gdb/remote: remove_new_fork_children don't access target_waitstatus::child_ptid if...
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h"
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82 #include "gdbsupport/selftest.h"
83
84 /* The remote target. */
85
86 static const char remote_doc[] = N_("\
87 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
88 Specify the serial device it is connected to\n\
89 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
90
91 /* See remote.h */
92
93 bool remote_debug = false;
94
95 #define OPAQUETHREADBYTES 8
96
97 /* a 64 bit opaque identifier */
98 typedef unsigned char threadref[OPAQUETHREADBYTES];
99
100 struct gdb_ext_thread_info;
101 struct threads_listing_context;
102 typedef int (*rmt_thread_action) (threadref *ref, void *context);
103 struct protocol_feature;
104 struct packet_reg;
105
106 struct stop_reply;
107 typedef std::unique_ptr<stop_reply> stop_reply_up;
108
109 /* Generic configuration support for packets the stub optionally
110 supports. Allows the user to specify the use of the packet as well
111 as allowing GDB to auto-detect support in the remote stub. */
112
113 enum packet_support
114 {
115 PACKET_SUPPORT_UNKNOWN = 0,
116 PACKET_ENABLE,
117 PACKET_DISABLE
118 };
119
120 /* Analyze a packet's return value and update the packet config
121 accordingly. */
122
123 enum packet_result
124 {
125 PACKET_ERROR,
126 PACKET_OK,
127 PACKET_UNKNOWN
128 };
129
130 struct threads_listing_context;
131
132 /* Stub vCont actions support.
133
134 Each field is a boolean flag indicating whether the stub reports
135 support for the corresponding action. */
136
137 struct vCont_action_support
138 {
139 /* vCont;t */
140 bool t = false;
141
142 /* vCont;r */
143 bool r = false;
144
145 /* vCont;s */
146 bool s = false;
147
148 /* vCont;S */
149 bool S = false;
150 };
151
152 /* About this many threadids fit in a packet. */
153
154 #define MAXTHREADLISTRESULTS 32
155
156 /* Data for the vFile:pread readahead cache. */
157
158 struct readahead_cache
159 {
160 /* Invalidate the readahead cache. */
161 void invalidate ();
162
163 /* Invalidate the readahead cache if it is holding data for FD. */
164 void invalidate_fd (int fd);
165
166 /* Serve pread from the readahead cache. Returns number of bytes
167 read, or 0 if the request can't be served from the cache. */
168 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
169
170 /* The file descriptor for the file that is being cached. -1 if the
171 cache is invalid. */
172 int fd = -1;
173
174 /* The offset into the file that the cache buffer corresponds
175 to. */
176 ULONGEST offset = 0;
177
178 /* The buffer holding the cache contents. */
179 gdb_byte *buf = nullptr;
180 /* The buffer's size. We try to read as much as fits into a packet
181 at a time. */
182 size_t bufsize = 0;
183
184 /* Cache hit and miss counters. */
185 ULONGEST hit_count = 0;
186 ULONGEST miss_count = 0;
187 };
188
189 /* Description of the remote protocol for a given architecture. */
190
191 struct packet_reg
192 {
193 long offset; /* Offset into G packet. */
194 long regnum; /* GDB's internal register number. */
195 LONGEST pnum; /* Remote protocol register number. */
196 int in_g_packet; /* Always part of G packet. */
197 /* long size in bytes; == register_size (target_gdbarch (), regnum);
198 at present. */
199 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
200 at present. */
201 };
202
203 struct remote_arch_state
204 {
205 explicit remote_arch_state (struct gdbarch *gdbarch);
206
207 /* Description of the remote protocol registers. */
208 long sizeof_g_packet;
209
210 /* Description of the remote protocol registers indexed by REGNUM
211 (making an array gdbarch_num_regs in size). */
212 std::unique_ptr<packet_reg[]> regs;
213
214 /* This is the size (in chars) of the first response to the ``g''
215 packet. It is used as a heuristic when determining the maximum
216 size of memory-read and memory-write packets. A target will
217 typically only reserve a buffer large enough to hold the ``g''
218 packet. The size does not include packet overhead (headers and
219 trailers). */
220 long actual_register_packet_size;
221
222 /* This is the maximum size (in chars) of a non read/write packet.
223 It is also used as a cap on the size of read/write packets. */
224 long remote_packet_size;
225 };
226
227 /* Description of the remote protocol state for the currently
228 connected target. This is per-target state, and independent of the
229 selected architecture. */
230
231 class remote_state
232 {
233 public:
234
235 remote_state ();
236 ~remote_state ();
237
238 /* Get the remote arch state for GDBARCH. */
239 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
240
241 public: /* data */
242
243 /* A buffer to use for incoming packets, and its current size. The
244 buffer is grown dynamically for larger incoming packets.
245 Outgoing packets may also be constructed in this buffer.
246 The size of the buffer is always at least REMOTE_PACKET_SIZE;
247 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
248 packets. */
249 gdb::char_vector buf;
250
251 /* True if we're going through initial connection setup (finding out
252 about the remote side's threads, relocating symbols, etc.). */
253 bool starting_up = false;
254
255 /* If we negotiated packet size explicitly (and thus can bypass
256 heuristics for the largest packet size that will not overflow
257 a buffer in the stub), this will be set to that packet size.
258 Otherwise zero, meaning to use the guessed size. */
259 long explicit_packet_size = 0;
260
261 /* remote_wait is normally called when the target is running and
262 waits for a stop reply packet. But sometimes we need to call it
263 when the target is already stopped. We can send a "?" packet
264 and have remote_wait read the response. Or, if we already have
265 the response, we can stash it in BUF and tell remote_wait to
266 skip calling getpkt. This flag is set when BUF contains a
267 stop reply packet and the target is not waiting. */
268 int cached_wait_status = 0;
269
270 /* True, if in no ack mode. That is, neither GDB nor the stub will
271 expect acks from each other. The connection is assumed to be
272 reliable. */
273 bool noack_mode = false;
274
275 /* True if we're connected in extended remote mode. */
276 bool extended = false;
277
278 /* True if we resumed the target and we're waiting for the target to
279 stop. In the mean time, we can't start another command/query.
280 The remote server wouldn't be ready to process it, so we'd
281 timeout waiting for a reply that would never come and eventually
282 we'd close the connection. This can happen in asynchronous mode
283 because we allow GDB commands while the target is running. */
284 bool waiting_for_stop_reply = false;
285
286 /* The status of the stub support for the various vCont actions. */
287 vCont_action_support supports_vCont;
288 /* Whether vCont support was probed already. This is a workaround
289 until packet_support is per-connection. */
290 bool supports_vCont_probed;
291
292 /* True if the user has pressed Ctrl-C, but the target hasn't
293 responded to that. */
294 bool ctrlc_pending_p = false;
295
296 /* True if we saw a Ctrl-C while reading or writing from/to the
297 remote descriptor. At that point it is not safe to send a remote
298 interrupt packet, so we instead remember we saw the Ctrl-C and
299 process it once we're done with sending/receiving the current
300 packet, which should be shortly. If however that takes too long,
301 and the user presses Ctrl-C again, we offer to disconnect. */
302 bool got_ctrlc_during_io = false;
303
304 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
305 remote_open knows that we don't have a file open when the program
306 starts. */
307 struct serial *remote_desc = nullptr;
308
309 /* These are the threads which we last sent to the remote system. The
310 TID member will be -1 for all or -2 for not sent yet. */
311 ptid_t general_thread = null_ptid;
312 ptid_t continue_thread = null_ptid;
313
314 /* This is the traceframe which we last selected on the remote system.
315 It will be -1 if no traceframe is selected. */
316 int remote_traceframe_number = -1;
317
318 char *last_pass_packet = nullptr;
319
320 /* The last QProgramSignals packet sent to the target. We bypass
321 sending a new program signals list down to the target if the new
322 packet is exactly the same as the last we sent. IOW, we only let
323 the target know about program signals list changes. */
324 char *last_program_signals_packet = nullptr;
325
326 gdb_signal last_sent_signal = GDB_SIGNAL_0;
327
328 bool last_sent_step = false;
329
330 /* The execution direction of the last resume we got. */
331 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
332
333 char *finished_object = nullptr;
334 char *finished_annex = nullptr;
335 ULONGEST finished_offset = 0;
336
337 /* Should we try the 'ThreadInfo' query packet?
338
339 This variable (NOT available to the user: auto-detect only!)
340 determines whether GDB will use the new, simpler "ThreadInfo"
341 query or the older, more complex syntax for thread queries.
342 This is an auto-detect variable (set to true at each connect,
343 and set to false when the target fails to recognize it). */
344 bool use_threadinfo_query = false;
345 bool use_threadextra_query = false;
346
347 threadref echo_nextthread {};
348 threadref nextthread {};
349 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
350
351 /* The state of remote notification. */
352 struct remote_notif_state *notif_state = nullptr;
353
354 /* The branch trace configuration. */
355 struct btrace_config btrace_config {};
356
357 /* The argument to the last "vFile:setfs:" packet we sent, used
358 to avoid sending repeated unnecessary "vFile:setfs:" packets.
359 Initialized to -1 to indicate that no "vFile:setfs:" packet
360 has yet been sent. */
361 int fs_pid = -1;
362
363 /* A readahead cache for vFile:pread. Often, reading a binary
364 involves a sequence of small reads. E.g., when parsing an ELF
365 file. A readahead cache helps mostly the case of remote
366 debugging on a connection with higher latency, due to the
367 request/reply nature of the RSP. We only cache data for a single
368 file descriptor at a time. */
369 struct readahead_cache readahead_cache;
370
371 /* The list of already fetched and acknowledged stop events. This
372 queue is used for notification Stop, and other notifications
373 don't need queue for their events, because the notification
374 events of Stop can't be consumed immediately, so that events
375 should be queued first, and be consumed by remote_wait_{ns,as}
376 one per time. Other notifications can consume their events
377 immediately, so queue is not needed for them. */
378 std::vector<stop_reply_up> stop_reply_queue;
379
380 /* Asynchronous signal handle registered as event loop source for
381 when we have pending events ready to be passed to the core. */
382 struct async_event_handler *remote_async_inferior_event_token = nullptr;
383
384 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
385 ``forever'' still use the normal timeout mechanism. This is
386 currently used by the ASYNC code to guarentee that target reads
387 during the initial connect always time-out. Once getpkt has been
388 modified to return a timeout indication and, in turn
389 remote_wait()/wait_for_inferior() have gained a timeout parameter
390 this can go away. */
391 int wait_forever_enabled_p = 1;
392
393 private:
394 /* Mapping of remote protocol data for each gdbarch. Usually there
395 is only one entry here, though we may see more with stubs that
396 support multi-process. */
397 std::unordered_map<struct gdbarch *, remote_arch_state>
398 m_arch_states;
399 };
400
401 static const target_info remote_target_info = {
402 "remote",
403 N_("Remote serial target in gdb-specific protocol"),
404 remote_doc
405 };
406
407 class remote_target : public process_stratum_target
408 {
409 public:
410 remote_target () = default;
411 ~remote_target () override;
412
413 const target_info &info () const override
414 { return remote_target_info; }
415
416 const char *connection_string () override;
417
418 thread_control_capabilities get_thread_control_capabilities () override
419 { return tc_schedlock; }
420
421 /* Open a remote connection. */
422 static void open (const char *, int);
423
424 void close () override;
425
426 void detach (inferior *, int) override;
427 void disconnect (const char *, int) override;
428
429 void commit_resumed () override;
430 void resume (ptid_t, int, enum gdb_signal) override;
431 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
432 bool has_pending_events () override;
433
434 void fetch_registers (struct regcache *, int) override;
435 void store_registers (struct regcache *, int) override;
436 void prepare_to_store (struct regcache *) override;
437
438 void files_info () override;
439
440 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
441
442 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
443 enum remove_bp_reason) override;
444
445
446 bool stopped_by_sw_breakpoint () override;
447 bool supports_stopped_by_sw_breakpoint () override;
448
449 bool stopped_by_hw_breakpoint () override;
450
451 bool supports_stopped_by_hw_breakpoint () override;
452
453 bool stopped_by_watchpoint () override;
454
455 bool stopped_data_address (CORE_ADDR *) override;
456
457 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
458
459 int can_use_hw_breakpoint (enum bptype, int, int) override;
460
461 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
464
465 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
466
467 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
468 struct expression *) override;
469
470 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
471 struct expression *) override;
472
473 void kill () override;
474
475 void load (const char *, int) override;
476
477 void mourn_inferior () override;
478
479 void pass_signals (gdb::array_view<const unsigned char>) override;
480
481 int set_syscall_catchpoint (int, bool, int,
482 gdb::array_view<const int>) override;
483
484 void program_signals (gdb::array_view<const unsigned char>) override;
485
486 bool thread_alive (ptid_t ptid) override;
487
488 const char *thread_name (struct thread_info *) override;
489
490 void update_thread_list () override;
491
492 std::string pid_to_str (ptid_t) override;
493
494 const char *extra_thread_info (struct thread_info *) override;
495
496 ptid_t get_ada_task_ptid (long lwp, long thread) override;
497
498 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
499 int handle_len,
500 inferior *inf) override;
501
502 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
503 override;
504
505 void stop (ptid_t) override;
506
507 void interrupt () override;
508
509 void pass_ctrlc () override;
510
511 enum target_xfer_status xfer_partial (enum target_object object,
512 const char *annex,
513 gdb_byte *readbuf,
514 const gdb_byte *writebuf,
515 ULONGEST offset, ULONGEST len,
516 ULONGEST *xfered_len) override;
517
518 ULONGEST get_memory_xfer_limit () override;
519
520 void rcmd (const char *command, struct ui_file *output) override;
521
522 char *pid_to_exec_file (int pid) override;
523
524 void log_command (const char *cmd) override
525 {
526 serial_log_command (this, cmd);
527 }
528
529 CORE_ADDR get_thread_local_address (ptid_t ptid,
530 CORE_ADDR load_module_addr,
531 CORE_ADDR offset) override;
532
533 bool can_execute_reverse () override;
534
535 std::vector<mem_region> memory_map () override;
536
537 void flash_erase (ULONGEST address, LONGEST length) override;
538
539 void flash_done () override;
540
541 const struct target_desc *read_description () override;
542
543 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
544 const gdb_byte *pattern, ULONGEST pattern_len,
545 CORE_ADDR *found_addrp) override;
546
547 bool can_async_p () override;
548
549 bool is_async_p () override;
550
551 void async (int) override;
552
553 int async_wait_fd () override;
554
555 void thread_events (int) override;
556
557 int can_do_single_step () override;
558
559 void terminal_inferior () override;
560
561 void terminal_ours () override;
562
563 bool supports_non_stop () override;
564
565 bool supports_multi_process () override;
566
567 bool supports_disable_randomization () override;
568
569 bool filesystem_is_local () override;
570
571
572 int fileio_open (struct inferior *inf, const char *filename,
573 int flags, int mode, int warn_if_slow,
574 int *target_errno) override;
575
576 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
577 ULONGEST offset, int *target_errno) override;
578
579 int fileio_pread (int fd, gdb_byte *read_buf, int len,
580 ULONGEST offset, int *target_errno) override;
581
582 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
583
584 int fileio_close (int fd, int *target_errno) override;
585
586 int fileio_unlink (struct inferior *inf,
587 const char *filename,
588 int *target_errno) override;
589
590 gdb::optional<std::string>
591 fileio_readlink (struct inferior *inf,
592 const char *filename,
593 int *target_errno) override;
594
595 bool supports_enable_disable_tracepoint () override;
596
597 bool supports_string_tracing () override;
598
599 bool supports_evaluation_of_breakpoint_conditions () override;
600
601 bool can_run_breakpoint_commands () override;
602
603 void trace_init () override;
604
605 void download_tracepoint (struct bp_location *location) override;
606
607 bool can_download_tracepoint () override;
608
609 void download_trace_state_variable (const trace_state_variable &tsv) override;
610
611 void enable_tracepoint (struct bp_location *location) override;
612
613 void disable_tracepoint (struct bp_location *location) override;
614
615 void trace_set_readonly_regions () override;
616
617 void trace_start () override;
618
619 int get_trace_status (struct trace_status *ts) override;
620
621 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
622 override;
623
624 void trace_stop () override;
625
626 int trace_find (enum trace_find_type type, int num,
627 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
628
629 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
630
631 int save_trace_data (const char *filename) override;
632
633 int upload_tracepoints (struct uploaded_tp **utpp) override;
634
635 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
636
637 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
638
639 int get_min_fast_tracepoint_insn_len () override;
640
641 void set_disconnected_tracing (int val) override;
642
643 void set_circular_trace_buffer (int val) override;
644
645 void set_trace_buffer_size (LONGEST val) override;
646
647 bool set_trace_notes (const char *user, const char *notes,
648 const char *stopnotes) override;
649
650 int core_of_thread (ptid_t ptid) override;
651
652 int verify_memory (const gdb_byte *data,
653 CORE_ADDR memaddr, ULONGEST size) override;
654
655
656 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
657
658 void set_permissions () override;
659
660 bool static_tracepoint_marker_at (CORE_ADDR,
661 struct static_tracepoint_marker *marker)
662 override;
663
664 std::vector<static_tracepoint_marker>
665 static_tracepoint_markers_by_strid (const char *id) override;
666
667 traceframe_info_up traceframe_info () override;
668
669 bool use_agent (bool use) override;
670 bool can_use_agent () override;
671
672 struct btrace_target_info *enable_btrace (ptid_t ptid,
673 const struct btrace_config *conf) override;
674
675 void disable_btrace (struct btrace_target_info *tinfo) override;
676
677 void teardown_btrace (struct btrace_target_info *tinfo) override;
678
679 enum btrace_error read_btrace (struct btrace_data *data,
680 struct btrace_target_info *btinfo,
681 enum btrace_read_type type) override;
682
683 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
684 bool augmented_libraries_svr4_read () override;
685 void follow_fork (bool, bool) override;
686 void follow_exec (inferior *, ptid_t, const char *) override;
687 int insert_fork_catchpoint (int) override;
688 int remove_fork_catchpoint (int) override;
689 int insert_vfork_catchpoint (int) override;
690 int remove_vfork_catchpoint (int) override;
691 int insert_exec_catchpoint (int) override;
692 int remove_exec_catchpoint (int) override;
693 enum exec_direction_kind execution_direction () override;
694
695 bool supports_memory_tagging () override;
696
697 bool fetch_memtags (CORE_ADDR address, size_t len,
698 gdb::byte_vector &tags, int type) override;
699
700 bool store_memtags (CORE_ADDR address, size_t len,
701 const gdb::byte_vector &tags, int type) override;
702
703 public: /* Remote specific methods. */
704
705 void remote_download_command_source (int num, ULONGEST addr,
706 struct command_line *cmds);
707
708 void remote_file_put (const char *local_file, const char *remote_file,
709 int from_tty);
710 void remote_file_get (const char *remote_file, const char *local_file,
711 int from_tty);
712 void remote_file_delete (const char *remote_file, int from_tty);
713
714 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
715 ULONGEST offset, int *remote_errno);
716 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
717 ULONGEST offset, int *remote_errno);
718 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
719 ULONGEST offset, int *remote_errno);
720
721 int remote_hostio_send_command (int command_bytes, int which_packet,
722 int *remote_errno, const char **attachment,
723 int *attachment_len);
724 int remote_hostio_set_filesystem (struct inferior *inf,
725 int *remote_errno);
726 /* We should get rid of this and use fileio_open directly. */
727 int remote_hostio_open (struct inferior *inf, const char *filename,
728 int flags, int mode, int warn_if_slow,
729 int *remote_errno);
730 int remote_hostio_close (int fd, int *remote_errno);
731
732 int remote_hostio_unlink (inferior *inf, const char *filename,
733 int *remote_errno);
734
735 struct remote_state *get_remote_state ();
736
737 long get_remote_packet_size (void);
738 long get_memory_packet_size (struct memory_packet_config *config);
739
740 long get_memory_write_packet_size ();
741 long get_memory_read_packet_size ();
742
743 char *append_pending_thread_resumptions (char *p, char *endp,
744 ptid_t ptid);
745 static void open_1 (const char *name, int from_tty, int extended_p);
746 void start_remote (int from_tty, int extended_p);
747 void remote_detach_1 (struct inferior *inf, int from_tty);
748
749 char *append_resumption (char *p, char *endp,
750 ptid_t ptid, int step, gdb_signal siggnal);
751 int remote_resume_with_vcont (ptid_t ptid, int step,
752 gdb_signal siggnal);
753
754 thread_info *add_current_inferior_and_thread (const char *wait_status);
755
756 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
757 target_wait_flags options);
758 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
759 target_wait_flags options);
760
761 ptid_t process_stop_reply (struct stop_reply *stop_reply,
762 target_waitstatus *status);
763
764 ptid_t select_thread_for_ambiguous_stop_reply
765 (const struct target_waitstatus *status);
766
767 void remote_notice_new_inferior (ptid_t currthread, bool executing);
768
769 void process_initial_stop_replies (int from_tty);
770
771 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing,
772 bool silent_p);
773
774 void btrace_sync_conf (const btrace_config *conf);
775
776 void remote_btrace_maybe_reopen ();
777
778 void remove_new_fork_children (threads_listing_context *context);
779 void kill_new_fork_children (int pid);
780 void discard_pending_stop_replies (struct inferior *inf);
781 int stop_reply_queue_length ();
782
783 void check_pending_events_prevent_wildcard_vcont
784 (bool *may_global_wildcard_vcont);
785
786 void discard_pending_stop_replies_in_queue ();
787 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
788 struct stop_reply *queued_stop_reply (ptid_t ptid);
789 int peek_stop_reply (ptid_t ptid);
790 void remote_parse_stop_reply (const char *buf, stop_reply *event);
791
792 void remote_stop_ns (ptid_t ptid);
793 void remote_interrupt_as ();
794 void remote_interrupt_ns ();
795
796 char *remote_get_noisy_reply ();
797 int remote_query_attached (int pid);
798 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
799 int try_open_exec);
800
801 ptid_t remote_current_thread (ptid_t oldpid);
802 ptid_t get_current_thread (const char *wait_status);
803
804 void set_thread (ptid_t ptid, int gen);
805 void set_general_thread (ptid_t ptid);
806 void set_continue_thread (ptid_t ptid);
807 void set_general_process ();
808
809 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
810
811 int remote_unpack_thread_info_response (const char *pkt, threadref *expectedref,
812 gdb_ext_thread_info *info);
813 int remote_get_threadinfo (threadref *threadid, int fieldset,
814 gdb_ext_thread_info *info);
815
816 int parse_threadlist_response (const char *pkt, int result_limit,
817 threadref *original_echo,
818 threadref *resultlist,
819 int *doneflag);
820 int remote_get_threadlist (int startflag, threadref *nextthread,
821 int result_limit, int *done, int *result_count,
822 threadref *threadlist);
823
824 int remote_threadlist_iterator (rmt_thread_action stepfunction,
825 void *context, int looplimit);
826
827 int remote_get_threads_with_ql (threads_listing_context *context);
828 int remote_get_threads_with_qxfer (threads_listing_context *context);
829 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
830
831 void extended_remote_restart ();
832
833 void get_offsets ();
834
835 void remote_check_symbols ();
836
837 void remote_supported_packet (const struct protocol_feature *feature,
838 enum packet_support support,
839 const char *argument);
840
841 void remote_query_supported ();
842
843 void remote_packet_size (const protocol_feature *feature,
844 packet_support support, const char *value);
845
846 void remote_serial_quit_handler ();
847
848 void remote_detach_pid (int pid);
849
850 void remote_vcont_probe ();
851
852 void remote_resume_with_hc (ptid_t ptid, int step,
853 gdb_signal siggnal);
854
855 void send_interrupt_sequence ();
856 void interrupt_query ();
857
858 void remote_notif_get_pending_events (notif_client *nc);
859
860 int fetch_register_using_p (struct regcache *regcache,
861 packet_reg *reg);
862 int send_g_packet ();
863 void process_g_packet (struct regcache *regcache);
864 void fetch_registers_using_g (struct regcache *regcache);
865 int store_register_using_P (const struct regcache *regcache,
866 packet_reg *reg);
867 void store_registers_using_G (const struct regcache *regcache);
868
869 void set_remote_traceframe ();
870
871 void check_binary_download (CORE_ADDR addr);
872
873 target_xfer_status remote_write_bytes_aux (const char *header,
874 CORE_ADDR memaddr,
875 const gdb_byte *myaddr,
876 ULONGEST len_units,
877 int unit_size,
878 ULONGEST *xfered_len_units,
879 char packet_format,
880 int use_length);
881
882 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
883 const gdb_byte *myaddr, ULONGEST len,
884 int unit_size, ULONGEST *xfered_len);
885
886 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
887 ULONGEST len_units,
888 int unit_size, ULONGEST *xfered_len_units);
889
890 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
891 ULONGEST memaddr,
892 ULONGEST len,
893 int unit_size,
894 ULONGEST *xfered_len);
895
896 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
897 gdb_byte *myaddr, ULONGEST len,
898 int unit_size,
899 ULONGEST *xfered_len);
900
901 packet_result remote_send_printf (const char *format, ...)
902 ATTRIBUTE_PRINTF (2, 3);
903
904 target_xfer_status remote_flash_write (ULONGEST address,
905 ULONGEST length, ULONGEST *xfered_len,
906 const gdb_byte *data);
907
908 int readchar (int timeout);
909
910 void remote_serial_write (const char *str, int len);
911
912 int putpkt (const char *buf);
913 int putpkt_binary (const char *buf, int cnt);
914
915 int putpkt (const gdb::char_vector &buf)
916 {
917 return putpkt (buf.data ());
918 }
919
920 void skip_frame ();
921 long read_frame (gdb::char_vector *buf_p);
922 void getpkt (gdb::char_vector *buf, int forever);
923 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
924 int expecting_notif, int *is_notif);
925 int getpkt_sane (gdb::char_vector *buf, int forever);
926 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
927 int *is_notif);
928 int remote_vkill (int pid);
929 void remote_kill_k ();
930
931 void extended_remote_disable_randomization (int val);
932 int extended_remote_run (const std::string &args);
933
934 void send_environment_packet (const char *action,
935 const char *packet,
936 const char *value);
937
938 void extended_remote_environment_support ();
939 void extended_remote_set_inferior_cwd ();
940
941 target_xfer_status remote_write_qxfer (const char *object_name,
942 const char *annex,
943 const gdb_byte *writebuf,
944 ULONGEST offset, LONGEST len,
945 ULONGEST *xfered_len,
946 struct packet_config *packet);
947
948 target_xfer_status remote_read_qxfer (const char *object_name,
949 const char *annex,
950 gdb_byte *readbuf, ULONGEST offset,
951 LONGEST len,
952 ULONGEST *xfered_len,
953 struct packet_config *packet);
954
955 void push_stop_reply (struct stop_reply *new_event);
956
957 bool vcont_r_supported ();
958
959 void packet_command (const char *args, int from_tty);
960
961 private: /* data fields */
962
963 /* The remote state. Don't reference this directly. Use the
964 get_remote_state method instead. */
965 remote_state m_remote_state;
966 };
967
968 static const target_info extended_remote_target_info = {
969 "extended-remote",
970 N_("Extended remote serial target in gdb-specific protocol"),
971 remote_doc
972 };
973
974 /* Set up the extended remote target by extending the standard remote
975 target and adding to it. */
976
977 class extended_remote_target final : public remote_target
978 {
979 public:
980 const target_info &info () const override
981 { return extended_remote_target_info; }
982
983 /* Open an extended-remote connection. */
984 static void open (const char *, int);
985
986 bool can_create_inferior () override { return true; }
987 void create_inferior (const char *, const std::string &,
988 char **, int) override;
989
990 void detach (inferior *, int) override;
991
992 bool can_attach () override { return true; }
993 void attach (const char *, int) override;
994
995 void post_attach (int) override;
996 bool supports_disable_randomization () override;
997 };
998
999 /* Per-program-space data key. */
1000 static const struct program_space_key<char, gdb::xfree_deleter<char>>
1001 remote_pspace_data;
1002
1003 /* The variable registered as the control variable used by the
1004 remote exec-file commands. While the remote exec-file setting is
1005 per-program-space, the set/show machinery uses this as the
1006 location of the remote exec-file value. */
1007 static char *remote_exec_file_var;
1008
1009 /* The size to align memory write packets, when practical. The protocol
1010 does not guarantee any alignment, and gdb will generate short
1011 writes and unaligned writes, but even as a best-effort attempt this
1012 can improve bulk transfers. For instance, if a write is misaligned
1013 relative to the target's data bus, the stub may need to make an extra
1014 round trip fetching data from the target. This doesn't make a
1015 huge difference, but it's easy to do, so we try to be helpful.
1016
1017 The alignment chosen is arbitrary; usually data bus width is
1018 important here, not the possibly larger cache line size. */
1019 enum { REMOTE_ALIGN_WRITES = 16 };
1020
1021 /* Prototypes for local functions. */
1022
1023 static int hexnumlen (ULONGEST num);
1024
1025 static int stubhex (int ch);
1026
1027 static int hexnumstr (char *, ULONGEST);
1028
1029 static int hexnumnstr (char *, ULONGEST, int);
1030
1031 static CORE_ADDR remote_address_masked (CORE_ADDR);
1032
1033 static void print_packet (const char *);
1034
1035 static int stub_unpack_int (const char *buff, int fieldlength);
1036
1037 struct packet_config;
1038
1039 static void show_packet_config_cmd (struct packet_config *config);
1040
1041 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1042 int from_tty,
1043 struct cmd_list_element *c,
1044 const char *value);
1045
1046 static ptid_t read_ptid (const char *buf, const char **obuf);
1047
1048 static void remote_async_inferior_event_handler (gdb_client_data);
1049
1050 static bool remote_read_description_p (struct target_ops *target);
1051
1052 static void remote_console_output (const char *msg);
1053
1054 static void remote_btrace_reset (remote_state *rs);
1055
1056 static void remote_unpush_and_throw (remote_target *target);
1057
1058 /* For "remote". */
1059
1060 static struct cmd_list_element *remote_cmdlist;
1061
1062 /* For "set remote" and "show remote". */
1063
1064 static struct cmd_list_element *remote_set_cmdlist;
1065 static struct cmd_list_element *remote_show_cmdlist;
1066
1067 /* Controls whether GDB is willing to use range stepping. */
1068
1069 static bool use_range_stepping = true;
1070
1071 /* From the remote target's point of view, each thread is in one of these three
1072 states. */
1073 enum class resume_state
1074 {
1075 /* Not resumed - we haven't been asked to resume this thread. */
1076 NOT_RESUMED,
1077
1078 /* We have been asked to resume this thread, but haven't sent a vCont action
1079 for it yet. We'll need to consider it next time commit_resume is
1080 called. */
1081 RESUMED_PENDING_VCONT,
1082
1083 /* We have been asked to resume this thread, and we have sent a vCont action
1084 for it. */
1085 RESUMED,
1086 };
1087
1088 /* Information about a thread's pending vCont-resume. Used when a thread is in
1089 the remote_resume_state::RESUMED_PENDING_VCONT state. remote_target::resume
1090 stores this information which is then picked up by
1091 remote_target::commit_resume to know which is the proper action for this
1092 thread to include in the vCont packet. */
1093 struct resumed_pending_vcont_info
1094 {
1095 /* True if the last resume call for this thread was a step request, false
1096 if a continue request. */
1097 bool step;
1098
1099 /* The signal specified in the last resume call for this thread. */
1100 gdb_signal sig;
1101 };
1102
1103 /* Private data that we'll store in (struct thread_info)->priv. */
1104 struct remote_thread_info : public private_thread_info
1105 {
1106 std::string extra;
1107 std::string name;
1108 int core = -1;
1109
1110 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1111 sequence of bytes. */
1112 gdb::byte_vector thread_handle;
1113
1114 /* Whether the target stopped for a breakpoint/watchpoint. */
1115 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1116
1117 /* This is set to the data address of the access causing the target
1118 to stop for a watchpoint. */
1119 CORE_ADDR watch_data_address = 0;
1120
1121 /* Get the thread's resume state. */
1122 enum resume_state get_resume_state () const
1123 {
1124 return m_resume_state;
1125 }
1126
1127 /* Put the thread in the NOT_RESUMED state. */
1128 void set_not_resumed ()
1129 {
1130 m_resume_state = resume_state::NOT_RESUMED;
1131 }
1132
1133 /* Put the thread in the RESUMED_PENDING_VCONT state. */
1134 void set_resumed_pending_vcont (bool step, gdb_signal sig)
1135 {
1136 m_resume_state = resume_state::RESUMED_PENDING_VCONT;
1137 m_resumed_pending_vcont_info.step = step;
1138 m_resumed_pending_vcont_info.sig = sig;
1139 }
1140
1141 /* Get the information this thread's pending vCont-resumption.
1142
1143 Must only be called if the thread is in the RESUMED_PENDING_VCONT resume
1144 state. */
1145 const struct resumed_pending_vcont_info &resumed_pending_vcont_info () const
1146 {
1147 gdb_assert (m_resume_state == resume_state::RESUMED_PENDING_VCONT);
1148
1149 return m_resumed_pending_vcont_info;
1150 }
1151
1152 /* Put the thread in the VCONT_RESUMED state. */
1153 void set_resumed ()
1154 {
1155 m_resume_state = resume_state::RESUMED;
1156 }
1157
1158 private:
1159 /* Resume state for this thread. This is used to implement vCont action
1160 coalescing (only when the target operates in non-stop mode).
1161
1162 remote_target::resume moves the thread to the RESUMED_PENDING_VCONT state,
1163 which notes that this thread must be considered in the next commit_resume
1164 call.
1165
1166 remote_target::commit_resume sends a vCont packet with actions for the
1167 threads in the RESUMED_PENDING_VCONT state and moves them to the
1168 VCONT_RESUMED state.
1169
1170 When reporting a stop to the core for a thread, that thread is moved back
1171 to the NOT_RESUMED state. */
1172 enum resume_state m_resume_state = resume_state::NOT_RESUMED;
1173
1174 /* Extra info used if the thread is in the RESUMED_PENDING_VCONT state. */
1175 struct resumed_pending_vcont_info m_resumed_pending_vcont_info;
1176 };
1177
1178 remote_state::remote_state ()
1179 : buf (400)
1180 {
1181 }
1182
1183 remote_state::~remote_state ()
1184 {
1185 xfree (this->last_pass_packet);
1186 xfree (this->last_program_signals_packet);
1187 xfree (this->finished_object);
1188 xfree (this->finished_annex);
1189 }
1190
1191 /* Utility: generate error from an incoming stub packet. */
1192 static void
1193 trace_error (char *buf)
1194 {
1195 if (*buf++ != 'E')
1196 return; /* not an error msg */
1197 switch (*buf)
1198 {
1199 case '1': /* malformed packet error */
1200 if (*++buf == '0') /* general case: */
1201 error (_("remote.c: error in outgoing packet."));
1202 else
1203 error (_("remote.c: error in outgoing packet at field #%ld."),
1204 strtol (buf, NULL, 16));
1205 default:
1206 error (_("Target returns error code '%s'."), buf);
1207 }
1208 }
1209
1210 /* Utility: wait for reply from stub, while accepting "O" packets. */
1211
1212 char *
1213 remote_target::remote_get_noisy_reply ()
1214 {
1215 struct remote_state *rs = get_remote_state ();
1216
1217 do /* Loop on reply from remote stub. */
1218 {
1219 char *buf;
1220
1221 QUIT; /* Allow user to bail out with ^C. */
1222 getpkt (&rs->buf, 0);
1223 buf = rs->buf.data ();
1224 if (buf[0] == 'E')
1225 trace_error (buf);
1226 else if (startswith (buf, "qRelocInsn:"))
1227 {
1228 ULONGEST ul;
1229 CORE_ADDR from, to, org_to;
1230 const char *p, *pp;
1231 int adjusted_size = 0;
1232 int relocated = 0;
1233
1234 p = buf + strlen ("qRelocInsn:");
1235 pp = unpack_varlen_hex (p, &ul);
1236 if (*pp != ';')
1237 error (_("invalid qRelocInsn packet: %s"), buf);
1238 from = ul;
1239
1240 p = pp + 1;
1241 unpack_varlen_hex (p, &ul);
1242 to = ul;
1243
1244 org_to = to;
1245
1246 try
1247 {
1248 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1249 relocated = 1;
1250 }
1251 catch (const gdb_exception &ex)
1252 {
1253 if (ex.error == MEMORY_ERROR)
1254 {
1255 /* Propagate memory errors silently back to the
1256 target. The stub may have limited the range of
1257 addresses we can write to, for example. */
1258 }
1259 else
1260 {
1261 /* Something unexpectedly bad happened. Be verbose
1262 so we can tell what, and propagate the error back
1263 to the stub, so it doesn't get stuck waiting for
1264 a response. */
1265 exception_fprintf (gdb_stderr, ex,
1266 _("warning: relocating instruction: "));
1267 }
1268 putpkt ("E01");
1269 }
1270
1271 if (relocated)
1272 {
1273 adjusted_size = to - org_to;
1274
1275 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1276 putpkt (buf);
1277 }
1278 }
1279 else if (buf[0] == 'O' && buf[1] != 'K')
1280 remote_console_output (buf + 1); /* 'O' message from stub */
1281 else
1282 return buf; /* Here's the actual reply. */
1283 }
1284 while (1);
1285 }
1286
1287 struct remote_arch_state *
1288 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1289 {
1290 remote_arch_state *rsa;
1291
1292 auto it = this->m_arch_states.find (gdbarch);
1293 if (it == this->m_arch_states.end ())
1294 {
1295 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1296 std::forward_as_tuple (gdbarch),
1297 std::forward_as_tuple (gdbarch));
1298 rsa = &p.first->second;
1299
1300 /* Make sure that the packet buffer is plenty big enough for
1301 this architecture. */
1302 if (this->buf.size () < rsa->remote_packet_size)
1303 this->buf.resize (2 * rsa->remote_packet_size);
1304 }
1305 else
1306 rsa = &it->second;
1307
1308 return rsa;
1309 }
1310
1311 /* Fetch the global remote target state. */
1312
1313 remote_state *
1314 remote_target::get_remote_state ()
1315 {
1316 /* Make sure that the remote architecture state has been
1317 initialized, because doing so might reallocate rs->buf. Any
1318 function which calls getpkt also needs to be mindful of changes
1319 to rs->buf, but this call limits the number of places which run
1320 into trouble. */
1321 m_remote_state.get_remote_arch_state (target_gdbarch ());
1322
1323 return &m_remote_state;
1324 }
1325
1326 /* Fetch the remote exec-file from the current program space. */
1327
1328 static const char *
1329 get_remote_exec_file (void)
1330 {
1331 char *remote_exec_file;
1332
1333 remote_exec_file = remote_pspace_data.get (current_program_space);
1334 if (remote_exec_file == NULL)
1335 return "";
1336
1337 return remote_exec_file;
1338 }
1339
1340 /* Set the remote exec file for PSPACE. */
1341
1342 static void
1343 set_pspace_remote_exec_file (struct program_space *pspace,
1344 const char *remote_exec_file)
1345 {
1346 char *old_file = remote_pspace_data.get (pspace);
1347
1348 xfree (old_file);
1349 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1350 }
1351
1352 /* The "set/show remote exec-file" set command hook. */
1353
1354 static void
1355 set_remote_exec_file (const char *ignored, int from_tty,
1356 struct cmd_list_element *c)
1357 {
1358 gdb_assert (remote_exec_file_var != NULL);
1359 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1360 }
1361
1362 /* The "set/show remote exec-file" show command hook. */
1363
1364 static void
1365 show_remote_exec_file (struct ui_file *file, int from_tty,
1366 struct cmd_list_element *cmd, const char *value)
1367 {
1368 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1369 }
1370
1371 static int
1372 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1373 {
1374 int regnum, num_remote_regs, offset;
1375 struct packet_reg **remote_regs;
1376
1377 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1378 {
1379 struct packet_reg *r = &regs[regnum];
1380
1381 if (register_size (gdbarch, regnum) == 0)
1382 /* Do not try to fetch zero-sized (placeholder) registers. */
1383 r->pnum = -1;
1384 else
1385 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1386
1387 r->regnum = regnum;
1388 }
1389
1390 /* Define the g/G packet format as the contents of each register
1391 with a remote protocol number, in order of ascending protocol
1392 number. */
1393
1394 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1395 for (num_remote_regs = 0, regnum = 0;
1396 regnum < gdbarch_num_regs (gdbarch);
1397 regnum++)
1398 if (regs[regnum].pnum != -1)
1399 remote_regs[num_remote_regs++] = &regs[regnum];
1400
1401 std::sort (remote_regs, remote_regs + num_remote_regs,
1402 [] (const packet_reg *a, const packet_reg *b)
1403 { return a->pnum < b->pnum; });
1404
1405 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1406 {
1407 remote_regs[regnum]->in_g_packet = 1;
1408 remote_regs[regnum]->offset = offset;
1409 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1410 }
1411
1412 return offset;
1413 }
1414
1415 /* Given the architecture described by GDBARCH, return the remote
1416 protocol register's number and the register's offset in the g/G
1417 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1418 If the target does not have a mapping for REGNUM, return false,
1419 otherwise, return true. */
1420
1421 int
1422 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1423 int *pnum, int *poffset)
1424 {
1425 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1426
1427 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1428
1429 map_regcache_remote_table (gdbarch, regs.data ());
1430
1431 *pnum = regs[regnum].pnum;
1432 *poffset = regs[regnum].offset;
1433
1434 return *pnum != -1;
1435 }
1436
1437 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1438 {
1439 /* Use the architecture to build a regnum<->pnum table, which will be
1440 1:1 unless a feature set specifies otherwise. */
1441 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1442
1443 /* Record the maximum possible size of the g packet - it may turn out
1444 to be smaller. */
1445 this->sizeof_g_packet
1446 = map_regcache_remote_table (gdbarch, this->regs.get ());
1447
1448 /* Default maximum number of characters in a packet body. Many
1449 remote stubs have a hardwired buffer size of 400 bytes
1450 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1451 as the maximum packet-size to ensure that the packet and an extra
1452 NUL character can always fit in the buffer. This stops GDB
1453 trashing stubs that try to squeeze an extra NUL into what is
1454 already a full buffer (As of 1999-12-04 that was most stubs). */
1455 this->remote_packet_size = 400 - 1;
1456
1457 /* This one is filled in when a ``g'' packet is received. */
1458 this->actual_register_packet_size = 0;
1459
1460 /* Should rsa->sizeof_g_packet needs more space than the
1461 default, adjust the size accordingly. Remember that each byte is
1462 encoded as two characters. 32 is the overhead for the packet
1463 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1464 (``$NN:G...#NN'') is a better guess, the below has been padded a
1465 little. */
1466 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1467 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1468 }
1469
1470 /* Get a pointer to the current remote target. If not connected to a
1471 remote target, return NULL. */
1472
1473 static remote_target *
1474 get_current_remote_target ()
1475 {
1476 target_ops *proc_target = current_inferior ()->process_target ();
1477 return dynamic_cast<remote_target *> (proc_target);
1478 }
1479
1480 /* Return the current allowed size of a remote packet. This is
1481 inferred from the current architecture, and should be used to
1482 limit the length of outgoing packets. */
1483 long
1484 remote_target::get_remote_packet_size ()
1485 {
1486 struct remote_state *rs = get_remote_state ();
1487 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1488
1489 if (rs->explicit_packet_size)
1490 return rs->explicit_packet_size;
1491
1492 return rsa->remote_packet_size;
1493 }
1494
1495 static struct packet_reg *
1496 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1497 long regnum)
1498 {
1499 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1500 return NULL;
1501 else
1502 {
1503 struct packet_reg *r = &rsa->regs[regnum];
1504
1505 gdb_assert (r->regnum == regnum);
1506 return r;
1507 }
1508 }
1509
1510 static struct packet_reg *
1511 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1512 LONGEST pnum)
1513 {
1514 int i;
1515
1516 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1517 {
1518 struct packet_reg *r = &rsa->regs[i];
1519
1520 if (r->pnum == pnum)
1521 return r;
1522 }
1523 return NULL;
1524 }
1525
1526 /* Allow the user to specify what sequence to send to the remote
1527 when he requests a program interruption: Although ^C is usually
1528 what remote systems expect (this is the default, here), it is
1529 sometimes preferable to send a break. On other systems such
1530 as the Linux kernel, a break followed by g, which is Magic SysRq g
1531 is required in order to interrupt the execution. */
1532 const char interrupt_sequence_control_c[] = "Ctrl-C";
1533 const char interrupt_sequence_break[] = "BREAK";
1534 const char interrupt_sequence_break_g[] = "BREAK-g";
1535 static const char *const interrupt_sequence_modes[] =
1536 {
1537 interrupt_sequence_control_c,
1538 interrupt_sequence_break,
1539 interrupt_sequence_break_g,
1540 NULL
1541 };
1542 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1543
1544 static void
1545 show_interrupt_sequence (struct ui_file *file, int from_tty,
1546 struct cmd_list_element *c,
1547 const char *value)
1548 {
1549 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1550 fprintf_filtered (file,
1551 _("Send the ASCII ETX character (Ctrl-c) "
1552 "to the remote target to interrupt the "
1553 "execution of the program.\n"));
1554 else if (interrupt_sequence_mode == interrupt_sequence_break)
1555 fprintf_filtered (file,
1556 _("send a break signal to the remote target "
1557 "to interrupt the execution of the program.\n"));
1558 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1559 fprintf_filtered (file,
1560 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1561 "the remote target to interrupt the execution "
1562 "of Linux kernel.\n"));
1563 else
1564 internal_error (__FILE__, __LINE__,
1565 _("Invalid value for interrupt_sequence_mode: %s."),
1566 interrupt_sequence_mode);
1567 }
1568
1569 /* This boolean variable specifies whether interrupt_sequence is sent
1570 to the remote target when gdb connects to it.
1571 This is mostly needed when you debug the Linux kernel: The Linux kernel
1572 expects BREAK g which is Magic SysRq g for connecting gdb. */
1573 static bool interrupt_on_connect = false;
1574
1575 /* This variable is used to implement the "set/show remotebreak" commands.
1576 Since these commands are now deprecated in favor of "set/show remote
1577 interrupt-sequence", it no longer has any effect on the code. */
1578 static bool remote_break;
1579
1580 static void
1581 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1582 {
1583 if (remote_break)
1584 interrupt_sequence_mode = interrupt_sequence_break;
1585 else
1586 interrupt_sequence_mode = interrupt_sequence_control_c;
1587 }
1588
1589 static void
1590 show_remotebreak (struct ui_file *file, int from_tty,
1591 struct cmd_list_element *c,
1592 const char *value)
1593 {
1594 }
1595
1596 /* This variable sets the number of bits in an address that are to be
1597 sent in a memory ("M" or "m") packet. Normally, after stripping
1598 leading zeros, the entire address would be sent. This variable
1599 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1600 initial implementation of remote.c restricted the address sent in
1601 memory packets to ``host::sizeof long'' bytes - (typically 32
1602 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1603 address was never sent. Since fixing this bug may cause a break in
1604 some remote targets this variable is principally provided to
1605 facilitate backward compatibility. */
1606
1607 static unsigned int remote_address_size;
1608
1609 \f
1610 /* User configurable variables for the number of characters in a
1611 memory read/write packet. MIN (rsa->remote_packet_size,
1612 rsa->sizeof_g_packet) is the default. Some targets need smaller
1613 values (fifo overruns, et.al.) and some users need larger values
1614 (speed up transfers). The variables ``preferred_*'' (the user
1615 request), ``current_*'' (what was actually set) and ``forced_*''
1616 (Positive - a soft limit, negative - a hard limit). */
1617
1618 struct memory_packet_config
1619 {
1620 const char *name;
1621 long size;
1622 int fixed_p;
1623 };
1624
1625 /* The default max memory-write-packet-size, when the setting is
1626 "fixed". The 16k is historical. (It came from older GDB's using
1627 alloca for buffers and the knowledge (folklore?) that some hosts
1628 don't cope very well with large alloca calls.) */
1629 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1630
1631 /* The minimum remote packet size for memory transfers. Ensures we
1632 can write at least one byte. */
1633 #define MIN_MEMORY_PACKET_SIZE 20
1634
1635 /* Get the memory packet size, assuming it is fixed. */
1636
1637 static long
1638 get_fixed_memory_packet_size (struct memory_packet_config *config)
1639 {
1640 gdb_assert (config->fixed_p);
1641
1642 if (config->size <= 0)
1643 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1644 else
1645 return config->size;
1646 }
1647
1648 /* Compute the current size of a read/write packet. Since this makes
1649 use of ``actual_register_packet_size'' the computation is dynamic. */
1650
1651 long
1652 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1653 {
1654 struct remote_state *rs = get_remote_state ();
1655 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1656
1657 long what_they_get;
1658 if (config->fixed_p)
1659 what_they_get = get_fixed_memory_packet_size (config);
1660 else
1661 {
1662 what_they_get = get_remote_packet_size ();
1663 /* Limit the packet to the size specified by the user. */
1664 if (config->size > 0
1665 && what_they_get > config->size)
1666 what_they_get = config->size;
1667
1668 /* Limit it to the size of the targets ``g'' response unless we have
1669 permission from the stub to use a larger packet size. */
1670 if (rs->explicit_packet_size == 0
1671 && rsa->actual_register_packet_size > 0
1672 && what_they_get > rsa->actual_register_packet_size)
1673 what_they_get = rsa->actual_register_packet_size;
1674 }
1675 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1676 what_they_get = MIN_MEMORY_PACKET_SIZE;
1677
1678 /* Make sure there is room in the global buffer for this packet
1679 (including its trailing NUL byte). */
1680 if (rs->buf.size () < what_they_get + 1)
1681 rs->buf.resize (2 * what_they_get);
1682
1683 return what_they_get;
1684 }
1685
1686 /* Update the size of a read/write packet. If they user wants
1687 something really big then do a sanity check. */
1688
1689 static void
1690 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1691 {
1692 int fixed_p = config->fixed_p;
1693 long size = config->size;
1694
1695 if (args == NULL)
1696 error (_("Argument required (integer, `fixed' or `limited')."));
1697 else if (strcmp (args, "hard") == 0
1698 || strcmp (args, "fixed") == 0)
1699 fixed_p = 1;
1700 else if (strcmp (args, "soft") == 0
1701 || strcmp (args, "limit") == 0)
1702 fixed_p = 0;
1703 else
1704 {
1705 char *end;
1706
1707 size = strtoul (args, &end, 0);
1708 if (args == end)
1709 error (_("Invalid %s (bad syntax)."), config->name);
1710
1711 /* Instead of explicitly capping the size of a packet to or
1712 disallowing it, the user is allowed to set the size to
1713 something arbitrarily large. */
1714 }
1715
1716 /* Extra checks? */
1717 if (fixed_p && !config->fixed_p)
1718 {
1719 /* So that the query shows the correct value. */
1720 long query_size = (size <= 0
1721 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1722 : size);
1723
1724 if (! query (_("The target may not be able to correctly handle a %s\n"
1725 "of %ld bytes. Change the packet size? "),
1726 config->name, query_size))
1727 error (_("Packet size not changed."));
1728 }
1729 /* Update the config. */
1730 config->fixed_p = fixed_p;
1731 config->size = size;
1732 }
1733
1734 static void
1735 show_memory_packet_size (struct memory_packet_config *config)
1736 {
1737 if (config->size == 0)
1738 printf_filtered (_("The %s is 0 (default). "), config->name);
1739 else
1740 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1741 if (config->fixed_p)
1742 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1743 get_fixed_memory_packet_size (config));
1744 else
1745 {
1746 remote_target *remote = get_current_remote_target ();
1747
1748 if (remote != NULL)
1749 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1750 remote->get_memory_packet_size (config));
1751 else
1752 puts_filtered ("The actual limit will be further reduced "
1753 "dependent on the target.\n");
1754 }
1755 }
1756
1757 /* FIXME: needs to be per-remote-target. */
1758 static struct memory_packet_config memory_write_packet_config =
1759 {
1760 "memory-write-packet-size",
1761 };
1762
1763 static void
1764 set_memory_write_packet_size (const char *args, int from_tty)
1765 {
1766 set_memory_packet_size (args, &memory_write_packet_config);
1767 }
1768
1769 static void
1770 show_memory_write_packet_size (const char *args, int from_tty)
1771 {
1772 show_memory_packet_size (&memory_write_packet_config);
1773 }
1774
1775 /* Show the number of hardware watchpoints that can be used. */
1776
1777 static void
1778 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1779 struct cmd_list_element *c,
1780 const char *value)
1781 {
1782 fprintf_filtered (file, _("The maximum number of target hardware "
1783 "watchpoints is %s.\n"), value);
1784 }
1785
1786 /* Show the length limit (in bytes) for hardware watchpoints. */
1787
1788 static void
1789 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1790 struct cmd_list_element *c,
1791 const char *value)
1792 {
1793 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1794 "hardware watchpoint is %s.\n"), value);
1795 }
1796
1797 /* Show the number of hardware breakpoints that can be used. */
1798
1799 static void
1800 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1801 struct cmd_list_element *c,
1802 const char *value)
1803 {
1804 fprintf_filtered (file, _("The maximum number of target hardware "
1805 "breakpoints is %s.\n"), value);
1806 }
1807
1808 /* Controls the maximum number of characters to display in the debug output
1809 for each remote packet. The remaining characters are omitted. */
1810
1811 static int remote_packet_max_chars = 512;
1812
1813 /* Show the maximum number of characters to display for each remote packet
1814 when remote debugging is enabled. */
1815
1816 static void
1817 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1818 struct cmd_list_element *c,
1819 const char *value)
1820 {
1821 fprintf_filtered (file, _("Number of remote packet characters to "
1822 "display is %s.\n"), value);
1823 }
1824
1825 long
1826 remote_target::get_memory_write_packet_size ()
1827 {
1828 return get_memory_packet_size (&memory_write_packet_config);
1829 }
1830
1831 /* FIXME: needs to be per-remote-target. */
1832 static struct memory_packet_config memory_read_packet_config =
1833 {
1834 "memory-read-packet-size",
1835 };
1836
1837 static void
1838 set_memory_read_packet_size (const char *args, int from_tty)
1839 {
1840 set_memory_packet_size (args, &memory_read_packet_config);
1841 }
1842
1843 static void
1844 show_memory_read_packet_size (const char *args, int from_tty)
1845 {
1846 show_memory_packet_size (&memory_read_packet_config);
1847 }
1848
1849 long
1850 remote_target::get_memory_read_packet_size ()
1851 {
1852 long size = get_memory_packet_size (&memory_read_packet_config);
1853
1854 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1855 extra buffer size argument before the memory read size can be
1856 increased beyond this. */
1857 if (size > get_remote_packet_size ())
1858 size = get_remote_packet_size ();
1859 return size;
1860 }
1861
1862 \f
1863
1864 struct packet_config
1865 {
1866 const char *name;
1867 const char *title;
1868
1869 /* If auto, GDB auto-detects support for this packet or feature,
1870 either through qSupported, or by trying the packet and looking
1871 at the response. If true, GDB assumes the target supports this
1872 packet. If false, the packet is disabled. Configs that don't
1873 have an associated command always have this set to auto. */
1874 enum auto_boolean detect;
1875
1876 /* Does the target support this packet? */
1877 enum packet_support support;
1878 };
1879
1880 static enum packet_support packet_config_support (struct packet_config *config);
1881 static enum packet_support packet_support (int packet);
1882
1883 static void
1884 show_packet_config_cmd (struct packet_config *config)
1885 {
1886 const char *support = "internal-error";
1887
1888 switch (packet_config_support (config))
1889 {
1890 case PACKET_ENABLE:
1891 support = "enabled";
1892 break;
1893 case PACKET_DISABLE:
1894 support = "disabled";
1895 break;
1896 case PACKET_SUPPORT_UNKNOWN:
1897 support = "unknown";
1898 break;
1899 }
1900 switch (config->detect)
1901 {
1902 case AUTO_BOOLEAN_AUTO:
1903 printf_filtered (_("Support for the `%s' packet "
1904 "is auto-detected, currently %s.\n"),
1905 config->name, support);
1906 break;
1907 case AUTO_BOOLEAN_TRUE:
1908 case AUTO_BOOLEAN_FALSE:
1909 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1910 config->name, support);
1911 break;
1912 }
1913 }
1914
1915 static void
1916 add_packet_config_cmd (struct packet_config *config, const char *name,
1917 const char *title, int legacy)
1918 {
1919 char *set_doc;
1920 char *show_doc;
1921 char *cmd_name;
1922
1923 config->name = name;
1924 config->title = title;
1925 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1926 name, title);
1927 show_doc = xstrprintf ("Show current use of remote "
1928 "protocol `%s' (%s) packet.",
1929 name, title);
1930 /* set/show TITLE-packet {auto,on,off} */
1931 cmd_name = xstrprintf ("%s-packet", title);
1932 set_show_commands cmds
1933 = add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1934 &config->detect, set_doc,
1935 show_doc, NULL, /* help_doc */
1936 NULL,
1937 show_remote_protocol_packet_cmd,
1938 &remote_set_cmdlist, &remote_show_cmdlist);
1939
1940 /* The command code copies the documentation strings. */
1941 xfree (set_doc);
1942 xfree (show_doc);
1943
1944 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1945 if (legacy)
1946 {
1947 char *legacy_name;
1948
1949 legacy_name = xstrprintf ("%s-packet", name);
1950 add_alias_cmd (legacy_name, cmds.set, class_obscure, 0,
1951 &remote_set_cmdlist);
1952 add_alias_cmd (legacy_name, cmds.show, class_obscure, 0,
1953 &remote_show_cmdlist);
1954 }
1955 }
1956
1957 static enum packet_result
1958 packet_check_result (const char *buf)
1959 {
1960 if (buf[0] != '\0')
1961 {
1962 /* The stub recognized the packet request. Check that the
1963 operation succeeded. */
1964 if (buf[0] == 'E'
1965 && isxdigit (buf[1]) && isxdigit (buf[2])
1966 && buf[3] == '\0')
1967 /* "Enn" - definitely an error. */
1968 return PACKET_ERROR;
1969
1970 /* Always treat "E." as an error. This will be used for
1971 more verbose error messages, such as E.memtypes. */
1972 if (buf[0] == 'E' && buf[1] == '.')
1973 return PACKET_ERROR;
1974
1975 /* The packet may or may not be OK. Just assume it is. */
1976 return PACKET_OK;
1977 }
1978 else
1979 /* The stub does not support the packet. */
1980 return PACKET_UNKNOWN;
1981 }
1982
1983 static enum packet_result
1984 packet_check_result (const gdb::char_vector &buf)
1985 {
1986 return packet_check_result (buf.data ());
1987 }
1988
1989 static enum packet_result
1990 packet_ok (const char *buf, struct packet_config *config)
1991 {
1992 enum packet_result result;
1993
1994 if (config->detect != AUTO_BOOLEAN_TRUE
1995 && config->support == PACKET_DISABLE)
1996 internal_error (__FILE__, __LINE__,
1997 _("packet_ok: attempt to use a disabled packet"));
1998
1999 result = packet_check_result (buf);
2000 switch (result)
2001 {
2002 case PACKET_OK:
2003 case PACKET_ERROR:
2004 /* The stub recognized the packet request. */
2005 if (config->support == PACKET_SUPPORT_UNKNOWN)
2006 {
2007 remote_debug_printf ("Packet %s (%s) is supported",
2008 config->name, config->title);
2009 config->support = PACKET_ENABLE;
2010 }
2011 break;
2012 case PACKET_UNKNOWN:
2013 /* The stub does not support the packet. */
2014 if (config->detect == AUTO_BOOLEAN_AUTO
2015 && config->support == PACKET_ENABLE)
2016 {
2017 /* If the stub previously indicated that the packet was
2018 supported then there is a protocol error. */
2019 error (_("Protocol error: %s (%s) conflicting enabled responses."),
2020 config->name, config->title);
2021 }
2022 else if (config->detect == AUTO_BOOLEAN_TRUE)
2023 {
2024 /* The user set it wrong. */
2025 error (_("Enabled packet %s (%s) not recognized by stub"),
2026 config->name, config->title);
2027 }
2028
2029 remote_debug_printf ("Packet %s (%s) is NOT supported",
2030 config->name, config->title);
2031 config->support = PACKET_DISABLE;
2032 break;
2033 }
2034
2035 return result;
2036 }
2037
2038 static enum packet_result
2039 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
2040 {
2041 return packet_ok (buf.data (), config);
2042 }
2043
2044 enum {
2045 PACKET_vCont = 0,
2046 PACKET_X,
2047 PACKET_qSymbol,
2048 PACKET_P,
2049 PACKET_p,
2050 PACKET_Z0,
2051 PACKET_Z1,
2052 PACKET_Z2,
2053 PACKET_Z3,
2054 PACKET_Z4,
2055 PACKET_vFile_setfs,
2056 PACKET_vFile_open,
2057 PACKET_vFile_pread,
2058 PACKET_vFile_pwrite,
2059 PACKET_vFile_close,
2060 PACKET_vFile_unlink,
2061 PACKET_vFile_readlink,
2062 PACKET_vFile_fstat,
2063 PACKET_qXfer_auxv,
2064 PACKET_qXfer_features,
2065 PACKET_qXfer_exec_file,
2066 PACKET_qXfer_libraries,
2067 PACKET_qXfer_libraries_svr4,
2068 PACKET_qXfer_memory_map,
2069 PACKET_qXfer_osdata,
2070 PACKET_qXfer_threads,
2071 PACKET_qXfer_statictrace_read,
2072 PACKET_qXfer_traceframe_info,
2073 PACKET_qXfer_uib,
2074 PACKET_qGetTIBAddr,
2075 PACKET_qGetTLSAddr,
2076 PACKET_qSupported,
2077 PACKET_qTStatus,
2078 PACKET_QPassSignals,
2079 PACKET_QCatchSyscalls,
2080 PACKET_QProgramSignals,
2081 PACKET_QSetWorkingDir,
2082 PACKET_QStartupWithShell,
2083 PACKET_QEnvironmentHexEncoded,
2084 PACKET_QEnvironmentReset,
2085 PACKET_QEnvironmentUnset,
2086 PACKET_qCRC,
2087 PACKET_qSearch_memory,
2088 PACKET_vAttach,
2089 PACKET_vRun,
2090 PACKET_QStartNoAckMode,
2091 PACKET_vKill,
2092 PACKET_qXfer_siginfo_read,
2093 PACKET_qXfer_siginfo_write,
2094 PACKET_qAttached,
2095
2096 /* Support for conditional tracepoints. */
2097 PACKET_ConditionalTracepoints,
2098
2099 /* Support for target-side breakpoint conditions. */
2100 PACKET_ConditionalBreakpoints,
2101
2102 /* Support for target-side breakpoint commands. */
2103 PACKET_BreakpointCommands,
2104
2105 /* Support for fast tracepoints. */
2106 PACKET_FastTracepoints,
2107
2108 /* Support for static tracepoints. */
2109 PACKET_StaticTracepoints,
2110
2111 /* Support for installing tracepoints while a trace experiment is
2112 running. */
2113 PACKET_InstallInTrace,
2114
2115 PACKET_bc,
2116 PACKET_bs,
2117 PACKET_TracepointSource,
2118 PACKET_QAllow,
2119 PACKET_qXfer_fdpic,
2120 PACKET_QDisableRandomization,
2121 PACKET_QAgent,
2122 PACKET_QTBuffer_size,
2123 PACKET_Qbtrace_off,
2124 PACKET_Qbtrace_bts,
2125 PACKET_Qbtrace_pt,
2126 PACKET_qXfer_btrace,
2127
2128 /* Support for the QNonStop packet. */
2129 PACKET_QNonStop,
2130
2131 /* Support for the QThreadEvents packet. */
2132 PACKET_QThreadEvents,
2133
2134 /* Support for multi-process extensions. */
2135 PACKET_multiprocess_feature,
2136
2137 /* Support for enabling and disabling tracepoints while a trace
2138 experiment is running. */
2139 PACKET_EnableDisableTracepoints_feature,
2140
2141 /* Support for collecting strings using the tracenz bytecode. */
2142 PACKET_tracenz_feature,
2143
2144 /* Support for continuing to run a trace experiment while GDB is
2145 disconnected. */
2146 PACKET_DisconnectedTracing_feature,
2147
2148 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2149 PACKET_augmented_libraries_svr4_read_feature,
2150
2151 /* Support for the qXfer:btrace-conf:read packet. */
2152 PACKET_qXfer_btrace_conf,
2153
2154 /* Support for the Qbtrace-conf:bts:size packet. */
2155 PACKET_Qbtrace_conf_bts_size,
2156
2157 /* Support for swbreak+ feature. */
2158 PACKET_swbreak_feature,
2159
2160 /* Support for hwbreak+ feature. */
2161 PACKET_hwbreak_feature,
2162
2163 /* Support for fork events. */
2164 PACKET_fork_event_feature,
2165
2166 /* Support for vfork events. */
2167 PACKET_vfork_event_feature,
2168
2169 /* Support for the Qbtrace-conf:pt:size packet. */
2170 PACKET_Qbtrace_conf_pt_size,
2171
2172 /* Support for exec events. */
2173 PACKET_exec_event_feature,
2174
2175 /* Support for query supported vCont actions. */
2176 PACKET_vContSupported,
2177
2178 /* Support remote CTRL-C. */
2179 PACKET_vCtrlC,
2180
2181 /* Support TARGET_WAITKIND_NO_RESUMED. */
2182 PACKET_no_resumed,
2183
2184 /* Support for memory tagging, allocation tag fetch/store
2185 packets and the tag violation stop replies. */
2186 PACKET_memory_tagging_feature,
2187
2188 PACKET_MAX
2189 };
2190
2191 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2192 assuming all remote targets are the same server (thus all support
2193 the same packets). */
2194 static struct packet_config remote_protocol_packets[PACKET_MAX];
2195
2196 /* Returns the packet's corresponding "set remote foo-packet" command
2197 state. See struct packet_config for more details. */
2198
2199 static enum auto_boolean
2200 packet_set_cmd_state (int packet)
2201 {
2202 return remote_protocol_packets[packet].detect;
2203 }
2204
2205 /* Returns whether a given packet or feature is supported. This takes
2206 into account the state of the corresponding "set remote foo-packet"
2207 command, which may be used to bypass auto-detection. */
2208
2209 static enum packet_support
2210 packet_config_support (struct packet_config *config)
2211 {
2212 switch (config->detect)
2213 {
2214 case AUTO_BOOLEAN_TRUE:
2215 return PACKET_ENABLE;
2216 case AUTO_BOOLEAN_FALSE:
2217 return PACKET_DISABLE;
2218 case AUTO_BOOLEAN_AUTO:
2219 return config->support;
2220 default:
2221 gdb_assert_not_reached (_("bad switch"));
2222 }
2223 }
2224
2225 /* Same as packet_config_support, but takes the packet's enum value as
2226 argument. */
2227
2228 static enum packet_support
2229 packet_support (int packet)
2230 {
2231 struct packet_config *config = &remote_protocol_packets[packet];
2232
2233 return packet_config_support (config);
2234 }
2235
2236 static void
2237 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2238 struct cmd_list_element *c,
2239 const char *value)
2240 {
2241 struct packet_config *packet;
2242
2243 for (packet = remote_protocol_packets;
2244 packet < &remote_protocol_packets[PACKET_MAX];
2245 packet++)
2246 {
2247 if (&packet->detect == c->var)
2248 {
2249 show_packet_config_cmd (packet);
2250 return;
2251 }
2252 }
2253 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2254 c->name);
2255 }
2256
2257 /* Should we try one of the 'Z' requests? */
2258
2259 enum Z_packet_type
2260 {
2261 Z_PACKET_SOFTWARE_BP,
2262 Z_PACKET_HARDWARE_BP,
2263 Z_PACKET_WRITE_WP,
2264 Z_PACKET_READ_WP,
2265 Z_PACKET_ACCESS_WP,
2266 NR_Z_PACKET_TYPES
2267 };
2268
2269 /* For compatibility with older distributions. Provide a ``set remote
2270 Z-packet ...'' command that updates all the Z packet types. */
2271
2272 static enum auto_boolean remote_Z_packet_detect;
2273
2274 static void
2275 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2276 struct cmd_list_element *c)
2277 {
2278 int i;
2279
2280 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2281 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2282 }
2283
2284 static void
2285 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2286 struct cmd_list_element *c,
2287 const char *value)
2288 {
2289 int i;
2290
2291 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2292 {
2293 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2294 }
2295 }
2296
2297 /* Returns true if the multi-process extensions are in effect. */
2298
2299 static int
2300 remote_multi_process_p (struct remote_state *rs)
2301 {
2302 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2303 }
2304
2305 /* Returns true if fork events are supported. */
2306
2307 static int
2308 remote_fork_event_p (struct remote_state *rs)
2309 {
2310 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2311 }
2312
2313 /* Returns true if vfork events are supported. */
2314
2315 static int
2316 remote_vfork_event_p (struct remote_state *rs)
2317 {
2318 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2319 }
2320
2321 /* Returns true if exec events are supported. */
2322
2323 static int
2324 remote_exec_event_p (struct remote_state *rs)
2325 {
2326 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2327 }
2328
2329 /* Returns true if memory tagging is supported, false otherwise. */
2330
2331 static bool
2332 remote_memory_tagging_p ()
2333 {
2334 return packet_support (PACKET_memory_tagging_feature) == PACKET_ENABLE;
2335 }
2336
2337 /* Insert fork catchpoint target routine. If fork events are enabled
2338 then return success, nothing more to do. */
2339
2340 int
2341 remote_target::insert_fork_catchpoint (int pid)
2342 {
2343 struct remote_state *rs = get_remote_state ();
2344
2345 return !remote_fork_event_p (rs);
2346 }
2347
2348 /* Remove fork catchpoint target routine. Nothing to do, just
2349 return success. */
2350
2351 int
2352 remote_target::remove_fork_catchpoint (int pid)
2353 {
2354 return 0;
2355 }
2356
2357 /* Insert vfork catchpoint target routine. If vfork events are enabled
2358 then return success, nothing more to do. */
2359
2360 int
2361 remote_target::insert_vfork_catchpoint (int pid)
2362 {
2363 struct remote_state *rs = get_remote_state ();
2364
2365 return !remote_vfork_event_p (rs);
2366 }
2367
2368 /* Remove vfork catchpoint target routine. Nothing to do, just
2369 return success. */
2370
2371 int
2372 remote_target::remove_vfork_catchpoint (int pid)
2373 {
2374 return 0;
2375 }
2376
2377 /* Insert exec catchpoint target routine. If exec events are
2378 enabled, just return success. */
2379
2380 int
2381 remote_target::insert_exec_catchpoint (int pid)
2382 {
2383 struct remote_state *rs = get_remote_state ();
2384
2385 return !remote_exec_event_p (rs);
2386 }
2387
2388 /* Remove exec catchpoint target routine. Nothing to do, just
2389 return success. */
2390
2391 int
2392 remote_target::remove_exec_catchpoint (int pid)
2393 {
2394 return 0;
2395 }
2396
2397 \f
2398
2399 /* Take advantage of the fact that the TID field is not used, to tag
2400 special ptids with it set to != 0. */
2401 static const ptid_t magic_null_ptid (42000, -1, 1);
2402 static const ptid_t not_sent_ptid (42000, -2, 1);
2403 static const ptid_t any_thread_ptid (42000, 0, 1);
2404
2405 /* Find out if the stub attached to PID (and hence GDB should offer to
2406 detach instead of killing it when bailing out). */
2407
2408 int
2409 remote_target::remote_query_attached (int pid)
2410 {
2411 struct remote_state *rs = get_remote_state ();
2412 size_t size = get_remote_packet_size ();
2413
2414 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2415 return 0;
2416
2417 if (remote_multi_process_p (rs))
2418 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2419 else
2420 xsnprintf (rs->buf.data (), size, "qAttached");
2421
2422 putpkt (rs->buf);
2423 getpkt (&rs->buf, 0);
2424
2425 switch (packet_ok (rs->buf,
2426 &remote_protocol_packets[PACKET_qAttached]))
2427 {
2428 case PACKET_OK:
2429 if (strcmp (rs->buf.data (), "1") == 0)
2430 return 1;
2431 break;
2432 case PACKET_ERROR:
2433 warning (_("Remote failure reply: %s"), rs->buf.data ());
2434 break;
2435 case PACKET_UNKNOWN:
2436 break;
2437 }
2438
2439 return 0;
2440 }
2441
2442 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2443 has been invented by GDB, instead of reported by the target. Since
2444 we can be connected to a remote system before before knowing about
2445 any inferior, mark the target with execution when we find the first
2446 inferior. If ATTACHED is 1, then we had just attached to this
2447 inferior. If it is 0, then we just created this inferior. If it
2448 is -1, then try querying the remote stub to find out if it had
2449 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2450 attempt to open this inferior's executable as the main executable
2451 if no main executable is open already. */
2452
2453 inferior *
2454 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2455 int try_open_exec)
2456 {
2457 struct inferior *inf;
2458
2459 /* Check whether this process we're learning about is to be
2460 considered attached, or if is to be considered to have been
2461 spawned by the stub. */
2462 if (attached == -1)
2463 attached = remote_query_attached (pid);
2464
2465 if (gdbarch_has_global_solist (target_gdbarch ()))
2466 {
2467 /* If the target shares code across all inferiors, then every
2468 attach adds a new inferior. */
2469 inf = add_inferior (pid);
2470
2471 /* ... and every inferior is bound to the same program space.
2472 However, each inferior may still have its own address
2473 space. */
2474 inf->aspace = maybe_new_address_space ();
2475 inf->pspace = current_program_space;
2476 }
2477 else
2478 {
2479 /* In the traditional debugging scenario, there's a 1-1 match
2480 between program/address spaces. We simply bind the inferior
2481 to the program space's address space. */
2482 inf = current_inferior ();
2483
2484 /* However, if the current inferior is already bound to a
2485 process, find some other empty inferior. */
2486 if (inf->pid != 0)
2487 {
2488 inf = nullptr;
2489 for (inferior *it : all_inferiors ())
2490 if (it->pid == 0)
2491 {
2492 inf = it;
2493 break;
2494 }
2495 }
2496 if (inf == nullptr)
2497 {
2498 /* Since all inferiors were already bound to a process, add
2499 a new inferior. */
2500 inf = add_inferior_with_spaces ();
2501 }
2502 switch_to_inferior_no_thread (inf);
2503 inf->push_target (this);
2504 inferior_appeared (inf, pid);
2505 }
2506
2507 inf->attach_flag = attached;
2508 inf->fake_pid_p = fake_pid_p;
2509
2510 /* If no main executable is currently open then attempt to
2511 open the file that was executed to create this inferior. */
2512 if (try_open_exec && get_exec_file (0) == NULL)
2513 exec_file_locate_attach (pid, 0, 1);
2514
2515 /* Check for exec file mismatch, and let the user solve it. */
2516 validate_exec_file (1);
2517
2518 return inf;
2519 }
2520
2521 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2522 static remote_thread_info *get_remote_thread_info (remote_target *target,
2523 ptid_t ptid);
2524
2525 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2526 according to EXECUTING and RUNNING respectively. If SILENT_P (or the
2527 remote_state::starting_up flag) is true then the new thread is added
2528 silently, otherwise the new thread will be announced to the user. */
2529
2530 thread_info *
2531 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing,
2532 bool silent_p)
2533 {
2534 struct remote_state *rs = get_remote_state ();
2535 struct thread_info *thread;
2536
2537 /* GDB historically didn't pull threads in the initial connection
2538 setup. If the remote target doesn't even have a concept of
2539 threads (e.g., a bare-metal target), even if internally we
2540 consider that a single-threaded target, mentioning a new thread
2541 might be confusing to the user. Be silent then, preserving the
2542 age old behavior. */
2543 if (rs->starting_up || silent_p)
2544 thread = add_thread_silent (this, ptid);
2545 else
2546 thread = add_thread (this, ptid);
2547
2548 /* We start by assuming threads are resumed. That state then gets updated
2549 when we process a matching stop reply. */
2550 get_remote_thread_info (thread)->set_resumed ();
2551
2552 set_executing (this, ptid, executing);
2553 set_running (this, ptid, running);
2554
2555 return thread;
2556 }
2557
2558 /* Come here when we learn about a thread id from the remote target.
2559 It may be the first time we hear about such thread, so take the
2560 opportunity to add it to GDB's thread list. In case this is the
2561 first time we're noticing its corresponding inferior, add it to
2562 GDB's inferior list as well. EXECUTING indicates whether the
2563 thread is (internally) executing or stopped. */
2564
2565 void
2566 remote_target::remote_notice_new_inferior (ptid_t currthread, bool executing)
2567 {
2568 /* In non-stop mode, we assume new found threads are (externally)
2569 running until proven otherwise with a stop reply. In all-stop,
2570 we can only get here if all threads are stopped. */
2571 bool running = target_is_non_stop_p ();
2572
2573 /* If this is a new thread, add it to GDB's thread list.
2574 If we leave it up to WFI to do this, bad things will happen. */
2575
2576 thread_info *tp = find_thread_ptid (this, currthread);
2577 if (tp != NULL && tp->state == THREAD_EXITED)
2578 {
2579 /* We're seeing an event on a thread id we knew had exited.
2580 This has to be a new thread reusing the old id. Add it. */
2581 remote_add_thread (currthread, running, executing, false);
2582 return;
2583 }
2584
2585 if (!in_thread_list (this, currthread))
2586 {
2587 struct inferior *inf = NULL;
2588 int pid = currthread.pid ();
2589
2590 if (inferior_ptid.is_pid ()
2591 && pid == inferior_ptid.pid ())
2592 {
2593 /* inferior_ptid has no thread member yet. This can happen
2594 with the vAttach -> remote_wait,"TAAthread:" path if the
2595 stub doesn't support qC. This is the first stop reported
2596 after an attach, so this is the main thread. Update the
2597 ptid in the thread list. */
2598 if (in_thread_list (this, ptid_t (pid)))
2599 thread_change_ptid (this, inferior_ptid, currthread);
2600 else
2601 {
2602 thread_info *thr
2603 = remote_add_thread (currthread, running, executing, false);
2604 switch_to_thread (thr);
2605 }
2606 return;
2607 }
2608
2609 if (magic_null_ptid == inferior_ptid)
2610 {
2611 /* inferior_ptid is not set yet. This can happen with the
2612 vRun -> remote_wait,"TAAthread:" path if the stub
2613 doesn't support qC. This is the first stop reported
2614 after an attach, so this is the main thread. Update the
2615 ptid in the thread list. */
2616 thread_change_ptid (this, inferior_ptid, currthread);
2617 return;
2618 }
2619
2620 /* When connecting to a target remote, or to a target
2621 extended-remote which already was debugging an inferior, we
2622 may not know about it yet. Add it before adding its child
2623 thread, so notifications are emitted in a sensible order. */
2624 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2625 {
2626 struct remote_state *rs = get_remote_state ();
2627 bool fake_pid_p = !remote_multi_process_p (rs);
2628
2629 inf = remote_add_inferior (fake_pid_p,
2630 currthread.pid (), -1, 1);
2631 }
2632
2633 /* This is really a new thread. Add it. */
2634 thread_info *new_thr
2635 = remote_add_thread (currthread, running, executing, false);
2636
2637 /* If we found a new inferior, let the common code do whatever
2638 it needs to with it (e.g., read shared libraries, insert
2639 breakpoints), unless we're just setting up an all-stop
2640 connection. */
2641 if (inf != NULL)
2642 {
2643 struct remote_state *rs = get_remote_state ();
2644
2645 if (!rs->starting_up)
2646 notice_new_inferior (new_thr, executing, 0);
2647 }
2648 }
2649 }
2650
2651 /* Return THREAD's private thread data, creating it if necessary. */
2652
2653 static remote_thread_info *
2654 get_remote_thread_info (thread_info *thread)
2655 {
2656 gdb_assert (thread != NULL);
2657
2658 if (thread->priv == NULL)
2659 thread->priv.reset (new remote_thread_info);
2660
2661 return static_cast<remote_thread_info *> (thread->priv.get ());
2662 }
2663
2664 /* Return PTID's private thread data, creating it if necessary. */
2665
2666 static remote_thread_info *
2667 get_remote_thread_info (remote_target *target, ptid_t ptid)
2668 {
2669 thread_info *thr = find_thread_ptid (target, ptid);
2670 return get_remote_thread_info (thr);
2671 }
2672
2673 /* Call this function as a result of
2674 1) A halt indication (T packet) containing a thread id
2675 2) A direct query of currthread
2676 3) Successful execution of set thread */
2677
2678 static void
2679 record_currthread (struct remote_state *rs, ptid_t currthread)
2680 {
2681 rs->general_thread = currthread;
2682 }
2683
2684 /* If 'QPassSignals' is supported, tell the remote stub what signals
2685 it can simply pass through to the inferior without reporting. */
2686
2687 void
2688 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2689 {
2690 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2691 {
2692 char *pass_packet, *p;
2693 int count = 0;
2694 struct remote_state *rs = get_remote_state ();
2695
2696 gdb_assert (pass_signals.size () < 256);
2697 for (size_t i = 0; i < pass_signals.size (); i++)
2698 {
2699 if (pass_signals[i])
2700 count++;
2701 }
2702 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2703 strcpy (pass_packet, "QPassSignals:");
2704 p = pass_packet + strlen (pass_packet);
2705 for (size_t i = 0; i < pass_signals.size (); i++)
2706 {
2707 if (pass_signals[i])
2708 {
2709 if (i >= 16)
2710 *p++ = tohex (i >> 4);
2711 *p++ = tohex (i & 15);
2712 if (count)
2713 *p++ = ';';
2714 else
2715 break;
2716 count--;
2717 }
2718 }
2719 *p = 0;
2720 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2721 {
2722 putpkt (pass_packet);
2723 getpkt (&rs->buf, 0);
2724 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2725 xfree (rs->last_pass_packet);
2726 rs->last_pass_packet = pass_packet;
2727 }
2728 else
2729 xfree (pass_packet);
2730 }
2731 }
2732
2733 /* If 'QCatchSyscalls' is supported, tell the remote stub
2734 to report syscalls to GDB. */
2735
2736 int
2737 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2738 gdb::array_view<const int> syscall_counts)
2739 {
2740 const char *catch_packet;
2741 enum packet_result result;
2742 int n_sysno = 0;
2743
2744 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2745 {
2746 /* Not supported. */
2747 return 1;
2748 }
2749
2750 if (needed && any_count == 0)
2751 {
2752 /* Count how many syscalls are to be caught. */
2753 for (size_t i = 0; i < syscall_counts.size (); i++)
2754 {
2755 if (syscall_counts[i] != 0)
2756 n_sysno++;
2757 }
2758 }
2759
2760 remote_debug_printf ("pid %d needed %d any_count %d n_sysno %d",
2761 pid, needed, any_count, n_sysno);
2762
2763 std::string built_packet;
2764 if (needed)
2765 {
2766 /* Prepare a packet with the sysno list, assuming max 8+1
2767 characters for a sysno. If the resulting packet size is too
2768 big, fallback on the non-selective packet. */
2769 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2770 built_packet.reserve (maxpktsz);
2771 built_packet = "QCatchSyscalls:1";
2772 if (any_count == 0)
2773 {
2774 /* Add in each syscall to be caught. */
2775 for (size_t i = 0; i < syscall_counts.size (); i++)
2776 {
2777 if (syscall_counts[i] != 0)
2778 string_appendf (built_packet, ";%zx", i);
2779 }
2780 }
2781 if (built_packet.size () > get_remote_packet_size ())
2782 {
2783 /* catch_packet too big. Fallback to less efficient
2784 non selective mode, with GDB doing the filtering. */
2785 catch_packet = "QCatchSyscalls:1";
2786 }
2787 else
2788 catch_packet = built_packet.c_str ();
2789 }
2790 else
2791 catch_packet = "QCatchSyscalls:0";
2792
2793 struct remote_state *rs = get_remote_state ();
2794
2795 putpkt (catch_packet);
2796 getpkt (&rs->buf, 0);
2797 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2798 if (result == PACKET_OK)
2799 return 0;
2800 else
2801 return -1;
2802 }
2803
2804 /* If 'QProgramSignals' is supported, tell the remote stub what
2805 signals it should pass through to the inferior when detaching. */
2806
2807 void
2808 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2809 {
2810 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2811 {
2812 char *packet, *p;
2813 int count = 0;
2814 struct remote_state *rs = get_remote_state ();
2815
2816 gdb_assert (signals.size () < 256);
2817 for (size_t i = 0; i < signals.size (); i++)
2818 {
2819 if (signals[i])
2820 count++;
2821 }
2822 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2823 strcpy (packet, "QProgramSignals:");
2824 p = packet + strlen (packet);
2825 for (size_t i = 0; i < signals.size (); i++)
2826 {
2827 if (signal_pass_state (i))
2828 {
2829 if (i >= 16)
2830 *p++ = tohex (i >> 4);
2831 *p++ = tohex (i & 15);
2832 if (count)
2833 *p++ = ';';
2834 else
2835 break;
2836 count--;
2837 }
2838 }
2839 *p = 0;
2840 if (!rs->last_program_signals_packet
2841 || strcmp (rs->last_program_signals_packet, packet) != 0)
2842 {
2843 putpkt (packet);
2844 getpkt (&rs->buf, 0);
2845 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2846 xfree (rs->last_program_signals_packet);
2847 rs->last_program_signals_packet = packet;
2848 }
2849 else
2850 xfree (packet);
2851 }
2852 }
2853
2854 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2855 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2856 thread. If GEN is set, set the general thread, if not, then set
2857 the step/continue thread. */
2858 void
2859 remote_target::set_thread (ptid_t ptid, int gen)
2860 {
2861 struct remote_state *rs = get_remote_state ();
2862 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2863 char *buf = rs->buf.data ();
2864 char *endbuf = buf + get_remote_packet_size ();
2865
2866 if (state == ptid)
2867 return;
2868
2869 *buf++ = 'H';
2870 *buf++ = gen ? 'g' : 'c';
2871 if (ptid == magic_null_ptid)
2872 xsnprintf (buf, endbuf - buf, "0");
2873 else if (ptid == any_thread_ptid)
2874 xsnprintf (buf, endbuf - buf, "0");
2875 else if (ptid == minus_one_ptid)
2876 xsnprintf (buf, endbuf - buf, "-1");
2877 else
2878 write_ptid (buf, endbuf, ptid);
2879 putpkt (rs->buf);
2880 getpkt (&rs->buf, 0);
2881 if (gen)
2882 rs->general_thread = ptid;
2883 else
2884 rs->continue_thread = ptid;
2885 }
2886
2887 void
2888 remote_target::set_general_thread (ptid_t ptid)
2889 {
2890 set_thread (ptid, 1);
2891 }
2892
2893 void
2894 remote_target::set_continue_thread (ptid_t ptid)
2895 {
2896 set_thread (ptid, 0);
2897 }
2898
2899 /* Change the remote current process. Which thread within the process
2900 ends up selected isn't important, as long as it is the same process
2901 as what INFERIOR_PTID points to.
2902
2903 This comes from that fact that there is no explicit notion of
2904 "selected process" in the protocol. The selected process for
2905 general operations is the process the selected general thread
2906 belongs to. */
2907
2908 void
2909 remote_target::set_general_process ()
2910 {
2911 struct remote_state *rs = get_remote_state ();
2912
2913 /* If the remote can't handle multiple processes, don't bother. */
2914 if (!remote_multi_process_p (rs))
2915 return;
2916
2917 /* We only need to change the remote current thread if it's pointing
2918 at some other process. */
2919 if (rs->general_thread.pid () != inferior_ptid.pid ())
2920 set_general_thread (inferior_ptid);
2921 }
2922
2923 \f
2924 /* Return nonzero if this is the main thread that we made up ourselves
2925 to model non-threaded targets as single-threaded. */
2926
2927 static int
2928 remote_thread_always_alive (ptid_t ptid)
2929 {
2930 if (ptid == magic_null_ptid)
2931 /* The main thread is always alive. */
2932 return 1;
2933
2934 if (ptid.pid () != 0 && ptid.lwp () == 0)
2935 /* The main thread is always alive. This can happen after a
2936 vAttach, if the remote side doesn't support
2937 multi-threading. */
2938 return 1;
2939
2940 return 0;
2941 }
2942
2943 /* Return nonzero if the thread PTID is still alive on the remote
2944 system. */
2945
2946 bool
2947 remote_target::thread_alive (ptid_t ptid)
2948 {
2949 struct remote_state *rs = get_remote_state ();
2950 char *p, *endp;
2951
2952 /* Check if this is a thread that we made up ourselves to model
2953 non-threaded targets as single-threaded. */
2954 if (remote_thread_always_alive (ptid))
2955 return 1;
2956
2957 p = rs->buf.data ();
2958 endp = p + get_remote_packet_size ();
2959
2960 *p++ = 'T';
2961 write_ptid (p, endp, ptid);
2962
2963 putpkt (rs->buf);
2964 getpkt (&rs->buf, 0);
2965 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2966 }
2967
2968 /* Return a pointer to a thread name if we know it and NULL otherwise.
2969 The thread_info object owns the memory for the name. */
2970
2971 const char *
2972 remote_target::thread_name (struct thread_info *info)
2973 {
2974 if (info->priv != NULL)
2975 {
2976 const std::string &name = get_remote_thread_info (info)->name;
2977 return !name.empty () ? name.c_str () : NULL;
2978 }
2979
2980 return NULL;
2981 }
2982
2983 /* About these extended threadlist and threadinfo packets. They are
2984 variable length packets but, the fields within them are often fixed
2985 length. They are redundant enough to send over UDP as is the
2986 remote protocol in general. There is a matching unit test module
2987 in libstub. */
2988
2989 /* WARNING: This threadref data structure comes from the remote O.S.,
2990 libstub protocol encoding, and remote.c. It is not particularly
2991 changable. */
2992
2993 /* Right now, the internal structure is int. We want it to be bigger.
2994 Plan to fix this. */
2995
2996 typedef int gdb_threadref; /* Internal GDB thread reference. */
2997
2998 /* gdb_ext_thread_info is an internal GDB data structure which is
2999 equivalent to the reply of the remote threadinfo packet. */
3000
3001 struct gdb_ext_thread_info
3002 {
3003 threadref threadid; /* External form of thread reference. */
3004 int active; /* Has state interesting to GDB?
3005 regs, stack. */
3006 char display[256]; /* Brief state display, name,
3007 blocked/suspended. */
3008 char shortname[32]; /* To be used to name threads. */
3009 char more_display[256]; /* Long info, statistics, queue depth,
3010 whatever. */
3011 };
3012
3013 /* The volume of remote transfers can be limited by submitting
3014 a mask containing bits specifying the desired information.
3015 Use a union of these values as the 'selection' parameter to
3016 get_thread_info. FIXME: Make these TAG names more thread specific. */
3017
3018 #define TAG_THREADID 1
3019 #define TAG_EXISTS 2
3020 #define TAG_DISPLAY 4
3021 #define TAG_THREADNAME 8
3022 #define TAG_MOREDISPLAY 16
3023
3024 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
3025
3026 static const char *unpack_nibble (const char *buf, int *val);
3027
3028 static const char *unpack_byte (const char *buf, int *value);
3029
3030 static char *pack_int (char *buf, int value);
3031
3032 static const char *unpack_int (const char *buf, int *value);
3033
3034 static const char *unpack_string (const char *src, char *dest, int length);
3035
3036 static char *pack_threadid (char *pkt, threadref *id);
3037
3038 static const char *unpack_threadid (const char *inbuf, threadref *id);
3039
3040 void int_to_threadref (threadref *id, int value);
3041
3042 static int threadref_to_int (threadref *ref);
3043
3044 static void copy_threadref (threadref *dest, threadref *src);
3045
3046 static int threadmatch (threadref *dest, threadref *src);
3047
3048 static char *pack_threadinfo_request (char *pkt, int mode,
3049 threadref *id);
3050
3051 static char *pack_threadlist_request (char *pkt, int startflag,
3052 int threadcount,
3053 threadref *nextthread);
3054
3055 static int remote_newthread_step (threadref *ref, void *context);
3056
3057
3058 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
3059 buffer we're allowed to write to. Returns
3060 BUF+CHARACTERS_WRITTEN. */
3061
3062 char *
3063 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
3064 {
3065 int pid, tid;
3066 struct remote_state *rs = get_remote_state ();
3067
3068 if (remote_multi_process_p (rs))
3069 {
3070 pid = ptid.pid ();
3071 if (pid < 0)
3072 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
3073 else
3074 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
3075 }
3076 tid = ptid.lwp ();
3077 if (tid < 0)
3078 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
3079 else
3080 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
3081
3082 return buf;
3083 }
3084
3085 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
3086 last parsed char. Returns null_ptid if no thread id is found, and
3087 throws an error if the thread id has an invalid format. */
3088
3089 static ptid_t
3090 read_ptid (const char *buf, const char **obuf)
3091 {
3092 const char *p = buf;
3093 const char *pp;
3094 ULONGEST pid = 0, tid = 0;
3095
3096 if (*p == 'p')
3097 {
3098 /* Multi-process ptid. */
3099 pp = unpack_varlen_hex (p + 1, &pid);
3100 if (*pp != '.')
3101 error (_("invalid remote ptid: %s"), p);
3102
3103 p = pp;
3104 pp = unpack_varlen_hex (p + 1, &tid);
3105 if (obuf)
3106 *obuf = pp;
3107 return ptid_t (pid, tid, 0);
3108 }
3109
3110 /* No multi-process. Just a tid. */
3111 pp = unpack_varlen_hex (p, &tid);
3112
3113 /* Return null_ptid when no thread id is found. */
3114 if (p == pp)
3115 {
3116 if (obuf)
3117 *obuf = pp;
3118 return null_ptid;
3119 }
3120
3121 /* Since the stub is not sending a process id, then default to
3122 what's in inferior_ptid, unless it's null at this point. If so,
3123 then since there's no way to know the pid of the reported
3124 threads, use the magic number. */
3125 if (inferior_ptid == null_ptid)
3126 pid = magic_null_ptid.pid ();
3127 else
3128 pid = inferior_ptid.pid ();
3129
3130 if (obuf)
3131 *obuf = pp;
3132 return ptid_t (pid, tid, 0);
3133 }
3134
3135 static int
3136 stubhex (int ch)
3137 {
3138 if (ch >= 'a' && ch <= 'f')
3139 return ch - 'a' + 10;
3140 if (ch >= '0' && ch <= '9')
3141 return ch - '0';
3142 if (ch >= 'A' && ch <= 'F')
3143 return ch - 'A' + 10;
3144 return -1;
3145 }
3146
3147 static int
3148 stub_unpack_int (const char *buff, int fieldlength)
3149 {
3150 int nibble;
3151 int retval = 0;
3152
3153 while (fieldlength)
3154 {
3155 nibble = stubhex (*buff++);
3156 retval |= nibble;
3157 fieldlength--;
3158 if (fieldlength)
3159 retval = retval << 4;
3160 }
3161 return retval;
3162 }
3163
3164 static const char *
3165 unpack_nibble (const char *buf, int *val)
3166 {
3167 *val = fromhex (*buf++);
3168 return buf;
3169 }
3170
3171 static const char *
3172 unpack_byte (const char *buf, int *value)
3173 {
3174 *value = stub_unpack_int (buf, 2);
3175 return buf + 2;
3176 }
3177
3178 static char *
3179 pack_int (char *buf, int value)
3180 {
3181 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3182 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3183 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3184 buf = pack_hex_byte (buf, (value & 0xff));
3185 return buf;
3186 }
3187
3188 static const char *
3189 unpack_int (const char *buf, int *value)
3190 {
3191 *value = stub_unpack_int (buf, 8);
3192 return buf + 8;
3193 }
3194
3195 #if 0 /* Currently unused, uncomment when needed. */
3196 static char *pack_string (char *pkt, char *string);
3197
3198 static char *
3199 pack_string (char *pkt, char *string)
3200 {
3201 char ch;
3202 int len;
3203
3204 len = strlen (string);
3205 if (len > 200)
3206 len = 200; /* Bigger than most GDB packets, junk??? */
3207 pkt = pack_hex_byte (pkt, len);
3208 while (len-- > 0)
3209 {
3210 ch = *string++;
3211 if ((ch == '\0') || (ch == '#'))
3212 ch = '*'; /* Protect encapsulation. */
3213 *pkt++ = ch;
3214 }
3215 return pkt;
3216 }
3217 #endif /* 0 (unused) */
3218
3219 static const char *
3220 unpack_string (const char *src, char *dest, int length)
3221 {
3222 while (length--)
3223 *dest++ = *src++;
3224 *dest = '\0';
3225 return src;
3226 }
3227
3228 static char *
3229 pack_threadid (char *pkt, threadref *id)
3230 {
3231 char *limit;
3232 unsigned char *altid;
3233
3234 altid = (unsigned char *) id;
3235 limit = pkt + BUF_THREAD_ID_SIZE;
3236 while (pkt < limit)
3237 pkt = pack_hex_byte (pkt, *altid++);
3238 return pkt;
3239 }
3240
3241
3242 static const char *
3243 unpack_threadid (const char *inbuf, threadref *id)
3244 {
3245 char *altref;
3246 const char *limit = inbuf + BUF_THREAD_ID_SIZE;
3247 int x, y;
3248
3249 altref = (char *) id;
3250
3251 while (inbuf < limit)
3252 {
3253 x = stubhex (*inbuf++);
3254 y = stubhex (*inbuf++);
3255 *altref++ = (x << 4) | y;
3256 }
3257 return inbuf;
3258 }
3259
3260 /* Externally, threadrefs are 64 bits but internally, they are still
3261 ints. This is due to a mismatch of specifications. We would like
3262 to use 64bit thread references internally. This is an adapter
3263 function. */
3264
3265 void
3266 int_to_threadref (threadref *id, int value)
3267 {
3268 unsigned char *scan;
3269
3270 scan = (unsigned char *) id;
3271 {
3272 int i = 4;
3273 while (i--)
3274 *scan++ = 0;
3275 }
3276 *scan++ = (value >> 24) & 0xff;
3277 *scan++ = (value >> 16) & 0xff;
3278 *scan++ = (value >> 8) & 0xff;
3279 *scan++ = (value & 0xff);
3280 }
3281
3282 static int
3283 threadref_to_int (threadref *ref)
3284 {
3285 int i, value = 0;
3286 unsigned char *scan;
3287
3288 scan = *ref;
3289 scan += 4;
3290 i = 4;
3291 while (i-- > 0)
3292 value = (value << 8) | ((*scan++) & 0xff);
3293 return value;
3294 }
3295
3296 static void
3297 copy_threadref (threadref *dest, threadref *src)
3298 {
3299 int i;
3300 unsigned char *csrc, *cdest;
3301
3302 csrc = (unsigned char *) src;
3303 cdest = (unsigned char *) dest;
3304 i = 8;
3305 while (i--)
3306 *cdest++ = *csrc++;
3307 }
3308
3309 static int
3310 threadmatch (threadref *dest, threadref *src)
3311 {
3312 /* Things are broken right now, so just assume we got a match. */
3313 #if 0
3314 unsigned char *srcp, *destp;
3315 int i, result;
3316 srcp = (char *) src;
3317 destp = (char *) dest;
3318
3319 result = 1;
3320 while (i-- > 0)
3321 result &= (*srcp++ == *destp++) ? 1 : 0;
3322 return result;
3323 #endif
3324 return 1;
3325 }
3326
3327 /*
3328 threadid:1, # always request threadid
3329 context_exists:2,
3330 display:4,
3331 unique_name:8,
3332 more_display:16
3333 */
3334
3335 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3336
3337 static char *
3338 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3339 {
3340 *pkt++ = 'q'; /* Info Query */
3341 *pkt++ = 'P'; /* process or thread info */
3342 pkt = pack_int (pkt, mode); /* mode */
3343 pkt = pack_threadid (pkt, id); /* threadid */
3344 *pkt = '\0'; /* terminate */
3345 return pkt;
3346 }
3347
3348 /* These values tag the fields in a thread info response packet. */
3349 /* Tagging the fields allows us to request specific fields and to
3350 add more fields as time goes by. */
3351
3352 #define TAG_THREADID 1 /* Echo the thread identifier. */
3353 #define TAG_EXISTS 2 /* Is this process defined enough to
3354 fetch registers and its stack? */
3355 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3356 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3357 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3358 the process. */
3359
3360 int
3361 remote_target::remote_unpack_thread_info_response (const char *pkt,
3362 threadref *expectedref,
3363 gdb_ext_thread_info *info)
3364 {
3365 struct remote_state *rs = get_remote_state ();
3366 int mask, length;
3367 int tag;
3368 threadref ref;
3369 const char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3370 int retval = 1;
3371
3372 /* info->threadid = 0; FIXME: implement zero_threadref. */
3373 info->active = 0;
3374 info->display[0] = '\0';
3375 info->shortname[0] = '\0';
3376 info->more_display[0] = '\0';
3377
3378 /* Assume the characters indicating the packet type have been
3379 stripped. */
3380 pkt = unpack_int (pkt, &mask); /* arg mask */
3381 pkt = unpack_threadid (pkt, &ref);
3382
3383 if (mask == 0)
3384 warning (_("Incomplete response to threadinfo request."));
3385 if (!threadmatch (&ref, expectedref))
3386 { /* This is an answer to a different request. */
3387 warning (_("ERROR RMT Thread info mismatch."));
3388 return 0;
3389 }
3390 copy_threadref (&info->threadid, &ref);
3391
3392 /* Loop on tagged fields , try to bail if something goes wrong. */
3393
3394 /* Packets are terminated with nulls. */
3395 while ((pkt < limit) && mask && *pkt)
3396 {
3397 pkt = unpack_int (pkt, &tag); /* tag */
3398 pkt = unpack_byte (pkt, &length); /* length */
3399 if (!(tag & mask)) /* Tags out of synch with mask. */
3400 {
3401 warning (_("ERROR RMT: threadinfo tag mismatch."));
3402 retval = 0;
3403 break;
3404 }
3405 if (tag == TAG_THREADID)
3406 {
3407 if (length != 16)
3408 {
3409 warning (_("ERROR RMT: length of threadid is not 16."));
3410 retval = 0;
3411 break;
3412 }
3413 pkt = unpack_threadid (pkt, &ref);
3414 mask = mask & ~TAG_THREADID;
3415 continue;
3416 }
3417 if (tag == TAG_EXISTS)
3418 {
3419 info->active = stub_unpack_int (pkt, length);
3420 pkt += length;
3421 mask = mask & ~(TAG_EXISTS);
3422 if (length > 8)
3423 {
3424 warning (_("ERROR RMT: 'exists' length too long."));
3425 retval = 0;
3426 break;
3427 }
3428 continue;
3429 }
3430 if (tag == TAG_THREADNAME)
3431 {
3432 pkt = unpack_string (pkt, &info->shortname[0], length);
3433 mask = mask & ~TAG_THREADNAME;
3434 continue;
3435 }
3436 if (tag == TAG_DISPLAY)
3437 {
3438 pkt = unpack_string (pkt, &info->display[0], length);
3439 mask = mask & ~TAG_DISPLAY;
3440 continue;
3441 }
3442 if (tag == TAG_MOREDISPLAY)
3443 {
3444 pkt = unpack_string (pkt, &info->more_display[0], length);
3445 mask = mask & ~TAG_MOREDISPLAY;
3446 continue;
3447 }
3448 warning (_("ERROR RMT: unknown thread info tag."));
3449 break; /* Not a tag we know about. */
3450 }
3451 return retval;
3452 }
3453
3454 int
3455 remote_target::remote_get_threadinfo (threadref *threadid,
3456 int fieldset,
3457 gdb_ext_thread_info *info)
3458 {
3459 struct remote_state *rs = get_remote_state ();
3460 int result;
3461
3462 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3463 putpkt (rs->buf);
3464 getpkt (&rs->buf, 0);
3465
3466 if (rs->buf[0] == '\0')
3467 return 0;
3468
3469 result = remote_unpack_thread_info_response (&rs->buf[2],
3470 threadid, info);
3471 return result;
3472 }
3473
3474 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3475
3476 static char *
3477 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3478 threadref *nextthread)
3479 {
3480 *pkt++ = 'q'; /* info query packet */
3481 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3482 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3483 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3484 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3485 *pkt = '\0';
3486 return pkt;
3487 }
3488
3489 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3490
3491 int
3492 remote_target::parse_threadlist_response (const char *pkt, int result_limit,
3493 threadref *original_echo,
3494 threadref *resultlist,
3495 int *doneflag)
3496 {
3497 struct remote_state *rs = get_remote_state ();
3498 int count, resultcount, done;
3499
3500 resultcount = 0;
3501 /* Assume the 'q' and 'M chars have been stripped. */
3502 const char *limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3503 /* done parse past here */
3504 pkt = unpack_byte (pkt, &count); /* count field */
3505 pkt = unpack_nibble (pkt, &done);
3506 /* The first threadid is the argument threadid. */
3507 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3508 while ((count-- > 0) && (pkt < limit))
3509 {
3510 pkt = unpack_threadid (pkt, resultlist++);
3511 if (resultcount++ >= result_limit)
3512 break;
3513 }
3514 if (doneflag)
3515 *doneflag = done;
3516 return resultcount;
3517 }
3518
3519 /* Fetch the next batch of threads from the remote. Returns -1 if the
3520 qL packet is not supported, 0 on error and 1 on success. */
3521
3522 int
3523 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3524 int result_limit, int *done, int *result_count,
3525 threadref *threadlist)
3526 {
3527 struct remote_state *rs = get_remote_state ();
3528 int result = 1;
3529
3530 /* Truncate result limit to be smaller than the packet size. */
3531 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3532 >= get_remote_packet_size ())
3533 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3534
3535 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3536 nextthread);
3537 putpkt (rs->buf);
3538 getpkt (&rs->buf, 0);
3539 if (rs->buf[0] == '\0')
3540 {
3541 /* Packet not supported. */
3542 return -1;
3543 }
3544
3545 *result_count =
3546 parse_threadlist_response (&rs->buf[2], result_limit,
3547 &rs->echo_nextthread, threadlist, done);
3548
3549 if (!threadmatch (&rs->echo_nextthread, nextthread))
3550 {
3551 /* FIXME: This is a good reason to drop the packet. */
3552 /* Possibly, there is a duplicate response. */
3553 /* Possibilities :
3554 retransmit immediatly - race conditions
3555 retransmit after timeout - yes
3556 exit
3557 wait for packet, then exit
3558 */
3559 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3560 return 0; /* I choose simply exiting. */
3561 }
3562 if (*result_count <= 0)
3563 {
3564 if (*done != 1)
3565 {
3566 warning (_("RMT ERROR : failed to get remote thread list."));
3567 result = 0;
3568 }
3569 return result; /* break; */
3570 }
3571 if (*result_count > result_limit)
3572 {
3573 *result_count = 0;
3574 warning (_("RMT ERROR: threadlist response longer than requested."));
3575 return 0;
3576 }
3577 return result;
3578 }
3579
3580 /* Fetch the list of remote threads, with the qL packet, and call
3581 STEPFUNCTION for each thread found. Stops iterating and returns 1
3582 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3583 STEPFUNCTION returns false. If the packet is not supported,
3584 returns -1. */
3585
3586 int
3587 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3588 void *context, int looplimit)
3589 {
3590 struct remote_state *rs = get_remote_state ();
3591 int done, i, result_count;
3592 int startflag = 1;
3593 int result = 1;
3594 int loopcount = 0;
3595
3596 done = 0;
3597 while (!done)
3598 {
3599 if (loopcount++ > looplimit)
3600 {
3601 result = 0;
3602 warning (_("Remote fetch threadlist -infinite loop-."));
3603 break;
3604 }
3605 result = remote_get_threadlist (startflag, &rs->nextthread,
3606 MAXTHREADLISTRESULTS,
3607 &done, &result_count,
3608 rs->resultthreadlist);
3609 if (result <= 0)
3610 break;
3611 /* Clear for later iterations. */
3612 startflag = 0;
3613 /* Setup to resume next batch of thread references, set nextthread. */
3614 if (result_count >= 1)
3615 copy_threadref (&rs->nextthread,
3616 &rs->resultthreadlist[result_count - 1]);
3617 i = 0;
3618 while (result_count--)
3619 {
3620 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3621 {
3622 result = 0;
3623 break;
3624 }
3625 }
3626 }
3627 return result;
3628 }
3629
3630 /* A thread found on the remote target. */
3631
3632 struct thread_item
3633 {
3634 explicit thread_item (ptid_t ptid_)
3635 : ptid (ptid_)
3636 {}
3637
3638 thread_item (thread_item &&other) = default;
3639 thread_item &operator= (thread_item &&other) = default;
3640
3641 DISABLE_COPY_AND_ASSIGN (thread_item);
3642
3643 /* The thread's PTID. */
3644 ptid_t ptid;
3645
3646 /* The thread's extra info. */
3647 std::string extra;
3648
3649 /* The thread's name. */
3650 std::string name;
3651
3652 /* The core the thread was running on. -1 if not known. */
3653 int core = -1;
3654
3655 /* The thread handle associated with the thread. */
3656 gdb::byte_vector thread_handle;
3657 };
3658
3659 /* Context passed around to the various methods listing remote
3660 threads. As new threads are found, they're added to the ITEMS
3661 vector. */
3662
3663 struct threads_listing_context
3664 {
3665 /* Return true if this object contains an entry for a thread with ptid
3666 PTID. */
3667
3668 bool contains_thread (ptid_t ptid) const
3669 {
3670 auto match_ptid = [&] (const thread_item &item)
3671 {
3672 return item.ptid == ptid;
3673 };
3674
3675 auto it = std::find_if (this->items.begin (),
3676 this->items.end (),
3677 match_ptid);
3678
3679 return it != this->items.end ();
3680 }
3681
3682 /* Remove the thread with ptid PTID. */
3683
3684 void remove_thread (ptid_t ptid)
3685 {
3686 auto match_ptid = [&] (const thread_item &item)
3687 {
3688 return item.ptid == ptid;
3689 };
3690
3691 auto it = std::remove_if (this->items.begin (),
3692 this->items.end (),
3693 match_ptid);
3694
3695 if (it != this->items.end ())
3696 this->items.erase (it);
3697 }
3698
3699 /* The threads found on the remote target. */
3700 std::vector<thread_item> items;
3701 };
3702
3703 static int
3704 remote_newthread_step (threadref *ref, void *data)
3705 {
3706 struct threads_listing_context *context
3707 = (struct threads_listing_context *) data;
3708 int pid = inferior_ptid.pid ();
3709 int lwp = threadref_to_int (ref);
3710 ptid_t ptid (pid, lwp);
3711
3712 context->items.emplace_back (ptid);
3713
3714 return 1; /* continue iterator */
3715 }
3716
3717 #define CRAZY_MAX_THREADS 1000
3718
3719 ptid_t
3720 remote_target::remote_current_thread (ptid_t oldpid)
3721 {
3722 struct remote_state *rs = get_remote_state ();
3723
3724 putpkt ("qC");
3725 getpkt (&rs->buf, 0);
3726 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3727 {
3728 const char *obuf;
3729 ptid_t result;
3730
3731 result = read_ptid (&rs->buf[2], &obuf);
3732 if (*obuf != '\0')
3733 remote_debug_printf ("warning: garbage in qC reply");
3734
3735 return result;
3736 }
3737 else
3738 return oldpid;
3739 }
3740
3741 /* List remote threads using the deprecated qL packet. */
3742
3743 int
3744 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3745 {
3746 if (remote_threadlist_iterator (remote_newthread_step, context,
3747 CRAZY_MAX_THREADS) >= 0)
3748 return 1;
3749
3750 return 0;
3751 }
3752
3753 #if defined(HAVE_LIBEXPAT)
3754
3755 static void
3756 start_thread (struct gdb_xml_parser *parser,
3757 const struct gdb_xml_element *element,
3758 void *user_data,
3759 std::vector<gdb_xml_value> &attributes)
3760 {
3761 struct threads_listing_context *data
3762 = (struct threads_listing_context *) user_data;
3763 struct gdb_xml_value *attr;
3764
3765 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3766 ptid_t ptid = read_ptid (id, NULL);
3767
3768 data->items.emplace_back (ptid);
3769 thread_item &item = data->items.back ();
3770
3771 attr = xml_find_attribute (attributes, "core");
3772 if (attr != NULL)
3773 item.core = *(ULONGEST *) attr->value.get ();
3774
3775 attr = xml_find_attribute (attributes, "name");
3776 if (attr != NULL)
3777 item.name = (const char *) attr->value.get ();
3778
3779 attr = xml_find_attribute (attributes, "handle");
3780 if (attr != NULL)
3781 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3782 }
3783
3784 static void
3785 end_thread (struct gdb_xml_parser *parser,
3786 const struct gdb_xml_element *element,
3787 void *user_data, const char *body_text)
3788 {
3789 struct threads_listing_context *data
3790 = (struct threads_listing_context *) user_data;
3791
3792 if (body_text != NULL && *body_text != '\0')
3793 data->items.back ().extra = body_text;
3794 }
3795
3796 const struct gdb_xml_attribute thread_attributes[] = {
3797 { "id", GDB_XML_AF_NONE, NULL, NULL },
3798 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3799 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3800 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3801 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3802 };
3803
3804 const struct gdb_xml_element thread_children[] = {
3805 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3806 };
3807
3808 const struct gdb_xml_element threads_children[] = {
3809 { "thread", thread_attributes, thread_children,
3810 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3811 start_thread, end_thread },
3812 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3813 };
3814
3815 const struct gdb_xml_element threads_elements[] = {
3816 { "threads", NULL, threads_children,
3817 GDB_XML_EF_NONE, NULL, NULL },
3818 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3819 };
3820
3821 #endif
3822
3823 /* List remote threads using qXfer:threads:read. */
3824
3825 int
3826 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3827 {
3828 #if defined(HAVE_LIBEXPAT)
3829 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3830 {
3831 gdb::optional<gdb::char_vector> xml
3832 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3833
3834 if (xml && (*xml)[0] != '\0')
3835 {
3836 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3837 threads_elements, xml->data (), context);
3838 }
3839
3840 return 1;
3841 }
3842 #endif
3843
3844 return 0;
3845 }
3846
3847 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3848
3849 int
3850 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3851 {
3852 struct remote_state *rs = get_remote_state ();
3853
3854 if (rs->use_threadinfo_query)
3855 {
3856 const char *bufp;
3857
3858 putpkt ("qfThreadInfo");
3859 getpkt (&rs->buf, 0);
3860 bufp = rs->buf.data ();
3861 if (bufp[0] != '\0') /* q packet recognized */
3862 {
3863 while (*bufp++ == 'm') /* reply contains one or more TID */
3864 {
3865 do
3866 {
3867 ptid_t ptid = read_ptid (bufp, &bufp);
3868 context->items.emplace_back (ptid);
3869 }
3870 while (*bufp++ == ','); /* comma-separated list */
3871 putpkt ("qsThreadInfo");
3872 getpkt (&rs->buf, 0);
3873 bufp = rs->buf.data ();
3874 }
3875 return 1;
3876 }
3877 else
3878 {
3879 /* Packet not recognized. */
3880 rs->use_threadinfo_query = 0;
3881 }
3882 }
3883
3884 return 0;
3885 }
3886
3887 /* Return true if INF only has one non-exited thread. */
3888
3889 static bool
3890 has_single_non_exited_thread (inferior *inf)
3891 {
3892 int count = 0;
3893 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3894 if (++count > 1)
3895 break;
3896 return count == 1;
3897 }
3898
3899 /* Implement the to_update_thread_list function for the remote
3900 targets. */
3901
3902 void
3903 remote_target::update_thread_list ()
3904 {
3905 struct threads_listing_context context;
3906 int got_list = 0;
3907
3908 /* We have a few different mechanisms to fetch the thread list. Try
3909 them all, starting with the most preferred one first, falling
3910 back to older methods. */
3911 if (remote_get_threads_with_qxfer (&context)
3912 || remote_get_threads_with_qthreadinfo (&context)
3913 || remote_get_threads_with_ql (&context))
3914 {
3915 got_list = 1;
3916
3917 if (context.items.empty ()
3918 && remote_thread_always_alive (inferior_ptid))
3919 {
3920 /* Some targets don't really support threads, but still
3921 reply an (empty) thread list in response to the thread
3922 listing packets, instead of replying "packet not
3923 supported". Exit early so we don't delete the main
3924 thread. */
3925 return;
3926 }
3927
3928 /* CONTEXT now holds the current thread list on the remote
3929 target end. Delete GDB-side threads no longer found on the
3930 target. */
3931 for (thread_info *tp : all_threads_safe ())
3932 {
3933 if (tp->inf->process_target () != this)
3934 continue;
3935
3936 if (!context.contains_thread (tp->ptid))
3937 {
3938 /* Do not remove the thread if it is the last thread in
3939 the inferior. This situation happens when we have a
3940 pending exit process status to process. Otherwise we
3941 may end up with a seemingly live inferior (i.e. pid
3942 != 0) that has no threads. */
3943 if (has_single_non_exited_thread (tp->inf))
3944 continue;
3945
3946 /* Not found. */
3947 delete_thread (tp);
3948 }
3949 }
3950
3951 /* Remove any unreported fork child threads from CONTEXT so
3952 that we don't interfere with follow fork, which is where
3953 creation of such threads is handled. */
3954 remove_new_fork_children (&context);
3955
3956 /* And now add threads we don't know about yet to our list. */
3957 for (thread_item &item : context.items)
3958 {
3959 if (item.ptid != null_ptid)
3960 {
3961 /* In non-stop mode, we assume new found threads are
3962 executing until proven otherwise with a stop reply.
3963 In all-stop, we can only get here if all threads are
3964 stopped. */
3965 bool executing = target_is_non_stop_p ();
3966
3967 remote_notice_new_inferior (item.ptid, executing);
3968
3969 thread_info *tp = find_thread_ptid (this, item.ptid);
3970 remote_thread_info *info = get_remote_thread_info (tp);
3971 info->core = item.core;
3972 info->extra = std::move (item.extra);
3973 info->name = std::move (item.name);
3974 info->thread_handle = std::move (item.thread_handle);
3975 }
3976 }
3977 }
3978
3979 if (!got_list)
3980 {
3981 /* If no thread listing method is supported, then query whether
3982 each known thread is alive, one by one, with the T packet.
3983 If the target doesn't support threads at all, then this is a
3984 no-op. See remote_thread_alive. */
3985 prune_threads ();
3986 }
3987 }
3988
3989 /*
3990 * Collect a descriptive string about the given thread.
3991 * The target may say anything it wants to about the thread
3992 * (typically info about its blocked / runnable state, name, etc.).
3993 * This string will appear in the info threads display.
3994 *
3995 * Optional: targets are not required to implement this function.
3996 */
3997
3998 const char *
3999 remote_target::extra_thread_info (thread_info *tp)
4000 {
4001 struct remote_state *rs = get_remote_state ();
4002 int set;
4003 threadref id;
4004 struct gdb_ext_thread_info threadinfo;
4005
4006 if (rs->remote_desc == 0) /* paranoia */
4007 internal_error (__FILE__, __LINE__,
4008 _("remote_threads_extra_info"));
4009
4010 if (tp->ptid == magic_null_ptid
4011 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
4012 /* This is the main thread which was added by GDB. The remote
4013 server doesn't know about it. */
4014 return NULL;
4015
4016 std::string &extra = get_remote_thread_info (tp)->extra;
4017
4018 /* If already have cached info, use it. */
4019 if (!extra.empty ())
4020 return extra.c_str ();
4021
4022 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
4023 {
4024 /* If we're using qXfer:threads:read, then the extra info is
4025 included in the XML. So if we didn't have anything cached,
4026 it's because there's really no extra info. */
4027 return NULL;
4028 }
4029
4030 if (rs->use_threadextra_query)
4031 {
4032 char *b = rs->buf.data ();
4033 char *endb = b + get_remote_packet_size ();
4034
4035 xsnprintf (b, endb - b, "qThreadExtraInfo,");
4036 b += strlen (b);
4037 write_ptid (b, endb, tp->ptid);
4038
4039 putpkt (rs->buf);
4040 getpkt (&rs->buf, 0);
4041 if (rs->buf[0] != 0)
4042 {
4043 extra.resize (strlen (rs->buf.data ()) / 2);
4044 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
4045 return extra.c_str ();
4046 }
4047 }
4048
4049 /* If the above query fails, fall back to the old method. */
4050 rs->use_threadextra_query = 0;
4051 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4052 | TAG_MOREDISPLAY | TAG_DISPLAY;
4053 int_to_threadref (&id, tp->ptid.lwp ());
4054 if (remote_get_threadinfo (&id, set, &threadinfo))
4055 if (threadinfo.active)
4056 {
4057 if (*threadinfo.shortname)
4058 string_appendf (extra, " Name: %s", threadinfo.shortname);
4059 if (*threadinfo.display)
4060 {
4061 if (!extra.empty ())
4062 extra += ',';
4063 string_appendf (extra, " State: %s", threadinfo.display);
4064 }
4065 if (*threadinfo.more_display)
4066 {
4067 if (!extra.empty ())
4068 extra += ',';
4069 string_appendf (extra, " Priority: %s", threadinfo.more_display);
4070 }
4071 return extra.c_str ();
4072 }
4073 return NULL;
4074 }
4075 \f
4076
4077 bool
4078 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
4079 struct static_tracepoint_marker *marker)
4080 {
4081 struct remote_state *rs = get_remote_state ();
4082 char *p = rs->buf.data ();
4083
4084 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
4085 p += strlen (p);
4086 p += hexnumstr (p, addr);
4087 putpkt (rs->buf);
4088 getpkt (&rs->buf, 0);
4089 p = rs->buf.data ();
4090
4091 if (*p == 'E')
4092 error (_("Remote failure reply: %s"), p);
4093
4094 if (*p++ == 'm')
4095 {
4096 parse_static_tracepoint_marker_definition (p, NULL, marker);
4097 return true;
4098 }
4099
4100 return false;
4101 }
4102
4103 std::vector<static_tracepoint_marker>
4104 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4105 {
4106 struct remote_state *rs = get_remote_state ();
4107 std::vector<static_tracepoint_marker> markers;
4108 const char *p;
4109 static_tracepoint_marker marker;
4110
4111 /* Ask for a first packet of static tracepoint marker
4112 definition. */
4113 putpkt ("qTfSTM");
4114 getpkt (&rs->buf, 0);
4115 p = rs->buf.data ();
4116 if (*p == 'E')
4117 error (_("Remote failure reply: %s"), p);
4118
4119 while (*p++ == 'm')
4120 {
4121 do
4122 {
4123 parse_static_tracepoint_marker_definition (p, &p, &marker);
4124
4125 if (strid == NULL || marker.str_id == strid)
4126 markers.push_back (std::move (marker));
4127 }
4128 while (*p++ == ','); /* comma-separated list */
4129 /* Ask for another packet of static tracepoint definition. */
4130 putpkt ("qTsSTM");
4131 getpkt (&rs->buf, 0);
4132 p = rs->buf.data ();
4133 }
4134
4135 return markers;
4136 }
4137
4138 \f
4139 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4140
4141 ptid_t
4142 remote_target::get_ada_task_ptid (long lwp, long thread)
4143 {
4144 return ptid_t (inferior_ptid.pid (), lwp, 0);
4145 }
4146 \f
4147
4148 /* Restart the remote side; this is an extended protocol operation. */
4149
4150 void
4151 remote_target::extended_remote_restart ()
4152 {
4153 struct remote_state *rs = get_remote_state ();
4154
4155 /* Send the restart command; for reasons I don't understand the
4156 remote side really expects a number after the "R". */
4157 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4158 putpkt (rs->buf);
4159
4160 remote_fileio_reset ();
4161 }
4162 \f
4163 /* Clean up connection to a remote debugger. */
4164
4165 void
4166 remote_target::close ()
4167 {
4168 /* Make sure we leave stdin registered in the event loop. */
4169 terminal_ours ();
4170
4171 trace_reset_local_state ();
4172
4173 delete this;
4174 }
4175
4176 remote_target::~remote_target ()
4177 {
4178 struct remote_state *rs = get_remote_state ();
4179
4180 /* Check for NULL because we may get here with a partially
4181 constructed target/connection. */
4182 if (rs->remote_desc == nullptr)
4183 return;
4184
4185 serial_close (rs->remote_desc);
4186
4187 /* We are destroying the remote target, so we should discard
4188 everything of this target. */
4189 discard_pending_stop_replies_in_queue ();
4190
4191 if (rs->remote_async_inferior_event_token)
4192 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4193
4194 delete rs->notif_state;
4195 }
4196
4197 /* Query the remote side for the text, data and bss offsets. */
4198
4199 void
4200 remote_target::get_offsets ()
4201 {
4202 struct remote_state *rs = get_remote_state ();
4203 char *buf;
4204 char *ptr;
4205 int lose, num_segments = 0, do_sections, do_segments;
4206 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4207
4208 if (current_program_space->symfile_object_file == NULL)
4209 return;
4210
4211 putpkt ("qOffsets");
4212 getpkt (&rs->buf, 0);
4213 buf = rs->buf.data ();
4214
4215 if (buf[0] == '\000')
4216 return; /* Return silently. Stub doesn't support
4217 this command. */
4218 if (buf[0] == 'E')
4219 {
4220 warning (_("Remote failure reply: %s"), buf);
4221 return;
4222 }
4223
4224 /* Pick up each field in turn. This used to be done with scanf, but
4225 scanf will make trouble if CORE_ADDR size doesn't match
4226 conversion directives correctly. The following code will work
4227 with any size of CORE_ADDR. */
4228 text_addr = data_addr = bss_addr = 0;
4229 ptr = buf;
4230 lose = 0;
4231
4232 if (startswith (ptr, "Text="))
4233 {
4234 ptr += 5;
4235 /* Don't use strtol, could lose on big values. */
4236 while (*ptr && *ptr != ';')
4237 text_addr = (text_addr << 4) + fromhex (*ptr++);
4238
4239 if (startswith (ptr, ";Data="))
4240 {
4241 ptr += 6;
4242 while (*ptr && *ptr != ';')
4243 data_addr = (data_addr << 4) + fromhex (*ptr++);
4244 }
4245 else
4246 lose = 1;
4247
4248 if (!lose && startswith (ptr, ";Bss="))
4249 {
4250 ptr += 5;
4251 while (*ptr && *ptr != ';')
4252 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4253
4254 if (bss_addr != data_addr)
4255 warning (_("Target reported unsupported offsets: %s"), buf);
4256 }
4257 else
4258 lose = 1;
4259 }
4260 else if (startswith (ptr, "TextSeg="))
4261 {
4262 ptr += 8;
4263 /* Don't use strtol, could lose on big values. */
4264 while (*ptr && *ptr != ';')
4265 text_addr = (text_addr << 4) + fromhex (*ptr++);
4266 num_segments = 1;
4267
4268 if (startswith (ptr, ";DataSeg="))
4269 {
4270 ptr += 9;
4271 while (*ptr && *ptr != ';')
4272 data_addr = (data_addr << 4) + fromhex (*ptr++);
4273 num_segments++;
4274 }
4275 }
4276 else
4277 lose = 1;
4278
4279 if (lose)
4280 error (_("Malformed response to offset query, %s"), buf);
4281 else if (*ptr != '\0')
4282 warning (_("Target reported unsupported offsets: %s"), buf);
4283
4284 objfile *objf = current_program_space->symfile_object_file;
4285 section_offsets offs = objf->section_offsets;
4286
4287 symfile_segment_data_up data = get_symfile_segment_data (objf->obfd);
4288 do_segments = (data != NULL);
4289 do_sections = num_segments == 0;
4290
4291 if (num_segments > 0)
4292 {
4293 segments[0] = text_addr;
4294 segments[1] = data_addr;
4295 }
4296 /* If we have two segments, we can still try to relocate everything
4297 by assuming that the .text and .data offsets apply to the whole
4298 text and data segments. Convert the offsets given in the packet
4299 to base addresses for symfile_map_offsets_to_segments. */
4300 else if (data != nullptr && data->segments.size () == 2)
4301 {
4302 segments[0] = data->segments[0].base + text_addr;
4303 segments[1] = data->segments[1].base + data_addr;
4304 num_segments = 2;
4305 }
4306 /* If the object file has only one segment, assume that it is text
4307 rather than data; main programs with no writable data are rare,
4308 but programs with no code are useless. Of course the code might
4309 have ended up in the data segment... to detect that we would need
4310 the permissions here. */
4311 else if (data && data->segments.size () == 1)
4312 {
4313 segments[0] = data->segments[0].base + text_addr;
4314 num_segments = 1;
4315 }
4316 /* There's no way to relocate by segment. */
4317 else
4318 do_segments = 0;
4319
4320 if (do_segments)
4321 {
4322 int ret = symfile_map_offsets_to_segments (objf->obfd,
4323 data.get (), offs,
4324 num_segments, segments);
4325
4326 if (ret == 0 && !do_sections)
4327 error (_("Can not handle qOffsets TextSeg "
4328 "response with this symbol file"));
4329
4330 if (ret > 0)
4331 do_sections = 0;
4332 }
4333
4334 if (do_sections)
4335 {
4336 offs[SECT_OFF_TEXT (objf)] = text_addr;
4337
4338 /* This is a temporary kludge to force data and bss to use the
4339 same offsets because that's what nlmconv does now. The real
4340 solution requires changes to the stub and remote.c that I
4341 don't have time to do right now. */
4342
4343 offs[SECT_OFF_DATA (objf)] = data_addr;
4344 offs[SECT_OFF_BSS (objf)] = data_addr;
4345 }
4346
4347 objfile_relocate (objf, offs);
4348 }
4349
4350 /* Send interrupt_sequence to remote target. */
4351
4352 void
4353 remote_target::send_interrupt_sequence ()
4354 {
4355 struct remote_state *rs = get_remote_state ();
4356
4357 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4358 remote_serial_write ("\x03", 1);
4359 else if (interrupt_sequence_mode == interrupt_sequence_break)
4360 serial_send_break (rs->remote_desc);
4361 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4362 {
4363 serial_send_break (rs->remote_desc);
4364 remote_serial_write ("g", 1);
4365 }
4366 else
4367 internal_error (__FILE__, __LINE__,
4368 _("Invalid value for interrupt_sequence_mode: %s."),
4369 interrupt_sequence_mode);
4370 }
4371
4372
4373 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4374 and extract the PTID. Returns NULL_PTID if not found. */
4375
4376 static ptid_t
4377 stop_reply_extract_thread (const char *stop_reply)
4378 {
4379 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4380 {
4381 const char *p;
4382
4383 /* Txx r:val ; r:val (...) */
4384 p = &stop_reply[3];
4385
4386 /* Look for "register" named "thread". */
4387 while (*p != '\0')
4388 {
4389 const char *p1;
4390
4391 p1 = strchr (p, ':');
4392 if (p1 == NULL)
4393 return null_ptid;
4394
4395 if (strncmp (p, "thread", p1 - p) == 0)
4396 return read_ptid (++p1, &p);
4397
4398 p1 = strchr (p, ';');
4399 if (p1 == NULL)
4400 return null_ptid;
4401 p1++;
4402
4403 p = p1;
4404 }
4405 }
4406
4407 return null_ptid;
4408 }
4409
4410 /* Determine the remote side's current thread. If we have a stop
4411 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4412 "thread" register we can extract the current thread from. If not,
4413 ask the remote which is the current thread with qC. The former
4414 method avoids a roundtrip. */
4415
4416 ptid_t
4417 remote_target::get_current_thread (const char *wait_status)
4418 {
4419 ptid_t ptid = null_ptid;
4420
4421 /* Note we don't use remote_parse_stop_reply as that makes use of
4422 the target architecture, which we haven't yet fully determined at
4423 this point. */
4424 if (wait_status != NULL)
4425 ptid = stop_reply_extract_thread (wait_status);
4426 if (ptid == null_ptid)
4427 ptid = remote_current_thread (inferior_ptid);
4428
4429 return ptid;
4430 }
4431
4432 /* Query the remote target for which is the current thread/process,
4433 add it to our tables, and update INFERIOR_PTID. The caller is
4434 responsible for setting the state such that the remote end is ready
4435 to return the current thread.
4436
4437 This function is called after handling the '?' or 'vRun' packets,
4438 whose response is a stop reply from which we can also try
4439 extracting the thread. If the target doesn't support the explicit
4440 qC query, we infer the current thread from that stop reply, passed
4441 in in WAIT_STATUS, which may be NULL.
4442
4443 The function returns pointer to the main thread of the inferior. */
4444
4445 thread_info *
4446 remote_target::add_current_inferior_and_thread (const char *wait_status)
4447 {
4448 struct remote_state *rs = get_remote_state ();
4449 bool fake_pid_p = false;
4450
4451 switch_to_no_thread ();
4452
4453 /* Now, if we have thread information, update the current thread's
4454 ptid. */
4455 ptid_t curr_ptid = get_current_thread (wait_status);
4456
4457 if (curr_ptid != null_ptid)
4458 {
4459 if (!remote_multi_process_p (rs))
4460 fake_pid_p = true;
4461 }
4462 else
4463 {
4464 /* Without this, some commands which require an active target
4465 (such as kill) won't work. This variable serves (at least)
4466 double duty as both the pid of the target process (if it has
4467 such), and as a flag indicating that a target is active. */
4468 curr_ptid = magic_null_ptid;
4469 fake_pid_p = true;
4470 }
4471
4472 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4473
4474 /* Add the main thread and switch to it. Don't try reading
4475 registers yet, since we haven't fetched the target description
4476 yet. */
4477 thread_info *tp = add_thread_silent (this, curr_ptid);
4478 switch_to_thread_no_regs (tp);
4479
4480 return tp;
4481 }
4482
4483 /* Print info about a thread that was found already stopped on
4484 connection. */
4485
4486 static void
4487 print_one_stopped_thread (struct thread_info *thread)
4488 {
4489 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4490
4491 switch_to_thread (thread);
4492 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4493 set_current_sal_from_frame (get_current_frame ());
4494
4495 thread->suspend.waitstatus_pending_p = 0;
4496
4497 if (ws->kind == TARGET_WAITKIND_STOPPED)
4498 {
4499 enum gdb_signal sig = ws->value.sig;
4500
4501 if (signal_print_state (sig))
4502 gdb::observers::signal_received.notify (sig);
4503 }
4504 gdb::observers::normal_stop.notify (NULL, 1);
4505 }
4506
4507 /* Process all initial stop replies the remote side sent in response
4508 to the ? packet. These indicate threads that were already stopped
4509 on initial connection. We mark these threads as stopped and print
4510 their current frame before giving the user the prompt. */
4511
4512 void
4513 remote_target::process_initial_stop_replies (int from_tty)
4514 {
4515 int pending_stop_replies = stop_reply_queue_length ();
4516 struct thread_info *selected = NULL;
4517 struct thread_info *lowest_stopped = NULL;
4518 struct thread_info *first = NULL;
4519
4520 /* Consume the initial pending events. */
4521 while (pending_stop_replies-- > 0)
4522 {
4523 ptid_t waiton_ptid = minus_one_ptid;
4524 ptid_t event_ptid;
4525 struct target_waitstatus ws;
4526 int ignore_event = 0;
4527
4528 memset (&ws, 0, sizeof (ws));
4529 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4530 if (remote_debug)
4531 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4532
4533 switch (ws.kind)
4534 {
4535 case TARGET_WAITKIND_IGNORE:
4536 case TARGET_WAITKIND_NO_RESUMED:
4537 case TARGET_WAITKIND_SIGNALLED:
4538 case TARGET_WAITKIND_EXITED:
4539 /* We shouldn't see these, but if we do, just ignore. */
4540 remote_debug_printf ("event ignored");
4541 ignore_event = 1;
4542 break;
4543
4544 case TARGET_WAITKIND_EXECD:
4545 xfree (ws.value.execd_pathname);
4546 break;
4547 default:
4548 break;
4549 }
4550
4551 if (ignore_event)
4552 continue;
4553
4554 thread_info *evthread = find_thread_ptid (this, event_ptid);
4555
4556 if (ws.kind == TARGET_WAITKIND_STOPPED)
4557 {
4558 enum gdb_signal sig = ws.value.sig;
4559
4560 /* Stubs traditionally report SIGTRAP as initial signal,
4561 instead of signal 0. Suppress it. */
4562 if (sig == GDB_SIGNAL_TRAP)
4563 sig = GDB_SIGNAL_0;
4564 evthread->suspend.stop_signal = sig;
4565 ws.value.sig = sig;
4566 }
4567
4568 evthread->suspend.waitstatus = ws;
4569
4570 if (ws.kind != TARGET_WAITKIND_STOPPED
4571 || ws.value.sig != GDB_SIGNAL_0)
4572 evthread->suspend.waitstatus_pending_p = 1;
4573
4574 set_executing (this, event_ptid, false);
4575 set_running (this, event_ptid, false);
4576 get_remote_thread_info (evthread)->set_not_resumed ();
4577 }
4578
4579 /* "Notice" the new inferiors before anything related to
4580 registers/memory. */
4581 for (inferior *inf : all_non_exited_inferiors (this))
4582 {
4583 inf->needs_setup = 1;
4584
4585 if (non_stop)
4586 {
4587 thread_info *thread = any_live_thread_of_inferior (inf);
4588 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4589 from_tty);
4590 }
4591 }
4592
4593 /* If all-stop on top of non-stop, pause all threads. Note this
4594 records the threads' stop pc, so must be done after "noticing"
4595 the inferiors. */
4596 if (!non_stop)
4597 {
4598 stop_all_threads ("remote connect in all-stop");
4599
4600 /* If all threads of an inferior were already stopped, we
4601 haven't setup the inferior yet. */
4602 for (inferior *inf : all_non_exited_inferiors (this))
4603 {
4604 if (inf->needs_setup)
4605 {
4606 thread_info *thread = any_live_thread_of_inferior (inf);
4607 switch_to_thread_no_regs (thread);
4608 setup_inferior (0);
4609 }
4610 }
4611 }
4612
4613 /* Now go over all threads that are stopped, and print their current
4614 frame. If all-stop, then if there's a signalled thread, pick
4615 that as current. */
4616 for (thread_info *thread : all_non_exited_threads (this))
4617 {
4618 if (first == NULL)
4619 first = thread;
4620
4621 if (!non_stop)
4622 thread->set_running (false);
4623 else if (thread->state != THREAD_STOPPED)
4624 continue;
4625
4626 if (selected == NULL
4627 && thread->suspend.waitstatus_pending_p)
4628 selected = thread;
4629
4630 if (lowest_stopped == NULL
4631 || thread->inf->num < lowest_stopped->inf->num
4632 || thread->per_inf_num < lowest_stopped->per_inf_num)
4633 lowest_stopped = thread;
4634
4635 if (non_stop)
4636 print_one_stopped_thread (thread);
4637 }
4638
4639 /* In all-stop, we only print the status of one thread, and leave
4640 others with their status pending. */
4641 if (!non_stop)
4642 {
4643 thread_info *thread = selected;
4644 if (thread == NULL)
4645 thread = lowest_stopped;
4646 if (thread == NULL)
4647 thread = first;
4648
4649 print_one_stopped_thread (thread);
4650 }
4651
4652 /* For "info program". */
4653 thread_info *thread = inferior_thread ();
4654 if (thread->state == THREAD_STOPPED)
4655 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4656 }
4657
4658 /* Start the remote connection and sync state. */
4659
4660 void
4661 remote_target::start_remote (int from_tty, int extended_p)
4662 {
4663 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
4664
4665 struct remote_state *rs = get_remote_state ();
4666 struct packet_config *noack_config;
4667
4668 /* Signal other parts that we're going through the initial setup,
4669 and so things may not be stable yet. E.g., we don't try to
4670 install tracepoints until we've relocated symbols. Also, a
4671 Ctrl-C before we're connected and synced up can't interrupt the
4672 target. Instead, it offers to drop the (potentially wedged)
4673 connection. */
4674 rs->starting_up = true;
4675
4676 QUIT;
4677
4678 if (interrupt_on_connect)
4679 send_interrupt_sequence ();
4680
4681 /* Ack any packet which the remote side has already sent. */
4682 remote_serial_write ("+", 1);
4683
4684 /* The first packet we send to the target is the optional "supported
4685 packets" request. If the target can answer this, it will tell us
4686 which later probes to skip. */
4687 remote_query_supported ();
4688
4689 /* If the stub wants to get a QAllow, compose one and send it. */
4690 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4691 set_permissions ();
4692
4693 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4694 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4695 as a reply to known packet. For packet "vFile:setfs:" it is an
4696 invalid reply and GDB would return error in
4697 remote_hostio_set_filesystem, making remote files access impossible.
4698 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4699 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4700 {
4701 const char v_mustreplyempty[] = "vMustReplyEmpty";
4702
4703 putpkt (v_mustreplyempty);
4704 getpkt (&rs->buf, 0);
4705 if (strcmp (rs->buf.data (), "OK") == 0)
4706 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4707 else if (strcmp (rs->buf.data (), "") != 0)
4708 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4709 rs->buf.data ());
4710 }
4711
4712 /* Next, we possibly activate noack mode.
4713
4714 If the QStartNoAckMode packet configuration is set to AUTO,
4715 enable noack mode if the stub reported a wish for it with
4716 qSupported.
4717
4718 If set to TRUE, then enable noack mode even if the stub didn't
4719 report it in qSupported. If the stub doesn't reply OK, the
4720 session ends with an error.
4721
4722 If FALSE, then don't activate noack mode, regardless of what the
4723 stub claimed should be the default with qSupported. */
4724
4725 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4726 if (packet_config_support (noack_config) != PACKET_DISABLE)
4727 {
4728 putpkt ("QStartNoAckMode");
4729 getpkt (&rs->buf, 0);
4730 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4731 rs->noack_mode = 1;
4732 }
4733
4734 if (extended_p)
4735 {
4736 /* Tell the remote that we are using the extended protocol. */
4737 putpkt ("!");
4738 getpkt (&rs->buf, 0);
4739 }
4740
4741 /* Let the target know which signals it is allowed to pass down to
4742 the program. */
4743 update_signals_program_target ();
4744
4745 /* Next, if the target can specify a description, read it. We do
4746 this before anything involving memory or registers. */
4747 target_find_description ();
4748
4749 /* Next, now that we know something about the target, update the
4750 address spaces in the program spaces. */
4751 update_address_spaces ();
4752
4753 /* On OSs where the list of libraries is global to all
4754 processes, we fetch them early. */
4755 if (gdbarch_has_global_solist (target_gdbarch ()))
4756 solib_add (NULL, from_tty, auto_solib_add);
4757
4758 if (target_is_non_stop_p ())
4759 {
4760 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4761 error (_("Non-stop mode requested, but remote "
4762 "does not support non-stop"));
4763
4764 putpkt ("QNonStop:1");
4765 getpkt (&rs->buf, 0);
4766
4767 if (strcmp (rs->buf.data (), "OK") != 0)
4768 error (_("Remote refused setting non-stop mode with: %s"),
4769 rs->buf.data ());
4770
4771 /* Find about threads and processes the stub is already
4772 controlling. We default to adding them in the running state.
4773 The '?' query below will then tell us about which threads are
4774 stopped. */
4775 this->update_thread_list ();
4776 }
4777 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4778 {
4779 /* Don't assume that the stub can operate in all-stop mode.
4780 Request it explicitly. */
4781 putpkt ("QNonStop:0");
4782 getpkt (&rs->buf, 0);
4783
4784 if (strcmp (rs->buf.data (), "OK") != 0)
4785 error (_("Remote refused setting all-stop mode with: %s"),
4786 rs->buf.data ());
4787 }
4788
4789 /* Upload TSVs regardless of whether the target is running or not. The
4790 remote stub, such as GDBserver, may have some predefined or builtin
4791 TSVs, even if the target is not running. */
4792 if (get_trace_status (current_trace_status ()) != -1)
4793 {
4794 struct uploaded_tsv *uploaded_tsvs = NULL;
4795
4796 upload_trace_state_variables (&uploaded_tsvs);
4797 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4798 }
4799
4800 /* Check whether the target is running now. */
4801 putpkt ("?");
4802 getpkt (&rs->buf, 0);
4803
4804 if (!target_is_non_stop_p ())
4805 {
4806 char *wait_status = NULL;
4807
4808 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4809 {
4810 if (!extended_p)
4811 error (_("The target is not running (try extended-remote?)"));
4812
4813 /* We're connected, but not running. Drop out before we
4814 call start_remote. */
4815 rs->starting_up = false;
4816 return;
4817 }
4818 else
4819 {
4820 /* Save the reply for later. */
4821 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4822 strcpy (wait_status, rs->buf.data ());
4823 }
4824
4825 /* Fetch thread list. */
4826 target_update_thread_list ();
4827
4828 /* Let the stub know that we want it to return the thread. */
4829 set_continue_thread (minus_one_ptid);
4830
4831 if (thread_count (this) == 0)
4832 {
4833 /* Target has no concept of threads at all. GDB treats
4834 non-threaded target as single-threaded; add a main
4835 thread. */
4836 thread_info *tp = add_current_inferior_and_thread (wait_status);
4837 get_remote_thread_info (tp)->set_resumed ();
4838 }
4839 else
4840 {
4841 /* We have thread information; select the thread the target
4842 says should be current. If we're reconnecting to a
4843 multi-threaded program, this will ideally be the thread
4844 that last reported an event before GDB disconnected. */
4845 ptid_t curr_thread = get_current_thread (wait_status);
4846 if (curr_thread == null_ptid)
4847 {
4848 /* Odd... The target was able to list threads, but not
4849 tell us which thread was current (no "thread"
4850 register in T stop reply?). Just pick the first
4851 thread in the thread list then. */
4852
4853 remote_debug_printf ("warning: couldn't determine remote "
4854 "current thread; picking first in list.");
4855
4856 for (thread_info *tp : all_non_exited_threads (this,
4857 minus_one_ptid))
4858 {
4859 switch_to_thread (tp);
4860 break;
4861 }
4862 }
4863 else
4864 switch_to_thread (find_thread_ptid (this, curr_thread));
4865 }
4866
4867 /* init_wait_for_inferior should be called before get_offsets in order
4868 to manage `inserted' flag in bp loc in a correct state.
4869 breakpoint_init_inferior, called from init_wait_for_inferior, set
4870 `inserted' flag to 0, while before breakpoint_re_set, called from
4871 start_remote, set `inserted' flag to 1. In the initialization of
4872 inferior, breakpoint_init_inferior should be called first, and then
4873 breakpoint_re_set can be called. If this order is broken, state of
4874 `inserted' flag is wrong, and cause some problems on breakpoint
4875 manipulation. */
4876 init_wait_for_inferior ();
4877
4878 get_offsets (); /* Get text, data & bss offsets. */
4879
4880 /* If we could not find a description using qXfer, and we know
4881 how to do it some other way, try again. This is not
4882 supported for non-stop; it could be, but it is tricky if
4883 there are no stopped threads when we connect. */
4884 if (remote_read_description_p (this)
4885 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4886 {
4887 target_clear_description ();
4888 target_find_description ();
4889 }
4890
4891 /* Use the previously fetched status. */
4892 gdb_assert (wait_status != NULL);
4893 strcpy (rs->buf.data (), wait_status);
4894 rs->cached_wait_status = 1;
4895
4896 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4897 }
4898 else
4899 {
4900 /* Clear WFI global state. Do this before finding about new
4901 threads and inferiors, and setting the current inferior.
4902 Otherwise we would clear the proceed status of the current
4903 inferior when we want its stop_soon state to be preserved
4904 (see notice_new_inferior). */
4905 init_wait_for_inferior ();
4906
4907 /* In non-stop, we will either get an "OK", meaning that there
4908 are no stopped threads at this time; or, a regular stop
4909 reply. In the latter case, there may be more than one thread
4910 stopped --- we pull them all out using the vStopped
4911 mechanism. */
4912 if (strcmp (rs->buf.data (), "OK") != 0)
4913 {
4914 struct notif_client *notif = &notif_client_stop;
4915
4916 /* remote_notif_get_pending_replies acks this one, and gets
4917 the rest out. */
4918 rs->notif_state->pending_event[notif_client_stop.id]
4919 = remote_notif_parse (this, notif, rs->buf.data ());
4920 remote_notif_get_pending_events (notif);
4921 }
4922
4923 if (thread_count (this) == 0)
4924 {
4925 if (!extended_p)
4926 error (_("The target is not running (try extended-remote?)"));
4927
4928 /* We're connected, but not running. Drop out before we
4929 call start_remote. */
4930 rs->starting_up = false;
4931 return;
4932 }
4933
4934 /* Report all signals during attach/startup. */
4935 pass_signals ({});
4936
4937 /* If there are already stopped threads, mark them stopped and
4938 report their stops before giving the prompt to the user. */
4939 process_initial_stop_replies (from_tty);
4940
4941 if (target_can_async_p ())
4942 target_async (1);
4943 }
4944
4945 /* If we connected to a live target, do some additional setup. */
4946 if (target_has_execution ())
4947 {
4948 /* No use without a symbol-file. */
4949 if (current_program_space->symfile_object_file)
4950 remote_check_symbols ();
4951 }
4952
4953 /* Possibly the target has been engaged in a trace run started
4954 previously; find out where things are at. */
4955 if (get_trace_status (current_trace_status ()) != -1)
4956 {
4957 struct uploaded_tp *uploaded_tps = NULL;
4958
4959 if (current_trace_status ()->running)
4960 printf_filtered (_("Trace is already running on the target.\n"));
4961
4962 upload_tracepoints (&uploaded_tps);
4963
4964 merge_uploaded_tracepoints (&uploaded_tps);
4965 }
4966
4967 /* Possibly the target has been engaged in a btrace record started
4968 previously; find out where things are at. */
4969 remote_btrace_maybe_reopen ();
4970
4971 /* The thread and inferior lists are now synchronized with the
4972 target, our symbols have been relocated, and we're merged the
4973 target's tracepoints with ours. We're done with basic start
4974 up. */
4975 rs->starting_up = false;
4976
4977 /* Maybe breakpoints are global and need to be inserted now. */
4978 if (breakpoints_should_be_inserted_now ())
4979 insert_breakpoints ();
4980 }
4981
4982 const char *
4983 remote_target::connection_string ()
4984 {
4985 remote_state *rs = get_remote_state ();
4986
4987 if (rs->remote_desc->name != NULL)
4988 return rs->remote_desc->name;
4989 else
4990 return NULL;
4991 }
4992
4993 /* Open a connection to a remote debugger.
4994 NAME is the filename used for communication. */
4995
4996 void
4997 remote_target::open (const char *name, int from_tty)
4998 {
4999 open_1 (name, from_tty, 0);
5000 }
5001
5002 /* Open a connection to a remote debugger using the extended
5003 remote gdb protocol. NAME is the filename used for communication. */
5004
5005 void
5006 extended_remote_target::open (const char *name, int from_tty)
5007 {
5008 open_1 (name, from_tty, 1 /*extended_p */);
5009 }
5010
5011 /* Reset all packets back to "unknown support". Called when opening a
5012 new connection to a remote target. */
5013
5014 static void
5015 reset_all_packet_configs_support (void)
5016 {
5017 int i;
5018
5019 for (i = 0; i < PACKET_MAX; i++)
5020 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5021 }
5022
5023 /* Initialize all packet configs. */
5024
5025 static void
5026 init_all_packet_configs (void)
5027 {
5028 int i;
5029
5030 for (i = 0; i < PACKET_MAX; i++)
5031 {
5032 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
5033 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5034 }
5035 }
5036
5037 /* Symbol look-up. */
5038
5039 void
5040 remote_target::remote_check_symbols ()
5041 {
5042 char *tmp;
5043 int end;
5044
5045 /* The remote side has no concept of inferiors that aren't running
5046 yet, it only knows about running processes. If we're connected
5047 but our current inferior is not running, we should not invite the
5048 remote target to request symbol lookups related to its
5049 (unrelated) current process. */
5050 if (!target_has_execution ())
5051 return;
5052
5053 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
5054 return;
5055
5056 /* Make sure the remote is pointing at the right process. Note
5057 there's no way to select "no process". */
5058 set_general_process ();
5059
5060 /* Allocate a message buffer. We can't reuse the input buffer in RS,
5061 because we need both at the same time. */
5062 gdb::char_vector msg (get_remote_packet_size ());
5063 gdb::char_vector reply (get_remote_packet_size ());
5064
5065 /* Invite target to request symbol lookups. */
5066
5067 putpkt ("qSymbol::");
5068 getpkt (&reply, 0);
5069 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
5070
5071 while (startswith (reply.data (), "qSymbol:"))
5072 {
5073 struct bound_minimal_symbol sym;
5074
5075 tmp = &reply[8];
5076 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
5077 strlen (tmp) / 2);
5078 msg[end] = '\0';
5079 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
5080 if (sym.minsym == NULL)
5081 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
5082 &reply[8]);
5083 else
5084 {
5085 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5086 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
5087
5088 /* If this is a function address, return the start of code
5089 instead of any data function descriptor. */
5090 sym_addr = gdbarch_convert_from_func_ptr_addr
5091 (target_gdbarch (), sym_addr, current_inferior ()->top_target ());
5092
5093 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
5094 phex_nz (sym_addr, addr_size), &reply[8]);
5095 }
5096
5097 putpkt (msg.data ());
5098 getpkt (&reply, 0);
5099 }
5100 }
5101
5102 static struct serial *
5103 remote_serial_open (const char *name)
5104 {
5105 static int udp_warning = 0;
5106
5107 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5108 of in ser-tcp.c, because it is the remote protocol assuming that the
5109 serial connection is reliable and not the serial connection promising
5110 to be. */
5111 if (!udp_warning && startswith (name, "udp:"))
5112 {
5113 warning (_("The remote protocol may be unreliable over UDP.\n"
5114 "Some events may be lost, rendering further debugging "
5115 "impossible."));
5116 udp_warning = 1;
5117 }
5118
5119 return serial_open (name);
5120 }
5121
5122 /* Inform the target of our permission settings. The permission flags
5123 work without this, but if the target knows the settings, it can do
5124 a couple things. First, it can add its own check, to catch cases
5125 that somehow manage to get by the permissions checks in target
5126 methods. Second, if the target is wired to disallow particular
5127 settings (for instance, a system in the field that is not set up to
5128 be able to stop at a breakpoint), it can object to any unavailable
5129 permissions. */
5130
5131 void
5132 remote_target::set_permissions ()
5133 {
5134 struct remote_state *rs = get_remote_state ();
5135
5136 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5137 "WriteReg:%x;WriteMem:%x;"
5138 "InsertBreak:%x;InsertTrace:%x;"
5139 "InsertFastTrace:%x;Stop:%x",
5140 may_write_registers, may_write_memory,
5141 may_insert_breakpoints, may_insert_tracepoints,
5142 may_insert_fast_tracepoints, may_stop);
5143 putpkt (rs->buf);
5144 getpkt (&rs->buf, 0);
5145
5146 /* If the target didn't like the packet, warn the user. Do not try
5147 to undo the user's settings, that would just be maddening. */
5148 if (strcmp (rs->buf.data (), "OK") != 0)
5149 warning (_("Remote refused setting permissions with: %s"),
5150 rs->buf.data ());
5151 }
5152
5153 /* This type describes each known response to the qSupported
5154 packet. */
5155 struct protocol_feature
5156 {
5157 /* The name of this protocol feature. */
5158 const char *name;
5159
5160 /* The default for this protocol feature. */
5161 enum packet_support default_support;
5162
5163 /* The function to call when this feature is reported, or after
5164 qSupported processing if the feature is not supported.
5165 The first argument points to this structure. The second
5166 argument indicates whether the packet requested support be
5167 enabled, disabled, or probed (or the default, if this function
5168 is being called at the end of processing and this feature was
5169 not reported). The third argument may be NULL; if not NULL, it
5170 is a NUL-terminated string taken from the packet following
5171 this feature's name and an equals sign. */
5172 void (*func) (remote_target *remote, const struct protocol_feature *,
5173 enum packet_support, const char *);
5174
5175 /* The corresponding packet for this feature. Only used if
5176 FUNC is remote_supported_packet. */
5177 int packet;
5178 };
5179
5180 static void
5181 remote_supported_packet (remote_target *remote,
5182 const struct protocol_feature *feature,
5183 enum packet_support support,
5184 const char *argument)
5185 {
5186 if (argument)
5187 {
5188 warning (_("Remote qSupported response supplied an unexpected value for"
5189 " \"%s\"."), feature->name);
5190 return;
5191 }
5192
5193 remote_protocol_packets[feature->packet].support = support;
5194 }
5195
5196 void
5197 remote_target::remote_packet_size (const protocol_feature *feature,
5198 enum packet_support support, const char *value)
5199 {
5200 struct remote_state *rs = get_remote_state ();
5201
5202 int packet_size;
5203 char *value_end;
5204
5205 if (support != PACKET_ENABLE)
5206 return;
5207
5208 if (value == NULL || *value == '\0')
5209 {
5210 warning (_("Remote target reported \"%s\" without a size."),
5211 feature->name);
5212 return;
5213 }
5214
5215 errno = 0;
5216 packet_size = strtol (value, &value_end, 16);
5217 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5218 {
5219 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5220 feature->name, value);
5221 return;
5222 }
5223
5224 /* Record the new maximum packet size. */
5225 rs->explicit_packet_size = packet_size;
5226 }
5227
5228 static void
5229 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5230 enum packet_support support, const char *value)
5231 {
5232 remote->remote_packet_size (feature, support, value);
5233 }
5234
5235 static const struct protocol_feature remote_protocol_features[] = {
5236 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5237 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5238 PACKET_qXfer_auxv },
5239 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5240 PACKET_qXfer_exec_file },
5241 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5242 PACKET_qXfer_features },
5243 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5244 PACKET_qXfer_libraries },
5245 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5246 PACKET_qXfer_libraries_svr4 },
5247 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5248 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5249 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5250 PACKET_qXfer_memory_map },
5251 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5252 PACKET_qXfer_osdata },
5253 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5254 PACKET_qXfer_threads },
5255 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5256 PACKET_qXfer_traceframe_info },
5257 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5258 PACKET_QPassSignals },
5259 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5260 PACKET_QCatchSyscalls },
5261 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5262 PACKET_QProgramSignals },
5263 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5264 PACKET_QSetWorkingDir },
5265 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5266 PACKET_QStartupWithShell },
5267 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5268 PACKET_QEnvironmentHexEncoded },
5269 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5270 PACKET_QEnvironmentReset },
5271 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5272 PACKET_QEnvironmentUnset },
5273 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5274 PACKET_QStartNoAckMode },
5275 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5276 PACKET_multiprocess_feature },
5277 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5278 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5279 PACKET_qXfer_siginfo_read },
5280 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5281 PACKET_qXfer_siginfo_write },
5282 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5283 PACKET_ConditionalTracepoints },
5284 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5285 PACKET_ConditionalBreakpoints },
5286 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5287 PACKET_BreakpointCommands },
5288 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5289 PACKET_FastTracepoints },
5290 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5291 PACKET_StaticTracepoints },
5292 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5293 PACKET_InstallInTrace},
5294 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5295 PACKET_DisconnectedTracing_feature },
5296 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5297 PACKET_bc },
5298 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5299 PACKET_bs },
5300 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5301 PACKET_TracepointSource },
5302 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5303 PACKET_QAllow },
5304 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5305 PACKET_EnableDisableTracepoints_feature },
5306 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5307 PACKET_qXfer_fdpic },
5308 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5309 PACKET_qXfer_uib },
5310 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5311 PACKET_QDisableRandomization },
5312 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5313 { "QTBuffer:size", PACKET_DISABLE,
5314 remote_supported_packet, PACKET_QTBuffer_size},
5315 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5316 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5317 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5318 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5319 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5320 PACKET_qXfer_btrace },
5321 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5322 PACKET_qXfer_btrace_conf },
5323 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5324 PACKET_Qbtrace_conf_bts_size },
5325 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5326 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5327 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5328 PACKET_fork_event_feature },
5329 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5330 PACKET_vfork_event_feature },
5331 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5332 PACKET_exec_event_feature },
5333 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5334 PACKET_Qbtrace_conf_pt_size },
5335 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5336 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5337 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5338 { "memory-tagging", PACKET_DISABLE, remote_supported_packet,
5339 PACKET_memory_tagging_feature },
5340 };
5341
5342 static char *remote_support_xml;
5343
5344 /* Register string appended to "xmlRegisters=" in qSupported query. */
5345
5346 void
5347 register_remote_support_xml (const char *xml)
5348 {
5349 #if defined(HAVE_LIBEXPAT)
5350 if (remote_support_xml == NULL)
5351 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5352 else
5353 {
5354 char *copy = xstrdup (remote_support_xml + 13);
5355 char *saveptr;
5356 char *p = strtok_r (copy, ",", &saveptr);
5357
5358 do
5359 {
5360 if (strcmp (p, xml) == 0)
5361 {
5362 /* already there */
5363 xfree (copy);
5364 return;
5365 }
5366 }
5367 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5368 xfree (copy);
5369
5370 remote_support_xml = reconcat (remote_support_xml,
5371 remote_support_xml, ",", xml,
5372 (char *) NULL);
5373 }
5374 #endif
5375 }
5376
5377 static void
5378 remote_query_supported_append (std::string *msg, const char *append)
5379 {
5380 if (!msg->empty ())
5381 msg->append (";");
5382 msg->append (append);
5383 }
5384
5385 void
5386 remote_target::remote_query_supported ()
5387 {
5388 struct remote_state *rs = get_remote_state ();
5389 char *next;
5390 int i;
5391 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5392
5393 /* The packet support flags are handled differently for this packet
5394 than for most others. We treat an error, a disabled packet, and
5395 an empty response identically: any features which must be reported
5396 to be used will be automatically disabled. An empty buffer
5397 accomplishes this, since that is also the representation for a list
5398 containing no features. */
5399
5400 rs->buf[0] = 0;
5401 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5402 {
5403 std::string q;
5404
5405 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5406 remote_query_supported_append (&q, "multiprocess+");
5407
5408 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5409 remote_query_supported_append (&q, "swbreak+");
5410 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5411 remote_query_supported_append (&q, "hwbreak+");
5412
5413 remote_query_supported_append (&q, "qRelocInsn+");
5414
5415 if (packet_set_cmd_state (PACKET_fork_event_feature)
5416 != AUTO_BOOLEAN_FALSE)
5417 remote_query_supported_append (&q, "fork-events+");
5418 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5419 != AUTO_BOOLEAN_FALSE)
5420 remote_query_supported_append (&q, "vfork-events+");
5421 if (packet_set_cmd_state (PACKET_exec_event_feature)
5422 != AUTO_BOOLEAN_FALSE)
5423 remote_query_supported_append (&q, "exec-events+");
5424
5425 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5426 remote_query_supported_append (&q, "vContSupported+");
5427
5428 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5429 remote_query_supported_append (&q, "QThreadEvents+");
5430
5431 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5432 remote_query_supported_append (&q, "no-resumed+");
5433
5434 if (packet_set_cmd_state (PACKET_memory_tagging_feature)
5435 != AUTO_BOOLEAN_FALSE)
5436 remote_query_supported_append (&q, "memory-tagging+");
5437
5438 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5439 the qSupported:xmlRegisters=i386 handling. */
5440 if (remote_support_xml != NULL
5441 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5442 remote_query_supported_append (&q, remote_support_xml);
5443
5444 q = "qSupported:" + q;
5445 putpkt (q.c_str ());
5446
5447 getpkt (&rs->buf, 0);
5448
5449 /* If an error occured, warn, but do not return - just reset the
5450 buffer to empty and go on to disable features. */
5451 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5452 == PACKET_ERROR)
5453 {
5454 warning (_("Remote failure reply: %s"), rs->buf.data ());
5455 rs->buf[0] = 0;
5456 }
5457 }
5458
5459 memset (seen, 0, sizeof (seen));
5460
5461 next = rs->buf.data ();
5462 while (*next)
5463 {
5464 enum packet_support is_supported;
5465 char *p, *end, *name_end, *value;
5466
5467 /* First separate out this item from the rest of the packet. If
5468 there's another item after this, we overwrite the separator
5469 (terminated strings are much easier to work with). */
5470 p = next;
5471 end = strchr (p, ';');
5472 if (end == NULL)
5473 {
5474 end = p + strlen (p);
5475 next = end;
5476 }
5477 else
5478 {
5479 *end = '\0';
5480 next = end + 1;
5481
5482 if (end == p)
5483 {
5484 warning (_("empty item in \"qSupported\" response"));
5485 continue;
5486 }
5487 }
5488
5489 name_end = strchr (p, '=');
5490 if (name_end)
5491 {
5492 /* This is a name=value entry. */
5493 is_supported = PACKET_ENABLE;
5494 value = name_end + 1;
5495 *name_end = '\0';
5496 }
5497 else
5498 {
5499 value = NULL;
5500 switch (end[-1])
5501 {
5502 case '+':
5503 is_supported = PACKET_ENABLE;
5504 break;
5505
5506 case '-':
5507 is_supported = PACKET_DISABLE;
5508 break;
5509
5510 case '?':
5511 is_supported = PACKET_SUPPORT_UNKNOWN;
5512 break;
5513
5514 default:
5515 warning (_("unrecognized item \"%s\" "
5516 "in \"qSupported\" response"), p);
5517 continue;
5518 }
5519 end[-1] = '\0';
5520 }
5521
5522 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5523 if (strcmp (remote_protocol_features[i].name, p) == 0)
5524 {
5525 const struct protocol_feature *feature;
5526
5527 seen[i] = 1;
5528 feature = &remote_protocol_features[i];
5529 feature->func (this, feature, is_supported, value);
5530 break;
5531 }
5532 }
5533
5534 /* If we increased the packet size, make sure to increase the global
5535 buffer size also. We delay this until after parsing the entire
5536 qSupported packet, because this is the same buffer we were
5537 parsing. */
5538 if (rs->buf.size () < rs->explicit_packet_size)
5539 rs->buf.resize (rs->explicit_packet_size);
5540
5541 /* Handle the defaults for unmentioned features. */
5542 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5543 if (!seen[i])
5544 {
5545 const struct protocol_feature *feature;
5546
5547 feature = &remote_protocol_features[i];
5548 feature->func (this, feature, feature->default_support, NULL);
5549 }
5550 }
5551
5552 /* Serial QUIT handler for the remote serial descriptor.
5553
5554 Defers handling a Ctrl-C until we're done with the current
5555 command/response packet sequence, unless:
5556
5557 - We're setting up the connection. Don't send a remote interrupt
5558 request, as we're not fully synced yet. Quit immediately
5559 instead.
5560
5561 - The target has been resumed in the foreground
5562 (target_terminal::is_ours is false) with a synchronous resume
5563 packet, and we're blocked waiting for the stop reply, thus a
5564 Ctrl-C should be immediately sent to the target.
5565
5566 - We get a second Ctrl-C while still within the same serial read or
5567 write. In that case the serial is seemingly wedged --- offer to
5568 quit/disconnect.
5569
5570 - We see a second Ctrl-C without target response, after having
5571 previously interrupted the target. In that case the target/stub
5572 is probably wedged --- offer to quit/disconnect.
5573 */
5574
5575 void
5576 remote_target::remote_serial_quit_handler ()
5577 {
5578 struct remote_state *rs = get_remote_state ();
5579
5580 if (check_quit_flag ())
5581 {
5582 /* If we're starting up, we're not fully synced yet. Quit
5583 immediately. */
5584 if (rs->starting_up)
5585 quit ();
5586 else if (rs->got_ctrlc_during_io)
5587 {
5588 if (query (_("The target is not responding to GDB commands.\n"
5589 "Stop debugging it? ")))
5590 remote_unpush_and_throw (this);
5591 }
5592 /* If ^C has already been sent once, offer to disconnect. */
5593 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5594 interrupt_query ();
5595 /* All-stop protocol, and blocked waiting for stop reply. Send
5596 an interrupt request. */
5597 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5598 target_interrupt ();
5599 else
5600 rs->got_ctrlc_during_io = 1;
5601 }
5602 }
5603
5604 /* The remote_target that is current while the quit handler is
5605 overridden with remote_serial_quit_handler. */
5606 static remote_target *curr_quit_handler_target;
5607
5608 static void
5609 remote_serial_quit_handler ()
5610 {
5611 curr_quit_handler_target->remote_serial_quit_handler ();
5612 }
5613
5614 /* Remove the remote target from the target stack of each inferior
5615 that is using it. Upper targets depend on it so remove them
5616 first. */
5617
5618 static void
5619 remote_unpush_target (remote_target *target)
5620 {
5621 /* We have to unpush the target from all inferiors, even those that
5622 aren't running. */
5623 scoped_restore_current_inferior restore_current_inferior;
5624
5625 for (inferior *inf : all_inferiors (target))
5626 {
5627 switch_to_inferior_no_thread (inf);
5628 pop_all_targets_at_and_above (process_stratum);
5629 generic_mourn_inferior ();
5630 }
5631
5632 /* Don't rely on target_close doing this when the target is popped
5633 from the last remote inferior above, because something may be
5634 holding a reference to the target higher up on the stack, meaning
5635 target_close won't be called yet. We lost the connection to the
5636 target, so clear these now, otherwise we may later throw
5637 TARGET_CLOSE_ERROR while trying to tell the remote target to
5638 close the file. */
5639 fileio_handles_invalidate_target (target);
5640 }
5641
5642 static void
5643 remote_unpush_and_throw (remote_target *target)
5644 {
5645 remote_unpush_target (target);
5646 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5647 }
5648
5649 void
5650 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5651 {
5652 remote_target *curr_remote = get_current_remote_target ();
5653
5654 if (name == 0)
5655 error (_("To open a remote debug connection, you need to specify what\n"
5656 "serial device is attached to the remote system\n"
5657 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5658
5659 /* If we're connected to a running target, target_preopen will kill it.
5660 Ask this question first, before target_preopen has a chance to kill
5661 anything. */
5662 if (curr_remote != NULL && !target_has_execution ())
5663 {
5664 if (from_tty
5665 && !query (_("Already connected to a remote target. Disconnect? ")))
5666 error (_("Still connected."));
5667 }
5668
5669 /* Here the possibly existing remote target gets unpushed. */
5670 target_preopen (from_tty);
5671
5672 remote_fileio_reset ();
5673 reopen_exec_file ();
5674 reread_symbols ();
5675
5676 remote_target *remote
5677 = (extended_p ? new extended_remote_target () : new remote_target ());
5678 target_ops_up target_holder (remote);
5679
5680 remote_state *rs = remote->get_remote_state ();
5681
5682 /* See FIXME above. */
5683 if (!target_async_permitted)
5684 rs->wait_forever_enabled_p = 1;
5685
5686 rs->remote_desc = remote_serial_open (name);
5687 if (!rs->remote_desc)
5688 perror_with_name (name);
5689
5690 if (baud_rate != -1)
5691 {
5692 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5693 {
5694 /* The requested speed could not be set. Error out to
5695 top level after closing remote_desc. Take care to
5696 set remote_desc to NULL to avoid closing remote_desc
5697 more than once. */
5698 serial_close (rs->remote_desc);
5699 rs->remote_desc = NULL;
5700 perror_with_name (name);
5701 }
5702 }
5703
5704 serial_setparity (rs->remote_desc, serial_parity);
5705 serial_raw (rs->remote_desc);
5706
5707 /* If there is something sitting in the buffer we might take it as a
5708 response to a command, which would be bad. */
5709 serial_flush_input (rs->remote_desc);
5710
5711 if (from_tty)
5712 {
5713 puts_filtered ("Remote debugging using ");
5714 puts_filtered (name);
5715 puts_filtered ("\n");
5716 }
5717
5718 /* Switch to using the remote target now. */
5719 current_inferior ()->push_target (std::move (target_holder));
5720
5721 /* Register extra event sources in the event loop. */
5722 rs->remote_async_inferior_event_token
5723 = create_async_event_handler (remote_async_inferior_event_handler, nullptr,
5724 "remote");
5725 rs->notif_state = remote_notif_state_allocate (remote);
5726
5727 /* Reset the target state; these things will be queried either by
5728 remote_query_supported or as they are needed. */
5729 reset_all_packet_configs_support ();
5730 rs->cached_wait_status = 0;
5731 rs->explicit_packet_size = 0;
5732 rs->noack_mode = 0;
5733 rs->extended = extended_p;
5734 rs->waiting_for_stop_reply = 0;
5735 rs->ctrlc_pending_p = 0;
5736 rs->got_ctrlc_during_io = 0;
5737
5738 rs->general_thread = not_sent_ptid;
5739 rs->continue_thread = not_sent_ptid;
5740 rs->remote_traceframe_number = -1;
5741
5742 rs->last_resume_exec_dir = EXEC_FORWARD;
5743
5744 /* Probe for ability to use "ThreadInfo" query, as required. */
5745 rs->use_threadinfo_query = 1;
5746 rs->use_threadextra_query = 1;
5747
5748 rs->readahead_cache.invalidate ();
5749
5750 if (target_async_permitted)
5751 {
5752 /* FIXME: cagney/1999-09-23: During the initial connection it is
5753 assumed that the target is already ready and able to respond to
5754 requests. Unfortunately remote_start_remote() eventually calls
5755 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5756 around this. Eventually a mechanism that allows
5757 wait_for_inferior() to expect/get timeouts will be
5758 implemented. */
5759 rs->wait_forever_enabled_p = 0;
5760 }
5761
5762 /* First delete any symbols previously loaded from shared libraries. */
5763 no_shared_libraries (NULL, 0);
5764
5765 /* Start the remote connection. If error() or QUIT, discard this
5766 target (we'd otherwise be in an inconsistent state) and then
5767 propogate the error on up the exception chain. This ensures that
5768 the caller doesn't stumble along blindly assuming that the
5769 function succeeded. The CLI doesn't have this problem but other
5770 UI's, such as MI do.
5771
5772 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5773 this function should return an error indication letting the
5774 caller restore the previous state. Unfortunately the command
5775 ``target remote'' is directly wired to this function making that
5776 impossible. On a positive note, the CLI side of this problem has
5777 been fixed - the function set_cmd_context() makes it possible for
5778 all the ``target ....'' commands to share a common callback
5779 function. See cli-dump.c. */
5780 {
5781
5782 try
5783 {
5784 remote->start_remote (from_tty, extended_p);
5785 }
5786 catch (const gdb_exception &ex)
5787 {
5788 /* Pop the partially set up target - unless something else did
5789 already before throwing the exception. */
5790 if (ex.error != TARGET_CLOSE_ERROR)
5791 remote_unpush_target (remote);
5792 throw;
5793 }
5794 }
5795
5796 remote_btrace_reset (rs);
5797
5798 if (target_async_permitted)
5799 rs->wait_forever_enabled_p = 1;
5800 }
5801
5802 /* Detach the specified process. */
5803
5804 void
5805 remote_target::remote_detach_pid (int pid)
5806 {
5807 struct remote_state *rs = get_remote_state ();
5808
5809 /* This should not be necessary, but the handling for D;PID in
5810 GDBserver versions prior to 8.2 incorrectly assumes that the
5811 selected process points to the same process we're detaching,
5812 leading to misbehavior (and possibly GDBserver crashing) when it
5813 does not. Since it's easy and cheap, work around it by forcing
5814 GDBserver to select GDB's current process. */
5815 set_general_process ();
5816
5817 if (remote_multi_process_p (rs))
5818 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5819 else
5820 strcpy (rs->buf.data (), "D");
5821
5822 putpkt (rs->buf);
5823 getpkt (&rs->buf, 0);
5824
5825 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5826 ;
5827 else if (rs->buf[0] == '\0')
5828 error (_("Remote doesn't know how to detach"));
5829 else
5830 error (_("Can't detach process."));
5831 }
5832
5833 /* This detaches a program to which we previously attached, using
5834 inferior_ptid to identify the process. After this is done, GDB
5835 can be used to debug some other program. We better not have left
5836 any breakpoints in the target program or it'll die when it hits
5837 one. */
5838
5839 void
5840 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5841 {
5842 int pid = inferior_ptid.pid ();
5843 struct remote_state *rs = get_remote_state ();
5844 int is_fork_parent;
5845
5846 if (!target_has_execution ())
5847 error (_("No process to detach from."));
5848
5849 target_announce_detach (from_tty);
5850
5851 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
5852 {
5853 /* If we're in breakpoints-always-inserted mode, or the inferior
5854 is running, we have to remove breakpoints before detaching.
5855 We don't do this in common code instead because not all
5856 targets support removing breakpoints while the target is
5857 running. The remote target / gdbserver does, though. */
5858 remove_breakpoints_inf (current_inferior ());
5859 }
5860
5861 /* Tell the remote target to detach. */
5862 remote_detach_pid (pid);
5863
5864 /* Exit only if this is the only active inferior. */
5865 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5866 puts_filtered (_("Ending remote debugging.\n"));
5867
5868 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5869
5870 /* Check to see if we are detaching a fork parent. Note that if we
5871 are detaching a fork child, tp == NULL. */
5872 is_fork_parent = (tp != NULL
5873 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5874
5875 /* If doing detach-on-fork, we don't mourn, because that will delete
5876 breakpoints that should be available for the followed inferior. */
5877 if (!is_fork_parent)
5878 {
5879 /* Save the pid as a string before mourning, since that will
5880 unpush the remote target, and we need the string after. */
5881 std::string infpid = target_pid_to_str (ptid_t (pid));
5882
5883 target_mourn_inferior (inferior_ptid);
5884 if (print_inferior_events)
5885 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5886 inf->num, infpid.c_str ());
5887 }
5888 else
5889 {
5890 switch_to_no_thread ();
5891 detach_inferior (current_inferior ());
5892 }
5893 }
5894
5895 void
5896 remote_target::detach (inferior *inf, int from_tty)
5897 {
5898 remote_detach_1 (inf, from_tty);
5899 }
5900
5901 void
5902 extended_remote_target::detach (inferior *inf, int from_tty)
5903 {
5904 remote_detach_1 (inf, from_tty);
5905 }
5906
5907 /* Target follow-fork function for remote targets. On entry, and
5908 at return, the current inferior is the fork parent.
5909
5910 Note that although this is currently only used for extended-remote,
5911 it is named remote_follow_fork in anticipation of using it for the
5912 remote target as well. */
5913
5914 void
5915 remote_target::follow_fork (bool follow_child, bool detach_fork)
5916 {
5917 struct remote_state *rs = get_remote_state ();
5918 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5919
5920 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5921 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5922 {
5923 /* When following the parent and detaching the child, we detach
5924 the child here. For the case of following the child and
5925 detaching the parent, the detach is done in the target-
5926 independent follow fork code in infrun.c. We can't use
5927 target_detach when detaching an unfollowed child because
5928 the client side doesn't know anything about the child. */
5929 if (detach_fork && !follow_child)
5930 {
5931 /* Detach the fork child. */
5932 ptid_t child_ptid;
5933 pid_t child_pid;
5934
5935 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5936 child_pid = child_ptid.pid ();
5937
5938 remote_detach_pid (child_pid);
5939 }
5940 }
5941 }
5942
5943 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5944 in the program space of the new inferior. */
5945
5946 void
5947 remote_target::follow_exec (inferior *follow_inf, ptid_t ptid,
5948 const char *execd_pathname)
5949 {
5950 process_stratum_target::follow_exec (follow_inf, ptid, execd_pathname);
5951
5952 /* We know that this is a target file name, so if it has the "target:"
5953 prefix we strip it off before saving it in the program space. */
5954 if (is_target_filename (execd_pathname))
5955 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5956
5957 set_pspace_remote_exec_file (follow_inf->pspace, execd_pathname);
5958 }
5959
5960 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5961
5962 void
5963 remote_target::disconnect (const char *args, int from_tty)
5964 {
5965 if (args)
5966 error (_("Argument given to \"disconnect\" when remotely debugging."));
5967
5968 /* Make sure we unpush even the extended remote targets. Calling
5969 target_mourn_inferior won't unpush, and
5970 remote_target::mourn_inferior won't unpush if there is more than
5971 one inferior left. */
5972 remote_unpush_target (this);
5973
5974 if (from_tty)
5975 puts_filtered ("Ending remote debugging.\n");
5976 }
5977
5978 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5979 be chatty about it. */
5980
5981 void
5982 extended_remote_target::attach (const char *args, int from_tty)
5983 {
5984 struct remote_state *rs = get_remote_state ();
5985 int pid;
5986 char *wait_status = NULL;
5987
5988 pid = parse_pid_to_attach (args);
5989
5990 /* Remote PID can be freely equal to getpid, do not check it here the same
5991 way as in other targets. */
5992
5993 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5994 error (_("This target does not support attaching to a process"));
5995
5996 if (from_tty)
5997 {
5998 const char *exec_file = get_exec_file (0);
5999
6000 if (exec_file)
6001 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
6002 target_pid_to_str (ptid_t (pid)).c_str ());
6003 else
6004 printf_unfiltered (_("Attaching to %s\n"),
6005 target_pid_to_str (ptid_t (pid)).c_str ());
6006 }
6007
6008 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
6009 putpkt (rs->buf);
6010 getpkt (&rs->buf, 0);
6011
6012 switch (packet_ok (rs->buf,
6013 &remote_protocol_packets[PACKET_vAttach]))
6014 {
6015 case PACKET_OK:
6016 if (!target_is_non_stop_p ())
6017 {
6018 /* Save the reply for later. */
6019 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
6020 strcpy (wait_status, rs->buf.data ());
6021 }
6022 else if (strcmp (rs->buf.data (), "OK") != 0)
6023 error (_("Attaching to %s failed with: %s"),
6024 target_pid_to_str (ptid_t (pid)).c_str (),
6025 rs->buf.data ());
6026 break;
6027 case PACKET_UNKNOWN:
6028 error (_("This target does not support attaching to a process"));
6029 default:
6030 error (_("Attaching to %s failed"),
6031 target_pid_to_str (ptid_t (pid)).c_str ());
6032 }
6033
6034 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
6035
6036 inferior_ptid = ptid_t (pid);
6037
6038 if (target_is_non_stop_p ())
6039 {
6040 /* Get list of threads. */
6041 update_thread_list ();
6042
6043 thread_info *thread = first_thread_of_inferior (current_inferior ());
6044 if (thread != nullptr)
6045 switch_to_thread (thread);
6046
6047 /* Invalidate our notion of the remote current thread. */
6048 record_currthread (rs, minus_one_ptid);
6049 }
6050 else
6051 {
6052 /* Now, if we have thread information, update the main thread's
6053 ptid. */
6054 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
6055
6056 /* Add the main thread to the thread list. We add the thread
6057 silently in this case (the final true parameter). */
6058 thread_info *thr = remote_add_thread (curr_ptid, true, true, true);
6059
6060 switch_to_thread (thr);
6061 }
6062
6063 /* Next, if the target can specify a description, read it. We do
6064 this before anything involving memory or registers. */
6065 target_find_description ();
6066
6067 if (!target_is_non_stop_p ())
6068 {
6069 /* Use the previously fetched status. */
6070 gdb_assert (wait_status != NULL);
6071
6072 if (target_can_async_p ())
6073 {
6074 struct notif_event *reply
6075 = remote_notif_parse (this, &notif_client_stop, wait_status);
6076
6077 push_stop_reply ((struct stop_reply *) reply);
6078
6079 target_async (1);
6080 }
6081 else
6082 {
6083 gdb_assert (wait_status != NULL);
6084 strcpy (rs->buf.data (), wait_status);
6085 rs->cached_wait_status = 1;
6086 }
6087 }
6088 else
6089 {
6090 gdb_assert (wait_status == NULL);
6091
6092 gdb_assert (target_can_async_p ());
6093 target_async (1);
6094 }
6095 }
6096
6097 /* Implementation of the to_post_attach method. */
6098
6099 void
6100 extended_remote_target::post_attach (int pid)
6101 {
6102 /* Get text, data & bss offsets. */
6103 get_offsets ();
6104
6105 /* In certain cases GDB might not have had the chance to start
6106 symbol lookup up until now. This could happen if the debugged
6107 binary is not using shared libraries, the vsyscall page is not
6108 present (on Linux) and the binary itself hadn't changed since the
6109 debugging process was started. */
6110 if (current_program_space->symfile_object_file != NULL)
6111 remote_check_symbols();
6112 }
6113
6114 \f
6115 /* Check for the availability of vCont. This function should also check
6116 the response. */
6117
6118 void
6119 remote_target::remote_vcont_probe ()
6120 {
6121 remote_state *rs = get_remote_state ();
6122 char *buf;
6123
6124 strcpy (rs->buf.data (), "vCont?");
6125 putpkt (rs->buf);
6126 getpkt (&rs->buf, 0);
6127 buf = rs->buf.data ();
6128
6129 /* Make sure that the features we assume are supported. */
6130 if (startswith (buf, "vCont"))
6131 {
6132 char *p = &buf[5];
6133 int support_c, support_C;
6134
6135 rs->supports_vCont.s = 0;
6136 rs->supports_vCont.S = 0;
6137 support_c = 0;
6138 support_C = 0;
6139 rs->supports_vCont.t = 0;
6140 rs->supports_vCont.r = 0;
6141 while (p && *p == ';')
6142 {
6143 p++;
6144 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6145 rs->supports_vCont.s = 1;
6146 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6147 rs->supports_vCont.S = 1;
6148 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6149 support_c = 1;
6150 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6151 support_C = 1;
6152 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6153 rs->supports_vCont.t = 1;
6154 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6155 rs->supports_vCont.r = 1;
6156
6157 p = strchr (p, ';');
6158 }
6159
6160 /* If c, and C are not all supported, we can't use vCont. Clearing
6161 BUF will make packet_ok disable the packet. */
6162 if (!support_c || !support_C)
6163 buf[0] = 0;
6164 }
6165
6166 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6167 rs->supports_vCont_probed = true;
6168 }
6169
6170 /* Helper function for building "vCont" resumptions. Write a
6171 resumption to P. ENDP points to one-passed-the-end of the buffer
6172 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6173 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6174 resumed thread should be single-stepped and/or signalled. If PTID
6175 equals minus_one_ptid, then all threads are resumed; if PTID
6176 represents a process, then all threads of the process are resumed;
6177 the thread to be stepped and/or signalled is given in the global
6178 INFERIOR_PTID. */
6179
6180 char *
6181 remote_target::append_resumption (char *p, char *endp,
6182 ptid_t ptid, int step, gdb_signal siggnal)
6183 {
6184 struct remote_state *rs = get_remote_state ();
6185
6186 if (step && siggnal != GDB_SIGNAL_0)
6187 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6188 else if (step
6189 /* GDB is willing to range step. */
6190 && use_range_stepping
6191 /* Target supports range stepping. */
6192 && rs->supports_vCont.r
6193 /* We don't currently support range stepping multiple
6194 threads with a wildcard (though the protocol allows it,
6195 so stubs shouldn't make an active effort to forbid
6196 it). */
6197 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6198 {
6199 struct thread_info *tp;
6200
6201 if (ptid == minus_one_ptid)
6202 {
6203 /* If we don't know about the target thread's tid, then
6204 we're resuming magic_null_ptid (see caller). */
6205 tp = find_thread_ptid (this, magic_null_ptid);
6206 }
6207 else
6208 tp = find_thread_ptid (this, ptid);
6209 gdb_assert (tp != NULL);
6210
6211 if (tp->control.may_range_step)
6212 {
6213 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6214
6215 p += xsnprintf (p, endp - p, ";r%s,%s",
6216 phex_nz (tp->control.step_range_start,
6217 addr_size),
6218 phex_nz (tp->control.step_range_end,
6219 addr_size));
6220 }
6221 else
6222 p += xsnprintf (p, endp - p, ";s");
6223 }
6224 else if (step)
6225 p += xsnprintf (p, endp - p, ";s");
6226 else if (siggnal != GDB_SIGNAL_0)
6227 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6228 else
6229 p += xsnprintf (p, endp - p, ";c");
6230
6231 if (remote_multi_process_p (rs) && ptid.is_pid ())
6232 {
6233 ptid_t nptid;
6234
6235 /* All (-1) threads of process. */
6236 nptid = ptid_t (ptid.pid (), -1, 0);
6237
6238 p += xsnprintf (p, endp - p, ":");
6239 p = write_ptid (p, endp, nptid);
6240 }
6241 else if (ptid != minus_one_ptid)
6242 {
6243 p += xsnprintf (p, endp - p, ":");
6244 p = write_ptid (p, endp, ptid);
6245 }
6246
6247 return p;
6248 }
6249
6250 /* Clear the thread's private info on resume. */
6251
6252 static void
6253 resume_clear_thread_private_info (struct thread_info *thread)
6254 {
6255 if (thread->priv != NULL)
6256 {
6257 remote_thread_info *priv = get_remote_thread_info (thread);
6258
6259 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6260 priv->watch_data_address = 0;
6261 }
6262 }
6263
6264 /* Append a vCont continue-with-signal action for threads that have a
6265 non-zero stop signal. */
6266
6267 char *
6268 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6269 ptid_t ptid)
6270 {
6271 for (thread_info *thread : all_non_exited_threads (this, ptid))
6272 if (inferior_ptid != thread->ptid
6273 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6274 {
6275 p = append_resumption (p, endp, thread->ptid,
6276 0, thread->suspend.stop_signal);
6277 thread->suspend.stop_signal = GDB_SIGNAL_0;
6278 resume_clear_thread_private_info (thread);
6279 }
6280
6281 return p;
6282 }
6283
6284 /* Set the target running, using the packets that use Hc
6285 (c/s/C/S). */
6286
6287 void
6288 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6289 gdb_signal siggnal)
6290 {
6291 struct remote_state *rs = get_remote_state ();
6292 char *buf;
6293
6294 rs->last_sent_signal = siggnal;
6295 rs->last_sent_step = step;
6296
6297 /* The c/s/C/S resume packets use Hc, so set the continue
6298 thread. */
6299 if (ptid == minus_one_ptid)
6300 set_continue_thread (any_thread_ptid);
6301 else
6302 set_continue_thread (ptid);
6303
6304 for (thread_info *thread : all_non_exited_threads (this))
6305 resume_clear_thread_private_info (thread);
6306
6307 buf = rs->buf.data ();
6308 if (::execution_direction == EXEC_REVERSE)
6309 {
6310 /* We don't pass signals to the target in reverse exec mode. */
6311 if (info_verbose && siggnal != GDB_SIGNAL_0)
6312 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6313 siggnal);
6314
6315 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6316 error (_("Remote reverse-step not supported."));
6317 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6318 error (_("Remote reverse-continue not supported."));
6319
6320 strcpy (buf, step ? "bs" : "bc");
6321 }
6322 else if (siggnal != GDB_SIGNAL_0)
6323 {
6324 buf[0] = step ? 'S' : 'C';
6325 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6326 buf[2] = tohex (((int) siggnal) & 0xf);
6327 buf[3] = '\0';
6328 }
6329 else
6330 strcpy (buf, step ? "s" : "c");
6331
6332 putpkt (buf);
6333 }
6334
6335 /* Resume the remote inferior by using a "vCont" packet. The thread
6336 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6337 resumed thread should be single-stepped and/or signalled. If PTID
6338 equals minus_one_ptid, then all threads are resumed; the thread to
6339 be stepped and/or signalled is given in the global INFERIOR_PTID.
6340 This function returns non-zero iff it resumes the inferior.
6341
6342 This function issues a strict subset of all possible vCont commands
6343 at the moment. */
6344
6345 int
6346 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6347 enum gdb_signal siggnal)
6348 {
6349 struct remote_state *rs = get_remote_state ();
6350 char *p;
6351 char *endp;
6352
6353 /* No reverse execution actions defined for vCont. */
6354 if (::execution_direction == EXEC_REVERSE)
6355 return 0;
6356
6357 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6358 remote_vcont_probe ();
6359
6360 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6361 return 0;
6362
6363 p = rs->buf.data ();
6364 endp = p + get_remote_packet_size ();
6365
6366 /* If we could generate a wider range of packets, we'd have to worry
6367 about overflowing BUF. Should there be a generic
6368 "multi-part-packet" packet? */
6369
6370 p += xsnprintf (p, endp - p, "vCont");
6371
6372 if (ptid == magic_null_ptid)
6373 {
6374 /* MAGIC_NULL_PTID means that we don't have any active threads,
6375 so we don't have any TID numbers the inferior will
6376 understand. Make sure to only send forms that do not specify
6377 a TID. */
6378 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6379 }
6380 else if (ptid == minus_one_ptid || ptid.is_pid ())
6381 {
6382 /* Resume all threads (of all processes, or of a single
6383 process), with preference for INFERIOR_PTID. This assumes
6384 inferior_ptid belongs to the set of all threads we are about
6385 to resume. */
6386 if (step || siggnal != GDB_SIGNAL_0)
6387 {
6388 /* Step inferior_ptid, with or without signal. */
6389 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6390 }
6391
6392 /* Also pass down any pending signaled resumption for other
6393 threads not the current. */
6394 p = append_pending_thread_resumptions (p, endp, ptid);
6395
6396 /* And continue others without a signal. */
6397 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6398 }
6399 else
6400 {
6401 /* Scheduler locking; resume only PTID. */
6402 append_resumption (p, endp, ptid, step, siggnal);
6403 }
6404
6405 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6406 putpkt (rs->buf);
6407
6408 if (target_is_non_stop_p ())
6409 {
6410 /* In non-stop, the stub replies to vCont with "OK". The stop
6411 reply will be reported asynchronously by means of a `%Stop'
6412 notification. */
6413 getpkt (&rs->buf, 0);
6414 if (strcmp (rs->buf.data (), "OK") != 0)
6415 error (_("Unexpected vCont reply in non-stop mode: %s"),
6416 rs->buf.data ());
6417 }
6418
6419 return 1;
6420 }
6421
6422 /* Tell the remote machine to resume. */
6423
6424 void
6425 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6426 {
6427 struct remote_state *rs = get_remote_state ();
6428
6429 /* When connected in non-stop mode, the core resumes threads
6430 individually. Resuming remote threads directly in target_resume
6431 would thus result in sending one packet per thread. Instead, to
6432 minimize roundtrip latency, here we just store the resume
6433 request (put the thread in RESUMED_PENDING_VCONT state); the actual remote
6434 resumption will be done in remote_target::commit_resume, where we'll be
6435 able to do vCont action coalescing. */
6436 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6437 {
6438 remote_thread_info *remote_thr;
6439
6440 if (minus_one_ptid == ptid || ptid.is_pid ())
6441 remote_thr = get_remote_thread_info (this, inferior_ptid);
6442 else
6443 remote_thr = get_remote_thread_info (this, ptid);
6444
6445 /* We don't expect the core to ask to resume an already resumed (from
6446 its point of view) thread. */
6447 gdb_assert (remote_thr->get_resume_state () == resume_state::NOT_RESUMED);
6448
6449 remote_thr->set_resumed_pending_vcont (step, siggnal);
6450 return;
6451 }
6452
6453 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6454 (explained in remote-notif.c:handle_notification) so
6455 remote_notif_process is not called. We need find a place where
6456 it is safe to start a 'vNotif' sequence. It is good to do it
6457 before resuming inferior, because inferior was stopped and no RSP
6458 traffic at that moment. */
6459 if (!target_is_non_stop_p ())
6460 remote_notif_process (rs->notif_state, &notif_client_stop);
6461
6462 rs->last_resume_exec_dir = ::execution_direction;
6463
6464 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6465 if (!remote_resume_with_vcont (ptid, step, siggnal))
6466 remote_resume_with_hc (ptid, step, siggnal);
6467
6468 /* Update resumed state tracked by the remote target. */
6469 for (thread_info *tp : all_non_exited_threads (this, ptid))
6470 get_remote_thread_info (tp)->set_resumed ();
6471
6472 /* We are about to start executing the inferior, let's register it
6473 with the event loop. NOTE: this is the one place where all the
6474 execution commands end up. We could alternatively do this in each
6475 of the execution commands in infcmd.c. */
6476 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6477 into infcmd.c in order to allow inferior function calls to work
6478 NOT asynchronously. */
6479 if (target_can_async_p ())
6480 target_async (1);
6481
6482 /* We've just told the target to resume. The remote server will
6483 wait for the inferior to stop, and then send a stop reply. In
6484 the mean time, we can't start another command/query ourselves
6485 because the stub wouldn't be ready to process it. This applies
6486 only to the base all-stop protocol, however. In non-stop (which
6487 only supports vCont), the stub replies with an "OK", and is
6488 immediate able to process further serial input. */
6489 if (!target_is_non_stop_p ())
6490 rs->waiting_for_stop_reply = 1;
6491 }
6492
6493 static int is_pending_fork_parent_thread (struct thread_info *thread);
6494
6495 /* Private per-inferior info for target remote processes. */
6496
6497 struct remote_inferior : public private_inferior
6498 {
6499 /* Whether we can send a wildcard vCont for this process. */
6500 bool may_wildcard_vcont = true;
6501 };
6502
6503 /* Get the remote private inferior data associated to INF. */
6504
6505 static remote_inferior *
6506 get_remote_inferior (inferior *inf)
6507 {
6508 if (inf->priv == NULL)
6509 inf->priv.reset (new remote_inferior);
6510
6511 return static_cast<remote_inferior *> (inf->priv.get ());
6512 }
6513
6514 struct stop_reply : public notif_event
6515 {
6516 ~stop_reply ();
6517
6518 /* The identifier of the thread about this event */
6519 ptid_t ptid;
6520
6521 /* The remote state this event is associated with. When the remote
6522 connection, represented by a remote_state object, is closed,
6523 all the associated stop_reply events should be released. */
6524 struct remote_state *rs;
6525
6526 struct target_waitstatus ws;
6527
6528 /* The architecture associated with the expedited registers. */
6529 gdbarch *arch;
6530
6531 /* Expedited registers. This makes remote debugging a bit more
6532 efficient for those targets that provide critical registers as
6533 part of their normal status mechanism (as another roundtrip to
6534 fetch them is avoided). */
6535 std::vector<cached_reg_t> regcache;
6536
6537 enum target_stop_reason stop_reason;
6538
6539 CORE_ADDR watch_data_address;
6540
6541 int core;
6542 };
6543
6544 /* Class used to track the construction of a vCont packet in the
6545 outgoing packet buffer. This is used to send multiple vCont
6546 packets if we have more actions than would fit a single packet. */
6547
6548 class vcont_builder
6549 {
6550 public:
6551 explicit vcont_builder (remote_target *remote)
6552 : m_remote (remote)
6553 {
6554 restart ();
6555 }
6556
6557 void flush ();
6558 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6559
6560 private:
6561 void restart ();
6562
6563 /* The remote target. */
6564 remote_target *m_remote;
6565
6566 /* Pointer to the first action. P points here if no action has been
6567 appended yet. */
6568 char *m_first_action;
6569
6570 /* Where the next action will be appended. */
6571 char *m_p;
6572
6573 /* The end of the buffer. Must never write past this. */
6574 char *m_endp;
6575 };
6576
6577 /* Prepare the outgoing buffer for a new vCont packet. */
6578
6579 void
6580 vcont_builder::restart ()
6581 {
6582 struct remote_state *rs = m_remote->get_remote_state ();
6583
6584 m_p = rs->buf.data ();
6585 m_endp = m_p + m_remote->get_remote_packet_size ();
6586 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6587 m_first_action = m_p;
6588 }
6589
6590 /* If the vCont packet being built has any action, send it to the
6591 remote end. */
6592
6593 void
6594 vcont_builder::flush ()
6595 {
6596 struct remote_state *rs;
6597
6598 if (m_p == m_first_action)
6599 return;
6600
6601 rs = m_remote->get_remote_state ();
6602 m_remote->putpkt (rs->buf);
6603 m_remote->getpkt (&rs->buf, 0);
6604 if (strcmp (rs->buf.data (), "OK") != 0)
6605 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6606 }
6607
6608 /* The largest action is range-stepping, with its two addresses. This
6609 is more than sufficient. If a new, bigger action is created, it'll
6610 quickly trigger a failed assertion in append_resumption (and we'll
6611 just bump this). */
6612 #define MAX_ACTION_SIZE 200
6613
6614 /* Append a new vCont action in the outgoing packet being built. If
6615 the action doesn't fit the packet along with previous actions, push
6616 what we've got so far to the remote end and start over a new vCont
6617 packet (with the new action). */
6618
6619 void
6620 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6621 {
6622 char buf[MAX_ACTION_SIZE + 1];
6623
6624 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6625 ptid, step, siggnal);
6626
6627 /* Check whether this new action would fit in the vCont packet along
6628 with previous actions. If not, send what we've got so far and
6629 start a new vCont packet. */
6630 size_t rsize = endp - buf;
6631 if (rsize > m_endp - m_p)
6632 {
6633 flush ();
6634 restart ();
6635
6636 /* Should now fit. */
6637 gdb_assert (rsize <= m_endp - m_p);
6638 }
6639
6640 memcpy (m_p, buf, rsize);
6641 m_p += rsize;
6642 *m_p = '\0';
6643 }
6644
6645 /* to_commit_resume implementation. */
6646
6647 void
6648 remote_target::commit_resumed ()
6649 {
6650 /* If connected in all-stop mode, we'd send the remote resume
6651 request directly from remote_resume. Likewise if
6652 reverse-debugging, as there are no defined vCont actions for
6653 reverse execution. */
6654 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6655 return;
6656
6657 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6658 instead of resuming all threads of each process individually.
6659 However, if any thread of a process must remain halted, we can't
6660 send wildcard resumes and must send one action per thread.
6661
6662 Care must be taken to not resume threads/processes the server
6663 side already told us are stopped, but the core doesn't know about
6664 yet, because the events are still in the vStopped notification
6665 queue. For example:
6666
6667 #1 => vCont s:p1.1;c
6668 #2 <= OK
6669 #3 <= %Stopped T05 p1.1
6670 #4 => vStopped
6671 #5 <= T05 p1.2
6672 #6 => vStopped
6673 #7 <= OK
6674 #8 (infrun handles the stop for p1.1 and continues stepping)
6675 #9 => vCont s:p1.1;c
6676
6677 The last vCont above would resume thread p1.2 by mistake, because
6678 the server has no idea that the event for p1.2 had not been
6679 handled yet.
6680
6681 The server side must similarly ignore resume actions for the
6682 thread that has a pending %Stopped notification (and any other
6683 threads with events pending), until GDB acks the notification
6684 with vStopped. Otherwise, e.g., the following case is
6685 mishandled:
6686
6687 #1 => g (or any other packet)
6688 #2 <= [registers]
6689 #3 <= %Stopped T05 p1.2
6690 #4 => vCont s:p1.1;c
6691 #5 <= OK
6692
6693 Above, the server must not resume thread p1.2. GDB can't know
6694 that p1.2 stopped until it acks the %Stopped notification, and
6695 since from GDB's perspective all threads should be running, it
6696 sends a "c" action.
6697
6698 Finally, special care must also be given to handling fork/vfork
6699 events. A (v)fork event actually tells us that two processes
6700 stopped -- the parent and the child. Until we follow the fork,
6701 we must not resume the child. Therefore, if we have a pending
6702 fork follow, we must not send a global wildcard resume action
6703 (vCont;c). We can still send process-wide wildcards though. */
6704
6705 /* Start by assuming a global wildcard (vCont;c) is possible. */
6706 bool may_global_wildcard_vcont = true;
6707
6708 /* And assume every process is individually wildcard-able too. */
6709 for (inferior *inf : all_non_exited_inferiors (this))
6710 {
6711 remote_inferior *priv = get_remote_inferior (inf);
6712
6713 priv->may_wildcard_vcont = true;
6714 }
6715
6716 /* Check for any pending events (not reported or processed yet) and
6717 disable process and global wildcard resumes appropriately. */
6718 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6719
6720 bool any_pending_vcont_resume = false;
6721
6722 for (thread_info *tp : all_non_exited_threads (this))
6723 {
6724 remote_thread_info *priv = get_remote_thread_info (tp);
6725
6726 /* If a thread of a process is not meant to be resumed, then we
6727 can't wildcard that process. */
6728 if (priv->get_resume_state () == resume_state::NOT_RESUMED)
6729 {
6730 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6731
6732 /* And if we can't wildcard a process, we can't wildcard
6733 everything either. */
6734 may_global_wildcard_vcont = false;
6735 continue;
6736 }
6737
6738 if (priv->get_resume_state () == resume_state::RESUMED_PENDING_VCONT)
6739 any_pending_vcont_resume = true;
6740
6741 /* If a thread is the parent of an unfollowed fork, then we
6742 can't do a global wildcard, as that would resume the fork
6743 child. */
6744 if (is_pending_fork_parent_thread (tp))
6745 may_global_wildcard_vcont = false;
6746 }
6747
6748 /* We didn't have any resumed thread pending a vCont resume, so nothing to
6749 do. */
6750 if (!any_pending_vcont_resume)
6751 return;
6752
6753 /* Now let's build the vCont packet(s). Actions must be appended
6754 from narrower to wider scopes (thread -> process -> global). If
6755 we end up with too many actions for a single packet vcont_builder
6756 flushes the current vCont packet to the remote side and starts a
6757 new one. */
6758 struct vcont_builder vcont_builder (this);
6759
6760 /* Threads first. */
6761 for (thread_info *tp : all_non_exited_threads (this))
6762 {
6763 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6764
6765 /* If the thread was previously vCont-resumed, no need to send a specific
6766 action for it. If we didn't receive a resume request for it, don't
6767 send an action for it either. */
6768 if (remote_thr->get_resume_state () != resume_state::RESUMED_PENDING_VCONT)
6769 continue;
6770
6771 gdb_assert (!thread_is_in_step_over_chain (tp));
6772
6773 /* We should never be commit-resuming a thread that has a stop reply.
6774 Otherwise, we would end up reporting a stop event for a thread while
6775 it is running on the remote target. */
6776 remote_state *rs = get_remote_state ();
6777 for (const auto &stop_reply : rs->stop_reply_queue)
6778 gdb_assert (stop_reply->ptid != tp->ptid);
6779
6780 const resumed_pending_vcont_info &info
6781 = remote_thr->resumed_pending_vcont_info ();
6782
6783 /* Check if we need to send a specific action for this thread. If not,
6784 it will be included in a wildcard resume instead. */
6785 if (info.step || info.sig != GDB_SIGNAL_0
6786 || !get_remote_inferior (tp->inf)->may_wildcard_vcont)
6787 vcont_builder.push_action (tp->ptid, info.step, info.sig);
6788
6789 remote_thr->set_resumed ();
6790 }
6791
6792 /* Now check whether we can send any process-wide wildcard. This is
6793 to avoid sending a global wildcard in the case nothing is
6794 supposed to be resumed. */
6795 bool any_process_wildcard = false;
6796
6797 for (inferior *inf : all_non_exited_inferiors (this))
6798 {
6799 if (get_remote_inferior (inf)->may_wildcard_vcont)
6800 {
6801 any_process_wildcard = true;
6802 break;
6803 }
6804 }
6805
6806 if (any_process_wildcard)
6807 {
6808 /* If all processes are wildcard-able, then send a single "c"
6809 action, otherwise, send an "all (-1) threads of process"
6810 continue action for each running process, if any. */
6811 if (may_global_wildcard_vcont)
6812 {
6813 vcont_builder.push_action (minus_one_ptid,
6814 false, GDB_SIGNAL_0);
6815 }
6816 else
6817 {
6818 for (inferior *inf : all_non_exited_inferiors (this))
6819 {
6820 if (get_remote_inferior (inf)->may_wildcard_vcont)
6821 {
6822 vcont_builder.push_action (ptid_t (inf->pid),
6823 false, GDB_SIGNAL_0);
6824 }
6825 }
6826 }
6827 }
6828
6829 vcont_builder.flush ();
6830 }
6831
6832 /* Implementation of target_has_pending_events. */
6833
6834 bool
6835 remote_target::has_pending_events ()
6836 {
6837 if (target_can_async_p ())
6838 {
6839 remote_state *rs = get_remote_state ();
6840
6841 if (async_event_handler_marked (rs->remote_async_inferior_event_token))
6842 return true;
6843
6844 /* Note that BUFCNT can be negative, indicating sticky
6845 error. */
6846 if (rs->remote_desc->bufcnt != 0)
6847 return true;
6848 }
6849 return false;
6850 }
6851
6852 \f
6853
6854 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6855 thread, all threads of a remote process, or all threads of all
6856 processes. */
6857
6858 void
6859 remote_target::remote_stop_ns (ptid_t ptid)
6860 {
6861 struct remote_state *rs = get_remote_state ();
6862 char *p = rs->buf.data ();
6863 char *endp = p + get_remote_packet_size ();
6864
6865 /* If any thread that needs to stop was resumed but pending a vCont
6866 resume, generate a phony stop_reply. However, first check
6867 whether the thread wasn't resumed with a signal. Generating a
6868 phony stop in that case would result in losing the signal. */
6869 bool needs_commit = false;
6870 for (thread_info *tp : all_non_exited_threads (this, ptid))
6871 {
6872 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6873
6874 if (remote_thr->get_resume_state ()
6875 == resume_state::RESUMED_PENDING_VCONT)
6876 {
6877 const resumed_pending_vcont_info &info
6878 = remote_thr->resumed_pending_vcont_info ();
6879 if (info.sig != GDB_SIGNAL_0)
6880 {
6881 /* This signal must be forwarded to the inferior. We
6882 could commit-resume just this thread, but its simpler
6883 to just commit-resume everything. */
6884 needs_commit = true;
6885 break;
6886 }
6887 }
6888 }
6889
6890 if (needs_commit)
6891 commit_resumed ();
6892 else
6893 for (thread_info *tp : all_non_exited_threads (this, ptid))
6894 {
6895 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6896
6897 if (remote_thr->get_resume_state ()
6898 == resume_state::RESUMED_PENDING_VCONT)
6899 {
6900 remote_debug_printf ("Enqueueing phony stop reply for thread pending "
6901 "vCont-resume (%d, %ld, %ld)", tp->ptid.pid(),
6902 tp->ptid.lwp (), tp->ptid.tid ());
6903
6904 /* Check that the thread wasn't resumed with a signal.
6905 Generating a phony stop would result in losing the
6906 signal. */
6907 const resumed_pending_vcont_info &info
6908 = remote_thr->resumed_pending_vcont_info ();
6909 gdb_assert (info.sig == GDB_SIGNAL_0);
6910
6911 stop_reply *sr = new stop_reply ();
6912 sr->ptid = tp->ptid;
6913 sr->rs = rs;
6914 sr->ws.kind = TARGET_WAITKIND_STOPPED;
6915 sr->ws.value.sig = GDB_SIGNAL_0;
6916 sr->arch = tp->inf->gdbarch;
6917 sr->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6918 sr->watch_data_address = 0;
6919 sr->core = 0;
6920 this->push_stop_reply (sr);
6921
6922 /* Pretend that this thread was actually resumed on the
6923 remote target, then stopped. If we leave it in the
6924 RESUMED_PENDING_VCONT state and the commit_resumed
6925 method is called while the stop reply is still in the
6926 queue, we'll end up reporting a stop event to the core
6927 for that thread while it is running on the remote
6928 target... that would be bad. */
6929 remote_thr->set_resumed ();
6930 }
6931 }
6932
6933 /* FIXME: This supports_vCont_probed check is a workaround until
6934 packet_support is per-connection. */
6935 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6936 || !rs->supports_vCont_probed)
6937 remote_vcont_probe ();
6938
6939 if (!rs->supports_vCont.t)
6940 error (_("Remote server does not support stopping threads"));
6941
6942 if (ptid == minus_one_ptid
6943 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6944 p += xsnprintf (p, endp - p, "vCont;t");
6945 else
6946 {
6947 ptid_t nptid;
6948
6949 p += xsnprintf (p, endp - p, "vCont;t:");
6950
6951 if (ptid.is_pid ())
6952 /* All (-1) threads of process. */
6953 nptid = ptid_t (ptid.pid (), -1, 0);
6954 else
6955 {
6956 /* Small optimization: if we already have a stop reply for
6957 this thread, no use in telling the stub we want this
6958 stopped. */
6959 if (peek_stop_reply (ptid))
6960 return;
6961
6962 nptid = ptid;
6963 }
6964
6965 write_ptid (p, endp, nptid);
6966 }
6967
6968 /* In non-stop, we get an immediate OK reply. The stop reply will
6969 come in asynchronously by notification. */
6970 putpkt (rs->buf);
6971 getpkt (&rs->buf, 0);
6972 if (strcmp (rs->buf.data (), "OK") != 0)
6973 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6974 rs->buf.data ());
6975 }
6976
6977 /* All-stop version of target_interrupt. Sends a break or a ^C to
6978 interrupt the remote target. It is undefined which thread of which
6979 process reports the interrupt. */
6980
6981 void
6982 remote_target::remote_interrupt_as ()
6983 {
6984 struct remote_state *rs = get_remote_state ();
6985
6986 rs->ctrlc_pending_p = 1;
6987
6988 /* If the inferior is stopped already, but the core didn't know
6989 about it yet, just ignore the request. The cached wait status
6990 will be collected in remote_wait. */
6991 if (rs->cached_wait_status)
6992 return;
6993
6994 /* Send interrupt_sequence to remote target. */
6995 send_interrupt_sequence ();
6996 }
6997
6998 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6999 the remote target. It is undefined which thread of which process
7000 reports the interrupt. Throws an error if the packet is not
7001 supported by the server. */
7002
7003 void
7004 remote_target::remote_interrupt_ns ()
7005 {
7006 struct remote_state *rs = get_remote_state ();
7007 char *p = rs->buf.data ();
7008 char *endp = p + get_remote_packet_size ();
7009
7010 xsnprintf (p, endp - p, "vCtrlC");
7011
7012 /* In non-stop, we get an immediate OK reply. The stop reply will
7013 come in asynchronously by notification. */
7014 putpkt (rs->buf);
7015 getpkt (&rs->buf, 0);
7016
7017 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
7018 {
7019 case PACKET_OK:
7020 break;
7021 case PACKET_UNKNOWN:
7022 error (_("No support for interrupting the remote target."));
7023 case PACKET_ERROR:
7024 error (_("Interrupting target failed: %s"), rs->buf.data ());
7025 }
7026 }
7027
7028 /* Implement the to_stop function for the remote targets. */
7029
7030 void
7031 remote_target::stop (ptid_t ptid)
7032 {
7033 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7034
7035 if (target_is_non_stop_p ())
7036 remote_stop_ns (ptid);
7037 else
7038 {
7039 /* We don't currently have a way to transparently pause the
7040 remote target in all-stop mode. Interrupt it instead. */
7041 remote_interrupt_as ();
7042 }
7043 }
7044
7045 /* Implement the to_interrupt function for the remote targets. */
7046
7047 void
7048 remote_target::interrupt ()
7049 {
7050 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7051
7052 if (target_is_non_stop_p ())
7053 remote_interrupt_ns ();
7054 else
7055 remote_interrupt_as ();
7056 }
7057
7058 /* Implement the to_pass_ctrlc function for the remote targets. */
7059
7060 void
7061 remote_target::pass_ctrlc ()
7062 {
7063 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7064
7065 struct remote_state *rs = get_remote_state ();
7066
7067 /* If we're starting up, we're not fully synced yet. Quit
7068 immediately. */
7069 if (rs->starting_up)
7070 quit ();
7071 /* If ^C has already been sent once, offer to disconnect. */
7072 else if (rs->ctrlc_pending_p)
7073 interrupt_query ();
7074 else
7075 target_interrupt ();
7076 }
7077
7078 /* Ask the user what to do when an interrupt is received. */
7079
7080 void
7081 remote_target::interrupt_query ()
7082 {
7083 struct remote_state *rs = get_remote_state ();
7084
7085 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
7086 {
7087 if (query (_("The target is not responding to interrupt requests.\n"
7088 "Stop debugging it? ")))
7089 {
7090 remote_unpush_target (this);
7091 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
7092 }
7093 }
7094 else
7095 {
7096 if (query (_("Interrupted while waiting for the program.\n"
7097 "Give up waiting? ")))
7098 quit ();
7099 }
7100 }
7101
7102 /* Enable/disable target terminal ownership. Most targets can use
7103 terminal groups to control terminal ownership. Remote targets are
7104 different in that explicit transfer of ownership to/from GDB/target
7105 is required. */
7106
7107 void
7108 remote_target::terminal_inferior ()
7109 {
7110 /* NOTE: At this point we could also register our selves as the
7111 recipient of all input. Any characters typed could then be
7112 passed on down to the target. */
7113 }
7114
7115 void
7116 remote_target::terminal_ours ()
7117 {
7118 }
7119
7120 static void
7121 remote_console_output (const char *msg)
7122 {
7123 const char *p;
7124
7125 for (p = msg; p[0] && p[1]; p += 2)
7126 {
7127 char tb[2];
7128 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
7129
7130 tb[0] = c;
7131 tb[1] = 0;
7132 gdb_stdtarg->puts (tb);
7133 }
7134 gdb_stdtarg->flush ();
7135 }
7136
7137 /* Return the length of the stop reply queue. */
7138
7139 int
7140 remote_target::stop_reply_queue_length ()
7141 {
7142 remote_state *rs = get_remote_state ();
7143 return rs->stop_reply_queue.size ();
7144 }
7145
7146 static void
7147 remote_notif_stop_parse (remote_target *remote,
7148 struct notif_client *self, const char *buf,
7149 struct notif_event *event)
7150 {
7151 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
7152 }
7153
7154 static void
7155 remote_notif_stop_ack (remote_target *remote,
7156 struct notif_client *self, const char *buf,
7157 struct notif_event *event)
7158 {
7159 struct stop_reply *stop_reply = (struct stop_reply *) event;
7160
7161 /* acknowledge */
7162 putpkt (remote, self->ack_command);
7163
7164 /* Kind can be TARGET_WAITKIND_IGNORE if we have meanwhile discarded
7165 the notification. It was left in the queue because we need to
7166 acknowledge it and pull the rest of the notifications out. */
7167 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
7168 remote->push_stop_reply (stop_reply);
7169 }
7170
7171 static int
7172 remote_notif_stop_can_get_pending_events (remote_target *remote,
7173 struct notif_client *self)
7174 {
7175 /* We can't get pending events in remote_notif_process for
7176 notification stop, and we have to do this in remote_wait_ns
7177 instead. If we fetch all queued events from stub, remote stub
7178 may exit and we have no chance to process them back in
7179 remote_wait_ns. */
7180 remote_state *rs = remote->get_remote_state ();
7181 mark_async_event_handler (rs->remote_async_inferior_event_token);
7182 return 0;
7183 }
7184
7185 stop_reply::~stop_reply ()
7186 {
7187 for (cached_reg_t &reg : regcache)
7188 xfree (reg.data);
7189 }
7190
7191 static notif_event_up
7192 remote_notif_stop_alloc_reply ()
7193 {
7194 return notif_event_up (new struct stop_reply ());
7195 }
7196
7197 /* A client of notification Stop. */
7198
7199 struct notif_client notif_client_stop =
7200 {
7201 "Stop",
7202 "vStopped",
7203 remote_notif_stop_parse,
7204 remote_notif_stop_ack,
7205 remote_notif_stop_can_get_pending_events,
7206 remote_notif_stop_alloc_reply,
7207 REMOTE_NOTIF_STOP,
7208 };
7209
7210 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
7211 the pid of the process that owns the threads we want to check, or
7212 -1 if we want to check all threads. */
7213
7214 static int
7215 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
7216 ptid_t thread_ptid)
7217 {
7218 if (ws->kind == TARGET_WAITKIND_FORKED
7219 || ws->kind == TARGET_WAITKIND_VFORKED)
7220 {
7221 if (event_pid == -1 || event_pid == thread_ptid.pid ())
7222 return 1;
7223 }
7224
7225 return 0;
7226 }
7227
7228 /* Return the thread's pending status used to determine whether the
7229 thread is a fork parent stopped at a fork event. */
7230
7231 static struct target_waitstatus *
7232 thread_pending_fork_status (struct thread_info *thread)
7233 {
7234 if (thread->suspend.waitstatus_pending_p)
7235 return &thread->suspend.waitstatus;
7236 else
7237 return &thread->pending_follow;
7238 }
7239
7240 /* Determine if THREAD is a pending fork parent thread. */
7241
7242 static int
7243 is_pending_fork_parent_thread (struct thread_info *thread)
7244 {
7245 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7246 int pid = -1;
7247
7248 return is_pending_fork_parent (ws, pid, thread->ptid);
7249 }
7250
7251 /* If CONTEXT contains any fork child threads that have not been
7252 reported yet, remove them from the CONTEXT list. If such a
7253 thread exists it is because we are stopped at a fork catchpoint
7254 and have not yet called follow_fork, which will set up the
7255 host-side data structures for the new process. */
7256
7257 void
7258 remote_target::remove_new_fork_children (threads_listing_context *context)
7259 {
7260 int pid = -1;
7261 struct notif_client *notif = &notif_client_stop;
7262
7263 /* For any threads stopped at a fork event, remove the corresponding
7264 fork child threads from the CONTEXT list. */
7265 for (thread_info *thread : all_non_exited_threads (this))
7266 {
7267 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7268
7269 if (is_pending_fork_parent (ws, pid, thread->ptid))
7270 context->remove_thread (ws->value.related_pid);
7271 }
7272
7273 /* Check for any pending fork events (not reported or processed yet)
7274 in process PID and remove those fork child threads from the
7275 CONTEXT list as well. */
7276 remote_notif_get_pending_events (notif);
7277 for (auto &event : get_remote_state ()->stop_reply_queue)
7278 if (event->ws.kind == TARGET_WAITKIND_FORKED
7279 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7280 context->remove_thread (event->ws.value.related_pid);
7281 else if (event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7282 context->remove_thread (event->ptid);
7283 }
7284
7285 /* Check whether any event pending in the vStopped queue would prevent a
7286 global or process wildcard vCont action. Set *may_global_wildcard to
7287 false if we can't do a global wildcard (vCont;c), and clear the event
7288 inferior's may_wildcard_vcont flag if we can't do a process-wide
7289 wildcard resume (vCont;c:pPID.-1). */
7290
7291 void
7292 remote_target::check_pending_events_prevent_wildcard_vcont
7293 (bool *may_global_wildcard)
7294 {
7295 struct notif_client *notif = &notif_client_stop;
7296
7297 remote_notif_get_pending_events (notif);
7298 for (auto &event : get_remote_state ()->stop_reply_queue)
7299 {
7300 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7301 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7302 continue;
7303
7304 if (event->ws.kind == TARGET_WAITKIND_FORKED
7305 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7306 *may_global_wildcard = false;
7307
7308 /* This may be the first time we heard about this process.
7309 Regardless, we must not do a global wildcard resume, otherwise
7310 we'd resume this process too. */
7311 *may_global_wildcard = false;
7312 if (event->ptid != null_ptid)
7313 {
7314 inferior *inf = find_inferior_ptid (this, event->ptid);
7315 if (inf != NULL)
7316 get_remote_inferior (inf)->may_wildcard_vcont = false;
7317 }
7318 }
7319 }
7320
7321 /* Discard all pending stop replies of inferior INF. */
7322
7323 void
7324 remote_target::discard_pending_stop_replies (struct inferior *inf)
7325 {
7326 struct stop_reply *reply;
7327 struct remote_state *rs = get_remote_state ();
7328 struct remote_notif_state *rns = rs->notif_state;
7329
7330 /* This function can be notified when an inferior exists. When the
7331 target is not remote, the notification state is NULL. */
7332 if (rs->remote_desc == NULL)
7333 return;
7334
7335 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7336
7337 /* Discard the in-flight notification. */
7338 if (reply != NULL && reply->ptid.pid () == inf->pid)
7339 {
7340 /* Leave the notification pending, since the server expects that
7341 we acknowledge it with vStopped. But clear its contents, so
7342 that later on when we acknowledge it, we also discard it. */
7343 reply->ws.kind = TARGET_WAITKIND_IGNORE;
7344
7345 if (remote_debug)
7346 fprintf_unfiltered (gdb_stdlog,
7347 "discarded in-flight notification\n");
7348 }
7349
7350 /* Discard the stop replies we have already pulled with
7351 vStopped. */
7352 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7353 rs->stop_reply_queue.end (),
7354 [=] (const stop_reply_up &event)
7355 {
7356 return event->ptid.pid () == inf->pid;
7357 });
7358 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7359 }
7360
7361 /* Discard the stop replies for RS in stop_reply_queue. */
7362
7363 void
7364 remote_target::discard_pending_stop_replies_in_queue ()
7365 {
7366 remote_state *rs = get_remote_state ();
7367
7368 /* Discard the stop replies we have already pulled with
7369 vStopped. */
7370 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7371 rs->stop_reply_queue.end (),
7372 [=] (const stop_reply_up &event)
7373 {
7374 return event->rs == rs;
7375 });
7376 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7377 }
7378
7379 /* Remove the first reply in 'stop_reply_queue' which matches
7380 PTID. */
7381
7382 struct stop_reply *
7383 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7384 {
7385 remote_state *rs = get_remote_state ();
7386
7387 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7388 rs->stop_reply_queue.end (),
7389 [=] (const stop_reply_up &event)
7390 {
7391 return event->ptid.matches (ptid);
7392 });
7393 struct stop_reply *result;
7394 if (iter == rs->stop_reply_queue.end ())
7395 result = nullptr;
7396 else
7397 {
7398 result = iter->release ();
7399 rs->stop_reply_queue.erase (iter);
7400 }
7401
7402 if (notif_debug)
7403 fprintf_unfiltered (gdb_stdlog,
7404 "notif: discard queued event: 'Stop' in %s\n",
7405 target_pid_to_str (ptid).c_str ());
7406
7407 return result;
7408 }
7409
7410 /* Look for a queued stop reply belonging to PTID. If one is found,
7411 remove it from the queue, and return it. Returns NULL if none is
7412 found. If there are still queued events left to process, tell the
7413 event loop to get back to target_wait soon. */
7414
7415 struct stop_reply *
7416 remote_target::queued_stop_reply (ptid_t ptid)
7417 {
7418 remote_state *rs = get_remote_state ();
7419 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7420
7421 if (!rs->stop_reply_queue.empty ())
7422 {
7423 /* There's still at least an event left. */
7424 mark_async_event_handler (rs->remote_async_inferior_event_token);
7425 }
7426
7427 return r;
7428 }
7429
7430 /* Push a fully parsed stop reply in the stop reply queue. Since we
7431 know that we now have at least one queued event left to pass to the
7432 core side, tell the event loop to get back to target_wait soon. */
7433
7434 void
7435 remote_target::push_stop_reply (struct stop_reply *new_event)
7436 {
7437 remote_state *rs = get_remote_state ();
7438 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7439
7440 if (notif_debug)
7441 fprintf_unfiltered (gdb_stdlog,
7442 "notif: push 'Stop' %s to queue %d\n",
7443 target_pid_to_str (new_event->ptid).c_str (),
7444 int (rs->stop_reply_queue.size ()));
7445
7446 mark_async_event_handler (rs->remote_async_inferior_event_token);
7447 }
7448
7449 /* Returns true if we have a stop reply for PTID. */
7450
7451 int
7452 remote_target::peek_stop_reply (ptid_t ptid)
7453 {
7454 remote_state *rs = get_remote_state ();
7455 for (auto &event : rs->stop_reply_queue)
7456 if (ptid == event->ptid
7457 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7458 return 1;
7459 return 0;
7460 }
7461
7462 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7463 starting with P and ending with PEND matches PREFIX. */
7464
7465 static int
7466 strprefix (const char *p, const char *pend, const char *prefix)
7467 {
7468 for ( ; p < pend; p++, prefix++)
7469 if (*p != *prefix)
7470 return 0;
7471 return *prefix == '\0';
7472 }
7473
7474 /* Parse the stop reply in BUF. Either the function succeeds, and the
7475 result is stored in EVENT, or throws an error. */
7476
7477 void
7478 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7479 {
7480 remote_arch_state *rsa = NULL;
7481 ULONGEST addr;
7482 const char *p;
7483 int skipregs = 0;
7484
7485 event->ptid = null_ptid;
7486 event->rs = get_remote_state ();
7487 event->ws.kind = TARGET_WAITKIND_IGNORE;
7488 event->ws.value.integer = 0;
7489 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7490 event->regcache.clear ();
7491 event->core = -1;
7492
7493 switch (buf[0])
7494 {
7495 case 'T': /* Status with PC, SP, FP, ... */
7496 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7497 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7498 ss = signal number
7499 n... = register number
7500 r... = register contents
7501 */
7502
7503 p = &buf[3]; /* after Txx */
7504 while (*p)
7505 {
7506 const char *p1;
7507 int fieldsize;
7508
7509 p1 = strchr (p, ':');
7510 if (p1 == NULL)
7511 error (_("Malformed packet(a) (missing colon): %s\n\
7512 Packet: '%s'\n"),
7513 p, buf);
7514 if (p == p1)
7515 error (_("Malformed packet(a) (missing register number): %s\n\
7516 Packet: '%s'\n"),
7517 p, buf);
7518
7519 /* Some "registers" are actually extended stop information.
7520 Note if you're adding a new entry here: GDB 7.9 and
7521 earlier assume that all register "numbers" that start
7522 with an hex digit are real register numbers. Make sure
7523 the server only sends such a packet if it knows the
7524 client understands it. */
7525
7526 if (strprefix (p, p1, "thread"))
7527 event->ptid = read_ptid (++p1, &p);
7528 else if (strprefix (p, p1, "syscall_entry"))
7529 {
7530 ULONGEST sysno;
7531
7532 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7533 p = unpack_varlen_hex (++p1, &sysno);
7534 event->ws.value.syscall_number = (int) sysno;
7535 }
7536 else if (strprefix (p, p1, "syscall_return"))
7537 {
7538 ULONGEST sysno;
7539
7540 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7541 p = unpack_varlen_hex (++p1, &sysno);
7542 event->ws.value.syscall_number = (int) sysno;
7543 }
7544 else if (strprefix (p, p1, "watch")
7545 || strprefix (p, p1, "rwatch")
7546 || strprefix (p, p1, "awatch"))
7547 {
7548 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7549 p = unpack_varlen_hex (++p1, &addr);
7550 event->watch_data_address = (CORE_ADDR) addr;
7551 }
7552 else if (strprefix (p, p1, "swbreak"))
7553 {
7554 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7555
7556 /* Make sure the stub doesn't forget to indicate support
7557 with qSupported. */
7558 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7559 error (_("Unexpected swbreak stop reason"));
7560
7561 /* The value part is documented as "must be empty",
7562 though we ignore it, in case we ever decide to make
7563 use of it in a backward compatible way. */
7564 p = strchrnul (p1 + 1, ';');
7565 }
7566 else if (strprefix (p, p1, "hwbreak"))
7567 {
7568 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7569
7570 /* Make sure the stub doesn't forget to indicate support
7571 with qSupported. */
7572 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7573 error (_("Unexpected hwbreak stop reason"));
7574
7575 /* See above. */
7576 p = strchrnul (p1 + 1, ';');
7577 }
7578 else if (strprefix (p, p1, "library"))
7579 {
7580 event->ws.kind = TARGET_WAITKIND_LOADED;
7581 p = strchrnul (p1 + 1, ';');
7582 }
7583 else if (strprefix (p, p1, "replaylog"))
7584 {
7585 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7586 /* p1 will indicate "begin" or "end", but it makes
7587 no difference for now, so ignore it. */
7588 p = strchrnul (p1 + 1, ';');
7589 }
7590 else if (strprefix (p, p1, "core"))
7591 {
7592 ULONGEST c;
7593
7594 p = unpack_varlen_hex (++p1, &c);
7595 event->core = c;
7596 }
7597 else if (strprefix (p, p1, "fork"))
7598 {
7599 event->ws.value.related_pid = read_ptid (++p1, &p);
7600 event->ws.kind = TARGET_WAITKIND_FORKED;
7601 }
7602 else if (strprefix (p, p1, "vfork"))
7603 {
7604 event->ws.value.related_pid = read_ptid (++p1, &p);
7605 event->ws.kind = TARGET_WAITKIND_VFORKED;
7606 }
7607 else if (strprefix (p, p1, "vforkdone"))
7608 {
7609 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7610 p = strchrnul (p1 + 1, ';');
7611 }
7612 else if (strprefix (p, p1, "exec"))
7613 {
7614 ULONGEST ignored;
7615 int pathlen;
7616
7617 /* Determine the length of the execd pathname. */
7618 p = unpack_varlen_hex (++p1, &ignored);
7619 pathlen = (p - p1) / 2;
7620
7621 /* Save the pathname for event reporting and for
7622 the next run command. */
7623 gdb::unique_xmalloc_ptr<char[]> pathname
7624 ((char *) xmalloc (pathlen + 1));
7625 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7626 pathname[pathlen] = '\0';
7627
7628 /* This is freed during event handling. */
7629 event->ws.value.execd_pathname = pathname.release ();
7630 event->ws.kind = TARGET_WAITKIND_EXECD;
7631
7632 /* Skip the registers included in this packet, since
7633 they may be for an architecture different from the
7634 one used by the original program. */
7635 skipregs = 1;
7636 }
7637 else if (strprefix (p, p1, "create"))
7638 {
7639 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7640 p = strchrnul (p1 + 1, ';');
7641 }
7642 else
7643 {
7644 ULONGEST pnum;
7645 const char *p_temp;
7646
7647 if (skipregs)
7648 {
7649 p = strchrnul (p1 + 1, ';');
7650 p++;
7651 continue;
7652 }
7653
7654 /* Maybe a real ``P'' register number. */
7655 p_temp = unpack_varlen_hex (p, &pnum);
7656 /* If the first invalid character is the colon, we got a
7657 register number. Otherwise, it's an unknown stop
7658 reason. */
7659 if (p_temp == p1)
7660 {
7661 /* If we haven't parsed the event's thread yet, find
7662 it now, in order to find the architecture of the
7663 reported expedited registers. */
7664 if (event->ptid == null_ptid)
7665 {
7666 /* If there is no thread-id information then leave
7667 the event->ptid as null_ptid. Later in
7668 process_stop_reply we will pick a suitable
7669 thread. */
7670 const char *thr = strstr (p1 + 1, ";thread:");
7671 if (thr != NULL)
7672 event->ptid = read_ptid (thr + strlen (";thread:"),
7673 NULL);
7674 }
7675
7676 if (rsa == NULL)
7677 {
7678 inferior *inf
7679 = (event->ptid == null_ptid
7680 ? NULL
7681 : find_inferior_ptid (this, event->ptid));
7682 /* If this is the first time we learn anything
7683 about this process, skip the registers
7684 included in this packet, since we don't yet
7685 know which architecture to use to parse them.
7686 We'll determine the architecture later when
7687 we process the stop reply and retrieve the
7688 target description, via
7689 remote_notice_new_inferior ->
7690 post_create_inferior. */
7691 if (inf == NULL)
7692 {
7693 p = strchrnul (p1 + 1, ';');
7694 p++;
7695 continue;
7696 }
7697
7698 event->arch = inf->gdbarch;
7699 rsa = event->rs->get_remote_arch_state (event->arch);
7700 }
7701
7702 packet_reg *reg
7703 = packet_reg_from_pnum (event->arch, rsa, pnum);
7704 cached_reg_t cached_reg;
7705
7706 if (reg == NULL)
7707 error (_("Remote sent bad register number %s: %s\n\
7708 Packet: '%s'\n"),
7709 hex_string (pnum), p, buf);
7710
7711 cached_reg.num = reg->regnum;
7712 cached_reg.data = (gdb_byte *)
7713 xmalloc (register_size (event->arch, reg->regnum));
7714
7715 p = p1 + 1;
7716 fieldsize = hex2bin (p, cached_reg.data,
7717 register_size (event->arch, reg->regnum));
7718 p += 2 * fieldsize;
7719 if (fieldsize < register_size (event->arch, reg->regnum))
7720 warning (_("Remote reply is too short: %s"), buf);
7721
7722 event->regcache.push_back (cached_reg);
7723 }
7724 else
7725 {
7726 /* Not a number. Silently skip unknown optional
7727 info. */
7728 p = strchrnul (p1 + 1, ';');
7729 }
7730 }
7731
7732 if (*p != ';')
7733 error (_("Remote register badly formatted: %s\nhere: %s"),
7734 buf, p);
7735 ++p;
7736 }
7737
7738 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7739 break;
7740
7741 /* fall through */
7742 case 'S': /* Old style status, just signal only. */
7743 {
7744 int sig;
7745
7746 event->ws.kind = TARGET_WAITKIND_STOPPED;
7747 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7748 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7749 event->ws.value.sig = (enum gdb_signal) sig;
7750 else
7751 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7752 }
7753 break;
7754 case 'w': /* Thread exited. */
7755 {
7756 ULONGEST value;
7757
7758 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7759 p = unpack_varlen_hex (&buf[1], &value);
7760 event->ws.value.integer = value;
7761 if (*p != ';')
7762 error (_("stop reply packet badly formatted: %s"), buf);
7763 event->ptid = read_ptid (++p, NULL);
7764 break;
7765 }
7766 case 'W': /* Target exited. */
7767 case 'X':
7768 {
7769 ULONGEST value;
7770
7771 /* GDB used to accept only 2 hex chars here. Stubs should
7772 only send more if they detect GDB supports multi-process
7773 support. */
7774 p = unpack_varlen_hex (&buf[1], &value);
7775
7776 if (buf[0] == 'W')
7777 {
7778 /* The remote process exited. */
7779 event->ws.kind = TARGET_WAITKIND_EXITED;
7780 event->ws.value.integer = value;
7781 }
7782 else
7783 {
7784 /* The remote process exited with a signal. */
7785 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7786 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7787 event->ws.value.sig = (enum gdb_signal) value;
7788 else
7789 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7790 }
7791
7792 /* If no process is specified, return null_ptid, and let the
7793 caller figure out the right process to use. */
7794 int pid = 0;
7795 if (*p == '\0')
7796 ;
7797 else if (*p == ';')
7798 {
7799 p++;
7800
7801 if (*p == '\0')
7802 ;
7803 else if (startswith (p, "process:"))
7804 {
7805 ULONGEST upid;
7806
7807 p += sizeof ("process:") - 1;
7808 unpack_varlen_hex (p, &upid);
7809 pid = upid;
7810 }
7811 else
7812 error (_("unknown stop reply packet: %s"), buf);
7813 }
7814 else
7815 error (_("unknown stop reply packet: %s"), buf);
7816 event->ptid = ptid_t (pid);
7817 }
7818 break;
7819 case 'N':
7820 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7821 event->ptid = minus_one_ptid;
7822 break;
7823 }
7824 }
7825
7826 /* When the stub wants to tell GDB about a new notification reply, it
7827 sends a notification (%Stop, for example). Those can come it at
7828 any time, hence, we have to make sure that any pending
7829 putpkt/getpkt sequence we're making is finished, before querying
7830 the stub for more events with the corresponding ack command
7831 (vStopped, for example). E.g., if we started a vStopped sequence
7832 immediately upon receiving the notification, something like this
7833 could happen:
7834
7835 1.1) --> Hg 1
7836 1.2) <-- OK
7837 1.3) --> g
7838 1.4) <-- %Stop
7839 1.5) --> vStopped
7840 1.6) <-- (registers reply to step #1.3)
7841
7842 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7843 query.
7844
7845 To solve this, whenever we parse a %Stop notification successfully,
7846 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7847 doing whatever we were doing:
7848
7849 2.1) --> Hg 1
7850 2.2) <-- OK
7851 2.3) --> g
7852 2.4) <-- %Stop
7853 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7854 2.5) <-- (registers reply to step #2.3)
7855
7856 Eventually after step #2.5, we return to the event loop, which
7857 notices there's an event on the
7858 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7859 associated callback --- the function below. At this point, we're
7860 always safe to start a vStopped sequence. :
7861
7862 2.6) --> vStopped
7863 2.7) <-- T05 thread:2
7864 2.8) --> vStopped
7865 2.9) --> OK
7866 */
7867
7868 void
7869 remote_target::remote_notif_get_pending_events (notif_client *nc)
7870 {
7871 struct remote_state *rs = get_remote_state ();
7872
7873 if (rs->notif_state->pending_event[nc->id] != NULL)
7874 {
7875 if (notif_debug)
7876 fprintf_unfiltered (gdb_stdlog,
7877 "notif: process: '%s' ack pending event\n",
7878 nc->name);
7879
7880 /* acknowledge */
7881 nc->ack (this, nc, rs->buf.data (),
7882 rs->notif_state->pending_event[nc->id]);
7883 rs->notif_state->pending_event[nc->id] = NULL;
7884
7885 while (1)
7886 {
7887 getpkt (&rs->buf, 0);
7888 if (strcmp (rs->buf.data (), "OK") == 0)
7889 break;
7890 else
7891 remote_notif_ack (this, nc, rs->buf.data ());
7892 }
7893 }
7894 else
7895 {
7896 if (notif_debug)
7897 fprintf_unfiltered (gdb_stdlog,
7898 "notif: process: '%s' no pending reply\n",
7899 nc->name);
7900 }
7901 }
7902
7903 /* Wrapper around remote_target::remote_notif_get_pending_events to
7904 avoid having to export the whole remote_target class. */
7905
7906 void
7907 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7908 {
7909 remote->remote_notif_get_pending_events (nc);
7910 }
7911
7912 /* Called from process_stop_reply when the stop packet we are responding
7913 to didn't include a process-id or thread-id. STATUS is the stop event
7914 we are responding to.
7915
7916 It is the task of this function to select a suitable thread (or process)
7917 and return its ptid, this is the thread (or process) we will assume the
7918 stop event came from.
7919
7920 In some cases there isn't really any choice about which thread (or
7921 process) is selected, a basic remote with a single process containing a
7922 single thread might choose not to send any process-id or thread-id in
7923 its stop packets, this function will select and return the one and only
7924 thread.
7925
7926 However, if a target supports multiple threads (or processes) and still
7927 doesn't include a thread-id (or process-id) in its stop packet then
7928 first, this is a badly behaving target, and second, we're going to have
7929 to select a thread (or process) at random and use that. This function
7930 will print a warning to the user if it detects that there is the
7931 possibility that GDB is guessing which thread (or process) to
7932 report.
7933
7934 Note that this is called before GDB fetches the updated thread list from the
7935 target. So it's possible for the stop reply to be ambiguous and for GDB to
7936 not realize it. For example, if there's initially one thread, the target
7937 spawns a second thread, and then sends a stop reply without an id that
7938 concerns the first thread. GDB will assume the stop reply is about the
7939 first thread - the only thread it knows about - without printing a warning.
7940 Anyway, if the remote meant for the stop reply to be about the second thread,
7941 then it would be really broken, because GDB doesn't know about that thread
7942 yet. */
7943
7944 ptid_t
7945 remote_target::select_thread_for_ambiguous_stop_reply
7946 (const struct target_waitstatus *status)
7947 {
7948 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7949
7950 /* Some stop events apply to all threads in an inferior, while others
7951 only apply to a single thread. */
7952 bool process_wide_stop
7953 = (status->kind == TARGET_WAITKIND_EXITED
7954 || status->kind == TARGET_WAITKIND_SIGNALLED);
7955
7956 remote_debug_printf ("process_wide_stop = %d", process_wide_stop);
7957
7958 thread_info *first_resumed_thread = nullptr;
7959 bool ambiguous = false;
7960
7961 /* Consider all non-exited threads of the target, find the first resumed
7962 one. */
7963 for (thread_info *thr : all_non_exited_threads (this))
7964 {
7965 remote_thread_info *remote_thr = get_remote_thread_info (thr);
7966
7967 if (remote_thr->get_resume_state () != resume_state::RESUMED)
7968 continue;
7969
7970 if (first_resumed_thread == nullptr)
7971 first_resumed_thread = thr;
7972 else if (!process_wide_stop
7973 || first_resumed_thread->ptid.pid () != thr->ptid.pid ())
7974 ambiguous = true;
7975 }
7976
7977 gdb_assert (first_resumed_thread != nullptr);
7978
7979 remote_debug_printf ("first resumed thread is %s",
7980 pid_to_str (first_resumed_thread->ptid).c_str ());
7981 remote_debug_printf ("is this guess ambiguous? = %d", ambiguous);
7982
7983 /* Warn if the remote target is sending ambiguous stop replies. */
7984 if (ambiguous)
7985 {
7986 static bool warned = false;
7987
7988 if (!warned)
7989 {
7990 /* If you are seeing this warning then the remote target has
7991 stopped without specifying a thread-id, but the target
7992 does have multiple threads (or inferiors), and so GDB is
7993 having to guess which thread stopped.
7994
7995 Examples of what might cause this are the target sending
7996 and 'S' stop packet, or a 'T' stop packet and not
7997 including a thread-id.
7998
7999 Additionally, the target might send a 'W' or 'X packet
8000 without including a process-id, when the target has
8001 multiple running inferiors. */
8002 if (process_wide_stop)
8003 warning (_("multi-inferior target stopped without "
8004 "sending a process-id, using first "
8005 "non-exited inferior"));
8006 else
8007 warning (_("multi-threaded target stopped without "
8008 "sending a thread-id, using first "
8009 "non-exited thread"));
8010 warned = true;
8011 }
8012 }
8013
8014 /* If this is a stop for all threads then don't use a particular threads
8015 ptid, instead create a new ptid where only the pid field is set. */
8016 if (process_wide_stop)
8017 return ptid_t (first_resumed_thread->ptid.pid ());
8018 else
8019 return first_resumed_thread->ptid;
8020 }
8021
8022 /* Called when it is decided that STOP_REPLY holds the info of the
8023 event that is to be returned to the core. This function always
8024 destroys STOP_REPLY. */
8025
8026 ptid_t
8027 remote_target::process_stop_reply (struct stop_reply *stop_reply,
8028 struct target_waitstatus *status)
8029 {
8030 *status = stop_reply->ws;
8031 ptid_t ptid = stop_reply->ptid;
8032
8033 /* If no thread/process was reported by the stub then select a suitable
8034 thread/process. */
8035 if (ptid == null_ptid)
8036 ptid = select_thread_for_ambiguous_stop_reply (status);
8037 gdb_assert (ptid != null_ptid);
8038
8039 if (status->kind != TARGET_WAITKIND_EXITED
8040 && status->kind != TARGET_WAITKIND_SIGNALLED
8041 && status->kind != TARGET_WAITKIND_NO_RESUMED)
8042 {
8043 /* Expedited registers. */
8044 if (!stop_reply->regcache.empty ())
8045 {
8046 struct regcache *regcache
8047 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
8048
8049 for (cached_reg_t &reg : stop_reply->regcache)
8050 {
8051 regcache->raw_supply (reg.num, reg.data);
8052 xfree (reg.data);
8053 }
8054
8055 stop_reply->regcache.clear ();
8056 }
8057
8058 remote_notice_new_inferior (ptid, false);
8059 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
8060 remote_thr->core = stop_reply->core;
8061 remote_thr->stop_reason = stop_reply->stop_reason;
8062 remote_thr->watch_data_address = stop_reply->watch_data_address;
8063
8064 if (target_is_non_stop_p ())
8065 {
8066 /* If the target works in non-stop mode, a stop-reply indicates that
8067 only this thread stopped. */
8068 remote_thr->set_not_resumed ();
8069 }
8070 else
8071 {
8072 /* If the target works in all-stop mode, a stop-reply indicates that
8073 all the target's threads stopped. */
8074 for (thread_info *tp : all_non_exited_threads (this))
8075 get_remote_thread_info (tp)->set_not_resumed ();
8076 }
8077 }
8078
8079 delete stop_reply;
8080 return ptid;
8081 }
8082
8083 /* The non-stop mode version of target_wait. */
8084
8085 ptid_t
8086 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
8087 target_wait_flags options)
8088 {
8089 struct remote_state *rs = get_remote_state ();
8090 struct stop_reply *stop_reply;
8091 int ret;
8092 int is_notif = 0;
8093
8094 /* If in non-stop mode, get out of getpkt even if a
8095 notification is received. */
8096
8097 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
8098 while (1)
8099 {
8100 if (ret != -1 && !is_notif)
8101 switch (rs->buf[0])
8102 {
8103 case 'E': /* Error of some sort. */
8104 /* We're out of sync with the target now. Did it continue
8105 or not? We can't tell which thread it was in non-stop,
8106 so just ignore this. */
8107 warning (_("Remote failure reply: %s"), rs->buf.data ());
8108 break;
8109 case 'O': /* Console output. */
8110 remote_console_output (&rs->buf[1]);
8111 break;
8112 default:
8113 warning (_("Invalid remote reply: %s"), rs->buf.data ());
8114 break;
8115 }
8116
8117 /* Acknowledge a pending stop reply that may have arrived in the
8118 mean time. */
8119 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
8120 remote_notif_get_pending_events (&notif_client_stop);
8121
8122 /* If indeed we noticed a stop reply, we're done. */
8123 stop_reply = queued_stop_reply (ptid);
8124 if (stop_reply != NULL)
8125 return process_stop_reply (stop_reply, status);
8126
8127 /* Still no event. If we're just polling for an event, then
8128 return to the event loop. */
8129 if (options & TARGET_WNOHANG)
8130 {
8131 status->kind = TARGET_WAITKIND_IGNORE;
8132 return minus_one_ptid;
8133 }
8134
8135 /* Otherwise do a blocking wait. */
8136 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
8137 }
8138 }
8139
8140 /* Return the first resumed thread. */
8141
8142 static ptid_t
8143 first_remote_resumed_thread (remote_target *target)
8144 {
8145 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
8146 if (tp->resumed)
8147 return tp->ptid;
8148 return null_ptid;
8149 }
8150
8151 /* Wait until the remote machine stops, then return, storing status in
8152 STATUS just as `wait' would. */
8153
8154 ptid_t
8155 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
8156 target_wait_flags options)
8157 {
8158 struct remote_state *rs = get_remote_state ();
8159 ptid_t event_ptid = null_ptid;
8160 char *buf;
8161 struct stop_reply *stop_reply;
8162
8163 again:
8164
8165 status->kind = TARGET_WAITKIND_IGNORE;
8166 status->value.integer = 0;
8167
8168 stop_reply = queued_stop_reply (ptid);
8169 if (stop_reply != NULL)
8170 return process_stop_reply (stop_reply, status);
8171
8172 if (rs->cached_wait_status)
8173 /* Use the cached wait status, but only once. */
8174 rs->cached_wait_status = 0;
8175 else
8176 {
8177 int ret;
8178 int is_notif;
8179 int forever = ((options & TARGET_WNOHANG) == 0
8180 && rs->wait_forever_enabled_p);
8181
8182 if (!rs->waiting_for_stop_reply)
8183 {
8184 status->kind = TARGET_WAITKIND_NO_RESUMED;
8185 return minus_one_ptid;
8186 }
8187
8188 /* FIXME: cagney/1999-09-27: If we're in async mode we should
8189 _never_ wait for ever -> test on target_is_async_p().
8190 However, before we do that we need to ensure that the caller
8191 knows how to take the target into/out of async mode. */
8192 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
8193
8194 /* GDB gets a notification. Return to core as this event is
8195 not interesting. */
8196 if (ret != -1 && is_notif)
8197 return minus_one_ptid;
8198
8199 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
8200 return minus_one_ptid;
8201 }
8202
8203 buf = rs->buf.data ();
8204
8205 /* Assume that the target has acknowledged Ctrl-C unless we receive
8206 an 'F' or 'O' packet. */
8207 if (buf[0] != 'F' && buf[0] != 'O')
8208 rs->ctrlc_pending_p = 0;
8209
8210 switch (buf[0])
8211 {
8212 case 'E': /* Error of some sort. */
8213 /* We're out of sync with the target now. Did it continue or
8214 not? Not is more likely, so report a stop. */
8215 rs->waiting_for_stop_reply = 0;
8216
8217 warning (_("Remote failure reply: %s"), buf);
8218 status->kind = TARGET_WAITKIND_STOPPED;
8219 status->value.sig = GDB_SIGNAL_0;
8220 break;
8221 case 'F': /* File-I/O request. */
8222 /* GDB may access the inferior memory while handling the File-I/O
8223 request, but we don't want GDB accessing memory while waiting
8224 for a stop reply. See the comments in putpkt_binary. Set
8225 waiting_for_stop_reply to 0 temporarily. */
8226 rs->waiting_for_stop_reply = 0;
8227 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
8228 rs->ctrlc_pending_p = 0;
8229 /* GDB handled the File-I/O request, and the target is running
8230 again. Keep waiting for events. */
8231 rs->waiting_for_stop_reply = 1;
8232 break;
8233 case 'N': case 'T': case 'S': case 'X': case 'W':
8234 {
8235 /* There is a stop reply to handle. */
8236 rs->waiting_for_stop_reply = 0;
8237
8238 stop_reply
8239 = (struct stop_reply *) remote_notif_parse (this,
8240 &notif_client_stop,
8241 rs->buf.data ());
8242
8243 event_ptid = process_stop_reply (stop_reply, status);
8244 break;
8245 }
8246 case 'O': /* Console output. */
8247 remote_console_output (buf + 1);
8248 break;
8249 case '\0':
8250 if (rs->last_sent_signal != GDB_SIGNAL_0)
8251 {
8252 /* Zero length reply means that we tried 'S' or 'C' and the
8253 remote system doesn't support it. */
8254 target_terminal::ours_for_output ();
8255 printf_filtered
8256 ("Can't send signals to this remote system. %s not sent.\n",
8257 gdb_signal_to_name (rs->last_sent_signal));
8258 rs->last_sent_signal = GDB_SIGNAL_0;
8259 target_terminal::inferior ();
8260
8261 strcpy (buf, rs->last_sent_step ? "s" : "c");
8262 putpkt (buf);
8263 break;
8264 }
8265 /* fallthrough */
8266 default:
8267 warning (_("Invalid remote reply: %s"), buf);
8268 break;
8269 }
8270
8271 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
8272 return minus_one_ptid;
8273 else if (status->kind == TARGET_WAITKIND_IGNORE)
8274 {
8275 /* Nothing interesting happened. If we're doing a non-blocking
8276 poll, we're done. Otherwise, go back to waiting. */
8277 if (options & TARGET_WNOHANG)
8278 return minus_one_ptid;
8279 else
8280 goto again;
8281 }
8282 else if (status->kind != TARGET_WAITKIND_EXITED
8283 && status->kind != TARGET_WAITKIND_SIGNALLED)
8284 {
8285 if (event_ptid != null_ptid)
8286 record_currthread (rs, event_ptid);
8287 else
8288 event_ptid = first_remote_resumed_thread (this);
8289 }
8290 else
8291 {
8292 /* A process exit. Invalidate our notion of current thread. */
8293 record_currthread (rs, minus_one_ptid);
8294 /* It's possible that the packet did not include a pid. */
8295 if (event_ptid == null_ptid)
8296 event_ptid = first_remote_resumed_thread (this);
8297 /* EVENT_PTID could still be NULL_PTID. Double-check. */
8298 if (event_ptid == null_ptid)
8299 event_ptid = magic_null_ptid;
8300 }
8301
8302 return event_ptid;
8303 }
8304
8305 /* Wait until the remote machine stops, then return, storing status in
8306 STATUS just as `wait' would. */
8307
8308 ptid_t
8309 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8310 target_wait_flags options)
8311 {
8312 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
8313
8314 remote_state *rs = get_remote_state ();
8315
8316 /* Start by clearing the flag that asks for our wait method to be called,
8317 we'll mark it again at the end if needed. */
8318 if (target_is_async_p ())
8319 clear_async_event_handler (rs->remote_async_inferior_event_token);
8320
8321 ptid_t event_ptid;
8322
8323 if (target_is_non_stop_p ())
8324 event_ptid = wait_ns (ptid, status, options);
8325 else
8326 event_ptid = wait_as (ptid, status, options);
8327
8328 if (target_is_async_p ())
8329 {
8330 /* If there are events left in the queue, or unacknowledged
8331 notifications, then tell the event loop to call us again. */
8332 if (!rs->stop_reply_queue.empty ()
8333 || rs->notif_state->pending_event[notif_client_stop.id] != nullptr)
8334 mark_async_event_handler (rs->remote_async_inferior_event_token);
8335 }
8336
8337 return event_ptid;
8338 }
8339
8340 /* Fetch a single register using a 'p' packet. */
8341
8342 int
8343 remote_target::fetch_register_using_p (struct regcache *regcache,
8344 packet_reg *reg)
8345 {
8346 struct gdbarch *gdbarch = regcache->arch ();
8347 struct remote_state *rs = get_remote_state ();
8348 char *buf, *p;
8349 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8350 int i;
8351
8352 if (packet_support (PACKET_p) == PACKET_DISABLE)
8353 return 0;
8354
8355 if (reg->pnum == -1)
8356 return 0;
8357
8358 p = rs->buf.data ();
8359 *p++ = 'p';
8360 p += hexnumstr (p, reg->pnum);
8361 *p++ = '\0';
8362 putpkt (rs->buf);
8363 getpkt (&rs->buf, 0);
8364
8365 buf = rs->buf.data ();
8366
8367 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8368 {
8369 case PACKET_OK:
8370 break;
8371 case PACKET_UNKNOWN:
8372 return 0;
8373 case PACKET_ERROR:
8374 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8375 gdbarch_register_name (regcache->arch (),
8376 reg->regnum),
8377 buf);
8378 }
8379
8380 /* If this register is unfetchable, tell the regcache. */
8381 if (buf[0] == 'x')
8382 {
8383 regcache->raw_supply (reg->regnum, NULL);
8384 return 1;
8385 }
8386
8387 /* Otherwise, parse and supply the value. */
8388 p = buf;
8389 i = 0;
8390 while (p[0] != 0)
8391 {
8392 if (p[1] == 0)
8393 error (_("fetch_register_using_p: early buf termination"));
8394
8395 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8396 p += 2;
8397 }
8398 regcache->raw_supply (reg->regnum, regp);
8399 return 1;
8400 }
8401
8402 /* Fetch the registers included in the target's 'g' packet. */
8403
8404 int
8405 remote_target::send_g_packet ()
8406 {
8407 struct remote_state *rs = get_remote_state ();
8408 int buf_len;
8409
8410 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8411 putpkt (rs->buf);
8412 getpkt (&rs->buf, 0);
8413 if (packet_check_result (rs->buf) == PACKET_ERROR)
8414 error (_("Could not read registers; remote failure reply '%s'"),
8415 rs->buf.data ());
8416
8417 /* We can get out of synch in various cases. If the first character
8418 in the buffer is not a hex character, assume that has happened
8419 and try to fetch another packet to read. */
8420 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8421 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8422 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8423 && rs->buf[0] != 'x') /* New: unavailable register value. */
8424 {
8425 remote_debug_printf ("Bad register packet; fetching a new packet");
8426 getpkt (&rs->buf, 0);
8427 }
8428
8429 buf_len = strlen (rs->buf.data ());
8430
8431 /* Sanity check the received packet. */
8432 if (buf_len % 2 != 0)
8433 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8434
8435 return buf_len / 2;
8436 }
8437
8438 void
8439 remote_target::process_g_packet (struct regcache *regcache)
8440 {
8441 struct gdbarch *gdbarch = regcache->arch ();
8442 struct remote_state *rs = get_remote_state ();
8443 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8444 int i, buf_len;
8445 char *p;
8446 char *regs;
8447
8448 buf_len = strlen (rs->buf.data ());
8449
8450 /* Further sanity checks, with knowledge of the architecture. */
8451 if (buf_len > 2 * rsa->sizeof_g_packet)
8452 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8453 "bytes): %s"),
8454 rsa->sizeof_g_packet, buf_len / 2,
8455 rs->buf.data ());
8456
8457 /* Save the size of the packet sent to us by the target. It is used
8458 as a heuristic when determining the max size of packets that the
8459 target can safely receive. */
8460 if (rsa->actual_register_packet_size == 0)
8461 rsa->actual_register_packet_size = buf_len;
8462
8463 /* If this is smaller than we guessed the 'g' packet would be,
8464 update our records. A 'g' reply that doesn't include a register's
8465 value implies either that the register is not available, or that
8466 the 'p' packet must be used. */
8467 if (buf_len < 2 * rsa->sizeof_g_packet)
8468 {
8469 long sizeof_g_packet = buf_len / 2;
8470
8471 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8472 {
8473 long offset = rsa->regs[i].offset;
8474 long reg_size = register_size (gdbarch, i);
8475
8476 if (rsa->regs[i].pnum == -1)
8477 continue;
8478
8479 if (offset >= sizeof_g_packet)
8480 rsa->regs[i].in_g_packet = 0;
8481 else if (offset + reg_size > sizeof_g_packet)
8482 error (_("Truncated register %d in remote 'g' packet"), i);
8483 else
8484 rsa->regs[i].in_g_packet = 1;
8485 }
8486
8487 /* Looks valid enough, we can assume this is the correct length
8488 for a 'g' packet. It's important not to adjust
8489 rsa->sizeof_g_packet if we have truncated registers otherwise
8490 this "if" won't be run the next time the method is called
8491 with a packet of the same size and one of the internal errors
8492 below will trigger instead. */
8493 rsa->sizeof_g_packet = sizeof_g_packet;
8494 }
8495
8496 regs = (char *) alloca (rsa->sizeof_g_packet);
8497
8498 /* Unimplemented registers read as all bits zero. */
8499 memset (regs, 0, rsa->sizeof_g_packet);
8500
8501 /* Reply describes registers byte by byte, each byte encoded as two
8502 hex characters. Suck them all up, then supply them to the
8503 register cacheing/storage mechanism. */
8504
8505 p = rs->buf.data ();
8506 for (i = 0; i < rsa->sizeof_g_packet; i++)
8507 {
8508 if (p[0] == 0 || p[1] == 0)
8509 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8510 internal_error (__FILE__, __LINE__,
8511 _("unexpected end of 'g' packet reply"));
8512
8513 if (p[0] == 'x' && p[1] == 'x')
8514 regs[i] = 0; /* 'x' */
8515 else
8516 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8517 p += 2;
8518 }
8519
8520 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8521 {
8522 struct packet_reg *r = &rsa->regs[i];
8523 long reg_size = register_size (gdbarch, i);
8524
8525 if (r->in_g_packet)
8526 {
8527 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8528 /* This shouldn't happen - we adjusted in_g_packet above. */
8529 internal_error (__FILE__, __LINE__,
8530 _("unexpected end of 'g' packet reply"));
8531 else if (rs->buf[r->offset * 2] == 'x')
8532 {
8533 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8534 /* The register isn't available, mark it as such (at
8535 the same time setting the value to zero). */
8536 regcache->raw_supply (r->regnum, NULL);
8537 }
8538 else
8539 regcache->raw_supply (r->regnum, regs + r->offset);
8540 }
8541 }
8542 }
8543
8544 void
8545 remote_target::fetch_registers_using_g (struct regcache *regcache)
8546 {
8547 send_g_packet ();
8548 process_g_packet (regcache);
8549 }
8550
8551 /* Make the remote selected traceframe match GDB's selected
8552 traceframe. */
8553
8554 void
8555 remote_target::set_remote_traceframe ()
8556 {
8557 int newnum;
8558 struct remote_state *rs = get_remote_state ();
8559
8560 if (rs->remote_traceframe_number == get_traceframe_number ())
8561 return;
8562
8563 /* Avoid recursion, remote_trace_find calls us again. */
8564 rs->remote_traceframe_number = get_traceframe_number ();
8565
8566 newnum = target_trace_find (tfind_number,
8567 get_traceframe_number (), 0, 0, NULL);
8568
8569 /* Should not happen. If it does, all bets are off. */
8570 if (newnum != get_traceframe_number ())
8571 warning (_("could not set remote traceframe"));
8572 }
8573
8574 void
8575 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8576 {
8577 struct gdbarch *gdbarch = regcache->arch ();
8578 struct remote_state *rs = get_remote_state ();
8579 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8580 int i;
8581
8582 set_remote_traceframe ();
8583 set_general_thread (regcache->ptid ());
8584
8585 if (regnum >= 0)
8586 {
8587 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8588
8589 gdb_assert (reg != NULL);
8590
8591 /* If this register might be in the 'g' packet, try that first -
8592 we are likely to read more than one register. If this is the
8593 first 'g' packet, we might be overly optimistic about its
8594 contents, so fall back to 'p'. */
8595 if (reg->in_g_packet)
8596 {
8597 fetch_registers_using_g (regcache);
8598 if (reg->in_g_packet)
8599 return;
8600 }
8601
8602 if (fetch_register_using_p (regcache, reg))
8603 return;
8604
8605 /* This register is not available. */
8606 regcache->raw_supply (reg->regnum, NULL);
8607
8608 return;
8609 }
8610
8611 fetch_registers_using_g (regcache);
8612
8613 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8614 if (!rsa->regs[i].in_g_packet)
8615 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8616 {
8617 /* This register is not available. */
8618 regcache->raw_supply (i, NULL);
8619 }
8620 }
8621
8622 /* Prepare to store registers. Since we may send them all (using a
8623 'G' request), we have to read out the ones we don't want to change
8624 first. */
8625
8626 void
8627 remote_target::prepare_to_store (struct regcache *regcache)
8628 {
8629 struct remote_state *rs = get_remote_state ();
8630 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8631 int i;
8632
8633 /* Make sure the entire registers array is valid. */
8634 switch (packet_support (PACKET_P))
8635 {
8636 case PACKET_DISABLE:
8637 case PACKET_SUPPORT_UNKNOWN:
8638 /* Make sure all the necessary registers are cached. */
8639 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8640 if (rsa->regs[i].in_g_packet)
8641 regcache->raw_update (rsa->regs[i].regnum);
8642 break;
8643 case PACKET_ENABLE:
8644 break;
8645 }
8646 }
8647
8648 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8649 packet was not recognized. */
8650
8651 int
8652 remote_target::store_register_using_P (const struct regcache *regcache,
8653 packet_reg *reg)
8654 {
8655 struct gdbarch *gdbarch = regcache->arch ();
8656 struct remote_state *rs = get_remote_state ();
8657 /* Try storing a single register. */
8658 char *buf = rs->buf.data ();
8659 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8660 char *p;
8661
8662 if (packet_support (PACKET_P) == PACKET_DISABLE)
8663 return 0;
8664
8665 if (reg->pnum == -1)
8666 return 0;
8667
8668 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8669 p = buf + strlen (buf);
8670 regcache->raw_collect (reg->regnum, regp);
8671 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8672 putpkt (rs->buf);
8673 getpkt (&rs->buf, 0);
8674
8675 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8676 {
8677 case PACKET_OK:
8678 return 1;
8679 case PACKET_ERROR:
8680 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8681 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8682 case PACKET_UNKNOWN:
8683 return 0;
8684 default:
8685 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8686 }
8687 }
8688
8689 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8690 contents of the register cache buffer. FIXME: ignores errors. */
8691
8692 void
8693 remote_target::store_registers_using_G (const struct regcache *regcache)
8694 {
8695 struct remote_state *rs = get_remote_state ();
8696 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8697 gdb_byte *regs;
8698 char *p;
8699
8700 /* Extract all the registers in the regcache copying them into a
8701 local buffer. */
8702 {
8703 int i;
8704
8705 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8706 memset (regs, 0, rsa->sizeof_g_packet);
8707 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8708 {
8709 struct packet_reg *r = &rsa->regs[i];
8710
8711 if (r->in_g_packet)
8712 regcache->raw_collect (r->regnum, regs + r->offset);
8713 }
8714 }
8715
8716 /* Command describes registers byte by byte,
8717 each byte encoded as two hex characters. */
8718 p = rs->buf.data ();
8719 *p++ = 'G';
8720 bin2hex (regs, p, rsa->sizeof_g_packet);
8721 putpkt (rs->buf);
8722 getpkt (&rs->buf, 0);
8723 if (packet_check_result (rs->buf) == PACKET_ERROR)
8724 error (_("Could not write registers; remote failure reply '%s'"),
8725 rs->buf.data ());
8726 }
8727
8728 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8729 of the register cache buffer. FIXME: ignores errors. */
8730
8731 void
8732 remote_target::store_registers (struct regcache *regcache, int regnum)
8733 {
8734 struct gdbarch *gdbarch = regcache->arch ();
8735 struct remote_state *rs = get_remote_state ();
8736 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8737 int i;
8738
8739 set_remote_traceframe ();
8740 set_general_thread (regcache->ptid ());
8741
8742 if (regnum >= 0)
8743 {
8744 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8745
8746 gdb_assert (reg != NULL);
8747
8748 /* Always prefer to store registers using the 'P' packet if
8749 possible; we often change only a small number of registers.
8750 Sometimes we change a larger number; we'd need help from a
8751 higher layer to know to use 'G'. */
8752 if (store_register_using_P (regcache, reg))
8753 return;
8754
8755 /* For now, don't complain if we have no way to write the
8756 register. GDB loses track of unavailable registers too
8757 easily. Some day, this may be an error. We don't have
8758 any way to read the register, either... */
8759 if (!reg->in_g_packet)
8760 return;
8761
8762 store_registers_using_G (regcache);
8763 return;
8764 }
8765
8766 store_registers_using_G (regcache);
8767
8768 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8769 if (!rsa->regs[i].in_g_packet)
8770 if (!store_register_using_P (regcache, &rsa->regs[i]))
8771 /* See above for why we do not issue an error here. */
8772 continue;
8773 }
8774 \f
8775
8776 /* Return the number of hex digits in num. */
8777
8778 static int
8779 hexnumlen (ULONGEST num)
8780 {
8781 int i;
8782
8783 for (i = 0; num != 0; i++)
8784 num >>= 4;
8785
8786 return std::max (i, 1);
8787 }
8788
8789 /* Set BUF to the minimum number of hex digits representing NUM. */
8790
8791 static int
8792 hexnumstr (char *buf, ULONGEST num)
8793 {
8794 int len = hexnumlen (num);
8795
8796 return hexnumnstr (buf, num, len);
8797 }
8798
8799
8800 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8801
8802 static int
8803 hexnumnstr (char *buf, ULONGEST num, int width)
8804 {
8805 int i;
8806
8807 buf[width] = '\0';
8808
8809 for (i = width - 1; i >= 0; i--)
8810 {
8811 buf[i] = "0123456789abcdef"[(num & 0xf)];
8812 num >>= 4;
8813 }
8814
8815 return width;
8816 }
8817
8818 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8819
8820 static CORE_ADDR
8821 remote_address_masked (CORE_ADDR addr)
8822 {
8823 unsigned int address_size = remote_address_size;
8824
8825 /* If "remoteaddresssize" was not set, default to target address size. */
8826 if (!address_size)
8827 address_size = gdbarch_addr_bit (target_gdbarch ());
8828
8829 if (address_size > 0
8830 && address_size < (sizeof (ULONGEST) * 8))
8831 {
8832 /* Only create a mask when that mask can safely be constructed
8833 in a ULONGEST variable. */
8834 ULONGEST mask = 1;
8835
8836 mask = (mask << address_size) - 1;
8837 addr &= mask;
8838 }
8839 return addr;
8840 }
8841
8842 /* Determine whether the remote target supports binary downloading.
8843 This is accomplished by sending a no-op memory write of zero length
8844 to the target at the specified address. It does not suffice to send
8845 the whole packet, since many stubs strip the eighth bit and
8846 subsequently compute a wrong checksum, which causes real havoc with
8847 remote_write_bytes.
8848
8849 NOTE: This can still lose if the serial line is not eight-bit
8850 clean. In cases like this, the user should clear "remote
8851 X-packet". */
8852
8853 void
8854 remote_target::check_binary_download (CORE_ADDR addr)
8855 {
8856 struct remote_state *rs = get_remote_state ();
8857
8858 switch (packet_support (PACKET_X))
8859 {
8860 case PACKET_DISABLE:
8861 break;
8862 case PACKET_ENABLE:
8863 break;
8864 case PACKET_SUPPORT_UNKNOWN:
8865 {
8866 char *p;
8867
8868 p = rs->buf.data ();
8869 *p++ = 'X';
8870 p += hexnumstr (p, (ULONGEST) addr);
8871 *p++ = ',';
8872 p += hexnumstr (p, (ULONGEST) 0);
8873 *p++ = ':';
8874 *p = '\0';
8875
8876 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8877 getpkt (&rs->buf, 0);
8878
8879 if (rs->buf[0] == '\0')
8880 {
8881 remote_debug_printf ("binary downloading NOT supported by target");
8882 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8883 }
8884 else
8885 {
8886 remote_debug_printf ("binary downloading supported by target");
8887 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8888 }
8889 break;
8890 }
8891 }
8892 }
8893
8894 /* Helper function to resize the payload in order to try to get a good
8895 alignment. We try to write an amount of data such that the next write will
8896 start on an address aligned on REMOTE_ALIGN_WRITES. */
8897
8898 static int
8899 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8900 {
8901 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8902 }
8903
8904 /* Write memory data directly to the remote machine.
8905 This does not inform the data cache; the data cache uses this.
8906 HEADER is the starting part of the packet.
8907 MEMADDR is the address in the remote memory space.
8908 MYADDR is the address of the buffer in our space.
8909 LEN_UNITS is the number of addressable units to write.
8910 UNIT_SIZE is the length in bytes of an addressable unit.
8911 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8912 should send data as binary ('X'), or hex-encoded ('M').
8913
8914 The function creates packet of the form
8915 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8916
8917 where encoding of <DATA> is terminated by PACKET_FORMAT.
8918
8919 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8920 are omitted.
8921
8922 Return the transferred status, error or OK (an
8923 'enum target_xfer_status' value). Save the number of addressable units
8924 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8925
8926 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8927 exchange between gdb and the stub could look like (?? in place of the
8928 checksum):
8929
8930 -> $m1000,4#??
8931 <- aaaabbbbccccdddd
8932
8933 -> $M1000,3:eeeeffffeeee#??
8934 <- OK
8935
8936 -> $m1000,4#??
8937 <- eeeeffffeeeedddd */
8938
8939 target_xfer_status
8940 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8941 const gdb_byte *myaddr,
8942 ULONGEST len_units,
8943 int unit_size,
8944 ULONGEST *xfered_len_units,
8945 char packet_format, int use_length)
8946 {
8947 struct remote_state *rs = get_remote_state ();
8948 char *p;
8949 char *plen = NULL;
8950 int plenlen = 0;
8951 int todo_units;
8952 int units_written;
8953 int payload_capacity_bytes;
8954 int payload_length_bytes;
8955
8956 if (packet_format != 'X' && packet_format != 'M')
8957 internal_error (__FILE__, __LINE__,
8958 _("remote_write_bytes_aux: bad packet format"));
8959
8960 if (len_units == 0)
8961 return TARGET_XFER_EOF;
8962
8963 payload_capacity_bytes = get_memory_write_packet_size ();
8964
8965 /* The packet buffer will be large enough for the payload;
8966 get_memory_packet_size ensures this. */
8967 rs->buf[0] = '\0';
8968
8969 /* Compute the size of the actual payload by subtracting out the
8970 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8971
8972 payload_capacity_bytes -= strlen ("$,:#NN");
8973 if (!use_length)
8974 /* The comma won't be used. */
8975 payload_capacity_bytes += 1;
8976 payload_capacity_bytes -= strlen (header);
8977 payload_capacity_bytes -= hexnumlen (memaddr);
8978
8979 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8980
8981 strcat (rs->buf.data (), header);
8982 p = rs->buf.data () + strlen (header);
8983
8984 /* Compute a best guess of the number of bytes actually transfered. */
8985 if (packet_format == 'X')
8986 {
8987 /* Best guess at number of bytes that will fit. */
8988 todo_units = std::min (len_units,
8989 (ULONGEST) payload_capacity_bytes / unit_size);
8990 if (use_length)
8991 payload_capacity_bytes -= hexnumlen (todo_units);
8992 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8993 }
8994 else
8995 {
8996 /* Number of bytes that will fit. */
8997 todo_units
8998 = std::min (len_units,
8999 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
9000 if (use_length)
9001 payload_capacity_bytes -= hexnumlen (todo_units);
9002 todo_units = std::min (todo_units,
9003 (payload_capacity_bytes / unit_size) / 2);
9004 }
9005
9006 if (todo_units <= 0)
9007 internal_error (__FILE__, __LINE__,
9008 _("minimum packet size too small to write data"));
9009
9010 /* If we already need another packet, then try to align the end
9011 of this packet to a useful boundary. */
9012 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
9013 todo_units = align_for_efficient_write (todo_units, memaddr);
9014
9015 /* Append "<memaddr>". */
9016 memaddr = remote_address_masked (memaddr);
9017 p += hexnumstr (p, (ULONGEST) memaddr);
9018
9019 if (use_length)
9020 {
9021 /* Append ",". */
9022 *p++ = ',';
9023
9024 /* Append the length and retain its location and size. It may need to be
9025 adjusted once the packet body has been created. */
9026 plen = p;
9027 plenlen = hexnumstr (p, (ULONGEST) todo_units);
9028 p += plenlen;
9029 }
9030
9031 /* Append ":". */
9032 *p++ = ':';
9033 *p = '\0';
9034
9035 /* Append the packet body. */
9036 if (packet_format == 'X')
9037 {
9038 /* Binary mode. Send target system values byte by byte, in
9039 increasing byte addresses. Only escape certain critical
9040 characters. */
9041 payload_length_bytes =
9042 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
9043 &units_written, payload_capacity_bytes);
9044
9045 /* If not all TODO units fit, then we'll need another packet. Make
9046 a second try to keep the end of the packet aligned. Don't do
9047 this if the packet is tiny. */
9048 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
9049 {
9050 int new_todo_units;
9051
9052 new_todo_units = align_for_efficient_write (units_written, memaddr);
9053
9054 if (new_todo_units != units_written)
9055 payload_length_bytes =
9056 remote_escape_output (myaddr, new_todo_units, unit_size,
9057 (gdb_byte *) p, &units_written,
9058 payload_capacity_bytes);
9059 }
9060
9061 p += payload_length_bytes;
9062 if (use_length && units_written < todo_units)
9063 {
9064 /* Escape chars have filled up the buffer prematurely,
9065 and we have actually sent fewer units than planned.
9066 Fix-up the length field of the packet. Use the same
9067 number of characters as before. */
9068 plen += hexnumnstr (plen, (ULONGEST) units_written,
9069 plenlen);
9070 *plen = ':'; /* overwrite \0 from hexnumnstr() */
9071 }
9072 }
9073 else
9074 {
9075 /* Normal mode: Send target system values byte by byte, in
9076 increasing byte addresses. Each byte is encoded as a two hex
9077 value. */
9078 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
9079 units_written = todo_units;
9080 }
9081
9082 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
9083 getpkt (&rs->buf, 0);
9084
9085 if (rs->buf[0] == 'E')
9086 return TARGET_XFER_E_IO;
9087
9088 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
9089 send fewer units than we'd planned. */
9090 *xfered_len_units = (ULONGEST) units_written;
9091 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9092 }
9093
9094 /* Write memory data directly to the remote machine.
9095 This does not inform the data cache; the data cache uses this.
9096 MEMADDR is the address in the remote memory space.
9097 MYADDR is the address of the buffer in our space.
9098 LEN is the number of bytes.
9099
9100 Return the transferred status, error or OK (an
9101 'enum target_xfer_status' value). Save the number of bytes
9102 transferred in *XFERED_LEN. Only transfer a single packet. */
9103
9104 target_xfer_status
9105 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
9106 ULONGEST len, int unit_size,
9107 ULONGEST *xfered_len)
9108 {
9109 const char *packet_format = NULL;
9110
9111 /* Check whether the target supports binary download. */
9112 check_binary_download (memaddr);
9113
9114 switch (packet_support (PACKET_X))
9115 {
9116 case PACKET_ENABLE:
9117 packet_format = "X";
9118 break;
9119 case PACKET_DISABLE:
9120 packet_format = "M";
9121 break;
9122 case PACKET_SUPPORT_UNKNOWN:
9123 internal_error (__FILE__, __LINE__,
9124 _("remote_write_bytes: bad internal state"));
9125 default:
9126 internal_error (__FILE__, __LINE__, _("bad switch"));
9127 }
9128
9129 return remote_write_bytes_aux (packet_format,
9130 memaddr, myaddr, len, unit_size, xfered_len,
9131 packet_format[0], 1);
9132 }
9133
9134 /* Read memory data directly from the remote machine.
9135 This does not use the data cache; the data cache uses this.
9136 MEMADDR is the address in the remote memory space.
9137 MYADDR is the address of the buffer in our space.
9138 LEN_UNITS is the number of addressable memory units to read..
9139 UNIT_SIZE is the length in bytes of an addressable unit.
9140
9141 Return the transferred status, error or OK (an
9142 'enum target_xfer_status' value). Save the number of bytes
9143 transferred in *XFERED_LEN_UNITS.
9144
9145 See the comment of remote_write_bytes_aux for an example of
9146 memory read/write exchange between gdb and the stub. */
9147
9148 target_xfer_status
9149 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
9150 ULONGEST len_units,
9151 int unit_size, ULONGEST *xfered_len_units)
9152 {
9153 struct remote_state *rs = get_remote_state ();
9154 int buf_size_bytes; /* Max size of packet output buffer. */
9155 char *p;
9156 int todo_units;
9157 int decoded_bytes;
9158
9159 buf_size_bytes = get_memory_read_packet_size ();
9160 /* The packet buffer will be large enough for the payload;
9161 get_memory_packet_size ensures this. */
9162
9163 /* Number of units that will fit. */
9164 todo_units = std::min (len_units,
9165 (ULONGEST) (buf_size_bytes / unit_size) / 2);
9166
9167 /* Construct "m"<memaddr>","<len>". */
9168 memaddr = remote_address_masked (memaddr);
9169 p = rs->buf.data ();
9170 *p++ = 'm';
9171 p += hexnumstr (p, (ULONGEST) memaddr);
9172 *p++ = ',';
9173 p += hexnumstr (p, (ULONGEST) todo_units);
9174 *p = '\0';
9175 putpkt (rs->buf);
9176 getpkt (&rs->buf, 0);
9177 if (rs->buf[0] == 'E'
9178 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
9179 && rs->buf[3] == '\0')
9180 return TARGET_XFER_E_IO;
9181 /* Reply describes memory byte by byte, each byte encoded as two hex
9182 characters. */
9183 p = rs->buf.data ();
9184 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
9185 /* Return what we have. Let higher layers handle partial reads. */
9186 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
9187 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9188 }
9189
9190 /* Using the set of read-only target sections of remote, read live
9191 read-only memory.
9192
9193 For interface/parameters/return description see target.h,
9194 to_xfer_partial. */
9195
9196 target_xfer_status
9197 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
9198 ULONGEST memaddr,
9199 ULONGEST len,
9200 int unit_size,
9201 ULONGEST *xfered_len)
9202 {
9203 const struct target_section *secp;
9204
9205 secp = target_section_by_addr (this, memaddr);
9206 if (secp != NULL
9207 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
9208 {
9209 ULONGEST memend = memaddr + len;
9210
9211 const target_section_table *table = target_get_section_table (this);
9212 for (const target_section &p : *table)
9213 {
9214 if (memaddr >= p.addr)
9215 {
9216 if (memend <= p.endaddr)
9217 {
9218 /* Entire transfer is within this section. */
9219 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9220 xfered_len);
9221 }
9222 else if (memaddr >= p.endaddr)
9223 {
9224 /* This section ends before the transfer starts. */
9225 continue;
9226 }
9227 else
9228 {
9229 /* This section overlaps the transfer. Just do half. */
9230 len = p.endaddr - memaddr;
9231 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9232 xfered_len);
9233 }
9234 }
9235 }
9236 }
9237
9238 return TARGET_XFER_EOF;
9239 }
9240
9241 /* Similar to remote_read_bytes_1, but it reads from the remote stub
9242 first if the requested memory is unavailable in traceframe.
9243 Otherwise, fall back to remote_read_bytes_1. */
9244
9245 target_xfer_status
9246 remote_target::remote_read_bytes (CORE_ADDR memaddr,
9247 gdb_byte *myaddr, ULONGEST len, int unit_size,
9248 ULONGEST *xfered_len)
9249 {
9250 if (len == 0)
9251 return TARGET_XFER_EOF;
9252
9253 if (get_traceframe_number () != -1)
9254 {
9255 std::vector<mem_range> available;
9256
9257 /* If we fail to get the set of available memory, then the
9258 target does not support querying traceframe info, and so we
9259 attempt reading from the traceframe anyway (assuming the
9260 target implements the old QTro packet then). */
9261 if (traceframe_available_memory (&available, memaddr, len))
9262 {
9263 if (available.empty () || available[0].start != memaddr)
9264 {
9265 enum target_xfer_status res;
9266
9267 /* Don't read into the traceframe's available
9268 memory. */
9269 if (!available.empty ())
9270 {
9271 LONGEST oldlen = len;
9272
9273 len = available[0].start - memaddr;
9274 gdb_assert (len <= oldlen);
9275 }
9276
9277 /* This goes through the topmost target again. */
9278 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
9279 len, unit_size, xfered_len);
9280 if (res == TARGET_XFER_OK)
9281 return TARGET_XFER_OK;
9282 else
9283 {
9284 /* No use trying further, we know some memory starting
9285 at MEMADDR isn't available. */
9286 *xfered_len = len;
9287 return (*xfered_len != 0) ?
9288 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
9289 }
9290 }
9291
9292 /* Don't try to read more than how much is available, in
9293 case the target implements the deprecated QTro packet to
9294 cater for older GDBs (the target's knowledge of read-only
9295 sections may be outdated by now). */
9296 len = available[0].length;
9297 }
9298 }
9299
9300 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
9301 }
9302
9303 \f
9304
9305 /* Sends a packet with content determined by the printf format string
9306 FORMAT and the remaining arguments, then gets the reply. Returns
9307 whether the packet was a success, a failure, or unknown. */
9308
9309 packet_result
9310 remote_target::remote_send_printf (const char *format, ...)
9311 {
9312 struct remote_state *rs = get_remote_state ();
9313 int max_size = get_remote_packet_size ();
9314 va_list ap;
9315
9316 va_start (ap, format);
9317
9318 rs->buf[0] = '\0';
9319 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9320
9321 va_end (ap);
9322
9323 if (size >= max_size)
9324 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9325
9326 if (putpkt (rs->buf) < 0)
9327 error (_("Communication problem with target."));
9328
9329 rs->buf[0] = '\0';
9330 getpkt (&rs->buf, 0);
9331
9332 return packet_check_result (rs->buf);
9333 }
9334
9335 /* Flash writing can take quite some time. We'll set
9336 effectively infinite timeout for flash operations.
9337 In future, we'll need to decide on a better approach. */
9338 static const int remote_flash_timeout = 1000;
9339
9340 void
9341 remote_target::flash_erase (ULONGEST address, LONGEST length)
9342 {
9343 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9344 enum packet_result ret;
9345 scoped_restore restore_timeout
9346 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9347
9348 ret = remote_send_printf ("vFlashErase:%s,%s",
9349 phex (address, addr_size),
9350 phex (length, 4));
9351 switch (ret)
9352 {
9353 case PACKET_UNKNOWN:
9354 error (_("Remote target does not support flash erase"));
9355 case PACKET_ERROR:
9356 error (_("Error erasing flash with vFlashErase packet"));
9357 default:
9358 break;
9359 }
9360 }
9361
9362 target_xfer_status
9363 remote_target::remote_flash_write (ULONGEST address,
9364 ULONGEST length, ULONGEST *xfered_len,
9365 const gdb_byte *data)
9366 {
9367 scoped_restore restore_timeout
9368 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9369 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9370 xfered_len,'X', 0);
9371 }
9372
9373 void
9374 remote_target::flash_done ()
9375 {
9376 int ret;
9377
9378 scoped_restore restore_timeout
9379 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9380
9381 ret = remote_send_printf ("vFlashDone");
9382
9383 switch (ret)
9384 {
9385 case PACKET_UNKNOWN:
9386 error (_("Remote target does not support vFlashDone"));
9387 case PACKET_ERROR:
9388 error (_("Error finishing flash operation"));
9389 default:
9390 break;
9391 }
9392 }
9393
9394 void
9395 remote_target::files_info ()
9396 {
9397 puts_filtered ("Debugging a target over a serial line.\n");
9398 }
9399 \f
9400 /* Stuff for dealing with the packets which are part of this protocol.
9401 See comment at top of file for details. */
9402
9403 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9404 error to higher layers. Called when a serial error is detected.
9405 The exception message is STRING, followed by a colon and a blank,
9406 the system error message for errno at function entry and final dot
9407 for output compatibility with throw_perror_with_name. */
9408
9409 static void
9410 unpush_and_perror (remote_target *target, const char *string)
9411 {
9412 int saved_errno = errno;
9413
9414 remote_unpush_target (target);
9415 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9416 safe_strerror (saved_errno));
9417 }
9418
9419 /* Read a single character from the remote end. The current quit
9420 handler is overridden to avoid quitting in the middle of packet
9421 sequence, as that would break communication with the remote server.
9422 See remote_serial_quit_handler for more detail. */
9423
9424 int
9425 remote_target::readchar (int timeout)
9426 {
9427 int ch;
9428 struct remote_state *rs = get_remote_state ();
9429
9430 {
9431 scoped_restore restore_quit_target
9432 = make_scoped_restore (&curr_quit_handler_target, this);
9433 scoped_restore restore_quit
9434 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9435
9436 rs->got_ctrlc_during_io = 0;
9437
9438 ch = serial_readchar (rs->remote_desc, timeout);
9439
9440 if (rs->got_ctrlc_during_io)
9441 set_quit_flag ();
9442 }
9443
9444 if (ch >= 0)
9445 return ch;
9446
9447 switch ((enum serial_rc) ch)
9448 {
9449 case SERIAL_EOF:
9450 remote_unpush_target (this);
9451 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9452 /* no return */
9453 case SERIAL_ERROR:
9454 unpush_and_perror (this, _("Remote communication error. "
9455 "Target disconnected."));
9456 /* no return */
9457 case SERIAL_TIMEOUT:
9458 break;
9459 }
9460 return ch;
9461 }
9462
9463 /* Wrapper for serial_write that closes the target and throws if
9464 writing fails. The current quit handler is overridden to avoid
9465 quitting in the middle of packet sequence, as that would break
9466 communication with the remote server. See
9467 remote_serial_quit_handler for more detail. */
9468
9469 void
9470 remote_target::remote_serial_write (const char *str, int len)
9471 {
9472 struct remote_state *rs = get_remote_state ();
9473
9474 scoped_restore restore_quit_target
9475 = make_scoped_restore (&curr_quit_handler_target, this);
9476 scoped_restore restore_quit
9477 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9478
9479 rs->got_ctrlc_during_io = 0;
9480
9481 if (serial_write (rs->remote_desc, str, len))
9482 {
9483 unpush_and_perror (this, _("Remote communication error. "
9484 "Target disconnected."));
9485 }
9486
9487 if (rs->got_ctrlc_during_io)
9488 set_quit_flag ();
9489 }
9490
9491 /* Return a string representing an escaped version of BUF, of len N.
9492 E.g. \n is converted to \\n, \t to \\t, etc. */
9493
9494 static std::string
9495 escape_buffer (const char *buf, int n)
9496 {
9497 string_file stb;
9498
9499 stb.putstrn (buf, n, '\\');
9500 return std::move (stb.string ());
9501 }
9502
9503 /* Display a null-terminated packet on stdout, for debugging, using C
9504 string notation. */
9505
9506 static void
9507 print_packet (const char *buf)
9508 {
9509 puts_filtered ("\"");
9510 fputstr_filtered (buf, '"', gdb_stdout);
9511 puts_filtered ("\"");
9512 }
9513
9514 int
9515 remote_target::putpkt (const char *buf)
9516 {
9517 return putpkt_binary (buf, strlen (buf));
9518 }
9519
9520 /* Wrapper around remote_target::putpkt to avoid exporting
9521 remote_target. */
9522
9523 int
9524 putpkt (remote_target *remote, const char *buf)
9525 {
9526 return remote->putpkt (buf);
9527 }
9528
9529 /* Send a packet to the remote machine, with error checking. The data
9530 of the packet is in BUF. The string in BUF can be at most
9531 get_remote_packet_size () - 5 to account for the $, # and checksum,
9532 and for a possible /0 if we are debugging (remote_debug) and want
9533 to print the sent packet as a string. */
9534
9535 int
9536 remote_target::putpkt_binary (const char *buf, int cnt)
9537 {
9538 struct remote_state *rs = get_remote_state ();
9539 int i;
9540 unsigned char csum = 0;
9541 gdb::def_vector<char> data (cnt + 6);
9542 char *buf2 = data.data ();
9543
9544 int ch;
9545 int tcount = 0;
9546 char *p;
9547
9548 /* Catch cases like trying to read memory or listing threads while
9549 we're waiting for a stop reply. The remote server wouldn't be
9550 ready to handle this request, so we'd hang and timeout. We don't
9551 have to worry about this in synchronous mode, because in that
9552 case it's not possible to issue a command while the target is
9553 running. This is not a problem in non-stop mode, because in that
9554 case, the stub is always ready to process serial input. */
9555 if (!target_is_non_stop_p ()
9556 && target_is_async_p ()
9557 && rs->waiting_for_stop_reply)
9558 {
9559 error (_("Cannot execute this command while the target is running.\n"
9560 "Use the \"interrupt\" command to stop the target\n"
9561 "and then try again."));
9562 }
9563
9564 /* We're sending out a new packet. Make sure we don't look at a
9565 stale cached response. */
9566 rs->cached_wait_status = 0;
9567
9568 /* Copy the packet into buffer BUF2, encapsulating it
9569 and giving it a checksum. */
9570
9571 p = buf2;
9572 *p++ = '$';
9573
9574 for (i = 0; i < cnt; i++)
9575 {
9576 csum += buf[i];
9577 *p++ = buf[i];
9578 }
9579 *p++ = '#';
9580 *p++ = tohex ((csum >> 4) & 0xf);
9581 *p++ = tohex (csum & 0xf);
9582
9583 /* Send it over and over until we get a positive ack. */
9584
9585 while (1)
9586 {
9587 if (remote_debug)
9588 {
9589 *p = '\0';
9590
9591 int len = (int) (p - buf2);
9592 int max_chars;
9593
9594 if (remote_packet_max_chars < 0)
9595 max_chars = len;
9596 else
9597 max_chars = remote_packet_max_chars;
9598
9599 std::string str
9600 = escape_buffer (buf2, std::min (len, max_chars));
9601
9602 if (len > max_chars)
9603 remote_debug_printf_nofunc
9604 ("Sending packet: %s [%d bytes omitted]", str.c_str (),
9605 len - max_chars);
9606 else
9607 remote_debug_printf_nofunc ("Sending packet: %s", str.c_str ());
9608 }
9609 remote_serial_write (buf2, p - buf2);
9610
9611 /* If this is a no acks version of the remote protocol, send the
9612 packet and move on. */
9613 if (rs->noack_mode)
9614 break;
9615
9616 /* Read until either a timeout occurs (-2) or '+' is read.
9617 Handle any notification that arrives in the mean time. */
9618 while (1)
9619 {
9620 ch = readchar (remote_timeout);
9621
9622 switch (ch)
9623 {
9624 case '+':
9625 remote_debug_printf_nofunc ("Received Ack");
9626 return 1;
9627 case '-':
9628 remote_debug_printf_nofunc ("Received Nak");
9629 /* FALLTHROUGH */
9630 case SERIAL_TIMEOUT:
9631 tcount++;
9632 if (tcount > 3)
9633 return 0;
9634 break; /* Retransmit buffer. */
9635 case '$':
9636 {
9637 remote_debug_printf ("Packet instead of Ack, ignoring it");
9638 /* It's probably an old response sent because an ACK
9639 was lost. Gobble up the packet and ack it so it
9640 doesn't get retransmitted when we resend this
9641 packet. */
9642 skip_frame ();
9643 remote_serial_write ("+", 1);
9644 continue; /* Now, go look for +. */
9645 }
9646
9647 case '%':
9648 {
9649 int val;
9650
9651 /* If we got a notification, handle it, and go back to looking
9652 for an ack. */
9653 /* We've found the start of a notification. Now
9654 collect the data. */
9655 val = read_frame (&rs->buf);
9656 if (val >= 0)
9657 {
9658 remote_debug_printf_nofunc
9659 (" Notification received: %s",
9660 escape_buffer (rs->buf.data (), val).c_str ());
9661
9662 handle_notification (rs->notif_state, rs->buf.data ());
9663 /* We're in sync now, rewait for the ack. */
9664 tcount = 0;
9665 }
9666 else
9667 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9668 rs->buf.data ());
9669 continue;
9670 }
9671 /* fall-through */
9672 default:
9673 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9674 rs->buf.data ());
9675 continue;
9676 }
9677 break; /* Here to retransmit. */
9678 }
9679
9680 #if 0
9681 /* This is wrong. If doing a long backtrace, the user should be
9682 able to get out next time we call QUIT, without anything as
9683 violent as interrupt_query. If we want to provide a way out of
9684 here without getting to the next QUIT, it should be based on
9685 hitting ^C twice as in remote_wait. */
9686 if (quit_flag)
9687 {
9688 quit_flag = 0;
9689 interrupt_query ();
9690 }
9691 #endif
9692 }
9693
9694 return 0;
9695 }
9696
9697 /* Come here after finding the start of a frame when we expected an
9698 ack. Do our best to discard the rest of this packet. */
9699
9700 void
9701 remote_target::skip_frame ()
9702 {
9703 int c;
9704
9705 while (1)
9706 {
9707 c = readchar (remote_timeout);
9708 switch (c)
9709 {
9710 case SERIAL_TIMEOUT:
9711 /* Nothing we can do. */
9712 return;
9713 case '#':
9714 /* Discard the two bytes of checksum and stop. */
9715 c = readchar (remote_timeout);
9716 if (c >= 0)
9717 c = readchar (remote_timeout);
9718
9719 return;
9720 case '*': /* Run length encoding. */
9721 /* Discard the repeat count. */
9722 c = readchar (remote_timeout);
9723 if (c < 0)
9724 return;
9725 break;
9726 default:
9727 /* A regular character. */
9728 break;
9729 }
9730 }
9731 }
9732
9733 /* Come here after finding the start of the frame. Collect the rest
9734 into *BUF, verifying the checksum, length, and handling run-length
9735 compression. NUL terminate the buffer. If there is not enough room,
9736 expand *BUF.
9737
9738 Returns -1 on error, number of characters in buffer (ignoring the
9739 trailing NULL) on success. (could be extended to return one of the
9740 SERIAL status indications). */
9741
9742 long
9743 remote_target::read_frame (gdb::char_vector *buf_p)
9744 {
9745 unsigned char csum;
9746 long bc;
9747 int c;
9748 char *buf = buf_p->data ();
9749 struct remote_state *rs = get_remote_state ();
9750
9751 csum = 0;
9752 bc = 0;
9753
9754 while (1)
9755 {
9756 c = readchar (remote_timeout);
9757 switch (c)
9758 {
9759 case SERIAL_TIMEOUT:
9760 remote_debug_printf ("Timeout in mid-packet, retrying");
9761 return -1;
9762
9763 case '$':
9764 remote_debug_printf ("Saw new packet start in middle of old one");
9765 return -1; /* Start a new packet, count retries. */
9766
9767 case '#':
9768 {
9769 unsigned char pktcsum;
9770 int check_0 = 0;
9771 int check_1 = 0;
9772
9773 buf[bc] = '\0';
9774
9775 check_0 = readchar (remote_timeout);
9776 if (check_0 >= 0)
9777 check_1 = readchar (remote_timeout);
9778
9779 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9780 {
9781 remote_debug_printf ("Timeout in checksum, retrying");
9782 return -1;
9783 }
9784 else if (check_0 < 0 || check_1 < 0)
9785 {
9786 remote_debug_printf ("Communication error in checksum");
9787 return -1;
9788 }
9789
9790 /* Don't recompute the checksum; with no ack packets we
9791 don't have any way to indicate a packet retransmission
9792 is necessary. */
9793 if (rs->noack_mode)
9794 return bc;
9795
9796 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9797 if (csum == pktcsum)
9798 return bc;
9799
9800 remote_debug_printf
9801 ("Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s",
9802 pktcsum, csum, escape_buffer (buf, bc).c_str ());
9803
9804 /* Number of characters in buffer ignoring trailing
9805 NULL. */
9806 return -1;
9807 }
9808 case '*': /* Run length encoding. */
9809 {
9810 int repeat;
9811
9812 csum += c;
9813 c = readchar (remote_timeout);
9814 csum += c;
9815 repeat = c - ' ' + 3; /* Compute repeat count. */
9816
9817 /* The character before ``*'' is repeated. */
9818
9819 if (repeat > 0 && repeat <= 255 && bc > 0)
9820 {
9821 if (bc + repeat - 1 >= buf_p->size () - 1)
9822 {
9823 /* Make some more room in the buffer. */
9824 buf_p->resize (buf_p->size () + repeat);
9825 buf = buf_p->data ();
9826 }
9827
9828 memset (&buf[bc], buf[bc - 1], repeat);
9829 bc += repeat;
9830 continue;
9831 }
9832
9833 buf[bc] = '\0';
9834 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9835 return -1;
9836 }
9837 default:
9838 if (bc >= buf_p->size () - 1)
9839 {
9840 /* Make some more room in the buffer. */
9841 buf_p->resize (buf_p->size () * 2);
9842 buf = buf_p->data ();
9843 }
9844
9845 buf[bc++] = c;
9846 csum += c;
9847 continue;
9848 }
9849 }
9850 }
9851
9852 /* Set this to the maximum number of seconds to wait instead of waiting forever
9853 in target_wait(). If this timer times out, then it generates an error and
9854 the command is aborted. This replaces most of the need for timeouts in the
9855 GDB test suite, and makes it possible to distinguish between a hung target
9856 and one with slow communications. */
9857
9858 static int watchdog = 0;
9859 static void
9860 show_watchdog (struct ui_file *file, int from_tty,
9861 struct cmd_list_element *c, const char *value)
9862 {
9863 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9864 }
9865
9866 /* Read a packet from the remote machine, with error checking, and
9867 store it in *BUF. Resize *BUF if necessary to hold the result. If
9868 FOREVER, wait forever rather than timing out; this is used (in
9869 synchronous mode) to wait for a target that is is executing user
9870 code to stop. */
9871 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9872 don't have to change all the calls to getpkt to deal with the
9873 return value, because at the moment I don't know what the right
9874 thing to do it for those. */
9875
9876 void
9877 remote_target::getpkt (gdb::char_vector *buf, int forever)
9878 {
9879 getpkt_sane (buf, forever);
9880 }
9881
9882
9883 /* Read a packet from the remote machine, with error checking, and
9884 store it in *BUF. Resize *BUF if necessary to hold the result. If
9885 FOREVER, wait forever rather than timing out; this is used (in
9886 synchronous mode) to wait for a target that is is executing user
9887 code to stop. If FOREVER == 0, this function is allowed to time
9888 out gracefully and return an indication of this to the caller.
9889 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9890 consider receiving a notification enough reason to return to the
9891 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9892 holds a notification or not (a regular packet). */
9893
9894 int
9895 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9896 int forever, int expecting_notif,
9897 int *is_notif)
9898 {
9899 struct remote_state *rs = get_remote_state ();
9900 int c;
9901 int tries;
9902 int timeout;
9903 int val = -1;
9904
9905 /* We're reading a new response. Make sure we don't look at a
9906 previously cached response. */
9907 rs->cached_wait_status = 0;
9908
9909 strcpy (buf->data (), "timeout");
9910
9911 if (forever)
9912 timeout = watchdog > 0 ? watchdog : -1;
9913 else if (expecting_notif)
9914 timeout = 0; /* There should already be a char in the buffer. If
9915 not, bail out. */
9916 else
9917 timeout = remote_timeout;
9918
9919 #define MAX_TRIES 3
9920
9921 /* Process any number of notifications, and then return when
9922 we get a packet. */
9923 for (;;)
9924 {
9925 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9926 times. */
9927 for (tries = 1; tries <= MAX_TRIES; tries++)
9928 {
9929 /* This can loop forever if the remote side sends us
9930 characters continuously, but if it pauses, we'll get
9931 SERIAL_TIMEOUT from readchar because of timeout. Then
9932 we'll count that as a retry.
9933
9934 Note that even when forever is set, we will only wait
9935 forever prior to the start of a packet. After that, we
9936 expect characters to arrive at a brisk pace. They should
9937 show up within remote_timeout intervals. */
9938 do
9939 c = readchar (timeout);
9940 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9941
9942 if (c == SERIAL_TIMEOUT)
9943 {
9944 if (expecting_notif)
9945 return -1; /* Don't complain, it's normal to not get
9946 anything in this case. */
9947
9948 if (forever) /* Watchdog went off? Kill the target. */
9949 {
9950 remote_unpush_target (this);
9951 throw_error (TARGET_CLOSE_ERROR,
9952 _("Watchdog timeout has expired. "
9953 "Target detached."));
9954 }
9955
9956 remote_debug_printf ("Timed out.");
9957 }
9958 else
9959 {
9960 /* We've found the start of a packet or notification.
9961 Now collect the data. */
9962 val = read_frame (buf);
9963 if (val >= 0)
9964 break;
9965 }
9966
9967 remote_serial_write ("-", 1);
9968 }
9969
9970 if (tries > MAX_TRIES)
9971 {
9972 /* We have tried hard enough, and just can't receive the
9973 packet/notification. Give up. */
9974 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9975
9976 /* Skip the ack char if we're in no-ack mode. */
9977 if (!rs->noack_mode)
9978 remote_serial_write ("+", 1);
9979 return -1;
9980 }
9981
9982 /* If we got an ordinary packet, return that to our caller. */
9983 if (c == '$')
9984 {
9985 if (remote_debug)
9986 {
9987 int max_chars;
9988
9989 if (remote_packet_max_chars < 0)
9990 max_chars = val;
9991 else
9992 max_chars = remote_packet_max_chars;
9993
9994 std::string str
9995 = escape_buffer (buf->data (),
9996 std::min (val, max_chars));
9997
9998 if (val > max_chars)
9999 remote_debug_printf_nofunc
10000 ("Packet received: %s [%d bytes omitted]", str.c_str (),
10001 val - max_chars);
10002 else
10003 remote_debug_printf_nofunc ("Packet received: %s",
10004 str.c_str ());
10005 }
10006
10007 /* Skip the ack char if we're in no-ack mode. */
10008 if (!rs->noack_mode)
10009 remote_serial_write ("+", 1);
10010 if (is_notif != NULL)
10011 *is_notif = 0;
10012 return val;
10013 }
10014
10015 /* If we got a notification, handle it, and go back to looking
10016 for a packet. */
10017 else
10018 {
10019 gdb_assert (c == '%');
10020
10021 remote_debug_printf_nofunc
10022 (" Notification received: %s",
10023 escape_buffer (buf->data (), val).c_str ());
10024
10025 if (is_notif != NULL)
10026 *is_notif = 1;
10027
10028 handle_notification (rs->notif_state, buf->data ());
10029
10030 /* Notifications require no acknowledgement. */
10031
10032 if (expecting_notif)
10033 return val;
10034 }
10035 }
10036 }
10037
10038 int
10039 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
10040 {
10041 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
10042 }
10043
10044 int
10045 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
10046 int *is_notif)
10047 {
10048 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
10049 }
10050
10051 /* Kill any new fork children of process PID that haven't been
10052 processed by follow_fork. */
10053
10054 void
10055 remote_target::kill_new_fork_children (int pid)
10056 {
10057 remote_state *rs = get_remote_state ();
10058 struct notif_client *notif = &notif_client_stop;
10059
10060 /* Kill the fork child threads of any threads in process PID
10061 that are stopped at a fork event. */
10062 for (thread_info *thread : all_non_exited_threads (this))
10063 {
10064 struct target_waitstatus *ws = &thread->pending_follow;
10065
10066 if (is_pending_fork_parent (ws, pid, thread->ptid))
10067 {
10068 int child_pid = ws->value.related_pid.pid ();
10069 int res;
10070
10071 res = remote_vkill (child_pid);
10072 if (res != 0)
10073 error (_("Can't kill fork child process %d"), child_pid);
10074 }
10075 }
10076
10077 /* Check for any pending fork events (not reported or processed yet)
10078 in process PID and kill those fork child threads as well. */
10079 remote_notif_get_pending_events (notif);
10080 for (auto &event : rs->stop_reply_queue)
10081 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
10082 {
10083 int child_pid = event->ws.value.related_pid.pid ();
10084 int res;
10085
10086 res = remote_vkill (child_pid);
10087 if (res != 0)
10088 error (_("Can't kill fork child process %d"), child_pid);
10089 }
10090 }
10091
10092 \f
10093 /* Target hook to kill the current inferior. */
10094
10095 void
10096 remote_target::kill ()
10097 {
10098 int res = -1;
10099 int pid = inferior_ptid.pid ();
10100 struct remote_state *rs = get_remote_state ();
10101
10102 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
10103 {
10104 /* If we're stopped while forking and we haven't followed yet,
10105 kill the child task. We need to do this before killing the
10106 parent task because if this is a vfork then the parent will
10107 be sleeping. */
10108 kill_new_fork_children (pid);
10109
10110 res = remote_vkill (pid);
10111 if (res == 0)
10112 {
10113 target_mourn_inferior (inferior_ptid);
10114 return;
10115 }
10116 }
10117
10118 /* If we are in 'target remote' mode and we are killing the only
10119 inferior, then we will tell gdbserver to exit and unpush the
10120 target. */
10121 if (res == -1 && !remote_multi_process_p (rs)
10122 && number_of_live_inferiors (this) == 1)
10123 {
10124 remote_kill_k ();
10125
10126 /* We've killed the remote end, we get to mourn it. If we are
10127 not in extended mode, mourning the inferior also unpushes
10128 remote_ops from the target stack, which closes the remote
10129 connection. */
10130 target_mourn_inferior (inferior_ptid);
10131
10132 return;
10133 }
10134
10135 error (_("Can't kill process"));
10136 }
10137
10138 /* Send a kill request to the target using the 'vKill' packet. */
10139
10140 int
10141 remote_target::remote_vkill (int pid)
10142 {
10143 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
10144 return -1;
10145
10146 remote_state *rs = get_remote_state ();
10147
10148 /* Tell the remote target to detach. */
10149 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
10150 putpkt (rs->buf);
10151 getpkt (&rs->buf, 0);
10152
10153 switch (packet_ok (rs->buf,
10154 &remote_protocol_packets[PACKET_vKill]))
10155 {
10156 case PACKET_OK:
10157 return 0;
10158 case PACKET_ERROR:
10159 return 1;
10160 case PACKET_UNKNOWN:
10161 return -1;
10162 default:
10163 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
10164 }
10165 }
10166
10167 /* Send a kill request to the target using the 'k' packet. */
10168
10169 void
10170 remote_target::remote_kill_k ()
10171 {
10172 /* Catch errors so the user can quit from gdb even when we
10173 aren't on speaking terms with the remote system. */
10174 try
10175 {
10176 putpkt ("k");
10177 }
10178 catch (const gdb_exception_error &ex)
10179 {
10180 if (ex.error == TARGET_CLOSE_ERROR)
10181 {
10182 /* If we got an (EOF) error that caused the target
10183 to go away, then we're done, that's what we wanted.
10184 "k" is susceptible to cause a premature EOF, given
10185 that the remote server isn't actually required to
10186 reply to "k", and it can happen that it doesn't
10187 even get to reply ACK to the "k". */
10188 return;
10189 }
10190
10191 /* Otherwise, something went wrong. We didn't actually kill
10192 the target. Just propagate the exception, and let the
10193 user or higher layers decide what to do. */
10194 throw;
10195 }
10196 }
10197
10198 void
10199 remote_target::mourn_inferior ()
10200 {
10201 struct remote_state *rs = get_remote_state ();
10202
10203 /* We're no longer interested in notification events of an inferior
10204 that exited or was killed/detached. */
10205 discard_pending_stop_replies (current_inferior ());
10206
10207 /* In 'target remote' mode with one inferior, we close the connection. */
10208 if (!rs->extended && number_of_live_inferiors (this) <= 1)
10209 {
10210 remote_unpush_target (this);
10211 return;
10212 }
10213
10214 /* In case we got here due to an error, but we're going to stay
10215 connected. */
10216 rs->waiting_for_stop_reply = 0;
10217
10218 /* If the current general thread belonged to the process we just
10219 detached from or has exited, the remote side current general
10220 thread becomes undefined. Considering a case like this:
10221
10222 - We just got here due to a detach.
10223 - The process that we're detaching from happens to immediately
10224 report a global breakpoint being hit in non-stop mode, in the
10225 same thread we had selected before.
10226 - GDB attaches to this process again.
10227 - This event happens to be the next event we handle.
10228
10229 GDB would consider that the current general thread didn't need to
10230 be set on the stub side (with Hg), since for all it knew,
10231 GENERAL_THREAD hadn't changed.
10232
10233 Notice that although in all-stop mode, the remote server always
10234 sets the current thread to the thread reporting the stop event,
10235 that doesn't happen in non-stop mode; in non-stop, the stub *must
10236 not* change the current thread when reporting a breakpoint hit,
10237 due to the decoupling of event reporting and event handling.
10238
10239 To keep things simple, we always invalidate our notion of the
10240 current thread. */
10241 record_currthread (rs, minus_one_ptid);
10242
10243 /* Call common code to mark the inferior as not running. */
10244 generic_mourn_inferior ();
10245 }
10246
10247 bool
10248 extended_remote_target::supports_disable_randomization ()
10249 {
10250 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10251 }
10252
10253 void
10254 remote_target::extended_remote_disable_randomization (int val)
10255 {
10256 struct remote_state *rs = get_remote_state ();
10257 char *reply;
10258
10259 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10260 "QDisableRandomization:%x", val);
10261 putpkt (rs->buf);
10262 reply = remote_get_noisy_reply ();
10263 if (*reply == '\0')
10264 error (_("Target does not support QDisableRandomization."));
10265 if (strcmp (reply, "OK") != 0)
10266 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10267 }
10268
10269 int
10270 remote_target::extended_remote_run (const std::string &args)
10271 {
10272 struct remote_state *rs = get_remote_state ();
10273 int len;
10274 const char *remote_exec_file = get_remote_exec_file ();
10275
10276 /* If the user has disabled vRun support, or we have detected that
10277 support is not available, do not try it. */
10278 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10279 return -1;
10280
10281 strcpy (rs->buf.data (), "vRun;");
10282 len = strlen (rs->buf.data ());
10283
10284 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10285 error (_("Remote file name too long for run packet"));
10286 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10287 strlen (remote_exec_file));
10288
10289 if (!args.empty ())
10290 {
10291 int i;
10292
10293 gdb_argv argv (args.c_str ());
10294 for (i = 0; argv[i] != NULL; i++)
10295 {
10296 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10297 error (_("Argument list too long for run packet"));
10298 rs->buf[len++] = ';';
10299 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10300 strlen (argv[i]));
10301 }
10302 }
10303
10304 rs->buf[len++] = '\0';
10305
10306 putpkt (rs->buf);
10307 getpkt (&rs->buf, 0);
10308
10309 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10310 {
10311 case PACKET_OK:
10312 /* We have a wait response. All is well. */
10313 return 0;
10314 case PACKET_UNKNOWN:
10315 return -1;
10316 case PACKET_ERROR:
10317 if (remote_exec_file[0] == '\0')
10318 error (_("Running the default executable on the remote target failed; "
10319 "try \"set remote exec-file\"?"));
10320 else
10321 error (_("Running \"%s\" on the remote target failed"),
10322 remote_exec_file);
10323 default:
10324 gdb_assert_not_reached (_("bad switch"));
10325 }
10326 }
10327
10328 /* Helper function to send set/unset environment packets. ACTION is
10329 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10330 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10331 sent. */
10332
10333 void
10334 remote_target::send_environment_packet (const char *action,
10335 const char *packet,
10336 const char *value)
10337 {
10338 remote_state *rs = get_remote_state ();
10339
10340 /* Convert the environment variable to an hex string, which
10341 is the best format to be transmitted over the wire. */
10342 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10343 strlen (value));
10344
10345 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10346 "%s:%s", packet, encoded_value.c_str ());
10347
10348 putpkt (rs->buf);
10349 getpkt (&rs->buf, 0);
10350 if (strcmp (rs->buf.data (), "OK") != 0)
10351 warning (_("Unable to %s environment variable '%s' on remote."),
10352 action, value);
10353 }
10354
10355 /* Helper function to handle the QEnvironment* packets. */
10356
10357 void
10358 remote_target::extended_remote_environment_support ()
10359 {
10360 remote_state *rs = get_remote_state ();
10361
10362 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10363 {
10364 putpkt ("QEnvironmentReset");
10365 getpkt (&rs->buf, 0);
10366 if (strcmp (rs->buf.data (), "OK") != 0)
10367 warning (_("Unable to reset environment on remote."));
10368 }
10369
10370 gdb_environ *e = &current_inferior ()->environment;
10371
10372 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10373 for (const std::string &el : e->user_set_env ())
10374 send_environment_packet ("set", "QEnvironmentHexEncoded",
10375 el.c_str ());
10376
10377 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10378 for (const std::string &el : e->user_unset_env ())
10379 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10380 }
10381
10382 /* Helper function to set the current working directory for the
10383 inferior in the remote target. */
10384
10385 void
10386 remote_target::extended_remote_set_inferior_cwd ()
10387 {
10388 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10389 {
10390 const char *inferior_cwd = get_inferior_cwd ();
10391 remote_state *rs = get_remote_state ();
10392
10393 if (inferior_cwd != NULL)
10394 {
10395 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10396 strlen (inferior_cwd));
10397
10398 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10399 "QSetWorkingDir:%s", hexpath.c_str ());
10400 }
10401 else
10402 {
10403 /* An empty inferior_cwd means that the user wants us to
10404 reset the remote server's inferior's cwd. */
10405 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10406 "QSetWorkingDir:");
10407 }
10408
10409 putpkt (rs->buf);
10410 getpkt (&rs->buf, 0);
10411 if (packet_ok (rs->buf,
10412 &remote_protocol_packets[PACKET_QSetWorkingDir])
10413 != PACKET_OK)
10414 error (_("\
10415 Remote replied unexpectedly while setting the inferior's working\n\
10416 directory: %s"),
10417 rs->buf.data ());
10418
10419 }
10420 }
10421
10422 /* In the extended protocol we want to be able to do things like
10423 "run" and have them basically work as expected. So we need
10424 a special create_inferior function. We support changing the
10425 executable file and the command line arguments, but not the
10426 environment. */
10427
10428 void
10429 extended_remote_target::create_inferior (const char *exec_file,
10430 const std::string &args,
10431 char **env, int from_tty)
10432 {
10433 int run_worked;
10434 char *stop_reply;
10435 struct remote_state *rs = get_remote_state ();
10436 const char *remote_exec_file = get_remote_exec_file ();
10437
10438 /* If running asynchronously, register the target file descriptor
10439 with the event loop. */
10440 if (target_can_async_p ())
10441 target_async (1);
10442
10443 /* Disable address space randomization if requested (and supported). */
10444 if (supports_disable_randomization ())
10445 extended_remote_disable_randomization (disable_randomization);
10446
10447 /* If startup-with-shell is on, we inform gdbserver to start the
10448 remote inferior using a shell. */
10449 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10450 {
10451 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10452 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10453 putpkt (rs->buf);
10454 getpkt (&rs->buf, 0);
10455 if (strcmp (rs->buf.data (), "OK") != 0)
10456 error (_("\
10457 Remote replied unexpectedly while setting startup-with-shell: %s"),
10458 rs->buf.data ());
10459 }
10460
10461 extended_remote_environment_support ();
10462
10463 extended_remote_set_inferior_cwd ();
10464
10465 /* Now restart the remote server. */
10466 run_worked = extended_remote_run (args) != -1;
10467 if (!run_worked)
10468 {
10469 /* vRun was not supported. Fail if we need it to do what the
10470 user requested. */
10471 if (remote_exec_file[0])
10472 error (_("Remote target does not support \"set remote exec-file\""));
10473 if (!args.empty ())
10474 error (_("Remote target does not support \"set args\" or run ARGS"));
10475
10476 /* Fall back to "R". */
10477 extended_remote_restart ();
10478 }
10479
10480 /* vRun's success return is a stop reply. */
10481 stop_reply = run_worked ? rs->buf.data () : NULL;
10482 add_current_inferior_and_thread (stop_reply);
10483
10484 /* Get updated offsets, if the stub uses qOffsets. */
10485 get_offsets ();
10486 }
10487 \f
10488
10489 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10490 the list of conditions (in agent expression bytecode format), if any, the
10491 target needs to evaluate. The output is placed into the packet buffer
10492 started from BUF and ended at BUF_END. */
10493
10494 static int
10495 remote_add_target_side_condition (struct gdbarch *gdbarch,
10496 struct bp_target_info *bp_tgt, char *buf,
10497 char *buf_end)
10498 {
10499 if (bp_tgt->conditions.empty ())
10500 return 0;
10501
10502 buf += strlen (buf);
10503 xsnprintf (buf, buf_end - buf, "%s", ";");
10504 buf++;
10505
10506 /* Send conditions to the target. */
10507 for (agent_expr *aexpr : bp_tgt->conditions)
10508 {
10509 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10510 buf += strlen (buf);
10511 for (int i = 0; i < aexpr->len; ++i)
10512 buf = pack_hex_byte (buf, aexpr->buf[i]);
10513 *buf = '\0';
10514 }
10515 return 0;
10516 }
10517
10518 static void
10519 remote_add_target_side_commands (struct gdbarch *gdbarch,
10520 struct bp_target_info *bp_tgt, char *buf)
10521 {
10522 if (bp_tgt->tcommands.empty ())
10523 return;
10524
10525 buf += strlen (buf);
10526
10527 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10528 buf += strlen (buf);
10529
10530 /* Concatenate all the agent expressions that are commands into the
10531 cmds parameter. */
10532 for (agent_expr *aexpr : bp_tgt->tcommands)
10533 {
10534 sprintf (buf, "X%x,", aexpr->len);
10535 buf += strlen (buf);
10536 for (int i = 0; i < aexpr->len; ++i)
10537 buf = pack_hex_byte (buf, aexpr->buf[i]);
10538 *buf = '\0';
10539 }
10540 }
10541
10542 /* Insert a breakpoint. On targets that have software breakpoint
10543 support, we ask the remote target to do the work; on targets
10544 which don't, we insert a traditional memory breakpoint. */
10545
10546 int
10547 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10548 struct bp_target_info *bp_tgt)
10549 {
10550 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10551 If it succeeds, then set the support to PACKET_ENABLE. If it
10552 fails, and the user has explicitly requested the Z support then
10553 report an error, otherwise, mark it disabled and go on. */
10554
10555 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10556 {
10557 CORE_ADDR addr = bp_tgt->reqstd_address;
10558 struct remote_state *rs;
10559 char *p, *endbuf;
10560
10561 /* Make sure the remote is pointing at the right process, if
10562 necessary. */
10563 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10564 set_general_process ();
10565
10566 rs = get_remote_state ();
10567 p = rs->buf.data ();
10568 endbuf = p + get_remote_packet_size ();
10569
10570 *(p++) = 'Z';
10571 *(p++) = '0';
10572 *(p++) = ',';
10573 addr = (ULONGEST) remote_address_masked (addr);
10574 p += hexnumstr (p, addr);
10575 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10576
10577 if (supports_evaluation_of_breakpoint_conditions ())
10578 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10579
10580 if (can_run_breakpoint_commands ())
10581 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10582
10583 putpkt (rs->buf);
10584 getpkt (&rs->buf, 0);
10585
10586 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10587 {
10588 case PACKET_ERROR:
10589 return -1;
10590 case PACKET_OK:
10591 return 0;
10592 case PACKET_UNKNOWN:
10593 break;
10594 }
10595 }
10596
10597 /* If this breakpoint has target-side commands but this stub doesn't
10598 support Z0 packets, throw error. */
10599 if (!bp_tgt->tcommands.empty ())
10600 throw_error (NOT_SUPPORTED_ERROR, _("\
10601 Target doesn't support breakpoints that have target side commands."));
10602
10603 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10604 }
10605
10606 int
10607 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10608 struct bp_target_info *bp_tgt,
10609 enum remove_bp_reason reason)
10610 {
10611 CORE_ADDR addr = bp_tgt->placed_address;
10612 struct remote_state *rs = get_remote_state ();
10613
10614 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10615 {
10616 char *p = rs->buf.data ();
10617 char *endbuf = p + get_remote_packet_size ();
10618
10619 /* Make sure the remote is pointing at the right process, if
10620 necessary. */
10621 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10622 set_general_process ();
10623
10624 *(p++) = 'z';
10625 *(p++) = '0';
10626 *(p++) = ',';
10627
10628 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10629 p += hexnumstr (p, addr);
10630 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10631
10632 putpkt (rs->buf);
10633 getpkt (&rs->buf, 0);
10634
10635 return (rs->buf[0] == 'E');
10636 }
10637
10638 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10639 }
10640
10641 static enum Z_packet_type
10642 watchpoint_to_Z_packet (int type)
10643 {
10644 switch (type)
10645 {
10646 case hw_write:
10647 return Z_PACKET_WRITE_WP;
10648 break;
10649 case hw_read:
10650 return Z_PACKET_READ_WP;
10651 break;
10652 case hw_access:
10653 return Z_PACKET_ACCESS_WP;
10654 break;
10655 default:
10656 internal_error (__FILE__, __LINE__,
10657 _("hw_bp_to_z: bad watchpoint type %d"), type);
10658 }
10659 }
10660
10661 int
10662 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10663 enum target_hw_bp_type type, struct expression *cond)
10664 {
10665 struct remote_state *rs = get_remote_state ();
10666 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10667 char *p;
10668 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10669
10670 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10671 return 1;
10672
10673 /* Make sure the remote is pointing at the right process, if
10674 necessary. */
10675 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10676 set_general_process ();
10677
10678 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10679 p = strchr (rs->buf.data (), '\0');
10680 addr = remote_address_masked (addr);
10681 p += hexnumstr (p, (ULONGEST) addr);
10682 xsnprintf (p, endbuf - p, ",%x", len);
10683
10684 putpkt (rs->buf);
10685 getpkt (&rs->buf, 0);
10686
10687 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10688 {
10689 case PACKET_ERROR:
10690 return -1;
10691 case PACKET_UNKNOWN:
10692 return 1;
10693 case PACKET_OK:
10694 return 0;
10695 }
10696 internal_error (__FILE__, __LINE__,
10697 _("remote_insert_watchpoint: reached end of function"));
10698 }
10699
10700 bool
10701 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10702 CORE_ADDR start, int length)
10703 {
10704 CORE_ADDR diff = remote_address_masked (addr - start);
10705
10706 return diff < length;
10707 }
10708
10709
10710 int
10711 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10712 enum target_hw_bp_type type, struct expression *cond)
10713 {
10714 struct remote_state *rs = get_remote_state ();
10715 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10716 char *p;
10717 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10718
10719 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10720 return -1;
10721
10722 /* Make sure the remote is pointing at the right process, if
10723 necessary. */
10724 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10725 set_general_process ();
10726
10727 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10728 p = strchr (rs->buf.data (), '\0');
10729 addr = remote_address_masked (addr);
10730 p += hexnumstr (p, (ULONGEST) addr);
10731 xsnprintf (p, endbuf - p, ",%x", len);
10732 putpkt (rs->buf);
10733 getpkt (&rs->buf, 0);
10734
10735 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10736 {
10737 case PACKET_ERROR:
10738 case PACKET_UNKNOWN:
10739 return -1;
10740 case PACKET_OK:
10741 return 0;
10742 }
10743 internal_error (__FILE__, __LINE__,
10744 _("remote_remove_watchpoint: reached end of function"));
10745 }
10746
10747
10748 static int remote_hw_watchpoint_limit = -1;
10749 static int remote_hw_watchpoint_length_limit = -1;
10750 static int remote_hw_breakpoint_limit = -1;
10751
10752 int
10753 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10754 {
10755 if (remote_hw_watchpoint_length_limit == 0)
10756 return 0;
10757 else if (remote_hw_watchpoint_length_limit < 0)
10758 return 1;
10759 else if (len <= remote_hw_watchpoint_length_limit)
10760 return 1;
10761 else
10762 return 0;
10763 }
10764
10765 int
10766 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10767 {
10768 if (type == bp_hardware_breakpoint)
10769 {
10770 if (remote_hw_breakpoint_limit == 0)
10771 return 0;
10772 else if (remote_hw_breakpoint_limit < 0)
10773 return 1;
10774 else if (cnt <= remote_hw_breakpoint_limit)
10775 return 1;
10776 }
10777 else
10778 {
10779 if (remote_hw_watchpoint_limit == 0)
10780 return 0;
10781 else if (remote_hw_watchpoint_limit < 0)
10782 return 1;
10783 else if (ot)
10784 return -1;
10785 else if (cnt <= remote_hw_watchpoint_limit)
10786 return 1;
10787 }
10788 return -1;
10789 }
10790
10791 /* The to_stopped_by_sw_breakpoint method of target remote. */
10792
10793 bool
10794 remote_target::stopped_by_sw_breakpoint ()
10795 {
10796 struct thread_info *thread = inferior_thread ();
10797
10798 return (thread->priv != NULL
10799 && (get_remote_thread_info (thread)->stop_reason
10800 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10801 }
10802
10803 /* The to_supports_stopped_by_sw_breakpoint method of target
10804 remote. */
10805
10806 bool
10807 remote_target::supports_stopped_by_sw_breakpoint ()
10808 {
10809 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10810 }
10811
10812 /* The to_stopped_by_hw_breakpoint method of target remote. */
10813
10814 bool
10815 remote_target::stopped_by_hw_breakpoint ()
10816 {
10817 struct thread_info *thread = inferior_thread ();
10818
10819 return (thread->priv != NULL
10820 && (get_remote_thread_info (thread)->stop_reason
10821 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10822 }
10823
10824 /* The to_supports_stopped_by_hw_breakpoint method of target
10825 remote. */
10826
10827 bool
10828 remote_target::supports_stopped_by_hw_breakpoint ()
10829 {
10830 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10831 }
10832
10833 bool
10834 remote_target::stopped_by_watchpoint ()
10835 {
10836 struct thread_info *thread = inferior_thread ();
10837
10838 return (thread->priv != NULL
10839 && (get_remote_thread_info (thread)->stop_reason
10840 == TARGET_STOPPED_BY_WATCHPOINT));
10841 }
10842
10843 bool
10844 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10845 {
10846 struct thread_info *thread = inferior_thread ();
10847
10848 if (thread->priv != NULL
10849 && (get_remote_thread_info (thread)->stop_reason
10850 == TARGET_STOPPED_BY_WATCHPOINT))
10851 {
10852 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10853 return true;
10854 }
10855
10856 return false;
10857 }
10858
10859
10860 int
10861 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10862 struct bp_target_info *bp_tgt)
10863 {
10864 CORE_ADDR addr = bp_tgt->reqstd_address;
10865 struct remote_state *rs;
10866 char *p, *endbuf;
10867 char *message;
10868
10869 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10870 return -1;
10871
10872 /* Make sure the remote is pointing at the right process, if
10873 necessary. */
10874 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10875 set_general_process ();
10876
10877 rs = get_remote_state ();
10878 p = rs->buf.data ();
10879 endbuf = p + get_remote_packet_size ();
10880
10881 *(p++) = 'Z';
10882 *(p++) = '1';
10883 *(p++) = ',';
10884
10885 addr = remote_address_masked (addr);
10886 p += hexnumstr (p, (ULONGEST) addr);
10887 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10888
10889 if (supports_evaluation_of_breakpoint_conditions ())
10890 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10891
10892 if (can_run_breakpoint_commands ())
10893 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10894
10895 putpkt (rs->buf);
10896 getpkt (&rs->buf, 0);
10897
10898 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10899 {
10900 case PACKET_ERROR:
10901 if (rs->buf[1] == '.')
10902 {
10903 message = strchr (&rs->buf[2], '.');
10904 if (message)
10905 error (_("Remote failure reply: %s"), message + 1);
10906 }
10907 return -1;
10908 case PACKET_UNKNOWN:
10909 return -1;
10910 case PACKET_OK:
10911 return 0;
10912 }
10913 internal_error (__FILE__, __LINE__,
10914 _("remote_insert_hw_breakpoint: reached end of function"));
10915 }
10916
10917
10918 int
10919 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10920 struct bp_target_info *bp_tgt)
10921 {
10922 CORE_ADDR addr;
10923 struct remote_state *rs = get_remote_state ();
10924 char *p = rs->buf.data ();
10925 char *endbuf = p + get_remote_packet_size ();
10926
10927 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10928 return -1;
10929
10930 /* Make sure the remote is pointing at the right process, if
10931 necessary. */
10932 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10933 set_general_process ();
10934
10935 *(p++) = 'z';
10936 *(p++) = '1';
10937 *(p++) = ',';
10938
10939 addr = remote_address_masked (bp_tgt->placed_address);
10940 p += hexnumstr (p, (ULONGEST) addr);
10941 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10942
10943 putpkt (rs->buf);
10944 getpkt (&rs->buf, 0);
10945
10946 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10947 {
10948 case PACKET_ERROR:
10949 case PACKET_UNKNOWN:
10950 return -1;
10951 case PACKET_OK:
10952 return 0;
10953 }
10954 internal_error (__FILE__, __LINE__,
10955 _("remote_remove_hw_breakpoint: reached end of function"));
10956 }
10957
10958 /* Verify memory using the "qCRC:" request. */
10959
10960 int
10961 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10962 {
10963 struct remote_state *rs = get_remote_state ();
10964 unsigned long host_crc, target_crc;
10965 char *tmp;
10966
10967 /* It doesn't make sense to use qCRC if the remote target is
10968 connected but not running. */
10969 if (target_has_execution ()
10970 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10971 {
10972 enum packet_result result;
10973
10974 /* Make sure the remote is pointing at the right process. */
10975 set_general_process ();
10976
10977 /* FIXME: assumes lma can fit into long. */
10978 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10979 (long) lma, (long) size);
10980 putpkt (rs->buf);
10981
10982 /* Be clever; compute the host_crc before waiting for target
10983 reply. */
10984 host_crc = xcrc32 (data, size, 0xffffffff);
10985
10986 getpkt (&rs->buf, 0);
10987
10988 result = packet_ok (rs->buf,
10989 &remote_protocol_packets[PACKET_qCRC]);
10990 if (result == PACKET_ERROR)
10991 return -1;
10992 else if (result == PACKET_OK)
10993 {
10994 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10995 target_crc = target_crc * 16 + fromhex (*tmp);
10996
10997 return (host_crc == target_crc);
10998 }
10999 }
11000
11001 return simple_verify_memory (this, data, lma, size);
11002 }
11003
11004 /* compare-sections command
11005
11006 With no arguments, compares each loadable section in the exec bfd
11007 with the same memory range on the target, and reports mismatches.
11008 Useful for verifying the image on the target against the exec file. */
11009
11010 static void
11011 compare_sections_command (const char *args, int from_tty)
11012 {
11013 asection *s;
11014 const char *sectname;
11015 bfd_size_type size;
11016 bfd_vma lma;
11017 int matched = 0;
11018 int mismatched = 0;
11019 int res;
11020 int read_only = 0;
11021
11022 if (!current_program_space->exec_bfd ())
11023 error (_("command cannot be used without an exec file"));
11024
11025 if (args != NULL && strcmp (args, "-r") == 0)
11026 {
11027 read_only = 1;
11028 args = NULL;
11029 }
11030
11031 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
11032 {
11033 if (!(s->flags & SEC_LOAD))
11034 continue; /* Skip non-loadable section. */
11035
11036 if (read_only && (s->flags & SEC_READONLY) == 0)
11037 continue; /* Skip writeable sections */
11038
11039 size = bfd_section_size (s);
11040 if (size == 0)
11041 continue; /* Skip zero-length section. */
11042
11043 sectname = bfd_section_name (s);
11044 if (args && strcmp (args, sectname) != 0)
11045 continue; /* Not the section selected by user. */
11046
11047 matched = 1; /* Do this section. */
11048 lma = s->lma;
11049
11050 gdb::byte_vector sectdata (size);
11051 bfd_get_section_contents (current_program_space->exec_bfd (), s,
11052 sectdata.data (), 0, size);
11053
11054 res = target_verify_memory (sectdata.data (), lma, size);
11055
11056 if (res == -1)
11057 error (_("target memory fault, section %s, range %s -- %s"), sectname,
11058 paddress (target_gdbarch (), lma),
11059 paddress (target_gdbarch (), lma + size));
11060
11061 printf_filtered ("Section %s, range %s -- %s: ", sectname,
11062 paddress (target_gdbarch (), lma),
11063 paddress (target_gdbarch (), lma + size));
11064 if (res)
11065 printf_filtered ("matched.\n");
11066 else
11067 {
11068 printf_filtered ("MIS-MATCHED!\n");
11069 mismatched++;
11070 }
11071 }
11072 if (mismatched > 0)
11073 warning (_("One or more sections of the target image does not match\n\
11074 the loaded file\n"));
11075 if (args && !matched)
11076 printf_filtered (_("No loaded section named '%s'.\n"), args);
11077 }
11078
11079 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
11080 into remote target. The number of bytes written to the remote
11081 target is returned, or -1 for error. */
11082
11083 target_xfer_status
11084 remote_target::remote_write_qxfer (const char *object_name,
11085 const char *annex, const gdb_byte *writebuf,
11086 ULONGEST offset, LONGEST len,
11087 ULONGEST *xfered_len,
11088 struct packet_config *packet)
11089 {
11090 int i, buf_len;
11091 ULONGEST n;
11092 struct remote_state *rs = get_remote_state ();
11093 int max_size = get_memory_write_packet_size ();
11094
11095 if (packet_config_support (packet) == PACKET_DISABLE)
11096 return TARGET_XFER_E_IO;
11097
11098 /* Insert header. */
11099 i = snprintf (rs->buf.data (), max_size,
11100 "qXfer:%s:write:%s:%s:",
11101 object_name, annex ? annex : "",
11102 phex_nz (offset, sizeof offset));
11103 max_size -= (i + 1);
11104
11105 /* Escape as much data as fits into rs->buf. */
11106 buf_len = remote_escape_output
11107 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
11108
11109 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
11110 || getpkt_sane (&rs->buf, 0) < 0
11111 || packet_ok (rs->buf, packet) != PACKET_OK)
11112 return TARGET_XFER_E_IO;
11113
11114 unpack_varlen_hex (rs->buf.data (), &n);
11115
11116 *xfered_len = n;
11117 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11118 }
11119
11120 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
11121 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
11122 number of bytes read is returned, or 0 for EOF, or -1 for error.
11123 The number of bytes read may be less than LEN without indicating an
11124 EOF. PACKET is checked and updated to indicate whether the remote
11125 target supports this object. */
11126
11127 target_xfer_status
11128 remote_target::remote_read_qxfer (const char *object_name,
11129 const char *annex,
11130 gdb_byte *readbuf, ULONGEST offset,
11131 LONGEST len,
11132 ULONGEST *xfered_len,
11133 struct packet_config *packet)
11134 {
11135 struct remote_state *rs = get_remote_state ();
11136 LONGEST i, n, packet_len;
11137
11138 if (packet_config_support (packet) == PACKET_DISABLE)
11139 return TARGET_XFER_E_IO;
11140
11141 /* Check whether we've cached an end-of-object packet that matches
11142 this request. */
11143 if (rs->finished_object)
11144 {
11145 if (strcmp (object_name, rs->finished_object) == 0
11146 && strcmp (annex ? annex : "", rs->finished_annex) == 0
11147 && offset == rs->finished_offset)
11148 return TARGET_XFER_EOF;
11149
11150
11151 /* Otherwise, we're now reading something different. Discard
11152 the cache. */
11153 xfree (rs->finished_object);
11154 xfree (rs->finished_annex);
11155 rs->finished_object = NULL;
11156 rs->finished_annex = NULL;
11157 }
11158
11159 /* Request only enough to fit in a single packet. The actual data
11160 may not, since we don't know how much of it will need to be escaped;
11161 the target is free to respond with slightly less data. We subtract
11162 five to account for the response type and the protocol frame. */
11163 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
11164 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
11165 "qXfer:%s:read:%s:%s,%s",
11166 object_name, annex ? annex : "",
11167 phex_nz (offset, sizeof offset),
11168 phex_nz (n, sizeof n));
11169 i = putpkt (rs->buf);
11170 if (i < 0)
11171 return TARGET_XFER_E_IO;
11172
11173 rs->buf[0] = '\0';
11174 packet_len = getpkt_sane (&rs->buf, 0);
11175 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
11176 return TARGET_XFER_E_IO;
11177
11178 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
11179 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
11180
11181 /* 'm' means there is (or at least might be) more data after this
11182 batch. That does not make sense unless there's at least one byte
11183 of data in this reply. */
11184 if (rs->buf[0] == 'm' && packet_len == 1)
11185 error (_("Remote qXfer reply contained no data."));
11186
11187 /* Got some data. */
11188 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
11189 packet_len - 1, readbuf, n);
11190
11191 /* 'l' is an EOF marker, possibly including a final block of data,
11192 or possibly empty. If we have the final block of a non-empty
11193 object, record this fact to bypass a subsequent partial read. */
11194 if (rs->buf[0] == 'l' && offset + i > 0)
11195 {
11196 rs->finished_object = xstrdup (object_name);
11197 rs->finished_annex = xstrdup (annex ? annex : "");
11198 rs->finished_offset = offset + i;
11199 }
11200
11201 if (i == 0)
11202 return TARGET_XFER_EOF;
11203 else
11204 {
11205 *xfered_len = i;
11206 return TARGET_XFER_OK;
11207 }
11208 }
11209
11210 enum target_xfer_status
11211 remote_target::xfer_partial (enum target_object object,
11212 const char *annex, gdb_byte *readbuf,
11213 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
11214 ULONGEST *xfered_len)
11215 {
11216 struct remote_state *rs;
11217 int i;
11218 char *p2;
11219 char query_type;
11220 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
11221
11222 set_remote_traceframe ();
11223 set_general_thread (inferior_ptid);
11224
11225 rs = get_remote_state ();
11226
11227 /* Handle memory using the standard memory routines. */
11228 if (object == TARGET_OBJECT_MEMORY)
11229 {
11230 /* If the remote target is connected but not running, we should
11231 pass this request down to a lower stratum (e.g. the executable
11232 file). */
11233 if (!target_has_execution ())
11234 return TARGET_XFER_EOF;
11235
11236 if (writebuf != NULL)
11237 return remote_write_bytes (offset, writebuf, len, unit_size,
11238 xfered_len);
11239 else
11240 return remote_read_bytes (offset, readbuf, len, unit_size,
11241 xfered_len);
11242 }
11243
11244 /* Handle extra signal info using qxfer packets. */
11245 if (object == TARGET_OBJECT_SIGNAL_INFO)
11246 {
11247 if (readbuf)
11248 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11249 xfered_len, &remote_protocol_packets
11250 [PACKET_qXfer_siginfo_read]);
11251 else
11252 return remote_write_qxfer ("siginfo", annex,
11253 writebuf, offset, len, xfered_len,
11254 &remote_protocol_packets
11255 [PACKET_qXfer_siginfo_write]);
11256 }
11257
11258 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11259 {
11260 if (readbuf)
11261 return remote_read_qxfer ("statictrace", annex,
11262 readbuf, offset, len, xfered_len,
11263 &remote_protocol_packets
11264 [PACKET_qXfer_statictrace_read]);
11265 else
11266 return TARGET_XFER_E_IO;
11267 }
11268
11269 /* Only handle flash writes. */
11270 if (writebuf != NULL)
11271 {
11272 switch (object)
11273 {
11274 case TARGET_OBJECT_FLASH:
11275 return remote_flash_write (offset, len, xfered_len,
11276 writebuf);
11277
11278 default:
11279 return TARGET_XFER_E_IO;
11280 }
11281 }
11282
11283 /* Map pre-existing objects onto letters. DO NOT do this for new
11284 objects!!! Instead specify new query packets. */
11285 switch (object)
11286 {
11287 case TARGET_OBJECT_AVR:
11288 query_type = 'R';
11289 break;
11290
11291 case TARGET_OBJECT_AUXV:
11292 gdb_assert (annex == NULL);
11293 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11294 xfered_len,
11295 &remote_protocol_packets[PACKET_qXfer_auxv]);
11296
11297 case TARGET_OBJECT_AVAILABLE_FEATURES:
11298 return remote_read_qxfer
11299 ("features", annex, readbuf, offset, len, xfered_len,
11300 &remote_protocol_packets[PACKET_qXfer_features]);
11301
11302 case TARGET_OBJECT_LIBRARIES:
11303 return remote_read_qxfer
11304 ("libraries", annex, readbuf, offset, len, xfered_len,
11305 &remote_protocol_packets[PACKET_qXfer_libraries]);
11306
11307 case TARGET_OBJECT_LIBRARIES_SVR4:
11308 return remote_read_qxfer
11309 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11310 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11311
11312 case TARGET_OBJECT_MEMORY_MAP:
11313 gdb_assert (annex == NULL);
11314 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11315 xfered_len,
11316 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11317
11318 case TARGET_OBJECT_OSDATA:
11319 /* Should only get here if we're connected. */
11320 gdb_assert (rs->remote_desc);
11321 return remote_read_qxfer
11322 ("osdata", annex, readbuf, offset, len, xfered_len,
11323 &remote_protocol_packets[PACKET_qXfer_osdata]);
11324
11325 case TARGET_OBJECT_THREADS:
11326 gdb_assert (annex == NULL);
11327 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11328 xfered_len,
11329 &remote_protocol_packets[PACKET_qXfer_threads]);
11330
11331 case TARGET_OBJECT_TRACEFRAME_INFO:
11332 gdb_assert (annex == NULL);
11333 return remote_read_qxfer
11334 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11335 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11336
11337 case TARGET_OBJECT_FDPIC:
11338 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11339 xfered_len,
11340 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11341
11342 case TARGET_OBJECT_OPENVMS_UIB:
11343 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11344 xfered_len,
11345 &remote_protocol_packets[PACKET_qXfer_uib]);
11346
11347 case TARGET_OBJECT_BTRACE:
11348 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11349 xfered_len,
11350 &remote_protocol_packets[PACKET_qXfer_btrace]);
11351
11352 case TARGET_OBJECT_BTRACE_CONF:
11353 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11354 len, xfered_len,
11355 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11356
11357 case TARGET_OBJECT_EXEC_FILE:
11358 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11359 len, xfered_len,
11360 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11361
11362 default:
11363 return TARGET_XFER_E_IO;
11364 }
11365
11366 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11367 large enough let the caller deal with it. */
11368 if (len < get_remote_packet_size ())
11369 return TARGET_XFER_E_IO;
11370 len = get_remote_packet_size ();
11371
11372 /* Except for querying the minimum buffer size, target must be open. */
11373 if (!rs->remote_desc)
11374 error (_("remote query is only available after target open"));
11375
11376 gdb_assert (annex != NULL);
11377 gdb_assert (readbuf != NULL);
11378
11379 p2 = rs->buf.data ();
11380 *p2++ = 'q';
11381 *p2++ = query_type;
11382
11383 /* We used one buffer char for the remote protocol q command and
11384 another for the query type. As the remote protocol encapsulation
11385 uses 4 chars plus one extra in case we are debugging
11386 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11387 string. */
11388 i = 0;
11389 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11390 {
11391 /* Bad caller may have sent forbidden characters. */
11392 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11393 *p2++ = annex[i];
11394 i++;
11395 }
11396 *p2 = '\0';
11397 gdb_assert (annex[i] == '\0');
11398
11399 i = putpkt (rs->buf);
11400 if (i < 0)
11401 return TARGET_XFER_E_IO;
11402
11403 getpkt (&rs->buf, 0);
11404 strcpy ((char *) readbuf, rs->buf.data ());
11405
11406 *xfered_len = strlen ((char *) readbuf);
11407 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11408 }
11409
11410 /* Implementation of to_get_memory_xfer_limit. */
11411
11412 ULONGEST
11413 remote_target::get_memory_xfer_limit ()
11414 {
11415 return get_memory_write_packet_size ();
11416 }
11417
11418 int
11419 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11420 const gdb_byte *pattern, ULONGEST pattern_len,
11421 CORE_ADDR *found_addrp)
11422 {
11423 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11424 struct remote_state *rs = get_remote_state ();
11425 int max_size = get_memory_write_packet_size ();
11426 struct packet_config *packet =
11427 &remote_protocol_packets[PACKET_qSearch_memory];
11428 /* Number of packet bytes used to encode the pattern;
11429 this could be more than PATTERN_LEN due to escape characters. */
11430 int escaped_pattern_len;
11431 /* Amount of pattern that was encodable in the packet. */
11432 int used_pattern_len;
11433 int i;
11434 int found;
11435 ULONGEST found_addr;
11436
11437 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11438 {
11439 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11440 == len);
11441 };
11442
11443 /* Don't go to the target if we don't have to. This is done before
11444 checking packet_config_support to avoid the possibility that a
11445 success for this edge case means the facility works in
11446 general. */
11447 if (pattern_len > search_space_len)
11448 return 0;
11449 if (pattern_len == 0)
11450 {
11451 *found_addrp = start_addr;
11452 return 1;
11453 }
11454
11455 /* If we already know the packet isn't supported, fall back to the simple
11456 way of searching memory. */
11457
11458 if (packet_config_support (packet) == PACKET_DISABLE)
11459 {
11460 /* Target doesn't provided special support, fall back and use the
11461 standard support (copy memory and do the search here). */
11462 return simple_search_memory (read_memory, start_addr, search_space_len,
11463 pattern, pattern_len, found_addrp);
11464 }
11465
11466 /* Make sure the remote is pointing at the right process. */
11467 set_general_process ();
11468
11469 /* Insert header. */
11470 i = snprintf (rs->buf.data (), max_size,
11471 "qSearch:memory:%s;%s;",
11472 phex_nz (start_addr, addr_size),
11473 phex_nz (search_space_len, sizeof (search_space_len)));
11474 max_size -= (i + 1);
11475
11476 /* Escape as much data as fits into rs->buf. */
11477 escaped_pattern_len =
11478 remote_escape_output (pattern, pattern_len, 1,
11479 (gdb_byte *) rs->buf.data () + i,
11480 &used_pattern_len, max_size);
11481
11482 /* Bail if the pattern is too large. */
11483 if (used_pattern_len != pattern_len)
11484 error (_("Pattern is too large to transmit to remote target."));
11485
11486 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11487 || getpkt_sane (&rs->buf, 0) < 0
11488 || packet_ok (rs->buf, packet) != PACKET_OK)
11489 {
11490 /* The request may not have worked because the command is not
11491 supported. If so, fall back to the simple way. */
11492 if (packet_config_support (packet) == PACKET_DISABLE)
11493 {
11494 return simple_search_memory (read_memory, start_addr, search_space_len,
11495 pattern, pattern_len, found_addrp);
11496 }
11497 return -1;
11498 }
11499
11500 if (rs->buf[0] == '0')
11501 found = 0;
11502 else if (rs->buf[0] == '1')
11503 {
11504 found = 1;
11505 if (rs->buf[1] != ',')
11506 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11507 unpack_varlen_hex (&rs->buf[2], &found_addr);
11508 *found_addrp = found_addr;
11509 }
11510 else
11511 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11512
11513 return found;
11514 }
11515
11516 void
11517 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11518 {
11519 struct remote_state *rs = get_remote_state ();
11520 char *p = rs->buf.data ();
11521
11522 if (!rs->remote_desc)
11523 error (_("remote rcmd is only available after target open"));
11524
11525 /* Send a NULL command across as an empty command. */
11526 if (command == NULL)
11527 command = "";
11528
11529 /* The query prefix. */
11530 strcpy (rs->buf.data (), "qRcmd,");
11531 p = strchr (rs->buf.data (), '\0');
11532
11533 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11534 > get_remote_packet_size ())
11535 error (_("\"monitor\" command ``%s'' is too long."), command);
11536
11537 /* Encode the actual command. */
11538 bin2hex ((const gdb_byte *) command, p, strlen (command));
11539
11540 if (putpkt (rs->buf) < 0)
11541 error (_("Communication problem with target."));
11542
11543 /* get/display the response */
11544 while (1)
11545 {
11546 char *buf;
11547
11548 /* XXX - see also remote_get_noisy_reply(). */
11549 QUIT; /* Allow user to bail out with ^C. */
11550 rs->buf[0] = '\0';
11551 if (getpkt_sane (&rs->buf, 0) == -1)
11552 {
11553 /* Timeout. Continue to (try to) read responses.
11554 This is better than stopping with an error, assuming the stub
11555 is still executing the (long) monitor command.
11556 If needed, the user can interrupt gdb using C-c, obtaining
11557 an effect similar to stop on timeout. */
11558 continue;
11559 }
11560 buf = rs->buf.data ();
11561 if (buf[0] == '\0')
11562 error (_("Target does not support this command."));
11563 if (buf[0] == 'O' && buf[1] != 'K')
11564 {
11565 remote_console_output (buf + 1); /* 'O' message from stub. */
11566 continue;
11567 }
11568 if (strcmp (buf, "OK") == 0)
11569 break;
11570 if (strlen (buf) == 3 && buf[0] == 'E'
11571 && isdigit (buf[1]) && isdigit (buf[2]))
11572 {
11573 error (_("Protocol error with Rcmd"));
11574 }
11575 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11576 {
11577 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11578
11579 fputc_unfiltered (c, outbuf);
11580 }
11581 break;
11582 }
11583 }
11584
11585 std::vector<mem_region>
11586 remote_target::memory_map ()
11587 {
11588 std::vector<mem_region> result;
11589 gdb::optional<gdb::char_vector> text
11590 = target_read_stralloc (current_inferior ()->top_target (),
11591 TARGET_OBJECT_MEMORY_MAP, NULL);
11592
11593 if (text)
11594 result = parse_memory_map (text->data ());
11595
11596 return result;
11597 }
11598
11599 static void
11600 packet_command (const char *args, int from_tty)
11601 {
11602 remote_target *remote = get_current_remote_target ();
11603
11604 if (remote == nullptr)
11605 error (_("command can only be used with remote target"));
11606
11607 remote->packet_command (args, from_tty);
11608 }
11609
11610 void
11611 remote_target::packet_command (const char *args, int from_tty)
11612 {
11613 if (!args)
11614 error (_("remote-packet command requires packet text as argument"));
11615
11616 puts_filtered ("sending: ");
11617 print_packet (args);
11618 puts_filtered ("\n");
11619 putpkt (args);
11620
11621 remote_state *rs = get_remote_state ();
11622
11623 getpkt (&rs->buf, 0);
11624 puts_filtered ("received: ");
11625 print_packet (rs->buf.data ());
11626 puts_filtered ("\n");
11627 }
11628
11629 #if 0
11630 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11631
11632 static void display_thread_info (struct gdb_ext_thread_info *info);
11633
11634 static void threadset_test_cmd (char *cmd, int tty);
11635
11636 static void threadalive_test (char *cmd, int tty);
11637
11638 static void threadlist_test_cmd (char *cmd, int tty);
11639
11640 int get_and_display_threadinfo (threadref *ref);
11641
11642 static void threadinfo_test_cmd (char *cmd, int tty);
11643
11644 static int thread_display_step (threadref *ref, void *context);
11645
11646 static void threadlist_update_test_cmd (char *cmd, int tty);
11647
11648 static void init_remote_threadtests (void);
11649
11650 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11651
11652 static void
11653 threadset_test_cmd (const char *cmd, int tty)
11654 {
11655 int sample_thread = SAMPLE_THREAD;
11656
11657 printf_filtered (_("Remote threadset test\n"));
11658 set_general_thread (sample_thread);
11659 }
11660
11661
11662 static void
11663 threadalive_test (const char *cmd, int tty)
11664 {
11665 int sample_thread = SAMPLE_THREAD;
11666 int pid = inferior_ptid.pid ();
11667 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11668
11669 if (remote_thread_alive (ptid))
11670 printf_filtered ("PASS: Thread alive test\n");
11671 else
11672 printf_filtered ("FAIL: Thread alive test\n");
11673 }
11674
11675 void output_threadid (char *title, threadref *ref);
11676
11677 void
11678 output_threadid (char *title, threadref *ref)
11679 {
11680 char hexid[20];
11681
11682 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11683 hexid[16] = 0;
11684 printf_filtered ("%s %s\n", title, (&hexid[0]));
11685 }
11686
11687 static void
11688 threadlist_test_cmd (const char *cmd, int tty)
11689 {
11690 int startflag = 1;
11691 threadref nextthread;
11692 int done, result_count;
11693 threadref threadlist[3];
11694
11695 printf_filtered ("Remote Threadlist test\n");
11696 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11697 &result_count, &threadlist[0]))
11698 printf_filtered ("FAIL: threadlist test\n");
11699 else
11700 {
11701 threadref *scan = threadlist;
11702 threadref *limit = scan + result_count;
11703
11704 while (scan < limit)
11705 output_threadid (" thread ", scan++);
11706 }
11707 }
11708
11709 void
11710 display_thread_info (struct gdb_ext_thread_info *info)
11711 {
11712 output_threadid ("Threadid: ", &info->threadid);
11713 printf_filtered ("Name: %s\n ", info->shortname);
11714 printf_filtered ("State: %s\n", info->display);
11715 printf_filtered ("other: %s\n\n", info->more_display);
11716 }
11717
11718 int
11719 get_and_display_threadinfo (threadref *ref)
11720 {
11721 int result;
11722 int set;
11723 struct gdb_ext_thread_info threadinfo;
11724
11725 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11726 | TAG_MOREDISPLAY | TAG_DISPLAY;
11727 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11728 display_thread_info (&threadinfo);
11729 return result;
11730 }
11731
11732 static void
11733 threadinfo_test_cmd (const char *cmd, int tty)
11734 {
11735 int athread = SAMPLE_THREAD;
11736 threadref thread;
11737 int set;
11738
11739 int_to_threadref (&thread, athread);
11740 printf_filtered ("Remote Threadinfo test\n");
11741 if (!get_and_display_threadinfo (&thread))
11742 printf_filtered ("FAIL cannot get thread info\n");
11743 }
11744
11745 static int
11746 thread_display_step (threadref *ref, void *context)
11747 {
11748 /* output_threadid(" threadstep ",ref); *//* simple test */
11749 return get_and_display_threadinfo (ref);
11750 }
11751
11752 static void
11753 threadlist_update_test_cmd (const char *cmd, int tty)
11754 {
11755 printf_filtered ("Remote Threadlist update test\n");
11756 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11757 }
11758
11759 static void
11760 init_remote_threadtests (void)
11761 {
11762 add_com ("tlist", class_obscure, threadlist_test_cmd,
11763 _("Fetch and print the remote list of "
11764 "thread identifiers, one pkt only."));
11765 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11766 _("Fetch and display info about one thread."));
11767 add_com ("tset", class_obscure, threadset_test_cmd,
11768 _("Test setting to a different thread."));
11769 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11770 _("Iterate through updating all remote thread info."));
11771 add_com ("talive", class_obscure, threadalive_test,
11772 _("Remote thread alive test."));
11773 }
11774
11775 #endif /* 0 */
11776
11777 /* Convert a thread ID to a string. */
11778
11779 std::string
11780 remote_target::pid_to_str (ptid_t ptid)
11781 {
11782 struct remote_state *rs = get_remote_state ();
11783
11784 if (ptid == null_ptid)
11785 return normal_pid_to_str (ptid);
11786 else if (ptid.is_pid ())
11787 {
11788 /* Printing an inferior target id. */
11789
11790 /* When multi-process extensions are off, there's no way in the
11791 remote protocol to know the remote process id, if there's any
11792 at all. There's one exception --- when we're connected with
11793 target extended-remote, and we manually attached to a process
11794 with "attach PID". We don't record anywhere a flag that
11795 allows us to distinguish that case from the case of
11796 connecting with extended-remote and the stub already being
11797 attached to a process, and reporting yes to qAttached, hence
11798 no smart special casing here. */
11799 if (!remote_multi_process_p (rs))
11800 return "Remote target";
11801
11802 return normal_pid_to_str (ptid);
11803 }
11804 else
11805 {
11806 if (magic_null_ptid == ptid)
11807 return "Thread <main>";
11808 else if (remote_multi_process_p (rs))
11809 if (ptid.lwp () == 0)
11810 return normal_pid_to_str (ptid);
11811 else
11812 return string_printf ("Thread %d.%ld",
11813 ptid.pid (), ptid.lwp ());
11814 else
11815 return string_printf ("Thread %ld", ptid.lwp ());
11816 }
11817 }
11818
11819 /* Get the address of the thread local variable in OBJFILE which is
11820 stored at OFFSET within the thread local storage for thread PTID. */
11821
11822 CORE_ADDR
11823 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11824 CORE_ADDR offset)
11825 {
11826 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11827 {
11828 struct remote_state *rs = get_remote_state ();
11829 char *p = rs->buf.data ();
11830 char *endp = p + get_remote_packet_size ();
11831 enum packet_result result;
11832
11833 strcpy (p, "qGetTLSAddr:");
11834 p += strlen (p);
11835 p = write_ptid (p, endp, ptid);
11836 *p++ = ',';
11837 p += hexnumstr (p, offset);
11838 *p++ = ',';
11839 p += hexnumstr (p, lm);
11840 *p++ = '\0';
11841
11842 putpkt (rs->buf);
11843 getpkt (&rs->buf, 0);
11844 result = packet_ok (rs->buf,
11845 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11846 if (result == PACKET_OK)
11847 {
11848 ULONGEST addr;
11849
11850 unpack_varlen_hex (rs->buf.data (), &addr);
11851 return addr;
11852 }
11853 else if (result == PACKET_UNKNOWN)
11854 throw_error (TLS_GENERIC_ERROR,
11855 _("Remote target doesn't support qGetTLSAddr packet"));
11856 else
11857 throw_error (TLS_GENERIC_ERROR,
11858 _("Remote target failed to process qGetTLSAddr request"));
11859 }
11860 else
11861 throw_error (TLS_GENERIC_ERROR,
11862 _("TLS not supported or disabled on this target"));
11863 /* Not reached. */
11864 return 0;
11865 }
11866
11867 /* Provide thread local base, i.e. Thread Information Block address.
11868 Returns 1 if ptid is found and thread_local_base is non zero. */
11869
11870 bool
11871 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11872 {
11873 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11874 {
11875 struct remote_state *rs = get_remote_state ();
11876 char *p = rs->buf.data ();
11877 char *endp = p + get_remote_packet_size ();
11878 enum packet_result result;
11879
11880 strcpy (p, "qGetTIBAddr:");
11881 p += strlen (p);
11882 p = write_ptid (p, endp, ptid);
11883 *p++ = '\0';
11884
11885 putpkt (rs->buf);
11886 getpkt (&rs->buf, 0);
11887 result = packet_ok (rs->buf,
11888 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11889 if (result == PACKET_OK)
11890 {
11891 ULONGEST val;
11892 unpack_varlen_hex (rs->buf.data (), &val);
11893 if (addr)
11894 *addr = (CORE_ADDR) val;
11895 return true;
11896 }
11897 else if (result == PACKET_UNKNOWN)
11898 error (_("Remote target doesn't support qGetTIBAddr packet"));
11899 else
11900 error (_("Remote target failed to process qGetTIBAddr request"));
11901 }
11902 else
11903 error (_("qGetTIBAddr not supported or disabled on this target"));
11904 /* Not reached. */
11905 return false;
11906 }
11907
11908 /* Support for inferring a target description based on the current
11909 architecture and the size of a 'g' packet. While the 'g' packet
11910 can have any size (since optional registers can be left off the
11911 end), some sizes are easily recognizable given knowledge of the
11912 approximate architecture. */
11913
11914 struct remote_g_packet_guess
11915 {
11916 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11917 : bytes (bytes_),
11918 tdesc (tdesc_)
11919 {
11920 }
11921
11922 int bytes;
11923 const struct target_desc *tdesc;
11924 };
11925
11926 struct remote_g_packet_data : public allocate_on_obstack
11927 {
11928 std::vector<remote_g_packet_guess> guesses;
11929 };
11930
11931 static struct gdbarch_data *remote_g_packet_data_handle;
11932
11933 static void *
11934 remote_g_packet_data_init (struct obstack *obstack)
11935 {
11936 return new (obstack) remote_g_packet_data;
11937 }
11938
11939 void
11940 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11941 const struct target_desc *tdesc)
11942 {
11943 struct remote_g_packet_data *data
11944 = ((struct remote_g_packet_data *)
11945 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11946
11947 gdb_assert (tdesc != NULL);
11948
11949 for (const remote_g_packet_guess &guess : data->guesses)
11950 if (guess.bytes == bytes)
11951 internal_error (__FILE__, __LINE__,
11952 _("Duplicate g packet description added for size %d"),
11953 bytes);
11954
11955 data->guesses.emplace_back (bytes, tdesc);
11956 }
11957
11958 /* Return true if remote_read_description would do anything on this target
11959 and architecture, false otherwise. */
11960
11961 static bool
11962 remote_read_description_p (struct target_ops *target)
11963 {
11964 struct remote_g_packet_data *data
11965 = ((struct remote_g_packet_data *)
11966 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11967
11968 return !data->guesses.empty ();
11969 }
11970
11971 const struct target_desc *
11972 remote_target::read_description ()
11973 {
11974 struct remote_g_packet_data *data
11975 = ((struct remote_g_packet_data *)
11976 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11977
11978 /* Do not try this during initial connection, when we do not know
11979 whether there is a running but stopped thread. */
11980 if (!target_has_execution () || inferior_ptid == null_ptid)
11981 return beneath ()->read_description ();
11982
11983 if (!data->guesses.empty ())
11984 {
11985 int bytes = send_g_packet ();
11986
11987 for (const remote_g_packet_guess &guess : data->guesses)
11988 if (guess.bytes == bytes)
11989 return guess.tdesc;
11990
11991 /* We discard the g packet. A minor optimization would be to
11992 hold on to it, and fill the register cache once we have selected
11993 an architecture, but it's too tricky to do safely. */
11994 }
11995
11996 return beneath ()->read_description ();
11997 }
11998
11999 /* Remote file transfer support. This is host-initiated I/O, not
12000 target-initiated; for target-initiated, see remote-fileio.c. */
12001
12002 /* If *LEFT is at least the length of STRING, copy STRING to
12003 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12004 decrease *LEFT. Otherwise raise an error. */
12005
12006 static void
12007 remote_buffer_add_string (char **buffer, int *left, const char *string)
12008 {
12009 int len = strlen (string);
12010
12011 if (len > *left)
12012 error (_("Packet too long for target."));
12013
12014 memcpy (*buffer, string, len);
12015 *buffer += len;
12016 *left -= len;
12017
12018 /* NUL-terminate the buffer as a convenience, if there is
12019 room. */
12020 if (*left)
12021 **buffer = '\0';
12022 }
12023
12024 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
12025 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12026 decrease *LEFT. Otherwise raise an error. */
12027
12028 static void
12029 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
12030 int len)
12031 {
12032 if (2 * len > *left)
12033 error (_("Packet too long for target."));
12034
12035 bin2hex (bytes, *buffer, len);
12036 *buffer += 2 * len;
12037 *left -= 2 * len;
12038
12039 /* NUL-terminate the buffer as a convenience, if there is
12040 room. */
12041 if (*left)
12042 **buffer = '\0';
12043 }
12044
12045 /* If *LEFT is large enough, convert VALUE to hex and add it to
12046 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12047 decrease *LEFT. Otherwise raise an error. */
12048
12049 static void
12050 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
12051 {
12052 int len = hexnumlen (value);
12053
12054 if (len > *left)
12055 error (_("Packet too long for target."));
12056
12057 hexnumstr (*buffer, value);
12058 *buffer += len;
12059 *left -= len;
12060
12061 /* NUL-terminate the buffer as a convenience, if there is
12062 room. */
12063 if (*left)
12064 **buffer = '\0';
12065 }
12066
12067 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
12068 value, *REMOTE_ERRNO to the remote error number or zero if none
12069 was included, and *ATTACHMENT to point to the start of the annex
12070 if any. The length of the packet isn't needed here; there may
12071 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
12072
12073 Return 0 if the packet could be parsed, -1 if it could not. If
12074 -1 is returned, the other variables may not be initialized. */
12075
12076 static int
12077 remote_hostio_parse_result (const char *buffer, int *retcode,
12078 int *remote_errno, const char **attachment)
12079 {
12080 char *p, *p2;
12081
12082 *remote_errno = 0;
12083 *attachment = NULL;
12084
12085 if (buffer[0] != 'F')
12086 return -1;
12087
12088 errno = 0;
12089 *retcode = strtol (&buffer[1], &p, 16);
12090 if (errno != 0 || p == &buffer[1])
12091 return -1;
12092
12093 /* Check for ",errno". */
12094 if (*p == ',')
12095 {
12096 errno = 0;
12097 *remote_errno = strtol (p + 1, &p2, 16);
12098 if (errno != 0 || p + 1 == p2)
12099 return -1;
12100 p = p2;
12101 }
12102
12103 /* Check for ";attachment". If there is no attachment, the
12104 packet should end here. */
12105 if (*p == ';')
12106 {
12107 *attachment = p + 1;
12108 return 0;
12109 }
12110 else if (*p == '\0')
12111 return 0;
12112 else
12113 return -1;
12114 }
12115
12116 /* Send a prepared I/O packet to the target and read its response.
12117 The prepared packet is in the global RS->BUF before this function
12118 is called, and the answer is there when we return.
12119
12120 COMMAND_BYTES is the length of the request to send, which may include
12121 binary data. WHICH_PACKET is the packet configuration to check
12122 before attempting a packet. If an error occurs, *REMOTE_ERRNO
12123 is set to the error number and -1 is returned. Otherwise the value
12124 returned by the function is returned.
12125
12126 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
12127 attachment is expected; an error will be reported if there's a
12128 mismatch. If one is found, *ATTACHMENT will be set to point into
12129 the packet buffer and *ATTACHMENT_LEN will be set to the
12130 attachment's length. */
12131
12132 int
12133 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
12134 int *remote_errno, const char **attachment,
12135 int *attachment_len)
12136 {
12137 struct remote_state *rs = get_remote_state ();
12138 int ret, bytes_read;
12139 const char *attachment_tmp;
12140
12141 if (packet_support (which_packet) == PACKET_DISABLE)
12142 {
12143 *remote_errno = FILEIO_ENOSYS;
12144 return -1;
12145 }
12146
12147 putpkt_binary (rs->buf.data (), command_bytes);
12148 bytes_read = getpkt_sane (&rs->buf, 0);
12149
12150 /* If it timed out, something is wrong. Don't try to parse the
12151 buffer. */
12152 if (bytes_read < 0)
12153 {
12154 *remote_errno = FILEIO_EINVAL;
12155 return -1;
12156 }
12157
12158 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
12159 {
12160 case PACKET_ERROR:
12161 *remote_errno = FILEIO_EINVAL;
12162 return -1;
12163 case PACKET_UNKNOWN:
12164 *remote_errno = FILEIO_ENOSYS;
12165 return -1;
12166 case PACKET_OK:
12167 break;
12168 }
12169
12170 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
12171 &attachment_tmp))
12172 {
12173 *remote_errno = FILEIO_EINVAL;
12174 return -1;
12175 }
12176
12177 /* Make sure we saw an attachment if and only if we expected one. */
12178 if ((attachment_tmp == NULL && attachment != NULL)
12179 || (attachment_tmp != NULL && attachment == NULL))
12180 {
12181 *remote_errno = FILEIO_EINVAL;
12182 return -1;
12183 }
12184
12185 /* If an attachment was found, it must point into the packet buffer;
12186 work out how many bytes there were. */
12187 if (attachment_tmp != NULL)
12188 {
12189 *attachment = attachment_tmp;
12190 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
12191 }
12192
12193 return ret;
12194 }
12195
12196 /* See declaration.h. */
12197
12198 void
12199 readahead_cache::invalidate ()
12200 {
12201 this->fd = -1;
12202 }
12203
12204 /* See declaration.h. */
12205
12206 void
12207 readahead_cache::invalidate_fd (int fd)
12208 {
12209 if (this->fd == fd)
12210 this->fd = -1;
12211 }
12212
12213 /* Set the filesystem remote_hostio functions that take FILENAME
12214 arguments will use. Return 0 on success, or -1 if an error
12215 occurs (and set *REMOTE_ERRNO). */
12216
12217 int
12218 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
12219 int *remote_errno)
12220 {
12221 struct remote_state *rs = get_remote_state ();
12222 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
12223 char *p = rs->buf.data ();
12224 int left = get_remote_packet_size () - 1;
12225 char arg[9];
12226 int ret;
12227
12228 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12229 return 0;
12230
12231 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
12232 return 0;
12233
12234 remote_buffer_add_string (&p, &left, "vFile:setfs:");
12235
12236 xsnprintf (arg, sizeof (arg), "%x", required_pid);
12237 remote_buffer_add_string (&p, &left, arg);
12238
12239 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
12240 remote_errno, NULL, NULL);
12241
12242 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12243 return 0;
12244
12245 if (ret == 0)
12246 rs->fs_pid = required_pid;
12247
12248 return ret;
12249 }
12250
12251 /* Implementation of to_fileio_open. */
12252
12253 int
12254 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12255 int flags, int mode, int warn_if_slow,
12256 int *remote_errno)
12257 {
12258 struct remote_state *rs = get_remote_state ();
12259 char *p = rs->buf.data ();
12260 int left = get_remote_packet_size () - 1;
12261
12262 if (warn_if_slow)
12263 {
12264 static int warning_issued = 0;
12265
12266 printf_unfiltered (_("Reading %s from remote target...\n"),
12267 filename);
12268
12269 if (!warning_issued)
12270 {
12271 warning (_("File transfers from remote targets can be slow."
12272 " Use \"set sysroot\" to access files locally"
12273 " instead."));
12274 warning_issued = 1;
12275 }
12276 }
12277
12278 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12279 return -1;
12280
12281 remote_buffer_add_string (&p, &left, "vFile:open:");
12282
12283 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12284 strlen (filename));
12285 remote_buffer_add_string (&p, &left, ",");
12286
12287 remote_buffer_add_int (&p, &left, flags);
12288 remote_buffer_add_string (&p, &left, ",");
12289
12290 remote_buffer_add_int (&p, &left, mode);
12291
12292 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12293 remote_errno, NULL, NULL);
12294 }
12295
12296 int
12297 remote_target::fileio_open (struct inferior *inf, const char *filename,
12298 int flags, int mode, int warn_if_slow,
12299 int *remote_errno)
12300 {
12301 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12302 remote_errno);
12303 }
12304
12305 /* Implementation of to_fileio_pwrite. */
12306
12307 int
12308 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12309 ULONGEST offset, int *remote_errno)
12310 {
12311 struct remote_state *rs = get_remote_state ();
12312 char *p = rs->buf.data ();
12313 int left = get_remote_packet_size ();
12314 int out_len;
12315
12316 rs->readahead_cache.invalidate_fd (fd);
12317
12318 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12319
12320 remote_buffer_add_int (&p, &left, fd);
12321 remote_buffer_add_string (&p, &left, ",");
12322
12323 remote_buffer_add_int (&p, &left, offset);
12324 remote_buffer_add_string (&p, &left, ",");
12325
12326 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12327 (get_remote_packet_size ()
12328 - (p - rs->buf.data ())));
12329
12330 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12331 remote_errno, NULL, NULL);
12332 }
12333
12334 int
12335 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12336 ULONGEST offset, int *remote_errno)
12337 {
12338 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12339 }
12340
12341 /* Helper for the implementation of to_fileio_pread. Read the file
12342 from the remote side with vFile:pread. */
12343
12344 int
12345 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12346 ULONGEST offset, int *remote_errno)
12347 {
12348 struct remote_state *rs = get_remote_state ();
12349 char *p = rs->buf.data ();
12350 const char *attachment;
12351 int left = get_remote_packet_size ();
12352 int ret, attachment_len;
12353 int read_len;
12354
12355 remote_buffer_add_string (&p, &left, "vFile:pread:");
12356
12357 remote_buffer_add_int (&p, &left, fd);
12358 remote_buffer_add_string (&p, &left, ",");
12359
12360 remote_buffer_add_int (&p, &left, len);
12361 remote_buffer_add_string (&p, &left, ",");
12362
12363 remote_buffer_add_int (&p, &left, offset);
12364
12365 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12366 remote_errno, &attachment,
12367 &attachment_len);
12368
12369 if (ret < 0)
12370 return ret;
12371
12372 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12373 read_buf, len);
12374 if (read_len != ret)
12375 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12376
12377 return ret;
12378 }
12379
12380 /* See declaration.h. */
12381
12382 int
12383 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12384 ULONGEST offset)
12385 {
12386 if (this->fd == fd
12387 && this->offset <= offset
12388 && offset < this->offset + this->bufsize)
12389 {
12390 ULONGEST max = this->offset + this->bufsize;
12391
12392 if (offset + len > max)
12393 len = max - offset;
12394
12395 memcpy (read_buf, this->buf + offset - this->offset, len);
12396 return len;
12397 }
12398
12399 return 0;
12400 }
12401
12402 /* Implementation of to_fileio_pread. */
12403
12404 int
12405 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12406 ULONGEST offset, int *remote_errno)
12407 {
12408 int ret;
12409 struct remote_state *rs = get_remote_state ();
12410 readahead_cache *cache = &rs->readahead_cache;
12411
12412 ret = cache->pread (fd, read_buf, len, offset);
12413 if (ret > 0)
12414 {
12415 cache->hit_count++;
12416
12417 remote_debug_printf ("readahead cache hit %s",
12418 pulongest (cache->hit_count));
12419 return ret;
12420 }
12421
12422 cache->miss_count++;
12423
12424 remote_debug_printf ("readahead cache miss %s",
12425 pulongest (cache->miss_count));
12426
12427 cache->fd = fd;
12428 cache->offset = offset;
12429 cache->bufsize = get_remote_packet_size ();
12430 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12431
12432 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12433 cache->offset, remote_errno);
12434 if (ret <= 0)
12435 {
12436 cache->invalidate_fd (fd);
12437 return ret;
12438 }
12439
12440 cache->bufsize = ret;
12441 return cache->pread (fd, read_buf, len, offset);
12442 }
12443
12444 int
12445 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12446 ULONGEST offset, int *remote_errno)
12447 {
12448 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12449 }
12450
12451 /* Implementation of to_fileio_close. */
12452
12453 int
12454 remote_target::remote_hostio_close (int fd, int *remote_errno)
12455 {
12456 struct remote_state *rs = get_remote_state ();
12457 char *p = rs->buf.data ();
12458 int left = get_remote_packet_size () - 1;
12459
12460 rs->readahead_cache.invalidate_fd (fd);
12461
12462 remote_buffer_add_string (&p, &left, "vFile:close:");
12463
12464 remote_buffer_add_int (&p, &left, fd);
12465
12466 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12467 remote_errno, NULL, NULL);
12468 }
12469
12470 int
12471 remote_target::fileio_close (int fd, int *remote_errno)
12472 {
12473 return remote_hostio_close (fd, remote_errno);
12474 }
12475
12476 /* Implementation of to_fileio_unlink. */
12477
12478 int
12479 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12480 int *remote_errno)
12481 {
12482 struct remote_state *rs = get_remote_state ();
12483 char *p = rs->buf.data ();
12484 int left = get_remote_packet_size () - 1;
12485
12486 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12487 return -1;
12488
12489 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12490
12491 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12492 strlen (filename));
12493
12494 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12495 remote_errno, NULL, NULL);
12496 }
12497
12498 int
12499 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12500 int *remote_errno)
12501 {
12502 return remote_hostio_unlink (inf, filename, remote_errno);
12503 }
12504
12505 /* Implementation of to_fileio_readlink. */
12506
12507 gdb::optional<std::string>
12508 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12509 int *remote_errno)
12510 {
12511 struct remote_state *rs = get_remote_state ();
12512 char *p = rs->buf.data ();
12513 const char *attachment;
12514 int left = get_remote_packet_size ();
12515 int len, attachment_len;
12516 int read_len;
12517
12518 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12519 return {};
12520
12521 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12522
12523 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12524 strlen (filename));
12525
12526 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12527 remote_errno, &attachment,
12528 &attachment_len);
12529
12530 if (len < 0)
12531 return {};
12532
12533 std::string ret (len, '\0');
12534
12535 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12536 (gdb_byte *) &ret[0], len);
12537 if (read_len != len)
12538 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12539
12540 return ret;
12541 }
12542
12543 /* Implementation of to_fileio_fstat. */
12544
12545 int
12546 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12547 {
12548 struct remote_state *rs = get_remote_state ();
12549 char *p = rs->buf.data ();
12550 int left = get_remote_packet_size ();
12551 int attachment_len, ret;
12552 const char *attachment;
12553 struct fio_stat fst;
12554 int read_len;
12555
12556 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12557
12558 remote_buffer_add_int (&p, &left, fd);
12559
12560 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12561 remote_errno, &attachment,
12562 &attachment_len);
12563 if (ret < 0)
12564 {
12565 if (*remote_errno != FILEIO_ENOSYS)
12566 return ret;
12567
12568 /* Strictly we should return -1, ENOSYS here, but when
12569 "set sysroot remote:" was implemented in August 2008
12570 BFD's need for a stat function was sidestepped with
12571 this hack. This was not remedied until March 2015
12572 so we retain the previous behavior to avoid breaking
12573 compatibility.
12574
12575 Note that the memset is a March 2015 addition; older
12576 GDBs set st_size *and nothing else* so the structure
12577 would have garbage in all other fields. This might
12578 break something but retaining the previous behavior
12579 here would be just too wrong. */
12580
12581 memset (st, 0, sizeof (struct stat));
12582 st->st_size = INT_MAX;
12583 return 0;
12584 }
12585
12586 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12587 (gdb_byte *) &fst, sizeof (fst));
12588
12589 if (read_len != ret)
12590 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12591
12592 if (read_len != sizeof (fst))
12593 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12594 read_len, (int) sizeof (fst));
12595
12596 remote_fileio_to_host_stat (&fst, st);
12597
12598 return 0;
12599 }
12600
12601 /* Implementation of to_filesystem_is_local. */
12602
12603 bool
12604 remote_target::filesystem_is_local ()
12605 {
12606 /* Valgrind GDB presents itself as a remote target but works
12607 on the local filesystem: it does not implement remote get
12608 and users are not expected to set a sysroot. To handle
12609 this case we treat the remote filesystem as local if the
12610 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12611 does not support vFile:open. */
12612 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12613 {
12614 enum packet_support ps = packet_support (PACKET_vFile_open);
12615
12616 if (ps == PACKET_SUPPORT_UNKNOWN)
12617 {
12618 int fd, remote_errno;
12619
12620 /* Try opening a file to probe support. The supplied
12621 filename is irrelevant, we only care about whether
12622 the stub recognizes the packet or not. */
12623 fd = remote_hostio_open (NULL, "just probing",
12624 FILEIO_O_RDONLY, 0700, 0,
12625 &remote_errno);
12626
12627 if (fd >= 0)
12628 remote_hostio_close (fd, &remote_errno);
12629
12630 ps = packet_support (PACKET_vFile_open);
12631 }
12632
12633 if (ps == PACKET_DISABLE)
12634 {
12635 static int warning_issued = 0;
12636
12637 if (!warning_issued)
12638 {
12639 warning (_("remote target does not support file"
12640 " transfer, attempting to access files"
12641 " from local filesystem."));
12642 warning_issued = 1;
12643 }
12644
12645 return true;
12646 }
12647 }
12648
12649 return false;
12650 }
12651
12652 static int
12653 remote_fileio_errno_to_host (int errnum)
12654 {
12655 switch (errnum)
12656 {
12657 case FILEIO_EPERM:
12658 return EPERM;
12659 case FILEIO_ENOENT:
12660 return ENOENT;
12661 case FILEIO_EINTR:
12662 return EINTR;
12663 case FILEIO_EIO:
12664 return EIO;
12665 case FILEIO_EBADF:
12666 return EBADF;
12667 case FILEIO_EACCES:
12668 return EACCES;
12669 case FILEIO_EFAULT:
12670 return EFAULT;
12671 case FILEIO_EBUSY:
12672 return EBUSY;
12673 case FILEIO_EEXIST:
12674 return EEXIST;
12675 case FILEIO_ENODEV:
12676 return ENODEV;
12677 case FILEIO_ENOTDIR:
12678 return ENOTDIR;
12679 case FILEIO_EISDIR:
12680 return EISDIR;
12681 case FILEIO_EINVAL:
12682 return EINVAL;
12683 case FILEIO_ENFILE:
12684 return ENFILE;
12685 case FILEIO_EMFILE:
12686 return EMFILE;
12687 case FILEIO_EFBIG:
12688 return EFBIG;
12689 case FILEIO_ENOSPC:
12690 return ENOSPC;
12691 case FILEIO_ESPIPE:
12692 return ESPIPE;
12693 case FILEIO_EROFS:
12694 return EROFS;
12695 case FILEIO_ENOSYS:
12696 return ENOSYS;
12697 case FILEIO_ENAMETOOLONG:
12698 return ENAMETOOLONG;
12699 }
12700 return -1;
12701 }
12702
12703 static char *
12704 remote_hostio_error (int errnum)
12705 {
12706 int host_error = remote_fileio_errno_to_host (errnum);
12707
12708 if (host_error == -1)
12709 error (_("Unknown remote I/O error %d"), errnum);
12710 else
12711 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12712 }
12713
12714 /* A RAII wrapper around a remote file descriptor. */
12715
12716 class scoped_remote_fd
12717 {
12718 public:
12719 scoped_remote_fd (remote_target *remote, int fd)
12720 : m_remote (remote), m_fd (fd)
12721 {
12722 }
12723
12724 ~scoped_remote_fd ()
12725 {
12726 if (m_fd != -1)
12727 {
12728 try
12729 {
12730 int remote_errno;
12731 m_remote->remote_hostio_close (m_fd, &remote_errno);
12732 }
12733 catch (...)
12734 {
12735 /* Swallow exception before it escapes the dtor. If
12736 something goes wrong, likely the connection is gone,
12737 and there's nothing else that can be done. */
12738 }
12739 }
12740 }
12741
12742 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12743
12744 /* Release ownership of the file descriptor, and return it. */
12745 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12746 {
12747 int fd = m_fd;
12748 m_fd = -1;
12749 return fd;
12750 }
12751
12752 /* Return the owned file descriptor. */
12753 int get () const noexcept
12754 {
12755 return m_fd;
12756 }
12757
12758 private:
12759 /* The remote target. */
12760 remote_target *m_remote;
12761
12762 /* The owned remote I/O file descriptor. */
12763 int m_fd;
12764 };
12765
12766 void
12767 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12768 {
12769 remote_target *remote = get_current_remote_target ();
12770
12771 if (remote == nullptr)
12772 error (_("command can only be used with remote target"));
12773
12774 remote->remote_file_put (local_file, remote_file, from_tty);
12775 }
12776
12777 void
12778 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12779 int from_tty)
12780 {
12781 int retcode, remote_errno, bytes, io_size;
12782 int bytes_in_buffer;
12783 int saw_eof;
12784 ULONGEST offset;
12785
12786 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12787 if (file == NULL)
12788 perror_with_name (local_file);
12789
12790 scoped_remote_fd fd
12791 (this, remote_hostio_open (NULL,
12792 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12793 | FILEIO_O_TRUNC),
12794 0700, 0, &remote_errno));
12795 if (fd.get () == -1)
12796 remote_hostio_error (remote_errno);
12797
12798 /* Send up to this many bytes at once. They won't all fit in the
12799 remote packet limit, so we'll transfer slightly fewer. */
12800 io_size = get_remote_packet_size ();
12801 gdb::byte_vector buffer (io_size);
12802
12803 bytes_in_buffer = 0;
12804 saw_eof = 0;
12805 offset = 0;
12806 while (bytes_in_buffer || !saw_eof)
12807 {
12808 if (!saw_eof)
12809 {
12810 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12811 io_size - bytes_in_buffer,
12812 file.get ());
12813 if (bytes == 0)
12814 {
12815 if (ferror (file.get ()))
12816 error (_("Error reading %s."), local_file);
12817 else
12818 {
12819 /* EOF. Unless there is something still in the
12820 buffer from the last iteration, we are done. */
12821 saw_eof = 1;
12822 if (bytes_in_buffer == 0)
12823 break;
12824 }
12825 }
12826 }
12827 else
12828 bytes = 0;
12829
12830 bytes += bytes_in_buffer;
12831 bytes_in_buffer = 0;
12832
12833 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12834 offset, &remote_errno);
12835
12836 if (retcode < 0)
12837 remote_hostio_error (remote_errno);
12838 else if (retcode == 0)
12839 error (_("Remote write of %d bytes returned 0!"), bytes);
12840 else if (retcode < bytes)
12841 {
12842 /* Short write. Save the rest of the read data for the next
12843 write. */
12844 bytes_in_buffer = bytes - retcode;
12845 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12846 }
12847
12848 offset += retcode;
12849 }
12850
12851 if (remote_hostio_close (fd.release (), &remote_errno))
12852 remote_hostio_error (remote_errno);
12853
12854 if (from_tty)
12855 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12856 }
12857
12858 void
12859 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12860 {
12861 remote_target *remote = get_current_remote_target ();
12862
12863 if (remote == nullptr)
12864 error (_("command can only be used with remote target"));
12865
12866 remote->remote_file_get (remote_file, local_file, from_tty);
12867 }
12868
12869 void
12870 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12871 int from_tty)
12872 {
12873 int remote_errno, bytes, io_size;
12874 ULONGEST offset;
12875
12876 scoped_remote_fd fd
12877 (this, remote_hostio_open (NULL,
12878 remote_file, FILEIO_O_RDONLY, 0, 0,
12879 &remote_errno));
12880 if (fd.get () == -1)
12881 remote_hostio_error (remote_errno);
12882
12883 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12884 if (file == NULL)
12885 perror_with_name (local_file);
12886
12887 /* Send up to this many bytes at once. They won't all fit in the
12888 remote packet limit, so we'll transfer slightly fewer. */
12889 io_size = get_remote_packet_size ();
12890 gdb::byte_vector buffer (io_size);
12891
12892 offset = 0;
12893 while (1)
12894 {
12895 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12896 &remote_errno);
12897 if (bytes == 0)
12898 /* Success, but no bytes, means end-of-file. */
12899 break;
12900 if (bytes == -1)
12901 remote_hostio_error (remote_errno);
12902
12903 offset += bytes;
12904
12905 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12906 if (bytes == 0)
12907 perror_with_name (local_file);
12908 }
12909
12910 if (remote_hostio_close (fd.release (), &remote_errno))
12911 remote_hostio_error (remote_errno);
12912
12913 if (from_tty)
12914 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12915 }
12916
12917 void
12918 remote_file_delete (const char *remote_file, int from_tty)
12919 {
12920 remote_target *remote = get_current_remote_target ();
12921
12922 if (remote == nullptr)
12923 error (_("command can only be used with remote target"));
12924
12925 remote->remote_file_delete (remote_file, from_tty);
12926 }
12927
12928 void
12929 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12930 {
12931 int retcode, remote_errno;
12932
12933 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12934 if (retcode == -1)
12935 remote_hostio_error (remote_errno);
12936
12937 if (from_tty)
12938 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12939 }
12940
12941 static void
12942 remote_put_command (const char *args, int from_tty)
12943 {
12944 if (args == NULL)
12945 error_no_arg (_("file to put"));
12946
12947 gdb_argv argv (args);
12948 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12949 error (_("Invalid parameters to remote put"));
12950
12951 remote_file_put (argv[0], argv[1], from_tty);
12952 }
12953
12954 static void
12955 remote_get_command (const char *args, int from_tty)
12956 {
12957 if (args == NULL)
12958 error_no_arg (_("file to get"));
12959
12960 gdb_argv argv (args);
12961 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12962 error (_("Invalid parameters to remote get"));
12963
12964 remote_file_get (argv[0], argv[1], from_tty);
12965 }
12966
12967 static void
12968 remote_delete_command (const char *args, int from_tty)
12969 {
12970 if (args == NULL)
12971 error_no_arg (_("file to delete"));
12972
12973 gdb_argv argv (args);
12974 if (argv[0] == NULL || argv[1] != NULL)
12975 error (_("Invalid parameters to remote delete"));
12976
12977 remote_file_delete (argv[0], from_tty);
12978 }
12979
12980 bool
12981 remote_target::can_execute_reverse ()
12982 {
12983 if (packet_support (PACKET_bs) == PACKET_ENABLE
12984 || packet_support (PACKET_bc) == PACKET_ENABLE)
12985 return true;
12986 else
12987 return false;
12988 }
12989
12990 bool
12991 remote_target::supports_non_stop ()
12992 {
12993 return true;
12994 }
12995
12996 bool
12997 remote_target::supports_disable_randomization ()
12998 {
12999 /* Only supported in extended mode. */
13000 return false;
13001 }
13002
13003 bool
13004 remote_target::supports_multi_process ()
13005 {
13006 struct remote_state *rs = get_remote_state ();
13007
13008 return remote_multi_process_p (rs);
13009 }
13010
13011 static int
13012 remote_supports_cond_tracepoints ()
13013 {
13014 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
13015 }
13016
13017 bool
13018 remote_target::supports_evaluation_of_breakpoint_conditions ()
13019 {
13020 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
13021 }
13022
13023 static int
13024 remote_supports_fast_tracepoints ()
13025 {
13026 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
13027 }
13028
13029 static int
13030 remote_supports_static_tracepoints ()
13031 {
13032 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
13033 }
13034
13035 static int
13036 remote_supports_install_in_trace ()
13037 {
13038 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
13039 }
13040
13041 bool
13042 remote_target::supports_enable_disable_tracepoint ()
13043 {
13044 return (packet_support (PACKET_EnableDisableTracepoints_feature)
13045 == PACKET_ENABLE);
13046 }
13047
13048 bool
13049 remote_target::supports_string_tracing ()
13050 {
13051 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
13052 }
13053
13054 bool
13055 remote_target::can_run_breakpoint_commands ()
13056 {
13057 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
13058 }
13059
13060 void
13061 remote_target::trace_init ()
13062 {
13063 struct remote_state *rs = get_remote_state ();
13064
13065 putpkt ("QTinit");
13066 remote_get_noisy_reply ();
13067 if (strcmp (rs->buf.data (), "OK") != 0)
13068 error (_("Target does not support this command."));
13069 }
13070
13071 /* Recursive routine to walk through command list including loops, and
13072 download packets for each command. */
13073
13074 void
13075 remote_target::remote_download_command_source (int num, ULONGEST addr,
13076 struct command_line *cmds)
13077 {
13078 struct remote_state *rs = get_remote_state ();
13079 struct command_line *cmd;
13080
13081 for (cmd = cmds; cmd; cmd = cmd->next)
13082 {
13083 QUIT; /* Allow user to bail out with ^C. */
13084 strcpy (rs->buf.data (), "QTDPsrc:");
13085 encode_source_string (num, addr, "cmd", cmd->line,
13086 rs->buf.data () + strlen (rs->buf.data ()),
13087 rs->buf.size () - strlen (rs->buf.data ()));
13088 putpkt (rs->buf);
13089 remote_get_noisy_reply ();
13090 if (strcmp (rs->buf.data (), "OK"))
13091 warning (_("Target does not support source download."));
13092
13093 if (cmd->control_type == while_control
13094 || cmd->control_type == while_stepping_control)
13095 {
13096 remote_download_command_source (num, addr, cmd->body_list_0.get ());
13097
13098 QUIT; /* Allow user to bail out with ^C. */
13099 strcpy (rs->buf.data (), "QTDPsrc:");
13100 encode_source_string (num, addr, "cmd", "end",
13101 rs->buf.data () + strlen (rs->buf.data ()),
13102 rs->buf.size () - strlen (rs->buf.data ()));
13103 putpkt (rs->buf);
13104 remote_get_noisy_reply ();
13105 if (strcmp (rs->buf.data (), "OK"))
13106 warning (_("Target does not support source download."));
13107 }
13108 }
13109 }
13110
13111 void
13112 remote_target::download_tracepoint (struct bp_location *loc)
13113 {
13114 CORE_ADDR tpaddr;
13115 char addrbuf[40];
13116 std::vector<std::string> tdp_actions;
13117 std::vector<std::string> stepping_actions;
13118 char *pkt;
13119 struct breakpoint *b = loc->owner;
13120 struct tracepoint *t = (struct tracepoint *) b;
13121 struct remote_state *rs = get_remote_state ();
13122 int ret;
13123 const char *err_msg = _("Tracepoint packet too large for target.");
13124 size_t size_left;
13125
13126 /* We use a buffer other than rs->buf because we'll build strings
13127 across multiple statements, and other statements in between could
13128 modify rs->buf. */
13129 gdb::char_vector buf (get_remote_packet_size ());
13130
13131 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
13132
13133 tpaddr = loc->address;
13134 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
13135 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
13136 b->number, addrbuf, /* address */
13137 (b->enable_state == bp_enabled ? 'E' : 'D'),
13138 t->step_count, t->pass_count);
13139
13140 if (ret < 0 || ret >= buf.size ())
13141 error ("%s", err_msg);
13142
13143 /* Fast tracepoints are mostly handled by the target, but we can
13144 tell the target how big of an instruction block should be moved
13145 around. */
13146 if (b->type == bp_fast_tracepoint)
13147 {
13148 /* Only test for support at download time; we may not know
13149 target capabilities at definition time. */
13150 if (remote_supports_fast_tracepoints ())
13151 {
13152 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
13153 NULL))
13154 {
13155 size_left = buf.size () - strlen (buf.data ());
13156 ret = snprintf (buf.data () + strlen (buf.data ()),
13157 size_left, ":F%x",
13158 gdb_insn_length (loc->gdbarch, tpaddr));
13159
13160 if (ret < 0 || ret >= size_left)
13161 error ("%s", err_msg);
13162 }
13163 else
13164 /* If it passed validation at definition but fails now,
13165 something is very wrong. */
13166 internal_error (__FILE__, __LINE__,
13167 _("Fast tracepoint not "
13168 "valid during download"));
13169 }
13170 else
13171 /* Fast tracepoints are functionally identical to regular
13172 tracepoints, so don't take lack of support as a reason to
13173 give up on the trace run. */
13174 warning (_("Target does not support fast tracepoints, "
13175 "downloading %d as regular tracepoint"), b->number);
13176 }
13177 else if (b->type == bp_static_tracepoint)
13178 {
13179 /* Only test for support at download time; we may not know
13180 target capabilities at definition time. */
13181 if (remote_supports_static_tracepoints ())
13182 {
13183 struct static_tracepoint_marker marker;
13184
13185 if (target_static_tracepoint_marker_at (tpaddr, &marker))
13186 {
13187 size_left = buf.size () - strlen (buf.data ());
13188 ret = snprintf (buf.data () + strlen (buf.data ()),
13189 size_left, ":S");
13190
13191 if (ret < 0 || ret >= size_left)
13192 error ("%s", err_msg);
13193 }
13194 else
13195 error (_("Static tracepoint not valid during download"));
13196 }
13197 else
13198 /* Fast tracepoints are functionally identical to regular
13199 tracepoints, so don't take lack of support as a reason
13200 to give up on the trace run. */
13201 error (_("Target does not support static tracepoints"));
13202 }
13203 /* If the tracepoint has a conditional, make it into an agent
13204 expression and append to the definition. */
13205 if (loc->cond)
13206 {
13207 /* Only test support at download time, we may not know target
13208 capabilities at definition time. */
13209 if (remote_supports_cond_tracepoints ())
13210 {
13211 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
13212 loc->cond.get ());
13213
13214 size_left = buf.size () - strlen (buf.data ());
13215
13216 ret = snprintf (buf.data () + strlen (buf.data ()),
13217 size_left, ":X%x,", aexpr->len);
13218
13219 if (ret < 0 || ret >= size_left)
13220 error ("%s", err_msg);
13221
13222 size_left = buf.size () - strlen (buf.data ());
13223
13224 /* Two bytes to encode each aexpr byte, plus the terminating
13225 null byte. */
13226 if (aexpr->len * 2 + 1 > size_left)
13227 error ("%s", err_msg);
13228
13229 pkt = buf.data () + strlen (buf.data ());
13230
13231 for (int ndx = 0; ndx < aexpr->len; ++ndx)
13232 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
13233 *pkt = '\0';
13234 }
13235 else
13236 warning (_("Target does not support conditional tracepoints, "
13237 "ignoring tp %d cond"), b->number);
13238 }
13239
13240 if (b->commands || *default_collect)
13241 {
13242 size_left = buf.size () - strlen (buf.data ());
13243
13244 ret = snprintf (buf.data () + strlen (buf.data ()),
13245 size_left, "-");
13246
13247 if (ret < 0 || ret >= size_left)
13248 error ("%s", err_msg);
13249 }
13250
13251 putpkt (buf.data ());
13252 remote_get_noisy_reply ();
13253 if (strcmp (rs->buf.data (), "OK"))
13254 error (_("Target does not support tracepoints."));
13255
13256 /* do_single_steps (t); */
13257 for (auto action_it = tdp_actions.begin ();
13258 action_it != tdp_actions.end (); action_it++)
13259 {
13260 QUIT; /* Allow user to bail out with ^C. */
13261
13262 bool has_more = ((action_it + 1) != tdp_actions.end ()
13263 || !stepping_actions.empty ());
13264
13265 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13266 b->number, addrbuf, /* address */
13267 action_it->c_str (),
13268 has_more ? '-' : 0);
13269
13270 if (ret < 0 || ret >= buf.size ())
13271 error ("%s", err_msg);
13272
13273 putpkt (buf.data ());
13274 remote_get_noisy_reply ();
13275 if (strcmp (rs->buf.data (), "OK"))
13276 error (_("Error on target while setting tracepoints."));
13277 }
13278
13279 for (auto action_it = stepping_actions.begin ();
13280 action_it != stepping_actions.end (); action_it++)
13281 {
13282 QUIT; /* Allow user to bail out with ^C. */
13283
13284 bool is_first = action_it == stepping_actions.begin ();
13285 bool has_more = (action_it + 1) != stepping_actions.end ();
13286
13287 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13288 b->number, addrbuf, /* address */
13289 is_first ? "S" : "",
13290 action_it->c_str (),
13291 has_more ? "-" : "");
13292
13293 if (ret < 0 || ret >= buf.size ())
13294 error ("%s", err_msg);
13295
13296 putpkt (buf.data ());
13297 remote_get_noisy_reply ();
13298 if (strcmp (rs->buf.data (), "OK"))
13299 error (_("Error on target while setting tracepoints."));
13300 }
13301
13302 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13303 {
13304 if (b->location != NULL)
13305 {
13306 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13307
13308 if (ret < 0 || ret >= buf.size ())
13309 error ("%s", err_msg);
13310
13311 encode_source_string (b->number, loc->address, "at",
13312 event_location_to_string (b->location.get ()),
13313 buf.data () + strlen (buf.data ()),
13314 buf.size () - strlen (buf.data ()));
13315 putpkt (buf.data ());
13316 remote_get_noisy_reply ();
13317 if (strcmp (rs->buf.data (), "OK"))
13318 warning (_("Target does not support source download."));
13319 }
13320 if (b->cond_string)
13321 {
13322 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13323
13324 if (ret < 0 || ret >= buf.size ())
13325 error ("%s", err_msg);
13326
13327 encode_source_string (b->number, loc->address,
13328 "cond", b->cond_string,
13329 buf.data () + strlen (buf.data ()),
13330 buf.size () - strlen (buf.data ()));
13331 putpkt (buf.data ());
13332 remote_get_noisy_reply ();
13333 if (strcmp (rs->buf.data (), "OK"))
13334 warning (_("Target does not support source download."));
13335 }
13336 remote_download_command_source (b->number, loc->address,
13337 breakpoint_commands (b));
13338 }
13339 }
13340
13341 bool
13342 remote_target::can_download_tracepoint ()
13343 {
13344 struct remote_state *rs = get_remote_state ();
13345 struct trace_status *ts;
13346 int status;
13347
13348 /* Don't try to install tracepoints until we've relocated our
13349 symbols, and fetched and merged the target's tracepoint list with
13350 ours. */
13351 if (rs->starting_up)
13352 return false;
13353
13354 ts = current_trace_status ();
13355 status = get_trace_status (ts);
13356
13357 if (status == -1 || !ts->running_known || !ts->running)
13358 return false;
13359
13360 /* If we are in a tracing experiment, but remote stub doesn't support
13361 installing tracepoint in trace, we have to return. */
13362 if (!remote_supports_install_in_trace ())
13363 return false;
13364
13365 return true;
13366 }
13367
13368
13369 void
13370 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13371 {
13372 struct remote_state *rs = get_remote_state ();
13373 char *p;
13374
13375 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13376 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13377 tsv.builtin);
13378 p = rs->buf.data () + strlen (rs->buf.data ());
13379 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13380 >= get_remote_packet_size ())
13381 error (_("Trace state variable name too long for tsv definition packet"));
13382 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13383 *p++ = '\0';
13384 putpkt (rs->buf);
13385 remote_get_noisy_reply ();
13386 if (rs->buf[0] == '\0')
13387 error (_("Target does not support this command."));
13388 if (strcmp (rs->buf.data (), "OK") != 0)
13389 error (_("Error on target while downloading trace state variable."));
13390 }
13391
13392 void
13393 remote_target::enable_tracepoint (struct bp_location *location)
13394 {
13395 struct remote_state *rs = get_remote_state ();
13396
13397 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13398 location->owner->number,
13399 phex (location->address, sizeof (CORE_ADDR)));
13400 putpkt (rs->buf);
13401 remote_get_noisy_reply ();
13402 if (rs->buf[0] == '\0')
13403 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13404 if (strcmp (rs->buf.data (), "OK") != 0)
13405 error (_("Error on target while enabling tracepoint."));
13406 }
13407
13408 void
13409 remote_target::disable_tracepoint (struct bp_location *location)
13410 {
13411 struct remote_state *rs = get_remote_state ();
13412
13413 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13414 location->owner->number,
13415 phex (location->address, sizeof (CORE_ADDR)));
13416 putpkt (rs->buf);
13417 remote_get_noisy_reply ();
13418 if (rs->buf[0] == '\0')
13419 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13420 if (strcmp (rs->buf.data (), "OK") != 0)
13421 error (_("Error on target while disabling tracepoint."));
13422 }
13423
13424 void
13425 remote_target::trace_set_readonly_regions ()
13426 {
13427 asection *s;
13428 bfd_size_type size;
13429 bfd_vma vma;
13430 int anysecs = 0;
13431 int offset = 0;
13432
13433 if (!current_program_space->exec_bfd ())
13434 return; /* No information to give. */
13435
13436 struct remote_state *rs = get_remote_state ();
13437
13438 strcpy (rs->buf.data (), "QTro");
13439 offset = strlen (rs->buf.data ());
13440 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
13441 {
13442 char tmp1[40], tmp2[40];
13443 int sec_length;
13444
13445 if ((s->flags & SEC_LOAD) == 0 ||
13446 /* (s->flags & SEC_CODE) == 0 || */
13447 (s->flags & SEC_READONLY) == 0)
13448 continue;
13449
13450 anysecs = 1;
13451 vma = bfd_section_vma (s);
13452 size = bfd_section_size (s);
13453 sprintf_vma (tmp1, vma);
13454 sprintf_vma (tmp2, vma + size);
13455 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13456 if (offset + sec_length + 1 > rs->buf.size ())
13457 {
13458 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13459 warning (_("\
13460 Too many sections for read-only sections definition packet."));
13461 break;
13462 }
13463 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13464 tmp1, tmp2);
13465 offset += sec_length;
13466 }
13467 if (anysecs)
13468 {
13469 putpkt (rs->buf);
13470 getpkt (&rs->buf, 0);
13471 }
13472 }
13473
13474 void
13475 remote_target::trace_start ()
13476 {
13477 struct remote_state *rs = get_remote_state ();
13478
13479 putpkt ("QTStart");
13480 remote_get_noisy_reply ();
13481 if (rs->buf[0] == '\0')
13482 error (_("Target does not support this command."));
13483 if (strcmp (rs->buf.data (), "OK") != 0)
13484 error (_("Bogus reply from target: %s"), rs->buf.data ());
13485 }
13486
13487 int
13488 remote_target::get_trace_status (struct trace_status *ts)
13489 {
13490 /* Initialize it just to avoid a GCC false warning. */
13491 char *p = NULL;
13492 enum packet_result result;
13493 struct remote_state *rs = get_remote_state ();
13494
13495 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13496 return -1;
13497
13498 /* FIXME we need to get register block size some other way. */
13499 trace_regblock_size
13500 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13501
13502 putpkt ("qTStatus");
13503
13504 try
13505 {
13506 p = remote_get_noisy_reply ();
13507 }
13508 catch (const gdb_exception_error &ex)
13509 {
13510 if (ex.error != TARGET_CLOSE_ERROR)
13511 {
13512 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13513 return -1;
13514 }
13515 throw;
13516 }
13517
13518 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13519
13520 /* If the remote target doesn't do tracing, flag it. */
13521 if (result == PACKET_UNKNOWN)
13522 return -1;
13523
13524 /* We're working with a live target. */
13525 ts->filename = NULL;
13526
13527 if (*p++ != 'T')
13528 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13529
13530 /* Function 'parse_trace_status' sets default value of each field of
13531 'ts' at first, so we don't have to do it here. */
13532 parse_trace_status (p, ts);
13533
13534 return ts->running;
13535 }
13536
13537 void
13538 remote_target::get_tracepoint_status (struct breakpoint *bp,
13539 struct uploaded_tp *utp)
13540 {
13541 struct remote_state *rs = get_remote_state ();
13542 char *reply;
13543 struct tracepoint *tp = (struct tracepoint *) bp;
13544 size_t size = get_remote_packet_size ();
13545
13546 if (tp)
13547 {
13548 tp->hit_count = 0;
13549 tp->traceframe_usage = 0;
13550 for (bp_location *loc : tp->locations ())
13551 {
13552 /* If the tracepoint was never downloaded, don't go asking for
13553 any status. */
13554 if (tp->number_on_target == 0)
13555 continue;
13556 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13557 phex_nz (loc->address, 0));
13558 putpkt (rs->buf);
13559 reply = remote_get_noisy_reply ();
13560 if (reply && *reply)
13561 {
13562 if (*reply == 'V')
13563 parse_tracepoint_status (reply + 1, bp, utp);
13564 }
13565 }
13566 }
13567 else if (utp)
13568 {
13569 utp->hit_count = 0;
13570 utp->traceframe_usage = 0;
13571 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13572 phex_nz (utp->addr, 0));
13573 putpkt (rs->buf);
13574 reply = remote_get_noisy_reply ();
13575 if (reply && *reply)
13576 {
13577 if (*reply == 'V')
13578 parse_tracepoint_status (reply + 1, bp, utp);
13579 }
13580 }
13581 }
13582
13583 void
13584 remote_target::trace_stop ()
13585 {
13586 struct remote_state *rs = get_remote_state ();
13587
13588 putpkt ("QTStop");
13589 remote_get_noisy_reply ();
13590 if (rs->buf[0] == '\0')
13591 error (_("Target does not support this command."));
13592 if (strcmp (rs->buf.data (), "OK") != 0)
13593 error (_("Bogus reply from target: %s"), rs->buf.data ());
13594 }
13595
13596 int
13597 remote_target::trace_find (enum trace_find_type type, int num,
13598 CORE_ADDR addr1, CORE_ADDR addr2,
13599 int *tpp)
13600 {
13601 struct remote_state *rs = get_remote_state ();
13602 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13603 char *p, *reply;
13604 int target_frameno = -1, target_tracept = -1;
13605
13606 /* Lookups other than by absolute frame number depend on the current
13607 trace selected, so make sure it is correct on the remote end
13608 first. */
13609 if (type != tfind_number)
13610 set_remote_traceframe ();
13611
13612 p = rs->buf.data ();
13613 strcpy (p, "QTFrame:");
13614 p = strchr (p, '\0');
13615 switch (type)
13616 {
13617 case tfind_number:
13618 xsnprintf (p, endbuf - p, "%x", num);
13619 break;
13620 case tfind_pc:
13621 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13622 break;
13623 case tfind_tp:
13624 xsnprintf (p, endbuf - p, "tdp:%x", num);
13625 break;
13626 case tfind_range:
13627 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13628 phex_nz (addr2, 0));
13629 break;
13630 case tfind_outside:
13631 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13632 phex_nz (addr2, 0));
13633 break;
13634 default:
13635 error (_("Unknown trace find type %d"), type);
13636 }
13637
13638 putpkt (rs->buf);
13639 reply = remote_get_noisy_reply ();
13640 if (*reply == '\0')
13641 error (_("Target does not support this command."));
13642
13643 while (reply && *reply)
13644 switch (*reply)
13645 {
13646 case 'F':
13647 p = ++reply;
13648 target_frameno = (int) strtol (p, &reply, 16);
13649 if (reply == p)
13650 error (_("Unable to parse trace frame number"));
13651 /* Don't update our remote traceframe number cache on failure
13652 to select a remote traceframe. */
13653 if (target_frameno == -1)
13654 return -1;
13655 break;
13656 case 'T':
13657 p = ++reply;
13658 target_tracept = (int) strtol (p, &reply, 16);
13659 if (reply == p)
13660 error (_("Unable to parse tracepoint number"));
13661 break;
13662 case 'O': /* "OK"? */
13663 if (reply[1] == 'K' && reply[2] == '\0')
13664 reply += 2;
13665 else
13666 error (_("Bogus reply from target: %s"), reply);
13667 break;
13668 default:
13669 error (_("Bogus reply from target: %s"), reply);
13670 }
13671 if (tpp)
13672 *tpp = target_tracept;
13673
13674 rs->remote_traceframe_number = target_frameno;
13675 return target_frameno;
13676 }
13677
13678 bool
13679 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13680 {
13681 struct remote_state *rs = get_remote_state ();
13682 char *reply;
13683 ULONGEST uval;
13684
13685 set_remote_traceframe ();
13686
13687 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13688 putpkt (rs->buf);
13689 reply = remote_get_noisy_reply ();
13690 if (reply && *reply)
13691 {
13692 if (*reply == 'V')
13693 {
13694 unpack_varlen_hex (reply + 1, &uval);
13695 *val = (LONGEST) uval;
13696 return true;
13697 }
13698 }
13699 return false;
13700 }
13701
13702 int
13703 remote_target::save_trace_data (const char *filename)
13704 {
13705 struct remote_state *rs = get_remote_state ();
13706 char *p, *reply;
13707
13708 p = rs->buf.data ();
13709 strcpy (p, "QTSave:");
13710 p += strlen (p);
13711 if ((p - rs->buf.data ()) + strlen (filename) * 2
13712 >= get_remote_packet_size ())
13713 error (_("Remote file name too long for trace save packet"));
13714 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13715 *p++ = '\0';
13716 putpkt (rs->buf);
13717 reply = remote_get_noisy_reply ();
13718 if (*reply == '\0')
13719 error (_("Target does not support this command."));
13720 if (strcmp (reply, "OK") != 0)
13721 error (_("Bogus reply from target: %s"), reply);
13722 return 0;
13723 }
13724
13725 /* This is basically a memory transfer, but needs to be its own packet
13726 because we don't know how the target actually organizes its trace
13727 memory, plus we want to be able to ask for as much as possible, but
13728 not be unhappy if we don't get as much as we ask for. */
13729
13730 LONGEST
13731 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13732 {
13733 struct remote_state *rs = get_remote_state ();
13734 char *reply;
13735 char *p;
13736 int rslt;
13737
13738 p = rs->buf.data ();
13739 strcpy (p, "qTBuffer:");
13740 p += strlen (p);
13741 p += hexnumstr (p, offset);
13742 *p++ = ',';
13743 p += hexnumstr (p, len);
13744 *p++ = '\0';
13745
13746 putpkt (rs->buf);
13747 reply = remote_get_noisy_reply ();
13748 if (reply && *reply)
13749 {
13750 /* 'l' by itself means we're at the end of the buffer and
13751 there is nothing more to get. */
13752 if (*reply == 'l')
13753 return 0;
13754
13755 /* Convert the reply into binary. Limit the number of bytes to
13756 convert according to our passed-in buffer size, rather than
13757 what was returned in the packet; if the target is
13758 unexpectedly generous and gives us a bigger reply than we
13759 asked for, we don't want to crash. */
13760 rslt = hex2bin (reply, buf, len);
13761 return rslt;
13762 }
13763
13764 /* Something went wrong, flag as an error. */
13765 return -1;
13766 }
13767
13768 void
13769 remote_target::set_disconnected_tracing (int val)
13770 {
13771 struct remote_state *rs = get_remote_state ();
13772
13773 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13774 {
13775 char *reply;
13776
13777 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13778 "QTDisconnected:%x", val);
13779 putpkt (rs->buf);
13780 reply = remote_get_noisy_reply ();
13781 if (*reply == '\0')
13782 error (_("Target does not support this command."));
13783 if (strcmp (reply, "OK") != 0)
13784 error (_("Bogus reply from target: %s"), reply);
13785 }
13786 else if (val)
13787 warning (_("Target does not support disconnected tracing."));
13788 }
13789
13790 int
13791 remote_target::core_of_thread (ptid_t ptid)
13792 {
13793 thread_info *info = find_thread_ptid (this, ptid);
13794
13795 if (info != NULL && info->priv != NULL)
13796 return get_remote_thread_info (info)->core;
13797
13798 return -1;
13799 }
13800
13801 void
13802 remote_target::set_circular_trace_buffer (int val)
13803 {
13804 struct remote_state *rs = get_remote_state ();
13805 char *reply;
13806
13807 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13808 "QTBuffer:circular:%x", val);
13809 putpkt (rs->buf);
13810 reply = remote_get_noisy_reply ();
13811 if (*reply == '\0')
13812 error (_("Target does not support this command."));
13813 if (strcmp (reply, "OK") != 0)
13814 error (_("Bogus reply from target: %s"), reply);
13815 }
13816
13817 traceframe_info_up
13818 remote_target::traceframe_info ()
13819 {
13820 gdb::optional<gdb::char_vector> text
13821 = target_read_stralloc (current_inferior ()->top_target (),
13822 TARGET_OBJECT_TRACEFRAME_INFO,
13823 NULL);
13824 if (text)
13825 return parse_traceframe_info (text->data ());
13826
13827 return NULL;
13828 }
13829
13830 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13831 instruction on which a fast tracepoint may be placed. Returns -1
13832 if the packet is not supported, and 0 if the minimum instruction
13833 length is unknown. */
13834
13835 int
13836 remote_target::get_min_fast_tracepoint_insn_len ()
13837 {
13838 struct remote_state *rs = get_remote_state ();
13839 char *reply;
13840
13841 /* If we're not debugging a process yet, the IPA can't be
13842 loaded. */
13843 if (!target_has_execution ())
13844 return 0;
13845
13846 /* Make sure the remote is pointing at the right process. */
13847 set_general_process ();
13848
13849 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13850 putpkt (rs->buf);
13851 reply = remote_get_noisy_reply ();
13852 if (*reply == '\0')
13853 return -1;
13854 else
13855 {
13856 ULONGEST min_insn_len;
13857
13858 unpack_varlen_hex (reply, &min_insn_len);
13859
13860 return (int) min_insn_len;
13861 }
13862 }
13863
13864 void
13865 remote_target::set_trace_buffer_size (LONGEST val)
13866 {
13867 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13868 {
13869 struct remote_state *rs = get_remote_state ();
13870 char *buf = rs->buf.data ();
13871 char *endbuf = buf + get_remote_packet_size ();
13872 enum packet_result result;
13873
13874 gdb_assert (val >= 0 || val == -1);
13875 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13876 /* Send -1 as literal "-1" to avoid host size dependency. */
13877 if (val < 0)
13878 {
13879 *buf++ = '-';
13880 buf += hexnumstr (buf, (ULONGEST) -val);
13881 }
13882 else
13883 buf += hexnumstr (buf, (ULONGEST) val);
13884
13885 putpkt (rs->buf);
13886 remote_get_noisy_reply ();
13887 result = packet_ok (rs->buf,
13888 &remote_protocol_packets[PACKET_QTBuffer_size]);
13889
13890 if (result != PACKET_OK)
13891 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13892 }
13893 }
13894
13895 bool
13896 remote_target::set_trace_notes (const char *user, const char *notes,
13897 const char *stop_notes)
13898 {
13899 struct remote_state *rs = get_remote_state ();
13900 char *reply;
13901 char *buf = rs->buf.data ();
13902 char *endbuf = buf + get_remote_packet_size ();
13903 int nbytes;
13904
13905 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13906 if (user)
13907 {
13908 buf += xsnprintf (buf, endbuf - buf, "user:");
13909 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13910 buf += 2 * nbytes;
13911 *buf++ = ';';
13912 }
13913 if (notes)
13914 {
13915 buf += xsnprintf (buf, endbuf - buf, "notes:");
13916 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13917 buf += 2 * nbytes;
13918 *buf++ = ';';
13919 }
13920 if (stop_notes)
13921 {
13922 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13923 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13924 buf += 2 * nbytes;
13925 *buf++ = ';';
13926 }
13927 /* Ensure the buffer is terminated. */
13928 *buf = '\0';
13929
13930 putpkt (rs->buf);
13931 reply = remote_get_noisy_reply ();
13932 if (*reply == '\0')
13933 return false;
13934
13935 if (strcmp (reply, "OK") != 0)
13936 error (_("Bogus reply from target: %s"), reply);
13937
13938 return true;
13939 }
13940
13941 bool
13942 remote_target::use_agent (bool use)
13943 {
13944 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13945 {
13946 struct remote_state *rs = get_remote_state ();
13947
13948 /* If the stub supports QAgent. */
13949 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13950 putpkt (rs->buf);
13951 getpkt (&rs->buf, 0);
13952
13953 if (strcmp (rs->buf.data (), "OK") == 0)
13954 {
13955 ::use_agent = use;
13956 return true;
13957 }
13958 }
13959
13960 return false;
13961 }
13962
13963 bool
13964 remote_target::can_use_agent ()
13965 {
13966 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13967 }
13968
13969 struct btrace_target_info
13970 {
13971 /* The ptid of the traced thread. */
13972 ptid_t ptid;
13973
13974 /* The obtained branch trace configuration. */
13975 struct btrace_config conf;
13976 };
13977
13978 /* Reset our idea of our target's btrace configuration. */
13979
13980 static void
13981 remote_btrace_reset (remote_state *rs)
13982 {
13983 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13984 }
13985
13986 /* Synchronize the configuration with the target. */
13987
13988 void
13989 remote_target::btrace_sync_conf (const btrace_config *conf)
13990 {
13991 struct packet_config *packet;
13992 struct remote_state *rs;
13993 char *buf, *pos, *endbuf;
13994
13995 rs = get_remote_state ();
13996 buf = rs->buf.data ();
13997 endbuf = buf + get_remote_packet_size ();
13998
13999 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
14000 if (packet_config_support (packet) == PACKET_ENABLE
14001 && conf->bts.size != rs->btrace_config.bts.size)
14002 {
14003 pos = buf;
14004 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14005 conf->bts.size);
14006
14007 putpkt (buf);
14008 getpkt (&rs->buf, 0);
14009
14010 if (packet_ok (buf, packet) == PACKET_ERROR)
14011 {
14012 if (buf[0] == 'E' && buf[1] == '.')
14013 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
14014 else
14015 error (_("Failed to configure the BTS buffer size."));
14016 }
14017
14018 rs->btrace_config.bts.size = conf->bts.size;
14019 }
14020
14021 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
14022 if (packet_config_support (packet) == PACKET_ENABLE
14023 && conf->pt.size != rs->btrace_config.pt.size)
14024 {
14025 pos = buf;
14026 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14027 conf->pt.size);
14028
14029 putpkt (buf);
14030 getpkt (&rs->buf, 0);
14031
14032 if (packet_ok (buf, packet) == PACKET_ERROR)
14033 {
14034 if (buf[0] == 'E' && buf[1] == '.')
14035 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
14036 else
14037 error (_("Failed to configure the trace buffer size."));
14038 }
14039
14040 rs->btrace_config.pt.size = conf->pt.size;
14041 }
14042 }
14043
14044 /* Read the current thread's btrace configuration from the target and
14045 store it into CONF. */
14046
14047 static void
14048 btrace_read_config (struct btrace_config *conf)
14049 {
14050 gdb::optional<gdb::char_vector> xml
14051 = target_read_stralloc (current_inferior ()->top_target (),
14052 TARGET_OBJECT_BTRACE_CONF, "");
14053 if (xml)
14054 parse_xml_btrace_conf (conf, xml->data ());
14055 }
14056
14057 /* Maybe reopen target btrace. */
14058
14059 void
14060 remote_target::remote_btrace_maybe_reopen ()
14061 {
14062 struct remote_state *rs = get_remote_state ();
14063 int btrace_target_pushed = 0;
14064 #if !defined (HAVE_LIBIPT)
14065 int warned = 0;
14066 #endif
14067
14068 /* Don't bother walking the entirety of the remote thread list when
14069 we know the feature isn't supported by the remote. */
14070 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
14071 return;
14072
14073 scoped_restore_current_thread restore_thread;
14074
14075 for (thread_info *tp : all_non_exited_threads (this))
14076 {
14077 set_general_thread (tp->ptid);
14078
14079 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
14080 btrace_read_config (&rs->btrace_config);
14081
14082 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
14083 continue;
14084
14085 #if !defined (HAVE_LIBIPT)
14086 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
14087 {
14088 if (!warned)
14089 {
14090 warned = 1;
14091 warning (_("Target is recording using Intel Processor Trace "
14092 "but support was disabled at compile time."));
14093 }
14094
14095 continue;
14096 }
14097 #endif /* !defined (HAVE_LIBIPT) */
14098
14099 /* Push target, once, but before anything else happens. This way our
14100 changes to the threads will be cleaned up by unpushing the target
14101 in case btrace_read_config () throws. */
14102 if (!btrace_target_pushed)
14103 {
14104 btrace_target_pushed = 1;
14105 record_btrace_push_target ();
14106 printf_filtered (_("Target is recording using %s.\n"),
14107 btrace_format_string (rs->btrace_config.format));
14108 }
14109
14110 tp->btrace.target = XCNEW (struct btrace_target_info);
14111 tp->btrace.target->ptid = tp->ptid;
14112 tp->btrace.target->conf = rs->btrace_config;
14113 }
14114 }
14115
14116 /* Enable branch tracing. */
14117
14118 struct btrace_target_info *
14119 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
14120 {
14121 struct btrace_target_info *tinfo = NULL;
14122 struct packet_config *packet = NULL;
14123 struct remote_state *rs = get_remote_state ();
14124 char *buf = rs->buf.data ();
14125 char *endbuf = buf + get_remote_packet_size ();
14126
14127 switch (conf->format)
14128 {
14129 case BTRACE_FORMAT_BTS:
14130 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
14131 break;
14132
14133 case BTRACE_FORMAT_PT:
14134 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
14135 break;
14136 }
14137
14138 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
14139 error (_("Target does not support branch tracing."));
14140
14141 btrace_sync_conf (conf);
14142
14143 set_general_thread (ptid);
14144
14145 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14146 putpkt (rs->buf);
14147 getpkt (&rs->buf, 0);
14148
14149 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14150 {
14151 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14152 error (_("Could not enable branch tracing for %s: %s"),
14153 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
14154 else
14155 error (_("Could not enable branch tracing for %s."),
14156 target_pid_to_str (ptid).c_str ());
14157 }
14158
14159 tinfo = XCNEW (struct btrace_target_info);
14160 tinfo->ptid = ptid;
14161
14162 /* If we fail to read the configuration, we lose some information, but the
14163 tracing itself is not impacted. */
14164 try
14165 {
14166 btrace_read_config (&tinfo->conf);
14167 }
14168 catch (const gdb_exception_error &err)
14169 {
14170 if (err.message != NULL)
14171 warning ("%s", err.what ());
14172 }
14173
14174 return tinfo;
14175 }
14176
14177 /* Disable branch tracing. */
14178
14179 void
14180 remote_target::disable_btrace (struct btrace_target_info *tinfo)
14181 {
14182 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
14183 struct remote_state *rs = get_remote_state ();
14184 char *buf = rs->buf.data ();
14185 char *endbuf = buf + get_remote_packet_size ();
14186
14187 if (packet_config_support (packet) != PACKET_ENABLE)
14188 error (_("Target does not support branch tracing."));
14189
14190 set_general_thread (tinfo->ptid);
14191
14192 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14193 putpkt (rs->buf);
14194 getpkt (&rs->buf, 0);
14195
14196 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14197 {
14198 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14199 error (_("Could not disable branch tracing for %s: %s"),
14200 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
14201 else
14202 error (_("Could not disable branch tracing for %s."),
14203 target_pid_to_str (tinfo->ptid).c_str ());
14204 }
14205
14206 xfree (tinfo);
14207 }
14208
14209 /* Teardown branch tracing. */
14210
14211 void
14212 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
14213 {
14214 /* We must not talk to the target during teardown. */
14215 xfree (tinfo);
14216 }
14217
14218 /* Read the branch trace. */
14219
14220 enum btrace_error
14221 remote_target::read_btrace (struct btrace_data *btrace,
14222 struct btrace_target_info *tinfo,
14223 enum btrace_read_type type)
14224 {
14225 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
14226 const char *annex;
14227
14228 if (packet_config_support (packet) != PACKET_ENABLE)
14229 error (_("Target does not support branch tracing."));
14230
14231 #if !defined(HAVE_LIBEXPAT)
14232 error (_("Cannot process branch tracing result. XML parsing not supported."));
14233 #endif
14234
14235 switch (type)
14236 {
14237 case BTRACE_READ_ALL:
14238 annex = "all";
14239 break;
14240 case BTRACE_READ_NEW:
14241 annex = "new";
14242 break;
14243 case BTRACE_READ_DELTA:
14244 annex = "delta";
14245 break;
14246 default:
14247 internal_error (__FILE__, __LINE__,
14248 _("Bad branch tracing read type: %u."),
14249 (unsigned int) type);
14250 }
14251
14252 gdb::optional<gdb::char_vector> xml
14253 = target_read_stralloc (current_inferior ()->top_target (),
14254 TARGET_OBJECT_BTRACE, annex);
14255 if (!xml)
14256 return BTRACE_ERR_UNKNOWN;
14257
14258 parse_xml_btrace (btrace, xml->data ());
14259
14260 return BTRACE_ERR_NONE;
14261 }
14262
14263 const struct btrace_config *
14264 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14265 {
14266 return &tinfo->conf;
14267 }
14268
14269 bool
14270 remote_target::augmented_libraries_svr4_read ()
14271 {
14272 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14273 == PACKET_ENABLE);
14274 }
14275
14276 /* Implementation of to_load. */
14277
14278 void
14279 remote_target::load (const char *name, int from_tty)
14280 {
14281 generic_load (name, from_tty);
14282 }
14283
14284 /* Accepts an integer PID; returns a string representing a file that
14285 can be opened on the remote side to get the symbols for the child
14286 process. Returns NULL if the operation is not supported. */
14287
14288 char *
14289 remote_target::pid_to_exec_file (int pid)
14290 {
14291 static gdb::optional<gdb::char_vector> filename;
14292 char *annex = NULL;
14293
14294 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14295 return NULL;
14296
14297 inferior *inf = find_inferior_pid (this, pid);
14298 if (inf == NULL)
14299 internal_error (__FILE__, __LINE__,
14300 _("not currently attached to process %d"), pid);
14301
14302 if (!inf->fake_pid_p)
14303 {
14304 const int annex_size = 9;
14305
14306 annex = (char *) alloca (annex_size);
14307 xsnprintf (annex, annex_size, "%x", pid);
14308 }
14309
14310 filename = target_read_stralloc (current_inferior ()->top_target (),
14311 TARGET_OBJECT_EXEC_FILE, annex);
14312
14313 return filename ? filename->data () : nullptr;
14314 }
14315
14316 /* Implement the to_can_do_single_step target_ops method. */
14317
14318 int
14319 remote_target::can_do_single_step ()
14320 {
14321 /* We can only tell whether target supports single step or not by
14322 supported s and S vCont actions if the stub supports vContSupported
14323 feature. If the stub doesn't support vContSupported feature,
14324 we have conservatively to think target doesn't supports single
14325 step. */
14326 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14327 {
14328 struct remote_state *rs = get_remote_state ();
14329
14330 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14331 remote_vcont_probe ();
14332
14333 return rs->supports_vCont.s && rs->supports_vCont.S;
14334 }
14335 else
14336 return 0;
14337 }
14338
14339 /* Implementation of the to_execution_direction method for the remote
14340 target. */
14341
14342 enum exec_direction_kind
14343 remote_target::execution_direction ()
14344 {
14345 struct remote_state *rs = get_remote_state ();
14346
14347 return rs->last_resume_exec_dir;
14348 }
14349
14350 /* Return pointer to the thread_info struct which corresponds to
14351 THREAD_HANDLE (having length HANDLE_LEN). */
14352
14353 thread_info *
14354 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14355 int handle_len,
14356 inferior *inf)
14357 {
14358 for (thread_info *tp : all_non_exited_threads (this))
14359 {
14360 remote_thread_info *priv = get_remote_thread_info (tp);
14361
14362 if (tp->inf == inf && priv != NULL)
14363 {
14364 if (handle_len != priv->thread_handle.size ())
14365 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14366 handle_len, priv->thread_handle.size ());
14367 if (memcmp (thread_handle, priv->thread_handle.data (),
14368 handle_len) == 0)
14369 return tp;
14370 }
14371 }
14372
14373 return NULL;
14374 }
14375
14376 gdb::byte_vector
14377 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14378 {
14379 remote_thread_info *priv = get_remote_thread_info (tp);
14380 return priv->thread_handle;
14381 }
14382
14383 bool
14384 remote_target::can_async_p ()
14385 {
14386 struct remote_state *rs = get_remote_state ();
14387
14388 /* We don't go async if the user has explicitly prevented it with the
14389 "maint set target-async" command. */
14390 if (!target_async_permitted)
14391 return false;
14392
14393 /* We're async whenever the serial device is. */
14394 return serial_can_async_p (rs->remote_desc);
14395 }
14396
14397 bool
14398 remote_target::is_async_p ()
14399 {
14400 struct remote_state *rs = get_remote_state ();
14401
14402 if (!target_async_permitted)
14403 /* We only enable async when the user specifically asks for it. */
14404 return false;
14405
14406 /* We're async whenever the serial device is. */
14407 return serial_is_async_p (rs->remote_desc);
14408 }
14409
14410 /* Pass the SERIAL event on and up to the client. One day this code
14411 will be able to delay notifying the client of an event until the
14412 point where an entire packet has been received. */
14413
14414 static serial_event_ftype remote_async_serial_handler;
14415
14416 static void
14417 remote_async_serial_handler (struct serial *scb, void *context)
14418 {
14419 /* Don't propogate error information up to the client. Instead let
14420 the client find out about the error by querying the target. */
14421 inferior_event_handler (INF_REG_EVENT);
14422 }
14423
14424 static void
14425 remote_async_inferior_event_handler (gdb_client_data data)
14426 {
14427 inferior_event_handler (INF_REG_EVENT);
14428 }
14429
14430 int
14431 remote_target::async_wait_fd ()
14432 {
14433 struct remote_state *rs = get_remote_state ();
14434 return rs->remote_desc->fd;
14435 }
14436
14437 void
14438 remote_target::async (int enable)
14439 {
14440 struct remote_state *rs = get_remote_state ();
14441
14442 if (enable)
14443 {
14444 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14445
14446 /* If there are pending events in the stop reply queue tell the
14447 event loop to process them. */
14448 if (!rs->stop_reply_queue.empty ())
14449 mark_async_event_handler (rs->remote_async_inferior_event_token);
14450 /* For simplicity, below we clear the pending events token
14451 without remembering whether it is marked, so here we always
14452 mark it. If there's actually no pending notification to
14453 process, this ends up being a no-op (other than a spurious
14454 event-loop wakeup). */
14455 if (target_is_non_stop_p ())
14456 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14457 }
14458 else
14459 {
14460 serial_async (rs->remote_desc, NULL, NULL);
14461 /* If the core is disabling async, it doesn't want to be
14462 disturbed with target events. Clear all async event sources
14463 too. */
14464 clear_async_event_handler (rs->remote_async_inferior_event_token);
14465 if (target_is_non_stop_p ())
14466 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14467 }
14468 }
14469
14470 /* Implementation of the to_thread_events method. */
14471
14472 void
14473 remote_target::thread_events (int enable)
14474 {
14475 struct remote_state *rs = get_remote_state ();
14476 size_t size = get_remote_packet_size ();
14477
14478 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14479 return;
14480
14481 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14482 putpkt (rs->buf);
14483 getpkt (&rs->buf, 0);
14484
14485 switch (packet_ok (rs->buf,
14486 &remote_protocol_packets[PACKET_QThreadEvents]))
14487 {
14488 case PACKET_OK:
14489 if (strcmp (rs->buf.data (), "OK") != 0)
14490 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14491 break;
14492 case PACKET_ERROR:
14493 warning (_("Remote failure reply: %s"), rs->buf.data ());
14494 break;
14495 case PACKET_UNKNOWN:
14496 break;
14497 }
14498 }
14499
14500 static void
14501 show_remote_cmd (const char *args, int from_tty)
14502 {
14503 /* We can't just use cmd_show_list here, because we want to skip
14504 the redundant "show remote Z-packet" and the legacy aliases. */
14505 struct cmd_list_element *list = remote_show_cmdlist;
14506 struct ui_out *uiout = current_uiout;
14507
14508 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14509 for (; list != NULL; list = list->next)
14510 if (strcmp (list->name, "Z-packet") == 0)
14511 continue;
14512 else if (list->type == not_set_cmd)
14513 /* Alias commands are exactly like the original, except they
14514 don't have the normal type. */
14515 continue;
14516 else
14517 {
14518 ui_out_emit_tuple option_emitter (uiout, "option");
14519
14520 uiout->field_string ("name", list->name);
14521 uiout->text (": ");
14522 if (list->type == show_cmd)
14523 do_show_command (NULL, from_tty, list);
14524 else
14525 cmd_func (list, NULL, from_tty);
14526 }
14527 }
14528
14529
14530 /* Function to be called whenever a new objfile (shlib) is detected. */
14531 static void
14532 remote_new_objfile (struct objfile *objfile)
14533 {
14534 remote_target *remote = get_current_remote_target ();
14535
14536 /* First, check whether the current inferior's process target is a remote
14537 target. */
14538 if (remote == nullptr)
14539 return;
14540
14541 /* When we are attaching or handling a fork child and the shared library
14542 subsystem reads the list of loaded libraries, we receive new objfile
14543 events in between each found library. The libraries are read in an
14544 undefined order, so if we gave the remote side a chance to look up
14545 symbols between each objfile, we might give it an inconsistent picture
14546 of the inferior. It could appear that a library A appears loaded but
14547 a library B does not, even though library A requires library B. That
14548 would present a state that couldn't normally exist in the inferior.
14549
14550 So, skip these events, we'll give the remote a chance to look up symbols
14551 once all the loaded libraries and their symbols are known to GDB. */
14552 if (current_inferior ()->in_initial_library_scan)
14553 return;
14554
14555 remote->remote_check_symbols ();
14556 }
14557
14558 /* Pull all the tracepoints defined on the target and create local
14559 data structures representing them. We don't want to create real
14560 tracepoints yet, we don't want to mess up the user's existing
14561 collection. */
14562
14563 int
14564 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14565 {
14566 struct remote_state *rs = get_remote_state ();
14567 char *p;
14568
14569 /* Ask for a first packet of tracepoint definition. */
14570 putpkt ("qTfP");
14571 getpkt (&rs->buf, 0);
14572 p = rs->buf.data ();
14573 while (*p && *p != 'l')
14574 {
14575 parse_tracepoint_definition (p, utpp);
14576 /* Ask for another packet of tracepoint definition. */
14577 putpkt ("qTsP");
14578 getpkt (&rs->buf, 0);
14579 p = rs->buf.data ();
14580 }
14581 return 0;
14582 }
14583
14584 int
14585 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14586 {
14587 struct remote_state *rs = get_remote_state ();
14588 char *p;
14589
14590 /* Ask for a first packet of variable definition. */
14591 putpkt ("qTfV");
14592 getpkt (&rs->buf, 0);
14593 p = rs->buf.data ();
14594 while (*p && *p != 'l')
14595 {
14596 parse_tsv_definition (p, utsvp);
14597 /* Ask for another packet of variable definition. */
14598 putpkt ("qTsV");
14599 getpkt (&rs->buf, 0);
14600 p = rs->buf.data ();
14601 }
14602 return 0;
14603 }
14604
14605 /* The "set/show range-stepping" show hook. */
14606
14607 static void
14608 show_range_stepping (struct ui_file *file, int from_tty,
14609 struct cmd_list_element *c,
14610 const char *value)
14611 {
14612 fprintf_filtered (file,
14613 _("Debugger's willingness to use range stepping "
14614 "is %s.\n"), value);
14615 }
14616
14617 /* Return true if the vCont;r action is supported by the remote
14618 stub. */
14619
14620 bool
14621 remote_target::vcont_r_supported ()
14622 {
14623 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14624 remote_vcont_probe ();
14625
14626 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14627 && get_remote_state ()->supports_vCont.r);
14628 }
14629
14630 /* The "set/show range-stepping" set hook. */
14631
14632 static void
14633 set_range_stepping (const char *ignore_args, int from_tty,
14634 struct cmd_list_element *c)
14635 {
14636 /* When enabling, check whether range stepping is actually supported
14637 by the target, and warn if not. */
14638 if (use_range_stepping)
14639 {
14640 remote_target *remote = get_current_remote_target ();
14641 if (remote == NULL
14642 || !remote->vcont_r_supported ())
14643 warning (_("Range stepping is not supported by the current target"));
14644 }
14645 }
14646
14647 static void
14648 show_remote_debug (struct ui_file *file, int from_tty,
14649 struct cmd_list_element *c, const char *value)
14650 {
14651 fprintf_filtered (file, _("Debugging of remote protocol is %s.\n"),
14652 value);
14653 }
14654
14655 static void
14656 show_remote_timeout (struct ui_file *file, int from_tty,
14657 struct cmd_list_element *c, const char *value)
14658 {
14659 fprintf_filtered (file,
14660 _("Timeout limit to wait for target to respond is %s.\n"),
14661 value);
14662 }
14663
14664 /* Implement the "supports_memory_tagging" target_ops method. */
14665
14666 bool
14667 remote_target::supports_memory_tagging ()
14668 {
14669 return remote_memory_tagging_p ();
14670 }
14671
14672 /* Create the qMemTags packet given ADDRESS, LEN and TYPE. */
14673
14674 static void
14675 create_fetch_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14676 size_t len, int type)
14677 {
14678 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14679
14680 std::string request = string_printf ("qMemTags:%s,%s:%s",
14681 phex_nz (address, addr_size),
14682 phex_nz (len, sizeof (len)),
14683 phex_nz (type, sizeof (type)));
14684
14685 strcpy (packet.data (), request.c_str ());
14686 }
14687
14688 /* Parse the qMemTags packet reply into TAGS.
14689
14690 Return true if successful, false otherwise. */
14691
14692 static bool
14693 parse_fetch_memtags_reply (const gdb::char_vector &reply,
14694 gdb::byte_vector &tags)
14695 {
14696 if (reply.empty () || reply[0] == 'E' || reply[0] != 'm')
14697 return false;
14698
14699 /* Copy the tag data. */
14700 tags = hex2bin (reply.data () + 1);
14701
14702 return true;
14703 }
14704
14705 /* Create the QMemTags packet given ADDRESS, LEN, TYPE and TAGS. */
14706
14707 static void
14708 create_store_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14709 size_t len, int type,
14710 const gdb::byte_vector &tags)
14711 {
14712 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14713
14714 /* Put together the main packet, address and length. */
14715 std::string request = string_printf ("QMemTags:%s,%s:%s:",
14716 phex_nz (address, addr_size),
14717 phex_nz (len, sizeof (len)),
14718 phex_nz (type, sizeof (type)));
14719 request += bin2hex (tags.data (), tags.size ());
14720
14721 /* Check if we have exceeded the maximum packet size. */
14722 if (packet.size () < request.length ())
14723 error (_("Contents too big for packet QMemTags."));
14724
14725 strcpy (packet.data (), request.c_str ());
14726 }
14727
14728 /* Implement the "fetch_memtags" target_ops method. */
14729
14730 bool
14731 remote_target::fetch_memtags (CORE_ADDR address, size_t len,
14732 gdb::byte_vector &tags, int type)
14733 {
14734 /* Make sure the qMemTags packet is supported. */
14735 if (!remote_memory_tagging_p ())
14736 gdb_assert_not_reached ("remote fetch_memtags called with packet disabled");
14737
14738 struct remote_state *rs = get_remote_state ();
14739
14740 create_fetch_memtags_request (rs->buf, address, len, type);
14741
14742 putpkt (rs->buf);
14743 getpkt (&rs->buf, 0);
14744
14745 return parse_fetch_memtags_reply (rs->buf, tags);
14746 }
14747
14748 /* Implement the "store_memtags" target_ops method. */
14749
14750 bool
14751 remote_target::store_memtags (CORE_ADDR address, size_t len,
14752 const gdb::byte_vector &tags, int type)
14753 {
14754 /* Make sure the QMemTags packet is supported. */
14755 if (!remote_memory_tagging_p ())
14756 gdb_assert_not_reached ("remote store_memtags called with packet disabled");
14757
14758 struct remote_state *rs = get_remote_state ();
14759
14760 create_store_memtags_request (rs->buf, address, len, type, tags);
14761
14762 putpkt (rs->buf);
14763 getpkt (&rs->buf, 0);
14764
14765 /* Verify if the request was successful. */
14766 return packet_check_result (rs->buf.data ()) == PACKET_OK;
14767 }
14768
14769 /* Return true if remote target T is non-stop. */
14770
14771 bool
14772 remote_target_is_non_stop_p (remote_target *t)
14773 {
14774 scoped_restore_current_thread restore_thread;
14775 switch_to_target_no_thread (t);
14776
14777 return target_is_non_stop_p ();
14778 }
14779
14780 #if GDB_SELF_TEST
14781
14782 namespace selftests {
14783
14784 static void
14785 test_memory_tagging_functions ()
14786 {
14787 remote_target remote;
14788
14789 struct packet_config *config
14790 = &remote_protocol_packets[PACKET_memory_tagging_feature];
14791
14792 scoped_restore restore_memtag_support_
14793 = make_scoped_restore (&config->support);
14794
14795 /* Test memory tagging packet support. */
14796 config->support = PACKET_SUPPORT_UNKNOWN;
14797 SELF_CHECK (remote.supports_memory_tagging () == false);
14798 config->support = PACKET_DISABLE;
14799 SELF_CHECK (remote.supports_memory_tagging () == false);
14800 config->support = PACKET_ENABLE;
14801 SELF_CHECK (remote.supports_memory_tagging () == true);
14802
14803 /* Setup testing. */
14804 gdb::char_vector packet;
14805 gdb::byte_vector tags, bv;
14806 std::string expected, reply;
14807 packet.resize (32000);
14808
14809 /* Test creating a qMemTags request. */
14810
14811 expected = "qMemTags:0,0:0";
14812 create_fetch_memtags_request (packet, 0x0, 0x0, 0);
14813 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14814
14815 expected = "qMemTags:deadbeef,10:1";
14816 create_fetch_memtags_request (packet, 0xdeadbeef, 16, 1);
14817 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14818
14819 /* Test parsing a qMemTags reply. */
14820
14821 /* Error reply, tags vector unmodified. */
14822 reply = "E00";
14823 strcpy (packet.data (), reply.c_str ());
14824 tags.resize (0);
14825 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == false);
14826 SELF_CHECK (tags.size () == 0);
14827
14828 /* Valid reply, tags vector updated. */
14829 tags.resize (0);
14830 bv.resize (0);
14831
14832 for (int i = 0; i < 5; i++)
14833 bv.push_back (i);
14834
14835 reply = "m" + bin2hex (bv.data (), bv.size ());
14836 strcpy (packet.data (), reply.c_str ());
14837
14838 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == true);
14839 SELF_CHECK (tags.size () == 5);
14840
14841 for (int i = 0; i < 5; i++)
14842 SELF_CHECK (tags[i] == i);
14843
14844 /* Test creating a QMemTags request. */
14845
14846 /* Empty tag data. */
14847 tags.resize (0);
14848 expected = "QMemTags:0,0:0:";
14849 create_store_memtags_request (packet, 0x0, 0x0, 0, tags);
14850 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14851 expected.length ()) == 0);
14852
14853 /* Non-empty tag data. */
14854 tags.resize (0);
14855 for (int i = 0; i < 5; i++)
14856 tags.push_back (i);
14857 expected = "QMemTags:deadbeef,ff:1:0001020304";
14858 create_store_memtags_request (packet, 0xdeadbeef, 255, 1, tags);
14859 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14860 expected.length ()) == 0);
14861 }
14862
14863 } // namespace selftests
14864 #endif /* GDB_SELF_TEST */
14865
14866 void _initialize_remote ();
14867 void
14868 _initialize_remote ()
14869 {
14870 /* architecture specific data */
14871 remote_g_packet_data_handle =
14872 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14873
14874 add_target (remote_target_info, remote_target::open);
14875 add_target (extended_remote_target_info, extended_remote_target::open);
14876
14877 /* Hook into new objfile notification. */
14878 gdb::observers::new_objfile.attach (remote_new_objfile, "remote");
14879
14880 #if 0
14881 init_remote_threadtests ();
14882 #endif
14883
14884 /* set/show remote ... */
14885
14886 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14887 Remote protocol specific variables.\n\
14888 Configure various remote-protocol specific variables such as\n\
14889 the packets being used."),
14890 &remote_set_cmdlist,
14891 0 /* allow-unknown */, &setlist);
14892 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14893 Remote protocol specific variables.\n\
14894 Configure various remote-protocol specific variables such as\n\
14895 the packets being used."),
14896 &remote_show_cmdlist,
14897 0 /* allow-unknown */, &showlist);
14898
14899 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14900 Compare section data on target to the exec file.\n\
14901 Argument is a single section name (default: all loaded sections).\n\
14902 To compare only read-only loaded sections, specify the -r option."),
14903 &cmdlist);
14904
14905 add_cmd ("packet", class_maintenance, packet_command, _("\
14906 Send an arbitrary packet to a remote target.\n\
14907 maintenance packet TEXT\n\
14908 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14909 this command sends the string TEXT to the inferior, and displays the\n\
14910 response packet. GDB supplies the initial `$' character, and the\n\
14911 terminating `#' character and checksum."),
14912 &maintenancelist);
14913
14914 set_show_commands remotebreak_cmds
14915 = add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14916 Set whether to send break if interrupted."), _("\
14917 Show whether to send break if interrupted."), _("\
14918 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14919 set_remotebreak, show_remotebreak,
14920 &setlist, &showlist);
14921 deprecate_cmd (remotebreak_cmds.set, "set remote interrupt-sequence");
14922 deprecate_cmd (remotebreak_cmds.show, "show remote interrupt-sequence");
14923
14924 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14925 interrupt_sequence_modes, &interrupt_sequence_mode,
14926 _("\
14927 Set interrupt sequence to remote target."), _("\
14928 Show interrupt sequence to remote target."), _("\
14929 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14930 NULL, show_interrupt_sequence,
14931 &remote_set_cmdlist,
14932 &remote_show_cmdlist);
14933
14934 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14935 &interrupt_on_connect, _("\
14936 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14937 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14938 If set, interrupt sequence is sent to remote target."),
14939 NULL, NULL,
14940 &remote_set_cmdlist, &remote_show_cmdlist);
14941
14942 /* Install commands for configuring memory read/write packets. */
14943
14944 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14945 Set the maximum number of bytes per memory write packet (deprecated)."),
14946 &setlist);
14947 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14948 Show the maximum number of bytes per memory write packet (deprecated)."),
14949 &showlist);
14950 add_cmd ("memory-write-packet-size", no_class,
14951 set_memory_write_packet_size, _("\
14952 Set the maximum number of bytes per memory-write packet.\n\
14953 Specify the number of bytes in a packet or 0 (zero) for the\n\
14954 default packet size. The actual limit is further reduced\n\
14955 dependent on the target. Specify ``fixed'' to disable the\n\
14956 further restriction and ``limit'' to enable that restriction."),
14957 &remote_set_cmdlist);
14958 add_cmd ("memory-read-packet-size", no_class,
14959 set_memory_read_packet_size, _("\
14960 Set the maximum number of bytes per memory-read packet.\n\
14961 Specify the number of bytes in a packet or 0 (zero) for the\n\
14962 default packet size. The actual limit is further reduced\n\
14963 dependent on the target. Specify ``fixed'' to disable the\n\
14964 further restriction and ``limit'' to enable that restriction."),
14965 &remote_set_cmdlist);
14966 add_cmd ("memory-write-packet-size", no_class,
14967 show_memory_write_packet_size,
14968 _("Show the maximum number of bytes per memory-write packet."),
14969 &remote_show_cmdlist);
14970 add_cmd ("memory-read-packet-size", no_class,
14971 show_memory_read_packet_size,
14972 _("Show the maximum number of bytes per memory-read packet."),
14973 &remote_show_cmdlist);
14974
14975 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14976 &remote_hw_watchpoint_limit, _("\
14977 Set the maximum number of target hardware watchpoints."), _("\
14978 Show the maximum number of target hardware watchpoints."), _("\
14979 Specify \"unlimited\" for unlimited hardware watchpoints."),
14980 NULL, show_hardware_watchpoint_limit,
14981 &remote_set_cmdlist,
14982 &remote_show_cmdlist);
14983 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14984 no_class,
14985 &remote_hw_watchpoint_length_limit, _("\
14986 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14987 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14988 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14989 NULL, show_hardware_watchpoint_length_limit,
14990 &remote_set_cmdlist, &remote_show_cmdlist);
14991 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14992 &remote_hw_breakpoint_limit, _("\
14993 Set the maximum number of target hardware breakpoints."), _("\
14994 Show the maximum number of target hardware breakpoints."), _("\
14995 Specify \"unlimited\" for unlimited hardware breakpoints."),
14996 NULL, show_hardware_breakpoint_limit,
14997 &remote_set_cmdlist, &remote_show_cmdlist);
14998
14999 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
15000 &remote_address_size, _("\
15001 Set the maximum size of the address (in bits) in a memory packet."), _("\
15002 Show the maximum size of the address (in bits) in a memory packet."), NULL,
15003 NULL,
15004 NULL, /* FIXME: i18n: */
15005 &setlist, &showlist);
15006
15007 init_all_packet_configs ();
15008
15009 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
15010 "X", "binary-download", 1);
15011
15012 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
15013 "vCont", "verbose-resume", 0);
15014
15015 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
15016 "QPassSignals", "pass-signals", 0);
15017
15018 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
15019 "QCatchSyscalls", "catch-syscalls", 0);
15020
15021 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
15022 "QProgramSignals", "program-signals", 0);
15023
15024 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
15025 "QSetWorkingDir", "set-working-dir", 0);
15026
15027 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
15028 "QStartupWithShell", "startup-with-shell", 0);
15029
15030 add_packet_config_cmd (&remote_protocol_packets
15031 [PACKET_QEnvironmentHexEncoded],
15032 "QEnvironmentHexEncoded", "environment-hex-encoded",
15033 0);
15034
15035 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
15036 "QEnvironmentReset", "environment-reset",
15037 0);
15038
15039 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
15040 "QEnvironmentUnset", "environment-unset",
15041 0);
15042
15043 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
15044 "qSymbol", "symbol-lookup", 0);
15045
15046 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
15047 "P", "set-register", 1);
15048
15049 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
15050 "p", "fetch-register", 1);
15051
15052 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
15053 "Z0", "software-breakpoint", 0);
15054
15055 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
15056 "Z1", "hardware-breakpoint", 0);
15057
15058 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
15059 "Z2", "write-watchpoint", 0);
15060
15061 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
15062 "Z3", "read-watchpoint", 0);
15063
15064 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
15065 "Z4", "access-watchpoint", 0);
15066
15067 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
15068 "qXfer:auxv:read", "read-aux-vector", 0);
15069
15070 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
15071 "qXfer:exec-file:read", "pid-to-exec-file", 0);
15072
15073 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
15074 "qXfer:features:read", "target-features", 0);
15075
15076 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
15077 "qXfer:libraries:read", "library-info", 0);
15078
15079 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
15080 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
15081
15082 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
15083 "qXfer:memory-map:read", "memory-map", 0);
15084
15085 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
15086 "qXfer:osdata:read", "osdata", 0);
15087
15088 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
15089 "qXfer:threads:read", "threads", 0);
15090
15091 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
15092 "qXfer:siginfo:read", "read-siginfo-object", 0);
15093
15094 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
15095 "qXfer:siginfo:write", "write-siginfo-object", 0);
15096
15097 add_packet_config_cmd
15098 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
15099 "qXfer:traceframe-info:read", "traceframe-info", 0);
15100
15101 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
15102 "qXfer:uib:read", "unwind-info-block", 0);
15103
15104 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
15105 "qGetTLSAddr", "get-thread-local-storage-address",
15106 0);
15107
15108 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
15109 "qGetTIBAddr", "get-thread-information-block-address",
15110 0);
15111
15112 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
15113 "bc", "reverse-continue", 0);
15114
15115 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
15116 "bs", "reverse-step", 0);
15117
15118 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
15119 "qSupported", "supported-packets", 0);
15120
15121 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
15122 "qSearch:memory", "search-memory", 0);
15123
15124 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
15125 "qTStatus", "trace-status", 0);
15126
15127 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
15128 "vFile:setfs", "hostio-setfs", 0);
15129
15130 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
15131 "vFile:open", "hostio-open", 0);
15132
15133 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
15134 "vFile:pread", "hostio-pread", 0);
15135
15136 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
15137 "vFile:pwrite", "hostio-pwrite", 0);
15138
15139 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
15140 "vFile:close", "hostio-close", 0);
15141
15142 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
15143 "vFile:unlink", "hostio-unlink", 0);
15144
15145 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
15146 "vFile:readlink", "hostio-readlink", 0);
15147
15148 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
15149 "vFile:fstat", "hostio-fstat", 0);
15150
15151 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
15152 "vAttach", "attach", 0);
15153
15154 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
15155 "vRun", "run", 0);
15156
15157 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
15158 "QStartNoAckMode", "noack", 0);
15159
15160 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
15161 "vKill", "kill", 0);
15162
15163 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
15164 "qAttached", "query-attached", 0);
15165
15166 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
15167 "ConditionalTracepoints",
15168 "conditional-tracepoints", 0);
15169
15170 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
15171 "ConditionalBreakpoints",
15172 "conditional-breakpoints", 0);
15173
15174 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
15175 "BreakpointCommands",
15176 "breakpoint-commands", 0);
15177
15178 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
15179 "FastTracepoints", "fast-tracepoints", 0);
15180
15181 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
15182 "TracepointSource", "TracepointSource", 0);
15183
15184 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
15185 "QAllow", "allow", 0);
15186
15187 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
15188 "StaticTracepoints", "static-tracepoints", 0);
15189
15190 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
15191 "InstallInTrace", "install-in-trace", 0);
15192
15193 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
15194 "qXfer:statictrace:read", "read-sdata-object", 0);
15195
15196 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
15197 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
15198
15199 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
15200 "QDisableRandomization", "disable-randomization", 0);
15201
15202 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
15203 "QAgent", "agent", 0);
15204
15205 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
15206 "QTBuffer:size", "trace-buffer-size", 0);
15207
15208 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
15209 "Qbtrace:off", "disable-btrace", 0);
15210
15211 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
15212 "Qbtrace:bts", "enable-btrace-bts", 0);
15213
15214 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
15215 "Qbtrace:pt", "enable-btrace-pt", 0);
15216
15217 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
15218 "qXfer:btrace", "read-btrace", 0);
15219
15220 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
15221 "qXfer:btrace-conf", "read-btrace-conf", 0);
15222
15223 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
15224 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
15225
15226 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
15227 "multiprocess-feature", "multiprocess-feature", 0);
15228
15229 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
15230 "swbreak-feature", "swbreak-feature", 0);
15231
15232 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
15233 "hwbreak-feature", "hwbreak-feature", 0);
15234
15235 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
15236 "fork-event-feature", "fork-event-feature", 0);
15237
15238 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
15239 "vfork-event-feature", "vfork-event-feature", 0);
15240
15241 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
15242 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
15243
15244 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
15245 "vContSupported", "verbose-resume-supported", 0);
15246
15247 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
15248 "exec-event-feature", "exec-event-feature", 0);
15249
15250 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
15251 "vCtrlC", "ctrl-c", 0);
15252
15253 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
15254 "QThreadEvents", "thread-events", 0);
15255
15256 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
15257 "N stop reply", "no-resumed-stop-reply", 0);
15258
15259 add_packet_config_cmd (&remote_protocol_packets[PACKET_memory_tagging_feature],
15260 "memory-tagging-feature", "memory-tagging-feature", 0);
15261
15262 /* Assert that we've registered "set remote foo-packet" commands
15263 for all packet configs. */
15264 {
15265 int i;
15266
15267 for (i = 0; i < PACKET_MAX; i++)
15268 {
15269 /* Ideally all configs would have a command associated. Some
15270 still don't though. */
15271 int excepted;
15272
15273 switch (i)
15274 {
15275 case PACKET_QNonStop:
15276 case PACKET_EnableDisableTracepoints_feature:
15277 case PACKET_tracenz_feature:
15278 case PACKET_DisconnectedTracing_feature:
15279 case PACKET_augmented_libraries_svr4_read_feature:
15280 case PACKET_qCRC:
15281 /* Additions to this list need to be well justified:
15282 pre-existing packets are OK; new packets are not. */
15283 excepted = 1;
15284 break;
15285 default:
15286 excepted = 0;
15287 break;
15288 }
15289
15290 /* This catches both forgetting to add a config command, and
15291 forgetting to remove a packet from the exception list. */
15292 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
15293 }
15294 }
15295
15296 /* Keep the old ``set remote Z-packet ...'' working. Each individual
15297 Z sub-packet has its own set and show commands, but users may
15298 have sets to this variable in their .gdbinit files (or in their
15299 documentation). */
15300 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
15301 &remote_Z_packet_detect, _("\
15302 Set use of remote protocol `Z' packets."), _("\
15303 Show use of remote protocol `Z' packets."), _("\
15304 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
15305 packets."),
15306 set_remote_protocol_Z_packet_cmd,
15307 show_remote_protocol_Z_packet_cmd,
15308 /* FIXME: i18n: Use of remote protocol
15309 `Z' packets is %s. */
15310 &remote_set_cmdlist, &remote_show_cmdlist);
15311
15312 add_basic_prefix_cmd ("remote", class_files, _("\
15313 Manipulate files on the remote system.\n\
15314 Transfer files to and from the remote target system."),
15315 &remote_cmdlist,
15316 0 /* allow-unknown */, &cmdlist);
15317
15318 add_cmd ("put", class_files, remote_put_command,
15319 _("Copy a local file to the remote system."),
15320 &remote_cmdlist);
15321
15322 add_cmd ("get", class_files, remote_get_command,
15323 _("Copy a remote file to the local system."),
15324 &remote_cmdlist);
15325
15326 add_cmd ("delete", class_files, remote_delete_command,
15327 _("Delete a remote file."),
15328 &remote_cmdlist);
15329
15330 add_setshow_string_noescape_cmd ("exec-file", class_files,
15331 &remote_exec_file_var, _("\
15332 Set the remote pathname for \"run\"."), _("\
15333 Show the remote pathname for \"run\"."), NULL,
15334 set_remote_exec_file,
15335 show_remote_exec_file,
15336 &remote_set_cmdlist,
15337 &remote_show_cmdlist);
15338
15339 add_setshow_boolean_cmd ("range-stepping", class_run,
15340 &use_range_stepping, _("\
15341 Enable or disable range stepping."), _("\
15342 Show whether target-assisted range stepping is enabled."), _("\
15343 If on, and the target supports it, when stepping a source line, GDB\n\
15344 tells the target to step the corresponding range of addresses itself instead\n\
15345 of issuing multiple single-steps. This speeds up source level\n\
15346 stepping. If off, GDB always issues single-steps, even if range\n\
15347 stepping is supported by the target. The default is on."),
15348 set_range_stepping,
15349 show_range_stepping,
15350 &setlist,
15351 &showlist);
15352
15353 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
15354 Set watchdog timer."), _("\
15355 Show watchdog timer."), _("\
15356 When non-zero, this timeout is used instead of waiting forever for a target\n\
15357 to finish a low-level step or continue operation. If the specified amount\n\
15358 of time passes without a response from the target, an error occurs."),
15359 NULL,
15360 show_watchdog,
15361 &setlist, &showlist);
15362
15363 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
15364 &remote_packet_max_chars, _("\
15365 Set the maximum number of characters to display for each remote packet."), _("\
15366 Show the maximum number of characters to display for each remote packet."), _("\
15367 Specify \"unlimited\" to display all the characters."),
15368 NULL, show_remote_packet_max_chars,
15369 &setdebuglist, &showdebuglist);
15370
15371 add_setshow_boolean_cmd ("remote", no_class, &remote_debug,
15372 _("Set debugging of remote protocol."),
15373 _("Show debugging of remote protocol."),
15374 _("\
15375 When enabled, each packet sent or received with the remote target\n\
15376 is displayed."),
15377 NULL,
15378 show_remote_debug,
15379 &setdebuglist, &showdebuglist);
15380
15381 add_setshow_zuinteger_unlimited_cmd ("remotetimeout", no_class,
15382 &remote_timeout, _("\
15383 Set timeout limit to wait for target to respond."), _("\
15384 Show timeout limit to wait for target to respond."), _("\
15385 This value is used to set the time limit for gdb to wait for a response\n\
15386 from the target."),
15387 NULL,
15388 show_remote_timeout,
15389 &setlist, &showlist);
15390
15391 /* Eventually initialize fileio. See fileio.c */
15392 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
15393
15394 #if GDB_SELF_TEST
15395 selftests::register_test ("remote_memory_tagging",
15396 selftests::test_memory_tagging_functions);
15397 #endif
15398 }
This page took 0.395709 seconds and 4 git commands to generate.