Change regcache list to be an hash map
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include <algorithm>
79 #include <unordered_map>
80 #include "async-event.h"
81
82 /* The remote target. */
83
84 static const char remote_doc[] = N_("\
85 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
86 Specify the serial device it is connected to\n\
87 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
88
89 #define OPAQUETHREADBYTES 8
90
91 /* a 64 bit opaque identifier */
92 typedef unsigned char threadref[OPAQUETHREADBYTES];
93
94 struct gdb_ext_thread_info;
95 struct threads_listing_context;
96 typedef int (*rmt_thread_action) (threadref *ref, void *context);
97 struct protocol_feature;
98 struct packet_reg;
99
100 struct stop_reply;
101 typedef std::unique_ptr<stop_reply> stop_reply_up;
102
103 /* Generic configuration support for packets the stub optionally
104 supports. Allows the user to specify the use of the packet as well
105 as allowing GDB to auto-detect support in the remote stub. */
106
107 enum packet_support
108 {
109 PACKET_SUPPORT_UNKNOWN = 0,
110 PACKET_ENABLE,
111 PACKET_DISABLE
112 };
113
114 /* Analyze a packet's return value and update the packet config
115 accordingly. */
116
117 enum packet_result
118 {
119 PACKET_ERROR,
120 PACKET_OK,
121 PACKET_UNKNOWN
122 };
123
124 struct threads_listing_context;
125
126 /* Stub vCont actions support.
127
128 Each field is a boolean flag indicating whether the stub reports
129 support for the corresponding action. */
130
131 struct vCont_action_support
132 {
133 /* vCont;t */
134 bool t = false;
135
136 /* vCont;r */
137 bool r = false;
138
139 /* vCont;s */
140 bool s = false;
141
142 /* vCont;S */
143 bool S = false;
144 };
145
146 /* About this many threadids fit in a packet. */
147
148 #define MAXTHREADLISTRESULTS 32
149
150 /* Data for the vFile:pread readahead cache. */
151
152 struct readahead_cache
153 {
154 /* Invalidate the readahead cache. */
155 void invalidate ();
156
157 /* Invalidate the readahead cache if it is holding data for FD. */
158 void invalidate_fd (int fd);
159
160 /* Serve pread from the readahead cache. Returns number of bytes
161 read, or 0 if the request can't be served from the cache. */
162 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
163
164 /* The file descriptor for the file that is being cached. -1 if the
165 cache is invalid. */
166 int fd = -1;
167
168 /* The offset into the file that the cache buffer corresponds
169 to. */
170 ULONGEST offset = 0;
171
172 /* The buffer holding the cache contents. */
173 gdb_byte *buf = nullptr;
174 /* The buffer's size. We try to read as much as fits into a packet
175 at a time. */
176 size_t bufsize = 0;
177
178 /* Cache hit and miss counters. */
179 ULONGEST hit_count = 0;
180 ULONGEST miss_count = 0;
181 };
182
183 /* Description of the remote protocol for a given architecture. */
184
185 struct packet_reg
186 {
187 long offset; /* Offset into G packet. */
188 long regnum; /* GDB's internal register number. */
189 LONGEST pnum; /* Remote protocol register number. */
190 int in_g_packet; /* Always part of G packet. */
191 /* long size in bytes; == register_size (target_gdbarch (), regnum);
192 at present. */
193 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
194 at present. */
195 };
196
197 struct remote_arch_state
198 {
199 explicit remote_arch_state (struct gdbarch *gdbarch);
200
201 /* Description of the remote protocol registers. */
202 long sizeof_g_packet;
203
204 /* Description of the remote protocol registers indexed by REGNUM
205 (making an array gdbarch_num_regs in size). */
206 std::unique_ptr<packet_reg[]> regs;
207
208 /* This is the size (in chars) of the first response to the ``g''
209 packet. It is used as a heuristic when determining the maximum
210 size of memory-read and memory-write packets. A target will
211 typically only reserve a buffer large enough to hold the ``g''
212 packet. The size does not include packet overhead (headers and
213 trailers). */
214 long actual_register_packet_size;
215
216 /* This is the maximum size (in chars) of a non read/write packet.
217 It is also used as a cap on the size of read/write packets. */
218 long remote_packet_size;
219 };
220
221 /* Description of the remote protocol state for the currently
222 connected target. This is per-target state, and independent of the
223 selected architecture. */
224
225 class remote_state
226 {
227 public:
228
229 remote_state ();
230 ~remote_state ();
231
232 /* Get the remote arch state for GDBARCH. */
233 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
234
235 public: /* data */
236
237 /* A buffer to use for incoming packets, and its current size. The
238 buffer is grown dynamically for larger incoming packets.
239 Outgoing packets may also be constructed in this buffer.
240 The size of the buffer is always at least REMOTE_PACKET_SIZE;
241 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
242 packets. */
243 gdb::char_vector buf;
244
245 /* True if we're going through initial connection setup (finding out
246 about the remote side's threads, relocating symbols, etc.). */
247 bool starting_up = false;
248
249 /* If we negotiated packet size explicitly (and thus can bypass
250 heuristics for the largest packet size that will not overflow
251 a buffer in the stub), this will be set to that packet size.
252 Otherwise zero, meaning to use the guessed size. */
253 long explicit_packet_size = 0;
254
255 /* remote_wait is normally called when the target is running and
256 waits for a stop reply packet. But sometimes we need to call it
257 when the target is already stopped. We can send a "?" packet
258 and have remote_wait read the response. Or, if we already have
259 the response, we can stash it in BUF and tell remote_wait to
260 skip calling getpkt. This flag is set when BUF contains a
261 stop reply packet and the target is not waiting. */
262 int cached_wait_status = 0;
263
264 /* True, if in no ack mode. That is, neither GDB nor the stub will
265 expect acks from each other. The connection is assumed to be
266 reliable. */
267 bool noack_mode = false;
268
269 /* True if we're connected in extended remote mode. */
270 bool extended = false;
271
272 /* True if we resumed the target and we're waiting for the target to
273 stop. In the mean time, we can't start another command/query.
274 The remote server wouldn't be ready to process it, so we'd
275 timeout waiting for a reply that would never come and eventually
276 we'd close the connection. This can happen in asynchronous mode
277 because we allow GDB commands while the target is running. */
278 bool waiting_for_stop_reply = false;
279
280 /* The status of the stub support for the various vCont actions. */
281 vCont_action_support supports_vCont;
282 /* Whether vCont support was probed already. This is a workaround
283 until packet_support is per-connection. */
284 bool supports_vCont_probed;
285
286 /* True if the user has pressed Ctrl-C, but the target hasn't
287 responded to that. */
288 bool ctrlc_pending_p = false;
289
290 /* True if we saw a Ctrl-C while reading or writing from/to the
291 remote descriptor. At that point it is not safe to send a remote
292 interrupt packet, so we instead remember we saw the Ctrl-C and
293 process it once we're done with sending/receiving the current
294 packet, which should be shortly. If however that takes too long,
295 and the user presses Ctrl-C again, we offer to disconnect. */
296 bool got_ctrlc_during_io = false;
297
298 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
299 remote_open knows that we don't have a file open when the program
300 starts. */
301 struct serial *remote_desc = nullptr;
302
303 /* These are the threads which we last sent to the remote system. The
304 TID member will be -1 for all or -2 for not sent yet. */
305 ptid_t general_thread = null_ptid;
306 ptid_t continue_thread = null_ptid;
307
308 /* This is the traceframe which we last selected on the remote system.
309 It will be -1 if no traceframe is selected. */
310 int remote_traceframe_number = -1;
311
312 char *last_pass_packet = nullptr;
313
314 /* The last QProgramSignals packet sent to the target. We bypass
315 sending a new program signals list down to the target if the new
316 packet is exactly the same as the last we sent. IOW, we only let
317 the target know about program signals list changes. */
318 char *last_program_signals_packet = nullptr;
319
320 gdb_signal last_sent_signal = GDB_SIGNAL_0;
321
322 bool last_sent_step = false;
323
324 /* The execution direction of the last resume we got. */
325 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
326
327 char *finished_object = nullptr;
328 char *finished_annex = nullptr;
329 ULONGEST finished_offset = 0;
330
331 /* Should we try the 'ThreadInfo' query packet?
332
333 This variable (NOT available to the user: auto-detect only!)
334 determines whether GDB will use the new, simpler "ThreadInfo"
335 query or the older, more complex syntax for thread queries.
336 This is an auto-detect variable (set to true at each connect,
337 and set to false when the target fails to recognize it). */
338 bool use_threadinfo_query = false;
339 bool use_threadextra_query = false;
340
341 threadref echo_nextthread {};
342 threadref nextthread {};
343 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
344
345 /* The state of remote notification. */
346 struct remote_notif_state *notif_state = nullptr;
347
348 /* The branch trace configuration. */
349 struct btrace_config btrace_config {};
350
351 /* The argument to the last "vFile:setfs:" packet we sent, used
352 to avoid sending repeated unnecessary "vFile:setfs:" packets.
353 Initialized to -1 to indicate that no "vFile:setfs:" packet
354 has yet been sent. */
355 int fs_pid = -1;
356
357 /* A readahead cache for vFile:pread. Often, reading a binary
358 involves a sequence of small reads. E.g., when parsing an ELF
359 file. A readahead cache helps mostly the case of remote
360 debugging on a connection with higher latency, due to the
361 request/reply nature of the RSP. We only cache data for a single
362 file descriptor at a time. */
363 struct readahead_cache readahead_cache;
364
365 /* The list of already fetched and acknowledged stop events. This
366 queue is used for notification Stop, and other notifications
367 don't need queue for their events, because the notification
368 events of Stop can't be consumed immediately, so that events
369 should be queued first, and be consumed by remote_wait_{ns,as}
370 one per time. Other notifications can consume their events
371 immediately, so queue is not needed for them. */
372 std::vector<stop_reply_up> stop_reply_queue;
373
374 /* Asynchronous signal handle registered as event loop source for
375 when we have pending events ready to be passed to the core. */
376 struct async_event_handler *remote_async_inferior_event_token = nullptr;
377
378 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
379 ``forever'' still use the normal timeout mechanism. This is
380 currently used by the ASYNC code to guarentee that target reads
381 during the initial connect always time-out. Once getpkt has been
382 modified to return a timeout indication and, in turn
383 remote_wait()/wait_for_inferior() have gained a timeout parameter
384 this can go away. */
385 int wait_forever_enabled_p = 1;
386
387 private:
388 /* Mapping of remote protocol data for each gdbarch. Usually there
389 is only one entry here, though we may see more with stubs that
390 support multi-process. */
391 std::unordered_map<struct gdbarch *, remote_arch_state>
392 m_arch_states;
393 };
394
395 static const target_info remote_target_info = {
396 "remote",
397 N_("Remote serial target in gdb-specific protocol"),
398 remote_doc
399 };
400
401 class remote_target : public process_stratum_target
402 {
403 public:
404 remote_target () = default;
405 ~remote_target () override;
406
407 const target_info &info () const override
408 { return remote_target_info; }
409
410 const char *connection_string () override;
411
412 thread_control_capabilities get_thread_control_capabilities () override
413 { return tc_schedlock; }
414
415 /* Open a remote connection. */
416 static void open (const char *, int);
417
418 void close () override;
419
420 void detach (inferior *, int) override;
421 void disconnect (const char *, int) override;
422
423 void commit_resume () override;
424 void resume (ptid_t, int, enum gdb_signal) override;
425 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
426
427 void fetch_registers (struct regcache *, int) override;
428 void store_registers (struct regcache *, int) override;
429 void prepare_to_store (struct regcache *) override;
430
431 void files_info () override;
432
433 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
434
435 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
436 enum remove_bp_reason) override;
437
438
439 bool stopped_by_sw_breakpoint () override;
440 bool supports_stopped_by_sw_breakpoint () override;
441
442 bool stopped_by_hw_breakpoint () override;
443
444 bool supports_stopped_by_hw_breakpoint () override;
445
446 bool stopped_by_watchpoint () override;
447
448 bool stopped_data_address (CORE_ADDR *) override;
449
450 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
451
452 int can_use_hw_breakpoint (enum bptype, int, int) override;
453
454 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
455
456 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
457
458 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
459
460 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
461 struct expression *) override;
462
463 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
464 struct expression *) override;
465
466 void kill () override;
467
468 void load (const char *, int) override;
469
470 void mourn_inferior () override;
471
472 void pass_signals (gdb::array_view<const unsigned char>) override;
473
474 int set_syscall_catchpoint (int, bool, int,
475 gdb::array_view<const int>) override;
476
477 void program_signals (gdb::array_view<const unsigned char>) override;
478
479 bool thread_alive (ptid_t ptid) override;
480
481 const char *thread_name (struct thread_info *) override;
482
483 void update_thread_list () override;
484
485 std::string pid_to_str (ptid_t) override;
486
487 const char *extra_thread_info (struct thread_info *) override;
488
489 ptid_t get_ada_task_ptid (long lwp, long thread) override;
490
491 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
492 int handle_len,
493 inferior *inf) override;
494
495 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
496 override;
497
498 void stop (ptid_t) override;
499
500 void interrupt () override;
501
502 void pass_ctrlc () override;
503
504 enum target_xfer_status xfer_partial (enum target_object object,
505 const char *annex,
506 gdb_byte *readbuf,
507 const gdb_byte *writebuf,
508 ULONGEST offset, ULONGEST len,
509 ULONGEST *xfered_len) override;
510
511 ULONGEST get_memory_xfer_limit () override;
512
513 void rcmd (const char *command, struct ui_file *output) override;
514
515 char *pid_to_exec_file (int pid) override;
516
517 void log_command (const char *cmd) override
518 {
519 serial_log_command (this, cmd);
520 }
521
522 CORE_ADDR get_thread_local_address (ptid_t ptid,
523 CORE_ADDR load_module_addr,
524 CORE_ADDR offset) override;
525
526 bool can_execute_reverse () override;
527
528 std::vector<mem_region> memory_map () override;
529
530 void flash_erase (ULONGEST address, LONGEST length) override;
531
532 void flash_done () override;
533
534 const struct target_desc *read_description () override;
535
536 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
537 const gdb_byte *pattern, ULONGEST pattern_len,
538 CORE_ADDR *found_addrp) override;
539
540 bool can_async_p () override;
541
542 bool is_async_p () override;
543
544 void async (int) override;
545
546 int async_wait_fd () override;
547
548 void thread_events (int) override;
549
550 int can_do_single_step () override;
551
552 void terminal_inferior () override;
553
554 void terminal_ours () override;
555
556 bool supports_non_stop () override;
557
558 bool supports_multi_process () override;
559
560 bool supports_disable_randomization () override;
561
562 bool filesystem_is_local () override;
563
564
565 int fileio_open (struct inferior *inf, const char *filename,
566 int flags, int mode, int warn_if_slow,
567 int *target_errno) override;
568
569 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
570 ULONGEST offset, int *target_errno) override;
571
572 int fileio_pread (int fd, gdb_byte *read_buf, int len,
573 ULONGEST offset, int *target_errno) override;
574
575 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
576
577 int fileio_close (int fd, int *target_errno) override;
578
579 int fileio_unlink (struct inferior *inf,
580 const char *filename,
581 int *target_errno) override;
582
583 gdb::optional<std::string>
584 fileio_readlink (struct inferior *inf,
585 const char *filename,
586 int *target_errno) override;
587
588 bool supports_enable_disable_tracepoint () override;
589
590 bool supports_string_tracing () override;
591
592 bool supports_evaluation_of_breakpoint_conditions () override;
593
594 bool can_run_breakpoint_commands () override;
595
596 void trace_init () override;
597
598 void download_tracepoint (struct bp_location *location) override;
599
600 bool can_download_tracepoint () override;
601
602 void download_trace_state_variable (const trace_state_variable &tsv) override;
603
604 void enable_tracepoint (struct bp_location *location) override;
605
606 void disable_tracepoint (struct bp_location *location) override;
607
608 void trace_set_readonly_regions () override;
609
610 void trace_start () override;
611
612 int get_trace_status (struct trace_status *ts) override;
613
614 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
615 override;
616
617 void trace_stop () override;
618
619 int trace_find (enum trace_find_type type, int num,
620 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
621
622 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
623
624 int save_trace_data (const char *filename) override;
625
626 int upload_tracepoints (struct uploaded_tp **utpp) override;
627
628 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
629
630 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
631
632 int get_min_fast_tracepoint_insn_len () override;
633
634 void set_disconnected_tracing (int val) override;
635
636 void set_circular_trace_buffer (int val) override;
637
638 void set_trace_buffer_size (LONGEST val) override;
639
640 bool set_trace_notes (const char *user, const char *notes,
641 const char *stopnotes) override;
642
643 int core_of_thread (ptid_t ptid) override;
644
645 int verify_memory (const gdb_byte *data,
646 CORE_ADDR memaddr, ULONGEST size) override;
647
648
649 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
650
651 void set_permissions () override;
652
653 bool static_tracepoint_marker_at (CORE_ADDR,
654 struct static_tracepoint_marker *marker)
655 override;
656
657 std::vector<static_tracepoint_marker>
658 static_tracepoint_markers_by_strid (const char *id) override;
659
660 traceframe_info_up traceframe_info () override;
661
662 bool use_agent (bool use) override;
663 bool can_use_agent () override;
664
665 struct btrace_target_info *enable_btrace (ptid_t ptid,
666 const struct btrace_config *conf) override;
667
668 void disable_btrace (struct btrace_target_info *tinfo) override;
669
670 void teardown_btrace (struct btrace_target_info *tinfo) override;
671
672 enum btrace_error read_btrace (struct btrace_data *data,
673 struct btrace_target_info *btinfo,
674 enum btrace_read_type type) override;
675
676 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
677 bool augmented_libraries_svr4_read () override;
678 bool follow_fork (bool, bool) override;
679 void follow_exec (struct inferior *, const char *) override;
680 int insert_fork_catchpoint (int) override;
681 int remove_fork_catchpoint (int) override;
682 int insert_vfork_catchpoint (int) override;
683 int remove_vfork_catchpoint (int) override;
684 int insert_exec_catchpoint (int) override;
685 int remove_exec_catchpoint (int) override;
686 enum exec_direction_kind execution_direction () override;
687
688 public: /* Remote specific methods. */
689
690 void remote_download_command_source (int num, ULONGEST addr,
691 struct command_line *cmds);
692
693 void remote_file_put (const char *local_file, const char *remote_file,
694 int from_tty);
695 void remote_file_get (const char *remote_file, const char *local_file,
696 int from_tty);
697 void remote_file_delete (const char *remote_file, int from_tty);
698
699 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
700 ULONGEST offset, int *remote_errno);
701 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
702 ULONGEST offset, int *remote_errno);
703 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
704 ULONGEST offset, int *remote_errno);
705
706 int remote_hostio_send_command (int command_bytes, int which_packet,
707 int *remote_errno, char **attachment,
708 int *attachment_len);
709 int remote_hostio_set_filesystem (struct inferior *inf,
710 int *remote_errno);
711 /* We should get rid of this and use fileio_open directly. */
712 int remote_hostio_open (struct inferior *inf, const char *filename,
713 int flags, int mode, int warn_if_slow,
714 int *remote_errno);
715 int remote_hostio_close (int fd, int *remote_errno);
716
717 int remote_hostio_unlink (inferior *inf, const char *filename,
718 int *remote_errno);
719
720 struct remote_state *get_remote_state ();
721
722 long get_remote_packet_size (void);
723 long get_memory_packet_size (struct memory_packet_config *config);
724
725 long get_memory_write_packet_size ();
726 long get_memory_read_packet_size ();
727
728 char *append_pending_thread_resumptions (char *p, char *endp,
729 ptid_t ptid);
730 static void open_1 (const char *name, int from_tty, int extended_p);
731 void start_remote (int from_tty, int extended_p);
732 void remote_detach_1 (struct inferior *inf, int from_tty);
733
734 char *append_resumption (char *p, char *endp,
735 ptid_t ptid, int step, gdb_signal siggnal);
736 int remote_resume_with_vcont (ptid_t ptid, int step,
737 gdb_signal siggnal);
738
739 void add_current_inferior_and_thread (char *wait_status);
740
741 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
742 int options);
743 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
744 int options);
745
746 ptid_t process_stop_reply (struct stop_reply *stop_reply,
747 target_waitstatus *status);
748
749 void remote_notice_new_inferior (ptid_t currthread, int executing);
750
751 void process_initial_stop_replies (int from_tty);
752
753 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
754
755 void btrace_sync_conf (const btrace_config *conf);
756
757 void remote_btrace_maybe_reopen ();
758
759 void remove_new_fork_children (threads_listing_context *context);
760 void kill_new_fork_children (int pid);
761 void discard_pending_stop_replies (struct inferior *inf);
762 int stop_reply_queue_length ();
763
764 void check_pending_events_prevent_wildcard_vcont
765 (int *may_global_wildcard_vcont);
766
767 void discard_pending_stop_replies_in_queue ();
768 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
769 struct stop_reply *queued_stop_reply (ptid_t ptid);
770 int peek_stop_reply (ptid_t ptid);
771 void remote_parse_stop_reply (const char *buf, stop_reply *event);
772
773 void remote_stop_ns (ptid_t ptid);
774 void remote_interrupt_as ();
775 void remote_interrupt_ns ();
776
777 char *remote_get_noisy_reply ();
778 int remote_query_attached (int pid);
779 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
780 int try_open_exec);
781
782 ptid_t remote_current_thread (ptid_t oldpid);
783 ptid_t get_current_thread (char *wait_status);
784
785 void set_thread (ptid_t ptid, int gen);
786 void set_general_thread (ptid_t ptid);
787 void set_continue_thread (ptid_t ptid);
788 void set_general_process ();
789
790 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
791
792 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
793 gdb_ext_thread_info *info);
794 int remote_get_threadinfo (threadref *threadid, int fieldset,
795 gdb_ext_thread_info *info);
796
797 int parse_threadlist_response (char *pkt, int result_limit,
798 threadref *original_echo,
799 threadref *resultlist,
800 int *doneflag);
801 int remote_get_threadlist (int startflag, threadref *nextthread,
802 int result_limit, int *done, int *result_count,
803 threadref *threadlist);
804
805 int remote_threadlist_iterator (rmt_thread_action stepfunction,
806 void *context, int looplimit);
807
808 int remote_get_threads_with_ql (threads_listing_context *context);
809 int remote_get_threads_with_qxfer (threads_listing_context *context);
810 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
811
812 void extended_remote_restart ();
813
814 void get_offsets ();
815
816 void remote_check_symbols ();
817
818 void remote_supported_packet (const struct protocol_feature *feature,
819 enum packet_support support,
820 const char *argument);
821
822 void remote_query_supported ();
823
824 void remote_packet_size (const protocol_feature *feature,
825 packet_support support, const char *value);
826
827 void remote_serial_quit_handler ();
828
829 void remote_detach_pid (int pid);
830
831 void remote_vcont_probe ();
832
833 void remote_resume_with_hc (ptid_t ptid, int step,
834 gdb_signal siggnal);
835
836 void send_interrupt_sequence ();
837 void interrupt_query ();
838
839 void remote_notif_get_pending_events (notif_client *nc);
840
841 int fetch_register_using_p (struct regcache *regcache,
842 packet_reg *reg);
843 int send_g_packet ();
844 void process_g_packet (struct regcache *regcache);
845 void fetch_registers_using_g (struct regcache *regcache);
846 int store_register_using_P (const struct regcache *regcache,
847 packet_reg *reg);
848 void store_registers_using_G (const struct regcache *regcache);
849
850 void set_remote_traceframe ();
851
852 void check_binary_download (CORE_ADDR addr);
853
854 target_xfer_status remote_write_bytes_aux (const char *header,
855 CORE_ADDR memaddr,
856 const gdb_byte *myaddr,
857 ULONGEST len_units,
858 int unit_size,
859 ULONGEST *xfered_len_units,
860 char packet_format,
861 int use_length);
862
863 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
864 const gdb_byte *myaddr, ULONGEST len,
865 int unit_size, ULONGEST *xfered_len);
866
867 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
868 ULONGEST len_units,
869 int unit_size, ULONGEST *xfered_len_units);
870
871 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
872 ULONGEST memaddr,
873 ULONGEST len,
874 int unit_size,
875 ULONGEST *xfered_len);
876
877 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
878 gdb_byte *myaddr, ULONGEST len,
879 int unit_size,
880 ULONGEST *xfered_len);
881
882 packet_result remote_send_printf (const char *format, ...)
883 ATTRIBUTE_PRINTF (2, 3);
884
885 target_xfer_status remote_flash_write (ULONGEST address,
886 ULONGEST length, ULONGEST *xfered_len,
887 const gdb_byte *data);
888
889 int readchar (int timeout);
890
891 void remote_serial_write (const char *str, int len);
892
893 int putpkt (const char *buf);
894 int putpkt_binary (const char *buf, int cnt);
895
896 int putpkt (const gdb::char_vector &buf)
897 {
898 return putpkt (buf.data ());
899 }
900
901 void skip_frame ();
902 long read_frame (gdb::char_vector *buf_p);
903 void getpkt (gdb::char_vector *buf, int forever);
904 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
905 int expecting_notif, int *is_notif);
906 int getpkt_sane (gdb::char_vector *buf, int forever);
907 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
908 int *is_notif);
909 int remote_vkill (int pid);
910 void remote_kill_k ();
911
912 void extended_remote_disable_randomization (int val);
913 int extended_remote_run (const std::string &args);
914
915 void send_environment_packet (const char *action,
916 const char *packet,
917 const char *value);
918
919 void extended_remote_environment_support ();
920 void extended_remote_set_inferior_cwd ();
921
922 target_xfer_status remote_write_qxfer (const char *object_name,
923 const char *annex,
924 const gdb_byte *writebuf,
925 ULONGEST offset, LONGEST len,
926 ULONGEST *xfered_len,
927 struct packet_config *packet);
928
929 target_xfer_status remote_read_qxfer (const char *object_name,
930 const char *annex,
931 gdb_byte *readbuf, ULONGEST offset,
932 LONGEST len,
933 ULONGEST *xfered_len,
934 struct packet_config *packet);
935
936 void push_stop_reply (struct stop_reply *new_event);
937
938 bool vcont_r_supported ();
939
940 void packet_command (const char *args, int from_tty);
941
942 private: /* data fields */
943
944 /* The remote state. Don't reference this directly. Use the
945 get_remote_state method instead. */
946 remote_state m_remote_state;
947 };
948
949 static const target_info extended_remote_target_info = {
950 "extended-remote",
951 N_("Extended remote serial target in gdb-specific protocol"),
952 remote_doc
953 };
954
955 /* Set up the extended remote target by extending the standard remote
956 target and adding to it. */
957
958 class extended_remote_target final : public remote_target
959 {
960 public:
961 const target_info &info () const override
962 { return extended_remote_target_info; }
963
964 /* Open an extended-remote connection. */
965 static void open (const char *, int);
966
967 bool can_create_inferior () override { return true; }
968 void create_inferior (const char *, const std::string &,
969 char **, int) override;
970
971 void detach (inferior *, int) override;
972
973 bool can_attach () override { return true; }
974 void attach (const char *, int) override;
975
976 void post_attach (int) override;
977 bool supports_disable_randomization () override;
978 };
979
980 /* Per-program-space data key. */
981 static const struct program_space_key<char, gdb::xfree_deleter<char>>
982 remote_pspace_data;
983
984 /* The variable registered as the control variable used by the
985 remote exec-file commands. While the remote exec-file setting is
986 per-program-space, the set/show machinery uses this as the
987 location of the remote exec-file value. */
988 static char *remote_exec_file_var;
989
990 /* The size to align memory write packets, when practical. The protocol
991 does not guarantee any alignment, and gdb will generate short
992 writes and unaligned writes, but even as a best-effort attempt this
993 can improve bulk transfers. For instance, if a write is misaligned
994 relative to the target's data bus, the stub may need to make an extra
995 round trip fetching data from the target. This doesn't make a
996 huge difference, but it's easy to do, so we try to be helpful.
997
998 The alignment chosen is arbitrary; usually data bus width is
999 important here, not the possibly larger cache line size. */
1000 enum { REMOTE_ALIGN_WRITES = 16 };
1001
1002 /* Prototypes for local functions. */
1003
1004 static int hexnumlen (ULONGEST num);
1005
1006 static int stubhex (int ch);
1007
1008 static int hexnumstr (char *, ULONGEST);
1009
1010 static int hexnumnstr (char *, ULONGEST, int);
1011
1012 static CORE_ADDR remote_address_masked (CORE_ADDR);
1013
1014 static void print_packet (const char *);
1015
1016 static int stub_unpack_int (char *buff, int fieldlength);
1017
1018 struct packet_config;
1019
1020 static void show_packet_config_cmd (struct packet_config *config);
1021
1022 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1023 int from_tty,
1024 struct cmd_list_element *c,
1025 const char *value);
1026
1027 static ptid_t read_ptid (const char *buf, const char **obuf);
1028
1029 static void remote_async_inferior_event_handler (gdb_client_data);
1030
1031 static bool remote_read_description_p (struct target_ops *target);
1032
1033 static void remote_console_output (const char *msg);
1034
1035 static void remote_btrace_reset (remote_state *rs);
1036
1037 static void remote_unpush_and_throw (remote_target *target);
1038
1039 /* For "remote". */
1040
1041 static struct cmd_list_element *remote_cmdlist;
1042
1043 /* For "set remote" and "show remote". */
1044
1045 static struct cmd_list_element *remote_set_cmdlist;
1046 static struct cmd_list_element *remote_show_cmdlist;
1047
1048 /* Controls whether GDB is willing to use range stepping. */
1049
1050 static bool use_range_stepping = true;
1051
1052 /* Private data that we'll store in (struct thread_info)->priv. */
1053 struct remote_thread_info : public private_thread_info
1054 {
1055 std::string extra;
1056 std::string name;
1057 int core = -1;
1058
1059 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1060 sequence of bytes. */
1061 gdb::byte_vector thread_handle;
1062
1063 /* Whether the target stopped for a breakpoint/watchpoint. */
1064 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1065
1066 /* This is set to the data address of the access causing the target
1067 to stop for a watchpoint. */
1068 CORE_ADDR watch_data_address = 0;
1069
1070 /* Fields used by the vCont action coalescing implemented in
1071 remote_resume / remote_commit_resume. remote_resume stores each
1072 thread's last resume request in these fields, so that a later
1073 remote_commit_resume knows which is the proper action for this
1074 thread to include in the vCont packet. */
1075
1076 /* True if the last target_resume call for this thread was a step
1077 request, false if a continue request. */
1078 int last_resume_step = 0;
1079
1080 /* The signal specified in the last target_resume call for this
1081 thread. */
1082 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1083
1084 /* Whether this thread was already vCont-resumed on the remote
1085 side. */
1086 int vcont_resumed = 0;
1087 };
1088
1089 remote_state::remote_state ()
1090 : buf (400)
1091 {
1092 }
1093
1094 remote_state::~remote_state ()
1095 {
1096 xfree (this->last_pass_packet);
1097 xfree (this->last_program_signals_packet);
1098 xfree (this->finished_object);
1099 xfree (this->finished_annex);
1100 }
1101
1102 /* Utility: generate error from an incoming stub packet. */
1103 static void
1104 trace_error (char *buf)
1105 {
1106 if (*buf++ != 'E')
1107 return; /* not an error msg */
1108 switch (*buf)
1109 {
1110 case '1': /* malformed packet error */
1111 if (*++buf == '0') /* general case: */
1112 error (_("remote.c: error in outgoing packet."));
1113 else
1114 error (_("remote.c: error in outgoing packet at field #%ld."),
1115 strtol (buf, NULL, 16));
1116 default:
1117 error (_("Target returns error code '%s'."), buf);
1118 }
1119 }
1120
1121 /* Utility: wait for reply from stub, while accepting "O" packets. */
1122
1123 char *
1124 remote_target::remote_get_noisy_reply ()
1125 {
1126 struct remote_state *rs = get_remote_state ();
1127
1128 do /* Loop on reply from remote stub. */
1129 {
1130 char *buf;
1131
1132 QUIT; /* Allow user to bail out with ^C. */
1133 getpkt (&rs->buf, 0);
1134 buf = rs->buf.data ();
1135 if (buf[0] == 'E')
1136 trace_error (buf);
1137 else if (startswith (buf, "qRelocInsn:"))
1138 {
1139 ULONGEST ul;
1140 CORE_ADDR from, to, org_to;
1141 const char *p, *pp;
1142 int adjusted_size = 0;
1143 int relocated = 0;
1144
1145 p = buf + strlen ("qRelocInsn:");
1146 pp = unpack_varlen_hex (p, &ul);
1147 if (*pp != ';')
1148 error (_("invalid qRelocInsn packet: %s"), buf);
1149 from = ul;
1150
1151 p = pp + 1;
1152 unpack_varlen_hex (p, &ul);
1153 to = ul;
1154
1155 org_to = to;
1156
1157 try
1158 {
1159 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1160 relocated = 1;
1161 }
1162 catch (const gdb_exception &ex)
1163 {
1164 if (ex.error == MEMORY_ERROR)
1165 {
1166 /* Propagate memory errors silently back to the
1167 target. The stub may have limited the range of
1168 addresses we can write to, for example. */
1169 }
1170 else
1171 {
1172 /* Something unexpectedly bad happened. Be verbose
1173 so we can tell what, and propagate the error back
1174 to the stub, so it doesn't get stuck waiting for
1175 a response. */
1176 exception_fprintf (gdb_stderr, ex,
1177 _("warning: relocating instruction: "));
1178 }
1179 putpkt ("E01");
1180 }
1181
1182 if (relocated)
1183 {
1184 adjusted_size = to - org_to;
1185
1186 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1187 putpkt (buf);
1188 }
1189 }
1190 else if (buf[0] == 'O' && buf[1] != 'K')
1191 remote_console_output (buf + 1); /* 'O' message from stub */
1192 else
1193 return buf; /* Here's the actual reply. */
1194 }
1195 while (1);
1196 }
1197
1198 struct remote_arch_state *
1199 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1200 {
1201 remote_arch_state *rsa;
1202
1203 auto it = this->m_arch_states.find (gdbarch);
1204 if (it == this->m_arch_states.end ())
1205 {
1206 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1207 std::forward_as_tuple (gdbarch),
1208 std::forward_as_tuple (gdbarch));
1209 rsa = &p.first->second;
1210
1211 /* Make sure that the packet buffer is plenty big enough for
1212 this architecture. */
1213 if (this->buf.size () < rsa->remote_packet_size)
1214 this->buf.resize (2 * rsa->remote_packet_size);
1215 }
1216 else
1217 rsa = &it->second;
1218
1219 return rsa;
1220 }
1221
1222 /* Fetch the global remote target state. */
1223
1224 remote_state *
1225 remote_target::get_remote_state ()
1226 {
1227 /* Make sure that the remote architecture state has been
1228 initialized, because doing so might reallocate rs->buf. Any
1229 function which calls getpkt also needs to be mindful of changes
1230 to rs->buf, but this call limits the number of places which run
1231 into trouble. */
1232 m_remote_state.get_remote_arch_state (target_gdbarch ());
1233
1234 return &m_remote_state;
1235 }
1236
1237 /* Fetch the remote exec-file from the current program space. */
1238
1239 static const char *
1240 get_remote_exec_file (void)
1241 {
1242 char *remote_exec_file;
1243
1244 remote_exec_file = remote_pspace_data.get (current_program_space);
1245 if (remote_exec_file == NULL)
1246 return "";
1247
1248 return remote_exec_file;
1249 }
1250
1251 /* Set the remote exec file for PSPACE. */
1252
1253 static void
1254 set_pspace_remote_exec_file (struct program_space *pspace,
1255 const char *remote_exec_file)
1256 {
1257 char *old_file = remote_pspace_data.get (pspace);
1258
1259 xfree (old_file);
1260 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1261 }
1262
1263 /* The "set/show remote exec-file" set command hook. */
1264
1265 static void
1266 set_remote_exec_file (const char *ignored, int from_tty,
1267 struct cmd_list_element *c)
1268 {
1269 gdb_assert (remote_exec_file_var != NULL);
1270 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1271 }
1272
1273 /* The "set/show remote exec-file" show command hook. */
1274
1275 static void
1276 show_remote_exec_file (struct ui_file *file, int from_tty,
1277 struct cmd_list_element *cmd, const char *value)
1278 {
1279 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1280 }
1281
1282 static int
1283 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1284 {
1285 int regnum, num_remote_regs, offset;
1286 struct packet_reg **remote_regs;
1287
1288 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1289 {
1290 struct packet_reg *r = &regs[regnum];
1291
1292 if (register_size (gdbarch, regnum) == 0)
1293 /* Do not try to fetch zero-sized (placeholder) registers. */
1294 r->pnum = -1;
1295 else
1296 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1297
1298 r->regnum = regnum;
1299 }
1300
1301 /* Define the g/G packet format as the contents of each register
1302 with a remote protocol number, in order of ascending protocol
1303 number. */
1304
1305 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1306 for (num_remote_regs = 0, regnum = 0;
1307 regnum < gdbarch_num_regs (gdbarch);
1308 regnum++)
1309 if (regs[regnum].pnum != -1)
1310 remote_regs[num_remote_regs++] = &regs[regnum];
1311
1312 std::sort (remote_regs, remote_regs + num_remote_regs,
1313 [] (const packet_reg *a, const packet_reg *b)
1314 { return a->pnum < b->pnum; });
1315
1316 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1317 {
1318 remote_regs[regnum]->in_g_packet = 1;
1319 remote_regs[regnum]->offset = offset;
1320 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1321 }
1322
1323 return offset;
1324 }
1325
1326 /* Given the architecture described by GDBARCH, return the remote
1327 protocol register's number and the register's offset in the g/G
1328 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1329 If the target does not have a mapping for REGNUM, return false,
1330 otherwise, return true. */
1331
1332 int
1333 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1334 int *pnum, int *poffset)
1335 {
1336 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1337
1338 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1339
1340 map_regcache_remote_table (gdbarch, regs.data ());
1341
1342 *pnum = regs[regnum].pnum;
1343 *poffset = regs[regnum].offset;
1344
1345 return *pnum != -1;
1346 }
1347
1348 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1349 {
1350 /* Use the architecture to build a regnum<->pnum table, which will be
1351 1:1 unless a feature set specifies otherwise. */
1352 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1353
1354 /* Record the maximum possible size of the g packet - it may turn out
1355 to be smaller. */
1356 this->sizeof_g_packet
1357 = map_regcache_remote_table (gdbarch, this->regs.get ());
1358
1359 /* Default maximum number of characters in a packet body. Many
1360 remote stubs have a hardwired buffer size of 400 bytes
1361 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1362 as the maximum packet-size to ensure that the packet and an extra
1363 NUL character can always fit in the buffer. This stops GDB
1364 trashing stubs that try to squeeze an extra NUL into what is
1365 already a full buffer (As of 1999-12-04 that was most stubs). */
1366 this->remote_packet_size = 400 - 1;
1367
1368 /* This one is filled in when a ``g'' packet is received. */
1369 this->actual_register_packet_size = 0;
1370
1371 /* Should rsa->sizeof_g_packet needs more space than the
1372 default, adjust the size accordingly. Remember that each byte is
1373 encoded as two characters. 32 is the overhead for the packet
1374 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1375 (``$NN:G...#NN'') is a better guess, the below has been padded a
1376 little. */
1377 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1378 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1379 }
1380
1381 /* Get a pointer to the current remote target. If not connected to a
1382 remote target, return NULL. */
1383
1384 static remote_target *
1385 get_current_remote_target ()
1386 {
1387 target_ops *proc_target = current_inferior ()->process_target ();
1388 return dynamic_cast<remote_target *> (proc_target);
1389 }
1390
1391 /* Return the current allowed size of a remote packet. This is
1392 inferred from the current architecture, and should be used to
1393 limit the length of outgoing packets. */
1394 long
1395 remote_target::get_remote_packet_size ()
1396 {
1397 struct remote_state *rs = get_remote_state ();
1398 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1399
1400 if (rs->explicit_packet_size)
1401 return rs->explicit_packet_size;
1402
1403 return rsa->remote_packet_size;
1404 }
1405
1406 static struct packet_reg *
1407 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1408 long regnum)
1409 {
1410 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1411 return NULL;
1412 else
1413 {
1414 struct packet_reg *r = &rsa->regs[regnum];
1415
1416 gdb_assert (r->regnum == regnum);
1417 return r;
1418 }
1419 }
1420
1421 static struct packet_reg *
1422 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1423 LONGEST pnum)
1424 {
1425 int i;
1426
1427 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1428 {
1429 struct packet_reg *r = &rsa->regs[i];
1430
1431 if (r->pnum == pnum)
1432 return r;
1433 }
1434 return NULL;
1435 }
1436
1437 /* Allow the user to specify what sequence to send to the remote
1438 when he requests a program interruption: Although ^C is usually
1439 what remote systems expect (this is the default, here), it is
1440 sometimes preferable to send a break. On other systems such
1441 as the Linux kernel, a break followed by g, which is Magic SysRq g
1442 is required in order to interrupt the execution. */
1443 const char interrupt_sequence_control_c[] = "Ctrl-C";
1444 const char interrupt_sequence_break[] = "BREAK";
1445 const char interrupt_sequence_break_g[] = "BREAK-g";
1446 static const char *const interrupt_sequence_modes[] =
1447 {
1448 interrupt_sequence_control_c,
1449 interrupt_sequence_break,
1450 interrupt_sequence_break_g,
1451 NULL
1452 };
1453 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1454
1455 static void
1456 show_interrupt_sequence (struct ui_file *file, int from_tty,
1457 struct cmd_list_element *c,
1458 const char *value)
1459 {
1460 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1461 fprintf_filtered (file,
1462 _("Send the ASCII ETX character (Ctrl-c) "
1463 "to the remote target to interrupt the "
1464 "execution of the program.\n"));
1465 else if (interrupt_sequence_mode == interrupt_sequence_break)
1466 fprintf_filtered (file,
1467 _("send a break signal to the remote target "
1468 "to interrupt the execution of the program.\n"));
1469 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1470 fprintf_filtered (file,
1471 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1472 "the remote target to interrupt the execution "
1473 "of Linux kernel.\n"));
1474 else
1475 internal_error (__FILE__, __LINE__,
1476 _("Invalid value for interrupt_sequence_mode: %s."),
1477 interrupt_sequence_mode);
1478 }
1479
1480 /* This boolean variable specifies whether interrupt_sequence is sent
1481 to the remote target when gdb connects to it.
1482 This is mostly needed when you debug the Linux kernel: The Linux kernel
1483 expects BREAK g which is Magic SysRq g for connecting gdb. */
1484 static bool interrupt_on_connect = false;
1485
1486 /* This variable is used to implement the "set/show remotebreak" commands.
1487 Since these commands are now deprecated in favor of "set/show remote
1488 interrupt-sequence", it no longer has any effect on the code. */
1489 static bool remote_break;
1490
1491 static void
1492 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1493 {
1494 if (remote_break)
1495 interrupt_sequence_mode = interrupt_sequence_break;
1496 else
1497 interrupt_sequence_mode = interrupt_sequence_control_c;
1498 }
1499
1500 static void
1501 show_remotebreak (struct ui_file *file, int from_tty,
1502 struct cmd_list_element *c,
1503 const char *value)
1504 {
1505 }
1506
1507 /* This variable sets the number of bits in an address that are to be
1508 sent in a memory ("M" or "m") packet. Normally, after stripping
1509 leading zeros, the entire address would be sent. This variable
1510 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1511 initial implementation of remote.c restricted the address sent in
1512 memory packets to ``host::sizeof long'' bytes - (typically 32
1513 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1514 address was never sent. Since fixing this bug may cause a break in
1515 some remote targets this variable is principally provided to
1516 facilitate backward compatibility. */
1517
1518 static unsigned int remote_address_size;
1519
1520 \f
1521 /* User configurable variables for the number of characters in a
1522 memory read/write packet. MIN (rsa->remote_packet_size,
1523 rsa->sizeof_g_packet) is the default. Some targets need smaller
1524 values (fifo overruns, et.al.) and some users need larger values
1525 (speed up transfers). The variables ``preferred_*'' (the user
1526 request), ``current_*'' (what was actually set) and ``forced_*''
1527 (Positive - a soft limit, negative - a hard limit). */
1528
1529 struct memory_packet_config
1530 {
1531 const char *name;
1532 long size;
1533 int fixed_p;
1534 };
1535
1536 /* The default max memory-write-packet-size, when the setting is
1537 "fixed". The 16k is historical. (It came from older GDB's using
1538 alloca for buffers and the knowledge (folklore?) that some hosts
1539 don't cope very well with large alloca calls.) */
1540 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1541
1542 /* The minimum remote packet size for memory transfers. Ensures we
1543 can write at least one byte. */
1544 #define MIN_MEMORY_PACKET_SIZE 20
1545
1546 /* Get the memory packet size, assuming it is fixed. */
1547
1548 static long
1549 get_fixed_memory_packet_size (struct memory_packet_config *config)
1550 {
1551 gdb_assert (config->fixed_p);
1552
1553 if (config->size <= 0)
1554 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1555 else
1556 return config->size;
1557 }
1558
1559 /* Compute the current size of a read/write packet. Since this makes
1560 use of ``actual_register_packet_size'' the computation is dynamic. */
1561
1562 long
1563 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1564 {
1565 struct remote_state *rs = get_remote_state ();
1566 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1567
1568 long what_they_get;
1569 if (config->fixed_p)
1570 what_they_get = get_fixed_memory_packet_size (config);
1571 else
1572 {
1573 what_they_get = get_remote_packet_size ();
1574 /* Limit the packet to the size specified by the user. */
1575 if (config->size > 0
1576 && what_they_get > config->size)
1577 what_they_get = config->size;
1578
1579 /* Limit it to the size of the targets ``g'' response unless we have
1580 permission from the stub to use a larger packet size. */
1581 if (rs->explicit_packet_size == 0
1582 && rsa->actual_register_packet_size > 0
1583 && what_they_get > rsa->actual_register_packet_size)
1584 what_they_get = rsa->actual_register_packet_size;
1585 }
1586 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1587 what_they_get = MIN_MEMORY_PACKET_SIZE;
1588
1589 /* Make sure there is room in the global buffer for this packet
1590 (including its trailing NUL byte). */
1591 if (rs->buf.size () < what_they_get + 1)
1592 rs->buf.resize (2 * what_they_get);
1593
1594 return what_they_get;
1595 }
1596
1597 /* Update the size of a read/write packet. If they user wants
1598 something really big then do a sanity check. */
1599
1600 static void
1601 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1602 {
1603 int fixed_p = config->fixed_p;
1604 long size = config->size;
1605
1606 if (args == NULL)
1607 error (_("Argument required (integer, `fixed' or `limited')."));
1608 else if (strcmp (args, "hard") == 0
1609 || strcmp (args, "fixed") == 0)
1610 fixed_p = 1;
1611 else if (strcmp (args, "soft") == 0
1612 || strcmp (args, "limit") == 0)
1613 fixed_p = 0;
1614 else
1615 {
1616 char *end;
1617
1618 size = strtoul (args, &end, 0);
1619 if (args == end)
1620 error (_("Invalid %s (bad syntax)."), config->name);
1621
1622 /* Instead of explicitly capping the size of a packet to or
1623 disallowing it, the user is allowed to set the size to
1624 something arbitrarily large. */
1625 }
1626
1627 /* Extra checks? */
1628 if (fixed_p && !config->fixed_p)
1629 {
1630 /* So that the query shows the correct value. */
1631 long query_size = (size <= 0
1632 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1633 : size);
1634
1635 if (! query (_("The target may not be able to correctly handle a %s\n"
1636 "of %ld bytes. Change the packet size? "),
1637 config->name, query_size))
1638 error (_("Packet size not changed."));
1639 }
1640 /* Update the config. */
1641 config->fixed_p = fixed_p;
1642 config->size = size;
1643 }
1644
1645 static void
1646 show_memory_packet_size (struct memory_packet_config *config)
1647 {
1648 if (config->size == 0)
1649 printf_filtered (_("The %s is 0 (default). "), config->name);
1650 else
1651 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1652 if (config->fixed_p)
1653 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1654 get_fixed_memory_packet_size (config));
1655 else
1656 {
1657 remote_target *remote = get_current_remote_target ();
1658
1659 if (remote != NULL)
1660 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1661 remote->get_memory_packet_size (config));
1662 else
1663 puts_filtered ("The actual limit will be further reduced "
1664 "dependent on the target.\n");
1665 }
1666 }
1667
1668 /* FIXME: needs to be per-remote-target. */
1669 static struct memory_packet_config memory_write_packet_config =
1670 {
1671 "memory-write-packet-size",
1672 };
1673
1674 static void
1675 set_memory_write_packet_size (const char *args, int from_tty)
1676 {
1677 set_memory_packet_size (args, &memory_write_packet_config);
1678 }
1679
1680 static void
1681 show_memory_write_packet_size (const char *args, int from_tty)
1682 {
1683 show_memory_packet_size (&memory_write_packet_config);
1684 }
1685
1686 /* Show the number of hardware watchpoints that can be used. */
1687
1688 static void
1689 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1690 struct cmd_list_element *c,
1691 const char *value)
1692 {
1693 fprintf_filtered (file, _("The maximum number of target hardware "
1694 "watchpoints is %s.\n"), value);
1695 }
1696
1697 /* Show the length limit (in bytes) for hardware watchpoints. */
1698
1699 static void
1700 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1701 struct cmd_list_element *c,
1702 const char *value)
1703 {
1704 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1705 "hardware watchpoint is %s.\n"), value);
1706 }
1707
1708 /* Show the number of hardware breakpoints that can be used. */
1709
1710 static void
1711 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1712 struct cmd_list_element *c,
1713 const char *value)
1714 {
1715 fprintf_filtered (file, _("The maximum number of target hardware "
1716 "breakpoints is %s.\n"), value);
1717 }
1718
1719 /* Controls the maximum number of characters to display in the debug output
1720 for each remote packet. The remaining characters are omitted. */
1721
1722 static int remote_packet_max_chars = 512;
1723
1724 /* Show the maximum number of characters to display for each remote packet
1725 when remote debugging is enabled. */
1726
1727 static void
1728 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1729 struct cmd_list_element *c,
1730 const char *value)
1731 {
1732 fprintf_filtered (file, _("Number of remote packet characters to "
1733 "display is %s.\n"), value);
1734 }
1735
1736 long
1737 remote_target::get_memory_write_packet_size ()
1738 {
1739 return get_memory_packet_size (&memory_write_packet_config);
1740 }
1741
1742 /* FIXME: needs to be per-remote-target. */
1743 static struct memory_packet_config memory_read_packet_config =
1744 {
1745 "memory-read-packet-size",
1746 };
1747
1748 static void
1749 set_memory_read_packet_size (const char *args, int from_tty)
1750 {
1751 set_memory_packet_size (args, &memory_read_packet_config);
1752 }
1753
1754 static void
1755 show_memory_read_packet_size (const char *args, int from_tty)
1756 {
1757 show_memory_packet_size (&memory_read_packet_config);
1758 }
1759
1760 long
1761 remote_target::get_memory_read_packet_size ()
1762 {
1763 long size = get_memory_packet_size (&memory_read_packet_config);
1764
1765 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1766 extra buffer size argument before the memory read size can be
1767 increased beyond this. */
1768 if (size > get_remote_packet_size ())
1769 size = get_remote_packet_size ();
1770 return size;
1771 }
1772
1773 \f
1774
1775 struct packet_config
1776 {
1777 const char *name;
1778 const char *title;
1779
1780 /* If auto, GDB auto-detects support for this packet or feature,
1781 either through qSupported, or by trying the packet and looking
1782 at the response. If true, GDB assumes the target supports this
1783 packet. If false, the packet is disabled. Configs that don't
1784 have an associated command always have this set to auto. */
1785 enum auto_boolean detect;
1786
1787 /* Does the target support this packet? */
1788 enum packet_support support;
1789 };
1790
1791 static enum packet_support packet_config_support (struct packet_config *config);
1792 static enum packet_support packet_support (int packet);
1793
1794 static void
1795 show_packet_config_cmd (struct packet_config *config)
1796 {
1797 const char *support = "internal-error";
1798
1799 switch (packet_config_support (config))
1800 {
1801 case PACKET_ENABLE:
1802 support = "enabled";
1803 break;
1804 case PACKET_DISABLE:
1805 support = "disabled";
1806 break;
1807 case PACKET_SUPPORT_UNKNOWN:
1808 support = "unknown";
1809 break;
1810 }
1811 switch (config->detect)
1812 {
1813 case AUTO_BOOLEAN_AUTO:
1814 printf_filtered (_("Support for the `%s' packet "
1815 "is auto-detected, currently %s.\n"),
1816 config->name, support);
1817 break;
1818 case AUTO_BOOLEAN_TRUE:
1819 case AUTO_BOOLEAN_FALSE:
1820 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1821 config->name, support);
1822 break;
1823 }
1824 }
1825
1826 static void
1827 add_packet_config_cmd (struct packet_config *config, const char *name,
1828 const char *title, int legacy)
1829 {
1830 char *set_doc;
1831 char *show_doc;
1832 char *cmd_name;
1833
1834 config->name = name;
1835 config->title = title;
1836 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1837 name, title);
1838 show_doc = xstrprintf ("Show current use of remote "
1839 "protocol `%s' (%s) packet.",
1840 name, title);
1841 /* set/show TITLE-packet {auto,on,off} */
1842 cmd_name = xstrprintf ("%s-packet", title);
1843 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1844 &config->detect, set_doc,
1845 show_doc, NULL, /* help_doc */
1846 NULL,
1847 show_remote_protocol_packet_cmd,
1848 &remote_set_cmdlist, &remote_show_cmdlist);
1849 /* The command code copies the documentation strings. */
1850 xfree (set_doc);
1851 xfree (show_doc);
1852 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1853 if (legacy)
1854 {
1855 char *legacy_name;
1856
1857 legacy_name = xstrprintf ("%s-packet", name);
1858 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1859 &remote_set_cmdlist);
1860 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1861 &remote_show_cmdlist);
1862 }
1863 }
1864
1865 static enum packet_result
1866 packet_check_result (const char *buf)
1867 {
1868 if (buf[0] != '\0')
1869 {
1870 /* The stub recognized the packet request. Check that the
1871 operation succeeded. */
1872 if (buf[0] == 'E'
1873 && isxdigit (buf[1]) && isxdigit (buf[2])
1874 && buf[3] == '\0')
1875 /* "Enn" - definitely an error. */
1876 return PACKET_ERROR;
1877
1878 /* Always treat "E." as an error. This will be used for
1879 more verbose error messages, such as E.memtypes. */
1880 if (buf[0] == 'E' && buf[1] == '.')
1881 return PACKET_ERROR;
1882
1883 /* The packet may or may not be OK. Just assume it is. */
1884 return PACKET_OK;
1885 }
1886 else
1887 /* The stub does not support the packet. */
1888 return PACKET_UNKNOWN;
1889 }
1890
1891 static enum packet_result
1892 packet_check_result (const gdb::char_vector &buf)
1893 {
1894 return packet_check_result (buf.data ());
1895 }
1896
1897 static enum packet_result
1898 packet_ok (const char *buf, struct packet_config *config)
1899 {
1900 enum packet_result result;
1901
1902 if (config->detect != AUTO_BOOLEAN_TRUE
1903 && config->support == PACKET_DISABLE)
1904 internal_error (__FILE__, __LINE__,
1905 _("packet_ok: attempt to use a disabled packet"));
1906
1907 result = packet_check_result (buf);
1908 switch (result)
1909 {
1910 case PACKET_OK:
1911 case PACKET_ERROR:
1912 /* The stub recognized the packet request. */
1913 if (config->support == PACKET_SUPPORT_UNKNOWN)
1914 {
1915 if (remote_debug)
1916 fprintf_unfiltered (gdb_stdlog,
1917 "Packet %s (%s) is supported\n",
1918 config->name, config->title);
1919 config->support = PACKET_ENABLE;
1920 }
1921 break;
1922 case PACKET_UNKNOWN:
1923 /* The stub does not support the packet. */
1924 if (config->detect == AUTO_BOOLEAN_AUTO
1925 && config->support == PACKET_ENABLE)
1926 {
1927 /* If the stub previously indicated that the packet was
1928 supported then there is a protocol error. */
1929 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1930 config->name, config->title);
1931 }
1932 else if (config->detect == AUTO_BOOLEAN_TRUE)
1933 {
1934 /* The user set it wrong. */
1935 error (_("Enabled packet %s (%s) not recognized by stub"),
1936 config->name, config->title);
1937 }
1938
1939 if (remote_debug)
1940 fprintf_unfiltered (gdb_stdlog,
1941 "Packet %s (%s) is NOT supported\n",
1942 config->name, config->title);
1943 config->support = PACKET_DISABLE;
1944 break;
1945 }
1946
1947 return result;
1948 }
1949
1950 static enum packet_result
1951 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1952 {
1953 return packet_ok (buf.data (), config);
1954 }
1955
1956 enum {
1957 PACKET_vCont = 0,
1958 PACKET_X,
1959 PACKET_qSymbol,
1960 PACKET_P,
1961 PACKET_p,
1962 PACKET_Z0,
1963 PACKET_Z1,
1964 PACKET_Z2,
1965 PACKET_Z3,
1966 PACKET_Z4,
1967 PACKET_vFile_setfs,
1968 PACKET_vFile_open,
1969 PACKET_vFile_pread,
1970 PACKET_vFile_pwrite,
1971 PACKET_vFile_close,
1972 PACKET_vFile_unlink,
1973 PACKET_vFile_readlink,
1974 PACKET_vFile_fstat,
1975 PACKET_qXfer_auxv,
1976 PACKET_qXfer_features,
1977 PACKET_qXfer_exec_file,
1978 PACKET_qXfer_libraries,
1979 PACKET_qXfer_libraries_svr4,
1980 PACKET_qXfer_memory_map,
1981 PACKET_qXfer_osdata,
1982 PACKET_qXfer_threads,
1983 PACKET_qXfer_statictrace_read,
1984 PACKET_qXfer_traceframe_info,
1985 PACKET_qXfer_uib,
1986 PACKET_qGetTIBAddr,
1987 PACKET_qGetTLSAddr,
1988 PACKET_qSupported,
1989 PACKET_qTStatus,
1990 PACKET_QPassSignals,
1991 PACKET_QCatchSyscalls,
1992 PACKET_QProgramSignals,
1993 PACKET_QSetWorkingDir,
1994 PACKET_QStartupWithShell,
1995 PACKET_QEnvironmentHexEncoded,
1996 PACKET_QEnvironmentReset,
1997 PACKET_QEnvironmentUnset,
1998 PACKET_qCRC,
1999 PACKET_qSearch_memory,
2000 PACKET_vAttach,
2001 PACKET_vRun,
2002 PACKET_QStartNoAckMode,
2003 PACKET_vKill,
2004 PACKET_qXfer_siginfo_read,
2005 PACKET_qXfer_siginfo_write,
2006 PACKET_qAttached,
2007
2008 /* Support for conditional tracepoints. */
2009 PACKET_ConditionalTracepoints,
2010
2011 /* Support for target-side breakpoint conditions. */
2012 PACKET_ConditionalBreakpoints,
2013
2014 /* Support for target-side breakpoint commands. */
2015 PACKET_BreakpointCommands,
2016
2017 /* Support for fast tracepoints. */
2018 PACKET_FastTracepoints,
2019
2020 /* Support for static tracepoints. */
2021 PACKET_StaticTracepoints,
2022
2023 /* Support for installing tracepoints while a trace experiment is
2024 running. */
2025 PACKET_InstallInTrace,
2026
2027 PACKET_bc,
2028 PACKET_bs,
2029 PACKET_TracepointSource,
2030 PACKET_QAllow,
2031 PACKET_qXfer_fdpic,
2032 PACKET_QDisableRandomization,
2033 PACKET_QAgent,
2034 PACKET_QTBuffer_size,
2035 PACKET_Qbtrace_off,
2036 PACKET_Qbtrace_bts,
2037 PACKET_Qbtrace_pt,
2038 PACKET_qXfer_btrace,
2039
2040 /* Support for the QNonStop packet. */
2041 PACKET_QNonStop,
2042
2043 /* Support for the QThreadEvents packet. */
2044 PACKET_QThreadEvents,
2045
2046 /* Support for multi-process extensions. */
2047 PACKET_multiprocess_feature,
2048
2049 /* Support for enabling and disabling tracepoints while a trace
2050 experiment is running. */
2051 PACKET_EnableDisableTracepoints_feature,
2052
2053 /* Support for collecting strings using the tracenz bytecode. */
2054 PACKET_tracenz_feature,
2055
2056 /* Support for continuing to run a trace experiment while GDB is
2057 disconnected. */
2058 PACKET_DisconnectedTracing_feature,
2059
2060 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2061 PACKET_augmented_libraries_svr4_read_feature,
2062
2063 /* Support for the qXfer:btrace-conf:read packet. */
2064 PACKET_qXfer_btrace_conf,
2065
2066 /* Support for the Qbtrace-conf:bts:size packet. */
2067 PACKET_Qbtrace_conf_bts_size,
2068
2069 /* Support for swbreak+ feature. */
2070 PACKET_swbreak_feature,
2071
2072 /* Support for hwbreak+ feature. */
2073 PACKET_hwbreak_feature,
2074
2075 /* Support for fork events. */
2076 PACKET_fork_event_feature,
2077
2078 /* Support for vfork events. */
2079 PACKET_vfork_event_feature,
2080
2081 /* Support for the Qbtrace-conf:pt:size packet. */
2082 PACKET_Qbtrace_conf_pt_size,
2083
2084 /* Support for exec events. */
2085 PACKET_exec_event_feature,
2086
2087 /* Support for query supported vCont actions. */
2088 PACKET_vContSupported,
2089
2090 /* Support remote CTRL-C. */
2091 PACKET_vCtrlC,
2092
2093 /* Support TARGET_WAITKIND_NO_RESUMED. */
2094 PACKET_no_resumed,
2095
2096 PACKET_MAX
2097 };
2098
2099 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2100 assuming all remote targets are the same server (thus all support
2101 the same packets). */
2102 static struct packet_config remote_protocol_packets[PACKET_MAX];
2103
2104 /* Returns the packet's corresponding "set remote foo-packet" command
2105 state. See struct packet_config for more details. */
2106
2107 static enum auto_boolean
2108 packet_set_cmd_state (int packet)
2109 {
2110 return remote_protocol_packets[packet].detect;
2111 }
2112
2113 /* Returns whether a given packet or feature is supported. This takes
2114 into account the state of the corresponding "set remote foo-packet"
2115 command, which may be used to bypass auto-detection. */
2116
2117 static enum packet_support
2118 packet_config_support (struct packet_config *config)
2119 {
2120 switch (config->detect)
2121 {
2122 case AUTO_BOOLEAN_TRUE:
2123 return PACKET_ENABLE;
2124 case AUTO_BOOLEAN_FALSE:
2125 return PACKET_DISABLE;
2126 case AUTO_BOOLEAN_AUTO:
2127 return config->support;
2128 default:
2129 gdb_assert_not_reached (_("bad switch"));
2130 }
2131 }
2132
2133 /* Same as packet_config_support, but takes the packet's enum value as
2134 argument. */
2135
2136 static enum packet_support
2137 packet_support (int packet)
2138 {
2139 struct packet_config *config = &remote_protocol_packets[packet];
2140
2141 return packet_config_support (config);
2142 }
2143
2144 static void
2145 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2146 struct cmd_list_element *c,
2147 const char *value)
2148 {
2149 struct packet_config *packet;
2150
2151 for (packet = remote_protocol_packets;
2152 packet < &remote_protocol_packets[PACKET_MAX];
2153 packet++)
2154 {
2155 if (&packet->detect == c->var)
2156 {
2157 show_packet_config_cmd (packet);
2158 return;
2159 }
2160 }
2161 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2162 c->name);
2163 }
2164
2165 /* Should we try one of the 'Z' requests? */
2166
2167 enum Z_packet_type
2168 {
2169 Z_PACKET_SOFTWARE_BP,
2170 Z_PACKET_HARDWARE_BP,
2171 Z_PACKET_WRITE_WP,
2172 Z_PACKET_READ_WP,
2173 Z_PACKET_ACCESS_WP,
2174 NR_Z_PACKET_TYPES
2175 };
2176
2177 /* For compatibility with older distributions. Provide a ``set remote
2178 Z-packet ...'' command that updates all the Z packet types. */
2179
2180 static enum auto_boolean remote_Z_packet_detect;
2181
2182 static void
2183 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2184 struct cmd_list_element *c)
2185 {
2186 int i;
2187
2188 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2189 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2190 }
2191
2192 static void
2193 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2194 struct cmd_list_element *c,
2195 const char *value)
2196 {
2197 int i;
2198
2199 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2200 {
2201 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2202 }
2203 }
2204
2205 /* Returns true if the multi-process extensions are in effect. */
2206
2207 static int
2208 remote_multi_process_p (struct remote_state *rs)
2209 {
2210 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2211 }
2212
2213 /* Returns true if fork events are supported. */
2214
2215 static int
2216 remote_fork_event_p (struct remote_state *rs)
2217 {
2218 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2219 }
2220
2221 /* Returns true if vfork events are supported. */
2222
2223 static int
2224 remote_vfork_event_p (struct remote_state *rs)
2225 {
2226 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2227 }
2228
2229 /* Returns true if exec events are supported. */
2230
2231 static int
2232 remote_exec_event_p (struct remote_state *rs)
2233 {
2234 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2235 }
2236
2237 /* Insert fork catchpoint target routine. If fork events are enabled
2238 then return success, nothing more to do. */
2239
2240 int
2241 remote_target::insert_fork_catchpoint (int pid)
2242 {
2243 struct remote_state *rs = get_remote_state ();
2244
2245 return !remote_fork_event_p (rs);
2246 }
2247
2248 /* Remove fork catchpoint target routine. Nothing to do, just
2249 return success. */
2250
2251 int
2252 remote_target::remove_fork_catchpoint (int pid)
2253 {
2254 return 0;
2255 }
2256
2257 /* Insert vfork catchpoint target routine. If vfork events are enabled
2258 then return success, nothing more to do. */
2259
2260 int
2261 remote_target::insert_vfork_catchpoint (int pid)
2262 {
2263 struct remote_state *rs = get_remote_state ();
2264
2265 return !remote_vfork_event_p (rs);
2266 }
2267
2268 /* Remove vfork catchpoint target routine. Nothing to do, just
2269 return success. */
2270
2271 int
2272 remote_target::remove_vfork_catchpoint (int pid)
2273 {
2274 return 0;
2275 }
2276
2277 /* Insert exec catchpoint target routine. If exec events are
2278 enabled, just return success. */
2279
2280 int
2281 remote_target::insert_exec_catchpoint (int pid)
2282 {
2283 struct remote_state *rs = get_remote_state ();
2284
2285 return !remote_exec_event_p (rs);
2286 }
2287
2288 /* Remove exec catchpoint target routine. Nothing to do, just
2289 return success. */
2290
2291 int
2292 remote_target::remove_exec_catchpoint (int pid)
2293 {
2294 return 0;
2295 }
2296
2297 \f
2298
2299 /* Take advantage of the fact that the TID field is not used, to tag
2300 special ptids with it set to != 0. */
2301 static const ptid_t magic_null_ptid (42000, -1, 1);
2302 static const ptid_t not_sent_ptid (42000, -2, 1);
2303 static const ptid_t any_thread_ptid (42000, 0, 1);
2304
2305 /* Find out if the stub attached to PID (and hence GDB should offer to
2306 detach instead of killing it when bailing out). */
2307
2308 int
2309 remote_target::remote_query_attached (int pid)
2310 {
2311 struct remote_state *rs = get_remote_state ();
2312 size_t size = get_remote_packet_size ();
2313
2314 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2315 return 0;
2316
2317 if (remote_multi_process_p (rs))
2318 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2319 else
2320 xsnprintf (rs->buf.data (), size, "qAttached");
2321
2322 putpkt (rs->buf);
2323 getpkt (&rs->buf, 0);
2324
2325 switch (packet_ok (rs->buf,
2326 &remote_protocol_packets[PACKET_qAttached]))
2327 {
2328 case PACKET_OK:
2329 if (strcmp (rs->buf.data (), "1") == 0)
2330 return 1;
2331 break;
2332 case PACKET_ERROR:
2333 warning (_("Remote failure reply: %s"), rs->buf.data ());
2334 break;
2335 case PACKET_UNKNOWN:
2336 break;
2337 }
2338
2339 return 0;
2340 }
2341
2342 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2343 has been invented by GDB, instead of reported by the target. Since
2344 we can be connected to a remote system before before knowing about
2345 any inferior, mark the target with execution when we find the first
2346 inferior. If ATTACHED is 1, then we had just attached to this
2347 inferior. If it is 0, then we just created this inferior. If it
2348 is -1, then try querying the remote stub to find out if it had
2349 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2350 attempt to open this inferior's executable as the main executable
2351 if no main executable is open already. */
2352
2353 inferior *
2354 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2355 int try_open_exec)
2356 {
2357 struct inferior *inf;
2358
2359 /* Check whether this process we're learning about is to be
2360 considered attached, or if is to be considered to have been
2361 spawned by the stub. */
2362 if (attached == -1)
2363 attached = remote_query_attached (pid);
2364
2365 if (gdbarch_has_global_solist (target_gdbarch ()))
2366 {
2367 /* If the target shares code across all inferiors, then every
2368 attach adds a new inferior. */
2369 inf = add_inferior (pid);
2370
2371 /* ... and every inferior is bound to the same program space.
2372 However, each inferior may still have its own address
2373 space. */
2374 inf->aspace = maybe_new_address_space ();
2375 inf->pspace = current_program_space;
2376 }
2377 else
2378 {
2379 /* In the traditional debugging scenario, there's a 1-1 match
2380 between program/address spaces. We simply bind the inferior
2381 to the program space's address space. */
2382 inf = current_inferior ();
2383
2384 /* However, if the current inferior is already bound to a
2385 process, find some other empty inferior. */
2386 if (inf->pid != 0)
2387 {
2388 inf = nullptr;
2389 for (inferior *it : all_inferiors ())
2390 if (it->pid == 0)
2391 {
2392 inf = it;
2393 break;
2394 }
2395 }
2396 if (inf == nullptr)
2397 {
2398 /* Since all inferiors were already bound to a process, add
2399 a new inferior. */
2400 inf = add_inferior_with_spaces ();
2401 }
2402 switch_to_inferior_no_thread (inf);
2403 push_target (this);
2404 inferior_appeared (inf, pid);
2405 }
2406
2407 inf->attach_flag = attached;
2408 inf->fake_pid_p = fake_pid_p;
2409
2410 /* If no main executable is currently open then attempt to
2411 open the file that was executed to create this inferior. */
2412 if (try_open_exec && get_exec_file (0) == NULL)
2413 exec_file_locate_attach (pid, 0, 1);
2414
2415 /* Check for exec file mismatch, and let the user solve it. */
2416 validate_exec_file (1);
2417
2418 return inf;
2419 }
2420
2421 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2422 static remote_thread_info *get_remote_thread_info (remote_target *target,
2423 ptid_t ptid);
2424
2425 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2426 according to RUNNING. */
2427
2428 thread_info *
2429 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2430 {
2431 struct remote_state *rs = get_remote_state ();
2432 struct thread_info *thread;
2433
2434 /* GDB historically didn't pull threads in the initial connection
2435 setup. If the remote target doesn't even have a concept of
2436 threads (e.g., a bare-metal target), even if internally we
2437 consider that a single-threaded target, mentioning a new thread
2438 might be confusing to the user. Be silent then, preserving the
2439 age old behavior. */
2440 if (rs->starting_up)
2441 thread = add_thread_silent (this, ptid);
2442 else
2443 thread = add_thread (this, ptid);
2444
2445 get_remote_thread_info (thread)->vcont_resumed = executing;
2446 set_executing (this, ptid, executing);
2447 set_running (this, ptid, running);
2448
2449 return thread;
2450 }
2451
2452 /* Come here when we learn about a thread id from the remote target.
2453 It may be the first time we hear about such thread, so take the
2454 opportunity to add it to GDB's thread list. In case this is the
2455 first time we're noticing its corresponding inferior, add it to
2456 GDB's inferior list as well. EXECUTING indicates whether the
2457 thread is (internally) executing or stopped. */
2458
2459 void
2460 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2461 {
2462 /* In non-stop mode, we assume new found threads are (externally)
2463 running until proven otherwise with a stop reply. In all-stop,
2464 we can only get here if all threads are stopped. */
2465 int running = target_is_non_stop_p () ? 1 : 0;
2466
2467 /* If this is a new thread, add it to GDB's thread list.
2468 If we leave it up to WFI to do this, bad things will happen. */
2469
2470 thread_info *tp = find_thread_ptid (this, currthread);
2471 if (tp != NULL && tp->state == THREAD_EXITED)
2472 {
2473 /* We're seeing an event on a thread id we knew had exited.
2474 This has to be a new thread reusing the old id. Add it. */
2475 remote_add_thread (currthread, running, executing);
2476 return;
2477 }
2478
2479 if (!in_thread_list (this, currthread))
2480 {
2481 struct inferior *inf = NULL;
2482 int pid = currthread.pid ();
2483
2484 if (inferior_ptid.is_pid ()
2485 && pid == inferior_ptid.pid ())
2486 {
2487 /* inferior_ptid has no thread member yet. This can happen
2488 with the vAttach -> remote_wait,"TAAthread:" path if the
2489 stub doesn't support qC. This is the first stop reported
2490 after an attach, so this is the main thread. Update the
2491 ptid in the thread list. */
2492 if (in_thread_list (this, ptid_t (pid)))
2493 thread_change_ptid (this, inferior_ptid, currthread);
2494 else
2495 {
2496 thread_info *thr
2497 = remote_add_thread (currthread, running, executing);
2498 switch_to_thread (thr);
2499 }
2500 return;
2501 }
2502
2503 if (magic_null_ptid == inferior_ptid)
2504 {
2505 /* inferior_ptid is not set yet. This can happen with the
2506 vRun -> remote_wait,"TAAthread:" path if the stub
2507 doesn't support qC. This is the first stop reported
2508 after an attach, so this is the main thread. Update the
2509 ptid in the thread list. */
2510 thread_change_ptid (this, inferior_ptid, currthread);
2511 return;
2512 }
2513
2514 /* When connecting to a target remote, or to a target
2515 extended-remote which already was debugging an inferior, we
2516 may not know about it yet. Add it before adding its child
2517 thread, so notifications are emitted in a sensible order. */
2518 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2519 {
2520 struct remote_state *rs = get_remote_state ();
2521 bool fake_pid_p = !remote_multi_process_p (rs);
2522
2523 inf = remote_add_inferior (fake_pid_p,
2524 currthread.pid (), -1, 1);
2525 }
2526
2527 /* This is really a new thread. Add it. */
2528 thread_info *new_thr
2529 = remote_add_thread (currthread, running, executing);
2530
2531 /* If we found a new inferior, let the common code do whatever
2532 it needs to with it (e.g., read shared libraries, insert
2533 breakpoints), unless we're just setting up an all-stop
2534 connection. */
2535 if (inf != NULL)
2536 {
2537 struct remote_state *rs = get_remote_state ();
2538
2539 if (!rs->starting_up)
2540 notice_new_inferior (new_thr, executing, 0);
2541 }
2542 }
2543 }
2544
2545 /* Return THREAD's private thread data, creating it if necessary. */
2546
2547 static remote_thread_info *
2548 get_remote_thread_info (thread_info *thread)
2549 {
2550 gdb_assert (thread != NULL);
2551
2552 if (thread->priv == NULL)
2553 thread->priv.reset (new remote_thread_info);
2554
2555 return static_cast<remote_thread_info *> (thread->priv.get ());
2556 }
2557
2558 /* Return PTID's private thread data, creating it if necessary. */
2559
2560 static remote_thread_info *
2561 get_remote_thread_info (remote_target *target, ptid_t ptid)
2562 {
2563 thread_info *thr = find_thread_ptid (target, ptid);
2564 return get_remote_thread_info (thr);
2565 }
2566
2567 /* Call this function as a result of
2568 1) A halt indication (T packet) containing a thread id
2569 2) A direct query of currthread
2570 3) Successful execution of set thread */
2571
2572 static void
2573 record_currthread (struct remote_state *rs, ptid_t currthread)
2574 {
2575 rs->general_thread = currthread;
2576 }
2577
2578 /* If 'QPassSignals' is supported, tell the remote stub what signals
2579 it can simply pass through to the inferior without reporting. */
2580
2581 void
2582 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2583 {
2584 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2585 {
2586 char *pass_packet, *p;
2587 int count = 0;
2588 struct remote_state *rs = get_remote_state ();
2589
2590 gdb_assert (pass_signals.size () < 256);
2591 for (size_t i = 0; i < pass_signals.size (); i++)
2592 {
2593 if (pass_signals[i])
2594 count++;
2595 }
2596 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2597 strcpy (pass_packet, "QPassSignals:");
2598 p = pass_packet + strlen (pass_packet);
2599 for (size_t i = 0; i < pass_signals.size (); i++)
2600 {
2601 if (pass_signals[i])
2602 {
2603 if (i >= 16)
2604 *p++ = tohex (i >> 4);
2605 *p++ = tohex (i & 15);
2606 if (count)
2607 *p++ = ';';
2608 else
2609 break;
2610 count--;
2611 }
2612 }
2613 *p = 0;
2614 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2615 {
2616 putpkt (pass_packet);
2617 getpkt (&rs->buf, 0);
2618 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2619 xfree (rs->last_pass_packet);
2620 rs->last_pass_packet = pass_packet;
2621 }
2622 else
2623 xfree (pass_packet);
2624 }
2625 }
2626
2627 /* If 'QCatchSyscalls' is supported, tell the remote stub
2628 to report syscalls to GDB. */
2629
2630 int
2631 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2632 gdb::array_view<const int> syscall_counts)
2633 {
2634 const char *catch_packet;
2635 enum packet_result result;
2636 int n_sysno = 0;
2637
2638 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2639 {
2640 /* Not supported. */
2641 return 1;
2642 }
2643
2644 if (needed && any_count == 0)
2645 {
2646 /* Count how many syscalls are to be caught. */
2647 for (size_t i = 0; i < syscall_counts.size (); i++)
2648 {
2649 if (syscall_counts[i] != 0)
2650 n_sysno++;
2651 }
2652 }
2653
2654 if (remote_debug)
2655 {
2656 fprintf_unfiltered (gdb_stdlog,
2657 "remote_set_syscall_catchpoint "
2658 "pid %d needed %d any_count %d n_sysno %d\n",
2659 pid, needed, any_count, n_sysno);
2660 }
2661
2662 std::string built_packet;
2663 if (needed)
2664 {
2665 /* Prepare a packet with the sysno list, assuming max 8+1
2666 characters for a sysno. If the resulting packet size is too
2667 big, fallback on the non-selective packet. */
2668 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2669 built_packet.reserve (maxpktsz);
2670 built_packet = "QCatchSyscalls:1";
2671 if (any_count == 0)
2672 {
2673 /* Add in each syscall to be caught. */
2674 for (size_t i = 0; i < syscall_counts.size (); i++)
2675 {
2676 if (syscall_counts[i] != 0)
2677 string_appendf (built_packet, ";%zx", i);
2678 }
2679 }
2680 if (built_packet.size () > get_remote_packet_size ())
2681 {
2682 /* catch_packet too big. Fallback to less efficient
2683 non selective mode, with GDB doing the filtering. */
2684 catch_packet = "QCatchSyscalls:1";
2685 }
2686 else
2687 catch_packet = built_packet.c_str ();
2688 }
2689 else
2690 catch_packet = "QCatchSyscalls:0";
2691
2692 struct remote_state *rs = get_remote_state ();
2693
2694 putpkt (catch_packet);
2695 getpkt (&rs->buf, 0);
2696 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2697 if (result == PACKET_OK)
2698 return 0;
2699 else
2700 return -1;
2701 }
2702
2703 /* If 'QProgramSignals' is supported, tell the remote stub what
2704 signals it should pass through to the inferior when detaching. */
2705
2706 void
2707 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2708 {
2709 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2710 {
2711 char *packet, *p;
2712 int count = 0;
2713 struct remote_state *rs = get_remote_state ();
2714
2715 gdb_assert (signals.size () < 256);
2716 for (size_t i = 0; i < signals.size (); i++)
2717 {
2718 if (signals[i])
2719 count++;
2720 }
2721 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2722 strcpy (packet, "QProgramSignals:");
2723 p = packet + strlen (packet);
2724 for (size_t i = 0; i < signals.size (); i++)
2725 {
2726 if (signal_pass_state (i))
2727 {
2728 if (i >= 16)
2729 *p++ = tohex (i >> 4);
2730 *p++ = tohex (i & 15);
2731 if (count)
2732 *p++ = ';';
2733 else
2734 break;
2735 count--;
2736 }
2737 }
2738 *p = 0;
2739 if (!rs->last_program_signals_packet
2740 || strcmp (rs->last_program_signals_packet, packet) != 0)
2741 {
2742 putpkt (packet);
2743 getpkt (&rs->buf, 0);
2744 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2745 xfree (rs->last_program_signals_packet);
2746 rs->last_program_signals_packet = packet;
2747 }
2748 else
2749 xfree (packet);
2750 }
2751 }
2752
2753 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2754 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2755 thread. If GEN is set, set the general thread, if not, then set
2756 the step/continue thread. */
2757 void
2758 remote_target::set_thread (ptid_t ptid, int gen)
2759 {
2760 struct remote_state *rs = get_remote_state ();
2761 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2762 char *buf = rs->buf.data ();
2763 char *endbuf = buf + get_remote_packet_size ();
2764
2765 if (state == ptid)
2766 return;
2767
2768 *buf++ = 'H';
2769 *buf++ = gen ? 'g' : 'c';
2770 if (ptid == magic_null_ptid)
2771 xsnprintf (buf, endbuf - buf, "0");
2772 else if (ptid == any_thread_ptid)
2773 xsnprintf (buf, endbuf - buf, "0");
2774 else if (ptid == minus_one_ptid)
2775 xsnprintf (buf, endbuf - buf, "-1");
2776 else
2777 write_ptid (buf, endbuf, ptid);
2778 putpkt (rs->buf);
2779 getpkt (&rs->buf, 0);
2780 if (gen)
2781 rs->general_thread = ptid;
2782 else
2783 rs->continue_thread = ptid;
2784 }
2785
2786 void
2787 remote_target::set_general_thread (ptid_t ptid)
2788 {
2789 set_thread (ptid, 1);
2790 }
2791
2792 void
2793 remote_target::set_continue_thread (ptid_t ptid)
2794 {
2795 set_thread (ptid, 0);
2796 }
2797
2798 /* Change the remote current process. Which thread within the process
2799 ends up selected isn't important, as long as it is the same process
2800 as what INFERIOR_PTID points to.
2801
2802 This comes from that fact that there is no explicit notion of
2803 "selected process" in the protocol. The selected process for
2804 general operations is the process the selected general thread
2805 belongs to. */
2806
2807 void
2808 remote_target::set_general_process ()
2809 {
2810 struct remote_state *rs = get_remote_state ();
2811
2812 /* If the remote can't handle multiple processes, don't bother. */
2813 if (!remote_multi_process_p (rs))
2814 return;
2815
2816 /* We only need to change the remote current thread if it's pointing
2817 at some other process. */
2818 if (rs->general_thread.pid () != inferior_ptid.pid ())
2819 set_general_thread (inferior_ptid);
2820 }
2821
2822 \f
2823 /* Return nonzero if this is the main thread that we made up ourselves
2824 to model non-threaded targets as single-threaded. */
2825
2826 static int
2827 remote_thread_always_alive (ptid_t ptid)
2828 {
2829 if (ptid == magic_null_ptid)
2830 /* The main thread is always alive. */
2831 return 1;
2832
2833 if (ptid.pid () != 0 && ptid.lwp () == 0)
2834 /* The main thread is always alive. This can happen after a
2835 vAttach, if the remote side doesn't support
2836 multi-threading. */
2837 return 1;
2838
2839 return 0;
2840 }
2841
2842 /* Return nonzero if the thread PTID is still alive on the remote
2843 system. */
2844
2845 bool
2846 remote_target::thread_alive (ptid_t ptid)
2847 {
2848 struct remote_state *rs = get_remote_state ();
2849 char *p, *endp;
2850
2851 /* Check if this is a thread that we made up ourselves to model
2852 non-threaded targets as single-threaded. */
2853 if (remote_thread_always_alive (ptid))
2854 return 1;
2855
2856 p = rs->buf.data ();
2857 endp = p + get_remote_packet_size ();
2858
2859 *p++ = 'T';
2860 write_ptid (p, endp, ptid);
2861
2862 putpkt (rs->buf);
2863 getpkt (&rs->buf, 0);
2864 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2865 }
2866
2867 /* Return a pointer to a thread name if we know it and NULL otherwise.
2868 The thread_info object owns the memory for the name. */
2869
2870 const char *
2871 remote_target::thread_name (struct thread_info *info)
2872 {
2873 if (info->priv != NULL)
2874 {
2875 const std::string &name = get_remote_thread_info (info)->name;
2876 return !name.empty () ? name.c_str () : NULL;
2877 }
2878
2879 return NULL;
2880 }
2881
2882 /* About these extended threadlist and threadinfo packets. They are
2883 variable length packets but, the fields within them are often fixed
2884 length. They are redundant enough to send over UDP as is the
2885 remote protocol in general. There is a matching unit test module
2886 in libstub. */
2887
2888 /* WARNING: This threadref data structure comes from the remote O.S.,
2889 libstub protocol encoding, and remote.c. It is not particularly
2890 changable. */
2891
2892 /* Right now, the internal structure is int. We want it to be bigger.
2893 Plan to fix this. */
2894
2895 typedef int gdb_threadref; /* Internal GDB thread reference. */
2896
2897 /* gdb_ext_thread_info is an internal GDB data structure which is
2898 equivalent to the reply of the remote threadinfo packet. */
2899
2900 struct gdb_ext_thread_info
2901 {
2902 threadref threadid; /* External form of thread reference. */
2903 int active; /* Has state interesting to GDB?
2904 regs, stack. */
2905 char display[256]; /* Brief state display, name,
2906 blocked/suspended. */
2907 char shortname[32]; /* To be used to name threads. */
2908 char more_display[256]; /* Long info, statistics, queue depth,
2909 whatever. */
2910 };
2911
2912 /* The volume of remote transfers can be limited by submitting
2913 a mask containing bits specifying the desired information.
2914 Use a union of these values as the 'selection' parameter to
2915 get_thread_info. FIXME: Make these TAG names more thread specific. */
2916
2917 #define TAG_THREADID 1
2918 #define TAG_EXISTS 2
2919 #define TAG_DISPLAY 4
2920 #define TAG_THREADNAME 8
2921 #define TAG_MOREDISPLAY 16
2922
2923 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2924
2925 static char *unpack_nibble (char *buf, int *val);
2926
2927 static char *unpack_byte (char *buf, int *value);
2928
2929 static char *pack_int (char *buf, int value);
2930
2931 static char *unpack_int (char *buf, int *value);
2932
2933 static char *unpack_string (char *src, char *dest, int length);
2934
2935 static char *pack_threadid (char *pkt, threadref *id);
2936
2937 static char *unpack_threadid (char *inbuf, threadref *id);
2938
2939 void int_to_threadref (threadref *id, int value);
2940
2941 static int threadref_to_int (threadref *ref);
2942
2943 static void copy_threadref (threadref *dest, threadref *src);
2944
2945 static int threadmatch (threadref *dest, threadref *src);
2946
2947 static char *pack_threadinfo_request (char *pkt, int mode,
2948 threadref *id);
2949
2950 static char *pack_threadlist_request (char *pkt, int startflag,
2951 int threadcount,
2952 threadref *nextthread);
2953
2954 static int remote_newthread_step (threadref *ref, void *context);
2955
2956
2957 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2958 buffer we're allowed to write to. Returns
2959 BUF+CHARACTERS_WRITTEN. */
2960
2961 char *
2962 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2963 {
2964 int pid, tid;
2965 struct remote_state *rs = get_remote_state ();
2966
2967 if (remote_multi_process_p (rs))
2968 {
2969 pid = ptid.pid ();
2970 if (pid < 0)
2971 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2972 else
2973 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2974 }
2975 tid = ptid.lwp ();
2976 if (tid < 0)
2977 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2978 else
2979 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2980
2981 return buf;
2982 }
2983
2984 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2985 last parsed char. Returns null_ptid if no thread id is found, and
2986 throws an error if the thread id has an invalid format. */
2987
2988 static ptid_t
2989 read_ptid (const char *buf, const char **obuf)
2990 {
2991 const char *p = buf;
2992 const char *pp;
2993 ULONGEST pid = 0, tid = 0;
2994
2995 if (*p == 'p')
2996 {
2997 /* Multi-process ptid. */
2998 pp = unpack_varlen_hex (p + 1, &pid);
2999 if (*pp != '.')
3000 error (_("invalid remote ptid: %s"), p);
3001
3002 p = pp;
3003 pp = unpack_varlen_hex (p + 1, &tid);
3004 if (obuf)
3005 *obuf = pp;
3006 return ptid_t (pid, tid, 0);
3007 }
3008
3009 /* No multi-process. Just a tid. */
3010 pp = unpack_varlen_hex (p, &tid);
3011
3012 /* Return null_ptid when no thread id is found. */
3013 if (p == pp)
3014 {
3015 if (obuf)
3016 *obuf = pp;
3017 return null_ptid;
3018 }
3019
3020 /* Since the stub is not sending a process id, then default to
3021 what's in inferior_ptid, unless it's null at this point. If so,
3022 then since there's no way to know the pid of the reported
3023 threads, use the magic number. */
3024 if (inferior_ptid == null_ptid)
3025 pid = magic_null_ptid.pid ();
3026 else
3027 pid = inferior_ptid.pid ();
3028
3029 if (obuf)
3030 *obuf = pp;
3031 return ptid_t (pid, tid, 0);
3032 }
3033
3034 static int
3035 stubhex (int ch)
3036 {
3037 if (ch >= 'a' && ch <= 'f')
3038 return ch - 'a' + 10;
3039 if (ch >= '0' && ch <= '9')
3040 return ch - '0';
3041 if (ch >= 'A' && ch <= 'F')
3042 return ch - 'A' + 10;
3043 return -1;
3044 }
3045
3046 static int
3047 stub_unpack_int (char *buff, int fieldlength)
3048 {
3049 int nibble;
3050 int retval = 0;
3051
3052 while (fieldlength)
3053 {
3054 nibble = stubhex (*buff++);
3055 retval |= nibble;
3056 fieldlength--;
3057 if (fieldlength)
3058 retval = retval << 4;
3059 }
3060 return retval;
3061 }
3062
3063 static char *
3064 unpack_nibble (char *buf, int *val)
3065 {
3066 *val = fromhex (*buf++);
3067 return buf;
3068 }
3069
3070 static char *
3071 unpack_byte (char *buf, int *value)
3072 {
3073 *value = stub_unpack_int (buf, 2);
3074 return buf + 2;
3075 }
3076
3077 static char *
3078 pack_int (char *buf, int value)
3079 {
3080 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3081 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3082 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3083 buf = pack_hex_byte (buf, (value & 0xff));
3084 return buf;
3085 }
3086
3087 static char *
3088 unpack_int (char *buf, int *value)
3089 {
3090 *value = stub_unpack_int (buf, 8);
3091 return buf + 8;
3092 }
3093
3094 #if 0 /* Currently unused, uncomment when needed. */
3095 static char *pack_string (char *pkt, char *string);
3096
3097 static char *
3098 pack_string (char *pkt, char *string)
3099 {
3100 char ch;
3101 int len;
3102
3103 len = strlen (string);
3104 if (len > 200)
3105 len = 200; /* Bigger than most GDB packets, junk??? */
3106 pkt = pack_hex_byte (pkt, len);
3107 while (len-- > 0)
3108 {
3109 ch = *string++;
3110 if ((ch == '\0') || (ch == '#'))
3111 ch = '*'; /* Protect encapsulation. */
3112 *pkt++ = ch;
3113 }
3114 return pkt;
3115 }
3116 #endif /* 0 (unused) */
3117
3118 static char *
3119 unpack_string (char *src, char *dest, int length)
3120 {
3121 while (length--)
3122 *dest++ = *src++;
3123 *dest = '\0';
3124 return src;
3125 }
3126
3127 static char *
3128 pack_threadid (char *pkt, threadref *id)
3129 {
3130 char *limit;
3131 unsigned char *altid;
3132
3133 altid = (unsigned char *) id;
3134 limit = pkt + BUF_THREAD_ID_SIZE;
3135 while (pkt < limit)
3136 pkt = pack_hex_byte (pkt, *altid++);
3137 return pkt;
3138 }
3139
3140
3141 static char *
3142 unpack_threadid (char *inbuf, threadref *id)
3143 {
3144 char *altref;
3145 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3146 int x, y;
3147
3148 altref = (char *) id;
3149
3150 while (inbuf < limit)
3151 {
3152 x = stubhex (*inbuf++);
3153 y = stubhex (*inbuf++);
3154 *altref++ = (x << 4) | y;
3155 }
3156 return inbuf;
3157 }
3158
3159 /* Externally, threadrefs are 64 bits but internally, they are still
3160 ints. This is due to a mismatch of specifications. We would like
3161 to use 64bit thread references internally. This is an adapter
3162 function. */
3163
3164 void
3165 int_to_threadref (threadref *id, int value)
3166 {
3167 unsigned char *scan;
3168
3169 scan = (unsigned char *) id;
3170 {
3171 int i = 4;
3172 while (i--)
3173 *scan++ = 0;
3174 }
3175 *scan++ = (value >> 24) & 0xff;
3176 *scan++ = (value >> 16) & 0xff;
3177 *scan++ = (value >> 8) & 0xff;
3178 *scan++ = (value & 0xff);
3179 }
3180
3181 static int
3182 threadref_to_int (threadref *ref)
3183 {
3184 int i, value = 0;
3185 unsigned char *scan;
3186
3187 scan = *ref;
3188 scan += 4;
3189 i = 4;
3190 while (i-- > 0)
3191 value = (value << 8) | ((*scan++) & 0xff);
3192 return value;
3193 }
3194
3195 static void
3196 copy_threadref (threadref *dest, threadref *src)
3197 {
3198 int i;
3199 unsigned char *csrc, *cdest;
3200
3201 csrc = (unsigned char *) src;
3202 cdest = (unsigned char *) dest;
3203 i = 8;
3204 while (i--)
3205 *cdest++ = *csrc++;
3206 }
3207
3208 static int
3209 threadmatch (threadref *dest, threadref *src)
3210 {
3211 /* Things are broken right now, so just assume we got a match. */
3212 #if 0
3213 unsigned char *srcp, *destp;
3214 int i, result;
3215 srcp = (char *) src;
3216 destp = (char *) dest;
3217
3218 result = 1;
3219 while (i-- > 0)
3220 result &= (*srcp++ == *destp++) ? 1 : 0;
3221 return result;
3222 #endif
3223 return 1;
3224 }
3225
3226 /*
3227 threadid:1, # always request threadid
3228 context_exists:2,
3229 display:4,
3230 unique_name:8,
3231 more_display:16
3232 */
3233
3234 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3235
3236 static char *
3237 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3238 {
3239 *pkt++ = 'q'; /* Info Query */
3240 *pkt++ = 'P'; /* process or thread info */
3241 pkt = pack_int (pkt, mode); /* mode */
3242 pkt = pack_threadid (pkt, id); /* threadid */
3243 *pkt = '\0'; /* terminate */
3244 return pkt;
3245 }
3246
3247 /* These values tag the fields in a thread info response packet. */
3248 /* Tagging the fields allows us to request specific fields and to
3249 add more fields as time goes by. */
3250
3251 #define TAG_THREADID 1 /* Echo the thread identifier. */
3252 #define TAG_EXISTS 2 /* Is this process defined enough to
3253 fetch registers and its stack? */
3254 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3255 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3256 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3257 the process. */
3258
3259 int
3260 remote_target::remote_unpack_thread_info_response (char *pkt,
3261 threadref *expectedref,
3262 gdb_ext_thread_info *info)
3263 {
3264 struct remote_state *rs = get_remote_state ();
3265 int mask, length;
3266 int tag;
3267 threadref ref;
3268 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3269 int retval = 1;
3270
3271 /* info->threadid = 0; FIXME: implement zero_threadref. */
3272 info->active = 0;
3273 info->display[0] = '\0';
3274 info->shortname[0] = '\0';
3275 info->more_display[0] = '\0';
3276
3277 /* Assume the characters indicating the packet type have been
3278 stripped. */
3279 pkt = unpack_int (pkt, &mask); /* arg mask */
3280 pkt = unpack_threadid (pkt, &ref);
3281
3282 if (mask == 0)
3283 warning (_("Incomplete response to threadinfo request."));
3284 if (!threadmatch (&ref, expectedref))
3285 { /* This is an answer to a different request. */
3286 warning (_("ERROR RMT Thread info mismatch."));
3287 return 0;
3288 }
3289 copy_threadref (&info->threadid, &ref);
3290
3291 /* Loop on tagged fields , try to bail if something goes wrong. */
3292
3293 /* Packets are terminated with nulls. */
3294 while ((pkt < limit) && mask && *pkt)
3295 {
3296 pkt = unpack_int (pkt, &tag); /* tag */
3297 pkt = unpack_byte (pkt, &length); /* length */
3298 if (!(tag & mask)) /* Tags out of synch with mask. */
3299 {
3300 warning (_("ERROR RMT: threadinfo tag mismatch."));
3301 retval = 0;
3302 break;
3303 }
3304 if (tag == TAG_THREADID)
3305 {
3306 if (length != 16)
3307 {
3308 warning (_("ERROR RMT: length of threadid is not 16."));
3309 retval = 0;
3310 break;
3311 }
3312 pkt = unpack_threadid (pkt, &ref);
3313 mask = mask & ~TAG_THREADID;
3314 continue;
3315 }
3316 if (tag == TAG_EXISTS)
3317 {
3318 info->active = stub_unpack_int (pkt, length);
3319 pkt += length;
3320 mask = mask & ~(TAG_EXISTS);
3321 if (length > 8)
3322 {
3323 warning (_("ERROR RMT: 'exists' length too long."));
3324 retval = 0;
3325 break;
3326 }
3327 continue;
3328 }
3329 if (tag == TAG_THREADNAME)
3330 {
3331 pkt = unpack_string (pkt, &info->shortname[0], length);
3332 mask = mask & ~TAG_THREADNAME;
3333 continue;
3334 }
3335 if (tag == TAG_DISPLAY)
3336 {
3337 pkt = unpack_string (pkt, &info->display[0], length);
3338 mask = mask & ~TAG_DISPLAY;
3339 continue;
3340 }
3341 if (tag == TAG_MOREDISPLAY)
3342 {
3343 pkt = unpack_string (pkt, &info->more_display[0], length);
3344 mask = mask & ~TAG_MOREDISPLAY;
3345 continue;
3346 }
3347 warning (_("ERROR RMT: unknown thread info tag."));
3348 break; /* Not a tag we know about. */
3349 }
3350 return retval;
3351 }
3352
3353 int
3354 remote_target::remote_get_threadinfo (threadref *threadid,
3355 int fieldset,
3356 gdb_ext_thread_info *info)
3357 {
3358 struct remote_state *rs = get_remote_state ();
3359 int result;
3360
3361 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3362 putpkt (rs->buf);
3363 getpkt (&rs->buf, 0);
3364
3365 if (rs->buf[0] == '\0')
3366 return 0;
3367
3368 result = remote_unpack_thread_info_response (&rs->buf[2],
3369 threadid, info);
3370 return result;
3371 }
3372
3373 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3374
3375 static char *
3376 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3377 threadref *nextthread)
3378 {
3379 *pkt++ = 'q'; /* info query packet */
3380 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3381 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3382 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3383 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3384 *pkt = '\0';
3385 return pkt;
3386 }
3387
3388 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3389
3390 int
3391 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3392 threadref *original_echo,
3393 threadref *resultlist,
3394 int *doneflag)
3395 {
3396 struct remote_state *rs = get_remote_state ();
3397 char *limit;
3398 int count, resultcount, done;
3399
3400 resultcount = 0;
3401 /* Assume the 'q' and 'M chars have been stripped. */
3402 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3403 /* done parse past here */
3404 pkt = unpack_byte (pkt, &count); /* count field */
3405 pkt = unpack_nibble (pkt, &done);
3406 /* The first threadid is the argument threadid. */
3407 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3408 while ((count-- > 0) && (pkt < limit))
3409 {
3410 pkt = unpack_threadid (pkt, resultlist++);
3411 if (resultcount++ >= result_limit)
3412 break;
3413 }
3414 if (doneflag)
3415 *doneflag = done;
3416 return resultcount;
3417 }
3418
3419 /* Fetch the next batch of threads from the remote. Returns -1 if the
3420 qL packet is not supported, 0 on error and 1 on success. */
3421
3422 int
3423 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3424 int result_limit, int *done, int *result_count,
3425 threadref *threadlist)
3426 {
3427 struct remote_state *rs = get_remote_state ();
3428 int result = 1;
3429
3430 /* Truncate result limit to be smaller than the packet size. */
3431 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3432 >= get_remote_packet_size ())
3433 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3434
3435 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3436 nextthread);
3437 putpkt (rs->buf);
3438 getpkt (&rs->buf, 0);
3439 if (rs->buf[0] == '\0')
3440 {
3441 /* Packet not supported. */
3442 return -1;
3443 }
3444
3445 *result_count =
3446 parse_threadlist_response (&rs->buf[2], result_limit,
3447 &rs->echo_nextthread, threadlist, done);
3448
3449 if (!threadmatch (&rs->echo_nextthread, nextthread))
3450 {
3451 /* FIXME: This is a good reason to drop the packet. */
3452 /* Possibly, there is a duplicate response. */
3453 /* Possibilities :
3454 retransmit immediatly - race conditions
3455 retransmit after timeout - yes
3456 exit
3457 wait for packet, then exit
3458 */
3459 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3460 return 0; /* I choose simply exiting. */
3461 }
3462 if (*result_count <= 0)
3463 {
3464 if (*done != 1)
3465 {
3466 warning (_("RMT ERROR : failed to get remote thread list."));
3467 result = 0;
3468 }
3469 return result; /* break; */
3470 }
3471 if (*result_count > result_limit)
3472 {
3473 *result_count = 0;
3474 warning (_("RMT ERROR: threadlist response longer than requested."));
3475 return 0;
3476 }
3477 return result;
3478 }
3479
3480 /* Fetch the list of remote threads, with the qL packet, and call
3481 STEPFUNCTION for each thread found. Stops iterating and returns 1
3482 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3483 STEPFUNCTION returns false. If the packet is not supported,
3484 returns -1. */
3485
3486 int
3487 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3488 void *context, int looplimit)
3489 {
3490 struct remote_state *rs = get_remote_state ();
3491 int done, i, result_count;
3492 int startflag = 1;
3493 int result = 1;
3494 int loopcount = 0;
3495
3496 done = 0;
3497 while (!done)
3498 {
3499 if (loopcount++ > looplimit)
3500 {
3501 result = 0;
3502 warning (_("Remote fetch threadlist -infinite loop-."));
3503 break;
3504 }
3505 result = remote_get_threadlist (startflag, &rs->nextthread,
3506 MAXTHREADLISTRESULTS,
3507 &done, &result_count,
3508 rs->resultthreadlist);
3509 if (result <= 0)
3510 break;
3511 /* Clear for later iterations. */
3512 startflag = 0;
3513 /* Setup to resume next batch of thread references, set nextthread. */
3514 if (result_count >= 1)
3515 copy_threadref (&rs->nextthread,
3516 &rs->resultthreadlist[result_count - 1]);
3517 i = 0;
3518 while (result_count--)
3519 {
3520 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3521 {
3522 result = 0;
3523 break;
3524 }
3525 }
3526 }
3527 return result;
3528 }
3529
3530 /* A thread found on the remote target. */
3531
3532 struct thread_item
3533 {
3534 explicit thread_item (ptid_t ptid_)
3535 : ptid (ptid_)
3536 {}
3537
3538 thread_item (thread_item &&other) = default;
3539 thread_item &operator= (thread_item &&other) = default;
3540
3541 DISABLE_COPY_AND_ASSIGN (thread_item);
3542
3543 /* The thread's PTID. */
3544 ptid_t ptid;
3545
3546 /* The thread's extra info. */
3547 std::string extra;
3548
3549 /* The thread's name. */
3550 std::string name;
3551
3552 /* The core the thread was running on. -1 if not known. */
3553 int core = -1;
3554
3555 /* The thread handle associated with the thread. */
3556 gdb::byte_vector thread_handle;
3557 };
3558
3559 /* Context passed around to the various methods listing remote
3560 threads. As new threads are found, they're added to the ITEMS
3561 vector. */
3562
3563 struct threads_listing_context
3564 {
3565 /* Return true if this object contains an entry for a thread with ptid
3566 PTID. */
3567
3568 bool contains_thread (ptid_t ptid) const
3569 {
3570 auto match_ptid = [&] (const thread_item &item)
3571 {
3572 return item.ptid == ptid;
3573 };
3574
3575 auto it = std::find_if (this->items.begin (),
3576 this->items.end (),
3577 match_ptid);
3578
3579 return it != this->items.end ();
3580 }
3581
3582 /* Remove the thread with ptid PTID. */
3583
3584 void remove_thread (ptid_t ptid)
3585 {
3586 auto match_ptid = [&] (const thread_item &item)
3587 {
3588 return item.ptid == ptid;
3589 };
3590
3591 auto it = std::remove_if (this->items.begin (),
3592 this->items.end (),
3593 match_ptid);
3594
3595 if (it != this->items.end ())
3596 this->items.erase (it);
3597 }
3598
3599 /* The threads found on the remote target. */
3600 std::vector<thread_item> items;
3601 };
3602
3603 static int
3604 remote_newthread_step (threadref *ref, void *data)
3605 {
3606 struct threads_listing_context *context
3607 = (struct threads_listing_context *) data;
3608 int pid = inferior_ptid.pid ();
3609 int lwp = threadref_to_int (ref);
3610 ptid_t ptid (pid, lwp);
3611
3612 context->items.emplace_back (ptid);
3613
3614 return 1; /* continue iterator */
3615 }
3616
3617 #define CRAZY_MAX_THREADS 1000
3618
3619 ptid_t
3620 remote_target::remote_current_thread (ptid_t oldpid)
3621 {
3622 struct remote_state *rs = get_remote_state ();
3623
3624 putpkt ("qC");
3625 getpkt (&rs->buf, 0);
3626 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3627 {
3628 const char *obuf;
3629 ptid_t result;
3630
3631 result = read_ptid (&rs->buf[2], &obuf);
3632 if (*obuf != '\0' && remote_debug)
3633 fprintf_unfiltered (gdb_stdlog,
3634 "warning: garbage in qC reply\n");
3635
3636 return result;
3637 }
3638 else
3639 return oldpid;
3640 }
3641
3642 /* List remote threads using the deprecated qL packet. */
3643
3644 int
3645 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3646 {
3647 if (remote_threadlist_iterator (remote_newthread_step, context,
3648 CRAZY_MAX_THREADS) >= 0)
3649 return 1;
3650
3651 return 0;
3652 }
3653
3654 #if defined(HAVE_LIBEXPAT)
3655
3656 static void
3657 start_thread (struct gdb_xml_parser *parser,
3658 const struct gdb_xml_element *element,
3659 void *user_data,
3660 std::vector<gdb_xml_value> &attributes)
3661 {
3662 struct threads_listing_context *data
3663 = (struct threads_listing_context *) user_data;
3664 struct gdb_xml_value *attr;
3665
3666 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3667 ptid_t ptid = read_ptid (id, NULL);
3668
3669 data->items.emplace_back (ptid);
3670 thread_item &item = data->items.back ();
3671
3672 attr = xml_find_attribute (attributes, "core");
3673 if (attr != NULL)
3674 item.core = *(ULONGEST *) attr->value.get ();
3675
3676 attr = xml_find_attribute (attributes, "name");
3677 if (attr != NULL)
3678 item.name = (const char *) attr->value.get ();
3679
3680 attr = xml_find_attribute (attributes, "handle");
3681 if (attr != NULL)
3682 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3683 }
3684
3685 static void
3686 end_thread (struct gdb_xml_parser *parser,
3687 const struct gdb_xml_element *element,
3688 void *user_data, const char *body_text)
3689 {
3690 struct threads_listing_context *data
3691 = (struct threads_listing_context *) user_data;
3692
3693 if (body_text != NULL && *body_text != '\0')
3694 data->items.back ().extra = body_text;
3695 }
3696
3697 const struct gdb_xml_attribute thread_attributes[] = {
3698 { "id", GDB_XML_AF_NONE, NULL, NULL },
3699 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3700 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3701 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3702 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3703 };
3704
3705 const struct gdb_xml_element thread_children[] = {
3706 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3707 };
3708
3709 const struct gdb_xml_element threads_children[] = {
3710 { "thread", thread_attributes, thread_children,
3711 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3712 start_thread, end_thread },
3713 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3714 };
3715
3716 const struct gdb_xml_element threads_elements[] = {
3717 { "threads", NULL, threads_children,
3718 GDB_XML_EF_NONE, NULL, NULL },
3719 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3720 };
3721
3722 #endif
3723
3724 /* List remote threads using qXfer:threads:read. */
3725
3726 int
3727 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3728 {
3729 #if defined(HAVE_LIBEXPAT)
3730 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3731 {
3732 gdb::optional<gdb::char_vector> xml
3733 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3734
3735 if (xml && (*xml)[0] != '\0')
3736 {
3737 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3738 threads_elements, xml->data (), context);
3739 }
3740
3741 return 1;
3742 }
3743 #endif
3744
3745 return 0;
3746 }
3747
3748 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3749
3750 int
3751 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3752 {
3753 struct remote_state *rs = get_remote_state ();
3754
3755 if (rs->use_threadinfo_query)
3756 {
3757 const char *bufp;
3758
3759 putpkt ("qfThreadInfo");
3760 getpkt (&rs->buf, 0);
3761 bufp = rs->buf.data ();
3762 if (bufp[0] != '\0') /* q packet recognized */
3763 {
3764 while (*bufp++ == 'm') /* reply contains one or more TID */
3765 {
3766 do
3767 {
3768 ptid_t ptid = read_ptid (bufp, &bufp);
3769 context->items.emplace_back (ptid);
3770 }
3771 while (*bufp++ == ','); /* comma-separated list */
3772 putpkt ("qsThreadInfo");
3773 getpkt (&rs->buf, 0);
3774 bufp = rs->buf.data ();
3775 }
3776 return 1;
3777 }
3778 else
3779 {
3780 /* Packet not recognized. */
3781 rs->use_threadinfo_query = 0;
3782 }
3783 }
3784
3785 return 0;
3786 }
3787
3788 /* Return true if INF only has one non-exited thread. */
3789
3790 static bool
3791 has_single_non_exited_thread (inferior *inf)
3792 {
3793 int count = 0;
3794 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3795 if (++count > 1)
3796 break;
3797 return count == 1;
3798 }
3799
3800 /* Implement the to_update_thread_list function for the remote
3801 targets. */
3802
3803 void
3804 remote_target::update_thread_list ()
3805 {
3806 struct threads_listing_context context;
3807 int got_list = 0;
3808
3809 /* We have a few different mechanisms to fetch the thread list. Try
3810 them all, starting with the most preferred one first, falling
3811 back to older methods. */
3812 if (remote_get_threads_with_qxfer (&context)
3813 || remote_get_threads_with_qthreadinfo (&context)
3814 || remote_get_threads_with_ql (&context))
3815 {
3816 got_list = 1;
3817
3818 if (context.items.empty ()
3819 && remote_thread_always_alive (inferior_ptid))
3820 {
3821 /* Some targets don't really support threads, but still
3822 reply an (empty) thread list in response to the thread
3823 listing packets, instead of replying "packet not
3824 supported". Exit early so we don't delete the main
3825 thread. */
3826 return;
3827 }
3828
3829 /* CONTEXT now holds the current thread list on the remote
3830 target end. Delete GDB-side threads no longer found on the
3831 target. */
3832 for (thread_info *tp : all_threads_safe ())
3833 {
3834 if (tp->inf->process_target () != this)
3835 continue;
3836
3837 if (!context.contains_thread (tp->ptid))
3838 {
3839 /* Do not remove the thread if it is the last thread in
3840 the inferior. This situation happens when we have a
3841 pending exit process status to process. Otherwise we
3842 may end up with a seemingly live inferior (i.e. pid
3843 != 0) that has no threads. */
3844 if (has_single_non_exited_thread (tp->inf))
3845 continue;
3846
3847 /* Not found. */
3848 delete_thread (tp);
3849 }
3850 }
3851
3852 /* Remove any unreported fork child threads from CONTEXT so
3853 that we don't interfere with follow fork, which is where
3854 creation of such threads is handled. */
3855 remove_new_fork_children (&context);
3856
3857 /* And now add threads we don't know about yet to our list. */
3858 for (thread_item &item : context.items)
3859 {
3860 if (item.ptid != null_ptid)
3861 {
3862 /* In non-stop mode, we assume new found threads are
3863 executing until proven otherwise with a stop reply.
3864 In all-stop, we can only get here if all threads are
3865 stopped. */
3866 int executing = target_is_non_stop_p () ? 1 : 0;
3867
3868 remote_notice_new_inferior (item.ptid, executing);
3869
3870 thread_info *tp = find_thread_ptid (this, item.ptid);
3871 remote_thread_info *info = get_remote_thread_info (tp);
3872 info->core = item.core;
3873 info->extra = std::move (item.extra);
3874 info->name = std::move (item.name);
3875 info->thread_handle = std::move (item.thread_handle);
3876 }
3877 }
3878 }
3879
3880 if (!got_list)
3881 {
3882 /* If no thread listing method is supported, then query whether
3883 each known thread is alive, one by one, with the T packet.
3884 If the target doesn't support threads at all, then this is a
3885 no-op. See remote_thread_alive. */
3886 prune_threads ();
3887 }
3888 }
3889
3890 /*
3891 * Collect a descriptive string about the given thread.
3892 * The target may say anything it wants to about the thread
3893 * (typically info about its blocked / runnable state, name, etc.).
3894 * This string will appear in the info threads display.
3895 *
3896 * Optional: targets are not required to implement this function.
3897 */
3898
3899 const char *
3900 remote_target::extra_thread_info (thread_info *tp)
3901 {
3902 struct remote_state *rs = get_remote_state ();
3903 int set;
3904 threadref id;
3905 struct gdb_ext_thread_info threadinfo;
3906
3907 if (rs->remote_desc == 0) /* paranoia */
3908 internal_error (__FILE__, __LINE__,
3909 _("remote_threads_extra_info"));
3910
3911 if (tp->ptid == magic_null_ptid
3912 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3913 /* This is the main thread which was added by GDB. The remote
3914 server doesn't know about it. */
3915 return NULL;
3916
3917 std::string &extra = get_remote_thread_info (tp)->extra;
3918
3919 /* If already have cached info, use it. */
3920 if (!extra.empty ())
3921 return extra.c_str ();
3922
3923 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3924 {
3925 /* If we're using qXfer:threads:read, then the extra info is
3926 included in the XML. So if we didn't have anything cached,
3927 it's because there's really no extra info. */
3928 return NULL;
3929 }
3930
3931 if (rs->use_threadextra_query)
3932 {
3933 char *b = rs->buf.data ();
3934 char *endb = b + get_remote_packet_size ();
3935
3936 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3937 b += strlen (b);
3938 write_ptid (b, endb, tp->ptid);
3939
3940 putpkt (rs->buf);
3941 getpkt (&rs->buf, 0);
3942 if (rs->buf[0] != 0)
3943 {
3944 extra.resize (strlen (rs->buf.data ()) / 2);
3945 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3946 return extra.c_str ();
3947 }
3948 }
3949
3950 /* If the above query fails, fall back to the old method. */
3951 rs->use_threadextra_query = 0;
3952 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3953 | TAG_MOREDISPLAY | TAG_DISPLAY;
3954 int_to_threadref (&id, tp->ptid.lwp ());
3955 if (remote_get_threadinfo (&id, set, &threadinfo))
3956 if (threadinfo.active)
3957 {
3958 if (*threadinfo.shortname)
3959 string_appendf (extra, " Name: %s", threadinfo.shortname);
3960 if (*threadinfo.display)
3961 {
3962 if (!extra.empty ())
3963 extra += ',';
3964 string_appendf (extra, " State: %s", threadinfo.display);
3965 }
3966 if (*threadinfo.more_display)
3967 {
3968 if (!extra.empty ())
3969 extra += ',';
3970 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3971 }
3972 return extra.c_str ();
3973 }
3974 return NULL;
3975 }
3976 \f
3977
3978 bool
3979 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3980 struct static_tracepoint_marker *marker)
3981 {
3982 struct remote_state *rs = get_remote_state ();
3983 char *p = rs->buf.data ();
3984
3985 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3986 p += strlen (p);
3987 p += hexnumstr (p, addr);
3988 putpkt (rs->buf);
3989 getpkt (&rs->buf, 0);
3990 p = rs->buf.data ();
3991
3992 if (*p == 'E')
3993 error (_("Remote failure reply: %s"), p);
3994
3995 if (*p++ == 'm')
3996 {
3997 parse_static_tracepoint_marker_definition (p, NULL, marker);
3998 return true;
3999 }
4000
4001 return false;
4002 }
4003
4004 std::vector<static_tracepoint_marker>
4005 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4006 {
4007 struct remote_state *rs = get_remote_state ();
4008 std::vector<static_tracepoint_marker> markers;
4009 const char *p;
4010 static_tracepoint_marker marker;
4011
4012 /* Ask for a first packet of static tracepoint marker
4013 definition. */
4014 putpkt ("qTfSTM");
4015 getpkt (&rs->buf, 0);
4016 p = rs->buf.data ();
4017 if (*p == 'E')
4018 error (_("Remote failure reply: %s"), p);
4019
4020 while (*p++ == 'm')
4021 {
4022 do
4023 {
4024 parse_static_tracepoint_marker_definition (p, &p, &marker);
4025
4026 if (strid == NULL || marker.str_id == strid)
4027 markers.push_back (std::move (marker));
4028 }
4029 while (*p++ == ','); /* comma-separated list */
4030 /* Ask for another packet of static tracepoint definition. */
4031 putpkt ("qTsSTM");
4032 getpkt (&rs->buf, 0);
4033 p = rs->buf.data ();
4034 }
4035
4036 return markers;
4037 }
4038
4039 \f
4040 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4041
4042 ptid_t
4043 remote_target::get_ada_task_ptid (long lwp, long thread)
4044 {
4045 return ptid_t (inferior_ptid.pid (), lwp, 0);
4046 }
4047 \f
4048
4049 /* Restart the remote side; this is an extended protocol operation. */
4050
4051 void
4052 remote_target::extended_remote_restart ()
4053 {
4054 struct remote_state *rs = get_remote_state ();
4055
4056 /* Send the restart command; for reasons I don't understand the
4057 remote side really expects a number after the "R". */
4058 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4059 putpkt (rs->buf);
4060
4061 remote_fileio_reset ();
4062 }
4063 \f
4064 /* Clean up connection to a remote debugger. */
4065
4066 void
4067 remote_target::close ()
4068 {
4069 /* Make sure we leave stdin registered in the event loop. */
4070 terminal_ours ();
4071
4072 trace_reset_local_state ();
4073
4074 delete this;
4075 }
4076
4077 remote_target::~remote_target ()
4078 {
4079 struct remote_state *rs = get_remote_state ();
4080
4081 /* Check for NULL because we may get here with a partially
4082 constructed target/connection. */
4083 if (rs->remote_desc == nullptr)
4084 return;
4085
4086 serial_close (rs->remote_desc);
4087
4088 /* We are destroying the remote target, so we should discard
4089 everything of this target. */
4090 discard_pending_stop_replies_in_queue ();
4091
4092 if (rs->remote_async_inferior_event_token)
4093 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4094
4095 delete rs->notif_state;
4096 }
4097
4098 /* Query the remote side for the text, data and bss offsets. */
4099
4100 void
4101 remote_target::get_offsets ()
4102 {
4103 struct remote_state *rs = get_remote_state ();
4104 char *buf;
4105 char *ptr;
4106 int lose, num_segments = 0, do_sections, do_segments;
4107 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4108
4109 if (symfile_objfile == NULL)
4110 return;
4111
4112 putpkt ("qOffsets");
4113 getpkt (&rs->buf, 0);
4114 buf = rs->buf.data ();
4115
4116 if (buf[0] == '\000')
4117 return; /* Return silently. Stub doesn't support
4118 this command. */
4119 if (buf[0] == 'E')
4120 {
4121 warning (_("Remote failure reply: %s"), buf);
4122 return;
4123 }
4124
4125 /* Pick up each field in turn. This used to be done with scanf, but
4126 scanf will make trouble if CORE_ADDR size doesn't match
4127 conversion directives correctly. The following code will work
4128 with any size of CORE_ADDR. */
4129 text_addr = data_addr = bss_addr = 0;
4130 ptr = buf;
4131 lose = 0;
4132
4133 if (startswith (ptr, "Text="))
4134 {
4135 ptr += 5;
4136 /* Don't use strtol, could lose on big values. */
4137 while (*ptr && *ptr != ';')
4138 text_addr = (text_addr << 4) + fromhex (*ptr++);
4139
4140 if (startswith (ptr, ";Data="))
4141 {
4142 ptr += 6;
4143 while (*ptr && *ptr != ';')
4144 data_addr = (data_addr << 4) + fromhex (*ptr++);
4145 }
4146 else
4147 lose = 1;
4148
4149 if (!lose && startswith (ptr, ";Bss="))
4150 {
4151 ptr += 5;
4152 while (*ptr && *ptr != ';')
4153 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4154
4155 if (bss_addr != data_addr)
4156 warning (_("Target reported unsupported offsets: %s"), buf);
4157 }
4158 else
4159 lose = 1;
4160 }
4161 else if (startswith (ptr, "TextSeg="))
4162 {
4163 ptr += 8;
4164 /* Don't use strtol, could lose on big values. */
4165 while (*ptr && *ptr != ';')
4166 text_addr = (text_addr << 4) + fromhex (*ptr++);
4167 num_segments = 1;
4168
4169 if (startswith (ptr, ";DataSeg="))
4170 {
4171 ptr += 9;
4172 while (*ptr && *ptr != ';')
4173 data_addr = (data_addr << 4) + fromhex (*ptr++);
4174 num_segments++;
4175 }
4176 }
4177 else
4178 lose = 1;
4179
4180 if (lose)
4181 error (_("Malformed response to offset query, %s"), buf);
4182 else if (*ptr != '\0')
4183 warning (_("Target reported unsupported offsets: %s"), buf);
4184
4185 section_offsets offs = symfile_objfile->section_offsets;
4186
4187 symfile_segment_data_up data
4188 = get_symfile_segment_data (symfile_objfile->obfd);
4189 do_segments = (data != NULL);
4190 do_sections = num_segments == 0;
4191
4192 if (num_segments > 0)
4193 {
4194 segments[0] = text_addr;
4195 segments[1] = data_addr;
4196 }
4197 /* If we have two segments, we can still try to relocate everything
4198 by assuming that the .text and .data offsets apply to the whole
4199 text and data segments. Convert the offsets given in the packet
4200 to base addresses for symfile_map_offsets_to_segments. */
4201 else if (data != nullptr && data->segments.size () == 2)
4202 {
4203 segments[0] = data->segments[0].base + text_addr;
4204 segments[1] = data->segments[1].base + data_addr;
4205 num_segments = 2;
4206 }
4207 /* If the object file has only one segment, assume that it is text
4208 rather than data; main programs with no writable data are rare,
4209 but programs with no code are useless. Of course the code might
4210 have ended up in the data segment... to detect that we would need
4211 the permissions here. */
4212 else if (data && data->segments.size () == 1)
4213 {
4214 segments[0] = data->segments[0].base + text_addr;
4215 num_segments = 1;
4216 }
4217 /* There's no way to relocate by segment. */
4218 else
4219 do_segments = 0;
4220
4221 if (do_segments)
4222 {
4223 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd,
4224 data.get (), offs,
4225 num_segments, segments);
4226
4227 if (ret == 0 && !do_sections)
4228 error (_("Can not handle qOffsets TextSeg "
4229 "response with this symbol file"));
4230
4231 if (ret > 0)
4232 do_sections = 0;
4233 }
4234
4235 if (do_sections)
4236 {
4237 offs[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4238
4239 /* This is a temporary kludge to force data and bss to use the
4240 same offsets because that's what nlmconv does now. The real
4241 solution requires changes to the stub and remote.c that I
4242 don't have time to do right now. */
4243
4244 offs[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4245 offs[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4246 }
4247
4248 objfile_relocate (symfile_objfile, offs);
4249 }
4250
4251 /* Send interrupt_sequence to remote target. */
4252
4253 void
4254 remote_target::send_interrupt_sequence ()
4255 {
4256 struct remote_state *rs = get_remote_state ();
4257
4258 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4259 remote_serial_write ("\x03", 1);
4260 else if (interrupt_sequence_mode == interrupt_sequence_break)
4261 serial_send_break (rs->remote_desc);
4262 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4263 {
4264 serial_send_break (rs->remote_desc);
4265 remote_serial_write ("g", 1);
4266 }
4267 else
4268 internal_error (__FILE__, __LINE__,
4269 _("Invalid value for interrupt_sequence_mode: %s."),
4270 interrupt_sequence_mode);
4271 }
4272
4273
4274 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4275 and extract the PTID. Returns NULL_PTID if not found. */
4276
4277 static ptid_t
4278 stop_reply_extract_thread (char *stop_reply)
4279 {
4280 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4281 {
4282 const char *p;
4283
4284 /* Txx r:val ; r:val (...) */
4285 p = &stop_reply[3];
4286
4287 /* Look for "register" named "thread". */
4288 while (*p != '\0')
4289 {
4290 const char *p1;
4291
4292 p1 = strchr (p, ':');
4293 if (p1 == NULL)
4294 return null_ptid;
4295
4296 if (strncmp (p, "thread", p1 - p) == 0)
4297 return read_ptid (++p1, &p);
4298
4299 p1 = strchr (p, ';');
4300 if (p1 == NULL)
4301 return null_ptid;
4302 p1++;
4303
4304 p = p1;
4305 }
4306 }
4307
4308 return null_ptid;
4309 }
4310
4311 /* Determine the remote side's current thread. If we have a stop
4312 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4313 "thread" register we can extract the current thread from. If not,
4314 ask the remote which is the current thread with qC. The former
4315 method avoids a roundtrip. */
4316
4317 ptid_t
4318 remote_target::get_current_thread (char *wait_status)
4319 {
4320 ptid_t ptid = null_ptid;
4321
4322 /* Note we don't use remote_parse_stop_reply as that makes use of
4323 the target architecture, which we haven't yet fully determined at
4324 this point. */
4325 if (wait_status != NULL)
4326 ptid = stop_reply_extract_thread (wait_status);
4327 if (ptid == null_ptid)
4328 ptid = remote_current_thread (inferior_ptid);
4329
4330 return ptid;
4331 }
4332
4333 /* Query the remote target for which is the current thread/process,
4334 add it to our tables, and update INFERIOR_PTID. The caller is
4335 responsible for setting the state such that the remote end is ready
4336 to return the current thread.
4337
4338 This function is called after handling the '?' or 'vRun' packets,
4339 whose response is a stop reply from which we can also try
4340 extracting the thread. If the target doesn't support the explicit
4341 qC query, we infer the current thread from that stop reply, passed
4342 in in WAIT_STATUS, which may be NULL. */
4343
4344 void
4345 remote_target::add_current_inferior_and_thread (char *wait_status)
4346 {
4347 struct remote_state *rs = get_remote_state ();
4348 bool fake_pid_p = false;
4349
4350 switch_to_no_thread ();
4351
4352 /* Now, if we have thread information, update the current thread's
4353 ptid. */
4354 ptid_t curr_ptid = get_current_thread (wait_status);
4355
4356 if (curr_ptid != null_ptid)
4357 {
4358 if (!remote_multi_process_p (rs))
4359 fake_pid_p = true;
4360 }
4361 else
4362 {
4363 /* Without this, some commands which require an active target
4364 (such as kill) won't work. This variable serves (at least)
4365 double duty as both the pid of the target process (if it has
4366 such), and as a flag indicating that a target is active. */
4367 curr_ptid = magic_null_ptid;
4368 fake_pid_p = true;
4369 }
4370
4371 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4372
4373 /* Add the main thread and switch to it. Don't try reading
4374 registers yet, since we haven't fetched the target description
4375 yet. */
4376 thread_info *tp = add_thread_silent (this, curr_ptid);
4377 switch_to_thread_no_regs (tp);
4378 }
4379
4380 /* Print info about a thread that was found already stopped on
4381 connection. */
4382
4383 static void
4384 print_one_stopped_thread (struct thread_info *thread)
4385 {
4386 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4387
4388 switch_to_thread (thread);
4389 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4390 set_current_sal_from_frame (get_current_frame ());
4391
4392 thread->suspend.waitstatus_pending_p = 0;
4393
4394 if (ws->kind == TARGET_WAITKIND_STOPPED)
4395 {
4396 enum gdb_signal sig = ws->value.sig;
4397
4398 if (signal_print_state (sig))
4399 gdb::observers::signal_received.notify (sig);
4400 }
4401 gdb::observers::normal_stop.notify (NULL, 1);
4402 }
4403
4404 /* Process all initial stop replies the remote side sent in response
4405 to the ? packet. These indicate threads that were already stopped
4406 on initial connection. We mark these threads as stopped and print
4407 their current frame before giving the user the prompt. */
4408
4409 void
4410 remote_target::process_initial_stop_replies (int from_tty)
4411 {
4412 int pending_stop_replies = stop_reply_queue_length ();
4413 struct thread_info *selected = NULL;
4414 struct thread_info *lowest_stopped = NULL;
4415 struct thread_info *first = NULL;
4416
4417 /* Consume the initial pending events. */
4418 while (pending_stop_replies-- > 0)
4419 {
4420 ptid_t waiton_ptid = minus_one_ptid;
4421 ptid_t event_ptid;
4422 struct target_waitstatus ws;
4423 int ignore_event = 0;
4424
4425 memset (&ws, 0, sizeof (ws));
4426 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4427 if (remote_debug)
4428 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4429
4430 switch (ws.kind)
4431 {
4432 case TARGET_WAITKIND_IGNORE:
4433 case TARGET_WAITKIND_NO_RESUMED:
4434 case TARGET_WAITKIND_SIGNALLED:
4435 case TARGET_WAITKIND_EXITED:
4436 /* We shouldn't see these, but if we do, just ignore. */
4437 if (remote_debug)
4438 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4439 ignore_event = 1;
4440 break;
4441
4442 case TARGET_WAITKIND_EXECD:
4443 xfree (ws.value.execd_pathname);
4444 break;
4445 default:
4446 break;
4447 }
4448
4449 if (ignore_event)
4450 continue;
4451
4452 thread_info *evthread = find_thread_ptid (this, event_ptid);
4453
4454 if (ws.kind == TARGET_WAITKIND_STOPPED)
4455 {
4456 enum gdb_signal sig = ws.value.sig;
4457
4458 /* Stubs traditionally report SIGTRAP as initial signal,
4459 instead of signal 0. Suppress it. */
4460 if (sig == GDB_SIGNAL_TRAP)
4461 sig = GDB_SIGNAL_0;
4462 evthread->suspend.stop_signal = sig;
4463 ws.value.sig = sig;
4464 }
4465
4466 evthread->suspend.waitstatus = ws;
4467
4468 if (ws.kind != TARGET_WAITKIND_STOPPED
4469 || ws.value.sig != GDB_SIGNAL_0)
4470 evthread->suspend.waitstatus_pending_p = 1;
4471
4472 set_executing (this, event_ptid, false);
4473 set_running (this, event_ptid, false);
4474 get_remote_thread_info (evthread)->vcont_resumed = 0;
4475 }
4476
4477 /* "Notice" the new inferiors before anything related to
4478 registers/memory. */
4479 for (inferior *inf : all_non_exited_inferiors (this))
4480 {
4481 inf->needs_setup = 1;
4482
4483 if (non_stop)
4484 {
4485 thread_info *thread = any_live_thread_of_inferior (inf);
4486 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4487 from_tty);
4488 }
4489 }
4490
4491 /* If all-stop on top of non-stop, pause all threads. Note this
4492 records the threads' stop pc, so must be done after "noticing"
4493 the inferiors. */
4494 if (!non_stop)
4495 {
4496 stop_all_threads ();
4497
4498 /* If all threads of an inferior were already stopped, we
4499 haven't setup the inferior yet. */
4500 for (inferior *inf : all_non_exited_inferiors (this))
4501 {
4502 if (inf->needs_setup)
4503 {
4504 thread_info *thread = any_live_thread_of_inferior (inf);
4505 switch_to_thread_no_regs (thread);
4506 setup_inferior (0);
4507 }
4508 }
4509 }
4510
4511 /* Now go over all threads that are stopped, and print their current
4512 frame. If all-stop, then if there's a signalled thread, pick
4513 that as current. */
4514 for (thread_info *thread : all_non_exited_threads (this))
4515 {
4516 if (first == NULL)
4517 first = thread;
4518
4519 if (!non_stop)
4520 thread->set_running (false);
4521 else if (thread->state != THREAD_STOPPED)
4522 continue;
4523
4524 if (selected == NULL
4525 && thread->suspend.waitstatus_pending_p)
4526 selected = thread;
4527
4528 if (lowest_stopped == NULL
4529 || thread->inf->num < lowest_stopped->inf->num
4530 || thread->per_inf_num < lowest_stopped->per_inf_num)
4531 lowest_stopped = thread;
4532
4533 if (non_stop)
4534 print_one_stopped_thread (thread);
4535 }
4536
4537 /* In all-stop, we only print the status of one thread, and leave
4538 others with their status pending. */
4539 if (!non_stop)
4540 {
4541 thread_info *thread = selected;
4542 if (thread == NULL)
4543 thread = lowest_stopped;
4544 if (thread == NULL)
4545 thread = first;
4546
4547 print_one_stopped_thread (thread);
4548 }
4549
4550 /* For "info program". */
4551 thread_info *thread = inferior_thread ();
4552 if (thread->state == THREAD_STOPPED)
4553 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4554 }
4555
4556 /* Start the remote connection and sync state. */
4557
4558 void
4559 remote_target::start_remote (int from_tty, int extended_p)
4560 {
4561 struct remote_state *rs = get_remote_state ();
4562 struct packet_config *noack_config;
4563 char *wait_status = NULL;
4564
4565 /* Signal other parts that we're going through the initial setup,
4566 and so things may not be stable yet. E.g., we don't try to
4567 install tracepoints until we've relocated symbols. Also, a
4568 Ctrl-C before we're connected and synced up can't interrupt the
4569 target. Instead, it offers to drop the (potentially wedged)
4570 connection. */
4571 rs->starting_up = 1;
4572
4573 QUIT;
4574
4575 if (interrupt_on_connect)
4576 send_interrupt_sequence ();
4577
4578 /* Ack any packet which the remote side has already sent. */
4579 remote_serial_write ("+", 1);
4580
4581 /* The first packet we send to the target is the optional "supported
4582 packets" request. If the target can answer this, it will tell us
4583 which later probes to skip. */
4584 remote_query_supported ();
4585
4586 /* If the stub wants to get a QAllow, compose one and send it. */
4587 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4588 set_permissions ();
4589
4590 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4591 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4592 as a reply to known packet. For packet "vFile:setfs:" it is an
4593 invalid reply and GDB would return error in
4594 remote_hostio_set_filesystem, making remote files access impossible.
4595 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4596 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4597 {
4598 const char v_mustreplyempty[] = "vMustReplyEmpty";
4599
4600 putpkt (v_mustreplyempty);
4601 getpkt (&rs->buf, 0);
4602 if (strcmp (rs->buf.data (), "OK") == 0)
4603 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4604 else if (strcmp (rs->buf.data (), "") != 0)
4605 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4606 rs->buf.data ());
4607 }
4608
4609 /* Next, we possibly activate noack mode.
4610
4611 If the QStartNoAckMode packet configuration is set to AUTO,
4612 enable noack mode if the stub reported a wish for it with
4613 qSupported.
4614
4615 If set to TRUE, then enable noack mode even if the stub didn't
4616 report it in qSupported. If the stub doesn't reply OK, the
4617 session ends with an error.
4618
4619 If FALSE, then don't activate noack mode, regardless of what the
4620 stub claimed should be the default with qSupported. */
4621
4622 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4623 if (packet_config_support (noack_config) != PACKET_DISABLE)
4624 {
4625 putpkt ("QStartNoAckMode");
4626 getpkt (&rs->buf, 0);
4627 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4628 rs->noack_mode = 1;
4629 }
4630
4631 if (extended_p)
4632 {
4633 /* Tell the remote that we are using the extended protocol. */
4634 putpkt ("!");
4635 getpkt (&rs->buf, 0);
4636 }
4637
4638 /* Let the target know which signals it is allowed to pass down to
4639 the program. */
4640 update_signals_program_target ();
4641
4642 /* Next, if the target can specify a description, read it. We do
4643 this before anything involving memory or registers. */
4644 target_find_description ();
4645
4646 /* Next, now that we know something about the target, update the
4647 address spaces in the program spaces. */
4648 update_address_spaces ();
4649
4650 /* On OSs where the list of libraries is global to all
4651 processes, we fetch them early. */
4652 if (gdbarch_has_global_solist (target_gdbarch ()))
4653 solib_add (NULL, from_tty, auto_solib_add);
4654
4655 if (target_is_non_stop_p ())
4656 {
4657 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4658 error (_("Non-stop mode requested, but remote "
4659 "does not support non-stop"));
4660
4661 putpkt ("QNonStop:1");
4662 getpkt (&rs->buf, 0);
4663
4664 if (strcmp (rs->buf.data (), "OK") != 0)
4665 error (_("Remote refused setting non-stop mode with: %s"),
4666 rs->buf.data ());
4667
4668 /* Find about threads and processes the stub is already
4669 controlling. We default to adding them in the running state.
4670 The '?' query below will then tell us about which threads are
4671 stopped. */
4672 this->update_thread_list ();
4673 }
4674 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4675 {
4676 /* Don't assume that the stub can operate in all-stop mode.
4677 Request it explicitly. */
4678 putpkt ("QNonStop:0");
4679 getpkt (&rs->buf, 0);
4680
4681 if (strcmp (rs->buf.data (), "OK") != 0)
4682 error (_("Remote refused setting all-stop mode with: %s"),
4683 rs->buf.data ());
4684 }
4685
4686 /* Upload TSVs regardless of whether the target is running or not. The
4687 remote stub, such as GDBserver, may have some predefined or builtin
4688 TSVs, even if the target is not running. */
4689 if (get_trace_status (current_trace_status ()) != -1)
4690 {
4691 struct uploaded_tsv *uploaded_tsvs = NULL;
4692
4693 upload_trace_state_variables (&uploaded_tsvs);
4694 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4695 }
4696
4697 /* Check whether the target is running now. */
4698 putpkt ("?");
4699 getpkt (&rs->buf, 0);
4700
4701 if (!target_is_non_stop_p ())
4702 {
4703 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4704 {
4705 if (!extended_p)
4706 error (_("The target is not running (try extended-remote?)"));
4707
4708 /* We're connected, but not running. Drop out before we
4709 call start_remote. */
4710 rs->starting_up = 0;
4711 return;
4712 }
4713 else
4714 {
4715 /* Save the reply for later. */
4716 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4717 strcpy (wait_status, rs->buf.data ());
4718 }
4719
4720 /* Fetch thread list. */
4721 target_update_thread_list ();
4722
4723 /* Let the stub know that we want it to return the thread. */
4724 set_continue_thread (minus_one_ptid);
4725
4726 if (thread_count (this) == 0)
4727 {
4728 /* Target has no concept of threads at all. GDB treats
4729 non-threaded target as single-threaded; add a main
4730 thread. */
4731 add_current_inferior_and_thread (wait_status);
4732 }
4733 else
4734 {
4735 /* We have thread information; select the thread the target
4736 says should be current. If we're reconnecting to a
4737 multi-threaded program, this will ideally be the thread
4738 that last reported an event before GDB disconnected. */
4739 ptid_t curr_thread = get_current_thread (wait_status);
4740 if (curr_thread == null_ptid)
4741 {
4742 /* Odd... The target was able to list threads, but not
4743 tell us which thread was current (no "thread"
4744 register in T stop reply?). Just pick the first
4745 thread in the thread list then. */
4746
4747 if (remote_debug)
4748 fprintf_unfiltered (gdb_stdlog,
4749 "warning: couldn't determine remote "
4750 "current thread; picking first in list.\n");
4751
4752 for (thread_info *tp : all_non_exited_threads (this,
4753 minus_one_ptid))
4754 {
4755 switch_to_thread (tp);
4756 break;
4757 }
4758 }
4759 else
4760 switch_to_thread (find_thread_ptid (this, curr_thread));
4761 }
4762
4763 /* init_wait_for_inferior should be called before get_offsets in order
4764 to manage `inserted' flag in bp loc in a correct state.
4765 breakpoint_init_inferior, called from init_wait_for_inferior, set
4766 `inserted' flag to 0, while before breakpoint_re_set, called from
4767 start_remote, set `inserted' flag to 1. In the initialization of
4768 inferior, breakpoint_init_inferior should be called first, and then
4769 breakpoint_re_set can be called. If this order is broken, state of
4770 `inserted' flag is wrong, and cause some problems on breakpoint
4771 manipulation. */
4772 init_wait_for_inferior ();
4773
4774 get_offsets (); /* Get text, data & bss offsets. */
4775
4776 /* If we could not find a description using qXfer, and we know
4777 how to do it some other way, try again. This is not
4778 supported for non-stop; it could be, but it is tricky if
4779 there are no stopped threads when we connect. */
4780 if (remote_read_description_p (this)
4781 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4782 {
4783 target_clear_description ();
4784 target_find_description ();
4785 }
4786
4787 /* Use the previously fetched status. */
4788 gdb_assert (wait_status != NULL);
4789 strcpy (rs->buf.data (), wait_status);
4790 rs->cached_wait_status = 1;
4791
4792 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4793 }
4794 else
4795 {
4796 /* Clear WFI global state. Do this before finding about new
4797 threads and inferiors, and setting the current inferior.
4798 Otherwise we would clear the proceed status of the current
4799 inferior when we want its stop_soon state to be preserved
4800 (see notice_new_inferior). */
4801 init_wait_for_inferior ();
4802
4803 /* In non-stop, we will either get an "OK", meaning that there
4804 are no stopped threads at this time; or, a regular stop
4805 reply. In the latter case, there may be more than one thread
4806 stopped --- we pull them all out using the vStopped
4807 mechanism. */
4808 if (strcmp (rs->buf.data (), "OK") != 0)
4809 {
4810 struct notif_client *notif = &notif_client_stop;
4811
4812 /* remote_notif_get_pending_replies acks this one, and gets
4813 the rest out. */
4814 rs->notif_state->pending_event[notif_client_stop.id]
4815 = remote_notif_parse (this, notif, rs->buf.data ());
4816 remote_notif_get_pending_events (notif);
4817 }
4818
4819 if (thread_count (this) == 0)
4820 {
4821 if (!extended_p)
4822 error (_("The target is not running (try extended-remote?)"));
4823
4824 /* We're connected, but not running. Drop out before we
4825 call start_remote. */
4826 rs->starting_up = 0;
4827 return;
4828 }
4829
4830 /* In non-stop mode, any cached wait status will be stored in
4831 the stop reply queue. */
4832 gdb_assert (wait_status == NULL);
4833
4834 /* Report all signals during attach/startup. */
4835 pass_signals ({});
4836
4837 /* If there are already stopped threads, mark them stopped and
4838 report their stops before giving the prompt to the user. */
4839 process_initial_stop_replies (from_tty);
4840
4841 if (target_can_async_p ())
4842 target_async (1);
4843 }
4844
4845 /* If we connected to a live target, do some additional setup. */
4846 if (target_has_execution)
4847 {
4848 if (symfile_objfile) /* No use without a symbol-file. */
4849 remote_check_symbols ();
4850 }
4851
4852 /* Possibly the target has been engaged in a trace run started
4853 previously; find out where things are at. */
4854 if (get_trace_status (current_trace_status ()) != -1)
4855 {
4856 struct uploaded_tp *uploaded_tps = NULL;
4857
4858 if (current_trace_status ()->running)
4859 printf_filtered (_("Trace is already running on the target.\n"));
4860
4861 upload_tracepoints (&uploaded_tps);
4862
4863 merge_uploaded_tracepoints (&uploaded_tps);
4864 }
4865
4866 /* Possibly the target has been engaged in a btrace record started
4867 previously; find out where things are at. */
4868 remote_btrace_maybe_reopen ();
4869
4870 /* The thread and inferior lists are now synchronized with the
4871 target, our symbols have been relocated, and we're merged the
4872 target's tracepoints with ours. We're done with basic start
4873 up. */
4874 rs->starting_up = 0;
4875
4876 /* Maybe breakpoints are global and need to be inserted now. */
4877 if (breakpoints_should_be_inserted_now ())
4878 insert_breakpoints ();
4879 }
4880
4881 const char *
4882 remote_target::connection_string ()
4883 {
4884 remote_state *rs = get_remote_state ();
4885
4886 if (rs->remote_desc->name != NULL)
4887 return rs->remote_desc->name;
4888 else
4889 return NULL;
4890 }
4891
4892 /* Open a connection to a remote debugger.
4893 NAME is the filename used for communication. */
4894
4895 void
4896 remote_target::open (const char *name, int from_tty)
4897 {
4898 open_1 (name, from_tty, 0);
4899 }
4900
4901 /* Open a connection to a remote debugger using the extended
4902 remote gdb protocol. NAME is the filename used for communication. */
4903
4904 void
4905 extended_remote_target::open (const char *name, int from_tty)
4906 {
4907 open_1 (name, from_tty, 1 /*extended_p */);
4908 }
4909
4910 /* Reset all packets back to "unknown support". Called when opening a
4911 new connection to a remote target. */
4912
4913 static void
4914 reset_all_packet_configs_support (void)
4915 {
4916 int i;
4917
4918 for (i = 0; i < PACKET_MAX; i++)
4919 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4920 }
4921
4922 /* Initialize all packet configs. */
4923
4924 static void
4925 init_all_packet_configs (void)
4926 {
4927 int i;
4928
4929 for (i = 0; i < PACKET_MAX; i++)
4930 {
4931 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4932 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4933 }
4934 }
4935
4936 /* Symbol look-up. */
4937
4938 void
4939 remote_target::remote_check_symbols ()
4940 {
4941 char *tmp;
4942 int end;
4943
4944 /* The remote side has no concept of inferiors that aren't running
4945 yet, it only knows about running processes. If we're connected
4946 but our current inferior is not running, we should not invite the
4947 remote target to request symbol lookups related to its
4948 (unrelated) current process. */
4949 if (!target_has_execution)
4950 return;
4951
4952 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4953 return;
4954
4955 /* Make sure the remote is pointing at the right process. Note
4956 there's no way to select "no process". */
4957 set_general_process ();
4958
4959 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4960 because we need both at the same time. */
4961 gdb::char_vector msg (get_remote_packet_size ());
4962 gdb::char_vector reply (get_remote_packet_size ());
4963
4964 /* Invite target to request symbol lookups. */
4965
4966 putpkt ("qSymbol::");
4967 getpkt (&reply, 0);
4968 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4969
4970 while (startswith (reply.data (), "qSymbol:"))
4971 {
4972 struct bound_minimal_symbol sym;
4973
4974 tmp = &reply[8];
4975 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4976 strlen (tmp) / 2);
4977 msg[end] = '\0';
4978 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4979 if (sym.minsym == NULL)
4980 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4981 &reply[8]);
4982 else
4983 {
4984 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4985 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4986
4987 /* If this is a function address, return the start of code
4988 instead of any data function descriptor. */
4989 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4990 sym_addr,
4991 current_top_target ());
4992
4993 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4994 phex_nz (sym_addr, addr_size), &reply[8]);
4995 }
4996
4997 putpkt (msg.data ());
4998 getpkt (&reply, 0);
4999 }
5000 }
5001
5002 static struct serial *
5003 remote_serial_open (const char *name)
5004 {
5005 static int udp_warning = 0;
5006
5007 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5008 of in ser-tcp.c, because it is the remote protocol assuming that the
5009 serial connection is reliable and not the serial connection promising
5010 to be. */
5011 if (!udp_warning && startswith (name, "udp:"))
5012 {
5013 warning (_("The remote protocol may be unreliable over UDP.\n"
5014 "Some events may be lost, rendering further debugging "
5015 "impossible."));
5016 udp_warning = 1;
5017 }
5018
5019 return serial_open (name);
5020 }
5021
5022 /* Inform the target of our permission settings. The permission flags
5023 work without this, but if the target knows the settings, it can do
5024 a couple things. First, it can add its own check, to catch cases
5025 that somehow manage to get by the permissions checks in target
5026 methods. Second, if the target is wired to disallow particular
5027 settings (for instance, a system in the field that is not set up to
5028 be able to stop at a breakpoint), it can object to any unavailable
5029 permissions. */
5030
5031 void
5032 remote_target::set_permissions ()
5033 {
5034 struct remote_state *rs = get_remote_state ();
5035
5036 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5037 "WriteReg:%x;WriteMem:%x;"
5038 "InsertBreak:%x;InsertTrace:%x;"
5039 "InsertFastTrace:%x;Stop:%x",
5040 may_write_registers, may_write_memory,
5041 may_insert_breakpoints, may_insert_tracepoints,
5042 may_insert_fast_tracepoints, may_stop);
5043 putpkt (rs->buf);
5044 getpkt (&rs->buf, 0);
5045
5046 /* If the target didn't like the packet, warn the user. Do not try
5047 to undo the user's settings, that would just be maddening. */
5048 if (strcmp (rs->buf.data (), "OK") != 0)
5049 warning (_("Remote refused setting permissions with: %s"),
5050 rs->buf.data ());
5051 }
5052
5053 /* This type describes each known response to the qSupported
5054 packet. */
5055 struct protocol_feature
5056 {
5057 /* The name of this protocol feature. */
5058 const char *name;
5059
5060 /* The default for this protocol feature. */
5061 enum packet_support default_support;
5062
5063 /* The function to call when this feature is reported, or after
5064 qSupported processing if the feature is not supported.
5065 The first argument points to this structure. The second
5066 argument indicates whether the packet requested support be
5067 enabled, disabled, or probed (or the default, if this function
5068 is being called at the end of processing and this feature was
5069 not reported). The third argument may be NULL; if not NULL, it
5070 is a NUL-terminated string taken from the packet following
5071 this feature's name and an equals sign. */
5072 void (*func) (remote_target *remote, const struct protocol_feature *,
5073 enum packet_support, const char *);
5074
5075 /* The corresponding packet for this feature. Only used if
5076 FUNC is remote_supported_packet. */
5077 int packet;
5078 };
5079
5080 static void
5081 remote_supported_packet (remote_target *remote,
5082 const struct protocol_feature *feature,
5083 enum packet_support support,
5084 const char *argument)
5085 {
5086 if (argument)
5087 {
5088 warning (_("Remote qSupported response supplied an unexpected value for"
5089 " \"%s\"."), feature->name);
5090 return;
5091 }
5092
5093 remote_protocol_packets[feature->packet].support = support;
5094 }
5095
5096 void
5097 remote_target::remote_packet_size (const protocol_feature *feature,
5098 enum packet_support support, const char *value)
5099 {
5100 struct remote_state *rs = get_remote_state ();
5101
5102 int packet_size;
5103 char *value_end;
5104
5105 if (support != PACKET_ENABLE)
5106 return;
5107
5108 if (value == NULL || *value == '\0')
5109 {
5110 warning (_("Remote target reported \"%s\" without a size."),
5111 feature->name);
5112 return;
5113 }
5114
5115 errno = 0;
5116 packet_size = strtol (value, &value_end, 16);
5117 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5118 {
5119 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5120 feature->name, value);
5121 return;
5122 }
5123
5124 /* Record the new maximum packet size. */
5125 rs->explicit_packet_size = packet_size;
5126 }
5127
5128 static void
5129 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5130 enum packet_support support, const char *value)
5131 {
5132 remote->remote_packet_size (feature, support, value);
5133 }
5134
5135 static const struct protocol_feature remote_protocol_features[] = {
5136 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5137 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_qXfer_auxv },
5139 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_qXfer_exec_file },
5141 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_qXfer_features },
5143 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5144 PACKET_qXfer_libraries },
5145 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5146 PACKET_qXfer_libraries_svr4 },
5147 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5148 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5149 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5150 PACKET_qXfer_memory_map },
5151 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5152 PACKET_qXfer_osdata },
5153 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5154 PACKET_qXfer_threads },
5155 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5156 PACKET_qXfer_traceframe_info },
5157 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5158 PACKET_QPassSignals },
5159 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5160 PACKET_QCatchSyscalls },
5161 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5162 PACKET_QProgramSignals },
5163 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5164 PACKET_QSetWorkingDir },
5165 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5166 PACKET_QStartupWithShell },
5167 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5168 PACKET_QEnvironmentHexEncoded },
5169 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5170 PACKET_QEnvironmentReset },
5171 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5172 PACKET_QEnvironmentUnset },
5173 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5174 PACKET_QStartNoAckMode },
5175 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5176 PACKET_multiprocess_feature },
5177 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5178 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5179 PACKET_qXfer_siginfo_read },
5180 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5181 PACKET_qXfer_siginfo_write },
5182 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5183 PACKET_ConditionalTracepoints },
5184 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5185 PACKET_ConditionalBreakpoints },
5186 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5187 PACKET_BreakpointCommands },
5188 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5189 PACKET_FastTracepoints },
5190 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5191 PACKET_StaticTracepoints },
5192 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5193 PACKET_InstallInTrace},
5194 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5195 PACKET_DisconnectedTracing_feature },
5196 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5197 PACKET_bc },
5198 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5199 PACKET_bs },
5200 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5201 PACKET_TracepointSource },
5202 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5203 PACKET_QAllow },
5204 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5205 PACKET_EnableDisableTracepoints_feature },
5206 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5207 PACKET_qXfer_fdpic },
5208 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5209 PACKET_qXfer_uib },
5210 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5211 PACKET_QDisableRandomization },
5212 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5213 { "QTBuffer:size", PACKET_DISABLE,
5214 remote_supported_packet, PACKET_QTBuffer_size},
5215 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5216 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5217 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5218 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5219 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5220 PACKET_qXfer_btrace },
5221 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5222 PACKET_qXfer_btrace_conf },
5223 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5224 PACKET_Qbtrace_conf_bts_size },
5225 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5226 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5227 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5228 PACKET_fork_event_feature },
5229 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5230 PACKET_vfork_event_feature },
5231 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5232 PACKET_exec_event_feature },
5233 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5234 PACKET_Qbtrace_conf_pt_size },
5235 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5236 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5237 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5238 };
5239
5240 static char *remote_support_xml;
5241
5242 /* Register string appended to "xmlRegisters=" in qSupported query. */
5243
5244 void
5245 register_remote_support_xml (const char *xml)
5246 {
5247 #if defined(HAVE_LIBEXPAT)
5248 if (remote_support_xml == NULL)
5249 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5250 else
5251 {
5252 char *copy = xstrdup (remote_support_xml + 13);
5253 char *saveptr;
5254 char *p = strtok_r (copy, ",", &saveptr);
5255
5256 do
5257 {
5258 if (strcmp (p, xml) == 0)
5259 {
5260 /* already there */
5261 xfree (copy);
5262 return;
5263 }
5264 }
5265 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5266 xfree (copy);
5267
5268 remote_support_xml = reconcat (remote_support_xml,
5269 remote_support_xml, ",", xml,
5270 (char *) NULL);
5271 }
5272 #endif
5273 }
5274
5275 static void
5276 remote_query_supported_append (std::string *msg, const char *append)
5277 {
5278 if (!msg->empty ())
5279 msg->append (";");
5280 msg->append (append);
5281 }
5282
5283 void
5284 remote_target::remote_query_supported ()
5285 {
5286 struct remote_state *rs = get_remote_state ();
5287 char *next;
5288 int i;
5289 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5290
5291 /* The packet support flags are handled differently for this packet
5292 than for most others. We treat an error, a disabled packet, and
5293 an empty response identically: any features which must be reported
5294 to be used will be automatically disabled. An empty buffer
5295 accomplishes this, since that is also the representation for a list
5296 containing no features. */
5297
5298 rs->buf[0] = 0;
5299 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5300 {
5301 std::string q;
5302
5303 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5304 remote_query_supported_append (&q, "multiprocess+");
5305
5306 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5307 remote_query_supported_append (&q, "swbreak+");
5308 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5309 remote_query_supported_append (&q, "hwbreak+");
5310
5311 remote_query_supported_append (&q, "qRelocInsn+");
5312
5313 if (packet_set_cmd_state (PACKET_fork_event_feature)
5314 != AUTO_BOOLEAN_FALSE)
5315 remote_query_supported_append (&q, "fork-events+");
5316 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5317 != AUTO_BOOLEAN_FALSE)
5318 remote_query_supported_append (&q, "vfork-events+");
5319 if (packet_set_cmd_state (PACKET_exec_event_feature)
5320 != AUTO_BOOLEAN_FALSE)
5321 remote_query_supported_append (&q, "exec-events+");
5322
5323 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5324 remote_query_supported_append (&q, "vContSupported+");
5325
5326 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5327 remote_query_supported_append (&q, "QThreadEvents+");
5328
5329 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5330 remote_query_supported_append (&q, "no-resumed+");
5331
5332 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5333 the qSupported:xmlRegisters=i386 handling. */
5334 if (remote_support_xml != NULL
5335 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5336 remote_query_supported_append (&q, remote_support_xml);
5337
5338 q = "qSupported:" + q;
5339 putpkt (q.c_str ());
5340
5341 getpkt (&rs->buf, 0);
5342
5343 /* If an error occured, warn, but do not return - just reset the
5344 buffer to empty and go on to disable features. */
5345 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5346 == PACKET_ERROR)
5347 {
5348 warning (_("Remote failure reply: %s"), rs->buf.data ());
5349 rs->buf[0] = 0;
5350 }
5351 }
5352
5353 memset (seen, 0, sizeof (seen));
5354
5355 next = rs->buf.data ();
5356 while (*next)
5357 {
5358 enum packet_support is_supported;
5359 char *p, *end, *name_end, *value;
5360
5361 /* First separate out this item from the rest of the packet. If
5362 there's another item after this, we overwrite the separator
5363 (terminated strings are much easier to work with). */
5364 p = next;
5365 end = strchr (p, ';');
5366 if (end == NULL)
5367 {
5368 end = p + strlen (p);
5369 next = end;
5370 }
5371 else
5372 {
5373 *end = '\0';
5374 next = end + 1;
5375
5376 if (end == p)
5377 {
5378 warning (_("empty item in \"qSupported\" response"));
5379 continue;
5380 }
5381 }
5382
5383 name_end = strchr (p, '=');
5384 if (name_end)
5385 {
5386 /* This is a name=value entry. */
5387 is_supported = PACKET_ENABLE;
5388 value = name_end + 1;
5389 *name_end = '\0';
5390 }
5391 else
5392 {
5393 value = NULL;
5394 switch (end[-1])
5395 {
5396 case '+':
5397 is_supported = PACKET_ENABLE;
5398 break;
5399
5400 case '-':
5401 is_supported = PACKET_DISABLE;
5402 break;
5403
5404 case '?':
5405 is_supported = PACKET_SUPPORT_UNKNOWN;
5406 break;
5407
5408 default:
5409 warning (_("unrecognized item \"%s\" "
5410 "in \"qSupported\" response"), p);
5411 continue;
5412 }
5413 end[-1] = '\0';
5414 }
5415
5416 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5417 if (strcmp (remote_protocol_features[i].name, p) == 0)
5418 {
5419 const struct protocol_feature *feature;
5420
5421 seen[i] = 1;
5422 feature = &remote_protocol_features[i];
5423 feature->func (this, feature, is_supported, value);
5424 break;
5425 }
5426 }
5427
5428 /* If we increased the packet size, make sure to increase the global
5429 buffer size also. We delay this until after parsing the entire
5430 qSupported packet, because this is the same buffer we were
5431 parsing. */
5432 if (rs->buf.size () < rs->explicit_packet_size)
5433 rs->buf.resize (rs->explicit_packet_size);
5434
5435 /* Handle the defaults for unmentioned features. */
5436 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5437 if (!seen[i])
5438 {
5439 const struct protocol_feature *feature;
5440
5441 feature = &remote_protocol_features[i];
5442 feature->func (this, feature, feature->default_support, NULL);
5443 }
5444 }
5445
5446 /* Serial QUIT handler for the remote serial descriptor.
5447
5448 Defers handling a Ctrl-C until we're done with the current
5449 command/response packet sequence, unless:
5450
5451 - We're setting up the connection. Don't send a remote interrupt
5452 request, as we're not fully synced yet. Quit immediately
5453 instead.
5454
5455 - The target has been resumed in the foreground
5456 (target_terminal::is_ours is false) with a synchronous resume
5457 packet, and we're blocked waiting for the stop reply, thus a
5458 Ctrl-C should be immediately sent to the target.
5459
5460 - We get a second Ctrl-C while still within the same serial read or
5461 write. In that case the serial is seemingly wedged --- offer to
5462 quit/disconnect.
5463
5464 - We see a second Ctrl-C without target response, after having
5465 previously interrupted the target. In that case the target/stub
5466 is probably wedged --- offer to quit/disconnect.
5467 */
5468
5469 void
5470 remote_target::remote_serial_quit_handler ()
5471 {
5472 struct remote_state *rs = get_remote_state ();
5473
5474 if (check_quit_flag ())
5475 {
5476 /* If we're starting up, we're not fully synced yet. Quit
5477 immediately. */
5478 if (rs->starting_up)
5479 quit ();
5480 else if (rs->got_ctrlc_during_io)
5481 {
5482 if (query (_("The target is not responding to GDB commands.\n"
5483 "Stop debugging it? ")))
5484 remote_unpush_and_throw (this);
5485 }
5486 /* If ^C has already been sent once, offer to disconnect. */
5487 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5488 interrupt_query ();
5489 /* All-stop protocol, and blocked waiting for stop reply. Send
5490 an interrupt request. */
5491 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5492 target_interrupt ();
5493 else
5494 rs->got_ctrlc_during_io = 1;
5495 }
5496 }
5497
5498 /* The remote_target that is current while the quit handler is
5499 overridden with remote_serial_quit_handler. */
5500 static remote_target *curr_quit_handler_target;
5501
5502 static void
5503 remote_serial_quit_handler ()
5504 {
5505 curr_quit_handler_target->remote_serial_quit_handler ();
5506 }
5507
5508 /* Remove the remote target from the target stack of each inferior
5509 that is using it. Upper targets depend on it so remove them
5510 first. */
5511
5512 static void
5513 remote_unpush_target (remote_target *target)
5514 {
5515 /* We have to unpush the target from all inferiors, even those that
5516 aren't running. */
5517 scoped_restore_current_inferior restore_current_inferior;
5518
5519 for (inferior *inf : all_inferiors (target))
5520 {
5521 switch_to_inferior_no_thread (inf);
5522 pop_all_targets_at_and_above (process_stratum);
5523 generic_mourn_inferior ();
5524 }
5525 }
5526
5527 static void
5528 remote_unpush_and_throw (remote_target *target)
5529 {
5530 remote_unpush_target (target);
5531 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5532 }
5533
5534 void
5535 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5536 {
5537 remote_target *curr_remote = get_current_remote_target ();
5538
5539 if (name == 0)
5540 error (_("To open a remote debug connection, you need to specify what\n"
5541 "serial device is attached to the remote system\n"
5542 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5543
5544 /* If we're connected to a running target, target_preopen will kill it.
5545 Ask this question first, before target_preopen has a chance to kill
5546 anything. */
5547 if (curr_remote != NULL && !target_has_execution)
5548 {
5549 if (from_tty
5550 && !query (_("Already connected to a remote target. Disconnect? ")))
5551 error (_("Still connected."));
5552 }
5553
5554 /* Here the possibly existing remote target gets unpushed. */
5555 target_preopen (from_tty);
5556
5557 remote_fileio_reset ();
5558 reopen_exec_file ();
5559 reread_symbols ();
5560
5561 remote_target *remote
5562 = (extended_p ? new extended_remote_target () : new remote_target ());
5563 target_ops_up target_holder (remote);
5564
5565 remote_state *rs = remote->get_remote_state ();
5566
5567 /* See FIXME above. */
5568 if (!target_async_permitted)
5569 rs->wait_forever_enabled_p = 1;
5570
5571 rs->remote_desc = remote_serial_open (name);
5572 if (!rs->remote_desc)
5573 perror_with_name (name);
5574
5575 if (baud_rate != -1)
5576 {
5577 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5578 {
5579 /* The requested speed could not be set. Error out to
5580 top level after closing remote_desc. Take care to
5581 set remote_desc to NULL to avoid closing remote_desc
5582 more than once. */
5583 serial_close (rs->remote_desc);
5584 rs->remote_desc = NULL;
5585 perror_with_name (name);
5586 }
5587 }
5588
5589 serial_setparity (rs->remote_desc, serial_parity);
5590 serial_raw (rs->remote_desc);
5591
5592 /* If there is something sitting in the buffer we might take it as a
5593 response to a command, which would be bad. */
5594 serial_flush_input (rs->remote_desc);
5595
5596 if (from_tty)
5597 {
5598 puts_filtered ("Remote debugging using ");
5599 puts_filtered (name);
5600 puts_filtered ("\n");
5601 }
5602
5603 /* Switch to using the remote target now. */
5604 push_target (std::move (target_holder));
5605
5606 /* Register extra event sources in the event loop. */
5607 rs->remote_async_inferior_event_token
5608 = create_async_event_handler (remote_async_inferior_event_handler,
5609 remote);
5610 rs->notif_state = remote_notif_state_allocate (remote);
5611
5612 /* Reset the target state; these things will be queried either by
5613 remote_query_supported or as they are needed. */
5614 reset_all_packet_configs_support ();
5615 rs->cached_wait_status = 0;
5616 rs->explicit_packet_size = 0;
5617 rs->noack_mode = 0;
5618 rs->extended = extended_p;
5619 rs->waiting_for_stop_reply = 0;
5620 rs->ctrlc_pending_p = 0;
5621 rs->got_ctrlc_during_io = 0;
5622
5623 rs->general_thread = not_sent_ptid;
5624 rs->continue_thread = not_sent_ptid;
5625 rs->remote_traceframe_number = -1;
5626
5627 rs->last_resume_exec_dir = EXEC_FORWARD;
5628
5629 /* Probe for ability to use "ThreadInfo" query, as required. */
5630 rs->use_threadinfo_query = 1;
5631 rs->use_threadextra_query = 1;
5632
5633 rs->readahead_cache.invalidate ();
5634
5635 if (target_async_permitted)
5636 {
5637 /* FIXME: cagney/1999-09-23: During the initial connection it is
5638 assumed that the target is already ready and able to respond to
5639 requests. Unfortunately remote_start_remote() eventually calls
5640 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5641 around this. Eventually a mechanism that allows
5642 wait_for_inferior() to expect/get timeouts will be
5643 implemented. */
5644 rs->wait_forever_enabled_p = 0;
5645 }
5646
5647 /* First delete any symbols previously loaded from shared libraries. */
5648 no_shared_libraries (NULL, 0);
5649
5650 /* Start the remote connection. If error() or QUIT, discard this
5651 target (we'd otherwise be in an inconsistent state) and then
5652 propogate the error on up the exception chain. This ensures that
5653 the caller doesn't stumble along blindly assuming that the
5654 function succeeded. The CLI doesn't have this problem but other
5655 UI's, such as MI do.
5656
5657 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5658 this function should return an error indication letting the
5659 caller restore the previous state. Unfortunately the command
5660 ``target remote'' is directly wired to this function making that
5661 impossible. On a positive note, the CLI side of this problem has
5662 been fixed - the function set_cmd_context() makes it possible for
5663 all the ``target ....'' commands to share a common callback
5664 function. See cli-dump.c. */
5665 {
5666
5667 try
5668 {
5669 remote->start_remote (from_tty, extended_p);
5670 }
5671 catch (const gdb_exception &ex)
5672 {
5673 /* Pop the partially set up target - unless something else did
5674 already before throwing the exception. */
5675 if (ex.error != TARGET_CLOSE_ERROR)
5676 remote_unpush_target (remote);
5677 throw;
5678 }
5679 }
5680
5681 remote_btrace_reset (rs);
5682
5683 if (target_async_permitted)
5684 rs->wait_forever_enabled_p = 1;
5685 }
5686
5687 /* Detach the specified process. */
5688
5689 void
5690 remote_target::remote_detach_pid (int pid)
5691 {
5692 struct remote_state *rs = get_remote_state ();
5693
5694 /* This should not be necessary, but the handling for D;PID in
5695 GDBserver versions prior to 8.2 incorrectly assumes that the
5696 selected process points to the same process we're detaching,
5697 leading to misbehavior (and possibly GDBserver crashing) when it
5698 does not. Since it's easy and cheap, work around it by forcing
5699 GDBserver to select GDB's current process. */
5700 set_general_process ();
5701
5702 if (remote_multi_process_p (rs))
5703 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5704 else
5705 strcpy (rs->buf.data (), "D");
5706
5707 putpkt (rs->buf);
5708 getpkt (&rs->buf, 0);
5709
5710 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5711 ;
5712 else if (rs->buf[0] == '\0')
5713 error (_("Remote doesn't know how to detach"));
5714 else
5715 error (_("Can't detach process."));
5716 }
5717
5718 /* This detaches a program to which we previously attached, using
5719 inferior_ptid to identify the process. After this is done, GDB
5720 can be used to debug some other program. We better not have left
5721 any breakpoints in the target program or it'll die when it hits
5722 one. */
5723
5724 void
5725 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5726 {
5727 int pid = inferior_ptid.pid ();
5728 struct remote_state *rs = get_remote_state ();
5729 int is_fork_parent;
5730
5731 if (!target_has_execution)
5732 error (_("No process to detach from."));
5733
5734 target_announce_detach (from_tty);
5735
5736 /* Tell the remote target to detach. */
5737 remote_detach_pid (pid);
5738
5739 /* Exit only if this is the only active inferior. */
5740 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5741 puts_filtered (_("Ending remote debugging.\n"));
5742
5743 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5744
5745 /* Check to see if we are detaching a fork parent. Note that if we
5746 are detaching a fork child, tp == NULL. */
5747 is_fork_parent = (tp != NULL
5748 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5749
5750 /* If doing detach-on-fork, we don't mourn, because that will delete
5751 breakpoints that should be available for the followed inferior. */
5752 if (!is_fork_parent)
5753 {
5754 /* Save the pid as a string before mourning, since that will
5755 unpush the remote target, and we need the string after. */
5756 std::string infpid = target_pid_to_str (ptid_t (pid));
5757
5758 target_mourn_inferior (inferior_ptid);
5759 if (print_inferior_events)
5760 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5761 inf->num, infpid.c_str ());
5762 }
5763 else
5764 {
5765 switch_to_no_thread ();
5766 detach_inferior (current_inferior ());
5767 }
5768 }
5769
5770 void
5771 remote_target::detach (inferior *inf, int from_tty)
5772 {
5773 remote_detach_1 (inf, from_tty);
5774 }
5775
5776 void
5777 extended_remote_target::detach (inferior *inf, int from_tty)
5778 {
5779 remote_detach_1 (inf, from_tty);
5780 }
5781
5782 /* Target follow-fork function for remote targets. On entry, and
5783 at return, the current inferior is the fork parent.
5784
5785 Note that although this is currently only used for extended-remote,
5786 it is named remote_follow_fork in anticipation of using it for the
5787 remote target as well. */
5788
5789 bool
5790 remote_target::follow_fork (bool follow_child, bool detach_fork)
5791 {
5792 struct remote_state *rs = get_remote_state ();
5793 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5794
5795 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5796 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5797 {
5798 /* When following the parent and detaching the child, we detach
5799 the child here. For the case of following the child and
5800 detaching the parent, the detach is done in the target-
5801 independent follow fork code in infrun.c. We can't use
5802 target_detach when detaching an unfollowed child because
5803 the client side doesn't know anything about the child. */
5804 if (detach_fork && !follow_child)
5805 {
5806 /* Detach the fork child. */
5807 ptid_t child_ptid;
5808 pid_t child_pid;
5809
5810 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5811 child_pid = child_ptid.pid ();
5812
5813 remote_detach_pid (child_pid);
5814 }
5815 }
5816
5817 return false;
5818 }
5819
5820 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5821 in the program space of the new inferior. On entry and at return the
5822 current inferior is the exec'ing inferior. INF is the new exec'd
5823 inferior, which may be the same as the exec'ing inferior unless
5824 follow-exec-mode is "new". */
5825
5826 void
5827 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5828 {
5829 /* We know that this is a target file name, so if it has the "target:"
5830 prefix we strip it off before saving it in the program space. */
5831 if (is_target_filename (execd_pathname))
5832 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5833
5834 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5835 }
5836
5837 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5838
5839 void
5840 remote_target::disconnect (const char *args, int from_tty)
5841 {
5842 if (args)
5843 error (_("Argument given to \"disconnect\" when remotely debugging."));
5844
5845 /* Make sure we unpush even the extended remote targets. Calling
5846 target_mourn_inferior won't unpush, and
5847 remote_target::mourn_inferior won't unpush if there is more than
5848 one inferior left. */
5849 remote_unpush_target (this);
5850
5851 if (from_tty)
5852 puts_filtered ("Ending remote debugging.\n");
5853 }
5854
5855 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5856 be chatty about it. */
5857
5858 void
5859 extended_remote_target::attach (const char *args, int from_tty)
5860 {
5861 struct remote_state *rs = get_remote_state ();
5862 int pid;
5863 char *wait_status = NULL;
5864
5865 pid = parse_pid_to_attach (args);
5866
5867 /* Remote PID can be freely equal to getpid, do not check it here the same
5868 way as in other targets. */
5869
5870 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5871 error (_("This target does not support attaching to a process"));
5872
5873 if (from_tty)
5874 {
5875 const char *exec_file = get_exec_file (0);
5876
5877 if (exec_file)
5878 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5879 target_pid_to_str (ptid_t (pid)).c_str ());
5880 else
5881 printf_unfiltered (_("Attaching to %s\n"),
5882 target_pid_to_str (ptid_t (pid)).c_str ());
5883 }
5884
5885 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5886 putpkt (rs->buf);
5887 getpkt (&rs->buf, 0);
5888
5889 switch (packet_ok (rs->buf,
5890 &remote_protocol_packets[PACKET_vAttach]))
5891 {
5892 case PACKET_OK:
5893 if (!target_is_non_stop_p ())
5894 {
5895 /* Save the reply for later. */
5896 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5897 strcpy (wait_status, rs->buf.data ());
5898 }
5899 else if (strcmp (rs->buf.data (), "OK") != 0)
5900 error (_("Attaching to %s failed with: %s"),
5901 target_pid_to_str (ptid_t (pid)).c_str (),
5902 rs->buf.data ());
5903 break;
5904 case PACKET_UNKNOWN:
5905 error (_("This target does not support attaching to a process"));
5906 default:
5907 error (_("Attaching to %s failed"),
5908 target_pid_to_str (ptid_t (pid)).c_str ());
5909 }
5910
5911 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
5912
5913 inferior_ptid = ptid_t (pid);
5914
5915 if (target_is_non_stop_p ())
5916 {
5917 /* Get list of threads. */
5918 update_thread_list ();
5919
5920 thread_info *thread = first_thread_of_inferior (current_inferior ());
5921 if (thread != nullptr)
5922 switch_to_thread (thread);
5923
5924 /* Invalidate our notion of the remote current thread. */
5925 record_currthread (rs, minus_one_ptid);
5926 }
5927 else
5928 {
5929 /* Now, if we have thread information, update the main thread's
5930 ptid. */
5931 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
5932
5933 /* Add the main thread to the thread list. */
5934 thread_info *thr = add_thread_silent (this, curr_ptid);
5935
5936 switch_to_thread (thr);
5937
5938 /* Don't consider the thread stopped until we've processed the
5939 saved stop reply. */
5940 set_executing (this, thr->ptid, true);
5941 }
5942
5943 /* Next, if the target can specify a description, read it. We do
5944 this before anything involving memory or registers. */
5945 target_find_description ();
5946
5947 if (!target_is_non_stop_p ())
5948 {
5949 /* Use the previously fetched status. */
5950 gdb_assert (wait_status != NULL);
5951
5952 if (target_can_async_p ())
5953 {
5954 struct notif_event *reply
5955 = remote_notif_parse (this, &notif_client_stop, wait_status);
5956
5957 push_stop_reply ((struct stop_reply *) reply);
5958
5959 target_async (1);
5960 }
5961 else
5962 {
5963 gdb_assert (wait_status != NULL);
5964 strcpy (rs->buf.data (), wait_status);
5965 rs->cached_wait_status = 1;
5966 }
5967 }
5968 else
5969 gdb_assert (wait_status == NULL);
5970 }
5971
5972 /* Implementation of the to_post_attach method. */
5973
5974 void
5975 extended_remote_target::post_attach (int pid)
5976 {
5977 /* Get text, data & bss offsets. */
5978 get_offsets ();
5979
5980 /* In certain cases GDB might not have had the chance to start
5981 symbol lookup up until now. This could happen if the debugged
5982 binary is not using shared libraries, the vsyscall page is not
5983 present (on Linux) and the binary itself hadn't changed since the
5984 debugging process was started. */
5985 if (symfile_objfile != NULL)
5986 remote_check_symbols();
5987 }
5988
5989 \f
5990 /* Check for the availability of vCont. This function should also check
5991 the response. */
5992
5993 void
5994 remote_target::remote_vcont_probe ()
5995 {
5996 remote_state *rs = get_remote_state ();
5997 char *buf;
5998
5999 strcpy (rs->buf.data (), "vCont?");
6000 putpkt (rs->buf);
6001 getpkt (&rs->buf, 0);
6002 buf = rs->buf.data ();
6003
6004 /* Make sure that the features we assume are supported. */
6005 if (startswith (buf, "vCont"))
6006 {
6007 char *p = &buf[5];
6008 int support_c, support_C;
6009
6010 rs->supports_vCont.s = 0;
6011 rs->supports_vCont.S = 0;
6012 support_c = 0;
6013 support_C = 0;
6014 rs->supports_vCont.t = 0;
6015 rs->supports_vCont.r = 0;
6016 while (p && *p == ';')
6017 {
6018 p++;
6019 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6020 rs->supports_vCont.s = 1;
6021 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6022 rs->supports_vCont.S = 1;
6023 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6024 support_c = 1;
6025 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6026 support_C = 1;
6027 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6028 rs->supports_vCont.t = 1;
6029 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6030 rs->supports_vCont.r = 1;
6031
6032 p = strchr (p, ';');
6033 }
6034
6035 /* If c, and C are not all supported, we can't use vCont. Clearing
6036 BUF will make packet_ok disable the packet. */
6037 if (!support_c || !support_C)
6038 buf[0] = 0;
6039 }
6040
6041 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6042 rs->supports_vCont_probed = true;
6043 }
6044
6045 /* Helper function for building "vCont" resumptions. Write a
6046 resumption to P. ENDP points to one-passed-the-end of the buffer
6047 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6048 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6049 resumed thread should be single-stepped and/or signalled. If PTID
6050 equals minus_one_ptid, then all threads are resumed; if PTID
6051 represents a process, then all threads of the process are resumed;
6052 the thread to be stepped and/or signalled is given in the global
6053 INFERIOR_PTID. */
6054
6055 char *
6056 remote_target::append_resumption (char *p, char *endp,
6057 ptid_t ptid, int step, gdb_signal siggnal)
6058 {
6059 struct remote_state *rs = get_remote_state ();
6060
6061 if (step && siggnal != GDB_SIGNAL_0)
6062 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6063 else if (step
6064 /* GDB is willing to range step. */
6065 && use_range_stepping
6066 /* Target supports range stepping. */
6067 && rs->supports_vCont.r
6068 /* We don't currently support range stepping multiple
6069 threads with a wildcard (though the protocol allows it,
6070 so stubs shouldn't make an active effort to forbid
6071 it). */
6072 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6073 {
6074 struct thread_info *tp;
6075
6076 if (ptid == minus_one_ptid)
6077 {
6078 /* If we don't know about the target thread's tid, then
6079 we're resuming magic_null_ptid (see caller). */
6080 tp = find_thread_ptid (this, magic_null_ptid);
6081 }
6082 else
6083 tp = find_thread_ptid (this, ptid);
6084 gdb_assert (tp != NULL);
6085
6086 if (tp->control.may_range_step)
6087 {
6088 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6089
6090 p += xsnprintf (p, endp - p, ";r%s,%s",
6091 phex_nz (tp->control.step_range_start,
6092 addr_size),
6093 phex_nz (tp->control.step_range_end,
6094 addr_size));
6095 }
6096 else
6097 p += xsnprintf (p, endp - p, ";s");
6098 }
6099 else if (step)
6100 p += xsnprintf (p, endp - p, ";s");
6101 else if (siggnal != GDB_SIGNAL_0)
6102 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6103 else
6104 p += xsnprintf (p, endp - p, ";c");
6105
6106 if (remote_multi_process_p (rs) && ptid.is_pid ())
6107 {
6108 ptid_t nptid;
6109
6110 /* All (-1) threads of process. */
6111 nptid = ptid_t (ptid.pid (), -1, 0);
6112
6113 p += xsnprintf (p, endp - p, ":");
6114 p = write_ptid (p, endp, nptid);
6115 }
6116 else if (ptid != minus_one_ptid)
6117 {
6118 p += xsnprintf (p, endp - p, ":");
6119 p = write_ptid (p, endp, ptid);
6120 }
6121
6122 return p;
6123 }
6124
6125 /* Clear the thread's private info on resume. */
6126
6127 static void
6128 resume_clear_thread_private_info (struct thread_info *thread)
6129 {
6130 if (thread->priv != NULL)
6131 {
6132 remote_thread_info *priv = get_remote_thread_info (thread);
6133
6134 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6135 priv->watch_data_address = 0;
6136 }
6137 }
6138
6139 /* Append a vCont continue-with-signal action for threads that have a
6140 non-zero stop signal. */
6141
6142 char *
6143 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6144 ptid_t ptid)
6145 {
6146 for (thread_info *thread : all_non_exited_threads (this, ptid))
6147 if (inferior_ptid != thread->ptid
6148 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6149 {
6150 p = append_resumption (p, endp, thread->ptid,
6151 0, thread->suspend.stop_signal);
6152 thread->suspend.stop_signal = GDB_SIGNAL_0;
6153 resume_clear_thread_private_info (thread);
6154 }
6155
6156 return p;
6157 }
6158
6159 /* Set the target running, using the packets that use Hc
6160 (c/s/C/S). */
6161
6162 void
6163 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6164 gdb_signal siggnal)
6165 {
6166 struct remote_state *rs = get_remote_state ();
6167 char *buf;
6168
6169 rs->last_sent_signal = siggnal;
6170 rs->last_sent_step = step;
6171
6172 /* The c/s/C/S resume packets use Hc, so set the continue
6173 thread. */
6174 if (ptid == minus_one_ptid)
6175 set_continue_thread (any_thread_ptid);
6176 else
6177 set_continue_thread (ptid);
6178
6179 for (thread_info *thread : all_non_exited_threads (this))
6180 resume_clear_thread_private_info (thread);
6181
6182 buf = rs->buf.data ();
6183 if (::execution_direction == EXEC_REVERSE)
6184 {
6185 /* We don't pass signals to the target in reverse exec mode. */
6186 if (info_verbose && siggnal != GDB_SIGNAL_0)
6187 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6188 siggnal);
6189
6190 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6191 error (_("Remote reverse-step not supported."));
6192 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6193 error (_("Remote reverse-continue not supported."));
6194
6195 strcpy (buf, step ? "bs" : "bc");
6196 }
6197 else if (siggnal != GDB_SIGNAL_0)
6198 {
6199 buf[0] = step ? 'S' : 'C';
6200 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6201 buf[2] = tohex (((int) siggnal) & 0xf);
6202 buf[3] = '\0';
6203 }
6204 else
6205 strcpy (buf, step ? "s" : "c");
6206
6207 putpkt (buf);
6208 }
6209
6210 /* Resume the remote inferior by using a "vCont" packet. The thread
6211 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6212 resumed thread should be single-stepped and/or signalled. If PTID
6213 equals minus_one_ptid, then all threads are resumed; the thread to
6214 be stepped and/or signalled is given in the global INFERIOR_PTID.
6215 This function returns non-zero iff it resumes the inferior.
6216
6217 This function issues a strict subset of all possible vCont commands
6218 at the moment. */
6219
6220 int
6221 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6222 enum gdb_signal siggnal)
6223 {
6224 struct remote_state *rs = get_remote_state ();
6225 char *p;
6226 char *endp;
6227
6228 /* No reverse execution actions defined for vCont. */
6229 if (::execution_direction == EXEC_REVERSE)
6230 return 0;
6231
6232 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6233 remote_vcont_probe ();
6234
6235 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6236 return 0;
6237
6238 p = rs->buf.data ();
6239 endp = p + get_remote_packet_size ();
6240
6241 /* If we could generate a wider range of packets, we'd have to worry
6242 about overflowing BUF. Should there be a generic
6243 "multi-part-packet" packet? */
6244
6245 p += xsnprintf (p, endp - p, "vCont");
6246
6247 if (ptid == magic_null_ptid)
6248 {
6249 /* MAGIC_NULL_PTID means that we don't have any active threads,
6250 so we don't have any TID numbers the inferior will
6251 understand. Make sure to only send forms that do not specify
6252 a TID. */
6253 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6254 }
6255 else if (ptid == minus_one_ptid || ptid.is_pid ())
6256 {
6257 /* Resume all threads (of all processes, or of a single
6258 process), with preference for INFERIOR_PTID. This assumes
6259 inferior_ptid belongs to the set of all threads we are about
6260 to resume. */
6261 if (step || siggnal != GDB_SIGNAL_0)
6262 {
6263 /* Step inferior_ptid, with or without signal. */
6264 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6265 }
6266
6267 /* Also pass down any pending signaled resumption for other
6268 threads not the current. */
6269 p = append_pending_thread_resumptions (p, endp, ptid);
6270
6271 /* And continue others without a signal. */
6272 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6273 }
6274 else
6275 {
6276 /* Scheduler locking; resume only PTID. */
6277 append_resumption (p, endp, ptid, step, siggnal);
6278 }
6279
6280 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6281 putpkt (rs->buf);
6282
6283 if (target_is_non_stop_p ())
6284 {
6285 /* In non-stop, the stub replies to vCont with "OK". The stop
6286 reply will be reported asynchronously by means of a `%Stop'
6287 notification. */
6288 getpkt (&rs->buf, 0);
6289 if (strcmp (rs->buf.data (), "OK") != 0)
6290 error (_("Unexpected vCont reply in non-stop mode: %s"),
6291 rs->buf.data ());
6292 }
6293
6294 return 1;
6295 }
6296
6297 /* Tell the remote machine to resume. */
6298
6299 void
6300 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6301 {
6302 struct remote_state *rs = get_remote_state ();
6303
6304 /* When connected in non-stop mode, the core resumes threads
6305 individually. Resuming remote threads directly in target_resume
6306 would thus result in sending one packet per thread. Instead, to
6307 minimize roundtrip latency, here we just store the resume
6308 request; the actual remote resumption will be done in
6309 target_commit_resume / remote_commit_resume, where we'll be able
6310 to do vCont action coalescing. */
6311 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6312 {
6313 remote_thread_info *remote_thr;
6314
6315 if (minus_one_ptid == ptid || ptid.is_pid ())
6316 remote_thr = get_remote_thread_info (this, inferior_ptid);
6317 else
6318 remote_thr = get_remote_thread_info (this, ptid);
6319
6320 remote_thr->last_resume_step = step;
6321 remote_thr->last_resume_sig = siggnal;
6322 return;
6323 }
6324
6325 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6326 (explained in remote-notif.c:handle_notification) so
6327 remote_notif_process is not called. We need find a place where
6328 it is safe to start a 'vNotif' sequence. It is good to do it
6329 before resuming inferior, because inferior was stopped and no RSP
6330 traffic at that moment. */
6331 if (!target_is_non_stop_p ())
6332 remote_notif_process (rs->notif_state, &notif_client_stop);
6333
6334 rs->last_resume_exec_dir = ::execution_direction;
6335
6336 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6337 if (!remote_resume_with_vcont (ptid, step, siggnal))
6338 remote_resume_with_hc (ptid, step, siggnal);
6339
6340 /* We are about to start executing the inferior, let's register it
6341 with the event loop. NOTE: this is the one place where all the
6342 execution commands end up. We could alternatively do this in each
6343 of the execution commands in infcmd.c. */
6344 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6345 into infcmd.c in order to allow inferior function calls to work
6346 NOT asynchronously. */
6347 if (target_can_async_p ())
6348 target_async (1);
6349
6350 /* We've just told the target to resume. The remote server will
6351 wait for the inferior to stop, and then send a stop reply. In
6352 the mean time, we can't start another command/query ourselves
6353 because the stub wouldn't be ready to process it. This applies
6354 only to the base all-stop protocol, however. In non-stop (which
6355 only supports vCont), the stub replies with an "OK", and is
6356 immediate able to process further serial input. */
6357 if (!target_is_non_stop_p ())
6358 rs->waiting_for_stop_reply = 1;
6359 }
6360
6361 static int is_pending_fork_parent_thread (struct thread_info *thread);
6362
6363 /* Private per-inferior info for target remote processes. */
6364
6365 struct remote_inferior : public private_inferior
6366 {
6367 /* Whether we can send a wildcard vCont for this process. */
6368 bool may_wildcard_vcont = true;
6369 };
6370
6371 /* Get the remote private inferior data associated to INF. */
6372
6373 static remote_inferior *
6374 get_remote_inferior (inferior *inf)
6375 {
6376 if (inf->priv == NULL)
6377 inf->priv.reset (new remote_inferior);
6378
6379 return static_cast<remote_inferior *> (inf->priv.get ());
6380 }
6381
6382 /* Class used to track the construction of a vCont packet in the
6383 outgoing packet buffer. This is used to send multiple vCont
6384 packets if we have more actions than would fit a single packet. */
6385
6386 class vcont_builder
6387 {
6388 public:
6389 explicit vcont_builder (remote_target *remote)
6390 : m_remote (remote)
6391 {
6392 restart ();
6393 }
6394
6395 void flush ();
6396 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6397
6398 private:
6399 void restart ();
6400
6401 /* The remote target. */
6402 remote_target *m_remote;
6403
6404 /* Pointer to the first action. P points here if no action has been
6405 appended yet. */
6406 char *m_first_action;
6407
6408 /* Where the next action will be appended. */
6409 char *m_p;
6410
6411 /* The end of the buffer. Must never write past this. */
6412 char *m_endp;
6413 };
6414
6415 /* Prepare the outgoing buffer for a new vCont packet. */
6416
6417 void
6418 vcont_builder::restart ()
6419 {
6420 struct remote_state *rs = m_remote->get_remote_state ();
6421
6422 m_p = rs->buf.data ();
6423 m_endp = m_p + m_remote->get_remote_packet_size ();
6424 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6425 m_first_action = m_p;
6426 }
6427
6428 /* If the vCont packet being built has any action, send it to the
6429 remote end. */
6430
6431 void
6432 vcont_builder::flush ()
6433 {
6434 struct remote_state *rs;
6435
6436 if (m_p == m_first_action)
6437 return;
6438
6439 rs = m_remote->get_remote_state ();
6440 m_remote->putpkt (rs->buf);
6441 m_remote->getpkt (&rs->buf, 0);
6442 if (strcmp (rs->buf.data (), "OK") != 0)
6443 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6444 }
6445
6446 /* The largest action is range-stepping, with its two addresses. This
6447 is more than sufficient. If a new, bigger action is created, it'll
6448 quickly trigger a failed assertion in append_resumption (and we'll
6449 just bump this). */
6450 #define MAX_ACTION_SIZE 200
6451
6452 /* Append a new vCont action in the outgoing packet being built. If
6453 the action doesn't fit the packet along with previous actions, push
6454 what we've got so far to the remote end and start over a new vCont
6455 packet (with the new action). */
6456
6457 void
6458 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6459 {
6460 char buf[MAX_ACTION_SIZE + 1];
6461
6462 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6463 ptid, step, siggnal);
6464
6465 /* Check whether this new action would fit in the vCont packet along
6466 with previous actions. If not, send what we've got so far and
6467 start a new vCont packet. */
6468 size_t rsize = endp - buf;
6469 if (rsize > m_endp - m_p)
6470 {
6471 flush ();
6472 restart ();
6473
6474 /* Should now fit. */
6475 gdb_assert (rsize <= m_endp - m_p);
6476 }
6477
6478 memcpy (m_p, buf, rsize);
6479 m_p += rsize;
6480 *m_p = '\0';
6481 }
6482
6483 /* to_commit_resume implementation. */
6484
6485 void
6486 remote_target::commit_resume ()
6487 {
6488 int any_process_wildcard;
6489 int may_global_wildcard_vcont;
6490
6491 /* If connected in all-stop mode, we'd send the remote resume
6492 request directly from remote_resume. Likewise if
6493 reverse-debugging, as there are no defined vCont actions for
6494 reverse execution. */
6495 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6496 return;
6497
6498 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6499 instead of resuming all threads of each process individually.
6500 However, if any thread of a process must remain halted, we can't
6501 send wildcard resumes and must send one action per thread.
6502
6503 Care must be taken to not resume threads/processes the server
6504 side already told us are stopped, but the core doesn't know about
6505 yet, because the events are still in the vStopped notification
6506 queue. For example:
6507
6508 #1 => vCont s:p1.1;c
6509 #2 <= OK
6510 #3 <= %Stopped T05 p1.1
6511 #4 => vStopped
6512 #5 <= T05 p1.2
6513 #6 => vStopped
6514 #7 <= OK
6515 #8 (infrun handles the stop for p1.1 and continues stepping)
6516 #9 => vCont s:p1.1;c
6517
6518 The last vCont above would resume thread p1.2 by mistake, because
6519 the server has no idea that the event for p1.2 had not been
6520 handled yet.
6521
6522 The server side must similarly ignore resume actions for the
6523 thread that has a pending %Stopped notification (and any other
6524 threads with events pending), until GDB acks the notification
6525 with vStopped. Otherwise, e.g., the following case is
6526 mishandled:
6527
6528 #1 => g (or any other packet)
6529 #2 <= [registers]
6530 #3 <= %Stopped T05 p1.2
6531 #4 => vCont s:p1.1;c
6532 #5 <= OK
6533
6534 Above, the server must not resume thread p1.2. GDB can't know
6535 that p1.2 stopped until it acks the %Stopped notification, and
6536 since from GDB's perspective all threads should be running, it
6537 sends a "c" action.
6538
6539 Finally, special care must also be given to handling fork/vfork
6540 events. A (v)fork event actually tells us that two processes
6541 stopped -- the parent and the child. Until we follow the fork,
6542 we must not resume the child. Therefore, if we have a pending
6543 fork follow, we must not send a global wildcard resume action
6544 (vCont;c). We can still send process-wide wildcards though. */
6545
6546 /* Start by assuming a global wildcard (vCont;c) is possible. */
6547 may_global_wildcard_vcont = 1;
6548
6549 /* And assume every process is individually wildcard-able too. */
6550 for (inferior *inf : all_non_exited_inferiors (this))
6551 {
6552 remote_inferior *priv = get_remote_inferior (inf);
6553
6554 priv->may_wildcard_vcont = true;
6555 }
6556
6557 /* Check for any pending events (not reported or processed yet) and
6558 disable process and global wildcard resumes appropriately. */
6559 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6560
6561 for (thread_info *tp : all_non_exited_threads (this))
6562 {
6563 /* If a thread of a process is not meant to be resumed, then we
6564 can't wildcard that process. */
6565 if (!tp->executing)
6566 {
6567 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6568
6569 /* And if we can't wildcard a process, we can't wildcard
6570 everything either. */
6571 may_global_wildcard_vcont = 0;
6572 continue;
6573 }
6574
6575 /* If a thread is the parent of an unfollowed fork, then we
6576 can't do a global wildcard, as that would resume the fork
6577 child. */
6578 if (is_pending_fork_parent_thread (tp))
6579 may_global_wildcard_vcont = 0;
6580 }
6581
6582 /* Now let's build the vCont packet(s). Actions must be appended
6583 from narrower to wider scopes (thread -> process -> global). If
6584 we end up with too many actions for a single packet vcont_builder
6585 flushes the current vCont packet to the remote side and starts a
6586 new one. */
6587 struct vcont_builder vcont_builder (this);
6588
6589 /* Threads first. */
6590 for (thread_info *tp : all_non_exited_threads (this))
6591 {
6592 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6593
6594 if (!tp->executing || remote_thr->vcont_resumed)
6595 continue;
6596
6597 gdb_assert (!thread_is_in_step_over_chain (tp));
6598
6599 if (!remote_thr->last_resume_step
6600 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6601 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6602 {
6603 /* We'll send a wildcard resume instead. */
6604 remote_thr->vcont_resumed = 1;
6605 continue;
6606 }
6607
6608 vcont_builder.push_action (tp->ptid,
6609 remote_thr->last_resume_step,
6610 remote_thr->last_resume_sig);
6611 remote_thr->vcont_resumed = 1;
6612 }
6613
6614 /* Now check whether we can send any process-wide wildcard. This is
6615 to avoid sending a global wildcard in the case nothing is
6616 supposed to be resumed. */
6617 any_process_wildcard = 0;
6618
6619 for (inferior *inf : all_non_exited_inferiors (this))
6620 {
6621 if (get_remote_inferior (inf)->may_wildcard_vcont)
6622 {
6623 any_process_wildcard = 1;
6624 break;
6625 }
6626 }
6627
6628 if (any_process_wildcard)
6629 {
6630 /* If all processes are wildcard-able, then send a single "c"
6631 action, otherwise, send an "all (-1) threads of process"
6632 continue action for each running process, if any. */
6633 if (may_global_wildcard_vcont)
6634 {
6635 vcont_builder.push_action (minus_one_ptid,
6636 false, GDB_SIGNAL_0);
6637 }
6638 else
6639 {
6640 for (inferior *inf : all_non_exited_inferiors (this))
6641 {
6642 if (get_remote_inferior (inf)->may_wildcard_vcont)
6643 {
6644 vcont_builder.push_action (ptid_t (inf->pid),
6645 false, GDB_SIGNAL_0);
6646 }
6647 }
6648 }
6649 }
6650
6651 vcont_builder.flush ();
6652 }
6653
6654 \f
6655
6656 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6657 thread, all threads of a remote process, or all threads of all
6658 processes. */
6659
6660 void
6661 remote_target::remote_stop_ns (ptid_t ptid)
6662 {
6663 struct remote_state *rs = get_remote_state ();
6664 char *p = rs->buf.data ();
6665 char *endp = p + get_remote_packet_size ();
6666
6667 /* FIXME: This supports_vCont_probed check is a workaround until
6668 packet_support is per-connection. */
6669 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6670 || !rs->supports_vCont_probed)
6671 remote_vcont_probe ();
6672
6673 if (!rs->supports_vCont.t)
6674 error (_("Remote server does not support stopping threads"));
6675
6676 if (ptid == minus_one_ptid
6677 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6678 p += xsnprintf (p, endp - p, "vCont;t");
6679 else
6680 {
6681 ptid_t nptid;
6682
6683 p += xsnprintf (p, endp - p, "vCont;t:");
6684
6685 if (ptid.is_pid ())
6686 /* All (-1) threads of process. */
6687 nptid = ptid_t (ptid.pid (), -1, 0);
6688 else
6689 {
6690 /* Small optimization: if we already have a stop reply for
6691 this thread, no use in telling the stub we want this
6692 stopped. */
6693 if (peek_stop_reply (ptid))
6694 return;
6695
6696 nptid = ptid;
6697 }
6698
6699 write_ptid (p, endp, nptid);
6700 }
6701
6702 /* In non-stop, we get an immediate OK reply. The stop reply will
6703 come in asynchronously by notification. */
6704 putpkt (rs->buf);
6705 getpkt (&rs->buf, 0);
6706 if (strcmp (rs->buf.data (), "OK") != 0)
6707 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6708 rs->buf.data ());
6709 }
6710
6711 /* All-stop version of target_interrupt. Sends a break or a ^C to
6712 interrupt the remote target. It is undefined which thread of which
6713 process reports the interrupt. */
6714
6715 void
6716 remote_target::remote_interrupt_as ()
6717 {
6718 struct remote_state *rs = get_remote_state ();
6719
6720 rs->ctrlc_pending_p = 1;
6721
6722 /* If the inferior is stopped already, but the core didn't know
6723 about it yet, just ignore the request. The cached wait status
6724 will be collected in remote_wait. */
6725 if (rs->cached_wait_status)
6726 return;
6727
6728 /* Send interrupt_sequence to remote target. */
6729 send_interrupt_sequence ();
6730 }
6731
6732 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6733 the remote target. It is undefined which thread of which process
6734 reports the interrupt. Throws an error if the packet is not
6735 supported by the server. */
6736
6737 void
6738 remote_target::remote_interrupt_ns ()
6739 {
6740 struct remote_state *rs = get_remote_state ();
6741 char *p = rs->buf.data ();
6742 char *endp = p + get_remote_packet_size ();
6743
6744 xsnprintf (p, endp - p, "vCtrlC");
6745
6746 /* In non-stop, we get an immediate OK reply. The stop reply will
6747 come in asynchronously by notification. */
6748 putpkt (rs->buf);
6749 getpkt (&rs->buf, 0);
6750
6751 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6752 {
6753 case PACKET_OK:
6754 break;
6755 case PACKET_UNKNOWN:
6756 error (_("No support for interrupting the remote target."));
6757 case PACKET_ERROR:
6758 error (_("Interrupting target failed: %s"), rs->buf.data ());
6759 }
6760 }
6761
6762 /* Implement the to_stop function for the remote targets. */
6763
6764 void
6765 remote_target::stop (ptid_t ptid)
6766 {
6767 if (remote_debug)
6768 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6769
6770 if (target_is_non_stop_p ())
6771 remote_stop_ns (ptid);
6772 else
6773 {
6774 /* We don't currently have a way to transparently pause the
6775 remote target in all-stop mode. Interrupt it instead. */
6776 remote_interrupt_as ();
6777 }
6778 }
6779
6780 /* Implement the to_interrupt function for the remote targets. */
6781
6782 void
6783 remote_target::interrupt ()
6784 {
6785 if (remote_debug)
6786 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6787
6788 if (target_is_non_stop_p ())
6789 remote_interrupt_ns ();
6790 else
6791 remote_interrupt_as ();
6792 }
6793
6794 /* Implement the to_pass_ctrlc function for the remote targets. */
6795
6796 void
6797 remote_target::pass_ctrlc ()
6798 {
6799 struct remote_state *rs = get_remote_state ();
6800
6801 if (remote_debug)
6802 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6803
6804 /* If we're starting up, we're not fully synced yet. Quit
6805 immediately. */
6806 if (rs->starting_up)
6807 quit ();
6808 /* If ^C has already been sent once, offer to disconnect. */
6809 else if (rs->ctrlc_pending_p)
6810 interrupt_query ();
6811 else
6812 target_interrupt ();
6813 }
6814
6815 /* Ask the user what to do when an interrupt is received. */
6816
6817 void
6818 remote_target::interrupt_query ()
6819 {
6820 struct remote_state *rs = get_remote_state ();
6821
6822 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6823 {
6824 if (query (_("The target is not responding to interrupt requests.\n"
6825 "Stop debugging it? ")))
6826 {
6827 remote_unpush_target (this);
6828 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6829 }
6830 }
6831 else
6832 {
6833 if (query (_("Interrupted while waiting for the program.\n"
6834 "Give up waiting? ")))
6835 quit ();
6836 }
6837 }
6838
6839 /* Enable/disable target terminal ownership. Most targets can use
6840 terminal groups to control terminal ownership. Remote targets are
6841 different in that explicit transfer of ownership to/from GDB/target
6842 is required. */
6843
6844 void
6845 remote_target::terminal_inferior ()
6846 {
6847 /* NOTE: At this point we could also register our selves as the
6848 recipient of all input. Any characters typed could then be
6849 passed on down to the target. */
6850 }
6851
6852 void
6853 remote_target::terminal_ours ()
6854 {
6855 }
6856
6857 static void
6858 remote_console_output (const char *msg)
6859 {
6860 const char *p;
6861
6862 for (p = msg; p[0] && p[1]; p += 2)
6863 {
6864 char tb[2];
6865 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6866
6867 tb[0] = c;
6868 tb[1] = 0;
6869 gdb_stdtarg->puts (tb);
6870 }
6871 gdb_stdtarg->flush ();
6872 }
6873
6874 struct stop_reply : public notif_event
6875 {
6876 ~stop_reply ();
6877
6878 /* The identifier of the thread about this event */
6879 ptid_t ptid;
6880
6881 /* The remote state this event is associated with. When the remote
6882 connection, represented by a remote_state object, is closed,
6883 all the associated stop_reply events should be released. */
6884 struct remote_state *rs;
6885
6886 struct target_waitstatus ws;
6887
6888 /* The architecture associated with the expedited registers. */
6889 gdbarch *arch;
6890
6891 /* Expedited registers. This makes remote debugging a bit more
6892 efficient for those targets that provide critical registers as
6893 part of their normal status mechanism (as another roundtrip to
6894 fetch them is avoided). */
6895 std::vector<cached_reg_t> regcache;
6896
6897 enum target_stop_reason stop_reason;
6898
6899 CORE_ADDR watch_data_address;
6900
6901 int core;
6902 };
6903
6904 /* Return the length of the stop reply queue. */
6905
6906 int
6907 remote_target::stop_reply_queue_length ()
6908 {
6909 remote_state *rs = get_remote_state ();
6910 return rs->stop_reply_queue.size ();
6911 }
6912
6913 static void
6914 remote_notif_stop_parse (remote_target *remote,
6915 struct notif_client *self, const char *buf,
6916 struct notif_event *event)
6917 {
6918 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6919 }
6920
6921 static void
6922 remote_notif_stop_ack (remote_target *remote,
6923 struct notif_client *self, const char *buf,
6924 struct notif_event *event)
6925 {
6926 struct stop_reply *stop_reply = (struct stop_reply *) event;
6927
6928 /* acknowledge */
6929 putpkt (remote, self->ack_command);
6930
6931 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6932 {
6933 /* We got an unknown stop reply. */
6934 error (_("Unknown stop reply"));
6935 }
6936
6937 remote->push_stop_reply (stop_reply);
6938 }
6939
6940 static int
6941 remote_notif_stop_can_get_pending_events (remote_target *remote,
6942 struct notif_client *self)
6943 {
6944 /* We can't get pending events in remote_notif_process for
6945 notification stop, and we have to do this in remote_wait_ns
6946 instead. If we fetch all queued events from stub, remote stub
6947 may exit and we have no chance to process them back in
6948 remote_wait_ns. */
6949 remote_state *rs = remote->get_remote_state ();
6950 mark_async_event_handler (rs->remote_async_inferior_event_token);
6951 return 0;
6952 }
6953
6954 stop_reply::~stop_reply ()
6955 {
6956 for (cached_reg_t &reg : regcache)
6957 xfree (reg.data);
6958 }
6959
6960 static notif_event_up
6961 remote_notif_stop_alloc_reply ()
6962 {
6963 return notif_event_up (new struct stop_reply ());
6964 }
6965
6966 /* A client of notification Stop. */
6967
6968 struct notif_client notif_client_stop =
6969 {
6970 "Stop",
6971 "vStopped",
6972 remote_notif_stop_parse,
6973 remote_notif_stop_ack,
6974 remote_notif_stop_can_get_pending_events,
6975 remote_notif_stop_alloc_reply,
6976 REMOTE_NOTIF_STOP,
6977 };
6978
6979 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6980 the pid of the process that owns the threads we want to check, or
6981 -1 if we want to check all threads. */
6982
6983 static int
6984 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6985 ptid_t thread_ptid)
6986 {
6987 if (ws->kind == TARGET_WAITKIND_FORKED
6988 || ws->kind == TARGET_WAITKIND_VFORKED)
6989 {
6990 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6991 return 1;
6992 }
6993
6994 return 0;
6995 }
6996
6997 /* Return the thread's pending status used to determine whether the
6998 thread is a fork parent stopped at a fork event. */
6999
7000 static struct target_waitstatus *
7001 thread_pending_fork_status (struct thread_info *thread)
7002 {
7003 if (thread->suspend.waitstatus_pending_p)
7004 return &thread->suspend.waitstatus;
7005 else
7006 return &thread->pending_follow;
7007 }
7008
7009 /* Determine if THREAD is a pending fork parent thread. */
7010
7011 static int
7012 is_pending_fork_parent_thread (struct thread_info *thread)
7013 {
7014 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7015 int pid = -1;
7016
7017 return is_pending_fork_parent (ws, pid, thread->ptid);
7018 }
7019
7020 /* If CONTEXT contains any fork child threads that have not been
7021 reported yet, remove them from the CONTEXT list. If such a
7022 thread exists it is because we are stopped at a fork catchpoint
7023 and have not yet called follow_fork, which will set up the
7024 host-side data structures for the new process. */
7025
7026 void
7027 remote_target::remove_new_fork_children (threads_listing_context *context)
7028 {
7029 int pid = -1;
7030 struct notif_client *notif = &notif_client_stop;
7031
7032 /* For any threads stopped at a fork event, remove the corresponding
7033 fork child threads from the CONTEXT list. */
7034 for (thread_info *thread : all_non_exited_threads (this))
7035 {
7036 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7037
7038 if (is_pending_fork_parent (ws, pid, thread->ptid))
7039 context->remove_thread (ws->value.related_pid);
7040 }
7041
7042 /* Check for any pending fork events (not reported or processed yet)
7043 in process PID and remove those fork child threads from the
7044 CONTEXT list as well. */
7045 remote_notif_get_pending_events (notif);
7046 for (auto &event : get_remote_state ()->stop_reply_queue)
7047 if (event->ws.kind == TARGET_WAITKIND_FORKED
7048 || event->ws.kind == TARGET_WAITKIND_VFORKED
7049 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7050 context->remove_thread (event->ws.value.related_pid);
7051 }
7052
7053 /* Check whether any event pending in the vStopped queue would prevent
7054 a global or process wildcard vCont action. Clear
7055 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7056 and clear the event inferior's may_wildcard_vcont flag if we can't
7057 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7058
7059 void
7060 remote_target::check_pending_events_prevent_wildcard_vcont
7061 (int *may_global_wildcard)
7062 {
7063 struct notif_client *notif = &notif_client_stop;
7064
7065 remote_notif_get_pending_events (notif);
7066 for (auto &event : get_remote_state ()->stop_reply_queue)
7067 {
7068 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7069 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7070 continue;
7071
7072 if (event->ws.kind == TARGET_WAITKIND_FORKED
7073 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7074 *may_global_wildcard = 0;
7075
7076 struct inferior *inf = find_inferior_ptid (this, event->ptid);
7077
7078 /* This may be the first time we heard about this process.
7079 Regardless, we must not do a global wildcard resume, otherwise
7080 we'd resume this process too. */
7081 *may_global_wildcard = 0;
7082 if (inf != NULL)
7083 get_remote_inferior (inf)->may_wildcard_vcont = false;
7084 }
7085 }
7086
7087 /* Discard all pending stop replies of inferior INF. */
7088
7089 void
7090 remote_target::discard_pending_stop_replies (struct inferior *inf)
7091 {
7092 struct stop_reply *reply;
7093 struct remote_state *rs = get_remote_state ();
7094 struct remote_notif_state *rns = rs->notif_state;
7095
7096 /* This function can be notified when an inferior exists. When the
7097 target is not remote, the notification state is NULL. */
7098 if (rs->remote_desc == NULL)
7099 return;
7100
7101 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7102
7103 /* Discard the in-flight notification. */
7104 if (reply != NULL && reply->ptid.pid () == inf->pid)
7105 {
7106 delete reply;
7107 rns->pending_event[notif_client_stop.id] = NULL;
7108 }
7109
7110 /* Discard the stop replies we have already pulled with
7111 vStopped. */
7112 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7113 rs->stop_reply_queue.end (),
7114 [=] (const stop_reply_up &event)
7115 {
7116 return event->ptid.pid () == inf->pid;
7117 });
7118 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7119 }
7120
7121 /* Discard the stop replies for RS in stop_reply_queue. */
7122
7123 void
7124 remote_target::discard_pending_stop_replies_in_queue ()
7125 {
7126 remote_state *rs = get_remote_state ();
7127
7128 /* Discard the stop replies we have already pulled with
7129 vStopped. */
7130 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7131 rs->stop_reply_queue.end (),
7132 [=] (const stop_reply_up &event)
7133 {
7134 return event->rs == rs;
7135 });
7136 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7137 }
7138
7139 /* Remove the first reply in 'stop_reply_queue' which matches
7140 PTID. */
7141
7142 struct stop_reply *
7143 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7144 {
7145 remote_state *rs = get_remote_state ();
7146
7147 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7148 rs->stop_reply_queue.end (),
7149 [=] (const stop_reply_up &event)
7150 {
7151 return event->ptid.matches (ptid);
7152 });
7153 struct stop_reply *result;
7154 if (iter == rs->stop_reply_queue.end ())
7155 result = nullptr;
7156 else
7157 {
7158 result = iter->release ();
7159 rs->stop_reply_queue.erase (iter);
7160 }
7161
7162 if (notif_debug)
7163 fprintf_unfiltered (gdb_stdlog,
7164 "notif: discard queued event: 'Stop' in %s\n",
7165 target_pid_to_str (ptid).c_str ());
7166
7167 return result;
7168 }
7169
7170 /* Look for a queued stop reply belonging to PTID. If one is found,
7171 remove it from the queue, and return it. Returns NULL if none is
7172 found. If there are still queued events left to process, tell the
7173 event loop to get back to target_wait soon. */
7174
7175 struct stop_reply *
7176 remote_target::queued_stop_reply (ptid_t ptid)
7177 {
7178 remote_state *rs = get_remote_state ();
7179 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7180
7181 if (!rs->stop_reply_queue.empty ())
7182 {
7183 /* There's still at least an event left. */
7184 mark_async_event_handler (rs->remote_async_inferior_event_token);
7185 }
7186
7187 return r;
7188 }
7189
7190 /* Push a fully parsed stop reply in the stop reply queue. Since we
7191 know that we now have at least one queued event left to pass to the
7192 core side, tell the event loop to get back to target_wait soon. */
7193
7194 void
7195 remote_target::push_stop_reply (struct stop_reply *new_event)
7196 {
7197 remote_state *rs = get_remote_state ();
7198 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7199
7200 if (notif_debug)
7201 fprintf_unfiltered (gdb_stdlog,
7202 "notif: push 'Stop' %s to queue %d\n",
7203 target_pid_to_str (new_event->ptid).c_str (),
7204 int (rs->stop_reply_queue.size ()));
7205
7206 mark_async_event_handler (rs->remote_async_inferior_event_token);
7207 }
7208
7209 /* Returns true if we have a stop reply for PTID. */
7210
7211 int
7212 remote_target::peek_stop_reply (ptid_t ptid)
7213 {
7214 remote_state *rs = get_remote_state ();
7215 for (auto &event : rs->stop_reply_queue)
7216 if (ptid == event->ptid
7217 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7218 return 1;
7219 return 0;
7220 }
7221
7222 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7223 starting with P and ending with PEND matches PREFIX. */
7224
7225 static int
7226 strprefix (const char *p, const char *pend, const char *prefix)
7227 {
7228 for ( ; p < pend; p++, prefix++)
7229 if (*p != *prefix)
7230 return 0;
7231 return *prefix == '\0';
7232 }
7233
7234 /* Parse the stop reply in BUF. Either the function succeeds, and the
7235 result is stored in EVENT, or throws an error. */
7236
7237 void
7238 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7239 {
7240 remote_arch_state *rsa = NULL;
7241 ULONGEST addr;
7242 const char *p;
7243 int skipregs = 0;
7244
7245 event->ptid = null_ptid;
7246 event->rs = get_remote_state ();
7247 event->ws.kind = TARGET_WAITKIND_IGNORE;
7248 event->ws.value.integer = 0;
7249 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7250 event->regcache.clear ();
7251 event->core = -1;
7252
7253 switch (buf[0])
7254 {
7255 case 'T': /* Status with PC, SP, FP, ... */
7256 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7257 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7258 ss = signal number
7259 n... = register number
7260 r... = register contents
7261 */
7262
7263 p = &buf[3]; /* after Txx */
7264 while (*p)
7265 {
7266 const char *p1;
7267 int fieldsize;
7268
7269 p1 = strchr (p, ':');
7270 if (p1 == NULL)
7271 error (_("Malformed packet(a) (missing colon): %s\n\
7272 Packet: '%s'\n"),
7273 p, buf);
7274 if (p == p1)
7275 error (_("Malformed packet(a) (missing register number): %s\n\
7276 Packet: '%s'\n"),
7277 p, buf);
7278
7279 /* Some "registers" are actually extended stop information.
7280 Note if you're adding a new entry here: GDB 7.9 and
7281 earlier assume that all register "numbers" that start
7282 with an hex digit are real register numbers. Make sure
7283 the server only sends such a packet if it knows the
7284 client understands it. */
7285
7286 if (strprefix (p, p1, "thread"))
7287 event->ptid = read_ptid (++p1, &p);
7288 else if (strprefix (p, p1, "syscall_entry"))
7289 {
7290 ULONGEST sysno;
7291
7292 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7293 p = unpack_varlen_hex (++p1, &sysno);
7294 event->ws.value.syscall_number = (int) sysno;
7295 }
7296 else if (strprefix (p, p1, "syscall_return"))
7297 {
7298 ULONGEST sysno;
7299
7300 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7301 p = unpack_varlen_hex (++p1, &sysno);
7302 event->ws.value.syscall_number = (int) sysno;
7303 }
7304 else if (strprefix (p, p1, "watch")
7305 || strprefix (p, p1, "rwatch")
7306 || strprefix (p, p1, "awatch"))
7307 {
7308 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7309 p = unpack_varlen_hex (++p1, &addr);
7310 event->watch_data_address = (CORE_ADDR) addr;
7311 }
7312 else if (strprefix (p, p1, "swbreak"))
7313 {
7314 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7315
7316 /* Make sure the stub doesn't forget to indicate support
7317 with qSupported. */
7318 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7319 error (_("Unexpected swbreak stop reason"));
7320
7321 /* The value part is documented as "must be empty",
7322 though we ignore it, in case we ever decide to make
7323 use of it in a backward compatible way. */
7324 p = strchrnul (p1 + 1, ';');
7325 }
7326 else if (strprefix (p, p1, "hwbreak"))
7327 {
7328 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7329
7330 /* Make sure the stub doesn't forget to indicate support
7331 with qSupported. */
7332 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7333 error (_("Unexpected hwbreak stop reason"));
7334
7335 /* See above. */
7336 p = strchrnul (p1 + 1, ';');
7337 }
7338 else if (strprefix (p, p1, "library"))
7339 {
7340 event->ws.kind = TARGET_WAITKIND_LOADED;
7341 p = strchrnul (p1 + 1, ';');
7342 }
7343 else if (strprefix (p, p1, "replaylog"))
7344 {
7345 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7346 /* p1 will indicate "begin" or "end", but it makes
7347 no difference for now, so ignore it. */
7348 p = strchrnul (p1 + 1, ';');
7349 }
7350 else if (strprefix (p, p1, "core"))
7351 {
7352 ULONGEST c;
7353
7354 p = unpack_varlen_hex (++p1, &c);
7355 event->core = c;
7356 }
7357 else if (strprefix (p, p1, "fork"))
7358 {
7359 event->ws.value.related_pid = read_ptid (++p1, &p);
7360 event->ws.kind = TARGET_WAITKIND_FORKED;
7361 }
7362 else if (strprefix (p, p1, "vfork"))
7363 {
7364 event->ws.value.related_pid = read_ptid (++p1, &p);
7365 event->ws.kind = TARGET_WAITKIND_VFORKED;
7366 }
7367 else if (strprefix (p, p1, "vforkdone"))
7368 {
7369 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7370 p = strchrnul (p1 + 1, ';');
7371 }
7372 else if (strprefix (p, p1, "exec"))
7373 {
7374 ULONGEST ignored;
7375 int pathlen;
7376
7377 /* Determine the length of the execd pathname. */
7378 p = unpack_varlen_hex (++p1, &ignored);
7379 pathlen = (p - p1) / 2;
7380
7381 /* Save the pathname for event reporting and for
7382 the next run command. */
7383 gdb::unique_xmalloc_ptr<char[]> pathname
7384 ((char *) xmalloc (pathlen + 1));
7385 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7386 pathname[pathlen] = '\0';
7387
7388 /* This is freed during event handling. */
7389 event->ws.value.execd_pathname = pathname.release ();
7390 event->ws.kind = TARGET_WAITKIND_EXECD;
7391
7392 /* Skip the registers included in this packet, since
7393 they may be for an architecture different from the
7394 one used by the original program. */
7395 skipregs = 1;
7396 }
7397 else if (strprefix (p, p1, "create"))
7398 {
7399 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7400 p = strchrnul (p1 + 1, ';');
7401 }
7402 else
7403 {
7404 ULONGEST pnum;
7405 const char *p_temp;
7406
7407 if (skipregs)
7408 {
7409 p = strchrnul (p1 + 1, ';');
7410 p++;
7411 continue;
7412 }
7413
7414 /* Maybe a real ``P'' register number. */
7415 p_temp = unpack_varlen_hex (p, &pnum);
7416 /* If the first invalid character is the colon, we got a
7417 register number. Otherwise, it's an unknown stop
7418 reason. */
7419 if (p_temp == p1)
7420 {
7421 /* If we haven't parsed the event's thread yet, find
7422 it now, in order to find the architecture of the
7423 reported expedited registers. */
7424 if (event->ptid == null_ptid)
7425 {
7426 /* If there is no thread-id information then leave
7427 the event->ptid as null_ptid. Later in
7428 process_stop_reply we will pick a suitable
7429 thread. */
7430 const char *thr = strstr (p1 + 1, ";thread:");
7431 if (thr != NULL)
7432 event->ptid = read_ptid (thr + strlen (";thread:"),
7433 NULL);
7434 }
7435
7436 if (rsa == NULL)
7437 {
7438 inferior *inf
7439 = (event->ptid == null_ptid
7440 ? NULL
7441 : find_inferior_ptid (this, event->ptid));
7442 /* If this is the first time we learn anything
7443 about this process, skip the registers
7444 included in this packet, since we don't yet
7445 know which architecture to use to parse them.
7446 We'll determine the architecture later when
7447 we process the stop reply and retrieve the
7448 target description, via
7449 remote_notice_new_inferior ->
7450 post_create_inferior. */
7451 if (inf == NULL)
7452 {
7453 p = strchrnul (p1 + 1, ';');
7454 p++;
7455 continue;
7456 }
7457
7458 event->arch = inf->gdbarch;
7459 rsa = event->rs->get_remote_arch_state (event->arch);
7460 }
7461
7462 packet_reg *reg
7463 = packet_reg_from_pnum (event->arch, rsa, pnum);
7464 cached_reg_t cached_reg;
7465
7466 if (reg == NULL)
7467 error (_("Remote sent bad register number %s: %s\n\
7468 Packet: '%s'\n"),
7469 hex_string (pnum), p, buf);
7470
7471 cached_reg.num = reg->regnum;
7472 cached_reg.data = (gdb_byte *)
7473 xmalloc (register_size (event->arch, reg->regnum));
7474
7475 p = p1 + 1;
7476 fieldsize = hex2bin (p, cached_reg.data,
7477 register_size (event->arch, reg->regnum));
7478 p += 2 * fieldsize;
7479 if (fieldsize < register_size (event->arch, reg->regnum))
7480 warning (_("Remote reply is too short: %s"), buf);
7481
7482 event->regcache.push_back (cached_reg);
7483 }
7484 else
7485 {
7486 /* Not a number. Silently skip unknown optional
7487 info. */
7488 p = strchrnul (p1 + 1, ';');
7489 }
7490 }
7491
7492 if (*p != ';')
7493 error (_("Remote register badly formatted: %s\nhere: %s"),
7494 buf, p);
7495 ++p;
7496 }
7497
7498 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7499 break;
7500
7501 /* fall through */
7502 case 'S': /* Old style status, just signal only. */
7503 {
7504 int sig;
7505
7506 event->ws.kind = TARGET_WAITKIND_STOPPED;
7507 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7508 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7509 event->ws.value.sig = (enum gdb_signal) sig;
7510 else
7511 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7512 }
7513 break;
7514 case 'w': /* Thread exited. */
7515 {
7516 ULONGEST value;
7517
7518 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7519 p = unpack_varlen_hex (&buf[1], &value);
7520 event->ws.value.integer = value;
7521 if (*p != ';')
7522 error (_("stop reply packet badly formatted: %s"), buf);
7523 event->ptid = read_ptid (++p, NULL);
7524 break;
7525 }
7526 case 'W': /* Target exited. */
7527 case 'X':
7528 {
7529 ULONGEST value;
7530
7531 /* GDB used to accept only 2 hex chars here. Stubs should
7532 only send more if they detect GDB supports multi-process
7533 support. */
7534 p = unpack_varlen_hex (&buf[1], &value);
7535
7536 if (buf[0] == 'W')
7537 {
7538 /* The remote process exited. */
7539 event->ws.kind = TARGET_WAITKIND_EXITED;
7540 event->ws.value.integer = value;
7541 }
7542 else
7543 {
7544 /* The remote process exited with a signal. */
7545 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7546 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7547 event->ws.value.sig = (enum gdb_signal) value;
7548 else
7549 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7550 }
7551
7552 /* If no process is specified, return null_ptid, and let the
7553 caller figure out the right process to use. */
7554 int pid = 0;
7555 if (*p == '\0')
7556 ;
7557 else if (*p == ';')
7558 {
7559 p++;
7560
7561 if (*p == '\0')
7562 ;
7563 else if (startswith (p, "process:"))
7564 {
7565 ULONGEST upid;
7566
7567 p += sizeof ("process:") - 1;
7568 unpack_varlen_hex (p, &upid);
7569 pid = upid;
7570 }
7571 else
7572 error (_("unknown stop reply packet: %s"), buf);
7573 }
7574 else
7575 error (_("unknown stop reply packet: %s"), buf);
7576 event->ptid = ptid_t (pid);
7577 }
7578 break;
7579 case 'N':
7580 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7581 event->ptid = minus_one_ptid;
7582 break;
7583 }
7584 }
7585
7586 /* When the stub wants to tell GDB about a new notification reply, it
7587 sends a notification (%Stop, for example). Those can come it at
7588 any time, hence, we have to make sure that any pending
7589 putpkt/getpkt sequence we're making is finished, before querying
7590 the stub for more events with the corresponding ack command
7591 (vStopped, for example). E.g., if we started a vStopped sequence
7592 immediately upon receiving the notification, something like this
7593 could happen:
7594
7595 1.1) --> Hg 1
7596 1.2) <-- OK
7597 1.3) --> g
7598 1.4) <-- %Stop
7599 1.5) --> vStopped
7600 1.6) <-- (registers reply to step #1.3)
7601
7602 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7603 query.
7604
7605 To solve this, whenever we parse a %Stop notification successfully,
7606 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7607 doing whatever we were doing:
7608
7609 2.1) --> Hg 1
7610 2.2) <-- OK
7611 2.3) --> g
7612 2.4) <-- %Stop
7613 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7614 2.5) <-- (registers reply to step #2.3)
7615
7616 Eventually after step #2.5, we return to the event loop, which
7617 notices there's an event on the
7618 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7619 associated callback --- the function below. At this point, we're
7620 always safe to start a vStopped sequence. :
7621
7622 2.6) --> vStopped
7623 2.7) <-- T05 thread:2
7624 2.8) --> vStopped
7625 2.9) --> OK
7626 */
7627
7628 void
7629 remote_target::remote_notif_get_pending_events (notif_client *nc)
7630 {
7631 struct remote_state *rs = get_remote_state ();
7632
7633 if (rs->notif_state->pending_event[nc->id] != NULL)
7634 {
7635 if (notif_debug)
7636 fprintf_unfiltered (gdb_stdlog,
7637 "notif: process: '%s' ack pending event\n",
7638 nc->name);
7639
7640 /* acknowledge */
7641 nc->ack (this, nc, rs->buf.data (),
7642 rs->notif_state->pending_event[nc->id]);
7643 rs->notif_state->pending_event[nc->id] = NULL;
7644
7645 while (1)
7646 {
7647 getpkt (&rs->buf, 0);
7648 if (strcmp (rs->buf.data (), "OK") == 0)
7649 break;
7650 else
7651 remote_notif_ack (this, nc, rs->buf.data ());
7652 }
7653 }
7654 else
7655 {
7656 if (notif_debug)
7657 fprintf_unfiltered (gdb_stdlog,
7658 "notif: process: '%s' no pending reply\n",
7659 nc->name);
7660 }
7661 }
7662
7663 /* Wrapper around remote_target::remote_notif_get_pending_events to
7664 avoid having to export the whole remote_target class. */
7665
7666 void
7667 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7668 {
7669 remote->remote_notif_get_pending_events (nc);
7670 }
7671
7672 /* Called when it is decided that STOP_REPLY holds the info of the
7673 event that is to be returned to the core. This function always
7674 destroys STOP_REPLY. */
7675
7676 ptid_t
7677 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7678 struct target_waitstatus *status)
7679 {
7680 ptid_t ptid;
7681
7682 *status = stop_reply->ws;
7683 ptid = stop_reply->ptid;
7684
7685 /* If no thread/process was reported by the stub then use the first
7686 non-exited thread in the current target. */
7687 if (ptid == null_ptid)
7688 {
7689 /* Some stop events apply to all threads in an inferior, while others
7690 only apply to a single thread. */
7691 bool is_stop_for_all_threads
7692 = (status->kind == TARGET_WAITKIND_EXITED
7693 || status->kind == TARGET_WAITKIND_SIGNALLED);
7694
7695 for (thread_info *thr : all_non_exited_threads (this))
7696 {
7697 if (ptid != null_ptid
7698 && (!is_stop_for_all_threads
7699 || ptid.pid () != thr->ptid.pid ()))
7700 {
7701 static bool warned = false;
7702
7703 if (!warned)
7704 {
7705 /* If you are seeing this warning then the remote target
7706 has stopped without specifying a thread-id, but the
7707 target does have multiple threads (or inferiors), and
7708 so GDB is having to guess which thread stopped.
7709
7710 Examples of what might cause this are the target
7711 sending and 'S' stop packet, or a 'T' stop packet and
7712 not including a thread-id.
7713
7714 Additionally, the target might send a 'W' or 'X
7715 packet without including a process-id, when the target
7716 has multiple running inferiors. */
7717 if (is_stop_for_all_threads)
7718 warning (_("multi-inferior target stopped without "
7719 "sending a process-id, using first "
7720 "non-exited inferior"));
7721 else
7722 warning (_("multi-threaded target stopped without "
7723 "sending a thread-id, using first "
7724 "non-exited thread"));
7725 warned = true;
7726 }
7727 break;
7728 }
7729
7730 /* If this is a stop for all threads then don't use a particular
7731 threads ptid, instead create a new ptid where only the pid
7732 field is set. */
7733 if (is_stop_for_all_threads)
7734 ptid = ptid_t (thr->ptid.pid ());
7735 else
7736 ptid = thr->ptid;
7737 }
7738 gdb_assert (ptid != null_ptid);
7739 }
7740
7741 if (status->kind != TARGET_WAITKIND_EXITED
7742 && status->kind != TARGET_WAITKIND_SIGNALLED
7743 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7744 {
7745 /* Expedited registers. */
7746 if (!stop_reply->regcache.empty ())
7747 {
7748 struct regcache *regcache
7749 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
7750
7751 for (cached_reg_t &reg : stop_reply->regcache)
7752 {
7753 regcache->raw_supply (reg.num, reg.data);
7754 xfree (reg.data);
7755 }
7756
7757 stop_reply->regcache.clear ();
7758 }
7759
7760 remote_notice_new_inferior (ptid, 0);
7761 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
7762 remote_thr->core = stop_reply->core;
7763 remote_thr->stop_reason = stop_reply->stop_reason;
7764 remote_thr->watch_data_address = stop_reply->watch_data_address;
7765 remote_thr->vcont_resumed = 0;
7766 }
7767
7768 delete stop_reply;
7769 return ptid;
7770 }
7771
7772 /* The non-stop mode version of target_wait. */
7773
7774 ptid_t
7775 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7776 {
7777 struct remote_state *rs = get_remote_state ();
7778 struct stop_reply *stop_reply;
7779 int ret;
7780 int is_notif = 0;
7781
7782 /* If in non-stop mode, get out of getpkt even if a
7783 notification is received. */
7784
7785 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7786 while (1)
7787 {
7788 if (ret != -1 && !is_notif)
7789 switch (rs->buf[0])
7790 {
7791 case 'E': /* Error of some sort. */
7792 /* We're out of sync with the target now. Did it continue
7793 or not? We can't tell which thread it was in non-stop,
7794 so just ignore this. */
7795 warning (_("Remote failure reply: %s"), rs->buf.data ());
7796 break;
7797 case 'O': /* Console output. */
7798 remote_console_output (&rs->buf[1]);
7799 break;
7800 default:
7801 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7802 break;
7803 }
7804
7805 /* Acknowledge a pending stop reply that may have arrived in the
7806 mean time. */
7807 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7808 remote_notif_get_pending_events (&notif_client_stop);
7809
7810 /* If indeed we noticed a stop reply, we're done. */
7811 stop_reply = queued_stop_reply (ptid);
7812 if (stop_reply != NULL)
7813 return process_stop_reply (stop_reply, status);
7814
7815 /* Still no event. If we're just polling for an event, then
7816 return to the event loop. */
7817 if (options & TARGET_WNOHANG)
7818 {
7819 status->kind = TARGET_WAITKIND_IGNORE;
7820 return minus_one_ptid;
7821 }
7822
7823 /* Otherwise do a blocking wait. */
7824 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7825 }
7826 }
7827
7828 /* Return the first resumed thread. */
7829
7830 static ptid_t
7831 first_remote_resumed_thread (remote_target *target)
7832 {
7833 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
7834 if (tp->resumed)
7835 return tp->ptid;
7836 return null_ptid;
7837 }
7838
7839 /* Wait until the remote machine stops, then return, storing status in
7840 STATUS just as `wait' would. */
7841
7842 ptid_t
7843 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7844 {
7845 struct remote_state *rs = get_remote_state ();
7846 ptid_t event_ptid = null_ptid;
7847 char *buf;
7848 struct stop_reply *stop_reply;
7849
7850 again:
7851
7852 status->kind = TARGET_WAITKIND_IGNORE;
7853 status->value.integer = 0;
7854
7855 stop_reply = queued_stop_reply (ptid);
7856 if (stop_reply != NULL)
7857 return process_stop_reply (stop_reply, status);
7858
7859 if (rs->cached_wait_status)
7860 /* Use the cached wait status, but only once. */
7861 rs->cached_wait_status = 0;
7862 else
7863 {
7864 int ret;
7865 int is_notif;
7866 int forever = ((options & TARGET_WNOHANG) == 0
7867 && rs->wait_forever_enabled_p);
7868
7869 if (!rs->waiting_for_stop_reply)
7870 {
7871 status->kind = TARGET_WAITKIND_NO_RESUMED;
7872 return minus_one_ptid;
7873 }
7874
7875 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7876 _never_ wait for ever -> test on target_is_async_p().
7877 However, before we do that we need to ensure that the caller
7878 knows how to take the target into/out of async mode. */
7879 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7880
7881 /* GDB gets a notification. Return to core as this event is
7882 not interesting. */
7883 if (ret != -1 && is_notif)
7884 return minus_one_ptid;
7885
7886 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7887 return minus_one_ptid;
7888 }
7889
7890 buf = rs->buf.data ();
7891
7892 /* Assume that the target has acknowledged Ctrl-C unless we receive
7893 an 'F' or 'O' packet. */
7894 if (buf[0] != 'F' && buf[0] != 'O')
7895 rs->ctrlc_pending_p = 0;
7896
7897 switch (buf[0])
7898 {
7899 case 'E': /* Error of some sort. */
7900 /* We're out of sync with the target now. Did it continue or
7901 not? Not is more likely, so report a stop. */
7902 rs->waiting_for_stop_reply = 0;
7903
7904 warning (_("Remote failure reply: %s"), buf);
7905 status->kind = TARGET_WAITKIND_STOPPED;
7906 status->value.sig = GDB_SIGNAL_0;
7907 break;
7908 case 'F': /* File-I/O request. */
7909 /* GDB may access the inferior memory while handling the File-I/O
7910 request, but we don't want GDB accessing memory while waiting
7911 for a stop reply. See the comments in putpkt_binary. Set
7912 waiting_for_stop_reply to 0 temporarily. */
7913 rs->waiting_for_stop_reply = 0;
7914 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7915 rs->ctrlc_pending_p = 0;
7916 /* GDB handled the File-I/O request, and the target is running
7917 again. Keep waiting for events. */
7918 rs->waiting_for_stop_reply = 1;
7919 break;
7920 case 'N': case 'T': case 'S': case 'X': case 'W':
7921 {
7922 /* There is a stop reply to handle. */
7923 rs->waiting_for_stop_reply = 0;
7924
7925 stop_reply
7926 = (struct stop_reply *) remote_notif_parse (this,
7927 &notif_client_stop,
7928 rs->buf.data ());
7929
7930 event_ptid = process_stop_reply (stop_reply, status);
7931 break;
7932 }
7933 case 'O': /* Console output. */
7934 remote_console_output (buf + 1);
7935 break;
7936 case '\0':
7937 if (rs->last_sent_signal != GDB_SIGNAL_0)
7938 {
7939 /* Zero length reply means that we tried 'S' or 'C' and the
7940 remote system doesn't support it. */
7941 target_terminal::ours_for_output ();
7942 printf_filtered
7943 ("Can't send signals to this remote system. %s not sent.\n",
7944 gdb_signal_to_name (rs->last_sent_signal));
7945 rs->last_sent_signal = GDB_SIGNAL_0;
7946 target_terminal::inferior ();
7947
7948 strcpy (buf, rs->last_sent_step ? "s" : "c");
7949 putpkt (buf);
7950 break;
7951 }
7952 /* fallthrough */
7953 default:
7954 warning (_("Invalid remote reply: %s"), buf);
7955 break;
7956 }
7957
7958 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7959 return minus_one_ptid;
7960 else if (status->kind == TARGET_WAITKIND_IGNORE)
7961 {
7962 /* Nothing interesting happened. If we're doing a non-blocking
7963 poll, we're done. Otherwise, go back to waiting. */
7964 if (options & TARGET_WNOHANG)
7965 return minus_one_ptid;
7966 else
7967 goto again;
7968 }
7969 else if (status->kind != TARGET_WAITKIND_EXITED
7970 && status->kind != TARGET_WAITKIND_SIGNALLED)
7971 {
7972 if (event_ptid != null_ptid)
7973 record_currthread (rs, event_ptid);
7974 else
7975 event_ptid = first_remote_resumed_thread (this);
7976 }
7977 else
7978 {
7979 /* A process exit. Invalidate our notion of current thread. */
7980 record_currthread (rs, minus_one_ptid);
7981 /* It's possible that the packet did not include a pid. */
7982 if (event_ptid == null_ptid)
7983 event_ptid = first_remote_resumed_thread (this);
7984 /* EVENT_PTID could still be NULL_PTID. Double-check. */
7985 if (event_ptid == null_ptid)
7986 event_ptid = magic_null_ptid;
7987 }
7988
7989 return event_ptid;
7990 }
7991
7992 /* Wait until the remote machine stops, then return, storing status in
7993 STATUS just as `wait' would. */
7994
7995 ptid_t
7996 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7997 {
7998 ptid_t event_ptid;
7999
8000 if (target_is_non_stop_p ())
8001 event_ptid = wait_ns (ptid, status, options);
8002 else
8003 event_ptid = wait_as (ptid, status, options);
8004
8005 if (target_is_async_p ())
8006 {
8007 remote_state *rs = get_remote_state ();
8008
8009 /* If there are are events left in the queue tell the event loop
8010 to return here. */
8011 if (!rs->stop_reply_queue.empty ())
8012 mark_async_event_handler (rs->remote_async_inferior_event_token);
8013 }
8014
8015 return event_ptid;
8016 }
8017
8018 /* Fetch a single register using a 'p' packet. */
8019
8020 int
8021 remote_target::fetch_register_using_p (struct regcache *regcache,
8022 packet_reg *reg)
8023 {
8024 struct gdbarch *gdbarch = regcache->arch ();
8025 struct remote_state *rs = get_remote_state ();
8026 char *buf, *p;
8027 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8028 int i;
8029
8030 if (packet_support (PACKET_p) == PACKET_DISABLE)
8031 return 0;
8032
8033 if (reg->pnum == -1)
8034 return 0;
8035
8036 p = rs->buf.data ();
8037 *p++ = 'p';
8038 p += hexnumstr (p, reg->pnum);
8039 *p++ = '\0';
8040 putpkt (rs->buf);
8041 getpkt (&rs->buf, 0);
8042
8043 buf = rs->buf.data ();
8044
8045 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8046 {
8047 case PACKET_OK:
8048 break;
8049 case PACKET_UNKNOWN:
8050 return 0;
8051 case PACKET_ERROR:
8052 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8053 gdbarch_register_name (regcache->arch (),
8054 reg->regnum),
8055 buf);
8056 }
8057
8058 /* If this register is unfetchable, tell the regcache. */
8059 if (buf[0] == 'x')
8060 {
8061 regcache->raw_supply (reg->regnum, NULL);
8062 return 1;
8063 }
8064
8065 /* Otherwise, parse and supply the value. */
8066 p = buf;
8067 i = 0;
8068 while (p[0] != 0)
8069 {
8070 if (p[1] == 0)
8071 error (_("fetch_register_using_p: early buf termination"));
8072
8073 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8074 p += 2;
8075 }
8076 regcache->raw_supply (reg->regnum, regp);
8077 return 1;
8078 }
8079
8080 /* Fetch the registers included in the target's 'g' packet. */
8081
8082 int
8083 remote_target::send_g_packet ()
8084 {
8085 struct remote_state *rs = get_remote_state ();
8086 int buf_len;
8087
8088 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8089 putpkt (rs->buf);
8090 getpkt (&rs->buf, 0);
8091 if (packet_check_result (rs->buf) == PACKET_ERROR)
8092 error (_("Could not read registers; remote failure reply '%s'"),
8093 rs->buf.data ());
8094
8095 /* We can get out of synch in various cases. If the first character
8096 in the buffer is not a hex character, assume that has happened
8097 and try to fetch another packet to read. */
8098 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8099 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8100 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8101 && rs->buf[0] != 'x') /* New: unavailable register value. */
8102 {
8103 if (remote_debug)
8104 fprintf_unfiltered (gdb_stdlog,
8105 "Bad register packet; fetching a new packet\n");
8106 getpkt (&rs->buf, 0);
8107 }
8108
8109 buf_len = strlen (rs->buf.data ());
8110
8111 /* Sanity check the received packet. */
8112 if (buf_len % 2 != 0)
8113 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8114
8115 return buf_len / 2;
8116 }
8117
8118 void
8119 remote_target::process_g_packet (struct regcache *regcache)
8120 {
8121 struct gdbarch *gdbarch = regcache->arch ();
8122 struct remote_state *rs = get_remote_state ();
8123 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8124 int i, buf_len;
8125 char *p;
8126 char *regs;
8127
8128 buf_len = strlen (rs->buf.data ());
8129
8130 /* Further sanity checks, with knowledge of the architecture. */
8131 if (buf_len > 2 * rsa->sizeof_g_packet)
8132 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8133 "bytes): %s"),
8134 rsa->sizeof_g_packet, buf_len / 2,
8135 rs->buf.data ());
8136
8137 /* Save the size of the packet sent to us by the target. It is used
8138 as a heuristic when determining the max size of packets that the
8139 target can safely receive. */
8140 if (rsa->actual_register_packet_size == 0)
8141 rsa->actual_register_packet_size = buf_len;
8142
8143 /* If this is smaller than we guessed the 'g' packet would be,
8144 update our records. A 'g' reply that doesn't include a register's
8145 value implies either that the register is not available, or that
8146 the 'p' packet must be used. */
8147 if (buf_len < 2 * rsa->sizeof_g_packet)
8148 {
8149 long sizeof_g_packet = buf_len / 2;
8150
8151 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8152 {
8153 long offset = rsa->regs[i].offset;
8154 long reg_size = register_size (gdbarch, i);
8155
8156 if (rsa->regs[i].pnum == -1)
8157 continue;
8158
8159 if (offset >= sizeof_g_packet)
8160 rsa->regs[i].in_g_packet = 0;
8161 else if (offset + reg_size > sizeof_g_packet)
8162 error (_("Truncated register %d in remote 'g' packet"), i);
8163 else
8164 rsa->regs[i].in_g_packet = 1;
8165 }
8166
8167 /* Looks valid enough, we can assume this is the correct length
8168 for a 'g' packet. It's important not to adjust
8169 rsa->sizeof_g_packet if we have truncated registers otherwise
8170 this "if" won't be run the next time the method is called
8171 with a packet of the same size and one of the internal errors
8172 below will trigger instead. */
8173 rsa->sizeof_g_packet = sizeof_g_packet;
8174 }
8175
8176 regs = (char *) alloca (rsa->sizeof_g_packet);
8177
8178 /* Unimplemented registers read as all bits zero. */
8179 memset (regs, 0, rsa->sizeof_g_packet);
8180
8181 /* Reply describes registers byte by byte, each byte encoded as two
8182 hex characters. Suck them all up, then supply them to the
8183 register cacheing/storage mechanism. */
8184
8185 p = rs->buf.data ();
8186 for (i = 0; i < rsa->sizeof_g_packet; i++)
8187 {
8188 if (p[0] == 0 || p[1] == 0)
8189 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8190 internal_error (__FILE__, __LINE__,
8191 _("unexpected end of 'g' packet reply"));
8192
8193 if (p[0] == 'x' && p[1] == 'x')
8194 regs[i] = 0; /* 'x' */
8195 else
8196 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8197 p += 2;
8198 }
8199
8200 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8201 {
8202 struct packet_reg *r = &rsa->regs[i];
8203 long reg_size = register_size (gdbarch, i);
8204
8205 if (r->in_g_packet)
8206 {
8207 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8208 /* This shouldn't happen - we adjusted in_g_packet above. */
8209 internal_error (__FILE__, __LINE__,
8210 _("unexpected end of 'g' packet reply"));
8211 else if (rs->buf[r->offset * 2] == 'x')
8212 {
8213 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8214 /* The register isn't available, mark it as such (at
8215 the same time setting the value to zero). */
8216 regcache->raw_supply (r->regnum, NULL);
8217 }
8218 else
8219 regcache->raw_supply (r->regnum, regs + r->offset);
8220 }
8221 }
8222 }
8223
8224 void
8225 remote_target::fetch_registers_using_g (struct regcache *regcache)
8226 {
8227 send_g_packet ();
8228 process_g_packet (regcache);
8229 }
8230
8231 /* Make the remote selected traceframe match GDB's selected
8232 traceframe. */
8233
8234 void
8235 remote_target::set_remote_traceframe ()
8236 {
8237 int newnum;
8238 struct remote_state *rs = get_remote_state ();
8239
8240 if (rs->remote_traceframe_number == get_traceframe_number ())
8241 return;
8242
8243 /* Avoid recursion, remote_trace_find calls us again. */
8244 rs->remote_traceframe_number = get_traceframe_number ();
8245
8246 newnum = target_trace_find (tfind_number,
8247 get_traceframe_number (), 0, 0, NULL);
8248
8249 /* Should not happen. If it does, all bets are off. */
8250 if (newnum != get_traceframe_number ())
8251 warning (_("could not set remote traceframe"));
8252 }
8253
8254 void
8255 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8256 {
8257 struct gdbarch *gdbarch = regcache->arch ();
8258 struct remote_state *rs = get_remote_state ();
8259 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8260 int i;
8261
8262 set_remote_traceframe ();
8263 set_general_thread (regcache->ptid ());
8264
8265 if (regnum >= 0)
8266 {
8267 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8268
8269 gdb_assert (reg != NULL);
8270
8271 /* If this register might be in the 'g' packet, try that first -
8272 we are likely to read more than one register. If this is the
8273 first 'g' packet, we might be overly optimistic about its
8274 contents, so fall back to 'p'. */
8275 if (reg->in_g_packet)
8276 {
8277 fetch_registers_using_g (regcache);
8278 if (reg->in_g_packet)
8279 return;
8280 }
8281
8282 if (fetch_register_using_p (regcache, reg))
8283 return;
8284
8285 /* This register is not available. */
8286 regcache->raw_supply (reg->regnum, NULL);
8287
8288 return;
8289 }
8290
8291 fetch_registers_using_g (regcache);
8292
8293 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8294 if (!rsa->regs[i].in_g_packet)
8295 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8296 {
8297 /* This register is not available. */
8298 regcache->raw_supply (i, NULL);
8299 }
8300 }
8301
8302 /* Prepare to store registers. Since we may send them all (using a
8303 'G' request), we have to read out the ones we don't want to change
8304 first. */
8305
8306 void
8307 remote_target::prepare_to_store (struct regcache *regcache)
8308 {
8309 struct remote_state *rs = get_remote_state ();
8310 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8311 int i;
8312
8313 /* Make sure the entire registers array is valid. */
8314 switch (packet_support (PACKET_P))
8315 {
8316 case PACKET_DISABLE:
8317 case PACKET_SUPPORT_UNKNOWN:
8318 /* Make sure all the necessary registers are cached. */
8319 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8320 if (rsa->regs[i].in_g_packet)
8321 regcache->raw_update (rsa->regs[i].regnum);
8322 break;
8323 case PACKET_ENABLE:
8324 break;
8325 }
8326 }
8327
8328 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8329 packet was not recognized. */
8330
8331 int
8332 remote_target::store_register_using_P (const struct regcache *regcache,
8333 packet_reg *reg)
8334 {
8335 struct gdbarch *gdbarch = regcache->arch ();
8336 struct remote_state *rs = get_remote_state ();
8337 /* Try storing a single register. */
8338 char *buf = rs->buf.data ();
8339 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8340 char *p;
8341
8342 if (packet_support (PACKET_P) == PACKET_DISABLE)
8343 return 0;
8344
8345 if (reg->pnum == -1)
8346 return 0;
8347
8348 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8349 p = buf + strlen (buf);
8350 regcache->raw_collect (reg->regnum, regp);
8351 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8352 putpkt (rs->buf);
8353 getpkt (&rs->buf, 0);
8354
8355 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8356 {
8357 case PACKET_OK:
8358 return 1;
8359 case PACKET_ERROR:
8360 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8361 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8362 case PACKET_UNKNOWN:
8363 return 0;
8364 default:
8365 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8366 }
8367 }
8368
8369 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8370 contents of the register cache buffer. FIXME: ignores errors. */
8371
8372 void
8373 remote_target::store_registers_using_G (const struct regcache *regcache)
8374 {
8375 struct remote_state *rs = get_remote_state ();
8376 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8377 gdb_byte *regs;
8378 char *p;
8379
8380 /* Extract all the registers in the regcache copying them into a
8381 local buffer. */
8382 {
8383 int i;
8384
8385 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8386 memset (regs, 0, rsa->sizeof_g_packet);
8387 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8388 {
8389 struct packet_reg *r = &rsa->regs[i];
8390
8391 if (r->in_g_packet)
8392 regcache->raw_collect (r->regnum, regs + r->offset);
8393 }
8394 }
8395
8396 /* Command describes registers byte by byte,
8397 each byte encoded as two hex characters. */
8398 p = rs->buf.data ();
8399 *p++ = 'G';
8400 bin2hex (regs, p, rsa->sizeof_g_packet);
8401 putpkt (rs->buf);
8402 getpkt (&rs->buf, 0);
8403 if (packet_check_result (rs->buf) == PACKET_ERROR)
8404 error (_("Could not write registers; remote failure reply '%s'"),
8405 rs->buf.data ());
8406 }
8407
8408 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8409 of the register cache buffer. FIXME: ignores errors. */
8410
8411 void
8412 remote_target::store_registers (struct regcache *regcache, int regnum)
8413 {
8414 struct gdbarch *gdbarch = regcache->arch ();
8415 struct remote_state *rs = get_remote_state ();
8416 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8417 int i;
8418
8419 set_remote_traceframe ();
8420 set_general_thread (regcache->ptid ());
8421
8422 if (regnum >= 0)
8423 {
8424 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8425
8426 gdb_assert (reg != NULL);
8427
8428 /* Always prefer to store registers using the 'P' packet if
8429 possible; we often change only a small number of registers.
8430 Sometimes we change a larger number; we'd need help from a
8431 higher layer to know to use 'G'. */
8432 if (store_register_using_P (regcache, reg))
8433 return;
8434
8435 /* For now, don't complain if we have no way to write the
8436 register. GDB loses track of unavailable registers too
8437 easily. Some day, this may be an error. We don't have
8438 any way to read the register, either... */
8439 if (!reg->in_g_packet)
8440 return;
8441
8442 store_registers_using_G (regcache);
8443 return;
8444 }
8445
8446 store_registers_using_G (regcache);
8447
8448 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8449 if (!rsa->regs[i].in_g_packet)
8450 if (!store_register_using_P (regcache, &rsa->regs[i]))
8451 /* See above for why we do not issue an error here. */
8452 continue;
8453 }
8454 \f
8455
8456 /* Return the number of hex digits in num. */
8457
8458 static int
8459 hexnumlen (ULONGEST num)
8460 {
8461 int i;
8462
8463 for (i = 0; num != 0; i++)
8464 num >>= 4;
8465
8466 return std::max (i, 1);
8467 }
8468
8469 /* Set BUF to the minimum number of hex digits representing NUM. */
8470
8471 static int
8472 hexnumstr (char *buf, ULONGEST num)
8473 {
8474 int len = hexnumlen (num);
8475
8476 return hexnumnstr (buf, num, len);
8477 }
8478
8479
8480 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8481
8482 static int
8483 hexnumnstr (char *buf, ULONGEST num, int width)
8484 {
8485 int i;
8486
8487 buf[width] = '\0';
8488
8489 for (i = width - 1; i >= 0; i--)
8490 {
8491 buf[i] = "0123456789abcdef"[(num & 0xf)];
8492 num >>= 4;
8493 }
8494
8495 return width;
8496 }
8497
8498 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8499
8500 static CORE_ADDR
8501 remote_address_masked (CORE_ADDR addr)
8502 {
8503 unsigned int address_size = remote_address_size;
8504
8505 /* If "remoteaddresssize" was not set, default to target address size. */
8506 if (!address_size)
8507 address_size = gdbarch_addr_bit (target_gdbarch ());
8508
8509 if (address_size > 0
8510 && address_size < (sizeof (ULONGEST) * 8))
8511 {
8512 /* Only create a mask when that mask can safely be constructed
8513 in a ULONGEST variable. */
8514 ULONGEST mask = 1;
8515
8516 mask = (mask << address_size) - 1;
8517 addr &= mask;
8518 }
8519 return addr;
8520 }
8521
8522 /* Determine whether the remote target supports binary downloading.
8523 This is accomplished by sending a no-op memory write of zero length
8524 to the target at the specified address. It does not suffice to send
8525 the whole packet, since many stubs strip the eighth bit and
8526 subsequently compute a wrong checksum, which causes real havoc with
8527 remote_write_bytes.
8528
8529 NOTE: This can still lose if the serial line is not eight-bit
8530 clean. In cases like this, the user should clear "remote
8531 X-packet". */
8532
8533 void
8534 remote_target::check_binary_download (CORE_ADDR addr)
8535 {
8536 struct remote_state *rs = get_remote_state ();
8537
8538 switch (packet_support (PACKET_X))
8539 {
8540 case PACKET_DISABLE:
8541 break;
8542 case PACKET_ENABLE:
8543 break;
8544 case PACKET_SUPPORT_UNKNOWN:
8545 {
8546 char *p;
8547
8548 p = rs->buf.data ();
8549 *p++ = 'X';
8550 p += hexnumstr (p, (ULONGEST) addr);
8551 *p++ = ',';
8552 p += hexnumstr (p, (ULONGEST) 0);
8553 *p++ = ':';
8554 *p = '\0';
8555
8556 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8557 getpkt (&rs->buf, 0);
8558
8559 if (rs->buf[0] == '\0')
8560 {
8561 if (remote_debug)
8562 fprintf_unfiltered (gdb_stdlog,
8563 "binary downloading NOT "
8564 "supported by target\n");
8565 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8566 }
8567 else
8568 {
8569 if (remote_debug)
8570 fprintf_unfiltered (gdb_stdlog,
8571 "binary downloading supported by target\n");
8572 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8573 }
8574 break;
8575 }
8576 }
8577 }
8578
8579 /* Helper function to resize the payload in order to try to get a good
8580 alignment. We try to write an amount of data such that the next write will
8581 start on an address aligned on REMOTE_ALIGN_WRITES. */
8582
8583 static int
8584 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8585 {
8586 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8587 }
8588
8589 /* Write memory data directly to the remote machine.
8590 This does not inform the data cache; the data cache uses this.
8591 HEADER is the starting part of the packet.
8592 MEMADDR is the address in the remote memory space.
8593 MYADDR is the address of the buffer in our space.
8594 LEN_UNITS is the number of addressable units to write.
8595 UNIT_SIZE is the length in bytes of an addressable unit.
8596 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8597 should send data as binary ('X'), or hex-encoded ('M').
8598
8599 The function creates packet of the form
8600 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8601
8602 where encoding of <DATA> is terminated by PACKET_FORMAT.
8603
8604 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8605 are omitted.
8606
8607 Return the transferred status, error or OK (an
8608 'enum target_xfer_status' value). Save the number of addressable units
8609 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8610
8611 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8612 exchange between gdb and the stub could look like (?? in place of the
8613 checksum):
8614
8615 -> $m1000,4#??
8616 <- aaaabbbbccccdddd
8617
8618 -> $M1000,3:eeeeffffeeee#??
8619 <- OK
8620
8621 -> $m1000,4#??
8622 <- eeeeffffeeeedddd */
8623
8624 target_xfer_status
8625 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8626 const gdb_byte *myaddr,
8627 ULONGEST len_units,
8628 int unit_size,
8629 ULONGEST *xfered_len_units,
8630 char packet_format, int use_length)
8631 {
8632 struct remote_state *rs = get_remote_state ();
8633 char *p;
8634 char *plen = NULL;
8635 int plenlen = 0;
8636 int todo_units;
8637 int units_written;
8638 int payload_capacity_bytes;
8639 int payload_length_bytes;
8640
8641 if (packet_format != 'X' && packet_format != 'M')
8642 internal_error (__FILE__, __LINE__,
8643 _("remote_write_bytes_aux: bad packet format"));
8644
8645 if (len_units == 0)
8646 return TARGET_XFER_EOF;
8647
8648 payload_capacity_bytes = get_memory_write_packet_size ();
8649
8650 /* The packet buffer will be large enough for the payload;
8651 get_memory_packet_size ensures this. */
8652 rs->buf[0] = '\0';
8653
8654 /* Compute the size of the actual payload by subtracting out the
8655 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8656
8657 payload_capacity_bytes -= strlen ("$,:#NN");
8658 if (!use_length)
8659 /* The comma won't be used. */
8660 payload_capacity_bytes += 1;
8661 payload_capacity_bytes -= strlen (header);
8662 payload_capacity_bytes -= hexnumlen (memaddr);
8663
8664 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8665
8666 strcat (rs->buf.data (), header);
8667 p = rs->buf.data () + strlen (header);
8668
8669 /* Compute a best guess of the number of bytes actually transfered. */
8670 if (packet_format == 'X')
8671 {
8672 /* Best guess at number of bytes that will fit. */
8673 todo_units = std::min (len_units,
8674 (ULONGEST) payload_capacity_bytes / unit_size);
8675 if (use_length)
8676 payload_capacity_bytes -= hexnumlen (todo_units);
8677 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8678 }
8679 else
8680 {
8681 /* Number of bytes that will fit. */
8682 todo_units
8683 = std::min (len_units,
8684 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8685 if (use_length)
8686 payload_capacity_bytes -= hexnumlen (todo_units);
8687 todo_units = std::min (todo_units,
8688 (payload_capacity_bytes / unit_size) / 2);
8689 }
8690
8691 if (todo_units <= 0)
8692 internal_error (__FILE__, __LINE__,
8693 _("minimum packet size too small to write data"));
8694
8695 /* If we already need another packet, then try to align the end
8696 of this packet to a useful boundary. */
8697 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8698 todo_units = align_for_efficient_write (todo_units, memaddr);
8699
8700 /* Append "<memaddr>". */
8701 memaddr = remote_address_masked (memaddr);
8702 p += hexnumstr (p, (ULONGEST) memaddr);
8703
8704 if (use_length)
8705 {
8706 /* Append ",". */
8707 *p++ = ',';
8708
8709 /* Append the length and retain its location and size. It may need to be
8710 adjusted once the packet body has been created. */
8711 plen = p;
8712 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8713 p += plenlen;
8714 }
8715
8716 /* Append ":". */
8717 *p++ = ':';
8718 *p = '\0';
8719
8720 /* Append the packet body. */
8721 if (packet_format == 'X')
8722 {
8723 /* Binary mode. Send target system values byte by byte, in
8724 increasing byte addresses. Only escape certain critical
8725 characters. */
8726 payload_length_bytes =
8727 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8728 &units_written, payload_capacity_bytes);
8729
8730 /* If not all TODO units fit, then we'll need another packet. Make
8731 a second try to keep the end of the packet aligned. Don't do
8732 this if the packet is tiny. */
8733 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8734 {
8735 int new_todo_units;
8736
8737 new_todo_units = align_for_efficient_write (units_written, memaddr);
8738
8739 if (new_todo_units != units_written)
8740 payload_length_bytes =
8741 remote_escape_output (myaddr, new_todo_units, unit_size,
8742 (gdb_byte *) p, &units_written,
8743 payload_capacity_bytes);
8744 }
8745
8746 p += payload_length_bytes;
8747 if (use_length && units_written < todo_units)
8748 {
8749 /* Escape chars have filled up the buffer prematurely,
8750 and we have actually sent fewer units than planned.
8751 Fix-up the length field of the packet. Use the same
8752 number of characters as before. */
8753 plen += hexnumnstr (plen, (ULONGEST) units_written,
8754 plenlen);
8755 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8756 }
8757 }
8758 else
8759 {
8760 /* Normal mode: Send target system values byte by byte, in
8761 increasing byte addresses. Each byte is encoded as a two hex
8762 value. */
8763 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8764 units_written = todo_units;
8765 }
8766
8767 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8768 getpkt (&rs->buf, 0);
8769
8770 if (rs->buf[0] == 'E')
8771 return TARGET_XFER_E_IO;
8772
8773 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8774 send fewer units than we'd planned. */
8775 *xfered_len_units = (ULONGEST) units_written;
8776 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8777 }
8778
8779 /* Write memory data directly to the remote machine.
8780 This does not inform the data cache; the data cache uses this.
8781 MEMADDR is the address in the remote memory space.
8782 MYADDR is the address of the buffer in our space.
8783 LEN is the number of bytes.
8784
8785 Return the transferred status, error or OK (an
8786 'enum target_xfer_status' value). Save the number of bytes
8787 transferred in *XFERED_LEN. Only transfer a single packet. */
8788
8789 target_xfer_status
8790 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8791 ULONGEST len, int unit_size,
8792 ULONGEST *xfered_len)
8793 {
8794 const char *packet_format = NULL;
8795
8796 /* Check whether the target supports binary download. */
8797 check_binary_download (memaddr);
8798
8799 switch (packet_support (PACKET_X))
8800 {
8801 case PACKET_ENABLE:
8802 packet_format = "X";
8803 break;
8804 case PACKET_DISABLE:
8805 packet_format = "M";
8806 break;
8807 case PACKET_SUPPORT_UNKNOWN:
8808 internal_error (__FILE__, __LINE__,
8809 _("remote_write_bytes: bad internal state"));
8810 default:
8811 internal_error (__FILE__, __LINE__, _("bad switch"));
8812 }
8813
8814 return remote_write_bytes_aux (packet_format,
8815 memaddr, myaddr, len, unit_size, xfered_len,
8816 packet_format[0], 1);
8817 }
8818
8819 /* Read memory data directly from the remote machine.
8820 This does not use the data cache; the data cache uses this.
8821 MEMADDR is the address in the remote memory space.
8822 MYADDR is the address of the buffer in our space.
8823 LEN_UNITS is the number of addressable memory units to read..
8824 UNIT_SIZE is the length in bytes of an addressable unit.
8825
8826 Return the transferred status, error or OK (an
8827 'enum target_xfer_status' value). Save the number of bytes
8828 transferred in *XFERED_LEN_UNITS.
8829
8830 See the comment of remote_write_bytes_aux for an example of
8831 memory read/write exchange between gdb and the stub. */
8832
8833 target_xfer_status
8834 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8835 ULONGEST len_units,
8836 int unit_size, ULONGEST *xfered_len_units)
8837 {
8838 struct remote_state *rs = get_remote_state ();
8839 int buf_size_bytes; /* Max size of packet output buffer. */
8840 char *p;
8841 int todo_units;
8842 int decoded_bytes;
8843
8844 buf_size_bytes = get_memory_read_packet_size ();
8845 /* The packet buffer will be large enough for the payload;
8846 get_memory_packet_size ensures this. */
8847
8848 /* Number of units that will fit. */
8849 todo_units = std::min (len_units,
8850 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8851
8852 /* Construct "m"<memaddr>","<len>". */
8853 memaddr = remote_address_masked (memaddr);
8854 p = rs->buf.data ();
8855 *p++ = 'm';
8856 p += hexnumstr (p, (ULONGEST) memaddr);
8857 *p++ = ',';
8858 p += hexnumstr (p, (ULONGEST) todo_units);
8859 *p = '\0';
8860 putpkt (rs->buf);
8861 getpkt (&rs->buf, 0);
8862 if (rs->buf[0] == 'E'
8863 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8864 && rs->buf[3] == '\0')
8865 return TARGET_XFER_E_IO;
8866 /* Reply describes memory byte by byte, each byte encoded as two hex
8867 characters. */
8868 p = rs->buf.data ();
8869 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8870 /* Return what we have. Let higher layers handle partial reads. */
8871 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8872 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8873 }
8874
8875 /* Using the set of read-only target sections of remote, read live
8876 read-only memory.
8877
8878 For interface/parameters/return description see target.h,
8879 to_xfer_partial. */
8880
8881 target_xfer_status
8882 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8883 ULONGEST memaddr,
8884 ULONGEST len,
8885 int unit_size,
8886 ULONGEST *xfered_len)
8887 {
8888 struct target_section *secp;
8889 struct target_section_table *table;
8890
8891 secp = target_section_by_addr (this, memaddr);
8892 if (secp != NULL
8893 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
8894 {
8895 struct target_section *p;
8896 ULONGEST memend = memaddr + len;
8897
8898 table = target_get_section_table (this);
8899
8900 for (p = table->sections; p < table->sections_end; p++)
8901 {
8902 if (memaddr >= p->addr)
8903 {
8904 if (memend <= p->endaddr)
8905 {
8906 /* Entire transfer is within this section. */
8907 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8908 xfered_len);
8909 }
8910 else if (memaddr >= p->endaddr)
8911 {
8912 /* This section ends before the transfer starts. */
8913 continue;
8914 }
8915 else
8916 {
8917 /* This section overlaps the transfer. Just do half. */
8918 len = p->endaddr - memaddr;
8919 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8920 xfered_len);
8921 }
8922 }
8923 }
8924 }
8925
8926 return TARGET_XFER_EOF;
8927 }
8928
8929 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8930 first if the requested memory is unavailable in traceframe.
8931 Otherwise, fall back to remote_read_bytes_1. */
8932
8933 target_xfer_status
8934 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8935 gdb_byte *myaddr, ULONGEST len, int unit_size,
8936 ULONGEST *xfered_len)
8937 {
8938 if (len == 0)
8939 return TARGET_XFER_EOF;
8940
8941 if (get_traceframe_number () != -1)
8942 {
8943 std::vector<mem_range> available;
8944
8945 /* If we fail to get the set of available memory, then the
8946 target does not support querying traceframe info, and so we
8947 attempt reading from the traceframe anyway (assuming the
8948 target implements the old QTro packet then). */
8949 if (traceframe_available_memory (&available, memaddr, len))
8950 {
8951 if (available.empty () || available[0].start != memaddr)
8952 {
8953 enum target_xfer_status res;
8954
8955 /* Don't read into the traceframe's available
8956 memory. */
8957 if (!available.empty ())
8958 {
8959 LONGEST oldlen = len;
8960
8961 len = available[0].start - memaddr;
8962 gdb_assert (len <= oldlen);
8963 }
8964
8965 /* This goes through the topmost target again. */
8966 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8967 len, unit_size, xfered_len);
8968 if (res == TARGET_XFER_OK)
8969 return TARGET_XFER_OK;
8970 else
8971 {
8972 /* No use trying further, we know some memory starting
8973 at MEMADDR isn't available. */
8974 *xfered_len = len;
8975 return (*xfered_len != 0) ?
8976 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8977 }
8978 }
8979
8980 /* Don't try to read more than how much is available, in
8981 case the target implements the deprecated QTro packet to
8982 cater for older GDBs (the target's knowledge of read-only
8983 sections may be outdated by now). */
8984 len = available[0].length;
8985 }
8986 }
8987
8988 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8989 }
8990
8991 \f
8992
8993 /* Sends a packet with content determined by the printf format string
8994 FORMAT and the remaining arguments, then gets the reply. Returns
8995 whether the packet was a success, a failure, or unknown. */
8996
8997 packet_result
8998 remote_target::remote_send_printf (const char *format, ...)
8999 {
9000 struct remote_state *rs = get_remote_state ();
9001 int max_size = get_remote_packet_size ();
9002 va_list ap;
9003
9004 va_start (ap, format);
9005
9006 rs->buf[0] = '\0';
9007 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9008
9009 va_end (ap);
9010
9011 if (size >= max_size)
9012 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9013
9014 if (putpkt (rs->buf) < 0)
9015 error (_("Communication problem with target."));
9016
9017 rs->buf[0] = '\0';
9018 getpkt (&rs->buf, 0);
9019
9020 return packet_check_result (rs->buf);
9021 }
9022
9023 /* Flash writing can take quite some time. We'll set
9024 effectively infinite timeout for flash operations.
9025 In future, we'll need to decide on a better approach. */
9026 static const int remote_flash_timeout = 1000;
9027
9028 void
9029 remote_target::flash_erase (ULONGEST address, LONGEST length)
9030 {
9031 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9032 enum packet_result ret;
9033 scoped_restore restore_timeout
9034 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9035
9036 ret = remote_send_printf ("vFlashErase:%s,%s",
9037 phex (address, addr_size),
9038 phex (length, 4));
9039 switch (ret)
9040 {
9041 case PACKET_UNKNOWN:
9042 error (_("Remote target does not support flash erase"));
9043 case PACKET_ERROR:
9044 error (_("Error erasing flash with vFlashErase packet"));
9045 default:
9046 break;
9047 }
9048 }
9049
9050 target_xfer_status
9051 remote_target::remote_flash_write (ULONGEST address,
9052 ULONGEST length, ULONGEST *xfered_len,
9053 const gdb_byte *data)
9054 {
9055 scoped_restore restore_timeout
9056 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9057 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9058 xfered_len,'X', 0);
9059 }
9060
9061 void
9062 remote_target::flash_done ()
9063 {
9064 int ret;
9065
9066 scoped_restore restore_timeout
9067 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9068
9069 ret = remote_send_printf ("vFlashDone");
9070
9071 switch (ret)
9072 {
9073 case PACKET_UNKNOWN:
9074 error (_("Remote target does not support vFlashDone"));
9075 case PACKET_ERROR:
9076 error (_("Error finishing flash operation"));
9077 default:
9078 break;
9079 }
9080 }
9081
9082 void
9083 remote_target::files_info ()
9084 {
9085 puts_filtered ("Debugging a target over a serial line.\n");
9086 }
9087 \f
9088 /* Stuff for dealing with the packets which are part of this protocol.
9089 See comment at top of file for details. */
9090
9091 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9092 error to higher layers. Called when a serial error is detected.
9093 The exception message is STRING, followed by a colon and a blank,
9094 the system error message for errno at function entry and final dot
9095 for output compatibility with throw_perror_with_name. */
9096
9097 static void
9098 unpush_and_perror (remote_target *target, const char *string)
9099 {
9100 int saved_errno = errno;
9101
9102 remote_unpush_target (target);
9103 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9104 safe_strerror (saved_errno));
9105 }
9106
9107 /* Read a single character from the remote end. The current quit
9108 handler is overridden to avoid quitting in the middle of packet
9109 sequence, as that would break communication with the remote server.
9110 See remote_serial_quit_handler for more detail. */
9111
9112 int
9113 remote_target::readchar (int timeout)
9114 {
9115 int ch;
9116 struct remote_state *rs = get_remote_state ();
9117
9118 {
9119 scoped_restore restore_quit_target
9120 = make_scoped_restore (&curr_quit_handler_target, this);
9121 scoped_restore restore_quit
9122 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9123
9124 rs->got_ctrlc_during_io = 0;
9125
9126 ch = serial_readchar (rs->remote_desc, timeout);
9127
9128 if (rs->got_ctrlc_during_io)
9129 set_quit_flag ();
9130 }
9131
9132 if (ch >= 0)
9133 return ch;
9134
9135 switch ((enum serial_rc) ch)
9136 {
9137 case SERIAL_EOF:
9138 remote_unpush_target (this);
9139 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9140 /* no return */
9141 case SERIAL_ERROR:
9142 unpush_and_perror (this, _("Remote communication error. "
9143 "Target disconnected."));
9144 /* no return */
9145 case SERIAL_TIMEOUT:
9146 break;
9147 }
9148 return ch;
9149 }
9150
9151 /* Wrapper for serial_write that closes the target and throws if
9152 writing fails. The current quit handler is overridden to avoid
9153 quitting in the middle of packet sequence, as that would break
9154 communication with the remote server. See
9155 remote_serial_quit_handler for more detail. */
9156
9157 void
9158 remote_target::remote_serial_write (const char *str, int len)
9159 {
9160 struct remote_state *rs = get_remote_state ();
9161
9162 scoped_restore restore_quit_target
9163 = make_scoped_restore (&curr_quit_handler_target, this);
9164 scoped_restore restore_quit
9165 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9166
9167 rs->got_ctrlc_during_io = 0;
9168
9169 if (serial_write (rs->remote_desc, str, len))
9170 {
9171 unpush_and_perror (this, _("Remote communication error. "
9172 "Target disconnected."));
9173 }
9174
9175 if (rs->got_ctrlc_during_io)
9176 set_quit_flag ();
9177 }
9178
9179 /* Return a string representing an escaped version of BUF, of len N.
9180 E.g. \n is converted to \\n, \t to \\t, etc. */
9181
9182 static std::string
9183 escape_buffer (const char *buf, int n)
9184 {
9185 string_file stb;
9186
9187 stb.putstrn (buf, n, '\\');
9188 return std::move (stb.string ());
9189 }
9190
9191 /* Display a null-terminated packet on stdout, for debugging, using C
9192 string notation. */
9193
9194 static void
9195 print_packet (const char *buf)
9196 {
9197 puts_filtered ("\"");
9198 fputstr_filtered (buf, '"', gdb_stdout);
9199 puts_filtered ("\"");
9200 }
9201
9202 int
9203 remote_target::putpkt (const char *buf)
9204 {
9205 return putpkt_binary (buf, strlen (buf));
9206 }
9207
9208 /* Wrapper around remote_target::putpkt to avoid exporting
9209 remote_target. */
9210
9211 int
9212 putpkt (remote_target *remote, const char *buf)
9213 {
9214 return remote->putpkt (buf);
9215 }
9216
9217 /* Send a packet to the remote machine, with error checking. The data
9218 of the packet is in BUF. The string in BUF can be at most
9219 get_remote_packet_size () - 5 to account for the $, # and checksum,
9220 and for a possible /0 if we are debugging (remote_debug) and want
9221 to print the sent packet as a string. */
9222
9223 int
9224 remote_target::putpkt_binary (const char *buf, int cnt)
9225 {
9226 struct remote_state *rs = get_remote_state ();
9227 int i;
9228 unsigned char csum = 0;
9229 gdb::def_vector<char> data (cnt + 6);
9230 char *buf2 = data.data ();
9231
9232 int ch;
9233 int tcount = 0;
9234 char *p;
9235
9236 /* Catch cases like trying to read memory or listing threads while
9237 we're waiting for a stop reply. The remote server wouldn't be
9238 ready to handle this request, so we'd hang and timeout. We don't
9239 have to worry about this in synchronous mode, because in that
9240 case it's not possible to issue a command while the target is
9241 running. This is not a problem in non-stop mode, because in that
9242 case, the stub is always ready to process serial input. */
9243 if (!target_is_non_stop_p ()
9244 && target_is_async_p ()
9245 && rs->waiting_for_stop_reply)
9246 {
9247 error (_("Cannot execute this command while the target is running.\n"
9248 "Use the \"interrupt\" command to stop the target\n"
9249 "and then try again."));
9250 }
9251
9252 /* We're sending out a new packet. Make sure we don't look at a
9253 stale cached response. */
9254 rs->cached_wait_status = 0;
9255
9256 /* Copy the packet into buffer BUF2, encapsulating it
9257 and giving it a checksum. */
9258
9259 p = buf2;
9260 *p++ = '$';
9261
9262 for (i = 0; i < cnt; i++)
9263 {
9264 csum += buf[i];
9265 *p++ = buf[i];
9266 }
9267 *p++ = '#';
9268 *p++ = tohex ((csum >> 4) & 0xf);
9269 *p++ = tohex (csum & 0xf);
9270
9271 /* Send it over and over until we get a positive ack. */
9272
9273 while (1)
9274 {
9275 int started_error_output = 0;
9276
9277 if (remote_debug)
9278 {
9279 *p = '\0';
9280
9281 int len = (int) (p - buf2);
9282 int max_chars;
9283
9284 if (remote_packet_max_chars < 0)
9285 max_chars = len;
9286 else
9287 max_chars = remote_packet_max_chars;
9288
9289 std::string str
9290 = escape_buffer (buf2, std::min (len, max_chars));
9291
9292 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9293
9294 if (len > max_chars)
9295 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9296 len - max_chars);
9297
9298 fprintf_unfiltered (gdb_stdlog, "...");
9299
9300 gdb_flush (gdb_stdlog);
9301 }
9302 remote_serial_write (buf2, p - buf2);
9303
9304 /* If this is a no acks version of the remote protocol, send the
9305 packet and move on. */
9306 if (rs->noack_mode)
9307 break;
9308
9309 /* Read until either a timeout occurs (-2) or '+' is read.
9310 Handle any notification that arrives in the mean time. */
9311 while (1)
9312 {
9313 ch = readchar (remote_timeout);
9314
9315 if (remote_debug)
9316 {
9317 switch (ch)
9318 {
9319 case '+':
9320 case '-':
9321 case SERIAL_TIMEOUT:
9322 case '$':
9323 case '%':
9324 if (started_error_output)
9325 {
9326 putchar_unfiltered ('\n');
9327 started_error_output = 0;
9328 }
9329 }
9330 }
9331
9332 switch (ch)
9333 {
9334 case '+':
9335 if (remote_debug)
9336 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9337 return 1;
9338 case '-':
9339 if (remote_debug)
9340 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9341 /* FALLTHROUGH */
9342 case SERIAL_TIMEOUT:
9343 tcount++;
9344 if (tcount > 3)
9345 return 0;
9346 break; /* Retransmit buffer. */
9347 case '$':
9348 {
9349 if (remote_debug)
9350 fprintf_unfiltered (gdb_stdlog,
9351 "Packet instead of Ack, ignoring it\n");
9352 /* It's probably an old response sent because an ACK
9353 was lost. Gobble up the packet and ack it so it
9354 doesn't get retransmitted when we resend this
9355 packet. */
9356 skip_frame ();
9357 remote_serial_write ("+", 1);
9358 continue; /* Now, go look for +. */
9359 }
9360
9361 case '%':
9362 {
9363 int val;
9364
9365 /* If we got a notification, handle it, and go back to looking
9366 for an ack. */
9367 /* We've found the start of a notification. Now
9368 collect the data. */
9369 val = read_frame (&rs->buf);
9370 if (val >= 0)
9371 {
9372 if (remote_debug)
9373 {
9374 std::string str = escape_buffer (rs->buf.data (), val);
9375
9376 fprintf_unfiltered (gdb_stdlog,
9377 " Notification received: %s\n",
9378 str.c_str ());
9379 }
9380 handle_notification (rs->notif_state, rs->buf.data ());
9381 /* We're in sync now, rewait for the ack. */
9382 tcount = 0;
9383 }
9384 else
9385 {
9386 if (remote_debug)
9387 {
9388 if (!started_error_output)
9389 {
9390 started_error_output = 1;
9391 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9392 }
9393 fputc_unfiltered (ch & 0177, gdb_stdlog);
9394 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9395 }
9396 }
9397 continue;
9398 }
9399 /* fall-through */
9400 default:
9401 if (remote_debug)
9402 {
9403 if (!started_error_output)
9404 {
9405 started_error_output = 1;
9406 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9407 }
9408 fputc_unfiltered (ch & 0177, gdb_stdlog);
9409 }
9410 continue;
9411 }
9412 break; /* Here to retransmit. */
9413 }
9414
9415 #if 0
9416 /* This is wrong. If doing a long backtrace, the user should be
9417 able to get out next time we call QUIT, without anything as
9418 violent as interrupt_query. If we want to provide a way out of
9419 here without getting to the next QUIT, it should be based on
9420 hitting ^C twice as in remote_wait. */
9421 if (quit_flag)
9422 {
9423 quit_flag = 0;
9424 interrupt_query ();
9425 }
9426 #endif
9427 }
9428
9429 return 0;
9430 }
9431
9432 /* Come here after finding the start of a frame when we expected an
9433 ack. Do our best to discard the rest of this packet. */
9434
9435 void
9436 remote_target::skip_frame ()
9437 {
9438 int c;
9439
9440 while (1)
9441 {
9442 c = readchar (remote_timeout);
9443 switch (c)
9444 {
9445 case SERIAL_TIMEOUT:
9446 /* Nothing we can do. */
9447 return;
9448 case '#':
9449 /* Discard the two bytes of checksum and stop. */
9450 c = readchar (remote_timeout);
9451 if (c >= 0)
9452 c = readchar (remote_timeout);
9453
9454 return;
9455 case '*': /* Run length encoding. */
9456 /* Discard the repeat count. */
9457 c = readchar (remote_timeout);
9458 if (c < 0)
9459 return;
9460 break;
9461 default:
9462 /* A regular character. */
9463 break;
9464 }
9465 }
9466 }
9467
9468 /* Come here after finding the start of the frame. Collect the rest
9469 into *BUF, verifying the checksum, length, and handling run-length
9470 compression. NUL terminate the buffer. If there is not enough room,
9471 expand *BUF.
9472
9473 Returns -1 on error, number of characters in buffer (ignoring the
9474 trailing NULL) on success. (could be extended to return one of the
9475 SERIAL status indications). */
9476
9477 long
9478 remote_target::read_frame (gdb::char_vector *buf_p)
9479 {
9480 unsigned char csum;
9481 long bc;
9482 int c;
9483 char *buf = buf_p->data ();
9484 struct remote_state *rs = get_remote_state ();
9485
9486 csum = 0;
9487 bc = 0;
9488
9489 while (1)
9490 {
9491 c = readchar (remote_timeout);
9492 switch (c)
9493 {
9494 case SERIAL_TIMEOUT:
9495 if (remote_debug)
9496 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9497 return -1;
9498 case '$':
9499 if (remote_debug)
9500 fputs_filtered ("Saw new packet start in middle of old one\n",
9501 gdb_stdlog);
9502 return -1; /* Start a new packet, count retries. */
9503 case '#':
9504 {
9505 unsigned char pktcsum;
9506 int check_0 = 0;
9507 int check_1 = 0;
9508
9509 buf[bc] = '\0';
9510
9511 check_0 = readchar (remote_timeout);
9512 if (check_0 >= 0)
9513 check_1 = readchar (remote_timeout);
9514
9515 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9516 {
9517 if (remote_debug)
9518 fputs_filtered ("Timeout in checksum, retrying\n",
9519 gdb_stdlog);
9520 return -1;
9521 }
9522 else if (check_0 < 0 || check_1 < 0)
9523 {
9524 if (remote_debug)
9525 fputs_filtered ("Communication error in checksum\n",
9526 gdb_stdlog);
9527 return -1;
9528 }
9529
9530 /* Don't recompute the checksum; with no ack packets we
9531 don't have any way to indicate a packet retransmission
9532 is necessary. */
9533 if (rs->noack_mode)
9534 return bc;
9535
9536 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9537 if (csum == pktcsum)
9538 return bc;
9539
9540 if (remote_debug)
9541 {
9542 std::string str = escape_buffer (buf, bc);
9543
9544 fprintf_unfiltered (gdb_stdlog,
9545 "Bad checksum, sentsum=0x%x, "
9546 "csum=0x%x, buf=%s\n",
9547 pktcsum, csum, str.c_str ());
9548 }
9549 /* Number of characters in buffer ignoring trailing
9550 NULL. */
9551 return -1;
9552 }
9553 case '*': /* Run length encoding. */
9554 {
9555 int repeat;
9556
9557 csum += c;
9558 c = readchar (remote_timeout);
9559 csum += c;
9560 repeat = c - ' ' + 3; /* Compute repeat count. */
9561
9562 /* The character before ``*'' is repeated. */
9563
9564 if (repeat > 0 && repeat <= 255 && bc > 0)
9565 {
9566 if (bc + repeat - 1 >= buf_p->size () - 1)
9567 {
9568 /* Make some more room in the buffer. */
9569 buf_p->resize (buf_p->size () + repeat);
9570 buf = buf_p->data ();
9571 }
9572
9573 memset (&buf[bc], buf[bc - 1], repeat);
9574 bc += repeat;
9575 continue;
9576 }
9577
9578 buf[bc] = '\0';
9579 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9580 return -1;
9581 }
9582 default:
9583 if (bc >= buf_p->size () - 1)
9584 {
9585 /* Make some more room in the buffer. */
9586 buf_p->resize (buf_p->size () * 2);
9587 buf = buf_p->data ();
9588 }
9589
9590 buf[bc++] = c;
9591 csum += c;
9592 continue;
9593 }
9594 }
9595 }
9596
9597 /* Set this to the maximum number of seconds to wait instead of waiting forever
9598 in target_wait(). If this timer times out, then it generates an error and
9599 the command is aborted. This replaces most of the need for timeouts in the
9600 GDB test suite, and makes it possible to distinguish between a hung target
9601 and one with slow communications. */
9602
9603 static int watchdog = 0;
9604 static void
9605 show_watchdog (struct ui_file *file, int from_tty,
9606 struct cmd_list_element *c, const char *value)
9607 {
9608 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9609 }
9610
9611 /* Read a packet from the remote machine, with error checking, and
9612 store it in *BUF. Resize *BUF if necessary to hold the result. If
9613 FOREVER, wait forever rather than timing out; this is used (in
9614 synchronous mode) to wait for a target that is is executing user
9615 code to stop. */
9616 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9617 don't have to change all the calls to getpkt to deal with the
9618 return value, because at the moment I don't know what the right
9619 thing to do it for those. */
9620
9621 void
9622 remote_target::getpkt (gdb::char_vector *buf, int forever)
9623 {
9624 getpkt_sane (buf, forever);
9625 }
9626
9627
9628 /* Read a packet from the remote machine, with error checking, and
9629 store it in *BUF. Resize *BUF if necessary to hold the result. If
9630 FOREVER, wait forever rather than timing out; this is used (in
9631 synchronous mode) to wait for a target that is is executing user
9632 code to stop. If FOREVER == 0, this function is allowed to time
9633 out gracefully and return an indication of this to the caller.
9634 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9635 consider receiving a notification enough reason to return to the
9636 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9637 holds a notification or not (a regular packet). */
9638
9639 int
9640 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9641 int forever, int expecting_notif,
9642 int *is_notif)
9643 {
9644 struct remote_state *rs = get_remote_state ();
9645 int c;
9646 int tries;
9647 int timeout;
9648 int val = -1;
9649
9650 /* We're reading a new response. Make sure we don't look at a
9651 previously cached response. */
9652 rs->cached_wait_status = 0;
9653
9654 strcpy (buf->data (), "timeout");
9655
9656 if (forever)
9657 timeout = watchdog > 0 ? watchdog : -1;
9658 else if (expecting_notif)
9659 timeout = 0; /* There should already be a char in the buffer. If
9660 not, bail out. */
9661 else
9662 timeout = remote_timeout;
9663
9664 #define MAX_TRIES 3
9665
9666 /* Process any number of notifications, and then return when
9667 we get a packet. */
9668 for (;;)
9669 {
9670 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9671 times. */
9672 for (tries = 1; tries <= MAX_TRIES; tries++)
9673 {
9674 /* This can loop forever if the remote side sends us
9675 characters continuously, but if it pauses, we'll get
9676 SERIAL_TIMEOUT from readchar because of timeout. Then
9677 we'll count that as a retry.
9678
9679 Note that even when forever is set, we will only wait
9680 forever prior to the start of a packet. After that, we
9681 expect characters to arrive at a brisk pace. They should
9682 show up within remote_timeout intervals. */
9683 do
9684 c = readchar (timeout);
9685 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9686
9687 if (c == SERIAL_TIMEOUT)
9688 {
9689 if (expecting_notif)
9690 return -1; /* Don't complain, it's normal to not get
9691 anything in this case. */
9692
9693 if (forever) /* Watchdog went off? Kill the target. */
9694 {
9695 remote_unpush_target (this);
9696 throw_error (TARGET_CLOSE_ERROR,
9697 _("Watchdog timeout has expired. "
9698 "Target detached."));
9699 }
9700 if (remote_debug)
9701 fputs_filtered ("Timed out.\n", gdb_stdlog);
9702 }
9703 else
9704 {
9705 /* We've found the start of a packet or notification.
9706 Now collect the data. */
9707 val = read_frame (buf);
9708 if (val >= 0)
9709 break;
9710 }
9711
9712 remote_serial_write ("-", 1);
9713 }
9714
9715 if (tries > MAX_TRIES)
9716 {
9717 /* We have tried hard enough, and just can't receive the
9718 packet/notification. Give up. */
9719 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9720
9721 /* Skip the ack char if we're in no-ack mode. */
9722 if (!rs->noack_mode)
9723 remote_serial_write ("+", 1);
9724 return -1;
9725 }
9726
9727 /* If we got an ordinary packet, return that to our caller. */
9728 if (c == '$')
9729 {
9730 if (remote_debug)
9731 {
9732 int max_chars;
9733
9734 if (remote_packet_max_chars < 0)
9735 max_chars = val;
9736 else
9737 max_chars = remote_packet_max_chars;
9738
9739 std::string str
9740 = escape_buffer (buf->data (),
9741 std::min (val, max_chars));
9742
9743 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9744 str.c_str ());
9745
9746 if (val > max_chars)
9747 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9748 val - max_chars);
9749
9750 fprintf_unfiltered (gdb_stdlog, "\n");
9751 }
9752
9753 /* Skip the ack char if we're in no-ack mode. */
9754 if (!rs->noack_mode)
9755 remote_serial_write ("+", 1);
9756 if (is_notif != NULL)
9757 *is_notif = 0;
9758 return val;
9759 }
9760
9761 /* If we got a notification, handle it, and go back to looking
9762 for a packet. */
9763 else
9764 {
9765 gdb_assert (c == '%');
9766
9767 if (remote_debug)
9768 {
9769 std::string str = escape_buffer (buf->data (), val);
9770
9771 fprintf_unfiltered (gdb_stdlog,
9772 " Notification received: %s\n",
9773 str.c_str ());
9774 }
9775 if (is_notif != NULL)
9776 *is_notif = 1;
9777
9778 handle_notification (rs->notif_state, buf->data ());
9779
9780 /* Notifications require no acknowledgement. */
9781
9782 if (expecting_notif)
9783 return val;
9784 }
9785 }
9786 }
9787
9788 int
9789 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9790 {
9791 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9792 }
9793
9794 int
9795 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9796 int *is_notif)
9797 {
9798 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9799 }
9800
9801 /* Kill any new fork children of process PID that haven't been
9802 processed by follow_fork. */
9803
9804 void
9805 remote_target::kill_new_fork_children (int pid)
9806 {
9807 remote_state *rs = get_remote_state ();
9808 struct notif_client *notif = &notif_client_stop;
9809
9810 /* Kill the fork child threads of any threads in process PID
9811 that are stopped at a fork event. */
9812 for (thread_info *thread : all_non_exited_threads (this))
9813 {
9814 struct target_waitstatus *ws = &thread->pending_follow;
9815
9816 if (is_pending_fork_parent (ws, pid, thread->ptid))
9817 {
9818 int child_pid = ws->value.related_pid.pid ();
9819 int res;
9820
9821 res = remote_vkill (child_pid);
9822 if (res != 0)
9823 error (_("Can't kill fork child process %d"), child_pid);
9824 }
9825 }
9826
9827 /* Check for any pending fork events (not reported or processed yet)
9828 in process PID and kill those fork child threads as well. */
9829 remote_notif_get_pending_events (notif);
9830 for (auto &event : rs->stop_reply_queue)
9831 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9832 {
9833 int child_pid = event->ws.value.related_pid.pid ();
9834 int res;
9835
9836 res = remote_vkill (child_pid);
9837 if (res != 0)
9838 error (_("Can't kill fork child process %d"), child_pid);
9839 }
9840 }
9841
9842 \f
9843 /* Target hook to kill the current inferior. */
9844
9845 void
9846 remote_target::kill ()
9847 {
9848 int res = -1;
9849 int pid = inferior_ptid.pid ();
9850 struct remote_state *rs = get_remote_state ();
9851
9852 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9853 {
9854 /* If we're stopped while forking and we haven't followed yet,
9855 kill the child task. We need to do this before killing the
9856 parent task because if this is a vfork then the parent will
9857 be sleeping. */
9858 kill_new_fork_children (pid);
9859
9860 res = remote_vkill (pid);
9861 if (res == 0)
9862 {
9863 target_mourn_inferior (inferior_ptid);
9864 return;
9865 }
9866 }
9867
9868 /* If we are in 'target remote' mode and we are killing the only
9869 inferior, then we will tell gdbserver to exit and unpush the
9870 target. */
9871 if (res == -1 && !remote_multi_process_p (rs)
9872 && number_of_live_inferiors (this) == 1)
9873 {
9874 remote_kill_k ();
9875
9876 /* We've killed the remote end, we get to mourn it. If we are
9877 not in extended mode, mourning the inferior also unpushes
9878 remote_ops from the target stack, which closes the remote
9879 connection. */
9880 target_mourn_inferior (inferior_ptid);
9881
9882 return;
9883 }
9884
9885 error (_("Can't kill process"));
9886 }
9887
9888 /* Send a kill request to the target using the 'vKill' packet. */
9889
9890 int
9891 remote_target::remote_vkill (int pid)
9892 {
9893 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9894 return -1;
9895
9896 remote_state *rs = get_remote_state ();
9897
9898 /* Tell the remote target to detach. */
9899 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9900 putpkt (rs->buf);
9901 getpkt (&rs->buf, 0);
9902
9903 switch (packet_ok (rs->buf,
9904 &remote_protocol_packets[PACKET_vKill]))
9905 {
9906 case PACKET_OK:
9907 return 0;
9908 case PACKET_ERROR:
9909 return 1;
9910 case PACKET_UNKNOWN:
9911 return -1;
9912 default:
9913 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9914 }
9915 }
9916
9917 /* Send a kill request to the target using the 'k' packet. */
9918
9919 void
9920 remote_target::remote_kill_k ()
9921 {
9922 /* Catch errors so the user can quit from gdb even when we
9923 aren't on speaking terms with the remote system. */
9924 try
9925 {
9926 putpkt ("k");
9927 }
9928 catch (const gdb_exception_error &ex)
9929 {
9930 if (ex.error == TARGET_CLOSE_ERROR)
9931 {
9932 /* If we got an (EOF) error that caused the target
9933 to go away, then we're done, that's what we wanted.
9934 "k" is susceptible to cause a premature EOF, given
9935 that the remote server isn't actually required to
9936 reply to "k", and it can happen that it doesn't
9937 even get to reply ACK to the "k". */
9938 return;
9939 }
9940
9941 /* Otherwise, something went wrong. We didn't actually kill
9942 the target. Just propagate the exception, and let the
9943 user or higher layers decide what to do. */
9944 throw;
9945 }
9946 }
9947
9948 void
9949 remote_target::mourn_inferior ()
9950 {
9951 struct remote_state *rs = get_remote_state ();
9952
9953 /* We're no longer interested in notification events of an inferior
9954 that exited or was killed/detached. */
9955 discard_pending_stop_replies (current_inferior ());
9956
9957 /* In 'target remote' mode with one inferior, we close the connection. */
9958 if (!rs->extended && number_of_live_inferiors (this) <= 1)
9959 {
9960 remote_unpush_target (this);
9961 return;
9962 }
9963
9964 /* In case we got here due to an error, but we're going to stay
9965 connected. */
9966 rs->waiting_for_stop_reply = 0;
9967
9968 /* If the current general thread belonged to the process we just
9969 detached from or has exited, the remote side current general
9970 thread becomes undefined. Considering a case like this:
9971
9972 - We just got here due to a detach.
9973 - The process that we're detaching from happens to immediately
9974 report a global breakpoint being hit in non-stop mode, in the
9975 same thread we had selected before.
9976 - GDB attaches to this process again.
9977 - This event happens to be the next event we handle.
9978
9979 GDB would consider that the current general thread didn't need to
9980 be set on the stub side (with Hg), since for all it knew,
9981 GENERAL_THREAD hadn't changed.
9982
9983 Notice that although in all-stop mode, the remote server always
9984 sets the current thread to the thread reporting the stop event,
9985 that doesn't happen in non-stop mode; in non-stop, the stub *must
9986 not* change the current thread when reporting a breakpoint hit,
9987 due to the decoupling of event reporting and event handling.
9988
9989 To keep things simple, we always invalidate our notion of the
9990 current thread. */
9991 record_currthread (rs, minus_one_ptid);
9992
9993 /* Call common code to mark the inferior as not running. */
9994 generic_mourn_inferior ();
9995 }
9996
9997 bool
9998 extended_remote_target::supports_disable_randomization ()
9999 {
10000 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10001 }
10002
10003 void
10004 remote_target::extended_remote_disable_randomization (int val)
10005 {
10006 struct remote_state *rs = get_remote_state ();
10007 char *reply;
10008
10009 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10010 "QDisableRandomization:%x", val);
10011 putpkt (rs->buf);
10012 reply = remote_get_noisy_reply ();
10013 if (*reply == '\0')
10014 error (_("Target does not support QDisableRandomization."));
10015 if (strcmp (reply, "OK") != 0)
10016 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10017 }
10018
10019 int
10020 remote_target::extended_remote_run (const std::string &args)
10021 {
10022 struct remote_state *rs = get_remote_state ();
10023 int len;
10024 const char *remote_exec_file = get_remote_exec_file ();
10025
10026 /* If the user has disabled vRun support, or we have detected that
10027 support is not available, do not try it. */
10028 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10029 return -1;
10030
10031 strcpy (rs->buf.data (), "vRun;");
10032 len = strlen (rs->buf.data ());
10033
10034 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10035 error (_("Remote file name too long for run packet"));
10036 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10037 strlen (remote_exec_file));
10038
10039 if (!args.empty ())
10040 {
10041 int i;
10042
10043 gdb_argv argv (args.c_str ());
10044 for (i = 0; argv[i] != NULL; i++)
10045 {
10046 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10047 error (_("Argument list too long for run packet"));
10048 rs->buf[len++] = ';';
10049 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10050 strlen (argv[i]));
10051 }
10052 }
10053
10054 rs->buf[len++] = '\0';
10055
10056 putpkt (rs->buf);
10057 getpkt (&rs->buf, 0);
10058
10059 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10060 {
10061 case PACKET_OK:
10062 /* We have a wait response. All is well. */
10063 return 0;
10064 case PACKET_UNKNOWN:
10065 return -1;
10066 case PACKET_ERROR:
10067 if (remote_exec_file[0] == '\0')
10068 error (_("Running the default executable on the remote target failed; "
10069 "try \"set remote exec-file\"?"));
10070 else
10071 error (_("Running \"%s\" on the remote target failed"),
10072 remote_exec_file);
10073 default:
10074 gdb_assert_not_reached (_("bad switch"));
10075 }
10076 }
10077
10078 /* Helper function to send set/unset environment packets. ACTION is
10079 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10080 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10081 sent. */
10082
10083 void
10084 remote_target::send_environment_packet (const char *action,
10085 const char *packet,
10086 const char *value)
10087 {
10088 remote_state *rs = get_remote_state ();
10089
10090 /* Convert the environment variable to an hex string, which
10091 is the best format to be transmitted over the wire. */
10092 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10093 strlen (value));
10094
10095 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10096 "%s:%s", packet, encoded_value.c_str ());
10097
10098 putpkt (rs->buf);
10099 getpkt (&rs->buf, 0);
10100 if (strcmp (rs->buf.data (), "OK") != 0)
10101 warning (_("Unable to %s environment variable '%s' on remote."),
10102 action, value);
10103 }
10104
10105 /* Helper function to handle the QEnvironment* packets. */
10106
10107 void
10108 remote_target::extended_remote_environment_support ()
10109 {
10110 remote_state *rs = get_remote_state ();
10111
10112 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10113 {
10114 putpkt ("QEnvironmentReset");
10115 getpkt (&rs->buf, 0);
10116 if (strcmp (rs->buf.data (), "OK") != 0)
10117 warning (_("Unable to reset environment on remote."));
10118 }
10119
10120 gdb_environ *e = &current_inferior ()->environment;
10121
10122 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10123 for (const std::string &el : e->user_set_env ())
10124 send_environment_packet ("set", "QEnvironmentHexEncoded",
10125 el.c_str ());
10126
10127 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10128 for (const std::string &el : e->user_unset_env ())
10129 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10130 }
10131
10132 /* Helper function to set the current working directory for the
10133 inferior in the remote target. */
10134
10135 void
10136 remote_target::extended_remote_set_inferior_cwd ()
10137 {
10138 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10139 {
10140 const char *inferior_cwd = get_inferior_cwd ();
10141 remote_state *rs = get_remote_state ();
10142
10143 if (inferior_cwd != NULL)
10144 {
10145 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10146 strlen (inferior_cwd));
10147
10148 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10149 "QSetWorkingDir:%s", hexpath.c_str ());
10150 }
10151 else
10152 {
10153 /* An empty inferior_cwd means that the user wants us to
10154 reset the remote server's inferior's cwd. */
10155 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10156 "QSetWorkingDir:");
10157 }
10158
10159 putpkt (rs->buf);
10160 getpkt (&rs->buf, 0);
10161 if (packet_ok (rs->buf,
10162 &remote_protocol_packets[PACKET_QSetWorkingDir])
10163 != PACKET_OK)
10164 error (_("\
10165 Remote replied unexpectedly while setting the inferior's working\n\
10166 directory: %s"),
10167 rs->buf.data ());
10168
10169 }
10170 }
10171
10172 /* In the extended protocol we want to be able to do things like
10173 "run" and have them basically work as expected. So we need
10174 a special create_inferior function. We support changing the
10175 executable file and the command line arguments, but not the
10176 environment. */
10177
10178 void
10179 extended_remote_target::create_inferior (const char *exec_file,
10180 const std::string &args,
10181 char **env, int from_tty)
10182 {
10183 int run_worked;
10184 char *stop_reply;
10185 struct remote_state *rs = get_remote_state ();
10186 const char *remote_exec_file = get_remote_exec_file ();
10187
10188 /* If running asynchronously, register the target file descriptor
10189 with the event loop. */
10190 if (target_can_async_p ())
10191 target_async (1);
10192
10193 /* Disable address space randomization if requested (and supported). */
10194 if (supports_disable_randomization ())
10195 extended_remote_disable_randomization (disable_randomization);
10196
10197 /* If startup-with-shell is on, we inform gdbserver to start the
10198 remote inferior using a shell. */
10199 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10200 {
10201 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10202 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10203 putpkt (rs->buf);
10204 getpkt (&rs->buf, 0);
10205 if (strcmp (rs->buf.data (), "OK") != 0)
10206 error (_("\
10207 Remote replied unexpectedly while setting startup-with-shell: %s"),
10208 rs->buf.data ());
10209 }
10210
10211 extended_remote_environment_support ();
10212
10213 extended_remote_set_inferior_cwd ();
10214
10215 /* Now restart the remote server. */
10216 run_worked = extended_remote_run (args) != -1;
10217 if (!run_worked)
10218 {
10219 /* vRun was not supported. Fail if we need it to do what the
10220 user requested. */
10221 if (remote_exec_file[0])
10222 error (_("Remote target does not support \"set remote exec-file\""));
10223 if (!args.empty ())
10224 error (_("Remote target does not support \"set args\" or run ARGS"));
10225
10226 /* Fall back to "R". */
10227 extended_remote_restart ();
10228 }
10229
10230 /* vRun's success return is a stop reply. */
10231 stop_reply = run_worked ? rs->buf.data () : NULL;
10232 add_current_inferior_and_thread (stop_reply);
10233
10234 /* Get updated offsets, if the stub uses qOffsets. */
10235 get_offsets ();
10236 }
10237 \f
10238
10239 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10240 the list of conditions (in agent expression bytecode format), if any, the
10241 target needs to evaluate. The output is placed into the packet buffer
10242 started from BUF and ended at BUF_END. */
10243
10244 static int
10245 remote_add_target_side_condition (struct gdbarch *gdbarch,
10246 struct bp_target_info *bp_tgt, char *buf,
10247 char *buf_end)
10248 {
10249 if (bp_tgt->conditions.empty ())
10250 return 0;
10251
10252 buf += strlen (buf);
10253 xsnprintf (buf, buf_end - buf, "%s", ";");
10254 buf++;
10255
10256 /* Send conditions to the target. */
10257 for (agent_expr *aexpr : bp_tgt->conditions)
10258 {
10259 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10260 buf += strlen (buf);
10261 for (int i = 0; i < aexpr->len; ++i)
10262 buf = pack_hex_byte (buf, aexpr->buf[i]);
10263 *buf = '\0';
10264 }
10265 return 0;
10266 }
10267
10268 static void
10269 remote_add_target_side_commands (struct gdbarch *gdbarch,
10270 struct bp_target_info *bp_tgt, char *buf)
10271 {
10272 if (bp_tgt->tcommands.empty ())
10273 return;
10274
10275 buf += strlen (buf);
10276
10277 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10278 buf += strlen (buf);
10279
10280 /* Concatenate all the agent expressions that are commands into the
10281 cmds parameter. */
10282 for (agent_expr *aexpr : bp_tgt->tcommands)
10283 {
10284 sprintf (buf, "X%x,", aexpr->len);
10285 buf += strlen (buf);
10286 for (int i = 0; i < aexpr->len; ++i)
10287 buf = pack_hex_byte (buf, aexpr->buf[i]);
10288 *buf = '\0';
10289 }
10290 }
10291
10292 /* Insert a breakpoint. On targets that have software breakpoint
10293 support, we ask the remote target to do the work; on targets
10294 which don't, we insert a traditional memory breakpoint. */
10295
10296 int
10297 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10298 struct bp_target_info *bp_tgt)
10299 {
10300 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10301 If it succeeds, then set the support to PACKET_ENABLE. If it
10302 fails, and the user has explicitly requested the Z support then
10303 report an error, otherwise, mark it disabled and go on. */
10304
10305 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10306 {
10307 CORE_ADDR addr = bp_tgt->reqstd_address;
10308 struct remote_state *rs;
10309 char *p, *endbuf;
10310
10311 /* Make sure the remote is pointing at the right process, if
10312 necessary. */
10313 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10314 set_general_process ();
10315
10316 rs = get_remote_state ();
10317 p = rs->buf.data ();
10318 endbuf = p + get_remote_packet_size ();
10319
10320 *(p++) = 'Z';
10321 *(p++) = '0';
10322 *(p++) = ',';
10323 addr = (ULONGEST) remote_address_masked (addr);
10324 p += hexnumstr (p, addr);
10325 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10326
10327 if (supports_evaluation_of_breakpoint_conditions ())
10328 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10329
10330 if (can_run_breakpoint_commands ())
10331 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10332
10333 putpkt (rs->buf);
10334 getpkt (&rs->buf, 0);
10335
10336 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10337 {
10338 case PACKET_ERROR:
10339 return -1;
10340 case PACKET_OK:
10341 return 0;
10342 case PACKET_UNKNOWN:
10343 break;
10344 }
10345 }
10346
10347 /* If this breakpoint has target-side commands but this stub doesn't
10348 support Z0 packets, throw error. */
10349 if (!bp_tgt->tcommands.empty ())
10350 throw_error (NOT_SUPPORTED_ERROR, _("\
10351 Target doesn't support breakpoints that have target side commands."));
10352
10353 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10354 }
10355
10356 int
10357 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10358 struct bp_target_info *bp_tgt,
10359 enum remove_bp_reason reason)
10360 {
10361 CORE_ADDR addr = bp_tgt->placed_address;
10362 struct remote_state *rs = get_remote_state ();
10363
10364 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10365 {
10366 char *p = rs->buf.data ();
10367 char *endbuf = p + get_remote_packet_size ();
10368
10369 /* Make sure the remote is pointing at the right process, if
10370 necessary. */
10371 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10372 set_general_process ();
10373
10374 *(p++) = 'z';
10375 *(p++) = '0';
10376 *(p++) = ',';
10377
10378 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10379 p += hexnumstr (p, addr);
10380 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10381
10382 putpkt (rs->buf);
10383 getpkt (&rs->buf, 0);
10384
10385 return (rs->buf[0] == 'E');
10386 }
10387
10388 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10389 }
10390
10391 static enum Z_packet_type
10392 watchpoint_to_Z_packet (int type)
10393 {
10394 switch (type)
10395 {
10396 case hw_write:
10397 return Z_PACKET_WRITE_WP;
10398 break;
10399 case hw_read:
10400 return Z_PACKET_READ_WP;
10401 break;
10402 case hw_access:
10403 return Z_PACKET_ACCESS_WP;
10404 break;
10405 default:
10406 internal_error (__FILE__, __LINE__,
10407 _("hw_bp_to_z: bad watchpoint type %d"), type);
10408 }
10409 }
10410
10411 int
10412 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10413 enum target_hw_bp_type type, struct expression *cond)
10414 {
10415 struct remote_state *rs = get_remote_state ();
10416 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10417 char *p;
10418 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10419
10420 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10421 return 1;
10422
10423 /* Make sure the remote is pointing at the right process, if
10424 necessary. */
10425 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10426 set_general_process ();
10427
10428 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10429 p = strchr (rs->buf.data (), '\0');
10430 addr = remote_address_masked (addr);
10431 p += hexnumstr (p, (ULONGEST) addr);
10432 xsnprintf (p, endbuf - p, ",%x", len);
10433
10434 putpkt (rs->buf);
10435 getpkt (&rs->buf, 0);
10436
10437 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10438 {
10439 case PACKET_ERROR:
10440 return -1;
10441 case PACKET_UNKNOWN:
10442 return 1;
10443 case PACKET_OK:
10444 return 0;
10445 }
10446 internal_error (__FILE__, __LINE__,
10447 _("remote_insert_watchpoint: reached end of function"));
10448 }
10449
10450 bool
10451 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10452 CORE_ADDR start, int length)
10453 {
10454 CORE_ADDR diff = remote_address_masked (addr - start);
10455
10456 return diff < length;
10457 }
10458
10459
10460 int
10461 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10462 enum target_hw_bp_type type, struct expression *cond)
10463 {
10464 struct remote_state *rs = get_remote_state ();
10465 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10466 char *p;
10467 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10468
10469 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10470 return -1;
10471
10472 /* Make sure the remote is pointing at the right process, if
10473 necessary. */
10474 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10475 set_general_process ();
10476
10477 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10478 p = strchr (rs->buf.data (), '\0');
10479 addr = remote_address_masked (addr);
10480 p += hexnumstr (p, (ULONGEST) addr);
10481 xsnprintf (p, endbuf - p, ",%x", len);
10482 putpkt (rs->buf);
10483 getpkt (&rs->buf, 0);
10484
10485 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10486 {
10487 case PACKET_ERROR:
10488 case PACKET_UNKNOWN:
10489 return -1;
10490 case PACKET_OK:
10491 return 0;
10492 }
10493 internal_error (__FILE__, __LINE__,
10494 _("remote_remove_watchpoint: reached end of function"));
10495 }
10496
10497
10498 static int remote_hw_watchpoint_limit = -1;
10499 static int remote_hw_watchpoint_length_limit = -1;
10500 static int remote_hw_breakpoint_limit = -1;
10501
10502 int
10503 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10504 {
10505 if (remote_hw_watchpoint_length_limit == 0)
10506 return 0;
10507 else if (remote_hw_watchpoint_length_limit < 0)
10508 return 1;
10509 else if (len <= remote_hw_watchpoint_length_limit)
10510 return 1;
10511 else
10512 return 0;
10513 }
10514
10515 int
10516 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10517 {
10518 if (type == bp_hardware_breakpoint)
10519 {
10520 if (remote_hw_breakpoint_limit == 0)
10521 return 0;
10522 else if (remote_hw_breakpoint_limit < 0)
10523 return 1;
10524 else if (cnt <= remote_hw_breakpoint_limit)
10525 return 1;
10526 }
10527 else
10528 {
10529 if (remote_hw_watchpoint_limit == 0)
10530 return 0;
10531 else if (remote_hw_watchpoint_limit < 0)
10532 return 1;
10533 else if (ot)
10534 return -1;
10535 else if (cnt <= remote_hw_watchpoint_limit)
10536 return 1;
10537 }
10538 return -1;
10539 }
10540
10541 /* The to_stopped_by_sw_breakpoint method of target remote. */
10542
10543 bool
10544 remote_target::stopped_by_sw_breakpoint ()
10545 {
10546 struct thread_info *thread = inferior_thread ();
10547
10548 return (thread->priv != NULL
10549 && (get_remote_thread_info (thread)->stop_reason
10550 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10551 }
10552
10553 /* The to_supports_stopped_by_sw_breakpoint method of target
10554 remote. */
10555
10556 bool
10557 remote_target::supports_stopped_by_sw_breakpoint ()
10558 {
10559 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10560 }
10561
10562 /* The to_stopped_by_hw_breakpoint method of target remote. */
10563
10564 bool
10565 remote_target::stopped_by_hw_breakpoint ()
10566 {
10567 struct thread_info *thread = inferior_thread ();
10568
10569 return (thread->priv != NULL
10570 && (get_remote_thread_info (thread)->stop_reason
10571 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10572 }
10573
10574 /* The to_supports_stopped_by_hw_breakpoint method of target
10575 remote. */
10576
10577 bool
10578 remote_target::supports_stopped_by_hw_breakpoint ()
10579 {
10580 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10581 }
10582
10583 bool
10584 remote_target::stopped_by_watchpoint ()
10585 {
10586 struct thread_info *thread = inferior_thread ();
10587
10588 return (thread->priv != NULL
10589 && (get_remote_thread_info (thread)->stop_reason
10590 == TARGET_STOPPED_BY_WATCHPOINT));
10591 }
10592
10593 bool
10594 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10595 {
10596 struct thread_info *thread = inferior_thread ();
10597
10598 if (thread->priv != NULL
10599 && (get_remote_thread_info (thread)->stop_reason
10600 == TARGET_STOPPED_BY_WATCHPOINT))
10601 {
10602 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10603 return true;
10604 }
10605
10606 return false;
10607 }
10608
10609
10610 int
10611 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10612 struct bp_target_info *bp_tgt)
10613 {
10614 CORE_ADDR addr = bp_tgt->reqstd_address;
10615 struct remote_state *rs;
10616 char *p, *endbuf;
10617 char *message;
10618
10619 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10620 return -1;
10621
10622 /* Make sure the remote is pointing at the right process, if
10623 necessary. */
10624 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10625 set_general_process ();
10626
10627 rs = get_remote_state ();
10628 p = rs->buf.data ();
10629 endbuf = p + get_remote_packet_size ();
10630
10631 *(p++) = 'Z';
10632 *(p++) = '1';
10633 *(p++) = ',';
10634
10635 addr = remote_address_masked (addr);
10636 p += hexnumstr (p, (ULONGEST) addr);
10637 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10638
10639 if (supports_evaluation_of_breakpoint_conditions ())
10640 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10641
10642 if (can_run_breakpoint_commands ())
10643 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10644
10645 putpkt (rs->buf);
10646 getpkt (&rs->buf, 0);
10647
10648 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10649 {
10650 case PACKET_ERROR:
10651 if (rs->buf[1] == '.')
10652 {
10653 message = strchr (&rs->buf[2], '.');
10654 if (message)
10655 error (_("Remote failure reply: %s"), message + 1);
10656 }
10657 return -1;
10658 case PACKET_UNKNOWN:
10659 return -1;
10660 case PACKET_OK:
10661 return 0;
10662 }
10663 internal_error (__FILE__, __LINE__,
10664 _("remote_insert_hw_breakpoint: reached end of function"));
10665 }
10666
10667
10668 int
10669 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10670 struct bp_target_info *bp_tgt)
10671 {
10672 CORE_ADDR addr;
10673 struct remote_state *rs = get_remote_state ();
10674 char *p = rs->buf.data ();
10675 char *endbuf = p + get_remote_packet_size ();
10676
10677 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10678 return -1;
10679
10680 /* Make sure the remote is pointing at the right process, if
10681 necessary. */
10682 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10683 set_general_process ();
10684
10685 *(p++) = 'z';
10686 *(p++) = '1';
10687 *(p++) = ',';
10688
10689 addr = remote_address_masked (bp_tgt->placed_address);
10690 p += hexnumstr (p, (ULONGEST) addr);
10691 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10692
10693 putpkt (rs->buf);
10694 getpkt (&rs->buf, 0);
10695
10696 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10697 {
10698 case PACKET_ERROR:
10699 case PACKET_UNKNOWN:
10700 return -1;
10701 case PACKET_OK:
10702 return 0;
10703 }
10704 internal_error (__FILE__, __LINE__,
10705 _("remote_remove_hw_breakpoint: reached end of function"));
10706 }
10707
10708 /* Verify memory using the "qCRC:" request. */
10709
10710 int
10711 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10712 {
10713 struct remote_state *rs = get_remote_state ();
10714 unsigned long host_crc, target_crc;
10715 char *tmp;
10716
10717 /* It doesn't make sense to use qCRC if the remote target is
10718 connected but not running. */
10719 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10720 {
10721 enum packet_result result;
10722
10723 /* Make sure the remote is pointing at the right process. */
10724 set_general_process ();
10725
10726 /* FIXME: assumes lma can fit into long. */
10727 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10728 (long) lma, (long) size);
10729 putpkt (rs->buf);
10730
10731 /* Be clever; compute the host_crc before waiting for target
10732 reply. */
10733 host_crc = xcrc32 (data, size, 0xffffffff);
10734
10735 getpkt (&rs->buf, 0);
10736
10737 result = packet_ok (rs->buf,
10738 &remote_protocol_packets[PACKET_qCRC]);
10739 if (result == PACKET_ERROR)
10740 return -1;
10741 else if (result == PACKET_OK)
10742 {
10743 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10744 target_crc = target_crc * 16 + fromhex (*tmp);
10745
10746 return (host_crc == target_crc);
10747 }
10748 }
10749
10750 return simple_verify_memory (this, data, lma, size);
10751 }
10752
10753 /* compare-sections command
10754
10755 With no arguments, compares each loadable section in the exec bfd
10756 with the same memory range on the target, and reports mismatches.
10757 Useful for verifying the image on the target against the exec file. */
10758
10759 static void
10760 compare_sections_command (const char *args, int from_tty)
10761 {
10762 asection *s;
10763 const char *sectname;
10764 bfd_size_type size;
10765 bfd_vma lma;
10766 int matched = 0;
10767 int mismatched = 0;
10768 int res;
10769 int read_only = 0;
10770
10771 if (!exec_bfd)
10772 error (_("command cannot be used without an exec file"));
10773
10774 if (args != NULL && strcmp (args, "-r") == 0)
10775 {
10776 read_only = 1;
10777 args = NULL;
10778 }
10779
10780 for (s = exec_bfd->sections; s; s = s->next)
10781 {
10782 if (!(s->flags & SEC_LOAD))
10783 continue; /* Skip non-loadable section. */
10784
10785 if (read_only && (s->flags & SEC_READONLY) == 0)
10786 continue; /* Skip writeable sections */
10787
10788 size = bfd_section_size (s);
10789 if (size == 0)
10790 continue; /* Skip zero-length section. */
10791
10792 sectname = bfd_section_name (s);
10793 if (args && strcmp (args, sectname) != 0)
10794 continue; /* Not the section selected by user. */
10795
10796 matched = 1; /* Do this section. */
10797 lma = s->lma;
10798
10799 gdb::byte_vector sectdata (size);
10800 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10801
10802 res = target_verify_memory (sectdata.data (), lma, size);
10803
10804 if (res == -1)
10805 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10806 paddress (target_gdbarch (), lma),
10807 paddress (target_gdbarch (), lma + size));
10808
10809 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10810 paddress (target_gdbarch (), lma),
10811 paddress (target_gdbarch (), lma + size));
10812 if (res)
10813 printf_filtered ("matched.\n");
10814 else
10815 {
10816 printf_filtered ("MIS-MATCHED!\n");
10817 mismatched++;
10818 }
10819 }
10820 if (mismatched > 0)
10821 warning (_("One or more sections of the target image does not match\n\
10822 the loaded file\n"));
10823 if (args && !matched)
10824 printf_filtered (_("No loaded section named '%s'.\n"), args);
10825 }
10826
10827 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10828 into remote target. The number of bytes written to the remote
10829 target is returned, or -1 for error. */
10830
10831 target_xfer_status
10832 remote_target::remote_write_qxfer (const char *object_name,
10833 const char *annex, const gdb_byte *writebuf,
10834 ULONGEST offset, LONGEST len,
10835 ULONGEST *xfered_len,
10836 struct packet_config *packet)
10837 {
10838 int i, buf_len;
10839 ULONGEST n;
10840 struct remote_state *rs = get_remote_state ();
10841 int max_size = get_memory_write_packet_size ();
10842
10843 if (packet_config_support (packet) == PACKET_DISABLE)
10844 return TARGET_XFER_E_IO;
10845
10846 /* Insert header. */
10847 i = snprintf (rs->buf.data (), max_size,
10848 "qXfer:%s:write:%s:%s:",
10849 object_name, annex ? annex : "",
10850 phex_nz (offset, sizeof offset));
10851 max_size -= (i + 1);
10852
10853 /* Escape as much data as fits into rs->buf. */
10854 buf_len = remote_escape_output
10855 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10856
10857 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10858 || getpkt_sane (&rs->buf, 0) < 0
10859 || packet_ok (rs->buf, packet) != PACKET_OK)
10860 return TARGET_XFER_E_IO;
10861
10862 unpack_varlen_hex (rs->buf.data (), &n);
10863
10864 *xfered_len = n;
10865 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10866 }
10867
10868 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10869 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10870 number of bytes read is returned, or 0 for EOF, or -1 for error.
10871 The number of bytes read may be less than LEN without indicating an
10872 EOF. PACKET is checked and updated to indicate whether the remote
10873 target supports this object. */
10874
10875 target_xfer_status
10876 remote_target::remote_read_qxfer (const char *object_name,
10877 const char *annex,
10878 gdb_byte *readbuf, ULONGEST offset,
10879 LONGEST len,
10880 ULONGEST *xfered_len,
10881 struct packet_config *packet)
10882 {
10883 struct remote_state *rs = get_remote_state ();
10884 LONGEST i, n, packet_len;
10885
10886 if (packet_config_support (packet) == PACKET_DISABLE)
10887 return TARGET_XFER_E_IO;
10888
10889 /* Check whether we've cached an end-of-object packet that matches
10890 this request. */
10891 if (rs->finished_object)
10892 {
10893 if (strcmp (object_name, rs->finished_object) == 0
10894 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10895 && offset == rs->finished_offset)
10896 return TARGET_XFER_EOF;
10897
10898
10899 /* Otherwise, we're now reading something different. Discard
10900 the cache. */
10901 xfree (rs->finished_object);
10902 xfree (rs->finished_annex);
10903 rs->finished_object = NULL;
10904 rs->finished_annex = NULL;
10905 }
10906
10907 /* Request only enough to fit in a single packet. The actual data
10908 may not, since we don't know how much of it will need to be escaped;
10909 the target is free to respond with slightly less data. We subtract
10910 five to account for the response type and the protocol frame. */
10911 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10912 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10913 "qXfer:%s:read:%s:%s,%s",
10914 object_name, annex ? annex : "",
10915 phex_nz (offset, sizeof offset),
10916 phex_nz (n, sizeof n));
10917 i = putpkt (rs->buf);
10918 if (i < 0)
10919 return TARGET_XFER_E_IO;
10920
10921 rs->buf[0] = '\0';
10922 packet_len = getpkt_sane (&rs->buf, 0);
10923 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10924 return TARGET_XFER_E_IO;
10925
10926 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10927 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10928
10929 /* 'm' means there is (or at least might be) more data after this
10930 batch. That does not make sense unless there's at least one byte
10931 of data in this reply. */
10932 if (rs->buf[0] == 'm' && packet_len == 1)
10933 error (_("Remote qXfer reply contained no data."));
10934
10935 /* Got some data. */
10936 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10937 packet_len - 1, readbuf, n);
10938
10939 /* 'l' is an EOF marker, possibly including a final block of data,
10940 or possibly empty. If we have the final block of a non-empty
10941 object, record this fact to bypass a subsequent partial read. */
10942 if (rs->buf[0] == 'l' && offset + i > 0)
10943 {
10944 rs->finished_object = xstrdup (object_name);
10945 rs->finished_annex = xstrdup (annex ? annex : "");
10946 rs->finished_offset = offset + i;
10947 }
10948
10949 if (i == 0)
10950 return TARGET_XFER_EOF;
10951 else
10952 {
10953 *xfered_len = i;
10954 return TARGET_XFER_OK;
10955 }
10956 }
10957
10958 enum target_xfer_status
10959 remote_target::xfer_partial (enum target_object object,
10960 const char *annex, gdb_byte *readbuf,
10961 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10962 ULONGEST *xfered_len)
10963 {
10964 struct remote_state *rs;
10965 int i;
10966 char *p2;
10967 char query_type;
10968 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10969
10970 set_remote_traceframe ();
10971 set_general_thread (inferior_ptid);
10972
10973 rs = get_remote_state ();
10974
10975 /* Handle memory using the standard memory routines. */
10976 if (object == TARGET_OBJECT_MEMORY)
10977 {
10978 /* If the remote target is connected but not running, we should
10979 pass this request down to a lower stratum (e.g. the executable
10980 file). */
10981 if (!target_has_execution)
10982 return TARGET_XFER_EOF;
10983
10984 if (writebuf != NULL)
10985 return remote_write_bytes (offset, writebuf, len, unit_size,
10986 xfered_len);
10987 else
10988 return remote_read_bytes (offset, readbuf, len, unit_size,
10989 xfered_len);
10990 }
10991
10992 /* Handle extra signal info using qxfer packets. */
10993 if (object == TARGET_OBJECT_SIGNAL_INFO)
10994 {
10995 if (readbuf)
10996 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10997 xfered_len, &remote_protocol_packets
10998 [PACKET_qXfer_siginfo_read]);
10999 else
11000 return remote_write_qxfer ("siginfo", annex,
11001 writebuf, offset, len, xfered_len,
11002 &remote_protocol_packets
11003 [PACKET_qXfer_siginfo_write]);
11004 }
11005
11006 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11007 {
11008 if (readbuf)
11009 return remote_read_qxfer ("statictrace", annex,
11010 readbuf, offset, len, xfered_len,
11011 &remote_protocol_packets
11012 [PACKET_qXfer_statictrace_read]);
11013 else
11014 return TARGET_XFER_E_IO;
11015 }
11016
11017 /* Only handle flash writes. */
11018 if (writebuf != NULL)
11019 {
11020 switch (object)
11021 {
11022 case TARGET_OBJECT_FLASH:
11023 return remote_flash_write (offset, len, xfered_len,
11024 writebuf);
11025
11026 default:
11027 return TARGET_XFER_E_IO;
11028 }
11029 }
11030
11031 /* Map pre-existing objects onto letters. DO NOT do this for new
11032 objects!!! Instead specify new query packets. */
11033 switch (object)
11034 {
11035 case TARGET_OBJECT_AVR:
11036 query_type = 'R';
11037 break;
11038
11039 case TARGET_OBJECT_AUXV:
11040 gdb_assert (annex == NULL);
11041 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11042 xfered_len,
11043 &remote_protocol_packets[PACKET_qXfer_auxv]);
11044
11045 case TARGET_OBJECT_AVAILABLE_FEATURES:
11046 return remote_read_qxfer
11047 ("features", annex, readbuf, offset, len, xfered_len,
11048 &remote_protocol_packets[PACKET_qXfer_features]);
11049
11050 case TARGET_OBJECT_LIBRARIES:
11051 return remote_read_qxfer
11052 ("libraries", annex, readbuf, offset, len, xfered_len,
11053 &remote_protocol_packets[PACKET_qXfer_libraries]);
11054
11055 case TARGET_OBJECT_LIBRARIES_SVR4:
11056 return remote_read_qxfer
11057 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11058 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11059
11060 case TARGET_OBJECT_MEMORY_MAP:
11061 gdb_assert (annex == NULL);
11062 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11063 xfered_len,
11064 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11065
11066 case TARGET_OBJECT_OSDATA:
11067 /* Should only get here if we're connected. */
11068 gdb_assert (rs->remote_desc);
11069 return remote_read_qxfer
11070 ("osdata", annex, readbuf, offset, len, xfered_len,
11071 &remote_protocol_packets[PACKET_qXfer_osdata]);
11072
11073 case TARGET_OBJECT_THREADS:
11074 gdb_assert (annex == NULL);
11075 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11076 xfered_len,
11077 &remote_protocol_packets[PACKET_qXfer_threads]);
11078
11079 case TARGET_OBJECT_TRACEFRAME_INFO:
11080 gdb_assert (annex == NULL);
11081 return remote_read_qxfer
11082 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11083 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11084
11085 case TARGET_OBJECT_FDPIC:
11086 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11087 xfered_len,
11088 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11089
11090 case TARGET_OBJECT_OPENVMS_UIB:
11091 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11092 xfered_len,
11093 &remote_protocol_packets[PACKET_qXfer_uib]);
11094
11095 case TARGET_OBJECT_BTRACE:
11096 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11097 xfered_len,
11098 &remote_protocol_packets[PACKET_qXfer_btrace]);
11099
11100 case TARGET_OBJECT_BTRACE_CONF:
11101 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11102 len, xfered_len,
11103 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11104
11105 case TARGET_OBJECT_EXEC_FILE:
11106 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11107 len, xfered_len,
11108 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11109
11110 default:
11111 return TARGET_XFER_E_IO;
11112 }
11113
11114 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11115 large enough let the caller deal with it. */
11116 if (len < get_remote_packet_size ())
11117 return TARGET_XFER_E_IO;
11118 len = get_remote_packet_size ();
11119
11120 /* Except for querying the minimum buffer size, target must be open. */
11121 if (!rs->remote_desc)
11122 error (_("remote query is only available after target open"));
11123
11124 gdb_assert (annex != NULL);
11125 gdb_assert (readbuf != NULL);
11126
11127 p2 = rs->buf.data ();
11128 *p2++ = 'q';
11129 *p2++ = query_type;
11130
11131 /* We used one buffer char for the remote protocol q command and
11132 another for the query type. As the remote protocol encapsulation
11133 uses 4 chars plus one extra in case we are debugging
11134 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11135 string. */
11136 i = 0;
11137 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11138 {
11139 /* Bad caller may have sent forbidden characters. */
11140 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11141 *p2++ = annex[i];
11142 i++;
11143 }
11144 *p2 = '\0';
11145 gdb_assert (annex[i] == '\0');
11146
11147 i = putpkt (rs->buf);
11148 if (i < 0)
11149 return TARGET_XFER_E_IO;
11150
11151 getpkt (&rs->buf, 0);
11152 strcpy ((char *) readbuf, rs->buf.data ());
11153
11154 *xfered_len = strlen ((char *) readbuf);
11155 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11156 }
11157
11158 /* Implementation of to_get_memory_xfer_limit. */
11159
11160 ULONGEST
11161 remote_target::get_memory_xfer_limit ()
11162 {
11163 return get_memory_write_packet_size ();
11164 }
11165
11166 int
11167 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11168 const gdb_byte *pattern, ULONGEST pattern_len,
11169 CORE_ADDR *found_addrp)
11170 {
11171 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11172 struct remote_state *rs = get_remote_state ();
11173 int max_size = get_memory_write_packet_size ();
11174 struct packet_config *packet =
11175 &remote_protocol_packets[PACKET_qSearch_memory];
11176 /* Number of packet bytes used to encode the pattern;
11177 this could be more than PATTERN_LEN due to escape characters. */
11178 int escaped_pattern_len;
11179 /* Amount of pattern that was encodable in the packet. */
11180 int used_pattern_len;
11181 int i;
11182 int found;
11183 ULONGEST found_addr;
11184
11185 /* Don't go to the target if we don't have to. This is done before
11186 checking packet_config_support to avoid the possibility that a
11187 success for this edge case means the facility works in
11188 general. */
11189 if (pattern_len > search_space_len)
11190 return 0;
11191 if (pattern_len == 0)
11192 {
11193 *found_addrp = start_addr;
11194 return 1;
11195 }
11196
11197 /* If we already know the packet isn't supported, fall back to the simple
11198 way of searching memory. */
11199
11200 if (packet_config_support (packet) == PACKET_DISABLE)
11201 {
11202 /* Target doesn't provided special support, fall back and use the
11203 standard support (copy memory and do the search here). */
11204 return simple_search_memory (this, start_addr, search_space_len,
11205 pattern, pattern_len, found_addrp);
11206 }
11207
11208 /* Make sure the remote is pointing at the right process. */
11209 set_general_process ();
11210
11211 /* Insert header. */
11212 i = snprintf (rs->buf.data (), max_size,
11213 "qSearch:memory:%s;%s;",
11214 phex_nz (start_addr, addr_size),
11215 phex_nz (search_space_len, sizeof (search_space_len)));
11216 max_size -= (i + 1);
11217
11218 /* Escape as much data as fits into rs->buf. */
11219 escaped_pattern_len =
11220 remote_escape_output (pattern, pattern_len, 1,
11221 (gdb_byte *) rs->buf.data () + i,
11222 &used_pattern_len, max_size);
11223
11224 /* Bail if the pattern is too large. */
11225 if (used_pattern_len != pattern_len)
11226 error (_("Pattern is too large to transmit to remote target."));
11227
11228 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11229 || getpkt_sane (&rs->buf, 0) < 0
11230 || packet_ok (rs->buf, packet) != PACKET_OK)
11231 {
11232 /* The request may not have worked because the command is not
11233 supported. If so, fall back to the simple way. */
11234 if (packet_config_support (packet) == PACKET_DISABLE)
11235 {
11236 return simple_search_memory (this, start_addr, search_space_len,
11237 pattern, pattern_len, found_addrp);
11238 }
11239 return -1;
11240 }
11241
11242 if (rs->buf[0] == '0')
11243 found = 0;
11244 else if (rs->buf[0] == '1')
11245 {
11246 found = 1;
11247 if (rs->buf[1] != ',')
11248 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11249 unpack_varlen_hex (&rs->buf[2], &found_addr);
11250 *found_addrp = found_addr;
11251 }
11252 else
11253 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11254
11255 return found;
11256 }
11257
11258 void
11259 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11260 {
11261 struct remote_state *rs = get_remote_state ();
11262 char *p = rs->buf.data ();
11263
11264 if (!rs->remote_desc)
11265 error (_("remote rcmd is only available after target open"));
11266
11267 /* Send a NULL command across as an empty command. */
11268 if (command == NULL)
11269 command = "";
11270
11271 /* The query prefix. */
11272 strcpy (rs->buf.data (), "qRcmd,");
11273 p = strchr (rs->buf.data (), '\0');
11274
11275 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11276 > get_remote_packet_size ())
11277 error (_("\"monitor\" command ``%s'' is too long."), command);
11278
11279 /* Encode the actual command. */
11280 bin2hex ((const gdb_byte *) command, p, strlen (command));
11281
11282 if (putpkt (rs->buf) < 0)
11283 error (_("Communication problem with target."));
11284
11285 /* get/display the response */
11286 while (1)
11287 {
11288 char *buf;
11289
11290 /* XXX - see also remote_get_noisy_reply(). */
11291 QUIT; /* Allow user to bail out with ^C. */
11292 rs->buf[0] = '\0';
11293 if (getpkt_sane (&rs->buf, 0) == -1)
11294 {
11295 /* Timeout. Continue to (try to) read responses.
11296 This is better than stopping with an error, assuming the stub
11297 is still executing the (long) monitor command.
11298 If needed, the user can interrupt gdb using C-c, obtaining
11299 an effect similar to stop on timeout. */
11300 continue;
11301 }
11302 buf = rs->buf.data ();
11303 if (buf[0] == '\0')
11304 error (_("Target does not support this command."));
11305 if (buf[0] == 'O' && buf[1] != 'K')
11306 {
11307 remote_console_output (buf + 1); /* 'O' message from stub. */
11308 continue;
11309 }
11310 if (strcmp (buf, "OK") == 0)
11311 break;
11312 if (strlen (buf) == 3 && buf[0] == 'E'
11313 && isdigit (buf[1]) && isdigit (buf[2]))
11314 {
11315 error (_("Protocol error with Rcmd"));
11316 }
11317 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11318 {
11319 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11320
11321 fputc_unfiltered (c, outbuf);
11322 }
11323 break;
11324 }
11325 }
11326
11327 std::vector<mem_region>
11328 remote_target::memory_map ()
11329 {
11330 std::vector<mem_region> result;
11331 gdb::optional<gdb::char_vector> text
11332 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11333
11334 if (text)
11335 result = parse_memory_map (text->data ());
11336
11337 return result;
11338 }
11339
11340 static void
11341 packet_command (const char *args, int from_tty)
11342 {
11343 remote_target *remote = get_current_remote_target ();
11344
11345 if (remote == nullptr)
11346 error (_("command can only be used with remote target"));
11347
11348 remote->packet_command (args, from_tty);
11349 }
11350
11351 void
11352 remote_target::packet_command (const char *args, int from_tty)
11353 {
11354 if (!args)
11355 error (_("remote-packet command requires packet text as argument"));
11356
11357 puts_filtered ("sending: ");
11358 print_packet (args);
11359 puts_filtered ("\n");
11360 putpkt (args);
11361
11362 remote_state *rs = get_remote_state ();
11363
11364 getpkt (&rs->buf, 0);
11365 puts_filtered ("received: ");
11366 print_packet (rs->buf.data ());
11367 puts_filtered ("\n");
11368 }
11369
11370 #if 0
11371 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11372
11373 static void display_thread_info (struct gdb_ext_thread_info *info);
11374
11375 static void threadset_test_cmd (char *cmd, int tty);
11376
11377 static void threadalive_test (char *cmd, int tty);
11378
11379 static void threadlist_test_cmd (char *cmd, int tty);
11380
11381 int get_and_display_threadinfo (threadref *ref);
11382
11383 static void threadinfo_test_cmd (char *cmd, int tty);
11384
11385 static int thread_display_step (threadref *ref, void *context);
11386
11387 static void threadlist_update_test_cmd (char *cmd, int tty);
11388
11389 static void init_remote_threadtests (void);
11390
11391 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11392
11393 static void
11394 threadset_test_cmd (const char *cmd, int tty)
11395 {
11396 int sample_thread = SAMPLE_THREAD;
11397
11398 printf_filtered (_("Remote threadset test\n"));
11399 set_general_thread (sample_thread);
11400 }
11401
11402
11403 static void
11404 threadalive_test (const char *cmd, int tty)
11405 {
11406 int sample_thread = SAMPLE_THREAD;
11407 int pid = inferior_ptid.pid ();
11408 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11409
11410 if (remote_thread_alive (ptid))
11411 printf_filtered ("PASS: Thread alive test\n");
11412 else
11413 printf_filtered ("FAIL: Thread alive test\n");
11414 }
11415
11416 void output_threadid (char *title, threadref *ref);
11417
11418 void
11419 output_threadid (char *title, threadref *ref)
11420 {
11421 char hexid[20];
11422
11423 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11424 hexid[16] = 0;
11425 printf_filtered ("%s %s\n", title, (&hexid[0]));
11426 }
11427
11428 static void
11429 threadlist_test_cmd (const char *cmd, int tty)
11430 {
11431 int startflag = 1;
11432 threadref nextthread;
11433 int done, result_count;
11434 threadref threadlist[3];
11435
11436 printf_filtered ("Remote Threadlist test\n");
11437 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11438 &result_count, &threadlist[0]))
11439 printf_filtered ("FAIL: threadlist test\n");
11440 else
11441 {
11442 threadref *scan = threadlist;
11443 threadref *limit = scan + result_count;
11444
11445 while (scan < limit)
11446 output_threadid (" thread ", scan++);
11447 }
11448 }
11449
11450 void
11451 display_thread_info (struct gdb_ext_thread_info *info)
11452 {
11453 output_threadid ("Threadid: ", &info->threadid);
11454 printf_filtered ("Name: %s\n ", info->shortname);
11455 printf_filtered ("State: %s\n", info->display);
11456 printf_filtered ("other: %s\n\n", info->more_display);
11457 }
11458
11459 int
11460 get_and_display_threadinfo (threadref *ref)
11461 {
11462 int result;
11463 int set;
11464 struct gdb_ext_thread_info threadinfo;
11465
11466 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11467 | TAG_MOREDISPLAY | TAG_DISPLAY;
11468 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11469 display_thread_info (&threadinfo);
11470 return result;
11471 }
11472
11473 static void
11474 threadinfo_test_cmd (const char *cmd, int tty)
11475 {
11476 int athread = SAMPLE_THREAD;
11477 threadref thread;
11478 int set;
11479
11480 int_to_threadref (&thread, athread);
11481 printf_filtered ("Remote Threadinfo test\n");
11482 if (!get_and_display_threadinfo (&thread))
11483 printf_filtered ("FAIL cannot get thread info\n");
11484 }
11485
11486 static int
11487 thread_display_step (threadref *ref, void *context)
11488 {
11489 /* output_threadid(" threadstep ",ref); *//* simple test */
11490 return get_and_display_threadinfo (ref);
11491 }
11492
11493 static void
11494 threadlist_update_test_cmd (const char *cmd, int tty)
11495 {
11496 printf_filtered ("Remote Threadlist update test\n");
11497 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11498 }
11499
11500 static void
11501 init_remote_threadtests (void)
11502 {
11503 add_com ("tlist", class_obscure, threadlist_test_cmd,
11504 _("Fetch and print the remote list of "
11505 "thread identifiers, one pkt only."));
11506 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11507 _("Fetch and display info about one thread."));
11508 add_com ("tset", class_obscure, threadset_test_cmd,
11509 _("Test setting to a different thread."));
11510 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11511 _("Iterate through updating all remote thread info."));
11512 add_com ("talive", class_obscure, threadalive_test,
11513 _("Remote thread alive test."));
11514 }
11515
11516 #endif /* 0 */
11517
11518 /* Convert a thread ID to a string. */
11519
11520 std::string
11521 remote_target::pid_to_str (ptid_t ptid)
11522 {
11523 struct remote_state *rs = get_remote_state ();
11524
11525 if (ptid == null_ptid)
11526 return normal_pid_to_str (ptid);
11527 else if (ptid.is_pid ())
11528 {
11529 /* Printing an inferior target id. */
11530
11531 /* When multi-process extensions are off, there's no way in the
11532 remote protocol to know the remote process id, if there's any
11533 at all. There's one exception --- when we're connected with
11534 target extended-remote, and we manually attached to a process
11535 with "attach PID". We don't record anywhere a flag that
11536 allows us to distinguish that case from the case of
11537 connecting with extended-remote and the stub already being
11538 attached to a process, and reporting yes to qAttached, hence
11539 no smart special casing here. */
11540 if (!remote_multi_process_p (rs))
11541 return "Remote target";
11542
11543 return normal_pid_to_str (ptid);
11544 }
11545 else
11546 {
11547 if (magic_null_ptid == ptid)
11548 return "Thread <main>";
11549 else if (remote_multi_process_p (rs))
11550 if (ptid.lwp () == 0)
11551 return normal_pid_to_str (ptid);
11552 else
11553 return string_printf ("Thread %d.%ld",
11554 ptid.pid (), ptid.lwp ());
11555 else
11556 return string_printf ("Thread %ld", ptid.lwp ());
11557 }
11558 }
11559
11560 /* Get the address of the thread local variable in OBJFILE which is
11561 stored at OFFSET within the thread local storage for thread PTID. */
11562
11563 CORE_ADDR
11564 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11565 CORE_ADDR offset)
11566 {
11567 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11568 {
11569 struct remote_state *rs = get_remote_state ();
11570 char *p = rs->buf.data ();
11571 char *endp = p + get_remote_packet_size ();
11572 enum packet_result result;
11573
11574 strcpy (p, "qGetTLSAddr:");
11575 p += strlen (p);
11576 p = write_ptid (p, endp, ptid);
11577 *p++ = ',';
11578 p += hexnumstr (p, offset);
11579 *p++ = ',';
11580 p += hexnumstr (p, lm);
11581 *p++ = '\0';
11582
11583 putpkt (rs->buf);
11584 getpkt (&rs->buf, 0);
11585 result = packet_ok (rs->buf,
11586 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11587 if (result == PACKET_OK)
11588 {
11589 ULONGEST addr;
11590
11591 unpack_varlen_hex (rs->buf.data (), &addr);
11592 return addr;
11593 }
11594 else if (result == PACKET_UNKNOWN)
11595 throw_error (TLS_GENERIC_ERROR,
11596 _("Remote target doesn't support qGetTLSAddr packet"));
11597 else
11598 throw_error (TLS_GENERIC_ERROR,
11599 _("Remote target failed to process qGetTLSAddr request"));
11600 }
11601 else
11602 throw_error (TLS_GENERIC_ERROR,
11603 _("TLS not supported or disabled on this target"));
11604 /* Not reached. */
11605 return 0;
11606 }
11607
11608 /* Provide thread local base, i.e. Thread Information Block address.
11609 Returns 1 if ptid is found and thread_local_base is non zero. */
11610
11611 bool
11612 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11613 {
11614 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11615 {
11616 struct remote_state *rs = get_remote_state ();
11617 char *p = rs->buf.data ();
11618 char *endp = p + get_remote_packet_size ();
11619 enum packet_result result;
11620
11621 strcpy (p, "qGetTIBAddr:");
11622 p += strlen (p);
11623 p = write_ptid (p, endp, ptid);
11624 *p++ = '\0';
11625
11626 putpkt (rs->buf);
11627 getpkt (&rs->buf, 0);
11628 result = packet_ok (rs->buf,
11629 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11630 if (result == PACKET_OK)
11631 {
11632 ULONGEST val;
11633 unpack_varlen_hex (rs->buf.data (), &val);
11634 if (addr)
11635 *addr = (CORE_ADDR) val;
11636 return true;
11637 }
11638 else if (result == PACKET_UNKNOWN)
11639 error (_("Remote target doesn't support qGetTIBAddr packet"));
11640 else
11641 error (_("Remote target failed to process qGetTIBAddr request"));
11642 }
11643 else
11644 error (_("qGetTIBAddr not supported or disabled on this target"));
11645 /* Not reached. */
11646 return false;
11647 }
11648
11649 /* Support for inferring a target description based on the current
11650 architecture and the size of a 'g' packet. While the 'g' packet
11651 can have any size (since optional registers can be left off the
11652 end), some sizes are easily recognizable given knowledge of the
11653 approximate architecture. */
11654
11655 struct remote_g_packet_guess
11656 {
11657 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11658 : bytes (bytes_),
11659 tdesc (tdesc_)
11660 {
11661 }
11662
11663 int bytes;
11664 const struct target_desc *tdesc;
11665 };
11666
11667 struct remote_g_packet_data : public allocate_on_obstack
11668 {
11669 std::vector<remote_g_packet_guess> guesses;
11670 };
11671
11672 static struct gdbarch_data *remote_g_packet_data_handle;
11673
11674 static void *
11675 remote_g_packet_data_init (struct obstack *obstack)
11676 {
11677 return new (obstack) remote_g_packet_data;
11678 }
11679
11680 void
11681 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11682 const struct target_desc *tdesc)
11683 {
11684 struct remote_g_packet_data *data
11685 = ((struct remote_g_packet_data *)
11686 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11687
11688 gdb_assert (tdesc != NULL);
11689
11690 for (const remote_g_packet_guess &guess : data->guesses)
11691 if (guess.bytes == bytes)
11692 internal_error (__FILE__, __LINE__,
11693 _("Duplicate g packet description added for size %d"),
11694 bytes);
11695
11696 data->guesses.emplace_back (bytes, tdesc);
11697 }
11698
11699 /* Return true if remote_read_description would do anything on this target
11700 and architecture, false otherwise. */
11701
11702 static bool
11703 remote_read_description_p (struct target_ops *target)
11704 {
11705 struct remote_g_packet_data *data
11706 = ((struct remote_g_packet_data *)
11707 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11708
11709 return !data->guesses.empty ();
11710 }
11711
11712 const struct target_desc *
11713 remote_target::read_description ()
11714 {
11715 struct remote_g_packet_data *data
11716 = ((struct remote_g_packet_data *)
11717 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11718
11719 /* Do not try this during initial connection, when we do not know
11720 whether there is a running but stopped thread. */
11721 if (!target_has_execution || inferior_ptid == null_ptid)
11722 return beneath ()->read_description ();
11723
11724 if (!data->guesses.empty ())
11725 {
11726 int bytes = send_g_packet ();
11727
11728 for (const remote_g_packet_guess &guess : data->guesses)
11729 if (guess.bytes == bytes)
11730 return guess.tdesc;
11731
11732 /* We discard the g packet. A minor optimization would be to
11733 hold on to it, and fill the register cache once we have selected
11734 an architecture, but it's too tricky to do safely. */
11735 }
11736
11737 return beneath ()->read_description ();
11738 }
11739
11740 /* Remote file transfer support. This is host-initiated I/O, not
11741 target-initiated; for target-initiated, see remote-fileio.c. */
11742
11743 /* If *LEFT is at least the length of STRING, copy STRING to
11744 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11745 decrease *LEFT. Otherwise raise an error. */
11746
11747 static void
11748 remote_buffer_add_string (char **buffer, int *left, const char *string)
11749 {
11750 int len = strlen (string);
11751
11752 if (len > *left)
11753 error (_("Packet too long for target."));
11754
11755 memcpy (*buffer, string, len);
11756 *buffer += len;
11757 *left -= len;
11758
11759 /* NUL-terminate the buffer as a convenience, if there is
11760 room. */
11761 if (*left)
11762 **buffer = '\0';
11763 }
11764
11765 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11766 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11767 decrease *LEFT. Otherwise raise an error. */
11768
11769 static void
11770 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11771 int len)
11772 {
11773 if (2 * len > *left)
11774 error (_("Packet too long for target."));
11775
11776 bin2hex (bytes, *buffer, len);
11777 *buffer += 2 * len;
11778 *left -= 2 * len;
11779
11780 /* NUL-terminate the buffer as a convenience, if there is
11781 room. */
11782 if (*left)
11783 **buffer = '\0';
11784 }
11785
11786 /* If *LEFT is large enough, convert VALUE to hex and add it to
11787 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11788 decrease *LEFT. Otherwise raise an error. */
11789
11790 static void
11791 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11792 {
11793 int len = hexnumlen (value);
11794
11795 if (len > *left)
11796 error (_("Packet too long for target."));
11797
11798 hexnumstr (*buffer, value);
11799 *buffer += len;
11800 *left -= len;
11801
11802 /* NUL-terminate the buffer as a convenience, if there is
11803 room. */
11804 if (*left)
11805 **buffer = '\0';
11806 }
11807
11808 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11809 value, *REMOTE_ERRNO to the remote error number or zero if none
11810 was included, and *ATTACHMENT to point to the start of the annex
11811 if any. The length of the packet isn't needed here; there may
11812 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11813
11814 Return 0 if the packet could be parsed, -1 if it could not. If
11815 -1 is returned, the other variables may not be initialized. */
11816
11817 static int
11818 remote_hostio_parse_result (char *buffer, int *retcode,
11819 int *remote_errno, char **attachment)
11820 {
11821 char *p, *p2;
11822
11823 *remote_errno = 0;
11824 *attachment = NULL;
11825
11826 if (buffer[0] != 'F')
11827 return -1;
11828
11829 errno = 0;
11830 *retcode = strtol (&buffer[1], &p, 16);
11831 if (errno != 0 || p == &buffer[1])
11832 return -1;
11833
11834 /* Check for ",errno". */
11835 if (*p == ',')
11836 {
11837 errno = 0;
11838 *remote_errno = strtol (p + 1, &p2, 16);
11839 if (errno != 0 || p + 1 == p2)
11840 return -1;
11841 p = p2;
11842 }
11843
11844 /* Check for ";attachment". If there is no attachment, the
11845 packet should end here. */
11846 if (*p == ';')
11847 {
11848 *attachment = p + 1;
11849 return 0;
11850 }
11851 else if (*p == '\0')
11852 return 0;
11853 else
11854 return -1;
11855 }
11856
11857 /* Send a prepared I/O packet to the target and read its response.
11858 The prepared packet is in the global RS->BUF before this function
11859 is called, and the answer is there when we return.
11860
11861 COMMAND_BYTES is the length of the request to send, which may include
11862 binary data. WHICH_PACKET is the packet configuration to check
11863 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11864 is set to the error number and -1 is returned. Otherwise the value
11865 returned by the function is returned.
11866
11867 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11868 attachment is expected; an error will be reported if there's a
11869 mismatch. If one is found, *ATTACHMENT will be set to point into
11870 the packet buffer and *ATTACHMENT_LEN will be set to the
11871 attachment's length. */
11872
11873 int
11874 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11875 int *remote_errno, char **attachment,
11876 int *attachment_len)
11877 {
11878 struct remote_state *rs = get_remote_state ();
11879 int ret, bytes_read;
11880 char *attachment_tmp;
11881
11882 if (packet_support (which_packet) == PACKET_DISABLE)
11883 {
11884 *remote_errno = FILEIO_ENOSYS;
11885 return -1;
11886 }
11887
11888 putpkt_binary (rs->buf.data (), command_bytes);
11889 bytes_read = getpkt_sane (&rs->buf, 0);
11890
11891 /* If it timed out, something is wrong. Don't try to parse the
11892 buffer. */
11893 if (bytes_read < 0)
11894 {
11895 *remote_errno = FILEIO_EINVAL;
11896 return -1;
11897 }
11898
11899 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11900 {
11901 case PACKET_ERROR:
11902 *remote_errno = FILEIO_EINVAL;
11903 return -1;
11904 case PACKET_UNKNOWN:
11905 *remote_errno = FILEIO_ENOSYS;
11906 return -1;
11907 case PACKET_OK:
11908 break;
11909 }
11910
11911 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11912 &attachment_tmp))
11913 {
11914 *remote_errno = FILEIO_EINVAL;
11915 return -1;
11916 }
11917
11918 /* Make sure we saw an attachment if and only if we expected one. */
11919 if ((attachment_tmp == NULL && attachment != NULL)
11920 || (attachment_tmp != NULL && attachment == NULL))
11921 {
11922 *remote_errno = FILEIO_EINVAL;
11923 return -1;
11924 }
11925
11926 /* If an attachment was found, it must point into the packet buffer;
11927 work out how many bytes there were. */
11928 if (attachment_tmp != NULL)
11929 {
11930 *attachment = attachment_tmp;
11931 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11932 }
11933
11934 return ret;
11935 }
11936
11937 /* See declaration.h. */
11938
11939 void
11940 readahead_cache::invalidate ()
11941 {
11942 this->fd = -1;
11943 }
11944
11945 /* See declaration.h. */
11946
11947 void
11948 readahead_cache::invalidate_fd (int fd)
11949 {
11950 if (this->fd == fd)
11951 this->fd = -1;
11952 }
11953
11954 /* Set the filesystem remote_hostio functions that take FILENAME
11955 arguments will use. Return 0 on success, or -1 if an error
11956 occurs (and set *REMOTE_ERRNO). */
11957
11958 int
11959 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11960 int *remote_errno)
11961 {
11962 struct remote_state *rs = get_remote_state ();
11963 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11964 char *p = rs->buf.data ();
11965 int left = get_remote_packet_size () - 1;
11966 char arg[9];
11967 int ret;
11968
11969 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11970 return 0;
11971
11972 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11973 return 0;
11974
11975 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11976
11977 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11978 remote_buffer_add_string (&p, &left, arg);
11979
11980 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11981 remote_errno, NULL, NULL);
11982
11983 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11984 return 0;
11985
11986 if (ret == 0)
11987 rs->fs_pid = required_pid;
11988
11989 return ret;
11990 }
11991
11992 /* Implementation of to_fileio_open. */
11993
11994 int
11995 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11996 int flags, int mode, int warn_if_slow,
11997 int *remote_errno)
11998 {
11999 struct remote_state *rs = get_remote_state ();
12000 char *p = rs->buf.data ();
12001 int left = get_remote_packet_size () - 1;
12002
12003 if (warn_if_slow)
12004 {
12005 static int warning_issued = 0;
12006
12007 printf_unfiltered (_("Reading %s from remote target...\n"),
12008 filename);
12009
12010 if (!warning_issued)
12011 {
12012 warning (_("File transfers from remote targets can be slow."
12013 " Use \"set sysroot\" to access files locally"
12014 " instead."));
12015 warning_issued = 1;
12016 }
12017 }
12018
12019 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12020 return -1;
12021
12022 remote_buffer_add_string (&p, &left, "vFile:open:");
12023
12024 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12025 strlen (filename));
12026 remote_buffer_add_string (&p, &left, ",");
12027
12028 remote_buffer_add_int (&p, &left, flags);
12029 remote_buffer_add_string (&p, &left, ",");
12030
12031 remote_buffer_add_int (&p, &left, mode);
12032
12033 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12034 remote_errno, NULL, NULL);
12035 }
12036
12037 int
12038 remote_target::fileio_open (struct inferior *inf, const char *filename,
12039 int flags, int mode, int warn_if_slow,
12040 int *remote_errno)
12041 {
12042 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12043 remote_errno);
12044 }
12045
12046 /* Implementation of to_fileio_pwrite. */
12047
12048 int
12049 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12050 ULONGEST offset, int *remote_errno)
12051 {
12052 struct remote_state *rs = get_remote_state ();
12053 char *p = rs->buf.data ();
12054 int left = get_remote_packet_size ();
12055 int out_len;
12056
12057 rs->readahead_cache.invalidate_fd (fd);
12058
12059 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12060
12061 remote_buffer_add_int (&p, &left, fd);
12062 remote_buffer_add_string (&p, &left, ",");
12063
12064 remote_buffer_add_int (&p, &left, offset);
12065 remote_buffer_add_string (&p, &left, ",");
12066
12067 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12068 (get_remote_packet_size ()
12069 - (p - rs->buf.data ())));
12070
12071 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12072 remote_errno, NULL, NULL);
12073 }
12074
12075 int
12076 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12077 ULONGEST offset, int *remote_errno)
12078 {
12079 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12080 }
12081
12082 /* Helper for the implementation of to_fileio_pread. Read the file
12083 from the remote side with vFile:pread. */
12084
12085 int
12086 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12087 ULONGEST offset, int *remote_errno)
12088 {
12089 struct remote_state *rs = get_remote_state ();
12090 char *p = rs->buf.data ();
12091 char *attachment;
12092 int left = get_remote_packet_size ();
12093 int ret, attachment_len;
12094 int read_len;
12095
12096 remote_buffer_add_string (&p, &left, "vFile:pread:");
12097
12098 remote_buffer_add_int (&p, &left, fd);
12099 remote_buffer_add_string (&p, &left, ",");
12100
12101 remote_buffer_add_int (&p, &left, len);
12102 remote_buffer_add_string (&p, &left, ",");
12103
12104 remote_buffer_add_int (&p, &left, offset);
12105
12106 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12107 remote_errno, &attachment,
12108 &attachment_len);
12109
12110 if (ret < 0)
12111 return ret;
12112
12113 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12114 read_buf, len);
12115 if (read_len != ret)
12116 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12117
12118 return ret;
12119 }
12120
12121 /* See declaration.h. */
12122
12123 int
12124 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12125 ULONGEST offset)
12126 {
12127 if (this->fd == fd
12128 && this->offset <= offset
12129 && offset < this->offset + this->bufsize)
12130 {
12131 ULONGEST max = this->offset + this->bufsize;
12132
12133 if (offset + len > max)
12134 len = max - offset;
12135
12136 memcpy (read_buf, this->buf + offset - this->offset, len);
12137 return len;
12138 }
12139
12140 return 0;
12141 }
12142
12143 /* Implementation of to_fileio_pread. */
12144
12145 int
12146 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12147 ULONGEST offset, int *remote_errno)
12148 {
12149 int ret;
12150 struct remote_state *rs = get_remote_state ();
12151 readahead_cache *cache = &rs->readahead_cache;
12152
12153 ret = cache->pread (fd, read_buf, len, offset);
12154 if (ret > 0)
12155 {
12156 cache->hit_count++;
12157
12158 if (remote_debug)
12159 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12160 pulongest (cache->hit_count));
12161 return ret;
12162 }
12163
12164 cache->miss_count++;
12165 if (remote_debug)
12166 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12167 pulongest (cache->miss_count));
12168
12169 cache->fd = fd;
12170 cache->offset = offset;
12171 cache->bufsize = get_remote_packet_size ();
12172 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12173
12174 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12175 cache->offset, remote_errno);
12176 if (ret <= 0)
12177 {
12178 cache->invalidate_fd (fd);
12179 return ret;
12180 }
12181
12182 cache->bufsize = ret;
12183 return cache->pread (fd, read_buf, len, offset);
12184 }
12185
12186 int
12187 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12188 ULONGEST offset, int *remote_errno)
12189 {
12190 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12191 }
12192
12193 /* Implementation of to_fileio_close. */
12194
12195 int
12196 remote_target::remote_hostio_close (int fd, int *remote_errno)
12197 {
12198 struct remote_state *rs = get_remote_state ();
12199 char *p = rs->buf.data ();
12200 int left = get_remote_packet_size () - 1;
12201
12202 rs->readahead_cache.invalidate_fd (fd);
12203
12204 remote_buffer_add_string (&p, &left, "vFile:close:");
12205
12206 remote_buffer_add_int (&p, &left, fd);
12207
12208 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12209 remote_errno, NULL, NULL);
12210 }
12211
12212 int
12213 remote_target::fileio_close (int fd, int *remote_errno)
12214 {
12215 return remote_hostio_close (fd, remote_errno);
12216 }
12217
12218 /* Implementation of to_fileio_unlink. */
12219
12220 int
12221 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12222 int *remote_errno)
12223 {
12224 struct remote_state *rs = get_remote_state ();
12225 char *p = rs->buf.data ();
12226 int left = get_remote_packet_size () - 1;
12227
12228 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12229 return -1;
12230
12231 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12232
12233 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12234 strlen (filename));
12235
12236 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12237 remote_errno, NULL, NULL);
12238 }
12239
12240 int
12241 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12242 int *remote_errno)
12243 {
12244 return remote_hostio_unlink (inf, filename, remote_errno);
12245 }
12246
12247 /* Implementation of to_fileio_readlink. */
12248
12249 gdb::optional<std::string>
12250 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12251 int *remote_errno)
12252 {
12253 struct remote_state *rs = get_remote_state ();
12254 char *p = rs->buf.data ();
12255 char *attachment;
12256 int left = get_remote_packet_size ();
12257 int len, attachment_len;
12258 int read_len;
12259
12260 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12261 return {};
12262
12263 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12264
12265 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12266 strlen (filename));
12267
12268 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12269 remote_errno, &attachment,
12270 &attachment_len);
12271
12272 if (len < 0)
12273 return {};
12274
12275 std::string ret (len, '\0');
12276
12277 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12278 (gdb_byte *) &ret[0], len);
12279 if (read_len != len)
12280 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12281
12282 return ret;
12283 }
12284
12285 /* Implementation of to_fileio_fstat. */
12286
12287 int
12288 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12289 {
12290 struct remote_state *rs = get_remote_state ();
12291 char *p = rs->buf.data ();
12292 int left = get_remote_packet_size ();
12293 int attachment_len, ret;
12294 char *attachment;
12295 struct fio_stat fst;
12296 int read_len;
12297
12298 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12299
12300 remote_buffer_add_int (&p, &left, fd);
12301
12302 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12303 remote_errno, &attachment,
12304 &attachment_len);
12305 if (ret < 0)
12306 {
12307 if (*remote_errno != FILEIO_ENOSYS)
12308 return ret;
12309
12310 /* Strictly we should return -1, ENOSYS here, but when
12311 "set sysroot remote:" was implemented in August 2008
12312 BFD's need for a stat function was sidestepped with
12313 this hack. This was not remedied until March 2015
12314 so we retain the previous behavior to avoid breaking
12315 compatibility.
12316
12317 Note that the memset is a March 2015 addition; older
12318 GDBs set st_size *and nothing else* so the structure
12319 would have garbage in all other fields. This might
12320 break something but retaining the previous behavior
12321 here would be just too wrong. */
12322
12323 memset (st, 0, sizeof (struct stat));
12324 st->st_size = INT_MAX;
12325 return 0;
12326 }
12327
12328 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12329 (gdb_byte *) &fst, sizeof (fst));
12330
12331 if (read_len != ret)
12332 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12333
12334 if (read_len != sizeof (fst))
12335 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12336 read_len, (int) sizeof (fst));
12337
12338 remote_fileio_to_host_stat (&fst, st);
12339
12340 return 0;
12341 }
12342
12343 /* Implementation of to_filesystem_is_local. */
12344
12345 bool
12346 remote_target::filesystem_is_local ()
12347 {
12348 /* Valgrind GDB presents itself as a remote target but works
12349 on the local filesystem: it does not implement remote get
12350 and users are not expected to set a sysroot. To handle
12351 this case we treat the remote filesystem as local if the
12352 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12353 does not support vFile:open. */
12354 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12355 {
12356 enum packet_support ps = packet_support (PACKET_vFile_open);
12357
12358 if (ps == PACKET_SUPPORT_UNKNOWN)
12359 {
12360 int fd, remote_errno;
12361
12362 /* Try opening a file to probe support. The supplied
12363 filename is irrelevant, we only care about whether
12364 the stub recognizes the packet or not. */
12365 fd = remote_hostio_open (NULL, "just probing",
12366 FILEIO_O_RDONLY, 0700, 0,
12367 &remote_errno);
12368
12369 if (fd >= 0)
12370 remote_hostio_close (fd, &remote_errno);
12371
12372 ps = packet_support (PACKET_vFile_open);
12373 }
12374
12375 if (ps == PACKET_DISABLE)
12376 {
12377 static int warning_issued = 0;
12378
12379 if (!warning_issued)
12380 {
12381 warning (_("remote target does not support file"
12382 " transfer, attempting to access files"
12383 " from local filesystem."));
12384 warning_issued = 1;
12385 }
12386
12387 return true;
12388 }
12389 }
12390
12391 return false;
12392 }
12393
12394 static int
12395 remote_fileio_errno_to_host (int errnum)
12396 {
12397 switch (errnum)
12398 {
12399 case FILEIO_EPERM:
12400 return EPERM;
12401 case FILEIO_ENOENT:
12402 return ENOENT;
12403 case FILEIO_EINTR:
12404 return EINTR;
12405 case FILEIO_EIO:
12406 return EIO;
12407 case FILEIO_EBADF:
12408 return EBADF;
12409 case FILEIO_EACCES:
12410 return EACCES;
12411 case FILEIO_EFAULT:
12412 return EFAULT;
12413 case FILEIO_EBUSY:
12414 return EBUSY;
12415 case FILEIO_EEXIST:
12416 return EEXIST;
12417 case FILEIO_ENODEV:
12418 return ENODEV;
12419 case FILEIO_ENOTDIR:
12420 return ENOTDIR;
12421 case FILEIO_EISDIR:
12422 return EISDIR;
12423 case FILEIO_EINVAL:
12424 return EINVAL;
12425 case FILEIO_ENFILE:
12426 return ENFILE;
12427 case FILEIO_EMFILE:
12428 return EMFILE;
12429 case FILEIO_EFBIG:
12430 return EFBIG;
12431 case FILEIO_ENOSPC:
12432 return ENOSPC;
12433 case FILEIO_ESPIPE:
12434 return ESPIPE;
12435 case FILEIO_EROFS:
12436 return EROFS;
12437 case FILEIO_ENOSYS:
12438 return ENOSYS;
12439 case FILEIO_ENAMETOOLONG:
12440 return ENAMETOOLONG;
12441 }
12442 return -1;
12443 }
12444
12445 static char *
12446 remote_hostio_error (int errnum)
12447 {
12448 int host_error = remote_fileio_errno_to_host (errnum);
12449
12450 if (host_error == -1)
12451 error (_("Unknown remote I/O error %d"), errnum);
12452 else
12453 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12454 }
12455
12456 /* A RAII wrapper around a remote file descriptor. */
12457
12458 class scoped_remote_fd
12459 {
12460 public:
12461 scoped_remote_fd (remote_target *remote, int fd)
12462 : m_remote (remote), m_fd (fd)
12463 {
12464 }
12465
12466 ~scoped_remote_fd ()
12467 {
12468 if (m_fd != -1)
12469 {
12470 try
12471 {
12472 int remote_errno;
12473 m_remote->remote_hostio_close (m_fd, &remote_errno);
12474 }
12475 catch (...)
12476 {
12477 /* Swallow exception before it escapes the dtor. If
12478 something goes wrong, likely the connection is gone,
12479 and there's nothing else that can be done. */
12480 }
12481 }
12482 }
12483
12484 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12485
12486 /* Release ownership of the file descriptor, and return it. */
12487 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12488 {
12489 int fd = m_fd;
12490 m_fd = -1;
12491 return fd;
12492 }
12493
12494 /* Return the owned file descriptor. */
12495 int get () const noexcept
12496 {
12497 return m_fd;
12498 }
12499
12500 private:
12501 /* The remote target. */
12502 remote_target *m_remote;
12503
12504 /* The owned remote I/O file descriptor. */
12505 int m_fd;
12506 };
12507
12508 void
12509 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12510 {
12511 remote_target *remote = get_current_remote_target ();
12512
12513 if (remote == nullptr)
12514 error (_("command can only be used with remote target"));
12515
12516 remote->remote_file_put (local_file, remote_file, from_tty);
12517 }
12518
12519 void
12520 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12521 int from_tty)
12522 {
12523 int retcode, remote_errno, bytes, io_size;
12524 int bytes_in_buffer;
12525 int saw_eof;
12526 ULONGEST offset;
12527
12528 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12529 if (file == NULL)
12530 perror_with_name (local_file);
12531
12532 scoped_remote_fd fd
12533 (this, remote_hostio_open (NULL,
12534 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12535 | FILEIO_O_TRUNC),
12536 0700, 0, &remote_errno));
12537 if (fd.get () == -1)
12538 remote_hostio_error (remote_errno);
12539
12540 /* Send up to this many bytes at once. They won't all fit in the
12541 remote packet limit, so we'll transfer slightly fewer. */
12542 io_size = get_remote_packet_size ();
12543 gdb::byte_vector buffer (io_size);
12544
12545 bytes_in_buffer = 0;
12546 saw_eof = 0;
12547 offset = 0;
12548 while (bytes_in_buffer || !saw_eof)
12549 {
12550 if (!saw_eof)
12551 {
12552 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12553 io_size - bytes_in_buffer,
12554 file.get ());
12555 if (bytes == 0)
12556 {
12557 if (ferror (file.get ()))
12558 error (_("Error reading %s."), local_file);
12559 else
12560 {
12561 /* EOF. Unless there is something still in the
12562 buffer from the last iteration, we are done. */
12563 saw_eof = 1;
12564 if (bytes_in_buffer == 0)
12565 break;
12566 }
12567 }
12568 }
12569 else
12570 bytes = 0;
12571
12572 bytes += bytes_in_buffer;
12573 bytes_in_buffer = 0;
12574
12575 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12576 offset, &remote_errno);
12577
12578 if (retcode < 0)
12579 remote_hostio_error (remote_errno);
12580 else if (retcode == 0)
12581 error (_("Remote write of %d bytes returned 0!"), bytes);
12582 else if (retcode < bytes)
12583 {
12584 /* Short write. Save the rest of the read data for the next
12585 write. */
12586 bytes_in_buffer = bytes - retcode;
12587 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12588 }
12589
12590 offset += retcode;
12591 }
12592
12593 if (remote_hostio_close (fd.release (), &remote_errno))
12594 remote_hostio_error (remote_errno);
12595
12596 if (from_tty)
12597 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12598 }
12599
12600 void
12601 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12602 {
12603 remote_target *remote = get_current_remote_target ();
12604
12605 if (remote == nullptr)
12606 error (_("command can only be used with remote target"));
12607
12608 remote->remote_file_get (remote_file, local_file, from_tty);
12609 }
12610
12611 void
12612 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12613 int from_tty)
12614 {
12615 int remote_errno, bytes, io_size;
12616 ULONGEST offset;
12617
12618 scoped_remote_fd fd
12619 (this, remote_hostio_open (NULL,
12620 remote_file, FILEIO_O_RDONLY, 0, 0,
12621 &remote_errno));
12622 if (fd.get () == -1)
12623 remote_hostio_error (remote_errno);
12624
12625 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12626 if (file == NULL)
12627 perror_with_name (local_file);
12628
12629 /* Send up to this many bytes at once. They won't all fit in the
12630 remote packet limit, so we'll transfer slightly fewer. */
12631 io_size = get_remote_packet_size ();
12632 gdb::byte_vector buffer (io_size);
12633
12634 offset = 0;
12635 while (1)
12636 {
12637 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12638 &remote_errno);
12639 if (bytes == 0)
12640 /* Success, but no bytes, means end-of-file. */
12641 break;
12642 if (bytes == -1)
12643 remote_hostio_error (remote_errno);
12644
12645 offset += bytes;
12646
12647 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12648 if (bytes == 0)
12649 perror_with_name (local_file);
12650 }
12651
12652 if (remote_hostio_close (fd.release (), &remote_errno))
12653 remote_hostio_error (remote_errno);
12654
12655 if (from_tty)
12656 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12657 }
12658
12659 void
12660 remote_file_delete (const char *remote_file, int from_tty)
12661 {
12662 remote_target *remote = get_current_remote_target ();
12663
12664 if (remote == nullptr)
12665 error (_("command can only be used with remote target"));
12666
12667 remote->remote_file_delete (remote_file, from_tty);
12668 }
12669
12670 void
12671 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12672 {
12673 int retcode, remote_errno;
12674
12675 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12676 if (retcode == -1)
12677 remote_hostio_error (remote_errno);
12678
12679 if (from_tty)
12680 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12681 }
12682
12683 static void
12684 remote_put_command (const char *args, int from_tty)
12685 {
12686 if (args == NULL)
12687 error_no_arg (_("file to put"));
12688
12689 gdb_argv argv (args);
12690 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12691 error (_("Invalid parameters to remote put"));
12692
12693 remote_file_put (argv[0], argv[1], from_tty);
12694 }
12695
12696 static void
12697 remote_get_command (const char *args, int from_tty)
12698 {
12699 if (args == NULL)
12700 error_no_arg (_("file to get"));
12701
12702 gdb_argv argv (args);
12703 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12704 error (_("Invalid parameters to remote get"));
12705
12706 remote_file_get (argv[0], argv[1], from_tty);
12707 }
12708
12709 static void
12710 remote_delete_command (const char *args, int from_tty)
12711 {
12712 if (args == NULL)
12713 error_no_arg (_("file to delete"));
12714
12715 gdb_argv argv (args);
12716 if (argv[0] == NULL || argv[1] != NULL)
12717 error (_("Invalid parameters to remote delete"));
12718
12719 remote_file_delete (argv[0], from_tty);
12720 }
12721
12722 bool
12723 remote_target::can_execute_reverse ()
12724 {
12725 if (packet_support (PACKET_bs) == PACKET_ENABLE
12726 || packet_support (PACKET_bc) == PACKET_ENABLE)
12727 return true;
12728 else
12729 return false;
12730 }
12731
12732 bool
12733 remote_target::supports_non_stop ()
12734 {
12735 return true;
12736 }
12737
12738 bool
12739 remote_target::supports_disable_randomization ()
12740 {
12741 /* Only supported in extended mode. */
12742 return false;
12743 }
12744
12745 bool
12746 remote_target::supports_multi_process ()
12747 {
12748 struct remote_state *rs = get_remote_state ();
12749
12750 return remote_multi_process_p (rs);
12751 }
12752
12753 static int
12754 remote_supports_cond_tracepoints ()
12755 {
12756 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12757 }
12758
12759 bool
12760 remote_target::supports_evaluation_of_breakpoint_conditions ()
12761 {
12762 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12763 }
12764
12765 static int
12766 remote_supports_fast_tracepoints ()
12767 {
12768 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12769 }
12770
12771 static int
12772 remote_supports_static_tracepoints ()
12773 {
12774 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12775 }
12776
12777 static int
12778 remote_supports_install_in_trace ()
12779 {
12780 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12781 }
12782
12783 bool
12784 remote_target::supports_enable_disable_tracepoint ()
12785 {
12786 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12787 == PACKET_ENABLE);
12788 }
12789
12790 bool
12791 remote_target::supports_string_tracing ()
12792 {
12793 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12794 }
12795
12796 bool
12797 remote_target::can_run_breakpoint_commands ()
12798 {
12799 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12800 }
12801
12802 void
12803 remote_target::trace_init ()
12804 {
12805 struct remote_state *rs = get_remote_state ();
12806
12807 putpkt ("QTinit");
12808 remote_get_noisy_reply ();
12809 if (strcmp (rs->buf.data (), "OK") != 0)
12810 error (_("Target does not support this command."));
12811 }
12812
12813 /* Recursive routine to walk through command list including loops, and
12814 download packets for each command. */
12815
12816 void
12817 remote_target::remote_download_command_source (int num, ULONGEST addr,
12818 struct command_line *cmds)
12819 {
12820 struct remote_state *rs = get_remote_state ();
12821 struct command_line *cmd;
12822
12823 for (cmd = cmds; cmd; cmd = cmd->next)
12824 {
12825 QUIT; /* Allow user to bail out with ^C. */
12826 strcpy (rs->buf.data (), "QTDPsrc:");
12827 encode_source_string (num, addr, "cmd", cmd->line,
12828 rs->buf.data () + strlen (rs->buf.data ()),
12829 rs->buf.size () - strlen (rs->buf.data ()));
12830 putpkt (rs->buf);
12831 remote_get_noisy_reply ();
12832 if (strcmp (rs->buf.data (), "OK"))
12833 warning (_("Target does not support source download."));
12834
12835 if (cmd->control_type == while_control
12836 || cmd->control_type == while_stepping_control)
12837 {
12838 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12839
12840 QUIT; /* Allow user to bail out with ^C. */
12841 strcpy (rs->buf.data (), "QTDPsrc:");
12842 encode_source_string (num, addr, "cmd", "end",
12843 rs->buf.data () + strlen (rs->buf.data ()),
12844 rs->buf.size () - strlen (rs->buf.data ()));
12845 putpkt (rs->buf);
12846 remote_get_noisy_reply ();
12847 if (strcmp (rs->buf.data (), "OK"))
12848 warning (_("Target does not support source download."));
12849 }
12850 }
12851 }
12852
12853 void
12854 remote_target::download_tracepoint (struct bp_location *loc)
12855 {
12856 CORE_ADDR tpaddr;
12857 char addrbuf[40];
12858 std::vector<std::string> tdp_actions;
12859 std::vector<std::string> stepping_actions;
12860 char *pkt;
12861 struct breakpoint *b = loc->owner;
12862 struct tracepoint *t = (struct tracepoint *) b;
12863 struct remote_state *rs = get_remote_state ();
12864 int ret;
12865 const char *err_msg = _("Tracepoint packet too large for target.");
12866 size_t size_left;
12867
12868 /* We use a buffer other than rs->buf because we'll build strings
12869 across multiple statements, and other statements in between could
12870 modify rs->buf. */
12871 gdb::char_vector buf (get_remote_packet_size ());
12872
12873 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12874
12875 tpaddr = loc->address;
12876 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
12877 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12878 b->number, addrbuf, /* address */
12879 (b->enable_state == bp_enabled ? 'E' : 'D'),
12880 t->step_count, t->pass_count);
12881
12882 if (ret < 0 || ret >= buf.size ())
12883 error ("%s", err_msg);
12884
12885 /* Fast tracepoints are mostly handled by the target, but we can
12886 tell the target how big of an instruction block should be moved
12887 around. */
12888 if (b->type == bp_fast_tracepoint)
12889 {
12890 /* Only test for support at download time; we may not know
12891 target capabilities at definition time. */
12892 if (remote_supports_fast_tracepoints ())
12893 {
12894 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12895 NULL))
12896 {
12897 size_left = buf.size () - strlen (buf.data ());
12898 ret = snprintf (buf.data () + strlen (buf.data ()),
12899 size_left, ":F%x",
12900 gdb_insn_length (loc->gdbarch, tpaddr));
12901
12902 if (ret < 0 || ret >= size_left)
12903 error ("%s", err_msg);
12904 }
12905 else
12906 /* If it passed validation at definition but fails now,
12907 something is very wrong. */
12908 internal_error (__FILE__, __LINE__,
12909 _("Fast tracepoint not "
12910 "valid during download"));
12911 }
12912 else
12913 /* Fast tracepoints are functionally identical to regular
12914 tracepoints, so don't take lack of support as a reason to
12915 give up on the trace run. */
12916 warning (_("Target does not support fast tracepoints, "
12917 "downloading %d as regular tracepoint"), b->number);
12918 }
12919 else if (b->type == bp_static_tracepoint)
12920 {
12921 /* Only test for support at download time; we may not know
12922 target capabilities at definition time. */
12923 if (remote_supports_static_tracepoints ())
12924 {
12925 struct static_tracepoint_marker marker;
12926
12927 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12928 {
12929 size_left = buf.size () - strlen (buf.data ());
12930 ret = snprintf (buf.data () + strlen (buf.data ()),
12931 size_left, ":S");
12932
12933 if (ret < 0 || ret >= size_left)
12934 error ("%s", err_msg);
12935 }
12936 else
12937 error (_("Static tracepoint not valid during download"));
12938 }
12939 else
12940 /* Fast tracepoints are functionally identical to regular
12941 tracepoints, so don't take lack of support as a reason
12942 to give up on the trace run. */
12943 error (_("Target does not support static tracepoints"));
12944 }
12945 /* If the tracepoint has a conditional, make it into an agent
12946 expression and append to the definition. */
12947 if (loc->cond)
12948 {
12949 /* Only test support at download time, we may not know target
12950 capabilities at definition time. */
12951 if (remote_supports_cond_tracepoints ())
12952 {
12953 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12954 loc->cond.get ());
12955
12956 size_left = buf.size () - strlen (buf.data ());
12957
12958 ret = snprintf (buf.data () + strlen (buf.data ()),
12959 size_left, ":X%x,", aexpr->len);
12960
12961 if (ret < 0 || ret >= size_left)
12962 error ("%s", err_msg);
12963
12964 size_left = buf.size () - strlen (buf.data ());
12965
12966 /* Two bytes to encode each aexpr byte, plus the terminating
12967 null byte. */
12968 if (aexpr->len * 2 + 1 > size_left)
12969 error ("%s", err_msg);
12970
12971 pkt = buf.data () + strlen (buf.data ());
12972
12973 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12974 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12975 *pkt = '\0';
12976 }
12977 else
12978 warning (_("Target does not support conditional tracepoints, "
12979 "ignoring tp %d cond"), b->number);
12980 }
12981
12982 if (b->commands || *default_collect)
12983 {
12984 size_left = buf.size () - strlen (buf.data ());
12985
12986 ret = snprintf (buf.data () + strlen (buf.data ()),
12987 size_left, "-");
12988
12989 if (ret < 0 || ret >= size_left)
12990 error ("%s", err_msg);
12991 }
12992
12993 putpkt (buf.data ());
12994 remote_get_noisy_reply ();
12995 if (strcmp (rs->buf.data (), "OK"))
12996 error (_("Target does not support tracepoints."));
12997
12998 /* do_single_steps (t); */
12999 for (auto action_it = tdp_actions.begin ();
13000 action_it != tdp_actions.end (); action_it++)
13001 {
13002 QUIT; /* Allow user to bail out with ^C. */
13003
13004 bool has_more = ((action_it + 1) != tdp_actions.end ()
13005 || !stepping_actions.empty ());
13006
13007 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13008 b->number, addrbuf, /* address */
13009 action_it->c_str (),
13010 has_more ? '-' : 0);
13011
13012 if (ret < 0 || ret >= buf.size ())
13013 error ("%s", err_msg);
13014
13015 putpkt (buf.data ());
13016 remote_get_noisy_reply ();
13017 if (strcmp (rs->buf.data (), "OK"))
13018 error (_("Error on target while setting tracepoints."));
13019 }
13020
13021 for (auto action_it = stepping_actions.begin ();
13022 action_it != stepping_actions.end (); action_it++)
13023 {
13024 QUIT; /* Allow user to bail out with ^C. */
13025
13026 bool is_first = action_it == stepping_actions.begin ();
13027 bool has_more = (action_it + 1) != stepping_actions.end ();
13028
13029 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13030 b->number, addrbuf, /* address */
13031 is_first ? "S" : "",
13032 action_it->c_str (),
13033 has_more ? "-" : "");
13034
13035 if (ret < 0 || ret >= buf.size ())
13036 error ("%s", err_msg);
13037
13038 putpkt (buf.data ());
13039 remote_get_noisy_reply ();
13040 if (strcmp (rs->buf.data (), "OK"))
13041 error (_("Error on target while setting tracepoints."));
13042 }
13043
13044 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13045 {
13046 if (b->location != NULL)
13047 {
13048 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13049
13050 if (ret < 0 || ret >= buf.size ())
13051 error ("%s", err_msg);
13052
13053 encode_source_string (b->number, loc->address, "at",
13054 event_location_to_string (b->location.get ()),
13055 buf.data () + strlen (buf.data ()),
13056 buf.size () - strlen (buf.data ()));
13057 putpkt (buf.data ());
13058 remote_get_noisy_reply ();
13059 if (strcmp (rs->buf.data (), "OK"))
13060 warning (_("Target does not support source download."));
13061 }
13062 if (b->cond_string)
13063 {
13064 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13065
13066 if (ret < 0 || ret >= buf.size ())
13067 error ("%s", err_msg);
13068
13069 encode_source_string (b->number, loc->address,
13070 "cond", b->cond_string,
13071 buf.data () + strlen (buf.data ()),
13072 buf.size () - strlen (buf.data ()));
13073 putpkt (buf.data ());
13074 remote_get_noisy_reply ();
13075 if (strcmp (rs->buf.data (), "OK"))
13076 warning (_("Target does not support source download."));
13077 }
13078 remote_download_command_source (b->number, loc->address,
13079 breakpoint_commands (b));
13080 }
13081 }
13082
13083 bool
13084 remote_target::can_download_tracepoint ()
13085 {
13086 struct remote_state *rs = get_remote_state ();
13087 struct trace_status *ts;
13088 int status;
13089
13090 /* Don't try to install tracepoints until we've relocated our
13091 symbols, and fetched and merged the target's tracepoint list with
13092 ours. */
13093 if (rs->starting_up)
13094 return false;
13095
13096 ts = current_trace_status ();
13097 status = get_trace_status (ts);
13098
13099 if (status == -1 || !ts->running_known || !ts->running)
13100 return false;
13101
13102 /* If we are in a tracing experiment, but remote stub doesn't support
13103 installing tracepoint in trace, we have to return. */
13104 if (!remote_supports_install_in_trace ())
13105 return false;
13106
13107 return true;
13108 }
13109
13110
13111 void
13112 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13113 {
13114 struct remote_state *rs = get_remote_state ();
13115 char *p;
13116
13117 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13118 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13119 tsv.builtin);
13120 p = rs->buf.data () + strlen (rs->buf.data ());
13121 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13122 >= get_remote_packet_size ())
13123 error (_("Trace state variable name too long for tsv definition packet"));
13124 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13125 *p++ = '\0';
13126 putpkt (rs->buf);
13127 remote_get_noisy_reply ();
13128 if (rs->buf[0] == '\0')
13129 error (_("Target does not support this command."));
13130 if (strcmp (rs->buf.data (), "OK") != 0)
13131 error (_("Error on target while downloading trace state variable."));
13132 }
13133
13134 void
13135 remote_target::enable_tracepoint (struct bp_location *location)
13136 {
13137 struct remote_state *rs = get_remote_state ();
13138
13139 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13140 location->owner->number,
13141 phex (location->address, sizeof (CORE_ADDR)));
13142 putpkt (rs->buf);
13143 remote_get_noisy_reply ();
13144 if (rs->buf[0] == '\0')
13145 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13146 if (strcmp (rs->buf.data (), "OK") != 0)
13147 error (_("Error on target while enabling tracepoint."));
13148 }
13149
13150 void
13151 remote_target::disable_tracepoint (struct bp_location *location)
13152 {
13153 struct remote_state *rs = get_remote_state ();
13154
13155 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13156 location->owner->number,
13157 phex (location->address, sizeof (CORE_ADDR)));
13158 putpkt (rs->buf);
13159 remote_get_noisy_reply ();
13160 if (rs->buf[0] == '\0')
13161 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13162 if (strcmp (rs->buf.data (), "OK") != 0)
13163 error (_("Error on target while disabling tracepoint."));
13164 }
13165
13166 void
13167 remote_target::trace_set_readonly_regions ()
13168 {
13169 asection *s;
13170 bfd_size_type size;
13171 bfd_vma vma;
13172 int anysecs = 0;
13173 int offset = 0;
13174
13175 if (!exec_bfd)
13176 return; /* No information to give. */
13177
13178 struct remote_state *rs = get_remote_state ();
13179
13180 strcpy (rs->buf.data (), "QTro");
13181 offset = strlen (rs->buf.data ());
13182 for (s = exec_bfd->sections; s; s = s->next)
13183 {
13184 char tmp1[40], tmp2[40];
13185 int sec_length;
13186
13187 if ((s->flags & SEC_LOAD) == 0 ||
13188 /* (s->flags & SEC_CODE) == 0 || */
13189 (s->flags & SEC_READONLY) == 0)
13190 continue;
13191
13192 anysecs = 1;
13193 vma = bfd_section_vma (s);
13194 size = bfd_section_size (s);
13195 sprintf_vma (tmp1, vma);
13196 sprintf_vma (tmp2, vma + size);
13197 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13198 if (offset + sec_length + 1 > rs->buf.size ())
13199 {
13200 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13201 warning (_("\
13202 Too many sections for read-only sections definition packet."));
13203 break;
13204 }
13205 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13206 tmp1, tmp2);
13207 offset += sec_length;
13208 }
13209 if (anysecs)
13210 {
13211 putpkt (rs->buf);
13212 getpkt (&rs->buf, 0);
13213 }
13214 }
13215
13216 void
13217 remote_target::trace_start ()
13218 {
13219 struct remote_state *rs = get_remote_state ();
13220
13221 putpkt ("QTStart");
13222 remote_get_noisy_reply ();
13223 if (rs->buf[0] == '\0')
13224 error (_("Target does not support this command."));
13225 if (strcmp (rs->buf.data (), "OK") != 0)
13226 error (_("Bogus reply from target: %s"), rs->buf.data ());
13227 }
13228
13229 int
13230 remote_target::get_trace_status (struct trace_status *ts)
13231 {
13232 /* Initialize it just to avoid a GCC false warning. */
13233 char *p = NULL;
13234 enum packet_result result;
13235 struct remote_state *rs = get_remote_state ();
13236
13237 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13238 return -1;
13239
13240 /* FIXME we need to get register block size some other way. */
13241 trace_regblock_size
13242 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13243
13244 putpkt ("qTStatus");
13245
13246 try
13247 {
13248 p = remote_get_noisy_reply ();
13249 }
13250 catch (const gdb_exception_error &ex)
13251 {
13252 if (ex.error != TARGET_CLOSE_ERROR)
13253 {
13254 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13255 return -1;
13256 }
13257 throw;
13258 }
13259
13260 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13261
13262 /* If the remote target doesn't do tracing, flag it. */
13263 if (result == PACKET_UNKNOWN)
13264 return -1;
13265
13266 /* We're working with a live target. */
13267 ts->filename = NULL;
13268
13269 if (*p++ != 'T')
13270 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13271
13272 /* Function 'parse_trace_status' sets default value of each field of
13273 'ts' at first, so we don't have to do it here. */
13274 parse_trace_status (p, ts);
13275
13276 return ts->running;
13277 }
13278
13279 void
13280 remote_target::get_tracepoint_status (struct breakpoint *bp,
13281 struct uploaded_tp *utp)
13282 {
13283 struct remote_state *rs = get_remote_state ();
13284 char *reply;
13285 struct bp_location *loc;
13286 struct tracepoint *tp = (struct tracepoint *) bp;
13287 size_t size = get_remote_packet_size ();
13288
13289 if (tp)
13290 {
13291 tp->hit_count = 0;
13292 tp->traceframe_usage = 0;
13293 for (loc = tp->loc; loc; loc = loc->next)
13294 {
13295 /* If the tracepoint was never downloaded, don't go asking for
13296 any status. */
13297 if (tp->number_on_target == 0)
13298 continue;
13299 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13300 phex_nz (loc->address, 0));
13301 putpkt (rs->buf);
13302 reply = remote_get_noisy_reply ();
13303 if (reply && *reply)
13304 {
13305 if (*reply == 'V')
13306 parse_tracepoint_status (reply + 1, bp, utp);
13307 }
13308 }
13309 }
13310 else if (utp)
13311 {
13312 utp->hit_count = 0;
13313 utp->traceframe_usage = 0;
13314 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13315 phex_nz (utp->addr, 0));
13316 putpkt (rs->buf);
13317 reply = remote_get_noisy_reply ();
13318 if (reply && *reply)
13319 {
13320 if (*reply == 'V')
13321 parse_tracepoint_status (reply + 1, bp, utp);
13322 }
13323 }
13324 }
13325
13326 void
13327 remote_target::trace_stop ()
13328 {
13329 struct remote_state *rs = get_remote_state ();
13330
13331 putpkt ("QTStop");
13332 remote_get_noisy_reply ();
13333 if (rs->buf[0] == '\0')
13334 error (_("Target does not support this command."));
13335 if (strcmp (rs->buf.data (), "OK") != 0)
13336 error (_("Bogus reply from target: %s"), rs->buf.data ());
13337 }
13338
13339 int
13340 remote_target::trace_find (enum trace_find_type type, int num,
13341 CORE_ADDR addr1, CORE_ADDR addr2,
13342 int *tpp)
13343 {
13344 struct remote_state *rs = get_remote_state ();
13345 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13346 char *p, *reply;
13347 int target_frameno = -1, target_tracept = -1;
13348
13349 /* Lookups other than by absolute frame number depend on the current
13350 trace selected, so make sure it is correct on the remote end
13351 first. */
13352 if (type != tfind_number)
13353 set_remote_traceframe ();
13354
13355 p = rs->buf.data ();
13356 strcpy (p, "QTFrame:");
13357 p = strchr (p, '\0');
13358 switch (type)
13359 {
13360 case tfind_number:
13361 xsnprintf (p, endbuf - p, "%x", num);
13362 break;
13363 case tfind_pc:
13364 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13365 break;
13366 case tfind_tp:
13367 xsnprintf (p, endbuf - p, "tdp:%x", num);
13368 break;
13369 case tfind_range:
13370 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13371 phex_nz (addr2, 0));
13372 break;
13373 case tfind_outside:
13374 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13375 phex_nz (addr2, 0));
13376 break;
13377 default:
13378 error (_("Unknown trace find type %d"), type);
13379 }
13380
13381 putpkt (rs->buf);
13382 reply = remote_get_noisy_reply ();
13383 if (*reply == '\0')
13384 error (_("Target does not support this command."));
13385
13386 while (reply && *reply)
13387 switch (*reply)
13388 {
13389 case 'F':
13390 p = ++reply;
13391 target_frameno = (int) strtol (p, &reply, 16);
13392 if (reply == p)
13393 error (_("Unable to parse trace frame number"));
13394 /* Don't update our remote traceframe number cache on failure
13395 to select a remote traceframe. */
13396 if (target_frameno == -1)
13397 return -1;
13398 break;
13399 case 'T':
13400 p = ++reply;
13401 target_tracept = (int) strtol (p, &reply, 16);
13402 if (reply == p)
13403 error (_("Unable to parse tracepoint number"));
13404 break;
13405 case 'O': /* "OK"? */
13406 if (reply[1] == 'K' && reply[2] == '\0')
13407 reply += 2;
13408 else
13409 error (_("Bogus reply from target: %s"), reply);
13410 break;
13411 default:
13412 error (_("Bogus reply from target: %s"), reply);
13413 }
13414 if (tpp)
13415 *tpp = target_tracept;
13416
13417 rs->remote_traceframe_number = target_frameno;
13418 return target_frameno;
13419 }
13420
13421 bool
13422 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13423 {
13424 struct remote_state *rs = get_remote_state ();
13425 char *reply;
13426 ULONGEST uval;
13427
13428 set_remote_traceframe ();
13429
13430 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13431 putpkt (rs->buf);
13432 reply = remote_get_noisy_reply ();
13433 if (reply && *reply)
13434 {
13435 if (*reply == 'V')
13436 {
13437 unpack_varlen_hex (reply + 1, &uval);
13438 *val = (LONGEST) uval;
13439 return true;
13440 }
13441 }
13442 return false;
13443 }
13444
13445 int
13446 remote_target::save_trace_data (const char *filename)
13447 {
13448 struct remote_state *rs = get_remote_state ();
13449 char *p, *reply;
13450
13451 p = rs->buf.data ();
13452 strcpy (p, "QTSave:");
13453 p += strlen (p);
13454 if ((p - rs->buf.data ()) + strlen (filename) * 2
13455 >= get_remote_packet_size ())
13456 error (_("Remote file name too long for trace save packet"));
13457 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13458 *p++ = '\0';
13459 putpkt (rs->buf);
13460 reply = remote_get_noisy_reply ();
13461 if (*reply == '\0')
13462 error (_("Target does not support this command."));
13463 if (strcmp (reply, "OK") != 0)
13464 error (_("Bogus reply from target: %s"), reply);
13465 return 0;
13466 }
13467
13468 /* This is basically a memory transfer, but needs to be its own packet
13469 because we don't know how the target actually organizes its trace
13470 memory, plus we want to be able to ask for as much as possible, but
13471 not be unhappy if we don't get as much as we ask for. */
13472
13473 LONGEST
13474 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13475 {
13476 struct remote_state *rs = get_remote_state ();
13477 char *reply;
13478 char *p;
13479 int rslt;
13480
13481 p = rs->buf.data ();
13482 strcpy (p, "qTBuffer:");
13483 p += strlen (p);
13484 p += hexnumstr (p, offset);
13485 *p++ = ',';
13486 p += hexnumstr (p, len);
13487 *p++ = '\0';
13488
13489 putpkt (rs->buf);
13490 reply = remote_get_noisy_reply ();
13491 if (reply && *reply)
13492 {
13493 /* 'l' by itself means we're at the end of the buffer and
13494 there is nothing more to get. */
13495 if (*reply == 'l')
13496 return 0;
13497
13498 /* Convert the reply into binary. Limit the number of bytes to
13499 convert according to our passed-in buffer size, rather than
13500 what was returned in the packet; if the target is
13501 unexpectedly generous and gives us a bigger reply than we
13502 asked for, we don't want to crash. */
13503 rslt = hex2bin (reply, buf, len);
13504 return rslt;
13505 }
13506
13507 /* Something went wrong, flag as an error. */
13508 return -1;
13509 }
13510
13511 void
13512 remote_target::set_disconnected_tracing (int val)
13513 {
13514 struct remote_state *rs = get_remote_state ();
13515
13516 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13517 {
13518 char *reply;
13519
13520 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13521 "QTDisconnected:%x", val);
13522 putpkt (rs->buf);
13523 reply = remote_get_noisy_reply ();
13524 if (*reply == '\0')
13525 error (_("Target does not support this command."));
13526 if (strcmp (reply, "OK") != 0)
13527 error (_("Bogus reply from target: %s"), reply);
13528 }
13529 else if (val)
13530 warning (_("Target does not support disconnected tracing."));
13531 }
13532
13533 int
13534 remote_target::core_of_thread (ptid_t ptid)
13535 {
13536 thread_info *info = find_thread_ptid (this, ptid);
13537
13538 if (info != NULL && info->priv != NULL)
13539 return get_remote_thread_info (info)->core;
13540
13541 return -1;
13542 }
13543
13544 void
13545 remote_target::set_circular_trace_buffer (int val)
13546 {
13547 struct remote_state *rs = get_remote_state ();
13548 char *reply;
13549
13550 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13551 "QTBuffer:circular:%x", val);
13552 putpkt (rs->buf);
13553 reply = remote_get_noisy_reply ();
13554 if (*reply == '\0')
13555 error (_("Target does not support this command."));
13556 if (strcmp (reply, "OK") != 0)
13557 error (_("Bogus reply from target: %s"), reply);
13558 }
13559
13560 traceframe_info_up
13561 remote_target::traceframe_info ()
13562 {
13563 gdb::optional<gdb::char_vector> text
13564 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13565 NULL);
13566 if (text)
13567 return parse_traceframe_info (text->data ());
13568
13569 return NULL;
13570 }
13571
13572 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13573 instruction on which a fast tracepoint may be placed. Returns -1
13574 if the packet is not supported, and 0 if the minimum instruction
13575 length is unknown. */
13576
13577 int
13578 remote_target::get_min_fast_tracepoint_insn_len ()
13579 {
13580 struct remote_state *rs = get_remote_state ();
13581 char *reply;
13582
13583 /* If we're not debugging a process yet, the IPA can't be
13584 loaded. */
13585 if (!target_has_execution)
13586 return 0;
13587
13588 /* Make sure the remote is pointing at the right process. */
13589 set_general_process ();
13590
13591 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13592 putpkt (rs->buf);
13593 reply = remote_get_noisy_reply ();
13594 if (*reply == '\0')
13595 return -1;
13596 else
13597 {
13598 ULONGEST min_insn_len;
13599
13600 unpack_varlen_hex (reply, &min_insn_len);
13601
13602 return (int) min_insn_len;
13603 }
13604 }
13605
13606 void
13607 remote_target::set_trace_buffer_size (LONGEST val)
13608 {
13609 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13610 {
13611 struct remote_state *rs = get_remote_state ();
13612 char *buf = rs->buf.data ();
13613 char *endbuf = buf + get_remote_packet_size ();
13614 enum packet_result result;
13615
13616 gdb_assert (val >= 0 || val == -1);
13617 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13618 /* Send -1 as literal "-1" to avoid host size dependency. */
13619 if (val < 0)
13620 {
13621 *buf++ = '-';
13622 buf += hexnumstr (buf, (ULONGEST) -val);
13623 }
13624 else
13625 buf += hexnumstr (buf, (ULONGEST) val);
13626
13627 putpkt (rs->buf);
13628 remote_get_noisy_reply ();
13629 result = packet_ok (rs->buf,
13630 &remote_protocol_packets[PACKET_QTBuffer_size]);
13631
13632 if (result != PACKET_OK)
13633 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13634 }
13635 }
13636
13637 bool
13638 remote_target::set_trace_notes (const char *user, const char *notes,
13639 const char *stop_notes)
13640 {
13641 struct remote_state *rs = get_remote_state ();
13642 char *reply;
13643 char *buf = rs->buf.data ();
13644 char *endbuf = buf + get_remote_packet_size ();
13645 int nbytes;
13646
13647 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13648 if (user)
13649 {
13650 buf += xsnprintf (buf, endbuf - buf, "user:");
13651 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13652 buf += 2 * nbytes;
13653 *buf++ = ';';
13654 }
13655 if (notes)
13656 {
13657 buf += xsnprintf (buf, endbuf - buf, "notes:");
13658 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13659 buf += 2 * nbytes;
13660 *buf++ = ';';
13661 }
13662 if (stop_notes)
13663 {
13664 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13665 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13666 buf += 2 * nbytes;
13667 *buf++ = ';';
13668 }
13669 /* Ensure the buffer is terminated. */
13670 *buf = '\0';
13671
13672 putpkt (rs->buf);
13673 reply = remote_get_noisy_reply ();
13674 if (*reply == '\0')
13675 return false;
13676
13677 if (strcmp (reply, "OK") != 0)
13678 error (_("Bogus reply from target: %s"), reply);
13679
13680 return true;
13681 }
13682
13683 bool
13684 remote_target::use_agent (bool use)
13685 {
13686 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13687 {
13688 struct remote_state *rs = get_remote_state ();
13689
13690 /* If the stub supports QAgent. */
13691 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13692 putpkt (rs->buf);
13693 getpkt (&rs->buf, 0);
13694
13695 if (strcmp (rs->buf.data (), "OK") == 0)
13696 {
13697 ::use_agent = use;
13698 return true;
13699 }
13700 }
13701
13702 return false;
13703 }
13704
13705 bool
13706 remote_target::can_use_agent ()
13707 {
13708 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13709 }
13710
13711 struct btrace_target_info
13712 {
13713 /* The ptid of the traced thread. */
13714 ptid_t ptid;
13715
13716 /* The obtained branch trace configuration. */
13717 struct btrace_config conf;
13718 };
13719
13720 /* Reset our idea of our target's btrace configuration. */
13721
13722 static void
13723 remote_btrace_reset (remote_state *rs)
13724 {
13725 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13726 }
13727
13728 /* Synchronize the configuration with the target. */
13729
13730 void
13731 remote_target::btrace_sync_conf (const btrace_config *conf)
13732 {
13733 struct packet_config *packet;
13734 struct remote_state *rs;
13735 char *buf, *pos, *endbuf;
13736
13737 rs = get_remote_state ();
13738 buf = rs->buf.data ();
13739 endbuf = buf + get_remote_packet_size ();
13740
13741 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13742 if (packet_config_support (packet) == PACKET_ENABLE
13743 && conf->bts.size != rs->btrace_config.bts.size)
13744 {
13745 pos = buf;
13746 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13747 conf->bts.size);
13748
13749 putpkt (buf);
13750 getpkt (&rs->buf, 0);
13751
13752 if (packet_ok (buf, packet) == PACKET_ERROR)
13753 {
13754 if (buf[0] == 'E' && buf[1] == '.')
13755 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13756 else
13757 error (_("Failed to configure the BTS buffer size."));
13758 }
13759
13760 rs->btrace_config.bts.size = conf->bts.size;
13761 }
13762
13763 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13764 if (packet_config_support (packet) == PACKET_ENABLE
13765 && conf->pt.size != rs->btrace_config.pt.size)
13766 {
13767 pos = buf;
13768 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13769 conf->pt.size);
13770
13771 putpkt (buf);
13772 getpkt (&rs->buf, 0);
13773
13774 if (packet_ok (buf, packet) == PACKET_ERROR)
13775 {
13776 if (buf[0] == 'E' && buf[1] == '.')
13777 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13778 else
13779 error (_("Failed to configure the trace buffer size."));
13780 }
13781
13782 rs->btrace_config.pt.size = conf->pt.size;
13783 }
13784 }
13785
13786 /* Read the current thread's btrace configuration from the target and
13787 store it into CONF. */
13788
13789 static void
13790 btrace_read_config (struct btrace_config *conf)
13791 {
13792 gdb::optional<gdb::char_vector> xml
13793 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13794 if (xml)
13795 parse_xml_btrace_conf (conf, xml->data ());
13796 }
13797
13798 /* Maybe reopen target btrace. */
13799
13800 void
13801 remote_target::remote_btrace_maybe_reopen ()
13802 {
13803 struct remote_state *rs = get_remote_state ();
13804 int btrace_target_pushed = 0;
13805 #if !defined (HAVE_LIBIPT)
13806 int warned = 0;
13807 #endif
13808
13809 /* Don't bother walking the entirety of the remote thread list when
13810 we know the feature isn't supported by the remote. */
13811 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13812 return;
13813
13814 scoped_restore_current_thread restore_thread;
13815
13816 for (thread_info *tp : all_non_exited_threads (this))
13817 {
13818 set_general_thread (tp->ptid);
13819
13820 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13821 btrace_read_config (&rs->btrace_config);
13822
13823 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13824 continue;
13825
13826 #if !defined (HAVE_LIBIPT)
13827 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13828 {
13829 if (!warned)
13830 {
13831 warned = 1;
13832 warning (_("Target is recording using Intel Processor Trace "
13833 "but support was disabled at compile time."));
13834 }
13835
13836 continue;
13837 }
13838 #endif /* !defined (HAVE_LIBIPT) */
13839
13840 /* Push target, once, but before anything else happens. This way our
13841 changes to the threads will be cleaned up by unpushing the target
13842 in case btrace_read_config () throws. */
13843 if (!btrace_target_pushed)
13844 {
13845 btrace_target_pushed = 1;
13846 record_btrace_push_target ();
13847 printf_filtered (_("Target is recording using %s.\n"),
13848 btrace_format_string (rs->btrace_config.format));
13849 }
13850
13851 tp->btrace.target = XCNEW (struct btrace_target_info);
13852 tp->btrace.target->ptid = tp->ptid;
13853 tp->btrace.target->conf = rs->btrace_config;
13854 }
13855 }
13856
13857 /* Enable branch tracing. */
13858
13859 struct btrace_target_info *
13860 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13861 {
13862 struct btrace_target_info *tinfo = NULL;
13863 struct packet_config *packet = NULL;
13864 struct remote_state *rs = get_remote_state ();
13865 char *buf = rs->buf.data ();
13866 char *endbuf = buf + get_remote_packet_size ();
13867
13868 switch (conf->format)
13869 {
13870 case BTRACE_FORMAT_BTS:
13871 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13872 break;
13873
13874 case BTRACE_FORMAT_PT:
13875 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13876 break;
13877 }
13878
13879 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13880 error (_("Target does not support branch tracing."));
13881
13882 btrace_sync_conf (conf);
13883
13884 set_general_thread (ptid);
13885
13886 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13887 putpkt (rs->buf);
13888 getpkt (&rs->buf, 0);
13889
13890 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13891 {
13892 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13893 error (_("Could not enable branch tracing for %s: %s"),
13894 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13895 else
13896 error (_("Could not enable branch tracing for %s."),
13897 target_pid_to_str (ptid).c_str ());
13898 }
13899
13900 tinfo = XCNEW (struct btrace_target_info);
13901 tinfo->ptid = ptid;
13902
13903 /* If we fail to read the configuration, we lose some information, but the
13904 tracing itself is not impacted. */
13905 try
13906 {
13907 btrace_read_config (&tinfo->conf);
13908 }
13909 catch (const gdb_exception_error &err)
13910 {
13911 if (err.message != NULL)
13912 warning ("%s", err.what ());
13913 }
13914
13915 return tinfo;
13916 }
13917
13918 /* Disable branch tracing. */
13919
13920 void
13921 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13922 {
13923 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13924 struct remote_state *rs = get_remote_state ();
13925 char *buf = rs->buf.data ();
13926 char *endbuf = buf + get_remote_packet_size ();
13927
13928 if (packet_config_support (packet) != PACKET_ENABLE)
13929 error (_("Target does not support branch tracing."));
13930
13931 set_general_thread (tinfo->ptid);
13932
13933 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13934 putpkt (rs->buf);
13935 getpkt (&rs->buf, 0);
13936
13937 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13938 {
13939 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13940 error (_("Could not disable branch tracing for %s: %s"),
13941 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13942 else
13943 error (_("Could not disable branch tracing for %s."),
13944 target_pid_to_str (tinfo->ptid).c_str ());
13945 }
13946
13947 xfree (tinfo);
13948 }
13949
13950 /* Teardown branch tracing. */
13951
13952 void
13953 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13954 {
13955 /* We must not talk to the target during teardown. */
13956 xfree (tinfo);
13957 }
13958
13959 /* Read the branch trace. */
13960
13961 enum btrace_error
13962 remote_target::read_btrace (struct btrace_data *btrace,
13963 struct btrace_target_info *tinfo,
13964 enum btrace_read_type type)
13965 {
13966 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13967 const char *annex;
13968
13969 if (packet_config_support (packet) != PACKET_ENABLE)
13970 error (_("Target does not support branch tracing."));
13971
13972 #if !defined(HAVE_LIBEXPAT)
13973 error (_("Cannot process branch tracing result. XML parsing not supported."));
13974 #endif
13975
13976 switch (type)
13977 {
13978 case BTRACE_READ_ALL:
13979 annex = "all";
13980 break;
13981 case BTRACE_READ_NEW:
13982 annex = "new";
13983 break;
13984 case BTRACE_READ_DELTA:
13985 annex = "delta";
13986 break;
13987 default:
13988 internal_error (__FILE__, __LINE__,
13989 _("Bad branch tracing read type: %u."),
13990 (unsigned int) type);
13991 }
13992
13993 gdb::optional<gdb::char_vector> xml
13994 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13995 if (!xml)
13996 return BTRACE_ERR_UNKNOWN;
13997
13998 parse_xml_btrace (btrace, xml->data ());
13999
14000 return BTRACE_ERR_NONE;
14001 }
14002
14003 const struct btrace_config *
14004 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14005 {
14006 return &tinfo->conf;
14007 }
14008
14009 bool
14010 remote_target::augmented_libraries_svr4_read ()
14011 {
14012 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14013 == PACKET_ENABLE);
14014 }
14015
14016 /* Implementation of to_load. */
14017
14018 void
14019 remote_target::load (const char *name, int from_tty)
14020 {
14021 generic_load (name, from_tty);
14022 }
14023
14024 /* Accepts an integer PID; returns a string representing a file that
14025 can be opened on the remote side to get the symbols for the child
14026 process. Returns NULL if the operation is not supported. */
14027
14028 char *
14029 remote_target::pid_to_exec_file (int pid)
14030 {
14031 static gdb::optional<gdb::char_vector> filename;
14032 char *annex = NULL;
14033
14034 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14035 return NULL;
14036
14037 inferior *inf = find_inferior_pid (this, pid);
14038 if (inf == NULL)
14039 internal_error (__FILE__, __LINE__,
14040 _("not currently attached to process %d"), pid);
14041
14042 if (!inf->fake_pid_p)
14043 {
14044 const int annex_size = 9;
14045
14046 annex = (char *) alloca (annex_size);
14047 xsnprintf (annex, annex_size, "%x", pid);
14048 }
14049
14050 filename = target_read_stralloc (current_top_target (),
14051 TARGET_OBJECT_EXEC_FILE, annex);
14052
14053 return filename ? filename->data () : nullptr;
14054 }
14055
14056 /* Implement the to_can_do_single_step target_ops method. */
14057
14058 int
14059 remote_target::can_do_single_step ()
14060 {
14061 /* We can only tell whether target supports single step or not by
14062 supported s and S vCont actions if the stub supports vContSupported
14063 feature. If the stub doesn't support vContSupported feature,
14064 we have conservatively to think target doesn't supports single
14065 step. */
14066 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14067 {
14068 struct remote_state *rs = get_remote_state ();
14069
14070 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14071 remote_vcont_probe ();
14072
14073 return rs->supports_vCont.s && rs->supports_vCont.S;
14074 }
14075 else
14076 return 0;
14077 }
14078
14079 /* Implementation of the to_execution_direction method for the remote
14080 target. */
14081
14082 enum exec_direction_kind
14083 remote_target::execution_direction ()
14084 {
14085 struct remote_state *rs = get_remote_state ();
14086
14087 return rs->last_resume_exec_dir;
14088 }
14089
14090 /* Return pointer to the thread_info struct which corresponds to
14091 THREAD_HANDLE (having length HANDLE_LEN). */
14092
14093 thread_info *
14094 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14095 int handle_len,
14096 inferior *inf)
14097 {
14098 for (thread_info *tp : all_non_exited_threads (this))
14099 {
14100 remote_thread_info *priv = get_remote_thread_info (tp);
14101
14102 if (tp->inf == inf && priv != NULL)
14103 {
14104 if (handle_len != priv->thread_handle.size ())
14105 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14106 handle_len, priv->thread_handle.size ());
14107 if (memcmp (thread_handle, priv->thread_handle.data (),
14108 handle_len) == 0)
14109 return tp;
14110 }
14111 }
14112
14113 return NULL;
14114 }
14115
14116 gdb::byte_vector
14117 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14118 {
14119 remote_thread_info *priv = get_remote_thread_info (tp);
14120 return priv->thread_handle;
14121 }
14122
14123 bool
14124 remote_target::can_async_p ()
14125 {
14126 struct remote_state *rs = get_remote_state ();
14127
14128 /* We don't go async if the user has explicitly prevented it with the
14129 "maint set target-async" command. */
14130 if (!target_async_permitted)
14131 return false;
14132
14133 /* We're async whenever the serial device is. */
14134 return serial_can_async_p (rs->remote_desc);
14135 }
14136
14137 bool
14138 remote_target::is_async_p ()
14139 {
14140 struct remote_state *rs = get_remote_state ();
14141
14142 if (!target_async_permitted)
14143 /* We only enable async when the user specifically asks for it. */
14144 return false;
14145
14146 /* We're async whenever the serial device is. */
14147 return serial_is_async_p (rs->remote_desc);
14148 }
14149
14150 /* Pass the SERIAL event on and up to the client. One day this code
14151 will be able to delay notifying the client of an event until the
14152 point where an entire packet has been received. */
14153
14154 static serial_event_ftype remote_async_serial_handler;
14155
14156 static void
14157 remote_async_serial_handler (struct serial *scb, void *context)
14158 {
14159 /* Don't propogate error information up to the client. Instead let
14160 the client find out about the error by querying the target. */
14161 inferior_event_handler (INF_REG_EVENT, NULL);
14162 }
14163
14164 static void
14165 remote_async_inferior_event_handler (gdb_client_data data)
14166 {
14167 inferior_event_handler (INF_REG_EVENT, data);
14168 }
14169
14170 int
14171 remote_target::async_wait_fd ()
14172 {
14173 struct remote_state *rs = get_remote_state ();
14174 return rs->remote_desc->fd;
14175 }
14176
14177 void
14178 remote_target::async (int enable)
14179 {
14180 struct remote_state *rs = get_remote_state ();
14181
14182 if (enable)
14183 {
14184 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14185
14186 /* If there are pending events in the stop reply queue tell the
14187 event loop to process them. */
14188 if (!rs->stop_reply_queue.empty ())
14189 mark_async_event_handler (rs->remote_async_inferior_event_token);
14190 /* For simplicity, below we clear the pending events token
14191 without remembering whether it is marked, so here we always
14192 mark it. If there's actually no pending notification to
14193 process, this ends up being a no-op (other than a spurious
14194 event-loop wakeup). */
14195 if (target_is_non_stop_p ())
14196 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14197 }
14198 else
14199 {
14200 serial_async (rs->remote_desc, NULL, NULL);
14201 /* If the core is disabling async, it doesn't want to be
14202 disturbed with target events. Clear all async event sources
14203 too. */
14204 clear_async_event_handler (rs->remote_async_inferior_event_token);
14205 if (target_is_non_stop_p ())
14206 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14207 }
14208 }
14209
14210 /* Implementation of the to_thread_events method. */
14211
14212 void
14213 remote_target::thread_events (int enable)
14214 {
14215 struct remote_state *rs = get_remote_state ();
14216 size_t size = get_remote_packet_size ();
14217
14218 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14219 return;
14220
14221 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14222 putpkt (rs->buf);
14223 getpkt (&rs->buf, 0);
14224
14225 switch (packet_ok (rs->buf,
14226 &remote_protocol_packets[PACKET_QThreadEvents]))
14227 {
14228 case PACKET_OK:
14229 if (strcmp (rs->buf.data (), "OK") != 0)
14230 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14231 break;
14232 case PACKET_ERROR:
14233 warning (_("Remote failure reply: %s"), rs->buf.data ());
14234 break;
14235 case PACKET_UNKNOWN:
14236 break;
14237 }
14238 }
14239
14240 static void
14241 show_remote_cmd (const char *args, int from_tty)
14242 {
14243 /* We can't just use cmd_show_list here, because we want to skip
14244 the redundant "show remote Z-packet" and the legacy aliases. */
14245 struct cmd_list_element *list = remote_show_cmdlist;
14246 struct ui_out *uiout = current_uiout;
14247
14248 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14249 for (; list != NULL; list = list->next)
14250 if (strcmp (list->name, "Z-packet") == 0)
14251 continue;
14252 else if (list->type == not_set_cmd)
14253 /* Alias commands are exactly like the original, except they
14254 don't have the normal type. */
14255 continue;
14256 else
14257 {
14258 ui_out_emit_tuple option_emitter (uiout, "option");
14259
14260 uiout->field_string ("name", list->name);
14261 uiout->text (": ");
14262 if (list->type == show_cmd)
14263 do_show_command (NULL, from_tty, list);
14264 else
14265 cmd_func (list, NULL, from_tty);
14266 }
14267 }
14268
14269
14270 /* Function to be called whenever a new objfile (shlib) is detected. */
14271 static void
14272 remote_new_objfile (struct objfile *objfile)
14273 {
14274 remote_target *remote = get_current_remote_target ();
14275
14276 if (remote != NULL) /* Have a remote connection. */
14277 remote->remote_check_symbols ();
14278 }
14279
14280 /* Pull all the tracepoints defined on the target and create local
14281 data structures representing them. We don't want to create real
14282 tracepoints yet, we don't want to mess up the user's existing
14283 collection. */
14284
14285 int
14286 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14287 {
14288 struct remote_state *rs = get_remote_state ();
14289 char *p;
14290
14291 /* Ask for a first packet of tracepoint definition. */
14292 putpkt ("qTfP");
14293 getpkt (&rs->buf, 0);
14294 p = rs->buf.data ();
14295 while (*p && *p != 'l')
14296 {
14297 parse_tracepoint_definition (p, utpp);
14298 /* Ask for another packet of tracepoint definition. */
14299 putpkt ("qTsP");
14300 getpkt (&rs->buf, 0);
14301 p = rs->buf.data ();
14302 }
14303 return 0;
14304 }
14305
14306 int
14307 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14308 {
14309 struct remote_state *rs = get_remote_state ();
14310 char *p;
14311
14312 /* Ask for a first packet of variable definition. */
14313 putpkt ("qTfV");
14314 getpkt (&rs->buf, 0);
14315 p = rs->buf.data ();
14316 while (*p && *p != 'l')
14317 {
14318 parse_tsv_definition (p, utsvp);
14319 /* Ask for another packet of variable definition. */
14320 putpkt ("qTsV");
14321 getpkt (&rs->buf, 0);
14322 p = rs->buf.data ();
14323 }
14324 return 0;
14325 }
14326
14327 /* The "set/show range-stepping" show hook. */
14328
14329 static void
14330 show_range_stepping (struct ui_file *file, int from_tty,
14331 struct cmd_list_element *c,
14332 const char *value)
14333 {
14334 fprintf_filtered (file,
14335 _("Debugger's willingness to use range stepping "
14336 "is %s.\n"), value);
14337 }
14338
14339 /* Return true if the vCont;r action is supported by the remote
14340 stub. */
14341
14342 bool
14343 remote_target::vcont_r_supported ()
14344 {
14345 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14346 remote_vcont_probe ();
14347
14348 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14349 && get_remote_state ()->supports_vCont.r);
14350 }
14351
14352 /* The "set/show range-stepping" set hook. */
14353
14354 static void
14355 set_range_stepping (const char *ignore_args, int from_tty,
14356 struct cmd_list_element *c)
14357 {
14358 /* When enabling, check whether range stepping is actually supported
14359 by the target, and warn if not. */
14360 if (use_range_stepping)
14361 {
14362 remote_target *remote = get_current_remote_target ();
14363 if (remote == NULL
14364 || !remote->vcont_r_supported ())
14365 warning (_("Range stepping is not supported by the current target"));
14366 }
14367 }
14368
14369 void _initialize_remote ();
14370 void
14371 _initialize_remote ()
14372 {
14373 struct cmd_list_element *cmd;
14374 const char *cmd_name;
14375
14376 /* architecture specific data */
14377 remote_g_packet_data_handle =
14378 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14379
14380 add_target (remote_target_info, remote_target::open);
14381 add_target (extended_remote_target_info, extended_remote_target::open);
14382
14383 /* Hook into new objfile notification. */
14384 gdb::observers::new_objfile.attach (remote_new_objfile);
14385
14386 #if 0
14387 init_remote_threadtests ();
14388 #endif
14389
14390 /* set/show remote ... */
14391
14392 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14393 Remote protocol specific variables.\n\
14394 Configure various remote-protocol specific variables such as\n\
14395 the packets being used."),
14396 &remote_set_cmdlist, "set remote ",
14397 0 /* allow-unknown */, &setlist);
14398 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14399 Remote protocol specific variables.\n\
14400 Configure various remote-protocol specific variables such as\n\
14401 the packets being used."),
14402 &remote_show_cmdlist, "show remote ",
14403 0 /* allow-unknown */, &showlist);
14404
14405 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14406 Compare section data on target to the exec file.\n\
14407 Argument is a single section name (default: all loaded sections).\n\
14408 To compare only read-only loaded sections, specify the -r option."),
14409 &cmdlist);
14410
14411 add_cmd ("packet", class_maintenance, packet_command, _("\
14412 Send an arbitrary packet to a remote target.\n\
14413 maintenance packet TEXT\n\
14414 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14415 this command sends the string TEXT to the inferior, and displays the\n\
14416 response packet. GDB supplies the initial `$' character, and the\n\
14417 terminating `#' character and checksum."),
14418 &maintenancelist);
14419
14420 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14421 Set whether to send break if interrupted."), _("\
14422 Show whether to send break if interrupted."), _("\
14423 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14424 set_remotebreak, show_remotebreak,
14425 &setlist, &showlist);
14426 cmd_name = "remotebreak";
14427 cmd = lookup_cmd (&cmd_name, setlist, "", NULL, -1, 1);
14428 deprecate_cmd (cmd, "set remote interrupt-sequence");
14429 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14430 cmd = lookup_cmd (&cmd_name, showlist, "", NULL, -1, 1);
14431 deprecate_cmd (cmd, "show remote interrupt-sequence");
14432
14433 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14434 interrupt_sequence_modes, &interrupt_sequence_mode,
14435 _("\
14436 Set interrupt sequence to remote target."), _("\
14437 Show interrupt sequence to remote target."), _("\
14438 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14439 NULL, show_interrupt_sequence,
14440 &remote_set_cmdlist,
14441 &remote_show_cmdlist);
14442
14443 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14444 &interrupt_on_connect, _("\
14445 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14446 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14447 If set, interrupt sequence is sent to remote target."),
14448 NULL, NULL,
14449 &remote_set_cmdlist, &remote_show_cmdlist);
14450
14451 /* Install commands for configuring memory read/write packets. */
14452
14453 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14454 Set the maximum number of bytes per memory write packet (deprecated)."),
14455 &setlist);
14456 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14457 Show the maximum number of bytes per memory write packet (deprecated)."),
14458 &showlist);
14459 add_cmd ("memory-write-packet-size", no_class,
14460 set_memory_write_packet_size, _("\
14461 Set the maximum number of bytes per memory-write packet.\n\
14462 Specify the number of bytes in a packet or 0 (zero) for the\n\
14463 default packet size. The actual limit is further reduced\n\
14464 dependent on the target. Specify ``fixed'' to disable the\n\
14465 further restriction and ``limit'' to enable that restriction."),
14466 &remote_set_cmdlist);
14467 add_cmd ("memory-read-packet-size", no_class,
14468 set_memory_read_packet_size, _("\
14469 Set the maximum number of bytes per memory-read packet.\n\
14470 Specify the number of bytes in a packet or 0 (zero) for the\n\
14471 default packet size. The actual limit is further reduced\n\
14472 dependent on the target. Specify ``fixed'' to disable the\n\
14473 further restriction and ``limit'' to enable that restriction."),
14474 &remote_set_cmdlist);
14475 add_cmd ("memory-write-packet-size", no_class,
14476 show_memory_write_packet_size,
14477 _("Show the maximum number of bytes per memory-write packet."),
14478 &remote_show_cmdlist);
14479 add_cmd ("memory-read-packet-size", no_class,
14480 show_memory_read_packet_size,
14481 _("Show the maximum number of bytes per memory-read packet."),
14482 &remote_show_cmdlist);
14483
14484 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14485 &remote_hw_watchpoint_limit, _("\
14486 Set the maximum number of target hardware watchpoints."), _("\
14487 Show the maximum number of target hardware watchpoints."), _("\
14488 Specify \"unlimited\" for unlimited hardware watchpoints."),
14489 NULL, show_hardware_watchpoint_limit,
14490 &remote_set_cmdlist,
14491 &remote_show_cmdlist);
14492 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14493 no_class,
14494 &remote_hw_watchpoint_length_limit, _("\
14495 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14496 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14497 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14498 NULL, show_hardware_watchpoint_length_limit,
14499 &remote_set_cmdlist, &remote_show_cmdlist);
14500 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14501 &remote_hw_breakpoint_limit, _("\
14502 Set the maximum number of target hardware breakpoints."), _("\
14503 Show the maximum number of target hardware breakpoints."), _("\
14504 Specify \"unlimited\" for unlimited hardware breakpoints."),
14505 NULL, show_hardware_breakpoint_limit,
14506 &remote_set_cmdlist, &remote_show_cmdlist);
14507
14508 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14509 &remote_address_size, _("\
14510 Set the maximum size of the address (in bits) in a memory packet."), _("\
14511 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14512 NULL,
14513 NULL, /* FIXME: i18n: */
14514 &setlist, &showlist);
14515
14516 init_all_packet_configs ();
14517
14518 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14519 "X", "binary-download", 1);
14520
14521 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14522 "vCont", "verbose-resume", 0);
14523
14524 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14525 "QPassSignals", "pass-signals", 0);
14526
14527 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14528 "QCatchSyscalls", "catch-syscalls", 0);
14529
14530 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14531 "QProgramSignals", "program-signals", 0);
14532
14533 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14534 "QSetWorkingDir", "set-working-dir", 0);
14535
14536 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14537 "QStartupWithShell", "startup-with-shell", 0);
14538
14539 add_packet_config_cmd (&remote_protocol_packets
14540 [PACKET_QEnvironmentHexEncoded],
14541 "QEnvironmentHexEncoded", "environment-hex-encoded",
14542 0);
14543
14544 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14545 "QEnvironmentReset", "environment-reset",
14546 0);
14547
14548 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14549 "QEnvironmentUnset", "environment-unset",
14550 0);
14551
14552 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14553 "qSymbol", "symbol-lookup", 0);
14554
14555 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14556 "P", "set-register", 1);
14557
14558 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14559 "p", "fetch-register", 1);
14560
14561 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14562 "Z0", "software-breakpoint", 0);
14563
14564 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14565 "Z1", "hardware-breakpoint", 0);
14566
14567 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14568 "Z2", "write-watchpoint", 0);
14569
14570 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14571 "Z3", "read-watchpoint", 0);
14572
14573 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14574 "Z4", "access-watchpoint", 0);
14575
14576 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14577 "qXfer:auxv:read", "read-aux-vector", 0);
14578
14579 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14580 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14581
14582 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14583 "qXfer:features:read", "target-features", 0);
14584
14585 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14586 "qXfer:libraries:read", "library-info", 0);
14587
14588 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14589 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14590
14591 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14592 "qXfer:memory-map:read", "memory-map", 0);
14593
14594 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14595 "qXfer:osdata:read", "osdata", 0);
14596
14597 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14598 "qXfer:threads:read", "threads", 0);
14599
14600 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14601 "qXfer:siginfo:read", "read-siginfo-object", 0);
14602
14603 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14604 "qXfer:siginfo:write", "write-siginfo-object", 0);
14605
14606 add_packet_config_cmd
14607 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14608 "qXfer:traceframe-info:read", "traceframe-info", 0);
14609
14610 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14611 "qXfer:uib:read", "unwind-info-block", 0);
14612
14613 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14614 "qGetTLSAddr", "get-thread-local-storage-address",
14615 0);
14616
14617 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14618 "qGetTIBAddr", "get-thread-information-block-address",
14619 0);
14620
14621 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14622 "bc", "reverse-continue", 0);
14623
14624 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14625 "bs", "reverse-step", 0);
14626
14627 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14628 "qSupported", "supported-packets", 0);
14629
14630 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14631 "qSearch:memory", "search-memory", 0);
14632
14633 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14634 "qTStatus", "trace-status", 0);
14635
14636 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14637 "vFile:setfs", "hostio-setfs", 0);
14638
14639 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14640 "vFile:open", "hostio-open", 0);
14641
14642 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14643 "vFile:pread", "hostio-pread", 0);
14644
14645 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14646 "vFile:pwrite", "hostio-pwrite", 0);
14647
14648 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14649 "vFile:close", "hostio-close", 0);
14650
14651 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14652 "vFile:unlink", "hostio-unlink", 0);
14653
14654 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14655 "vFile:readlink", "hostio-readlink", 0);
14656
14657 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14658 "vFile:fstat", "hostio-fstat", 0);
14659
14660 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14661 "vAttach", "attach", 0);
14662
14663 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14664 "vRun", "run", 0);
14665
14666 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14667 "QStartNoAckMode", "noack", 0);
14668
14669 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14670 "vKill", "kill", 0);
14671
14672 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14673 "qAttached", "query-attached", 0);
14674
14675 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14676 "ConditionalTracepoints",
14677 "conditional-tracepoints", 0);
14678
14679 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14680 "ConditionalBreakpoints",
14681 "conditional-breakpoints", 0);
14682
14683 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14684 "BreakpointCommands",
14685 "breakpoint-commands", 0);
14686
14687 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14688 "FastTracepoints", "fast-tracepoints", 0);
14689
14690 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14691 "TracepointSource", "TracepointSource", 0);
14692
14693 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14694 "QAllow", "allow", 0);
14695
14696 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14697 "StaticTracepoints", "static-tracepoints", 0);
14698
14699 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14700 "InstallInTrace", "install-in-trace", 0);
14701
14702 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14703 "qXfer:statictrace:read", "read-sdata-object", 0);
14704
14705 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14706 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14707
14708 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14709 "QDisableRandomization", "disable-randomization", 0);
14710
14711 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14712 "QAgent", "agent", 0);
14713
14714 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14715 "QTBuffer:size", "trace-buffer-size", 0);
14716
14717 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14718 "Qbtrace:off", "disable-btrace", 0);
14719
14720 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14721 "Qbtrace:bts", "enable-btrace-bts", 0);
14722
14723 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14724 "Qbtrace:pt", "enable-btrace-pt", 0);
14725
14726 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14727 "qXfer:btrace", "read-btrace", 0);
14728
14729 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14730 "qXfer:btrace-conf", "read-btrace-conf", 0);
14731
14732 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14733 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14734
14735 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14736 "multiprocess-feature", "multiprocess-feature", 0);
14737
14738 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14739 "swbreak-feature", "swbreak-feature", 0);
14740
14741 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14742 "hwbreak-feature", "hwbreak-feature", 0);
14743
14744 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14745 "fork-event-feature", "fork-event-feature", 0);
14746
14747 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14748 "vfork-event-feature", "vfork-event-feature", 0);
14749
14750 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14751 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14752
14753 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14754 "vContSupported", "verbose-resume-supported", 0);
14755
14756 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14757 "exec-event-feature", "exec-event-feature", 0);
14758
14759 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14760 "vCtrlC", "ctrl-c", 0);
14761
14762 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14763 "QThreadEvents", "thread-events", 0);
14764
14765 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14766 "N stop reply", "no-resumed-stop-reply", 0);
14767
14768 /* Assert that we've registered "set remote foo-packet" commands
14769 for all packet configs. */
14770 {
14771 int i;
14772
14773 for (i = 0; i < PACKET_MAX; i++)
14774 {
14775 /* Ideally all configs would have a command associated. Some
14776 still don't though. */
14777 int excepted;
14778
14779 switch (i)
14780 {
14781 case PACKET_QNonStop:
14782 case PACKET_EnableDisableTracepoints_feature:
14783 case PACKET_tracenz_feature:
14784 case PACKET_DisconnectedTracing_feature:
14785 case PACKET_augmented_libraries_svr4_read_feature:
14786 case PACKET_qCRC:
14787 /* Additions to this list need to be well justified:
14788 pre-existing packets are OK; new packets are not. */
14789 excepted = 1;
14790 break;
14791 default:
14792 excepted = 0;
14793 break;
14794 }
14795
14796 /* This catches both forgetting to add a config command, and
14797 forgetting to remove a packet from the exception list. */
14798 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14799 }
14800 }
14801
14802 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14803 Z sub-packet has its own set and show commands, but users may
14804 have sets to this variable in their .gdbinit files (or in their
14805 documentation). */
14806 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14807 &remote_Z_packet_detect, _("\
14808 Set use of remote protocol `Z' packets."), _("\
14809 Show use of remote protocol `Z' packets."), _("\
14810 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14811 packets."),
14812 set_remote_protocol_Z_packet_cmd,
14813 show_remote_protocol_Z_packet_cmd,
14814 /* FIXME: i18n: Use of remote protocol
14815 `Z' packets is %s. */
14816 &remote_set_cmdlist, &remote_show_cmdlist);
14817
14818 add_basic_prefix_cmd ("remote", class_files, _("\
14819 Manipulate files on the remote system.\n\
14820 Transfer files to and from the remote target system."),
14821 &remote_cmdlist, "remote ",
14822 0 /* allow-unknown */, &cmdlist);
14823
14824 add_cmd ("put", class_files, remote_put_command,
14825 _("Copy a local file to the remote system."),
14826 &remote_cmdlist);
14827
14828 add_cmd ("get", class_files, remote_get_command,
14829 _("Copy a remote file to the local system."),
14830 &remote_cmdlist);
14831
14832 add_cmd ("delete", class_files, remote_delete_command,
14833 _("Delete a remote file."),
14834 &remote_cmdlist);
14835
14836 add_setshow_string_noescape_cmd ("exec-file", class_files,
14837 &remote_exec_file_var, _("\
14838 Set the remote pathname for \"run\"."), _("\
14839 Show the remote pathname for \"run\"."), NULL,
14840 set_remote_exec_file,
14841 show_remote_exec_file,
14842 &remote_set_cmdlist,
14843 &remote_show_cmdlist);
14844
14845 add_setshow_boolean_cmd ("range-stepping", class_run,
14846 &use_range_stepping, _("\
14847 Enable or disable range stepping."), _("\
14848 Show whether target-assisted range stepping is enabled."), _("\
14849 If on, and the target supports it, when stepping a source line, GDB\n\
14850 tells the target to step the corresponding range of addresses itself instead\n\
14851 of issuing multiple single-steps. This speeds up source level\n\
14852 stepping. If off, GDB always issues single-steps, even if range\n\
14853 stepping is supported by the target. The default is on."),
14854 set_range_stepping,
14855 show_range_stepping,
14856 &setlist,
14857 &showlist);
14858
14859 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
14860 Set watchdog timer."), _("\
14861 Show watchdog timer."), _("\
14862 When non-zero, this timeout is used instead of waiting forever for a target\n\
14863 to finish a low-level step or continue operation. If the specified amount\n\
14864 of time passes without a response from the target, an error occurs."),
14865 NULL,
14866 show_watchdog,
14867 &setlist, &showlist);
14868
14869 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
14870 &remote_packet_max_chars, _("\
14871 Set the maximum number of characters to display for each remote packet."), _("\
14872 Show the maximum number of characters to display for each remote packet."), _("\
14873 Specify \"unlimited\" to display all the characters."),
14874 NULL, show_remote_packet_max_chars,
14875 &setdebuglist, &showdebuglist);
14876
14877 /* Eventually initialize fileio. See fileio.c */
14878 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
14879 }
This page took 0.330027 seconds and 4 git commands to generate.