gdb: better handling of 'S' packets
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h"
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82
83 /* The remote target. */
84
85 static const char remote_doc[] = N_("\
86 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
87 Specify the serial device it is connected to\n\
88 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
89
90 #define OPAQUETHREADBYTES 8
91
92 /* a 64 bit opaque identifier */
93 typedef unsigned char threadref[OPAQUETHREADBYTES];
94
95 struct gdb_ext_thread_info;
96 struct threads_listing_context;
97 typedef int (*rmt_thread_action) (threadref *ref, void *context);
98 struct protocol_feature;
99 struct packet_reg;
100
101 struct stop_reply;
102 typedef std::unique_ptr<stop_reply> stop_reply_up;
103
104 /* Generic configuration support for packets the stub optionally
105 supports. Allows the user to specify the use of the packet as well
106 as allowing GDB to auto-detect support in the remote stub. */
107
108 enum packet_support
109 {
110 PACKET_SUPPORT_UNKNOWN = 0,
111 PACKET_ENABLE,
112 PACKET_DISABLE
113 };
114
115 /* Analyze a packet's return value and update the packet config
116 accordingly. */
117
118 enum packet_result
119 {
120 PACKET_ERROR,
121 PACKET_OK,
122 PACKET_UNKNOWN
123 };
124
125 struct threads_listing_context;
126
127 /* Stub vCont actions support.
128
129 Each field is a boolean flag indicating whether the stub reports
130 support for the corresponding action. */
131
132 struct vCont_action_support
133 {
134 /* vCont;t */
135 bool t = false;
136
137 /* vCont;r */
138 bool r = false;
139
140 /* vCont;s */
141 bool s = false;
142
143 /* vCont;S */
144 bool S = false;
145 };
146
147 /* About this many threadids fit in a packet. */
148
149 #define MAXTHREADLISTRESULTS 32
150
151 /* Data for the vFile:pread readahead cache. */
152
153 struct readahead_cache
154 {
155 /* Invalidate the readahead cache. */
156 void invalidate ();
157
158 /* Invalidate the readahead cache if it is holding data for FD. */
159 void invalidate_fd (int fd);
160
161 /* Serve pread from the readahead cache. Returns number of bytes
162 read, or 0 if the request can't be served from the cache. */
163 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
164
165 /* The file descriptor for the file that is being cached. -1 if the
166 cache is invalid. */
167 int fd = -1;
168
169 /* The offset into the file that the cache buffer corresponds
170 to. */
171 ULONGEST offset = 0;
172
173 /* The buffer holding the cache contents. */
174 gdb_byte *buf = nullptr;
175 /* The buffer's size. We try to read as much as fits into a packet
176 at a time. */
177 size_t bufsize = 0;
178
179 /* Cache hit and miss counters. */
180 ULONGEST hit_count = 0;
181 ULONGEST miss_count = 0;
182 };
183
184 /* Description of the remote protocol for a given architecture. */
185
186 struct packet_reg
187 {
188 long offset; /* Offset into G packet. */
189 long regnum; /* GDB's internal register number. */
190 LONGEST pnum; /* Remote protocol register number. */
191 int in_g_packet; /* Always part of G packet. */
192 /* long size in bytes; == register_size (target_gdbarch (), regnum);
193 at present. */
194 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
195 at present. */
196 };
197
198 struct remote_arch_state
199 {
200 explicit remote_arch_state (struct gdbarch *gdbarch);
201
202 /* Description of the remote protocol registers. */
203 long sizeof_g_packet;
204
205 /* Description of the remote protocol registers indexed by REGNUM
206 (making an array gdbarch_num_regs in size). */
207 std::unique_ptr<packet_reg[]> regs;
208
209 /* This is the size (in chars) of the first response to the ``g''
210 packet. It is used as a heuristic when determining the maximum
211 size of memory-read and memory-write packets. A target will
212 typically only reserve a buffer large enough to hold the ``g''
213 packet. The size does not include packet overhead (headers and
214 trailers). */
215 long actual_register_packet_size;
216
217 /* This is the maximum size (in chars) of a non read/write packet.
218 It is also used as a cap on the size of read/write packets. */
219 long remote_packet_size;
220 };
221
222 /* Description of the remote protocol state for the currently
223 connected target. This is per-target state, and independent of the
224 selected architecture. */
225
226 class remote_state
227 {
228 public:
229
230 remote_state ();
231 ~remote_state ();
232
233 /* Get the remote arch state for GDBARCH. */
234 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
235
236 public: /* data */
237
238 /* A buffer to use for incoming packets, and its current size. The
239 buffer is grown dynamically for larger incoming packets.
240 Outgoing packets may also be constructed in this buffer.
241 The size of the buffer is always at least REMOTE_PACKET_SIZE;
242 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
243 packets. */
244 gdb::char_vector buf;
245
246 /* True if we're going through initial connection setup (finding out
247 about the remote side's threads, relocating symbols, etc.). */
248 bool starting_up = false;
249
250 /* If we negotiated packet size explicitly (and thus can bypass
251 heuristics for the largest packet size that will not overflow
252 a buffer in the stub), this will be set to that packet size.
253 Otherwise zero, meaning to use the guessed size. */
254 long explicit_packet_size = 0;
255
256 /* remote_wait is normally called when the target is running and
257 waits for a stop reply packet. But sometimes we need to call it
258 when the target is already stopped. We can send a "?" packet
259 and have remote_wait read the response. Or, if we already have
260 the response, we can stash it in BUF and tell remote_wait to
261 skip calling getpkt. This flag is set when BUF contains a
262 stop reply packet and the target is not waiting. */
263 int cached_wait_status = 0;
264
265 /* True, if in no ack mode. That is, neither GDB nor the stub will
266 expect acks from each other. The connection is assumed to be
267 reliable. */
268 bool noack_mode = false;
269
270 /* True if we're connected in extended remote mode. */
271 bool extended = false;
272
273 /* True if we resumed the target and we're waiting for the target to
274 stop. In the mean time, we can't start another command/query.
275 The remote server wouldn't be ready to process it, so we'd
276 timeout waiting for a reply that would never come and eventually
277 we'd close the connection. This can happen in asynchronous mode
278 because we allow GDB commands while the target is running. */
279 bool waiting_for_stop_reply = false;
280
281 /* The status of the stub support for the various vCont actions. */
282 vCont_action_support supports_vCont;
283 /* Whether vCont support was probed already. This is a workaround
284 until packet_support is per-connection. */
285 bool supports_vCont_probed;
286
287 /* True if the user has pressed Ctrl-C, but the target hasn't
288 responded to that. */
289 bool ctrlc_pending_p = false;
290
291 /* True if we saw a Ctrl-C while reading or writing from/to the
292 remote descriptor. At that point it is not safe to send a remote
293 interrupt packet, so we instead remember we saw the Ctrl-C and
294 process it once we're done with sending/receiving the current
295 packet, which should be shortly. If however that takes too long,
296 and the user presses Ctrl-C again, we offer to disconnect. */
297 bool got_ctrlc_during_io = false;
298
299 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
300 remote_open knows that we don't have a file open when the program
301 starts. */
302 struct serial *remote_desc = nullptr;
303
304 /* These are the threads which we last sent to the remote system. The
305 TID member will be -1 for all or -2 for not sent yet. */
306 ptid_t general_thread = null_ptid;
307 ptid_t continue_thread = null_ptid;
308
309 /* This is the traceframe which we last selected on the remote system.
310 It will be -1 if no traceframe is selected. */
311 int remote_traceframe_number = -1;
312
313 char *last_pass_packet = nullptr;
314
315 /* The last QProgramSignals packet sent to the target. We bypass
316 sending a new program signals list down to the target if the new
317 packet is exactly the same as the last we sent. IOW, we only let
318 the target know about program signals list changes. */
319 char *last_program_signals_packet = nullptr;
320
321 gdb_signal last_sent_signal = GDB_SIGNAL_0;
322
323 bool last_sent_step = false;
324
325 /* The execution direction of the last resume we got. */
326 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
327
328 char *finished_object = nullptr;
329 char *finished_annex = nullptr;
330 ULONGEST finished_offset = 0;
331
332 /* Should we try the 'ThreadInfo' query packet?
333
334 This variable (NOT available to the user: auto-detect only!)
335 determines whether GDB will use the new, simpler "ThreadInfo"
336 query or the older, more complex syntax for thread queries.
337 This is an auto-detect variable (set to true at each connect,
338 and set to false when the target fails to recognize it). */
339 bool use_threadinfo_query = false;
340 bool use_threadextra_query = false;
341
342 threadref echo_nextthread {};
343 threadref nextthread {};
344 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
345
346 /* The state of remote notification. */
347 struct remote_notif_state *notif_state = nullptr;
348
349 /* The branch trace configuration. */
350 struct btrace_config btrace_config {};
351
352 /* The argument to the last "vFile:setfs:" packet we sent, used
353 to avoid sending repeated unnecessary "vFile:setfs:" packets.
354 Initialized to -1 to indicate that no "vFile:setfs:" packet
355 has yet been sent. */
356 int fs_pid = -1;
357
358 /* A readahead cache for vFile:pread. Often, reading a binary
359 involves a sequence of small reads. E.g., when parsing an ELF
360 file. A readahead cache helps mostly the case of remote
361 debugging on a connection with higher latency, due to the
362 request/reply nature of the RSP. We only cache data for a single
363 file descriptor at a time. */
364 struct readahead_cache readahead_cache;
365
366 /* The list of already fetched and acknowledged stop events. This
367 queue is used for notification Stop, and other notifications
368 don't need queue for their events, because the notification
369 events of Stop can't be consumed immediately, so that events
370 should be queued first, and be consumed by remote_wait_{ns,as}
371 one per time. Other notifications can consume their events
372 immediately, so queue is not needed for them. */
373 std::vector<stop_reply_up> stop_reply_queue;
374
375 /* Asynchronous signal handle registered as event loop source for
376 when we have pending events ready to be passed to the core. */
377 struct async_event_handler *remote_async_inferior_event_token = nullptr;
378
379 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
380 ``forever'' still use the normal timeout mechanism. This is
381 currently used by the ASYNC code to guarentee that target reads
382 during the initial connect always time-out. Once getpkt has been
383 modified to return a timeout indication and, in turn
384 remote_wait()/wait_for_inferior() have gained a timeout parameter
385 this can go away. */
386 int wait_forever_enabled_p = 1;
387
388 private:
389 /* Mapping of remote protocol data for each gdbarch. Usually there
390 is only one entry here, though we may see more with stubs that
391 support multi-process. */
392 std::unordered_map<struct gdbarch *, remote_arch_state>
393 m_arch_states;
394 };
395
396 static const target_info remote_target_info = {
397 "remote",
398 N_("Remote serial target in gdb-specific protocol"),
399 remote_doc
400 };
401
402 class remote_target : public process_stratum_target
403 {
404 public:
405 remote_target () = default;
406 ~remote_target () override;
407
408 const target_info &info () const override
409 { return remote_target_info; }
410
411 const char *connection_string () override;
412
413 thread_control_capabilities get_thread_control_capabilities () override
414 { return tc_schedlock; }
415
416 /* Open a remote connection. */
417 static void open (const char *, int);
418
419 void close () override;
420
421 void detach (inferior *, int) override;
422 void disconnect (const char *, int) override;
423
424 void commit_resume () override;
425 void resume (ptid_t, int, enum gdb_signal) override;
426 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
427
428 void fetch_registers (struct regcache *, int) override;
429 void store_registers (struct regcache *, int) override;
430 void prepare_to_store (struct regcache *) override;
431
432 void files_info () override;
433
434 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
435
436 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
437 enum remove_bp_reason) override;
438
439
440 bool stopped_by_sw_breakpoint () override;
441 bool supports_stopped_by_sw_breakpoint () override;
442
443 bool stopped_by_hw_breakpoint () override;
444
445 bool supports_stopped_by_hw_breakpoint () override;
446
447 bool stopped_by_watchpoint () override;
448
449 bool stopped_data_address (CORE_ADDR *) override;
450
451 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
452
453 int can_use_hw_breakpoint (enum bptype, int, int) override;
454
455 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
456
457 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
458
459 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
460
461 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
462 struct expression *) override;
463
464 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
465 struct expression *) override;
466
467 void kill () override;
468
469 void load (const char *, int) override;
470
471 void mourn_inferior () override;
472
473 void pass_signals (gdb::array_view<const unsigned char>) override;
474
475 int set_syscall_catchpoint (int, bool, int,
476 gdb::array_view<const int>) override;
477
478 void program_signals (gdb::array_view<const unsigned char>) override;
479
480 bool thread_alive (ptid_t ptid) override;
481
482 const char *thread_name (struct thread_info *) override;
483
484 void update_thread_list () override;
485
486 std::string pid_to_str (ptid_t) override;
487
488 const char *extra_thread_info (struct thread_info *) override;
489
490 ptid_t get_ada_task_ptid (long lwp, long thread) override;
491
492 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
493 int handle_len,
494 inferior *inf) override;
495
496 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
497 override;
498
499 void stop (ptid_t) override;
500
501 void interrupt () override;
502
503 void pass_ctrlc () override;
504
505 enum target_xfer_status xfer_partial (enum target_object object,
506 const char *annex,
507 gdb_byte *readbuf,
508 const gdb_byte *writebuf,
509 ULONGEST offset, ULONGEST len,
510 ULONGEST *xfered_len) override;
511
512 ULONGEST get_memory_xfer_limit () override;
513
514 void rcmd (const char *command, struct ui_file *output) override;
515
516 char *pid_to_exec_file (int pid) override;
517
518 void log_command (const char *cmd) override
519 {
520 serial_log_command (this, cmd);
521 }
522
523 CORE_ADDR get_thread_local_address (ptid_t ptid,
524 CORE_ADDR load_module_addr,
525 CORE_ADDR offset) override;
526
527 bool can_execute_reverse () override;
528
529 std::vector<mem_region> memory_map () override;
530
531 void flash_erase (ULONGEST address, LONGEST length) override;
532
533 void flash_done () override;
534
535 const struct target_desc *read_description () override;
536
537 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
538 const gdb_byte *pattern, ULONGEST pattern_len,
539 CORE_ADDR *found_addrp) override;
540
541 bool can_async_p () override;
542
543 bool is_async_p () override;
544
545 void async (int) override;
546
547 int async_wait_fd () override;
548
549 void thread_events (int) override;
550
551 int can_do_single_step () override;
552
553 void terminal_inferior () override;
554
555 void terminal_ours () override;
556
557 bool supports_non_stop () override;
558
559 bool supports_multi_process () override;
560
561 bool supports_disable_randomization () override;
562
563 bool filesystem_is_local () override;
564
565
566 int fileio_open (struct inferior *inf, const char *filename,
567 int flags, int mode, int warn_if_slow,
568 int *target_errno) override;
569
570 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
571 ULONGEST offset, int *target_errno) override;
572
573 int fileio_pread (int fd, gdb_byte *read_buf, int len,
574 ULONGEST offset, int *target_errno) override;
575
576 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
577
578 int fileio_close (int fd, int *target_errno) override;
579
580 int fileio_unlink (struct inferior *inf,
581 const char *filename,
582 int *target_errno) override;
583
584 gdb::optional<std::string>
585 fileio_readlink (struct inferior *inf,
586 const char *filename,
587 int *target_errno) override;
588
589 bool supports_enable_disable_tracepoint () override;
590
591 bool supports_string_tracing () override;
592
593 bool supports_evaluation_of_breakpoint_conditions () override;
594
595 bool can_run_breakpoint_commands () override;
596
597 void trace_init () override;
598
599 void download_tracepoint (struct bp_location *location) override;
600
601 bool can_download_tracepoint () override;
602
603 void download_trace_state_variable (const trace_state_variable &tsv) override;
604
605 void enable_tracepoint (struct bp_location *location) override;
606
607 void disable_tracepoint (struct bp_location *location) override;
608
609 void trace_set_readonly_regions () override;
610
611 void trace_start () override;
612
613 int get_trace_status (struct trace_status *ts) override;
614
615 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
616 override;
617
618 void trace_stop () override;
619
620 int trace_find (enum trace_find_type type, int num,
621 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
622
623 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
624
625 int save_trace_data (const char *filename) override;
626
627 int upload_tracepoints (struct uploaded_tp **utpp) override;
628
629 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
630
631 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
632
633 int get_min_fast_tracepoint_insn_len () override;
634
635 void set_disconnected_tracing (int val) override;
636
637 void set_circular_trace_buffer (int val) override;
638
639 void set_trace_buffer_size (LONGEST val) override;
640
641 bool set_trace_notes (const char *user, const char *notes,
642 const char *stopnotes) override;
643
644 int core_of_thread (ptid_t ptid) override;
645
646 int verify_memory (const gdb_byte *data,
647 CORE_ADDR memaddr, ULONGEST size) override;
648
649
650 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
651
652 void set_permissions () override;
653
654 bool static_tracepoint_marker_at (CORE_ADDR,
655 struct static_tracepoint_marker *marker)
656 override;
657
658 std::vector<static_tracepoint_marker>
659 static_tracepoint_markers_by_strid (const char *id) override;
660
661 traceframe_info_up traceframe_info () override;
662
663 bool use_agent (bool use) override;
664 bool can_use_agent () override;
665
666 struct btrace_target_info *enable_btrace (ptid_t ptid,
667 const struct btrace_config *conf) override;
668
669 void disable_btrace (struct btrace_target_info *tinfo) override;
670
671 void teardown_btrace (struct btrace_target_info *tinfo) override;
672
673 enum btrace_error read_btrace (struct btrace_data *data,
674 struct btrace_target_info *btinfo,
675 enum btrace_read_type type) override;
676
677 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
678 bool augmented_libraries_svr4_read () override;
679 bool follow_fork (bool, bool) override;
680 void follow_exec (struct inferior *, const char *) override;
681 int insert_fork_catchpoint (int) override;
682 int remove_fork_catchpoint (int) override;
683 int insert_vfork_catchpoint (int) override;
684 int remove_vfork_catchpoint (int) override;
685 int insert_exec_catchpoint (int) override;
686 int remove_exec_catchpoint (int) override;
687 enum exec_direction_kind execution_direction () override;
688
689 public: /* Remote specific methods. */
690
691 void remote_download_command_source (int num, ULONGEST addr,
692 struct command_line *cmds);
693
694 void remote_file_put (const char *local_file, const char *remote_file,
695 int from_tty);
696 void remote_file_get (const char *remote_file, const char *local_file,
697 int from_tty);
698 void remote_file_delete (const char *remote_file, int from_tty);
699
700 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
701 ULONGEST offset, int *remote_errno);
702 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
703 ULONGEST offset, int *remote_errno);
704 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
705 ULONGEST offset, int *remote_errno);
706
707 int remote_hostio_send_command (int command_bytes, int which_packet,
708 int *remote_errno, char **attachment,
709 int *attachment_len);
710 int remote_hostio_set_filesystem (struct inferior *inf,
711 int *remote_errno);
712 /* We should get rid of this and use fileio_open directly. */
713 int remote_hostio_open (struct inferior *inf, const char *filename,
714 int flags, int mode, int warn_if_slow,
715 int *remote_errno);
716 int remote_hostio_close (int fd, int *remote_errno);
717
718 int remote_hostio_unlink (inferior *inf, const char *filename,
719 int *remote_errno);
720
721 struct remote_state *get_remote_state ();
722
723 long get_remote_packet_size (void);
724 long get_memory_packet_size (struct memory_packet_config *config);
725
726 long get_memory_write_packet_size ();
727 long get_memory_read_packet_size ();
728
729 char *append_pending_thread_resumptions (char *p, char *endp,
730 ptid_t ptid);
731 static void open_1 (const char *name, int from_tty, int extended_p);
732 void start_remote (int from_tty, int extended_p);
733 void remote_detach_1 (struct inferior *inf, int from_tty);
734
735 char *append_resumption (char *p, char *endp,
736 ptid_t ptid, int step, gdb_signal siggnal);
737 int remote_resume_with_vcont (ptid_t ptid, int step,
738 gdb_signal siggnal);
739
740 void add_current_inferior_and_thread (char *wait_status);
741
742 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
743 target_wait_flags options);
744 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
745 target_wait_flags options);
746
747 ptid_t process_stop_reply (struct stop_reply *stop_reply,
748 target_waitstatus *status);
749
750 ptid_t select_thread_for_ambiguous_stop_reply
751 (const struct target_waitstatus *status);
752
753 void remote_notice_new_inferior (ptid_t currthread, int executing);
754
755 void process_initial_stop_replies (int from_tty);
756
757 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
758
759 void btrace_sync_conf (const btrace_config *conf);
760
761 void remote_btrace_maybe_reopen ();
762
763 void remove_new_fork_children (threads_listing_context *context);
764 void kill_new_fork_children (int pid);
765 void discard_pending_stop_replies (struct inferior *inf);
766 int stop_reply_queue_length ();
767
768 void check_pending_events_prevent_wildcard_vcont
769 (int *may_global_wildcard_vcont);
770
771 void discard_pending_stop_replies_in_queue ();
772 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
773 struct stop_reply *queued_stop_reply (ptid_t ptid);
774 int peek_stop_reply (ptid_t ptid);
775 void remote_parse_stop_reply (const char *buf, stop_reply *event);
776
777 void remote_stop_ns (ptid_t ptid);
778 void remote_interrupt_as ();
779 void remote_interrupt_ns ();
780
781 char *remote_get_noisy_reply ();
782 int remote_query_attached (int pid);
783 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
784 int try_open_exec);
785
786 ptid_t remote_current_thread (ptid_t oldpid);
787 ptid_t get_current_thread (char *wait_status);
788
789 void set_thread (ptid_t ptid, int gen);
790 void set_general_thread (ptid_t ptid);
791 void set_continue_thread (ptid_t ptid);
792 void set_general_process ();
793
794 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
795
796 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
797 gdb_ext_thread_info *info);
798 int remote_get_threadinfo (threadref *threadid, int fieldset,
799 gdb_ext_thread_info *info);
800
801 int parse_threadlist_response (char *pkt, int result_limit,
802 threadref *original_echo,
803 threadref *resultlist,
804 int *doneflag);
805 int remote_get_threadlist (int startflag, threadref *nextthread,
806 int result_limit, int *done, int *result_count,
807 threadref *threadlist);
808
809 int remote_threadlist_iterator (rmt_thread_action stepfunction,
810 void *context, int looplimit);
811
812 int remote_get_threads_with_ql (threads_listing_context *context);
813 int remote_get_threads_with_qxfer (threads_listing_context *context);
814 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
815
816 void extended_remote_restart ();
817
818 void get_offsets ();
819
820 void remote_check_symbols ();
821
822 void remote_supported_packet (const struct protocol_feature *feature,
823 enum packet_support support,
824 const char *argument);
825
826 void remote_query_supported ();
827
828 void remote_packet_size (const protocol_feature *feature,
829 packet_support support, const char *value);
830
831 void remote_serial_quit_handler ();
832
833 void remote_detach_pid (int pid);
834
835 void remote_vcont_probe ();
836
837 void remote_resume_with_hc (ptid_t ptid, int step,
838 gdb_signal siggnal);
839
840 void send_interrupt_sequence ();
841 void interrupt_query ();
842
843 void remote_notif_get_pending_events (notif_client *nc);
844
845 int fetch_register_using_p (struct regcache *regcache,
846 packet_reg *reg);
847 int send_g_packet ();
848 void process_g_packet (struct regcache *regcache);
849 void fetch_registers_using_g (struct regcache *regcache);
850 int store_register_using_P (const struct regcache *regcache,
851 packet_reg *reg);
852 void store_registers_using_G (const struct regcache *regcache);
853
854 void set_remote_traceframe ();
855
856 void check_binary_download (CORE_ADDR addr);
857
858 target_xfer_status remote_write_bytes_aux (const char *header,
859 CORE_ADDR memaddr,
860 const gdb_byte *myaddr,
861 ULONGEST len_units,
862 int unit_size,
863 ULONGEST *xfered_len_units,
864 char packet_format,
865 int use_length);
866
867 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
868 const gdb_byte *myaddr, ULONGEST len,
869 int unit_size, ULONGEST *xfered_len);
870
871 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
872 ULONGEST len_units,
873 int unit_size, ULONGEST *xfered_len_units);
874
875 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
876 ULONGEST memaddr,
877 ULONGEST len,
878 int unit_size,
879 ULONGEST *xfered_len);
880
881 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
882 gdb_byte *myaddr, ULONGEST len,
883 int unit_size,
884 ULONGEST *xfered_len);
885
886 packet_result remote_send_printf (const char *format, ...)
887 ATTRIBUTE_PRINTF (2, 3);
888
889 target_xfer_status remote_flash_write (ULONGEST address,
890 ULONGEST length, ULONGEST *xfered_len,
891 const gdb_byte *data);
892
893 int readchar (int timeout);
894
895 void remote_serial_write (const char *str, int len);
896
897 int putpkt (const char *buf);
898 int putpkt_binary (const char *buf, int cnt);
899
900 int putpkt (const gdb::char_vector &buf)
901 {
902 return putpkt (buf.data ());
903 }
904
905 void skip_frame ();
906 long read_frame (gdb::char_vector *buf_p);
907 void getpkt (gdb::char_vector *buf, int forever);
908 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
909 int expecting_notif, int *is_notif);
910 int getpkt_sane (gdb::char_vector *buf, int forever);
911 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
912 int *is_notif);
913 int remote_vkill (int pid);
914 void remote_kill_k ();
915
916 void extended_remote_disable_randomization (int val);
917 int extended_remote_run (const std::string &args);
918
919 void send_environment_packet (const char *action,
920 const char *packet,
921 const char *value);
922
923 void extended_remote_environment_support ();
924 void extended_remote_set_inferior_cwd ();
925
926 target_xfer_status remote_write_qxfer (const char *object_name,
927 const char *annex,
928 const gdb_byte *writebuf,
929 ULONGEST offset, LONGEST len,
930 ULONGEST *xfered_len,
931 struct packet_config *packet);
932
933 target_xfer_status remote_read_qxfer (const char *object_name,
934 const char *annex,
935 gdb_byte *readbuf, ULONGEST offset,
936 LONGEST len,
937 ULONGEST *xfered_len,
938 struct packet_config *packet);
939
940 void push_stop_reply (struct stop_reply *new_event);
941
942 bool vcont_r_supported ();
943
944 void packet_command (const char *args, int from_tty);
945
946 private: /* data fields */
947
948 /* The remote state. Don't reference this directly. Use the
949 get_remote_state method instead. */
950 remote_state m_remote_state;
951 };
952
953 static const target_info extended_remote_target_info = {
954 "extended-remote",
955 N_("Extended remote serial target in gdb-specific protocol"),
956 remote_doc
957 };
958
959 /* Set up the extended remote target by extending the standard remote
960 target and adding to it. */
961
962 class extended_remote_target final : public remote_target
963 {
964 public:
965 const target_info &info () const override
966 { return extended_remote_target_info; }
967
968 /* Open an extended-remote connection. */
969 static void open (const char *, int);
970
971 bool can_create_inferior () override { return true; }
972 void create_inferior (const char *, const std::string &,
973 char **, int) override;
974
975 void detach (inferior *, int) override;
976
977 bool can_attach () override { return true; }
978 void attach (const char *, int) override;
979
980 void post_attach (int) override;
981 bool supports_disable_randomization () override;
982 };
983
984 /* Per-program-space data key. */
985 static const struct program_space_key<char, gdb::xfree_deleter<char>>
986 remote_pspace_data;
987
988 /* The variable registered as the control variable used by the
989 remote exec-file commands. While the remote exec-file setting is
990 per-program-space, the set/show machinery uses this as the
991 location of the remote exec-file value. */
992 static char *remote_exec_file_var;
993
994 /* The size to align memory write packets, when practical. The protocol
995 does not guarantee any alignment, and gdb will generate short
996 writes and unaligned writes, but even as a best-effort attempt this
997 can improve bulk transfers. For instance, if a write is misaligned
998 relative to the target's data bus, the stub may need to make an extra
999 round trip fetching data from the target. This doesn't make a
1000 huge difference, but it's easy to do, so we try to be helpful.
1001
1002 The alignment chosen is arbitrary; usually data bus width is
1003 important here, not the possibly larger cache line size. */
1004 enum { REMOTE_ALIGN_WRITES = 16 };
1005
1006 /* Prototypes for local functions. */
1007
1008 static int hexnumlen (ULONGEST num);
1009
1010 static int stubhex (int ch);
1011
1012 static int hexnumstr (char *, ULONGEST);
1013
1014 static int hexnumnstr (char *, ULONGEST, int);
1015
1016 static CORE_ADDR remote_address_masked (CORE_ADDR);
1017
1018 static void print_packet (const char *);
1019
1020 static int stub_unpack_int (char *buff, int fieldlength);
1021
1022 struct packet_config;
1023
1024 static void show_packet_config_cmd (struct packet_config *config);
1025
1026 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1027 int from_tty,
1028 struct cmd_list_element *c,
1029 const char *value);
1030
1031 static ptid_t read_ptid (const char *buf, const char **obuf);
1032
1033 static void remote_async_inferior_event_handler (gdb_client_data);
1034
1035 static bool remote_read_description_p (struct target_ops *target);
1036
1037 static void remote_console_output (const char *msg);
1038
1039 static void remote_btrace_reset (remote_state *rs);
1040
1041 static void remote_unpush_and_throw (remote_target *target);
1042
1043 /* For "remote". */
1044
1045 static struct cmd_list_element *remote_cmdlist;
1046
1047 /* For "set remote" and "show remote". */
1048
1049 static struct cmd_list_element *remote_set_cmdlist;
1050 static struct cmd_list_element *remote_show_cmdlist;
1051
1052 /* Controls whether GDB is willing to use range stepping. */
1053
1054 static bool use_range_stepping = true;
1055
1056 /* From the remote target's point of view, each thread is in one of these three
1057 states. */
1058 enum class resume_state
1059 {
1060 /* Not resumed - we haven't been asked to resume this thread. */
1061 NOT_RESUMED,
1062
1063 /* We have been asked to resume this thread, but haven't sent a vCont action
1064 for it yet. We'll need to consider it next time commit_resume is
1065 called. */
1066 RESUMED_PENDING_VCONT,
1067
1068 /* We have been asked to resume this thread, and we have sent a vCont action
1069 for it. */
1070 RESUMED,
1071 };
1072
1073 /* Information about a thread's pending vCont-resume. Used when a thread is in
1074 the remote_resume_state::RESUMED_PENDING_VCONT state. remote_target::resume
1075 stores this information which is then picked up by
1076 remote_target::commit_resume to know which is the proper action for this
1077 thread to include in the vCont packet. */
1078 struct resumed_pending_vcont_info
1079 {
1080 /* True if the last resume call for this thread was a step request, false
1081 if a continue request. */
1082 bool step;
1083
1084 /* The signal specified in the last resume call for this thread. */
1085 gdb_signal sig;
1086 };
1087
1088 /* Private data that we'll store in (struct thread_info)->priv. */
1089 struct remote_thread_info : public private_thread_info
1090 {
1091 std::string extra;
1092 std::string name;
1093 int core = -1;
1094
1095 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1096 sequence of bytes. */
1097 gdb::byte_vector thread_handle;
1098
1099 /* Whether the target stopped for a breakpoint/watchpoint. */
1100 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1101
1102 /* This is set to the data address of the access causing the target
1103 to stop for a watchpoint. */
1104 CORE_ADDR watch_data_address = 0;
1105
1106 /* Get the thread's resume state. */
1107 enum resume_state resume_state () const
1108 {
1109 return m_resume_state;
1110 }
1111
1112 /* Put the thread in the NOT_RESUMED state. */
1113 void set_not_resumed ()
1114 {
1115 m_resume_state = resume_state::NOT_RESUMED;
1116 }
1117
1118 /* Put the thread in the RESUMED_PENDING_VCONT state. */
1119 void set_resumed_pending_vcont (bool step, gdb_signal sig)
1120 {
1121 m_resume_state = resume_state::RESUMED_PENDING_VCONT;
1122 m_resumed_pending_vcont_info.step = step;
1123 m_resumed_pending_vcont_info.sig = sig;
1124 }
1125
1126 /* Get the information this thread's pending vCont-resumption.
1127
1128 Must only be called if the thread is in the RESUMED_PENDING_VCONT resume
1129 state. */
1130 const struct resumed_pending_vcont_info &resumed_pending_vcont_info () const
1131 {
1132 gdb_assert (m_resume_state == resume_state::RESUMED_PENDING_VCONT);
1133
1134 return m_resumed_pending_vcont_info;
1135 }
1136
1137 /* Put the thread in the VCONT_RESUMED state. */
1138 void set_resumed ()
1139 {
1140 m_resume_state = resume_state::RESUMED;
1141 }
1142
1143 private:
1144 /* Resume state for this thread. This is used to implement vCont action
1145 coalescing (only when the target operates in non-stop mode).
1146
1147 remote_target::resume moves the thread to the RESUMED_PENDING_VCONT state,
1148 which notes that this thread must be considered in the next commit_resume
1149 call.
1150
1151 remote_target::commit_resume sends a vCont packet with actions for the
1152 threads in the RESUMED_PENDING_VCONT state and moves them to the
1153 VCONT_RESUMED state.
1154
1155 When reporting a stop to the core for a thread, that thread is moved back
1156 to the NOT_RESUMED state. */
1157 enum resume_state m_resume_state = resume_state::NOT_RESUMED;
1158
1159 /* Extra info used if the thread is in the RESUMED_PENDING_VCONT state. */
1160 struct resumed_pending_vcont_info m_resumed_pending_vcont_info;
1161 };
1162
1163 remote_state::remote_state ()
1164 : buf (400)
1165 {
1166 }
1167
1168 remote_state::~remote_state ()
1169 {
1170 xfree (this->last_pass_packet);
1171 xfree (this->last_program_signals_packet);
1172 xfree (this->finished_object);
1173 xfree (this->finished_annex);
1174 }
1175
1176 /* Utility: generate error from an incoming stub packet. */
1177 static void
1178 trace_error (char *buf)
1179 {
1180 if (*buf++ != 'E')
1181 return; /* not an error msg */
1182 switch (*buf)
1183 {
1184 case '1': /* malformed packet error */
1185 if (*++buf == '0') /* general case: */
1186 error (_("remote.c: error in outgoing packet."));
1187 else
1188 error (_("remote.c: error in outgoing packet at field #%ld."),
1189 strtol (buf, NULL, 16));
1190 default:
1191 error (_("Target returns error code '%s'."), buf);
1192 }
1193 }
1194
1195 /* Utility: wait for reply from stub, while accepting "O" packets. */
1196
1197 char *
1198 remote_target::remote_get_noisy_reply ()
1199 {
1200 struct remote_state *rs = get_remote_state ();
1201
1202 do /* Loop on reply from remote stub. */
1203 {
1204 char *buf;
1205
1206 QUIT; /* Allow user to bail out with ^C. */
1207 getpkt (&rs->buf, 0);
1208 buf = rs->buf.data ();
1209 if (buf[0] == 'E')
1210 trace_error (buf);
1211 else if (startswith (buf, "qRelocInsn:"))
1212 {
1213 ULONGEST ul;
1214 CORE_ADDR from, to, org_to;
1215 const char *p, *pp;
1216 int adjusted_size = 0;
1217 int relocated = 0;
1218
1219 p = buf + strlen ("qRelocInsn:");
1220 pp = unpack_varlen_hex (p, &ul);
1221 if (*pp != ';')
1222 error (_("invalid qRelocInsn packet: %s"), buf);
1223 from = ul;
1224
1225 p = pp + 1;
1226 unpack_varlen_hex (p, &ul);
1227 to = ul;
1228
1229 org_to = to;
1230
1231 try
1232 {
1233 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1234 relocated = 1;
1235 }
1236 catch (const gdb_exception &ex)
1237 {
1238 if (ex.error == MEMORY_ERROR)
1239 {
1240 /* Propagate memory errors silently back to the
1241 target. The stub may have limited the range of
1242 addresses we can write to, for example. */
1243 }
1244 else
1245 {
1246 /* Something unexpectedly bad happened. Be verbose
1247 so we can tell what, and propagate the error back
1248 to the stub, so it doesn't get stuck waiting for
1249 a response. */
1250 exception_fprintf (gdb_stderr, ex,
1251 _("warning: relocating instruction: "));
1252 }
1253 putpkt ("E01");
1254 }
1255
1256 if (relocated)
1257 {
1258 adjusted_size = to - org_to;
1259
1260 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1261 putpkt (buf);
1262 }
1263 }
1264 else if (buf[0] == 'O' && buf[1] != 'K')
1265 remote_console_output (buf + 1); /* 'O' message from stub */
1266 else
1267 return buf; /* Here's the actual reply. */
1268 }
1269 while (1);
1270 }
1271
1272 struct remote_arch_state *
1273 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1274 {
1275 remote_arch_state *rsa;
1276
1277 auto it = this->m_arch_states.find (gdbarch);
1278 if (it == this->m_arch_states.end ())
1279 {
1280 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1281 std::forward_as_tuple (gdbarch),
1282 std::forward_as_tuple (gdbarch));
1283 rsa = &p.first->second;
1284
1285 /* Make sure that the packet buffer is plenty big enough for
1286 this architecture. */
1287 if (this->buf.size () < rsa->remote_packet_size)
1288 this->buf.resize (2 * rsa->remote_packet_size);
1289 }
1290 else
1291 rsa = &it->second;
1292
1293 return rsa;
1294 }
1295
1296 /* Fetch the global remote target state. */
1297
1298 remote_state *
1299 remote_target::get_remote_state ()
1300 {
1301 /* Make sure that the remote architecture state has been
1302 initialized, because doing so might reallocate rs->buf. Any
1303 function which calls getpkt also needs to be mindful of changes
1304 to rs->buf, but this call limits the number of places which run
1305 into trouble. */
1306 m_remote_state.get_remote_arch_state (target_gdbarch ());
1307
1308 return &m_remote_state;
1309 }
1310
1311 /* Fetch the remote exec-file from the current program space. */
1312
1313 static const char *
1314 get_remote_exec_file (void)
1315 {
1316 char *remote_exec_file;
1317
1318 remote_exec_file = remote_pspace_data.get (current_program_space);
1319 if (remote_exec_file == NULL)
1320 return "";
1321
1322 return remote_exec_file;
1323 }
1324
1325 /* Set the remote exec file for PSPACE. */
1326
1327 static void
1328 set_pspace_remote_exec_file (struct program_space *pspace,
1329 const char *remote_exec_file)
1330 {
1331 char *old_file = remote_pspace_data.get (pspace);
1332
1333 xfree (old_file);
1334 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1335 }
1336
1337 /* The "set/show remote exec-file" set command hook. */
1338
1339 static void
1340 set_remote_exec_file (const char *ignored, int from_tty,
1341 struct cmd_list_element *c)
1342 {
1343 gdb_assert (remote_exec_file_var != NULL);
1344 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1345 }
1346
1347 /* The "set/show remote exec-file" show command hook. */
1348
1349 static void
1350 show_remote_exec_file (struct ui_file *file, int from_tty,
1351 struct cmd_list_element *cmd, const char *value)
1352 {
1353 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1354 }
1355
1356 static int
1357 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1358 {
1359 int regnum, num_remote_regs, offset;
1360 struct packet_reg **remote_regs;
1361
1362 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1363 {
1364 struct packet_reg *r = &regs[regnum];
1365
1366 if (register_size (gdbarch, regnum) == 0)
1367 /* Do not try to fetch zero-sized (placeholder) registers. */
1368 r->pnum = -1;
1369 else
1370 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1371
1372 r->regnum = regnum;
1373 }
1374
1375 /* Define the g/G packet format as the contents of each register
1376 with a remote protocol number, in order of ascending protocol
1377 number. */
1378
1379 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1380 for (num_remote_regs = 0, regnum = 0;
1381 regnum < gdbarch_num_regs (gdbarch);
1382 regnum++)
1383 if (regs[regnum].pnum != -1)
1384 remote_regs[num_remote_regs++] = &regs[regnum];
1385
1386 std::sort (remote_regs, remote_regs + num_remote_regs,
1387 [] (const packet_reg *a, const packet_reg *b)
1388 { return a->pnum < b->pnum; });
1389
1390 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1391 {
1392 remote_regs[regnum]->in_g_packet = 1;
1393 remote_regs[regnum]->offset = offset;
1394 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1395 }
1396
1397 return offset;
1398 }
1399
1400 /* Given the architecture described by GDBARCH, return the remote
1401 protocol register's number and the register's offset in the g/G
1402 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1403 If the target does not have a mapping for REGNUM, return false,
1404 otherwise, return true. */
1405
1406 int
1407 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1408 int *pnum, int *poffset)
1409 {
1410 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1411
1412 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1413
1414 map_regcache_remote_table (gdbarch, regs.data ());
1415
1416 *pnum = regs[regnum].pnum;
1417 *poffset = regs[regnum].offset;
1418
1419 return *pnum != -1;
1420 }
1421
1422 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1423 {
1424 /* Use the architecture to build a regnum<->pnum table, which will be
1425 1:1 unless a feature set specifies otherwise. */
1426 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1427
1428 /* Record the maximum possible size of the g packet - it may turn out
1429 to be smaller. */
1430 this->sizeof_g_packet
1431 = map_regcache_remote_table (gdbarch, this->regs.get ());
1432
1433 /* Default maximum number of characters in a packet body. Many
1434 remote stubs have a hardwired buffer size of 400 bytes
1435 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1436 as the maximum packet-size to ensure that the packet and an extra
1437 NUL character can always fit in the buffer. This stops GDB
1438 trashing stubs that try to squeeze an extra NUL into what is
1439 already a full buffer (As of 1999-12-04 that was most stubs). */
1440 this->remote_packet_size = 400 - 1;
1441
1442 /* This one is filled in when a ``g'' packet is received. */
1443 this->actual_register_packet_size = 0;
1444
1445 /* Should rsa->sizeof_g_packet needs more space than the
1446 default, adjust the size accordingly. Remember that each byte is
1447 encoded as two characters. 32 is the overhead for the packet
1448 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1449 (``$NN:G...#NN'') is a better guess, the below has been padded a
1450 little. */
1451 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1452 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1453 }
1454
1455 /* Get a pointer to the current remote target. If not connected to a
1456 remote target, return NULL. */
1457
1458 static remote_target *
1459 get_current_remote_target ()
1460 {
1461 target_ops *proc_target = current_inferior ()->process_target ();
1462 return dynamic_cast<remote_target *> (proc_target);
1463 }
1464
1465 /* Return the current allowed size of a remote packet. This is
1466 inferred from the current architecture, and should be used to
1467 limit the length of outgoing packets. */
1468 long
1469 remote_target::get_remote_packet_size ()
1470 {
1471 struct remote_state *rs = get_remote_state ();
1472 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1473
1474 if (rs->explicit_packet_size)
1475 return rs->explicit_packet_size;
1476
1477 return rsa->remote_packet_size;
1478 }
1479
1480 static struct packet_reg *
1481 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1482 long regnum)
1483 {
1484 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1485 return NULL;
1486 else
1487 {
1488 struct packet_reg *r = &rsa->regs[regnum];
1489
1490 gdb_assert (r->regnum == regnum);
1491 return r;
1492 }
1493 }
1494
1495 static struct packet_reg *
1496 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1497 LONGEST pnum)
1498 {
1499 int i;
1500
1501 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1502 {
1503 struct packet_reg *r = &rsa->regs[i];
1504
1505 if (r->pnum == pnum)
1506 return r;
1507 }
1508 return NULL;
1509 }
1510
1511 /* Allow the user to specify what sequence to send to the remote
1512 when he requests a program interruption: Although ^C is usually
1513 what remote systems expect (this is the default, here), it is
1514 sometimes preferable to send a break. On other systems such
1515 as the Linux kernel, a break followed by g, which is Magic SysRq g
1516 is required in order to interrupt the execution. */
1517 const char interrupt_sequence_control_c[] = "Ctrl-C";
1518 const char interrupt_sequence_break[] = "BREAK";
1519 const char interrupt_sequence_break_g[] = "BREAK-g";
1520 static const char *const interrupt_sequence_modes[] =
1521 {
1522 interrupt_sequence_control_c,
1523 interrupt_sequence_break,
1524 interrupt_sequence_break_g,
1525 NULL
1526 };
1527 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1528
1529 static void
1530 show_interrupt_sequence (struct ui_file *file, int from_tty,
1531 struct cmd_list_element *c,
1532 const char *value)
1533 {
1534 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1535 fprintf_filtered (file,
1536 _("Send the ASCII ETX character (Ctrl-c) "
1537 "to the remote target to interrupt the "
1538 "execution of the program.\n"));
1539 else if (interrupt_sequence_mode == interrupt_sequence_break)
1540 fprintf_filtered (file,
1541 _("send a break signal to the remote target "
1542 "to interrupt the execution of the program.\n"));
1543 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1544 fprintf_filtered (file,
1545 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1546 "the remote target to interrupt the execution "
1547 "of Linux kernel.\n"));
1548 else
1549 internal_error (__FILE__, __LINE__,
1550 _("Invalid value for interrupt_sequence_mode: %s."),
1551 interrupt_sequence_mode);
1552 }
1553
1554 /* This boolean variable specifies whether interrupt_sequence is sent
1555 to the remote target when gdb connects to it.
1556 This is mostly needed when you debug the Linux kernel: The Linux kernel
1557 expects BREAK g which is Magic SysRq g for connecting gdb. */
1558 static bool interrupt_on_connect = false;
1559
1560 /* This variable is used to implement the "set/show remotebreak" commands.
1561 Since these commands are now deprecated in favor of "set/show remote
1562 interrupt-sequence", it no longer has any effect on the code. */
1563 static bool remote_break;
1564
1565 static void
1566 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1567 {
1568 if (remote_break)
1569 interrupt_sequence_mode = interrupt_sequence_break;
1570 else
1571 interrupt_sequence_mode = interrupt_sequence_control_c;
1572 }
1573
1574 static void
1575 show_remotebreak (struct ui_file *file, int from_tty,
1576 struct cmd_list_element *c,
1577 const char *value)
1578 {
1579 }
1580
1581 /* This variable sets the number of bits in an address that are to be
1582 sent in a memory ("M" or "m") packet. Normally, after stripping
1583 leading zeros, the entire address would be sent. This variable
1584 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1585 initial implementation of remote.c restricted the address sent in
1586 memory packets to ``host::sizeof long'' bytes - (typically 32
1587 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1588 address was never sent. Since fixing this bug may cause a break in
1589 some remote targets this variable is principally provided to
1590 facilitate backward compatibility. */
1591
1592 static unsigned int remote_address_size;
1593
1594 \f
1595 /* User configurable variables for the number of characters in a
1596 memory read/write packet. MIN (rsa->remote_packet_size,
1597 rsa->sizeof_g_packet) is the default. Some targets need smaller
1598 values (fifo overruns, et.al.) and some users need larger values
1599 (speed up transfers). The variables ``preferred_*'' (the user
1600 request), ``current_*'' (what was actually set) and ``forced_*''
1601 (Positive - a soft limit, negative - a hard limit). */
1602
1603 struct memory_packet_config
1604 {
1605 const char *name;
1606 long size;
1607 int fixed_p;
1608 };
1609
1610 /* The default max memory-write-packet-size, when the setting is
1611 "fixed". The 16k is historical. (It came from older GDB's using
1612 alloca for buffers and the knowledge (folklore?) that some hosts
1613 don't cope very well with large alloca calls.) */
1614 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1615
1616 /* The minimum remote packet size for memory transfers. Ensures we
1617 can write at least one byte. */
1618 #define MIN_MEMORY_PACKET_SIZE 20
1619
1620 /* Get the memory packet size, assuming it is fixed. */
1621
1622 static long
1623 get_fixed_memory_packet_size (struct memory_packet_config *config)
1624 {
1625 gdb_assert (config->fixed_p);
1626
1627 if (config->size <= 0)
1628 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1629 else
1630 return config->size;
1631 }
1632
1633 /* Compute the current size of a read/write packet. Since this makes
1634 use of ``actual_register_packet_size'' the computation is dynamic. */
1635
1636 long
1637 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1638 {
1639 struct remote_state *rs = get_remote_state ();
1640 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1641
1642 long what_they_get;
1643 if (config->fixed_p)
1644 what_they_get = get_fixed_memory_packet_size (config);
1645 else
1646 {
1647 what_they_get = get_remote_packet_size ();
1648 /* Limit the packet to the size specified by the user. */
1649 if (config->size > 0
1650 && what_they_get > config->size)
1651 what_they_get = config->size;
1652
1653 /* Limit it to the size of the targets ``g'' response unless we have
1654 permission from the stub to use a larger packet size. */
1655 if (rs->explicit_packet_size == 0
1656 && rsa->actual_register_packet_size > 0
1657 && what_they_get > rsa->actual_register_packet_size)
1658 what_they_get = rsa->actual_register_packet_size;
1659 }
1660 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1661 what_they_get = MIN_MEMORY_PACKET_SIZE;
1662
1663 /* Make sure there is room in the global buffer for this packet
1664 (including its trailing NUL byte). */
1665 if (rs->buf.size () < what_they_get + 1)
1666 rs->buf.resize (2 * what_they_get);
1667
1668 return what_they_get;
1669 }
1670
1671 /* Update the size of a read/write packet. If they user wants
1672 something really big then do a sanity check. */
1673
1674 static void
1675 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1676 {
1677 int fixed_p = config->fixed_p;
1678 long size = config->size;
1679
1680 if (args == NULL)
1681 error (_("Argument required (integer, `fixed' or `limited')."));
1682 else if (strcmp (args, "hard") == 0
1683 || strcmp (args, "fixed") == 0)
1684 fixed_p = 1;
1685 else if (strcmp (args, "soft") == 0
1686 || strcmp (args, "limit") == 0)
1687 fixed_p = 0;
1688 else
1689 {
1690 char *end;
1691
1692 size = strtoul (args, &end, 0);
1693 if (args == end)
1694 error (_("Invalid %s (bad syntax)."), config->name);
1695
1696 /* Instead of explicitly capping the size of a packet to or
1697 disallowing it, the user is allowed to set the size to
1698 something arbitrarily large. */
1699 }
1700
1701 /* Extra checks? */
1702 if (fixed_p && !config->fixed_p)
1703 {
1704 /* So that the query shows the correct value. */
1705 long query_size = (size <= 0
1706 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1707 : size);
1708
1709 if (! query (_("The target may not be able to correctly handle a %s\n"
1710 "of %ld bytes. Change the packet size? "),
1711 config->name, query_size))
1712 error (_("Packet size not changed."));
1713 }
1714 /* Update the config. */
1715 config->fixed_p = fixed_p;
1716 config->size = size;
1717 }
1718
1719 static void
1720 show_memory_packet_size (struct memory_packet_config *config)
1721 {
1722 if (config->size == 0)
1723 printf_filtered (_("The %s is 0 (default). "), config->name);
1724 else
1725 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1726 if (config->fixed_p)
1727 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1728 get_fixed_memory_packet_size (config));
1729 else
1730 {
1731 remote_target *remote = get_current_remote_target ();
1732
1733 if (remote != NULL)
1734 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1735 remote->get_memory_packet_size (config));
1736 else
1737 puts_filtered ("The actual limit will be further reduced "
1738 "dependent on the target.\n");
1739 }
1740 }
1741
1742 /* FIXME: needs to be per-remote-target. */
1743 static struct memory_packet_config memory_write_packet_config =
1744 {
1745 "memory-write-packet-size",
1746 };
1747
1748 static void
1749 set_memory_write_packet_size (const char *args, int from_tty)
1750 {
1751 set_memory_packet_size (args, &memory_write_packet_config);
1752 }
1753
1754 static void
1755 show_memory_write_packet_size (const char *args, int from_tty)
1756 {
1757 show_memory_packet_size (&memory_write_packet_config);
1758 }
1759
1760 /* Show the number of hardware watchpoints that can be used. */
1761
1762 static void
1763 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1764 struct cmd_list_element *c,
1765 const char *value)
1766 {
1767 fprintf_filtered (file, _("The maximum number of target hardware "
1768 "watchpoints is %s.\n"), value);
1769 }
1770
1771 /* Show the length limit (in bytes) for hardware watchpoints. */
1772
1773 static void
1774 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1775 struct cmd_list_element *c,
1776 const char *value)
1777 {
1778 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1779 "hardware watchpoint is %s.\n"), value);
1780 }
1781
1782 /* Show the number of hardware breakpoints that can be used. */
1783
1784 static void
1785 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1786 struct cmd_list_element *c,
1787 const char *value)
1788 {
1789 fprintf_filtered (file, _("The maximum number of target hardware "
1790 "breakpoints is %s.\n"), value);
1791 }
1792
1793 /* Controls the maximum number of characters to display in the debug output
1794 for each remote packet. The remaining characters are omitted. */
1795
1796 static int remote_packet_max_chars = 512;
1797
1798 /* Show the maximum number of characters to display for each remote packet
1799 when remote debugging is enabled. */
1800
1801 static void
1802 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1803 struct cmd_list_element *c,
1804 const char *value)
1805 {
1806 fprintf_filtered (file, _("Number of remote packet characters to "
1807 "display is %s.\n"), value);
1808 }
1809
1810 long
1811 remote_target::get_memory_write_packet_size ()
1812 {
1813 return get_memory_packet_size (&memory_write_packet_config);
1814 }
1815
1816 /* FIXME: needs to be per-remote-target. */
1817 static struct memory_packet_config memory_read_packet_config =
1818 {
1819 "memory-read-packet-size",
1820 };
1821
1822 static void
1823 set_memory_read_packet_size (const char *args, int from_tty)
1824 {
1825 set_memory_packet_size (args, &memory_read_packet_config);
1826 }
1827
1828 static void
1829 show_memory_read_packet_size (const char *args, int from_tty)
1830 {
1831 show_memory_packet_size (&memory_read_packet_config);
1832 }
1833
1834 long
1835 remote_target::get_memory_read_packet_size ()
1836 {
1837 long size = get_memory_packet_size (&memory_read_packet_config);
1838
1839 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1840 extra buffer size argument before the memory read size can be
1841 increased beyond this. */
1842 if (size > get_remote_packet_size ())
1843 size = get_remote_packet_size ();
1844 return size;
1845 }
1846
1847 \f
1848
1849 struct packet_config
1850 {
1851 const char *name;
1852 const char *title;
1853
1854 /* If auto, GDB auto-detects support for this packet or feature,
1855 either through qSupported, or by trying the packet and looking
1856 at the response. If true, GDB assumes the target supports this
1857 packet. If false, the packet is disabled. Configs that don't
1858 have an associated command always have this set to auto. */
1859 enum auto_boolean detect;
1860
1861 /* Does the target support this packet? */
1862 enum packet_support support;
1863 };
1864
1865 static enum packet_support packet_config_support (struct packet_config *config);
1866 static enum packet_support packet_support (int packet);
1867
1868 static void
1869 show_packet_config_cmd (struct packet_config *config)
1870 {
1871 const char *support = "internal-error";
1872
1873 switch (packet_config_support (config))
1874 {
1875 case PACKET_ENABLE:
1876 support = "enabled";
1877 break;
1878 case PACKET_DISABLE:
1879 support = "disabled";
1880 break;
1881 case PACKET_SUPPORT_UNKNOWN:
1882 support = "unknown";
1883 break;
1884 }
1885 switch (config->detect)
1886 {
1887 case AUTO_BOOLEAN_AUTO:
1888 printf_filtered (_("Support for the `%s' packet "
1889 "is auto-detected, currently %s.\n"),
1890 config->name, support);
1891 break;
1892 case AUTO_BOOLEAN_TRUE:
1893 case AUTO_BOOLEAN_FALSE:
1894 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1895 config->name, support);
1896 break;
1897 }
1898 }
1899
1900 static void
1901 add_packet_config_cmd (struct packet_config *config, const char *name,
1902 const char *title, int legacy)
1903 {
1904 char *set_doc;
1905 char *show_doc;
1906 char *cmd_name;
1907
1908 config->name = name;
1909 config->title = title;
1910 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1911 name, title);
1912 show_doc = xstrprintf ("Show current use of remote "
1913 "protocol `%s' (%s) packet.",
1914 name, title);
1915 /* set/show TITLE-packet {auto,on,off} */
1916 cmd_name = xstrprintf ("%s-packet", title);
1917 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1918 &config->detect, set_doc,
1919 show_doc, NULL, /* help_doc */
1920 NULL,
1921 show_remote_protocol_packet_cmd,
1922 &remote_set_cmdlist, &remote_show_cmdlist);
1923 /* The command code copies the documentation strings. */
1924 xfree (set_doc);
1925 xfree (show_doc);
1926 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1927 if (legacy)
1928 {
1929 char *legacy_name;
1930
1931 legacy_name = xstrprintf ("%s-packet", name);
1932 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1933 &remote_set_cmdlist);
1934 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1935 &remote_show_cmdlist);
1936 }
1937 }
1938
1939 static enum packet_result
1940 packet_check_result (const char *buf)
1941 {
1942 if (buf[0] != '\0')
1943 {
1944 /* The stub recognized the packet request. Check that the
1945 operation succeeded. */
1946 if (buf[0] == 'E'
1947 && isxdigit (buf[1]) && isxdigit (buf[2])
1948 && buf[3] == '\0')
1949 /* "Enn" - definitely an error. */
1950 return PACKET_ERROR;
1951
1952 /* Always treat "E." as an error. This will be used for
1953 more verbose error messages, such as E.memtypes. */
1954 if (buf[0] == 'E' && buf[1] == '.')
1955 return PACKET_ERROR;
1956
1957 /* The packet may or may not be OK. Just assume it is. */
1958 return PACKET_OK;
1959 }
1960 else
1961 /* The stub does not support the packet. */
1962 return PACKET_UNKNOWN;
1963 }
1964
1965 static enum packet_result
1966 packet_check_result (const gdb::char_vector &buf)
1967 {
1968 return packet_check_result (buf.data ());
1969 }
1970
1971 static enum packet_result
1972 packet_ok (const char *buf, struct packet_config *config)
1973 {
1974 enum packet_result result;
1975
1976 if (config->detect != AUTO_BOOLEAN_TRUE
1977 && config->support == PACKET_DISABLE)
1978 internal_error (__FILE__, __LINE__,
1979 _("packet_ok: attempt to use a disabled packet"));
1980
1981 result = packet_check_result (buf);
1982 switch (result)
1983 {
1984 case PACKET_OK:
1985 case PACKET_ERROR:
1986 /* The stub recognized the packet request. */
1987 if (config->support == PACKET_SUPPORT_UNKNOWN)
1988 {
1989 if (remote_debug)
1990 fprintf_unfiltered (gdb_stdlog,
1991 "Packet %s (%s) is supported\n",
1992 config->name, config->title);
1993 config->support = PACKET_ENABLE;
1994 }
1995 break;
1996 case PACKET_UNKNOWN:
1997 /* The stub does not support the packet. */
1998 if (config->detect == AUTO_BOOLEAN_AUTO
1999 && config->support == PACKET_ENABLE)
2000 {
2001 /* If the stub previously indicated that the packet was
2002 supported then there is a protocol error. */
2003 error (_("Protocol error: %s (%s) conflicting enabled responses."),
2004 config->name, config->title);
2005 }
2006 else if (config->detect == AUTO_BOOLEAN_TRUE)
2007 {
2008 /* The user set it wrong. */
2009 error (_("Enabled packet %s (%s) not recognized by stub"),
2010 config->name, config->title);
2011 }
2012
2013 if (remote_debug)
2014 fprintf_unfiltered (gdb_stdlog,
2015 "Packet %s (%s) is NOT supported\n",
2016 config->name, config->title);
2017 config->support = PACKET_DISABLE;
2018 break;
2019 }
2020
2021 return result;
2022 }
2023
2024 static enum packet_result
2025 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
2026 {
2027 return packet_ok (buf.data (), config);
2028 }
2029
2030 enum {
2031 PACKET_vCont = 0,
2032 PACKET_X,
2033 PACKET_qSymbol,
2034 PACKET_P,
2035 PACKET_p,
2036 PACKET_Z0,
2037 PACKET_Z1,
2038 PACKET_Z2,
2039 PACKET_Z3,
2040 PACKET_Z4,
2041 PACKET_vFile_setfs,
2042 PACKET_vFile_open,
2043 PACKET_vFile_pread,
2044 PACKET_vFile_pwrite,
2045 PACKET_vFile_close,
2046 PACKET_vFile_unlink,
2047 PACKET_vFile_readlink,
2048 PACKET_vFile_fstat,
2049 PACKET_qXfer_auxv,
2050 PACKET_qXfer_features,
2051 PACKET_qXfer_exec_file,
2052 PACKET_qXfer_libraries,
2053 PACKET_qXfer_libraries_svr4,
2054 PACKET_qXfer_memory_map,
2055 PACKET_qXfer_osdata,
2056 PACKET_qXfer_threads,
2057 PACKET_qXfer_statictrace_read,
2058 PACKET_qXfer_traceframe_info,
2059 PACKET_qXfer_uib,
2060 PACKET_qGetTIBAddr,
2061 PACKET_qGetTLSAddr,
2062 PACKET_qSupported,
2063 PACKET_qTStatus,
2064 PACKET_QPassSignals,
2065 PACKET_QCatchSyscalls,
2066 PACKET_QProgramSignals,
2067 PACKET_QSetWorkingDir,
2068 PACKET_QStartupWithShell,
2069 PACKET_QEnvironmentHexEncoded,
2070 PACKET_QEnvironmentReset,
2071 PACKET_QEnvironmentUnset,
2072 PACKET_qCRC,
2073 PACKET_qSearch_memory,
2074 PACKET_vAttach,
2075 PACKET_vRun,
2076 PACKET_QStartNoAckMode,
2077 PACKET_vKill,
2078 PACKET_qXfer_siginfo_read,
2079 PACKET_qXfer_siginfo_write,
2080 PACKET_qAttached,
2081
2082 /* Support for conditional tracepoints. */
2083 PACKET_ConditionalTracepoints,
2084
2085 /* Support for target-side breakpoint conditions. */
2086 PACKET_ConditionalBreakpoints,
2087
2088 /* Support for target-side breakpoint commands. */
2089 PACKET_BreakpointCommands,
2090
2091 /* Support for fast tracepoints. */
2092 PACKET_FastTracepoints,
2093
2094 /* Support for static tracepoints. */
2095 PACKET_StaticTracepoints,
2096
2097 /* Support for installing tracepoints while a trace experiment is
2098 running. */
2099 PACKET_InstallInTrace,
2100
2101 PACKET_bc,
2102 PACKET_bs,
2103 PACKET_TracepointSource,
2104 PACKET_QAllow,
2105 PACKET_qXfer_fdpic,
2106 PACKET_QDisableRandomization,
2107 PACKET_QAgent,
2108 PACKET_QTBuffer_size,
2109 PACKET_Qbtrace_off,
2110 PACKET_Qbtrace_bts,
2111 PACKET_Qbtrace_pt,
2112 PACKET_qXfer_btrace,
2113
2114 /* Support for the QNonStop packet. */
2115 PACKET_QNonStop,
2116
2117 /* Support for the QThreadEvents packet. */
2118 PACKET_QThreadEvents,
2119
2120 /* Support for multi-process extensions. */
2121 PACKET_multiprocess_feature,
2122
2123 /* Support for enabling and disabling tracepoints while a trace
2124 experiment is running. */
2125 PACKET_EnableDisableTracepoints_feature,
2126
2127 /* Support for collecting strings using the tracenz bytecode. */
2128 PACKET_tracenz_feature,
2129
2130 /* Support for continuing to run a trace experiment while GDB is
2131 disconnected. */
2132 PACKET_DisconnectedTracing_feature,
2133
2134 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2135 PACKET_augmented_libraries_svr4_read_feature,
2136
2137 /* Support for the qXfer:btrace-conf:read packet. */
2138 PACKET_qXfer_btrace_conf,
2139
2140 /* Support for the Qbtrace-conf:bts:size packet. */
2141 PACKET_Qbtrace_conf_bts_size,
2142
2143 /* Support for swbreak+ feature. */
2144 PACKET_swbreak_feature,
2145
2146 /* Support for hwbreak+ feature. */
2147 PACKET_hwbreak_feature,
2148
2149 /* Support for fork events. */
2150 PACKET_fork_event_feature,
2151
2152 /* Support for vfork events. */
2153 PACKET_vfork_event_feature,
2154
2155 /* Support for the Qbtrace-conf:pt:size packet. */
2156 PACKET_Qbtrace_conf_pt_size,
2157
2158 /* Support for exec events. */
2159 PACKET_exec_event_feature,
2160
2161 /* Support for query supported vCont actions. */
2162 PACKET_vContSupported,
2163
2164 /* Support remote CTRL-C. */
2165 PACKET_vCtrlC,
2166
2167 /* Support TARGET_WAITKIND_NO_RESUMED. */
2168 PACKET_no_resumed,
2169
2170 PACKET_MAX
2171 };
2172
2173 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2174 assuming all remote targets are the same server (thus all support
2175 the same packets). */
2176 static struct packet_config remote_protocol_packets[PACKET_MAX];
2177
2178 /* Returns the packet's corresponding "set remote foo-packet" command
2179 state. See struct packet_config for more details. */
2180
2181 static enum auto_boolean
2182 packet_set_cmd_state (int packet)
2183 {
2184 return remote_protocol_packets[packet].detect;
2185 }
2186
2187 /* Returns whether a given packet or feature is supported. This takes
2188 into account the state of the corresponding "set remote foo-packet"
2189 command, which may be used to bypass auto-detection. */
2190
2191 static enum packet_support
2192 packet_config_support (struct packet_config *config)
2193 {
2194 switch (config->detect)
2195 {
2196 case AUTO_BOOLEAN_TRUE:
2197 return PACKET_ENABLE;
2198 case AUTO_BOOLEAN_FALSE:
2199 return PACKET_DISABLE;
2200 case AUTO_BOOLEAN_AUTO:
2201 return config->support;
2202 default:
2203 gdb_assert_not_reached (_("bad switch"));
2204 }
2205 }
2206
2207 /* Same as packet_config_support, but takes the packet's enum value as
2208 argument. */
2209
2210 static enum packet_support
2211 packet_support (int packet)
2212 {
2213 struct packet_config *config = &remote_protocol_packets[packet];
2214
2215 return packet_config_support (config);
2216 }
2217
2218 static void
2219 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2220 struct cmd_list_element *c,
2221 const char *value)
2222 {
2223 struct packet_config *packet;
2224
2225 for (packet = remote_protocol_packets;
2226 packet < &remote_protocol_packets[PACKET_MAX];
2227 packet++)
2228 {
2229 if (&packet->detect == c->var)
2230 {
2231 show_packet_config_cmd (packet);
2232 return;
2233 }
2234 }
2235 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2236 c->name);
2237 }
2238
2239 /* Should we try one of the 'Z' requests? */
2240
2241 enum Z_packet_type
2242 {
2243 Z_PACKET_SOFTWARE_BP,
2244 Z_PACKET_HARDWARE_BP,
2245 Z_PACKET_WRITE_WP,
2246 Z_PACKET_READ_WP,
2247 Z_PACKET_ACCESS_WP,
2248 NR_Z_PACKET_TYPES
2249 };
2250
2251 /* For compatibility with older distributions. Provide a ``set remote
2252 Z-packet ...'' command that updates all the Z packet types. */
2253
2254 static enum auto_boolean remote_Z_packet_detect;
2255
2256 static void
2257 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2258 struct cmd_list_element *c)
2259 {
2260 int i;
2261
2262 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2263 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2264 }
2265
2266 static void
2267 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2268 struct cmd_list_element *c,
2269 const char *value)
2270 {
2271 int i;
2272
2273 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2274 {
2275 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2276 }
2277 }
2278
2279 /* Returns true if the multi-process extensions are in effect. */
2280
2281 static int
2282 remote_multi_process_p (struct remote_state *rs)
2283 {
2284 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2285 }
2286
2287 /* Returns true if fork events are supported. */
2288
2289 static int
2290 remote_fork_event_p (struct remote_state *rs)
2291 {
2292 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2293 }
2294
2295 /* Returns true if vfork events are supported. */
2296
2297 static int
2298 remote_vfork_event_p (struct remote_state *rs)
2299 {
2300 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2301 }
2302
2303 /* Returns true if exec events are supported. */
2304
2305 static int
2306 remote_exec_event_p (struct remote_state *rs)
2307 {
2308 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2309 }
2310
2311 /* Insert fork catchpoint target routine. If fork events are enabled
2312 then return success, nothing more to do. */
2313
2314 int
2315 remote_target::insert_fork_catchpoint (int pid)
2316 {
2317 struct remote_state *rs = get_remote_state ();
2318
2319 return !remote_fork_event_p (rs);
2320 }
2321
2322 /* Remove fork catchpoint target routine. Nothing to do, just
2323 return success. */
2324
2325 int
2326 remote_target::remove_fork_catchpoint (int pid)
2327 {
2328 return 0;
2329 }
2330
2331 /* Insert vfork catchpoint target routine. If vfork events are enabled
2332 then return success, nothing more to do. */
2333
2334 int
2335 remote_target::insert_vfork_catchpoint (int pid)
2336 {
2337 struct remote_state *rs = get_remote_state ();
2338
2339 return !remote_vfork_event_p (rs);
2340 }
2341
2342 /* Remove vfork catchpoint target routine. Nothing to do, just
2343 return success. */
2344
2345 int
2346 remote_target::remove_vfork_catchpoint (int pid)
2347 {
2348 return 0;
2349 }
2350
2351 /* Insert exec catchpoint target routine. If exec events are
2352 enabled, just return success. */
2353
2354 int
2355 remote_target::insert_exec_catchpoint (int pid)
2356 {
2357 struct remote_state *rs = get_remote_state ();
2358
2359 return !remote_exec_event_p (rs);
2360 }
2361
2362 /* Remove exec catchpoint target routine. Nothing to do, just
2363 return success. */
2364
2365 int
2366 remote_target::remove_exec_catchpoint (int pid)
2367 {
2368 return 0;
2369 }
2370
2371 \f
2372
2373 /* Take advantage of the fact that the TID field is not used, to tag
2374 special ptids with it set to != 0. */
2375 static const ptid_t magic_null_ptid (42000, -1, 1);
2376 static const ptid_t not_sent_ptid (42000, -2, 1);
2377 static const ptid_t any_thread_ptid (42000, 0, 1);
2378
2379 /* Find out if the stub attached to PID (and hence GDB should offer to
2380 detach instead of killing it when bailing out). */
2381
2382 int
2383 remote_target::remote_query_attached (int pid)
2384 {
2385 struct remote_state *rs = get_remote_state ();
2386 size_t size = get_remote_packet_size ();
2387
2388 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2389 return 0;
2390
2391 if (remote_multi_process_p (rs))
2392 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2393 else
2394 xsnprintf (rs->buf.data (), size, "qAttached");
2395
2396 putpkt (rs->buf);
2397 getpkt (&rs->buf, 0);
2398
2399 switch (packet_ok (rs->buf,
2400 &remote_protocol_packets[PACKET_qAttached]))
2401 {
2402 case PACKET_OK:
2403 if (strcmp (rs->buf.data (), "1") == 0)
2404 return 1;
2405 break;
2406 case PACKET_ERROR:
2407 warning (_("Remote failure reply: %s"), rs->buf.data ());
2408 break;
2409 case PACKET_UNKNOWN:
2410 break;
2411 }
2412
2413 return 0;
2414 }
2415
2416 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2417 has been invented by GDB, instead of reported by the target. Since
2418 we can be connected to a remote system before before knowing about
2419 any inferior, mark the target with execution when we find the first
2420 inferior. If ATTACHED is 1, then we had just attached to this
2421 inferior. If it is 0, then we just created this inferior. If it
2422 is -1, then try querying the remote stub to find out if it had
2423 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2424 attempt to open this inferior's executable as the main executable
2425 if no main executable is open already. */
2426
2427 inferior *
2428 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2429 int try_open_exec)
2430 {
2431 struct inferior *inf;
2432
2433 /* Check whether this process we're learning about is to be
2434 considered attached, or if is to be considered to have been
2435 spawned by the stub. */
2436 if (attached == -1)
2437 attached = remote_query_attached (pid);
2438
2439 if (gdbarch_has_global_solist (target_gdbarch ()))
2440 {
2441 /* If the target shares code across all inferiors, then every
2442 attach adds a new inferior. */
2443 inf = add_inferior (pid);
2444
2445 /* ... and every inferior is bound to the same program space.
2446 However, each inferior may still have its own address
2447 space. */
2448 inf->aspace = maybe_new_address_space ();
2449 inf->pspace = current_program_space;
2450 }
2451 else
2452 {
2453 /* In the traditional debugging scenario, there's a 1-1 match
2454 between program/address spaces. We simply bind the inferior
2455 to the program space's address space. */
2456 inf = current_inferior ();
2457
2458 /* However, if the current inferior is already bound to a
2459 process, find some other empty inferior. */
2460 if (inf->pid != 0)
2461 {
2462 inf = nullptr;
2463 for (inferior *it : all_inferiors ())
2464 if (it->pid == 0)
2465 {
2466 inf = it;
2467 break;
2468 }
2469 }
2470 if (inf == nullptr)
2471 {
2472 /* Since all inferiors were already bound to a process, add
2473 a new inferior. */
2474 inf = add_inferior_with_spaces ();
2475 }
2476 switch_to_inferior_no_thread (inf);
2477 push_target (this);
2478 inferior_appeared (inf, pid);
2479 }
2480
2481 inf->attach_flag = attached;
2482 inf->fake_pid_p = fake_pid_p;
2483
2484 /* If no main executable is currently open then attempt to
2485 open the file that was executed to create this inferior. */
2486 if (try_open_exec && get_exec_file (0) == NULL)
2487 exec_file_locate_attach (pid, 0, 1);
2488
2489 /* Check for exec file mismatch, and let the user solve it. */
2490 validate_exec_file (1);
2491
2492 return inf;
2493 }
2494
2495 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2496 static remote_thread_info *get_remote_thread_info (remote_target *target,
2497 ptid_t ptid);
2498
2499 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2500 according to RUNNING. */
2501
2502 thread_info *
2503 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2504 {
2505 struct remote_state *rs = get_remote_state ();
2506 struct thread_info *thread;
2507
2508 /* GDB historically didn't pull threads in the initial connection
2509 setup. If the remote target doesn't even have a concept of
2510 threads (e.g., a bare-metal target), even if internally we
2511 consider that a single-threaded target, mentioning a new thread
2512 might be confusing to the user. Be silent then, preserving the
2513 age old behavior. */
2514 if (rs->starting_up)
2515 thread = add_thread_silent (this, ptid);
2516 else
2517 thread = add_thread (this, ptid);
2518
2519 /* We start by assuming threads are resumed. That state then gets updated
2520 when we process a matching stop reply. */
2521 get_remote_thread_info (thread)->set_resumed ();
2522
2523 set_executing (this, ptid, executing);
2524 set_running (this, ptid, running);
2525
2526 return thread;
2527 }
2528
2529 /* Come here when we learn about a thread id from the remote target.
2530 It may be the first time we hear about such thread, so take the
2531 opportunity to add it to GDB's thread list. In case this is the
2532 first time we're noticing its corresponding inferior, add it to
2533 GDB's inferior list as well. EXECUTING indicates whether the
2534 thread is (internally) executing or stopped. */
2535
2536 void
2537 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2538 {
2539 /* In non-stop mode, we assume new found threads are (externally)
2540 running until proven otherwise with a stop reply. In all-stop,
2541 we can only get here if all threads are stopped. */
2542 int running = target_is_non_stop_p () ? 1 : 0;
2543
2544 /* If this is a new thread, add it to GDB's thread list.
2545 If we leave it up to WFI to do this, bad things will happen. */
2546
2547 thread_info *tp = find_thread_ptid (this, currthread);
2548 if (tp != NULL && tp->state == THREAD_EXITED)
2549 {
2550 /* We're seeing an event on a thread id we knew had exited.
2551 This has to be a new thread reusing the old id. Add it. */
2552 remote_add_thread (currthread, running, executing);
2553 return;
2554 }
2555
2556 if (!in_thread_list (this, currthread))
2557 {
2558 struct inferior *inf = NULL;
2559 int pid = currthread.pid ();
2560
2561 if (inferior_ptid.is_pid ()
2562 && pid == inferior_ptid.pid ())
2563 {
2564 /* inferior_ptid has no thread member yet. This can happen
2565 with the vAttach -> remote_wait,"TAAthread:" path if the
2566 stub doesn't support qC. This is the first stop reported
2567 after an attach, so this is the main thread. Update the
2568 ptid in the thread list. */
2569 if (in_thread_list (this, ptid_t (pid)))
2570 thread_change_ptid (this, inferior_ptid, currthread);
2571 else
2572 {
2573 thread_info *thr
2574 = remote_add_thread (currthread, running, executing);
2575 switch_to_thread (thr);
2576 }
2577 return;
2578 }
2579
2580 if (magic_null_ptid == inferior_ptid)
2581 {
2582 /* inferior_ptid is not set yet. This can happen with the
2583 vRun -> remote_wait,"TAAthread:" path if the stub
2584 doesn't support qC. This is the first stop reported
2585 after an attach, so this is the main thread. Update the
2586 ptid in the thread list. */
2587 thread_change_ptid (this, inferior_ptid, currthread);
2588 return;
2589 }
2590
2591 /* When connecting to a target remote, or to a target
2592 extended-remote which already was debugging an inferior, we
2593 may not know about it yet. Add it before adding its child
2594 thread, so notifications are emitted in a sensible order. */
2595 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2596 {
2597 struct remote_state *rs = get_remote_state ();
2598 bool fake_pid_p = !remote_multi_process_p (rs);
2599
2600 inf = remote_add_inferior (fake_pid_p,
2601 currthread.pid (), -1, 1);
2602 }
2603
2604 /* This is really a new thread. Add it. */
2605 thread_info *new_thr
2606 = remote_add_thread (currthread, running, executing);
2607
2608 /* If we found a new inferior, let the common code do whatever
2609 it needs to with it (e.g., read shared libraries, insert
2610 breakpoints), unless we're just setting up an all-stop
2611 connection. */
2612 if (inf != NULL)
2613 {
2614 struct remote_state *rs = get_remote_state ();
2615
2616 if (!rs->starting_up)
2617 notice_new_inferior (new_thr, executing, 0);
2618 }
2619 }
2620 }
2621
2622 /* Return THREAD's private thread data, creating it if necessary. */
2623
2624 static remote_thread_info *
2625 get_remote_thread_info (thread_info *thread)
2626 {
2627 gdb_assert (thread != NULL);
2628
2629 if (thread->priv == NULL)
2630 thread->priv.reset (new remote_thread_info);
2631
2632 return static_cast<remote_thread_info *> (thread->priv.get ());
2633 }
2634
2635 /* Return PTID's private thread data, creating it if necessary. */
2636
2637 static remote_thread_info *
2638 get_remote_thread_info (remote_target *target, ptid_t ptid)
2639 {
2640 thread_info *thr = find_thread_ptid (target, ptid);
2641 return get_remote_thread_info (thr);
2642 }
2643
2644 /* Call this function as a result of
2645 1) A halt indication (T packet) containing a thread id
2646 2) A direct query of currthread
2647 3) Successful execution of set thread */
2648
2649 static void
2650 record_currthread (struct remote_state *rs, ptid_t currthread)
2651 {
2652 rs->general_thread = currthread;
2653 }
2654
2655 /* If 'QPassSignals' is supported, tell the remote stub what signals
2656 it can simply pass through to the inferior without reporting. */
2657
2658 void
2659 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2660 {
2661 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2662 {
2663 char *pass_packet, *p;
2664 int count = 0;
2665 struct remote_state *rs = get_remote_state ();
2666
2667 gdb_assert (pass_signals.size () < 256);
2668 for (size_t i = 0; i < pass_signals.size (); i++)
2669 {
2670 if (pass_signals[i])
2671 count++;
2672 }
2673 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2674 strcpy (pass_packet, "QPassSignals:");
2675 p = pass_packet + strlen (pass_packet);
2676 for (size_t i = 0; i < pass_signals.size (); i++)
2677 {
2678 if (pass_signals[i])
2679 {
2680 if (i >= 16)
2681 *p++ = tohex (i >> 4);
2682 *p++ = tohex (i & 15);
2683 if (count)
2684 *p++ = ';';
2685 else
2686 break;
2687 count--;
2688 }
2689 }
2690 *p = 0;
2691 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2692 {
2693 putpkt (pass_packet);
2694 getpkt (&rs->buf, 0);
2695 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2696 xfree (rs->last_pass_packet);
2697 rs->last_pass_packet = pass_packet;
2698 }
2699 else
2700 xfree (pass_packet);
2701 }
2702 }
2703
2704 /* If 'QCatchSyscalls' is supported, tell the remote stub
2705 to report syscalls to GDB. */
2706
2707 int
2708 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2709 gdb::array_view<const int> syscall_counts)
2710 {
2711 const char *catch_packet;
2712 enum packet_result result;
2713 int n_sysno = 0;
2714
2715 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2716 {
2717 /* Not supported. */
2718 return 1;
2719 }
2720
2721 if (needed && any_count == 0)
2722 {
2723 /* Count how many syscalls are to be caught. */
2724 for (size_t i = 0; i < syscall_counts.size (); i++)
2725 {
2726 if (syscall_counts[i] != 0)
2727 n_sysno++;
2728 }
2729 }
2730
2731 if (remote_debug)
2732 {
2733 fprintf_unfiltered (gdb_stdlog,
2734 "remote_set_syscall_catchpoint "
2735 "pid %d needed %d any_count %d n_sysno %d\n",
2736 pid, needed, any_count, n_sysno);
2737 }
2738
2739 std::string built_packet;
2740 if (needed)
2741 {
2742 /* Prepare a packet with the sysno list, assuming max 8+1
2743 characters for a sysno. If the resulting packet size is too
2744 big, fallback on the non-selective packet. */
2745 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2746 built_packet.reserve (maxpktsz);
2747 built_packet = "QCatchSyscalls:1";
2748 if (any_count == 0)
2749 {
2750 /* Add in each syscall to be caught. */
2751 for (size_t i = 0; i < syscall_counts.size (); i++)
2752 {
2753 if (syscall_counts[i] != 0)
2754 string_appendf (built_packet, ";%zx", i);
2755 }
2756 }
2757 if (built_packet.size () > get_remote_packet_size ())
2758 {
2759 /* catch_packet too big. Fallback to less efficient
2760 non selective mode, with GDB doing the filtering. */
2761 catch_packet = "QCatchSyscalls:1";
2762 }
2763 else
2764 catch_packet = built_packet.c_str ();
2765 }
2766 else
2767 catch_packet = "QCatchSyscalls:0";
2768
2769 struct remote_state *rs = get_remote_state ();
2770
2771 putpkt (catch_packet);
2772 getpkt (&rs->buf, 0);
2773 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2774 if (result == PACKET_OK)
2775 return 0;
2776 else
2777 return -1;
2778 }
2779
2780 /* If 'QProgramSignals' is supported, tell the remote stub what
2781 signals it should pass through to the inferior when detaching. */
2782
2783 void
2784 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2785 {
2786 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2787 {
2788 char *packet, *p;
2789 int count = 0;
2790 struct remote_state *rs = get_remote_state ();
2791
2792 gdb_assert (signals.size () < 256);
2793 for (size_t i = 0; i < signals.size (); i++)
2794 {
2795 if (signals[i])
2796 count++;
2797 }
2798 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2799 strcpy (packet, "QProgramSignals:");
2800 p = packet + strlen (packet);
2801 for (size_t i = 0; i < signals.size (); i++)
2802 {
2803 if (signal_pass_state (i))
2804 {
2805 if (i >= 16)
2806 *p++ = tohex (i >> 4);
2807 *p++ = tohex (i & 15);
2808 if (count)
2809 *p++ = ';';
2810 else
2811 break;
2812 count--;
2813 }
2814 }
2815 *p = 0;
2816 if (!rs->last_program_signals_packet
2817 || strcmp (rs->last_program_signals_packet, packet) != 0)
2818 {
2819 putpkt (packet);
2820 getpkt (&rs->buf, 0);
2821 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2822 xfree (rs->last_program_signals_packet);
2823 rs->last_program_signals_packet = packet;
2824 }
2825 else
2826 xfree (packet);
2827 }
2828 }
2829
2830 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2831 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2832 thread. If GEN is set, set the general thread, if not, then set
2833 the step/continue thread. */
2834 void
2835 remote_target::set_thread (ptid_t ptid, int gen)
2836 {
2837 struct remote_state *rs = get_remote_state ();
2838 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2839 char *buf = rs->buf.data ();
2840 char *endbuf = buf + get_remote_packet_size ();
2841
2842 if (state == ptid)
2843 return;
2844
2845 *buf++ = 'H';
2846 *buf++ = gen ? 'g' : 'c';
2847 if (ptid == magic_null_ptid)
2848 xsnprintf (buf, endbuf - buf, "0");
2849 else if (ptid == any_thread_ptid)
2850 xsnprintf (buf, endbuf - buf, "0");
2851 else if (ptid == minus_one_ptid)
2852 xsnprintf (buf, endbuf - buf, "-1");
2853 else
2854 write_ptid (buf, endbuf, ptid);
2855 putpkt (rs->buf);
2856 getpkt (&rs->buf, 0);
2857 if (gen)
2858 rs->general_thread = ptid;
2859 else
2860 rs->continue_thread = ptid;
2861 }
2862
2863 void
2864 remote_target::set_general_thread (ptid_t ptid)
2865 {
2866 set_thread (ptid, 1);
2867 }
2868
2869 void
2870 remote_target::set_continue_thread (ptid_t ptid)
2871 {
2872 set_thread (ptid, 0);
2873 }
2874
2875 /* Change the remote current process. Which thread within the process
2876 ends up selected isn't important, as long as it is the same process
2877 as what INFERIOR_PTID points to.
2878
2879 This comes from that fact that there is no explicit notion of
2880 "selected process" in the protocol. The selected process for
2881 general operations is the process the selected general thread
2882 belongs to. */
2883
2884 void
2885 remote_target::set_general_process ()
2886 {
2887 struct remote_state *rs = get_remote_state ();
2888
2889 /* If the remote can't handle multiple processes, don't bother. */
2890 if (!remote_multi_process_p (rs))
2891 return;
2892
2893 /* We only need to change the remote current thread if it's pointing
2894 at some other process. */
2895 if (rs->general_thread.pid () != inferior_ptid.pid ())
2896 set_general_thread (inferior_ptid);
2897 }
2898
2899 \f
2900 /* Return nonzero if this is the main thread that we made up ourselves
2901 to model non-threaded targets as single-threaded. */
2902
2903 static int
2904 remote_thread_always_alive (ptid_t ptid)
2905 {
2906 if (ptid == magic_null_ptid)
2907 /* The main thread is always alive. */
2908 return 1;
2909
2910 if (ptid.pid () != 0 && ptid.lwp () == 0)
2911 /* The main thread is always alive. This can happen after a
2912 vAttach, if the remote side doesn't support
2913 multi-threading. */
2914 return 1;
2915
2916 return 0;
2917 }
2918
2919 /* Return nonzero if the thread PTID is still alive on the remote
2920 system. */
2921
2922 bool
2923 remote_target::thread_alive (ptid_t ptid)
2924 {
2925 struct remote_state *rs = get_remote_state ();
2926 char *p, *endp;
2927
2928 /* Check if this is a thread that we made up ourselves to model
2929 non-threaded targets as single-threaded. */
2930 if (remote_thread_always_alive (ptid))
2931 return 1;
2932
2933 p = rs->buf.data ();
2934 endp = p + get_remote_packet_size ();
2935
2936 *p++ = 'T';
2937 write_ptid (p, endp, ptid);
2938
2939 putpkt (rs->buf);
2940 getpkt (&rs->buf, 0);
2941 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2942 }
2943
2944 /* Return a pointer to a thread name if we know it and NULL otherwise.
2945 The thread_info object owns the memory for the name. */
2946
2947 const char *
2948 remote_target::thread_name (struct thread_info *info)
2949 {
2950 if (info->priv != NULL)
2951 {
2952 const std::string &name = get_remote_thread_info (info)->name;
2953 return !name.empty () ? name.c_str () : NULL;
2954 }
2955
2956 return NULL;
2957 }
2958
2959 /* About these extended threadlist and threadinfo packets. They are
2960 variable length packets but, the fields within them are often fixed
2961 length. They are redundant enough to send over UDP as is the
2962 remote protocol in general. There is a matching unit test module
2963 in libstub. */
2964
2965 /* WARNING: This threadref data structure comes from the remote O.S.,
2966 libstub protocol encoding, and remote.c. It is not particularly
2967 changable. */
2968
2969 /* Right now, the internal structure is int. We want it to be bigger.
2970 Plan to fix this. */
2971
2972 typedef int gdb_threadref; /* Internal GDB thread reference. */
2973
2974 /* gdb_ext_thread_info is an internal GDB data structure which is
2975 equivalent to the reply of the remote threadinfo packet. */
2976
2977 struct gdb_ext_thread_info
2978 {
2979 threadref threadid; /* External form of thread reference. */
2980 int active; /* Has state interesting to GDB?
2981 regs, stack. */
2982 char display[256]; /* Brief state display, name,
2983 blocked/suspended. */
2984 char shortname[32]; /* To be used to name threads. */
2985 char more_display[256]; /* Long info, statistics, queue depth,
2986 whatever. */
2987 };
2988
2989 /* The volume of remote transfers can be limited by submitting
2990 a mask containing bits specifying the desired information.
2991 Use a union of these values as the 'selection' parameter to
2992 get_thread_info. FIXME: Make these TAG names more thread specific. */
2993
2994 #define TAG_THREADID 1
2995 #define TAG_EXISTS 2
2996 #define TAG_DISPLAY 4
2997 #define TAG_THREADNAME 8
2998 #define TAG_MOREDISPLAY 16
2999
3000 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
3001
3002 static char *unpack_nibble (char *buf, int *val);
3003
3004 static char *unpack_byte (char *buf, int *value);
3005
3006 static char *pack_int (char *buf, int value);
3007
3008 static char *unpack_int (char *buf, int *value);
3009
3010 static char *unpack_string (char *src, char *dest, int length);
3011
3012 static char *pack_threadid (char *pkt, threadref *id);
3013
3014 static char *unpack_threadid (char *inbuf, threadref *id);
3015
3016 void int_to_threadref (threadref *id, int value);
3017
3018 static int threadref_to_int (threadref *ref);
3019
3020 static void copy_threadref (threadref *dest, threadref *src);
3021
3022 static int threadmatch (threadref *dest, threadref *src);
3023
3024 static char *pack_threadinfo_request (char *pkt, int mode,
3025 threadref *id);
3026
3027 static char *pack_threadlist_request (char *pkt, int startflag,
3028 int threadcount,
3029 threadref *nextthread);
3030
3031 static int remote_newthread_step (threadref *ref, void *context);
3032
3033
3034 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
3035 buffer we're allowed to write to. Returns
3036 BUF+CHARACTERS_WRITTEN. */
3037
3038 char *
3039 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
3040 {
3041 int pid, tid;
3042 struct remote_state *rs = get_remote_state ();
3043
3044 if (remote_multi_process_p (rs))
3045 {
3046 pid = ptid.pid ();
3047 if (pid < 0)
3048 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
3049 else
3050 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
3051 }
3052 tid = ptid.lwp ();
3053 if (tid < 0)
3054 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
3055 else
3056 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
3057
3058 return buf;
3059 }
3060
3061 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
3062 last parsed char. Returns null_ptid if no thread id is found, and
3063 throws an error if the thread id has an invalid format. */
3064
3065 static ptid_t
3066 read_ptid (const char *buf, const char **obuf)
3067 {
3068 const char *p = buf;
3069 const char *pp;
3070 ULONGEST pid = 0, tid = 0;
3071
3072 if (*p == 'p')
3073 {
3074 /* Multi-process ptid. */
3075 pp = unpack_varlen_hex (p + 1, &pid);
3076 if (*pp != '.')
3077 error (_("invalid remote ptid: %s"), p);
3078
3079 p = pp;
3080 pp = unpack_varlen_hex (p + 1, &tid);
3081 if (obuf)
3082 *obuf = pp;
3083 return ptid_t (pid, tid, 0);
3084 }
3085
3086 /* No multi-process. Just a tid. */
3087 pp = unpack_varlen_hex (p, &tid);
3088
3089 /* Return null_ptid when no thread id is found. */
3090 if (p == pp)
3091 {
3092 if (obuf)
3093 *obuf = pp;
3094 return null_ptid;
3095 }
3096
3097 /* Since the stub is not sending a process id, then default to
3098 what's in inferior_ptid, unless it's null at this point. If so,
3099 then since there's no way to know the pid of the reported
3100 threads, use the magic number. */
3101 if (inferior_ptid == null_ptid)
3102 pid = magic_null_ptid.pid ();
3103 else
3104 pid = inferior_ptid.pid ();
3105
3106 if (obuf)
3107 *obuf = pp;
3108 return ptid_t (pid, tid, 0);
3109 }
3110
3111 static int
3112 stubhex (int ch)
3113 {
3114 if (ch >= 'a' && ch <= 'f')
3115 return ch - 'a' + 10;
3116 if (ch >= '0' && ch <= '9')
3117 return ch - '0';
3118 if (ch >= 'A' && ch <= 'F')
3119 return ch - 'A' + 10;
3120 return -1;
3121 }
3122
3123 static int
3124 stub_unpack_int (char *buff, int fieldlength)
3125 {
3126 int nibble;
3127 int retval = 0;
3128
3129 while (fieldlength)
3130 {
3131 nibble = stubhex (*buff++);
3132 retval |= nibble;
3133 fieldlength--;
3134 if (fieldlength)
3135 retval = retval << 4;
3136 }
3137 return retval;
3138 }
3139
3140 static char *
3141 unpack_nibble (char *buf, int *val)
3142 {
3143 *val = fromhex (*buf++);
3144 return buf;
3145 }
3146
3147 static char *
3148 unpack_byte (char *buf, int *value)
3149 {
3150 *value = stub_unpack_int (buf, 2);
3151 return buf + 2;
3152 }
3153
3154 static char *
3155 pack_int (char *buf, int value)
3156 {
3157 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3158 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3159 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3160 buf = pack_hex_byte (buf, (value & 0xff));
3161 return buf;
3162 }
3163
3164 static char *
3165 unpack_int (char *buf, int *value)
3166 {
3167 *value = stub_unpack_int (buf, 8);
3168 return buf + 8;
3169 }
3170
3171 #if 0 /* Currently unused, uncomment when needed. */
3172 static char *pack_string (char *pkt, char *string);
3173
3174 static char *
3175 pack_string (char *pkt, char *string)
3176 {
3177 char ch;
3178 int len;
3179
3180 len = strlen (string);
3181 if (len > 200)
3182 len = 200; /* Bigger than most GDB packets, junk??? */
3183 pkt = pack_hex_byte (pkt, len);
3184 while (len-- > 0)
3185 {
3186 ch = *string++;
3187 if ((ch == '\0') || (ch == '#'))
3188 ch = '*'; /* Protect encapsulation. */
3189 *pkt++ = ch;
3190 }
3191 return pkt;
3192 }
3193 #endif /* 0 (unused) */
3194
3195 static char *
3196 unpack_string (char *src, char *dest, int length)
3197 {
3198 while (length--)
3199 *dest++ = *src++;
3200 *dest = '\0';
3201 return src;
3202 }
3203
3204 static char *
3205 pack_threadid (char *pkt, threadref *id)
3206 {
3207 char *limit;
3208 unsigned char *altid;
3209
3210 altid = (unsigned char *) id;
3211 limit = pkt + BUF_THREAD_ID_SIZE;
3212 while (pkt < limit)
3213 pkt = pack_hex_byte (pkt, *altid++);
3214 return pkt;
3215 }
3216
3217
3218 static char *
3219 unpack_threadid (char *inbuf, threadref *id)
3220 {
3221 char *altref;
3222 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3223 int x, y;
3224
3225 altref = (char *) id;
3226
3227 while (inbuf < limit)
3228 {
3229 x = stubhex (*inbuf++);
3230 y = stubhex (*inbuf++);
3231 *altref++ = (x << 4) | y;
3232 }
3233 return inbuf;
3234 }
3235
3236 /* Externally, threadrefs are 64 bits but internally, they are still
3237 ints. This is due to a mismatch of specifications. We would like
3238 to use 64bit thread references internally. This is an adapter
3239 function. */
3240
3241 void
3242 int_to_threadref (threadref *id, int value)
3243 {
3244 unsigned char *scan;
3245
3246 scan = (unsigned char *) id;
3247 {
3248 int i = 4;
3249 while (i--)
3250 *scan++ = 0;
3251 }
3252 *scan++ = (value >> 24) & 0xff;
3253 *scan++ = (value >> 16) & 0xff;
3254 *scan++ = (value >> 8) & 0xff;
3255 *scan++ = (value & 0xff);
3256 }
3257
3258 static int
3259 threadref_to_int (threadref *ref)
3260 {
3261 int i, value = 0;
3262 unsigned char *scan;
3263
3264 scan = *ref;
3265 scan += 4;
3266 i = 4;
3267 while (i-- > 0)
3268 value = (value << 8) | ((*scan++) & 0xff);
3269 return value;
3270 }
3271
3272 static void
3273 copy_threadref (threadref *dest, threadref *src)
3274 {
3275 int i;
3276 unsigned char *csrc, *cdest;
3277
3278 csrc = (unsigned char *) src;
3279 cdest = (unsigned char *) dest;
3280 i = 8;
3281 while (i--)
3282 *cdest++ = *csrc++;
3283 }
3284
3285 static int
3286 threadmatch (threadref *dest, threadref *src)
3287 {
3288 /* Things are broken right now, so just assume we got a match. */
3289 #if 0
3290 unsigned char *srcp, *destp;
3291 int i, result;
3292 srcp = (char *) src;
3293 destp = (char *) dest;
3294
3295 result = 1;
3296 while (i-- > 0)
3297 result &= (*srcp++ == *destp++) ? 1 : 0;
3298 return result;
3299 #endif
3300 return 1;
3301 }
3302
3303 /*
3304 threadid:1, # always request threadid
3305 context_exists:2,
3306 display:4,
3307 unique_name:8,
3308 more_display:16
3309 */
3310
3311 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3312
3313 static char *
3314 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3315 {
3316 *pkt++ = 'q'; /* Info Query */
3317 *pkt++ = 'P'; /* process or thread info */
3318 pkt = pack_int (pkt, mode); /* mode */
3319 pkt = pack_threadid (pkt, id); /* threadid */
3320 *pkt = '\0'; /* terminate */
3321 return pkt;
3322 }
3323
3324 /* These values tag the fields in a thread info response packet. */
3325 /* Tagging the fields allows us to request specific fields and to
3326 add more fields as time goes by. */
3327
3328 #define TAG_THREADID 1 /* Echo the thread identifier. */
3329 #define TAG_EXISTS 2 /* Is this process defined enough to
3330 fetch registers and its stack? */
3331 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3332 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3333 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3334 the process. */
3335
3336 int
3337 remote_target::remote_unpack_thread_info_response (char *pkt,
3338 threadref *expectedref,
3339 gdb_ext_thread_info *info)
3340 {
3341 struct remote_state *rs = get_remote_state ();
3342 int mask, length;
3343 int tag;
3344 threadref ref;
3345 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3346 int retval = 1;
3347
3348 /* info->threadid = 0; FIXME: implement zero_threadref. */
3349 info->active = 0;
3350 info->display[0] = '\0';
3351 info->shortname[0] = '\0';
3352 info->more_display[0] = '\0';
3353
3354 /* Assume the characters indicating the packet type have been
3355 stripped. */
3356 pkt = unpack_int (pkt, &mask); /* arg mask */
3357 pkt = unpack_threadid (pkt, &ref);
3358
3359 if (mask == 0)
3360 warning (_("Incomplete response to threadinfo request."));
3361 if (!threadmatch (&ref, expectedref))
3362 { /* This is an answer to a different request. */
3363 warning (_("ERROR RMT Thread info mismatch."));
3364 return 0;
3365 }
3366 copy_threadref (&info->threadid, &ref);
3367
3368 /* Loop on tagged fields , try to bail if something goes wrong. */
3369
3370 /* Packets are terminated with nulls. */
3371 while ((pkt < limit) && mask && *pkt)
3372 {
3373 pkt = unpack_int (pkt, &tag); /* tag */
3374 pkt = unpack_byte (pkt, &length); /* length */
3375 if (!(tag & mask)) /* Tags out of synch with mask. */
3376 {
3377 warning (_("ERROR RMT: threadinfo tag mismatch."));
3378 retval = 0;
3379 break;
3380 }
3381 if (tag == TAG_THREADID)
3382 {
3383 if (length != 16)
3384 {
3385 warning (_("ERROR RMT: length of threadid is not 16."));
3386 retval = 0;
3387 break;
3388 }
3389 pkt = unpack_threadid (pkt, &ref);
3390 mask = mask & ~TAG_THREADID;
3391 continue;
3392 }
3393 if (tag == TAG_EXISTS)
3394 {
3395 info->active = stub_unpack_int (pkt, length);
3396 pkt += length;
3397 mask = mask & ~(TAG_EXISTS);
3398 if (length > 8)
3399 {
3400 warning (_("ERROR RMT: 'exists' length too long."));
3401 retval = 0;
3402 break;
3403 }
3404 continue;
3405 }
3406 if (tag == TAG_THREADNAME)
3407 {
3408 pkt = unpack_string (pkt, &info->shortname[0], length);
3409 mask = mask & ~TAG_THREADNAME;
3410 continue;
3411 }
3412 if (tag == TAG_DISPLAY)
3413 {
3414 pkt = unpack_string (pkt, &info->display[0], length);
3415 mask = mask & ~TAG_DISPLAY;
3416 continue;
3417 }
3418 if (tag == TAG_MOREDISPLAY)
3419 {
3420 pkt = unpack_string (pkt, &info->more_display[0], length);
3421 mask = mask & ~TAG_MOREDISPLAY;
3422 continue;
3423 }
3424 warning (_("ERROR RMT: unknown thread info tag."));
3425 break; /* Not a tag we know about. */
3426 }
3427 return retval;
3428 }
3429
3430 int
3431 remote_target::remote_get_threadinfo (threadref *threadid,
3432 int fieldset,
3433 gdb_ext_thread_info *info)
3434 {
3435 struct remote_state *rs = get_remote_state ();
3436 int result;
3437
3438 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3439 putpkt (rs->buf);
3440 getpkt (&rs->buf, 0);
3441
3442 if (rs->buf[0] == '\0')
3443 return 0;
3444
3445 result = remote_unpack_thread_info_response (&rs->buf[2],
3446 threadid, info);
3447 return result;
3448 }
3449
3450 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3451
3452 static char *
3453 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3454 threadref *nextthread)
3455 {
3456 *pkt++ = 'q'; /* info query packet */
3457 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3458 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3459 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3460 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3461 *pkt = '\0';
3462 return pkt;
3463 }
3464
3465 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3466
3467 int
3468 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3469 threadref *original_echo,
3470 threadref *resultlist,
3471 int *doneflag)
3472 {
3473 struct remote_state *rs = get_remote_state ();
3474 char *limit;
3475 int count, resultcount, done;
3476
3477 resultcount = 0;
3478 /* Assume the 'q' and 'M chars have been stripped. */
3479 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3480 /* done parse past here */
3481 pkt = unpack_byte (pkt, &count); /* count field */
3482 pkt = unpack_nibble (pkt, &done);
3483 /* The first threadid is the argument threadid. */
3484 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3485 while ((count-- > 0) && (pkt < limit))
3486 {
3487 pkt = unpack_threadid (pkt, resultlist++);
3488 if (resultcount++ >= result_limit)
3489 break;
3490 }
3491 if (doneflag)
3492 *doneflag = done;
3493 return resultcount;
3494 }
3495
3496 /* Fetch the next batch of threads from the remote. Returns -1 if the
3497 qL packet is not supported, 0 on error and 1 on success. */
3498
3499 int
3500 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3501 int result_limit, int *done, int *result_count,
3502 threadref *threadlist)
3503 {
3504 struct remote_state *rs = get_remote_state ();
3505 int result = 1;
3506
3507 /* Truncate result limit to be smaller than the packet size. */
3508 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3509 >= get_remote_packet_size ())
3510 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3511
3512 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3513 nextthread);
3514 putpkt (rs->buf);
3515 getpkt (&rs->buf, 0);
3516 if (rs->buf[0] == '\0')
3517 {
3518 /* Packet not supported. */
3519 return -1;
3520 }
3521
3522 *result_count =
3523 parse_threadlist_response (&rs->buf[2], result_limit,
3524 &rs->echo_nextthread, threadlist, done);
3525
3526 if (!threadmatch (&rs->echo_nextthread, nextthread))
3527 {
3528 /* FIXME: This is a good reason to drop the packet. */
3529 /* Possibly, there is a duplicate response. */
3530 /* Possibilities :
3531 retransmit immediatly - race conditions
3532 retransmit after timeout - yes
3533 exit
3534 wait for packet, then exit
3535 */
3536 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3537 return 0; /* I choose simply exiting. */
3538 }
3539 if (*result_count <= 0)
3540 {
3541 if (*done != 1)
3542 {
3543 warning (_("RMT ERROR : failed to get remote thread list."));
3544 result = 0;
3545 }
3546 return result; /* break; */
3547 }
3548 if (*result_count > result_limit)
3549 {
3550 *result_count = 0;
3551 warning (_("RMT ERROR: threadlist response longer than requested."));
3552 return 0;
3553 }
3554 return result;
3555 }
3556
3557 /* Fetch the list of remote threads, with the qL packet, and call
3558 STEPFUNCTION for each thread found. Stops iterating and returns 1
3559 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3560 STEPFUNCTION returns false. If the packet is not supported,
3561 returns -1. */
3562
3563 int
3564 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3565 void *context, int looplimit)
3566 {
3567 struct remote_state *rs = get_remote_state ();
3568 int done, i, result_count;
3569 int startflag = 1;
3570 int result = 1;
3571 int loopcount = 0;
3572
3573 done = 0;
3574 while (!done)
3575 {
3576 if (loopcount++ > looplimit)
3577 {
3578 result = 0;
3579 warning (_("Remote fetch threadlist -infinite loop-."));
3580 break;
3581 }
3582 result = remote_get_threadlist (startflag, &rs->nextthread,
3583 MAXTHREADLISTRESULTS,
3584 &done, &result_count,
3585 rs->resultthreadlist);
3586 if (result <= 0)
3587 break;
3588 /* Clear for later iterations. */
3589 startflag = 0;
3590 /* Setup to resume next batch of thread references, set nextthread. */
3591 if (result_count >= 1)
3592 copy_threadref (&rs->nextthread,
3593 &rs->resultthreadlist[result_count - 1]);
3594 i = 0;
3595 while (result_count--)
3596 {
3597 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3598 {
3599 result = 0;
3600 break;
3601 }
3602 }
3603 }
3604 return result;
3605 }
3606
3607 /* A thread found on the remote target. */
3608
3609 struct thread_item
3610 {
3611 explicit thread_item (ptid_t ptid_)
3612 : ptid (ptid_)
3613 {}
3614
3615 thread_item (thread_item &&other) = default;
3616 thread_item &operator= (thread_item &&other) = default;
3617
3618 DISABLE_COPY_AND_ASSIGN (thread_item);
3619
3620 /* The thread's PTID. */
3621 ptid_t ptid;
3622
3623 /* The thread's extra info. */
3624 std::string extra;
3625
3626 /* The thread's name. */
3627 std::string name;
3628
3629 /* The core the thread was running on. -1 if not known. */
3630 int core = -1;
3631
3632 /* The thread handle associated with the thread. */
3633 gdb::byte_vector thread_handle;
3634 };
3635
3636 /* Context passed around to the various methods listing remote
3637 threads. As new threads are found, they're added to the ITEMS
3638 vector. */
3639
3640 struct threads_listing_context
3641 {
3642 /* Return true if this object contains an entry for a thread with ptid
3643 PTID. */
3644
3645 bool contains_thread (ptid_t ptid) const
3646 {
3647 auto match_ptid = [&] (const thread_item &item)
3648 {
3649 return item.ptid == ptid;
3650 };
3651
3652 auto it = std::find_if (this->items.begin (),
3653 this->items.end (),
3654 match_ptid);
3655
3656 return it != this->items.end ();
3657 }
3658
3659 /* Remove the thread with ptid PTID. */
3660
3661 void remove_thread (ptid_t ptid)
3662 {
3663 auto match_ptid = [&] (const thread_item &item)
3664 {
3665 return item.ptid == ptid;
3666 };
3667
3668 auto it = std::remove_if (this->items.begin (),
3669 this->items.end (),
3670 match_ptid);
3671
3672 if (it != this->items.end ())
3673 this->items.erase (it);
3674 }
3675
3676 /* The threads found on the remote target. */
3677 std::vector<thread_item> items;
3678 };
3679
3680 static int
3681 remote_newthread_step (threadref *ref, void *data)
3682 {
3683 struct threads_listing_context *context
3684 = (struct threads_listing_context *) data;
3685 int pid = inferior_ptid.pid ();
3686 int lwp = threadref_to_int (ref);
3687 ptid_t ptid (pid, lwp);
3688
3689 context->items.emplace_back (ptid);
3690
3691 return 1; /* continue iterator */
3692 }
3693
3694 #define CRAZY_MAX_THREADS 1000
3695
3696 ptid_t
3697 remote_target::remote_current_thread (ptid_t oldpid)
3698 {
3699 struct remote_state *rs = get_remote_state ();
3700
3701 putpkt ("qC");
3702 getpkt (&rs->buf, 0);
3703 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3704 {
3705 const char *obuf;
3706 ptid_t result;
3707
3708 result = read_ptid (&rs->buf[2], &obuf);
3709 if (*obuf != '\0' && remote_debug)
3710 fprintf_unfiltered (gdb_stdlog,
3711 "warning: garbage in qC reply\n");
3712
3713 return result;
3714 }
3715 else
3716 return oldpid;
3717 }
3718
3719 /* List remote threads using the deprecated qL packet. */
3720
3721 int
3722 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3723 {
3724 if (remote_threadlist_iterator (remote_newthread_step, context,
3725 CRAZY_MAX_THREADS) >= 0)
3726 return 1;
3727
3728 return 0;
3729 }
3730
3731 #if defined(HAVE_LIBEXPAT)
3732
3733 static void
3734 start_thread (struct gdb_xml_parser *parser,
3735 const struct gdb_xml_element *element,
3736 void *user_data,
3737 std::vector<gdb_xml_value> &attributes)
3738 {
3739 struct threads_listing_context *data
3740 = (struct threads_listing_context *) user_data;
3741 struct gdb_xml_value *attr;
3742
3743 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3744 ptid_t ptid = read_ptid (id, NULL);
3745
3746 data->items.emplace_back (ptid);
3747 thread_item &item = data->items.back ();
3748
3749 attr = xml_find_attribute (attributes, "core");
3750 if (attr != NULL)
3751 item.core = *(ULONGEST *) attr->value.get ();
3752
3753 attr = xml_find_attribute (attributes, "name");
3754 if (attr != NULL)
3755 item.name = (const char *) attr->value.get ();
3756
3757 attr = xml_find_attribute (attributes, "handle");
3758 if (attr != NULL)
3759 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3760 }
3761
3762 static void
3763 end_thread (struct gdb_xml_parser *parser,
3764 const struct gdb_xml_element *element,
3765 void *user_data, const char *body_text)
3766 {
3767 struct threads_listing_context *data
3768 = (struct threads_listing_context *) user_data;
3769
3770 if (body_text != NULL && *body_text != '\0')
3771 data->items.back ().extra = body_text;
3772 }
3773
3774 const struct gdb_xml_attribute thread_attributes[] = {
3775 { "id", GDB_XML_AF_NONE, NULL, NULL },
3776 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3777 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3778 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3779 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3780 };
3781
3782 const struct gdb_xml_element thread_children[] = {
3783 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3784 };
3785
3786 const struct gdb_xml_element threads_children[] = {
3787 { "thread", thread_attributes, thread_children,
3788 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3789 start_thread, end_thread },
3790 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3791 };
3792
3793 const struct gdb_xml_element threads_elements[] = {
3794 { "threads", NULL, threads_children,
3795 GDB_XML_EF_NONE, NULL, NULL },
3796 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3797 };
3798
3799 #endif
3800
3801 /* List remote threads using qXfer:threads:read. */
3802
3803 int
3804 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3805 {
3806 #if defined(HAVE_LIBEXPAT)
3807 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3808 {
3809 gdb::optional<gdb::char_vector> xml
3810 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3811
3812 if (xml && (*xml)[0] != '\0')
3813 {
3814 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3815 threads_elements, xml->data (), context);
3816 }
3817
3818 return 1;
3819 }
3820 #endif
3821
3822 return 0;
3823 }
3824
3825 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3826
3827 int
3828 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3829 {
3830 struct remote_state *rs = get_remote_state ();
3831
3832 if (rs->use_threadinfo_query)
3833 {
3834 const char *bufp;
3835
3836 putpkt ("qfThreadInfo");
3837 getpkt (&rs->buf, 0);
3838 bufp = rs->buf.data ();
3839 if (bufp[0] != '\0') /* q packet recognized */
3840 {
3841 while (*bufp++ == 'm') /* reply contains one or more TID */
3842 {
3843 do
3844 {
3845 ptid_t ptid = read_ptid (bufp, &bufp);
3846 context->items.emplace_back (ptid);
3847 }
3848 while (*bufp++ == ','); /* comma-separated list */
3849 putpkt ("qsThreadInfo");
3850 getpkt (&rs->buf, 0);
3851 bufp = rs->buf.data ();
3852 }
3853 return 1;
3854 }
3855 else
3856 {
3857 /* Packet not recognized. */
3858 rs->use_threadinfo_query = 0;
3859 }
3860 }
3861
3862 return 0;
3863 }
3864
3865 /* Return true if INF only has one non-exited thread. */
3866
3867 static bool
3868 has_single_non_exited_thread (inferior *inf)
3869 {
3870 int count = 0;
3871 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3872 if (++count > 1)
3873 break;
3874 return count == 1;
3875 }
3876
3877 /* Implement the to_update_thread_list function for the remote
3878 targets. */
3879
3880 void
3881 remote_target::update_thread_list ()
3882 {
3883 struct threads_listing_context context;
3884 int got_list = 0;
3885
3886 /* We have a few different mechanisms to fetch the thread list. Try
3887 them all, starting with the most preferred one first, falling
3888 back to older methods. */
3889 if (remote_get_threads_with_qxfer (&context)
3890 || remote_get_threads_with_qthreadinfo (&context)
3891 || remote_get_threads_with_ql (&context))
3892 {
3893 got_list = 1;
3894
3895 if (context.items.empty ()
3896 && remote_thread_always_alive (inferior_ptid))
3897 {
3898 /* Some targets don't really support threads, but still
3899 reply an (empty) thread list in response to the thread
3900 listing packets, instead of replying "packet not
3901 supported". Exit early so we don't delete the main
3902 thread. */
3903 return;
3904 }
3905
3906 /* CONTEXT now holds the current thread list on the remote
3907 target end. Delete GDB-side threads no longer found on the
3908 target. */
3909 for (thread_info *tp : all_threads_safe ())
3910 {
3911 if (tp->inf->process_target () != this)
3912 continue;
3913
3914 if (!context.contains_thread (tp->ptid))
3915 {
3916 /* Do not remove the thread if it is the last thread in
3917 the inferior. This situation happens when we have a
3918 pending exit process status to process. Otherwise we
3919 may end up with a seemingly live inferior (i.e. pid
3920 != 0) that has no threads. */
3921 if (has_single_non_exited_thread (tp->inf))
3922 continue;
3923
3924 /* Not found. */
3925 delete_thread (tp);
3926 }
3927 }
3928
3929 /* Remove any unreported fork child threads from CONTEXT so
3930 that we don't interfere with follow fork, which is where
3931 creation of such threads is handled. */
3932 remove_new_fork_children (&context);
3933
3934 /* And now add threads we don't know about yet to our list. */
3935 for (thread_item &item : context.items)
3936 {
3937 if (item.ptid != null_ptid)
3938 {
3939 /* In non-stop mode, we assume new found threads are
3940 executing until proven otherwise with a stop reply.
3941 In all-stop, we can only get here if all threads are
3942 stopped. */
3943 int executing = target_is_non_stop_p () ? 1 : 0;
3944
3945 remote_notice_new_inferior (item.ptid, executing);
3946
3947 thread_info *tp = find_thread_ptid (this, item.ptid);
3948 remote_thread_info *info = get_remote_thread_info (tp);
3949 info->core = item.core;
3950 info->extra = std::move (item.extra);
3951 info->name = std::move (item.name);
3952 info->thread_handle = std::move (item.thread_handle);
3953 }
3954 }
3955 }
3956
3957 if (!got_list)
3958 {
3959 /* If no thread listing method is supported, then query whether
3960 each known thread is alive, one by one, with the T packet.
3961 If the target doesn't support threads at all, then this is a
3962 no-op. See remote_thread_alive. */
3963 prune_threads ();
3964 }
3965 }
3966
3967 /*
3968 * Collect a descriptive string about the given thread.
3969 * The target may say anything it wants to about the thread
3970 * (typically info about its blocked / runnable state, name, etc.).
3971 * This string will appear in the info threads display.
3972 *
3973 * Optional: targets are not required to implement this function.
3974 */
3975
3976 const char *
3977 remote_target::extra_thread_info (thread_info *tp)
3978 {
3979 struct remote_state *rs = get_remote_state ();
3980 int set;
3981 threadref id;
3982 struct gdb_ext_thread_info threadinfo;
3983
3984 if (rs->remote_desc == 0) /* paranoia */
3985 internal_error (__FILE__, __LINE__,
3986 _("remote_threads_extra_info"));
3987
3988 if (tp->ptid == magic_null_ptid
3989 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3990 /* This is the main thread which was added by GDB. The remote
3991 server doesn't know about it. */
3992 return NULL;
3993
3994 std::string &extra = get_remote_thread_info (tp)->extra;
3995
3996 /* If already have cached info, use it. */
3997 if (!extra.empty ())
3998 return extra.c_str ();
3999
4000 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
4001 {
4002 /* If we're using qXfer:threads:read, then the extra info is
4003 included in the XML. So if we didn't have anything cached,
4004 it's because there's really no extra info. */
4005 return NULL;
4006 }
4007
4008 if (rs->use_threadextra_query)
4009 {
4010 char *b = rs->buf.data ();
4011 char *endb = b + get_remote_packet_size ();
4012
4013 xsnprintf (b, endb - b, "qThreadExtraInfo,");
4014 b += strlen (b);
4015 write_ptid (b, endb, tp->ptid);
4016
4017 putpkt (rs->buf);
4018 getpkt (&rs->buf, 0);
4019 if (rs->buf[0] != 0)
4020 {
4021 extra.resize (strlen (rs->buf.data ()) / 2);
4022 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
4023 return extra.c_str ();
4024 }
4025 }
4026
4027 /* If the above query fails, fall back to the old method. */
4028 rs->use_threadextra_query = 0;
4029 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4030 | TAG_MOREDISPLAY | TAG_DISPLAY;
4031 int_to_threadref (&id, tp->ptid.lwp ());
4032 if (remote_get_threadinfo (&id, set, &threadinfo))
4033 if (threadinfo.active)
4034 {
4035 if (*threadinfo.shortname)
4036 string_appendf (extra, " Name: %s", threadinfo.shortname);
4037 if (*threadinfo.display)
4038 {
4039 if (!extra.empty ())
4040 extra += ',';
4041 string_appendf (extra, " State: %s", threadinfo.display);
4042 }
4043 if (*threadinfo.more_display)
4044 {
4045 if (!extra.empty ())
4046 extra += ',';
4047 string_appendf (extra, " Priority: %s", threadinfo.more_display);
4048 }
4049 return extra.c_str ();
4050 }
4051 return NULL;
4052 }
4053 \f
4054
4055 bool
4056 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
4057 struct static_tracepoint_marker *marker)
4058 {
4059 struct remote_state *rs = get_remote_state ();
4060 char *p = rs->buf.data ();
4061
4062 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
4063 p += strlen (p);
4064 p += hexnumstr (p, addr);
4065 putpkt (rs->buf);
4066 getpkt (&rs->buf, 0);
4067 p = rs->buf.data ();
4068
4069 if (*p == 'E')
4070 error (_("Remote failure reply: %s"), p);
4071
4072 if (*p++ == 'm')
4073 {
4074 parse_static_tracepoint_marker_definition (p, NULL, marker);
4075 return true;
4076 }
4077
4078 return false;
4079 }
4080
4081 std::vector<static_tracepoint_marker>
4082 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4083 {
4084 struct remote_state *rs = get_remote_state ();
4085 std::vector<static_tracepoint_marker> markers;
4086 const char *p;
4087 static_tracepoint_marker marker;
4088
4089 /* Ask for a first packet of static tracepoint marker
4090 definition. */
4091 putpkt ("qTfSTM");
4092 getpkt (&rs->buf, 0);
4093 p = rs->buf.data ();
4094 if (*p == 'E')
4095 error (_("Remote failure reply: %s"), p);
4096
4097 while (*p++ == 'm')
4098 {
4099 do
4100 {
4101 parse_static_tracepoint_marker_definition (p, &p, &marker);
4102
4103 if (strid == NULL || marker.str_id == strid)
4104 markers.push_back (std::move (marker));
4105 }
4106 while (*p++ == ','); /* comma-separated list */
4107 /* Ask for another packet of static tracepoint definition. */
4108 putpkt ("qTsSTM");
4109 getpkt (&rs->buf, 0);
4110 p = rs->buf.data ();
4111 }
4112
4113 return markers;
4114 }
4115
4116 \f
4117 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4118
4119 ptid_t
4120 remote_target::get_ada_task_ptid (long lwp, long thread)
4121 {
4122 return ptid_t (inferior_ptid.pid (), lwp, 0);
4123 }
4124 \f
4125
4126 /* Restart the remote side; this is an extended protocol operation. */
4127
4128 void
4129 remote_target::extended_remote_restart ()
4130 {
4131 struct remote_state *rs = get_remote_state ();
4132
4133 /* Send the restart command; for reasons I don't understand the
4134 remote side really expects a number after the "R". */
4135 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4136 putpkt (rs->buf);
4137
4138 remote_fileio_reset ();
4139 }
4140 \f
4141 /* Clean up connection to a remote debugger. */
4142
4143 void
4144 remote_target::close ()
4145 {
4146 /* Make sure we leave stdin registered in the event loop. */
4147 terminal_ours ();
4148
4149 trace_reset_local_state ();
4150
4151 delete this;
4152 }
4153
4154 remote_target::~remote_target ()
4155 {
4156 struct remote_state *rs = get_remote_state ();
4157
4158 /* Check for NULL because we may get here with a partially
4159 constructed target/connection. */
4160 if (rs->remote_desc == nullptr)
4161 return;
4162
4163 serial_close (rs->remote_desc);
4164
4165 /* We are destroying the remote target, so we should discard
4166 everything of this target. */
4167 discard_pending_stop_replies_in_queue ();
4168
4169 if (rs->remote_async_inferior_event_token)
4170 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4171
4172 delete rs->notif_state;
4173 }
4174
4175 /* Query the remote side for the text, data and bss offsets. */
4176
4177 void
4178 remote_target::get_offsets ()
4179 {
4180 struct remote_state *rs = get_remote_state ();
4181 char *buf;
4182 char *ptr;
4183 int lose, num_segments = 0, do_sections, do_segments;
4184 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4185
4186 if (current_program_space->symfile_object_file == NULL)
4187 return;
4188
4189 putpkt ("qOffsets");
4190 getpkt (&rs->buf, 0);
4191 buf = rs->buf.data ();
4192
4193 if (buf[0] == '\000')
4194 return; /* Return silently. Stub doesn't support
4195 this command. */
4196 if (buf[0] == 'E')
4197 {
4198 warning (_("Remote failure reply: %s"), buf);
4199 return;
4200 }
4201
4202 /* Pick up each field in turn. This used to be done with scanf, but
4203 scanf will make trouble if CORE_ADDR size doesn't match
4204 conversion directives correctly. The following code will work
4205 with any size of CORE_ADDR. */
4206 text_addr = data_addr = bss_addr = 0;
4207 ptr = buf;
4208 lose = 0;
4209
4210 if (startswith (ptr, "Text="))
4211 {
4212 ptr += 5;
4213 /* Don't use strtol, could lose on big values. */
4214 while (*ptr && *ptr != ';')
4215 text_addr = (text_addr << 4) + fromhex (*ptr++);
4216
4217 if (startswith (ptr, ";Data="))
4218 {
4219 ptr += 6;
4220 while (*ptr && *ptr != ';')
4221 data_addr = (data_addr << 4) + fromhex (*ptr++);
4222 }
4223 else
4224 lose = 1;
4225
4226 if (!lose && startswith (ptr, ";Bss="))
4227 {
4228 ptr += 5;
4229 while (*ptr && *ptr != ';')
4230 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4231
4232 if (bss_addr != data_addr)
4233 warning (_("Target reported unsupported offsets: %s"), buf);
4234 }
4235 else
4236 lose = 1;
4237 }
4238 else if (startswith (ptr, "TextSeg="))
4239 {
4240 ptr += 8;
4241 /* Don't use strtol, could lose on big values. */
4242 while (*ptr && *ptr != ';')
4243 text_addr = (text_addr << 4) + fromhex (*ptr++);
4244 num_segments = 1;
4245
4246 if (startswith (ptr, ";DataSeg="))
4247 {
4248 ptr += 9;
4249 while (*ptr && *ptr != ';')
4250 data_addr = (data_addr << 4) + fromhex (*ptr++);
4251 num_segments++;
4252 }
4253 }
4254 else
4255 lose = 1;
4256
4257 if (lose)
4258 error (_("Malformed response to offset query, %s"), buf);
4259 else if (*ptr != '\0')
4260 warning (_("Target reported unsupported offsets: %s"), buf);
4261
4262 objfile *objf = current_program_space->symfile_object_file;
4263 section_offsets offs = objf->section_offsets;
4264
4265 symfile_segment_data_up data = get_symfile_segment_data (objf->obfd);
4266 do_segments = (data != NULL);
4267 do_sections = num_segments == 0;
4268
4269 if (num_segments > 0)
4270 {
4271 segments[0] = text_addr;
4272 segments[1] = data_addr;
4273 }
4274 /* If we have two segments, we can still try to relocate everything
4275 by assuming that the .text and .data offsets apply to the whole
4276 text and data segments. Convert the offsets given in the packet
4277 to base addresses for symfile_map_offsets_to_segments. */
4278 else if (data != nullptr && data->segments.size () == 2)
4279 {
4280 segments[0] = data->segments[0].base + text_addr;
4281 segments[1] = data->segments[1].base + data_addr;
4282 num_segments = 2;
4283 }
4284 /* If the object file has only one segment, assume that it is text
4285 rather than data; main programs with no writable data are rare,
4286 but programs with no code are useless. Of course the code might
4287 have ended up in the data segment... to detect that we would need
4288 the permissions here. */
4289 else if (data && data->segments.size () == 1)
4290 {
4291 segments[0] = data->segments[0].base + text_addr;
4292 num_segments = 1;
4293 }
4294 /* There's no way to relocate by segment. */
4295 else
4296 do_segments = 0;
4297
4298 if (do_segments)
4299 {
4300 int ret = symfile_map_offsets_to_segments (objf->obfd,
4301 data.get (), offs,
4302 num_segments, segments);
4303
4304 if (ret == 0 && !do_sections)
4305 error (_("Can not handle qOffsets TextSeg "
4306 "response with this symbol file"));
4307
4308 if (ret > 0)
4309 do_sections = 0;
4310 }
4311
4312 if (do_sections)
4313 {
4314 offs[SECT_OFF_TEXT (objf)] = text_addr;
4315
4316 /* This is a temporary kludge to force data and bss to use the
4317 same offsets because that's what nlmconv does now. The real
4318 solution requires changes to the stub and remote.c that I
4319 don't have time to do right now. */
4320
4321 offs[SECT_OFF_DATA (objf)] = data_addr;
4322 offs[SECT_OFF_BSS (objf)] = data_addr;
4323 }
4324
4325 objfile_relocate (objf, offs);
4326 }
4327
4328 /* Send interrupt_sequence to remote target. */
4329
4330 void
4331 remote_target::send_interrupt_sequence ()
4332 {
4333 struct remote_state *rs = get_remote_state ();
4334
4335 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4336 remote_serial_write ("\x03", 1);
4337 else if (interrupt_sequence_mode == interrupt_sequence_break)
4338 serial_send_break (rs->remote_desc);
4339 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4340 {
4341 serial_send_break (rs->remote_desc);
4342 remote_serial_write ("g", 1);
4343 }
4344 else
4345 internal_error (__FILE__, __LINE__,
4346 _("Invalid value for interrupt_sequence_mode: %s."),
4347 interrupt_sequence_mode);
4348 }
4349
4350
4351 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4352 and extract the PTID. Returns NULL_PTID if not found. */
4353
4354 static ptid_t
4355 stop_reply_extract_thread (char *stop_reply)
4356 {
4357 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4358 {
4359 const char *p;
4360
4361 /* Txx r:val ; r:val (...) */
4362 p = &stop_reply[3];
4363
4364 /* Look for "register" named "thread". */
4365 while (*p != '\0')
4366 {
4367 const char *p1;
4368
4369 p1 = strchr (p, ':');
4370 if (p1 == NULL)
4371 return null_ptid;
4372
4373 if (strncmp (p, "thread", p1 - p) == 0)
4374 return read_ptid (++p1, &p);
4375
4376 p1 = strchr (p, ';');
4377 if (p1 == NULL)
4378 return null_ptid;
4379 p1++;
4380
4381 p = p1;
4382 }
4383 }
4384
4385 return null_ptid;
4386 }
4387
4388 /* Determine the remote side's current thread. If we have a stop
4389 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4390 "thread" register we can extract the current thread from. If not,
4391 ask the remote which is the current thread with qC. The former
4392 method avoids a roundtrip. */
4393
4394 ptid_t
4395 remote_target::get_current_thread (char *wait_status)
4396 {
4397 ptid_t ptid = null_ptid;
4398
4399 /* Note we don't use remote_parse_stop_reply as that makes use of
4400 the target architecture, which we haven't yet fully determined at
4401 this point. */
4402 if (wait_status != NULL)
4403 ptid = stop_reply_extract_thread (wait_status);
4404 if (ptid == null_ptid)
4405 ptid = remote_current_thread (inferior_ptid);
4406
4407 return ptid;
4408 }
4409
4410 /* Query the remote target for which is the current thread/process,
4411 add it to our tables, and update INFERIOR_PTID. The caller is
4412 responsible for setting the state such that the remote end is ready
4413 to return the current thread.
4414
4415 This function is called after handling the '?' or 'vRun' packets,
4416 whose response is a stop reply from which we can also try
4417 extracting the thread. If the target doesn't support the explicit
4418 qC query, we infer the current thread from that stop reply, passed
4419 in in WAIT_STATUS, which may be NULL. */
4420
4421 void
4422 remote_target::add_current_inferior_and_thread (char *wait_status)
4423 {
4424 struct remote_state *rs = get_remote_state ();
4425 bool fake_pid_p = false;
4426
4427 switch_to_no_thread ();
4428
4429 /* Now, if we have thread information, update the current thread's
4430 ptid. */
4431 ptid_t curr_ptid = get_current_thread (wait_status);
4432
4433 if (curr_ptid != null_ptid)
4434 {
4435 if (!remote_multi_process_p (rs))
4436 fake_pid_p = true;
4437 }
4438 else
4439 {
4440 /* Without this, some commands which require an active target
4441 (such as kill) won't work. This variable serves (at least)
4442 double duty as both the pid of the target process (if it has
4443 such), and as a flag indicating that a target is active. */
4444 curr_ptid = magic_null_ptid;
4445 fake_pid_p = true;
4446 }
4447
4448 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4449
4450 /* Add the main thread and switch to it. Don't try reading
4451 registers yet, since we haven't fetched the target description
4452 yet. */
4453 thread_info *tp = add_thread_silent (this, curr_ptid);
4454 switch_to_thread_no_regs (tp);
4455 }
4456
4457 /* Print info about a thread that was found already stopped on
4458 connection. */
4459
4460 static void
4461 print_one_stopped_thread (struct thread_info *thread)
4462 {
4463 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4464
4465 switch_to_thread (thread);
4466 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4467 set_current_sal_from_frame (get_current_frame ());
4468
4469 thread->suspend.waitstatus_pending_p = 0;
4470
4471 if (ws->kind == TARGET_WAITKIND_STOPPED)
4472 {
4473 enum gdb_signal sig = ws->value.sig;
4474
4475 if (signal_print_state (sig))
4476 gdb::observers::signal_received.notify (sig);
4477 }
4478 gdb::observers::normal_stop.notify (NULL, 1);
4479 }
4480
4481 /* Process all initial stop replies the remote side sent in response
4482 to the ? packet. These indicate threads that were already stopped
4483 on initial connection. We mark these threads as stopped and print
4484 their current frame before giving the user the prompt. */
4485
4486 void
4487 remote_target::process_initial_stop_replies (int from_tty)
4488 {
4489 int pending_stop_replies = stop_reply_queue_length ();
4490 struct thread_info *selected = NULL;
4491 struct thread_info *lowest_stopped = NULL;
4492 struct thread_info *first = NULL;
4493
4494 /* Consume the initial pending events. */
4495 while (pending_stop_replies-- > 0)
4496 {
4497 ptid_t waiton_ptid = minus_one_ptid;
4498 ptid_t event_ptid;
4499 struct target_waitstatus ws;
4500 int ignore_event = 0;
4501
4502 memset (&ws, 0, sizeof (ws));
4503 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4504 if (remote_debug)
4505 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4506
4507 switch (ws.kind)
4508 {
4509 case TARGET_WAITKIND_IGNORE:
4510 case TARGET_WAITKIND_NO_RESUMED:
4511 case TARGET_WAITKIND_SIGNALLED:
4512 case TARGET_WAITKIND_EXITED:
4513 /* We shouldn't see these, but if we do, just ignore. */
4514 if (remote_debug)
4515 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4516 ignore_event = 1;
4517 break;
4518
4519 case TARGET_WAITKIND_EXECD:
4520 xfree (ws.value.execd_pathname);
4521 break;
4522 default:
4523 break;
4524 }
4525
4526 if (ignore_event)
4527 continue;
4528
4529 thread_info *evthread = find_thread_ptid (this, event_ptid);
4530
4531 if (ws.kind == TARGET_WAITKIND_STOPPED)
4532 {
4533 enum gdb_signal sig = ws.value.sig;
4534
4535 /* Stubs traditionally report SIGTRAP as initial signal,
4536 instead of signal 0. Suppress it. */
4537 if (sig == GDB_SIGNAL_TRAP)
4538 sig = GDB_SIGNAL_0;
4539 evthread->suspend.stop_signal = sig;
4540 ws.value.sig = sig;
4541 }
4542
4543 evthread->suspend.waitstatus = ws;
4544
4545 if (ws.kind != TARGET_WAITKIND_STOPPED
4546 || ws.value.sig != GDB_SIGNAL_0)
4547 evthread->suspend.waitstatus_pending_p = 1;
4548
4549 set_executing (this, event_ptid, false);
4550 set_running (this, event_ptid, false);
4551 get_remote_thread_info (evthread)->set_not_resumed ();
4552 }
4553
4554 /* "Notice" the new inferiors before anything related to
4555 registers/memory. */
4556 for (inferior *inf : all_non_exited_inferiors (this))
4557 {
4558 inf->needs_setup = 1;
4559
4560 if (non_stop)
4561 {
4562 thread_info *thread = any_live_thread_of_inferior (inf);
4563 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4564 from_tty);
4565 }
4566 }
4567
4568 /* If all-stop on top of non-stop, pause all threads. Note this
4569 records the threads' stop pc, so must be done after "noticing"
4570 the inferiors. */
4571 if (!non_stop)
4572 {
4573 stop_all_threads ();
4574
4575 /* If all threads of an inferior were already stopped, we
4576 haven't setup the inferior yet. */
4577 for (inferior *inf : all_non_exited_inferiors (this))
4578 {
4579 if (inf->needs_setup)
4580 {
4581 thread_info *thread = any_live_thread_of_inferior (inf);
4582 switch_to_thread_no_regs (thread);
4583 setup_inferior (0);
4584 }
4585 }
4586 }
4587
4588 /* Now go over all threads that are stopped, and print their current
4589 frame. If all-stop, then if there's a signalled thread, pick
4590 that as current. */
4591 for (thread_info *thread : all_non_exited_threads (this))
4592 {
4593 if (first == NULL)
4594 first = thread;
4595
4596 if (!non_stop)
4597 thread->set_running (false);
4598 else if (thread->state != THREAD_STOPPED)
4599 continue;
4600
4601 if (selected == NULL
4602 && thread->suspend.waitstatus_pending_p)
4603 selected = thread;
4604
4605 if (lowest_stopped == NULL
4606 || thread->inf->num < lowest_stopped->inf->num
4607 || thread->per_inf_num < lowest_stopped->per_inf_num)
4608 lowest_stopped = thread;
4609
4610 if (non_stop)
4611 print_one_stopped_thread (thread);
4612 }
4613
4614 /* In all-stop, we only print the status of one thread, and leave
4615 others with their status pending. */
4616 if (!non_stop)
4617 {
4618 thread_info *thread = selected;
4619 if (thread == NULL)
4620 thread = lowest_stopped;
4621 if (thread == NULL)
4622 thread = first;
4623
4624 print_one_stopped_thread (thread);
4625 }
4626
4627 /* For "info program". */
4628 thread_info *thread = inferior_thread ();
4629 if (thread->state == THREAD_STOPPED)
4630 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4631 }
4632
4633 /* Start the remote connection and sync state. */
4634
4635 void
4636 remote_target::start_remote (int from_tty, int extended_p)
4637 {
4638 struct remote_state *rs = get_remote_state ();
4639 struct packet_config *noack_config;
4640 char *wait_status = NULL;
4641
4642 /* Signal other parts that we're going through the initial setup,
4643 and so things may not be stable yet. E.g., we don't try to
4644 install tracepoints until we've relocated symbols. Also, a
4645 Ctrl-C before we're connected and synced up can't interrupt the
4646 target. Instead, it offers to drop the (potentially wedged)
4647 connection. */
4648 rs->starting_up = 1;
4649
4650 QUIT;
4651
4652 if (interrupt_on_connect)
4653 send_interrupt_sequence ();
4654
4655 /* Ack any packet which the remote side has already sent. */
4656 remote_serial_write ("+", 1);
4657
4658 /* The first packet we send to the target is the optional "supported
4659 packets" request. If the target can answer this, it will tell us
4660 which later probes to skip. */
4661 remote_query_supported ();
4662
4663 /* If the stub wants to get a QAllow, compose one and send it. */
4664 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4665 set_permissions ();
4666
4667 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4668 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4669 as a reply to known packet. For packet "vFile:setfs:" it is an
4670 invalid reply and GDB would return error in
4671 remote_hostio_set_filesystem, making remote files access impossible.
4672 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4673 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4674 {
4675 const char v_mustreplyempty[] = "vMustReplyEmpty";
4676
4677 putpkt (v_mustreplyempty);
4678 getpkt (&rs->buf, 0);
4679 if (strcmp (rs->buf.data (), "OK") == 0)
4680 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4681 else if (strcmp (rs->buf.data (), "") != 0)
4682 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4683 rs->buf.data ());
4684 }
4685
4686 /* Next, we possibly activate noack mode.
4687
4688 If the QStartNoAckMode packet configuration is set to AUTO,
4689 enable noack mode if the stub reported a wish for it with
4690 qSupported.
4691
4692 If set to TRUE, then enable noack mode even if the stub didn't
4693 report it in qSupported. If the stub doesn't reply OK, the
4694 session ends with an error.
4695
4696 If FALSE, then don't activate noack mode, regardless of what the
4697 stub claimed should be the default with qSupported. */
4698
4699 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4700 if (packet_config_support (noack_config) != PACKET_DISABLE)
4701 {
4702 putpkt ("QStartNoAckMode");
4703 getpkt (&rs->buf, 0);
4704 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4705 rs->noack_mode = 1;
4706 }
4707
4708 if (extended_p)
4709 {
4710 /* Tell the remote that we are using the extended protocol. */
4711 putpkt ("!");
4712 getpkt (&rs->buf, 0);
4713 }
4714
4715 /* Let the target know which signals it is allowed to pass down to
4716 the program. */
4717 update_signals_program_target ();
4718
4719 /* Next, if the target can specify a description, read it. We do
4720 this before anything involving memory or registers. */
4721 target_find_description ();
4722
4723 /* Next, now that we know something about the target, update the
4724 address spaces in the program spaces. */
4725 update_address_spaces ();
4726
4727 /* On OSs where the list of libraries is global to all
4728 processes, we fetch them early. */
4729 if (gdbarch_has_global_solist (target_gdbarch ()))
4730 solib_add (NULL, from_tty, auto_solib_add);
4731
4732 if (target_is_non_stop_p ())
4733 {
4734 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4735 error (_("Non-stop mode requested, but remote "
4736 "does not support non-stop"));
4737
4738 putpkt ("QNonStop:1");
4739 getpkt (&rs->buf, 0);
4740
4741 if (strcmp (rs->buf.data (), "OK") != 0)
4742 error (_("Remote refused setting non-stop mode with: %s"),
4743 rs->buf.data ());
4744
4745 /* Find about threads and processes the stub is already
4746 controlling. We default to adding them in the running state.
4747 The '?' query below will then tell us about which threads are
4748 stopped. */
4749 this->update_thread_list ();
4750 }
4751 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4752 {
4753 /* Don't assume that the stub can operate in all-stop mode.
4754 Request it explicitly. */
4755 putpkt ("QNonStop:0");
4756 getpkt (&rs->buf, 0);
4757
4758 if (strcmp (rs->buf.data (), "OK") != 0)
4759 error (_("Remote refused setting all-stop mode with: %s"),
4760 rs->buf.data ());
4761 }
4762
4763 /* Upload TSVs regardless of whether the target is running or not. The
4764 remote stub, such as GDBserver, may have some predefined or builtin
4765 TSVs, even if the target is not running. */
4766 if (get_trace_status (current_trace_status ()) != -1)
4767 {
4768 struct uploaded_tsv *uploaded_tsvs = NULL;
4769
4770 upload_trace_state_variables (&uploaded_tsvs);
4771 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4772 }
4773
4774 /* Check whether the target is running now. */
4775 putpkt ("?");
4776 getpkt (&rs->buf, 0);
4777
4778 if (!target_is_non_stop_p ())
4779 {
4780 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4781 {
4782 if (!extended_p)
4783 error (_("The target is not running (try extended-remote?)"));
4784
4785 /* We're connected, but not running. Drop out before we
4786 call start_remote. */
4787 rs->starting_up = 0;
4788 return;
4789 }
4790 else
4791 {
4792 /* Save the reply for later. */
4793 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4794 strcpy (wait_status, rs->buf.data ());
4795 }
4796
4797 /* Fetch thread list. */
4798 target_update_thread_list ();
4799
4800 /* Let the stub know that we want it to return the thread. */
4801 set_continue_thread (minus_one_ptid);
4802
4803 if (thread_count (this) == 0)
4804 {
4805 /* Target has no concept of threads at all. GDB treats
4806 non-threaded target as single-threaded; add a main
4807 thread. */
4808 add_current_inferior_and_thread (wait_status);
4809 }
4810 else
4811 {
4812 /* We have thread information; select the thread the target
4813 says should be current. If we're reconnecting to a
4814 multi-threaded program, this will ideally be the thread
4815 that last reported an event before GDB disconnected. */
4816 ptid_t curr_thread = get_current_thread (wait_status);
4817 if (curr_thread == null_ptid)
4818 {
4819 /* Odd... The target was able to list threads, but not
4820 tell us which thread was current (no "thread"
4821 register in T stop reply?). Just pick the first
4822 thread in the thread list then. */
4823
4824 if (remote_debug)
4825 fprintf_unfiltered (gdb_stdlog,
4826 "warning: couldn't determine remote "
4827 "current thread; picking first in list.\n");
4828
4829 for (thread_info *tp : all_non_exited_threads (this,
4830 minus_one_ptid))
4831 {
4832 switch_to_thread (tp);
4833 break;
4834 }
4835 }
4836 else
4837 switch_to_thread (find_thread_ptid (this, curr_thread));
4838 }
4839
4840 /* init_wait_for_inferior should be called before get_offsets in order
4841 to manage `inserted' flag in bp loc in a correct state.
4842 breakpoint_init_inferior, called from init_wait_for_inferior, set
4843 `inserted' flag to 0, while before breakpoint_re_set, called from
4844 start_remote, set `inserted' flag to 1. In the initialization of
4845 inferior, breakpoint_init_inferior should be called first, and then
4846 breakpoint_re_set can be called. If this order is broken, state of
4847 `inserted' flag is wrong, and cause some problems on breakpoint
4848 manipulation. */
4849 init_wait_for_inferior ();
4850
4851 get_offsets (); /* Get text, data & bss offsets. */
4852
4853 /* If we could not find a description using qXfer, and we know
4854 how to do it some other way, try again. This is not
4855 supported for non-stop; it could be, but it is tricky if
4856 there are no stopped threads when we connect. */
4857 if (remote_read_description_p (this)
4858 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4859 {
4860 target_clear_description ();
4861 target_find_description ();
4862 }
4863
4864 /* Use the previously fetched status. */
4865 gdb_assert (wait_status != NULL);
4866 strcpy (rs->buf.data (), wait_status);
4867 rs->cached_wait_status = 1;
4868
4869 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4870 }
4871 else
4872 {
4873 /* Clear WFI global state. Do this before finding about new
4874 threads and inferiors, and setting the current inferior.
4875 Otherwise we would clear the proceed status of the current
4876 inferior when we want its stop_soon state to be preserved
4877 (see notice_new_inferior). */
4878 init_wait_for_inferior ();
4879
4880 /* In non-stop, we will either get an "OK", meaning that there
4881 are no stopped threads at this time; or, a regular stop
4882 reply. In the latter case, there may be more than one thread
4883 stopped --- we pull them all out using the vStopped
4884 mechanism. */
4885 if (strcmp (rs->buf.data (), "OK") != 0)
4886 {
4887 struct notif_client *notif = &notif_client_stop;
4888
4889 /* remote_notif_get_pending_replies acks this one, and gets
4890 the rest out. */
4891 rs->notif_state->pending_event[notif_client_stop.id]
4892 = remote_notif_parse (this, notif, rs->buf.data ());
4893 remote_notif_get_pending_events (notif);
4894 }
4895
4896 if (thread_count (this) == 0)
4897 {
4898 if (!extended_p)
4899 error (_("The target is not running (try extended-remote?)"));
4900
4901 /* We're connected, but not running. Drop out before we
4902 call start_remote. */
4903 rs->starting_up = 0;
4904 return;
4905 }
4906
4907 /* In non-stop mode, any cached wait status will be stored in
4908 the stop reply queue. */
4909 gdb_assert (wait_status == NULL);
4910
4911 /* Report all signals during attach/startup. */
4912 pass_signals ({});
4913
4914 /* If there are already stopped threads, mark them stopped and
4915 report their stops before giving the prompt to the user. */
4916 process_initial_stop_replies (from_tty);
4917
4918 if (target_can_async_p ())
4919 target_async (1);
4920 }
4921
4922 /* If we connected to a live target, do some additional setup. */
4923 if (target_has_execution ())
4924 {
4925 /* No use without a symbol-file. */
4926 if (current_program_space->symfile_object_file)
4927 remote_check_symbols ();
4928 }
4929
4930 /* Possibly the target has been engaged in a trace run started
4931 previously; find out where things are at. */
4932 if (get_trace_status (current_trace_status ()) != -1)
4933 {
4934 struct uploaded_tp *uploaded_tps = NULL;
4935
4936 if (current_trace_status ()->running)
4937 printf_filtered (_("Trace is already running on the target.\n"));
4938
4939 upload_tracepoints (&uploaded_tps);
4940
4941 merge_uploaded_tracepoints (&uploaded_tps);
4942 }
4943
4944 /* Possibly the target has been engaged in a btrace record started
4945 previously; find out where things are at. */
4946 remote_btrace_maybe_reopen ();
4947
4948 /* The thread and inferior lists are now synchronized with the
4949 target, our symbols have been relocated, and we're merged the
4950 target's tracepoints with ours. We're done with basic start
4951 up. */
4952 rs->starting_up = 0;
4953
4954 /* Maybe breakpoints are global and need to be inserted now. */
4955 if (breakpoints_should_be_inserted_now ())
4956 insert_breakpoints ();
4957 }
4958
4959 const char *
4960 remote_target::connection_string ()
4961 {
4962 remote_state *rs = get_remote_state ();
4963
4964 if (rs->remote_desc->name != NULL)
4965 return rs->remote_desc->name;
4966 else
4967 return NULL;
4968 }
4969
4970 /* Open a connection to a remote debugger.
4971 NAME is the filename used for communication. */
4972
4973 void
4974 remote_target::open (const char *name, int from_tty)
4975 {
4976 open_1 (name, from_tty, 0);
4977 }
4978
4979 /* Open a connection to a remote debugger using the extended
4980 remote gdb protocol. NAME is the filename used for communication. */
4981
4982 void
4983 extended_remote_target::open (const char *name, int from_tty)
4984 {
4985 open_1 (name, from_tty, 1 /*extended_p */);
4986 }
4987
4988 /* Reset all packets back to "unknown support". Called when opening a
4989 new connection to a remote target. */
4990
4991 static void
4992 reset_all_packet_configs_support (void)
4993 {
4994 int i;
4995
4996 for (i = 0; i < PACKET_MAX; i++)
4997 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4998 }
4999
5000 /* Initialize all packet configs. */
5001
5002 static void
5003 init_all_packet_configs (void)
5004 {
5005 int i;
5006
5007 for (i = 0; i < PACKET_MAX; i++)
5008 {
5009 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
5010 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5011 }
5012 }
5013
5014 /* Symbol look-up. */
5015
5016 void
5017 remote_target::remote_check_symbols ()
5018 {
5019 char *tmp;
5020 int end;
5021
5022 /* The remote side has no concept of inferiors that aren't running
5023 yet, it only knows about running processes. If we're connected
5024 but our current inferior is not running, we should not invite the
5025 remote target to request symbol lookups related to its
5026 (unrelated) current process. */
5027 if (!target_has_execution ())
5028 return;
5029
5030 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
5031 return;
5032
5033 /* Make sure the remote is pointing at the right process. Note
5034 there's no way to select "no process". */
5035 set_general_process ();
5036
5037 /* Allocate a message buffer. We can't reuse the input buffer in RS,
5038 because we need both at the same time. */
5039 gdb::char_vector msg (get_remote_packet_size ());
5040 gdb::char_vector reply (get_remote_packet_size ());
5041
5042 /* Invite target to request symbol lookups. */
5043
5044 putpkt ("qSymbol::");
5045 getpkt (&reply, 0);
5046 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
5047
5048 while (startswith (reply.data (), "qSymbol:"))
5049 {
5050 struct bound_minimal_symbol sym;
5051
5052 tmp = &reply[8];
5053 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
5054 strlen (tmp) / 2);
5055 msg[end] = '\0';
5056 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
5057 if (sym.minsym == NULL)
5058 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
5059 &reply[8]);
5060 else
5061 {
5062 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5063 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
5064
5065 /* If this is a function address, return the start of code
5066 instead of any data function descriptor. */
5067 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
5068 sym_addr,
5069 current_top_target ());
5070
5071 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
5072 phex_nz (sym_addr, addr_size), &reply[8]);
5073 }
5074
5075 putpkt (msg.data ());
5076 getpkt (&reply, 0);
5077 }
5078 }
5079
5080 static struct serial *
5081 remote_serial_open (const char *name)
5082 {
5083 static int udp_warning = 0;
5084
5085 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5086 of in ser-tcp.c, because it is the remote protocol assuming that the
5087 serial connection is reliable and not the serial connection promising
5088 to be. */
5089 if (!udp_warning && startswith (name, "udp:"))
5090 {
5091 warning (_("The remote protocol may be unreliable over UDP.\n"
5092 "Some events may be lost, rendering further debugging "
5093 "impossible."));
5094 udp_warning = 1;
5095 }
5096
5097 return serial_open (name);
5098 }
5099
5100 /* Inform the target of our permission settings. The permission flags
5101 work without this, but if the target knows the settings, it can do
5102 a couple things. First, it can add its own check, to catch cases
5103 that somehow manage to get by the permissions checks in target
5104 methods. Second, if the target is wired to disallow particular
5105 settings (for instance, a system in the field that is not set up to
5106 be able to stop at a breakpoint), it can object to any unavailable
5107 permissions. */
5108
5109 void
5110 remote_target::set_permissions ()
5111 {
5112 struct remote_state *rs = get_remote_state ();
5113
5114 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5115 "WriteReg:%x;WriteMem:%x;"
5116 "InsertBreak:%x;InsertTrace:%x;"
5117 "InsertFastTrace:%x;Stop:%x",
5118 may_write_registers, may_write_memory,
5119 may_insert_breakpoints, may_insert_tracepoints,
5120 may_insert_fast_tracepoints, may_stop);
5121 putpkt (rs->buf);
5122 getpkt (&rs->buf, 0);
5123
5124 /* If the target didn't like the packet, warn the user. Do not try
5125 to undo the user's settings, that would just be maddening. */
5126 if (strcmp (rs->buf.data (), "OK") != 0)
5127 warning (_("Remote refused setting permissions with: %s"),
5128 rs->buf.data ());
5129 }
5130
5131 /* This type describes each known response to the qSupported
5132 packet. */
5133 struct protocol_feature
5134 {
5135 /* The name of this protocol feature. */
5136 const char *name;
5137
5138 /* The default for this protocol feature. */
5139 enum packet_support default_support;
5140
5141 /* The function to call when this feature is reported, or after
5142 qSupported processing if the feature is not supported.
5143 The first argument points to this structure. The second
5144 argument indicates whether the packet requested support be
5145 enabled, disabled, or probed (or the default, if this function
5146 is being called at the end of processing and this feature was
5147 not reported). The third argument may be NULL; if not NULL, it
5148 is a NUL-terminated string taken from the packet following
5149 this feature's name and an equals sign. */
5150 void (*func) (remote_target *remote, const struct protocol_feature *,
5151 enum packet_support, const char *);
5152
5153 /* The corresponding packet for this feature. Only used if
5154 FUNC is remote_supported_packet. */
5155 int packet;
5156 };
5157
5158 static void
5159 remote_supported_packet (remote_target *remote,
5160 const struct protocol_feature *feature,
5161 enum packet_support support,
5162 const char *argument)
5163 {
5164 if (argument)
5165 {
5166 warning (_("Remote qSupported response supplied an unexpected value for"
5167 " \"%s\"."), feature->name);
5168 return;
5169 }
5170
5171 remote_protocol_packets[feature->packet].support = support;
5172 }
5173
5174 void
5175 remote_target::remote_packet_size (const protocol_feature *feature,
5176 enum packet_support support, const char *value)
5177 {
5178 struct remote_state *rs = get_remote_state ();
5179
5180 int packet_size;
5181 char *value_end;
5182
5183 if (support != PACKET_ENABLE)
5184 return;
5185
5186 if (value == NULL || *value == '\0')
5187 {
5188 warning (_("Remote target reported \"%s\" without a size."),
5189 feature->name);
5190 return;
5191 }
5192
5193 errno = 0;
5194 packet_size = strtol (value, &value_end, 16);
5195 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5196 {
5197 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5198 feature->name, value);
5199 return;
5200 }
5201
5202 /* Record the new maximum packet size. */
5203 rs->explicit_packet_size = packet_size;
5204 }
5205
5206 static void
5207 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5208 enum packet_support support, const char *value)
5209 {
5210 remote->remote_packet_size (feature, support, value);
5211 }
5212
5213 static const struct protocol_feature remote_protocol_features[] = {
5214 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5215 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5216 PACKET_qXfer_auxv },
5217 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5218 PACKET_qXfer_exec_file },
5219 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5220 PACKET_qXfer_features },
5221 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5222 PACKET_qXfer_libraries },
5223 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5224 PACKET_qXfer_libraries_svr4 },
5225 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5226 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5227 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5228 PACKET_qXfer_memory_map },
5229 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5230 PACKET_qXfer_osdata },
5231 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5232 PACKET_qXfer_threads },
5233 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5234 PACKET_qXfer_traceframe_info },
5235 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5236 PACKET_QPassSignals },
5237 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5238 PACKET_QCatchSyscalls },
5239 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5240 PACKET_QProgramSignals },
5241 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5242 PACKET_QSetWorkingDir },
5243 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5244 PACKET_QStartupWithShell },
5245 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5246 PACKET_QEnvironmentHexEncoded },
5247 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5248 PACKET_QEnvironmentReset },
5249 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5250 PACKET_QEnvironmentUnset },
5251 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5252 PACKET_QStartNoAckMode },
5253 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5254 PACKET_multiprocess_feature },
5255 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5256 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5257 PACKET_qXfer_siginfo_read },
5258 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5259 PACKET_qXfer_siginfo_write },
5260 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5261 PACKET_ConditionalTracepoints },
5262 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5263 PACKET_ConditionalBreakpoints },
5264 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5265 PACKET_BreakpointCommands },
5266 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5267 PACKET_FastTracepoints },
5268 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5269 PACKET_StaticTracepoints },
5270 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5271 PACKET_InstallInTrace},
5272 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5273 PACKET_DisconnectedTracing_feature },
5274 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5275 PACKET_bc },
5276 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5277 PACKET_bs },
5278 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5279 PACKET_TracepointSource },
5280 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5281 PACKET_QAllow },
5282 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5283 PACKET_EnableDisableTracepoints_feature },
5284 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5285 PACKET_qXfer_fdpic },
5286 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5287 PACKET_qXfer_uib },
5288 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5289 PACKET_QDisableRandomization },
5290 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5291 { "QTBuffer:size", PACKET_DISABLE,
5292 remote_supported_packet, PACKET_QTBuffer_size},
5293 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5294 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5295 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5296 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5297 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5298 PACKET_qXfer_btrace },
5299 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5300 PACKET_qXfer_btrace_conf },
5301 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5302 PACKET_Qbtrace_conf_bts_size },
5303 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5304 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5305 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5306 PACKET_fork_event_feature },
5307 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5308 PACKET_vfork_event_feature },
5309 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5310 PACKET_exec_event_feature },
5311 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5312 PACKET_Qbtrace_conf_pt_size },
5313 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5314 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5315 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5316 };
5317
5318 static char *remote_support_xml;
5319
5320 /* Register string appended to "xmlRegisters=" in qSupported query. */
5321
5322 void
5323 register_remote_support_xml (const char *xml)
5324 {
5325 #if defined(HAVE_LIBEXPAT)
5326 if (remote_support_xml == NULL)
5327 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5328 else
5329 {
5330 char *copy = xstrdup (remote_support_xml + 13);
5331 char *saveptr;
5332 char *p = strtok_r (copy, ",", &saveptr);
5333
5334 do
5335 {
5336 if (strcmp (p, xml) == 0)
5337 {
5338 /* already there */
5339 xfree (copy);
5340 return;
5341 }
5342 }
5343 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5344 xfree (copy);
5345
5346 remote_support_xml = reconcat (remote_support_xml,
5347 remote_support_xml, ",", xml,
5348 (char *) NULL);
5349 }
5350 #endif
5351 }
5352
5353 static void
5354 remote_query_supported_append (std::string *msg, const char *append)
5355 {
5356 if (!msg->empty ())
5357 msg->append (";");
5358 msg->append (append);
5359 }
5360
5361 void
5362 remote_target::remote_query_supported ()
5363 {
5364 struct remote_state *rs = get_remote_state ();
5365 char *next;
5366 int i;
5367 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5368
5369 /* The packet support flags are handled differently for this packet
5370 than for most others. We treat an error, a disabled packet, and
5371 an empty response identically: any features which must be reported
5372 to be used will be automatically disabled. An empty buffer
5373 accomplishes this, since that is also the representation for a list
5374 containing no features. */
5375
5376 rs->buf[0] = 0;
5377 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5378 {
5379 std::string q;
5380
5381 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5382 remote_query_supported_append (&q, "multiprocess+");
5383
5384 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5385 remote_query_supported_append (&q, "swbreak+");
5386 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5387 remote_query_supported_append (&q, "hwbreak+");
5388
5389 remote_query_supported_append (&q, "qRelocInsn+");
5390
5391 if (packet_set_cmd_state (PACKET_fork_event_feature)
5392 != AUTO_BOOLEAN_FALSE)
5393 remote_query_supported_append (&q, "fork-events+");
5394 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5395 != AUTO_BOOLEAN_FALSE)
5396 remote_query_supported_append (&q, "vfork-events+");
5397 if (packet_set_cmd_state (PACKET_exec_event_feature)
5398 != AUTO_BOOLEAN_FALSE)
5399 remote_query_supported_append (&q, "exec-events+");
5400
5401 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5402 remote_query_supported_append (&q, "vContSupported+");
5403
5404 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5405 remote_query_supported_append (&q, "QThreadEvents+");
5406
5407 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5408 remote_query_supported_append (&q, "no-resumed+");
5409
5410 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5411 the qSupported:xmlRegisters=i386 handling. */
5412 if (remote_support_xml != NULL
5413 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5414 remote_query_supported_append (&q, remote_support_xml);
5415
5416 q = "qSupported:" + q;
5417 putpkt (q.c_str ());
5418
5419 getpkt (&rs->buf, 0);
5420
5421 /* If an error occured, warn, but do not return - just reset the
5422 buffer to empty and go on to disable features. */
5423 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5424 == PACKET_ERROR)
5425 {
5426 warning (_("Remote failure reply: %s"), rs->buf.data ());
5427 rs->buf[0] = 0;
5428 }
5429 }
5430
5431 memset (seen, 0, sizeof (seen));
5432
5433 next = rs->buf.data ();
5434 while (*next)
5435 {
5436 enum packet_support is_supported;
5437 char *p, *end, *name_end, *value;
5438
5439 /* First separate out this item from the rest of the packet. If
5440 there's another item after this, we overwrite the separator
5441 (terminated strings are much easier to work with). */
5442 p = next;
5443 end = strchr (p, ';');
5444 if (end == NULL)
5445 {
5446 end = p + strlen (p);
5447 next = end;
5448 }
5449 else
5450 {
5451 *end = '\0';
5452 next = end + 1;
5453
5454 if (end == p)
5455 {
5456 warning (_("empty item in \"qSupported\" response"));
5457 continue;
5458 }
5459 }
5460
5461 name_end = strchr (p, '=');
5462 if (name_end)
5463 {
5464 /* This is a name=value entry. */
5465 is_supported = PACKET_ENABLE;
5466 value = name_end + 1;
5467 *name_end = '\0';
5468 }
5469 else
5470 {
5471 value = NULL;
5472 switch (end[-1])
5473 {
5474 case '+':
5475 is_supported = PACKET_ENABLE;
5476 break;
5477
5478 case '-':
5479 is_supported = PACKET_DISABLE;
5480 break;
5481
5482 case '?':
5483 is_supported = PACKET_SUPPORT_UNKNOWN;
5484 break;
5485
5486 default:
5487 warning (_("unrecognized item \"%s\" "
5488 "in \"qSupported\" response"), p);
5489 continue;
5490 }
5491 end[-1] = '\0';
5492 }
5493
5494 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5495 if (strcmp (remote_protocol_features[i].name, p) == 0)
5496 {
5497 const struct protocol_feature *feature;
5498
5499 seen[i] = 1;
5500 feature = &remote_protocol_features[i];
5501 feature->func (this, feature, is_supported, value);
5502 break;
5503 }
5504 }
5505
5506 /* If we increased the packet size, make sure to increase the global
5507 buffer size also. We delay this until after parsing the entire
5508 qSupported packet, because this is the same buffer we were
5509 parsing. */
5510 if (rs->buf.size () < rs->explicit_packet_size)
5511 rs->buf.resize (rs->explicit_packet_size);
5512
5513 /* Handle the defaults for unmentioned features. */
5514 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5515 if (!seen[i])
5516 {
5517 const struct protocol_feature *feature;
5518
5519 feature = &remote_protocol_features[i];
5520 feature->func (this, feature, feature->default_support, NULL);
5521 }
5522 }
5523
5524 /* Serial QUIT handler for the remote serial descriptor.
5525
5526 Defers handling a Ctrl-C until we're done with the current
5527 command/response packet sequence, unless:
5528
5529 - We're setting up the connection. Don't send a remote interrupt
5530 request, as we're not fully synced yet. Quit immediately
5531 instead.
5532
5533 - The target has been resumed in the foreground
5534 (target_terminal::is_ours is false) with a synchronous resume
5535 packet, and we're blocked waiting for the stop reply, thus a
5536 Ctrl-C should be immediately sent to the target.
5537
5538 - We get a second Ctrl-C while still within the same serial read or
5539 write. In that case the serial is seemingly wedged --- offer to
5540 quit/disconnect.
5541
5542 - We see a second Ctrl-C without target response, after having
5543 previously interrupted the target. In that case the target/stub
5544 is probably wedged --- offer to quit/disconnect.
5545 */
5546
5547 void
5548 remote_target::remote_serial_quit_handler ()
5549 {
5550 struct remote_state *rs = get_remote_state ();
5551
5552 if (check_quit_flag ())
5553 {
5554 /* If we're starting up, we're not fully synced yet. Quit
5555 immediately. */
5556 if (rs->starting_up)
5557 quit ();
5558 else if (rs->got_ctrlc_during_io)
5559 {
5560 if (query (_("The target is not responding to GDB commands.\n"
5561 "Stop debugging it? ")))
5562 remote_unpush_and_throw (this);
5563 }
5564 /* If ^C has already been sent once, offer to disconnect. */
5565 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5566 interrupt_query ();
5567 /* All-stop protocol, and blocked waiting for stop reply. Send
5568 an interrupt request. */
5569 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5570 target_interrupt ();
5571 else
5572 rs->got_ctrlc_during_io = 1;
5573 }
5574 }
5575
5576 /* The remote_target that is current while the quit handler is
5577 overridden with remote_serial_quit_handler. */
5578 static remote_target *curr_quit_handler_target;
5579
5580 static void
5581 remote_serial_quit_handler ()
5582 {
5583 curr_quit_handler_target->remote_serial_quit_handler ();
5584 }
5585
5586 /* Remove the remote target from the target stack of each inferior
5587 that is using it. Upper targets depend on it so remove them
5588 first. */
5589
5590 static void
5591 remote_unpush_target (remote_target *target)
5592 {
5593 /* We have to unpush the target from all inferiors, even those that
5594 aren't running. */
5595 scoped_restore_current_inferior restore_current_inferior;
5596
5597 for (inferior *inf : all_inferiors (target))
5598 {
5599 switch_to_inferior_no_thread (inf);
5600 pop_all_targets_at_and_above (process_stratum);
5601 generic_mourn_inferior ();
5602 }
5603 }
5604
5605 static void
5606 remote_unpush_and_throw (remote_target *target)
5607 {
5608 remote_unpush_target (target);
5609 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5610 }
5611
5612 void
5613 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5614 {
5615 remote_target *curr_remote = get_current_remote_target ();
5616
5617 if (name == 0)
5618 error (_("To open a remote debug connection, you need to specify what\n"
5619 "serial device is attached to the remote system\n"
5620 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5621
5622 /* If we're connected to a running target, target_preopen will kill it.
5623 Ask this question first, before target_preopen has a chance to kill
5624 anything. */
5625 if (curr_remote != NULL && !target_has_execution ())
5626 {
5627 if (from_tty
5628 && !query (_("Already connected to a remote target. Disconnect? ")))
5629 error (_("Still connected."));
5630 }
5631
5632 /* Here the possibly existing remote target gets unpushed. */
5633 target_preopen (from_tty);
5634
5635 remote_fileio_reset ();
5636 reopen_exec_file ();
5637 reread_symbols ();
5638
5639 remote_target *remote
5640 = (extended_p ? new extended_remote_target () : new remote_target ());
5641 target_ops_up target_holder (remote);
5642
5643 remote_state *rs = remote->get_remote_state ();
5644
5645 /* See FIXME above. */
5646 if (!target_async_permitted)
5647 rs->wait_forever_enabled_p = 1;
5648
5649 rs->remote_desc = remote_serial_open (name);
5650 if (!rs->remote_desc)
5651 perror_with_name (name);
5652
5653 if (baud_rate != -1)
5654 {
5655 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5656 {
5657 /* The requested speed could not be set. Error out to
5658 top level after closing remote_desc. Take care to
5659 set remote_desc to NULL to avoid closing remote_desc
5660 more than once. */
5661 serial_close (rs->remote_desc);
5662 rs->remote_desc = NULL;
5663 perror_with_name (name);
5664 }
5665 }
5666
5667 serial_setparity (rs->remote_desc, serial_parity);
5668 serial_raw (rs->remote_desc);
5669
5670 /* If there is something sitting in the buffer we might take it as a
5671 response to a command, which would be bad. */
5672 serial_flush_input (rs->remote_desc);
5673
5674 if (from_tty)
5675 {
5676 puts_filtered ("Remote debugging using ");
5677 puts_filtered (name);
5678 puts_filtered ("\n");
5679 }
5680
5681 /* Switch to using the remote target now. */
5682 push_target (std::move (target_holder));
5683
5684 /* Register extra event sources in the event loop. */
5685 rs->remote_async_inferior_event_token
5686 = create_async_event_handler (remote_async_inferior_event_handler, remote,
5687 "remote");
5688 rs->notif_state = remote_notif_state_allocate (remote);
5689
5690 /* Reset the target state; these things will be queried either by
5691 remote_query_supported or as they are needed. */
5692 reset_all_packet_configs_support ();
5693 rs->cached_wait_status = 0;
5694 rs->explicit_packet_size = 0;
5695 rs->noack_mode = 0;
5696 rs->extended = extended_p;
5697 rs->waiting_for_stop_reply = 0;
5698 rs->ctrlc_pending_p = 0;
5699 rs->got_ctrlc_during_io = 0;
5700
5701 rs->general_thread = not_sent_ptid;
5702 rs->continue_thread = not_sent_ptid;
5703 rs->remote_traceframe_number = -1;
5704
5705 rs->last_resume_exec_dir = EXEC_FORWARD;
5706
5707 /* Probe for ability to use "ThreadInfo" query, as required. */
5708 rs->use_threadinfo_query = 1;
5709 rs->use_threadextra_query = 1;
5710
5711 rs->readahead_cache.invalidate ();
5712
5713 if (target_async_permitted)
5714 {
5715 /* FIXME: cagney/1999-09-23: During the initial connection it is
5716 assumed that the target is already ready and able to respond to
5717 requests. Unfortunately remote_start_remote() eventually calls
5718 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5719 around this. Eventually a mechanism that allows
5720 wait_for_inferior() to expect/get timeouts will be
5721 implemented. */
5722 rs->wait_forever_enabled_p = 0;
5723 }
5724
5725 /* First delete any symbols previously loaded from shared libraries. */
5726 no_shared_libraries (NULL, 0);
5727
5728 /* Start the remote connection. If error() or QUIT, discard this
5729 target (we'd otherwise be in an inconsistent state) and then
5730 propogate the error on up the exception chain. This ensures that
5731 the caller doesn't stumble along blindly assuming that the
5732 function succeeded. The CLI doesn't have this problem but other
5733 UI's, such as MI do.
5734
5735 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5736 this function should return an error indication letting the
5737 caller restore the previous state. Unfortunately the command
5738 ``target remote'' is directly wired to this function making that
5739 impossible. On a positive note, the CLI side of this problem has
5740 been fixed - the function set_cmd_context() makes it possible for
5741 all the ``target ....'' commands to share a common callback
5742 function. See cli-dump.c. */
5743 {
5744
5745 try
5746 {
5747 remote->start_remote (from_tty, extended_p);
5748 }
5749 catch (const gdb_exception &ex)
5750 {
5751 /* Pop the partially set up target - unless something else did
5752 already before throwing the exception. */
5753 if (ex.error != TARGET_CLOSE_ERROR)
5754 remote_unpush_target (remote);
5755 throw;
5756 }
5757 }
5758
5759 remote_btrace_reset (rs);
5760
5761 if (target_async_permitted)
5762 rs->wait_forever_enabled_p = 1;
5763 }
5764
5765 /* Detach the specified process. */
5766
5767 void
5768 remote_target::remote_detach_pid (int pid)
5769 {
5770 struct remote_state *rs = get_remote_state ();
5771
5772 /* This should not be necessary, but the handling for D;PID in
5773 GDBserver versions prior to 8.2 incorrectly assumes that the
5774 selected process points to the same process we're detaching,
5775 leading to misbehavior (and possibly GDBserver crashing) when it
5776 does not. Since it's easy and cheap, work around it by forcing
5777 GDBserver to select GDB's current process. */
5778 set_general_process ();
5779
5780 if (remote_multi_process_p (rs))
5781 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5782 else
5783 strcpy (rs->buf.data (), "D");
5784
5785 putpkt (rs->buf);
5786 getpkt (&rs->buf, 0);
5787
5788 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5789 ;
5790 else if (rs->buf[0] == '\0')
5791 error (_("Remote doesn't know how to detach"));
5792 else
5793 error (_("Can't detach process."));
5794 }
5795
5796 /* This detaches a program to which we previously attached, using
5797 inferior_ptid to identify the process. After this is done, GDB
5798 can be used to debug some other program. We better not have left
5799 any breakpoints in the target program or it'll die when it hits
5800 one. */
5801
5802 void
5803 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5804 {
5805 int pid = inferior_ptid.pid ();
5806 struct remote_state *rs = get_remote_state ();
5807 int is_fork_parent;
5808
5809 if (!target_has_execution ())
5810 error (_("No process to detach from."));
5811
5812 target_announce_detach (from_tty);
5813
5814 /* Tell the remote target to detach. */
5815 remote_detach_pid (pid);
5816
5817 /* Exit only if this is the only active inferior. */
5818 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5819 puts_filtered (_("Ending remote debugging.\n"));
5820
5821 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5822
5823 /* Check to see if we are detaching a fork parent. Note that if we
5824 are detaching a fork child, tp == NULL. */
5825 is_fork_parent = (tp != NULL
5826 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5827
5828 /* If doing detach-on-fork, we don't mourn, because that will delete
5829 breakpoints that should be available for the followed inferior. */
5830 if (!is_fork_parent)
5831 {
5832 /* Save the pid as a string before mourning, since that will
5833 unpush the remote target, and we need the string after. */
5834 std::string infpid = target_pid_to_str (ptid_t (pid));
5835
5836 target_mourn_inferior (inferior_ptid);
5837 if (print_inferior_events)
5838 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5839 inf->num, infpid.c_str ());
5840 }
5841 else
5842 {
5843 switch_to_no_thread ();
5844 detach_inferior (current_inferior ());
5845 }
5846 }
5847
5848 void
5849 remote_target::detach (inferior *inf, int from_tty)
5850 {
5851 remote_detach_1 (inf, from_tty);
5852 }
5853
5854 void
5855 extended_remote_target::detach (inferior *inf, int from_tty)
5856 {
5857 remote_detach_1 (inf, from_tty);
5858 }
5859
5860 /* Target follow-fork function for remote targets. On entry, and
5861 at return, the current inferior is the fork parent.
5862
5863 Note that although this is currently only used for extended-remote,
5864 it is named remote_follow_fork in anticipation of using it for the
5865 remote target as well. */
5866
5867 bool
5868 remote_target::follow_fork (bool follow_child, bool detach_fork)
5869 {
5870 struct remote_state *rs = get_remote_state ();
5871 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5872
5873 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5874 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5875 {
5876 /* When following the parent and detaching the child, we detach
5877 the child here. For the case of following the child and
5878 detaching the parent, the detach is done in the target-
5879 independent follow fork code in infrun.c. We can't use
5880 target_detach when detaching an unfollowed child because
5881 the client side doesn't know anything about the child. */
5882 if (detach_fork && !follow_child)
5883 {
5884 /* Detach the fork child. */
5885 ptid_t child_ptid;
5886 pid_t child_pid;
5887
5888 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5889 child_pid = child_ptid.pid ();
5890
5891 remote_detach_pid (child_pid);
5892 }
5893 }
5894
5895 return false;
5896 }
5897
5898 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5899 in the program space of the new inferior. On entry and at return the
5900 current inferior is the exec'ing inferior. INF is the new exec'd
5901 inferior, which may be the same as the exec'ing inferior unless
5902 follow-exec-mode is "new". */
5903
5904 void
5905 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5906 {
5907 /* We know that this is a target file name, so if it has the "target:"
5908 prefix we strip it off before saving it in the program space. */
5909 if (is_target_filename (execd_pathname))
5910 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5911
5912 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5913 }
5914
5915 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5916
5917 void
5918 remote_target::disconnect (const char *args, int from_tty)
5919 {
5920 if (args)
5921 error (_("Argument given to \"disconnect\" when remotely debugging."));
5922
5923 /* Make sure we unpush even the extended remote targets. Calling
5924 target_mourn_inferior won't unpush, and
5925 remote_target::mourn_inferior won't unpush if there is more than
5926 one inferior left. */
5927 remote_unpush_target (this);
5928
5929 if (from_tty)
5930 puts_filtered ("Ending remote debugging.\n");
5931 }
5932
5933 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5934 be chatty about it. */
5935
5936 void
5937 extended_remote_target::attach (const char *args, int from_tty)
5938 {
5939 struct remote_state *rs = get_remote_state ();
5940 int pid;
5941 char *wait_status = NULL;
5942
5943 pid = parse_pid_to_attach (args);
5944
5945 /* Remote PID can be freely equal to getpid, do not check it here the same
5946 way as in other targets. */
5947
5948 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5949 error (_("This target does not support attaching to a process"));
5950
5951 if (from_tty)
5952 {
5953 const char *exec_file = get_exec_file (0);
5954
5955 if (exec_file)
5956 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5957 target_pid_to_str (ptid_t (pid)).c_str ());
5958 else
5959 printf_unfiltered (_("Attaching to %s\n"),
5960 target_pid_to_str (ptid_t (pid)).c_str ());
5961 }
5962
5963 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5964 putpkt (rs->buf);
5965 getpkt (&rs->buf, 0);
5966
5967 switch (packet_ok (rs->buf,
5968 &remote_protocol_packets[PACKET_vAttach]))
5969 {
5970 case PACKET_OK:
5971 if (!target_is_non_stop_p ())
5972 {
5973 /* Save the reply for later. */
5974 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5975 strcpy (wait_status, rs->buf.data ());
5976 }
5977 else if (strcmp (rs->buf.data (), "OK") != 0)
5978 error (_("Attaching to %s failed with: %s"),
5979 target_pid_to_str (ptid_t (pid)).c_str (),
5980 rs->buf.data ());
5981 break;
5982 case PACKET_UNKNOWN:
5983 error (_("This target does not support attaching to a process"));
5984 default:
5985 error (_("Attaching to %s failed"),
5986 target_pid_to_str (ptid_t (pid)).c_str ());
5987 }
5988
5989 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
5990
5991 inferior_ptid = ptid_t (pid);
5992
5993 if (target_is_non_stop_p ())
5994 {
5995 /* Get list of threads. */
5996 update_thread_list ();
5997
5998 thread_info *thread = first_thread_of_inferior (current_inferior ());
5999 if (thread != nullptr)
6000 switch_to_thread (thread);
6001
6002 /* Invalidate our notion of the remote current thread. */
6003 record_currthread (rs, minus_one_ptid);
6004 }
6005 else
6006 {
6007 /* Now, if we have thread information, update the main thread's
6008 ptid. */
6009 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
6010
6011 /* Add the main thread to the thread list. */
6012 thread_info *thr = add_thread_silent (this, curr_ptid);
6013
6014 switch_to_thread (thr);
6015
6016 /* Don't consider the thread stopped until we've processed the
6017 saved stop reply. */
6018 set_executing (this, thr->ptid, true);
6019 }
6020
6021 /* Next, if the target can specify a description, read it. We do
6022 this before anything involving memory or registers. */
6023 target_find_description ();
6024
6025 if (!target_is_non_stop_p ())
6026 {
6027 /* Use the previously fetched status. */
6028 gdb_assert (wait_status != NULL);
6029
6030 if (target_can_async_p ())
6031 {
6032 struct notif_event *reply
6033 = remote_notif_parse (this, &notif_client_stop, wait_status);
6034
6035 push_stop_reply ((struct stop_reply *) reply);
6036
6037 target_async (1);
6038 }
6039 else
6040 {
6041 gdb_assert (wait_status != NULL);
6042 strcpy (rs->buf.data (), wait_status);
6043 rs->cached_wait_status = 1;
6044 }
6045 }
6046 else
6047 gdb_assert (wait_status == NULL);
6048 }
6049
6050 /* Implementation of the to_post_attach method. */
6051
6052 void
6053 extended_remote_target::post_attach (int pid)
6054 {
6055 /* Get text, data & bss offsets. */
6056 get_offsets ();
6057
6058 /* In certain cases GDB might not have had the chance to start
6059 symbol lookup up until now. This could happen if the debugged
6060 binary is not using shared libraries, the vsyscall page is not
6061 present (on Linux) and the binary itself hadn't changed since the
6062 debugging process was started. */
6063 if (current_program_space->symfile_object_file != NULL)
6064 remote_check_symbols();
6065 }
6066
6067 \f
6068 /* Check for the availability of vCont. This function should also check
6069 the response. */
6070
6071 void
6072 remote_target::remote_vcont_probe ()
6073 {
6074 remote_state *rs = get_remote_state ();
6075 char *buf;
6076
6077 strcpy (rs->buf.data (), "vCont?");
6078 putpkt (rs->buf);
6079 getpkt (&rs->buf, 0);
6080 buf = rs->buf.data ();
6081
6082 /* Make sure that the features we assume are supported. */
6083 if (startswith (buf, "vCont"))
6084 {
6085 char *p = &buf[5];
6086 int support_c, support_C;
6087
6088 rs->supports_vCont.s = 0;
6089 rs->supports_vCont.S = 0;
6090 support_c = 0;
6091 support_C = 0;
6092 rs->supports_vCont.t = 0;
6093 rs->supports_vCont.r = 0;
6094 while (p && *p == ';')
6095 {
6096 p++;
6097 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6098 rs->supports_vCont.s = 1;
6099 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6100 rs->supports_vCont.S = 1;
6101 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6102 support_c = 1;
6103 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6104 support_C = 1;
6105 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6106 rs->supports_vCont.t = 1;
6107 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6108 rs->supports_vCont.r = 1;
6109
6110 p = strchr (p, ';');
6111 }
6112
6113 /* If c, and C are not all supported, we can't use vCont. Clearing
6114 BUF will make packet_ok disable the packet. */
6115 if (!support_c || !support_C)
6116 buf[0] = 0;
6117 }
6118
6119 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6120 rs->supports_vCont_probed = true;
6121 }
6122
6123 /* Helper function for building "vCont" resumptions. Write a
6124 resumption to P. ENDP points to one-passed-the-end of the buffer
6125 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6126 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6127 resumed thread should be single-stepped and/or signalled. If PTID
6128 equals minus_one_ptid, then all threads are resumed; if PTID
6129 represents a process, then all threads of the process are resumed;
6130 the thread to be stepped and/or signalled is given in the global
6131 INFERIOR_PTID. */
6132
6133 char *
6134 remote_target::append_resumption (char *p, char *endp,
6135 ptid_t ptid, int step, gdb_signal siggnal)
6136 {
6137 struct remote_state *rs = get_remote_state ();
6138
6139 if (step && siggnal != GDB_SIGNAL_0)
6140 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6141 else if (step
6142 /* GDB is willing to range step. */
6143 && use_range_stepping
6144 /* Target supports range stepping. */
6145 && rs->supports_vCont.r
6146 /* We don't currently support range stepping multiple
6147 threads with a wildcard (though the protocol allows it,
6148 so stubs shouldn't make an active effort to forbid
6149 it). */
6150 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6151 {
6152 struct thread_info *tp;
6153
6154 if (ptid == minus_one_ptid)
6155 {
6156 /* If we don't know about the target thread's tid, then
6157 we're resuming magic_null_ptid (see caller). */
6158 tp = find_thread_ptid (this, magic_null_ptid);
6159 }
6160 else
6161 tp = find_thread_ptid (this, ptid);
6162 gdb_assert (tp != NULL);
6163
6164 if (tp->control.may_range_step)
6165 {
6166 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6167
6168 p += xsnprintf (p, endp - p, ";r%s,%s",
6169 phex_nz (tp->control.step_range_start,
6170 addr_size),
6171 phex_nz (tp->control.step_range_end,
6172 addr_size));
6173 }
6174 else
6175 p += xsnprintf (p, endp - p, ";s");
6176 }
6177 else if (step)
6178 p += xsnprintf (p, endp - p, ";s");
6179 else if (siggnal != GDB_SIGNAL_0)
6180 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6181 else
6182 p += xsnprintf (p, endp - p, ";c");
6183
6184 if (remote_multi_process_p (rs) && ptid.is_pid ())
6185 {
6186 ptid_t nptid;
6187
6188 /* All (-1) threads of process. */
6189 nptid = ptid_t (ptid.pid (), -1, 0);
6190
6191 p += xsnprintf (p, endp - p, ":");
6192 p = write_ptid (p, endp, nptid);
6193 }
6194 else if (ptid != minus_one_ptid)
6195 {
6196 p += xsnprintf (p, endp - p, ":");
6197 p = write_ptid (p, endp, ptid);
6198 }
6199
6200 return p;
6201 }
6202
6203 /* Clear the thread's private info on resume. */
6204
6205 static void
6206 resume_clear_thread_private_info (struct thread_info *thread)
6207 {
6208 if (thread->priv != NULL)
6209 {
6210 remote_thread_info *priv = get_remote_thread_info (thread);
6211
6212 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6213 priv->watch_data_address = 0;
6214 }
6215 }
6216
6217 /* Append a vCont continue-with-signal action for threads that have a
6218 non-zero stop signal. */
6219
6220 char *
6221 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6222 ptid_t ptid)
6223 {
6224 for (thread_info *thread : all_non_exited_threads (this, ptid))
6225 if (inferior_ptid != thread->ptid
6226 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6227 {
6228 p = append_resumption (p, endp, thread->ptid,
6229 0, thread->suspend.stop_signal);
6230 thread->suspend.stop_signal = GDB_SIGNAL_0;
6231 resume_clear_thread_private_info (thread);
6232 }
6233
6234 return p;
6235 }
6236
6237 /* Set the target running, using the packets that use Hc
6238 (c/s/C/S). */
6239
6240 void
6241 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6242 gdb_signal siggnal)
6243 {
6244 struct remote_state *rs = get_remote_state ();
6245 char *buf;
6246
6247 rs->last_sent_signal = siggnal;
6248 rs->last_sent_step = step;
6249
6250 /* The c/s/C/S resume packets use Hc, so set the continue
6251 thread. */
6252 if (ptid == minus_one_ptid)
6253 set_continue_thread (any_thread_ptid);
6254 else
6255 set_continue_thread (ptid);
6256
6257 for (thread_info *thread : all_non_exited_threads (this))
6258 resume_clear_thread_private_info (thread);
6259
6260 buf = rs->buf.data ();
6261 if (::execution_direction == EXEC_REVERSE)
6262 {
6263 /* We don't pass signals to the target in reverse exec mode. */
6264 if (info_verbose && siggnal != GDB_SIGNAL_0)
6265 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6266 siggnal);
6267
6268 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6269 error (_("Remote reverse-step not supported."));
6270 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6271 error (_("Remote reverse-continue not supported."));
6272
6273 strcpy (buf, step ? "bs" : "bc");
6274 }
6275 else if (siggnal != GDB_SIGNAL_0)
6276 {
6277 buf[0] = step ? 'S' : 'C';
6278 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6279 buf[2] = tohex (((int) siggnal) & 0xf);
6280 buf[3] = '\0';
6281 }
6282 else
6283 strcpy (buf, step ? "s" : "c");
6284
6285 putpkt (buf);
6286 }
6287
6288 /* Resume the remote inferior by using a "vCont" packet. The thread
6289 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6290 resumed thread should be single-stepped and/or signalled. If PTID
6291 equals minus_one_ptid, then all threads are resumed; the thread to
6292 be stepped and/or signalled is given in the global INFERIOR_PTID.
6293 This function returns non-zero iff it resumes the inferior.
6294
6295 This function issues a strict subset of all possible vCont commands
6296 at the moment. */
6297
6298 int
6299 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6300 enum gdb_signal siggnal)
6301 {
6302 struct remote_state *rs = get_remote_state ();
6303 char *p;
6304 char *endp;
6305
6306 /* No reverse execution actions defined for vCont. */
6307 if (::execution_direction == EXEC_REVERSE)
6308 return 0;
6309
6310 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6311 remote_vcont_probe ();
6312
6313 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6314 return 0;
6315
6316 p = rs->buf.data ();
6317 endp = p + get_remote_packet_size ();
6318
6319 /* If we could generate a wider range of packets, we'd have to worry
6320 about overflowing BUF. Should there be a generic
6321 "multi-part-packet" packet? */
6322
6323 p += xsnprintf (p, endp - p, "vCont");
6324
6325 if (ptid == magic_null_ptid)
6326 {
6327 /* MAGIC_NULL_PTID means that we don't have any active threads,
6328 so we don't have any TID numbers the inferior will
6329 understand. Make sure to only send forms that do not specify
6330 a TID. */
6331 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6332 }
6333 else if (ptid == minus_one_ptid || ptid.is_pid ())
6334 {
6335 /* Resume all threads (of all processes, or of a single
6336 process), with preference for INFERIOR_PTID. This assumes
6337 inferior_ptid belongs to the set of all threads we are about
6338 to resume. */
6339 if (step || siggnal != GDB_SIGNAL_0)
6340 {
6341 /* Step inferior_ptid, with or without signal. */
6342 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6343 }
6344
6345 /* Also pass down any pending signaled resumption for other
6346 threads not the current. */
6347 p = append_pending_thread_resumptions (p, endp, ptid);
6348
6349 /* And continue others without a signal. */
6350 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6351 }
6352 else
6353 {
6354 /* Scheduler locking; resume only PTID. */
6355 append_resumption (p, endp, ptid, step, siggnal);
6356 }
6357
6358 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6359 putpkt (rs->buf);
6360
6361 if (target_is_non_stop_p ())
6362 {
6363 /* In non-stop, the stub replies to vCont with "OK". The stop
6364 reply will be reported asynchronously by means of a `%Stop'
6365 notification. */
6366 getpkt (&rs->buf, 0);
6367 if (strcmp (rs->buf.data (), "OK") != 0)
6368 error (_("Unexpected vCont reply in non-stop mode: %s"),
6369 rs->buf.data ());
6370 }
6371
6372 return 1;
6373 }
6374
6375 /* Tell the remote machine to resume. */
6376
6377 void
6378 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6379 {
6380 struct remote_state *rs = get_remote_state ();
6381
6382 /* When connected in non-stop mode, the core resumes threads
6383 individually. Resuming remote threads directly in target_resume
6384 would thus result in sending one packet per thread. Instead, to
6385 minimize roundtrip latency, here we just store the resume
6386 request (put the thread in RESUMED_PENDING_VCONT state); the actual remote
6387 resumption will be done in remote_target::commit_resume, where we'll be
6388 able to do vCont action coalescing. */
6389 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6390 {
6391 remote_thread_info *remote_thr;
6392
6393 if (minus_one_ptid == ptid || ptid.is_pid ())
6394 remote_thr = get_remote_thread_info (this, inferior_ptid);
6395 else
6396 remote_thr = get_remote_thread_info (this, ptid);
6397
6398 /* We don't expect the core to ask to resume an already resumed (from
6399 its point of view) thread. */
6400 gdb_assert (remote_thr->resume_state () == resume_state::NOT_RESUMED);
6401
6402 remote_thr->set_resumed_pending_vcont (step, siggnal);
6403 return;
6404 }
6405
6406 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6407 (explained in remote-notif.c:handle_notification) so
6408 remote_notif_process is not called. We need find a place where
6409 it is safe to start a 'vNotif' sequence. It is good to do it
6410 before resuming inferior, because inferior was stopped and no RSP
6411 traffic at that moment. */
6412 if (!target_is_non_stop_p ())
6413 remote_notif_process (rs->notif_state, &notif_client_stop);
6414
6415 rs->last_resume_exec_dir = ::execution_direction;
6416
6417 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6418 if (!remote_resume_with_vcont (ptid, step, siggnal))
6419 remote_resume_with_hc (ptid, step, siggnal);
6420
6421 /* Update resumed state tracked by the remote target. */
6422 for (thread_info *tp : all_non_exited_threads (this, ptid))
6423 get_remote_thread_info (tp)->set_resumed ();
6424
6425 /* We are about to start executing the inferior, let's register it
6426 with the event loop. NOTE: this is the one place where all the
6427 execution commands end up. We could alternatively do this in each
6428 of the execution commands in infcmd.c. */
6429 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6430 into infcmd.c in order to allow inferior function calls to work
6431 NOT asynchronously. */
6432 if (target_can_async_p ())
6433 target_async (1);
6434
6435 /* We've just told the target to resume. The remote server will
6436 wait for the inferior to stop, and then send a stop reply. In
6437 the mean time, we can't start another command/query ourselves
6438 because the stub wouldn't be ready to process it. This applies
6439 only to the base all-stop protocol, however. In non-stop (which
6440 only supports vCont), the stub replies with an "OK", and is
6441 immediate able to process further serial input. */
6442 if (!target_is_non_stop_p ())
6443 rs->waiting_for_stop_reply = 1;
6444 }
6445
6446 static int is_pending_fork_parent_thread (struct thread_info *thread);
6447
6448 /* Private per-inferior info for target remote processes. */
6449
6450 struct remote_inferior : public private_inferior
6451 {
6452 /* Whether we can send a wildcard vCont for this process. */
6453 bool may_wildcard_vcont = true;
6454 };
6455
6456 /* Get the remote private inferior data associated to INF. */
6457
6458 static remote_inferior *
6459 get_remote_inferior (inferior *inf)
6460 {
6461 if (inf->priv == NULL)
6462 inf->priv.reset (new remote_inferior);
6463
6464 return static_cast<remote_inferior *> (inf->priv.get ());
6465 }
6466
6467 /* Class used to track the construction of a vCont packet in the
6468 outgoing packet buffer. This is used to send multiple vCont
6469 packets if we have more actions than would fit a single packet. */
6470
6471 class vcont_builder
6472 {
6473 public:
6474 explicit vcont_builder (remote_target *remote)
6475 : m_remote (remote)
6476 {
6477 restart ();
6478 }
6479
6480 void flush ();
6481 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6482
6483 private:
6484 void restart ();
6485
6486 /* The remote target. */
6487 remote_target *m_remote;
6488
6489 /* Pointer to the first action. P points here if no action has been
6490 appended yet. */
6491 char *m_first_action;
6492
6493 /* Where the next action will be appended. */
6494 char *m_p;
6495
6496 /* The end of the buffer. Must never write past this. */
6497 char *m_endp;
6498 };
6499
6500 /* Prepare the outgoing buffer for a new vCont packet. */
6501
6502 void
6503 vcont_builder::restart ()
6504 {
6505 struct remote_state *rs = m_remote->get_remote_state ();
6506
6507 m_p = rs->buf.data ();
6508 m_endp = m_p + m_remote->get_remote_packet_size ();
6509 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6510 m_first_action = m_p;
6511 }
6512
6513 /* If the vCont packet being built has any action, send it to the
6514 remote end. */
6515
6516 void
6517 vcont_builder::flush ()
6518 {
6519 struct remote_state *rs;
6520
6521 if (m_p == m_first_action)
6522 return;
6523
6524 rs = m_remote->get_remote_state ();
6525 m_remote->putpkt (rs->buf);
6526 m_remote->getpkt (&rs->buf, 0);
6527 if (strcmp (rs->buf.data (), "OK") != 0)
6528 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6529 }
6530
6531 /* The largest action is range-stepping, with its two addresses. This
6532 is more than sufficient. If a new, bigger action is created, it'll
6533 quickly trigger a failed assertion in append_resumption (and we'll
6534 just bump this). */
6535 #define MAX_ACTION_SIZE 200
6536
6537 /* Append a new vCont action in the outgoing packet being built. If
6538 the action doesn't fit the packet along with previous actions, push
6539 what we've got so far to the remote end and start over a new vCont
6540 packet (with the new action). */
6541
6542 void
6543 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6544 {
6545 char buf[MAX_ACTION_SIZE + 1];
6546
6547 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6548 ptid, step, siggnal);
6549
6550 /* Check whether this new action would fit in the vCont packet along
6551 with previous actions. If not, send what we've got so far and
6552 start a new vCont packet. */
6553 size_t rsize = endp - buf;
6554 if (rsize > m_endp - m_p)
6555 {
6556 flush ();
6557 restart ();
6558
6559 /* Should now fit. */
6560 gdb_assert (rsize <= m_endp - m_p);
6561 }
6562
6563 memcpy (m_p, buf, rsize);
6564 m_p += rsize;
6565 *m_p = '\0';
6566 }
6567
6568 /* to_commit_resume implementation. */
6569
6570 void
6571 remote_target::commit_resume ()
6572 {
6573 int any_process_wildcard;
6574 int may_global_wildcard_vcont;
6575
6576 /* If connected in all-stop mode, we'd send the remote resume
6577 request directly from remote_resume. Likewise if
6578 reverse-debugging, as there are no defined vCont actions for
6579 reverse execution. */
6580 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6581 return;
6582
6583 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6584 instead of resuming all threads of each process individually.
6585 However, if any thread of a process must remain halted, we can't
6586 send wildcard resumes and must send one action per thread.
6587
6588 Care must be taken to not resume threads/processes the server
6589 side already told us are stopped, but the core doesn't know about
6590 yet, because the events are still in the vStopped notification
6591 queue. For example:
6592
6593 #1 => vCont s:p1.1;c
6594 #2 <= OK
6595 #3 <= %Stopped T05 p1.1
6596 #4 => vStopped
6597 #5 <= T05 p1.2
6598 #6 => vStopped
6599 #7 <= OK
6600 #8 (infrun handles the stop for p1.1 and continues stepping)
6601 #9 => vCont s:p1.1;c
6602
6603 The last vCont above would resume thread p1.2 by mistake, because
6604 the server has no idea that the event for p1.2 had not been
6605 handled yet.
6606
6607 The server side must similarly ignore resume actions for the
6608 thread that has a pending %Stopped notification (and any other
6609 threads with events pending), until GDB acks the notification
6610 with vStopped. Otherwise, e.g., the following case is
6611 mishandled:
6612
6613 #1 => g (or any other packet)
6614 #2 <= [registers]
6615 #3 <= %Stopped T05 p1.2
6616 #4 => vCont s:p1.1;c
6617 #5 <= OK
6618
6619 Above, the server must not resume thread p1.2. GDB can't know
6620 that p1.2 stopped until it acks the %Stopped notification, and
6621 since from GDB's perspective all threads should be running, it
6622 sends a "c" action.
6623
6624 Finally, special care must also be given to handling fork/vfork
6625 events. A (v)fork event actually tells us that two processes
6626 stopped -- the parent and the child. Until we follow the fork,
6627 we must not resume the child. Therefore, if we have a pending
6628 fork follow, we must not send a global wildcard resume action
6629 (vCont;c). We can still send process-wide wildcards though. */
6630
6631 /* Start by assuming a global wildcard (vCont;c) is possible. */
6632 may_global_wildcard_vcont = 1;
6633
6634 /* And assume every process is individually wildcard-able too. */
6635 for (inferior *inf : all_non_exited_inferiors (this))
6636 {
6637 remote_inferior *priv = get_remote_inferior (inf);
6638
6639 priv->may_wildcard_vcont = true;
6640 }
6641
6642 /* Check for any pending events (not reported or processed yet) and
6643 disable process and global wildcard resumes appropriately. */
6644 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6645
6646 for (thread_info *tp : all_non_exited_threads (this))
6647 {
6648 remote_thread_info *priv = get_remote_thread_info (tp);
6649
6650 /* If a thread of a process is not meant to be resumed, then we
6651 can't wildcard that process. */
6652 if (priv->resume_state () == resume_state::NOT_RESUMED)
6653 {
6654 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6655
6656 /* And if we can't wildcard a process, we can't wildcard
6657 everything either. */
6658 may_global_wildcard_vcont = 0;
6659 continue;
6660 }
6661
6662 /* If a thread is the parent of an unfollowed fork, then we
6663 can't do a global wildcard, as that would resume the fork
6664 child. */
6665 if (is_pending_fork_parent_thread (tp))
6666 may_global_wildcard_vcont = 0;
6667 }
6668
6669 /* Now let's build the vCont packet(s). Actions must be appended
6670 from narrower to wider scopes (thread -> process -> global). If
6671 we end up with too many actions for a single packet vcont_builder
6672 flushes the current vCont packet to the remote side and starts a
6673 new one. */
6674 struct vcont_builder vcont_builder (this);
6675
6676 /* Threads first. */
6677 for (thread_info *tp : all_non_exited_threads (this))
6678 {
6679 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6680
6681 /* If the thread was previously vCont-resumed, no need to send a specific
6682 action for it. If we didn't receive a resume request for it, don't
6683 send an action for it either. */
6684 if (remote_thr->resume_state () != resume_state::RESUMED_PENDING_VCONT)
6685 continue;
6686
6687 gdb_assert (!thread_is_in_step_over_chain (tp));
6688
6689 const resumed_pending_vcont_info &info
6690 = remote_thr->resumed_pending_vcont_info ();
6691
6692 /* Check if we need to send a specific action for this thread. If not,
6693 it will be included in a wildcard resume instead. */
6694 if (info.step || info.sig != GDB_SIGNAL_0
6695 || !get_remote_inferior (tp->inf)->may_wildcard_vcont)
6696 vcont_builder.push_action (tp->ptid, info.step, info.sig);
6697
6698 remote_thr->set_resumed ();
6699 }
6700
6701 /* Now check whether we can send any process-wide wildcard. This is
6702 to avoid sending a global wildcard in the case nothing is
6703 supposed to be resumed. */
6704 any_process_wildcard = 0;
6705
6706 for (inferior *inf : all_non_exited_inferiors (this))
6707 {
6708 if (get_remote_inferior (inf)->may_wildcard_vcont)
6709 {
6710 any_process_wildcard = 1;
6711 break;
6712 }
6713 }
6714
6715 if (any_process_wildcard)
6716 {
6717 /* If all processes are wildcard-able, then send a single "c"
6718 action, otherwise, send an "all (-1) threads of process"
6719 continue action for each running process, if any. */
6720 if (may_global_wildcard_vcont)
6721 {
6722 vcont_builder.push_action (minus_one_ptid,
6723 false, GDB_SIGNAL_0);
6724 }
6725 else
6726 {
6727 for (inferior *inf : all_non_exited_inferiors (this))
6728 {
6729 if (get_remote_inferior (inf)->may_wildcard_vcont)
6730 {
6731 vcont_builder.push_action (ptid_t (inf->pid),
6732 false, GDB_SIGNAL_0);
6733 }
6734 }
6735 }
6736 }
6737
6738 vcont_builder.flush ();
6739 }
6740
6741 \f
6742
6743 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6744 thread, all threads of a remote process, or all threads of all
6745 processes. */
6746
6747 void
6748 remote_target::remote_stop_ns (ptid_t ptid)
6749 {
6750 struct remote_state *rs = get_remote_state ();
6751 char *p = rs->buf.data ();
6752 char *endp = p + get_remote_packet_size ();
6753
6754 /* FIXME: This supports_vCont_probed check is a workaround until
6755 packet_support is per-connection. */
6756 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6757 || !rs->supports_vCont_probed)
6758 remote_vcont_probe ();
6759
6760 if (!rs->supports_vCont.t)
6761 error (_("Remote server does not support stopping threads"));
6762
6763 if (ptid == minus_one_ptid
6764 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6765 p += xsnprintf (p, endp - p, "vCont;t");
6766 else
6767 {
6768 ptid_t nptid;
6769
6770 p += xsnprintf (p, endp - p, "vCont;t:");
6771
6772 if (ptid.is_pid ())
6773 /* All (-1) threads of process. */
6774 nptid = ptid_t (ptid.pid (), -1, 0);
6775 else
6776 {
6777 /* Small optimization: if we already have a stop reply for
6778 this thread, no use in telling the stub we want this
6779 stopped. */
6780 if (peek_stop_reply (ptid))
6781 return;
6782
6783 nptid = ptid;
6784 }
6785
6786 write_ptid (p, endp, nptid);
6787 }
6788
6789 /* In non-stop, we get an immediate OK reply. The stop reply will
6790 come in asynchronously by notification. */
6791 putpkt (rs->buf);
6792 getpkt (&rs->buf, 0);
6793 if (strcmp (rs->buf.data (), "OK") != 0)
6794 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6795 rs->buf.data ());
6796 }
6797
6798 /* All-stop version of target_interrupt. Sends a break or a ^C to
6799 interrupt the remote target. It is undefined which thread of which
6800 process reports the interrupt. */
6801
6802 void
6803 remote_target::remote_interrupt_as ()
6804 {
6805 struct remote_state *rs = get_remote_state ();
6806
6807 rs->ctrlc_pending_p = 1;
6808
6809 /* If the inferior is stopped already, but the core didn't know
6810 about it yet, just ignore the request. The cached wait status
6811 will be collected in remote_wait. */
6812 if (rs->cached_wait_status)
6813 return;
6814
6815 /* Send interrupt_sequence to remote target. */
6816 send_interrupt_sequence ();
6817 }
6818
6819 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6820 the remote target. It is undefined which thread of which process
6821 reports the interrupt. Throws an error if the packet is not
6822 supported by the server. */
6823
6824 void
6825 remote_target::remote_interrupt_ns ()
6826 {
6827 struct remote_state *rs = get_remote_state ();
6828 char *p = rs->buf.data ();
6829 char *endp = p + get_remote_packet_size ();
6830
6831 xsnprintf (p, endp - p, "vCtrlC");
6832
6833 /* In non-stop, we get an immediate OK reply. The stop reply will
6834 come in asynchronously by notification. */
6835 putpkt (rs->buf);
6836 getpkt (&rs->buf, 0);
6837
6838 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6839 {
6840 case PACKET_OK:
6841 break;
6842 case PACKET_UNKNOWN:
6843 error (_("No support for interrupting the remote target."));
6844 case PACKET_ERROR:
6845 error (_("Interrupting target failed: %s"), rs->buf.data ());
6846 }
6847 }
6848
6849 /* Implement the to_stop function for the remote targets. */
6850
6851 void
6852 remote_target::stop (ptid_t ptid)
6853 {
6854 if (remote_debug)
6855 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6856
6857 if (target_is_non_stop_p ())
6858 remote_stop_ns (ptid);
6859 else
6860 {
6861 /* We don't currently have a way to transparently pause the
6862 remote target in all-stop mode. Interrupt it instead. */
6863 remote_interrupt_as ();
6864 }
6865 }
6866
6867 /* Implement the to_interrupt function for the remote targets. */
6868
6869 void
6870 remote_target::interrupt ()
6871 {
6872 if (remote_debug)
6873 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6874
6875 if (target_is_non_stop_p ())
6876 remote_interrupt_ns ();
6877 else
6878 remote_interrupt_as ();
6879 }
6880
6881 /* Implement the to_pass_ctrlc function for the remote targets. */
6882
6883 void
6884 remote_target::pass_ctrlc ()
6885 {
6886 struct remote_state *rs = get_remote_state ();
6887
6888 if (remote_debug)
6889 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6890
6891 /* If we're starting up, we're not fully synced yet. Quit
6892 immediately. */
6893 if (rs->starting_up)
6894 quit ();
6895 /* If ^C has already been sent once, offer to disconnect. */
6896 else if (rs->ctrlc_pending_p)
6897 interrupt_query ();
6898 else
6899 target_interrupt ();
6900 }
6901
6902 /* Ask the user what to do when an interrupt is received. */
6903
6904 void
6905 remote_target::interrupt_query ()
6906 {
6907 struct remote_state *rs = get_remote_state ();
6908
6909 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6910 {
6911 if (query (_("The target is not responding to interrupt requests.\n"
6912 "Stop debugging it? ")))
6913 {
6914 remote_unpush_target (this);
6915 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6916 }
6917 }
6918 else
6919 {
6920 if (query (_("Interrupted while waiting for the program.\n"
6921 "Give up waiting? ")))
6922 quit ();
6923 }
6924 }
6925
6926 /* Enable/disable target terminal ownership. Most targets can use
6927 terminal groups to control terminal ownership. Remote targets are
6928 different in that explicit transfer of ownership to/from GDB/target
6929 is required. */
6930
6931 void
6932 remote_target::terminal_inferior ()
6933 {
6934 /* NOTE: At this point we could also register our selves as the
6935 recipient of all input. Any characters typed could then be
6936 passed on down to the target. */
6937 }
6938
6939 void
6940 remote_target::terminal_ours ()
6941 {
6942 }
6943
6944 static void
6945 remote_console_output (const char *msg)
6946 {
6947 const char *p;
6948
6949 for (p = msg; p[0] && p[1]; p += 2)
6950 {
6951 char tb[2];
6952 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6953
6954 tb[0] = c;
6955 tb[1] = 0;
6956 gdb_stdtarg->puts (tb);
6957 }
6958 gdb_stdtarg->flush ();
6959 }
6960
6961 struct stop_reply : public notif_event
6962 {
6963 ~stop_reply ();
6964
6965 /* The identifier of the thread about this event */
6966 ptid_t ptid;
6967
6968 /* The remote state this event is associated with. When the remote
6969 connection, represented by a remote_state object, is closed,
6970 all the associated stop_reply events should be released. */
6971 struct remote_state *rs;
6972
6973 struct target_waitstatus ws;
6974
6975 /* The architecture associated with the expedited registers. */
6976 gdbarch *arch;
6977
6978 /* Expedited registers. This makes remote debugging a bit more
6979 efficient for those targets that provide critical registers as
6980 part of their normal status mechanism (as another roundtrip to
6981 fetch them is avoided). */
6982 std::vector<cached_reg_t> regcache;
6983
6984 enum target_stop_reason stop_reason;
6985
6986 CORE_ADDR watch_data_address;
6987
6988 int core;
6989 };
6990
6991 /* Return the length of the stop reply queue. */
6992
6993 int
6994 remote_target::stop_reply_queue_length ()
6995 {
6996 remote_state *rs = get_remote_state ();
6997 return rs->stop_reply_queue.size ();
6998 }
6999
7000 static void
7001 remote_notif_stop_parse (remote_target *remote,
7002 struct notif_client *self, const char *buf,
7003 struct notif_event *event)
7004 {
7005 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
7006 }
7007
7008 static void
7009 remote_notif_stop_ack (remote_target *remote,
7010 struct notif_client *self, const char *buf,
7011 struct notif_event *event)
7012 {
7013 struct stop_reply *stop_reply = (struct stop_reply *) event;
7014
7015 /* acknowledge */
7016 putpkt (remote, self->ack_command);
7017
7018 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
7019 {
7020 /* We got an unknown stop reply. */
7021 error (_("Unknown stop reply"));
7022 }
7023
7024 remote->push_stop_reply (stop_reply);
7025 }
7026
7027 static int
7028 remote_notif_stop_can_get_pending_events (remote_target *remote,
7029 struct notif_client *self)
7030 {
7031 /* We can't get pending events in remote_notif_process for
7032 notification stop, and we have to do this in remote_wait_ns
7033 instead. If we fetch all queued events from stub, remote stub
7034 may exit and we have no chance to process them back in
7035 remote_wait_ns. */
7036 remote_state *rs = remote->get_remote_state ();
7037 mark_async_event_handler (rs->remote_async_inferior_event_token);
7038 return 0;
7039 }
7040
7041 stop_reply::~stop_reply ()
7042 {
7043 for (cached_reg_t &reg : regcache)
7044 xfree (reg.data);
7045 }
7046
7047 static notif_event_up
7048 remote_notif_stop_alloc_reply ()
7049 {
7050 return notif_event_up (new struct stop_reply ());
7051 }
7052
7053 /* A client of notification Stop. */
7054
7055 struct notif_client notif_client_stop =
7056 {
7057 "Stop",
7058 "vStopped",
7059 remote_notif_stop_parse,
7060 remote_notif_stop_ack,
7061 remote_notif_stop_can_get_pending_events,
7062 remote_notif_stop_alloc_reply,
7063 REMOTE_NOTIF_STOP,
7064 };
7065
7066 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
7067 the pid of the process that owns the threads we want to check, or
7068 -1 if we want to check all threads. */
7069
7070 static int
7071 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
7072 ptid_t thread_ptid)
7073 {
7074 if (ws->kind == TARGET_WAITKIND_FORKED
7075 || ws->kind == TARGET_WAITKIND_VFORKED)
7076 {
7077 if (event_pid == -1 || event_pid == thread_ptid.pid ())
7078 return 1;
7079 }
7080
7081 return 0;
7082 }
7083
7084 /* Return the thread's pending status used to determine whether the
7085 thread is a fork parent stopped at a fork event. */
7086
7087 static struct target_waitstatus *
7088 thread_pending_fork_status (struct thread_info *thread)
7089 {
7090 if (thread->suspend.waitstatus_pending_p)
7091 return &thread->suspend.waitstatus;
7092 else
7093 return &thread->pending_follow;
7094 }
7095
7096 /* Determine if THREAD is a pending fork parent thread. */
7097
7098 static int
7099 is_pending_fork_parent_thread (struct thread_info *thread)
7100 {
7101 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7102 int pid = -1;
7103
7104 return is_pending_fork_parent (ws, pid, thread->ptid);
7105 }
7106
7107 /* If CONTEXT contains any fork child threads that have not been
7108 reported yet, remove them from the CONTEXT list. If such a
7109 thread exists it is because we are stopped at a fork catchpoint
7110 and have not yet called follow_fork, which will set up the
7111 host-side data structures for the new process. */
7112
7113 void
7114 remote_target::remove_new_fork_children (threads_listing_context *context)
7115 {
7116 int pid = -1;
7117 struct notif_client *notif = &notif_client_stop;
7118
7119 /* For any threads stopped at a fork event, remove the corresponding
7120 fork child threads from the CONTEXT list. */
7121 for (thread_info *thread : all_non_exited_threads (this))
7122 {
7123 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7124
7125 if (is_pending_fork_parent (ws, pid, thread->ptid))
7126 context->remove_thread (ws->value.related_pid);
7127 }
7128
7129 /* Check for any pending fork events (not reported or processed yet)
7130 in process PID and remove those fork child threads from the
7131 CONTEXT list as well. */
7132 remote_notif_get_pending_events (notif);
7133 for (auto &event : get_remote_state ()->stop_reply_queue)
7134 if (event->ws.kind == TARGET_WAITKIND_FORKED
7135 || event->ws.kind == TARGET_WAITKIND_VFORKED
7136 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7137 context->remove_thread (event->ws.value.related_pid);
7138 }
7139
7140 /* Check whether any event pending in the vStopped queue would prevent
7141 a global or process wildcard vCont action. Clear
7142 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7143 and clear the event inferior's may_wildcard_vcont flag if we can't
7144 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7145
7146 void
7147 remote_target::check_pending_events_prevent_wildcard_vcont
7148 (int *may_global_wildcard)
7149 {
7150 struct notif_client *notif = &notif_client_stop;
7151
7152 remote_notif_get_pending_events (notif);
7153 for (auto &event : get_remote_state ()->stop_reply_queue)
7154 {
7155 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7156 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7157 continue;
7158
7159 if (event->ws.kind == TARGET_WAITKIND_FORKED
7160 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7161 *may_global_wildcard = 0;
7162
7163 struct inferior *inf = find_inferior_ptid (this, event->ptid);
7164
7165 /* This may be the first time we heard about this process.
7166 Regardless, we must not do a global wildcard resume, otherwise
7167 we'd resume this process too. */
7168 *may_global_wildcard = 0;
7169 if (inf != NULL)
7170 get_remote_inferior (inf)->may_wildcard_vcont = false;
7171 }
7172 }
7173
7174 /* Discard all pending stop replies of inferior INF. */
7175
7176 void
7177 remote_target::discard_pending_stop_replies (struct inferior *inf)
7178 {
7179 struct stop_reply *reply;
7180 struct remote_state *rs = get_remote_state ();
7181 struct remote_notif_state *rns = rs->notif_state;
7182
7183 /* This function can be notified when an inferior exists. When the
7184 target is not remote, the notification state is NULL. */
7185 if (rs->remote_desc == NULL)
7186 return;
7187
7188 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7189
7190 /* Discard the in-flight notification. */
7191 if (reply != NULL && reply->ptid.pid () == inf->pid)
7192 {
7193 delete reply;
7194 rns->pending_event[notif_client_stop.id] = NULL;
7195 }
7196
7197 /* Discard the stop replies we have already pulled with
7198 vStopped. */
7199 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7200 rs->stop_reply_queue.end (),
7201 [=] (const stop_reply_up &event)
7202 {
7203 return event->ptid.pid () == inf->pid;
7204 });
7205 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7206 }
7207
7208 /* Discard the stop replies for RS in stop_reply_queue. */
7209
7210 void
7211 remote_target::discard_pending_stop_replies_in_queue ()
7212 {
7213 remote_state *rs = get_remote_state ();
7214
7215 /* Discard the stop replies we have already pulled with
7216 vStopped. */
7217 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7218 rs->stop_reply_queue.end (),
7219 [=] (const stop_reply_up &event)
7220 {
7221 return event->rs == rs;
7222 });
7223 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7224 }
7225
7226 /* Remove the first reply in 'stop_reply_queue' which matches
7227 PTID. */
7228
7229 struct stop_reply *
7230 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7231 {
7232 remote_state *rs = get_remote_state ();
7233
7234 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7235 rs->stop_reply_queue.end (),
7236 [=] (const stop_reply_up &event)
7237 {
7238 return event->ptid.matches (ptid);
7239 });
7240 struct stop_reply *result;
7241 if (iter == rs->stop_reply_queue.end ())
7242 result = nullptr;
7243 else
7244 {
7245 result = iter->release ();
7246 rs->stop_reply_queue.erase (iter);
7247 }
7248
7249 if (notif_debug)
7250 fprintf_unfiltered (gdb_stdlog,
7251 "notif: discard queued event: 'Stop' in %s\n",
7252 target_pid_to_str (ptid).c_str ());
7253
7254 return result;
7255 }
7256
7257 /* Look for a queued stop reply belonging to PTID. If one is found,
7258 remove it from the queue, and return it. Returns NULL if none is
7259 found. If there are still queued events left to process, tell the
7260 event loop to get back to target_wait soon. */
7261
7262 struct stop_reply *
7263 remote_target::queued_stop_reply (ptid_t ptid)
7264 {
7265 remote_state *rs = get_remote_state ();
7266 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7267
7268 if (!rs->stop_reply_queue.empty ())
7269 {
7270 /* There's still at least an event left. */
7271 mark_async_event_handler (rs->remote_async_inferior_event_token);
7272 }
7273
7274 return r;
7275 }
7276
7277 /* Push a fully parsed stop reply in the stop reply queue. Since we
7278 know that we now have at least one queued event left to pass to the
7279 core side, tell the event loop to get back to target_wait soon. */
7280
7281 void
7282 remote_target::push_stop_reply (struct stop_reply *new_event)
7283 {
7284 remote_state *rs = get_remote_state ();
7285 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7286
7287 if (notif_debug)
7288 fprintf_unfiltered (gdb_stdlog,
7289 "notif: push 'Stop' %s to queue %d\n",
7290 target_pid_to_str (new_event->ptid).c_str (),
7291 int (rs->stop_reply_queue.size ()));
7292
7293 mark_async_event_handler (rs->remote_async_inferior_event_token);
7294 }
7295
7296 /* Returns true if we have a stop reply for PTID. */
7297
7298 int
7299 remote_target::peek_stop_reply (ptid_t ptid)
7300 {
7301 remote_state *rs = get_remote_state ();
7302 for (auto &event : rs->stop_reply_queue)
7303 if (ptid == event->ptid
7304 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7305 return 1;
7306 return 0;
7307 }
7308
7309 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7310 starting with P and ending with PEND matches PREFIX. */
7311
7312 static int
7313 strprefix (const char *p, const char *pend, const char *prefix)
7314 {
7315 for ( ; p < pend; p++, prefix++)
7316 if (*p != *prefix)
7317 return 0;
7318 return *prefix == '\0';
7319 }
7320
7321 /* Parse the stop reply in BUF. Either the function succeeds, and the
7322 result is stored in EVENT, or throws an error. */
7323
7324 void
7325 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7326 {
7327 remote_arch_state *rsa = NULL;
7328 ULONGEST addr;
7329 const char *p;
7330 int skipregs = 0;
7331
7332 event->ptid = null_ptid;
7333 event->rs = get_remote_state ();
7334 event->ws.kind = TARGET_WAITKIND_IGNORE;
7335 event->ws.value.integer = 0;
7336 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7337 event->regcache.clear ();
7338 event->core = -1;
7339
7340 switch (buf[0])
7341 {
7342 case 'T': /* Status with PC, SP, FP, ... */
7343 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7344 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7345 ss = signal number
7346 n... = register number
7347 r... = register contents
7348 */
7349
7350 p = &buf[3]; /* after Txx */
7351 while (*p)
7352 {
7353 const char *p1;
7354 int fieldsize;
7355
7356 p1 = strchr (p, ':');
7357 if (p1 == NULL)
7358 error (_("Malformed packet(a) (missing colon): %s\n\
7359 Packet: '%s'\n"),
7360 p, buf);
7361 if (p == p1)
7362 error (_("Malformed packet(a) (missing register number): %s\n\
7363 Packet: '%s'\n"),
7364 p, buf);
7365
7366 /* Some "registers" are actually extended stop information.
7367 Note if you're adding a new entry here: GDB 7.9 and
7368 earlier assume that all register "numbers" that start
7369 with an hex digit are real register numbers. Make sure
7370 the server only sends such a packet if it knows the
7371 client understands it. */
7372
7373 if (strprefix (p, p1, "thread"))
7374 event->ptid = read_ptid (++p1, &p);
7375 else if (strprefix (p, p1, "syscall_entry"))
7376 {
7377 ULONGEST sysno;
7378
7379 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7380 p = unpack_varlen_hex (++p1, &sysno);
7381 event->ws.value.syscall_number = (int) sysno;
7382 }
7383 else if (strprefix (p, p1, "syscall_return"))
7384 {
7385 ULONGEST sysno;
7386
7387 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7388 p = unpack_varlen_hex (++p1, &sysno);
7389 event->ws.value.syscall_number = (int) sysno;
7390 }
7391 else if (strprefix (p, p1, "watch")
7392 || strprefix (p, p1, "rwatch")
7393 || strprefix (p, p1, "awatch"))
7394 {
7395 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7396 p = unpack_varlen_hex (++p1, &addr);
7397 event->watch_data_address = (CORE_ADDR) addr;
7398 }
7399 else if (strprefix (p, p1, "swbreak"))
7400 {
7401 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7402
7403 /* Make sure the stub doesn't forget to indicate support
7404 with qSupported. */
7405 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7406 error (_("Unexpected swbreak stop reason"));
7407
7408 /* The value part is documented as "must be empty",
7409 though we ignore it, in case we ever decide to make
7410 use of it in a backward compatible way. */
7411 p = strchrnul (p1 + 1, ';');
7412 }
7413 else if (strprefix (p, p1, "hwbreak"))
7414 {
7415 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7416
7417 /* Make sure the stub doesn't forget to indicate support
7418 with qSupported. */
7419 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7420 error (_("Unexpected hwbreak stop reason"));
7421
7422 /* See above. */
7423 p = strchrnul (p1 + 1, ';');
7424 }
7425 else if (strprefix (p, p1, "library"))
7426 {
7427 event->ws.kind = TARGET_WAITKIND_LOADED;
7428 p = strchrnul (p1 + 1, ';');
7429 }
7430 else if (strprefix (p, p1, "replaylog"))
7431 {
7432 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7433 /* p1 will indicate "begin" or "end", but it makes
7434 no difference for now, so ignore it. */
7435 p = strchrnul (p1 + 1, ';');
7436 }
7437 else if (strprefix (p, p1, "core"))
7438 {
7439 ULONGEST c;
7440
7441 p = unpack_varlen_hex (++p1, &c);
7442 event->core = c;
7443 }
7444 else if (strprefix (p, p1, "fork"))
7445 {
7446 event->ws.value.related_pid = read_ptid (++p1, &p);
7447 event->ws.kind = TARGET_WAITKIND_FORKED;
7448 }
7449 else if (strprefix (p, p1, "vfork"))
7450 {
7451 event->ws.value.related_pid = read_ptid (++p1, &p);
7452 event->ws.kind = TARGET_WAITKIND_VFORKED;
7453 }
7454 else if (strprefix (p, p1, "vforkdone"))
7455 {
7456 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7457 p = strchrnul (p1 + 1, ';');
7458 }
7459 else if (strprefix (p, p1, "exec"))
7460 {
7461 ULONGEST ignored;
7462 int pathlen;
7463
7464 /* Determine the length of the execd pathname. */
7465 p = unpack_varlen_hex (++p1, &ignored);
7466 pathlen = (p - p1) / 2;
7467
7468 /* Save the pathname for event reporting and for
7469 the next run command. */
7470 gdb::unique_xmalloc_ptr<char[]> pathname
7471 ((char *) xmalloc (pathlen + 1));
7472 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7473 pathname[pathlen] = '\0';
7474
7475 /* This is freed during event handling. */
7476 event->ws.value.execd_pathname = pathname.release ();
7477 event->ws.kind = TARGET_WAITKIND_EXECD;
7478
7479 /* Skip the registers included in this packet, since
7480 they may be for an architecture different from the
7481 one used by the original program. */
7482 skipregs = 1;
7483 }
7484 else if (strprefix (p, p1, "create"))
7485 {
7486 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7487 p = strchrnul (p1 + 1, ';');
7488 }
7489 else
7490 {
7491 ULONGEST pnum;
7492 const char *p_temp;
7493
7494 if (skipregs)
7495 {
7496 p = strchrnul (p1 + 1, ';');
7497 p++;
7498 continue;
7499 }
7500
7501 /* Maybe a real ``P'' register number. */
7502 p_temp = unpack_varlen_hex (p, &pnum);
7503 /* If the first invalid character is the colon, we got a
7504 register number. Otherwise, it's an unknown stop
7505 reason. */
7506 if (p_temp == p1)
7507 {
7508 /* If we haven't parsed the event's thread yet, find
7509 it now, in order to find the architecture of the
7510 reported expedited registers. */
7511 if (event->ptid == null_ptid)
7512 {
7513 /* If there is no thread-id information then leave
7514 the event->ptid as null_ptid. Later in
7515 process_stop_reply we will pick a suitable
7516 thread. */
7517 const char *thr = strstr (p1 + 1, ";thread:");
7518 if (thr != NULL)
7519 event->ptid = read_ptid (thr + strlen (";thread:"),
7520 NULL);
7521 }
7522
7523 if (rsa == NULL)
7524 {
7525 inferior *inf
7526 = (event->ptid == null_ptid
7527 ? NULL
7528 : find_inferior_ptid (this, event->ptid));
7529 /* If this is the first time we learn anything
7530 about this process, skip the registers
7531 included in this packet, since we don't yet
7532 know which architecture to use to parse them.
7533 We'll determine the architecture later when
7534 we process the stop reply and retrieve the
7535 target description, via
7536 remote_notice_new_inferior ->
7537 post_create_inferior. */
7538 if (inf == NULL)
7539 {
7540 p = strchrnul (p1 + 1, ';');
7541 p++;
7542 continue;
7543 }
7544
7545 event->arch = inf->gdbarch;
7546 rsa = event->rs->get_remote_arch_state (event->arch);
7547 }
7548
7549 packet_reg *reg
7550 = packet_reg_from_pnum (event->arch, rsa, pnum);
7551 cached_reg_t cached_reg;
7552
7553 if (reg == NULL)
7554 error (_("Remote sent bad register number %s: %s\n\
7555 Packet: '%s'\n"),
7556 hex_string (pnum), p, buf);
7557
7558 cached_reg.num = reg->regnum;
7559 cached_reg.data = (gdb_byte *)
7560 xmalloc (register_size (event->arch, reg->regnum));
7561
7562 p = p1 + 1;
7563 fieldsize = hex2bin (p, cached_reg.data,
7564 register_size (event->arch, reg->regnum));
7565 p += 2 * fieldsize;
7566 if (fieldsize < register_size (event->arch, reg->regnum))
7567 warning (_("Remote reply is too short: %s"), buf);
7568
7569 event->regcache.push_back (cached_reg);
7570 }
7571 else
7572 {
7573 /* Not a number. Silently skip unknown optional
7574 info. */
7575 p = strchrnul (p1 + 1, ';');
7576 }
7577 }
7578
7579 if (*p != ';')
7580 error (_("Remote register badly formatted: %s\nhere: %s"),
7581 buf, p);
7582 ++p;
7583 }
7584
7585 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7586 break;
7587
7588 /* fall through */
7589 case 'S': /* Old style status, just signal only. */
7590 {
7591 int sig;
7592
7593 event->ws.kind = TARGET_WAITKIND_STOPPED;
7594 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7595 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7596 event->ws.value.sig = (enum gdb_signal) sig;
7597 else
7598 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7599 }
7600 break;
7601 case 'w': /* Thread exited. */
7602 {
7603 ULONGEST value;
7604
7605 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7606 p = unpack_varlen_hex (&buf[1], &value);
7607 event->ws.value.integer = value;
7608 if (*p != ';')
7609 error (_("stop reply packet badly formatted: %s"), buf);
7610 event->ptid = read_ptid (++p, NULL);
7611 break;
7612 }
7613 case 'W': /* Target exited. */
7614 case 'X':
7615 {
7616 ULONGEST value;
7617
7618 /* GDB used to accept only 2 hex chars here. Stubs should
7619 only send more if they detect GDB supports multi-process
7620 support. */
7621 p = unpack_varlen_hex (&buf[1], &value);
7622
7623 if (buf[0] == 'W')
7624 {
7625 /* The remote process exited. */
7626 event->ws.kind = TARGET_WAITKIND_EXITED;
7627 event->ws.value.integer = value;
7628 }
7629 else
7630 {
7631 /* The remote process exited with a signal. */
7632 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7633 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7634 event->ws.value.sig = (enum gdb_signal) value;
7635 else
7636 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7637 }
7638
7639 /* If no process is specified, return null_ptid, and let the
7640 caller figure out the right process to use. */
7641 int pid = 0;
7642 if (*p == '\0')
7643 ;
7644 else if (*p == ';')
7645 {
7646 p++;
7647
7648 if (*p == '\0')
7649 ;
7650 else if (startswith (p, "process:"))
7651 {
7652 ULONGEST upid;
7653
7654 p += sizeof ("process:") - 1;
7655 unpack_varlen_hex (p, &upid);
7656 pid = upid;
7657 }
7658 else
7659 error (_("unknown stop reply packet: %s"), buf);
7660 }
7661 else
7662 error (_("unknown stop reply packet: %s"), buf);
7663 event->ptid = ptid_t (pid);
7664 }
7665 break;
7666 case 'N':
7667 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7668 event->ptid = minus_one_ptid;
7669 break;
7670 }
7671 }
7672
7673 /* When the stub wants to tell GDB about a new notification reply, it
7674 sends a notification (%Stop, for example). Those can come it at
7675 any time, hence, we have to make sure that any pending
7676 putpkt/getpkt sequence we're making is finished, before querying
7677 the stub for more events with the corresponding ack command
7678 (vStopped, for example). E.g., if we started a vStopped sequence
7679 immediately upon receiving the notification, something like this
7680 could happen:
7681
7682 1.1) --> Hg 1
7683 1.2) <-- OK
7684 1.3) --> g
7685 1.4) <-- %Stop
7686 1.5) --> vStopped
7687 1.6) <-- (registers reply to step #1.3)
7688
7689 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7690 query.
7691
7692 To solve this, whenever we parse a %Stop notification successfully,
7693 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7694 doing whatever we were doing:
7695
7696 2.1) --> Hg 1
7697 2.2) <-- OK
7698 2.3) --> g
7699 2.4) <-- %Stop
7700 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7701 2.5) <-- (registers reply to step #2.3)
7702
7703 Eventually after step #2.5, we return to the event loop, which
7704 notices there's an event on the
7705 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7706 associated callback --- the function below. At this point, we're
7707 always safe to start a vStopped sequence. :
7708
7709 2.6) --> vStopped
7710 2.7) <-- T05 thread:2
7711 2.8) --> vStopped
7712 2.9) --> OK
7713 */
7714
7715 void
7716 remote_target::remote_notif_get_pending_events (notif_client *nc)
7717 {
7718 struct remote_state *rs = get_remote_state ();
7719
7720 if (rs->notif_state->pending_event[nc->id] != NULL)
7721 {
7722 if (notif_debug)
7723 fprintf_unfiltered (gdb_stdlog,
7724 "notif: process: '%s' ack pending event\n",
7725 nc->name);
7726
7727 /* acknowledge */
7728 nc->ack (this, nc, rs->buf.data (),
7729 rs->notif_state->pending_event[nc->id]);
7730 rs->notif_state->pending_event[nc->id] = NULL;
7731
7732 while (1)
7733 {
7734 getpkt (&rs->buf, 0);
7735 if (strcmp (rs->buf.data (), "OK") == 0)
7736 break;
7737 else
7738 remote_notif_ack (this, nc, rs->buf.data ());
7739 }
7740 }
7741 else
7742 {
7743 if (notif_debug)
7744 fprintf_unfiltered (gdb_stdlog,
7745 "notif: process: '%s' no pending reply\n",
7746 nc->name);
7747 }
7748 }
7749
7750 /* Wrapper around remote_target::remote_notif_get_pending_events to
7751 avoid having to export the whole remote_target class. */
7752
7753 void
7754 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7755 {
7756 remote->remote_notif_get_pending_events (nc);
7757 }
7758
7759 /* Called from process_stop_reply when the stop packet we are responding
7760 to didn't include a process-id or thread-id. STATUS is the stop event
7761 we are responding to.
7762
7763 It is the task of this function to select a suitable thread (or process)
7764 and return its ptid, this is the thread (or process) we will assume the
7765 stop event came from.
7766
7767 In some cases there isn't really any choice about which thread (or
7768 process) is selected, a basic remote with a single process containing a
7769 single thread might choose not to send any process-id or thread-id in
7770 its stop packets, this function will select and return the one and only
7771 thread.
7772
7773 However, if a target supports multiple threads (or processes) and still
7774 doesn't include a thread-id (or process-id) in its stop packet then
7775 first, this is a badly behaving target, and second, we're going to have
7776 to select a thread (or process) at random and use that. This function
7777 will print a warning to the user if it detects that there is the
7778 possibility that GDB is guessing which thread (or process) to
7779 report.
7780
7781 Note that this is called before GDB fetches the updated thread list from the
7782 target. So it's possible for the stop reply to be ambiguous and for GDB to
7783 not realize it. For example, if there's initially one thread, the target
7784 spawns a second thread, and then sends a stop reply without an id that
7785 concerns the first thread. GDB will assume the stop reply is about the
7786 first thread - the only thread it knows about - without printing a warning.
7787 Anyway, if the remote meant for the stop reply to be about the second thread,
7788 then it would be really broken, because GDB doesn't know about that thread
7789 yet. */
7790
7791 ptid_t
7792 remote_target::select_thread_for_ambiguous_stop_reply
7793 (const struct target_waitstatus *status)
7794 {
7795 /* Some stop events apply to all threads in an inferior, while others
7796 only apply to a single thread. */
7797 bool process_wide_stop
7798 = (status->kind == TARGET_WAITKIND_EXITED
7799 || status->kind == TARGET_WAITKIND_SIGNALLED);
7800
7801 thread_info *first_resumed_thread = nullptr;
7802 bool ambiguous = false;
7803
7804 /* Consider all non-exited threads of the target, find the first resumed
7805 one. */
7806 for (thread_info *thr : all_non_exited_threads (this))
7807 {
7808 remote_thread_info *remote_thr = get_remote_thread_info (thr);
7809
7810 if (remote_thr->resume_state () != resume_state::RESUMED)
7811 continue;
7812
7813 if (first_resumed_thread == nullptr)
7814 first_resumed_thread = thr;
7815 else if (!process_wide_stop
7816 || first_resumed_thread->ptid.pid () != thr->ptid.pid ())
7817 ambiguous = true;
7818 }
7819
7820 gdb_assert (first_resumed_thread != nullptr);
7821
7822 /* Warn if the remote target is sending ambiguous stop replies. */
7823 if (ambiguous)
7824 {
7825 static bool warned = false;
7826
7827 if (!warned)
7828 {
7829 /* If you are seeing this warning then the remote target has
7830 stopped without specifying a thread-id, but the target
7831 does have multiple threads (or inferiors), and so GDB is
7832 having to guess which thread stopped.
7833
7834 Examples of what might cause this are the target sending
7835 and 'S' stop packet, or a 'T' stop packet and not
7836 including a thread-id.
7837
7838 Additionally, the target might send a 'W' or 'X packet
7839 without including a process-id, when the target has
7840 multiple running inferiors. */
7841 if (process_wide_stop)
7842 warning (_("multi-inferior target stopped without "
7843 "sending a process-id, using first "
7844 "non-exited inferior"));
7845 else
7846 warning (_("multi-threaded target stopped without "
7847 "sending a thread-id, using first "
7848 "non-exited thread"));
7849 warned = true;
7850 }
7851 }
7852
7853 /* If this is a stop for all threads then don't use a particular threads
7854 ptid, instead create a new ptid where only the pid field is set. */
7855 if (process_wide_stop)
7856 return ptid_t (first_resumed_thread->ptid.pid ());
7857 else
7858 return first_resumed_thread->ptid;
7859 }
7860
7861 /* Called when it is decided that STOP_REPLY holds the info of the
7862 event that is to be returned to the core. This function always
7863 destroys STOP_REPLY. */
7864
7865 ptid_t
7866 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7867 struct target_waitstatus *status)
7868 {
7869 *status = stop_reply->ws;
7870 ptid_t ptid = stop_reply->ptid;
7871
7872 /* If no thread/process was reported by the stub then select a suitable
7873 thread/process. */
7874 if (ptid == null_ptid)
7875 ptid = select_thread_for_ambiguous_stop_reply (status);
7876 gdb_assert (ptid != null_ptid);
7877
7878 if (status->kind != TARGET_WAITKIND_EXITED
7879 && status->kind != TARGET_WAITKIND_SIGNALLED
7880 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7881 {
7882 /* Expedited registers. */
7883 if (!stop_reply->regcache.empty ())
7884 {
7885 struct regcache *regcache
7886 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
7887
7888 for (cached_reg_t &reg : stop_reply->regcache)
7889 {
7890 regcache->raw_supply (reg.num, reg.data);
7891 xfree (reg.data);
7892 }
7893
7894 stop_reply->regcache.clear ();
7895 }
7896
7897 remote_notice_new_inferior (ptid, 0);
7898 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
7899 remote_thr->core = stop_reply->core;
7900 remote_thr->stop_reason = stop_reply->stop_reason;
7901 remote_thr->watch_data_address = stop_reply->watch_data_address;
7902
7903 if (target_is_non_stop_p ())
7904 {
7905 /* If the target works in non-stop mode, a stop-reply indicates that
7906 only this thread stopped. */
7907 remote_thr->set_not_resumed ();
7908 }
7909 else
7910 {
7911 /* If the target works in all-stop mode, a stop-reply indicates that
7912 all the target's threads stopped. */
7913 for (thread_info *tp : all_non_exited_threads (this))
7914 get_remote_thread_info (tp)->set_not_resumed ();
7915 }
7916 }
7917
7918 delete stop_reply;
7919 return ptid;
7920 }
7921
7922 /* The non-stop mode version of target_wait. */
7923
7924 ptid_t
7925 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
7926 target_wait_flags options)
7927 {
7928 struct remote_state *rs = get_remote_state ();
7929 struct stop_reply *stop_reply;
7930 int ret;
7931 int is_notif = 0;
7932
7933 /* If in non-stop mode, get out of getpkt even if a
7934 notification is received. */
7935
7936 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7937 while (1)
7938 {
7939 if (ret != -1 && !is_notif)
7940 switch (rs->buf[0])
7941 {
7942 case 'E': /* Error of some sort. */
7943 /* We're out of sync with the target now. Did it continue
7944 or not? We can't tell which thread it was in non-stop,
7945 so just ignore this. */
7946 warning (_("Remote failure reply: %s"), rs->buf.data ());
7947 break;
7948 case 'O': /* Console output. */
7949 remote_console_output (&rs->buf[1]);
7950 break;
7951 default:
7952 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7953 break;
7954 }
7955
7956 /* Acknowledge a pending stop reply that may have arrived in the
7957 mean time. */
7958 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7959 remote_notif_get_pending_events (&notif_client_stop);
7960
7961 /* If indeed we noticed a stop reply, we're done. */
7962 stop_reply = queued_stop_reply (ptid);
7963 if (stop_reply != NULL)
7964 return process_stop_reply (stop_reply, status);
7965
7966 /* Still no event. If we're just polling for an event, then
7967 return to the event loop. */
7968 if (options & TARGET_WNOHANG)
7969 {
7970 status->kind = TARGET_WAITKIND_IGNORE;
7971 return minus_one_ptid;
7972 }
7973
7974 /* Otherwise do a blocking wait. */
7975 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7976 }
7977 }
7978
7979 /* Return the first resumed thread. */
7980
7981 static ptid_t
7982 first_remote_resumed_thread (remote_target *target)
7983 {
7984 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
7985 if (tp->resumed)
7986 return tp->ptid;
7987 return null_ptid;
7988 }
7989
7990 /* Wait until the remote machine stops, then return, storing status in
7991 STATUS just as `wait' would. */
7992
7993 ptid_t
7994 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
7995 target_wait_flags options)
7996 {
7997 struct remote_state *rs = get_remote_state ();
7998 ptid_t event_ptid = null_ptid;
7999 char *buf;
8000 struct stop_reply *stop_reply;
8001
8002 again:
8003
8004 status->kind = TARGET_WAITKIND_IGNORE;
8005 status->value.integer = 0;
8006
8007 stop_reply = queued_stop_reply (ptid);
8008 if (stop_reply != NULL)
8009 return process_stop_reply (stop_reply, status);
8010
8011 if (rs->cached_wait_status)
8012 /* Use the cached wait status, but only once. */
8013 rs->cached_wait_status = 0;
8014 else
8015 {
8016 int ret;
8017 int is_notif;
8018 int forever = ((options & TARGET_WNOHANG) == 0
8019 && rs->wait_forever_enabled_p);
8020
8021 if (!rs->waiting_for_stop_reply)
8022 {
8023 status->kind = TARGET_WAITKIND_NO_RESUMED;
8024 return minus_one_ptid;
8025 }
8026
8027 /* FIXME: cagney/1999-09-27: If we're in async mode we should
8028 _never_ wait for ever -> test on target_is_async_p().
8029 However, before we do that we need to ensure that the caller
8030 knows how to take the target into/out of async mode. */
8031 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
8032
8033 /* GDB gets a notification. Return to core as this event is
8034 not interesting. */
8035 if (ret != -1 && is_notif)
8036 return minus_one_ptid;
8037
8038 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
8039 return minus_one_ptid;
8040 }
8041
8042 buf = rs->buf.data ();
8043
8044 /* Assume that the target has acknowledged Ctrl-C unless we receive
8045 an 'F' or 'O' packet. */
8046 if (buf[0] != 'F' && buf[0] != 'O')
8047 rs->ctrlc_pending_p = 0;
8048
8049 switch (buf[0])
8050 {
8051 case 'E': /* Error of some sort. */
8052 /* We're out of sync with the target now. Did it continue or
8053 not? Not is more likely, so report a stop. */
8054 rs->waiting_for_stop_reply = 0;
8055
8056 warning (_("Remote failure reply: %s"), buf);
8057 status->kind = TARGET_WAITKIND_STOPPED;
8058 status->value.sig = GDB_SIGNAL_0;
8059 break;
8060 case 'F': /* File-I/O request. */
8061 /* GDB may access the inferior memory while handling the File-I/O
8062 request, but we don't want GDB accessing memory while waiting
8063 for a stop reply. See the comments in putpkt_binary. Set
8064 waiting_for_stop_reply to 0 temporarily. */
8065 rs->waiting_for_stop_reply = 0;
8066 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
8067 rs->ctrlc_pending_p = 0;
8068 /* GDB handled the File-I/O request, and the target is running
8069 again. Keep waiting for events. */
8070 rs->waiting_for_stop_reply = 1;
8071 break;
8072 case 'N': case 'T': case 'S': case 'X': case 'W':
8073 {
8074 /* There is a stop reply to handle. */
8075 rs->waiting_for_stop_reply = 0;
8076
8077 stop_reply
8078 = (struct stop_reply *) remote_notif_parse (this,
8079 &notif_client_stop,
8080 rs->buf.data ());
8081
8082 event_ptid = process_stop_reply (stop_reply, status);
8083 break;
8084 }
8085 case 'O': /* Console output. */
8086 remote_console_output (buf + 1);
8087 break;
8088 case '\0':
8089 if (rs->last_sent_signal != GDB_SIGNAL_0)
8090 {
8091 /* Zero length reply means that we tried 'S' or 'C' and the
8092 remote system doesn't support it. */
8093 target_terminal::ours_for_output ();
8094 printf_filtered
8095 ("Can't send signals to this remote system. %s not sent.\n",
8096 gdb_signal_to_name (rs->last_sent_signal));
8097 rs->last_sent_signal = GDB_SIGNAL_0;
8098 target_terminal::inferior ();
8099
8100 strcpy (buf, rs->last_sent_step ? "s" : "c");
8101 putpkt (buf);
8102 break;
8103 }
8104 /* fallthrough */
8105 default:
8106 warning (_("Invalid remote reply: %s"), buf);
8107 break;
8108 }
8109
8110 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
8111 return minus_one_ptid;
8112 else if (status->kind == TARGET_WAITKIND_IGNORE)
8113 {
8114 /* Nothing interesting happened. If we're doing a non-blocking
8115 poll, we're done. Otherwise, go back to waiting. */
8116 if (options & TARGET_WNOHANG)
8117 return minus_one_ptid;
8118 else
8119 goto again;
8120 }
8121 else if (status->kind != TARGET_WAITKIND_EXITED
8122 && status->kind != TARGET_WAITKIND_SIGNALLED)
8123 {
8124 if (event_ptid != null_ptid)
8125 record_currthread (rs, event_ptid);
8126 else
8127 event_ptid = first_remote_resumed_thread (this);
8128 }
8129 else
8130 {
8131 /* A process exit. Invalidate our notion of current thread. */
8132 record_currthread (rs, minus_one_ptid);
8133 /* It's possible that the packet did not include a pid. */
8134 if (event_ptid == null_ptid)
8135 event_ptid = first_remote_resumed_thread (this);
8136 /* EVENT_PTID could still be NULL_PTID. Double-check. */
8137 if (event_ptid == null_ptid)
8138 event_ptid = magic_null_ptid;
8139 }
8140
8141 return event_ptid;
8142 }
8143
8144 /* Wait until the remote machine stops, then return, storing status in
8145 STATUS just as `wait' would. */
8146
8147 ptid_t
8148 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8149 target_wait_flags options)
8150 {
8151 ptid_t event_ptid;
8152
8153 if (target_is_non_stop_p ())
8154 event_ptid = wait_ns (ptid, status, options);
8155 else
8156 event_ptid = wait_as (ptid, status, options);
8157
8158 if (target_is_async_p ())
8159 {
8160 remote_state *rs = get_remote_state ();
8161
8162 /* If there are are events left in the queue tell the event loop
8163 to return here. */
8164 if (!rs->stop_reply_queue.empty ())
8165 mark_async_event_handler (rs->remote_async_inferior_event_token);
8166 }
8167
8168 return event_ptid;
8169 }
8170
8171 /* Fetch a single register using a 'p' packet. */
8172
8173 int
8174 remote_target::fetch_register_using_p (struct regcache *regcache,
8175 packet_reg *reg)
8176 {
8177 struct gdbarch *gdbarch = regcache->arch ();
8178 struct remote_state *rs = get_remote_state ();
8179 char *buf, *p;
8180 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8181 int i;
8182
8183 if (packet_support (PACKET_p) == PACKET_DISABLE)
8184 return 0;
8185
8186 if (reg->pnum == -1)
8187 return 0;
8188
8189 p = rs->buf.data ();
8190 *p++ = 'p';
8191 p += hexnumstr (p, reg->pnum);
8192 *p++ = '\0';
8193 putpkt (rs->buf);
8194 getpkt (&rs->buf, 0);
8195
8196 buf = rs->buf.data ();
8197
8198 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8199 {
8200 case PACKET_OK:
8201 break;
8202 case PACKET_UNKNOWN:
8203 return 0;
8204 case PACKET_ERROR:
8205 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8206 gdbarch_register_name (regcache->arch (),
8207 reg->regnum),
8208 buf);
8209 }
8210
8211 /* If this register is unfetchable, tell the regcache. */
8212 if (buf[0] == 'x')
8213 {
8214 regcache->raw_supply (reg->regnum, NULL);
8215 return 1;
8216 }
8217
8218 /* Otherwise, parse and supply the value. */
8219 p = buf;
8220 i = 0;
8221 while (p[0] != 0)
8222 {
8223 if (p[1] == 0)
8224 error (_("fetch_register_using_p: early buf termination"));
8225
8226 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8227 p += 2;
8228 }
8229 regcache->raw_supply (reg->regnum, regp);
8230 return 1;
8231 }
8232
8233 /* Fetch the registers included in the target's 'g' packet. */
8234
8235 int
8236 remote_target::send_g_packet ()
8237 {
8238 struct remote_state *rs = get_remote_state ();
8239 int buf_len;
8240
8241 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8242 putpkt (rs->buf);
8243 getpkt (&rs->buf, 0);
8244 if (packet_check_result (rs->buf) == PACKET_ERROR)
8245 error (_("Could not read registers; remote failure reply '%s'"),
8246 rs->buf.data ());
8247
8248 /* We can get out of synch in various cases. If the first character
8249 in the buffer is not a hex character, assume that has happened
8250 and try to fetch another packet to read. */
8251 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8252 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8253 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8254 && rs->buf[0] != 'x') /* New: unavailable register value. */
8255 {
8256 if (remote_debug)
8257 fprintf_unfiltered (gdb_stdlog,
8258 "Bad register packet; fetching a new packet\n");
8259 getpkt (&rs->buf, 0);
8260 }
8261
8262 buf_len = strlen (rs->buf.data ());
8263
8264 /* Sanity check the received packet. */
8265 if (buf_len % 2 != 0)
8266 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8267
8268 return buf_len / 2;
8269 }
8270
8271 void
8272 remote_target::process_g_packet (struct regcache *regcache)
8273 {
8274 struct gdbarch *gdbarch = regcache->arch ();
8275 struct remote_state *rs = get_remote_state ();
8276 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8277 int i, buf_len;
8278 char *p;
8279 char *regs;
8280
8281 buf_len = strlen (rs->buf.data ());
8282
8283 /* Further sanity checks, with knowledge of the architecture. */
8284 if (buf_len > 2 * rsa->sizeof_g_packet)
8285 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8286 "bytes): %s"),
8287 rsa->sizeof_g_packet, buf_len / 2,
8288 rs->buf.data ());
8289
8290 /* Save the size of the packet sent to us by the target. It is used
8291 as a heuristic when determining the max size of packets that the
8292 target can safely receive. */
8293 if (rsa->actual_register_packet_size == 0)
8294 rsa->actual_register_packet_size = buf_len;
8295
8296 /* If this is smaller than we guessed the 'g' packet would be,
8297 update our records. A 'g' reply that doesn't include a register's
8298 value implies either that the register is not available, or that
8299 the 'p' packet must be used. */
8300 if (buf_len < 2 * rsa->sizeof_g_packet)
8301 {
8302 long sizeof_g_packet = buf_len / 2;
8303
8304 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8305 {
8306 long offset = rsa->regs[i].offset;
8307 long reg_size = register_size (gdbarch, i);
8308
8309 if (rsa->regs[i].pnum == -1)
8310 continue;
8311
8312 if (offset >= sizeof_g_packet)
8313 rsa->regs[i].in_g_packet = 0;
8314 else if (offset + reg_size > sizeof_g_packet)
8315 error (_("Truncated register %d in remote 'g' packet"), i);
8316 else
8317 rsa->regs[i].in_g_packet = 1;
8318 }
8319
8320 /* Looks valid enough, we can assume this is the correct length
8321 for a 'g' packet. It's important not to adjust
8322 rsa->sizeof_g_packet if we have truncated registers otherwise
8323 this "if" won't be run the next time the method is called
8324 with a packet of the same size and one of the internal errors
8325 below will trigger instead. */
8326 rsa->sizeof_g_packet = sizeof_g_packet;
8327 }
8328
8329 regs = (char *) alloca (rsa->sizeof_g_packet);
8330
8331 /* Unimplemented registers read as all bits zero. */
8332 memset (regs, 0, rsa->sizeof_g_packet);
8333
8334 /* Reply describes registers byte by byte, each byte encoded as two
8335 hex characters. Suck them all up, then supply them to the
8336 register cacheing/storage mechanism. */
8337
8338 p = rs->buf.data ();
8339 for (i = 0; i < rsa->sizeof_g_packet; i++)
8340 {
8341 if (p[0] == 0 || p[1] == 0)
8342 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8343 internal_error (__FILE__, __LINE__,
8344 _("unexpected end of 'g' packet reply"));
8345
8346 if (p[0] == 'x' && p[1] == 'x')
8347 regs[i] = 0; /* 'x' */
8348 else
8349 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8350 p += 2;
8351 }
8352
8353 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8354 {
8355 struct packet_reg *r = &rsa->regs[i];
8356 long reg_size = register_size (gdbarch, i);
8357
8358 if (r->in_g_packet)
8359 {
8360 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8361 /* This shouldn't happen - we adjusted in_g_packet above. */
8362 internal_error (__FILE__, __LINE__,
8363 _("unexpected end of 'g' packet reply"));
8364 else if (rs->buf[r->offset * 2] == 'x')
8365 {
8366 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8367 /* The register isn't available, mark it as such (at
8368 the same time setting the value to zero). */
8369 regcache->raw_supply (r->regnum, NULL);
8370 }
8371 else
8372 regcache->raw_supply (r->regnum, regs + r->offset);
8373 }
8374 }
8375 }
8376
8377 void
8378 remote_target::fetch_registers_using_g (struct regcache *regcache)
8379 {
8380 send_g_packet ();
8381 process_g_packet (regcache);
8382 }
8383
8384 /* Make the remote selected traceframe match GDB's selected
8385 traceframe. */
8386
8387 void
8388 remote_target::set_remote_traceframe ()
8389 {
8390 int newnum;
8391 struct remote_state *rs = get_remote_state ();
8392
8393 if (rs->remote_traceframe_number == get_traceframe_number ())
8394 return;
8395
8396 /* Avoid recursion, remote_trace_find calls us again. */
8397 rs->remote_traceframe_number = get_traceframe_number ();
8398
8399 newnum = target_trace_find (tfind_number,
8400 get_traceframe_number (), 0, 0, NULL);
8401
8402 /* Should not happen. If it does, all bets are off. */
8403 if (newnum != get_traceframe_number ())
8404 warning (_("could not set remote traceframe"));
8405 }
8406
8407 void
8408 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8409 {
8410 struct gdbarch *gdbarch = regcache->arch ();
8411 struct remote_state *rs = get_remote_state ();
8412 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8413 int i;
8414
8415 set_remote_traceframe ();
8416 set_general_thread (regcache->ptid ());
8417
8418 if (regnum >= 0)
8419 {
8420 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8421
8422 gdb_assert (reg != NULL);
8423
8424 /* If this register might be in the 'g' packet, try that first -
8425 we are likely to read more than one register. If this is the
8426 first 'g' packet, we might be overly optimistic about its
8427 contents, so fall back to 'p'. */
8428 if (reg->in_g_packet)
8429 {
8430 fetch_registers_using_g (regcache);
8431 if (reg->in_g_packet)
8432 return;
8433 }
8434
8435 if (fetch_register_using_p (regcache, reg))
8436 return;
8437
8438 /* This register is not available. */
8439 regcache->raw_supply (reg->regnum, NULL);
8440
8441 return;
8442 }
8443
8444 fetch_registers_using_g (regcache);
8445
8446 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8447 if (!rsa->regs[i].in_g_packet)
8448 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8449 {
8450 /* This register is not available. */
8451 regcache->raw_supply (i, NULL);
8452 }
8453 }
8454
8455 /* Prepare to store registers. Since we may send them all (using a
8456 'G' request), we have to read out the ones we don't want to change
8457 first. */
8458
8459 void
8460 remote_target::prepare_to_store (struct regcache *regcache)
8461 {
8462 struct remote_state *rs = get_remote_state ();
8463 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8464 int i;
8465
8466 /* Make sure the entire registers array is valid. */
8467 switch (packet_support (PACKET_P))
8468 {
8469 case PACKET_DISABLE:
8470 case PACKET_SUPPORT_UNKNOWN:
8471 /* Make sure all the necessary registers are cached. */
8472 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8473 if (rsa->regs[i].in_g_packet)
8474 regcache->raw_update (rsa->regs[i].regnum);
8475 break;
8476 case PACKET_ENABLE:
8477 break;
8478 }
8479 }
8480
8481 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8482 packet was not recognized. */
8483
8484 int
8485 remote_target::store_register_using_P (const struct regcache *regcache,
8486 packet_reg *reg)
8487 {
8488 struct gdbarch *gdbarch = regcache->arch ();
8489 struct remote_state *rs = get_remote_state ();
8490 /* Try storing a single register. */
8491 char *buf = rs->buf.data ();
8492 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8493 char *p;
8494
8495 if (packet_support (PACKET_P) == PACKET_DISABLE)
8496 return 0;
8497
8498 if (reg->pnum == -1)
8499 return 0;
8500
8501 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8502 p = buf + strlen (buf);
8503 regcache->raw_collect (reg->regnum, regp);
8504 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8505 putpkt (rs->buf);
8506 getpkt (&rs->buf, 0);
8507
8508 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8509 {
8510 case PACKET_OK:
8511 return 1;
8512 case PACKET_ERROR:
8513 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8514 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8515 case PACKET_UNKNOWN:
8516 return 0;
8517 default:
8518 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8519 }
8520 }
8521
8522 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8523 contents of the register cache buffer. FIXME: ignores errors. */
8524
8525 void
8526 remote_target::store_registers_using_G (const struct regcache *regcache)
8527 {
8528 struct remote_state *rs = get_remote_state ();
8529 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8530 gdb_byte *regs;
8531 char *p;
8532
8533 /* Extract all the registers in the regcache copying them into a
8534 local buffer. */
8535 {
8536 int i;
8537
8538 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8539 memset (regs, 0, rsa->sizeof_g_packet);
8540 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8541 {
8542 struct packet_reg *r = &rsa->regs[i];
8543
8544 if (r->in_g_packet)
8545 regcache->raw_collect (r->regnum, regs + r->offset);
8546 }
8547 }
8548
8549 /* Command describes registers byte by byte,
8550 each byte encoded as two hex characters. */
8551 p = rs->buf.data ();
8552 *p++ = 'G';
8553 bin2hex (regs, p, rsa->sizeof_g_packet);
8554 putpkt (rs->buf);
8555 getpkt (&rs->buf, 0);
8556 if (packet_check_result (rs->buf) == PACKET_ERROR)
8557 error (_("Could not write registers; remote failure reply '%s'"),
8558 rs->buf.data ());
8559 }
8560
8561 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8562 of the register cache buffer. FIXME: ignores errors. */
8563
8564 void
8565 remote_target::store_registers (struct regcache *regcache, int regnum)
8566 {
8567 struct gdbarch *gdbarch = regcache->arch ();
8568 struct remote_state *rs = get_remote_state ();
8569 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8570 int i;
8571
8572 set_remote_traceframe ();
8573 set_general_thread (regcache->ptid ());
8574
8575 if (regnum >= 0)
8576 {
8577 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8578
8579 gdb_assert (reg != NULL);
8580
8581 /* Always prefer to store registers using the 'P' packet if
8582 possible; we often change only a small number of registers.
8583 Sometimes we change a larger number; we'd need help from a
8584 higher layer to know to use 'G'. */
8585 if (store_register_using_P (regcache, reg))
8586 return;
8587
8588 /* For now, don't complain if we have no way to write the
8589 register. GDB loses track of unavailable registers too
8590 easily. Some day, this may be an error. We don't have
8591 any way to read the register, either... */
8592 if (!reg->in_g_packet)
8593 return;
8594
8595 store_registers_using_G (regcache);
8596 return;
8597 }
8598
8599 store_registers_using_G (regcache);
8600
8601 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8602 if (!rsa->regs[i].in_g_packet)
8603 if (!store_register_using_P (regcache, &rsa->regs[i]))
8604 /* See above for why we do not issue an error here. */
8605 continue;
8606 }
8607 \f
8608
8609 /* Return the number of hex digits in num. */
8610
8611 static int
8612 hexnumlen (ULONGEST num)
8613 {
8614 int i;
8615
8616 for (i = 0; num != 0; i++)
8617 num >>= 4;
8618
8619 return std::max (i, 1);
8620 }
8621
8622 /* Set BUF to the minimum number of hex digits representing NUM. */
8623
8624 static int
8625 hexnumstr (char *buf, ULONGEST num)
8626 {
8627 int len = hexnumlen (num);
8628
8629 return hexnumnstr (buf, num, len);
8630 }
8631
8632
8633 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8634
8635 static int
8636 hexnumnstr (char *buf, ULONGEST num, int width)
8637 {
8638 int i;
8639
8640 buf[width] = '\0';
8641
8642 for (i = width - 1; i >= 0; i--)
8643 {
8644 buf[i] = "0123456789abcdef"[(num & 0xf)];
8645 num >>= 4;
8646 }
8647
8648 return width;
8649 }
8650
8651 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8652
8653 static CORE_ADDR
8654 remote_address_masked (CORE_ADDR addr)
8655 {
8656 unsigned int address_size = remote_address_size;
8657
8658 /* If "remoteaddresssize" was not set, default to target address size. */
8659 if (!address_size)
8660 address_size = gdbarch_addr_bit (target_gdbarch ());
8661
8662 if (address_size > 0
8663 && address_size < (sizeof (ULONGEST) * 8))
8664 {
8665 /* Only create a mask when that mask can safely be constructed
8666 in a ULONGEST variable. */
8667 ULONGEST mask = 1;
8668
8669 mask = (mask << address_size) - 1;
8670 addr &= mask;
8671 }
8672 return addr;
8673 }
8674
8675 /* Determine whether the remote target supports binary downloading.
8676 This is accomplished by sending a no-op memory write of zero length
8677 to the target at the specified address. It does not suffice to send
8678 the whole packet, since many stubs strip the eighth bit and
8679 subsequently compute a wrong checksum, which causes real havoc with
8680 remote_write_bytes.
8681
8682 NOTE: This can still lose if the serial line is not eight-bit
8683 clean. In cases like this, the user should clear "remote
8684 X-packet". */
8685
8686 void
8687 remote_target::check_binary_download (CORE_ADDR addr)
8688 {
8689 struct remote_state *rs = get_remote_state ();
8690
8691 switch (packet_support (PACKET_X))
8692 {
8693 case PACKET_DISABLE:
8694 break;
8695 case PACKET_ENABLE:
8696 break;
8697 case PACKET_SUPPORT_UNKNOWN:
8698 {
8699 char *p;
8700
8701 p = rs->buf.data ();
8702 *p++ = 'X';
8703 p += hexnumstr (p, (ULONGEST) addr);
8704 *p++ = ',';
8705 p += hexnumstr (p, (ULONGEST) 0);
8706 *p++ = ':';
8707 *p = '\0';
8708
8709 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8710 getpkt (&rs->buf, 0);
8711
8712 if (rs->buf[0] == '\0')
8713 {
8714 if (remote_debug)
8715 fprintf_unfiltered (gdb_stdlog,
8716 "binary downloading NOT "
8717 "supported by target\n");
8718 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8719 }
8720 else
8721 {
8722 if (remote_debug)
8723 fprintf_unfiltered (gdb_stdlog,
8724 "binary downloading supported by target\n");
8725 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8726 }
8727 break;
8728 }
8729 }
8730 }
8731
8732 /* Helper function to resize the payload in order to try to get a good
8733 alignment. We try to write an amount of data such that the next write will
8734 start on an address aligned on REMOTE_ALIGN_WRITES. */
8735
8736 static int
8737 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8738 {
8739 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8740 }
8741
8742 /* Write memory data directly to the remote machine.
8743 This does not inform the data cache; the data cache uses this.
8744 HEADER is the starting part of the packet.
8745 MEMADDR is the address in the remote memory space.
8746 MYADDR is the address of the buffer in our space.
8747 LEN_UNITS is the number of addressable units to write.
8748 UNIT_SIZE is the length in bytes of an addressable unit.
8749 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8750 should send data as binary ('X'), or hex-encoded ('M').
8751
8752 The function creates packet of the form
8753 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8754
8755 where encoding of <DATA> is terminated by PACKET_FORMAT.
8756
8757 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8758 are omitted.
8759
8760 Return the transferred status, error or OK (an
8761 'enum target_xfer_status' value). Save the number of addressable units
8762 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8763
8764 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8765 exchange between gdb and the stub could look like (?? in place of the
8766 checksum):
8767
8768 -> $m1000,4#??
8769 <- aaaabbbbccccdddd
8770
8771 -> $M1000,3:eeeeffffeeee#??
8772 <- OK
8773
8774 -> $m1000,4#??
8775 <- eeeeffffeeeedddd */
8776
8777 target_xfer_status
8778 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8779 const gdb_byte *myaddr,
8780 ULONGEST len_units,
8781 int unit_size,
8782 ULONGEST *xfered_len_units,
8783 char packet_format, int use_length)
8784 {
8785 struct remote_state *rs = get_remote_state ();
8786 char *p;
8787 char *plen = NULL;
8788 int plenlen = 0;
8789 int todo_units;
8790 int units_written;
8791 int payload_capacity_bytes;
8792 int payload_length_bytes;
8793
8794 if (packet_format != 'X' && packet_format != 'M')
8795 internal_error (__FILE__, __LINE__,
8796 _("remote_write_bytes_aux: bad packet format"));
8797
8798 if (len_units == 0)
8799 return TARGET_XFER_EOF;
8800
8801 payload_capacity_bytes = get_memory_write_packet_size ();
8802
8803 /* The packet buffer will be large enough for the payload;
8804 get_memory_packet_size ensures this. */
8805 rs->buf[0] = '\0';
8806
8807 /* Compute the size of the actual payload by subtracting out the
8808 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8809
8810 payload_capacity_bytes -= strlen ("$,:#NN");
8811 if (!use_length)
8812 /* The comma won't be used. */
8813 payload_capacity_bytes += 1;
8814 payload_capacity_bytes -= strlen (header);
8815 payload_capacity_bytes -= hexnumlen (memaddr);
8816
8817 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8818
8819 strcat (rs->buf.data (), header);
8820 p = rs->buf.data () + strlen (header);
8821
8822 /* Compute a best guess of the number of bytes actually transfered. */
8823 if (packet_format == 'X')
8824 {
8825 /* Best guess at number of bytes that will fit. */
8826 todo_units = std::min (len_units,
8827 (ULONGEST) payload_capacity_bytes / unit_size);
8828 if (use_length)
8829 payload_capacity_bytes -= hexnumlen (todo_units);
8830 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8831 }
8832 else
8833 {
8834 /* Number of bytes that will fit. */
8835 todo_units
8836 = std::min (len_units,
8837 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8838 if (use_length)
8839 payload_capacity_bytes -= hexnumlen (todo_units);
8840 todo_units = std::min (todo_units,
8841 (payload_capacity_bytes / unit_size) / 2);
8842 }
8843
8844 if (todo_units <= 0)
8845 internal_error (__FILE__, __LINE__,
8846 _("minimum packet size too small to write data"));
8847
8848 /* If we already need another packet, then try to align the end
8849 of this packet to a useful boundary. */
8850 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8851 todo_units = align_for_efficient_write (todo_units, memaddr);
8852
8853 /* Append "<memaddr>". */
8854 memaddr = remote_address_masked (memaddr);
8855 p += hexnumstr (p, (ULONGEST) memaddr);
8856
8857 if (use_length)
8858 {
8859 /* Append ",". */
8860 *p++ = ',';
8861
8862 /* Append the length and retain its location and size. It may need to be
8863 adjusted once the packet body has been created. */
8864 plen = p;
8865 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8866 p += plenlen;
8867 }
8868
8869 /* Append ":". */
8870 *p++ = ':';
8871 *p = '\0';
8872
8873 /* Append the packet body. */
8874 if (packet_format == 'X')
8875 {
8876 /* Binary mode. Send target system values byte by byte, in
8877 increasing byte addresses. Only escape certain critical
8878 characters. */
8879 payload_length_bytes =
8880 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8881 &units_written, payload_capacity_bytes);
8882
8883 /* If not all TODO units fit, then we'll need another packet. Make
8884 a second try to keep the end of the packet aligned. Don't do
8885 this if the packet is tiny. */
8886 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8887 {
8888 int new_todo_units;
8889
8890 new_todo_units = align_for_efficient_write (units_written, memaddr);
8891
8892 if (new_todo_units != units_written)
8893 payload_length_bytes =
8894 remote_escape_output (myaddr, new_todo_units, unit_size,
8895 (gdb_byte *) p, &units_written,
8896 payload_capacity_bytes);
8897 }
8898
8899 p += payload_length_bytes;
8900 if (use_length && units_written < todo_units)
8901 {
8902 /* Escape chars have filled up the buffer prematurely,
8903 and we have actually sent fewer units than planned.
8904 Fix-up the length field of the packet. Use the same
8905 number of characters as before. */
8906 plen += hexnumnstr (plen, (ULONGEST) units_written,
8907 plenlen);
8908 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8909 }
8910 }
8911 else
8912 {
8913 /* Normal mode: Send target system values byte by byte, in
8914 increasing byte addresses. Each byte is encoded as a two hex
8915 value. */
8916 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8917 units_written = todo_units;
8918 }
8919
8920 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8921 getpkt (&rs->buf, 0);
8922
8923 if (rs->buf[0] == 'E')
8924 return TARGET_XFER_E_IO;
8925
8926 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8927 send fewer units than we'd planned. */
8928 *xfered_len_units = (ULONGEST) units_written;
8929 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8930 }
8931
8932 /* Write memory data directly to the remote machine.
8933 This does not inform the data cache; the data cache uses this.
8934 MEMADDR is the address in the remote memory space.
8935 MYADDR is the address of the buffer in our space.
8936 LEN is the number of bytes.
8937
8938 Return the transferred status, error or OK (an
8939 'enum target_xfer_status' value). Save the number of bytes
8940 transferred in *XFERED_LEN. Only transfer a single packet. */
8941
8942 target_xfer_status
8943 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8944 ULONGEST len, int unit_size,
8945 ULONGEST *xfered_len)
8946 {
8947 const char *packet_format = NULL;
8948
8949 /* Check whether the target supports binary download. */
8950 check_binary_download (memaddr);
8951
8952 switch (packet_support (PACKET_X))
8953 {
8954 case PACKET_ENABLE:
8955 packet_format = "X";
8956 break;
8957 case PACKET_DISABLE:
8958 packet_format = "M";
8959 break;
8960 case PACKET_SUPPORT_UNKNOWN:
8961 internal_error (__FILE__, __LINE__,
8962 _("remote_write_bytes: bad internal state"));
8963 default:
8964 internal_error (__FILE__, __LINE__, _("bad switch"));
8965 }
8966
8967 return remote_write_bytes_aux (packet_format,
8968 memaddr, myaddr, len, unit_size, xfered_len,
8969 packet_format[0], 1);
8970 }
8971
8972 /* Read memory data directly from the remote machine.
8973 This does not use the data cache; the data cache uses this.
8974 MEMADDR is the address in the remote memory space.
8975 MYADDR is the address of the buffer in our space.
8976 LEN_UNITS is the number of addressable memory units to read..
8977 UNIT_SIZE is the length in bytes of an addressable unit.
8978
8979 Return the transferred status, error or OK (an
8980 'enum target_xfer_status' value). Save the number of bytes
8981 transferred in *XFERED_LEN_UNITS.
8982
8983 See the comment of remote_write_bytes_aux for an example of
8984 memory read/write exchange between gdb and the stub. */
8985
8986 target_xfer_status
8987 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8988 ULONGEST len_units,
8989 int unit_size, ULONGEST *xfered_len_units)
8990 {
8991 struct remote_state *rs = get_remote_state ();
8992 int buf_size_bytes; /* Max size of packet output buffer. */
8993 char *p;
8994 int todo_units;
8995 int decoded_bytes;
8996
8997 buf_size_bytes = get_memory_read_packet_size ();
8998 /* The packet buffer will be large enough for the payload;
8999 get_memory_packet_size ensures this. */
9000
9001 /* Number of units that will fit. */
9002 todo_units = std::min (len_units,
9003 (ULONGEST) (buf_size_bytes / unit_size) / 2);
9004
9005 /* Construct "m"<memaddr>","<len>". */
9006 memaddr = remote_address_masked (memaddr);
9007 p = rs->buf.data ();
9008 *p++ = 'm';
9009 p += hexnumstr (p, (ULONGEST) memaddr);
9010 *p++ = ',';
9011 p += hexnumstr (p, (ULONGEST) todo_units);
9012 *p = '\0';
9013 putpkt (rs->buf);
9014 getpkt (&rs->buf, 0);
9015 if (rs->buf[0] == 'E'
9016 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
9017 && rs->buf[3] == '\0')
9018 return TARGET_XFER_E_IO;
9019 /* Reply describes memory byte by byte, each byte encoded as two hex
9020 characters. */
9021 p = rs->buf.data ();
9022 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
9023 /* Return what we have. Let higher layers handle partial reads. */
9024 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
9025 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9026 }
9027
9028 /* Using the set of read-only target sections of remote, read live
9029 read-only memory.
9030
9031 For interface/parameters/return description see target.h,
9032 to_xfer_partial. */
9033
9034 target_xfer_status
9035 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
9036 ULONGEST memaddr,
9037 ULONGEST len,
9038 int unit_size,
9039 ULONGEST *xfered_len)
9040 {
9041 struct target_section *secp;
9042
9043 secp = target_section_by_addr (this, memaddr);
9044 if (secp != NULL
9045 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
9046 {
9047 ULONGEST memend = memaddr + len;
9048
9049 target_section_table *table = target_get_section_table (this);
9050 for (target_section &p : *table)
9051 {
9052 if (memaddr >= p.addr)
9053 {
9054 if (memend <= p.endaddr)
9055 {
9056 /* Entire transfer is within this section. */
9057 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9058 xfered_len);
9059 }
9060 else if (memaddr >= p.endaddr)
9061 {
9062 /* This section ends before the transfer starts. */
9063 continue;
9064 }
9065 else
9066 {
9067 /* This section overlaps the transfer. Just do half. */
9068 len = p.endaddr - memaddr;
9069 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9070 xfered_len);
9071 }
9072 }
9073 }
9074 }
9075
9076 return TARGET_XFER_EOF;
9077 }
9078
9079 /* Similar to remote_read_bytes_1, but it reads from the remote stub
9080 first if the requested memory is unavailable in traceframe.
9081 Otherwise, fall back to remote_read_bytes_1. */
9082
9083 target_xfer_status
9084 remote_target::remote_read_bytes (CORE_ADDR memaddr,
9085 gdb_byte *myaddr, ULONGEST len, int unit_size,
9086 ULONGEST *xfered_len)
9087 {
9088 if (len == 0)
9089 return TARGET_XFER_EOF;
9090
9091 if (get_traceframe_number () != -1)
9092 {
9093 std::vector<mem_range> available;
9094
9095 /* If we fail to get the set of available memory, then the
9096 target does not support querying traceframe info, and so we
9097 attempt reading from the traceframe anyway (assuming the
9098 target implements the old QTro packet then). */
9099 if (traceframe_available_memory (&available, memaddr, len))
9100 {
9101 if (available.empty () || available[0].start != memaddr)
9102 {
9103 enum target_xfer_status res;
9104
9105 /* Don't read into the traceframe's available
9106 memory. */
9107 if (!available.empty ())
9108 {
9109 LONGEST oldlen = len;
9110
9111 len = available[0].start - memaddr;
9112 gdb_assert (len <= oldlen);
9113 }
9114
9115 /* This goes through the topmost target again. */
9116 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
9117 len, unit_size, xfered_len);
9118 if (res == TARGET_XFER_OK)
9119 return TARGET_XFER_OK;
9120 else
9121 {
9122 /* No use trying further, we know some memory starting
9123 at MEMADDR isn't available. */
9124 *xfered_len = len;
9125 return (*xfered_len != 0) ?
9126 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
9127 }
9128 }
9129
9130 /* Don't try to read more than how much is available, in
9131 case the target implements the deprecated QTro packet to
9132 cater for older GDBs (the target's knowledge of read-only
9133 sections may be outdated by now). */
9134 len = available[0].length;
9135 }
9136 }
9137
9138 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
9139 }
9140
9141 \f
9142
9143 /* Sends a packet with content determined by the printf format string
9144 FORMAT and the remaining arguments, then gets the reply. Returns
9145 whether the packet was a success, a failure, or unknown. */
9146
9147 packet_result
9148 remote_target::remote_send_printf (const char *format, ...)
9149 {
9150 struct remote_state *rs = get_remote_state ();
9151 int max_size = get_remote_packet_size ();
9152 va_list ap;
9153
9154 va_start (ap, format);
9155
9156 rs->buf[0] = '\0';
9157 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9158
9159 va_end (ap);
9160
9161 if (size >= max_size)
9162 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9163
9164 if (putpkt (rs->buf) < 0)
9165 error (_("Communication problem with target."));
9166
9167 rs->buf[0] = '\0';
9168 getpkt (&rs->buf, 0);
9169
9170 return packet_check_result (rs->buf);
9171 }
9172
9173 /* Flash writing can take quite some time. We'll set
9174 effectively infinite timeout for flash operations.
9175 In future, we'll need to decide on a better approach. */
9176 static const int remote_flash_timeout = 1000;
9177
9178 void
9179 remote_target::flash_erase (ULONGEST address, LONGEST length)
9180 {
9181 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9182 enum packet_result ret;
9183 scoped_restore restore_timeout
9184 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9185
9186 ret = remote_send_printf ("vFlashErase:%s,%s",
9187 phex (address, addr_size),
9188 phex (length, 4));
9189 switch (ret)
9190 {
9191 case PACKET_UNKNOWN:
9192 error (_("Remote target does not support flash erase"));
9193 case PACKET_ERROR:
9194 error (_("Error erasing flash with vFlashErase packet"));
9195 default:
9196 break;
9197 }
9198 }
9199
9200 target_xfer_status
9201 remote_target::remote_flash_write (ULONGEST address,
9202 ULONGEST length, ULONGEST *xfered_len,
9203 const gdb_byte *data)
9204 {
9205 scoped_restore restore_timeout
9206 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9207 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9208 xfered_len,'X', 0);
9209 }
9210
9211 void
9212 remote_target::flash_done ()
9213 {
9214 int ret;
9215
9216 scoped_restore restore_timeout
9217 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9218
9219 ret = remote_send_printf ("vFlashDone");
9220
9221 switch (ret)
9222 {
9223 case PACKET_UNKNOWN:
9224 error (_("Remote target does not support vFlashDone"));
9225 case PACKET_ERROR:
9226 error (_("Error finishing flash operation"));
9227 default:
9228 break;
9229 }
9230 }
9231
9232 void
9233 remote_target::files_info ()
9234 {
9235 puts_filtered ("Debugging a target over a serial line.\n");
9236 }
9237 \f
9238 /* Stuff for dealing with the packets which are part of this protocol.
9239 See comment at top of file for details. */
9240
9241 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9242 error to higher layers. Called when a serial error is detected.
9243 The exception message is STRING, followed by a colon and a blank,
9244 the system error message for errno at function entry and final dot
9245 for output compatibility with throw_perror_with_name. */
9246
9247 static void
9248 unpush_and_perror (remote_target *target, const char *string)
9249 {
9250 int saved_errno = errno;
9251
9252 remote_unpush_target (target);
9253 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9254 safe_strerror (saved_errno));
9255 }
9256
9257 /* Read a single character from the remote end. The current quit
9258 handler is overridden to avoid quitting in the middle of packet
9259 sequence, as that would break communication with the remote server.
9260 See remote_serial_quit_handler for more detail. */
9261
9262 int
9263 remote_target::readchar (int timeout)
9264 {
9265 int ch;
9266 struct remote_state *rs = get_remote_state ();
9267
9268 {
9269 scoped_restore restore_quit_target
9270 = make_scoped_restore (&curr_quit_handler_target, this);
9271 scoped_restore restore_quit
9272 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9273
9274 rs->got_ctrlc_during_io = 0;
9275
9276 ch = serial_readchar (rs->remote_desc, timeout);
9277
9278 if (rs->got_ctrlc_during_io)
9279 set_quit_flag ();
9280 }
9281
9282 if (ch >= 0)
9283 return ch;
9284
9285 switch ((enum serial_rc) ch)
9286 {
9287 case SERIAL_EOF:
9288 remote_unpush_target (this);
9289 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9290 /* no return */
9291 case SERIAL_ERROR:
9292 unpush_and_perror (this, _("Remote communication error. "
9293 "Target disconnected."));
9294 /* no return */
9295 case SERIAL_TIMEOUT:
9296 break;
9297 }
9298 return ch;
9299 }
9300
9301 /* Wrapper for serial_write that closes the target and throws if
9302 writing fails. The current quit handler is overridden to avoid
9303 quitting in the middle of packet sequence, as that would break
9304 communication with the remote server. See
9305 remote_serial_quit_handler for more detail. */
9306
9307 void
9308 remote_target::remote_serial_write (const char *str, int len)
9309 {
9310 struct remote_state *rs = get_remote_state ();
9311
9312 scoped_restore restore_quit_target
9313 = make_scoped_restore (&curr_quit_handler_target, this);
9314 scoped_restore restore_quit
9315 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9316
9317 rs->got_ctrlc_during_io = 0;
9318
9319 if (serial_write (rs->remote_desc, str, len))
9320 {
9321 unpush_and_perror (this, _("Remote communication error. "
9322 "Target disconnected."));
9323 }
9324
9325 if (rs->got_ctrlc_during_io)
9326 set_quit_flag ();
9327 }
9328
9329 /* Return a string representing an escaped version of BUF, of len N.
9330 E.g. \n is converted to \\n, \t to \\t, etc. */
9331
9332 static std::string
9333 escape_buffer (const char *buf, int n)
9334 {
9335 string_file stb;
9336
9337 stb.putstrn (buf, n, '\\');
9338 return std::move (stb.string ());
9339 }
9340
9341 /* Display a null-terminated packet on stdout, for debugging, using C
9342 string notation. */
9343
9344 static void
9345 print_packet (const char *buf)
9346 {
9347 puts_filtered ("\"");
9348 fputstr_filtered (buf, '"', gdb_stdout);
9349 puts_filtered ("\"");
9350 }
9351
9352 int
9353 remote_target::putpkt (const char *buf)
9354 {
9355 return putpkt_binary (buf, strlen (buf));
9356 }
9357
9358 /* Wrapper around remote_target::putpkt to avoid exporting
9359 remote_target. */
9360
9361 int
9362 putpkt (remote_target *remote, const char *buf)
9363 {
9364 return remote->putpkt (buf);
9365 }
9366
9367 /* Send a packet to the remote machine, with error checking. The data
9368 of the packet is in BUF. The string in BUF can be at most
9369 get_remote_packet_size () - 5 to account for the $, # and checksum,
9370 and for a possible /0 if we are debugging (remote_debug) and want
9371 to print the sent packet as a string. */
9372
9373 int
9374 remote_target::putpkt_binary (const char *buf, int cnt)
9375 {
9376 struct remote_state *rs = get_remote_state ();
9377 int i;
9378 unsigned char csum = 0;
9379 gdb::def_vector<char> data (cnt + 6);
9380 char *buf2 = data.data ();
9381
9382 int ch;
9383 int tcount = 0;
9384 char *p;
9385
9386 /* Catch cases like trying to read memory or listing threads while
9387 we're waiting for a stop reply. The remote server wouldn't be
9388 ready to handle this request, so we'd hang and timeout. We don't
9389 have to worry about this in synchronous mode, because in that
9390 case it's not possible to issue a command while the target is
9391 running. This is not a problem in non-stop mode, because in that
9392 case, the stub is always ready to process serial input. */
9393 if (!target_is_non_stop_p ()
9394 && target_is_async_p ()
9395 && rs->waiting_for_stop_reply)
9396 {
9397 error (_("Cannot execute this command while the target is running.\n"
9398 "Use the \"interrupt\" command to stop the target\n"
9399 "and then try again."));
9400 }
9401
9402 /* We're sending out a new packet. Make sure we don't look at a
9403 stale cached response. */
9404 rs->cached_wait_status = 0;
9405
9406 /* Copy the packet into buffer BUF2, encapsulating it
9407 and giving it a checksum. */
9408
9409 p = buf2;
9410 *p++ = '$';
9411
9412 for (i = 0; i < cnt; i++)
9413 {
9414 csum += buf[i];
9415 *p++ = buf[i];
9416 }
9417 *p++ = '#';
9418 *p++ = tohex ((csum >> 4) & 0xf);
9419 *p++ = tohex (csum & 0xf);
9420
9421 /* Send it over and over until we get a positive ack. */
9422
9423 while (1)
9424 {
9425 int started_error_output = 0;
9426
9427 if (remote_debug)
9428 {
9429 *p = '\0';
9430
9431 int len = (int) (p - buf2);
9432 int max_chars;
9433
9434 if (remote_packet_max_chars < 0)
9435 max_chars = len;
9436 else
9437 max_chars = remote_packet_max_chars;
9438
9439 std::string str
9440 = escape_buffer (buf2, std::min (len, max_chars));
9441
9442 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9443
9444 if (len > max_chars)
9445 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9446 len - max_chars);
9447
9448 fprintf_unfiltered (gdb_stdlog, "...");
9449
9450 gdb_flush (gdb_stdlog);
9451 }
9452 remote_serial_write (buf2, p - buf2);
9453
9454 /* If this is a no acks version of the remote protocol, send the
9455 packet and move on. */
9456 if (rs->noack_mode)
9457 break;
9458
9459 /* Read until either a timeout occurs (-2) or '+' is read.
9460 Handle any notification that arrives in the mean time. */
9461 while (1)
9462 {
9463 ch = readchar (remote_timeout);
9464
9465 if (remote_debug)
9466 {
9467 switch (ch)
9468 {
9469 case '+':
9470 case '-':
9471 case SERIAL_TIMEOUT:
9472 case '$':
9473 case '%':
9474 if (started_error_output)
9475 {
9476 putchar_unfiltered ('\n');
9477 started_error_output = 0;
9478 }
9479 }
9480 }
9481
9482 switch (ch)
9483 {
9484 case '+':
9485 if (remote_debug)
9486 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9487 return 1;
9488 case '-':
9489 if (remote_debug)
9490 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9491 /* FALLTHROUGH */
9492 case SERIAL_TIMEOUT:
9493 tcount++;
9494 if (tcount > 3)
9495 return 0;
9496 break; /* Retransmit buffer. */
9497 case '$':
9498 {
9499 if (remote_debug)
9500 fprintf_unfiltered (gdb_stdlog,
9501 "Packet instead of Ack, ignoring it\n");
9502 /* It's probably an old response sent because an ACK
9503 was lost. Gobble up the packet and ack it so it
9504 doesn't get retransmitted when we resend this
9505 packet. */
9506 skip_frame ();
9507 remote_serial_write ("+", 1);
9508 continue; /* Now, go look for +. */
9509 }
9510
9511 case '%':
9512 {
9513 int val;
9514
9515 /* If we got a notification, handle it, and go back to looking
9516 for an ack. */
9517 /* We've found the start of a notification. Now
9518 collect the data. */
9519 val = read_frame (&rs->buf);
9520 if (val >= 0)
9521 {
9522 if (remote_debug)
9523 {
9524 std::string str = escape_buffer (rs->buf.data (), val);
9525
9526 fprintf_unfiltered (gdb_stdlog,
9527 " Notification received: %s\n",
9528 str.c_str ());
9529 }
9530 handle_notification (rs->notif_state, rs->buf.data ());
9531 /* We're in sync now, rewait for the ack. */
9532 tcount = 0;
9533 }
9534 else
9535 {
9536 if (remote_debug)
9537 {
9538 if (!started_error_output)
9539 {
9540 started_error_output = 1;
9541 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9542 }
9543 fputc_unfiltered (ch & 0177, gdb_stdlog);
9544 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9545 }
9546 }
9547 continue;
9548 }
9549 /* fall-through */
9550 default:
9551 if (remote_debug)
9552 {
9553 if (!started_error_output)
9554 {
9555 started_error_output = 1;
9556 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9557 }
9558 fputc_unfiltered (ch & 0177, gdb_stdlog);
9559 }
9560 continue;
9561 }
9562 break; /* Here to retransmit. */
9563 }
9564
9565 #if 0
9566 /* This is wrong. If doing a long backtrace, the user should be
9567 able to get out next time we call QUIT, without anything as
9568 violent as interrupt_query. If we want to provide a way out of
9569 here without getting to the next QUIT, it should be based on
9570 hitting ^C twice as in remote_wait. */
9571 if (quit_flag)
9572 {
9573 quit_flag = 0;
9574 interrupt_query ();
9575 }
9576 #endif
9577 }
9578
9579 return 0;
9580 }
9581
9582 /* Come here after finding the start of a frame when we expected an
9583 ack. Do our best to discard the rest of this packet. */
9584
9585 void
9586 remote_target::skip_frame ()
9587 {
9588 int c;
9589
9590 while (1)
9591 {
9592 c = readchar (remote_timeout);
9593 switch (c)
9594 {
9595 case SERIAL_TIMEOUT:
9596 /* Nothing we can do. */
9597 return;
9598 case '#':
9599 /* Discard the two bytes of checksum and stop. */
9600 c = readchar (remote_timeout);
9601 if (c >= 0)
9602 c = readchar (remote_timeout);
9603
9604 return;
9605 case '*': /* Run length encoding. */
9606 /* Discard the repeat count. */
9607 c = readchar (remote_timeout);
9608 if (c < 0)
9609 return;
9610 break;
9611 default:
9612 /* A regular character. */
9613 break;
9614 }
9615 }
9616 }
9617
9618 /* Come here after finding the start of the frame. Collect the rest
9619 into *BUF, verifying the checksum, length, and handling run-length
9620 compression. NUL terminate the buffer. If there is not enough room,
9621 expand *BUF.
9622
9623 Returns -1 on error, number of characters in buffer (ignoring the
9624 trailing NULL) on success. (could be extended to return one of the
9625 SERIAL status indications). */
9626
9627 long
9628 remote_target::read_frame (gdb::char_vector *buf_p)
9629 {
9630 unsigned char csum;
9631 long bc;
9632 int c;
9633 char *buf = buf_p->data ();
9634 struct remote_state *rs = get_remote_state ();
9635
9636 csum = 0;
9637 bc = 0;
9638
9639 while (1)
9640 {
9641 c = readchar (remote_timeout);
9642 switch (c)
9643 {
9644 case SERIAL_TIMEOUT:
9645 if (remote_debug)
9646 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9647 return -1;
9648 case '$':
9649 if (remote_debug)
9650 fputs_filtered ("Saw new packet start in middle of old one\n",
9651 gdb_stdlog);
9652 return -1; /* Start a new packet, count retries. */
9653 case '#':
9654 {
9655 unsigned char pktcsum;
9656 int check_0 = 0;
9657 int check_1 = 0;
9658
9659 buf[bc] = '\0';
9660
9661 check_0 = readchar (remote_timeout);
9662 if (check_0 >= 0)
9663 check_1 = readchar (remote_timeout);
9664
9665 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9666 {
9667 if (remote_debug)
9668 fputs_filtered ("Timeout in checksum, retrying\n",
9669 gdb_stdlog);
9670 return -1;
9671 }
9672 else if (check_0 < 0 || check_1 < 0)
9673 {
9674 if (remote_debug)
9675 fputs_filtered ("Communication error in checksum\n",
9676 gdb_stdlog);
9677 return -1;
9678 }
9679
9680 /* Don't recompute the checksum; with no ack packets we
9681 don't have any way to indicate a packet retransmission
9682 is necessary. */
9683 if (rs->noack_mode)
9684 return bc;
9685
9686 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9687 if (csum == pktcsum)
9688 return bc;
9689
9690 if (remote_debug)
9691 {
9692 std::string str = escape_buffer (buf, bc);
9693
9694 fprintf_unfiltered (gdb_stdlog,
9695 "Bad checksum, sentsum=0x%x, "
9696 "csum=0x%x, buf=%s\n",
9697 pktcsum, csum, str.c_str ());
9698 }
9699 /* Number of characters in buffer ignoring trailing
9700 NULL. */
9701 return -1;
9702 }
9703 case '*': /* Run length encoding. */
9704 {
9705 int repeat;
9706
9707 csum += c;
9708 c = readchar (remote_timeout);
9709 csum += c;
9710 repeat = c - ' ' + 3; /* Compute repeat count. */
9711
9712 /* The character before ``*'' is repeated. */
9713
9714 if (repeat > 0 && repeat <= 255 && bc > 0)
9715 {
9716 if (bc + repeat - 1 >= buf_p->size () - 1)
9717 {
9718 /* Make some more room in the buffer. */
9719 buf_p->resize (buf_p->size () + repeat);
9720 buf = buf_p->data ();
9721 }
9722
9723 memset (&buf[bc], buf[bc - 1], repeat);
9724 bc += repeat;
9725 continue;
9726 }
9727
9728 buf[bc] = '\0';
9729 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9730 return -1;
9731 }
9732 default:
9733 if (bc >= buf_p->size () - 1)
9734 {
9735 /* Make some more room in the buffer. */
9736 buf_p->resize (buf_p->size () * 2);
9737 buf = buf_p->data ();
9738 }
9739
9740 buf[bc++] = c;
9741 csum += c;
9742 continue;
9743 }
9744 }
9745 }
9746
9747 /* Set this to the maximum number of seconds to wait instead of waiting forever
9748 in target_wait(). If this timer times out, then it generates an error and
9749 the command is aborted. This replaces most of the need for timeouts in the
9750 GDB test suite, and makes it possible to distinguish between a hung target
9751 and one with slow communications. */
9752
9753 static int watchdog = 0;
9754 static void
9755 show_watchdog (struct ui_file *file, int from_tty,
9756 struct cmd_list_element *c, const char *value)
9757 {
9758 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9759 }
9760
9761 /* Read a packet from the remote machine, with error checking, and
9762 store it in *BUF. Resize *BUF if necessary to hold the result. If
9763 FOREVER, wait forever rather than timing out; this is used (in
9764 synchronous mode) to wait for a target that is is executing user
9765 code to stop. */
9766 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9767 don't have to change all the calls to getpkt to deal with the
9768 return value, because at the moment I don't know what the right
9769 thing to do it for those. */
9770
9771 void
9772 remote_target::getpkt (gdb::char_vector *buf, int forever)
9773 {
9774 getpkt_sane (buf, forever);
9775 }
9776
9777
9778 /* Read a packet from the remote machine, with error checking, and
9779 store it in *BUF. Resize *BUF if necessary to hold the result. If
9780 FOREVER, wait forever rather than timing out; this is used (in
9781 synchronous mode) to wait for a target that is is executing user
9782 code to stop. If FOREVER == 0, this function is allowed to time
9783 out gracefully and return an indication of this to the caller.
9784 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9785 consider receiving a notification enough reason to return to the
9786 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9787 holds a notification or not (a regular packet). */
9788
9789 int
9790 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9791 int forever, int expecting_notif,
9792 int *is_notif)
9793 {
9794 struct remote_state *rs = get_remote_state ();
9795 int c;
9796 int tries;
9797 int timeout;
9798 int val = -1;
9799
9800 /* We're reading a new response. Make sure we don't look at a
9801 previously cached response. */
9802 rs->cached_wait_status = 0;
9803
9804 strcpy (buf->data (), "timeout");
9805
9806 if (forever)
9807 timeout = watchdog > 0 ? watchdog : -1;
9808 else if (expecting_notif)
9809 timeout = 0; /* There should already be a char in the buffer. If
9810 not, bail out. */
9811 else
9812 timeout = remote_timeout;
9813
9814 #define MAX_TRIES 3
9815
9816 /* Process any number of notifications, and then return when
9817 we get a packet. */
9818 for (;;)
9819 {
9820 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9821 times. */
9822 for (tries = 1; tries <= MAX_TRIES; tries++)
9823 {
9824 /* This can loop forever if the remote side sends us
9825 characters continuously, but if it pauses, we'll get
9826 SERIAL_TIMEOUT from readchar because of timeout. Then
9827 we'll count that as a retry.
9828
9829 Note that even when forever is set, we will only wait
9830 forever prior to the start of a packet. After that, we
9831 expect characters to arrive at a brisk pace. They should
9832 show up within remote_timeout intervals. */
9833 do
9834 c = readchar (timeout);
9835 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9836
9837 if (c == SERIAL_TIMEOUT)
9838 {
9839 if (expecting_notif)
9840 return -1; /* Don't complain, it's normal to not get
9841 anything in this case. */
9842
9843 if (forever) /* Watchdog went off? Kill the target. */
9844 {
9845 remote_unpush_target (this);
9846 throw_error (TARGET_CLOSE_ERROR,
9847 _("Watchdog timeout has expired. "
9848 "Target detached."));
9849 }
9850 if (remote_debug)
9851 fputs_filtered ("Timed out.\n", gdb_stdlog);
9852 }
9853 else
9854 {
9855 /* We've found the start of a packet or notification.
9856 Now collect the data. */
9857 val = read_frame (buf);
9858 if (val >= 0)
9859 break;
9860 }
9861
9862 remote_serial_write ("-", 1);
9863 }
9864
9865 if (tries > MAX_TRIES)
9866 {
9867 /* We have tried hard enough, and just can't receive the
9868 packet/notification. Give up. */
9869 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9870
9871 /* Skip the ack char if we're in no-ack mode. */
9872 if (!rs->noack_mode)
9873 remote_serial_write ("+", 1);
9874 return -1;
9875 }
9876
9877 /* If we got an ordinary packet, return that to our caller. */
9878 if (c == '$')
9879 {
9880 if (remote_debug)
9881 {
9882 int max_chars;
9883
9884 if (remote_packet_max_chars < 0)
9885 max_chars = val;
9886 else
9887 max_chars = remote_packet_max_chars;
9888
9889 std::string str
9890 = escape_buffer (buf->data (),
9891 std::min (val, max_chars));
9892
9893 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9894 str.c_str ());
9895
9896 if (val > max_chars)
9897 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9898 val - max_chars);
9899
9900 fprintf_unfiltered (gdb_stdlog, "\n");
9901 }
9902
9903 /* Skip the ack char if we're in no-ack mode. */
9904 if (!rs->noack_mode)
9905 remote_serial_write ("+", 1);
9906 if (is_notif != NULL)
9907 *is_notif = 0;
9908 return val;
9909 }
9910
9911 /* If we got a notification, handle it, and go back to looking
9912 for a packet. */
9913 else
9914 {
9915 gdb_assert (c == '%');
9916
9917 if (remote_debug)
9918 {
9919 std::string str = escape_buffer (buf->data (), val);
9920
9921 fprintf_unfiltered (gdb_stdlog,
9922 " Notification received: %s\n",
9923 str.c_str ());
9924 }
9925 if (is_notif != NULL)
9926 *is_notif = 1;
9927
9928 handle_notification (rs->notif_state, buf->data ());
9929
9930 /* Notifications require no acknowledgement. */
9931
9932 if (expecting_notif)
9933 return val;
9934 }
9935 }
9936 }
9937
9938 int
9939 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9940 {
9941 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9942 }
9943
9944 int
9945 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9946 int *is_notif)
9947 {
9948 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9949 }
9950
9951 /* Kill any new fork children of process PID that haven't been
9952 processed by follow_fork. */
9953
9954 void
9955 remote_target::kill_new_fork_children (int pid)
9956 {
9957 remote_state *rs = get_remote_state ();
9958 struct notif_client *notif = &notif_client_stop;
9959
9960 /* Kill the fork child threads of any threads in process PID
9961 that are stopped at a fork event. */
9962 for (thread_info *thread : all_non_exited_threads (this))
9963 {
9964 struct target_waitstatus *ws = &thread->pending_follow;
9965
9966 if (is_pending_fork_parent (ws, pid, thread->ptid))
9967 {
9968 int child_pid = ws->value.related_pid.pid ();
9969 int res;
9970
9971 res = remote_vkill (child_pid);
9972 if (res != 0)
9973 error (_("Can't kill fork child process %d"), child_pid);
9974 }
9975 }
9976
9977 /* Check for any pending fork events (not reported or processed yet)
9978 in process PID and kill those fork child threads as well. */
9979 remote_notif_get_pending_events (notif);
9980 for (auto &event : rs->stop_reply_queue)
9981 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9982 {
9983 int child_pid = event->ws.value.related_pid.pid ();
9984 int res;
9985
9986 res = remote_vkill (child_pid);
9987 if (res != 0)
9988 error (_("Can't kill fork child process %d"), child_pid);
9989 }
9990 }
9991
9992 \f
9993 /* Target hook to kill the current inferior. */
9994
9995 void
9996 remote_target::kill ()
9997 {
9998 int res = -1;
9999 int pid = inferior_ptid.pid ();
10000 struct remote_state *rs = get_remote_state ();
10001
10002 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
10003 {
10004 /* If we're stopped while forking and we haven't followed yet,
10005 kill the child task. We need to do this before killing the
10006 parent task because if this is a vfork then the parent will
10007 be sleeping. */
10008 kill_new_fork_children (pid);
10009
10010 res = remote_vkill (pid);
10011 if (res == 0)
10012 {
10013 target_mourn_inferior (inferior_ptid);
10014 return;
10015 }
10016 }
10017
10018 /* If we are in 'target remote' mode and we are killing the only
10019 inferior, then we will tell gdbserver to exit and unpush the
10020 target. */
10021 if (res == -1 && !remote_multi_process_p (rs)
10022 && number_of_live_inferiors (this) == 1)
10023 {
10024 remote_kill_k ();
10025
10026 /* We've killed the remote end, we get to mourn it. If we are
10027 not in extended mode, mourning the inferior also unpushes
10028 remote_ops from the target stack, which closes the remote
10029 connection. */
10030 target_mourn_inferior (inferior_ptid);
10031
10032 return;
10033 }
10034
10035 error (_("Can't kill process"));
10036 }
10037
10038 /* Send a kill request to the target using the 'vKill' packet. */
10039
10040 int
10041 remote_target::remote_vkill (int pid)
10042 {
10043 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
10044 return -1;
10045
10046 remote_state *rs = get_remote_state ();
10047
10048 /* Tell the remote target to detach. */
10049 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
10050 putpkt (rs->buf);
10051 getpkt (&rs->buf, 0);
10052
10053 switch (packet_ok (rs->buf,
10054 &remote_protocol_packets[PACKET_vKill]))
10055 {
10056 case PACKET_OK:
10057 return 0;
10058 case PACKET_ERROR:
10059 return 1;
10060 case PACKET_UNKNOWN:
10061 return -1;
10062 default:
10063 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
10064 }
10065 }
10066
10067 /* Send a kill request to the target using the 'k' packet. */
10068
10069 void
10070 remote_target::remote_kill_k ()
10071 {
10072 /* Catch errors so the user can quit from gdb even when we
10073 aren't on speaking terms with the remote system. */
10074 try
10075 {
10076 putpkt ("k");
10077 }
10078 catch (const gdb_exception_error &ex)
10079 {
10080 if (ex.error == TARGET_CLOSE_ERROR)
10081 {
10082 /* If we got an (EOF) error that caused the target
10083 to go away, then we're done, that's what we wanted.
10084 "k" is susceptible to cause a premature EOF, given
10085 that the remote server isn't actually required to
10086 reply to "k", and it can happen that it doesn't
10087 even get to reply ACK to the "k". */
10088 return;
10089 }
10090
10091 /* Otherwise, something went wrong. We didn't actually kill
10092 the target. Just propagate the exception, and let the
10093 user or higher layers decide what to do. */
10094 throw;
10095 }
10096 }
10097
10098 void
10099 remote_target::mourn_inferior ()
10100 {
10101 struct remote_state *rs = get_remote_state ();
10102
10103 /* We're no longer interested in notification events of an inferior
10104 that exited or was killed/detached. */
10105 discard_pending_stop_replies (current_inferior ());
10106
10107 /* In 'target remote' mode with one inferior, we close the connection. */
10108 if (!rs->extended && number_of_live_inferiors (this) <= 1)
10109 {
10110 remote_unpush_target (this);
10111 return;
10112 }
10113
10114 /* In case we got here due to an error, but we're going to stay
10115 connected. */
10116 rs->waiting_for_stop_reply = 0;
10117
10118 /* If the current general thread belonged to the process we just
10119 detached from or has exited, the remote side current general
10120 thread becomes undefined. Considering a case like this:
10121
10122 - We just got here due to a detach.
10123 - The process that we're detaching from happens to immediately
10124 report a global breakpoint being hit in non-stop mode, in the
10125 same thread we had selected before.
10126 - GDB attaches to this process again.
10127 - This event happens to be the next event we handle.
10128
10129 GDB would consider that the current general thread didn't need to
10130 be set on the stub side (with Hg), since for all it knew,
10131 GENERAL_THREAD hadn't changed.
10132
10133 Notice that although in all-stop mode, the remote server always
10134 sets the current thread to the thread reporting the stop event,
10135 that doesn't happen in non-stop mode; in non-stop, the stub *must
10136 not* change the current thread when reporting a breakpoint hit,
10137 due to the decoupling of event reporting and event handling.
10138
10139 To keep things simple, we always invalidate our notion of the
10140 current thread. */
10141 record_currthread (rs, minus_one_ptid);
10142
10143 /* Call common code to mark the inferior as not running. */
10144 generic_mourn_inferior ();
10145 }
10146
10147 bool
10148 extended_remote_target::supports_disable_randomization ()
10149 {
10150 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10151 }
10152
10153 void
10154 remote_target::extended_remote_disable_randomization (int val)
10155 {
10156 struct remote_state *rs = get_remote_state ();
10157 char *reply;
10158
10159 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10160 "QDisableRandomization:%x", val);
10161 putpkt (rs->buf);
10162 reply = remote_get_noisy_reply ();
10163 if (*reply == '\0')
10164 error (_("Target does not support QDisableRandomization."));
10165 if (strcmp (reply, "OK") != 0)
10166 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10167 }
10168
10169 int
10170 remote_target::extended_remote_run (const std::string &args)
10171 {
10172 struct remote_state *rs = get_remote_state ();
10173 int len;
10174 const char *remote_exec_file = get_remote_exec_file ();
10175
10176 /* If the user has disabled vRun support, or we have detected that
10177 support is not available, do not try it. */
10178 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10179 return -1;
10180
10181 strcpy (rs->buf.data (), "vRun;");
10182 len = strlen (rs->buf.data ());
10183
10184 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10185 error (_("Remote file name too long for run packet"));
10186 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10187 strlen (remote_exec_file));
10188
10189 if (!args.empty ())
10190 {
10191 int i;
10192
10193 gdb_argv argv (args.c_str ());
10194 for (i = 0; argv[i] != NULL; i++)
10195 {
10196 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10197 error (_("Argument list too long for run packet"));
10198 rs->buf[len++] = ';';
10199 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10200 strlen (argv[i]));
10201 }
10202 }
10203
10204 rs->buf[len++] = '\0';
10205
10206 putpkt (rs->buf);
10207 getpkt (&rs->buf, 0);
10208
10209 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10210 {
10211 case PACKET_OK:
10212 /* We have a wait response. All is well. */
10213 return 0;
10214 case PACKET_UNKNOWN:
10215 return -1;
10216 case PACKET_ERROR:
10217 if (remote_exec_file[0] == '\0')
10218 error (_("Running the default executable on the remote target failed; "
10219 "try \"set remote exec-file\"?"));
10220 else
10221 error (_("Running \"%s\" on the remote target failed"),
10222 remote_exec_file);
10223 default:
10224 gdb_assert_not_reached (_("bad switch"));
10225 }
10226 }
10227
10228 /* Helper function to send set/unset environment packets. ACTION is
10229 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10230 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10231 sent. */
10232
10233 void
10234 remote_target::send_environment_packet (const char *action,
10235 const char *packet,
10236 const char *value)
10237 {
10238 remote_state *rs = get_remote_state ();
10239
10240 /* Convert the environment variable to an hex string, which
10241 is the best format to be transmitted over the wire. */
10242 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10243 strlen (value));
10244
10245 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10246 "%s:%s", packet, encoded_value.c_str ());
10247
10248 putpkt (rs->buf);
10249 getpkt (&rs->buf, 0);
10250 if (strcmp (rs->buf.data (), "OK") != 0)
10251 warning (_("Unable to %s environment variable '%s' on remote."),
10252 action, value);
10253 }
10254
10255 /* Helper function to handle the QEnvironment* packets. */
10256
10257 void
10258 remote_target::extended_remote_environment_support ()
10259 {
10260 remote_state *rs = get_remote_state ();
10261
10262 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10263 {
10264 putpkt ("QEnvironmentReset");
10265 getpkt (&rs->buf, 0);
10266 if (strcmp (rs->buf.data (), "OK") != 0)
10267 warning (_("Unable to reset environment on remote."));
10268 }
10269
10270 gdb_environ *e = &current_inferior ()->environment;
10271
10272 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10273 for (const std::string &el : e->user_set_env ())
10274 send_environment_packet ("set", "QEnvironmentHexEncoded",
10275 el.c_str ());
10276
10277 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10278 for (const std::string &el : e->user_unset_env ())
10279 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10280 }
10281
10282 /* Helper function to set the current working directory for the
10283 inferior in the remote target. */
10284
10285 void
10286 remote_target::extended_remote_set_inferior_cwd ()
10287 {
10288 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10289 {
10290 const char *inferior_cwd = get_inferior_cwd ();
10291 remote_state *rs = get_remote_state ();
10292
10293 if (inferior_cwd != NULL)
10294 {
10295 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10296 strlen (inferior_cwd));
10297
10298 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10299 "QSetWorkingDir:%s", hexpath.c_str ());
10300 }
10301 else
10302 {
10303 /* An empty inferior_cwd means that the user wants us to
10304 reset the remote server's inferior's cwd. */
10305 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10306 "QSetWorkingDir:");
10307 }
10308
10309 putpkt (rs->buf);
10310 getpkt (&rs->buf, 0);
10311 if (packet_ok (rs->buf,
10312 &remote_protocol_packets[PACKET_QSetWorkingDir])
10313 != PACKET_OK)
10314 error (_("\
10315 Remote replied unexpectedly while setting the inferior's working\n\
10316 directory: %s"),
10317 rs->buf.data ());
10318
10319 }
10320 }
10321
10322 /* In the extended protocol we want to be able to do things like
10323 "run" and have them basically work as expected. So we need
10324 a special create_inferior function. We support changing the
10325 executable file and the command line arguments, but not the
10326 environment. */
10327
10328 void
10329 extended_remote_target::create_inferior (const char *exec_file,
10330 const std::string &args,
10331 char **env, int from_tty)
10332 {
10333 int run_worked;
10334 char *stop_reply;
10335 struct remote_state *rs = get_remote_state ();
10336 const char *remote_exec_file = get_remote_exec_file ();
10337
10338 /* If running asynchronously, register the target file descriptor
10339 with the event loop. */
10340 if (target_can_async_p ())
10341 target_async (1);
10342
10343 /* Disable address space randomization if requested (and supported). */
10344 if (supports_disable_randomization ())
10345 extended_remote_disable_randomization (disable_randomization);
10346
10347 /* If startup-with-shell is on, we inform gdbserver to start the
10348 remote inferior using a shell. */
10349 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10350 {
10351 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10352 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10353 putpkt (rs->buf);
10354 getpkt (&rs->buf, 0);
10355 if (strcmp (rs->buf.data (), "OK") != 0)
10356 error (_("\
10357 Remote replied unexpectedly while setting startup-with-shell: %s"),
10358 rs->buf.data ());
10359 }
10360
10361 extended_remote_environment_support ();
10362
10363 extended_remote_set_inferior_cwd ();
10364
10365 /* Now restart the remote server. */
10366 run_worked = extended_remote_run (args) != -1;
10367 if (!run_worked)
10368 {
10369 /* vRun was not supported. Fail if we need it to do what the
10370 user requested. */
10371 if (remote_exec_file[0])
10372 error (_("Remote target does not support \"set remote exec-file\""));
10373 if (!args.empty ())
10374 error (_("Remote target does not support \"set args\" or run ARGS"));
10375
10376 /* Fall back to "R". */
10377 extended_remote_restart ();
10378 }
10379
10380 /* vRun's success return is a stop reply. */
10381 stop_reply = run_worked ? rs->buf.data () : NULL;
10382 add_current_inferior_and_thread (stop_reply);
10383
10384 /* Get updated offsets, if the stub uses qOffsets. */
10385 get_offsets ();
10386 }
10387 \f
10388
10389 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10390 the list of conditions (in agent expression bytecode format), if any, the
10391 target needs to evaluate. The output is placed into the packet buffer
10392 started from BUF and ended at BUF_END. */
10393
10394 static int
10395 remote_add_target_side_condition (struct gdbarch *gdbarch,
10396 struct bp_target_info *bp_tgt, char *buf,
10397 char *buf_end)
10398 {
10399 if (bp_tgt->conditions.empty ())
10400 return 0;
10401
10402 buf += strlen (buf);
10403 xsnprintf (buf, buf_end - buf, "%s", ";");
10404 buf++;
10405
10406 /* Send conditions to the target. */
10407 for (agent_expr *aexpr : bp_tgt->conditions)
10408 {
10409 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10410 buf += strlen (buf);
10411 for (int i = 0; i < aexpr->len; ++i)
10412 buf = pack_hex_byte (buf, aexpr->buf[i]);
10413 *buf = '\0';
10414 }
10415 return 0;
10416 }
10417
10418 static void
10419 remote_add_target_side_commands (struct gdbarch *gdbarch,
10420 struct bp_target_info *bp_tgt, char *buf)
10421 {
10422 if (bp_tgt->tcommands.empty ())
10423 return;
10424
10425 buf += strlen (buf);
10426
10427 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10428 buf += strlen (buf);
10429
10430 /* Concatenate all the agent expressions that are commands into the
10431 cmds parameter. */
10432 for (agent_expr *aexpr : bp_tgt->tcommands)
10433 {
10434 sprintf (buf, "X%x,", aexpr->len);
10435 buf += strlen (buf);
10436 for (int i = 0; i < aexpr->len; ++i)
10437 buf = pack_hex_byte (buf, aexpr->buf[i]);
10438 *buf = '\0';
10439 }
10440 }
10441
10442 /* Insert a breakpoint. On targets that have software breakpoint
10443 support, we ask the remote target to do the work; on targets
10444 which don't, we insert a traditional memory breakpoint. */
10445
10446 int
10447 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10448 struct bp_target_info *bp_tgt)
10449 {
10450 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10451 If it succeeds, then set the support to PACKET_ENABLE. If it
10452 fails, and the user has explicitly requested the Z support then
10453 report an error, otherwise, mark it disabled and go on. */
10454
10455 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10456 {
10457 CORE_ADDR addr = bp_tgt->reqstd_address;
10458 struct remote_state *rs;
10459 char *p, *endbuf;
10460
10461 /* Make sure the remote is pointing at the right process, if
10462 necessary. */
10463 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10464 set_general_process ();
10465
10466 rs = get_remote_state ();
10467 p = rs->buf.data ();
10468 endbuf = p + get_remote_packet_size ();
10469
10470 *(p++) = 'Z';
10471 *(p++) = '0';
10472 *(p++) = ',';
10473 addr = (ULONGEST) remote_address_masked (addr);
10474 p += hexnumstr (p, addr);
10475 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10476
10477 if (supports_evaluation_of_breakpoint_conditions ())
10478 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10479
10480 if (can_run_breakpoint_commands ())
10481 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10482
10483 putpkt (rs->buf);
10484 getpkt (&rs->buf, 0);
10485
10486 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10487 {
10488 case PACKET_ERROR:
10489 return -1;
10490 case PACKET_OK:
10491 return 0;
10492 case PACKET_UNKNOWN:
10493 break;
10494 }
10495 }
10496
10497 /* If this breakpoint has target-side commands but this stub doesn't
10498 support Z0 packets, throw error. */
10499 if (!bp_tgt->tcommands.empty ())
10500 throw_error (NOT_SUPPORTED_ERROR, _("\
10501 Target doesn't support breakpoints that have target side commands."));
10502
10503 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10504 }
10505
10506 int
10507 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10508 struct bp_target_info *bp_tgt,
10509 enum remove_bp_reason reason)
10510 {
10511 CORE_ADDR addr = bp_tgt->placed_address;
10512 struct remote_state *rs = get_remote_state ();
10513
10514 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10515 {
10516 char *p = rs->buf.data ();
10517 char *endbuf = p + get_remote_packet_size ();
10518
10519 /* Make sure the remote is pointing at the right process, if
10520 necessary. */
10521 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10522 set_general_process ();
10523
10524 *(p++) = 'z';
10525 *(p++) = '0';
10526 *(p++) = ',';
10527
10528 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10529 p += hexnumstr (p, addr);
10530 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10531
10532 putpkt (rs->buf);
10533 getpkt (&rs->buf, 0);
10534
10535 return (rs->buf[0] == 'E');
10536 }
10537
10538 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10539 }
10540
10541 static enum Z_packet_type
10542 watchpoint_to_Z_packet (int type)
10543 {
10544 switch (type)
10545 {
10546 case hw_write:
10547 return Z_PACKET_WRITE_WP;
10548 break;
10549 case hw_read:
10550 return Z_PACKET_READ_WP;
10551 break;
10552 case hw_access:
10553 return Z_PACKET_ACCESS_WP;
10554 break;
10555 default:
10556 internal_error (__FILE__, __LINE__,
10557 _("hw_bp_to_z: bad watchpoint type %d"), type);
10558 }
10559 }
10560
10561 int
10562 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10563 enum target_hw_bp_type type, struct expression *cond)
10564 {
10565 struct remote_state *rs = get_remote_state ();
10566 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10567 char *p;
10568 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10569
10570 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10571 return 1;
10572
10573 /* Make sure the remote is pointing at the right process, if
10574 necessary. */
10575 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10576 set_general_process ();
10577
10578 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10579 p = strchr (rs->buf.data (), '\0');
10580 addr = remote_address_masked (addr);
10581 p += hexnumstr (p, (ULONGEST) addr);
10582 xsnprintf (p, endbuf - p, ",%x", len);
10583
10584 putpkt (rs->buf);
10585 getpkt (&rs->buf, 0);
10586
10587 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10588 {
10589 case PACKET_ERROR:
10590 return -1;
10591 case PACKET_UNKNOWN:
10592 return 1;
10593 case PACKET_OK:
10594 return 0;
10595 }
10596 internal_error (__FILE__, __LINE__,
10597 _("remote_insert_watchpoint: reached end of function"));
10598 }
10599
10600 bool
10601 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10602 CORE_ADDR start, int length)
10603 {
10604 CORE_ADDR diff = remote_address_masked (addr - start);
10605
10606 return diff < length;
10607 }
10608
10609
10610 int
10611 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10612 enum target_hw_bp_type type, struct expression *cond)
10613 {
10614 struct remote_state *rs = get_remote_state ();
10615 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10616 char *p;
10617 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10618
10619 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10620 return -1;
10621
10622 /* Make sure the remote is pointing at the right process, if
10623 necessary. */
10624 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10625 set_general_process ();
10626
10627 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10628 p = strchr (rs->buf.data (), '\0');
10629 addr = remote_address_masked (addr);
10630 p += hexnumstr (p, (ULONGEST) addr);
10631 xsnprintf (p, endbuf - p, ",%x", len);
10632 putpkt (rs->buf);
10633 getpkt (&rs->buf, 0);
10634
10635 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10636 {
10637 case PACKET_ERROR:
10638 case PACKET_UNKNOWN:
10639 return -1;
10640 case PACKET_OK:
10641 return 0;
10642 }
10643 internal_error (__FILE__, __LINE__,
10644 _("remote_remove_watchpoint: reached end of function"));
10645 }
10646
10647
10648 static int remote_hw_watchpoint_limit = -1;
10649 static int remote_hw_watchpoint_length_limit = -1;
10650 static int remote_hw_breakpoint_limit = -1;
10651
10652 int
10653 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10654 {
10655 if (remote_hw_watchpoint_length_limit == 0)
10656 return 0;
10657 else if (remote_hw_watchpoint_length_limit < 0)
10658 return 1;
10659 else if (len <= remote_hw_watchpoint_length_limit)
10660 return 1;
10661 else
10662 return 0;
10663 }
10664
10665 int
10666 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10667 {
10668 if (type == bp_hardware_breakpoint)
10669 {
10670 if (remote_hw_breakpoint_limit == 0)
10671 return 0;
10672 else if (remote_hw_breakpoint_limit < 0)
10673 return 1;
10674 else if (cnt <= remote_hw_breakpoint_limit)
10675 return 1;
10676 }
10677 else
10678 {
10679 if (remote_hw_watchpoint_limit == 0)
10680 return 0;
10681 else if (remote_hw_watchpoint_limit < 0)
10682 return 1;
10683 else if (ot)
10684 return -1;
10685 else if (cnt <= remote_hw_watchpoint_limit)
10686 return 1;
10687 }
10688 return -1;
10689 }
10690
10691 /* The to_stopped_by_sw_breakpoint method of target remote. */
10692
10693 bool
10694 remote_target::stopped_by_sw_breakpoint ()
10695 {
10696 struct thread_info *thread = inferior_thread ();
10697
10698 return (thread->priv != NULL
10699 && (get_remote_thread_info (thread)->stop_reason
10700 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10701 }
10702
10703 /* The to_supports_stopped_by_sw_breakpoint method of target
10704 remote. */
10705
10706 bool
10707 remote_target::supports_stopped_by_sw_breakpoint ()
10708 {
10709 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10710 }
10711
10712 /* The to_stopped_by_hw_breakpoint method of target remote. */
10713
10714 bool
10715 remote_target::stopped_by_hw_breakpoint ()
10716 {
10717 struct thread_info *thread = inferior_thread ();
10718
10719 return (thread->priv != NULL
10720 && (get_remote_thread_info (thread)->stop_reason
10721 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10722 }
10723
10724 /* The to_supports_stopped_by_hw_breakpoint method of target
10725 remote. */
10726
10727 bool
10728 remote_target::supports_stopped_by_hw_breakpoint ()
10729 {
10730 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10731 }
10732
10733 bool
10734 remote_target::stopped_by_watchpoint ()
10735 {
10736 struct thread_info *thread = inferior_thread ();
10737
10738 return (thread->priv != NULL
10739 && (get_remote_thread_info (thread)->stop_reason
10740 == TARGET_STOPPED_BY_WATCHPOINT));
10741 }
10742
10743 bool
10744 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10745 {
10746 struct thread_info *thread = inferior_thread ();
10747
10748 if (thread->priv != NULL
10749 && (get_remote_thread_info (thread)->stop_reason
10750 == TARGET_STOPPED_BY_WATCHPOINT))
10751 {
10752 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10753 return true;
10754 }
10755
10756 return false;
10757 }
10758
10759
10760 int
10761 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10762 struct bp_target_info *bp_tgt)
10763 {
10764 CORE_ADDR addr = bp_tgt->reqstd_address;
10765 struct remote_state *rs;
10766 char *p, *endbuf;
10767 char *message;
10768
10769 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10770 return -1;
10771
10772 /* Make sure the remote is pointing at the right process, if
10773 necessary. */
10774 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10775 set_general_process ();
10776
10777 rs = get_remote_state ();
10778 p = rs->buf.data ();
10779 endbuf = p + get_remote_packet_size ();
10780
10781 *(p++) = 'Z';
10782 *(p++) = '1';
10783 *(p++) = ',';
10784
10785 addr = remote_address_masked (addr);
10786 p += hexnumstr (p, (ULONGEST) addr);
10787 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10788
10789 if (supports_evaluation_of_breakpoint_conditions ())
10790 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10791
10792 if (can_run_breakpoint_commands ())
10793 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10794
10795 putpkt (rs->buf);
10796 getpkt (&rs->buf, 0);
10797
10798 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10799 {
10800 case PACKET_ERROR:
10801 if (rs->buf[1] == '.')
10802 {
10803 message = strchr (&rs->buf[2], '.');
10804 if (message)
10805 error (_("Remote failure reply: %s"), message + 1);
10806 }
10807 return -1;
10808 case PACKET_UNKNOWN:
10809 return -1;
10810 case PACKET_OK:
10811 return 0;
10812 }
10813 internal_error (__FILE__, __LINE__,
10814 _("remote_insert_hw_breakpoint: reached end of function"));
10815 }
10816
10817
10818 int
10819 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10820 struct bp_target_info *bp_tgt)
10821 {
10822 CORE_ADDR addr;
10823 struct remote_state *rs = get_remote_state ();
10824 char *p = rs->buf.data ();
10825 char *endbuf = p + get_remote_packet_size ();
10826
10827 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10828 return -1;
10829
10830 /* Make sure the remote is pointing at the right process, if
10831 necessary. */
10832 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10833 set_general_process ();
10834
10835 *(p++) = 'z';
10836 *(p++) = '1';
10837 *(p++) = ',';
10838
10839 addr = remote_address_masked (bp_tgt->placed_address);
10840 p += hexnumstr (p, (ULONGEST) addr);
10841 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10842
10843 putpkt (rs->buf);
10844 getpkt (&rs->buf, 0);
10845
10846 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10847 {
10848 case PACKET_ERROR:
10849 case PACKET_UNKNOWN:
10850 return -1;
10851 case PACKET_OK:
10852 return 0;
10853 }
10854 internal_error (__FILE__, __LINE__,
10855 _("remote_remove_hw_breakpoint: reached end of function"));
10856 }
10857
10858 /* Verify memory using the "qCRC:" request. */
10859
10860 int
10861 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10862 {
10863 struct remote_state *rs = get_remote_state ();
10864 unsigned long host_crc, target_crc;
10865 char *tmp;
10866
10867 /* It doesn't make sense to use qCRC if the remote target is
10868 connected but not running. */
10869 if (target_has_execution ()
10870 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10871 {
10872 enum packet_result result;
10873
10874 /* Make sure the remote is pointing at the right process. */
10875 set_general_process ();
10876
10877 /* FIXME: assumes lma can fit into long. */
10878 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10879 (long) lma, (long) size);
10880 putpkt (rs->buf);
10881
10882 /* Be clever; compute the host_crc before waiting for target
10883 reply. */
10884 host_crc = xcrc32 (data, size, 0xffffffff);
10885
10886 getpkt (&rs->buf, 0);
10887
10888 result = packet_ok (rs->buf,
10889 &remote_protocol_packets[PACKET_qCRC]);
10890 if (result == PACKET_ERROR)
10891 return -1;
10892 else if (result == PACKET_OK)
10893 {
10894 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10895 target_crc = target_crc * 16 + fromhex (*tmp);
10896
10897 return (host_crc == target_crc);
10898 }
10899 }
10900
10901 return simple_verify_memory (this, data, lma, size);
10902 }
10903
10904 /* compare-sections command
10905
10906 With no arguments, compares each loadable section in the exec bfd
10907 with the same memory range on the target, and reports mismatches.
10908 Useful for verifying the image on the target against the exec file. */
10909
10910 static void
10911 compare_sections_command (const char *args, int from_tty)
10912 {
10913 asection *s;
10914 const char *sectname;
10915 bfd_size_type size;
10916 bfd_vma lma;
10917 int matched = 0;
10918 int mismatched = 0;
10919 int res;
10920 int read_only = 0;
10921
10922 if (!current_program_space->exec_bfd ())
10923 error (_("command cannot be used without an exec file"));
10924
10925 if (args != NULL && strcmp (args, "-r") == 0)
10926 {
10927 read_only = 1;
10928 args = NULL;
10929 }
10930
10931 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
10932 {
10933 if (!(s->flags & SEC_LOAD))
10934 continue; /* Skip non-loadable section. */
10935
10936 if (read_only && (s->flags & SEC_READONLY) == 0)
10937 continue; /* Skip writeable sections */
10938
10939 size = bfd_section_size (s);
10940 if (size == 0)
10941 continue; /* Skip zero-length section. */
10942
10943 sectname = bfd_section_name (s);
10944 if (args && strcmp (args, sectname) != 0)
10945 continue; /* Not the section selected by user. */
10946
10947 matched = 1; /* Do this section. */
10948 lma = s->lma;
10949
10950 gdb::byte_vector sectdata (size);
10951 bfd_get_section_contents (current_program_space->exec_bfd (), s,
10952 sectdata.data (), 0, size);
10953
10954 res = target_verify_memory (sectdata.data (), lma, size);
10955
10956 if (res == -1)
10957 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10958 paddress (target_gdbarch (), lma),
10959 paddress (target_gdbarch (), lma + size));
10960
10961 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10962 paddress (target_gdbarch (), lma),
10963 paddress (target_gdbarch (), lma + size));
10964 if (res)
10965 printf_filtered ("matched.\n");
10966 else
10967 {
10968 printf_filtered ("MIS-MATCHED!\n");
10969 mismatched++;
10970 }
10971 }
10972 if (mismatched > 0)
10973 warning (_("One or more sections of the target image does not match\n\
10974 the loaded file\n"));
10975 if (args && !matched)
10976 printf_filtered (_("No loaded section named '%s'.\n"), args);
10977 }
10978
10979 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10980 into remote target. The number of bytes written to the remote
10981 target is returned, or -1 for error. */
10982
10983 target_xfer_status
10984 remote_target::remote_write_qxfer (const char *object_name,
10985 const char *annex, const gdb_byte *writebuf,
10986 ULONGEST offset, LONGEST len,
10987 ULONGEST *xfered_len,
10988 struct packet_config *packet)
10989 {
10990 int i, buf_len;
10991 ULONGEST n;
10992 struct remote_state *rs = get_remote_state ();
10993 int max_size = get_memory_write_packet_size ();
10994
10995 if (packet_config_support (packet) == PACKET_DISABLE)
10996 return TARGET_XFER_E_IO;
10997
10998 /* Insert header. */
10999 i = snprintf (rs->buf.data (), max_size,
11000 "qXfer:%s:write:%s:%s:",
11001 object_name, annex ? annex : "",
11002 phex_nz (offset, sizeof offset));
11003 max_size -= (i + 1);
11004
11005 /* Escape as much data as fits into rs->buf. */
11006 buf_len = remote_escape_output
11007 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
11008
11009 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
11010 || getpkt_sane (&rs->buf, 0) < 0
11011 || packet_ok (rs->buf, packet) != PACKET_OK)
11012 return TARGET_XFER_E_IO;
11013
11014 unpack_varlen_hex (rs->buf.data (), &n);
11015
11016 *xfered_len = n;
11017 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11018 }
11019
11020 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
11021 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
11022 number of bytes read is returned, or 0 for EOF, or -1 for error.
11023 The number of bytes read may be less than LEN without indicating an
11024 EOF. PACKET is checked and updated to indicate whether the remote
11025 target supports this object. */
11026
11027 target_xfer_status
11028 remote_target::remote_read_qxfer (const char *object_name,
11029 const char *annex,
11030 gdb_byte *readbuf, ULONGEST offset,
11031 LONGEST len,
11032 ULONGEST *xfered_len,
11033 struct packet_config *packet)
11034 {
11035 struct remote_state *rs = get_remote_state ();
11036 LONGEST i, n, packet_len;
11037
11038 if (packet_config_support (packet) == PACKET_DISABLE)
11039 return TARGET_XFER_E_IO;
11040
11041 /* Check whether we've cached an end-of-object packet that matches
11042 this request. */
11043 if (rs->finished_object)
11044 {
11045 if (strcmp (object_name, rs->finished_object) == 0
11046 && strcmp (annex ? annex : "", rs->finished_annex) == 0
11047 && offset == rs->finished_offset)
11048 return TARGET_XFER_EOF;
11049
11050
11051 /* Otherwise, we're now reading something different. Discard
11052 the cache. */
11053 xfree (rs->finished_object);
11054 xfree (rs->finished_annex);
11055 rs->finished_object = NULL;
11056 rs->finished_annex = NULL;
11057 }
11058
11059 /* Request only enough to fit in a single packet. The actual data
11060 may not, since we don't know how much of it will need to be escaped;
11061 the target is free to respond with slightly less data. We subtract
11062 five to account for the response type and the protocol frame. */
11063 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
11064 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
11065 "qXfer:%s:read:%s:%s,%s",
11066 object_name, annex ? annex : "",
11067 phex_nz (offset, sizeof offset),
11068 phex_nz (n, sizeof n));
11069 i = putpkt (rs->buf);
11070 if (i < 0)
11071 return TARGET_XFER_E_IO;
11072
11073 rs->buf[0] = '\0';
11074 packet_len = getpkt_sane (&rs->buf, 0);
11075 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
11076 return TARGET_XFER_E_IO;
11077
11078 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
11079 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
11080
11081 /* 'm' means there is (or at least might be) more data after this
11082 batch. That does not make sense unless there's at least one byte
11083 of data in this reply. */
11084 if (rs->buf[0] == 'm' && packet_len == 1)
11085 error (_("Remote qXfer reply contained no data."));
11086
11087 /* Got some data. */
11088 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
11089 packet_len - 1, readbuf, n);
11090
11091 /* 'l' is an EOF marker, possibly including a final block of data,
11092 or possibly empty. If we have the final block of a non-empty
11093 object, record this fact to bypass a subsequent partial read. */
11094 if (rs->buf[0] == 'l' && offset + i > 0)
11095 {
11096 rs->finished_object = xstrdup (object_name);
11097 rs->finished_annex = xstrdup (annex ? annex : "");
11098 rs->finished_offset = offset + i;
11099 }
11100
11101 if (i == 0)
11102 return TARGET_XFER_EOF;
11103 else
11104 {
11105 *xfered_len = i;
11106 return TARGET_XFER_OK;
11107 }
11108 }
11109
11110 enum target_xfer_status
11111 remote_target::xfer_partial (enum target_object object,
11112 const char *annex, gdb_byte *readbuf,
11113 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
11114 ULONGEST *xfered_len)
11115 {
11116 struct remote_state *rs;
11117 int i;
11118 char *p2;
11119 char query_type;
11120 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
11121
11122 set_remote_traceframe ();
11123 set_general_thread (inferior_ptid);
11124
11125 rs = get_remote_state ();
11126
11127 /* Handle memory using the standard memory routines. */
11128 if (object == TARGET_OBJECT_MEMORY)
11129 {
11130 /* If the remote target is connected but not running, we should
11131 pass this request down to a lower stratum (e.g. the executable
11132 file). */
11133 if (!target_has_execution ())
11134 return TARGET_XFER_EOF;
11135
11136 if (writebuf != NULL)
11137 return remote_write_bytes (offset, writebuf, len, unit_size,
11138 xfered_len);
11139 else
11140 return remote_read_bytes (offset, readbuf, len, unit_size,
11141 xfered_len);
11142 }
11143
11144 /* Handle extra signal info using qxfer packets. */
11145 if (object == TARGET_OBJECT_SIGNAL_INFO)
11146 {
11147 if (readbuf)
11148 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11149 xfered_len, &remote_protocol_packets
11150 [PACKET_qXfer_siginfo_read]);
11151 else
11152 return remote_write_qxfer ("siginfo", annex,
11153 writebuf, offset, len, xfered_len,
11154 &remote_protocol_packets
11155 [PACKET_qXfer_siginfo_write]);
11156 }
11157
11158 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11159 {
11160 if (readbuf)
11161 return remote_read_qxfer ("statictrace", annex,
11162 readbuf, offset, len, xfered_len,
11163 &remote_protocol_packets
11164 [PACKET_qXfer_statictrace_read]);
11165 else
11166 return TARGET_XFER_E_IO;
11167 }
11168
11169 /* Only handle flash writes. */
11170 if (writebuf != NULL)
11171 {
11172 switch (object)
11173 {
11174 case TARGET_OBJECT_FLASH:
11175 return remote_flash_write (offset, len, xfered_len,
11176 writebuf);
11177
11178 default:
11179 return TARGET_XFER_E_IO;
11180 }
11181 }
11182
11183 /* Map pre-existing objects onto letters. DO NOT do this for new
11184 objects!!! Instead specify new query packets. */
11185 switch (object)
11186 {
11187 case TARGET_OBJECT_AVR:
11188 query_type = 'R';
11189 break;
11190
11191 case TARGET_OBJECT_AUXV:
11192 gdb_assert (annex == NULL);
11193 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11194 xfered_len,
11195 &remote_protocol_packets[PACKET_qXfer_auxv]);
11196
11197 case TARGET_OBJECT_AVAILABLE_FEATURES:
11198 return remote_read_qxfer
11199 ("features", annex, readbuf, offset, len, xfered_len,
11200 &remote_protocol_packets[PACKET_qXfer_features]);
11201
11202 case TARGET_OBJECT_LIBRARIES:
11203 return remote_read_qxfer
11204 ("libraries", annex, readbuf, offset, len, xfered_len,
11205 &remote_protocol_packets[PACKET_qXfer_libraries]);
11206
11207 case TARGET_OBJECT_LIBRARIES_SVR4:
11208 return remote_read_qxfer
11209 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11210 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11211
11212 case TARGET_OBJECT_MEMORY_MAP:
11213 gdb_assert (annex == NULL);
11214 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11215 xfered_len,
11216 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11217
11218 case TARGET_OBJECT_OSDATA:
11219 /* Should only get here if we're connected. */
11220 gdb_assert (rs->remote_desc);
11221 return remote_read_qxfer
11222 ("osdata", annex, readbuf, offset, len, xfered_len,
11223 &remote_protocol_packets[PACKET_qXfer_osdata]);
11224
11225 case TARGET_OBJECT_THREADS:
11226 gdb_assert (annex == NULL);
11227 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11228 xfered_len,
11229 &remote_protocol_packets[PACKET_qXfer_threads]);
11230
11231 case TARGET_OBJECT_TRACEFRAME_INFO:
11232 gdb_assert (annex == NULL);
11233 return remote_read_qxfer
11234 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11235 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11236
11237 case TARGET_OBJECT_FDPIC:
11238 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11239 xfered_len,
11240 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11241
11242 case TARGET_OBJECT_OPENVMS_UIB:
11243 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11244 xfered_len,
11245 &remote_protocol_packets[PACKET_qXfer_uib]);
11246
11247 case TARGET_OBJECT_BTRACE:
11248 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11249 xfered_len,
11250 &remote_protocol_packets[PACKET_qXfer_btrace]);
11251
11252 case TARGET_OBJECT_BTRACE_CONF:
11253 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11254 len, xfered_len,
11255 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11256
11257 case TARGET_OBJECT_EXEC_FILE:
11258 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11259 len, xfered_len,
11260 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11261
11262 default:
11263 return TARGET_XFER_E_IO;
11264 }
11265
11266 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11267 large enough let the caller deal with it. */
11268 if (len < get_remote_packet_size ())
11269 return TARGET_XFER_E_IO;
11270 len = get_remote_packet_size ();
11271
11272 /* Except for querying the minimum buffer size, target must be open. */
11273 if (!rs->remote_desc)
11274 error (_("remote query is only available after target open"));
11275
11276 gdb_assert (annex != NULL);
11277 gdb_assert (readbuf != NULL);
11278
11279 p2 = rs->buf.data ();
11280 *p2++ = 'q';
11281 *p2++ = query_type;
11282
11283 /* We used one buffer char for the remote protocol q command and
11284 another for the query type. As the remote protocol encapsulation
11285 uses 4 chars plus one extra in case we are debugging
11286 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11287 string. */
11288 i = 0;
11289 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11290 {
11291 /* Bad caller may have sent forbidden characters. */
11292 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11293 *p2++ = annex[i];
11294 i++;
11295 }
11296 *p2 = '\0';
11297 gdb_assert (annex[i] == '\0');
11298
11299 i = putpkt (rs->buf);
11300 if (i < 0)
11301 return TARGET_XFER_E_IO;
11302
11303 getpkt (&rs->buf, 0);
11304 strcpy ((char *) readbuf, rs->buf.data ());
11305
11306 *xfered_len = strlen ((char *) readbuf);
11307 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11308 }
11309
11310 /* Implementation of to_get_memory_xfer_limit. */
11311
11312 ULONGEST
11313 remote_target::get_memory_xfer_limit ()
11314 {
11315 return get_memory_write_packet_size ();
11316 }
11317
11318 int
11319 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11320 const gdb_byte *pattern, ULONGEST pattern_len,
11321 CORE_ADDR *found_addrp)
11322 {
11323 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11324 struct remote_state *rs = get_remote_state ();
11325 int max_size = get_memory_write_packet_size ();
11326 struct packet_config *packet =
11327 &remote_protocol_packets[PACKET_qSearch_memory];
11328 /* Number of packet bytes used to encode the pattern;
11329 this could be more than PATTERN_LEN due to escape characters. */
11330 int escaped_pattern_len;
11331 /* Amount of pattern that was encodable in the packet. */
11332 int used_pattern_len;
11333 int i;
11334 int found;
11335 ULONGEST found_addr;
11336
11337 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11338 {
11339 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11340 == len);
11341 };
11342
11343 /* Don't go to the target if we don't have to. This is done before
11344 checking packet_config_support to avoid the possibility that a
11345 success for this edge case means the facility works in
11346 general. */
11347 if (pattern_len > search_space_len)
11348 return 0;
11349 if (pattern_len == 0)
11350 {
11351 *found_addrp = start_addr;
11352 return 1;
11353 }
11354
11355 /* If we already know the packet isn't supported, fall back to the simple
11356 way of searching memory. */
11357
11358 if (packet_config_support (packet) == PACKET_DISABLE)
11359 {
11360 /* Target doesn't provided special support, fall back and use the
11361 standard support (copy memory and do the search here). */
11362 return simple_search_memory (read_memory, start_addr, search_space_len,
11363 pattern, pattern_len, found_addrp);
11364 }
11365
11366 /* Make sure the remote is pointing at the right process. */
11367 set_general_process ();
11368
11369 /* Insert header. */
11370 i = snprintf (rs->buf.data (), max_size,
11371 "qSearch:memory:%s;%s;",
11372 phex_nz (start_addr, addr_size),
11373 phex_nz (search_space_len, sizeof (search_space_len)));
11374 max_size -= (i + 1);
11375
11376 /* Escape as much data as fits into rs->buf. */
11377 escaped_pattern_len =
11378 remote_escape_output (pattern, pattern_len, 1,
11379 (gdb_byte *) rs->buf.data () + i,
11380 &used_pattern_len, max_size);
11381
11382 /* Bail if the pattern is too large. */
11383 if (used_pattern_len != pattern_len)
11384 error (_("Pattern is too large to transmit to remote target."));
11385
11386 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11387 || getpkt_sane (&rs->buf, 0) < 0
11388 || packet_ok (rs->buf, packet) != PACKET_OK)
11389 {
11390 /* The request may not have worked because the command is not
11391 supported. If so, fall back to the simple way. */
11392 if (packet_config_support (packet) == PACKET_DISABLE)
11393 {
11394 return simple_search_memory (read_memory, start_addr, search_space_len,
11395 pattern, pattern_len, found_addrp);
11396 }
11397 return -1;
11398 }
11399
11400 if (rs->buf[0] == '0')
11401 found = 0;
11402 else if (rs->buf[0] == '1')
11403 {
11404 found = 1;
11405 if (rs->buf[1] != ',')
11406 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11407 unpack_varlen_hex (&rs->buf[2], &found_addr);
11408 *found_addrp = found_addr;
11409 }
11410 else
11411 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11412
11413 return found;
11414 }
11415
11416 void
11417 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11418 {
11419 struct remote_state *rs = get_remote_state ();
11420 char *p = rs->buf.data ();
11421
11422 if (!rs->remote_desc)
11423 error (_("remote rcmd is only available after target open"));
11424
11425 /* Send a NULL command across as an empty command. */
11426 if (command == NULL)
11427 command = "";
11428
11429 /* The query prefix. */
11430 strcpy (rs->buf.data (), "qRcmd,");
11431 p = strchr (rs->buf.data (), '\0');
11432
11433 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11434 > get_remote_packet_size ())
11435 error (_("\"monitor\" command ``%s'' is too long."), command);
11436
11437 /* Encode the actual command. */
11438 bin2hex ((const gdb_byte *) command, p, strlen (command));
11439
11440 if (putpkt (rs->buf) < 0)
11441 error (_("Communication problem with target."));
11442
11443 /* get/display the response */
11444 while (1)
11445 {
11446 char *buf;
11447
11448 /* XXX - see also remote_get_noisy_reply(). */
11449 QUIT; /* Allow user to bail out with ^C. */
11450 rs->buf[0] = '\0';
11451 if (getpkt_sane (&rs->buf, 0) == -1)
11452 {
11453 /* Timeout. Continue to (try to) read responses.
11454 This is better than stopping with an error, assuming the stub
11455 is still executing the (long) monitor command.
11456 If needed, the user can interrupt gdb using C-c, obtaining
11457 an effect similar to stop on timeout. */
11458 continue;
11459 }
11460 buf = rs->buf.data ();
11461 if (buf[0] == '\0')
11462 error (_("Target does not support this command."));
11463 if (buf[0] == 'O' && buf[1] != 'K')
11464 {
11465 remote_console_output (buf + 1); /* 'O' message from stub. */
11466 continue;
11467 }
11468 if (strcmp (buf, "OK") == 0)
11469 break;
11470 if (strlen (buf) == 3 && buf[0] == 'E'
11471 && isdigit (buf[1]) && isdigit (buf[2]))
11472 {
11473 error (_("Protocol error with Rcmd"));
11474 }
11475 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11476 {
11477 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11478
11479 fputc_unfiltered (c, outbuf);
11480 }
11481 break;
11482 }
11483 }
11484
11485 std::vector<mem_region>
11486 remote_target::memory_map ()
11487 {
11488 std::vector<mem_region> result;
11489 gdb::optional<gdb::char_vector> text
11490 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11491
11492 if (text)
11493 result = parse_memory_map (text->data ());
11494
11495 return result;
11496 }
11497
11498 static void
11499 packet_command (const char *args, int from_tty)
11500 {
11501 remote_target *remote = get_current_remote_target ();
11502
11503 if (remote == nullptr)
11504 error (_("command can only be used with remote target"));
11505
11506 remote->packet_command (args, from_tty);
11507 }
11508
11509 void
11510 remote_target::packet_command (const char *args, int from_tty)
11511 {
11512 if (!args)
11513 error (_("remote-packet command requires packet text as argument"));
11514
11515 puts_filtered ("sending: ");
11516 print_packet (args);
11517 puts_filtered ("\n");
11518 putpkt (args);
11519
11520 remote_state *rs = get_remote_state ();
11521
11522 getpkt (&rs->buf, 0);
11523 puts_filtered ("received: ");
11524 print_packet (rs->buf.data ());
11525 puts_filtered ("\n");
11526 }
11527
11528 #if 0
11529 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11530
11531 static void display_thread_info (struct gdb_ext_thread_info *info);
11532
11533 static void threadset_test_cmd (char *cmd, int tty);
11534
11535 static void threadalive_test (char *cmd, int tty);
11536
11537 static void threadlist_test_cmd (char *cmd, int tty);
11538
11539 int get_and_display_threadinfo (threadref *ref);
11540
11541 static void threadinfo_test_cmd (char *cmd, int tty);
11542
11543 static int thread_display_step (threadref *ref, void *context);
11544
11545 static void threadlist_update_test_cmd (char *cmd, int tty);
11546
11547 static void init_remote_threadtests (void);
11548
11549 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11550
11551 static void
11552 threadset_test_cmd (const char *cmd, int tty)
11553 {
11554 int sample_thread = SAMPLE_THREAD;
11555
11556 printf_filtered (_("Remote threadset test\n"));
11557 set_general_thread (sample_thread);
11558 }
11559
11560
11561 static void
11562 threadalive_test (const char *cmd, int tty)
11563 {
11564 int sample_thread = SAMPLE_THREAD;
11565 int pid = inferior_ptid.pid ();
11566 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11567
11568 if (remote_thread_alive (ptid))
11569 printf_filtered ("PASS: Thread alive test\n");
11570 else
11571 printf_filtered ("FAIL: Thread alive test\n");
11572 }
11573
11574 void output_threadid (char *title, threadref *ref);
11575
11576 void
11577 output_threadid (char *title, threadref *ref)
11578 {
11579 char hexid[20];
11580
11581 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11582 hexid[16] = 0;
11583 printf_filtered ("%s %s\n", title, (&hexid[0]));
11584 }
11585
11586 static void
11587 threadlist_test_cmd (const char *cmd, int tty)
11588 {
11589 int startflag = 1;
11590 threadref nextthread;
11591 int done, result_count;
11592 threadref threadlist[3];
11593
11594 printf_filtered ("Remote Threadlist test\n");
11595 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11596 &result_count, &threadlist[0]))
11597 printf_filtered ("FAIL: threadlist test\n");
11598 else
11599 {
11600 threadref *scan = threadlist;
11601 threadref *limit = scan + result_count;
11602
11603 while (scan < limit)
11604 output_threadid (" thread ", scan++);
11605 }
11606 }
11607
11608 void
11609 display_thread_info (struct gdb_ext_thread_info *info)
11610 {
11611 output_threadid ("Threadid: ", &info->threadid);
11612 printf_filtered ("Name: %s\n ", info->shortname);
11613 printf_filtered ("State: %s\n", info->display);
11614 printf_filtered ("other: %s\n\n", info->more_display);
11615 }
11616
11617 int
11618 get_and_display_threadinfo (threadref *ref)
11619 {
11620 int result;
11621 int set;
11622 struct gdb_ext_thread_info threadinfo;
11623
11624 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11625 | TAG_MOREDISPLAY | TAG_DISPLAY;
11626 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11627 display_thread_info (&threadinfo);
11628 return result;
11629 }
11630
11631 static void
11632 threadinfo_test_cmd (const char *cmd, int tty)
11633 {
11634 int athread = SAMPLE_THREAD;
11635 threadref thread;
11636 int set;
11637
11638 int_to_threadref (&thread, athread);
11639 printf_filtered ("Remote Threadinfo test\n");
11640 if (!get_and_display_threadinfo (&thread))
11641 printf_filtered ("FAIL cannot get thread info\n");
11642 }
11643
11644 static int
11645 thread_display_step (threadref *ref, void *context)
11646 {
11647 /* output_threadid(" threadstep ",ref); *//* simple test */
11648 return get_and_display_threadinfo (ref);
11649 }
11650
11651 static void
11652 threadlist_update_test_cmd (const char *cmd, int tty)
11653 {
11654 printf_filtered ("Remote Threadlist update test\n");
11655 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11656 }
11657
11658 static void
11659 init_remote_threadtests (void)
11660 {
11661 add_com ("tlist", class_obscure, threadlist_test_cmd,
11662 _("Fetch and print the remote list of "
11663 "thread identifiers, one pkt only."));
11664 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11665 _("Fetch and display info about one thread."));
11666 add_com ("tset", class_obscure, threadset_test_cmd,
11667 _("Test setting to a different thread."));
11668 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11669 _("Iterate through updating all remote thread info."));
11670 add_com ("talive", class_obscure, threadalive_test,
11671 _("Remote thread alive test."));
11672 }
11673
11674 #endif /* 0 */
11675
11676 /* Convert a thread ID to a string. */
11677
11678 std::string
11679 remote_target::pid_to_str (ptid_t ptid)
11680 {
11681 struct remote_state *rs = get_remote_state ();
11682
11683 if (ptid == null_ptid)
11684 return normal_pid_to_str (ptid);
11685 else if (ptid.is_pid ())
11686 {
11687 /* Printing an inferior target id. */
11688
11689 /* When multi-process extensions are off, there's no way in the
11690 remote protocol to know the remote process id, if there's any
11691 at all. There's one exception --- when we're connected with
11692 target extended-remote, and we manually attached to a process
11693 with "attach PID". We don't record anywhere a flag that
11694 allows us to distinguish that case from the case of
11695 connecting with extended-remote and the stub already being
11696 attached to a process, and reporting yes to qAttached, hence
11697 no smart special casing here. */
11698 if (!remote_multi_process_p (rs))
11699 return "Remote target";
11700
11701 return normal_pid_to_str (ptid);
11702 }
11703 else
11704 {
11705 if (magic_null_ptid == ptid)
11706 return "Thread <main>";
11707 else if (remote_multi_process_p (rs))
11708 if (ptid.lwp () == 0)
11709 return normal_pid_to_str (ptid);
11710 else
11711 return string_printf ("Thread %d.%ld",
11712 ptid.pid (), ptid.lwp ());
11713 else
11714 return string_printf ("Thread %ld", ptid.lwp ());
11715 }
11716 }
11717
11718 /* Get the address of the thread local variable in OBJFILE which is
11719 stored at OFFSET within the thread local storage for thread PTID. */
11720
11721 CORE_ADDR
11722 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11723 CORE_ADDR offset)
11724 {
11725 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11726 {
11727 struct remote_state *rs = get_remote_state ();
11728 char *p = rs->buf.data ();
11729 char *endp = p + get_remote_packet_size ();
11730 enum packet_result result;
11731
11732 strcpy (p, "qGetTLSAddr:");
11733 p += strlen (p);
11734 p = write_ptid (p, endp, ptid);
11735 *p++ = ',';
11736 p += hexnumstr (p, offset);
11737 *p++ = ',';
11738 p += hexnumstr (p, lm);
11739 *p++ = '\0';
11740
11741 putpkt (rs->buf);
11742 getpkt (&rs->buf, 0);
11743 result = packet_ok (rs->buf,
11744 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11745 if (result == PACKET_OK)
11746 {
11747 ULONGEST addr;
11748
11749 unpack_varlen_hex (rs->buf.data (), &addr);
11750 return addr;
11751 }
11752 else if (result == PACKET_UNKNOWN)
11753 throw_error (TLS_GENERIC_ERROR,
11754 _("Remote target doesn't support qGetTLSAddr packet"));
11755 else
11756 throw_error (TLS_GENERIC_ERROR,
11757 _("Remote target failed to process qGetTLSAddr request"));
11758 }
11759 else
11760 throw_error (TLS_GENERIC_ERROR,
11761 _("TLS not supported or disabled on this target"));
11762 /* Not reached. */
11763 return 0;
11764 }
11765
11766 /* Provide thread local base, i.e. Thread Information Block address.
11767 Returns 1 if ptid is found and thread_local_base is non zero. */
11768
11769 bool
11770 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11771 {
11772 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11773 {
11774 struct remote_state *rs = get_remote_state ();
11775 char *p = rs->buf.data ();
11776 char *endp = p + get_remote_packet_size ();
11777 enum packet_result result;
11778
11779 strcpy (p, "qGetTIBAddr:");
11780 p += strlen (p);
11781 p = write_ptid (p, endp, ptid);
11782 *p++ = '\0';
11783
11784 putpkt (rs->buf);
11785 getpkt (&rs->buf, 0);
11786 result = packet_ok (rs->buf,
11787 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11788 if (result == PACKET_OK)
11789 {
11790 ULONGEST val;
11791 unpack_varlen_hex (rs->buf.data (), &val);
11792 if (addr)
11793 *addr = (CORE_ADDR) val;
11794 return true;
11795 }
11796 else if (result == PACKET_UNKNOWN)
11797 error (_("Remote target doesn't support qGetTIBAddr packet"));
11798 else
11799 error (_("Remote target failed to process qGetTIBAddr request"));
11800 }
11801 else
11802 error (_("qGetTIBAddr not supported or disabled on this target"));
11803 /* Not reached. */
11804 return false;
11805 }
11806
11807 /* Support for inferring a target description based on the current
11808 architecture and the size of a 'g' packet. While the 'g' packet
11809 can have any size (since optional registers can be left off the
11810 end), some sizes are easily recognizable given knowledge of the
11811 approximate architecture. */
11812
11813 struct remote_g_packet_guess
11814 {
11815 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11816 : bytes (bytes_),
11817 tdesc (tdesc_)
11818 {
11819 }
11820
11821 int bytes;
11822 const struct target_desc *tdesc;
11823 };
11824
11825 struct remote_g_packet_data : public allocate_on_obstack
11826 {
11827 std::vector<remote_g_packet_guess> guesses;
11828 };
11829
11830 static struct gdbarch_data *remote_g_packet_data_handle;
11831
11832 static void *
11833 remote_g_packet_data_init (struct obstack *obstack)
11834 {
11835 return new (obstack) remote_g_packet_data;
11836 }
11837
11838 void
11839 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11840 const struct target_desc *tdesc)
11841 {
11842 struct remote_g_packet_data *data
11843 = ((struct remote_g_packet_data *)
11844 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11845
11846 gdb_assert (tdesc != NULL);
11847
11848 for (const remote_g_packet_guess &guess : data->guesses)
11849 if (guess.bytes == bytes)
11850 internal_error (__FILE__, __LINE__,
11851 _("Duplicate g packet description added for size %d"),
11852 bytes);
11853
11854 data->guesses.emplace_back (bytes, tdesc);
11855 }
11856
11857 /* Return true if remote_read_description would do anything on this target
11858 and architecture, false otherwise. */
11859
11860 static bool
11861 remote_read_description_p (struct target_ops *target)
11862 {
11863 struct remote_g_packet_data *data
11864 = ((struct remote_g_packet_data *)
11865 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11866
11867 return !data->guesses.empty ();
11868 }
11869
11870 const struct target_desc *
11871 remote_target::read_description ()
11872 {
11873 struct remote_g_packet_data *data
11874 = ((struct remote_g_packet_data *)
11875 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11876
11877 /* Do not try this during initial connection, when we do not know
11878 whether there is a running but stopped thread. */
11879 if (!target_has_execution () || inferior_ptid == null_ptid)
11880 return beneath ()->read_description ();
11881
11882 if (!data->guesses.empty ())
11883 {
11884 int bytes = send_g_packet ();
11885
11886 for (const remote_g_packet_guess &guess : data->guesses)
11887 if (guess.bytes == bytes)
11888 return guess.tdesc;
11889
11890 /* We discard the g packet. A minor optimization would be to
11891 hold on to it, and fill the register cache once we have selected
11892 an architecture, but it's too tricky to do safely. */
11893 }
11894
11895 return beneath ()->read_description ();
11896 }
11897
11898 /* Remote file transfer support. This is host-initiated I/O, not
11899 target-initiated; for target-initiated, see remote-fileio.c. */
11900
11901 /* If *LEFT is at least the length of STRING, copy STRING to
11902 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11903 decrease *LEFT. Otherwise raise an error. */
11904
11905 static void
11906 remote_buffer_add_string (char **buffer, int *left, const char *string)
11907 {
11908 int len = strlen (string);
11909
11910 if (len > *left)
11911 error (_("Packet too long for target."));
11912
11913 memcpy (*buffer, string, len);
11914 *buffer += len;
11915 *left -= len;
11916
11917 /* NUL-terminate the buffer as a convenience, if there is
11918 room. */
11919 if (*left)
11920 **buffer = '\0';
11921 }
11922
11923 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11924 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11925 decrease *LEFT. Otherwise raise an error. */
11926
11927 static void
11928 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11929 int len)
11930 {
11931 if (2 * len > *left)
11932 error (_("Packet too long for target."));
11933
11934 bin2hex (bytes, *buffer, len);
11935 *buffer += 2 * len;
11936 *left -= 2 * len;
11937
11938 /* NUL-terminate the buffer as a convenience, if there is
11939 room. */
11940 if (*left)
11941 **buffer = '\0';
11942 }
11943
11944 /* If *LEFT is large enough, convert VALUE to hex and add it to
11945 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11946 decrease *LEFT. Otherwise raise an error. */
11947
11948 static void
11949 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11950 {
11951 int len = hexnumlen (value);
11952
11953 if (len > *left)
11954 error (_("Packet too long for target."));
11955
11956 hexnumstr (*buffer, value);
11957 *buffer += len;
11958 *left -= len;
11959
11960 /* NUL-terminate the buffer as a convenience, if there is
11961 room. */
11962 if (*left)
11963 **buffer = '\0';
11964 }
11965
11966 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11967 value, *REMOTE_ERRNO to the remote error number or zero if none
11968 was included, and *ATTACHMENT to point to the start of the annex
11969 if any. The length of the packet isn't needed here; there may
11970 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11971
11972 Return 0 if the packet could be parsed, -1 if it could not. If
11973 -1 is returned, the other variables may not be initialized. */
11974
11975 static int
11976 remote_hostio_parse_result (char *buffer, int *retcode,
11977 int *remote_errno, char **attachment)
11978 {
11979 char *p, *p2;
11980
11981 *remote_errno = 0;
11982 *attachment = NULL;
11983
11984 if (buffer[0] != 'F')
11985 return -1;
11986
11987 errno = 0;
11988 *retcode = strtol (&buffer[1], &p, 16);
11989 if (errno != 0 || p == &buffer[1])
11990 return -1;
11991
11992 /* Check for ",errno". */
11993 if (*p == ',')
11994 {
11995 errno = 0;
11996 *remote_errno = strtol (p + 1, &p2, 16);
11997 if (errno != 0 || p + 1 == p2)
11998 return -1;
11999 p = p2;
12000 }
12001
12002 /* Check for ";attachment". If there is no attachment, the
12003 packet should end here. */
12004 if (*p == ';')
12005 {
12006 *attachment = p + 1;
12007 return 0;
12008 }
12009 else if (*p == '\0')
12010 return 0;
12011 else
12012 return -1;
12013 }
12014
12015 /* Send a prepared I/O packet to the target and read its response.
12016 The prepared packet is in the global RS->BUF before this function
12017 is called, and the answer is there when we return.
12018
12019 COMMAND_BYTES is the length of the request to send, which may include
12020 binary data. WHICH_PACKET is the packet configuration to check
12021 before attempting a packet. If an error occurs, *REMOTE_ERRNO
12022 is set to the error number and -1 is returned. Otherwise the value
12023 returned by the function is returned.
12024
12025 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
12026 attachment is expected; an error will be reported if there's a
12027 mismatch. If one is found, *ATTACHMENT will be set to point into
12028 the packet buffer and *ATTACHMENT_LEN will be set to the
12029 attachment's length. */
12030
12031 int
12032 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
12033 int *remote_errno, char **attachment,
12034 int *attachment_len)
12035 {
12036 struct remote_state *rs = get_remote_state ();
12037 int ret, bytes_read;
12038 char *attachment_tmp;
12039
12040 if (packet_support (which_packet) == PACKET_DISABLE)
12041 {
12042 *remote_errno = FILEIO_ENOSYS;
12043 return -1;
12044 }
12045
12046 putpkt_binary (rs->buf.data (), command_bytes);
12047 bytes_read = getpkt_sane (&rs->buf, 0);
12048
12049 /* If it timed out, something is wrong. Don't try to parse the
12050 buffer. */
12051 if (bytes_read < 0)
12052 {
12053 *remote_errno = FILEIO_EINVAL;
12054 return -1;
12055 }
12056
12057 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
12058 {
12059 case PACKET_ERROR:
12060 *remote_errno = FILEIO_EINVAL;
12061 return -1;
12062 case PACKET_UNKNOWN:
12063 *remote_errno = FILEIO_ENOSYS;
12064 return -1;
12065 case PACKET_OK:
12066 break;
12067 }
12068
12069 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
12070 &attachment_tmp))
12071 {
12072 *remote_errno = FILEIO_EINVAL;
12073 return -1;
12074 }
12075
12076 /* Make sure we saw an attachment if and only if we expected one. */
12077 if ((attachment_tmp == NULL && attachment != NULL)
12078 || (attachment_tmp != NULL && attachment == NULL))
12079 {
12080 *remote_errno = FILEIO_EINVAL;
12081 return -1;
12082 }
12083
12084 /* If an attachment was found, it must point into the packet buffer;
12085 work out how many bytes there were. */
12086 if (attachment_tmp != NULL)
12087 {
12088 *attachment = attachment_tmp;
12089 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
12090 }
12091
12092 return ret;
12093 }
12094
12095 /* See declaration.h. */
12096
12097 void
12098 readahead_cache::invalidate ()
12099 {
12100 this->fd = -1;
12101 }
12102
12103 /* See declaration.h. */
12104
12105 void
12106 readahead_cache::invalidate_fd (int fd)
12107 {
12108 if (this->fd == fd)
12109 this->fd = -1;
12110 }
12111
12112 /* Set the filesystem remote_hostio functions that take FILENAME
12113 arguments will use. Return 0 on success, or -1 if an error
12114 occurs (and set *REMOTE_ERRNO). */
12115
12116 int
12117 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
12118 int *remote_errno)
12119 {
12120 struct remote_state *rs = get_remote_state ();
12121 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
12122 char *p = rs->buf.data ();
12123 int left = get_remote_packet_size () - 1;
12124 char arg[9];
12125 int ret;
12126
12127 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12128 return 0;
12129
12130 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
12131 return 0;
12132
12133 remote_buffer_add_string (&p, &left, "vFile:setfs:");
12134
12135 xsnprintf (arg, sizeof (arg), "%x", required_pid);
12136 remote_buffer_add_string (&p, &left, arg);
12137
12138 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
12139 remote_errno, NULL, NULL);
12140
12141 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12142 return 0;
12143
12144 if (ret == 0)
12145 rs->fs_pid = required_pid;
12146
12147 return ret;
12148 }
12149
12150 /* Implementation of to_fileio_open. */
12151
12152 int
12153 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12154 int flags, int mode, int warn_if_slow,
12155 int *remote_errno)
12156 {
12157 struct remote_state *rs = get_remote_state ();
12158 char *p = rs->buf.data ();
12159 int left = get_remote_packet_size () - 1;
12160
12161 if (warn_if_slow)
12162 {
12163 static int warning_issued = 0;
12164
12165 printf_unfiltered (_("Reading %s from remote target...\n"),
12166 filename);
12167
12168 if (!warning_issued)
12169 {
12170 warning (_("File transfers from remote targets can be slow."
12171 " Use \"set sysroot\" to access files locally"
12172 " instead."));
12173 warning_issued = 1;
12174 }
12175 }
12176
12177 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12178 return -1;
12179
12180 remote_buffer_add_string (&p, &left, "vFile:open:");
12181
12182 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12183 strlen (filename));
12184 remote_buffer_add_string (&p, &left, ",");
12185
12186 remote_buffer_add_int (&p, &left, flags);
12187 remote_buffer_add_string (&p, &left, ",");
12188
12189 remote_buffer_add_int (&p, &left, mode);
12190
12191 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12192 remote_errno, NULL, NULL);
12193 }
12194
12195 int
12196 remote_target::fileio_open (struct inferior *inf, const char *filename,
12197 int flags, int mode, int warn_if_slow,
12198 int *remote_errno)
12199 {
12200 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12201 remote_errno);
12202 }
12203
12204 /* Implementation of to_fileio_pwrite. */
12205
12206 int
12207 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12208 ULONGEST offset, int *remote_errno)
12209 {
12210 struct remote_state *rs = get_remote_state ();
12211 char *p = rs->buf.data ();
12212 int left = get_remote_packet_size ();
12213 int out_len;
12214
12215 rs->readahead_cache.invalidate_fd (fd);
12216
12217 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12218
12219 remote_buffer_add_int (&p, &left, fd);
12220 remote_buffer_add_string (&p, &left, ",");
12221
12222 remote_buffer_add_int (&p, &left, offset);
12223 remote_buffer_add_string (&p, &left, ",");
12224
12225 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12226 (get_remote_packet_size ()
12227 - (p - rs->buf.data ())));
12228
12229 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12230 remote_errno, NULL, NULL);
12231 }
12232
12233 int
12234 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12235 ULONGEST offset, int *remote_errno)
12236 {
12237 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12238 }
12239
12240 /* Helper for the implementation of to_fileio_pread. Read the file
12241 from the remote side with vFile:pread. */
12242
12243 int
12244 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12245 ULONGEST offset, int *remote_errno)
12246 {
12247 struct remote_state *rs = get_remote_state ();
12248 char *p = rs->buf.data ();
12249 char *attachment;
12250 int left = get_remote_packet_size ();
12251 int ret, attachment_len;
12252 int read_len;
12253
12254 remote_buffer_add_string (&p, &left, "vFile:pread:");
12255
12256 remote_buffer_add_int (&p, &left, fd);
12257 remote_buffer_add_string (&p, &left, ",");
12258
12259 remote_buffer_add_int (&p, &left, len);
12260 remote_buffer_add_string (&p, &left, ",");
12261
12262 remote_buffer_add_int (&p, &left, offset);
12263
12264 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12265 remote_errno, &attachment,
12266 &attachment_len);
12267
12268 if (ret < 0)
12269 return ret;
12270
12271 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12272 read_buf, len);
12273 if (read_len != ret)
12274 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12275
12276 return ret;
12277 }
12278
12279 /* See declaration.h. */
12280
12281 int
12282 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12283 ULONGEST offset)
12284 {
12285 if (this->fd == fd
12286 && this->offset <= offset
12287 && offset < this->offset + this->bufsize)
12288 {
12289 ULONGEST max = this->offset + this->bufsize;
12290
12291 if (offset + len > max)
12292 len = max - offset;
12293
12294 memcpy (read_buf, this->buf + offset - this->offset, len);
12295 return len;
12296 }
12297
12298 return 0;
12299 }
12300
12301 /* Implementation of to_fileio_pread. */
12302
12303 int
12304 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12305 ULONGEST offset, int *remote_errno)
12306 {
12307 int ret;
12308 struct remote_state *rs = get_remote_state ();
12309 readahead_cache *cache = &rs->readahead_cache;
12310
12311 ret = cache->pread (fd, read_buf, len, offset);
12312 if (ret > 0)
12313 {
12314 cache->hit_count++;
12315
12316 if (remote_debug)
12317 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12318 pulongest (cache->hit_count));
12319 return ret;
12320 }
12321
12322 cache->miss_count++;
12323 if (remote_debug)
12324 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12325 pulongest (cache->miss_count));
12326
12327 cache->fd = fd;
12328 cache->offset = offset;
12329 cache->bufsize = get_remote_packet_size ();
12330 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12331
12332 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12333 cache->offset, remote_errno);
12334 if (ret <= 0)
12335 {
12336 cache->invalidate_fd (fd);
12337 return ret;
12338 }
12339
12340 cache->bufsize = ret;
12341 return cache->pread (fd, read_buf, len, offset);
12342 }
12343
12344 int
12345 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12346 ULONGEST offset, int *remote_errno)
12347 {
12348 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12349 }
12350
12351 /* Implementation of to_fileio_close. */
12352
12353 int
12354 remote_target::remote_hostio_close (int fd, int *remote_errno)
12355 {
12356 struct remote_state *rs = get_remote_state ();
12357 char *p = rs->buf.data ();
12358 int left = get_remote_packet_size () - 1;
12359
12360 rs->readahead_cache.invalidate_fd (fd);
12361
12362 remote_buffer_add_string (&p, &left, "vFile:close:");
12363
12364 remote_buffer_add_int (&p, &left, fd);
12365
12366 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12367 remote_errno, NULL, NULL);
12368 }
12369
12370 int
12371 remote_target::fileio_close (int fd, int *remote_errno)
12372 {
12373 return remote_hostio_close (fd, remote_errno);
12374 }
12375
12376 /* Implementation of to_fileio_unlink. */
12377
12378 int
12379 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12380 int *remote_errno)
12381 {
12382 struct remote_state *rs = get_remote_state ();
12383 char *p = rs->buf.data ();
12384 int left = get_remote_packet_size () - 1;
12385
12386 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12387 return -1;
12388
12389 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12390
12391 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12392 strlen (filename));
12393
12394 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12395 remote_errno, NULL, NULL);
12396 }
12397
12398 int
12399 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12400 int *remote_errno)
12401 {
12402 return remote_hostio_unlink (inf, filename, remote_errno);
12403 }
12404
12405 /* Implementation of to_fileio_readlink. */
12406
12407 gdb::optional<std::string>
12408 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12409 int *remote_errno)
12410 {
12411 struct remote_state *rs = get_remote_state ();
12412 char *p = rs->buf.data ();
12413 char *attachment;
12414 int left = get_remote_packet_size ();
12415 int len, attachment_len;
12416 int read_len;
12417
12418 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12419 return {};
12420
12421 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12422
12423 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12424 strlen (filename));
12425
12426 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12427 remote_errno, &attachment,
12428 &attachment_len);
12429
12430 if (len < 0)
12431 return {};
12432
12433 std::string ret (len, '\0');
12434
12435 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12436 (gdb_byte *) &ret[0], len);
12437 if (read_len != len)
12438 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12439
12440 return ret;
12441 }
12442
12443 /* Implementation of to_fileio_fstat. */
12444
12445 int
12446 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12447 {
12448 struct remote_state *rs = get_remote_state ();
12449 char *p = rs->buf.data ();
12450 int left = get_remote_packet_size ();
12451 int attachment_len, ret;
12452 char *attachment;
12453 struct fio_stat fst;
12454 int read_len;
12455
12456 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12457
12458 remote_buffer_add_int (&p, &left, fd);
12459
12460 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12461 remote_errno, &attachment,
12462 &attachment_len);
12463 if (ret < 0)
12464 {
12465 if (*remote_errno != FILEIO_ENOSYS)
12466 return ret;
12467
12468 /* Strictly we should return -1, ENOSYS here, but when
12469 "set sysroot remote:" was implemented in August 2008
12470 BFD's need for a stat function was sidestepped with
12471 this hack. This was not remedied until March 2015
12472 so we retain the previous behavior to avoid breaking
12473 compatibility.
12474
12475 Note that the memset is a March 2015 addition; older
12476 GDBs set st_size *and nothing else* so the structure
12477 would have garbage in all other fields. This might
12478 break something but retaining the previous behavior
12479 here would be just too wrong. */
12480
12481 memset (st, 0, sizeof (struct stat));
12482 st->st_size = INT_MAX;
12483 return 0;
12484 }
12485
12486 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12487 (gdb_byte *) &fst, sizeof (fst));
12488
12489 if (read_len != ret)
12490 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12491
12492 if (read_len != sizeof (fst))
12493 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12494 read_len, (int) sizeof (fst));
12495
12496 remote_fileio_to_host_stat (&fst, st);
12497
12498 return 0;
12499 }
12500
12501 /* Implementation of to_filesystem_is_local. */
12502
12503 bool
12504 remote_target::filesystem_is_local ()
12505 {
12506 /* Valgrind GDB presents itself as a remote target but works
12507 on the local filesystem: it does not implement remote get
12508 and users are not expected to set a sysroot. To handle
12509 this case we treat the remote filesystem as local if the
12510 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12511 does not support vFile:open. */
12512 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12513 {
12514 enum packet_support ps = packet_support (PACKET_vFile_open);
12515
12516 if (ps == PACKET_SUPPORT_UNKNOWN)
12517 {
12518 int fd, remote_errno;
12519
12520 /* Try opening a file to probe support. The supplied
12521 filename is irrelevant, we only care about whether
12522 the stub recognizes the packet or not. */
12523 fd = remote_hostio_open (NULL, "just probing",
12524 FILEIO_O_RDONLY, 0700, 0,
12525 &remote_errno);
12526
12527 if (fd >= 0)
12528 remote_hostio_close (fd, &remote_errno);
12529
12530 ps = packet_support (PACKET_vFile_open);
12531 }
12532
12533 if (ps == PACKET_DISABLE)
12534 {
12535 static int warning_issued = 0;
12536
12537 if (!warning_issued)
12538 {
12539 warning (_("remote target does not support file"
12540 " transfer, attempting to access files"
12541 " from local filesystem."));
12542 warning_issued = 1;
12543 }
12544
12545 return true;
12546 }
12547 }
12548
12549 return false;
12550 }
12551
12552 static int
12553 remote_fileio_errno_to_host (int errnum)
12554 {
12555 switch (errnum)
12556 {
12557 case FILEIO_EPERM:
12558 return EPERM;
12559 case FILEIO_ENOENT:
12560 return ENOENT;
12561 case FILEIO_EINTR:
12562 return EINTR;
12563 case FILEIO_EIO:
12564 return EIO;
12565 case FILEIO_EBADF:
12566 return EBADF;
12567 case FILEIO_EACCES:
12568 return EACCES;
12569 case FILEIO_EFAULT:
12570 return EFAULT;
12571 case FILEIO_EBUSY:
12572 return EBUSY;
12573 case FILEIO_EEXIST:
12574 return EEXIST;
12575 case FILEIO_ENODEV:
12576 return ENODEV;
12577 case FILEIO_ENOTDIR:
12578 return ENOTDIR;
12579 case FILEIO_EISDIR:
12580 return EISDIR;
12581 case FILEIO_EINVAL:
12582 return EINVAL;
12583 case FILEIO_ENFILE:
12584 return ENFILE;
12585 case FILEIO_EMFILE:
12586 return EMFILE;
12587 case FILEIO_EFBIG:
12588 return EFBIG;
12589 case FILEIO_ENOSPC:
12590 return ENOSPC;
12591 case FILEIO_ESPIPE:
12592 return ESPIPE;
12593 case FILEIO_EROFS:
12594 return EROFS;
12595 case FILEIO_ENOSYS:
12596 return ENOSYS;
12597 case FILEIO_ENAMETOOLONG:
12598 return ENAMETOOLONG;
12599 }
12600 return -1;
12601 }
12602
12603 static char *
12604 remote_hostio_error (int errnum)
12605 {
12606 int host_error = remote_fileio_errno_to_host (errnum);
12607
12608 if (host_error == -1)
12609 error (_("Unknown remote I/O error %d"), errnum);
12610 else
12611 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12612 }
12613
12614 /* A RAII wrapper around a remote file descriptor. */
12615
12616 class scoped_remote_fd
12617 {
12618 public:
12619 scoped_remote_fd (remote_target *remote, int fd)
12620 : m_remote (remote), m_fd (fd)
12621 {
12622 }
12623
12624 ~scoped_remote_fd ()
12625 {
12626 if (m_fd != -1)
12627 {
12628 try
12629 {
12630 int remote_errno;
12631 m_remote->remote_hostio_close (m_fd, &remote_errno);
12632 }
12633 catch (...)
12634 {
12635 /* Swallow exception before it escapes the dtor. If
12636 something goes wrong, likely the connection is gone,
12637 and there's nothing else that can be done. */
12638 }
12639 }
12640 }
12641
12642 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12643
12644 /* Release ownership of the file descriptor, and return it. */
12645 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12646 {
12647 int fd = m_fd;
12648 m_fd = -1;
12649 return fd;
12650 }
12651
12652 /* Return the owned file descriptor. */
12653 int get () const noexcept
12654 {
12655 return m_fd;
12656 }
12657
12658 private:
12659 /* The remote target. */
12660 remote_target *m_remote;
12661
12662 /* The owned remote I/O file descriptor. */
12663 int m_fd;
12664 };
12665
12666 void
12667 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12668 {
12669 remote_target *remote = get_current_remote_target ();
12670
12671 if (remote == nullptr)
12672 error (_("command can only be used with remote target"));
12673
12674 remote->remote_file_put (local_file, remote_file, from_tty);
12675 }
12676
12677 void
12678 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12679 int from_tty)
12680 {
12681 int retcode, remote_errno, bytes, io_size;
12682 int bytes_in_buffer;
12683 int saw_eof;
12684 ULONGEST offset;
12685
12686 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12687 if (file == NULL)
12688 perror_with_name (local_file);
12689
12690 scoped_remote_fd fd
12691 (this, remote_hostio_open (NULL,
12692 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12693 | FILEIO_O_TRUNC),
12694 0700, 0, &remote_errno));
12695 if (fd.get () == -1)
12696 remote_hostio_error (remote_errno);
12697
12698 /* Send up to this many bytes at once. They won't all fit in the
12699 remote packet limit, so we'll transfer slightly fewer. */
12700 io_size = get_remote_packet_size ();
12701 gdb::byte_vector buffer (io_size);
12702
12703 bytes_in_buffer = 0;
12704 saw_eof = 0;
12705 offset = 0;
12706 while (bytes_in_buffer || !saw_eof)
12707 {
12708 if (!saw_eof)
12709 {
12710 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12711 io_size - bytes_in_buffer,
12712 file.get ());
12713 if (bytes == 0)
12714 {
12715 if (ferror (file.get ()))
12716 error (_("Error reading %s."), local_file);
12717 else
12718 {
12719 /* EOF. Unless there is something still in the
12720 buffer from the last iteration, we are done. */
12721 saw_eof = 1;
12722 if (bytes_in_buffer == 0)
12723 break;
12724 }
12725 }
12726 }
12727 else
12728 bytes = 0;
12729
12730 bytes += bytes_in_buffer;
12731 bytes_in_buffer = 0;
12732
12733 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12734 offset, &remote_errno);
12735
12736 if (retcode < 0)
12737 remote_hostio_error (remote_errno);
12738 else if (retcode == 0)
12739 error (_("Remote write of %d bytes returned 0!"), bytes);
12740 else if (retcode < bytes)
12741 {
12742 /* Short write. Save the rest of the read data for the next
12743 write. */
12744 bytes_in_buffer = bytes - retcode;
12745 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12746 }
12747
12748 offset += retcode;
12749 }
12750
12751 if (remote_hostio_close (fd.release (), &remote_errno))
12752 remote_hostio_error (remote_errno);
12753
12754 if (from_tty)
12755 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12756 }
12757
12758 void
12759 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12760 {
12761 remote_target *remote = get_current_remote_target ();
12762
12763 if (remote == nullptr)
12764 error (_("command can only be used with remote target"));
12765
12766 remote->remote_file_get (remote_file, local_file, from_tty);
12767 }
12768
12769 void
12770 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12771 int from_tty)
12772 {
12773 int remote_errno, bytes, io_size;
12774 ULONGEST offset;
12775
12776 scoped_remote_fd fd
12777 (this, remote_hostio_open (NULL,
12778 remote_file, FILEIO_O_RDONLY, 0, 0,
12779 &remote_errno));
12780 if (fd.get () == -1)
12781 remote_hostio_error (remote_errno);
12782
12783 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12784 if (file == NULL)
12785 perror_with_name (local_file);
12786
12787 /* Send up to this many bytes at once. They won't all fit in the
12788 remote packet limit, so we'll transfer slightly fewer. */
12789 io_size = get_remote_packet_size ();
12790 gdb::byte_vector buffer (io_size);
12791
12792 offset = 0;
12793 while (1)
12794 {
12795 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12796 &remote_errno);
12797 if (bytes == 0)
12798 /* Success, but no bytes, means end-of-file. */
12799 break;
12800 if (bytes == -1)
12801 remote_hostio_error (remote_errno);
12802
12803 offset += bytes;
12804
12805 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12806 if (bytes == 0)
12807 perror_with_name (local_file);
12808 }
12809
12810 if (remote_hostio_close (fd.release (), &remote_errno))
12811 remote_hostio_error (remote_errno);
12812
12813 if (from_tty)
12814 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12815 }
12816
12817 void
12818 remote_file_delete (const char *remote_file, int from_tty)
12819 {
12820 remote_target *remote = get_current_remote_target ();
12821
12822 if (remote == nullptr)
12823 error (_("command can only be used with remote target"));
12824
12825 remote->remote_file_delete (remote_file, from_tty);
12826 }
12827
12828 void
12829 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12830 {
12831 int retcode, remote_errno;
12832
12833 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12834 if (retcode == -1)
12835 remote_hostio_error (remote_errno);
12836
12837 if (from_tty)
12838 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12839 }
12840
12841 static void
12842 remote_put_command (const char *args, int from_tty)
12843 {
12844 if (args == NULL)
12845 error_no_arg (_("file to put"));
12846
12847 gdb_argv argv (args);
12848 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12849 error (_("Invalid parameters to remote put"));
12850
12851 remote_file_put (argv[0], argv[1], from_tty);
12852 }
12853
12854 static void
12855 remote_get_command (const char *args, int from_tty)
12856 {
12857 if (args == NULL)
12858 error_no_arg (_("file to get"));
12859
12860 gdb_argv argv (args);
12861 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12862 error (_("Invalid parameters to remote get"));
12863
12864 remote_file_get (argv[0], argv[1], from_tty);
12865 }
12866
12867 static void
12868 remote_delete_command (const char *args, int from_tty)
12869 {
12870 if (args == NULL)
12871 error_no_arg (_("file to delete"));
12872
12873 gdb_argv argv (args);
12874 if (argv[0] == NULL || argv[1] != NULL)
12875 error (_("Invalid parameters to remote delete"));
12876
12877 remote_file_delete (argv[0], from_tty);
12878 }
12879
12880 bool
12881 remote_target::can_execute_reverse ()
12882 {
12883 if (packet_support (PACKET_bs) == PACKET_ENABLE
12884 || packet_support (PACKET_bc) == PACKET_ENABLE)
12885 return true;
12886 else
12887 return false;
12888 }
12889
12890 bool
12891 remote_target::supports_non_stop ()
12892 {
12893 return true;
12894 }
12895
12896 bool
12897 remote_target::supports_disable_randomization ()
12898 {
12899 /* Only supported in extended mode. */
12900 return false;
12901 }
12902
12903 bool
12904 remote_target::supports_multi_process ()
12905 {
12906 struct remote_state *rs = get_remote_state ();
12907
12908 return remote_multi_process_p (rs);
12909 }
12910
12911 static int
12912 remote_supports_cond_tracepoints ()
12913 {
12914 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12915 }
12916
12917 bool
12918 remote_target::supports_evaluation_of_breakpoint_conditions ()
12919 {
12920 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12921 }
12922
12923 static int
12924 remote_supports_fast_tracepoints ()
12925 {
12926 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12927 }
12928
12929 static int
12930 remote_supports_static_tracepoints ()
12931 {
12932 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12933 }
12934
12935 static int
12936 remote_supports_install_in_trace ()
12937 {
12938 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12939 }
12940
12941 bool
12942 remote_target::supports_enable_disable_tracepoint ()
12943 {
12944 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12945 == PACKET_ENABLE);
12946 }
12947
12948 bool
12949 remote_target::supports_string_tracing ()
12950 {
12951 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12952 }
12953
12954 bool
12955 remote_target::can_run_breakpoint_commands ()
12956 {
12957 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12958 }
12959
12960 void
12961 remote_target::trace_init ()
12962 {
12963 struct remote_state *rs = get_remote_state ();
12964
12965 putpkt ("QTinit");
12966 remote_get_noisy_reply ();
12967 if (strcmp (rs->buf.data (), "OK") != 0)
12968 error (_("Target does not support this command."));
12969 }
12970
12971 /* Recursive routine to walk through command list including loops, and
12972 download packets for each command. */
12973
12974 void
12975 remote_target::remote_download_command_source (int num, ULONGEST addr,
12976 struct command_line *cmds)
12977 {
12978 struct remote_state *rs = get_remote_state ();
12979 struct command_line *cmd;
12980
12981 for (cmd = cmds; cmd; cmd = cmd->next)
12982 {
12983 QUIT; /* Allow user to bail out with ^C. */
12984 strcpy (rs->buf.data (), "QTDPsrc:");
12985 encode_source_string (num, addr, "cmd", cmd->line,
12986 rs->buf.data () + strlen (rs->buf.data ()),
12987 rs->buf.size () - strlen (rs->buf.data ()));
12988 putpkt (rs->buf);
12989 remote_get_noisy_reply ();
12990 if (strcmp (rs->buf.data (), "OK"))
12991 warning (_("Target does not support source download."));
12992
12993 if (cmd->control_type == while_control
12994 || cmd->control_type == while_stepping_control)
12995 {
12996 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12997
12998 QUIT; /* Allow user to bail out with ^C. */
12999 strcpy (rs->buf.data (), "QTDPsrc:");
13000 encode_source_string (num, addr, "cmd", "end",
13001 rs->buf.data () + strlen (rs->buf.data ()),
13002 rs->buf.size () - strlen (rs->buf.data ()));
13003 putpkt (rs->buf);
13004 remote_get_noisy_reply ();
13005 if (strcmp (rs->buf.data (), "OK"))
13006 warning (_("Target does not support source download."));
13007 }
13008 }
13009 }
13010
13011 void
13012 remote_target::download_tracepoint (struct bp_location *loc)
13013 {
13014 CORE_ADDR tpaddr;
13015 char addrbuf[40];
13016 std::vector<std::string> tdp_actions;
13017 std::vector<std::string> stepping_actions;
13018 char *pkt;
13019 struct breakpoint *b = loc->owner;
13020 struct tracepoint *t = (struct tracepoint *) b;
13021 struct remote_state *rs = get_remote_state ();
13022 int ret;
13023 const char *err_msg = _("Tracepoint packet too large for target.");
13024 size_t size_left;
13025
13026 /* We use a buffer other than rs->buf because we'll build strings
13027 across multiple statements, and other statements in between could
13028 modify rs->buf. */
13029 gdb::char_vector buf (get_remote_packet_size ());
13030
13031 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
13032
13033 tpaddr = loc->address;
13034 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
13035 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
13036 b->number, addrbuf, /* address */
13037 (b->enable_state == bp_enabled ? 'E' : 'D'),
13038 t->step_count, t->pass_count);
13039
13040 if (ret < 0 || ret >= buf.size ())
13041 error ("%s", err_msg);
13042
13043 /* Fast tracepoints are mostly handled by the target, but we can
13044 tell the target how big of an instruction block should be moved
13045 around. */
13046 if (b->type == bp_fast_tracepoint)
13047 {
13048 /* Only test for support at download time; we may not know
13049 target capabilities at definition time. */
13050 if (remote_supports_fast_tracepoints ())
13051 {
13052 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
13053 NULL))
13054 {
13055 size_left = buf.size () - strlen (buf.data ());
13056 ret = snprintf (buf.data () + strlen (buf.data ()),
13057 size_left, ":F%x",
13058 gdb_insn_length (loc->gdbarch, tpaddr));
13059
13060 if (ret < 0 || ret >= size_left)
13061 error ("%s", err_msg);
13062 }
13063 else
13064 /* If it passed validation at definition but fails now,
13065 something is very wrong. */
13066 internal_error (__FILE__, __LINE__,
13067 _("Fast tracepoint not "
13068 "valid during download"));
13069 }
13070 else
13071 /* Fast tracepoints are functionally identical to regular
13072 tracepoints, so don't take lack of support as a reason to
13073 give up on the trace run. */
13074 warning (_("Target does not support fast tracepoints, "
13075 "downloading %d as regular tracepoint"), b->number);
13076 }
13077 else if (b->type == bp_static_tracepoint)
13078 {
13079 /* Only test for support at download time; we may not know
13080 target capabilities at definition time. */
13081 if (remote_supports_static_tracepoints ())
13082 {
13083 struct static_tracepoint_marker marker;
13084
13085 if (target_static_tracepoint_marker_at (tpaddr, &marker))
13086 {
13087 size_left = buf.size () - strlen (buf.data ());
13088 ret = snprintf (buf.data () + strlen (buf.data ()),
13089 size_left, ":S");
13090
13091 if (ret < 0 || ret >= size_left)
13092 error ("%s", err_msg);
13093 }
13094 else
13095 error (_("Static tracepoint not valid during download"));
13096 }
13097 else
13098 /* Fast tracepoints are functionally identical to regular
13099 tracepoints, so don't take lack of support as a reason
13100 to give up on the trace run. */
13101 error (_("Target does not support static tracepoints"));
13102 }
13103 /* If the tracepoint has a conditional, make it into an agent
13104 expression and append to the definition. */
13105 if (loc->cond)
13106 {
13107 /* Only test support at download time, we may not know target
13108 capabilities at definition time. */
13109 if (remote_supports_cond_tracepoints ())
13110 {
13111 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
13112 loc->cond.get ());
13113
13114 size_left = buf.size () - strlen (buf.data ());
13115
13116 ret = snprintf (buf.data () + strlen (buf.data ()),
13117 size_left, ":X%x,", aexpr->len);
13118
13119 if (ret < 0 || ret >= size_left)
13120 error ("%s", err_msg);
13121
13122 size_left = buf.size () - strlen (buf.data ());
13123
13124 /* Two bytes to encode each aexpr byte, plus the terminating
13125 null byte. */
13126 if (aexpr->len * 2 + 1 > size_left)
13127 error ("%s", err_msg);
13128
13129 pkt = buf.data () + strlen (buf.data ());
13130
13131 for (int ndx = 0; ndx < aexpr->len; ++ndx)
13132 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
13133 *pkt = '\0';
13134 }
13135 else
13136 warning (_("Target does not support conditional tracepoints, "
13137 "ignoring tp %d cond"), b->number);
13138 }
13139
13140 if (b->commands || *default_collect)
13141 {
13142 size_left = buf.size () - strlen (buf.data ());
13143
13144 ret = snprintf (buf.data () + strlen (buf.data ()),
13145 size_left, "-");
13146
13147 if (ret < 0 || ret >= size_left)
13148 error ("%s", err_msg);
13149 }
13150
13151 putpkt (buf.data ());
13152 remote_get_noisy_reply ();
13153 if (strcmp (rs->buf.data (), "OK"))
13154 error (_("Target does not support tracepoints."));
13155
13156 /* do_single_steps (t); */
13157 for (auto action_it = tdp_actions.begin ();
13158 action_it != tdp_actions.end (); action_it++)
13159 {
13160 QUIT; /* Allow user to bail out with ^C. */
13161
13162 bool has_more = ((action_it + 1) != tdp_actions.end ()
13163 || !stepping_actions.empty ());
13164
13165 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13166 b->number, addrbuf, /* address */
13167 action_it->c_str (),
13168 has_more ? '-' : 0);
13169
13170 if (ret < 0 || ret >= buf.size ())
13171 error ("%s", err_msg);
13172
13173 putpkt (buf.data ());
13174 remote_get_noisy_reply ();
13175 if (strcmp (rs->buf.data (), "OK"))
13176 error (_("Error on target while setting tracepoints."));
13177 }
13178
13179 for (auto action_it = stepping_actions.begin ();
13180 action_it != stepping_actions.end (); action_it++)
13181 {
13182 QUIT; /* Allow user to bail out with ^C. */
13183
13184 bool is_first = action_it == stepping_actions.begin ();
13185 bool has_more = (action_it + 1) != stepping_actions.end ();
13186
13187 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13188 b->number, addrbuf, /* address */
13189 is_first ? "S" : "",
13190 action_it->c_str (),
13191 has_more ? "-" : "");
13192
13193 if (ret < 0 || ret >= buf.size ())
13194 error ("%s", err_msg);
13195
13196 putpkt (buf.data ());
13197 remote_get_noisy_reply ();
13198 if (strcmp (rs->buf.data (), "OK"))
13199 error (_("Error on target while setting tracepoints."));
13200 }
13201
13202 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13203 {
13204 if (b->location != NULL)
13205 {
13206 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13207
13208 if (ret < 0 || ret >= buf.size ())
13209 error ("%s", err_msg);
13210
13211 encode_source_string (b->number, loc->address, "at",
13212 event_location_to_string (b->location.get ()),
13213 buf.data () + strlen (buf.data ()),
13214 buf.size () - strlen (buf.data ()));
13215 putpkt (buf.data ());
13216 remote_get_noisy_reply ();
13217 if (strcmp (rs->buf.data (), "OK"))
13218 warning (_("Target does not support source download."));
13219 }
13220 if (b->cond_string)
13221 {
13222 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13223
13224 if (ret < 0 || ret >= buf.size ())
13225 error ("%s", err_msg);
13226
13227 encode_source_string (b->number, loc->address,
13228 "cond", b->cond_string,
13229 buf.data () + strlen (buf.data ()),
13230 buf.size () - strlen (buf.data ()));
13231 putpkt (buf.data ());
13232 remote_get_noisy_reply ();
13233 if (strcmp (rs->buf.data (), "OK"))
13234 warning (_("Target does not support source download."));
13235 }
13236 remote_download_command_source (b->number, loc->address,
13237 breakpoint_commands (b));
13238 }
13239 }
13240
13241 bool
13242 remote_target::can_download_tracepoint ()
13243 {
13244 struct remote_state *rs = get_remote_state ();
13245 struct trace_status *ts;
13246 int status;
13247
13248 /* Don't try to install tracepoints until we've relocated our
13249 symbols, and fetched and merged the target's tracepoint list with
13250 ours. */
13251 if (rs->starting_up)
13252 return false;
13253
13254 ts = current_trace_status ();
13255 status = get_trace_status (ts);
13256
13257 if (status == -1 || !ts->running_known || !ts->running)
13258 return false;
13259
13260 /* If we are in a tracing experiment, but remote stub doesn't support
13261 installing tracepoint in trace, we have to return. */
13262 if (!remote_supports_install_in_trace ())
13263 return false;
13264
13265 return true;
13266 }
13267
13268
13269 void
13270 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13271 {
13272 struct remote_state *rs = get_remote_state ();
13273 char *p;
13274
13275 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13276 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13277 tsv.builtin);
13278 p = rs->buf.data () + strlen (rs->buf.data ());
13279 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13280 >= get_remote_packet_size ())
13281 error (_("Trace state variable name too long for tsv definition packet"));
13282 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13283 *p++ = '\0';
13284 putpkt (rs->buf);
13285 remote_get_noisy_reply ();
13286 if (rs->buf[0] == '\0')
13287 error (_("Target does not support this command."));
13288 if (strcmp (rs->buf.data (), "OK") != 0)
13289 error (_("Error on target while downloading trace state variable."));
13290 }
13291
13292 void
13293 remote_target::enable_tracepoint (struct bp_location *location)
13294 {
13295 struct remote_state *rs = get_remote_state ();
13296
13297 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13298 location->owner->number,
13299 phex (location->address, sizeof (CORE_ADDR)));
13300 putpkt (rs->buf);
13301 remote_get_noisy_reply ();
13302 if (rs->buf[0] == '\0')
13303 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13304 if (strcmp (rs->buf.data (), "OK") != 0)
13305 error (_("Error on target while enabling tracepoint."));
13306 }
13307
13308 void
13309 remote_target::disable_tracepoint (struct bp_location *location)
13310 {
13311 struct remote_state *rs = get_remote_state ();
13312
13313 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13314 location->owner->number,
13315 phex (location->address, sizeof (CORE_ADDR)));
13316 putpkt (rs->buf);
13317 remote_get_noisy_reply ();
13318 if (rs->buf[0] == '\0')
13319 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13320 if (strcmp (rs->buf.data (), "OK") != 0)
13321 error (_("Error on target while disabling tracepoint."));
13322 }
13323
13324 void
13325 remote_target::trace_set_readonly_regions ()
13326 {
13327 asection *s;
13328 bfd_size_type size;
13329 bfd_vma vma;
13330 int anysecs = 0;
13331 int offset = 0;
13332
13333 if (!current_program_space->exec_bfd ())
13334 return; /* No information to give. */
13335
13336 struct remote_state *rs = get_remote_state ();
13337
13338 strcpy (rs->buf.data (), "QTro");
13339 offset = strlen (rs->buf.data ());
13340 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
13341 {
13342 char tmp1[40], tmp2[40];
13343 int sec_length;
13344
13345 if ((s->flags & SEC_LOAD) == 0 ||
13346 /* (s->flags & SEC_CODE) == 0 || */
13347 (s->flags & SEC_READONLY) == 0)
13348 continue;
13349
13350 anysecs = 1;
13351 vma = bfd_section_vma (s);
13352 size = bfd_section_size (s);
13353 sprintf_vma (tmp1, vma);
13354 sprintf_vma (tmp2, vma + size);
13355 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13356 if (offset + sec_length + 1 > rs->buf.size ())
13357 {
13358 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13359 warning (_("\
13360 Too many sections for read-only sections definition packet."));
13361 break;
13362 }
13363 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13364 tmp1, tmp2);
13365 offset += sec_length;
13366 }
13367 if (anysecs)
13368 {
13369 putpkt (rs->buf);
13370 getpkt (&rs->buf, 0);
13371 }
13372 }
13373
13374 void
13375 remote_target::trace_start ()
13376 {
13377 struct remote_state *rs = get_remote_state ();
13378
13379 putpkt ("QTStart");
13380 remote_get_noisy_reply ();
13381 if (rs->buf[0] == '\0')
13382 error (_("Target does not support this command."));
13383 if (strcmp (rs->buf.data (), "OK") != 0)
13384 error (_("Bogus reply from target: %s"), rs->buf.data ());
13385 }
13386
13387 int
13388 remote_target::get_trace_status (struct trace_status *ts)
13389 {
13390 /* Initialize it just to avoid a GCC false warning. */
13391 char *p = NULL;
13392 enum packet_result result;
13393 struct remote_state *rs = get_remote_state ();
13394
13395 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13396 return -1;
13397
13398 /* FIXME we need to get register block size some other way. */
13399 trace_regblock_size
13400 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13401
13402 putpkt ("qTStatus");
13403
13404 try
13405 {
13406 p = remote_get_noisy_reply ();
13407 }
13408 catch (const gdb_exception_error &ex)
13409 {
13410 if (ex.error != TARGET_CLOSE_ERROR)
13411 {
13412 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13413 return -1;
13414 }
13415 throw;
13416 }
13417
13418 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13419
13420 /* If the remote target doesn't do tracing, flag it. */
13421 if (result == PACKET_UNKNOWN)
13422 return -1;
13423
13424 /* We're working with a live target. */
13425 ts->filename = NULL;
13426
13427 if (*p++ != 'T')
13428 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13429
13430 /* Function 'parse_trace_status' sets default value of each field of
13431 'ts' at first, so we don't have to do it here. */
13432 parse_trace_status (p, ts);
13433
13434 return ts->running;
13435 }
13436
13437 void
13438 remote_target::get_tracepoint_status (struct breakpoint *bp,
13439 struct uploaded_tp *utp)
13440 {
13441 struct remote_state *rs = get_remote_state ();
13442 char *reply;
13443 struct bp_location *loc;
13444 struct tracepoint *tp = (struct tracepoint *) bp;
13445 size_t size = get_remote_packet_size ();
13446
13447 if (tp)
13448 {
13449 tp->hit_count = 0;
13450 tp->traceframe_usage = 0;
13451 for (loc = tp->loc; loc; loc = loc->next)
13452 {
13453 /* If the tracepoint was never downloaded, don't go asking for
13454 any status. */
13455 if (tp->number_on_target == 0)
13456 continue;
13457 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13458 phex_nz (loc->address, 0));
13459 putpkt (rs->buf);
13460 reply = remote_get_noisy_reply ();
13461 if (reply && *reply)
13462 {
13463 if (*reply == 'V')
13464 parse_tracepoint_status (reply + 1, bp, utp);
13465 }
13466 }
13467 }
13468 else if (utp)
13469 {
13470 utp->hit_count = 0;
13471 utp->traceframe_usage = 0;
13472 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13473 phex_nz (utp->addr, 0));
13474 putpkt (rs->buf);
13475 reply = remote_get_noisy_reply ();
13476 if (reply && *reply)
13477 {
13478 if (*reply == 'V')
13479 parse_tracepoint_status (reply + 1, bp, utp);
13480 }
13481 }
13482 }
13483
13484 void
13485 remote_target::trace_stop ()
13486 {
13487 struct remote_state *rs = get_remote_state ();
13488
13489 putpkt ("QTStop");
13490 remote_get_noisy_reply ();
13491 if (rs->buf[0] == '\0')
13492 error (_("Target does not support this command."));
13493 if (strcmp (rs->buf.data (), "OK") != 0)
13494 error (_("Bogus reply from target: %s"), rs->buf.data ());
13495 }
13496
13497 int
13498 remote_target::trace_find (enum trace_find_type type, int num,
13499 CORE_ADDR addr1, CORE_ADDR addr2,
13500 int *tpp)
13501 {
13502 struct remote_state *rs = get_remote_state ();
13503 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13504 char *p, *reply;
13505 int target_frameno = -1, target_tracept = -1;
13506
13507 /* Lookups other than by absolute frame number depend on the current
13508 trace selected, so make sure it is correct on the remote end
13509 first. */
13510 if (type != tfind_number)
13511 set_remote_traceframe ();
13512
13513 p = rs->buf.data ();
13514 strcpy (p, "QTFrame:");
13515 p = strchr (p, '\0');
13516 switch (type)
13517 {
13518 case tfind_number:
13519 xsnprintf (p, endbuf - p, "%x", num);
13520 break;
13521 case tfind_pc:
13522 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13523 break;
13524 case tfind_tp:
13525 xsnprintf (p, endbuf - p, "tdp:%x", num);
13526 break;
13527 case tfind_range:
13528 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13529 phex_nz (addr2, 0));
13530 break;
13531 case tfind_outside:
13532 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13533 phex_nz (addr2, 0));
13534 break;
13535 default:
13536 error (_("Unknown trace find type %d"), type);
13537 }
13538
13539 putpkt (rs->buf);
13540 reply = remote_get_noisy_reply ();
13541 if (*reply == '\0')
13542 error (_("Target does not support this command."));
13543
13544 while (reply && *reply)
13545 switch (*reply)
13546 {
13547 case 'F':
13548 p = ++reply;
13549 target_frameno = (int) strtol (p, &reply, 16);
13550 if (reply == p)
13551 error (_("Unable to parse trace frame number"));
13552 /* Don't update our remote traceframe number cache on failure
13553 to select a remote traceframe. */
13554 if (target_frameno == -1)
13555 return -1;
13556 break;
13557 case 'T':
13558 p = ++reply;
13559 target_tracept = (int) strtol (p, &reply, 16);
13560 if (reply == p)
13561 error (_("Unable to parse tracepoint number"));
13562 break;
13563 case 'O': /* "OK"? */
13564 if (reply[1] == 'K' && reply[2] == '\0')
13565 reply += 2;
13566 else
13567 error (_("Bogus reply from target: %s"), reply);
13568 break;
13569 default:
13570 error (_("Bogus reply from target: %s"), reply);
13571 }
13572 if (tpp)
13573 *tpp = target_tracept;
13574
13575 rs->remote_traceframe_number = target_frameno;
13576 return target_frameno;
13577 }
13578
13579 bool
13580 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13581 {
13582 struct remote_state *rs = get_remote_state ();
13583 char *reply;
13584 ULONGEST uval;
13585
13586 set_remote_traceframe ();
13587
13588 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13589 putpkt (rs->buf);
13590 reply = remote_get_noisy_reply ();
13591 if (reply && *reply)
13592 {
13593 if (*reply == 'V')
13594 {
13595 unpack_varlen_hex (reply + 1, &uval);
13596 *val = (LONGEST) uval;
13597 return true;
13598 }
13599 }
13600 return false;
13601 }
13602
13603 int
13604 remote_target::save_trace_data (const char *filename)
13605 {
13606 struct remote_state *rs = get_remote_state ();
13607 char *p, *reply;
13608
13609 p = rs->buf.data ();
13610 strcpy (p, "QTSave:");
13611 p += strlen (p);
13612 if ((p - rs->buf.data ()) + strlen (filename) * 2
13613 >= get_remote_packet_size ())
13614 error (_("Remote file name too long for trace save packet"));
13615 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13616 *p++ = '\0';
13617 putpkt (rs->buf);
13618 reply = remote_get_noisy_reply ();
13619 if (*reply == '\0')
13620 error (_("Target does not support this command."));
13621 if (strcmp (reply, "OK") != 0)
13622 error (_("Bogus reply from target: %s"), reply);
13623 return 0;
13624 }
13625
13626 /* This is basically a memory transfer, but needs to be its own packet
13627 because we don't know how the target actually organizes its trace
13628 memory, plus we want to be able to ask for as much as possible, but
13629 not be unhappy if we don't get as much as we ask for. */
13630
13631 LONGEST
13632 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13633 {
13634 struct remote_state *rs = get_remote_state ();
13635 char *reply;
13636 char *p;
13637 int rslt;
13638
13639 p = rs->buf.data ();
13640 strcpy (p, "qTBuffer:");
13641 p += strlen (p);
13642 p += hexnumstr (p, offset);
13643 *p++ = ',';
13644 p += hexnumstr (p, len);
13645 *p++ = '\0';
13646
13647 putpkt (rs->buf);
13648 reply = remote_get_noisy_reply ();
13649 if (reply && *reply)
13650 {
13651 /* 'l' by itself means we're at the end of the buffer and
13652 there is nothing more to get. */
13653 if (*reply == 'l')
13654 return 0;
13655
13656 /* Convert the reply into binary. Limit the number of bytes to
13657 convert according to our passed-in buffer size, rather than
13658 what was returned in the packet; if the target is
13659 unexpectedly generous and gives us a bigger reply than we
13660 asked for, we don't want to crash. */
13661 rslt = hex2bin (reply, buf, len);
13662 return rslt;
13663 }
13664
13665 /* Something went wrong, flag as an error. */
13666 return -1;
13667 }
13668
13669 void
13670 remote_target::set_disconnected_tracing (int val)
13671 {
13672 struct remote_state *rs = get_remote_state ();
13673
13674 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13675 {
13676 char *reply;
13677
13678 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13679 "QTDisconnected:%x", val);
13680 putpkt (rs->buf);
13681 reply = remote_get_noisy_reply ();
13682 if (*reply == '\0')
13683 error (_("Target does not support this command."));
13684 if (strcmp (reply, "OK") != 0)
13685 error (_("Bogus reply from target: %s"), reply);
13686 }
13687 else if (val)
13688 warning (_("Target does not support disconnected tracing."));
13689 }
13690
13691 int
13692 remote_target::core_of_thread (ptid_t ptid)
13693 {
13694 thread_info *info = find_thread_ptid (this, ptid);
13695
13696 if (info != NULL && info->priv != NULL)
13697 return get_remote_thread_info (info)->core;
13698
13699 return -1;
13700 }
13701
13702 void
13703 remote_target::set_circular_trace_buffer (int val)
13704 {
13705 struct remote_state *rs = get_remote_state ();
13706 char *reply;
13707
13708 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13709 "QTBuffer:circular:%x", val);
13710 putpkt (rs->buf);
13711 reply = remote_get_noisy_reply ();
13712 if (*reply == '\0')
13713 error (_("Target does not support this command."));
13714 if (strcmp (reply, "OK") != 0)
13715 error (_("Bogus reply from target: %s"), reply);
13716 }
13717
13718 traceframe_info_up
13719 remote_target::traceframe_info ()
13720 {
13721 gdb::optional<gdb::char_vector> text
13722 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13723 NULL);
13724 if (text)
13725 return parse_traceframe_info (text->data ());
13726
13727 return NULL;
13728 }
13729
13730 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13731 instruction on which a fast tracepoint may be placed. Returns -1
13732 if the packet is not supported, and 0 if the minimum instruction
13733 length is unknown. */
13734
13735 int
13736 remote_target::get_min_fast_tracepoint_insn_len ()
13737 {
13738 struct remote_state *rs = get_remote_state ();
13739 char *reply;
13740
13741 /* If we're not debugging a process yet, the IPA can't be
13742 loaded. */
13743 if (!target_has_execution ())
13744 return 0;
13745
13746 /* Make sure the remote is pointing at the right process. */
13747 set_general_process ();
13748
13749 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13750 putpkt (rs->buf);
13751 reply = remote_get_noisy_reply ();
13752 if (*reply == '\0')
13753 return -1;
13754 else
13755 {
13756 ULONGEST min_insn_len;
13757
13758 unpack_varlen_hex (reply, &min_insn_len);
13759
13760 return (int) min_insn_len;
13761 }
13762 }
13763
13764 void
13765 remote_target::set_trace_buffer_size (LONGEST val)
13766 {
13767 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13768 {
13769 struct remote_state *rs = get_remote_state ();
13770 char *buf = rs->buf.data ();
13771 char *endbuf = buf + get_remote_packet_size ();
13772 enum packet_result result;
13773
13774 gdb_assert (val >= 0 || val == -1);
13775 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13776 /* Send -1 as literal "-1" to avoid host size dependency. */
13777 if (val < 0)
13778 {
13779 *buf++ = '-';
13780 buf += hexnumstr (buf, (ULONGEST) -val);
13781 }
13782 else
13783 buf += hexnumstr (buf, (ULONGEST) val);
13784
13785 putpkt (rs->buf);
13786 remote_get_noisy_reply ();
13787 result = packet_ok (rs->buf,
13788 &remote_protocol_packets[PACKET_QTBuffer_size]);
13789
13790 if (result != PACKET_OK)
13791 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13792 }
13793 }
13794
13795 bool
13796 remote_target::set_trace_notes (const char *user, const char *notes,
13797 const char *stop_notes)
13798 {
13799 struct remote_state *rs = get_remote_state ();
13800 char *reply;
13801 char *buf = rs->buf.data ();
13802 char *endbuf = buf + get_remote_packet_size ();
13803 int nbytes;
13804
13805 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13806 if (user)
13807 {
13808 buf += xsnprintf (buf, endbuf - buf, "user:");
13809 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13810 buf += 2 * nbytes;
13811 *buf++ = ';';
13812 }
13813 if (notes)
13814 {
13815 buf += xsnprintf (buf, endbuf - buf, "notes:");
13816 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13817 buf += 2 * nbytes;
13818 *buf++ = ';';
13819 }
13820 if (stop_notes)
13821 {
13822 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13823 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13824 buf += 2 * nbytes;
13825 *buf++ = ';';
13826 }
13827 /* Ensure the buffer is terminated. */
13828 *buf = '\0';
13829
13830 putpkt (rs->buf);
13831 reply = remote_get_noisy_reply ();
13832 if (*reply == '\0')
13833 return false;
13834
13835 if (strcmp (reply, "OK") != 0)
13836 error (_("Bogus reply from target: %s"), reply);
13837
13838 return true;
13839 }
13840
13841 bool
13842 remote_target::use_agent (bool use)
13843 {
13844 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13845 {
13846 struct remote_state *rs = get_remote_state ();
13847
13848 /* If the stub supports QAgent. */
13849 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13850 putpkt (rs->buf);
13851 getpkt (&rs->buf, 0);
13852
13853 if (strcmp (rs->buf.data (), "OK") == 0)
13854 {
13855 ::use_agent = use;
13856 return true;
13857 }
13858 }
13859
13860 return false;
13861 }
13862
13863 bool
13864 remote_target::can_use_agent ()
13865 {
13866 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13867 }
13868
13869 struct btrace_target_info
13870 {
13871 /* The ptid of the traced thread. */
13872 ptid_t ptid;
13873
13874 /* The obtained branch trace configuration. */
13875 struct btrace_config conf;
13876 };
13877
13878 /* Reset our idea of our target's btrace configuration. */
13879
13880 static void
13881 remote_btrace_reset (remote_state *rs)
13882 {
13883 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13884 }
13885
13886 /* Synchronize the configuration with the target. */
13887
13888 void
13889 remote_target::btrace_sync_conf (const btrace_config *conf)
13890 {
13891 struct packet_config *packet;
13892 struct remote_state *rs;
13893 char *buf, *pos, *endbuf;
13894
13895 rs = get_remote_state ();
13896 buf = rs->buf.data ();
13897 endbuf = buf + get_remote_packet_size ();
13898
13899 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13900 if (packet_config_support (packet) == PACKET_ENABLE
13901 && conf->bts.size != rs->btrace_config.bts.size)
13902 {
13903 pos = buf;
13904 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13905 conf->bts.size);
13906
13907 putpkt (buf);
13908 getpkt (&rs->buf, 0);
13909
13910 if (packet_ok (buf, packet) == PACKET_ERROR)
13911 {
13912 if (buf[0] == 'E' && buf[1] == '.')
13913 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13914 else
13915 error (_("Failed to configure the BTS buffer size."));
13916 }
13917
13918 rs->btrace_config.bts.size = conf->bts.size;
13919 }
13920
13921 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13922 if (packet_config_support (packet) == PACKET_ENABLE
13923 && conf->pt.size != rs->btrace_config.pt.size)
13924 {
13925 pos = buf;
13926 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13927 conf->pt.size);
13928
13929 putpkt (buf);
13930 getpkt (&rs->buf, 0);
13931
13932 if (packet_ok (buf, packet) == PACKET_ERROR)
13933 {
13934 if (buf[0] == 'E' && buf[1] == '.')
13935 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13936 else
13937 error (_("Failed to configure the trace buffer size."));
13938 }
13939
13940 rs->btrace_config.pt.size = conf->pt.size;
13941 }
13942 }
13943
13944 /* Read the current thread's btrace configuration from the target and
13945 store it into CONF. */
13946
13947 static void
13948 btrace_read_config (struct btrace_config *conf)
13949 {
13950 gdb::optional<gdb::char_vector> xml
13951 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13952 if (xml)
13953 parse_xml_btrace_conf (conf, xml->data ());
13954 }
13955
13956 /* Maybe reopen target btrace. */
13957
13958 void
13959 remote_target::remote_btrace_maybe_reopen ()
13960 {
13961 struct remote_state *rs = get_remote_state ();
13962 int btrace_target_pushed = 0;
13963 #if !defined (HAVE_LIBIPT)
13964 int warned = 0;
13965 #endif
13966
13967 /* Don't bother walking the entirety of the remote thread list when
13968 we know the feature isn't supported by the remote. */
13969 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13970 return;
13971
13972 scoped_restore_current_thread restore_thread;
13973
13974 for (thread_info *tp : all_non_exited_threads (this))
13975 {
13976 set_general_thread (tp->ptid);
13977
13978 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13979 btrace_read_config (&rs->btrace_config);
13980
13981 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13982 continue;
13983
13984 #if !defined (HAVE_LIBIPT)
13985 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13986 {
13987 if (!warned)
13988 {
13989 warned = 1;
13990 warning (_("Target is recording using Intel Processor Trace "
13991 "but support was disabled at compile time."));
13992 }
13993
13994 continue;
13995 }
13996 #endif /* !defined (HAVE_LIBIPT) */
13997
13998 /* Push target, once, but before anything else happens. This way our
13999 changes to the threads will be cleaned up by unpushing the target
14000 in case btrace_read_config () throws. */
14001 if (!btrace_target_pushed)
14002 {
14003 btrace_target_pushed = 1;
14004 record_btrace_push_target ();
14005 printf_filtered (_("Target is recording using %s.\n"),
14006 btrace_format_string (rs->btrace_config.format));
14007 }
14008
14009 tp->btrace.target = XCNEW (struct btrace_target_info);
14010 tp->btrace.target->ptid = tp->ptid;
14011 tp->btrace.target->conf = rs->btrace_config;
14012 }
14013 }
14014
14015 /* Enable branch tracing. */
14016
14017 struct btrace_target_info *
14018 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
14019 {
14020 struct btrace_target_info *tinfo = NULL;
14021 struct packet_config *packet = NULL;
14022 struct remote_state *rs = get_remote_state ();
14023 char *buf = rs->buf.data ();
14024 char *endbuf = buf + get_remote_packet_size ();
14025
14026 switch (conf->format)
14027 {
14028 case BTRACE_FORMAT_BTS:
14029 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
14030 break;
14031
14032 case BTRACE_FORMAT_PT:
14033 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
14034 break;
14035 }
14036
14037 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
14038 error (_("Target does not support branch tracing."));
14039
14040 btrace_sync_conf (conf);
14041
14042 set_general_thread (ptid);
14043
14044 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14045 putpkt (rs->buf);
14046 getpkt (&rs->buf, 0);
14047
14048 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14049 {
14050 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14051 error (_("Could not enable branch tracing for %s: %s"),
14052 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
14053 else
14054 error (_("Could not enable branch tracing for %s."),
14055 target_pid_to_str (ptid).c_str ());
14056 }
14057
14058 tinfo = XCNEW (struct btrace_target_info);
14059 tinfo->ptid = ptid;
14060
14061 /* If we fail to read the configuration, we lose some information, but the
14062 tracing itself is not impacted. */
14063 try
14064 {
14065 btrace_read_config (&tinfo->conf);
14066 }
14067 catch (const gdb_exception_error &err)
14068 {
14069 if (err.message != NULL)
14070 warning ("%s", err.what ());
14071 }
14072
14073 return tinfo;
14074 }
14075
14076 /* Disable branch tracing. */
14077
14078 void
14079 remote_target::disable_btrace (struct btrace_target_info *tinfo)
14080 {
14081 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
14082 struct remote_state *rs = get_remote_state ();
14083 char *buf = rs->buf.data ();
14084 char *endbuf = buf + get_remote_packet_size ();
14085
14086 if (packet_config_support (packet) != PACKET_ENABLE)
14087 error (_("Target does not support branch tracing."));
14088
14089 set_general_thread (tinfo->ptid);
14090
14091 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14092 putpkt (rs->buf);
14093 getpkt (&rs->buf, 0);
14094
14095 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14096 {
14097 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14098 error (_("Could not disable branch tracing for %s: %s"),
14099 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
14100 else
14101 error (_("Could not disable branch tracing for %s."),
14102 target_pid_to_str (tinfo->ptid).c_str ());
14103 }
14104
14105 xfree (tinfo);
14106 }
14107
14108 /* Teardown branch tracing. */
14109
14110 void
14111 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
14112 {
14113 /* We must not talk to the target during teardown. */
14114 xfree (tinfo);
14115 }
14116
14117 /* Read the branch trace. */
14118
14119 enum btrace_error
14120 remote_target::read_btrace (struct btrace_data *btrace,
14121 struct btrace_target_info *tinfo,
14122 enum btrace_read_type type)
14123 {
14124 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
14125 const char *annex;
14126
14127 if (packet_config_support (packet) != PACKET_ENABLE)
14128 error (_("Target does not support branch tracing."));
14129
14130 #if !defined(HAVE_LIBEXPAT)
14131 error (_("Cannot process branch tracing result. XML parsing not supported."));
14132 #endif
14133
14134 switch (type)
14135 {
14136 case BTRACE_READ_ALL:
14137 annex = "all";
14138 break;
14139 case BTRACE_READ_NEW:
14140 annex = "new";
14141 break;
14142 case BTRACE_READ_DELTA:
14143 annex = "delta";
14144 break;
14145 default:
14146 internal_error (__FILE__, __LINE__,
14147 _("Bad branch tracing read type: %u."),
14148 (unsigned int) type);
14149 }
14150
14151 gdb::optional<gdb::char_vector> xml
14152 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
14153 if (!xml)
14154 return BTRACE_ERR_UNKNOWN;
14155
14156 parse_xml_btrace (btrace, xml->data ());
14157
14158 return BTRACE_ERR_NONE;
14159 }
14160
14161 const struct btrace_config *
14162 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14163 {
14164 return &tinfo->conf;
14165 }
14166
14167 bool
14168 remote_target::augmented_libraries_svr4_read ()
14169 {
14170 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14171 == PACKET_ENABLE);
14172 }
14173
14174 /* Implementation of to_load. */
14175
14176 void
14177 remote_target::load (const char *name, int from_tty)
14178 {
14179 generic_load (name, from_tty);
14180 }
14181
14182 /* Accepts an integer PID; returns a string representing a file that
14183 can be opened on the remote side to get the symbols for the child
14184 process. Returns NULL if the operation is not supported. */
14185
14186 char *
14187 remote_target::pid_to_exec_file (int pid)
14188 {
14189 static gdb::optional<gdb::char_vector> filename;
14190 char *annex = NULL;
14191
14192 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14193 return NULL;
14194
14195 inferior *inf = find_inferior_pid (this, pid);
14196 if (inf == NULL)
14197 internal_error (__FILE__, __LINE__,
14198 _("not currently attached to process %d"), pid);
14199
14200 if (!inf->fake_pid_p)
14201 {
14202 const int annex_size = 9;
14203
14204 annex = (char *) alloca (annex_size);
14205 xsnprintf (annex, annex_size, "%x", pid);
14206 }
14207
14208 filename = target_read_stralloc (current_top_target (),
14209 TARGET_OBJECT_EXEC_FILE, annex);
14210
14211 return filename ? filename->data () : nullptr;
14212 }
14213
14214 /* Implement the to_can_do_single_step target_ops method. */
14215
14216 int
14217 remote_target::can_do_single_step ()
14218 {
14219 /* We can only tell whether target supports single step or not by
14220 supported s and S vCont actions if the stub supports vContSupported
14221 feature. If the stub doesn't support vContSupported feature,
14222 we have conservatively to think target doesn't supports single
14223 step. */
14224 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14225 {
14226 struct remote_state *rs = get_remote_state ();
14227
14228 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14229 remote_vcont_probe ();
14230
14231 return rs->supports_vCont.s && rs->supports_vCont.S;
14232 }
14233 else
14234 return 0;
14235 }
14236
14237 /* Implementation of the to_execution_direction method for the remote
14238 target. */
14239
14240 enum exec_direction_kind
14241 remote_target::execution_direction ()
14242 {
14243 struct remote_state *rs = get_remote_state ();
14244
14245 return rs->last_resume_exec_dir;
14246 }
14247
14248 /* Return pointer to the thread_info struct which corresponds to
14249 THREAD_HANDLE (having length HANDLE_LEN). */
14250
14251 thread_info *
14252 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14253 int handle_len,
14254 inferior *inf)
14255 {
14256 for (thread_info *tp : all_non_exited_threads (this))
14257 {
14258 remote_thread_info *priv = get_remote_thread_info (tp);
14259
14260 if (tp->inf == inf && priv != NULL)
14261 {
14262 if (handle_len != priv->thread_handle.size ())
14263 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14264 handle_len, priv->thread_handle.size ());
14265 if (memcmp (thread_handle, priv->thread_handle.data (),
14266 handle_len) == 0)
14267 return tp;
14268 }
14269 }
14270
14271 return NULL;
14272 }
14273
14274 gdb::byte_vector
14275 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14276 {
14277 remote_thread_info *priv = get_remote_thread_info (tp);
14278 return priv->thread_handle;
14279 }
14280
14281 bool
14282 remote_target::can_async_p ()
14283 {
14284 struct remote_state *rs = get_remote_state ();
14285
14286 /* We don't go async if the user has explicitly prevented it with the
14287 "maint set target-async" command. */
14288 if (!target_async_permitted)
14289 return false;
14290
14291 /* We're async whenever the serial device is. */
14292 return serial_can_async_p (rs->remote_desc);
14293 }
14294
14295 bool
14296 remote_target::is_async_p ()
14297 {
14298 struct remote_state *rs = get_remote_state ();
14299
14300 if (!target_async_permitted)
14301 /* We only enable async when the user specifically asks for it. */
14302 return false;
14303
14304 /* We're async whenever the serial device is. */
14305 return serial_is_async_p (rs->remote_desc);
14306 }
14307
14308 /* Pass the SERIAL event on and up to the client. One day this code
14309 will be able to delay notifying the client of an event until the
14310 point where an entire packet has been received. */
14311
14312 static serial_event_ftype remote_async_serial_handler;
14313
14314 static void
14315 remote_async_serial_handler (struct serial *scb, void *context)
14316 {
14317 /* Don't propogate error information up to the client. Instead let
14318 the client find out about the error by querying the target. */
14319 inferior_event_handler (INF_REG_EVENT);
14320 }
14321
14322 static void
14323 remote_async_inferior_event_handler (gdb_client_data data)
14324 {
14325 inferior_event_handler (INF_REG_EVENT);
14326
14327 remote_target *remote = (remote_target *) data;
14328 remote_state *rs = remote->get_remote_state ();
14329
14330 /* inferior_event_handler may have consumed an event pending on the
14331 infrun side without calling target_wait on the REMOTE target, or
14332 may have pulled an event out of a different target. Keep trying
14333 for this remote target as long it still has either pending events
14334 or unacknowledged notifications. */
14335
14336 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL
14337 || !rs->stop_reply_queue.empty ())
14338 mark_async_event_handler (rs->remote_async_inferior_event_token);
14339 }
14340
14341 int
14342 remote_target::async_wait_fd ()
14343 {
14344 struct remote_state *rs = get_remote_state ();
14345 return rs->remote_desc->fd;
14346 }
14347
14348 void
14349 remote_target::async (int enable)
14350 {
14351 struct remote_state *rs = get_remote_state ();
14352
14353 if (enable)
14354 {
14355 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14356
14357 /* If there are pending events in the stop reply queue tell the
14358 event loop to process them. */
14359 if (!rs->stop_reply_queue.empty ())
14360 mark_async_event_handler (rs->remote_async_inferior_event_token);
14361 /* For simplicity, below we clear the pending events token
14362 without remembering whether it is marked, so here we always
14363 mark it. If there's actually no pending notification to
14364 process, this ends up being a no-op (other than a spurious
14365 event-loop wakeup). */
14366 if (target_is_non_stop_p ())
14367 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14368 }
14369 else
14370 {
14371 serial_async (rs->remote_desc, NULL, NULL);
14372 /* If the core is disabling async, it doesn't want to be
14373 disturbed with target events. Clear all async event sources
14374 too. */
14375 clear_async_event_handler (rs->remote_async_inferior_event_token);
14376 if (target_is_non_stop_p ())
14377 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14378 }
14379 }
14380
14381 /* Implementation of the to_thread_events method. */
14382
14383 void
14384 remote_target::thread_events (int enable)
14385 {
14386 struct remote_state *rs = get_remote_state ();
14387 size_t size = get_remote_packet_size ();
14388
14389 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14390 return;
14391
14392 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14393 putpkt (rs->buf);
14394 getpkt (&rs->buf, 0);
14395
14396 switch (packet_ok (rs->buf,
14397 &remote_protocol_packets[PACKET_QThreadEvents]))
14398 {
14399 case PACKET_OK:
14400 if (strcmp (rs->buf.data (), "OK") != 0)
14401 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14402 break;
14403 case PACKET_ERROR:
14404 warning (_("Remote failure reply: %s"), rs->buf.data ());
14405 break;
14406 case PACKET_UNKNOWN:
14407 break;
14408 }
14409 }
14410
14411 static void
14412 show_remote_cmd (const char *args, int from_tty)
14413 {
14414 /* We can't just use cmd_show_list here, because we want to skip
14415 the redundant "show remote Z-packet" and the legacy aliases. */
14416 struct cmd_list_element *list = remote_show_cmdlist;
14417 struct ui_out *uiout = current_uiout;
14418
14419 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14420 for (; list != NULL; list = list->next)
14421 if (strcmp (list->name, "Z-packet") == 0)
14422 continue;
14423 else if (list->type == not_set_cmd)
14424 /* Alias commands are exactly like the original, except they
14425 don't have the normal type. */
14426 continue;
14427 else
14428 {
14429 ui_out_emit_tuple option_emitter (uiout, "option");
14430
14431 uiout->field_string ("name", list->name);
14432 uiout->text (": ");
14433 if (list->type == show_cmd)
14434 do_show_command (NULL, from_tty, list);
14435 else
14436 cmd_func (list, NULL, from_tty);
14437 }
14438 }
14439
14440
14441 /* Function to be called whenever a new objfile (shlib) is detected. */
14442 static void
14443 remote_new_objfile (struct objfile *objfile)
14444 {
14445 remote_target *remote = get_current_remote_target ();
14446
14447 if (remote != NULL) /* Have a remote connection. */
14448 remote->remote_check_symbols ();
14449 }
14450
14451 /* Pull all the tracepoints defined on the target and create local
14452 data structures representing them. We don't want to create real
14453 tracepoints yet, we don't want to mess up the user's existing
14454 collection. */
14455
14456 int
14457 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14458 {
14459 struct remote_state *rs = get_remote_state ();
14460 char *p;
14461
14462 /* Ask for a first packet of tracepoint definition. */
14463 putpkt ("qTfP");
14464 getpkt (&rs->buf, 0);
14465 p = rs->buf.data ();
14466 while (*p && *p != 'l')
14467 {
14468 parse_tracepoint_definition (p, utpp);
14469 /* Ask for another packet of tracepoint definition. */
14470 putpkt ("qTsP");
14471 getpkt (&rs->buf, 0);
14472 p = rs->buf.data ();
14473 }
14474 return 0;
14475 }
14476
14477 int
14478 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14479 {
14480 struct remote_state *rs = get_remote_state ();
14481 char *p;
14482
14483 /* Ask for a first packet of variable definition. */
14484 putpkt ("qTfV");
14485 getpkt (&rs->buf, 0);
14486 p = rs->buf.data ();
14487 while (*p && *p != 'l')
14488 {
14489 parse_tsv_definition (p, utsvp);
14490 /* Ask for another packet of variable definition. */
14491 putpkt ("qTsV");
14492 getpkt (&rs->buf, 0);
14493 p = rs->buf.data ();
14494 }
14495 return 0;
14496 }
14497
14498 /* The "set/show range-stepping" show hook. */
14499
14500 static void
14501 show_range_stepping (struct ui_file *file, int from_tty,
14502 struct cmd_list_element *c,
14503 const char *value)
14504 {
14505 fprintf_filtered (file,
14506 _("Debugger's willingness to use range stepping "
14507 "is %s.\n"), value);
14508 }
14509
14510 /* Return true if the vCont;r action is supported by the remote
14511 stub. */
14512
14513 bool
14514 remote_target::vcont_r_supported ()
14515 {
14516 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14517 remote_vcont_probe ();
14518
14519 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14520 && get_remote_state ()->supports_vCont.r);
14521 }
14522
14523 /* The "set/show range-stepping" set hook. */
14524
14525 static void
14526 set_range_stepping (const char *ignore_args, int from_tty,
14527 struct cmd_list_element *c)
14528 {
14529 /* When enabling, check whether range stepping is actually supported
14530 by the target, and warn if not. */
14531 if (use_range_stepping)
14532 {
14533 remote_target *remote = get_current_remote_target ();
14534 if (remote == NULL
14535 || !remote->vcont_r_supported ())
14536 warning (_("Range stepping is not supported by the current target"));
14537 }
14538 }
14539
14540 void _initialize_remote ();
14541 void
14542 _initialize_remote ()
14543 {
14544 struct cmd_list_element *cmd;
14545 const char *cmd_name;
14546
14547 /* architecture specific data */
14548 remote_g_packet_data_handle =
14549 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14550
14551 add_target (remote_target_info, remote_target::open);
14552 add_target (extended_remote_target_info, extended_remote_target::open);
14553
14554 /* Hook into new objfile notification. */
14555 gdb::observers::new_objfile.attach (remote_new_objfile);
14556
14557 #if 0
14558 init_remote_threadtests ();
14559 #endif
14560
14561 /* set/show remote ... */
14562
14563 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14564 Remote protocol specific variables.\n\
14565 Configure various remote-protocol specific variables such as\n\
14566 the packets being used."),
14567 &remote_set_cmdlist, "set remote ",
14568 0 /* allow-unknown */, &setlist);
14569 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14570 Remote protocol specific variables.\n\
14571 Configure various remote-protocol specific variables such as\n\
14572 the packets being used."),
14573 &remote_show_cmdlist, "show remote ",
14574 0 /* allow-unknown */, &showlist);
14575
14576 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14577 Compare section data on target to the exec file.\n\
14578 Argument is a single section name (default: all loaded sections).\n\
14579 To compare only read-only loaded sections, specify the -r option."),
14580 &cmdlist);
14581
14582 add_cmd ("packet", class_maintenance, packet_command, _("\
14583 Send an arbitrary packet to a remote target.\n\
14584 maintenance packet TEXT\n\
14585 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14586 this command sends the string TEXT to the inferior, and displays the\n\
14587 response packet. GDB supplies the initial `$' character, and the\n\
14588 terminating `#' character and checksum."),
14589 &maintenancelist);
14590
14591 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14592 Set whether to send break if interrupted."), _("\
14593 Show whether to send break if interrupted."), _("\
14594 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14595 set_remotebreak, show_remotebreak,
14596 &setlist, &showlist);
14597 cmd_name = "remotebreak";
14598 cmd = lookup_cmd (&cmd_name, setlist, "", NULL, -1, 1);
14599 deprecate_cmd (cmd, "set remote interrupt-sequence");
14600 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14601 cmd = lookup_cmd (&cmd_name, showlist, "", NULL, -1, 1);
14602 deprecate_cmd (cmd, "show remote interrupt-sequence");
14603
14604 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14605 interrupt_sequence_modes, &interrupt_sequence_mode,
14606 _("\
14607 Set interrupt sequence to remote target."), _("\
14608 Show interrupt sequence to remote target."), _("\
14609 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14610 NULL, show_interrupt_sequence,
14611 &remote_set_cmdlist,
14612 &remote_show_cmdlist);
14613
14614 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14615 &interrupt_on_connect, _("\
14616 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14617 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14618 If set, interrupt sequence is sent to remote target."),
14619 NULL, NULL,
14620 &remote_set_cmdlist, &remote_show_cmdlist);
14621
14622 /* Install commands for configuring memory read/write packets. */
14623
14624 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14625 Set the maximum number of bytes per memory write packet (deprecated)."),
14626 &setlist);
14627 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14628 Show the maximum number of bytes per memory write packet (deprecated)."),
14629 &showlist);
14630 add_cmd ("memory-write-packet-size", no_class,
14631 set_memory_write_packet_size, _("\
14632 Set the maximum number of bytes per memory-write packet.\n\
14633 Specify the number of bytes in a packet or 0 (zero) for the\n\
14634 default packet size. The actual limit is further reduced\n\
14635 dependent on the target. Specify ``fixed'' to disable the\n\
14636 further restriction and ``limit'' to enable that restriction."),
14637 &remote_set_cmdlist);
14638 add_cmd ("memory-read-packet-size", no_class,
14639 set_memory_read_packet_size, _("\
14640 Set the maximum number of bytes per memory-read packet.\n\
14641 Specify the number of bytes in a packet or 0 (zero) for the\n\
14642 default packet size. The actual limit is further reduced\n\
14643 dependent on the target. Specify ``fixed'' to disable the\n\
14644 further restriction and ``limit'' to enable that restriction."),
14645 &remote_set_cmdlist);
14646 add_cmd ("memory-write-packet-size", no_class,
14647 show_memory_write_packet_size,
14648 _("Show the maximum number of bytes per memory-write packet."),
14649 &remote_show_cmdlist);
14650 add_cmd ("memory-read-packet-size", no_class,
14651 show_memory_read_packet_size,
14652 _("Show the maximum number of bytes per memory-read packet."),
14653 &remote_show_cmdlist);
14654
14655 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14656 &remote_hw_watchpoint_limit, _("\
14657 Set the maximum number of target hardware watchpoints."), _("\
14658 Show the maximum number of target hardware watchpoints."), _("\
14659 Specify \"unlimited\" for unlimited hardware watchpoints."),
14660 NULL, show_hardware_watchpoint_limit,
14661 &remote_set_cmdlist,
14662 &remote_show_cmdlist);
14663 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14664 no_class,
14665 &remote_hw_watchpoint_length_limit, _("\
14666 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14667 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14668 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14669 NULL, show_hardware_watchpoint_length_limit,
14670 &remote_set_cmdlist, &remote_show_cmdlist);
14671 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14672 &remote_hw_breakpoint_limit, _("\
14673 Set the maximum number of target hardware breakpoints."), _("\
14674 Show the maximum number of target hardware breakpoints."), _("\
14675 Specify \"unlimited\" for unlimited hardware breakpoints."),
14676 NULL, show_hardware_breakpoint_limit,
14677 &remote_set_cmdlist, &remote_show_cmdlist);
14678
14679 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14680 &remote_address_size, _("\
14681 Set the maximum size of the address (in bits) in a memory packet."), _("\
14682 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14683 NULL,
14684 NULL, /* FIXME: i18n: */
14685 &setlist, &showlist);
14686
14687 init_all_packet_configs ();
14688
14689 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14690 "X", "binary-download", 1);
14691
14692 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14693 "vCont", "verbose-resume", 0);
14694
14695 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14696 "QPassSignals", "pass-signals", 0);
14697
14698 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14699 "QCatchSyscalls", "catch-syscalls", 0);
14700
14701 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14702 "QProgramSignals", "program-signals", 0);
14703
14704 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14705 "QSetWorkingDir", "set-working-dir", 0);
14706
14707 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14708 "QStartupWithShell", "startup-with-shell", 0);
14709
14710 add_packet_config_cmd (&remote_protocol_packets
14711 [PACKET_QEnvironmentHexEncoded],
14712 "QEnvironmentHexEncoded", "environment-hex-encoded",
14713 0);
14714
14715 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14716 "QEnvironmentReset", "environment-reset",
14717 0);
14718
14719 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14720 "QEnvironmentUnset", "environment-unset",
14721 0);
14722
14723 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14724 "qSymbol", "symbol-lookup", 0);
14725
14726 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14727 "P", "set-register", 1);
14728
14729 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14730 "p", "fetch-register", 1);
14731
14732 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14733 "Z0", "software-breakpoint", 0);
14734
14735 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14736 "Z1", "hardware-breakpoint", 0);
14737
14738 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14739 "Z2", "write-watchpoint", 0);
14740
14741 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14742 "Z3", "read-watchpoint", 0);
14743
14744 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14745 "Z4", "access-watchpoint", 0);
14746
14747 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14748 "qXfer:auxv:read", "read-aux-vector", 0);
14749
14750 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14751 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14752
14753 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14754 "qXfer:features:read", "target-features", 0);
14755
14756 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14757 "qXfer:libraries:read", "library-info", 0);
14758
14759 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14760 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14761
14762 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14763 "qXfer:memory-map:read", "memory-map", 0);
14764
14765 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14766 "qXfer:osdata:read", "osdata", 0);
14767
14768 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14769 "qXfer:threads:read", "threads", 0);
14770
14771 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14772 "qXfer:siginfo:read", "read-siginfo-object", 0);
14773
14774 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14775 "qXfer:siginfo:write", "write-siginfo-object", 0);
14776
14777 add_packet_config_cmd
14778 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14779 "qXfer:traceframe-info:read", "traceframe-info", 0);
14780
14781 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14782 "qXfer:uib:read", "unwind-info-block", 0);
14783
14784 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14785 "qGetTLSAddr", "get-thread-local-storage-address",
14786 0);
14787
14788 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14789 "qGetTIBAddr", "get-thread-information-block-address",
14790 0);
14791
14792 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14793 "bc", "reverse-continue", 0);
14794
14795 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14796 "bs", "reverse-step", 0);
14797
14798 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14799 "qSupported", "supported-packets", 0);
14800
14801 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14802 "qSearch:memory", "search-memory", 0);
14803
14804 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14805 "qTStatus", "trace-status", 0);
14806
14807 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14808 "vFile:setfs", "hostio-setfs", 0);
14809
14810 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14811 "vFile:open", "hostio-open", 0);
14812
14813 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14814 "vFile:pread", "hostio-pread", 0);
14815
14816 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14817 "vFile:pwrite", "hostio-pwrite", 0);
14818
14819 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14820 "vFile:close", "hostio-close", 0);
14821
14822 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14823 "vFile:unlink", "hostio-unlink", 0);
14824
14825 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14826 "vFile:readlink", "hostio-readlink", 0);
14827
14828 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14829 "vFile:fstat", "hostio-fstat", 0);
14830
14831 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14832 "vAttach", "attach", 0);
14833
14834 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14835 "vRun", "run", 0);
14836
14837 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14838 "QStartNoAckMode", "noack", 0);
14839
14840 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14841 "vKill", "kill", 0);
14842
14843 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14844 "qAttached", "query-attached", 0);
14845
14846 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14847 "ConditionalTracepoints",
14848 "conditional-tracepoints", 0);
14849
14850 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14851 "ConditionalBreakpoints",
14852 "conditional-breakpoints", 0);
14853
14854 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14855 "BreakpointCommands",
14856 "breakpoint-commands", 0);
14857
14858 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14859 "FastTracepoints", "fast-tracepoints", 0);
14860
14861 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14862 "TracepointSource", "TracepointSource", 0);
14863
14864 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14865 "QAllow", "allow", 0);
14866
14867 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14868 "StaticTracepoints", "static-tracepoints", 0);
14869
14870 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14871 "InstallInTrace", "install-in-trace", 0);
14872
14873 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14874 "qXfer:statictrace:read", "read-sdata-object", 0);
14875
14876 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14877 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14878
14879 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14880 "QDisableRandomization", "disable-randomization", 0);
14881
14882 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14883 "QAgent", "agent", 0);
14884
14885 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14886 "QTBuffer:size", "trace-buffer-size", 0);
14887
14888 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14889 "Qbtrace:off", "disable-btrace", 0);
14890
14891 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14892 "Qbtrace:bts", "enable-btrace-bts", 0);
14893
14894 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14895 "Qbtrace:pt", "enable-btrace-pt", 0);
14896
14897 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14898 "qXfer:btrace", "read-btrace", 0);
14899
14900 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14901 "qXfer:btrace-conf", "read-btrace-conf", 0);
14902
14903 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14904 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14905
14906 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14907 "multiprocess-feature", "multiprocess-feature", 0);
14908
14909 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14910 "swbreak-feature", "swbreak-feature", 0);
14911
14912 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14913 "hwbreak-feature", "hwbreak-feature", 0);
14914
14915 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14916 "fork-event-feature", "fork-event-feature", 0);
14917
14918 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14919 "vfork-event-feature", "vfork-event-feature", 0);
14920
14921 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14922 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14923
14924 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14925 "vContSupported", "verbose-resume-supported", 0);
14926
14927 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14928 "exec-event-feature", "exec-event-feature", 0);
14929
14930 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14931 "vCtrlC", "ctrl-c", 0);
14932
14933 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14934 "QThreadEvents", "thread-events", 0);
14935
14936 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14937 "N stop reply", "no-resumed-stop-reply", 0);
14938
14939 /* Assert that we've registered "set remote foo-packet" commands
14940 for all packet configs. */
14941 {
14942 int i;
14943
14944 for (i = 0; i < PACKET_MAX; i++)
14945 {
14946 /* Ideally all configs would have a command associated. Some
14947 still don't though. */
14948 int excepted;
14949
14950 switch (i)
14951 {
14952 case PACKET_QNonStop:
14953 case PACKET_EnableDisableTracepoints_feature:
14954 case PACKET_tracenz_feature:
14955 case PACKET_DisconnectedTracing_feature:
14956 case PACKET_augmented_libraries_svr4_read_feature:
14957 case PACKET_qCRC:
14958 /* Additions to this list need to be well justified:
14959 pre-existing packets are OK; new packets are not. */
14960 excepted = 1;
14961 break;
14962 default:
14963 excepted = 0;
14964 break;
14965 }
14966
14967 /* This catches both forgetting to add a config command, and
14968 forgetting to remove a packet from the exception list. */
14969 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14970 }
14971 }
14972
14973 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14974 Z sub-packet has its own set and show commands, but users may
14975 have sets to this variable in their .gdbinit files (or in their
14976 documentation). */
14977 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14978 &remote_Z_packet_detect, _("\
14979 Set use of remote protocol `Z' packets."), _("\
14980 Show use of remote protocol `Z' packets."), _("\
14981 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14982 packets."),
14983 set_remote_protocol_Z_packet_cmd,
14984 show_remote_protocol_Z_packet_cmd,
14985 /* FIXME: i18n: Use of remote protocol
14986 `Z' packets is %s. */
14987 &remote_set_cmdlist, &remote_show_cmdlist);
14988
14989 add_basic_prefix_cmd ("remote", class_files, _("\
14990 Manipulate files on the remote system.\n\
14991 Transfer files to and from the remote target system."),
14992 &remote_cmdlist, "remote ",
14993 0 /* allow-unknown */, &cmdlist);
14994
14995 add_cmd ("put", class_files, remote_put_command,
14996 _("Copy a local file to the remote system."),
14997 &remote_cmdlist);
14998
14999 add_cmd ("get", class_files, remote_get_command,
15000 _("Copy a remote file to the local system."),
15001 &remote_cmdlist);
15002
15003 add_cmd ("delete", class_files, remote_delete_command,
15004 _("Delete a remote file."),
15005 &remote_cmdlist);
15006
15007 add_setshow_string_noescape_cmd ("exec-file", class_files,
15008 &remote_exec_file_var, _("\
15009 Set the remote pathname for \"run\"."), _("\
15010 Show the remote pathname for \"run\"."), NULL,
15011 set_remote_exec_file,
15012 show_remote_exec_file,
15013 &remote_set_cmdlist,
15014 &remote_show_cmdlist);
15015
15016 add_setshow_boolean_cmd ("range-stepping", class_run,
15017 &use_range_stepping, _("\
15018 Enable or disable range stepping."), _("\
15019 Show whether target-assisted range stepping is enabled."), _("\
15020 If on, and the target supports it, when stepping a source line, GDB\n\
15021 tells the target to step the corresponding range of addresses itself instead\n\
15022 of issuing multiple single-steps. This speeds up source level\n\
15023 stepping. If off, GDB always issues single-steps, even if range\n\
15024 stepping is supported by the target. The default is on."),
15025 set_range_stepping,
15026 show_range_stepping,
15027 &setlist,
15028 &showlist);
15029
15030 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
15031 Set watchdog timer."), _("\
15032 Show watchdog timer."), _("\
15033 When non-zero, this timeout is used instead of waiting forever for a target\n\
15034 to finish a low-level step or continue operation. If the specified amount\n\
15035 of time passes without a response from the target, an error occurs."),
15036 NULL,
15037 show_watchdog,
15038 &setlist, &showlist);
15039
15040 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
15041 &remote_packet_max_chars, _("\
15042 Set the maximum number of characters to display for each remote packet."), _("\
15043 Show the maximum number of characters to display for each remote packet."), _("\
15044 Specify \"unlimited\" to display all the characters."),
15045 NULL, show_remote_packet_max_chars,
15046 &setdebuglist, &showdebuglist);
15047
15048 /* Eventually initialize fileio. See fileio.c */
15049 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
15050 }
This page took 0.406509 seconds and 4 git commands to generate.