Phase 1 of the ptid_t changes.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "target.h"
32 /*#include "terminal.h" */
33 #include "gdbcmd.h"
34 #include "objfiles.h"
35 #include "gdb-stabs.h"
36 #include "gdbthread.h"
37 #include "remote.h"
38 #include "regcache.h"
39
40 #include <ctype.h>
41 #include <sys/time.h>
42 #ifdef USG
43 #include <sys/types.h>
44 #endif
45
46 #include "event-loop.h"
47 #include "event-top.h"
48 #include "inf-loop.h"
49
50 #include <signal.h>
51 #include "serial.h"
52
53 #include "gdbcore.h" /* for exec_bfd */
54
55 /* Prototypes for local functions */
56 static void cleanup_sigint_signal_handler (void *dummy);
57 static void initialize_sigint_signal_handler (void);
58 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
59
60 static void handle_remote_sigint (int);
61 static void handle_remote_sigint_twice (int);
62 static void async_remote_interrupt (gdb_client_data);
63 void async_remote_interrupt_twice (gdb_client_data);
64
65 static void build_remote_gdbarch_data (void);
66
67 static int remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len);
68
69 static int remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len);
70
71 static void remote_files_info (struct target_ops *ignore);
72
73 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
74 int len, int should_write,
75 struct mem_attrib *attrib,
76 struct target_ops *target);
77
78 static void remote_prepare_to_store (void);
79
80 static void remote_fetch_registers (int regno);
81
82 static void remote_resume (ptid_t ptid, int step,
83 enum target_signal siggnal);
84 static void remote_async_resume (ptid_t ptid, int step,
85 enum target_signal siggnal);
86 static int remote_start_remote (PTR);
87
88 static void remote_open (char *name, int from_tty);
89 static void remote_async_open (char *name, int from_tty);
90
91 static void extended_remote_open (char *name, int from_tty);
92 static void extended_remote_async_open (char *name, int from_tty);
93
94 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
95 static void remote_async_open_1 (char *, int, struct target_ops *,
96 int extended_p);
97
98 static void remote_close (int quitting);
99
100 static void remote_store_registers (int regno);
101
102 static void remote_mourn (void);
103 static void remote_async_mourn (void);
104
105 static void extended_remote_restart (void);
106
107 static void extended_remote_mourn (void);
108
109 static void extended_remote_create_inferior (char *, char *, char **);
110 static void extended_remote_async_create_inferior (char *, char *, char **);
111
112 static void remote_mourn_1 (struct target_ops *);
113
114 static void remote_send (char *buf, long sizeof_buf);
115
116 static int readchar (int timeout);
117
118 static ptid_t remote_wait (ptid_t ptid,
119 struct target_waitstatus *status);
120 static ptid_t remote_async_wait (ptid_t ptid,
121 struct target_waitstatus *status);
122
123 static void remote_kill (void);
124 static void remote_async_kill (void);
125
126 static int tohex (int nib);
127
128 static void remote_detach (char *args, int from_tty);
129 static void remote_async_detach (char *args, int from_tty);
130
131 static void remote_interrupt (int signo);
132
133 static void remote_interrupt_twice (int signo);
134
135 static void interrupt_query (void);
136
137 static void set_thread (int, int);
138
139 static int remote_thread_alive (ptid_t);
140
141 static void get_offsets (void);
142
143 static long read_frame (char *buf, long sizeof_buf);
144
145 static int remote_insert_breakpoint (CORE_ADDR, char *);
146
147 static int remote_remove_breakpoint (CORE_ADDR, char *);
148
149 static int hexnumlen (ULONGEST num);
150
151 static void init_remote_ops (void);
152
153 static void init_extended_remote_ops (void);
154
155 static void init_remote_cisco_ops (void);
156
157 static struct target_ops remote_cisco_ops;
158
159 static void remote_stop (void);
160
161 static int ishex (int ch, int *val);
162
163 static int stubhex (int ch);
164
165 static int remote_query (int /*char */ , char *, char *, int *);
166
167 static int hexnumstr (char *, ULONGEST);
168
169 static int hexnumnstr (char *, ULONGEST, int);
170
171 static CORE_ADDR remote_address_masked (CORE_ADDR);
172
173 static void print_packet (char *);
174
175 static unsigned long crc32 (unsigned char *, int, unsigned int);
176
177 static void compare_sections_command (char *, int);
178
179 static void packet_command (char *, int);
180
181 static int stub_unpack_int (char *buff, int fieldlength);
182
183 static ptid_t remote_current_thread (ptid_t oldptid);
184
185 static void remote_find_new_threads (void);
186
187 static void record_currthread (int currthread);
188
189 /* exported functions */
190
191 extern int fromhex (int a);
192
193 static int putpkt_binary (char *buf, int cnt);
194
195 static void check_binary_download (CORE_ADDR addr);
196
197 struct packet_config;
198
199 static void show_packet_config_cmd (struct packet_config *config);
200
201 static void update_packet_config (struct packet_config *config);
202
203 /* Define the target subroutine names */
204
205 void open_remote_target (char *, int, struct target_ops *, int);
206
207 void _initialize_remote (void);
208
209 /* */
210
211 static struct target_ops remote_ops;
212
213 static struct target_ops extended_remote_ops;
214
215 /* Temporary target ops. Just like the remote_ops and
216 extended_remote_ops, but with asynchronous support. */
217 static struct target_ops remote_async_ops;
218
219 static struct target_ops extended_async_remote_ops;
220
221 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
222 ``forever'' still use the normal timeout mechanism. This is
223 currently used by the ASYNC code to guarentee that target reads
224 during the initial connect always time-out. Once getpkt has been
225 modified to return a timeout indication and, in turn
226 remote_wait()/wait_for_inferior() have gained a timeout parameter
227 this can go away. */
228 static int wait_forever_enabled_p = 1;
229
230
231 /* This variable chooses whether to send a ^C or a break when the user
232 requests program interruption. Although ^C is usually what remote
233 systems expect, and that is the default here, sometimes a break is
234 preferable instead. */
235
236 static int remote_break;
237
238 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
239 remote_open knows that we don't have a file open when the program
240 starts. */
241 static serial_t remote_desc = NULL;
242
243 /* This is set by the target (thru the 'S' message)
244 to denote that the target is in kernel mode. */
245 static int cisco_kernel_mode = 0;
246
247 /* This variable sets the number of bits in an address that are to be
248 sent in a memory ("M" or "m") packet. Normally, after stripping
249 leading zeros, the entire address would be sent. This variable
250 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
251 initial implementation of remote.c restricted the address sent in
252 memory packets to ``host::sizeof long'' bytes - (typically 32
253 bits). Consequently, for 64 bit targets, the upper 32 bits of an
254 address was never sent. Since fixing this bug may cause a break in
255 some remote targets this variable is principly provided to
256 facilitate backward compatibility. */
257
258 static int remote_address_size;
259
260 /* Tempoary to track who currently owns the terminal. See
261 target_async_terminal_* for more details. */
262
263 static int remote_async_terminal_ours_p;
264
265 \f
266 /* This is the size (in chars) of the first response to the ``g''
267 packet. It is used as a heuristic when determining the maximum
268 size of memory-read and memory-write packets. A target will
269 typically only reserve a buffer large enough to hold the ``g''
270 packet. The size does not include packet overhead (headers and
271 trailers). */
272
273 static long actual_register_packet_size;
274
275 /* This is the maximum size (in chars) of a non read/write packet. It
276 is also used as a cap on the size of read/write packets. */
277
278 static long remote_packet_size;
279 /* compatibility. */
280 #define PBUFSIZ (remote_packet_size)
281
282 /* User configurable variables for the number of characters in a
283 memory read/write packet. MIN (PBUFSIZ, g-packet-size) is the
284 default. Some targets need smaller values (fifo overruns, et.al.)
285 and some users need larger values (speed up transfers). The
286 variables ``preferred_*'' (the user request), ``current_*'' (what
287 was actually set) and ``forced_*'' (Positive - a soft limit,
288 negative - a hard limit). */
289
290 struct memory_packet_config
291 {
292 char *name;
293 long size;
294 int fixed_p;
295 };
296
297 /* Compute the current size of a read/write packet. Since this makes
298 use of ``actual_register_packet_size'' the computation is dynamic. */
299
300 static long
301 get_memory_packet_size (struct memory_packet_config *config)
302 {
303 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
304 law?) that some hosts don't cope very well with large alloca()
305 calls. Eventually the alloca() code will be replaced by calls to
306 xmalloc() and make_cleanups() allowing this restriction to either
307 be lifted or removed. */
308 #ifndef MAX_REMOTE_PACKET_SIZE
309 #define MAX_REMOTE_PACKET_SIZE 16384
310 #endif
311 /* NOTE: 16 is just chosen at random. */
312 #ifndef MIN_REMOTE_PACKET_SIZE
313 #define MIN_REMOTE_PACKET_SIZE 16
314 #endif
315 long what_they_get;
316 if (config->fixed_p)
317 {
318 if (config->size <= 0)
319 what_they_get = MAX_REMOTE_PACKET_SIZE;
320 else
321 what_they_get = config->size;
322 }
323 else
324 {
325 what_they_get = remote_packet_size;
326 /* Limit the packet to the size specified by the user. */
327 if (config->size > 0
328 && what_they_get > config->size)
329 what_they_get = config->size;
330 /* Limit it to the size of the targets ``g'' response. */
331 if (actual_register_packet_size > 0
332 && what_they_get > actual_register_packet_size)
333 what_they_get = actual_register_packet_size;
334 }
335 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
336 what_they_get = MAX_REMOTE_PACKET_SIZE;
337 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
338 what_they_get = MIN_REMOTE_PACKET_SIZE;
339 return what_they_get;
340 }
341
342 /* Update the size of a read/write packet. If they user wants
343 something really big then do a sanity check. */
344
345 static void
346 set_memory_packet_size (char *args, struct memory_packet_config *config)
347 {
348 int fixed_p = config->fixed_p;
349 long size = config->size;
350 if (args == NULL)
351 error ("Argument required (integer, `fixed' or `limited').");
352 else if (strcmp (args, "hard") == 0
353 || strcmp (args, "fixed") == 0)
354 fixed_p = 1;
355 else if (strcmp (args, "soft") == 0
356 || strcmp (args, "limit") == 0)
357 fixed_p = 0;
358 else
359 {
360 char *end;
361 size = strtoul (args, &end, 0);
362 if (args == end)
363 error ("Invalid %s (bad syntax).", config->name);
364 #if 0
365 /* Instead of explicitly capping the size of a packet to
366 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
367 instead allowed to set the size to something arbitrarily
368 large. */
369 if (size > MAX_REMOTE_PACKET_SIZE)
370 error ("Invalid %s (too large).", config->name);
371 #endif
372 }
373 /* Extra checks? */
374 if (fixed_p && !config->fixed_p)
375 {
376 if (! query ("The target may not be able to correctly handle a %s\n"
377 "of %ld bytes. Change the packet size? ",
378 config->name, size))
379 error ("Packet size not changed.");
380 }
381 /* Update the config. */
382 config->fixed_p = fixed_p;
383 config->size = size;
384 }
385
386 static void
387 show_memory_packet_size (struct memory_packet_config *config)
388 {
389 printf_filtered ("The %s is %ld. ", config->name, config->size);
390 if (config->fixed_p)
391 printf_filtered ("Packets are fixed at %ld bytes.\n",
392 get_memory_packet_size (config));
393 else
394 printf_filtered ("Packets are limited to %ld bytes.\n",
395 get_memory_packet_size (config));
396 }
397
398 static struct memory_packet_config memory_write_packet_config =
399 {
400 "memory-write-packet-size",
401 };
402
403 static void
404 set_memory_write_packet_size (char *args, int from_tty)
405 {
406 set_memory_packet_size (args, &memory_write_packet_config);
407 }
408
409 static void
410 show_memory_write_packet_size (char *args, int from_tty)
411 {
412 show_memory_packet_size (&memory_write_packet_config);
413 }
414
415 static long
416 get_memory_write_packet_size (void)
417 {
418 return get_memory_packet_size (&memory_write_packet_config);
419 }
420
421 static struct memory_packet_config memory_read_packet_config =
422 {
423 "memory-read-packet-size",
424 };
425
426 static void
427 set_memory_read_packet_size (char *args, int from_tty)
428 {
429 set_memory_packet_size (args, &memory_read_packet_config);
430 }
431
432 static void
433 show_memory_read_packet_size (char *args, int from_tty)
434 {
435 show_memory_packet_size (&memory_read_packet_config);
436 }
437
438 static long
439 get_memory_read_packet_size (void)
440 {
441 long size = get_memory_packet_size (&memory_read_packet_config);
442 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
443 extra buffer size argument before the memory read size can be
444 increased beyond PBUFSIZ. */
445 if (size > PBUFSIZ)
446 size = PBUFSIZ;
447 return size;
448 }
449
450 /* Register packet size initialization. Since the bounds change when
451 the architecture changes (namely REGISTER_BYTES) this all needs to
452 be multi-arched. */
453
454 static void
455 register_remote_packet_sizes (void)
456 {
457 REGISTER_GDBARCH_SWAP (remote_packet_size);
458 REGISTER_GDBARCH_SWAP (actual_register_packet_size);
459 }
460
461 static void
462 build_remote_packet_sizes (void)
463 {
464 /* Default maximum number of characters in a packet body. Many
465 remote stubs have a hardwired buffer size of 400 bytes
466 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
467 as the maximum packet-size to ensure that the packet and an extra
468 NUL character can always fit in the buffer. This stops GDB
469 trashing stubs that try to squeeze an extra NUL into what is
470 already a full buffer (As of 1999-12-04 that was most stubs. */
471 remote_packet_size = 400 - 1;
472 /* Should REGISTER_BYTES needs more space than the default, adjust
473 the size accordingly. Remember that each byte is encoded as two
474 characters. 32 is the overhead for the packet header /
475 footer. NOTE: cagney/1999-10-26: I suspect that 8
476 (``$NN:G...#NN'') is a better guess, the below has been padded a
477 little. */
478 if (REGISTER_BYTES > ((remote_packet_size - 32) / 2))
479 remote_packet_size = (REGISTER_BYTES * 2 + 32);
480
481 /* This one is filled in when a ``g'' packet is received. */
482 actual_register_packet_size = 0;
483 }
484 \f
485 /* Generic configuration support for packets the stub optionally
486 supports. Allows the user to specify the use of the packet as well
487 as allowing GDB to auto-detect support in the remote stub. */
488
489 enum packet_support
490 {
491 PACKET_SUPPORT_UNKNOWN = 0,
492 PACKET_ENABLE,
493 PACKET_DISABLE
494 };
495
496 struct packet_config
497 {
498 char *name;
499 char *title;
500 enum cmd_auto_boolean detect;
501 enum packet_support support;
502 };
503
504 /* Analyze a packet's return value and update the packet config
505 accordingly. */
506
507 enum packet_result
508 {
509 PACKET_ERROR,
510 PACKET_OK,
511 PACKET_UNKNOWN
512 };
513
514 static void
515 update_packet_config (struct packet_config *config)
516 {
517 switch (config->detect)
518 {
519 case CMD_AUTO_BOOLEAN_TRUE:
520 config->support = PACKET_ENABLE;
521 break;
522 case CMD_AUTO_BOOLEAN_FALSE:
523 config->support = PACKET_DISABLE;
524 break;
525 case CMD_AUTO_BOOLEAN_AUTO:
526 config->support = PACKET_SUPPORT_UNKNOWN;
527 break;
528 }
529 }
530
531 static void
532 show_packet_config_cmd (struct packet_config *config)
533 {
534 char *support = "internal-error";
535 switch (config->support)
536 {
537 case PACKET_ENABLE:
538 support = "enabled";
539 break;
540 case PACKET_DISABLE:
541 support = "disabled";
542 break;
543 case PACKET_SUPPORT_UNKNOWN:
544 support = "unknown";
545 break;
546 }
547 switch (config->detect)
548 {
549 case CMD_AUTO_BOOLEAN_AUTO:
550 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
551 config->name, config->title, support);
552 break;
553 case CMD_AUTO_BOOLEAN_TRUE:
554 case CMD_AUTO_BOOLEAN_FALSE:
555 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
556 config->name, config->title, support);
557 break;
558 }
559 }
560
561 static void
562 add_packet_config_cmd (struct packet_config *config,
563 char *name,
564 char *title,
565 void (*set_func) (char *args, int from_tty,
566 struct cmd_list_element *
567 c),
568 void (*show_func) (char *name,
569 int from_tty),
570 struct cmd_list_element **set_remote_list,
571 struct cmd_list_element **show_remote_list,
572 int legacy)
573 {
574 struct cmd_list_element *set_cmd;
575 struct cmd_list_element *show_cmd;
576 char *set_doc;
577 char *show_doc;
578 char *cmd_name;
579 config->name = name;
580 config->title = title;
581 config->detect = CMD_AUTO_BOOLEAN_AUTO;
582 config->support = PACKET_SUPPORT_UNKNOWN;
583 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
584 name, title);
585 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
586 name, title);
587 /* set/show TITLE-packet {auto,on,off} */
588 xasprintf (&cmd_name, "%s-packet", title);
589 set_cmd = add_set_auto_boolean_cmd (cmd_name, class_obscure,
590 &config->detect, set_doc,
591 set_remote_list);
592 set_cmd->function.sfunc = set_func;
593 show_cmd = add_cmd (cmd_name, class_obscure, show_func, show_doc,
594 show_remote_list);
595 /* set/show remote NAME-packet {auto,on,off} -- legacy */
596 if (legacy)
597 {
598 char *legacy_name;
599 xasprintf (&legacy_name, "%s-packet", name);
600 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
601 set_remote_list);
602 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
603 show_remote_list);
604 }
605 }
606
607 static enum packet_result
608 packet_ok (const char *buf, struct packet_config *config)
609 {
610 if (buf[0] != '\0')
611 {
612 /* The stub recognized the packet request. Check that the
613 operation succeeded. */
614 switch (config->support)
615 {
616 case PACKET_SUPPORT_UNKNOWN:
617 if (remote_debug)
618 fprintf_unfiltered (gdb_stdlog,
619 "Packet %s (%s) is supported\n",
620 config->name, config->title);
621 config->support = PACKET_ENABLE;
622 break;
623 case PACKET_DISABLE:
624 internal_error (__FILE__, __LINE__,
625 "packet_ok: attempt to use a disabled packet");
626 break;
627 case PACKET_ENABLE:
628 break;
629 }
630 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
631 /* "OK" - definitly OK. */
632 return PACKET_OK;
633 if (buf[0] == 'E'
634 && isxdigit (buf[1]) && isxdigit (buf[2])
635 && buf[3] == '\0')
636 /* "Enn" - definitly an error. */
637 return PACKET_ERROR;
638 /* The packet may or may not be OK. Just assume it is */
639 return PACKET_OK;
640 }
641 else
642 {
643 /* The stub does not support the packet. */
644 switch (config->support)
645 {
646 case PACKET_ENABLE:
647 if (config->detect == CMD_AUTO_BOOLEAN_AUTO)
648 /* If the stub previously indicated that the packet was
649 supported then there is a protocol error.. */
650 error ("Protocol error: %s (%s) conflicting enabled responses.",
651 config->name, config->title);
652 else
653 /* The user set it wrong. */
654 error ("Enabled packet %s (%s) not recognized by stub",
655 config->name, config->title);
656 break;
657 case PACKET_SUPPORT_UNKNOWN:
658 if (remote_debug)
659 fprintf_unfiltered (gdb_stdlog,
660 "Packet %s (%s) is NOT supported\n",
661 config->name, config->title);
662 config->support = PACKET_DISABLE;
663 break;
664 case PACKET_DISABLE:
665 break;
666 }
667 return PACKET_UNKNOWN;
668 }
669 }
670
671 /* Should we try the 'e' (step over range) request? */
672 static struct packet_config remote_protocol_e;
673
674 static void
675 set_remote_protocol_e_packet_cmd (char *args, int from_tty,
676 struct cmd_list_element *c)
677 {
678 update_packet_config (&remote_protocol_e);
679 }
680
681 static void
682 show_remote_protocol_e_packet_cmd (char *args, int from_tty)
683 {
684 show_packet_config_cmd (&remote_protocol_e);
685 }
686
687
688 /* Should we try the 'E' (step over range / w signal #) request? */
689 static struct packet_config remote_protocol_E;
690
691 static void
692 set_remote_protocol_E_packet_cmd (char *args, int from_tty,
693 struct cmd_list_element *c)
694 {
695 update_packet_config (&remote_protocol_E);
696 }
697
698 static void
699 show_remote_protocol_E_packet_cmd (char *args, int from_tty)
700 {
701 show_packet_config_cmd (&remote_protocol_E);
702 }
703
704
705 /* Should we try the 'P' (set register) request? */
706
707 static struct packet_config remote_protocol_P;
708
709 static void
710 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
711 struct cmd_list_element *c)
712 {
713 update_packet_config (&remote_protocol_P);
714 }
715
716 static void
717 show_remote_protocol_P_packet_cmd (char *args, int from_tty)
718 {
719 show_packet_config_cmd (&remote_protocol_P);
720 }
721
722 /* Should we try one of the 'Z' requests? */
723
724 enum Z_packet_type
725 {
726 Z_PACKET_SOFTWARE_BP,
727 Z_PACKET_HARDWARE_BP,
728 Z_PACKET_WRITE_WP,
729 Z_PACKET_READ_WP,
730 Z_PACKET_ACCESS_WP,
731 NR_Z_PACKET_TYPES
732 };
733
734 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
735
736 /* FIXME: Instead of having all these boiler plate functions, the
737 command callback should include a context argument. */
738
739 static void
740 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
741 struct cmd_list_element *c)
742 {
743 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
744 }
745
746 static void
747 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty)
748 {
749 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
750 }
751
752 static void
753 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
754 struct cmd_list_element *c)
755 {
756 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
757 }
758
759 static void
760 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty)
761 {
762 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
763 }
764
765 static void
766 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
767 struct cmd_list_element *c)
768 {
769 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
770 }
771
772 static void
773 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty)
774 {
775 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
776 }
777
778 static void
779 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
780 struct cmd_list_element *c)
781 {
782 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
783 }
784
785 static void
786 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty)
787 {
788 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
789 }
790
791 static void
792 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
793 struct cmd_list_element *c)
794 {
795 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
796 }
797
798 static void
799 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty)
800 {
801 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
802 }
803
804 /* For compatibility with older distributions. Provide a ``set remote
805 Z-packet ...'' command that updates all the Z packet types. */
806
807 static enum cmd_auto_boolean remote_Z_packet_detect;
808
809 static void
810 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
811 struct cmd_list_element *c)
812 {
813 int i;
814 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
815 {
816 remote_protocol_Z[i].detect = remote_Z_packet_detect;
817 update_packet_config (&remote_protocol_Z[i]);
818 }
819 }
820
821 static void
822 show_remote_protocol_Z_packet_cmd (char *args, int from_tty)
823 {
824 int i;
825 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
826 {
827 show_packet_config_cmd (&remote_protocol_Z[i]);
828 }
829 }
830
831 /* Should we try the 'X' (remote binary download) packet?
832
833 This variable (available to the user via "set remote X-packet")
834 dictates whether downloads are sent in binary (via the 'X' packet).
835 We assume that the stub can, and attempt to do it. This will be
836 cleared if the stub does not understand it. This switch is still
837 needed, though in cases when the packet is supported in the stub,
838 but the connection does not allow it (i.e., 7-bit serial connection
839 only). */
840
841 static struct packet_config remote_protocol_binary_download;
842
843 /* Should we try the 'ThreadInfo' query packet?
844
845 This variable (NOT available to the user: auto-detect only!)
846 determines whether GDB will use the new, simpler "ThreadInfo"
847 query or the older, more complex syntax for thread queries.
848 This is an auto-detect variable (set to true at each connect,
849 and set to false when the target fails to recognize it). */
850
851 static int use_threadinfo_query;
852 static int use_threadextra_query;
853
854 static void
855 set_remote_protocol_binary_download_cmd (char *args,
856 int from_tty,
857 struct cmd_list_element *c)
858 {
859 update_packet_config (&remote_protocol_binary_download);
860 }
861
862 static void
863 show_remote_protocol_binary_download_cmd (char *args,
864 int from_tty)
865 {
866 show_packet_config_cmd (&remote_protocol_binary_download);
867 }
868
869
870 /* Tokens for use by the asynchronous signal handlers for SIGINT */
871 PTR sigint_remote_twice_token;
872 PTR sigint_remote_token;
873
874 /* These are pointers to hook functions that may be set in order to
875 modify resume/wait behavior for a particular architecture. */
876
877 void (*target_resume_hook) (void);
878 void (*target_wait_loop_hook) (void);
879 \f
880
881
882 /* These are the threads which we last sent to the remote system.
883 -1 for all or -2 for not sent yet. */
884 static int general_thread;
885 static int continue_thread;
886
887 /* Call this function as a result of
888 1) A halt indication (T packet) containing a thread id
889 2) A direct query of currthread
890 3) Successful execution of set thread
891 */
892
893 static void
894 record_currthread (int currthread)
895 {
896 general_thread = currthread;
897
898 /* If this is a new thread, add it to GDB's thread list.
899 If we leave it up to WFI to do this, bad things will happen. */
900 if (!in_thread_list (pid_to_ptid (currthread)))
901 {
902 add_thread (pid_to_ptid (currthread));
903 #ifdef UI_OUT
904 ui_out_text (uiout, "[New ");
905 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
906 ui_out_text (uiout, "]\n");
907 #else
908 printf_filtered ("[New %s]\n",
909 target_pid_to_str (pid_to_ptid (currthread)));
910 #endif
911 }
912 }
913
914 #define MAGIC_NULL_PID 42000
915
916 static void
917 set_thread (int th, int gen)
918 {
919 char *buf = alloca (PBUFSIZ);
920 int state = gen ? general_thread : continue_thread;
921
922 if (state == th)
923 return;
924
925 buf[0] = 'H';
926 buf[1] = gen ? 'g' : 'c';
927 if (th == MAGIC_NULL_PID)
928 {
929 buf[2] = '0';
930 buf[3] = '\0';
931 }
932 else if (th < 0)
933 sprintf (&buf[2], "-%x", -th);
934 else
935 sprintf (&buf[2], "%x", th);
936 putpkt (buf);
937 getpkt (buf, PBUFSIZ, 0);
938 if (gen)
939 general_thread = th;
940 else
941 continue_thread = th;
942 }
943 \f
944 /* Return nonzero if the thread TH is still alive on the remote system. */
945
946 static int
947 remote_thread_alive (ptid_t ptid)
948 {
949 int tid = PIDGET (ptid);
950 char buf[16];
951
952 if (tid < 0)
953 sprintf (buf, "T-%08x", -tid);
954 else
955 sprintf (buf, "T%08x", tid);
956 putpkt (buf);
957 getpkt (buf, sizeof (buf), 0);
958 return (buf[0] == 'O' && buf[1] == 'K');
959 }
960
961 /* About these extended threadlist and threadinfo packets. They are
962 variable length packets but, the fields within them are often fixed
963 length. They are redundent enough to send over UDP as is the
964 remote protocol in general. There is a matching unit test module
965 in libstub. */
966
967 #define OPAQUETHREADBYTES 8
968
969 /* a 64 bit opaque identifier */
970 typedef unsigned char threadref[OPAQUETHREADBYTES];
971
972 /* WARNING: This threadref data structure comes from the remote O.S., libstub
973 protocol encoding, and remote.c. it is not particularly changable */
974
975 /* Right now, the internal structure is int. We want it to be bigger.
976 Plan to fix this.
977 */
978
979 typedef int gdb_threadref; /* internal GDB thread reference */
980
981 /* gdb_ext_thread_info is an internal GDB data structure which is
982 equivalint to the reply of the remote threadinfo packet */
983
984 struct gdb_ext_thread_info
985 {
986 threadref threadid; /* External form of thread reference */
987 int active; /* Has state interesting to GDB? , regs, stack */
988 char display[256]; /* Brief state display, name, blocked/syspended */
989 char shortname[32]; /* To be used to name threads */
990 char more_display[256]; /* Long info, statistics, queue depth, whatever */
991 };
992
993 /* The volume of remote transfers can be limited by submitting
994 a mask containing bits specifying the desired information.
995 Use a union of these values as the 'selection' parameter to
996 get_thread_info. FIXME: Make these TAG names more thread specific.
997 */
998
999 #define TAG_THREADID 1
1000 #define TAG_EXISTS 2
1001 #define TAG_DISPLAY 4
1002 #define TAG_THREADNAME 8
1003 #define TAG_MOREDISPLAY 16
1004
1005 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1006
1007 char *unpack_varlen_hex (char *buff, int *result);
1008
1009 static char *unpack_nibble (char *buf, int *val);
1010
1011 static char *pack_nibble (char *buf, int nibble);
1012
1013 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1014
1015 static char *unpack_byte (char *buf, int *value);
1016
1017 static char *pack_int (char *buf, int value);
1018
1019 static char *unpack_int (char *buf, int *value);
1020
1021 static char *unpack_string (char *src, char *dest, int length);
1022
1023 static char *pack_threadid (char *pkt, threadref * id);
1024
1025 static char *unpack_threadid (char *inbuf, threadref * id);
1026
1027 void int_to_threadref (threadref * id, int value);
1028
1029 static int threadref_to_int (threadref * ref);
1030
1031 static void copy_threadref (threadref * dest, threadref * src);
1032
1033 static int threadmatch (threadref * dest, threadref * src);
1034
1035 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1036
1037 static int remote_unpack_thread_info_response (char *pkt,
1038 threadref * expectedref,
1039 struct gdb_ext_thread_info
1040 *info);
1041
1042
1043 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1044 struct gdb_ext_thread_info *info);
1045
1046 static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1047 int selection,
1048 struct gdb_ext_thread_info *info);
1049
1050 static char *pack_threadlist_request (char *pkt, int startflag,
1051 int threadcount,
1052 threadref * nextthread);
1053
1054 static int parse_threadlist_response (char *pkt,
1055 int result_limit,
1056 threadref * original_echo,
1057 threadref * resultlist, int *doneflag);
1058
1059 static int remote_get_threadlist (int startflag,
1060 threadref * nextthread,
1061 int result_limit,
1062 int *done,
1063 int *result_count, threadref * threadlist);
1064
1065 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1066
1067 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1068 void *context, int looplimit);
1069
1070 static int remote_newthread_step (threadref * ref, void *context);
1071
1072 /* encode 64 bits in 16 chars of hex */
1073
1074 static const char hexchars[] = "0123456789abcdef";
1075
1076 static int
1077 ishex (int ch, int *val)
1078 {
1079 if ((ch >= 'a') && (ch <= 'f'))
1080 {
1081 *val = ch - 'a' + 10;
1082 return 1;
1083 }
1084 if ((ch >= 'A') && (ch <= 'F'))
1085 {
1086 *val = ch - 'A' + 10;
1087 return 1;
1088 }
1089 if ((ch >= '0') && (ch <= '9'))
1090 {
1091 *val = ch - '0';
1092 return 1;
1093 }
1094 return 0;
1095 }
1096
1097 static int
1098 stubhex (int ch)
1099 {
1100 if (ch >= 'a' && ch <= 'f')
1101 return ch - 'a' + 10;
1102 if (ch >= '0' && ch <= '9')
1103 return ch - '0';
1104 if (ch >= 'A' && ch <= 'F')
1105 return ch - 'A' + 10;
1106 return -1;
1107 }
1108
1109 static int
1110 stub_unpack_int (char *buff, int fieldlength)
1111 {
1112 int nibble;
1113 int retval = 0;
1114
1115 while (fieldlength)
1116 {
1117 nibble = stubhex (*buff++);
1118 retval |= nibble;
1119 fieldlength--;
1120 if (fieldlength)
1121 retval = retval << 4;
1122 }
1123 return retval;
1124 }
1125
1126 char *
1127 unpack_varlen_hex (char *buff, /* packet to parse */
1128 int *result)
1129 {
1130 int nibble;
1131 int retval = 0;
1132
1133 while (ishex (*buff, &nibble))
1134 {
1135 buff++;
1136 retval = retval << 4;
1137 retval |= nibble & 0x0f;
1138 }
1139 *result = retval;
1140 return buff;
1141 }
1142
1143 static char *
1144 unpack_nibble (char *buf, int *val)
1145 {
1146 ishex (*buf++, val);
1147 return buf;
1148 }
1149
1150 static char *
1151 pack_nibble (char *buf, int nibble)
1152 {
1153 *buf++ = hexchars[(nibble & 0x0f)];
1154 return buf;
1155 }
1156
1157 static char *
1158 pack_hex_byte (char *pkt, int byte)
1159 {
1160 *pkt++ = hexchars[(byte >> 4) & 0xf];
1161 *pkt++ = hexchars[(byte & 0xf)];
1162 return pkt;
1163 }
1164
1165 static char *
1166 unpack_byte (char *buf, int *value)
1167 {
1168 *value = stub_unpack_int (buf, 2);
1169 return buf + 2;
1170 }
1171
1172 static char *
1173 pack_int (char *buf, int value)
1174 {
1175 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1176 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1177 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1178 buf = pack_hex_byte (buf, (value & 0xff));
1179 return buf;
1180 }
1181
1182 static char *
1183 unpack_int (char *buf, int *value)
1184 {
1185 *value = stub_unpack_int (buf, 8);
1186 return buf + 8;
1187 }
1188
1189 #if 0 /* currently unused, uncomment when needed */
1190 static char *pack_string (char *pkt, char *string);
1191
1192 static char *
1193 pack_string (char *pkt, char *string)
1194 {
1195 char ch;
1196 int len;
1197
1198 len = strlen (string);
1199 if (len > 200)
1200 len = 200; /* Bigger than most GDB packets, junk??? */
1201 pkt = pack_hex_byte (pkt, len);
1202 while (len-- > 0)
1203 {
1204 ch = *string++;
1205 if ((ch == '\0') || (ch == '#'))
1206 ch = '*'; /* Protect encapsulation */
1207 *pkt++ = ch;
1208 }
1209 return pkt;
1210 }
1211 #endif /* 0 (unused) */
1212
1213 static char *
1214 unpack_string (char *src, char *dest, int length)
1215 {
1216 while (length--)
1217 *dest++ = *src++;
1218 *dest = '\0';
1219 return src;
1220 }
1221
1222 static char *
1223 pack_threadid (char *pkt, threadref *id)
1224 {
1225 char *limit;
1226 unsigned char *altid;
1227
1228 altid = (unsigned char *) id;
1229 limit = pkt + BUF_THREAD_ID_SIZE;
1230 while (pkt < limit)
1231 pkt = pack_hex_byte (pkt, *altid++);
1232 return pkt;
1233 }
1234
1235
1236 static char *
1237 unpack_threadid (char *inbuf, threadref *id)
1238 {
1239 char *altref;
1240 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1241 int x, y;
1242
1243 altref = (char *) id;
1244
1245 while (inbuf < limit)
1246 {
1247 x = stubhex (*inbuf++);
1248 y = stubhex (*inbuf++);
1249 *altref++ = (x << 4) | y;
1250 }
1251 return inbuf;
1252 }
1253
1254 /* Externally, threadrefs are 64 bits but internally, they are still
1255 ints. This is due to a mismatch of specifications. We would like
1256 to use 64bit thread references internally. This is an adapter
1257 function. */
1258
1259 void
1260 int_to_threadref (threadref *id, int value)
1261 {
1262 unsigned char *scan;
1263
1264 scan = (unsigned char *) id;
1265 {
1266 int i = 4;
1267 while (i--)
1268 *scan++ = 0;
1269 }
1270 *scan++ = (value >> 24) & 0xff;
1271 *scan++ = (value >> 16) & 0xff;
1272 *scan++ = (value >> 8) & 0xff;
1273 *scan++ = (value & 0xff);
1274 }
1275
1276 static int
1277 threadref_to_int (threadref *ref)
1278 {
1279 int i, value = 0;
1280 unsigned char *scan;
1281
1282 scan = (char *) ref;
1283 scan += 4;
1284 i = 4;
1285 while (i-- > 0)
1286 value = (value << 8) | ((*scan++) & 0xff);
1287 return value;
1288 }
1289
1290 static void
1291 copy_threadref (threadref *dest, threadref *src)
1292 {
1293 int i;
1294 unsigned char *csrc, *cdest;
1295
1296 csrc = (unsigned char *) src;
1297 cdest = (unsigned char *) dest;
1298 i = 8;
1299 while (i--)
1300 *cdest++ = *csrc++;
1301 }
1302
1303 static int
1304 threadmatch (threadref *dest, threadref *src)
1305 {
1306 /* things are broken right now, so just assume we got a match */
1307 #if 0
1308 unsigned char *srcp, *destp;
1309 int i, result;
1310 srcp = (char *) src;
1311 destp = (char *) dest;
1312
1313 result = 1;
1314 while (i-- > 0)
1315 result &= (*srcp++ == *destp++) ? 1 : 0;
1316 return result;
1317 #endif
1318 return 1;
1319 }
1320
1321 /*
1322 threadid:1, # always request threadid
1323 context_exists:2,
1324 display:4,
1325 unique_name:8,
1326 more_display:16
1327 */
1328
1329 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1330
1331 static char *
1332 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1333 {
1334 *pkt++ = 'q'; /* Info Query */
1335 *pkt++ = 'P'; /* process or thread info */
1336 pkt = pack_int (pkt, mode); /* mode */
1337 pkt = pack_threadid (pkt, id); /* threadid */
1338 *pkt = '\0'; /* terminate */
1339 return pkt;
1340 }
1341
1342 /* These values tag the fields in a thread info response packet */
1343 /* Tagging the fields allows us to request specific fields and to
1344 add more fields as time goes by */
1345
1346 #define TAG_THREADID 1 /* Echo the thread identifier */
1347 #define TAG_EXISTS 2 /* Is this process defined enough to
1348 fetch registers and its stack */
1349 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1350 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1351 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1352 the process */
1353
1354 static int
1355 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1356 struct gdb_ext_thread_info *info)
1357 {
1358 int mask, length;
1359 unsigned int tag;
1360 threadref ref;
1361 char *limit = pkt + PBUFSIZ; /* plausable parsing limit */
1362 int retval = 1;
1363
1364 /* info->threadid = 0; FIXME: implement zero_threadref */
1365 info->active = 0;
1366 info->display[0] = '\0';
1367 info->shortname[0] = '\0';
1368 info->more_display[0] = '\0';
1369
1370 /* Assume the characters indicating the packet type have been stripped */
1371 pkt = unpack_int (pkt, &mask); /* arg mask */
1372 pkt = unpack_threadid (pkt, &ref);
1373
1374 if (mask == 0)
1375 warning ("Incomplete response to threadinfo request\n");
1376 if (!threadmatch (&ref, expectedref))
1377 { /* This is an answer to a different request */
1378 warning ("ERROR RMT Thread info mismatch\n");
1379 return 0;
1380 }
1381 copy_threadref (&info->threadid, &ref);
1382
1383 /* Loop on tagged fields , try to bail if somthing goes wrong */
1384
1385 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1386 {
1387 pkt = unpack_int (pkt, &tag); /* tag */
1388 pkt = unpack_byte (pkt, &length); /* length */
1389 if (!(tag & mask)) /* tags out of synch with mask */
1390 {
1391 warning ("ERROR RMT: threadinfo tag mismatch\n");
1392 retval = 0;
1393 break;
1394 }
1395 if (tag == TAG_THREADID)
1396 {
1397 if (length != 16)
1398 {
1399 warning ("ERROR RMT: length of threadid is not 16\n");
1400 retval = 0;
1401 break;
1402 }
1403 pkt = unpack_threadid (pkt, &ref);
1404 mask = mask & ~TAG_THREADID;
1405 continue;
1406 }
1407 if (tag == TAG_EXISTS)
1408 {
1409 info->active = stub_unpack_int (pkt, length);
1410 pkt += length;
1411 mask = mask & ~(TAG_EXISTS);
1412 if (length > 8)
1413 {
1414 warning ("ERROR RMT: 'exists' length too long\n");
1415 retval = 0;
1416 break;
1417 }
1418 continue;
1419 }
1420 if (tag == TAG_THREADNAME)
1421 {
1422 pkt = unpack_string (pkt, &info->shortname[0], length);
1423 mask = mask & ~TAG_THREADNAME;
1424 continue;
1425 }
1426 if (tag == TAG_DISPLAY)
1427 {
1428 pkt = unpack_string (pkt, &info->display[0], length);
1429 mask = mask & ~TAG_DISPLAY;
1430 continue;
1431 }
1432 if (tag == TAG_MOREDISPLAY)
1433 {
1434 pkt = unpack_string (pkt, &info->more_display[0], length);
1435 mask = mask & ~TAG_MOREDISPLAY;
1436 continue;
1437 }
1438 warning ("ERROR RMT: unknown thread info tag\n");
1439 break; /* Not a tag we know about */
1440 }
1441 return retval;
1442 }
1443
1444 static int
1445 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1446 struct gdb_ext_thread_info *info)
1447 {
1448 int result;
1449 char *threadinfo_pkt = alloca (PBUFSIZ);
1450
1451 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1452 putpkt (threadinfo_pkt);
1453 getpkt (threadinfo_pkt, PBUFSIZ, 0);
1454 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1455 info);
1456 return result;
1457 }
1458
1459 /* Unfortunately, 61 bit thread-ids are bigger than the internal
1460 representation of a threadid. */
1461
1462 static int
1463 adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1464 struct gdb_ext_thread_info *info)
1465 {
1466 threadref lclref;
1467
1468 int_to_threadref (&lclref, *ref);
1469 return remote_get_threadinfo (&lclref, selection, info);
1470 }
1471
1472 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1473
1474 static char *
1475 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1476 threadref *nextthread)
1477 {
1478 *pkt++ = 'q'; /* info query packet */
1479 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1480 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1481 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1482 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1483 *pkt = '\0';
1484 return pkt;
1485 }
1486
1487 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1488
1489 static int
1490 parse_threadlist_response (char *pkt, int result_limit,
1491 threadref *original_echo, threadref *resultlist,
1492 int *doneflag)
1493 {
1494 char *limit;
1495 int count, resultcount, done;
1496
1497 resultcount = 0;
1498 /* Assume the 'q' and 'M chars have been stripped. */
1499 limit = pkt + (PBUFSIZ - BUF_THREAD_ID_SIZE); /* done parse past here */
1500 pkt = unpack_byte (pkt, &count); /* count field */
1501 pkt = unpack_nibble (pkt, &done);
1502 /* The first threadid is the argument threadid. */
1503 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1504 while ((count-- > 0) && (pkt < limit))
1505 {
1506 pkt = unpack_threadid (pkt, resultlist++);
1507 if (resultcount++ >= result_limit)
1508 break;
1509 }
1510 if (doneflag)
1511 *doneflag = done;
1512 return resultcount;
1513 }
1514
1515 static int
1516 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1517 int *done, int *result_count, threadref *threadlist)
1518 {
1519 static threadref echo_nextthread;
1520 char *threadlist_packet = alloca (PBUFSIZ);
1521 char *t_response = alloca (PBUFSIZ);
1522 int result = 1;
1523
1524 /* Trancate result limit to be smaller than the packet size */
1525 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= PBUFSIZ)
1526 result_limit = (PBUFSIZ / BUF_THREAD_ID_SIZE) - 2;
1527
1528 pack_threadlist_request (threadlist_packet,
1529 startflag, result_limit, nextthread);
1530 putpkt (threadlist_packet);
1531 getpkt (t_response, PBUFSIZ, 0);
1532
1533 *result_count =
1534 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1535 threadlist, done);
1536
1537 if (!threadmatch (&echo_nextthread, nextthread))
1538 {
1539 /* FIXME: This is a good reason to drop the packet */
1540 /* Possably, there is a duplicate response */
1541 /* Possabilities :
1542 retransmit immediatly - race conditions
1543 retransmit after timeout - yes
1544 exit
1545 wait for packet, then exit
1546 */
1547 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1548 return 0; /* I choose simply exiting */
1549 }
1550 if (*result_count <= 0)
1551 {
1552 if (*done != 1)
1553 {
1554 warning ("RMT ERROR : failed to get remote thread list\n");
1555 result = 0;
1556 }
1557 return result; /* break; */
1558 }
1559 if (*result_count > result_limit)
1560 {
1561 *result_count = 0;
1562 warning ("RMT ERROR: threadlist response longer than requested\n");
1563 return 0;
1564 }
1565 return result;
1566 }
1567
1568 /* This is the interface between remote and threads, remotes upper interface */
1569
1570 /* remote_find_new_threads retrieves the thread list and for each
1571 thread in the list, looks up the thread in GDB's internal list,
1572 ading the thread if it does not already exist. This involves
1573 getting partial thread lists from the remote target so, polling the
1574 quit_flag is required. */
1575
1576
1577 /* About this many threadisds fit in a packet. */
1578
1579 #define MAXTHREADLISTRESULTS 32
1580
1581 static int
1582 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1583 int looplimit)
1584 {
1585 int done, i, result_count;
1586 int startflag = 1;
1587 int result = 1;
1588 int loopcount = 0;
1589 static threadref nextthread;
1590 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1591
1592 done = 0;
1593 while (!done)
1594 {
1595 if (loopcount++ > looplimit)
1596 {
1597 result = 0;
1598 warning ("Remote fetch threadlist -infinite loop-\n");
1599 break;
1600 }
1601 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1602 &done, &result_count, resultthreadlist))
1603 {
1604 result = 0;
1605 break;
1606 }
1607 /* clear for later iterations */
1608 startflag = 0;
1609 /* Setup to resume next batch of thread references, set nextthread. */
1610 if (result_count >= 1)
1611 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1612 i = 0;
1613 while (result_count--)
1614 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1615 break;
1616 }
1617 return result;
1618 }
1619
1620 static int
1621 remote_newthread_step (threadref *ref, void *context)
1622 {
1623 ptid_t ptid;
1624
1625 ptid = pid_to_ptid (threadref_to_int (ref));
1626
1627 if (!in_thread_list (ptid))
1628 add_thread (ptid);
1629 return 1; /* continue iterator */
1630 }
1631
1632 #define CRAZY_MAX_THREADS 1000
1633
1634 static ptid_t
1635 remote_current_thread (ptid_t oldpid)
1636 {
1637 char *buf = alloca (PBUFSIZ);
1638
1639 putpkt ("qC");
1640 getpkt (buf, PBUFSIZ, 0);
1641 if (buf[0] == 'Q' && buf[1] == 'C')
1642 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1643 else
1644 return oldpid;
1645 }
1646
1647 /* Find new threads for info threads command.
1648 * Original version, using John Metzler's thread protocol.
1649 */
1650
1651 static void
1652 remote_find_new_threads (void)
1653 {
1654 remote_threadlist_iterator (remote_newthread_step, 0,
1655 CRAZY_MAX_THREADS);
1656 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1657 inferior_ptid = remote_current_thread (inferior_ptid);
1658 }
1659
1660 /*
1661 * Find all threads for info threads command.
1662 * Uses new thread protocol contributed by Cisco.
1663 * Falls back and attempts to use the older method (above)
1664 * if the target doesn't respond to the new method.
1665 */
1666
1667 static void
1668 remote_threads_info (void)
1669 {
1670 char *buf = alloca (PBUFSIZ);
1671 char *bufp;
1672 int tid;
1673
1674 if (remote_desc == 0) /* paranoia */
1675 error ("Command can only be used when connected to the remote target.");
1676
1677 if (use_threadinfo_query)
1678 {
1679 putpkt ("qfThreadInfo");
1680 bufp = buf;
1681 getpkt (bufp, PBUFSIZ, 0);
1682 if (bufp[0] != '\0') /* q packet recognized */
1683 {
1684 while (*bufp++ == 'm') /* reply contains one or more TID */
1685 {
1686 do
1687 {
1688 tid = strtol (bufp, &bufp, 16);
1689 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1690 add_thread (pid_to_ptid (tid));
1691 }
1692 while (*bufp++ == ','); /* comma-separated list */
1693 putpkt ("qsThreadInfo");
1694 bufp = buf;
1695 getpkt (bufp, PBUFSIZ, 0);
1696 }
1697 return; /* done */
1698 }
1699 }
1700
1701 /* Else fall back to old method based on jmetzler protocol. */
1702 use_threadinfo_query = 0;
1703 remote_find_new_threads ();
1704 return;
1705 }
1706
1707 /*
1708 * Collect a descriptive string about the given thread.
1709 * The target may say anything it wants to about the thread
1710 * (typically info about its blocked / runnable state, name, etc.).
1711 * This string will appear in the info threads display.
1712 *
1713 * Optional: targets are not required to implement this function.
1714 */
1715
1716 static char *
1717 remote_threads_extra_info (struct thread_info *tp)
1718 {
1719 int result;
1720 int set;
1721 threadref id;
1722 struct gdb_ext_thread_info threadinfo;
1723 static char display_buf[100]; /* arbitrary... */
1724 char *bufp = alloca (PBUFSIZ);
1725 int n = 0; /* position in display_buf */
1726
1727 if (remote_desc == 0) /* paranoia */
1728 internal_error (__FILE__, __LINE__,
1729 "remote_threads_extra_info");
1730
1731 if (use_threadextra_query)
1732 {
1733 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1734 putpkt (bufp);
1735 getpkt (bufp, PBUFSIZ, 0);
1736 if (bufp[0] != 0)
1737 {
1738 char *p;
1739
1740 for (p = display_buf;
1741 p < display_buf + sizeof(display_buf) - 1 &&
1742 bufp[0] != 0 &&
1743 bufp[1] != 0;
1744 p++, bufp+=2)
1745 {
1746 *p = fromhex (bufp[0]) * 16 + fromhex (bufp[1]);
1747 }
1748 *p = 0;
1749 return display_buf;
1750 }
1751 }
1752
1753 /* If the above query fails, fall back to the old method. */
1754 use_threadextra_query = 0;
1755 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1756 | TAG_MOREDISPLAY | TAG_DISPLAY;
1757 int_to_threadref (&id, PIDGET (tp->ptid));
1758 if (remote_get_threadinfo (&id, set, &threadinfo))
1759 if (threadinfo.active)
1760 {
1761 if (*threadinfo.shortname)
1762 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1763 if (*threadinfo.display)
1764 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1765 if (*threadinfo.more_display)
1766 n += sprintf(&display_buf[n], " Priority: %s",
1767 threadinfo.more_display);
1768
1769 if (n > 0)
1770 {
1771 /* for purely cosmetic reasons, clear up trailing commas */
1772 if (',' == display_buf[n-1])
1773 display_buf[n-1] = ' ';
1774 return display_buf;
1775 }
1776 }
1777 return NULL;
1778 }
1779
1780 \f
1781
1782 /* Restart the remote side; this is an extended protocol operation. */
1783
1784 static void
1785 extended_remote_restart (void)
1786 {
1787 char *buf = alloca (PBUFSIZ);
1788
1789 /* Send the restart command; for reasons I don't understand the
1790 remote side really expects a number after the "R". */
1791 buf[0] = 'R';
1792 sprintf (&buf[1], "%x", 0);
1793 putpkt (buf);
1794
1795 /* Now query for status so this looks just like we restarted
1796 gdbserver from scratch. */
1797 putpkt ("?");
1798 getpkt (buf, PBUFSIZ, 0);
1799 }
1800 \f
1801 /* Clean up connection to a remote debugger. */
1802
1803 /* ARGSUSED */
1804 static void
1805 remote_close (int quitting)
1806 {
1807 if (remote_desc)
1808 SERIAL_CLOSE (remote_desc);
1809 remote_desc = NULL;
1810 }
1811
1812 /* Query the remote side for the text, data and bss offsets. */
1813
1814 static void
1815 get_offsets (void)
1816 {
1817 char *buf = alloca (PBUFSIZ);
1818 char *ptr;
1819 int lose;
1820 CORE_ADDR text_addr, data_addr, bss_addr;
1821 struct section_offsets *offs;
1822
1823 putpkt ("qOffsets");
1824
1825 getpkt (buf, PBUFSIZ, 0);
1826
1827 if (buf[0] == '\000')
1828 return; /* Return silently. Stub doesn't support
1829 this command. */
1830 if (buf[0] == 'E')
1831 {
1832 warning ("Remote failure reply: %s", buf);
1833 return;
1834 }
1835
1836 /* Pick up each field in turn. This used to be done with scanf, but
1837 scanf will make trouble if CORE_ADDR size doesn't match
1838 conversion directives correctly. The following code will work
1839 with any size of CORE_ADDR. */
1840 text_addr = data_addr = bss_addr = 0;
1841 ptr = buf;
1842 lose = 0;
1843
1844 if (strncmp (ptr, "Text=", 5) == 0)
1845 {
1846 ptr += 5;
1847 /* Don't use strtol, could lose on big values. */
1848 while (*ptr && *ptr != ';')
1849 text_addr = (text_addr << 4) + fromhex (*ptr++);
1850 }
1851 else
1852 lose = 1;
1853
1854 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1855 {
1856 ptr += 6;
1857 while (*ptr && *ptr != ';')
1858 data_addr = (data_addr << 4) + fromhex (*ptr++);
1859 }
1860 else
1861 lose = 1;
1862
1863 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1864 {
1865 ptr += 5;
1866 while (*ptr && *ptr != ';')
1867 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1868 }
1869 else
1870 lose = 1;
1871
1872 if (lose)
1873 error ("Malformed response to offset query, %s", buf);
1874
1875 if (symfile_objfile == NULL)
1876 return;
1877
1878 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1879 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1880
1881 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1882
1883 /* This is a temporary kludge to force data and bss to use the same offsets
1884 because that's what nlmconv does now. The real solution requires changes
1885 to the stub and remote.c that I don't have time to do right now. */
1886
1887 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1888 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1889
1890 objfile_relocate (symfile_objfile, offs);
1891 }
1892
1893 /*
1894 * Cisco version of section offsets:
1895 *
1896 * Instead of having GDB query the target for the section offsets,
1897 * Cisco lets the target volunteer the information! It's also in
1898 * a different format, so here are the functions that will decode
1899 * a section offset packet from a Cisco target.
1900 */
1901
1902 /*
1903 * Function: remote_cisco_section_offsets
1904 *
1905 * Returns: zero for success, non-zero for failure
1906 */
1907
1908 static int
1909 remote_cisco_section_offsets (bfd_vma text_addr,
1910 bfd_vma data_addr,
1911 bfd_vma bss_addr,
1912 bfd_signed_vma *text_offs,
1913 bfd_signed_vma *data_offs,
1914 bfd_signed_vma *bss_offs)
1915 {
1916 bfd_vma text_base, data_base, bss_base;
1917 struct minimal_symbol *start;
1918 asection *sect;
1919 bfd *abfd;
1920 int len;
1921
1922 if (symfile_objfile == NULL)
1923 return -1; /* no can do nothin' */
1924
1925 start = lookup_minimal_symbol ("_start", NULL, NULL);
1926 if (start == NULL)
1927 return -1; /* Can't find "_start" symbol */
1928
1929 data_base = bss_base = 0;
1930 text_base = SYMBOL_VALUE_ADDRESS (start);
1931
1932 abfd = symfile_objfile->obfd;
1933 for (sect = abfd->sections;
1934 sect != 0;
1935 sect = sect->next)
1936 {
1937 const char *p = bfd_get_section_name (abfd, sect);
1938 len = strlen (p);
1939 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
1940 if (data_base == 0 ||
1941 data_base > bfd_get_section_vma (abfd, sect))
1942 data_base = bfd_get_section_vma (abfd, sect);
1943 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
1944 if (bss_base == 0 ||
1945 bss_base > bfd_get_section_vma (abfd, sect))
1946 bss_base = bfd_get_section_vma (abfd, sect);
1947 }
1948 *text_offs = text_addr - text_base;
1949 *data_offs = data_addr - data_base;
1950 *bss_offs = bss_addr - bss_base;
1951 if (remote_debug)
1952 {
1953 char tmp[128];
1954
1955 sprintf (tmp, "VMA: text = 0x");
1956 sprintf_vma (tmp + strlen (tmp), text_addr);
1957 sprintf (tmp + strlen (tmp), " data = 0x");
1958 sprintf_vma (tmp + strlen (tmp), data_addr);
1959 sprintf (tmp + strlen (tmp), " bss = 0x");
1960 sprintf_vma (tmp + strlen (tmp), bss_addr);
1961 fprintf_filtered (gdb_stdlog, tmp);
1962 fprintf_filtered (gdb_stdlog,
1963 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
1964 paddr_nz (*text_offs),
1965 paddr_nz (*data_offs),
1966 paddr_nz (*bss_offs));
1967 }
1968
1969 return 0;
1970 }
1971
1972 /*
1973 * Function: remote_cisco_objfile_relocate
1974 *
1975 * Relocate the symbol file for a remote target.
1976 */
1977
1978 void
1979 remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
1980 bfd_signed_vma bss_off)
1981 {
1982 struct section_offsets *offs;
1983
1984 if (text_off != 0 || data_off != 0 || bss_off != 0)
1985 {
1986 /* FIXME: This code assumes gdb-stabs.h is being used; it's
1987 broken for xcoff, dwarf, sdb-coff, etc. But there is no
1988 simple canonical representation for this stuff. */
1989
1990 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1991 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1992
1993 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
1994 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
1995 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
1996
1997 /* First call the standard objfile_relocate. */
1998 objfile_relocate (symfile_objfile, offs);
1999
2000 /* Now we need to fix up the section entries already attached to
2001 the exec target. These entries will control memory transfers
2002 from the exec file. */
2003
2004 exec_set_section_offsets (text_off, data_off, bss_off);
2005 }
2006 }
2007
2008 /* Stub for catch_errors. */
2009
2010 static int
2011 remote_start_remote_dummy (void *dummy)
2012 {
2013 start_remote (); /* Initialize gdb process mechanisms */
2014 return 1;
2015 }
2016
2017 static int
2018 remote_start_remote (PTR dummy)
2019 {
2020 immediate_quit++; /* Allow user to interrupt it */
2021
2022 /* Ack any packet which the remote side has already sent. */
2023 SERIAL_WRITE (remote_desc, "+", 1);
2024
2025 /* Let the stub know that we want it to return the thread. */
2026 set_thread (-1, 0);
2027
2028 inferior_ptid = remote_current_thread (inferior_ptid);
2029
2030 get_offsets (); /* Get text, data & bss offsets */
2031
2032 putpkt ("?"); /* initiate a query from remote machine */
2033 immediate_quit--;
2034
2035 return remote_start_remote_dummy (dummy);
2036 }
2037
2038 /* Open a connection to a remote debugger.
2039 NAME is the filename used for communication. */
2040
2041 static void
2042 remote_open (char *name, int from_tty)
2043 {
2044 remote_open_1 (name, from_tty, &remote_ops, 0);
2045 }
2046
2047 /* Just like remote_open, but with asynchronous support. */
2048 static void
2049 remote_async_open (char *name, int from_tty)
2050 {
2051 remote_async_open_1 (name, from_tty, &remote_async_ops, 0);
2052 }
2053
2054 /* Open a connection to a remote debugger using the extended
2055 remote gdb protocol. NAME is the filename used for communication. */
2056
2057 static void
2058 extended_remote_open (char *name, int from_tty)
2059 {
2060 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */ );
2061 }
2062
2063 /* Just like extended_remote_open, but with asynchronous support. */
2064 static void
2065 extended_remote_async_open (char *name, int from_tty)
2066 {
2067 remote_async_open_1 (name, from_tty, &extended_async_remote_ops, 1 /*extended_p */ );
2068 }
2069
2070 /* Generic code for opening a connection to a remote target. */
2071
2072 static void
2073 init_all_packet_configs (void)
2074 {
2075 int i;
2076 update_packet_config (&remote_protocol_e);
2077 update_packet_config (&remote_protocol_E);
2078 update_packet_config (&remote_protocol_P);
2079 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2080 update_packet_config (&remote_protocol_Z[i]);
2081 /* Force remote_write_bytes to check whether target supports binary
2082 downloading. */
2083 update_packet_config (&remote_protocol_binary_download);
2084 }
2085
2086 static void
2087 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2088 int extended_p)
2089 {
2090 if (name == 0)
2091 error ("To open a remote debug connection, you need to specify what\n\
2092 serial device is attached to the remote system\n\
2093 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2094
2095 /* See FIXME above */
2096 wait_forever_enabled_p = 1;
2097
2098 target_preopen (from_tty);
2099
2100 unpush_target (target);
2101
2102 remote_desc = SERIAL_OPEN (name);
2103 if (!remote_desc)
2104 perror_with_name (name);
2105
2106 if (baud_rate != -1)
2107 {
2108 if (SERIAL_SETBAUDRATE (remote_desc, baud_rate))
2109 {
2110 SERIAL_CLOSE (remote_desc);
2111 perror_with_name (name);
2112 }
2113 }
2114
2115 SERIAL_RAW (remote_desc);
2116
2117 /* If there is something sitting in the buffer we might take it as a
2118 response to a command, which would be bad. */
2119 SERIAL_FLUSH_INPUT (remote_desc);
2120
2121 if (from_tty)
2122 {
2123 puts_filtered ("Remote debugging using ");
2124 puts_filtered (name);
2125 puts_filtered ("\n");
2126 }
2127 push_target (target); /* Switch to using remote target now */
2128
2129 init_all_packet_configs ();
2130
2131 general_thread = -2;
2132 continue_thread = -2;
2133
2134 /* Probe for ability to use "ThreadInfo" query, as required. */
2135 use_threadinfo_query = 1;
2136 use_threadextra_query = 1;
2137
2138 /* Without this, some commands which require an active target (such
2139 as kill) won't work. This variable serves (at least) double duty
2140 as both the pid of the target process (if it has such), and as a
2141 flag indicating that a target is active. These functions should
2142 be split out into seperate variables, especially since GDB will
2143 someday have a notion of debugging several processes. */
2144
2145 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2146 /* Start the remote connection; if error (0), discard this target.
2147 In particular, if the user quits, be sure to discard it
2148 (we'd be in an inconsistent state otherwise). */
2149 if (!catch_errors (remote_start_remote, NULL,
2150 "Couldn't establish connection to remote target\n",
2151 RETURN_MASK_ALL))
2152 {
2153 pop_target ();
2154 return;
2155 }
2156
2157 if (extended_p)
2158 {
2159 /* Tell the remote that we are using the extended protocol. */
2160 char *buf = alloca (PBUFSIZ);
2161 putpkt ("!");
2162 getpkt (buf, PBUFSIZ, 0);
2163 }
2164 /* FIXME: need a master target_open vector from which all
2165 remote_opens can be called, so that stuff like this can
2166 go there. Failing that, the following code must be copied
2167 to the open function for any remote target that wants to
2168 support svr4 shared libraries. */
2169 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2170 if (exec_bfd) /* No use without an exec file. */
2171 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2172 #endif
2173 }
2174
2175 /* Just like remote_open but with asynchronous support. */
2176 static void
2177 remote_async_open_1 (char *name, int from_tty, struct target_ops *target,
2178 int extended_p)
2179 {
2180 if (name == 0)
2181 error ("To open a remote debug connection, you need to specify what\n\
2182 serial device is attached to the remote system\n\
2183 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2184
2185 target_preopen (from_tty);
2186
2187 unpush_target (target);
2188
2189 remote_desc = SERIAL_OPEN (name);
2190 if (!remote_desc)
2191 perror_with_name (name);
2192
2193 if (baud_rate != -1)
2194 {
2195 if (SERIAL_SETBAUDRATE (remote_desc, baud_rate))
2196 {
2197 SERIAL_CLOSE (remote_desc);
2198 perror_with_name (name);
2199 }
2200 }
2201
2202 SERIAL_RAW (remote_desc);
2203
2204 /* If there is something sitting in the buffer we might take it as a
2205 response to a command, which would be bad. */
2206 SERIAL_FLUSH_INPUT (remote_desc);
2207
2208 if (from_tty)
2209 {
2210 puts_filtered ("Remote debugging using ");
2211 puts_filtered (name);
2212 puts_filtered ("\n");
2213 }
2214
2215 push_target (target); /* Switch to using remote target now */
2216
2217 init_all_packet_configs ();
2218
2219 general_thread = -2;
2220 continue_thread = -2;
2221
2222 /* Probe for ability to use "ThreadInfo" query, as required. */
2223 use_threadinfo_query = 1;
2224 use_threadextra_query = 1;
2225
2226 /* Without this, some commands which require an active target (such
2227 as kill) won't work. This variable serves (at least) double duty
2228 as both the pid of the target process (if it has such), and as a
2229 flag indicating that a target is active. These functions should
2230 be split out into seperate variables, especially since GDB will
2231 someday have a notion of debugging several processes. */
2232 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2233
2234 /* With this target we start out by owning the terminal. */
2235 remote_async_terminal_ours_p = 1;
2236
2237 /* FIXME: cagney/1999-09-23: During the initial connection it is
2238 assumed that the target is already ready and able to respond to
2239 requests. Unfortunately remote_start_remote() eventually calls
2240 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2241 around this. Eventually a mechanism that allows
2242 wait_for_inferior() to expect/get timeouts will be
2243 implemented. */
2244 wait_forever_enabled_p = 0;
2245
2246 /* Start the remote connection; if error (0), discard this target.
2247 In particular, if the user quits, be sure to discard it
2248 (we'd be in an inconsistent state otherwise). */
2249 if (!catch_errors (remote_start_remote, NULL,
2250 "Couldn't establish connection to remote target\n",
2251 RETURN_MASK_ALL))
2252 {
2253 pop_target ();
2254 wait_forever_enabled_p = 1;
2255 return;
2256 }
2257
2258 wait_forever_enabled_p = 1;
2259
2260 if (extended_p)
2261 {
2262 /* Tell the remote that we are using the extended protocol. */
2263 char *buf = alloca (PBUFSIZ);
2264 putpkt ("!");
2265 getpkt (buf, PBUFSIZ, 0);
2266 }
2267 /* FIXME: need a master target_open vector from which all
2268 remote_opens can be called, so that stuff like this can
2269 go there. Failing that, the following code must be copied
2270 to the open function for any remote target that wants to
2271 support svr4 shared libraries. */
2272 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2273 if (exec_bfd) /* No use without an exec file. */
2274 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2275 #endif
2276 }
2277
2278 /* This takes a program previously attached to and detaches it. After
2279 this is done, GDB can be used to debug some other program. We
2280 better not have left any breakpoints in the target program or it'll
2281 die when it hits one. */
2282
2283 static void
2284 remote_detach (char *args, int from_tty)
2285 {
2286 char *buf = alloca (PBUFSIZ);
2287
2288 if (args)
2289 error ("Argument given to \"detach\" when remotely debugging.");
2290
2291 /* Tell the remote target to detach. */
2292 strcpy (buf, "D");
2293 remote_send (buf, PBUFSIZ);
2294
2295 target_mourn_inferior ();
2296 if (from_tty)
2297 puts_filtered ("Ending remote debugging.\n");
2298
2299 }
2300
2301 /* Same as remote_detach, but with async support. */
2302 static void
2303 remote_async_detach (char *args, int from_tty)
2304 {
2305 char *buf = alloca (PBUFSIZ);
2306
2307 if (args)
2308 error ("Argument given to \"detach\" when remotely debugging.");
2309
2310 /* Tell the remote target to detach. */
2311 strcpy (buf, "D");
2312 remote_send (buf, PBUFSIZ);
2313
2314 /* Unregister the file descriptor from the event loop. */
2315 if (target_is_async_p ())
2316 SERIAL_ASYNC (remote_desc, NULL, 0);
2317
2318 target_mourn_inferior ();
2319 if (from_tty)
2320 puts_filtered ("Ending remote debugging.\n");
2321 }
2322
2323 /* Convert hex digit A to a number. */
2324
2325 int
2326 fromhex (int a)
2327 {
2328 if (a >= '0' && a <= '9')
2329 return a - '0';
2330 else if (a >= 'a' && a <= 'f')
2331 return a - 'a' + 10;
2332 else if (a >= 'A' && a <= 'F')
2333 return a - 'A' + 10;
2334 else
2335 error ("Reply contains invalid hex digit %d", a);
2336 }
2337
2338 /* Convert number NIB to a hex digit. */
2339
2340 static int
2341 tohex (int nib)
2342 {
2343 if (nib < 10)
2344 return '0' + nib;
2345 else
2346 return 'a' + nib - 10;
2347 }
2348 \f
2349 /* Tell the remote machine to resume. */
2350
2351 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2352
2353 static int last_sent_step;
2354
2355 static void
2356 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2357 {
2358 char *buf = alloca (PBUFSIZ);
2359 int pid = PIDGET (ptid);
2360 char *p;
2361
2362 if (pid == -1)
2363 set_thread (0, 0); /* run any thread */
2364 else
2365 set_thread (pid, 0); /* run this thread */
2366
2367 last_sent_signal = siggnal;
2368 last_sent_step = step;
2369
2370 /* A hook for when we need to do something at the last moment before
2371 resumption. */
2372 if (target_resume_hook)
2373 (*target_resume_hook) ();
2374
2375
2376 /* The s/S/c/C packets do not return status. So if the target does
2377 not support the S or C packets, the debug agent returns an empty
2378 string which is detected in remote_wait(). This protocol defect
2379 is fixed in the e/E packets. */
2380
2381 if (step && step_range_end)
2382 {
2383 /* If the target does not support the 'E' packet, we try the 'S'
2384 packet. Ideally we would fall back to the 'e' packet if that
2385 too is not supported. But that would require another copy of
2386 the code to issue the 'e' packet (and fall back to 's' if not
2387 supported) in remote_wait(). */
2388
2389 if (siggnal != TARGET_SIGNAL_0)
2390 {
2391 if (remote_protocol_E.support != PACKET_DISABLE)
2392 {
2393 p = buf;
2394 *p++ = 'E';
2395 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2396 *p++ = tohex (((int) siggnal) & 0xf);
2397 *p++ = ',';
2398 p += hexnumstr (p, (ULONGEST) step_range_start);
2399 *p++ = ',';
2400 p += hexnumstr (p, (ULONGEST) step_range_end);
2401 *p++ = 0;
2402
2403 putpkt (buf);
2404 getpkt (buf, PBUFSIZ, 0);
2405
2406 if (packet_ok(buf, &remote_protocol_E) == PACKET_OK)
2407 return;
2408 }
2409 }
2410 else
2411 {
2412 if (remote_protocol_e.support != PACKET_DISABLE)
2413 {
2414 p = buf;
2415 *p++ = 'e';
2416 p += hexnumstr (p, (ULONGEST) step_range_start);
2417 *p++ = ',';
2418 p += hexnumstr (p, (ULONGEST) step_range_end);
2419 *p++ = 0;
2420
2421 putpkt (buf);
2422 getpkt (buf, PBUFSIZ, 0);
2423
2424 if (packet_ok(buf, &remote_protocol_e) == PACKET_OK)
2425 return;
2426 }
2427 }
2428 }
2429
2430 if (siggnal != TARGET_SIGNAL_0)
2431 {
2432 buf[0] = step ? 'S' : 'C';
2433 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2434 buf[2] = tohex (((int) siggnal) & 0xf);
2435 buf[3] = '\0';
2436 }
2437 else
2438 strcpy (buf, step ? "s" : "c");
2439
2440 putpkt (buf);
2441 }
2442
2443 /* Same as remote_resume, but with async support. */
2444 static void
2445 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2446 {
2447 char *buf = alloca (PBUFSIZ);
2448 int pid = PIDGET (ptid);
2449 char *p;
2450
2451 if (pid == -1)
2452 set_thread (0, 0); /* run any thread */
2453 else
2454 set_thread (pid, 0); /* run this thread */
2455
2456 last_sent_signal = siggnal;
2457 last_sent_step = step;
2458
2459 /* A hook for when we need to do something at the last moment before
2460 resumption. */
2461 if (target_resume_hook)
2462 (*target_resume_hook) ();
2463
2464 /* The s/S/c/C packets do not return status. So if the target does
2465 not support the S or C packets, the debug agent returns an empty
2466 string which is detected in remote_wait(). This protocol defect
2467 is fixed in the e/E packets. */
2468
2469 if (step && step_range_end)
2470 {
2471 /* If the target does not support the 'E' packet, we try the 'S'
2472 packet. Ideally we would fall back to the 'e' packet if that
2473 too is not supported. But that would require another copy of
2474 the code to issue the 'e' packet (and fall back to 's' if not
2475 supported) in remote_wait(). */
2476
2477 if (siggnal != TARGET_SIGNAL_0)
2478 {
2479 if (remote_protocol_E.support != PACKET_DISABLE)
2480 {
2481 p = buf;
2482 *p++ = 'E';
2483 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2484 *p++ = tohex (((int) siggnal) & 0xf);
2485 *p++ = ',';
2486 p += hexnumstr (p, (ULONGEST) step_range_start);
2487 *p++ = ',';
2488 p += hexnumstr (p, (ULONGEST) step_range_end);
2489 *p++ = 0;
2490
2491 putpkt (buf);
2492 getpkt (buf, PBUFSIZ, 0);
2493
2494 if (packet_ok(buf, &remote_protocol_E) == PACKET_OK)
2495 goto register_event_loop;
2496 }
2497 }
2498 else
2499 {
2500 if (remote_protocol_e.support != PACKET_DISABLE)
2501 {
2502 p = buf;
2503 *p++ = 'e';
2504 p += hexnumstr (p, (ULONGEST) step_range_start);
2505 *p++ = ',';
2506 p += hexnumstr (p, (ULONGEST) step_range_end);
2507 *p++ = 0;
2508
2509 putpkt (buf);
2510 getpkt (buf, PBUFSIZ, 0);
2511
2512 if (packet_ok(buf, &remote_protocol_e) == PACKET_OK)
2513 goto register_event_loop;
2514 }
2515 }
2516 }
2517
2518 if (siggnal != TARGET_SIGNAL_0)
2519 {
2520 buf[0] = step ? 'S' : 'C';
2521 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2522 buf[2] = tohex ((int) siggnal & 0xf);
2523 buf[3] = '\0';
2524 }
2525 else
2526 strcpy (buf, step ? "s" : "c");
2527
2528 putpkt (buf);
2529
2530 register_event_loop:
2531 /* We are about to start executing the inferior, let's register it
2532 with the event loop. NOTE: this is the one place where all the
2533 execution commands end up. We could alternatively do this in each
2534 of the execution commands in infcmd.c.*/
2535 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2536 into infcmd.c in order to allow inferior function calls to work
2537 NOT asynchronously. */
2538 if (event_loop_p && target_can_async_p ())
2539 target_async (inferior_event_handler, 0);
2540 /* Tell the world that the target is now executing. */
2541 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2542 this? Instead, should the client of target just assume (for
2543 async targets) that the target is going to start executing? Is
2544 this information already found in the continuation block? */
2545 if (target_is_async_p ())
2546 target_executing = 1;
2547 }
2548 \f
2549
2550 /* Set up the signal handler for SIGINT, while the target is
2551 executing, ovewriting the 'regular' SIGINT signal handler. */
2552 static void
2553 initialize_sigint_signal_handler (void)
2554 {
2555 sigint_remote_token =
2556 create_async_signal_handler (async_remote_interrupt, NULL);
2557 signal (SIGINT, handle_remote_sigint);
2558 }
2559
2560 /* Signal handler for SIGINT, while the target is executing. */
2561 static void
2562 handle_remote_sigint (int sig)
2563 {
2564 signal (sig, handle_remote_sigint_twice);
2565 sigint_remote_twice_token =
2566 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2567 mark_async_signal_handler_wrapper (sigint_remote_token);
2568 }
2569
2570 /* Signal handler for SIGINT, installed after SIGINT has already been
2571 sent once. It will take effect the second time that the user sends
2572 a ^C. */
2573 static void
2574 handle_remote_sigint_twice (int sig)
2575 {
2576 signal (sig, handle_sigint);
2577 sigint_remote_twice_token =
2578 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2579 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2580 }
2581
2582 /* Perform the real interruption of the target execution, in response
2583 to a ^C. */
2584 static void
2585 async_remote_interrupt (gdb_client_data arg)
2586 {
2587 if (remote_debug)
2588 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2589
2590 target_stop ();
2591 }
2592
2593 /* Perform interrupt, if the first attempt did not succeed. Just give
2594 up on the target alltogether. */
2595 void
2596 async_remote_interrupt_twice (gdb_client_data arg)
2597 {
2598 if (remote_debug)
2599 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2600 /* Do something only if the target was not killed by the previous
2601 cntl-C. */
2602 if (target_executing)
2603 {
2604 interrupt_query ();
2605 signal (SIGINT, handle_remote_sigint);
2606 }
2607 }
2608
2609 /* Reinstall the usual SIGINT handlers, after the target has
2610 stopped. */
2611 static void
2612 cleanup_sigint_signal_handler (void *dummy)
2613 {
2614 signal (SIGINT, handle_sigint);
2615 if (sigint_remote_twice_token)
2616 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2617 if (sigint_remote_token)
2618 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2619 }
2620
2621 /* Send ^C to target to halt it. Target will respond, and send us a
2622 packet. */
2623 static void (*ofunc) (int);
2624
2625 /* The command line interface's stop routine. This function is installed
2626 as a signal handler for SIGINT. The first time a user requests a
2627 stop, we call remote_stop to send a break or ^C. If there is no
2628 response from the target (it didn't stop when the user requested it),
2629 we ask the user if he'd like to detach from the target. */
2630 static void
2631 remote_interrupt (int signo)
2632 {
2633 /* If this doesn't work, try more severe steps. */
2634 signal (signo, remote_interrupt_twice);
2635
2636 if (remote_debug)
2637 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2638
2639 target_stop ();
2640 }
2641
2642 /* The user typed ^C twice. */
2643
2644 static void
2645 remote_interrupt_twice (int signo)
2646 {
2647 signal (signo, ofunc);
2648 interrupt_query ();
2649 signal (signo, remote_interrupt);
2650 }
2651
2652 /* This is the generic stop called via the target vector. When a target
2653 interrupt is requested, either by the command line or the GUI, we
2654 will eventually end up here. */
2655 static void
2656 remote_stop (void)
2657 {
2658 /* Send a break or a ^C, depending on user preference. */
2659 if (remote_debug)
2660 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2661
2662 if (remote_break)
2663 SERIAL_SEND_BREAK (remote_desc);
2664 else
2665 SERIAL_WRITE (remote_desc, "\003", 1);
2666 }
2667
2668 /* Ask the user what to do when an interrupt is received. */
2669
2670 static void
2671 interrupt_query (void)
2672 {
2673 target_terminal_ours ();
2674
2675 if (query ("Interrupted while waiting for the program.\n\
2676 Give up (and stop debugging it)? "))
2677 {
2678 target_mourn_inferior ();
2679 return_to_top_level (RETURN_QUIT);
2680 }
2681
2682 target_terminal_inferior ();
2683 }
2684
2685 /* Enable/disable target terminal ownership. Most targets can use
2686 terminal groups to control terminal ownership. Remote targets are
2687 different in that explicit transfer of ownership to/from GDB/target
2688 is required. */
2689
2690 static void
2691 remote_async_terminal_inferior (void)
2692 {
2693 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2694 sync_execution here. This function should only be called when
2695 GDB is resuming the inferior in the forground. A background
2696 resume (``run&'') should leave GDB in control of the terminal and
2697 consequently should not call this code. */
2698 if (!sync_execution)
2699 return;
2700 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2701 calls target_terminal_*() idenpotent. The event-loop GDB talking
2702 to an asynchronous target with a synchronous command calls this
2703 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2704 stops trying to transfer the terminal to the target when it
2705 shouldn't this guard can go away. */
2706 if (!remote_async_terminal_ours_p)
2707 return;
2708 delete_file_handler (input_fd);
2709 remote_async_terminal_ours_p = 0;
2710 initialize_sigint_signal_handler ();
2711 /* NOTE: At this point we could also register our selves as the
2712 recipient of all input. Any characters typed could then be
2713 passed on down to the target. */
2714 }
2715
2716 static void
2717 remote_async_terminal_ours (void)
2718 {
2719 /* See FIXME in remote_async_terminal_inferior. */
2720 if (!sync_execution)
2721 return;
2722 /* See FIXME in remote_async_terminal_inferior. */
2723 if (remote_async_terminal_ours_p)
2724 return;
2725 cleanup_sigint_signal_handler (NULL);
2726 add_file_handler (input_fd, stdin_event_handler, 0);
2727 remote_async_terminal_ours_p = 1;
2728 }
2729
2730 /* If nonzero, ignore the next kill. */
2731
2732 int kill_kludge;
2733
2734 void
2735 remote_console_output (char *msg)
2736 {
2737 char *p;
2738
2739 for (p = msg; p[0] && p[1]; p += 2)
2740 {
2741 char tb[2];
2742 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2743 tb[0] = c;
2744 tb[1] = 0;
2745 fputs_unfiltered (tb, gdb_stdtarg);
2746 }
2747 gdb_flush (gdb_stdtarg);
2748 }
2749
2750 /* Wait until the remote machine stops, then return,
2751 storing status in STATUS just as `wait' would.
2752 Returns "pid", which in the case of a multi-threaded
2753 remote OS, is the thread-id. */
2754
2755 static ptid_t
2756 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2757 {
2758 unsigned char *buf = alloca (PBUFSIZ);
2759 int thread_num = -1;
2760
2761 status->kind = TARGET_WAITKIND_EXITED;
2762 status->value.integer = 0;
2763
2764 while (1)
2765 {
2766 unsigned char *p;
2767
2768 ofunc = signal (SIGINT, remote_interrupt);
2769 getpkt (buf, PBUFSIZ, 1);
2770 signal (SIGINT, ofunc);
2771
2772 /* This is a hook for when we need to do something (perhaps the
2773 collection of trace data) every time the target stops. */
2774 if (target_wait_loop_hook)
2775 (*target_wait_loop_hook) ();
2776
2777 switch (buf[0])
2778 {
2779 case 'E': /* Error of some sort */
2780 warning ("Remote failure reply: %s", buf);
2781 continue;
2782 case 'T': /* Status with PC, SP, FP, ... */
2783 {
2784 int i;
2785 long regno;
2786 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
2787
2788 /* Expedited reply, containing Signal, {regno, reg} repeat */
2789 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2790 ss = signal number
2791 n... = register number
2792 r... = register contents
2793 */
2794 p = &buf[3]; /* after Txx */
2795
2796 while (*p)
2797 {
2798 unsigned char *p1;
2799 char *p_temp;
2800
2801 /* Read the register number */
2802 regno = strtol ((const char *) p, &p_temp, 16);
2803 p1 = (unsigned char *) p_temp;
2804
2805 if (p1 == p) /* No register number present here */
2806 {
2807 p1 = (unsigned char *) strchr ((const char *) p, ':');
2808 if (p1 == NULL)
2809 warning ("Malformed packet(a) (missing colon): %s\n\
2810 Packet: '%s'\n",
2811 p, buf);
2812 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
2813 {
2814 p_temp = unpack_varlen_hex (++p1, &thread_num);
2815 record_currthread (thread_num);
2816 p = (unsigned char *) p_temp;
2817 }
2818 }
2819 else
2820 {
2821 p = p1;
2822
2823 if (*p++ != ':')
2824 warning ("Malformed packet(b) (missing colon): %s\n\
2825 Packet: '%s'\n",
2826 p, buf);
2827
2828 if (regno >= NUM_REGS)
2829 warning ("Remote sent bad register number %ld: %s\n\
2830 Packet: '%s'\n",
2831 regno, p, buf);
2832
2833 for (i = 0; i < REGISTER_RAW_SIZE (regno); i++)
2834 {
2835 if (p[0] == 0 || p[1] == 0)
2836 warning ("Remote reply is too short: %s", buf);
2837 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
2838 p += 2;
2839 }
2840 supply_register (regno, regs);
2841 }
2842
2843 if (*p++ != ';')
2844 {
2845 warning ("Remote register badly formatted: %s", buf);
2846 warning (" here: %s", p);
2847 }
2848 }
2849 }
2850 /* fall through */
2851 case 'S': /* Old style status, just signal only */
2852 status->kind = TARGET_WAITKIND_STOPPED;
2853 status->value.sig = (enum target_signal)
2854 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2855
2856 if (buf[3] == 'p')
2857 {
2858 /* Export Cisco kernel mode as a convenience variable
2859 (so that it can be used in the GDB prompt if desired). */
2860
2861 if (cisco_kernel_mode == 1)
2862 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
2863 value_from_string ("PDEBUG-"));
2864 cisco_kernel_mode = 0;
2865 thread_num = strtol ((const char *) &buf[4], NULL, 16);
2866 record_currthread (thread_num);
2867 }
2868 else if (buf[3] == 'k')
2869 {
2870 /* Export Cisco kernel mode as a convenience variable
2871 (so that it can be used in the GDB prompt if desired). */
2872
2873 if (cisco_kernel_mode == 1)
2874 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
2875 value_from_string ("KDEBUG-"));
2876 cisco_kernel_mode = 1;
2877 }
2878 goto got_status;
2879 case 'N': /* Cisco special: status and offsets */
2880 {
2881 bfd_vma text_addr, data_addr, bss_addr;
2882 bfd_signed_vma text_off, data_off, bss_off;
2883 unsigned char *p1;
2884
2885 status->kind = TARGET_WAITKIND_STOPPED;
2886 status->value.sig = (enum target_signal)
2887 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2888
2889 if (symfile_objfile == NULL)
2890 {
2891 warning ("Relocation packet received with no symbol file. \
2892 Packet Dropped");
2893 goto got_status;
2894 }
2895
2896 /* Relocate object file. Buffer format is NAATT;DD;BB
2897 * where AA is the signal number, TT is the new text
2898 * address, DD * is the new data address, and BB is the
2899 * new bss address. */
2900
2901 p = &buf[3];
2902 text_addr = strtoul (p, (char **) &p1, 16);
2903 if (p1 == p || *p1 != ';')
2904 warning ("Malformed relocation packet: Packet '%s'", buf);
2905 p = p1 + 1;
2906 data_addr = strtoul (p, (char **) &p1, 16);
2907 if (p1 == p || *p1 != ';')
2908 warning ("Malformed relocation packet: Packet '%s'", buf);
2909 p = p1 + 1;
2910 bss_addr = strtoul (p, (char **) &p1, 16);
2911 if (p1 == p)
2912 warning ("Malformed relocation packet: Packet '%s'", buf);
2913
2914 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
2915 &text_off, &data_off, &bss_off)
2916 == 0)
2917 if (text_off != 0 || data_off != 0 || bss_off != 0)
2918 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
2919
2920 goto got_status;
2921 }
2922 case 'W': /* Target exited */
2923 {
2924 /* The remote process exited. */
2925 status->kind = TARGET_WAITKIND_EXITED;
2926 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
2927 goto got_status;
2928 }
2929 case 'X':
2930 status->kind = TARGET_WAITKIND_SIGNALLED;
2931 status->value.sig = (enum target_signal)
2932 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2933 kill_kludge = 1;
2934
2935 goto got_status;
2936 case 'O': /* Console output */
2937 remote_console_output (buf + 1);
2938 continue;
2939 case '\0':
2940 if (last_sent_signal != TARGET_SIGNAL_0)
2941 {
2942 /* Zero length reply means that we tried 'S' or 'C' and
2943 the remote system doesn't support it. */
2944 target_terminal_ours_for_output ();
2945 printf_filtered
2946 ("Can't send signals to this remote system. %s not sent.\n",
2947 target_signal_to_name (last_sent_signal));
2948 last_sent_signal = TARGET_SIGNAL_0;
2949 target_terminal_inferior ();
2950
2951 strcpy ((char *) buf, last_sent_step ? "s" : "c");
2952 putpkt ((char *) buf);
2953 continue;
2954 }
2955 /* else fallthrough */
2956 default:
2957 warning ("Invalid remote reply: %s", buf);
2958 continue;
2959 }
2960 }
2961 got_status:
2962 if (thread_num != -1)
2963 {
2964 return pid_to_ptid (thread_num);
2965 }
2966 return inferior_ptid;
2967 }
2968
2969 /* Async version of remote_wait. */
2970 static ptid_t
2971 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
2972 {
2973 unsigned char *buf = alloca (PBUFSIZ);
2974 int thread_num = -1;
2975
2976 status->kind = TARGET_WAITKIND_EXITED;
2977 status->value.integer = 0;
2978
2979 while (1)
2980 {
2981 unsigned char *p;
2982
2983 if (!target_is_async_p ())
2984 ofunc = signal (SIGINT, remote_interrupt);
2985 /* FIXME: cagney/1999-09-27: If we're in async mode we should
2986 _never_ wait for ever -> test on target_is_async_p().
2987 However, before we do that we need to ensure that the caller
2988 knows how to take the target into/out of async mode. */
2989 getpkt (buf, PBUFSIZ, wait_forever_enabled_p);
2990 if (!target_is_async_p ())
2991 signal (SIGINT, ofunc);
2992
2993 /* This is a hook for when we need to do something (perhaps the
2994 collection of trace data) every time the target stops. */
2995 if (target_wait_loop_hook)
2996 (*target_wait_loop_hook) ();
2997
2998 switch (buf[0])
2999 {
3000 case 'E': /* Error of some sort */
3001 warning ("Remote failure reply: %s", buf);
3002 continue;
3003 case 'T': /* Status with PC, SP, FP, ... */
3004 {
3005 int i;
3006 long regno;
3007 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
3008
3009 /* Expedited reply, containing Signal, {regno, reg} repeat */
3010 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3011 ss = signal number
3012 n... = register number
3013 r... = register contents
3014 */
3015 p = &buf[3]; /* after Txx */
3016
3017 while (*p)
3018 {
3019 unsigned char *p1;
3020 char *p_temp;
3021
3022 /* Read the register number */
3023 regno = strtol ((const char *) p, &p_temp, 16);
3024 p1 = (unsigned char *) p_temp;
3025
3026 if (p1 == p) /* No register number present here */
3027 {
3028 p1 = (unsigned char *) strchr ((const char *) p, ':');
3029 if (p1 == NULL)
3030 warning ("Malformed packet(a) (missing colon): %s\n\
3031 Packet: '%s'\n",
3032 p, buf);
3033 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
3034 {
3035 p_temp = unpack_varlen_hex (++p1, &thread_num);
3036 record_currthread (thread_num);
3037 p = (unsigned char *) p_temp;
3038 }
3039 }
3040 else
3041 {
3042 p = p1;
3043
3044 if (*p++ != ':')
3045 warning ("Malformed packet(b) (missing colon): %s\n\
3046 Packet: '%s'\n",
3047 p, buf);
3048
3049 if (regno >= NUM_REGS)
3050 warning ("Remote sent bad register number %ld: %s\n\
3051 Packet: '%s'\n",
3052 regno, p, buf);
3053
3054 for (i = 0; i < REGISTER_RAW_SIZE (regno); i++)
3055 {
3056 if (p[0] == 0 || p[1] == 0)
3057 warning ("Remote reply is too short: %s", buf);
3058 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3059 p += 2;
3060 }
3061 supply_register (regno, regs);
3062 }
3063
3064 if (*p++ != ';')
3065 {
3066 warning ("Remote register badly formatted: %s", buf);
3067 warning (" here: %s", p);
3068 }
3069 }
3070 }
3071 /* fall through */
3072 case 'S': /* Old style status, just signal only */
3073 status->kind = TARGET_WAITKIND_STOPPED;
3074 status->value.sig = (enum target_signal)
3075 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3076
3077 if (buf[3] == 'p')
3078 {
3079 /* Export Cisco kernel mode as a convenience variable
3080 (so that it can be used in the GDB prompt if desired). */
3081
3082 if (cisco_kernel_mode == 1)
3083 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3084 value_from_string ("PDEBUG-"));
3085 cisco_kernel_mode = 0;
3086 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3087 record_currthread (thread_num);
3088 }
3089 else if (buf[3] == 'k')
3090 {
3091 /* Export Cisco kernel mode as a convenience variable
3092 (so that it can be used in the GDB prompt if desired). */
3093
3094 if (cisco_kernel_mode == 1)
3095 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3096 value_from_string ("KDEBUG-"));
3097 cisco_kernel_mode = 1;
3098 }
3099 goto got_status;
3100 case 'N': /* Cisco special: status and offsets */
3101 {
3102 bfd_vma text_addr, data_addr, bss_addr;
3103 bfd_signed_vma text_off, data_off, bss_off;
3104 unsigned char *p1;
3105
3106 status->kind = TARGET_WAITKIND_STOPPED;
3107 status->value.sig = (enum target_signal)
3108 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3109
3110 if (symfile_objfile == NULL)
3111 {
3112 warning ("Relocation packet recieved with no symbol file. \
3113 Packet Dropped");
3114 goto got_status;
3115 }
3116
3117 /* Relocate object file. Buffer format is NAATT;DD;BB
3118 * where AA is the signal number, TT is the new text
3119 * address, DD * is the new data address, and BB is the
3120 * new bss address. */
3121
3122 p = &buf[3];
3123 text_addr = strtoul (p, (char **) &p1, 16);
3124 if (p1 == p || *p1 != ';')
3125 warning ("Malformed relocation packet: Packet '%s'", buf);
3126 p = p1 + 1;
3127 data_addr = strtoul (p, (char **) &p1, 16);
3128 if (p1 == p || *p1 != ';')
3129 warning ("Malformed relocation packet: Packet '%s'", buf);
3130 p = p1 + 1;
3131 bss_addr = strtoul (p, (char **) &p1, 16);
3132 if (p1 == p)
3133 warning ("Malformed relocation packet: Packet '%s'", buf);
3134
3135 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3136 &text_off, &data_off, &bss_off)
3137 == 0)
3138 if (text_off != 0 || data_off != 0 || bss_off != 0)
3139 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3140
3141 goto got_status;
3142 }
3143 case 'W': /* Target exited */
3144 {
3145 /* The remote process exited. */
3146 status->kind = TARGET_WAITKIND_EXITED;
3147 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3148 goto got_status;
3149 }
3150 case 'X':
3151 status->kind = TARGET_WAITKIND_SIGNALLED;
3152 status->value.sig = (enum target_signal)
3153 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3154 kill_kludge = 1;
3155
3156 goto got_status;
3157 case 'O': /* Console output */
3158 remote_console_output (buf + 1);
3159 /* Return immediately to the event loop. The event loop will
3160 still be waiting on the inferior afterwards. */
3161 status->kind = TARGET_WAITKIND_IGNORE;
3162 goto got_status;
3163 case '\0':
3164 if (last_sent_signal != TARGET_SIGNAL_0)
3165 {
3166 /* Zero length reply means that we tried 'S' or 'C' and
3167 the remote system doesn't support it. */
3168 target_terminal_ours_for_output ();
3169 printf_filtered
3170 ("Can't send signals to this remote system. %s not sent.\n",
3171 target_signal_to_name (last_sent_signal));
3172 last_sent_signal = TARGET_SIGNAL_0;
3173 target_terminal_inferior ();
3174
3175 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3176 putpkt ((char *) buf);
3177 continue;
3178 }
3179 /* else fallthrough */
3180 default:
3181 warning ("Invalid remote reply: %s", buf);
3182 continue;
3183 }
3184 }
3185 got_status:
3186 if (thread_num != -1)
3187 {
3188 return pid_to_ptid (thread_num);
3189 }
3190 return inferior_ptid;
3191 }
3192
3193 /* Number of bytes of registers this stub implements. */
3194
3195 static int register_bytes_found;
3196
3197 /* Read the remote registers into the block REGS. */
3198 /* Currently we just read all the registers, so we don't use regno. */
3199
3200 /* ARGSUSED */
3201 static void
3202 remote_fetch_registers (int regno)
3203 {
3204 char *buf = alloca (PBUFSIZ);
3205 int i;
3206 char *p;
3207 char *regs = alloca (REGISTER_BYTES);
3208
3209 set_thread (PIDGET (inferior_ptid), 1);
3210
3211 sprintf (buf, "g");
3212 remote_send (buf, PBUFSIZ);
3213
3214 /* Save the size of the packet sent to us by the target. Its used
3215 as a heuristic when determining the max size of packets that the
3216 target can safely receive. */
3217 if (actual_register_packet_size == 0)
3218 actual_register_packet_size = strlen (buf);
3219
3220 /* Unimplemented registers read as all bits zero. */
3221 memset (regs, 0, REGISTER_BYTES);
3222
3223 /* We can get out of synch in various cases. If the first character
3224 in the buffer is not a hex character, assume that has happened
3225 and try to fetch another packet to read. */
3226 while ((buf[0] < '0' || buf[0] > '9')
3227 && (buf[0] < 'a' || buf[0] > 'f')
3228 && buf[0] != 'x') /* New: unavailable register value */
3229 {
3230 if (remote_debug)
3231 fprintf_unfiltered (gdb_stdlog,
3232 "Bad register packet; fetching a new packet\n");
3233 getpkt (buf, PBUFSIZ, 0);
3234 }
3235
3236 /* Reply describes registers byte by byte, each byte encoded as two
3237 hex characters. Suck them all up, then supply them to the
3238 register cacheing/storage mechanism. */
3239
3240 p = buf;
3241 for (i = 0; i < REGISTER_BYTES; i++)
3242 {
3243 if (p[0] == 0)
3244 break;
3245 if (p[1] == 0)
3246 {
3247 warning ("Remote reply is of odd length: %s", buf);
3248 /* Don't change register_bytes_found in this case, and don't
3249 print a second warning. */
3250 goto supply_them;
3251 }
3252 if (p[0] == 'x' && p[1] == 'x')
3253 regs[i] = 0; /* 'x' */
3254 else
3255 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3256 p += 2;
3257 }
3258
3259 if (i != register_bytes_found)
3260 {
3261 register_bytes_found = i;
3262 if (REGISTER_BYTES_OK_P ()
3263 && !REGISTER_BYTES_OK (i))
3264 warning ("Remote reply is too short: %s", buf);
3265 }
3266
3267 supply_them:
3268 for (i = 0; i < NUM_REGS; i++)
3269 {
3270 supply_register (i, &regs[REGISTER_BYTE (i)]);
3271 if (buf[REGISTER_BYTE (i) * 2] == 'x')
3272 set_register_cached (i, -1);
3273 }
3274 }
3275
3276 /* Prepare to store registers. Since we may send them all (using a
3277 'G' request), we have to read out the ones we don't want to change
3278 first. */
3279
3280 static void
3281 remote_prepare_to_store (void)
3282 {
3283 /* Make sure the entire registers array is valid. */
3284 switch (remote_protocol_P.support)
3285 {
3286 case PACKET_DISABLE:
3287 case PACKET_SUPPORT_UNKNOWN:
3288 read_register_bytes (0, (char *) NULL, REGISTER_BYTES);
3289 break;
3290 case PACKET_ENABLE:
3291 break;
3292 }
3293 }
3294
3295 /* Helper: Attempt to store REGNO using the P packet. Return fail IFF
3296 packet was not recognized. */
3297
3298 static int
3299 store_register_using_P (int regno)
3300 {
3301 /* Try storing a single register. */
3302 char *buf = alloca (PBUFSIZ);
3303 char *regp;
3304 char *p;
3305 int i;
3306
3307 sprintf (buf, "P%x=", regno);
3308 p = buf + strlen (buf);
3309 regp = register_buffer (regno);
3310 for (i = 0; i < REGISTER_RAW_SIZE (regno); ++i)
3311 {
3312 *p++ = tohex ((regp[i] >> 4) & 0xf);
3313 *p++ = tohex (regp[i] & 0xf);
3314 }
3315 *p = '\0';
3316 remote_send (buf, PBUFSIZ);
3317
3318 return buf[0] != '\0';
3319 }
3320
3321
3322 /* Store register REGNO, or all registers if REGNO == -1, from the contents
3323 of the register cache buffer. FIXME: ignores errors. */
3324
3325 static void
3326 remote_store_registers (int regno)
3327 {
3328 char *buf = alloca (PBUFSIZ);
3329 int i;
3330 char *p;
3331 char *regs;
3332
3333 set_thread (PIDGET (inferior_ptid), 1);
3334
3335 if (regno >= 0)
3336 {
3337 switch (remote_protocol_P.support)
3338 {
3339 case PACKET_DISABLE:
3340 break;
3341 case PACKET_ENABLE:
3342 if (store_register_using_P (regno))
3343 return;
3344 else
3345 error ("Protocol error: P packet not recognized by stub");
3346 case PACKET_SUPPORT_UNKNOWN:
3347 if (store_register_using_P (regno))
3348 {
3349 /* The stub recognized the 'P' packet. Remember this. */
3350 remote_protocol_P.support = PACKET_ENABLE;
3351 return;
3352 }
3353 else
3354 {
3355 /* The stub does not support the 'P' packet. Use 'G'
3356 instead, and don't try using 'P' in the future (it
3357 will just waste our time). */
3358 remote_protocol_P.support = PACKET_DISABLE;
3359 break;
3360 }
3361 }
3362 }
3363
3364 buf[0] = 'G';
3365
3366 /* Command describes registers byte by byte,
3367 each byte encoded as two hex characters. */
3368
3369 regs = register_buffer (-1);
3370 p = buf + 1;
3371 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3372 for (i = 0; i < register_bytes_found; i++)
3373 {
3374 *p++ = tohex ((regs[i] >> 4) & 0xf);
3375 *p++ = tohex (regs[i] & 0xf);
3376 }
3377 *p = '\0';
3378
3379 remote_send (buf, PBUFSIZ);
3380 }
3381 \f
3382
3383 /* Return the number of hex digits in num. */
3384
3385 static int
3386 hexnumlen (ULONGEST num)
3387 {
3388 int i;
3389
3390 for (i = 0; num != 0; i++)
3391 num >>= 4;
3392
3393 return max (i, 1);
3394 }
3395
3396 /* Set BUF to the minimum number of hex digits representing NUM. */
3397
3398 static int
3399 hexnumstr (char *buf, ULONGEST num)
3400 {
3401 int len = hexnumlen (num);
3402 return hexnumnstr (buf, num, len);
3403 }
3404
3405
3406 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3407
3408 static int
3409 hexnumnstr (char *buf, ULONGEST num, int width)
3410 {
3411 int i;
3412
3413 buf[width] = '\0';
3414
3415 for (i = width - 1; i >= 0; i--)
3416 {
3417 buf[i] = "0123456789abcdef"[(num & 0xf)];
3418 num >>= 4;
3419 }
3420
3421 return width;
3422 }
3423
3424 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3425
3426 static CORE_ADDR
3427 remote_address_masked (CORE_ADDR addr)
3428 {
3429 if (remote_address_size > 0
3430 && remote_address_size < (sizeof (ULONGEST) * 8))
3431 {
3432 /* Only create a mask when that mask can safely be constructed
3433 in a ULONGEST variable. */
3434 ULONGEST mask = 1;
3435 mask = (mask << remote_address_size) - 1;
3436 addr &= mask;
3437 }
3438 return addr;
3439 }
3440
3441 /* Determine whether the remote target supports binary downloading.
3442 This is accomplished by sending a no-op memory write of zero length
3443 to the target at the specified address. It does not suffice to send
3444 the whole packet, since many stubs strip the eighth bit and subsequently
3445 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3446
3447 NOTE: This can still lose if the serial line is not eight-bit
3448 clean. In cases like this, the user should clear "remote
3449 X-packet". */
3450
3451 static void
3452 check_binary_download (CORE_ADDR addr)
3453 {
3454 switch (remote_protocol_binary_download.support)
3455 {
3456 case PACKET_DISABLE:
3457 break;
3458 case PACKET_ENABLE:
3459 break;
3460 case PACKET_SUPPORT_UNKNOWN:
3461 {
3462 char *buf = alloca (PBUFSIZ);
3463 char *p;
3464
3465 p = buf;
3466 *p++ = 'X';
3467 p += hexnumstr (p, (ULONGEST) addr);
3468 *p++ = ',';
3469 p += hexnumstr (p, (ULONGEST) 0);
3470 *p++ = ':';
3471 *p = '\0';
3472
3473 putpkt_binary (buf, (int) (p - buf));
3474 getpkt (buf, PBUFSIZ, 0);
3475
3476 if (buf[0] == '\0')
3477 {
3478 if (remote_debug)
3479 fprintf_unfiltered (gdb_stdlog,
3480 "binary downloading NOT suppported by target\n");
3481 remote_protocol_binary_download.support = PACKET_DISABLE;
3482 }
3483 else
3484 {
3485 if (remote_debug)
3486 fprintf_unfiltered (gdb_stdlog,
3487 "binary downloading suppported by target\n");
3488 remote_protocol_binary_download.support = PACKET_ENABLE;
3489 }
3490 break;
3491 }
3492 }
3493 }
3494
3495 /* Write memory data directly to the remote machine.
3496 This does not inform the data cache; the data cache uses this.
3497 MEMADDR is the address in the remote memory space.
3498 MYADDR is the address of the buffer in our space.
3499 LEN is the number of bytes.
3500
3501 Returns number of bytes transferred, or 0 (setting errno) for
3502 error. Only transfer a single packet. */
3503
3504 static int
3505 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3506 {
3507 unsigned char *buf;
3508 int max_buf_size; /* Max size of packet output buffer */
3509 unsigned char *p;
3510 unsigned char *plen;
3511 long sizeof_buf;
3512 int plenlen;
3513 int todo;
3514 int nr_bytes;
3515
3516 /* Verify that the target can support a binary download */
3517 check_binary_download (memaddr);
3518
3519 /* Determine the max packet size. */
3520 max_buf_size = get_memory_write_packet_size ();
3521 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3522 buf = alloca (sizeof_buf);
3523
3524 /* Subtract header overhead from max payload size - $M<memaddr>,<len>:#nn */
3525 max_buf_size -= 2 + hexnumlen (memaddr + len - 1) + 1 + hexnumlen (len) + 4;
3526
3527 /* construct "M"<memaddr>","<len>":" */
3528 /* sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, todo); */
3529 p = buf;
3530
3531 /* Append [XM]. Compute a best guess of the number of bytes
3532 actually transfered. */
3533 switch (remote_protocol_binary_download.support)
3534 {
3535 case PACKET_ENABLE:
3536 *p++ = 'X';
3537 /* Best guess at number of bytes that will fit. */
3538 todo = min (len, max_buf_size);
3539 break;
3540 case PACKET_DISABLE:
3541 *p++ = 'M';
3542 /* num bytes that will fit */
3543 todo = min (len, max_buf_size / 2);
3544 break;
3545 case PACKET_SUPPORT_UNKNOWN:
3546 internal_error (__FILE__, __LINE__,
3547 "remote_write_bytes: bad internal state");
3548 default:
3549 internal_error (__FILE__, __LINE__, "bad switch");
3550 }
3551
3552 /* Append <memaddr> */
3553 memaddr = remote_address_masked (memaddr);
3554 p += hexnumstr (p, (ULONGEST) memaddr);
3555 *p++ = ',';
3556
3557 /* Append <len>. Retain the location/size of <len>. It may
3558 need to be adjusted once the packet body has been created. */
3559 plen = p;
3560 plenlen = hexnumstr (p, (ULONGEST) todo);
3561 p += plenlen;
3562 *p++ = ':';
3563 *p = '\0';
3564
3565 /* Append the packet body. */
3566 switch (remote_protocol_binary_download.support)
3567 {
3568 case PACKET_ENABLE:
3569 /* Binary mode. Send target system values byte by byte, in
3570 increasing byte addresses. Only escape certain critical
3571 characters. */
3572 for (nr_bytes = 0;
3573 (nr_bytes < todo) && (p - buf) < (max_buf_size - 2);
3574 nr_bytes++)
3575 {
3576 switch (myaddr[nr_bytes] & 0xff)
3577 {
3578 case '$':
3579 case '#':
3580 case 0x7d:
3581 /* These must be escaped */
3582 *p++ = 0x7d;
3583 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3584 break;
3585 default:
3586 *p++ = myaddr[nr_bytes] & 0xff;
3587 break;
3588 }
3589 }
3590 if (nr_bytes < todo)
3591 {
3592 /* Escape chars have filled up the buffer prematurely,
3593 and we have actually sent fewer bytes than planned.
3594 Fix-up the length field of the packet. Use the same
3595 number of characters as before. */
3596
3597 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3598 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3599 }
3600 break;
3601 case PACKET_DISABLE:
3602 /* Normal mode: Send target system values byte by byte, in
3603 increasing byte addresses. Each byte is encoded as a two hex
3604 value. */
3605 for (nr_bytes = 0; nr_bytes < todo; nr_bytes++)
3606 {
3607 *p++ = tohex ((myaddr[nr_bytes] >> 4) & 0xf);
3608 *p++ = tohex (myaddr[nr_bytes] & 0xf);
3609 }
3610 *p = '\0';
3611 break;
3612 case PACKET_SUPPORT_UNKNOWN:
3613 internal_error (__FILE__, __LINE__,
3614 "remote_write_bytes: bad internal state");
3615 default:
3616 internal_error (__FILE__, __LINE__, "bad switch");
3617 }
3618
3619 putpkt_binary (buf, (int) (p - buf));
3620 getpkt (buf, sizeof_buf, 0);
3621
3622 if (buf[0] == 'E')
3623 {
3624 /* There is no correspondance between what the remote protocol
3625 uses for errors and errno codes. We would like a cleaner way
3626 of representing errors (big enough to include errno codes,
3627 bfd_error codes, and others). But for now just return EIO. */
3628 errno = EIO;
3629 return 0;
3630 }
3631
3632 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3633 bytes than we'd planned. */
3634 return nr_bytes;
3635 }
3636
3637 /* Read memory data directly from the remote machine.
3638 This does not use the data cache; the data cache uses this.
3639 MEMADDR is the address in the remote memory space.
3640 MYADDR is the address of the buffer in our space.
3641 LEN is the number of bytes.
3642
3643 Returns number of bytes transferred, or 0 for error. */
3644
3645 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3646 remote targets) shouldn't attempt to read the entire buffer.
3647 Instead it should read a single packet worth of data and then
3648 return the byte size of that packet to the caller. The caller (its
3649 caller and its callers caller ;-) already contains code for
3650 handling partial reads. */
3651
3652 static int
3653 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3654 {
3655 char *buf;
3656 int max_buf_size; /* Max size of packet output buffer */
3657 long sizeof_buf;
3658 int origlen;
3659
3660 /* Create a buffer big enough for this packet. */
3661 max_buf_size = get_memory_read_packet_size ();
3662 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3663 buf = alloca (sizeof_buf);
3664
3665 origlen = len;
3666 while (len > 0)
3667 {
3668 char *p;
3669 int todo;
3670 int i;
3671
3672 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3673
3674 /* construct "m"<memaddr>","<len>" */
3675 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3676 memaddr = remote_address_masked (memaddr);
3677 p = buf;
3678 *p++ = 'm';
3679 p += hexnumstr (p, (ULONGEST) memaddr);
3680 *p++ = ',';
3681 p += hexnumstr (p, (ULONGEST) todo);
3682 *p = '\0';
3683
3684 putpkt (buf);
3685 getpkt (buf, sizeof_buf, 0);
3686
3687 if (buf[0] == 'E')
3688 {
3689 /* There is no correspondance between what the remote protocol uses
3690 for errors and errno codes. We would like a cleaner way of
3691 representing errors (big enough to include errno codes, bfd_error
3692 codes, and others). But for now just return EIO. */
3693 errno = EIO;
3694 return 0;
3695 }
3696
3697 /* Reply describes memory byte by byte,
3698 each byte encoded as two hex characters. */
3699
3700 p = buf;
3701 for (i = 0; i < todo; i++)
3702 {
3703 if (p[0] == 0 || p[1] == 0)
3704 /* Reply is short. This means that we were able to read
3705 only part of what we wanted to. */
3706 return i + (origlen - len);
3707 myaddr[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3708 p += 2;
3709 }
3710 myaddr += todo;
3711 memaddr += todo;
3712 len -= todo;
3713 }
3714 return origlen;
3715 }
3716 \f
3717 /* Read or write LEN bytes from inferior memory at MEMADDR,
3718 transferring to or from debugger address BUFFER. Write to inferior if
3719 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3720 for error. TARGET is unused. */
3721
3722 /* ARGSUSED */
3723 static int
3724 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3725 int should_write,
3726 struct mem_attrib *attrib ATTRIBUTE_UNUSED,
3727 struct target_ops *target)
3728 {
3729 CORE_ADDR targ_addr;
3730 int targ_len;
3731 int res;
3732
3733 REMOTE_TRANSLATE_XFER_ADDRESS (mem_addr, mem_len, &targ_addr, &targ_len);
3734 if (targ_len <= 0)
3735 return 0;
3736
3737 if (should_write)
3738 res = remote_write_bytes (targ_addr, buffer, targ_len);
3739 else
3740 res = remote_read_bytes (targ_addr, buffer, targ_len);
3741
3742 return res;
3743 }
3744
3745
3746 #if 0
3747 /* Enable after 4.12. */
3748
3749 void
3750 remote_search (int len, char *data, char *mask, CORE_ADDR startaddr,
3751 int increment, CORE_ADDR lorange, CORE_ADDR hirange,
3752 CORE_ADDR *addr_found, char *data_found)
3753 {
3754 if (increment == -4 && len == 4)
3755 {
3756 long mask_long, data_long;
3757 long data_found_long;
3758 CORE_ADDR addr_we_found;
3759 char *buf = alloca (PBUFSIZ);
3760 long returned_long[2];
3761 char *p;
3762
3763 mask_long = extract_unsigned_integer (mask, len);
3764 data_long = extract_unsigned_integer (data, len);
3765 sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
3766 putpkt (buf);
3767 getpkt (buf, PBUFSIZ, 0);
3768 if (buf[0] == '\0')
3769 {
3770 /* The stub doesn't support the 't' request. We might want to
3771 remember this fact, but on the other hand the stub could be
3772 switched on us. Maybe we should remember it only until
3773 the next "target remote". */
3774 generic_search (len, data, mask, startaddr, increment, lorange,
3775 hirange, addr_found, data_found);
3776 return;
3777 }
3778
3779 if (buf[0] == 'E')
3780 /* There is no correspondance between what the remote protocol uses
3781 for errors and errno codes. We would like a cleaner way of
3782 representing errors (big enough to include errno codes, bfd_error
3783 codes, and others). But for now just use EIO. */
3784 memory_error (EIO, startaddr);
3785 p = buf;
3786 addr_we_found = 0;
3787 while (*p != '\0' && *p != ',')
3788 addr_we_found = (addr_we_found << 4) + fromhex (*p++);
3789 if (*p == '\0')
3790 error ("Protocol error: short return for search");
3791
3792 data_found_long = 0;
3793 while (*p != '\0' && *p != ',')
3794 data_found_long = (data_found_long << 4) + fromhex (*p++);
3795 /* Ignore anything after this comma, for future extensions. */
3796
3797 if (addr_we_found < lorange || addr_we_found >= hirange)
3798 {
3799 *addr_found = 0;
3800 return;
3801 }
3802
3803 *addr_found = addr_we_found;
3804 *data_found = store_unsigned_integer (data_we_found, len);
3805 return;
3806 }
3807 generic_search (len, data, mask, startaddr, increment, lorange,
3808 hirange, addr_found, data_found);
3809 }
3810 #endif /* 0 */
3811 \f
3812 static void
3813 remote_files_info (struct target_ops *ignore)
3814 {
3815 puts_filtered ("Debugging a target over a serial line.\n");
3816 }
3817 \f
3818 /* Stuff for dealing with the packets which are part of this protocol.
3819 See comment at top of file for details. */
3820
3821 /* Read a single character from the remote end, masking it down to 7 bits. */
3822
3823 static int
3824 readchar (int timeout)
3825 {
3826 int ch;
3827
3828 ch = SERIAL_READCHAR (remote_desc, timeout);
3829
3830 if (ch >= 0)
3831 return (ch & 0x7f);
3832
3833 switch ((enum serial_rc) ch)
3834 {
3835 case SERIAL_EOF:
3836 target_mourn_inferior ();
3837 error ("Remote connection closed");
3838 /* no return */
3839 case SERIAL_ERROR:
3840 perror_with_name ("Remote communication error");
3841 /* no return */
3842 case SERIAL_TIMEOUT:
3843 break;
3844 }
3845 return ch;
3846 }
3847
3848 /* Send the command in BUF to the remote machine, and read the reply
3849 into BUF. Report an error if we get an error reply. */
3850
3851 static void
3852 remote_send (char *buf,
3853 long sizeof_buf)
3854 {
3855 putpkt (buf);
3856 getpkt (buf, sizeof_buf, 0);
3857
3858 if (buf[0] == 'E')
3859 error ("Remote failure reply: %s", buf);
3860 }
3861
3862 /* Display a null-terminated packet on stdout, for debugging, using C
3863 string notation. */
3864
3865 static void
3866 print_packet (char *buf)
3867 {
3868 puts_filtered ("\"");
3869 fputstr_filtered (buf, '"', gdb_stdout);
3870 puts_filtered ("\"");
3871 }
3872
3873 int
3874 putpkt (char *buf)
3875 {
3876 return putpkt_binary (buf, strlen (buf));
3877 }
3878
3879 /* Send a packet to the remote machine, with error checking. The data
3880 of the packet is in BUF. The string in BUF can be at most PBUFSIZ - 5
3881 to account for the $, # and checksum, and for a possible /0 if we are
3882 debugging (remote_debug) and want to print the sent packet as a string */
3883
3884 static int
3885 putpkt_binary (char *buf, int cnt)
3886 {
3887 int i;
3888 unsigned char csum = 0;
3889 char *buf2 = alloca (cnt + 6);
3890 long sizeof_junkbuf = PBUFSIZ;
3891 char *junkbuf = alloca (sizeof_junkbuf);
3892
3893 int ch;
3894 int tcount = 0;
3895 char *p;
3896
3897 /* Copy the packet into buffer BUF2, encapsulating it
3898 and giving it a checksum. */
3899
3900 p = buf2;
3901 *p++ = '$';
3902
3903 for (i = 0; i < cnt; i++)
3904 {
3905 csum += buf[i];
3906 *p++ = buf[i];
3907 }
3908 *p++ = '#';
3909 *p++ = tohex ((csum >> 4) & 0xf);
3910 *p++ = tohex (csum & 0xf);
3911
3912 /* Send it over and over until we get a positive ack. */
3913
3914 while (1)
3915 {
3916 int started_error_output = 0;
3917
3918 if (remote_debug)
3919 {
3920 *p = '\0';
3921 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
3922 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
3923 fprintf_unfiltered (gdb_stdlog, "...");
3924 gdb_flush (gdb_stdlog);
3925 }
3926 if (SERIAL_WRITE (remote_desc, buf2, p - buf2))
3927 perror_with_name ("putpkt: write failed");
3928
3929 /* read until either a timeout occurs (-2) or '+' is read */
3930 while (1)
3931 {
3932 ch = readchar (remote_timeout);
3933
3934 if (remote_debug)
3935 {
3936 switch (ch)
3937 {
3938 case '+':
3939 case '-':
3940 case SERIAL_TIMEOUT:
3941 case '$':
3942 if (started_error_output)
3943 {
3944 putchar_unfiltered ('\n');
3945 started_error_output = 0;
3946 }
3947 }
3948 }
3949
3950 switch (ch)
3951 {
3952 case '+':
3953 if (remote_debug)
3954 fprintf_unfiltered (gdb_stdlog, "Ack\n");
3955 return 1;
3956 case '-':
3957 if (remote_debug)
3958 fprintf_unfiltered (gdb_stdlog, "Nak\n");
3959 case SERIAL_TIMEOUT:
3960 tcount++;
3961 if (tcount > 3)
3962 return 0;
3963 break; /* Retransmit buffer */
3964 case '$':
3965 {
3966 if (remote_debug)
3967 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
3968 /* It's probably an old response, and we're out of sync.
3969 Just gobble up the packet and ignore it. */
3970 read_frame (junkbuf, sizeof_junkbuf);
3971 continue; /* Now, go look for + */
3972 }
3973 default:
3974 if (remote_debug)
3975 {
3976 if (!started_error_output)
3977 {
3978 started_error_output = 1;
3979 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
3980 }
3981 fputc_unfiltered (ch & 0177, gdb_stdlog);
3982 }
3983 continue;
3984 }
3985 break; /* Here to retransmit */
3986 }
3987
3988 #if 0
3989 /* This is wrong. If doing a long backtrace, the user should be
3990 able to get out next time we call QUIT, without anything as
3991 violent as interrupt_query. If we want to provide a way out of
3992 here without getting to the next QUIT, it should be based on
3993 hitting ^C twice as in remote_wait. */
3994 if (quit_flag)
3995 {
3996 quit_flag = 0;
3997 interrupt_query ();
3998 }
3999 #endif
4000 }
4001 }
4002
4003 static int remote_cisco_mode;
4004
4005 /* Come here after finding the start of the frame. Collect the rest
4006 into BUF, verifying the checksum, length, and handling run-length
4007 compression. No more than sizeof_buf-1 characters are read so that
4008 the buffer can be NUL terminated.
4009
4010 Returns -1 on error, number of characters in buffer (ignoring the
4011 trailing NULL) on success. (could be extended to return one of the
4012 SERIAL status indications). */
4013
4014 static long
4015 read_frame (char *buf,
4016 long sizeof_buf)
4017 {
4018 unsigned char csum;
4019 long bc;
4020 int c;
4021
4022 csum = 0;
4023 bc = 0;
4024
4025 while (1)
4026 {
4027 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4028 c = readchar (remote_timeout);
4029 switch (c)
4030 {
4031 case SERIAL_TIMEOUT:
4032 if (remote_debug)
4033 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4034 return -1;
4035 case '$':
4036 if (remote_debug)
4037 fputs_filtered ("Saw new packet start in middle of old one\n",
4038 gdb_stdlog);
4039 return -1; /* Start a new packet, count retries */
4040 case '#':
4041 {
4042 unsigned char pktcsum;
4043 int check_0 = 0;
4044 int check_1 = 0;
4045
4046 buf[bc] = '\0';
4047
4048 check_0 = readchar (remote_timeout);
4049 if (check_0 >= 0)
4050 check_1 = readchar (remote_timeout);
4051
4052 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4053 {
4054 if (remote_debug)
4055 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4056 return -1;
4057 }
4058 else if (check_0 < 0 || check_1 < 0)
4059 {
4060 if (remote_debug)
4061 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4062 return -1;
4063 }
4064
4065 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4066 if (csum == pktcsum)
4067 return bc;
4068
4069 if (remote_debug)
4070 {
4071 fprintf_filtered (gdb_stdlog,
4072 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4073 pktcsum, csum);
4074 fputs_filtered (buf, gdb_stdlog);
4075 fputs_filtered ("\n", gdb_stdlog);
4076 }
4077 /* Number of characters in buffer ignoring trailing
4078 NUL. */
4079 return -1;
4080 }
4081 case '*': /* Run length encoding */
4082 {
4083 int repeat;
4084 csum += c;
4085
4086 if (remote_cisco_mode == 0)
4087 {
4088 c = readchar (remote_timeout);
4089 csum += c;
4090 repeat = c - ' ' + 3; /* Compute repeat count */
4091 }
4092 else
4093 {
4094 /* Cisco's run-length encoding variant uses two
4095 hex chars to represent the repeat count. */
4096
4097 c = readchar (remote_timeout);
4098 csum += c;
4099 repeat = fromhex (c) << 4;
4100 c = readchar (remote_timeout);
4101 csum += c;
4102 repeat += fromhex (c);
4103 }
4104
4105 /* The character before ``*'' is repeated. */
4106
4107 if (repeat > 0 && repeat <= 255
4108 && bc > 0
4109 && bc + repeat < sizeof_buf - 1)
4110 {
4111 memset (&buf[bc], buf[bc - 1], repeat);
4112 bc += repeat;
4113 continue;
4114 }
4115
4116 buf[bc] = '\0';
4117 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4118 puts_filtered (buf);
4119 puts_filtered ("\n");
4120 return -1;
4121 }
4122 default:
4123 if (bc < sizeof_buf - 1)
4124 {
4125 buf[bc++] = c;
4126 csum += c;
4127 continue;
4128 }
4129
4130 buf[bc] = '\0';
4131 puts_filtered ("Remote packet too long: ");
4132 puts_filtered (buf);
4133 puts_filtered ("\n");
4134
4135 return -1;
4136 }
4137 }
4138 }
4139
4140 /* Read a packet from the remote machine, with error checking, and
4141 store it in BUF. If FOREVER, wait forever rather than timing out;
4142 this is used (in synchronous mode) to wait for a target that is is
4143 executing user code to stop. */
4144 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4145 don't have to change all the calls to getpkt to deal with the
4146 return value, because at the moment I don't know what the right
4147 thing to do it for those. */
4148 void
4149 getpkt (char *buf,
4150 long sizeof_buf,
4151 int forever)
4152 {
4153 int timed_out;
4154
4155 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4156 }
4157
4158
4159 /* Read a packet from the remote machine, with error checking, and
4160 store it in BUF. If FOREVER, wait forever rather than timing out;
4161 this is used (in synchronous mode) to wait for a target that is is
4162 executing user code to stop. If FOREVER == 0, this function is
4163 allowed to time out gracefully and return an indication of this to
4164 the caller. */
4165 static int
4166 getpkt_sane (char *buf,
4167 long sizeof_buf,
4168 int forever)
4169 {
4170 int c;
4171 int tries;
4172 int timeout;
4173 int val;
4174
4175 strcpy (buf, "timeout");
4176
4177 if (forever)
4178 {
4179 timeout = watchdog > 0 ? watchdog : -1;
4180 }
4181
4182 else
4183 timeout = remote_timeout;
4184
4185 #define MAX_TRIES 3
4186
4187 for (tries = 1; tries <= MAX_TRIES; tries++)
4188 {
4189 /* This can loop forever if the remote side sends us characters
4190 continuously, but if it pauses, we'll get a zero from readchar
4191 because of timeout. Then we'll count that as a retry. */
4192
4193 /* Note that we will only wait forever prior to the start of a packet.
4194 After that, we expect characters to arrive at a brisk pace. They
4195 should show up within remote_timeout intervals. */
4196
4197 do
4198 {
4199 c = readchar (timeout);
4200
4201 if (c == SERIAL_TIMEOUT)
4202 {
4203 if (forever) /* Watchdog went off? Kill the target. */
4204 {
4205 QUIT;
4206 target_mourn_inferior ();
4207 error ("Watchdog has expired. Target detached.\n");
4208 }
4209 if (remote_debug)
4210 fputs_filtered ("Timed out.\n", gdb_stdlog);
4211 goto retry;
4212 }
4213 }
4214 while (c != '$');
4215
4216 /* We've found the start of a packet, now collect the data. */
4217
4218 val = read_frame (buf, sizeof_buf);
4219
4220 if (val >= 0)
4221 {
4222 if (remote_debug)
4223 {
4224 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4225 fputstr_unfiltered (buf, 0, gdb_stdlog);
4226 fprintf_unfiltered (gdb_stdlog, "\n");
4227 }
4228 SERIAL_WRITE (remote_desc, "+", 1);
4229 return 0;
4230 }
4231
4232 /* Try the whole thing again. */
4233 retry:
4234 SERIAL_WRITE (remote_desc, "-", 1);
4235 }
4236
4237 /* We have tried hard enough, and just can't receive the packet. Give up. */
4238
4239 printf_unfiltered ("Ignoring packet error, continuing...\n");
4240 SERIAL_WRITE (remote_desc, "+", 1);
4241 return 1;
4242 }
4243 \f
4244 static void
4245 remote_kill (void)
4246 {
4247 /* For some mysterious reason, wait_for_inferior calls kill instead of
4248 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4249 if (kill_kludge)
4250 {
4251 kill_kludge = 0;
4252 target_mourn_inferior ();
4253 return;
4254 }
4255
4256 /* Use catch_errors so the user can quit from gdb even when we aren't on
4257 speaking terms with the remote system. */
4258 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4259
4260 /* Don't wait for it to die. I'm not really sure it matters whether
4261 we do or not. For the existing stubs, kill is a noop. */
4262 target_mourn_inferior ();
4263 }
4264
4265 /* Async version of remote_kill. */
4266 static void
4267 remote_async_kill (void)
4268 {
4269 /* Unregister the file descriptor from the event loop. */
4270 if (target_is_async_p ())
4271 SERIAL_ASYNC (remote_desc, NULL, 0);
4272
4273 /* For some mysterious reason, wait_for_inferior calls kill instead of
4274 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4275 if (kill_kludge)
4276 {
4277 kill_kludge = 0;
4278 target_mourn_inferior ();
4279 return;
4280 }
4281
4282 /* Use catch_errors so the user can quit from gdb even when we aren't on
4283 speaking terms with the remote system. */
4284 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4285
4286 /* Don't wait for it to die. I'm not really sure it matters whether
4287 we do or not. For the existing stubs, kill is a noop. */
4288 target_mourn_inferior ();
4289 }
4290
4291 static void
4292 remote_mourn (void)
4293 {
4294 remote_mourn_1 (&remote_ops);
4295 }
4296
4297 static void
4298 remote_async_mourn (void)
4299 {
4300 remote_mourn_1 (&remote_async_ops);
4301 }
4302
4303 static void
4304 extended_remote_mourn (void)
4305 {
4306 /* We do _not_ want to mourn the target like this; this will
4307 remove the extended remote target from the target stack,
4308 and the next time the user says "run" it'll fail.
4309
4310 FIXME: What is the right thing to do here? */
4311 #if 0
4312 remote_mourn_1 (&extended_remote_ops);
4313 #endif
4314 }
4315
4316 /* Worker function for remote_mourn. */
4317 static void
4318 remote_mourn_1 (struct target_ops *target)
4319 {
4320 unpush_target (target);
4321 generic_mourn_inferior ();
4322 }
4323
4324 /* In the extended protocol we want to be able to do things like
4325 "run" and have them basically work as expected. So we need
4326 a special create_inferior function.
4327
4328 FIXME: One day add support for changing the exec file
4329 we're debugging, arguments and an environment. */
4330
4331 static void
4332 extended_remote_create_inferior (char *exec_file, char *args, char **env)
4333 {
4334 /* Rip out the breakpoints; we'll reinsert them after restarting
4335 the remote server. */
4336 remove_breakpoints ();
4337
4338 /* Now restart the remote server. */
4339 extended_remote_restart ();
4340
4341 /* Now put the breakpoints back in. This way we're safe if the
4342 restart function works via a unix fork on the remote side. */
4343 insert_breakpoints ();
4344
4345 /* Clean up from the last time we were running. */
4346 clear_proceed_status ();
4347
4348 /* Let the remote process run. */
4349 proceed (-1, TARGET_SIGNAL_0, 0);
4350 }
4351
4352 /* Async version of extended_remote_create_inferior. */
4353 static void
4354 extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4355 {
4356 /* Rip out the breakpoints; we'll reinsert them after restarting
4357 the remote server. */
4358 remove_breakpoints ();
4359
4360 /* If running asynchronously, register the target file descriptor
4361 with the event loop. */
4362 if (event_loop_p && target_can_async_p ())
4363 target_async (inferior_event_handler, 0);
4364
4365 /* Now restart the remote server. */
4366 extended_remote_restart ();
4367
4368 /* Now put the breakpoints back in. This way we're safe if the
4369 restart function works via a unix fork on the remote side. */
4370 insert_breakpoints ();
4371
4372 /* Clean up from the last time we were running. */
4373 clear_proceed_status ();
4374
4375 /* Let the remote process run. */
4376 proceed (-1, TARGET_SIGNAL_0, 0);
4377 }
4378 \f
4379
4380 /* On some machines, e.g. 68k, we may use a different breakpoint instruction
4381 than other targets; in those use REMOTE_BREAKPOINT instead of just
4382 BREAKPOINT. Also, bi-endian targets may define LITTLE_REMOTE_BREAKPOINT
4383 and BIG_REMOTE_BREAKPOINT. If none of these are defined, we just call
4384 the standard routines that are in mem-break.c. */
4385
4386 /* FIXME, these ought to be done in a more dynamic fashion. For instance,
4387 the choice of breakpoint instruction affects target program design and
4388 vice versa, and by making it user-tweakable, the special code here
4389 goes away and we need fewer special GDB configurations. */
4390
4391 #if defined (LITTLE_REMOTE_BREAKPOINT) && defined (BIG_REMOTE_BREAKPOINT) && !defined(REMOTE_BREAKPOINT)
4392 #define REMOTE_BREAKPOINT
4393 #endif
4394
4395 #ifdef REMOTE_BREAKPOINT
4396
4397 /* If the target isn't bi-endian, just pretend it is. */
4398 #if !defined (LITTLE_REMOTE_BREAKPOINT) && !defined (BIG_REMOTE_BREAKPOINT)
4399 #define LITTLE_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4400 #define BIG_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4401 #endif
4402
4403 static unsigned char big_break_insn[] = BIG_REMOTE_BREAKPOINT;
4404 static unsigned char little_break_insn[] = LITTLE_REMOTE_BREAKPOINT;
4405
4406 #endif /* REMOTE_BREAKPOINT */
4407
4408 /* Insert a breakpoint on targets that don't have any better breakpoint
4409 support. We read the contents of the target location and stash it,
4410 then overwrite it with a breakpoint instruction. ADDR is the target
4411 location in the target machine. CONTENTS_CACHE is a pointer to
4412 memory allocated for saving the target contents. It is guaranteed
4413 by the caller to be long enough to save sizeof BREAKPOINT bytes (this
4414 is accomplished via BREAKPOINT_MAX). */
4415
4416 static int
4417 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4418 {
4419 #ifdef REMOTE_BREAKPOINT
4420 int val;
4421 #endif
4422 int bp_size;
4423
4424 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4425 If it succeeds, then set the support to PACKET_ENABLE. If it
4426 fails, and the user has explicitly requested the Z support then
4427 report an error, otherwise, mark it disabled and go on. */
4428
4429 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4430 {
4431 char *buf = alloca (PBUFSIZ);
4432 char *p = buf;
4433
4434 addr = remote_address_masked (addr);
4435 *(p++) = 'Z';
4436 *(p++) = '0';
4437 *(p++) = ',';
4438 p += hexnumstr (p, (ULONGEST) addr);
4439 BREAKPOINT_FROM_PC (&addr, &bp_size);
4440 sprintf (p, ",%d", bp_size);
4441
4442 putpkt (buf);
4443 getpkt (buf, PBUFSIZ, 0);
4444
4445 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4446 {
4447 case PACKET_ERROR:
4448 return -1;
4449 case PACKET_OK:
4450 return 0;
4451 case PACKET_UNKNOWN:
4452 break;
4453 }
4454 }
4455
4456 #ifdef REMOTE_BREAKPOINT
4457 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4458
4459 if (val == 0)
4460 {
4461 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
4462 val = target_write_memory (addr, (char *) big_break_insn,
4463 sizeof big_break_insn);
4464 else
4465 val = target_write_memory (addr, (char *) little_break_insn,
4466 sizeof little_break_insn);
4467 }
4468
4469 return val;
4470 #else
4471 return memory_insert_breakpoint (addr, contents_cache);
4472 #endif /* REMOTE_BREAKPOINT */
4473 }
4474
4475 static int
4476 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4477 {
4478 int bp_size;
4479
4480 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4481 {
4482 char *buf = alloca (PBUFSIZ);
4483 char *p = buf;
4484
4485 *(p++) = 'z';
4486 *(p++) = '0';
4487 *(p++) = ',';
4488
4489 addr = remote_address_masked (addr);
4490 p += hexnumstr (p, (ULONGEST) addr);
4491 BREAKPOINT_FROM_PC (&addr, &bp_size);
4492 sprintf (p, ",%d", bp_size);
4493
4494 putpkt (buf);
4495 getpkt (buf, PBUFSIZ, 0);
4496
4497 return (buf[0] == 'E');
4498 }
4499
4500 #ifdef REMOTE_BREAKPOINT
4501 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4502 #else
4503 return memory_remove_breakpoint (addr, contents_cache);
4504 #endif /* REMOTE_BREAKPOINT */
4505 }
4506
4507 static int
4508 watchpoint_to_Z_packet (int type)
4509 {
4510 switch (type)
4511 {
4512 case hw_write:
4513 return 2;
4514 break;
4515 case hw_read:
4516 return 3;
4517 break;
4518 case hw_access:
4519 return 4;
4520 break;
4521 default:
4522 internal_error (__FILE__, __LINE__,
4523 "hw_bp_to_z: bad watchpoint type %d", type);
4524 }
4525 }
4526
4527 /* FIXME: This function should be static and a member of the remote
4528 target vector. */
4529
4530 int
4531 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4532 {
4533 char *buf = alloca (PBUFSIZ);
4534 char *p;
4535 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4536
4537 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4538 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4539 remote_protocol_Z[packet].name,
4540 remote_protocol_Z[packet].title);
4541
4542 sprintf (buf, "Z%x,", packet);
4543 p = strchr (buf, '\0');
4544 addr = remote_address_masked (addr);
4545 p += hexnumstr (p, (ULONGEST) addr);
4546 sprintf (p, ",%x", len);
4547
4548 putpkt (buf);
4549 getpkt (buf, PBUFSIZ, 0);
4550
4551 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4552 {
4553 case PACKET_ERROR:
4554 case PACKET_UNKNOWN:
4555 return -1;
4556 case PACKET_OK:
4557 return 0;
4558 }
4559 internal_error (__FILE__, __LINE__,
4560 "remote_insert_watchpoint: reached end of function");
4561 }
4562
4563 /* FIXME: This function should be static and a member of the remote
4564 target vector. */
4565
4566 int
4567 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4568 {
4569 char *buf = alloca (PBUFSIZ);
4570 char *p;
4571 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4572
4573 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4574 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4575 remote_protocol_Z[packet].name,
4576 remote_protocol_Z[packet].title);
4577
4578 sprintf (buf, "z%x,", packet);
4579 p = strchr (buf, '\0');
4580 addr = remote_address_masked (addr);
4581 p += hexnumstr (p, (ULONGEST) addr);
4582 sprintf (p, ",%x", len);
4583 putpkt (buf);
4584 getpkt (buf, PBUFSIZ, 0);
4585
4586 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4587 {
4588 case PACKET_ERROR:
4589 case PACKET_UNKNOWN:
4590 return -1;
4591 case PACKET_OK:
4592 return 0;
4593 }
4594 internal_error (__FILE__, __LINE__,
4595 "remote_remove_watchpoint: reached end of function");
4596 }
4597
4598 /* FIXME: This function should be static and a member of the remote
4599 target vector. */
4600
4601 int
4602 remote_insert_hw_breakpoint (CORE_ADDR addr, int len)
4603 {
4604 char *buf = alloca (PBUFSIZ);
4605 char *p = buf;
4606
4607 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4608 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4609 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4610 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4611
4612 *(p++) = 'Z';
4613 *(p++) = '1';
4614 *(p++) = ',';
4615
4616 addr = remote_address_masked (addr);
4617 p += hexnumstr (p, (ULONGEST) addr);
4618 sprintf (p, ",%x", len);
4619
4620 putpkt (buf);
4621 getpkt (buf, PBUFSIZ, 0);
4622
4623 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4624 {
4625 case PACKET_ERROR:
4626 case PACKET_UNKNOWN:
4627 return -1;
4628 case PACKET_OK:
4629 return 0;
4630 }
4631 internal_error (__FILE__, __LINE__,
4632 "remote_remove_watchpoint: reached end of function");
4633 }
4634
4635 /* FIXME: This function should be static and a member of the remote
4636 target vector. */
4637
4638 int
4639 remote_remove_hw_breakpoint (CORE_ADDR addr, int len)
4640 {
4641 char *buf = alloca (PBUFSIZ);
4642 char *p = buf;
4643
4644 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4645 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4646 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4647 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4648
4649 *(p++) = 'z';
4650 *(p++) = '1';
4651 *(p++) = ',';
4652
4653 addr = remote_address_masked (addr);
4654 p += hexnumstr (p, (ULONGEST) addr);
4655 sprintf (p, ",%x", len);
4656
4657 putpkt(buf);
4658 getpkt (buf, PBUFSIZ, 0);
4659
4660 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4661 {
4662 case PACKET_ERROR:
4663 case PACKET_UNKNOWN:
4664 return -1;
4665 case PACKET_OK:
4666 return 0;
4667 }
4668 internal_error (__FILE__, __LINE__,
4669 "remote_remove_watchpoint: reached end of function");
4670 }
4671
4672 /* Some targets are only capable of doing downloads, and afterwards
4673 they switch to the remote serial protocol. This function provides
4674 a clean way to get from the download target to the remote target.
4675 It's basically just a wrapper so that we don't have to expose any
4676 of the internal workings of remote.c.
4677
4678 Prior to calling this routine, you should shutdown the current
4679 target code, else you will get the "A program is being debugged
4680 already..." message. Usually a call to pop_target() suffices. */
4681
4682 void
4683 push_remote_target (char *name, int from_tty)
4684 {
4685 printf_filtered ("Switching to remote protocol\n");
4686 remote_open (name, from_tty);
4687 }
4688
4689 /* Other targets want to use the entire remote serial module but with
4690 certain remote_ops overridden. */
4691
4692 void
4693 open_remote_target (char *name, int from_tty, struct target_ops *target,
4694 int extended_p)
4695 {
4696 printf_filtered ("Selecting the %sremote protocol\n",
4697 (extended_p ? "extended-" : ""));
4698 remote_open_1 (name, from_tty, target, extended_p);
4699 }
4700
4701 /* Table used by the crc32 function to calcuate the checksum. */
4702
4703 static unsigned long crc32_table[256] =
4704 {0, 0};
4705
4706 static unsigned long
4707 crc32 (unsigned char *buf, int len, unsigned int crc)
4708 {
4709 if (!crc32_table[1])
4710 {
4711 /* Initialize the CRC table and the decoding table. */
4712 int i, j;
4713 unsigned int c;
4714
4715 for (i = 0; i < 256; i++)
4716 {
4717 for (c = i << 24, j = 8; j > 0; --j)
4718 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4719 crc32_table[i] = c;
4720 }
4721 }
4722
4723 while (len--)
4724 {
4725 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4726 buf++;
4727 }
4728 return crc;
4729 }
4730
4731 /* compare-sections command
4732
4733 With no arguments, compares each loadable section in the exec bfd
4734 with the same memory range on the target, and reports mismatches.
4735 Useful for verifying the image on the target against the exec file.
4736 Depends on the target understanding the new "qCRC:" request. */
4737
4738 /* FIXME: cagney/1999-10-26: This command should be broken down into a
4739 target method (target verify memory) and generic version of the
4740 actual command. This will allow other high-level code (especially
4741 generic_load()) to make use of this target functionality. */
4742
4743 static void
4744 compare_sections_command (char *args, int from_tty)
4745 {
4746 asection *s;
4747 unsigned long host_crc, target_crc;
4748 extern bfd *exec_bfd;
4749 struct cleanup *old_chain;
4750 char *tmp;
4751 char *sectdata;
4752 const char *sectname;
4753 char *buf = alloca (PBUFSIZ);
4754 bfd_size_type size;
4755 bfd_vma lma;
4756 int matched = 0;
4757 int mismatched = 0;
4758
4759 if (!exec_bfd)
4760 error ("command cannot be used without an exec file");
4761 if (!current_target.to_shortname ||
4762 strcmp (current_target.to_shortname, "remote") != 0)
4763 error ("command can only be used with remote target");
4764
4765 for (s = exec_bfd->sections; s; s = s->next)
4766 {
4767 if (!(s->flags & SEC_LOAD))
4768 continue; /* skip non-loadable section */
4769
4770 size = bfd_get_section_size_before_reloc (s);
4771 if (size == 0)
4772 continue; /* skip zero-length section */
4773
4774 sectname = bfd_get_section_name (exec_bfd, s);
4775 if (args && strcmp (args, sectname) != 0)
4776 continue; /* not the section selected by user */
4777
4778 matched = 1; /* do this section */
4779 lma = s->lma;
4780 /* FIXME: assumes lma can fit into long */
4781 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
4782 putpkt (buf);
4783
4784 /* be clever; compute the host_crc before waiting for target reply */
4785 sectdata = xmalloc (size);
4786 old_chain = make_cleanup (xfree, sectdata);
4787 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
4788 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
4789
4790 getpkt (buf, PBUFSIZ, 0);
4791 if (buf[0] == 'E')
4792 error ("target memory fault, section %s, range 0x%08x -- 0x%08x",
4793 sectname, lma, lma + size);
4794 if (buf[0] != 'C')
4795 error ("remote target does not support this operation");
4796
4797 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
4798 target_crc = target_crc * 16 + fromhex (*tmp);
4799
4800 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
4801 sectname, paddr (lma), paddr (lma + size));
4802 if (host_crc == target_crc)
4803 printf_filtered ("matched.\n");
4804 else
4805 {
4806 printf_filtered ("MIS-MATCHED!\n");
4807 mismatched++;
4808 }
4809
4810 do_cleanups (old_chain);
4811 }
4812 if (mismatched > 0)
4813 warning ("One or more sections of the remote executable does not match\n\
4814 the loaded file\n");
4815 if (args && !matched)
4816 printf_filtered ("No loaded section named '%s'.\n", args);
4817 }
4818
4819 static int
4820 remote_query (int query_type, char *buf, char *outbuf, int *bufsiz)
4821 {
4822 int i;
4823 char *buf2 = alloca (PBUFSIZ);
4824 char *p2 = &buf2[0];
4825
4826 if (!bufsiz)
4827 error ("null pointer to remote bufer size specified");
4828
4829 /* minimum outbuf size is PBUFSIZ - if bufsiz is not large enough let
4830 the caller know and return what the minimum size is */
4831 /* Note: a zero bufsiz can be used to query the minimum buffer size */
4832 if (*bufsiz < PBUFSIZ)
4833 {
4834 *bufsiz = PBUFSIZ;
4835 return -1;
4836 }
4837
4838 /* except for querying the minimum buffer size, target must be open */
4839 if (!remote_desc)
4840 error ("remote query is only available after target open");
4841
4842 /* we only take uppercase letters as query types, at least for now */
4843 if ((query_type < 'A') || (query_type > 'Z'))
4844 error ("invalid remote query type");
4845
4846 if (!buf)
4847 error ("null remote query specified");
4848
4849 if (!outbuf)
4850 error ("remote query requires a buffer to receive data");
4851
4852 outbuf[0] = '\0';
4853
4854 *p2++ = 'q';
4855 *p2++ = query_type;
4856
4857 /* we used one buffer char for the remote protocol q command and another
4858 for the query type. As the remote protocol encapsulation uses 4 chars
4859 plus one extra in case we are debugging (remote_debug),
4860 we have PBUFZIZ - 7 left to pack the query string */
4861 i = 0;
4862 while (buf[i] && (i < (PBUFSIZ - 8)))
4863 {
4864 /* bad caller may have sent forbidden characters */
4865 if ((!isprint (buf[i])) || (buf[i] == '$') || (buf[i] == '#'))
4866 error ("illegal characters in query string");
4867
4868 *p2++ = buf[i];
4869 i++;
4870 }
4871 *p2 = buf[i];
4872
4873 if (buf[i])
4874 error ("query larger than available buffer");
4875
4876 i = putpkt (buf2);
4877 if (i < 0)
4878 return i;
4879
4880 getpkt (outbuf, *bufsiz, 0);
4881
4882 return 0;
4883 }
4884
4885 static void
4886 remote_rcmd (char *command,
4887 struct ui_file *outbuf)
4888 {
4889 int i;
4890 char *buf = alloca (PBUFSIZ);
4891 char *p = buf;
4892
4893 if (!remote_desc)
4894 error ("remote rcmd is only available after target open");
4895
4896 /* Send a NULL command across as an empty command */
4897 if (command == NULL)
4898 command = "";
4899
4900 /* The query prefix */
4901 strcpy (buf, "qRcmd,");
4902 p = strchr (buf, '\0');
4903
4904 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > PBUFSIZ)
4905 error ("\"monitor\" command ``%s'' is too long\n", command);
4906
4907 /* Encode the actual command */
4908 for (i = 0; command[i]; i++)
4909 {
4910 *p++ = tohex ((command[i] >> 4) & 0xf);
4911 *p++ = tohex (command[i] & 0xf);
4912 }
4913 *p = '\0';
4914
4915 if (putpkt (buf) < 0)
4916 error ("Communication problem with target\n");
4917
4918 /* get/display the response */
4919 while (1)
4920 {
4921 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
4922 buf[0] = '\0';
4923 getpkt (buf, PBUFSIZ, 0);
4924 if (buf[0] == '\0')
4925 error ("Target does not support this command\n");
4926 if (buf[0] == 'O' && buf[1] != 'K')
4927 {
4928 remote_console_output (buf + 1); /* 'O' message from stub */
4929 continue;
4930 }
4931 if (strcmp (buf, "OK") == 0)
4932 break;
4933 if (strlen (buf) == 3 && buf[0] == 'E'
4934 && isdigit (buf[1]) && isdigit (buf[2]))
4935 {
4936 error ("Protocol error with Rcmd");
4937 }
4938 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
4939 {
4940 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
4941 fputc_unfiltered (c, outbuf);
4942 }
4943 break;
4944 }
4945 }
4946
4947 static void
4948 packet_command (char *args, int from_tty)
4949 {
4950 char *buf = alloca (PBUFSIZ);
4951
4952 if (!remote_desc)
4953 error ("command can only be used with remote target");
4954
4955 if (!args)
4956 error ("remote-packet command requires packet text as argument");
4957
4958 puts_filtered ("sending: ");
4959 print_packet (args);
4960 puts_filtered ("\n");
4961 putpkt (args);
4962
4963 getpkt (buf, PBUFSIZ, 0);
4964 puts_filtered ("received: ");
4965 print_packet (buf);
4966 puts_filtered ("\n");
4967 }
4968
4969 #if 0
4970 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
4971
4972 static void display_thread_info (struct gdb_ext_thread_info *info);
4973
4974 static void threadset_test_cmd (char *cmd, int tty);
4975
4976 static void threadalive_test (char *cmd, int tty);
4977
4978 static void threadlist_test_cmd (char *cmd, int tty);
4979
4980 int get_and_display_threadinfo (threadref * ref);
4981
4982 static void threadinfo_test_cmd (char *cmd, int tty);
4983
4984 static int thread_display_step (threadref * ref, void *context);
4985
4986 static void threadlist_update_test_cmd (char *cmd, int tty);
4987
4988 static void init_remote_threadtests (void);
4989
4990 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
4991
4992 static void
4993 threadset_test_cmd (char *cmd, int tty)
4994 {
4995 int sample_thread = SAMPLE_THREAD;
4996
4997 printf_filtered ("Remote threadset test\n");
4998 set_thread (sample_thread, 1);
4999 }
5000
5001
5002 static void
5003 threadalive_test (char *cmd, int tty)
5004 {
5005 int sample_thread = SAMPLE_THREAD;
5006
5007 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5008 printf_filtered ("PASS: Thread alive test\n");
5009 else
5010 printf_filtered ("FAIL: Thread alive test\n");
5011 }
5012
5013 void output_threadid (char *title, threadref * ref);
5014
5015 void
5016 output_threadid (char *title, threadref *ref)
5017 {
5018 char hexid[20];
5019
5020 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5021 hexid[16] = 0;
5022 printf_filtered ("%s %s\n", title, (&hexid[0]));
5023 }
5024
5025 static void
5026 threadlist_test_cmd (char *cmd, int tty)
5027 {
5028 int startflag = 1;
5029 threadref nextthread;
5030 int done, result_count;
5031 threadref threadlist[3];
5032
5033 printf_filtered ("Remote Threadlist test\n");
5034 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5035 &result_count, &threadlist[0]))
5036 printf_filtered ("FAIL: threadlist test\n");
5037 else
5038 {
5039 threadref *scan = threadlist;
5040 threadref *limit = scan + result_count;
5041
5042 while (scan < limit)
5043 output_threadid (" thread ", scan++);
5044 }
5045 }
5046
5047 void
5048 display_thread_info (struct gdb_ext_thread_info *info)
5049 {
5050 output_threadid ("Threadid: ", &info->threadid);
5051 printf_filtered ("Name: %s\n ", info->shortname);
5052 printf_filtered ("State: %s\n", info->display);
5053 printf_filtered ("other: %s\n\n", info->more_display);
5054 }
5055
5056 int
5057 get_and_display_threadinfo (threadref *ref)
5058 {
5059 int result;
5060 int set;
5061 struct gdb_ext_thread_info threadinfo;
5062
5063 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5064 | TAG_MOREDISPLAY | TAG_DISPLAY;
5065 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5066 display_thread_info (&threadinfo);
5067 return result;
5068 }
5069
5070 static void
5071 threadinfo_test_cmd (char *cmd, int tty)
5072 {
5073 int athread = SAMPLE_THREAD;
5074 threadref thread;
5075 int set;
5076
5077 int_to_threadref (&thread, athread);
5078 printf_filtered ("Remote Threadinfo test\n");
5079 if (!get_and_display_threadinfo (&thread))
5080 printf_filtered ("FAIL cannot get thread info\n");
5081 }
5082
5083 static int
5084 thread_display_step (threadref *ref, void *context)
5085 {
5086 /* output_threadid(" threadstep ",ref); *//* simple test */
5087 return get_and_display_threadinfo (ref);
5088 }
5089
5090 static void
5091 threadlist_update_test_cmd (char *cmd, int tty)
5092 {
5093 printf_filtered ("Remote Threadlist update test\n");
5094 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5095 }
5096
5097 static void
5098 init_remote_threadtests (void)
5099 {
5100 add_com ("tlist", class_obscure, threadlist_test_cmd,
5101 "Fetch and print the remote list of thread identifiers, one pkt only");
5102 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5103 "Fetch and display info about one thread");
5104 add_com ("tset", class_obscure, threadset_test_cmd,
5105 "Test setting to a different thread");
5106 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5107 "Iterate through updating all remote thread info");
5108 add_com ("talive", class_obscure, threadalive_test,
5109 " Remote thread alive test ");
5110 }
5111
5112 #endif /* 0 */
5113
5114 /* Convert a thread ID to a string. Returns the string in a static
5115 buffer. */
5116
5117 static char *
5118 remote_pid_to_str (ptid_t ptid)
5119 {
5120 static char buf[30];
5121
5122 sprintf (buf, "Thread %d", PIDGET (ptid));
5123 return buf;
5124 }
5125
5126 static void
5127 init_remote_ops (void)
5128 {
5129 remote_ops.to_shortname = "remote";
5130 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5131 remote_ops.to_doc =
5132 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5133 Specify the serial device it is connected to\n\
5134 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5135 remote_ops.to_open = remote_open;
5136 remote_ops.to_close = remote_close;
5137 remote_ops.to_detach = remote_detach;
5138 remote_ops.to_resume = remote_resume;
5139 remote_ops.to_wait = remote_wait;
5140 remote_ops.to_fetch_registers = remote_fetch_registers;
5141 remote_ops.to_store_registers = remote_store_registers;
5142 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5143 remote_ops.to_xfer_memory = remote_xfer_memory;
5144 remote_ops.to_files_info = remote_files_info;
5145 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5146 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5147 remote_ops.to_kill = remote_kill;
5148 remote_ops.to_load = generic_load;
5149 remote_ops.to_mourn_inferior = remote_mourn;
5150 remote_ops.to_thread_alive = remote_thread_alive;
5151 remote_ops.to_find_new_threads = remote_threads_info;
5152 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5153 remote_ops.to_pid_to_str = remote_pid_to_str;
5154 remote_ops.to_stop = remote_stop;
5155 remote_ops.to_query = remote_query;
5156 remote_ops.to_rcmd = remote_rcmd;
5157 remote_ops.to_stratum = process_stratum;
5158 remote_ops.to_has_all_memory = 1;
5159 remote_ops.to_has_memory = 1;
5160 remote_ops.to_has_stack = 1;
5161 remote_ops.to_has_registers = 1;
5162 remote_ops.to_has_execution = 1;
5163 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5164 remote_ops.to_magic = OPS_MAGIC;
5165 }
5166
5167 /* Set up the extended remote vector by making a copy of the standard
5168 remote vector and adding to it. */
5169
5170 static void
5171 init_extended_remote_ops (void)
5172 {
5173 extended_remote_ops = remote_ops;
5174
5175 extended_remote_ops.to_shortname = "extended-remote";
5176 extended_remote_ops.to_longname =
5177 "Extended remote serial target in gdb-specific protocol";
5178 extended_remote_ops.to_doc =
5179 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5180 Specify the serial device it is connected to (e.g. /dev/ttya).",
5181 extended_remote_ops.to_open = extended_remote_open;
5182 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5183 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5184 }
5185
5186 /*
5187 * Command: info remote-process
5188 *
5189 * This implements Cisco's version of the "info proc" command.
5190 *
5191 * This query allows the target stub to return an arbitrary string
5192 * (or strings) giving arbitrary information about the target process.
5193 * This is optional; the target stub isn't required to implement it.
5194 *
5195 * Syntax: qfProcessInfo request first string
5196 * qsProcessInfo request subsequent string
5197 * reply: 'O'<hex-encoded-string>
5198 * 'l' last reply (empty)
5199 */
5200
5201 static void
5202 remote_info_process (char *args, int from_tty)
5203 {
5204 char *buf = alloca (PBUFSIZ);
5205
5206 if (remote_desc == 0)
5207 error ("Command can only be used when connected to the remote target.");
5208
5209 putpkt ("qfProcessInfo");
5210 getpkt (buf, PBUFSIZ, 0);
5211 if (buf[0] == 0)
5212 return; /* Silently: target does not support this feature. */
5213
5214 if (buf[0] == 'E')
5215 error ("info proc: target error.");
5216
5217 while (buf[0] == 'O') /* Capitol-O packet */
5218 {
5219 remote_console_output (&buf[1]);
5220 putpkt ("qsProcessInfo");
5221 getpkt (buf, PBUFSIZ, 0);
5222 }
5223 }
5224
5225 /*
5226 * Target Cisco
5227 */
5228
5229 static void
5230 remote_cisco_open (char *name, int from_tty)
5231 {
5232 if (name == 0)
5233 error (
5234 "To open a remote debug connection, you need to specify what \n\
5235 device is attached to the remote system (e.g. host:port).");
5236
5237 /* See FIXME above */
5238 wait_forever_enabled_p = 1;
5239
5240 target_preopen (from_tty);
5241
5242 unpush_target (&remote_cisco_ops);
5243
5244 remote_desc = SERIAL_OPEN (name);
5245 if (!remote_desc)
5246 perror_with_name (name);
5247
5248 /*
5249 * If a baud rate was specified on the gdb command line it will
5250 * be greater than the initial value of -1. If it is, use it otherwise
5251 * default to 9600
5252 */
5253
5254 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5255 if (SERIAL_SETBAUDRATE (remote_desc, baud_rate))
5256 {
5257 SERIAL_CLOSE (remote_desc);
5258 perror_with_name (name);
5259 }
5260
5261 SERIAL_RAW (remote_desc);
5262
5263 /* If there is something sitting in the buffer we might take it as a
5264 response to a command, which would be bad. */
5265 SERIAL_FLUSH_INPUT (remote_desc);
5266
5267 if (from_tty)
5268 {
5269 puts_filtered ("Remote debugging using ");
5270 puts_filtered (name);
5271 puts_filtered ("\n");
5272 }
5273
5274 remote_cisco_mode = 1;
5275
5276 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5277
5278 init_all_packet_configs ();
5279
5280 general_thread = -2;
5281 continue_thread = -2;
5282
5283 /* Probe for ability to use "ThreadInfo" query, as required. */
5284 use_threadinfo_query = 1;
5285 use_threadextra_query = 1;
5286
5287 /* Without this, some commands which require an active target (such
5288 as kill) won't work. This variable serves (at least) double duty
5289 as both the pid of the target process (if it has such), and as a
5290 flag indicating that a target is active. These functions should
5291 be split out into seperate variables, especially since GDB will
5292 someday have a notion of debugging several processes. */
5293 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5294
5295 /* Start the remote connection; if error (0), discard this target. */
5296
5297 if (!catch_errors (remote_start_remote_dummy, (char *) 0,
5298 "Couldn't establish connection to remote target\n",
5299 RETURN_MASK_ALL))
5300 {
5301 pop_target ();
5302 return;
5303 }
5304 }
5305
5306 static void
5307 remote_cisco_close (int quitting)
5308 {
5309 remote_cisco_mode = 0;
5310 remote_close (quitting);
5311 }
5312
5313 static void
5314 remote_cisco_mourn (void)
5315 {
5316 remote_mourn_1 (&remote_cisco_ops);
5317 }
5318
5319 enum
5320 {
5321 READ_MORE,
5322 FATAL_ERROR,
5323 ENTER_DEBUG,
5324 DISCONNECT_TELNET
5325 }
5326 minitelnet_return;
5327
5328 /* shared between readsocket() and readtty() */
5329 static char *tty_input;
5330
5331 static int escape_count;
5332 static int echo_check;
5333 extern int quit_flag;
5334
5335 static int
5336 readsocket (void)
5337 {
5338 int data;
5339
5340 /* Loop until the socket doesn't have any more data */
5341
5342 while ((data = readchar (0)) >= 0)
5343 {
5344 /* Check for the escape sequence */
5345 if (data == '|')
5346 {
5347 /* If this is the fourth escape, get out */
5348 if (++escape_count == 4)
5349 {
5350 return ENTER_DEBUG;
5351 }
5352 else
5353 { /* This is a '|', but not the fourth in a row.
5354 Continue without echoing it. If it isn't actually
5355 one of four in a row, it'll be echoed later. */
5356 continue;
5357 }
5358 }
5359 else
5360 /* Not a '|' */
5361 {
5362 /* Ensure any pending '|'s are flushed. */
5363
5364 for (; escape_count > 0; escape_count--)
5365 putchar ('|');
5366 }
5367
5368 if (data == '\r') /* If this is a return character, */
5369 continue; /* - just supress it. */
5370
5371 if (echo_check != -1) /* Check for echo of user input. */
5372 {
5373 if (tty_input[echo_check] == data)
5374 {
5375 echo_check++; /* Character matched user input: */
5376 continue; /* Continue without echoing it. */
5377 }
5378 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5379 { /* End of the line (and of echo checking). */
5380 echo_check = -1; /* No more echo supression */
5381 continue; /* Continue without echoing. */
5382 }
5383 else
5384 { /* Failed check for echo of user input.
5385 We now have some suppressed output to flush! */
5386 int j;
5387
5388 for (j = 0; j < echo_check; j++)
5389 putchar (tty_input[j]);
5390 echo_check = -1;
5391 }
5392 }
5393 putchar (data); /* Default case: output the char. */
5394 }
5395
5396 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5397 return READ_MORE; /* Try to read some more */
5398 else
5399 return FATAL_ERROR; /* Trouble, bail out */
5400 }
5401
5402 static int
5403 readtty (void)
5404 {
5405 int tty_bytecount;
5406
5407 /* First, read a buffer full from the terminal */
5408 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5409 if (tty_bytecount == -1)
5410 {
5411 perror ("readtty: read failed");
5412 return FATAL_ERROR;
5413 }
5414
5415 /* Remove a quoted newline. */
5416 if (tty_input[tty_bytecount - 1] == '\n' &&
5417 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5418 {
5419 tty_input[--tty_bytecount] = 0; /* remove newline */
5420 tty_input[--tty_bytecount] = 0; /* remove backslash */
5421 }
5422
5423 /* Turn trailing newlines into returns */
5424 if (tty_input[tty_bytecount - 1] == '\n')
5425 tty_input[tty_bytecount - 1] = '\r';
5426
5427 /* If the line consists of a ~, enter debugging mode. */
5428 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5429 return ENTER_DEBUG;
5430
5431 /* Make this a zero terminated string and write it out */
5432 tty_input[tty_bytecount] = 0;
5433 if (SERIAL_WRITE (remote_desc, tty_input, tty_bytecount))
5434 {
5435 perror_with_name ("readtty: write failed");
5436 return FATAL_ERROR;
5437 }
5438
5439 return READ_MORE;
5440 }
5441
5442 static int
5443 minitelnet (void)
5444 {
5445 fd_set input; /* file descriptors for select */
5446 int tablesize; /* max number of FDs for select */
5447 int status;
5448 int quit_count = 0;
5449
5450 extern int escape_count; /* global shared by readsocket */
5451 extern int echo_check; /* ditto */
5452
5453 escape_count = 0;
5454 echo_check = -1;
5455
5456 tablesize = 8 * sizeof (input);
5457
5458 for (;;)
5459 {
5460 /* Check for anything from our socket - doesn't block. Note that
5461 this must be done *before* the select as there may be
5462 buffered I/O waiting to be processed. */
5463
5464 if ((status = readsocket ()) == FATAL_ERROR)
5465 {
5466 error ("Debugging terminated by communications error");
5467 }
5468 else if (status != READ_MORE)
5469 {
5470 return (status);
5471 }
5472
5473 fflush (stdout); /* Flush output before blocking */
5474
5475 /* Now block on more socket input or TTY input */
5476
5477 FD_ZERO (&input);
5478 FD_SET (fileno (stdin), &input);
5479 FD_SET (DEPRECATED_SERIAL_FD (remote_desc), &input);
5480
5481 status = select (tablesize, &input, 0, 0, 0);
5482 if ((status == -1) && (errno != EINTR))
5483 {
5484 error ("Communications error on select %d", errno);
5485 }
5486
5487 /* Handle Control-C typed */
5488
5489 if (quit_flag)
5490 {
5491 if ((++quit_count) == 2)
5492 {
5493 if (query ("Interrupt GDB? "))
5494 {
5495 printf_filtered ("Interrupted by user.\n");
5496 return_to_top_level (RETURN_QUIT);
5497 }
5498 quit_count = 0;
5499 }
5500 quit_flag = 0;
5501
5502 if (remote_break)
5503 SERIAL_SEND_BREAK (remote_desc);
5504 else
5505 SERIAL_WRITE (remote_desc, "\003", 1);
5506
5507 continue;
5508 }
5509
5510 /* Handle console input */
5511
5512 if (FD_ISSET (fileno (stdin), &input))
5513 {
5514 quit_count = 0;
5515 echo_check = 0;
5516 status = readtty ();
5517 if (status == READ_MORE)
5518 continue;
5519
5520 return status; /* telnet session ended */
5521 }
5522 }
5523 }
5524
5525 static ptid_t
5526 remote_cisco_wait (ptid_t ptid, struct target_waitstatus *status)
5527 {
5528 if (minitelnet () != ENTER_DEBUG)
5529 {
5530 error ("Debugging session terminated by protocol error");
5531 }
5532 putpkt ("?");
5533 return remote_wait (ptid, status);
5534 }
5535
5536 static void
5537 init_remote_cisco_ops (void)
5538 {
5539 remote_cisco_ops.to_shortname = "cisco";
5540 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5541 remote_cisco_ops.to_doc =
5542 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5543 Specify the serial device it is connected to (e.g. host:2020).";
5544 remote_cisco_ops.to_open = remote_cisco_open;
5545 remote_cisco_ops.to_close = remote_cisco_close;
5546 remote_cisco_ops.to_detach = remote_detach;
5547 remote_cisco_ops.to_resume = remote_resume;
5548 remote_cisco_ops.to_wait = remote_cisco_wait;
5549 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5550 remote_cisco_ops.to_store_registers = remote_store_registers;
5551 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5552 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5553 remote_cisco_ops.to_files_info = remote_files_info;
5554 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5555 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5556 remote_cisco_ops.to_kill = remote_kill;
5557 remote_cisco_ops.to_load = generic_load;
5558 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5559 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5560 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5561 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5562 remote_cisco_ops.to_stratum = process_stratum;
5563 remote_cisco_ops.to_has_all_memory = 1;
5564 remote_cisco_ops.to_has_memory = 1;
5565 remote_cisco_ops.to_has_stack = 1;
5566 remote_cisco_ops.to_has_registers = 1;
5567 remote_cisco_ops.to_has_execution = 1;
5568 remote_cisco_ops.to_magic = OPS_MAGIC;
5569 }
5570
5571 static int
5572 remote_can_async_p (void)
5573 {
5574 /* We're async whenever the serial device is. */
5575 return (current_target.to_async_mask_value) && SERIAL_CAN_ASYNC_P (remote_desc);
5576 }
5577
5578 static int
5579 remote_is_async_p (void)
5580 {
5581 /* We're async whenever the serial device is. */
5582 return (current_target.to_async_mask_value) && SERIAL_IS_ASYNC_P (remote_desc);
5583 }
5584
5585 /* Pass the SERIAL event on and up to the client. One day this code
5586 will be able to delay notifying the client of an event until the
5587 point where an entire packet has been received. */
5588
5589 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5590 static void *async_client_context;
5591 static serial_event_ftype remote_async_serial_handler;
5592
5593 static void
5594 remote_async_serial_handler (serial_t scb, void *context)
5595 {
5596 /* Don't propogate error information up to the client. Instead let
5597 the client find out about the error by querying the target. */
5598 async_client_callback (INF_REG_EVENT, async_client_context);
5599 }
5600
5601 static void
5602 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5603 {
5604 if (current_target.to_async_mask_value == 0)
5605 internal_error (__FILE__, __LINE__,
5606 "Calling remote_async when async is masked");
5607
5608 if (callback != NULL)
5609 {
5610 SERIAL_ASYNC (remote_desc, remote_async_serial_handler, NULL);
5611 async_client_callback = callback;
5612 async_client_context = context;
5613 }
5614 else
5615 SERIAL_ASYNC (remote_desc, NULL, NULL);
5616 }
5617
5618 /* Target async and target extended-async.
5619
5620 This are temporary targets, until it is all tested. Eventually
5621 async support will be incorporated int the usual 'remote'
5622 target. */
5623
5624 static void
5625 init_remote_async_ops (void)
5626 {
5627 remote_async_ops.to_shortname = "async";
5628 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5629 remote_async_ops.to_doc =
5630 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5631 Specify the serial device it is connected to (e.g. /dev/ttya).";
5632 remote_async_ops.to_open = remote_async_open;
5633 remote_async_ops.to_close = remote_close;
5634 remote_async_ops.to_detach = remote_async_detach;
5635 remote_async_ops.to_resume = remote_async_resume;
5636 remote_async_ops.to_wait = remote_async_wait;
5637 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5638 remote_async_ops.to_store_registers = remote_store_registers;
5639 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5640 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5641 remote_async_ops.to_files_info = remote_files_info;
5642 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5643 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5644 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5645 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5646 remote_async_ops.to_kill = remote_async_kill;
5647 remote_async_ops.to_load = generic_load;
5648 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5649 remote_async_ops.to_thread_alive = remote_thread_alive;
5650 remote_async_ops.to_find_new_threads = remote_threads_info;
5651 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5652 remote_async_ops.to_stop = remote_stop;
5653 remote_async_ops.to_query = remote_query;
5654 remote_async_ops.to_rcmd = remote_rcmd;
5655 remote_async_ops.to_stratum = process_stratum;
5656 remote_async_ops.to_has_all_memory = 1;
5657 remote_async_ops.to_has_memory = 1;
5658 remote_async_ops.to_has_stack = 1;
5659 remote_async_ops.to_has_registers = 1;
5660 remote_async_ops.to_has_execution = 1;
5661 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5662 remote_async_ops.to_can_async_p = remote_can_async_p;
5663 remote_async_ops.to_is_async_p = remote_is_async_p;
5664 remote_async_ops.to_async = remote_async;
5665 remote_async_ops.to_async_mask_value = 1;
5666 remote_async_ops.to_magic = OPS_MAGIC;
5667 }
5668
5669 /* Set up the async extended remote vector by making a copy of the standard
5670 remote vector and adding to it. */
5671
5672 static void
5673 init_extended_async_remote_ops (void)
5674 {
5675 extended_async_remote_ops = remote_async_ops;
5676
5677 extended_async_remote_ops.to_shortname = "extended-async";
5678 extended_async_remote_ops.to_longname =
5679 "Extended remote serial target in async gdb-specific protocol";
5680 extended_async_remote_ops.to_doc =
5681 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5682 Specify the serial device it is connected to (e.g. /dev/ttya).",
5683 extended_async_remote_ops.to_open = extended_remote_async_open;
5684 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5685 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5686 }
5687
5688 static void
5689 set_remote_cmd (char *args, int from_tty)
5690 {
5691
5692 }
5693
5694 static void
5695 show_remote_cmd (char *args, int from_tty)
5696 {
5697
5698 show_remote_protocol_Z_packet_cmd (args, from_tty);
5699 show_remote_protocol_e_packet_cmd (args, from_tty);
5700 show_remote_protocol_E_packet_cmd (args, from_tty);
5701 show_remote_protocol_P_packet_cmd (args, from_tty);
5702 show_remote_protocol_binary_download_cmd (args, from_tty);
5703 }
5704
5705 static void
5706 build_remote_gdbarch_data (void)
5707 {
5708 build_remote_packet_sizes ();
5709
5710 /* Cisco stuff */
5711 tty_input = xmalloc (PBUFSIZ);
5712 remote_address_size = TARGET_ADDR_BIT;
5713 }
5714
5715 void
5716 _initialize_remote (void)
5717 {
5718 static struct cmd_list_element *remote_set_cmdlist;
5719 static struct cmd_list_element *remote_show_cmdlist;
5720 struct cmd_list_element *tmpcmd;
5721
5722 /* architecture specific data */
5723 build_remote_gdbarch_data ();
5724 register_gdbarch_swap (&tty_input, sizeof (&tty_input), NULL);
5725 register_remote_packet_sizes ();
5726 register_gdbarch_swap (&remote_address_size,
5727 sizeof (&remote_address_size), NULL);
5728 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
5729
5730 init_remote_ops ();
5731 add_target (&remote_ops);
5732
5733 init_extended_remote_ops ();
5734 add_target (&extended_remote_ops);
5735
5736 init_remote_async_ops ();
5737 add_target (&remote_async_ops);
5738
5739 init_extended_async_remote_ops ();
5740 add_target (&extended_async_remote_ops);
5741
5742 init_remote_cisco_ops ();
5743 add_target (&remote_cisco_ops);
5744
5745 #if 0
5746 init_remote_threadtests ();
5747 #endif
5748
5749 /* set/show remote ... */
5750
5751 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
5752 Remote protocol specific variables\n\
5753 Configure various remote-protocol specific variables such as\n\
5754 the packets being used",
5755 &remote_set_cmdlist, "set remote ",
5756 0/*allow-unknown*/, &setlist);
5757 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
5758 Remote protocol specific variables\n\
5759 Configure various remote-protocol specific variables such as\n\
5760 the packets being used",
5761 &remote_show_cmdlist, "show remote ",
5762 0/*allow-unknown*/, &showlist);
5763
5764 add_cmd ("compare-sections", class_obscure, compare_sections_command,
5765 "Compare section data on target to the exec file.\n\
5766 Argument is a single section name (default: all loaded sections).",
5767 &cmdlist);
5768
5769 add_cmd ("packet", class_maintenance, packet_command,
5770 "Send an arbitrary packet to a remote target.\n\
5771 maintenance packet TEXT\n\
5772 If GDB is talking to an inferior via the GDB serial protocol, then\n\
5773 this command sends the string TEXT to the inferior, and displays the\n\
5774 response packet. GDB supplies the initial `$' character, and the\n\
5775 terminating `#' character and checksum.",
5776 &maintenancelist);
5777
5778 add_show_from_set
5779 (add_set_cmd ("remotebreak", no_class,
5780 var_boolean, (char *) &remote_break,
5781 "Set whether to send break if interrupted.\n",
5782 &setlist),
5783 &showlist);
5784
5785 /* Install commands for configuring memory read/write packets. */
5786
5787 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
5788 "Set the maximum number of bytes per memory write packet (deprecated).\n",
5789 &setlist);
5790 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
5791 "Show the maximum number of bytes per memory write packet (deprecated).\n",
5792 &showlist);
5793 add_cmd ("memory-write-packet-size", no_class,
5794 set_memory_write_packet_size,
5795 "Set the maximum number of bytes per memory-write packet.\n"
5796 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5797 "default packet size. The actual limit is further reduced\n"
5798 "dependent on the target. Specify ``fixed'' to disable the\n"
5799 "further restriction and ``limit'' to enable that restriction\n",
5800 &remote_set_cmdlist);
5801 add_cmd ("memory-read-packet-size", no_class,
5802 set_memory_read_packet_size,
5803 "Set the maximum number of bytes per memory-read packet.\n"
5804 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5805 "default packet size. The actual limit is further reduced\n"
5806 "dependent on the target. Specify ``fixed'' to disable the\n"
5807 "further restriction and ``limit'' to enable that restriction\n",
5808 &remote_set_cmdlist);
5809 add_cmd ("memory-write-packet-size", no_class,
5810 show_memory_write_packet_size,
5811 "Show the maximum number of bytes per memory-write packet.\n",
5812 &remote_show_cmdlist);
5813 add_cmd ("memory-read-packet-size", no_class,
5814 show_memory_read_packet_size,
5815 "Show the maximum number of bytes per memory-read packet.\n",
5816 &remote_show_cmdlist);
5817
5818 add_show_from_set
5819 (add_set_cmd ("remoteaddresssize", class_obscure,
5820 var_integer, (char *) &remote_address_size,
5821 "Set the maximum size of the address (in bits) \
5822 in a memory packet.\n",
5823 &setlist),
5824 &showlist);
5825
5826 add_packet_config_cmd (&remote_protocol_binary_download,
5827 "X", "binary-download",
5828 set_remote_protocol_binary_download_cmd,
5829 show_remote_protocol_binary_download_cmd,
5830 &remote_set_cmdlist, &remote_show_cmdlist,
5831 1);
5832 #if 0
5833 /* XXXX - should ``set remotebinarydownload'' be retained for
5834 compatibility. */
5835 add_show_from_set
5836 (add_set_cmd ("remotebinarydownload", no_class,
5837 var_boolean, (char *) &remote_binary_download,
5838 "Set binary downloads.\n", &setlist),
5839 &showlist);
5840 #endif
5841
5842 add_info ("remote-process", remote_info_process,
5843 "Query the remote system for process info.");
5844
5845 add_packet_config_cmd (&remote_protocol_e,
5846 "e", "step-over-range",
5847 set_remote_protocol_e_packet_cmd,
5848 show_remote_protocol_e_packet_cmd,
5849 &remote_set_cmdlist, &remote_show_cmdlist,
5850 0);
5851
5852 add_packet_config_cmd (&remote_protocol_E,
5853 "E", "step-over-range-w-signal",
5854 set_remote_protocol_E_packet_cmd,
5855 show_remote_protocol_E_packet_cmd,
5856 &remote_set_cmdlist, &remote_show_cmdlist,
5857 0);
5858
5859 add_packet_config_cmd (&remote_protocol_P,
5860 "P", "set-register",
5861 set_remote_protocol_P_packet_cmd,
5862 show_remote_protocol_P_packet_cmd,
5863 &remote_set_cmdlist, &remote_show_cmdlist,
5864 1);
5865
5866 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
5867 "Z0", "software-breakpoint",
5868 set_remote_protocol_Z_software_bp_packet_cmd,
5869 show_remote_protocol_Z_software_bp_packet_cmd,
5870 &remote_set_cmdlist, &remote_show_cmdlist,
5871 0);
5872
5873 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
5874 "Z1", "hardware-breakpoint",
5875 set_remote_protocol_Z_hardware_bp_packet_cmd,
5876 show_remote_protocol_Z_hardware_bp_packet_cmd,
5877 &remote_set_cmdlist, &remote_show_cmdlist,
5878 0);
5879
5880 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
5881 "Z2", "write-watchpoint",
5882 set_remote_protocol_Z_write_wp_packet_cmd,
5883 show_remote_protocol_Z_write_wp_packet_cmd,
5884 &remote_set_cmdlist, &remote_show_cmdlist,
5885 0);
5886
5887 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
5888 "Z3", "read-watchpoint",
5889 set_remote_protocol_Z_read_wp_packet_cmd,
5890 show_remote_protocol_Z_read_wp_packet_cmd,
5891 &remote_set_cmdlist, &remote_show_cmdlist,
5892 0);
5893
5894 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
5895 "Z4", "access-watchpoint",
5896 set_remote_protocol_Z_access_wp_packet_cmd,
5897 show_remote_protocol_Z_access_wp_packet_cmd,
5898 &remote_set_cmdlist, &remote_show_cmdlist,
5899 0);
5900
5901 /* Keep the old ``set remote Z-packet ...'' working. */
5902 tmpcmd = add_set_auto_boolean_cmd ("Z-packet", class_obscure,
5903 &remote_Z_packet_detect,
5904 "\
5905 Set use of remote protocol `Z' packets", &remote_set_cmdlist);
5906 tmpcmd->function.sfunc = set_remote_protocol_Z_packet_cmd;
5907 add_cmd ("Z-packet", class_obscure, show_remote_protocol_Z_packet_cmd,
5908 "Show use of remote protocol `Z' packets ",
5909 &remote_show_cmdlist);
5910 }
This page took 0.207116 seconds and 4 git commands to generate.