2011-01-05 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63 #include "xml-support.h"
64
65 #include "memory-map.h"
66
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70
71 /* temp hacks for tracepoint encoding migration */
72 static char *target_buf;
73 static long target_buf_size;
74 /*static*/ void
75 encode_actions (struct breakpoint *t, struct bp_location *tloc,
76 char ***tdp_actions, char ***stepping_actions);
77
78 /* The size to align memory write packets, when practical. The protocol
79 does not guarantee any alignment, and gdb will generate short
80 writes and unaligned writes, but even as a best-effort attempt this
81 can improve bulk transfers. For instance, if a write is misaligned
82 relative to the target's data bus, the stub may need to make an extra
83 round trip fetching data from the target. This doesn't make a
84 huge difference, but it's easy to do, so we try to be helpful.
85
86 The alignment chosen is arbitrary; usually data bus width is
87 important here, not the possibly larger cache line size. */
88 enum { REMOTE_ALIGN_WRITES = 16 };
89
90 /* Prototypes for local functions. */
91 static void cleanup_sigint_signal_handler (void *dummy);
92 static void initialize_sigint_signal_handler (void);
93 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
94 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
95 int forever);
96
97 static void handle_remote_sigint (int);
98 static void handle_remote_sigint_twice (int);
99 static void async_remote_interrupt (gdb_client_data);
100 void async_remote_interrupt_twice (gdb_client_data);
101
102 static void remote_files_info (struct target_ops *ignore);
103
104 static void remote_prepare_to_store (struct regcache *regcache);
105
106 static void remote_open (char *name, int from_tty);
107
108 static void extended_remote_open (char *name, int from_tty);
109
110 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
111
112 static void remote_close (int quitting);
113
114 static void remote_mourn (struct target_ops *ops);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (struct target_ops *);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static void remote_kill (struct target_ops *ops);
127
128 static int tohex (int nib);
129
130 static int remote_can_async_p (void);
131
132 static int remote_is_async_p (void);
133
134 static void remote_async (void (*callback) (enum inferior_event_type event_type,
135 void *context), void *context);
136
137 static int remote_async_mask (int new_mask);
138
139 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
140
141 static void remote_interrupt (int signo);
142
143 static void remote_interrupt_twice (int signo);
144
145 static void interrupt_query (void);
146
147 static void set_general_thread (struct ptid ptid);
148 static void set_continue_thread (struct ptid ptid);
149
150 static void get_offsets (void);
151
152 static void skip_frame (void);
153
154 static long read_frame (char **buf_p, long *sizeof_buf);
155
156 static int hexnumlen (ULONGEST num);
157
158 static void init_remote_ops (void);
159
160 static void init_extended_remote_ops (void);
161
162 static void remote_stop (ptid_t);
163
164 static int ishex (int ch, int *val);
165
166 static int stubhex (int ch);
167
168 static int hexnumstr (char *, ULONGEST);
169
170 static int hexnumnstr (char *, ULONGEST, int);
171
172 static CORE_ADDR remote_address_masked (CORE_ADDR);
173
174 static void print_packet (char *);
175
176 static void compare_sections_command (char *, int);
177
178 static void packet_command (char *, int);
179
180 static int stub_unpack_int (char *buff, int fieldlength);
181
182 static ptid_t remote_current_thread (ptid_t oldptid);
183
184 static void remote_find_new_threads (void);
185
186 static void record_currthread (ptid_t currthread);
187
188 static int fromhex (int a);
189
190 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
191
192 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
193
194 static int putpkt_binary (char *buf, int cnt);
195
196 static void check_binary_download (CORE_ADDR addr);
197
198 struct packet_config;
199
200 static void show_packet_config_cmd (struct packet_config *config);
201
202 static void update_packet_config (struct packet_config *config);
203
204 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
205 struct cmd_list_element *c);
206
207 static void show_remote_protocol_packet_cmd (struct ui_file *file,
208 int from_tty,
209 struct cmd_list_element *c,
210 const char *value);
211
212 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
213 static ptid_t read_ptid (char *buf, char **obuf);
214
215 static void remote_set_permissions (void);
216
217 struct remote_state;
218 static int remote_get_trace_status (struct trace_status *ts);
219
220 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
221
222 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
223
224 static void remote_query_supported (void);
225
226 static void remote_check_symbols (struct objfile *objfile);
227
228 void _initialize_remote (void);
229
230 struct stop_reply;
231 static struct stop_reply *stop_reply_xmalloc (void);
232 static void stop_reply_xfree (struct stop_reply *);
233 static void do_stop_reply_xfree (void *arg);
234 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
235 static void push_stop_reply (struct stop_reply *);
236 static void remote_get_pending_stop_replies (void);
237 static void discard_pending_stop_replies (int pid);
238 static int peek_stop_reply (ptid_t ptid);
239
240 static void remote_async_inferior_event_handler (gdb_client_data);
241 static void remote_async_get_pending_events_handler (gdb_client_data);
242
243 static void remote_terminal_ours (void);
244
245 static int remote_read_description_p (struct target_ops *target);
246
247 static void remote_console_output (char *msg);
248
249 /* The non-stop remote protocol provisions for one pending stop reply.
250 This is where we keep it until it is acknowledged. */
251
252 static struct stop_reply *pending_stop_reply = NULL;
253
254 /* For "remote". */
255
256 static struct cmd_list_element *remote_cmdlist;
257
258 /* For "set remote" and "show remote". */
259
260 static struct cmd_list_element *remote_set_cmdlist;
261 static struct cmd_list_element *remote_show_cmdlist;
262
263 /* Description of the remote protocol state for the currently
264 connected target. This is per-target state, and independent of the
265 selected architecture. */
266
267 struct remote_state
268 {
269 /* A buffer to use for incoming packets, and its current size. The
270 buffer is grown dynamically for larger incoming packets.
271 Outgoing packets may also be constructed in this buffer.
272 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
273 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
274 packets. */
275 char *buf;
276 long buf_size;
277
278 /* If we negotiated packet size explicitly (and thus can bypass
279 heuristics for the largest packet size that will not overflow
280 a buffer in the stub), this will be set to that packet size.
281 Otherwise zero, meaning to use the guessed size. */
282 long explicit_packet_size;
283
284 /* remote_wait is normally called when the target is running and
285 waits for a stop reply packet. But sometimes we need to call it
286 when the target is already stopped. We can send a "?" packet
287 and have remote_wait read the response. Or, if we already have
288 the response, we can stash it in BUF and tell remote_wait to
289 skip calling getpkt. This flag is set when BUF contains a
290 stop reply packet and the target is not waiting. */
291 int cached_wait_status;
292
293 /* True, if in no ack mode. That is, neither GDB nor the stub will
294 expect acks from each other. The connection is assumed to be
295 reliable. */
296 int noack_mode;
297
298 /* True if we're connected in extended remote mode. */
299 int extended;
300
301 /* True if the stub reported support for multi-process
302 extensions. */
303 int multi_process_aware;
304
305 /* True if we resumed the target and we're waiting for the target to
306 stop. In the mean time, we can't start another command/query.
307 The remote server wouldn't be ready to process it, so we'd
308 timeout waiting for a reply that would never come and eventually
309 we'd close the connection. This can happen in asynchronous mode
310 because we allow GDB commands while the target is running. */
311 int waiting_for_stop_reply;
312
313 /* True if the stub reports support for non-stop mode. */
314 int non_stop_aware;
315
316 /* True if the stub reports support for vCont;t. */
317 int support_vCont_t;
318
319 /* True if the stub reports support for conditional tracepoints. */
320 int cond_tracepoints;
321
322 /* True if the stub reports support for fast tracepoints. */
323 int fast_tracepoints;
324
325 /* True if the stub reports support for static tracepoints. */
326 int static_tracepoints;
327
328 /* True if the stub can continue running a trace while GDB is
329 disconnected. */
330 int disconnected_tracing;
331
332 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
333 responded to that. */
334 int ctrlc_pending_p;
335 };
336
337 /* Private data that we'll store in (struct thread_info)->private. */
338 struct private_thread_info
339 {
340 char *extra;
341 int core;
342 };
343
344 static void
345 free_private_thread_info (struct private_thread_info *info)
346 {
347 xfree (info->extra);
348 xfree (info);
349 }
350
351 /* Returns true if the multi-process extensions are in effect. */
352 static int
353 remote_multi_process_p (struct remote_state *rs)
354 {
355 return rs->extended && rs->multi_process_aware;
356 }
357
358 /* This data could be associated with a target, but we do not always
359 have access to the current target when we need it, so for now it is
360 static. This will be fine for as long as only one target is in use
361 at a time. */
362 static struct remote_state remote_state;
363
364 static struct remote_state *
365 get_remote_state_raw (void)
366 {
367 return &remote_state;
368 }
369
370 /* Description of the remote protocol for a given architecture. */
371
372 struct packet_reg
373 {
374 long offset; /* Offset into G packet. */
375 long regnum; /* GDB's internal register number. */
376 LONGEST pnum; /* Remote protocol register number. */
377 int in_g_packet; /* Always part of G packet. */
378 /* long size in bytes; == register_size (target_gdbarch, regnum);
379 at present. */
380 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
381 at present. */
382 };
383
384 struct remote_arch_state
385 {
386 /* Description of the remote protocol registers. */
387 long sizeof_g_packet;
388
389 /* Description of the remote protocol registers indexed by REGNUM
390 (making an array gdbarch_num_regs in size). */
391 struct packet_reg *regs;
392
393 /* This is the size (in chars) of the first response to the ``g''
394 packet. It is used as a heuristic when determining the maximum
395 size of memory-read and memory-write packets. A target will
396 typically only reserve a buffer large enough to hold the ``g''
397 packet. The size does not include packet overhead (headers and
398 trailers). */
399 long actual_register_packet_size;
400
401 /* This is the maximum size (in chars) of a non read/write packet.
402 It is also used as a cap on the size of read/write packets. */
403 long remote_packet_size;
404 };
405
406 long sizeof_pkt = 2000;
407
408 /* Utility: generate error from an incoming stub packet. */
409 static void
410 trace_error (char *buf)
411 {
412 if (*buf++ != 'E')
413 return; /* not an error msg */
414 switch (*buf)
415 {
416 case '1': /* malformed packet error */
417 if (*++buf == '0') /* general case: */
418 error (_("remote.c: error in outgoing packet."));
419 else
420 error (_("remote.c: error in outgoing packet at field #%ld."),
421 strtol (buf, NULL, 16));
422 case '2':
423 error (_("trace API error 0x%s."), ++buf);
424 default:
425 error (_("Target returns error code '%s'."), buf);
426 }
427 }
428
429 /* Utility: wait for reply from stub, while accepting "O" packets. */
430 static char *
431 remote_get_noisy_reply (char **buf_p,
432 long *sizeof_buf)
433 {
434 do /* Loop on reply from remote stub. */
435 {
436 char *buf;
437
438 QUIT; /* allow user to bail out with ^C */
439 getpkt (buf_p, sizeof_buf, 0);
440 buf = *buf_p;
441 if (buf[0] == 'E')
442 trace_error (buf);
443 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
444 {
445 ULONGEST ul;
446 CORE_ADDR from, to, org_to;
447 char *p, *pp;
448 int adjusted_size = 0;
449 volatile struct gdb_exception ex;
450
451 p = buf + strlen ("qRelocInsn:");
452 pp = unpack_varlen_hex (p, &ul);
453 if (*pp != ';')
454 error (_("invalid qRelocInsn packet: %s"), buf);
455 from = ul;
456
457 p = pp + 1;
458 pp = unpack_varlen_hex (p, &ul);
459 to = ul;
460
461 org_to = to;
462
463 TRY_CATCH (ex, RETURN_MASK_ALL)
464 {
465 gdbarch_relocate_instruction (target_gdbarch, &to, from);
466 }
467 if (ex.reason >= 0)
468 {
469 adjusted_size = to - org_to;
470
471 sprintf (buf, "qRelocInsn:%x", adjusted_size);
472 putpkt (buf);
473 }
474 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
475 {
476 /* Propagate memory errors silently back to the target.
477 The stub may have limited the range of addresses we
478 can write to, for example. */
479 putpkt ("E01");
480 }
481 else
482 {
483 /* Something unexpectedly bad happened. Be verbose so
484 we can tell what, and propagate the error back to the
485 stub, so it doesn't get stuck waiting for a
486 response. */
487 exception_fprintf (gdb_stderr, ex,
488 _("warning: relocating instruction: "));
489 putpkt ("E01");
490 }
491 }
492 else if (buf[0] == 'O' && buf[1] != 'K')
493 remote_console_output (buf + 1); /* 'O' message from stub */
494 else
495 return buf; /* here's the actual reply */
496 }
497 while (1);
498 }
499
500 /* Handle for retreving the remote protocol data from gdbarch. */
501 static struct gdbarch_data *remote_gdbarch_data_handle;
502
503 static struct remote_arch_state *
504 get_remote_arch_state (void)
505 {
506 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
507 }
508
509 /* Fetch the global remote target state. */
510
511 static struct remote_state *
512 get_remote_state (void)
513 {
514 /* Make sure that the remote architecture state has been
515 initialized, because doing so might reallocate rs->buf. Any
516 function which calls getpkt also needs to be mindful of changes
517 to rs->buf, but this call limits the number of places which run
518 into trouble. */
519 get_remote_arch_state ();
520
521 return get_remote_state_raw ();
522 }
523
524 static int
525 compare_pnums (const void *lhs_, const void *rhs_)
526 {
527 const struct packet_reg * const *lhs = lhs_;
528 const struct packet_reg * const *rhs = rhs_;
529
530 if ((*lhs)->pnum < (*rhs)->pnum)
531 return -1;
532 else if ((*lhs)->pnum == (*rhs)->pnum)
533 return 0;
534 else
535 return 1;
536 }
537
538 static void *
539 init_remote_state (struct gdbarch *gdbarch)
540 {
541 int regnum, num_remote_regs, offset;
542 struct remote_state *rs = get_remote_state_raw ();
543 struct remote_arch_state *rsa;
544 struct packet_reg **remote_regs;
545
546 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
547
548 /* Use the architecture to build a regnum<->pnum table, which will be
549 1:1 unless a feature set specifies otherwise. */
550 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
551 gdbarch_num_regs (gdbarch),
552 struct packet_reg);
553 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
554 {
555 struct packet_reg *r = &rsa->regs[regnum];
556
557 if (register_size (gdbarch, regnum) == 0)
558 /* Do not try to fetch zero-sized (placeholder) registers. */
559 r->pnum = -1;
560 else
561 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
562
563 r->regnum = regnum;
564 }
565
566 /* Define the g/G packet format as the contents of each register
567 with a remote protocol number, in order of ascending protocol
568 number. */
569
570 remote_regs = alloca (gdbarch_num_regs (gdbarch)
571 * sizeof (struct packet_reg *));
572 for (num_remote_regs = 0, regnum = 0;
573 regnum < gdbarch_num_regs (gdbarch);
574 regnum++)
575 if (rsa->regs[regnum].pnum != -1)
576 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
577
578 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
579 compare_pnums);
580
581 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
582 {
583 remote_regs[regnum]->in_g_packet = 1;
584 remote_regs[regnum]->offset = offset;
585 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
586 }
587
588 /* Record the maximum possible size of the g packet - it may turn out
589 to be smaller. */
590 rsa->sizeof_g_packet = offset;
591
592 /* Default maximum number of characters in a packet body. Many
593 remote stubs have a hardwired buffer size of 400 bytes
594 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
595 as the maximum packet-size to ensure that the packet and an extra
596 NUL character can always fit in the buffer. This stops GDB
597 trashing stubs that try to squeeze an extra NUL into what is
598 already a full buffer (As of 1999-12-04 that was most stubs). */
599 rsa->remote_packet_size = 400 - 1;
600
601 /* This one is filled in when a ``g'' packet is received. */
602 rsa->actual_register_packet_size = 0;
603
604 /* Should rsa->sizeof_g_packet needs more space than the
605 default, adjust the size accordingly. Remember that each byte is
606 encoded as two characters. 32 is the overhead for the packet
607 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
608 (``$NN:G...#NN'') is a better guess, the below has been padded a
609 little. */
610 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
611 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
612
613 /* Make sure that the packet buffer is plenty big enough for
614 this architecture. */
615 if (rs->buf_size < rsa->remote_packet_size)
616 {
617 rs->buf_size = 2 * rsa->remote_packet_size;
618 rs->buf = xrealloc (rs->buf, rs->buf_size);
619 }
620
621 return rsa;
622 }
623
624 /* Return the current allowed size of a remote packet. This is
625 inferred from the current architecture, and should be used to
626 limit the length of outgoing packets. */
627 static long
628 get_remote_packet_size (void)
629 {
630 struct remote_state *rs = get_remote_state ();
631 struct remote_arch_state *rsa = get_remote_arch_state ();
632
633 if (rs->explicit_packet_size)
634 return rs->explicit_packet_size;
635
636 return rsa->remote_packet_size;
637 }
638
639 static struct packet_reg *
640 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
641 {
642 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
643 return NULL;
644 else
645 {
646 struct packet_reg *r = &rsa->regs[regnum];
647
648 gdb_assert (r->regnum == regnum);
649 return r;
650 }
651 }
652
653 static struct packet_reg *
654 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
655 {
656 int i;
657
658 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
659 {
660 struct packet_reg *r = &rsa->regs[i];
661
662 if (r->pnum == pnum)
663 return r;
664 }
665 return NULL;
666 }
667
668 /* FIXME: graces/2002-08-08: These variables should eventually be
669 bound to an instance of the target object (as in gdbarch-tdep()),
670 when such a thing exists. */
671
672 /* This is set to the data address of the access causing the target
673 to stop for a watchpoint. */
674 static CORE_ADDR remote_watch_data_address;
675
676 /* This is non-zero if target stopped for a watchpoint. */
677 static int remote_stopped_by_watchpoint_p;
678
679 static struct target_ops remote_ops;
680
681 static struct target_ops extended_remote_ops;
682
683 static int remote_async_mask_value = 1;
684
685 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
686 ``forever'' still use the normal timeout mechanism. This is
687 currently used by the ASYNC code to guarentee that target reads
688 during the initial connect always time-out. Once getpkt has been
689 modified to return a timeout indication and, in turn
690 remote_wait()/wait_for_inferior() have gained a timeout parameter
691 this can go away. */
692 static int wait_forever_enabled_p = 1;
693
694 /* Allow the user to specify what sequence to send to the remote
695 when he requests a program interruption: Although ^C is usually
696 what remote systems expect (this is the default, here), it is
697 sometimes preferable to send a break. On other systems such
698 as the Linux kernel, a break followed by g, which is Magic SysRq g
699 is required in order to interrupt the execution. */
700 const char interrupt_sequence_control_c[] = "Ctrl-C";
701 const char interrupt_sequence_break[] = "BREAK";
702 const char interrupt_sequence_break_g[] = "BREAK-g";
703 static const char *interrupt_sequence_modes[] =
704 {
705 interrupt_sequence_control_c,
706 interrupt_sequence_break,
707 interrupt_sequence_break_g,
708 NULL
709 };
710 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
711
712 static void
713 show_interrupt_sequence (struct ui_file *file, int from_tty,
714 struct cmd_list_element *c,
715 const char *value)
716 {
717 if (interrupt_sequence_mode == interrupt_sequence_control_c)
718 fprintf_filtered (file,
719 _("Send the ASCII ETX character (Ctrl-c) "
720 "to the remote target to interrupt the "
721 "execution of the program.\n"));
722 else if (interrupt_sequence_mode == interrupt_sequence_break)
723 fprintf_filtered (file,
724 _("send a break signal to the remote target "
725 "to interrupt the execution of the program.\n"));
726 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
727 fprintf_filtered (file,
728 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
729 "the remote target to interrupt the execution "
730 "of Linux kernel.\n"));
731 else
732 internal_error (__FILE__, __LINE__,
733 _("Invalid value for interrupt_sequence_mode: %s."),
734 interrupt_sequence_mode);
735 }
736
737 /* This boolean variable specifies whether interrupt_sequence is sent
738 to the remote target when gdb connects to it.
739 This is mostly needed when you debug the Linux kernel: The Linux kernel
740 expects BREAK g which is Magic SysRq g for connecting gdb. */
741 static int interrupt_on_connect = 0;
742
743 /* This variable is used to implement the "set/show remotebreak" commands.
744 Since these commands are now deprecated in favor of "set/show remote
745 interrupt-sequence", it no longer has any effect on the code. */
746 static int remote_break;
747
748 static void
749 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
750 {
751 if (remote_break)
752 interrupt_sequence_mode = interrupt_sequence_break;
753 else
754 interrupt_sequence_mode = interrupt_sequence_control_c;
755 }
756
757 static void
758 show_remotebreak (struct ui_file *file, int from_tty,
759 struct cmd_list_element *c,
760 const char *value)
761 {
762 }
763
764 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
765 remote_open knows that we don't have a file open when the program
766 starts. */
767 static struct serial *remote_desc = NULL;
768
769 /* This variable sets the number of bits in an address that are to be
770 sent in a memory ("M" or "m") packet. Normally, after stripping
771 leading zeros, the entire address would be sent. This variable
772 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
773 initial implementation of remote.c restricted the address sent in
774 memory packets to ``host::sizeof long'' bytes - (typically 32
775 bits). Consequently, for 64 bit targets, the upper 32 bits of an
776 address was never sent. Since fixing this bug may cause a break in
777 some remote targets this variable is principly provided to
778 facilitate backward compatibility. */
779
780 static int remote_address_size;
781
782 /* Temporary to track who currently owns the terminal. See
783 remote_terminal_* for more details. */
784
785 static int remote_async_terminal_ours_p;
786
787 /* The executable file to use for "run" on the remote side. */
788
789 static char *remote_exec_file = "";
790
791 \f
792 /* User configurable variables for the number of characters in a
793 memory read/write packet. MIN (rsa->remote_packet_size,
794 rsa->sizeof_g_packet) is the default. Some targets need smaller
795 values (fifo overruns, et.al.) and some users need larger values
796 (speed up transfers). The variables ``preferred_*'' (the user
797 request), ``current_*'' (what was actually set) and ``forced_*''
798 (Positive - a soft limit, negative - a hard limit). */
799
800 struct memory_packet_config
801 {
802 char *name;
803 long size;
804 int fixed_p;
805 };
806
807 /* Compute the current size of a read/write packet. Since this makes
808 use of ``actual_register_packet_size'' the computation is dynamic. */
809
810 static long
811 get_memory_packet_size (struct memory_packet_config *config)
812 {
813 struct remote_state *rs = get_remote_state ();
814 struct remote_arch_state *rsa = get_remote_arch_state ();
815
816 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
817 law?) that some hosts don't cope very well with large alloca()
818 calls. Eventually the alloca() code will be replaced by calls to
819 xmalloc() and make_cleanups() allowing this restriction to either
820 be lifted or removed. */
821 #ifndef MAX_REMOTE_PACKET_SIZE
822 #define MAX_REMOTE_PACKET_SIZE 16384
823 #endif
824 /* NOTE: 20 ensures we can write at least one byte. */
825 #ifndef MIN_REMOTE_PACKET_SIZE
826 #define MIN_REMOTE_PACKET_SIZE 20
827 #endif
828 long what_they_get;
829 if (config->fixed_p)
830 {
831 if (config->size <= 0)
832 what_they_get = MAX_REMOTE_PACKET_SIZE;
833 else
834 what_they_get = config->size;
835 }
836 else
837 {
838 what_they_get = get_remote_packet_size ();
839 /* Limit the packet to the size specified by the user. */
840 if (config->size > 0
841 && what_they_get > config->size)
842 what_they_get = config->size;
843
844 /* Limit it to the size of the targets ``g'' response unless we have
845 permission from the stub to use a larger packet size. */
846 if (rs->explicit_packet_size == 0
847 && rsa->actual_register_packet_size > 0
848 && what_they_get > rsa->actual_register_packet_size)
849 what_they_get = rsa->actual_register_packet_size;
850 }
851 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
852 what_they_get = MAX_REMOTE_PACKET_SIZE;
853 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
854 what_they_get = MIN_REMOTE_PACKET_SIZE;
855
856 /* Make sure there is room in the global buffer for this packet
857 (including its trailing NUL byte). */
858 if (rs->buf_size < what_they_get + 1)
859 {
860 rs->buf_size = 2 * what_they_get;
861 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
862 }
863
864 return what_they_get;
865 }
866
867 /* Update the size of a read/write packet. If they user wants
868 something really big then do a sanity check. */
869
870 static void
871 set_memory_packet_size (char *args, struct memory_packet_config *config)
872 {
873 int fixed_p = config->fixed_p;
874 long size = config->size;
875
876 if (args == NULL)
877 error (_("Argument required (integer, `fixed' or `limited')."));
878 else if (strcmp (args, "hard") == 0
879 || strcmp (args, "fixed") == 0)
880 fixed_p = 1;
881 else if (strcmp (args, "soft") == 0
882 || strcmp (args, "limit") == 0)
883 fixed_p = 0;
884 else
885 {
886 char *end;
887
888 size = strtoul (args, &end, 0);
889 if (args == end)
890 error (_("Invalid %s (bad syntax)."), config->name);
891 #if 0
892 /* Instead of explicitly capping the size of a packet to
893 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
894 instead allowed to set the size to something arbitrarily
895 large. */
896 if (size > MAX_REMOTE_PACKET_SIZE)
897 error (_("Invalid %s (too large)."), config->name);
898 #endif
899 }
900 /* Extra checks? */
901 if (fixed_p && !config->fixed_p)
902 {
903 if (! query (_("The target may not be able to correctly handle a %s\n"
904 "of %ld bytes. Change the packet size? "),
905 config->name, size))
906 error (_("Packet size not changed."));
907 }
908 /* Update the config. */
909 config->fixed_p = fixed_p;
910 config->size = size;
911 }
912
913 static void
914 show_memory_packet_size (struct memory_packet_config *config)
915 {
916 printf_filtered (_("The %s is %ld. "), config->name, config->size);
917 if (config->fixed_p)
918 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
919 get_memory_packet_size (config));
920 else
921 printf_filtered (_("Packets are limited to %ld bytes.\n"),
922 get_memory_packet_size (config));
923 }
924
925 static struct memory_packet_config memory_write_packet_config =
926 {
927 "memory-write-packet-size",
928 };
929
930 static void
931 set_memory_write_packet_size (char *args, int from_tty)
932 {
933 set_memory_packet_size (args, &memory_write_packet_config);
934 }
935
936 static void
937 show_memory_write_packet_size (char *args, int from_tty)
938 {
939 show_memory_packet_size (&memory_write_packet_config);
940 }
941
942 static long
943 get_memory_write_packet_size (void)
944 {
945 return get_memory_packet_size (&memory_write_packet_config);
946 }
947
948 static struct memory_packet_config memory_read_packet_config =
949 {
950 "memory-read-packet-size",
951 };
952
953 static void
954 set_memory_read_packet_size (char *args, int from_tty)
955 {
956 set_memory_packet_size (args, &memory_read_packet_config);
957 }
958
959 static void
960 show_memory_read_packet_size (char *args, int from_tty)
961 {
962 show_memory_packet_size (&memory_read_packet_config);
963 }
964
965 static long
966 get_memory_read_packet_size (void)
967 {
968 long size = get_memory_packet_size (&memory_read_packet_config);
969
970 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
971 extra buffer size argument before the memory read size can be
972 increased beyond this. */
973 if (size > get_remote_packet_size ())
974 size = get_remote_packet_size ();
975 return size;
976 }
977
978 \f
979 /* Generic configuration support for packets the stub optionally
980 supports. Allows the user to specify the use of the packet as well
981 as allowing GDB to auto-detect support in the remote stub. */
982
983 enum packet_support
984 {
985 PACKET_SUPPORT_UNKNOWN = 0,
986 PACKET_ENABLE,
987 PACKET_DISABLE
988 };
989
990 struct packet_config
991 {
992 const char *name;
993 const char *title;
994 enum auto_boolean detect;
995 enum packet_support support;
996 };
997
998 /* Analyze a packet's return value and update the packet config
999 accordingly. */
1000
1001 enum packet_result
1002 {
1003 PACKET_ERROR,
1004 PACKET_OK,
1005 PACKET_UNKNOWN
1006 };
1007
1008 static void
1009 update_packet_config (struct packet_config *config)
1010 {
1011 switch (config->detect)
1012 {
1013 case AUTO_BOOLEAN_TRUE:
1014 config->support = PACKET_ENABLE;
1015 break;
1016 case AUTO_BOOLEAN_FALSE:
1017 config->support = PACKET_DISABLE;
1018 break;
1019 case AUTO_BOOLEAN_AUTO:
1020 config->support = PACKET_SUPPORT_UNKNOWN;
1021 break;
1022 }
1023 }
1024
1025 static void
1026 show_packet_config_cmd (struct packet_config *config)
1027 {
1028 char *support = "internal-error";
1029
1030 switch (config->support)
1031 {
1032 case PACKET_ENABLE:
1033 support = "enabled";
1034 break;
1035 case PACKET_DISABLE:
1036 support = "disabled";
1037 break;
1038 case PACKET_SUPPORT_UNKNOWN:
1039 support = "unknown";
1040 break;
1041 }
1042 switch (config->detect)
1043 {
1044 case AUTO_BOOLEAN_AUTO:
1045 printf_filtered (_("Support for the `%s' packet "
1046 "is auto-detected, currently %s.\n"),
1047 config->name, support);
1048 break;
1049 case AUTO_BOOLEAN_TRUE:
1050 case AUTO_BOOLEAN_FALSE:
1051 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1052 config->name, support);
1053 break;
1054 }
1055 }
1056
1057 static void
1058 add_packet_config_cmd (struct packet_config *config, const char *name,
1059 const char *title, int legacy)
1060 {
1061 char *set_doc;
1062 char *show_doc;
1063 char *cmd_name;
1064
1065 config->name = name;
1066 config->title = title;
1067 config->detect = AUTO_BOOLEAN_AUTO;
1068 config->support = PACKET_SUPPORT_UNKNOWN;
1069 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1070 name, title);
1071 show_doc = xstrprintf ("Show current use of remote "
1072 "protocol `%s' (%s) packet",
1073 name, title);
1074 /* set/show TITLE-packet {auto,on,off} */
1075 cmd_name = xstrprintf ("%s-packet", title);
1076 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1077 &config->detect, set_doc,
1078 show_doc, NULL, /* help_doc */
1079 set_remote_protocol_packet_cmd,
1080 show_remote_protocol_packet_cmd,
1081 &remote_set_cmdlist, &remote_show_cmdlist);
1082 /* The command code copies the documentation strings. */
1083 xfree (set_doc);
1084 xfree (show_doc);
1085 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1086 if (legacy)
1087 {
1088 char *legacy_name;
1089
1090 legacy_name = xstrprintf ("%s-packet", name);
1091 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1092 &remote_set_cmdlist);
1093 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1094 &remote_show_cmdlist);
1095 }
1096 }
1097
1098 static enum packet_result
1099 packet_check_result (const char *buf)
1100 {
1101 if (buf[0] != '\0')
1102 {
1103 /* The stub recognized the packet request. Check that the
1104 operation succeeded. */
1105 if (buf[0] == 'E'
1106 && isxdigit (buf[1]) && isxdigit (buf[2])
1107 && buf[3] == '\0')
1108 /* "Enn" - definitly an error. */
1109 return PACKET_ERROR;
1110
1111 /* Always treat "E." as an error. This will be used for
1112 more verbose error messages, such as E.memtypes. */
1113 if (buf[0] == 'E' && buf[1] == '.')
1114 return PACKET_ERROR;
1115
1116 /* The packet may or may not be OK. Just assume it is. */
1117 return PACKET_OK;
1118 }
1119 else
1120 /* The stub does not support the packet. */
1121 return PACKET_UNKNOWN;
1122 }
1123
1124 static enum packet_result
1125 packet_ok (const char *buf, struct packet_config *config)
1126 {
1127 enum packet_result result;
1128
1129 result = packet_check_result (buf);
1130 switch (result)
1131 {
1132 case PACKET_OK:
1133 case PACKET_ERROR:
1134 /* The stub recognized the packet request. */
1135 switch (config->support)
1136 {
1137 case PACKET_SUPPORT_UNKNOWN:
1138 if (remote_debug)
1139 fprintf_unfiltered (gdb_stdlog,
1140 "Packet %s (%s) is supported\n",
1141 config->name, config->title);
1142 config->support = PACKET_ENABLE;
1143 break;
1144 case PACKET_DISABLE:
1145 internal_error (__FILE__, __LINE__,
1146 _("packet_ok: attempt to use a disabled packet"));
1147 break;
1148 case PACKET_ENABLE:
1149 break;
1150 }
1151 break;
1152 case PACKET_UNKNOWN:
1153 /* The stub does not support the packet. */
1154 switch (config->support)
1155 {
1156 case PACKET_ENABLE:
1157 if (config->detect == AUTO_BOOLEAN_AUTO)
1158 /* If the stub previously indicated that the packet was
1159 supported then there is a protocol error.. */
1160 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1161 config->name, config->title);
1162 else
1163 /* The user set it wrong. */
1164 error (_("Enabled packet %s (%s) not recognized by stub"),
1165 config->name, config->title);
1166 break;
1167 case PACKET_SUPPORT_UNKNOWN:
1168 if (remote_debug)
1169 fprintf_unfiltered (gdb_stdlog,
1170 "Packet %s (%s) is NOT supported\n",
1171 config->name, config->title);
1172 config->support = PACKET_DISABLE;
1173 break;
1174 case PACKET_DISABLE:
1175 break;
1176 }
1177 break;
1178 }
1179
1180 return result;
1181 }
1182
1183 enum {
1184 PACKET_vCont = 0,
1185 PACKET_X,
1186 PACKET_qSymbol,
1187 PACKET_P,
1188 PACKET_p,
1189 PACKET_Z0,
1190 PACKET_Z1,
1191 PACKET_Z2,
1192 PACKET_Z3,
1193 PACKET_Z4,
1194 PACKET_vFile_open,
1195 PACKET_vFile_pread,
1196 PACKET_vFile_pwrite,
1197 PACKET_vFile_close,
1198 PACKET_vFile_unlink,
1199 PACKET_qXfer_auxv,
1200 PACKET_qXfer_features,
1201 PACKET_qXfer_libraries,
1202 PACKET_qXfer_memory_map,
1203 PACKET_qXfer_spu_read,
1204 PACKET_qXfer_spu_write,
1205 PACKET_qXfer_osdata,
1206 PACKET_qXfer_threads,
1207 PACKET_qXfer_statictrace_read,
1208 PACKET_qGetTIBAddr,
1209 PACKET_qGetTLSAddr,
1210 PACKET_qSupported,
1211 PACKET_QPassSignals,
1212 PACKET_qSearch_memory,
1213 PACKET_vAttach,
1214 PACKET_vRun,
1215 PACKET_QStartNoAckMode,
1216 PACKET_vKill,
1217 PACKET_qXfer_siginfo_read,
1218 PACKET_qXfer_siginfo_write,
1219 PACKET_qAttached,
1220 PACKET_ConditionalTracepoints,
1221 PACKET_FastTracepoints,
1222 PACKET_StaticTracepoints,
1223 PACKET_bc,
1224 PACKET_bs,
1225 PACKET_TracepointSource,
1226 PACKET_QAllow,
1227 PACKET_MAX
1228 };
1229
1230 static struct packet_config remote_protocol_packets[PACKET_MAX];
1231
1232 static void
1233 set_remote_protocol_packet_cmd (char *args, int from_tty,
1234 struct cmd_list_element *c)
1235 {
1236 struct packet_config *packet;
1237
1238 for (packet = remote_protocol_packets;
1239 packet < &remote_protocol_packets[PACKET_MAX];
1240 packet++)
1241 {
1242 if (&packet->detect == c->var)
1243 {
1244 update_packet_config (packet);
1245 return;
1246 }
1247 }
1248 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1249 c->name);
1250 }
1251
1252 static void
1253 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1254 struct cmd_list_element *c,
1255 const char *value)
1256 {
1257 struct packet_config *packet;
1258
1259 for (packet = remote_protocol_packets;
1260 packet < &remote_protocol_packets[PACKET_MAX];
1261 packet++)
1262 {
1263 if (&packet->detect == c->var)
1264 {
1265 show_packet_config_cmd (packet);
1266 return;
1267 }
1268 }
1269 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1270 c->name);
1271 }
1272
1273 /* Should we try one of the 'Z' requests? */
1274
1275 enum Z_packet_type
1276 {
1277 Z_PACKET_SOFTWARE_BP,
1278 Z_PACKET_HARDWARE_BP,
1279 Z_PACKET_WRITE_WP,
1280 Z_PACKET_READ_WP,
1281 Z_PACKET_ACCESS_WP,
1282 NR_Z_PACKET_TYPES
1283 };
1284
1285 /* For compatibility with older distributions. Provide a ``set remote
1286 Z-packet ...'' command that updates all the Z packet types. */
1287
1288 static enum auto_boolean remote_Z_packet_detect;
1289
1290 static void
1291 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1292 struct cmd_list_element *c)
1293 {
1294 int i;
1295
1296 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1297 {
1298 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1299 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1300 }
1301 }
1302
1303 static void
1304 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1305 struct cmd_list_element *c,
1306 const char *value)
1307 {
1308 int i;
1309
1310 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1311 {
1312 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1313 }
1314 }
1315
1316 /* Should we try the 'ThreadInfo' query packet?
1317
1318 This variable (NOT available to the user: auto-detect only!)
1319 determines whether GDB will use the new, simpler "ThreadInfo"
1320 query or the older, more complex syntax for thread queries.
1321 This is an auto-detect variable (set to true at each connect,
1322 and set to false when the target fails to recognize it). */
1323
1324 static int use_threadinfo_query;
1325 static int use_threadextra_query;
1326
1327 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1328 static struct async_signal_handler *sigint_remote_twice_token;
1329 static struct async_signal_handler *sigint_remote_token;
1330
1331 \f
1332 /* Asynchronous signal handle registered as event loop source for
1333 when we have pending events ready to be passed to the core. */
1334
1335 static struct async_event_handler *remote_async_inferior_event_token;
1336
1337 /* Asynchronous signal handle registered as event loop source for when
1338 the remote sent us a %Stop notification. The registered callback
1339 will do a vStopped sequence to pull the rest of the events out of
1340 the remote side into our event queue. */
1341
1342 static struct async_event_handler *remote_async_get_pending_events_token;
1343 \f
1344
1345 static ptid_t magic_null_ptid;
1346 static ptid_t not_sent_ptid;
1347 static ptid_t any_thread_ptid;
1348
1349 /* These are the threads which we last sent to the remote system. The
1350 TID member will be -1 for all or -2 for not sent yet. */
1351
1352 static ptid_t general_thread;
1353 static ptid_t continue_thread;
1354
1355 /* Find out if the stub attached to PID (and hence GDB should offer to
1356 detach instead of killing it when bailing out). */
1357
1358 static int
1359 remote_query_attached (int pid)
1360 {
1361 struct remote_state *rs = get_remote_state ();
1362
1363 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1364 return 0;
1365
1366 if (remote_multi_process_p (rs))
1367 sprintf (rs->buf, "qAttached:%x", pid);
1368 else
1369 sprintf (rs->buf, "qAttached");
1370
1371 putpkt (rs->buf);
1372 getpkt (&rs->buf, &rs->buf_size, 0);
1373
1374 switch (packet_ok (rs->buf,
1375 &remote_protocol_packets[PACKET_qAttached]))
1376 {
1377 case PACKET_OK:
1378 if (strcmp (rs->buf, "1") == 0)
1379 return 1;
1380 break;
1381 case PACKET_ERROR:
1382 warning (_("Remote failure reply: %s"), rs->buf);
1383 break;
1384 case PACKET_UNKNOWN:
1385 break;
1386 }
1387
1388 return 0;
1389 }
1390
1391 /* Add PID to GDB's inferior table. Since we can be connected to a
1392 remote system before before knowing about any inferior, mark the
1393 target with execution when we find the first inferior. If ATTACHED
1394 is 1, then we had just attached to this inferior. If it is 0, then
1395 we just created this inferior. If it is -1, then try querying the
1396 remote stub to find out if it had attached to the inferior or
1397 not. */
1398
1399 static struct inferior *
1400 remote_add_inferior (int pid, int attached)
1401 {
1402 struct inferior *inf;
1403
1404 /* Check whether this process we're learning about is to be
1405 considered attached, or if is to be considered to have been
1406 spawned by the stub. */
1407 if (attached == -1)
1408 attached = remote_query_attached (pid);
1409
1410 if (gdbarch_has_global_solist (target_gdbarch))
1411 {
1412 /* If the target shares code across all inferiors, then every
1413 attach adds a new inferior. */
1414 inf = add_inferior (pid);
1415
1416 /* ... and every inferior is bound to the same program space.
1417 However, each inferior may still have its own address
1418 space. */
1419 inf->aspace = maybe_new_address_space ();
1420 inf->pspace = current_program_space;
1421 }
1422 else
1423 {
1424 /* In the traditional debugging scenario, there's a 1-1 match
1425 between program/address spaces. We simply bind the inferior
1426 to the program space's address space. */
1427 inf = current_inferior ();
1428 inferior_appeared (inf, pid);
1429 }
1430
1431 inf->attach_flag = attached;
1432
1433 return inf;
1434 }
1435
1436 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1437 according to RUNNING. */
1438
1439 static void
1440 remote_add_thread (ptid_t ptid, int running)
1441 {
1442 add_thread (ptid);
1443
1444 set_executing (ptid, running);
1445 set_running (ptid, running);
1446 }
1447
1448 /* Come here when we learn about a thread id from the remote target.
1449 It may be the first time we hear about such thread, so take the
1450 opportunity to add it to GDB's thread list. In case this is the
1451 first time we're noticing its corresponding inferior, add it to
1452 GDB's inferior list as well. */
1453
1454 static void
1455 remote_notice_new_inferior (ptid_t currthread, int running)
1456 {
1457 /* If this is a new thread, add it to GDB's thread list.
1458 If we leave it up to WFI to do this, bad things will happen. */
1459
1460 if (in_thread_list (currthread) && is_exited (currthread))
1461 {
1462 /* We're seeing an event on a thread id we knew had exited.
1463 This has to be a new thread reusing the old id. Add it. */
1464 remote_add_thread (currthread, running);
1465 return;
1466 }
1467
1468 if (!in_thread_list (currthread))
1469 {
1470 struct inferior *inf = NULL;
1471 int pid = ptid_get_pid (currthread);
1472
1473 if (ptid_is_pid (inferior_ptid)
1474 && pid == ptid_get_pid (inferior_ptid))
1475 {
1476 /* inferior_ptid has no thread member yet. This can happen
1477 with the vAttach -> remote_wait,"TAAthread:" path if the
1478 stub doesn't support qC. This is the first stop reported
1479 after an attach, so this is the main thread. Update the
1480 ptid in the thread list. */
1481 if (in_thread_list (pid_to_ptid (pid)))
1482 thread_change_ptid (inferior_ptid, currthread);
1483 else
1484 {
1485 remote_add_thread (currthread, running);
1486 inferior_ptid = currthread;
1487 }
1488 return;
1489 }
1490
1491 if (ptid_equal (magic_null_ptid, inferior_ptid))
1492 {
1493 /* inferior_ptid is not set yet. This can happen with the
1494 vRun -> remote_wait,"TAAthread:" path if the stub
1495 doesn't support qC. This is the first stop reported
1496 after an attach, so this is the main thread. Update the
1497 ptid in the thread list. */
1498 thread_change_ptid (inferior_ptid, currthread);
1499 return;
1500 }
1501
1502 /* When connecting to a target remote, or to a target
1503 extended-remote which already was debugging an inferior, we
1504 may not know about it yet. Add it before adding its child
1505 thread, so notifications are emitted in a sensible order. */
1506 if (!in_inferior_list (ptid_get_pid (currthread)))
1507 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1508
1509 /* This is really a new thread. Add it. */
1510 remote_add_thread (currthread, running);
1511
1512 /* If we found a new inferior, let the common code do whatever
1513 it needs to with it (e.g., read shared libraries, insert
1514 breakpoints). */
1515 if (inf != NULL)
1516 notice_new_inferior (currthread, running, 0);
1517 }
1518 }
1519
1520 /* Return the private thread data, creating it if necessary. */
1521
1522 struct private_thread_info *
1523 demand_private_info (ptid_t ptid)
1524 {
1525 struct thread_info *info = find_thread_ptid (ptid);
1526
1527 gdb_assert (info);
1528
1529 if (!info->private)
1530 {
1531 info->private = xmalloc (sizeof (*(info->private)));
1532 info->private_dtor = free_private_thread_info;
1533 info->private->core = -1;
1534 info->private->extra = 0;
1535 }
1536
1537 return info->private;
1538 }
1539
1540 /* Call this function as a result of
1541 1) A halt indication (T packet) containing a thread id
1542 2) A direct query of currthread
1543 3) Successful execution of set thread
1544 */
1545
1546 static void
1547 record_currthread (ptid_t currthread)
1548 {
1549 general_thread = currthread;
1550 }
1551
1552 static char *last_pass_packet;
1553
1554 /* If 'QPassSignals' is supported, tell the remote stub what signals
1555 it can simply pass through to the inferior without reporting. */
1556
1557 static void
1558 remote_pass_signals (void)
1559 {
1560 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1561 {
1562 char *pass_packet, *p;
1563 int numsigs = (int) TARGET_SIGNAL_LAST;
1564 int count = 0, i;
1565
1566 gdb_assert (numsigs < 256);
1567 for (i = 0; i < numsigs; i++)
1568 {
1569 if (signal_stop_state (i) == 0
1570 && signal_print_state (i) == 0
1571 && signal_pass_state (i) == 1)
1572 count++;
1573 }
1574 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1575 strcpy (pass_packet, "QPassSignals:");
1576 p = pass_packet + strlen (pass_packet);
1577 for (i = 0; i < numsigs; i++)
1578 {
1579 if (signal_stop_state (i) == 0
1580 && signal_print_state (i) == 0
1581 && signal_pass_state (i) == 1)
1582 {
1583 if (i >= 16)
1584 *p++ = tohex (i >> 4);
1585 *p++ = tohex (i & 15);
1586 if (count)
1587 *p++ = ';';
1588 else
1589 break;
1590 count--;
1591 }
1592 }
1593 *p = 0;
1594 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1595 {
1596 struct remote_state *rs = get_remote_state ();
1597 char *buf = rs->buf;
1598
1599 putpkt (pass_packet);
1600 getpkt (&rs->buf, &rs->buf_size, 0);
1601 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1602 if (last_pass_packet)
1603 xfree (last_pass_packet);
1604 last_pass_packet = pass_packet;
1605 }
1606 else
1607 xfree (pass_packet);
1608 }
1609 }
1610
1611 static void
1612 remote_notice_signals (ptid_t ptid)
1613 {
1614 /* Update the remote on signals to silently pass, if they've
1615 changed. */
1616 remote_pass_signals ();
1617 }
1618
1619 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1620 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1621 thread. If GEN is set, set the general thread, if not, then set
1622 the step/continue thread. */
1623 static void
1624 set_thread (struct ptid ptid, int gen)
1625 {
1626 struct remote_state *rs = get_remote_state ();
1627 ptid_t state = gen ? general_thread : continue_thread;
1628 char *buf = rs->buf;
1629 char *endbuf = rs->buf + get_remote_packet_size ();
1630
1631 if (ptid_equal (state, ptid))
1632 return;
1633
1634 *buf++ = 'H';
1635 *buf++ = gen ? 'g' : 'c';
1636 if (ptid_equal (ptid, magic_null_ptid))
1637 xsnprintf (buf, endbuf - buf, "0");
1638 else if (ptid_equal (ptid, any_thread_ptid))
1639 xsnprintf (buf, endbuf - buf, "0");
1640 else if (ptid_equal (ptid, minus_one_ptid))
1641 xsnprintf (buf, endbuf - buf, "-1");
1642 else
1643 write_ptid (buf, endbuf, ptid);
1644 putpkt (rs->buf);
1645 getpkt (&rs->buf, &rs->buf_size, 0);
1646 if (gen)
1647 general_thread = ptid;
1648 else
1649 continue_thread = ptid;
1650 }
1651
1652 static void
1653 set_general_thread (struct ptid ptid)
1654 {
1655 set_thread (ptid, 1);
1656 }
1657
1658 static void
1659 set_continue_thread (struct ptid ptid)
1660 {
1661 set_thread (ptid, 0);
1662 }
1663
1664 /* Change the remote current process. Which thread within the process
1665 ends up selected isn't important, as long as it is the same process
1666 as what INFERIOR_PTID points to.
1667
1668 This comes from that fact that there is no explicit notion of
1669 "selected process" in the protocol. The selected process for
1670 general operations is the process the selected general thread
1671 belongs to. */
1672
1673 static void
1674 set_general_process (void)
1675 {
1676 struct remote_state *rs = get_remote_state ();
1677
1678 /* If the remote can't handle multiple processes, don't bother. */
1679 if (!remote_multi_process_p (rs))
1680 return;
1681
1682 /* We only need to change the remote current thread if it's pointing
1683 at some other process. */
1684 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1685 set_general_thread (inferior_ptid);
1686 }
1687
1688 \f
1689 /* Return nonzero if the thread PTID is still alive on the remote
1690 system. */
1691
1692 static int
1693 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1694 {
1695 struct remote_state *rs = get_remote_state ();
1696 char *p, *endp;
1697
1698 if (ptid_equal (ptid, magic_null_ptid))
1699 /* The main thread is always alive. */
1700 return 1;
1701
1702 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1703 /* The main thread is always alive. This can happen after a
1704 vAttach, if the remote side doesn't support
1705 multi-threading. */
1706 return 1;
1707
1708 p = rs->buf;
1709 endp = rs->buf + get_remote_packet_size ();
1710
1711 *p++ = 'T';
1712 write_ptid (p, endp, ptid);
1713
1714 putpkt (rs->buf);
1715 getpkt (&rs->buf, &rs->buf_size, 0);
1716 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1717 }
1718
1719 /* About these extended threadlist and threadinfo packets. They are
1720 variable length packets but, the fields within them are often fixed
1721 length. They are redundent enough to send over UDP as is the
1722 remote protocol in general. There is a matching unit test module
1723 in libstub. */
1724
1725 #define OPAQUETHREADBYTES 8
1726
1727 /* a 64 bit opaque identifier */
1728 typedef unsigned char threadref[OPAQUETHREADBYTES];
1729
1730 /* WARNING: This threadref data structure comes from the remote O.S.,
1731 libstub protocol encoding, and remote.c. it is not particularly
1732 changable. */
1733
1734 /* Right now, the internal structure is int. We want it to be bigger.
1735 Plan to fix this.
1736 */
1737
1738 typedef int gdb_threadref; /* Internal GDB thread reference. */
1739
1740 /* gdb_ext_thread_info is an internal GDB data structure which is
1741 equivalent to the reply of the remote threadinfo packet. */
1742
1743 struct gdb_ext_thread_info
1744 {
1745 threadref threadid; /* External form of thread reference. */
1746 int active; /* Has state interesting to GDB?
1747 regs, stack. */
1748 char display[256]; /* Brief state display, name,
1749 blocked/suspended. */
1750 char shortname[32]; /* To be used to name threads. */
1751 char more_display[256]; /* Long info, statistics, queue depth,
1752 whatever. */
1753 };
1754
1755 /* The volume of remote transfers can be limited by submitting
1756 a mask containing bits specifying the desired information.
1757 Use a union of these values as the 'selection' parameter to
1758 get_thread_info. FIXME: Make these TAG names more thread specific.
1759 */
1760
1761 #define TAG_THREADID 1
1762 #define TAG_EXISTS 2
1763 #define TAG_DISPLAY 4
1764 #define TAG_THREADNAME 8
1765 #define TAG_MOREDISPLAY 16
1766
1767 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1768
1769 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1770
1771 static char *unpack_nibble (char *buf, int *val);
1772
1773 static char *pack_nibble (char *buf, int nibble);
1774
1775 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1776
1777 static char *unpack_byte (char *buf, int *value);
1778
1779 static char *pack_int (char *buf, int value);
1780
1781 static char *unpack_int (char *buf, int *value);
1782
1783 static char *unpack_string (char *src, char *dest, int length);
1784
1785 static char *pack_threadid (char *pkt, threadref *id);
1786
1787 static char *unpack_threadid (char *inbuf, threadref *id);
1788
1789 void int_to_threadref (threadref *id, int value);
1790
1791 static int threadref_to_int (threadref *ref);
1792
1793 static void copy_threadref (threadref *dest, threadref *src);
1794
1795 static int threadmatch (threadref *dest, threadref *src);
1796
1797 static char *pack_threadinfo_request (char *pkt, int mode,
1798 threadref *id);
1799
1800 static int remote_unpack_thread_info_response (char *pkt,
1801 threadref *expectedref,
1802 struct gdb_ext_thread_info
1803 *info);
1804
1805
1806 static int remote_get_threadinfo (threadref *threadid,
1807 int fieldset, /*TAG mask */
1808 struct gdb_ext_thread_info *info);
1809
1810 static char *pack_threadlist_request (char *pkt, int startflag,
1811 int threadcount,
1812 threadref *nextthread);
1813
1814 static int parse_threadlist_response (char *pkt,
1815 int result_limit,
1816 threadref *original_echo,
1817 threadref *resultlist,
1818 int *doneflag);
1819
1820 static int remote_get_threadlist (int startflag,
1821 threadref *nextthread,
1822 int result_limit,
1823 int *done,
1824 int *result_count,
1825 threadref *threadlist);
1826
1827 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1828
1829 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1830 void *context, int looplimit);
1831
1832 static int remote_newthread_step (threadref *ref, void *context);
1833
1834
1835 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1836 buffer we're allowed to write to. Returns
1837 BUF+CHARACTERS_WRITTEN. */
1838
1839 static char *
1840 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1841 {
1842 int pid, tid;
1843 struct remote_state *rs = get_remote_state ();
1844
1845 if (remote_multi_process_p (rs))
1846 {
1847 pid = ptid_get_pid (ptid);
1848 if (pid < 0)
1849 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1850 else
1851 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1852 }
1853 tid = ptid_get_tid (ptid);
1854 if (tid < 0)
1855 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1856 else
1857 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1858
1859 return buf;
1860 }
1861
1862 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1863 passed the last parsed char. Returns null_ptid on error. */
1864
1865 static ptid_t
1866 read_ptid (char *buf, char **obuf)
1867 {
1868 char *p = buf;
1869 char *pp;
1870 ULONGEST pid = 0, tid = 0;
1871
1872 if (*p == 'p')
1873 {
1874 /* Multi-process ptid. */
1875 pp = unpack_varlen_hex (p + 1, &pid);
1876 if (*pp != '.')
1877 error (_("invalid remote ptid: %s\n"), p);
1878
1879 p = pp;
1880 pp = unpack_varlen_hex (p + 1, &tid);
1881 if (obuf)
1882 *obuf = pp;
1883 return ptid_build (pid, 0, tid);
1884 }
1885
1886 /* No multi-process. Just a tid. */
1887 pp = unpack_varlen_hex (p, &tid);
1888
1889 /* Since the stub is not sending a process id, then default to
1890 what's in inferior_ptid, unless it's null at this point. If so,
1891 then since there's no way to know the pid of the reported
1892 threads, use the magic number. */
1893 if (ptid_equal (inferior_ptid, null_ptid))
1894 pid = ptid_get_pid (magic_null_ptid);
1895 else
1896 pid = ptid_get_pid (inferior_ptid);
1897
1898 if (obuf)
1899 *obuf = pp;
1900 return ptid_build (pid, 0, tid);
1901 }
1902
1903 /* Encode 64 bits in 16 chars of hex. */
1904
1905 static const char hexchars[] = "0123456789abcdef";
1906
1907 static int
1908 ishex (int ch, int *val)
1909 {
1910 if ((ch >= 'a') && (ch <= 'f'))
1911 {
1912 *val = ch - 'a' + 10;
1913 return 1;
1914 }
1915 if ((ch >= 'A') && (ch <= 'F'))
1916 {
1917 *val = ch - 'A' + 10;
1918 return 1;
1919 }
1920 if ((ch >= '0') && (ch <= '9'))
1921 {
1922 *val = ch - '0';
1923 return 1;
1924 }
1925 return 0;
1926 }
1927
1928 static int
1929 stubhex (int ch)
1930 {
1931 if (ch >= 'a' && ch <= 'f')
1932 return ch - 'a' + 10;
1933 if (ch >= '0' && ch <= '9')
1934 return ch - '0';
1935 if (ch >= 'A' && ch <= 'F')
1936 return ch - 'A' + 10;
1937 return -1;
1938 }
1939
1940 static int
1941 stub_unpack_int (char *buff, int fieldlength)
1942 {
1943 int nibble;
1944 int retval = 0;
1945
1946 while (fieldlength)
1947 {
1948 nibble = stubhex (*buff++);
1949 retval |= nibble;
1950 fieldlength--;
1951 if (fieldlength)
1952 retval = retval << 4;
1953 }
1954 return retval;
1955 }
1956
1957 char *
1958 unpack_varlen_hex (char *buff, /* packet to parse */
1959 ULONGEST *result)
1960 {
1961 int nibble;
1962 ULONGEST retval = 0;
1963
1964 while (ishex (*buff, &nibble))
1965 {
1966 buff++;
1967 retval = retval << 4;
1968 retval |= nibble & 0x0f;
1969 }
1970 *result = retval;
1971 return buff;
1972 }
1973
1974 static char *
1975 unpack_nibble (char *buf, int *val)
1976 {
1977 *val = fromhex (*buf++);
1978 return buf;
1979 }
1980
1981 static char *
1982 pack_nibble (char *buf, int nibble)
1983 {
1984 *buf++ = hexchars[(nibble & 0x0f)];
1985 return buf;
1986 }
1987
1988 static char *
1989 pack_hex_byte (char *pkt, int byte)
1990 {
1991 *pkt++ = hexchars[(byte >> 4) & 0xf];
1992 *pkt++ = hexchars[(byte & 0xf)];
1993 return pkt;
1994 }
1995
1996 static char *
1997 unpack_byte (char *buf, int *value)
1998 {
1999 *value = stub_unpack_int (buf, 2);
2000 return buf + 2;
2001 }
2002
2003 static char *
2004 pack_int (char *buf, int value)
2005 {
2006 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2007 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2008 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2009 buf = pack_hex_byte (buf, (value & 0xff));
2010 return buf;
2011 }
2012
2013 static char *
2014 unpack_int (char *buf, int *value)
2015 {
2016 *value = stub_unpack_int (buf, 8);
2017 return buf + 8;
2018 }
2019
2020 #if 0 /* Currently unused, uncomment when needed. */
2021 static char *pack_string (char *pkt, char *string);
2022
2023 static char *
2024 pack_string (char *pkt, char *string)
2025 {
2026 char ch;
2027 int len;
2028
2029 len = strlen (string);
2030 if (len > 200)
2031 len = 200; /* Bigger than most GDB packets, junk??? */
2032 pkt = pack_hex_byte (pkt, len);
2033 while (len-- > 0)
2034 {
2035 ch = *string++;
2036 if ((ch == '\0') || (ch == '#'))
2037 ch = '*'; /* Protect encapsulation. */
2038 *pkt++ = ch;
2039 }
2040 return pkt;
2041 }
2042 #endif /* 0 (unused) */
2043
2044 static char *
2045 unpack_string (char *src, char *dest, int length)
2046 {
2047 while (length--)
2048 *dest++ = *src++;
2049 *dest = '\0';
2050 return src;
2051 }
2052
2053 static char *
2054 pack_threadid (char *pkt, threadref *id)
2055 {
2056 char *limit;
2057 unsigned char *altid;
2058
2059 altid = (unsigned char *) id;
2060 limit = pkt + BUF_THREAD_ID_SIZE;
2061 while (pkt < limit)
2062 pkt = pack_hex_byte (pkt, *altid++);
2063 return pkt;
2064 }
2065
2066
2067 static char *
2068 unpack_threadid (char *inbuf, threadref *id)
2069 {
2070 char *altref;
2071 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2072 int x, y;
2073
2074 altref = (char *) id;
2075
2076 while (inbuf < limit)
2077 {
2078 x = stubhex (*inbuf++);
2079 y = stubhex (*inbuf++);
2080 *altref++ = (x << 4) | y;
2081 }
2082 return inbuf;
2083 }
2084
2085 /* Externally, threadrefs are 64 bits but internally, they are still
2086 ints. This is due to a mismatch of specifications. We would like
2087 to use 64bit thread references internally. This is an adapter
2088 function. */
2089
2090 void
2091 int_to_threadref (threadref *id, int value)
2092 {
2093 unsigned char *scan;
2094
2095 scan = (unsigned char *) id;
2096 {
2097 int i = 4;
2098 while (i--)
2099 *scan++ = 0;
2100 }
2101 *scan++ = (value >> 24) & 0xff;
2102 *scan++ = (value >> 16) & 0xff;
2103 *scan++ = (value >> 8) & 0xff;
2104 *scan++ = (value & 0xff);
2105 }
2106
2107 static int
2108 threadref_to_int (threadref *ref)
2109 {
2110 int i, value = 0;
2111 unsigned char *scan;
2112
2113 scan = *ref;
2114 scan += 4;
2115 i = 4;
2116 while (i-- > 0)
2117 value = (value << 8) | ((*scan++) & 0xff);
2118 return value;
2119 }
2120
2121 static void
2122 copy_threadref (threadref *dest, threadref *src)
2123 {
2124 int i;
2125 unsigned char *csrc, *cdest;
2126
2127 csrc = (unsigned char *) src;
2128 cdest = (unsigned char *) dest;
2129 i = 8;
2130 while (i--)
2131 *cdest++ = *csrc++;
2132 }
2133
2134 static int
2135 threadmatch (threadref *dest, threadref *src)
2136 {
2137 /* Things are broken right now, so just assume we got a match. */
2138 #if 0
2139 unsigned char *srcp, *destp;
2140 int i, result;
2141 srcp = (char *) src;
2142 destp = (char *) dest;
2143
2144 result = 1;
2145 while (i-- > 0)
2146 result &= (*srcp++ == *destp++) ? 1 : 0;
2147 return result;
2148 #endif
2149 return 1;
2150 }
2151
2152 /*
2153 threadid:1, # always request threadid
2154 context_exists:2,
2155 display:4,
2156 unique_name:8,
2157 more_display:16
2158 */
2159
2160 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2161
2162 static char *
2163 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2164 {
2165 *pkt++ = 'q'; /* Info Query */
2166 *pkt++ = 'P'; /* process or thread info */
2167 pkt = pack_int (pkt, mode); /* mode */
2168 pkt = pack_threadid (pkt, id); /* threadid */
2169 *pkt = '\0'; /* terminate */
2170 return pkt;
2171 }
2172
2173 /* These values tag the fields in a thread info response packet. */
2174 /* Tagging the fields allows us to request specific fields and to
2175 add more fields as time goes by. */
2176
2177 #define TAG_THREADID 1 /* Echo the thread identifier. */
2178 #define TAG_EXISTS 2 /* Is this process defined enough to
2179 fetch registers and its stack? */
2180 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2181 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2182 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2183 the process. */
2184
2185 static int
2186 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2187 struct gdb_ext_thread_info *info)
2188 {
2189 struct remote_state *rs = get_remote_state ();
2190 int mask, length;
2191 int tag;
2192 threadref ref;
2193 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2194 int retval = 1;
2195
2196 /* info->threadid = 0; FIXME: implement zero_threadref. */
2197 info->active = 0;
2198 info->display[0] = '\0';
2199 info->shortname[0] = '\0';
2200 info->more_display[0] = '\0';
2201
2202 /* Assume the characters indicating the packet type have been
2203 stripped. */
2204 pkt = unpack_int (pkt, &mask); /* arg mask */
2205 pkt = unpack_threadid (pkt, &ref);
2206
2207 if (mask == 0)
2208 warning (_("Incomplete response to threadinfo request."));
2209 if (!threadmatch (&ref, expectedref))
2210 { /* This is an answer to a different request. */
2211 warning (_("ERROR RMT Thread info mismatch."));
2212 return 0;
2213 }
2214 copy_threadref (&info->threadid, &ref);
2215
2216 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2217
2218 /* Packets are terminated with nulls. */
2219 while ((pkt < limit) && mask && *pkt)
2220 {
2221 pkt = unpack_int (pkt, &tag); /* tag */
2222 pkt = unpack_byte (pkt, &length); /* length */
2223 if (!(tag & mask)) /* Tags out of synch with mask. */
2224 {
2225 warning (_("ERROR RMT: threadinfo tag mismatch."));
2226 retval = 0;
2227 break;
2228 }
2229 if (tag == TAG_THREADID)
2230 {
2231 if (length != 16)
2232 {
2233 warning (_("ERROR RMT: length of threadid is not 16."));
2234 retval = 0;
2235 break;
2236 }
2237 pkt = unpack_threadid (pkt, &ref);
2238 mask = mask & ~TAG_THREADID;
2239 continue;
2240 }
2241 if (tag == TAG_EXISTS)
2242 {
2243 info->active = stub_unpack_int (pkt, length);
2244 pkt += length;
2245 mask = mask & ~(TAG_EXISTS);
2246 if (length > 8)
2247 {
2248 warning (_("ERROR RMT: 'exists' length too long."));
2249 retval = 0;
2250 break;
2251 }
2252 continue;
2253 }
2254 if (tag == TAG_THREADNAME)
2255 {
2256 pkt = unpack_string (pkt, &info->shortname[0], length);
2257 mask = mask & ~TAG_THREADNAME;
2258 continue;
2259 }
2260 if (tag == TAG_DISPLAY)
2261 {
2262 pkt = unpack_string (pkt, &info->display[0], length);
2263 mask = mask & ~TAG_DISPLAY;
2264 continue;
2265 }
2266 if (tag == TAG_MOREDISPLAY)
2267 {
2268 pkt = unpack_string (pkt, &info->more_display[0], length);
2269 mask = mask & ~TAG_MOREDISPLAY;
2270 continue;
2271 }
2272 warning (_("ERROR RMT: unknown thread info tag."));
2273 break; /* Not a tag we know about. */
2274 }
2275 return retval;
2276 }
2277
2278 static int
2279 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2280 struct gdb_ext_thread_info *info)
2281 {
2282 struct remote_state *rs = get_remote_state ();
2283 int result;
2284
2285 pack_threadinfo_request (rs->buf, fieldset, threadid);
2286 putpkt (rs->buf);
2287 getpkt (&rs->buf, &rs->buf_size, 0);
2288
2289 if (rs->buf[0] == '\0')
2290 return 0;
2291
2292 result = remote_unpack_thread_info_response (rs->buf + 2,
2293 threadid, info);
2294 return result;
2295 }
2296
2297 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2298
2299 static char *
2300 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2301 threadref *nextthread)
2302 {
2303 *pkt++ = 'q'; /* info query packet */
2304 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2305 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2306 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2307 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2308 *pkt = '\0';
2309 return pkt;
2310 }
2311
2312 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2313
2314 static int
2315 parse_threadlist_response (char *pkt, int result_limit,
2316 threadref *original_echo, threadref *resultlist,
2317 int *doneflag)
2318 {
2319 struct remote_state *rs = get_remote_state ();
2320 char *limit;
2321 int count, resultcount, done;
2322
2323 resultcount = 0;
2324 /* Assume the 'q' and 'M chars have been stripped. */
2325 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2326 /* done parse past here */
2327 pkt = unpack_byte (pkt, &count); /* count field */
2328 pkt = unpack_nibble (pkt, &done);
2329 /* The first threadid is the argument threadid. */
2330 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2331 while ((count-- > 0) && (pkt < limit))
2332 {
2333 pkt = unpack_threadid (pkt, resultlist++);
2334 if (resultcount++ >= result_limit)
2335 break;
2336 }
2337 if (doneflag)
2338 *doneflag = done;
2339 return resultcount;
2340 }
2341
2342 static int
2343 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2344 int *done, int *result_count, threadref *threadlist)
2345 {
2346 struct remote_state *rs = get_remote_state ();
2347 static threadref echo_nextthread;
2348 int result = 1;
2349
2350 /* Trancate result limit to be smaller than the packet size. */
2351 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2352 >= get_remote_packet_size ())
2353 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2354
2355 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2356 putpkt (rs->buf);
2357 getpkt (&rs->buf, &rs->buf_size, 0);
2358
2359 if (*rs->buf == '\0')
2360 return 0;
2361 else
2362 *result_count =
2363 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2364 threadlist, done);
2365
2366 if (!threadmatch (&echo_nextthread, nextthread))
2367 {
2368 /* FIXME: This is a good reason to drop the packet. */
2369 /* Possably, there is a duplicate response. */
2370 /* Possabilities :
2371 retransmit immediatly - race conditions
2372 retransmit after timeout - yes
2373 exit
2374 wait for packet, then exit
2375 */
2376 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2377 return 0; /* I choose simply exiting. */
2378 }
2379 if (*result_count <= 0)
2380 {
2381 if (*done != 1)
2382 {
2383 warning (_("RMT ERROR : failed to get remote thread list."));
2384 result = 0;
2385 }
2386 return result; /* break; */
2387 }
2388 if (*result_count > result_limit)
2389 {
2390 *result_count = 0;
2391 warning (_("RMT ERROR: threadlist response longer than requested."));
2392 return 0;
2393 }
2394 return result;
2395 }
2396
2397 /* This is the interface between remote and threads, remotes upper
2398 interface. */
2399
2400 /* remote_find_new_threads retrieves the thread list and for each
2401 thread in the list, looks up the thread in GDB's internal list,
2402 adding the thread if it does not already exist. This involves
2403 getting partial thread lists from the remote target so, polling the
2404 quit_flag is required. */
2405
2406
2407 /* About this many threadisds fit in a packet. */
2408
2409 #define MAXTHREADLISTRESULTS 32
2410
2411 static int
2412 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2413 int looplimit)
2414 {
2415 int done, i, result_count;
2416 int startflag = 1;
2417 int result = 1;
2418 int loopcount = 0;
2419 static threadref nextthread;
2420 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2421
2422 done = 0;
2423 while (!done)
2424 {
2425 if (loopcount++ > looplimit)
2426 {
2427 result = 0;
2428 warning (_("Remote fetch threadlist -infinite loop-."));
2429 break;
2430 }
2431 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2432 &done, &result_count, resultthreadlist))
2433 {
2434 result = 0;
2435 break;
2436 }
2437 /* Clear for later iterations. */
2438 startflag = 0;
2439 /* Setup to resume next batch of thread references, set nextthread. */
2440 if (result_count >= 1)
2441 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2442 i = 0;
2443 while (result_count--)
2444 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2445 break;
2446 }
2447 return result;
2448 }
2449
2450 static int
2451 remote_newthread_step (threadref *ref, void *context)
2452 {
2453 int pid = ptid_get_pid (inferior_ptid);
2454 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2455
2456 if (!in_thread_list (ptid))
2457 add_thread (ptid);
2458 return 1; /* continue iterator */
2459 }
2460
2461 #define CRAZY_MAX_THREADS 1000
2462
2463 static ptid_t
2464 remote_current_thread (ptid_t oldpid)
2465 {
2466 struct remote_state *rs = get_remote_state ();
2467
2468 putpkt ("qC");
2469 getpkt (&rs->buf, &rs->buf_size, 0);
2470 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2471 return read_ptid (&rs->buf[2], NULL);
2472 else
2473 return oldpid;
2474 }
2475
2476 /* Find new threads for info threads command.
2477 * Original version, using John Metzler's thread protocol.
2478 */
2479
2480 static void
2481 remote_find_new_threads (void)
2482 {
2483 remote_threadlist_iterator (remote_newthread_step, 0,
2484 CRAZY_MAX_THREADS);
2485 }
2486
2487 #if defined(HAVE_LIBEXPAT)
2488
2489 typedef struct thread_item
2490 {
2491 ptid_t ptid;
2492 char *extra;
2493 int core;
2494 } thread_item_t;
2495 DEF_VEC_O(thread_item_t);
2496
2497 struct threads_parsing_context
2498 {
2499 VEC (thread_item_t) *items;
2500 };
2501
2502 static void
2503 start_thread (struct gdb_xml_parser *parser,
2504 const struct gdb_xml_element *element,
2505 void *user_data, VEC(gdb_xml_value_s) *attributes)
2506 {
2507 struct threads_parsing_context *data = user_data;
2508
2509 struct thread_item item;
2510 char *id;
2511
2512 id = VEC_index (gdb_xml_value_s, attributes, 0)->value;
2513 item.ptid = read_ptid (id, NULL);
2514
2515 if (VEC_length (gdb_xml_value_s, attributes) > 1)
2516 item.core = *(ULONGEST *) VEC_index (gdb_xml_value_s,
2517 attributes, 1)->value;
2518 else
2519 item.core = -1;
2520
2521 item.extra = 0;
2522
2523 VEC_safe_push (thread_item_t, data->items, &item);
2524 }
2525
2526 static void
2527 end_thread (struct gdb_xml_parser *parser,
2528 const struct gdb_xml_element *element,
2529 void *user_data, const char *body_text)
2530 {
2531 struct threads_parsing_context *data = user_data;
2532
2533 if (body_text && *body_text)
2534 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2535 }
2536
2537 const struct gdb_xml_attribute thread_attributes[] = {
2538 { "id", GDB_XML_AF_NONE, NULL, NULL },
2539 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2540 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2541 };
2542
2543 const struct gdb_xml_element thread_children[] = {
2544 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2545 };
2546
2547 const struct gdb_xml_element threads_children[] = {
2548 { "thread", thread_attributes, thread_children,
2549 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2550 start_thread, end_thread },
2551 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2552 };
2553
2554 const struct gdb_xml_element threads_elements[] = {
2555 { "threads", NULL, threads_children,
2556 GDB_XML_EF_NONE, NULL, NULL },
2557 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2558 };
2559
2560 /* Discard the contents of the constructed thread info context. */
2561
2562 static void
2563 clear_threads_parsing_context (void *p)
2564 {
2565 struct threads_parsing_context *context = p;
2566 int i;
2567 struct thread_item *item;
2568
2569 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2570 xfree (item->extra);
2571
2572 VEC_free (thread_item_t, context->items);
2573 }
2574
2575 #endif
2576
2577 /*
2578 * Find all threads for info threads command.
2579 * Uses new thread protocol contributed by Cisco.
2580 * Falls back and attempts to use the older method (above)
2581 * if the target doesn't respond to the new method.
2582 */
2583
2584 static void
2585 remote_threads_info (struct target_ops *ops)
2586 {
2587 struct remote_state *rs = get_remote_state ();
2588 char *bufp;
2589 ptid_t new_thread;
2590
2591 if (remote_desc == 0) /* paranoia */
2592 error (_("Command can only be used when connected to the remote target."));
2593
2594 #if defined(HAVE_LIBEXPAT)
2595 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2596 {
2597 char *xml = target_read_stralloc (&current_target,
2598 TARGET_OBJECT_THREADS, NULL);
2599
2600 struct cleanup *back_to = make_cleanup (xfree, xml);
2601 if (xml && *xml)
2602 {
2603 struct gdb_xml_parser *parser;
2604 struct threads_parsing_context context;
2605 struct cleanup *clear_parsing_context;
2606
2607 context.items = 0;
2608 /* Note: this parser cleanup is already guarded by BACK_TO
2609 above. */
2610 parser = gdb_xml_create_parser_and_cleanup (_("threads"),
2611 threads_elements,
2612 &context);
2613
2614 gdb_xml_use_dtd (parser, "threads.dtd");
2615
2616 clear_parsing_context
2617 = make_cleanup (clear_threads_parsing_context, &context);
2618
2619 if (gdb_xml_parse (parser, xml) == 0)
2620 {
2621 int i;
2622 struct thread_item *item;
2623
2624 for (i = 0;
2625 VEC_iterate (thread_item_t, context.items, i, item);
2626 ++i)
2627 {
2628 if (!ptid_equal (item->ptid, null_ptid))
2629 {
2630 struct private_thread_info *info;
2631 /* In non-stop mode, we assume new found threads
2632 are running until proven otherwise with a
2633 stop reply. In all-stop, we can only get
2634 here if all threads are stopped. */
2635 int running = non_stop ? 1 : 0;
2636
2637 remote_notice_new_inferior (item->ptid, running);
2638
2639 info = demand_private_info (item->ptid);
2640 info->core = item->core;
2641 info->extra = item->extra;
2642 item->extra = NULL;
2643 }
2644 }
2645 }
2646
2647 do_cleanups (clear_parsing_context);
2648 }
2649
2650 do_cleanups (back_to);
2651 return;
2652 }
2653 #endif
2654
2655 if (use_threadinfo_query)
2656 {
2657 putpkt ("qfThreadInfo");
2658 getpkt (&rs->buf, &rs->buf_size, 0);
2659 bufp = rs->buf;
2660 if (bufp[0] != '\0') /* q packet recognized */
2661 {
2662 while (*bufp++ == 'm') /* reply contains one or more TID */
2663 {
2664 do
2665 {
2666 new_thread = read_ptid (bufp, &bufp);
2667 if (!ptid_equal (new_thread, null_ptid))
2668 {
2669 /* In non-stop mode, we assume new found threads
2670 are running until proven otherwise with a
2671 stop reply. In all-stop, we can only get
2672 here if all threads are stopped. */
2673 int running = non_stop ? 1 : 0;
2674
2675 remote_notice_new_inferior (new_thread, running);
2676 }
2677 }
2678 while (*bufp++ == ','); /* comma-separated list */
2679 putpkt ("qsThreadInfo");
2680 getpkt (&rs->buf, &rs->buf_size, 0);
2681 bufp = rs->buf;
2682 }
2683 return; /* done */
2684 }
2685 }
2686
2687 /* Only qfThreadInfo is supported in non-stop mode. */
2688 if (non_stop)
2689 return;
2690
2691 /* Else fall back to old method based on jmetzler protocol. */
2692 use_threadinfo_query = 0;
2693 remote_find_new_threads ();
2694 return;
2695 }
2696
2697 /*
2698 * Collect a descriptive string about the given thread.
2699 * The target may say anything it wants to about the thread
2700 * (typically info about its blocked / runnable state, name, etc.).
2701 * This string will appear in the info threads display.
2702 *
2703 * Optional: targets are not required to implement this function.
2704 */
2705
2706 static char *
2707 remote_threads_extra_info (struct thread_info *tp)
2708 {
2709 struct remote_state *rs = get_remote_state ();
2710 int result;
2711 int set;
2712 threadref id;
2713 struct gdb_ext_thread_info threadinfo;
2714 static char display_buf[100]; /* arbitrary... */
2715 int n = 0; /* position in display_buf */
2716
2717 if (remote_desc == 0) /* paranoia */
2718 internal_error (__FILE__, __LINE__,
2719 _("remote_threads_extra_info"));
2720
2721 if (ptid_equal (tp->ptid, magic_null_ptid)
2722 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2723 /* This is the main thread which was added by GDB. The remote
2724 server doesn't know about it. */
2725 return NULL;
2726
2727 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2728 {
2729 struct thread_info *info = find_thread_ptid (tp->ptid);
2730
2731 if (info && info->private)
2732 return info->private->extra;
2733 else
2734 return NULL;
2735 }
2736
2737 if (use_threadextra_query)
2738 {
2739 char *b = rs->buf;
2740 char *endb = rs->buf + get_remote_packet_size ();
2741
2742 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2743 b += strlen (b);
2744 write_ptid (b, endb, tp->ptid);
2745
2746 putpkt (rs->buf);
2747 getpkt (&rs->buf, &rs->buf_size, 0);
2748 if (rs->buf[0] != 0)
2749 {
2750 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2751 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2752 display_buf [result] = '\0';
2753 return display_buf;
2754 }
2755 }
2756
2757 /* If the above query fails, fall back to the old method. */
2758 use_threadextra_query = 0;
2759 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2760 | TAG_MOREDISPLAY | TAG_DISPLAY;
2761 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2762 if (remote_get_threadinfo (&id, set, &threadinfo))
2763 if (threadinfo.active)
2764 {
2765 if (*threadinfo.shortname)
2766 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2767 " Name: %s,", threadinfo.shortname);
2768 if (*threadinfo.display)
2769 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2770 " State: %s,", threadinfo.display);
2771 if (*threadinfo.more_display)
2772 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2773 " Priority: %s", threadinfo.more_display);
2774
2775 if (n > 0)
2776 {
2777 /* For purely cosmetic reasons, clear up trailing commas. */
2778 if (',' == display_buf[n-1])
2779 display_buf[n-1] = ' ';
2780 return display_buf;
2781 }
2782 }
2783 return NULL;
2784 }
2785 \f
2786
2787 static int
2788 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2789 struct static_tracepoint_marker *marker)
2790 {
2791 struct remote_state *rs = get_remote_state ();
2792 char *p = rs->buf;
2793
2794 sprintf (p, "qTSTMat:");
2795 p += strlen (p);
2796 p += hexnumstr (p, addr);
2797 putpkt (rs->buf);
2798 getpkt (&rs->buf, &rs->buf_size, 0);
2799 p = rs->buf;
2800
2801 if (*p == 'E')
2802 error (_("Remote failure reply: %s"), p);
2803
2804 if (*p++ == 'm')
2805 {
2806 parse_static_tracepoint_marker_definition (p, &p, marker);
2807 return 1;
2808 }
2809
2810 return 0;
2811 }
2812
2813 static void
2814 free_current_marker (void *arg)
2815 {
2816 struct static_tracepoint_marker **marker_p = arg;
2817
2818 if (*marker_p != NULL)
2819 {
2820 release_static_tracepoint_marker (*marker_p);
2821 xfree (*marker_p);
2822 }
2823 else
2824 *marker_p = NULL;
2825 }
2826
2827 static VEC(static_tracepoint_marker_p) *
2828 remote_static_tracepoint_markers_by_strid (const char *strid)
2829 {
2830 struct remote_state *rs = get_remote_state ();
2831 VEC(static_tracepoint_marker_p) *markers = NULL;
2832 struct static_tracepoint_marker *marker = NULL;
2833 struct cleanup *old_chain;
2834 char *p;
2835
2836 /* Ask for a first packet of static tracepoint marker
2837 definition. */
2838 putpkt ("qTfSTM");
2839 getpkt (&rs->buf, &rs->buf_size, 0);
2840 p = rs->buf;
2841 if (*p == 'E')
2842 error (_("Remote failure reply: %s"), p);
2843
2844 old_chain = make_cleanup (free_current_marker, &marker);
2845
2846 while (*p++ == 'm')
2847 {
2848 if (marker == NULL)
2849 marker = XCNEW (struct static_tracepoint_marker);
2850
2851 do
2852 {
2853 parse_static_tracepoint_marker_definition (p, &p, marker);
2854
2855 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2856 {
2857 VEC_safe_push (static_tracepoint_marker_p,
2858 markers, marker);
2859 marker = NULL;
2860 }
2861 else
2862 {
2863 release_static_tracepoint_marker (marker);
2864 memset (marker, 0, sizeof (*marker));
2865 }
2866 }
2867 while (*p++ == ','); /* comma-separated list */
2868 /* Ask for another packet of static tracepoint definition. */
2869 putpkt ("qTsSTM");
2870 getpkt (&rs->buf, &rs->buf_size, 0);
2871 p = rs->buf;
2872 }
2873
2874 do_cleanups (old_chain);
2875 return markers;
2876 }
2877
2878 \f
2879 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2880
2881 static ptid_t
2882 remote_get_ada_task_ptid (long lwp, long thread)
2883 {
2884 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2885 }
2886 \f
2887
2888 /* Restart the remote side; this is an extended protocol operation. */
2889
2890 static void
2891 extended_remote_restart (void)
2892 {
2893 struct remote_state *rs = get_remote_state ();
2894
2895 /* Send the restart command; for reasons I don't understand the
2896 remote side really expects a number after the "R". */
2897 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2898 putpkt (rs->buf);
2899
2900 remote_fileio_reset ();
2901 }
2902 \f
2903 /* Clean up connection to a remote debugger. */
2904
2905 static void
2906 remote_close (int quitting)
2907 {
2908 if (remote_desc == NULL)
2909 return; /* already closed */
2910
2911 /* Make sure we leave stdin registered in the event loop, and we
2912 don't leave the async SIGINT signal handler installed. */
2913 remote_terminal_ours ();
2914
2915 serial_close (remote_desc);
2916 remote_desc = NULL;
2917
2918 /* We don't have a connection to the remote stub anymore. Get rid
2919 of all the inferiors and their threads we were controlling. */
2920 discard_all_inferiors ();
2921 inferior_ptid = null_ptid;
2922
2923 /* We're no longer interested in any of these events. */
2924 discard_pending_stop_replies (-1);
2925
2926 if (remote_async_inferior_event_token)
2927 delete_async_event_handler (&remote_async_inferior_event_token);
2928 if (remote_async_get_pending_events_token)
2929 delete_async_event_handler (&remote_async_get_pending_events_token);
2930 }
2931
2932 /* Query the remote side for the text, data and bss offsets. */
2933
2934 static void
2935 get_offsets (void)
2936 {
2937 struct remote_state *rs = get_remote_state ();
2938 char *buf;
2939 char *ptr;
2940 int lose, num_segments = 0, do_sections, do_segments;
2941 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2942 struct section_offsets *offs;
2943 struct symfile_segment_data *data;
2944
2945 if (symfile_objfile == NULL)
2946 return;
2947
2948 putpkt ("qOffsets");
2949 getpkt (&rs->buf, &rs->buf_size, 0);
2950 buf = rs->buf;
2951
2952 if (buf[0] == '\000')
2953 return; /* Return silently. Stub doesn't support
2954 this command. */
2955 if (buf[0] == 'E')
2956 {
2957 warning (_("Remote failure reply: %s"), buf);
2958 return;
2959 }
2960
2961 /* Pick up each field in turn. This used to be done with scanf, but
2962 scanf will make trouble if CORE_ADDR size doesn't match
2963 conversion directives correctly. The following code will work
2964 with any size of CORE_ADDR. */
2965 text_addr = data_addr = bss_addr = 0;
2966 ptr = buf;
2967 lose = 0;
2968
2969 if (strncmp (ptr, "Text=", 5) == 0)
2970 {
2971 ptr += 5;
2972 /* Don't use strtol, could lose on big values. */
2973 while (*ptr && *ptr != ';')
2974 text_addr = (text_addr << 4) + fromhex (*ptr++);
2975
2976 if (strncmp (ptr, ";Data=", 6) == 0)
2977 {
2978 ptr += 6;
2979 while (*ptr && *ptr != ';')
2980 data_addr = (data_addr << 4) + fromhex (*ptr++);
2981 }
2982 else
2983 lose = 1;
2984
2985 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2986 {
2987 ptr += 5;
2988 while (*ptr && *ptr != ';')
2989 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2990
2991 if (bss_addr != data_addr)
2992 warning (_("Target reported unsupported offsets: %s"), buf);
2993 }
2994 else
2995 lose = 1;
2996 }
2997 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2998 {
2999 ptr += 8;
3000 /* Don't use strtol, could lose on big values. */
3001 while (*ptr && *ptr != ';')
3002 text_addr = (text_addr << 4) + fromhex (*ptr++);
3003 num_segments = 1;
3004
3005 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3006 {
3007 ptr += 9;
3008 while (*ptr && *ptr != ';')
3009 data_addr = (data_addr << 4) + fromhex (*ptr++);
3010 num_segments++;
3011 }
3012 }
3013 else
3014 lose = 1;
3015
3016 if (lose)
3017 error (_("Malformed response to offset query, %s"), buf);
3018 else if (*ptr != '\0')
3019 warning (_("Target reported unsupported offsets: %s"), buf);
3020
3021 offs = ((struct section_offsets *)
3022 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3023 memcpy (offs, symfile_objfile->section_offsets,
3024 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3025
3026 data = get_symfile_segment_data (symfile_objfile->obfd);
3027 do_segments = (data != NULL);
3028 do_sections = num_segments == 0;
3029
3030 if (num_segments > 0)
3031 {
3032 segments[0] = text_addr;
3033 segments[1] = data_addr;
3034 }
3035 /* If we have two segments, we can still try to relocate everything
3036 by assuming that the .text and .data offsets apply to the whole
3037 text and data segments. Convert the offsets given in the packet
3038 to base addresses for symfile_map_offsets_to_segments. */
3039 else if (data && data->num_segments == 2)
3040 {
3041 segments[0] = data->segment_bases[0] + text_addr;
3042 segments[1] = data->segment_bases[1] + data_addr;
3043 num_segments = 2;
3044 }
3045 /* If the object file has only one segment, assume that it is text
3046 rather than data; main programs with no writable data are rare,
3047 but programs with no code are useless. Of course the code might
3048 have ended up in the data segment... to detect that we would need
3049 the permissions here. */
3050 else if (data && data->num_segments == 1)
3051 {
3052 segments[0] = data->segment_bases[0] + text_addr;
3053 num_segments = 1;
3054 }
3055 /* There's no way to relocate by segment. */
3056 else
3057 do_segments = 0;
3058
3059 if (do_segments)
3060 {
3061 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3062 offs, num_segments, segments);
3063
3064 if (ret == 0 && !do_sections)
3065 error (_("Can not handle qOffsets TextSeg "
3066 "response with this symbol file"));
3067
3068 if (ret > 0)
3069 do_sections = 0;
3070 }
3071
3072 if (data)
3073 free_symfile_segment_data (data);
3074
3075 if (do_sections)
3076 {
3077 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3078
3079 /* This is a temporary kludge to force data and bss to use the
3080 same offsets because that's what nlmconv does now. The real
3081 solution requires changes to the stub and remote.c that I
3082 don't have time to do right now. */
3083
3084 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3085 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3086 }
3087
3088 objfile_relocate (symfile_objfile, offs);
3089 }
3090
3091 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3092 threads we know are stopped already. This is used during the
3093 initial remote connection in non-stop mode --- threads that are
3094 reported as already being stopped are left stopped. */
3095
3096 static int
3097 set_stop_requested_callback (struct thread_info *thread, void *data)
3098 {
3099 /* If we have a stop reply for this thread, it must be stopped. */
3100 if (peek_stop_reply (thread->ptid))
3101 set_stop_requested (thread->ptid, 1);
3102
3103 return 0;
3104 }
3105
3106 /* Stub for catch_exception. */
3107
3108 struct start_remote_args
3109 {
3110 int from_tty;
3111
3112 /* The current target. */
3113 struct target_ops *target;
3114
3115 /* Non-zero if this is an extended-remote target. */
3116 int extended_p;
3117 };
3118
3119 /* Send interrupt_sequence to remote target. */
3120 static void
3121 send_interrupt_sequence ()
3122 {
3123 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3124 serial_write (remote_desc, "\x03", 1);
3125 else if (interrupt_sequence_mode == interrupt_sequence_break)
3126 serial_send_break (remote_desc);
3127 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3128 {
3129 serial_send_break (remote_desc);
3130 serial_write (remote_desc, "g", 1);
3131 }
3132 else
3133 internal_error (__FILE__, __LINE__,
3134 _("Invalid value for interrupt_sequence_mode: %s."),
3135 interrupt_sequence_mode);
3136 }
3137
3138 static void
3139 remote_start_remote (struct ui_out *uiout, void *opaque)
3140 {
3141 struct start_remote_args *args = opaque;
3142 struct remote_state *rs = get_remote_state ();
3143 struct packet_config *noack_config;
3144 char *wait_status = NULL;
3145
3146 immediate_quit++; /* Allow user to interrupt it. */
3147
3148 /* Ack any packet which the remote side has already sent. */
3149 serial_write (remote_desc, "+", 1);
3150
3151 if (interrupt_on_connect)
3152 send_interrupt_sequence ();
3153
3154 /* The first packet we send to the target is the optional "supported
3155 packets" request. If the target can answer this, it will tell us
3156 which later probes to skip. */
3157 remote_query_supported ();
3158
3159 /* If the stub wants to get a QAllow, compose one and send it. */
3160 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3161 remote_set_permissions ();
3162
3163 /* Next, we possibly activate noack mode.
3164
3165 If the QStartNoAckMode packet configuration is set to AUTO,
3166 enable noack mode if the stub reported a wish for it with
3167 qSupported.
3168
3169 If set to TRUE, then enable noack mode even if the stub didn't
3170 report it in qSupported. If the stub doesn't reply OK, the
3171 session ends with an error.
3172
3173 If FALSE, then don't activate noack mode, regardless of what the
3174 stub claimed should be the default with qSupported. */
3175
3176 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3177
3178 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3179 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3180 && noack_config->support == PACKET_ENABLE))
3181 {
3182 putpkt ("QStartNoAckMode");
3183 getpkt (&rs->buf, &rs->buf_size, 0);
3184 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3185 rs->noack_mode = 1;
3186 }
3187
3188 if (args->extended_p)
3189 {
3190 /* Tell the remote that we are using the extended protocol. */
3191 putpkt ("!");
3192 getpkt (&rs->buf, &rs->buf_size, 0);
3193 }
3194
3195 /* Next, if the target can specify a description, read it. We do
3196 this before anything involving memory or registers. */
3197 target_find_description ();
3198
3199 /* Next, now that we know something about the target, update the
3200 address spaces in the program spaces. */
3201 update_address_spaces ();
3202
3203 /* On OSs where the list of libraries is global to all
3204 processes, we fetch them early. */
3205 if (gdbarch_has_global_solist (target_gdbarch))
3206 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
3207
3208 if (non_stop)
3209 {
3210 if (!rs->non_stop_aware)
3211 error (_("Non-stop mode requested, but remote "
3212 "does not support non-stop"));
3213
3214 putpkt ("QNonStop:1");
3215 getpkt (&rs->buf, &rs->buf_size, 0);
3216
3217 if (strcmp (rs->buf, "OK") != 0)
3218 error ("Remote refused setting non-stop mode with: %s", rs->buf);
3219
3220 /* Find about threads and processes the stub is already
3221 controlling. We default to adding them in the running state.
3222 The '?' query below will then tell us about which threads are
3223 stopped. */
3224 remote_threads_info (args->target);
3225 }
3226 else if (rs->non_stop_aware)
3227 {
3228 /* Don't assume that the stub can operate in all-stop mode.
3229 Request it explicitely. */
3230 putpkt ("QNonStop:0");
3231 getpkt (&rs->buf, &rs->buf_size, 0);
3232
3233 if (strcmp (rs->buf, "OK") != 0)
3234 error ("Remote refused setting all-stop mode with: %s", rs->buf);
3235 }
3236
3237 /* Check whether the target is running now. */
3238 putpkt ("?");
3239 getpkt (&rs->buf, &rs->buf_size, 0);
3240
3241 if (!non_stop)
3242 {
3243 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3244 {
3245 if (!args->extended_p)
3246 error (_("The target is not running (try extended-remote?)"));
3247
3248 /* We're connected, but not running. Drop out before we
3249 call start_remote. */
3250 return;
3251 }
3252 else
3253 {
3254 /* Save the reply for later. */
3255 wait_status = alloca (strlen (rs->buf) + 1);
3256 strcpy (wait_status, rs->buf);
3257 }
3258
3259 /* Let the stub know that we want it to return the thread. */
3260 set_continue_thread (minus_one_ptid);
3261
3262 /* Without this, some commands which require an active target
3263 (such as kill) won't work. This variable serves (at least)
3264 double duty as both the pid of the target process (if it has
3265 such), and as a flag indicating that a target is active.
3266 These functions should be split out into seperate variables,
3267 especially since GDB will someday have a notion of debugging
3268 several processes. */
3269 inferior_ptid = magic_null_ptid;
3270
3271 /* Now, if we have thread information, update inferior_ptid. */
3272 inferior_ptid = remote_current_thread (inferior_ptid);
3273
3274 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
3275
3276 /* Always add the main thread. */
3277 add_thread_silent (inferior_ptid);
3278
3279 get_offsets (); /* Get text, data & bss offsets. */
3280
3281 /* If we could not find a description using qXfer, and we know
3282 how to do it some other way, try again. This is not
3283 supported for non-stop; it could be, but it is tricky if
3284 there are no stopped threads when we connect. */
3285 if (remote_read_description_p (args->target)
3286 && gdbarch_target_desc (target_gdbarch) == NULL)
3287 {
3288 target_clear_description ();
3289 target_find_description ();
3290 }
3291
3292 /* Use the previously fetched status. */
3293 gdb_assert (wait_status != NULL);
3294 strcpy (rs->buf, wait_status);
3295 rs->cached_wait_status = 1;
3296
3297 immediate_quit--;
3298 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
3299 }
3300 else
3301 {
3302 /* Clear WFI global state. Do this before finding about new
3303 threads and inferiors, and setting the current inferior.
3304 Otherwise we would clear the proceed status of the current
3305 inferior when we want its stop_soon state to be preserved
3306 (see notice_new_inferior). */
3307 init_wait_for_inferior ();
3308
3309 /* In non-stop, we will either get an "OK", meaning that there
3310 are no stopped threads at this time; or, a regular stop
3311 reply. In the latter case, there may be more than one thread
3312 stopped --- we pull them all out using the vStopped
3313 mechanism. */
3314 if (strcmp (rs->buf, "OK") != 0)
3315 {
3316 struct stop_reply *stop_reply;
3317 struct cleanup *old_chain;
3318
3319 stop_reply = stop_reply_xmalloc ();
3320 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3321
3322 remote_parse_stop_reply (rs->buf, stop_reply);
3323 discard_cleanups (old_chain);
3324
3325 /* get_pending_stop_replies acks this one, and gets the rest
3326 out. */
3327 pending_stop_reply = stop_reply;
3328 remote_get_pending_stop_replies ();
3329
3330 /* Make sure that threads that were stopped remain
3331 stopped. */
3332 iterate_over_threads (set_stop_requested_callback, NULL);
3333 }
3334
3335 if (target_can_async_p ())
3336 target_async (inferior_event_handler, 0);
3337
3338 if (thread_count () == 0)
3339 {
3340 if (!args->extended_p)
3341 error (_("The target is not running (try extended-remote?)"));
3342
3343 /* We're connected, but not running. Drop out before we
3344 call start_remote. */
3345 return;
3346 }
3347
3348 /* Let the stub know that we want it to return the thread. */
3349
3350 /* Force the stub to choose a thread. */
3351 set_general_thread (null_ptid);
3352
3353 /* Query it. */
3354 inferior_ptid = remote_current_thread (minus_one_ptid);
3355 if (ptid_equal (inferior_ptid, minus_one_ptid))
3356 error (_("remote didn't report the current thread in non-stop mode"));
3357
3358 get_offsets (); /* Get text, data & bss offsets. */
3359
3360 /* In non-stop mode, any cached wait status will be stored in
3361 the stop reply queue. */
3362 gdb_assert (wait_status == NULL);
3363
3364 /* Update the remote on signals to silently pass, or more
3365 importantly, which to not ignore, in case a previous session
3366 had set some different set of signals to be ignored. */
3367 remote_pass_signals ();
3368 }
3369
3370 /* If we connected to a live target, do some additional setup. */
3371 if (target_has_execution)
3372 {
3373 if (exec_bfd) /* No use without an exec file. */
3374 remote_check_symbols (symfile_objfile);
3375 }
3376
3377 /* Possibly the target has been engaged in a trace run started
3378 previously; find out where things are at. */
3379 if (remote_get_trace_status (current_trace_status ()) != -1)
3380 {
3381 struct uploaded_tp *uploaded_tps = NULL;
3382 struct uploaded_tsv *uploaded_tsvs = NULL;
3383
3384 if (current_trace_status ()->running)
3385 printf_filtered (_("Trace is already running on the target.\n"));
3386
3387 /* Get trace state variables first, they may be checked when
3388 parsing uploaded commands. */
3389
3390 remote_upload_trace_state_variables (&uploaded_tsvs);
3391
3392 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3393
3394 remote_upload_tracepoints (&uploaded_tps);
3395
3396 merge_uploaded_tracepoints (&uploaded_tps);
3397 }
3398
3399 /* If breakpoints are global, insert them now. */
3400 if (gdbarch_has_global_breakpoints (target_gdbarch)
3401 && breakpoints_always_inserted_mode ())
3402 insert_breakpoints ();
3403 }
3404
3405 /* Open a connection to a remote debugger.
3406 NAME is the filename used for communication. */
3407
3408 static void
3409 remote_open (char *name, int from_tty)
3410 {
3411 remote_open_1 (name, from_tty, &remote_ops, 0);
3412 }
3413
3414 /* Open a connection to a remote debugger using the extended
3415 remote gdb protocol. NAME is the filename used for communication. */
3416
3417 static void
3418 extended_remote_open (char *name, int from_tty)
3419 {
3420 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3421 }
3422
3423 /* Generic code for opening a connection to a remote target. */
3424
3425 static void
3426 init_all_packet_configs (void)
3427 {
3428 int i;
3429
3430 for (i = 0; i < PACKET_MAX; i++)
3431 update_packet_config (&remote_protocol_packets[i]);
3432 }
3433
3434 /* Symbol look-up. */
3435
3436 static void
3437 remote_check_symbols (struct objfile *objfile)
3438 {
3439 struct remote_state *rs = get_remote_state ();
3440 char *msg, *reply, *tmp;
3441 struct minimal_symbol *sym;
3442 int end;
3443
3444 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3445 return;
3446
3447 /* Make sure the remote is pointing at the right process. */
3448 set_general_process ();
3449
3450 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3451 because we need both at the same time. */
3452 msg = alloca (get_remote_packet_size ());
3453
3454 /* Invite target to request symbol lookups. */
3455
3456 putpkt ("qSymbol::");
3457 getpkt (&rs->buf, &rs->buf_size, 0);
3458 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3459 reply = rs->buf;
3460
3461 while (strncmp (reply, "qSymbol:", 8) == 0)
3462 {
3463 tmp = &reply[8];
3464 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3465 msg[end] = '\0';
3466 sym = lookup_minimal_symbol (msg, NULL, NULL);
3467 if (sym == NULL)
3468 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3469 else
3470 {
3471 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3472 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3473
3474 /* If this is a function address, return the start of code
3475 instead of any data function descriptor. */
3476 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3477 sym_addr,
3478 &current_target);
3479
3480 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3481 phex_nz (sym_addr, addr_size), &reply[8]);
3482 }
3483
3484 putpkt (msg);
3485 getpkt (&rs->buf, &rs->buf_size, 0);
3486 reply = rs->buf;
3487 }
3488 }
3489
3490 static struct serial *
3491 remote_serial_open (char *name)
3492 {
3493 static int udp_warning = 0;
3494
3495 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3496 of in ser-tcp.c, because it is the remote protocol assuming that the
3497 serial connection is reliable and not the serial connection promising
3498 to be. */
3499 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3500 {
3501 warning (_("The remote protocol may be unreliable over UDP.\n"
3502 "Some events may be lost, rendering further debugging "
3503 "impossible."));
3504 udp_warning = 1;
3505 }
3506
3507 return serial_open (name);
3508 }
3509
3510 /* Inform the target of our permission settings. The permission flags
3511 work without this, but if the target knows the settings, it can do
3512 a couple things. First, it can add its own check, to catch cases
3513 that somehow manage to get by the permissions checks in target
3514 methods. Second, if the target is wired to disallow particular
3515 settings (for instance, a system in the field that is not set up to
3516 be able to stop at a breakpoint), it can object to any unavailable
3517 permissions. */
3518
3519 void
3520 remote_set_permissions (void)
3521 {
3522 struct remote_state *rs = get_remote_state ();
3523
3524 sprintf (rs->buf, "QAllow:"
3525 "WriteReg:%x;WriteMem:%x;"
3526 "InsertBreak:%x;InsertTrace:%x;"
3527 "InsertFastTrace:%x;Stop:%x",
3528 may_write_registers, may_write_memory,
3529 may_insert_breakpoints, may_insert_tracepoints,
3530 may_insert_fast_tracepoints, may_stop);
3531 putpkt (rs->buf);
3532 getpkt (&rs->buf, &rs->buf_size, 0);
3533
3534 /* If the target didn't like the packet, warn the user. Do not try
3535 to undo the user's settings, that would just be maddening. */
3536 if (strcmp (rs->buf, "OK") != 0)
3537 warning ("Remote refused setting permissions with: %s", rs->buf);
3538 }
3539
3540 /* This type describes each known response to the qSupported
3541 packet. */
3542 struct protocol_feature
3543 {
3544 /* The name of this protocol feature. */
3545 const char *name;
3546
3547 /* The default for this protocol feature. */
3548 enum packet_support default_support;
3549
3550 /* The function to call when this feature is reported, or after
3551 qSupported processing if the feature is not supported.
3552 The first argument points to this structure. The second
3553 argument indicates whether the packet requested support be
3554 enabled, disabled, or probed (or the default, if this function
3555 is being called at the end of processing and this feature was
3556 not reported). The third argument may be NULL; if not NULL, it
3557 is a NUL-terminated string taken from the packet following
3558 this feature's name and an equals sign. */
3559 void (*func) (const struct protocol_feature *, enum packet_support,
3560 const char *);
3561
3562 /* The corresponding packet for this feature. Only used if
3563 FUNC is remote_supported_packet. */
3564 int packet;
3565 };
3566
3567 static void
3568 remote_supported_packet (const struct protocol_feature *feature,
3569 enum packet_support support,
3570 const char *argument)
3571 {
3572 if (argument)
3573 {
3574 warning (_("Remote qSupported response supplied an unexpected value for"
3575 " \"%s\"."), feature->name);
3576 return;
3577 }
3578
3579 if (remote_protocol_packets[feature->packet].support
3580 == PACKET_SUPPORT_UNKNOWN)
3581 remote_protocol_packets[feature->packet].support = support;
3582 }
3583
3584 static void
3585 remote_packet_size (const struct protocol_feature *feature,
3586 enum packet_support support, const char *value)
3587 {
3588 struct remote_state *rs = get_remote_state ();
3589
3590 int packet_size;
3591 char *value_end;
3592
3593 if (support != PACKET_ENABLE)
3594 return;
3595
3596 if (value == NULL || *value == '\0')
3597 {
3598 warning (_("Remote target reported \"%s\" without a size."),
3599 feature->name);
3600 return;
3601 }
3602
3603 errno = 0;
3604 packet_size = strtol (value, &value_end, 16);
3605 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3606 {
3607 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3608 feature->name, value);
3609 return;
3610 }
3611
3612 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3613 {
3614 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3615 packet_size, MAX_REMOTE_PACKET_SIZE);
3616 packet_size = MAX_REMOTE_PACKET_SIZE;
3617 }
3618
3619 /* Record the new maximum packet size. */
3620 rs->explicit_packet_size = packet_size;
3621 }
3622
3623 static void
3624 remote_multi_process_feature (const struct protocol_feature *feature,
3625 enum packet_support support, const char *value)
3626 {
3627 struct remote_state *rs = get_remote_state ();
3628
3629 rs->multi_process_aware = (support == PACKET_ENABLE);
3630 }
3631
3632 static void
3633 remote_non_stop_feature (const struct protocol_feature *feature,
3634 enum packet_support support, const char *value)
3635 {
3636 struct remote_state *rs = get_remote_state ();
3637
3638 rs->non_stop_aware = (support == PACKET_ENABLE);
3639 }
3640
3641 static void
3642 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3643 enum packet_support support,
3644 const char *value)
3645 {
3646 struct remote_state *rs = get_remote_state ();
3647
3648 rs->cond_tracepoints = (support == PACKET_ENABLE);
3649 }
3650
3651 static void
3652 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3653 enum packet_support support,
3654 const char *value)
3655 {
3656 struct remote_state *rs = get_remote_state ();
3657
3658 rs->fast_tracepoints = (support == PACKET_ENABLE);
3659 }
3660
3661 static void
3662 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3663 enum packet_support support,
3664 const char *value)
3665 {
3666 struct remote_state *rs = get_remote_state ();
3667
3668 rs->static_tracepoints = (support == PACKET_ENABLE);
3669 }
3670
3671 static void
3672 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3673 enum packet_support support,
3674 const char *value)
3675 {
3676 struct remote_state *rs = get_remote_state ();
3677
3678 rs->disconnected_tracing = (support == PACKET_ENABLE);
3679 }
3680
3681 static struct protocol_feature remote_protocol_features[] = {
3682 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3683 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3684 PACKET_qXfer_auxv },
3685 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3686 PACKET_qXfer_features },
3687 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3688 PACKET_qXfer_libraries },
3689 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3690 PACKET_qXfer_memory_map },
3691 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3692 PACKET_qXfer_spu_read },
3693 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3694 PACKET_qXfer_spu_write },
3695 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3696 PACKET_qXfer_osdata },
3697 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3698 PACKET_qXfer_threads },
3699 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3700 PACKET_QPassSignals },
3701 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3702 PACKET_QStartNoAckMode },
3703 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3704 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3705 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3706 PACKET_qXfer_siginfo_read },
3707 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3708 PACKET_qXfer_siginfo_write },
3709 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3710 PACKET_ConditionalTracepoints },
3711 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3712 PACKET_FastTracepoints },
3713 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3714 PACKET_StaticTracepoints },
3715 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3716 -1 },
3717 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3718 PACKET_bc },
3719 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3720 PACKET_bs },
3721 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3722 PACKET_TracepointSource },
3723 { "QAllow", PACKET_DISABLE, remote_supported_packet,
3724 PACKET_QAllow },
3725 };
3726
3727 static char *remote_support_xml;
3728
3729 /* Register string appended to "xmlRegisters=" in qSupported query. */
3730
3731 void
3732 register_remote_support_xml (const char *xml)
3733 {
3734 #if defined(HAVE_LIBEXPAT)
3735 if (remote_support_xml == NULL)
3736 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
3737 else
3738 {
3739 char *copy = xstrdup (remote_support_xml + 13);
3740 char *p = strtok (copy, ",");
3741
3742 do
3743 {
3744 if (strcmp (p, xml) == 0)
3745 {
3746 /* already there */
3747 xfree (copy);
3748 return;
3749 }
3750 }
3751 while ((p = strtok (NULL, ",")) != NULL);
3752 xfree (copy);
3753
3754 remote_support_xml = reconcat (remote_support_xml,
3755 remote_support_xml, ",", xml,
3756 (char *) NULL);
3757 }
3758 #endif
3759 }
3760
3761 static char *
3762 remote_query_supported_append (char *msg, const char *append)
3763 {
3764 if (msg)
3765 return reconcat (msg, msg, ";", append, (char *) NULL);
3766 else
3767 return xstrdup (append);
3768 }
3769
3770 static void
3771 remote_query_supported (void)
3772 {
3773 struct remote_state *rs = get_remote_state ();
3774 char *next;
3775 int i;
3776 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3777
3778 /* The packet support flags are handled differently for this packet
3779 than for most others. We treat an error, a disabled packet, and
3780 an empty response identically: any features which must be reported
3781 to be used will be automatically disabled. An empty buffer
3782 accomplishes this, since that is also the representation for a list
3783 containing no features. */
3784
3785 rs->buf[0] = 0;
3786 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3787 {
3788 char *q = NULL;
3789 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
3790
3791 if (rs->extended)
3792 q = remote_query_supported_append (q, "multiprocess+");
3793
3794 if (remote_support_xml)
3795 q = remote_query_supported_append (q, remote_support_xml);
3796
3797 q = remote_query_supported_append (q, "qRelocInsn+");
3798
3799 q = reconcat (q, "qSupported:", q, (char *) NULL);
3800 putpkt (q);
3801
3802 do_cleanups (old_chain);
3803
3804 getpkt (&rs->buf, &rs->buf_size, 0);
3805
3806 /* If an error occured, warn, but do not return - just reset the
3807 buffer to empty and go on to disable features. */
3808 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3809 == PACKET_ERROR)
3810 {
3811 warning (_("Remote failure reply: %s"), rs->buf);
3812 rs->buf[0] = 0;
3813 }
3814 }
3815
3816 memset (seen, 0, sizeof (seen));
3817
3818 next = rs->buf;
3819 while (*next)
3820 {
3821 enum packet_support is_supported;
3822 char *p, *end, *name_end, *value;
3823
3824 /* First separate out this item from the rest of the packet. If
3825 there's another item after this, we overwrite the separator
3826 (terminated strings are much easier to work with). */
3827 p = next;
3828 end = strchr (p, ';');
3829 if (end == NULL)
3830 {
3831 end = p + strlen (p);
3832 next = end;
3833 }
3834 else
3835 {
3836 *end = '\0';
3837 next = end + 1;
3838
3839 if (end == p)
3840 {
3841 warning (_("empty item in \"qSupported\" response"));
3842 continue;
3843 }
3844 }
3845
3846 name_end = strchr (p, '=');
3847 if (name_end)
3848 {
3849 /* This is a name=value entry. */
3850 is_supported = PACKET_ENABLE;
3851 value = name_end + 1;
3852 *name_end = '\0';
3853 }
3854 else
3855 {
3856 value = NULL;
3857 switch (end[-1])
3858 {
3859 case '+':
3860 is_supported = PACKET_ENABLE;
3861 break;
3862
3863 case '-':
3864 is_supported = PACKET_DISABLE;
3865 break;
3866
3867 case '?':
3868 is_supported = PACKET_SUPPORT_UNKNOWN;
3869 break;
3870
3871 default:
3872 warning (_("unrecognized item \"%s\" "
3873 "in \"qSupported\" response"), p);
3874 continue;
3875 }
3876 end[-1] = '\0';
3877 }
3878
3879 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3880 if (strcmp (remote_protocol_features[i].name, p) == 0)
3881 {
3882 const struct protocol_feature *feature;
3883
3884 seen[i] = 1;
3885 feature = &remote_protocol_features[i];
3886 feature->func (feature, is_supported, value);
3887 break;
3888 }
3889 }
3890
3891 /* If we increased the packet size, make sure to increase the global
3892 buffer size also. We delay this until after parsing the entire
3893 qSupported packet, because this is the same buffer we were
3894 parsing. */
3895 if (rs->buf_size < rs->explicit_packet_size)
3896 {
3897 rs->buf_size = rs->explicit_packet_size;
3898 rs->buf = xrealloc (rs->buf, rs->buf_size);
3899 }
3900
3901 /* Handle the defaults for unmentioned features. */
3902 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3903 if (!seen[i])
3904 {
3905 const struct protocol_feature *feature;
3906
3907 feature = &remote_protocol_features[i];
3908 feature->func (feature, feature->default_support, NULL);
3909 }
3910 }
3911
3912
3913 static void
3914 remote_open_1 (char *name, int from_tty,
3915 struct target_ops *target, int extended_p)
3916 {
3917 struct remote_state *rs = get_remote_state ();
3918
3919 if (name == 0)
3920 error (_("To open a remote debug connection, you need to specify what\n"
3921 "serial device is attached to the remote system\n"
3922 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3923
3924 /* See FIXME above. */
3925 if (!target_async_permitted)
3926 wait_forever_enabled_p = 1;
3927
3928 /* If we're connected to a running target, target_preopen will kill it.
3929 But if we're connected to a target system with no running process,
3930 then we will still be connected when it returns. Ask this question
3931 first, before target_preopen has a chance to kill anything. */
3932 if (remote_desc != NULL && !have_inferiors ())
3933 {
3934 if (!from_tty
3935 || query (_("Already connected to a remote target. Disconnect? ")))
3936 pop_target ();
3937 else
3938 error (_("Still connected."));
3939 }
3940
3941 target_preopen (from_tty);
3942
3943 unpush_target (target);
3944
3945 /* This time without a query. If we were connected to an
3946 extended-remote target and target_preopen killed the running
3947 process, we may still be connected. If we are starting "target
3948 remote" now, the extended-remote target will not have been
3949 removed by unpush_target. */
3950 if (remote_desc != NULL && !have_inferiors ())
3951 pop_target ();
3952
3953 /* Make sure we send the passed signals list the next time we resume. */
3954 xfree (last_pass_packet);
3955 last_pass_packet = NULL;
3956
3957 remote_fileio_reset ();
3958 reopen_exec_file ();
3959 reread_symbols ();
3960
3961 remote_desc = remote_serial_open (name);
3962 if (!remote_desc)
3963 perror_with_name (name);
3964
3965 if (baud_rate != -1)
3966 {
3967 if (serial_setbaudrate (remote_desc, baud_rate))
3968 {
3969 /* The requested speed could not be set. Error out to
3970 top level after closing remote_desc. Take care to
3971 set remote_desc to NULL to avoid closing remote_desc
3972 more than once. */
3973 serial_close (remote_desc);
3974 remote_desc = NULL;
3975 perror_with_name (name);
3976 }
3977 }
3978
3979 serial_raw (remote_desc);
3980
3981 /* If there is something sitting in the buffer we might take it as a
3982 response to a command, which would be bad. */
3983 serial_flush_input (remote_desc);
3984
3985 if (from_tty)
3986 {
3987 puts_filtered ("Remote debugging using ");
3988 puts_filtered (name);
3989 puts_filtered ("\n");
3990 }
3991 push_target (target); /* Switch to using remote target now. */
3992
3993 /* Register extra event sources in the event loop. */
3994 remote_async_inferior_event_token
3995 = create_async_event_handler (remote_async_inferior_event_handler,
3996 NULL);
3997 remote_async_get_pending_events_token
3998 = create_async_event_handler (remote_async_get_pending_events_handler,
3999 NULL);
4000
4001 /* Reset the target state; these things will be queried either by
4002 remote_query_supported or as they are needed. */
4003 init_all_packet_configs ();
4004 rs->cached_wait_status = 0;
4005 rs->explicit_packet_size = 0;
4006 rs->noack_mode = 0;
4007 rs->multi_process_aware = 0;
4008 rs->extended = extended_p;
4009 rs->non_stop_aware = 0;
4010 rs->waiting_for_stop_reply = 0;
4011 rs->ctrlc_pending_p = 0;
4012
4013 general_thread = not_sent_ptid;
4014 continue_thread = not_sent_ptid;
4015
4016 /* Probe for ability to use "ThreadInfo" query, as required. */
4017 use_threadinfo_query = 1;
4018 use_threadextra_query = 1;
4019
4020 if (target_async_permitted)
4021 {
4022 /* With this target we start out by owning the terminal. */
4023 remote_async_terminal_ours_p = 1;
4024
4025 /* FIXME: cagney/1999-09-23: During the initial connection it is
4026 assumed that the target is already ready and able to respond to
4027 requests. Unfortunately remote_start_remote() eventually calls
4028 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4029 around this. Eventually a mechanism that allows
4030 wait_for_inferior() to expect/get timeouts will be
4031 implemented. */
4032 wait_forever_enabled_p = 0;
4033 }
4034
4035 /* First delete any symbols previously loaded from shared libraries. */
4036 no_shared_libraries (NULL, 0);
4037
4038 /* Start afresh. */
4039 init_thread_list ();
4040
4041 /* Start the remote connection. If error() or QUIT, discard this
4042 target (we'd otherwise be in an inconsistent state) and then
4043 propogate the error on up the exception chain. This ensures that
4044 the caller doesn't stumble along blindly assuming that the
4045 function succeeded. The CLI doesn't have this problem but other
4046 UI's, such as MI do.
4047
4048 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4049 this function should return an error indication letting the
4050 caller restore the previous state. Unfortunately the command
4051 ``target remote'' is directly wired to this function making that
4052 impossible. On a positive note, the CLI side of this problem has
4053 been fixed - the function set_cmd_context() makes it possible for
4054 all the ``target ....'' commands to share a common callback
4055 function. See cli-dump.c. */
4056 {
4057 struct gdb_exception ex;
4058 struct start_remote_args args;
4059
4060 args.from_tty = from_tty;
4061 args.target = target;
4062 args.extended_p = extended_p;
4063
4064 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
4065 if (ex.reason < 0)
4066 {
4067 /* Pop the partially set up target - unless something else did
4068 already before throwing the exception. */
4069 if (remote_desc != NULL)
4070 pop_target ();
4071 if (target_async_permitted)
4072 wait_forever_enabled_p = 1;
4073 throw_exception (ex);
4074 }
4075 }
4076
4077 if (target_async_permitted)
4078 wait_forever_enabled_p = 1;
4079 }
4080
4081 /* This takes a program previously attached to and detaches it. After
4082 this is done, GDB can be used to debug some other program. We
4083 better not have left any breakpoints in the target program or it'll
4084 die when it hits one. */
4085
4086 static void
4087 remote_detach_1 (char *args, int from_tty, int extended)
4088 {
4089 int pid = ptid_get_pid (inferior_ptid);
4090 struct remote_state *rs = get_remote_state ();
4091
4092 if (args)
4093 error (_("Argument given to \"detach\" when remotely debugging."));
4094
4095 if (!target_has_execution)
4096 error (_("No process to detach from."));
4097
4098 /* Tell the remote target to detach. */
4099 if (remote_multi_process_p (rs))
4100 sprintf (rs->buf, "D;%x", pid);
4101 else
4102 strcpy (rs->buf, "D");
4103
4104 putpkt (rs->buf);
4105 getpkt (&rs->buf, &rs->buf_size, 0);
4106
4107 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4108 ;
4109 else if (rs->buf[0] == '\0')
4110 error (_("Remote doesn't know how to detach"));
4111 else
4112 error (_("Can't detach process."));
4113
4114 if (from_tty)
4115 {
4116 if (remote_multi_process_p (rs))
4117 printf_filtered (_("Detached from remote %s.\n"),
4118 target_pid_to_str (pid_to_ptid (pid)));
4119 else
4120 {
4121 if (extended)
4122 puts_filtered (_("Detached from remote process.\n"));
4123 else
4124 puts_filtered (_("Ending remote debugging.\n"));
4125 }
4126 }
4127
4128 discard_pending_stop_replies (pid);
4129 target_mourn_inferior ();
4130 }
4131
4132 static void
4133 remote_detach (struct target_ops *ops, char *args, int from_tty)
4134 {
4135 remote_detach_1 (args, from_tty, 0);
4136 }
4137
4138 static void
4139 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4140 {
4141 remote_detach_1 (args, from_tty, 1);
4142 }
4143
4144 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4145
4146 static void
4147 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4148 {
4149 if (args)
4150 error (_("Argument given to \"disconnect\" when remotely debugging."));
4151
4152 /* Make sure we unpush even the extended remote targets; mourn
4153 won't do it. So call remote_mourn_1 directly instead of
4154 target_mourn_inferior. */
4155 remote_mourn_1 (target);
4156
4157 if (from_tty)
4158 puts_filtered ("Ending remote debugging.\n");
4159 }
4160
4161 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4162 be chatty about it. */
4163
4164 static void
4165 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4166 {
4167 struct remote_state *rs = get_remote_state ();
4168 int pid;
4169 char *wait_status = NULL;
4170
4171 pid = parse_pid_to_attach (args);
4172
4173 /* Remote PID can be freely equal to getpid, do not check it here the same
4174 way as in other targets. */
4175
4176 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4177 error (_("This target does not support attaching to a process"));
4178
4179 sprintf (rs->buf, "vAttach;%x", pid);
4180 putpkt (rs->buf);
4181 getpkt (&rs->buf, &rs->buf_size, 0);
4182
4183 if (packet_ok (rs->buf,
4184 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4185 {
4186 if (from_tty)
4187 printf_unfiltered (_("Attached to %s\n"),
4188 target_pid_to_str (pid_to_ptid (pid)));
4189
4190 if (!non_stop)
4191 {
4192 /* Save the reply for later. */
4193 wait_status = alloca (strlen (rs->buf) + 1);
4194 strcpy (wait_status, rs->buf);
4195 }
4196 else if (strcmp (rs->buf, "OK") != 0)
4197 error (_("Attaching to %s failed with: %s"),
4198 target_pid_to_str (pid_to_ptid (pid)),
4199 rs->buf);
4200 }
4201 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4202 error (_("This target does not support attaching to a process"));
4203 else
4204 error (_("Attaching to %s failed"),
4205 target_pid_to_str (pid_to_ptid (pid)));
4206
4207 set_current_inferior (remote_add_inferior (pid, 1));
4208
4209 inferior_ptid = pid_to_ptid (pid);
4210
4211 if (non_stop)
4212 {
4213 struct thread_info *thread;
4214
4215 /* Get list of threads. */
4216 remote_threads_info (target);
4217
4218 thread = first_thread_of_process (pid);
4219 if (thread)
4220 inferior_ptid = thread->ptid;
4221 else
4222 inferior_ptid = pid_to_ptid (pid);
4223
4224 /* Invalidate our notion of the remote current thread. */
4225 record_currthread (minus_one_ptid);
4226 }
4227 else
4228 {
4229 /* Now, if we have thread information, update inferior_ptid. */
4230 inferior_ptid = remote_current_thread (inferior_ptid);
4231
4232 /* Add the main thread to the thread list. */
4233 add_thread_silent (inferior_ptid);
4234 }
4235
4236 /* Next, if the target can specify a description, read it. We do
4237 this before anything involving memory or registers. */
4238 target_find_description ();
4239
4240 if (!non_stop)
4241 {
4242 /* Use the previously fetched status. */
4243 gdb_assert (wait_status != NULL);
4244
4245 if (target_can_async_p ())
4246 {
4247 struct stop_reply *stop_reply;
4248 struct cleanup *old_chain;
4249
4250 stop_reply = stop_reply_xmalloc ();
4251 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4252 remote_parse_stop_reply (wait_status, stop_reply);
4253 discard_cleanups (old_chain);
4254 push_stop_reply (stop_reply);
4255
4256 target_async (inferior_event_handler, 0);
4257 }
4258 else
4259 {
4260 gdb_assert (wait_status != NULL);
4261 strcpy (rs->buf, wait_status);
4262 rs->cached_wait_status = 1;
4263 }
4264 }
4265 else
4266 gdb_assert (wait_status == NULL);
4267 }
4268
4269 static void
4270 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4271 {
4272 extended_remote_attach_1 (ops, args, from_tty);
4273 }
4274
4275 /* Convert hex digit A to a number. */
4276
4277 static int
4278 fromhex (int a)
4279 {
4280 if (a >= '0' && a <= '9')
4281 return a - '0';
4282 else if (a >= 'a' && a <= 'f')
4283 return a - 'a' + 10;
4284 else if (a >= 'A' && a <= 'F')
4285 return a - 'A' + 10;
4286 else
4287 error (_("Reply contains invalid hex digit %d"), a);
4288 }
4289
4290 int
4291 hex2bin (const char *hex, gdb_byte *bin, int count)
4292 {
4293 int i;
4294
4295 for (i = 0; i < count; i++)
4296 {
4297 if (hex[0] == 0 || hex[1] == 0)
4298 {
4299 /* Hex string is short, or of uneven length.
4300 Return the count that has been converted so far. */
4301 return i;
4302 }
4303 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4304 hex += 2;
4305 }
4306 return i;
4307 }
4308
4309 /* Convert number NIB to a hex digit. */
4310
4311 static int
4312 tohex (int nib)
4313 {
4314 if (nib < 10)
4315 return '0' + nib;
4316 else
4317 return 'a' + nib - 10;
4318 }
4319
4320 int
4321 bin2hex (const gdb_byte *bin, char *hex, int count)
4322 {
4323 int i;
4324
4325 /* May use a length, or a nul-terminated string as input. */
4326 if (count == 0)
4327 count = strlen ((char *) bin);
4328
4329 for (i = 0; i < count; i++)
4330 {
4331 *hex++ = tohex ((*bin >> 4) & 0xf);
4332 *hex++ = tohex (*bin++ & 0xf);
4333 }
4334 *hex = 0;
4335 return i;
4336 }
4337 \f
4338 /* Check for the availability of vCont. This function should also check
4339 the response. */
4340
4341 static void
4342 remote_vcont_probe (struct remote_state *rs)
4343 {
4344 char *buf;
4345
4346 strcpy (rs->buf, "vCont?");
4347 putpkt (rs->buf);
4348 getpkt (&rs->buf, &rs->buf_size, 0);
4349 buf = rs->buf;
4350
4351 /* Make sure that the features we assume are supported. */
4352 if (strncmp (buf, "vCont", 5) == 0)
4353 {
4354 char *p = &buf[5];
4355 int support_s, support_S, support_c, support_C;
4356
4357 support_s = 0;
4358 support_S = 0;
4359 support_c = 0;
4360 support_C = 0;
4361 rs->support_vCont_t = 0;
4362 while (p && *p == ';')
4363 {
4364 p++;
4365 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4366 support_s = 1;
4367 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4368 support_S = 1;
4369 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4370 support_c = 1;
4371 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4372 support_C = 1;
4373 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4374 rs->support_vCont_t = 1;
4375
4376 p = strchr (p, ';');
4377 }
4378
4379 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4380 BUF will make packet_ok disable the packet. */
4381 if (!support_s || !support_S || !support_c || !support_C)
4382 buf[0] = 0;
4383 }
4384
4385 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4386 }
4387
4388 /* Helper function for building "vCont" resumptions. Write a
4389 resumption to P. ENDP points to one-passed-the-end of the buffer
4390 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4391 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4392 resumed thread should be single-stepped and/or signalled. If PTID
4393 equals minus_one_ptid, then all threads are resumed; if PTID
4394 represents a process, then all threads of the process are resumed;
4395 the thread to be stepped and/or signalled is given in the global
4396 INFERIOR_PTID. */
4397
4398 static char *
4399 append_resumption (char *p, char *endp,
4400 ptid_t ptid, int step, enum target_signal siggnal)
4401 {
4402 struct remote_state *rs = get_remote_state ();
4403
4404 if (step && siggnal != TARGET_SIGNAL_0)
4405 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4406 else if (step)
4407 p += xsnprintf (p, endp - p, ";s");
4408 else if (siggnal != TARGET_SIGNAL_0)
4409 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4410 else
4411 p += xsnprintf (p, endp - p, ";c");
4412
4413 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4414 {
4415 ptid_t nptid;
4416
4417 /* All (-1) threads of process. */
4418 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4419
4420 p += xsnprintf (p, endp - p, ":");
4421 p = write_ptid (p, endp, nptid);
4422 }
4423 else if (!ptid_equal (ptid, minus_one_ptid))
4424 {
4425 p += xsnprintf (p, endp - p, ":");
4426 p = write_ptid (p, endp, ptid);
4427 }
4428
4429 return p;
4430 }
4431
4432 /* Resume the remote inferior by using a "vCont" packet. The thread
4433 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4434 resumed thread should be single-stepped and/or signalled. If PTID
4435 equals minus_one_ptid, then all threads are resumed; the thread to
4436 be stepped and/or signalled is given in the global INFERIOR_PTID.
4437 This function returns non-zero iff it resumes the inferior.
4438
4439 This function issues a strict subset of all possible vCont commands at the
4440 moment. */
4441
4442 static int
4443 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
4444 {
4445 struct remote_state *rs = get_remote_state ();
4446 char *p;
4447 char *endp;
4448
4449 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4450 remote_vcont_probe (rs);
4451
4452 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4453 return 0;
4454
4455 p = rs->buf;
4456 endp = rs->buf + get_remote_packet_size ();
4457
4458 /* If we could generate a wider range of packets, we'd have to worry
4459 about overflowing BUF. Should there be a generic
4460 "multi-part-packet" packet? */
4461
4462 p += xsnprintf (p, endp - p, "vCont");
4463
4464 if (ptid_equal (ptid, magic_null_ptid))
4465 {
4466 /* MAGIC_NULL_PTID means that we don't have any active threads,
4467 so we don't have any TID numbers the inferior will
4468 understand. Make sure to only send forms that do not specify
4469 a TID. */
4470 p = append_resumption (p, endp, minus_one_ptid, step, siggnal);
4471 }
4472 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4473 {
4474 /* Resume all threads (of all processes, or of a single
4475 process), with preference for INFERIOR_PTID. This assumes
4476 inferior_ptid belongs to the set of all threads we are about
4477 to resume. */
4478 if (step || siggnal != TARGET_SIGNAL_0)
4479 {
4480 /* Step inferior_ptid, with or without signal. */
4481 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4482 }
4483
4484 /* And continue others without a signal. */
4485 p = append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
4486 }
4487 else
4488 {
4489 /* Scheduler locking; resume only PTID. */
4490 p = append_resumption (p, endp, ptid, step, siggnal);
4491 }
4492
4493 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4494 putpkt (rs->buf);
4495
4496 if (non_stop)
4497 {
4498 /* In non-stop, the stub replies to vCont with "OK". The stop
4499 reply will be reported asynchronously by means of a `%Stop'
4500 notification. */
4501 getpkt (&rs->buf, &rs->buf_size, 0);
4502 if (strcmp (rs->buf, "OK") != 0)
4503 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4504 }
4505
4506 return 1;
4507 }
4508
4509 /* Tell the remote machine to resume. */
4510
4511 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
4512
4513 static int last_sent_step;
4514
4515 static void
4516 remote_resume (struct target_ops *ops,
4517 ptid_t ptid, int step, enum target_signal siggnal)
4518 {
4519 struct remote_state *rs = get_remote_state ();
4520 char *buf;
4521
4522 last_sent_signal = siggnal;
4523 last_sent_step = step;
4524
4525 /* Update the inferior on signals to silently pass, if they've changed. */
4526 remote_pass_signals ();
4527
4528 /* The vCont packet doesn't need to specify threads via Hc. */
4529 /* No reverse support (yet) for vCont. */
4530 if (execution_direction != EXEC_REVERSE)
4531 if (remote_vcont_resume (ptid, step, siggnal))
4532 goto done;
4533
4534 /* All other supported resume packets do use Hc, so set the continue
4535 thread. */
4536 if (ptid_equal (ptid, minus_one_ptid))
4537 set_continue_thread (any_thread_ptid);
4538 else
4539 set_continue_thread (ptid);
4540
4541 buf = rs->buf;
4542 if (execution_direction == EXEC_REVERSE)
4543 {
4544 /* We don't pass signals to the target in reverse exec mode. */
4545 if (info_verbose && siggnal != TARGET_SIGNAL_0)
4546 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
4547 siggnal);
4548
4549 if (step
4550 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4551 error (_("Remote reverse-step not supported."));
4552 if (!step
4553 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4554 error (_("Remote reverse-continue not supported."));
4555
4556 strcpy (buf, step ? "bs" : "bc");
4557 }
4558 else if (siggnal != TARGET_SIGNAL_0)
4559 {
4560 buf[0] = step ? 'S' : 'C';
4561 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4562 buf[2] = tohex (((int) siggnal) & 0xf);
4563 buf[3] = '\0';
4564 }
4565 else
4566 strcpy (buf, step ? "s" : "c");
4567
4568 putpkt (buf);
4569
4570 done:
4571 /* We are about to start executing the inferior, let's register it
4572 with the event loop. NOTE: this is the one place where all the
4573 execution commands end up. We could alternatively do this in each
4574 of the execution commands in infcmd.c. */
4575 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4576 into infcmd.c in order to allow inferior function calls to work
4577 NOT asynchronously. */
4578 if (target_can_async_p ())
4579 target_async (inferior_event_handler, 0);
4580
4581 /* We've just told the target to resume. The remote server will
4582 wait for the inferior to stop, and then send a stop reply. In
4583 the mean time, we can't start another command/query ourselves
4584 because the stub wouldn't be ready to process it. This applies
4585 only to the base all-stop protocol, however. In non-stop (which
4586 only supports vCont), the stub replies with an "OK", and is
4587 immediate able to process further serial input. */
4588 if (!non_stop)
4589 rs->waiting_for_stop_reply = 1;
4590 }
4591 \f
4592
4593 /* Set up the signal handler for SIGINT, while the target is
4594 executing, ovewriting the 'regular' SIGINT signal handler. */
4595 static void
4596 initialize_sigint_signal_handler (void)
4597 {
4598 signal (SIGINT, handle_remote_sigint);
4599 }
4600
4601 /* Signal handler for SIGINT, while the target is executing. */
4602 static void
4603 handle_remote_sigint (int sig)
4604 {
4605 signal (sig, handle_remote_sigint_twice);
4606 mark_async_signal_handler_wrapper (sigint_remote_token);
4607 }
4608
4609 /* Signal handler for SIGINT, installed after SIGINT has already been
4610 sent once. It will take effect the second time that the user sends
4611 a ^C. */
4612 static void
4613 handle_remote_sigint_twice (int sig)
4614 {
4615 signal (sig, handle_remote_sigint);
4616 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4617 }
4618
4619 /* Perform the real interruption of the target execution, in response
4620 to a ^C. */
4621 static void
4622 async_remote_interrupt (gdb_client_data arg)
4623 {
4624 if (remote_debug)
4625 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
4626
4627 target_stop (inferior_ptid);
4628 }
4629
4630 /* Perform interrupt, if the first attempt did not succeed. Just give
4631 up on the target alltogether. */
4632 void
4633 async_remote_interrupt_twice (gdb_client_data arg)
4634 {
4635 if (remote_debug)
4636 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
4637
4638 interrupt_query ();
4639 }
4640
4641 /* Reinstall the usual SIGINT handlers, after the target has
4642 stopped. */
4643 static void
4644 cleanup_sigint_signal_handler (void *dummy)
4645 {
4646 signal (SIGINT, handle_sigint);
4647 }
4648
4649 /* Send ^C to target to halt it. Target will respond, and send us a
4650 packet. */
4651 static void (*ofunc) (int);
4652
4653 /* The command line interface's stop routine. This function is installed
4654 as a signal handler for SIGINT. The first time a user requests a
4655 stop, we call remote_stop to send a break or ^C. If there is no
4656 response from the target (it didn't stop when the user requested it),
4657 we ask the user if he'd like to detach from the target. */
4658 static void
4659 remote_interrupt (int signo)
4660 {
4661 /* If this doesn't work, try more severe steps. */
4662 signal (signo, remote_interrupt_twice);
4663
4664 gdb_call_async_signal_handler (sigint_remote_token, 1);
4665 }
4666
4667 /* The user typed ^C twice. */
4668
4669 static void
4670 remote_interrupt_twice (int signo)
4671 {
4672 signal (signo, ofunc);
4673 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4674 signal (signo, remote_interrupt);
4675 }
4676
4677 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4678 thread, all threads of a remote process, or all threads of all
4679 processes. */
4680
4681 static void
4682 remote_stop_ns (ptid_t ptid)
4683 {
4684 struct remote_state *rs = get_remote_state ();
4685 char *p = rs->buf;
4686 char *endp = rs->buf + get_remote_packet_size ();
4687
4688 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4689 remote_vcont_probe (rs);
4690
4691 if (!rs->support_vCont_t)
4692 error (_("Remote server does not support stopping threads"));
4693
4694 if (ptid_equal (ptid, minus_one_ptid)
4695 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4696 p += xsnprintf (p, endp - p, "vCont;t");
4697 else
4698 {
4699 ptid_t nptid;
4700
4701 p += xsnprintf (p, endp - p, "vCont;t:");
4702
4703 if (ptid_is_pid (ptid))
4704 /* All (-1) threads of process. */
4705 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4706 else
4707 {
4708 /* Small optimization: if we already have a stop reply for
4709 this thread, no use in telling the stub we want this
4710 stopped. */
4711 if (peek_stop_reply (ptid))
4712 return;
4713
4714 nptid = ptid;
4715 }
4716
4717 p = write_ptid (p, endp, nptid);
4718 }
4719
4720 /* In non-stop, we get an immediate OK reply. The stop reply will
4721 come in asynchronously by notification. */
4722 putpkt (rs->buf);
4723 getpkt (&rs->buf, &rs->buf_size, 0);
4724 if (strcmp (rs->buf, "OK") != 0)
4725 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4726 }
4727
4728 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4729 remote target. It is undefined which thread of which process
4730 reports the stop. */
4731
4732 static void
4733 remote_stop_as (ptid_t ptid)
4734 {
4735 struct remote_state *rs = get_remote_state ();
4736
4737 rs->ctrlc_pending_p = 1;
4738
4739 /* If the inferior is stopped already, but the core didn't know
4740 about it yet, just ignore the request. The cached wait status
4741 will be collected in remote_wait. */
4742 if (rs->cached_wait_status)
4743 return;
4744
4745 /* Send interrupt_sequence to remote target. */
4746 send_interrupt_sequence ();
4747 }
4748
4749 /* This is the generic stop called via the target vector. When a target
4750 interrupt is requested, either by the command line or the GUI, we
4751 will eventually end up here. */
4752
4753 static void
4754 remote_stop (ptid_t ptid)
4755 {
4756 if (remote_debug)
4757 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4758
4759 if (non_stop)
4760 remote_stop_ns (ptid);
4761 else
4762 remote_stop_as (ptid);
4763 }
4764
4765 /* Ask the user what to do when an interrupt is received. */
4766
4767 static void
4768 interrupt_query (void)
4769 {
4770 target_terminal_ours ();
4771
4772 if (target_can_async_p ())
4773 {
4774 signal (SIGINT, handle_sigint);
4775 deprecated_throw_reason (RETURN_QUIT);
4776 }
4777 else
4778 {
4779 if (query (_("Interrupted while waiting for the program.\n\
4780 Give up (and stop debugging it)? ")))
4781 {
4782 pop_target ();
4783 deprecated_throw_reason (RETURN_QUIT);
4784 }
4785 }
4786
4787 target_terminal_inferior ();
4788 }
4789
4790 /* Enable/disable target terminal ownership. Most targets can use
4791 terminal groups to control terminal ownership. Remote targets are
4792 different in that explicit transfer of ownership to/from GDB/target
4793 is required. */
4794
4795 static void
4796 remote_terminal_inferior (void)
4797 {
4798 if (!target_async_permitted)
4799 /* Nothing to do. */
4800 return;
4801
4802 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4803 idempotent. The event-loop GDB talking to an asynchronous target
4804 with a synchronous command calls this function from both
4805 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
4806 transfer the terminal to the target when it shouldn't this guard
4807 can go away. */
4808 if (!remote_async_terminal_ours_p)
4809 return;
4810 delete_file_handler (input_fd);
4811 remote_async_terminal_ours_p = 0;
4812 initialize_sigint_signal_handler ();
4813 /* NOTE: At this point we could also register our selves as the
4814 recipient of all input. Any characters typed could then be
4815 passed on down to the target. */
4816 }
4817
4818 static void
4819 remote_terminal_ours (void)
4820 {
4821 if (!target_async_permitted)
4822 /* Nothing to do. */
4823 return;
4824
4825 /* See FIXME in remote_terminal_inferior. */
4826 if (remote_async_terminal_ours_p)
4827 return;
4828 cleanup_sigint_signal_handler (NULL);
4829 add_file_handler (input_fd, stdin_event_handler, 0);
4830 remote_async_terminal_ours_p = 1;
4831 }
4832
4833 static void
4834 remote_console_output (char *msg)
4835 {
4836 char *p;
4837
4838 for (p = msg; p[0] && p[1]; p += 2)
4839 {
4840 char tb[2];
4841 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4842
4843 tb[0] = c;
4844 tb[1] = 0;
4845 fputs_unfiltered (tb, gdb_stdtarg);
4846 }
4847 gdb_flush (gdb_stdtarg);
4848 }
4849
4850 typedef struct cached_reg
4851 {
4852 int num;
4853 gdb_byte data[MAX_REGISTER_SIZE];
4854 } cached_reg_t;
4855
4856 DEF_VEC_O(cached_reg_t);
4857
4858 struct stop_reply
4859 {
4860 struct stop_reply *next;
4861
4862 ptid_t ptid;
4863
4864 struct target_waitstatus ws;
4865
4866 VEC(cached_reg_t) *regcache;
4867
4868 int stopped_by_watchpoint_p;
4869 CORE_ADDR watch_data_address;
4870
4871 int solibs_changed;
4872 int replay_event;
4873
4874 int core;
4875 };
4876
4877 /* The list of already fetched and acknowledged stop events. */
4878 static struct stop_reply *stop_reply_queue;
4879
4880 static struct stop_reply *
4881 stop_reply_xmalloc (void)
4882 {
4883 struct stop_reply *r = XMALLOC (struct stop_reply);
4884
4885 r->next = NULL;
4886 return r;
4887 }
4888
4889 static void
4890 stop_reply_xfree (struct stop_reply *r)
4891 {
4892 if (r != NULL)
4893 {
4894 VEC_free (cached_reg_t, r->regcache);
4895 xfree (r);
4896 }
4897 }
4898
4899 /* Discard all pending stop replies of inferior PID. If PID is -1,
4900 discard everything. */
4901
4902 static void
4903 discard_pending_stop_replies (int pid)
4904 {
4905 struct stop_reply *prev = NULL, *reply, *next;
4906
4907 /* Discard the in-flight notification. */
4908 if (pending_stop_reply != NULL
4909 && (pid == -1
4910 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4911 {
4912 stop_reply_xfree (pending_stop_reply);
4913 pending_stop_reply = NULL;
4914 }
4915
4916 /* Discard the stop replies we have already pulled with
4917 vStopped. */
4918 for (reply = stop_reply_queue; reply; reply = next)
4919 {
4920 next = reply->next;
4921 if (pid == -1
4922 || ptid_get_pid (reply->ptid) == pid)
4923 {
4924 if (reply == stop_reply_queue)
4925 stop_reply_queue = reply->next;
4926 else
4927 prev->next = reply->next;
4928
4929 stop_reply_xfree (reply);
4930 }
4931 else
4932 prev = reply;
4933 }
4934 }
4935
4936 /* Cleanup wrapper. */
4937
4938 static void
4939 do_stop_reply_xfree (void *arg)
4940 {
4941 struct stop_reply *r = arg;
4942
4943 stop_reply_xfree (r);
4944 }
4945
4946 /* Look for a queued stop reply belonging to PTID. If one is found,
4947 remove it from the queue, and return it. Returns NULL if none is
4948 found. If there are still queued events left to process, tell the
4949 event loop to get back to target_wait soon. */
4950
4951 static struct stop_reply *
4952 queued_stop_reply (ptid_t ptid)
4953 {
4954 struct stop_reply *it;
4955 struct stop_reply **it_link;
4956
4957 it = stop_reply_queue;
4958 it_link = &stop_reply_queue;
4959 while (it)
4960 {
4961 if (ptid_match (it->ptid, ptid))
4962 {
4963 *it_link = it->next;
4964 it->next = NULL;
4965 break;
4966 }
4967
4968 it_link = &it->next;
4969 it = *it_link;
4970 }
4971
4972 if (stop_reply_queue)
4973 /* There's still at least an event left. */
4974 mark_async_event_handler (remote_async_inferior_event_token);
4975
4976 return it;
4977 }
4978
4979 /* Push a fully parsed stop reply in the stop reply queue. Since we
4980 know that we now have at least one queued event left to pass to the
4981 core side, tell the event loop to get back to target_wait soon. */
4982
4983 static void
4984 push_stop_reply (struct stop_reply *new_event)
4985 {
4986 struct stop_reply *event;
4987
4988 if (stop_reply_queue)
4989 {
4990 for (event = stop_reply_queue;
4991 event && event->next;
4992 event = event->next)
4993 ;
4994
4995 event->next = new_event;
4996 }
4997 else
4998 stop_reply_queue = new_event;
4999
5000 mark_async_event_handler (remote_async_inferior_event_token);
5001 }
5002
5003 /* Returns true if we have a stop reply for PTID. */
5004
5005 static int
5006 peek_stop_reply (ptid_t ptid)
5007 {
5008 struct stop_reply *it;
5009
5010 for (it = stop_reply_queue; it; it = it->next)
5011 if (ptid_equal (ptid, it->ptid))
5012 {
5013 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
5014 return 1;
5015 }
5016
5017 return 0;
5018 }
5019
5020 /* Parse the stop reply in BUF. Either the function succeeds, and the
5021 result is stored in EVENT, or throws an error. */
5022
5023 static void
5024 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5025 {
5026 struct remote_arch_state *rsa = get_remote_arch_state ();
5027 ULONGEST addr;
5028 char *p;
5029
5030 event->ptid = null_ptid;
5031 event->ws.kind = TARGET_WAITKIND_IGNORE;
5032 event->ws.value.integer = 0;
5033 event->solibs_changed = 0;
5034 event->replay_event = 0;
5035 event->stopped_by_watchpoint_p = 0;
5036 event->regcache = NULL;
5037 event->core = -1;
5038
5039 switch (buf[0])
5040 {
5041 case 'T': /* Status with PC, SP, FP, ... */
5042 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5043 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5044 ss = signal number
5045 n... = register number
5046 r... = register contents
5047 */
5048
5049 p = &buf[3]; /* after Txx */
5050 while (*p)
5051 {
5052 char *p1;
5053 char *p_temp;
5054 int fieldsize;
5055 LONGEST pnum = 0;
5056
5057 /* If the packet contains a register number, save it in
5058 pnum and set p1 to point to the character following it.
5059 Otherwise p1 points to p. */
5060
5061 /* If this packet is an awatch packet, don't parse the 'a'
5062 as a register number. */
5063
5064 if (strncmp (p, "awatch", strlen("awatch")) != 0
5065 && strncmp (p, "core", strlen ("core") != 0))
5066 {
5067 /* Read the ``P'' register number. */
5068 pnum = strtol (p, &p_temp, 16);
5069 p1 = p_temp;
5070 }
5071 else
5072 p1 = p;
5073
5074 if (p1 == p) /* No register number present here. */
5075 {
5076 p1 = strchr (p, ':');
5077 if (p1 == NULL)
5078 error (_("Malformed packet(a) (missing colon): %s\n\
5079 Packet: '%s'\n"),
5080 p, buf);
5081 if (strncmp (p, "thread", p1 - p) == 0)
5082 event->ptid = read_ptid (++p1, &p);
5083 else if ((strncmp (p, "watch", p1 - p) == 0)
5084 || (strncmp (p, "rwatch", p1 - p) == 0)
5085 || (strncmp (p, "awatch", p1 - p) == 0))
5086 {
5087 event->stopped_by_watchpoint_p = 1;
5088 p = unpack_varlen_hex (++p1, &addr);
5089 event->watch_data_address = (CORE_ADDR) addr;
5090 }
5091 else if (strncmp (p, "library", p1 - p) == 0)
5092 {
5093 p1++;
5094 p_temp = p1;
5095 while (*p_temp && *p_temp != ';')
5096 p_temp++;
5097
5098 event->solibs_changed = 1;
5099 p = p_temp;
5100 }
5101 else if (strncmp (p, "replaylog", p1 - p) == 0)
5102 {
5103 /* NO_HISTORY event.
5104 p1 will indicate "begin" or "end", but
5105 it makes no difference for now, so ignore it. */
5106 event->replay_event = 1;
5107 p_temp = strchr (p1 + 1, ';');
5108 if (p_temp)
5109 p = p_temp;
5110 }
5111 else if (strncmp (p, "core", p1 - p) == 0)
5112 {
5113 ULONGEST c;
5114
5115 p = unpack_varlen_hex (++p1, &c);
5116 event->core = c;
5117 }
5118 else
5119 {
5120 /* Silently skip unknown optional info. */
5121 p_temp = strchr (p1 + 1, ';');
5122 if (p_temp)
5123 p = p_temp;
5124 }
5125 }
5126 else
5127 {
5128 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5129 cached_reg_t cached_reg;
5130
5131 p = p1;
5132
5133 if (*p != ':')
5134 error (_("Malformed packet(b) (missing colon): %s\n\
5135 Packet: '%s'\n"),
5136 p, buf);
5137 ++p;
5138
5139 if (reg == NULL)
5140 error (_("Remote sent bad register number %s: %s\n\
5141 Packet: '%s'\n"),
5142 hex_string (pnum), p, buf);
5143
5144 cached_reg.num = reg->regnum;
5145
5146 fieldsize = hex2bin (p, cached_reg.data,
5147 register_size (target_gdbarch,
5148 reg->regnum));
5149 p += 2 * fieldsize;
5150 if (fieldsize < register_size (target_gdbarch,
5151 reg->regnum))
5152 warning (_("Remote reply is too short: %s"), buf);
5153
5154 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5155 }
5156
5157 if (*p != ';')
5158 error (_("Remote register badly formatted: %s\nhere: %s"),
5159 buf, p);
5160 ++p;
5161 }
5162 /* fall through */
5163 case 'S': /* Old style status, just signal only. */
5164 if (event->solibs_changed)
5165 event->ws.kind = TARGET_WAITKIND_LOADED;
5166 else if (event->replay_event)
5167 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5168 else
5169 {
5170 event->ws.kind = TARGET_WAITKIND_STOPPED;
5171 event->ws.value.sig = (enum target_signal)
5172 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5173 }
5174 break;
5175 case 'W': /* Target exited. */
5176 case 'X':
5177 {
5178 char *p;
5179 int pid;
5180 ULONGEST value;
5181
5182 /* GDB used to accept only 2 hex chars here. Stubs should
5183 only send more if they detect GDB supports multi-process
5184 support. */
5185 p = unpack_varlen_hex (&buf[1], &value);
5186
5187 if (buf[0] == 'W')
5188 {
5189 /* The remote process exited. */
5190 event->ws.kind = TARGET_WAITKIND_EXITED;
5191 event->ws.value.integer = value;
5192 }
5193 else
5194 {
5195 /* The remote process exited with a signal. */
5196 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5197 event->ws.value.sig = (enum target_signal) value;
5198 }
5199
5200 /* If no process is specified, assume inferior_ptid. */
5201 pid = ptid_get_pid (inferior_ptid);
5202 if (*p == '\0')
5203 ;
5204 else if (*p == ';')
5205 {
5206 p++;
5207
5208 if (p == '\0')
5209 ;
5210 else if (strncmp (p,
5211 "process:", sizeof ("process:") - 1) == 0)
5212 {
5213 ULONGEST upid;
5214
5215 p += sizeof ("process:") - 1;
5216 unpack_varlen_hex (p, &upid);
5217 pid = upid;
5218 }
5219 else
5220 error (_("unknown stop reply packet: %s"), buf);
5221 }
5222 else
5223 error (_("unknown stop reply packet: %s"), buf);
5224 event->ptid = pid_to_ptid (pid);
5225 }
5226 break;
5227 }
5228
5229 if (non_stop && ptid_equal (event->ptid, null_ptid))
5230 error (_("No process or thread specified in stop reply: %s"), buf);
5231 }
5232
5233 /* When the stub wants to tell GDB about a new stop reply, it sends a
5234 stop notification (%Stop). Those can come it at any time, hence,
5235 we have to make sure that any pending putpkt/getpkt sequence we're
5236 making is finished, before querying the stub for more events with
5237 vStopped. E.g., if we started a vStopped sequence immediatelly
5238 upon receiving the %Stop notification, something like this could
5239 happen:
5240
5241 1.1) --> Hg 1
5242 1.2) <-- OK
5243 1.3) --> g
5244 1.4) <-- %Stop
5245 1.5) --> vStopped
5246 1.6) <-- (registers reply to step #1.3)
5247
5248 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5249 query.
5250
5251 To solve this, whenever we parse a %Stop notification sucessfully,
5252 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5253 doing whatever we were doing:
5254
5255 2.1) --> Hg 1
5256 2.2) <-- OK
5257 2.3) --> g
5258 2.4) <-- %Stop
5259 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5260 2.5) <-- (registers reply to step #2.3)
5261
5262 Eventualy after step #2.5, we return to the event loop, which
5263 notices there's an event on the
5264 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5265 associated callback --- the function below. At this point, we're
5266 always safe to start a vStopped sequence. :
5267
5268 2.6) --> vStopped
5269 2.7) <-- T05 thread:2
5270 2.8) --> vStopped
5271 2.9) --> OK
5272 */
5273
5274 static void
5275 remote_get_pending_stop_replies (void)
5276 {
5277 struct remote_state *rs = get_remote_state ();
5278
5279 if (pending_stop_reply)
5280 {
5281 /* acknowledge */
5282 putpkt ("vStopped");
5283
5284 /* Now we can rely on it. */
5285 push_stop_reply (pending_stop_reply);
5286 pending_stop_reply = NULL;
5287
5288 while (1)
5289 {
5290 getpkt (&rs->buf, &rs->buf_size, 0);
5291 if (strcmp (rs->buf, "OK") == 0)
5292 break;
5293 else
5294 {
5295 struct cleanup *old_chain;
5296 struct stop_reply *stop_reply = stop_reply_xmalloc ();
5297
5298 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5299 remote_parse_stop_reply (rs->buf, stop_reply);
5300
5301 /* acknowledge */
5302 putpkt ("vStopped");
5303
5304 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
5305 {
5306 /* Now we can rely on it. */
5307 discard_cleanups (old_chain);
5308 push_stop_reply (stop_reply);
5309 }
5310 else
5311 /* We got an unknown stop reply. */
5312 do_cleanups (old_chain);
5313 }
5314 }
5315 }
5316 }
5317
5318
5319 /* Called when it is decided that STOP_REPLY holds the info of the
5320 event that is to be returned to the core. This function always
5321 destroys STOP_REPLY. */
5322
5323 static ptid_t
5324 process_stop_reply (struct stop_reply *stop_reply,
5325 struct target_waitstatus *status)
5326 {
5327 ptid_t ptid;
5328
5329 *status = stop_reply->ws;
5330 ptid = stop_reply->ptid;
5331
5332 /* If no thread/process was reported by the stub, assume the current
5333 inferior. */
5334 if (ptid_equal (ptid, null_ptid))
5335 ptid = inferior_ptid;
5336
5337 if (status->kind != TARGET_WAITKIND_EXITED
5338 && status->kind != TARGET_WAITKIND_SIGNALLED)
5339 {
5340 /* Expedited registers. */
5341 if (stop_reply->regcache)
5342 {
5343 struct regcache *regcache
5344 = get_thread_arch_regcache (ptid, target_gdbarch);
5345 cached_reg_t *reg;
5346 int ix;
5347
5348 for (ix = 0;
5349 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5350 ix++)
5351 regcache_raw_supply (regcache, reg->num, reg->data);
5352 VEC_free (cached_reg_t, stop_reply->regcache);
5353 }
5354
5355 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5356 remote_watch_data_address = stop_reply->watch_data_address;
5357
5358 remote_notice_new_inferior (ptid, 0);
5359 demand_private_info (ptid)->core = stop_reply->core;
5360 }
5361
5362 stop_reply_xfree (stop_reply);
5363 return ptid;
5364 }
5365
5366 /* The non-stop mode version of target_wait. */
5367
5368 static ptid_t
5369 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5370 {
5371 struct remote_state *rs = get_remote_state ();
5372 struct stop_reply *stop_reply;
5373 int ret;
5374
5375 /* If in non-stop mode, get out of getpkt even if a
5376 notification is received. */
5377
5378 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5379 0 /* forever */);
5380 while (1)
5381 {
5382 if (ret != -1)
5383 switch (rs->buf[0])
5384 {
5385 case 'E': /* Error of some sort. */
5386 /* We're out of sync with the target now. Did it continue
5387 or not? We can't tell which thread it was in non-stop,
5388 so just ignore this. */
5389 warning (_("Remote failure reply: %s"), rs->buf);
5390 break;
5391 case 'O': /* Console output. */
5392 remote_console_output (rs->buf + 1);
5393 break;
5394 default:
5395 warning (_("Invalid remote reply: %s"), rs->buf);
5396 break;
5397 }
5398
5399 /* Acknowledge a pending stop reply that may have arrived in the
5400 mean time. */
5401 if (pending_stop_reply != NULL)
5402 remote_get_pending_stop_replies ();
5403
5404 /* If indeed we noticed a stop reply, we're done. */
5405 stop_reply = queued_stop_reply (ptid);
5406 if (stop_reply != NULL)
5407 return process_stop_reply (stop_reply, status);
5408
5409 /* Still no event. If we're just polling for an event, then
5410 return to the event loop. */
5411 if (options & TARGET_WNOHANG)
5412 {
5413 status->kind = TARGET_WAITKIND_IGNORE;
5414 return minus_one_ptid;
5415 }
5416
5417 /* Otherwise do a blocking wait. */
5418 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5419 1 /* forever */);
5420 }
5421 }
5422
5423 /* Wait until the remote machine stops, then return, storing status in
5424 STATUS just as `wait' would. */
5425
5426 static ptid_t
5427 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5428 {
5429 struct remote_state *rs = get_remote_state ();
5430 ptid_t event_ptid = null_ptid;
5431 char *buf;
5432 struct stop_reply *stop_reply;
5433
5434 again:
5435
5436 status->kind = TARGET_WAITKIND_IGNORE;
5437 status->value.integer = 0;
5438
5439 stop_reply = queued_stop_reply (ptid);
5440 if (stop_reply != NULL)
5441 return process_stop_reply (stop_reply, status);
5442
5443 if (rs->cached_wait_status)
5444 /* Use the cached wait status, but only once. */
5445 rs->cached_wait_status = 0;
5446 else
5447 {
5448 int ret;
5449
5450 if (!target_is_async_p ())
5451 {
5452 ofunc = signal (SIGINT, remote_interrupt);
5453 /* If the user hit C-c before this packet, or between packets,
5454 pretend that it was hit right here. */
5455 if (quit_flag)
5456 {
5457 quit_flag = 0;
5458 remote_interrupt (SIGINT);
5459 }
5460 }
5461
5462 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5463 _never_ wait for ever -> test on target_is_async_p().
5464 However, before we do that we need to ensure that the caller
5465 knows how to take the target into/out of async mode. */
5466 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5467 if (!target_is_async_p ())
5468 signal (SIGINT, ofunc);
5469 }
5470
5471 buf = rs->buf;
5472
5473 remote_stopped_by_watchpoint_p = 0;
5474
5475 /* We got something. */
5476 rs->waiting_for_stop_reply = 0;
5477
5478 /* Assume that the target has acknowledged Ctrl-C unless we receive
5479 an 'F' or 'O' packet. */
5480 if (buf[0] != 'F' && buf[0] != 'O')
5481 rs->ctrlc_pending_p = 0;
5482
5483 switch (buf[0])
5484 {
5485 case 'E': /* Error of some sort. */
5486 /* We're out of sync with the target now. Did it continue or
5487 not? Not is more likely, so report a stop. */
5488 warning (_("Remote failure reply: %s"), buf);
5489 status->kind = TARGET_WAITKIND_STOPPED;
5490 status->value.sig = TARGET_SIGNAL_0;
5491 break;
5492 case 'F': /* File-I/O request. */
5493 remote_fileio_request (buf, rs->ctrlc_pending_p);
5494 rs->ctrlc_pending_p = 0;
5495 break;
5496 case 'T': case 'S': case 'X': case 'W':
5497 {
5498 struct stop_reply *stop_reply;
5499 struct cleanup *old_chain;
5500
5501 stop_reply = stop_reply_xmalloc ();
5502 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5503 remote_parse_stop_reply (buf, stop_reply);
5504 discard_cleanups (old_chain);
5505 event_ptid = process_stop_reply (stop_reply, status);
5506 break;
5507 }
5508 case 'O': /* Console output. */
5509 remote_console_output (buf + 1);
5510
5511 /* The target didn't really stop; keep waiting. */
5512 rs->waiting_for_stop_reply = 1;
5513
5514 break;
5515 case '\0':
5516 if (last_sent_signal != TARGET_SIGNAL_0)
5517 {
5518 /* Zero length reply means that we tried 'S' or 'C' and the
5519 remote system doesn't support it. */
5520 target_terminal_ours_for_output ();
5521 printf_filtered
5522 ("Can't send signals to this remote system. %s not sent.\n",
5523 target_signal_to_name (last_sent_signal));
5524 last_sent_signal = TARGET_SIGNAL_0;
5525 target_terminal_inferior ();
5526
5527 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5528 putpkt ((char *) buf);
5529
5530 /* We just told the target to resume, so a stop reply is in
5531 order. */
5532 rs->waiting_for_stop_reply = 1;
5533 break;
5534 }
5535 /* else fallthrough */
5536 default:
5537 warning (_("Invalid remote reply: %s"), buf);
5538 /* Keep waiting. */
5539 rs->waiting_for_stop_reply = 1;
5540 break;
5541 }
5542
5543 if (status->kind == TARGET_WAITKIND_IGNORE)
5544 {
5545 /* Nothing interesting happened. If we're doing a non-blocking
5546 poll, we're done. Otherwise, go back to waiting. */
5547 if (options & TARGET_WNOHANG)
5548 return minus_one_ptid;
5549 else
5550 goto again;
5551 }
5552 else if (status->kind != TARGET_WAITKIND_EXITED
5553 && status->kind != TARGET_WAITKIND_SIGNALLED)
5554 {
5555 if (!ptid_equal (event_ptid, null_ptid))
5556 record_currthread (event_ptid);
5557 else
5558 event_ptid = inferior_ptid;
5559 }
5560 else
5561 /* A process exit. Invalidate our notion of current thread. */
5562 record_currthread (minus_one_ptid);
5563
5564 return event_ptid;
5565 }
5566
5567 /* Wait until the remote machine stops, then return, storing status in
5568 STATUS just as `wait' would. */
5569
5570 static ptid_t
5571 remote_wait (struct target_ops *ops,
5572 ptid_t ptid, struct target_waitstatus *status, int options)
5573 {
5574 ptid_t event_ptid;
5575
5576 if (non_stop)
5577 event_ptid = remote_wait_ns (ptid, status, options);
5578 else
5579 event_ptid = remote_wait_as (ptid, status, options);
5580
5581 if (target_can_async_p ())
5582 {
5583 /* If there are are events left in the queue tell the event loop
5584 to return here. */
5585 if (stop_reply_queue)
5586 mark_async_event_handler (remote_async_inferior_event_token);
5587 }
5588
5589 return event_ptid;
5590 }
5591
5592 /* Fetch a single register using a 'p' packet. */
5593
5594 static int
5595 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5596 {
5597 struct remote_state *rs = get_remote_state ();
5598 char *buf, *p;
5599 char regp[MAX_REGISTER_SIZE];
5600 int i;
5601
5602 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5603 return 0;
5604
5605 if (reg->pnum == -1)
5606 return 0;
5607
5608 p = rs->buf;
5609 *p++ = 'p';
5610 p += hexnumstr (p, reg->pnum);
5611 *p++ = '\0';
5612 putpkt (rs->buf);
5613 getpkt (&rs->buf, &rs->buf_size, 0);
5614
5615 buf = rs->buf;
5616
5617 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5618 {
5619 case PACKET_OK:
5620 break;
5621 case PACKET_UNKNOWN:
5622 return 0;
5623 case PACKET_ERROR:
5624 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5625 gdbarch_register_name (get_regcache_arch (regcache),
5626 reg->regnum),
5627 buf);
5628 }
5629
5630 /* If this register is unfetchable, tell the regcache. */
5631 if (buf[0] == 'x')
5632 {
5633 regcache_raw_supply (regcache, reg->regnum, NULL);
5634 return 1;
5635 }
5636
5637 /* Otherwise, parse and supply the value. */
5638 p = buf;
5639 i = 0;
5640 while (p[0] != 0)
5641 {
5642 if (p[1] == 0)
5643 error (_("fetch_register_using_p: early buf termination"));
5644
5645 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5646 p += 2;
5647 }
5648 regcache_raw_supply (regcache, reg->regnum, regp);
5649 return 1;
5650 }
5651
5652 /* Fetch the registers included in the target's 'g' packet. */
5653
5654 static int
5655 send_g_packet (void)
5656 {
5657 struct remote_state *rs = get_remote_state ();
5658 int buf_len;
5659
5660 sprintf (rs->buf, "g");
5661 remote_send (&rs->buf, &rs->buf_size);
5662
5663 /* We can get out of synch in various cases. If the first character
5664 in the buffer is not a hex character, assume that has happened
5665 and try to fetch another packet to read. */
5666 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5667 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5668 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5669 && rs->buf[0] != 'x') /* New: unavailable register value. */
5670 {
5671 if (remote_debug)
5672 fprintf_unfiltered (gdb_stdlog,
5673 "Bad register packet; fetching a new packet\n");
5674 getpkt (&rs->buf, &rs->buf_size, 0);
5675 }
5676
5677 buf_len = strlen (rs->buf);
5678
5679 /* Sanity check the received packet. */
5680 if (buf_len % 2 != 0)
5681 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5682
5683 return buf_len / 2;
5684 }
5685
5686 static void
5687 process_g_packet (struct regcache *regcache)
5688 {
5689 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5690 struct remote_state *rs = get_remote_state ();
5691 struct remote_arch_state *rsa = get_remote_arch_state ();
5692 int i, buf_len;
5693 char *p;
5694 char *regs;
5695
5696 buf_len = strlen (rs->buf);
5697
5698 /* Further sanity checks, with knowledge of the architecture. */
5699 if (buf_len > 2 * rsa->sizeof_g_packet)
5700 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5701
5702 /* Save the size of the packet sent to us by the target. It is used
5703 as a heuristic when determining the max size of packets that the
5704 target can safely receive. */
5705 if (rsa->actual_register_packet_size == 0)
5706 rsa->actual_register_packet_size = buf_len;
5707
5708 /* If this is smaller than we guessed the 'g' packet would be,
5709 update our records. A 'g' reply that doesn't include a register's
5710 value implies either that the register is not available, or that
5711 the 'p' packet must be used. */
5712 if (buf_len < 2 * rsa->sizeof_g_packet)
5713 {
5714 rsa->sizeof_g_packet = buf_len / 2;
5715
5716 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5717 {
5718 if (rsa->regs[i].pnum == -1)
5719 continue;
5720
5721 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5722 rsa->regs[i].in_g_packet = 0;
5723 else
5724 rsa->regs[i].in_g_packet = 1;
5725 }
5726 }
5727
5728 regs = alloca (rsa->sizeof_g_packet);
5729
5730 /* Unimplemented registers read as all bits zero. */
5731 memset (regs, 0, rsa->sizeof_g_packet);
5732
5733 /* Reply describes registers byte by byte, each byte encoded as two
5734 hex characters. Suck them all up, then supply them to the
5735 register cacheing/storage mechanism. */
5736
5737 p = rs->buf;
5738 for (i = 0; i < rsa->sizeof_g_packet; i++)
5739 {
5740 if (p[0] == 0 || p[1] == 0)
5741 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5742 internal_error (__FILE__, __LINE__,
5743 "unexpected end of 'g' packet reply");
5744
5745 if (p[0] == 'x' && p[1] == 'x')
5746 regs[i] = 0; /* 'x' */
5747 else
5748 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5749 p += 2;
5750 }
5751
5752 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5753 {
5754 struct packet_reg *r = &rsa->regs[i];
5755
5756 if (r->in_g_packet)
5757 {
5758 if (r->offset * 2 >= strlen (rs->buf))
5759 /* This shouldn't happen - we adjusted in_g_packet above. */
5760 internal_error (__FILE__, __LINE__,
5761 "unexpected end of 'g' packet reply");
5762 else if (rs->buf[r->offset * 2] == 'x')
5763 {
5764 gdb_assert (r->offset * 2 < strlen (rs->buf));
5765 /* The register isn't available, mark it as such (at
5766 the same time setting the value to zero). */
5767 regcache_raw_supply (regcache, r->regnum, NULL);
5768 }
5769 else
5770 regcache_raw_supply (regcache, r->regnum,
5771 regs + r->offset);
5772 }
5773 }
5774 }
5775
5776 static void
5777 fetch_registers_using_g (struct regcache *regcache)
5778 {
5779 send_g_packet ();
5780 process_g_packet (regcache);
5781 }
5782
5783 static void
5784 remote_fetch_registers (struct target_ops *ops,
5785 struct regcache *regcache, int regnum)
5786 {
5787 struct remote_arch_state *rsa = get_remote_arch_state ();
5788 int i;
5789
5790 set_general_thread (inferior_ptid);
5791
5792 if (regnum >= 0)
5793 {
5794 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5795
5796 gdb_assert (reg != NULL);
5797
5798 /* If this register might be in the 'g' packet, try that first -
5799 we are likely to read more than one register. If this is the
5800 first 'g' packet, we might be overly optimistic about its
5801 contents, so fall back to 'p'. */
5802 if (reg->in_g_packet)
5803 {
5804 fetch_registers_using_g (regcache);
5805 if (reg->in_g_packet)
5806 return;
5807 }
5808
5809 if (fetch_register_using_p (regcache, reg))
5810 return;
5811
5812 /* This register is not available. */
5813 regcache_raw_supply (regcache, reg->regnum, NULL);
5814
5815 return;
5816 }
5817
5818 fetch_registers_using_g (regcache);
5819
5820 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5821 if (!rsa->regs[i].in_g_packet)
5822 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5823 {
5824 /* This register is not available. */
5825 regcache_raw_supply (regcache, i, NULL);
5826 }
5827 }
5828
5829 /* Prepare to store registers. Since we may send them all (using a
5830 'G' request), we have to read out the ones we don't want to change
5831 first. */
5832
5833 static void
5834 remote_prepare_to_store (struct regcache *regcache)
5835 {
5836 struct remote_arch_state *rsa = get_remote_arch_state ();
5837 int i;
5838 gdb_byte buf[MAX_REGISTER_SIZE];
5839
5840 /* Make sure the entire registers array is valid. */
5841 switch (remote_protocol_packets[PACKET_P].support)
5842 {
5843 case PACKET_DISABLE:
5844 case PACKET_SUPPORT_UNKNOWN:
5845 /* Make sure all the necessary registers are cached. */
5846 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5847 if (rsa->regs[i].in_g_packet)
5848 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5849 break;
5850 case PACKET_ENABLE:
5851 break;
5852 }
5853 }
5854
5855 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5856 packet was not recognized. */
5857
5858 static int
5859 store_register_using_P (const struct regcache *regcache,
5860 struct packet_reg *reg)
5861 {
5862 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5863 struct remote_state *rs = get_remote_state ();
5864 /* Try storing a single register. */
5865 char *buf = rs->buf;
5866 gdb_byte regp[MAX_REGISTER_SIZE];
5867 char *p;
5868
5869 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5870 return 0;
5871
5872 if (reg->pnum == -1)
5873 return 0;
5874
5875 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5876 p = buf + strlen (buf);
5877 regcache_raw_collect (regcache, reg->regnum, regp);
5878 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5879 putpkt (rs->buf);
5880 getpkt (&rs->buf, &rs->buf_size, 0);
5881
5882 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5883 {
5884 case PACKET_OK:
5885 return 1;
5886 case PACKET_ERROR:
5887 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
5888 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
5889 case PACKET_UNKNOWN:
5890 return 0;
5891 default:
5892 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5893 }
5894 }
5895
5896 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5897 contents of the register cache buffer. FIXME: ignores errors. */
5898
5899 static void
5900 store_registers_using_G (const struct regcache *regcache)
5901 {
5902 struct remote_state *rs = get_remote_state ();
5903 struct remote_arch_state *rsa = get_remote_arch_state ();
5904 gdb_byte *regs;
5905 char *p;
5906
5907 /* Extract all the registers in the regcache copying them into a
5908 local buffer. */
5909 {
5910 int i;
5911
5912 regs = alloca (rsa->sizeof_g_packet);
5913 memset (regs, 0, rsa->sizeof_g_packet);
5914 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5915 {
5916 struct packet_reg *r = &rsa->regs[i];
5917
5918 if (r->in_g_packet)
5919 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5920 }
5921 }
5922
5923 /* Command describes registers byte by byte,
5924 each byte encoded as two hex characters. */
5925 p = rs->buf;
5926 *p++ = 'G';
5927 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5928 updated. */
5929 bin2hex (regs, p, rsa->sizeof_g_packet);
5930 putpkt (rs->buf);
5931 getpkt (&rs->buf, &rs->buf_size, 0);
5932 if (packet_check_result (rs->buf) == PACKET_ERROR)
5933 error (_("Could not write registers; remote failure reply '%s'"),
5934 rs->buf);
5935 }
5936
5937 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5938 of the register cache buffer. FIXME: ignores errors. */
5939
5940 static void
5941 remote_store_registers (struct target_ops *ops,
5942 struct regcache *regcache, int regnum)
5943 {
5944 struct remote_arch_state *rsa = get_remote_arch_state ();
5945 int i;
5946
5947 set_general_thread (inferior_ptid);
5948
5949 if (regnum >= 0)
5950 {
5951 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5952
5953 gdb_assert (reg != NULL);
5954
5955 /* Always prefer to store registers using the 'P' packet if
5956 possible; we often change only a small number of registers.
5957 Sometimes we change a larger number; we'd need help from a
5958 higher layer to know to use 'G'. */
5959 if (store_register_using_P (regcache, reg))
5960 return;
5961
5962 /* For now, don't complain if we have no way to write the
5963 register. GDB loses track of unavailable registers too
5964 easily. Some day, this may be an error. We don't have
5965 any way to read the register, either... */
5966 if (!reg->in_g_packet)
5967 return;
5968
5969 store_registers_using_G (regcache);
5970 return;
5971 }
5972
5973 store_registers_using_G (regcache);
5974
5975 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5976 if (!rsa->regs[i].in_g_packet)
5977 if (!store_register_using_P (regcache, &rsa->regs[i]))
5978 /* See above for why we do not issue an error here. */
5979 continue;
5980 }
5981 \f
5982
5983 /* Return the number of hex digits in num. */
5984
5985 static int
5986 hexnumlen (ULONGEST num)
5987 {
5988 int i;
5989
5990 for (i = 0; num != 0; i++)
5991 num >>= 4;
5992
5993 return max (i, 1);
5994 }
5995
5996 /* Set BUF to the minimum number of hex digits representing NUM. */
5997
5998 static int
5999 hexnumstr (char *buf, ULONGEST num)
6000 {
6001 int len = hexnumlen (num);
6002
6003 return hexnumnstr (buf, num, len);
6004 }
6005
6006
6007 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6008
6009 static int
6010 hexnumnstr (char *buf, ULONGEST num, int width)
6011 {
6012 int i;
6013
6014 buf[width] = '\0';
6015
6016 for (i = width - 1; i >= 0; i--)
6017 {
6018 buf[i] = "0123456789abcdef"[(num & 0xf)];
6019 num >>= 4;
6020 }
6021
6022 return width;
6023 }
6024
6025 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6026
6027 static CORE_ADDR
6028 remote_address_masked (CORE_ADDR addr)
6029 {
6030 int address_size = remote_address_size;
6031
6032 /* If "remoteaddresssize" was not set, default to target address size. */
6033 if (!address_size)
6034 address_size = gdbarch_addr_bit (target_gdbarch);
6035
6036 if (address_size > 0
6037 && address_size < (sizeof (ULONGEST) * 8))
6038 {
6039 /* Only create a mask when that mask can safely be constructed
6040 in a ULONGEST variable. */
6041 ULONGEST mask = 1;
6042
6043 mask = (mask << address_size) - 1;
6044 addr &= mask;
6045 }
6046 return addr;
6047 }
6048
6049 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6050 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6051 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6052 (which may be more than *OUT_LEN due to escape characters). The
6053 total number of bytes in the output buffer will be at most
6054 OUT_MAXLEN. */
6055
6056 static int
6057 remote_escape_output (const gdb_byte *buffer, int len,
6058 gdb_byte *out_buf, int *out_len,
6059 int out_maxlen)
6060 {
6061 int input_index, output_index;
6062
6063 output_index = 0;
6064 for (input_index = 0; input_index < len; input_index++)
6065 {
6066 gdb_byte b = buffer[input_index];
6067
6068 if (b == '$' || b == '#' || b == '}')
6069 {
6070 /* These must be escaped. */
6071 if (output_index + 2 > out_maxlen)
6072 break;
6073 out_buf[output_index++] = '}';
6074 out_buf[output_index++] = b ^ 0x20;
6075 }
6076 else
6077 {
6078 if (output_index + 1 > out_maxlen)
6079 break;
6080 out_buf[output_index++] = b;
6081 }
6082 }
6083
6084 *out_len = input_index;
6085 return output_index;
6086 }
6087
6088 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6089 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6090 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6091
6092 This function reverses remote_escape_output. It allows more
6093 escaped characters than that function does, in particular because
6094 '*' must be escaped to avoid the run-length encoding processing
6095 in reading packets. */
6096
6097 static int
6098 remote_unescape_input (const gdb_byte *buffer, int len,
6099 gdb_byte *out_buf, int out_maxlen)
6100 {
6101 int input_index, output_index;
6102 int escaped;
6103
6104 output_index = 0;
6105 escaped = 0;
6106 for (input_index = 0; input_index < len; input_index++)
6107 {
6108 gdb_byte b = buffer[input_index];
6109
6110 if (output_index + 1 > out_maxlen)
6111 {
6112 warning (_("Received too much data from remote target;"
6113 " ignoring overflow."));
6114 return output_index;
6115 }
6116
6117 if (escaped)
6118 {
6119 out_buf[output_index++] = b ^ 0x20;
6120 escaped = 0;
6121 }
6122 else if (b == '}')
6123 escaped = 1;
6124 else
6125 out_buf[output_index++] = b;
6126 }
6127
6128 if (escaped)
6129 error (_("Unmatched escape character in target response."));
6130
6131 return output_index;
6132 }
6133
6134 /* Determine whether the remote target supports binary downloading.
6135 This is accomplished by sending a no-op memory write of zero length
6136 to the target at the specified address. It does not suffice to send
6137 the whole packet, since many stubs strip the eighth bit and
6138 subsequently compute a wrong checksum, which causes real havoc with
6139 remote_write_bytes.
6140
6141 NOTE: This can still lose if the serial line is not eight-bit
6142 clean. In cases like this, the user should clear "remote
6143 X-packet". */
6144
6145 static void
6146 check_binary_download (CORE_ADDR addr)
6147 {
6148 struct remote_state *rs = get_remote_state ();
6149
6150 switch (remote_protocol_packets[PACKET_X].support)
6151 {
6152 case PACKET_DISABLE:
6153 break;
6154 case PACKET_ENABLE:
6155 break;
6156 case PACKET_SUPPORT_UNKNOWN:
6157 {
6158 char *p;
6159
6160 p = rs->buf;
6161 *p++ = 'X';
6162 p += hexnumstr (p, (ULONGEST) addr);
6163 *p++ = ',';
6164 p += hexnumstr (p, (ULONGEST) 0);
6165 *p++ = ':';
6166 *p = '\0';
6167
6168 putpkt_binary (rs->buf, (int) (p - rs->buf));
6169 getpkt (&rs->buf, &rs->buf_size, 0);
6170
6171 if (rs->buf[0] == '\0')
6172 {
6173 if (remote_debug)
6174 fprintf_unfiltered (gdb_stdlog,
6175 "binary downloading NOT "
6176 "supported by target\n");
6177 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6178 }
6179 else
6180 {
6181 if (remote_debug)
6182 fprintf_unfiltered (gdb_stdlog,
6183 "binary downloading suppported by target\n");
6184 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6185 }
6186 break;
6187 }
6188 }
6189 }
6190
6191 /* Write memory data directly to the remote machine.
6192 This does not inform the data cache; the data cache uses this.
6193 HEADER is the starting part of the packet.
6194 MEMADDR is the address in the remote memory space.
6195 MYADDR is the address of the buffer in our space.
6196 LEN is the number of bytes.
6197 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6198 should send data as binary ('X'), or hex-encoded ('M').
6199
6200 The function creates packet of the form
6201 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6202
6203 where encoding of <DATA> is termined by PACKET_FORMAT.
6204
6205 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6206 are omitted.
6207
6208 Returns the number of bytes transferred, or 0 (setting errno) for
6209 error. Only transfer a single packet. */
6210
6211 static int
6212 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6213 const gdb_byte *myaddr, int len,
6214 char packet_format, int use_length)
6215 {
6216 struct remote_state *rs = get_remote_state ();
6217 char *p;
6218 char *plen = NULL;
6219 int plenlen = 0;
6220 int todo;
6221 int nr_bytes;
6222 int payload_size;
6223 int payload_length;
6224 int header_length;
6225
6226 if (packet_format != 'X' && packet_format != 'M')
6227 internal_error (__FILE__, __LINE__,
6228 "remote_write_bytes_aux: bad packet format");
6229
6230 if (len <= 0)
6231 return 0;
6232
6233 payload_size = get_memory_write_packet_size ();
6234
6235 /* The packet buffer will be large enough for the payload;
6236 get_memory_packet_size ensures this. */
6237 rs->buf[0] = '\0';
6238
6239 /* Compute the size of the actual payload by subtracting out the
6240 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
6241 */
6242 payload_size -= strlen ("$,:#NN");
6243 if (!use_length)
6244 /* The comma won't be used. */
6245 payload_size += 1;
6246 header_length = strlen (header);
6247 payload_size -= header_length;
6248 payload_size -= hexnumlen (memaddr);
6249
6250 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6251
6252 strcat (rs->buf, header);
6253 p = rs->buf + strlen (header);
6254
6255 /* Compute a best guess of the number of bytes actually transfered. */
6256 if (packet_format == 'X')
6257 {
6258 /* Best guess at number of bytes that will fit. */
6259 todo = min (len, payload_size);
6260 if (use_length)
6261 payload_size -= hexnumlen (todo);
6262 todo = min (todo, payload_size);
6263 }
6264 else
6265 {
6266 /* Num bytes that will fit. */
6267 todo = min (len, payload_size / 2);
6268 if (use_length)
6269 payload_size -= hexnumlen (todo);
6270 todo = min (todo, payload_size / 2);
6271 }
6272
6273 if (todo <= 0)
6274 internal_error (__FILE__, __LINE__,
6275 _("minumum packet size too small to write data"));
6276
6277 /* If we already need another packet, then try to align the end
6278 of this packet to a useful boundary. */
6279 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6280 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6281
6282 /* Append "<memaddr>". */
6283 memaddr = remote_address_masked (memaddr);
6284 p += hexnumstr (p, (ULONGEST) memaddr);
6285
6286 if (use_length)
6287 {
6288 /* Append ",". */
6289 *p++ = ',';
6290
6291 /* Append <len>. Retain the location/size of <len>. It may need to
6292 be adjusted once the packet body has been created. */
6293 plen = p;
6294 plenlen = hexnumstr (p, (ULONGEST) todo);
6295 p += plenlen;
6296 }
6297
6298 /* Append ":". */
6299 *p++ = ':';
6300 *p = '\0';
6301
6302 /* Append the packet body. */
6303 if (packet_format == 'X')
6304 {
6305 /* Binary mode. Send target system values byte by byte, in
6306 increasing byte addresses. Only escape certain critical
6307 characters. */
6308 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6309 payload_size);
6310
6311 /* If not all TODO bytes fit, then we'll need another packet. Make
6312 a second try to keep the end of the packet aligned. Don't do
6313 this if the packet is tiny. */
6314 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6315 {
6316 int new_nr_bytes;
6317
6318 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6319 - memaddr);
6320 if (new_nr_bytes != nr_bytes)
6321 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6322 p, &nr_bytes,
6323 payload_size);
6324 }
6325
6326 p += payload_length;
6327 if (use_length && nr_bytes < todo)
6328 {
6329 /* Escape chars have filled up the buffer prematurely,
6330 and we have actually sent fewer bytes than planned.
6331 Fix-up the length field of the packet. Use the same
6332 number of characters as before. */
6333 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6334 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6335 }
6336 }
6337 else
6338 {
6339 /* Normal mode: Send target system values byte by byte, in
6340 increasing byte addresses. Each byte is encoded as a two hex
6341 value. */
6342 nr_bytes = bin2hex (myaddr, p, todo);
6343 p += 2 * nr_bytes;
6344 }
6345
6346 putpkt_binary (rs->buf, (int) (p - rs->buf));
6347 getpkt (&rs->buf, &rs->buf_size, 0);
6348
6349 if (rs->buf[0] == 'E')
6350 {
6351 /* There is no correspondance between what the remote protocol
6352 uses for errors and errno codes. We would like a cleaner way
6353 of representing errors (big enough to include errno codes,
6354 bfd_error codes, and others). But for now just return EIO. */
6355 errno = EIO;
6356 return 0;
6357 }
6358
6359 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6360 fewer bytes than we'd planned. */
6361 return nr_bytes;
6362 }
6363
6364 /* Write memory data directly to the remote machine.
6365 This does not inform the data cache; the data cache uses this.
6366 MEMADDR is the address in the remote memory space.
6367 MYADDR is the address of the buffer in our space.
6368 LEN is the number of bytes.
6369
6370 Returns number of bytes transferred, or 0 (setting errno) for
6371 error. Only transfer a single packet. */
6372
6373 int
6374 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
6375 {
6376 char *packet_format = 0;
6377
6378 /* Check whether the target supports binary download. */
6379 check_binary_download (memaddr);
6380
6381 switch (remote_protocol_packets[PACKET_X].support)
6382 {
6383 case PACKET_ENABLE:
6384 packet_format = "X";
6385 break;
6386 case PACKET_DISABLE:
6387 packet_format = "M";
6388 break;
6389 case PACKET_SUPPORT_UNKNOWN:
6390 internal_error (__FILE__, __LINE__,
6391 _("remote_write_bytes: bad internal state"));
6392 default:
6393 internal_error (__FILE__, __LINE__, _("bad switch"));
6394 }
6395
6396 return remote_write_bytes_aux (packet_format,
6397 memaddr, myaddr, len, packet_format[0], 1);
6398 }
6399
6400 /* Read memory data directly from the remote machine.
6401 This does not use the data cache; the data cache uses this.
6402 MEMADDR is the address in the remote memory space.
6403 MYADDR is the address of the buffer in our space.
6404 LEN is the number of bytes.
6405
6406 Returns number of bytes transferred, or 0 for error. */
6407
6408 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
6409 remote targets) shouldn't attempt to read the entire buffer.
6410 Instead it should read a single packet worth of data and then
6411 return the byte size of that packet to the caller. The caller (its
6412 caller and its callers caller ;-) already contains code for
6413 handling partial reads. */
6414
6415 int
6416 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6417 {
6418 struct remote_state *rs = get_remote_state ();
6419 int max_buf_size; /* Max size of packet output buffer. */
6420 int origlen;
6421
6422 if (len <= 0)
6423 return 0;
6424
6425 max_buf_size = get_memory_read_packet_size ();
6426 /* The packet buffer will be large enough for the payload;
6427 get_memory_packet_size ensures this. */
6428
6429 origlen = len;
6430 while (len > 0)
6431 {
6432 char *p;
6433 int todo;
6434 int i;
6435
6436 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
6437
6438 /* construct "m"<memaddr>","<len>" */
6439 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
6440 memaddr = remote_address_masked (memaddr);
6441 p = rs->buf;
6442 *p++ = 'm';
6443 p += hexnumstr (p, (ULONGEST) memaddr);
6444 *p++ = ',';
6445 p += hexnumstr (p, (ULONGEST) todo);
6446 *p = '\0';
6447
6448 putpkt (rs->buf);
6449 getpkt (&rs->buf, &rs->buf_size, 0);
6450
6451 if (rs->buf[0] == 'E'
6452 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6453 && rs->buf[3] == '\0')
6454 {
6455 /* There is no correspondance between what the remote
6456 protocol uses for errors and errno codes. We would like
6457 a cleaner way of representing errors (big enough to
6458 include errno codes, bfd_error codes, and others). But
6459 for now just return EIO. */
6460 errno = EIO;
6461 return 0;
6462 }
6463
6464 /* Reply describes memory byte by byte,
6465 each byte encoded as two hex characters. */
6466
6467 p = rs->buf;
6468 if ((i = hex2bin (p, myaddr, todo)) < todo)
6469 {
6470 /* Reply is short. This means that we were able to read
6471 only part of what we wanted to. */
6472 return i + (origlen - len);
6473 }
6474 myaddr += todo;
6475 memaddr += todo;
6476 len -= todo;
6477 }
6478 return origlen;
6479 }
6480 \f
6481
6482 /* Remote notification handler. */
6483
6484 static void
6485 handle_notification (char *buf, size_t length)
6486 {
6487 if (strncmp (buf, "Stop:", 5) == 0)
6488 {
6489 if (pending_stop_reply)
6490 {
6491 /* We've already parsed the in-flight stop-reply, but the
6492 stub for some reason thought we didn't, possibly due to
6493 timeout on its side. Just ignore it. */
6494 if (remote_debug)
6495 fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6496 }
6497 else
6498 {
6499 struct cleanup *old_chain;
6500 struct stop_reply *reply = stop_reply_xmalloc ();
6501
6502 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6503
6504 remote_parse_stop_reply (buf + 5, reply);
6505
6506 discard_cleanups (old_chain);
6507
6508 /* Be careful to only set it after parsing, since an error
6509 may be thrown then. */
6510 pending_stop_reply = reply;
6511
6512 /* Notify the event loop there's a stop reply to acknowledge
6513 and that there may be more events to fetch. */
6514 mark_async_event_handler (remote_async_get_pending_events_token);
6515
6516 if (remote_debug)
6517 fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6518 }
6519 }
6520 else
6521 /* We ignore notifications we don't recognize, for compatibility
6522 with newer stubs. */
6523 ;
6524 }
6525
6526 \f
6527 /* Read or write LEN bytes from inferior memory at MEMADDR,
6528 transferring to or from debugger address BUFFER. Write to inferior
6529 if SHOULD_WRITE is nonzero. Returns length of data written or
6530 read; 0 for error. TARGET is unused. */
6531
6532 static int
6533 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6534 int should_write, struct mem_attrib *attrib,
6535 struct target_ops *target)
6536 {
6537 int res;
6538
6539 set_general_thread (inferior_ptid);
6540
6541 if (should_write)
6542 res = remote_write_bytes (mem_addr, buffer, mem_len);
6543 else
6544 res = remote_read_bytes (mem_addr, buffer, mem_len);
6545
6546 return res;
6547 }
6548
6549 /* Sends a packet with content determined by the printf format string
6550 FORMAT and the remaining arguments, then gets the reply. Returns
6551 whether the packet was a success, a failure, or unknown. */
6552
6553 static enum packet_result
6554 remote_send_printf (const char *format, ...)
6555 {
6556 struct remote_state *rs = get_remote_state ();
6557 int max_size = get_remote_packet_size ();
6558 va_list ap;
6559
6560 va_start (ap, format);
6561
6562 rs->buf[0] = '\0';
6563 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6564 internal_error (__FILE__, __LINE__, "Too long remote packet.");
6565
6566 if (putpkt (rs->buf) < 0)
6567 error (_("Communication problem with target."));
6568
6569 rs->buf[0] = '\0';
6570 getpkt (&rs->buf, &rs->buf_size, 0);
6571
6572 return packet_check_result (rs->buf);
6573 }
6574
6575 static void
6576 restore_remote_timeout (void *p)
6577 {
6578 int value = *(int *)p;
6579
6580 remote_timeout = value;
6581 }
6582
6583 /* Flash writing can take quite some time. We'll set
6584 effectively infinite timeout for flash operations.
6585 In future, we'll need to decide on a better approach. */
6586 static const int remote_flash_timeout = 1000;
6587
6588 static void
6589 remote_flash_erase (struct target_ops *ops,
6590 ULONGEST address, LONGEST length)
6591 {
6592 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6593 int saved_remote_timeout = remote_timeout;
6594 enum packet_result ret;
6595 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6596 &saved_remote_timeout);
6597
6598 remote_timeout = remote_flash_timeout;
6599
6600 ret = remote_send_printf ("vFlashErase:%s,%s",
6601 phex (address, addr_size),
6602 phex (length, 4));
6603 switch (ret)
6604 {
6605 case PACKET_UNKNOWN:
6606 error (_("Remote target does not support flash erase"));
6607 case PACKET_ERROR:
6608 error (_("Error erasing flash with vFlashErase packet"));
6609 default:
6610 break;
6611 }
6612
6613 do_cleanups (back_to);
6614 }
6615
6616 static LONGEST
6617 remote_flash_write (struct target_ops *ops,
6618 ULONGEST address, LONGEST length,
6619 const gdb_byte *data)
6620 {
6621 int saved_remote_timeout = remote_timeout;
6622 int ret;
6623 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6624 &saved_remote_timeout);
6625
6626 remote_timeout = remote_flash_timeout;
6627 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6628 do_cleanups (back_to);
6629
6630 return ret;
6631 }
6632
6633 static void
6634 remote_flash_done (struct target_ops *ops)
6635 {
6636 int saved_remote_timeout = remote_timeout;
6637 int ret;
6638 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6639 &saved_remote_timeout);
6640
6641 remote_timeout = remote_flash_timeout;
6642 ret = remote_send_printf ("vFlashDone");
6643 do_cleanups (back_to);
6644
6645 switch (ret)
6646 {
6647 case PACKET_UNKNOWN:
6648 error (_("Remote target does not support vFlashDone"));
6649 case PACKET_ERROR:
6650 error (_("Error finishing flash operation"));
6651 default:
6652 break;
6653 }
6654 }
6655
6656 static void
6657 remote_files_info (struct target_ops *ignore)
6658 {
6659 puts_filtered ("Debugging a target over a serial line.\n");
6660 }
6661 \f
6662 /* Stuff for dealing with the packets which are part of this protocol.
6663 See comment at top of file for details. */
6664
6665 /* Read a single character from the remote end. */
6666
6667 static int
6668 readchar (int timeout)
6669 {
6670 int ch;
6671
6672 ch = serial_readchar (remote_desc, timeout);
6673
6674 if (ch >= 0)
6675 return ch;
6676
6677 switch ((enum serial_rc) ch)
6678 {
6679 case SERIAL_EOF:
6680 pop_target ();
6681 error (_("Remote connection closed"));
6682 /* no return */
6683 case SERIAL_ERROR:
6684 pop_target ();
6685 perror_with_name (_("Remote communication error. "
6686 "Target disconnected."));
6687 /* no return */
6688 case SERIAL_TIMEOUT:
6689 break;
6690 }
6691 return ch;
6692 }
6693
6694 /* Send the command in *BUF to the remote machine, and read the reply
6695 into *BUF. Report an error if we get an error reply. Resize
6696 *BUF using xrealloc if necessary to hold the result, and update
6697 *SIZEOF_BUF. */
6698
6699 static void
6700 remote_send (char **buf,
6701 long *sizeof_buf)
6702 {
6703 putpkt (*buf);
6704 getpkt (buf, sizeof_buf, 0);
6705
6706 if ((*buf)[0] == 'E')
6707 error (_("Remote failure reply: %s"), *buf);
6708 }
6709
6710 /* Return a pointer to an xmalloc'ed string representing an escaped
6711 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6712 etc. The caller is responsible for releasing the returned
6713 memory. */
6714
6715 static char *
6716 escape_buffer (const char *buf, int n)
6717 {
6718 struct cleanup *old_chain;
6719 struct ui_file *stb;
6720 char *str;
6721
6722 stb = mem_fileopen ();
6723 old_chain = make_cleanup_ui_file_delete (stb);
6724
6725 fputstrn_unfiltered (buf, n, 0, stb);
6726 str = ui_file_xstrdup (stb, NULL);
6727 do_cleanups (old_chain);
6728 return str;
6729 }
6730
6731 /* Display a null-terminated packet on stdout, for debugging, using C
6732 string notation. */
6733
6734 static void
6735 print_packet (char *buf)
6736 {
6737 puts_filtered ("\"");
6738 fputstr_filtered (buf, '"', gdb_stdout);
6739 puts_filtered ("\"");
6740 }
6741
6742 int
6743 putpkt (char *buf)
6744 {
6745 return putpkt_binary (buf, strlen (buf));
6746 }
6747
6748 /* Send a packet to the remote machine, with error checking. The data
6749 of the packet is in BUF. The string in BUF can be at most
6750 get_remote_packet_size () - 5 to account for the $, # and checksum,
6751 and for a possible /0 if we are debugging (remote_debug) and want
6752 to print the sent packet as a string. */
6753
6754 static int
6755 putpkt_binary (char *buf, int cnt)
6756 {
6757 struct remote_state *rs = get_remote_state ();
6758 int i;
6759 unsigned char csum = 0;
6760 char *buf2 = alloca (cnt + 6);
6761
6762 int ch;
6763 int tcount = 0;
6764 char *p;
6765
6766 /* Catch cases like trying to read memory or listing threads while
6767 we're waiting for a stop reply. The remote server wouldn't be
6768 ready to handle this request, so we'd hang and timeout. We don't
6769 have to worry about this in synchronous mode, because in that
6770 case it's not possible to issue a command while the target is
6771 running. This is not a problem in non-stop mode, because in that
6772 case, the stub is always ready to process serial input. */
6773 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6774 error (_("Cannot execute this command while the target is running."));
6775
6776 /* We're sending out a new packet. Make sure we don't look at a
6777 stale cached response. */
6778 rs->cached_wait_status = 0;
6779
6780 /* Copy the packet into buffer BUF2, encapsulating it
6781 and giving it a checksum. */
6782
6783 p = buf2;
6784 *p++ = '$';
6785
6786 for (i = 0; i < cnt; i++)
6787 {
6788 csum += buf[i];
6789 *p++ = buf[i];
6790 }
6791 *p++ = '#';
6792 *p++ = tohex ((csum >> 4) & 0xf);
6793 *p++ = tohex (csum & 0xf);
6794
6795 /* Send it over and over until we get a positive ack. */
6796
6797 while (1)
6798 {
6799 int started_error_output = 0;
6800
6801 if (remote_debug)
6802 {
6803 struct cleanup *old_chain;
6804 char *str;
6805
6806 *p = '\0';
6807 str = escape_buffer (buf2, p - buf2);
6808 old_chain = make_cleanup (xfree, str);
6809 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6810 gdb_flush (gdb_stdlog);
6811 do_cleanups (old_chain);
6812 }
6813 if (serial_write (remote_desc, buf2, p - buf2))
6814 perror_with_name (_("putpkt: write failed"));
6815
6816 /* If this is a no acks version of the remote protocol, send the
6817 packet and move on. */
6818 if (rs->noack_mode)
6819 break;
6820
6821 /* Read until either a timeout occurs (-2) or '+' is read.
6822 Handle any notification that arrives in the mean time. */
6823 while (1)
6824 {
6825 ch = readchar (remote_timeout);
6826
6827 if (remote_debug)
6828 {
6829 switch (ch)
6830 {
6831 case '+':
6832 case '-':
6833 case SERIAL_TIMEOUT:
6834 case '$':
6835 case '%':
6836 if (started_error_output)
6837 {
6838 putchar_unfiltered ('\n');
6839 started_error_output = 0;
6840 }
6841 }
6842 }
6843
6844 switch (ch)
6845 {
6846 case '+':
6847 if (remote_debug)
6848 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6849 return 1;
6850 case '-':
6851 if (remote_debug)
6852 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6853 case SERIAL_TIMEOUT:
6854 tcount++;
6855 if (tcount > 3)
6856 return 0;
6857 break; /* Retransmit buffer. */
6858 case '$':
6859 {
6860 if (remote_debug)
6861 fprintf_unfiltered (gdb_stdlog,
6862 "Packet instead of Ack, ignoring it\n");
6863 /* It's probably an old response sent because an ACK
6864 was lost. Gobble up the packet and ack it so it
6865 doesn't get retransmitted when we resend this
6866 packet. */
6867 skip_frame ();
6868 serial_write (remote_desc, "+", 1);
6869 continue; /* Now, go look for +. */
6870 }
6871
6872 case '%':
6873 {
6874 int val;
6875
6876 /* If we got a notification, handle it, and go back to looking
6877 for an ack. */
6878 /* We've found the start of a notification. Now
6879 collect the data. */
6880 val = read_frame (&rs->buf, &rs->buf_size);
6881 if (val >= 0)
6882 {
6883 if (remote_debug)
6884 {
6885 struct cleanup *old_chain;
6886 char *str;
6887
6888 str = escape_buffer (rs->buf, val);
6889 old_chain = make_cleanup (xfree, str);
6890 fprintf_unfiltered (gdb_stdlog,
6891 " Notification received: %s\n",
6892 str);
6893 do_cleanups (old_chain);
6894 }
6895 handle_notification (rs->buf, val);
6896 /* We're in sync now, rewait for the ack. */
6897 tcount = 0;
6898 }
6899 else
6900 {
6901 if (remote_debug)
6902 {
6903 if (!started_error_output)
6904 {
6905 started_error_output = 1;
6906 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6907 }
6908 fputc_unfiltered (ch & 0177, gdb_stdlog);
6909 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6910 }
6911 }
6912 continue;
6913 }
6914 /* fall-through */
6915 default:
6916 if (remote_debug)
6917 {
6918 if (!started_error_output)
6919 {
6920 started_error_output = 1;
6921 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6922 }
6923 fputc_unfiltered (ch & 0177, gdb_stdlog);
6924 }
6925 continue;
6926 }
6927 break; /* Here to retransmit. */
6928 }
6929
6930 #if 0
6931 /* This is wrong. If doing a long backtrace, the user should be
6932 able to get out next time we call QUIT, without anything as
6933 violent as interrupt_query. If we want to provide a way out of
6934 here without getting to the next QUIT, it should be based on
6935 hitting ^C twice as in remote_wait. */
6936 if (quit_flag)
6937 {
6938 quit_flag = 0;
6939 interrupt_query ();
6940 }
6941 #endif
6942 }
6943 return 0;
6944 }
6945
6946 /* Come here after finding the start of a frame when we expected an
6947 ack. Do our best to discard the rest of this packet. */
6948
6949 static void
6950 skip_frame (void)
6951 {
6952 int c;
6953
6954 while (1)
6955 {
6956 c = readchar (remote_timeout);
6957 switch (c)
6958 {
6959 case SERIAL_TIMEOUT:
6960 /* Nothing we can do. */
6961 return;
6962 case '#':
6963 /* Discard the two bytes of checksum and stop. */
6964 c = readchar (remote_timeout);
6965 if (c >= 0)
6966 c = readchar (remote_timeout);
6967
6968 return;
6969 case '*': /* Run length encoding. */
6970 /* Discard the repeat count. */
6971 c = readchar (remote_timeout);
6972 if (c < 0)
6973 return;
6974 break;
6975 default:
6976 /* A regular character. */
6977 break;
6978 }
6979 }
6980 }
6981
6982 /* Come here after finding the start of the frame. Collect the rest
6983 into *BUF, verifying the checksum, length, and handling run-length
6984 compression. NUL terminate the buffer. If there is not enough room,
6985 expand *BUF using xrealloc.
6986
6987 Returns -1 on error, number of characters in buffer (ignoring the
6988 trailing NULL) on success. (could be extended to return one of the
6989 SERIAL status indications). */
6990
6991 static long
6992 read_frame (char **buf_p,
6993 long *sizeof_buf)
6994 {
6995 unsigned char csum;
6996 long bc;
6997 int c;
6998 char *buf = *buf_p;
6999 struct remote_state *rs = get_remote_state ();
7000
7001 csum = 0;
7002 bc = 0;
7003
7004 while (1)
7005 {
7006 c = readchar (remote_timeout);
7007 switch (c)
7008 {
7009 case SERIAL_TIMEOUT:
7010 if (remote_debug)
7011 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7012 return -1;
7013 case '$':
7014 if (remote_debug)
7015 fputs_filtered ("Saw new packet start in middle of old one\n",
7016 gdb_stdlog);
7017 return -1; /* Start a new packet, count retries. */
7018 case '#':
7019 {
7020 unsigned char pktcsum;
7021 int check_0 = 0;
7022 int check_1 = 0;
7023
7024 buf[bc] = '\0';
7025
7026 check_0 = readchar (remote_timeout);
7027 if (check_0 >= 0)
7028 check_1 = readchar (remote_timeout);
7029
7030 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7031 {
7032 if (remote_debug)
7033 fputs_filtered ("Timeout in checksum, retrying\n",
7034 gdb_stdlog);
7035 return -1;
7036 }
7037 else if (check_0 < 0 || check_1 < 0)
7038 {
7039 if (remote_debug)
7040 fputs_filtered ("Communication error in checksum\n",
7041 gdb_stdlog);
7042 return -1;
7043 }
7044
7045 /* Don't recompute the checksum; with no ack packets we
7046 don't have any way to indicate a packet retransmission
7047 is necessary. */
7048 if (rs->noack_mode)
7049 return bc;
7050
7051 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7052 if (csum == pktcsum)
7053 return bc;
7054
7055 if (remote_debug)
7056 {
7057 struct cleanup *old_chain;
7058 char *str;
7059
7060 str = escape_buffer (buf, bc);
7061 old_chain = make_cleanup (xfree, str);
7062 fprintf_unfiltered (gdb_stdlog,
7063 "Bad checksum, sentsum=0x%x, "
7064 "csum=0x%x, buf=%s\n",
7065 pktcsum, csum, str);
7066 do_cleanups (old_chain);
7067 }
7068 /* Number of characters in buffer ignoring trailing
7069 NULL. */
7070 return -1;
7071 }
7072 case '*': /* Run length encoding. */
7073 {
7074 int repeat;
7075
7076 csum += c;
7077 c = readchar (remote_timeout);
7078 csum += c;
7079 repeat = c - ' ' + 3; /* Compute repeat count. */
7080
7081 /* The character before ``*'' is repeated. */
7082
7083 if (repeat > 0 && repeat <= 255 && bc > 0)
7084 {
7085 if (bc + repeat - 1 >= *sizeof_buf - 1)
7086 {
7087 /* Make some more room in the buffer. */
7088 *sizeof_buf += repeat;
7089 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7090 buf = *buf_p;
7091 }
7092
7093 memset (&buf[bc], buf[bc - 1], repeat);
7094 bc += repeat;
7095 continue;
7096 }
7097
7098 buf[bc] = '\0';
7099 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7100 return -1;
7101 }
7102 default:
7103 if (bc >= *sizeof_buf - 1)
7104 {
7105 /* Make some more room in the buffer. */
7106 *sizeof_buf *= 2;
7107 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7108 buf = *buf_p;
7109 }
7110
7111 buf[bc++] = c;
7112 csum += c;
7113 continue;
7114 }
7115 }
7116 }
7117
7118 /* Read a packet from the remote machine, with error checking, and
7119 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7120 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7121 rather than timing out; this is used (in synchronous mode) to wait
7122 for a target that is is executing user code to stop. */
7123 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7124 don't have to change all the calls to getpkt to deal with the
7125 return value, because at the moment I don't know what the right
7126 thing to do it for those. */
7127 void
7128 getpkt (char **buf,
7129 long *sizeof_buf,
7130 int forever)
7131 {
7132 int timed_out;
7133
7134 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7135 }
7136
7137
7138 /* Read a packet from the remote machine, with error checking, and
7139 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7140 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7141 rather than timing out; this is used (in synchronous mode) to wait
7142 for a target that is is executing user code to stop. If FOREVER ==
7143 0, this function is allowed to time out gracefully and return an
7144 indication of this to the caller. Otherwise return the number of
7145 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7146 enough reason to return to the caller. */
7147
7148 static int
7149 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7150 int expecting_notif)
7151 {
7152 struct remote_state *rs = get_remote_state ();
7153 int c;
7154 int tries;
7155 int timeout;
7156 int val = -1;
7157
7158 /* We're reading a new response. Make sure we don't look at a
7159 previously cached response. */
7160 rs->cached_wait_status = 0;
7161
7162 strcpy (*buf, "timeout");
7163
7164 if (forever)
7165 timeout = watchdog > 0 ? watchdog : -1;
7166 else if (expecting_notif)
7167 timeout = 0; /* There should already be a char in the buffer. If
7168 not, bail out. */
7169 else
7170 timeout = remote_timeout;
7171
7172 #define MAX_TRIES 3
7173
7174 /* Process any number of notifications, and then return when
7175 we get a packet. */
7176 for (;;)
7177 {
7178 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7179 times. */
7180 for (tries = 1; tries <= MAX_TRIES; tries++)
7181 {
7182 /* This can loop forever if the remote side sends us
7183 characters continuously, but if it pauses, we'll get
7184 SERIAL_TIMEOUT from readchar because of timeout. Then
7185 we'll count that as a retry.
7186
7187 Note that even when forever is set, we will only wait
7188 forever prior to the start of a packet. After that, we
7189 expect characters to arrive at a brisk pace. They should
7190 show up within remote_timeout intervals. */
7191 do
7192 c = readchar (timeout);
7193 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7194
7195 if (c == SERIAL_TIMEOUT)
7196 {
7197 if (expecting_notif)
7198 return -1; /* Don't complain, it's normal to not get
7199 anything in this case. */
7200
7201 if (forever) /* Watchdog went off? Kill the target. */
7202 {
7203 QUIT;
7204 pop_target ();
7205 error (_("Watchdog timeout has expired. Target detached."));
7206 }
7207 if (remote_debug)
7208 fputs_filtered ("Timed out.\n", gdb_stdlog);
7209 }
7210 else
7211 {
7212 /* We've found the start of a packet or notification.
7213 Now collect the data. */
7214 val = read_frame (buf, sizeof_buf);
7215 if (val >= 0)
7216 break;
7217 }
7218
7219 serial_write (remote_desc, "-", 1);
7220 }
7221
7222 if (tries > MAX_TRIES)
7223 {
7224 /* We have tried hard enough, and just can't receive the
7225 packet/notification. Give up. */
7226 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7227
7228 /* Skip the ack char if we're in no-ack mode. */
7229 if (!rs->noack_mode)
7230 serial_write (remote_desc, "+", 1);
7231 return -1;
7232 }
7233
7234 /* If we got an ordinary packet, return that to our caller. */
7235 if (c == '$')
7236 {
7237 if (remote_debug)
7238 {
7239 struct cleanup *old_chain;
7240 char *str;
7241
7242 str = escape_buffer (*buf, val);
7243 old_chain = make_cleanup (xfree, str);
7244 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7245 do_cleanups (old_chain);
7246 }
7247
7248 /* Skip the ack char if we're in no-ack mode. */
7249 if (!rs->noack_mode)
7250 serial_write (remote_desc, "+", 1);
7251 return val;
7252 }
7253
7254 /* If we got a notification, handle it, and go back to looking
7255 for a packet. */
7256 else
7257 {
7258 gdb_assert (c == '%');
7259
7260 if (remote_debug)
7261 {
7262 struct cleanup *old_chain;
7263 char *str;
7264
7265 str = escape_buffer (*buf, val);
7266 old_chain = make_cleanup (xfree, str);
7267 fprintf_unfiltered (gdb_stdlog,
7268 " Notification received: %s\n",
7269 str);
7270 do_cleanups (old_chain);
7271 }
7272
7273 handle_notification (*buf, val);
7274
7275 /* Notifications require no acknowledgement. */
7276
7277 if (expecting_notif)
7278 return -1;
7279 }
7280 }
7281 }
7282
7283 static int
7284 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7285 {
7286 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
7287 }
7288
7289 static int
7290 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
7291 {
7292 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
7293 }
7294
7295 \f
7296 static void
7297 remote_kill (struct target_ops *ops)
7298 {
7299 /* Use catch_errors so the user can quit from gdb even when we
7300 aren't on speaking terms with the remote system. */
7301 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
7302
7303 /* Don't wait for it to die. I'm not really sure it matters whether
7304 we do or not. For the existing stubs, kill is a noop. */
7305 target_mourn_inferior ();
7306 }
7307
7308 static int
7309 remote_vkill (int pid, struct remote_state *rs)
7310 {
7311 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7312 return -1;
7313
7314 /* Tell the remote target to detach. */
7315 sprintf (rs->buf, "vKill;%x", pid);
7316 putpkt (rs->buf);
7317 getpkt (&rs->buf, &rs->buf_size, 0);
7318
7319 if (packet_ok (rs->buf,
7320 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7321 return 0;
7322 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7323 return -1;
7324 else
7325 return 1;
7326 }
7327
7328 static void
7329 extended_remote_kill (struct target_ops *ops)
7330 {
7331 int res;
7332 int pid = ptid_get_pid (inferior_ptid);
7333 struct remote_state *rs = get_remote_state ();
7334
7335 res = remote_vkill (pid, rs);
7336 if (res == -1 && !remote_multi_process_p (rs))
7337 {
7338 /* Don't try 'k' on a multi-process aware stub -- it has no way
7339 to specify the pid. */
7340
7341 putpkt ("k");
7342 #if 0
7343 getpkt (&rs->buf, &rs->buf_size, 0);
7344 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7345 res = 1;
7346 #else
7347 /* Don't wait for it to die. I'm not really sure it matters whether
7348 we do or not. For the existing stubs, kill is a noop. */
7349 res = 0;
7350 #endif
7351 }
7352
7353 if (res != 0)
7354 error (_("Can't kill process"));
7355
7356 target_mourn_inferior ();
7357 }
7358
7359 static void
7360 remote_mourn (struct target_ops *ops)
7361 {
7362 remote_mourn_1 (ops);
7363 }
7364
7365 /* Worker function for remote_mourn. */
7366 static void
7367 remote_mourn_1 (struct target_ops *target)
7368 {
7369 unpush_target (target);
7370
7371 /* remote_close takes care of doing most of the clean up. */
7372 generic_mourn_inferior ();
7373 }
7374
7375 static void
7376 extended_remote_mourn_1 (struct target_ops *target)
7377 {
7378 struct remote_state *rs = get_remote_state ();
7379
7380 /* In case we got here due to an error, but we're going to stay
7381 connected. */
7382 rs->waiting_for_stop_reply = 0;
7383
7384 /* We're no longer interested in these events. */
7385 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7386
7387 /* If the current general thread belonged to the process we just
7388 detached from or has exited, the remote side current general
7389 thread becomes undefined. Considering a case like this:
7390
7391 - We just got here due to a detach.
7392 - The process that we're detaching from happens to immediately
7393 report a global breakpoint being hit in non-stop mode, in the
7394 same thread we had selected before.
7395 - GDB attaches to this process again.
7396 - This event happens to be the next event we handle.
7397
7398 GDB would consider that the current general thread didn't need to
7399 be set on the stub side (with Hg), since for all it knew,
7400 GENERAL_THREAD hadn't changed.
7401
7402 Notice that although in all-stop mode, the remote server always
7403 sets the current thread to the thread reporting the stop event,
7404 that doesn't happen in non-stop mode; in non-stop, the stub *must
7405 not* change the current thread when reporting a breakpoint hit,
7406 due to the decoupling of event reporting and event handling.
7407
7408 To keep things simple, we always invalidate our notion of the
7409 current thread. */
7410 record_currthread (minus_one_ptid);
7411
7412 /* Unlike "target remote", we do not want to unpush the target; then
7413 the next time the user says "run", we won't be connected. */
7414
7415 /* Call common code to mark the inferior as not running. */
7416 generic_mourn_inferior ();
7417
7418 if (!have_inferiors ())
7419 {
7420 if (!remote_multi_process_p (rs))
7421 {
7422 /* Check whether the target is running now - some remote stubs
7423 automatically restart after kill. */
7424 putpkt ("?");
7425 getpkt (&rs->buf, &rs->buf_size, 0);
7426
7427 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7428 {
7429 /* Assume that the target has been restarted. Set
7430 inferior_ptid so that bits of core GDB realizes
7431 there's something here, e.g., so that the user can
7432 say "kill" again. */
7433 inferior_ptid = magic_null_ptid;
7434 }
7435 }
7436 }
7437 }
7438
7439 static void
7440 extended_remote_mourn (struct target_ops *ops)
7441 {
7442 extended_remote_mourn_1 (ops);
7443 }
7444
7445 static int
7446 extended_remote_run (char *args)
7447 {
7448 struct remote_state *rs = get_remote_state ();
7449 int len;
7450
7451 /* If the user has disabled vRun support, or we have detected that
7452 support is not available, do not try it. */
7453 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7454 return -1;
7455
7456 strcpy (rs->buf, "vRun;");
7457 len = strlen (rs->buf);
7458
7459 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7460 error (_("Remote file name too long for run packet"));
7461 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7462
7463 gdb_assert (args != NULL);
7464 if (*args)
7465 {
7466 struct cleanup *back_to;
7467 int i;
7468 char **argv;
7469
7470 argv = gdb_buildargv (args);
7471 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7472 for (i = 0; argv[i] != NULL; i++)
7473 {
7474 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7475 error (_("Argument list too long for run packet"));
7476 rs->buf[len++] = ';';
7477 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7478 }
7479 do_cleanups (back_to);
7480 }
7481
7482 rs->buf[len++] = '\0';
7483
7484 putpkt (rs->buf);
7485 getpkt (&rs->buf, &rs->buf_size, 0);
7486
7487 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7488 {
7489 /* We have a wait response; we don't need it, though. All is well. */
7490 return 0;
7491 }
7492 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7493 /* It wasn't disabled before, but it is now. */
7494 return -1;
7495 else
7496 {
7497 if (remote_exec_file[0] == '\0')
7498 error (_("Running the default executable on the remote target failed; "
7499 "try \"set remote exec-file\"?"));
7500 else
7501 error (_("Running \"%s\" on the remote target failed"),
7502 remote_exec_file);
7503 }
7504 }
7505
7506 /* In the extended protocol we want to be able to do things like
7507 "run" and have them basically work as expected. So we need
7508 a special create_inferior function. We support changing the
7509 executable file and the command line arguments, but not the
7510 environment. */
7511
7512 static void
7513 extended_remote_create_inferior_1 (char *exec_file, char *args,
7514 char **env, int from_tty)
7515 {
7516 /* If running asynchronously, register the target file descriptor
7517 with the event loop. */
7518 if (target_can_async_p ())
7519 target_async (inferior_event_handler, 0);
7520
7521 /* Now restart the remote server. */
7522 if (extended_remote_run (args) == -1)
7523 {
7524 /* vRun was not supported. Fail if we need it to do what the
7525 user requested. */
7526 if (remote_exec_file[0])
7527 error (_("Remote target does not support \"set remote exec-file\""));
7528 if (args[0])
7529 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7530
7531 /* Fall back to "R". */
7532 extended_remote_restart ();
7533 }
7534
7535 if (!have_inferiors ())
7536 {
7537 /* Clean up from the last time we ran, before we mark the target
7538 running again. This will mark breakpoints uninserted, and
7539 get_offsets may insert breakpoints. */
7540 init_thread_list ();
7541 init_wait_for_inferior ();
7542 }
7543
7544 /* Now mark the inferior as running before we do anything else. */
7545 inferior_ptid = magic_null_ptid;
7546
7547 /* Now, if we have thread information, update inferior_ptid. */
7548 inferior_ptid = remote_current_thread (inferior_ptid);
7549
7550 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
7551 add_thread_silent (inferior_ptid);
7552
7553 /* Get updated offsets, if the stub uses qOffsets. */
7554 get_offsets ();
7555 }
7556
7557 static void
7558 extended_remote_create_inferior (struct target_ops *ops,
7559 char *exec_file, char *args,
7560 char **env, int from_tty)
7561 {
7562 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7563 }
7564 \f
7565
7566 /* Insert a breakpoint. On targets that have software breakpoint
7567 support, we ask the remote target to do the work; on targets
7568 which don't, we insert a traditional memory breakpoint. */
7569
7570 static int
7571 remote_insert_breakpoint (struct gdbarch *gdbarch,
7572 struct bp_target_info *bp_tgt)
7573 {
7574 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7575 If it succeeds, then set the support to PACKET_ENABLE. If it
7576 fails, and the user has explicitly requested the Z support then
7577 report an error, otherwise, mark it disabled and go on. */
7578
7579 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7580 {
7581 CORE_ADDR addr = bp_tgt->placed_address;
7582 struct remote_state *rs;
7583 char *p;
7584 int bpsize;
7585
7586 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7587
7588 rs = get_remote_state ();
7589 p = rs->buf;
7590
7591 *(p++) = 'Z';
7592 *(p++) = '0';
7593 *(p++) = ',';
7594 addr = (ULONGEST) remote_address_masked (addr);
7595 p += hexnumstr (p, addr);
7596 sprintf (p, ",%d", bpsize);
7597
7598 putpkt (rs->buf);
7599 getpkt (&rs->buf, &rs->buf_size, 0);
7600
7601 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7602 {
7603 case PACKET_ERROR:
7604 return -1;
7605 case PACKET_OK:
7606 bp_tgt->placed_address = addr;
7607 bp_tgt->placed_size = bpsize;
7608 return 0;
7609 case PACKET_UNKNOWN:
7610 break;
7611 }
7612 }
7613
7614 return memory_insert_breakpoint (gdbarch, bp_tgt);
7615 }
7616
7617 static int
7618 remote_remove_breakpoint (struct gdbarch *gdbarch,
7619 struct bp_target_info *bp_tgt)
7620 {
7621 CORE_ADDR addr = bp_tgt->placed_address;
7622 struct remote_state *rs = get_remote_state ();
7623
7624 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7625 {
7626 char *p = rs->buf;
7627
7628 *(p++) = 'z';
7629 *(p++) = '0';
7630 *(p++) = ',';
7631
7632 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
7633 p += hexnumstr (p, addr);
7634 sprintf (p, ",%d", bp_tgt->placed_size);
7635
7636 putpkt (rs->buf);
7637 getpkt (&rs->buf, &rs->buf_size, 0);
7638
7639 return (rs->buf[0] == 'E');
7640 }
7641
7642 return memory_remove_breakpoint (gdbarch, bp_tgt);
7643 }
7644
7645 static int
7646 watchpoint_to_Z_packet (int type)
7647 {
7648 switch (type)
7649 {
7650 case hw_write:
7651 return Z_PACKET_WRITE_WP;
7652 break;
7653 case hw_read:
7654 return Z_PACKET_READ_WP;
7655 break;
7656 case hw_access:
7657 return Z_PACKET_ACCESS_WP;
7658 break;
7659 default:
7660 internal_error (__FILE__, __LINE__,
7661 _("hw_bp_to_z: bad watchpoint type %d"), type);
7662 }
7663 }
7664
7665 static int
7666 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
7667 struct expression *cond)
7668 {
7669 struct remote_state *rs = get_remote_state ();
7670 char *p;
7671 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7672
7673 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7674 return 1;
7675
7676 sprintf (rs->buf, "Z%x,", packet);
7677 p = strchr (rs->buf, '\0');
7678 addr = remote_address_masked (addr);
7679 p += hexnumstr (p, (ULONGEST) addr);
7680 sprintf (p, ",%x", len);
7681
7682 putpkt (rs->buf);
7683 getpkt (&rs->buf, &rs->buf_size, 0);
7684
7685 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7686 {
7687 case PACKET_ERROR:
7688 return -1;
7689 case PACKET_UNKNOWN:
7690 return 1;
7691 case PACKET_OK:
7692 return 0;
7693 }
7694 internal_error (__FILE__, __LINE__,
7695 _("remote_insert_watchpoint: reached end of function"));
7696 }
7697
7698
7699 static int
7700 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
7701 struct expression *cond)
7702 {
7703 struct remote_state *rs = get_remote_state ();
7704 char *p;
7705 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7706
7707 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7708 return -1;
7709
7710 sprintf (rs->buf, "z%x,", packet);
7711 p = strchr (rs->buf, '\0');
7712 addr = remote_address_masked (addr);
7713 p += hexnumstr (p, (ULONGEST) addr);
7714 sprintf (p, ",%x", len);
7715 putpkt (rs->buf);
7716 getpkt (&rs->buf, &rs->buf_size, 0);
7717
7718 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7719 {
7720 case PACKET_ERROR:
7721 case PACKET_UNKNOWN:
7722 return -1;
7723 case PACKET_OK:
7724 return 0;
7725 }
7726 internal_error (__FILE__, __LINE__,
7727 _("remote_remove_watchpoint: reached end of function"));
7728 }
7729
7730
7731 int remote_hw_watchpoint_limit = -1;
7732 int remote_hw_breakpoint_limit = -1;
7733
7734 static int
7735 remote_check_watch_resources (int type, int cnt, int ot)
7736 {
7737 if (type == bp_hardware_breakpoint)
7738 {
7739 if (remote_hw_breakpoint_limit == 0)
7740 return 0;
7741 else if (remote_hw_breakpoint_limit < 0)
7742 return 1;
7743 else if (cnt <= remote_hw_breakpoint_limit)
7744 return 1;
7745 }
7746 else
7747 {
7748 if (remote_hw_watchpoint_limit == 0)
7749 return 0;
7750 else if (remote_hw_watchpoint_limit < 0)
7751 return 1;
7752 else if (ot)
7753 return -1;
7754 else if (cnt <= remote_hw_watchpoint_limit)
7755 return 1;
7756 }
7757 return -1;
7758 }
7759
7760 static int
7761 remote_stopped_by_watchpoint (void)
7762 {
7763 return remote_stopped_by_watchpoint_p;
7764 }
7765
7766 static int
7767 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7768 {
7769 int rc = 0;
7770
7771 if (remote_stopped_by_watchpoint ())
7772 {
7773 *addr_p = remote_watch_data_address;
7774 rc = 1;
7775 }
7776
7777 return rc;
7778 }
7779
7780
7781 static int
7782 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
7783 struct bp_target_info *bp_tgt)
7784 {
7785 CORE_ADDR addr;
7786 struct remote_state *rs;
7787 char *p;
7788
7789 /* The length field should be set to the size of a breakpoint
7790 instruction, even though we aren't inserting one ourselves. */
7791
7792 gdbarch_remote_breakpoint_from_pc
7793 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7794
7795 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7796 return -1;
7797
7798 rs = get_remote_state ();
7799 p = rs->buf;
7800
7801 *(p++) = 'Z';
7802 *(p++) = '1';
7803 *(p++) = ',';
7804
7805 addr = remote_address_masked (bp_tgt->placed_address);
7806 p += hexnumstr (p, (ULONGEST) addr);
7807 sprintf (p, ",%x", bp_tgt->placed_size);
7808
7809 putpkt (rs->buf);
7810 getpkt (&rs->buf, &rs->buf_size, 0);
7811
7812 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7813 {
7814 case PACKET_ERROR:
7815 case PACKET_UNKNOWN:
7816 return -1;
7817 case PACKET_OK:
7818 return 0;
7819 }
7820 internal_error (__FILE__, __LINE__,
7821 _("remote_insert_hw_breakpoint: reached end of function"));
7822 }
7823
7824
7825 static int
7826 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
7827 struct bp_target_info *bp_tgt)
7828 {
7829 CORE_ADDR addr;
7830 struct remote_state *rs = get_remote_state ();
7831 char *p = rs->buf;
7832
7833 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7834 return -1;
7835
7836 *(p++) = 'z';
7837 *(p++) = '1';
7838 *(p++) = ',';
7839
7840 addr = remote_address_masked (bp_tgt->placed_address);
7841 p += hexnumstr (p, (ULONGEST) addr);
7842 sprintf (p, ",%x", bp_tgt->placed_size);
7843
7844 putpkt (rs->buf);
7845 getpkt (&rs->buf, &rs->buf_size, 0);
7846
7847 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7848 {
7849 case PACKET_ERROR:
7850 case PACKET_UNKNOWN:
7851 return -1;
7852 case PACKET_OK:
7853 return 0;
7854 }
7855 internal_error (__FILE__, __LINE__,
7856 _("remote_remove_hw_breakpoint: reached end of function"));
7857 }
7858
7859 /* Table used by the crc32 function to calcuate the checksum. */
7860
7861 static unsigned long crc32_table[256] =
7862 {0, 0};
7863
7864 static unsigned long
7865 crc32 (const unsigned char *buf, int len, unsigned int crc)
7866 {
7867 if (!crc32_table[1])
7868 {
7869 /* Initialize the CRC table and the decoding table. */
7870 int i, j;
7871 unsigned int c;
7872
7873 for (i = 0; i < 256; i++)
7874 {
7875 for (c = i << 24, j = 8; j > 0; --j)
7876 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7877 crc32_table[i] = c;
7878 }
7879 }
7880
7881 while (len--)
7882 {
7883 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7884 buf++;
7885 }
7886 return crc;
7887 }
7888
7889 /* Verify memory using the "qCRC:" request. */
7890
7891 static int
7892 remote_verify_memory (struct target_ops *ops,
7893 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
7894 {
7895 struct remote_state *rs = get_remote_state ();
7896 unsigned long host_crc, target_crc;
7897 char *tmp;
7898
7899 /* FIXME: assumes lma can fit into long. */
7900 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7901 (long) lma, (long) size);
7902 putpkt (rs->buf);
7903
7904 /* Be clever; compute the host_crc before waiting for target
7905 reply. */
7906 host_crc = crc32 (data, size, 0xffffffff);
7907
7908 getpkt (&rs->buf, &rs->buf_size, 0);
7909 if (rs->buf[0] == 'E')
7910 return -1;
7911
7912 if (rs->buf[0] != 'C')
7913 error (_("remote target does not support this operation"));
7914
7915 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7916 target_crc = target_crc * 16 + fromhex (*tmp);
7917
7918 return (host_crc == target_crc);
7919 }
7920
7921 /* compare-sections command
7922
7923 With no arguments, compares each loadable section in the exec bfd
7924 with the same memory range on the target, and reports mismatches.
7925 Useful for verifying the image on the target against the exec file. */
7926
7927 static void
7928 compare_sections_command (char *args, int from_tty)
7929 {
7930 asection *s;
7931 struct cleanup *old_chain;
7932 char *sectdata;
7933 const char *sectname;
7934 bfd_size_type size;
7935 bfd_vma lma;
7936 int matched = 0;
7937 int mismatched = 0;
7938 int res;
7939
7940 if (!exec_bfd)
7941 error (_("command cannot be used without an exec file"));
7942
7943 for (s = exec_bfd->sections; s; s = s->next)
7944 {
7945 if (!(s->flags & SEC_LOAD))
7946 continue; /* skip non-loadable section */
7947
7948 size = bfd_get_section_size (s);
7949 if (size == 0)
7950 continue; /* skip zero-length section */
7951
7952 sectname = bfd_get_section_name (exec_bfd, s);
7953 if (args && strcmp (args, sectname) != 0)
7954 continue; /* not the section selected by user */
7955
7956 matched = 1; /* do this section */
7957 lma = s->lma;
7958
7959 sectdata = xmalloc (size);
7960 old_chain = make_cleanup (xfree, sectdata);
7961 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7962
7963 res = target_verify_memory (sectdata, lma, size);
7964
7965 if (res == -1)
7966 error (_("target memory fault, section %s, range %s -- %s"), sectname,
7967 paddress (target_gdbarch, lma),
7968 paddress (target_gdbarch, lma + size));
7969
7970 printf_filtered ("Section %s, range %s -- %s: ", sectname,
7971 paddress (target_gdbarch, lma),
7972 paddress (target_gdbarch, lma + size));
7973 if (res)
7974 printf_filtered ("matched.\n");
7975 else
7976 {
7977 printf_filtered ("MIS-MATCHED!\n");
7978 mismatched++;
7979 }
7980
7981 do_cleanups (old_chain);
7982 }
7983 if (mismatched > 0)
7984 warning (_("One or more sections of the remote executable does not match\n\
7985 the loaded file\n"));
7986 if (args && !matched)
7987 printf_filtered (_("No loaded section named '%s'.\n"), args);
7988 }
7989
7990 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7991 into remote target. The number of bytes written to the remote
7992 target is returned, or -1 for error. */
7993
7994 static LONGEST
7995 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7996 const char *annex, const gdb_byte *writebuf,
7997 ULONGEST offset, LONGEST len,
7998 struct packet_config *packet)
7999 {
8000 int i, buf_len;
8001 ULONGEST n;
8002 struct remote_state *rs = get_remote_state ();
8003 int max_size = get_memory_write_packet_size ();
8004
8005 if (packet->support == PACKET_DISABLE)
8006 return -1;
8007
8008 /* Insert header. */
8009 i = snprintf (rs->buf, max_size,
8010 "qXfer:%s:write:%s:%s:",
8011 object_name, annex ? annex : "",
8012 phex_nz (offset, sizeof offset));
8013 max_size -= (i + 1);
8014
8015 /* Escape as much data as fits into rs->buf. */
8016 buf_len = remote_escape_output
8017 (writebuf, len, (rs->buf + i), &max_size, max_size);
8018
8019 if (putpkt_binary (rs->buf, i + buf_len) < 0
8020 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8021 || packet_ok (rs->buf, packet) != PACKET_OK)
8022 return -1;
8023
8024 unpack_varlen_hex (rs->buf, &n);
8025 return n;
8026 }
8027
8028 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8029 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8030 number of bytes read is returned, or 0 for EOF, or -1 for error.
8031 The number of bytes read may be less than LEN without indicating an
8032 EOF. PACKET is checked and updated to indicate whether the remote
8033 target supports this object. */
8034
8035 static LONGEST
8036 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8037 const char *annex,
8038 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8039 struct packet_config *packet)
8040 {
8041 static char *finished_object;
8042 static char *finished_annex;
8043 static ULONGEST finished_offset;
8044
8045 struct remote_state *rs = get_remote_state ();
8046 LONGEST i, n, packet_len;
8047
8048 if (packet->support == PACKET_DISABLE)
8049 return -1;
8050
8051 /* Check whether we've cached an end-of-object packet that matches
8052 this request. */
8053 if (finished_object)
8054 {
8055 if (strcmp (object_name, finished_object) == 0
8056 && strcmp (annex ? annex : "", finished_annex) == 0
8057 && offset == finished_offset)
8058 return 0;
8059
8060 /* Otherwise, we're now reading something different. Discard
8061 the cache. */
8062 xfree (finished_object);
8063 xfree (finished_annex);
8064 finished_object = NULL;
8065 finished_annex = NULL;
8066 }
8067
8068 /* Request only enough to fit in a single packet. The actual data
8069 may not, since we don't know how much of it will need to be escaped;
8070 the target is free to respond with slightly less data. We subtract
8071 five to account for the response type and the protocol frame. */
8072 n = min (get_remote_packet_size () - 5, len);
8073 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8074 object_name, annex ? annex : "",
8075 phex_nz (offset, sizeof offset),
8076 phex_nz (n, sizeof n));
8077 i = putpkt (rs->buf);
8078 if (i < 0)
8079 return -1;
8080
8081 rs->buf[0] = '\0';
8082 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8083 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8084 return -1;
8085
8086 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8087 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8088
8089 /* 'm' means there is (or at least might be) more data after this
8090 batch. That does not make sense unless there's at least one byte
8091 of data in this reply. */
8092 if (rs->buf[0] == 'm' && packet_len == 1)
8093 error (_("Remote qXfer reply contained no data."));
8094
8095 /* Got some data. */
8096 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8097
8098 /* 'l' is an EOF marker, possibly including a final block of data,
8099 or possibly empty. If we have the final block of a non-empty
8100 object, record this fact to bypass a subsequent partial read. */
8101 if (rs->buf[0] == 'l' && offset + i > 0)
8102 {
8103 finished_object = xstrdup (object_name);
8104 finished_annex = xstrdup (annex ? annex : "");
8105 finished_offset = offset + i;
8106 }
8107
8108 return i;
8109 }
8110
8111 static LONGEST
8112 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8113 const char *annex, gdb_byte *readbuf,
8114 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8115 {
8116 struct remote_state *rs;
8117 int i;
8118 char *p2;
8119 char query_type;
8120
8121 set_general_thread (inferior_ptid);
8122
8123 rs = get_remote_state ();
8124
8125 /* Handle memory using the standard memory routines. */
8126 if (object == TARGET_OBJECT_MEMORY)
8127 {
8128 int xfered;
8129
8130 errno = 0;
8131
8132 /* If the remote target is connected but not running, we should
8133 pass this request down to a lower stratum (e.g. the executable
8134 file). */
8135 if (!target_has_execution)
8136 return 0;
8137
8138 if (writebuf != NULL)
8139 xfered = remote_write_bytes (offset, writebuf, len);
8140 else
8141 xfered = remote_read_bytes (offset, readbuf, len);
8142
8143 if (xfered > 0)
8144 return xfered;
8145 else if (xfered == 0 && errno == 0)
8146 return 0;
8147 else
8148 return -1;
8149 }
8150
8151 /* Handle SPU memory using qxfer packets. */
8152 if (object == TARGET_OBJECT_SPU)
8153 {
8154 if (readbuf)
8155 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8156 &remote_protocol_packets
8157 [PACKET_qXfer_spu_read]);
8158 else
8159 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8160 &remote_protocol_packets
8161 [PACKET_qXfer_spu_write]);
8162 }
8163
8164 /* Handle extra signal info using qxfer packets. */
8165 if (object == TARGET_OBJECT_SIGNAL_INFO)
8166 {
8167 if (readbuf)
8168 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8169 &remote_protocol_packets
8170 [PACKET_qXfer_siginfo_read]);
8171 else
8172 return remote_write_qxfer (ops, "siginfo", annex,
8173 writebuf, offset, len,
8174 &remote_protocol_packets
8175 [PACKET_qXfer_siginfo_write]);
8176 }
8177
8178 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8179 {
8180 if (readbuf)
8181 return remote_read_qxfer (ops, "statictrace", annex,
8182 readbuf, offset, len,
8183 &remote_protocol_packets
8184 [PACKET_qXfer_statictrace_read]);
8185 else
8186 return -1;
8187 }
8188
8189 /* Only handle flash writes. */
8190 if (writebuf != NULL)
8191 {
8192 LONGEST xfered;
8193
8194 switch (object)
8195 {
8196 case TARGET_OBJECT_FLASH:
8197 xfered = remote_flash_write (ops, offset, len, writebuf);
8198
8199 if (xfered > 0)
8200 return xfered;
8201 else if (xfered == 0 && errno == 0)
8202 return 0;
8203 else
8204 return -1;
8205
8206 default:
8207 return -1;
8208 }
8209 }
8210
8211 /* Map pre-existing objects onto letters. DO NOT do this for new
8212 objects!!! Instead specify new query packets. */
8213 switch (object)
8214 {
8215 case TARGET_OBJECT_AVR:
8216 query_type = 'R';
8217 break;
8218
8219 case TARGET_OBJECT_AUXV:
8220 gdb_assert (annex == NULL);
8221 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8222 &remote_protocol_packets[PACKET_qXfer_auxv]);
8223
8224 case TARGET_OBJECT_AVAILABLE_FEATURES:
8225 return remote_read_qxfer
8226 (ops, "features", annex, readbuf, offset, len,
8227 &remote_protocol_packets[PACKET_qXfer_features]);
8228
8229 case TARGET_OBJECT_LIBRARIES:
8230 return remote_read_qxfer
8231 (ops, "libraries", annex, readbuf, offset, len,
8232 &remote_protocol_packets[PACKET_qXfer_libraries]);
8233
8234 case TARGET_OBJECT_MEMORY_MAP:
8235 gdb_assert (annex == NULL);
8236 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8237 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8238
8239 case TARGET_OBJECT_OSDATA:
8240 /* Should only get here if we're connected. */
8241 gdb_assert (remote_desc);
8242 return remote_read_qxfer
8243 (ops, "osdata", annex, readbuf, offset, len,
8244 &remote_protocol_packets[PACKET_qXfer_osdata]);
8245
8246 case TARGET_OBJECT_THREADS:
8247 gdb_assert (annex == NULL);
8248 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8249 &remote_protocol_packets[PACKET_qXfer_threads]);
8250
8251 default:
8252 return -1;
8253 }
8254
8255 /* Note: a zero OFFSET and LEN can be used to query the minimum
8256 buffer size. */
8257 if (offset == 0 && len == 0)
8258 return (get_remote_packet_size ());
8259 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8260 large enough let the caller deal with it. */
8261 if (len < get_remote_packet_size ())
8262 return -1;
8263 len = get_remote_packet_size ();
8264
8265 /* Except for querying the minimum buffer size, target must be open. */
8266 if (!remote_desc)
8267 error (_("remote query is only available after target open"));
8268
8269 gdb_assert (annex != NULL);
8270 gdb_assert (readbuf != NULL);
8271
8272 p2 = rs->buf;
8273 *p2++ = 'q';
8274 *p2++ = query_type;
8275
8276 /* We used one buffer char for the remote protocol q command and
8277 another for the query type. As the remote protocol encapsulation
8278 uses 4 chars plus one extra in case we are debugging
8279 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8280 string. */
8281 i = 0;
8282 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8283 {
8284 /* Bad caller may have sent forbidden characters. */
8285 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8286 *p2++ = annex[i];
8287 i++;
8288 }
8289 *p2 = '\0';
8290 gdb_assert (annex[i] == '\0');
8291
8292 i = putpkt (rs->buf);
8293 if (i < 0)
8294 return i;
8295
8296 getpkt (&rs->buf, &rs->buf_size, 0);
8297 strcpy ((char *) readbuf, rs->buf);
8298
8299 return strlen ((char *) readbuf);
8300 }
8301
8302 static int
8303 remote_search_memory (struct target_ops* ops,
8304 CORE_ADDR start_addr, ULONGEST search_space_len,
8305 const gdb_byte *pattern, ULONGEST pattern_len,
8306 CORE_ADDR *found_addrp)
8307 {
8308 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
8309 struct remote_state *rs = get_remote_state ();
8310 int max_size = get_memory_write_packet_size ();
8311 struct packet_config *packet =
8312 &remote_protocol_packets[PACKET_qSearch_memory];
8313 /* number of packet bytes used to encode the pattern,
8314 this could be more than PATTERN_LEN due to escape characters */
8315 int escaped_pattern_len;
8316 /* amount of pattern that was encodable in the packet */
8317 int used_pattern_len;
8318 int i;
8319 int found;
8320 ULONGEST found_addr;
8321
8322 /* Don't go to the target if we don't have to.
8323 This is done before checking packet->support to avoid the possibility that
8324 a success for this edge case means the facility works in general. */
8325 if (pattern_len > search_space_len)
8326 return 0;
8327 if (pattern_len == 0)
8328 {
8329 *found_addrp = start_addr;
8330 return 1;
8331 }
8332
8333 /* If we already know the packet isn't supported, fall back to the simple
8334 way of searching memory. */
8335
8336 if (packet->support == PACKET_DISABLE)
8337 {
8338 /* Target doesn't provided special support, fall back and use the
8339 standard support (copy memory and do the search here). */
8340 return simple_search_memory (ops, start_addr, search_space_len,
8341 pattern, pattern_len, found_addrp);
8342 }
8343
8344 /* Insert header. */
8345 i = snprintf (rs->buf, max_size,
8346 "qSearch:memory:%s;%s;",
8347 phex_nz (start_addr, addr_size),
8348 phex_nz (search_space_len, sizeof (search_space_len)));
8349 max_size -= (i + 1);
8350
8351 /* Escape as much data as fits into rs->buf. */
8352 escaped_pattern_len =
8353 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8354 &used_pattern_len, max_size);
8355
8356 /* Bail if the pattern is too large. */
8357 if (used_pattern_len != pattern_len)
8358 error ("Pattern is too large to transmit to remote target.");
8359
8360 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8361 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8362 || packet_ok (rs->buf, packet) != PACKET_OK)
8363 {
8364 /* The request may not have worked because the command is not
8365 supported. If so, fall back to the simple way. */
8366 if (packet->support == PACKET_DISABLE)
8367 {
8368 return simple_search_memory (ops, start_addr, search_space_len,
8369 pattern, pattern_len, found_addrp);
8370 }
8371 return -1;
8372 }
8373
8374 if (rs->buf[0] == '0')
8375 found = 0;
8376 else if (rs->buf[0] == '1')
8377 {
8378 found = 1;
8379 if (rs->buf[1] != ',')
8380 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8381 unpack_varlen_hex (rs->buf + 2, &found_addr);
8382 *found_addrp = found_addr;
8383 }
8384 else
8385 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8386
8387 return found;
8388 }
8389
8390 static void
8391 remote_rcmd (char *command,
8392 struct ui_file *outbuf)
8393 {
8394 struct remote_state *rs = get_remote_state ();
8395 char *p = rs->buf;
8396
8397 if (!remote_desc)
8398 error (_("remote rcmd is only available after target open"));
8399
8400 /* Send a NULL command across as an empty command. */
8401 if (command == NULL)
8402 command = "";
8403
8404 /* The query prefix. */
8405 strcpy (rs->buf, "qRcmd,");
8406 p = strchr (rs->buf, '\0');
8407
8408 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
8409 > get_remote_packet_size ())
8410 error (_("\"monitor\" command ``%s'' is too long."), command);
8411
8412 /* Encode the actual command. */
8413 bin2hex ((gdb_byte *) command, p, 0);
8414
8415 if (putpkt (rs->buf) < 0)
8416 error (_("Communication problem with target."));
8417
8418 /* get/display the response */
8419 while (1)
8420 {
8421 char *buf;
8422
8423 /* XXX - see also remote_get_noisy_reply(). */
8424 rs->buf[0] = '\0';
8425 getpkt (&rs->buf, &rs->buf_size, 0);
8426 buf = rs->buf;
8427 if (buf[0] == '\0')
8428 error (_("Target does not support this command."));
8429 if (buf[0] == 'O' && buf[1] != 'K')
8430 {
8431 remote_console_output (buf + 1); /* 'O' message from stub. */
8432 continue;
8433 }
8434 if (strcmp (buf, "OK") == 0)
8435 break;
8436 if (strlen (buf) == 3 && buf[0] == 'E'
8437 && isdigit (buf[1]) && isdigit (buf[2]))
8438 {
8439 error (_("Protocol error with Rcmd"));
8440 }
8441 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8442 {
8443 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8444
8445 fputc_unfiltered (c, outbuf);
8446 }
8447 break;
8448 }
8449 }
8450
8451 static VEC(mem_region_s) *
8452 remote_memory_map (struct target_ops *ops)
8453 {
8454 VEC(mem_region_s) *result = NULL;
8455 char *text = target_read_stralloc (&current_target,
8456 TARGET_OBJECT_MEMORY_MAP, NULL);
8457
8458 if (text)
8459 {
8460 struct cleanup *back_to = make_cleanup (xfree, text);
8461
8462 result = parse_memory_map (text);
8463 do_cleanups (back_to);
8464 }
8465
8466 return result;
8467 }
8468
8469 static void
8470 packet_command (char *args, int from_tty)
8471 {
8472 struct remote_state *rs = get_remote_state ();
8473
8474 if (!remote_desc)
8475 error (_("command can only be used with remote target"));
8476
8477 if (!args)
8478 error (_("remote-packet command requires packet text as argument"));
8479
8480 puts_filtered ("sending: ");
8481 print_packet (args);
8482 puts_filtered ("\n");
8483 putpkt (args);
8484
8485 getpkt (&rs->buf, &rs->buf_size, 0);
8486 puts_filtered ("received: ");
8487 print_packet (rs->buf);
8488 puts_filtered ("\n");
8489 }
8490
8491 #if 0
8492 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8493
8494 static void display_thread_info (struct gdb_ext_thread_info *info);
8495
8496 static void threadset_test_cmd (char *cmd, int tty);
8497
8498 static void threadalive_test (char *cmd, int tty);
8499
8500 static void threadlist_test_cmd (char *cmd, int tty);
8501
8502 int get_and_display_threadinfo (threadref *ref);
8503
8504 static void threadinfo_test_cmd (char *cmd, int tty);
8505
8506 static int thread_display_step (threadref *ref, void *context);
8507
8508 static void threadlist_update_test_cmd (char *cmd, int tty);
8509
8510 static void init_remote_threadtests (void);
8511
8512 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8513
8514 static void
8515 threadset_test_cmd (char *cmd, int tty)
8516 {
8517 int sample_thread = SAMPLE_THREAD;
8518
8519 printf_filtered (_("Remote threadset test\n"));
8520 set_general_thread (sample_thread);
8521 }
8522
8523
8524 static void
8525 threadalive_test (char *cmd, int tty)
8526 {
8527 int sample_thread = SAMPLE_THREAD;
8528 int pid = ptid_get_pid (inferior_ptid);
8529 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8530
8531 if (remote_thread_alive (ptid))
8532 printf_filtered ("PASS: Thread alive test\n");
8533 else
8534 printf_filtered ("FAIL: Thread alive test\n");
8535 }
8536
8537 void output_threadid (char *title, threadref *ref);
8538
8539 void
8540 output_threadid (char *title, threadref *ref)
8541 {
8542 char hexid[20];
8543
8544 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8545 hexid[16] = 0;
8546 printf_filtered ("%s %s\n", title, (&hexid[0]));
8547 }
8548
8549 static void
8550 threadlist_test_cmd (char *cmd, int tty)
8551 {
8552 int startflag = 1;
8553 threadref nextthread;
8554 int done, result_count;
8555 threadref threadlist[3];
8556
8557 printf_filtered ("Remote Threadlist test\n");
8558 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8559 &result_count, &threadlist[0]))
8560 printf_filtered ("FAIL: threadlist test\n");
8561 else
8562 {
8563 threadref *scan = threadlist;
8564 threadref *limit = scan + result_count;
8565
8566 while (scan < limit)
8567 output_threadid (" thread ", scan++);
8568 }
8569 }
8570
8571 void
8572 display_thread_info (struct gdb_ext_thread_info *info)
8573 {
8574 output_threadid ("Threadid: ", &info->threadid);
8575 printf_filtered ("Name: %s\n ", info->shortname);
8576 printf_filtered ("State: %s\n", info->display);
8577 printf_filtered ("other: %s\n\n", info->more_display);
8578 }
8579
8580 int
8581 get_and_display_threadinfo (threadref *ref)
8582 {
8583 int result;
8584 int set;
8585 struct gdb_ext_thread_info threadinfo;
8586
8587 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
8588 | TAG_MOREDISPLAY | TAG_DISPLAY;
8589 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
8590 display_thread_info (&threadinfo);
8591 return result;
8592 }
8593
8594 static void
8595 threadinfo_test_cmd (char *cmd, int tty)
8596 {
8597 int athread = SAMPLE_THREAD;
8598 threadref thread;
8599 int set;
8600
8601 int_to_threadref (&thread, athread);
8602 printf_filtered ("Remote Threadinfo test\n");
8603 if (!get_and_display_threadinfo (&thread))
8604 printf_filtered ("FAIL cannot get thread info\n");
8605 }
8606
8607 static int
8608 thread_display_step (threadref *ref, void *context)
8609 {
8610 /* output_threadid(" threadstep ",ref); *//* simple test */
8611 return get_and_display_threadinfo (ref);
8612 }
8613
8614 static void
8615 threadlist_update_test_cmd (char *cmd, int tty)
8616 {
8617 printf_filtered ("Remote Threadlist update test\n");
8618 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
8619 }
8620
8621 static void
8622 init_remote_threadtests (void)
8623 {
8624 add_com ("tlist", class_obscure, threadlist_test_cmd,
8625 _("Fetch and print the remote list of "
8626 "thread identifiers, one pkt only"));
8627 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
8628 _("Fetch and display info about one thread"));
8629 add_com ("tset", class_obscure, threadset_test_cmd,
8630 _("Test setting to a different thread"));
8631 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
8632 _("Iterate through updating all remote thread info"));
8633 add_com ("talive", class_obscure, threadalive_test,
8634 _(" Remote thread alive test "));
8635 }
8636
8637 #endif /* 0 */
8638
8639 /* Convert a thread ID to a string. Returns the string in a static
8640 buffer. */
8641
8642 static char *
8643 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
8644 {
8645 static char buf[64];
8646 struct remote_state *rs = get_remote_state ();
8647
8648 if (ptid_is_pid (ptid))
8649 {
8650 /* Printing an inferior target id. */
8651
8652 /* When multi-process extensions are off, there's no way in the
8653 remote protocol to know the remote process id, if there's any
8654 at all. There's one exception --- when we're connected with
8655 target extended-remote, and we manually attached to a process
8656 with "attach PID". We don't record anywhere a flag that
8657 allows us to distinguish that case from the case of
8658 connecting with extended-remote and the stub already being
8659 attached to a process, and reporting yes to qAttached, hence
8660 no smart special casing here. */
8661 if (!remote_multi_process_p (rs))
8662 {
8663 xsnprintf (buf, sizeof buf, "Remote target");
8664 return buf;
8665 }
8666
8667 return normal_pid_to_str (ptid);
8668 }
8669 else
8670 {
8671 if (ptid_equal (magic_null_ptid, ptid))
8672 xsnprintf (buf, sizeof buf, "Thread <main>");
8673 else if (remote_multi_process_p (rs))
8674 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
8675 ptid_get_pid (ptid), ptid_get_tid (ptid));
8676 else
8677 xsnprintf (buf, sizeof buf, "Thread %ld",
8678 ptid_get_tid (ptid));
8679 return buf;
8680 }
8681 }
8682
8683 /* Get the address of the thread local variable in OBJFILE which is
8684 stored at OFFSET within the thread local storage for thread PTID. */
8685
8686 static CORE_ADDR
8687 remote_get_thread_local_address (struct target_ops *ops,
8688 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
8689 {
8690 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
8691 {
8692 struct remote_state *rs = get_remote_state ();
8693 char *p = rs->buf;
8694 char *endp = rs->buf + get_remote_packet_size ();
8695 enum packet_result result;
8696
8697 strcpy (p, "qGetTLSAddr:");
8698 p += strlen (p);
8699 p = write_ptid (p, endp, ptid);
8700 *p++ = ',';
8701 p += hexnumstr (p, offset);
8702 *p++ = ',';
8703 p += hexnumstr (p, lm);
8704 *p++ = '\0';
8705
8706 putpkt (rs->buf);
8707 getpkt (&rs->buf, &rs->buf_size, 0);
8708 result = packet_ok (rs->buf,
8709 &remote_protocol_packets[PACKET_qGetTLSAddr]);
8710 if (result == PACKET_OK)
8711 {
8712 ULONGEST result;
8713
8714 unpack_varlen_hex (rs->buf, &result);
8715 return result;
8716 }
8717 else if (result == PACKET_UNKNOWN)
8718 throw_error (TLS_GENERIC_ERROR,
8719 _("Remote target doesn't support qGetTLSAddr packet"));
8720 else
8721 throw_error (TLS_GENERIC_ERROR,
8722 _("Remote target failed to process qGetTLSAddr request"));
8723 }
8724 else
8725 throw_error (TLS_GENERIC_ERROR,
8726 _("TLS not supported or disabled on this target"));
8727 /* Not reached. */
8728 return 0;
8729 }
8730
8731 /* Provide thread local base, i.e. Thread Information Block address.
8732 Returns 1 if ptid is found and thread_local_base is non zero. */
8733
8734 int
8735 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
8736 {
8737 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
8738 {
8739 struct remote_state *rs = get_remote_state ();
8740 char *p = rs->buf;
8741 char *endp = rs->buf + get_remote_packet_size ();
8742 enum packet_result result;
8743
8744 strcpy (p, "qGetTIBAddr:");
8745 p += strlen (p);
8746 p = write_ptid (p, endp, ptid);
8747 *p++ = '\0';
8748
8749 putpkt (rs->buf);
8750 getpkt (&rs->buf, &rs->buf_size, 0);
8751 result = packet_ok (rs->buf,
8752 &remote_protocol_packets[PACKET_qGetTIBAddr]);
8753 if (result == PACKET_OK)
8754 {
8755 ULONGEST result;
8756
8757 unpack_varlen_hex (rs->buf, &result);
8758 if (addr)
8759 *addr = (CORE_ADDR) result;
8760 return 1;
8761 }
8762 else if (result == PACKET_UNKNOWN)
8763 error (_("Remote target doesn't support qGetTIBAddr packet"));
8764 else
8765 error (_("Remote target failed to process qGetTIBAddr request"));
8766 }
8767 else
8768 error (_("qGetTIBAddr not supported or disabled on this target"));
8769 /* Not reached. */
8770 return 0;
8771 }
8772
8773 /* Support for inferring a target description based on the current
8774 architecture and the size of a 'g' packet. While the 'g' packet
8775 can have any size (since optional registers can be left off the
8776 end), some sizes are easily recognizable given knowledge of the
8777 approximate architecture. */
8778
8779 struct remote_g_packet_guess
8780 {
8781 int bytes;
8782 const struct target_desc *tdesc;
8783 };
8784 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
8785 DEF_VEC_O(remote_g_packet_guess_s);
8786
8787 struct remote_g_packet_data
8788 {
8789 VEC(remote_g_packet_guess_s) *guesses;
8790 };
8791
8792 static struct gdbarch_data *remote_g_packet_data_handle;
8793
8794 static void *
8795 remote_g_packet_data_init (struct obstack *obstack)
8796 {
8797 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
8798 }
8799
8800 void
8801 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
8802 const struct target_desc *tdesc)
8803 {
8804 struct remote_g_packet_data *data
8805 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
8806 struct remote_g_packet_guess new_guess, *guess;
8807 int ix;
8808
8809 gdb_assert (tdesc != NULL);
8810
8811 for (ix = 0;
8812 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8813 ix++)
8814 if (guess->bytes == bytes)
8815 internal_error (__FILE__, __LINE__,
8816 "Duplicate g packet description added for size %d",
8817 bytes);
8818
8819 new_guess.bytes = bytes;
8820 new_guess.tdesc = tdesc;
8821 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
8822 }
8823
8824 /* Return 1 if remote_read_description would do anything on this target
8825 and architecture, 0 otherwise. */
8826
8827 static int
8828 remote_read_description_p (struct target_ops *target)
8829 {
8830 struct remote_g_packet_data *data
8831 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8832
8833 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8834 return 1;
8835
8836 return 0;
8837 }
8838
8839 static const struct target_desc *
8840 remote_read_description (struct target_ops *target)
8841 {
8842 struct remote_g_packet_data *data
8843 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8844
8845 /* Do not try this during initial connection, when we do not know
8846 whether there is a running but stopped thread. */
8847 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8848 return NULL;
8849
8850 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8851 {
8852 struct remote_g_packet_guess *guess;
8853 int ix;
8854 int bytes = send_g_packet ();
8855
8856 for (ix = 0;
8857 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8858 ix++)
8859 if (guess->bytes == bytes)
8860 return guess->tdesc;
8861
8862 /* We discard the g packet. A minor optimization would be to
8863 hold on to it, and fill the register cache once we have selected
8864 an architecture, but it's too tricky to do safely. */
8865 }
8866
8867 return NULL;
8868 }
8869
8870 /* Remote file transfer support. This is host-initiated I/O, not
8871 target-initiated; for target-initiated, see remote-fileio.c. */
8872
8873 /* If *LEFT is at least the length of STRING, copy STRING to
8874 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8875 decrease *LEFT. Otherwise raise an error. */
8876
8877 static void
8878 remote_buffer_add_string (char **buffer, int *left, char *string)
8879 {
8880 int len = strlen (string);
8881
8882 if (len > *left)
8883 error (_("Packet too long for target."));
8884
8885 memcpy (*buffer, string, len);
8886 *buffer += len;
8887 *left -= len;
8888
8889 /* NUL-terminate the buffer as a convenience, if there is
8890 room. */
8891 if (*left)
8892 **buffer = '\0';
8893 }
8894
8895 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8896 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8897 decrease *LEFT. Otherwise raise an error. */
8898
8899 static void
8900 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8901 int len)
8902 {
8903 if (2 * len > *left)
8904 error (_("Packet too long for target."));
8905
8906 bin2hex (bytes, *buffer, len);
8907 *buffer += 2 * len;
8908 *left -= 2 * len;
8909
8910 /* NUL-terminate the buffer as a convenience, if there is
8911 room. */
8912 if (*left)
8913 **buffer = '\0';
8914 }
8915
8916 /* If *LEFT is large enough, convert VALUE to hex and add it to
8917 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8918 decrease *LEFT. Otherwise raise an error. */
8919
8920 static void
8921 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8922 {
8923 int len = hexnumlen (value);
8924
8925 if (len > *left)
8926 error (_("Packet too long for target."));
8927
8928 hexnumstr (*buffer, value);
8929 *buffer += len;
8930 *left -= len;
8931
8932 /* NUL-terminate the buffer as a convenience, if there is
8933 room. */
8934 if (*left)
8935 **buffer = '\0';
8936 }
8937
8938 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
8939 value, *REMOTE_ERRNO to the remote error number or zero if none
8940 was included, and *ATTACHMENT to point to the start of the annex
8941 if any. The length of the packet isn't needed here; there may
8942 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8943
8944 Return 0 if the packet could be parsed, -1 if it could not. If
8945 -1 is returned, the other variables may not be initialized. */
8946
8947 static int
8948 remote_hostio_parse_result (char *buffer, int *retcode,
8949 int *remote_errno, char **attachment)
8950 {
8951 char *p, *p2;
8952
8953 *remote_errno = 0;
8954 *attachment = NULL;
8955
8956 if (buffer[0] != 'F')
8957 return -1;
8958
8959 errno = 0;
8960 *retcode = strtol (&buffer[1], &p, 16);
8961 if (errno != 0 || p == &buffer[1])
8962 return -1;
8963
8964 /* Check for ",errno". */
8965 if (*p == ',')
8966 {
8967 errno = 0;
8968 *remote_errno = strtol (p + 1, &p2, 16);
8969 if (errno != 0 || p + 1 == p2)
8970 return -1;
8971 p = p2;
8972 }
8973
8974 /* Check for ";attachment". If there is no attachment, the
8975 packet should end here. */
8976 if (*p == ';')
8977 {
8978 *attachment = p + 1;
8979 return 0;
8980 }
8981 else if (*p == '\0')
8982 return 0;
8983 else
8984 return -1;
8985 }
8986
8987 /* Send a prepared I/O packet to the target and read its response.
8988 The prepared packet is in the global RS->BUF before this function
8989 is called, and the answer is there when we return.
8990
8991 COMMAND_BYTES is the length of the request to send, which may include
8992 binary data. WHICH_PACKET is the packet configuration to check
8993 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8994 is set to the error number and -1 is returned. Otherwise the value
8995 returned by the function is returned.
8996
8997 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8998 attachment is expected; an error will be reported if there's a
8999 mismatch. If one is found, *ATTACHMENT will be set to point into
9000 the packet buffer and *ATTACHMENT_LEN will be set to the
9001 attachment's length. */
9002
9003 static int
9004 remote_hostio_send_command (int command_bytes, int which_packet,
9005 int *remote_errno, char **attachment,
9006 int *attachment_len)
9007 {
9008 struct remote_state *rs = get_remote_state ();
9009 int ret, bytes_read;
9010 char *attachment_tmp;
9011
9012 if (!remote_desc
9013 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9014 {
9015 *remote_errno = FILEIO_ENOSYS;
9016 return -1;
9017 }
9018
9019 putpkt_binary (rs->buf, command_bytes);
9020 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9021
9022 /* If it timed out, something is wrong. Don't try to parse the
9023 buffer. */
9024 if (bytes_read < 0)
9025 {
9026 *remote_errno = FILEIO_EINVAL;
9027 return -1;
9028 }
9029
9030 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9031 {
9032 case PACKET_ERROR:
9033 *remote_errno = FILEIO_EINVAL;
9034 return -1;
9035 case PACKET_UNKNOWN:
9036 *remote_errno = FILEIO_ENOSYS;
9037 return -1;
9038 case PACKET_OK:
9039 break;
9040 }
9041
9042 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9043 &attachment_tmp))
9044 {
9045 *remote_errno = FILEIO_EINVAL;
9046 return -1;
9047 }
9048
9049 /* Make sure we saw an attachment if and only if we expected one. */
9050 if ((attachment_tmp == NULL && attachment != NULL)
9051 || (attachment_tmp != NULL && attachment == NULL))
9052 {
9053 *remote_errno = FILEIO_EINVAL;
9054 return -1;
9055 }
9056
9057 /* If an attachment was found, it must point into the packet buffer;
9058 work out how many bytes there were. */
9059 if (attachment_tmp != NULL)
9060 {
9061 *attachment = attachment_tmp;
9062 *attachment_len = bytes_read - (*attachment - rs->buf);
9063 }
9064
9065 return ret;
9066 }
9067
9068 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9069 remote file descriptor, or -1 if an error occurs (and set
9070 *REMOTE_ERRNO). */
9071
9072 static int
9073 remote_hostio_open (const char *filename, int flags, int mode,
9074 int *remote_errno)
9075 {
9076 struct remote_state *rs = get_remote_state ();
9077 char *p = rs->buf;
9078 int left = get_remote_packet_size () - 1;
9079
9080 remote_buffer_add_string (&p, &left, "vFile:open:");
9081
9082 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9083 strlen (filename));
9084 remote_buffer_add_string (&p, &left, ",");
9085
9086 remote_buffer_add_int (&p, &left, flags);
9087 remote_buffer_add_string (&p, &left, ",");
9088
9089 remote_buffer_add_int (&p, &left, mode);
9090
9091 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9092 remote_errno, NULL, NULL);
9093 }
9094
9095 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9096 Return the number of bytes written, or -1 if an error occurs (and
9097 set *REMOTE_ERRNO). */
9098
9099 static int
9100 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9101 ULONGEST offset, int *remote_errno)
9102 {
9103 struct remote_state *rs = get_remote_state ();
9104 char *p = rs->buf;
9105 int left = get_remote_packet_size ();
9106 int out_len;
9107
9108 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9109
9110 remote_buffer_add_int (&p, &left, fd);
9111 remote_buffer_add_string (&p, &left, ",");
9112
9113 remote_buffer_add_int (&p, &left, offset);
9114 remote_buffer_add_string (&p, &left, ",");
9115
9116 p += remote_escape_output (write_buf, len, p, &out_len,
9117 get_remote_packet_size () - (p - rs->buf));
9118
9119 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9120 remote_errno, NULL, NULL);
9121 }
9122
9123 /* Read up to LEN bytes FD on the remote target into READ_BUF
9124 Return the number of bytes read, or -1 if an error occurs (and
9125 set *REMOTE_ERRNO). */
9126
9127 static int
9128 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9129 ULONGEST offset, int *remote_errno)
9130 {
9131 struct remote_state *rs = get_remote_state ();
9132 char *p = rs->buf;
9133 char *attachment;
9134 int left = get_remote_packet_size ();
9135 int ret, attachment_len;
9136 int read_len;
9137
9138 remote_buffer_add_string (&p, &left, "vFile:pread:");
9139
9140 remote_buffer_add_int (&p, &left, fd);
9141 remote_buffer_add_string (&p, &left, ",");
9142
9143 remote_buffer_add_int (&p, &left, len);
9144 remote_buffer_add_string (&p, &left, ",");
9145
9146 remote_buffer_add_int (&p, &left, offset);
9147
9148 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9149 remote_errno, &attachment,
9150 &attachment_len);
9151
9152 if (ret < 0)
9153 return ret;
9154
9155 read_len = remote_unescape_input (attachment, attachment_len,
9156 read_buf, len);
9157 if (read_len != ret)
9158 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9159
9160 return ret;
9161 }
9162
9163 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9164 (and set *REMOTE_ERRNO). */
9165
9166 static int
9167 remote_hostio_close (int fd, int *remote_errno)
9168 {
9169 struct remote_state *rs = get_remote_state ();
9170 char *p = rs->buf;
9171 int left = get_remote_packet_size () - 1;
9172
9173 remote_buffer_add_string (&p, &left, "vFile:close:");
9174
9175 remote_buffer_add_int (&p, &left, fd);
9176
9177 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9178 remote_errno, NULL, NULL);
9179 }
9180
9181 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9182 occurs (and set *REMOTE_ERRNO). */
9183
9184 static int
9185 remote_hostio_unlink (const char *filename, int *remote_errno)
9186 {
9187 struct remote_state *rs = get_remote_state ();
9188 char *p = rs->buf;
9189 int left = get_remote_packet_size () - 1;
9190
9191 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9192
9193 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9194 strlen (filename));
9195
9196 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9197 remote_errno, NULL, NULL);
9198 }
9199
9200 static int
9201 remote_fileio_errno_to_host (int errnum)
9202 {
9203 switch (errnum)
9204 {
9205 case FILEIO_EPERM:
9206 return EPERM;
9207 case FILEIO_ENOENT:
9208 return ENOENT;
9209 case FILEIO_EINTR:
9210 return EINTR;
9211 case FILEIO_EIO:
9212 return EIO;
9213 case FILEIO_EBADF:
9214 return EBADF;
9215 case FILEIO_EACCES:
9216 return EACCES;
9217 case FILEIO_EFAULT:
9218 return EFAULT;
9219 case FILEIO_EBUSY:
9220 return EBUSY;
9221 case FILEIO_EEXIST:
9222 return EEXIST;
9223 case FILEIO_ENODEV:
9224 return ENODEV;
9225 case FILEIO_ENOTDIR:
9226 return ENOTDIR;
9227 case FILEIO_EISDIR:
9228 return EISDIR;
9229 case FILEIO_EINVAL:
9230 return EINVAL;
9231 case FILEIO_ENFILE:
9232 return ENFILE;
9233 case FILEIO_EMFILE:
9234 return EMFILE;
9235 case FILEIO_EFBIG:
9236 return EFBIG;
9237 case FILEIO_ENOSPC:
9238 return ENOSPC;
9239 case FILEIO_ESPIPE:
9240 return ESPIPE;
9241 case FILEIO_EROFS:
9242 return EROFS;
9243 case FILEIO_ENOSYS:
9244 return ENOSYS;
9245 case FILEIO_ENAMETOOLONG:
9246 return ENAMETOOLONG;
9247 }
9248 return -1;
9249 }
9250
9251 static char *
9252 remote_hostio_error (int errnum)
9253 {
9254 int host_error = remote_fileio_errno_to_host (errnum);
9255
9256 if (host_error == -1)
9257 error (_("Unknown remote I/O error %d"), errnum);
9258 else
9259 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9260 }
9261
9262 static void
9263 remote_hostio_close_cleanup (void *opaque)
9264 {
9265 int fd = *(int *) opaque;
9266 int remote_errno;
9267
9268 remote_hostio_close (fd, &remote_errno);
9269 }
9270
9271
9272 static void *
9273 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9274 {
9275 const char *filename = bfd_get_filename (abfd);
9276 int fd, remote_errno;
9277 int *stream;
9278
9279 gdb_assert (remote_filename_p (filename));
9280
9281 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9282 if (fd == -1)
9283 {
9284 errno = remote_fileio_errno_to_host (remote_errno);
9285 bfd_set_error (bfd_error_system_call);
9286 return NULL;
9287 }
9288
9289 stream = xmalloc (sizeof (int));
9290 *stream = fd;
9291 return stream;
9292 }
9293
9294 static int
9295 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9296 {
9297 int fd = *(int *)stream;
9298 int remote_errno;
9299
9300 xfree (stream);
9301
9302 /* Ignore errors on close; these may happen if the remote
9303 connection was already torn down. */
9304 remote_hostio_close (fd, &remote_errno);
9305
9306 return 1;
9307 }
9308
9309 static file_ptr
9310 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9311 file_ptr nbytes, file_ptr offset)
9312 {
9313 int fd = *(int *)stream;
9314 int remote_errno;
9315 file_ptr pos, bytes;
9316
9317 pos = 0;
9318 while (nbytes > pos)
9319 {
9320 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9321 offset + pos, &remote_errno);
9322 if (bytes == 0)
9323 /* Success, but no bytes, means end-of-file. */
9324 break;
9325 if (bytes == -1)
9326 {
9327 errno = remote_fileio_errno_to_host (remote_errno);
9328 bfd_set_error (bfd_error_system_call);
9329 return -1;
9330 }
9331
9332 pos += bytes;
9333 }
9334
9335 return pos;
9336 }
9337
9338 static int
9339 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9340 {
9341 /* FIXME: We should probably implement remote_hostio_stat. */
9342 sb->st_size = INT_MAX;
9343 return 0;
9344 }
9345
9346 int
9347 remote_filename_p (const char *filename)
9348 {
9349 return strncmp (filename, "remote:", 7) == 0;
9350 }
9351
9352 bfd *
9353 remote_bfd_open (const char *remote_file, const char *target)
9354 {
9355 return bfd_openr_iovec (remote_file, target,
9356 remote_bfd_iovec_open, NULL,
9357 remote_bfd_iovec_pread,
9358 remote_bfd_iovec_close,
9359 remote_bfd_iovec_stat);
9360 }
9361
9362 void
9363 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9364 {
9365 struct cleanup *back_to, *close_cleanup;
9366 int retcode, fd, remote_errno, bytes, io_size;
9367 FILE *file;
9368 gdb_byte *buffer;
9369 int bytes_in_buffer;
9370 int saw_eof;
9371 ULONGEST offset;
9372
9373 if (!remote_desc)
9374 error (_("command can only be used with remote target"));
9375
9376 file = fopen (local_file, "rb");
9377 if (file == NULL)
9378 perror_with_name (local_file);
9379 back_to = make_cleanup_fclose (file);
9380
9381 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9382 | FILEIO_O_TRUNC),
9383 0700, &remote_errno);
9384 if (fd == -1)
9385 remote_hostio_error (remote_errno);
9386
9387 /* Send up to this many bytes at once. They won't all fit in the
9388 remote packet limit, so we'll transfer slightly fewer. */
9389 io_size = get_remote_packet_size ();
9390 buffer = xmalloc (io_size);
9391 make_cleanup (xfree, buffer);
9392
9393 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9394
9395 bytes_in_buffer = 0;
9396 saw_eof = 0;
9397 offset = 0;
9398 while (bytes_in_buffer || !saw_eof)
9399 {
9400 if (!saw_eof)
9401 {
9402 bytes = fread (buffer + bytes_in_buffer, 1,
9403 io_size - bytes_in_buffer,
9404 file);
9405 if (bytes == 0)
9406 {
9407 if (ferror (file))
9408 error (_("Error reading %s."), local_file);
9409 else
9410 {
9411 /* EOF. Unless there is something still in the
9412 buffer from the last iteration, we are done. */
9413 saw_eof = 1;
9414 if (bytes_in_buffer == 0)
9415 break;
9416 }
9417 }
9418 }
9419 else
9420 bytes = 0;
9421
9422 bytes += bytes_in_buffer;
9423 bytes_in_buffer = 0;
9424
9425 retcode = remote_hostio_pwrite (fd, buffer, bytes,
9426 offset, &remote_errno);
9427
9428 if (retcode < 0)
9429 remote_hostio_error (remote_errno);
9430 else if (retcode == 0)
9431 error (_("Remote write of %d bytes returned 0!"), bytes);
9432 else if (retcode < bytes)
9433 {
9434 /* Short write. Save the rest of the read data for the next
9435 write. */
9436 bytes_in_buffer = bytes - retcode;
9437 memmove (buffer, buffer + retcode, bytes_in_buffer);
9438 }
9439
9440 offset += retcode;
9441 }
9442
9443 discard_cleanups (close_cleanup);
9444 if (remote_hostio_close (fd, &remote_errno))
9445 remote_hostio_error (remote_errno);
9446
9447 if (from_tty)
9448 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9449 do_cleanups (back_to);
9450 }
9451
9452 void
9453 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9454 {
9455 struct cleanup *back_to, *close_cleanup;
9456 int fd, remote_errno, bytes, io_size;
9457 FILE *file;
9458 gdb_byte *buffer;
9459 ULONGEST offset;
9460
9461 if (!remote_desc)
9462 error (_("command can only be used with remote target"));
9463
9464 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9465 if (fd == -1)
9466 remote_hostio_error (remote_errno);
9467
9468 file = fopen (local_file, "wb");
9469 if (file == NULL)
9470 perror_with_name (local_file);
9471 back_to = make_cleanup_fclose (file);
9472
9473 /* Send up to this many bytes at once. They won't all fit in the
9474 remote packet limit, so we'll transfer slightly fewer. */
9475 io_size = get_remote_packet_size ();
9476 buffer = xmalloc (io_size);
9477 make_cleanup (xfree, buffer);
9478
9479 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9480
9481 offset = 0;
9482 while (1)
9483 {
9484 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9485 if (bytes == 0)
9486 /* Success, but no bytes, means end-of-file. */
9487 break;
9488 if (bytes == -1)
9489 remote_hostio_error (remote_errno);
9490
9491 offset += bytes;
9492
9493 bytes = fwrite (buffer, 1, bytes, file);
9494 if (bytes == 0)
9495 perror_with_name (local_file);
9496 }
9497
9498 discard_cleanups (close_cleanup);
9499 if (remote_hostio_close (fd, &remote_errno))
9500 remote_hostio_error (remote_errno);
9501
9502 if (from_tty)
9503 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9504 do_cleanups (back_to);
9505 }
9506
9507 void
9508 remote_file_delete (const char *remote_file, int from_tty)
9509 {
9510 int retcode, remote_errno;
9511
9512 if (!remote_desc)
9513 error (_("command can only be used with remote target"));
9514
9515 retcode = remote_hostio_unlink (remote_file, &remote_errno);
9516 if (retcode == -1)
9517 remote_hostio_error (remote_errno);
9518
9519 if (from_tty)
9520 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9521 }
9522
9523 static void
9524 remote_put_command (char *args, int from_tty)
9525 {
9526 struct cleanup *back_to;
9527 char **argv;
9528
9529 if (args == NULL)
9530 error_no_arg (_("file to put"));
9531
9532 argv = gdb_buildargv (args);
9533 back_to = make_cleanup_freeargv (argv);
9534 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9535 error (_("Invalid parameters to remote put"));
9536
9537 remote_file_put (argv[0], argv[1], from_tty);
9538
9539 do_cleanups (back_to);
9540 }
9541
9542 static void
9543 remote_get_command (char *args, int from_tty)
9544 {
9545 struct cleanup *back_to;
9546 char **argv;
9547
9548 if (args == NULL)
9549 error_no_arg (_("file to get"));
9550
9551 argv = gdb_buildargv (args);
9552 back_to = make_cleanup_freeargv (argv);
9553 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9554 error (_("Invalid parameters to remote get"));
9555
9556 remote_file_get (argv[0], argv[1], from_tty);
9557
9558 do_cleanups (back_to);
9559 }
9560
9561 static void
9562 remote_delete_command (char *args, int from_tty)
9563 {
9564 struct cleanup *back_to;
9565 char **argv;
9566
9567 if (args == NULL)
9568 error_no_arg (_("file to delete"));
9569
9570 argv = gdb_buildargv (args);
9571 back_to = make_cleanup_freeargv (argv);
9572 if (argv[0] == NULL || argv[1] != NULL)
9573 error (_("Invalid parameters to remote delete"));
9574
9575 remote_file_delete (argv[0], from_tty);
9576
9577 do_cleanups (back_to);
9578 }
9579
9580 static void
9581 remote_command (char *args, int from_tty)
9582 {
9583 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
9584 }
9585
9586 static int
9587 remote_can_execute_reverse (void)
9588 {
9589 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
9590 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
9591 return 1;
9592 else
9593 return 0;
9594 }
9595
9596 static int
9597 remote_supports_non_stop (void)
9598 {
9599 return 1;
9600 }
9601
9602 static int
9603 remote_supports_multi_process (void)
9604 {
9605 struct remote_state *rs = get_remote_state ();
9606
9607 return remote_multi_process_p (rs);
9608 }
9609
9610 int
9611 remote_supports_cond_tracepoints (void)
9612 {
9613 struct remote_state *rs = get_remote_state ();
9614
9615 return rs->cond_tracepoints;
9616 }
9617
9618 int
9619 remote_supports_fast_tracepoints (void)
9620 {
9621 struct remote_state *rs = get_remote_state ();
9622
9623 return rs->fast_tracepoints;
9624 }
9625
9626 static int
9627 remote_supports_static_tracepoints (void)
9628 {
9629 struct remote_state *rs = get_remote_state ();
9630
9631 return rs->static_tracepoints;
9632 }
9633
9634 static void
9635 remote_trace_init (void)
9636 {
9637 putpkt ("QTinit");
9638 remote_get_noisy_reply (&target_buf, &target_buf_size);
9639 if (strcmp (target_buf, "OK") != 0)
9640 error (_("Target does not support this command."));
9641 }
9642
9643 static void free_actions_list (char **actions_list);
9644 static void free_actions_list_cleanup_wrapper (void *);
9645 static void
9646 free_actions_list_cleanup_wrapper (void *al)
9647 {
9648 free_actions_list (al);
9649 }
9650
9651 static void
9652 free_actions_list (char **actions_list)
9653 {
9654 int ndx;
9655
9656 if (actions_list == 0)
9657 return;
9658
9659 for (ndx = 0; actions_list[ndx]; ndx++)
9660 xfree (actions_list[ndx]);
9661
9662 xfree (actions_list);
9663 }
9664
9665 /* Recursive routine to walk through command list including loops, and
9666 download packets for each command. */
9667
9668 static void
9669 remote_download_command_source (int num, ULONGEST addr,
9670 struct command_line *cmds)
9671 {
9672 struct remote_state *rs = get_remote_state ();
9673 struct command_line *cmd;
9674
9675 for (cmd = cmds; cmd; cmd = cmd->next)
9676 {
9677 QUIT; /* allow user to bail out with ^C */
9678 strcpy (rs->buf, "QTDPsrc:");
9679 encode_source_string (num, addr, "cmd", cmd->line,
9680 rs->buf + strlen (rs->buf),
9681 rs->buf_size - strlen (rs->buf));
9682 putpkt (rs->buf);
9683 remote_get_noisy_reply (&target_buf, &target_buf_size);
9684 if (strcmp (target_buf, "OK"))
9685 warning (_("Target does not support source download."));
9686
9687 if (cmd->control_type == while_control
9688 || cmd->control_type == while_stepping_control)
9689 {
9690 remote_download_command_source (num, addr, *cmd->body_list);
9691
9692 QUIT; /* allow user to bail out with ^C */
9693 strcpy (rs->buf, "QTDPsrc:");
9694 encode_source_string (num, addr, "cmd", "end",
9695 rs->buf + strlen (rs->buf),
9696 rs->buf_size - strlen (rs->buf));
9697 putpkt (rs->buf);
9698 remote_get_noisy_reply (&target_buf, &target_buf_size);
9699 if (strcmp (target_buf, "OK"))
9700 warning (_("Target does not support source download."));
9701 }
9702 }
9703 }
9704
9705 static void
9706 remote_download_tracepoint (struct breakpoint *t)
9707 {
9708 struct bp_location *loc;
9709 CORE_ADDR tpaddr;
9710 char addrbuf[40];
9711 char buf[2048];
9712 char **tdp_actions;
9713 char **stepping_actions;
9714 int ndx;
9715 struct cleanup *old_chain = NULL;
9716 struct agent_expr *aexpr;
9717 struct cleanup *aexpr_chain = NULL;
9718 char *pkt;
9719
9720 /* Iterate over all the tracepoint locations. It's up to the target to
9721 notice multiple tracepoint packets with the same number but different
9722 addresses, and treat them as multiple locations. */
9723 for (loc = t->loc; loc; loc = loc->next)
9724 {
9725 encode_actions (t, loc, &tdp_actions, &stepping_actions);
9726 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
9727 tdp_actions);
9728 (void) make_cleanup (free_actions_list_cleanup_wrapper,
9729 stepping_actions);
9730
9731 tpaddr = loc->address;
9732 sprintf_vma (addrbuf, tpaddr);
9733 sprintf (buf, "QTDP:%x:%s:%c:%lx:%x", t->number,
9734 addrbuf, /* address */
9735 (t->enable_state == bp_enabled ? 'E' : 'D'),
9736 t->step_count, t->pass_count);
9737 /* Fast tracepoints are mostly handled by the target, but we can
9738 tell the target how big of an instruction block should be moved
9739 around. */
9740 if (t->type == bp_fast_tracepoint)
9741 {
9742 /* Only test for support at download time; we may not know
9743 target capabilities at definition time. */
9744 if (remote_supports_fast_tracepoints ())
9745 {
9746 int isize;
9747
9748 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
9749 tpaddr, &isize, NULL))
9750 sprintf (buf + strlen (buf), ":F%x", isize);
9751 else
9752 /* If it passed validation at definition but fails now,
9753 something is very wrong. */
9754 internal_error (__FILE__, __LINE__,
9755 "Fast tracepoint not valid during download");
9756 }
9757 else
9758 /* Fast tracepoints are functionally identical to regular
9759 tracepoints, so don't take lack of support as a reason to
9760 give up on the trace run. */
9761 warning (_("Target does not support fast tracepoints, "
9762 "downloading %d as regular tracepoint"), t->number);
9763 }
9764 else if (t->type == bp_static_tracepoint)
9765 {
9766 /* Only test for support at download time; we may not know
9767 target capabilities at definition time. */
9768 if (remote_supports_static_tracepoints ())
9769 {
9770 struct static_tracepoint_marker marker;
9771
9772 if (target_static_tracepoint_marker_at (tpaddr, &marker))
9773 strcat (buf, ":S");
9774 else
9775 error (_("Static tracepoint not valid during download"));
9776 }
9777 else
9778 /* Fast tracepoints are functionally identical to regular
9779 tracepoints, so don't take lack of support as a reason
9780 to give up on the trace run. */
9781 error (_("Target does not support static tracepoints"));
9782 }
9783 /* If the tracepoint has a conditional, make it into an agent
9784 expression and append to the definition. */
9785 if (loc->cond)
9786 {
9787 /* Only test support at download time, we may not know target
9788 capabilities at definition time. */
9789 if (remote_supports_cond_tracepoints ())
9790 {
9791 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
9792 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
9793 sprintf (buf + strlen (buf), ":X%x,", aexpr->len);
9794 pkt = buf + strlen (buf);
9795 for (ndx = 0; ndx < aexpr->len; ++ndx)
9796 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
9797 *pkt = '\0';
9798 do_cleanups (aexpr_chain);
9799 }
9800 else
9801 warning (_("Target does not support conditional tracepoints, "
9802 "ignoring tp %d cond"), t->number);
9803 }
9804
9805 if (t->commands || *default_collect)
9806 strcat (buf, "-");
9807 putpkt (buf);
9808 remote_get_noisy_reply (&target_buf, &target_buf_size);
9809 if (strcmp (target_buf, "OK"))
9810 error (_("Target does not support tracepoints."));
9811
9812 /* do_single_steps (t); */
9813 if (tdp_actions)
9814 {
9815 for (ndx = 0; tdp_actions[ndx]; ndx++)
9816 {
9817 QUIT; /* allow user to bail out with ^C */
9818 sprintf (buf, "QTDP:-%x:%s:%s%c",
9819 t->number, addrbuf, /* address */
9820 tdp_actions[ndx],
9821 ((tdp_actions[ndx + 1] || stepping_actions)
9822 ? '-' : 0));
9823 putpkt (buf);
9824 remote_get_noisy_reply (&target_buf,
9825 &target_buf_size);
9826 if (strcmp (target_buf, "OK"))
9827 error (_("Error on target while setting tracepoints."));
9828 }
9829 }
9830 if (stepping_actions)
9831 {
9832 for (ndx = 0; stepping_actions[ndx]; ndx++)
9833 {
9834 QUIT; /* allow user to bail out with ^C */
9835 sprintf (buf, "QTDP:-%x:%s:%s%s%s",
9836 t->number, addrbuf, /* address */
9837 ((ndx == 0) ? "S" : ""),
9838 stepping_actions[ndx],
9839 (stepping_actions[ndx + 1] ? "-" : ""));
9840 putpkt (buf);
9841 remote_get_noisy_reply (&target_buf,
9842 &target_buf_size);
9843 if (strcmp (target_buf, "OK"))
9844 error (_("Error on target while setting tracepoints."));
9845 }
9846 }
9847
9848 if (remote_protocol_packets[PACKET_TracepointSource].support
9849 == PACKET_ENABLE)
9850 {
9851 if (t->addr_string)
9852 {
9853 strcpy (buf, "QTDPsrc:");
9854 encode_source_string (t->number, loc->address,
9855 "at", t->addr_string, buf + strlen (buf),
9856 2048 - strlen (buf));
9857
9858 putpkt (buf);
9859 remote_get_noisy_reply (&target_buf, &target_buf_size);
9860 if (strcmp (target_buf, "OK"))
9861 warning (_("Target does not support source download."));
9862 }
9863 if (t->cond_string)
9864 {
9865 strcpy (buf, "QTDPsrc:");
9866 encode_source_string (t->number, loc->address,
9867 "cond", t->cond_string, buf + strlen (buf),
9868 2048 - strlen (buf));
9869 putpkt (buf);
9870 remote_get_noisy_reply (&target_buf, &target_buf_size);
9871 if (strcmp (target_buf, "OK"))
9872 warning (_("Target does not support source download."));
9873 }
9874 remote_download_command_source (t->number, loc->address,
9875 breakpoint_commands (t));
9876 }
9877
9878 do_cleanups (old_chain);
9879 }
9880 }
9881
9882 static void
9883 remote_download_trace_state_variable (struct trace_state_variable *tsv)
9884 {
9885 struct remote_state *rs = get_remote_state ();
9886 char *p;
9887
9888 sprintf (rs->buf, "QTDV:%x:%s:%x:",
9889 tsv->number, phex ((ULONGEST) tsv->initial_value, 8), tsv->builtin);
9890 p = rs->buf + strlen (rs->buf);
9891 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
9892 error (_("Trace state variable name too long for tsv definition packet"));
9893 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
9894 *p++ = '\0';
9895 putpkt (rs->buf);
9896 remote_get_noisy_reply (&target_buf, &target_buf_size);
9897 if (*target_buf == '\0')
9898 error (_("Target does not support this command."));
9899 if (strcmp (target_buf, "OK") != 0)
9900 error (_("Error on target while downloading trace state variable."));
9901 }
9902
9903 static void
9904 remote_trace_set_readonly_regions (void)
9905 {
9906 asection *s;
9907 bfd_size_type size;
9908 bfd_vma vma;
9909 int anysecs = 0;
9910
9911 if (!exec_bfd)
9912 return; /* No information to give. */
9913
9914 strcpy (target_buf, "QTro");
9915 for (s = exec_bfd->sections; s; s = s->next)
9916 {
9917 char tmp1[40], tmp2[40];
9918
9919 if ((s->flags & SEC_LOAD) == 0 ||
9920 /* (s->flags & SEC_CODE) == 0 || */
9921 (s->flags & SEC_READONLY) == 0)
9922 continue;
9923
9924 anysecs = 1;
9925 vma = bfd_get_section_vma (,s);
9926 size = bfd_get_section_size (s);
9927 sprintf_vma (tmp1, vma);
9928 sprintf_vma (tmp2, vma + size);
9929 sprintf (target_buf + strlen (target_buf),
9930 ":%s,%s", tmp1, tmp2);
9931 }
9932 if (anysecs)
9933 {
9934 putpkt (target_buf);
9935 getpkt (&target_buf, &target_buf_size, 0);
9936 }
9937 }
9938
9939 static void
9940 remote_trace_start (void)
9941 {
9942 putpkt ("QTStart");
9943 remote_get_noisy_reply (&target_buf, &target_buf_size);
9944 if (*target_buf == '\0')
9945 error (_("Target does not support this command."));
9946 if (strcmp (target_buf, "OK") != 0)
9947 error (_("Bogus reply from target: %s"), target_buf);
9948 }
9949
9950 static int
9951 remote_get_trace_status (struct trace_status *ts)
9952 {
9953 char *p;
9954 /* FIXME we need to get register block size some other way */
9955 extern int trace_regblock_size;
9956
9957 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
9958
9959 putpkt ("qTStatus");
9960 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
9961
9962 /* If the remote target doesn't do tracing, flag it. */
9963 if (*p == '\0')
9964 return -1;
9965
9966 /* We're working with a live target. */
9967 ts->from_file = 0;
9968
9969 /* Set some defaults. */
9970 ts->running_known = 0;
9971 ts->stop_reason = trace_stop_reason_unknown;
9972 ts->traceframe_count = -1;
9973 ts->buffer_free = 0;
9974
9975 if (*p++ != 'T')
9976 error (_("Bogus trace status reply from target: %s"), target_buf);
9977
9978 parse_trace_status (p, ts);
9979
9980 return ts->running;
9981 }
9982
9983 static void
9984 remote_trace_stop (void)
9985 {
9986 putpkt ("QTStop");
9987 remote_get_noisy_reply (&target_buf, &target_buf_size);
9988 if (*target_buf == '\0')
9989 error (_("Target does not support this command."));
9990 if (strcmp (target_buf, "OK") != 0)
9991 error (_("Bogus reply from target: %s"), target_buf);
9992 }
9993
9994 static int
9995 remote_trace_find (enum trace_find_type type, int num,
9996 ULONGEST addr1, ULONGEST addr2,
9997 int *tpp)
9998 {
9999 struct remote_state *rs = get_remote_state ();
10000 char *p, *reply;
10001 int target_frameno = -1, target_tracept = -1;
10002
10003 p = rs->buf;
10004 strcpy (p, "QTFrame:");
10005 p = strchr (p, '\0');
10006 switch (type)
10007 {
10008 case tfind_number:
10009 sprintf (p, "%x", num);
10010 break;
10011 case tfind_pc:
10012 sprintf (p, "pc:%s", phex_nz (addr1, 0));
10013 break;
10014 case tfind_tp:
10015 sprintf (p, "tdp:%x", num);
10016 break;
10017 case tfind_range:
10018 sprintf (p, "range:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10019 break;
10020 case tfind_outside:
10021 sprintf (p, "outside:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10022 break;
10023 default:
10024 error ("Unknown trace find type %d", type);
10025 }
10026
10027 putpkt (rs->buf);
10028 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10029 if (*reply == '\0')
10030 error (_("Target does not support this command."));
10031
10032 while (reply && *reply)
10033 switch (*reply)
10034 {
10035 case 'F':
10036 p = ++reply;
10037 target_frameno = (int) strtol (p, &reply, 16);
10038 if (reply == p)
10039 error (_("Unable to parse trace frame number"));
10040 if (target_frameno == -1)
10041 return -1;
10042 break;
10043 case 'T':
10044 p = ++reply;
10045 target_tracept = (int) strtol (p, &reply, 16);
10046 if (reply == p)
10047 error (_("Unable to parse tracepoint number"));
10048 break;
10049 case 'O': /* "OK"? */
10050 if (reply[1] == 'K' && reply[2] == '\0')
10051 reply += 2;
10052 else
10053 error (_("Bogus reply from target: %s"), reply);
10054 break;
10055 default:
10056 error (_("Bogus reply from target: %s"), reply);
10057 }
10058 if (tpp)
10059 *tpp = target_tracept;
10060 return target_frameno;
10061 }
10062
10063 static int
10064 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10065 {
10066 struct remote_state *rs = get_remote_state ();
10067 char *reply;
10068 ULONGEST uval;
10069
10070 sprintf (rs->buf, "qTV:%x", tsvnum);
10071 putpkt (rs->buf);
10072 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10073 if (reply && *reply)
10074 {
10075 if (*reply == 'V')
10076 {
10077 unpack_varlen_hex (reply + 1, &uval);
10078 *val = (LONGEST) uval;
10079 return 1;
10080 }
10081 }
10082 return 0;
10083 }
10084
10085 static int
10086 remote_save_trace_data (const char *filename)
10087 {
10088 struct remote_state *rs = get_remote_state ();
10089 char *p, *reply;
10090
10091 p = rs->buf;
10092 strcpy (p, "QTSave:");
10093 p += strlen (p);
10094 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10095 error (_("Remote file name too long for trace save packet"));
10096 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10097 *p++ = '\0';
10098 putpkt (rs->buf);
10099 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10100 if (*reply != '\0')
10101 error (_("Target does not support this command."));
10102 if (strcmp (reply, "OK") != 0)
10103 error (_("Bogus reply from target: %s"), reply);
10104 return 0;
10105 }
10106
10107 /* This is basically a memory transfer, but needs to be its own packet
10108 because we don't know how the target actually organizes its trace
10109 memory, plus we want to be able to ask for as much as possible, but
10110 not be unhappy if we don't get as much as we ask for. */
10111
10112 static LONGEST
10113 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10114 {
10115 struct remote_state *rs = get_remote_state ();
10116 char *reply;
10117 char *p;
10118 int rslt;
10119
10120 p = rs->buf;
10121 strcpy (p, "qTBuffer:");
10122 p += strlen (p);
10123 p += hexnumstr (p, offset);
10124 *p++ = ',';
10125 p += hexnumstr (p, len);
10126 *p++ = '\0';
10127
10128 putpkt (rs->buf);
10129 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10130 if (reply && *reply)
10131 {
10132 /* 'l' by itself means we're at the end of the buffer and
10133 there is nothing more to get. */
10134 if (*reply == 'l')
10135 return 0;
10136
10137 /* Convert the reply into binary. Limit the number of bytes to
10138 convert according to our passed-in buffer size, rather than
10139 what was returned in the packet; if the target is
10140 unexpectedly generous and gives us a bigger reply than we
10141 asked for, we don't want to crash. */
10142 rslt = hex2bin (target_buf, buf, len);
10143 return rslt;
10144 }
10145
10146 /* Something went wrong, flag as an error. */
10147 return -1;
10148 }
10149
10150 static void
10151 remote_set_disconnected_tracing (int val)
10152 {
10153 struct remote_state *rs = get_remote_state ();
10154
10155 if (rs->disconnected_tracing)
10156 {
10157 char *reply;
10158
10159 sprintf (rs->buf, "QTDisconnected:%x", val);
10160 putpkt (rs->buf);
10161 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10162 if (*reply == '\0')
10163 error (_("Target does not support this command."));
10164 if (strcmp (reply, "OK") != 0)
10165 error (_("Bogus reply from target: %s"), reply);
10166 }
10167 else if (val)
10168 warning (_("Target does not support disconnected tracing."));
10169 }
10170
10171 static int
10172 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
10173 {
10174 struct thread_info *info = find_thread_ptid (ptid);
10175
10176 if (info && info->private)
10177 return info->private->core;
10178 return -1;
10179 }
10180
10181 static void
10182 remote_set_circular_trace_buffer (int val)
10183 {
10184 struct remote_state *rs = get_remote_state ();
10185 char *reply;
10186
10187 sprintf (rs->buf, "QTBuffer:circular:%x", val);
10188 putpkt (rs->buf);
10189 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10190 if (*reply == '\0')
10191 error (_("Target does not support this command."));
10192 if (strcmp (reply, "OK") != 0)
10193 error (_("Bogus reply from target: %s"), reply);
10194 }
10195
10196 static void
10197 init_remote_ops (void)
10198 {
10199 remote_ops.to_shortname = "remote";
10200 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
10201 remote_ops.to_doc =
10202 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10203 Specify the serial device it is connected to\n\
10204 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
10205 remote_ops.to_open = remote_open;
10206 remote_ops.to_close = remote_close;
10207 remote_ops.to_detach = remote_detach;
10208 remote_ops.to_disconnect = remote_disconnect;
10209 remote_ops.to_resume = remote_resume;
10210 remote_ops.to_wait = remote_wait;
10211 remote_ops.to_fetch_registers = remote_fetch_registers;
10212 remote_ops.to_store_registers = remote_store_registers;
10213 remote_ops.to_prepare_to_store = remote_prepare_to_store;
10214 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
10215 remote_ops.to_files_info = remote_files_info;
10216 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
10217 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
10218 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
10219 remote_ops.to_stopped_data_address = remote_stopped_data_address;
10220 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
10221 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
10222 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
10223 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
10224 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
10225 remote_ops.to_kill = remote_kill;
10226 remote_ops.to_load = generic_load;
10227 remote_ops.to_mourn_inferior = remote_mourn;
10228 remote_ops.to_notice_signals = remote_notice_signals;
10229 remote_ops.to_thread_alive = remote_thread_alive;
10230 remote_ops.to_find_new_threads = remote_threads_info;
10231 remote_ops.to_pid_to_str = remote_pid_to_str;
10232 remote_ops.to_extra_thread_info = remote_threads_extra_info;
10233 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
10234 remote_ops.to_stop = remote_stop;
10235 remote_ops.to_xfer_partial = remote_xfer_partial;
10236 remote_ops.to_rcmd = remote_rcmd;
10237 remote_ops.to_log_command = serial_log_command;
10238 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
10239 remote_ops.to_stratum = process_stratum;
10240 remote_ops.to_has_all_memory = default_child_has_all_memory;
10241 remote_ops.to_has_memory = default_child_has_memory;
10242 remote_ops.to_has_stack = default_child_has_stack;
10243 remote_ops.to_has_registers = default_child_has_registers;
10244 remote_ops.to_has_execution = default_child_has_execution;
10245 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
10246 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
10247 remote_ops.to_magic = OPS_MAGIC;
10248 remote_ops.to_memory_map = remote_memory_map;
10249 remote_ops.to_flash_erase = remote_flash_erase;
10250 remote_ops.to_flash_done = remote_flash_done;
10251 remote_ops.to_read_description = remote_read_description;
10252 remote_ops.to_search_memory = remote_search_memory;
10253 remote_ops.to_can_async_p = remote_can_async_p;
10254 remote_ops.to_is_async_p = remote_is_async_p;
10255 remote_ops.to_async = remote_async;
10256 remote_ops.to_async_mask = remote_async_mask;
10257 remote_ops.to_terminal_inferior = remote_terminal_inferior;
10258 remote_ops.to_terminal_ours = remote_terminal_ours;
10259 remote_ops.to_supports_non_stop = remote_supports_non_stop;
10260 remote_ops.to_supports_multi_process = remote_supports_multi_process;
10261 remote_ops.to_trace_init = remote_trace_init;
10262 remote_ops.to_download_tracepoint = remote_download_tracepoint;
10263 remote_ops.to_download_trace_state_variable
10264 = remote_download_trace_state_variable;
10265 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
10266 remote_ops.to_trace_start = remote_trace_start;
10267 remote_ops.to_get_trace_status = remote_get_trace_status;
10268 remote_ops.to_trace_stop = remote_trace_stop;
10269 remote_ops.to_trace_find = remote_trace_find;
10270 remote_ops.to_get_trace_state_variable_value
10271 = remote_get_trace_state_variable_value;
10272 remote_ops.to_save_trace_data = remote_save_trace_data;
10273 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
10274 remote_ops.to_upload_trace_state_variables
10275 = remote_upload_trace_state_variables;
10276 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
10277 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
10278 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
10279 remote_ops.to_core_of_thread = remote_core_of_thread;
10280 remote_ops.to_verify_memory = remote_verify_memory;
10281 remote_ops.to_get_tib_address = remote_get_tib_address;
10282 remote_ops.to_set_permissions = remote_set_permissions;
10283 remote_ops.to_static_tracepoint_marker_at
10284 = remote_static_tracepoint_marker_at;
10285 remote_ops.to_static_tracepoint_markers_by_strid
10286 = remote_static_tracepoint_markers_by_strid;
10287 }
10288
10289 /* Set up the extended remote vector by making a copy of the standard
10290 remote vector and adding to it. */
10291
10292 static void
10293 init_extended_remote_ops (void)
10294 {
10295 extended_remote_ops = remote_ops;
10296
10297 extended_remote_ops.to_shortname = "extended-remote";
10298 extended_remote_ops.to_longname =
10299 "Extended remote serial target in gdb-specific protocol";
10300 extended_remote_ops.to_doc =
10301 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10302 Specify the serial device it is connected to (e.g. /dev/ttya).";
10303 extended_remote_ops.to_open = extended_remote_open;
10304 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
10305 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
10306 extended_remote_ops.to_detach = extended_remote_detach;
10307 extended_remote_ops.to_attach = extended_remote_attach;
10308 extended_remote_ops.to_kill = extended_remote_kill;
10309 }
10310
10311 static int
10312 remote_can_async_p (void)
10313 {
10314 if (!target_async_permitted)
10315 /* We only enable async when the user specifically asks for it. */
10316 return 0;
10317
10318 /* We're async whenever the serial device is. */
10319 return remote_async_mask_value && serial_can_async_p (remote_desc);
10320 }
10321
10322 static int
10323 remote_is_async_p (void)
10324 {
10325 if (!target_async_permitted)
10326 /* We only enable async when the user specifically asks for it. */
10327 return 0;
10328
10329 /* We're async whenever the serial device is. */
10330 return remote_async_mask_value && serial_is_async_p (remote_desc);
10331 }
10332
10333 /* Pass the SERIAL event on and up to the client. One day this code
10334 will be able to delay notifying the client of an event until the
10335 point where an entire packet has been received. */
10336
10337 static void (*async_client_callback) (enum inferior_event_type event_type,
10338 void *context);
10339 static void *async_client_context;
10340 static serial_event_ftype remote_async_serial_handler;
10341
10342 static void
10343 remote_async_serial_handler (struct serial *scb, void *context)
10344 {
10345 /* Don't propogate error information up to the client. Instead let
10346 the client find out about the error by querying the target. */
10347 async_client_callback (INF_REG_EVENT, async_client_context);
10348 }
10349
10350 static void
10351 remote_async_inferior_event_handler (gdb_client_data data)
10352 {
10353 inferior_event_handler (INF_REG_EVENT, NULL);
10354 }
10355
10356 static void
10357 remote_async_get_pending_events_handler (gdb_client_data data)
10358 {
10359 remote_get_pending_stop_replies ();
10360 }
10361
10362 static void
10363 remote_async (void (*callback) (enum inferior_event_type event_type,
10364 void *context), void *context)
10365 {
10366 if (remote_async_mask_value == 0)
10367 internal_error (__FILE__, __LINE__,
10368 _("Calling remote_async when async is masked"));
10369
10370 if (callback != NULL)
10371 {
10372 serial_async (remote_desc, remote_async_serial_handler, NULL);
10373 async_client_callback = callback;
10374 async_client_context = context;
10375 }
10376 else
10377 serial_async (remote_desc, NULL, NULL);
10378 }
10379
10380 static int
10381 remote_async_mask (int new_mask)
10382 {
10383 int curr_mask = remote_async_mask_value;
10384
10385 remote_async_mask_value = new_mask;
10386 return curr_mask;
10387 }
10388
10389 static void
10390 set_remote_cmd (char *args, int from_tty)
10391 {
10392 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
10393 }
10394
10395 static void
10396 show_remote_cmd (char *args, int from_tty)
10397 {
10398 /* We can't just use cmd_show_list here, because we want to skip
10399 the redundant "show remote Z-packet" and the legacy aliases. */
10400 struct cleanup *showlist_chain;
10401 struct cmd_list_element *list = remote_show_cmdlist;
10402
10403 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
10404 for (; list != NULL; list = list->next)
10405 if (strcmp (list->name, "Z-packet") == 0)
10406 continue;
10407 else if (list->type == not_set_cmd)
10408 /* Alias commands are exactly like the original, except they
10409 don't have the normal type. */
10410 continue;
10411 else
10412 {
10413 struct cleanup *option_chain
10414 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
10415
10416 ui_out_field_string (uiout, "name", list->name);
10417 ui_out_text (uiout, ": ");
10418 if (list->type == show_cmd)
10419 do_setshow_command ((char *) NULL, from_tty, list);
10420 else
10421 cmd_func (list, NULL, from_tty);
10422 /* Close the tuple. */
10423 do_cleanups (option_chain);
10424 }
10425
10426 /* Close the tuple. */
10427 do_cleanups (showlist_chain);
10428 }
10429
10430
10431 /* Function to be called whenever a new objfile (shlib) is detected. */
10432 static void
10433 remote_new_objfile (struct objfile *objfile)
10434 {
10435 if (remote_desc != 0) /* Have a remote connection. */
10436 remote_check_symbols (objfile);
10437 }
10438
10439 /* Pull all the tracepoints defined on the target and create local
10440 data structures representing them. We don't want to create real
10441 tracepoints yet, we don't want to mess up the user's existing
10442 collection. */
10443
10444 static int
10445 remote_upload_tracepoints (struct uploaded_tp **utpp)
10446 {
10447 struct remote_state *rs = get_remote_state ();
10448 char *p;
10449
10450 /* Ask for a first packet of tracepoint definition. */
10451 putpkt ("qTfP");
10452 getpkt (&rs->buf, &rs->buf_size, 0);
10453 p = rs->buf;
10454 while (*p && *p != 'l')
10455 {
10456 parse_tracepoint_definition (p, utpp);
10457 /* Ask for another packet of tracepoint definition. */
10458 putpkt ("qTsP");
10459 getpkt (&rs->buf, &rs->buf_size, 0);
10460 p = rs->buf;
10461 }
10462 return 0;
10463 }
10464
10465 static int
10466 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
10467 {
10468 struct remote_state *rs = get_remote_state ();
10469 char *p;
10470
10471 /* Ask for a first packet of variable definition. */
10472 putpkt ("qTfV");
10473 getpkt (&rs->buf, &rs->buf_size, 0);
10474 p = rs->buf;
10475 while (*p && *p != 'l')
10476 {
10477 parse_tsv_definition (p, utsvp);
10478 /* Ask for another packet of variable definition. */
10479 putpkt ("qTsV");
10480 getpkt (&rs->buf, &rs->buf_size, 0);
10481 p = rs->buf;
10482 }
10483 return 0;
10484 }
10485
10486 void
10487 _initialize_remote (void)
10488 {
10489 struct remote_state *rs;
10490 struct cmd_list_element *cmd;
10491 char *cmd_name;
10492
10493 /* architecture specific data */
10494 remote_gdbarch_data_handle =
10495 gdbarch_data_register_post_init (init_remote_state);
10496 remote_g_packet_data_handle =
10497 gdbarch_data_register_pre_init (remote_g_packet_data_init);
10498
10499 /* Initialize the per-target state. At the moment there is only one
10500 of these, not one per target. Only one target is active at a
10501 time. The default buffer size is unimportant; it will be expanded
10502 whenever a larger buffer is needed. */
10503 rs = get_remote_state_raw ();
10504 rs->buf_size = 400;
10505 rs->buf = xmalloc (rs->buf_size);
10506
10507 init_remote_ops ();
10508 add_target (&remote_ops);
10509
10510 init_extended_remote_ops ();
10511 add_target (&extended_remote_ops);
10512
10513 /* Hook into new objfile notification. */
10514 observer_attach_new_objfile (remote_new_objfile);
10515
10516 /* Set up signal handlers. */
10517 sigint_remote_token =
10518 create_async_signal_handler (async_remote_interrupt, NULL);
10519 sigint_remote_twice_token =
10520 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
10521
10522 #if 0
10523 init_remote_threadtests ();
10524 #endif
10525
10526 /* set/show remote ... */
10527
10528 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
10529 Remote protocol specific variables\n\
10530 Configure various remote-protocol specific variables such as\n\
10531 the packets being used"),
10532 &remote_set_cmdlist, "set remote ",
10533 0 /* allow-unknown */, &setlist);
10534 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
10535 Remote protocol specific variables\n\
10536 Configure various remote-protocol specific variables such as\n\
10537 the packets being used"),
10538 &remote_show_cmdlist, "show remote ",
10539 0 /* allow-unknown */, &showlist);
10540
10541 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
10542 Compare section data on target to the exec file.\n\
10543 Argument is a single section name (default: all loaded sections)."),
10544 &cmdlist);
10545
10546 add_cmd ("packet", class_maintenance, packet_command, _("\
10547 Send an arbitrary packet to a remote target.\n\
10548 maintenance packet TEXT\n\
10549 If GDB is talking to an inferior via the GDB serial protocol, then\n\
10550 this command sends the string TEXT to the inferior, and displays the\n\
10551 response packet. GDB supplies the initial `$' character, and the\n\
10552 terminating `#' character and checksum."),
10553 &maintenancelist);
10554
10555 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
10556 Set whether to send break if interrupted."), _("\
10557 Show whether to send break if interrupted."), _("\
10558 If set, a break, instead of a cntrl-c, is sent to the remote target."),
10559 set_remotebreak, show_remotebreak,
10560 &setlist, &showlist);
10561 cmd_name = "remotebreak";
10562 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
10563 deprecate_cmd (cmd, "set remote interrupt-sequence");
10564 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
10565 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
10566 deprecate_cmd (cmd, "show remote interrupt-sequence");
10567
10568 add_setshow_enum_cmd ("interrupt-sequence", class_support,
10569 interrupt_sequence_modes, &interrupt_sequence_mode,
10570 _("\
10571 Set interrupt sequence to remote target."), _("\
10572 Show interrupt sequence to remote target."), _("\
10573 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
10574 NULL, show_interrupt_sequence,
10575 &remote_set_cmdlist,
10576 &remote_show_cmdlist);
10577
10578 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
10579 &interrupt_on_connect, _("\
10580 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10581 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10582 If set, interrupt sequence is sent to remote target."),
10583 NULL, NULL,
10584 &remote_set_cmdlist, &remote_show_cmdlist);
10585
10586 /* Install commands for configuring memory read/write packets. */
10587
10588 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
10589 Set the maximum number of bytes per memory write packet (deprecated)."),
10590 &setlist);
10591 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
10592 Show the maximum number of bytes per memory write packet (deprecated)."),
10593 &showlist);
10594 add_cmd ("memory-write-packet-size", no_class,
10595 set_memory_write_packet_size, _("\
10596 Set the maximum number of bytes per memory-write packet.\n\
10597 Specify the number of bytes in a packet or 0 (zero) for the\n\
10598 default packet size. The actual limit is further reduced\n\
10599 dependent on the target. Specify ``fixed'' to disable the\n\
10600 further restriction and ``limit'' to enable that restriction."),
10601 &remote_set_cmdlist);
10602 add_cmd ("memory-read-packet-size", no_class,
10603 set_memory_read_packet_size, _("\
10604 Set the maximum number of bytes per memory-read packet.\n\
10605 Specify the number of bytes in a packet or 0 (zero) for the\n\
10606 default packet size. The actual limit is further reduced\n\
10607 dependent on the target. Specify ``fixed'' to disable the\n\
10608 further restriction and ``limit'' to enable that restriction."),
10609 &remote_set_cmdlist);
10610 add_cmd ("memory-write-packet-size", no_class,
10611 show_memory_write_packet_size,
10612 _("Show the maximum number of bytes per memory-write packet."),
10613 &remote_show_cmdlist);
10614 add_cmd ("memory-read-packet-size", no_class,
10615 show_memory_read_packet_size,
10616 _("Show the maximum number of bytes per memory-read packet."),
10617 &remote_show_cmdlist);
10618
10619 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
10620 &remote_hw_watchpoint_limit, _("\
10621 Set the maximum number of target hardware watchpoints."), _("\
10622 Show the maximum number of target hardware watchpoints."), _("\
10623 Specify a negative limit for unlimited."),
10624 NULL, NULL, /* FIXME: i18n: The maximum
10625 number of target hardware
10626 watchpoints is %s. */
10627 &remote_set_cmdlist, &remote_show_cmdlist);
10628 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
10629 &remote_hw_breakpoint_limit, _("\
10630 Set the maximum number of target hardware breakpoints."), _("\
10631 Show the maximum number of target hardware breakpoints."), _("\
10632 Specify a negative limit for unlimited."),
10633 NULL, NULL, /* FIXME: i18n: The maximum
10634 number of target hardware
10635 breakpoints is %s. */
10636 &remote_set_cmdlist, &remote_show_cmdlist);
10637
10638 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
10639 &remote_address_size, _("\
10640 Set the maximum size of the address (in bits) in a memory packet."), _("\
10641 Show the maximum size of the address (in bits) in a memory packet."), NULL,
10642 NULL,
10643 NULL, /* FIXME: i18n: */
10644 &setlist, &showlist);
10645
10646 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
10647 "X", "binary-download", 1);
10648
10649 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
10650 "vCont", "verbose-resume", 0);
10651
10652 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
10653 "QPassSignals", "pass-signals", 0);
10654
10655 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
10656 "qSymbol", "symbol-lookup", 0);
10657
10658 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
10659 "P", "set-register", 1);
10660
10661 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
10662 "p", "fetch-register", 1);
10663
10664 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
10665 "Z0", "software-breakpoint", 0);
10666
10667 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
10668 "Z1", "hardware-breakpoint", 0);
10669
10670 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
10671 "Z2", "write-watchpoint", 0);
10672
10673 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
10674 "Z3", "read-watchpoint", 0);
10675
10676 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
10677 "Z4", "access-watchpoint", 0);
10678
10679 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
10680 "qXfer:auxv:read", "read-aux-vector", 0);
10681
10682 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
10683 "qXfer:features:read", "target-features", 0);
10684
10685 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
10686 "qXfer:libraries:read", "library-info", 0);
10687
10688 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
10689 "qXfer:memory-map:read", "memory-map", 0);
10690
10691 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
10692 "qXfer:spu:read", "read-spu-object", 0);
10693
10694 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
10695 "qXfer:spu:write", "write-spu-object", 0);
10696
10697 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
10698 "qXfer:osdata:read", "osdata", 0);
10699
10700 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
10701 "qXfer:threads:read", "threads", 0);
10702
10703 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
10704 "qXfer:siginfo:read", "read-siginfo-object", 0);
10705
10706 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
10707 "qXfer:siginfo:write", "write-siginfo-object", 0);
10708
10709 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
10710 "qGetTLSAddr", "get-thread-local-storage-address",
10711 0);
10712
10713 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
10714 "qGetTIBAddr", "get-thread-information-block-address",
10715 0);
10716
10717 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
10718 "bc", "reverse-continue", 0);
10719
10720 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
10721 "bs", "reverse-step", 0);
10722
10723 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
10724 "qSupported", "supported-packets", 0);
10725
10726 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
10727 "qSearch:memory", "search-memory", 0);
10728
10729 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
10730 "vFile:open", "hostio-open", 0);
10731
10732 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
10733 "vFile:pread", "hostio-pread", 0);
10734
10735 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
10736 "vFile:pwrite", "hostio-pwrite", 0);
10737
10738 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
10739 "vFile:close", "hostio-close", 0);
10740
10741 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
10742 "vFile:unlink", "hostio-unlink", 0);
10743
10744 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
10745 "vAttach", "attach", 0);
10746
10747 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
10748 "vRun", "run", 0);
10749
10750 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
10751 "QStartNoAckMode", "noack", 0);
10752
10753 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
10754 "vKill", "kill", 0);
10755
10756 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
10757 "qAttached", "query-attached", 0);
10758
10759 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
10760 "ConditionalTracepoints",
10761 "conditional-tracepoints", 0);
10762 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
10763 "FastTracepoints", "fast-tracepoints", 0);
10764
10765 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
10766 "TracepointSource", "TracepointSource", 0);
10767
10768 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
10769 "QAllow", "allow", 0);
10770
10771 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
10772 "StaticTracepoints", "static-tracepoints", 0);
10773
10774 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
10775 "qXfer:statictrace:read", "read-sdata-object", 0);
10776
10777 /* Keep the old ``set remote Z-packet ...'' working. Each individual
10778 Z sub-packet has its own set and show commands, but users may
10779 have sets to this variable in their .gdbinit files (or in their
10780 documentation). */
10781 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
10782 &remote_Z_packet_detect, _("\
10783 Set use of remote protocol `Z' packets"), _("\
10784 Show use of remote protocol `Z' packets "), _("\
10785 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
10786 packets."),
10787 set_remote_protocol_Z_packet_cmd,
10788 show_remote_protocol_Z_packet_cmd,
10789 /* FIXME: i18n: Use of remote protocol
10790 `Z' packets is %s. */
10791 &remote_set_cmdlist, &remote_show_cmdlist);
10792
10793 add_prefix_cmd ("remote", class_files, remote_command, _("\
10794 Manipulate files on the remote system\n\
10795 Transfer files to and from the remote target system."),
10796 &remote_cmdlist, "remote ",
10797 0 /* allow-unknown */, &cmdlist);
10798
10799 add_cmd ("put", class_files, remote_put_command,
10800 _("Copy a local file to the remote system."),
10801 &remote_cmdlist);
10802
10803 add_cmd ("get", class_files, remote_get_command,
10804 _("Copy a remote file to the local system."),
10805 &remote_cmdlist);
10806
10807 add_cmd ("delete", class_files, remote_delete_command,
10808 _("Delete a remote file."),
10809 &remote_cmdlist);
10810
10811 remote_exec_file = xstrdup ("");
10812 add_setshow_string_noescape_cmd ("exec-file", class_files,
10813 &remote_exec_file, _("\
10814 Set the remote pathname for \"run\""), _("\
10815 Show the remote pathname for \"run\""), NULL, NULL, NULL,
10816 &remote_set_cmdlist, &remote_show_cmdlist);
10817
10818 /* Eventually initialize fileio. See fileio.c */
10819 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
10820
10821 /* Take advantage of the fact that the LWP field is not used, to tag
10822 special ptids with it set to != 0. */
10823 magic_null_ptid = ptid_build (42000, 1, -1);
10824 not_sent_ptid = ptid_build (42000, 1, -2);
10825 any_thread_ptid = ptid_build (42000, 1, 0);
10826
10827 target_buf_size = 2048;
10828 target_buf = xmalloc (target_buf_size);
10829 }
10830
This page took 0.301281 seconds and 4 git commands to generate.