ef12fe9a3b42b0d7ddfa3ffe521198ca59b38a3f
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "common/filestuff.h"
46 #include "common/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "common/gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "common/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "common/environ.h"
77 #include "common/byte-vector.h"
78 #include <unordered_map>
79
80 /* The remote target. */
81
82 static const char remote_doc[] = N_("\
83 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
84 Specify the serial device it is connected to\n\
85 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
86
87 #define OPAQUETHREADBYTES 8
88
89 /* a 64 bit opaque identifier */
90 typedef unsigned char threadref[OPAQUETHREADBYTES];
91
92 struct gdb_ext_thread_info;
93 struct threads_listing_context;
94 typedef int (*rmt_thread_action) (threadref *ref, void *context);
95 struct protocol_feature;
96 struct packet_reg;
97
98 struct stop_reply;
99 typedef std::unique_ptr<stop_reply> stop_reply_up;
100
101 /* Generic configuration support for packets the stub optionally
102 supports. Allows the user to specify the use of the packet as well
103 as allowing GDB to auto-detect support in the remote stub. */
104
105 enum packet_support
106 {
107 PACKET_SUPPORT_UNKNOWN = 0,
108 PACKET_ENABLE,
109 PACKET_DISABLE
110 };
111
112 /* Analyze a packet's return value and update the packet config
113 accordingly. */
114
115 enum packet_result
116 {
117 PACKET_ERROR,
118 PACKET_OK,
119 PACKET_UNKNOWN
120 };
121
122 struct threads_listing_context;
123
124 /* Stub vCont actions support.
125
126 Each field is a boolean flag indicating whether the stub reports
127 support for the corresponding action. */
128
129 struct vCont_action_support
130 {
131 /* vCont;t */
132 bool t = false;
133
134 /* vCont;r */
135 bool r = false;
136
137 /* vCont;s */
138 bool s = false;
139
140 /* vCont;S */
141 bool S = false;
142 };
143
144 /* About this many threadisds fit in a packet. */
145
146 #define MAXTHREADLISTRESULTS 32
147
148 /* Data for the vFile:pread readahead cache. */
149
150 struct readahead_cache
151 {
152 /* Invalidate the readahead cache. */
153 void invalidate ();
154
155 /* Invalidate the readahead cache if it is holding data for FD. */
156 void invalidate_fd (int fd);
157
158 /* Serve pread from the readahead cache. Returns number of bytes
159 read, or 0 if the request can't be served from the cache. */
160 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
161
162 /* The file descriptor for the file that is being cached. -1 if the
163 cache is invalid. */
164 int fd = -1;
165
166 /* The offset into the file that the cache buffer corresponds
167 to. */
168 ULONGEST offset = 0;
169
170 /* The buffer holding the cache contents. */
171 gdb_byte *buf = nullptr;
172 /* The buffer's size. We try to read as much as fits into a packet
173 at a time. */
174 size_t bufsize = 0;
175
176 /* Cache hit and miss counters. */
177 ULONGEST hit_count = 0;
178 ULONGEST miss_count = 0;
179 };
180
181 /* Description of the remote protocol for a given architecture. */
182
183 struct packet_reg
184 {
185 long offset; /* Offset into G packet. */
186 long regnum; /* GDB's internal register number. */
187 LONGEST pnum; /* Remote protocol register number. */
188 int in_g_packet; /* Always part of G packet. */
189 /* long size in bytes; == register_size (target_gdbarch (), regnum);
190 at present. */
191 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
192 at present. */
193 };
194
195 struct remote_arch_state
196 {
197 explicit remote_arch_state (struct gdbarch *gdbarch);
198
199 /* Description of the remote protocol registers. */
200 long sizeof_g_packet;
201
202 /* Description of the remote protocol registers indexed by REGNUM
203 (making an array gdbarch_num_regs in size). */
204 std::unique_ptr<packet_reg[]> regs;
205
206 /* This is the size (in chars) of the first response to the ``g''
207 packet. It is used as a heuristic when determining the maximum
208 size of memory-read and memory-write packets. A target will
209 typically only reserve a buffer large enough to hold the ``g''
210 packet. The size does not include packet overhead (headers and
211 trailers). */
212 long actual_register_packet_size;
213
214 /* This is the maximum size (in chars) of a non read/write packet.
215 It is also used as a cap on the size of read/write packets. */
216 long remote_packet_size;
217 };
218
219 /* Description of the remote protocol state for the currently
220 connected target. This is per-target state, and independent of the
221 selected architecture. */
222
223 class remote_state
224 {
225 public:
226
227 remote_state ();
228 ~remote_state ();
229
230 /* Get the remote arch state for GDBARCH. */
231 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
232
233 public: /* data */
234
235 /* A buffer to use for incoming packets, and its current size. The
236 buffer is grown dynamically for larger incoming packets.
237 Outgoing packets may also be constructed in this buffer.
238 The size of the buffer is always at least REMOTE_PACKET_SIZE;
239 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
240 packets. */
241 gdb::char_vector buf;
242
243 /* True if we're going through initial connection setup (finding out
244 about the remote side's threads, relocating symbols, etc.). */
245 bool starting_up = false;
246
247 /* If we negotiated packet size explicitly (and thus can bypass
248 heuristics for the largest packet size that will not overflow
249 a buffer in the stub), this will be set to that packet size.
250 Otherwise zero, meaning to use the guessed size. */
251 long explicit_packet_size = 0;
252
253 /* remote_wait is normally called when the target is running and
254 waits for a stop reply packet. But sometimes we need to call it
255 when the target is already stopped. We can send a "?" packet
256 and have remote_wait read the response. Or, if we already have
257 the response, we can stash it in BUF and tell remote_wait to
258 skip calling getpkt. This flag is set when BUF contains a
259 stop reply packet and the target is not waiting. */
260 int cached_wait_status = 0;
261
262 /* True, if in no ack mode. That is, neither GDB nor the stub will
263 expect acks from each other. The connection is assumed to be
264 reliable. */
265 bool noack_mode = false;
266
267 /* True if we're connected in extended remote mode. */
268 bool extended = false;
269
270 /* True if we resumed the target and we're waiting for the target to
271 stop. In the mean time, we can't start another command/query.
272 The remote server wouldn't be ready to process it, so we'd
273 timeout waiting for a reply that would never come and eventually
274 we'd close the connection. This can happen in asynchronous mode
275 because we allow GDB commands while the target is running. */
276 bool waiting_for_stop_reply = false;
277
278 /* The status of the stub support for the various vCont actions. */
279 vCont_action_support supports_vCont;
280
281 /* True if the user has pressed Ctrl-C, but the target hasn't
282 responded to that. */
283 bool ctrlc_pending_p = false;
284
285 /* True if we saw a Ctrl-C while reading or writing from/to the
286 remote descriptor. At that point it is not safe to send a remote
287 interrupt packet, so we instead remember we saw the Ctrl-C and
288 process it once we're done with sending/receiving the current
289 packet, which should be shortly. If however that takes too long,
290 and the user presses Ctrl-C again, we offer to disconnect. */
291 bool got_ctrlc_during_io = false;
292
293 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
294 remote_open knows that we don't have a file open when the program
295 starts. */
296 struct serial *remote_desc = nullptr;
297
298 /* These are the threads which we last sent to the remote system. The
299 TID member will be -1 for all or -2 for not sent yet. */
300 ptid_t general_thread = null_ptid;
301 ptid_t continue_thread = null_ptid;
302
303 /* This is the traceframe which we last selected on the remote system.
304 It will be -1 if no traceframe is selected. */
305 int remote_traceframe_number = -1;
306
307 char *last_pass_packet = nullptr;
308
309 /* The last QProgramSignals packet sent to the target. We bypass
310 sending a new program signals list down to the target if the new
311 packet is exactly the same as the last we sent. IOW, we only let
312 the target know about program signals list changes. */
313 char *last_program_signals_packet = nullptr;
314
315 gdb_signal last_sent_signal = GDB_SIGNAL_0;
316
317 bool last_sent_step = false;
318
319 /* The execution direction of the last resume we got. */
320 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
321
322 char *finished_object = nullptr;
323 char *finished_annex = nullptr;
324 ULONGEST finished_offset = 0;
325
326 /* Should we try the 'ThreadInfo' query packet?
327
328 This variable (NOT available to the user: auto-detect only!)
329 determines whether GDB will use the new, simpler "ThreadInfo"
330 query or the older, more complex syntax for thread queries.
331 This is an auto-detect variable (set to true at each connect,
332 and set to false when the target fails to recognize it). */
333 bool use_threadinfo_query = false;
334 bool use_threadextra_query = false;
335
336 threadref echo_nextthread {};
337 threadref nextthread {};
338 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
339
340 /* The state of remote notification. */
341 struct remote_notif_state *notif_state = nullptr;
342
343 /* The branch trace configuration. */
344 struct btrace_config btrace_config {};
345
346 /* The argument to the last "vFile:setfs:" packet we sent, used
347 to avoid sending repeated unnecessary "vFile:setfs:" packets.
348 Initialized to -1 to indicate that no "vFile:setfs:" packet
349 has yet been sent. */
350 int fs_pid = -1;
351
352 /* A readahead cache for vFile:pread. Often, reading a binary
353 involves a sequence of small reads. E.g., when parsing an ELF
354 file. A readahead cache helps mostly the case of remote
355 debugging on a connection with higher latency, due to the
356 request/reply nature of the RSP. We only cache data for a single
357 file descriptor at a time. */
358 struct readahead_cache readahead_cache;
359
360 /* The list of already fetched and acknowledged stop events. This
361 queue is used for notification Stop, and other notifications
362 don't need queue for their events, because the notification
363 events of Stop can't be consumed immediately, so that events
364 should be queued first, and be consumed by remote_wait_{ns,as}
365 one per time. Other notifications can consume their events
366 immediately, so queue is not needed for them. */
367 std::vector<stop_reply_up> stop_reply_queue;
368
369 /* Asynchronous signal handle registered as event loop source for
370 when we have pending events ready to be passed to the core. */
371 struct async_event_handler *remote_async_inferior_event_token = nullptr;
372
373 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
374 ``forever'' still use the normal timeout mechanism. This is
375 currently used by the ASYNC code to guarentee that target reads
376 during the initial connect always time-out. Once getpkt has been
377 modified to return a timeout indication and, in turn
378 remote_wait()/wait_for_inferior() have gained a timeout parameter
379 this can go away. */
380 int wait_forever_enabled_p = 1;
381
382 private:
383 /* Mapping of remote protocol data for each gdbarch. Usually there
384 is only one entry here, though we may see more with stubs that
385 support multi-process. */
386 std::unordered_map<struct gdbarch *, remote_arch_state>
387 m_arch_states;
388 };
389
390 static const target_info remote_target_info = {
391 "remote",
392 N_("Remote serial target in gdb-specific protocol"),
393 remote_doc
394 };
395
396 class remote_target : public process_stratum_target
397 {
398 public:
399 remote_target () = default;
400 ~remote_target () override;
401
402 const target_info &info () const override
403 { return remote_target_info; }
404
405 thread_control_capabilities get_thread_control_capabilities () override
406 { return tc_schedlock; }
407
408 /* Open a remote connection. */
409 static void open (const char *, int);
410
411 void close () override;
412
413 void detach (inferior *, int) override;
414 void disconnect (const char *, int) override;
415
416 void commit_resume () override;
417 void resume (ptid_t, int, enum gdb_signal) override;
418 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
419
420 void fetch_registers (struct regcache *, int) override;
421 void store_registers (struct regcache *, int) override;
422 void prepare_to_store (struct regcache *) override;
423
424 void files_info () override;
425
426 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
427
428 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
429 enum remove_bp_reason) override;
430
431
432 bool stopped_by_sw_breakpoint () override;
433 bool supports_stopped_by_sw_breakpoint () override;
434
435 bool stopped_by_hw_breakpoint () override;
436
437 bool supports_stopped_by_hw_breakpoint () override;
438
439 bool stopped_by_watchpoint () override;
440
441 bool stopped_data_address (CORE_ADDR *) override;
442
443 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
444
445 int can_use_hw_breakpoint (enum bptype, int, int) override;
446
447 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
448
449 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
450
451 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
452
453 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
454 struct expression *) override;
455
456 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
457 struct expression *) override;
458
459 void kill () override;
460
461 void load (const char *, int) override;
462
463 void mourn_inferior () override;
464
465 void pass_signals (gdb::array_view<const unsigned char>) override;
466
467 int set_syscall_catchpoint (int, bool, int,
468 gdb::array_view<const int>) override;
469
470 void program_signals (gdb::array_view<const unsigned char>) override;
471
472 bool thread_alive (ptid_t ptid) override;
473
474 const char *thread_name (struct thread_info *) override;
475
476 void update_thread_list () override;
477
478 const char *pid_to_str (ptid_t) override;
479
480 const char *extra_thread_info (struct thread_info *) override;
481
482 ptid_t get_ada_task_ptid (long lwp, long thread) override;
483
484 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
485 int handle_len,
486 inferior *inf) override;
487
488 void stop (ptid_t) override;
489
490 void interrupt () override;
491
492 void pass_ctrlc () override;
493
494 enum target_xfer_status xfer_partial (enum target_object object,
495 const char *annex,
496 gdb_byte *readbuf,
497 const gdb_byte *writebuf,
498 ULONGEST offset, ULONGEST len,
499 ULONGEST *xfered_len) override;
500
501 ULONGEST get_memory_xfer_limit () override;
502
503 void rcmd (const char *command, struct ui_file *output) override;
504
505 char *pid_to_exec_file (int pid) override;
506
507 void log_command (const char *cmd) override
508 {
509 serial_log_command (this, cmd);
510 }
511
512 CORE_ADDR get_thread_local_address (ptid_t ptid,
513 CORE_ADDR load_module_addr,
514 CORE_ADDR offset) override;
515
516 bool can_execute_reverse () override;
517
518 std::vector<mem_region> memory_map () override;
519
520 void flash_erase (ULONGEST address, LONGEST length) override;
521
522 void flash_done () override;
523
524 const struct target_desc *read_description () override;
525
526 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
527 const gdb_byte *pattern, ULONGEST pattern_len,
528 CORE_ADDR *found_addrp) override;
529
530 bool can_async_p () override;
531
532 bool is_async_p () override;
533
534 void async (int) override;
535
536 void thread_events (int) override;
537
538 int can_do_single_step () override;
539
540 void terminal_inferior () override;
541
542 void terminal_ours () override;
543
544 bool supports_non_stop () override;
545
546 bool supports_multi_process () override;
547
548 bool supports_disable_randomization () override;
549
550 bool filesystem_is_local () override;
551
552
553 int fileio_open (struct inferior *inf, const char *filename,
554 int flags, int mode, int warn_if_slow,
555 int *target_errno) override;
556
557 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
558 ULONGEST offset, int *target_errno) override;
559
560 int fileio_pread (int fd, gdb_byte *read_buf, int len,
561 ULONGEST offset, int *target_errno) override;
562
563 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
564
565 int fileio_close (int fd, int *target_errno) override;
566
567 int fileio_unlink (struct inferior *inf,
568 const char *filename,
569 int *target_errno) override;
570
571 gdb::optional<std::string>
572 fileio_readlink (struct inferior *inf,
573 const char *filename,
574 int *target_errno) override;
575
576 bool supports_enable_disable_tracepoint () override;
577
578 bool supports_string_tracing () override;
579
580 bool supports_evaluation_of_breakpoint_conditions () override;
581
582 bool can_run_breakpoint_commands () override;
583
584 void trace_init () override;
585
586 void download_tracepoint (struct bp_location *location) override;
587
588 bool can_download_tracepoint () override;
589
590 void download_trace_state_variable (const trace_state_variable &tsv) override;
591
592 void enable_tracepoint (struct bp_location *location) override;
593
594 void disable_tracepoint (struct bp_location *location) override;
595
596 void trace_set_readonly_regions () override;
597
598 void trace_start () override;
599
600 int get_trace_status (struct trace_status *ts) override;
601
602 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
603 override;
604
605 void trace_stop () override;
606
607 int trace_find (enum trace_find_type type, int num,
608 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
609
610 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
611
612 int save_trace_data (const char *filename) override;
613
614 int upload_tracepoints (struct uploaded_tp **utpp) override;
615
616 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
617
618 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
619
620 int get_min_fast_tracepoint_insn_len () override;
621
622 void set_disconnected_tracing (int val) override;
623
624 void set_circular_trace_buffer (int val) override;
625
626 void set_trace_buffer_size (LONGEST val) override;
627
628 bool set_trace_notes (const char *user, const char *notes,
629 const char *stopnotes) override;
630
631 int core_of_thread (ptid_t ptid) override;
632
633 int verify_memory (const gdb_byte *data,
634 CORE_ADDR memaddr, ULONGEST size) override;
635
636
637 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
638
639 void set_permissions () override;
640
641 bool static_tracepoint_marker_at (CORE_ADDR,
642 struct static_tracepoint_marker *marker)
643 override;
644
645 std::vector<static_tracepoint_marker>
646 static_tracepoint_markers_by_strid (const char *id) override;
647
648 traceframe_info_up traceframe_info () override;
649
650 bool use_agent (bool use) override;
651 bool can_use_agent () override;
652
653 struct btrace_target_info *enable_btrace (ptid_t ptid,
654 const struct btrace_config *conf) override;
655
656 void disable_btrace (struct btrace_target_info *tinfo) override;
657
658 void teardown_btrace (struct btrace_target_info *tinfo) override;
659
660 enum btrace_error read_btrace (struct btrace_data *data,
661 struct btrace_target_info *btinfo,
662 enum btrace_read_type type) override;
663
664 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
665 bool augmented_libraries_svr4_read () override;
666 int follow_fork (int, int) override;
667 void follow_exec (struct inferior *, char *) override;
668 int insert_fork_catchpoint (int) override;
669 int remove_fork_catchpoint (int) override;
670 int insert_vfork_catchpoint (int) override;
671 int remove_vfork_catchpoint (int) override;
672 int insert_exec_catchpoint (int) override;
673 int remove_exec_catchpoint (int) override;
674 enum exec_direction_kind execution_direction () override;
675
676 public: /* Remote specific methods. */
677
678 void remote_download_command_source (int num, ULONGEST addr,
679 struct command_line *cmds);
680
681 void remote_file_put (const char *local_file, const char *remote_file,
682 int from_tty);
683 void remote_file_get (const char *remote_file, const char *local_file,
684 int from_tty);
685 void remote_file_delete (const char *remote_file, int from_tty);
686
687 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
688 ULONGEST offset, int *remote_errno);
689 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
690 ULONGEST offset, int *remote_errno);
691 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
692 ULONGEST offset, int *remote_errno);
693
694 int remote_hostio_send_command (int command_bytes, int which_packet,
695 int *remote_errno, char **attachment,
696 int *attachment_len);
697 int remote_hostio_set_filesystem (struct inferior *inf,
698 int *remote_errno);
699 /* We should get rid of this and use fileio_open directly. */
700 int remote_hostio_open (struct inferior *inf, const char *filename,
701 int flags, int mode, int warn_if_slow,
702 int *remote_errno);
703 int remote_hostio_close (int fd, int *remote_errno);
704
705 int remote_hostio_unlink (inferior *inf, const char *filename,
706 int *remote_errno);
707
708 struct remote_state *get_remote_state ();
709
710 long get_remote_packet_size (void);
711 long get_memory_packet_size (struct memory_packet_config *config);
712
713 long get_memory_write_packet_size ();
714 long get_memory_read_packet_size ();
715
716 char *append_pending_thread_resumptions (char *p, char *endp,
717 ptid_t ptid);
718 static void open_1 (const char *name, int from_tty, int extended_p);
719 void start_remote (int from_tty, int extended_p);
720 void remote_detach_1 (struct inferior *inf, int from_tty);
721
722 char *append_resumption (char *p, char *endp,
723 ptid_t ptid, int step, gdb_signal siggnal);
724 int remote_resume_with_vcont (ptid_t ptid, int step,
725 gdb_signal siggnal);
726
727 void add_current_inferior_and_thread (char *wait_status);
728
729 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
730 int options);
731 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
732 int options);
733
734 ptid_t process_stop_reply (struct stop_reply *stop_reply,
735 target_waitstatus *status);
736
737 void remote_notice_new_inferior (ptid_t currthread, int executing);
738
739 void process_initial_stop_replies (int from_tty);
740
741 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
742
743 void btrace_sync_conf (const btrace_config *conf);
744
745 void remote_btrace_maybe_reopen ();
746
747 void remove_new_fork_children (threads_listing_context *context);
748 void kill_new_fork_children (int pid);
749 void discard_pending_stop_replies (struct inferior *inf);
750 int stop_reply_queue_length ();
751
752 void check_pending_events_prevent_wildcard_vcont
753 (int *may_global_wildcard_vcont);
754
755 void discard_pending_stop_replies_in_queue ();
756 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
757 struct stop_reply *queued_stop_reply (ptid_t ptid);
758 int peek_stop_reply (ptid_t ptid);
759 void remote_parse_stop_reply (const char *buf, stop_reply *event);
760
761 void remote_stop_ns (ptid_t ptid);
762 void remote_interrupt_as ();
763 void remote_interrupt_ns ();
764
765 char *remote_get_noisy_reply ();
766 int remote_query_attached (int pid);
767 inferior *remote_add_inferior (int fake_pid_p, int pid, int attached,
768 int try_open_exec);
769
770 ptid_t remote_current_thread (ptid_t oldpid);
771 ptid_t get_current_thread (char *wait_status);
772
773 void set_thread (ptid_t ptid, int gen);
774 void set_general_thread (ptid_t ptid);
775 void set_continue_thread (ptid_t ptid);
776 void set_general_process ();
777
778 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
779
780 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
781 gdb_ext_thread_info *info);
782 int remote_get_threadinfo (threadref *threadid, int fieldset,
783 gdb_ext_thread_info *info);
784
785 int parse_threadlist_response (char *pkt, int result_limit,
786 threadref *original_echo,
787 threadref *resultlist,
788 int *doneflag);
789 int remote_get_threadlist (int startflag, threadref *nextthread,
790 int result_limit, int *done, int *result_count,
791 threadref *threadlist);
792
793 int remote_threadlist_iterator (rmt_thread_action stepfunction,
794 void *context, int looplimit);
795
796 int remote_get_threads_with_ql (threads_listing_context *context);
797 int remote_get_threads_with_qxfer (threads_listing_context *context);
798 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
799
800 void extended_remote_restart ();
801
802 void get_offsets ();
803
804 void remote_check_symbols ();
805
806 void remote_supported_packet (const struct protocol_feature *feature,
807 enum packet_support support,
808 const char *argument);
809
810 void remote_query_supported ();
811
812 void remote_packet_size (const protocol_feature *feature,
813 packet_support support, const char *value);
814
815 void remote_serial_quit_handler ();
816
817 void remote_detach_pid (int pid);
818
819 void remote_vcont_probe ();
820
821 void remote_resume_with_hc (ptid_t ptid, int step,
822 gdb_signal siggnal);
823
824 void send_interrupt_sequence ();
825 void interrupt_query ();
826
827 void remote_notif_get_pending_events (notif_client *nc);
828
829 int fetch_register_using_p (struct regcache *regcache,
830 packet_reg *reg);
831 int send_g_packet ();
832 void process_g_packet (struct regcache *regcache);
833 void fetch_registers_using_g (struct regcache *regcache);
834 int store_register_using_P (const struct regcache *regcache,
835 packet_reg *reg);
836 void store_registers_using_G (const struct regcache *regcache);
837
838 void set_remote_traceframe ();
839
840 void check_binary_download (CORE_ADDR addr);
841
842 target_xfer_status remote_write_bytes_aux (const char *header,
843 CORE_ADDR memaddr,
844 const gdb_byte *myaddr,
845 ULONGEST len_units,
846 int unit_size,
847 ULONGEST *xfered_len_units,
848 char packet_format,
849 int use_length);
850
851 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
852 const gdb_byte *myaddr, ULONGEST len,
853 int unit_size, ULONGEST *xfered_len);
854
855 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
856 ULONGEST len_units,
857 int unit_size, ULONGEST *xfered_len_units);
858
859 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
860 ULONGEST memaddr,
861 ULONGEST len,
862 int unit_size,
863 ULONGEST *xfered_len);
864
865 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
866 gdb_byte *myaddr, ULONGEST len,
867 int unit_size,
868 ULONGEST *xfered_len);
869
870 packet_result remote_send_printf (const char *format, ...)
871 ATTRIBUTE_PRINTF (2, 3);
872
873 target_xfer_status remote_flash_write (ULONGEST address,
874 ULONGEST length, ULONGEST *xfered_len,
875 const gdb_byte *data);
876
877 int readchar (int timeout);
878
879 void remote_serial_write (const char *str, int len);
880
881 int putpkt (const char *buf);
882 int putpkt_binary (const char *buf, int cnt);
883
884 int putpkt (const gdb::char_vector &buf)
885 {
886 return putpkt (buf.data ());
887 }
888
889 void skip_frame ();
890 long read_frame (gdb::char_vector *buf_p);
891 void getpkt (gdb::char_vector *buf, int forever);
892 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
893 int expecting_notif, int *is_notif);
894 int getpkt_sane (gdb::char_vector *buf, int forever);
895 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
896 int *is_notif);
897 int remote_vkill (int pid);
898 void remote_kill_k ();
899
900 void extended_remote_disable_randomization (int val);
901 int extended_remote_run (const std::string &args);
902
903 void send_environment_packet (const char *action,
904 const char *packet,
905 const char *value);
906
907 void extended_remote_environment_support ();
908 void extended_remote_set_inferior_cwd ();
909
910 target_xfer_status remote_write_qxfer (const char *object_name,
911 const char *annex,
912 const gdb_byte *writebuf,
913 ULONGEST offset, LONGEST len,
914 ULONGEST *xfered_len,
915 struct packet_config *packet);
916
917 target_xfer_status remote_read_qxfer (const char *object_name,
918 const char *annex,
919 gdb_byte *readbuf, ULONGEST offset,
920 LONGEST len,
921 ULONGEST *xfered_len,
922 struct packet_config *packet);
923
924 void push_stop_reply (struct stop_reply *new_event);
925
926 bool vcont_r_supported ();
927
928 void packet_command (const char *args, int from_tty);
929
930 private: /* data fields */
931
932 /* The remote state. Don't reference this directly. Use the
933 get_remote_state method instead. */
934 remote_state m_remote_state;
935 };
936
937 static const target_info extended_remote_target_info = {
938 "extended-remote",
939 N_("Extended remote serial target in gdb-specific protocol"),
940 remote_doc
941 };
942
943 /* Set up the extended remote target by extending the standard remote
944 target and adding to it. */
945
946 class extended_remote_target final : public remote_target
947 {
948 public:
949 const target_info &info () const override
950 { return extended_remote_target_info; }
951
952 /* Open an extended-remote connection. */
953 static void open (const char *, int);
954
955 bool can_create_inferior () override { return true; }
956 void create_inferior (const char *, const std::string &,
957 char **, int) override;
958
959 void detach (inferior *, int) override;
960
961 bool can_attach () override { return true; }
962 void attach (const char *, int) override;
963
964 void post_attach (int) override;
965 bool supports_disable_randomization () override;
966 };
967
968 /* Per-program-space data key. */
969 static const struct program_space_data *remote_pspace_data;
970
971 /* The variable registered as the control variable used by the
972 remote exec-file commands. While the remote exec-file setting is
973 per-program-space, the set/show machinery uses this as the
974 location of the remote exec-file value. */
975 static char *remote_exec_file_var;
976
977 /* The size to align memory write packets, when practical. The protocol
978 does not guarantee any alignment, and gdb will generate short
979 writes and unaligned writes, but even as a best-effort attempt this
980 can improve bulk transfers. For instance, if a write is misaligned
981 relative to the target's data bus, the stub may need to make an extra
982 round trip fetching data from the target. This doesn't make a
983 huge difference, but it's easy to do, so we try to be helpful.
984
985 The alignment chosen is arbitrary; usually data bus width is
986 important here, not the possibly larger cache line size. */
987 enum { REMOTE_ALIGN_WRITES = 16 };
988
989 /* Prototypes for local functions. */
990
991 static int hexnumlen (ULONGEST num);
992
993 static int stubhex (int ch);
994
995 static int hexnumstr (char *, ULONGEST);
996
997 static int hexnumnstr (char *, ULONGEST, int);
998
999 static CORE_ADDR remote_address_masked (CORE_ADDR);
1000
1001 static void print_packet (const char *);
1002
1003 static int stub_unpack_int (char *buff, int fieldlength);
1004
1005 struct packet_config;
1006
1007 static void show_packet_config_cmd (struct packet_config *config);
1008
1009 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1010 int from_tty,
1011 struct cmd_list_element *c,
1012 const char *value);
1013
1014 static ptid_t read_ptid (const char *buf, const char **obuf);
1015
1016 static void remote_async_inferior_event_handler (gdb_client_data);
1017
1018 static bool remote_read_description_p (struct target_ops *target);
1019
1020 static void remote_console_output (const char *msg);
1021
1022 static void remote_btrace_reset (remote_state *rs);
1023
1024 static void remote_unpush_and_throw (void);
1025
1026 /* For "remote". */
1027
1028 static struct cmd_list_element *remote_cmdlist;
1029
1030 /* For "set remote" and "show remote". */
1031
1032 static struct cmd_list_element *remote_set_cmdlist;
1033 static struct cmd_list_element *remote_show_cmdlist;
1034
1035 /* Controls whether GDB is willing to use range stepping. */
1036
1037 static int use_range_stepping = 1;
1038
1039 /* The max number of chars in debug output. The rest of chars are
1040 omitted. */
1041
1042 #define REMOTE_DEBUG_MAX_CHAR 512
1043
1044 /* Private data that we'll store in (struct thread_info)->priv. */
1045 struct remote_thread_info : public private_thread_info
1046 {
1047 std::string extra;
1048 std::string name;
1049 int core = -1;
1050
1051 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1052 sequence of bytes. */
1053 gdb::byte_vector thread_handle;
1054
1055 /* Whether the target stopped for a breakpoint/watchpoint. */
1056 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1057
1058 /* This is set to the data address of the access causing the target
1059 to stop for a watchpoint. */
1060 CORE_ADDR watch_data_address = 0;
1061
1062 /* Fields used by the vCont action coalescing implemented in
1063 remote_resume / remote_commit_resume. remote_resume stores each
1064 thread's last resume request in these fields, so that a later
1065 remote_commit_resume knows which is the proper action for this
1066 thread to include in the vCont packet. */
1067
1068 /* True if the last target_resume call for this thread was a step
1069 request, false if a continue request. */
1070 int last_resume_step = 0;
1071
1072 /* The signal specified in the last target_resume call for this
1073 thread. */
1074 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1075
1076 /* Whether this thread was already vCont-resumed on the remote
1077 side. */
1078 int vcont_resumed = 0;
1079 };
1080
1081 remote_state::remote_state ()
1082 : buf (400)
1083 {
1084 }
1085
1086 remote_state::~remote_state ()
1087 {
1088 xfree (this->last_pass_packet);
1089 xfree (this->last_program_signals_packet);
1090 xfree (this->finished_object);
1091 xfree (this->finished_annex);
1092 }
1093
1094 /* Utility: generate error from an incoming stub packet. */
1095 static void
1096 trace_error (char *buf)
1097 {
1098 if (*buf++ != 'E')
1099 return; /* not an error msg */
1100 switch (*buf)
1101 {
1102 case '1': /* malformed packet error */
1103 if (*++buf == '0') /* general case: */
1104 error (_("remote.c: error in outgoing packet."));
1105 else
1106 error (_("remote.c: error in outgoing packet at field #%ld."),
1107 strtol (buf, NULL, 16));
1108 default:
1109 error (_("Target returns error code '%s'."), buf);
1110 }
1111 }
1112
1113 /* Utility: wait for reply from stub, while accepting "O" packets. */
1114
1115 char *
1116 remote_target::remote_get_noisy_reply ()
1117 {
1118 struct remote_state *rs = get_remote_state ();
1119
1120 do /* Loop on reply from remote stub. */
1121 {
1122 char *buf;
1123
1124 QUIT; /* Allow user to bail out with ^C. */
1125 getpkt (&rs->buf, 0);
1126 buf = rs->buf.data ();
1127 if (buf[0] == 'E')
1128 trace_error (buf);
1129 else if (startswith (buf, "qRelocInsn:"))
1130 {
1131 ULONGEST ul;
1132 CORE_ADDR from, to, org_to;
1133 const char *p, *pp;
1134 int adjusted_size = 0;
1135 int relocated = 0;
1136
1137 p = buf + strlen ("qRelocInsn:");
1138 pp = unpack_varlen_hex (p, &ul);
1139 if (*pp != ';')
1140 error (_("invalid qRelocInsn packet: %s"), buf);
1141 from = ul;
1142
1143 p = pp + 1;
1144 unpack_varlen_hex (p, &ul);
1145 to = ul;
1146
1147 org_to = to;
1148
1149 TRY
1150 {
1151 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1152 relocated = 1;
1153 }
1154 CATCH (ex, RETURN_MASK_ALL)
1155 {
1156 if (ex.error == MEMORY_ERROR)
1157 {
1158 /* Propagate memory errors silently back to the
1159 target. The stub may have limited the range of
1160 addresses we can write to, for example. */
1161 }
1162 else
1163 {
1164 /* Something unexpectedly bad happened. Be verbose
1165 so we can tell what, and propagate the error back
1166 to the stub, so it doesn't get stuck waiting for
1167 a response. */
1168 exception_fprintf (gdb_stderr, ex,
1169 _("warning: relocating instruction: "));
1170 }
1171 putpkt ("E01");
1172 }
1173 END_CATCH
1174
1175 if (relocated)
1176 {
1177 adjusted_size = to - org_to;
1178
1179 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1180 putpkt (buf);
1181 }
1182 }
1183 else if (buf[0] == 'O' && buf[1] != 'K')
1184 remote_console_output (buf + 1); /* 'O' message from stub */
1185 else
1186 return buf; /* Here's the actual reply. */
1187 }
1188 while (1);
1189 }
1190
1191 struct remote_arch_state *
1192 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1193 {
1194 remote_arch_state *rsa;
1195
1196 auto it = this->m_arch_states.find (gdbarch);
1197 if (it == this->m_arch_states.end ())
1198 {
1199 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1200 std::forward_as_tuple (gdbarch),
1201 std::forward_as_tuple (gdbarch));
1202 rsa = &p.first->second;
1203
1204 /* Make sure that the packet buffer is plenty big enough for
1205 this architecture. */
1206 if (this->buf.size () < rsa->remote_packet_size)
1207 this->buf.resize (2 * rsa->remote_packet_size);
1208 }
1209 else
1210 rsa = &it->second;
1211
1212 return rsa;
1213 }
1214
1215 /* Fetch the global remote target state. */
1216
1217 remote_state *
1218 remote_target::get_remote_state ()
1219 {
1220 /* Make sure that the remote architecture state has been
1221 initialized, because doing so might reallocate rs->buf. Any
1222 function which calls getpkt also needs to be mindful of changes
1223 to rs->buf, but this call limits the number of places which run
1224 into trouble. */
1225 m_remote_state.get_remote_arch_state (target_gdbarch ());
1226
1227 return &m_remote_state;
1228 }
1229
1230 /* Cleanup routine for the remote module's pspace data. */
1231
1232 static void
1233 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
1234 {
1235 char *remote_exec_file = (char *) arg;
1236
1237 xfree (remote_exec_file);
1238 }
1239
1240 /* Fetch the remote exec-file from the current program space. */
1241
1242 static const char *
1243 get_remote_exec_file (void)
1244 {
1245 char *remote_exec_file;
1246
1247 remote_exec_file
1248 = (char *) program_space_data (current_program_space,
1249 remote_pspace_data);
1250 if (remote_exec_file == NULL)
1251 return "";
1252
1253 return remote_exec_file;
1254 }
1255
1256 /* Set the remote exec file for PSPACE. */
1257
1258 static void
1259 set_pspace_remote_exec_file (struct program_space *pspace,
1260 char *remote_exec_file)
1261 {
1262 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
1263
1264 xfree (old_file);
1265 set_program_space_data (pspace, remote_pspace_data,
1266 xstrdup (remote_exec_file));
1267 }
1268
1269 /* The "set/show remote exec-file" set command hook. */
1270
1271 static void
1272 set_remote_exec_file (const char *ignored, int from_tty,
1273 struct cmd_list_element *c)
1274 {
1275 gdb_assert (remote_exec_file_var != NULL);
1276 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1277 }
1278
1279 /* The "set/show remote exec-file" show command hook. */
1280
1281 static void
1282 show_remote_exec_file (struct ui_file *file, int from_tty,
1283 struct cmd_list_element *cmd, const char *value)
1284 {
1285 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1286 }
1287
1288 static int
1289 compare_pnums (const void *lhs_, const void *rhs_)
1290 {
1291 const struct packet_reg * const *lhs
1292 = (const struct packet_reg * const *) lhs_;
1293 const struct packet_reg * const *rhs
1294 = (const struct packet_reg * const *) rhs_;
1295
1296 if ((*lhs)->pnum < (*rhs)->pnum)
1297 return -1;
1298 else if ((*lhs)->pnum == (*rhs)->pnum)
1299 return 0;
1300 else
1301 return 1;
1302 }
1303
1304 static int
1305 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1306 {
1307 int regnum, num_remote_regs, offset;
1308 struct packet_reg **remote_regs;
1309
1310 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1311 {
1312 struct packet_reg *r = &regs[regnum];
1313
1314 if (register_size (gdbarch, regnum) == 0)
1315 /* Do not try to fetch zero-sized (placeholder) registers. */
1316 r->pnum = -1;
1317 else
1318 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1319
1320 r->regnum = regnum;
1321 }
1322
1323 /* Define the g/G packet format as the contents of each register
1324 with a remote protocol number, in order of ascending protocol
1325 number. */
1326
1327 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1328 for (num_remote_regs = 0, regnum = 0;
1329 regnum < gdbarch_num_regs (gdbarch);
1330 regnum++)
1331 if (regs[regnum].pnum != -1)
1332 remote_regs[num_remote_regs++] = &regs[regnum];
1333
1334 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
1335 compare_pnums);
1336
1337 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1338 {
1339 remote_regs[regnum]->in_g_packet = 1;
1340 remote_regs[regnum]->offset = offset;
1341 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1342 }
1343
1344 return offset;
1345 }
1346
1347 /* Given the architecture described by GDBARCH, return the remote
1348 protocol register's number and the register's offset in the g/G
1349 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1350 If the target does not have a mapping for REGNUM, return false,
1351 otherwise, return true. */
1352
1353 int
1354 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1355 int *pnum, int *poffset)
1356 {
1357 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1358
1359 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1360
1361 map_regcache_remote_table (gdbarch, regs.data ());
1362
1363 *pnum = regs[regnum].pnum;
1364 *poffset = regs[regnum].offset;
1365
1366 return *pnum != -1;
1367 }
1368
1369 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1370 {
1371 /* Use the architecture to build a regnum<->pnum table, which will be
1372 1:1 unless a feature set specifies otherwise. */
1373 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1374
1375 /* Record the maximum possible size of the g packet - it may turn out
1376 to be smaller. */
1377 this->sizeof_g_packet
1378 = map_regcache_remote_table (gdbarch, this->regs.get ());
1379
1380 /* Default maximum number of characters in a packet body. Many
1381 remote stubs have a hardwired buffer size of 400 bytes
1382 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1383 as the maximum packet-size to ensure that the packet and an extra
1384 NUL character can always fit in the buffer. This stops GDB
1385 trashing stubs that try to squeeze an extra NUL into what is
1386 already a full buffer (As of 1999-12-04 that was most stubs). */
1387 this->remote_packet_size = 400 - 1;
1388
1389 /* This one is filled in when a ``g'' packet is received. */
1390 this->actual_register_packet_size = 0;
1391
1392 /* Should rsa->sizeof_g_packet needs more space than the
1393 default, adjust the size accordingly. Remember that each byte is
1394 encoded as two characters. 32 is the overhead for the packet
1395 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1396 (``$NN:G...#NN'') is a better guess, the below has been padded a
1397 little. */
1398 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1399 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1400 }
1401
1402 /* Get a pointer to the current remote target. If not connected to a
1403 remote target, return NULL. */
1404
1405 static remote_target *
1406 get_current_remote_target ()
1407 {
1408 target_ops *proc_target = find_target_at (process_stratum);
1409 return dynamic_cast<remote_target *> (proc_target);
1410 }
1411
1412 /* Return the current allowed size of a remote packet. This is
1413 inferred from the current architecture, and should be used to
1414 limit the length of outgoing packets. */
1415 long
1416 remote_target::get_remote_packet_size ()
1417 {
1418 struct remote_state *rs = get_remote_state ();
1419 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1420
1421 if (rs->explicit_packet_size)
1422 return rs->explicit_packet_size;
1423
1424 return rsa->remote_packet_size;
1425 }
1426
1427 static struct packet_reg *
1428 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1429 long regnum)
1430 {
1431 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1432 return NULL;
1433 else
1434 {
1435 struct packet_reg *r = &rsa->regs[regnum];
1436
1437 gdb_assert (r->regnum == regnum);
1438 return r;
1439 }
1440 }
1441
1442 static struct packet_reg *
1443 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1444 LONGEST pnum)
1445 {
1446 int i;
1447
1448 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1449 {
1450 struct packet_reg *r = &rsa->regs[i];
1451
1452 if (r->pnum == pnum)
1453 return r;
1454 }
1455 return NULL;
1456 }
1457
1458 /* Allow the user to specify what sequence to send to the remote
1459 when he requests a program interruption: Although ^C is usually
1460 what remote systems expect (this is the default, here), it is
1461 sometimes preferable to send a break. On other systems such
1462 as the Linux kernel, a break followed by g, which is Magic SysRq g
1463 is required in order to interrupt the execution. */
1464 const char interrupt_sequence_control_c[] = "Ctrl-C";
1465 const char interrupt_sequence_break[] = "BREAK";
1466 const char interrupt_sequence_break_g[] = "BREAK-g";
1467 static const char *const interrupt_sequence_modes[] =
1468 {
1469 interrupt_sequence_control_c,
1470 interrupt_sequence_break,
1471 interrupt_sequence_break_g,
1472 NULL
1473 };
1474 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1475
1476 static void
1477 show_interrupt_sequence (struct ui_file *file, int from_tty,
1478 struct cmd_list_element *c,
1479 const char *value)
1480 {
1481 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1482 fprintf_filtered (file,
1483 _("Send the ASCII ETX character (Ctrl-c) "
1484 "to the remote target to interrupt the "
1485 "execution of the program.\n"));
1486 else if (interrupt_sequence_mode == interrupt_sequence_break)
1487 fprintf_filtered (file,
1488 _("send a break signal to the remote target "
1489 "to interrupt the execution of the program.\n"));
1490 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1491 fprintf_filtered (file,
1492 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1493 "the remote target to interrupt the execution "
1494 "of Linux kernel.\n"));
1495 else
1496 internal_error (__FILE__, __LINE__,
1497 _("Invalid value for interrupt_sequence_mode: %s."),
1498 interrupt_sequence_mode);
1499 }
1500
1501 /* This boolean variable specifies whether interrupt_sequence is sent
1502 to the remote target when gdb connects to it.
1503 This is mostly needed when you debug the Linux kernel: The Linux kernel
1504 expects BREAK g which is Magic SysRq g for connecting gdb. */
1505 static int interrupt_on_connect = 0;
1506
1507 /* This variable is used to implement the "set/show remotebreak" commands.
1508 Since these commands are now deprecated in favor of "set/show remote
1509 interrupt-sequence", it no longer has any effect on the code. */
1510 static int remote_break;
1511
1512 static void
1513 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1514 {
1515 if (remote_break)
1516 interrupt_sequence_mode = interrupt_sequence_break;
1517 else
1518 interrupt_sequence_mode = interrupt_sequence_control_c;
1519 }
1520
1521 static void
1522 show_remotebreak (struct ui_file *file, int from_tty,
1523 struct cmd_list_element *c,
1524 const char *value)
1525 {
1526 }
1527
1528 /* This variable sets the number of bits in an address that are to be
1529 sent in a memory ("M" or "m") packet. Normally, after stripping
1530 leading zeros, the entire address would be sent. This variable
1531 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1532 initial implementation of remote.c restricted the address sent in
1533 memory packets to ``host::sizeof long'' bytes - (typically 32
1534 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1535 address was never sent. Since fixing this bug may cause a break in
1536 some remote targets this variable is principly provided to
1537 facilitate backward compatibility. */
1538
1539 static unsigned int remote_address_size;
1540
1541 \f
1542 /* User configurable variables for the number of characters in a
1543 memory read/write packet. MIN (rsa->remote_packet_size,
1544 rsa->sizeof_g_packet) is the default. Some targets need smaller
1545 values (fifo overruns, et.al.) and some users need larger values
1546 (speed up transfers). The variables ``preferred_*'' (the user
1547 request), ``current_*'' (what was actually set) and ``forced_*''
1548 (Positive - a soft limit, negative - a hard limit). */
1549
1550 struct memory_packet_config
1551 {
1552 const char *name;
1553 long size;
1554 int fixed_p;
1555 };
1556
1557 /* The default max memory-write-packet-size, when the setting is
1558 "fixed". The 16k is historical. (It came from older GDB's using
1559 alloca for buffers and the knowledge (folklore?) that some hosts
1560 don't cope very well with large alloca calls.) */
1561 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1562
1563 /* The minimum remote packet size for memory transfers. Ensures we
1564 can write at least one byte. */
1565 #define MIN_MEMORY_PACKET_SIZE 20
1566
1567 /* Get the memory packet size, assuming it is fixed. */
1568
1569 static long
1570 get_fixed_memory_packet_size (struct memory_packet_config *config)
1571 {
1572 gdb_assert (config->fixed_p);
1573
1574 if (config->size <= 0)
1575 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1576 else
1577 return config->size;
1578 }
1579
1580 /* Compute the current size of a read/write packet. Since this makes
1581 use of ``actual_register_packet_size'' the computation is dynamic. */
1582
1583 long
1584 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1585 {
1586 struct remote_state *rs = get_remote_state ();
1587 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1588
1589 long what_they_get;
1590 if (config->fixed_p)
1591 what_they_get = get_fixed_memory_packet_size (config);
1592 else
1593 {
1594 what_they_get = get_remote_packet_size ();
1595 /* Limit the packet to the size specified by the user. */
1596 if (config->size > 0
1597 && what_they_get > config->size)
1598 what_they_get = config->size;
1599
1600 /* Limit it to the size of the targets ``g'' response unless we have
1601 permission from the stub to use a larger packet size. */
1602 if (rs->explicit_packet_size == 0
1603 && rsa->actual_register_packet_size > 0
1604 && what_they_get > rsa->actual_register_packet_size)
1605 what_they_get = rsa->actual_register_packet_size;
1606 }
1607 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1608 what_they_get = MIN_MEMORY_PACKET_SIZE;
1609
1610 /* Make sure there is room in the global buffer for this packet
1611 (including its trailing NUL byte). */
1612 if (rs->buf.size () < what_they_get + 1)
1613 rs->buf.resize (2 * what_they_get);
1614
1615 return what_they_get;
1616 }
1617
1618 /* Update the size of a read/write packet. If they user wants
1619 something really big then do a sanity check. */
1620
1621 static void
1622 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1623 {
1624 int fixed_p = config->fixed_p;
1625 long size = config->size;
1626
1627 if (args == NULL)
1628 error (_("Argument required (integer, `fixed' or `limited')."));
1629 else if (strcmp (args, "hard") == 0
1630 || strcmp (args, "fixed") == 0)
1631 fixed_p = 1;
1632 else if (strcmp (args, "soft") == 0
1633 || strcmp (args, "limit") == 0)
1634 fixed_p = 0;
1635 else
1636 {
1637 char *end;
1638
1639 size = strtoul (args, &end, 0);
1640 if (args == end)
1641 error (_("Invalid %s (bad syntax)."), config->name);
1642
1643 /* Instead of explicitly capping the size of a packet to or
1644 disallowing it, the user is allowed to set the size to
1645 something arbitrarily large. */
1646 }
1647
1648 /* Extra checks? */
1649 if (fixed_p && !config->fixed_p)
1650 {
1651 /* So that the query shows the correct value. */
1652 long query_size = (size <= 0
1653 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1654 : size);
1655
1656 if (! query (_("The target may not be able to correctly handle a %s\n"
1657 "of %ld bytes. Change the packet size? "),
1658 config->name, query_size))
1659 error (_("Packet size not changed."));
1660 }
1661 /* Update the config. */
1662 config->fixed_p = fixed_p;
1663 config->size = size;
1664 }
1665
1666 static void
1667 show_memory_packet_size (struct memory_packet_config *config)
1668 {
1669 if (config->size == 0)
1670 printf_filtered (_("The %s is 0 (default). "), config->name);
1671 else
1672 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1673 if (config->fixed_p)
1674 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1675 get_fixed_memory_packet_size (config));
1676 else
1677 {
1678 remote_target *remote = get_current_remote_target ();
1679
1680 if (remote != NULL)
1681 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1682 remote->get_memory_packet_size (config));
1683 else
1684 puts_filtered ("The actual limit will be further reduced "
1685 "dependent on the target.\n");
1686 }
1687 }
1688
1689 static struct memory_packet_config memory_write_packet_config =
1690 {
1691 "memory-write-packet-size",
1692 };
1693
1694 static void
1695 set_memory_write_packet_size (const char *args, int from_tty)
1696 {
1697 set_memory_packet_size (args, &memory_write_packet_config);
1698 }
1699
1700 static void
1701 show_memory_write_packet_size (const char *args, int from_tty)
1702 {
1703 show_memory_packet_size (&memory_write_packet_config);
1704 }
1705
1706 /* Show the number of hardware watchpoints that can be used. */
1707
1708 static void
1709 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1710 struct cmd_list_element *c,
1711 const char *value)
1712 {
1713 fprintf_filtered (file, _("The maximum number of target hardware "
1714 "watchpoints is %s.\n"), value);
1715 }
1716
1717 /* Show the length limit (in bytes) for hardware watchpoints. */
1718
1719 static void
1720 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1721 struct cmd_list_element *c,
1722 const char *value)
1723 {
1724 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1725 "hardware watchpoint is %s.\n"), value);
1726 }
1727
1728 /* Show the number of hardware breakpoints that can be used. */
1729
1730 static void
1731 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1732 struct cmd_list_element *c,
1733 const char *value)
1734 {
1735 fprintf_filtered (file, _("The maximum number of target hardware "
1736 "breakpoints is %s.\n"), value);
1737 }
1738
1739 long
1740 remote_target::get_memory_write_packet_size ()
1741 {
1742 return get_memory_packet_size (&memory_write_packet_config);
1743 }
1744
1745 static struct memory_packet_config memory_read_packet_config =
1746 {
1747 "memory-read-packet-size",
1748 };
1749
1750 static void
1751 set_memory_read_packet_size (const char *args, int from_tty)
1752 {
1753 set_memory_packet_size (args, &memory_read_packet_config);
1754 }
1755
1756 static void
1757 show_memory_read_packet_size (const char *args, int from_tty)
1758 {
1759 show_memory_packet_size (&memory_read_packet_config);
1760 }
1761
1762 long
1763 remote_target::get_memory_read_packet_size ()
1764 {
1765 long size = get_memory_packet_size (&memory_read_packet_config);
1766
1767 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1768 extra buffer size argument before the memory read size can be
1769 increased beyond this. */
1770 if (size > get_remote_packet_size ())
1771 size = get_remote_packet_size ();
1772 return size;
1773 }
1774
1775 \f
1776
1777 struct packet_config
1778 {
1779 const char *name;
1780 const char *title;
1781
1782 /* If auto, GDB auto-detects support for this packet or feature,
1783 either through qSupported, or by trying the packet and looking
1784 at the response. If true, GDB assumes the target supports this
1785 packet. If false, the packet is disabled. Configs that don't
1786 have an associated command always have this set to auto. */
1787 enum auto_boolean detect;
1788
1789 /* Does the target support this packet? */
1790 enum packet_support support;
1791 };
1792
1793 static enum packet_support packet_config_support (struct packet_config *config);
1794 static enum packet_support packet_support (int packet);
1795
1796 static void
1797 show_packet_config_cmd (struct packet_config *config)
1798 {
1799 const char *support = "internal-error";
1800
1801 switch (packet_config_support (config))
1802 {
1803 case PACKET_ENABLE:
1804 support = "enabled";
1805 break;
1806 case PACKET_DISABLE:
1807 support = "disabled";
1808 break;
1809 case PACKET_SUPPORT_UNKNOWN:
1810 support = "unknown";
1811 break;
1812 }
1813 switch (config->detect)
1814 {
1815 case AUTO_BOOLEAN_AUTO:
1816 printf_filtered (_("Support for the `%s' packet "
1817 "is auto-detected, currently %s.\n"),
1818 config->name, support);
1819 break;
1820 case AUTO_BOOLEAN_TRUE:
1821 case AUTO_BOOLEAN_FALSE:
1822 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1823 config->name, support);
1824 break;
1825 }
1826 }
1827
1828 static void
1829 add_packet_config_cmd (struct packet_config *config, const char *name,
1830 const char *title, int legacy)
1831 {
1832 char *set_doc;
1833 char *show_doc;
1834 char *cmd_name;
1835
1836 config->name = name;
1837 config->title = title;
1838 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1839 name, title);
1840 show_doc = xstrprintf ("Show current use of remote "
1841 "protocol `%s' (%s) packet",
1842 name, title);
1843 /* set/show TITLE-packet {auto,on,off} */
1844 cmd_name = xstrprintf ("%s-packet", title);
1845 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1846 &config->detect, set_doc,
1847 show_doc, NULL, /* help_doc */
1848 NULL,
1849 show_remote_protocol_packet_cmd,
1850 &remote_set_cmdlist, &remote_show_cmdlist);
1851 /* The command code copies the documentation strings. */
1852 xfree (set_doc);
1853 xfree (show_doc);
1854 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1855 if (legacy)
1856 {
1857 char *legacy_name;
1858
1859 legacy_name = xstrprintf ("%s-packet", name);
1860 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1861 &remote_set_cmdlist);
1862 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1863 &remote_show_cmdlist);
1864 }
1865 }
1866
1867 static enum packet_result
1868 packet_check_result (const char *buf)
1869 {
1870 if (buf[0] != '\0')
1871 {
1872 /* The stub recognized the packet request. Check that the
1873 operation succeeded. */
1874 if (buf[0] == 'E'
1875 && isxdigit (buf[1]) && isxdigit (buf[2])
1876 && buf[3] == '\0')
1877 /* "Enn" - definitly an error. */
1878 return PACKET_ERROR;
1879
1880 /* Always treat "E." as an error. This will be used for
1881 more verbose error messages, such as E.memtypes. */
1882 if (buf[0] == 'E' && buf[1] == '.')
1883 return PACKET_ERROR;
1884
1885 /* The packet may or may not be OK. Just assume it is. */
1886 return PACKET_OK;
1887 }
1888 else
1889 /* The stub does not support the packet. */
1890 return PACKET_UNKNOWN;
1891 }
1892
1893 static enum packet_result
1894 packet_check_result (const gdb::char_vector &buf)
1895 {
1896 return packet_check_result (buf.data ());
1897 }
1898
1899 static enum packet_result
1900 packet_ok (const char *buf, struct packet_config *config)
1901 {
1902 enum packet_result result;
1903
1904 if (config->detect != AUTO_BOOLEAN_TRUE
1905 && config->support == PACKET_DISABLE)
1906 internal_error (__FILE__, __LINE__,
1907 _("packet_ok: attempt to use a disabled packet"));
1908
1909 result = packet_check_result (buf);
1910 switch (result)
1911 {
1912 case PACKET_OK:
1913 case PACKET_ERROR:
1914 /* The stub recognized the packet request. */
1915 if (config->support == PACKET_SUPPORT_UNKNOWN)
1916 {
1917 if (remote_debug)
1918 fprintf_unfiltered (gdb_stdlog,
1919 "Packet %s (%s) is supported\n",
1920 config->name, config->title);
1921 config->support = PACKET_ENABLE;
1922 }
1923 break;
1924 case PACKET_UNKNOWN:
1925 /* The stub does not support the packet. */
1926 if (config->detect == AUTO_BOOLEAN_AUTO
1927 && config->support == PACKET_ENABLE)
1928 {
1929 /* If the stub previously indicated that the packet was
1930 supported then there is a protocol error. */
1931 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1932 config->name, config->title);
1933 }
1934 else if (config->detect == AUTO_BOOLEAN_TRUE)
1935 {
1936 /* The user set it wrong. */
1937 error (_("Enabled packet %s (%s) not recognized by stub"),
1938 config->name, config->title);
1939 }
1940
1941 if (remote_debug)
1942 fprintf_unfiltered (gdb_stdlog,
1943 "Packet %s (%s) is NOT supported\n",
1944 config->name, config->title);
1945 config->support = PACKET_DISABLE;
1946 break;
1947 }
1948
1949 return result;
1950 }
1951
1952 static enum packet_result
1953 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1954 {
1955 return packet_ok (buf.data (), config);
1956 }
1957
1958 enum {
1959 PACKET_vCont = 0,
1960 PACKET_X,
1961 PACKET_qSymbol,
1962 PACKET_P,
1963 PACKET_p,
1964 PACKET_Z0,
1965 PACKET_Z1,
1966 PACKET_Z2,
1967 PACKET_Z3,
1968 PACKET_Z4,
1969 PACKET_vFile_setfs,
1970 PACKET_vFile_open,
1971 PACKET_vFile_pread,
1972 PACKET_vFile_pwrite,
1973 PACKET_vFile_close,
1974 PACKET_vFile_unlink,
1975 PACKET_vFile_readlink,
1976 PACKET_vFile_fstat,
1977 PACKET_qXfer_auxv,
1978 PACKET_qXfer_features,
1979 PACKET_qXfer_exec_file,
1980 PACKET_qXfer_libraries,
1981 PACKET_qXfer_libraries_svr4,
1982 PACKET_qXfer_memory_map,
1983 PACKET_qXfer_spu_read,
1984 PACKET_qXfer_spu_write,
1985 PACKET_qXfer_osdata,
1986 PACKET_qXfer_threads,
1987 PACKET_qXfer_statictrace_read,
1988 PACKET_qXfer_traceframe_info,
1989 PACKET_qXfer_uib,
1990 PACKET_qGetTIBAddr,
1991 PACKET_qGetTLSAddr,
1992 PACKET_qSupported,
1993 PACKET_qTStatus,
1994 PACKET_QPassSignals,
1995 PACKET_QCatchSyscalls,
1996 PACKET_QProgramSignals,
1997 PACKET_QSetWorkingDir,
1998 PACKET_QStartupWithShell,
1999 PACKET_QEnvironmentHexEncoded,
2000 PACKET_QEnvironmentReset,
2001 PACKET_QEnvironmentUnset,
2002 PACKET_qCRC,
2003 PACKET_qSearch_memory,
2004 PACKET_vAttach,
2005 PACKET_vRun,
2006 PACKET_QStartNoAckMode,
2007 PACKET_vKill,
2008 PACKET_qXfer_siginfo_read,
2009 PACKET_qXfer_siginfo_write,
2010 PACKET_qAttached,
2011
2012 /* Support for conditional tracepoints. */
2013 PACKET_ConditionalTracepoints,
2014
2015 /* Support for target-side breakpoint conditions. */
2016 PACKET_ConditionalBreakpoints,
2017
2018 /* Support for target-side breakpoint commands. */
2019 PACKET_BreakpointCommands,
2020
2021 /* Support for fast tracepoints. */
2022 PACKET_FastTracepoints,
2023
2024 /* Support for static tracepoints. */
2025 PACKET_StaticTracepoints,
2026
2027 /* Support for installing tracepoints while a trace experiment is
2028 running. */
2029 PACKET_InstallInTrace,
2030
2031 PACKET_bc,
2032 PACKET_bs,
2033 PACKET_TracepointSource,
2034 PACKET_QAllow,
2035 PACKET_qXfer_fdpic,
2036 PACKET_QDisableRandomization,
2037 PACKET_QAgent,
2038 PACKET_QTBuffer_size,
2039 PACKET_Qbtrace_off,
2040 PACKET_Qbtrace_bts,
2041 PACKET_Qbtrace_pt,
2042 PACKET_qXfer_btrace,
2043
2044 /* Support for the QNonStop packet. */
2045 PACKET_QNonStop,
2046
2047 /* Support for the QThreadEvents packet. */
2048 PACKET_QThreadEvents,
2049
2050 /* Support for multi-process extensions. */
2051 PACKET_multiprocess_feature,
2052
2053 /* Support for enabling and disabling tracepoints while a trace
2054 experiment is running. */
2055 PACKET_EnableDisableTracepoints_feature,
2056
2057 /* Support for collecting strings using the tracenz bytecode. */
2058 PACKET_tracenz_feature,
2059
2060 /* Support for continuing to run a trace experiment while GDB is
2061 disconnected. */
2062 PACKET_DisconnectedTracing_feature,
2063
2064 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2065 PACKET_augmented_libraries_svr4_read_feature,
2066
2067 /* Support for the qXfer:btrace-conf:read packet. */
2068 PACKET_qXfer_btrace_conf,
2069
2070 /* Support for the Qbtrace-conf:bts:size packet. */
2071 PACKET_Qbtrace_conf_bts_size,
2072
2073 /* Support for swbreak+ feature. */
2074 PACKET_swbreak_feature,
2075
2076 /* Support for hwbreak+ feature. */
2077 PACKET_hwbreak_feature,
2078
2079 /* Support for fork events. */
2080 PACKET_fork_event_feature,
2081
2082 /* Support for vfork events. */
2083 PACKET_vfork_event_feature,
2084
2085 /* Support for the Qbtrace-conf:pt:size packet. */
2086 PACKET_Qbtrace_conf_pt_size,
2087
2088 /* Support for exec events. */
2089 PACKET_exec_event_feature,
2090
2091 /* Support for query supported vCont actions. */
2092 PACKET_vContSupported,
2093
2094 /* Support remote CTRL-C. */
2095 PACKET_vCtrlC,
2096
2097 /* Support TARGET_WAITKIND_NO_RESUMED. */
2098 PACKET_no_resumed,
2099
2100 PACKET_MAX
2101 };
2102
2103 static struct packet_config remote_protocol_packets[PACKET_MAX];
2104
2105 /* Returns the packet's corresponding "set remote foo-packet" command
2106 state. See struct packet_config for more details. */
2107
2108 static enum auto_boolean
2109 packet_set_cmd_state (int packet)
2110 {
2111 return remote_protocol_packets[packet].detect;
2112 }
2113
2114 /* Returns whether a given packet or feature is supported. This takes
2115 into account the state of the corresponding "set remote foo-packet"
2116 command, which may be used to bypass auto-detection. */
2117
2118 static enum packet_support
2119 packet_config_support (struct packet_config *config)
2120 {
2121 switch (config->detect)
2122 {
2123 case AUTO_BOOLEAN_TRUE:
2124 return PACKET_ENABLE;
2125 case AUTO_BOOLEAN_FALSE:
2126 return PACKET_DISABLE;
2127 case AUTO_BOOLEAN_AUTO:
2128 return config->support;
2129 default:
2130 gdb_assert_not_reached (_("bad switch"));
2131 }
2132 }
2133
2134 /* Same as packet_config_support, but takes the packet's enum value as
2135 argument. */
2136
2137 static enum packet_support
2138 packet_support (int packet)
2139 {
2140 struct packet_config *config = &remote_protocol_packets[packet];
2141
2142 return packet_config_support (config);
2143 }
2144
2145 static void
2146 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2147 struct cmd_list_element *c,
2148 const char *value)
2149 {
2150 struct packet_config *packet;
2151
2152 for (packet = remote_protocol_packets;
2153 packet < &remote_protocol_packets[PACKET_MAX];
2154 packet++)
2155 {
2156 if (&packet->detect == c->var)
2157 {
2158 show_packet_config_cmd (packet);
2159 return;
2160 }
2161 }
2162 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2163 c->name);
2164 }
2165
2166 /* Should we try one of the 'Z' requests? */
2167
2168 enum Z_packet_type
2169 {
2170 Z_PACKET_SOFTWARE_BP,
2171 Z_PACKET_HARDWARE_BP,
2172 Z_PACKET_WRITE_WP,
2173 Z_PACKET_READ_WP,
2174 Z_PACKET_ACCESS_WP,
2175 NR_Z_PACKET_TYPES
2176 };
2177
2178 /* For compatibility with older distributions. Provide a ``set remote
2179 Z-packet ...'' command that updates all the Z packet types. */
2180
2181 static enum auto_boolean remote_Z_packet_detect;
2182
2183 static void
2184 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2185 struct cmd_list_element *c)
2186 {
2187 int i;
2188
2189 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2190 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2191 }
2192
2193 static void
2194 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2195 struct cmd_list_element *c,
2196 const char *value)
2197 {
2198 int i;
2199
2200 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2201 {
2202 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2203 }
2204 }
2205
2206 /* Returns true if the multi-process extensions are in effect. */
2207
2208 static int
2209 remote_multi_process_p (struct remote_state *rs)
2210 {
2211 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2212 }
2213
2214 /* Returns true if fork events are supported. */
2215
2216 static int
2217 remote_fork_event_p (struct remote_state *rs)
2218 {
2219 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2220 }
2221
2222 /* Returns true if vfork events are supported. */
2223
2224 static int
2225 remote_vfork_event_p (struct remote_state *rs)
2226 {
2227 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2228 }
2229
2230 /* Returns true if exec events are supported. */
2231
2232 static int
2233 remote_exec_event_p (struct remote_state *rs)
2234 {
2235 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2236 }
2237
2238 /* Insert fork catchpoint target routine. If fork events are enabled
2239 then return success, nothing more to do. */
2240
2241 int
2242 remote_target::insert_fork_catchpoint (int pid)
2243 {
2244 struct remote_state *rs = get_remote_state ();
2245
2246 return !remote_fork_event_p (rs);
2247 }
2248
2249 /* Remove fork catchpoint target routine. Nothing to do, just
2250 return success. */
2251
2252 int
2253 remote_target::remove_fork_catchpoint (int pid)
2254 {
2255 return 0;
2256 }
2257
2258 /* Insert vfork catchpoint target routine. If vfork events are enabled
2259 then return success, nothing more to do. */
2260
2261 int
2262 remote_target::insert_vfork_catchpoint (int pid)
2263 {
2264 struct remote_state *rs = get_remote_state ();
2265
2266 return !remote_vfork_event_p (rs);
2267 }
2268
2269 /* Remove vfork catchpoint target routine. Nothing to do, just
2270 return success. */
2271
2272 int
2273 remote_target::remove_vfork_catchpoint (int pid)
2274 {
2275 return 0;
2276 }
2277
2278 /* Insert exec catchpoint target routine. If exec events are
2279 enabled, just return success. */
2280
2281 int
2282 remote_target::insert_exec_catchpoint (int pid)
2283 {
2284 struct remote_state *rs = get_remote_state ();
2285
2286 return !remote_exec_event_p (rs);
2287 }
2288
2289 /* Remove exec catchpoint target routine. Nothing to do, just
2290 return success. */
2291
2292 int
2293 remote_target::remove_exec_catchpoint (int pid)
2294 {
2295 return 0;
2296 }
2297
2298 \f
2299
2300 static ptid_t magic_null_ptid;
2301 static ptid_t not_sent_ptid;
2302 static ptid_t any_thread_ptid;
2303
2304 /* Find out if the stub attached to PID (and hence GDB should offer to
2305 detach instead of killing it when bailing out). */
2306
2307 int
2308 remote_target::remote_query_attached (int pid)
2309 {
2310 struct remote_state *rs = get_remote_state ();
2311 size_t size = get_remote_packet_size ();
2312
2313 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2314 return 0;
2315
2316 if (remote_multi_process_p (rs))
2317 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2318 else
2319 xsnprintf (rs->buf.data (), size, "qAttached");
2320
2321 putpkt (rs->buf);
2322 getpkt (&rs->buf, 0);
2323
2324 switch (packet_ok (rs->buf,
2325 &remote_protocol_packets[PACKET_qAttached]))
2326 {
2327 case PACKET_OK:
2328 if (strcmp (rs->buf.data (), "1") == 0)
2329 return 1;
2330 break;
2331 case PACKET_ERROR:
2332 warning (_("Remote failure reply: %s"), rs->buf.data ());
2333 break;
2334 case PACKET_UNKNOWN:
2335 break;
2336 }
2337
2338 return 0;
2339 }
2340
2341 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2342 has been invented by GDB, instead of reported by the target. Since
2343 we can be connected to a remote system before before knowing about
2344 any inferior, mark the target with execution when we find the first
2345 inferior. If ATTACHED is 1, then we had just attached to this
2346 inferior. If it is 0, then we just created this inferior. If it
2347 is -1, then try querying the remote stub to find out if it had
2348 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2349 attempt to open this inferior's executable as the main executable
2350 if no main executable is open already. */
2351
2352 inferior *
2353 remote_target::remote_add_inferior (int fake_pid_p, int pid, int attached,
2354 int try_open_exec)
2355 {
2356 struct inferior *inf;
2357
2358 /* Check whether this process we're learning about is to be
2359 considered attached, or if is to be considered to have been
2360 spawned by the stub. */
2361 if (attached == -1)
2362 attached = remote_query_attached (pid);
2363
2364 if (gdbarch_has_global_solist (target_gdbarch ()))
2365 {
2366 /* If the target shares code across all inferiors, then every
2367 attach adds a new inferior. */
2368 inf = add_inferior (pid);
2369
2370 /* ... and every inferior is bound to the same program space.
2371 However, each inferior may still have its own address
2372 space. */
2373 inf->aspace = maybe_new_address_space ();
2374 inf->pspace = current_program_space;
2375 }
2376 else
2377 {
2378 /* In the traditional debugging scenario, there's a 1-1 match
2379 between program/address spaces. We simply bind the inferior
2380 to the program space's address space. */
2381 inf = current_inferior ();
2382 inferior_appeared (inf, pid);
2383 }
2384
2385 inf->attach_flag = attached;
2386 inf->fake_pid_p = fake_pid_p;
2387
2388 /* If no main executable is currently open then attempt to
2389 open the file that was executed to create this inferior. */
2390 if (try_open_exec && get_exec_file (0) == NULL)
2391 exec_file_locate_attach (pid, 0, 1);
2392
2393 return inf;
2394 }
2395
2396 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2397 static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2398
2399 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2400 according to RUNNING. */
2401
2402 thread_info *
2403 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2404 {
2405 struct remote_state *rs = get_remote_state ();
2406 struct thread_info *thread;
2407
2408 /* GDB historically didn't pull threads in the initial connection
2409 setup. If the remote target doesn't even have a concept of
2410 threads (e.g., a bare-metal target), even if internally we
2411 consider that a single-threaded target, mentioning a new thread
2412 might be confusing to the user. Be silent then, preserving the
2413 age old behavior. */
2414 if (rs->starting_up)
2415 thread = add_thread_silent (ptid);
2416 else
2417 thread = add_thread (ptid);
2418
2419 get_remote_thread_info (thread)->vcont_resumed = executing;
2420 set_executing (ptid, executing);
2421 set_running (ptid, running);
2422
2423 return thread;
2424 }
2425
2426 /* Come here when we learn about a thread id from the remote target.
2427 It may be the first time we hear about such thread, so take the
2428 opportunity to add it to GDB's thread list. In case this is the
2429 first time we're noticing its corresponding inferior, add it to
2430 GDB's inferior list as well. EXECUTING indicates whether the
2431 thread is (internally) executing or stopped. */
2432
2433 void
2434 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2435 {
2436 /* In non-stop mode, we assume new found threads are (externally)
2437 running until proven otherwise with a stop reply. In all-stop,
2438 we can only get here if all threads are stopped. */
2439 int running = target_is_non_stop_p () ? 1 : 0;
2440
2441 /* If this is a new thread, add it to GDB's thread list.
2442 If we leave it up to WFI to do this, bad things will happen. */
2443
2444 thread_info *tp = find_thread_ptid (currthread);
2445 if (tp != NULL && tp->state == THREAD_EXITED)
2446 {
2447 /* We're seeing an event on a thread id we knew had exited.
2448 This has to be a new thread reusing the old id. Add it. */
2449 remote_add_thread (currthread, running, executing);
2450 return;
2451 }
2452
2453 if (!in_thread_list (currthread))
2454 {
2455 struct inferior *inf = NULL;
2456 int pid = currthread.pid ();
2457
2458 if (inferior_ptid.is_pid ()
2459 && pid == inferior_ptid.pid ())
2460 {
2461 /* inferior_ptid has no thread member yet. This can happen
2462 with the vAttach -> remote_wait,"TAAthread:" path if the
2463 stub doesn't support qC. This is the first stop reported
2464 after an attach, so this is the main thread. Update the
2465 ptid in the thread list. */
2466 if (in_thread_list (ptid_t (pid)))
2467 thread_change_ptid (inferior_ptid, currthread);
2468 else
2469 {
2470 remote_add_thread (currthread, running, executing);
2471 inferior_ptid = currthread;
2472 }
2473 return;
2474 }
2475
2476 if (magic_null_ptid == inferior_ptid)
2477 {
2478 /* inferior_ptid is not set yet. This can happen with the
2479 vRun -> remote_wait,"TAAthread:" path if the stub
2480 doesn't support qC. This is the first stop reported
2481 after an attach, so this is the main thread. Update the
2482 ptid in the thread list. */
2483 thread_change_ptid (inferior_ptid, currthread);
2484 return;
2485 }
2486
2487 /* When connecting to a target remote, or to a target
2488 extended-remote which already was debugging an inferior, we
2489 may not know about it yet. Add it before adding its child
2490 thread, so notifications are emitted in a sensible order. */
2491 if (find_inferior_pid (currthread.pid ()) == NULL)
2492 {
2493 struct remote_state *rs = get_remote_state ();
2494 int fake_pid_p = !remote_multi_process_p (rs);
2495
2496 inf = remote_add_inferior (fake_pid_p,
2497 currthread.pid (), -1, 1);
2498 }
2499
2500 /* This is really a new thread. Add it. */
2501 thread_info *new_thr
2502 = remote_add_thread (currthread, running, executing);
2503
2504 /* If we found a new inferior, let the common code do whatever
2505 it needs to with it (e.g., read shared libraries, insert
2506 breakpoints), unless we're just setting up an all-stop
2507 connection. */
2508 if (inf != NULL)
2509 {
2510 struct remote_state *rs = get_remote_state ();
2511
2512 if (!rs->starting_up)
2513 notice_new_inferior (new_thr, executing, 0);
2514 }
2515 }
2516 }
2517
2518 /* Return THREAD's private thread data, creating it if necessary. */
2519
2520 static remote_thread_info *
2521 get_remote_thread_info (thread_info *thread)
2522 {
2523 gdb_assert (thread != NULL);
2524
2525 if (thread->priv == NULL)
2526 thread->priv.reset (new remote_thread_info);
2527
2528 return static_cast<remote_thread_info *> (thread->priv.get ());
2529 }
2530
2531 static remote_thread_info *
2532 get_remote_thread_info (ptid_t ptid)
2533 {
2534 thread_info *thr = find_thread_ptid (ptid);
2535 return get_remote_thread_info (thr);
2536 }
2537
2538 /* Call this function as a result of
2539 1) A halt indication (T packet) containing a thread id
2540 2) A direct query of currthread
2541 3) Successful execution of set thread */
2542
2543 static void
2544 record_currthread (struct remote_state *rs, ptid_t currthread)
2545 {
2546 rs->general_thread = currthread;
2547 }
2548
2549 /* If 'QPassSignals' is supported, tell the remote stub what signals
2550 it can simply pass through to the inferior without reporting. */
2551
2552 void
2553 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2554 {
2555 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2556 {
2557 char *pass_packet, *p;
2558 int count = 0;
2559 struct remote_state *rs = get_remote_state ();
2560
2561 gdb_assert (pass_signals.size () < 256);
2562 for (size_t i = 0; i < pass_signals.size (); i++)
2563 {
2564 if (pass_signals[i])
2565 count++;
2566 }
2567 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2568 strcpy (pass_packet, "QPassSignals:");
2569 p = pass_packet + strlen (pass_packet);
2570 for (size_t i = 0; i < pass_signals.size (); i++)
2571 {
2572 if (pass_signals[i])
2573 {
2574 if (i >= 16)
2575 *p++ = tohex (i >> 4);
2576 *p++ = tohex (i & 15);
2577 if (count)
2578 *p++ = ';';
2579 else
2580 break;
2581 count--;
2582 }
2583 }
2584 *p = 0;
2585 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2586 {
2587 putpkt (pass_packet);
2588 getpkt (&rs->buf, 0);
2589 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2590 if (rs->last_pass_packet)
2591 xfree (rs->last_pass_packet);
2592 rs->last_pass_packet = pass_packet;
2593 }
2594 else
2595 xfree (pass_packet);
2596 }
2597 }
2598
2599 /* If 'QCatchSyscalls' is supported, tell the remote stub
2600 to report syscalls to GDB. */
2601
2602 int
2603 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2604 gdb::array_view<const int> syscall_counts)
2605 {
2606 const char *catch_packet;
2607 enum packet_result result;
2608 int n_sysno = 0;
2609
2610 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2611 {
2612 /* Not supported. */
2613 return 1;
2614 }
2615
2616 if (needed && any_count == 0)
2617 {
2618 /* Count how many syscalls are to be caught. */
2619 for (size_t i = 0; i < syscall_counts.size (); i++)
2620 {
2621 if (syscall_counts[i] != 0)
2622 n_sysno++;
2623 }
2624 }
2625
2626 if (remote_debug)
2627 {
2628 fprintf_unfiltered (gdb_stdlog,
2629 "remote_set_syscall_catchpoint "
2630 "pid %d needed %d any_count %d n_sysno %d\n",
2631 pid, needed, any_count, n_sysno);
2632 }
2633
2634 std::string built_packet;
2635 if (needed)
2636 {
2637 /* Prepare a packet with the sysno list, assuming max 8+1
2638 characters for a sysno. If the resulting packet size is too
2639 big, fallback on the non-selective packet. */
2640 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2641 built_packet.reserve (maxpktsz);
2642 built_packet = "QCatchSyscalls:1";
2643 if (any_count == 0)
2644 {
2645 /* Add in each syscall to be caught. */
2646 for (size_t i = 0; i < syscall_counts.size (); i++)
2647 {
2648 if (syscall_counts[i] != 0)
2649 string_appendf (built_packet, ";%zx", i);
2650 }
2651 }
2652 if (built_packet.size () > get_remote_packet_size ())
2653 {
2654 /* catch_packet too big. Fallback to less efficient
2655 non selective mode, with GDB doing the filtering. */
2656 catch_packet = "QCatchSyscalls:1";
2657 }
2658 else
2659 catch_packet = built_packet.c_str ();
2660 }
2661 else
2662 catch_packet = "QCatchSyscalls:0";
2663
2664 struct remote_state *rs = get_remote_state ();
2665
2666 putpkt (catch_packet);
2667 getpkt (&rs->buf, 0);
2668 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2669 if (result == PACKET_OK)
2670 return 0;
2671 else
2672 return -1;
2673 }
2674
2675 /* If 'QProgramSignals' is supported, tell the remote stub what
2676 signals it should pass through to the inferior when detaching. */
2677
2678 void
2679 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2680 {
2681 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2682 {
2683 char *packet, *p;
2684 int count = 0;
2685 struct remote_state *rs = get_remote_state ();
2686
2687 gdb_assert (signals.size () < 256);
2688 for (size_t i = 0; i < signals.size (); i++)
2689 {
2690 if (signals[i])
2691 count++;
2692 }
2693 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2694 strcpy (packet, "QProgramSignals:");
2695 p = packet + strlen (packet);
2696 for (size_t i = 0; i < signals.size (); i++)
2697 {
2698 if (signal_pass_state (i))
2699 {
2700 if (i >= 16)
2701 *p++ = tohex (i >> 4);
2702 *p++ = tohex (i & 15);
2703 if (count)
2704 *p++ = ';';
2705 else
2706 break;
2707 count--;
2708 }
2709 }
2710 *p = 0;
2711 if (!rs->last_program_signals_packet
2712 || strcmp (rs->last_program_signals_packet, packet) != 0)
2713 {
2714 putpkt (packet);
2715 getpkt (&rs->buf, 0);
2716 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2717 xfree (rs->last_program_signals_packet);
2718 rs->last_program_signals_packet = packet;
2719 }
2720 else
2721 xfree (packet);
2722 }
2723 }
2724
2725 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2726 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2727 thread. If GEN is set, set the general thread, if not, then set
2728 the step/continue thread. */
2729 void
2730 remote_target::set_thread (ptid_t ptid, int gen)
2731 {
2732 struct remote_state *rs = get_remote_state ();
2733 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2734 char *buf = rs->buf.data ();
2735 char *endbuf = buf + get_remote_packet_size ();
2736
2737 if (state == ptid)
2738 return;
2739
2740 *buf++ = 'H';
2741 *buf++ = gen ? 'g' : 'c';
2742 if (ptid == magic_null_ptid)
2743 xsnprintf (buf, endbuf - buf, "0");
2744 else if (ptid == any_thread_ptid)
2745 xsnprintf (buf, endbuf - buf, "0");
2746 else if (ptid == minus_one_ptid)
2747 xsnprintf (buf, endbuf - buf, "-1");
2748 else
2749 write_ptid (buf, endbuf, ptid);
2750 putpkt (rs->buf);
2751 getpkt (&rs->buf, 0);
2752 if (gen)
2753 rs->general_thread = ptid;
2754 else
2755 rs->continue_thread = ptid;
2756 }
2757
2758 void
2759 remote_target::set_general_thread (ptid_t ptid)
2760 {
2761 set_thread (ptid, 1);
2762 }
2763
2764 void
2765 remote_target::set_continue_thread (ptid_t ptid)
2766 {
2767 set_thread (ptid, 0);
2768 }
2769
2770 /* Change the remote current process. Which thread within the process
2771 ends up selected isn't important, as long as it is the same process
2772 as what INFERIOR_PTID points to.
2773
2774 This comes from that fact that there is no explicit notion of
2775 "selected process" in the protocol. The selected process for
2776 general operations is the process the selected general thread
2777 belongs to. */
2778
2779 void
2780 remote_target::set_general_process ()
2781 {
2782 struct remote_state *rs = get_remote_state ();
2783
2784 /* If the remote can't handle multiple processes, don't bother. */
2785 if (!remote_multi_process_p (rs))
2786 return;
2787
2788 /* We only need to change the remote current thread if it's pointing
2789 at some other process. */
2790 if (rs->general_thread.pid () != inferior_ptid.pid ())
2791 set_general_thread (inferior_ptid);
2792 }
2793
2794 \f
2795 /* Return nonzero if this is the main thread that we made up ourselves
2796 to model non-threaded targets as single-threaded. */
2797
2798 static int
2799 remote_thread_always_alive (ptid_t ptid)
2800 {
2801 if (ptid == magic_null_ptid)
2802 /* The main thread is always alive. */
2803 return 1;
2804
2805 if (ptid.pid () != 0 && ptid.lwp () == 0)
2806 /* The main thread is always alive. This can happen after a
2807 vAttach, if the remote side doesn't support
2808 multi-threading. */
2809 return 1;
2810
2811 return 0;
2812 }
2813
2814 /* Return nonzero if the thread PTID is still alive on the remote
2815 system. */
2816
2817 bool
2818 remote_target::thread_alive (ptid_t ptid)
2819 {
2820 struct remote_state *rs = get_remote_state ();
2821 char *p, *endp;
2822
2823 /* Check if this is a thread that we made up ourselves to model
2824 non-threaded targets as single-threaded. */
2825 if (remote_thread_always_alive (ptid))
2826 return 1;
2827
2828 p = rs->buf.data ();
2829 endp = p + get_remote_packet_size ();
2830
2831 *p++ = 'T';
2832 write_ptid (p, endp, ptid);
2833
2834 putpkt (rs->buf);
2835 getpkt (&rs->buf, 0);
2836 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2837 }
2838
2839 /* Return a pointer to a thread name if we know it and NULL otherwise.
2840 The thread_info object owns the memory for the name. */
2841
2842 const char *
2843 remote_target::thread_name (struct thread_info *info)
2844 {
2845 if (info->priv != NULL)
2846 {
2847 const std::string &name = get_remote_thread_info (info)->name;
2848 return !name.empty () ? name.c_str () : NULL;
2849 }
2850
2851 return NULL;
2852 }
2853
2854 /* About these extended threadlist and threadinfo packets. They are
2855 variable length packets but, the fields within them are often fixed
2856 length. They are redundent enough to send over UDP as is the
2857 remote protocol in general. There is a matching unit test module
2858 in libstub. */
2859
2860 /* WARNING: This threadref data structure comes from the remote O.S.,
2861 libstub protocol encoding, and remote.c. It is not particularly
2862 changable. */
2863
2864 /* Right now, the internal structure is int. We want it to be bigger.
2865 Plan to fix this. */
2866
2867 typedef int gdb_threadref; /* Internal GDB thread reference. */
2868
2869 /* gdb_ext_thread_info is an internal GDB data structure which is
2870 equivalent to the reply of the remote threadinfo packet. */
2871
2872 struct gdb_ext_thread_info
2873 {
2874 threadref threadid; /* External form of thread reference. */
2875 int active; /* Has state interesting to GDB?
2876 regs, stack. */
2877 char display[256]; /* Brief state display, name,
2878 blocked/suspended. */
2879 char shortname[32]; /* To be used to name threads. */
2880 char more_display[256]; /* Long info, statistics, queue depth,
2881 whatever. */
2882 };
2883
2884 /* The volume of remote transfers can be limited by submitting
2885 a mask containing bits specifying the desired information.
2886 Use a union of these values as the 'selection' parameter to
2887 get_thread_info. FIXME: Make these TAG names more thread specific. */
2888
2889 #define TAG_THREADID 1
2890 #define TAG_EXISTS 2
2891 #define TAG_DISPLAY 4
2892 #define TAG_THREADNAME 8
2893 #define TAG_MOREDISPLAY 16
2894
2895 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2896
2897 static char *unpack_nibble (char *buf, int *val);
2898
2899 static char *unpack_byte (char *buf, int *value);
2900
2901 static char *pack_int (char *buf, int value);
2902
2903 static char *unpack_int (char *buf, int *value);
2904
2905 static char *unpack_string (char *src, char *dest, int length);
2906
2907 static char *pack_threadid (char *pkt, threadref *id);
2908
2909 static char *unpack_threadid (char *inbuf, threadref *id);
2910
2911 void int_to_threadref (threadref *id, int value);
2912
2913 static int threadref_to_int (threadref *ref);
2914
2915 static void copy_threadref (threadref *dest, threadref *src);
2916
2917 static int threadmatch (threadref *dest, threadref *src);
2918
2919 static char *pack_threadinfo_request (char *pkt, int mode,
2920 threadref *id);
2921
2922 static char *pack_threadlist_request (char *pkt, int startflag,
2923 int threadcount,
2924 threadref *nextthread);
2925
2926 static int remote_newthread_step (threadref *ref, void *context);
2927
2928
2929 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2930 buffer we're allowed to write to. Returns
2931 BUF+CHARACTERS_WRITTEN. */
2932
2933 char *
2934 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2935 {
2936 int pid, tid;
2937 struct remote_state *rs = get_remote_state ();
2938
2939 if (remote_multi_process_p (rs))
2940 {
2941 pid = ptid.pid ();
2942 if (pid < 0)
2943 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2944 else
2945 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2946 }
2947 tid = ptid.lwp ();
2948 if (tid < 0)
2949 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2950 else
2951 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2952
2953 return buf;
2954 }
2955
2956 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2957 last parsed char. Returns null_ptid if no thread id is found, and
2958 throws an error if the thread id has an invalid format. */
2959
2960 static ptid_t
2961 read_ptid (const char *buf, const char **obuf)
2962 {
2963 const char *p = buf;
2964 const char *pp;
2965 ULONGEST pid = 0, tid = 0;
2966
2967 if (*p == 'p')
2968 {
2969 /* Multi-process ptid. */
2970 pp = unpack_varlen_hex (p + 1, &pid);
2971 if (*pp != '.')
2972 error (_("invalid remote ptid: %s"), p);
2973
2974 p = pp;
2975 pp = unpack_varlen_hex (p + 1, &tid);
2976 if (obuf)
2977 *obuf = pp;
2978 return ptid_t (pid, tid, 0);
2979 }
2980
2981 /* No multi-process. Just a tid. */
2982 pp = unpack_varlen_hex (p, &tid);
2983
2984 /* Return null_ptid when no thread id is found. */
2985 if (p == pp)
2986 {
2987 if (obuf)
2988 *obuf = pp;
2989 return null_ptid;
2990 }
2991
2992 /* Since the stub is not sending a process id, then default to
2993 what's in inferior_ptid, unless it's null at this point. If so,
2994 then since there's no way to know the pid of the reported
2995 threads, use the magic number. */
2996 if (inferior_ptid == null_ptid)
2997 pid = magic_null_ptid.pid ();
2998 else
2999 pid = inferior_ptid.pid ();
3000
3001 if (obuf)
3002 *obuf = pp;
3003 return ptid_t (pid, tid, 0);
3004 }
3005
3006 static int
3007 stubhex (int ch)
3008 {
3009 if (ch >= 'a' && ch <= 'f')
3010 return ch - 'a' + 10;
3011 if (ch >= '0' && ch <= '9')
3012 return ch - '0';
3013 if (ch >= 'A' && ch <= 'F')
3014 return ch - 'A' + 10;
3015 return -1;
3016 }
3017
3018 static int
3019 stub_unpack_int (char *buff, int fieldlength)
3020 {
3021 int nibble;
3022 int retval = 0;
3023
3024 while (fieldlength)
3025 {
3026 nibble = stubhex (*buff++);
3027 retval |= nibble;
3028 fieldlength--;
3029 if (fieldlength)
3030 retval = retval << 4;
3031 }
3032 return retval;
3033 }
3034
3035 static char *
3036 unpack_nibble (char *buf, int *val)
3037 {
3038 *val = fromhex (*buf++);
3039 return buf;
3040 }
3041
3042 static char *
3043 unpack_byte (char *buf, int *value)
3044 {
3045 *value = stub_unpack_int (buf, 2);
3046 return buf + 2;
3047 }
3048
3049 static char *
3050 pack_int (char *buf, int value)
3051 {
3052 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3053 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3054 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3055 buf = pack_hex_byte (buf, (value & 0xff));
3056 return buf;
3057 }
3058
3059 static char *
3060 unpack_int (char *buf, int *value)
3061 {
3062 *value = stub_unpack_int (buf, 8);
3063 return buf + 8;
3064 }
3065
3066 #if 0 /* Currently unused, uncomment when needed. */
3067 static char *pack_string (char *pkt, char *string);
3068
3069 static char *
3070 pack_string (char *pkt, char *string)
3071 {
3072 char ch;
3073 int len;
3074
3075 len = strlen (string);
3076 if (len > 200)
3077 len = 200; /* Bigger than most GDB packets, junk??? */
3078 pkt = pack_hex_byte (pkt, len);
3079 while (len-- > 0)
3080 {
3081 ch = *string++;
3082 if ((ch == '\0') || (ch == '#'))
3083 ch = '*'; /* Protect encapsulation. */
3084 *pkt++ = ch;
3085 }
3086 return pkt;
3087 }
3088 #endif /* 0 (unused) */
3089
3090 static char *
3091 unpack_string (char *src, char *dest, int length)
3092 {
3093 while (length--)
3094 *dest++ = *src++;
3095 *dest = '\0';
3096 return src;
3097 }
3098
3099 static char *
3100 pack_threadid (char *pkt, threadref *id)
3101 {
3102 char *limit;
3103 unsigned char *altid;
3104
3105 altid = (unsigned char *) id;
3106 limit = pkt + BUF_THREAD_ID_SIZE;
3107 while (pkt < limit)
3108 pkt = pack_hex_byte (pkt, *altid++);
3109 return pkt;
3110 }
3111
3112
3113 static char *
3114 unpack_threadid (char *inbuf, threadref *id)
3115 {
3116 char *altref;
3117 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3118 int x, y;
3119
3120 altref = (char *) id;
3121
3122 while (inbuf < limit)
3123 {
3124 x = stubhex (*inbuf++);
3125 y = stubhex (*inbuf++);
3126 *altref++ = (x << 4) | y;
3127 }
3128 return inbuf;
3129 }
3130
3131 /* Externally, threadrefs are 64 bits but internally, they are still
3132 ints. This is due to a mismatch of specifications. We would like
3133 to use 64bit thread references internally. This is an adapter
3134 function. */
3135
3136 void
3137 int_to_threadref (threadref *id, int value)
3138 {
3139 unsigned char *scan;
3140
3141 scan = (unsigned char *) id;
3142 {
3143 int i = 4;
3144 while (i--)
3145 *scan++ = 0;
3146 }
3147 *scan++ = (value >> 24) & 0xff;
3148 *scan++ = (value >> 16) & 0xff;
3149 *scan++ = (value >> 8) & 0xff;
3150 *scan++ = (value & 0xff);
3151 }
3152
3153 static int
3154 threadref_to_int (threadref *ref)
3155 {
3156 int i, value = 0;
3157 unsigned char *scan;
3158
3159 scan = *ref;
3160 scan += 4;
3161 i = 4;
3162 while (i-- > 0)
3163 value = (value << 8) | ((*scan++) & 0xff);
3164 return value;
3165 }
3166
3167 static void
3168 copy_threadref (threadref *dest, threadref *src)
3169 {
3170 int i;
3171 unsigned char *csrc, *cdest;
3172
3173 csrc = (unsigned char *) src;
3174 cdest = (unsigned char *) dest;
3175 i = 8;
3176 while (i--)
3177 *cdest++ = *csrc++;
3178 }
3179
3180 static int
3181 threadmatch (threadref *dest, threadref *src)
3182 {
3183 /* Things are broken right now, so just assume we got a match. */
3184 #if 0
3185 unsigned char *srcp, *destp;
3186 int i, result;
3187 srcp = (char *) src;
3188 destp = (char *) dest;
3189
3190 result = 1;
3191 while (i-- > 0)
3192 result &= (*srcp++ == *destp++) ? 1 : 0;
3193 return result;
3194 #endif
3195 return 1;
3196 }
3197
3198 /*
3199 threadid:1, # always request threadid
3200 context_exists:2,
3201 display:4,
3202 unique_name:8,
3203 more_display:16
3204 */
3205
3206 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3207
3208 static char *
3209 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3210 {
3211 *pkt++ = 'q'; /* Info Query */
3212 *pkt++ = 'P'; /* process or thread info */
3213 pkt = pack_int (pkt, mode); /* mode */
3214 pkt = pack_threadid (pkt, id); /* threadid */
3215 *pkt = '\0'; /* terminate */
3216 return pkt;
3217 }
3218
3219 /* These values tag the fields in a thread info response packet. */
3220 /* Tagging the fields allows us to request specific fields and to
3221 add more fields as time goes by. */
3222
3223 #define TAG_THREADID 1 /* Echo the thread identifier. */
3224 #define TAG_EXISTS 2 /* Is this process defined enough to
3225 fetch registers and its stack? */
3226 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3227 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3228 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3229 the process. */
3230
3231 int
3232 remote_target::remote_unpack_thread_info_response (char *pkt,
3233 threadref *expectedref,
3234 gdb_ext_thread_info *info)
3235 {
3236 struct remote_state *rs = get_remote_state ();
3237 int mask, length;
3238 int tag;
3239 threadref ref;
3240 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3241 int retval = 1;
3242
3243 /* info->threadid = 0; FIXME: implement zero_threadref. */
3244 info->active = 0;
3245 info->display[0] = '\0';
3246 info->shortname[0] = '\0';
3247 info->more_display[0] = '\0';
3248
3249 /* Assume the characters indicating the packet type have been
3250 stripped. */
3251 pkt = unpack_int (pkt, &mask); /* arg mask */
3252 pkt = unpack_threadid (pkt, &ref);
3253
3254 if (mask == 0)
3255 warning (_("Incomplete response to threadinfo request."));
3256 if (!threadmatch (&ref, expectedref))
3257 { /* This is an answer to a different request. */
3258 warning (_("ERROR RMT Thread info mismatch."));
3259 return 0;
3260 }
3261 copy_threadref (&info->threadid, &ref);
3262
3263 /* Loop on tagged fields , try to bail if somthing goes wrong. */
3264
3265 /* Packets are terminated with nulls. */
3266 while ((pkt < limit) && mask && *pkt)
3267 {
3268 pkt = unpack_int (pkt, &tag); /* tag */
3269 pkt = unpack_byte (pkt, &length); /* length */
3270 if (!(tag & mask)) /* Tags out of synch with mask. */
3271 {
3272 warning (_("ERROR RMT: threadinfo tag mismatch."));
3273 retval = 0;
3274 break;
3275 }
3276 if (tag == TAG_THREADID)
3277 {
3278 if (length != 16)
3279 {
3280 warning (_("ERROR RMT: length of threadid is not 16."));
3281 retval = 0;
3282 break;
3283 }
3284 pkt = unpack_threadid (pkt, &ref);
3285 mask = mask & ~TAG_THREADID;
3286 continue;
3287 }
3288 if (tag == TAG_EXISTS)
3289 {
3290 info->active = stub_unpack_int (pkt, length);
3291 pkt += length;
3292 mask = mask & ~(TAG_EXISTS);
3293 if (length > 8)
3294 {
3295 warning (_("ERROR RMT: 'exists' length too long."));
3296 retval = 0;
3297 break;
3298 }
3299 continue;
3300 }
3301 if (tag == TAG_THREADNAME)
3302 {
3303 pkt = unpack_string (pkt, &info->shortname[0], length);
3304 mask = mask & ~TAG_THREADNAME;
3305 continue;
3306 }
3307 if (tag == TAG_DISPLAY)
3308 {
3309 pkt = unpack_string (pkt, &info->display[0], length);
3310 mask = mask & ~TAG_DISPLAY;
3311 continue;
3312 }
3313 if (tag == TAG_MOREDISPLAY)
3314 {
3315 pkt = unpack_string (pkt, &info->more_display[0], length);
3316 mask = mask & ~TAG_MOREDISPLAY;
3317 continue;
3318 }
3319 warning (_("ERROR RMT: unknown thread info tag."));
3320 break; /* Not a tag we know about. */
3321 }
3322 return retval;
3323 }
3324
3325 int
3326 remote_target::remote_get_threadinfo (threadref *threadid,
3327 int fieldset,
3328 gdb_ext_thread_info *info)
3329 {
3330 struct remote_state *rs = get_remote_state ();
3331 int result;
3332
3333 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3334 putpkt (rs->buf);
3335 getpkt (&rs->buf, 0);
3336
3337 if (rs->buf[0] == '\0')
3338 return 0;
3339
3340 result = remote_unpack_thread_info_response (&rs->buf[2],
3341 threadid, info);
3342 return result;
3343 }
3344
3345 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3346
3347 static char *
3348 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3349 threadref *nextthread)
3350 {
3351 *pkt++ = 'q'; /* info query packet */
3352 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3353 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3354 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3355 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3356 *pkt = '\0';
3357 return pkt;
3358 }
3359
3360 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3361
3362 int
3363 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3364 threadref *original_echo,
3365 threadref *resultlist,
3366 int *doneflag)
3367 {
3368 struct remote_state *rs = get_remote_state ();
3369 char *limit;
3370 int count, resultcount, done;
3371
3372 resultcount = 0;
3373 /* Assume the 'q' and 'M chars have been stripped. */
3374 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3375 /* done parse past here */
3376 pkt = unpack_byte (pkt, &count); /* count field */
3377 pkt = unpack_nibble (pkt, &done);
3378 /* The first threadid is the argument threadid. */
3379 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3380 while ((count-- > 0) && (pkt < limit))
3381 {
3382 pkt = unpack_threadid (pkt, resultlist++);
3383 if (resultcount++ >= result_limit)
3384 break;
3385 }
3386 if (doneflag)
3387 *doneflag = done;
3388 return resultcount;
3389 }
3390
3391 /* Fetch the next batch of threads from the remote. Returns -1 if the
3392 qL packet is not supported, 0 on error and 1 on success. */
3393
3394 int
3395 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3396 int result_limit, int *done, int *result_count,
3397 threadref *threadlist)
3398 {
3399 struct remote_state *rs = get_remote_state ();
3400 int result = 1;
3401
3402 /* Trancate result limit to be smaller than the packet size. */
3403 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3404 >= get_remote_packet_size ())
3405 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3406
3407 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3408 nextthread);
3409 putpkt (rs->buf);
3410 getpkt (&rs->buf, 0);
3411 if (rs->buf[0] == '\0')
3412 {
3413 /* Packet not supported. */
3414 return -1;
3415 }
3416
3417 *result_count =
3418 parse_threadlist_response (&rs->buf[2], result_limit,
3419 &rs->echo_nextthread, threadlist, done);
3420
3421 if (!threadmatch (&rs->echo_nextthread, nextthread))
3422 {
3423 /* FIXME: This is a good reason to drop the packet. */
3424 /* Possably, there is a duplicate response. */
3425 /* Possabilities :
3426 retransmit immediatly - race conditions
3427 retransmit after timeout - yes
3428 exit
3429 wait for packet, then exit
3430 */
3431 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3432 return 0; /* I choose simply exiting. */
3433 }
3434 if (*result_count <= 0)
3435 {
3436 if (*done != 1)
3437 {
3438 warning (_("RMT ERROR : failed to get remote thread list."));
3439 result = 0;
3440 }
3441 return result; /* break; */
3442 }
3443 if (*result_count > result_limit)
3444 {
3445 *result_count = 0;
3446 warning (_("RMT ERROR: threadlist response longer than requested."));
3447 return 0;
3448 }
3449 return result;
3450 }
3451
3452 /* Fetch the list of remote threads, with the qL packet, and call
3453 STEPFUNCTION for each thread found. Stops iterating and returns 1
3454 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3455 STEPFUNCTION returns false. If the packet is not supported,
3456 returns -1. */
3457
3458 int
3459 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3460 void *context, int looplimit)
3461 {
3462 struct remote_state *rs = get_remote_state ();
3463 int done, i, result_count;
3464 int startflag = 1;
3465 int result = 1;
3466 int loopcount = 0;
3467
3468 done = 0;
3469 while (!done)
3470 {
3471 if (loopcount++ > looplimit)
3472 {
3473 result = 0;
3474 warning (_("Remote fetch threadlist -infinite loop-."));
3475 break;
3476 }
3477 result = remote_get_threadlist (startflag, &rs->nextthread,
3478 MAXTHREADLISTRESULTS,
3479 &done, &result_count,
3480 rs->resultthreadlist);
3481 if (result <= 0)
3482 break;
3483 /* Clear for later iterations. */
3484 startflag = 0;
3485 /* Setup to resume next batch of thread references, set nextthread. */
3486 if (result_count >= 1)
3487 copy_threadref (&rs->nextthread,
3488 &rs->resultthreadlist[result_count - 1]);
3489 i = 0;
3490 while (result_count--)
3491 {
3492 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3493 {
3494 result = 0;
3495 break;
3496 }
3497 }
3498 }
3499 return result;
3500 }
3501
3502 /* A thread found on the remote target. */
3503
3504 struct thread_item
3505 {
3506 explicit thread_item (ptid_t ptid_)
3507 : ptid (ptid_)
3508 {}
3509
3510 thread_item (thread_item &&other) = default;
3511 thread_item &operator= (thread_item &&other) = default;
3512
3513 DISABLE_COPY_AND_ASSIGN (thread_item);
3514
3515 /* The thread's PTID. */
3516 ptid_t ptid;
3517
3518 /* The thread's extra info. */
3519 std::string extra;
3520
3521 /* The thread's name. */
3522 std::string name;
3523
3524 /* The core the thread was running on. -1 if not known. */
3525 int core = -1;
3526
3527 /* The thread handle associated with the thread. */
3528 gdb::byte_vector thread_handle;
3529 };
3530
3531 /* Context passed around to the various methods listing remote
3532 threads. As new threads are found, they're added to the ITEMS
3533 vector. */
3534
3535 struct threads_listing_context
3536 {
3537 /* Return true if this object contains an entry for a thread with ptid
3538 PTID. */
3539
3540 bool contains_thread (ptid_t ptid) const
3541 {
3542 auto match_ptid = [&] (const thread_item &item)
3543 {
3544 return item.ptid == ptid;
3545 };
3546
3547 auto it = std::find_if (this->items.begin (),
3548 this->items.end (),
3549 match_ptid);
3550
3551 return it != this->items.end ();
3552 }
3553
3554 /* Remove the thread with ptid PTID. */
3555
3556 void remove_thread (ptid_t ptid)
3557 {
3558 auto match_ptid = [&] (const thread_item &item)
3559 {
3560 return item.ptid == ptid;
3561 };
3562
3563 auto it = std::remove_if (this->items.begin (),
3564 this->items.end (),
3565 match_ptid);
3566
3567 if (it != this->items.end ())
3568 this->items.erase (it);
3569 }
3570
3571 /* The threads found on the remote target. */
3572 std::vector<thread_item> items;
3573 };
3574
3575 static int
3576 remote_newthread_step (threadref *ref, void *data)
3577 {
3578 struct threads_listing_context *context
3579 = (struct threads_listing_context *) data;
3580 int pid = inferior_ptid.pid ();
3581 int lwp = threadref_to_int (ref);
3582 ptid_t ptid (pid, lwp);
3583
3584 context->items.emplace_back (ptid);
3585
3586 return 1; /* continue iterator */
3587 }
3588
3589 #define CRAZY_MAX_THREADS 1000
3590
3591 ptid_t
3592 remote_target::remote_current_thread (ptid_t oldpid)
3593 {
3594 struct remote_state *rs = get_remote_state ();
3595
3596 putpkt ("qC");
3597 getpkt (&rs->buf, 0);
3598 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3599 {
3600 const char *obuf;
3601 ptid_t result;
3602
3603 result = read_ptid (&rs->buf[2], &obuf);
3604 if (*obuf != '\0' && remote_debug)
3605 fprintf_unfiltered (gdb_stdlog,
3606 "warning: garbage in qC reply\n");
3607
3608 return result;
3609 }
3610 else
3611 return oldpid;
3612 }
3613
3614 /* List remote threads using the deprecated qL packet. */
3615
3616 int
3617 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3618 {
3619 if (remote_threadlist_iterator (remote_newthread_step, context,
3620 CRAZY_MAX_THREADS) >= 0)
3621 return 1;
3622
3623 return 0;
3624 }
3625
3626 #if defined(HAVE_LIBEXPAT)
3627
3628 static void
3629 start_thread (struct gdb_xml_parser *parser,
3630 const struct gdb_xml_element *element,
3631 void *user_data,
3632 std::vector<gdb_xml_value> &attributes)
3633 {
3634 struct threads_listing_context *data
3635 = (struct threads_listing_context *) user_data;
3636 struct gdb_xml_value *attr;
3637
3638 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3639 ptid_t ptid = read_ptid (id, NULL);
3640
3641 data->items.emplace_back (ptid);
3642 thread_item &item = data->items.back ();
3643
3644 attr = xml_find_attribute (attributes, "core");
3645 if (attr != NULL)
3646 item.core = *(ULONGEST *) attr->value.get ();
3647
3648 attr = xml_find_attribute (attributes, "name");
3649 if (attr != NULL)
3650 item.name = (const char *) attr->value.get ();
3651
3652 attr = xml_find_attribute (attributes, "handle");
3653 if (attr != NULL)
3654 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3655 }
3656
3657 static void
3658 end_thread (struct gdb_xml_parser *parser,
3659 const struct gdb_xml_element *element,
3660 void *user_data, const char *body_text)
3661 {
3662 struct threads_listing_context *data
3663 = (struct threads_listing_context *) user_data;
3664
3665 if (body_text != NULL && *body_text != '\0')
3666 data->items.back ().extra = body_text;
3667 }
3668
3669 const struct gdb_xml_attribute thread_attributes[] = {
3670 { "id", GDB_XML_AF_NONE, NULL, NULL },
3671 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3672 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3673 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3674 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3675 };
3676
3677 const struct gdb_xml_element thread_children[] = {
3678 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3679 };
3680
3681 const struct gdb_xml_element threads_children[] = {
3682 { "thread", thread_attributes, thread_children,
3683 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3684 start_thread, end_thread },
3685 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3686 };
3687
3688 const struct gdb_xml_element threads_elements[] = {
3689 { "threads", NULL, threads_children,
3690 GDB_XML_EF_NONE, NULL, NULL },
3691 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3692 };
3693
3694 #endif
3695
3696 /* List remote threads using qXfer:threads:read. */
3697
3698 int
3699 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3700 {
3701 #if defined(HAVE_LIBEXPAT)
3702 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3703 {
3704 gdb::optional<gdb::char_vector> xml
3705 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3706
3707 if (xml && (*xml)[0] != '\0')
3708 {
3709 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3710 threads_elements, xml->data (), context);
3711 }
3712
3713 return 1;
3714 }
3715 #endif
3716
3717 return 0;
3718 }
3719
3720 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3721
3722 int
3723 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3724 {
3725 struct remote_state *rs = get_remote_state ();
3726
3727 if (rs->use_threadinfo_query)
3728 {
3729 const char *bufp;
3730
3731 putpkt ("qfThreadInfo");
3732 getpkt (&rs->buf, 0);
3733 bufp = rs->buf.data ();
3734 if (bufp[0] != '\0') /* q packet recognized */
3735 {
3736 while (*bufp++ == 'm') /* reply contains one or more TID */
3737 {
3738 do
3739 {
3740 ptid_t ptid = read_ptid (bufp, &bufp);
3741 context->items.emplace_back (ptid);
3742 }
3743 while (*bufp++ == ','); /* comma-separated list */
3744 putpkt ("qsThreadInfo");
3745 getpkt (&rs->buf, 0);
3746 bufp = rs->buf.data ();
3747 }
3748 return 1;
3749 }
3750 else
3751 {
3752 /* Packet not recognized. */
3753 rs->use_threadinfo_query = 0;
3754 }
3755 }
3756
3757 return 0;
3758 }
3759
3760 /* Implement the to_update_thread_list function for the remote
3761 targets. */
3762
3763 void
3764 remote_target::update_thread_list ()
3765 {
3766 struct threads_listing_context context;
3767 int got_list = 0;
3768
3769 /* We have a few different mechanisms to fetch the thread list. Try
3770 them all, starting with the most preferred one first, falling
3771 back to older methods. */
3772 if (remote_get_threads_with_qxfer (&context)
3773 || remote_get_threads_with_qthreadinfo (&context)
3774 || remote_get_threads_with_ql (&context))
3775 {
3776 got_list = 1;
3777
3778 if (context.items.empty ()
3779 && remote_thread_always_alive (inferior_ptid))
3780 {
3781 /* Some targets don't really support threads, but still
3782 reply an (empty) thread list in response to the thread
3783 listing packets, instead of replying "packet not
3784 supported". Exit early so we don't delete the main
3785 thread. */
3786 return;
3787 }
3788
3789 /* CONTEXT now holds the current thread list on the remote
3790 target end. Delete GDB-side threads no longer found on the
3791 target. */
3792 for (thread_info *tp : all_threads_safe ())
3793 {
3794 if (!context.contains_thread (tp->ptid))
3795 {
3796 /* Not found. */
3797 delete_thread (tp);
3798 }
3799 }
3800
3801 /* Remove any unreported fork child threads from CONTEXT so
3802 that we don't interfere with follow fork, which is where
3803 creation of such threads is handled. */
3804 remove_new_fork_children (&context);
3805
3806 /* And now add threads we don't know about yet to our list. */
3807 for (thread_item &item : context.items)
3808 {
3809 if (item.ptid != null_ptid)
3810 {
3811 /* In non-stop mode, we assume new found threads are
3812 executing until proven otherwise with a stop reply.
3813 In all-stop, we can only get here if all threads are
3814 stopped. */
3815 int executing = target_is_non_stop_p () ? 1 : 0;
3816
3817 remote_notice_new_inferior (item.ptid, executing);
3818
3819 thread_info *tp = find_thread_ptid (item.ptid);
3820 remote_thread_info *info = get_remote_thread_info (tp);
3821 info->core = item.core;
3822 info->extra = std::move (item.extra);
3823 info->name = std::move (item.name);
3824 info->thread_handle = std::move (item.thread_handle);
3825 }
3826 }
3827 }
3828
3829 if (!got_list)
3830 {
3831 /* If no thread listing method is supported, then query whether
3832 each known thread is alive, one by one, with the T packet.
3833 If the target doesn't support threads at all, then this is a
3834 no-op. See remote_thread_alive. */
3835 prune_threads ();
3836 }
3837 }
3838
3839 /*
3840 * Collect a descriptive string about the given thread.
3841 * The target may say anything it wants to about the thread
3842 * (typically info about its blocked / runnable state, name, etc.).
3843 * This string will appear in the info threads display.
3844 *
3845 * Optional: targets are not required to implement this function.
3846 */
3847
3848 const char *
3849 remote_target::extra_thread_info (thread_info *tp)
3850 {
3851 struct remote_state *rs = get_remote_state ();
3852 int set;
3853 threadref id;
3854 struct gdb_ext_thread_info threadinfo;
3855
3856 if (rs->remote_desc == 0) /* paranoia */
3857 internal_error (__FILE__, __LINE__,
3858 _("remote_threads_extra_info"));
3859
3860 if (tp->ptid == magic_null_ptid
3861 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3862 /* This is the main thread which was added by GDB. The remote
3863 server doesn't know about it. */
3864 return NULL;
3865
3866 std::string &extra = get_remote_thread_info (tp)->extra;
3867
3868 /* If already have cached info, use it. */
3869 if (!extra.empty ())
3870 return extra.c_str ();
3871
3872 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3873 {
3874 /* If we're using qXfer:threads:read, then the extra info is
3875 included in the XML. So if we didn't have anything cached,
3876 it's because there's really no extra info. */
3877 return NULL;
3878 }
3879
3880 if (rs->use_threadextra_query)
3881 {
3882 char *b = rs->buf.data ();
3883 char *endb = b + get_remote_packet_size ();
3884
3885 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3886 b += strlen (b);
3887 write_ptid (b, endb, tp->ptid);
3888
3889 putpkt (rs->buf);
3890 getpkt (&rs->buf, 0);
3891 if (rs->buf[0] != 0)
3892 {
3893 extra.resize (strlen (rs->buf.data ()) / 2);
3894 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3895 return extra.c_str ();
3896 }
3897 }
3898
3899 /* If the above query fails, fall back to the old method. */
3900 rs->use_threadextra_query = 0;
3901 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3902 | TAG_MOREDISPLAY | TAG_DISPLAY;
3903 int_to_threadref (&id, tp->ptid.lwp ());
3904 if (remote_get_threadinfo (&id, set, &threadinfo))
3905 if (threadinfo.active)
3906 {
3907 if (*threadinfo.shortname)
3908 string_appendf (extra, " Name: %s", threadinfo.shortname);
3909 if (*threadinfo.display)
3910 {
3911 if (!extra.empty ())
3912 extra += ',';
3913 string_appendf (extra, " State: %s", threadinfo.display);
3914 }
3915 if (*threadinfo.more_display)
3916 {
3917 if (!extra.empty ())
3918 extra += ',';
3919 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3920 }
3921 return extra.c_str ();
3922 }
3923 return NULL;
3924 }
3925 \f
3926
3927 bool
3928 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3929 struct static_tracepoint_marker *marker)
3930 {
3931 struct remote_state *rs = get_remote_state ();
3932 char *p = rs->buf.data ();
3933
3934 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3935 p += strlen (p);
3936 p += hexnumstr (p, addr);
3937 putpkt (rs->buf);
3938 getpkt (&rs->buf, 0);
3939 p = rs->buf.data ();
3940
3941 if (*p == 'E')
3942 error (_("Remote failure reply: %s"), p);
3943
3944 if (*p++ == 'm')
3945 {
3946 parse_static_tracepoint_marker_definition (p, NULL, marker);
3947 return true;
3948 }
3949
3950 return false;
3951 }
3952
3953 std::vector<static_tracepoint_marker>
3954 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3955 {
3956 struct remote_state *rs = get_remote_state ();
3957 std::vector<static_tracepoint_marker> markers;
3958 const char *p;
3959 static_tracepoint_marker marker;
3960
3961 /* Ask for a first packet of static tracepoint marker
3962 definition. */
3963 putpkt ("qTfSTM");
3964 getpkt (&rs->buf, 0);
3965 p = rs->buf.data ();
3966 if (*p == 'E')
3967 error (_("Remote failure reply: %s"), p);
3968
3969 while (*p++ == 'm')
3970 {
3971 do
3972 {
3973 parse_static_tracepoint_marker_definition (p, &p, &marker);
3974
3975 if (strid == NULL || marker.str_id == strid)
3976 markers.push_back (std::move (marker));
3977 }
3978 while (*p++ == ','); /* comma-separated list */
3979 /* Ask for another packet of static tracepoint definition. */
3980 putpkt ("qTsSTM");
3981 getpkt (&rs->buf, 0);
3982 p = rs->buf.data ();
3983 }
3984
3985 return markers;
3986 }
3987
3988 \f
3989 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3990
3991 ptid_t
3992 remote_target::get_ada_task_ptid (long lwp, long thread)
3993 {
3994 return ptid_t (inferior_ptid.pid (), lwp, 0);
3995 }
3996 \f
3997
3998 /* Restart the remote side; this is an extended protocol operation. */
3999
4000 void
4001 remote_target::extended_remote_restart ()
4002 {
4003 struct remote_state *rs = get_remote_state ();
4004
4005 /* Send the restart command; for reasons I don't understand the
4006 remote side really expects a number after the "R". */
4007 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4008 putpkt (rs->buf);
4009
4010 remote_fileio_reset ();
4011 }
4012 \f
4013 /* Clean up connection to a remote debugger. */
4014
4015 void
4016 remote_target::close ()
4017 {
4018 /* Make sure we leave stdin registered in the event loop. */
4019 terminal_ours ();
4020
4021 /* We don't have a connection to the remote stub anymore. Get rid
4022 of all the inferiors and their threads we were controlling.
4023 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4024 will be unable to find the thread corresponding to (pid, 0, 0). */
4025 inferior_ptid = null_ptid;
4026 discard_all_inferiors ();
4027
4028 trace_reset_local_state ();
4029
4030 delete this;
4031 }
4032
4033 remote_target::~remote_target ()
4034 {
4035 struct remote_state *rs = get_remote_state ();
4036
4037 /* Check for NULL because we may get here with a partially
4038 constructed target/connection. */
4039 if (rs->remote_desc == nullptr)
4040 return;
4041
4042 serial_close (rs->remote_desc);
4043
4044 /* We are destroying the remote target, so we should discard
4045 everything of this target. */
4046 discard_pending_stop_replies_in_queue ();
4047
4048 if (rs->remote_async_inferior_event_token)
4049 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4050
4051 remote_notif_state_xfree (rs->notif_state);
4052 }
4053
4054 /* Query the remote side for the text, data and bss offsets. */
4055
4056 void
4057 remote_target::get_offsets ()
4058 {
4059 struct remote_state *rs = get_remote_state ();
4060 char *buf;
4061 char *ptr;
4062 int lose, num_segments = 0, do_sections, do_segments;
4063 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4064 struct section_offsets *offs;
4065 struct symfile_segment_data *data;
4066
4067 if (symfile_objfile == NULL)
4068 return;
4069
4070 putpkt ("qOffsets");
4071 getpkt (&rs->buf, 0);
4072 buf = rs->buf.data ();
4073
4074 if (buf[0] == '\000')
4075 return; /* Return silently. Stub doesn't support
4076 this command. */
4077 if (buf[0] == 'E')
4078 {
4079 warning (_("Remote failure reply: %s"), buf);
4080 return;
4081 }
4082
4083 /* Pick up each field in turn. This used to be done with scanf, but
4084 scanf will make trouble if CORE_ADDR size doesn't match
4085 conversion directives correctly. The following code will work
4086 with any size of CORE_ADDR. */
4087 text_addr = data_addr = bss_addr = 0;
4088 ptr = buf;
4089 lose = 0;
4090
4091 if (startswith (ptr, "Text="))
4092 {
4093 ptr += 5;
4094 /* Don't use strtol, could lose on big values. */
4095 while (*ptr && *ptr != ';')
4096 text_addr = (text_addr << 4) + fromhex (*ptr++);
4097
4098 if (startswith (ptr, ";Data="))
4099 {
4100 ptr += 6;
4101 while (*ptr && *ptr != ';')
4102 data_addr = (data_addr << 4) + fromhex (*ptr++);
4103 }
4104 else
4105 lose = 1;
4106
4107 if (!lose && startswith (ptr, ";Bss="))
4108 {
4109 ptr += 5;
4110 while (*ptr && *ptr != ';')
4111 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4112
4113 if (bss_addr != data_addr)
4114 warning (_("Target reported unsupported offsets: %s"), buf);
4115 }
4116 else
4117 lose = 1;
4118 }
4119 else if (startswith (ptr, "TextSeg="))
4120 {
4121 ptr += 8;
4122 /* Don't use strtol, could lose on big values. */
4123 while (*ptr && *ptr != ';')
4124 text_addr = (text_addr << 4) + fromhex (*ptr++);
4125 num_segments = 1;
4126
4127 if (startswith (ptr, ";DataSeg="))
4128 {
4129 ptr += 9;
4130 while (*ptr && *ptr != ';')
4131 data_addr = (data_addr << 4) + fromhex (*ptr++);
4132 num_segments++;
4133 }
4134 }
4135 else
4136 lose = 1;
4137
4138 if (lose)
4139 error (_("Malformed response to offset query, %s"), buf);
4140 else if (*ptr != '\0')
4141 warning (_("Target reported unsupported offsets: %s"), buf);
4142
4143 offs = ((struct section_offsets *)
4144 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
4145 memcpy (offs, symfile_objfile->section_offsets,
4146 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
4147
4148 data = get_symfile_segment_data (symfile_objfile->obfd);
4149 do_segments = (data != NULL);
4150 do_sections = num_segments == 0;
4151
4152 if (num_segments > 0)
4153 {
4154 segments[0] = text_addr;
4155 segments[1] = data_addr;
4156 }
4157 /* If we have two segments, we can still try to relocate everything
4158 by assuming that the .text and .data offsets apply to the whole
4159 text and data segments. Convert the offsets given in the packet
4160 to base addresses for symfile_map_offsets_to_segments. */
4161 else if (data && data->num_segments == 2)
4162 {
4163 segments[0] = data->segment_bases[0] + text_addr;
4164 segments[1] = data->segment_bases[1] + data_addr;
4165 num_segments = 2;
4166 }
4167 /* If the object file has only one segment, assume that it is text
4168 rather than data; main programs with no writable data are rare,
4169 but programs with no code are useless. Of course the code might
4170 have ended up in the data segment... to detect that we would need
4171 the permissions here. */
4172 else if (data && data->num_segments == 1)
4173 {
4174 segments[0] = data->segment_bases[0] + text_addr;
4175 num_segments = 1;
4176 }
4177 /* There's no way to relocate by segment. */
4178 else
4179 do_segments = 0;
4180
4181 if (do_segments)
4182 {
4183 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4184 offs, num_segments, segments);
4185
4186 if (ret == 0 && !do_sections)
4187 error (_("Can not handle qOffsets TextSeg "
4188 "response with this symbol file"));
4189
4190 if (ret > 0)
4191 do_sections = 0;
4192 }
4193
4194 if (data)
4195 free_symfile_segment_data (data);
4196
4197 if (do_sections)
4198 {
4199 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4200
4201 /* This is a temporary kludge to force data and bss to use the
4202 same offsets because that's what nlmconv does now. The real
4203 solution requires changes to the stub and remote.c that I
4204 don't have time to do right now. */
4205
4206 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4207 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4208 }
4209
4210 objfile_relocate (symfile_objfile, offs);
4211 }
4212
4213 /* Send interrupt_sequence to remote target. */
4214
4215 void
4216 remote_target::send_interrupt_sequence ()
4217 {
4218 struct remote_state *rs = get_remote_state ();
4219
4220 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4221 remote_serial_write ("\x03", 1);
4222 else if (interrupt_sequence_mode == interrupt_sequence_break)
4223 serial_send_break (rs->remote_desc);
4224 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4225 {
4226 serial_send_break (rs->remote_desc);
4227 remote_serial_write ("g", 1);
4228 }
4229 else
4230 internal_error (__FILE__, __LINE__,
4231 _("Invalid value for interrupt_sequence_mode: %s."),
4232 interrupt_sequence_mode);
4233 }
4234
4235
4236 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4237 and extract the PTID. Returns NULL_PTID if not found. */
4238
4239 static ptid_t
4240 stop_reply_extract_thread (char *stop_reply)
4241 {
4242 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4243 {
4244 const char *p;
4245
4246 /* Txx r:val ; r:val (...) */
4247 p = &stop_reply[3];
4248
4249 /* Look for "register" named "thread". */
4250 while (*p != '\0')
4251 {
4252 const char *p1;
4253
4254 p1 = strchr (p, ':');
4255 if (p1 == NULL)
4256 return null_ptid;
4257
4258 if (strncmp (p, "thread", p1 - p) == 0)
4259 return read_ptid (++p1, &p);
4260
4261 p1 = strchr (p, ';');
4262 if (p1 == NULL)
4263 return null_ptid;
4264 p1++;
4265
4266 p = p1;
4267 }
4268 }
4269
4270 return null_ptid;
4271 }
4272
4273 /* Determine the remote side's current thread. If we have a stop
4274 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4275 "thread" register we can extract the current thread from. If not,
4276 ask the remote which is the current thread with qC. The former
4277 method avoids a roundtrip. */
4278
4279 ptid_t
4280 remote_target::get_current_thread (char *wait_status)
4281 {
4282 ptid_t ptid = null_ptid;
4283
4284 /* Note we don't use remote_parse_stop_reply as that makes use of
4285 the target architecture, which we haven't yet fully determined at
4286 this point. */
4287 if (wait_status != NULL)
4288 ptid = stop_reply_extract_thread (wait_status);
4289 if (ptid == null_ptid)
4290 ptid = remote_current_thread (inferior_ptid);
4291
4292 return ptid;
4293 }
4294
4295 /* Query the remote target for which is the current thread/process,
4296 add it to our tables, and update INFERIOR_PTID. The caller is
4297 responsible for setting the state such that the remote end is ready
4298 to return the current thread.
4299
4300 This function is called after handling the '?' or 'vRun' packets,
4301 whose response is a stop reply from which we can also try
4302 extracting the thread. If the target doesn't support the explicit
4303 qC query, we infer the current thread from that stop reply, passed
4304 in in WAIT_STATUS, which may be NULL. */
4305
4306 void
4307 remote_target::add_current_inferior_and_thread (char *wait_status)
4308 {
4309 struct remote_state *rs = get_remote_state ();
4310 int fake_pid_p = 0;
4311
4312 inferior_ptid = null_ptid;
4313
4314 /* Now, if we have thread information, update inferior_ptid. */
4315 ptid_t curr_ptid = get_current_thread (wait_status);
4316
4317 if (curr_ptid != null_ptid)
4318 {
4319 if (!remote_multi_process_p (rs))
4320 fake_pid_p = 1;
4321 }
4322 else
4323 {
4324 /* Without this, some commands which require an active target
4325 (such as kill) won't work. This variable serves (at least)
4326 double duty as both the pid of the target process (if it has
4327 such), and as a flag indicating that a target is active. */
4328 curr_ptid = magic_null_ptid;
4329 fake_pid_p = 1;
4330 }
4331
4332 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4333
4334 /* Add the main thread and switch to it. Don't try reading
4335 registers yet, since we haven't fetched the target description
4336 yet. */
4337 thread_info *tp = add_thread_silent (curr_ptid);
4338 switch_to_thread_no_regs (tp);
4339 }
4340
4341 /* Print info about a thread that was found already stopped on
4342 connection. */
4343
4344 static void
4345 print_one_stopped_thread (struct thread_info *thread)
4346 {
4347 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4348
4349 switch_to_thread (thread);
4350 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4351 set_current_sal_from_frame (get_current_frame ());
4352
4353 thread->suspend.waitstatus_pending_p = 0;
4354
4355 if (ws->kind == TARGET_WAITKIND_STOPPED)
4356 {
4357 enum gdb_signal sig = ws->value.sig;
4358
4359 if (signal_print_state (sig))
4360 gdb::observers::signal_received.notify (sig);
4361 }
4362 gdb::observers::normal_stop.notify (NULL, 1);
4363 }
4364
4365 /* Process all initial stop replies the remote side sent in response
4366 to the ? packet. These indicate threads that were already stopped
4367 on initial connection. We mark these threads as stopped and print
4368 their current frame before giving the user the prompt. */
4369
4370 void
4371 remote_target::process_initial_stop_replies (int from_tty)
4372 {
4373 int pending_stop_replies = stop_reply_queue_length ();
4374 struct thread_info *selected = NULL;
4375 struct thread_info *lowest_stopped = NULL;
4376 struct thread_info *first = NULL;
4377
4378 /* Consume the initial pending events. */
4379 while (pending_stop_replies-- > 0)
4380 {
4381 ptid_t waiton_ptid = minus_one_ptid;
4382 ptid_t event_ptid;
4383 struct target_waitstatus ws;
4384 int ignore_event = 0;
4385
4386 memset (&ws, 0, sizeof (ws));
4387 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4388 if (remote_debug)
4389 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4390
4391 switch (ws.kind)
4392 {
4393 case TARGET_WAITKIND_IGNORE:
4394 case TARGET_WAITKIND_NO_RESUMED:
4395 case TARGET_WAITKIND_SIGNALLED:
4396 case TARGET_WAITKIND_EXITED:
4397 /* We shouldn't see these, but if we do, just ignore. */
4398 if (remote_debug)
4399 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4400 ignore_event = 1;
4401 break;
4402
4403 case TARGET_WAITKIND_EXECD:
4404 xfree (ws.value.execd_pathname);
4405 break;
4406 default:
4407 break;
4408 }
4409
4410 if (ignore_event)
4411 continue;
4412
4413 struct thread_info *evthread = find_thread_ptid (event_ptid);
4414
4415 if (ws.kind == TARGET_WAITKIND_STOPPED)
4416 {
4417 enum gdb_signal sig = ws.value.sig;
4418
4419 /* Stubs traditionally report SIGTRAP as initial signal,
4420 instead of signal 0. Suppress it. */
4421 if (sig == GDB_SIGNAL_TRAP)
4422 sig = GDB_SIGNAL_0;
4423 evthread->suspend.stop_signal = sig;
4424 ws.value.sig = sig;
4425 }
4426
4427 evthread->suspend.waitstatus = ws;
4428
4429 if (ws.kind != TARGET_WAITKIND_STOPPED
4430 || ws.value.sig != GDB_SIGNAL_0)
4431 evthread->suspend.waitstatus_pending_p = 1;
4432
4433 set_executing (event_ptid, 0);
4434 set_running (event_ptid, 0);
4435 get_remote_thread_info (evthread)->vcont_resumed = 0;
4436 }
4437
4438 /* "Notice" the new inferiors before anything related to
4439 registers/memory. */
4440 for (inferior *inf : all_non_exited_inferiors ())
4441 {
4442 inf->needs_setup = 1;
4443
4444 if (non_stop)
4445 {
4446 thread_info *thread = any_live_thread_of_inferior (inf);
4447 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4448 from_tty);
4449 }
4450 }
4451
4452 /* If all-stop on top of non-stop, pause all threads. Note this
4453 records the threads' stop pc, so must be done after "noticing"
4454 the inferiors. */
4455 if (!non_stop)
4456 {
4457 stop_all_threads ();
4458
4459 /* If all threads of an inferior were already stopped, we
4460 haven't setup the inferior yet. */
4461 for (inferior *inf : all_non_exited_inferiors ())
4462 {
4463 if (inf->needs_setup)
4464 {
4465 thread_info *thread = any_live_thread_of_inferior (inf);
4466 switch_to_thread_no_regs (thread);
4467 setup_inferior (0);
4468 }
4469 }
4470 }
4471
4472 /* Now go over all threads that are stopped, and print their current
4473 frame. If all-stop, then if there's a signalled thread, pick
4474 that as current. */
4475 for (thread_info *thread : all_non_exited_threads ())
4476 {
4477 if (first == NULL)
4478 first = thread;
4479
4480 if (!non_stop)
4481 thread->set_running (false);
4482 else if (thread->state != THREAD_STOPPED)
4483 continue;
4484
4485 if (selected == NULL
4486 && thread->suspend.waitstatus_pending_p)
4487 selected = thread;
4488
4489 if (lowest_stopped == NULL
4490 || thread->inf->num < lowest_stopped->inf->num
4491 || thread->per_inf_num < lowest_stopped->per_inf_num)
4492 lowest_stopped = thread;
4493
4494 if (non_stop)
4495 print_one_stopped_thread (thread);
4496 }
4497
4498 /* In all-stop, we only print the status of one thread, and leave
4499 others with their status pending. */
4500 if (!non_stop)
4501 {
4502 thread_info *thread = selected;
4503 if (thread == NULL)
4504 thread = lowest_stopped;
4505 if (thread == NULL)
4506 thread = first;
4507
4508 print_one_stopped_thread (thread);
4509 }
4510
4511 /* For "info program". */
4512 thread_info *thread = inferior_thread ();
4513 if (thread->state == THREAD_STOPPED)
4514 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4515 }
4516
4517 /* Start the remote connection and sync state. */
4518
4519 void
4520 remote_target::start_remote (int from_tty, int extended_p)
4521 {
4522 struct remote_state *rs = get_remote_state ();
4523 struct packet_config *noack_config;
4524 char *wait_status = NULL;
4525
4526 /* Signal other parts that we're going through the initial setup,
4527 and so things may not be stable yet. E.g., we don't try to
4528 install tracepoints until we've relocated symbols. Also, a
4529 Ctrl-C before we're connected and synced up can't interrupt the
4530 target. Instead, it offers to drop the (potentially wedged)
4531 connection. */
4532 rs->starting_up = 1;
4533
4534 QUIT;
4535
4536 if (interrupt_on_connect)
4537 send_interrupt_sequence ();
4538
4539 /* Ack any packet which the remote side has already sent. */
4540 remote_serial_write ("+", 1);
4541
4542 /* The first packet we send to the target is the optional "supported
4543 packets" request. If the target can answer this, it will tell us
4544 which later probes to skip. */
4545 remote_query_supported ();
4546
4547 /* If the stub wants to get a QAllow, compose one and send it. */
4548 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4549 set_permissions ();
4550
4551 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4552 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4553 as a reply to known packet. For packet "vFile:setfs:" it is an
4554 invalid reply and GDB would return error in
4555 remote_hostio_set_filesystem, making remote files access impossible.
4556 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4557 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4558 {
4559 const char v_mustreplyempty[] = "vMustReplyEmpty";
4560
4561 putpkt (v_mustreplyempty);
4562 getpkt (&rs->buf, 0);
4563 if (strcmp (rs->buf.data (), "OK") == 0)
4564 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4565 else if (strcmp (rs->buf.data (), "") != 0)
4566 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4567 rs->buf.data ());
4568 }
4569
4570 /* Next, we possibly activate noack mode.
4571
4572 If the QStartNoAckMode packet configuration is set to AUTO,
4573 enable noack mode if the stub reported a wish for it with
4574 qSupported.
4575
4576 If set to TRUE, then enable noack mode even if the stub didn't
4577 report it in qSupported. If the stub doesn't reply OK, the
4578 session ends with an error.
4579
4580 If FALSE, then don't activate noack mode, regardless of what the
4581 stub claimed should be the default with qSupported. */
4582
4583 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4584 if (packet_config_support (noack_config) != PACKET_DISABLE)
4585 {
4586 putpkt ("QStartNoAckMode");
4587 getpkt (&rs->buf, 0);
4588 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4589 rs->noack_mode = 1;
4590 }
4591
4592 if (extended_p)
4593 {
4594 /* Tell the remote that we are using the extended protocol. */
4595 putpkt ("!");
4596 getpkt (&rs->buf, 0);
4597 }
4598
4599 /* Let the target know which signals it is allowed to pass down to
4600 the program. */
4601 update_signals_program_target ();
4602
4603 /* Next, if the target can specify a description, read it. We do
4604 this before anything involving memory or registers. */
4605 target_find_description ();
4606
4607 /* Next, now that we know something about the target, update the
4608 address spaces in the program spaces. */
4609 update_address_spaces ();
4610
4611 /* On OSs where the list of libraries is global to all
4612 processes, we fetch them early. */
4613 if (gdbarch_has_global_solist (target_gdbarch ()))
4614 solib_add (NULL, from_tty, auto_solib_add);
4615
4616 if (target_is_non_stop_p ())
4617 {
4618 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4619 error (_("Non-stop mode requested, but remote "
4620 "does not support non-stop"));
4621
4622 putpkt ("QNonStop:1");
4623 getpkt (&rs->buf, 0);
4624
4625 if (strcmp (rs->buf.data (), "OK") != 0)
4626 error (_("Remote refused setting non-stop mode with: %s"),
4627 rs->buf.data ());
4628
4629 /* Find about threads and processes the stub is already
4630 controlling. We default to adding them in the running state.
4631 The '?' query below will then tell us about which threads are
4632 stopped. */
4633 this->update_thread_list ();
4634 }
4635 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4636 {
4637 /* Don't assume that the stub can operate in all-stop mode.
4638 Request it explicitly. */
4639 putpkt ("QNonStop:0");
4640 getpkt (&rs->buf, 0);
4641
4642 if (strcmp (rs->buf.data (), "OK") != 0)
4643 error (_("Remote refused setting all-stop mode with: %s"),
4644 rs->buf.data ());
4645 }
4646
4647 /* Upload TSVs regardless of whether the target is running or not. The
4648 remote stub, such as GDBserver, may have some predefined or builtin
4649 TSVs, even if the target is not running. */
4650 if (get_trace_status (current_trace_status ()) != -1)
4651 {
4652 struct uploaded_tsv *uploaded_tsvs = NULL;
4653
4654 upload_trace_state_variables (&uploaded_tsvs);
4655 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4656 }
4657
4658 /* Check whether the target is running now. */
4659 putpkt ("?");
4660 getpkt (&rs->buf, 0);
4661
4662 if (!target_is_non_stop_p ())
4663 {
4664 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4665 {
4666 if (!extended_p)
4667 error (_("The target is not running (try extended-remote?)"));
4668
4669 /* We're connected, but not running. Drop out before we
4670 call start_remote. */
4671 rs->starting_up = 0;
4672 return;
4673 }
4674 else
4675 {
4676 /* Save the reply for later. */
4677 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4678 strcpy (wait_status, rs->buf.data ());
4679 }
4680
4681 /* Fetch thread list. */
4682 target_update_thread_list ();
4683
4684 /* Let the stub know that we want it to return the thread. */
4685 set_continue_thread (minus_one_ptid);
4686
4687 if (thread_count () == 0)
4688 {
4689 /* Target has no concept of threads at all. GDB treats
4690 non-threaded target as single-threaded; add a main
4691 thread. */
4692 add_current_inferior_and_thread (wait_status);
4693 }
4694 else
4695 {
4696 /* We have thread information; select the thread the target
4697 says should be current. If we're reconnecting to a
4698 multi-threaded program, this will ideally be the thread
4699 that last reported an event before GDB disconnected. */
4700 inferior_ptid = get_current_thread (wait_status);
4701 if (inferior_ptid == null_ptid)
4702 {
4703 /* Odd... The target was able to list threads, but not
4704 tell us which thread was current (no "thread"
4705 register in T stop reply?). Just pick the first
4706 thread in the thread list then. */
4707
4708 if (remote_debug)
4709 fprintf_unfiltered (gdb_stdlog,
4710 "warning: couldn't determine remote "
4711 "current thread; picking first in list.\n");
4712
4713 inferior_ptid = inferior_list->thread_list->ptid;
4714 }
4715 }
4716
4717 /* init_wait_for_inferior should be called before get_offsets in order
4718 to manage `inserted' flag in bp loc in a correct state.
4719 breakpoint_init_inferior, called from init_wait_for_inferior, set
4720 `inserted' flag to 0, while before breakpoint_re_set, called from
4721 start_remote, set `inserted' flag to 1. In the initialization of
4722 inferior, breakpoint_init_inferior should be called first, and then
4723 breakpoint_re_set can be called. If this order is broken, state of
4724 `inserted' flag is wrong, and cause some problems on breakpoint
4725 manipulation. */
4726 init_wait_for_inferior ();
4727
4728 get_offsets (); /* Get text, data & bss offsets. */
4729
4730 /* If we could not find a description using qXfer, and we know
4731 how to do it some other way, try again. This is not
4732 supported for non-stop; it could be, but it is tricky if
4733 there are no stopped threads when we connect. */
4734 if (remote_read_description_p (this)
4735 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4736 {
4737 target_clear_description ();
4738 target_find_description ();
4739 }
4740
4741 /* Use the previously fetched status. */
4742 gdb_assert (wait_status != NULL);
4743 strcpy (rs->buf.data (), wait_status);
4744 rs->cached_wait_status = 1;
4745
4746 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4747 }
4748 else
4749 {
4750 /* Clear WFI global state. Do this before finding about new
4751 threads and inferiors, and setting the current inferior.
4752 Otherwise we would clear the proceed status of the current
4753 inferior when we want its stop_soon state to be preserved
4754 (see notice_new_inferior). */
4755 init_wait_for_inferior ();
4756
4757 /* In non-stop, we will either get an "OK", meaning that there
4758 are no stopped threads at this time; or, a regular stop
4759 reply. In the latter case, there may be more than one thread
4760 stopped --- we pull them all out using the vStopped
4761 mechanism. */
4762 if (strcmp (rs->buf.data (), "OK") != 0)
4763 {
4764 struct notif_client *notif = &notif_client_stop;
4765
4766 /* remote_notif_get_pending_replies acks this one, and gets
4767 the rest out. */
4768 rs->notif_state->pending_event[notif_client_stop.id]
4769 = remote_notif_parse (this, notif, rs->buf.data ());
4770 remote_notif_get_pending_events (notif);
4771 }
4772
4773 if (thread_count () == 0)
4774 {
4775 if (!extended_p)
4776 error (_("The target is not running (try extended-remote?)"));
4777
4778 /* We're connected, but not running. Drop out before we
4779 call start_remote. */
4780 rs->starting_up = 0;
4781 return;
4782 }
4783
4784 /* In non-stop mode, any cached wait status will be stored in
4785 the stop reply queue. */
4786 gdb_assert (wait_status == NULL);
4787
4788 /* Report all signals during attach/startup. */
4789 pass_signals ({});
4790
4791 /* If there are already stopped threads, mark them stopped and
4792 report their stops before giving the prompt to the user. */
4793 process_initial_stop_replies (from_tty);
4794
4795 if (target_can_async_p ())
4796 target_async (1);
4797 }
4798
4799 /* If we connected to a live target, do some additional setup. */
4800 if (target_has_execution)
4801 {
4802 if (symfile_objfile) /* No use without a symbol-file. */
4803 remote_check_symbols ();
4804 }
4805
4806 /* Possibly the target has been engaged in a trace run started
4807 previously; find out where things are at. */
4808 if (get_trace_status (current_trace_status ()) != -1)
4809 {
4810 struct uploaded_tp *uploaded_tps = NULL;
4811
4812 if (current_trace_status ()->running)
4813 printf_filtered (_("Trace is already running on the target.\n"));
4814
4815 upload_tracepoints (&uploaded_tps);
4816
4817 merge_uploaded_tracepoints (&uploaded_tps);
4818 }
4819
4820 /* Possibly the target has been engaged in a btrace record started
4821 previously; find out where things are at. */
4822 remote_btrace_maybe_reopen ();
4823
4824 /* The thread and inferior lists are now synchronized with the
4825 target, our symbols have been relocated, and we're merged the
4826 target's tracepoints with ours. We're done with basic start
4827 up. */
4828 rs->starting_up = 0;
4829
4830 /* Maybe breakpoints are global and need to be inserted now. */
4831 if (breakpoints_should_be_inserted_now ())
4832 insert_breakpoints ();
4833 }
4834
4835 /* Open a connection to a remote debugger.
4836 NAME is the filename used for communication. */
4837
4838 void
4839 remote_target::open (const char *name, int from_tty)
4840 {
4841 open_1 (name, from_tty, 0);
4842 }
4843
4844 /* Open a connection to a remote debugger using the extended
4845 remote gdb protocol. NAME is the filename used for communication. */
4846
4847 void
4848 extended_remote_target::open (const char *name, int from_tty)
4849 {
4850 open_1 (name, from_tty, 1 /*extended_p */);
4851 }
4852
4853 /* Reset all packets back to "unknown support". Called when opening a
4854 new connection to a remote target. */
4855
4856 static void
4857 reset_all_packet_configs_support (void)
4858 {
4859 int i;
4860
4861 for (i = 0; i < PACKET_MAX; i++)
4862 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4863 }
4864
4865 /* Initialize all packet configs. */
4866
4867 static void
4868 init_all_packet_configs (void)
4869 {
4870 int i;
4871
4872 for (i = 0; i < PACKET_MAX; i++)
4873 {
4874 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4875 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4876 }
4877 }
4878
4879 /* Symbol look-up. */
4880
4881 void
4882 remote_target::remote_check_symbols ()
4883 {
4884 char *tmp;
4885 int end;
4886
4887 /* The remote side has no concept of inferiors that aren't running
4888 yet, it only knows about running processes. If we're connected
4889 but our current inferior is not running, we should not invite the
4890 remote target to request symbol lookups related to its
4891 (unrelated) current process. */
4892 if (!target_has_execution)
4893 return;
4894
4895 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4896 return;
4897
4898 /* Make sure the remote is pointing at the right process. Note
4899 there's no way to select "no process". */
4900 set_general_process ();
4901
4902 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4903 because we need both at the same time. */
4904 gdb::char_vector msg (get_remote_packet_size ());
4905 gdb::char_vector reply (get_remote_packet_size ());
4906
4907 /* Invite target to request symbol lookups. */
4908
4909 putpkt ("qSymbol::");
4910 getpkt (&reply, 0);
4911 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4912
4913 while (startswith (reply.data (), "qSymbol:"))
4914 {
4915 struct bound_minimal_symbol sym;
4916
4917 tmp = &reply[8];
4918 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4919 strlen (tmp) / 2);
4920 msg[end] = '\0';
4921 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4922 if (sym.minsym == NULL)
4923 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4924 &reply[8]);
4925 else
4926 {
4927 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4928 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4929
4930 /* If this is a function address, return the start of code
4931 instead of any data function descriptor. */
4932 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4933 sym_addr,
4934 current_top_target ());
4935
4936 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4937 phex_nz (sym_addr, addr_size), &reply[8]);
4938 }
4939
4940 putpkt (msg.data ());
4941 getpkt (&reply, 0);
4942 }
4943 }
4944
4945 static struct serial *
4946 remote_serial_open (const char *name)
4947 {
4948 static int udp_warning = 0;
4949
4950 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4951 of in ser-tcp.c, because it is the remote protocol assuming that the
4952 serial connection is reliable and not the serial connection promising
4953 to be. */
4954 if (!udp_warning && startswith (name, "udp:"))
4955 {
4956 warning (_("The remote protocol may be unreliable over UDP.\n"
4957 "Some events may be lost, rendering further debugging "
4958 "impossible."));
4959 udp_warning = 1;
4960 }
4961
4962 return serial_open (name);
4963 }
4964
4965 /* Inform the target of our permission settings. The permission flags
4966 work without this, but if the target knows the settings, it can do
4967 a couple things. First, it can add its own check, to catch cases
4968 that somehow manage to get by the permissions checks in target
4969 methods. Second, if the target is wired to disallow particular
4970 settings (for instance, a system in the field that is not set up to
4971 be able to stop at a breakpoint), it can object to any unavailable
4972 permissions. */
4973
4974 void
4975 remote_target::set_permissions ()
4976 {
4977 struct remote_state *rs = get_remote_state ();
4978
4979 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
4980 "WriteReg:%x;WriteMem:%x;"
4981 "InsertBreak:%x;InsertTrace:%x;"
4982 "InsertFastTrace:%x;Stop:%x",
4983 may_write_registers, may_write_memory,
4984 may_insert_breakpoints, may_insert_tracepoints,
4985 may_insert_fast_tracepoints, may_stop);
4986 putpkt (rs->buf);
4987 getpkt (&rs->buf, 0);
4988
4989 /* If the target didn't like the packet, warn the user. Do not try
4990 to undo the user's settings, that would just be maddening. */
4991 if (strcmp (rs->buf.data (), "OK") != 0)
4992 warning (_("Remote refused setting permissions with: %s"),
4993 rs->buf.data ());
4994 }
4995
4996 /* This type describes each known response to the qSupported
4997 packet. */
4998 struct protocol_feature
4999 {
5000 /* The name of this protocol feature. */
5001 const char *name;
5002
5003 /* The default for this protocol feature. */
5004 enum packet_support default_support;
5005
5006 /* The function to call when this feature is reported, or after
5007 qSupported processing if the feature is not supported.
5008 The first argument points to this structure. The second
5009 argument indicates whether the packet requested support be
5010 enabled, disabled, or probed (or the default, if this function
5011 is being called at the end of processing and this feature was
5012 not reported). The third argument may be NULL; if not NULL, it
5013 is a NUL-terminated string taken from the packet following
5014 this feature's name and an equals sign. */
5015 void (*func) (remote_target *remote, const struct protocol_feature *,
5016 enum packet_support, const char *);
5017
5018 /* The corresponding packet for this feature. Only used if
5019 FUNC is remote_supported_packet. */
5020 int packet;
5021 };
5022
5023 static void
5024 remote_supported_packet (remote_target *remote,
5025 const struct protocol_feature *feature,
5026 enum packet_support support,
5027 const char *argument)
5028 {
5029 if (argument)
5030 {
5031 warning (_("Remote qSupported response supplied an unexpected value for"
5032 " \"%s\"."), feature->name);
5033 return;
5034 }
5035
5036 remote_protocol_packets[feature->packet].support = support;
5037 }
5038
5039 void
5040 remote_target::remote_packet_size (const protocol_feature *feature,
5041 enum packet_support support, const char *value)
5042 {
5043 struct remote_state *rs = get_remote_state ();
5044
5045 int packet_size;
5046 char *value_end;
5047
5048 if (support != PACKET_ENABLE)
5049 return;
5050
5051 if (value == NULL || *value == '\0')
5052 {
5053 warning (_("Remote target reported \"%s\" without a size."),
5054 feature->name);
5055 return;
5056 }
5057
5058 errno = 0;
5059 packet_size = strtol (value, &value_end, 16);
5060 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5061 {
5062 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5063 feature->name, value);
5064 return;
5065 }
5066
5067 /* Record the new maximum packet size. */
5068 rs->explicit_packet_size = packet_size;
5069 }
5070
5071 void
5072 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5073 enum packet_support support, const char *value)
5074 {
5075 remote->remote_packet_size (feature, support, value);
5076 }
5077
5078 static const struct protocol_feature remote_protocol_features[] = {
5079 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5080 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5081 PACKET_qXfer_auxv },
5082 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5083 PACKET_qXfer_exec_file },
5084 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5085 PACKET_qXfer_features },
5086 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5087 PACKET_qXfer_libraries },
5088 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5089 PACKET_qXfer_libraries_svr4 },
5090 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5091 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5092 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5093 PACKET_qXfer_memory_map },
5094 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
5095 PACKET_qXfer_spu_read },
5096 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
5097 PACKET_qXfer_spu_write },
5098 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5099 PACKET_qXfer_osdata },
5100 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5101 PACKET_qXfer_threads },
5102 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5103 PACKET_qXfer_traceframe_info },
5104 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5105 PACKET_QPassSignals },
5106 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5107 PACKET_QCatchSyscalls },
5108 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5109 PACKET_QProgramSignals },
5110 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5111 PACKET_QSetWorkingDir },
5112 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5113 PACKET_QStartupWithShell },
5114 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5115 PACKET_QEnvironmentHexEncoded },
5116 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5117 PACKET_QEnvironmentReset },
5118 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5119 PACKET_QEnvironmentUnset },
5120 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5121 PACKET_QStartNoAckMode },
5122 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5123 PACKET_multiprocess_feature },
5124 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5125 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5126 PACKET_qXfer_siginfo_read },
5127 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5128 PACKET_qXfer_siginfo_write },
5129 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5130 PACKET_ConditionalTracepoints },
5131 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5132 PACKET_ConditionalBreakpoints },
5133 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5134 PACKET_BreakpointCommands },
5135 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_FastTracepoints },
5137 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_StaticTracepoints },
5139 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_InstallInTrace},
5141 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_DisconnectedTracing_feature },
5143 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5144 PACKET_bc },
5145 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5146 PACKET_bs },
5147 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5148 PACKET_TracepointSource },
5149 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5150 PACKET_QAllow },
5151 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5152 PACKET_EnableDisableTracepoints_feature },
5153 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5154 PACKET_qXfer_fdpic },
5155 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5156 PACKET_qXfer_uib },
5157 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5158 PACKET_QDisableRandomization },
5159 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5160 { "QTBuffer:size", PACKET_DISABLE,
5161 remote_supported_packet, PACKET_QTBuffer_size},
5162 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5163 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5164 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5165 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5166 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5167 PACKET_qXfer_btrace },
5168 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5169 PACKET_qXfer_btrace_conf },
5170 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5171 PACKET_Qbtrace_conf_bts_size },
5172 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5173 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5174 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5175 PACKET_fork_event_feature },
5176 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5177 PACKET_vfork_event_feature },
5178 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5179 PACKET_exec_event_feature },
5180 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5181 PACKET_Qbtrace_conf_pt_size },
5182 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5183 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5184 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5185 };
5186
5187 static char *remote_support_xml;
5188
5189 /* Register string appended to "xmlRegisters=" in qSupported query. */
5190
5191 void
5192 register_remote_support_xml (const char *xml)
5193 {
5194 #if defined(HAVE_LIBEXPAT)
5195 if (remote_support_xml == NULL)
5196 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5197 else
5198 {
5199 char *copy = xstrdup (remote_support_xml + 13);
5200 char *p = strtok (copy, ",");
5201
5202 do
5203 {
5204 if (strcmp (p, xml) == 0)
5205 {
5206 /* already there */
5207 xfree (copy);
5208 return;
5209 }
5210 }
5211 while ((p = strtok (NULL, ",")) != NULL);
5212 xfree (copy);
5213
5214 remote_support_xml = reconcat (remote_support_xml,
5215 remote_support_xml, ",", xml,
5216 (char *) NULL);
5217 }
5218 #endif
5219 }
5220
5221 static void
5222 remote_query_supported_append (std::string *msg, const char *append)
5223 {
5224 if (!msg->empty ())
5225 msg->append (";");
5226 msg->append (append);
5227 }
5228
5229 void
5230 remote_target::remote_query_supported ()
5231 {
5232 struct remote_state *rs = get_remote_state ();
5233 char *next;
5234 int i;
5235 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5236
5237 /* The packet support flags are handled differently for this packet
5238 than for most others. We treat an error, a disabled packet, and
5239 an empty response identically: any features which must be reported
5240 to be used will be automatically disabled. An empty buffer
5241 accomplishes this, since that is also the representation for a list
5242 containing no features. */
5243
5244 rs->buf[0] = 0;
5245 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5246 {
5247 std::string q;
5248
5249 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5250 remote_query_supported_append (&q, "multiprocess+");
5251
5252 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5253 remote_query_supported_append (&q, "swbreak+");
5254 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5255 remote_query_supported_append (&q, "hwbreak+");
5256
5257 remote_query_supported_append (&q, "qRelocInsn+");
5258
5259 if (packet_set_cmd_state (PACKET_fork_event_feature)
5260 != AUTO_BOOLEAN_FALSE)
5261 remote_query_supported_append (&q, "fork-events+");
5262 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5263 != AUTO_BOOLEAN_FALSE)
5264 remote_query_supported_append (&q, "vfork-events+");
5265 if (packet_set_cmd_state (PACKET_exec_event_feature)
5266 != AUTO_BOOLEAN_FALSE)
5267 remote_query_supported_append (&q, "exec-events+");
5268
5269 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5270 remote_query_supported_append (&q, "vContSupported+");
5271
5272 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5273 remote_query_supported_append (&q, "QThreadEvents+");
5274
5275 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5276 remote_query_supported_append (&q, "no-resumed+");
5277
5278 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5279 the qSupported:xmlRegisters=i386 handling. */
5280 if (remote_support_xml != NULL
5281 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5282 remote_query_supported_append (&q, remote_support_xml);
5283
5284 q = "qSupported:" + q;
5285 putpkt (q.c_str ());
5286
5287 getpkt (&rs->buf, 0);
5288
5289 /* If an error occured, warn, but do not return - just reset the
5290 buffer to empty and go on to disable features. */
5291 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5292 == PACKET_ERROR)
5293 {
5294 warning (_("Remote failure reply: %s"), rs->buf.data ());
5295 rs->buf[0] = 0;
5296 }
5297 }
5298
5299 memset (seen, 0, sizeof (seen));
5300
5301 next = rs->buf.data ();
5302 while (*next)
5303 {
5304 enum packet_support is_supported;
5305 char *p, *end, *name_end, *value;
5306
5307 /* First separate out this item from the rest of the packet. If
5308 there's another item after this, we overwrite the separator
5309 (terminated strings are much easier to work with). */
5310 p = next;
5311 end = strchr (p, ';');
5312 if (end == NULL)
5313 {
5314 end = p + strlen (p);
5315 next = end;
5316 }
5317 else
5318 {
5319 *end = '\0';
5320 next = end + 1;
5321
5322 if (end == p)
5323 {
5324 warning (_("empty item in \"qSupported\" response"));
5325 continue;
5326 }
5327 }
5328
5329 name_end = strchr (p, '=');
5330 if (name_end)
5331 {
5332 /* This is a name=value entry. */
5333 is_supported = PACKET_ENABLE;
5334 value = name_end + 1;
5335 *name_end = '\0';
5336 }
5337 else
5338 {
5339 value = NULL;
5340 switch (end[-1])
5341 {
5342 case '+':
5343 is_supported = PACKET_ENABLE;
5344 break;
5345
5346 case '-':
5347 is_supported = PACKET_DISABLE;
5348 break;
5349
5350 case '?':
5351 is_supported = PACKET_SUPPORT_UNKNOWN;
5352 break;
5353
5354 default:
5355 warning (_("unrecognized item \"%s\" "
5356 "in \"qSupported\" response"), p);
5357 continue;
5358 }
5359 end[-1] = '\0';
5360 }
5361
5362 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5363 if (strcmp (remote_protocol_features[i].name, p) == 0)
5364 {
5365 const struct protocol_feature *feature;
5366
5367 seen[i] = 1;
5368 feature = &remote_protocol_features[i];
5369 feature->func (this, feature, is_supported, value);
5370 break;
5371 }
5372 }
5373
5374 /* If we increased the packet size, make sure to increase the global
5375 buffer size also. We delay this until after parsing the entire
5376 qSupported packet, because this is the same buffer we were
5377 parsing. */
5378 if (rs->buf.size () < rs->explicit_packet_size)
5379 rs->buf.resize (rs->explicit_packet_size);
5380
5381 /* Handle the defaults for unmentioned features. */
5382 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5383 if (!seen[i])
5384 {
5385 const struct protocol_feature *feature;
5386
5387 feature = &remote_protocol_features[i];
5388 feature->func (this, feature, feature->default_support, NULL);
5389 }
5390 }
5391
5392 /* Serial QUIT handler for the remote serial descriptor.
5393
5394 Defers handling a Ctrl-C until we're done with the current
5395 command/response packet sequence, unless:
5396
5397 - We're setting up the connection. Don't send a remote interrupt
5398 request, as we're not fully synced yet. Quit immediately
5399 instead.
5400
5401 - The target has been resumed in the foreground
5402 (target_terminal::is_ours is false) with a synchronous resume
5403 packet, and we're blocked waiting for the stop reply, thus a
5404 Ctrl-C should be immediately sent to the target.
5405
5406 - We get a second Ctrl-C while still within the same serial read or
5407 write. In that case the serial is seemingly wedged --- offer to
5408 quit/disconnect.
5409
5410 - We see a second Ctrl-C without target response, after having
5411 previously interrupted the target. In that case the target/stub
5412 is probably wedged --- offer to quit/disconnect.
5413 */
5414
5415 void
5416 remote_target::remote_serial_quit_handler ()
5417 {
5418 struct remote_state *rs = get_remote_state ();
5419
5420 if (check_quit_flag ())
5421 {
5422 /* If we're starting up, we're not fully synced yet. Quit
5423 immediately. */
5424 if (rs->starting_up)
5425 quit ();
5426 else if (rs->got_ctrlc_during_io)
5427 {
5428 if (query (_("The target is not responding to GDB commands.\n"
5429 "Stop debugging it? ")))
5430 remote_unpush_and_throw ();
5431 }
5432 /* If ^C has already been sent once, offer to disconnect. */
5433 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5434 interrupt_query ();
5435 /* All-stop protocol, and blocked waiting for stop reply. Send
5436 an interrupt request. */
5437 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5438 target_interrupt ();
5439 else
5440 rs->got_ctrlc_during_io = 1;
5441 }
5442 }
5443
5444 /* The remote_target that is current while the quit handler is
5445 overridden with remote_serial_quit_handler. */
5446 static remote_target *curr_quit_handler_target;
5447
5448 static void
5449 remote_serial_quit_handler ()
5450 {
5451 curr_quit_handler_target->remote_serial_quit_handler ();
5452 }
5453
5454 /* Remove any of the remote.c targets from target stack. Upper targets depend
5455 on it so remove them first. */
5456
5457 static void
5458 remote_unpush_target (void)
5459 {
5460 pop_all_targets_at_and_above (process_stratum);
5461 }
5462
5463 static void
5464 remote_unpush_and_throw (void)
5465 {
5466 remote_unpush_target ();
5467 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5468 }
5469
5470 void
5471 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5472 {
5473 remote_target *curr_remote = get_current_remote_target ();
5474
5475 if (name == 0)
5476 error (_("To open a remote debug connection, you need to specify what\n"
5477 "serial device is attached to the remote system\n"
5478 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5479
5480 /* If we're connected to a running target, target_preopen will kill it.
5481 Ask this question first, before target_preopen has a chance to kill
5482 anything. */
5483 if (curr_remote != NULL && !have_inferiors ())
5484 {
5485 if (from_tty
5486 && !query (_("Already connected to a remote target. Disconnect? ")))
5487 error (_("Still connected."));
5488 }
5489
5490 /* Here the possibly existing remote target gets unpushed. */
5491 target_preopen (from_tty);
5492
5493 remote_fileio_reset ();
5494 reopen_exec_file ();
5495 reread_symbols ();
5496
5497 remote_target *remote
5498 = (extended_p ? new extended_remote_target () : new remote_target ());
5499 target_ops_up target_holder (remote);
5500
5501 remote_state *rs = remote->get_remote_state ();
5502
5503 /* See FIXME above. */
5504 if (!target_async_permitted)
5505 rs->wait_forever_enabled_p = 1;
5506
5507 rs->remote_desc = remote_serial_open (name);
5508 if (!rs->remote_desc)
5509 perror_with_name (name);
5510
5511 if (baud_rate != -1)
5512 {
5513 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5514 {
5515 /* The requested speed could not be set. Error out to
5516 top level after closing remote_desc. Take care to
5517 set remote_desc to NULL to avoid closing remote_desc
5518 more than once. */
5519 serial_close (rs->remote_desc);
5520 rs->remote_desc = NULL;
5521 perror_with_name (name);
5522 }
5523 }
5524
5525 serial_setparity (rs->remote_desc, serial_parity);
5526 serial_raw (rs->remote_desc);
5527
5528 /* If there is something sitting in the buffer we might take it as a
5529 response to a command, which would be bad. */
5530 serial_flush_input (rs->remote_desc);
5531
5532 if (from_tty)
5533 {
5534 puts_filtered ("Remote debugging using ");
5535 puts_filtered (name);
5536 puts_filtered ("\n");
5537 }
5538
5539 /* Switch to using the remote target now. */
5540 push_target (std::move (target_holder));
5541
5542 /* Register extra event sources in the event loop. */
5543 rs->remote_async_inferior_event_token
5544 = create_async_event_handler (remote_async_inferior_event_handler,
5545 remote);
5546 rs->notif_state = remote_notif_state_allocate (remote);
5547
5548 /* Reset the target state; these things will be queried either by
5549 remote_query_supported or as they are needed. */
5550 reset_all_packet_configs_support ();
5551 rs->cached_wait_status = 0;
5552 rs->explicit_packet_size = 0;
5553 rs->noack_mode = 0;
5554 rs->extended = extended_p;
5555 rs->waiting_for_stop_reply = 0;
5556 rs->ctrlc_pending_p = 0;
5557 rs->got_ctrlc_during_io = 0;
5558
5559 rs->general_thread = not_sent_ptid;
5560 rs->continue_thread = not_sent_ptid;
5561 rs->remote_traceframe_number = -1;
5562
5563 rs->last_resume_exec_dir = EXEC_FORWARD;
5564
5565 /* Probe for ability to use "ThreadInfo" query, as required. */
5566 rs->use_threadinfo_query = 1;
5567 rs->use_threadextra_query = 1;
5568
5569 rs->readahead_cache.invalidate ();
5570
5571 if (target_async_permitted)
5572 {
5573 /* FIXME: cagney/1999-09-23: During the initial connection it is
5574 assumed that the target is already ready and able to respond to
5575 requests. Unfortunately remote_start_remote() eventually calls
5576 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5577 around this. Eventually a mechanism that allows
5578 wait_for_inferior() to expect/get timeouts will be
5579 implemented. */
5580 rs->wait_forever_enabled_p = 0;
5581 }
5582
5583 /* First delete any symbols previously loaded from shared libraries. */
5584 no_shared_libraries (NULL, 0);
5585
5586 /* Start the remote connection. If error() or QUIT, discard this
5587 target (we'd otherwise be in an inconsistent state) and then
5588 propogate the error on up the exception chain. This ensures that
5589 the caller doesn't stumble along blindly assuming that the
5590 function succeeded. The CLI doesn't have this problem but other
5591 UI's, such as MI do.
5592
5593 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5594 this function should return an error indication letting the
5595 caller restore the previous state. Unfortunately the command
5596 ``target remote'' is directly wired to this function making that
5597 impossible. On a positive note, the CLI side of this problem has
5598 been fixed - the function set_cmd_context() makes it possible for
5599 all the ``target ....'' commands to share a common callback
5600 function. See cli-dump.c. */
5601 {
5602
5603 TRY
5604 {
5605 remote->start_remote (from_tty, extended_p);
5606 }
5607 CATCH (ex, RETURN_MASK_ALL)
5608 {
5609 /* Pop the partially set up target - unless something else did
5610 already before throwing the exception. */
5611 if (ex.error != TARGET_CLOSE_ERROR)
5612 remote_unpush_target ();
5613 throw_exception (ex);
5614 }
5615 END_CATCH
5616 }
5617
5618 remote_btrace_reset (rs);
5619
5620 if (target_async_permitted)
5621 rs->wait_forever_enabled_p = 1;
5622 }
5623
5624 /* Detach the specified process. */
5625
5626 void
5627 remote_target::remote_detach_pid (int pid)
5628 {
5629 struct remote_state *rs = get_remote_state ();
5630
5631 /* This should not be necessary, but the handling for D;PID in
5632 GDBserver versions prior to 8.2 incorrectly assumes that the
5633 selected process points to the same process we're detaching,
5634 leading to misbehavior (and possibly GDBserver crashing) when it
5635 does not. Since it's easy and cheap, work around it by forcing
5636 GDBserver to select GDB's current process. */
5637 set_general_process ();
5638
5639 if (remote_multi_process_p (rs))
5640 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5641 else
5642 strcpy (rs->buf.data (), "D");
5643
5644 putpkt (rs->buf);
5645 getpkt (&rs->buf, 0);
5646
5647 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5648 ;
5649 else if (rs->buf[0] == '\0')
5650 error (_("Remote doesn't know how to detach"));
5651 else
5652 error (_("Can't detach process."));
5653 }
5654
5655 /* This detaches a program to which we previously attached, using
5656 inferior_ptid to identify the process. After this is done, GDB
5657 can be used to debug some other program. We better not have left
5658 any breakpoints in the target program or it'll die when it hits
5659 one. */
5660
5661 void
5662 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5663 {
5664 int pid = inferior_ptid.pid ();
5665 struct remote_state *rs = get_remote_state ();
5666 int is_fork_parent;
5667
5668 if (!target_has_execution)
5669 error (_("No process to detach from."));
5670
5671 target_announce_detach (from_tty);
5672
5673 /* Tell the remote target to detach. */
5674 remote_detach_pid (pid);
5675
5676 /* Exit only if this is the only active inferior. */
5677 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5678 puts_filtered (_("Ending remote debugging.\n"));
5679
5680 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5681
5682 /* Check to see if we are detaching a fork parent. Note that if we
5683 are detaching a fork child, tp == NULL. */
5684 is_fork_parent = (tp != NULL
5685 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5686
5687 /* If doing detach-on-fork, we don't mourn, because that will delete
5688 breakpoints that should be available for the followed inferior. */
5689 if (!is_fork_parent)
5690 {
5691 /* Save the pid as a string before mourning, since that will
5692 unpush the remote target, and we need the string after. */
5693 std::string infpid = target_pid_to_str (ptid_t (pid));
5694
5695 target_mourn_inferior (inferior_ptid);
5696 if (print_inferior_events)
5697 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5698 inf->num, infpid.c_str ());
5699 }
5700 else
5701 {
5702 inferior_ptid = null_ptid;
5703 detach_inferior (current_inferior ());
5704 }
5705 }
5706
5707 void
5708 remote_target::detach (inferior *inf, int from_tty)
5709 {
5710 remote_detach_1 (inf, from_tty);
5711 }
5712
5713 void
5714 extended_remote_target::detach (inferior *inf, int from_tty)
5715 {
5716 remote_detach_1 (inf, from_tty);
5717 }
5718
5719 /* Target follow-fork function for remote targets. On entry, and
5720 at return, the current inferior is the fork parent.
5721
5722 Note that although this is currently only used for extended-remote,
5723 it is named remote_follow_fork in anticipation of using it for the
5724 remote target as well. */
5725
5726 int
5727 remote_target::follow_fork (int follow_child, int detach_fork)
5728 {
5729 struct remote_state *rs = get_remote_state ();
5730 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5731
5732 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5733 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5734 {
5735 /* When following the parent and detaching the child, we detach
5736 the child here. For the case of following the child and
5737 detaching the parent, the detach is done in the target-
5738 independent follow fork code in infrun.c. We can't use
5739 target_detach when detaching an unfollowed child because
5740 the client side doesn't know anything about the child. */
5741 if (detach_fork && !follow_child)
5742 {
5743 /* Detach the fork child. */
5744 ptid_t child_ptid;
5745 pid_t child_pid;
5746
5747 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5748 child_pid = child_ptid.pid ();
5749
5750 remote_detach_pid (child_pid);
5751 }
5752 }
5753 return 0;
5754 }
5755
5756 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5757 in the program space of the new inferior. On entry and at return the
5758 current inferior is the exec'ing inferior. INF is the new exec'd
5759 inferior, which may be the same as the exec'ing inferior unless
5760 follow-exec-mode is "new". */
5761
5762 void
5763 remote_target::follow_exec (struct inferior *inf, char *execd_pathname)
5764 {
5765 /* We know that this is a target file name, so if it has the "target:"
5766 prefix we strip it off before saving it in the program space. */
5767 if (is_target_filename (execd_pathname))
5768 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5769
5770 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5771 }
5772
5773 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5774
5775 void
5776 remote_target::disconnect (const char *args, int from_tty)
5777 {
5778 if (args)
5779 error (_("Argument given to \"disconnect\" when remotely debugging."));
5780
5781 /* Make sure we unpush even the extended remote targets. Calling
5782 target_mourn_inferior won't unpush, and remote_mourn won't
5783 unpush if there is more than one inferior left. */
5784 unpush_target (this);
5785 generic_mourn_inferior ();
5786
5787 if (from_tty)
5788 puts_filtered ("Ending remote debugging.\n");
5789 }
5790
5791 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5792 be chatty about it. */
5793
5794 void
5795 extended_remote_target::attach (const char *args, int from_tty)
5796 {
5797 struct remote_state *rs = get_remote_state ();
5798 int pid;
5799 char *wait_status = NULL;
5800
5801 pid = parse_pid_to_attach (args);
5802
5803 /* Remote PID can be freely equal to getpid, do not check it here the same
5804 way as in other targets. */
5805
5806 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5807 error (_("This target does not support attaching to a process"));
5808
5809 if (from_tty)
5810 {
5811 char *exec_file = get_exec_file (0);
5812
5813 if (exec_file)
5814 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5815 target_pid_to_str (ptid_t (pid)));
5816 else
5817 printf_unfiltered (_("Attaching to %s\n"),
5818 target_pid_to_str (ptid_t (pid)));
5819 }
5820
5821 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5822 putpkt (rs->buf);
5823 getpkt (&rs->buf, 0);
5824
5825 switch (packet_ok (rs->buf,
5826 &remote_protocol_packets[PACKET_vAttach]))
5827 {
5828 case PACKET_OK:
5829 if (!target_is_non_stop_p ())
5830 {
5831 /* Save the reply for later. */
5832 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5833 strcpy (wait_status, rs->buf.data ());
5834 }
5835 else if (strcmp (rs->buf.data (), "OK") != 0)
5836 error (_("Attaching to %s failed with: %s"),
5837 target_pid_to_str (ptid_t (pid)),
5838 rs->buf.data ());
5839 break;
5840 case PACKET_UNKNOWN:
5841 error (_("This target does not support attaching to a process"));
5842 default:
5843 error (_("Attaching to %s failed"),
5844 target_pid_to_str (ptid_t (pid)));
5845 }
5846
5847 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5848
5849 inferior_ptid = ptid_t (pid);
5850
5851 if (target_is_non_stop_p ())
5852 {
5853 struct thread_info *thread;
5854
5855 /* Get list of threads. */
5856 update_thread_list ();
5857
5858 thread = first_thread_of_inferior (current_inferior ());
5859 if (thread)
5860 inferior_ptid = thread->ptid;
5861 else
5862 inferior_ptid = ptid_t (pid);
5863
5864 /* Invalidate our notion of the remote current thread. */
5865 record_currthread (rs, minus_one_ptid);
5866 }
5867 else
5868 {
5869 /* Now, if we have thread information, update inferior_ptid. */
5870 inferior_ptid = remote_current_thread (inferior_ptid);
5871
5872 /* Add the main thread to the thread list. */
5873 thread_info *thr = add_thread_silent (inferior_ptid);
5874 /* Don't consider the thread stopped until we've processed the
5875 saved stop reply. */
5876 set_executing (thr->ptid, true);
5877 }
5878
5879 /* Next, if the target can specify a description, read it. We do
5880 this before anything involving memory or registers. */
5881 target_find_description ();
5882
5883 if (!target_is_non_stop_p ())
5884 {
5885 /* Use the previously fetched status. */
5886 gdb_assert (wait_status != NULL);
5887
5888 if (target_can_async_p ())
5889 {
5890 struct notif_event *reply
5891 = remote_notif_parse (this, &notif_client_stop, wait_status);
5892
5893 push_stop_reply ((struct stop_reply *) reply);
5894
5895 target_async (1);
5896 }
5897 else
5898 {
5899 gdb_assert (wait_status != NULL);
5900 strcpy (rs->buf.data (), wait_status);
5901 rs->cached_wait_status = 1;
5902 }
5903 }
5904 else
5905 gdb_assert (wait_status == NULL);
5906 }
5907
5908 /* Implementation of the to_post_attach method. */
5909
5910 void
5911 extended_remote_target::post_attach (int pid)
5912 {
5913 /* Get text, data & bss offsets. */
5914 get_offsets ();
5915
5916 /* In certain cases GDB might not have had the chance to start
5917 symbol lookup up until now. This could happen if the debugged
5918 binary is not using shared libraries, the vsyscall page is not
5919 present (on Linux) and the binary itself hadn't changed since the
5920 debugging process was started. */
5921 if (symfile_objfile != NULL)
5922 remote_check_symbols();
5923 }
5924
5925 \f
5926 /* Check for the availability of vCont. This function should also check
5927 the response. */
5928
5929 void
5930 remote_target::remote_vcont_probe ()
5931 {
5932 remote_state *rs = get_remote_state ();
5933 char *buf;
5934
5935 strcpy (rs->buf.data (), "vCont?");
5936 putpkt (rs->buf);
5937 getpkt (&rs->buf, 0);
5938 buf = rs->buf.data ();
5939
5940 /* Make sure that the features we assume are supported. */
5941 if (startswith (buf, "vCont"))
5942 {
5943 char *p = &buf[5];
5944 int support_c, support_C;
5945
5946 rs->supports_vCont.s = 0;
5947 rs->supports_vCont.S = 0;
5948 support_c = 0;
5949 support_C = 0;
5950 rs->supports_vCont.t = 0;
5951 rs->supports_vCont.r = 0;
5952 while (p && *p == ';')
5953 {
5954 p++;
5955 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5956 rs->supports_vCont.s = 1;
5957 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5958 rs->supports_vCont.S = 1;
5959 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5960 support_c = 1;
5961 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5962 support_C = 1;
5963 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5964 rs->supports_vCont.t = 1;
5965 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5966 rs->supports_vCont.r = 1;
5967
5968 p = strchr (p, ';');
5969 }
5970
5971 /* If c, and C are not all supported, we can't use vCont. Clearing
5972 BUF will make packet_ok disable the packet. */
5973 if (!support_c || !support_C)
5974 buf[0] = 0;
5975 }
5976
5977 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
5978 }
5979
5980 /* Helper function for building "vCont" resumptions. Write a
5981 resumption to P. ENDP points to one-passed-the-end of the buffer
5982 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5983 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5984 resumed thread should be single-stepped and/or signalled. If PTID
5985 equals minus_one_ptid, then all threads are resumed; if PTID
5986 represents a process, then all threads of the process are resumed;
5987 the thread to be stepped and/or signalled is given in the global
5988 INFERIOR_PTID. */
5989
5990 char *
5991 remote_target::append_resumption (char *p, char *endp,
5992 ptid_t ptid, int step, gdb_signal siggnal)
5993 {
5994 struct remote_state *rs = get_remote_state ();
5995
5996 if (step && siggnal != GDB_SIGNAL_0)
5997 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5998 else if (step
5999 /* GDB is willing to range step. */
6000 && use_range_stepping
6001 /* Target supports range stepping. */
6002 && rs->supports_vCont.r
6003 /* We don't currently support range stepping multiple
6004 threads with a wildcard (though the protocol allows it,
6005 so stubs shouldn't make an active effort to forbid
6006 it). */
6007 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6008 {
6009 struct thread_info *tp;
6010
6011 if (ptid == minus_one_ptid)
6012 {
6013 /* If we don't know about the target thread's tid, then
6014 we're resuming magic_null_ptid (see caller). */
6015 tp = find_thread_ptid (magic_null_ptid);
6016 }
6017 else
6018 tp = find_thread_ptid (ptid);
6019 gdb_assert (tp != NULL);
6020
6021 if (tp->control.may_range_step)
6022 {
6023 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6024
6025 p += xsnprintf (p, endp - p, ";r%s,%s",
6026 phex_nz (tp->control.step_range_start,
6027 addr_size),
6028 phex_nz (tp->control.step_range_end,
6029 addr_size));
6030 }
6031 else
6032 p += xsnprintf (p, endp - p, ";s");
6033 }
6034 else if (step)
6035 p += xsnprintf (p, endp - p, ";s");
6036 else if (siggnal != GDB_SIGNAL_0)
6037 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6038 else
6039 p += xsnprintf (p, endp - p, ";c");
6040
6041 if (remote_multi_process_p (rs) && ptid.is_pid ())
6042 {
6043 ptid_t nptid;
6044
6045 /* All (-1) threads of process. */
6046 nptid = ptid_t (ptid.pid (), -1, 0);
6047
6048 p += xsnprintf (p, endp - p, ":");
6049 p = write_ptid (p, endp, nptid);
6050 }
6051 else if (ptid != minus_one_ptid)
6052 {
6053 p += xsnprintf (p, endp - p, ":");
6054 p = write_ptid (p, endp, ptid);
6055 }
6056
6057 return p;
6058 }
6059
6060 /* Clear the thread's private info on resume. */
6061
6062 static void
6063 resume_clear_thread_private_info (struct thread_info *thread)
6064 {
6065 if (thread->priv != NULL)
6066 {
6067 remote_thread_info *priv = get_remote_thread_info (thread);
6068
6069 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6070 priv->watch_data_address = 0;
6071 }
6072 }
6073
6074 /* Append a vCont continue-with-signal action for threads that have a
6075 non-zero stop signal. */
6076
6077 char *
6078 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6079 ptid_t ptid)
6080 {
6081 for (thread_info *thread : all_non_exited_threads (ptid))
6082 if (inferior_ptid != thread->ptid
6083 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6084 {
6085 p = append_resumption (p, endp, thread->ptid,
6086 0, thread->suspend.stop_signal);
6087 thread->suspend.stop_signal = GDB_SIGNAL_0;
6088 resume_clear_thread_private_info (thread);
6089 }
6090
6091 return p;
6092 }
6093
6094 /* Set the target running, using the packets that use Hc
6095 (c/s/C/S). */
6096
6097 void
6098 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6099 gdb_signal siggnal)
6100 {
6101 struct remote_state *rs = get_remote_state ();
6102 char *buf;
6103
6104 rs->last_sent_signal = siggnal;
6105 rs->last_sent_step = step;
6106
6107 /* The c/s/C/S resume packets use Hc, so set the continue
6108 thread. */
6109 if (ptid == minus_one_ptid)
6110 set_continue_thread (any_thread_ptid);
6111 else
6112 set_continue_thread (ptid);
6113
6114 for (thread_info *thread : all_non_exited_threads ())
6115 resume_clear_thread_private_info (thread);
6116
6117 buf = rs->buf.data ();
6118 if (::execution_direction == EXEC_REVERSE)
6119 {
6120 /* We don't pass signals to the target in reverse exec mode. */
6121 if (info_verbose && siggnal != GDB_SIGNAL_0)
6122 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6123 siggnal);
6124
6125 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6126 error (_("Remote reverse-step not supported."));
6127 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6128 error (_("Remote reverse-continue not supported."));
6129
6130 strcpy (buf, step ? "bs" : "bc");
6131 }
6132 else if (siggnal != GDB_SIGNAL_0)
6133 {
6134 buf[0] = step ? 'S' : 'C';
6135 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6136 buf[2] = tohex (((int) siggnal) & 0xf);
6137 buf[3] = '\0';
6138 }
6139 else
6140 strcpy (buf, step ? "s" : "c");
6141
6142 putpkt (buf);
6143 }
6144
6145 /* Resume the remote inferior by using a "vCont" packet. The thread
6146 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6147 resumed thread should be single-stepped and/or signalled. If PTID
6148 equals minus_one_ptid, then all threads are resumed; the thread to
6149 be stepped and/or signalled is given in the global INFERIOR_PTID.
6150 This function returns non-zero iff it resumes the inferior.
6151
6152 This function issues a strict subset of all possible vCont commands
6153 at the moment. */
6154
6155 int
6156 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6157 enum gdb_signal siggnal)
6158 {
6159 struct remote_state *rs = get_remote_state ();
6160 char *p;
6161 char *endp;
6162
6163 /* No reverse execution actions defined for vCont. */
6164 if (::execution_direction == EXEC_REVERSE)
6165 return 0;
6166
6167 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6168 remote_vcont_probe ();
6169
6170 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6171 return 0;
6172
6173 p = rs->buf.data ();
6174 endp = p + get_remote_packet_size ();
6175
6176 /* If we could generate a wider range of packets, we'd have to worry
6177 about overflowing BUF. Should there be a generic
6178 "multi-part-packet" packet? */
6179
6180 p += xsnprintf (p, endp - p, "vCont");
6181
6182 if (ptid == magic_null_ptid)
6183 {
6184 /* MAGIC_NULL_PTID means that we don't have any active threads,
6185 so we don't have any TID numbers the inferior will
6186 understand. Make sure to only send forms that do not specify
6187 a TID. */
6188 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6189 }
6190 else if (ptid == minus_one_ptid || ptid.is_pid ())
6191 {
6192 /* Resume all threads (of all processes, or of a single
6193 process), with preference for INFERIOR_PTID. This assumes
6194 inferior_ptid belongs to the set of all threads we are about
6195 to resume. */
6196 if (step || siggnal != GDB_SIGNAL_0)
6197 {
6198 /* Step inferior_ptid, with or without signal. */
6199 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6200 }
6201
6202 /* Also pass down any pending signaled resumption for other
6203 threads not the current. */
6204 p = append_pending_thread_resumptions (p, endp, ptid);
6205
6206 /* And continue others without a signal. */
6207 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6208 }
6209 else
6210 {
6211 /* Scheduler locking; resume only PTID. */
6212 append_resumption (p, endp, ptid, step, siggnal);
6213 }
6214
6215 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6216 putpkt (rs->buf);
6217
6218 if (target_is_non_stop_p ())
6219 {
6220 /* In non-stop, the stub replies to vCont with "OK". The stop
6221 reply will be reported asynchronously by means of a `%Stop'
6222 notification. */
6223 getpkt (&rs->buf, 0);
6224 if (strcmp (rs->buf.data (), "OK") != 0)
6225 error (_("Unexpected vCont reply in non-stop mode: %s"),
6226 rs->buf.data ());
6227 }
6228
6229 return 1;
6230 }
6231
6232 /* Tell the remote machine to resume. */
6233
6234 void
6235 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6236 {
6237 struct remote_state *rs = get_remote_state ();
6238
6239 /* When connected in non-stop mode, the core resumes threads
6240 individually. Resuming remote threads directly in target_resume
6241 would thus result in sending one packet per thread. Instead, to
6242 minimize roundtrip latency, here we just store the resume
6243 request; the actual remote resumption will be done in
6244 target_commit_resume / remote_commit_resume, where we'll be able
6245 to do vCont action coalescing. */
6246 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6247 {
6248 remote_thread_info *remote_thr;
6249
6250 if (minus_one_ptid == ptid || ptid.is_pid ())
6251 remote_thr = get_remote_thread_info (inferior_ptid);
6252 else
6253 remote_thr = get_remote_thread_info (ptid);
6254
6255 remote_thr->last_resume_step = step;
6256 remote_thr->last_resume_sig = siggnal;
6257 return;
6258 }
6259
6260 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6261 (explained in remote-notif.c:handle_notification) so
6262 remote_notif_process is not called. We need find a place where
6263 it is safe to start a 'vNotif' sequence. It is good to do it
6264 before resuming inferior, because inferior was stopped and no RSP
6265 traffic at that moment. */
6266 if (!target_is_non_stop_p ())
6267 remote_notif_process (rs->notif_state, &notif_client_stop);
6268
6269 rs->last_resume_exec_dir = ::execution_direction;
6270
6271 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6272 if (!remote_resume_with_vcont (ptid, step, siggnal))
6273 remote_resume_with_hc (ptid, step, siggnal);
6274
6275 /* We are about to start executing the inferior, let's register it
6276 with the event loop. NOTE: this is the one place where all the
6277 execution commands end up. We could alternatively do this in each
6278 of the execution commands in infcmd.c. */
6279 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6280 into infcmd.c in order to allow inferior function calls to work
6281 NOT asynchronously. */
6282 if (target_can_async_p ())
6283 target_async (1);
6284
6285 /* We've just told the target to resume. The remote server will
6286 wait for the inferior to stop, and then send a stop reply. In
6287 the mean time, we can't start another command/query ourselves
6288 because the stub wouldn't be ready to process it. This applies
6289 only to the base all-stop protocol, however. In non-stop (which
6290 only supports vCont), the stub replies with an "OK", and is
6291 immediate able to process further serial input. */
6292 if (!target_is_non_stop_p ())
6293 rs->waiting_for_stop_reply = 1;
6294 }
6295
6296 static int is_pending_fork_parent_thread (struct thread_info *thread);
6297
6298 /* Private per-inferior info for target remote processes. */
6299
6300 struct remote_inferior : public private_inferior
6301 {
6302 /* Whether we can send a wildcard vCont for this process. */
6303 bool may_wildcard_vcont = true;
6304 };
6305
6306 /* Get the remote private inferior data associated to INF. */
6307
6308 static remote_inferior *
6309 get_remote_inferior (inferior *inf)
6310 {
6311 if (inf->priv == NULL)
6312 inf->priv.reset (new remote_inferior);
6313
6314 return static_cast<remote_inferior *> (inf->priv.get ());
6315 }
6316
6317 /* Class used to track the construction of a vCont packet in the
6318 outgoing packet buffer. This is used to send multiple vCont
6319 packets if we have more actions than would fit a single packet. */
6320
6321 class vcont_builder
6322 {
6323 public:
6324 explicit vcont_builder (remote_target *remote)
6325 : m_remote (remote)
6326 {
6327 restart ();
6328 }
6329
6330 void flush ();
6331 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6332
6333 private:
6334 void restart ();
6335
6336 /* The remote target. */
6337 remote_target *m_remote;
6338
6339 /* Pointer to the first action. P points here if no action has been
6340 appended yet. */
6341 char *m_first_action;
6342
6343 /* Where the next action will be appended. */
6344 char *m_p;
6345
6346 /* The end of the buffer. Must never write past this. */
6347 char *m_endp;
6348 };
6349
6350 /* Prepare the outgoing buffer for a new vCont packet. */
6351
6352 void
6353 vcont_builder::restart ()
6354 {
6355 struct remote_state *rs = m_remote->get_remote_state ();
6356
6357 m_p = rs->buf.data ();
6358 m_endp = m_p + m_remote->get_remote_packet_size ();
6359 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6360 m_first_action = m_p;
6361 }
6362
6363 /* If the vCont packet being built has any action, send it to the
6364 remote end. */
6365
6366 void
6367 vcont_builder::flush ()
6368 {
6369 struct remote_state *rs;
6370
6371 if (m_p == m_first_action)
6372 return;
6373
6374 rs = m_remote->get_remote_state ();
6375 m_remote->putpkt (rs->buf);
6376 m_remote->getpkt (&rs->buf, 0);
6377 if (strcmp (rs->buf.data (), "OK") != 0)
6378 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6379 }
6380
6381 /* The largest action is range-stepping, with its two addresses. This
6382 is more than sufficient. If a new, bigger action is created, it'll
6383 quickly trigger a failed assertion in append_resumption (and we'll
6384 just bump this). */
6385 #define MAX_ACTION_SIZE 200
6386
6387 /* Append a new vCont action in the outgoing packet being built. If
6388 the action doesn't fit the packet along with previous actions, push
6389 what we've got so far to the remote end and start over a new vCont
6390 packet (with the new action). */
6391
6392 void
6393 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6394 {
6395 char buf[MAX_ACTION_SIZE + 1];
6396
6397 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6398 ptid, step, siggnal);
6399
6400 /* Check whether this new action would fit in the vCont packet along
6401 with previous actions. If not, send what we've got so far and
6402 start a new vCont packet. */
6403 size_t rsize = endp - buf;
6404 if (rsize > m_endp - m_p)
6405 {
6406 flush ();
6407 restart ();
6408
6409 /* Should now fit. */
6410 gdb_assert (rsize <= m_endp - m_p);
6411 }
6412
6413 memcpy (m_p, buf, rsize);
6414 m_p += rsize;
6415 *m_p = '\0';
6416 }
6417
6418 /* to_commit_resume implementation. */
6419
6420 void
6421 remote_target::commit_resume ()
6422 {
6423 int any_process_wildcard;
6424 int may_global_wildcard_vcont;
6425
6426 /* If connected in all-stop mode, we'd send the remote resume
6427 request directly from remote_resume. Likewise if
6428 reverse-debugging, as there are no defined vCont actions for
6429 reverse execution. */
6430 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6431 return;
6432
6433 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6434 instead of resuming all threads of each process individually.
6435 However, if any thread of a process must remain halted, we can't
6436 send wildcard resumes and must send one action per thread.
6437
6438 Care must be taken to not resume threads/processes the server
6439 side already told us are stopped, but the core doesn't know about
6440 yet, because the events are still in the vStopped notification
6441 queue. For example:
6442
6443 #1 => vCont s:p1.1;c
6444 #2 <= OK
6445 #3 <= %Stopped T05 p1.1
6446 #4 => vStopped
6447 #5 <= T05 p1.2
6448 #6 => vStopped
6449 #7 <= OK
6450 #8 (infrun handles the stop for p1.1 and continues stepping)
6451 #9 => vCont s:p1.1;c
6452
6453 The last vCont above would resume thread p1.2 by mistake, because
6454 the server has no idea that the event for p1.2 had not been
6455 handled yet.
6456
6457 The server side must similarly ignore resume actions for the
6458 thread that has a pending %Stopped notification (and any other
6459 threads with events pending), until GDB acks the notification
6460 with vStopped. Otherwise, e.g., the following case is
6461 mishandled:
6462
6463 #1 => g (or any other packet)
6464 #2 <= [registers]
6465 #3 <= %Stopped T05 p1.2
6466 #4 => vCont s:p1.1;c
6467 #5 <= OK
6468
6469 Above, the server must not resume thread p1.2. GDB can't know
6470 that p1.2 stopped until it acks the %Stopped notification, and
6471 since from GDB's perspective all threads should be running, it
6472 sends a "c" action.
6473
6474 Finally, special care must also be given to handling fork/vfork
6475 events. A (v)fork event actually tells us that two processes
6476 stopped -- the parent and the child. Until we follow the fork,
6477 we must not resume the child. Therefore, if we have a pending
6478 fork follow, we must not send a global wildcard resume action
6479 (vCont;c). We can still send process-wide wildcards though. */
6480
6481 /* Start by assuming a global wildcard (vCont;c) is possible. */
6482 may_global_wildcard_vcont = 1;
6483
6484 /* And assume every process is individually wildcard-able too. */
6485 for (inferior *inf : all_non_exited_inferiors ())
6486 {
6487 remote_inferior *priv = get_remote_inferior (inf);
6488
6489 priv->may_wildcard_vcont = true;
6490 }
6491
6492 /* Check for any pending events (not reported or processed yet) and
6493 disable process and global wildcard resumes appropriately. */
6494 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6495
6496 for (thread_info *tp : all_non_exited_threads ())
6497 {
6498 /* If a thread of a process is not meant to be resumed, then we
6499 can't wildcard that process. */
6500 if (!tp->executing)
6501 {
6502 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6503
6504 /* And if we can't wildcard a process, we can't wildcard
6505 everything either. */
6506 may_global_wildcard_vcont = 0;
6507 continue;
6508 }
6509
6510 /* If a thread is the parent of an unfollowed fork, then we
6511 can't do a global wildcard, as that would resume the fork
6512 child. */
6513 if (is_pending_fork_parent_thread (tp))
6514 may_global_wildcard_vcont = 0;
6515 }
6516
6517 /* Now let's build the vCont packet(s). Actions must be appended
6518 from narrower to wider scopes (thread -> process -> global). If
6519 we end up with too many actions for a single packet vcont_builder
6520 flushes the current vCont packet to the remote side and starts a
6521 new one. */
6522 struct vcont_builder vcont_builder (this);
6523
6524 /* Threads first. */
6525 for (thread_info *tp : all_non_exited_threads ())
6526 {
6527 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6528
6529 if (!tp->executing || remote_thr->vcont_resumed)
6530 continue;
6531
6532 gdb_assert (!thread_is_in_step_over_chain (tp));
6533
6534 if (!remote_thr->last_resume_step
6535 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6536 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6537 {
6538 /* We'll send a wildcard resume instead. */
6539 remote_thr->vcont_resumed = 1;
6540 continue;
6541 }
6542
6543 vcont_builder.push_action (tp->ptid,
6544 remote_thr->last_resume_step,
6545 remote_thr->last_resume_sig);
6546 remote_thr->vcont_resumed = 1;
6547 }
6548
6549 /* Now check whether we can send any process-wide wildcard. This is
6550 to avoid sending a global wildcard in the case nothing is
6551 supposed to be resumed. */
6552 any_process_wildcard = 0;
6553
6554 for (inferior *inf : all_non_exited_inferiors ())
6555 {
6556 if (get_remote_inferior (inf)->may_wildcard_vcont)
6557 {
6558 any_process_wildcard = 1;
6559 break;
6560 }
6561 }
6562
6563 if (any_process_wildcard)
6564 {
6565 /* If all processes are wildcard-able, then send a single "c"
6566 action, otherwise, send an "all (-1) threads of process"
6567 continue action for each running process, if any. */
6568 if (may_global_wildcard_vcont)
6569 {
6570 vcont_builder.push_action (minus_one_ptid,
6571 false, GDB_SIGNAL_0);
6572 }
6573 else
6574 {
6575 for (inferior *inf : all_non_exited_inferiors ())
6576 {
6577 if (get_remote_inferior (inf)->may_wildcard_vcont)
6578 {
6579 vcont_builder.push_action (ptid_t (inf->pid),
6580 false, GDB_SIGNAL_0);
6581 }
6582 }
6583 }
6584 }
6585
6586 vcont_builder.flush ();
6587 }
6588
6589 \f
6590
6591 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6592 thread, all threads of a remote process, or all threads of all
6593 processes. */
6594
6595 void
6596 remote_target::remote_stop_ns (ptid_t ptid)
6597 {
6598 struct remote_state *rs = get_remote_state ();
6599 char *p = rs->buf.data ();
6600 char *endp = p + get_remote_packet_size ();
6601
6602 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6603 remote_vcont_probe ();
6604
6605 if (!rs->supports_vCont.t)
6606 error (_("Remote server does not support stopping threads"));
6607
6608 if (ptid == minus_one_ptid
6609 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6610 p += xsnprintf (p, endp - p, "vCont;t");
6611 else
6612 {
6613 ptid_t nptid;
6614
6615 p += xsnprintf (p, endp - p, "vCont;t:");
6616
6617 if (ptid.is_pid ())
6618 /* All (-1) threads of process. */
6619 nptid = ptid_t (ptid.pid (), -1, 0);
6620 else
6621 {
6622 /* Small optimization: if we already have a stop reply for
6623 this thread, no use in telling the stub we want this
6624 stopped. */
6625 if (peek_stop_reply (ptid))
6626 return;
6627
6628 nptid = ptid;
6629 }
6630
6631 write_ptid (p, endp, nptid);
6632 }
6633
6634 /* In non-stop, we get an immediate OK reply. The stop reply will
6635 come in asynchronously by notification. */
6636 putpkt (rs->buf);
6637 getpkt (&rs->buf, 0);
6638 if (strcmp (rs->buf.data (), "OK") != 0)
6639 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid),
6640 rs->buf.data ());
6641 }
6642
6643 /* All-stop version of target_interrupt. Sends a break or a ^C to
6644 interrupt the remote target. It is undefined which thread of which
6645 process reports the interrupt. */
6646
6647 void
6648 remote_target::remote_interrupt_as ()
6649 {
6650 struct remote_state *rs = get_remote_state ();
6651
6652 rs->ctrlc_pending_p = 1;
6653
6654 /* If the inferior is stopped already, but the core didn't know
6655 about it yet, just ignore the request. The cached wait status
6656 will be collected in remote_wait. */
6657 if (rs->cached_wait_status)
6658 return;
6659
6660 /* Send interrupt_sequence to remote target. */
6661 send_interrupt_sequence ();
6662 }
6663
6664 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6665 the remote target. It is undefined which thread of which process
6666 reports the interrupt. Throws an error if the packet is not
6667 supported by the server. */
6668
6669 void
6670 remote_target::remote_interrupt_ns ()
6671 {
6672 struct remote_state *rs = get_remote_state ();
6673 char *p = rs->buf.data ();
6674 char *endp = p + get_remote_packet_size ();
6675
6676 xsnprintf (p, endp - p, "vCtrlC");
6677
6678 /* In non-stop, we get an immediate OK reply. The stop reply will
6679 come in asynchronously by notification. */
6680 putpkt (rs->buf);
6681 getpkt (&rs->buf, 0);
6682
6683 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6684 {
6685 case PACKET_OK:
6686 break;
6687 case PACKET_UNKNOWN:
6688 error (_("No support for interrupting the remote target."));
6689 case PACKET_ERROR:
6690 error (_("Interrupting target failed: %s"), rs->buf.data ());
6691 }
6692 }
6693
6694 /* Implement the to_stop function for the remote targets. */
6695
6696 void
6697 remote_target::stop (ptid_t ptid)
6698 {
6699 if (remote_debug)
6700 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6701
6702 if (target_is_non_stop_p ())
6703 remote_stop_ns (ptid);
6704 else
6705 {
6706 /* We don't currently have a way to transparently pause the
6707 remote target in all-stop mode. Interrupt it instead. */
6708 remote_interrupt_as ();
6709 }
6710 }
6711
6712 /* Implement the to_interrupt function for the remote targets. */
6713
6714 void
6715 remote_target::interrupt ()
6716 {
6717 if (remote_debug)
6718 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6719
6720 if (target_is_non_stop_p ())
6721 remote_interrupt_ns ();
6722 else
6723 remote_interrupt_as ();
6724 }
6725
6726 /* Implement the to_pass_ctrlc function for the remote targets. */
6727
6728 void
6729 remote_target::pass_ctrlc ()
6730 {
6731 struct remote_state *rs = get_remote_state ();
6732
6733 if (remote_debug)
6734 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6735
6736 /* If we're starting up, we're not fully synced yet. Quit
6737 immediately. */
6738 if (rs->starting_up)
6739 quit ();
6740 /* If ^C has already been sent once, offer to disconnect. */
6741 else if (rs->ctrlc_pending_p)
6742 interrupt_query ();
6743 else
6744 target_interrupt ();
6745 }
6746
6747 /* Ask the user what to do when an interrupt is received. */
6748
6749 void
6750 remote_target::interrupt_query ()
6751 {
6752 struct remote_state *rs = get_remote_state ();
6753
6754 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6755 {
6756 if (query (_("The target is not responding to interrupt requests.\n"
6757 "Stop debugging it? ")))
6758 {
6759 remote_unpush_target ();
6760 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6761 }
6762 }
6763 else
6764 {
6765 if (query (_("Interrupted while waiting for the program.\n"
6766 "Give up waiting? ")))
6767 quit ();
6768 }
6769 }
6770
6771 /* Enable/disable target terminal ownership. Most targets can use
6772 terminal groups to control terminal ownership. Remote targets are
6773 different in that explicit transfer of ownership to/from GDB/target
6774 is required. */
6775
6776 void
6777 remote_target::terminal_inferior ()
6778 {
6779 /* NOTE: At this point we could also register our selves as the
6780 recipient of all input. Any characters typed could then be
6781 passed on down to the target. */
6782 }
6783
6784 void
6785 remote_target::terminal_ours ()
6786 {
6787 }
6788
6789 static void
6790 remote_console_output (const char *msg)
6791 {
6792 const char *p;
6793
6794 for (p = msg; p[0] && p[1]; p += 2)
6795 {
6796 char tb[2];
6797 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6798
6799 tb[0] = c;
6800 tb[1] = 0;
6801 fputs_unfiltered (tb, gdb_stdtarg);
6802 }
6803 gdb_flush (gdb_stdtarg);
6804 }
6805
6806 struct stop_reply : public notif_event
6807 {
6808 ~stop_reply ();
6809
6810 /* The identifier of the thread about this event */
6811 ptid_t ptid;
6812
6813 /* The remote state this event is associated with. When the remote
6814 connection, represented by a remote_state object, is closed,
6815 all the associated stop_reply events should be released. */
6816 struct remote_state *rs;
6817
6818 struct target_waitstatus ws;
6819
6820 /* The architecture associated with the expedited registers. */
6821 gdbarch *arch;
6822
6823 /* Expedited registers. This makes remote debugging a bit more
6824 efficient for those targets that provide critical registers as
6825 part of their normal status mechanism (as another roundtrip to
6826 fetch them is avoided). */
6827 std::vector<cached_reg_t> regcache;
6828
6829 enum target_stop_reason stop_reason;
6830
6831 CORE_ADDR watch_data_address;
6832
6833 int core;
6834 };
6835
6836 /* Return the length of the stop reply queue. */
6837
6838 int
6839 remote_target::stop_reply_queue_length ()
6840 {
6841 remote_state *rs = get_remote_state ();
6842 return rs->stop_reply_queue.size ();
6843 }
6844
6845 void
6846 remote_notif_stop_parse (remote_target *remote,
6847 struct notif_client *self, const char *buf,
6848 struct notif_event *event)
6849 {
6850 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6851 }
6852
6853 static void
6854 remote_notif_stop_ack (remote_target *remote,
6855 struct notif_client *self, const char *buf,
6856 struct notif_event *event)
6857 {
6858 struct stop_reply *stop_reply = (struct stop_reply *) event;
6859
6860 /* acknowledge */
6861 putpkt (remote, self->ack_command);
6862
6863 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6864 {
6865 /* We got an unknown stop reply. */
6866 error (_("Unknown stop reply"));
6867 }
6868
6869 remote->push_stop_reply (stop_reply);
6870 }
6871
6872 static int
6873 remote_notif_stop_can_get_pending_events (remote_target *remote,
6874 struct notif_client *self)
6875 {
6876 /* We can't get pending events in remote_notif_process for
6877 notification stop, and we have to do this in remote_wait_ns
6878 instead. If we fetch all queued events from stub, remote stub
6879 may exit and we have no chance to process them back in
6880 remote_wait_ns. */
6881 remote_state *rs = remote->get_remote_state ();
6882 mark_async_event_handler (rs->remote_async_inferior_event_token);
6883 return 0;
6884 }
6885
6886 stop_reply::~stop_reply ()
6887 {
6888 for (cached_reg_t &reg : regcache)
6889 xfree (reg.data);
6890 }
6891
6892 static notif_event_up
6893 remote_notif_stop_alloc_reply ()
6894 {
6895 return notif_event_up (new struct stop_reply ());
6896 }
6897
6898 /* A client of notification Stop. */
6899
6900 struct notif_client notif_client_stop =
6901 {
6902 "Stop",
6903 "vStopped",
6904 remote_notif_stop_parse,
6905 remote_notif_stop_ack,
6906 remote_notif_stop_can_get_pending_events,
6907 remote_notif_stop_alloc_reply,
6908 REMOTE_NOTIF_STOP,
6909 };
6910
6911 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6912 the pid of the process that owns the threads we want to check, or
6913 -1 if we want to check all threads. */
6914
6915 static int
6916 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6917 ptid_t thread_ptid)
6918 {
6919 if (ws->kind == TARGET_WAITKIND_FORKED
6920 || ws->kind == TARGET_WAITKIND_VFORKED)
6921 {
6922 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6923 return 1;
6924 }
6925
6926 return 0;
6927 }
6928
6929 /* Return the thread's pending status used to determine whether the
6930 thread is a fork parent stopped at a fork event. */
6931
6932 static struct target_waitstatus *
6933 thread_pending_fork_status (struct thread_info *thread)
6934 {
6935 if (thread->suspend.waitstatus_pending_p)
6936 return &thread->suspend.waitstatus;
6937 else
6938 return &thread->pending_follow;
6939 }
6940
6941 /* Determine if THREAD is a pending fork parent thread. */
6942
6943 static int
6944 is_pending_fork_parent_thread (struct thread_info *thread)
6945 {
6946 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6947 int pid = -1;
6948
6949 return is_pending_fork_parent (ws, pid, thread->ptid);
6950 }
6951
6952 /* If CONTEXT contains any fork child threads that have not been
6953 reported yet, remove them from the CONTEXT list. If such a
6954 thread exists it is because we are stopped at a fork catchpoint
6955 and have not yet called follow_fork, which will set up the
6956 host-side data structures for the new process. */
6957
6958 void
6959 remote_target::remove_new_fork_children (threads_listing_context *context)
6960 {
6961 int pid = -1;
6962 struct notif_client *notif = &notif_client_stop;
6963
6964 /* For any threads stopped at a fork event, remove the corresponding
6965 fork child threads from the CONTEXT list. */
6966 for (thread_info *thread : all_non_exited_threads ())
6967 {
6968 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6969
6970 if (is_pending_fork_parent (ws, pid, thread->ptid))
6971 context->remove_thread (ws->value.related_pid);
6972 }
6973
6974 /* Check for any pending fork events (not reported or processed yet)
6975 in process PID and remove those fork child threads from the
6976 CONTEXT list as well. */
6977 remote_notif_get_pending_events (notif);
6978 for (auto &event : get_remote_state ()->stop_reply_queue)
6979 if (event->ws.kind == TARGET_WAITKIND_FORKED
6980 || event->ws.kind == TARGET_WAITKIND_VFORKED
6981 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6982 context->remove_thread (event->ws.value.related_pid);
6983 }
6984
6985 /* Check whether any event pending in the vStopped queue would prevent
6986 a global or process wildcard vCont action. Clear
6987 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6988 and clear the event inferior's may_wildcard_vcont flag if we can't
6989 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6990
6991 void
6992 remote_target::check_pending_events_prevent_wildcard_vcont
6993 (int *may_global_wildcard)
6994 {
6995 struct notif_client *notif = &notif_client_stop;
6996
6997 remote_notif_get_pending_events (notif);
6998 for (auto &event : get_remote_state ()->stop_reply_queue)
6999 {
7000 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7001 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7002 continue;
7003
7004 if (event->ws.kind == TARGET_WAITKIND_FORKED
7005 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7006 *may_global_wildcard = 0;
7007
7008 struct inferior *inf = find_inferior_ptid (event->ptid);
7009
7010 /* This may be the first time we heard about this process.
7011 Regardless, we must not do a global wildcard resume, otherwise
7012 we'd resume this process too. */
7013 *may_global_wildcard = 0;
7014 if (inf != NULL)
7015 get_remote_inferior (inf)->may_wildcard_vcont = false;
7016 }
7017 }
7018
7019 /* Discard all pending stop replies of inferior INF. */
7020
7021 void
7022 remote_target::discard_pending_stop_replies (struct inferior *inf)
7023 {
7024 struct stop_reply *reply;
7025 struct remote_state *rs = get_remote_state ();
7026 struct remote_notif_state *rns = rs->notif_state;
7027
7028 /* This function can be notified when an inferior exists. When the
7029 target is not remote, the notification state is NULL. */
7030 if (rs->remote_desc == NULL)
7031 return;
7032
7033 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7034
7035 /* Discard the in-flight notification. */
7036 if (reply != NULL && reply->ptid.pid () == inf->pid)
7037 {
7038 delete reply;
7039 rns->pending_event[notif_client_stop.id] = NULL;
7040 }
7041
7042 /* Discard the stop replies we have already pulled with
7043 vStopped. */
7044 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7045 rs->stop_reply_queue.end (),
7046 [=] (const stop_reply_up &event)
7047 {
7048 return event->ptid.pid () == inf->pid;
7049 });
7050 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7051 }
7052
7053 /* Discard the stop replies for RS in stop_reply_queue. */
7054
7055 void
7056 remote_target::discard_pending_stop_replies_in_queue ()
7057 {
7058 remote_state *rs = get_remote_state ();
7059
7060 /* Discard the stop replies we have already pulled with
7061 vStopped. */
7062 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7063 rs->stop_reply_queue.end (),
7064 [=] (const stop_reply_up &event)
7065 {
7066 return event->rs == rs;
7067 });
7068 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7069 }
7070
7071 /* Remove the first reply in 'stop_reply_queue' which matches
7072 PTID. */
7073
7074 struct stop_reply *
7075 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7076 {
7077 remote_state *rs = get_remote_state ();
7078
7079 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7080 rs->stop_reply_queue.end (),
7081 [=] (const stop_reply_up &event)
7082 {
7083 return event->ptid.matches (ptid);
7084 });
7085 struct stop_reply *result;
7086 if (iter == rs->stop_reply_queue.end ())
7087 result = nullptr;
7088 else
7089 {
7090 result = iter->release ();
7091 rs->stop_reply_queue.erase (iter);
7092 }
7093
7094 if (notif_debug)
7095 fprintf_unfiltered (gdb_stdlog,
7096 "notif: discard queued event: 'Stop' in %s\n",
7097 target_pid_to_str (ptid));
7098
7099 return result;
7100 }
7101
7102 /* Look for a queued stop reply belonging to PTID. If one is found,
7103 remove it from the queue, and return it. Returns NULL if none is
7104 found. If there are still queued events left to process, tell the
7105 event loop to get back to target_wait soon. */
7106
7107 struct stop_reply *
7108 remote_target::queued_stop_reply (ptid_t ptid)
7109 {
7110 remote_state *rs = get_remote_state ();
7111 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7112
7113 if (!rs->stop_reply_queue.empty ())
7114 {
7115 /* There's still at least an event left. */
7116 mark_async_event_handler (rs->remote_async_inferior_event_token);
7117 }
7118
7119 return r;
7120 }
7121
7122 /* Push a fully parsed stop reply in the stop reply queue. Since we
7123 know that we now have at least one queued event left to pass to the
7124 core side, tell the event loop to get back to target_wait soon. */
7125
7126 void
7127 remote_target::push_stop_reply (struct stop_reply *new_event)
7128 {
7129 remote_state *rs = get_remote_state ();
7130 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7131
7132 if (notif_debug)
7133 fprintf_unfiltered (gdb_stdlog,
7134 "notif: push 'Stop' %s to queue %d\n",
7135 target_pid_to_str (new_event->ptid),
7136 int (rs->stop_reply_queue.size ()));
7137
7138 mark_async_event_handler (rs->remote_async_inferior_event_token);
7139 }
7140
7141 /* Returns true if we have a stop reply for PTID. */
7142
7143 int
7144 remote_target::peek_stop_reply (ptid_t ptid)
7145 {
7146 remote_state *rs = get_remote_state ();
7147 for (auto &event : rs->stop_reply_queue)
7148 if (ptid == event->ptid
7149 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7150 return 1;
7151 return 0;
7152 }
7153
7154 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7155 starting with P and ending with PEND matches PREFIX. */
7156
7157 static int
7158 strprefix (const char *p, const char *pend, const char *prefix)
7159 {
7160 for ( ; p < pend; p++, prefix++)
7161 if (*p != *prefix)
7162 return 0;
7163 return *prefix == '\0';
7164 }
7165
7166 /* Parse the stop reply in BUF. Either the function succeeds, and the
7167 result is stored in EVENT, or throws an error. */
7168
7169 void
7170 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7171 {
7172 remote_arch_state *rsa = NULL;
7173 ULONGEST addr;
7174 const char *p;
7175 int skipregs = 0;
7176
7177 event->ptid = null_ptid;
7178 event->rs = get_remote_state ();
7179 event->ws.kind = TARGET_WAITKIND_IGNORE;
7180 event->ws.value.integer = 0;
7181 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7182 event->regcache.clear ();
7183 event->core = -1;
7184
7185 switch (buf[0])
7186 {
7187 case 'T': /* Status with PC, SP, FP, ... */
7188 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7189 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7190 ss = signal number
7191 n... = register number
7192 r... = register contents
7193 */
7194
7195 p = &buf[3]; /* after Txx */
7196 while (*p)
7197 {
7198 const char *p1;
7199 int fieldsize;
7200
7201 p1 = strchr (p, ':');
7202 if (p1 == NULL)
7203 error (_("Malformed packet(a) (missing colon): %s\n\
7204 Packet: '%s'\n"),
7205 p, buf);
7206 if (p == p1)
7207 error (_("Malformed packet(a) (missing register number): %s\n\
7208 Packet: '%s'\n"),
7209 p, buf);
7210
7211 /* Some "registers" are actually extended stop information.
7212 Note if you're adding a new entry here: GDB 7.9 and
7213 earlier assume that all register "numbers" that start
7214 with an hex digit are real register numbers. Make sure
7215 the server only sends such a packet if it knows the
7216 client understands it. */
7217
7218 if (strprefix (p, p1, "thread"))
7219 event->ptid = read_ptid (++p1, &p);
7220 else if (strprefix (p, p1, "syscall_entry"))
7221 {
7222 ULONGEST sysno;
7223
7224 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7225 p = unpack_varlen_hex (++p1, &sysno);
7226 event->ws.value.syscall_number = (int) sysno;
7227 }
7228 else if (strprefix (p, p1, "syscall_return"))
7229 {
7230 ULONGEST sysno;
7231
7232 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7233 p = unpack_varlen_hex (++p1, &sysno);
7234 event->ws.value.syscall_number = (int) sysno;
7235 }
7236 else if (strprefix (p, p1, "watch")
7237 || strprefix (p, p1, "rwatch")
7238 || strprefix (p, p1, "awatch"))
7239 {
7240 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7241 p = unpack_varlen_hex (++p1, &addr);
7242 event->watch_data_address = (CORE_ADDR) addr;
7243 }
7244 else if (strprefix (p, p1, "swbreak"))
7245 {
7246 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7247
7248 /* Make sure the stub doesn't forget to indicate support
7249 with qSupported. */
7250 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7251 error (_("Unexpected swbreak stop reason"));
7252
7253 /* The value part is documented as "must be empty",
7254 though we ignore it, in case we ever decide to make
7255 use of it in a backward compatible way. */
7256 p = strchrnul (p1 + 1, ';');
7257 }
7258 else if (strprefix (p, p1, "hwbreak"))
7259 {
7260 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7261
7262 /* Make sure the stub doesn't forget to indicate support
7263 with qSupported. */
7264 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7265 error (_("Unexpected hwbreak stop reason"));
7266
7267 /* See above. */
7268 p = strchrnul (p1 + 1, ';');
7269 }
7270 else if (strprefix (p, p1, "library"))
7271 {
7272 event->ws.kind = TARGET_WAITKIND_LOADED;
7273 p = strchrnul (p1 + 1, ';');
7274 }
7275 else if (strprefix (p, p1, "replaylog"))
7276 {
7277 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7278 /* p1 will indicate "begin" or "end", but it makes
7279 no difference for now, so ignore it. */
7280 p = strchrnul (p1 + 1, ';');
7281 }
7282 else if (strprefix (p, p1, "core"))
7283 {
7284 ULONGEST c;
7285
7286 p = unpack_varlen_hex (++p1, &c);
7287 event->core = c;
7288 }
7289 else if (strprefix (p, p1, "fork"))
7290 {
7291 event->ws.value.related_pid = read_ptid (++p1, &p);
7292 event->ws.kind = TARGET_WAITKIND_FORKED;
7293 }
7294 else if (strprefix (p, p1, "vfork"))
7295 {
7296 event->ws.value.related_pid = read_ptid (++p1, &p);
7297 event->ws.kind = TARGET_WAITKIND_VFORKED;
7298 }
7299 else if (strprefix (p, p1, "vforkdone"))
7300 {
7301 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7302 p = strchrnul (p1 + 1, ';');
7303 }
7304 else if (strprefix (p, p1, "exec"))
7305 {
7306 ULONGEST ignored;
7307 int pathlen;
7308
7309 /* Determine the length of the execd pathname. */
7310 p = unpack_varlen_hex (++p1, &ignored);
7311 pathlen = (p - p1) / 2;
7312
7313 /* Save the pathname for event reporting and for
7314 the next run command. */
7315 gdb::unique_xmalloc_ptr<char[]> pathname
7316 ((char *) xmalloc (pathlen + 1));
7317 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7318 pathname[pathlen] = '\0';
7319
7320 /* This is freed during event handling. */
7321 event->ws.value.execd_pathname = pathname.release ();
7322 event->ws.kind = TARGET_WAITKIND_EXECD;
7323
7324 /* Skip the registers included in this packet, since
7325 they may be for an architecture different from the
7326 one used by the original program. */
7327 skipregs = 1;
7328 }
7329 else if (strprefix (p, p1, "create"))
7330 {
7331 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7332 p = strchrnul (p1 + 1, ';');
7333 }
7334 else
7335 {
7336 ULONGEST pnum;
7337 const char *p_temp;
7338
7339 if (skipregs)
7340 {
7341 p = strchrnul (p1 + 1, ';');
7342 p++;
7343 continue;
7344 }
7345
7346 /* Maybe a real ``P'' register number. */
7347 p_temp = unpack_varlen_hex (p, &pnum);
7348 /* If the first invalid character is the colon, we got a
7349 register number. Otherwise, it's an unknown stop
7350 reason. */
7351 if (p_temp == p1)
7352 {
7353 /* If we haven't parsed the event's thread yet, find
7354 it now, in order to find the architecture of the
7355 reported expedited registers. */
7356 if (event->ptid == null_ptid)
7357 {
7358 const char *thr = strstr (p1 + 1, ";thread:");
7359 if (thr != NULL)
7360 event->ptid = read_ptid (thr + strlen (";thread:"),
7361 NULL);
7362 else
7363 {
7364 /* Either the current thread hasn't changed,
7365 or the inferior is not multi-threaded.
7366 The event must be for the thread we last
7367 set as (or learned as being) current. */
7368 event->ptid = event->rs->general_thread;
7369 }
7370 }
7371
7372 if (rsa == NULL)
7373 {
7374 inferior *inf = (event->ptid == null_ptid
7375 ? NULL
7376 : find_inferior_ptid (event->ptid));
7377 /* If this is the first time we learn anything
7378 about this process, skip the registers
7379 included in this packet, since we don't yet
7380 know which architecture to use to parse them.
7381 We'll determine the architecture later when
7382 we process the stop reply and retrieve the
7383 target description, via
7384 remote_notice_new_inferior ->
7385 post_create_inferior. */
7386 if (inf == NULL)
7387 {
7388 p = strchrnul (p1 + 1, ';');
7389 p++;
7390 continue;
7391 }
7392
7393 event->arch = inf->gdbarch;
7394 rsa = event->rs->get_remote_arch_state (event->arch);
7395 }
7396
7397 packet_reg *reg
7398 = packet_reg_from_pnum (event->arch, rsa, pnum);
7399 cached_reg_t cached_reg;
7400
7401 if (reg == NULL)
7402 error (_("Remote sent bad register number %s: %s\n\
7403 Packet: '%s'\n"),
7404 hex_string (pnum), p, buf);
7405
7406 cached_reg.num = reg->regnum;
7407 cached_reg.data = (gdb_byte *)
7408 xmalloc (register_size (event->arch, reg->regnum));
7409
7410 p = p1 + 1;
7411 fieldsize = hex2bin (p, cached_reg.data,
7412 register_size (event->arch, reg->regnum));
7413 p += 2 * fieldsize;
7414 if (fieldsize < register_size (event->arch, reg->regnum))
7415 warning (_("Remote reply is too short: %s"), buf);
7416
7417 event->regcache.push_back (cached_reg);
7418 }
7419 else
7420 {
7421 /* Not a number. Silently skip unknown optional
7422 info. */
7423 p = strchrnul (p1 + 1, ';');
7424 }
7425 }
7426
7427 if (*p != ';')
7428 error (_("Remote register badly formatted: %s\nhere: %s"),
7429 buf, p);
7430 ++p;
7431 }
7432
7433 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7434 break;
7435
7436 /* fall through */
7437 case 'S': /* Old style status, just signal only. */
7438 {
7439 int sig;
7440
7441 event->ws.kind = TARGET_WAITKIND_STOPPED;
7442 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7443 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7444 event->ws.value.sig = (enum gdb_signal) sig;
7445 else
7446 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7447 }
7448 break;
7449 case 'w': /* Thread exited. */
7450 {
7451 ULONGEST value;
7452
7453 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7454 p = unpack_varlen_hex (&buf[1], &value);
7455 event->ws.value.integer = value;
7456 if (*p != ';')
7457 error (_("stop reply packet badly formatted: %s"), buf);
7458 event->ptid = read_ptid (++p, NULL);
7459 break;
7460 }
7461 case 'W': /* Target exited. */
7462 case 'X':
7463 {
7464 int pid;
7465 ULONGEST value;
7466
7467 /* GDB used to accept only 2 hex chars here. Stubs should
7468 only send more if they detect GDB supports multi-process
7469 support. */
7470 p = unpack_varlen_hex (&buf[1], &value);
7471
7472 if (buf[0] == 'W')
7473 {
7474 /* The remote process exited. */
7475 event->ws.kind = TARGET_WAITKIND_EXITED;
7476 event->ws.value.integer = value;
7477 }
7478 else
7479 {
7480 /* The remote process exited with a signal. */
7481 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7482 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7483 event->ws.value.sig = (enum gdb_signal) value;
7484 else
7485 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7486 }
7487
7488 /* If no process is specified, assume inferior_ptid. */
7489 pid = inferior_ptid.pid ();
7490 if (*p == '\0')
7491 ;
7492 else if (*p == ';')
7493 {
7494 p++;
7495
7496 if (*p == '\0')
7497 ;
7498 else if (startswith (p, "process:"))
7499 {
7500 ULONGEST upid;
7501
7502 p += sizeof ("process:") - 1;
7503 unpack_varlen_hex (p, &upid);
7504 pid = upid;
7505 }
7506 else
7507 error (_("unknown stop reply packet: %s"), buf);
7508 }
7509 else
7510 error (_("unknown stop reply packet: %s"), buf);
7511 event->ptid = ptid_t (pid);
7512 }
7513 break;
7514 case 'N':
7515 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7516 event->ptid = minus_one_ptid;
7517 break;
7518 }
7519
7520 if (target_is_non_stop_p () && event->ptid == null_ptid)
7521 error (_("No process or thread specified in stop reply: %s"), buf);
7522 }
7523
7524 /* When the stub wants to tell GDB about a new notification reply, it
7525 sends a notification (%Stop, for example). Those can come it at
7526 any time, hence, we have to make sure that any pending
7527 putpkt/getpkt sequence we're making is finished, before querying
7528 the stub for more events with the corresponding ack command
7529 (vStopped, for example). E.g., if we started a vStopped sequence
7530 immediately upon receiving the notification, something like this
7531 could happen:
7532
7533 1.1) --> Hg 1
7534 1.2) <-- OK
7535 1.3) --> g
7536 1.4) <-- %Stop
7537 1.5) --> vStopped
7538 1.6) <-- (registers reply to step #1.3)
7539
7540 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7541 query.
7542
7543 To solve this, whenever we parse a %Stop notification successfully,
7544 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7545 doing whatever we were doing:
7546
7547 2.1) --> Hg 1
7548 2.2) <-- OK
7549 2.3) --> g
7550 2.4) <-- %Stop
7551 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7552 2.5) <-- (registers reply to step #2.3)
7553
7554 Eventualy after step #2.5, we return to the event loop, which
7555 notices there's an event on the
7556 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7557 associated callback --- the function below. At this point, we're
7558 always safe to start a vStopped sequence. :
7559
7560 2.6) --> vStopped
7561 2.7) <-- T05 thread:2
7562 2.8) --> vStopped
7563 2.9) --> OK
7564 */
7565
7566 void
7567 remote_target::remote_notif_get_pending_events (notif_client *nc)
7568 {
7569 struct remote_state *rs = get_remote_state ();
7570
7571 if (rs->notif_state->pending_event[nc->id] != NULL)
7572 {
7573 if (notif_debug)
7574 fprintf_unfiltered (gdb_stdlog,
7575 "notif: process: '%s' ack pending event\n",
7576 nc->name);
7577
7578 /* acknowledge */
7579 nc->ack (this, nc, rs->buf.data (),
7580 rs->notif_state->pending_event[nc->id]);
7581 rs->notif_state->pending_event[nc->id] = NULL;
7582
7583 while (1)
7584 {
7585 getpkt (&rs->buf, 0);
7586 if (strcmp (rs->buf.data (), "OK") == 0)
7587 break;
7588 else
7589 remote_notif_ack (this, nc, rs->buf.data ());
7590 }
7591 }
7592 else
7593 {
7594 if (notif_debug)
7595 fprintf_unfiltered (gdb_stdlog,
7596 "notif: process: '%s' no pending reply\n",
7597 nc->name);
7598 }
7599 }
7600
7601 /* Wrapper around remote_target::remote_notif_get_pending_events to
7602 avoid having to export the whole remote_target class. */
7603
7604 void
7605 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7606 {
7607 remote->remote_notif_get_pending_events (nc);
7608 }
7609
7610 /* Called when it is decided that STOP_REPLY holds the info of the
7611 event that is to be returned to the core. This function always
7612 destroys STOP_REPLY. */
7613
7614 ptid_t
7615 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7616 struct target_waitstatus *status)
7617 {
7618 ptid_t ptid;
7619
7620 *status = stop_reply->ws;
7621 ptid = stop_reply->ptid;
7622
7623 /* If no thread/process was reported by the stub, assume the current
7624 inferior. */
7625 if (ptid == null_ptid)
7626 ptid = inferior_ptid;
7627
7628 if (status->kind != TARGET_WAITKIND_EXITED
7629 && status->kind != TARGET_WAITKIND_SIGNALLED
7630 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7631 {
7632 /* Expedited registers. */
7633 if (!stop_reply->regcache.empty ())
7634 {
7635 struct regcache *regcache
7636 = get_thread_arch_regcache (ptid, stop_reply->arch);
7637
7638 for (cached_reg_t &reg : stop_reply->regcache)
7639 {
7640 regcache->raw_supply (reg.num, reg.data);
7641 xfree (reg.data);
7642 }
7643
7644 stop_reply->regcache.clear ();
7645 }
7646
7647 remote_notice_new_inferior (ptid, 0);
7648 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7649 remote_thr->core = stop_reply->core;
7650 remote_thr->stop_reason = stop_reply->stop_reason;
7651 remote_thr->watch_data_address = stop_reply->watch_data_address;
7652 remote_thr->vcont_resumed = 0;
7653 }
7654
7655 delete stop_reply;
7656 return ptid;
7657 }
7658
7659 /* The non-stop mode version of target_wait. */
7660
7661 ptid_t
7662 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7663 {
7664 struct remote_state *rs = get_remote_state ();
7665 struct stop_reply *stop_reply;
7666 int ret;
7667 int is_notif = 0;
7668
7669 /* If in non-stop mode, get out of getpkt even if a
7670 notification is received. */
7671
7672 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7673 while (1)
7674 {
7675 if (ret != -1 && !is_notif)
7676 switch (rs->buf[0])
7677 {
7678 case 'E': /* Error of some sort. */
7679 /* We're out of sync with the target now. Did it continue
7680 or not? We can't tell which thread it was in non-stop,
7681 so just ignore this. */
7682 warning (_("Remote failure reply: %s"), rs->buf.data ());
7683 break;
7684 case 'O': /* Console output. */
7685 remote_console_output (&rs->buf[1]);
7686 break;
7687 default:
7688 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7689 break;
7690 }
7691
7692 /* Acknowledge a pending stop reply that may have arrived in the
7693 mean time. */
7694 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7695 remote_notif_get_pending_events (&notif_client_stop);
7696
7697 /* If indeed we noticed a stop reply, we're done. */
7698 stop_reply = queued_stop_reply (ptid);
7699 if (stop_reply != NULL)
7700 return process_stop_reply (stop_reply, status);
7701
7702 /* Still no event. If we're just polling for an event, then
7703 return to the event loop. */
7704 if (options & TARGET_WNOHANG)
7705 {
7706 status->kind = TARGET_WAITKIND_IGNORE;
7707 return minus_one_ptid;
7708 }
7709
7710 /* Otherwise do a blocking wait. */
7711 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7712 }
7713 }
7714
7715 /* Wait until the remote machine stops, then return, storing status in
7716 STATUS just as `wait' would. */
7717
7718 ptid_t
7719 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7720 {
7721 struct remote_state *rs = get_remote_state ();
7722 ptid_t event_ptid = null_ptid;
7723 char *buf;
7724 struct stop_reply *stop_reply;
7725
7726 again:
7727
7728 status->kind = TARGET_WAITKIND_IGNORE;
7729 status->value.integer = 0;
7730
7731 stop_reply = queued_stop_reply (ptid);
7732 if (stop_reply != NULL)
7733 return process_stop_reply (stop_reply, status);
7734
7735 if (rs->cached_wait_status)
7736 /* Use the cached wait status, but only once. */
7737 rs->cached_wait_status = 0;
7738 else
7739 {
7740 int ret;
7741 int is_notif;
7742 int forever = ((options & TARGET_WNOHANG) == 0
7743 && rs->wait_forever_enabled_p);
7744
7745 if (!rs->waiting_for_stop_reply)
7746 {
7747 status->kind = TARGET_WAITKIND_NO_RESUMED;
7748 return minus_one_ptid;
7749 }
7750
7751 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7752 _never_ wait for ever -> test on target_is_async_p().
7753 However, before we do that we need to ensure that the caller
7754 knows how to take the target into/out of async mode. */
7755 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7756
7757 /* GDB gets a notification. Return to core as this event is
7758 not interesting. */
7759 if (ret != -1 && is_notif)
7760 return minus_one_ptid;
7761
7762 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7763 return minus_one_ptid;
7764 }
7765
7766 buf = rs->buf.data ();
7767
7768 /* Assume that the target has acknowledged Ctrl-C unless we receive
7769 an 'F' or 'O' packet. */
7770 if (buf[0] != 'F' && buf[0] != 'O')
7771 rs->ctrlc_pending_p = 0;
7772
7773 switch (buf[0])
7774 {
7775 case 'E': /* Error of some sort. */
7776 /* We're out of sync with the target now. Did it continue or
7777 not? Not is more likely, so report a stop. */
7778 rs->waiting_for_stop_reply = 0;
7779
7780 warning (_("Remote failure reply: %s"), buf);
7781 status->kind = TARGET_WAITKIND_STOPPED;
7782 status->value.sig = GDB_SIGNAL_0;
7783 break;
7784 case 'F': /* File-I/O request. */
7785 /* GDB may access the inferior memory while handling the File-I/O
7786 request, but we don't want GDB accessing memory while waiting
7787 for a stop reply. See the comments in putpkt_binary. Set
7788 waiting_for_stop_reply to 0 temporarily. */
7789 rs->waiting_for_stop_reply = 0;
7790 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7791 rs->ctrlc_pending_p = 0;
7792 /* GDB handled the File-I/O request, and the target is running
7793 again. Keep waiting for events. */
7794 rs->waiting_for_stop_reply = 1;
7795 break;
7796 case 'N': case 'T': case 'S': case 'X': case 'W':
7797 {
7798 /* There is a stop reply to handle. */
7799 rs->waiting_for_stop_reply = 0;
7800
7801 stop_reply
7802 = (struct stop_reply *) remote_notif_parse (this,
7803 &notif_client_stop,
7804 rs->buf.data ());
7805
7806 event_ptid = process_stop_reply (stop_reply, status);
7807 break;
7808 }
7809 case 'O': /* Console output. */
7810 remote_console_output (buf + 1);
7811 break;
7812 case '\0':
7813 if (rs->last_sent_signal != GDB_SIGNAL_0)
7814 {
7815 /* Zero length reply means that we tried 'S' or 'C' and the
7816 remote system doesn't support it. */
7817 target_terminal::ours_for_output ();
7818 printf_filtered
7819 ("Can't send signals to this remote system. %s not sent.\n",
7820 gdb_signal_to_name (rs->last_sent_signal));
7821 rs->last_sent_signal = GDB_SIGNAL_0;
7822 target_terminal::inferior ();
7823
7824 strcpy (buf, rs->last_sent_step ? "s" : "c");
7825 putpkt (buf);
7826 break;
7827 }
7828 /* fallthrough */
7829 default:
7830 warning (_("Invalid remote reply: %s"), buf);
7831 break;
7832 }
7833
7834 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7835 return minus_one_ptid;
7836 else if (status->kind == TARGET_WAITKIND_IGNORE)
7837 {
7838 /* Nothing interesting happened. If we're doing a non-blocking
7839 poll, we're done. Otherwise, go back to waiting. */
7840 if (options & TARGET_WNOHANG)
7841 return minus_one_ptid;
7842 else
7843 goto again;
7844 }
7845 else if (status->kind != TARGET_WAITKIND_EXITED
7846 && status->kind != TARGET_WAITKIND_SIGNALLED)
7847 {
7848 if (event_ptid != null_ptid)
7849 record_currthread (rs, event_ptid);
7850 else
7851 event_ptid = inferior_ptid;
7852 }
7853 else
7854 /* A process exit. Invalidate our notion of current thread. */
7855 record_currthread (rs, minus_one_ptid);
7856
7857 return event_ptid;
7858 }
7859
7860 /* Wait until the remote machine stops, then return, storing status in
7861 STATUS just as `wait' would. */
7862
7863 ptid_t
7864 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7865 {
7866 ptid_t event_ptid;
7867
7868 if (target_is_non_stop_p ())
7869 event_ptid = wait_ns (ptid, status, options);
7870 else
7871 event_ptid = wait_as (ptid, status, options);
7872
7873 if (target_is_async_p ())
7874 {
7875 remote_state *rs = get_remote_state ();
7876
7877 /* If there are are events left in the queue tell the event loop
7878 to return here. */
7879 if (!rs->stop_reply_queue.empty ())
7880 mark_async_event_handler (rs->remote_async_inferior_event_token);
7881 }
7882
7883 return event_ptid;
7884 }
7885
7886 /* Fetch a single register using a 'p' packet. */
7887
7888 int
7889 remote_target::fetch_register_using_p (struct regcache *regcache,
7890 packet_reg *reg)
7891 {
7892 struct gdbarch *gdbarch = regcache->arch ();
7893 struct remote_state *rs = get_remote_state ();
7894 char *buf, *p;
7895 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7896 int i;
7897
7898 if (packet_support (PACKET_p) == PACKET_DISABLE)
7899 return 0;
7900
7901 if (reg->pnum == -1)
7902 return 0;
7903
7904 p = rs->buf.data ();
7905 *p++ = 'p';
7906 p += hexnumstr (p, reg->pnum);
7907 *p++ = '\0';
7908 putpkt (rs->buf);
7909 getpkt (&rs->buf, 0);
7910
7911 buf = rs->buf.data ();
7912
7913 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
7914 {
7915 case PACKET_OK:
7916 break;
7917 case PACKET_UNKNOWN:
7918 return 0;
7919 case PACKET_ERROR:
7920 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7921 gdbarch_register_name (regcache->arch (),
7922 reg->regnum),
7923 buf);
7924 }
7925
7926 /* If this register is unfetchable, tell the regcache. */
7927 if (buf[0] == 'x')
7928 {
7929 regcache->raw_supply (reg->regnum, NULL);
7930 return 1;
7931 }
7932
7933 /* Otherwise, parse and supply the value. */
7934 p = buf;
7935 i = 0;
7936 while (p[0] != 0)
7937 {
7938 if (p[1] == 0)
7939 error (_("fetch_register_using_p: early buf termination"));
7940
7941 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7942 p += 2;
7943 }
7944 regcache->raw_supply (reg->regnum, regp);
7945 return 1;
7946 }
7947
7948 /* Fetch the registers included in the target's 'g' packet. */
7949
7950 int
7951 remote_target::send_g_packet ()
7952 {
7953 struct remote_state *rs = get_remote_state ();
7954 int buf_len;
7955
7956 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
7957 putpkt (rs->buf);
7958 getpkt (&rs->buf, 0);
7959 if (packet_check_result (rs->buf) == PACKET_ERROR)
7960 error (_("Could not read registers; remote failure reply '%s'"),
7961 rs->buf.data ());
7962
7963 /* We can get out of synch in various cases. If the first character
7964 in the buffer is not a hex character, assume that has happened
7965 and try to fetch another packet to read. */
7966 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7967 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7968 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7969 && rs->buf[0] != 'x') /* New: unavailable register value. */
7970 {
7971 if (remote_debug)
7972 fprintf_unfiltered (gdb_stdlog,
7973 "Bad register packet; fetching a new packet\n");
7974 getpkt (&rs->buf, 0);
7975 }
7976
7977 buf_len = strlen (rs->buf.data ());
7978
7979 /* Sanity check the received packet. */
7980 if (buf_len % 2 != 0)
7981 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
7982
7983 return buf_len / 2;
7984 }
7985
7986 void
7987 remote_target::process_g_packet (struct regcache *regcache)
7988 {
7989 struct gdbarch *gdbarch = regcache->arch ();
7990 struct remote_state *rs = get_remote_state ();
7991 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
7992 int i, buf_len;
7993 char *p;
7994 char *regs;
7995
7996 buf_len = strlen (rs->buf.data ());
7997
7998 /* Further sanity checks, with knowledge of the architecture. */
7999 if (buf_len > 2 * rsa->sizeof_g_packet)
8000 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8001 "bytes): %s"),
8002 rsa->sizeof_g_packet, buf_len / 2,
8003 rs->buf.data ());
8004
8005 /* Save the size of the packet sent to us by the target. It is used
8006 as a heuristic when determining the max size of packets that the
8007 target can safely receive. */
8008 if (rsa->actual_register_packet_size == 0)
8009 rsa->actual_register_packet_size = buf_len;
8010
8011 /* If this is smaller than we guessed the 'g' packet would be,
8012 update our records. A 'g' reply that doesn't include a register's
8013 value implies either that the register is not available, or that
8014 the 'p' packet must be used. */
8015 if (buf_len < 2 * rsa->sizeof_g_packet)
8016 {
8017 long sizeof_g_packet = buf_len / 2;
8018
8019 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8020 {
8021 long offset = rsa->regs[i].offset;
8022 long reg_size = register_size (gdbarch, i);
8023
8024 if (rsa->regs[i].pnum == -1)
8025 continue;
8026
8027 if (offset >= sizeof_g_packet)
8028 rsa->regs[i].in_g_packet = 0;
8029 else if (offset + reg_size > sizeof_g_packet)
8030 error (_("Truncated register %d in remote 'g' packet"), i);
8031 else
8032 rsa->regs[i].in_g_packet = 1;
8033 }
8034
8035 /* Looks valid enough, we can assume this is the correct length
8036 for a 'g' packet. It's important not to adjust
8037 rsa->sizeof_g_packet if we have truncated registers otherwise
8038 this "if" won't be run the next time the method is called
8039 with a packet of the same size and one of the internal errors
8040 below will trigger instead. */
8041 rsa->sizeof_g_packet = sizeof_g_packet;
8042 }
8043
8044 regs = (char *) alloca (rsa->sizeof_g_packet);
8045
8046 /* Unimplemented registers read as all bits zero. */
8047 memset (regs, 0, rsa->sizeof_g_packet);
8048
8049 /* Reply describes registers byte by byte, each byte encoded as two
8050 hex characters. Suck them all up, then supply them to the
8051 register cacheing/storage mechanism. */
8052
8053 p = rs->buf.data ();
8054 for (i = 0; i < rsa->sizeof_g_packet; i++)
8055 {
8056 if (p[0] == 0 || p[1] == 0)
8057 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8058 internal_error (__FILE__, __LINE__,
8059 _("unexpected end of 'g' packet reply"));
8060
8061 if (p[0] == 'x' && p[1] == 'x')
8062 regs[i] = 0; /* 'x' */
8063 else
8064 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8065 p += 2;
8066 }
8067
8068 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8069 {
8070 struct packet_reg *r = &rsa->regs[i];
8071 long reg_size = register_size (gdbarch, i);
8072
8073 if (r->in_g_packet)
8074 {
8075 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8076 /* This shouldn't happen - we adjusted in_g_packet above. */
8077 internal_error (__FILE__, __LINE__,
8078 _("unexpected end of 'g' packet reply"));
8079 else if (rs->buf[r->offset * 2] == 'x')
8080 {
8081 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8082 /* The register isn't available, mark it as such (at
8083 the same time setting the value to zero). */
8084 regcache->raw_supply (r->regnum, NULL);
8085 }
8086 else
8087 regcache->raw_supply (r->regnum, regs + r->offset);
8088 }
8089 }
8090 }
8091
8092 void
8093 remote_target::fetch_registers_using_g (struct regcache *regcache)
8094 {
8095 send_g_packet ();
8096 process_g_packet (regcache);
8097 }
8098
8099 /* Make the remote selected traceframe match GDB's selected
8100 traceframe. */
8101
8102 void
8103 remote_target::set_remote_traceframe ()
8104 {
8105 int newnum;
8106 struct remote_state *rs = get_remote_state ();
8107
8108 if (rs->remote_traceframe_number == get_traceframe_number ())
8109 return;
8110
8111 /* Avoid recursion, remote_trace_find calls us again. */
8112 rs->remote_traceframe_number = get_traceframe_number ();
8113
8114 newnum = target_trace_find (tfind_number,
8115 get_traceframe_number (), 0, 0, NULL);
8116
8117 /* Should not happen. If it does, all bets are off. */
8118 if (newnum != get_traceframe_number ())
8119 warning (_("could not set remote traceframe"));
8120 }
8121
8122 void
8123 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8124 {
8125 struct gdbarch *gdbarch = regcache->arch ();
8126 struct remote_state *rs = get_remote_state ();
8127 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8128 int i;
8129
8130 set_remote_traceframe ();
8131 set_general_thread (regcache->ptid ());
8132
8133 if (regnum >= 0)
8134 {
8135 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8136
8137 gdb_assert (reg != NULL);
8138
8139 /* If this register might be in the 'g' packet, try that first -
8140 we are likely to read more than one register. If this is the
8141 first 'g' packet, we might be overly optimistic about its
8142 contents, so fall back to 'p'. */
8143 if (reg->in_g_packet)
8144 {
8145 fetch_registers_using_g (regcache);
8146 if (reg->in_g_packet)
8147 return;
8148 }
8149
8150 if (fetch_register_using_p (regcache, reg))
8151 return;
8152
8153 /* This register is not available. */
8154 regcache->raw_supply (reg->regnum, NULL);
8155
8156 return;
8157 }
8158
8159 fetch_registers_using_g (regcache);
8160
8161 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8162 if (!rsa->regs[i].in_g_packet)
8163 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8164 {
8165 /* This register is not available. */
8166 regcache->raw_supply (i, NULL);
8167 }
8168 }
8169
8170 /* Prepare to store registers. Since we may send them all (using a
8171 'G' request), we have to read out the ones we don't want to change
8172 first. */
8173
8174 void
8175 remote_target::prepare_to_store (struct regcache *regcache)
8176 {
8177 struct remote_state *rs = get_remote_state ();
8178 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8179 int i;
8180
8181 /* Make sure the entire registers array is valid. */
8182 switch (packet_support (PACKET_P))
8183 {
8184 case PACKET_DISABLE:
8185 case PACKET_SUPPORT_UNKNOWN:
8186 /* Make sure all the necessary registers are cached. */
8187 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8188 if (rsa->regs[i].in_g_packet)
8189 regcache->raw_update (rsa->regs[i].regnum);
8190 break;
8191 case PACKET_ENABLE:
8192 break;
8193 }
8194 }
8195
8196 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8197 packet was not recognized. */
8198
8199 int
8200 remote_target::store_register_using_P (const struct regcache *regcache,
8201 packet_reg *reg)
8202 {
8203 struct gdbarch *gdbarch = regcache->arch ();
8204 struct remote_state *rs = get_remote_state ();
8205 /* Try storing a single register. */
8206 char *buf = rs->buf.data ();
8207 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8208 char *p;
8209
8210 if (packet_support (PACKET_P) == PACKET_DISABLE)
8211 return 0;
8212
8213 if (reg->pnum == -1)
8214 return 0;
8215
8216 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8217 p = buf + strlen (buf);
8218 regcache->raw_collect (reg->regnum, regp);
8219 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8220 putpkt (rs->buf);
8221 getpkt (&rs->buf, 0);
8222
8223 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8224 {
8225 case PACKET_OK:
8226 return 1;
8227 case PACKET_ERROR:
8228 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8229 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8230 case PACKET_UNKNOWN:
8231 return 0;
8232 default:
8233 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8234 }
8235 }
8236
8237 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8238 contents of the register cache buffer. FIXME: ignores errors. */
8239
8240 void
8241 remote_target::store_registers_using_G (const struct regcache *regcache)
8242 {
8243 struct remote_state *rs = get_remote_state ();
8244 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8245 gdb_byte *regs;
8246 char *p;
8247
8248 /* Extract all the registers in the regcache copying them into a
8249 local buffer. */
8250 {
8251 int i;
8252
8253 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8254 memset (regs, 0, rsa->sizeof_g_packet);
8255 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8256 {
8257 struct packet_reg *r = &rsa->regs[i];
8258
8259 if (r->in_g_packet)
8260 regcache->raw_collect (r->regnum, regs + r->offset);
8261 }
8262 }
8263
8264 /* Command describes registers byte by byte,
8265 each byte encoded as two hex characters. */
8266 p = rs->buf.data ();
8267 *p++ = 'G';
8268 bin2hex (regs, p, rsa->sizeof_g_packet);
8269 putpkt (rs->buf);
8270 getpkt (&rs->buf, 0);
8271 if (packet_check_result (rs->buf) == PACKET_ERROR)
8272 error (_("Could not write registers; remote failure reply '%s'"),
8273 rs->buf.data ());
8274 }
8275
8276 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8277 of the register cache buffer. FIXME: ignores errors. */
8278
8279 void
8280 remote_target::store_registers (struct regcache *regcache, int regnum)
8281 {
8282 struct gdbarch *gdbarch = regcache->arch ();
8283 struct remote_state *rs = get_remote_state ();
8284 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8285 int i;
8286
8287 set_remote_traceframe ();
8288 set_general_thread (regcache->ptid ());
8289
8290 if (regnum >= 0)
8291 {
8292 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8293
8294 gdb_assert (reg != NULL);
8295
8296 /* Always prefer to store registers using the 'P' packet if
8297 possible; we often change only a small number of registers.
8298 Sometimes we change a larger number; we'd need help from a
8299 higher layer to know to use 'G'. */
8300 if (store_register_using_P (regcache, reg))
8301 return;
8302
8303 /* For now, don't complain if we have no way to write the
8304 register. GDB loses track of unavailable registers too
8305 easily. Some day, this may be an error. We don't have
8306 any way to read the register, either... */
8307 if (!reg->in_g_packet)
8308 return;
8309
8310 store_registers_using_G (regcache);
8311 return;
8312 }
8313
8314 store_registers_using_G (regcache);
8315
8316 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8317 if (!rsa->regs[i].in_g_packet)
8318 if (!store_register_using_P (regcache, &rsa->regs[i]))
8319 /* See above for why we do not issue an error here. */
8320 continue;
8321 }
8322 \f
8323
8324 /* Return the number of hex digits in num. */
8325
8326 static int
8327 hexnumlen (ULONGEST num)
8328 {
8329 int i;
8330
8331 for (i = 0; num != 0; i++)
8332 num >>= 4;
8333
8334 return std::max (i, 1);
8335 }
8336
8337 /* Set BUF to the minimum number of hex digits representing NUM. */
8338
8339 static int
8340 hexnumstr (char *buf, ULONGEST num)
8341 {
8342 int len = hexnumlen (num);
8343
8344 return hexnumnstr (buf, num, len);
8345 }
8346
8347
8348 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8349
8350 static int
8351 hexnumnstr (char *buf, ULONGEST num, int width)
8352 {
8353 int i;
8354
8355 buf[width] = '\0';
8356
8357 for (i = width - 1; i >= 0; i--)
8358 {
8359 buf[i] = "0123456789abcdef"[(num & 0xf)];
8360 num >>= 4;
8361 }
8362
8363 return width;
8364 }
8365
8366 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8367
8368 static CORE_ADDR
8369 remote_address_masked (CORE_ADDR addr)
8370 {
8371 unsigned int address_size = remote_address_size;
8372
8373 /* If "remoteaddresssize" was not set, default to target address size. */
8374 if (!address_size)
8375 address_size = gdbarch_addr_bit (target_gdbarch ());
8376
8377 if (address_size > 0
8378 && address_size < (sizeof (ULONGEST) * 8))
8379 {
8380 /* Only create a mask when that mask can safely be constructed
8381 in a ULONGEST variable. */
8382 ULONGEST mask = 1;
8383
8384 mask = (mask << address_size) - 1;
8385 addr &= mask;
8386 }
8387 return addr;
8388 }
8389
8390 /* Determine whether the remote target supports binary downloading.
8391 This is accomplished by sending a no-op memory write of zero length
8392 to the target at the specified address. It does not suffice to send
8393 the whole packet, since many stubs strip the eighth bit and
8394 subsequently compute a wrong checksum, which causes real havoc with
8395 remote_write_bytes.
8396
8397 NOTE: This can still lose if the serial line is not eight-bit
8398 clean. In cases like this, the user should clear "remote
8399 X-packet". */
8400
8401 void
8402 remote_target::check_binary_download (CORE_ADDR addr)
8403 {
8404 struct remote_state *rs = get_remote_state ();
8405
8406 switch (packet_support (PACKET_X))
8407 {
8408 case PACKET_DISABLE:
8409 break;
8410 case PACKET_ENABLE:
8411 break;
8412 case PACKET_SUPPORT_UNKNOWN:
8413 {
8414 char *p;
8415
8416 p = rs->buf.data ();
8417 *p++ = 'X';
8418 p += hexnumstr (p, (ULONGEST) addr);
8419 *p++ = ',';
8420 p += hexnumstr (p, (ULONGEST) 0);
8421 *p++ = ':';
8422 *p = '\0';
8423
8424 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8425 getpkt (&rs->buf, 0);
8426
8427 if (rs->buf[0] == '\0')
8428 {
8429 if (remote_debug)
8430 fprintf_unfiltered (gdb_stdlog,
8431 "binary downloading NOT "
8432 "supported by target\n");
8433 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8434 }
8435 else
8436 {
8437 if (remote_debug)
8438 fprintf_unfiltered (gdb_stdlog,
8439 "binary downloading supported by target\n");
8440 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8441 }
8442 break;
8443 }
8444 }
8445 }
8446
8447 /* Helper function to resize the payload in order to try to get a good
8448 alignment. We try to write an amount of data such that the next write will
8449 start on an address aligned on REMOTE_ALIGN_WRITES. */
8450
8451 static int
8452 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8453 {
8454 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8455 }
8456
8457 /* Write memory data directly to the remote machine.
8458 This does not inform the data cache; the data cache uses this.
8459 HEADER is the starting part of the packet.
8460 MEMADDR is the address in the remote memory space.
8461 MYADDR is the address of the buffer in our space.
8462 LEN_UNITS is the number of addressable units to write.
8463 UNIT_SIZE is the length in bytes of an addressable unit.
8464 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8465 should send data as binary ('X'), or hex-encoded ('M').
8466
8467 The function creates packet of the form
8468 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8469
8470 where encoding of <DATA> is terminated by PACKET_FORMAT.
8471
8472 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8473 are omitted.
8474
8475 Return the transferred status, error or OK (an
8476 'enum target_xfer_status' value). Save the number of addressable units
8477 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8478
8479 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8480 exchange between gdb and the stub could look like (?? in place of the
8481 checksum):
8482
8483 -> $m1000,4#??
8484 <- aaaabbbbccccdddd
8485
8486 -> $M1000,3:eeeeffffeeee#??
8487 <- OK
8488
8489 -> $m1000,4#??
8490 <- eeeeffffeeeedddd */
8491
8492 target_xfer_status
8493 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8494 const gdb_byte *myaddr,
8495 ULONGEST len_units,
8496 int unit_size,
8497 ULONGEST *xfered_len_units,
8498 char packet_format, int use_length)
8499 {
8500 struct remote_state *rs = get_remote_state ();
8501 char *p;
8502 char *plen = NULL;
8503 int plenlen = 0;
8504 int todo_units;
8505 int units_written;
8506 int payload_capacity_bytes;
8507 int payload_length_bytes;
8508
8509 if (packet_format != 'X' && packet_format != 'M')
8510 internal_error (__FILE__, __LINE__,
8511 _("remote_write_bytes_aux: bad packet format"));
8512
8513 if (len_units == 0)
8514 return TARGET_XFER_EOF;
8515
8516 payload_capacity_bytes = get_memory_write_packet_size ();
8517
8518 /* The packet buffer will be large enough for the payload;
8519 get_memory_packet_size ensures this. */
8520 rs->buf[0] = '\0';
8521
8522 /* Compute the size of the actual payload by subtracting out the
8523 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8524
8525 payload_capacity_bytes -= strlen ("$,:#NN");
8526 if (!use_length)
8527 /* The comma won't be used. */
8528 payload_capacity_bytes += 1;
8529 payload_capacity_bytes -= strlen (header);
8530 payload_capacity_bytes -= hexnumlen (memaddr);
8531
8532 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8533
8534 strcat (rs->buf.data (), header);
8535 p = rs->buf.data () + strlen (header);
8536
8537 /* Compute a best guess of the number of bytes actually transfered. */
8538 if (packet_format == 'X')
8539 {
8540 /* Best guess at number of bytes that will fit. */
8541 todo_units = std::min (len_units,
8542 (ULONGEST) payload_capacity_bytes / unit_size);
8543 if (use_length)
8544 payload_capacity_bytes -= hexnumlen (todo_units);
8545 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8546 }
8547 else
8548 {
8549 /* Number of bytes that will fit. */
8550 todo_units
8551 = std::min (len_units,
8552 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8553 if (use_length)
8554 payload_capacity_bytes -= hexnumlen (todo_units);
8555 todo_units = std::min (todo_units,
8556 (payload_capacity_bytes / unit_size) / 2);
8557 }
8558
8559 if (todo_units <= 0)
8560 internal_error (__FILE__, __LINE__,
8561 _("minimum packet size too small to write data"));
8562
8563 /* If we already need another packet, then try to align the end
8564 of this packet to a useful boundary. */
8565 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8566 todo_units = align_for_efficient_write (todo_units, memaddr);
8567
8568 /* Append "<memaddr>". */
8569 memaddr = remote_address_masked (memaddr);
8570 p += hexnumstr (p, (ULONGEST) memaddr);
8571
8572 if (use_length)
8573 {
8574 /* Append ",". */
8575 *p++ = ',';
8576
8577 /* Append the length and retain its location and size. It may need to be
8578 adjusted once the packet body has been created. */
8579 plen = p;
8580 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8581 p += plenlen;
8582 }
8583
8584 /* Append ":". */
8585 *p++ = ':';
8586 *p = '\0';
8587
8588 /* Append the packet body. */
8589 if (packet_format == 'X')
8590 {
8591 /* Binary mode. Send target system values byte by byte, in
8592 increasing byte addresses. Only escape certain critical
8593 characters. */
8594 payload_length_bytes =
8595 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8596 &units_written, payload_capacity_bytes);
8597
8598 /* If not all TODO units fit, then we'll need another packet. Make
8599 a second try to keep the end of the packet aligned. Don't do
8600 this if the packet is tiny. */
8601 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8602 {
8603 int new_todo_units;
8604
8605 new_todo_units = align_for_efficient_write (units_written, memaddr);
8606
8607 if (new_todo_units != units_written)
8608 payload_length_bytes =
8609 remote_escape_output (myaddr, new_todo_units, unit_size,
8610 (gdb_byte *) p, &units_written,
8611 payload_capacity_bytes);
8612 }
8613
8614 p += payload_length_bytes;
8615 if (use_length && units_written < todo_units)
8616 {
8617 /* Escape chars have filled up the buffer prematurely,
8618 and we have actually sent fewer units than planned.
8619 Fix-up the length field of the packet. Use the same
8620 number of characters as before. */
8621 plen += hexnumnstr (plen, (ULONGEST) units_written,
8622 plenlen);
8623 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8624 }
8625 }
8626 else
8627 {
8628 /* Normal mode: Send target system values byte by byte, in
8629 increasing byte addresses. Each byte is encoded as a two hex
8630 value. */
8631 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8632 units_written = todo_units;
8633 }
8634
8635 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8636 getpkt (&rs->buf, 0);
8637
8638 if (rs->buf[0] == 'E')
8639 return TARGET_XFER_E_IO;
8640
8641 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8642 send fewer units than we'd planned. */
8643 *xfered_len_units = (ULONGEST) units_written;
8644 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8645 }
8646
8647 /* Write memory data directly to the remote machine.
8648 This does not inform the data cache; the data cache uses this.
8649 MEMADDR is the address in the remote memory space.
8650 MYADDR is the address of the buffer in our space.
8651 LEN is the number of bytes.
8652
8653 Return the transferred status, error or OK (an
8654 'enum target_xfer_status' value). Save the number of bytes
8655 transferred in *XFERED_LEN. Only transfer a single packet. */
8656
8657 target_xfer_status
8658 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8659 ULONGEST len, int unit_size,
8660 ULONGEST *xfered_len)
8661 {
8662 const char *packet_format = NULL;
8663
8664 /* Check whether the target supports binary download. */
8665 check_binary_download (memaddr);
8666
8667 switch (packet_support (PACKET_X))
8668 {
8669 case PACKET_ENABLE:
8670 packet_format = "X";
8671 break;
8672 case PACKET_DISABLE:
8673 packet_format = "M";
8674 break;
8675 case PACKET_SUPPORT_UNKNOWN:
8676 internal_error (__FILE__, __LINE__,
8677 _("remote_write_bytes: bad internal state"));
8678 default:
8679 internal_error (__FILE__, __LINE__, _("bad switch"));
8680 }
8681
8682 return remote_write_bytes_aux (packet_format,
8683 memaddr, myaddr, len, unit_size, xfered_len,
8684 packet_format[0], 1);
8685 }
8686
8687 /* Read memory data directly from the remote machine.
8688 This does not use the data cache; the data cache uses this.
8689 MEMADDR is the address in the remote memory space.
8690 MYADDR is the address of the buffer in our space.
8691 LEN_UNITS is the number of addressable memory units to read..
8692 UNIT_SIZE is the length in bytes of an addressable unit.
8693
8694 Return the transferred status, error or OK (an
8695 'enum target_xfer_status' value). Save the number of bytes
8696 transferred in *XFERED_LEN_UNITS.
8697
8698 See the comment of remote_write_bytes_aux for an example of
8699 memory read/write exchange between gdb and the stub. */
8700
8701 target_xfer_status
8702 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8703 ULONGEST len_units,
8704 int unit_size, ULONGEST *xfered_len_units)
8705 {
8706 struct remote_state *rs = get_remote_state ();
8707 int buf_size_bytes; /* Max size of packet output buffer. */
8708 char *p;
8709 int todo_units;
8710 int decoded_bytes;
8711
8712 buf_size_bytes = get_memory_read_packet_size ();
8713 /* The packet buffer will be large enough for the payload;
8714 get_memory_packet_size ensures this. */
8715
8716 /* Number of units that will fit. */
8717 todo_units = std::min (len_units,
8718 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8719
8720 /* Construct "m"<memaddr>","<len>". */
8721 memaddr = remote_address_masked (memaddr);
8722 p = rs->buf.data ();
8723 *p++ = 'm';
8724 p += hexnumstr (p, (ULONGEST) memaddr);
8725 *p++ = ',';
8726 p += hexnumstr (p, (ULONGEST) todo_units);
8727 *p = '\0';
8728 putpkt (rs->buf);
8729 getpkt (&rs->buf, 0);
8730 if (rs->buf[0] == 'E'
8731 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8732 && rs->buf[3] == '\0')
8733 return TARGET_XFER_E_IO;
8734 /* Reply describes memory byte by byte, each byte encoded as two hex
8735 characters. */
8736 p = rs->buf.data ();
8737 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8738 /* Return what we have. Let higher layers handle partial reads. */
8739 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8740 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8741 }
8742
8743 /* Using the set of read-only target sections of remote, read live
8744 read-only memory.
8745
8746 For interface/parameters/return description see target.h,
8747 to_xfer_partial. */
8748
8749 target_xfer_status
8750 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8751 ULONGEST memaddr,
8752 ULONGEST len,
8753 int unit_size,
8754 ULONGEST *xfered_len)
8755 {
8756 struct target_section *secp;
8757 struct target_section_table *table;
8758
8759 secp = target_section_by_addr (this, memaddr);
8760 if (secp != NULL
8761 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8762 secp->the_bfd_section)
8763 & SEC_READONLY))
8764 {
8765 struct target_section *p;
8766 ULONGEST memend = memaddr + len;
8767
8768 table = target_get_section_table (this);
8769
8770 for (p = table->sections; p < table->sections_end; p++)
8771 {
8772 if (memaddr >= p->addr)
8773 {
8774 if (memend <= p->endaddr)
8775 {
8776 /* Entire transfer is within this section. */
8777 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8778 xfered_len);
8779 }
8780 else if (memaddr >= p->endaddr)
8781 {
8782 /* This section ends before the transfer starts. */
8783 continue;
8784 }
8785 else
8786 {
8787 /* This section overlaps the transfer. Just do half. */
8788 len = p->endaddr - memaddr;
8789 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8790 xfered_len);
8791 }
8792 }
8793 }
8794 }
8795
8796 return TARGET_XFER_EOF;
8797 }
8798
8799 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8800 first if the requested memory is unavailable in traceframe.
8801 Otherwise, fall back to remote_read_bytes_1. */
8802
8803 target_xfer_status
8804 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8805 gdb_byte *myaddr, ULONGEST len, int unit_size,
8806 ULONGEST *xfered_len)
8807 {
8808 if (len == 0)
8809 return TARGET_XFER_EOF;
8810
8811 if (get_traceframe_number () != -1)
8812 {
8813 std::vector<mem_range> available;
8814
8815 /* If we fail to get the set of available memory, then the
8816 target does not support querying traceframe info, and so we
8817 attempt reading from the traceframe anyway (assuming the
8818 target implements the old QTro packet then). */
8819 if (traceframe_available_memory (&available, memaddr, len))
8820 {
8821 if (available.empty () || available[0].start != memaddr)
8822 {
8823 enum target_xfer_status res;
8824
8825 /* Don't read into the traceframe's available
8826 memory. */
8827 if (!available.empty ())
8828 {
8829 LONGEST oldlen = len;
8830
8831 len = available[0].start - memaddr;
8832 gdb_assert (len <= oldlen);
8833 }
8834
8835 /* This goes through the topmost target again. */
8836 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8837 len, unit_size, xfered_len);
8838 if (res == TARGET_XFER_OK)
8839 return TARGET_XFER_OK;
8840 else
8841 {
8842 /* No use trying further, we know some memory starting
8843 at MEMADDR isn't available. */
8844 *xfered_len = len;
8845 return (*xfered_len != 0) ?
8846 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8847 }
8848 }
8849
8850 /* Don't try to read more than how much is available, in
8851 case the target implements the deprecated QTro packet to
8852 cater for older GDBs (the target's knowledge of read-only
8853 sections may be outdated by now). */
8854 len = available[0].length;
8855 }
8856 }
8857
8858 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8859 }
8860
8861 \f
8862
8863 /* Sends a packet with content determined by the printf format string
8864 FORMAT and the remaining arguments, then gets the reply. Returns
8865 whether the packet was a success, a failure, or unknown. */
8866
8867 packet_result
8868 remote_target::remote_send_printf (const char *format, ...)
8869 {
8870 struct remote_state *rs = get_remote_state ();
8871 int max_size = get_remote_packet_size ();
8872 va_list ap;
8873
8874 va_start (ap, format);
8875
8876 rs->buf[0] = '\0';
8877 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8878
8879 va_end (ap);
8880
8881 if (size >= max_size)
8882 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8883
8884 if (putpkt (rs->buf) < 0)
8885 error (_("Communication problem with target."));
8886
8887 rs->buf[0] = '\0';
8888 getpkt (&rs->buf, 0);
8889
8890 return packet_check_result (rs->buf);
8891 }
8892
8893 /* Flash writing can take quite some time. We'll set
8894 effectively infinite timeout for flash operations.
8895 In future, we'll need to decide on a better approach. */
8896 static const int remote_flash_timeout = 1000;
8897
8898 void
8899 remote_target::flash_erase (ULONGEST address, LONGEST length)
8900 {
8901 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8902 enum packet_result ret;
8903 scoped_restore restore_timeout
8904 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8905
8906 ret = remote_send_printf ("vFlashErase:%s,%s",
8907 phex (address, addr_size),
8908 phex (length, 4));
8909 switch (ret)
8910 {
8911 case PACKET_UNKNOWN:
8912 error (_("Remote target does not support flash erase"));
8913 case PACKET_ERROR:
8914 error (_("Error erasing flash with vFlashErase packet"));
8915 default:
8916 break;
8917 }
8918 }
8919
8920 target_xfer_status
8921 remote_target::remote_flash_write (ULONGEST address,
8922 ULONGEST length, ULONGEST *xfered_len,
8923 const gdb_byte *data)
8924 {
8925 scoped_restore restore_timeout
8926 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8927 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8928 xfered_len,'X', 0);
8929 }
8930
8931 void
8932 remote_target::flash_done ()
8933 {
8934 int ret;
8935
8936 scoped_restore restore_timeout
8937 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8938
8939 ret = remote_send_printf ("vFlashDone");
8940
8941 switch (ret)
8942 {
8943 case PACKET_UNKNOWN:
8944 error (_("Remote target does not support vFlashDone"));
8945 case PACKET_ERROR:
8946 error (_("Error finishing flash operation"));
8947 default:
8948 break;
8949 }
8950 }
8951
8952 void
8953 remote_target::files_info ()
8954 {
8955 puts_filtered ("Debugging a target over a serial line.\n");
8956 }
8957 \f
8958 /* Stuff for dealing with the packets which are part of this protocol.
8959 See comment at top of file for details. */
8960
8961 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8962 error to higher layers. Called when a serial error is detected.
8963 The exception message is STRING, followed by a colon and a blank,
8964 the system error message for errno at function entry and final dot
8965 for output compatibility with throw_perror_with_name. */
8966
8967 static void
8968 unpush_and_perror (const char *string)
8969 {
8970 int saved_errno = errno;
8971
8972 remote_unpush_target ();
8973 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8974 safe_strerror (saved_errno));
8975 }
8976
8977 /* Read a single character from the remote end. The current quit
8978 handler is overridden to avoid quitting in the middle of packet
8979 sequence, as that would break communication with the remote server.
8980 See remote_serial_quit_handler for more detail. */
8981
8982 int
8983 remote_target::readchar (int timeout)
8984 {
8985 int ch;
8986 struct remote_state *rs = get_remote_state ();
8987
8988 {
8989 scoped_restore restore_quit_target
8990 = make_scoped_restore (&curr_quit_handler_target, this);
8991 scoped_restore restore_quit
8992 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
8993
8994 rs->got_ctrlc_during_io = 0;
8995
8996 ch = serial_readchar (rs->remote_desc, timeout);
8997
8998 if (rs->got_ctrlc_during_io)
8999 set_quit_flag ();
9000 }
9001
9002 if (ch >= 0)
9003 return ch;
9004
9005 switch ((enum serial_rc) ch)
9006 {
9007 case SERIAL_EOF:
9008 remote_unpush_target ();
9009 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9010 /* no return */
9011 case SERIAL_ERROR:
9012 unpush_and_perror (_("Remote communication error. "
9013 "Target disconnected."));
9014 /* no return */
9015 case SERIAL_TIMEOUT:
9016 break;
9017 }
9018 return ch;
9019 }
9020
9021 /* Wrapper for serial_write that closes the target and throws if
9022 writing fails. The current quit handler is overridden to avoid
9023 quitting in the middle of packet sequence, as that would break
9024 communication with the remote server. See
9025 remote_serial_quit_handler for more detail. */
9026
9027 void
9028 remote_target::remote_serial_write (const char *str, int len)
9029 {
9030 struct remote_state *rs = get_remote_state ();
9031
9032 scoped_restore restore_quit_target
9033 = make_scoped_restore (&curr_quit_handler_target, this);
9034 scoped_restore restore_quit
9035 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9036
9037 rs->got_ctrlc_during_io = 0;
9038
9039 if (serial_write (rs->remote_desc, str, len))
9040 {
9041 unpush_and_perror (_("Remote communication error. "
9042 "Target disconnected."));
9043 }
9044
9045 if (rs->got_ctrlc_during_io)
9046 set_quit_flag ();
9047 }
9048
9049 /* Return a string representing an escaped version of BUF, of len N.
9050 E.g. \n is converted to \\n, \t to \\t, etc. */
9051
9052 static std::string
9053 escape_buffer (const char *buf, int n)
9054 {
9055 string_file stb;
9056
9057 stb.putstrn (buf, n, '\\');
9058 return std::move (stb.string ());
9059 }
9060
9061 /* Display a null-terminated packet on stdout, for debugging, using C
9062 string notation. */
9063
9064 static void
9065 print_packet (const char *buf)
9066 {
9067 puts_filtered ("\"");
9068 fputstr_filtered (buf, '"', gdb_stdout);
9069 puts_filtered ("\"");
9070 }
9071
9072 int
9073 remote_target::putpkt (const char *buf)
9074 {
9075 return putpkt_binary (buf, strlen (buf));
9076 }
9077
9078 /* Wrapper around remote_target::putpkt to avoid exporting
9079 remote_target. */
9080
9081 int
9082 putpkt (remote_target *remote, const char *buf)
9083 {
9084 return remote->putpkt (buf);
9085 }
9086
9087 /* Send a packet to the remote machine, with error checking. The data
9088 of the packet is in BUF. The string in BUF can be at most
9089 get_remote_packet_size () - 5 to account for the $, # and checksum,
9090 and for a possible /0 if we are debugging (remote_debug) and want
9091 to print the sent packet as a string. */
9092
9093 int
9094 remote_target::putpkt_binary (const char *buf, int cnt)
9095 {
9096 struct remote_state *rs = get_remote_state ();
9097 int i;
9098 unsigned char csum = 0;
9099 gdb::def_vector<char> data (cnt + 6);
9100 char *buf2 = data.data ();
9101
9102 int ch;
9103 int tcount = 0;
9104 char *p;
9105
9106 /* Catch cases like trying to read memory or listing threads while
9107 we're waiting for a stop reply. The remote server wouldn't be
9108 ready to handle this request, so we'd hang and timeout. We don't
9109 have to worry about this in synchronous mode, because in that
9110 case it's not possible to issue a command while the target is
9111 running. This is not a problem in non-stop mode, because in that
9112 case, the stub is always ready to process serial input. */
9113 if (!target_is_non_stop_p ()
9114 && target_is_async_p ()
9115 && rs->waiting_for_stop_reply)
9116 {
9117 error (_("Cannot execute this command while the target is running.\n"
9118 "Use the \"interrupt\" command to stop the target\n"
9119 "and then try again."));
9120 }
9121
9122 /* We're sending out a new packet. Make sure we don't look at a
9123 stale cached response. */
9124 rs->cached_wait_status = 0;
9125
9126 /* Copy the packet into buffer BUF2, encapsulating it
9127 and giving it a checksum. */
9128
9129 p = buf2;
9130 *p++ = '$';
9131
9132 for (i = 0; i < cnt; i++)
9133 {
9134 csum += buf[i];
9135 *p++ = buf[i];
9136 }
9137 *p++ = '#';
9138 *p++ = tohex ((csum >> 4) & 0xf);
9139 *p++ = tohex (csum & 0xf);
9140
9141 /* Send it over and over until we get a positive ack. */
9142
9143 while (1)
9144 {
9145 int started_error_output = 0;
9146
9147 if (remote_debug)
9148 {
9149 *p = '\0';
9150
9151 int len = (int) (p - buf2);
9152
9153 std::string str
9154 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
9155
9156 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9157
9158 if (len > REMOTE_DEBUG_MAX_CHAR)
9159 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9160 len - REMOTE_DEBUG_MAX_CHAR);
9161
9162 fprintf_unfiltered (gdb_stdlog, "...");
9163
9164 gdb_flush (gdb_stdlog);
9165 }
9166 remote_serial_write (buf2, p - buf2);
9167
9168 /* If this is a no acks version of the remote protocol, send the
9169 packet and move on. */
9170 if (rs->noack_mode)
9171 break;
9172
9173 /* Read until either a timeout occurs (-2) or '+' is read.
9174 Handle any notification that arrives in the mean time. */
9175 while (1)
9176 {
9177 ch = readchar (remote_timeout);
9178
9179 if (remote_debug)
9180 {
9181 switch (ch)
9182 {
9183 case '+':
9184 case '-':
9185 case SERIAL_TIMEOUT:
9186 case '$':
9187 case '%':
9188 if (started_error_output)
9189 {
9190 putchar_unfiltered ('\n');
9191 started_error_output = 0;
9192 }
9193 }
9194 }
9195
9196 switch (ch)
9197 {
9198 case '+':
9199 if (remote_debug)
9200 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9201 return 1;
9202 case '-':
9203 if (remote_debug)
9204 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9205 /* FALLTHROUGH */
9206 case SERIAL_TIMEOUT:
9207 tcount++;
9208 if (tcount > 3)
9209 return 0;
9210 break; /* Retransmit buffer. */
9211 case '$':
9212 {
9213 if (remote_debug)
9214 fprintf_unfiltered (gdb_stdlog,
9215 "Packet instead of Ack, ignoring it\n");
9216 /* It's probably an old response sent because an ACK
9217 was lost. Gobble up the packet and ack it so it
9218 doesn't get retransmitted when we resend this
9219 packet. */
9220 skip_frame ();
9221 remote_serial_write ("+", 1);
9222 continue; /* Now, go look for +. */
9223 }
9224
9225 case '%':
9226 {
9227 int val;
9228
9229 /* If we got a notification, handle it, and go back to looking
9230 for an ack. */
9231 /* We've found the start of a notification. Now
9232 collect the data. */
9233 val = read_frame (&rs->buf);
9234 if (val >= 0)
9235 {
9236 if (remote_debug)
9237 {
9238 std::string str = escape_buffer (rs->buf.data (), val);
9239
9240 fprintf_unfiltered (gdb_stdlog,
9241 " Notification received: %s\n",
9242 str.c_str ());
9243 }
9244 handle_notification (rs->notif_state, rs->buf.data ());
9245 /* We're in sync now, rewait for the ack. */
9246 tcount = 0;
9247 }
9248 else
9249 {
9250 if (remote_debug)
9251 {
9252 if (!started_error_output)
9253 {
9254 started_error_output = 1;
9255 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9256 }
9257 fputc_unfiltered (ch & 0177, gdb_stdlog);
9258 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9259 }
9260 }
9261 continue;
9262 }
9263 /* fall-through */
9264 default:
9265 if (remote_debug)
9266 {
9267 if (!started_error_output)
9268 {
9269 started_error_output = 1;
9270 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9271 }
9272 fputc_unfiltered (ch & 0177, gdb_stdlog);
9273 }
9274 continue;
9275 }
9276 break; /* Here to retransmit. */
9277 }
9278
9279 #if 0
9280 /* This is wrong. If doing a long backtrace, the user should be
9281 able to get out next time we call QUIT, without anything as
9282 violent as interrupt_query. If we want to provide a way out of
9283 here without getting to the next QUIT, it should be based on
9284 hitting ^C twice as in remote_wait. */
9285 if (quit_flag)
9286 {
9287 quit_flag = 0;
9288 interrupt_query ();
9289 }
9290 #endif
9291 }
9292
9293 return 0;
9294 }
9295
9296 /* Come here after finding the start of a frame when we expected an
9297 ack. Do our best to discard the rest of this packet. */
9298
9299 void
9300 remote_target::skip_frame ()
9301 {
9302 int c;
9303
9304 while (1)
9305 {
9306 c = readchar (remote_timeout);
9307 switch (c)
9308 {
9309 case SERIAL_TIMEOUT:
9310 /* Nothing we can do. */
9311 return;
9312 case '#':
9313 /* Discard the two bytes of checksum and stop. */
9314 c = readchar (remote_timeout);
9315 if (c >= 0)
9316 c = readchar (remote_timeout);
9317
9318 return;
9319 case '*': /* Run length encoding. */
9320 /* Discard the repeat count. */
9321 c = readchar (remote_timeout);
9322 if (c < 0)
9323 return;
9324 break;
9325 default:
9326 /* A regular character. */
9327 break;
9328 }
9329 }
9330 }
9331
9332 /* Come here after finding the start of the frame. Collect the rest
9333 into *BUF, verifying the checksum, length, and handling run-length
9334 compression. NUL terminate the buffer. If there is not enough room,
9335 expand *BUF.
9336
9337 Returns -1 on error, number of characters in buffer (ignoring the
9338 trailing NULL) on success. (could be extended to return one of the
9339 SERIAL status indications). */
9340
9341 long
9342 remote_target::read_frame (gdb::char_vector *buf_p)
9343 {
9344 unsigned char csum;
9345 long bc;
9346 int c;
9347 char *buf = buf_p->data ();
9348 struct remote_state *rs = get_remote_state ();
9349
9350 csum = 0;
9351 bc = 0;
9352
9353 while (1)
9354 {
9355 c = readchar (remote_timeout);
9356 switch (c)
9357 {
9358 case SERIAL_TIMEOUT:
9359 if (remote_debug)
9360 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9361 return -1;
9362 case '$':
9363 if (remote_debug)
9364 fputs_filtered ("Saw new packet start in middle of old one\n",
9365 gdb_stdlog);
9366 return -1; /* Start a new packet, count retries. */
9367 case '#':
9368 {
9369 unsigned char pktcsum;
9370 int check_0 = 0;
9371 int check_1 = 0;
9372
9373 buf[bc] = '\0';
9374
9375 check_0 = readchar (remote_timeout);
9376 if (check_0 >= 0)
9377 check_1 = readchar (remote_timeout);
9378
9379 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9380 {
9381 if (remote_debug)
9382 fputs_filtered ("Timeout in checksum, retrying\n",
9383 gdb_stdlog);
9384 return -1;
9385 }
9386 else if (check_0 < 0 || check_1 < 0)
9387 {
9388 if (remote_debug)
9389 fputs_filtered ("Communication error in checksum\n",
9390 gdb_stdlog);
9391 return -1;
9392 }
9393
9394 /* Don't recompute the checksum; with no ack packets we
9395 don't have any way to indicate a packet retransmission
9396 is necessary. */
9397 if (rs->noack_mode)
9398 return bc;
9399
9400 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9401 if (csum == pktcsum)
9402 return bc;
9403
9404 if (remote_debug)
9405 {
9406 std::string str = escape_buffer (buf, bc);
9407
9408 fprintf_unfiltered (gdb_stdlog,
9409 "Bad checksum, sentsum=0x%x, "
9410 "csum=0x%x, buf=%s\n",
9411 pktcsum, csum, str.c_str ());
9412 }
9413 /* Number of characters in buffer ignoring trailing
9414 NULL. */
9415 return -1;
9416 }
9417 case '*': /* Run length encoding. */
9418 {
9419 int repeat;
9420
9421 csum += c;
9422 c = readchar (remote_timeout);
9423 csum += c;
9424 repeat = c - ' ' + 3; /* Compute repeat count. */
9425
9426 /* The character before ``*'' is repeated. */
9427
9428 if (repeat > 0 && repeat <= 255 && bc > 0)
9429 {
9430 if (bc + repeat - 1 >= buf_p->size () - 1)
9431 {
9432 /* Make some more room in the buffer. */
9433 buf_p->resize (buf_p->size () + repeat);
9434 buf = buf_p->data ();
9435 }
9436
9437 memset (&buf[bc], buf[bc - 1], repeat);
9438 bc += repeat;
9439 continue;
9440 }
9441
9442 buf[bc] = '\0';
9443 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9444 return -1;
9445 }
9446 default:
9447 if (bc >= buf_p->size () - 1)
9448 {
9449 /* Make some more room in the buffer. */
9450 buf_p->resize (buf_p->size () * 2);
9451 buf = buf_p->data ();
9452 }
9453
9454 buf[bc++] = c;
9455 csum += c;
9456 continue;
9457 }
9458 }
9459 }
9460
9461 /* Read a packet from the remote machine, with error checking, and
9462 store it in *BUF. Resize *BUF if necessary to hold the result. If
9463 FOREVER, wait forever rather than timing out; this is used (in
9464 synchronous mode) to wait for a target that is is executing user
9465 code to stop. */
9466 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9467 don't have to change all the calls to getpkt to deal with the
9468 return value, because at the moment I don't know what the right
9469 thing to do it for those. */
9470
9471 void
9472 remote_target::getpkt (gdb::char_vector *buf, int forever)
9473 {
9474 getpkt_sane (buf, forever);
9475 }
9476
9477
9478 /* Read a packet from the remote machine, with error checking, and
9479 store it in *BUF. Resize *BUF if necessary to hold the result. If
9480 FOREVER, wait forever rather than timing out; this is used (in
9481 synchronous mode) to wait for a target that is is executing user
9482 code to stop. If FOREVER == 0, this function is allowed to time
9483 out gracefully and return an indication of this to the caller.
9484 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9485 consider receiving a notification enough reason to return to the
9486 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9487 holds a notification or not (a regular packet). */
9488
9489 int
9490 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9491 int forever, int expecting_notif,
9492 int *is_notif)
9493 {
9494 struct remote_state *rs = get_remote_state ();
9495 int c;
9496 int tries;
9497 int timeout;
9498 int val = -1;
9499
9500 /* We're reading a new response. Make sure we don't look at a
9501 previously cached response. */
9502 rs->cached_wait_status = 0;
9503
9504 strcpy (buf->data (), "timeout");
9505
9506 if (forever)
9507 timeout = watchdog > 0 ? watchdog : -1;
9508 else if (expecting_notif)
9509 timeout = 0; /* There should already be a char in the buffer. If
9510 not, bail out. */
9511 else
9512 timeout = remote_timeout;
9513
9514 #define MAX_TRIES 3
9515
9516 /* Process any number of notifications, and then return when
9517 we get a packet. */
9518 for (;;)
9519 {
9520 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9521 times. */
9522 for (tries = 1; tries <= MAX_TRIES; tries++)
9523 {
9524 /* This can loop forever if the remote side sends us
9525 characters continuously, but if it pauses, we'll get
9526 SERIAL_TIMEOUT from readchar because of timeout. Then
9527 we'll count that as a retry.
9528
9529 Note that even when forever is set, we will only wait
9530 forever prior to the start of a packet. After that, we
9531 expect characters to arrive at a brisk pace. They should
9532 show up within remote_timeout intervals. */
9533 do
9534 c = readchar (timeout);
9535 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9536
9537 if (c == SERIAL_TIMEOUT)
9538 {
9539 if (expecting_notif)
9540 return -1; /* Don't complain, it's normal to not get
9541 anything in this case. */
9542
9543 if (forever) /* Watchdog went off? Kill the target. */
9544 {
9545 remote_unpush_target ();
9546 throw_error (TARGET_CLOSE_ERROR,
9547 _("Watchdog timeout has expired. "
9548 "Target detached."));
9549 }
9550 if (remote_debug)
9551 fputs_filtered ("Timed out.\n", gdb_stdlog);
9552 }
9553 else
9554 {
9555 /* We've found the start of a packet or notification.
9556 Now collect the data. */
9557 val = read_frame (buf);
9558 if (val >= 0)
9559 break;
9560 }
9561
9562 remote_serial_write ("-", 1);
9563 }
9564
9565 if (tries > MAX_TRIES)
9566 {
9567 /* We have tried hard enough, and just can't receive the
9568 packet/notification. Give up. */
9569 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9570
9571 /* Skip the ack char if we're in no-ack mode. */
9572 if (!rs->noack_mode)
9573 remote_serial_write ("+", 1);
9574 return -1;
9575 }
9576
9577 /* If we got an ordinary packet, return that to our caller. */
9578 if (c == '$')
9579 {
9580 if (remote_debug)
9581 {
9582 std::string str
9583 = escape_buffer (buf->data (),
9584 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9585
9586 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9587 str.c_str ());
9588
9589 if (val > REMOTE_DEBUG_MAX_CHAR)
9590 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9591 val - REMOTE_DEBUG_MAX_CHAR);
9592
9593 fprintf_unfiltered (gdb_stdlog, "\n");
9594 }
9595
9596 /* Skip the ack char if we're in no-ack mode. */
9597 if (!rs->noack_mode)
9598 remote_serial_write ("+", 1);
9599 if (is_notif != NULL)
9600 *is_notif = 0;
9601 return val;
9602 }
9603
9604 /* If we got a notification, handle it, and go back to looking
9605 for a packet. */
9606 else
9607 {
9608 gdb_assert (c == '%');
9609
9610 if (remote_debug)
9611 {
9612 std::string str = escape_buffer (buf->data (), val);
9613
9614 fprintf_unfiltered (gdb_stdlog,
9615 " Notification received: %s\n",
9616 str.c_str ());
9617 }
9618 if (is_notif != NULL)
9619 *is_notif = 1;
9620
9621 handle_notification (rs->notif_state, buf->data ());
9622
9623 /* Notifications require no acknowledgement. */
9624
9625 if (expecting_notif)
9626 return val;
9627 }
9628 }
9629 }
9630
9631 int
9632 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9633 {
9634 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9635 }
9636
9637 int
9638 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9639 int *is_notif)
9640 {
9641 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9642 }
9643
9644 /* Kill any new fork children of process PID that haven't been
9645 processed by follow_fork. */
9646
9647 void
9648 remote_target::kill_new_fork_children (int pid)
9649 {
9650 remote_state *rs = get_remote_state ();
9651 struct notif_client *notif = &notif_client_stop;
9652
9653 /* Kill the fork child threads of any threads in process PID
9654 that are stopped at a fork event. */
9655 for (thread_info *thread : all_non_exited_threads ())
9656 {
9657 struct target_waitstatus *ws = &thread->pending_follow;
9658
9659 if (is_pending_fork_parent (ws, pid, thread->ptid))
9660 {
9661 int child_pid = ws->value.related_pid.pid ();
9662 int res;
9663
9664 res = remote_vkill (child_pid);
9665 if (res != 0)
9666 error (_("Can't kill fork child process %d"), child_pid);
9667 }
9668 }
9669
9670 /* Check for any pending fork events (not reported or processed yet)
9671 in process PID and kill those fork child threads as well. */
9672 remote_notif_get_pending_events (notif);
9673 for (auto &event : rs->stop_reply_queue)
9674 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9675 {
9676 int child_pid = event->ws.value.related_pid.pid ();
9677 int res;
9678
9679 res = remote_vkill (child_pid);
9680 if (res != 0)
9681 error (_("Can't kill fork child process %d"), child_pid);
9682 }
9683 }
9684
9685 \f
9686 /* Target hook to kill the current inferior. */
9687
9688 void
9689 remote_target::kill ()
9690 {
9691 int res = -1;
9692 int pid = inferior_ptid.pid ();
9693 struct remote_state *rs = get_remote_state ();
9694
9695 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9696 {
9697 /* If we're stopped while forking and we haven't followed yet,
9698 kill the child task. We need to do this before killing the
9699 parent task because if this is a vfork then the parent will
9700 be sleeping. */
9701 kill_new_fork_children (pid);
9702
9703 res = remote_vkill (pid);
9704 if (res == 0)
9705 {
9706 target_mourn_inferior (inferior_ptid);
9707 return;
9708 }
9709 }
9710
9711 /* If we are in 'target remote' mode and we are killing the only
9712 inferior, then we will tell gdbserver to exit and unpush the
9713 target. */
9714 if (res == -1 && !remote_multi_process_p (rs)
9715 && number_of_live_inferiors () == 1)
9716 {
9717 remote_kill_k ();
9718
9719 /* We've killed the remote end, we get to mourn it. If we are
9720 not in extended mode, mourning the inferior also unpushes
9721 remote_ops from the target stack, which closes the remote
9722 connection. */
9723 target_mourn_inferior (inferior_ptid);
9724
9725 return;
9726 }
9727
9728 error (_("Can't kill process"));
9729 }
9730
9731 /* Send a kill request to the target using the 'vKill' packet. */
9732
9733 int
9734 remote_target::remote_vkill (int pid)
9735 {
9736 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9737 return -1;
9738
9739 remote_state *rs = get_remote_state ();
9740
9741 /* Tell the remote target to detach. */
9742 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9743 putpkt (rs->buf);
9744 getpkt (&rs->buf, 0);
9745
9746 switch (packet_ok (rs->buf,
9747 &remote_protocol_packets[PACKET_vKill]))
9748 {
9749 case PACKET_OK:
9750 return 0;
9751 case PACKET_ERROR:
9752 return 1;
9753 case PACKET_UNKNOWN:
9754 return -1;
9755 default:
9756 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9757 }
9758 }
9759
9760 /* Send a kill request to the target using the 'k' packet. */
9761
9762 void
9763 remote_target::remote_kill_k ()
9764 {
9765 /* Catch errors so the user can quit from gdb even when we
9766 aren't on speaking terms with the remote system. */
9767 TRY
9768 {
9769 putpkt ("k");
9770 }
9771 CATCH (ex, RETURN_MASK_ERROR)
9772 {
9773 if (ex.error == TARGET_CLOSE_ERROR)
9774 {
9775 /* If we got an (EOF) error that caused the target
9776 to go away, then we're done, that's what we wanted.
9777 "k" is susceptible to cause a premature EOF, given
9778 that the remote server isn't actually required to
9779 reply to "k", and it can happen that it doesn't
9780 even get to reply ACK to the "k". */
9781 return;
9782 }
9783
9784 /* Otherwise, something went wrong. We didn't actually kill
9785 the target. Just propagate the exception, and let the
9786 user or higher layers decide what to do. */
9787 throw_exception (ex);
9788 }
9789 END_CATCH
9790 }
9791
9792 void
9793 remote_target::mourn_inferior ()
9794 {
9795 struct remote_state *rs = get_remote_state ();
9796
9797 /* We're no longer interested in notification events of an inferior
9798 that exited or was killed/detached. */
9799 discard_pending_stop_replies (current_inferior ());
9800
9801 /* In 'target remote' mode with one inferior, we close the connection. */
9802 if (!rs->extended && number_of_live_inferiors () <= 1)
9803 {
9804 unpush_target (this);
9805
9806 /* remote_close takes care of doing most of the clean up. */
9807 generic_mourn_inferior ();
9808 return;
9809 }
9810
9811 /* In case we got here due to an error, but we're going to stay
9812 connected. */
9813 rs->waiting_for_stop_reply = 0;
9814
9815 /* If the current general thread belonged to the process we just
9816 detached from or has exited, the remote side current general
9817 thread becomes undefined. Considering a case like this:
9818
9819 - We just got here due to a detach.
9820 - The process that we're detaching from happens to immediately
9821 report a global breakpoint being hit in non-stop mode, in the
9822 same thread we had selected before.
9823 - GDB attaches to this process again.
9824 - This event happens to be the next event we handle.
9825
9826 GDB would consider that the current general thread didn't need to
9827 be set on the stub side (with Hg), since for all it knew,
9828 GENERAL_THREAD hadn't changed.
9829
9830 Notice that although in all-stop mode, the remote server always
9831 sets the current thread to the thread reporting the stop event,
9832 that doesn't happen in non-stop mode; in non-stop, the stub *must
9833 not* change the current thread when reporting a breakpoint hit,
9834 due to the decoupling of event reporting and event handling.
9835
9836 To keep things simple, we always invalidate our notion of the
9837 current thread. */
9838 record_currthread (rs, minus_one_ptid);
9839
9840 /* Call common code to mark the inferior as not running. */
9841 generic_mourn_inferior ();
9842
9843 if (!have_inferiors ())
9844 {
9845 if (!remote_multi_process_p (rs))
9846 {
9847 /* Check whether the target is running now - some remote stubs
9848 automatically restart after kill. */
9849 putpkt ("?");
9850 getpkt (&rs->buf, 0);
9851
9852 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9853 {
9854 /* Assume that the target has been restarted. Set
9855 inferior_ptid so that bits of core GDB realizes
9856 there's something here, e.g., so that the user can
9857 say "kill" again. */
9858 inferior_ptid = magic_null_ptid;
9859 }
9860 }
9861 }
9862 }
9863
9864 bool
9865 extended_remote_target::supports_disable_randomization ()
9866 {
9867 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9868 }
9869
9870 void
9871 remote_target::extended_remote_disable_randomization (int val)
9872 {
9873 struct remote_state *rs = get_remote_state ();
9874 char *reply;
9875
9876 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9877 "QDisableRandomization:%x", val);
9878 putpkt (rs->buf);
9879 reply = remote_get_noisy_reply ();
9880 if (*reply == '\0')
9881 error (_("Target does not support QDisableRandomization."));
9882 if (strcmp (reply, "OK") != 0)
9883 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9884 }
9885
9886 int
9887 remote_target::extended_remote_run (const std::string &args)
9888 {
9889 struct remote_state *rs = get_remote_state ();
9890 int len;
9891 const char *remote_exec_file = get_remote_exec_file ();
9892
9893 /* If the user has disabled vRun support, or we have detected that
9894 support is not available, do not try it. */
9895 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9896 return -1;
9897
9898 strcpy (rs->buf.data (), "vRun;");
9899 len = strlen (rs->buf.data ());
9900
9901 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9902 error (_("Remote file name too long for run packet"));
9903 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
9904 strlen (remote_exec_file));
9905
9906 if (!args.empty ())
9907 {
9908 int i;
9909
9910 gdb_argv argv (args.c_str ());
9911 for (i = 0; argv[i] != NULL; i++)
9912 {
9913 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9914 error (_("Argument list too long for run packet"));
9915 rs->buf[len++] = ';';
9916 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
9917 strlen (argv[i]));
9918 }
9919 }
9920
9921 rs->buf[len++] = '\0';
9922
9923 putpkt (rs->buf);
9924 getpkt (&rs->buf, 0);
9925
9926 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9927 {
9928 case PACKET_OK:
9929 /* We have a wait response. All is well. */
9930 return 0;
9931 case PACKET_UNKNOWN:
9932 return -1;
9933 case PACKET_ERROR:
9934 if (remote_exec_file[0] == '\0')
9935 error (_("Running the default executable on the remote target failed; "
9936 "try \"set remote exec-file\"?"));
9937 else
9938 error (_("Running \"%s\" on the remote target failed"),
9939 remote_exec_file);
9940 default:
9941 gdb_assert_not_reached (_("bad switch"));
9942 }
9943 }
9944
9945 /* Helper function to send set/unset environment packets. ACTION is
9946 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9947 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9948 sent. */
9949
9950 void
9951 remote_target::send_environment_packet (const char *action,
9952 const char *packet,
9953 const char *value)
9954 {
9955 remote_state *rs = get_remote_state ();
9956
9957 /* Convert the environment variable to an hex string, which
9958 is the best format to be transmitted over the wire. */
9959 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9960 strlen (value));
9961
9962 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9963 "%s:%s", packet, encoded_value.c_str ());
9964
9965 putpkt (rs->buf);
9966 getpkt (&rs->buf, 0);
9967 if (strcmp (rs->buf.data (), "OK") != 0)
9968 warning (_("Unable to %s environment variable '%s' on remote."),
9969 action, value);
9970 }
9971
9972 /* Helper function to handle the QEnvironment* packets. */
9973
9974 void
9975 remote_target::extended_remote_environment_support ()
9976 {
9977 remote_state *rs = get_remote_state ();
9978
9979 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9980 {
9981 putpkt ("QEnvironmentReset");
9982 getpkt (&rs->buf, 0);
9983 if (strcmp (rs->buf.data (), "OK") != 0)
9984 warning (_("Unable to reset environment on remote."));
9985 }
9986
9987 gdb_environ *e = &current_inferior ()->environment;
9988
9989 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9990 for (const std::string &el : e->user_set_env ())
9991 send_environment_packet ("set", "QEnvironmentHexEncoded",
9992 el.c_str ());
9993
9994 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9995 for (const std::string &el : e->user_unset_env ())
9996 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
9997 }
9998
9999 /* Helper function to set the current working directory for the
10000 inferior in the remote target. */
10001
10002 void
10003 remote_target::extended_remote_set_inferior_cwd ()
10004 {
10005 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10006 {
10007 const char *inferior_cwd = get_inferior_cwd ();
10008 remote_state *rs = get_remote_state ();
10009
10010 if (inferior_cwd != NULL)
10011 {
10012 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10013 strlen (inferior_cwd));
10014
10015 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10016 "QSetWorkingDir:%s", hexpath.c_str ());
10017 }
10018 else
10019 {
10020 /* An empty inferior_cwd means that the user wants us to
10021 reset the remote server's inferior's cwd. */
10022 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10023 "QSetWorkingDir:");
10024 }
10025
10026 putpkt (rs->buf);
10027 getpkt (&rs->buf, 0);
10028 if (packet_ok (rs->buf,
10029 &remote_protocol_packets[PACKET_QSetWorkingDir])
10030 != PACKET_OK)
10031 error (_("\
10032 Remote replied unexpectedly while setting the inferior's working\n\
10033 directory: %s"),
10034 rs->buf.data ());
10035
10036 }
10037 }
10038
10039 /* In the extended protocol we want to be able to do things like
10040 "run" and have them basically work as expected. So we need
10041 a special create_inferior function. We support changing the
10042 executable file and the command line arguments, but not the
10043 environment. */
10044
10045 void
10046 extended_remote_target::create_inferior (const char *exec_file,
10047 const std::string &args,
10048 char **env, int from_tty)
10049 {
10050 int run_worked;
10051 char *stop_reply;
10052 struct remote_state *rs = get_remote_state ();
10053 const char *remote_exec_file = get_remote_exec_file ();
10054
10055 /* If running asynchronously, register the target file descriptor
10056 with the event loop. */
10057 if (target_can_async_p ())
10058 target_async (1);
10059
10060 /* Disable address space randomization if requested (and supported). */
10061 if (supports_disable_randomization ())
10062 extended_remote_disable_randomization (disable_randomization);
10063
10064 /* If startup-with-shell is on, we inform gdbserver to start the
10065 remote inferior using a shell. */
10066 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10067 {
10068 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10069 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10070 putpkt (rs->buf);
10071 getpkt (&rs->buf, 0);
10072 if (strcmp (rs->buf.data (), "OK") != 0)
10073 error (_("\
10074 Remote replied unexpectedly while setting startup-with-shell: %s"),
10075 rs->buf.data ());
10076 }
10077
10078 extended_remote_environment_support ();
10079
10080 extended_remote_set_inferior_cwd ();
10081
10082 /* Now restart the remote server. */
10083 run_worked = extended_remote_run (args) != -1;
10084 if (!run_worked)
10085 {
10086 /* vRun was not supported. Fail if we need it to do what the
10087 user requested. */
10088 if (remote_exec_file[0])
10089 error (_("Remote target does not support \"set remote exec-file\""));
10090 if (!args.empty ())
10091 error (_("Remote target does not support \"set args\" or run ARGS"));
10092
10093 /* Fall back to "R". */
10094 extended_remote_restart ();
10095 }
10096
10097 /* vRun's success return is a stop reply. */
10098 stop_reply = run_worked ? rs->buf.data () : NULL;
10099 add_current_inferior_and_thread (stop_reply);
10100
10101 /* Get updated offsets, if the stub uses qOffsets. */
10102 get_offsets ();
10103 }
10104 \f
10105
10106 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10107 the list of conditions (in agent expression bytecode format), if any, the
10108 target needs to evaluate. The output is placed into the packet buffer
10109 started from BUF and ended at BUF_END. */
10110
10111 static int
10112 remote_add_target_side_condition (struct gdbarch *gdbarch,
10113 struct bp_target_info *bp_tgt, char *buf,
10114 char *buf_end)
10115 {
10116 if (bp_tgt->conditions.empty ())
10117 return 0;
10118
10119 buf += strlen (buf);
10120 xsnprintf (buf, buf_end - buf, "%s", ";");
10121 buf++;
10122
10123 /* Send conditions to the target. */
10124 for (agent_expr *aexpr : bp_tgt->conditions)
10125 {
10126 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10127 buf += strlen (buf);
10128 for (int i = 0; i < aexpr->len; ++i)
10129 buf = pack_hex_byte (buf, aexpr->buf[i]);
10130 *buf = '\0';
10131 }
10132 return 0;
10133 }
10134
10135 static void
10136 remote_add_target_side_commands (struct gdbarch *gdbarch,
10137 struct bp_target_info *bp_tgt, char *buf)
10138 {
10139 if (bp_tgt->tcommands.empty ())
10140 return;
10141
10142 buf += strlen (buf);
10143
10144 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10145 buf += strlen (buf);
10146
10147 /* Concatenate all the agent expressions that are commands into the
10148 cmds parameter. */
10149 for (agent_expr *aexpr : bp_tgt->tcommands)
10150 {
10151 sprintf (buf, "X%x,", aexpr->len);
10152 buf += strlen (buf);
10153 for (int i = 0; i < aexpr->len; ++i)
10154 buf = pack_hex_byte (buf, aexpr->buf[i]);
10155 *buf = '\0';
10156 }
10157 }
10158
10159 /* Insert a breakpoint. On targets that have software breakpoint
10160 support, we ask the remote target to do the work; on targets
10161 which don't, we insert a traditional memory breakpoint. */
10162
10163 int
10164 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10165 struct bp_target_info *bp_tgt)
10166 {
10167 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10168 If it succeeds, then set the support to PACKET_ENABLE. If it
10169 fails, and the user has explicitly requested the Z support then
10170 report an error, otherwise, mark it disabled and go on. */
10171
10172 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10173 {
10174 CORE_ADDR addr = bp_tgt->reqstd_address;
10175 struct remote_state *rs;
10176 char *p, *endbuf;
10177
10178 /* Make sure the remote is pointing at the right process, if
10179 necessary. */
10180 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10181 set_general_process ();
10182
10183 rs = get_remote_state ();
10184 p = rs->buf.data ();
10185 endbuf = p + get_remote_packet_size ();
10186
10187 *(p++) = 'Z';
10188 *(p++) = '0';
10189 *(p++) = ',';
10190 addr = (ULONGEST) remote_address_masked (addr);
10191 p += hexnumstr (p, addr);
10192 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10193
10194 if (supports_evaluation_of_breakpoint_conditions ())
10195 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10196
10197 if (can_run_breakpoint_commands ())
10198 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10199
10200 putpkt (rs->buf);
10201 getpkt (&rs->buf, 0);
10202
10203 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10204 {
10205 case PACKET_ERROR:
10206 return -1;
10207 case PACKET_OK:
10208 return 0;
10209 case PACKET_UNKNOWN:
10210 break;
10211 }
10212 }
10213
10214 /* If this breakpoint has target-side commands but this stub doesn't
10215 support Z0 packets, throw error. */
10216 if (!bp_tgt->tcommands.empty ())
10217 throw_error (NOT_SUPPORTED_ERROR, _("\
10218 Target doesn't support breakpoints that have target side commands."));
10219
10220 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10221 }
10222
10223 int
10224 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10225 struct bp_target_info *bp_tgt,
10226 enum remove_bp_reason reason)
10227 {
10228 CORE_ADDR addr = bp_tgt->placed_address;
10229 struct remote_state *rs = get_remote_state ();
10230
10231 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10232 {
10233 char *p = rs->buf.data ();
10234 char *endbuf = p + get_remote_packet_size ();
10235
10236 /* Make sure the remote is pointing at the right process, if
10237 necessary. */
10238 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10239 set_general_process ();
10240
10241 *(p++) = 'z';
10242 *(p++) = '0';
10243 *(p++) = ',';
10244
10245 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10246 p += hexnumstr (p, addr);
10247 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10248
10249 putpkt (rs->buf);
10250 getpkt (&rs->buf, 0);
10251
10252 return (rs->buf[0] == 'E');
10253 }
10254
10255 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10256 }
10257
10258 static enum Z_packet_type
10259 watchpoint_to_Z_packet (int type)
10260 {
10261 switch (type)
10262 {
10263 case hw_write:
10264 return Z_PACKET_WRITE_WP;
10265 break;
10266 case hw_read:
10267 return Z_PACKET_READ_WP;
10268 break;
10269 case hw_access:
10270 return Z_PACKET_ACCESS_WP;
10271 break;
10272 default:
10273 internal_error (__FILE__, __LINE__,
10274 _("hw_bp_to_z: bad watchpoint type %d"), type);
10275 }
10276 }
10277
10278 int
10279 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10280 enum target_hw_bp_type type, struct expression *cond)
10281 {
10282 struct remote_state *rs = get_remote_state ();
10283 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10284 char *p;
10285 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10286
10287 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10288 return 1;
10289
10290 /* Make sure the remote is pointing at the right process, if
10291 necessary. */
10292 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10293 set_general_process ();
10294
10295 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10296 p = strchr (rs->buf.data (), '\0');
10297 addr = remote_address_masked (addr);
10298 p += hexnumstr (p, (ULONGEST) addr);
10299 xsnprintf (p, endbuf - p, ",%x", len);
10300
10301 putpkt (rs->buf);
10302 getpkt (&rs->buf, 0);
10303
10304 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10305 {
10306 case PACKET_ERROR:
10307 return -1;
10308 case PACKET_UNKNOWN:
10309 return 1;
10310 case PACKET_OK:
10311 return 0;
10312 }
10313 internal_error (__FILE__, __LINE__,
10314 _("remote_insert_watchpoint: reached end of function"));
10315 }
10316
10317 bool
10318 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10319 CORE_ADDR start, int length)
10320 {
10321 CORE_ADDR diff = remote_address_masked (addr - start);
10322
10323 return diff < length;
10324 }
10325
10326
10327 int
10328 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10329 enum target_hw_bp_type type, struct expression *cond)
10330 {
10331 struct remote_state *rs = get_remote_state ();
10332 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10333 char *p;
10334 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10335
10336 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10337 return -1;
10338
10339 /* Make sure the remote is pointing at the right process, if
10340 necessary. */
10341 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10342 set_general_process ();
10343
10344 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10345 p = strchr (rs->buf.data (), '\0');
10346 addr = remote_address_masked (addr);
10347 p += hexnumstr (p, (ULONGEST) addr);
10348 xsnprintf (p, endbuf - p, ",%x", len);
10349 putpkt (rs->buf);
10350 getpkt (&rs->buf, 0);
10351
10352 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10353 {
10354 case PACKET_ERROR:
10355 case PACKET_UNKNOWN:
10356 return -1;
10357 case PACKET_OK:
10358 return 0;
10359 }
10360 internal_error (__FILE__, __LINE__,
10361 _("remote_remove_watchpoint: reached end of function"));
10362 }
10363
10364
10365 int remote_hw_watchpoint_limit = -1;
10366 int remote_hw_watchpoint_length_limit = -1;
10367 int remote_hw_breakpoint_limit = -1;
10368
10369 int
10370 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10371 {
10372 if (remote_hw_watchpoint_length_limit == 0)
10373 return 0;
10374 else if (remote_hw_watchpoint_length_limit < 0)
10375 return 1;
10376 else if (len <= remote_hw_watchpoint_length_limit)
10377 return 1;
10378 else
10379 return 0;
10380 }
10381
10382 int
10383 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10384 {
10385 if (type == bp_hardware_breakpoint)
10386 {
10387 if (remote_hw_breakpoint_limit == 0)
10388 return 0;
10389 else if (remote_hw_breakpoint_limit < 0)
10390 return 1;
10391 else if (cnt <= remote_hw_breakpoint_limit)
10392 return 1;
10393 }
10394 else
10395 {
10396 if (remote_hw_watchpoint_limit == 0)
10397 return 0;
10398 else if (remote_hw_watchpoint_limit < 0)
10399 return 1;
10400 else if (ot)
10401 return -1;
10402 else if (cnt <= remote_hw_watchpoint_limit)
10403 return 1;
10404 }
10405 return -1;
10406 }
10407
10408 /* The to_stopped_by_sw_breakpoint method of target remote. */
10409
10410 bool
10411 remote_target::stopped_by_sw_breakpoint ()
10412 {
10413 struct thread_info *thread = inferior_thread ();
10414
10415 return (thread->priv != NULL
10416 && (get_remote_thread_info (thread)->stop_reason
10417 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10418 }
10419
10420 /* The to_supports_stopped_by_sw_breakpoint method of target
10421 remote. */
10422
10423 bool
10424 remote_target::supports_stopped_by_sw_breakpoint ()
10425 {
10426 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10427 }
10428
10429 /* The to_stopped_by_hw_breakpoint method of target remote. */
10430
10431 bool
10432 remote_target::stopped_by_hw_breakpoint ()
10433 {
10434 struct thread_info *thread = inferior_thread ();
10435
10436 return (thread->priv != NULL
10437 && (get_remote_thread_info (thread)->stop_reason
10438 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10439 }
10440
10441 /* The to_supports_stopped_by_hw_breakpoint method of target
10442 remote. */
10443
10444 bool
10445 remote_target::supports_stopped_by_hw_breakpoint ()
10446 {
10447 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10448 }
10449
10450 bool
10451 remote_target::stopped_by_watchpoint ()
10452 {
10453 struct thread_info *thread = inferior_thread ();
10454
10455 return (thread->priv != NULL
10456 && (get_remote_thread_info (thread)->stop_reason
10457 == TARGET_STOPPED_BY_WATCHPOINT));
10458 }
10459
10460 bool
10461 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10462 {
10463 struct thread_info *thread = inferior_thread ();
10464
10465 if (thread->priv != NULL
10466 && (get_remote_thread_info (thread)->stop_reason
10467 == TARGET_STOPPED_BY_WATCHPOINT))
10468 {
10469 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10470 return true;
10471 }
10472
10473 return false;
10474 }
10475
10476
10477 int
10478 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10479 struct bp_target_info *bp_tgt)
10480 {
10481 CORE_ADDR addr = bp_tgt->reqstd_address;
10482 struct remote_state *rs;
10483 char *p, *endbuf;
10484 char *message;
10485
10486 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10487 return -1;
10488
10489 /* Make sure the remote is pointing at the right process, if
10490 necessary. */
10491 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10492 set_general_process ();
10493
10494 rs = get_remote_state ();
10495 p = rs->buf.data ();
10496 endbuf = p + get_remote_packet_size ();
10497
10498 *(p++) = 'Z';
10499 *(p++) = '1';
10500 *(p++) = ',';
10501
10502 addr = remote_address_masked (addr);
10503 p += hexnumstr (p, (ULONGEST) addr);
10504 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10505
10506 if (supports_evaluation_of_breakpoint_conditions ())
10507 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10508
10509 if (can_run_breakpoint_commands ())
10510 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10511
10512 putpkt (rs->buf);
10513 getpkt (&rs->buf, 0);
10514
10515 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10516 {
10517 case PACKET_ERROR:
10518 if (rs->buf[1] == '.')
10519 {
10520 message = strchr (&rs->buf[2], '.');
10521 if (message)
10522 error (_("Remote failure reply: %s"), message + 1);
10523 }
10524 return -1;
10525 case PACKET_UNKNOWN:
10526 return -1;
10527 case PACKET_OK:
10528 return 0;
10529 }
10530 internal_error (__FILE__, __LINE__,
10531 _("remote_insert_hw_breakpoint: reached end of function"));
10532 }
10533
10534
10535 int
10536 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10537 struct bp_target_info *bp_tgt)
10538 {
10539 CORE_ADDR addr;
10540 struct remote_state *rs = get_remote_state ();
10541 char *p = rs->buf.data ();
10542 char *endbuf = p + get_remote_packet_size ();
10543
10544 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10545 return -1;
10546
10547 /* Make sure the remote is pointing at the right process, if
10548 necessary. */
10549 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10550 set_general_process ();
10551
10552 *(p++) = 'z';
10553 *(p++) = '1';
10554 *(p++) = ',';
10555
10556 addr = remote_address_masked (bp_tgt->placed_address);
10557 p += hexnumstr (p, (ULONGEST) addr);
10558 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10559
10560 putpkt (rs->buf);
10561 getpkt (&rs->buf, 0);
10562
10563 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10564 {
10565 case PACKET_ERROR:
10566 case PACKET_UNKNOWN:
10567 return -1;
10568 case PACKET_OK:
10569 return 0;
10570 }
10571 internal_error (__FILE__, __LINE__,
10572 _("remote_remove_hw_breakpoint: reached end of function"));
10573 }
10574
10575 /* Verify memory using the "qCRC:" request. */
10576
10577 int
10578 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10579 {
10580 struct remote_state *rs = get_remote_state ();
10581 unsigned long host_crc, target_crc;
10582 char *tmp;
10583
10584 /* It doesn't make sense to use qCRC if the remote target is
10585 connected but not running. */
10586 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10587 {
10588 enum packet_result result;
10589
10590 /* Make sure the remote is pointing at the right process. */
10591 set_general_process ();
10592
10593 /* FIXME: assumes lma can fit into long. */
10594 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10595 (long) lma, (long) size);
10596 putpkt (rs->buf);
10597
10598 /* Be clever; compute the host_crc before waiting for target
10599 reply. */
10600 host_crc = xcrc32 (data, size, 0xffffffff);
10601
10602 getpkt (&rs->buf, 0);
10603
10604 result = packet_ok (rs->buf,
10605 &remote_protocol_packets[PACKET_qCRC]);
10606 if (result == PACKET_ERROR)
10607 return -1;
10608 else if (result == PACKET_OK)
10609 {
10610 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10611 target_crc = target_crc * 16 + fromhex (*tmp);
10612
10613 return (host_crc == target_crc);
10614 }
10615 }
10616
10617 return simple_verify_memory (this, data, lma, size);
10618 }
10619
10620 /* compare-sections command
10621
10622 With no arguments, compares each loadable section in the exec bfd
10623 with the same memory range on the target, and reports mismatches.
10624 Useful for verifying the image on the target against the exec file. */
10625
10626 static void
10627 compare_sections_command (const char *args, int from_tty)
10628 {
10629 asection *s;
10630 const char *sectname;
10631 bfd_size_type size;
10632 bfd_vma lma;
10633 int matched = 0;
10634 int mismatched = 0;
10635 int res;
10636 int read_only = 0;
10637
10638 if (!exec_bfd)
10639 error (_("command cannot be used without an exec file"));
10640
10641 if (args != NULL && strcmp (args, "-r") == 0)
10642 {
10643 read_only = 1;
10644 args = NULL;
10645 }
10646
10647 for (s = exec_bfd->sections; s; s = s->next)
10648 {
10649 if (!(s->flags & SEC_LOAD))
10650 continue; /* Skip non-loadable section. */
10651
10652 if (read_only && (s->flags & SEC_READONLY) == 0)
10653 continue; /* Skip writeable sections */
10654
10655 size = bfd_get_section_size (s);
10656 if (size == 0)
10657 continue; /* Skip zero-length section. */
10658
10659 sectname = bfd_get_section_name (exec_bfd, s);
10660 if (args && strcmp (args, sectname) != 0)
10661 continue; /* Not the section selected by user. */
10662
10663 matched = 1; /* Do this section. */
10664 lma = s->lma;
10665
10666 gdb::byte_vector sectdata (size);
10667 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10668
10669 res = target_verify_memory (sectdata.data (), lma, size);
10670
10671 if (res == -1)
10672 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10673 paddress (target_gdbarch (), lma),
10674 paddress (target_gdbarch (), lma + size));
10675
10676 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10677 paddress (target_gdbarch (), lma),
10678 paddress (target_gdbarch (), lma + size));
10679 if (res)
10680 printf_filtered ("matched.\n");
10681 else
10682 {
10683 printf_filtered ("MIS-MATCHED!\n");
10684 mismatched++;
10685 }
10686 }
10687 if (mismatched > 0)
10688 warning (_("One or more sections of the target image does not match\n\
10689 the loaded file\n"));
10690 if (args && !matched)
10691 printf_filtered (_("No loaded section named '%s'.\n"), args);
10692 }
10693
10694 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10695 into remote target. The number of bytes written to the remote
10696 target is returned, or -1 for error. */
10697
10698 target_xfer_status
10699 remote_target::remote_write_qxfer (const char *object_name,
10700 const char *annex, const gdb_byte *writebuf,
10701 ULONGEST offset, LONGEST len,
10702 ULONGEST *xfered_len,
10703 struct packet_config *packet)
10704 {
10705 int i, buf_len;
10706 ULONGEST n;
10707 struct remote_state *rs = get_remote_state ();
10708 int max_size = get_memory_write_packet_size ();
10709
10710 if (packet_config_support (packet) == PACKET_DISABLE)
10711 return TARGET_XFER_E_IO;
10712
10713 /* Insert header. */
10714 i = snprintf (rs->buf.data (), max_size,
10715 "qXfer:%s:write:%s:%s:",
10716 object_name, annex ? annex : "",
10717 phex_nz (offset, sizeof offset));
10718 max_size -= (i + 1);
10719
10720 /* Escape as much data as fits into rs->buf. */
10721 buf_len = remote_escape_output
10722 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10723
10724 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10725 || getpkt_sane (&rs->buf, 0) < 0
10726 || packet_ok (rs->buf, packet) != PACKET_OK)
10727 return TARGET_XFER_E_IO;
10728
10729 unpack_varlen_hex (rs->buf.data (), &n);
10730
10731 *xfered_len = n;
10732 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10733 }
10734
10735 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10736 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10737 number of bytes read is returned, or 0 for EOF, or -1 for error.
10738 The number of bytes read may be less than LEN without indicating an
10739 EOF. PACKET is checked and updated to indicate whether the remote
10740 target supports this object. */
10741
10742 target_xfer_status
10743 remote_target::remote_read_qxfer (const char *object_name,
10744 const char *annex,
10745 gdb_byte *readbuf, ULONGEST offset,
10746 LONGEST len,
10747 ULONGEST *xfered_len,
10748 struct packet_config *packet)
10749 {
10750 struct remote_state *rs = get_remote_state ();
10751 LONGEST i, n, packet_len;
10752
10753 if (packet_config_support (packet) == PACKET_DISABLE)
10754 return TARGET_XFER_E_IO;
10755
10756 /* Check whether we've cached an end-of-object packet that matches
10757 this request. */
10758 if (rs->finished_object)
10759 {
10760 if (strcmp (object_name, rs->finished_object) == 0
10761 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10762 && offset == rs->finished_offset)
10763 return TARGET_XFER_EOF;
10764
10765
10766 /* Otherwise, we're now reading something different. Discard
10767 the cache. */
10768 xfree (rs->finished_object);
10769 xfree (rs->finished_annex);
10770 rs->finished_object = NULL;
10771 rs->finished_annex = NULL;
10772 }
10773
10774 /* Request only enough to fit in a single packet. The actual data
10775 may not, since we don't know how much of it will need to be escaped;
10776 the target is free to respond with slightly less data. We subtract
10777 five to account for the response type and the protocol frame. */
10778 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10779 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10780 "qXfer:%s:read:%s:%s,%s",
10781 object_name, annex ? annex : "",
10782 phex_nz (offset, sizeof offset),
10783 phex_nz (n, sizeof n));
10784 i = putpkt (rs->buf);
10785 if (i < 0)
10786 return TARGET_XFER_E_IO;
10787
10788 rs->buf[0] = '\0';
10789 packet_len = getpkt_sane (&rs->buf, 0);
10790 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10791 return TARGET_XFER_E_IO;
10792
10793 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10794 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10795
10796 /* 'm' means there is (or at least might be) more data after this
10797 batch. That does not make sense unless there's at least one byte
10798 of data in this reply. */
10799 if (rs->buf[0] == 'm' && packet_len == 1)
10800 error (_("Remote qXfer reply contained no data."));
10801
10802 /* Got some data. */
10803 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10804 packet_len - 1, readbuf, n);
10805
10806 /* 'l' is an EOF marker, possibly including a final block of data,
10807 or possibly empty. If we have the final block of a non-empty
10808 object, record this fact to bypass a subsequent partial read. */
10809 if (rs->buf[0] == 'l' && offset + i > 0)
10810 {
10811 rs->finished_object = xstrdup (object_name);
10812 rs->finished_annex = xstrdup (annex ? annex : "");
10813 rs->finished_offset = offset + i;
10814 }
10815
10816 if (i == 0)
10817 return TARGET_XFER_EOF;
10818 else
10819 {
10820 *xfered_len = i;
10821 return TARGET_XFER_OK;
10822 }
10823 }
10824
10825 enum target_xfer_status
10826 remote_target::xfer_partial (enum target_object object,
10827 const char *annex, gdb_byte *readbuf,
10828 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10829 ULONGEST *xfered_len)
10830 {
10831 struct remote_state *rs;
10832 int i;
10833 char *p2;
10834 char query_type;
10835 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10836
10837 set_remote_traceframe ();
10838 set_general_thread (inferior_ptid);
10839
10840 rs = get_remote_state ();
10841
10842 /* Handle memory using the standard memory routines. */
10843 if (object == TARGET_OBJECT_MEMORY)
10844 {
10845 /* If the remote target is connected but not running, we should
10846 pass this request down to a lower stratum (e.g. the executable
10847 file). */
10848 if (!target_has_execution)
10849 return TARGET_XFER_EOF;
10850
10851 if (writebuf != NULL)
10852 return remote_write_bytes (offset, writebuf, len, unit_size,
10853 xfered_len);
10854 else
10855 return remote_read_bytes (offset, readbuf, len, unit_size,
10856 xfered_len);
10857 }
10858
10859 /* Handle SPU memory using qxfer packets. */
10860 if (object == TARGET_OBJECT_SPU)
10861 {
10862 if (readbuf)
10863 return remote_read_qxfer ("spu", annex, readbuf, offset, len,
10864 xfered_len, &remote_protocol_packets
10865 [PACKET_qXfer_spu_read]);
10866 else
10867 return remote_write_qxfer ("spu", annex, writebuf, offset, len,
10868 xfered_len, &remote_protocol_packets
10869 [PACKET_qXfer_spu_write]);
10870 }
10871
10872 /* Handle extra signal info using qxfer packets. */
10873 if (object == TARGET_OBJECT_SIGNAL_INFO)
10874 {
10875 if (readbuf)
10876 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10877 xfered_len, &remote_protocol_packets
10878 [PACKET_qXfer_siginfo_read]);
10879 else
10880 return remote_write_qxfer ("siginfo", annex,
10881 writebuf, offset, len, xfered_len,
10882 &remote_protocol_packets
10883 [PACKET_qXfer_siginfo_write]);
10884 }
10885
10886 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10887 {
10888 if (readbuf)
10889 return remote_read_qxfer ("statictrace", annex,
10890 readbuf, offset, len, xfered_len,
10891 &remote_protocol_packets
10892 [PACKET_qXfer_statictrace_read]);
10893 else
10894 return TARGET_XFER_E_IO;
10895 }
10896
10897 /* Only handle flash writes. */
10898 if (writebuf != NULL)
10899 {
10900 switch (object)
10901 {
10902 case TARGET_OBJECT_FLASH:
10903 return remote_flash_write (offset, len, xfered_len,
10904 writebuf);
10905
10906 default:
10907 return TARGET_XFER_E_IO;
10908 }
10909 }
10910
10911 /* Map pre-existing objects onto letters. DO NOT do this for new
10912 objects!!! Instead specify new query packets. */
10913 switch (object)
10914 {
10915 case TARGET_OBJECT_AVR:
10916 query_type = 'R';
10917 break;
10918
10919 case TARGET_OBJECT_AUXV:
10920 gdb_assert (annex == NULL);
10921 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10922 xfered_len,
10923 &remote_protocol_packets[PACKET_qXfer_auxv]);
10924
10925 case TARGET_OBJECT_AVAILABLE_FEATURES:
10926 return remote_read_qxfer
10927 ("features", annex, readbuf, offset, len, xfered_len,
10928 &remote_protocol_packets[PACKET_qXfer_features]);
10929
10930 case TARGET_OBJECT_LIBRARIES:
10931 return remote_read_qxfer
10932 ("libraries", annex, readbuf, offset, len, xfered_len,
10933 &remote_protocol_packets[PACKET_qXfer_libraries]);
10934
10935 case TARGET_OBJECT_LIBRARIES_SVR4:
10936 return remote_read_qxfer
10937 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10938 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10939
10940 case TARGET_OBJECT_MEMORY_MAP:
10941 gdb_assert (annex == NULL);
10942 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10943 xfered_len,
10944 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10945
10946 case TARGET_OBJECT_OSDATA:
10947 /* Should only get here if we're connected. */
10948 gdb_assert (rs->remote_desc);
10949 return remote_read_qxfer
10950 ("osdata", annex, readbuf, offset, len, xfered_len,
10951 &remote_protocol_packets[PACKET_qXfer_osdata]);
10952
10953 case TARGET_OBJECT_THREADS:
10954 gdb_assert (annex == NULL);
10955 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10956 xfered_len,
10957 &remote_protocol_packets[PACKET_qXfer_threads]);
10958
10959 case TARGET_OBJECT_TRACEFRAME_INFO:
10960 gdb_assert (annex == NULL);
10961 return remote_read_qxfer
10962 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
10963 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10964
10965 case TARGET_OBJECT_FDPIC:
10966 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
10967 xfered_len,
10968 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10969
10970 case TARGET_OBJECT_OPENVMS_UIB:
10971 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
10972 xfered_len,
10973 &remote_protocol_packets[PACKET_qXfer_uib]);
10974
10975 case TARGET_OBJECT_BTRACE:
10976 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
10977 xfered_len,
10978 &remote_protocol_packets[PACKET_qXfer_btrace]);
10979
10980 case TARGET_OBJECT_BTRACE_CONF:
10981 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
10982 len, xfered_len,
10983 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10984
10985 case TARGET_OBJECT_EXEC_FILE:
10986 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
10987 len, xfered_len,
10988 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10989
10990 default:
10991 return TARGET_XFER_E_IO;
10992 }
10993
10994 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10995 large enough let the caller deal with it. */
10996 if (len < get_remote_packet_size ())
10997 return TARGET_XFER_E_IO;
10998 len = get_remote_packet_size ();
10999
11000 /* Except for querying the minimum buffer size, target must be open. */
11001 if (!rs->remote_desc)
11002 error (_("remote query is only available after target open"));
11003
11004 gdb_assert (annex != NULL);
11005 gdb_assert (readbuf != NULL);
11006
11007 p2 = rs->buf.data ();
11008 *p2++ = 'q';
11009 *p2++ = query_type;
11010
11011 /* We used one buffer char for the remote protocol q command and
11012 another for the query type. As the remote protocol encapsulation
11013 uses 4 chars plus one extra in case we are debugging
11014 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11015 string. */
11016 i = 0;
11017 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11018 {
11019 /* Bad caller may have sent forbidden characters. */
11020 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11021 *p2++ = annex[i];
11022 i++;
11023 }
11024 *p2 = '\0';
11025 gdb_assert (annex[i] == '\0');
11026
11027 i = putpkt (rs->buf);
11028 if (i < 0)
11029 return TARGET_XFER_E_IO;
11030
11031 getpkt (&rs->buf, 0);
11032 strcpy ((char *) readbuf, rs->buf.data ());
11033
11034 *xfered_len = strlen ((char *) readbuf);
11035 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11036 }
11037
11038 /* Implementation of to_get_memory_xfer_limit. */
11039
11040 ULONGEST
11041 remote_target::get_memory_xfer_limit ()
11042 {
11043 return get_memory_write_packet_size ();
11044 }
11045
11046 int
11047 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11048 const gdb_byte *pattern, ULONGEST pattern_len,
11049 CORE_ADDR *found_addrp)
11050 {
11051 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11052 struct remote_state *rs = get_remote_state ();
11053 int max_size = get_memory_write_packet_size ();
11054 struct packet_config *packet =
11055 &remote_protocol_packets[PACKET_qSearch_memory];
11056 /* Number of packet bytes used to encode the pattern;
11057 this could be more than PATTERN_LEN due to escape characters. */
11058 int escaped_pattern_len;
11059 /* Amount of pattern that was encodable in the packet. */
11060 int used_pattern_len;
11061 int i;
11062 int found;
11063 ULONGEST found_addr;
11064
11065 /* Don't go to the target if we don't have to. This is done before
11066 checking packet_config_support to avoid the possibility that a
11067 success for this edge case means the facility works in
11068 general. */
11069 if (pattern_len > search_space_len)
11070 return 0;
11071 if (pattern_len == 0)
11072 {
11073 *found_addrp = start_addr;
11074 return 1;
11075 }
11076
11077 /* If we already know the packet isn't supported, fall back to the simple
11078 way of searching memory. */
11079
11080 if (packet_config_support (packet) == PACKET_DISABLE)
11081 {
11082 /* Target doesn't provided special support, fall back and use the
11083 standard support (copy memory and do the search here). */
11084 return simple_search_memory (this, start_addr, search_space_len,
11085 pattern, pattern_len, found_addrp);
11086 }
11087
11088 /* Make sure the remote is pointing at the right process. */
11089 set_general_process ();
11090
11091 /* Insert header. */
11092 i = snprintf (rs->buf.data (), max_size,
11093 "qSearch:memory:%s;%s;",
11094 phex_nz (start_addr, addr_size),
11095 phex_nz (search_space_len, sizeof (search_space_len)));
11096 max_size -= (i + 1);
11097
11098 /* Escape as much data as fits into rs->buf. */
11099 escaped_pattern_len =
11100 remote_escape_output (pattern, pattern_len, 1,
11101 (gdb_byte *) rs->buf.data () + i,
11102 &used_pattern_len, max_size);
11103
11104 /* Bail if the pattern is too large. */
11105 if (used_pattern_len != pattern_len)
11106 error (_("Pattern is too large to transmit to remote target."));
11107
11108 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11109 || getpkt_sane (&rs->buf, 0) < 0
11110 || packet_ok (rs->buf, packet) != PACKET_OK)
11111 {
11112 /* The request may not have worked because the command is not
11113 supported. If so, fall back to the simple way. */
11114 if (packet_config_support (packet) == PACKET_DISABLE)
11115 {
11116 return simple_search_memory (this, start_addr, search_space_len,
11117 pattern, pattern_len, found_addrp);
11118 }
11119 return -1;
11120 }
11121
11122 if (rs->buf[0] == '0')
11123 found = 0;
11124 else if (rs->buf[0] == '1')
11125 {
11126 found = 1;
11127 if (rs->buf[1] != ',')
11128 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11129 unpack_varlen_hex (&rs->buf[2], &found_addr);
11130 *found_addrp = found_addr;
11131 }
11132 else
11133 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11134
11135 return found;
11136 }
11137
11138 void
11139 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11140 {
11141 struct remote_state *rs = get_remote_state ();
11142 char *p = rs->buf.data ();
11143
11144 if (!rs->remote_desc)
11145 error (_("remote rcmd is only available after target open"));
11146
11147 /* Send a NULL command across as an empty command. */
11148 if (command == NULL)
11149 command = "";
11150
11151 /* The query prefix. */
11152 strcpy (rs->buf.data (), "qRcmd,");
11153 p = strchr (rs->buf.data (), '\0');
11154
11155 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11156 > get_remote_packet_size ())
11157 error (_("\"monitor\" command ``%s'' is too long."), command);
11158
11159 /* Encode the actual command. */
11160 bin2hex ((const gdb_byte *) command, p, strlen (command));
11161
11162 if (putpkt (rs->buf) < 0)
11163 error (_("Communication problem with target."));
11164
11165 /* get/display the response */
11166 while (1)
11167 {
11168 char *buf;
11169
11170 /* XXX - see also remote_get_noisy_reply(). */
11171 QUIT; /* Allow user to bail out with ^C. */
11172 rs->buf[0] = '\0';
11173 if (getpkt_sane (&rs->buf, 0) == -1)
11174 {
11175 /* Timeout. Continue to (try to) read responses.
11176 This is better than stopping with an error, assuming the stub
11177 is still executing the (long) monitor command.
11178 If needed, the user can interrupt gdb using C-c, obtaining
11179 an effect similar to stop on timeout. */
11180 continue;
11181 }
11182 buf = rs->buf.data ();
11183 if (buf[0] == '\0')
11184 error (_("Target does not support this command."));
11185 if (buf[0] == 'O' && buf[1] != 'K')
11186 {
11187 remote_console_output (buf + 1); /* 'O' message from stub. */
11188 continue;
11189 }
11190 if (strcmp (buf, "OK") == 0)
11191 break;
11192 if (strlen (buf) == 3 && buf[0] == 'E'
11193 && isdigit (buf[1]) && isdigit (buf[2]))
11194 {
11195 error (_("Protocol error with Rcmd"));
11196 }
11197 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11198 {
11199 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11200
11201 fputc_unfiltered (c, outbuf);
11202 }
11203 break;
11204 }
11205 }
11206
11207 std::vector<mem_region>
11208 remote_target::memory_map ()
11209 {
11210 std::vector<mem_region> result;
11211 gdb::optional<gdb::char_vector> text
11212 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11213
11214 if (text)
11215 result = parse_memory_map (text->data ());
11216
11217 return result;
11218 }
11219
11220 static void
11221 packet_command (const char *args, int from_tty)
11222 {
11223 remote_target *remote = get_current_remote_target ();
11224
11225 if (remote == nullptr)
11226 error (_("command can only be used with remote target"));
11227
11228 remote->packet_command (args, from_tty);
11229 }
11230
11231 void
11232 remote_target::packet_command (const char *args, int from_tty)
11233 {
11234 if (!args)
11235 error (_("remote-packet command requires packet text as argument"));
11236
11237 puts_filtered ("sending: ");
11238 print_packet (args);
11239 puts_filtered ("\n");
11240 putpkt (args);
11241
11242 remote_state *rs = get_remote_state ();
11243
11244 getpkt (&rs->buf, 0);
11245 puts_filtered ("received: ");
11246 print_packet (rs->buf.data ());
11247 puts_filtered ("\n");
11248 }
11249
11250 #if 0
11251 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11252
11253 static void display_thread_info (struct gdb_ext_thread_info *info);
11254
11255 static void threadset_test_cmd (char *cmd, int tty);
11256
11257 static void threadalive_test (char *cmd, int tty);
11258
11259 static void threadlist_test_cmd (char *cmd, int tty);
11260
11261 int get_and_display_threadinfo (threadref *ref);
11262
11263 static void threadinfo_test_cmd (char *cmd, int tty);
11264
11265 static int thread_display_step (threadref *ref, void *context);
11266
11267 static void threadlist_update_test_cmd (char *cmd, int tty);
11268
11269 static void init_remote_threadtests (void);
11270
11271 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11272
11273 static void
11274 threadset_test_cmd (const char *cmd, int tty)
11275 {
11276 int sample_thread = SAMPLE_THREAD;
11277
11278 printf_filtered (_("Remote threadset test\n"));
11279 set_general_thread (sample_thread);
11280 }
11281
11282
11283 static void
11284 threadalive_test (const char *cmd, int tty)
11285 {
11286 int sample_thread = SAMPLE_THREAD;
11287 int pid = inferior_ptid.pid ();
11288 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11289
11290 if (remote_thread_alive (ptid))
11291 printf_filtered ("PASS: Thread alive test\n");
11292 else
11293 printf_filtered ("FAIL: Thread alive test\n");
11294 }
11295
11296 void output_threadid (char *title, threadref *ref);
11297
11298 void
11299 output_threadid (char *title, threadref *ref)
11300 {
11301 char hexid[20];
11302
11303 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
11304 hexid[16] = 0;
11305 printf_filtered ("%s %s\n", title, (&hexid[0]));
11306 }
11307
11308 static void
11309 threadlist_test_cmd (const char *cmd, int tty)
11310 {
11311 int startflag = 1;
11312 threadref nextthread;
11313 int done, result_count;
11314 threadref threadlist[3];
11315
11316 printf_filtered ("Remote Threadlist test\n");
11317 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11318 &result_count, &threadlist[0]))
11319 printf_filtered ("FAIL: threadlist test\n");
11320 else
11321 {
11322 threadref *scan = threadlist;
11323 threadref *limit = scan + result_count;
11324
11325 while (scan < limit)
11326 output_threadid (" thread ", scan++);
11327 }
11328 }
11329
11330 void
11331 display_thread_info (struct gdb_ext_thread_info *info)
11332 {
11333 output_threadid ("Threadid: ", &info->threadid);
11334 printf_filtered ("Name: %s\n ", info->shortname);
11335 printf_filtered ("State: %s\n", info->display);
11336 printf_filtered ("other: %s\n\n", info->more_display);
11337 }
11338
11339 int
11340 get_and_display_threadinfo (threadref *ref)
11341 {
11342 int result;
11343 int set;
11344 struct gdb_ext_thread_info threadinfo;
11345
11346 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11347 | TAG_MOREDISPLAY | TAG_DISPLAY;
11348 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11349 display_thread_info (&threadinfo);
11350 return result;
11351 }
11352
11353 static void
11354 threadinfo_test_cmd (const char *cmd, int tty)
11355 {
11356 int athread = SAMPLE_THREAD;
11357 threadref thread;
11358 int set;
11359
11360 int_to_threadref (&thread, athread);
11361 printf_filtered ("Remote Threadinfo test\n");
11362 if (!get_and_display_threadinfo (&thread))
11363 printf_filtered ("FAIL cannot get thread info\n");
11364 }
11365
11366 static int
11367 thread_display_step (threadref *ref, void *context)
11368 {
11369 /* output_threadid(" threadstep ",ref); *//* simple test */
11370 return get_and_display_threadinfo (ref);
11371 }
11372
11373 static void
11374 threadlist_update_test_cmd (const char *cmd, int tty)
11375 {
11376 printf_filtered ("Remote Threadlist update test\n");
11377 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11378 }
11379
11380 static void
11381 init_remote_threadtests (void)
11382 {
11383 add_com ("tlist", class_obscure, threadlist_test_cmd,
11384 _("Fetch and print the remote list of "
11385 "thread identifiers, one pkt only"));
11386 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11387 _("Fetch and display info about one thread"));
11388 add_com ("tset", class_obscure, threadset_test_cmd,
11389 _("Test setting to a different thread"));
11390 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11391 _("Iterate through updating all remote thread info"));
11392 add_com ("talive", class_obscure, threadalive_test,
11393 _(" Remote thread alive test "));
11394 }
11395
11396 #endif /* 0 */
11397
11398 /* Convert a thread ID to a string. Returns the string in a static
11399 buffer. */
11400
11401 const char *
11402 remote_target::pid_to_str (ptid_t ptid)
11403 {
11404 static char buf[64];
11405 struct remote_state *rs = get_remote_state ();
11406
11407 if (ptid == null_ptid)
11408 return normal_pid_to_str (ptid);
11409 else if (ptid.is_pid ())
11410 {
11411 /* Printing an inferior target id. */
11412
11413 /* When multi-process extensions are off, there's no way in the
11414 remote protocol to know the remote process id, if there's any
11415 at all. There's one exception --- when we're connected with
11416 target extended-remote, and we manually attached to a process
11417 with "attach PID". We don't record anywhere a flag that
11418 allows us to distinguish that case from the case of
11419 connecting with extended-remote and the stub already being
11420 attached to a process, and reporting yes to qAttached, hence
11421 no smart special casing here. */
11422 if (!remote_multi_process_p (rs))
11423 {
11424 xsnprintf (buf, sizeof buf, "Remote target");
11425 return buf;
11426 }
11427
11428 return normal_pid_to_str (ptid);
11429 }
11430 else
11431 {
11432 if (magic_null_ptid == ptid)
11433 xsnprintf (buf, sizeof buf, "Thread <main>");
11434 else if (remote_multi_process_p (rs))
11435 if (ptid.lwp () == 0)
11436 return normal_pid_to_str (ptid);
11437 else
11438 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11439 ptid.pid (), ptid.lwp ());
11440 else
11441 xsnprintf (buf, sizeof buf, "Thread %ld",
11442 ptid.lwp ());
11443 return buf;
11444 }
11445 }
11446
11447 /* Get the address of the thread local variable in OBJFILE which is
11448 stored at OFFSET within the thread local storage for thread PTID. */
11449
11450 CORE_ADDR
11451 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11452 CORE_ADDR offset)
11453 {
11454 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11455 {
11456 struct remote_state *rs = get_remote_state ();
11457 char *p = rs->buf.data ();
11458 char *endp = p + get_remote_packet_size ();
11459 enum packet_result result;
11460
11461 strcpy (p, "qGetTLSAddr:");
11462 p += strlen (p);
11463 p = write_ptid (p, endp, ptid);
11464 *p++ = ',';
11465 p += hexnumstr (p, offset);
11466 *p++ = ',';
11467 p += hexnumstr (p, lm);
11468 *p++ = '\0';
11469
11470 putpkt (rs->buf);
11471 getpkt (&rs->buf, 0);
11472 result = packet_ok (rs->buf,
11473 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11474 if (result == PACKET_OK)
11475 {
11476 ULONGEST addr;
11477
11478 unpack_varlen_hex (rs->buf.data (), &addr);
11479 return addr;
11480 }
11481 else if (result == PACKET_UNKNOWN)
11482 throw_error (TLS_GENERIC_ERROR,
11483 _("Remote target doesn't support qGetTLSAddr packet"));
11484 else
11485 throw_error (TLS_GENERIC_ERROR,
11486 _("Remote target failed to process qGetTLSAddr request"));
11487 }
11488 else
11489 throw_error (TLS_GENERIC_ERROR,
11490 _("TLS not supported or disabled on this target"));
11491 /* Not reached. */
11492 return 0;
11493 }
11494
11495 /* Provide thread local base, i.e. Thread Information Block address.
11496 Returns 1 if ptid is found and thread_local_base is non zero. */
11497
11498 bool
11499 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11500 {
11501 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11502 {
11503 struct remote_state *rs = get_remote_state ();
11504 char *p = rs->buf.data ();
11505 char *endp = p + get_remote_packet_size ();
11506 enum packet_result result;
11507
11508 strcpy (p, "qGetTIBAddr:");
11509 p += strlen (p);
11510 p = write_ptid (p, endp, ptid);
11511 *p++ = '\0';
11512
11513 putpkt (rs->buf);
11514 getpkt (&rs->buf, 0);
11515 result = packet_ok (rs->buf,
11516 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11517 if (result == PACKET_OK)
11518 {
11519 ULONGEST val;
11520 unpack_varlen_hex (rs->buf.data (), &val);
11521 if (addr)
11522 *addr = (CORE_ADDR) val;
11523 return true;
11524 }
11525 else if (result == PACKET_UNKNOWN)
11526 error (_("Remote target doesn't support qGetTIBAddr packet"));
11527 else
11528 error (_("Remote target failed to process qGetTIBAddr request"));
11529 }
11530 else
11531 error (_("qGetTIBAddr not supported or disabled on this target"));
11532 /* Not reached. */
11533 return false;
11534 }
11535
11536 /* Support for inferring a target description based on the current
11537 architecture and the size of a 'g' packet. While the 'g' packet
11538 can have any size (since optional registers can be left off the
11539 end), some sizes are easily recognizable given knowledge of the
11540 approximate architecture. */
11541
11542 struct remote_g_packet_guess
11543 {
11544 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11545 : bytes (bytes_),
11546 tdesc (tdesc_)
11547 {
11548 }
11549
11550 int bytes;
11551 const struct target_desc *tdesc;
11552 };
11553
11554 struct remote_g_packet_data : public allocate_on_obstack
11555 {
11556 std::vector<remote_g_packet_guess> guesses;
11557 };
11558
11559 static struct gdbarch_data *remote_g_packet_data_handle;
11560
11561 static void *
11562 remote_g_packet_data_init (struct obstack *obstack)
11563 {
11564 return new (obstack) remote_g_packet_data;
11565 }
11566
11567 void
11568 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11569 const struct target_desc *tdesc)
11570 {
11571 struct remote_g_packet_data *data
11572 = ((struct remote_g_packet_data *)
11573 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11574
11575 gdb_assert (tdesc != NULL);
11576
11577 for (const remote_g_packet_guess &guess : data->guesses)
11578 if (guess.bytes == bytes)
11579 internal_error (__FILE__, __LINE__,
11580 _("Duplicate g packet description added for size %d"),
11581 bytes);
11582
11583 data->guesses.emplace_back (bytes, tdesc);
11584 }
11585
11586 /* Return true if remote_read_description would do anything on this target
11587 and architecture, false otherwise. */
11588
11589 static bool
11590 remote_read_description_p (struct target_ops *target)
11591 {
11592 struct remote_g_packet_data *data
11593 = ((struct remote_g_packet_data *)
11594 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11595
11596 return !data->guesses.empty ();
11597 }
11598
11599 const struct target_desc *
11600 remote_target::read_description ()
11601 {
11602 struct remote_g_packet_data *data
11603 = ((struct remote_g_packet_data *)
11604 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11605
11606 /* Do not try this during initial connection, when we do not know
11607 whether there is a running but stopped thread. */
11608 if (!target_has_execution || inferior_ptid == null_ptid)
11609 return beneath ()->read_description ();
11610
11611 if (!data->guesses.empty ())
11612 {
11613 int bytes = send_g_packet ();
11614
11615 for (const remote_g_packet_guess &guess : data->guesses)
11616 if (guess.bytes == bytes)
11617 return guess.tdesc;
11618
11619 /* We discard the g packet. A minor optimization would be to
11620 hold on to it, and fill the register cache once we have selected
11621 an architecture, but it's too tricky to do safely. */
11622 }
11623
11624 return beneath ()->read_description ();
11625 }
11626
11627 /* Remote file transfer support. This is host-initiated I/O, not
11628 target-initiated; for target-initiated, see remote-fileio.c. */
11629
11630 /* If *LEFT is at least the length of STRING, copy STRING to
11631 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11632 decrease *LEFT. Otherwise raise an error. */
11633
11634 static void
11635 remote_buffer_add_string (char **buffer, int *left, const char *string)
11636 {
11637 int len = strlen (string);
11638
11639 if (len > *left)
11640 error (_("Packet too long for target."));
11641
11642 memcpy (*buffer, string, len);
11643 *buffer += len;
11644 *left -= len;
11645
11646 /* NUL-terminate the buffer as a convenience, if there is
11647 room. */
11648 if (*left)
11649 **buffer = '\0';
11650 }
11651
11652 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11653 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11654 decrease *LEFT. Otherwise raise an error. */
11655
11656 static void
11657 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11658 int len)
11659 {
11660 if (2 * len > *left)
11661 error (_("Packet too long for target."));
11662
11663 bin2hex (bytes, *buffer, len);
11664 *buffer += 2 * len;
11665 *left -= 2 * len;
11666
11667 /* NUL-terminate the buffer as a convenience, if there is
11668 room. */
11669 if (*left)
11670 **buffer = '\0';
11671 }
11672
11673 /* If *LEFT is large enough, convert VALUE to hex and add it to
11674 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11675 decrease *LEFT. Otherwise raise an error. */
11676
11677 static void
11678 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11679 {
11680 int len = hexnumlen (value);
11681
11682 if (len > *left)
11683 error (_("Packet too long for target."));
11684
11685 hexnumstr (*buffer, value);
11686 *buffer += len;
11687 *left -= len;
11688
11689 /* NUL-terminate the buffer as a convenience, if there is
11690 room. */
11691 if (*left)
11692 **buffer = '\0';
11693 }
11694
11695 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11696 value, *REMOTE_ERRNO to the remote error number or zero if none
11697 was included, and *ATTACHMENT to point to the start of the annex
11698 if any. The length of the packet isn't needed here; there may
11699 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11700
11701 Return 0 if the packet could be parsed, -1 if it could not. If
11702 -1 is returned, the other variables may not be initialized. */
11703
11704 static int
11705 remote_hostio_parse_result (char *buffer, int *retcode,
11706 int *remote_errno, char **attachment)
11707 {
11708 char *p, *p2;
11709
11710 *remote_errno = 0;
11711 *attachment = NULL;
11712
11713 if (buffer[0] != 'F')
11714 return -1;
11715
11716 errno = 0;
11717 *retcode = strtol (&buffer[1], &p, 16);
11718 if (errno != 0 || p == &buffer[1])
11719 return -1;
11720
11721 /* Check for ",errno". */
11722 if (*p == ',')
11723 {
11724 errno = 0;
11725 *remote_errno = strtol (p + 1, &p2, 16);
11726 if (errno != 0 || p + 1 == p2)
11727 return -1;
11728 p = p2;
11729 }
11730
11731 /* Check for ";attachment". If there is no attachment, the
11732 packet should end here. */
11733 if (*p == ';')
11734 {
11735 *attachment = p + 1;
11736 return 0;
11737 }
11738 else if (*p == '\0')
11739 return 0;
11740 else
11741 return -1;
11742 }
11743
11744 /* Send a prepared I/O packet to the target and read its response.
11745 The prepared packet is in the global RS->BUF before this function
11746 is called, and the answer is there when we return.
11747
11748 COMMAND_BYTES is the length of the request to send, which may include
11749 binary data. WHICH_PACKET is the packet configuration to check
11750 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11751 is set to the error number and -1 is returned. Otherwise the value
11752 returned by the function is returned.
11753
11754 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11755 attachment is expected; an error will be reported if there's a
11756 mismatch. If one is found, *ATTACHMENT will be set to point into
11757 the packet buffer and *ATTACHMENT_LEN will be set to the
11758 attachment's length. */
11759
11760 int
11761 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11762 int *remote_errno, char **attachment,
11763 int *attachment_len)
11764 {
11765 struct remote_state *rs = get_remote_state ();
11766 int ret, bytes_read;
11767 char *attachment_tmp;
11768
11769 if (packet_support (which_packet) == PACKET_DISABLE)
11770 {
11771 *remote_errno = FILEIO_ENOSYS;
11772 return -1;
11773 }
11774
11775 putpkt_binary (rs->buf.data (), command_bytes);
11776 bytes_read = getpkt_sane (&rs->buf, 0);
11777
11778 /* If it timed out, something is wrong. Don't try to parse the
11779 buffer. */
11780 if (bytes_read < 0)
11781 {
11782 *remote_errno = FILEIO_EINVAL;
11783 return -1;
11784 }
11785
11786 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11787 {
11788 case PACKET_ERROR:
11789 *remote_errno = FILEIO_EINVAL;
11790 return -1;
11791 case PACKET_UNKNOWN:
11792 *remote_errno = FILEIO_ENOSYS;
11793 return -1;
11794 case PACKET_OK:
11795 break;
11796 }
11797
11798 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11799 &attachment_tmp))
11800 {
11801 *remote_errno = FILEIO_EINVAL;
11802 return -1;
11803 }
11804
11805 /* Make sure we saw an attachment if and only if we expected one. */
11806 if ((attachment_tmp == NULL && attachment != NULL)
11807 || (attachment_tmp != NULL && attachment == NULL))
11808 {
11809 *remote_errno = FILEIO_EINVAL;
11810 return -1;
11811 }
11812
11813 /* If an attachment was found, it must point into the packet buffer;
11814 work out how many bytes there were. */
11815 if (attachment_tmp != NULL)
11816 {
11817 *attachment = attachment_tmp;
11818 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11819 }
11820
11821 return ret;
11822 }
11823
11824 /* See declaration.h. */
11825
11826 void
11827 readahead_cache::invalidate ()
11828 {
11829 this->fd = -1;
11830 }
11831
11832 /* See declaration.h. */
11833
11834 void
11835 readahead_cache::invalidate_fd (int fd)
11836 {
11837 if (this->fd == fd)
11838 this->fd = -1;
11839 }
11840
11841 /* Set the filesystem remote_hostio functions that take FILENAME
11842 arguments will use. Return 0 on success, or -1 if an error
11843 occurs (and set *REMOTE_ERRNO). */
11844
11845 int
11846 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11847 int *remote_errno)
11848 {
11849 struct remote_state *rs = get_remote_state ();
11850 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11851 char *p = rs->buf.data ();
11852 int left = get_remote_packet_size () - 1;
11853 char arg[9];
11854 int ret;
11855
11856 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11857 return 0;
11858
11859 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11860 return 0;
11861
11862 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11863
11864 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11865 remote_buffer_add_string (&p, &left, arg);
11866
11867 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11868 remote_errno, NULL, NULL);
11869
11870 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11871 return 0;
11872
11873 if (ret == 0)
11874 rs->fs_pid = required_pid;
11875
11876 return ret;
11877 }
11878
11879 /* Implementation of to_fileio_open. */
11880
11881 int
11882 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11883 int flags, int mode, int warn_if_slow,
11884 int *remote_errno)
11885 {
11886 struct remote_state *rs = get_remote_state ();
11887 char *p = rs->buf.data ();
11888 int left = get_remote_packet_size () - 1;
11889
11890 if (warn_if_slow)
11891 {
11892 static int warning_issued = 0;
11893
11894 printf_unfiltered (_("Reading %s from remote target...\n"),
11895 filename);
11896
11897 if (!warning_issued)
11898 {
11899 warning (_("File transfers from remote targets can be slow."
11900 " Use \"set sysroot\" to access files locally"
11901 " instead."));
11902 warning_issued = 1;
11903 }
11904 }
11905
11906 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11907 return -1;
11908
11909 remote_buffer_add_string (&p, &left, "vFile:open:");
11910
11911 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11912 strlen (filename));
11913 remote_buffer_add_string (&p, &left, ",");
11914
11915 remote_buffer_add_int (&p, &left, flags);
11916 remote_buffer_add_string (&p, &left, ",");
11917
11918 remote_buffer_add_int (&p, &left, mode);
11919
11920 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
11921 remote_errno, NULL, NULL);
11922 }
11923
11924 int
11925 remote_target::fileio_open (struct inferior *inf, const char *filename,
11926 int flags, int mode, int warn_if_slow,
11927 int *remote_errno)
11928 {
11929 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
11930 remote_errno);
11931 }
11932
11933 /* Implementation of to_fileio_pwrite. */
11934
11935 int
11936 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
11937 ULONGEST offset, int *remote_errno)
11938 {
11939 struct remote_state *rs = get_remote_state ();
11940 char *p = rs->buf.data ();
11941 int left = get_remote_packet_size ();
11942 int out_len;
11943
11944 rs->readahead_cache.invalidate_fd (fd);
11945
11946 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11947
11948 remote_buffer_add_int (&p, &left, fd);
11949 remote_buffer_add_string (&p, &left, ",");
11950
11951 remote_buffer_add_int (&p, &left, offset);
11952 remote_buffer_add_string (&p, &left, ",");
11953
11954 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11955 (get_remote_packet_size ()
11956 - (p - rs->buf.data ())));
11957
11958 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
11959 remote_errno, NULL, NULL);
11960 }
11961
11962 int
11963 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
11964 ULONGEST offset, int *remote_errno)
11965 {
11966 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
11967 }
11968
11969 /* Helper for the implementation of to_fileio_pread. Read the file
11970 from the remote side with vFile:pread. */
11971
11972 int
11973 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
11974 ULONGEST offset, int *remote_errno)
11975 {
11976 struct remote_state *rs = get_remote_state ();
11977 char *p = rs->buf.data ();
11978 char *attachment;
11979 int left = get_remote_packet_size ();
11980 int ret, attachment_len;
11981 int read_len;
11982
11983 remote_buffer_add_string (&p, &left, "vFile:pread:");
11984
11985 remote_buffer_add_int (&p, &left, fd);
11986 remote_buffer_add_string (&p, &left, ",");
11987
11988 remote_buffer_add_int (&p, &left, len);
11989 remote_buffer_add_string (&p, &left, ",");
11990
11991 remote_buffer_add_int (&p, &left, offset);
11992
11993 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
11994 remote_errno, &attachment,
11995 &attachment_len);
11996
11997 if (ret < 0)
11998 return ret;
11999
12000 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12001 read_buf, len);
12002 if (read_len != ret)
12003 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12004
12005 return ret;
12006 }
12007
12008 /* See declaration.h. */
12009
12010 int
12011 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12012 ULONGEST offset)
12013 {
12014 if (this->fd == fd
12015 && this->offset <= offset
12016 && offset < this->offset + this->bufsize)
12017 {
12018 ULONGEST max = this->offset + this->bufsize;
12019
12020 if (offset + len > max)
12021 len = max - offset;
12022
12023 memcpy (read_buf, this->buf + offset - this->offset, len);
12024 return len;
12025 }
12026
12027 return 0;
12028 }
12029
12030 /* Implementation of to_fileio_pread. */
12031
12032 int
12033 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12034 ULONGEST offset, int *remote_errno)
12035 {
12036 int ret;
12037 struct remote_state *rs = get_remote_state ();
12038 readahead_cache *cache = &rs->readahead_cache;
12039
12040 ret = cache->pread (fd, read_buf, len, offset);
12041 if (ret > 0)
12042 {
12043 cache->hit_count++;
12044
12045 if (remote_debug)
12046 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12047 pulongest (cache->hit_count));
12048 return ret;
12049 }
12050
12051 cache->miss_count++;
12052 if (remote_debug)
12053 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12054 pulongest (cache->miss_count));
12055
12056 cache->fd = fd;
12057 cache->offset = offset;
12058 cache->bufsize = get_remote_packet_size ();
12059 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12060
12061 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12062 cache->offset, remote_errno);
12063 if (ret <= 0)
12064 {
12065 cache->invalidate_fd (fd);
12066 return ret;
12067 }
12068
12069 cache->bufsize = ret;
12070 return cache->pread (fd, read_buf, len, offset);
12071 }
12072
12073 int
12074 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12075 ULONGEST offset, int *remote_errno)
12076 {
12077 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12078 }
12079
12080 /* Implementation of to_fileio_close. */
12081
12082 int
12083 remote_target::remote_hostio_close (int fd, int *remote_errno)
12084 {
12085 struct remote_state *rs = get_remote_state ();
12086 char *p = rs->buf.data ();
12087 int left = get_remote_packet_size () - 1;
12088
12089 rs->readahead_cache.invalidate_fd (fd);
12090
12091 remote_buffer_add_string (&p, &left, "vFile:close:");
12092
12093 remote_buffer_add_int (&p, &left, fd);
12094
12095 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12096 remote_errno, NULL, NULL);
12097 }
12098
12099 int
12100 remote_target::fileio_close (int fd, int *remote_errno)
12101 {
12102 return remote_hostio_close (fd, remote_errno);
12103 }
12104
12105 /* Implementation of to_fileio_unlink. */
12106
12107 int
12108 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12109 int *remote_errno)
12110 {
12111 struct remote_state *rs = get_remote_state ();
12112 char *p = rs->buf.data ();
12113 int left = get_remote_packet_size () - 1;
12114
12115 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12116 return -1;
12117
12118 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12119
12120 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12121 strlen (filename));
12122
12123 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12124 remote_errno, NULL, NULL);
12125 }
12126
12127 int
12128 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12129 int *remote_errno)
12130 {
12131 return remote_hostio_unlink (inf, filename, remote_errno);
12132 }
12133
12134 /* Implementation of to_fileio_readlink. */
12135
12136 gdb::optional<std::string>
12137 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12138 int *remote_errno)
12139 {
12140 struct remote_state *rs = get_remote_state ();
12141 char *p = rs->buf.data ();
12142 char *attachment;
12143 int left = get_remote_packet_size ();
12144 int len, attachment_len;
12145 int read_len;
12146
12147 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12148 return {};
12149
12150 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12151
12152 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12153 strlen (filename));
12154
12155 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12156 remote_errno, &attachment,
12157 &attachment_len);
12158
12159 if (len < 0)
12160 return {};
12161
12162 std::string ret (len, '\0');
12163
12164 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12165 (gdb_byte *) &ret[0], len);
12166 if (read_len != len)
12167 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12168
12169 return ret;
12170 }
12171
12172 /* Implementation of to_fileio_fstat. */
12173
12174 int
12175 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12176 {
12177 struct remote_state *rs = get_remote_state ();
12178 char *p = rs->buf.data ();
12179 int left = get_remote_packet_size ();
12180 int attachment_len, ret;
12181 char *attachment;
12182 struct fio_stat fst;
12183 int read_len;
12184
12185 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12186
12187 remote_buffer_add_int (&p, &left, fd);
12188
12189 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12190 remote_errno, &attachment,
12191 &attachment_len);
12192 if (ret < 0)
12193 {
12194 if (*remote_errno != FILEIO_ENOSYS)
12195 return ret;
12196
12197 /* Strictly we should return -1, ENOSYS here, but when
12198 "set sysroot remote:" was implemented in August 2008
12199 BFD's need for a stat function was sidestepped with
12200 this hack. This was not remedied until March 2015
12201 so we retain the previous behavior to avoid breaking
12202 compatibility.
12203
12204 Note that the memset is a March 2015 addition; older
12205 GDBs set st_size *and nothing else* so the structure
12206 would have garbage in all other fields. This might
12207 break something but retaining the previous behavior
12208 here would be just too wrong. */
12209
12210 memset (st, 0, sizeof (struct stat));
12211 st->st_size = INT_MAX;
12212 return 0;
12213 }
12214
12215 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12216 (gdb_byte *) &fst, sizeof (fst));
12217
12218 if (read_len != ret)
12219 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12220
12221 if (read_len != sizeof (fst))
12222 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12223 read_len, (int) sizeof (fst));
12224
12225 remote_fileio_to_host_stat (&fst, st);
12226
12227 return 0;
12228 }
12229
12230 /* Implementation of to_filesystem_is_local. */
12231
12232 bool
12233 remote_target::filesystem_is_local ()
12234 {
12235 /* Valgrind GDB presents itself as a remote target but works
12236 on the local filesystem: it does not implement remote get
12237 and users are not expected to set a sysroot. To handle
12238 this case we treat the remote filesystem as local if the
12239 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12240 does not support vFile:open. */
12241 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12242 {
12243 enum packet_support ps = packet_support (PACKET_vFile_open);
12244
12245 if (ps == PACKET_SUPPORT_UNKNOWN)
12246 {
12247 int fd, remote_errno;
12248
12249 /* Try opening a file to probe support. The supplied
12250 filename is irrelevant, we only care about whether
12251 the stub recognizes the packet or not. */
12252 fd = remote_hostio_open (NULL, "just probing",
12253 FILEIO_O_RDONLY, 0700, 0,
12254 &remote_errno);
12255
12256 if (fd >= 0)
12257 remote_hostio_close (fd, &remote_errno);
12258
12259 ps = packet_support (PACKET_vFile_open);
12260 }
12261
12262 if (ps == PACKET_DISABLE)
12263 {
12264 static int warning_issued = 0;
12265
12266 if (!warning_issued)
12267 {
12268 warning (_("remote target does not support file"
12269 " transfer, attempting to access files"
12270 " from local filesystem."));
12271 warning_issued = 1;
12272 }
12273
12274 return true;
12275 }
12276 }
12277
12278 return false;
12279 }
12280
12281 static int
12282 remote_fileio_errno_to_host (int errnum)
12283 {
12284 switch (errnum)
12285 {
12286 case FILEIO_EPERM:
12287 return EPERM;
12288 case FILEIO_ENOENT:
12289 return ENOENT;
12290 case FILEIO_EINTR:
12291 return EINTR;
12292 case FILEIO_EIO:
12293 return EIO;
12294 case FILEIO_EBADF:
12295 return EBADF;
12296 case FILEIO_EACCES:
12297 return EACCES;
12298 case FILEIO_EFAULT:
12299 return EFAULT;
12300 case FILEIO_EBUSY:
12301 return EBUSY;
12302 case FILEIO_EEXIST:
12303 return EEXIST;
12304 case FILEIO_ENODEV:
12305 return ENODEV;
12306 case FILEIO_ENOTDIR:
12307 return ENOTDIR;
12308 case FILEIO_EISDIR:
12309 return EISDIR;
12310 case FILEIO_EINVAL:
12311 return EINVAL;
12312 case FILEIO_ENFILE:
12313 return ENFILE;
12314 case FILEIO_EMFILE:
12315 return EMFILE;
12316 case FILEIO_EFBIG:
12317 return EFBIG;
12318 case FILEIO_ENOSPC:
12319 return ENOSPC;
12320 case FILEIO_ESPIPE:
12321 return ESPIPE;
12322 case FILEIO_EROFS:
12323 return EROFS;
12324 case FILEIO_ENOSYS:
12325 return ENOSYS;
12326 case FILEIO_ENAMETOOLONG:
12327 return ENAMETOOLONG;
12328 }
12329 return -1;
12330 }
12331
12332 static char *
12333 remote_hostio_error (int errnum)
12334 {
12335 int host_error = remote_fileio_errno_to_host (errnum);
12336
12337 if (host_error == -1)
12338 error (_("Unknown remote I/O error %d"), errnum);
12339 else
12340 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12341 }
12342
12343 /* A RAII wrapper around a remote file descriptor. */
12344
12345 class scoped_remote_fd
12346 {
12347 public:
12348 scoped_remote_fd (remote_target *remote, int fd)
12349 : m_remote (remote), m_fd (fd)
12350 {
12351 }
12352
12353 ~scoped_remote_fd ()
12354 {
12355 if (m_fd != -1)
12356 {
12357 try
12358 {
12359 int remote_errno;
12360 m_remote->remote_hostio_close (m_fd, &remote_errno);
12361 }
12362 catch (...)
12363 {
12364 /* Swallow exception before it escapes the dtor. If
12365 something goes wrong, likely the connection is gone,
12366 and there's nothing else that can be done. */
12367 }
12368 }
12369 }
12370
12371 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12372
12373 /* Release ownership of the file descriptor, and return it. */
12374 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12375 {
12376 int fd = m_fd;
12377 m_fd = -1;
12378 return fd;
12379 }
12380
12381 /* Return the owned file descriptor. */
12382 int get () const noexcept
12383 {
12384 return m_fd;
12385 }
12386
12387 private:
12388 /* The remote target. */
12389 remote_target *m_remote;
12390
12391 /* The owned remote I/O file descriptor. */
12392 int m_fd;
12393 };
12394
12395 void
12396 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12397 {
12398 remote_target *remote = get_current_remote_target ();
12399
12400 if (remote == nullptr)
12401 error (_("command can only be used with remote target"));
12402
12403 remote->remote_file_put (local_file, remote_file, from_tty);
12404 }
12405
12406 void
12407 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12408 int from_tty)
12409 {
12410 int retcode, remote_errno, bytes, io_size;
12411 int bytes_in_buffer;
12412 int saw_eof;
12413 ULONGEST offset;
12414
12415 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12416 if (file == NULL)
12417 perror_with_name (local_file);
12418
12419 scoped_remote_fd fd
12420 (this, remote_hostio_open (NULL,
12421 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12422 | FILEIO_O_TRUNC),
12423 0700, 0, &remote_errno));
12424 if (fd.get () == -1)
12425 remote_hostio_error (remote_errno);
12426
12427 /* Send up to this many bytes at once. They won't all fit in the
12428 remote packet limit, so we'll transfer slightly fewer. */
12429 io_size = get_remote_packet_size ();
12430 gdb::byte_vector buffer (io_size);
12431
12432 bytes_in_buffer = 0;
12433 saw_eof = 0;
12434 offset = 0;
12435 while (bytes_in_buffer || !saw_eof)
12436 {
12437 if (!saw_eof)
12438 {
12439 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12440 io_size - bytes_in_buffer,
12441 file.get ());
12442 if (bytes == 0)
12443 {
12444 if (ferror (file.get ()))
12445 error (_("Error reading %s."), local_file);
12446 else
12447 {
12448 /* EOF. Unless there is something still in the
12449 buffer from the last iteration, we are done. */
12450 saw_eof = 1;
12451 if (bytes_in_buffer == 0)
12452 break;
12453 }
12454 }
12455 }
12456 else
12457 bytes = 0;
12458
12459 bytes += bytes_in_buffer;
12460 bytes_in_buffer = 0;
12461
12462 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12463 offset, &remote_errno);
12464
12465 if (retcode < 0)
12466 remote_hostio_error (remote_errno);
12467 else if (retcode == 0)
12468 error (_("Remote write of %d bytes returned 0!"), bytes);
12469 else if (retcode < bytes)
12470 {
12471 /* Short write. Save the rest of the read data for the next
12472 write. */
12473 bytes_in_buffer = bytes - retcode;
12474 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12475 }
12476
12477 offset += retcode;
12478 }
12479
12480 if (remote_hostio_close (fd.release (), &remote_errno))
12481 remote_hostio_error (remote_errno);
12482
12483 if (from_tty)
12484 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12485 }
12486
12487 void
12488 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12489 {
12490 remote_target *remote = get_current_remote_target ();
12491
12492 if (remote == nullptr)
12493 error (_("command can only be used with remote target"));
12494
12495 remote->remote_file_get (remote_file, local_file, from_tty);
12496 }
12497
12498 void
12499 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12500 int from_tty)
12501 {
12502 int remote_errno, bytes, io_size;
12503 ULONGEST offset;
12504
12505 scoped_remote_fd fd
12506 (this, remote_hostio_open (NULL,
12507 remote_file, FILEIO_O_RDONLY, 0, 0,
12508 &remote_errno));
12509 if (fd.get () == -1)
12510 remote_hostio_error (remote_errno);
12511
12512 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12513 if (file == NULL)
12514 perror_with_name (local_file);
12515
12516 /* Send up to this many bytes at once. They won't all fit in the
12517 remote packet limit, so we'll transfer slightly fewer. */
12518 io_size = get_remote_packet_size ();
12519 gdb::byte_vector buffer (io_size);
12520
12521 offset = 0;
12522 while (1)
12523 {
12524 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12525 &remote_errno);
12526 if (bytes == 0)
12527 /* Success, but no bytes, means end-of-file. */
12528 break;
12529 if (bytes == -1)
12530 remote_hostio_error (remote_errno);
12531
12532 offset += bytes;
12533
12534 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12535 if (bytes == 0)
12536 perror_with_name (local_file);
12537 }
12538
12539 if (remote_hostio_close (fd.release (), &remote_errno))
12540 remote_hostio_error (remote_errno);
12541
12542 if (from_tty)
12543 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12544 }
12545
12546 void
12547 remote_file_delete (const char *remote_file, int from_tty)
12548 {
12549 remote_target *remote = get_current_remote_target ();
12550
12551 if (remote == nullptr)
12552 error (_("command can only be used with remote target"));
12553
12554 remote->remote_file_delete (remote_file, from_tty);
12555 }
12556
12557 void
12558 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12559 {
12560 int retcode, remote_errno;
12561
12562 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12563 if (retcode == -1)
12564 remote_hostio_error (remote_errno);
12565
12566 if (from_tty)
12567 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12568 }
12569
12570 static void
12571 remote_put_command (const char *args, int from_tty)
12572 {
12573 if (args == NULL)
12574 error_no_arg (_("file to put"));
12575
12576 gdb_argv argv (args);
12577 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12578 error (_("Invalid parameters to remote put"));
12579
12580 remote_file_put (argv[0], argv[1], from_tty);
12581 }
12582
12583 static void
12584 remote_get_command (const char *args, int from_tty)
12585 {
12586 if (args == NULL)
12587 error_no_arg (_("file to get"));
12588
12589 gdb_argv argv (args);
12590 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12591 error (_("Invalid parameters to remote get"));
12592
12593 remote_file_get (argv[0], argv[1], from_tty);
12594 }
12595
12596 static void
12597 remote_delete_command (const char *args, int from_tty)
12598 {
12599 if (args == NULL)
12600 error_no_arg (_("file to delete"));
12601
12602 gdb_argv argv (args);
12603 if (argv[0] == NULL || argv[1] != NULL)
12604 error (_("Invalid parameters to remote delete"));
12605
12606 remote_file_delete (argv[0], from_tty);
12607 }
12608
12609 static void
12610 remote_command (const char *args, int from_tty)
12611 {
12612 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12613 }
12614
12615 bool
12616 remote_target::can_execute_reverse ()
12617 {
12618 if (packet_support (PACKET_bs) == PACKET_ENABLE
12619 || packet_support (PACKET_bc) == PACKET_ENABLE)
12620 return true;
12621 else
12622 return false;
12623 }
12624
12625 bool
12626 remote_target::supports_non_stop ()
12627 {
12628 return true;
12629 }
12630
12631 bool
12632 remote_target::supports_disable_randomization ()
12633 {
12634 /* Only supported in extended mode. */
12635 return false;
12636 }
12637
12638 bool
12639 remote_target::supports_multi_process ()
12640 {
12641 struct remote_state *rs = get_remote_state ();
12642
12643 return remote_multi_process_p (rs);
12644 }
12645
12646 static int
12647 remote_supports_cond_tracepoints ()
12648 {
12649 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12650 }
12651
12652 bool
12653 remote_target::supports_evaluation_of_breakpoint_conditions ()
12654 {
12655 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12656 }
12657
12658 static int
12659 remote_supports_fast_tracepoints ()
12660 {
12661 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12662 }
12663
12664 static int
12665 remote_supports_static_tracepoints ()
12666 {
12667 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12668 }
12669
12670 static int
12671 remote_supports_install_in_trace ()
12672 {
12673 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12674 }
12675
12676 bool
12677 remote_target::supports_enable_disable_tracepoint ()
12678 {
12679 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12680 == PACKET_ENABLE);
12681 }
12682
12683 bool
12684 remote_target::supports_string_tracing ()
12685 {
12686 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12687 }
12688
12689 bool
12690 remote_target::can_run_breakpoint_commands ()
12691 {
12692 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12693 }
12694
12695 void
12696 remote_target::trace_init ()
12697 {
12698 struct remote_state *rs = get_remote_state ();
12699
12700 putpkt ("QTinit");
12701 remote_get_noisy_reply ();
12702 if (strcmp (rs->buf.data (), "OK") != 0)
12703 error (_("Target does not support this command."));
12704 }
12705
12706 /* Recursive routine to walk through command list including loops, and
12707 download packets for each command. */
12708
12709 void
12710 remote_target::remote_download_command_source (int num, ULONGEST addr,
12711 struct command_line *cmds)
12712 {
12713 struct remote_state *rs = get_remote_state ();
12714 struct command_line *cmd;
12715
12716 for (cmd = cmds; cmd; cmd = cmd->next)
12717 {
12718 QUIT; /* Allow user to bail out with ^C. */
12719 strcpy (rs->buf.data (), "QTDPsrc:");
12720 encode_source_string (num, addr, "cmd", cmd->line,
12721 rs->buf.data () + strlen (rs->buf.data ()),
12722 rs->buf.size () - strlen (rs->buf.data ()));
12723 putpkt (rs->buf);
12724 remote_get_noisy_reply ();
12725 if (strcmp (rs->buf.data (), "OK"))
12726 warning (_("Target does not support source download."));
12727
12728 if (cmd->control_type == while_control
12729 || cmd->control_type == while_stepping_control)
12730 {
12731 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12732
12733 QUIT; /* Allow user to bail out with ^C. */
12734 strcpy (rs->buf.data (), "QTDPsrc:");
12735 encode_source_string (num, addr, "cmd", "end",
12736 rs->buf.data () + strlen (rs->buf.data ()),
12737 rs->buf.size () - strlen (rs->buf.data ()));
12738 putpkt (rs->buf);
12739 remote_get_noisy_reply ();
12740 if (strcmp (rs->buf.data (), "OK"))
12741 warning (_("Target does not support source download."));
12742 }
12743 }
12744 }
12745
12746 void
12747 remote_target::download_tracepoint (struct bp_location *loc)
12748 {
12749 CORE_ADDR tpaddr;
12750 char addrbuf[40];
12751 std::vector<std::string> tdp_actions;
12752 std::vector<std::string> stepping_actions;
12753 char *pkt;
12754 struct breakpoint *b = loc->owner;
12755 struct tracepoint *t = (struct tracepoint *) b;
12756 struct remote_state *rs = get_remote_state ();
12757 int ret;
12758 const char *err_msg = _("Tracepoint packet too large for target.");
12759 size_t size_left;
12760
12761 /* We use a buffer other than rs->buf because we'll build strings
12762 across multiple statements, and other statements in between could
12763 modify rs->buf. */
12764 gdb::char_vector buf (get_remote_packet_size ());
12765
12766 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12767
12768 tpaddr = loc->address;
12769 sprintf_vma (addrbuf, tpaddr);
12770 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12771 b->number, addrbuf, /* address */
12772 (b->enable_state == bp_enabled ? 'E' : 'D'),
12773 t->step_count, t->pass_count);
12774
12775 if (ret < 0 || ret >= buf.size ())
12776 error ("%s", err_msg);
12777
12778 /* Fast tracepoints are mostly handled by the target, but we can
12779 tell the target how big of an instruction block should be moved
12780 around. */
12781 if (b->type == bp_fast_tracepoint)
12782 {
12783 /* Only test for support at download time; we may not know
12784 target capabilities at definition time. */
12785 if (remote_supports_fast_tracepoints ())
12786 {
12787 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12788 NULL))
12789 {
12790 size_left = buf.size () - strlen (buf.data ());
12791 ret = snprintf (buf.data () + strlen (buf.data ()),
12792 size_left, ":F%x",
12793 gdb_insn_length (loc->gdbarch, tpaddr));
12794
12795 if (ret < 0 || ret >= size_left)
12796 error ("%s", err_msg);
12797 }
12798 else
12799 /* If it passed validation at definition but fails now,
12800 something is very wrong. */
12801 internal_error (__FILE__, __LINE__,
12802 _("Fast tracepoint not "
12803 "valid during download"));
12804 }
12805 else
12806 /* Fast tracepoints are functionally identical to regular
12807 tracepoints, so don't take lack of support as a reason to
12808 give up on the trace run. */
12809 warning (_("Target does not support fast tracepoints, "
12810 "downloading %d as regular tracepoint"), b->number);
12811 }
12812 else if (b->type == bp_static_tracepoint)
12813 {
12814 /* Only test for support at download time; we may not know
12815 target capabilities at definition time. */
12816 if (remote_supports_static_tracepoints ())
12817 {
12818 struct static_tracepoint_marker marker;
12819
12820 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12821 {
12822 size_left = buf.size () - strlen (buf.data ());
12823 ret = snprintf (buf.data () + strlen (buf.data ()),
12824 size_left, ":S");
12825
12826 if (ret < 0 || ret >= size_left)
12827 error ("%s", err_msg);
12828 }
12829 else
12830 error (_("Static tracepoint not valid during download"));
12831 }
12832 else
12833 /* Fast tracepoints are functionally identical to regular
12834 tracepoints, so don't take lack of support as a reason
12835 to give up on the trace run. */
12836 error (_("Target does not support static tracepoints"));
12837 }
12838 /* If the tracepoint has a conditional, make it into an agent
12839 expression and append to the definition. */
12840 if (loc->cond)
12841 {
12842 /* Only test support at download time, we may not know target
12843 capabilities at definition time. */
12844 if (remote_supports_cond_tracepoints ())
12845 {
12846 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12847 loc->cond.get ());
12848
12849 size_left = buf.size () - strlen (buf.data ());
12850
12851 ret = snprintf (buf.data () + strlen (buf.data ()),
12852 size_left, ":X%x,", aexpr->len);
12853
12854 if (ret < 0 || ret >= size_left)
12855 error ("%s", err_msg);
12856
12857 size_left = buf.size () - strlen (buf.data ());
12858
12859 /* Two bytes to encode each aexpr byte, plus the terminating
12860 null byte. */
12861 if (aexpr->len * 2 + 1 > size_left)
12862 error ("%s", err_msg);
12863
12864 pkt = buf.data () + strlen (buf.data ());
12865
12866 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12867 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12868 *pkt = '\0';
12869 }
12870 else
12871 warning (_("Target does not support conditional tracepoints, "
12872 "ignoring tp %d cond"), b->number);
12873 }
12874
12875 if (b->commands || *default_collect)
12876 {
12877 size_left = buf.size () - strlen (buf.data ());
12878
12879 ret = snprintf (buf.data () + strlen (buf.data ()),
12880 size_left, "-");
12881
12882 if (ret < 0 || ret >= size_left)
12883 error ("%s", err_msg);
12884 }
12885
12886 putpkt (buf.data ());
12887 remote_get_noisy_reply ();
12888 if (strcmp (rs->buf.data (), "OK"))
12889 error (_("Target does not support tracepoints."));
12890
12891 /* do_single_steps (t); */
12892 for (auto action_it = tdp_actions.begin ();
12893 action_it != tdp_actions.end (); action_it++)
12894 {
12895 QUIT; /* Allow user to bail out with ^C. */
12896
12897 bool has_more = ((action_it + 1) != tdp_actions.end ()
12898 || !stepping_actions.empty ());
12899
12900 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12901 b->number, addrbuf, /* address */
12902 action_it->c_str (),
12903 has_more ? '-' : 0);
12904
12905 if (ret < 0 || ret >= buf.size ())
12906 error ("%s", err_msg);
12907
12908 putpkt (buf.data ());
12909 remote_get_noisy_reply ();
12910 if (strcmp (rs->buf.data (), "OK"))
12911 error (_("Error on target while setting tracepoints."));
12912 }
12913
12914 for (auto action_it = stepping_actions.begin ();
12915 action_it != stepping_actions.end (); action_it++)
12916 {
12917 QUIT; /* Allow user to bail out with ^C. */
12918
12919 bool is_first = action_it == stepping_actions.begin ();
12920 bool has_more = (action_it + 1) != stepping_actions.end ();
12921
12922 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
12923 b->number, addrbuf, /* address */
12924 is_first ? "S" : "",
12925 action_it->c_str (),
12926 has_more ? "-" : "");
12927
12928 if (ret < 0 || ret >= buf.size ())
12929 error ("%s", err_msg);
12930
12931 putpkt (buf.data ());
12932 remote_get_noisy_reply ();
12933 if (strcmp (rs->buf.data (), "OK"))
12934 error (_("Error on target while setting tracepoints."));
12935 }
12936
12937 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12938 {
12939 if (b->location != NULL)
12940 {
12941 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12942
12943 if (ret < 0 || ret >= buf.size ())
12944 error ("%s", err_msg);
12945
12946 encode_source_string (b->number, loc->address, "at",
12947 event_location_to_string (b->location.get ()),
12948 buf.data () + strlen (buf.data ()),
12949 buf.size () - strlen (buf.data ()));
12950 putpkt (buf.data ());
12951 remote_get_noisy_reply ();
12952 if (strcmp (rs->buf.data (), "OK"))
12953 warning (_("Target does not support source download."));
12954 }
12955 if (b->cond_string)
12956 {
12957 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12958
12959 if (ret < 0 || ret >= buf.size ())
12960 error ("%s", err_msg);
12961
12962 encode_source_string (b->number, loc->address,
12963 "cond", b->cond_string,
12964 buf.data () + strlen (buf.data ()),
12965 buf.size () - strlen (buf.data ()));
12966 putpkt (buf.data ());
12967 remote_get_noisy_reply ();
12968 if (strcmp (rs->buf.data (), "OK"))
12969 warning (_("Target does not support source download."));
12970 }
12971 remote_download_command_source (b->number, loc->address,
12972 breakpoint_commands (b));
12973 }
12974 }
12975
12976 bool
12977 remote_target::can_download_tracepoint ()
12978 {
12979 struct remote_state *rs = get_remote_state ();
12980 struct trace_status *ts;
12981 int status;
12982
12983 /* Don't try to install tracepoints until we've relocated our
12984 symbols, and fetched and merged the target's tracepoint list with
12985 ours. */
12986 if (rs->starting_up)
12987 return false;
12988
12989 ts = current_trace_status ();
12990 status = get_trace_status (ts);
12991
12992 if (status == -1 || !ts->running_known || !ts->running)
12993 return false;
12994
12995 /* If we are in a tracing experiment, but remote stub doesn't support
12996 installing tracepoint in trace, we have to return. */
12997 if (!remote_supports_install_in_trace ())
12998 return false;
12999
13000 return true;
13001 }
13002
13003
13004 void
13005 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13006 {
13007 struct remote_state *rs = get_remote_state ();
13008 char *p;
13009
13010 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13011 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13012 tsv.builtin);
13013 p = rs->buf.data () + strlen (rs->buf.data ());
13014 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13015 >= get_remote_packet_size ())
13016 error (_("Trace state variable name too long for tsv definition packet"));
13017 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13018 *p++ = '\0';
13019 putpkt (rs->buf);
13020 remote_get_noisy_reply ();
13021 if (rs->buf[0] == '\0')
13022 error (_("Target does not support this command."));
13023 if (strcmp (rs->buf.data (), "OK") != 0)
13024 error (_("Error on target while downloading trace state variable."));
13025 }
13026
13027 void
13028 remote_target::enable_tracepoint (struct bp_location *location)
13029 {
13030 struct remote_state *rs = get_remote_state ();
13031 char addr_buf[40];
13032
13033 sprintf_vma (addr_buf, location->address);
13034 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13035 location->owner->number, addr_buf);
13036 putpkt (rs->buf);
13037 remote_get_noisy_reply ();
13038 if (rs->buf[0] == '\0')
13039 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13040 if (strcmp (rs->buf.data (), "OK") != 0)
13041 error (_("Error on target while enabling tracepoint."));
13042 }
13043
13044 void
13045 remote_target::disable_tracepoint (struct bp_location *location)
13046 {
13047 struct remote_state *rs = get_remote_state ();
13048 char addr_buf[40];
13049
13050 sprintf_vma (addr_buf, location->address);
13051 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13052 location->owner->number, addr_buf);
13053 putpkt (rs->buf);
13054 remote_get_noisy_reply ();
13055 if (rs->buf[0] == '\0')
13056 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13057 if (strcmp (rs->buf.data (), "OK") != 0)
13058 error (_("Error on target while disabling tracepoint."));
13059 }
13060
13061 void
13062 remote_target::trace_set_readonly_regions ()
13063 {
13064 asection *s;
13065 bfd *abfd = NULL;
13066 bfd_size_type size;
13067 bfd_vma vma;
13068 int anysecs = 0;
13069 int offset = 0;
13070
13071 if (!exec_bfd)
13072 return; /* No information to give. */
13073
13074 struct remote_state *rs = get_remote_state ();
13075
13076 strcpy (rs->buf.data (), "QTro");
13077 offset = strlen (rs->buf.data ());
13078 for (s = exec_bfd->sections; s; s = s->next)
13079 {
13080 char tmp1[40], tmp2[40];
13081 int sec_length;
13082
13083 if ((s->flags & SEC_LOAD) == 0 ||
13084 /* (s->flags & SEC_CODE) == 0 || */
13085 (s->flags & SEC_READONLY) == 0)
13086 continue;
13087
13088 anysecs = 1;
13089 vma = bfd_get_section_vma (abfd, s);
13090 size = bfd_get_section_size (s);
13091 sprintf_vma (tmp1, vma);
13092 sprintf_vma (tmp2, vma + size);
13093 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13094 if (offset + sec_length + 1 > rs->buf.size ())
13095 {
13096 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13097 warning (_("\
13098 Too many sections for read-only sections definition packet."));
13099 break;
13100 }
13101 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13102 tmp1, tmp2);
13103 offset += sec_length;
13104 }
13105 if (anysecs)
13106 {
13107 putpkt (rs->buf);
13108 getpkt (&rs->buf, 0);
13109 }
13110 }
13111
13112 void
13113 remote_target::trace_start ()
13114 {
13115 struct remote_state *rs = get_remote_state ();
13116
13117 putpkt ("QTStart");
13118 remote_get_noisy_reply ();
13119 if (rs->buf[0] == '\0')
13120 error (_("Target does not support this command."));
13121 if (strcmp (rs->buf.data (), "OK") != 0)
13122 error (_("Bogus reply from target: %s"), rs->buf.data ());
13123 }
13124
13125 int
13126 remote_target::get_trace_status (struct trace_status *ts)
13127 {
13128 /* Initialize it just to avoid a GCC false warning. */
13129 char *p = NULL;
13130 /* FIXME we need to get register block size some other way. */
13131 extern int trace_regblock_size;
13132 enum packet_result result;
13133 struct remote_state *rs = get_remote_state ();
13134
13135 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13136 return -1;
13137
13138 trace_regblock_size
13139 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13140
13141 putpkt ("qTStatus");
13142
13143 TRY
13144 {
13145 p = remote_get_noisy_reply ();
13146 }
13147 CATCH (ex, RETURN_MASK_ERROR)
13148 {
13149 if (ex.error != TARGET_CLOSE_ERROR)
13150 {
13151 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13152 return -1;
13153 }
13154 throw_exception (ex);
13155 }
13156 END_CATCH
13157
13158 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13159
13160 /* If the remote target doesn't do tracing, flag it. */
13161 if (result == PACKET_UNKNOWN)
13162 return -1;
13163
13164 /* We're working with a live target. */
13165 ts->filename = NULL;
13166
13167 if (*p++ != 'T')
13168 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13169
13170 /* Function 'parse_trace_status' sets default value of each field of
13171 'ts' at first, so we don't have to do it here. */
13172 parse_trace_status (p, ts);
13173
13174 return ts->running;
13175 }
13176
13177 void
13178 remote_target::get_tracepoint_status (struct breakpoint *bp,
13179 struct uploaded_tp *utp)
13180 {
13181 struct remote_state *rs = get_remote_state ();
13182 char *reply;
13183 struct bp_location *loc;
13184 struct tracepoint *tp = (struct tracepoint *) bp;
13185 size_t size = get_remote_packet_size ();
13186
13187 if (tp)
13188 {
13189 tp->hit_count = 0;
13190 tp->traceframe_usage = 0;
13191 for (loc = tp->loc; loc; loc = loc->next)
13192 {
13193 /* If the tracepoint was never downloaded, don't go asking for
13194 any status. */
13195 if (tp->number_on_target == 0)
13196 continue;
13197 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13198 phex_nz (loc->address, 0));
13199 putpkt (rs->buf);
13200 reply = remote_get_noisy_reply ();
13201 if (reply && *reply)
13202 {
13203 if (*reply == 'V')
13204 parse_tracepoint_status (reply + 1, bp, utp);
13205 }
13206 }
13207 }
13208 else if (utp)
13209 {
13210 utp->hit_count = 0;
13211 utp->traceframe_usage = 0;
13212 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13213 phex_nz (utp->addr, 0));
13214 putpkt (rs->buf);
13215 reply = remote_get_noisy_reply ();
13216 if (reply && *reply)
13217 {
13218 if (*reply == 'V')
13219 parse_tracepoint_status (reply + 1, bp, utp);
13220 }
13221 }
13222 }
13223
13224 void
13225 remote_target::trace_stop ()
13226 {
13227 struct remote_state *rs = get_remote_state ();
13228
13229 putpkt ("QTStop");
13230 remote_get_noisy_reply ();
13231 if (rs->buf[0] == '\0')
13232 error (_("Target does not support this command."));
13233 if (strcmp (rs->buf.data (), "OK") != 0)
13234 error (_("Bogus reply from target: %s"), rs->buf.data ());
13235 }
13236
13237 int
13238 remote_target::trace_find (enum trace_find_type type, int num,
13239 CORE_ADDR addr1, CORE_ADDR addr2,
13240 int *tpp)
13241 {
13242 struct remote_state *rs = get_remote_state ();
13243 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13244 char *p, *reply;
13245 int target_frameno = -1, target_tracept = -1;
13246
13247 /* Lookups other than by absolute frame number depend on the current
13248 trace selected, so make sure it is correct on the remote end
13249 first. */
13250 if (type != tfind_number)
13251 set_remote_traceframe ();
13252
13253 p = rs->buf.data ();
13254 strcpy (p, "QTFrame:");
13255 p = strchr (p, '\0');
13256 switch (type)
13257 {
13258 case tfind_number:
13259 xsnprintf (p, endbuf - p, "%x", num);
13260 break;
13261 case tfind_pc:
13262 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13263 break;
13264 case tfind_tp:
13265 xsnprintf (p, endbuf - p, "tdp:%x", num);
13266 break;
13267 case tfind_range:
13268 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13269 phex_nz (addr2, 0));
13270 break;
13271 case tfind_outside:
13272 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13273 phex_nz (addr2, 0));
13274 break;
13275 default:
13276 error (_("Unknown trace find type %d"), type);
13277 }
13278
13279 putpkt (rs->buf);
13280 reply = remote_get_noisy_reply ();
13281 if (*reply == '\0')
13282 error (_("Target does not support this command."));
13283
13284 while (reply && *reply)
13285 switch (*reply)
13286 {
13287 case 'F':
13288 p = ++reply;
13289 target_frameno = (int) strtol (p, &reply, 16);
13290 if (reply == p)
13291 error (_("Unable to parse trace frame number"));
13292 /* Don't update our remote traceframe number cache on failure
13293 to select a remote traceframe. */
13294 if (target_frameno == -1)
13295 return -1;
13296 break;
13297 case 'T':
13298 p = ++reply;
13299 target_tracept = (int) strtol (p, &reply, 16);
13300 if (reply == p)
13301 error (_("Unable to parse tracepoint number"));
13302 break;
13303 case 'O': /* "OK"? */
13304 if (reply[1] == 'K' && reply[2] == '\0')
13305 reply += 2;
13306 else
13307 error (_("Bogus reply from target: %s"), reply);
13308 break;
13309 default:
13310 error (_("Bogus reply from target: %s"), reply);
13311 }
13312 if (tpp)
13313 *tpp = target_tracept;
13314
13315 rs->remote_traceframe_number = target_frameno;
13316 return target_frameno;
13317 }
13318
13319 bool
13320 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13321 {
13322 struct remote_state *rs = get_remote_state ();
13323 char *reply;
13324 ULONGEST uval;
13325
13326 set_remote_traceframe ();
13327
13328 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13329 putpkt (rs->buf);
13330 reply = remote_get_noisy_reply ();
13331 if (reply && *reply)
13332 {
13333 if (*reply == 'V')
13334 {
13335 unpack_varlen_hex (reply + 1, &uval);
13336 *val = (LONGEST) uval;
13337 return true;
13338 }
13339 }
13340 return false;
13341 }
13342
13343 int
13344 remote_target::save_trace_data (const char *filename)
13345 {
13346 struct remote_state *rs = get_remote_state ();
13347 char *p, *reply;
13348
13349 p = rs->buf.data ();
13350 strcpy (p, "QTSave:");
13351 p += strlen (p);
13352 if ((p - rs->buf.data ()) + strlen (filename) * 2
13353 >= get_remote_packet_size ())
13354 error (_("Remote file name too long for trace save packet"));
13355 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13356 *p++ = '\0';
13357 putpkt (rs->buf);
13358 reply = remote_get_noisy_reply ();
13359 if (*reply == '\0')
13360 error (_("Target does not support this command."));
13361 if (strcmp (reply, "OK") != 0)
13362 error (_("Bogus reply from target: %s"), reply);
13363 return 0;
13364 }
13365
13366 /* This is basically a memory transfer, but needs to be its own packet
13367 because we don't know how the target actually organizes its trace
13368 memory, plus we want to be able to ask for as much as possible, but
13369 not be unhappy if we don't get as much as we ask for. */
13370
13371 LONGEST
13372 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13373 {
13374 struct remote_state *rs = get_remote_state ();
13375 char *reply;
13376 char *p;
13377 int rslt;
13378
13379 p = rs->buf.data ();
13380 strcpy (p, "qTBuffer:");
13381 p += strlen (p);
13382 p += hexnumstr (p, offset);
13383 *p++ = ',';
13384 p += hexnumstr (p, len);
13385 *p++ = '\0';
13386
13387 putpkt (rs->buf);
13388 reply = remote_get_noisy_reply ();
13389 if (reply && *reply)
13390 {
13391 /* 'l' by itself means we're at the end of the buffer and
13392 there is nothing more to get. */
13393 if (*reply == 'l')
13394 return 0;
13395
13396 /* Convert the reply into binary. Limit the number of bytes to
13397 convert according to our passed-in buffer size, rather than
13398 what was returned in the packet; if the target is
13399 unexpectedly generous and gives us a bigger reply than we
13400 asked for, we don't want to crash. */
13401 rslt = hex2bin (reply, buf, len);
13402 return rslt;
13403 }
13404
13405 /* Something went wrong, flag as an error. */
13406 return -1;
13407 }
13408
13409 void
13410 remote_target::set_disconnected_tracing (int val)
13411 {
13412 struct remote_state *rs = get_remote_state ();
13413
13414 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13415 {
13416 char *reply;
13417
13418 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13419 "QTDisconnected:%x", val);
13420 putpkt (rs->buf);
13421 reply = remote_get_noisy_reply ();
13422 if (*reply == '\0')
13423 error (_("Target does not support this command."));
13424 if (strcmp (reply, "OK") != 0)
13425 error (_("Bogus reply from target: %s"), reply);
13426 }
13427 else if (val)
13428 warning (_("Target does not support disconnected tracing."));
13429 }
13430
13431 int
13432 remote_target::core_of_thread (ptid_t ptid)
13433 {
13434 struct thread_info *info = find_thread_ptid (ptid);
13435
13436 if (info != NULL && info->priv != NULL)
13437 return get_remote_thread_info (info)->core;
13438
13439 return -1;
13440 }
13441
13442 void
13443 remote_target::set_circular_trace_buffer (int val)
13444 {
13445 struct remote_state *rs = get_remote_state ();
13446 char *reply;
13447
13448 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13449 "QTBuffer:circular:%x", val);
13450 putpkt (rs->buf);
13451 reply = remote_get_noisy_reply ();
13452 if (*reply == '\0')
13453 error (_("Target does not support this command."));
13454 if (strcmp (reply, "OK") != 0)
13455 error (_("Bogus reply from target: %s"), reply);
13456 }
13457
13458 traceframe_info_up
13459 remote_target::traceframe_info ()
13460 {
13461 gdb::optional<gdb::char_vector> text
13462 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13463 NULL);
13464 if (text)
13465 return parse_traceframe_info (text->data ());
13466
13467 return NULL;
13468 }
13469
13470 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13471 instruction on which a fast tracepoint may be placed. Returns -1
13472 if the packet is not supported, and 0 if the minimum instruction
13473 length is unknown. */
13474
13475 int
13476 remote_target::get_min_fast_tracepoint_insn_len ()
13477 {
13478 struct remote_state *rs = get_remote_state ();
13479 char *reply;
13480
13481 /* If we're not debugging a process yet, the IPA can't be
13482 loaded. */
13483 if (!target_has_execution)
13484 return 0;
13485
13486 /* Make sure the remote is pointing at the right process. */
13487 set_general_process ();
13488
13489 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13490 putpkt (rs->buf);
13491 reply = remote_get_noisy_reply ();
13492 if (*reply == '\0')
13493 return -1;
13494 else
13495 {
13496 ULONGEST min_insn_len;
13497
13498 unpack_varlen_hex (reply, &min_insn_len);
13499
13500 return (int) min_insn_len;
13501 }
13502 }
13503
13504 void
13505 remote_target::set_trace_buffer_size (LONGEST val)
13506 {
13507 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13508 {
13509 struct remote_state *rs = get_remote_state ();
13510 char *buf = rs->buf.data ();
13511 char *endbuf = buf + get_remote_packet_size ();
13512 enum packet_result result;
13513
13514 gdb_assert (val >= 0 || val == -1);
13515 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13516 /* Send -1 as literal "-1" to avoid host size dependency. */
13517 if (val < 0)
13518 {
13519 *buf++ = '-';
13520 buf += hexnumstr (buf, (ULONGEST) -val);
13521 }
13522 else
13523 buf += hexnumstr (buf, (ULONGEST) val);
13524
13525 putpkt (rs->buf);
13526 remote_get_noisy_reply ();
13527 result = packet_ok (rs->buf,
13528 &remote_protocol_packets[PACKET_QTBuffer_size]);
13529
13530 if (result != PACKET_OK)
13531 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13532 }
13533 }
13534
13535 bool
13536 remote_target::set_trace_notes (const char *user, const char *notes,
13537 const char *stop_notes)
13538 {
13539 struct remote_state *rs = get_remote_state ();
13540 char *reply;
13541 char *buf = rs->buf.data ();
13542 char *endbuf = buf + get_remote_packet_size ();
13543 int nbytes;
13544
13545 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13546 if (user)
13547 {
13548 buf += xsnprintf (buf, endbuf - buf, "user:");
13549 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13550 buf += 2 * nbytes;
13551 *buf++ = ';';
13552 }
13553 if (notes)
13554 {
13555 buf += xsnprintf (buf, endbuf - buf, "notes:");
13556 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13557 buf += 2 * nbytes;
13558 *buf++ = ';';
13559 }
13560 if (stop_notes)
13561 {
13562 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13563 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13564 buf += 2 * nbytes;
13565 *buf++ = ';';
13566 }
13567 /* Ensure the buffer is terminated. */
13568 *buf = '\0';
13569
13570 putpkt (rs->buf);
13571 reply = remote_get_noisy_reply ();
13572 if (*reply == '\0')
13573 return false;
13574
13575 if (strcmp (reply, "OK") != 0)
13576 error (_("Bogus reply from target: %s"), reply);
13577
13578 return true;
13579 }
13580
13581 bool
13582 remote_target::use_agent (bool use)
13583 {
13584 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13585 {
13586 struct remote_state *rs = get_remote_state ();
13587
13588 /* If the stub supports QAgent. */
13589 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13590 putpkt (rs->buf);
13591 getpkt (&rs->buf, 0);
13592
13593 if (strcmp (rs->buf.data (), "OK") == 0)
13594 {
13595 ::use_agent = use;
13596 return true;
13597 }
13598 }
13599
13600 return false;
13601 }
13602
13603 bool
13604 remote_target::can_use_agent ()
13605 {
13606 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13607 }
13608
13609 struct btrace_target_info
13610 {
13611 /* The ptid of the traced thread. */
13612 ptid_t ptid;
13613
13614 /* The obtained branch trace configuration. */
13615 struct btrace_config conf;
13616 };
13617
13618 /* Reset our idea of our target's btrace configuration. */
13619
13620 static void
13621 remote_btrace_reset (remote_state *rs)
13622 {
13623 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13624 }
13625
13626 /* Synchronize the configuration with the target. */
13627
13628 void
13629 remote_target::btrace_sync_conf (const btrace_config *conf)
13630 {
13631 struct packet_config *packet;
13632 struct remote_state *rs;
13633 char *buf, *pos, *endbuf;
13634
13635 rs = get_remote_state ();
13636 buf = rs->buf.data ();
13637 endbuf = buf + get_remote_packet_size ();
13638
13639 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13640 if (packet_config_support (packet) == PACKET_ENABLE
13641 && conf->bts.size != rs->btrace_config.bts.size)
13642 {
13643 pos = buf;
13644 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13645 conf->bts.size);
13646
13647 putpkt (buf);
13648 getpkt (&rs->buf, 0);
13649
13650 if (packet_ok (buf, packet) == PACKET_ERROR)
13651 {
13652 if (buf[0] == 'E' && buf[1] == '.')
13653 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13654 else
13655 error (_("Failed to configure the BTS buffer size."));
13656 }
13657
13658 rs->btrace_config.bts.size = conf->bts.size;
13659 }
13660
13661 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13662 if (packet_config_support (packet) == PACKET_ENABLE
13663 && conf->pt.size != rs->btrace_config.pt.size)
13664 {
13665 pos = buf;
13666 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13667 conf->pt.size);
13668
13669 putpkt (buf);
13670 getpkt (&rs->buf, 0);
13671
13672 if (packet_ok (buf, packet) == PACKET_ERROR)
13673 {
13674 if (buf[0] == 'E' && buf[1] == '.')
13675 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13676 else
13677 error (_("Failed to configure the trace buffer size."));
13678 }
13679
13680 rs->btrace_config.pt.size = conf->pt.size;
13681 }
13682 }
13683
13684 /* Read the current thread's btrace configuration from the target and
13685 store it into CONF. */
13686
13687 static void
13688 btrace_read_config (struct btrace_config *conf)
13689 {
13690 gdb::optional<gdb::char_vector> xml
13691 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13692 if (xml)
13693 parse_xml_btrace_conf (conf, xml->data ());
13694 }
13695
13696 /* Maybe reopen target btrace. */
13697
13698 void
13699 remote_target::remote_btrace_maybe_reopen ()
13700 {
13701 struct remote_state *rs = get_remote_state ();
13702 int btrace_target_pushed = 0;
13703 #if !defined (HAVE_LIBIPT)
13704 int warned = 0;
13705 #endif
13706
13707 scoped_restore_current_thread restore_thread;
13708
13709 for (thread_info *tp : all_non_exited_threads ())
13710 {
13711 set_general_thread (tp->ptid);
13712
13713 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13714 btrace_read_config (&rs->btrace_config);
13715
13716 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13717 continue;
13718
13719 #if !defined (HAVE_LIBIPT)
13720 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13721 {
13722 if (!warned)
13723 {
13724 warned = 1;
13725 warning (_("Target is recording using Intel Processor Trace "
13726 "but support was disabled at compile time."));
13727 }
13728
13729 continue;
13730 }
13731 #endif /* !defined (HAVE_LIBIPT) */
13732
13733 /* Push target, once, but before anything else happens. This way our
13734 changes to the threads will be cleaned up by unpushing the target
13735 in case btrace_read_config () throws. */
13736 if (!btrace_target_pushed)
13737 {
13738 btrace_target_pushed = 1;
13739 record_btrace_push_target ();
13740 printf_filtered (_("Target is recording using %s.\n"),
13741 btrace_format_string (rs->btrace_config.format));
13742 }
13743
13744 tp->btrace.target = XCNEW (struct btrace_target_info);
13745 tp->btrace.target->ptid = tp->ptid;
13746 tp->btrace.target->conf = rs->btrace_config;
13747 }
13748 }
13749
13750 /* Enable branch tracing. */
13751
13752 struct btrace_target_info *
13753 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13754 {
13755 struct btrace_target_info *tinfo = NULL;
13756 struct packet_config *packet = NULL;
13757 struct remote_state *rs = get_remote_state ();
13758 char *buf = rs->buf.data ();
13759 char *endbuf = buf + get_remote_packet_size ();
13760
13761 switch (conf->format)
13762 {
13763 case BTRACE_FORMAT_BTS:
13764 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13765 break;
13766
13767 case BTRACE_FORMAT_PT:
13768 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13769 break;
13770 }
13771
13772 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13773 error (_("Target does not support branch tracing."));
13774
13775 btrace_sync_conf (conf);
13776
13777 set_general_thread (ptid);
13778
13779 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13780 putpkt (rs->buf);
13781 getpkt (&rs->buf, 0);
13782
13783 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13784 {
13785 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13786 error (_("Could not enable branch tracing for %s: %s"),
13787 target_pid_to_str (ptid), &rs->buf[2]);
13788 else
13789 error (_("Could not enable branch tracing for %s."),
13790 target_pid_to_str (ptid));
13791 }
13792
13793 tinfo = XCNEW (struct btrace_target_info);
13794 tinfo->ptid = ptid;
13795
13796 /* If we fail to read the configuration, we lose some information, but the
13797 tracing itself is not impacted. */
13798 TRY
13799 {
13800 btrace_read_config (&tinfo->conf);
13801 }
13802 CATCH (err, RETURN_MASK_ERROR)
13803 {
13804 if (err.message != NULL)
13805 warning ("%s", err.message);
13806 }
13807 END_CATCH
13808
13809 return tinfo;
13810 }
13811
13812 /* Disable branch tracing. */
13813
13814 void
13815 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13816 {
13817 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13818 struct remote_state *rs = get_remote_state ();
13819 char *buf = rs->buf.data ();
13820 char *endbuf = buf + get_remote_packet_size ();
13821
13822 if (packet_config_support (packet) != PACKET_ENABLE)
13823 error (_("Target does not support branch tracing."));
13824
13825 set_general_thread (tinfo->ptid);
13826
13827 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13828 putpkt (rs->buf);
13829 getpkt (&rs->buf, 0);
13830
13831 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13832 {
13833 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13834 error (_("Could not disable branch tracing for %s: %s"),
13835 target_pid_to_str (tinfo->ptid), &rs->buf[2]);
13836 else
13837 error (_("Could not disable branch tracing for %s."),
13838 target_pid_to_str (tinfo->ptid));
13839 }
13840
13841 xfree (tinfo);
13842 }
13843
13844 /* Teardown branch tracing. */
13845
13846 void
13847 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13848 {
13849 /* We must not talk to the target during teardown. */
13850 xfree (tinfo);
13851 }
13852
13853 /* Read the branch trace. */
13854
13855 enum btrace_error
13856 remote_target::read_btrace (struct btrace_data *btrace,
13857 struct btrace_target_info *tinfo,
13858 enum btrace_read_type type)
13859 {
13860 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13861 const char *annex;
13862
13863 if (packet_config_support (packet) != PACKET_ENABLE)
13864 error (_("Target does not support branch tracing."));
13865
13866 #if !defined(HAVE_LIBEXPAT)
13867 error (_("Cannot process branch tracing result. XML parsing not supported."));
13868 #endif
13869
13870 switch (type)
13871 {
13872 case BTRACE_READ_ALL:
13873 annex = "all";
13874 break;
13875 case BTRACE_READ_NEW:
13876 annex = "new";
13877 break;
13878 case BTRACE_READ_DELTA:
13879 annex = "delta";
13880 break;
13881 default:
13882 internal_error (__FILE__, __LINE__,
13883 _("Bad branch tracing read type: %u."),
13884 (unsigned int) type);
13885 }
13886
13887 gdb::optional<gdb::char_vector> xml
13888 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13889 if (!xml)
13890 return BTRACE_ERR_UNKNOWN;
13891
13892 parse_xml_btrace (btrace, xml->data ());
13893
13894 return BTRACE_ERR_NONE;
13895 }
13896
13897 const struct btrace_config *
13898 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13899 {
13900 return &tinfo->conf;
13901 }
13902
13903 bool
13904 remote_target::augmented_libraries_svr4_read ()
13905 {
13906 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13907 == PACKET_ENABLE);
13908 }
13909
13910 /* Implementation of to_load. */
13911
13912 void
13913 remote_target::load (const char *name, int from_tty)
13914 {
13915 generic_load (name, from_tty);
13916 }
13917
13918 /* Accepts an integer PID; returns a string representing a file that
13919 can be opened on the remote side to get the symbols for the child
13920 process. Returns NULL if the operation is not supported. */
13921
13922 char *
13923 remote_target::pid_to_exec_file (int pid)
13924 {
13925 static gdb::optional<gdb::char_vector> filename;
13926 struct inferior *inf;
13927 char *annex = NULL;
13928
13929 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13930 return NULL;
13931
13932 inf = find_inferior_pid (pid);
13933 if (inf == NULL)
13934 internal_error (__FILE__, __LINE__,
13935 _("not currently attached to process %d"), pid);
13936
13937 if (!inf->fake_pid_p)
13938 {
13939 const int annex_size = 9;
13940
13941 annex = (char *) alloca (annex_size);
13942 xsnprintf (annex, annex_size, "%x", pid);
13943 }
13944
13945 filename = target_read_stralloc (current_top_target (),
13946 TARGET_OBJECT_EXEC_FILE, annex);
13947
13948 return filename ? filename->data () : nullptr;
13949 }
13950
13951 /* Implement the to_can_do_single_step target_ops method. */
13952
13953 int
13954 remote_target::can_do_single_step ()
13955 {
13956 /* We can only tell whether target supports single step or not by
13957 supported s and S vCont actions if the stub supports vContSupported
13958 feature. If the stub doesn't support vContSupported feature,
13959 we have conservatively to think target doesn't supports single
13960 step. */
13961 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13962 {
13963 struct remote_state *rs = get_remote_state ();
13964
13965 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13966 remote_vcont_probe ();
13967
13968 return rs->supports_vCont.s && rs->supports_vCont.S;
13969 }
13970 else
13971 return 0;
13972 }
13973
13974 /* Implementation of the to_execution_direction method for the remote
13975 target. */
13976
13977 enum exec_direction_kind
13978 remote_target::execution_direction ()
13979 {
13980 struct remote_state *rs = get_remote_state ();
13981
13982 return rs->last_resume_exec_dir;
13983 }
13984
13985 /* Return pointer to the thread_info struct which corresponds to
13986 THREAD_HANDLE (having length HANDLE_LEN). */
13987
13988 thread_info *
13989 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
13990 int handle_len,
13991 inferior *inf)
13992 {
13993 for (thread_info *tp : all_non_exited_threads ())
13994 {
13995 remote_thread_info *priv = get_remote_thread_info (tp);
13996
13997 if (tp->inf == inf && priv != NULL)
13998 {
13999 if (handle_len != priv->thread_handle.size ())
14000 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14001 handle_len, priv->thread_handle.size ());
14002 if (memcmp (thread_handle, priv->thread_handle.data (),
14003 handle_len) == 0)
14004 return tp;
14005 }
14006 }
14007
14008 return NULL;
14009 }
14010
14011 bool
14012 remote_target::can_async_p ()
14013 {
14014 struct remote_state *rs = get_remote_state ();
14015
14016 /* We don't go async if the user has explicitly prevented it with the
14017 "maint set target-async" command. */
14018 if (!target_async_permitted)
14019 return false;
14020
14021 /* We're async whenever the serial device is. */
14022 return serial_can_async_p (rs->remote_desc);
14023 }
14024
14025 bool
14026 remote_target::is_async_p ()
14027 {
14028 struct remote_state *rs = get_remote_state ();
14029
14030 if (!target_async_permitted)
14031 /* We only enable async when the user specifically asks for it. */
14032 return false;
14033
14034 /* We're async whenever the serial device is. */
14035 return serial_is_async_p (rs->remote_desc);
14036 }
14037
14038 /* Pass the SERIAL event on and up to the client. One day this code
14039 will be able to delay notifying the client of an event until the
14040 point where an entire packet has been received. */
14041
14042 static serial_event_ftype remote_async_serial_handler;
14043
14044 static void
14045 remote_async_serial_handler (struct serial *scb, void *context)
14046 {
14047 /* Don't propogate error information up to the client. Instead let
14048 the client find out about the error by querying the target. */
14049 inferior_event_handler (INF_REG_EVENT, NULL);
14050 }
14051
14052 static void
14053 remote_async_inferior_event_handler (gdb_client_data data)
14054 {
14055 inferior_event_handler (INF_REG_EVENT, data);
14056 }
14057
14058 void
14059 remote_target::async (int enable)
14060 {
14061 struct remote_state *rs = get_remote_state ();
14062
14063 if (enable)
14064 {
14065 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14066
14067 /* If there are pending events in the stop reply queue tell the
14068 event loop to process them. */
14069 if (!rs->stop_reply_queue.empty ())
14070 mark_async_event_handler (rs->remote_async_inferior_event_token);
14071 /* For simplicity, below we clear the pending events token
14072 without remembering whether it is marked, so here we always
14073 mark it. If there's actually no pending notification to
14074 process, this ends up being a no-op (other than a spurious
14075 event-loop wakeup). */
14076 if (target_is_non_stop_p ())
14077 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14078 }
14079 else
14080 {
14081 serial_async (rs->remote_desc, NULL, NULL);
14082 /* If the core is disabling async, it doesn't want to be
14083 disturbed with target events. Clear all async event sources
14084 too. */
14085 clear_async_event_handler (rs->remote_async_inferior_event_token);
14086 if (target_is_non_stop_p ())
14087 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14088 }
14089 }
14090
14091 /* Implementation of the to_thread_events method. */
14092
14093 void
14094 remote_target::thread_events (int enable)
14095 {
14096 struct remote_state *rs = get_remote_state ();
14097 size_t size = get_remote_packet_size ();
14098
14099 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14100 return;
14101
14102 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14103 putpkt (rs->buf);
14104 getpkt (&rs->buf, 0);
14105
14106 switch (packet_ok (rs->buf,
14107 &remote_protocol_packets[PACKET_QThreadEvents]))
14108 {
14109 case PACKET_OK:
14110 if (strcmp (rs->buf.data (), "OK") != 0)
14111 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14112 break;
14113 case PACKET_ERROR:
14114 warning (_("Remote failure reply: %s"), rs->buf.data ());
14115 break;
14116 case PACKET_UNKNOWN:
14117 break;
14118 }
14119 }
14120
14121 static void
14122 set_remote_cmd (const char *args, int from_tty)
14123 {
14124 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14125 }
14126
14127 static void
14128 show_remote_cmd (const char *args, int from_tty)
14129 {
14130 /* We can't just use cmd_show_list here, because we want to skip
14131 the redundant "show remote Z-packet" and the legacy aliases. */
14132 struct cmd_list_element *list = remote_show_cmdlist;
14133 struct ui_out *uiout = current_uiout;
14134
14135 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14136 for (; list != NULL; list = list->next)
14137 if (strcmp (list->name, "Z-packet") == 0)
14138 continue;
14139 else if (list->type == not_set_cmd)
14140 /* Alias commands are exactly like the original, except they
14141 don't have the normal type. */
14142 continue;
14143 else
14144 {
14145 ui_out_emit_tuple option_emitter (uiout, "option");
14146
14147 uiout->field_string ("name", list->name);
14148 uiout->text (": ");
14149 if (list->type == show_cmd)
14150 do_show_command (NULL, from_tty, list);
14151 else
14152 cmd_func (list, NULL, from_tty);
14153 }
14154 }
14155
14156
14157 /* Function to be called whenever a new objfile (shlib) is detected. */
14158 static void
14159 remote_new_objfile (struct objfile *objfile)
14160 {
14161 remote_target *remote = get_current_remote_target ();
14162
14163 if (remote != NULL) /* Have a remote connection. */
14164 remote->remote_check_symbols ();
14165 }
14166
14167 /* Pull all the tracepoints defined on the target and create local
14168 data structures representing them. We don't want to create real
14169 tracepoints yet, we don't want to mess up the user's existing
14170 collection. */
14171
14172 int
14173 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14174 {
14175 struct remote_state *rs = get_remote_state ();
14176 char *p;
14177
14178 /* Ask for a first packet of tracepoint definition. */
14179 putpkt ("qTfP");
14180 getpkt (&rs->buf, 0);
14181 p = rs->buf.data ();
14182 while (*p && *p != 'l')
14183 {
14184 parse_tracepoint_definition (p, utpp);
14185 /* Ask for another packet of tracepoint definition. */
14186 putpkt ("qTsP");
14187 getpkt (&rs->buf, 0);
14188 p = rs->buf.data ();
14189 }
14190 return 0;
14191 }
14192
14193 int
14194 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14195 {
14196 struct remote_state *rs = get_remote_state ();
14197 char *p;
14198
14199 /* Ask for a first packet of variable definition. */
14200 putpkt ("qTfV");
14201 getpkt (&rs->buf, 0);
14202 p = rs->buf.data ();
14203 while (*p && *p != 'l')
14204 {
14205 parse_tsv_definition (p, utsvp);
14206 /* Ask for another packet of variable definition. */
14207 putpkt ("qTsV");
14208 getpkt (&rs->buf, 0);
14209 p = rs->buf.data ();
14210 }
14211 return 0;
14212 }
14213
14214 /* The "set/show range-stepping" show hook. */
14215
14216 static void
14217 show_range_stepping (struct ui_file *file, int from_tty,
14218 struct cmd_list_element *c,
14219 const char *value)
14220 {
14221 fprintf_filtered (file,
14222 _("Debugger's willingness to use range stepping "
14223 "is %s.\n"), value);
14224 }
14225
14226 /* Return true if the vCont;r action is supported by the remote
14227 stub. */
14228
14229 bool
14230 remote_target::vcont_r_supported ()
14231 {
14232 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14233 remote_vcont_probe ();
14234
14235 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14236 && get_remote_state ()->supports_vCont.r);
14237 }
14238
14239 /* The "set/show range-stepping" set hook. */
14240
14241 static void
14242 set_range_stepping (const char *ignore_args, int from_tty,
14243 struct cmd_list_element *c)
14244 {
14245 /* When enabling, check whether range stepping is actually supported
14246 by the target, and warn if not. */
14247 if (use_range_stepping)
14248 {
14249 remote_target *remote = get_current_remote_target ();
14250 if (remote == NULL
14251 || !remote->vcont_r_supported ())
14252 warning (_("Range stepping is not supported by the current target"));
14253 }
14254 }
14255
14256 void
14257 _initialize_remote (void)
14258 {
14259 struct cmd_list_element *cmd;
14260 const char *cmd_name;
14261
14262 /* architecture specific data */
14263 remote_g_packet_data_handle =
14264 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14265
14266 remote_pspace_data
14267 = register_program_space_data_with_cleanup (NULL,
14268 remote_pspace_data_cleanup);
14269
14270 add_target (remote_target_info, remote_target::open);
14271 add_target (extended_remote_target_info, extended_remote_target::open);
14272
14273 /* Hook into new objfile notification. */
14274 gdb::observers::new_objfile.attach (remote_new_objfile);
14275
14276 #if 0
14277 init_remote_threadtests ();
14278 #endif
14279
14280 /* set/show remote ... */
14281
14282 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14283 Remote protocol specific variables\n\
14284 Configure various remote-protocol specific variables such as\n\
14285 the packets being used"),
14286 &remote_set_cmdlist, "set remote ",
14287 0 /* allow-unknown */, &setlist);
14288 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14289 Remote protocol specific variables\n\
14290 Configure various remote-protocol specific variables such as\n\
14291 the packets being used"),
14292 &remote_show_cmdlist, "show remote ",
14293 0 /* allow-unknown */, &showlist);
14294
14295 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14296 Compare section data on target to the exec file.\n\
14297 Argument is a single section name (default: all loaded sections).\n\
14298 To compare only read-only loaded sections, specify the -r option."),
14299 &cmdlist);
14300
14301 add_cmd ("packet", class_maintenance, packet_command, _("\
14302 Send an arbitrary packet to a remote target.\n\
14303 maintenance packet TEXT\n\
14304 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14305 this command sends the string TEXT to the inferior, and displays the\n\
14306 response packet. GDB supplies the initial `$' character, and the\n\
14307 terminating `#' character and checksum."),
14308 &maintenancelist);
14309
14310 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14311 Set whether to send break if interrupted."), _("\
14312 Show whether to send break if interrupted."), _("\
14313 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14314 set_remotebreak, show_remotebreak,
14315 &setlist, &showlist);
14316 cmd_name = "remotebreak";
14317 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14318 deprecate_cmd (cmd, "set remote interrupt-sequence");
14319 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14320 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14321 deprecate_cmd (cmd, "show remote interrupt-sequence");
14322
14323 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14324 interrupt_sequence_modes, &interrupt_sequence_mode,
14325 _("\
14326 Set interrupt sequence to remote target."), _("\
14327 Show interrupt sequence to remote target."), _("\
14328 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14329 NULL, show_interrupt_sequence,
14330 &remote_set_cmdlist,
14331 &remote_show_cmdlist);
14332
14333 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14334 &interrupt_on_connect, _("\
14335 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14336 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14337 If set, interrupt sequence is sent to remote target."),
14338 NULL, NULL,
14339 &remote_set_cmdlist, &remote_show_cmdlist);
14340
14341 /* Install commands for configuring memory read/write packets. */
14342
14343 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14344 Set the maximum number of bytes per memory write packet (deprecated)."),
14345 &setlist);
14346 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14347 Show the maximum number of bytes per memory write packet (deprecated)."),
14348 &showlist);
14349 add_cmd ("memory-write-packet-size", no_class,
14350 set_memory_write_packet_size, _("\
14351 Set the maximum number of bytes per memory-write packet.\n\
14352 Specify the number of bytes in a packet or 0 (zero) for the\n\
14353 default packet size. The actual limit is further reduced\n\
14354 dependent on the target. Specify ``fixed'' to disable the\n\
14355 further restriction and ``limit'' to enable that restriction."),
14356 &remote_set_cmdlist);
14357 add_cmd ("memory-read-packet-size", no_class,
14358 set_memory_read_packet_size, _("\
14359 Set the maximum number of bytes per memory-read packet.\n\
14360 Specify the number of bytes in a packet or 0 (zero) for the\n\
14361 default packet size. The actual limit is further reduced\n\
14362 dependent on the target. Specify ``fixed'' to disable the\n\
14363 further restriction and ``limit'' to enable that restriction."),
14364 &remote_set_cmdlist);
14365 add_cmd ("memory-write-packet-size", no_class,
14366 show_memory_write_packet_size,
14367 _("Show the maximum number of bytes per memory-write packet."),
14368 &remote_show_cmdlist);
14369 add_cmd ("memory-read-packet-size", no_class,
14370 show_memory_read_packet_size,
14371 _("Show the maximum number of bytes per memory-read packet."),
14372 &remote_show_cmdlist);
14373
14374 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14375 &remote_hw_watchpoint_limit, _("\
14376 Set the maximum number of target hardware watchpoints."), _("\
14377 Show the maximum number of target hardware watchpoints."), _("\
14378 Specify \"unlimited\" for unlimited hardware watchpoints."),
14379 NULL, show_hardware_watchpoint_limit,
14380 &remote_set_cmdlist,
14381 &remote_show_cmdlist);
14382 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14383 no_class,
14384 &remote_hw_watchpoint_length_limit, _("\
14385 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14386 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14387 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14388 NULL, show_hardware_watchpoint_length_limit,
14389 &remote_set_cmdlist, &remote_show_cmdlist);
14390 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14391 &remote_hw_breakpoint_limit, _("\
14392 Set the maximum number of target hardware breakpoints."), _("\
14393 Show the maximum number of target hardware breakpoints."), _("\
14394 Specify \"unlimited\" for unlimited hardware breakpoints."),
14395 NULL, show_hardware_breakpoint_limit,
14396 &remote_set_cmdlist, &remote_show_cmdlist);
14397
14398 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14399 &remote_address_size, _("\
14400 Set the maximum size of the address (in bits) in a memory packet."), _("\
14401 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14402 NULL,
14403 NULL, /* FIXME: i18n: */
14404 &setlist, &showlist);
14405
14406 init_all_packet_configs ();
14407
14408 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14409 "X", "binary-download", 1);
14410
14411 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14412 "vCont", "verbose-resume", 0);
14413
14414 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14415 "QPassSignals", "pass-signals", 0);
14416
14417 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14418 "QCatchSyscalls", "catch-syscalls", 0);
14419
14420 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14421 "QProgramSignals", "program-signals", 0);
14422
14423 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14424 "QSetWorkingDir", "set-working-dir", 0);
14425
14426 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14427 "QStartupWithShell", "startup-with-shell", 0);
14428
14429 add_packet_config_cmd (&remote_protocol_packets
14430 [PACKET_QEnvironmentHexEncoded],
14431 "QEnvironmentHexEncoded", "environment-hex-encoded",
14432 0);
14433
14434 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14435 "QEnvironmentReset", "environment-reset",
14436 0);
14437
14438 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14439 "QEnvironmentUnset", "environment-unset",
14440 0);
14441
14442 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14443 "qSymbol", "symbol-lookup", 0);
14444
14445 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14446 "P", "set-register", 1);
14447
14448 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14449 "p", "fetch-register", 1);
14450
14451 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14452 "Z0", "software-breakpoint", 0);
14453
14454 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14455 "Z1", "hardware-breakpoint", 0);
14456
14457 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14458 "Z2", "write-watchpoint", 0);
14459
14460 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14461 "Z3", "read-watchpoint", 0);
14462
14463 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14464 "Z4", "access-watchpoint", 0);
14465
14466 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14467 "qXfer:auxv:read", "read-aux-vector", 0);
14468
14469 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14470 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14471
14472 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14473 "qXfer:features:read", "target-features", 0);
14474
14475 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14476 "qXfer:libraries:read", "library-info", 0);
14477
14478 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14479 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14480
14481 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14482 "qXfer:memory-map:read", "memory-map", 0);
14483
14484 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14485 "qXfer:spu:read", "read-spu-object", 0);
14486
14487 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14488 "qXfer:spu:write", "write-spu-object", 0);
14489
14490 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14491 "qXfer:osdata:read", "osdata", 0);
14492
14493 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14494 "qXfer:threads:read", "threads", 0);
14495
14496 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14497 "qXfer:siginfo:read", "read-siginfo-object", 0);
14498
14499 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14500 "qXfer:siginfo:write", "write-siginfo-object", 0);
14501
14502 add_packet_config_cmd
14503 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14504 "qXfer:traceframe-info:read", "traceframe-info", 0);
14505
14506 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14507 "qXfer:uib:read", "unwind-info-block", 0);
14508
14509 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14510 "qGetTLSAddr", "get-thread-local-storage-address",
14511 0);
14512
14513 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14514 "qGetTIBAddr", "get-thread-information-block-address",
14515 0);
14516
14517 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14518 "bc", "reverse-continue", 0);
14519
14520 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14521 "bs", "reverse-step", 0);
14522
14523 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14524 "qSupported", "supported-packets", 0);
14525
14526 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14527 "qSearch:memory", "search-memory", 0);
14528
14529 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14530 "qTStatus", "trace-status", 0);
14531
14532 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14533 "vFile:setfs", "hostio-setfs", 0);
14534
14535 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14536 "vFile:open", "hostio-open", 0);
14537
14538 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14539 "vFile:pread", "hostio-pread", 0);
14540
14541 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14542 "vFile:pwrite", "hostio-pwrite", 0);
14543
14544 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14545 "vFile:close", "hostio-close", 0);
14546
14547 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14548 "vFile:unlink", "hostio-unlink", 0);
14549
14550 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14551 "vFile:readlink", "hostio-readlink", 0);
14552
14553 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14554 "vFile:fstat", "hostio-fstat", 0);
14555
14556 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14557 "vAttach", "attach", 0);
14558
14559 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14560 "vRun", "run", 0);
14561
14562 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14563 "QStartNoAckMode", "noack", 0);
14564
14565 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14566 "vKill", "kill", 0);
14567
14568 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14569 "qAttached", "query-attached", 0);
14570
14571 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14572 "ConditionalTracepoints",
14573 "conditional-tracepoints", 0);
14574
14575 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14576 "ConditionalBreakpoints",
14577 "conditional-breakpoints", 0);
14578
14579 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14580 "BreakpointCommands",
14581 "breakpoint-commands", 0);
14582
14583 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14584 "FastTracepoints", "fast-tracepoints", 0);
14585
14586 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14587 "TracepointSource", "TracepointSource", 0);
14588
14589 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14590 "QAllow", "allow", 0);
14591
14592 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14593 "StaticTracepoints", "static-tracepoints", 0);
14594
14595 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14596 "InstallInTrace", "install-in-trace", 0);
14597
14598 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14599 "qXfer:statictrace:read", "read-sdata-object", 0);
14600
14601 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14602 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14603
14604 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14605 "QDisableRandomization", "disable-randomization", 0);
14606
14607 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14608 "QAgent", "agent", 0);
14609
14610 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14611 "QTBuffer:size", "trace-buffer-size", 0);
14612
14613 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14614 "Qbtrace:off", "disable-btrace", 0);
14615
14616 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14617 "Qbtrace:bts", "enable-btrace-bts", 0);
14618
14619 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14620 "Qbtrace:pt", "enable-btrace-pt", 0);
14621
14622 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14623 "qXfer:btrace", "read-btrace", 0);
14624
14625 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14626 "qXfer:btrace-conf", "read-btrace-conf", 0);
14627
14628 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14629 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14630
14631 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14632 "multiprocess-feature", "multiprocess-feature", 0);
14633
14634 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14635 "swbreak-feature", "swbreak-feature", 0);
14636
14637 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14638 "hwbreak-feature", "hwbreak-feature", 0);
14639
14640 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14641 "fork-event-feature", "fork-event-feature", 0);
14642
14643 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14644 "vfork-event-feature", "vfork-event-feature", 0);
14645
14646 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14647 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14648
14649 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14650 "vContSupported", "verbose-resume-supported", 0);
14651
14652 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14653 "exec-event-feature", "exec-event-feature", 0);
14654
14655 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14656 "vCtrlC", "ctrl-c", 0);
14657
14658 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14659 "QThreadEvents", "thread-events", 0);
14660
14661 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14662 "N stop reply", "no-resumed-stop-reply", 0);
14663
14664 /* Assert that we've registered "set remote foo-packet" commands
14665 for all packet configs. */
14666 {
14667 int i;
14668
14669 for (i = 0; i < PACKET_MAX; i++)
14670 {
14671 /* Ideally all configs would have a command associated. Some
14672 still don't though. */
14673 int excepted;
14674
14675 switch (i)
14676 {
14677 case PACKET_QNonStop:
14678 case PACKET_EnableDisableTracepoints_feature:
14679 case PACKET_tracenz_feature:
14680 case PACKET_DisconnectedTracing_feature:
14681 case PACKET_augmented_libraries_svr4_read_feature:
14682 case PACKET_qCRC:
14683 /* Additions to this list need to be well justified:
14684 pre-existing packets are OK; new packets are not. */
14685 excepted = 1;
14686 break;
14687 default:
14688 excepted = 0;
14689 break;
14690 }
14691
14692 /* This catches both forgetting to add a config command, and
14693 forgetting to remove a packet from the exception list. */
14694 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14695 }
14696 }
14697
14698 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14699 Z sub-packet has its own set and show commands, but users may
14700 have sets to this variable in their .gdbinit files (or in their
14701 documentation). */
14702 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14703 &remote_Z_packet_detect, _("\
14704 Set use of remote protocol `Z' packets"), _("\
14705 Show use of remote protocol `Z' packets "), _("\
14706 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14707 packets."),
14708 set_remote_protocol_Z_packet_cmd,
14709 show_remote_protocol_Z_packet_cmd,
14710 /* FIXME: i18n: Use of remote protocol
14711 `Z' packets is %s. */
14712 &remote_set_cmdlist, &remote_show_cmdlist);
14713
14714 add_prefix_cmd ("remote", class_files, remote_command, _("\
14715 Manipulate files on the remote system\n\
14716 Transfer files to and from the remote target system."),
14717 &remote_cmdlist, "remote ",
14718 0 /* allow-unknown */, &cmdlist);
14719
14720 add_cmd ("put", class_files, remote_put_command,
14721 _("Copy a local file to the remote system."),
14722 &remote_cmdlist);
14723
14724 add_cmd ("get", class_files, remote_get_command,
14725 _("Copy a remote file to the local system."),
14726 &remote_cmdlist);
14727
14728 add_cmd ("delete", class_files, remote_delete_command,
14729 _("Delete a remote file."),
14730 &remote_cmdlist);
14731
14732 add_setshow_string_noescape_cmd ("exec-file", class_files,
14733 &remote_exec_file_var, _("\
14734 Set the remote pathname for \"run\""), _("\
14735 Show the remote pathname for \"run\""), NULL,
14736 set_remote_exec_file,
14737 show_remote_exec_file,
14738 &remote_set_cmdlist,
14739 &remote_show_cmdlist);
14740
14741 add_setshow_boolean_cmd ("range-stepping", class_run,
14742 &use_range_stepping, _("\
14743 Enable or disable range stepping."), _("\
14744 Show whether target-assisted range stepping is enabled."), _("\
14745 If on, and the target supports it, when stepping a source line, GDB\n\
14746 tells the target to step the corresponding range of addresses itself instead\n\
14747 of issuing multiple single-steps. This speeds up source level\n\
14748 stepping. If off, GDB always issues single-steps, even if range\n\
14749 stepping is supported by the target. The default is on."),
14750 set_range_stepping,
14751 show_range_stepping,
14752 &setlist,
14753 &showlist);
14754
14755 /* Eventually initialize fileio. See fileio.c */
14756 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14757
14758 /* Take advantage of the fact that the TID field is not used, to tag
14759 special ptids with it set to != 0. */
14760 magic_null_ptid = ptid_t (42000, -1, 1);
14761 not_sent_ptid = ptid_t (42000, -2, 1);
14762 any_thread_ptid = ptid_t (42000, 0, 1);
14763 }
This page took 0.545591 seconds and 3 git commands to generate.