2005-02-11 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44
45 #include <ctype.h>
46 #include <sys/time.h>
47
48 #include "event-loop.h"
49 #include "event-top.h"
50 #include "inf-loop.h"
51
52 #include <signal.h>
53 #include "serial.h"
54
55 #include "gdbcore.h" /* for exec_bfd */
56
57 #include "remote-fileio.h"
58
59 /* Prototypes for local functions. */
60 static void cleanup_sigint_signal_handler (void *dummy);
61 static void initialize_sigint_signal_handler (void);
62 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
63
64 static void handle_remote_sigint (int);
65 static void handle_remote_sigint_twice (int);
66 static void async_remote_interrupt (gdb_client_data);
67 void async_remote_interrupt_twice (gdb_client_data);
68
69 static void build_remote_gdbarch_data (void);
70
71 static void remote_files_info (struct target_ops *ignore);
72
73 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
74 int len, int should_write,
75 struct mem_attrib *attrib,
76 struct target_ops *target);
77
78 static void remote_prepare_to_store (void);
79
80 static void remote_fetch_registers (int regno);
81
82 static void remote_resume (ptid_t ptid, int step,
83 enum target_signal siggnal);
84 static void remote_async_resume (ptid_t ptid, int step,
85 enum target_signal siggnal);
86 static void remote_open (char *name, int from_tty);
87 static void remote_async_open (char *name, int from_tty);
88
89 static void extended_remote_open (char *name, int from_tty);
90 static void extended_remote_async_open (char *name, int from_tty);
91
92 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
93 int async_p);
94
95 static void remote_close (int quitting);
96
97 static void remote_store_registers (int regno);
98
99 static void remote_mourn (void);
100 static void remote_async_mourn (void);
101
102 static void extended_remote_restart (void);
103
104 static void extended_remote_mourn (void);
105
106 static void remote_mourn_1 (struct target_ops *);
107
108 static void remote_send (char *buf, long sizeof_buf);
109
110 static int readchar (int timeout);
111
112 static ptid_t remote_wait (ptid_t ptid,
113 struct target_waitstatus *status);
114 static ptid_t remote_async_wait (ptid_t ptid,
115 struct target_waitstatus *status);
116
117 static void remote_kill (void);
118 static void remote_async_kill (void);
119
120 static int tohex (int nib);
121
122 static void remote_detach (char *args, int from_tty);
123
124 static void remote_interrupt (int signo);
125
126 static void remote_interrupt_twice (int signo);
127
128 static void interrupt_query (void);
129
130 static void set_thread (int, int);
131
132 static int remote_thread_alive (ptid_t);
133
134 static void get_offsets (void);
135
136 static long read_frame (char *buf, long sizeof_buf);
137
138 static int remote_insert_breakpoint (CORE_ADDR, char *);
139
140 static int remote_remove_breakpoint (CORE_ADDR, char *);
141
142 static int hexnumlen (ULONGEST num);
143
144 static void init_remote_ops (void);
145
146 static void init_extended_remote_ops (void);
147
148 static void remote_stop (void);
149
150 static int ishex (int ch, int *val);
151
152 static int stubhex (int ch);
153
154 static int hexnumstr (char *, ULONGEST);
155
156 static int hexnumnstr (char *, ULONGEST, int);
157
158 static CORE_ADDR remote_address_masked (CORE_ADDR);
159
160 static void print_packet (char *);
161
162 static unsigned long crc32 (unsigned char *, int, unsigned int);
163
164 static void compare_sections_command (char *, int);
165
166 static void packet_command (char *, int);
167
168 static int stub_unpack_int (char *buff, int fieldlength);
169
170 static ptid_t remote_current_thread (ptid_t oldptid);
171
172 static void remote_find_new_threads (void);
173
174 static void record_currthread (int currthread);
175
176 static int fromhex (int a);
177
178 static int hex2bin (const char *hex, char *bin, int count);
179
180 static int bin2hex (const char *bin, char *hex, int count);
181
182 static int putpkt_binary (char *buf, int cnt);
183
184 static void check_binary_download (CORE_ADDR addr);
185
186 struct packet_config;
187
188 static void show_packet_config_cmd (struct packet_config *config);
189
190 static void update_packet_config (struct packet_config *config);
191
192 void _initialize_remote (void);
193
194 /* Description of the remote protocol. Strictly speaking, when the
195 target is open()ed, remote.c should create a per-target description
196 of the remote protocol using that target's architecture.
197 Unfortunately, the target stack doesn't include local state. For
198 the moment keep the information in the target's architecture
199 object. Sigh.. */
200
201 struct packet_reg
202 {
203 long offset; /* Offset into G packet. */
204 long regnum; /* GDB's internal register number. */
205 LONGEST pnum; /* Remote protocol register number. */
206 int in_g_packet; /* Always part of G packet. */
207 /* long size in bytes; == register_size (current_gdbarch, regnum);
208 at present. */
209 /* char *name; == REGISTER_NAME (regnum); at present. */
210 };
211
212 struct remote_state
213 {
214 /* Description of the remote protocol registers. */
215 long sizeof_g_packet;
216
217 /* Description of the remote protocol registers indexed by REGNUM
218 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
219 struct packet_reg *regs;
220
221 /* This is the size (in chars) of the first response to the ``g''
222 packet. It is used as a heuristic when determining the maximum
223 size of memory-read and memory-write packets. A target will
224 typically only reserve a buffer large enough to hold the ``g''
225 packet. The size does not include packet overhead (headers and
226 trailers). */
227 long actual_register_packet_size;
228
229 /* This is the maximum size (in chars) of a non read/write packet.
230 It is also used as a cap on the size of read/write packets. */
231 long remote_packet_size;
232 };
233
234
235 /* Handle for retreving the remote protocol data from gdbarch. */
236 static struct gdbarch_data *remote_gdbarch_data_handle;
237
238 static struct remote_state *
239 get_remote_state (void)
240 {
241 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
242 }
243
244 static void *
245 init_remote_state (struct gdbarch *gdbarch)
246 {
247 int regnum;
248 struct remote_state *rs = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_state);
249
250 if (deprecated_register_bytes () != 0)
251 rs->sizeof_g_packet = deprecated_register_bytes ();
252 else
253 rs->sizeof_g_packet = 0;
254
255 /* Assume a 1:1 regnum<->pnum table. */
256 rs->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS + NUM_PSEUDO_REGS,
257 struct packet_reg);
258 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
259 {
260 struct packet_reg *r = &rs->regs[regnum];
261 r->pnum = regnum;
262 r->regnum = regnum;
263 r->offset = DEPRECATED_REGISTER_BYTE (regnum);
264 r->in_g_packet = (regnum < NUM_REGS);
265 /* ...name = REGISTER_NAME (regnum); */
266
267 /* Compute packet size by accumulating the size of all registers. */
268 if (deprecated_register_bytes () == 0)
269 rs->sizeof_g_packet += register_size (current_gdbarch, regnum);
270 }
271
272 /* Default maximum number of characters in a packet body. Many
273 remote stubs have a hardwired buffer size of 400 bytes
274 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
275 as the maximum packet-size to ensure that the packet and an extra
276 NUL character can always fit in the buffer. This stops GDB
277 trashing stubs that try to squeeze an extra NUL into what is
278 already a full buffer (As of 1999-12-04 that was most stubs. */
279 rs->remote_packet_size = 400 - 1;
280
281 /* Should rs->sizeof_g_packet needs more space than the
282 default, adjust the size accordingly. Remember that each byte is
283 encoded as two characters. 32 is the overhead for the packet
284 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
285 (``$NN:G...#NN'') is a better guess, the below has been padded a
286 little. */
287 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
288 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
289
290 /* This one is filled in when a ``g'' packet is received. */
291 rs->actual_register_packet_size = 0;
292
293 return rs;
294 }
295
296 static struct packet_reg *
297 packet_reg_from_regnum (struct remote_state *rs, long regnum)
298 {
299 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
300 return NULL;
301 else
302 {
303 struct packet_reg *r = &rs->regs[regnum];
304 gdb_assert (r->regnum == regnum);
305 return r;
306 }
307 }
308
309 static struct packet_reg *
310 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
311 {
312 int i;
313 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
314 {
315 struct packet_reg *r = &rs->regs[i];
316 if (r->pnum == pnum)
317 return r;
318 }
319 return NULL;
320 }
321
322 /* FIXME: graces/2002-08-08: These variables should eventually be
323 bound to an instance of the target object (as in gdbarch-tdep()),
324 when such a thing exists. */
325
326 /* This is set to the data address of the access causing the target
327 to stop for a watchpoint. */
328 static CORE_ADDR remote_watch_data_address;
329
330 /* This is non-zero if taregt stopped for a watchpoint. */
331 static int remote_stopped_by_watchpoint_p;
332
333
334 static struct target_ops remote_ops;
335
336 static struct target_ops extended_remote_ops;
337
338 /* Temporary target ops. Just like the remote_ops and
339 extended_remote_ops, but with asynchronous support. */
340 static struct target_ops remote_async_ops;
341
342 static struct target_ops extended_async_remote_ops;
343
344 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
345 ``forever'' still use the normal timeout mechanism. This is
346 currently used by the ASYNC code to guarentee that target reads
347 during the initial connect always time-out. Once getpkt has been
348 modified to return a timeout indication and, in turn
349 remote_wait()/wait_for_inferior() have gained a timeout parameter
350 this can go away. */
351 static int wait_forever_enabled_p = 1;
352
353
354 /* This variable chooses whether to send a ^C or a break when the user
355 requests program interruption. Although ^C is usually what remote
356 systems expect, and that is the default here, sometimes a break is
357 preferable instead. */
358
359 static int remote_break;
360
361 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
362 remote_open knows that we don't have a file open when the program
363 starts. */
364 static struct serial *remote_desc = NULL;
365
366 /* This variable sets the number of bits in an address that are to be
367 sent in a memory ("M" or "m") packet. Normally, after stripping
368 leading zeros, the entire address would be sent. This variable
369 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
370 initial implementation of remote.c restricted the address sent in
371 memory packets to ``host::sizeof long'' bytes - (typically 32
372 bits). Consequently, for 64 bit targets, the upper 32 bits of an
373 address was never sent. Since fixing this bug may cause a break in
374 some remote targets this variable is principly provided to
375 facilitate backward compatibility. */
376
377 static int remote_address_size;
378
379 /* Tempoary to track who currently owns the terminal. See
380 target_async_terminal_* for more details. */
381
382 static int remote_async_terminal_ours_p;
383
384 \f
385 /* User configurable variables for the number of characters in a
386 memory read/write packet. MIN ((rs->remote_packet_size),
387 rs->sizeof_g_packet) is the default. Some targets need smaller
388 values (fifo overruns, et.al.) and some users need larger values
389 (speed up transfers). The variables ``preferred_*'' (the user
390 request), ``current_*'' (what was actually set) and ``forced_*''
391 (Positive - a soft limit, negative - a hard limit). */
392
393 struct memory_packet_config
394 {
395 char *name;
396 long size;
397 int fixed_p;
398 };
399
400 /* Compute the current size of a read/write packet. Since this makes
401 use of ``actual_register_packet_size'' the computation is dynamic. */
402
403 static long
404 get_memory_packet_size (struct memory_packet_config *config)
405 {
406 struct remote_state *rs = get_remote_state ();
407 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
408 law?) that some hosts don't cope very well with large alloca()
409 calls. Eventually the alloca() code will be replaced by calls to
410 xmalloc() and make_cleanups() allowing this restriction to either
411 be lifted or removed. */
412 #ifndef MAX_REMOTE_PACKET_SIZE
413 #define MAX_REMOTE_PACKET_SIZE 16384
414 #endif
415 /* NOTE: 16 is just chosen at random. */
416 #ifndef MIN_REMOTE_PACKET_SIZE
417 #define MIN_REMOTE_PACKET_SIZE 16
418 #endif
419 long what_they_get;
420 if (config->fixed_p)
421 {
422 if (config->size <= 0)
423 what_they_get = MAX_REMOTE_PACKET_SIZE;
424 else
425 what_they_get = config->size;
426 }
427 else
428 {
429 what_they_get = (rs->remote_packet_size);
430 /* Limit the packet to the size specified by the user. */
431 if (config->size > 0
432 && what_they_get > config->size)
433 what_they_get = config->size;
434 /* Limit it to the size of the targets ``g'' response. */
435 if ((rs->actual_register_packet_size) > 0
436 && what_they_get > (rs->actual_register_packet_size))
437 what_they_get = (rs->actual_register_packet_size);
438 }
439 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
440 what_they_get = MAX_REMOTE_PACKET_SIZE;
441 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
442 what_they_get = MIN_REMOTE_PACKET_SIZE;
443 return what_they_get;
444 }
445
446 /* Update the size of a read/write packet. If they user wants
447 something really big then do a sanity check. */
448
449 static void
450 set_memory_packet_size (char *args, struct memory_packet_config *config)
451 {
452 int fixed_p = config->fixed_p;
453 long size = config->size;
454 if (args == NULL)
455 error (_("Argument required (integer, `fixed' or `limited')."));
456 else if (strcmp (args, "hard") == 0
457 || strcmp (args, "fixed") == 0)
458 fixed_p = 1;
459 else if (strcmp (args, "soft") == 0
460 || strcmp (args, "limit") == 0)
461 fixed_p = 0;
462 else
463 {
464 char *end;
465 size = strtoul (args, &end, 0);
466 if (args == end)
467 error (_("Invalid %s (bad syntax)."), config->name);
468 #if 0
469 /* Instead of explicitly capping the size of a packet to
470 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
471 instead allowed to set the size to something arbitrarily
472 large. */
473 if (size > MAX_REMOTE_PACKET_SIZE)
474 error (_("Invalid %s (too large)."), config->name);
475 #endif
476 }
477 /* Extra checks? */
478 if (fixed_p && !config->fixed_p)
479 {
480 if (! query (_("The target may not be able to correctly handle a %s\n"
481 "of %ld bytes. Change the packet size? "),
482 config->name, size))
483 error (_("Packet size not changed."));
484 }
485 /* Update the config. */
486 config->fixed_p = fixed_p;
487 config->size = size;
488 }
489
490 static void
491 show_memory_packet_size (struct memory_packet_config *config)
492 {
493 printf_filtered ("The %s is %ld. ", config->name, config->size);
494 if (config->fixed_p)
495 printf_filtered ("Packets are fixed at %ld bytes.\n",
496 get_memory_packet_size (config));
497 else
498 printf_filtered ("Packets are limited to %ld bytes.\n",
499 get_memory_packet_size (config));
500 }
501
502 static struct memory_packet_config memory_write_packet_config =
503 {
504 "memory-write-packet-size",
505 };
506
507 static void
508 set_memory_write_packet_size (char *args, int from_tty)
509 {
510 set_memory_packet_size (args, &memory_write_packet_config);
511 }
512
513 static void
514 show_memory_write_packet_size (char *args, int from_tty)
515 {
516 show_memory_packet_size (&memory_write_packet_config);
517 }
518
519 static long
520 get_memory_write_packet_size (void)
521 {
522 return get_memory_packet_size (&memory_write_packet_config);
523 }
524
525 static struct memory_packet_config memory_read_packet_config =
526 {
527 "memory-read-packet-size",
528 };
529
530 static void
531 set_memory_read_packet_size (char *args, int from_tty)
532 {
533 set_memory_packet_size (args, &memory_read_packet_config);
534 }
535
536 static void
537 show_memory_read_packet_size (char *args, int from_tty)
538 {
539 show_memory_packet_size (&memory_read_packet_config);
540 }
541
542 static long
543 get_memory_read_packet_size (void)
544 {
545 struct remote_state *rs = get_remote_state ();
546 long size = get_memory_packet_size (&memory_read_packet_config);
547 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
548 extra buffer size argument before the memory read size can be
549 increased beyond (rs->remote_packet_size). */
550 if (size > (rs->remote_packet_size))
551 size = (rs->remote_packet_size);
552 return size;
553 }
554
555 \f
556 /* Generic configuration support for packets the stub optionally
557 supports. Allows the user to specify the use of the packet as well
558 as allowing GDB to auto-detect support in the remote stub. */
559
560 enum packet_support
561 {
562 PACKET_SUPPORT_UNKNOWN = 0,
563 PACKET_ENABLE,
564 PACKET_DISABLE
565 };
566
567 struct packet_config
568 {
569 char *name;
570 char *title;
571 enum auto_boolean detect;
572 enum packet_support support;
573 };
574
575 /* Analyze a packet's return value and update the packet config
576 accordingly. */
577
578 enum packet_result
579 {
580 PACKET_ERROR,
581 PACKET_OK,
582 PACKET_UNKNOWN
583 };
584
585 static void
586 update_packet_config (struct packet_config *config)
587 {
588 switch (config->detect)
589 {
590 case AUTO_BOOLEAN_TRUE:
591 config->support = PACKET_ENABLE;
592 break;
593 case AUTO_BOOLEAN_FALSE:
594 config->support = PACKET_DISABLE;
595 break;
596 case AUTO_BOOLEAN_AUTO:
597 config->support = PACKET_SUPPORT_UNKNOWN;
598 break;
599 }
600 }
601
602 static void
603 show_packet_config_cmd (struct packet_config *config)
604 {
605 char *support = "internal-error";
606 switch (config->support)
607 {
608 case PACKET_ENABLE:
609 support = "enabled";
610 break;
611 case PACKET_DISABLE:
612 support = "disabled";
613 break;
614 case PACKET_SUPPORT_UNKNOWN:
615 support = "unknown";
616 break;
617 }
618 switch (config->detect)
619 {
620 case AUTO_BOOLEAN_AUTO:
621 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
622 config->name, config->title, support);
623 break;
624 case AUTO_BOOLEAN_TRUE:
625 case AUTO_BOOLEAN_FALSE:
626 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
627 config->name, config->title, support);
628 break;
629 }
630 }
631
632 static void
633 add_packet_config_cmd (struct packet_config *config,
634 char *name,
635 char *title,
636 cmd_sfunc_ftype *set_func,
637 cmd_sfunc_ftype *show_func,
638 struct cmd_list_element **set_remote_list,
639 struct cmd_list_element **show_remote_list,
640 int legacy)
641 {
642 struct cmd_list_element *set_cmd;
643 struct cmd_list_element *show_cmd;
644 char *set_doc;
645 char *show_doc;
646 char *help_doc;
647 char *print;
648 char *cmd_name;
649 config->name = name;
650 config->title = title;
651 config->detect = AUTO_BOOLEAN_AUTO;
652 config->support = PACKET_SUPPORT_UNKNOWN;
653 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
654 name, title);
655 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
656 name, title);
657 print = xstrprintf ("Current use of remote protocol `%s' (%s) is %%s",
658 name, title);
659 /* set/show TITLE-packet {auto,on,off} */
660 cmd_name = xstrprintf ("%s-packet", title);
661 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
662 &config->detect, set_doc, show_doc,
663 "", NULL /*print*/,
664 set_func, show_func,
665 set_remote_list, show_remote_list);
666 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
667 if (legacy)
668 {
669 char *legacy_name;
670 legacy_name = xstrprintf ("%s-packet", name);
671 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
672 set_remote_list);
673 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
674 show_remote_list);
675 }
676 }
677
678 static enum packet_result
679 packet_ok (const char *buf, struct packet_config *config)
680 {
681 if (buf[0] != '\0')
682 {
683 /* The stub recognized the packet request. Check that the
684 operation succeeded. */
685 switch (config->support)
686 {
687 case PACKET_SUPPORT_UNKNOWN:
688 if (remote_debug)
689 fprintf_unfiltered (gdb_stdlog,
690 "Packet %s (%s) is supported\n",
691 config->name, config->title);
692 config->support = PACKET_ENABLE;
693 break;
694 case PACKET_DISABLE:
695 internal_error (__FILE__, __LINE__,
696 _("packet_ok: attempt to use a disabled packet"));
697 break;
698 case PACKET_ENABLE:
699 break;
700 }
701 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
702 /* "OK" - definitly OK. */
703 return PACKET_OK;
704 if (buf[0] == 'E'
705 && isxdigit (buf[1]) && isxdigit (buf[2])
706 && buf[3] == '\0')
707 /* "Enn" - definitly an error. */
708 return PACKET_ERROR;
709 /* The packet may or may not be OK. Just assume it is. */
710 return PACKET_OK;
711 }
712 else
713 {
714 /* The stub does not support the packet. */
715 switch (config->support)
716 {
717 case PACKET_ENABLE:
718 if (config->detect == AUTO_BOOLEAN_AUTO)
719 /* If the stub previously indicated that the packet was
720 supported then there is a protocol error.. */
721 error (_("Protocol error: %s (%s) conflicting enabled responses."),
722 config->name, config->title);
723 else
724 /* The user set it wrong. */
725 error (_("Enabled packet %s (%s) not recognized by stub"),
726 config->name, config->title);
727 break;
728 case PACKET_SUPPORT_UNKNOWN:
729 if (remote_debug)
730 fprintf_unfiltered (gdb_stdlog,
731 "Packet %s (%s) is NOT supported\n",
732 config->name, config->title);
733 config->support = PACKET_DISABLE;
734 break;
735 case PACKET_DISABLE:
736 break;
737 }
738 return PACKET_UNKNOWN;
739 }
740 }
741
742 /* Should we try the 'vCont' (descriptive resume) request? */
743 static struct packet_config remote_protocol_vcont;
744
745 static void
746 set_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
747 struct cmd_list_element *c)
748 {
749 update_packet_config (&remote_protocol_vcont);
750 }
751
752 static void
753 show_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
754 struct cmd_list_element *c)
755 {
756 show_packet_config_cmd (&remote_protocol_vcont);
757 }
758
759 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
760 static struct packet_config remote_protocol_qSymbol;
761
762 static void
763 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
764 struct cmd_list_element *c)
765 {
766 update_packet_config (&remote_protocol_qSymbol);
767 }
768
769 static void
770 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
771 struct cmd_list_element *c)
772 {
773 show_packet_config_cmd (&remote_protocol_qSymbol);
774 }
775
776 /* Should we try the 'P' (set register) request? */
777
778 static struct packet_config remote_protocol_P;
779
780 static void
781 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
782 struct cmd_list_element *c)
783 {
784 update_packet_config (&remote_protocol_P);
785 }
786
787 static void
788 show_remote_protocol_P_packet_cmd (char *args, int from_tty,
789 struct cmd_list_element *c)
790 {
791 show_packet_config_cmd (&remote_protocol_P);
792 }
793
794 /* Should we try one of the 'Z' requests? */
795
796 enum Z_packet_type
797 {
798 Z_PACKET_SOFTWARE_BP,
799 Z_PACKET_HARDWARE_BP,
800 Z_PACKET_WRITE_WP,
801 Z_PACKET_READ_WP,
802 Z_PACKET_ACCESS_WP,
803 NR_Z_PACKET_TYPES
804 };
805
806 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
807
808 /* FIXME: Instead of having all these boiler plate functions, the
809 command callback should include a context argument. */
810
811 static void
812 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
813 struct cmd_list_element *c)
814 {
815 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
816 }
817
818 static void
819 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
820 struct cmd_list_element *c)
821 {
822 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
823 }
824
825 static void
826 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
827 struct cmd_list_element *c)
828 {
829 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
830 }
831
832 static void
833 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
834 struct cmd_list_element *c)
835 {
836 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
837 }
838
839 static void
840 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
841 struct cmd_list_element *c)
842 {
843 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
844 }
845
846 static void
847 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
848 struct cmd_list_element *c)
849 {
850 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
851 }
852
853 static void
854 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
855 struct cmd_list_element *c)
856 {
857 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
858 }
859
860 static void
861 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
862 struct cmd_list_element *c)
863 {
864 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
865 }
866
867 static void
868 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
869 struct cmd_list_element *c)
870 {
871 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
872 }
873
874 static void
875 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
876 struct cmd_list_element *c)
877 {
878 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
879 }
880
881 /* For compatibility with older distributions. Provide a ``set remote
882 Z-packet ...'' command that updates all the Z packet types. */
883
884 static enum auto_boolean remote_Z_packet_detect;
885
886 static void
887 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
888 struct cmd_list_element *c)
889 {
890 int i;
891 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
892 {
893 remote_protocol_Z[i].detect = remote_Z_packet_detect;
894 update_packet_config (&remote_protocol_Z[i]);
895 }
896 }
897
898 static void
899 show_remote_protocol_Z_packet_cmd (char *args, int from_tty,
900 struct cmd_list_element *c)
901 {
902 int i;
903 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
904 {
905 show_packet_config_cmd (&remote_protocol_Z[i]);
906 }
907 }
908
909 /* Should we try the 'X' (remote binary download) packet?
910
911 This variable (available to the user via "set remote X-packet")
912 dictates whether downloads are sent in binary (via the 'X' packet).
913 We assume that the stub can, and attempt to do it. This will be
914 cleared if the stub does not understand it. This switch is still
915 needed, though in cases when the packet is supported in the stub,
916 but the connection does not allow it (i.e., 7-bit serial connection
917 only). */
918
919 static struct packet_config remote_protocol_binary_download;
920
921 /* Should we try the 'ThreadInfo' query packet?
922
923 This variable (NOT available to the user: auto-detect only!)
924 determines whether GDB will use the new, simpler "ThreadInfo"
925 query or the older, more complex syntax for thread queries.
926 This is an auto-detect variable (set to true at each connect,
927 and set to false when the target fails to recognize it). */
928
929 static int use_threadinfo_query;
930 static int use_threadextra_query;
931
932 static void
933 set_remote_protocol_binary_download_cmd (char *args,
934 int from_tty,
935 struct cmd_list_element *c)
936 {
937 update_packet_config (&remote_protocol_binary_download);
938 }
939
940 static void
941 show_remote_protocol_binary_download_cmd (char *args, int from_tty,
942 struct cmd_list_element *c)
943 {
944 show_packet_config_cmd (&remote_protocol_binary_download);
945 }
946
947 /* Should we try the 'qPart:auxv' (target auxiliary vector read) request? */
948 static struct packet_config remote_protocol_qPart_auxv;
949
950 static void
951 set_remote_protocol_qPart_auxv_packet_cmd (char *args, int from_tty,
952 struct cmd_list_element *c)
953 {
954 update_packet_config (&remote_protocol_qPart_auxv);
955 }
956
957 static void
958 show_remote_protocol_qPart_auxv_packet_cmd (char *args, int from_tty,
959 struct cmd_list_element *c)
960 {
961 show_packet_config_cmd (&remote_protocol_qPart_auxv);
962 }
963
964 static struct packet_config remote_protocol_p;
965
966 static void
967 set_remote_protocol_p_packet_cmd (char *args, int from_tty,
968 struct cmd_list_element *c)
969 {
970 update_packet_config (&remote_protocol_p);
971 }
972
973 static void
974 show_remote_protocol_p_packet_cmd (char *args, int from_tty,
975 struct cmd_list_element *c)
976 {
977 show_packet_config_cmd (&remote_protocol_p);
978 }
979
980
981
982 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
983 static void *sigint_remote_twice_token;
984 static void *sigint_remote_token;
985
986 /* These are pointers to hook functions that may be set in order to
987 modify resume/wait behavior for a particular architecture. */
988
989 void (*deprecated_target_resume_hook) (void);
990 void (*deprecated_target_wait_loop_hook) (void);
991 \f
992
993
994 /* These are the threads which we last sent to the remote system.
995 -1 for all or -2 for not sent yet. */
996 static int general_thread;
997 static int continue_thread;
998
999 /* Call this function as a result of
1000 1) A halt indication (T packet) containing a thread id
1001 2) A direct query of currthread
1002 3) Successful execution of set thread
1003 */
1004
1005 static void
1006 record_currthread (int currthread)
1007 {
1008 general_thread = currthread;
1009
1010 /* If this is a new thread, add it to GDB's thread list.
1011 If we leave it up to WFI to do this, bad things will happen. */
1012 if (!in_thread_list (pid_to_ptid (currthread)))
1013 {
1014 add_thread (pid_to_ptid (currthread));
1015 ui_out_text (uiout, "[New ");
1016 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1017 ui_out_text (uiout, "]\n");
1018 }
1019 }
1020
1021 #define MAGIC_NULL_PID 42000
1022
1023 static void
1024 set_thread (int th, int gen)
1025 {
1026 struct remote_state *rs = get_remote_state ();
1027 char *buf = alloca (rs->remote_packet_size);
1028 int state = gen ? general_thread : continue_thread;
1029
1030 if (state == th)
1031 return;
1032
1033 buf[0] = 'H';
1034 buf[1] = gen ? 'g' : 'c';
1035 if (th == MAGIC_NULL_PID)
1036 {
1037 buf[2] = '0';
1038 buf[3] = '\0';
1039 }
1040 else if (th < 0)
1041 sprintf (&buf[2], "-%x", -th);
1042 else
1043 sprintf (&buf[2], "%x", th);
1044 putpkt (buf);
1045 getpkt (buf, (rs->remote_packet_size), 0);
1046 if (gen)
1047 general_thread = th;
1048 else
1049 continue_thread = th;
1050 }
1051 \f
1052 /* Return nonzero if the thread TH is still alive on the remote system. */
1053
1054 static int
1055 remote_thread_alive (ptid_t ptid)
1056 {
1057 int tid = PIDGET (ptid);
1058 char buf[16];
1059
1060 if (tid < 0)
1061 sprintf (buf, "T-%08x", -tid);
1062 else
1063 sprintf (buf, "T%08x", tid);
1064 putpkt (buf);
1065 getpkt (buf, sizeof (buf), 0);
1066 return (buf[0] == 'O' && buf[1] == 'K');
1067 }
1068
1069 /* About these extended threadlist and threadinfo packets. They are
1070 variable length packets but, the fields within them are often fixed
1071 length. They are redundent enough to send over UDP as is the
1072 remote protocol in general. There is a matching unit test module
1073 in libstub. */
1074
1075 #define OPAQUETHREADBYTES 8
1076
1077 /* a 64 bit opaque identifier */
1078 typedef unsigned char threadref[OPAQUETHREADBYTES];
1079
1080 /* WARNING: This threadref data structure comes from the remote O.S.,
1081 libstub protocol encoding, and remote.c. it is not particularly
1082 changable. */
1083
1084 /* Right now, the internal structure is int. We want it to be bigger.
1085 Plan to fix this.
1086 */
1087
1088 typedef int gdb_threadref; /* Internal GDB thread reference. */
1089
1090 /* gdb_ext_thread_info is an internal GDB data structure which is
1091 equivalint to the reply of the remote threadinfo packet. */
1092
1093 struct gdb_ext_thread_info
1094 {
1095 threadref threadid; /* External form of thread reference. */
1096 int active; /* Has state interesting to GDB?
1097 regs, stack. */
1098 char display[256]; /* Brief state display, name,
1099 blocked/syspended. */
1100 char shortname[32]; /* To be used to name threads. */
1101 char more_display[256]; /* Long info, statistics, queue depth,
1102 whatever. */
1103 };
1104
1105 /* The volume of remote transfers can be limited by submitting
1106 a mask containing bits specifying the desired information.
1107 Use a union of these values as the 'selection' parameter to
1108 get_thread_info. FIXME: Make these TAG names more thread specific.
1109 */
1110
1111 #define TAG_THREADID 1
1112 #define TAG_EXISTS 2
1113 #define TAG_DISPLAY 4
1114 #define TAG_THREADNAME 8
1115 #define TAG_MOREDISPLAY 16
1116
1117 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1118
1119 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1120
1121 static char *unpack_nibble (char *buf, int *val);
1122
1123 static char *pack_nibble (char *buf, int nibble);
1124
1125 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1126
1127 static char *unpack_byte (char *buf, int *value);
1128
1129 static char *pack_int (char *buf, int value);
1130
1131 static char *unpack_int (char *buf, int *value);
1132
1133 static char *unpack_string (char *src, char *dest, int length);
1134
1135 static char *pack_threadid (char *pkt, threadref *id);
1136
1137 static char *unpack_threadid (char *inbuf, threadref *id);
1138
1139 void int_to_threadref (threadref *id, int value);
1140
1141 static int threadref_to_int (threadref *ref);
1142
1143 static void copy_threadref (threadref *dest, threadref *src);
1144
1145 static int threadmatch (threadref *dest, threadref *src);
1146
1147 static char *pack_threadinfo_request (char *pkt, int mode,
1148 threadref *id);
1149
1150 static int remote_unpack_thread_info_response (char *pkt,
1151 threadref *expectedref,
1152 struct gdb_ext_thread_info
1153 *info);
1154
1155
1156 static int remote_get_threadinfo (threadref *threadid,
1157 int fieldset, /*TAG mask */
1158 struct gdb_ext_thread_info *info);
1159
1160 static char *pack_threadlist_request (char *pkt, int startflag,
1161 int threadcount,
1162 threadref *nextthread);
1163
1164 static int parse_threadlist_response (char *pkt,
1165 int result_limit,
1166 threadref *original_echo,
1167 threadref *resultlist,
1168 int *doneflag);
1169
1170 static int remote_get_threadlist (int startflag,
1171 threadref *nextthread,
1172 int result_limit,
1173 int *done,
1174 int *result_count,
1175 threadref *threadlist);
1176
1177 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1178
1179 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1180 void *context, int looplimit);
1181
1182 static int remote_newthread_step (threadref *ref, void *context);
1183
1184 /* Encode 64 bits in 16 chars of hex. */
1185
1186 static const char hexchars[] = "0123456789abcdef";
1187
1188 static int
1189 ishex (int ch, int *val)
1190 {
1191 if ((ch >= 'a') && (ch <= 'f'))
1192 {
1193 *val = ch - 'a' + 10;
1194 return 1;
1195 }
1196 if ((ch >= 'A') && (ch <= 'F'))
1197 {
1198 *val = ch - 'A' + 10;
1199 return 1;
1200 }
1201 if ((ch >= '0') && (ch <= '9'))
1202 {
1203 *val = ch - '0';
1204 return 1;
1205 }
1206 return 0;
1207 }
1208
1209 static int
1210 stubhex (int ch)
1211 {
1212 if (ch >= 'a' && ch <= 'f')
1213 return ch - 'a' + 10;
1214 if (ch >= '0' && ch <= '9')
1215 return ch - '0';
1216 if (ch >= 'A' && ch <= 'F')
1217 return ch - 'A' + 10;
1218 return -1;
1219 }
1220
1221 static int
1222 stub_unpack_int (char *buff, int fieldlength)
1223 {
1224 int nibble;
1225 int retval = 0;
1226
1227 while (fieldlength)
1228 {
1229 nibble = stubhex (*buff++);
1230 retval |= nibble;
1231 fieldlength--;
1232 if (fieldlength)
1233 retval = retval << 4;
1234 }
1235 return retval;
1236 }
1237
1238 char *
1239 unpack_varlen_hex (char *buff, /* packet to parse */
1240 ULONGEST *result)
1241 {
1242 int nibble;
1243 int retval = 0;
1244
1245 while (ishex (*buff, &nibble))
1246 {
1247 buff++;
1248 retval = retval << 4;
1249 retval |= nibble & 0x0f;
1250 }
1251 *result = retval;
1252 return buff;
1253 }
1254
1255 static char *
1256 unpack_nibble (char *buf, int *val)
1257 {
1258 ishex (*buf++, val);
1259 return buf;
1260 }
1261
1262 static char *
1263 pack_nibble (char *buf, int nibble)
1264 {
1265 *buf++ = hexchars[(nibble & 0x0f)];
1266 return buf;
1267 }
1268
1269 static char *
1270 pack_hex_byte (char *pkt, int byte)
1271 {
1272 *pkt++ = hexchars[(byte >> 4) & 0xf];
1273 *pkt++ = hexchars[(byte & 0xf)];
1274 return pkt;
1275 }
1276
1277 static char *
1278 unpack_byte (char *buf, int *value)
1279 {
1280 *value = stub_unpack_int (buf, 2);
1281 return buf + 2;
1282 }
1283
1284 static char *
1285 pack_int (char *buf, int value)
1286 {
1287 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1288 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1289 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1290 buf = pack_hex_byte (buf, (value & 0xff));
1291 return buf;
1292 }
1293
1294 static char *
1295 unpack_int (char *buf, int *value)
1296 {
1297 *value = stub_unpack_int (buf, 8);
1298 return buf + 8;
1299 }
1300
1301 #if 0 /* Currently unused, uncomment when needed. */
1302 static char *pack_string (char *pkt, char *string);
1303
1304 static char *
1305 pack_string (char *pkt, char *string)
1306 {
1307 char ch;
1308 int len;
1309
1310 len = strlen (string);
1311 if (len > 200)
1312 len = 200; /* Bigger than most GDB packets, junk??? */
1313 pkt = pack_hex_byte (pkt, len);
1314 while (len-- > 0)
1315 {
1316 ch = *string++;
1317 if ((ch == '\0') || (ch == '#'))
1318 ch = '*'; /* Protect encapsulation. */
1319 *pkt++ = ch;
1320 }
1321 return pkt;
1322 }
1323 #endif /* 0 (unused) */
1324
1325 static char *
1326 unpack_string (char *src, char *dest, int length)
1327 {
1328 while (length--)
1329 *dest++ = *src++;
1330 *dest = '\0';
1331 return src;
1332 }
1333
1334 static char *
1335 pack_threadid (char *pkt, threadref *id)
1336 {
1337 char *limit;
1338 unsigned char *altid;
1339
1340 altid = (unsigned char *) id;
1341 limit = pkt + BUF_THREAD_ID_SIZE;
1342 while (pkt < limit)
1343 pkt = pack_hex_byte (pkt, *altid++);
1344 return pkt;
1345 }
1346
1347
1348 static char *
1349 unpack_threadid (char *inbuf, threadref *id)
1350 {
1351 char *altref;
1352 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1353 int x, y;
1354
1355 altref = (char *) id;
1356
1357 while (inbuf < limit)
1358 {
1359 x = stubhex (*inbuf++);
1360 y = stubhex (*inbuf++);
1361 *altref++ = (x << 4) | y;
1362 }
1363 return inbuf;
1364 }
1365
1366 /* Externally, threadrefs are 64 bits but internally, they are still
1367 ints. This is due to a mismatch of specifications. We would like
1368 to use 64bit thread references internally. This is an adapter
1369 function. */
1370
1371 void
1372 int_to_threadref (threadref *id, int value)
1373 {
1374 unsigned char *scan;
1375
1376 scan = (unsigned char *) id;
1377 {
1378 int i = 4;
1379 while (i--)
1380 *scan++ = 0;
1381 }
1382 *scan++ = (value >> 24) & 0xff;
1383 *scan++ = (value >> 16) & 0xff;
1384 *scan++ = (value >> 8) & 0xff;
1385 *scan++ = (value & 0xff);
1386 }
1387
1388 static int
1389 threadref_to_int (threadref *ref)
1390 {
1391 int i, value = 0;
1392 unsigned char *scan;
1393
1394 scan = (char *) ref;
1395 scan += 4;
1396 i = 4;
1397 while (i-- > 0)
1398 value = (value << 8) | ((*scan++) & 0xff);
1399 return value;
1400 }
1401
1402 static void
1403 copy_threadref (threadref *dest, threadref *src)
1404 {
1405 int i;
1406 unsigned char *csrc, *cdest;
1407
1408 csrc = (unsigned char *) src;
1409 cdest = (unsigned char *) dest;
1410 i = 8;
1411 while (i--)
1412 *cdest++ = *csrc++;
1413 }
1414
1415 static int
1416 threadmatch (threadref *dest, threadref *src)
1417 {
1418 /* Things are broken right now, so just assume we got a match. */
1419 #if 0
1420 unsigned char *srcp, *destp;
1421 int i, result;
1422 srcp = (char *) src;
1423 destp = (char *) dest;
1424
1425 result = 1;
1426 while (i-- > 0)
1427 result &= (*srcp++ == *destp++) ? 1 : 0;
1428 return result;
1429 #endif
1430 return 1;
1431 }
1432
1433 /*
1434 threadid:1, # always request threadid
1435 context_exists:2,
1436 display:4,
1437 unique_name:8,
1438 more_display:16
1439 */
1440
1441 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1442
1443 static char *
1444 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1445 {
1446 *pkt++ = 'q'; /* Info Query */
1447 *pkt++ = 'P'; /* process or thread info */
1448 pkt = pack_int (pkt, mode); /* mode */
1449 pkt = pack_threadid (pkt, id); /* threadid */
1450 *pkt = '\0'; /* terminate */
1451 return pkt;
1452 }
1453
1454 /* These values tag the fields in a thread info response packet. */
1455 /* Tagging the fields allows us to request specific fields and to
1456 add more fields as time goes by. */
1457
1458 #define TAG_THREADID 1 /* Echo the thread identifier. */
1459 #define TAG_EXISTS 2 /* Is this process defined enough to
1460 fetch registers and its stack? */
1461 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1462 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1463 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1464 the process. */
1465
1466 static int
1467 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1468 struct gdb_ext_thread_info *info)
1469 {
1470 struct remote_state *rs = get_remote_state ();
1471 int mask, length;
1472 unsigned int tag;
1473 threadref ref;
1474 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1475 int retval = 1;
1476
1477 /* info->threadid = 0; FIXME: implement zero_threadref. */
1478 info->active = 0;
1479 info->display[0] = '\0';
1480 info->shortname[0] = '\0';
1481 info->more_display[0] = '\0';
1482
1483 /* Assume the characters indicating the packet type have been
1484 stripped. */
1485 pkt = unpack_int (pkt, &mask); /* arg mask */
1486 pkt = unpack_threadid (pkt, &ref);
1487
1488 if (mask == 0)
1489 warning (_("Incomplete response to threadinfo request."));
1490 if (!threadmatch (&ref, expectedref))
1491 { /* This is an answer to a different request. */
1492 warning (_("ERROR RMT Thread info mismatch."));
1493 return 0;
1494 }
1495 copy_threadref (&info->threadid, &ref);
1496
1497 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1498
1499 /* Packets are terminated with nulls. */
1500 while ((pkt < limit) && mask && *pkt)
1501 {
1502 pkt = unpack_int (pkt, &tag); /* tag */
1503 pkt = unpack_byte (pkt, &length); /* length */
1504 if (!(tag & mask)) /* Tags out of synch with mask. */
1505 {
1506 warning (_("ERROR RMT: threadinfo tag mismatch."));
1507 retval = 0;
1508 break;
1509 }
1510 if (tag == TAG_THREADID)
1511 {
1512 if (length != 16)
1513 {
1514 warning (_("ERROR RMT: length of threadid is not 16."));
1515 retval = 0;
1516 break;
1517 }
1518 pkt = unpack_threadid (pkt, &ref);
1519 mask = mask & ~TAG_THREADID;
1520 continue;
1521 }
1522 if (tag == TAG_EXISTS)
1523 {
1524 info->active = stub_unpack_int (pkt, length);
1525 pkt += length;
1526 mask = mask & ~(TAG_EXISTS);
1527 if (length > 8)
1528 {
1529 warning (_("ERROR RMT: 'exists' length too long."));
1530 retval = 0;
1531 break;
1532 }
1533 continue;
1534 }
1535 if (tag == TAG_THREADNAME)
1536 {
1537 pkt = unpack_string (pkt, &info->shortname[0], length);
1538 mask = mask & ~TAG_THREADNAME;
1539 continue;
1540 }
1541 if (tag == TAG_DISPLAY)
1542 {
1543 pkt = unpack_string (pkt, &info->display[0], length);
1544 mask = mask & ~TAG_DISPLAY;
1545 continue;
1546 }
1547 if (tag == TAG_MOREDISPLAY)
1548 {
1549 pkt = unpack_string (pkt, &info->more_display[0], length);
1550 mask = mask & ~TAG_MOREDISPLAY;
1551 continue;
1552 }
1553 warning (_("ERROR RMT: unknown thread info tag."));
1554 break; /* Not a tag we know about. */
1555 }
1556 return retval;
1557 }
1558
1559 static int
1560 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1561 struct gdb_ext_thread_info *info)
1562 {
1563 struct remote_state *rs = get_remote_state ();
1564 int result;
1565 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1566
1567 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1568 putpkt (threadinfo_pkt);
1569 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1570 result = remote_unpack_thread_info_response (threadinfo_pkt + 2,
1571 threadid, info);
1572 return result;
1573 }
1574
1575 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1576
1577 static char *
1578 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1579 threadref *nextthread)
1580 {
1581 *pkt++ = 'q'; /* info query packet */
1582 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1583 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1584 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1585 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1586 *pkt = '\0';
1587 return pkt;
1588 }
1589
1590 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1591
1592 static int
1593 parse_threadlist_response (char *pkt, int result_limit,
1594 threadref *original_echo, threadref *resultlist,
1595 int *doneflag)
1596 {
1597 struct remote_state *rs = get_remote_state ();
1598 char *limit;
1599 int count, resultcount, done;
1600
1601 resultcount = 0;
1602 /* Assume the 'q' and 'M chars have been stripped. */
1603 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE);
1604 /* done parse past here */
1605 pkt = unpack_byte (pkt, &count); /* count field */
1606 pkt = unpack_nibble (pkt, &done);
1607 /* The first threadid is the argument threadid. */
1608 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1609 while ((count-- > 0) && (pkt < limit))
1610 {
1611 pkt = unpack_threadid (pkt, resultlist++);
1612 if (resultcount++ >= result_limit)
1613 break;
1614 }
1615 if (doneflag)
1616 *doneflag = done;
1617 return resultcount;
1618 }
1619
1620 static int
1621 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1622 int *done, int *result_count, threadref *threadlist)
1623 {
1624 struct remote_state *rs = get_remote_state ();
1625 static threadref echo_nextthread;
1626 char *threadlist_packet = alloca (rs->remote_packet_size);
1627 char *t_response = alloca (rs->remote_packet_size);
1628 int result = 1;
1629
1630 /* Trancate result limit to be smaller than the packet size. */
1631 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1632 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1633
1634 pack_threadlist_request (threadlist_packet,
1635 startflag, result_limit, nextthread);
1636 putpkt (threadlist_packet);
1637 getpkt (t_response, (rs->remote_packet_size), 0);
1638
1639 *result_count =
1640 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1641 threadlist, done);
1642
1643 if (!threadmatch (&echo_nextthread, nextthread))
1644 {
1645 /* FIXME: This is a good reason to drop the packet. */
1646 /* Possably, there is a duplicate response. */
1647 /* Possabilities :
1648 retransmit immediatly - race conditions
1649 retransmit after timeout - yes
1650 exit
1651 wait for packet, then exit
1652 */
1653 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1654 return 0; /* I choose simply exiting. */
1655 }
1656 if (*result_count <= 0)
1657 {
1658 if (*done != 1)
1659 {
1660 warning (_("RMT ERROR : failed to get remote thread list."));
1661 result = 0;
1662 }
1663 return result; /* break; */
1664 }
1665 if (*result_count > result_limit)
1666 {
1667 *result_count = 0;
1668 warning (_("RMT ERROR: threadlist response longer than requested."));
1669 return 0;
1670 }
1671 return result;
1672 }
1673
1674 /* This is the interface between remote and threads, remotes upper
1675 interface. */
1676
1677 /* remote_find_new_threads retrieves the thread list and for each
1678 thread in the list, looks up the thread in GDB's internal list,
1679 ading the thread if it does not already exist. This involves
1680 getting partial thread lists from the remote target so, polling the
1681 quit_flag is required. */
1682
1683
1684 /* About this many threadisds fit in a packet. */
1685
1686 #define MAXTHREADLISTRESULTS 32
1687
1688 static int
1689 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1690 int looplimit)
1691 {
1692 int done, i, result_count;
1693 int startflag = 1;
1694 int result = 1;
1695 int loopcount = 0;
1696 static threadref nextthread;
1697 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1698
1699 done = 0;
1700 while (!done)
1701 {
1702 if (loopcount++ > looplimit)
1703 {
1704 result = 0;
1705 warning (_("Remote fetch threadlist -infinite loop-."));
1706 break;
1707 }
1708 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1709 &done, &result_count, resultthreadlist))
1710 {
1711 result = 0;
1712 break;
1713 }
1714 /* Clear for later iterations. */
1715 startflag = 0;
1716 /* Setup to resume next batch of thread references, set nextthread. */
1717 if (result_count >= 1)
1718 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1719 i = 0;
1720 while (result_count--)
1721 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1722 break;
1723 }
1724 return result;
1725 }
1726
1727 static int
1728 remote_newthread_step (threadref *ref, void *context)
1729 {
1730 ptid_t ptid;
1731
1732 ptid = pid_to_ptid (threadref_to_int (ref));
1733
1734 if (!in_thread_list (ptid))
1735 add_thread (ptid);
1736 return 1; /* continue iterator */
1737 }
1738
1739 #define CRAZY_MAX_THREADS 1000
1740
1741 static ptid_t
1742 remote_current_thread (ptid_t oldpid)
1743 {
1744 struct remote_state *rs = get_remote_state ();
1745 char *buf = alloca (rs->remote_packet_size);
1746
1747 putpkt ("qC");
1748 getpkt (buf, (rs->remote_packet_size), 0);
1749 if (buf[0] == 'Q' && buf[1] == 'C')
1750 /* Use strtoul here, so we'll correctly parse values whose highest
1751 bit is set. The protocol carries them as a simple series of
1752 hex digits; in the absence of a sign, strtol will see such
1753 values as positive numbers out of range for signed 'long', and
1754 return LONG_MAX to indicate an overflow. */
1755 return pid_to_ptid (strtoul (&buf[2], NULL, 16));
1756 else
1757 return oldpid;
1758 }
1759
1760 /* Find new threads for info threads command.
1761 * Original version, using John Metzler's thread protocol.
1762 */
1763
1764 static void
1765 remote_find_new_threads (void)
1766 {
1767 remote_threadlist_iterator (remote_newthread_step, 0,
1768 CRAZY_MAX_THREADS);
1769 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1770 inferior_ptid = remote_current_thread (inferior_ptid);
1771 }
1772
1773 /*
1774 * Find all threads for info threads command.
1775 * Uses new thread protocol contributed by Cisco.
1776 * Falls back and attempts to use the older method (above)
1777 * if the target doesn't respond to the new method.
1778 */
1779
1780 static void
1781 remote_threads_info (void)
1782 {
1783 struct remote_state *rs = get_remote_state ();
1784 char *buf = alloca (rs->remote_packet_size);
1785 char *bufp;
1786 int tid;
1787
1788 if (remote_desc == 0) /* paranoia */
1789 error (_("Command can only be used when connected to the remote target."));
1790
1791 if (use_threadinfo_query)
1792 {
1793 putpkt ("qfThreadInfo");
1794 bufp = buf;
1795 getpkt (bufp, (rs->remote_packet_size), 0);
1796 if (bufp[0] != '\0') /* q packet recognized */
1797 {
1798 while (*bufp++ == 'm') /* reply contains one or more TID */
1799 {
1800 do
1801 {
1802 /* Use strtoul here, so we'll correctly parse values
1803 whose highest bit is set. The protocol carries
1804 them as a simple series of hex digits; in the
1805 absence of a sign, strtol will see such values as
1806 positive numbers out of range for signed 'long',
1807 and return LONG_MAX to indicate an overflow. */
1808 tid = strtoul (bufp, &bufp, 16);
1809 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1810 add_thread (pid_to_ptid (tid));
1811 }
1812 while (*bufp++ == ','); /* comma-separated list */
1813 putpkt ("qsThreadInfo");
1814 bufp = buf;
1815 getpkt (bufp, (rs->remote_packet_size), 0);
1816 }
1817 return; /* done */
1818 }
1819 }
1820
1821 /* Else fall back to old method based on jmetzler protocol. */
1822 use_threadinfo_query = 0;
1823 remote_find_new_threads ();
1824 return;
1825 }
1826
1827 /*
1828 * Collect a descriptive string about the given thread.
1829 * The target may say anything it wants to about the thread
1830 * (typically info about its blocked / runnable state, name, etc.).
1831 * This string will appear in the info threads display.
1832 *
1833 * Optional: targets are not required to implement this function.
1834 */
1835
1836 static char *
1837 remote_threads_extra_info (struct thread_info *tp)
1838 {
1839 struct remote_state *rs = get_remote_state ();
1840 int result;
1841 int set;
1842 threadref id;
1843 struct gdb_ext_thread_info threadinfo;
1844 static char display_buf[100]; /* arbitrary... */
1845 char *bufp = alloca (rs->remote_packet_size);
1846 int n = 0; /* position in display_buf */
1847
1848 if (remote_desc == 0) /* paranoia */
1849 internal_error (__FILE__, __LINE__,
1850 _("remote_threads_extra_info"));
1851
1852 if (use_threadextra_query)
1853 {
1854 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1855 putpkt (bufp);
1856 getpkt (bufp, (rs->remote_packet_size), 0);
1857 if (bufp[0] != 0)
1858 {
1859 n = min (strlen (bufp) / 2, sizeof (display_buf));
1860 result = hex2bin (bufp, display_buf, n);
1861 display_buf [result] = '\0';
1862 return display_buf;
1863 }
1864 }
1865
1866 /* If the above query fails, fall back to the old method. */
1867 use_threadextra_query = 0;
1868 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1869 | TAG_MOREDISPLAY | TAG_DISPLAY;
1870 int_to_threadref (&id, PIDGET (tp->ptid));
1871 if (remote_get_threadinfo (&id, set, &threadinfo))
1872 if (threadinfo.active)
1873 {
1874 if (*threadinfo.shortname)
1875 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1876 if (*threadinfo.display)
1877 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1878 if (*threadinfo.more_display)
1879 n += sprintf(&display_buf[n], " Priority: %s",
1880 threadinfo.more_display);
1881
1882 if (n > 0)
1883 {
1884 /* For purely cosmetic reasons, clear up trailing commas. */
1885 if (',' == display_buf[n-1])
1886 display_buf[n-1] = ' ';
1887 return display_buf;
1888 }
1889 }
1890 return NULL;
1891 }
1892
1893 \f
1894
1895 /* Restart the remote side; this is an extended protocol operation. */
1896
1897 static void
1898 extended_remote_restart (void)
1899 {
1900 struct remote_state *rs = get_remote_state ();
1901 char *buf = alloca (rs->remote_packet_size);
1902
1903 /* Send the restart command; for reasons I don't understand the
1904 remote side really expects a number after the "R". */
1905 buf[0] = 'R';
1906 sprintf (&buf[1], "%x", 0);
1907 putpkt (buf);
1908
1909 /* Now query for status so this looks just like we restarted
1910 gdbserver from scratch. */
1911 putpkt ("?");
1912 getpkt (buf, (rs->remote_packet_size), 0);
1913 }
1914 \f
1915 /* Clean up connection to a remote debugger. */
1916
1917 static void
1918 remote_close (int quitting)
1919 {
1920 if (remote_desc)
1921 serial_close (remote_desc);
1922 remote_desc = NULL;
1923 }
1924
1925 /* Query the remote side for the text, data and bss offsets. */
1926
1927 static void
1928 get_offsets (void)
1929 {
1930 struct remote_state *rs = get_remote_state ();
1931 char *buf = alloca (rs->remote_packet_size);
1932 char *ptr;
1933 int lose;
1934 CORE_ADDR text_addr, data_addr, bss_addr;
1935 struct section_offsets *offs;
1936
1937 putpkt ("qOffsets");
1938
1939 getpkt (buf, (rs->remote_packet_size), 0);
1940
1941 if (buf[0] == '\000')
1942 return; /* Return silently. Stub doesn't support
1943 this command. */
1944 if (buf[0] == 'E')
1945 {
1946 warning (_("Remote failure reply: %s"), buf);
1947 return;
1948 }
1949
1950 /* Pick up each field in turn. This used to be done with scanf, but
1951 scanf will make trouble if CORE_ADDR size doesn't match
1952 conversion directives correctly. The following code will work
1953 with any size of CORE_ADDR. */
1954 text_addr = data_addr = bss_addr = 0;
1955 ptr = buf;
1956 lose = 0;
1957
1958 if (strncmp (ptr, "Text=", 5) == 0)
1959 {
1960 ptr += 5;
1961 /* Don't use strtol, could lose on big values. */
1962 while (*ptr && *ptr != ';')
1963 text_addr = (text_addr << 4) + fromhex (*ptr++);
1964 }
1965 else
1966 lose = 1;
1967
1968 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1969 {
1970 ptr += 6;
1971 while (*ptr && *ptr != ';')
1972 data_addr = (data_addr << 4) + fromhex (*ptr++);
1973 }
1974 else
1975 lose = 1;
1976
1977 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1978 {
1979 ptr += 5;
1980 while (*ptr && *ptr != ';')
1981 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1982 }
1983 else
1984 lose = 1;
1985
1986 if (lose)
1987 error (_("Malformed response to offset query, %s"), buf);
1988
1989 if (symfile_objfile == NULL)
1990 return;
1991
1992 offs = ((struct section_offsets *)
1993 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
1994 memcpy (offs, symfile_objfile->section_offsets,
1995 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
1996
1997 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1998
1999 /* This is a temporary kludge to force data and bss to use the same offsets
2000 because that's what nlmconv does now. The real solution requires changes
2001 to the stub and remote.c that I don't have time to do right now. */
2002
2003 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2004 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2005
2006 objfile_relocate (symfile_objfile, offs);
2007 }
2008
2009 /* Stub for catch_errors. */
2010
2011 static int
2012 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
2013 {
2014 start_remote (); /* Initialize gdb process mechanisms. */
2015 /* NOTE: Return something >=0. A -ve value is reserved for
2016 catch_exceptions. */
2017 return 1;
2018 }
2019
2020 static void
2021 remote_start_remote (struct ui_out *uiout, void *dummy)
2022 {
2023 immediate_quit++; /* Allow user to interrupt it. */
2024
2025 /* Ack any packet which the remote side has already sent. */
2026 serial_write (remote_desc, "+", 1);
2027
2028 /* Let the stub know that we want it to return the thread. */
2029 set_thread (-1, 0);
2030
2031 inferior_ptid = remote_current_thread (inferior_ptid);
2032
2033 get_offsets (); /* Get text, data & bss offsets. */
2034
2035 putpkt ("?"); /* Initiate a query from remote machine. */
2036 immediate_quit--;
2037
2038 remote_start_remote_dummy (uiout, dummy);
2039 }
2040
2041 /* Open a connection to a remote debugger.
2042 NAME is the filename used for communication. */
2043
2044 static void
2045 remote_open (char *name, int from_tty)
2046 {
2047 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2048 }
2049
2050 /* Just like remote_open, but with asynchronous support. */
2051 static void
2052 remote_async_open (char *name, int from_tty)
2053 {
2054 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2055 }
2056
2057 /* Open a connection to a remote debugger using the extended
2058 remote gdb protocol. NAME is the filename used for communication. */
2059
2060 static void
2061 extended_remote_open (char *name, int from_tty)
2062 {
2063 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2064 0 /* async_p */);
2065 }
2066
2067 /* Just like extended_remote_open, but with asynchronous support. */
2068 static void
2069 extended_remote_async_open (char *name, int from_tty)
2070 {
2071 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2072 1 /*extended_p */, 1 /* async_p */);
2073 }
2074
2075 /* Generic code for opening a connection to a remote target. */
2076
2077 static void
2078 init_all_packet_configs (void)
2079 {
2080 int i;
2081 update_packet_config (&remote_protocol_P);
2082 update_packet_config (&remote_protocol_p);
2083 update_packet_config (&remote_protocol_qSymbol);
2084 update_packet_config (&remote_protocol_vcont);
2085 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2086 update_packet_config (&remote_protocol_Z[i]);
2087 /* Force remote_write_bytes to check whether target supports binary
2088 downloading. */
2089 update_packet_config (&remote_protocol_binary_download);
2090 update_packet_config (&remote_protocol_qPart_auxv);
2091 }
2092
2093 /* Symbol look-up. */
2094
2095 static void
2096 remote_check_symbols (struct objfile *objfile)
2097 {
2098 struct remote_state *rs = get_remote_state ();
2099 char *msg, *reply, *tmp;
2100 struct minimal_symbol *sym;
2101 int end;
2102
2103 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2104 return;
2105
2106 msg = alloca (rs->remote_packet_size);
2107 reply = alloca (rs->remote_packet_size);
2108
2109 /* Invite target to request symbol lookups. */
2110
2111 putpkt ("qSymbol::");
2112 getpkt (reply, (rs->remote_packet_size), 0);
2113 packet_ok (reply, &remote_protocol_qSymbol);
2114
2115 while (strncmp (reply, "qSymbol:", 8) == 0)
2116 {
2117 tmp = &reply[8];
2118 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2119 msg[end] = '\0';
2120 sym = lookup_minimal_symbol (msg, NULL, NULL);
2121 if (sym == NULL)
2122 sprintf (msg, "qSymbol::%s", &reply[8]);
2123 else
2124 sprintf (msg, "qSymbol:%s:%s",
2125 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2126 &reply[8]);
2127 putpkt (msg);
2128 getpkt (reply, (rs->remote_packet_size), 0);
2129 }
2130 }
2131
2132 static struct serial *
2133 remote_serial_open (char *name)
2134 {
2135 static int udp_warning = 0;
2136
2137 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2138 of in ser-tcp.c, because it is the remote protocol assuming that the
2139 serial connection is reliable and not the serial connection promising
2140 to be. */
2141 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2142 {
2143 warning (_("\
2144 The remote protocol may be unreliable over UDP.\n\
2145 Some events may be lost, rendering further debugging impossible."));
2146 udp_warning = 1;
2147 }
2148
2149 return serial_open (name);
2150 }
2151
2152 static void
2153 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2154 int extended_p, int async_p)
2155 {
2156 struct exception ex;
2157 struct remote_state *rs = get_remote_state ();
2158 if (name == 0)
2159 error (_("To open a remote debug connection, you need to specify what\n"
2160 "serial device is attached to the remote system\n"
2161 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2162
2163 /* See FIXME above. */
2164 if (!async_p)
2165 wait_forever_enabled_p = 1;
2166
2167 reopen_exec_file ();
2168 reread_symbols ();
2169
2170 target_preopen (from_tty);
2171
2172 unpush_target (target);
2173
2174 remote_desc = remote_serial_open (name);
2175 if (!remote_desc)
2176 perror_with_name (name);
2177
2178 if (baud_rate != -1)
2179 {
2180 if (serial_setbaudrate (remote_desc, baud_rate))
2181 {
2182 /* The requested speed could not be set. Error out to
2183 top level after closing remote_desc. Take care to
2184 set remote_desc to NULL to avoid closing remote_desc
2185 more than once. */
2186 serial_close (remote_desc);
2187 remote_desc = NULL;
2188 perror_with_name (name);
2189 }
2190 }
2191
2192 serial_raw (remote_desc);
2193
2194 /* If there is something sitting in the buffer we might take it as a
2195 response to a command, which would be bad. */
2196 serial_flush_input (remote_desc);
2197
2198 if (from_tty)
2199 {
2200 puts_filtered ("Remote debugging using ");
2201 puts_filtered (name);
2202 puts_filtered ("\n");
2203 }
2204 push_target (target); /* Switch to using remote target now. */
2205
2206 init_all_packet_configs ();
2207
2208 general_thread = -2;
2209 continue_thread = -2;
2210
2211 /* Probe for ability to use "ThreadInfo" query, as required. */
2212 use_threadinfo_query = 1;
2213 use_threadextra_query = 1;
2214
2215 /* Without this, some commands which require an active target (such
2216 as kill) won't work. This variable serves (at least) double duty
2217 as both the pid of the target process (if it has such), and as a
2218 flag indicating that a target is active. These functions should
2219 be split out into seperate variables, especially since GDB will
2220 someday have a notion of debugging several processes. */
2221
2222 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2223
2224 if (async_p)
2225 {
2226 /* With this target we start out by owning the terminal. */
2227 remote_async_terminal_ours_p = 1;
2228
2229 /* FIXME: cagney/1999-09-23: During the initial connection it is
2230 assumed that the target is already ready and able to respond to
2231 requests. Unfortunately remote_start_remote() eventually calls
2232 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2233 around this. Eventually a mechanism that allows
2234 wait_for_inferior() to expect/get timeouts will be
2235 implemented. */
2236 wait_forever_enabled_p = 0;
2237 }
2238
2239 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2240 /* First delete any symbols previously loaded from shared libraries. */
2241 no_shared_libraries (NULL, 0);
2242 #endif
2243
2244 /* Start the remote connection. If error() or QUIT, discard this
2245 target (we'd otherwise be in an inconsistent state) and then
2246 propogate the error on up the exception chain. This ensures that
2247 the caller doesn't stumble along blindly assuming that the
2248 function succeeded. The CLI doesn't have this problem but other
2249 UI's, such as MI do.
2250
2251 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2252 this function should return an error indication letting the
2253 caller restore the previous state. Unfortunately the command
2254 ``target remote'' is directly wired to this function making that
2255 impossible. On a positive note, the CLI side of this problem has
2256 been fixed - the function set_cmd_context() makes it possible for
2257 all the ``target ....'' commands to share a common callback
2258 function. See cli-dump.c. */
2259 ex = catch_exception (uiout, remote_start_remote, NULL, RETURN_MASK_ALL);
2260 if (ex.reason < 0)
2261 {
2262 pop_target ();
2263 if (async_p)
2264 wait_forever_enabled_p = 1;
2265 throw_exception (ex);
2266 }
2267
2268 if (async_p)
2269 wait_forever_enabled_p = 1;
2270
2271 if (extended_p)
2272 {
2273 /* Tell the remote that we are using the extended protocol. */
2274 char *buf = alloca (rs->remote_packet_size);
2275 putpkt ("!");
2276 getpkt (buf, (rs->remote_packet_size), 0);
2277 }
2278 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2279 /* FIXME: need a master target_open vector from which all
2280 remote_opens can be called, so that stuff like this can
2281 go there. Failing that, the following code must be copied
2282 to the open function for any remote target that wants to
2283 support svr4 shared libraries. */
2284
2285 /* Set up to detect and load shared libraries. */
2286 if (exec_bfd) /* No use without an exec file. */
2287 {
2288 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2289 remote_check_symbols (symfile_objfile);
2290 }
2291 #endif
2292 }
2293
2294 /* This takes a program previously attached to and detaches it. After
2295 this is done, GDB can be used to debug some other program. We
2296 better not have left any breakpoints in the target program or it'll
2297 die when it hits one. */
2298
2299 static void
2300 remote_detach (char *args, int from_tty)
2301 {
2302 struct remote_state *rs = get_remote_state ();
2303 char *buf = alloca (rs->remote_packet_size);
2304
2305 if (args)
2306 error (_("Argument given to \"detach\" when remotely debugging."));
2307
2308 /* Tell the remote target to detach. */
2309 strcpy (buf, "D");
2310 remote_send (buf, (rs->remote_packet_size));
2311
2312 /* Unregister the file descriptor from the event loop. */
2313 if (target_is_async_p ())
2314 serial_async (remote_desc, NULL, 0);
2315
2316 target_mourn_inferior ();
2317 if (from_tty)
2318 puts_filtered ("Ending remote debugging.\n");
2319 }
2320
2321 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2322
2323 static void
2324 remote_disconnect (char *args, int from_tty)
2325 {
2326 struct remote_state *rs = get_remote_state ();
2327 char *buf = alloca (rs->remote_packet_size);
2328
2329 if (args)
2330 error (_("Argument given to \"detach\" when remotely debugging."));
2331
2332 /* Unregister the file descriptor from the event loop. */
2333 if (target_is_async_p ())
2334 serial_async (remote_desc, NULL, 0);
2335
2336 target_mourn_inferior ();
2337 if (from_tty)
2338 puts_filtered ("Ending remote debugging.\n");
2339 }
2340
2341 /* Convert hex digit A to a number. */
2342
2343 static int
2344 fromhex (int a)
2345 {
2346 if (a >= '0' && a <= '9')
2347 return a - '0';
2348 else if (a >= 'a' && a <= 'f')
2349 return a - 'a' + 10;
2350 else if (a >= 'A' && a <= 'F')
2351 return a - 'A' + 10;
2352 else
2353 error (_("Reply contains invalid hex digit %d"), a);
2354 }
2355
2356 static int
2357 hex2bin (const char *hex, char *bin, int count)
2358 {
2359 int i;
2360
2361 for (i = 0; i < count; i++)
2362 {
2363 if (hex[0] == 0 || hex[1] == 0)
2364 {
2365 /* Hex string is short, or of uneven length.
2366 Return the count that has been converted so far. */
2367 return i;
2368 }
2369 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2370 hex += 2;
2371 }
2372 return i;
2373 }
2374
2375 /* Convert number NIB to a hex digit. */
2376
2377 static int
2378 tohex (int nib)
2379 {
2380 if (nib < 10)
2381 return '0' + nib;
2382 else
2383 return 'a' + nib - 10;
2384 }
2385
2386 static int
2387 bin2hex (const char *bin, char *hex, int count)
2388 {
2389 int i;
2390 /* May use a length, or a nul-terminated string as input. */
2391 if (count == 0)
2392 count = strlen (bin);
2393
2394 for (i = 0; i < count; i++)
2395 {
2396 *hex++ = tohex ((*bin >> 4) & 0xf);
2397 *hex++ = tohex (*bin++ & 0xf);
2398 }
2399 *hex = 0;
2400 return i;
2401 }
2402 \f
2403 /* Check for the availability of vCont. This function should also check
2404 the response. */
2405
2406 static void
2407 remote_vcont_probe (struct remote_state *rs, char *buf)
2408 {
2409 strcpy (buf, "vCont?");
2410 putpkt (buf);
2411 getpkt (buf, rs->remote_packet_size, 0);
2412
2413 /* Make sure that the features we assume are supported. */
2414 if (strncmp (buf, "vCont", 5) == 0)
2415 {
2416 char *p = &buf[5];
2417 int support_s, support_S, support_c, support_C;
2418
2419 support_s = 0;
2420 support_S = 0;
2421 support_c = 0;
2422 support_C = 0;
2423 while (p && *p == ';')
2424 {
2425 p++;
2426 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2427 support_s = 1;
2428 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2429 support_S = 1;
2430 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2431 support_c = 1;
2432 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2433 support_C = 1;
2434
2435 p = strchr (p, ';');
2436 }
2437
2438 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2439 BUF will make packet_ok disable the packet. */
2440 if (!support_s || !support_S || !support_c || !support_C)
2441 buf[0] = 0;
2442 }
2443
2444 packet_ok (buf, &remote_protocol_vcont);
2445 }
2446
2447 /* Resume the remote inferior by using a "vCont" packet. The thread
2448 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2449 resumed thread should be single-stepped and/or signalled. If PTID's
2450 PID is -1, then all threads are resumed; the thread to be stepped and/or
2451 signalled is given in the global INFERIOR_PTID. This function returns
2452 non-zero iff it resumes the inferior.
2453
2454 This function issues a strict subset of all possible vCont commands at the
2455 moment. */
2456
2457 static int
2458 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2459 {
2460 struct remote_state *rs = get_remote_state ();
2461 int pid = PIDGET (ptid);
2462 char *buf = NULL, *outbuf;
2463 struct cleanup *old_cleanup;
2464
2465 buf = xmalloc (rs->remote_packet_size);
2466 old_cleanup = make_cleanup (xfree, buf);
2467
2468 if (remote_protocol_vcont.support == PACKET_SUPPORT_UNKNOWN)
2469 remote_vcont_probe (rs, buf);
2470
2471 if (remote_protocol_vcont.support == PACKET_DISABLE)
2472 {
2473 do_cleanups (old_cleanup);
2474 return 0;
2475 }
2476
2477 /* If we could generate a wider range of packets, we'd have to worry
2478 about overflowing BUF. Should there be a generic
2479 "multi-part-packet" packet? */
2480
2481 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2482 {
2483 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2484 don't have any PID numbers the inferior will understand. Make sure
2485 to only send forms that do not specify a PID. */
2486 if (step && siggnal != TARGET_SIGNAL_0)
2487 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2488 else if (step)
2489 outbuf = xstrprintf ("vCont;s");
2490 else if (siggnal != TARGET_SIGNAL_0)
2491 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2492 else
2493 outbuf = xstrprintf ("vCont;c");
2494 }
2495 else if (pid == -1)
2496 {
2497 /* Resume all threads, with preference for INFERIOR_PTID. */
2498 if (step && siggnal != TARGET_SIGNAL_0)
2499 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2500 PIDGET (inferior_ptid));
2501 else if (step)
2502 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2503 else if (siggnal != TARGET_SIGNAL_0)
2504 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2505 PIDGET (inferior_ptid));
2506 else
2507 outbuf = xstrprintf ("vCont;c");
2508 }
2509 else
2510 {
2511 /* Scheduler locking; resume only PTID. */
2512 if (step && siggnal != TARGET_SIGNAL_0)
2513 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2514 else if (step)
2515 outbuf = xstrprintf ("vCont;s:%x", pid);
2516 else if (siggnal != TARGET_SIGNAL_0)
2517 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2518 else
2519 outbuf = xstrprintf ("vCont;c:%x", pid);
2520 }
2521
2522 gdb_assert (outbuf && strlen (outbuf) < rs->remote_packet_size);
2523 make_cleanup (xfree, outbuf);
2524
2525 putpkt (outbuf);
2526
2527 do_cleanups (old_cleanup);
2528
2529 return 1;
2530 }
2531
2532 /* Tell the remote machine to resume. */
2533
2534 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2535
2536 static int last_sent_step;
2537
2538 static void
2539 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2540 {
2541 struct remote_state *rs = get_remote_state ();
2542 char *buf = alloca (rs->remote_packet_size);
2543 int pid = PIDGET (ptid);
2544 char *p;
2545
2546 last_sent_signal = siggnal;
2547 last_sent_step = step;
2548
2549 /* A hook for when we need to do something at the last moment before
2550 resumption. */
2551 if (deprecated_target_resume_hook)
2552 (*deprecated_target_resume_hook) ();
2553
2554 /* The vCont packet doesn't need to specify threads via Hc. */
2555 if (remote_vcont_resume (ptid, step, siggnal))
2556 return;
2557
2558 /* All other supported resume packets do use Hc, so call set_thread. */
2559 if (pid == -1)
2560 set_thread (0, 0); /* Run any thread. */
2561 else
2562 set_thread (pid, 0); /* Run this thread. */
2563
2564 if (siggnal != TARGET_SIGNAL_0)
2565 {
2566 buf[0] = step ? 'S' : 'C';
2567 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2568 buf[2] = tohex (((int) siggnal) & 0xf);
2569 buf[3] = '\0';
2570 }
2571 else
2572 strcpy (buf, step ? "s" : "c");
2573
2574 putpkt (buf);
2575 }
2576
2577 /* Same as remote_resume, but with async support. */
2578 static void
2579 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2580 {
2581 remote_resume (ptid, step, siggnal);
2582
2583 /* We are about to start executing the inferior, let's register it
2584 with the event loop. NOTE: this is the one place where all the
2585 execution commands end up. We could alternatively do this in each
2586 of the execution commands in infcmd.c. */
2587 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2588 into infcmd.c in order to allow inferior function calls to work
2589 NOT asynchronously. */
2590 if (target_can_async_p ())
2591 target_async (inferior_event_handler, 0);
2592 /* Tell the world that the target is now executing. */
2593 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2594 this? Instead, should the client of target just assume (for
2595 async targets) that the target is going to start executing? Is
2596 this information already found in the continuation block? */
2597 if (target_is_async_p ())
2598 target_executing = 1;
2599 }
2600 \f
2601
2602 /* Set up the signal handler for SIGINT, while the target is
2603 executing, ovewriting the 'regular' SIGINT signal handler. */
2604 static void
2605 initialize_sigint_signal_handler (void)
2606 {
2607 sigint_remote_token =
2608 create_async_signal_handler (async_remote_interrupt, NULL);
2609 signal (SIGINT, handle_remote_sigint);
2610 }
2611
2612 /* Signal handler for SIGINT, while the target is executing. */
2613 static void
2614 handle_remote_sigint (int sig)
2615 {
2616 signal (sig, handle_remote_sigint_twice);
2617 sigint_remote_twice_token =
2618 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2619 mark_async_signal_handler_wrapper (sigint_remote_token);
2620 }
2621
2622 /* Signal handler for SIGINT, installed after SIGINT has already been
2623 sent once. It will take effect the second time that the user sends
2624 a ^C. */
2625 static void
2626 handle_remote_sigint_twice (int sig)
2627 {
2628 signal (sig, handle_sigint);
2629 sigint_remote_twice_token =
2630 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2631 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2632 }
2633
2634 /* Perform the real interruption of the target execution, in response
2635 to a ^C. */
2636 static void
2637 async_remote_interrupt (gdb_client_data arg)
2638 {
2639 if (remote_debug)
2640 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2641
2642 target_stop ();
2643 }
2644
2645 /* Perform interrupt, if the first attempt did not succeed. Just give
2646 up on the target alltogether. */
2647 void
2648 async_remote_interrupt_twice (gdb_client_data arg)
2649 {
2650 if (remote_debug)
2651 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2652 /* Do something only if the target was not killed by the previous
2653 cntl-C. */
2654 if (target_executing)
2655 {
2656 interrupt_query ();
2657 signal (SIGINT, handle_remote_sigint);
2658 }
2659 }
2660
2661 /* Reinstall the usual SIGINT handlers, after the target has
2662 stopped. */
2663 static void
2664 cleanup_sigint_signal_handler (void *dummy)
2665 {
2666 signal (SIGINT, handle_sigint);
2667 if (sigint_remote_twice_token)
2668 delete_async_signal_handler ((struct async_signal_handler **)
2669 &sigint_remote_twice_token);
2670 if (sigint_remote_token)
2671 delete_async_signal_handler ((struct async_signal_handler **)
2672 &sigint_remote_token);
2673 }
2674
2675 /* Send ^C to target to halt it. Target will respond, and send us a
2676 packet. */
2677 static void (*ofunc) (int);
2678
2679 /* The command line interface's stop routine. This function is installed
2680 as a signal handler for SIGINT. The first time a user requests a
2681 stop, we call remote_stop to send a break or ^C. If there is no
2682 response from the target (it didn't stop when the user requested it),
2683 we ask the user if he'd like to detach from the target. */
2684 static void
2685 remote_interrupt (int signo)
2686 {
2687 /* If this doesn't work, try more severe steps. */
2688 signal (signo, remote_interrupt_twice);
2689
2690 if (remote_debug)
2691 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2692
2693 target_stop ();
2694 }
2695
2696 /* The user typed ^C twice. */
2697
2698 static void
2699 remote_interrupt_twice (int signo)
2700 {
2701 signal (signo, ofunc);
2702 interrupt_query ();
2703 signal (signo, remote_interrupt);
2704 }
2705
2706 /* This is the generic stop called via the target vector. When a target
2707 interrupt is requested, either by the command line or the GUI, we
2708 will eventually end up here. */
2709 static void
2710 remote_stop (void)
2711 {
2712 /* Send a break or a ^C, depending on user preference. */
2713 if (remote_debug)
2714 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2715
2716 if (remote_break)
2717 serial_send_break (remote_desc);
2718 else
2719 serial_write (remote_desc, "\003", 1);
2720 }
2721
2722 /* Ask the user what to do when an interrupt is received. */
2723
2724 static void
2725 interrupt_query (void)
2726 {
2727 target_terminal_ours ();
2728
2729 if (query ("Interrupted while waiting for the program.\n\
2730 Give up (and stop debugging it)? "))
2731 {
2732 target_mourn_inferior ();
2733 deprecated_throw_reason (RETURN_QUIT);
2734 }
2735
2736 target_terminal_inferior ();
2737 }
2738
2739 /* Enable/disable target terminal ownership. Most targets can use
2740 terminal groups to control terminal ownership. Remote targets are
2741 different in that explicit transfer of ownership to/from GDB/target
2742 is required. */
2743
2744 static void
2745 remote_async_terminal_inferior (void)
2746 {
2747 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2748 sync_execution here. This function should only be called when
2749 GDB is resuming the inferior in the forground. A background
2750 resume (``run&'') should leave GDB in control of the terminal and
2751 consequently should not call this code. */
2752 if (!sync_execution)
2753 return;
2754 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2755 calls target_terminal_*() idenpotent. The event-loop GDB talking
2756 to an asynchronous target with a synchronous command calls this
2757 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2758 stops trying to transfer the terminal to the target when it
2759 shouldn't this guard can go away. */
2760 if (!remote_async_terminal_ours_p)
2761 return;
2762 delete_file_handler (input_fd);
2763 remote_async_terminal_ours_p = 0;
2764 initialize_sigint_signal_handler ();
2765 /* NOTE: At this point we could also register our selves as the
2766 recipient of all input. Any characters typed could then be
2767 passed on down to the target. */
2768 }
2769
2770 static void
2771 remote_async_terminal_ours (void)
2772 {
2773 /* See FIXME in remote_async_terminal_inferior. */
2774 if (!sync_execution)
2775 return;
2776 /* See FIXME in remote_async_terminal_inferior. */
2777 if (remote_async_terminal_ours_p)
2778 return;
2779 cleanup_sigint_signal_handler (NULL);
2780 add_file_handler (input_fd, stdin_event_handler, 0);
2781 remote_async_terminal_ours_p = 1;
2782 }
2783
2784 /* If nonzero, ignore the next kill. */
2785
2786 int kill_kludge;
2787
2788 void
2789 remote_console_output (char *msg)
2790 {
2791 char *p;
2792
2793 for (p = msg; p[0] && p[1]; p += 2)
2794 {
2795 char tb[2];
2796 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2797 tb[0] = c;
2798 tb[1] = 0;
2799 fputs_unfiltered (tb, gdb_stdtarg);
2800 }
2801 gdb_flush (gdb_stdtarg);
2802 }
2803
2804 /* Wait until the remote machine stops, then return,
2805 storing status in STATUS just as `wait' would.
2806 Returns "pid", which in the case of a multi-threaded
2807 remote OS, is the thread-id. */
2808
2809 static ptid_t
2810 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2811 {
2812 struct remote_state *rs = get_remote_state ();
2813 unsigned char *buf = alloca (rs->remote_packet_size);
2814 ULONGEST thread_num = -1;
2815 ULONGEST addr;
2816
2817 status->kind = TARGET_WAITKIND_EXITED;
2818 status->value.integer = 0;
2819
2820 while (1)
2821 {
2822 unsigned char *p;
2823
2824 ofunc = signal (SIGINT, remote_interrupt);
2825 getpkt (buf, (rs->remote_packet_size), 1);
2826 signal (SIGINT, ofunc);
2827
2828 /* This is a hook for when we need to do something (perhaps the
2829 collection of trace data) every time the target stops. */
2830 if (deprecated_target_wait_loop_hook)
2831 (*deprecated_target_wait_loop_hook) ();
2832
2833 remote_stopped_by_watchpoint_p = 0;
2834
2835 switch (buf[0])
2836 {
2837 case 'E': /* Error of some sort. */
2838 warning (_("Remote failure reply: %s"), buf);
2839 continue;
2840 case 'F': /* File-I/O request. */
2841 remote_fileio_request (buf);
2842 continue;
2843 case 'T': /* Status with PC, SP, FP, ... */
2844 {
2845 int i;
2846 char regs[MAX_REGISTER_SIZE];
2847
2848 /* Expedited reply, containing Signal, {regno, reg} repeat. */
2849 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2850 ss = signal number
2851 n... = register number
2852 r... = register contents
2853 */
2854 p = &buf[3]; /* after Txx */
2855
2856 while (*p)
2857 {
2858 unsigned char *p1;
2859 char *p_temp;
2860 int fieldsize;
2861 LONGEST pnum = 0;
2862
2863 /* If the packet contains a register number save it in
2864 pnum and set p1 to point to the character following
2865 it. Otherwise p1 points to p. */
2866
2867 /* If this packet is an awatch packet, don't parse the
2868 'a' as a register number. */
2869
2870 if (strncmp (p, "awatch", strlen("awatch")) != 0)
2871 {
2872 /* Read the ``P'' register number. */
2873 pnum = strtol (p, &p_temp, 16);
2874 p1 = (unsigned char *) p_temp;
2875 }
2876 else
2877 p1 = p;
2878
2879 if (p1 == p) /* No register number present here. */
2880 {
2881 p1 = (unsigned char *) strchr (p, ':');
2882 if (p1 == NULL)
2883 warning (_("Malformed packet(a) (missing colon): %s\n\
2884 Packet: '%s'\n"),
2885 p, buf);
2886 if (strncmp (p, "thread", p1 - p) == 0)
2887 {
2888 p_temp = unpack_varlen_hex (++p1, &thread_num);
2889 record_currthread (thread_num);
2890 p = (unsigned char *) p_temp;
2891 }
2892 else if ((strncmp (p, "watch", p1 - p) == 0)
2893 || (strncmp (p, "rwatch", p1 - p) == 0)
2894 || (strncmp (p, "awatch", p1 - p) == 0))
2895 {
2896 remote_stopped_by_watchpoint_p = 1;
2897 p = unpack_varlen_hex (++p1, &addr);
2898 remote_watch_data_address = (CORE_ADDR)addr;
2899 }
2900 else
2901 {
2902 /* Silently skip unknown optional info. */
2903 p_temp = strchr (p1 + 1, ';');
2904 if (p_temp)
2905 p = (unsigned char *) p_temp;
2906 }
2907 }
2908 else
2909 {
2910 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
2911 p = p1;
2912
2913 if (*p++ != ':')
2914 error (_("Malformed packet(b) (missing colon): %s\n\
2915 Packet: '%s'\n"),
2916 p, buf);
2917
2918 if (reg == NULL)
2919 error (_("Remote sent bad register number %s: %s\n\
2920 Packet: '%s'\n"),
2921 phex_nz (pnum, 0), p, buf);
2922
2923 fieldsize = hex2bin (p, regs,
2924 register_size (current_gdbarch,
2925 reg->regnum));
2926 p += 2 * fieldsize;
2927 if (fieldsize < register_size (current_gdbarch,
2928 reg->regnum))
2929 warning (_("Remote reply is too short: %s"), buf);
2930 regcache_raw_supply (current_regcache,
2931 reg->regnum, regs);
2932 }
2933
2934 if (*p++ != ';')
2935 error (_("Remote register badly formatted: %s\nhere: %s"),
2936 buf, p);
2937 }
2938 }
2939 /* fall through */
2940 case 'S': /* Old style status, just signal only. */
2941 status->kind = TARGET_WAITKIND_STOPPED;
2942 status->value.sig = (enum target_signal)
2943 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2944
2945 if (buf[3] == 'p')
2946 {
2947 thread_num = strtol ((const char *) &buf[4], NULL, 16);
2948 record_currthread (thread_num);
2949 }
2950 goto got_status;
2951 case 'W': /* Target exited. */
2952 {
2953 /* The remote process exited. */
2954 status->kind = TARGET_WAITKIND_EXITED;
2955 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
2956 goto got_status;
2957 }
2958 case 'X':
2959 status->kind = TARGET_WAITKIND_SIGNALLED;
2960 status->value.sig = (enum target_signal)
2961 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2962 kill_kludge = 1;
2963
2964 goto got_status;
2965 case 'O': /* Console output. */
2966 remote_console_output (buf + 1);
2967 continue;
2968 case '\0':
2969 if (last_sent_signal != TARGET_SIGNAL_0)
2970 {
2971 /* Zero length reply means that we tried 'S' or 'C' and
2972 the remote system doesn't support it. */
2973 target_terminal_ours_for_output ();
2974 printf_filtered
2975 ("Can't send signals to this remote system. %s not sent.\n",
2976 target_signal_to_name (last_sent_signal));
2977 last_sent_signal = TARGET_SIGNAL_0;
2978 target_terminal_inferior ();
2979
2980 strcpy ((char *) buf, last_sent_step ? "s" : "c");
2981 putpkt ((char *) buf);
2982 continue;
2983 }
2984 /* else fallthrough */
2985 default:
2986 warning (_("Invalid remote reply: %s"), buf);
2987 continue;
2988 }
2989 }
2990 got_status:
2991 if (thread_num != -1)
2992 {
2993 return pid_to_ptid (thread_num);
2994 }
2995 return inferior_ptid;
2996 }
2997
2998 /* Async version of remote_wait. */
2999 static ptid_t
3000 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3001 {
3002 struct remote_state *rs = get_remote_state ();
3003 unsigned char *buf = alloca (rs->remote_packet_size);
3004 ULONGEST thread_num = -1;
3005 ULONGEST addr;
3006
3007 status->kind = TARGET_WAITKIND_EXITED;
3008 status->value.integer = 0;
3009
3010 remote_stopped_by_watchpoint_p = 0;
3011
3012 while (1)
3013 {
3014 unsigned char *p;
3015
3016 if (!target_is_async_p ())
3017 ofunc = signal (SIGINT, remote_interrupt);
3018 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3019 _never_ wait for ever -> test on target_is_async_p().
3020 However, before we do that we need to ensure that the caller
3021 knows how to take the target into/out of async mode. */
3022 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3023 if (!target_is_async_p ())
3024 signal (SIGINT, ofunc);
3025
3026 /* This is a hook for when we need to do something (perhaps the
3027 collection of trace data) every time the target stops. */
3028 if (deprecated_target_wait_loop_hook)
3029 (*deprecated_target_wait_loop_hook) ();
3030
3031 switch (buf[0])
3032 {
3033 case 'E': /* Error of some sort. */
3034 warning (_("Remote failure reply: %s"), buf);
3035 continue;
3036 case 'F': /* File-I/O request. */
3037 remote_fileio_request (buf);
3038 continue;
3039 case 'T': /* Status with PC, SP, FP, ... */
3040 {
3041 int i;
3042 char regs[MAX_REGISTER_SIZE];
3043
3044 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3045 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3046 ss = signal number
3047 n... = register number
3048 r... = register contents
3049 */
3050 p = &buf[3]; /* after Txx */
3051
3052 while (*p)
3053 {
3054 unsigned char *p1;
3055 char *p_temp;
3056 int fieldsize;
3057 long pnum = 0;
3058
3059 /* If the packet contains a register number, save it
3060 in pnum and set p1 to point to the character
3061 following it. Otherwise p1 points to p. */
3062
3063 /* If this packet is an awatch packet, don't parse the 'a'
3064 as a register number. */
3065
3066 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3067 {
3068 /* Read the register number. */
3069 pnum = strtol (p, &p_temp, 16);
3070 p1 = (unsigned char *) p_temp;
3071 }
3072 else
3073 p1 = p;
3074
3075 if (p1 == p) /* No register number present here. */
3076 {
3077 p1 = (unsigned char *) strchr (p, ':');
3078 if (p1 == NULL)
3079 error (_("Malformed packet(a) (missing colon): %s\n\
3080 Packet: '%s'\n"),
3081 p, buf);
3082 if (strncmp (p, "thread", p1 - p) == 0)
3083 {
3084 p_temp = unpack_varlen_hex (++p1, &thread_num);
3085 record_currthread (thread_num);
3086 p = (unsigned char *) p_temp;
3087 }
3088 else if ((strncmp (p, "watch", p1 - p) == 0)
3089 || (strncmp (p, "rwatch", p1 - p) == 0)
3090 || (strncmp (p, "awatch", p1 - p) == 0))
3091 {
3092 remote_stopped_by_watchpoint_p = 1;
3093 p = unpack_varlen_hex (++p1, &addr);
3094 remote_watch_data_address = (CORE_ADDR)addr;
3095 }
3096 else
3097 {
3098 /* Silently skip unknown optional info. */
3099 p_temp = (unsigned char *) strchr (p1 + 1, ';');
3100 if (p_temp)
3101 p = p_temp;
3102 }
3103 }
3104
3105 else
3106 {
3107 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3108 p = p1;
3109 if (*p++ != ':')
3110 error (_("Malformed packet(b) (missing colon): %s\n\
3111 Packet: '%s'\n"),
3112 p, buf);
3113
3114 if (reg == NULL)
3115 error (_("Remote sent bad register number %ld: %s\n\
3116 Packet: '%s'\n"),
3117 pnum, p, buf);
3118
3119 fieldsize = hex2bin (p, regs,
3120 register_size (current_gdbarch,
3121 reg->regnum));
3122 p += 2 * fieldsize;
3123 if (fieldsize < register_size (current_gdbarch,
3124 reg->regnum))
3125 warning (_("Remote reply is too short: %s"), buf);
3126 regcache_raw_supply (current_regcache, reg->regnum, regs);
3127 }
3128
3129 if (*p++ != ';')
3130 error (_("Remote register badly formatted: %s\nhere: %s"),
3131 buf, p);
3132 }
3133 }
3134 /* fall through */
3135 case 'S': /* Old style status, just signal only. */
3136 status->kind = TARGET_WAITKIND_STOPPED;
3137 status->value.sig = (enum target_signal)
3138 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3139
3140 if (buf[3] == 'p')
3141 {
3142 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3143 record_currthread (thread_num);
3144 }
3145 goto got_status;
3146 case 'W': /* Target exited. */
3147 {
3148 /* The remote process exited. */
3149 status->kind = TARGET_WAITKIND_EXITED;
3150 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3151 goto got_status;
3152 }
3153 case 'X':
3154 status->kind = TARGET_WAITKIND_SIGNALLED;
3155 status->value.sig = (enum target_signal)
3156 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3157 kill_kludge = 1;
3158
3159 goto got_status;
3160 case 'O': /* Console output. */
3161 remote_console_output (buf + 1);
3162 /* Return immediately to the event loop. The event loop will
3163 still be waiting on the inferior afterwards. */
3164 status->kind = TARGET_WAITKIND_IGNORE;
3165 goto got_status;
3166 case '\0':
3167 if (last_sent_signal != TARGET_SIGNAL_0)
3168 {
3169 /* Zero length reply means that we tried 'S' or 'C' and
3170 the remote system doesn't support it. */
3171 target_terminal_ours_for_output ();
3172 printf_filtered
3173 ("Can't send signals to this remote system. %s not sent.\n",
3174 target_signal_to_name (last_sent_signal));
3175 last_sent_signal = TARGET_SIGNAL_0;
3176 target_terminal_inferior ();
3177
3178 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3179 putpkt ((char *) buf);
3180 continue;
3181 }
3182 /* else fallthrough */
3183 default:
3184 warning (_("Invalid remote reply: %s"), buf);
3185 continue;
3186 }
3187 }
3188 got_status:
3189 if (thread_num != -1)
3190 {
3191 return pid_to_ptid (thread_num);
3192 }
3193 return inferior_ptid;
3194 }
3195
3196 /* Number of bytes of registers this stub implements. */
3197
3198 static int register_bytes_found;
3199
3200 /* Read the remote registers into the block REGS. */
3201 /* Currently we just read all the registers, so we don't use regnum. */
3202
3203 static int
3204 fetch_register_using_p (int regnum)
3205 {
3206 struct remote_state *rs = get_remote_state ();
3207 char *buf = alloca (rs->remote_packet_size), *p;
3208 char regp[MAX_REGISTER_SIZE];
3209 int i;
3210
3211 p = buf;
3212 *p++ = 'p';
3213 p += hexnumstr (p, regnum);
3214 *p++ = '\0';
3215 remote_send (buf, rs->remote_packet_size);
3216
3217 /* If the stub didn't recognize the packet, or if we got an error,
3218 tell our caller. */
3219 if (buf[0] == '\0' || buf[0] == 'E')
3220 return 0;
3221
3222 /* If this register is unfetchable, tell the regcache. */
3223 if (buf[0] == 'x')
3224 {
3225 regcache_raw_supply (current_regcache, regnum, NULL);
3226 set_register_cached (regnum, -1);
3227 return 1;
3228 }
3229
3230 /* Otherwise, parse and supply the value. */
3231 p = buf;
3232 i = 0;
3233 while (p[0] != 0)
3234 {
3235 if (p[1] == 0)
3236 {
3237 error (_("fetch_register_using_p: early buf termination"));
3238 return 0;
3239 }
3240
3241 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3242 p += 2;
3243 }
3244 regcache_raw_supply (current_regcache, regnum, regp);
3245 return 1;
3246 }
3247
3248 static void
3249 remote_fetch_registers (int regnum)
3250 {
3251 struct remote_state *rs = get_remote_state ();
3252 char *buf = alloca (rs->remote_packet_size);
3253 int i;
3254 char *p;
3255 char *regs = alloca (rs->sizeof_g_packet);
3256
3257 set_thread (PIDGET (inferior_ptid), 1);
3258
3259 if (regnum >= 0)
3260 {
3261 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3262 gdb_assert (reg != NULL);
3263 if (!reg->in_g_packet)
3264 internal_error (__FILE__, __LINE__,
3265 _("Attempt to fetch a non G-packet register when this "
3266 "remote.c does not support the p-packet."));
3267 }
3268 switch (remote_protocol_p.support)
3269 {
3270 case PACKET_DISABLE:
3271 break;
3272 case PACKET_ENABLE:
3273 if (fetch_register_using_p (regnum))
3274 return;
3275 else
3276 error (_("Protocol error: p packet not recognized by stub"));
3277 case PACKET_SUPPORT_UNKNOWN:
3278 if (fetch_register_using_p (regnum))
3279 {
3280 /* The stub recognized the 'p' packet. Remember this. */
3281 remote_protocol_p.support = PACKET_ENABLE;
3282 return;
3283 }
3284 else
3285 {
3286 /* The stub does not support the 'P' packet. Use 'G'
3287 instead, and don't try using 'P' in the future (it
3288 will just waste our time). */
3289 remote_protocol_p.support = PACKET_DISABLE;
3290 break;
3291 }
3292 }
3293
3294 sprintf (buf, "g");
3295 remote_send (buf, (rs->remote_packet_size));
3296
3297 /* Save the size of the packet sent to us by the target. Its used
3298 as a heuristic when determining the max size of packets that the
3299 target can safely receive. */
3300 if ((rs->actual_register_packet_size) == 0)
3301 (rs->actual_register_packet_size) = strlen (buf);
3302
3303 /* Unimplemented registers read as all bits zero. */
3304 memset (regs, 0, rs->sizeof_g_packet);
3305
3306 /* We can get out of synch in various cases. If the first character
3307 in the buffer is not a hex character, assume that has happened
3308 and try to fetch another packet to read. */
3309 while ((buf[0] < '0' || buf[0] > '9')
3310 && (buf[0] < 'a' || buf[0] > 'f')
3311 && buf[0] != 'x') /* New: unavailable register value. */
3312 {
3313 if (remote_debug)
3314 fprintf_unfiltered (gdb_stdlog,
3315 "Bad register packet; fetching a new packet\n");
3316 getpkt (buf, (rs->remote_packet_size), 0);
3317 }
3318
3319 /* Reply describes registers byte by byte, each byte encoded as two
3320 hex characters. Suck them all up, then supply them to the
3321 register cacheing/storage mechanism. */
3322
3323 p = buf;
3324 for (i = 0; i < rs->sizeof_g_packet; i++)
3325 {
3326 if (p[0] == 0)
3327 break;
3328 if (p[1] == 0)
3329 {
3330 warning (_("Remote reply is of odd length: %s"), buf);
3331 /* Don't change register_bytes_found in this case, and don't
3332 print a second warning. */
3333 goto supply_them;
3334 }
3335 if (p[0] == 'x' && p[1] == 'x')
3336 regs[i] = 0; /* 'x' */
3337 else
3338 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3339 p += 2;
3340 }
3341
3342 if (i != register_bytes_found)
3343 {
3344 register_bytes_found = i;
3345 if (REGISTER_BYTES_OK_P ()
3346 && !REGISTER_BYTES_OK (i))
3347 warning (_("Remote reply is too short: %s"), buf);
3348 }
3349
3350 supply_them:
3351 {
3352 int i;
3353 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3354 {
3355 struct packet_reg *r = &rs->regs[i];
3356 if (r->in_g_packet)
3357 {
3358 if (r->offset * 2 >= strlen (buf))
3359 /* A short packet that didn't include the register's
3360 value, this implies that the register is zero (and
3361 not that the register is unavailable). Supply that
3362 zero value. */
3363 regcache_raw_supply (current_regcache, r->regnum, NULL);
3364 else if (buf[r->offset * 2] == 'x')
3365 {
3366 gdb_assert (r->offset * 2 < strlen (buf));
3367 /* The register isn't available, mark it as such (at
3368 the same time setting the value to zero). */
3369 regcache_raw_supply (current_regcache, r->regnum, NULL);
3370 set_register_cached (i, -1);
3371 }
3372 else
3373 regcache_raw_supply (current_regcache, r->regnum,
3374 regs + r->offset);
3375 }
3376 }
3377 }
3378 }
3379
3380 /* Prepare to store registers. Since we may send them all (using a
3381 'G' request), we have to read out the ones we don't want to change
3382 first. */
3383
3384 static void
3385 remote_prepare_to_store (void)
3386 {
3387 struct remote_state *rs = get_remote_state ();
3388 int i;
3389 char buf[MAX_REGISTER_SIZE];
3390
3391 /* Make sure the entire registers array is valid. */
3392 switch (remote_protocol_P.support)
3393 {
3394 case PACKET_DISABLE:
3395 case PACKET_SUPPORT_UNKNOWN:
3396 /* Make sure all the necessary registers are cached. */
3397 for (i = 0; i < NUM_REGS; i++)
3398 if (rs->regs[i].in_g_packet)
3399 regcache_raw_read (current_regcache, rs->regs[i].regnum, buf);
3400 break;
3401 case PACKET_ENABLE:
3402 break;
3403 }
3404 }
3405
3406 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3407 packet was not recognized. */
3408
3409 static int
3410 store_register_using_P (int regnum)
3411 {
3412 struct remote_state *rs = get_remote_state ();
3413 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3414 /* Try storing a single register. */
3415 char *buf = alloca (rs->remote_packet_size);
3416 char regp[MAX_REGISTER_SIZE];
3417 char *p;
3418 int i;
3419
3420 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3421 p = buf + strlen (buf);
3422 regcache_raw_collect (current_regcache, reg->regnum, regp);
3423 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3424 remote_send (buf, rs->remote_packet_size);
3425
3426 return buf[0] != '\0';
3427 }
3428
3429
3430 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3431 contents of the register cache buffer. FIXME: ignores errors. */
3432
3433 static void
3434 remote_store_registers (int regnum)
3435 {
3436 struct remote_state *rs = get_remote_state ();
3437 char *buf;
3438 char *regs;
3439 int i;
3440 char *p;
3441
3442 set_thread (PIDGET (inferior_ptid), 1);
3443
3444 if (regnum >= 0)
3445 {
3446 switch (remote_protocol_P.support)
3447 {
3448 case PACKET_DISABLE:
3449 break;
3450 case PACKET_ENABLE:
3451 if (store_register_using_P (regnum))
3452 return;
3453 else
3454 error (_("Protocol error: P packet not recognized by stub"));
3455 case PACKET_SUPPORT_UNKNOWN:
3456 if (store_register_using_P (regnum))
3457 {
3458 /* The stub recognized the 'P' packet. Remember this. */
3459 remote_protocol_P.support = PACKET_ENABLE;
3460 return;
3461 }
3462 else
3463 {
3464 /* The stub does not support the 'P' packet. Use 'G'
3465 instead, and don't try using 'P' in the future (it
3466 will just waste our time). */
3467 remote_protocol_P.support = PACKET_DISABLE;
3468 break;
3469 }
3470 }
3471 }
3472
3473 /* Extract all the registers in the regcache copying them into a
3474 local buffer. */
3475 {
3476 int i;
3477 regs = alloca (rs->sizeof_g_packet);
3478 memset (regs, rs->sizeof_g_packet, 0);
3479 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3480 {
3481 struct packet_reg *r = &rs->regs[i];
3482 if (r->in_g_packet)
3483 regcache_raw_collect (current_regcache, r->regnum, regs + r->offset);
3484 }
3485 }
3486
3487 /* Command describes registers byte by byte,
3488 each byte encoded as two hex characters. */
3489 buf = alloca (rs->remote_packet_size);
3490 p = buf;
3491 *p++ = 'G';
3492 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3493 bin2hex (regs, p, register_bytes_found);
3494 remote_send (buf, (rs->remote_packet_size));
3495 }
3496 \f
3497
3498 /* Return the number of hex digits in num. */
3499
3500 static int
3501 hexnumlen (ULONGEST num)
3502 {
3503 int i;
3504
3505 for (i = 0; num != 0; i++)
3506 num >>= 4;
3507
3508 return max (i, 1);
3509 }
3510
3511 /* Set BUF to the minimum number of hex digits representing NUM. */
3512
3513 static int
3514 hexnumstr (char *buf, ULONGEST num)
3515 {
3516 int len = hexnumlen (num);
3517 return hexnumnstr (buf, num, len);
3518 }
3519
3520
3521 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3522
3523 static int
3524 hexnumnstr (char *buf, ULONGEST num, int width)
3525 {
3526 int i;
3527
3528 buf[width] = '\0';
3529
3530 for (i = width - 1; i >= 0; i--)
3531 {
3532 buf[i] = "0123456789abcdef"[(num & 0xf)];
3533 num >>= 4;
3534 }
3535
3536 return width;
3537 }
3538
3539 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3540
3541 static CORE_ADDR
3542 remote_address_masked (CORE_ADDR addr)
3543 {
3544 if (remote_address_size > 0
3545 && remote_address_size < (sizeof (ULONGEST) * 8))
3546 {
3547 /* Only create a mask when that mask can safely be constructed
3548 in a ULONGEST variable. */
3549 ULONGEST mask = 1;
3550 mask = (mask << remote_address_size) - 1;
3551 addr &= mask;
3552 }
3553 return addr;
3554 }
3555
3556 /* Determine whether the remote target supports binary downloading.
3557 This is accomplished by sending a no-op memory write of zero length
3558 to the target at the specified address. It does not suffice to send
3559 the whole packet, since many stubs strip the eighth bit and
3560 subsequently compute a wrong checksum, which causes real havoc with
3561 remote_write_bytes.
3562
3563 NOTE: This can still lose if the serial line is not eight-bit
3564 clean. In cases like this, the user should clear "remote
3565 X-packet". */
3566
3567 static void
3568 check_binary_download (CORE_ADDR addr)
3569 {
3570 struct remote_state *rs = get_remote_state ();
3571 switch (remote_protocol_binary_download.support)
3572 {
3573 case PACKET_DISABLE:
3574 break;
3575 case PACKET_ENABLE:
3576 break;
3577 case PACKET_SUPPORT_UNKNOWN:
3578 {
3579 char *buf = alloca (rs->remote_packet_size);
3580 char *p;
3581
3582 p = buf;
3583 *p++ = 'X';
3584 p += hexnumstr (p, (ULONGEST) addr);
3585 *p++ = ',';
3586 p += hexnumstr (p, (ULONGEST) 0);
3587 *p++ = ':';
3588 *p = '\0';
3589
3590 putpkt_binary (buf, (int) (p - buf));
3591 getpkt (buf, (rs->remote_packet_size), 0);
3592
3593 if (buf[0] == '\0')
3594 {
3595 if (remote_debug)
3596 fprintf_unfiltered (gdb_stdlog,
3597 "binary downloading NOT suppported by target\n");
3598 remote_protocol_binary_download.support = PACKET_DISABLE;
3599 }
3600 else
3601 {
3602 if (remote_debug)
3603 fprintf_unfiltered (gdb_stdlog,
3604 "binary downloading suppported by target\n");
3605 remote_protocol_binary_download.support = PACKET_ENABLE;
3606 }
3607 break;
3608 }
3609 }
3610 }
3611
3612 /* Write memory data directly to the remote machine.
3613 This does not inform the data cache; the data cache uses this.
3614 MEMADDR is the address in the remote memory space.
3615 MYADDR is the address of the buffer in our space.
3616 LEN is the number of bytes.
3617
3618 Returns number of bytes transferred, or 0 (setting errno) for
3619 error. Only transfer a single packet. */
3620
3621 int
3622 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3623 {
3624 unsigned char *buf;
3625 unsigned char *p;
3626 unsigned char *plen;
3627 long sizeof_buf;
3628 int plenlen;
3629 int todo;
3630 int nr_bytes;
3631 int payload_size;
3632 unsigned char *payload_start;
3633
3634 /* Verify that the target can support a binary download. */
3635 check_binary_download (memaddr);
3636
3637 /* Compute the size, and then allocate space for the largest
3638 possible packet. Include space for an extra trailing NULL. */
3639 sizeof_buf = get_memory_write_packet_size () + 1;
3640 buf = alloca (sizeof_buf);
3641
3642 /* Compute the size of the actual payload by subtracting out the
3643 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
3644 payload_size = (get_memory_write_packet_size () - (strlen ("$M,:#NN")
3645 + hexnumlen (memaddr)
3646 + hexnumlen (len)));
3647
3648 /* Construct the packet header: "[MX]<memaddr>,<len>:". */
3649
3650 /* Append "[XM]". Compute a best guess of the number of bytes
3651 actually transfered. */
3652 p = buf;
3653 switch (remote_protocol_binary_download.support)
3654 {
3655 case PACKET_ENABLE:
3656 *p++ = 'X';
3657 /* Best guess at number of bytes that will fit. */
3658 todo = min (len, payload_size);
3659 break;
3660 case PACKET_DISABLE:
3661 *p++ = 'M';
3662 /* Num bytes that will fit. */
3663 todo = min (len, payload_size / 2);
3664 break;
3665 case PACKET_SUPPORT_UNKNOWN:
3666 internal_error (__FILE__, __LINE__,
3667 _("remote_write_bytes: bad internal state"));
3668 default:
3669 internal_error (__FILE__, __LINE__, _("bad switch"));
3670 }
3671
3672 /* Append "<memaddr>". */
3673 memaddr = remote_address_masked (memaddr);
3674 p += hexnumstr (p, (ULONGEST) memaddr);
3675
3676 /* Append ",". */
3677 *p++ = ',';
3678
3679 /* Append <len>. Retain the location/size of <len>. It may need to
3680 be adjusted once the packet body has been created. */
3681 plen = p;
3682 plenlen = hexnumstr (p, (ULONGEST) todo);
3683 p += plenlen;
3684
3685 /* Append ":". */
3686 *p++ = ':';
3687 *p = '\0';
3688
3689 /* Append the packet body. */
3690 payload_start = p;
3691 switch (remote_protocol_binary_download.support)
3692 {
3693 case PACKET_ENABLE:
3694 /* Binary mode. Send target system values byte by byte, in
3695 increasing byte addresses. Only escape certain critical
3696 characters. */
3697 for (nr_bytes = 0;
3698 (nr_bytes < todo) && (p - payload_start) < payload_size;
3699 nr_bytes++)
3700 {
3701 switch (myaddr[nr_bytes] & 0xff)
3702 {
3703 case '$':
3704 case '#':
3705 case 0x7d:
3706 /* These must be escaped. */
3707 *p++ = 0x7d;
3708 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3709 break;
3710 default:
3711 *p++ = myaddr[nr_bytes] & 0xff;
3712 break;
3713 }
3714 }
3715 if (nr_bytes < todo)
3716 {
3717 /* Escape chars have filled up the buffer prematurely,
3718 and we have actually sent fewer bytes than planned.
3719 Fix-up the length field of the packet. Use the same
3720 number of characters as before. */
3721 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3722 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3723 }
3724 break;
3725 case PACKET_DISABLE:
3726 /* Normal mode: Send target system values byte by byte, in
3727 increasing byte addresses. Each byte is encoded as a two hex
3728 value. */
3729 nr_bytes = bin2hex (myaddr, p, todo);
3730 p += 2 * nr_bytes;
3731 break;
3732 case PACKET_SUPPORT_UNKNOWN:
3733 internal_error (__FILE__, __LINE__,
3734 _("remote_write_bytes: bad internal state"));
3735 default:
3736 internal_error (__FILE__, __LINE__, _("bad switch"));
3737 }
3738
3739 putpkt_binary (buf, (int) (p - buf));
3740 getpkt (buf, sizeof_buf, 0);
3741
3742 if (buf[0] == 'E')
3743 {
3744 /* There is no correspondance between what the remote protocol
3745 uses for errors and errno codes. We would like a cleaner way
3746 of representing errors (big enough to include errno codes,
3747 bfd_error codes, and others). But for now just return EIO. */
3748 errno = EIO;
3749 return 0;
3750 }
3751
3752 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
3753 fewer bytes than we'd planned. */
3754 return nr_bytes;
3755 }
3756
3757 /* Read memory data directly from the remote machine.
3758 This does not use the data cache; the data cache uses this.
3759 MEMADDR is the address in the remote memory space.
3760 MYADDR is the address of the buffer in our space.
3761 LEN is the number of bytes.
3762
3763 Returns number of bytes transferred, or 0 for error. */
3764
3765 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3766 remote targets) shouldn't attempt to read the entire buffer.
3767 Instead it should read a single packet worth of data and then
3768 return the byte size of that packet to the caller. The caller (its
3769 caller and its callers caller ;-) already contains code for
3770 handling partial reads. */
3771
3772 int
3773 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3774 {
3775 char *buf;
3776 int max_buf_size; /* Max size of packet output buffer. */
3777 long sizeof_buf;
3778 int origlen;
3779
3780 /* Create a buffer big enough for this packet. */
3781 max_buf_size = get_memory_read_packet_size ();
3782 sizeof_buf = max_buf_size + 1; /* Space for trailing NULL. */
3783 buf = alloca (sizeof_buf);
3784
3785 origlen = len;
3786 while (len > 0)
3787 {
3788 char *p;
3789 int todo;
3790 int i;
3791
3792 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3793
3794 /* construct "m"<memaddr>","<len>" */
3795 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3796 memaddr = remote_address_masked (memaddr);
3797 p = buf;
3798 *p++ = 'm';
3799 p += hexnumstr (p, (ULONGEST) memaddr);
3800 *p++ = ',';
3801 p += hexnumstr (p, (ULONGEST) todo);
3802 *p = '\0';
3803
3804 putpkt (buf);
3805 getpkt (buf, sizeof_buf, 0);
3806
3807 if (buf[0] == 'E'
3808 && isxdigit (buf[1]) && isxdigit (buf[2])
3809 && buf[3] == '\0')
3810 {
3811 /* There is no correspondance between what the remote
3812 protocol uses for errors and errno codes. We would like
3813 a cleaner way of representing errors (big enough to
3814 include errno codes, bfd_error codes, and others). But
3815 for now just return EIO. */
3816 errno = EIO;
3817 return 0;
3818 }
3819
3820 /* Reply describes memory byte by byte,
3821 each byte encoded as two hex characters. */
3822
3823 p = buf;
3824 if ((i = hex2bin (p, myaddr, todo)) < todo)
3825 {
3826 /* Reply is short. This means that we were able to read
3827 only part of what we wanted to. */
3828 return i + (origlen - len);
3829 }
3830 myaddr += todo;
3831 memaddr += todo;
3832 len -= todo;
3833 }
3834 return origlen;
3835 }
3836 \f
3837 /* Read or write LEN bytes from inferior memory at MEMADDR,
3838 transferring to or from debugger address BUFFER. Write to inferior
3839 if SHOULD_WRITE is nonzero. Returns length of data written or
3840 read; 0 for error. TARGET is unused. */
3841
3842 static int
3843 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3844 int should_write, struct mem_attrib *attrib,
3845 struct target_ops *target)
3846 {
3847 CORE_ADDR targ_addr;
3848 int targ_len;
3849 int res;
3850
3851 /* Should this be the selected frame? */
3852 gdbarch_remote_translate_xfer_address (current_gdbarch,
3853 current_regcache,
3854 mem_addr, mem_len,
3855 &targ_addr, &targ_len);
3856 if (targ_len <= 0)
3857 return 0;
3858
3859 if (should_write)
3860 res = remote_write_bytes (targ_addr, buffer, targ_len);
3861 else
3862 res = remote_read_bytes (targ_addr, buffer, targ_len);
3863
3864 return res;
3865 }
3866
3867 static void
3868 remote_files_info (struct target_ops *ignore)
3869 {
3870 puts_filtered ("Debugging a target over a serial line.\n");
3871 }
3872 \f
3873 /* Stuff for dealing with the packets which are part of this protocol.
3874 See comment at top of file for details. */
3875
3876 /* Read a single character from the remote end, masking it down to 7
3877 bits. */
3878
3879 static int
3880 readchar (int timeout)
3881 {
3882 int ch;
3883
3884 ch = serial_readchar (remote_desc, timeout);
3885
3886 if (ch >= 0)
3887 return (ch & 0x7f);
3888
3889 switch ((enum serial_rc) ch)
3890 {
3891 case SERIAL_EOF:
3892 target_mourn_inferior ();
3893 error (_("Remote connection closed"));
3894 /* no return */
3895 case SERIAL_ERROR:
3896 perror_with_name (_("Remote communication error"));
3897 /* no return */
3898 case SERIAL_TIMEOUT:
3899 break;
3900 }
3901 return ch;
3902 }
3903
3904 /* Send the command in BUF to the remote machine, and read the reply
3905 into BUF. Report an error if we get an error reply. */
3906
3907 static void
3908 remote_send (char *buf,
3909 long sizeof_buf)
3910 {
3911 putpkt (buf);
3912 getpkt (buf, sizeof_buf, 0);
3913
3914 if (buf[0] == 'E')
3915 error (_("Remote failure reply: %s"), buf);
3916 }
3917
3918 /* Display a null-terminated packet on stdout, for debugging, using C
3919 string notation. */
3920
3921 static void
3922 print_packet (char *buf)
3923 {
3924 puts_filtered ("\"");
3925 fputstr_filtered (buf, '"', gdb_stdout);
3926 puts_filtered ("\"");
3927 }
3928
3929 int
3930 putpkt (char *buf)
3931 {
3932 return putpkt_binary (buf, strlen (buf));
3933 }
3934
3935 /* Send a packet to the remote machine, with error checking. The data
3936 of the packet is in BUF. The string in BUF can be at most
3937 (rs->remote_packet_size) - 5 to account for the $, # and checksum,
3938 and for a possible /0 if we are debugging (remote_debug) and want
3939 to print the sent packet as a string. */
3940
3941 static int
3942 putpkt_binary (char *buf, int cnt)
3943 {
3944 struct remote_state *rs = get_remote_state ();
3945 int i;
3946 unsigned char csum = 0;
3947 char *buf2 = alloca (cnt + 6);
3948 long sizeof_junkbuf = (rs->remote_packet_size);
3949 char *junkbuf = alloca (sizeof_junkbuf);
3950
3951 int ch;
3952 int tcount = 0;
3953 char *p;
3954
3955 /* Copy the packet into buffer BUF2, encapsulating it
3956 and giving it a checksum. */
3957
3958 p = buf2;
3959 *p++ = '$';
3960
3961 for (i = 0; i < cnt; i++)
3962 {
3963 csum += buf[i];
3964 *p++ = buf[i];
3965 }
3966 *p++ = '#';
3967 *p++ = tohex ((csum >> 4) & 0xf);
3968 *p++ = tohex (csum & 0xf);
3969
3970 /* Send it over and over until we get a positive ack. */
3971
3972 while (1)
3973 {
3974 int started_error_output = 0;
3975
3976 if (remote_debug)
3977 {
3978 *p = '\0';
3979 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
3980 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
3981 fprintf_unfiltered (gdb_stdlog, "...");
3982 gdb_flush (gdb_stdlog);
3983 }
3984 if (serial_write (remote_desc, buf2, p - buf2))
3985 perror_with_name (_("putpkt: write failed"));
3986
3987 /* Read until either a timeout occurs (-2) or '+' is read. */
3988 while (1)
3989 {
3990 ch = readchar (remote_timeout);
3991
3992 if (remote_debug)
3993 {
3994 switch (ch)
3995 {
3996 case '+':
3997 case '-':
3998 case SERIAL_TIMEOUT:
3999 case '$':
4000 if (started_error_output)
4001 {
4002 putchar_unfiltered ('\n');
4003 started_error_output = 0;
4004 }
4005 }
4006 }
4007
4008 switch (ch)
4009 {
4010 case '+':
4011 if (remote_debug)
4012 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4013 return 1;
4014 case '-':
4015 if (remote_debug)
4016 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4017 case SERIAL_TIMEOUT:
4018 tcount++;
4019 if (tcount > 3)
4020 return 0;
4021 break; /* Retransmit buffer. */
4022 case '$':
4023 {
4024 if (remote_debug)
4025 fprintf_unfiltered (gdb_stdlog,
4026 "Packet instead of Ack, ignoring it\n");
4027 /* It's probably an old response sent because an ACK
4028 was lost. Gobble up the packet and ack it so it
4029 doesn't get retransmitted when we resend this
4030 packet. */
4031 read_frame (junkbuf, sizeof_junkbuf);
4032 serial_write (remote_desc, "+", 1);
4033 continue; /* Now, go look for +. */
4034 }
4035 default:
4036 if (remote_debug)
4037 {
4038 if (!started_error_output)
4039 {
4040 started_error_output = 1;
4041 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4042 }
4043 fputc_unfiltered (ch & 0177, gdb_stdlog);
4044 }
4045 continue;
4046 }
4047 break; /* Here to retransmit. */
4048 }
4049
4050 #if 0
4051 /* This is wrong. If doing a long backtrace, the user should be
4052 able to get out next time we call QUIT, without anything as
4053 violent as interrupt_query. If we want to provide a way out of
4054 here without getting to the next QUIT, it should be based on
4055 hitting ^C twice as in remote_wait. */
4056 if (quit_flag)
4057 {
4058 quit_flag = 0;
4059 interrupt_query ();
4060 }
4061 #endif
4062 }
4063 }
4064
4065 /* Come here after finding the start of the frame. Collect the rest
4066 into BUF, verifying the checksum, length, and handling run-length
4067 compression. No more than sizeof_buf-1 characters are read so that
4068 the buffer can be NUL terminated.
4069
4070 Returns -1 on error, number of characters in buffer (ignoring the
4071 trailing NULL) on success. (could be extended to return one of the
4072 SERIAL status indications). */
4073
4074 static long
4075 read_frame (char *buf,
4076 long sizeof_buf)
4077 {
4078 unsigned char csum;
4079 long bc;
4080 int c;
4081
4082 csum = 0;
4083 bc = 0;
4084
4085 while (1)
4086 {
4087 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NULL. */
4088 c = readchar (remote_timeout);
4089 switch (c)
4090 {
4091 case SERIAL_TIMEOUT:
4092 if (remote_debug)
4093 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4094 return -1;
4095 case '$':
4096 if (remote_debug)
4097 fputs_filtered ("Saw new packet start in middle of old one\n",
4098 gdb_stdlog);
4099 return -1; /* Start a new packet, count retries. */
4100 case '#':
4101 {
4102 unsigned char pktcsum;
4103 int check_0 = 0;
4104 int check_1 = 0;
4105
4106 buf[bc] = '\0';
4107
4108 check_0 = readchar (remote_timeout);
4109 if (check_0 >= 0)
4110 check_1 = readchar (remote_timeout);
4111
4112 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4113 {
4114 if (remote_debug)
4115 fputs_filtered ("Timeout in checksum, retrying\n",
4116 gdb_stdlog);
4117 return -1;
4118 }
4119 else if (check_0 < 0 || check_1 < 0)
4120 {
4121 if (remote_debug)
4122 fputs_filtered ("Communication error in checksum\n",
4123 gdb_stdlog);
4124 return -1;
4125 }
4126
4127 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4128 if (csum == pktcsum)
4129 return bc;
4130
4131 if (remote_debug)
4132 {
4133 fprintf_filtered (gdb_stdlog,
4134 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4135 pktcsum, csum);
4136 fputs_filtered (buf, gdb_stdlog);
4137 fputs_filtered ("\n", gdb_stdlog);
4138 }
4139 /* Number of characters in buffer ignoring trailing
4140 NULL. */
4141 return -1;
4142 }
4143 case '*': /* Run length encoding. */
4144 {
4145 int repeat;
4146 csum += c;
4147
4148 c = readchar (remote_timeout);
4149 csum += c;
4150 repeat = c - ' ' + 3; /* Compute repeat count. */
4151
4152 /* The character before ``*'' is repeated. */
4153
4154 if (repeat > 0 && repeat <= 255
4155 && bc > 0
4156 && bc + repeat - 1 < sizeof_buf - 1)
4157 {
4158 memset (&buf[bc], buf[bc - 1], repeat);
4159 bc += repeat;
4160 continue;
4161 }
4162
4163 buf[bc] = '\0';
4164 printf_filtered ("Repeat count %d too large for buffer: ",
4165 repeat);
4166 puts_filtered (buf);
4167 puts_filtered ("\n");
4168 return -1;
4169 }
4170 default:
4171 if (bc < sizeof_buf - 1)
4172 {
4173 buf[bc++] = c;
4174 csum += c;
4175 continue;
4176 }
4177
4178 buf[bc] = '\0';
4179 puts_filtered ("Remote packet too long: ");
4180 puts_filtered (buf);
4181 puts_filtered ("\n");
4182
4183 return -1;
4184 }
4185 }
4186 }
4187
4188 /* Read a packet from the remote machine, with error checking, and
4189 store it in BUF. If FOREVER, wait forever rather than timing out;
4190 this is used (in synchronous mode) to wait for a target that is is
4191 executing user code to stop. */
4192 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4193 don't have to change all the calls to getpkt to deal with the
4194 return value, because at the moment I don't know what the right
4195 thing to do it for those. */
4196 void
4197 getpkt (char *buf,
4198 long sizeof_buf,
4199 int forever)
4200 {
4201 int timed_out;
4202
4203 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4204 }
4205
4206
4207 /* Read a packet from the remote machine, with error checking, and
4208 store it in BUF. If FOREVER, wait forever rather than timing out;
4209 this is used (in synchronous mode) to wait for a target that is is
4210 executing user code to stop. If FOREVER == 0, this function is
4211 allowed to time out gracefully and return an indication of this to
4212 the caller. */
4213 static int
4214 getpkt_sane (char *buf,
4215 long sizeof_buf,
4216 int forever)
4217 {
4218 int c;
4219 int tries;
4220 int timeout;
4221 int val;
4222
4223 strcpy (buf, "timeout");
4224
4225 if (forever)
4226 {
4227 timeout = watchdog > 0 ? watchdog : -1;
4228 }
4229
4230 else
4231 timeout = remote_timeout;
4232
4233 #define MAX_TRIES 3
4234
4235 for (tries = 1; tries <= MAX_TRIES; tries++)
4236 {
4237 /* This can loop forever if the remote side sends us characters
4238 continuously, but if it pauses, we'll get a zero from
4239 readchar because of timeout. Then we'll count that as a
4240 retry. */
4241
4242 /* Note that we will only wait forever prior to the start of a
4243 packet. After that, we expect characters to arrive at a
4244 brisk pace. They should show up within remote_timeout
4245 intervals. */
4246
4247 do
4248 {
4249 c = readchar (timeout);
4250
4251 if (c == SERIAL_TIMEOUT)
4252 {
4253 if (forever) /* Watchdog went off? Kill the target. */
4254 {
4255 QUIT;
4256 target_mourn_inferior ();
4257 error (_("Watchdog has expired. Target detached."));
4258 }
4259 if (remote_debug)
4260 fputs_filtered ("Timed out.\n", gdb_stdlog);
4261 goto retry;
4262 }
4263 }
4264 while (c != '$');
4265
4266 /* We've found the start of a packet, now collect the data. */
4267
4268 val = read_frame (buf, sizeof_buf);
4269
4270 if (val >= 0)
4271 {
4272 if (remote_debug)
4273 {
4274 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4275 fputstr_unfiltered (buf, 0, gdb_stdlog);
4276 fprintf_unfiltered (gdb_stdlog, "\n");
4277 }
4278 serial_write (remote_desc, "+", 1);
4279 return 0;
4280 }
4281
4282 /* Try the whole thing again. */
4283 retry:
4284 serial_write (remote_desc, "-", 1);
4285 }
4286
4287 /* We have tried hard enough, and just can't receive the packet.
4288 Give up. */
4289
4290 printf_unfiltered ("Ignoring packet error, continuing...\n");
4291 serial_write (remote_desc, "+", 1);
4292 return 1;
4293 }
4294 \f
4295 static void
4296 remote_kill (void)
4297 {
4298 /* For some mysterious reason, wait_for_inferior calls kill instead of
4299 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4300 if (kill_kludge)
4301 {
4302 kill_kludge = 0;
4303 target_mourn_inferior ();
4304 return;
4305 }
4306
4307 /* Use catch_errors so the user can quit from gdb even when we aren't on
4308 speaking terms with the remote system. */
4309 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4310
4311 /* Don't wait for it to die. I'm not really sure it matters whether
4312 we do or not. For the existing stubs, kill is a noop. */
4313 target_mourn_inferior ();
4314 }
4315
4316 /* Async version of remote_kill. */
4317 static void
4318 remote_async_kill (void)
4319 {
4320 /* Unregister the file descriptor from the event loop. */
4321 if (target_is_async_p ())
4322 serial_async (remote_desc, NULL, 0);
4323
4324 /* For some mysterious reason, wait_for_inferior calls kill instead of
4325 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4326 if (kill_kludge)
4327 {
4328 kill_kludge = 0;
4329 target_mourn_inferior ();
4330 return;
4331 }
4332
4333 /* Use catch_errors so the user can quit from gdb even when we
4334 aren't on speaking terms with the remote system. */
4335 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4336
4337 /* Don't wait for it to die. I'm not really sure it matters whether
4338 we do or not. For the existing stubs, kill is a noop. */
4339 target_mourn_inferior ();
4340 }
4341
4342 static void
4343 remote_mourn (void)
4344 {
4345 remote_mourn_1 (&remote_ops);
4346 }
4347
4348 static void
4349 remote_async_mourn (void)
4350 {
4351 remote_mourn_1 (&remote_async_ops);
4352 }
4353
4354 static void
4355 extended_remote_mourn (void)
4356 {
4357 /* We do _not_ want to mourn the target like this; this will
4358 remove the extended remote target from the target stack,
4359 and the next time the user says "run" it'll fail.
4360
4361 FIXME: What is the right thing to do here? */
4362 #if 0
4363 remote_mourn_1 (&extended_remote_ops);
4364 #endif
4365 }
4366
4367 /* Worker function for remote_mourn. */
4368 static void
4369 remote_mourn_1 (struct target_ops *target)
4370 {
4371 unpush_target (target);
4372 generic_mourn_inferior ();
4373 }
4374
4375 /* In the extended protocol we want to be able to do things like
4376 "run" and have them basically work as expected. So we need
4377 a special create_inferior function.
4378
4379 FIXME: One day add support for changing the exec file
4380 we're debugging, arguments and an environment. */
4381
4382 static void
4383 extended_remote_create_inferior (char *exec_file, char *args,
4384 char **env, int from_tty)
4385 {
4386 /* Rip out the breakpoints; we'll reinsert them after restarting
4387 the remote server. */
4388 remove_breakpoints ();
4389
4390 /* Now restart the remote server. */
4391 extended_remote_restart ();
4392
4393 /* Now put the breakpoints back in. This way we're safe if the
4394 restart function works via a unix fork on the remote side. */
4395 insert_breakpoints ();
4396
4397 /* Clean up from the last time we were running. */
4398 clear_proceed_status ();
4399
4400 /* Let the remote process run. */
4401 proceed (-1, TARGET_SIGNAL_0, 0);
4402 }
4403
4404 /* Async version of extended_remote_create_inferior. */
4405 static void
4406 extended_remote_async_create_inferior (char *exec_file, char *args,
4407 char **env, int from_tty)
4408 {
4409 /* Rip out the breakpoints; we'll reinsert them after restarting
4410 the remote server. */
4411 remove_breakpoints ();
4412
4413 /* If running asynchronously, register the target file descriptor
4414 with the event loop. */
4415 if (target_can_async_p ())
4416 target_async (inferior_event_handler, 0);
4417
4418 /* Now restart the remote server. */
4419 extended_remote_restart ();
4420
4421 /* Now put the breakpoints back in. This way we're safe if the
4422 restart function works via a unix fork on the remote side. */
4423 insert_breakpoints ();
4424
4425 /* Clean up from the last time we were running. */
4426 clear_proceed_status ();
4427
4428 /* Let the remote process run. */
4429 proceed (-1, TARGET_SIGNAL_0, 0);
4430 }
4431 \f
4432
4433 /* On some machines, e.g. 68k, we may use a different breakpoint
4434 instruction than other targets; in those use
4435 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
4436 Also, bi-endian targets may define
4437 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
4438 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
4439 just call the standard routines that are in mem-break.c. */
4440
4441 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
4442 target should use an identical BREAKPOINT_FROM_PC. As for native,
4443 the ARCH-OS-tdep.c code can override the default. */
4444
4445 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
4446 #define DEPRECATED_REMOTE_BREAKPOINT
4447 #endif
4448
4449 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4450
4451 /* If the target isn't bi-endian, just pretend it is. */
4452 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
4453 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4454 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4455 #endif
4456
4457 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
4458 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
4459
4460 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4461
4462 /* Insert a breakpoint on targets that don't have any better
4463 breakpoint support. We read the contents of the target location
4464 and stash it, then overwrite it with a breakpoint instruction.
4465 ADDR is the target location in the target machine. CONTENTS_CACHE
4466 is a pointer to memory allocated for saving the target contents.
4467 It is guaranteed by the caller to be long enough to save the number
4468 of bytes returned by BREAKPOINT_FROM_PC. */
4469
4470 static int
4471 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4472 {
4473 struct remote_state *rs = get_remote_state ();
4474 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4475 int val;
4476 #endif
4477 int bp_size;
4478
4479 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4480 If it succeeds, then set the support to PACKET_ENABLE. If it
4481 fails, and the user has explicitly requested the Z support then
4482 report an error, otherwise, mark it disabled and go on. */
4483
4484 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4485 {
4486 char *buf = alloca (rs->remote_packet_size);
4487 char *p = buf;
4488
4489 addr = remote_address_masked (addr);
4490 *(p++) = 'Z';
4491 *(p++) = '0';
4492 *(p++) = ',';
4493 p += hexnumstr (p, (ULONGEST) addr);
4494 BREAKPOINT_FROM_PC (&addr, &bp_size);
4495 sprintf (p, ",%d", bp_size);
4496
4497 putpkt (buf);
4498 getpkt (buf, (rs->remote_packet_size), 0);
4499
4500 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4501 {
4502 case PACKET_ERROR:
4503 return -1;
4504 case PACKET_OK:
4505 return 0;
4506 case PACKET_UNKNOWN:
4507 break;
4508 }
4509 }
4510
4511 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4512 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4513
4514 if (val == 0)
4515 {
4516 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4517 val = target_write_memory (addr, (char *) big_break_insn,
4518 sizeof big_break_insn);
4519 else
4520 val = target_write_memory (addr, (char *) little_break_insn,
4521 sizeof little_break_insn);
4522 }
4523
4524 return val;
4525 #else
4526 return memory_insert_breakpoint (addr, contents_cache);
4527 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4528 }
4529
4530 static int
4531 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4532 {
4533 struct remote_state *rs = get_remote_state ();
4534 int bp_size;
4535
4536 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4537 {
4538 char *buf = alloca (rs->remote_packet_size);
4539 char *p = buf;
4540
4541 *(p++) = 'z';
4542 *(p++) = '0';
4543 *(p++) = ',';
4544
4545 addr = remote_address_masked (addr);
4546 p += hexnumstr (p, (ULONGEST) addr);
4547 BREAKPOINT_FROM_PC (&addr, &bp_size);
4548 sprintf (p, ",%d", bp_size);
4549
4550 putpkt (buf);
4551 getpkt (buf, (rs->remote_packet_size), 0);
4552
4553 return (buf[0] == 'E');
4554 }
4555
4556 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4557 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4558 #else
4559 return memory_remove_breakpoint (addr, contents_cache);
4560 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4561 }
4562
4563 static int
4564 watchpoint_to_Z_packet (int type)
4565 {
4566 switch (type)
4567 {
4568 case hw_write:
4569 return 2;
4570 break;
4571 case hw_read:
4572 return 3;
4573 break;
4574 case hw_access:
4575 return 4;
4576 break;
4577 default:
4578 internal_error (__FILE__, __LINE__,
4579 _("hw_bp_to_z: bad watchpoint type %d"), type);
4580 }
4581 }
4582
4583 static int
4584 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4585 {
4586 struct remote_state *rs = get_remote_state ();
4587 char *buf = alloca (rs->remote_packet_size);
4588 char *p;
4589 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4590
4591 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4592 error (_("Can't set hardware watchpoints without the '%s' (%s) packet."),
4593 remote_protocol_Z[packet].name,
4594 remote_protocol_Z[packet].title);
4595
4596 sprintf (buf, "Z%x,", packet);
4597 p = strchr (buf, '\0');
4598 addr = remote_address_masked (addr);
4599 p += hexnumstr (p, (ULONGEST) addr);
4600 sprintf (p, ",%x", len);
4601
4602 putpkt (buf);
4603 getpkt (buf, (rs->remote_packet_size), 0);
4604
4605 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4606 {
4607 case PACKET_ERROR:
4608 case PACKET_UNKNOWN:
4609 return -1;
4610 case PACKET_OK:
4611 return 0;
4612 }
4613 internal_error (__FILE__, __LINE__,
4614 _("remote_insert_watchpoint: reached end of function"));
4615 }
4616
4617
4618 static int
4619 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4620 {
4621 struct remote_state *rs = get_remote_state ();
4622 char *buf = alloca (rs->remote_packet_size);
4623 char *p;
4624 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4625
4626 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4627 error (_("Can't clear hardware watchpoints without the '%s' (%s) packet."),
4628 remote_protocol_Z[packet].name,
4629 remote_protocol_Z[packet].title);
4630
4631 sprintf (buf, "z%x,", packet);
4632 p = strchr (buf, '\0');
4633 addr = remote_address_masked (addr);
4634 p += hexnumstr (p, (ULONGEST) addr);
4635 sprintf (p, ",%x", len);
4636 putpkt (buf);
4637 getpkt (buf, (rs->remote_packet_size), 0);
4638
4639 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4640 {
4641 case PACKET_ERROR:
4642 case PACKET_UNKNOWN:
4643 return -1;
4644 case PACKET_OK:
4645 return 0;
4646 }
4647 internal_error (__FILE__, __LINE__,
4648 _("remote_remove_watchpoint: reached end of function"));
4649 }
4650
4651
4652 int remote_hw_watchpoint_limit = -1;
4653 int remote_hw_breakpoint_limit = -1;
4654
4655 static int
4656 remote_check_watch_resources (int type, int cnt, int ot)
4657 {
4658 if (type == bp_hardware_breakpoint)
4659 {
4660 if (remote_hw_breakpoint_limit == 0)
4661 return 0;
4662 else if (remote_hw_breakpoint_limit < 0)
4663 return 1;
4664 else if (cnt <= remote_hw_breakpoint_limit)
4665 return 1;
4666 }
4667 else
4668 {
4669 if (remote_hw_watchpoint_limit == 0)
4670 return 0;
4671 else if (remote_hw_watchpoint_limit < 0)
4672 return 1;
4673 else if (ot)
4674 return -1;
4675 else if (cnt <= remote_hw_watchpoint_limit)
4676 return 1;
4677 }
4678 return -1;
4679 }
4680
4681 static int
4682 remote_stopped_by_watchpoint (void)
4683 {
4684 return remote_stopped_by_watchpoint_p;
4685 }
4686
4687 extern int stepped_after_stopped_by_watchpoint;
4688
4689 static int
4690 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
4691 {
4692 int rc = 0;
4693 if (remote_stopped_by_watchpoint ()
4694 || stepped_after_stopped_by_watchpoint)
4695 {
4696 *addr_p = remote_watch_data_address;
4697 rc = 1;
4698 }
4699
4700 return rc;
4701 }
4702
4703
4704 static int
4705 remote_insert_hw_breakpoint (CORE_ADDR addr, char *shadow)
4706 {
4707 int len = 0;
4708 struct remote_state *rs = get_remote_state ();
4709 char *buf = alloca (rs->remote_packet_size);
4710 char *p = buf;
4711
4712 /* The length field should be set to the size of a breakpoint
4713 instruction. */
4714
4715 BREAKPOINT_FROM_PC (&addr, &len);
4716
4717 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4718 error (_("Can't set hardware breakpoint without the '%s' (%s) packet."),
4719 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4720 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4721
4722 *(p++) = 'Z';
4723 *(p++) = '1';
4724 *(p++) = ',';
4725
4726 addr = remote_address_masked (addr);
4727 p += hexnumstr (p, (ULONGEST) addr);
4728 sprintf (p, ",%x", len);
4729
4730 putpkt (buf);
4731 getpkt (buf, (rs->remote_packet_size), 0);
4732
4733 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4734 {
4735 case PACKET_ERROR:
4736 case PACKET_UNKNOWN:
4737 return -1;
4738 case PACKET_OK:
4739 return 0;
4740 }
4741 internal_error (__FILE__, __LINE__,
4742 _("remote_insert_hw_breakpoint: reached end of function"));
4743 }
4744
4745
4746 static int
4747 remote_remove_hw_breakpoint (CORE_ADDR addr, char *shadow)
4748 {
4749 int len;
4750 struct remote_state *rs = get_remote_state ();
4751 char *buf = alloca (rs->remote_packet_size);
4752 char *p = buf;
4753
4754 /* The length field should be set to the size of a breakpoint
4755 instruction. */
4756
4757 BREAKPOINT_FROM_PC (&addr, &len);
4758
4759 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4760 error (_("Can't clear hardware breakpoint without the '%s' (%s) packet."),
4761 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4762 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4763
4764 *(p++) = 'z';
4765 *(p++) = '1';
4766 *(p++) = ',';
4767
4768 addr = remote_address_masked (addr);
4769 p += hexnumstr (p, (ULONGEST) addr);
4770 sprintf (p, ",%x", len);
4771
4772 putpkt(buf);
4773 getpkt (buf, (rs->remote_packet_size), 0);
4774
4775 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4776 {
4777 case PACKET_ERROR:
4778 case PACKET_UNKNOWN:
4779 return -1;
4780 case PACKET_OK:
4781 return 0;
4782 }
4783 internal_error (__FILE__, __LINE__,
4784 _("remote_remove_hw_breakpoint: reached end of function"));
4785 }
4786
4787 /* Some targets are only capable of doing downloads, and afterwards
4788 they switch to the remote serial protocol. This function provides
4789 a clean way to get from the download target to the remote target.
4790 It's basically just a wrapper so that we don't have to expose any
4791 of the internal workings of remote.c.
4792
4793 Prior to calling this routine, you should shutdown the current
4794 target code, else you will get the "A program is being debugged
4795 already..." message. Usually a call to pop_target() suffices. */
4796
4797 void
4798 push_remote_target (char *name, int from_tty)
4799 {
4800 printf_filtered ("Switching to remote protocol\n");
4801 remote_open (name, from_tty);
4802 }
4803
4804 /* Table used by the crc32 function to calcuate the checksum. */
4805
4806 static unsigned long crc32_table[256] =
4807 {0, 0};
4808
4809 static unsigned long
4810 crc32 (unsigned char *buf, int len, unsigned int crc)
4811 {
4812 if (!crc32_table[1])
4813 {
4814 /* Initialize the CRC table and the decoding table. */
4815 int i, j;
4816 unsigned int c;
4817
4818 for (i = 0; i < 256; i++)
4819 {
4820 for (c = i << 24, j = 8; j > 0; --j)
4821 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4822 crc32_table[i] = c;
4823 }
4824 }
4825
4826 while (len--)
4827 {
4828 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4829 buf++;
4830 }
4831 return crc;
4832 }
4833
4834 /* compare-sections command
4835
4836 With no arguments, compares each loadable section in the exec bfd
4837 with the same memory range on the target, and reports mismatches.
4838 Useful for verifying the image on the target against the exec file.
4839 Depends on the target understanding the new "qCRC:" request. */
4840
4841 /* FIXME: cagney/1999-10-26: This command should be broken down into a
4842 target method (target verify memory) and generic version of the
4843 actual command. This will allow other high-level code (especially
4844 generic_load()) to make use of this target functionality. */
4845
4846 static void
4847 compare_sections_command (char *args, int from_tty)
4848 {
4849 struct remote_state *rs = get_remote_state ();
4850 asection *s;
4851 unsigned long host_crc, target_crc;
4852 extern bfd *exec_bfd;
4853 struct cleanup *old_chain;
4854 char *tmp;
4855 char *sectdata;
4856 const char *sectname;
4857 char *buf = alloca (rs->remote_packet_size);
4858 bfd_size_type size;
4859 bfd_vma lma;
4860 int matched = 0;
4861 int mismatched = 0;
4862
4863 if (!exec_bfd)
4864 error (_("command cannot be used without an exec file"));
4865 if (!current_target.to_shortname ||
4866 strcmp (current_target.to_shortname, "remote") != 0)
4867 error (_("command can only be used with remote target"));
4868
4869 for (s = exec_bfd->sections; s; s = s->next)
4870 {
4871 if (!(s->flags & SEC_LOAD))
4872 continue; /* skip non-loadable section */
4873
4874 size = bfd_get_section_size (s);
4875 if (size == 0)
4876 continue; /* skip zero-length section */
4877
4878 sectname = bfd_get_section_name (exec_bfd, s);
4879 if (args && strcmp (args, sectname) != 0)
4880 continue; /* not the section selected by user */
4881
4882 matched = 1; /* do this section */
4883 lma = s->lma;
4884 /* FIXME: assumes lma can fit into long. */
4885 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
4886 putpkt (buf);
4887
4888 /* Be clever; compute the host_crc before waiting for target
4889 reply. */
4890 sectdata = xmalloc (size);
4891 old_chain = make_cleanup (xfree, sectdata);
4892 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
4893 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
4894
4895 getpkt (buf, (rs->remote_packet_size), 0);
4896 if (buf[0] == 'E')
4897 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
4898 sectname, paddr (lma), paddr (lma + size));
4899 if (buf[0] != 'C')
4900 error (_("remote target does not support this operation"));
4901
4902 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
4903 target_crc = target_crc * 16 + fromhex (*tmp);
4904
4905 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
4906 sectname, paddr (lma), paddr (lma + size));
4907 if (host_crc == target_crc)
4908 printf_filtered ("matched.\n");
4909 else
4910 {
4911 printf_filtered ("MIS-MATCHED!\n");
4912 mismatched++;
4913 }
4914
4915 do_cleanups (old_chain);
4916 }
4917 if (mismatched > 0)
4918 warning (_("One or more sections of the remote executable does not match\n\
4919 the loaded file\n"));
4920 if (args && !matched)
4921 printf_filtered ("No loaded section named '%s'.\n", args);
4922 }
4923
4924 static LONGEST
4925 remote_xfer_partial (struct target_ops *ops, enum target_object object,
4926 const char *annex, void *readbuf, const void *writebuf,
4927 ULONGEST offset, LONGEST len)
4928 {
4929 struct remote_state *rs = get_remote_state ();
4930 int i;
4931 char *buf2 = alloca (rs->remote_packet_size);
4932 char *p2 = &buf2[0];
4933 char query_type;
4934
4935 /* Handle memory using remote_xfer_memory. */
4936 if (object == TARGET_OBJECT_MEMORY)
4937 {
4938 int xfered;
4939 errno = 0;
4940
4941 if (writebuf != NULL)
4942 {
4943 void *buffer = xmalloc (len);
4944 struct cleanup *cleanup = make_cleanup (xfree, buffer);
4945 memcpy (buffer, writebuf, len);
4946 xfered = remote_xfer_memory (offset, buffer, len, 1, NULL, ops);
4947 do_cleanups (cleanup);
4948 }
4949 else
4950 xfered = remote_xfer_memory (offset, readbuf, len, 0, NULL, ops);
4951
4952 if (xfered > 0)
4953 return xfered;
4954 else if (xfered == 0 && errno == 0)
4955 return 0;
4956 else
4957 return -1;
4958 }
4959
4960 /* Only handle reads. */
4961 if (writebuf != NULL || readbuf == NULL)
4962 return -1;
4963
4964 /* Map pre-existing objects onto letters. DO NOT do this for new
4965 objects!!! Instead specify new query packets. */
4966 switch (object)
4967 {
4968 case TARGET_OBJECT_KOD:
4969 query_type = 'K';
4970 break;
4971 case TARGET_OBJECT_AVR:
4972 query_type = 'R';
4973 break;
4974
4975 case TARGET_OBJECT_AUXV:
4976 if (remote_protocol_qPart_auxv.support != PACKET_DISABLE)
4977 {
4978 unsigned int total = 0;
4979 while (len > 0)
4980 {
4981 LONGEST n = min ((rs->remote_packet_size - 2) / 2, len);
4982 snprintf (buf2, rs->remote_packet_size,
4983 "qPart:auxv:read::%s,%s",
4984 phex_nz (offset, sizeof offset),
4985 phex_nz (n, sizeof n));
4986 i = putpkt (buf2);
4987 if (i < 0)
4988 return total > 0 ? total : i;
4989 buf2[0] = '\0';
4990 getpkt (buf2, rs->remote_packet_size, 0);
4991 if (packet_ok (buf2, &remote_protocol_qPart_auxv) != PACKET_OK)
4992 return total > 0 ? total : -1;
4993 if (buf2[0] == 'O' && buf2[1] == 'K' && buf2[2] == '\0')
4994 break; /* Got EOF indicator. */
4995 /* Got some data. */
4996 i = hex2bin (buf2, readbuf, len);
4997 if (i > 0)
4998 {
4999 readbuf = (void *) ((char *) readbuf + i);
5000 offset += i;
5001 len -= i;
5002 total += i;
5003 }
5004 }
5005 return total;
5006 }
5007 return -1;
5008
5009 default:
5010 return -1;
5011 }
5012
5013 /* Note: a zero OFFSET and LEN can be used to query the minimum
5014 buffer size. */
5015 if (offset == 0 && len == 0)
5016 return (rs->remote_packet_size);
5017 /* Minimum outbuf size is (rs->remote_packet_size) - if bufsiz is
5018 not large enough let the caller. */
5019 if (len < (rs->remote_packet_size))
5020 return -1;
5021 len = rs->remote_packet_size;
5022
5023 /* Except for querying the minimum buffer size, target must be open. */
5024 if (!remote_desc)
5025 error (_("remote query is only available after target open"));
5026
5027 gdb_assert (annex != NULL);
5028 gdb_assert (readbuf != NULL);
5029
5030 *p2++ = 'q';
5031 *p2++ = query_type;
5032
5033 /* We used one buffer char for the remote protocol q command and
5034 another for the query type. As the remote protocol encapsulation
5035 uses 4 chars plus one extra in case we are debugging
5036 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5037 string. */
5038 i = 0;
5039 while (annex[i] && (i < ((rs->remote_packet_size) - 8)))
5040 {
5041 /* Bad caller may have sent forbidden characters. */
5042 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5043 *p2++ = annex[i];
5044 i++;
5045 }
5046 *p2 = '\0';
5047 gdb_assert (annex[i] == '\0');
5048
5049 i = putpkt (buf2);
5050 if (i < 0)
5051 return i;
5052
5053 getpkt (readbuf, len, 0);
5054
5055 return strlen (readbuf);
5056 }
5057
5058 static void
5059 remote_rcmd (char *command,
5060 struct ui_file *outbuf)
5061 {
5062 struct remote_state *rs = get_remote_state ();
5063 int i;
5064 char *buf = alloca (rs->remote_packet_size);
5065 char *p = buf;
5066
5067 if (!remote_desc)
5068 error (_("remote rcmd is only available after target open"));
5069
5070 /* Send a NULL command across as an empty command. */
5071 if (command == NULL)
5072 command = "";
5073
5074 /* The query prefix. */
5075 strcpy (buf, "qRcmd,");
5076 p = strchr (buf, '\0');
5077
5078 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5079 error (_("\"monitor\" command ``%s'' is too long."), command);
5080
5081 /* Encode the actual command. */
5082 bin2hex (command, p, 0);
5083
5084 if (putpkt (buf) < 0)
5085 error (_("Communication problem with target."));
5086
5087 /* get/display the response */
5088 while (1)
5089 {
5090 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5091 buf[0] = '\0';
5092 getpkt (buf, (rs->remote_packet_size), 0);
5093 if (buf[0] == '\0')
5094 error (_("Target does not support this command."));
5095 if (buf[0] == 'O' && buf[1] != 'K')
5096 {
5097 remote_console_output (buf + 1); /* 'O' message from stub. */
5098 continue;
5099 }
5100 if (strcmp (buf, "OK") == 0)
5101 break;
5102 if (strlen (buf) == 3 && buf[0] == 'E'
5103 && isdigit (buf[1]) && isdigit (buf[2]))
5104 {
5105 error (_("Protocol error with Rcmd"));
5106 }
5107 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5108 {
5109 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5110 fputc_unfiltered (c, outbuf);
5111 }
5112 break;
5113 }
5114 }
5115
5116 static void
5117 packet_command (char *args, int from_tty)
5118 {
5119 struct remote_state *rs = get_remote_state ();
5120 char *buf = alloca (rs->remote_packet_size);
5121
5122 if (!remote_desc)
5123 error (_("command can only be used with remote target"));
5124
5125 if (!args)
5126 error (_("remote-packet command requires packet text as argument"));
5127
5128 puts_filtered ("sending: ");
5129 print_packet (args);
5130 puts_filtered ("\n");
5131 putpkt (args);
5132
5133 getpkt (buf, (rs->remote_packet_size), 0);
5134 puts_filtered ("received: ");
5135 print_packet (buf);
5136 puts_filtered ("\n");
5137 }
5138
5139 #if 0
5140 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
5141
5142 static void display_thread_info (struct gdb_ext_thread_info *info);
5143
5144 static void threadset_test_cmd (char *cmd, int tty);
5145
5146 static void threadalive_test (char *cmd, int tty);
5147
5148 static void threadlist_test_cmd (char *cmd, int tty);
5149
5150 int get_and_display_threadinfo (threadref *ref);
5151
5152 static void threadinfo_test_cmd (char *cmd, int tty);
5153
5154 static int thread_display_step (threadref *ref, void *context);
5155
5156 static void threadlist_update_test_cmd (char *cmd, int tty);
5157
5158 static void init_remote_threadtests (void);
5159
5160 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
5161
5162 static void
5163 threadset_test_cmd (char *cmd, int tty)
5164 {
5165 int sample_thread = SAMPLE_THREAD;
5166
5167 printf_filtered ("Remote threadset test\n");
5168 set_thread (sample_thread, 1);
5169 }
5170
5171
5172 static void
5173 threadalive_test (char *cmd, int tty)
5174 {
5175 int sample_thread = SAMPLE_THREAD;
5176
5177 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5178 printf_filtered ("PASS: Thread alive test\n");
5179 else
5180 printf_filtered ("FAIL: Thread alive test\n");
5181 }
5182
5183 void output_threadid (char *title, threadref *ref);
5184
5185 void
5186 output_threadid (char *title, threadref *ref)
5187 {
5188 char hexid[20];
5189
5190 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
5191 hexid[16] = 0;
5192 printf_filtered ("%s %s\n", title, (&hexid[0]));
5193 }
5194
5195 static void
5196 threadlist_test_cmd (char *cmd, int tty)
5197 {
5198 int startflag = 1;
5199 threadref nextthread;
5200 int done, result_count;
5201 threadref threadlist[3];
5202
5203 printf_filtered ("Remote Threadlist test\n");
5204 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5205 &result_count, &threadlist[0]))
5206 printf_filtered ("FAIL: threadlist test\n");
5207 else
5208 {
5209 threadref *scan = threadlist;
5210 threadref *limit = scan + result_count;
5211
5212 while (scan < limit)
5213 output_threadid (" thread ", scan++);
5214 }
5215 }
5216
5217 void
5218 display_thread_info (struct gdb_ext_thread_info *info)
5219 {
5220 output_threadid ("Threadid: ", &info->threadid);
5221 printf_filtered ("Name: %s\n ", info->shortname);
5222 printf_filtered ("State: %s\n", info->display);
5223 printf_filtered ("other: %s\n\n", info->more_display);
5224 }
5225
5226 int
5227 get_and_display_threadinfo (threadref *ref)
5228 {
5229 int result;
5230 int set;
5231 struct gdb_ext_thread_info threadinfo;
5232
5233 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5234 | TAG_MOREDISPLAY | TAG_DISPLAY;
5235 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5236 display_thread_info (&threadinfo);
5237 return result;
5238 }
5239
5240 static void
5241 threadinfo_test_cmd (char *cmd, int tty)
5242 {
5243 int athread = SAMPLE_THREAD;
5244 threadref thread;
5245 int set;
5246
5247 int_to_threadref (&thread, athread);
5248 printf_filtered ("Remote Threadinfo test\n");
5249 if (!get_and_display_threadinfo (&thread))
5250 printf_filtered ("FAIL cannot get thread info\n");
5251 }
5252
5253 static int
5254 thread_display_step (threadref *ref, void *context)
5255 {
5256 /* output_threadid(" threadstep ",ref); *//* simple test */
5257 return get_and_display_threadinfo (ref);
5258 }
5259
5260 static void
5261 threadlist_update_test_cmd (char *cmd, int tty)
5262 {
5263 printf_filtered ("Remote Threadlist update test\n");
5264 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5265 }
5266
5267 static void
5268 init_remote_threadtests (void)
5269 {
5270 add_com ("tlist", class_obscure, threadlist_test_cmd,
5271 "Fetch and print the remote list of thread identifiers, one pkt only");
5272 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5273 "Fetch and display info about one thread");
5274 add_com ("tset", class_obscure, threadset_test_cmd,
5275 "Test setting to a different thread");
5276 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5277 "Iterate through updating all remote thread info");
5278 add_com ("talive", class_obscure, threadalive_test,
5279 " Remote thread alive test ");
5280 }
5281
5282 #endif /* 0 */
5283
5284 /* Convert a thread ID to a string. Returns the string in a static
5285 buffer. */
5286
5287 static char *
5288 remote_pid_to_str (ptid_t ptid)
5289 {
5290 static char buf[30];
5291
5292 sprintf (buf, "Thread %d", PIDGET (ptid));
5293 return buf;
5294 }
5295
5296 static void
5297 init_remote_ops (void)
5298 {
5299 remote_ops.to_shortname = "remote";
5300 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5301 remote_ops.to_doc =
5302 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5303 Specify the serial device it is connected to\n\
5304 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5305 remote_ops.to_open = remote_open;
5306 remote_ops.to_close = remote_close;
5307 remote_ops.to_detach = remote_detach;
5308 remote_ops.to_disconnect = remote_disconnect;
5309 remote_ops.to_resume = remote_resume;
5310 remote_ops.to_wait = remote_wait;
5311 remote_ops.to_fetch_registers = remote_fetch_registers;
5312 remote_ops.to_store_registers = remote_store_registers;
5313 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5314 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
5315 remote_ops.to_files_info = remote_files_info;
5316 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5317 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5318 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5319 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5320 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5321 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5322 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5323 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5324 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5325 remote_ops.to_kill = remote_kill;
5326 remote_ops.to_load = generic_load;
5327 remote_ops.to_mourn_inferior = remote_mourn;
5328 remote_ops.to_thread_alive = remote_thread_alive;
5329 remote_ops.to_find_new_threads = remote_threads_info;
5330 remote_ops.to_pid_to_str = remote_pid_to_str;
5331 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5332 remote_ops.to_stop = remote_stop;
5333 remote_ops.to_xfer_partial = remote_xfer_partial;
5334 remote_ops.to_rcmd = remote_rcmd;
5335 remote_ops.to_stratum = process_stratum;
5336 remote_ops.to_has_all_memory = 1;
5337 remote_ops.to_has_memory = 1;
5338 remote_ops.to_has_stack = 1;
5339 remote_ops.to_has_registers = 1;
5340 remote_ops.to_has_execution = 1;
5341 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5342 remote_ops.to_magic = OPS_MAGIC;
5343 }
5344
5345 /* Set up the extended remote vector by making a copy of the standard
5346 remote vector and adding to it. */
5347
5348 static void
5349 init_extended_remote_ops (void)
5350 {
5351 extended_remote_ops = remote_ops;
5352
5353 extended_remote_ops.to_shortname = "extended-remote";
5354 extended_remote_ops.to_longname =
5355 "Extended remote serial target in gdb-specific protocol";
5356 extended_remote_ops.to_doc =
5357 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5358 Specify the serial device it is connected to (e.g. /dev/ttya).",
5359 extended_remote_ops.to_open = extended_remote_open;
5360 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5361 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5362 }
5363
5364 static int
5365 remote_can_async_p (void)
5366 {
5367 /* We're async whenever the serial device is. */
5368 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5369 }
5370
5371 static int
5372 remote_is_async_p (void)
5373 {
5374 /* We're async whenever the serial device is. */
5375 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5376 }
5377
5378 /* Pass the SERIAL event on and up to the client. One day this code
5379 will be able to delay notifying the client of an event until the
5380 point where an entire packet has been received. */
5381
5382 static void (*async_client_callback) (enum inferior_event_type event_type,
5383 void *context);
5384 static void *async_client_context;
5385 static serial_event_ftype remote_async_serial_handler;
5386
5387 static void
5388 remote_async_serial_handler (struct serial *scb, void *context)
5389 {
5390 /* Don't propogate error information up to the client. Instead let
5391 the client find out about the error by querying the target. */
5392 async_client_callback (INF_REG_EVENT, async_client_context);
5393 }
5394
5395 static void
5396 remote_async (void (*callback) (enum inferior_event_type event_type,
5397 void *context), void *context)
5398 {
5399 if (current_target.to_async_mask_value == 0)
5400 internal_error (__FILE__, __LINE__,
5401 _("Calling remote_async when async is masked"));
5402
5403 if (callback != NULL)
5404 {
5405 serial_async (remote_desc, remote_async_serial_handler, NULL);
5406 async_client_callback = callback;
5407 async_client_context = context;
5408 }
5409 else
5410 serial_async (remote_desc, NULL, NULL);
5411 }
5412
5413 /* Target async and target extended-async.
5414
5415 This are temporary targets, until it is all tested. Eventually
5416 async support will be incorporated int the usual 'remote'
5417 target. */
5418
5419 static void
5420 init_remote_async_ops (void)
5421 {
5422 remote_async_ops.to_shortname = "async";
5423 remote_async_ops.to_longname =
5424 "Remote serial target in async version of the gdb-specific protocol";
5425 remote_async_ops.to_doc =
5426 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5427 Specify the serial device it is connected to (e.g. /dev/ttya).";
5428 remote_async_ops.to_open = remote_async_open;
5429 remote_async_ops.to_close = remote_close;
5430 remote_async_ops.to_detach = remote_detach;
5431 remote_async_ops.to_disconnect = remote_disconnect;
5432 remote_async_ops.to_resume = remote_async_resume;
5433 remote_async_ops.to_wait = remote_async_wait;
5434 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5435 remote_async_ops.to_store_registers = remote_store_registers;
5436 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5437 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
5438 remote_async_ops.to_files_info = remote_files_info;
5439 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5440 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5441 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5442 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5443 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5444 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5445 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5446 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5447 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5448 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5449 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5450 remote_async_ops.to_kill = remote_async_kill;
5451 remote_async_ops.to_load = generic_load;
5452 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5453 remote_async_ops.to_thread_alive = remote_thread_alive;
5454 remote_async_ops.to_find_new_threads = remote_threads_info;
5455 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5456 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5457 remote_async_ops.to_stop = remote_stop;
5458 remote_async_ops.to_xfer_partial = remote_xfer_partial;
5459 remote_async_ops.to_rcmd = remote_rcmd;
5460 remote_async_ops.to_stratum = process_stratum;
5461 remote_async_ops.to_has_all_memory = 1;
5462 remote_async_ops.to_has_memory = 1;
5463 remote_async_ops.to_has_stack = 1;
5464 remote_async_ops.to_has_registers = 1;
5465 remote_async_ops.to_has_execution = 1;
5466 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5467 remote_async_ops.to_can_async_p = remote_can_async_p;
5468 remote_async_ops.to_is_async_p = remote_is_async_p;
5469 remote_async_ops.to_async = remote_async;
5470 remote_async_ops.to_async_mask_value = 1;
5471 remote_async_ops.to_magic = OPS_MAGIC;
5472 }
5473
5474 /* Set up the async extended remote vector by making a copy of the standard
5475 remote vector and adding to it. */
5476
5477 static void
5478 init_extended_async_remote_ops (void)
5479 {
5480 extended_async_remote_ops = remote_async_ops;
5481
5482 extended_async_remote_ops.to_shortname = "extended-async";
5483 extended_async_remote_ops.to_longname =
5484 "Extended remote serial target in async gdb-specific protocol";
5485 extended_async_remote_ops.to_doc =
5486 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5487 Specify the serial device it is connected to (e.g. /dev/ttya).",
5488 extended_async_remote_ops.to_open = extended_remote_async_open;
5489 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5490 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5491 }
5492
5493 static void
5494 set_remote_cmd (char *args, int from_tty)
5495 {
5496 }
5497
5498 static void
5499 show_remote_cmd (char *args, int from_tty)
5500 {
5501 /* FIXME: cagney/2002-06-15: This function should iterate over
5502 remote_show_cmdlist for a list of sub commands to show. */
5503 show_remote_protocol_Z_packet_cmd (args, from_tty, NULL);
5504 show_remote_protocol_P_packet_cmd (args, from_tty, NULL);
5505 show_remote_protocol_p_packet_cmd (args, from_tty, NULL);
5506 show_remote_protocol_qSymbol_packet_cmd (args, from_tty, NULL);
5507 show_remote_protocol_vcont_packet_cmd (args, from_tty, NULL);
5508 show_remote_protocol_binary_download_cmd (args, from_tty, NULL);
5509 show_remote_protocol_qPart_auxv_packet_cmd (args, from_tty, NULL);
5510 }
5511
5512 static void
5513 build_remote_gdbarch_data (void)
5514 {
5515 remote_address_size = TARGET_ADDR_BIT;
5516 }
5517
5518 /* Saved pointer to previous owner of the new_objfile event. */
5519 static void (*remote_new_objfile_chain) (struct objfile *);
5520
5521 /* Function to be called whenever a new objfile (shlib) is detected. */
5522 static void
5523 remote_new_objfile (struct objfile *objfile)
5524 {
5525 if (remote_desc != 0) /* Have a remote connection. */
5526 {
5527 remote_check_symbols (objfile);
5528 }
5529 /* Call predecessor on chain, if any. */
5530 if (remote_new_objfile_chain != 0 &&
5531 remote_desc == 0)
5532 remote_new_objfile_chain (objfile);
5533 }
5534
5535 void
5536 _initialize_remote (void)
5537 {
5538 static struct cmd_list_element *remote_set_cmdlist;
5539 static struct cmd_list_element *remote_show_cmdlist;
5540 struct cmd_list_element *tmpcmd;
5541
5542 /* architecture specific data */
5543 remote_gdbarch_data_handle =
5544 gdbarch_data_register_post_init (init_remote_state);
5545
5546 /* Old tacky stuff. NOTE: This comes after the remote protocol so
5547 that the remote protocol has been initialized. */
5548 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
5549 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
5550
5551 init_remote_ops ();
5552 add_target (&remote_ops);
5553
5554 init_extended_remote_ops ();
5555 add_target (&extended_remote_ops);
5556
5557 init_remote_async_ops ();
5558 add_target (&remote_async_ops);
5559
5560 init_extended_async_remote_ops ();
5561 add_target (&extended_async_remote_ops);
5562
5563 /* Hook into new objfile notification. */
5564 remote_new_objfile_chain = deprecated_target_new_objfile_hook;
5565 deprecated_target_new_objfile_hook = remote_new_objfile;
5566
5567 #if 0
5568 init_remote_threadtests ();
5569 #endif
5570
5571 /* set/show remote ... */
5572
5573 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
5574 Remote protocol specific variables\n\
5575 Configure various remote-protocol specific variables such as\n\
5576 the packets being used",
5577 &remote_set_cmdlist, "set remote ",
5578 0 /* allow-unknown */, &setlist);
5579 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
5580 Remote protocol specific variables\n\
5581 Configure various remote-protocol specific variables such as\n\
5582 the packets being used",
5583 &remote_show_cmdlist, "show remote ",
5584 0 /* allow-unknown */, &showlist);
5585
5586 add_cmd ("compare-sections", class_obscure, compare_sections_command,
5587 "Compare section data on target to the exec file.\n\
5588 Argument is a single section name (default: all loaded sections).",
5589 &cmdlist);
5590
5591 add_cmd ("packet", class_maintenance, packet_command,
5592 "Send an arbitrary packet to a remote target.\n\
5593 maintenance packet TEXT\n\
5594 If GDB is talking to an inferior via the GDB serial protocol, then\n\
5595 this command sends the string TEXT to the inferior, and displays the\n\
5596 response packet. GDB supplies the initial `$' character, and the\n\
5597 terminating `#' character and checksum.",
5598 &maintenancelist);
5599
5600 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, "\
5601 Set whether to send break if interrupted.", "\
5602 Show whether to send break if interrupted.", "\
5603 If set, a break, instead of a cntrl-c, is sent to the remote target.",
5604 NULL, /* PRINT: Whether to send break if interrupted is %s. */
5605 NULL, NULL,
5606 &setlist, &showlist);
5607
5608 /* Install commands for configuring memory read/write packets. */
5609
5610 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
5611 "Set the maximum number of bytes per memory write packet (deprecated).\n",
5612 &setlist);
5613 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
5614 "Show the maximum number of bytes per memory write packet (deprecated).\n",
5615 &showlist);
5616 add_cmd ("memory-write-packet-size", no_class,
5617 set_memory_write_packet_size,
5618 "Set the maximum number of bytes per memory-write packet.\n"
5619 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5620 "default packet size. The actual limit is further reduced\n"
5621 "dependent on the target. Specify ``fixed'' to disable the\n"
5622 "further restriction and ``limit'' to enable that restriction\n",
5623 &remote_set_cmdlist);
5624 add_cmd ("memory-read-packet-size", no_class,
5625 set_memory_read_packet_size,
5626 "Set the maximum number of bytes per memory-read packet.\n"
5627 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5628 "default packet size. The actual limit is further reduced\n"
5629 "dependent on the target. Specify ``fixed'' to disable the\n"
5630 "further restriction and ``limit'' to enable that restriction\n",
5631 &remote_set_cmdlist);
5632 add_cmd ("memory-write-packet-size", no_class,
5633 show_memory_write_packet_size,
5634 "Show the maximum number of bytes per memory-write packet.\n",
5635 &remote_show_cmdlist);
5636 add_cmd ("memory-read-packet-size", no_class,
5637 show_memory_read_packet_size,
5638 "Show the maximum number of bytes per memory-read packet.\n",
5639 &remote_show_cmdlist);
5640
5641 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
5642 &remote_hw_watchpoint_limit, "\
5643 Set the maximum number of target hardware watchpoints.", "\
5644 Show the maximum number of target hardware watchpoints.", "\
5645 Specify a negative limit for unlimited.",
5646 NULL, /* PRINT: The maximum number of target hardware watchpoints is %s. */
5647 NULL, NULL,
5648 &remote_set_cmdlist, &remote_show_cmdlist);
5649 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
5650 &remote_hw_breakpoint_limit, "\
5651 Set the maximum number of target hardware breakpoints.", "\
5652 Show the maximum number of target hardware breakpoints.", "\
5653 Specify a negative limit for unlimited.",
5654 NULL, /* PRINT: The maximum number of target hardware breakpoints is %s. */
5655 NULL, NULL,
5656 &remote_set_cmdlist, &remote_show_cmdlist);
5657
5658 deprecated_add_show_from_set
5659 (add_set_cmd ("remoteaddresssize", class_obscure,
5660 var_integer, (char *) &remote_address_size,
5661 "Set the maximum size of the address (in bits) \
5662 in a memory packet.\n",
5663 &setlist),
5664 &showlist);
5665
5666 add_packet_config_cmd (&remote_protocol_binary_download,
5667 "X", "binary-download",
5668 set_remote_protocol_binary_download_cmd,
5669 show_remote_protocol_binary_download_cmd,
5670 &remote_set_cmdlist, &remote_show_cmdlist,
5671 1);
5672 #if 0
5673 /* XXXX - should ``set remotebinarydownload'' be retained for
5674 compatibility. */
5675 deprecated_add_show_from_set
5676 (add_set_cmd ("remotebinarydownload", no_class,
5677 var_boolean, (char *) &remote_binary_download,
5678 "Set binary downloads.\n", &setlist),
5679 &showlist);
5680 #endif
5681
5682 add_packet_config_cmd (&remote_protocol_vcont,
5683 "vCont", "verbose-resume",
5684 set_remote_protocol_vcont_packet_cmd,
5685 show_remote_protocol_vcont_packet_cmd,
5686 &remote_set_cmdlist, &remote_show_cmdlist,
5687 0);
5688
5689 add_packet_config_cmd (&remote_protocol_qSymbol,
5690 "qSymbol", "symbol-lookup",
5691 set_remote_protocol_qSymbol_packet_cmd,
5692 show_remote_protocol_qSymbol_packet_cmd,
5693 &remote_set_cmdlist, &remote_show_cmdlist,
5694 0);
5695
5696 add_packet_config_cmd (&remote_protocol_P,
5697 "P", "set-register",
5698 set_remote_protocol_P_packet_cmd,
5699 show_remote_protocol_P_packet_cmd,
5700 &remote_set_cmdlist, &remote_show_cmdlist,
5701 1);
5702
5703 add_packet_config_cmd (&remote_protocol_p,
5704 "p", "fetch-register",
5705 set_remote_protocol_p_packet_cmd,
5706 show_remote_protocol_p_packet_cmd,
5707 &remote_set_cmdlist, &remote_show_cmdlist,
5708 1);
5709
5710 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
5711 "Z0", "software-breakpoint",
5712 set_remote_protocol_Z_software_bp_packet_cmd,
5713 show_remote_protocol_Z_software_bp_packet_cmd,
5714 &remote_set_cmdlist, &remote_show_cmdlist,
5715 0);
5716
5717 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
5718 "Z1", "hardware-breakpoint",
5719 set_remote_protocol_Z_hardware_bp_packet_cmd,
5720 show_remote_protocol_Z_hardware_bp_packet_cmd,
5721 &remote_set_cmdlist, &remote_show_cmdlist,
5722 0);
5723
5724 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
5725 "Z2", "write-watchpoint",
5726 set_remote_protocol_Z_write_wp_packet_cmd,
5727 show_remote_protocol_Z_write_wp_packet_cmd,
5728 &remote_set_cmdlist, &remote_show_cmdlist,
5729 0);
5730
5731 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
5732 "Z3", "read-watchpoint",
5733 set_remote_protocol_Z_read_wp_packet_cmd,
5734 show_remote_protocol_Z_read_wp_packet_cmd,
5735 &remote_set_cmdlist, &remote_show_cmdlist,
5736 0);
5737
5738 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
5739 "Z4", "access-watchpoint",
5740 set_remote_protocol_Z_access_wp_packet_cmd,
5741 show_remote_protocol_Z_access_wp_packet_cmd,
5742 &remote_set_cmdlist, &remote_show_cmdlist,
5743 0);
5744
5745 add_packet_config_cmd (&remote_protocol_qPart_auxv,
5746 "qPart_auxv", "read-aux-vector",
5747 set_remote_protocol_qPart_auxv_packet_cmd,
5748 show_remote_protocol_qPart_auxv_packet_cmd,
5749 &remote_set_cmdlist, &remote_show_cmdlist,
5750 0);
5751
5752 /* Keep the old ``set remote Z-packet ...'' working. */
5753 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
5754 &remote_Z_packet_detect, "\
5755 Set use of remote protocol `Z' packets", "\
5756 Show use of remote protocol `Z' packets ", "\
5757 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
5758 packets.",
5759 NULL, /* PRINT: Use of remote protocol `Z' packets is %s. */
5760 set_remote_protocol_Z_packet_cmd,
5761 show_remote_protocol_Z_packet_cmd,
5762 &remote_set_cmdlist, &remote_show_cmdlist);
5763
5764 /* Eventually initialize fileio. See fileio.c */
5765 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
5766 }
This page took 0.319555 seconds and 4 git commands to generate.