Remove one line comment
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observer.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75
76 /* Temp hacks for tracepoint encoding migration. */
77 static char *target_buf;
78 static long target_buf_size;
79
80 /* Per-program-space data key. */
81 static const struct program_space_data *remote_pspace_data;
82
83 /* The variable registered as the control variable used by the
84 remote exec-file commands. While the remote exec-file setting is
85 per-program-space, the set/show machinery uses this as the
86 location of the remote exec-file value. */
87 static char *remote_exec_file_var;
88
89 /* The size to align memory write packets, when practical. The protocol
90 does not guarantee any alignment, and gdb will generate short
91 writes and unaligned writes, but even as a best-effort attempt this
92 can improve bulk transfers. For instance, if a write is misaligned
93 relative to the target's data bus, the stub may need to make an extra
94 round trip fetching data from the target. This doesn't make a
95 huge difference, but it's easy to do, so we try to be helpful.
96
97 The alignment chosen is arbitrary; usually data bus width is
98 important here, not the possibly larger cache line size. */
99 enum { REMOTE_ALIGN_WRITES = 16 };
100
101 /* Prototypes for local functions. */
102 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
103 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
104 int forever, int *is_notif);
105
106 static void remote_files_info (struct target_ops *ignore);
107
108 static void remote_prepare_to_store (struct target_ops *self,
109 struct regcache *regcache);
110
111 static void remote_open_1 (const char *, int, struct target_ops *,
112 int extended_p);
113
114 static void remote_close (struct target_ops *self);
115
116 struct remote_state;
117
118 static int remote_vkill (int pid, struct remote_state *rs);
119
120 static void remote_kill_k (void);
121
122 static void remote_mourn (struct target_ops *ops);
123
124 static void extended_remote_restart (void);
125
126 static void remote_send (char **buf, long *sizeof_buf_p);
127
128 static int readchar (int timeout);
129
130 static void remote_serial_write (const char *str, int len);
131
132 static void remote_kill (struct target_ops *ops);
133
134 static int remote_can_async_p (struct target_ops *);
135
136 static int remote_is_async_p (struct target_ops *);
137
138 static void remote_async (struct target_ops *ops, int enable);
139
140 static void remote_thread_events (struct target_ops *ops, int enable);
141
142 static void interrupt_query (void);
143
144 static void set_general_thread (ptid_t ptid);
145 static void set_continue_thread (ptid_t ptid);
146
147 static void get_offsets (void);
148
149 static void skip_frame (void);
150
151 static long read_frame (char **buf_p, long *sizeof_buf);
152
153 static int hexnumlen (ULONGEST num);
154
155 static void init_remote_ops (void);
156
157 static void init_extended_remote_ops (void);
158
159 static void remote_stop (struct target_ops *self, ptid_t);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (const char *);
170
171 static void compare_sections_command (char *, int);
172
173 static void packet_command (char *, int);
174
175 static int stub_unpack_int (char *buff, int fieldlength);
176
177 static ptid_t remote_current_thread (ptid_t oldptid);
178
179 static int putpkt_binary (const char *buf, int cnt);
180
181 static void check_binary_download (CORE_ADDR addr);
182
183 struct packet_config;
184
185 static void show_packet_config_cmd (struct packet_config *config);
186
187 static void show_remote_protocol_packet_cmd (struct ui_file *file,
188 int from_tty,
189 struct cmd_list_element *c,
190 const char *value);
191
192 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
193 static ptid_t read_ptid (char *buf, char **obuf);
194
195 static void remote_set_permissions (struct target_ops *self);
196
197 static int remote_get_trace_status (struct target_ops *self,
198 struct trace_status *ts);
199
200 static int remote_upload_tracepoints (struct target_ops *self,
201 struct uploaded_tp **utpp);
202
203 static int remote_upload_trace_state_variables (struct target_ops *self,
204 struct uploaded_tsv **utsvp);
205
206 static void remote_query_supported (void);
207
208 static void remote_check_symbols (void);
209
210 void _initialize_remote (void);
211
212 struct stop_reply;
213 static void stop_reply_xfree (struct stop_reply *);
214 static void remote_parse_stop_reply (char *, struct stop_reply *);
215 static void push_stop_reply (struct stop_reply *);
216 static void discard_pending_stop_replies_in_queue (struct remote_state *);
217 static int peek_stop_reply (ptid_t ptid);
218
219 struct threads_listing_context;
220 static void remove_new_fork_children (struct threads_listing_context *);
221
222 static void remote_async_inferior_event_handler (gdb_client_data);
223
224 static void remote_terminal_ours (struct target_ops *self);
225
226 static int remote_read_description_p (struct target_ops *target);
227
228 static void remote_console_output (char *msg);
229
230 static int remote_supports_cond_breakpoints (struct target_ops *self);
231
232 static int remote_can_run_breakpoint_commands (struct target_ops *self);
233
234 static void remote_btrace_reset (void);
235
236 static void remote_btrace_maybe_reopen (void);
237
238 static int stop_reply_queue_length (void);
239
240 static void readahead_cache_invalidate (void);
241
242 static void remote_unpush_and_throw (void);
243
244 /* For "remote". */
245
246 static struct cmd_list_element *remote_cmdlist;
247
248 /* For "set remote" and "show remote". */
249
250 static struct cmd_list_element *remote_set_cmdlist;
251 static struct cmd_list_element *remote_show_cmdlist;
252
253 /* Stub vCont actions support.
254
255 Each field is a boolean flag indicating whether the stub reports
256 support for the corresponding action. */
257
258 struct vCont_action_support
259 {
260 /* vCont;t */
261 int t;
262
263 /* vCont;r */
264 int r;
265
266 /* vCont;s */
267 int s;
268
269 /* vCont;S */
270 int S;
271 };
272
273 /* Controls whether GDB is willing to use range stepping. */
274
275 static int use_range_stepping = 1;
276
277 #define OPAQUETHREADBYTES 8
278
279 /* a 64 bit opaque identifier */
280 typedef unsigned char threadref[OPAQUETHREADBYTES];
281
282 /* About this many threadisds fit in a packet. */
283
284 #define MAXTHREADLISTRESULTS 32
285
286 /* The max number of chars in debug output. The rest of chars are
287 omitted. */
288
289 #define REMOTE_DEBUG_MAX_CHAR 512
290
291 /* Data for the vFile:pread readahead cache. */
292
293 struct readahead_cache
294 {
295 /* The file descriptor for the file that is being cached. -1 if the
296 cache is invalid. */
297 int fd;
298
299 /* The offset into the file that the cache buffer corresponds
300 to. */
301 ULONGEST offset;
302
303 /* The buffer holding the cache contents. */
304 gdb_byte *buf;
305 /* The buffer's size. We try to read as much as fits into a packet
306 at a time. */
307 size_t bufsize;
308
309 /* Cache hit and miss counters. */
310 ULONGEST hit_count;
311 ULONGEST miss_count;
312 };
313
314 /* Description of the remote protocol state for the currently
315 connected target. This is per-target state, and independent of the
316 selected architecture. */
317
318 struct remote_state
319 {
320 /* A buffer to use for incoming packets, and its current size. The
321 buffer is grown dynamically for larger incoming packets.
322 Outgoing packets may also be constructed in this buffer.
323 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
324 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
325 packets. */
326 char *buf;
327 long buf_size;
328
329 /* True if we're going through initial connection setup (finding out
330 about the remote side's threads, relocating symbols, etc.). */
331 int starting_up;
332
333 /* If we negotiated packet size explicitly (and thus can bypass
334 heuristics for the largest packet size that will not overflow
335 a buffer in the stub), this will be set to that packet size.
336 Otherwise zero, meaning to use the guessed size. */
337 long explicit_packet_size;
338
339 /* remote_wait is normally called when the target is running and
340 waits for a stop reply packet. But sometimes we need to call it
341 when the target is already stopped. We can send a "?" packet
342 and have remote_wait read the response. Or, if we already have
343 the response, we can stash it in BUF and tell remote_wait to
344 skip calling getpkt. This flag is set when BUF contains a
345 stop reply packet and the target is not waiting. */
346 int cached_wait_status;
347
348 /* True, if in no ack mode. That is, neither GDB nor the stub will
349 expect acks from each other. The connection is assumed to be
350 reliable. */
351 int noack_mode;
352
353 /* True if we're connected in extended remote mode. */
354 int extended;
355
356 /* True if we resumed the target and we're waiting for the target to
357 stop. In the mean time, we can't start another command/query.
358 The remote server wouldn't be ready to process it, so we'd
359 timeout waiting for a reply that would never come and eventually
360 we'd close the connection. This can happen in asynchronous mode
361 because we allow GDB commands while the target is running. */
362 int waiting_for_stop_reply;
363
364 /* The status of the stub support for the various vCont actions. */
365 struct vCont_action_support supports_vCont;
366
367 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
368 responded to that. */
369 int ctrlc_pending_p;
370
371 /* True if we saw a Ctrl-C while reading or writing from/to the
372 remote descriptor. At that point it is not safe to send a remote
373 interrupt packet, so we instead remember we saw the Ctrl-C and
374 process it once we're done with sending/receiving the current
375 packet, which should be shortly. If however that takes too long,
376 and the user presses Ctrl-C again, we offer to disconnect. */
377 int got_ctrlc_during_io;
378
379 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
380 remote_open knows that we don't have a file open when the program
381 starts. */
382 struct serial *remote_desc;
383
384 /* These are the threads which we last sent to the remote system. The
385 TID member will be -1 for all or -2 for not sent yet. */
386 ptid_t general_thread;
387 ptid_t continue_thread;
388
389 /* This is the traceframe which we last selected on the remote system.
390 It will be -1 if no traceframe is selected. */
391 int remote_traceframe_number;
392
393 char *last_pass_packet;
394
395 /* The last QProgramSignals packet sent to the target. We bypass
396 sending a new program signals list down to the target if the new
397 packet is exactly the same as the last we sent. IOW, we only let
398 the target know about program signals list changes. */
399 char *last_program_signals_packet;
400
401 enum gdb_signal last_sent_signal;
402
403 int last_sent_step;
404
405 /* The execution direction of the last resume we got. */
406 enum exec_direction_kind last_resume_exec_dir;
407
408 char *finished_object;
409 char *finished_annex;
410 ULONGEST finished_offset;
411
412 /* Should we try the 'ThreadInfo' query packet?
413
414 This variable (NOT available to the user: auto-detect only!)
415 determines whether GDB will use the new, simpler "ThreadInfo"
416 query or the older, more complex syntax for thread queries.
417 This is an auto-detect variable (set to true at each connect,
418 and set to false when the target fails to recognize it). */
419 int use_threadinfo_query;
420 int use_threadextra_query;
421
422 threadref echo_nextthread;
423 threadref nextthread;
424 threadref resultthreadlist[MAXTHREADLISTRESULTS];
425
426 /* The state of remote notification. */
427 struct remote_notif_state *notif_state;
428
429 /* The branch trace configuration. */
430 struct btrace_config btrace_config;
431
432 /* The argument to the last "vFile:setfs:" packet we sent, used
433 to avoid sending repeated unnecessary "vFile:setfs:" packets.
434 Initialized to -1 to indicate that no "vFile:setfs:" packet
435 has yet been sent. */
436 int fs_pid;
437
438 /* A readahead cache for vFile:pread. Often, reading a binary
439 involves a sequence of small reads. E.g., when parsing an ELF
440 file. A readahead cache helps mostly the case of remote
441 debugging on a connection with higher latency, due to the
442 request/reply nature of the RSP. We only cache data for a single
443 file descriptor at a time. */
444 struct readahead_cache readahead_cache;
445 };
446
447 /* Private data that we'll store in (struct thread_info)->private. */
448 struct private_thread_info
449 {
450 char *extra;
451 char *name;
452 int core;
453
454 /* Whether the target stopped for a breakpoint/watchpoint. */
455 enum target_stop_reason stop_reason;
456
457 /* This is set to the data address of the access causing the target
458 to stop for a watchpoint. */
459 CORE_ADDR watch_data_address;
460
461 /* Fields used by the vCont action coalescing implemented in
462 remote_resume / remote_commit_resume. remote_resume stores each
463 thread's last resume request in these fields, so that a later
464 remote_commit_resume knows which is the proper action for this
465 thread to include in the vCont packet. */
466
467 /* True if the last target_resume call for this thread was a step
468 request, false if a continue request. */
469 int last_resume_step;
470
471 /* The signal specified in the last target_resume call for this
472 thread. */
473 enum gdb_signal last_resume_sig;
474
475 /* Whether this thread was already vCont-resumed on the remote
476 side. */
477 int vcont_resumed;
478 };
479
480 static void
481 free_private_thread_info (struct private_thread_info *info)
482 {
483 xfree (info->extra);
484 xfree (info->name);
485 xfree (info);
486 }
487
488 /* This data could be associated with a target, but we do not always
489 have access to the current target when we need it, so for now it is
490 static. This will be fine for as long as only one target is in use
491 at a time. */
492 static struct remote_state *remote_state;
493
494 static struct remote_state *
495 get_remote_state_raw (void)
496 {
497 return remote_state;
498 }
499
500 /* Allocate a new struct remote_state with xmalloc, initialize it, and
501 return it. */
502
503 static struct remote_state *
504 new_remote_state (void)
505 {
506 struct remote_state *result = XCNEW (struct remote_state);
507
508 /* The default buffer size is unimportant; it will be expanded
509 whenever a larger buffer is needed. */
510 result->buf_size = 400;
511 result->buf = (char *) xmalloc (result->buf_size);
512 result->remote_traceframe_number = -1;
513 result->last_sent_signal = GDB_SIGNAL_0;
514 result->last_resume_exec_dir = EXEC_FORWARD;
515 result->fs_pid = -1;
516
517 return result;
518 }
519
520 /* Description of the remote protocol for a given architecture. */
521
522 struct packet_reg
523 {
524 long offset; /* Offset into G packet. */
525 long regnum; /* GDB's internal register number. */
526 LONGEST pnum; /* Remote protocol register number. */
527 int in_g_packet; /* Always part of G packet. */
528 /* long size in bytes; == register_size (target_gdbarch (), regnum);
529 at present. */
530 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
531 at present. */
532 };
533
534 struct remote_arch_state
535 {
536 /* Description of the remote protocol registers. */
537 long sizeof_g_packet;
538
539 /* Description of the remote protocol registers indexed by REGNUM
540 (making an array gdbarch_num_regs in size). */
541 struct packet_reg *regs;
542
543 /* This is the size (in chars) of the first response to the ``g''
544 packet. It is used as a heuristic when determining the maximum
545 size of memory-read and memory-write packets. A target will
546 typically only reserve a buffer large enough to hold the ``g''
547 packet. The size does not include packet overhead (headers and
548 trailers). */
549 long actual_register_packet_size;
550
551 /* This is the maximum size (in chars) of a non read/write packet.
552 It is also used as a cap on the size of read/write packets. */
553 long remote_packet_size;
554 };
555
556 /* Utility: generate error from an incoming stub packet. */
557 static void
558 trace_error (char *buf)
559 {
560 if (*buf++ != 'E')
561 return; /* not an error msg */
562 switch (*buf)
563 {
564 case '1': /* malformed packet error */
565 if (*++buf == '0') /* general case: */
566 error (_("remote.c: error in outgoing packet."));
567 else
568 error (_("remote.c: error in outgoing packet at field #%ld."),
569 strtol (buf, NULL, 16));
570 default:
571 error (_("Target returns error code '%s'."), buf);
572 }
573 }
574
575 /* Utility: wait for reply from stub, while accepting "O" packets. */
576 static char *
577 remote_get_noisy_reply (char **buf_p,
578 long *sizeof_buf)
579 {
580 do /* Loop on reply from remote stub. */
581 {
582 char *buf;
583
584 QUIT; /* Allow user to bail out with ^C. */
585 getpkt (buf_p, sizeof_buf, 0);
586 buf = *buf_p;
587 if (buf[0] == 'E')
588 trace_error (buf);
589 else if (startswith (buf, "qRelocInsn:"))
590 {
591 ULONGEST ul;
592 CORE_ADDR from, to, org_to;
593 char *p, *pp;
594 int adjusted_size = 0;
595 int relocated = 0;
596
597 p = buf + strlen ("qRelocInsn:");
598 pp = unpack_varlen_hex (p, &ul);
599 if (*pp != ';')
600 error (_("invalid qRelocInsn packet: %s"), buf);
601 from = ul;
602
603 p = pp + 1;
604 unpack_varlen_hex (p, &ul);
605 to = ul;
606
607 org_to = to;
608
609 TRY
610 {
611 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
612 relocated = 1;
613 }
614 CATCH (ex, RETURN_MASK_ALL)
615 {
616 if (ex.error == MEMORY_ERROR)
617 {
618 /* Propagate memory errors silently back to the
619 target. The stub may have limited the range of
620 addresses we can write to, for example. */
621 }
622 else
623 {
624 /* Something unexpectedly bad happened. Be verbose
625 so we can tell what, and propagate the error back
626 to the stub, so it doesn't get stuck waiting for
627 a response. */
628 exception_fprintf (gdb_stderr, ex,
629 _("warning: relocating instruction: "));
630 }
631 putpkt ("E01");
632 }
633 END_CATCH
634
635 if (relocated)
636 {
637 adjusted_size = to - org_to;
638
639 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
640 putpkt (buf);
641 }
642 }
643 else if (buf[0] == 'O' && buf[1] != 'K')
644 remote_console_output (buf + 1); /* 'O' message from stub */
645 else
646 return buf; /* Here's the actual reply. */
647 }
648 while (1);
649 }
650
651 /* Handle for retreving the remote protocol data from gdbarch. */
652 static struct gdbarch_data *remote_gdbarch_data_handle;
653
654 static struct remote_arch_state *
655 get_remote_arch_state (void)
656 {
657 gdb_assert (target_gdbarch () != NULL);
658 return ((struct remote_arch_state *)
659 gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle));
660 }
661
662 /* Fetch the global remote target state. */
663
664 static struct remote_state *
665 get_remote_state (void)
666 {
667 /* Make sure that the remote architecture state has been
668 initialized, because doing so might reallocate rs->buf. Any
669 function which calls getpkt also needs to be mindful of changes
670 to rs->buf, but this call limits the number of places which run
671 into trouble. */
672 get_remote_arch_state ();
673
674 return get_remote_state_raw ();
675 }
676
677 /* Cleanup routine for the remote module's pspace data. */
678
679 static void
680 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
681 {
682 char *remote_exec_file = (char *) arg;
683
684 xfree (remote_exec_file);
685 }
686
687 /* Fetch the remote exec-file from the current program space. */
688
689 static const char *
690 get_remote_exec_file (void)
691 {
692 char *remote_exec_file;
693
694 remote_exec_file
695 = (char *) program_space_data (current_program_space,
696 remote_pspace_data);
697 if (remote_exec_file == NULL)
698 return "";
699
700 return remote_exec_file;
701 }
702
703 /* Set the remote exec file for PSPACE. */
704
705 static void
706 set_pspace_remote_exec_file (struct program_space *pspace,
707 char *remote_exec_file)
708 {
709 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
710
711 xfree (old_file);
712 set_program_space_data (pspace, remote_pspace_data,
713 xstrdup (remote_exec_file));
714 }
715
716 /* The "set/show remote exec-file" set command hook. */
717
718 static void
719 set_remote_exec_file (char *ignored, int from_tty,
720 struct cmd_list_element *c)
721 {
722 gdb_assert (remote_exec_file_var != NULL);
723 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
724 }
725
726 /* The "set/show remote exec-file" show command hook. */
727
728 static void
729 show_remote_exec_file (struct ui_file *file, int from_tty,
730 struct cmd_list_element *cmd, const char *value)
731 {
732 fprintf_filtered (file, "%s\n", remote_exec_file_var);
733 }
734
735 static int
736 compare_pnums (const void *lhs_, const void *rhs_)
737 {
738 const struct packet_reg * const *lhs
739 = (const struct packet_reg * const *) lhs_;
740 const struct packet_reg * const *rhs
741 = (const struct packet_reg * const *) rhs_;
742
743 if ((*lhs)->pnum < (*rhs)->pnum)
744 return -1;
745 else if ((*lhs)->pnum == (*rhs)->pnum)
746 return 0;
747 else
748 return 1;
749 }
750
751 static int
752 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
753 {
754 int regnum, num_remote_regs, offset;
755 struct packet_reg **remote_regs;
756
757 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
758 {
759 struct packet_reg *r = &regs[regnum];
760
761 if (register_size (gdbarch, regnum) == 0)
762 /* Do not try to fetch zero-sized (placeholder) registers. */
763 r->pnum = -1;
764 else
765 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
766
767 r->regnum = regnum;
768 }
769
770 /* Define the g/G packet format as the contents of each register
771 with a remote protocol number, in order of ascending protocol
772 number. */
773
774 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
775 for (num_remote_regs = 0, regnum = 0;
776 regnum < gdbarch_num_regs (gdbarch);
777 regnum++)
778 if (regs[regnum].pnum != -1)
779 remote_regs[num_remote_regs++] = &regs[regnum];
780
781 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
782 compare_pnums);
783
784 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
785 {
786 remote_regs[regnum]->in_g_packet = 1;
787 remote_regs[regnum]->offset = offset;
788 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
789 }
790
791 return offset;
792 }
793
794 /* Given the architecture described by GDBARCH, return the remote
795 protocol register's number and the register's offset in the g/G
796 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
797 If the target does not have a mapping for REGNUM, return false,
798 otherwise, return true. */
799
800 int
801 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
802 int *pnum, int *poffset)
803 {
804 struct packet_reg *regs;
805 struct cleanup *old_chain;
806
807 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
808
809 regs = XCNEWVEC (struct packet_reg, gdbarch_num_regs (gdbarch));
810 old_chain = make_cleanup (xfree, regs);
811
812 map_regcache_remote_table (gdbarch, regs);
813
814 *pnum = regs[regnum].pnum;
815 *poffset = regs[regnum].offset;
816
817 do_cleanups (old_chain);
818
819 return *pnum != -1;
820 }
821
822 static void *
823 init_remote_state (struct gdbarch *gdbarch)
824 {
825 struct remote_state *rs = get_remote_state_raw ();
826 struct remote_arch_state *rsa;
827
828 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
829
830 /* Use the architecture to build a regnum<->pnum table, which will be
831 1:1 unless a feature set specifies otherwise. */
832 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
833 gdbarch_num_regs (gdbarch),
834 struct packet_reg);
835
836 /* Record the maximum possible size of the g packet - it may turn out
837 to be smaller. */
838 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
839
840 /* Default maximum number of characters in a packet body. Many
841 remote stubs have a hardwired buffer size of 400 bytes
842 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
843 as the maximum packet-size to ensure that the packet and an extra
844 NUL character can always fit in the buffer. This stops GDB
845 trashing stubs that try to squeeze an extra NUL into what is
846 already a full buffer (As of 1999-12-04 that was most stubs). */
847 rsa->remote_packet_size = 400 - 1;
848
849 /* This one is filled in when a ``g'' packet is received. */
850 rsa->actual_register_packet_size = 0;
851
852 /* Should rsa->sizeof_g_packet needs more space than the
853 default, adjust the size accordingly. Remember that each byte is
854 encoded as two characters. 32 is the overhead for the packet
855 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
856 (``$NN:G...#NN'') is a better guess, the below has been padded a
857 little. */
858 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
859 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
860
861 /* Make sure that the packet buffer is plenty big enough for
862 this architecture. */
863 if (rs->buf_size < rsa->remote_packet_size)
864 {
865 rs->buf_size = 2 * rsa->remote_packet_size;
866 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
867 }
868
869 return rsa;
870 }
871
872 /* Return the current allowed size of a remote packet. This is
873 inferred from the current architecture, and should be used to
874 limit the length of outgoing packets. */
875 static long
876 get_remote_packet_size (void)
877 {
878 struct remote_state *rs = get_remote_state ();
879 struct remote_arch_state *rsa = get_remote_arch_state ();
880
881 if (rs->explicit_packet_size)
882 return rs->explicit_packet_size;
883
884 return rsa->remote_packet_size;
885 }
886
887 static struct packet_reg *
888 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
889 {
890 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ()))
891 return NULL;
892 else
893 {
894 struct packet_reg *r = &rsa->regs[regnum];
895
896 gdb_assert (r->regnum == regnum);
897 return r;
898 }
899 }
900
901 static struct packet_reg *
902 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
903 {
904 int i;
905
906 for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++)
907 {
908 struct packet_reg *r = &rsa->regs[i];
909
910 if (r->pnum == pnum)
911 return r;
912 }
913 return NULL;
914 }
915
916 static struct target_ops remote_ops;
917
918 static struct target_ops extended_remote_ops;
919
920 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
921 ``forever'' still use the normal timeout mechanism. This is
922 currently used by the ASYNC code to guarentee that target reads
923 during the initial connect always time-out. Once getpkt has been
924 modified to return a timeout indication and, in turn
925 remote_wait()/wait_for_inferior() have gained a timeout parameter
926 this can go away. */
927 static int wait_forever_enabled_p = 1;
928
929 /* Allow the user to specify what sequence to send to the remote
930 when he requests a program interruption: Although ^C is usually
931 what remote systems expect (this is the default, here), it is
932 sometimes preferable to send a break. On other systems such
933 as the Linux kernel, a break followed by g, which is Magic SysRq g
934 is required in order to interrupt the execution. */
935 const char interrupt_sequence_control_c[] = "Ctrl-C";
936 const char interrupt_sequence_break[] = "BREAK";
937 const char interrupt_sequence_break_g[] = "BREAK-g";
938 static const char *const interrupt_sequence_modes[] =
939 {
940 interrupt_sequence_control_c,
941 interrupt_sequence_break,
942 interrupt_sequence_break_g,
943 NULL
944 };
945 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
946
947 static void
948 show_interrupt_sequence (struct ui_file *file, int from_tty,
949 struct cmd_list_element *c,
950 const char *value)
951 {
952 if (interrupt_sequence_mode == interrupt_sequence_control_c)
953 fprintf_filtered (file,
954 _("Send the ASCII ETX character (Ctrl-c) "
955 "to the remote target to interrupt the "
956 "execution of the program.\n"));
957 else if (interrupt_sequence_mode == interrupt_sequence_break)
958 fprintf_filtered (file,
959 _("send a break signal to the remote target "
960 "to interrupt the execution of the program.\n"));
961 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
962 fprintf_filtered (file,
963 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
964 "the remote target to interrupt the execution "
965 "of Linux kernel.\n"));
966 else
967 internal_error (__FILE__, __LINE__,
968 _("Invalid value for interrupt_sequence_mode: %s."),
969 interrupt_sequence_mode);
970 }
971
972 /* This boolean variable specifies whether interrupt_sequence is sent
973 to the remote target when gdb connects to it.
974 This is mostly needed when you debug the Linux kernel: The Linux kernel
975 expects BREAK g which is Magic SysRq g for connecting gdb. */
976 static int interrupt_on_connect = 0;
977
978 /* This variable is used to implement the "set/show remotebreak" commands.
979 Since these commands are now deprecated in favor of "set/show remote
980 interrupt-sequence", it no longer has any effect on the code. */
981 static int remote_break;
982
983 static void
984 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
985 {
986 if (remote_break)
987 interrupt_sequence_mode = interrupt_sequence_break;
988 else
989 interrupt_sequence_mode = interrupt_sequence_control_c;
990 }
991
992 static void
993 show_remotebreak (struct ui_file *file, int from_tty,
994 struct cmd_list_element *c,
995 const char *value)
996 {
997 }
998
999 /* This variable sets the number of bits in an address that are to be
1000 sent in a memory ("M" or "m") packet. Normally, after stripping
1001 leading zeros, the entire address would be sent. This variable
1002 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1003 initial implementation of remote.c restricted the address sent in
1004 memory packets to ``host::sizeof long'' bytes - (typically 32
1005 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1006 address was never sent. Since fixing this bug may cause a break in
1007 some remote targets this variable is principly provided to
1008 facilitate backward compatibility. */
1009
1010 static unsigned int remote_address_size;
1011
1012 /* Temporary to track who currently owns the terminal. See
1013 remote_terminal_* for more details. */
1014
1015 static int remote_async_terminal_ours_p;
1016
1017 \f
1018 /* User configurable variables for the number of characters in a
1019 memory read/write packet. MIN (rsa->remote_packet_size,
1020 rsa->sizeof_g_packet) is the default. Some targets need smaller
1021 values (fifo overruns, et.al.) and some users need larger values
1022 (speed up transfers). The variables ``preferred_*'' (the user
1023 request), ``current_*'' (what was actually set) and ``forced_*''
1024 (Positive - a soft limit, negative - a hard limit). */
1025
1026 struct memory_packet_config
1027 {
1028 const char *name;
1029 long size;
1030 int fixed_p;
1031 };
1032
1033 /* The default max memory-write-packet-size. The 16k is historical.
1034 (It came from older GDB's using alloca for buffers and the
1035 knowledge (folklore?) that some hosts don't cope very well with
1036 large alloca calls.) */
1037 #define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1038
1039 /* The minimum remote packet size for memory transfers. Ensures we
1040 can write at least one byte. */
1041 #define MIN_MEMORY_PACKET_SIZE 20
1042
1043 /* Compute the current size of a read/write packet. Since this makes
1044 use of ``actual_register_packet_size'' the computation is dynamic. */
1045
1046 static long
1047 get_memory_packet_size (struct memory_packet_config *config)
1048 {
1049 struct remote_state *rs = get_remote_state ();
1050 struct remote_arch_state *rsa = get_remote_arch_state ();
1051
1052 long what_they_get;
1053 if (config->fixed_p)
1054 {
1055 if (config->size <= 0)
1056 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1057 else
1058 what_they_get = config->size;
1059 }
1060 else
1061 {
1062 what_they_get = get_remote_packet_size ();
1063 /* Limit the packet to the size specified by the user. */
1064 if (config->size > 0
1065 && what_they_get > config->size)
1066 what_they_get = config->size;
1067
1068 /* Limit it to the size of the targets ``g'' response unless we have
1069 permission from the stub to use a larger packet size. */
1070 if (rs->explicit_packet_size == 0
1071 && rsa->actual_register_packet_size > 0
1072 && what_they_get > rsa->actual_register_packet_size)
1073 what_they_get = rsa->actual_register_packet_size;
1074 }
1075 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1076 what_they_get = MIN_MEMORY_PACKET_SIZE;
1077
1078 /* Make sure there is room in the global buffer for this packet
1079 (including its trailing NUL byte). */
1080 if (rs->buf_size < what_they_get + 1)
1081 {
1082 rs->buf_size = 2 * what_they_get;
1083 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1084 }
1085
1086 return what_they_get;
1087 }
1088
1089 /* Update the size of a read/write packet. If they user wants
1090 something really big then do a sanity check. */
1091
1092 static void
1093 set_memory_packet_size (char *args, struct memory_packet_config *config)
1094 {
1095 int fixed_p = config->fixed_p;
1096 long size = config->size;
1097
1098 if (args == NULL)
1099 error (_("Argument required (integer, `fixed' or `limited')."));
1100 else if (strcmp (args, "hard") == 0
1101 || strcmp (args, "fixed") == 0)
1102 fixed_p = 1;
1103 else if (strcmp (args, "soft") == 0
1104 || strcmp (args, "limit") == 0)
1105 fixed_p = 0;
1106 else
1107 {
1108 char *end;
1109
1110 size = strtoul (args, &end, 0);
1111 if (args == end)
1112 error (_("Invalid %s (bad syntax)."), config->name);
1113
1114 /* Instead of explicitly capping the size of a packet to or
1115 disallowing it, the user is allowed to set the size to
1116 something arbitrarily large. */
1117 }
1118
1119 /* So that the query shows the correct value. */
1120 if (size <= 0)
1121 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1122
1123 /* Extra checks? */
1124 if (fixed_p && !config->fixed_p)
1125 {
1126 if (! query (_("The target may not be able to correctly handle a %s\n"
1127 "of %ld bytes. Change the packet size? "),
1128 config->name, size))
1129 error (_("Packet size not changed."));
1130 }
1131 /* Update the config. */
1132 config->fixed_p = fixed_p;
1133 config->size = size;
1134 }
1135
1136 static void
1137 show_memory_packet_size (struct memory_packet_config *config)
1138 {
1139 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1140 if (config->fixed_p)
1141 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1142 get_memory_packet_size (config));
1143 else
1144 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1145 get_memory_packet_size (config));
1146 }
1147
1148 static struct memory_packet_config memory_write_packet_config =
1149 {
1150 "memory-write-packet-size",
1151 };
1152
1153 static void
1154 set_memory_write_packet_size (char *args, int from_tty)
1155 {
1156 set_memory_packet_size (args, &memory_write_packet_config);
1157 }
1158
1159 static void
1160 show_memory_write_packet_size (char *args, int from_tty)
1161 {
1162 show_memory_packet_size (&memory_write_packet_config);
1163 }
1164
1165 static long
1166 get_memory_write_packet_size (void)
1167 {
1168 return get_memory_packet_size (&memory_write_packet_config);
1169 }
1170
1171 static struct memory_packet_config memory_read_packet_config =
1172 {
1173 "memory-read-packet-size",
1174 };
1175
1176 static void
1177 set_memory_read_packet_size (char *args, int from_tty)
1178 {
1179 set_memory_packet_size (args, &memory_read_packet_config);
1180 }
1181
1182 static void
1183 show_memory_read_packet_size (char *args, int from_tty)
1184 {
1185 show_memory_packet_size (&memory_read_packet_config);
1186 }
1187
1188 static long
1189 get_memory_read_packet_size (void)
1190 {
1191 long size = get_memory_packet_size (&memory_read_packet_config);
1192
1193 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1194 extra buffer size argument before the memory read size can be
1195 increased beyond this. */
1196 if (size > get_remote_packet_size ())
1197 size = get_remote_packet_size ();
1198 return size;
1199 }
1200
1201 \f
1202 /* Generic configuration support for packets the stub optionally
1203 supports. Allows the user to specify the use of the packet as well
1204 as allowing GDB to auto-detect support in the remote stub. */
1205
1206 enum packet_support
1207 {
1208 PACKET_SUPPORT_UNKNOWN = 0,
1209 PACKET_ENABLE,
1210 PACKET_DISABLE
1211 };
1212
1213 struct packet_config
1214 {
1215 const char *name;
1216 const char *title;
1217
1218 /* If auto, GDB auto-detects support for this packet or feature,
1219 either through qSupported, or by trying the packet and looking
1220 at the response. If true, GDB assumes the target supports this
1221 packet. If false, the packet is disabled. Configs that don't
1222 have an associated command always have this set to auto. */
1223 enum auto_boolean detect;
1224
1225 /* Does the target support this packet? */
1226 enum packet_support support;
1227 };
1228
1229 /* Analyze a packet's return value and update the packet config
1230 accordingly. */
1231
1232 enum packet_result
1233 {
1234 PACKET_ERROR,
1235 PACKET_OK,
1236 PACKET_UNKNOWN
1237 };
1238
1239 static enum packet_support packet_config_support (struct packet_config *config);
1240 static enum packet_support packet_support (int packet);
1241
1242 static void
1243 show_packet_config_cmd (struct packet_config *config)
1244 {
1245 const char *support = "internal-error";
1246
1247 switch (packet_config_support (config))
1248 {
1249 case PACKET_ENABLE:
1250 support = "enabled";
1251 break;
1252 case PACKET_DISABLE:
1253 support = "disabled";
1254 break;
1255 case PACKET_SUPPORT_UNKNOWN:
1256 support = "unknown";
1257 break;
1258 }
1259 switch (config->detect)
1260 {
1261 case AUTO_BOOLEAN_AUTO:
1262 printf_filtered (_("Support for the `%s' packet "
1263 "is auto-detected, currently %s.\n"),
1264 config->name, support);
1265 break;
1266 case AUTO_BOOLEAN_TRUE:
1267 case AUTO_BOOLEAN_FALSE:
1268 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1269 config->name, support);
1270 break;
1271 }
1272 }
1273
1274 static void
1275 add_packet_config_cmd (struct packet_config *config, const char *name,
1276 const char *title, int legacy)
1277 {
1278 char *set_doc;
1279 char *show_doc;
1280 char *cmd_name;
1281
1282 config->name = name;
1283 config->title = title;
1284 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1285 name, title);
1286 show_doc = xstrprintf ("Show current use of remote "
1287 "protocol `%s' (%s) packet",
1288 name, title);
1289 /* set/show TITLE-packet {auto,on,off} */
1290 cmd_name = xstrprintf ("%s-packet", title);
1291 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1292 &config->detect, set_doc,
1293 show_doc, NULL, /* help_doc */
1294 NULL,
1295 show_remote_protocol_packet_cmd,
1296 &remote_set_cmdlist, &remote_show_cmdlist);
1297 /* The command code copies the documentation strings. */
1298 xfree (set_doc);
1299 xfree (show_doc);
1300 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1301 if (legacy)
1302 {
1303 char *legacy_name;
1304
1305 legacy_name = xstrprintf ("%s-packet", name);
1306 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1307 &remote_set_cmdlist);
1308 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1309 &remote_show_cmdlist);
1310 }
1311 }
1312
1313 static enum packet_result
1314 packet_check_result (const char *buf)
1315 {
1316 if (buf[0] != '\0')
1317 {
1318 /* The stub recognized the packet request. Check that the
1319 operation succeeded. */
1320 if (buf[0] == 'E'
1321 && isxdigit (buf[1]) && isxdigit (buf[2])
1322 && buf[3] == '\0')
1323 /* "Enn" - definitly an error. */
1324 return PACKET_ERROR;
1325
1326 /* Always treat "E." as an error. This will be used for
1327 more verbose error messages, such as E.memtypes. */
1328 if (buf[0] == 'E' && buf[1] == '.')
1329 return PACKET_ERROR;
1330
1331 /* The packet may or may not be OK. Just assume it is. */
1332 return PACKET_OK;
1333 }
1334 else
1335 /* The stub does not support the packet. */
1336 return PACKET_UNKNOWN;
1337 }
1338
1339 static enum packet_result
1340 packet_ok (const char *buf, struct packet_config *config)
1341 {
1342 enum packet_result result;
1343
1344 if (config->detect != AUTO_BOOLEAN_TRUE
1345 && config->support == PACKET_DISABLE)
1346 internal_error (__FILE__, __LINE__,
1347 _("packet_ok: attempt to use a disabled packet"));
1348
1349 result = packet_check_result (buf);
1350 switch (result)
1351 {
1352 case PACKET_OK:
1353 case PACKET_ERROR:
1354 /* The stub recognized the packet request. */
1355 if (config->support == PACKET_SUPPORT_UNKNOWN)
1356 {
1357 if (remote_debug)
1358 fprintf_unfiltered (gdb_stdlog,
1359 "Packet %s (%s) is supported\n",
1360 config->name, config->title);
1361 config->support = PACKET_ENABLE;
1362 }
1363 break;
1364 case PACKET_UNKNOWN:
1365 /* The stub does not support the packet. */
1366 if (config->detect == AUTO_BOOLEAN_AUTO
1367 && config->support == PACKET_ENABLE)
1368 {
1369 /* If the stub previously indicated that the packet was
1370 supported then there is a protocol error. */
1371 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1372 config->name, config->title);
1373 }
1374 else if (config->detect == AUTO_BOOLEAN_TRUE)
1375 {
1376 /* The user set it wrong. */
1377 error (_("Enabled packet %s (%s) not recognized by stub"),
1378 config->name, config->title);
1379 }
1380
1381 if (remote_debug)
1382 fprintf_unfiltered (gdb_stdlog,
1383 "Packet %s (%s) is NOT supported\n",
1384 config->name, config->title);
1385 config->support = PACKET_DISABLE;
1386 break;
1387 }
1388
1389 return result;
1390 }
1391
1392 enum {
1393 PACKET_vCont = 0,
1394 PACKET_X,
1395 PACKET_qSymbol,
1396 PACKET_P,
1397 PACKET_p,
1398 PACKET_Z0,
1399 PACKET_Z1,
1400 PACKET_Z2,
1401 PACKET_Z3,
1402 PACKET_Z4,
1403 PACKET_vFile_setfs,
1404 PACKET_vFile_open,
1405 PACKET_vFile_pread,
1406 PACKET_vFile_pwrite,
1407 PACKET_vFile_close,
1408 PACKET_vFile_unlink,
1409 PACKET_vFile_readlink,
1410 PACKET_vFile_fstat,
1411 PACKET_qXfer_auxv,
1412 PACKET_qXfer_features,
1413 PACKET_qXfer_exec_file,
1414 PACKET_qXfer_libraries,
1415 PACKET_qXfer_libraries_svr4,
1416 PACKET_qXfer_memory_map,
1417 PACKET_qXfer_spu_read,
1418 PACKET_qXfer_spu_write,
1419 PACKET_qXfer_osdata,
1420 PACKET_qXfer_threads,
1421 PACKET_qXfer_statictrace_read,
1422 PACKET_qXfer_traceframe_info,
1423 PACKET_qXfer_uib,
1424 PACKET_qGetTIBAddr,
1425 PACKET_qGetTLSAddr,
1426 PACKET_qSupported,
1427 PACKET_qTStatus,
1428 PACKET_QPassSignals,
1429 PACKET_QCatchSyscalls,
1430 PACKET_QProgramSignals,
1431 PACKET_QStartupWithShell,
1432 PACKET_qCRC,
1433 PACKET_qSearch_memory,
1434 PACKET_vAttach,
1435 PACKET_vRun,
1436 PACKET_QStartNoAckMode,
1437 PACKET_vKill,
1438 PACKET_qXfer_siginfo_read,
1439 PACKET_qXfer_siginfo_write,
1440 PACKET_qAttached,
1441
1442 /* Support for conditional tracepoints. */
1443 PACKET_ConditionalTracepoints,
1444
1445 /* Support for target-side breakpoint conditions. */
1446 PACKET_ConditionalBreakpoints,
1447
1448 /* Support for target-side breakpoint commands. */
1449 PACKET_BreakpointCommands,
1450
1451 /* Support for fast tracepoints. */
1452 PACKET_FastTracepoints,
1453
1454 /* Support for static tracepoints. */
1455 PACKET_StaticTracepoints,
1456
1457 /* Support for installing tracepoints while a trace experiment is
1458 running. */
1459 PACKET_InstallInTrace,
1460
1461 PACKET_bc,
1462 PACKET_bs,
1463 PACKET_TracepointSource,
1464 PACKET_QAllow,
1465 PACKET_qXfer_fdpic,
1466 PACKET_QDisableRandomization,
1467 PACKET_QAgent,
1468 PACKET_QTBuffer_size,
1469 PACKET_Qbtrace_off,
1470 PACKET_Qbtrace_bts,
1471 PACKET_Qbtrace_pt,
1472 PACKET_qXfer_btrace,
1473
1474 /* Support for the QNonStop packet. */
1475 PACKET_QNonStop,
1476
1477 /* Support for the QThreadEvents packet. */
1478 PACKET_QThreadEvents,
1479
1480 /* Support for multi-process extensions. */
1481 PACKET_multiprocess_feature,
1482
1483 /* Support for enabling and disabling tracepoints while a trace
1484 experiment is running. */
1485 PACKET_EnableDisableTracepoints_feature,
1486
1487 /* Support for collecting strings using the tracenz bytecode. */
1488 PACKET_tracenz_feature,
1489
1490 /* Support for continuing to run a trace experiment while GDB is
1491 disconnected. */
1492 PACKET_DisconnectedTracing_feature,
1493
1494 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1495 PACKET_augmented_libraries_svr4_read_feature,
1496
1497 /* Support for the qXfer:btrace-conf:read packet. */
1498 PACKET_qXfer_btrace_conf,
1499
1500 /* Support for the Qbtrace-conf:bts:size packet. */
1501 PACKET_Qbtrace_conf_bts_size,
1502
1503 /* Support for swbreak+ feature. */
1504 PACKET_swbreak_feature,
1505
1506 /* Support for hwbreak+ feature. */
1507 PACKET_hwbreak_feature,
1508
1509 /* Support for fork events. */
1510 PACKET_fork_event_feature,
1511
1512 /* Support for vfork events. */
1513 PACKET_vfork_event_feature,
1514
1515 /* Support for the Qbtrace-conf:pt:size packet. */
1516 PACKET_Qbtrace_conf_pt_size,
1517
1518 /* Support for exec events. */
1519 PACKET_exec_event_feature,
1520
1521 /* Support for query supported vCont actions. */
1522 PACKET_vContSupported,
1523
1524 /* Support remote CTRL-C. */
1525 PACKET_vCtrlC,
1526
1527 /* Support TARGET_WAITKIND_NO_RESUMED. */
1528 PACKET_no_resumed,
1529
1530 PACKET_MAX
1531 };
1532
1533 static struct packet_config remote_protocol_packets[PACKET_MAX];
1534
1535 /* Returns the packet's corresponding "set remote foo-packet" command
1536 state. See struct packet_config for more details. */
1537
1538 static enum auto_boolean
1539 packet_set_cmd_state (int packet)
1540 {
1541 return remote_protocol_packets[packet].detect;
1542 }
1543
1544 /* Returns whether a given packet or feature is supported. This takes
1545 into account the state of the corresponding "set remote foo-packet"
1546 command, which may be used to bypass auto-detection. */
1547
1548 static enum packet_support
1549 packet_config_support (struct packet_config *config)
1550 {
1551 switch (config->detect)
1552 {
1553 case AUTO_BOOLEAN_TRUE:
1554 return PACKET_ENABLE;
1555 case AUTO_BOOLEAN_FALSE:
1556 return PACKET_DISABLE;
1557 case AUTO_BOOLEAN_AUTO:
1558 return config->support;
1559 default:
1560 gdb_assert_not_reached (_("bad switch"));
1561 }
1562 }
1563
1564 /* Same as packet_config_support, but takes the packet's enum value as
1565 argument. */
1566
1567 static enum packet_support
1568 packet_support (int packet)
1569 {
1570 struct packet_config *config = &remote_protocol_packets[packet];
1571
1572 return packet_config_support (config);
1573 }
1574
1575 static void
1576 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1577 struct cmd_list_element *c,
1578 const char *value)
1579 {
1580 struct packet_config *packet;
1581
1582 for (packet = remote_protocol_packets;
1583 packet < &remote_protocol_packets[PACKET_MAX];
1584 packet++)
1585 {
1586 if (&packet->detect == c->var)
1587 {
1588 show_packet_config_cmd (packet);
1589 return;
1590 }
1591 }
1592 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1593 c->name);
1594 }
1595
1596 /* Should we try one of the 'Z' requests? */
1597
1598 enum Z_packet_type
1599 {
1600 Z_PACKET_SOFTWARE_BP,
1601 Z_PACKET_HARDWARE_BP,
1602 Z_PACKET_WRITE_WP,
1603 Z_PACKET_READ_WP,
1604 Z_PACKET_ACCESS_WP,
1605 NR_Z_PACKET_TYPES
1606 };
1607
1608 /* For compatibility with older distributions. Provide a ``set remote
1609 Z-packet ...'' command that updates all the Z packet types. */
1610
1611 static enum auto_boolean remote_Z_packet_detect;
1612
1613 static void
1614 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1615 struct cmd_list_element *c)
1616 {
1617 int i;
1618
1619 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1620 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1621 }
1622
1623 static void
1624 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1625 struct cmd_list_element *c,
1626 const char *value)
1627 {
1628 int i;
1629
1630 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1631 {
1632 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1633 }
1634 }
1635
1636 /* Returns true if the multi-process extensions are in effect. */
1637
1638 static int
1639 remote_multi_process_p (struct remote_state *rs)
1640 {
1641 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1642 }
1643
1644 /* Returns true if fork events are supported. */
1645
1646 static int
1647 remote_fork_event_p (struct remote_state *rs)
1648 {
1649 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1650 }
1651
1652 /* Returns true if vfork events are supported. */
1653
1654 static int
1655 remote_vfork_event_p (struct remote_state *rs)
1656 {
1657 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1658 }
1659
1660 /* Returns true if exec events are supported. */
1661
1662 static int
1663 remote_exec_event_p (struct remote_state *rs)
1664 {
1665 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1666 }
1667
1668 /* Insert fork catchpoint target routine. If fork events are enabled
1669 then return success, nothing more to do. */
1670
1671 static int
1672 remote_insert_fork_catchpoint (struct target_ops *ops, int pid)
1673 {
1674 struct remote_state *rs = get_remote_state ();
1675
1676 return !remote_fork_event_p (rs);
1677 }
1678
1679 /* Remove fork catchpoint target routine. Nothing to do, just
1680 return success. */
1681
1682 static int
1683 remote_remove_fork_catchpoint (struct target_ops *ops, int pid)
1684 {
1685 return 0;
1686 }
1687
1688 /* Insert vfork catchpoint target routine. If vfork events are enabled
1689 then return success, nothing more to do. */
1690
1691 static int
1692 remote_insert_vfork_catchpoint (struct target_ops *ops, int pid)
1693 {
1694 struct remote_state *rs = get_remote_state ();
1695
1696 return !remote_vfork_event_p (rs);
1697 }
1698
1699 /* Remove vfork catchpoint target routine. Nothing to do, just
1700 return success. */
1701
1702 static int
1703 remote_remove_vfork_catchpoint (struct target_ops *ops, int pid)
1704 {
1705 return 0;
1706 }
1707
1708 /* Insert exec catchpoint target routine. If exec events are
1709 enabled, just return success. */
1710
1711 static int
1712 remote_insert_exec_catchpoint (struct target_ops *ops, int pid)
1713 {
1714 struct remote_state *rs = get_remote_state ();
1715
1716 return !remote_exec_event_p (rs);
1717 }
1718
1719 /* Remove exec catchpoint target routine. Nothing to do, just
1720 return success. */
1721
1722 static int
1723 remote_remove_exec_catchpoint (struct target_ops *ops, int pid)
1724 {
1725 return 0;
1726 }
1727
1728 \f
1729 /* Asynchronous signal handle registered as event loop source for
1730 when we have pending events ready to be passed to the core. */
1731
1732 static struct async_event_handler *remote_async_inferior_event_token;
1733
1734 \f
1735
1736 static ptid_t magic_null_ptid;
1737 static ptid_t not_sent_ptid;
1738 static ptid_t any_thread_ptid;
1739
1740 /* Find out if the stub attached to PID (and hence GDB should offer to
1741 detach instead of killing it when bailing out). */
1742
1743 static int
1744 remote_query_attached (int pid)
1745 {
1746 struct remote_state *rs = get_remote_state ();
1747 size_t size = get_remote_packet_size ();
1748
1749 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
1750 return 0;
1751
1752 if (remote_multi_process_p (rs))
1753 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1754 else
1755 xsnprintf (rs->buf, size, "qAttached");
1756
1757 putpkt (rs->buf);
1758 getpkt (&rs->buf, &rs->buf_size, 0);
1759
1760 switch (packet_ok (rs->buf,
1761 &remote_protocol_packets[PACKET_qAttached]))
1762 {
1763 case PACKET_OK:
1764 if (strcmp (rs->buf, "1") == 0)
1765 return 1;
1766 break;
1767 case PACKET_ERROR:
1768 warning (_("Remote failure reply: %s"), rs->buf);
1769 break;
1770 case PACKET_UNKNOWN:
1771 break;
1772 }
1773
1774 return 0;
1775 }
1776
1777 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1778 has been invented by GDB, instead of reported by the target. Since
1779 we can be connected to a remote system before before knowing about
1780 any inferior, mark the target with execution when we find the first
1781 inferior. If ATTACHED is 1, then we had just attached to this
1782 inferior. If it is 0, then we just created this inferior. If it
1783 is -1, then try querying the remote stub to find out if it had
1784 attached to the inferior or not. If TRY_OPEN_EXEC is true then
1785 attempt to open this inferior's executable as the main executable
1786 if no main executable is open already. */
1787
1788 static struct inferior *
1789 remote_add_inferior (int fake_pid_p, int pid, int attached,
1790 int try_open_exec)
1791 {
1792 struct inferior *inf;
1793
1794 /* Check whether this process we're learning about is to be
1795 considered attached, or if is to be considered to have been
1796 spawned by the stub. */
1797 if (attached == -1)
1798 attached = remote_query_attached (pid);
1799
1800 if (gdbarch_has_global_solist (target_gdbarch ()))
1801 {
1802 /* If the target shares code across all inferiors, then every
1803 attach adds a new inferior. */
1804 inf = add_inferior (pid);
1805
1806 /* ... and every inferior is bound to the same program space.
1807 However, each inferior may still have its own address
1808 space. */
1809 inf->aspace = maybe_new_address_space ();
1810 inf->pspace = current_program_space;
1811 }
1812 else
1813 {
1814 /* In the traditional debugging scenario, there's a 1-1 match
1815 between program/address spaces. We simply bind the inferior
1816 to the program space's address space. */
1817 inf = current_inferior ();
1818 inferior_appeared (inf, pid);
1819 }
1820
1821 inf->attach_flag = attached;
1822 inf->fake_pid_p = fake_pid_p;
1823
1824 /* If no main executable is currently open then attempt to
1825 open the file that was executed to create this inferior. */
1826 if (try_open_exec && get_exec_file (0) == NULL)
1827 exec_file_locate_attach (pid, 0, 1);
1828
1829 return inf;
1830 }
1831
1832 static struct private_thread_info *
1833 get_private_info_thread (struct thread_info *info);
1834
1835 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1836 according to RUNNING. */
1837
1838 static void
1839 remote_add_thread (ptid_t ptid, int running, int executing)
1840 {
1841 struct remote_state *rs = get_remote_state ();
1842 struct thread_info *thread;
1843
1844 /* GDB historically didn't pull threads in the initial connection
1845 setup. If the remote target doesn't even have a concept of
1846 threads (e.g., a bare-metal target), even if internally we
1847 consider that a single-threaded target, mentioning a new thread
1848 might be confusing to the user. Be silent then, preserving the
1849 age old behavior. */
1850 if (rs->starting_up)
1851 thread = add_thread_silent (ptid);
1852 else
1853 thread = add_thread (ptid);
1854
1855 get_private_info_thread (thread)->vcont_resumed = executing;
1856 set_executing (ptid, executing);
1857 set_running (ptid, running);
1858 }
1859
1860 /* Come here when we learn about a thread id from the remote target.
1861 It may be the first time we hear about such thread, so take the
1862 opportunity to add it to GDB's thread list. In case this is the
1863 first time we're noticing its corresponding inferior, add it to
1864 GDB's inferior list as well. EXECUTING indicates whether the
1865 thread is (internally) executing or stopped. */
1866
1867 static void
1868 remote_notice_new_inferior (ptid_t currthread, int executing)
1869 {
1870 /* In non-stop mode, we assume new found threads are (externally)
1871 running until proven otherwise with a stop reply. In all-stop,
1872 we can only get here if all threads are stopped. */
1873 int running = target_is_non_stop_p () ? 1 : 0;
1874
1875 /* If this is a new thread, add it to GDB's thread list.
1876 If we leave it up to WFI to do this, bad things will happen. */
1877
1878 if (in_thread_list (currthread) && is_exited (currthread))
1879 {
1880 /* We're seeing an event on a thread id we knew had exited.
1881 This has to be a new thread reusing the old id. Add it. */
1882 remote_add_thread (currthread, running, executing);
1883 return;
1884 }
1885
1886 if (!in_thread_list (currthread))
1887 {
1888 struct inferior *inf = NULL;
1889 int pid = ptid_get_pid (currthread);
1890
1891 if (ptid_is_pid (inferior_ptid)
1892 && pid == ptid_get_pid (inferior_ptid))
1893 {
1894 /* inferior_ptid has no thread member yet. This can happen
1895 with the vAttach -> remote_wait,"TAAthread:" path if the
1896 stub doesn't support qC. This is the first stop reported
1897 after an attach, so this is the main thread. Update the
1898 ptid in the thread list. */
1899 if (in_thread_list (pid_to_ptid (pid)))
1900 thread_change_ptid (inferior_ptid, currthread);
1901 else
1902 {
1903 remote_add_thread (currthread, running, executing);
1904 inferior_ptid = currthread;
1905 }
1906 return;
1907 }
1908
1909 if (ptid_equal (magic_null_ptid, inferior_ptid))
1910 {
1911 /* inferior_ptid is not set yet. This can happen with the
1912 vRun -> remote_wait,"TAAthread:" path if the stub
1913 doesn't support qC. This is the first stop reported
1914 after an attach, so this is the main thread. Update the
1915 ptid in the thread list. */
1916 thread_change_ptid (inferior_ptid, currthread);
1917 return;
1918 }
1919
1920 /* When connecting to a target remote, or to a target
1921 extended-remote which already was debugging an inferior, we
1922 may not know about it yet. Add it before adding its child
1923 thread, so notifications are emitted in a sensible order. */
1924 if (!in_inferior_list (ptid_get_pid (currthread)))
1925 {
1926 struct remote_state *rs = get_remote_state ();
1927 int fake_pid_p = !remote_multi_process_p (rs);
1928
1929 inf = remote_add_inferior (fake_pid_p,
1930 ptid_get_pid (currthread), -1, 1);
1931 }
1932
1933 /* This is really a new thread. Add it. */
1934 remote_add_thread (currthread, running, executing);
1935
1936 /* If we found a new inferior, let the common code do whatever
1937 it needs to with it (e.g., read shared libraries, insert
1938 breakpoints), unless we're just setting up an all-stop
1939 connection. */
1940 if (inf != NULL)
1941 {
1942 struct remote_state *rs = get_remote_state ();
1943
1944 if (!rs->starting_up)
1945 notice_new_inferior (currthread, executing, 0);
1946 }
1947 }
1948 }
1949
1950 /* Return THREAD's private thread data, creating it if necessary. */
1951
1952 static struct private_thread_info *
1953 get_private_info_thread (struct thread_info *thread)
1954 {
1955 gdb_assert (thread != NULL);
1956
1957 if (thread->priv == NULL)
1958 {
1959 struct private_thread_info *priv = XNEW (struct private_thread_info);
1960
1961 thread->private_dtor = free_private_thread_info;
1962 thread->priv = priv;
1963
1964 priv->core = -1;
1965 priv->extra = NULL;
1966 priv->name = NULL;
1967 priv->name = NULL;
1968 priv->last_resume_step = 0;
1969 priv->last_resume_sig = GDB_SIGNAL_0;
1970 priv->vcont_resumed = 0;
1971 }
1972
1973 return thread->priv;
1974 }
1975
1976 /* Return PTID's private thread data, creating it if necessary. */
1977
1978 static struct private_thread_info *
1979 get_private_info_ptid (ptid_t ptid)
1980 {
1981 struct thread_info *info = find_thread_ptid (ptid);
1982
1983 return get_private_info_thread (info);
1984 }
1985
1986 /* Call this function as a result of
1987 1) A halt indication (T packet) containing a thread id
1988 2) A direct query of currthread
1989 3) Successful execution of set thread */
1990
1991 static void
1992 record_currthread (struct remote_state *rs, ptid_t currthread)
1993 {
1994 rs->general_thread = currthread;
1995 }
1996
1997 /* If 'QPassSignals' is supported, tell the remote stub what signals
1998 it can simply pass through to the inferior without reporting. */
1999
2000 static void
2001 remote_pass_signals (struct target_ops *self,
2002 int numsigs, unsigned char *pass_signals)
2003 {
2004 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2005 {
2006 char *pass_packet, *p;
2007 int count = 0, i;
2008 struct remote_state *rs = get_remote_state ();
2009
2010 gdb_assert (numsigs < 256);
2011 for (i = 0; i < numsigs; i++)
2012 {
2013 if (pass_signals[i])
2014 count++;
2015 }
2016 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2017 strcpy (pass_packet, "QPassSignals:");
2018 p = pass_packet + strlen (pass_packet);
2019 for (i = 0; i < numsigs; i++)
2020 {
2021 if (pass_signals[i])
2022 {
2023 if (i >= 16)
2024 *p++ = tohex (i >> 4);
2025 *p++ = tohex (i & 15);
2026 if (count)
2027 *p++ = ';';
2028 else
2029 break;
2030 count--;
2031 }
2032 }
2033 *p = 0;
2034 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2035 {
2036 putpkt (pass_packet);
2037 getpkt (&rs->buf, &rs->buf_size, 0);
2038 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2039 if (rs->last_pass_packet)
2040 xfree (rs->last_pass_packet);
2041 rs->last_pass_packet = pass_packet;
2042 }
2043 else
2044 xfree (pass_packet);
2045 }
2046 }
2047
2048 /* If 'QCatchSyscalls' is supported, tell the remote stub
2049 to report syscalls to GDB. */
2050
2051 static int
2052 remote_set_syscall_catchpoint (struct target_ops *self,
2053 int pid, int needed, int any_count,
2054 int table_size, int *table)
2055 {
2056 char *catch_packet;
2057 enum packet_result result;
2058 int n_sysno = 0;
2059
2060 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2061 {
2062 /* Not supported. */
2063 return 1;
2064 }
2065
2066 if (needed && !any_count)
2067 {
2068 int i;
2069
2070 /* Count how many syscalls are to be caught (table[sysno] != 0). */
2071 for (i = 0; i < table_size; i++)
2072 {
2073 if (table[i] != 0)
2074 n_sysno++;
2075 }
2076 }
2077
2078 if (remote_debug)
2079 {
2080 fprintf_unfiltered (gdb_stdlog,
2081 "remote_set_syscall_catchpoint "
2082 "pid %d needed %d any_count %d n_sysno %d\n",
2083 pid, needed, any_count, n_sysno);
2084 }
2085
2086 if (needed)
2087 {
2088 /* Prepare a packet with the sysno list, assuming max 8+1
2089 characters for a sysno. If the resulting packet size is too
2090 big, fallback on the non-selective packet. */
2091 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2092
2093 catch_packet = (char *) xmalloc (maxpktsz);
2094 strcpy (catch_packet, "QCatchSyscalls:1");
2095 if (!any_count)
2096 {
2097 int i;
2098 char *p;
2099
2100 p = catch_packet;
2101 p += strlen (p);
2102
2103 /* Add in catch_packet each syscall to be caught (table[i] != 0). */
2104 for (i = 0; i < table_size; i++)
2105 {
2106 if (table[i] != 0)
2107 p += xsnprintf (p, catch_packet + maxpktsz - p, ";%x", i);
2108 }
2109 }
2110 if (strlen (catch_packet) > get_remote_packet_size ())
2111 {
2112 /* catch_packet too big. Fallback to less efficient
2113 non selective mode, with GDB doing the filtering. */
2114 catch_packet[sizeof ("QCatchSyscalls:1") - 1] = 0;
2115 }
2116 }
2117 else
2118 catch_packet = xstrdup ("QCatchSyscalls:0");
2119
2120 {
2121 struct cleanup *old_chain = make_cleanup (xfree, catch_packet);
2122 struct remote_state *rs = get_remote_state ();
2123
2124 putpkt (catch_packet);
2125 getpkt (&rs->buf, &rs->buf_size, 0);
2126 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2127 do_cleanups (old_chain);
2128 if (result == PACKET_OK)
2129 return 0;
2130 else
2131 return -1;
2132 }
2133 }
2134
2135 /* If 'QProgramSignals' is supported, tell the remote stub what
2136 signals it should pass through to the inferior when detaching. */
2137
2138 static void
2139 remote_program_signals (struct target_ops *self,
2140 int numsigs, unsigned char *signals)
2141 {
2142 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2143 {
2144 char *packet, *p;
2145 int count = 0, i;
2146 struct remote_state *rs = get_remote_state ();
2147
2148 gdb_assert (numsigs < 256);
2149 for (i = 0; i < numsigs; i++)
2150 {
2151 if (signals[i])
2152 count++;
2153 }
2154 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2155 strcpy (packet, "QProgramSignals:");
2156 p = packet + strlen (packet);
2157 for (i = 0; i < numsigs; i++)
2158 {
2159 if (signal_pass_state (i))
2160 {
2161 if (i >= 16)
2162 *p++ = tohex (i >> 4);
2163 *p++ = tohex (i & 15);
2164 if (count)
2165 *p++ = ';';
2166 else
2167 break;
2168 count--;
2169 }
2170 }
2171 *p = 0;
2172 if (!rs->last_program_signals_packet
2173 || strcmp (rs->last_program_signals_packet, packet) != 0)
2174 {
2175 putpkt (packet);
2176 getpkt (&rs->buf, &rs->buf_size, 0);
2177 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2178 xfree (rs->last_program_signals_packet);
2179 rs->last_program_signals_packet = packet;
2180 }
2181 else
2182 xfree (packet);
2183 }
2184 }
2185
2186 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2187 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2188 thread. If GEN is set, set the general thread, if not, then set
2189 the step/continue thread. */
2190 static void
2191 set_thread (ptid_t ptid, int gen)
2192 {
2193 struct remote_state *rs = get_remote_state ();
2194 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2195 char *buf = rs->buf;
2196 char *endbuf = rs->buf + get_remote_packet_size ();
2197
2198 if (ptid_equal (state, ptid))
2199 return;
2200
2201 *buf++ = 'H';
2202 *buf++ = gen ? 'g' : 'c';
2203 if (ptid_equal (ptid, magic_null_ptid))
2204 xsnprintf (buf, endbuf - buf, "0");
2205 else if (ptid_equal (ptid, any_thread_ptid))
2206 xsnprintf (buf, endbuf - buf, "0");
2207 else if (ptid_equal (ptid, minus_one_ptid))
2208 xsnprintf (buf, endbuf - buf, "-1");
2209 else
2210 write_ptid (buf, endbuf, ptid);
2211 putpkt (rs->buf);
2212 getpkt (&rs->buf, &rs->buf_size, 0);
2213 if (gen)
2214 rs->general_thread = ptid;
2215 else
2216 rs->continue_thread = ptid;
2217 }
2218
2219 static void
2220 set_general_thread (ptid_t ptid)
2221 {
2222 set_thread (ptid, 1);
2223 }
2224
2225 static void
2226 set_continue_thread (ptid_t ptid)
2227 {
2228 set_thread (ptid, 0);
2229 }
2230
2231 /* Change the remote current process. Which thread within the process
2232 ends up selected isn't important, as long as it is the same process
2233 as what INFERIOR_PTID points to.
2234
2235 This comes from that fact that there is no explicit notion of
2236 "selected process" in the protocol. The selected process for
2237 general operations is the process the selected general thread
2238 belongs to. */
2239
2240 static void
2241 set_general_process (void)
2242 {
2243 struct remote_state *rs = get_remote_state ();
2244
2245 /* If the remote can't handle multiple processes, don't bother. */
2246 if (!remote_multi_process_p (rs))
2247 return;
2248
2249 /* We only need to change the remote current thread if it's pointing
2250 at some other process. */
2251 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2252 set_general_thread (inferior_ptid);
2253 }
2254
2255 \f
2256 /* Return nonzero if this is the main thread that we made up ourselves
2257 to model non-threaded targets as single-threaded. */
2258
2259 static int
2260 remote_thread_always_alive (struct target_ops *ops, ptid_t ptid)
2261 {
2262 if (ptid_equal (ptid, magic_null_ptid))
2263 /* The main thread is always alive. */
2264 return 1;
2265
2266 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2267 /* The main thread is always alive. This can happen after a
2268 vAttach, if the remote side doesn't support
2269 multi-threading. */
2270 return 1;
2271
2272 return 0;
2273 }
2274
2275 /* Return nonzero if the thread PTID is still alive on the remote
2276 system. */
2277
2278 static int
2279 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
2280 {
2281 struct remote_state *rs = get_remote_state ();
2282 char *p, *endp;
2283
2284 /* Check if this is a thread that we made up ourselves to model
2285 non-threaded targets as single-threaded. */
2286 if (remote_thread_always_alive (ops, ptid))
2287 return 1;
2288
2289 p = rs->buf;
2290 endp = rs->buf + get_remote_packet_size ();
2291
2292 *p++ = 'T';
2293 write_ptid (p, endp, ptid);
2294
2295 putpkt (rs->buf);
2296 getpkt (&rs->buf, &rs->buf_size, 0);
2297 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2298 }
2299
2300 /* Return a pointer to a thread name if we know it and NULL otherwise.
2301 The thread_info object owns the memory for the name. */
2302
2303 static const char *
2304 remote_thread_name (struct target_ops *ops, struct thread_info *info)
2305 {
2306 if (info->priv != NULL)
2307 return info->priv->name;
2308
2309 return NULL;
2310 }
2311
2312 /* About these extended threadlist and threadinfo packets. They are
2313 variable length packets but, the fields within them are often fixed
2314 length. They are redundent enough to send over UDP as is the
2315 remote protocol in general. There is a matching unit test module
2316 in libstub. */
2317
2318 /* WARNING: This threadref data structure comes from the remote O.S.,
2319 libstub protocol encoding, and remote.c. It is not particularly
2320 changable. */
2321
2322 /* Right now, the internal structure is int. We want it to be bigger.
2323 Plan to fix this. */
2324
2325 typedef int gdb_threadref; /* Internal GDB thread reference. */
2326
2327 /* gdb_ext_thread_info is an internal GDB data structure which is
2328 equivalent to the reply of the remote threadinfo packet. */
2329
2330 struct gdb_ext_thread_info
2331 {
2332 threadref threadid; /* External form of thread reference. */
2333 int active; /* Has state interesting to GDB?
2334 regs, stack. */
2335 char display[256]; /* Brief state display, name,
2336 blocked/suspended. */
2337 char shortname[32]; /* To be used to name threads. */
2338 char more_display[256]; /* Long info, statistics, queue depth,
2339 whatever. */
2340 };
2341
2342 /* The volume of remote transfers can be limited by submitting
2343 a mask containing bits specifying the desired information.
2344 Use a union of these values as the 'selection' parameter to
2345 get_thread_info. FIXME: Make these TAG names more thread specific. */
2346
2347 #define TAG_THREADID 1
2348 #define TAG_EXISTS 2
2349 #define TAG_DISPLAY 4
2350 #define TAG_THREADNAME 8
2351 #define TAG_MOREDISPLAY 16
2352
2353 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2354
2355 static char *unpack_nibble (char *buf, int *val);
2356
2357 static char *unpack_byte (char *buf, int *value);
2358
2359 static char *pack_int (char *buf, int value);
2360
2361 static char *unpack_int (char *buf, int *value);
2362
2363 static char *unpack_string (char *src, char *dest, int length);
2364
2365 static char *pack_threadid (char *pkt, threadref *id);
2366
2367 static char *unpack_threadid (char *inbuf, threadref *id);
2368
2369 void int_to_threadref (threadref *id, int value);
2370
2371 static int threadref_to_int (threadref *ref);
2372
2373 static void copy_threadref (threadref *dest, threadref *src);
2374
2375 static int threadmatch (threadref *dest, threadref *src);
2376
2377 static char *pack_threadinfo_request (char *pkt, int mode,
2378 threadref *id);
2379
2380 static int remote_unpack_thread_info_response (char *pkt,
2381 threadref *expectedref,
2382 struct gdb_ext_thread_info
2383 *info);
2384
2385
2386 static int remote_get_threadinfo (threadref *threadid,
2387 int fieldset, /*TAG mask */
2388 struct gdb_ext_thread_info *info);
2389
2390 static char *pack_threadlist_request (char *pkt, int startflag,
2391 int threadcount,
2392 threadref *nextthread);
2393
2394 static int parse_threadlist_response (char *pkt,
2395 int result_limit,
2396 threadref *original_echo,
2397 threadref *resultlist,
2398 int *doneflag);
2399
2400 static int remote_get_threadlist (int startflag,
2401 threadref *nextthread,
2402 int result_limit,
2403 int *done,
2404 int *result_count,
2405 threadref *threadlist);
2406
2407 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2408
2409 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2410 void *context, int looplimit);
2411
2412 static int remote_newthread_step (threadref *ref, void *context);
2413
2414
2415 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2416 buffer we're allowed to write to. Returns
2417 BUF+CHARACTERS_WRITTEN. */
2418
2419 static char *
2420 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2421 {
2422 int pid, tid;
2423 struct remote_state *rs = get_remote_state ();
2424
2425 if (remote_multi_process_p (rs))
2426 {
2427 pid = ptid_get_pid (ptid);
2428 if (pid < 0)
2429 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2430 else
2431 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2432 }
2433 tid = ptid_get_lwp (ptid);
2434 if (tid < 0)
2435 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2436 else
2437 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2438
2439 return buf;
2440 }
2441
2442 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
2443 passed the last parsed char. Returns null_ptid on error. */
2444
2445 static ptid_t
2446 read_ptid (char *buf, char **obuf)
2447 {
2448 char *p = buf;
2449 char *pp;
2450 ULONGEST pid = 0, tid = 0;
2451
2452 if (*p == 'p')
2453 {
2454 /* Multi-process ptid. */
2455 pp = unpack_varlen_hex (p + 1, &pid);
2456 if (*pp != '.')
2457 error (_("invalid remote ptid: %s"), p);
2458
2459 p = pp;
2460 pp = unpack_varlen_hex (p + 1, &tid);
2461 if (obuf)
2462 *obuf = pp;
2463 return ptid_build (pid, tid, 0);
2464 }
2465
2466 /* No multi-process. Just a tid. */
2467 pp = unpack_varlen_hex (p, &tid);
2468
2469 /* Return null_ptid when no thread id is found. */
2470 if (p == pp)
2471 {
2472 if (obuf)
2473 *obuf = pp;
2474 return null_ptid;
2475 }
2476
2477 /* Since the stub is not sending a process id, then default to
2478 what's in inferior_ptid, unless it's null at this point. If so,
2479 then since there's no way to know the pid of the reported
2480 threads, use the magic number. */
2481 if (ptid_equal (inferior_ptid, null_ptid))
2482 pid = ptid_get_pid (magic_null_ptid);
2483 else
2484 pid = ptid_get_pid (inferior_ptid);
2485
2486 if (obuf)
2487 *obuf = pp;
2488 return ptid_build (pid, tid, 0);
2489 }
2490
2491 static int
2492 stubhex (int ch)
2493 {
2494 if (ch >= 'a' && ch <= 'f')
2495 return ch - 'a' + 10;
2496 if (ch >= '0' && ch <= '9')
2497 return ch - '0';
2498 if (ch >= 'A' && ch <= 'F')
2499 return ch - 'A' + 10;
2500 return -1;
2501 }
2502
2503 static int
2504 stub_unpack_int (char *buff, int fieldlength)
2505 {
2506 int nibble;
2507 int retval = 0;
2508
2509 while (fieldlength)
2510 {
2511 nibble = stubhex (*buff++);
2512 retval |= nibble;
2513 fieldlength--;
2514 if (fieldlength)
2515 retval = retval << 4;
2516 }
2517 return retval;
2518 }
2519
2520 static char *
2521 unpack_nibble (char *buf, int *val)
2522 {
2523 *val = fromhex (*buf++);
2524 return buf;
2525 }
2526
2527 static char *
2528 unpack_byte (char *buf, int *value)
2529 {
2530 *value = stub_unpack_int (buf, 2);
2531 return buf + 2;
2532 }
2533
2534 static char *
2535 pack_int (char *buf, int value)
2536 {
2537 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2538 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2539 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2540 buf = pack_hex_byte (buf, (value & 0xff));
2541 return buf;
2542 }
2543
2544 static char *
2545 unpack_int (char *buf, int *value)
2546 {
2547 *value = stub_unpack_int (buf, 8);
2548 return buf + 8;
2549 }
2550
2551 #if 0 /* Currently unused, uncomment when needed. */
2552 static char *pack_string (char *pkt, char *string);
2553
2554 static char *
2555 pack_string (char *pkt, char *string)
2556 {
2557 char ch;
2558 int len;
2559
2560 len = strlen (string);
2561 if (len > 200)
2562 len = 200; /* Bigger than most GDB packets, junk??? */
2563 pkt = pack_hex_byte (pkt, len);
2564 while (len-- > 0)
2565 {
2566 ch = *string++;
2567 if ((ch == '\0') || (ch == '#'))
2568 ch = '*'; /* Protect encapsulation. */
2569 *pkt++ = ch;
2570 }
2571 return pkt;
2572 }
2573 #endif /* 0 (unused) */
2574
2575 static char *
2576 unpack_string (char *src, char *dest, int length)
2577 {
2578 while (length--)
2579 *dest++ = *src++;
2580 *dest = '\0';
2581 return src;
2582 }
2583
2584 static char *
2585 pack_threadid (char *pkt, threadref *id)
2586 {
2587 char *limit;
2588 unsigned char *altid;
2589
2590 altid = (unsigned char *) id;
2591 limit = pkt + BUF_THREAD_ID_SIZE;
2592 while (pkt < limit)
2593 pkt = pack_hex_byte (pkt, *altid++);
2594 return pkt;
2595 }
2596
2597
2598 static char *
2599 unpack_threadid (char *inbuf, threadref *id)
2600 {
2601 char *altref;
2602 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2603 int x, y;
2604
2605 altref = (char *) id;
2606
2607 while (inbuf < limit)
2608 {
2609 x = stubhex (*inbuf++);
2610 y = stubhex (*inbuf++);
2611 *altref++ = (x << 4) | y;
2612 }
2613 return inbuf;
2614 }
2615
2616 /* Externally, threadrefs are 64 bits but internally, they are still
2617 ints. This is due to a mismatch of specifications. We would like
2618 to use 64bit thread references internally. This is an adapter
2619 function. */
2620
2621 void
2622 int_to_threadref (threadref *id, int value)
2623 {
2624 unsigned char *scan;
2625
2626 scan = (unsigned char *) id;
2627 {
2628 int i = 4;
2629 while (i--)
2630 *scan++ = 0;
2631 }
2632 *scan++ = (value >> 24) & 0xff;
2633 *scan++ = (value >> 16) & 0xff;
2634 *scan++ = (value >> 8) & 0xff;
2635 *scan++ = (value & 0xff);
2636 }
2637
2638 static int
2639 threadref_to_int (threadref *ref)
2640 {
2641 int i, value = 0;
2642 unsigned char *scan;
2643
2644 scan = *ref;
2645 scan += 4;
2646 i = 4;
2647 while (i-- > 0)
2648 value = (value << 8) | ((*scan++) & 0xff);
2649 return value;
2650 }
2651
2652 static void
2653 copy_threadref (threadref *dest, threadref *src)
2654 {
2655 int i;
2656 unsigned char *csrc, *cdest;
2657
2658 csrc = (unsigned char *) src;
2659 cdest = (unsigned char *) dest;
2660 i = 8;
2661 while (i--)
2662 *cdest++ = *csrc++;
2663 }
2664
2665 static int
2666 threadmatch (threadref *dest, threadref *src)
2667 {
2668 /* Things are broken right now, so just assume we got a match. */
2669 #if 0
2670 unsigned char *srcp, *destp;
2671 int i, result;
2672 srcp = (char *) src;
2673 destp = (char *) dest;
2674
2675 result = 1;
2676 while (i-- > 0)
2677 result &= (*srcp++ == *destp++) ? 1 : 0;
2678 return result;
2679 #endif
2680 return 1;
2681 }
2682
2683 /*
2684 threadid:1, # always request threadid
2685 context_exists:2,
2686 display:4,
2687 unique_name:8,
2688 more_display:16
2689 */
2690
2691 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2692
2693 static char *
2694 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2695 {
2696 *pkt++ = 'q'; /* Info Query */
2697 *pkt++ = 'P'; /* process or thread info */
2698 pkt = pack_int (pkt, mode); /* mode */
2699 pkt = pack_threadid (pkt, id); /* threadid */
2700 *pkt = '\0'; /* terminate */
2701 return pkt;
2702 }
2703
2704 /* These values tag the fields in a thread info response packet. */
2705 /* Tagging the fields allows us to request specific fields and to
2706 add more fields as time goes by. */
2707
2708 #define TAG_THREADID 1 /* Echo the thread identifier. */
2709 #define TAG_EXISTS 2 /* Is this process defined enough to
2710 fetch registers and its stack? */
2711 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2712 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2713 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2714 the process. */
2715
2716 static int
2717 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2718 struct gdb_ext_thread_info *info)
2719 {
2720 struct remote_state *rs = get_remote_state ();
2721 int mask, length;
2722 int tag;
2723 threadref ref;
2724 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2725 int retval = 1;
2726
2727 /* info->threadid = 0; FIXME: implement zero_threadref. */
2728 info->active = 0;
2729 info->display[0] = '\0';
2730 info->shortname[0] = '\0';
2731 info->more_display[0] = '\0';
2732
2733 /* Assume the characters indicating the packet type have been
2734 stripped. */
2735 pkt = unpack_int (pkt, &mask); /* arg mask */
2736 pkt = unpack_threadid (pkt, &ref);
2737
2738 if (mask == 0)
2739 warning (_("Incomplete response to threadinfo request."));
2740 if (!threadmatch (&ref, expectedref))
2741 { /* This is an answer to a different request. */
2742 warning (_("ERROR RMT Thread info mismatch."));
2743 return 0;
2744 }
2745 copy_threadref (&info->threadid, &ref);
2746
2747 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2748
2749 /* Packets are terminated with nulls. */
2750 while ((pkt < limit) && mask && *pkt)
2751 {
2752 pkt = unpack_int (pkt, &tag); /* tag */
2753 pkt = unpack_byte (pkt, &length); /* length */
2754 if (!(tag & mask)) /* Tags out of synch with mask. */
2755 {
2756 warning (_("ERROR RMT: threadinfo tag mismatch."));
2757 retval = 0;
2758 break;
2759 }
2760 if (tag == TAG_THREADID)
2761 {
2762 if (length != 16)
2763 {
2764 warning (_("ERROR RMT: length of threadid is not 16."));
2765 retval = 0;
2766 break;
2767 }
2768 pkt = unpack_threadid (pkt, &ref);
2769 mask = mask & ~TAG_THREADID;
2770 continue;
2771 }
2772 if (tag == TAG_EXISTS)
2773 {
2774 info->active = stub_unpack_int (pkt, length);
2775 pkt += length;
2776 mask = mask & ~(TAG_EXISTS);
2777 if (length > 8)
2778 {
2779 warning (_("ERROR RMT: 'exists' length too long."));
2780 retval = 0;
2781 break;
2782 }
2783 continue;
2784 }
2785 if (tag == TAG_THREADNAME)
2786 {
2787 pkt = unpack_string (pkt, &info->shortname[0], length);
2788 mask = mask & ~TAG_THREADNAME;
2789 continue;
2790 }
2791 if (tag == TAG_DISPLAY)
2792 {
2793 pkt = unpack_string (pkt, &info->display[0], length);
2794 mask = mask & ~TAG_DISPLAY;
2795 continue;
2796 }
2797 if (tag == TAG_MOREDISPLAY)
2798 {
2799 pkt = unpack_string (pkt, &info->more_display[0], length);
2800 mask = mask & ~TAG_MOREDISPLAY;
2801 continue;
2802 }
2803 warning (_("ERROR RMT: unknown thread info tag."));
2804 break; /* Not a tag we know about. */
2805 }
2806 return retval;
2807 }
2808
2809 static int
2810 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2811 struct gdb_ext_thread_info *info)
2812 {
2813 struct remote_state *rs = get_remote_state ();
2814 int result;
2815
2816 pack_threadinfo_request (rs->buf, fieldset, threadid);
2817 putpkt (rs->buf);
2818 getpkt (&rs->buf, &rs->buf_size, 0);
2819
2820 if (rs->buf[0] == '\0')
2821 return 0;
2822
2823 result = remote_unpack_thread_info_response (rs->buf + 2,
2824 threadid, info);
2825 return result;
2826 }
2827
2828 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2829
2830 static char *
2831 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2832 threadref *nextthread)
2833 {
2834 *pkt++ = 'q'; /* info query packet */
2835 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2836 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2837 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2838 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2839 *pkt = '\0';
2840 return pkt;
2841 }
2842
2843 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2844
2845 static int
2846 parse_threadlist_response (char *pkt, int result_limit,
2847 threadref *original_echo, threadref *resultlist,
2848 int *doneflag)
2849 {
2850 struct remote_state *rs = get_remote_state ();
2851 char *limit;
2852 int count, resultcount, done;
2853
2854 resultcount = 0;
2855 /* Assume the 'q' and 'M chars have been stripped. */
2856 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2857 /* done parse past here */
2858 pkt = unpack_byte (pkt, &count); /* count field */
2859 pkt = unpack_nibble (pkt, &done);
2860 /* The first threadid is the argument threadid. */
2861 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2862 while ((count-- > 0) && (pkt < limit))
2863 {
2864 pkt = unpack_threadid (pkt, resultlist++);
2865 if (resultcount++ >= result_limit)
2866 break;
2867 }
2868 if (doneflag)
2869 *doneflag = done;
2870 return resultcount;
2871 }
2872
2873 /* Fetch the next batch of threads from the remote. Returns -1 if the
2874 qL packet is not supported, 0 on error and 1 on success. */
2875
2876 static int
2877 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2878 int *done, int *result_count, threadref *threadlist)
2879 {
2880 struct remote_state *rs = get_remote_state ();
2881 int result = 1;
2882
2883 /* Trancate result limit to be smaller than the packet size. */
2884 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2885 >= get_remote_packet_size ())
2886 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2887
2888 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2889 putpkt (rs->buf);
2890 getpkt (&rs->buf, &rs->buf_size, 0);
2891 if (*rs->buf == '\0')
2892 {
2893 /* Packet not supported. */
2894 return -1;
2895 }
2896
2897 *result_count =
2898 parse_threadlist_response (rs->buf + 2, result_limit,
2899 &rs->echo_nextthread, threadlist, done);
2900
2901 if (!threadmatch (&rs->echo_nextthread, nextthread))
2902 {
2903 /* FIXME: This is a good reason to drop the packet. */
2904 /* Possably, there is a duplicate response. */
2905 /* Possabilities :
2906 retransmit immediatly - race conditions
2907 retransmit after timeout - yes
2908 exit
2909 wait for packet, then exit
2910 */
2911 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2912 return 0; /* I choose simply exiting. */
2913 }
2914 if (*result_count <= 0)
2915 {
2916 if (*done != 1)
2917 {
2918 warning (_("RMT ERROR : failed to get remote thread list."));
2919 result = 0;
2920 }
2921 return result; /* break; */
2922 }
2923 if (*result_count > result_limit)
2924 {
2925 *result_count = 0;
2926 warning (_("RMT ERROR: threadlist response longer than requested."));
2927 return 0;
2928 }
2929 return result;
2930 }
2931
2932 /* Fetch the list of remote threads, with the qL packet, and call
2933 STEPFUNCTION for each thread found. Stops iterating and returns 1
2934 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
2935 STEPFUNCTION returns false. If the packet is not supported,
2936 returns -1. */
2937
2938 static int
2939 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2940 int looplimit)
2941 {
2942 struct remote_state *rs = get_remote_state ();
2943 int done, i, result_count;
2944 int startflag = 1;
2945 int result = 1;
2946 int loopcount = 0;
2947
2948 done = 0;
2949 while (!done)
2950 {
2951 if (loopcount++ > looplimit)
2952 {
2953 result = 0;
2954 warning (_("Remote fetch threadlist -infinite loop-."));
2955 break;
2956 }
2957 result = remote_get_threadlist (startflag, &rs->nextthread,
2958 MAXTHREADLISTRESULTS,
2959 &done, &result_count,
2960 rs->resultthreadlist);
2961 if (result <= 0)
2962 break;
2963 /* Clear for later iterations. */
2964 startflag = 0;
2965 /* Setup to resume next batch of thread references, set nextthread. */
2966 if (result_count >= 1)
2967 copy_threadref (&rs->nextthread,
2968 &rs->resultthreadlist[result_count - 1]);
2969 i = 0;
2970 while (result_count--)
2971 {
2972 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
2973 {
2974 result = 0;
2975 break;
2976 }
2977 }
2978 }
2979 return result;
2980 }
2981
2982 /* A thread found on the remote target. */
2983
2984 typedef struct thread_item
2985 {
2986 /* The thread's PTID. */
2987 ptid_t ptid;
2988
2989 /* The thread's extra info. May be NULL. */
2990 char *extra;
2991
2992 /* The thread's name. May be NULL. */
2993 char *name;
2994
2995 /* The core the thread was running on. -1 if not known. */
2996 int core;
2997 } thread_item_t;
2998 DEF_VEC_O(thread_item_t);
2999
3000 /* Context passed around to the various methods listing remote
3001 threads. As new threads are found, they're added to the ITEMS
3002 vector. */
3003
3004 struct threads_listing_context
3005 {
3006 /* The threads found on the remote target. */
3007 VEC (thread_item_t) *items;
3008 };
3009
3010 /* Discard the contents of the constructed thread listing context. */
3011
3012 static void
3013 clear_threads_listing_context (void *p)
3014 {
3015 struct threads_listing_context *context
3016 = (struct threads_listing_context *) p;
3017 int i;
3018 struct thread_item *item;
3019
3020 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
3021 {
3022 xfree (item->extra);
3023 xfree (item->name);
3024 }
3025
3026 VEC_free (thread_item_t, context->items);
3027 }
3028
3029 /* Remove the thread specified as the related_pid field of WS
3030 from the CONTEXT list. */
3031
3032 static void
3033 threads_listing_context_remove (struct target_waitstatus *ws,
3034 struct threads_listing_context *context)
3035 {
3036 struct thread_item *item;
3037 int i;
3038 ptid_t child_ptid = ws->value.related_pid;
3039
3040 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
3041 {
3042 if (ptid_equal (item->ptid, child_ptid))
3043 {
3044 VEC_ordered_remove (thread_item_t, context->items, i);
3045 break;
3046 }
3047 }
3048 }
3049
3050 static int
3051 remote_newthread_step (threadref *ref, void *data)
3052 {
3053 struct threads_listing_context *context
3054 = (struct threads_listing_context *) data;
3055 struct thread_item item;
3056 int pid = ptid_get_pid (inferior_ptid);
3057
3058 item.ptid = ptid_build (pid, threadref_to_int (ref), 0);
3059 item.core = -1;
3060 item.name = NULL;
3061 item.extra = NULL;
3062
3063 VEC_safe_push (thread_item_t, context->items, &item);
3064
3065 return 1; /* continue iterator */
3066 }
3067
3068 #define CRAZY_MAX_THREADS 1000
3069
3070 static ptid_t
3071 remote_current_thread (ptid_t oldpid)
3072 {
3073 struct remote_state *rs = get_remote_state ();
3074
3075 putpkt ("qC");
3076 getpkt (&rs->buf, &rs->buf_size, 0);
3077 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3078 {
3079 char *obuf;
3080 ptid_t result;
3081
3082 result = read_ptid (&rs->buf[2], &obuf);
3083 if (*obuf != '\0' && remote_debug)
3084 fprintf_unfiltered (gdb_stdlog,
3085 "warning: garbage in qC reply\n");
3086
3087 return result;
3088 }
3089 else
3090 return oldpid;
3091 }
3092
3093 /* List remote threads using the deprecated qL packet. */
3094
3095 static int
3096 remote_get_threads_with_ql (struct target_ops *ops,
3097 struct threads_listing_context *context)
3098 {
3099 if (remote_threadlist_iterator (remote_newthread_step, context,
3100 CRAZY_MAX_THREADS) >= 0)
3101 return 1;
3102
3103 return 0;
3104 }
3105
3106 #if defined(HAVE_LIBEXPAT)
3107
3108 static void
3109 start_thread (struct gdb_xml_parser *parser,
3110 const struct gdb_xml_element *element,
3111 void *user_data, VEC(gdb_xml_value_s) *attributes)
3112 {
3113 struct threads_listing_context *data
3114 = (struct threads_listing_context *) user_data;
3115
3116 struct thread_item item;
3117 char *id;
3118 struct gdb_xml_value *attr;
3119
3120 id = (char *) xml_find_attribute (attributes, "id")->value;
3121 item.ptid = read_ptid (id, NULL);
3122
3123 attr = xml_find_attribute (attributes, "core");
3124 if (attr != NULL)
3125 item.core = *(ULONGEST *) attr->value;
3126 else
3127 item.core = -1;
3128
3129 attr = xml_find_attribute (attributes, "name");
3130 item.name = attr != NULL ? xstrdup ((const char *) attr->value) : NULL;
3131
3132 item.extra = 0;
3133
3134 VEC_safe_push (thread_item_t, data->items, &item);
3135 }
3136
3137 static void
3138 end_thread (struct gdb_xml_parser *parser,
3139 const struct gdb_xml_element *element,
3140 void *user_data, const char *body_text)
3141 {
3142 struct threads_listing_context *data
3143 = (struct threads_listing_context *) user_data;
3144
3145 if (body_text && *body_text)
3146 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
3147 }
3148
3149 const struct gdb_xml_attribute thread_attributes[] = {
3150 { "id", GDB_XML_AF_NONE, NULL, NULL },
3151 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3152 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3153 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3154 };
3155
3156 const struct gdb_xml_element thread_children[] = {
3157 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3158 };
3159
3160 const struct gdb_xml_element threads_children[] = {
3161 { "thread", thread_attributes, thread_children,
3162 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3163 start_thread, end_thread },
3164 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3165 };
3166
3167 const struct gdb_xml_element threads_elements[] = {
3168 { "threads", NULL, threads_children,
3169 GDB_XML_EF_NONE, NULL, NULL },
3170 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3171 };
3172
3173 #endif
3174
3175 /* List remote threads using qXfer:threads:read. */
3176
3177 static int
3178 remote_get_threads_with_qxfer (struct target_ops *ops,
3179 struct threads_listing_context *context)
3180 {
3181 #if defined(HAVE_LIBEXPAT)
3182 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3183 {
3184 char *xml = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3185 struct cleanup *back_to = make_cleanup (xfree, xml);
3186
3187 if (xml != NULL && *xml != '\0')
3188 {
3189 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3190 threads_elements, xml, context);
3191 }
3192
3193 do_cleanups (back_to);
3194 return 1;
3195 }
3196 #endif
3197
3198 return 0;
3199 }
3200
3201 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3202
3203 static int
3204 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3205 struct threads_listing_context *context)
3206 {
3207 struct remote_state *rs = get_remote_state ();
3208
3209 if (rs->use_threadinfo_query)
3210 {
3211 char *bufp;
3212
3213 putpkt ("qfThreadInfo");
3214 getpkt (&rs->buf, &rs->buf_size, 0);
3215 bufp = rs->buf;
3216 if (bufp[0] != '\0') /* q packet recognized */
3217 {
3218 while (*bufp++ == 'm') /* reply contains one or more TID */
3219 {
3220 do
3221 {
3222 struct thread_item item;
3223
3224 item.ptid = read_ptid (bufp, &bufp);
3225 item.core = -1;
3226 item.name = NULL;
3227 item.extra = NULL;
3228
3229 VEC_safe_push (thread_item_t, context->items, &item);
3230 }
3231 while (*bufp++ == ','); /* comma-separated list */
3232 putpkt ("qsThreadInfo");
3233 getpkt (&rs->buf, &rs->buf_size, 0);
3234 bufp = rs->buf;
3235 }
3236 return 1;
3237 }
3238 else
3239 {
3240 /* Packet not recognized. */
3241 rs->use_threadinfo_query = 0;
3242 }
3243 }
3244
3245 return 0;
3246 }
3247
3248 /* Implement the to_update_thread_list function for the remote
3249 targets. */
3250
3251 static void
3252 remote_update_thread_list (struct target_ops *ops)
3253 {
3254 struct threads_listing_context context;
3255 struct cleanup *old_chain;
3256 int got_list = 0;
3257
3258 context.items = NULL;
3259 old_chain = make_cleanup (clear_threads_listing_context, &context);
3260
3261 /* We have a few different mechanisms to fetch the thread list. Try
3262 them all, starting with the most preferred one first, falling
3263 back to older methods. */
3264 if (remote_get_threads_with_qxfer (ops, &context)
3265 || remote_get_threads_with_qthreadinfo (ops, &context)
3266 || remote_get_threads_with_ql (ops, &context))
3267 {
3268 int i;
3269 struct thread_item *item;
3270 struct thread_info *tp, *tmp;
3271
3272 got_list = 1;
3273
3274 if (VEC_empty (thread_item_t, context.items)
3275 && remote_thread_always_alive (ops, inferior_ptid))
3276 {
3277 /* Some targets don't really support threads, but still
3278 reply an (empty) thread list in response to the thread
3279 listing packets, instead of replying "packet not
3280 supported". Exit early so we don't delete the main
3281 thread. */
3282 do_cleanups (old_chain);
3283 return;
3284 }
3285
3286 /* CONTEXT now holds the current thread list on the remote
3287 target end. Delete GDB-side threads no longer found on the
3288 target. */
3289 ALL_THREADS_SAFE (tp, tmp)
3290 {
3291 for (i = 0;
3292 VEC_iterate (thread_item_t, context.items, i, item);
3293 ++i)
3294 {
3295 if (ptid_equal (item->ptid, tp->ptid))
3296 break;
3297 }
3298
3299 if (i == VEC_length (thread_item_t, context.items))
3300 {
3301 /* Not found. */
3302 delete_thread (tp->ptid);
3303 }
3304 }
3305
3306 /* Remove any unreported fork child threads from CONTEXT so
3307 that we don't interfere with follow fork, which is where
3308 creation of such threads is handled. */
3309 remove_new_fork_children (&context);
3310
3311 /* And now add threads we don't know about yet to our list. */
3312 for (i = 0;
3313 VEC_iterate (thread_item_t, context.items, i, item);
3314 ++i)
3315 {
3316 if (!ptid_equal (item->ptid, null_ptid))
3317 {
3318 struct private_thread_info *info;
3319 /* In non-stop mode, we assume new found threads are
3320 executing until proven otherwise with a stop reply.
3321 In all-stop, we can only get here if all threads are
3322 stopped. */
3323 int executing = target_is_non_stop_p () ? 1 : 0;
3324
3325 remote_notice_new_inferior (item->ptid, executing);
3326
3327 info = get_private_info_ptid (item->ptid);
3328 info->core = item->core;
3329 info->extra = item->extra;
3330 item->extra = NULL;
3331 info->name = item->name;
3332 item->name = NULL;
3333 }
3334 }
3335 }
3336
3337 if (!got_list)
3338 {
3339 /* If no thread listing method is supported, then query whether
3340 each known thread is alive, one by one, with the T packet.
3341 If the target doesn't support threads at all, then this is a
3342 no-op. See remote_thread_alive. */
3343 prune_threads ();
3344 }
3345
3346 do_cleanups (old_chain);
3347 }
3348
3349 /*
3350 * Collect a descriptive string about the given thread.
3351 * The target may say anything it wants to about the thread
3352 * (typically info about its blocked / runnable state, name, etc.).
3353 * This string will appear in the info threads display.
3354 *
3355 * Optional: targets are not required to implement this function.
3356 */
3357
3358 static const char *
3359 remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
3360 {
3361 struct remote_state *rs = get_remote_state ();
3362 int result;
3363 int set;
3364 threadref id;
3365 struct gdb_ext_thread_info threadinfo;
3366 static char display_buf[100]; /* arbitrary... */
3367 int n = 0; /* position in display_buf */
3368
3369 if (rs->remote_desc == 0) /* paranoia */
3370 internal_error (__FILE__, __LINE__,
3371 _("remote_threads_extra_info"));
3372
3373 if (ptid_equal (tp->ptid, magic_null_ptid)
3374 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3375 /* This is the main thread which was added by GDB. The remote
3376 server doesn't know about it. */
3377 return NULL;
3378
3379 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3380 {
3381 struct thread_info *info = find_thread_ptid (tp->ptid);
3382
3383 if (info && info->priv)
3384 return info->priv->extra;
3385 else
3386 return NULL;
3387 }
3388
3389 if (rs->use_threadextra_query)
3390 {
3391 char *b = rs->buf;
3392 char *endb = rs->buf + get_remote_packet_size ();
3393
3394 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3395 b += strlen (b);
3396 write_ptid (b, endb, tp->ptid);
3397
3398 putpkt (rs->buf);
3399 getpkt (&rs->buf, &rs->buf_size, 0);
3400 if (rs->buf[0] != 0)
3401 {
3402 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3403 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3404 display_buf [result] = '\0';
3405 return display_buf;
3406 }
3407 }
3408
3409 /* If the above query fails, fall back to the old method. */
3410 rs->use_threadextra_query = 0;
3411 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3412 | TAG_MOREDISPLAY | TAG_DISPLAY;
3413 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3414 if (remote_get_threadinfo (&id, set, &threadinfo))
3415 if (threadinfo.active)
3416 {
3417 if (*threadinfo.shortname)
3418 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3419 " Name: %s,", threadinfo.shortname);
3420 if (*threadinfo.display)
3421 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3422 " State: %s,", threadinfo.display);
3423 if (*threadinfo.more_display)
3424 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3425 " Priority: %s", threadinfo.more_display);
3426
3427 if (n > 0)
3428 {
3429 /* For purely cosmetic reasons, clear up trailing commas. */
3430 if (',' == display_buf[n-1])
3431 display_buf[n-1] = ' ';
3432 return display_buf;
3433 }
3434 }
3435 return NULL;
3436 }
3437 \f
3438
3439 static int
3440 remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
3441 struct static_tracepoint_marker *marker)
3442 {
3443 struct remote_state *rs = get_remote_state ();
3444 char *p = rs->buf;
3445
3446 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3447 p += strlen (p);
3448 p += hexnumstr (p, addr);
3449 putpkt (rs->buf);
3450 getpkt (&rs->buf, &rs->buf_size, 0);
3451 p = rs->buf;
3452
3453 if (*p == 'E')
3454 error (_("Remote failure reply: %s"), p);
3455
3456 if (*p++ == 'm')
3457 {
3458 parse_static_tracepoint_marker_definition (p, &p, marker);
3459 return 1;
3460 }
3461
3462 return 0;
3463 }
3464
3465 static VEC(static_tracepoint_marker_p) *
3466 remote_static_tracepoint_markers_by_strid (struct target_ops *self,
3467 const char *strid)
3468 {
3469 struct remote_state *rs = get_remote_state ();
3470 VEC(static_tracepoint_marker_p) *markers = NULL;
3471 struct static_tracepoint_marker *marker = NULL;
3472 struct cleanup *old_chain;
3473 char *p;
3474
3475 /* Ask for a first packet of static tracepoint marker
3476 definition. */
3477 putpkt ("qTfSTM");
3478 getpkt (&rs->buf, &rs->buf_size, 0);
3479 p = rs->buf;
3480 if (*p == 'E')
3481 error (_("Remote failure reply: %s"), p);
3482
3483 old_chain = make_cleanup (free_current_marker, &marker);
3484
3485 while (*p++ == 'm')
3486 {
3487 if (marker == NULL)
3488 marker = XCNEW (struct static_tracepoint_marker);
3489
3490 do
3491 {
3492 parse_static_tracepoint_marker_definition (p, &p, marker);
3493
3494 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
3495 {
3496 VEC_safe_push (static_tracepoint_marker_p,
3497 markers, marker);
3498 marker = NULL;
3499 }
3500 else
3501 {
3502 release_static_tracepoint_marker (marker);
3503 memset (marker, 0, sizeof (*marker));
3504 }
3505 }
3506 while (*p++ == ','); /* comma-separated list */
3507 /* Ask for another packet of static tracepoint definition. */
3508 putpkt ("qTsSTM");
3509 getpkt (&rs->buf, &rs->buf_size, 0);
3510 p = rs->buf;
3511 }
3512
3513 do_cleanups (old_chain);
3514 return markers;
3515 }
3516
3517 \f
3518 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3519
3520 static ptid_t
3521 remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
3522 {
3523 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3524 }
3525 \f
3526
3527 /* Restart the remote side; this is an extended protocol operation. */
3528
3529 static void
3530 extended_remote_restart (void)
3531 {
3532 struct remote_state *rs = get_remote_state ();
3533
3534 /* Send the restart command; for reasons I don't understand the
3535 remote side really expects a number after the "R". */
3536 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3537 putpkt (rs->buf);
3538
3539 remote_fileio_reset ();
3540 }
3541 \f
3542 /* Clean up connection to a remote debugger. */
3543
3544 static void
3545 remote_close (struct target_ops *self)
3546 {
3547 struct remote_state *rs = get_remote_state ();
3548
3549 if (rs->remote_desc == NULL)
3550 return; /* already closed */
3551
3552 /* Make sure we leave stdin registered in the event loop. */
3553 remote_terminal_ours (self);
3554
3555 serial_close (rs->remote_desc);
3556 rs->remote_desc = NULL;
3557
3558 /* We don't have a connection to the remote stub anymore. Get rid
3559 of all the inferiors and their threads we were controlling.
3560 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3561 will be unable to find the thread corresponding to (pid, 0, 0). */
3562 inferior_ptid = null_ptid;
3563 discard_all_inferiors ();
3564
3565 /* We are closing the remote target, so we should discard
3566 everything of this target. */
3567 discard_pending_stop_replies_in_queue (rs);
3568
3569 if (remote_async_inferior_event_token)
3570 delete_async_event_handler (&remote_async_inferior_event_token);
3571
3572 remote_notif_state_xfree (rs->notif_state);
3573
3574 trace_reset_local_state ();
3575 }
3576
3577 /* Query the remote side for the text, data and bss offsets. */
3578
3579 static void
3580 get_offsets (void)
3581 {
3582 struct remote_state *rs = get_remote_state ();
3583 char *buf;
3584 char *ptr;
3585 int lose, num_segments = 0, do_sections, do_segments;
3586 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3587 struct section_offsets *offs;
3588 struct symfile_segment_data *data;
3589
3590 if (symfile_objfile == NULL)
3591 return;
3592
3593 putpkt ("qOffsets");
3594 getpkt (&rs->buf, &rs->buf_size, 0);
3595 buf = rs->buf;
3596
3597 if (buf[0] == '\000')
3598 return; /* Return silently. Stub doesn't support
3599 this command. */
3600 if (buf[0] == 'E')
3601 {
3602 warning (_("Remote failure reply: %s"), buf);
3603 return;
3604 }
3605
3606 /* Pick up each field in turn. This used to be done with scanf, but
3607 scanf will make trouble if CORE_ADDR size doesn't match
3608 conversion directives correctly. The following code will work
3609 with any size of CORE_ADDR. */
3610 text_addr = data_addr = bss_addr = 0;
3611 ptr = buf;
3612 lose = 0;
3613
3614 if (startswith (ptr, "Text="))
3615 {
3616 ptr += 5;
3617 /* Don't use strtol, could lose on big values. */
3618 while (*ptr && *ptr != ';')
3619 text_addr = (text_addr << 4) + fromhex (*ptr++);
3620
3621 if (startswith (ptr, ";Data="))
3622 {
3623 ptr += 6;
3624 while (*ptr && *ptr != ';')
3625 data_addr = (data_addr << 4) + fromhex (*ptr++);
3626 }
3627 else
3628 lose = 1;
3629
3630 if (!lose && startswith (ptr, ";Bss="))
3631 {
3632 ptr += 5;
3633 while (*ptr && *ptr != ';')
3634 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3635
3636 if (bss_addr != data_addr)
3637 warning (_("Target reported unsupported offsets: %s"), buf);
3638 }
3639 else
3640 lose = 1;
3641 }
3642 else if (startswith (ptr, "TextSeg="))
3643 {
3644 ptr += 8;
3645 /* Don't use strtol, could lose on big values. */
3646 while (*ptr && *ptr != ';')
3647 text_addr = (text_addr << 4) + fromhex (*ptr++);
3648 num_segments = 1;
3649
3650 if (startswith (ptr, ";DataSeg="))
3651 {
3652 ptr += 9;
3653 while (*ptr && *ptr != ';')
3654 data_addr = (data_addr << 4) + fromhex (*ptr++);
3655 num_segments++;
3656 }
3657 }
3658 else
3659 lose = 1;
3660
3661 if (lose)
3662 error (_("Malformed response to offset query, %s"), buf);
3663 else if (*ptr != '\0')
3664 warning (_("Target reported unsupported offsets: %s"), buf);
3665
3666 offs = ((struct section_offsets *)
3667 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3668 memcpy (offs, symfile_objfile->section_offsets,
3669 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3670
3671 data = get_symfile_segment_data (symfile_objfile->obfd);
3672 do_segments = (data != NULL);
3673 do_sections = num_segments == 0;
3674
3675 if (num_segments > 0)
3676 {
3677 segments[0] = text_addr;
3678 segments[1] = data_addr;
3679 }
3680 /* If we have two segments, we can still try to relocate everything
3681 by assuming that the .text and .data offsets apply to the whole
3682 text and data segments. Convert the offsets given in the packet
3683 to base addresses for symfile_map_offsets_to_segments. */
3684 else if (data && data->num_segments == 2)
3685 {
3686 segments[0] = data->segment_bases[0] + text_addr;
3687 segments[1] = data->segment_bases[1] + data_addr;
3688 num_segments = 2;
3689 }
3690 /* If the object file has only one segment, assume that it is text
3691 rather than data; main programs with no writable data are rare,
3692 but programs with no code are useless. Of course the code might
3693 have ended up in the data segment... to detect that we would need
3694 the permissions here. */
3695 else if (data && data->num_segments == 1)
3696 {
3697 segments[0] = data->segment_bases[0] + text_addr;
3698 num_segments = 1;
3699 }
3700 /* There's no way to relocate by segment. */
3701 else
3702 do_segments = 0;
3703
3704 if (do_segments)
3705 {
3706 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3707 offs, num_segments, segments);
3708
3709 if (ret == 0 && !do_sections)
3710 error (_("Can not handle qOffsets TextSeg "
3711 "response with this symbol file"));
3712
3713 if (ret > 0)
3714 do_sections = 0;
3715 }
3716
3717 if (data)
3718 free_symfile_segment_data (data);
3719
3720 if (do_sections)
3721 {
3722 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3723
3724 /* This is a temporary kludge to force data and bss to use the
3725 same offsets because that's what nlmconv does now. The real
3726 solution requires changes to the stub and remote.c that I
3727 don't have time to do right now. */
3728
3729 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3730 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3731 }
3732
3733 objfile_relocate (symfile_objfile, offs);
3734 }
3735
3736 /* Send interrupt_sequence to remote target. */
3737 static void
3738 send_interrupt_sequence (void)
3739 {
3740 struct remote_state *rs = get_remote_state ();
3741
3742 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3743 remote_serial_write ("\x03", 1);
3744 else if (interrupt_sequence_mode == interrupt_sequence_break)
3745 serial_send_break (rs->remote_desc);
3746 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3747 {
3748 serial_send_break (rs->remote_desc);
3749 remote_serial_write ("g", 1);
3750 }
3751 else
3752 internal_error (__FILE__, __LINE__,
3753 _("Invalid value for interrupt_sequence_mode: %s."),
3754 interrupt_sequence_mode);
3755 }
3756
3757
3758 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3759 and extract the PTID. Returns NULL_PTID if not found. */
3760
3761 static ptid_t
3762 stop_reply_extract_thread (char *stop_reply)
3763 {
3764 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3765 {
3766 char *p;
3767
3768 /* Txx r:val ; r:val (...) */
3769 p = &stop_reply[3];
3770
3771 /* Look for "register" named "thread". */
3772 while (*p != '\0')
3773 {
3774 char *p1;
3775
3776 p1 = strchr (p, ':');
3777 if (p1 == NULL)
3778 return null_ptid;
3779
3780 if (strncmp (p, "thread", p1 - p) == 0)
3781 return read_ptid (++p1, &p);
3782
3783 p1 = strchr (p, ';');
3784 if (p1 == NULL)
3785 return null_ptid;
3786 p1++;
3787
3788 p = p1;
3789 }
3790 }
3791
3792 return null_ptid;
3793 }
3794
3795 /* Determine the remote side's current thread. If we have a stop
3796 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3797 "thread" register we can extract the current thread from. If not,
3798 ask the remote which is the current thread with qC. The former
3799 method avoids a roundtrip. */
3800
3801 static ptid_t
3802 get_current_thread (char *wait_status)
3803 {
3804 ptid_t ptid = null_ptid;
3805
3806 /* Note we don't use remote_parse_stop_reply as that makes use of
3807 the target architecture, which we haven't yet fully determined at
3808 this point. */
3809 if (wait_status != NULL)
3810 ptid = stop_reply_extract_thread (wait_status);
3811 if (ptid_equal (ptid, null_ptid))
3812 ptid = remote_current_thread (inferior_ptid);
3813
3814 return ptid;
3815 }
3816
3817 /* Query the remote target for which is the current thread/process,
3818 add it to our tables, and update INFERIOR_PTID. The caller is
3819 responsible for setting the state such that the remote end is ready
3820 to return the current thread.
3821
3822 This function is called after handling the '?' or 'vRun' packets,
3823 whose response is a stop reply from which we can also try
3824 extracting the thread. If the target doesn't support the explicit
3825 qC query, we infer the current thread from that stop reply, passed
3826 in in WAIT_STATUS, which may be NULL. */
3827
3828 static void
3829 add_current_inferior_and_thread (char *wait_status)
3830 {
3831 struct remote_state *rs = get_remote_state ();
3832 int fake_pid_p = 0;
3833 ptid_t ptid;
3834
3835 inferior_ptid = null_ptid;
3836
3837 /* Now, if we have thread information, update inferior_ptid. */
3838 ptid = get_current_thread (wait_status);
3839
3840 if (!ptid_equal (ptid, null_ptid))
3841 {
3842 if (!remote_multi_process_p (rs))
3843 fake_pid_p = 1;
3844
3845 inferior_ptid = ptid;
3846 }
3847 else
3848 {
3849 /* Without this, some commands which require an active target
3850 (such as kill) won't work. This variable serves (at least)
3851 double duty as both the pid of the target process (if it has
3852 such), and as a flag indicating that a target is active. */
3853 inferior_ptid = magic_null_ptid;
3854 fake_pid_p = 1;
3855 }
3856
3857 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1, 1);
3858
3859 /* Add the main thread. */
3860 add_thread_silent (inferior_ptid);
3861 }
3862
3863 /* Print info about a thread that was found already stopped on
3864 connection. */
3865
3866 static void
3867 print_one_stopped_thread (struct thread_info *thread)
3868 {
3869 struct target_waitstatus *ws = &thread->suspend.waitstatus;
3870
3871 switch_to_thread (thread->ptid);
3872 stop_pc = get_frame_pc (get_current_frame ());
3873 set_current_sal_from_frame (get_current_frame ());
3874
3875 thread->suspend.waitstatus_pending_p = 0;
3876
3877 if (ws->kind == TARGET_WAITKIND_STOPPED)
3878 {
3879 enum gdb_signal sig = ws->value.sig;
3880
3881 if (signal_print_state (sig))
3882 observer_notify_signal_received (sig);
3883 }
3884 observer_notify_normal_stop (NULL, 1);
3885 }
3886
3887 /* Process all initial stop replies the remote side sent in response
3888 to the ? packet. These indicate threads that were already stopped
3889 on initial connection. We mark these threads as stopped and print
3890 their current frame before giving the user the prompt. */
3891
3892 static void
3893 process_initial_stop_replies (int from_tty)
3894 {
3895 int pending_stop_replies = stop_reply_queue_length ();
3896 struct inferior *inf;
3897 struct thread_info *thread;
3898 struct thread_info *selected = NULL;
3899 struct thread_info *lowest_stopped = NULL;
3900 struct thread_info *first = NULL;
3901
3902 /* Consume the initial pending events. */
3903 while (pending_stop_replies-- > 0)
3904 {
3905 ptid_t waiton_ptid = minus_one_ptid;
3906 ptid_t event_ptid;
3907 struct target_waitstatus ws;
3908 int ignore_event = 0;
3909 struct thread_info *thread;
3910
3911 memset (&ws, 0, sizeof (ws));
3912 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
3913 if (remote_debug)
3914 print_target_wait_results (waiton_ptid, event_ptid, &ws);
3915
3916 switch (ws.kind)
3917 {
3918 case TARGET_WAITKIND_IGNORE:
3919 case TARGET_WAITKIND_NO_RESUMED:
3920 case TARGET_WAITKIND_SIGNALLED:
3921 case TARGET_WAITKIND_EXITED:
3922 /* We shouldn't see these, but if we do, just ignore. */
3923 if (remote_debug)
3924 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
3925 ignore_event = 1;
3926 break;
3927
3928 case TARGET_WAITKIND_EXECD:
3929 xfree (ws.value.execd_pathname);
3930 break;
3931 default:
3932 break;
3933 }
3934
3935 if (ignore_event)
3936 continue;
3937
3938 thread = find_thread_ptid (event_ptid);
3939
3940 if (ws.kind == TARGET_WAITKIND_STOPPED)
3941 {
3942 enum gdb_signal sig = ws.value.sig;
3943
3944 /* Stubs traditionally report SIGTRAP as initial signal,
3945 instead of signal 0. Suppress it. */
3946 if (sig == GDB_SIGNAL_TRAP)
3947 sig = GDB_SIGNAL_0;
3948 thread->suspend.stop_signal = sig;
3949 ws.value.sig = sig;
3950 }
3951
3952 thread->suspend.waitstatus = ws;
3953
3954 if (ws.kind != TARGET_WAITKIND_STOPPED
3955 || ws.value.sig != GDB_SIGNAL_0)
3956 thread->suspend.waitstatus_pending_p = 1;
3957
3958 set_executing (event_ptid, 0);
3959 set_running (event_ptid, 0);
3960 thread->priv->vcont_resumed = 0;
3961 }
3962
3963 /* "Notice" the new inferiors before anything related to
3964 registers/memory. */
3965 ALL_INFERIORS (inf)
3966 {
3967 if (inf->pid == 0)
3968 continue;
3969
3970 inf->needs_setup = 1;
3971
3972 if (non_stop)
3973 {
3974 thread = any_live_thread_of_process (inf->pid);
3975 notice_new_inferior (thread->ptid,
3976 thread->state == THREAD_RUNNING,
3977 from_tty);
3978 }
3979 }
3980
3981 /* If all-stop on top of non-stop, pause all threads. Note this
3982 records the threads' stop pc, so must be done after "noticing"
3983 the inferiors. */
3984 if (!non_stop)
3985 {
3986 stop_all_threads ();
3987
3988 /* If all threads of an inferior were already stopped, we
3989 haven't setup the inferior yet. */
3990 ALL_INFERIORS (inf)
3991 {
3992 if (inf->pid == 0)
3993 continue;
3994
3995 if (inf->needs_setup)
3996 {
3997 thread = any_live_thread_of_process (inf->pid);
3998 switch_to_thread_no_regs (thread);
3999 setup_inferior (0);
4000 }
4001 }
4002 }
4003
4004 /* Now go over all threads that are stopped, and print their current
4005 frame. If all-stop, then if there's a signalled thread, pick
4006 that as current. */
4007 ALL_NON_EXITED_THREADS (thread)
4008 {
4009 if (first == NULL)
4010 first = thread;
4011
4012 if (!non_stop)
4013 set_running (thread->ptid, 0);
4014 else if (thread->state != THREAD_STOPPED)
4015 continue;
4016
4017 if (selected == NULL
4018 && thread->suspend.waitstatus_pending_p)
4019 selected = thread;
4020
4021 if (lowest_stopped == NULL
4022 || thread->inf->num < lowest_stopped->inf->num
4023 || thread->per_inf_num < lowest_stopped->per_inf_num)
4024 lowest_stopped = thread;
4025
4026 if (non_stop)
4027 print_one_stopped_thread (thread);
4028 }
4029
4030 /* In all-stop, we only print the status of one thread, and leave
4031 others with their status pending. */
4032 if (!non_stop)
4033 {
4034 thread = selected;
4035 if (thread == NULL)
4036 thread = lowest_stopped;
4037 if (thread == NULL)
4038 thread = first;
4039
4040 print_one_stopped_thread (thread);
4041 }
4042
4043 /* For "info program". */
4044 thread = inferior_thread ();
4045 if (thread->state == THREAD_STOPPED)
4046 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4047 }
4048
4049 /* Start the remote connection and sync state. */
4050
4051 static void
4052 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
4053 {
4054 struct remote_state *rs = get_remote_state ();
4055 struct packet_config *noack_config;
4056 char *wait_status = NULL;
4057
4058 /* Signal other parts that we're going through the initial setup,
4059 and so things may not be stable yet. E.g., we don't try to
4060 install tracepoints until we've relocated symbols. Also, a
4061 Ctrl-C before we're connected and synced up can't interrupt the
4062 target. Instead, it offers to drop the (potentially wedged)
4063 connection. */
4064 rs->starting_up = 1;
4065
4066 QUIT;
4067
4068 if (interrupt_on_connect)
4069 send_interrupt_sequence ();
4070
4071 /* Ack any packet which the remote side has already sent. */
4072 remote_serial_write ("+", 1);
4073
4074 /* The first packet we send to the target is the optional "supported
4075 packets" request. If the target can answer this, it will tell us
4076 which later probes to skip. */
4077 remote_query_supported ();
4078
4079 /* If the stub wants to get a QAllow, compose one and send it. */
4080 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4081 remote_set_permissions (target);
4082
4083 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4084 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4085 as a reply to known packet. For packet "vFile:setfs:" it is an
4086 invalid reply and GDB would return error in
4087 remote_hostio_set_filesystem, making remote files access impossible.
4088 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4089 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4090 {
4091 const char v_mustreplyempty[] = "vMustReplyEmpty";
4092
4093 putpkt (v_mustreplyempty);
4094 getpkt (&rs->buf, &rs->buf_size, 0);
4095 if (strcmp (rs->buf, "OK") == 0)
4096 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4097 else if (strcmp (rs->buf, "") != 0)
4098 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4099 rs->buf);
4100 }
4101
4102 /* Next, we possibly activate noack mode.
4103
4104 If the QStartNoAckMode packet configuration is set to AUTO,
4105 enable noack mode if the stub reported a wish for it with
4106 qSupported.
4107
4108 If set to TRUE, then enable noack mode even if the stub didn't
4109 report it in qSupported. If the stub doesn't reply OK, the
4110 session ends with an error.
4111
4112 If FALSE, then don't activate noack mode, regardless of what the
4113 stub claimed should be the default with qSupported. */
4114
4115 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4116 if (packet_config_support (noack_config) != PACKET_DISABLE)
4117 {
4118 putpkt ("QStartNoAckMode");
4119 getpkt (&rs->buf, &rs->buf_size, 0);
4120 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4121 rs->noack_mode = 1;
4122 }
4123
4124 if (extended_p)
4125 {
4126 /* Tell the remote that we are using the extended protocol. */
4127 putpkt ("!");
4128 getpkt (&rs->buf, &rs->buf_size, 0);
4129 }
4130
4131 /* Let the target know which signals it is allowed to pass down to
4132 the program. */
4133 update_signals_program_target ();
4134
4135 /* Next, if the target can specify a description, read it. We do
4136 this before anything involving memory or registers. */
4137 target_find_description ();
4138
4139 /* Next, now that we know something about the target, update the
4140 address spaces in the program spaces. */
4141 update_address_spaces ();
4142
4143 /* On OSs where the list of libraries is global to all
4144 processes, we fetch them early. */
4145 if (gdbarch_has_global_solist (target_gdbarch ()))
4146 solib_add (NULL, from_tty, auto_solib_add);
4147
4148 if (target_is_non_stop_p ())
4149 {
4150 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4151 error (_("Non-stop mode requested, but remote "
4152 "does not support non-stop"));
4153
4154 putpkt ("QNonStop:1");
4155 getpkt (&rs->buf, &rs->buf_size, 0);
4156
4157 if (strcmp (rs->buf, "OK") != 0)
4158 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4159
4160 /* Find about threads and processes the stub is already
4161 controlling. We default to adding them in the running state.
4162 The '?' query below will then tell us about which threads are
4163 stopped. */
4164 remote_update_thread_list (target);
4165 }
4166 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4167 {
4168 /* Don't assume that the stub can operate in all-stop mode.
4169 Request it explicitly. */
4170 putpkt ("QNonStop:0");
4171 getpkt (&rs->buf, &rs->buf_size, 0);
4172
4173 if (strcmp (rs->buf, "OK") != 0)
4174 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4175 }
4176
4177 /* Upload TSVs regardless of whether the target is running or not. The
4178 remote stub, such as GDBserver, may have some predefined or builtin
4179 TSVs, even if the target is not running. */
4180 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4181 {
4182 struct uploaded_tsv *uploaded_tsvs = NULL;
4183
4184 remote_upload_trace_state_variables (target, &uploaded_tsvs);
4185 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4186 }
4187
4188 /* Check whether the target is running now. */
4189 putpkt ("?");
4190 getpkt (&rs->buf, &rs->buf_size, 0);
4191
4192 if (!target_is_non_stop_p ())
4193 {
4194 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4195 {
4196 if (!extended_p)
4197 error (_("The target is not running (try extended-remote?)"));
4198
4199 /* We're connected, but not running. Drop out before we
4200 call start_remote. */
4201 rs->starting_up = 0;
4202 return;
4203 }
4204 else
4205 {
4206 /* Save the reply for later. */
4207 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4208 strcpy (wait_status, rs->buf);
4209 }
4210
4211 /* Fetch thread list. */
4212 target_update_thread_list ();
4213
4214 /* Let the stub know that we want it to return the thread. */
4215 set_continue_thread (minus_one_ptid);
4216
4217 if (thread_count () == 0)
4218 {
4219 /* Target has no concept of threads at all. GDB treats
4220 non-threaded target as single-threaded; add a main
4221 thread. */
4222 add_current_inferior_and_thread (wait_status);
4223 }
4224 else
4225 {
4226 /* We have thread information; select the thread the target
4227 says should be current. If we're reconnecting to a
4228 multi-threaded program, this will ideally be the thread
4229 that last reported an event before GDB disconnected. */
4230 inferior_ptid = get_current_thread (wait_status);
4231 if (ptid_equal (inferior_ptid, null_ptid))
4232 {
4233 /* Odd... The target was able to list threads, but not
4234 tell us which thread was current (no "thread"
4235 register in T stop reply?). Just pick the first
4236 thread in the thread list then. */
4237
4238 if (remote_debug)
4239 fprintf_unfiltered (gdb_stdlog,
4240 "warning: couldn't determine remote "
4241 "current thread; picking first in list.\n");
4242
4243 inferior_ptid = thread_list->ptid;
4244 }
4245 }
4246
4247 /* init_wait_for_inferior should be called before get_offsets in order
4248 to manage `inserted' flag in bp loc in a correct state.
4249 breakpoint_init_inferior, called from init_wait_for_inferior, set
4250 `inserted' flag to 0, while before breakpoint_re_set, called from
4251 start_remote, set `inserted' flag to 1. In the initialization of
4252 inferior, breakpoint_init_inferior should be called first, and then
4253 breakpoint_re_set can be called. If this order is broken, state of
4254 `inserted' flag is wrong, and cause some problems on breakpoint
4255 manipulation. */
4256 init_wait_for_inferior ();
4257
4258 get_offsets (); /* Get text, data & bss offsets. */
4259
4260 /* If we could not find a description using qXfer, and we know
4261 how to do it some other way, try again. This is not
4262 supported for non-stop; it could be, but it is tricky if
4263 there are no stopped threads when we connect. */
4264 if (remote_read_description_p (target)
4265 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4266 {
4267 target_clear_description ();
4268 target_find_description ();
4269 }
4270
4271 /* Use the previously fetched status. */
4272 gdb_assert (wait_status != NULL);
4273 strcpy (rs->buf, wait_status);
4274 rs->cached_wait_status = 1;
4275
4276 start_remote (from_tty); /* Initialize gdb process mechanisms. */
4277 }
4278 else
4279 {
4280 /* Clear WFI global state. Do this before finding about new
4281 threads and inferiors, and setting the current inferior.
4282 Otherwise we would clear the proceed status of the current
4283 inferior when we want its stop_soon state to be preserved
4284 (see notice_new_inferior). */
4285 init_wait_for_inferior ();
4286
4287 /* In non-stop, we will either get an "OK", meaning that there
4288 are no stopped threads at this time; or, a regular stop
4289 reply. In the latter case, there may be more than one thread
4290 stopped --- we pull them all out using the vStopped
4291 mechanism. */
4292 if (strcmp (rs->buf, "OK") != 0)
4293 {
4294 struct notif_client *notif = &notif_client_stop;
4295
4296 /* remote_notif_get_pending_replies acks this one, and gets
4297 the rest out. */
4298 rs->notif_state->pending_event[notif_client_stop.id]
4299 = remote_notif_parse (notif, rs->buf);
4300 remote_notif_get_pending_events (notif);
4301 }
4302
4303 if (thread_count () == 0)
4304 {
4305 if (!extended_p)
4306 error (_("The target is not running (try extended-remote?)"));
4307
4308 /* We're connected, but not running. Drop out before we
4309 call start_remote. */
4310 rs->starting_up = 0;
4311 return;
4312 }
4313
4314 /* In non-stop mode, any cached wait status will be stored in
4315 the stop reply queue. */
4316 gdb_assert (wait_status == NULL);
4317
4318 /* Report all signals during attach/startup. */
4319 remote_pass_signals (target, 0, NULL);
4320
4321 /* If there are already stopped threads, mark them stopped and
4322 report their stops before giving the prompt to the user. */
4323 process_initial_stop_replies (from_tty);
4324
4325 if (target_can_async_p ())
4326 target_async (1);
4327 }
4328
4329 /* If we connected to a live target, do some additional setup. */
4330 if (target_has_execution)
4331 {
4332 if (symfile_objfile) /* No use without a symbol-file. */
4333 remote_check_symbols ();
4334 }
4335
4336 /* Possibly the target has been engaged in a trace run started
4337 previously; find out where things are at. */
4338 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4339 {
4340 struct uploaded_tp *uploaded_tps = NULL;
4341
4342 if (current_trace_status ()->running)
4343 printf_filtered (_("Trace is already running on the target.\n"));
4344
4345 remote_upload_tracepoints (target, &uploaded_tps);
4346
4347 merge_uploaded_tracepoints (&uploaded_tps);
4348 }
4349
4350 /* Possibly the target has been engaged in a btrace record started
4351 previously; find out where things are at. */
4352 remote_btrace_maybe_reopen ();
4353
4354 /* The thread and inferior lists are now synchronized with the
4355 target, our symbols have been relocated, and we're merged the
4356 target's tracepoints with ours. We're done with basic start
4357 up. */
4358 rs->starting_up = 0;
4359
4360 /* Maybe breakpoints are global and need to be inserted now. */
4361 if (breakpoints_should_be_inserted_now ())
4362 insert_breakpoints ();
4363 }
4364
4365 /* Open a connection to a remote debugger.
4366 NAME is the filename used for communication. */
4367
4368 static void
4369 remote_open (const char *name, int from_tty)
4370 {
4371 remote_open_1 (name, from_tty, &remote_ops, 0);
4372 }
4373
4374 /* Open a connection to a remote debugger using the extended
4375 remote gdb protocol. NAME is the filename used for communication. */
4376
4377 static void
4378 extended_remote_open (const char *name, int from_tty)
4379 {
4380 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
4381 }
4382
4383 /* Reset all packets back to "unknown support". Called when opening a
4384 new connection to a remote target. */
4385
4386 static void
4387 reset_all_packet_configs_support (void)
4388 {
4389 int i;
4390
4391 for (i = 0; i < PACKET_MAX; i++)
4392 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4393 }
4394
4395 /* Initialize all packet configs. */
4396
4397 static void
4398 init_all_packet_configs (void)
4399 {
4400 int i;
4401
4402 for (i = 0; i < PACKET_MAX; i++)
4403 {
4404 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4405 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4406 }
4407 }
4408
4409 /* Symbol look-up. */
4410
4411 static void
4412 remote_check_symbols (void)
4413 {
4414 struct remote_state *rs = get_remote_state ();
4415 char *msg, *reply, *tmp;
4416 int end;
4417 long reply_size;
4418 struct cleanup *old_chain;
4419
4420 /* The remote side has no concept of inferiors that aren't running
4421 yet, it only knows about running processes. If we're connected
4422 but our current inferior is not running, we should not invite the
4423 remote target to request symbol lookups related to its
4424 (unrelated) current process. */
4425 if (!target_has_execution)
4426 return;
4427
4428 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4429 return;
4430
4431 /* Make sure the remote is pointing at the right process. Note
4432 there's no way to select "no process". */
4433 set_general_process ();
4434
4435 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4436 because we need both at the same time. */
4437 msg = (char *) xmalloc (get_remote_packet_size ());
4438 old_chain = make_cleanup (xfree, msg);
4439 reply = (char *) xmalloc (get_remote_packet_size ());
4440 make_cleanup (free_current_contents, &reply);
4441 reply_size = get_remote_packet_size ();
4442
4443 /* Invite target to request symbol lookups. */
4444
4445 putpkt ("qSymbol::");
4446 getpkt (&reply, &reply_size, 0);
4447 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4448
4449 while (startswith (reply, "qSymbol:"))
4450 {
4451 struct bound_minimal_symbol sym;
4452
4453 tmp = &reply[8];
4454 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4455 msg[end] = '\0';
4456 sym = lookup_minimal_symbol (msg, NULL, NULL);
4457 if (sym.minsym == NULL)
4458 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4459 else
4460 {
4461 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4462 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4463
4464 /* If this is a function address, return the start of code
4465 instead of any data function descriptor. */
4466 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4467 sym_addr,
4468 &current_target);
4469
4470 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4471 phex_nz (sym_addr, addr_size), &reply[8]);
4472 }
4473
4474 putpkt (msg);
4475 getpkt (&reply, &reply_size, 0);
4476 }
4477
4478 do_cleanups (old_chain);
4479 }
4480
4481 static struct serial *
4482 remote_serial_open (const char *name)
4483 {
4484 static int udp_warning = 0;
4485
4486 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4487 of in ser-tcp.c, because it is the remote protocol assuming that the
4488 serial connection is reliable and not the serial connection promising
4489 to be. */
4490 if (!udp_warning && startswith (name, "udp:"))
4491 {
4492 warning (_("The remote protocol may be unreliable over UDP.\n"
4493 "Some events may be lost, rendering further debugging "
4494 "impossible."));
4495 udp_warning = 1;
4496 }
4497
4498 return serial_open (name);
4499 }
4500
4501 /* Inform the target of our permission settings. The permission flags
4502 work without this, but if the target knows the settings, it can do
4503 a couple things. First, it can add its own check, to catch cases
4504 that somehow manage to get by the permissions checks in target
4505 methods. Second, if the target is wired to disallow particular
4506 settings (for instance, a system in the field that is not set up to
4507 be able to stop at a breakpoint), it can object to any unavailable
4508 permissions. */
4509
4510 void
4511 remote_set_permissions (struct target_ops *self)
4512 {
4513 struct remote_state *rs = get_remote_state ();
4514
4515 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4516 "WriteReg:%x;WriteMem:%x;"
4517 "InsertBreak:%x;InsertTrace:%x;"
4518 "InsertFastTrace:%x;Stop:%x",
4519 may_write_registers, may_write_memory,
4520 may_insert_breakpoints, may_insert_tracepoints,
4521 may_insert_fast_tracepoints, may_stop);
4522 putpkt (rs->buf);
4523 getpkt (&rs->buf, &rs->buf_size, 0);
4524
4525 /* If the target didn't like the packet, warn the user. Do not try
4526 to undo the user's settings, that would just be maddening. */
4527 if (strcmp (rs->buf, "OK") != 0)
4528 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4529 }
4530
4531 /* This type describes each known response to the qSupported
4532 packet. */
4533 struct protocol_feature
4534 {
4535 /* The name of this protocol feature. */
4536 const char *name;
4537
4538 /* The default for this protocol feature. */
4539 enum packet_support default_support;
4540
4541 /* The function to call when this feature is reported, or after
4542 qSupported processing if the feature is not supported.
4543 The first argument points to this structure. The second
4544 argument indicates whether the packet requested support be
4545 enabled, disabled, or probed (or the default, if this function
4546 is being called at the end of processing and this feature was
4547 not reported). The third argument may be NULL; if not NULL, it
4548 is a NUL-terminated string taken from the packet following
4549 this feature's name and an equals sign. */
4550 void (*func) (const struct protocol_feature *, enum packet_support,
4551 const char *);
4552
4553 /* The corresponding packet for this feature. Only used if
4554 FUNC is remote_supported_packet. */
4555 int packet;
4556 };
4557
4558 static void
4559 remote_supported_packet (const struct protocol_feature *feature,
4560 enum packet_support support,
4561 const char *argument)
4562 {
4563 if (argument)
4564 {
4565 warning (_("Remote qSupported response supplied an unexpected value for"
4566 " \"%s\"."), feature->name);
4567 return;
4568 }
4569
4570 remote_protocol_packets[feature->packet].support = support;
4571 }
4572
4573 static void
4574 remote_packet_size (const struct protocol_feature *feature,
4575 enum packet_support support, const char *value)
4576 {
4577 struct remote_state *rs = get_remote_state ();
4578
4579 int packet_size;
4580 char *value_end;
4581
4582 if (support != PACKET_ENABLE)
4583 return;
4584
4585 if (value == NULL || *value == '\0')
4586 {
4587 warning (_("Remote target reported \"%s\" without a size."),
4588 feature->name);
4589 return;
4590 }
4591
4592 errno = 0;
4593 packet_size = strtol (value, &value_end, 16);
4594 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4595 {
4596 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4597 feature->name, value);
4598 return;
4599 }
4600
4601 /* Record the new maximum packet size. */
4602 rs->explicit_packet_size = packet_size;
4603 }
4604
4605 static const struct protocol_feature remote_protocol_features[] = {
4606 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4607 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4608 PACKET_qXfer_auxv },
4609 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4610 PACKET_qXfer_exec_file },
4611 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4612 PACKET_qXfer_features },
4613 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4614 PACKET_qXfer_libraries },
4615 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4616 PACKET_qXfer_libraries_svr4 },
4617 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4618 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4619 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4620 PACKET_qXfer_memory_map },
4621 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4622 PACKET_qXfer_spu_read },
4623 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4624 PACKET_qXfer_spu_write },
4625 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4626 PACKET_qXfer_osdata },
4627 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4628 PACKET_qXfer_threads },
4629 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4630 PACKET_qXfer_traceframe_info },
4631 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4632 PACKET_QPassSignals },
4633 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4634 PACKET_QCatchSyscalls },
4635 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4636 PACKET_QProgramSignals },
4637 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
4638 PACKET_QStartupWithShell },
4639 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4640 PACKET_QStartNoAckMode },
4641 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4642 PACKET_multiprocess_feature },
4643 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4644 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4645 PACKET_qXfer_siginfo_read },
4646 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4647 PACKET_qXfer_siginfo_write },
4648 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4649 PACKET_ConditionalTracepoints },
4650 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4651 PACKET_ConditionalBreakpoints },
4652 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4653 PACKET_BreakpointCommands },
4654 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4655 PACKET_FastTracepoints },
4656 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4657 PACKET_StaticTracepoints },
4658 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4659 PACKET_InstallInTrace},
4660 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4661 PACKET_DisconnectedTracing_feature },
4662 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4663 PACKET_bc },
4664 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4665 PACKET_bs },
4666 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4667 PACKET_TracepointSource },
4668 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4669 PACKET_QAllow },
4670 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4671 PACKET_EnableDisableTracepoints_feature },
4672 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4673 PACKET_qXfer_fdpic },
4674 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4675 PACKET_qXfer_uib },
4676 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4677 PACKET_QDisableRandomization },
4678 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4679 { "QTBuffer:size", PACKET_DISABLE,
4680 remote_supported_packet, PACKET_QTBuffer_size},
4681 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4682 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4683 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4684 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4685 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4686 PACKET_qXfer_btrace },
4687 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4688 PACKET_qXfer_btrace_conf },
4689 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4690 PACKET_Qbtrace_conf_bts_size },
4691 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4692 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4693 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4694 PACKET_fork_event_feature },
4695 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4696 PACKET_vfork_event_feature },
4697 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4698 PACKET_exec_event_feature },
4699 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4700 PACKET_Qbtrace_conf_pt_size },
4701 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4702 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4703 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4704 };
4705
4706 static char *remote_support_xml;
4707
4708 /* Register string appended to "xmlRegisters=" in qSupported query. */
4709
4710 void
4711 register_remote_support_xml (const char *xml)
4712 {
4713 #if defined(HAVE_LIBEXPAT)
4714 if (remote_support_xml == NULL)
4715 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4716 else
4717 {
4718 char *copy = xstrdup (remote_support_xml + 13);
4719 char *p = strtok (copy, ",");
4720
4721 do
4722 {
4723 if (strcmp (p, xml) == 0)
4724 {
4725 /* already there */
4726 xfree (copy);
4727 return;
4728 }
4729 }
4730 while ((p = strtok (NULL, ",")) != NULL);
4731 xfree (copy);
4732
4733 remote_support_xml = reconcat (remote_support_xml,
4734 remote_support_xml, ",", xml,
4735 (char *) NULL);
4736 }
4737 #endif
4738 }
4739
4740 static char *
4741 remote_query_supported_append (char *msg, const char *append)
4742 {
4743 if (msg)
4744 return reconcat (msg, msg, ";", append, (char *) NULL);
4745 else
4746 return xstrdup (append);
4747 }
4748
4749 static void
4750 remote_query_supported (void)
4751 {
4752 struct remote_state *rs = get_remote_state ();
4753 char *next;
4754 int i;
4755 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4756
4757 /* The packet support flags are handled differently for this packet
4758 than for most others. We treat an error, a disabled packet, and
4759 an empty response identically: any features which must be reported
4760 to be used will be automatically disabled. An empty buffer
4761 accomplishes this, since that is also the representation for a list
4762 containing no features. */
4763
4764 rs->buf[0] = 0;
4765 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4766 {
4767 char *q = NULL;
4768 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4769
4770 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
4771 q = remote_query_supported_append (q, "multiprocess+");
4772
4773 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
4774 q = remote_query_supported_append (q, "swbreak+");
4775 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
4776 q = remote_query_supported_append (q, "hwbreak+");
4777
4778 q = remote_query_supported_append (q, "qRelocInsn+");
4779
4780 if (packet_set_cmd_state (PACKET_fork_event_feature)
4781 != AUTO_BOOLEAN_FALSE)
4782 q = remote_query_supported_append (q, "fork-events+");
4783 if (packet_set_cmd_state (PACKET_vfork_event_feature)
4784 != AUTO_BOOLEAN_FALSE)
4785 q = remote_query_supported_append (q, "vfork-events+");
4786 if (packet_set_cmd_state (PACKET_exec_event_feature)
4787 != AUTO_BOOLEAN_FALSE)
4788 q = remote_query_supported_append (q, "exec-events+");
4789
4790 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
4791 q = remote_query_supported_append (q, "vContSupported+");
4792
4793 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
4794 q = remote_query_supported_append (q, "QThreadEvents+");
4795
4796 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
4797 q = remote_query_supported_append (q, "no-resumed+");
4798
4799 /* Keep this one last to work around a gdbserver <= 7.10 bug in
4800 the qSupported:xmlRegisters=i386 handling. */
4801 if (remote_support_xml != NULL)
4802 q = remote_query_supported_append (q, remote_support_xml);
4803
4804 q = reconcat (q, "qSupported:", q, (char *) NULL);
4805 putpkt (q);
4806
4807 do_cleanups (old_chain);
4808
4809 getpkt (&rs->buf, &rs->buf_size, 0);
4810
4811 /* If an error occured, warn, but do not return - just reset the
4812 buffer to empty and go on to disable features. */
4813 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4814 == PACKET_ERROR)
4815 {
4816 warning (_("Remote failure reply: %s"), rs->buf);
4817 rs->buf[0] = 0;
4818 }
4819 }
4820
4821 memset (seen, 0, sizeof (seen));
4822
4823 next = rs->buf;
4824 while (*next)
4825 {
4826 enum packet_support is_supported;
4827 char *p, *end, *name_end, *value;
4828
4829 /* First separate out this item from the rest of the packet. If
4830 there's another item after this, we overwrite the separator
4831 (terminated strings are much easier to work with). */
4832 p = next;
4833 end = strchr (p, ';');
4834 if (end == NULL)
4835 {
4836 end = p + strlen (p);
4837 next = end;
4838 }
4839 else
4840 {
4841 *end = '\0';
4842 next = end + 1;
4843
4844 if (end == p)
4845 {
4846 warning (_("empty item in \"qSupported\" response"));
4847 continue;
4848 }
4849 }
4850
4851 name_end = strchr (p, '=');
4852 if (name_end)
4853 {
4854 /* This is a name=value entry. */
4855 is_supported = PACKET_ENABLE;
4856 value = name_end + 1;
4857 *name_end = '\0';
4858 }
4859 else
4860 {
4861 value = NULL;
4862 switch (end[-1])
4863 {
4864 case '+':
4865 is_supported = PACKET_ENABLE;
4866 break;
4867
4868 case '-':
4869 is_supported = PACKET_DISABLE;
4870 break;
4871
4872 case '?':
4873 is_supported = PACKET_SUPPORT_UNKNOWN;
4874 break;
4875
4876 default:
4877 warning (_("unrecognized item \"%s\" "
4878 "in \"qSupported\" response"), p);
4879 continue;
4880 }
4881 end[-1] = '\0';
4882 }
4883
4884 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4885 if (strcmp (remote_protocol_features[i].name, p) == 0)
4886 {
4887 const struct protocol_feature *feature;
4888
4889 seen[i] = 1;
4890 feature = &remote_protocol_features[i];
4891 feature->func (feature, is_supported, value);
4892 break;
4893 }
4894 }
4895
4896 /* If we increased the packet size, make sure to increase the global
4897 buffer size also. We delay this until after parsing the entire
4898 qSupported packet, because this is the same buffer we were
4899 parsing. */
4900 if (rs->buf_size < rs->explicit_packet_size)
4901 {
4902 rs->buf_size = rs->explicit_packet_size;
4903 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
4904 }
4905
4906 /* Handle the defaults for unmentioned features. */
4907 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4908 if (!seen[i])
4909 {
4910 const struct protocol_feature *feature;
4911
4912 feature = &remote_protocol_features[i];
4913 feature->func (feature, feature->default_support, NULL);
4914 }
4915 }
4916
4917 /* Serial QUIT handler for the remote serial descriptor.
4918
4919 Defers handling a Ctrl-C until we're done with the current
4920 command/response packet sequence, unless:
4921
4922 - We're setting up the connection. Don't send a remote interrupt
4923 request, as we're not fully synced yet. Quit immediately
4924 instead.
4925
4926 - The target has been resumed in the foreground
4927 (target_terminal_is_ours is false) with a synchronous resume
4928 packet, and we're blocked waiting for the stop reply, thus a
4929 Ctrl-C should be immediately sent to the target.
4930
4931 - We get a second Ctrl-C while still within the same serial read or
4932 write. In that case the serial is seemingly wedged --- offer to
4933 quit/disconnect.
4934
4935 - We see a second Ctrl-C without target response, after having
4936 previously interrupted the target. In that case the target/stub
4937 is probably wedged --- offer to quit/disconnect.
4938 */
4939
4940 static void
4941 remote_serial_quit_handler (void)
4942 {
4943 struct remote_state *rs = get_remote_state ();
4944
4945 if (check_quit_flag ())
4946 {
4947 /* If we're starting up, we're not fully synced yet. Quit
4948 immediately. */
4949 if (rs->starting_up)
4950 quit ();
4951 else if (rs->got_ctrlc_during_io)
4952 {
4953 if (query (_("The target is not responding to GDB commands.\n"
4954 "Stop debugging it? ")))
4955 remote_unpush_and_throw ();
4956 }
4957 /* If ^C has already been sent once, offer to disconnect. */
4958 else if (!target_terminal_is_ours () && rs->ctrlc_pending_p)
4959 interrupt_query ();
4960 /* All-stop protocol, and blocked waiting for stop reply. Send
4961 an interrupt request. */
4962 else if (!target_terminal_is_ours () && rs->waiting_for_stop_reply)
4963 target_interrupt (inferior_ptid);
4964 else
4965 rs->got_ctrlc_during_io = 1;
4966 }
4967 }
4968
4969 /* Remove any of the remote.c targets from target stack. Upper targets depend
4970 on it so remove them first. */
4971
4972 static void
4973 remote_unpush_target (void)
4974 {
4975 pop_all_targets_at_and_above (process_stratum);
4976 }
4977
4978 static void
4979 remote_unpush_and_throw (void)
4980 {
4981 remote_unpush_target ();
4982 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
4983 }
4984
4985 static void
4986 remote_open_1 (const char *name, int from_tty,
4987 struct target_ops *target, int extended_p)
4988 {
4989 struct remote_state *rs = get_remote_state ();
4990
4991 if (name == 0)
4992 error (_("To open a remote debug connection, you need to specify what\n"
4993 "serial device is attached to the remote system\n"
4994 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4995
4996 /* See FIXME above. */
4997 if (!target_async_permitted)
4998 wait_forever_enabled_p = 1;
4999
5000 /* If we're connected to a running target, target_preopen will kill it.
5001 Ask this question first, before target_preopen has a chance to kill
5002 anything. */
5003 if (rs->remote_desc != NULL && !have_inferiors ())
5004 {
5005 if (from_tty
5006 && !query (_("Already connected to a remote target. Disconnect? ")))
5007 error (_("Still connected."));
5008 }
5009
5010 /* Here the possibly existing remote target gets unpushed. */
5011 target_preopen (from_tty);
5012
5013 /* Make sure we send the passed signals list the next time we resume. */
5014 xfree (rs->last_pass_packet);
5015 rs->last_pass_packet = NULL;
5016
5017 /* Make sure we send the program signals list the next time we
5018 resume. */
5019 xfree (rs->last_program_signals_packet);
5020 rs->last_program_signals_packet = NULL;
5021
5022 remote_fileio_reset ();
5023 reopen_exec_file ();
5024 reread_symbols ();
5025
5026 rs->remote_desc = remote_serial_open (name);
5027 if (!rs->remote_desc)
5028 perror_with_name (name);
5029
5030 if (baud_rate != -1)
5031 {
5032 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5033 {
5034 /* The requested speed could not be set. Error out to
5035 top level after closing remote_desc. Take care to
5036 set remote_desc to NULL to avoid closing remote_desc
5037 more than once. */
5038 serial_close (rs->remote_desc);
5039 rs->remote_desc = NULL;
5040 perror_with_name (name);
5041 }
5042 }
5043
5044 serial_setparity (rs->remote_desc, serial_parity);
5045 serial_raw (rs->remote_desc);
5046
5047 /* If there is something sitting in the buffer we might take it as a
5048 response to a command, which would be bad. */
5049 serial_flush_input (rs->remote_desc);
5050
5051 if (from_tty)
5052 {
5053 puts_filtered ("Remote debugging using ");
5054 puts_filtered (name);
5055 puts_filtered ("\n");
5056 }
5057 push_target (target); /* Switch to using remote target now. */
5058
5059 /* Register extra event sources in the event loop. */
5060 remote_async_inferior_event_token
5061 = create_async_event_handler (remote_async_inferior_event_handler,
5062 NULL);
5063 rs->notif_state = remote_notif_state_allocate ();
5064
5065 /* Reset the target state; these things will be queried either by
5066 remote_query_supported or as they are needed. */
5067 reset_all_packet_configs_support ();
5068 rs->cached_wait_status = 0;
5069 rs->explicit_packet_size = 0;
5070 rs->noack_mode = 0;
5071 rs->extended = extended_p;
5072 rs->waiting_for_stop_reply = 0;
5073 rs->ctrlc_pending_p = 0;
5074 rs->got_ctrlc_during_io = 0;
5075
5076 rs->general_thread = not_sent_ptid;
5077 rs->continue_thread = not_sent_ptid;
5078 rs->remote_traceframe_number = -1;
5079
5080 rs->last_resume_exec_dir = EXEC_FORWARD;
5081
5082 /* Probe for ability to use "ThreadInfo" query, as required. */
5083 rs->use_threadinfo_query = 1;
5084 rs->use_threadextra_query = 1;
5085
5086 readahead_cache_invalidate ();
5087
5088 /* Start out by owning the terminal. */
5089 remote_async_terminal_ours_p = 1;
5090
5091 if (target_async_permitted)
5092 {
5093 /* FIXME: cagney/1999-09-23: During the initial connection it is
5094 assumed that the target is already ready and able to respond to
5095 requests. Unfortunately remote_start_remote() eventually calls
5096 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5097 around this. Eventually a mechanism that allows
5098 wait_for_inferior() to expect/get timeouts will be
5099 implemented. */
5100 wait_forever_enabled_p = 0;
5101 }
5102
5103 /* First delete any symbols previously loaded from shared libraries. */
5104 no_shared_libraries (NULL, 0);
5105
5106 /* Start afresh. */
5107 init_thread_list ();
5108
5109 /* Start the remote connection. If error() or QUIT, discard this
5110 target (we'd otherwise be in an inconsistent state) and then
5111 propogate the error on up the exception chain. This ensures that
5112 the caller doesn't stumble along blindly assuming that the
5113 function succeeded. The CLI doesn't have this problem but other
5114 UI's, such as MI do.
5115
5116 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5117 this function should return an error indication letting the
5118 caller restore the previous state. Unfortunately the command
5119 ``target remote'' is directly wired to this function making that
5120 impossible. On a positive note, the CLI side of this problem has
5121 been fixed - the function set_cmd_context() makes it possible for
5122 all the ``target ....'' commands to share a common callback
5123 function. See cli-dump.c. */
5124 {
5125
5126 TRY
5127 {
5128 remote_start_remote (from_tty, target, extended_p);
5129 }
5130 CATCH (ex, RETURN_MASK_ALL)
5131 {
5132 /* Pop the partially set up target - unless something else did
5133 already before throwing the exception. */
5134 if (rs->remote_desc != NULL)
5135 remote_unpush_target ();
5136 if (target_async_permitted)
5137 wait_forever_enabled_p = 1;
5138 throw_exception (ex);
5139 }
5140 END_CATCH
5141 }
5142
5143 remote_btrace_reset ();
5144
5145 if (target_async_permitted)
5146 wait_forever_enabled_p = 1;
5147 }
5148
5149 /* Detach the specified process. */
5150
5151 static void
5152 remote_detach_pid (int pid)
5153 {
5154 struct remote_state *rs = get_remote_state ();
5155
5156 if (remote_multi_process_p (rs))
5157 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5158 else
5159 strcpy (rs->buf, "D");
5160
5161 putpkt (rs->buf);
5162 getpkt (&rs->buf, &rs->buf_size, 0);
5163
5164 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5165 ;
5166 else if (rs->buf[0] == '\0')
5167 error (_("Remote doesn't know how to detach"));
5168 else
5169 error (_("Can't detach process."));
5170 }
5171
5172 /* This detaches a program to which we previously attached, using
5173 inferior_ptid to identify the process. After this is done, GDB
5174 can be used to debug some other program. We better not have left
5175 any breakpoints in the target program or it'll die when it hits
5176 one. */
5177
5178 static void
5179 remote_detach_1 (const char *args, int from_tty)
5180 {
5181 int pid = ptid_get_pid (inferior_ptid);
5182 struct remote_state *rs = get_remote_state ();
5183 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5184 int is_fork_parent;
5185
5186 if (args)
5187 error (_("Argument given to \"detach\" when remotely debugging."));
5188
5189 if (!target_has_execution)
5190 error (_("No process to detach from."));
5191
5192 target_announce_detach (from_tty);
5193
5194 /* Tell the remote target to detach. */
5195 remote_detach_pid (pid);
5196
5197 /* Exit only if this is the only active inferior. */
5198 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5199 puts_filtered (_("Ending remote debugging.\n"));
5200
5201 /* Check to see if we are detaching a fork parent. Note that if we
5202 are detaching a fork child, tp == NULL. */
5203 is_fork_parent = (tp != NULL
5204 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5205
5206 /* If doing detach-on-fork, we don't mourn, because that will delete
5207 breakpoints that should be available for the followed inferior. */
5208 if (!is_fork_parent)
5209 target_mourn_inferior (inferior_ptid);
5210 else
5211 {
5212 inferior_ptid = null_ptid;
5213 detach_inferior (pid);
5214 }
5215 }
5216
5217 static void
5218 remote_detach (struct target_ops *ops, const char *args, int from_tty)
5219 {
5220 remote_detach_1 (args, from_tty);
5221 }
5222
5223 static void
5224 extended_remote_detach (struct target_ops *ops, const char *args, int from_tty)
5225 {
5226 remote_detach_1 (args, from_tty);
5227 }
5228
5229 /* Target follow-fork function for remote targets. On entry, and
5230 at return, the current inferior is the fork parent.
5231
5232 Note that although this is currently only used for extended-remote,
5233 it is named remote_follow_fork in anticipation of using it for the
5234 remote target as well. */
5235
5236 static int
5237 remote_follow_fork (struct target_ops *ops, int follow_child,
5238 int detach_fork)
5239 {
5240 struct remote_state *rs = get_remote_state ();
5241 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5242
5243 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5244 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5245 {
5246 /* When following the parent and detaching the child, we detach
5247 the child here. For the case of following the child and
5248 detaching the parent, the detach is done in the target-
5249 independent follow fork code in infrun.c. We can't use
5250 target_detach when detaching an unfollowed child because
5251 the client side doesn't know anything about the child. */
5252 if (detach_fork && !follow_child)
5253 {
5254 /* Detach the fork child. */
5255 ptid_t child_ptid;
5256 pid_t child_pid;
5257
5258 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5259 child_pid = ptid_get_pid (child_ptid);
5260
5261 remote_detach_pid (child_pid);
5262 detach_inferior (child_pid);
5263 }
5264 }
5265 return 0;
5266 }
5267
5268 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5269 in the program space of the new inferior. On entry and at return the
5270 current inferior is the exec'ing inferior. INF is the new exec'd
5271 inferior, which may be the same as the exec'ing inferior unless
5272 follow-exec-mode is "new". */
5273
5274 static void
5275 remote_follow_exec (struct target_ops *ops,
5276 struct inferior *inf, char *execd_pathname)
5277 {
5278 /* We know that this is a target file name, so if it has the "target:"
5279 prefix we strip it off before saving it in the program space. */
5280 if (is_target_filename (execd_pathname))
5281 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5282
5283 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5284 }
5285
5286 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5287
5288 static void
5289 remote_disconnect (struct target_ops *target, const char *args, int from_tty)
5290 {
5291 if (args)
5292 error (_("Argument given to \"disconnect\" when remotely debugging."));
5293
5294 /* Make sure we unpush even the extended remote targets. Calling
5295 target_mourn_inferior won't unpush, and remote_mourn won't
5296 unpush if there is more than one inferior left. */
5297 unpush_target (target);
5298 generic_mourn_inferior ();
5299
5300 if (from_tty)
5301 puts_filtered ("Ending remote debugging.\n");
5302 }
5303
5304 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5305 be chatty about it. */
5306
5307 static void
5308 extended_remote_attach (struct target_ops *target, const char *args,
5309 int from_tty)
5310 {
5311 struct remote_state *rs = get_remote_state ();
5312 int pid;
5313 char *wait_status = NULL;
5314
5315 pid = parse_pid_to_attach (args);
5316
5317 /* Remote PID can be freely equal to getpid, do not check it here the same
5318 way as in other targets. */
5319
5320 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5321 error (_("This target does not support attaching to a process"));
5322
5323 if (from_tty)
5324 {
5325 char *exec_file = get_exec_file (0);
5326
5327 if (exec_file)
5328 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5329 target_pid_to_str (pid_to_ptid (pid)));
5330 else
5331 printf_unfiltered (_("Attaching to %s\n"),
5332 target_pid_to_str (pid_to_ptid (pid)));
5333
5334 gdb_flush (gdb_stdout);
5335 }
5336
5337 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5338 putpkt (rs->buf);
5339 getpkt (&rs->buf, &rs->buf_size, 0);
5340
5341 switch (packet_ok (rs->buf,
5342 &remote_protocol_packets[PACKET_vAttach]))
5343 {
5344 case PACKET_OK:
5345 if (!target_is_non_stop_p ())
5346 {
5347 /* Save the reply for later. */
5348 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5349 strcpy (wait_status, rs->buf);
5350 }
5351 else if (strcmp (rs->buf, "OK") != 0)
5352 error (_("Attaching to %s failed with: %s"),
5353 target_pid_to_str (pid_to_ptid (pid)),
5354 rs->buf);
5355 break;
5356 case PACKET_UNKNOWN:
5357 error (_("This target does not support attaching to a process"));
5358 default:
5359 error (_("Attaching to %s failed"),
5360 target_pid_to_str (pid_to_ptid (pid)));
5361 }
5362
5363 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5364
5365 inferior_ptid = pid_to_ptid (pid);
5366
5367 if (target_is_non_stop_p ())
5368 {
5369 struct thread_info *thread;
5370
5371 /* Get list of threads. */
5372 remote_update_thread_list (target);
5373
5374 thread = first_thread_of_process (pid);
5375 if (thread)
5376 inferior_ptid = thread->ptid;
5377 else
5378 inferior_ptid = pid_to_ptid (pid);
5379
5380 /* Invalidate our notion of the remote current thread. */
5381 record_currthread (rs, minus_one_ptid);
5382 }
5383 else
5384 {
5385 /* Now, if we have thread information, update inferior_ptid. */
5386 inferior_ptid = remote_current_thread (inferior_ptid);
5387
5388 /* Add the main thread to the thread list. */
5389 add_thread_silent (inferior_ptid);
5390 }
5391
5392 /* Next, if the target can specify a description, read it. We do
5393 this before anything involving memory or registers. */
5394 target_find_description ();
5395
5396 if (!target_is_non_stop_p ())
5397 {
5398 /* Use the previously fetched status. */
5399 gdb_assert (wait_status != NULL);
5400
5401 if (target_can_async_p ())
5402 {
5403 struct notif_event *reply
5404 = remote_notif_parse (&notif_client_stop, wait_status);
5405
5406 push_stop_reply ((struct stop_reply *) reply);
5407
5408 target_async (1);
5409 }
5410 else
5411 {
5412 gdb_assert (wait_status != NULL);
5413 strcpy (rs->buf, wait_status);
5414 rs->cached_wait_status = 1;
5415 }
5416 }
5417 else
5418 gdb_assert (wait_status == NULL);
5419 }
5420
5421 /* Implementation of the to_post_attach method. */
5422
5423 static void
5424 extended_remote_post_attach (struct target_ops *ops, int pid)
5425 {
5426 /* Get text, data & bss offsets. */
5427 get_offsets ();
5428
5429 /* In certain cases GDB might not have had the chance to start
5430 symbol lookup up until now. This could happen if the debugged
5431 binary is not using shared libraries, the vsyscall page is not
5432 present (on Linux) and the binary itself hadn't changed since the
5433 debugging process was started. */
5434 if (symfile_objfile != NULL)
5435 remote_check_symbols();
5436 }
5437
5438 \f
5439 /* Check for the availability of vCont. This function should also check
5440 the response. */
5441
5442 static void
5443 remote_vcont_probe (struct remote_state *rs)
5444 {
5445 char *buf;
5446
5447 strcpy (rs->buf, "vCont?");
5448 putpkt (rs->buf);
5449 getpkt (&rs->buf, &rs->buf_size, 0);
5450 buf = rs->buf;
5451
5452 /* Make sure that the features we assume are supported. */
5453 if (startswith (buf, "vCont"))
5454 {
5455 char *p = &buf[5];
5456 int support_c, support_C;
5457
5458 rs->supports_vCont.s = 0;
5459 rs->supports_vCont.S = 0;
5460 support_c = 0;
5461 support_C = 0;
5462 rs->supports_vCont.t = 0;
5463 rs->supports_vCont.r = 0;
5464 while (p && *p == ';')
5465 {
5466 p++;
5467 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5468 rs->supports_vCont.s = 1;
5469 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5470 rs->supports_vCont.S = 1;
5471 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5472 support_c = 1;
5473 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5474 support_C = 1;
5475 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5476 rs->supports_vCont.t = 1;
5477 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5478 rs->supports_vCont.r = 1;
5479
5480 p = strchr (p, ';');
5481 }
5482
5483 /* If c, and C are not all supported, we can't use vCont. Clearing
5484 BUF will make packet_ok disable the packet. */
5485 if (!support_c || !support_C)
5486 buf[0] = 0;
5487 }
5488
5489 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5490 }
5491
5492 /* Helper function for building "vCont" resumptions. Write a
5493 resumption to P. ENDP points to one-passed-the-end of the buffer
5494 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5495 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5496 resumed thread should be single-stepped and/or signalled. If PTID
5497 equals minus_one_ptid, then all threads are resumed; if PTID
5498 represents a process, then all threads of the process are resumed;
5499 the thread to be stepped and/or signalled is given in the global
5500 INFERIOR_PTID. */
5501
5502 static char *
5503 append_resumption (char *p, char *endp,
5504 ptid_t ptid, int step, enum gdb_signal siggnal)
5505 {
5506 struct remote_state *rs = get_remote_state ();
5507
5508 if (step && siggnal != GDB_SIGNAL_0)
5509 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5510 else if (step
5511 /* GDB is willing to range step. */
5512 && use_range_stepping
5513 /* Target supports range stepping. */
5514 && rs->supports_vCont.r
5515 /* We don't currently support range stepping multiple
5516 threads with a wildcard (though the protocol allows it,
5517 so stubs shouldn't make an active effort to forbid
5518 it). */
5519 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5520 {
5521 struct thread_info *tp;
5522
5523 if (ptid_equal (ptid, minus_one_ptid))
5524 {
5525 /* If we don't know about the target thread's tid, then
5526 we're resuming magic_null_ptid (see caller). */
5527 tp = find_thread_ptid (magic_null_ptid);
5528 }
5529 else
5530 tp = find_thread_ptid (ptid);
5531 gdb_assert (tp != NULL);
5532
5533 if (tp->control.may_range_step)
5534 {
5535 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5536
5537 p += xsnprintf (p, endp - p, ";r%s,%s",
5538 phex_nz (tp->control.step_range_start,
5539 addr_size),
5540 phex_nz (tp->control.step_range_end,
5541 addr_size));
5542 }
5543 else
5544 p += xsnprintf (p, endp - p, ";s");
5545 }
5546 else if (step)
5547 p += xsnprintf (p, endp - p, ";s");
5548 else if (siggnal != GDB_SIGNAL_0)
5549 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5550 else
5551 p += xsnprintf (p, endp - p, ";c");
5552
5553 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5554 {
5555 ptid_t nptid;
5556
5557 /* All (-1) threads of process. */
5558 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5559
5560 p += xsnprintf (p, endp - p, ":");
5561 p = write_ptid (p, endp, nptid);
5562 }
5563 else if (!ptid_equal (ptid, minus_one_ptid))
5564 {
5565 p += xsnprintf (p, endp - p, ":");
5566 p = write_ptid (p, endp, ptid);
5567 }
5568
5569 return p;
5570 }
5571
5572 /* Clear the thread's private info on resume. */
5573
5574 static void
5575 resume_clear_thread_private_info (struct thread_info *thread)
5576 {
5577 if (thread->priv != NULL)
5578 {
5579 thread->priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5580 thread->priv->watch_data_address = 0;
5581 }
5582 }
5583
5584 /* Append a vCont continue-with-signal action for threads that have a
5585 non-zero stop signal. */
5586
5587 static char *
5588 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5589 {
5590 struct thread_info *thread;
5591
5592 ALL_NON_EXITED_THREADS (thread)
5593 if (ptid_match (thread->ptid, ptid)
5594 && !ptid_equal (inferior_ptid, thread->ptid)
5595 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5596 {
5597 p = append_resumption (p, endp, thread->ptid,
5598 0, thread->suspend.stop_signal);
5599 thread->suspend.stop_signal = GDB_SIGNAL_0;
5600 resume_clear_thread_private_info (thread);
5601 }
5602
5603 return p;
5604 }
5605
5606 /* Set the target running, using the packets that use Hc
5607 (c/s/C/S). */
5608
5609 static void
5610 remote_resume_with_hc (struct target_ops *ops,
5611 ptid_t ptid, int step, enum gdb_signal siggnal)
5612 {
5613 struct remote_state *rs = get_remote_state ();
5614 struct thread_info *thread;
5615 char *buf;
5616
5617 rs->last_sent_signal = siggnal;
5618 rs->last_sent_step = step;
5619
5620 /* The c/s/C/S resume packets use Hc, so set the continue
5621 thread. */
5622 if (ptid_equal (ptid, minus_one_ptid))
5623 set_continue_thread (any_thread_ptid);
5624 else
5625 set_continue_thread (ptid);
5626
5627 ALL_NON_EXITED_THREADS (thread)
5628 resume_clear_thread_private_info (thread);
5629
5630 buf = rs->buf;
5631 if (execution_direction == EXEC_REVERSE)
5632 {
5633 /* We don't pass signals to the target in reverse exec mode. */
5634 if (info_verbose && siggnal != GDB_SIGNAL_0)
5635 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5636 siggnal);
5637
5638 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5639 error (_("Remote reverse-step not supported."));
5640 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5641 error (_("Remote reverse-continue not supported."));
5642
5643 strcpy (buf, step ? "bs" : "bc");
5644 }
5645 else if (siggnal != GDB_SIGNAL_0)
5646 {
5647 buf[0] = step ? 'S' : 'C';
5648 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5649 buf[2] = tohex (((int) siggnal) & 0xf);
5650 buf[3] = '\0';
5651 }
5652 else
5653 strcpy (buf, step ? "s" : "c");
5654
5655 putpkt (buf);
5656 }
5657
5658 /* Resume the remote inferior by using a "vCont" packet. The thread
5659 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5660 resumed thread should be single-stepped and/or signalled. If PTID
5661 equals minus_one_ptid, then all threads are resumed; the thread to
5662 be stepped and/or signalled is given in the global INFERIOR_PTID.
5663 This function returns non-zero iff it resumes the inferior.
5664
5665 This function issues a strict subset of all possible vCont commands
5666 at the moment. */
5667
5668 static int
5669 remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5670 {
5671 struct remote_state *rs = get_remote_state ();
5672 char *p;
5673 char *endp;
5674
5675 /* No reverse execution actions defined for vCont. */
5676 if (execution_direction == EXEC_REVERSE)
5677 return 0;
5678
5679 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5680 remote_vcont_probe (rs);
5681
5682 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5683 return 0;
5684
5685 p = rs->buf;
5686 endp = rs->buf + get_remote_packet_size ();
5687
5688 /* If we could generate a wider range of packets, we'd have to worry
5689 about overflowing BUF. Should there be a generic
5690 "multi-part-packet" packet? */
5691
5692 p += xsnprintf (p, endp - p, "vCont");
5693
5694 if (ptid_equal (ptid, magic_null_ptid))
5695 {
5696 /* MAGIC_NULL_PTID means that we don't have any active threads,
5697 so we don't have any TID numbers the inferior will
5698 understand. Make sure to only send forms that do not specify
5699 a TID. */
5700 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5701 }
5702 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5703 {
5704 /* Resume all threads (of all processes, or of a single
5705 process), with preference for INFERIOR_PTID. This assumes
5706 inferior_ptid belongs to the set of all threads we are about
5707 to resume. */
5708 if (step || siggnal != GDB_SIGNAL_0)
5709 {
5710 /* Step inferior_ptid, with or without signal. */
5711 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5712 }
5713
5714 /* Also pass down any pending signaled resumption for other
5715 threads not the current. */
5716 p = append_pending_thread_resumptions (p, endp, ptid);
5717
5718 /* And continue others without a signal. */
5719 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5720 }
5721 else
5722 {
5723 /* Scheduler locking; resume only PTID. */
5724 append_resumption (p, endp, ptid, step, siggnal);
5725 }
5726
5727 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5728 putpkt (rs->buf);
5729
5730 if (target_is_non_stop_p ())
5731 {
5732 /* In non-stop, the stub replies to vCont with "OK". The stop
5733 reply will be reported asynchronously by means of a `%Stop'
5734 notification. */
5735 getpkt (&rs->buf, &rs->buf_size, 0);
5736 if (strcmp (rs->buf, "OK") != 0)
5737 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5738 }
5739
5740 return 1;
5741 }
5742
5743 /* Tell the remote machine to resume. */
5744
5745 static void
5746 remote_resume (struct target_ops *ops,
5747 ptid_t ptid, int step, enum gdb_signal siggnal)
5748 {
5749 struct remote_state *rs = get_remote_state ();
5750
5751 /* When connected in non-stop mode, the core resumes threads
5752 individually. Resuming remote threads directly in target_resume
5753 would thus result in sending one packet per thread. Instead, to
5754 minimize roundtrip latency, here we just store the resume
5755 request; the actual remote resumption will be done in
5756 target_commit_resume / remote_commit_resume, where we'll be able
5757 to do vCont action coalescing. */
5758 if (target_is_non_stop_p () && execution_direction != EXEC_REVERSE)
5759 {
5760 struct private_thread_info *remote_thr;
5761
5762 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
5763 remote_thr = get_private_info_ptid (inferior_ptid);
5764 else
5765 remote_thr = get_private_info_ptid (ptid);
5766 remote_thr->last_resume_step = step;
5767 remote_thr->last_resume_sig = siggnal;
5768 return;
5769 }
5770
5771 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
5772 (explained in remote-notif.c:handle_notification) so
5773 remote_notif_process is not called. We need find a place where
5774 it is safe to start a 'vNotif' sequence. It is good to do it
5775 before resuming inferior, because inferior was stopped and no RSP
5776 traffic at that moment. */
5777 if (!target_is_non_stop_p ())
5778 remote_notif_process (rs->notif_state, &notif_client_stop);
5779
5780 rs->last_resume_exec_dir = execution_direction;
5781
5782 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
5783 if (!remote_resume_with_vcont (ptid, step, siggnal))
5784 remote_resume_with_hc (ops, ptid, step, siggnal);
5785
5786 /* We are about to start executing the inferior, let's register it
5787 with the event loop. NOTE: this is the one place where all the
5788 execution commands end up. We could alternatively do this in each
5789 of the execution commands in infcmd.c. */
5790 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5791 into infcmd.c in order to allow inferior function calls to work
5792 NOT asynchronously. */
5793 if (target_can_async_p ())
5794 target_async (1);
5795
5796 /* We've just told the target to resume. The remote server will
5797 wait for the inferior to stop, and then send a stop reply. In
5798 the mean time, we can't start another command/query ourselves
5799 because the stub wouldn't be ready to process it. This applies
5800 only to the base all-stop protocol, however. In non-stop (which
5801 only supports vCont), the stub replies with an "OK", and is
5802 immediate able to process further serial input. */
5803 if (!target_is_non_stop_p ())
5804 rs->waiting_for_stop_reply = 1;
5805 }
5806
5807 static void check_pending_events_prevent_wildcard_vcont
5808 (int *may_global_wildcard_vcont);
5809 static int is_pending_fork_parent_thread (struct thread_info *thread);
5810
5811 /* Private per-inferior info for target remote processes. */
5812
5813 struct private_inferior
5814 {
5815 /* Whether we can send a wildcard vCont for this process. */
5816 int may_wildcard_vcont;
5817 };
5818
5819 /* Structure used to track the construction of a vCont packet in the
5820 outgoing packet buffer. This is used to send multiple vCont
5821 packets if we have more actions than would fit a single packet. */
5822
5823 struct vcont_builder
5824 {
5825 /* Pointer to the first action. P points here if no action has been
5826 appended yet. */
5827 char *first_action;
5828
5829 /* Where the next action will be appended. */
5830 char *p;
5831
5832 /* The end of the buffer. Must never write past this. */
5833 char *endp;
5834 };
5835
5836 /* Prepare the outgoing buffer for a new vCont packet. */
5837
5838 static void
5839 vcont_builder_restart (struct vcont_builder *builder)
5840 {
5841 struct remote_state *rs = get_remote_state ();
5842
5843 builder->p = rs->buf;
5844 builder->endp = rs->buf + get_remote_packet_size ();
5845 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
5846 builder->first_action = builder->p;
5847 }
5848
5849 /* If the vCont packet being built has any action, send it to the
5850 remote end. */
5851
5852 static void
5853 vcont_builder_flush (struct vcont_builder *builder)
5854 {
5855 struct remote_state *rs;
5856
5857 if (builder->p == builder->first_action)
5858 return;
5859
5860 rs = get_remote_state ();
5861 putpkt (rs->buf);
5862 getpkt (&rs->buf, &rs->buf_size, 0);
5863 if (strcmp (rs->buf, "OK") != 0)
5864 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5865 }
5866
5867 /* The largest action is range-stepping, with its two addresses. This
5868 is more than sufficient. If a new, bigger action is created, it'll
5869 quickly trigger a failed assertion in append_resumption (and we'll
5870 just bump this). */
5871 #define MAX_ACTION_SIZE 200
5872
5873 /* Append a new vCont action in the outgoing packet being built. If
5874 the action doesn't fit the packet along with previous actions, push
5875 what we've got so far to the remote end and start over a new vCont
5876 packet (with the new action). */
5877
5878 static void
5879 vcont_builder_push_action (struct vcont_builder *builder,
5880 ptid_t ptid, int step, enum gdb_signal siggnal)
5881 {
5882 char buf[MAX_ACTION_SIZE + 1];
5883 char *endp;
5884 size_t rsize;
5885
5886 endp = append_resumption (buf, buf + sizeof (buf),
5887 ptid, step, siggnal);
5888
5889 /* Check whether this new action would fit in the vCont packet along
5890 with previous actions. If not, send what we've got so far and
5891 start a new vCont packet. */
5892 rsize = endp - buf;
5893 if (rsize > builder->endp - builder->p)
5894 {
5895 vcont_builder_flush (builder);
5896 vcont_builder_restart (builder);
5897
5898 /* Should now fit. */
5899 gdb_assert (rsize <= builder->endp - builder->p);
5900 }
5901
5902 memcpy (builder->p, buf, rsize);
5903 builder->p += rsize;
5904 *builder->p = '\0';
5905 }
5906
5907 /* to_commit_resume implementation. */
5908
5909 static void
5910 remote_commit_resume (struct target_ops *ops)
5911 {
5912 struct remote_state *rs = get_remote_state ();
5913 struct inferior *inf;
5914 struct thread_info *tp;
5915 int any_process_wildcard;
5916 int may_global_wildcard_vcont;
5917 struct vcont_builder vcont_builder;
5918
5919 /* If connected in all-stop mode, we'd send the remote resume
5920 request directly from remote_resume. Likewise if
5921 reverse-debugging, as there are no defined vCont actions for
5922 reverse execution. */
5923 if (!target_is_non_stop_p () || execution_direction == EXEC_REVERSE)
5924 return;
5925
5926 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
5927 instead of resuming all threads of each process individually.
5928 However, if any thread of a process must remain halted, we can't
5929 send wildcard resumes and must send one action per thread.
5930
5931 Care must be taken to not resume threads/processes the server
5932 side already told us are stopped, but the core doesn't know about
5933 yet, because the events are still in the vStopped notification
5934 queue. For example:
5935
5936 #1 => vCont s:p1.1;c
5937 #2 <= OK
5938 #3 <= %Stopped T05 p1.1
5939 #4 => vStopped
5940 #5 <= T05 p1.2
5941 #6 => vStopped
5942 #7 <= OK
5943 #8 (infrun handles the stop for p1.1 and continues stepping)
5944 #9 => vCont s:p1.1;c
5945
5946 The last vCont above would resume thread p1.2 by mistake, because
5947 the server has no idea that the event for p1.2 had not been
5948 handled yet.
5949
5950 The server side must similarly ignore resume actions for the
5951 thread that has a pending %Stopped notification (and any other
5952 threads with events pending), until GDB acks the notification
5953 with vStopped. Otherwise, e.g., the following case is
5954 mishandled:
5955
5956 #1 => g (or any other packet)
5957 #2 <= [registers]
5958 #3 <= %Stopped T05 p1.2
5959 #4 => vCont s:p1.1;c
5960 #5 <= OK
5961
5962 Above, the server must not resume thread p1.2. GDB can't know
5963 that p1.2 stopped until it acks the %Stopped notification, and
5964 since from GDB's perspective all threads should be running, it
5965 sends a "c" action.
5966
5967 Finally, special care must also be given to handling fork/vfork
5968 events. A (v)fork event actually tells us that two processes
5969 stopped -- the parent and the child. Until we follow the fork,
5970 we must not resume the child. Therefore, if we have a pending
5971 fork follow, we must not send a global wildcard resume action
5972 (vCont;c). We can still send process-wide wildcards though. */
5973
5974 /* Start by assuming a global wildcard (vCont;c) is possible. */
5975 may_global_wildcard_vcont = 1;
5976
5977 /* And assume every process is individually wildcard-able too. */
5978 ALL_NON_EXITED_INFERIORS (inf)
5979 {
5980 if (inf->priv == NULL)
5981 inf->priv = XNEW (struct private_inferior);
5982 inf->priv->may_wildcard_vcont = 1;
5983 }
5984
5985 /* Check for any pending events (not reported or processed yet) and
5986 disable process and global wildcard resumes appropriately. */
5987 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
5988
5989 ALL_NON_EXITED_THREADS (tp)
5990 {
5991 /* If a thread of a process is not meant to be resumed, then we
5992 can't wildcard that process. */
5993 if (!tp->executing)
5994 {
5995 tp->inf->priv->may_wildcard_vcont = 0;
5996
5997 /* And if we can't wildcard a process, we can't wildcard
5998 everything either. */
5999 may_global_wildcard_vcont = 0;
6000 continue;
6001 }
6002
6003 /* If a thread is the parent of an unfollowed fork, then we
6004 can't do a global wildcard, as that would resume the fork
6005 child. */
6006 if (is_pending_fork_parent_thread (tp))
6007 may_global_wildcard_vcont = 0;
6008 }
6009
6010 /* Now let's build the vCont packet(s). Actions must be appended
6011 from narrower to wider scopes (thread -> process -> global). If
6012 we end up with too many actions for a single packet vcont_builder
6013 flushes the current vCont packet to the remote side and starts a
6014 new one. */
6015 vcont_builder_restart (&vcont_builder);
6016
6017 /* Threads first. */
6018 ALL_NON_EXITED_THREADS (tp)
6019 {
6020 struct private_thread_info *remote_thr = tp->priv;
6021
6022 if (!tp->executing || remote_thr->vcont_resumed)
6023 continue;
6024
6025 gdb_assert (!thread_is_in_step_over_chain (tp));
6026
6027 if (!remote_thr->last_resume_step
6028 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6029 && tp->inf->priv->may_wildcard_vcont)
6030 {
6031 /* We'll send a wildcard resume instead. */
6032 remote_thr->vcont_resumed = 1;
6033 continue;
6034 }
6035
6036 vcont_builder_push_action (&vcont_builder, tp->ptid,
6037 remote_thr->last_resume_step,
6038 remote_thr->last_resume_sig);
6039 remote_thr->vcont_resumed = 1;
6040 }
6041
6042 /* Now check whether we can send any process-wide wildcard. This is
6043 to avoid sending a global wildcard in the case nothing is
6044 supposed to be resumed. */
6045 any_process_wildcard = 0;
6046
6047 ALL_NON_EXITED_INFERIORS (inf)
6048 {
6049 if (inf->priv->may_wildcard_vcont)
6050 {
6051 any_process_wildcard = 1;
6052 break;
6053 }
6054 }
6055
6056 if (any_process_wildcard)
6057 {
6058 /* If all processes are wildcard-able, then send a single "c"
6059 action, otherwise, send an "all (-1) threads of process"
6060 continue action for each running process, if any. */
6061 if (may_global_wildcard_vcont)
6062 {
6063 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6064 0, GDB_SIGNAL_0);
6065 }
6066 else
6067 {
6068 ALL_NON_EXITED_INFERIORS (inf)
6069 {
6070 if (inf->priv->may_wildcard_vcont)
6071 {
6072 vcont_builder_push_action (&vcont_builder,
6073 pid_to_ptid (inf->pid),
6074 0, GDB_SIGNAL_0);
6075 }
6076 }
6077 }
6078 }
6079
6080 vcont_builder_flush (&vcont_builder);
6081 }
6082
6083 \f
6084
6085 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6086 thread, all threads of a remote process, or all threads of all
6087 processes. */
6088
6089 static void
6090 remote_stop_ns (ptid_t ptid)
6091 {
6092 struct remote_state *rs = get_remote_state ();
6093 char *p = rs->buf;
6094 char *endp = rs->buf + get_remote_packet_size ();
6095
6096 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6097 remote_vcont_probe (rs);
6098
6099 if (!rs->supports_vCont.t)
6100 error (_("Remote server does not support stopping threads"));
6101
6102 if (ptid_equal (ptid, minus_one_ptid)
6103 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6104 p += xsnprintf (p, endp - p, "vCont;t");
6105 else
6106 {
6107 ptid_t nptid;
6108
6109 p += xsnprintf (p, endp - p, "vCont;t:");
6110
6111 if (ptid_is_pid (ptid))
6112 /* All (-1) threads of process. */
6113 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6114 else
6115 {
6116 /* Small optimization: if we already have a stop reply for
6117 this thread, no use in telling the stub we want this
6118 stopped. */
6119 if (peek_stop_reply (ptid))
6120 return;
6121
6122 nptid = ptid;
6123 }
6124
6125 write_ptid (p, endp, nptid);
6126 }
6127
6128 /* In non-stop, we get an immediate OK reply. The stop reply will
6129 come in asynchronously by notification. */
6130 putpkt (rs->buf);
6131 getpkt (&rs->buf, &rs->buf_size, 0);
6132 if (strcmp (rs->buf, "OK") != 0)
6133 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6134 }
6135
6136 /* All-stop version of target_interrupt. Sends a break or a ^C to
6137 interrupt the remote target. It is undefined which thread of which
6138 process reports the interrupt. */
6139
6140 static void
6141 remote_interrupt_as (void)
6142 {
6143 struct remote_state *rs = get_remote_state ();
6144
6145 rs->ctrlc_pending_p = 1;
6146
6147 /* If the inferior is stopped already, but the core didn't know
6148 about it yet, just ignore the request. The cached wait status
6149 will be collected in remote_wait. */
6150 if (rs->cached_wait_status)
6151 return;
6152
6153 /* Send interrupt_sequence to remote target. */
6154 send_interrupt_sequence ();
6155 }
6156
6157 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6158 the remote target. It is undefined which thread of which process
6159 reports the interrupt. Throws an error if the packet is not
6160 supported by the server. */
6161
6162 static void
6163 remote_interrupt_ns (void)
6164 {
6165 struct remote_state *rs = get_remote_state ();
6166 char *p = rs->buf;
6167 char *endp = rs->buf + get_remote_packet_size ();
6168
6169 xsnprintf (p, endp - p, "vCtrlC");
6170
6171 /* In non-stop, we get an immediate OK reply. The stop reply will
6172 come in asynchronously by notification. */
6173 putpkt (rs->buf);
6174 getpkt (&rs->buf, &rs->buf_size, 0);
6175
6176 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6177 {
6178 case PACKET_OK:
6179 break;
6180 case PACKET_UNKNOWN:
6181 error (_("No support for interrupting the remote target."));
6182 case PACKET_ERROR:
6183 error (_("Interrupting target failed: %s"), rs->buf);
6184 }
6185 }
6186
6187 /* Implement the to_stop function for the remote targets. */
6188
6189 static void
6190 remote_stop (struct target_ops *self, ptid_t ptid)
6191 {
6192 if (remote_debug)
6193 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6194
6195 if (target_is_non_stop_p ())
6196 remote_stop_ns (ptid);
6197 else
6198 {
6199 /* We don't currently have a way to transparently pause the
6200 remote target in all-stop mode. Interrupt it instead. */
6201 remote_interrupt_as ();
6202 }
6203 }
6204
6205 /* Implement the to_interrupt function for the remote targets. */
6206
6207 static void
6208 remote_interrupt (struct target_ops *self, ptid_t ptid)
6209 {
6210 struct remote_state *rs = get_remote_state ();
6211
6212 if (remote_debug)
6213 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6214
6215 if (target_is_non_stop_p ())
6216 remote_interrupt_ns ();
6217 else
6218 remote_interrupt_as ();
6219 }
6220
6221 /* Implement the to_pass_ctrlc function for the remote targets. */
6222
6223 static void
6224 remote_pass_ctrlc (struct target_ops *self)
6225 {
6226 struct remote_state *rs = get_remote_state ();
6227
6228 if (remote_debug)
6229 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6230
6231 /* If we're starting up, we're not fully synced yet. Quit
6232 immediately. */
6233 if (rs->starting_up)
6234 quit ();
6235 /* If ^C has already been sent once, offer to disconnect. */
6236 else if (rs->ctrlc_pending_p)
6237 interrupt_query ();
6238 else
6239 target_interrupt (inferior_ptid);
6240 }
6241
6242 /* Ask the user what to do when an interrupt is received. */
6243
6244 static void
6245 interrupt_query (void)
6246 {
6247 struct remote_state *rs = get_remote_state ();
6248
6249 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6250 {
6251 if (query (_("The target is not responding to interrupt requests.\n"
6252 "Stop debugging it? ")))
6253 {
6254 remote_unpush_target ();
6255 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6256 }
6257 }
6258 else
6259 {
6260 if (query (_("Interrupted while waiting for the program.\n"
6261 "Give up waiting? ")))
6262 quit ();
6263 }
6264 }
6265
6266 /* Enable/disable target terminal ownership. Most targets can use
6267 terminal groups to control terminal ownership. Remote targets are
6268 different in that explicit transfer of ownership to/from GDB/target
6269 is required. */
6270
6271 static void
6272 remote_terminal_inferior (struct target_ops *self)
6273 {
6274 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
6275 idempotent. The event-loop GDB talking to an asynchronous target
6276 with a synchronous command calls this function from both
6277 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
6278 transfer the terminal to the target when it shouldn't this guard
6279 can go away. */
6280 if (!remote_async_terminal_ours_p)
6281 return;
6282 remote_async_terminal_ours_p = 0;
6283 /* NOTE: At this point we could also register our selves as the
6284 recipient of all input. Any characters typed could then be
6285 passed on down to the target. */
6286 }
6287
6288 static void
6289 remote_terminal_ours (struct target_ops *self)
6290 {
6291 /* See FIXME in remote_terminal_inferior. */
6292 if (remote_async_terminal_ours_p)
6293 return;
6294 remote_async_terminal_ours_p = 1;
6295 }
6296
6297 static void
6298 remote_console_output (char *msg)
6299 {
6300 char *p;
6301
6302 for (p = msg; p[0] && p[1]; p += 2)
6303 {
6304 char tb[2];
6305 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6306
6307 tb[0] = c;
6308 tb[1] = 0;
6309 fputs_unfiltered (tb, gdb_stdtarg);
6310 }
6311 gdb_flush (gdb_stdtarg);
6312 }
6313
6314 DEF_VEC_O(cached_reg_t);
6315
6316 typedef struct stop_reply
6317 {
6318 struct notif_event base;
6319
6320 /* The identifier of the thread about this event */
6321 ptid_t ptid;
6322
6323 /* The remote state this event is associated with. When the remote
6324 connection, represented by a remote_state object, is closed,
6325 all the associated stop_reply events should be released. */
6326 struct remote_state *rs;
6327
6328 struct target_waitstatus ws;
6329
6330 /* Expedited registers. This makes remote debugging a bit more
6331 efficient for those targets that provide critical registers as
6332 part of their normal status mechanism (as another roundtrip to
6333 fetch them is avoided). */
6334 VEC(cached_reg_t) *regcache;
6335
6336 enum target_stop_reason stop_reason;
6337
6338 CORE_ADDR watch_data_address;
6339
6340 int core;
6341 } *stop_reply_p;
6342
6343 DECLARE_QUEUE_P (stop_reply_p);
6344 DEFINE_QUEUE_P (stop_reply_p);
6345 /* The list of already fetched and acknowledged stop events. This
6346 queue is used for notification Stop, and other notifications
6347 don't need queue for their events, because the notification events
6348 of Stop can't be consumed immediately, so that events should be
6349 queued first, and be consumed by remote_wait_{ns,as} one per
6350 time. Other notifications can consume their events immediately,
6351 so queue is not needed for them. */
6352 static QUEUE (stop_reply_p) *stop_reply_queue;
6353
6354 static void
6355 stop_reply_xfree (struct stop_reply *r)
6356 {
6357 notif_event_xfree ((struct notif_event *) r);
6358 }
6359
6360 /* Return the length of the stop reply queue. */
6361
6362 static int
6363 stop_reply_queue_length (void)
6364 {
6365 return QUEUE_length (stop_reply_p, stop_reply_queue);
6366 }
6367
6368 static void
6369 remote_notif_stop_parse (struct notif_client *self, char *buf,
6370 struct notif_event *event)
6371 {
6372 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6373 }
6374
6375 static void
6376 remote_notif_stop_ack (struct notif_client *self, char *buf,
6377 struct notif_event *event)
6378 {
6379 struct stop_reply *stop_reply = (struct stop_reply *) event;
6380
6381 /* acknowledge */
6382 putpkt (self->ack_command);
6383
6384 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6385 /* We got an unknown stop reply. */
6386 error (_("Unknown stop reply"));
6387
6388 push_stop_reply (stop_reply);
6389 }
6390
6391 static int
6392 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6393 {
6394 /* We can't get pending events in remote_notif_process for
6395 notification stop, and we have to do this in remote_wait_ns
6396 instead. If we fetch all queued events from stub, remote stub
6397 may exit and we have no chance to process them back in
6398 remote_wait_ns. */
6399 mark_async_event_handler (remote_async_inferior_event_token);
6400 return 0;
6401 }
6402
6403 static void
6404 stop_reply_dtr (struct notif_event *event)
6405 {
6406 struct stop_reply *r = (struct stop_reply *) event;
6407 cached_reg_t *reg;
6408 int ix;
6409
6410 for (ix = 0;
6411 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6412 ix++)
6413 xfree (reg->data);
6414
6415 VEC_free (cached_reg_t, r->regcache);
6416 }
6417
6418 static struct notif_event *
6419 remote_notif_stop_alloc_reply (void)
6420 {
6421 /* We cast to a pointer to the "base class". */
6422 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6423
6424 r->dtr = stop_reply_dtr;
6425
6426 return r;
6427 }
6428
6429 /* A client of notification Stop. */
6430
6431 struct notif_client notif_client_stop =
6432 {
6433 "Stop",
6434 "vStopped",
6435 remote_notif_stop_parse,
6436 remote_notif_stop_ack,
6437 remote_notif_stop_can_get_pending_events,
6438 remote_notif_stop_alloc_reply,
6439 REMOTE_NOTIF_STOP,
6440 };
6441
6442 /* A parameter to pass data in and out. */
6443
6444 struct queue_iter_param
6445 {
6446 void *input;
6447 struct stop_reply *output;
6448 };
6449
6450 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6451 the pid of the process that owns the threads we want to check, or
6452 -1 if we want to check all threads. */
6453
6454 static int
6455 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6456 ptid_t thread_ptid)
6457 {
6458 if (ws->kind == TARGET_WAITKIND_FORKED
6459 || ws->kind == TARGET_WAITKIND_VFORKED)
6460 {
6461 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6462 return 1;
6463 }
6464
6465 return 0;
6466 }
6467
6468 /* Return the thread's pending status used to determine whether the
6469 thread is a fork parent stopped at a fork event. */
6470
6471 static struct target_waitstatus *
6472 thread_pending_fork_status (struct thread_info *thread)
6473 {
6474 if (thread->suspend.waitstatus_pending_p)
6475 return &thread->suspend.waitstatus;
6476 else
6477 return &thread->pending_follow;
6478 }
6479
6480 /* Determine if THREAD is a pending fork parent thread. */
6481
6482 static int
6483 is_pending_fork_parent_thread (struct thread_info *thread)
6484 {
6485 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6486 int pid = -1;
6487
6488 return is_pending_fork_parent (ws, pid, thread->ptid);
6489 }
6490
6491 /* Check whether EVENT is a fork event, and if it is, remove the
6492 fork child from the context list passed in DATA. */
6493
6494 static int
6495 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6496 QUEUE_ITER (stop_reply_p) *iter,
6497 stop_reply_p event,
6498 void *data)
6499 {
6500 struct queue_iter_param *param = (struct queue_iter_param *) data;
6501 struct threads_listing_context *context
6502 = (struct threads_listing_context *) param->input;
6503
6504 if (event->ws.kind == TARGET_WAITKIND_FORKED
6505 || event->ws.kind == TARGET_WAITKIND_VFORKED
6506 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6507 threads_listing_context_remove (&event->ws, context);
6508
6509 return 1;
6510 }
6511
6512 /* If CONTEXT contains any fork child threads that have not been
6513 reported yet, remove them from the CONTEXT list. If such a
6514 thread exists it is because we are stopped at a fork catchpoint
6515 and have not yet called follow_fork, which will set up the
6516 host-side data structures for the new process. */
6517
6518 static void
6519 remove_new_fork_children (struct threads_listing_context *context)
6520 {
6521 struct thread_info * thread;
6522 int pid = -1;
6523 struct notif_client *notif = &notif_client_stop;
6524 struct queue_iter_param param;
6525
6526 /* For any threads stopped at a fork event, remove the corresponding
6527 fork child threads from the CONTEXT list. */
6528 ALL_NON_EXITED_THREADS (thread)
6529 {
6530 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6531
6532 if (is_pending_fork_parent (ws, pid, thread->ptid))
6533 {
6534 threads_listing_context_remove (ws, context);
6535 }
6536 }
6537
6538 /* Check for any pending fork events (not reported or processed yet)
6539 in process PID and remove those fork child threads from the
6540 CONTEXT list as well. */
6541 remote_notif_get_pending_events (notif);
6542 param.input = context;
6543 param.output = NULL;
6544 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6545 remove_child_of_pending_fork, &param);
6546 }
6547
6548 /* Check whether EVENT would prevent a global or process wildcard
6549 vCont action. */
6550
6551 static int
6552 check_pending_event_prevents_wildcard_vcont_callback
6553 (QUEUE (stop_reply_p) *q,
6554 QUEUE_ITER (stop_reply_p) *iter,
6555 stop_reply_p event,
6556 void *data)
6557 {
6558 struct inferior *inf;
6559 int *may_global_wildcard_vcont = (int *) data;
6560
6561 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6562 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6563 return 1;
6564
6565 if (event->ws.kind == TARGET_WAITKIND_FORKED
6566 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6567 *may_global_wildcard_vcont = 0;
6568
6569 inf = find_inferior_ptid (event->ptid);
6570
6571 /* This may be the first time we heard about this process.
6572 Regardless, we must not do a global wildcard resume, otherwise
6573 we'd resume this process too. */
6574 *may_global_wildcard_vcont = 0;
6575 if (inf != NULL)
6576 inf->priv->may_wildcard_vcont = 0;
6577
6578 return 1;
6579 }
6580
6581 /* Check whether any event pending in the vStopped queue would prevent
6582 a global or process wildcard vCont action. Clear
6583 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6584 and clear the event inferior's may_wildcard_vcont flag if we can't
6585 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6586
6587 static void
6588 check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6589 {
6590 struct notif_client *notif = &notif_client_stop;
6591
6592 remote_notif_get_pending_events (notif);
6593 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6594 check_pending_event_prevents_wildcard_vcont_callback,
6595 may_global_wildcard);
6596 }
6597
6598 /* Remove stop replies in the queue if its pid is equal to the given
6599 inferior's pid. */
6600
6601 static int
6602 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6603 QUEUE_ITER (stop_reply_p) *iter,
6604 stop_reply_p event,
6605 void *data)
6606 {
6607 struct queue_iter_param *param = (struct queue_iter_param *) data;
6608 struct inferior *inf = (struct inferior *) param->input;
6609
6610 if (ptid_get_pid (event->ptid) == inf->pid)
6611 {
6612 stop_reply_xfree (event);
6613 QUEUE_remove_elem (stop_reply_p, q, iter);
6614 }
6615
6616 return 1;
6617 }
6618
6619 /* Discard all pending stop replies of inferior INF. */
6620
6621 static void
6622 discard_pending_stop_replies (struct inferior *inf)
6623 {
6624 struct queue_iter_param param;
6625 struct stop_reply *reply;
6626 struct remote_state *rs = get_remote_state ();
6627 struct remote_notif_state *rns = rs->notif_state;
6628
6629 /* This function can be notified when an inferior exists. When the
6630 target is not remote, the notification state is NULL. */
6631 if (rs->remote_desc == NULL)
6632 return;
6633
6634 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6635
6636 /* Discard the in-flight notification. */
6637 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6638 {
6639 stop_reply_xfree (reply);
6640 rns->pending_event[notif_client_stop.id] = NULL;
6641 }
6642
6643 param.input = inf;
6644 param.output = NULL;
6645 /* Discard the stop replies we have already pulled with
6646 vStopped. */
6647 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6648 remove_stop_reply_for_inferior, &param);
6649 }
6650
6651 /* If its remote state is equal to the given remote state,
6652 remove EVENT from the stop reply queue. */
6653
6654 static int
6655 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6656 QUEUE_ITER (stop_reply_p) *iter,
6657 stop_reply_p event,
6658 void *data)
6659 {
6660 struct queue_iter_param *param = (struct queue_iter_param *) data;
6661 struct remote_state *rs = (struct remote_state *) param->input;
6662
6663 if (event->rs == rs)
6664 {
6665 stop_reply_xfree (event);
6666 QUEUE_remove_elem (stop_reply_p, q, iter);
6667 }
6668
6669 return 1;
6670 }
6671
6672 /* Discard the stop replies for RS in stop_reply_queue. */
6673
6674 static void
6675 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6676 {
6677 struct queue_iter_param param;
6678
6679 param.input = rs;
6680 param.output = NULL;
6681 /* Discard the stop replies we have already pulled with
6682 vStopped. */
6683 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6684 remove_stop_reply_of_remote_state, &param);
6685 }
6686
6687 /* A parameter to pass data in and out. */
6688
6689 static int
6690 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6691 QUEUE_ITER (stop_reply_p) *iter,
6692 stop_reply_p event,
6693 void *data)
6694 {
6695 struct queue_iter_param *param = (struct queue_iter_param *) data;
6696 ptid_t *ptid = (ptid_t *) param->input;
6697
6698 if (ptid_match (event->ptid, *ptid))
6699 {
6700 param->output = event;
6701 QUEUE_remove_elem (stop_reply_p, q, iter);
6702 return 0;
6703 }
6704
6705 return 1;
6706 }
6707
6708 /* Remove the first reply in 'stop_reply_queue' which matches
6709 PTID. */
6710
6711 static struct stop_reply *
6712 remote_notif_remove_queued_reply (ptid_t ptid)
6713 {
6714 struct queue_iter_param param;
6715
6716 param.input = &ptid;
6717 param.output = NULL;
6718
6719 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6720 remote_notif_remove_once_on_match, &param);
6721 if (notif_debug)
6722 fprintf_unfiltered (gdb_stdlog,
6723 "notif: discard queued event: 'Stop' in %s\n",
6724 target_pid_to_str (ptid));
6725
6726 return param.output;
6727 }
6728
6729 /* Look for a queued stop reply belonging to PTID. If one is found,
6730 remove it from the queue, and return it. Returns NULL if none is
6731 found. If there are still queued events left to process, tell the
6732 event loop to get back to target_wait soon. */
6733
6734 static struct stop_reply *
6735 queued_stop_reply (ptid_t ptid)
6736 {
6737 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6738
6739 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6740 /* There's still at least an event left. */
6741 mark_async_event_handler (remote_async_inferior_event_token);
6742
6743 return r;
6744 }
6745
6746 /* Push a fully parsed stop reply in the stop reply queue. Since we
6747 know that we now have at least one queued event left to pass to the
6748 core side, tell the event loop to get back to target_wait soon. */
6749
6750 static void
6751 push_stop_reply (struct stop_reply *new_event)
6752 {
6753 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6754
6755 if (notif_debug)
6756 fprintf_unfiltered (gdb_stdlog,
6757 "notif: push 'Stop' %s to queue %d\n",
6758 target_pid_to_str (new_event->ptid),
6759 QUEUE_length (stop_reply_p,
6760 stop_reply_queue));
6761
6762 mark_async_event_handler (remote_async_inferior_event_token);
6763 }
6764
6765 static int
6766 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
6767 QUEUE_ITER (stop_reply_p) *iter,
6768 struct stop_reply *event,
6769 void *data)
6770 {
6771 ptid_t *ptid = (ptid_t *) data;
6772
6773 return !(ptid_equal (*ptid, event->ptid)
6774 && event->ws.kind == TARGET_WAITKIND_STOPPED);
6775 }
6776
6777 /* Returns true if we have a stop reply for PTID. */
6778
6779 static int
6780 peek_stop_reply (ptid_t ptid)
6781 {
6782 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
6783 stop_reply_match_ptid_and_ws, &ptid);
6784 }
6785
6786 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
6787 starting with P and ending with PEND matches PREFIX. */
6788
6789 static int
6790 strprefix (const char *p, const char *pend, const char *prefix)
6791 {
6792 for ( ; p < pend; p++, prefix++)
6793 if (*p != *prefix)
6794 return 0;
6795 return *prefix == '\0';
6796 }
6797
6798 /* Parse the stop reply in BUF. Either the function succeeds, and the
6799 result is stored in EVENT, or throws an error. */
6800
6801 static void
6802 remote_parse_stop_reply (char *buf, struct stop_reply *event)
6803 {
6804 struct remote_arch_state *rsa = get_remote_arch_state ();
6805 ULONGEST addr;
6806 char *p;
6807 int skipregs = 0;
6808
6809 event->ptid = null_ptid;
6810 event->rs = get_remote_state ();
6811 event->ws.kind = TARGET_WAITKIND_IGNORE;
6812 event->ws.value.integer = 0;
6813 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6814 event->regcache = NULL;
6815 event->core = -1;
6816
6817 switch (buf[0])
6818 {
6819 case 'T': /* Status with PC, SP, FP, ... */
6820 /* Expedited reply, containing Signal, {regno, reg} repeat. */
6821 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
6822 ss = signal number
6823 n... = register number
6824 r... = register contents
6825 */
6826
6827 p = &buf[3]; /* after Txx */
6828 while (*p)
6829 {
6830 char *p1;
6831 int fieldsize;
6832
6833 p1 = strchr (p, ':');
6834 if (p1 == NULL)
6835 error (_("Malformed packet(a) (missing colon): %s\n\
6836 Packet: '%s'\n"),
6837 p, buf);
6838 if (p == p1)
6839 error (_("Malformed packet(a) (missing register number): %s\n\
6840 Packet: '%s'\n"),
6841 p, buf);
6842
6843 /* Some "registers" are actually extended stop information.
6844 Note if you're adding a new entry here: GDB 7.9 and
6845 earlier assume that all register "numbers" that start
6846 with an hex digit are real register numbers. Make sure
6847 the server only sends such a packet if it knows the
6848 client understands it. */
6849
6850 if (strprefix (p, p1, "thread"))
6851 event->ptid = read_ptid (++p1, &p);
6852 else if (strprefix (p, p1, "syscall_entry"))
6853 {
6854 ULONGEST sysno;
6855
6856 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
6857 p = unpack_varlen_hex (++p1, &sysno);
6858 event->ws.value.syscall_number = (int) sysno;
6859 }
6860 else if (strprefix (p, p1, "syscall_return"))
6861 {
6862 ULONGEST sysno;
6863
6864 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
6865 p = unpack_varlen_hex (++p1, &sysno);
6866 event->ws.value.syscall_number = (int) sysno;
6867 }
6868 else if (strprefix (p, p1, "watch")
6869 || strprefix (p, p1, "rwatch")
6870 || strprefix (p, p1, "awatch"))
6871 {
6872 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
6873 p = unpack_varlen_hex (++p1, &addr);
6874 event->watch_data_address = (CORE_ADDR) addr;
6875 }
6876 else if (strprefix (p, p1, "swbreak"))
6877 {
6878 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
6879
6880 /* Make sure the stub doesn't forget to indicate support
6881 with qSupported. */
6882 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
6883 error (_("Unexpected swbreak stop reason"));
6884
6885 /* The value part is documented as "must be empty",
6886 though we ignore it, in case we ever decide to make
6887 use of it in a backward compatible way. */
6888 p = strchrnul (p1 + 1, ';');
6889 }
6890 else if (strprefix (p, p1, "hwbreak"))
6891 {
6892 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
6893
6894 /* Make sure the stub doesn't forget to indicate support
6895 with qSupported. */
6896 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
6897 error (_("Unexpected hwbreak stop reason"));
6898
6899 /* See above. */
6900 p = strchrnul (p1 + 1, ';');
6901 }
6902 else if (strprefix (p, p1, "library"))
6903 {
6904 event->ws.kind = TARGET_WAITKIND_LOADED;
6905 p = strchrnul (p1 + 1, ';');
6906 }
6907 else if (strprefix (p, p1, "replaylog"))
6908 {
6909 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
6910 /* p1 will indicate "begin" or "end", but it makes
6911 no difference for now, so ignore it. */
6912 p = strchrnul (p1 + 1, ';');
6913 }
6914 else if (strprefix (p, p1, "core"))
6915 {
6916 ULONGEST c;
6917
6918 p = unpack_varlen_hex (++p1, &c);
6919 event->core = c;
6920 }
6921 else if (strprefix (p, p1, "fork"))
6922 {
6923 event->ws.value.related_pid = read_ptid (++p1, &p);
6924 event->ws.kind = TARGET_WAITKIND_FORKED;
6925 }
6926 else if (strprefix (p, p1, "vfork"))
6927 {
6928 event->ws.value.related_pid = read_ptid (++p1, &p);
6929 event->ws.kind = TARGET_WAITKIND_VFORKED;
6930 }
6931 else if (strprefix (p, p1, "vforkdone"))
6932 {
6933 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
6934 p = strchrnul (p1 + 1, ';');
6935 }
6936 else if (strprefix (p, p1, "exec"))
6937 {
6938 ULONGEST ignored;
6939 char pathname[PATH_MAX];
6940 int pathlen;
6941
6942 /* Determine the length of the execd pathname. */
6943 p = unpack_varlen_hex (++p1, &ignored);
6944 pathlen = (p - p1) / 2;
6945
6946 /* Save the pathname for event reporting and for
6947 the next run command. */
6948 hex2bin (p1, (gdb_byte *) pathname, pathlen);
6949 pathname[pathlen] = '\0';
6950
6951 /* This is freed during event handling. */
6952 event->ws.value.execd_pathname = xstrdup (pathname);
6953 event->ws.kind = TARGET_WAITKIND_EXECD;
6954
6955 /* Skip the registers included in this packet, since
6956 they may be for an architecture different from the
6957 one used by the original program. */
6958 skipregs = 1;
6959 }
6960 else if (strprefix (p, p1, "create"))
6961 {
6962 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
6963 p = strchrnul (p1 + 1, ';');
6964 }
6965 else
6966 {
6967 ULONGEST pnum;
6968 char *p_temp;
6969
6970 if (skipregs)
6971 {
6972 p = strchrnul (p1 + 1, ';');
6973 p++;
6974 continue;
6975 }
6976
6977 /* Maybe a real ``P'' register number. */
6978 p_temp = unpack_varlen_hex (p, &pnum);
6979 /* If the first invalid character is the colon, we got a
6980 register number. Otherwise, it's an unknown stop
6981 reason. */
6982 if (p_temp == p1)
6983 {
6984 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
6985 cached_reg_t cached_reg;
6986 struct gdbarch *gdbarch = target_gdbarch ();
6987
6988 if (reg == NULL)
6989 error (_("Remote sent bad register number %s: %s\n\
6990 Packet: '%s'\n"),
6991 hex_string (pnum), p, buf);
6992
6993 cached_reg.num = reg->regnum;
6994 cached_reg.data = (gdb_byte *)
6995 xmalloc (register_size (gdbarch, reg->regnum));
6996
6997 p = p1 + 1;
6998 fieldsize = hex2bin (p, cached_reg.data,
6999 register_size (gdbarch, reg->regnum));
7000 p += 2 * fieldsize;
7001 if (fieldsize < register_size (gdbarch, reg->regnum))
7002 warning (_("Remote reply is too short: %s"), buf);
7003
7004 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
7005 }
7006 else
7007 {
7008 /* Not a number. Silently skip unknown optional
7009 info. */
7010 p = strchrnul (p1 + 1, ';');
7011 }
7012 }
7013
7014 if (*p != ';')
7015 error (_("Remote register badly formatted: %s\nhere: %s"),
7016 buf, p);
7017 ++p;
7018 }
7019
7020 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7021 break;
7022
7023 /* fall through */
7024 case 'S': /* Old style status, just signal only. */
7025 {
7026 int sig;
7027
7028 event->ws.kind = TARGET_WAITKIND_STOPPED;
7029 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7030 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7031 event->ws.value.sig = (enum gdb_signal) sig;
7032 else
7033 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7034 }
7035 break;
7036 case 'w': /* Thread exited. */
7037 {
7038 char *p;
7039 ULONGEST value;
7040
7041 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7042 p = unpack_varlen_hex (&buf[1], &value);
7043 event->ws.value.integer = value;
7044 if (*p != ';')
7045 error (_("stop reply packet badly formatted: %s"), buf);
7046 event->ptid = read_ptid (++p, NULL);
7047 break;
7048 }
7049 case 'W': /* Target exited. */
7050 case 'X':
7051 {
7052 char *p;
7053 int pid;
7054 ULONGEST value;
7055
7056 /* GDB used to accept only 2 hex chars here. Stubs should
7057 only send more if they detect GDB supports multi-process
7058 support. */
7059 p = unpack_varlen_hex (&buf[1], &value);
7060
7061 if (buf[0] == 'W')
7062 {
7063 /* The remote process exited. */
7064 event->ws.kind = TARGET_WAITKIND_EXITED;
7065 event->ws.value.integer = value;
7066 }
7067 else
7068 {
7069 /* The remote process exited with a signal. */
7070 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7071 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7072 event->ws.value.sig = (enum gdb_signal) value;
7073 else
7074 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7075 }
7076
7077 /* If no process is specified, assume inferior_ptid. */
7078 pid = ptid_get_pid (inferior_ptid);
7079 if (*p == '\0')
7080 ;
7081 else if (*p == ';')
7082 {
7083 p++;
7084
7085 if (*p == '\0')
7086 ;
7087 else if (startswith (p, "process:"))
7088 {
7089 ULONGEST upid;
7090
7091 p += sizeof ("process:") - 1;
7092 unpack_varlen_hex (p, &upid);
7093 pid = upid;
7094 }
7095 else
7096 error (_("unknown stop reply packet: %s"), buf);
7097 }
7098 else
7099 error (_("unknown stop reply packet: %s"), buf);
7100 event->ptid = pid_to_ptid (pid);
7101 }
7102 break;
7103 case 'N':
7104 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7105 event->ptid = minus_one_ptid;
7106 break;
7107 }
7108
7109 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7110 error (_("No process or thread specified in stop reply: %s"), buf);
7111 }
7112
7113 /* When the stub wants to tell GDB about a new notification reply, it
7114 sends a notification (%Stop, for example). Those can come it at
7115 any time, hence, we have to make sure that any pending
7116 putpkt/getpkt sequence we're making is finished, before querying
7117 the stub for more events with the corresponding ack command
7118 (vStopped, for example). E.g., if we started a vStopped sequence
7119 immediately upon receiving the notification, something like this
7120 could happen:
7121
7122 1.1) --> Hg 1
7123 1.2) <-- OK
7124 1.3) --> g
7125 1.4) <-- %Stop
7126 1.5) --> vStopped
7127 1.6) <-- (registers reply to step #1.3)
7128
7129 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7130 query.
7131
7132 To solve this, whenever we parse a %Stop notification successfully,
7133 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7134 doing whatever we were doing:
7135
7136 2.1) --> Hg 1
7137 2.2) <-- OK
7138 2.3) --> g
7139 2.4) <-- %Stop
7140 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7141 2.5) <-- (registers reply to step #2.3)
7142
7143 Eventualy after step #2.5, we return to the event loop, which
7144 notices there's an event on the
7145 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7146 associated callback --- the function below. At this point, we're
7147 always safe to start a vStopped sequence. :
7148
7149 2.6) --> vStopped
7150 2.7) <-- T05 thread:2
7151 2.8) --> vStopped
7152 2.9) --> OK
7153 */
7154
7155 void
7156 remote_notif_get_pending_events (struct notif_client *nc)
7157 {
7158 struct remote_state *rs = get_remote_state ();
7159
7160 if (rs->notif_state->pending_event[nc->id] != NULL)
7161 {
7162 if (notif_debug)
7163 fprintf_unfiltered (gdb_stdlog,
7164 "notif: process: '%s' ack pending event\n",
7165 nc->name);
7166
7167 /* acknowledge */
7168 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7169 rs->notif_state->pending_event[nc->id] = NULL;
7170
7171 while (1)
7172 {
7173 getpkt (&rs->buf, &rs->buf_size, 0);
7174 if (strcmp (rs->buf, "OK") == 0)
7175 break;
7176 else
7177 remote_notif_ack (nc, rs->buf);
7178 }
7179 }
7180 else
7181 {
7182 if (notif_debug)
7183 fprintf_unfiltered (gdb_stdlog,
7184 "notif: process: '%s' no pending reply\n",
7185 nc->name);
7186 }
7187 }
7188
7189 /* Called when it is decided that STOP_REPLY holds the info of the
7190 event that is to be returned to the core. This function always
7191 destroys STOP_REPLY. */
7192
7193 static ptid_t
7194 process_stop_reply (struct stop_reply *stop_reply,
7195 struct target_waitstatus *status)
7196 {
7197 ptid_t ptid;
7198
7199 *status = stop_reply->ws;
7200 ptid = stop_reply->ptid;
7201
7202 /* If no thread/process was reported by the stub, assume the current
7203 inferior. */
7204 if (ptid_equal (ptid, null_ptid))
7205 ptid = inferior_ptid;
7206
7207 if (status->kind != TARGET_WAITKIND_EXITED
7208 && status->kind != TARGET_WAITKIND_SIGNALLED
7209 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7210 {
7211 struct private_thread_info *remote_thr;
7212
7213 /* Expedited registers. */
7214 if (stop_reply->regcache)
7215 {
7216 struct regcache *regcache
7217 = get_thread_arch_regcache (ptid, target_gdbarch ());
7218 cached_reg_t *reg;
7219 int ix;
7220
7221 for (ix = 0;
7222 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7223 ix++)
7224 {
7225 regcache_raw_supply (regcache, reg->num, reg->data);
7226 xfree (reg->data);
7227 }
7228
7229 VEC_free (cached_reg_t, stop_reply->regcache);
7230 }
7231
7232 remote_notice_new_inferior (ptid, 0);
7233 remote_thr = get_private_info_ptid (ptid);
7234 remote_thr->core = stop_reply->core;
7235 remote_thr->stop_reason = stop_reply->stop_reason;
7236 remote_thr->watch_data_address = stop_reply->watch_data_address;
7237 remote_thr->vcont_resumed = 0;
7238 }
7239
7240 stop_reply_xfree (stop_reply);
7241 return ptid;
7242 }
7243
7244 /* The non-stop mode version of target_wait. */
7245
7246 static ptid_t
7247 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7248 {
7249 struct remote_state *rs = get_remote_state ();
7250 struct stop_reply *stop_reply;
7251 int ret;
7252 int is_notif = 0;
7253
7254 /* If in non-stop mode, get out of getpkt even if a
7255 notification is received. */
7256
7257 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7258 0 /* forever */, &is_notif);
7259 while (1)
7260 {
7261 if (ret != -1 && !is_notif)
7262 switch (rs->buf[0])
7263 {
7264 case 'E': /* Error of some sort. */
7265 /* We're out of sync with the target now. Did it continue
7266 or not? We can't tell which thread it was in non-stop,
7267 so just ignore this. */
7268 warning (_("Remote failure reply: %s"), rs->buf);
7269 break;
7270 case 'O': /* Console output. */
7271 remote_console_output (rs->buf + 1);
7272 break;
7273 default:
7274 warning (_("Invalid remote reply: %s"), rs->buf);
7275 break;
7276 }
7277
7278 /* Acknowledge a pending stop reply that may have arrived in the
7279 mean time. */
7280 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7281 remote_notif_get_pending_events (&notif_client_stop);
7282
7283 /* If indeed we noticed a stop reply, we're done. */
7284 stop_reply = queued_stop_reply (ptid);
7285 if (stop_reply != NULL)
7286 return process_stop_reply (stop_reply, status);
7287
7288 /* Still no event. If we're just polling for an event, then
7289 return to the event loop. */
7290 if (options & TARGET_WNOHANG)
7291 {
7292 status->kind = TARGET_WAITKIND_IGNORE;
7293 return minus_one_ptid;
7294 }
7295
7296 /* Otherwise do a blocking wait. */
7297 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7298 1 /* forever */, &is_notif);
7299 }
7300 }
7301
7302 /* Wait until the remote machine stops, then return, storing status in
7303 STATUS just as `wait' would. */
7304
7305 static ptid_t
7306 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7307 {
7308 struct remote_state *rs = get_remote_state ();
7309 ptid_t event_ptid = null_ptid;
7310 char *buf;
7311 struct stop_reply *stop_reply;
7312
7313 again:
7314
7315 status->kind = TARGET_WAITKIND_IGNORE;
7316 status->value.integer = 0;
7317
7318 stop_reply = queued_stop_reply (ptid);
7319 if (stop_reply != NULL)
7320 return process_stop_reply (stop_reply, status);
7321
7322 if (rs->cached_wait_status)
7323 /* Use the cached wait status, but only once. */
7324 rs->cached_wait_status = 0;
7325 else
7326 {
7327 int ret;
7328 int is_notif;
7329 int forever = ((options & TARGET_WNOHANG) == 0
7330 && wait_forever_enabled_p);
7331
7332 if (!rs->waiting_for_stop_reply)
7333 {
7334 status->kind = TARGET_WAITKIND_NO_RESUMED;
7335 return minus_one_ptid;
7336 }
7337
7338 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7339 _never_ wait for ever -> test on target_is_async_p().
7340 However, before we do that we need to ensure that the caller
7341 knows how to take the target into/out of async mode. */
7342 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7343 forever, &is_notif);
7344
7345 /* GDB gets a notification. Return to core as this event is
7346 not interesting. */
7347 if (ret != -1 && is_notif)
7348 return minus_one_ptid;
7349
7350 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7351 return minus_one_ptid;
7352 }
7353
7354 buf = rs->buf;
7355
7356 /* Assume that the target has acknowledged Ctrl-C unless we receive
7357 an 'F' or 'O' packet. */
7358 if (buf[0] != 'F' && buf[0] != 'O')
7359 rs->ctrlc_pending_p = 0;
7360
7361 switch (buf[0])
7362 {
7363 case 'E': /* Error of some sort. */
7364 /* We're out of sync with the target now. Did it continue or
7365 not? Not is more likely, so report a stop. */
7366 rs->waiting_for_stop_reply = 0;
7367
7368 warning (_("Remote failure reply: %s"), buf);
7369 status->kind = TARGET_WAITKIND_STOPPED;
7370 status->value.sig = GDB_SIGNAL_0;
7371 break;
7372 case 'F': /* File-I/O request. */
7373 /* GDB may access the inferior memory while handling the File-I/O
7374 request, but we don't want GDB accessing memory while waiting
7375 for a stop reply. See the comments in putpkt_binary. Set
7376 waiting_for_stop_reply to 0 temporarily. */
7377 rs->waiting_for_stop_reply = 0;
7378 remote_fileio_request (buf, rs->ctrlc_pending_p);
7379 rs->ctrlc_pending_p = 0;
7380 /* GDB handled the File-I/O request, and the target is running
7381 again. Keep waiting for events. */
7382 rs->waiting_for_stop_reply = 1;
7383 break;
7384 case 'N': case 'T': case 'S': case 'X': case 'W':
7385 {
7386 struct stop_reply *stop_reply;
7387
7388 /* There is a stop reply to handle. */
7389 rs->waiting_for_stop_reply = 0;
7390
7391 stop_reply
7392 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7393 rs->buf);
7394
7395 event_ptid = process_stop_reply (stop_reply, status);
7396 break;
7397 }
7398 case 'O': /* Console output. */
7399 remote_console_output (buf + 1);
7400 break;
7401 case '\0':
7402 if (rs->last_sent_signal != GDB_SIGNAL_0)
7403 {
7404 /* Zero length reply means that we tried 'S' or 'C' and the
7405 remote system doesn't support it. */
7406 target_terminal_ours_for_output ();
7407 printf_filtered
7408 ("Can't send signals to this remote system. %s not sent.\n",
7409 gdb_signal_to_name (rs->last_sent_signal));
7410 rs->last_sent_signal = GDB_SIGNAL_0;
7411 target_terminal_inferior ();
7412
7413 strcpy (buf, rs->last_sent_step ? "s" : "c");
7414 putpkt (buf);
7415 break;
7416 }
7417 /* else fallthrough */
7418 default:
7419 warning (_("Invalid remote reply: %s"), buf);
7420 break;
7421 }
7422
7423 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7424 return minus_one_ptid;
7425 else if (status->kind == TARGET_WAITKIND_IGNORE)
7426 {
7427 /* Nothing interesting happened. If we're doing a non-blocking
7428 poll, we're done. Otherwise, go back to waiting. */
7429 if (options & TARGET_WNOHANG)
7430 return minus_one_ptid;
7431 else
7432 goto again;
7433 }
7434 else if (status->kind != TARGET_WAITKIND_EXITED
7435 && status->kind != TARGET_WAITKIND_SIGNALLED)
7436 {
7437 if (!ptid_equal (event_ptid, null_ptid))
7438 record_currthread (rs, event_ptid);
7439 else
7440 event_ptid = inferior_ptid;
7441 }
7442 else
7443 /* A process exit. Invalidate our notion of current thread. */
7444 record_currthread (rs, minus_one_ptid);
7445
7446 return event_ptid;
7447 }
7448
7449 /* Wait until the remote machine stops, then return, storing status in
7450 STATUS just as `wait' would. */
7451
7452 static ptid_t
7453 remote_wait (struct target_ops *ops,
7454 ptid_t ptid, struct target_waitstatus *status, int options)
7455 {
7456 ptid_t event_ptid;
7457
7458 if (target_is_non_stop_p ())
7459 event_ptid = remote_wait_ns (ptid, status, options);
7460 else
7461 event_ptid = remote_wait_as (ptid, status, options);
7462
7463 if (target_is_async_p ())
7464 {
7465 /* If there are are events left in the queue tell the event loop
7466 to return here. */
7467 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7468 mark_async_event_handler (remote_async_inferior_event_token);
7469 }
7470
7471 return event_ptid;
7472 }
7473
7474 /* Fetch a single register using a 'p' packet. */
7475
7476 static int
7477 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7478 {
7479 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7480 struct remote_state *rs = get_remote_state ();
7481 char *buf, *p;
7482 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7483 int i;
7484
7485 if (packet_support (PACKET_p) == PACKET_DISABLE)
7486 return 0;
7487
7488 if (reg->pnum == -1)
7489 return 0;
7490
7491 p = rs->buf;
7492 *p++ = 'p';
7493 p += hexnumstr (p, reg->pnum);
7494 *p++ = '\0';
7495 putpkt (rs->buf);
7496 getpkt (&rs->buf, &rs->buf_size, 0);
7497
7498 buf = rs->buf;
7499
7500 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7501 {
7502 case PACKET_OK:
7503 break;
7504 case PACKET_UNKNOWN:
7505 return 0;
7506 case PACKET_ERROR:
7507 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7508 gdbarch_register_name (get_regcache_arch (regcache),
7509 reg->regnum),
7510 buf);
7511 }
7512
7513 /* If this register is unfetchable, tell the regcache. */
7514 if (buf[0] == 'x')
7515 {
7516 regcache_raw_supply (regcache, reg->regnum, NULL);
7517 return 1;
7518 }
7519
7520 /* Otherwise, parse and supply the value. */
7521 p = buf;
7522 i = 0;
7523 while (p[0] != 0)
7524 {
7525 if (p[1] == 0)
7526 error (_("fetch_register_using_p: early buf termination"));
7527
7528 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7529 p += 2;
7530 }
7531 regcache_raw_supply (regcache, reg->regnum, regp);
7532 return 1;
7533 }
7534
7535 /* Fetch the registers included in the target's 'g' packet. */
7536
7537 static int
7538 send_g_packet (void)
7539 {
7540 struct remote_state *rs = get_remote_state ();
7541 int buf_len;
7542
7543 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7544 remote_send (&rs->buf, &rs->buf_size);
7545
7546 /* We can get out of synch in various cases. If the first character
7547 in the buffer is not a hex character, assume that has happened
7548 and try to fetch another packet to read. */
7549 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7550 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7551 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7552 && rs->buf[0] != 'x') /* New: unavailable register value. */
7553 {
7554 if (remote_debug)
7555 fprintf_unfiltered (gdb_stdlog,
7556 "Bad register packet; fetching a new packet\n");
7557 getpkt (&rs->buf, &rs->buf_size, 0);
7558 }
7559
7560 buf_len = strlen (rs->buf);
7561
7562 /* Sanity check the received packet. */
7563 if (buf_len % 2 != 0)
7564 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7565
7566 return buf_len / 2;
7567 }
7568
7569 static void
7570 process_g_packet (struct regcache *regcache)
7571 {
7572 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7573 struct remote_state *rs = get_remote_state ();
7574 struct remote_arch_state *rsa = get_remote_arch_state ();
7575 int i, buf_len;
7576 char *p;
7577 char *regs;
7578
7579 buf_len = strlen (rs->buf);
7580
7581 /* Further sanity checks, with knowledge of the architecture. */
7582 if (buf_len > 2 * rsa->sizeof_g_packet)
7583 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
7584
7585 /* Save the size of the packet sent to us by the target. It is used
7586 as a heuristic when determining the max size of packets that the
7587 target can safely receive. */
7588 if (rsa->actual_register_packet_size == 0)
7589 rsa->actual_register_packet_size = buf_len;
7590
7591 /* If this is smaller than we guessed the 'g' packet would be,
7592 update our records. A 'g' reply that doesn't include a register's
7593 value implies either that the register is not available, or that
7594 the 'p' packet must be used. */
7595 if (buf_len < 2 * rsa->sizeof_g_packet)
7596 {
7597 long sizeof_g_packet = buf_len / 2;
7598
7599 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7600 {
7601 long offset = rsa->regs[i].offset;
7602 long reg_size = register_size (gdbarch, i);
7603
7604 if (rsa->regs[i].pnum == -1)
7605 continue;
7606
7607 if (offset >= sizeof_g_packet)
7608 rsa->regs[i].in_g_packet = 0;
7609 else if (offset + reg_size > sizeof_g_packet)
7610 error (_("Truncated register %d in remote 'g' packet"), i);
7611 else
7612 rsa->regs[i].in_g_packet = 1;
7613 }
7614
7615 /* Looks valid enough, we can assume this is the correct length
7616 for a 'g' packet. It's important not to adjust
7617 rsa->sizeof_g_packet if we have truncated registers otherwise
7618 this "if" won't be run the next time the method is called
7619 with a packet of the same size and one of the internal errors
7620 below will trigger instead. */
7621 rsa->sizeof_g_packet = sizeof_g_packet;
7622 }
7623
7624 regs = (char *) alloca (rsa->sizeof_g_packet);
7625
7626 /* Unimplemented registers read as all bits zero. */
7627 memset (regs, 0, rsa->sizeof_g_packet);
7628
7629 /* Reply describes registers byte by byte, each byte encoded as two
7630 hex characters. Suck them all up, then supply them to the
7631 register cacheing/storage mechanism. */
7632
7633 p = rs->buf;
7634 for (i = 0; i < rsa->sizeof_g_packet; i++)
7635 {
7636 if (p[0] == 0 || p[1] == 0)
7637 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7638 internal_error (__FILE__, __LINE__,
7639 _("unexpected end of 'g' packet reply"));
7640
7641 if (p[0] == 'x' && p[1] == 'x')
7642 regs[i] = 0; /* 'x' */
7643 else
7644 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7645 p += 2;
7646 }
7647
7648 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7649 {
7650 struct packet_reg *r = &rsa->regs[i];
7651 long reg_size = register_size (gdbarch, i);
7652
7653 if (r->in_g_packet)
7654 {
7655 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7656 /* This shouldn't happen - we adjusted in_g_packet above. */
7657 internal_error (__FILE__, __LINE__,
7658 _("unexpected end of 'g' packet reply"));
7659 else if (rs->buf[r->offset * 2] == 'x')
7660 {
7661 gdb_assert (r->offset * 2 < strlen (rs->buf));
7662 /* The register isn't available, mark it as such (at
7663 the same time setting the value to zero). */
7664 regcache_raw_supply (regcache, r->regnum, NULL);
7665 }
7666 else
7667 regcache_raw_supply (regcache, r->regnum,
7668 regs + r->offset);
7669 }
7670 }
7671 }
7672
7673 static void
7674 fetch_registers_using_g (struct regcache *regcache)
7675 {
7676 send_g_packet ();
7677 process_g_packet (regcache);
7678 }
7679
7680 /* Make the remote selected traceframe match GDB's selected
7681 traceframe. */
7682
7683 static void
7684 set_remote_traceframe (void)
7685 {
7686 int newnum;
7687 struct remote_state *rs = get_remote_state ();
7688
7689 if (rs->remote_traceframe_number == get_traceframe_number ())
7690 return;
7691
7692 /* Avoid recursion, remote_trace_find calls us again. */
7693 rs->remote_traceframe_number = get_traceframe_number ();
7694
7695 newnum = target_trace_find (tfind_number,
7696 get_traceframe_number (), 0, 0, NULL);
7697
7698 /* Should not happen. If it does, all bets are off. */
7699 if (newnum != get_traceframe_number ())
7700 warning (_("could not set remote traceframe"));
7701 }
7702
7703 static void
7704 remote_fetch_registers (struct target_ops *ops,
7705 struct regcache *regcache, int regnum)
7706 {
7707 struct remote_arch_state *rsa = get_remote_arch_state ();
7708 int i;
7709
7710 set_remote_traceframe ();
7711 set_general_thread (regcache_get_ptid (regcache));
7712
7713 if (regnum >= 0)
7714 {
7715 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
7716
7717 gdb_assert (reg != NULL);
7718
7719 /* If this register might be in the 'g' packet, try that first -
7720 we are likely to read more than one register. If this is the
7721 first 'g' packet, we might be overly optimistic about its
7722 contents, so fall back to 'p'. */
7723 if (reg->in_g_packet)
7724 {
7725 fetch_registers_using_g (regcache);
7726 if (reg->in_g_packet)
7727 return;
7728 }
7729
7730 if (fetch_register_using_p (regcache, reg))
7731 return;
7732
7733 /* This register is not available. */
7734 regcache_raw_supply (regcache, reg->regnum, NULL);
7735
7736 return;
7737 }
7738
7739 fetch_registers_using_g (regcache);
7740
7741 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7742 if (!rsa->regs[i].in_g_packet)
7743 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
7744 {
7745 /* This register is not available. */
7746 regcache_raw_supply (regcache, i, NULL);
7747 }
7748 }
7749
7750 /* Prepare to store registers. Since we may send them all (using a
7751 'G' request), we have to read out the ones we don't want to change
7752 first. */
7753
7754 static void
7755 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
7756 {
7757 struct remote_arch_state *rsa = get_remote_arch_state ();
7758 int i;
7759
7760 /* Make sure the entire registers array is valid. */
7761 switch (packet_support (PACKET_P))
7762 {
7763 case PACKET_DISABLE:
7764 case PACKET_SUPPORT_UNKNOWN:
7765 /* Make sure all the necessary registers are cached. */
7766 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7767 if (rsa->regs[i].in_g_packet)
7768 regcache_raw_update (regcache, rsa->regs[i].regnum);
7769 break;
7770 case PACKET_ENABLE:
7771 break;
7772 }
7773 }
7774
7775 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
7776 packet was not recognized. */
7777
7778 static int
7779 store_register_using_P (const struct regcache *regcache,
7780 struct packet_reg *reg)
7781 {
7782 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7783 struct remote_state *rs = get_remote_state ();
7784 /* Try storing a single register. */
7785 char *buf = rs->buf;
7786 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7787 char *p;
7788
7789 if (packet_support (PACKET_P) == PACKET_DISABLE)
7790 return 0;
7791
7792 if (reg->pnum == -1)
7793 return 0;
7794
7795 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
7796 p = buf + strlen (buf);
7797 regcache_raw_collect (regcache, reg->regnum, regp);
7798 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
7799 putpkt (rs->buf);
7800 getpkt (&rs->buf, &rs->buf_size, 0);
7801
7802 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
7803 {
7804 case PACKET_OK:
7805 return 1;
7806 case PACKET_ERROR:
7807 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
7808 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
7809 case PACKET_UNKNOWN:
7810 return 0;
7811 default:
7812 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
7813 }
7814 }
7815
7816 /* Store register REGNUM, or all registers if REGNUM == -1, from the
7817 contents of the register cache buffer. FIXME: ignores errors. */
7818
7819 static void
7820 store_registers_using_G (const struct regcache *regcache)
7821 {
7822 struct remote_state *rs = get_remote_state ();
7823 struct remote_arch_state *rsa = get_remote_arch_state ();
7824 gdb_byte *regs;
7825 char *p;
7826
7827 /* Extract all the registers in the regcache copying them into a
7828 local buffer. */
7829 {
7830 int i;
7831
7832 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
7833 memset (regs, 0, rsa->sizeof_g_packet);
7834 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7835 {
7836 struct packet_reg *r = &rsa->regs[i];
7837
7838 if (r->in_g_packet)
7839 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
7840 }
7841 }
7842
7843 /* Command describes registers byte by byte,
7844 each byte encoded as two hex characters. */
7845 p = rs->buf;
7846 *p++ = 'G';
7847 bin2hex (regs, p, rsa->sizeof_g_packet);
7848 putpkt (rs->buf);
7849 getpkt (&rs->buf, &rs->buf_size, 0);
7850 if (packet_check_result (rs->buf) == PACKET_ERROR)
7851 error (_("Could not write registers; remote failure reply '%s'"),
7852 rs->buf);
7853 }
7854
7855 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
7856 of the register cache buffer. FIXME: ignores errors. */
7857
7858 static void
7859 remote_store_registers (struct target_ops *ops,
7860 struct regcache *regcache, int regnum)
7861 {
7862 struct remote_arch_state *rsa = get_remote_arch_state ();
7863 int i;
7864
7865 set_remote_traceframe ();
7866 set_general_thread (regcache_get_ptid (regcache));
7867
7868 if (regnum >= 0)
7869 {
7870 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
7871
7872 gdb_assert (reg != NULL);
7873
7874 /* Always prefer to store registers using the 'P' packet if
7875 possible; we often change only a small number of registers.
7876 Sometimes we change a larger number; we'd need help from a
7877 higher layer to know to use 'G'. */
7878 if (store_register_using_P (regcache, reg))
7879 return;
7880
7881 /* For now, don't complain if we have no way to write the
7882 register. GDB loses track of unavailable registers too
7883 easily. Some day, this may be an error. We don't have
7884 any way to read the register, either... */
7885 if (!reg->in_g_packet)
7886 return;
7887
7888 store_registers_using_G (regcache);
7889 return;
7890 }
7891
7892 store_registers_using_G (regcache);
7893
7894 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7895 if (!rsa->regs[i].in_g_packet)
7896 if (!store_register_using_P (regcache, &rsa->regs[i]))
7897 /* See above for why we do not issue an error here. */
7898 continue;
7899 }
7900 \f
7901
7902 /* Return the number of hex digits in num. */
7903
7904 static int
7905 hexnumlen (ULONGEST num)
7906 {
7907 int i;
7908
7909 for (i = 0; num != 0; i++)
7910 num >>= 4;
7911
7912 return std::max (i, 1);
7913 }
7914
7915 /* Set BUF to the minimum number of hex digits representing NUM. */
7916
7917 static int
7918 hexnumstr (char *buf, ULONGEST num)
7919 {
7920 int len = hexnumlen (num);
7921
7922 return hexnumnstr (buf, num, len);
7923 }
7924
7925
7926 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
7927
7928 static int
7929 hexnumnstr (char *buf, ULONGEST num, int width)
7930 {
7931 int i;
7932
7933 buf[width] = '\0';
7934
7935 for (i = width - 1; i >= 0; i--)
7936 {
7937 buf[i] = "0123456789abcdef"[(num & 0xf)];
7938 num >>= 4;
7939 }
7940
7941 return width;
7942 }
7943
7944 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
7945
7946 static CORE_ADDR
7947 remote_address_masked (CORE_ADDR addr)
7948 {
7949 unsigned int address_size = remote_address_size;
7950
7951 /* If "remoteaddresssize" was not set, default to target address size. */
7952 if (!address_size)
7953 address_size = gdbarch_addr_bit (target_gdbarch ());
7954
7955 if (address_size > 0
7956 && address_size < (sizeof (ULONGEST) * 8))
7957 {
7958 /* Only create a mask when that mask can safely be constructed
7959 in a ULONGEST variable. */
7960 ULONGEST mask = 1;
7961
7962 mask = (mask << address_size) - 1;
7963 addr &= mask;
7964 }
7965 return addr;
7966 }
7967
7968 /* Determine whether the remote target supports binary downloading.
7969 This is accomplished by sending a no-op memory write of zero length
7970 to the target at the specified address. It does not suffice to send
7971 the whole packet, since many stubs strip the eighth bit and
7972 subsequently compute a wrong checksum, which causes real havoc with
7973 remote_write_bytes.
7974
7975 NOTE: This can still lose if the serial line is not eight-bit
7976 clean. In cases like this, the user should clear "remote
7977 X-packet". */
7978
7979 static void
7980 check_binary_download (CORE_ADDR addr)
7981 {
7982 struct remote_state *rs = get_remote_state ();
7983
7984 switch (packet_support (PACKET_X))
7985 {
7986 case PACKET_DISABLE:
7987 break;
7988 case PACKET_ENABLE:
7989 break;
7990 case PACKET_SUPPORT_UNKNOWN:
7991 {
7992 char *p;
7993
7994 p = rs->buf;
7995 *p++ = 'X';
7996 p += hexnumstr (p, (ULONGEST) addr);
7997 *p++ = ',';
7998 p += hexnumstr (p, (ULONGEST) 0);
7999 *p++ = ':';
8000 *p = '\0';
8001
8002 putpkt_binary (rs->buf, (int) (p - rs->buf));
8003 getpkt (&rs->buf, &rs->buf_size, 0);
8004
8005 if (rs->buf[0] == '\0')
8006 {
8007 if (remote_debug)
8008 fprintf_unfiltered (gdb_stdlog,
8009 "binary downloading NOT "
8010 "supported by target\n");
8011 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8012 }
8013 else
8014 {
8015 if (remote_debug)
8016 fprintf_unfiltered (gdb_stdlog,
8017 "binary downloading supported by target\n");
8018 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8019 }
8020 break;
8021 }
8022 }
8023 }
8024
8025 /* Helper function to resize the payload in order to try to get a good
8026 alignment. We try to write an amount of data such that the next write will
8027 start on an address aligned on REMOTE_ALIGN_WRITES. */
8028
8029 static int
8030 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8031 {
8032 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8033 }
8034
8035 /* Write memory data directly to the remote machine.
8036 This does not inform the data cache; the data cache uses this.
8037 HEADER is the starting part of the packet.
8038 MEMADDR is the address in the remote memory space.
8039 MYADDR is the address of the buffer in our space.
8040 LEN_UNITS is the number of addressable units to write.
8041 UNIT_SIZE is the length in bytes of an addressable unit.
8042 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8043 should send data as binary ('X'), or hex-encoded ('M').
8044
8045 The function creates packet of the form
8046 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8047
8048 where encoding of <DATA> is terminated by PACKET_FORMAT.
8049
8050 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8051 are omitted.
8052
8053 Return the transferred status, error or OK (an
8054 'enum target_xfer_status' value). Save the number of addressable units
8055 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8056
8057 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8058 exchange between gdb and the stub could look like (?? in place of the
8059 checksum):
8060
8061 -> $m1000,4#??
8062 <- aaaabbbbccccdddd
8063
8064 -> $M1000,3:eeeeffffeeee#??
8065 <- OK
8066
8067 -> $m1000,4#??
8068 <- eeeeffffeeeedddd */
8069
8070 static enum target_xfer_status
8071 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8072 const gdb_byte *myaddr, ULONGEST len_units,
8073 int unit_size, ULONGEST *xfered_len_units,
8074 char packet_format, int use_length)
8075 {
8076 struct remote_state *rs = get_remote_state ();
8077 char *p;
8078 char *plen = NULL;
8079 int plenlen = 0;
8080 int todo_units;
8081 int units_written;
8082 int payload_capacity_bytes;
8083 int payload_length_bytes;
8084
8085 if (packet_format != 'X' && packet_format != 'M')
8086 internal_error (__FILE__, __LINE__,
8087 _("remote_write_bytes_aux: bad packet format"));
8088
8089 if (len_units == 0)
8090 return TARGET_XFER_EOF;
8091
8092 payload_capacity_bytes = get_memory_write_packet_size ();
8093
8094 /* The packet buffer will be large enough for the payload;
8095 get_memory_packet_size ensures this. */
8096 rs->buf[0] = '\0';
8097
8098 /* Compute the size of the actual payload by subtracting out the
8099 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8100
8101 payload_capacity_bytes -= strlen ("$,:#NN");
8102 if (!use_length)
8103 /* The comma won't be used. */
8104 payload_capacity_bytes += 1;
8105 payload_capacity_bytes -= strlen (header);
8106 payload_capacity_bytes -= hexnumlen (memaddr);
8107
8108 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8109
8110 strcat (rs->buf, header);
8111 p = rs->buf + strlen (header);
8112
8113 /* Compute a best guess of the number of bytes actually transfered. */
8114 if (packet_format == 'X')
8115 {
8116 /* Best guess at number of bytes that will fit. */
8117 todo_units = std::min (len_units,
8118 (ULONGEST) payload_capacity_bytes / unit_size);
8119 if (use_length)
8120 payload_capacity_bytes -= hexnumlen (todo_units);
8121 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8122 }
8123 else
8124 {
8125 /* Number of bytes that will fit. */
8126 todo_units
8127 = std::min (len_units,
8128 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8129 if (use_length)
8130 payload_capacity_bytes -= hexnumlen (todo_units);
8131 todo_units = std::min (todo_units,
8132 (payload_capacity_bytes / unit_size) / 2);
8133 }
8134
8135 if (todo_units <= 0)
8136 internal_error (__FILE__, __LINE__,
8137 _("minimum packet size too small to write data"));
8138
8139 /* If we already need another packet, then try to align the end
8140 of this packet to a useful boundary. */
8141 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8142 todo_units = align_for_efficient_write (todo_units, memaddr);
8143
8144 /* Append "<memaddr>". */
8145 memaddr = remote_address_masked (memaddr);
8146 p += hexnumstr (p, (ULONGEST) memaddr);
8147
8148 if (use_length)
8149 {
8150 /* Append ",". */
8151 *p++ = ',';
8152
8153 /* Append the length and retain its location and size. It may need to be
8154 adjusted once the packet body has been created. */
8155 plen = p;
8156 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8157 p += plenlen;
8158 }
8159
8160 /* Append ":". */
8161 *p++ = ':';
8162 *p = '\0';
8163
8164 /* Append the packet body. */
8165 if (packet_format == 'X')
8166 {
8167 /* Binary mode. Send target system values byte by byte, in
8168 increasing byte addresses. Only escape certain critical
8169 characters. */
8170 payload_length_bytes =
8171 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8172 &units_written, payload_capacity_bytes);
8173
8174 /* If not all TODO units fit, then we'll need another packet. Make
8175 a second try to keep the end of the packet aligned. Don't do
8176 this if the packet is tiny. */
8177 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8178 {
8179 int new_todo_units;
8180
8181 new_todo_units = align_for_efficient_write (units_written, memaddr);
8182
8183 if (new_todo_units != units_written)
8184 payload_length_bytes =
8185 remote_escape_output (myaddr, new_todo_units, unit_size,
8186 (gdb_byte *) p, &units_written,
8187 payload_capacity_bytes);
8188 }
8189
8190 p += payload_length_bytes;
8191 if (use_length && units_written < todo_units)
8192 {
8193 /* Escape chars have filled up the buffer prematurely,
8194 and we have actually sent fewer units than planned.
8195 Fix-up the length field of the packet. Use the same
8196 number of characters as before. */
8197 plen += hexnumnstr (plen, (ULONGEST) units_written,
8198 plenlen);
8199 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8200 }
8201 }
8202 else
8203 {
8204 /* Normal mode: Send target system values byte by byte, in
8205 increasing byte addresses. Each byte is encoded as a two hex
8206 value. */
8207 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8208 units_written = todo_units;
8209 }
8210
8211 putpkt_binary (rs->buf, (int) (p - rs->buf));
8212 getpkt (&rs->buf, &rs->buf_size, 0);
8213
8214 if (rs->buf[0] == 'E')
8215 return TARGET_XFER_E_IO;
8216
8217 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8218 send fewer units than we'd planned. */
8219 *xfered_len_units = (ULONGEST) units_written;
8220 return TARGET_XFER_OK;
8221 }
8222
8223 /* Write memory data directly to the remote machine.
8224 This does not inform the data cache; the data cache uses this.
8225 MEMADDR is the address in the remote memory space.
8226 MYADDR is the address of the buffer in our space.
8227 LEN is the number of bytes.
8228
8229 Return the transferred status, error or OK (an
8230 'enum target_xfer_status' value). Save the number of bytes
8231 transferred in *XFERED_LEN. Only transfer a single packet. */
8232
8233 static enum target_xfer_status
8234 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8235 int unit_size, ULONGEST *xfered_len)
8236 {
8237 const char *packet_format = NULL;
8238
8239 /* Check whether the target supports binary download. */
8240 check_binary_download (memaddr);
8241
8242 switch (packet_support (PACKET_X))
8243 {
8244 case PACKET_ENABLE:
8245 packet_format = "X";
8246 break;
8247 case PACKET_DISABLE:
8248 packet_format = "M";
8249 break;
8250 case PACKET_SUPPORT_UNKNOWN:
8251 internal_error (__FILE__, __LINE__,
8252 _("remote_write_bytes: bad internal state"));
8253 default:
8254 internal_error (__FILE__, __LINE__, _("bad switch"));
8255 }
8256
8257 return remote_write_bytes_aux (packet_format,
8258 memaddr, myaddr, len, unit_size, xfered_len,
8259 packet_format[0], 1);
8260 }
8261
8262 /* Read memory data directly from the remote machine.
8263 This does not use the data cache; the data cache uses this.
8264 MEMADDR is the address in the remote memory space.
8265 MYADDR is the address of the buffer in our space.
8266 LEN_UNITS is the number of addressable memory units to read..
8267 UNIT_SIZE is the length in bytes of an addressable unit.
8268
8269 Return the transferred status, error or OK (an
8270 'enum target_xfer_status' value). Save the number of bytes
8271 transferred in *XFERED_LEN_UNITS.
8272
8273 See the comment of remote_write_bytes_aux for an example of
8274 memory read/write exchange between gdb and the stub. */
8275
8276 static enum target_xfer_status
8277 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8278 int unit_size, ULONGEST *xfered_len_units)
8279 {
8280 struct remote_state *rs = get_remote_state ();
8281 int buf_size_bytes; /* Max size of packet output buffer. */
8282 char *p;
8283 int todo_units;
8284 int decoded_bytes;
8285
8286 buf_size_bytes = get_memory_read_packet_size ();
8287 /* The packet buffer will be large enough for the payload;
8288 get_memory_packet_size ensures this. */
8289
8290 /* Number of units that will fit. */
8291 todo_units = std::min (len_units,
8292 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8293
8294 /* Construct "m"<memaddr>","<len>". */
8295 memaddr = remote_address_masked (memaddr);
8296 p = rs->buf;
8297 *p++ = 'm';
8298 p += hexnumstr (p, (ULONGEST) memaddr);
8299 *p++ = ',';
8300 p += hexnumstr (p, (ULONGEST) todo_units);
8301 *p = '\0';
8302 putpkt (rs->buf);
8303 getpkt (&rs->buf, &rs->buf_size, 0);
8304 if (rs->buf[0] == 'E'
8305 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8306 && rs->buf[3] == '\0')
8307 return TARGET_XFER_E_IO;
8308 /* Reply describes memory byte by byte, each byte encoded as two hex
8309 characters. */
8310 p = rs->buf;
8311 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8312 /* Return what we have. Let higher layers handle partial reads. */
8313 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8314 return TARGET_XFER_OK;
8315 }
8316
8317 /* Using the set of read-only target sections of remote, read live
8318 read-only memory.
8319
8320 For interface/parameters/return description see target.h,
8321 to_xfer_partial. */
8322
8323 static enum target_xfer_status
8324 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8325 ULONGEST memaddr, ULONGEST len,
8326 int unit_size, ULONGEST *xfered_len)
8327 {
8328 struct target_section *secp;
8329 struct target_section_table *table;
8330
8331 secp = target_section_by_addr (ops, memaddr);
8332 if (secp != NULL
8333 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8334 secp->the_bfd_section)
8335 & SEC_READONLY))
8336 {
8337 struct target_section *p;
8338 ULONGEST memend = memaddr + len;
8339
8340 table = target_get_section_table (ops);
8341
8342 for (p = table->sections; p < table->sections_end; p++)
8343 {
8344 if (memaddr >= p->addr)
8345 {
8346 if (memend <= p->endaddr)
8347 {
8348 /* Entire transfer is within this section. */
8349 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8350 xfered_len);
8351 }
8352 else if (memaddr >= p->endaddr)
8353 {
8354 /* This section ends before the transfer starts. */
8355 continue;
8356 }
8357 else
8358 {
8359 /* This section overlaps the transfer. Just do half. */
8360 len = p->endaddr - memaddr;
8361 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8362 xfered_len);
8363 }
8364 }
8365 }
8366 }
8367
8368 return TARGET_XFER_EOF;
8369 }
8370
8371 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8372 first if the requested memory is unavailable in traceframe.
8373 Otherwise, fall back to remote_read_bytes_1. */
8374
8375 static enum target_xfer_status
8376 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8377 gdb_byte *myaddr, ULONGEST len, int unit_size,
8378 ULONGEST *xfered_len)
8379 {
8380 if (len == 0)
8381 return TARGET_XFER_EOF;
8382
8383 if (get_traceframe_number () != -1)
8384 {
8385 VEC(mem_range_s) *available;
8386
8387 /* If we fail to get the set of available memory, then the
8388 target does not support querying traceframe info, and so we
8389 attempt reading from the traceframe anyway (assuming the
8390 target implements the old QTro packet then). */
8391 if (traceframe_available_memory (&available, memaddr, len))
8392 {
8393 struct cleanup *old_chain;
8394
8395 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
8396
8397 if (VEC_empty (mem_range_s, available)
8398 || VEC_index (mem_range_s, available, 0)->start != memaddr)
8399 {
8400 enum target_xfer_status res;
8401
8402 /* Don't read into the traceframe's available
8403 memory. */
8404 if (!VEC_empty (mem_range_s, available))
8405 {
8406 LONGEST oldlen = len;
8407
8408 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
8409 gdb_assert (len <= oldlen);
8410 }
8411
8412 do_cleanups (old_chain);
8413
8414 /* This goes through the topmost target again. */
8415 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8416 len, unit_size, xfered_len);
8417 if (res == TARGET_XFER_OK)
8418 return TARGET_XFER_OK;
8419 else
8420 {
8421 /* No use trying further, we know some memory starting
8422 at MEMADDR isn't available. */
8423 *xfered_len = len;
8424 return TARGET_XFER_UNAVAILABLE;
8425 }
8426 }
8427
8428 /* Don't try to read more than how much is available, in
8429 case the target implements the deprecated QTro packet to
8430 cater for older GDBs (the target's knowledge of read-only
8431 sections may be outdated by now). */
8432 len = VEC_index (mem_range_s, available, 0)->length;
8433
8434 do_cleanups (old_chain);
8435 }
8436 }
8437
8438 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8439 }
8440
8441 \f
8442
8443 /* Sends a packet with content determined by the printf format string
8444 FORMAT and the remaining arguments, then gets the reply. Returns
8445 whether the packet was a success, a failure, or unknown. */
8446
8447 static enum packet_result remote_send_printf (const char *format, ...)
8448 ATTRIBUTE_PRINTF (1, 2);
8449
8450 static enum packet_result
8451 remote_send_printf (const char *format, ...)
8452 {
8453 struct remote_state *rs = get_remote_state ();
8454 int max_size = get_remote_packet_size ();
8455 va_list ap;
8456
8457 va_start (ap, format);
8458
8459 rs->buf[0] = '\0';
8460 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8461 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8462
8463 if (putpkt (rs->buf) < 0)
8464 error (_("Communication problem with target."));
8465
8466 rs->buf[0] = '\0';
8467 getpkt (&rs->buf, &rs->buf_size, 0);
8468
8469 return packet_check_result (rs->buf);
8470 }
8471
8472 static void
8473 restore_remote_timeout (void *p)
8474 {
8475 int value = *(int *)p;
8476
8477 remote_timeout = value;
8478 }
8479
8480 /* Flash writing can take quite some time. We'll set
8481 effectively infinite timeout for flash operations.
8482 In future, we'll need to decide on a better approach. */
8483 static const int remote_flash_timeout = 1000;
8484
8485 static void
8486 remote_flash_erase (struct target_ops *ops,
8487 ULONGEST address, LONGEST length)
8488 {
8489 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8490 int saved_remote_timeout = remote_timeout;
8491 enum packet_result ret;
8492 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
8493 &saved_remote_timeout);
8494
8495 remote_timeout = remote_flash_timeout;
8496
8497 ret = remote_send_printf ("vFlashErase:%s,%s",
8498 phex (address, addr_size),
8499 phex (length, 4));
8500 switch (ret)
8501 {
8502 case PACKET_UNKNOWN:
8503 error (_("Remote target does not support flash erase"));
8504 case PACKET_ERROR:
8505 error (_("Error erasing flash with vFlashErase packet"));
8506 default:
8507 break;
8508 }
8509
8510 do_cleanups (back_to);
8511 }
8512
8513 static enum target_xfer_status
8514 remote_flash_write (struct target_ops *ops, ULONGEST address,
8515 ULONGEST length, ULONGEST *xfered_len,
8516 const gdb_byte *data)
8517 {
8518 int saved_remote_timeout = remote_timeout;
8519 enum target_xfer_status ret;
8520 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
8521 &saved_remote_timeout);
8522
8523 remote_timeout = remote_flash_timeout;
8524 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8525 xfered_len,'X', 0);
8526 do_cleanups (back_to);
8527
8528 return ret;
8529 }
8530
8531 static void
8532 remote_flash_done (struct target_ops *ops)
8533 {
8534 int saved_remote_timeout = remote_timeout;
8535 int ret;
8536 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
8537 &saved_remote_timeout);
8538
8539 remote_timeout = remote_flash_timeout;
8540 ret = remote_send_printf ("vFlashDone");
8541 do_cleanups (back_to);
8542
8543 switch (ret)
8544 {
8545 case PACKET_UNKNOWN:
8546 error (_("Remote target does not support vFlashDone"));
8547 case PACKET_ERROR:
8548 error (_("Error finishing flash operation"));
8549 default:
8550 break;
8551 }
8552 }
8553
8554 static void
8555 remote_files_info (struct target_ops *ignore)
8556 {
8557 puts_filtered ("Debugging a target over a serial line.\n");
8558 }
8559 \f
8560 /* Stuff for dealing with the packets which are part of this protocol.
8561 See comment at top of file for details. */
8562
8563 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8564 error to higher layers. Called when a serial error is detected.
8565 The exception message is STRING, followed by a colon and a blank,
8566 the system error message for errno at function entry and final dot
8567 for output compatibility with throw_perror_with_name. */
8568
8569 static void
8570 unpush_and_perror (const char *string)
8571 {
8572 int saved_errno = errno;
8573
8574 remote_unpush_target ();
8575 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8576 safe_strerror (saved_errno));
8577 }
8578
8579 /* Read a single character from the remote end. The current quit
8580 handler is overridden to avoid quitting in the middle of packet
8581 sequence, as that would break communication with the remote server.
8582 See remote_serial_quit_handler for more detail. */
8583
8584 static int
8585 readchar (int timeout)
8586 {
8587 int ch;
8588 struct remote_state *rs = get_remote_state ();
8589 struct cleanup *old_chain;
8590
8591 old_chain = make_cleanup_override_quit_handler (remote_serial_quit_handler);
8592
8593 rs->got_ctrlc_during_io = 0;
8594
8595 ch = serial_readchar (rs->remote_desc, timeout);
8596
8597 if (rs->got_ctrlc_during_io)
8598 set_quit_flag ();
8599
8600 do_cleanups (old_chain);
8601
8602 if (ch >= 0)
8603 return ch;
8604
8605 switch ((enum serial_rc) ch)
8606 {
8607 case SERIAL_EOF:
8608 remote_unpush_target ();
8609 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8610 /* no return */
8611 case SERIAL_ERROR:
8612 unpush_and_perror (_("Remote communication error. "
8613 "Target disconnected."));
8614 /* no return */
8615 case SERIAL_TIMEOUT:
8616 break;
8617 }
8618 return ch;
8619 }
8620
8621 /* Wrapper for serial_write that closes the target and throws if
8622 writing fails. The current quit handler is overridden to avoid
8623 quitting in the middle of packet sequence, as that would break
8624 communication with the remote server. See
8625 remote_serial_quit_handler for more detail. */
8626
8627 static void
8628 remote_serial_write (const char *str, int len)
8629 {
8630 struct remote_state *rs = get_remote_state ();
8631 struct cleanup *old_chain;
8632
8633 old_chain = make_cleanup_override_quit_handler (remote_serial_quit_handler);
8634
8635 rs->got_ctrlc_during_io = 0;
8636
8637 if (serial_write (rs->remote_desc, str, len))
8638 {
8639 unpush_and_perror (_("Remote communication error. "
8640 "Target disconnected."));
8641 }
8642
8643 if (rs->got_ctrlc_during_io)
8644 set_quit_flag ();
8645
8646 do_cleanups (old_chain);
8647 }
8648
8649 /* Send the command in *BUF to the remote machine, and read the reply
8650 into *BUF. Report an error if we get an error reply. Resize
8651 *BUF using xrealloc if necessary to hold the result, and update
8652 *SIZEOF_BUF. */
8653
8654 static void
8655 remote_send (char **buf,
8656 long *sizeof_buf)
8657 {
8658 putpkt (*buf);
8659 getpkt (buf, sizeof_buf, 0);
8660
8661 if ((*buf)[0] == 'E')
8662 error (_("Remote failure reply: %s"), *buf);
8663 }
8664
8665 /* Return a string representing an escaped version of BUF, of len N.
8666 E.g. \n is converted to \\n, \t to \\t, etc. */
8667
8668 static std::string
8669 escape_buffer (const char *buf, int n)
8670 {
8671 string_file stb;
8672
8673 stb.putstrn (buf, n, '\\');
8674 return std::move (stb.string ());
8675 }
8676
8677 /* Display a null-terminated packet on stdout, for debugging, using C
8678 string notation. */
8679
8680 static void
8681 print_packet (const char *buf)
8682 {
8683 puts_filtered ("\"");
8684 fputstr_filtered (buf, '"', gdb_stdout);
8685 puts_filtered ("\"");
8686 }
8687
8688 int
8689 putpkt (const char *buf)
8690 {
8691 return putpkt_binary (buf, strlen (buf));
8692 }
8693
8694 /* Send a packet to the remote machine, with error checking. The data
8695 of the packet is in BUF. The string in BUF can be at most
8696 get_remote_packet_size () - 5 to account for the $, # and checksum,
8697 and for a possible /0 if we are debugging (remote_debug) and want
8698 to print the sent packet as a string. */
8699
8700 static int
8701 putpkt_binary (const char *buf, int cnt)
8702 {
8703 struct remote_state *rs = get_remote_state ();
8704 int i;
8705 unsigned char csum = 0;
8706 char *buf2 = (char *) xmalloc (cnt + 6);
8707 struct cleanup *old_chain = make_cleanup (xfree, buf2);
8708
8709 int ch;
8710 int tcount = 0;
8711 char *p;
8712
8713 /* Catch cases like trying to read memory or listing threads while
8714 we're waiting for a stop reply. The remote server wouldn't be
8715 ready to handle this request, so we'd hang and timeout. We don't
8716 have to worry about this in synchronous mode, because in that
8717 case it's not possible to issue a command while the target is
8718 running. This is not a problem in non-stop mode, because in that
8719 case, the stub is always ready to process serial input. */
8720 if (!target_is_non_stop_p ()
8721 && target_is_async_p ()
8722 && rs->waiting_for_stop_reply)
8723 {
8724 error (_("Cannot execute this command while the target is running.\n"
8725 "Use the \"interrupt\" command to stop the target\n"
8726 "and then try again."));
8727 }
8728
8729 /* We're sending out a new packet. Make sure we don't look at a
8730 stale cached response. */
8731 rs->cached_wait_status = 0;
8732
8733 /* Copy the packet into buffer BUF2, encapsulating it
8734 and giving it a checksum. */
8735
8736 p = buf2;
8737 *p++ = '$';
8738
8739 for (i = 0; i < cnt; i++)
8740 {
8741 csum += buf[i];
8742 *p++ = buf[i];
8743 }
8744 *p++ = '#';
8745 *p++ = tohex ((csum >> 4) & 0xf);
8746 *p++ = tohex (csum & 0xf);
8747
8748 /* Send it over and over until we get a positive ack. */
8749
8750 while (1)
8751 {
8752 int started_error_output = 0;
8753
8754 if (remote_debug)
8755 {
8756 *p = '\0';
8757
8758 int len = (int) (p - buf2);
8759
8760 std::string str
8761 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
8762
8763 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
8764
8765 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
8766 {
8767 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
8768 str.length () - REMOTE_DEBUG_MAX_CHAR);
8769 }
8770
8771 fprintf_unfiltered (gdb_stdlog, "...");
8772
8773 gdb_flush (gdb_stdlog);
8774 }
8775 remote_serial_write (buf2, p - buf2);
8776
8777 /* If this is a no acks version of the remote protocol, send the
8778 packet and move on. */
8779 if (rs->noack_mode)
8780 break;
8781
8782 /* Read until either a timeout occurs (-2) or '+' is read.
8783 Handle any notification that arrives in the mean time. */
8784 while (1)
8785 {
8786 ch = readchar (remote_timeout);
8787
8788 if (remote_debug)
8789 {
8790 switch (ch)
8791 {
8792 case '+':
8793 case '-':
8794 case SERIAL_TIMEOUT:
8795 case '$':
8796 case '%':
8797 if (started_error_output)
8798 {
8799 putchar_unfiltered ('\n');
8800 started_error_output = 0;
8801 }
8802 }
8803 }
8804
8805 switch (ch)
8806 {
8807 case '+':
8808 if (remote_debug)
8809 fprintf_unfiltered (gdb_stdlog, "Ack\n");
8810 do_cleanups (old_chain);
8811 return 1;
8812 case '-':
8813 if (remote_debug)
8814 fprintf_unfiltered (gdb_stdlog, "Nak\n");
8815 /* FALLTHROUGH */
8816 case SERIAL_TIMEOUT:
8817 tcount++;
8818 if (tcount > 3)
8819 {
8820 do_cleanups (old_chain);
8821 return 0;
8822 }
8823 break; /* Retransmit buffer. */
8824 case '$':
8825 {
8826 if (remote_debug)
8827 fprintf_unfiltered (gdb_stdlog,
8828 "Packet instead of Ack, ignoring it\n");
8829 /* It's probably an old response sent because an ACK
8830 was lost. Gobble up the packet and ack it so it
8831 doesn't get retransmitted when we resend this
8832 packet. */
8833 skip_frame ();
8834 remote_serial_write ("+", 1);
8835 continue; /* Now, go look for +. */
8836 }
8837
8838 case '%':
8839 {
8840 int val;
8841
8842 /* If we got a notification, handle it, and go back to looking
8843 for an ack. */
8844 /* We've found the start of a notification. Now
8845 collect the data. */
8846 val = read_frame (&rs->buf, &rs->buf_size);
8847 if (val >= 0)
8848 {
8849 if (remote_debug)
8850 {
8851 std::string str = escape_buffer (rs->buf, val);
8852
8853 fprintf_unfiltered (gdb_stdlog,
8854 " Notification received: %s\n",
8855 str.c_str ());
8856 }
8857 handle_notification (rs->notif_state, rs->buf);
8858 /* We're in sync now, rewait for the ack. */
8859 tcount = 0;
8860 }
8861 else
8862 {
8863 if (remote_debug)
8864 {
8865 if (!started_error_output)
8866 {
8867 started_error_output = 1;
8868 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8869 }
8870 fputc_unfiltered (ch & 0177, gdb_stdlog);
8871 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
8872 }
8873 }
8874 continue;
8875 }
8876 /* fall-through */
8877 default:
8878 if (remote_debug)
8879 {
8880 if (!started_error_output)
8881 {
8882 started_error_output = 1;
8883 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8884 }
8885 fputc_unfiltered (ch & 0177, gdb_stdlog);
8886 }
8887 continue;
8888 }
8889 break; /* Here to retransmit. */
8890 }
8891
8892 #if 0
8893 /* This is wrong. If doing a long backtrace, the user should be
8894 able to get out next time we call QUIT, without anything as
8895 violent as interrupt_query. If we want to provide a way out of
8896 here without getting to the next QUIT, it should be based on
8897 hitting ^C twice as in remote_wait. */
8898 if (quit_flag)
8899 {
8900 quit_flag = 0;
8901 interrupt_query ();
8902 }
8903 #endif
8904 }
8905
8906 do_cleanups (old_chain);
8907 return 0;
8908 }
8909
8910 /* Come here after finding the start of a frame when we expected an
8911 ack. Do our best to discard the rest of this packet. */
8912
8913 static void
8914 skip_frame (void)
8915 {
8916 int c;
8917
8918 while (1)
8919 {
8920 c = readchar (remote_timeout);
8921 switch (c)
8922 {
8923 case SERIAL_TIMEOUT:
8924 /* Nothing we can do. */
8925 return;
8926 case '#':
8927 /* Discard the two bytes of checksum and stop. */
8928 c = readchar (remote_timeout);
8929 if (c >= 0)
8930 c = readchar (remote_timeout);
8931
8932 return;
8933 case '*': /* Run length encoding. */
8934 /* Discard the repeat count. */
8935 c = readchar (remote_timeout);
8936 if (c < 0)
8937 return;
8938 break;
8939 default:
8940 /* A regular character. */
8941 break;
8942 }
8943 }
8944 }
8945
8946 /* Come here after finding the start of the frame. Collect the rest
8947 into *BUF, verifying the checksum, length, and handling run-length
8948 compression. NUL terminate the buffer. If there is not enough room,
8949 expand *BUF using xrealloc.
8950
8951 Returns -1 on error, number of characters in buffer (ignoring the
8952 trailing NULL) on success. (could be extended to return one of the
8953 SERIAL status indications). */
8954
8955 static long
8956 read_frame (char **buf_p,
8957 long *sizeof_buf)
8958 {
8959 unsigned char csum;
8960 long bc;
8961 int c;
8962 char *buf = *buf_p;
8963 struct remote_state *rs = get_remote_state ();
8964
8965 csum = 0;
8966 bc = 0;
8967
8968 while (1)
8969 {
8970 c = readchar (remote_timeout);
8971 switch (c)
8972 {
8973 case SERIAL_TIMEOUT:
8974 if (remote_debug)
8975 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
8976 return -1;
8977 case '$':
8978 if (remote_debug)
8979 fputs_filtered ("Saw new packet start in middle of old one\n",
8980 gdb_stdlog);
8981 return -1; /* Start a new packet, count retries. */
8982 case '#':
8983 {
8984 unsigned char pktcsum;
8985 int check_0 = 0;
8986 int check_1 = 0;
8987
8988 buf[bc] = '\0';
8989
8990 check_0 = readchar (remote_timeout);
8991 if (check_0 >= 0)
8992 check_1 = readchar (remote_timeout);
8993
8994 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
8995 {
8996 if (remote_debug)
8997 fputs_filtered ("Timeout in checksum, retrying\n",
8998 gdb_stdlog);
8999 return -1;
9000 }
9001 else if (check_0 < 0 || check_1 < 0)
9002 {
9003 if (remote_debug)
9004 fputs_filtered ("Communication error in checksum\n",
9005 gdb_stdlog);
9006 return -1;
9007 }
9008
9009 /* Don't recompute the checksum; with no ack packets we
9010 don't have any way to indicate a packet retransmission
9011 is necessary. */
9012 if (rs->noack_mode)
9013 return bc;
9014
9015 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9016 if (csum == pktcsum)
9017 return bc;
9018
9019 if (remote_debug)
9020 {
9021 std::string str = escape_buffer (buf, bc);
9022
9023 fprintf_unfiltered (gdb_stdlog,
9024 "Bad checksum, sentsum=0x%x, "
9025 "csum=0x%x, buf=%s\n",
9026 pktcsum, csum, str.c_str ());
9027 }
9028 /* Number of characters in buffer ignoring trailing
9029 NULL. */
9030 return -1;
9031 }
9032 case '*': /* Run length encoding. */
9033 {
9034 int repeat;
9035
9036 csum += c;
9037 c = readchar (remote_timeout);
9038 csum += c;
9039 repeat = c - ' ' + 3; /* Compute repeat count. */
9040
9041 /* The character before ``*'' is repeated. */
9042
9043 if (repeat > 0 && repeat <= 255 && bc > 0)
9044 {
9045 if (bc + repeat - 1 >= *sizeof_buf - 1)
9046 {
9047 /* Make some more room in the buffer. */
9048 *sizeof_buf += repeat;
9049 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9050 buf = *buf_p;
9051 }
9052
9053 memset (&buf[bc], buf[bc - 1], repeat);
9054 bc += repeat;
9055 continue;
9056 }
9057
9058 buf[bc] = '\0';
9059 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9060 return -1;
9061 }
9062 default:
9063 if (bc >= *sizeof_buf - 1)
9064 {
9065 /* Make some more room in the buffer. */
9066 *sizeof_buf *= 2;
9067 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9068 buf = *buf_p;
9069 }
9070
9071 buf[bc++] = c;
9072 csum += c;
9073 continue;
9074 }
9075 }
9076 }
9077
9078 /* Read a packet from the remote machine, with error checking, and
9079 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9080 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9081 rather than timing out; this is used (in synchronous mode) to wait
9082 for a target that is is executing user code to stop. */
9083 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9084 don't have to change all the calls to getpkt to deal with the
9085 return value, because at the moment I don't know what the right
9086 thing to do it for those. */
9087 void
9088 getpkt (char **buf,
9089 long *sizeof_buf,
9090 int forever)
9091 {
9092 getpkt_sane (buf, sizeof_buf, forever);
9093 }
9094
9095
9096 /* Read a packet from the remote machine, with error checking, and
9097 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9098 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9099 rather than timing out; this is used (in synchronous mode) to wait
9100 for a target that is is executing user code to stop. If FOREVER ==
9101 0, this function is allowed to time out gracefully and return an
9102 indication of this to the caller. Otherwise return the number of
9103 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9104 enough reason to return to the caller. *IS_NOTIF is an output
9105 boolean that indicates whether *BUF holds a notification or not
9106 (a regular packet). */
9107
9108 static int
9109 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9110 int expecting_notif, int *is_notif)
9111 {
9112 struct remote_state *rs = get_remote_state ();
9113 int c;
9114 int tries;
9115 int timeout;
9116 int val = -1;
9117
9118 /* We're reading a new response. Make sure we don't look at a
9119 previously cached response. */
9120 rs->cached_wait_status = 0;
9121
9122 strcpy (*buf, "timeout");
9123
9124 if (forever)
9125 timeout = watchdog > 0 ? watchdog : -1;
9126 else if (expecting_notif)
9127 timeout = 0; /* There should already be a char in the buffer. If
9128 not, bail out. */
9129 else
9130 timeout = remote_timeout;
9131
9132 #define MAX_TRIES 3
9133
9134 /* Process any number of notifications, and then return when
9135 we get a packet. */
9136 for (;;)
9137 {
9138 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9139 times. */
9140 for (tries = 1; tries <= MAX_TRIES; tries++)
9141 {
9142 /* This can loop forever if the remote side sends us
9143 characters continuously, but if it pauses, we'll get
9144 SERIAL_TIMEOUT from readchar because of timeout. Then
9145 we'll count that as a retry.
9146
9147 Note that even when forever is set, we will only wait
9148 forever prior to the start of a packet. After that, we
9149 expect characters to arrive at a brisk pace. They should
9150 show up within remote_timeout intervals. */
9151 do
9152 c = readchar (timeout);
9153 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9154
9155 if (c == SERIAL_TIMEOUT)
9156 {
9157 if (expecting_notif)
9158 return -1; /* Don't complain, it's normal to not get
9159 anything in this case. */
9160
9161 if (forever) /* Watchdog went off? Kill the target. */
9162 {
9163 remote_unpush_target ();
9164 throw_error (TARGET_CLOSE_ERROR,
9165 _("Watchdog timeout has expired. "
9166 "Target detached."));
9167 }
9168 if (remote_debug)
9169 fputs_filtered ("Timed out.\n", gdb_stdlog);
9170 }
9171 else
9172 {
9173 /* We've found the start of a packet or notification.
9174 Now collect the data. */
9175 val = read_frame (buf, sizeof_buf);
9176 if (val >= 0)
9177 break;
9178 }
9179
9180 remote_serial_write ("-", 1);
9181 }
9182
9183 if (tries > MAX_TRIES)
9184 {
9185 /* We have tried hard enough, and just can't receive the
9186 packet/notification. Give up. */
9187 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9188
9189 /* Skip the ack char if we're in no-ack mode. */
9190 if (!rs->noack_mode)
9191 remote_serial_write ("+", 1);
9192 return -1;
9193 }
9194
9195 /* If we got an ordinary packet, return that to our caller. */
9196 if (c == '$')
9197 {
9198 if (remote_debug)
9199 {
9200 std::string str
9201 = escape_buffer (*buf,
9202 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9203
9204 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9205 str.c_str ());
9206
9207 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
9208 {
9209 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
9210 str.length () - REMOTE_DEBUG_MAX_CHAR);
9211 }
9212
9213 fprintf_unfiltered (gdb_stdlog, "\n");
9214 }
9215
9216 /* Skip the ack char if we're in no-ack mode. */
9217 if (!rs->noack_mode)
9218 remote_serial_write ("+", 1);
9219 if (is_notif != NULL)
9220 *is_notif = 0;
9221 return val;
9222 }
9223
9224 /* If we got a notification, handle it, and go back to looking
9225 for a packet. */
9226 else
9227 {
9228 gdb_assert (c == '%');
9229
9230 if (remote_debug)
9231 {
9232 std::string str = escape_buffer (*buf, val);
9233
9234 fprintf_unfiltered (gdb_stdlog,
9235 " Notification received: %s\n",
9236 str.c_str ());
9237 }
9238 if (is_notif != NULL)
9239 *is_notif = 1;
9240
9241 handle_notification (rs->notif_state, *buf);
9242
9243 /* Notifications require no acknowledgement. */
9244
9245 if (expecting_notif)
9246 return val;
9247 }
9248 }
9249 }
9250
9251 static int
9252 getpkt_sane (char **buf, long *sizeof_buf, int forever)
9253 {
9254 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9255 }
9256
9257 static int
9258 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9259 int *is_notif)
9260 {
9261 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9262 is_notif);
9263 }
9264
9265 /* Check whether EVENT is a fork event for the process specified
9266 by the pid passed in DATA, and if it is, kill the fork child. */
9267
9268 static int
9269 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9270 QUEUE_ITER (stop_reply_p) *iter,
9271 stop_reply_p event,
9272 void *data)
9273 {
9274 struct queue_iter_param *param = (struct queue_iter_param *) data;
9275 int parent_pid = *(int *) param->input;
9276
9277 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9278 {
9279 struct remote_state *rs = get_remote_state ();
9280 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9281 int res;
9282
9283 res = remote_vkill (child_pid, rs);
9284 if (res != 0)
9285 error (_("Can't kill fork child process %d"), child_pid);
9286 }
9287
9288 return 1;
9289 }
9290
9291 /* Kill any new fork children of process PID that haven't been
9292 processed by follow_fork. */
9293
9294 static void
9295 kill_new_fork_children (int pid, struct remote_state *rs)
9296 {
9297 struct thread_info *thread;
9298 struct notif_client *notif = &notif_client_stop;
9299 struct queue_iter_param param;
9300
9301 /* Kill the fork child threads of any threads in process PID
9302 that are stopped at a fork event. */
9303 ALL_NON_EXITED_THREADS (thread)
9304 {
9305 struct target_waitstatus *ws = &thread->pending_follow;
9306
9307 if (is_pending_fork_parent (ws, pid, thread->ptid))
9308 {
9309 struct remote_state *rs = get_remote_state ();
9310 int child_pid = ptid_get_pid (ws->value.related_pid);
9311 int res;
9312
9313 res = remote_vkill (child_pid, rs);
9314 if (res != 0)
9315 error (_("Can't kill fork child process %d"), child_pid);
9316 }
9317 }
9318
9319 /* Check for any pending fork events (not reported or processed yet)
9320 in process PID and kill those fork child threads as well. */
9321 remote_notif_get_pending_events (notif);
9322 param.input = &pid;
9323 param.output = NULL;
9324 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9325 kill_child_of_pending_fork, &param);
9326 }
9327
9328 \f
9329 /* Target hook to kill the current inferior. */
9330
9331 static void
9332 remote_kill (struct target_ops *ops)
9333 {
9334 int res = -1;
9335 int pid = ptid_get_pid (inferior_ptid);
9336 struct remote_state *rs = get_remote_state ();
9337
9338 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9339 {
9340 /* If we're stopped while forking and we haven't followed yet,
9341 kill the child task. We need to do this before killing the
9342 parent task because if this is a vfork then the parent will
9343 be sleeping. */
9344 kill_new_fork_children (pid, rs);
9345
9346 res = remote_vkill (pid, rs);
9347 if (res == 0)
9348 {
9349 target_mourn_inferior (inferior_ptid);
9350 return;
9351 }
9352 }
9353
9354 /* If we are in 'target remote' mode and we are killing the only
9355 inferior, then we will tell gdbserver to exit and unpush the
9356 target. */
9357 if (res == -1 && !remote_multi_process_p (rs)
9358 && number_of_live_inferiors () == 1)
9359 {
9360 remote_kill_k ();
9361
9362 /* We've killed the remote end, we get to mourn it. If we are
9363 not in extended mode, mourning the inferior also unpushes
9364 remote_ops from the target stack, which closes the remote
9365 connection. */
9366 target_mourn_inferior (inferior_ptid);
9367
9368 return;
9369 }
9370
9371 error (_("Can't kill process"));
9372 }
9373
9374 /* Send a kill request to the target using the 'vKill' packet. */
9375
9376 static int
9377 remote_vkill (int pid, struct remote_state *rs)
9378 {
9379 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9380 return -1;
9381
9382 /* Tell the remote target to detach. */
9383 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9384 putpkt (rs->buf);
9385 getpkt (&rs->buf, &rs->buf_size, 0);
9386
9387 switch (packet_ok (rs->buf,
9388 &remote_protocol_packets[PACKET_vKill]))
9389 {
9390 case PACKET_OK:
9391 return 0;
9392 case PACKET_ERROR:
9393 return 1;
9394 case PACKET_UNKNOWN:
9395 return -1;
9396 default:
9397 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9398 }
9399 }
9400
9401 /* Send a kill request to the target using the 'k' packet. */
9402
9403 static void
9404 remote_kill_k (void)
9405 {
9406 /* Catch errors so the user can quit from gdb even when we
9407 aren't on speaking terms with the remote system. */
9408 TRY
9409 {
9410 putpkt ("k");
9411 }
9412 CATCH (ex, RETURN_MASK_ERROR)
9413 {
9414 if (ex.error == TARGET_CLOSE_ERROR)
9415 {
9416 /* If we got an (EOF) error that caused the target
9417 to go away, then we're done, that's what we wanted.
9418 "k" is susceptible to cause a premature EOF, given
9419 that the remote server isn't actually required to
9420 reply to "k", and it can happen that it doesn't
9421 even get to reply ACK to the "k". */
9422 return;
9423 }
9424
9425 /* Otherwise, something went wrong. We didn't actually kill
9426 the target. Just propagate the exception, and let the
9427 user or higher layers decide what to do. */
9428 throw_exception (ex);
9429 }
9430 END_CATCH
9431 }
9432
9433 static void
9434 remote_mourn (struct target_ops *target)
9435 {
9436 struct remote_state *rs = get_remote_state ();
9437
9438 /* In 'target remote' mode with one inferior, we close the connection. */
9439 if (!rs->extended && number_of_live_inferiors () <= 1)
9440 {
9441 unpush_target (target);
9442
9443 /* remote_close takes care of doing most of the clean up. */
9444 generic_mourn_inferior ();
9445 return;
9446 }
9447
9448 /* In case we got here due to an error, but we're going to stay
9449 connected. */
9450 rs->waiting_for_stop_reply = 0;
9451
9452 /* If the current general thread belonged to the process we just
9453 detached from or has exited, the remote side current general
9454 thread becomes undefined. Considering a case like this:
9455
9456 - We just got here due to a detach.
9457 - The process that we're detaching from happens to immediately
9458 report a global breakpoint being hit in non-stop mode, in the
9459 same thread we had selected before.
9460 - GDB attaches to this process again.
9461 - This event happens to be the next event we handle.
9462
9463 GDB would consider that the current general thread didn't need to
9464 be set on the stub side (with Hg), since for all it knew,
9465 GENERAL_THREAD hadn't changed.
9466
9467 Notice that although in all-stop mode, the remote server always
9468 sets the current thread to the thread reporting the stop event,
9469 that doesn't happen in non-stop mode; in non-stop, the stub *must
9470 not* change the current thread when reporting a breakpoint hit,
9471 due to the decoupling of event reporting and event handling.
9472
9473 To keep things simple, we always invalidate our notion of the
9474 current thread. */
9475 record_currthread (rs, minus_one_ptid);
9476
9477 /* Call common code to mark the inferior as not running. */
9478 generic_mourn_inferior ();
9479
9480 if (!have_inferiors ())
9481 {
9482 if (!remote_multi_process_p (rs))
9483 {
9484 /* Check whether the target is running now - some remote stubs
9485 automatically restart after kill. */
9486 putpkt ("?");
9487 getpkt (&rs->buf, &rs->buf_size, 0);
9488
9489 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9490 {
9491 /* Assume that the target has been restarted. Set
9492 inferior_ptid so that bits of core GDB realizes
9493 there's something here, e.g., so that the user can
9494 say "kill" again. */
9495 inferior_ptid = magic_null_ptid;
9496 }
9497 }
9498 }
9499 }
9500
9501 static int
9502 extended_remote_supports_disable_randomization (struct target_ops *self)
9503 {
9504 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9505 }
9506
9507 static void
9508 extended_remote_disable_randomization (int val)
9509 {
9510 struct remote_state *rs = get_remote_state ();
9511 char *reply;
9512
9513 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9514 val);
9515 putpkt (rs->buf);
9516 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
9517 if (*reply == '\0')
9518 error (_("Target does not support QDisableRandomization."));
9519 if (strcmp (reply, "OK") != 0)
9520 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9521 }
9522
9523 static int
9524 extended_remote_run (const std::string &args)
9525 {
9526 struct remote_state *rs = get_remote_state ();
9527 int len;
9528 const char *remote_exec_file = get_remote_exec_file ();
9529
9530 /* If the user has disabled vRun support, or we have detected that
9531 support is not available, do not try it. */
9532 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9533 return -1;
9534
9535 strcpy (rs->buf, "vRun;");
9536 len = strlen (rs->buf);
9537
9538 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9539 error (_("Remote file name too long for run packet"));
9540 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9541 strlen (remote_exec_file));
9542
9543 if (!args.empty ())
9544 {
9545 struct cleanup *back_to;
9546 int i;
9547 char **argv;
9548
9549 argv = gdb_buildargv (args.c_str ());
9550 back_to = make_cleanup_freeargv (argv);
9551 for (i = 0; argv[i] != NULL; i++)
9552 {
9553 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9554 error (_("Argument list too long for run packet"));
9555 rs->buf[len++] = ';';
9556 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9557 strlen (argv[i]));
9558 }
9559 do_cleanups (back_to);
9560 }
9561
9562 rs->buf[len++] = '\0';
9563
9564 putpkt (rs->buf);
9565 getpkt (&rs->buf, &rs->buf_size, 0);
9566
9567 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9568 {
9569 case PACKET_OK:
9570 /* We have a wait response. All is well. */
9571 return 0;
9572 case PACKET_UNKNOWN:
9573 return -1;
9574 case PACKET_ERROR:
9575 if (remote_exec_file[0] == '\0')
9576 error (_("Running the default executable on the remote target failed; "
9577 "try \"set remote exec-file\"?"));
9578 else
9579 error (_("Running \"%s\" on the remote target failed"),
9580 remote_exec_file);
9581 default:
9582 gdb_assert_not_reached (_("bad switch"));
9583 }
9584 }
9585
9586 /* In the extended protocol we want to be able to do things like
9587 "run" and have them basically work as expected. So we need
9588 a special create_inferior function. We support changing the
9589 executable file and the command line arguments, but not the
9590 environment. */
9591
9592 static void
9593 extended_remote_create_inferior (struct target_ops *ops,
9594 const char *exec_file,
9595 const std::string &args,
9596 char **env, int from_tty)
9597 {
9598 int run_worked;
9599 char *stop_reply;
9600 struct remote_state *rs = get_remote_state ();
9601 const char *remote_exec_file = get_remote_exec_file ();
9602
9603 /* If running asynchronously, register the target file descriptor
9604 with the event loop. */
9605 if (target_can_async_p ())
9606 target_async (1);
9607
9608 /* Disable address space randomization if requested (and supported). */
9609 if (extended_remote_supports_disable_randomization (ops))
9610 extended_remote_disable_randomization (disable_randomization);
9611
9612 /* If startup-with-shell is on, we inform gdbserver to start the
9613 remote inferior using a shell. */
9614 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
9615 {
9616 xsnprintf (rs->buf, get_remote_packet_size (),
9617 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
9618 putpkt (rs->buf);
9619 getpkt (&rs->buf, &rs->buf_size, 0);
9620 if (strcmp (rs->buf, "OK") != 0)
9621 error (_("\
9622 Remote replied unexpectedly while setting startup-with-shell: %s"),
9623 rs->buf);
9624 }
9625
9626 /* Now restart the remote server. */
9627 run_worked = extended_remote_run (args) != -1;
9628 if (!run_worked)
9629 {
9630 /* vRun was not supported. Fail if we need it to do what the
9631 user requested. */
9632 if (remote_exec_file[0])
9633 error (_("Remote target does not support \"set remote exec-file\""));
9634 if (!args.empty ())
9635 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9636
9637 /* Fall back to "R". */
9638 extended_remote_restart ();
9639 }
9640
9641 if (!have_inferiors ())
9642 {
9643 /* Clean up from the last time we ran, before we mark the target
9644 running again. This will mark breakpoints uninserted, and
9645 get_offsets may insert breakpoints. */
9646 init_thread_list ();
9647 init_wait_for_inferior ();
9648 }
9649
9650 /* vRun's success return is a stop reply. */
9651 stop_reply = run_worked ? rs->buf : NULL;
9652 add_current_inferior_and_thread (stop_reply);
9653
9654 /* Get updated offsets, if the stub uses qOffsets. */
9655 get_offsets ();
9656 }
9657 \f
9658
9659 /* Given a location's target info BP_TGT and the packet buffer BUF, output
9660 the list of conditions (in agent expression bytecode format), if any, the
9661 target needs to evaluate. The output is placed into the packet buffer
9662 started from BUF and ended at BUF_END. */
9663
9664 static int
9665 remote_add_target_side_condition (struct gdbarch *gdbarch,
9666 struct bp_target_info *bp_tgt, char *buf,
9667 char *buf_end)
9668 {
9669 if (bp_tgt->conditions.empty ())
9670 return 0;
9671
9672 buf += strlen (buf);
9673 xsnprintf (buf, buf_end - buf, "%s", ";");
9674 buf++;
9675
9676 /* Send conditions to the target. */
9677 for (agent_expr *aexpr : bp_tgt->conditions)
9678 {
9679 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
9680 buf += strlen (buf);
9681 for (int i = 0; i < aexpr->len; ++i)
9682 buf = pack_hex_byte (buf, aexpr->buf[i]);
9683 *buf = '\0';
9684 }
9685 return 0;
9686 }
9687
9688 static void
9689 remote_add_target_side_commands (struct gdbarch *gdbarch,
9690 struct bp_target_info *bp_tgt, char *buf)
9691 {
9692 if (bp_tgt->tcommands.empty ())
9693 return;
9694
9695 buf += strlen (buf);
9696
9697 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
9698 buf += strlen (buf);
9699
9700 /* Concatenate all the agent expressions that are commands into the
9701 cmds parameter. */
9702 for (agent_expr *aexpr : bp_tgt->tcommands)
9703 {
9704 sprintf (buf, "X%x,", aexpr->len);
9705 buf += strlen (buf);
9706 for (int i = 0; i < aexpr->len; ++i)
9707 buf = pack_hex_byte (buf, aexpr->buf[i]);
9708 *buf = '\0';
9709 }
9710 }
9711
9712 /* Insert a breakpoint. On targets that have software breakpoint
9713 support, we ask the remote target to do the work; on targets
9714 which don't, we insert a traditional memory breakpoint. */
9715
9716 static int
9717 remote_insert_breakpoint (struct target_ops *ops,
9718 struct gdbarch *gdbarch,
9719 struct bp_target_info *bp_tgt)
9720 {
9721 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
9722 If it succeeds, then set the support to PACKET_ENABLE. If it
9723 fails, and the user has explicitly requested the Z support then
9724 report an error, otherwise, mark it disabled and go on. */
9725
9726 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9727 {
9728 CORE_ADDR addr = bp_tgt->reqstd_address;
9729 struct remote_state *rs;
9730 char *p, *endbuf;
9731 int bpsize;
9732
9733 /* Make sure the remote is pointing at the right process, if
9734 necessary. */
9735 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9736 set_general_process ();
9737
9738 rs = get_remote_state ();
9739 p = rs->buf;
9740 endbuf = rs->buf + get_remote_packet_size ();
9741
9742 *(p++) = 'Z';
9743 *(p++) = '0';
9744 *(p++) = ',';
9745 addr = (ULONGEST) remote_address_masked (addr);
9746 p += hexnumstr (p, addr);
9747 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9748
9749 if (remote_supports_cond_breakpoints (ops))
9750 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
9751
9752 if (remote_can_run_breakpoint_commands (ops))
9753 remote_add_target_side_commands (gdbarch, bp_tgt, p);
9754
9755 putpkt (rs->buf);
9756 getpkt (&rs->buf, &rs->buf_size, 0);
9757
9758 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
9759 {
9760 case PACKET_ERROR:
9761 return -1;
9762 case PACKET_OK:
9763 return 0;
9764 case PACKET_UNKNOWN:
9765 break;
9766 }
9767 }
9768
9769 /* If this breakpoint has target-side commands but this stub doesn't
9770 support Z0 packets, throw error. */
9771 if (!bp_tgt->tcommands.empty ())
9772 throw_error (NOT_SUPPORTED_ERROR, _("\
9773 Target doesn't support breakpoints that have target side commands."));
9774
9775 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
9776 }
9777
9778 static int
9779 remote_remove_breakpoint (struct target_ops *ops,
9780 struct gdbarch *gdbarch,
9781 struct bp_target_info *bp_tgt,
9782 enum remove_bp_reason reason)
9783 {
9784 CORE_ADDR addr = bp_tgt->placed_address;
9785 struct remote_state *rs = get_remote_state ();
9786
9787 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9788 {
9789 char *p = rs->buf;
9790 char *endbuf = rs->buf + get_remote_packet_size ();
9791
9792 /* Make sure the remote is pointing at the right process, if
9793 necessary. */
9794 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9795 set_general_process ();
9796
9797 *(p++) = 'z';
9798 *(p++) = '0';
9799 *(p++) = ',';
9800
9801 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
9802 p += hexnumstr (p, addr);
9803 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9804
9805 putpkt (rs->buf);
9806 getpkt (&rs->buf, &rs->buf_size, 0);
9807
9808 return (rs->buf[0] == 'E');
9809 }
9810
9811 return memory_remove_breakpoint (ops, gdbarch, bp_tgt, reason);
9812 }
9813
9814 static enum Z_packet_type
9815 watchpoint_to_Z_packet (int type)
9816 {
9817 switch (type)
9818 {
9819 case hw_write:
9820 return Z_PACKET_WRITE_WP;
9821 break;
9822 case hw_read:
9823 return Z_PACKET_READ_WP;
9824 break;
9825 case hw_access:
9826 return Z_PACKET_ACCESS_WP;
9827 break;
9828 default:
9829 internal_error (__FILE__, __LINE__,
9830 _("hw_bp_to_z: bad watchpoint type %d"), type);
9831 }
9832 }
9833
9834 static int
9835 remote_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9836 enum target_hw_bp_type type, struct expression *cond)
9837 {
9838 struct remote_state *rs = get_remote_state ();
9839 char *endbuf = rs->buf + get_remote_packet_size ();
9840 char *p;
9841 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9842
9843 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9844 return 1;
9845
9846 /* Make sure the remote is pointing at the right process, if
9847 necessary. */
9848 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9849 set_general_process ();
9850
9851 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
9852 p = strchr (rs->buf, '\0');
9853 addr = remote_address_masked (addr);
9854 p += hexnumstr (p, (ULONGEST) addr);
9855 xsnprintf (p, endbuf - p, ",%x", len);
9856
9857 putpkt (rs->buf);
9858 getpkt (&rs->buf, &rs->buf_size, 0);
9859
9860 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9861 {
9862 case PACKET_ERROR:
9863 return -1;
9864 case PACKET_UNKNOWN:
9865 return 1;
9866 case PACKET_OK:
9867 return 0;
9868 }
9869 internal_error (__FILE__, __LINE__,
9870 _("remote_insert_watchpoint: reached end of function"));
9871 }
9872
9873 static int
9874 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
9875 CORE_ADDR start, int length)
9876 {
9877 CORE_ADDR diff = remote_address_masked (addr - start);
9878
9879 return diff < length;
9880 }
9881
9882
9883 static int
9884 remote_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9885 enum target_hw_bp_type type, struct expression *cond)
9886 {
9887 struct remote_state *rs = get_remote_state ();
9888 char *endbuf = rs->buf + get_remote_packet_size ();
9889 char *p;
9890 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9891
9892 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9893 return -1;
9894
9895 /* Make sure the remote is pointing at the right process, if
9896 necessary. */
9897 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9898 set_general_process ();
9899
9900 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
9901 p = strchr (rs->buf, '\0');
9902 addr = remote_address_masked (addr);
9903 p += hexnumstr (p, (ULONGEST) addr);
9904 xsnprintf (p, endbuf - p, ",%x", len);
9905 putpkt (rs->buf);
9906 getpkt (&rs->buf, &rs->buf_size, 0);
9907
9908 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9909 {
9910 case PACKET_ERROR:
9911 case PACKET_UNKNOWN:
9912 return -1;
9913 case PACKET_OK:
9914 return 0;
9915 }
9916 internal_error (__FILE__, __LINE__,
9917 _("remote_remove_watchpoint: reached end of function"));
9918 }
9919
9920
9921 int remote_hw_watchpoint_limit = -1;
9922 int remote_hw_watchpoint_length_limit = -1;
9923 int remote_hw_breakpoint_limit = -1;
9924
9925 static int
9926 remote_region_ok_for_hw_watchpoint (struct target_ops *self,
9927 CORE_ADDR addr, int len)
9928 {
9929 if (remote_hw_watchpoint_length_limit == 0)
9930 return 0;
9931 else if (remote_hw_watchpoint_length_limit < 0)
9932 return 1;
9933 else if (len <= remote_hw_watchpoint_length_limit)
9934 return 1;
9935 else
9936 return 0;
9937 }
9938
9939 static int
9940 remote_check_watch_resources (struct target_ops *self,
9941 enum bptype type, int cnt, int ot)
9942 {
9943 if (type == bp_hardware_breakpoint)
9944 {
9945 if (remote_hw_breakpoint_limit == 0)
9946 return 0;
9947 else if (remote_hw_breakpoint_limit < 0)
9948 return 1;
9949 else if (cnt <= remote_hw_breakpoint_limit)
9950 return 1;
9951 }
9952 else
9953 {
9954 if (remote_hw_watchpoint_limit == 0)
9955 return 0;
9956 else if (remote_hw_watchpoint_limit < 0)
9957 return 1;
9958 else if (ot)
9959 return -1;
9960 else if (cnt <= remote_hw_watchpoint_limit)
9961 return 1;
9962 }
9963 return -1;
9964 }
9965
9966 /* The to_stopped_by_sw_breakpoint method of target remote. */
9967
9968 static int
9969 remote_stopped_by_sw_breakpoint (struct target_ops *ops)
9970 {
9971 struct thread_info *thread = inferior_thread ();
9972
9973 return (thread->priv != NULL
9974 && thread->priv->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
9975 }
9976
9977 /* The to_supports_stopped_by_sw_breakpoint method of target
9978 remote. */
9979
9980 static int
9981 remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
9982 {
9983 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
9984 }
9985
9986 /* The to_stopped_by_hw_breakpoint method of target remote. */
9987
9988 static int
9989 remote_stopped_by_hw_breakpoint (struct target_ops *ops)
9990 {
9991 struct thread_info *thread = inferior_thread ();
9992
9993 return (thread->priv != NULL
9994 && thread->priv->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
9995 }
9996
9997 /* The to_supports_stopped_by_hw_breakpoint method of target
9998 remote. */
9999
10000 static int
10001 remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
10002 {
10003 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10004 }
10005
10006 static int
10007 remote_stopped_by_watchpoint (struct target_ops *ops)
10008 {
10009 struct thread_info *thread = inferior_thread ();
10010
10011 return (thread->priv != NULL
10012 && thread->priv->stop_reason == TARGET_STOPPED_BY_WATCHPOINT);
10013 }
10014
10015 static int
10016 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
10017 {
10018 struct thread_info *thread = inferior_thread ();
10019
10020 if (thread->priv != NULL
10021 && thread->priv->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
10022 {
10023 *addr_p = thread->priv->watch_data_address;
10024 return 1;
10025 }
10026
10027 return 0;
10028 }
10029
10030
10031 static int
10032 remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10033 struct bp_target_info *bp_tgt)
10034 {
10035 CORE_ADDR addr = bp_tgt->reqstd_address;
10036 struct remote_state *rs;
10037 char *p, *endbuf;
10038 char *message;
10039
10040 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10041 return -1;
10042
10043 /* Make sure the remote is pointing at the right process, if
10044 necessary. */
10045 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10046 set_general_process ();
10047
10048 rs = get_remote_state ();
10049 p = rs->buf;
10050 endbuf = rs->buf + get_remote_packet_size ();
10051
10052 *(p++) = 'Z';
10053 *(p++) = '1';
10054 *(p++) = ',';
10055
10056 addr = remote_address_masked (addr);
10057 p += hexnumstr (p, (ULONGEST) addr);
10058 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10059
10060 if (remote_supports_cond_breakpoints (self))
10061 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10062
10063 if (remote_can_run_breakpoint_commands (self))
10064 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10065
10066 putpkt (rs->buf);
10067 getpkt (&rs->buf, &rs->buf_size, 0);
10068
10069 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10070 {
10071 case PACKET_ERROR:
10072 if (rs->buf[1] == '.')
10073 {
10074 message = strchr (rs->buf + 2, '.');
10075 if (message)
10076 error (_("Remote failure reply: %s"), message + 1);
10077 }
10078 return -1;
10079 case PACKET_UNKNOWN:
10080 return -1;
10081 case PACKET_OK:
10082 return 0;
10083 }
10084 internal_error (__FILE__, __LINE__,
10085 _("remote_insert_hw_breakpoint: reached end of function"));
10086 }
10087
10088
10089 static int
10090 remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10091 struct bp_target_info *bp_tgt)
10092 {
10093 CORE_ADDR addr;
10094 struct remote_state *rs = get_remote_state ();
10095 char *p = rs->buf;
10096 char *endbuf = rs->buf + get_remote_packet_size ();
10097
10098 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10099 return -1;
10100
10101 /* Make sure the remote is pointing at the right process, if
10102 necessary. */
10103 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10104 set_general_process ();
10105
10106 *(p++) = 'z';
10107 *(p++) = '1';
10108 *(p++) = ',';
10109
10110 addr = remote_address_masked (bp_tgt->placed_address);
10111 p += hexnumstr (p, (ULONGEST) addr);
10112 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10113
10114 putpkt (rs->buf);
10115 getpkt (&rs->buf, &rs->buf_size, 0);
10116
10117 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10118 {
10119 case PACKET_ERROR:
10120 case PACKET_UNKNOWN:
10121 return -1;
10122 case PACKET_OK:
10123 return 0;
10124 }
10125 internal_error (__FILE__, __LINE__,
10126 _("remote_remove_hw_breakpoint: reached end of function"));
10127 }
10128
10129 /* Verify memory using the "qCRC:" request. */
10130
10131 static int
10132 remote_verify_memory (struct target_ops *ops,
10133 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10134 {
10135 struct remote_state *rs = get_remote_state ();
10136 unsigned long host_crc, target_crc;
10137 char *tmp;
10138
10139 /* It doesn't make sense to use qCRC if the remote target is
10140 connected but not running. */
10141 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10142 {
10143 enum packet_result result;
10144
10145 /* Make sure the remote is pointing at the right process. */
10146 set_general_process ();
10147
10148 /* FIXME: assumes lma can fit into long. */
10149 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10150 (long) lma, (long) size);
10151 putpkt (rs->buf);
10152
10153 /* Be clever; compute the host_crc before waiting for target
10154 reply. */
10155 host_crc = xcrc32 (data, size, 0xffffffff);
10156
10157 getpkt (&rs->buf, &rs->buf_size, 0);
10158
10159 result = packet_ok (rs->buf,
10160 &remote_protocol_packets[PACKET_qCRC]);
10161 if (result == PACKET_ERROR)
10162 return -1;
10163 else if (result == PACKET_OK)
10164 {
10165 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10166 target_crc = target_crc * 16 + fromhex (*tmp);
10167
10168 return (host_crc == target_crc);
10169 }
10170 }
10171
10172 return simple_verify_memory (ops, data, lma, size);
10173 }
10174
10175 /* compare-sections command
10176
10177 With no arguments, compares each loadable section in the exec bfd
10178 with the same memory range on the target, and reports mismatches.
10179 Useful for verifying the image on the target against the exec file. */
10180
10181 static void
10182 compare_sections_command (char *args, int from_tty)
10183 {
10184 asection *s;
10185 struct cleanup *old_chain;
10186 gdb_byte *sectdata;
10187 const char *sectname;
10188 bfd_size_type size;
10189 bfd_vma lma;
10190 int matched = 0;
10191 int mismatched = 0;
10192 int res;
10193 int read_only = 0;
10194
10195 if (!exec_bfd)
10196 error (_("command cannot be used without an exec file"));
10197
10198 /* Make sure the remote is pointing at the right process. */
10199 set_general_process ();
10200
10201 if (args != NULL && strcmp (args, "-r") == 0)
10202 {
10203 read_only = 1;
10204 args = NULL;
10205 }
10206
10207 for (s = exec_bfd->sections; s; s = s->next)
10208 {
10209 if (!(s->flags & SEC_LOAD))
10210 continue; /* Skip non-loadable section. */
10211
10212 if (read_only && (s->flags & SEC_READONLY) == 0)
10213 continue; /* Skip writeable sections */
10214
10215 size = bfd_get_section_size (s);
10216 if (size == 0)
10217 continue; /* Skip zero-length section. */
10218
10219 sectname = bfd_get_section_name (exec_bfd, s);
10220 if (args && strcmp (args, sectname) != 0)
10221 continue; /* Not the section selected by user. */
10222
10223 matched = 1; /* Do this section. */
10224 lma = s->lma;
10225
10226 sectdata = (gdb_byte *) xmalloc (size);
10227 old_chain = make_cleanup (xfree, sectdata);
10228 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
10229
10230 res = target_verify_memory (sectdata, lma, size);
10231
10232 if (res == -1)
10233 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10234 paddress (target_gdbarch (), lma),
10235 paddress (target_gdbarch (), lma + size));
10236
10237 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10238 paddress (target_gdbarch (), lma),
10239 paddress (target_gdbarch (), lma + size));
10240 if (res)
10241 printf_filtered ("matched.\n");
10242 else
10243 {
10244 printf_filtered ("MIS-MATCHED!\n");
10245 mismatched++;
10246 }
10247
10248 do_cleanups (old_chain);
10249 }
10250 if (mismatched > 0)
10251 warning (_("One or more sections of the target image does not match\n\
10252 the loaded file\n"));
10253 if (args && !matched)
10254 printf_filtered (_("No loaded section named '%s'.\n"), args);
10255 }
10256
10257 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10258 into remote target. The number of bytes written to the remote
10259 target is returned, or -1 for error. */
10260
10261 static enum target_xfer_status
10262 remote_write_qxfer (struct target_ops *ops, const char *object_name,
10263 const char *annex, const gdb_byte *writebuf,
10264 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10265 struct packet_config *packet)
10266 {
10267 int i, buf_len;
10268 ULONGEST n;
10269 struct remote_state *rs = get_remote_state ();
10270 int max_size = get_memory_write_packet_size ();
10271
10272 if (packet->support == PACKET_DISABLE)
10273 return TARGET_XFER_E_IO;
10274
10275 /* Insert header. */
10276 i = snprintf (rs->buf, max_size,
10277 "qXfer:%s:write:%s:%s:",
10278 object_name, annex ? annex : "",
10279 phex_nz (offset, sizeof offset));
10280 max_size -= (i + 1);
10281
10282 /* Escape as much data as fits into rs->buf. */
10283 buf_len = remote_escape_output
10284 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10285
10286 if (putpkt_binary (rs->buf, i + buf_len) < 0
10287 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10288 || packet_ok (rs->buf, packet) != PACKET_OK)
10289 return TARGET_XFER_E_IO;
10290
10291 unpack_varlen_hex (rs->buf, &n);
10292
10293 *xfered_len = n;
10294 return TARGET_XFER_OK;
10295 }
10296
10297 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10298 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10299 number of bytes read is returned, or 0 for EOF, or -1 for error.
10300 The number of bytes read may be less than LEN without indicating an
10301 EOF. PACKET is checked and updated to indicate whether the remote
10302 target supports this object. */
10303
10304 static enum target_xfer_status
10305 remote_read_qxfer (struct target_ops *ops, const char *object_name,
10306 const char *annex,
10307 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10308 ULONGEST *xfered_len,
10309 struct packet_config *packet)
10310 {
10311 struct remote_state *rs = get_remote_state ();
10312 LONGEST i, n, packet_len;
10313
10314 if (packet->support == PACKET_DISABLE)
10315 return TARGET_XFER_E_IO;
10316
10317 /* Check whether we've cached an end-of-object packet that matches
10318 this request. */
10319 if (rs->finished_object)
10320 {
10321 if (strcmp (object_name, rs->finished_object) == 0
10322 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10323 && offset == rs->finished_offset)
10324 return TARGET_XFER_EOF;
10325
10326
10327 /* Otherwise, we're now reading something different. Discard
10328 the cache. */
10329 xfree (rs->finished_object);
10330 xfree (rs->finished_annex);
10331 rs->finished_object = NULL;
10332 rs->finished_annex = NULL;
10333 }
10334
10335 /* Request only enough to fit in a single packet. The actual data
10336 may not, since we don't know how much of it will need to be escaped;
10337 the target is free to respond with slightly less data. We subtract
10338 five to account for the response type and the protocol frame. */
10339 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10340 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10341 object_name, annex ? annex : "",
10342 phex_nz (offset, sizeof offset),
10343 phex_nz (n, sizeof n));
10344 i = putpkt (rs->buf);
10345 if (i < 0)
10346 return TARGET_XFER_E_IO;
10347
10348 rs->buf[0] = '\0';
10349 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10350 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10351 return TARGET_XFER_E_IO;
10352
10353 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10354 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10355
10356 /* 'm' means there is (or at least might be) more data after this
10357 batch. That does not make sense unless there's at least one byte
10358 of data in this reply. */
10359 if (rs->buf[0] == 'm' && packet_len == 1)
10360 error (_("Remote qXfer reply contained no data."));
10361
10362 /* Got some data. */
10363 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10364 packet_len - 1, readbuf, n);
10365
10366 /* 'l' is an EOF marker, possibly including a final block of data,
10367 or possibly empty. If we have the final block of a non-empty
10368 object, record this fact to bypass a subsequent partial read. */
10369 if (rs->buf[0] == 'l' && offset + i > 0)
10370 {
10371 rs->finished_object = xstrdup (object_name);
10372 rs->finished_annex = xstrdup (annex ? annex : "");
10373 rs->finished_offset = offset + i;
10374 }
10375
10376 if (i == 0)
10377 return TARGET_XFER_EOF;
10378 else
10379 {
10380 *xfered_len = i;
10381 return TARGET_XFER_OK;
10382 }
10383 }
10384
10385 static enum target_xfer_status
10386 remote_xfer_partial (struct target_ops *ops, enum target_object object,
10387 const char *annex, gdb_byte *readbuf,
10388 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10389 ULONGEST *xfered_len)
10390 {
10391 struct remote_state *rs;
10392 int i;
10393 char *p2;
10394 char query_type;
10395 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10396
10397 set_remote_traceframe ();
10398 set_general_thread (inferior_ptid);
10399
10400 rs = get_remote_state ();
10401
10402 /* Handle memory using the standard memory routines. */
10403 if (object == TARGET_OBJECT_MEMORY)
10404 {
10405 /* If the remote target is connected but not running, we should
10406 pass this request down to a lower stratum (e.g. the executable
10407 file). */
10408 if (!target_has_execution)
10409 return TARGET_XFER_EOF;
10410
10411 if (writebuf != NULL)
10412 return remote_write_bytes (offset, writebuf, len, unit_size,
10413 xfered_len);
10414 else
10415 return remote_read_bytes (ops, offset, readbuf, len, unit_size,
10416 xfered_len);
10417 }
10418
10419 /* Handle SPU memory using qxfer packets. */
10420 if (object == TARGET_OBJECT_SPU)
10421 {
10422 if (readbuf)
10423 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
10424 xfered_len, &remote_protocol_packets
10425 [PACKET_qXfer_spu_read]);
10426 else
10427 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
10428 xfered_len, &remote_protocol_packets
10429 [PACKET_qXfer_spu_write]);
10430 }
10431
10432 /* Handle extra signal info using qxfer packets. */
10433 if (object == TARGET_OBJECT_SIGNAL_INFO)
10434 {
10435 if (readbuf)
10436 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
10437 xfered_len, &remote_protocol_packets
10438 [PACKET_qXfer_siginfo_read]);
10439 else
10440 return remote_write_qxfer (ops, "siginfo", annex,
10441 writebuf, offset, len, xfered_len,
10442 &remote_protocol_packets
10443 [PACKET_qXfer_siginfo_write]);
10444 }
10445
10446 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10447 {
10448 if (readbuf)
10449 return remote_read_qxfer (ops, "statictrace", annex,
10450 readbuf, offset, len, xfered_len,
10451 &remote_protocol_packets
10452 [PACKET_qXfer_statictrace_read]);
10453 else
10454 return TARGET_XFER_E_IO;
10455 }
10456
10457 /* Only handle flash writes. */
10458 if (writebuf != NULL)
10459 {
10460 switch (object)
10461 {
10462 case TARGET_OBJECT_FLASH:
10463 return remote_flash_write (ops, offset, len, xfered_len,
10464 writebuf);
10465
10466 default:
10467 return TARGET_XFER_E_IO;
10468 }
10469 }
10470
10471 /* Map pre-existing objects onto letters. DO NOT do this for new
10472 objects!!! Instead specify new query packets. */
10473 switch (object)
10474 {
10475 case TARGET_OBJECT_AVR:
10476 query_type = 'R';
10477 break;
10478
10479 case TARGET_OBJECT_AUXV:
10480 gdb_assert (annex == NULL);
10481 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
10482 xfered_len,
10483 &remote_protocol_packets[PACKET_qXfer_auxv]);
10484
10485 case TARGET_OBJECT_AVAILABLE_FEATURES:
10486 return remote_read_qxfer
10487 (ops, "features", annex, readbuf, offset, len, xfered_len,
10488 &remote_protocol_packets[PACKET_qXfer_features]);
10489
10490 case TARGET_OBJECT_LIBRARIES:
10491 return remote_read_qxfer
10492 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
10493 &remote_protocol_packets[PACKET_qXfer_libraries]);
10494
10495 case TARGET_OBJECT_LIBRARIES_SVR4:
10496 return remote_read_qxfer
10497 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
10498 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10499
10500 case TARGET_OBJECT_MEMORY_MAP:
10501 gdb_assert (annex == NULL);
10502 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
10503 xfered_len,
10504 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10505
10506 case TARGET_OBJECT_OSDATA:
10507 /* Should only get here if we're connected. */
10508 gdb_assert (rs->remote_desc);
10509 return remote_read_qxfer
10510 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
10511 &remote_protocol_packets[PACKET_qXfer_osdata]);
10512
10513 case TARGET_OBJECT_THREADS:
10514 gdb_assert (annex == NULL);
10515 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
10516 xfered_len,
10517 &remote_protocol_packets[PACKET_qXfer_threads]);
10518
10519 case TARGET_OBJECT_TRACEFRAME_INFO:
10520 gdb_assert (annex == NULL);
10521 return remote_read_qxfer
10522 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
10523 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10524
10525 case TARGET_OBJECT_FDPIC:
10526 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
10527 xfered_len,
10528 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10529
10530 case TARGET_OBJECT_OPENVMS_UIB:
10531 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
10532 xfered_len,
10533 &remote_protocol_packets[PACKET_qXfer_uib]);
10534
10535 case TARGET_OBJECT_BTRACE:
10536 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
10537 xfered_len,
10538 &remote_protocol_packets[PACKET_qXfer_btrace]);
10539
10540 case TARGET_OBJECT_BTRACE_CONF:
10541 return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset,
10542 len, xfered_len,
10543 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10544
10545 case TARGET_OBJECT_EXEC_FILE:
10546 return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset,
10547 len, xfered_len,
10548 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10549
10550 default:
10551 return TARGET_XFER_E_IO;
10552 }
10553
10554 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10555 large enough let the caller deal with it. */
10556 if (len < get_remote_packet_size ())
10557 return TARGET_XFER_E_IO;
10558 len = get_remote_packet_size ();
10559
10560 /* Except for querying the minimum buffer size, target must be open. */
10561 if (!rs->remote_desc)
10562 error (_("remote query is only available after target open"));
10563
10564 gdb_assert (annex != NULL);
10565 gdb_assert (readbuf != NULL);
10566
10567 p2 = rs->buf;
10568 *p2++ = 'q';
10569 *p2++ = query_type;
10570
10571 /* We used one buffer char for the remote protocol q command and
10572 another for the query type. As the remote protocol encapsulation
10573 uses 4 chars plus one extra in case we are debugging
10574 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10575 string. */
10576 i = 0;
10577 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10578 {
10579 /* Bad caller may have sent forbidden characters. */
10580 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10581 *p2++ = annex[i];
10582 i++;
10583 }
10584 *p2 = '\0';
10585 gdb_assert (annex[i] == '\0');
10586
10587 i = putpkt (rs->buf);
10588 if (i < 0)
10589 return TARGET_XFER_E_IO;
10590
10591 getpkt (&rs->buf, &rs->buf_size, 0);
10592 strcpy ((char *) readbuf, rs->buf);
10593
10594 *xfered_len = strlen ((char *) readbuf);
10595 return TARGET_XFER_OK;
10596 }
10597
10598 /* Implementation of to_get_memory_xfer_limit. */
10599
10600 static ULONGEST
10601 remote_get_memory_xfer_limit (struct target_ops *ops)
10602 {
10603 return get_memory_write_packet_size ();
10604 }
10605
10606 static int
10607 remote_search_memory (struct target_ops* ops,
10608 CORE_ADDR start_addr, ULONGEST search_space_len,
10609 const gdb_byte *pattern, ULONGEST pattern_len,
10610 CORE_ADDR *found_addrp)
10611 {
10612 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10613 struct remote_state *rs = get_remote_state ();
10614 int max_size = get_memory_write_packet_size ();
10615 struct packet_config *packet =
10616 &remote_protocol_packets[PACKET_qSearch_memory];
10617 /* Number of packet bytes used to encode the pattern;
10618 this could be more than PATTERN_LEN due to escape characters. */
10619 int escaped_pattern_len;
10620 /* Amount of pattern that was encodable in the packet. */
10621 int used_pattern_len;
10622 int i;
10623 int found;
10624 ULONGEST found_addr;
10625
10626 /* Don't go to the target if we don't have to.
10627 This is done before checking packet->support to avoid the possibility that
10628 a success for this edge case means the facility works in general. */
10629 if (pattern_len > search_space_len)
10630 return 0;
10631 if (pattern_len == 0)
10632 {
10633 *found_addrp = start_addr;
10634 return 1;
10635 }
10636
10637 /* If we already know the packet isn't supported, fall back to the simple
10638 way of searching memory. */
10639
10640 if (packet_config_support (packet) == PACKET_DISABLE)
10641 {
10642 /* Target doesn't provided special support, fall back and use the
10643 standard support (copy memory and do the search here). */
10644 return simple_search_memory (ops, start_addr, search_space_len,
10645 pattern, pattern_len, found_addrp);
10646 }
10647
10648 /* Make sure the remote is pointing at the right process. */
10649 set_general_process ();
10650
10651 /* Insert header. */
10652 i = snprintf (rs->buf, max_size,
10653 "qSearch:memory:%s;%s;",
10654 phex_nz (start_addr, addr_size),
10655 phex_nz (search_space_len, sizeof (search_space_len)));
10656 max_size -= (i + 1);
10657
10658 /* Escape as much data as fits into rs->buf. */
10659 escaped_pattern_len =
10660 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10661 &used_pattern_len, max_size);
10662
10663 /* Bail if the pattern is too large. */
10664 if (used_pattern_len != pattern_len)
10665 error (_("Pattern is too large to transmit to remote target."));
10666
10667 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10668 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10669 || packet_ok (rs->buf, packet) != PACKET_OK)
10670 {
10671 /* The request may not have worked because the command is not
10672 supported. If so, fall back to the simple way. */
10673 if (packet->support == PACKET_DISABLE)
10674 {
10675 return simple_search_memory (ops, start_addr, search_space_len,
10676 pattern, pattern_len, found_addrp);
10677 }
10678 return -1;
10679 }
10680
10681 if (rs->buf[0] == '0')
10682 found = 0;
10683 else if (rs->buf[0] == '1')
10684 {
10685 found = 1;
10686 if (rs->buf[1] != ',')
10687 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10688 unpack_varlen_hex (rs->buf + 2, &found_addr);
10689 *found_addrp = found_addr;
10690 }
10691 else
10692 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10693
10694 return found;
10695 }
10696
10697 static void
10698 remote_rcmd (struct target_ops *self, const char *command,
10699 struct ui_file *outbuf)
10700 {
10701 struct remote_state *rs = get_remote_state ();
10702 char *p = rs->buf;
10703
10704 if (!rs->remote_desc)
10705 error (_("remote rcmd is only available after target open"));
10706
10707 /* Send a NULL command across as an empty command. */
10708 if (command == NULL)
10709 command = "";
10710
10711 /* The query prefix. */
10712 strcpy (rs->buf, "qRcmd,");
10713 p = strchr (rs->buf, '\0');
10714
10715 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
10716 > get_remote_packet_size ())
10717 error (_("\"monitor\" command ``%s'' is too long."), command);
10718
10719 /* Encode the actual command. */
10720 bin2hex ((const gdb_byte *) command, p, strlen (command));
10721
10722 if (putpkt (rs->buf) < 0)
10723 error (_("Communication problem with target."));
10724
10725 /* get/display the response */
10726 while (1)
10727 {
10728 char *buf;
10729
10730 /* XXX - see also remote_get_noisy_reply(). */
10731 QUIT; /* Allow user to bail out with ^C. */
10732 rs->buf[0] = '\0';
10733 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
10734 {
10735 /* Timeout. Continue to (try to) read responses.
10736 This is better than stopping with an error, assuming the stub
10737 is still executing the (long) monitor command.
10738 If needed, the user can interrupt gdb using C-c, obtaining
10739 an effect similar to stop on timeout. */
10740 continue;
10741 }
10742 buf = rs->buf;
10743 if (buf[0] == '\0')
10744 error (_("Target does not support this command."));
10745 if (buf[0] == 'O' && buf[1] != 'K')
10746 {
10747 remote_console_output (buf + 1); /* 'O' message from stub. */
10748 continue;
10749 }
10750 if (strcmp (buf, "OK") == 0)
10751 break;
10752 if (strlen (buf) == 3 && buf[0] == 'E'
10753 && isdigit (buf[1]) && isdigit (buf[2]))
10754 {
10755 error (_("Protocol error with Rcmd"));
10756 }
10757 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
10758 {
10759 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
10760
10761 fputc_unfiltered (c, outbuf);
10762 }
10763 break;
10764 }
10765 }
10766
10767 static VEC(mem_region_s) *
10768 remote_memory_map (struct target_ops *ops)
10769 {
10770 VEC(mem_region_s) *result = NULL;
10771 char *text = target_read_stralloc (&current_target,
10772 TARGET_OBJECT_MEMORY_MAP, NULL);
10773
10774 if (text)
10775 {
10776 struct cleanup *back_to = make_cleanup (xfree, text);
10777
10778 result = parse_memory_map (text);
10779 do_cleanups (back_to);
10780 }
10781
10782 return result;
10783 }
10784
10785 static void
10786 packet_command (char *args, int from_tty)
10787 {
10788 struct remote_state *rs = get_remote_state ();
10789
10790 if (!rs->remote_desc)
10791 error (_("command can only be used with remote target"));
10792
10793 if (!args)
10794 error (_("remote-packet command requires packet text as argument"));
10795
10796 puts_filtered ("sending: ");
10797 print_packet (args);
10798 puts_filtered ("\n");
10799 putpkt (args);
10800
10801 getpkt (&rs->buf, &rs->buf_size, 0);
10802 puts_filtered ("received: ");
10803 print_packet (rs->buf);
10804 puts_filtered ("\n");
10805 }
10806
10807 #if 0
10808 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
10809
10810 static void display_thread_info (struct gdb_ext_thread_info *info);
10811
10812 static void threadset_test_cmd (char *cmd, int tty);
10813
10814 static void threadalive_test (char *cmd, int tty);
10815
10816 static void threadlist_test_cmd (char *cmd, int tty);
10817
10818 int get_and_display_threadinfo (threadref *ref);
10819
10820 static void threadinfo_test_cmd (char *cmd, int tty);
10821
10822 static int thread_display_step (threadref *ref, void *context);
10823
10824 static void threadlist_update_test_cmd (char *cmd, int tty);
10825
10826 static void init_remote_threadtests (void);
10827
10828 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
10829
10830 static void
10831 threadset_test_cmd (char *cmd, int tty)
10832 {
10833 int sample_thread = SAMPLE_THREAD;
10834
10835 printf_filtered (_("Remote threadset test\n"));
10836 set_general_thread (sample_thread);
10837 }
10838
10839
10840 static void
10841 threadalive_test (char *cmd, int tty)
10842 {
10843 int sample_thread = SAMPLE_THREAD;
10844 int pid = ptid_get_pid (inferior_ptid);
10845 ptid_t ptid = ptid_build (pid, sample_thread, 0);
10846
10847 if (remote_thread_alive (ptid))
10848 printf_filtered ("PASS: Thread alive test\n");
10849 else
10850 printf_filtered ("FAIL: Thread alive test\n");
10851 }
10852
10853 void output_threadid (char *title, threadref *ref);
10854
10855 void
10856 output_threadid (char *title, threadref *ref)
10857 {
10858 char hexid[20];
10859
10860 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
10861 hexid[16] = 0;
10862 printf_filtered ("%s %s\n", title, (&hexid[0]));
10863 }
10864
10865 static void
10866 threadlist_test_cmd (char *cmd, int tty)
10867 {
10868 int startflag = 1;
10869 threadref nextthread;
10870 int done, result_count;
10871 threadref threadlist[3];
10872
10873 printf_filtered ("Remote Threadlist test\n");
10874 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
10875 &result_count, &threadlist[0]))
10876 printf_filtered ("FAIL: threadlist test\n");
10877 else
10878 {
10879 threadref *scan = threadlist;
10880 threadref *limit = scan + result_count;
10881
10882 while (scan < limit)
10883 output_threadid (" thread ", scan++);
10884 }
10885 }
10886
10887 void
10888 display_thread_info (struct gdb_ext_thread_info *info)
10889 {
10890 output_threadid ("Threadid: ", &info->threadid);
10891 printf_filtered ("Name: %s\n ", info->shortname);
10892 printf_filtered ("State: %s\n", info->display);
10893 printf_filtered ("other: %s\n\n", info->more_display);
10894 }
10895
10896 int
10897 get_and_display_threadinfo (threadref *ref)
10898 {
10899 int result;
10900 int set;
10901 struct gdb_ext_thread_info threadinfo;
10902
10903 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
10904 | TAG_MOREDISPLAY | TAG_DISPLAY;
10905 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
10906 display_thread_info (&threadinfo);
10907 return result;
10908 }
10909
10910 static void
10911 threadinfo_test_cmd (char *cmd, int tty)
10912 {
10913 int athread = SAMPLE_THREAD;
10914 threadref thread;
10915 int set;
10916
10917 int_to_threadref (&thread, athread);
10918 printf_filtered ("Remote Threadinfo test\n");
10919 if (!get_and_display_threadinfo (&thread))
10920 printf_filtered ("FAIL cannot get thread info\n");
10921 }
10922
10923 static int
10924 thread_display_step (threadref *ref, void *context)
10925 {
10926 /* output_threadid(" threadstep ",ref); *//* simple test */
10927 return get_and_display_threadinfo (ref);
10928 }
10929
10930 static void
10931 threadlist_update_test_cmd (char *cmd, int tty)
10932 {
10933 printf_filtered ("Remote Threadlist update test\n");
10934 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
10935 }
10936
10937 static void
10938 init_remote_threadtests (void)
10939 {
10940 add_com ("tlist", class_obscure, threadlist_test_cmd,
10941 _("Fetch and print the remote list of "
10942 "thread identifiers, one pkt only"));
10943 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
10944 _("Fetch and display info about one thread"));
10945 add_com ("tset", class_obscure, threadset_test_cmd,
10946 _("Test setting to a different thread"));
10947 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
10948 _("Iterate through updating all remote thread info"));
10949 add_com ("talive", class_obscure, threadalive_test,
10950 _(" Remote thread alive test "));
10951 }
10952
10953 #endif /* 0 */
10954
10955 /* Convert a thread ID to a string. Returns the string in a static
10956 buffer. */
10957
10958 static const char *
10959 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
10960 {
10961 static char buf[64];
10962 struct remote_state *rs = get_remote_state ();
10963
10964 if (ptid_equal (ptid, null_ptid))
10965 return normal_pid_to_str (ptid);
10966 else if (ptid_is_pid (ptid))
10967 {
10968 /* Printing an inferior target id. */
10969
10970 /* When multi-process extensions are off, there's no way in the
10971 remote protocol to know the remote process id, if there's any
10972 at all. There's one exception --- when we're connected with
10973 target extended-remote, and we manually attached to a process
10974 with "attach PID". We don't record anywhere a flag that
10975 allows us to distinguish that case from the case of
10976 connecting with extended-remote and the stub already being
10977 attached to a process, and reporting yes to qAttached, hence
10978 no smart special casing here. */
10979 if (!remote_multi_process_p (rs))
10980 {
10981 xsnprintf (buf, sizeof buf, "Remote target");
10982 return buf;
10983 }
10984
10985 return normal_pid_to_str (ptid);
10986 }
10987 else
10988 {
10989 if (ptid_equal (magic_null_ptid, ptid))
10990 xsnprintf (buf, sizeof buf, "Thread <main>");
10991 else if (remote_multi_process_p (rs))
10992 if (ptid_get_lwp (ptid) == 0)
10993 return normal_pid_to_str (ptid);
10994 else
10995 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
10996 ptid_get_pid (ptid), ptid_get_lwp (ptid));
10997 else
10998 xsnprintf (buf, sizeof buf, "Thread %ld",
10999 ptid_get_lwp (ptid));
11000 return buf;
11001 }
11002 }
11003
11004 /* Get the address of the thread local variable in OBJFILE which is
11005 stored at OFFSET within the thread local storage for thread PTID. */
11006
11007 static CORE_ADDR
11008 remote_get_thread_local_address (struct target_ops *ops,
11009 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
11010 {
11011 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11012 {
11013 struct remote_state *rs = get_remote_state ();
11014 char *p = rs->buf;
11015 char *endp = rs->buf + get_remote_packet_size ();
11016 enum packet_result result;
11017
11018 strcpy (p, "qGetTLSAddr:");
11019 p += strlen (p);
11020 p = write_ptid (p, endp, ptid);
11021 *p++ = ',';
11022 p += hexnumstr (p, offset);
11023 *p++ = ',';
11024 p += hexnumstr (p, lm);
11025 *p++ = '\0';
11026
11027 putpkt (rs->buf);
11028 getpkt (&rs->buf, &rs->buf_size, 0);
11029 result = packet_ok (rs->buf,
11030 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11031 if (result == PACKET_OK)
11032 {
11033 ULONGEST result;
11034
11035 unpack_varlen_hex (rs->buf, &result);
11036 return result;
11037 }
11038 else if (result == PACKET_UNKNOWN)
11039 throw_error (TLS_GENERIC_ERROR,
11040 _("Remote target doesn't support qGetTLSAddr packet"));
11041 else
11042 throw_error (TLS_GENERIC_ERROR,
11043 _("Remote target failed to process qGetTLSAddr request"));
11044 }
11045 else
11046 throw_error (TLS_GENERIC_ERROR,
11047 _("TLS not supported or disabled on this target"));
11048 /* Not reached. */
11049 return 0;
11050 }
11051
11052 /* Provide thread local base, i.e. Thread Information Block address.
11053 Returns 1 if ptid is found and thread_local_base is non zero. */
11054
11055 static int
11056 remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
11057 {
11058 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11059 {
11060 struct remote_state *rs = get_remote_state ();
11061 char *p = rs->buf;
11062 char *endp = rs->buf + get_remote_packet_size ();
11063 enum packet_result result;
11064
11065 strcpy (p, "qGetTIBAddr:");
11066 p += strlen (p);
11067 p = write_ptid (p, endp, ptid);
11068 *p++ = '\0';
11069
11070 putpkt (rs->buf);
11071 getpkt (&rs->buf, &rs->buf_size, 0);
11072 result = packet_ok (rs->buf,
11073 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11074 if (result == PACKET_OK)
11075 {
11076 ULONGEST result;
11077
11078 unpack_varlen_hex (rs->buf, &result);
11079 if (addr)
11080 *addr = (CORE_ADDR) result;
11081 return 1;
11082 }
11083 else if (result == PACKET_UNKNOWN)
11084 error (_("Remote target doesn't support qGetTIBAddr packet"));
11085 else
11086 error (_("Remote target failed to process qGetTIBAddr request"));
11087 }
11088 else
11089 error (_("qGetTIBAddr not supported or disabled on this target"));
11090 /* Not reached. */
11091 return 0;
11092 }
11093
11094 /* Support for inferring a target description based on the current
11095 architecture and the size of a 'g' packet. While the 'g' packet
11096 can have any size (since optional registers can be left off the
11097 end), some sizes are easily recognizable given knowledge of the
11098 approximate architecture. */
11099
11100 struct remote_g_packet_guess
11101 {
11102 int bytes;
11103 const struct target_desc *tdesc;
11104 };
11105 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11106 DEF_VEC_O(remote_g_packet_guess_s);
11107
11108 struct remote_g_packet_data
11109 {
11110 VEC(remote_g_packet_guess_s) *guesses;
11111 };
11112
11113 static struct gdbarch_data *remote_g_packet_data_handle;
11114
11115 static void *
11116 remote_g_packet_data_init (struct obstack *obstack)
11117 {
11118 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11119 }
11120
11121 void
11122 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11123 const struct target_desc *tdesc)
11124 {
11125 struct remote_g_packet_data *data
11126 = ((struct remote_g_packet_data *)
11127 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11128 struct remote_g_packet_guess new_guess, *guess;
11129 int ix;
11130
11131 gdb_assert (tdesc != NULL);
11132
11133 for (ix = 0;
11134 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11135 ix++)
11136 if (guess->bytes == bytes)
11137 internal_error (__FILE__, __LINE__,
11138 _("Duplicate g packet description added for size %d"),
11139 bytes);
11140
11141 new_guess.bytes = bytes;
11142 new_guess.tdesc = tdesc;
11143 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11144 }
11145
11146 /* Return 1 if remote_read_description would do anything on this target
11147 and architecture, 0 otherwise. */
11148
11149 static int
11150 remote_read_description_p (struct target_ops *target)
11151 {
11152 struct remote_g_packet_data *data
11153 = ((struct remote_g_packet_data *)
11154 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11155
11156 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11157 return 1;
11158
11159 return 0;
11160 }
11161
11162 static const struct target_desc *
11163 remote_read_description (struct target_ops *target)
11164 {
11165 struct remote_g_packet_data *data
11166 = ((struct remote_g_packet_data *)
11167 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11168
11169 /* Do not try this during initial connection, when we do not know
11170 whether there is a running but stopped thread. */
11171 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11172 return target->beneath->to_read_description (target->beneath);
11173
11174 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11175 {
11176 struct remote_g_packet_guess *guess;
11177 int ix;
11178 int bytes = send_g_packet ();
11179
11180 for (ix = 0;
11181 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11182 ix++)
11183 if (guess->bytes == bytes)
11184 return guess->tdesc;
11185
11186 /* We discard the g packet. A minor optimization would be to
11187 hold on to it, and fill the register cache once we have selected
11188 an architecture, but it's too tricky to do safely. */
11189 }
11190
11191 return target->beneath->to_read_description (target->beneath);
11192 }
11193
11194 /* Remote file transfer support. This is host-initiated I/O, not
11195 target-initiated; for target-initiated, see remote-fileio.c. */
11196
11197 /* If *LEFT is at least the length of STRING, copy STRING to
11198 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11199 decrease *LEFT. Otherwise raise an error. */
11200
11201 static void
11202 remote_buffer_add_string (char **buffer, int *left, const char *string)
11203 {
11204 int len = strlen (string);
11205
11206 if (len > *left)
11207 error (_("Packet too long for target."));
11208
11209 memcpy (*buffer, string, len);
11210 *buffer += len;
11211 *left -= len;
11212
11213 /* NUL-terminate the buffer as a convenience, if there is
11214 room. */
11215 if (*left)
11216 **buffer = '\0';
11217 }
11218
11219 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11220 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11221 decrease *LEFT. Otherwise raise an error. */
11222
11223 static void
11224 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11225 int len)
11226 {
11227 if (2 * len > *left)
11228 error (_("Packet too long for target."));
11229
11230 bin2hex (bytes, *buffer, len);
11231 *buffer += 2 * len;
11232 *left -= 2 * len;
11233
11234 /* NUL-terminate the buffer as a convenience, if there is
11235 room. */
11236 if (*left)
11237 **buffer = '\0';
11238 }
11239
11240 /* If *LEFT is large enough, convert VALUE to hex and add it to
11241 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11242 decrease *LEFT. Otherwise raise an error. */
11243
11244 static void
11245 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11246 {
11247 int len = hexnumlen (value);
11248
11249 if (len > *left)
11250 error (_("Packet too long for target."));
11251
11252 hexnumstr (*buffer, value);
11253 *buffer += len;
11254 *left -= len;
11255
11256 /* NUL-terminate the buffer as a convenience, if there is
11257 room. */
11258 if (*left)
11259 **buffer = '\0';
11260 }
11261
11262 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11263 value, *REMOTE_ERRNO to the remote error number or zero if none
11264 was included, and *ATTACHMENT to point to the start of the annex
11265 if any. The length of the packet isn't needed here; there may
11266 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11267
11268 Return 0 if the packet could be parsed, -1 if it could not. If
11269 -1 is returned, the other variables may not be initialized. */
11270
11271 static int
11272 remote_hostio_parse_result (char *buffer, int *retcode,
11273 int *remote_errno, char **attachment)
11274 {
11275 char *p, *p2;
11276
11277 *remote_errno = 0;
11278 *attachment = NULL;
11279
11280 if (buffer[0] != 'F')
11281 return -1;
11282
11283 errno = 0;
11284 *retcode = strtol (&buffer[1], &p, 16);
11285 if (errno != 0 || p == &buffer[1])
11286 return -1;
11287
11288 /* Check for ",errno". */
11289 if (*p == ',')
11290 {
11291 errno = 0;
11292 *remote_errno = strtol (p + 1, &p2, 16);
11293 if (errno != 0 || p + 1 == p2)
11294 return -1;
11295 p = p2;
11296 }
11297
11298 /* Check for ";attachment". If there is no attachment, the
11299 packet should end here. */
11300 if (*p == ';')
11301 {
11302 *attachment = p + 1;
11303 return 0;
11304 }
11305 else if (*p == '\0')
11306 return 0;
11307 else
11308 return -1;
11309 }
11310
11311 /* Send a prepared I/O packet to the target and read its response.
11312 The prepared packet is in the global RS->BUF before this function
11313 is called, and the answer is there when we return.
11314
11315 COMMAND_BYTES is the length of the request to send, which may include
11316 binary data. WHICH_PACKET is the packet configuration to check
11317 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11318 is set to the error number and -1 is returned. Otherwise the value
11319 returned by the function is returned.
11320
11321 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11322 attachment is expected; an error will be reported if there's a
11323 mismatch. If one is found, *ATTACHMENT will be set to point into
11324 the packet buffer and *ATTACHMENT_LEN will be set to the
11325 attachment's length. */
11326
11327 static int
11328 remote_hostio_send_command (int command_bytes, int which_packet,
11329 int *remote_errno, char **attachment,
11330 int *attachment_len)
11331 {
11332 struct remote_state *rs = get_remote_state ();
11333 int ret, bytes_read;
11334 char *attachment_tmp;
11335
11336 if (!rs->remote_desc
11337 || packet_support (which_packet) == PACKET_DISABLE)
11338 {
11339 *remote_errno = FILEIO_ENOSYS;
11340 return -1;
11341 }
11342
11343 putpkt_binary (rs->buf, command_bytes);
11344 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11345
11346 /* If it timed out, something is wrong. Don't try to parse the
11347 buffer. */
11348 if (bytes_read < 0)
11349 {
11350 *remote_errno = FILEIO_EINVAL;
11351 return -1;
11352 }
11353
11354 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11355 {
11356 case PACKET_ERROR:
11357 *remote_errno = FILEIO_EINVAL;
11358 return -1;
11359 case PACKET_UNKNOWN:
11360 *remote_errno = FILEIO_ENOSYS;
11361 return -1;
11362 case PACKET_OK:
11363 break;
11364 }
11365
11366 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11367 &attachment_tmp))
11368 {
11369 *remote_errno = FILEIO_EINVAL;
11370 return -1;
11371 }
11372
11373 /* Make sure we saw an attachment if and only if we expected one. */
11374 if ((attachment_tmp == NULL && attachment != NULL)
11375 || (attachment_tmp != NULL && attachment == NULL))
11376 {
11377 *remote_errno = FILEIO_EINVAL;
11378 return -1;
11379 }
11380
11381 /* If an attachment was found, it must point into the packet buffer;
11382 work out how many bytes there were. */
11383 if (attachment_tmp != NULL)
11384 {
11385 *attachment = attachment_tmp;
11386 *attachment_len = bytes_read - (*attachment - rs->buf);
11387 }
11388
11389 return ret;
11390 }
11391
11392 /* Invalidate the readahead cache. */
11393
11394 static void
11395 readahead_cache_invalidate (void)
11396 {
11397 struct remote_state *rs = get_remote_state ();
11398
11399 rs->readahead_cache.fd = -1;
11400 }
11401
11402 /* Invalidate the readahead cache if it is holding data for FD. */
11403
11404 static void
11405 readahead_cache_invalidate_fd (int fd)
11406 {
11407 struct remote_state *rs = get_remote_state ();
11408
11409 if (rs->readahead_cache.fd == fd)
11410 rs->readahead_cache.fd = -1;
11411 }
11412
11413 /* Set the filesystem remote_hostio functions that take FILENAME
11414 arguments will use. Return 0 on success, or -1 if an error
11415 occurs (and set *REMOTE_ERRNO). */
11416
11417 static int
11418 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11419 {
11420 struct remote_state *rs = get_remote_state ();
11421 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11422 char *p = rs->buf;
11423 int left = get_remote_packet_size () - 1;
11424 char arg[9];
11425 int ret;
11426
11427 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11428 return 0;
11429
11430 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11431 return 0;
11432
11433 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11434
11435 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11436 remote_buffer_add_string (&p, &left, arg);
11437
11438 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11439 remote_errno, NULL, NULL);
11440
11441 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11442 return 0;
11443
11444 if (ret == 0)
11445 rs->fs_pid = required_pid;
11446
11447 return ret;
11448 }
11449
11450 /* Implementation of to_fileio_open. */
11451
11452 static int
11453 remote_hostio_open (struct target_ops *self,
11454 struct inferior *inf, const char *filename,
11455 int flags, int mode, int warn_if_slow,
11456 int *remote_errno)
11457 {
11458 struct remote_state *rs = get_remote_state ();
11459 char *p = rs->buf;
11460 int left = get_remote_packet_size () - 1;
11461
11462 if (warn_if_slow)
11463 {
11464 static int warning_issued = 0;
11465
11466 printf_unfiltered (_("Reading %s from remote target...\n"),
11467 filename);
11468
11469 if (!warning_issued)
11470 {
11471 warning (_("File transfers from remote targets can be slow."
11472 " Use \"set sysroot\" to access files locally"
11473 " instead."));
11474 warning_issued = 1;
11475 }
11476 }
11477
11478 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11479 return -1;
11480
11481 remote_buffer_add_string (&p, &left, "vFile:open:");
11482
11483 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11484 strlen (filename));
11485 remote_buffer_add_string (&p, &left, ",");
11486
11487 remote_buffer_add_int (&p, &left, flags);
11488 remote_buffer_add_string (&p, &left, ",");
11489
11490 remote_buffer_add_int (&p, &left, mode);
11491
11492 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11493 remote_errno, NULL, NULL);
11494 }
11495
11496 /* Implementation of to_fileio_pwrite. */
11497
11498 static int
11499 remote_hostio_pwrite (struct target_ops *self,
11500 int fd, const gdb_byte *write_buf, int len,
11501 ULONGEST offset, int *remote_errno)
11502 {
11503 struct remote_state *rs = get_remote_state ();
11504 char *p = rs->buf;
11505 int left = get_remote_packet_size ();
11506 int out_len;
11507
11508 readahead_cache_invalidate_fd (fd);
11509
11510 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11511
11512 remote_buffer_add_int (&p, &left, fd);
11513 remote_buffer_add_string (&p, &left, ",");
11514
11515 remote_buffer_add_int (&p, &left, offset);
11516 remote_buffer_add_string (&p, &left, ",");
11517
11518 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11519 get_remote_packet_size () - (p - rs->buf));
11520
11521 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11522 remote_errno, NULL, NULL);
11523 }
11524
11525 /* Helper for the implementation of to_fileio_pread. Read the file
11526 from the remote side with vFile:pread. */
11527
11528 static int
11529 remote_hostio_pread_vFile (struct target_ops *self,
11530 int fd, gdb_byte *read_buf, int len,
11531 ULONGEST offset, int *remote_errno)
11532 {
11533 struct remote_state *rs = get_remote_state ();
11534 char *p = rs->buf;
11535 char *attachment;
11536 int left = get_remote_packet_size ();
11537 int ret, attachment_len;
11538 int read_len;
11539
11540 remote_buffer_add_string (&p, &left, "vFile:pread:");
11541
11542 remote_buffer_add_int (&p, &left, fd);
11543 remote_buffer_add_string (&p, &left, ",");
11544
11545 remote_buffer_add_int (&p, &left, len);
11546 remote_buffer_add_string (&p, &left, ",");
11547
11548 remote_buffer_add_int (&p, &left, offset);
11549
11550 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11551 remote_errno, &attachment,
11552 &attachment_len);
11553
11554 if (ret < 0)
11555 return ret;
11556
11557 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11558 read_buf, len);
11559 if (read_len != ret)
11560 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11561
11562 return ret;
11563 }
11564
11565 /* Serve pread from the readahead cache. Returns number of bytes
11566 read, or 0 if the request can't be served from the cache. */
11567
11568 static int
11569 remote_hostio_pread_from_cache (struct remote_state *rs,
11570 int fd, gdb_byte *read_buf, size_t len,
11571 ULONGEST offset)
11572 {
11573 struct readahead_cache *cache = &rs->readahead_cache;
11574
11575 if (cache->fd == fd
11576 && cache->offset <= offset
11577 && offset < cache->offset + cache->bufsize)
11578 {
11579 ULONGEST max = cache->offset + cache->bufsize;
11580
11581 if (offset + len > max)
11582 len = max - offset;
11583
11584 memcpy (read_buf, cache->buf + offset - cache->offset, len);
11585 return len;
11586 }
11587
11588 return 0;
11589 }
11590
11591 /* Implementation of to_fileio_pread. */
11592
11593 static int
11594 remote_hostio_pread (struct target_ops *self,
11595 int fd, gdb_byte *read_buf, int len,
11596 ULONGEST offset, int *remote_errno)
11597 {
11598 int ret;
11599 struct remote_state *rs = get_remote_state ();
11600 struct readahead_cache *cache = &rs->readahead_cache;
11601
11602 ret = remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11603 if (ret > 0)
11604 {
11605 cache->hit_count++;
11606
11607 if (remote_debug)
11608 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11609 pulongest (cache->hit_count));
11610 return ret;
11611 }
11612
11613 cache->miss_count++;
11614 if (remote_debug)
11615 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11616 pulongest (cache->miss_count));
11617
11618 cache->fd = fd;
11619 cache->offset = offset;
11620 cache->bufsize = get_remote_packet_size ();
11621 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11622
11623 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11624 cache->offset, remote_errno);
11625 if (ret <= 0)
11626 {
11627 readahead_cache_invalidate_fd (fd);
11628 return ret;
11629 }
11630
11631 cache->bufsize = ret;
11632 return remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11633 }
11634
11635 /* Implementation of to_fileio_close. */
11636
11637 static int
11638 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11639 {
11640 struct remote_state *rs = get_remote_state ();
11641 char *p = rs->buf;
11642 int left = get_remote_packet_size () - 1;
11643
11644 readahead_cache_invalidate_fd (fd);
11645
11646 remote_buffer_add_string (&p, &left, "vFile:close:");
11647
11648 remote_buffer_add_int (&p, &left, fd);
11649
11650 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11651 remote_errno, NULL, NULL);
11652 }
11653
11654 /* Implementation of to_fileio_unlink. */
11655
11656 static int
11657 remote_hostio_unlink (struct target_ops *self,
11658 struct inferior *inf, const char *filename,
11659 int *remote_errno)
11660 {
11661 struct remote_state *rs = get_remote_state ();
11662 char *p = rs->buf;
11663 int left = get_remote_packet_size () - 1;
11664
11665 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11666 return -1;
11667
11668 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11669
11670 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11671 strlen (filename));
11672
11673 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
11674 remote_errno, NULL, NULL);
11675 }
11676
11677 /* Implementation of to_fileio_readlink. */
11678
11679 static char *
11680 remote_hostio_readlink (struct target_ops *self,
11681 struct inferior *inf, const char *filename,
11682 int *remote_errno)
11683 {
11684 struct remote_state *rs = get_remote_state ();
11685 char *p = rs->buf;
11686 char *attachment;
11687 int left = get_remote_packet_size ();
11688 int len, attachment_len;
11689 int read_len;
11690 char *ret;
11691
11692 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11693 return NULL;
11694
11695 remote_buffer_add_string (&p, &left, "vFile:readlink:");
11696
11697 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11698 strlen (filename));
11699
11700 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
11701 remote_errno, &attachment,
11702 &attachment_len);
11703
11704 if (len < 0)
11705 return NULL;
11706
11707 ret = (char *) xmalloc (len + 1);
11708
11709 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11710 (gdb_byte *) ret, len);
11711 if (read_len != len)
11712 error (_("Readlink returned %d, but %d bytes."), len, read_len);
11713
11714 ret[len] = '\0';
11715 return ret;
11716 }
11717
11718 /* Implementation of to_fileio_fstat. */
11719
11720 static int
11721 remote_hostio_fstat (struct target_ops *self,
11722 int fd, struct stat *st,
11723 int *remote_errno)
11724 {
11725 struct remote_state *rs = get_remote_state ();
11726 char *p = rs->buf;
11727 int left = get_remote_packet_size ();
11728 int attachment_len, ret;
11729 char *attachment;
11730 struct fio_stat fst;
11731 int read_len;
11732
11733 remote_buffer_add_string (&p, &left, "vFile:fstat:");
11734
11735 remote_buffer_add_int (&p, &left, fd);
11736
11737 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
11738 remote_errno, &attachment,
11739 &attachment_len);
11740 if (ret < 0)
11741 {
11742 if (*remote_errno != FILEIO_ENOSYS)
11743 return ret;
11744
11745 /* Strictly we should return -1, ENOSYS here, but when
11746 "set sysroot remote:" was implemented in August 2008
11747 BFD's need for a stat function was sidestepped with
11748 this hack. This was not remedied until March 2015
11749 so we retain the previous behavior to avoid breaking
11750 compatibility.
11751
11752 Note that the memset is a March 2015 addition; older
11753 GDBs set st_size *and nothing else* so the structure
11754 would have garbage in all other fields. This might
11755 break something but retaining the previous behavior
11756 here would be just too wrong. */
11757
11758 memset (st, 0, sizeof (struct stat));
11759 st->st_size = INT_MAX;
11760 return 0;
11761 }
11762
11763 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11764 (gdb_byte *) &fst, sizeof (fst));
11765
11766 if (read_len != ret)
11767 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
11768
11769 if (read_len != sizeof (fst))
11770 error (_("vFile:fstat returned %d bytes, but expecting %d."),
11771 read_len, (int) sizeof (fst));
11772
11773 remote_fileio_to_host_stat (&fst, st);
11774
11775 return 0;
11776 }
11777
11778 /* Implementation of to_filesystem_is_local. */
11779
11780 static int
11781 remote_filesystem_is_local (struct target_ops *self)
11782 {
11783 /* Valgrind GDB presents itself as a remote target but works
11784 on the local filesystem: it does not implement remote get
11785 and users are not expected to set a sysroot. To handle
11786 this case we treat the remote filesystem as local if the
11787 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
11788 does not support vFile:open. */
11789 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
11790 {
11791 enum packet_support ps = packet_support (PACKET_vFile_open);
11792
11793 if (ps == PACKET_SUPPORT_UNKNOWN)
11794 {
11795 int fd, remote_errno;
11796
11797 /* Try opening a file to probe support. The supplied
11798 filename is irrelevant, we only care about whether
11799 the stub recognizes the packet or not. */
11800 fd = remote_hostio_open (self, NULL, "just probing",
11801 FILEIO_O_RDONLY, 0700, 0,
11802 &remote_errno);
11803
11804 if (fd >= 0)
11805 remote_hostio_close (self, fd, &remote_errno);
11806
11807 ps = packet_support (PACKET_vFile_open);
11808 }
11809
11810 if (ps == PACKET_DISABLE)
11811 {
11812 static int warning_issued = 0;
11813
11814 if (!warning_issued)
11815 {
11816 warning (_("remote target does not support file"
11817 " transfer, attempting to access files"
11818 " from local filesystem."));
11819 warning_issued = 1;
11820 }
11821
11822 return 1;
11823 }
11824 }
11825
11826 return 0;
11827 }
11828
11829 static int
11830 remote_fileio_errno_to_host (int errnum)
11831 {
11832 switch (errnum)
11833 {
11834 case FILEIO_EPERM:
11835 return EPERM;
11836 case FILEIO_ENOENT:
11837 return ENOENT;
11838 case FILEIO_EINTR:
11839 return EINTR;
11840 case FILEIO_EIO:
11841 return EIO;
11842 case FILEIO_EBADF:
11843 return EBADF;
11844 case FILEIO_EACCES:
11845 return EACCES;
11846 case FILEIO_EFAULT:
11847 return EFAULT;
11848 case FILEIO_EBUSY:
11849 return EBUSY;
11850 case FILEIO_EEXIST:
11851 return EEXIST;
11852 case FILEIO_ENODEV:
11853 return ENODEV;
11854 case FILEIO_ENOTDIR:
11855 return ENOTDIR;
11856 case FILEIO_EISDIR:
11857 return EISDIR;
11858 case FILEIO_EINVAL:
11859 return EINVAL;
11860 case FILEIO_ENFILE:
11861 return ENFILE;
11862 case FILEIO_EMFILE:
11863 return EMFILE;
11864 case FILEIO_EFBIG:
11865 return EFBIG;
11866 case FILEIO_ENOSPC:
11867 return ENOSPC;
11868 case FILEIO_ESPIPE:
11869 return ESPIPE;
11870 case FILEIO_EROFS:
11871 return EROFS;
11872 case FILEIO_ENOSYS:
11873 return ENOSYS;
11874 case FILEIO_ENAMETOOLONG:
11875 return ENAMETOOLONG;
11876 }
11877 return -1;
11878 }
11879
11880 static char *
11881 remote_hostio_error (int errnum)
11882 {
11883 int host_error = remote_fileio_errno_to_host (errnum);
11884
11885 if (host_error == -1)
11886 error (_("Unknown remote I/O error %d"), errnum);
11887 else
11888 error (_("Remote I/O error: %s"), safe_strerror (host_error));
11889 }
11890
11891 static void
11892 remote_hostio_close_cleanup (void *opaque)
11893 {
11894 int fd = *(int *) opaque;
11895 int remote_errno;
11896
11897 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
11898 }
11899
11900 void
11901 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
11902 {
11903 struct cleanup *back_to, *close_cleanup;
11904 int retcode, fd, remote_errno, bytes, io_size;
11905 FILE *file;
11906 gdb_byte *buffer;
11907 int bytes_in_buffer;
11908 int saw_eof;
11909 ULONGEST offset;
11910 struct remote_state *rs = get_remote_state ();
11911
11912 if (!rs->remote_desc)
11913 error (_("command can only be used with remote target"));
11914
11915 file = gdb_fopen_cloexec (local_file, "rb");
11916 if (file == NULL)
11917 perror_with_name (local_file);
11918 back_to = make_cleanup_fclose (file);
11919
11920 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
11921 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
11922 | FILEIO_O_TRUNC),
11923 0700, 0, &remote_errno);
11924 if (fd == -1)
11925 remote_hostio_error (remote_errno);
11926
11927 /* Send up to this many bytes at once. They won't all fit in the
11928 remote packet limit, so we'll transfer slightly fewer. */
11929 io_size = get_remote_packet_size ();
11930 buffer = (gdb_byte *) xmalloc (io_size);
11931 make_cleanup (xfree, buffer);
11932
11933 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
11934
11935 bytes_in_buffer = 0;
11936 saw_eof = 0;
11937 offset = 0;
11938 while (bytes_in_buffer || !saw_eof)
11939 {
11940 if (!saw_eof)
11941 {
11942 bytes = fread (buffer + bytes_in_buffer, 1,
11943 io_size - bytes_in_buffer,
11944 file);
11945 if (bytes == 0)
11946 {
11947 if (ferror (file))
11948 error (_("Error reading %s."), local_file);
11949 else
11950 {
11951 /* EOF. Unless there is something still in the
11952 buffer from the last iteration, we are done. */
11953 saw_eof = 1;
11954 if (bytes_in_buffer == 0)
11955 break;
11956 }
11957 }
11958 }
11959 else
11960 bytes = 0;
11961
11962 bytes += bytes_in_buffer;
11963 bytes_in_buffer = 0;
11964
11965 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
11966 fd, buffer, bytes,
11967 offset, &remote_errno);
11968
11969 if (retcode < 0)
11970 remote_hostio_error (remote_errno);
11971 else if (retcode == 0)
11972 error (_("Remote write of %d bytes returned 0!"), bytes);
11973 else if (retcode < bytes)
11974 {
11975 /* Short write. Save the rest of the read data for the next
11976 write. */
11977 bytes_in_buffer = bytes - retcode;
11978 memmove (buffer, buffer + retcode, bytes_in_buffer);
11979 }
11980
11981 offset += retcode;
11982 }
11983
11984 discard_cleanups (close_cleanup);
11985 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
11986 remote_hostio_error (remote_errno);
11987
11988 if (from_tty)
11989 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
11990 do_cleanups (back_to);
11991 }
11992
11993 void
11994 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
11995 {
11996 struct cleanup *back_to, *close_cleanup;
11997 int fd, remote_errno, bytes, io_size;
11998 FILE *file;
11999 gdb_byte *buffer;
12000 ULONGEST offset;
12001 struct remote_state *rs = get_remote_state ();
12002
12003 if (!rs->remote_desc)
12004 error (_("command can only be used with remote target"));
12005
12006 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
12007 remote_file, FILEIO_O_RDONLY, 0, 0,
12008 &remote_errno);
12009 if (fd == -1)
12010 remote_hostio_error (remote_errno);
12011
12012 file = gdb_fopen_cloexec (local_file, "wb");
12013 if (file == NULL)
12014 perror_with_name (local_file);
12015 back_to = make_cleanup_fclose (file);
12016
12017 /* Send up to this many bytes at once. They won't all fit in the
12018 remote packet limit, so we'll transfer slightly fewer. */
12019 io_size = get_remote_packet_size ();
12020 buffer = (gdb_byte *) xmalloc (io_size);
12021 make_cleanup (xfree, buffer);
12022
12023 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
12024
12025 offset = 0;
12026 while (1)
12027 {
12028 bytes = remote_hostio_pread (find_target_at (process_stratum),
12029 fd, buffer, io_size, offset, &remote_errno);
12030 if (bytes == 0)
12031 /* Success, but no bytes, means end-of-file. */
12032 break;
12033 if (bytes == -1)
12034 remote_hostio_error (remote_errno);
12035
12036 offset += bytes;
12037
12038 bytes = fwrite (buffer, 1, bytes, file);
12039 if (bytes == 0)
12040 perror_with_name (local_file);
12041 }
12042
12043 discard_cleanups (close_cleanup);
12044 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12045 remote_hostio_error (remote_errno);
12046
12047 if (from_tty)
12048 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12049 do_cleanups (back_to);
12050 }
12051
12052 void
12053 remote_file_delete (const char *remote_file, int from_tty)
12054 {
12055 int retcode, remote_errno;
12056 struct remote_state *rs = get_remote_state ();
12057
12058 if (!rs->remote_desc)
12059 error (_("command can only be used with remote target"));
12060
12061 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12062 NULL, remote_file, &remote_errno);
12063 if (retcode == -1)
12064 remote_hostio_error (remote_errno);
12065
12066 if (from_tty)
12067 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12068 }
12069
12070 static void
12071 remote_put_command (char *args, int from_tty)
12072 {
12073 struct cleanup *back_to;
12074 char **argv;
12075
12076 if (args == NULL)
12077 error_no_arg (_("file to put"));
12078
12079 argv = gdb_buildargv (args);
12080 back_to = make_cleanup_freeargv (argv);
12081 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12082 error (_("Invalid parameters to remote put"));
12083
12084 remote_file_put (argv[0], argv[1], from_tty);
12085
12086 do_cleanups (back_to);
12087 }
12088
12089 static void
12090 remote_get_command (char *args, int from_tty)
12091 {
12092 struct cleanup *back_to;
12093 char **argv;
12094
12095 if (args == NULL)
12096 error_no_arg (_("file to get"));
12097
12098 argv = gdb_buildargv (args);
12099 back_to = make_cleanup_freeargv (argv);
12100 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12101 error (_("Invalid parameters to remote get"));
12102
12103 remote_file_get (argv[0], argv[1], from_tty);
12104
12105 do_cleanups (back_to);
12106 }
12107
12108 static void
12109 remote_delete_command (char *args, int from_tty)
12110 {
12111 struct cleanup *back_to;
12112 char **argv;
12113
12114 if (args == NULL)
12115 error_no_arg (_("file to delete"));
12116
12117 argv = gdb_buildargv (args);
12118 back_to = make_cleanup_freeargv (argv);
12119 if (argv[0] == NULL || argv[1] != NULL)
12120 error (_("Invalid parameters to remote delete"));
12121
12122 remote_file_delete (argv[0], from_tty);
12123
12124 do_cleanups (back_to);
12125 }
12126
12127 static void
12128 remote_command (char *args, int from_tty)
12129 {
12130 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12131 }
12132
12133 static int
12134 remote_can_execute_reverse (struct target_ops *self)
12135 {
12136 if (packet_support (PACKET_bs) == PACKET_ENABLE
12137 || packet_support (PACKET_bc) == PACKET_ENABLE)
12138 return 1;
12139 else
12140 return 0;
12141 }
12142
12143 static int
12144 remote_supports_non_stop (struct target_ops *self)
12145 {
12146 return 1;
12147 }
12148
12149 static int
12150 remote_supports_disable_randomization (struct target_ops *self)
12151 {
12152 /* Only supported in extended mode. */
12153 return 0;
12154 }
12155
12156 static int
12157 remote_supports_multi_process (struct target_ops *self)
12158 {
12159 struct remote_state *rs = get_remote_state ();
12160
12161 return remote_multi_process_p (rs);
12162 }
12163
12164 static int
12165 remote_supports_cond_tracepoints (void)
12166 {
12167 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12168 }
12169
12170 static int
12171 remote_supports_cond_breakpoints (struct target_ops *self)
12172 {
12173 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12174 }
12175
12176 static int
12177 remote_supports_fast_tracepoints (void)
12178 {
12179 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12180 }
12181
12182 static int
12183 remote_supports_static_tracepoints (void)
12184 {
12185 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12186 }
12187
12188 static int
12189 remote_supports_install_in_trace (void)
12190 {
12191 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12192 }
12193
12194 static int
12195 remote_supports_enable_disable_tracepoint (struct target_ops *self)
12196 {
12197 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12198 == PACKET_ENABLE);
12199 }
12200
12201 static int
12202 remote_supports_string_tracing (struct target_ops *self)
12203 {
12204 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12205 }
12206
12207 static int
12208 remote_can_run_breakpoint_commands (struct target_ops *self)
12209 {
12210 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12211 }
12212
12213 static void
12214 remote_trace_init (struct target_ops *self)
12215 {
12216 putpkt ("QTinit");
12217 remote_get_noisy_reply (&target_buf, &target_buf_size);
12218 if (strcmp (target_buf, "OK") != 0)
12219 error (_("Target does not support this command."));
12220 }
12221
12222 static void free_actions_list (char **actions_list);
12223 static void free_actions_list_cleanup_wrapper (void *);
12224 static void
12225 free_actions_list_cleanup_wrapper (void *al)
12226 {
12227 free_actions_list ((char **) al);
12228 }
12229
12230 static void
12231 free_actions_list (char **actions_list)
12232 {
12233 int ndx;
12234
12235 if (actions_list == 0)
12236 return;
12237
12238 for (ndx = 0; actions_list[ndx]; ndx++)
12239 xfree (actions_list[ndx]);
12240
12241 xfree (actions_list);
12242 }
12243
12244 /* Recursive routine to walk through command list including loops, and
12245 download packets for each command. */
12246
12247 static void
12248 remote_download_command_source (int num, ULONGEST addr,
12249 struct command_line *cmds)
12250 {
12251 struct remote_state *rs = get_remote_state ();
12252 struct command_line *cmd;
12253
12254 for (cmd = cmds; cmd; cmd = cmd->next)
12255 {
12256 QUIT; /* Allow user to bail out with ^C. */
12257 strcpy (rs->buf, "QTDPsrc:");
12258 encode_source_string (num, addr, "cmd", cmd->line,
12259 rs->buf + strlen (rs->buf),
12260 rs->buf_size - strlen (rs->buf));
12261 putpkt (rs->buf);
12262 remote_get_noisy_reply (&target_buf, &target_buf_size);
12263 if (strcmp (target_buf, "OK"))
12264 warning (_("Target does not support source download."));
12265
12266 if (cmd->control_type == while_control
12267 || cmd->control_type == while_stepping_control)
12268 {
12269 remote_download_command_source (num, addr, *cmd->body_list);
12270
12271 QUIT; /* Allow user to bail out with ^C. */
12272 strcpy (rs->buf, "QTDPsrc:");
12273 encode_source_string (num, addr, "cmd", "end",
12274 rs->buf + strlen (rs->buf),
12275 rs->buf_size - strlen (rs->buf));
12276 putpkt (rs->buf);
12277 remote_get_noisy_reply (&target_buf, &target_buf_size);
12278 if (strcmp (target_buf, "OK"))
12279 warning (_("Target does not support source download."));
12280 }
12281 }
12282 }
12283
12284 static void
12285 remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
12286 {
12287 #define BUF_SIZE 2048
12288
12289 CORE_ADDR tpaddr;
12290 char addrbuf[40];
12291 char buf[BUF_SIZE];
12292 char **tdp_actions;
12293 char **stepping_actions;
12294 int ndx;
12295 struct cleanup *old_chain = NULL;
12296 char *pkt;
12297 struct breakpoint *b = loc->owner;
12298 struct tracepoint *t = (struct tracepoint *) b;
12299
12300 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12301 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
12302 tdp_actions);
12303 (void) make_cleanup (free_actions_list_cleanup_wrapper,
12304 stepping_actions);
12305
12306 tpaddr = loc->address;
12307 sprintf_vma (addrbuf, tpaddr);
12308 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12309 addrbuf, /* address */
12310 (b->enable_state == bp_enabled ? 'E' : 'D'),
12311 t->step_count, t->pass_count);
12312 /* Fast tracepoints are mostly handled by the target, but we can
12313 tell the target how big of an instruction block should be moved
12314 around. */
12315 if (b->type == bp_fast_tracepoint)
12316 {
12317 /* Only test for support at download time; we may not know
12318 target capabilities at definition time. */
12319 if (remote_supports_fast_tracepoints ())
12320 {
12321 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12322 NULL))
12323 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12324 gdb_insn_length (loc->gdbarch, tpaddr));
12325 else
12326 /* If it passed validation at definition but fails now,
12327 something is very wrong. */
12328 internal_error (__FILE__, __LINE__,
12329 _("Fast tracepoint not "
12330 "valid during download"));
12331 }
12332 else
12333 /* Fast tracepoints are functionally identical to regular
12334 tracepoints, so don't take lack of support as a reason to
12335 give up on the trace run. */
12336 warning (_("Target does not support fast tracepoints, "
12337 "downloading %d as regular tracepoint"), b->number);
12338 }
12339 else if (b->type == bp_static_tracepoint)
12340 {
12341 /* Only test for support at download time; we may not know
12342 target capabilities at definition time. */
12343 if (remote_supports_static_tracepoints ())
12344 {
12345 struct static_tracepoint_marker marker;
12346
12347 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12348 strcat (buf, ":S");
12349 else
12350 error (_("Static tracepoint not valid during download"));
12351 }
12352 else
12353 /* Fast tracepoints are functionally identical to regular
12354 tracepoints, so don't take lack of support as a reason
12355 to give up on the trace run. */
12356 error (_("Target does not support static tracepoints"));
12357 }
12358 /* If the tracepoint has a conditional, make it into an agent
12359 expression and append to the definition. */
12360 if (loc->cond)
12361 {
12362 /* Only test support at download time, we may not know target
12363 capabilities at definition time. */
12364 if (remote_supports_cond_tracepoints ())
12365 {
12366 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12367 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12368 aexpr->len);
12369 pkt = buf + strlen (buf);
12370 for (ndx = 0; ndx < aexpr->len; ++ndx)
12371 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12372 *pkt = '\0';
12373 }
12374 else
12375 warning (_("Target does not support conditional tracepoints, "
12376 "ignoring tp %d cond"), b->number);
12377 }
12378
12379 if (b->commands || *default_collect)
12380 strcat (buf, "-");
12381 putpkt (buf);
12382 remote_get_noisy_reply (&target_buf, &target_buf_size);
12383 if (strcmp (target_buf, "OK"))
12384 error (_("Target does not support tracepoints."));
12385
12386 /* do_single_steps (t); */
12387 if (tdp_actions)
12388 {
12389 for (ndx = 0; tdp_actions[ndx]; ndx++)
12390 {
12391 QUIT; /* Allow user to bail out with ^C. */
12392 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12393 b->number, addrbuf, /* address */
12394 tdp_actions[ndx],
12395 ((tdp_actions[ndx + 1] || stepping_actions)
12396 ? '-' : 0));
12397 putpkt (buf);
12398 remote_get_noisy_reply (&target_buf,
12399 &target_buf_size);
12400 if (strcmp (target_buf, "OK"))
12401 error (_("Error on target while setting tracepoints."));
12402 }
12403 }
12404 if (stepping_actions)
12405 {
12406 for (ndx = 0; stepping_actions[ndx]; ndx++)
12407 {
12408 QUIT; /* Allow user to bail out with ^C. */
12409 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12410 b->number, addrbuf, /* address */
12411 ((ndx == 0) ? "S" : ""),
12412 stepping_actions[ndx],
12413 (stepping_actions[ndx + 1] ? "-" : ""));
12414 putpkt (buf);
12415 remote_get_noisy_reply (&target_buf,
12416 &target_buf_size);
12417 if (strcmp (target_buf, "OK"))
12418 error (_("Error on target while setting tracepoints."));
12419 }
12420 }
12421
12422 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12423 {
12424 if (b->location != NULL)
12425 {
12426 strcpy (buf, "QTDPsrc:");
12427 encode_source_string (b->number, loc->address, "at",
12428 event_location_to_string (b->location.get ()),
12429 buf + strlen (buf), 2048 - strlen (buf));
12430 putpkt (buf);
12431 remote_get_noisy_reply (&target_buf, &target_buf_size);
12432 if (strcmp (target_buf, "OK"))
12433 warning (_("Target does not support source download."));
12434 }
12435 if (b->cond_string)
12436 {
12437 strcpy (buf, "QTDPsrc:");
12438 encode_source_string (b->number, loc->address,
12439 "cond", b->cond_string, buf + strlen (buf),
12440 2048 - strlen (buf));
12441 putpkt (buf);
12442 remote_get_noisy_reply (&target_buf, &target_buf_size);
12443 if (strcmp (target_buf, "OK"))
12444 warning (_("Target does not support source download."));
12445 }
12446 remote_download_command_source (b->number, loc->address,
12447 breakpoint_commands (b));
12448 }
12449
12450 do_cleanups (old_chain);
12451 }
12452
12453 static int
12454 remote_can_download_tracepoint (struct target_ops *self)
12455 {
12456 struct remote_state *rs = get_remote_state ();
12457 struct trace_status *ts;
12458 int status;
12459
12460 /* Don't try to install tracepoints until we've relocated our
12461 symbols, and fetched and merged the target's tracepoint list with
12462 ours. */
12463 if (rs->starting_up)
12464 return 0;
12465
12466 ts = current_trace_status ();
12467 status = remote_get_trace_status (self, ts);
12468
12469 if (status == -1 || !ts->running_known || !ts->running)
12470 return 0;
12471
12472 /* If we are in a tracing experiment, but remote stub doesn't support
12473 installing tracepoint in trace, we have to return. */
12474 if (!remote_supports_install_in_trace ())
12475 return 0;
12476
12477 return 1;
12478 }
12479
12480
12481 static void
12482 remote_download_trace_state_variable (struct target_ops *self,
12483 struct trace_state_variable *tsv)
12484 {
12485 struct remote_state *rs = get_remote_state ();
12486 char *p;
12487
12488 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12489 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
12490 tsv->builtin);
12491 p = rs->buf + strlen (rs->buf);
12492 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
12493 error (_("Trace state variable name too long for tsv definition packet"));
12494 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, strlen (tsv->name));
12495 *p++ = '\0';
12496 putpkt (rs->buf);
12497 remote_get_noisy_reply (&target_buf, &target_buf_size);
12498 if (*target_buf == '\0')
12499 error (_("Target does not support this command."));
12500 if (strcmp (target_buf, "OK") != 0)
12501 error (_("Error on target while downloading trace state variable."));
12502 }
12503
12504 static void
12505 remote_enable_tracepoint (struct target_ops *self,
12506 struct bp_location *location)
12507 {
12508 struct remote_state *rs = get_remote_state ();
12509 char addr_buf[40];
12510
12511 sprintf_vma (addr_buf, location->address);
12512 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12513 location->owner->number, addr_buf);
12514 putpkt (rs->buf);
12515 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
12516 if (*rs->buf == '\0')
12517 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12518 if (strcmp (rs->buf, "OK") != 0)
12519 error (_("Error on target while enabling tracepoint."));
12520 }
12521
12522 static void
12523 remote_disable_tracepoint (struct target_ops *self,
12524 struct bp_location *location)
12525 {
12526 struct remote_state *rs = get_remote_state ();
12527 char addr_buf[40];
12528
12529 sprintf_vma (addr_buf, location->address);
12530 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12531 location->owner->number, addr_buf);
12532 putpkt (rs->buf);
12533 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
12534 if (*rs->buf == '\0')
12535 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12536 if (strcmp (rs->buf, "OK") != 0)
12537 error (_("Error on target while disabling tracepoint."));
12538 }
12539
12540 static void
12541 remote_trace_set_readonly_regions (struct target_ops *self)
12542 {
12543 asection *s;
12544 bfd *abfd = NULL;
12545 bfd_size_type size;
12546 bfd_vma vma;
12547 int anysecs = 0;
12548 int offset = 0;
12549
12550 if (!exec_bfd)
12551 return; /* No information to give. */
12552
12553 strcpy (target_buf, "QTro");
12554 offset = strlen (target_buf);
12555 for (s = exec_bfd->sections; s; s = s->next)
12556 {
12557 char tmp1[40], tmp2[40];
12558 int sec_length;
12559
12560 if ((s->flags & SEC_LOAD) == 0 ||
12561 /* (s->flags & SEC_CODE) == 0 || */
12562 (s->flags & SEC_READONLY) == 0)
12563 continue;
12564
12565 anysecs = 1;
12566 vma = bfd_get_section_vma (abfd, s);
12567 size = bfd_get_section_size (s);
12568 sprintf_vma (tmp1, vma);
12569 sprintf_vma (tmp2, vma + size);
12570 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12571 if (offset + sec_length + 1 > target_buf_size)
12572 {
12573 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12574 warning (_("\
12575 Too many sections for read-only sections definition packet."));
12576 break;
12577 }
12578 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
12579 tmp1, tmp2);
12580 offset += sec_length;
12581 }
12582 if (anysecs)
12583 {
12584 putpkt (target_buf);
12585 getpkt (&target_buf, &target_buf_size, 0);
12586 }
12587 }
12588
12589 static void
12590 remote_trace_start (struct target_ops *self)
12591 {
12592 putpkt ("QTStart");
12593 remote_get_noisy_reply (&target_buf, &target_buf_size);
12594 if (*target_buf == '\0')
12595 error (_("Target does not support this command."));
12596 if (strcmp (target_buf, "OK") != 0)
12597 error (_("Bogus reply from target: %s"), target_buf);
12598 }
12599
12600 static int
12601 remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
12602 {
12603 /* Initialize it just to avoid a GCC false warning. */
12604 char *p = NULL;
12605 /* FIXME we need to get register block size some other way. */
12606 extern int trace_regblock_size;
12607 enum packet_result result;
12608
12609 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12610 return -1;
12611
12612 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
12613
12614 putpkt ("qTStatus");
12615
12616 TRY
12617 {
12618 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
12619 }
12620 CATCH (ex, RETURN_MASK_ERROR)
12621 {
12622 if (ex.error != TARGET_CLOSE_ERROR)
12623 {
12624 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12625 return -1;
12626 }
12627 throw_exception (ex);
12628 }
12629 END_CATCH
12630
12631 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12632
12633 /* If the remote target doesn't do tracing, flag it. */
12634 if (result == PACKET_UNKNOWN)
12635 return -1;
12636
12637 /* We're working with a live target. */
12638 ts->filename = NULL;
12639
12640 if (*p++ != 'T')
12641 error (_("Bogus trace status reply from target: %s"), target_buf);
12642
12643 /* Function 'parse_trace_status' sets default value of each field of
12644 'ts' at first, so we don't have to do it here. */
12645 parse_trace_status (p, ts);
12646
12647 return ts->running;
12648 }
12649
12650 static void
12651 remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
12652 struct uploaded_tp *utp)
12653 {
12654 struct remote_state *rs = get_remote_state ();
12655 char *reply;
12656 struct bp_location *loc;
12657 struct tracepoint *tp = (struct tracepoint *) bp;
12658 size_t size = get_remote_packet_size ();
12659
12660 if (tp)
12661 {
12662 tp->hit_count = 0;
12663 tp->traceframe_usage = 0;
12664 for (loc = tp->loc; loc; loc = loc->next)
12665 {
12666 /* If the tracepoint was never downloaded, don't go asking for
12667 any status. */
12668 if (tp->number_on_target == 0)
12669 continue;
12670 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12671 phex_nz (loc->address, 0));
12672 putpkt (rs->buf);
12673 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12674 if (reply && *reply)
12675 {
12676 if (*reply == 'V')
12677 parse_tracepoint_status (reply + 1, bp, utp);
12678 }
12679 }
12680 }
12681 else if (utp)
12682 {
12683 utp->hit_count = 0;
12684 utp->traceframe_usage = 0;
12685 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
12686 phex_nz (utp->addr, 0));
12687 putpkt (rs->buf);
12688 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12689 if (reply && *reply)
12690 {
12691 if (*reply == 'V')
12692 parse_tracepoint_status (reply + 1, bp, utp);
12693 }
12694 }
12695 }
12696
12697 static void
12698 remote_trace_stop (struct target_ops *self)
12699 {
12700 putpkt ("QTStop");
12701 remote_get_noisy_reply (&target_buf, &target_buf_size);
12702 if (*target_buf == '\0')
12703 error (_("Target does not support this command."));
12704 if (strcmp (target_buf, "OK") != 0)
12705 error (_("Bogus reply from target: %s"), target_buf);
12706 }
12707
12708 static int
12709 remote_trace_find (struct target_ops *self,
12710 enum trace_find_type type, int num,
12711 CORE_ADDR addr1, CORE_ADDR addr2,
12712 int *tpp)
12713 {
12714 struct remote_state *rs = get_remote_state ();
12715 char *endbuf = rs->buf + get_remote_packet_size ();
12716 char *p, *reply;
12717 int target_frameno = -1, target_tracept = -1;
12718
12719 /* Lookups other than by absolute frame number depend on the current
12720 trace selected, so make sure it is correct on the remote end
12721 first. */
12722 if (type != tfind_number)
12723 set_remote_traceframe ();
12724
12725 p = rs->buf;
12726 strcpy (p, "QTFrame:");
12727 p = strchr (p, '\0');
12728 switch (type)
12729 {
12730 case tfind_number:
12731 xsnprintf (p, endbuf - p, "%x", num);
12732 break;
12733 case tfind_pc:
12734 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
12735 break;
12736 case tfind_tp:
12737 xsnprintf (p, endbuf - p, "tdp:%x", num);
12738 break;
12739 case tfind_range:
12740 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
12741 phex_nz (addr2, 0));
12742 break;
12743 case tfind_outside:
12744 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
12745 phex_nz (addr2, 0));
12746 break;
12747 default:
12748 error (_("Unknown trace find type %d"), type);
12749 }
12750
12751 putpkt (rs->buf);
12752 reply = remote_get_noisy_reply (&(rs->buf), &rs->buf_size);
12753 if (*reply == '\0')
12754 error (_("Target does not support this command."));
12755
12756 while (reply && *reply)
12757 switch (*reply)
12758 {
12759 case 'F':
12760 p = ++reply;
12761 target_frameno = (int) strtol (p, &reply, 16);
12762 if (reply == p)
12763 error (_("Unable to parse trace frame number"));
12764 /* Don't update our remote traceframe number cache on failure
12765 to select a remote traceframe. */
12766 if (target_frameno == -1)
12767 return -1;
12768 break;
12769 case 'T':
12770 p = ++reply;
12771 target_tracept = (int) strtol (p, &reply, 16);
12772 if (reply == p)
12773 error (_("Unable to parse tracepoint number"));
12774 break;
12775 case 'O': /* "OK"? */
12776 if (reply[1] == 'K' && reply[2] == '\0')
12777 reply += 2;
12778 else
12779 error (_("Bogus reply from target: %s"), reply);
12780 break;
12781 default:
12782 error (_("Bogus reply from target: %s"), reply);
12783 }
12784 if (tpp)
12785 *tpp = target_tracept;
12786
12787 rs->remote_traceframe_number = target_frameno;
12788 return target_frameno;
12789 }
12790
12791 static int
12792 remote_get_trace_state_variable_value (struct target_ops *self,
12793 int tsvnum, LONGEST *val)
12794 {
12795 struct remote_state *rs = get_remote_state ();
12796 char *reply;
12797 ULONGEST uval;
12798
12799 set_remote_traceframe ();
12800
12801 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
12802 putpkt (rs->buf);
12803 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12804 if (reply && *reply)
12805 {
12806 if (*reply == 'V')
12807 {
12808 unpack_varlen_hex (reply + 1, &uval);
12809 *val = (LONGEST) uval;
12810 return 1;
12811 }
12812 }
12813 return 0;
12814 }
12815
12816 static int
12817 remote_save_trace_data (struct target_ops *self, const char *filename)
12818 {
12819 struct remote_state *rs = get_remote_state ();
12820 char *p, *reply;
12821
12822 p = rs->buf;
12823 strcpy (p, "QTSave:");
12824 p += strlen (p);
12825 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
12826 error (_("Remote file name too long for trace save packet"));
12827 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
12828 *p++ = '\0';
12829 putpkt (rs->buf);
12830 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12831 if (*reply == '\0')
12832 error (_("Target does not support this command."));
12833 if (strcmp (reply, "OK") != 0)
12834 error (_("Bogus reply from target: %s"), reply);
12835 return 0;
12836 }
12837
12838 /* This is basically a memory transfer, but needs to be its own packet
12839 because we don't know how the target actually organizes its trace
12840 memory, plus we want to be able to ask for as much as possible, but
12841 not be unhappy if we don't get as much as we ask for. */
12842
12843 static LONGEST
12844 remote_get_raw_trace_data (struct target_ops *self,
12845 gdb_byte *buf, ULONGEST offset, LONGEST len)
12846 {
12847 struct remote_state *rs = get_remote_state ();
12848 char *reply;
12849 char *p;
12850 int rslt;
12851
12852 p = rs->buf;
12853 strcpy (p, "qTBuffer:");
12854 p += strlen (p);
12855 p += hexnumstr (p, offset);
12856 *p++ = ',';
12857 p += hexnumstr (p, len);
12858 *p++ = '\0';
12859
12860 putpkt (rs->buf);
12861 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12862 if (reply && *reply)
12863 {
12864 /* 'l' by itself means we're at the end of the buffer and
12865 there is nothing more to get. */
12866 if (*reply == 'l')
12867 return 0;
12868
12869 /* Convert the reply into binary. Limit the number of bytes to
12870 convert according to our passed-in buffer size, rather than
12871 what was returned in the packet; if the target is
12872 unexpectedly generous and gives us a bigger reply than we
12873 asked for, we don't want to crash. */
12874 rslt = hex2bin (target_buf, buf, len);
12875 return rslt;
12876 }
12877
12878 /* Something went wrong, flag as an error. */
12879 return -1;
12880 }
12881
12882 static void
12883 remote_set_disconnected_tracing (struct target_ops *self, int val)
12884 {
12885 struct remote_state *rs = get_remote_state ();
12886
12887 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
12888 {
12889 char *reply;
12890
12891 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
12892 putpkt (rs->buf);
12893 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12894 if (*reply == '\0')
12895 error (_("Target does not support this command."));
12896 if (strcmp (reply, "OK") != 0)
12897 error (_("Bogus reply from target: %s"), reply);
12898 }
12899 else if (val)
12900 warning (_("Target does not support disconnected tracing."));
12901 }
12902
12903 static int
12904 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
12905 {
12906 struct thread_info *info = find_thread_ptid (ptid);
12907
12908 if (info && info->priv)
12909 return info->priv->core;
12910 return -1;
12911 }
12912
12913 static void
12914 remote_set_circular_trace_buffer (struct target_ops *self, int val)
12915 {
12916 struct remote_state *rs = get_remote_state ();
12917 char *reply;
12918
12919 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
12920 putpkt (rs->buf);
12921 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12922 if (*reply == '\0')
12923 error (_("Target does not support this command."));
12924 if (strcmp (reply, "OK") != 0)
12925 error (_("Bogus reply from target: %s"), reply);
12926 }
12927
12928 static struct traceframe_info *
12929 remote_traceframe_info (struct target_ops *self)
12930 {
12931 char *text;
12932
12933 text = target_read_stralloc (&current_target,
12934 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
12935 if (text != NULL)
12936 {
12937 struct traceframe_info *info;
12938 struct cleanup *back_to = make_cleanup (xfree, text);
12939
12940 info = parse_traceframe_info (text);
12941 do_cleanups (back_to);
12942 return info;
12943 }
12944
12945 return NULL;
12946 }
12947
12948 /* Handle the qTMinFTPILen packet. Returns the minimum length of
12949 instruction on which a fast tracepoint may be placed. Returns -1
12950 if the packet is not supported, and 0 if the minimum instruction
12951 length is unknown. */
12952
12953 static int
12954 remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
12955 {
12956 struct remote_state *rs = get_remote_state ();
12957 char *reply;
12958
12959 /* If we're not debugging a process yet, the IPA can't be
12960 loaded. */
12961 if (!target_has_execution)
12962 return 0;
12963
12964 /* Make sure the remote is pointing at the right process. */
12965 set_general_process ();
12966
12967 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
12968 putpkt (rs->buf);
12969 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12970 if (*reply == '\0')
12971 return -1;
12972 else
12973 {
12974 ULONGEST min_insn_len;
12975
12976 unpack_varlen_hex (reply, &min_insn_len);
12977
12978 return (int) min_insn_len;
12979 }
12980 }
12981
12982 static void
12983 remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
12984 {
12985 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
12986 {
12987 struct remote_state *rs = get_remote_state ();
12988 char *buf = rs->buf;
12989 char *endbuf = rs->buf + get_remote_packet_size ();
12990 enum packet_result result;
12991
12992 gdb_assert (val >= 0 || val == -1);
12993 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
12994 /* Send -1 as literal "-1" to avoid host size dependency. */
12995 if (val < 0)
12996 {
12997 *buf++ = '-';
12998 buf += hexnumstr (buf, (ULONGEST) -val);
12999 }
13000 else
13001 buf += hexnumstr (buf, (ULONGEST) val);
13002
13003 putpkt (rs->buf);
13004 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
13005 result = packet_ok (rs->buf,
13006 &remote_protocol_packets[PACKET_QTBuffer_size]);
13007
13008 if (result != PACKET_OK)
13009 warning (_("Bogus reply from target: %s"), rs->buf);
13010 }
13011 }
13012
13013 static int
13014 remote_set_trace_notes (struct target_ops *self,
13015 const char *user, const char *notes,
13016 const char *stop_notes)
13017 {
13018 struct remote_state *rs = get_remote_state ();
13019 char *reply;
13020 char *buf = rs->buf;
13021 char *endbuf = rs->buf + get_remote_packet_size ();
13022 int nbytes;
13023
13024 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13025 if (user)
13026 {
13027 buf += xsnprintf (buf, endbuf - buf, "user:");
13028 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13029 buf += 2 * nbytes;
13030 *buf++ = ';';
13031 }
13032 if (notes)
13033 {
13034 buf += xsnprintf (buf, endbuf - buf, "notes:");
13035 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13036 buf += 2 * nbytes;
13037 *buf++ = ';';
13038 }
13039 if (stop_notes)
13040 {
13041 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13042 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13043 buf += 2 * nbytes;
13044 *buf++ = ';';
13045 }
13046 /* Ensure the buffer is terminated. */
13047 *buf = '\0';
13048
13049 putpkt (rs->buf);
13050 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
13051 if (*reply == '\0')
13052 return 0;
13053
13054 if (strcmp (reply, "OK") != 0)
13055 error (_("Bogus reply from target: %s"), reply);
13056
13057 return 1;
13058 }
13059
13060 static int
13061 remote_use_agent (struct target_ops *self, int use)
13062 {
13063 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13064 {
13065 struct remote_state *rs = get_remote_state ();
13066
13067 /* If the stub supports QAgent. */
13068 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13069 putpkt (rs->buf);
13070 getpkt (&rs->buf, &rs->buf_size, 0);
13071
13072 if (strcmp (rs->buf, "OK") == 0)
13073 {
13074 use_agent = use;
13075 return 1;
13076 }
13077 }
13078
13079 return 0;
13080 }
13081
13082 static int
13083 remote_can_use_agent (struct target_ops *self)
13084 {
13085 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13086 }
13087
13088 struct btrace_target_info
13089 {
13090 /* The ptid of the traced thread. */
13091 ptid_t ptid;
13092
13093 /* The obtained branch trace configuration. */
13094 struct btrace_config conf;
13095 };
13096
13097 /* Reset our idea of our target's btrace configuration. */
13098
13099 static void
13100 remote_btrace_reset (void)
13101 {
13102 struct remote_state *rs = get_remote_state ();
13103
13104 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13105 }
13106
13107 /* Check whether the target supports branch tracing. */
13108
13109 static int
13110 remote_supports_btrace (struct target_ops *self, enum btrace_format format)
13111 {
13112 if (packet_support (PACKET_Qbtrace_off) != PACKET_ENABLE)
13113 return 0;
13114 if (packet_support (PACKET_qXfer_btrace) != PACKET_ENABLE)
13115 return 0;
13116
13117 switch (format)
13118 {
13119 case BTRACE_FORMAT_NONE:
13120 return 0;
13121
13122 case BTRACE_FORMAT_BTS:
13123 return (packet_support (PACKET_Qbtrace_bts) == PACKET_ENABLE);
13124
13125 case BTRACE_FORMAT_PT:
13126 /* The trace is decoded on the host. Even if our target supports it,
13127 we still need to have libipt to decode the trace. */
13128 #if defined (HAVE_LIBIPT)
13129 return (packet_support (PACKET_Qbtrace_pt) == PACKET_ENABLE);
13130 #else /* !defined (HAVE_LIBIPT) */
13131 return 0;
13132 #endif /* !defined (HAVE_LIBIPT) */
13133 }
13134
13135 internal_error (__FILE__, __LINE__, _("Unknown branch trace format"));
13136 }
13137
13138 /* Synchronize the configuration with the target. */
13139
13140 static void
13141 btrace_sync_conf (const struct btrace_config *conf)
13142 {
13143 struct packet_config *packet;
13144 struct remote_state *rs;
13145 char *buf, *pos, *endbuf;
13146
13147 rs = get_remote_state ();
13148 buf = rs->buf;
13149 endbuf = buf + get_remote_packet_size ();
13150
13151 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13152 if (packet_config_support (packet) == PACKET_ENABLE
13153 && conf->bts.size != rs->btrace_config.bts.size)
13154 {
13155 pos = buf;
13156 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13157 conf->bts.size);
13158
13159 putpkt (buf);
13160 getpkt (&buf, &rs->buf_size, 0);
13161
13162 if (packet_ok (buf, packet) == PACKET_ERROR)
13163 {
13164 if (buf[0] == 'E' && buf[1] == '.')
13165 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13166 else
13167 error (_("Failed to configure the BTS buffer size."));
13168 }
13169
13170 rs->btrace_config.bts.size = conf->bts.size;
13171 }
13172
13173 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13174 if (packet_config_support (packet) == PACKET_ENABLE
13175 && conf->pt.size != rs->btrace_config.pt.size)
13176 {
13177 pos = buf;
13178 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13179 conf->pt.size);
13180
13181 putpkt (buf);
13182 getpkt (&buf, &rs->buf_size, 0);
13183
13184 if (packet_ok (buf, packet) == PACKET_ERROR)
13185 {
13186 if (buf[0] == 'E' && buf[1] == '.')
13187 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13188 else
13189 error (_("Failed to configure the trace buffer size."));
13190 }
13191
13192 rs->btrace_config.pt.size = conf->pt.size;
13193 }
13194 }
13195
13196 /* Read the current thread's btrace configuration from the target and
13197 store it into CONF. */
13198
13199 static void
13200 btrace_read_config (struct btrace_config *conf)
13201 {
13202 char *xml;
13203
13204 xml = target_read_stralloc (&current_target,
13205 TARGET_OBJECT_BTRACE_CONF, "");
13206 if (xml != NULL)
13207 {
13208 struct cleanup *cleanup;
13209
13210 cleanup = make_cleanup (xfree, xml);
13211 parse_xml_btrace_conf (conf, xml);
13212 do_cleanups (cleanup);
13213 }
13214 }
13215
13216 /* Maybe reopen target btrace. */
13217
13218 static void
13219 remote_btrace_maybe_reopen (void)
13220 {
13221 struct remote_state *rs = get_remote_state ();
13222 struct thread_info *tp;
13223 int btrace_target_pushed = 0;
13224 int warned = 0;
13225
13226 scoped_restore_current_thread restore_thread;
13227
13228 ALL_NON_EXITED_THREADS (tp)
13229 {
13230 set_general_thread (tp->ptid);
13231
13232 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13233 btrace_read_config (&rs->btrace_config);
13234
13235 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13236 continue;
13237
13238 #if !defined (HAVE_LIBIPT)
13239 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13240 {
13241 if (!warned)
13242 {
13243 warned = 1;
13244 warning (_("GDB does not support Intel Processor Trace. "
13245 "\"record\" will not work in this session."));
13246 }
13247
13248 continue;
13249 }
13250 #endif /* !defined (HAVE_LIBIPT) */
13251
13252 /* Push target, once, but before anything else happens. This way our
13253 changes to the threads will be cleaned up by unpushing the target
13254 in case btrace_read_config () throws. */
13255 if (!btrace_target_pushed)
13256 {
13257 btrace_target_pushed = 1;
13258 record_btrace_push_target ();
13259 printf_filtered (_("Target is recording using %s.\n"),
13260 btrace_format_string (rs->btrace_config.format));
13261 }
13262
13263 tp->btrace.target = XCNEW (struct btrace_target_info);
13264 tp->btrace.target->ptid = tp->ptid;
13265 tp->btrace.target->conf = rs->btrace_config;
13266 }
13267 }
13268
13269 /* Enable branch tracing. */
13270
13271 static struct btrace_target_info *
13272 remote_enable_btrace (struct target_ops *self, ptid_t ptid,
13273 const struct btrace_config *conf)
13274 {
13275 struct btrace_target_info *tinfo = NULL;
13276 struct packet_config *packet = NULL;
13277 struct remote_state *rs = get_remote_state ();
13278 char *buf = rs->buf;
13279 char *endbuf = rs->buf + get_remote_packet_size ();
13280
13281 switch (conf->format)
13282 {
13283 case BTRACE_FORMAT_BTS:
13284 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13285 break;
13286
13287 case BTRACE_FORMAT_PT:
13288 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13289 break;
13290 }
13291
13292 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13293 error (_("Target does not support branch tracing."));
13294
13295 btrace_sync_conf (conf);
13296
13297 set_general_thread (ptid);
13298
13299 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13300 putpkt (rs->buf);
13301 getpkt (&rs->buf, &rs->buf_size, 0);
13302
13303 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13304 {
13305 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13306 error (_("Could not enable branch tracing for %s: %s"),
13307 target_pid_to_str (ptid), rs->buf + 2);
13308 else
13309 error (_("Could not enable branch tracing for %s."),
13310 target_pid_to_str (ptid));
13311 }
13312
13313 tinfo = XCNEW (struct btrace_target_info);
13314 tinfo->ptid = ptid;
13315
13316 /* If we fail to read the configuration, we lose some information, but the
13317 tracing itself is not impacted. */
13318 TRY
13319 {
13320 btrace_read_config (&tinfo->conf);
13321 }
13322 CATCH (err, RETURN_MASK_ERROR)
13323 {
13324 if (err.message != NULL)
13325 warning ("%s", err.message);
13326 }
13327 END_CATCH
13328
13329 return tinfo;
13330 }
13331
13332 /* Disable branch tracing. */
13333
13334 static void
13335 remote_disable_btrace (struct target_ops *self,
13336 struct btrace_target_info *tinfo)
13337 {
13338 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13339 struct remote_state *rs = get_remote_state ();
13340 char *buf = rs->buf;
13341 char *endbuf = rs->buf + get_remote_packet_size ();
13342
13343 if (packet_config_support (packet) != PACKET_ENABLE)
13344 error (_("Target does not support branch tracing."));
13345
13346 set_general_thread (tinfo->ptid);
13347
13348 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13349 putpkt (rs->buf);
13350 getpkt (&rs->buf, &rs->buf_size, 0);
13351
13352 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13353 {
13354 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13355 error (_("Could not disable branch tracing for %s: %s"),
13356 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13357 else
13358 error (_("Could not disable branch tracing for %s."),
13359 target_pid_to_str (tinfo->ptid));
13360 }
13361
13362 xfree (tinfo);
13363 }
13364
13365 /* Teardown branch tracing. */
13366
13367 static void
13368 remote_teardown_btrace (struct target_ops *self,
13369 struct btrace_target_info *tinfo)
13370 {
13371 /* We must not talk to the target during teardown. */
13372 xfree (tinfo);
13373 }
13374
13375 /* Read the branch trace. */
13376
13377 static enum btrace_error
13378 remote_read_btrace (struct target_ops *self,
13379 struct btrace_data *btrace,
13380 struct btrace_target_info *tinfo,
13381 enum btrace_read_type type)
13382 {
13383 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13384 struct cleanup *cleanup;
13385 const char *annex;
13386 char *xml;
13387
13388 if (packet_config_support (packet) != PACKET_ENABLE)
13389 error (_("Target does not support branch tracing."));
13390
13391 #if !defined(HAVE_LIBEXPAT)
13392 error (_("Cannot process branch tracing result. XML parsing not supported."));
13393 #endif
13394
13395 switch (type)
13396 {
13397 case BTRACE_READ_ALL:
13398 annex = "all";
13399 break;
13400 case BTRACE_READ_NEW:
13401 annex = "new";
13402 break;
13403 case BTRACE_READ_DELTA:
13404 annex = "delta";
13405 break;
13406 default:
13407 internal_error (__FILE__, __LINE__,
13408 _("Bad branch tracing read type: %u."),
13409 (unsigned int) type);
13410 }
13411
13412 xml = target_read_stralloc (&current_target,
13413 TARGET_OBJECT_BTRACE, annex);
13414 if (xml == NULL)
13415 return BTRACE_ERR_UNKNOWN;
13416
13417 cleanup = make_cleanup (xfree, xml);
13418 parse_xml_btrace (btrace, xml);
13419 do_cleanups (cleanup);
13420
13421 return BTRACE_ERR_NONE;
13422 }
13423
13424 static const struct btrace_config *
13425 remote_btrace_conf (struct target_ops *self,
13426 const struct btrace_target_info *tinfo)
13427 {
13428 return &tinfo->conf;
13429 }
13430
13431 static int
13432 remote_augmented_libraries_svr4_read (struct target_ops *self)
13433 {
13434 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13435 == PACKET_ENABLE);
13436 }
13437
13438 /* Implementation of to_load. */
13439
13440 static void
13441 remote_load (struct target_ops *self, const char *name, int from_tty)
13442 {
13443 generic_load (name, from_tty);
13444 }
13445
13446 /* Accepts an integer PID; returns a string representing a file that
13447 can be opened on the remote side to get the symbols for the child
13448 process. Returns NULL if the operation is not supported. */
13449
13450 static char *
13451 remote_pid_to_exec_file (struct target_ops *self, int pid)
13452 {
13453 static char *filename = NULL;
13454 struct inferior *inf;
13455 char *annex = NULL;
13456
13457 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13458 return NULL;
13459
13460 if (filename != NULL)
13461 xfree (filename);
13462
13463 inf = find_inferior_pid (pid);
13464 if (inf == NULL)
13465 internal_error (__FILE__, __LINE__,
13466 _("not currently attached to process %d"), pid);
13467
13468 if (!inf->fake_pid_p)
13469 {
13470 const int annex_size = 9;
13471
13472 annex = (char *) alloca (annex_size);
13473 xsnprintf (annex, annex_size, "%x", pid);
13474 }
13475
13476 filename = target_read_stralloc (&current_target,
13477 TARGET_OBJECT_EXEC_FILE, annex);
13478
13479 return filename;
13480 }
13481
13482 /* Implement the to_can_do_single_step target_ops method. */
13483
13484 static int
13485 remote_can_do_single_step (struct target_ops *ops)
13486 {
13487 /* We can only tell whether target supports single step or not by
13488 supported s and S vCont actions if the stub supports vContSupported
13489 feature. If the stub doesn't support vContSupported feature,
13490 we have conservatively to think target doesn't supports single
13491 step. */
13492 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13493 {
13494 struct remote_state *rs = get_remote_state ();
13495
13496 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13497 remote_vcont_probe (rs);
13498
13499 return rs->supports_vCont.s && rs->supports_vCont.S;
13500 }
13501 else
13502 return 0;
13503 }
13504
13505 /* Implementation of the to_execution_direction method for the remote
13506 target. */
13507
13508 static enum exec_direction_kind
13509 remote_execution_direction (struct target_ops *self)
13510 {
13511 struct remote_state *rs = get_remote_state ();
13512
13513 return rs->last_resume_exec_dir;
13514 }
13515
13516 static void
13517 init_remote_ops (void)
13518 {
13519 remote_ops.to_shortname = "remote";
13520 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
13521 remote_ops.to_doc =
13522 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13523 Specify the serial device it is connected to\n\
13524 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
13525 remote_ops.to_open = remote_open;
13526 remote_ops.to_close = remote_close;
13527 remote_ops.to_detach = remote_detach;
13528 remote_ops.to_disconnect = remote_disconnect;
13529 remote_ops.to_resume = remote_resume;
13530 remote_ops.to_commit_resume = remote_commit_resume;
13531 remote_ops.to_wait = remote_wait;
13532 remote_ops.to_fetch_registers = remote_fetch_registers;
13533 remote_ops.to_store_registers = remote_store_registers;
13534 remote_ops.to_prepare_to_store = remote_prepare_to_store;
13535 remote_ops.to_files_info = remote_files_info;
13536 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
13537 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
13538 remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint;
13539 remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint;
13540 remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint;
13541 remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint;
13542 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
13543 remote_ops.to_stopped_data_address = remote_stopped_data_address;
13544 remote_ops.to_watchpoint_addr_within_range =
13545 remote_watchpoint_addr_within_range;
13546 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
13547 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
13548 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
13549 remote_ops.to_region_ok_for_hw_watchpoint
13550 = remote_region_ok_for_hw_watchpoint;
13551 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
13552 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
13553 remote_ops.to_kill = remote_kill;
13554 remote_ops.to_load = remote_load;
13555 remote_ops.to_mourn_inferior = remote_mourn;
13556 remote_ops.to_pass_signals = remote_pass_signals;
13557 remote_ops.to_set_syscall_catchpoint = remote_set_syscall_catchpoint;
13558 remote_ops.to_program_signals = remote_program_signals;
13559 remote_ops.to_thread_alive = remote_thread_alive;
13560 remote_ops.to_thread_name = remote_thread_name;
13561 remote_ops.to_update_thread_list = remote_update_thread_list;
13562 remote_ops.to_pid_to_str = remote_pid_to_str;
13563 remote_ops.to_extra_thread_info = remote_threads_extra_info;
13564 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
13565 remote_ops.to_stop = remote_stop;
13566 remote_ops.to_interrupt = remote_interrupt;
13567 remote_ops.to_pass_ctrlc = remote_pass_ctrlc;
13568 remote_ops.to_xfer_partial = remote_xfer_partial;
13569 remote_ops.to_get_memory_xfer_limit = remote_get_memory_xfer_limit;
13570 remote_ops.to_rcmd = remote_rcmd;
13571 remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file;
13572 remote_ops.to_log_command = serial_log_command;
13573 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
13574 remote_ops.to_stratum = process_stratum;
13575 remote_ops.to_has_all_memory = default_child_has_all_memory;
13576 remote_ops.to_has_memory = default_child_has_memory;
13577 remote_ops.to_has_stack = default_child_has_stack;
13578 remote_ops.to_has_registers = default_child_has_registers;
13579 remote_ops.to_has_execution = default_child_has_execution;
13580 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
13581 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
13582 remote_ops.to_magic = OPS_MAGIC;
13583 remote_ops.to_memory_map = remote_memory_map;
13584 remote_ops.to_flash_erase = remote_flash_erase;
13585 remote_ops.to_flash_done = remote_flash_done;
13586 remote_ops.to_read_description = remote_read_description;
13587 remote_ops.to_search_memory = remote_search_memory;
13588 remote_ops.to_can_async_p = remote_can_async_p;
13589 remote_ops.to_is_async_p = remote_is_async_p;
13590 remote_ops.to_async = remote_async;
13591 remote_ops.to_thread_events = remote_thread_events;
13592 remote_ops.to_can_do_single_step = remote_can_do_single_step;
13593 remote_ops.to_terminal_inferior = remote_terminal_inferior;
13594 remote_ops.to_terminal_ours = remote_terminal_ours;
13595 remote_ops.to_supports_non_stop = remote_supports_non_stop;
13596 remote_ops.to_supports_multi_process = remote_supports_multi_process;
13597 remote_ops.to_supports_disable_randomization
13598 = remote_supports_disable_randomization;
13599 remote_ops.to_filesystem_is_local = remote_filesystem_is_local;
13600 remote_ops.to_fileio_open = remote_hostio_open;
13601 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
13602 remote_ops.to_fileio_pread = remote_hostio_pread;
13603 remote_ops.to_fileio_fstat = remote_hostio_fstat;
13604 remote_ops.to_fileio_close = remote_hostio_close;
13605 remote_ops.to_fileio_unlink = remote_hostio_unlink;
13606 remote_ops.to_fileio_readlink = remote_hostio_readlink;
13607 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
13608 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
13609 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
13610 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
13611 remote_ops.to_trace_init = remote_trace_init;
13612 remote_ops.to_download_tracepoint = remote_download_tracepoint;
13613 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
13614 remote_ops.to_download_trace_state_variable
13615 = remote_download_trace_state_variable;
13616 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
13617 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
13618 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
13619 remote_ops.to_trace_start = remote_trace_start;
13620 remote_ops.to_get_trace_status = remote_get_trace_status;
13621 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
13622 remote_ops.to_trace_stop = remote_trace_stop;
13623 remote_ops.to_trace_find = remote_trace_find;
13624 remote_ops.to_get_trace_state_variable_value
13625 = remote_get_trace_state_variable_value;
13626 remote_ops.to_save_trace_data = remote_save_trace_data;
13627 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
13628 remote_ops.to_upload_trace_state_variables
13629 = remote_upload_trace_state_variables;
13630 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
13631 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
13632 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
13633 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
13634 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
13635 remote_ops.to_set_trace_notes = remote_set_trace_notes;
13636 remote_ops.to_core_of_thread = remote_core_of_thread;
13637 remote_ops.to_verify_memory = remote_verify_memory;
13638 remote_ops.to_get_tib_address = remote_get_tib_address;
13639 remote_ops.to_set_permissions = remote_set_permissions;
13640 remote_ops.to_static_tracepoint_marker_at
13641 = remote_static_tracepoint_marker_at;
13642 remote_ops.to_static_tracepoint_markers_by_strid
13643 = remote_static_tracepoint_markers_by_strid;
13644 remote_ops.to_traceframe_info = remote_traceframe_info;
13645 remote_ops.to_use_agent = remote_use_agent;
13646 remote_ops.to_can_use_agent = remote_can_use_agent;
13647 remote_ops.to_supports_btrace = remote_supports_btrace;
13648 remote_ops.to_enable_btrace = remote_enable_btrace;
13649 remote_ops.to_disable_btrace = remote_disable_btrace;
13650 remote_ops.to_teardown_btrace = remote_teardown_btrace;
13651 remote_ops.to_read_btrace = remote_read_btrace;
13652 remote_ops.to_btrace_conf = remote_btrace_conf;
13653 remote_ops.to_augmented_libraries_svr4_read =
13654 remote_augmented_libraries_svr4_read;
13655 remote_ops.to_follow_fork = remote_follow_fork;
13656 remote_ops.to_follow_exec = remote_follow_exec;
13657 remote_ops.to_insert_fork_catchpoint = remote_insert_fork_catchpoint;
13658 remote_ops.to_remove_fork_catchpoint = remote_remove_fork_catchpoint;
13659 remote_ops.to_insert_vfork_catchpoint = remote_insert_vfork_catchpoint;
13660 remote_ops.to_remove_vfork_catchpoint = remote_remove_vfork_catchpoint;
13661 remote_ops.to_insert_exec_catchpoint = remote_insert_exec_catchpoint;
13662 remote_ops.to_remove_exec_catchpoint = remote_remove_exec_catchpoint;
13663 remote_ops.to_execution_direction = remote_execution_direction;
13664 }
13665
13666 /* Set up the extended remote vector by making a copy of the standard
13667 remote vector and adding to it. */
13668
13669 static void
13670 init_extended_remote_ops (void)
13671 {
13672 extended_remote_ops = remote_ops;
13673
13674 extended_remote_ops.to_shortname = "extended-remote";
13675 extended_remote_ops.to_longname =
13676 "Extended remote serial target in gdb-specific protocol";
13677 extended_remote_ops.to_doc =
13678 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13679 Specify the serial device it is connected to (e.g. /dev/ttya).";
13680 extended_remote_ops.to_open = extended_remote_open;
13681 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
13682 extended_remote_ops.to_detach = extended_remote_detach;
13683 extended_remote_ops.to_attach = extended_remote_attach;
13684 extended_remote_ops.to_post_attach = extended_remote_post_attach;
13685 extended_remote_ops.to_supports_disable_randomization
13686 = extended_remote_supports_disable_randomization;
13687 }
13688
13689 static int
13690 remote_can_async_p (struct target_ops *ops)
13691 {
13692 struct remote_state *rs = get_remote_state ();
13693
13694 /* We don't go async if the user has explicitly prevented it with the
13695 "maint set target-async" command. */
13696 if (!target_async_permitted)
13697 return 0;
13698
13699 /* We're async whenever the serial device is. */
13700 return serial_can_async_p (rs->remote_desc);
13701 }
13702
13703 static int
13704 remote_is_async_p (struct target_ops *ops)
13705 {
13706 struct remote_state *rs = get_remote_state ();
13707
13708 if (!target_async_permitted)
13709 /* We only enable async when the user specifically asks for it. */
13710 return 0;
13711
13712 /* We're async whenever the serial device is. */
13713 return serial_is_async_p (rs->remote_desc);
13714 }
13715
13716 /* Pass the SERIAL event on and up to the client. One day this code
13717 will be able to delay notifying the client of an event until the
13718 point where an entire packet has been received. */
13719
13720 static serial_event_ftype remote_async_serial_handler;
13721
13722 static void
13723 remote_async_serial_handler (struct serial *scb, void *context)
13724 {
13725 /* Don't propogate error information up to the client. Instead let
13726 the client find out about the error by querying the target. */
13727 inferior_event_handler (INF_REG_EVENT, NULL);
13728 }
13729
13730 static void
13731 remote_async_inferior_event_handler (gdb_client_data data)
13732 {
13733 inferior_event_handler (INF_REG_EVENT, NULL);
13734 }
13735
13736 static void
13737 remote_async (struct target_ops *ops, int enable)
13738 {
13739 struct remote_state *rs = get_remote_state ();
13740
13741 if (enable)
13742 {
13743 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13744
13745 /* If there are pending events in the stop reply queue tell the
13746 event loop to process them. */
13747 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13748 mark_async_event_handler (remote_async_inferior_event_token);
13749 /* For simplicity, below we clear the pending events token
13750 without remembering whether it is marked, so here we always
13751 mark it. If there's actually no pending notification to
13752 process, this ends up being a no-op (other than a spurious
13753 event-loop wakeup). */
13754 if (target_is_non_stop_p ())
13755 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13756 }
13757 else
13758 {
13759 serial_async (rs->remote_desc, NULL, NULL);
13760 /* If the core is disabling async, it doesn't want to be
13761 disturbed with target events. Clear all async event sources
13762 too. */
13763 clear_async_event_handler (remote_async_inferior_event_token);
13764 if (target_is_non_stop_p ())
13765 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13766 }
13767 }
13768
13769 /* Implementation of the to_thread_events method. */
13770
13771 static void
13772 remote_thread_events (struct target_ops *ops, int enable)
13773 {
13774 struct remote_state *rs = get_remote_state ();
13775 size_t size = get_remote_packet_size ();
13776
13777 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13778 return;
13779
13780 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13781 putpkt (rs->buf);
13782 getpkt (&rs->buf, &rs->buf_size, 0);
13783
13784 switch (packet_ok (rs->buf,
13785 &remote_protocol_packets[PACKET_QThreadEvents]))
13786 {
13787 case PACKET_OK:
13788 if (strcmp (rs->buf, "OK") != 0)
13789 error (_("Remote refused setting thread events: %s"), rs->buf);
13790 break;
13791 case PACKET_ERROR:
13792 warning (_("Remote failure reply: %s"), rs->buf);
13793 break;
13794 case PACKET_UNKNOWN:
13795 break;
13796 }
13797 }
13798
13799 static void
13800 set_remote_cmd (char *args, int from_tty)
13801 {
13802 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13803 }
13804
13805 static void
13806 show_remote_cmd (char *args, int from_tty)
13807 {
13808 /* We can't just use cmd_show_list here, because we want to skip
13809 the redundant "show remote Z-packet" and the legacy aliases. */
13810 struct cmd_list_element *list = remote_show_cmdlist;
13811 struct ui_out *uiout = current_uiout;
13812
13813 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
13814 for (; list != NULL; list = list->next)
13815 if (strcmp (list->name, "Z-packet") == 0)
13816 continue;
13817 else if (list->type == not_set_cmd)
13818 /* Alias commands are exactly like the original, except they
13819 don't have the normal type. */
13820 continue;
13821 else
13822 {
13823 ui_out_emit_tuple option_emitter (uiout, "option");
13824
13825 uiout->field_string ("name", list->name);
13826 uiout->text (": ");
13827 if (list->type == show_cmd)
13828 do_show_command (NULL, from_tty, list);
13829 else
13830 cmd_func (list, NULL, from_tty);
13831 }
13832 }
13833
13834
13835 /* Function to be called whenever a new objfile (shlib) is detected. */
13836 static void
13837 remote_new_objfile (struct objfile *objfile)
13838 {
13839 struct remote_state *rs = get_remote_state ();
13840
13841 if (rs->remote_desc != 0) /* Have a remote connection. */
13842 remote_check_symbols ();
13843 }
13844
13845 /* Pull all the tracepoints defined on the target and create local
13846 data structures representing them. We don't want to create real
13847 tracepoints yet, we don't want to mess up the user's existing
13848 collection. */
13849
13850 static int
13851 remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
13852 {
13853 struct remote_state *rs = get_remote_state ();
13854 char *p;
13855
13856 /* Ask for a first packet of tracepoint definition. */
13857 putpkt ("qTfP");
13858 getpkt (&rs->buf, &rs->buf_size, 0);
13859 p = rs->buf;
13860 while (*p && *p != 'l')
13861 {
13862 parse_tracepoint_definition (p, utpp);
13863 /* Ask for another packet of tracepoint definition. */
13864 putpkt ("qTsP");
13865 getpkt (&rs->buf, &rs->buf_size, 0);
13866 p = rs->buf;
13867 }
13868 return 0;
13869 }
13870
13871 static int
13872 remote_upload_trace_state_variables (struct target_ops *self,
13873 struct uploaded_tsv **utsvp)
13874 {
13875 struct remote_state *rs = get_remote_state ();
13876 char *p;
13877
13878 /* Ask for a first packet of variable definition. */
13879 putpkt ("qTfV");
13880 getpkt (&rs->buf, &rs->buf_size, 0);
13881 p = rs->buf;
13882 while (*p && *p != 'l')
13883 {
13884 parse_tsv_definition (p, utsvp);
13885 /* Ask for another packet of variable definition. */
13886 putpkt ("qTsV");
13887 getpkt (&rs->buf, &rs->buf_size, 0);
13888 p = rs->buf;
13889 }
13890 return 0;
13891 }
13892
13893 /* The "set/show range-stepping" show hook. */
13894
13895 static void
13896 show_range_stepping (struct ui_file *file, int from_tty,
13897 struct cmd_list_element *c,
13898 const char *value)
13899 {
13900 fprintf_filtered (file,
13901 _("Debugger's willingness to use range stepping "
13902 "is %s.\n"), value);
13903 }
13904
13905 /* The "set/show range-stepping" set hook. */
13906
13907 static void
13908 set_range_stepping (char *ignore_args, int from_tty,
13909 struct cmd_list_element *c)
13910 {
13911 struct remote_state *rs = get_remote_state ();
13912
13913 /* Whene enabling, check whether range stepping is actually
13914 supported by the target, and warn if not. */
13915 if (use_range_stepping)
13916 {
13917 if (rs->remote_desc != NULL)
13918 {
13919 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13920 remote_vcont_probe (rs);
13921
13922 if (packet_support (PACKET_vCont) == PACKET_ENABLE
13923 && rs->supports_vCont.r)
13924 return;
13925 }
13926
13927 warning (_("Range stepping is not supported by the current target"));
13928 }
13929 }
13930
13931 void
13932 _initialize_remote (void)
13933 {
13934 struct cmd_list_element *cmd;
13935 const char *cmd_name;
13936
13937 /* architecture specific data */
13938 remote_gdbarch_data_handle =
13939 gdbarch_data_register_post_init (init_remote_state);
13940 remote_g_packet_data_handle =
13941 gdbarch_data_register_pre_init (remote_g_packet_data_init);
13942
13943 remote_pspace_data
13944 = register_program_space_data_with_cleanup (NULL,
13945 remote_pspace_data_cleanup);
13946
13947 /* Initialize the per-target state. At the moment there is only one
13948 of these, not one per target. Only one target is active at a
13949 time. */
13950 remote_state = new_remote_state ();
13951
13952 init_remote_ops ();
13953 add_target (&remote_ops);
13954
13955 init_extended_remote_ops ();
13956 add_target (&extended_remote_ops);
13957
13958 /* Hook into new objfile notification. */
13959 observer_attach_new_objfile (remote_new_objfile);
13960 /* We're no longer interested in notification events of an inferior
13961 when it exits. */
13962 observer_attach_inferior_exit (discard_pending_stop_replies);
13963
13964 #if 0
13965 init_remote_threadtests ();
13966 #endif
13967
13968 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
13969 /* set/show remote ... */
13970
13971 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
13972 Remote protocol specific variables\n\
13973 Configure various remote-protocol specific variables such as\n\
13974 the packets being used"),
13975 &remote_set_cmdlist, "set remote ",
13976 0 /* allow-unknown */, &setlist);
13977 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
13978 Remote protocol specific variables\n\
13979 Configure various remote-protocol specific variables such as\n\
13980 the packets being used"),
13981 &remote_show_cmdlist, "show remote ",
13982 0 /* allow-unknown */, &showlist);
13983
13984 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
13985 Compare section data on target to the exec file.\n\
13986 Argument is a single section name (default: all loaded sections).\n\
13987 To compare only read-only loaded sections, specify the -r option."),
13988 &cmdlist);
13989
13990 add_cmd ("packet", class_maintenance, packet_command, _("\
13991 Send an arbitrary packet to a remote target.\n\
13992 maintenance packet TEXT\n\
13993 If GDB is talking to an inferior via the GDB serial protocol, then\n\
13994 this command sends the string TEXT to the inferior, and displays the\n\
13995 response packet. GDB supplies the initial `$' character, and the\n\
13996 terminating `#' character and checksum."),
13997 &maintenancelist);
13998
13999 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14000 Set whether to send break if interrupted."), _("\
14001 Show whether to send break if interrupted."), _("\
14002 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14003 set_remotebreak, show_remotebreak,
14004 &setlist, &showlist);
14005 cmd_name = "remotebreak";
14006 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14007 deprecate_cmd (cmd, "set remote interrupt-sequence");
14008 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14009 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14010 deprecate_cmd (cmd, "show remote interrupt-sequence");
14011
14012 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14013 interrupt_sequence_modes, &interrupt_sequence_mode,
14014 _("\
14015 Set interrupt sequence to remote target."), _("\
14016 Show interrupt sequence to remote target."), _("\
14017 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14018 NULL, show_interrupt_sequence,
14019 &remote_set_cmdlist,
14020 &remote_show_cmdlist);
14021
14022 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14023 &interrupt_on_connect, _("\
14024 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14025 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14026 If set, interrupt sequence is sent to remote target."),
14027 NULL, NULL,
14028 &remote_set_cmdlist, &remote_show_cmdlist);
14029
14030 /* Install commands for configuring memory read/write packets. */
14031
14032 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14033 Set the maximum number of bytes per memory write packet (deprecated)."),
14034 &setlist);
14035 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14036 Show the maximum number of bytes per memory write packet (deprecated)."),
14037 &showlist);
14038 add_cmd ("memory-write-packet-size", no_class,
14039 set_memory_write_packet_size, _("\
14040 Set the maximum number of bytes per memory-write packet.\n\
14041 Specify the number of bytes in a packet or 0 (zero) for the\n\
14042 default packet size. The actual limit is further reduced\n\
14043 dependent on the target. Specify ``fixed'' to disable the\n\
14044 further restriction and ``limit'' to enable that restriction."),
14045 &remote_set_cmdlist);
14046 add_cmd ("memory-read-packet-size", no_class,
14047 set_memory_read_packet_size, _("\
14048 Set the maximum number of bytes per memory-read packet.\n\
14049 Specify the number of bytes in a packet or 0 (zero) for the\n\
14050 default packet size. The actual limit is further reduced\n\
14051 dependent on the target. Specify ``fixed'' to disable the\n\
14052 further restriction and ``limit'' to enable that restriction."),
14053 &remote_set_cmdlist);
14054 add_cmd ("memory-write-packet-size", no_class,
14055 show_memory_write_packet_size,
14056 _("Show the maximum number of bytes per memory-write packet."),
14057 &remote_show_cmdlist);
14058 add_cmd ("memory-read-packet-size", no_class,
14059 show_memory_read_packet_size,
14060 _("Show the maximum number of bytes per memory-read packet."),
14061 &remote_show_cmdlist);
14062
14063 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14064 &remote_hw_watchpoint_limit, _("\
14065 Set the maximum number of target hardware watchpoints."), _("\
14066 Show the maximum number of target hardware watchpoints."), _("\
14067 Specify a negative limit for unlimited."),
14068 NULL, NULL, /* FIXME: i18n: The maximum
14069 number of target hardware
14070 watchpoints is %s. */
14071 &remote_set_cmdlist, &remote_show_cmdlist);
14072 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14073 &remote_hw_watchpoint_length_limit, _("\
14074 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14075 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14076 Specify a negative limit for unlimited."),
14077 NULL, NULL, /* FIXME: i18n: The maximum
14078 length (in bytes) of a target
14079 hardware watchpoint is %s. */
14080 &remote_set_cmdlist, &remote_show_cmdlist);
14081 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14082 &remote_hw_breakpoint_limit, _("\
14083 Set the maximum number of target hardware breakpoints."), _("\
14084 Show the maximum number of target hardware breakpoints."), _("\
14085 Specify a negative limit for unlimited."),
14086 NULL, NULL, /* FIXME: i18n: The maximum
14087 number of target hardware
14088 breakpoints is %s. */
14089 &remote_set_cmdlist, &remote_show_cmdlist);
14090
14091 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14092 &remote_address_size, _("\
14093 Set the maximum size of the address (in bits) in a memory packet."), _("\
14094 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14095 NULL,
14096 NULL, /* FIXME: i18n: */
14097 &setlist, &showlist);
14098
14099 init_all_packet_configs ();
14100
14101 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14102 "X", "binary-download", 1);
14103
14104 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14105 "vCont", "verbose-resume", 0);
14106
14107 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14108 "QPassSignals", "pass-signals", 0);
14109
14110 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14111 "QCatchSyscalls", "catch-syscalls", 0);
14112
14113 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14114 "QProgramSignals", "program-signals", 0);
14115
14116 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14117 "QStartupWithShell", "startup-with-shell", 0);
14118
14119 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14120 "qSymbol", "symbol-lookup", 0);
14121
14122 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14123 "P", "set-register", 1);
14124
14125 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14126 "p", "fetch-register", 1);
14127
14128 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14129 "Z0", "software-breakpoint", 0);
14130
14131 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14132 "Z1", "hardware-breakpoint", 0);
14133
14134 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14135 "Z2", "write-watchpoint", 0);
14136
14137 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14138 "Z3", "read-watchpoint", 0);
14139
14140 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14141 "Z4", "access-watchpoint", 0);
14142
14143 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14144 "qXfer:auxv:read", "read-aux-vector", 0);
14145
14146 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14147 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14148
14149 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14150 "qXfer:features:read", "target-features", 0);
14151
14152 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14153 "qXfer:libraries:read", "library-info", 0);
14154
14155 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14156 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14157
14158 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14159 "qXfer:memory-map:read", "memory-map", 0);
14160
14161 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14162 "qXfer:spu:read", "read-spu-object", 0);
14163
14164 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14165 "qXfer:spu:write", "write-spu-object", 0);
14166
14167 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14168 "qXfer:osdata:read", "osdata", 0);
14169
14170 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14171 "qXfer:threads:read", "threads", 0);
14172
14173 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14174 "qXfer:siginfo:read", "read-siginfo-object", 0);
14175
14176 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14177 "qXfer:siginfo:write", "write-siginfo-object", 0);
14178
14179 add_packet_config_cmd
14180 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14181 "qXfer:traceframe-info:read", "traceframe-info", 0);
14182
14183 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14184 "qXfer:uib:read", "unwind-info-block", 0);
14185
14186 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14187 "qGetTLSAddr", "get-thread-local-storage-address",
14188 0);
14189
14190 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14191 "qGetTIBAddr", "get-thread-information-block-address",
14192 0);
14193
14194 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14195 "bc", "reverse-continue", 0);
14196
14197 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14198 "bs", "reverse-step", 0);
14199
14200 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14201 "qSupported", "supported-packets", 0);
14202
14203 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14204 "qSearch:memory", "search-memory", 0);
14205
14206 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14207 "qTStatus", "trace-status", 0);
14208
14209 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14210 "vFile:setfs", "hostio-setfs", 0);
14211
14212 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14213 "vFile:open", "hostio-open", 0);
14214
14215 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14216 "vFile:pread", "hostio-pread", 0);
14217
14218 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14219 "vFile:pwrite", "hostio-pwrite", 0);
14220
14221 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14222 "vFile:close", "hostio-close", 0);
14223
14224 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14225 "vFile:unlink", "hostio-unlink", 0);
14226
14227 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14228 "vFile:readlink", "hostio-readlink", 0);
14229
14230 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14231 "vFile:fstat", "hostio-fstat", 0);
14232
14233 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14234 "vAttach", "attach", 0);
14235
14236 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14237 "vRun", "run", 0);
14238
14239 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14240 "QStartNoAckMode", "noack", 0);
14241
14242 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14243 "vKill", "kill", 0);
14244
14245 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14246 "qAttached", "query-attached", 0);
14247
14248 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14249 "ConditionalTracepoints",
14250 "conditional-tracepoints", 0);
14251
14252 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14253 "ConditionalBreakpoints",
14254 "conditional-breakpoints", 0);
14255
14256 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14257 "BreakpointCommands",
14258 "breakpoint-commands", 0);
14259
14260 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14261 "FastTracepoints", "fast-tracepoints", 0);
14262
14263 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14264 "TracepointSource", "TracepointSource", 0);
14265
14266 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14267 "QAllow", "allow", 0);
14268
14269 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14270 "StaticTracepoints", "static-tracepoints", 0);
14271
14272 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14273 "InstallInTrace", "install-in-trace", 0);
14274
14275 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14276 "qXfer:statictrace:read", "read-sdata-object", 0);
14277
14278 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14279 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14280
14281 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14282 "QDisableRandomization", "disable-randomization", 0);
14283
14284 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14285 "QAgent", "agent", 0);
14286
14287 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14288 "QTBuffer:size", "trace-buffer-size", 0);
14289
14290 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14291 "Qbtrace:off", "disable-btrace", 0);
14292
14293 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14294 "Qbtrace:bts", "enable-btrace-bts", 0);
14295
14296 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14297 "Qbtrace:pt", "enable-btrace-pt", 0);
14298
14299 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14300 "qXfer:btrace", "read-btrace", 0);
14301
14302 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14303 "qXfer:btrace-conf", "read-btrace-conf", 0);
14304
14305 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14306 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14307
14308 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14309 "multiprocess-feature", "multiprocess-feature", 0);
14310
14311 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14312 "swbreak-feature", "swbreak-feature", 0);
14313
14314 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14315 "hwbreak-feature", "hwbreak-feature", 0);
14316
14317 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14318 "fork-event-feature", "fork-event-feature", 0);
14319
14320 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14321 "vfork-event-feature", "vfork-event-feature", 0);
14322
14323 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14324 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14325
14326 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14327 "vContSupported", "verbose-resume-supported", 0);
14328
14329 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14330 "exec-event-feature", "exec-event-feature", 0);
14331
14332 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14333 "vCtrlC", "ctrl-c", 0);
14334
14335 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14336 "QThreadEvents", "thread-events", 0);
14337
14338 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14339 "N stop reply", "no-resumed-stop-reply", 0);
14340
14341 /* Assert that we've registered "set remote foo-packet" commands
14342 for all packet configs. */
14343 {
14344 int i;
14345
14346 for (i = 0; i < PACKET_MAX; i++)
14347 {
14348 /* Ideally all configs would have a command associated. Some
14349 still don't though. */
14350 int excepted;
14351
14352 switch (i)
14353 {
14354 case PACKET_QNonStop:
14355 case PACKET_EnableDisableTracepoints_feature:
14356 case PACKET_tracenz_feature:
14357 case PACKET_DisconnectedTracing_feature:
14358 case PACKET_augmented_libraries_svr4_read_feature:
14359 case PACKET_qCRC:
14360 /* Additions to this list need to be well justified:
14361 pre-existing packets are OK; new packets are not. */
14362 excepted = 1;
14363 break;
14364 default:
14365 excepted = 0;
14366 break;
14367 }
14368
14369 /* This catches both forgetting to add a config command, and
14370 forgetting to remove a packet from the exception list. */
14371 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14372 }
14373 }
14374
14375 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14376 Z sub-packet has its own set and show commands, but users may
14377 have sets to this variable in their .gdbinit files (or in their
14378 documentation). */
14379 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14380 &remote_Z_packet_detect, _("\
14381 Set use of remote protocol `Z' packets"), _("\
14382 Show use of remote protocol `Z' packets "), _("\
14383 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14384 packets."),
14385 set_remote_protocol_Z_packet_cmd,
14386 show_remote_protocol_Z_packet_cmd,
14387 /* FIXME: i18n: Use of remote protocol
14388 `Z' packets is %s. */
14389 &remote_set_cmdlist, &remote_show_cmdlist);
14390
14391 add_prefix_cmd ("remote", class_files, remote_command, _("\
14392 Manipulate files on the remote system\n\
14393 Transfer files to and from the remote target system."),
14394 &remote_cmdlist, "remote ",
14395 0 /* allow-unknown */, &cmdlist);
14396
14397 add_cmd ("put", class_files, remote_put_command,
14398 _("Copy a local file to the remote system."),
14399 &remote_cmdlist);
14400
14401 add_cmd ("get", class_files, remote_get_command,
14402 _("Copy a remote file to the local system."),
14403 &remote_cmdlist);
14404
14405 add_cmd ("delete", class_files, remote_delete_command,
14406 _("Delete a remote file."),
14407 &remote_cmdlist);
14408
14409 add_setshow_string_noescape_cmd ("exec-file", class_files,
14410 &remote_exec_file_var, _("\
14411 Set the remote pathname for \"run\""), _("\
14412 Show the remote pathname for \"run\""), NULL,
14413 set_remote_exec_file,
14414 show_remote_exec_file,
14415 &remote_set_cmdlist,
14416 &remote_show_cmdlist);
14417
14418 add_setshow_boolean_cmd ("range-stepping", class_run,
14419 &use_range_stepping, _("\
14420 Enable or disable range stepping."), _("\
14421 Show whether target-assisted range stepping is enabled."), _("\
14422 If on, and the target supports it, when stepping a source line, GDB\n\
14423 tells the target to step the corresponding range of addresses itself instead\n\
14424 of issuing multiple single-steps. This speeds up source level\n\
14425 stepping. If off, GDB always issues single-steps, even if range\n\
14426 stepping is supported by the target. The default is on."),
14427 set_range_stepping,
14428 show_range_stepping,
14429 &setlist,
14430 &showlist);
14431
14432 /* Eventually initialize fileio. See fileio.c */
14433 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14434
14435 /* Take advantage of the fact that the TID field is not used, to tag
14436 special ptids with it set to != 0. */
14437 magic_null_ptid = ptid_build (42000, -1, 1);
14438 not_sent_ptid = ptid_build (42000, -2, 1);
14439 any_thread_ptid = ptid_build (42000, 0, 1);
14440
14441 target_buf_size = 2048;
14442 target_buf = (char *) xmalloc (target_buf_size);
14443 }
14444
This page took 0.510164 seconds and 5 git commands to generate.