (addrbuf, tpaddr);
12809 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12810 b->number, addrbuf, /* address */
12811 (b->enable_state == bp_enabled ? 'E' : 'D'),
12812 t->step_count, t->pass_count);
12813
12814 if (ret < 0 || ret >= buf.size ())
12815 error ("%s", err_msg);
12816
12817 /* Fast tracepoints are mostly handled by the target, but we can
12818 tell the target how big of an instruction block should be moved
12819 around. */
12820 if (b->type == bp_fast_tracepoint)
12821 {
12822 /* Only test for support at download time; we may not know
12823 target capabilities at definition time. */
12824 if (remote_supports_fast_tracepoints ())
12825 {
12826 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12827 NULL))
12828 {
12829 size_left = buf.size () - strlen (buf.data ());
12830 ret = snprintf (buf.data () + strlen (buf.data ()),
12831 size_left, ":F%x",
12832 gdb_insn_length (loc->gdbarch, tpaddr));
12833
12834 if (ret < 0 || ret >= size_left)
12835 error ("%s", err_msg);
12836 }
12837 else
12838 /* If it passed validation at definition but fails now,
12839 something is very wrong. */
12840 internal_error (__FILE__, __LINE__,
12841 _("Fast tracepoint not "
12842 "valid during download"));
12843 }
12844 else
12845 /* Fast tracepoints are functionally identical to regular
12846 tracepoints, so don't take lack of support as a reason to
12847 give up on the trace run. */
12848 warning (_("Target does not support fast tracepoints, "
12849 "downloading %d as regular tracepoint"), b->number);
12850 }
12851 else if (b->type == bp_static_tracepoint)
12852 {
12853 /* Only test for support at download time; we may not know
12854 target capabilities at definition time. */
12855 if (remote_supports_static_tracepoints ())
12856 {
12857 struct static_tracepoint_marker marker;
12858
12859 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12860 {
12861 size_left = buf.size () - strlen (buf.data ());
12862 ret = snprintf (buf.data () + strlen (buf.data ()),
12863 size_left, ":S");
12864
12865 if (ret < 0 || ret >= size_left)
12866 error ("%s", err_msg);
12867 }
12868 else
12869 error (_("Static tracepoint not valid during download"));
12870 }
12871 else
12872 /* Fast tracepoints are functionally identical to regular
12873 tracepoints, so don't take lack of support as a reason
12874 to give up on the trace run. */
12875 error (_("Target does not support static tracepoints"));
12876 }
12877 /* If the tracepoint has a conditional, make it into an agent
12878 expression and append to the definition. */
12879 if (loc->cond)
12880 {
12881 /* Only test support at download time, we may not know target
12882 capabilities at definition time. */
12883 if (remote_supports_cond_tracepoints ())
12884 {
12885 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12886 loc->cond.get ());
12887
12888 size_left = buf.size () - strlen (buf.data ());
12889
12890 ret = snprintf (buf.data () + strlen (buf.data ()),
12891 size_left, ":X%x,", aexpr->len);
12892
12893 if (ret < 0 || ret >= size_left)
12894 error ("%s", err_msg);
12895
12896 size_left = buf.size () - strlen (buf.data ());
12897
12898 /* Two bytes to encode each aexpr byte, plus the terminating
12899 null byte. */
12900 if (aexpr->len * 2 + 1 > size_left)
12901 error ("%s", err_msg);
12902
12903 pkt = buf.data () + strlen (buf.data ());
12904
12905 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12906 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12907 *pkt = '\0';
12908 }
12909 else
12910 warning (_("Target does not support conditional tracepoints, "
12911 "ignoring tp %d cond"), b->number);
12912 }
12913
12914 if (b->commands || *default_collect)
12915 {
12916 size_left = buf.size () - strlen (buf.data ());
12917
12918 ret = snprintf (buf.data () + strlen (buf.data ()),
12919 size_left, "-");
12920
12921 if (ret < 0 || ret >= size_left)
12922 error ("%s", err_msg);
12923 }
12924
12925 putpkt (buf.data ());
12926 remote_get_noisy_reply ();
12927 if (strcmp (rs->buf.data (), "OK"))
12928 error (_("Target does not support tracepoints."));
12929
12930 /* do_single_steps (t); */
12931 for (auto action_it = tdp_actions.begin ();
12932 action_it != tdp_actions.end (); action_it++)
12933 {
12934 QUIT; /* Allow user to bail out with ^C. */
12935
12936 bool has_more = ((action_it + 1) != tdp_actions.end ()
12937 || !stepping_actions.empty ());
12938
12939 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12940 b->number, addrbuf, /* address */
12941 action_it->c_str (),
12942 has_more ? '-' : 0);
12943
12944 if (ret < 0 || ret >= buf.size ())
12945 error ("%s", err_msg);
12946
12947 putpkt (buf.data ());
12948 remote_get_noisy_reply ();
12949 if (strcmp (rs->buf.data (), "OK"))
12950 error (_("Error on target while setting tracepoints."));
12951 }
12952
12953 for (auto action_it = stepping_actions.begin ();
12954 action_it != stepping_actions.end (); action_it++)
12955 {
12956 QUIT; /* Allow user to bail out with ^C. */
12957
12958 bool is_first = action_it == stepping_actions.begin ();
12959 bool has_more = (action_it + 1) != stepping_actions.end ();
12960
12961 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
12962 b->number, addrbuf, /* address */
12963 is_first ? "S" : "",
12964 action_it->c_str (),
12965 has_more ? "-" : "");
12966
12967 if (ret < 0 || ret >= buf.size ())
12968 error ("%s", err_msg);
12969
12970 putpkt (buf.data ());
12971 remote_get_noisy_reply ();
12972 if (strcmp (rs->buf.data (), "OK"))
12973 error (_("Error on target while setting tracepoints."));
12974 }
12975
12976 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12977 {
12978 if (b->location != NULL)
12979 {
12980 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12981
12982 if (ret < 0 || ret >= buf.size ())
12983 error ("%s", err_msg);
12984
12985 encode_source_string (b->number, loc->address, "at",
12986 event_location_to_string (b->location.get ()),
12987 buf.data () + strlen (buf.data ()),
12988 buf.size () - strlen (buf.data ()));
12989 putpkt (buf.data ());
12990 remote_get_noisy_reply ();
12991 if (strcmp (rs->buf.data (), "OK"))
12992 warning (_("Target does not support source download."));
12993 }
12994 if (b->cond_string)
12995 {
12996 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12997
12998 if (ret < 0 || ret >= buf.size ())
12999 error ("%s", err_msg);
13000
13001 encode_source_string (b->number, loc->address,
13002 "cond", b->cond_string,
13003 buf.data () + strlen (buf.data ()),
13004 buf.size () - strlen (buf.data ()));
13005 putpkt (buf.data ());
13006 remote_get_noisy_reply ();
13007 if (strcmp (rs->buf.data (), "OK"))
13008 warning (_("Target does not support source download."));
13009 }
13010 remote_download_command_source (b->number, loc->address,
13011 breakpoint_commands (b));
13012 }
13013 }
13014
13015 bool
13016 remote_target::can_download_tracepoint ()
13017 {
13018 struct remote_state *rs = get_remote_state ();
13019 struct trace_status *ts;
13020 int status;
13021
13022 /* Don't try to install tracepoints until we've relocated our
13023 symbols, and fetched and merged the target's tracepoint list with
13024 ours. */
13025 if (rs->starting_up)
13026 return false;
13027
13028 ts = current_trace_status ();
13029 status = get_trace_status (ts);
13030
13031 if (status == -1 || !ts->running_known || !ts->running)
13032 return false;
13033
13034 /* If we are in a tracing experiment, but remote stub doesn't support
13035 installing tracepoint in trace, we have to return. */
13036 if (!remote_supports_install_in_trace ())
13037 return false;
13038
13039 return true;
13040 }
13041
13042
13043 void
13044 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13045 {
13046 struct remote_state *rs = get_remote_state ();
13047 char *p;
13048
13049 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13050 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13051 tsv.builtin);
13052 p = rs->buf.data () + strlen (rs->buf.data ());
13053 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13054 >= get_remote_packet_size ())
13055 error (_("Trace state variable name too long for tsv definition packet"));
13056 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13057 *p++ = '\0';
13058 putpkt (rs->buf);
13059 remote_get_noisy_reply ();
13060 if (rs->buf[0] == '\0')
13061 error (_("Target does not support this command."));
13062 if (strcmp (rs->buf.data (), "OK") != 0)
13063 error (_("Error on target while downloading trace state variable."));
13064 }
13065
13066 void
13067 remote_target::enable_tracepoint (struct bp_location *location)
13068 {
13069 struct remote_state *rs = get_remote_state ();
13070 char addr_buf[40];
13071
13072 sprintf_vma (addr_buf, location->address);
13073 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13074 location->owner->number, addr_buf);
13075 putpkt (rs->buf);
13076 remote_get_noisy_reply ();
13077 if (rs->buf[0] == '\0')
13078 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13079 if (strcmp (rs->buf.data (), "OK") != 0)
13080 error (_("Error on target while enabling tracepoint."));
13081 }
13082
13083 void
13084 remote_target::disable_tracepoint (struct bp_location *location)
13085 {
13086 struct remote_state *rs = get_remote_state ();
13087 char addr_buf[40];
13088
13089 sprintf_vma (addr_buf, location->address);
13090 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13091 location->owner->number, addr_buf);
13092 putpkt (rs->buf);
13093 remote_get_noisy_reply ();
13094 if (rs->buf[0] == '\0')
13095 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13096 if (strcmp (rs->buf.data (), "OK") != 0)
13097 error (_("Error on target while disabling tracepoint."));
13098 }
13099
13100 void
13101 remote_target::trace_set_readonly_regions ()
13102 {
13103 asection *s;
13104 bfd *abfd = NULL;
13105 bfd_size_type size;
13106 bfd_vma vma;
13107 int anysecs = 0;
13108 int offset = 0;
13109
13110 if (!exec_bfd)
13111 return; /* No information to give. */
13112
13113 struct remote_state *rs = get_remote_state ();
13114
13115 strcpy (rs->buf.data (), "QTro");
13116 offset = strlen (rs->buf.data ());
13117 for (s = exec_bfd->sections; s; s = s->next)
13118 {
13119 char tmp1[40], tmp2[40];
13120 int sec_length;
13121
13122 if ((s->flags & SEC_LOAD) == 0 ||
13123 /* (s->flags & SEC_CODE) == 0 || */
13124 (s->flags & SEC_READONLY) == 0)
13125 continue;
13126
13127 anysecs = 1;
13128 vma = bfd_get_section_vma (abfd, s);
13129 size = bfd_get_section_size (s);
13130 sprintf_vma (tmp1, vma);
13131 sprintf_vma (tmp2, vma + size);
13132 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13133 if (offset + sec_length + 1 > rs->buf.size ())
13134 {
13135 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13136 warning (_("\
13137 Too many sections for read-only sections definition packet."));
13138 break;
13139 }
13140 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13141 tmp1, tmp2);
13142 offset += sec_length;
13143 }
13144 if (anysecs)
13145 {
13146 putpkt (rs->buf);
13147 getpkt (&rs->buf, 0);
13148 }
13149 }
13150
13151 void
13152 remote_target::trace_start ()
13153 {
13154 struct remote_state *rs = get_remote_state ();
13155
13156 putpkt ("QTStart");
13157 remote_get_noisy_reply ();
13158 if (rs->buf[0] == '\0')
13159 error (_("Target does not support this command."));
13160 if (strcmp (rs->buf.data (), "OK") != 0)
13161 error (_("Bogus reply from target: %s"), rs->buf.data ());
13162 }
13163
13164 int
13165 remote_target::get_trace_status (struct trace_status *ts)
13166 {
13167 /* Initialize it just to avoid a GCC false warning. */
13168 char *p = NULL;
13169 /* FIXME we need to get register block size some other way. */
13170 extern int trace_regblock_size;
13171 enum packet_result result;
13172 struct remote_state *rs = get_remote_state ();
13173
13174 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13175 return -1;
13176
13177 trace_regblock_size
13178 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13179
13180 putpkt ("qTStatus");
13181
13182 TRY
13183 {
13184 p = remote_get_noisy_reply ();
13185 }
13186 CATCH (ex, RETURN_MASK_ERROR)
13187 {
13188 if (ex.error != TARGET_CLOSE_ERROR)
13189 {
13190 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13191 return -1;
13192 }
13193 throw_exception (ex);
13194 }
13195 END_CATCH
13196
13197 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13198
13199 /* If the remote target doesn't do tracing, flag it. */
13200 if (result == PACKET_UNKNOWN)
13201 return -1;
13202
13203 /* We're working with a live target. */
13204 ts->filename = NULL;
13205
13206 if (*p++ != 'T')
13207 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13208
13209 /* Function 'parse_trace_status' sets default value of each field of
13210 'ts' at first, so we don't have to do it here. */
13211 parse_trace_status (p, ts);
13212
13213 return ts->running;
13214 }
13215
13216 void
13217 remote_target::get_tracepoint_status (struct breakpoint *bp,
13218 struct uploaded_tp *utp)
13219 {
13220 struct remote_state *rs = get_remote_state ();
13221 char *reply;
13222 struct bp_location *loc;
13223 struct tracepoint *tp = (struct tracepoint *) bp;
13224 size_t size = get_remote_packet_size ();
13225
13226 if (tp)
13227 {
13228 tp->hit_count = 0;
13229 tp->traceframe_usage = 0;
13230 for (loc = tp->loc; loc; loc = loc->next)
13231 {
13232 /* If the tracepoint was never downloaded, don't go asking for
13233 any status. */
13234 if (tp->number_on_target == 0)
13235 continue;
13236 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13237 phex_nz (loc->address, 0));
13238 putpkt (rs->buf);
13239 reply = remote_get_noisy_reply ();
13240 if (reply && *reply)
13241 {
13242 if (*reply == 'V')
13243 parse_tracepoint_status (reply + 1, bp, utp);
13244 }
13245 }
13246 }
13247 else if (utp)
13248 {
13249 utp->hit_count = 0;
13250 utp->traceframe_usage = 0;
13251 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13252 phex_nz (utp->addr, 0));
13253 putpkt (rs->buf);
13254 reply = remote_get_noisy_reply ();
13255 if (reply && *reply)
13256 {
13257 if (*reply == 'V')
13258 parse_tracepoint_status (reply + 1, bp, utp);
13259 }
13260 }
13261 }
13262
13263 void
13264 remote_target::trace_stop ()
13265 {
13266 struct remote_state *rs = get_remote_state ();
13267
13268 putpkt ("QTStop");
13269 remote_get_noisy_reply ();
13270 if (rs->buf[0] == '\0')
13271 error (_("Target does not support this command."));
13272 if (strcmp (rs->buf.data (), "OK") != 0)
13273 error (_("Bogus reply from target: %s"), rs->buf.data ());
13274 }
13275
13276 int
13277 remote_target::trace_find (enum trace_find_type type, int num,
13278 CORE_ADDR addr1, CORE_ADDR addr2,
13279 int *tpp)
13280 {
13281 struct remote_state *rs = get_remote_state ();
13282 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13283 char *p, *reply;
13284 int target_frameno = -1, target_tracept = -1;
13285
13286 /* Lookups other than by absolute frame number depend on the current
13287 trace selected, so make sure it is correct on the remote end
13288 first. */
13289 if (type != tfind_number)
13290 set_remote_traceframe ();
13291
13292 p = rs->buf.data ();
13293 strcpy (p, "QTFrame:");
13294 p = strchr (p, '\0');
13295 switch (type)
13296 {
13297 case tfind_number:
13298 xsnprintf (p, endbuf - p, "%x", num);
13299 break;
13300 case tfind_pc:
13301 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13302 break;
13303 case tfind_tp:
13304 xsnprintf (p, endbuf - p, "tdp:%x", num);
13305 break;
13306 case tfind_range:
13307 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13308 phex_nz (addr2, 0));
13309 break;
13310 case tfind_outside:
13311 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13312 phex_nz (addr2, 0));
13313 break;
13314 default:
13315 error (_("Unknown trace find type %d"), type);
13316 }
13317
13318 putpkt (rs->buf);
13319 reply = remote_get_noisy_reply ();
13320 if (*reply == '\0')
13321 error (_("Target does not support this command."));
13322
13323 while (reply && *reply)
13324 switch (*reply)
13325 {
13326 case 'F':
13327 p = ++reply;
13328 target_frameno = (int) strtol (p, &reply, 16);
13329 if (reply == p)
13330 error (_("Unable to parse trace frame number"));
13331 /* Don't update our remote traceframe number cache on failure
13332 to select a remote traceframe. */
13333 if (target_frameno == -1)
13334 return -1;
13335 break;
13336 case 'T':
13337 p = ++reply;
13338 target_tracept = (int) strtol (p, &reply, 16);
13339 if (reply == p)
13340 error (_("Unable to parse tracepoint number"));
13341 break;
13342 case 'O': /* "OK"? */
13343 if (reply[1] == 'K' && reply[2] == '\0')
13344 reply += 2;
13345 else
13346 error (_("Bogus reply from target: %s"), reply);
13347 break;
13348 default:
13349 error (_("Bogus reply from target: %s"), reply);
13350 }
13351 if (tpp)
13352 *tpp = target_tracept;
13353
13354 rs->remote_traceframe_number = target_frameno;
13355 return target_frameno;
13356 }
13357
13358 bool
13359 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13360 {
13361 struct remote_state *rs = get_remote_state ();
13362 char *reply;
13363 ULONGEST uval;
13364
13365 set_remote_traceframe ();
13366
13367 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13368 putpkt (rs->buf);
13369 reply = remote_get_noisy_reply ();
13370 if (reply && *reply)
13371 {
13372 if (*reply == 'V')
13373 {
13374 unpack_varlen_hex (reply + 1, &uval);
13375 *val = (LONGEST) uval;
13376 return true;
13377 }
13378 }
13379 return false;
13380 }
13381
13382 int
13383 remote_target::save_trace_data (const char *filename)
13384 {
13385 struct remote_state *rs = get_remote_state ();
13386 char *p, *reply;
13387
13388 p = rs->buf.data ();
13389 strcpy (p, "QTSave:");
13390 p += strlen (p);
13391 if ((p - rs->buf.data ()) + strlen (filename) * 2
13392 >= get_remote_packet_size ())
13393 error (_("Remote file name too long for trace save packet"));
13394 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13395 *p++ = '\0';
13396 putpkt (rs->buf);
13397 reply = remote_get_noisy_reply ();
13398 if (*reply == '\0')
13399 error (_("Target does not support this command."));
13400 if (strcmp (reply, "OK") != 0)
13401 error (_("Bogus reply from target: %s"), reply);
13402 return 0;
13403 }
13404
13405 /* This is basically a memory transfer, but needs to be its own packet
13406 because we don't know how the target actually organizes its trace
13407 memory, plus we want to be able to ask for as much as possible, but
13408 not be unhappy if we don't get as much as we ask for. */
13409
13410 LONGEST
13411 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13412 {
13413 struct remote_state *rs = get_remote_state ();
13414 char *reply;
13415 char *p;
13416 int rslt;
13417
13418 p = rs->buf.data ();
13419 strcpy (p, "qTBuffer:");
13420 p += strlen (p);
13421 p += hexnumstr (p, offset);
13422 *p++ = ',';
13423 p += hexnumstr (p, len);
13424 *p++ = '\0';
13425
13426 putpkt (rs->buf);
13427 reply = remote_get_noisy_reply ();
13428 if (reply && *reply)
13429 {
13430 /* 'l' by itself means we're at the end of the buffer and
13431 there is nothing more to get. */
13432 if (*reply == 'l')
13433 return 0;
13434
13435 /* Convert the reply into binary. Limit the number of bytes to
13436 convert according to our passed-in buffer size, rather than
13437 what was returned in the packet; if the target is
13438 unexpectedly generous and gives us a bigger reply than we
13439 asked for, we don't want to crash. */
13440 rslt = hex2bin (reply, buf, len);
13441 return rslt;
13442 }
13443
13444 /* Something went wrong, flag as an error. */
13445 return -1;
13446 }
13447
13448 void
13449 remote_target::set_disconnected_tracing (int val)
13450 {
13451 struct remote_state *rs = get_remote_state ();
13452
13453 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13454 {
13455 char *reply;
13456
13457 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13458 "QTDisconnected:%x", val);
13459 putpkt (rs->buf);
13460 reply = remote_get_noisy_reply ();
13461 if (*reply == '\0')
13462 error (_("Target does not support this command."));
13463 if (strcmp (reply, "OK") != 0)
13464 error (_("Bogus reply from target: %s"), reply);
13465 }
13466 else if (val)
13467 warning (_("Target does not support disconnected tracing."));
13468 }
13469
13470 int
13471 remote_target::core_of_thread (ptid_t ptid)
13472 {
13473 struct thread_info *info = find_thread_ptid (ptid);
13474
13475 if (info != NULL && info->priv != NULL)
13476 return get_remote_thread_info (info)->core;
13477
13478 return -1;
13479 }
13480
13481 void
13482 remote_target::set_circular_trace_buffer (int val)
13483 {
13484 struct remote_state *rs = get_remote_state ();
13485 char *reply;
13486
13487 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13488 "QTBuffer:circular:%x", val);
13489 putpkt (rs->buf);
13490 reply = remote_get_noisy_reply ();
13491 if (*reply == '\0')
13492 error (_("Target does not support this command."));
13493 if (strcmp (reply, "OK") != 0)
13494 error (_("Bogus reply from target: %s"), reply);
13495 }
13496
13497 traceframe_info_up
13498 remote_target::traceframe_info ()
13499 {
13500 gdb::optional<gdb::char_vector> text
13501 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13502 NULL);
13503 if (text)
13504 return parse_traceframe_info (text->data ());
13505
13506 return NULL;
13507 }
13508
13509 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13510 instruction on which a fast tracepoint may be placed. Returns -1
13511 if the packet is not supported, and 0 if the minimum instruction
13512 length is unknown. */
13513
13514 int
13515 remote_target::get_min_fast_tracepoint_insn_len ()
13516 {
13517 struct remote_state *rs = get_remote_state ();
13518 char *reply;
13519
13520 /* If we're not debugging a process yet, the IPA can't be
13521 loaded. */
13522 if (!target_has_execution)
13523 return 0;
13524
13525 /* Make sure the remote is pointing at the right process. */
13526 set_general_process ();
13527
13528 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13529 putpkt (rs->buf);
13530 reply = remote_get_noisy_reply ();
13531 if (*reply == '\0')
13532 return -1;
13533 else
13534 {
13535 ULONGEST min_insn_len;
13536
13537 unpack_varlen_hex (reply, &min_insn_len);
13538
13539 return (int) min_insn_len;
13540 }
13541 }
13542
13543 void
13544 remote_target::set_trace_buffer_size (LONGEST val)
13545 {
13546 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13547 {
13548 struct remote_state *rs = get_remote_state ();
13549 char *buf = rs->buf.data ();
13550 char *endbuf = buf + get_remote_packet_size ();
13551 enum packet_result result;
13552
13553 gdb_assert (val >= 0 || val == -1);
13554 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13555 /* Send -1 as literal "-1" to avoid host size dependency. */
13556 if (val < 0)
13557 {
13558 *buf++ = '-';
13559 buf += hexnumstr (buf, (ULONGEST) -val);
13560 }
13561 else
13562 buf += hexnumstr (buf, (ULONGEST) val);
13563
13564 putpkt (rs->buf);
13565 remote_get_noisy_reply ();
13566 result = packet_ok (rs->buf,
13567 &remote_protocol_packets[PACKET_QTBuffer_size]);
13568
13569 if (result != PACKET_OK)
13570 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13571 }
13572 }
13573
13574 bool
13575 remote_target::set_trace_notes (const char *user, const char *notes,
13576 const char *stop_notes)
13577 {
13578 struct remote_state *rs = get_remote_state ();
13579 char *reply;
13580 char *buf = rs->buf.data ();
13581 char *endbuf = buf + get_remote_packet_size ();
13582 int nbytes;
13583
13584 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13585 if (user)
13586 {
13587 buf += xsnprintf (buf, endbuf - buf, "user:");
13588 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13589 buf += 2 * nbytes;
13590 *buf++ = ';';
13591 }
13592 if (notes)
13593 {
13594 buf += xsnprintf (buf, endbuf - buf, "notes:");
13595 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13596 buf += 2 * nbytes;
13597 *buf++ = ';';
13598 }
13599 if (stop_notes)
13600 {
13601 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13602 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13603 buf += 2 * nbytes;
13604 *buf++ = ';';
13605 }
13606 /* Ensure the buffer is terminated. */
13607 *buf = '\0';
13608
13609 putpkt (rs->buf);
13610 reply = remote_get_noisy_reply ();
13611 if (*reply == '\0')
13612 return false;
13613
13614 if (strcmp (reply, "OK") != 0)
13615 error (_("Bogus reply from target: %s"), reply);
13616
13617 return true;
13618 }
13619
13620 bool
13621 remote_target::use_agent (bool use)
13622 {
13623 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13624 {
13625 struct remote_state *rs = get_remote_state ();
13626
13627 /* If the stub supports QAgent. */
13628 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13629 putpkt (rs->buf);
13630 getpkt (&rs->buf, 0);
13631
13632 if (strcmp (rs->buf.data (), "OK") == 0)
13633 {
13634 ::use_agent = use;
13635 return true;
13636 }
13637 }
13638
13639 return false;
13640 }
13641
13642 bool
13643 remote_target::can_use_agent ()
13644 {
13645 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13646 }
13647
13648 struct btrace_target_info
13649 {
13650 /* The ptid of the traced thread. */
13651 ptid_t ptid;
13652
13653 /* The obtained branch trace configuration. */
13654 struct btrace_config conf;
13655 };
13656
13657 /* Reset our idea of our target's btrace configuration. */
13658
13659 static void
13660 remote_btrace_reset (remote_state *rs)
13661 {
13662 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13663 }
13664
13665 /* Synchronize the configuration with the target. */
13666
13667 void
13668 remote_target::btrace_sync_conf (const btrace_config *conf)
13669 {
13670 struct packet_config *packet;
13671 struct remote_state *rs;
13672 char *buf, *pos, *endbuf;
13673
13674 rs = get_remote_state ();
13675 buf = rs->buf.data ();
13676 endbuf = buf + get_remote_packet_size ();
13677
13678 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13679 if (packet_config_support (packet) == PACKET_ENABLE
13680 && conf->bts.size != rs->btrace_config.bts.size)
13681 {
13682 pos = buf;
13683 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13684 conf->bts.size);
13685
13686 putpkt (buf);
13687 getpkt (&rs->buf, 0);
13688
13689 if (packet_ok (buf, packet) == PACKET_ERROR)
13690 {
13691 if (buf[0] == 'E' && buf[1] == '.')
13692 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13693 else
13694 error (_("Failed to configure the BTS buffer size."));
13695 }
13696
13697 rs->btrace_config.bts.size = conf->bts.size;
13698 }
13699
13700 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13701 if (packet_config_support (packet) == PACKET_ENABLE
13702 && conf->pt.size != rs->btrace_config.pt.size)
13703 {
13704 pos = buf;
13705 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13706 conf->pt.size);
13707
13708 putpkt (buf);
13709 getpkt (&rs->buf, 0);
13710
13711 if (packet_ok (buf, packet) == PACKET_ERROR)
13712 {
13713 if (buf[0] == 'E' && buf[1] == '.')
13714 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13715 else
13716 error (_("Failed to configure the trace buffer size."));
13717 }
13718
13719 rs->btrace_config.pt.size = conf->pt.size;
13720 }
13721 }
13722
13723 /* Read the current thread's btrace configuration from the target and
13724 store it into CONF. */
13725
13726 static void
13727 btrace_read_config (struct btrace_config *conf)
13728 {
13729 gdb::optional<gdb::char_vector> xml
13730 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13731 if (xml)
13732 parse_xml_btrace_conf (conf, xml->data ());
13733 }
13734
13735 /* Maybe reopen target btrace. */
13736
13737 void
13738 remote_target::remote_btrace_maybe_reopen ()
13739 {
13740 struct remote_state *rs = get_remote_state ();
13741 int btrace_target_pushed = 0;
13742 #if !defined (HAVE_LIBIPT)
13743 int warned = 0;
13744 #endif
13745
13746 scoped_restore_current_thread restore_thread;
13747
13748 for (thread_info *tp : all_non_exited_threads ())
13749 {
13750 set_general_thread (tp->ptid);
13751
13752 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13753 btrace_read_config (&rs->btrace_config);
13754
13755 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13756 continue;
13757
13758 #if !defined (HAVE_LIBIPT)
13759 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13760 {
13761 if (!warned)
13762 {
13763 warned = 1;
13764 warning (_("Target is recording using Intel Processor Trace "
13765 "but support was disabled at compile time."));
13766 }
13767
13768 continue;
13769 }
13770 #endif /* !defined (HAVE_LIBIPT) */
13771
13772 /* Push target, once, but before anything else happens. This way our
13773 changes to the threads will be cleaned up by unpushing the target
13774 in case btrace_read_config () throws. */
13775 if (!btrace_target_pushed)
13776 {
13777 btrace_target_pushed = 1;
13778 record_btrace_push_target ();
13779 printf_filtered (_("Target is recording using %s.\n"),
13780 btrace_format_string (rs->btrace_config.format));
13781 }
13782
13783 tp->btrace.target = XCNEW (struct btrace_target_info);
13784 tp->btrace.target->ptid = tp->ptid;
13785 tp->btrace.target->conf = rs->btrace_config;
13786 }
13787 }
13788
13789 /* Enable branch tracing. */
13790
13791 struct btrace_target_info *
13792 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13793 {
13794 struct btrace_target_info *tinfo = NULL;
13795 struct packet_config *packet = NULL;
13796 struct remote_state *rs = get_remote_state ();
13797 char *buf = rs->buf.data ();
13798 char *endbuf = buf + get_remote_packet_size ();
13799
13800 switch (conf->format)
13801 {
13802 case BTRACE_FORMAT_BTS:
13803 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13804 break;
13805
13806 case BTRACE_FORMAT_PT:
13807 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13808 break;
13809 }
13810
13811 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13812 error (_("Target does not support branch tracing."));
13813
13814 btrace_sync_conf (conf);
13815
13816 set_general_thread (ptid);
13817
13818 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13819 putpkt (rs->buf);
13820 getpkt (&rs->buf, 0);
13821
13822 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13823 {
13824 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13825 error (_("Could not enable branch tracing for %s: %s"),
13826 target_pid_to_str (ptid), &rs->buf[2]);
13827 else
13828 error (_("Could not enable branch tracing for %s."),
13829 target_pid_to_str (ptid));
13830 }
13831
13832 tinfo = XCNEW (struct btrace_target_info);
13833 tinfo->ptid = ptid;
13834
13835 /* If we fail to read the configuration, we lose some information, but the
13836 tracing itself is not impacted. */
13837 TRY
13838 {
13839 btrace_read_config (&tinfo->conf);
13840 }
13841 CATCH (err, RETURN_MASK_ERROR)
13842 {
13843 if (err.message != NULL)
13844 warning ("%s", err.message);
13845 }
13846 END_CATCH
13847
13848 return tinfo;
13849 }
13850
13851 /* Disable branch tracing. */
13852
13853 void
13854 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13855 {
13856 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13857 struct remote_state *rs = get_remote_state ();
13858 char *buf = rs->buf.data ();
13859 char *endbuf = buf + get_remote_packet_size ();
13860
13861 if (packet_config_support (packet) != PACKET_ENABLE)
13862 error (_("Target does not support branch tracing."));
13863
13864 set_general_thread (tinfo->ptid);
13865
13866 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13867 putpkt (rs->buf);
13868 getpkt (&rs->buf, 0);
13869
13870 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13871 {
13872 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13873 error (_("Could not disable branch tracing for %s: %s"),
13874 target_pid_to_str (tinfo->ptid), &rs->buf[2]);
13875 else
13876 error (_("Could not disable branch tracing for %s."),
13877 target_pid_to_str (tinfo->ptid));
13878 }
13879
13880 xfree (tinfo);
13881 }
13882
13883 /* Teardown branch tracing. */
13884
13885 void
13886 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13887 {
13888 /* We must not talk to the target during teardown. */
13889 xfree (tinfo);
13890 }
13891
13892 /* Read the branch trace. */
13893
13894 enum btrace_error
13895 remote_target::read_btrace (struct btrace_data *btrace,
13896 struct btrace_target_info *tinfo,
13897 enum btrace_read_type type)
13898 {
13899 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13900 const char *annex;
13901
13902 if (packet_config_support (packet) != PACKET_ENABLE)
13903 error (_("Target does not support branch tracing."));
13904
13905 #if !defined(HAVE_LIBEXPAT)
13906 error (_("Cannot process branch tracing result. XML parsing not supported."));
13907 #endif
13908
13909 switch (type)
13910 {
13911 case BTRACE_READ_ALL:
13912 annex = "all";
13913 break;
13914 case BTRACE_READ_NEW:
13915 annex = "new";
13916 break;
13917 case BTRACE_READ_DELTA:
13918 annex = "delta";
13919 break;
13920 default:
13921 internal_error (__FILE__, __LINE__,
13922 _("Bad branch tracing read type: %u."),
13923 (unsigned int) type);
13924 }
13925
13926 gdb::optional<gdb::char_vector> xml
13927 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13928 if (!xml)
13929 return BTRACE_ERR_UNKNOWN;
13930
13931 parse_xml_btrace (btrace, xml->data ());
13932
13933 return BTRACE_ERR_NONE;
13934 }
13935
13936 const struct btrace_config *
13937 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13938 {
13939 return &tinfo->conf;
13940 }
13941
13942 bool
13943 remote_target::augmented_libraries_svr4_read ()
13944 {
13945 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13946 == PACKET_ENABLE);
13947 }
13948
13949 /* Implementation of to_load. */
13950
13951 void
13952 remote_target::load (const char *name, int from_tty)
13953 {
13954 generic_load (name, from_tty);
13955 }
13956
13957 /* Accepts an integer PID; returns a string representing a file that
13958 can be opened on the remote side to get the symbols for the child
13959 process. Returns NULL if the operation is not supported. */
13960
13961 char *
13962 remote_target::pid_to_exec_file (int pid)
13963 {
13964 static gdb::optional<gdb::char_vector> filename;
13965 struct inferior *inf;
13966 char *annex = NULL;
13967
13968 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13969 return NULL;
13970
13971 inf = find_inferior_pid (pid);
13972 if (inf == NULL)
13973 internal_error (__FILE__, __LINE__,
13974 _("not currently attached to process %d"), pid);
13975
13976 if (!inf->fake_pid_p)
13977 {
13978 const int annex_size = 9;
13979
13980 annex = (char *) alloca (annex_size);
13981 xsnprintf (annex, annex_size, "%x", pid);
13982 }
13983
13984 filename = target_read_stralloc (current_top_target (),
13985 TARGET_OBJECT_EXEC_FILE, annex);
13986
13987 return filename ? filename->data () : nullptr;
13988 }
13989
13990 /* Implement the to_can_do_single_step target_ops method. */
13991
13992 int
13993 remote_target::can_do_single_step ()
13994 {
13995 /* We can only tell whether target supports single step or not by
13996 supported s and S vCont actions if the stub supports vContSupported
13997 feature. If the stub doesn't support vContSupported feature,
13998 we have conservatively to think target doesn't supports single
13999 step. */
14000 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14001 {
14002 struct remote_state *rs = get_remote_state ();
14003
14004 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14005 remote_vcont_probe ();
14006
14007 return rs->supports_vCont.s && rs->supports_vCont.S;
14008 }
14009 else
14010 return 0;
14011 }
14012
14013 /* Implementation of the to_execution_direction method for the remote
14014 target. */
14015
14016 enum exec_direction_kind
14017 remote_target::execution_direction ()
14018 {
14019 struct remote_state *rs = get_remote_state ();
14020
14021 return rs->last_resume_exec_dir;
14022 }
14023
14024 /* Return pointer to the thread_info struct which corresponds to
14025 THREAD_HANDLE (having length HANDLE_LEN). */
14026
14027 thread_info *
14028 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14029 int handle_len,
14030 inferior *inf)
14031 {
14032 for (thread_info *tp : all_non_exited_threads ())
14033 {
14034 remote_thread_info *priv = get_remote_thread_info (tp);
14035
14036 if (tp->inf == inf && priv != NULL)
14037 {
14038 if (handle_len != priv->thread_handle.size ())
14039 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14040 handle_len, priv->thread_handle.size ());
14041 if (memcmp (thread_handle, priv->thread_handle.data (),
14042 handle_len) == 0)
14043 return tp;
14044 }
14045 }
14046
14047 return NULL;
14048 }
14049
14050 bool
14051 remote_target::can_async_p ()
14052 {
14053 struct remote_state *rs = get_remote_state ();
14054
14055 /* We don't go async if the user has explicitly prevented it with the
14056 "maint set target-async" command. */
14057 if (!target_async_permitted)
14058 return false;
14059
14060 /* We're async whenever the serial device is. */
14061 return serial_can_async_p (rs->remote_desc);
14062 }
14063
14064 bool
14065 remote_target::is_async_p ()
14066 {
14067 struct remote_state *rs = get_remote_state ();
14068
14069 if (!target_async_permitted)
14070 /* We only enable async when the user specifically asks for it. */
14071 return false;
14072
14073 /* We're async whenever the serial device is. */
14074 return serial_is_async_p (rs->remote_desc);
14075 }
14076
14077 /* Pass the SERIAL event on and up to the client. One day this code
14078 will be able to delay notifying the client of an event until the
14079 point where an entire packet has been received. */
14080
14081 static serial_event_ftype remote_async_serial_handler;
14082
14083 static void
14084 remote_async_serial_handler (struct serial *scb, void *context)
14085 {
14086 /* Don't propogate error information up to the client. Instead let
14087 the client find out about the error by querying the target. */
14088 inferior_event_handler (INF_REG_EVENT, NULL);
14089 }
14090
14091 static void
14092 remote_async_inferior_event_handler (gdb_client_data data)
14093 {
14094 inferior_event_handler (INF_REG_EVENT, data);
14095 }
14096
14097 void
14098 remote_target::async (int enable)
14099 {
14100 struct remote_state *rs = get_remote_state ();
14101
14102 if (enable)
14103 {
14104 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14105
14106 /* If there are pending events in the stop reply queue tell the
14107 event loop to process them. */
14108 if (!rs->stop_reply_queue.empty ())
14109 mark_async_event_handler (rs->remote_async_inferior_event_token);
14110 /* For simplicity, below we clear the pending events token
14111 without remembering whether it is marked, so here we always
14112 mark it. If there's actually no pending notification to
14113 process, this ends up being a no-op (other than a spurious
14114 event-loop wakeup). */
14115 if (target_is_non_stop_p ())
14116 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14117 }
14118 else
14119 {
14120 serial_async (rs->remote_desc, NULL, NULL);
14121 /* If the core is disabling async, it doesn't want to be
14122 disturbed with target events. Clear all async event sources
14123 too. */
14124 clear_async_event_handler (rs->remote_async_inferior_event_token);
14125 if (target_is_non_stop_p ())
14126 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14127 }
14128 }
14129
14130 /* Implementation of the to_thread_events method. */
14131
14132 void
14133 remote_target::thread_events (int enable)
14134 {
14135 struct remote_state *rs = get_remote_state ();
14136 size_t size = get_remote_packet_size ();
14137
14138 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14139 return;
14140
14141 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14142 putpkt (rs->buf);
14143 getpkt (&rs->buf, 0);
14144
14145 switch (packet_ok (rs->buf,
14146 &remote_protocol_packets[PACKET_QThreadEvents]))
14147 {
14148 case PACKET_OK:
14149 if (strcmp (rs->buf.data (), "OK") != 0)
14150 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14151 break;
14152 case PACKET_ERROR:
14153 warning (_("Remote failure reply: %s"), rs->buf.data ());
14154 break;
14155 case PACKET_UNKNOWN:
14156 break;
14157 }
14158 }
14159
14160 static void
14161 set_remote_cmd (const char *args, int from_tty)
14162 {
14163 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14164 }
14165
14166 static void
14167 show_remote_cmd (const char *args, int from_tty)
14168 {
14169 /* We can't just use cmd_show_list here, because we want to skip
14170 the redundant "show remote Z-packet" and the legacy aliases. */
14171 struct cmd_list_element *list = remote_show_cmdlist;
14172 struct ui_out *uiout = current_uiout;
14173
14174 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14175 for (; list != NULL; list = list->next)
14176 if (strcmp (list->name, "Z-packet") == 0)
14177 continue;
14178 else if (list->type == not_set_cmd)
14179 /* Alias commands are exactly like the original, except they
14180 don't have the normal type. */
14181 continue;
14182 else
14183 {
14184 ui_out_emit_tuple option_emitter (uiout, "option");
14185
14186 uiout->field_string ("name", list->name);
14187 uiout->text (": ");
14188 if (list->type == show_cmd)
14189 do_show_command (NULL, from_tty, list);
14190 else
14191 cmd_func (list, NULL, from_tty);
14192 }
14193 }
14194
14195
14196 /* Function to be called whenever a new objfile (shlib) is detected. */
14197 static void
14198 remote_new_objfile (struct objfile *objfile)
14199 {
14200 remote_target *remote = get_current_remote_target ();
14201
14202 if (remote != NULL) /* Have a remote connection. */
14203 remote->remote_check_symbols ();
14204 }
14205
14206 /* Pull all the tracepoints defined on the target and create local
14207 data structures representing them. We don't want to create real
14208 tracepoints yet, we don't want to mess up the user's existing
14209 collection. */
14210
14211 int
14212 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14213 {
14214 struct remote_state *rs = get_remote_state ();
14215 char *p;
14216
14217 /* Ask for a first packet of tracepoint definition. */
14218 putpkt ("qTfP");
14219 getpkt (&rs->buf, 0);
14220 p = rs->buf.data ();
14221 while (*p && *p != 'l')
14222 {
14223 parse_tracepoint_definition (p, utpp);
14224 /* Ask for another packet of tracepoint definition. */
14225 putpkt ("qTsP");
14226 getpkt (&rs->buf, 0);
14227 p = rs->buf.data ();
14228 }
14229 return 0;
14230 }
14231
14232 int
14233 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14234 {
14235 struct remote_state *rs = get_remote_state ();
14236 char *p;
14237
14238 /* Ask for a first packet of variable definition. */
14239 putpkt ("qTfV");
14240 getpkt (&rs->buf, 0);
14241 p = rs->buf.data ();
14242 while (*p && *p != 'l')
14243 {
14244 parse_tsv_definition (p, utsvp);
14245 /* Ask for another packet of variable definition. */
14246 putpkt ("qTsV");
14247 getpkt (&rs->buf, 0);
14248 p = rs->buf.data ();
14249 }
14250 return 0;
14251 }
14252
14253 /* The "set/show range-stepping" show hook. */
14254
14255 static void
14256 show_range_stepping (struct ui_file *file, int from_tty,
14257 struct cmd_list_element *c,
14258 const char *value)
14259 {
14260 fprintf_filtered (file,
14261 _("Debugger's willingness to use range stepping "
14262 "is %s.\n"), value);
14263 }
14264
14265 /* Return true if the vCont;r action is supported by the remote
14266 stub. */
14267
14268 bool
14269 remote_target::vcont_r_supported ()
14270 {
14271 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14272 remote_vcont_probe ();
14273
14274 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14275 && get_remote_state ()->supports_vCont.r);
14276 }
14277
14278 /* The "set/show range-stepping" set hook. */
14279
14280 static void
14281 set_range_stepping (const char *ignore_args, int from_tty,
14282 struct cmd_list_element *c)
14283 {
14284 /* When enabling, check whether range stepping is actually supported
14285 by the target, and warn if not. */
14286 if (use_range_stepping)
14287 {
14288 remote_target *remote = get_current_remote_target ();
14289 if (remote == NULL
14290 || !remote->vcont_r_supported ())
14291 warning (_("Range stepping is not supported by the current target"));
14292 }
14293 }
14294
14295 void
14296 _initialize_remote (void)
14297 {
14298 struct cmd_list_element *cmd;
14299 const char *cmd_name;
14300
14301 /* architecture specific data */
14302 remote_g_packet_data_handle =
14303 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14304
14305 remote_pspace_data
14306 = register_program_space_data_with_cleanup (NULL,
14307 remote_pspace_data_cleanup);
14308
14309 add_target (remote_target_info, remote_target::open);
14310 add_target (extended_remote_target_info, extended_remote_target::open);
14311
14312 /* Hook into new objfile notification. */
14313 gdb::observers::new_objfile.attach (remote_new_objfile);
14314
14315 #if 0
14316 init_remote_threadtests ();
14317 #endif
14318
14319 /* set/show remote ... */
14320
14321 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14322 Remote protocol specific variables\n\
14323 Configure various remote-protocol specific variables such as\n\
14324 the packets being used"),
14325 &remote_set_cmdlist, "set remote ",
14326 0 /* allow-unknown */, &setlist);
14327 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14328 Remote protocol specific variables\n\
14329 Configure various remote-protocol specific variables such as\n\
14330 the packets being used"),
14331 &remote_show_cmdlist, "show remote ",
14332 0 /* allow-unknown */, &showlist);
14333
14334 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14335 Compare section data on target to the exec file.\n\
14336 Argument is a single section name (default: all loaded sections).\n\
14337 To compare only read-only loaded sections, specify the -r option."),
14338 &cmdlist);
14339
14340 add_cmd ("packet", class_maintenance, packet_command, _("\
14341 Send an arbitrary packet to a remote target.\n\
14342 maintenance packet TEXT\n\
14343 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14344 this command sends the string TEXT to the inferior, and displays the\n\
14345 response packet. GDB supplies the initial `$' character, and the\n\
14346 terminating `#' character and checksum."),
14347 &maintenancelist);
14348
14349 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14350 Set whether to send break if interrupted."), _("\
14351 Show whether to send break if interrupted."), _("\
14352 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14353 set_remotebreak, show_remotebreak,
14354 &setlist, &showlist);
14355 cmd_name = "remotebreak";
14356 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14357 deprecate_cmd (cmd, "set remote interrupt-sequence");
14358 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14359 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14360 deprecate_cmd (cmd, "show remote interrupt-sequence");
14361
14362 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14363 interrupt_sequence_modes, &interrupt_sequence_mode,
14364 _("\
14365 Set interrupt sequence to remote target."), _("\
14366 Show interrupt sequence to remote target."), _("\
14367 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14368 NULL, show_interrupt_sequence,
14369 &remote_set_cmdlist,
14370 &remote_show_cmdlist);
14371
14372 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14373 &interrupt_on_connect, _("\
14374 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14375 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14376 If set, interrupt sequence is sent to remote target."),
14377 NULL, NULL,
14378 &remote_set_cmdlist, &remote_show_cmdlist);
14379
14380 /* Install commands for configuring memory read/write packets. */
14381
14382 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14383 Set the maximum number of bytes per memory write packet (deprecated)."),
14384 &setlist);
14385 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14386 Show the maximum number of bytes per memory write packet (deprecated)."),
14387 &showlist);
14388 add_cmd ("memory-write-packet-size", no_class,
14389 set_memory_write_packet_size, _("\
14390 Set the maximum number of bytes per memory-write packet.\n\
14391 Specify the number of bytes in a packet or 0 (zero) for the\n\
14392 default packet size. The actual limit is further reduced\n\
14393 dependent on the target. Specify ``fixed'' to disable the\n\
14394 further restriction and ``limit'' to enable that restriction."),
14395 &remote_set_cmdlist);
14396 add_cmd ("memory-read-packet-size", no_class,
14397 set_memory_read_packet_size, _("\
14398 Set the maximum number of bytes per memory-read packet.\n\
14399 Specify the number of bytes in a packet or 0 (zero) for the\n\
14400 default packet size. The actual limit is further reduced\n\
14401 dependent on the target. Specify ``fixed'' to disable the\n\
14402 further restriction and ``limit'' to enable that restriction."),
14403 &remote_set_cmdlist);
14404 add_cmd ("memory-write-packet-size", no_class,
14405 show_memory_write_packet_size,
14406 _("Show the maximum number of bytes per memory-write packet."),
14407 &remote_show_cmdlist);
14408 add_cmd ("memory-read-packet-size", no_class,
14409 show_memory_read_packet_size,
14410 _("Show the maximum number of bytes per memory-read packet."),
14411 &remote_show_cmdlist);
14412
14413 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14414 &remote_hw_watchpoint_limit, _("\
14415 Set the maximum number of target hardware watchpoints."), _("\
14416 Show the maximum number of target hardware watchpoints."), _("\
14417 Specify \"unlimited\" for unlimited hardware watchpoints."),
14418 NULL, show_hardware_watchpoint_limit,
14419 &remote_set_cmdlist,
14420 &remote_show_cmdlist);
14421 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14422 no_class,
14423 &remote_hw_watchpoint_length_limit, _("\
14424 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14425 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14426 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14427 NULL, show_hardware_watchpoint_length_limit,
14428 &remote_set_cmdlist, &remote_show_cmdlist);
14429 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14430 &remote_hw_breakpoint_limit, _("\
14431 Set the maximum number of target hardware breakpoints."), _("\
14432 Show the maximum number of target hardware breakpoints."), _("\
14433 Specify \"unlimited\" for unlimited hardware breakpoints."),
14434 NULL, show_hardware_breakpoint_limit,
14435 &remote_set_cmdlist, &remote_show_cmdlist);
14436
14437 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14438 &remote_address_size, _("\
14439 Set the maximum size of the address (in bits) in a memory packet."), _("\
14440 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14441 NULL,
14442 NULL, /* FIXME: i18n: */
14443 &setlist, &showlist);
14444
14445 init_all_packet_configs ();
14446
14447 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14448 "X", "binary-download", 1);
14449
14450 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14451 "vCont", "verbose-resume", 0);
14452
14453 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14454 "QPassSignals", "pass-signals", 0);
14455
14456 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14457 "QCatchSyscalls", "catch-syscalls", 0);
14458
14459 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14460 "QProgramSignals", "program-signals", 0);
14461
14462 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14463 "QSetWorkingDir", "set-working-dir", 0);
14464
14465 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14466 "QStartupWithShell", "startup-with-shell", 0);
14467
14468 add_packet_config_cmd (&remote_protocol_packets
14469 [PACKET_QEnvironmentHexEncoded],
14470 "QEnvironmentHexEncoded", "environment-hex-encoded",
14471 0);
14472
14473 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14474 "QEnvironmentReset", "environment-reset",
14475 0);
14476
14477 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14478 "QEnvironmentUnset", "environment-unset",
14479 0);
14480
14481 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14482 "qSymbol", "symbol-lookup", 0);
14483
14484 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14485 "P", "set-register", 1);
14486
14487 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14488 "p", "fetch-register", 1);
14489
14490 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14491 "Z0", "software-breakpoint", 0);
14492
14493 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14494 "Z1", "hardware-breakpoint", 0);
14495
14496 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14497 "Z2", "write-watchpoint", 0);
14498
14499 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14500 "Z3", "read-watchpoint", 0);
14501
14502 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14503 "Z4", "access-watchpoint", 0);
14504
14505 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14506 "qXfer:auxv:read", "read-aux-vector", 0);
14507
14508 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14509 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14510
14511 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14512 "qXfer:features:read", "target-features", 0);
14513
14514 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14515 "qXfer:libraries:read", "library-info", 0);
14516
14517 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14518 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14519
14520 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14521 "qXfer:memory-map:read", "memory-map", 0);
14522
14523 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14524 "qXfer:spu:read", "read-spu-object", 0);
14525
14526 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14527 "qXfer:spu:write", "write-spu-object", 0);
14528
14529 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14530 "qXfer:osdata:read", "osdata", 0);
14531
14532 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14533 "qXfer:threads:read", "threads", 0);
14534
14535 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14536 "qXfer:siginfo:read", "read-siginfo-object", 0);
14537
14538 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14539 "qXfer:siginfo:write", "write-siginfo-object", 0);
14540
14541 add_packet_config_cmd
14542 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14543 "qXfer:traceframe-info:read", "traceframe-info", 0);
14544
14545 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14546 "qXfer:uib:read", "unwind-info-block", 0);
14547
14548 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14549 "qGetTLSAddr", "get-thread-local-storage-address",
14550 0);
14551
14552 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14553 "qGetTIBAddr", "get-thread-information-block-address",
14554 0);
14555
14556 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14557 "bc", "reverse-continue", 0);
14558
14559 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14560 "bs", "reverse-step", 0);
14561
14562 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14563 "qSupported", "supported-packets", 0);
14564
14565 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14566 "qSearch:memory", "search-memory", 0);
14567
14568 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14569 "qTStatus", "trace-status", 0);
14570
14571 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14572 "vFile:setfs", "hostio-setfs", 0);
14573
14574 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14575 "vFile:open", "hostio-open", 0);
14576
14577 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14578 "vFile:pread", "hostio-pread", 0);
14579
14580 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14581 "vFile:pwrite", "hostio-pwrite", 0);
14582
14583 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14584 "vFile:close", "hostio-close", 0);
14585
14586 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14587 "vFile:unlink", "hostio-unlink", 0);
14588
14589 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14590 "vFile:readlink", "hostio-readlink", 0);
14591
14592 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14593 "vFile:fstat", "hostio-fstat", 0);
14594
14595 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14596 "vAttach", "attach", 0);
14597
14598 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14599 "vRun", "run", 0);
14600
14601 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14602 "QStartNoAckMode", "noack", 0);
14603
14604 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14605 "vKill", "kill", 0);
14606
14607 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14608 "qAttached", "query-attached", 0);
14609
14610 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14611 "ConditionalTracepoints",
14612 "conditional-tracepoints", 0);
14613
14614 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14615 "ConditionalBreakpoints",
14616 "conditional-breakpoints", 0);
14617
14618 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14619 "BreakpointCommands",
14620 "breakpoint-commands", 0);
14621
14622 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14623 "FastTracepoints", "fast-tracepoints", 0);
14624
14625 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14626 "TracepointSource", "TracepointSource", 0);
14627
14628 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14629 "QAllow", "allow", 0);
14630
14631 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14632 "StaticTracepoints", "static-tracepoints", 0);
14633
14634 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14635 "InstallInTrace", "install-in-trace", 0);
14636
14637 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14638 "qXfer:statictrace:read", "read-sdata-object", 0);
14639
14640 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14641 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14642
14643 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14644 "QDisableRandomization", "disable-randomization", 0);
14645
14646 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14647 "QAgent", "agent", 0);
14648
14649 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14650 "QTBuffer:size", "trace-buffer-size", 0);
14651
14652 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14653 "Qbtrace:off", "disable-btrace", 0);
14654
14655 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14656 "Qbtrace:bts", "enable-btrace-bts", 0);
14657
14658 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14659 "Qbtrace:pt", "enable-btrace-pt", 0);
14660
14661 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14662 "qXfer:btrace", "read-btrace", 0);
14663
14664 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14665 "qXfer:btrace-conf", "read-btrace-conf", 0);
14666
14667 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14668 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14669
14670 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14671 "multiprocess-feature", "multiprocess-feature", 0);
14672
14673 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14674 "swbreak-feature", "swbreak-feature", 0);
14675
14676 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14677 "hwbreak-feature", "hwbreak-feature", 0);
14678
14679 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14680 "fork-event-feature", "fork-event-feature", 0);
14681
14682 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14683 "vfork-event-feature", "vfork-event-feature", 0);
14684
14685 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14686 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14687
14688 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14689 "vContSupported", "verbose-resume-supported", 0);
14690
14691 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14692 "exec-event-feature", "exec-event-feature", 0);
14693
14694 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14695 "vCtrlC", "ctrl-c", 0);
14696
14697 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14698 "QThreadEvents", "thread-events", 0);
14699
14700 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14701 "N stop reply", "no-resumed-stop-reply", 0);
14702
14703 /* Assert that we've registered "set remote foo-packet" commands
14704 for all packet configs. */
14705 {
14706 int i;
14707
14708 for (i = 0; i < PACKET_MAX; i++)
14709 {
14710 /* Ideally all configs would have a command associated. Some
14711 still don't though. */
14712 int excepted;
14713
14714 switch (i)
14715 {
14716 case PACKET_QNonStop:
14717 case PACKET_EnableDisableTracepoints_feature:
14718 case PACKET_tracenz_feature:
14719 case PACKET_DisconnectedTracing_feature:
14720 case PACKET_augmented_libraries_svr4_read_feature:
14721 case PACKET_qCRC:
14722 /* Additions to this list need to be well justified:
14723 pre-existing packets are OK; new packets are not. */
14724 excepted = 1;
14725 break;
14726 default:
14727 excepted = 0;
14728 break;
14729 }
14730
14731 /* This catches both forgetting to add a config command, and
14732 forgetting to remove a packet from the exception list. */
14733 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14734 }
14735 }
14736
14737 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14738 Z sub-packet has its own set and show commands, but users may
14739 have sets to this variable in their .gdbinit files (or in their
14740 documentation). */
14741 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14742 &remote_Z_packet_detect, _("\
14743 Set use of remote protocol `Z' packets"), _("\
14744 Show use of remote protocol `Z' packets "), _("\
14745 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14746 packets."),
14747 set_remote_protocol_Z_packet_cmd,
14748 show_remote_protocol_Z_packet_cmd,
14749 /* FIXME: i18n: Use of remote protocol
14750 `Z' packets is %s. */
14751 &remote_set_cmdlist, &remote_show_cmdlist);
14752
14753 add_prefix_cmd ("remote", class_files, remote_command, _("\
14754 Manipulate files on the remote system\n\
14755 Transfer files to and from the remote target system."),
14756 &remote_cmdlist, "remote ",
14757 0 /* allow-unknown */, &cmdlist);
14758
14759 add_cmd ("put", class_files, remote_put_command,
14760 _("Copy a local file to the remote system."),
14761 &remote_cmdlist);
14762
14763 add_cmd ("get", class_files, remote_get_command,
14764 _("Copy a remote file to the local system."),
14765 &remote_cmdlist);
14766
14767 add_cmd ("delete", class_files, remote_delete_command,
14768 _("Delete a remote file."),
14769 &remote_cmdlist);
14770
14771 add_setshow_string_noescape_cmd ("exec-file", class_files,
14772 &remote_exec_file_var, _("\
14773 Set the remote pathname for \"run\""), _("\
14774 Show the remote pathname for \"run\""), NULL,
14775 set_remote_exec_file,
14776 show_remote_exec_file,
14777 &remote_set_cmdlist,
14778 &remote_show_cmdlist);
14779
14780 add_setshow_boolean_cmd ("range-stepping", class_run,
14781 &use_range_stepping, _("\
14782 Enable or disable range stepping."), _("\
14783 Show whether target-assisted range stepping is enabled."), _("\
14784 If on, and the target supports it, when stepping a source line, GDB\n\
14785 tells the target to step the corresponding range of addresses itself instead\n\
14786 of issuing multiple single-steps. This speeds up source level\n\
14787 stepping. If off, GDB always issues single-steps, even if range\n\
14788 stepping is supported by the target. The default is on."),
14789 set_range_stepping,
14790 show_range_stepping,
14791 &setlist,
14792 &showlist);
14793
14794 /* Eventually initialize fileio. See fileio.c */
14795 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14796
14797 /* Take advantage of the fact that the TID field is not used, to tag
14798 special ptids with it set to != 0. */
14799 magic_null_ptid = ptid_t (42000, -1, 1);
14800 not_sent_ptid = ptid_t (42000, -2, 1);
14801 any_thread_ptid = ptid_t (42000, 0, 1);
14802 }
This page took 0.792906 seconds and 3 git commands to generate.