Make exceptions use std::string and be self-managing
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "common/filestuff.h"
46 #include "common/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "common/gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "common/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "common/environ.h"
77 #include "common/byte-vector.h"
78 #include <unordered_map>
79
80 /* The remote target. */
81
82 static const char remote_doc[] = N_("\
83 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
84 Specify the serial device it is connected to\n\
85 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
86
87 #define OPAQUETHREADBYTES 8
88
89 /* a 64 bit opaque identifier */
90 typedef unsigned char threadref[OPAQUETHREADBYTES];
91
92 struct gdb_ext_thread_info;
93 struct threads_listing_context;
94 typedef int (*rmt_thread_action) (threadref *ref, void *context);
95 struct protocol_feature;
96 struct packet_reg;
97
98 struct stop_reply;
99 typedef std::unique_ptr<stop_reply> stop_reply_up;
100
101 /* Generic configuration support for packets the stub optionally
102 supports. Allows the user to specify the use of the packet as well
103 as allowing GDB to auto-detect support in the remote stub. */
104
105 enum packet_support
106 {
107 PACKET_SUPPORT_UNKNOWN = 0,
108 PACKET_ENABLE,
109 PACKET_DISABLE
110 };
111
112 /* Analyze a packet's return value and update the packet config
113 accordingly. */
114
115 enum packet_result
116 {
117 PACKET_ERROR,
118 PACKET_OK,
119 PACKET_UNKNOWN
120 };
121
122 struct threads_listing_context;
123
124 /* Stub vCont actions support.
125
126 Each field is a boolean flag indicating whether the stub reports
127 support for the corresponding action. */
128
129 struct vCont_action_support
130 {
131 /* vCont;t */
132 bool t = false;
133
134 /* vCont;r */
135 bool r = false;
136
137 /* vCont;s */
138 bool s = false;
139
140 /* vCont;S */
141 bool S = false;
142 };
143
144 /* About this many threadisds fit in a packet. */
145
146 #define MAXTHREADLISTRESULTS 32
147
148 /* Data for the vFile:pread readahead cache. */
149
150 struct readahead_cache
151 {
152 /* Invalidate the readahead cache. */
153 void invalidate ();
154
155 /* Invalidate the readahead cache if it is holding data for FD. */
156 void invalidate_fd (int fd);
157
158 /* Serve pread from the readahead cache. Returns number of bytes
159 read, or 0 if the request can't be served from the cache. */
160 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
161
162 /* The file descriptor for the file that is being cached. -1 if the
163 cache is invalid. */
164 int fd = -1;
165
166 /* The offset into the file that the cache buffer corresponds
167 to. */
168 ULONGEST offset = 0;
169
170 /* The buffer holding the cache contents. */
171 gdb_byte *buf = nullptr;
172 /* The buffer's size. We try to read as much as fits into a packet
173 at a time. */
174 size_t bufsize = 0;
175
176 /* Cache hit and miss counters. */
177 ULONGEST hit_count = 0;
178 ULONGEST miss_count = 0;
179 };
180
181 /* Description of the remote protocol for a given architecture. */
182
183 struct packet_reg
184 {
185 long offset; /* Offset into G packet. */
186 long regnum; /* GDB's internal register number. */
187 LONGEST pnum; /* Remote protocol register number. */
188 int in_g_packet; /* Always part of G packet. */
189 /* long size in bytes; == register_size (target_gdbarch (), regnum);
190 at present. */
191 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
192 at present. */
193 };
194
195 struct remote_arch_state
196 {
197 explicit remote_arch_state (struct gdbarch *gdbarch);
198
199 /* Description of the remote protocol registers. */
200 long sizeof_g_packet;
201
202 /* Description of the remote protocol registers indexed by REGNUM
203 (making an array gdbarch_num_regs in size). */
204 std::unique_ptr<packet_reg[]> regs;
205
206 /* This is the size (in chars) of the first response to the ``g''
207 packet. It is used as a heuristic when determining the maximum
208 size of memory-read and memory-write packets. A target will
209 typically only reserve a buffer large enough to hold the ``g''
210 packet. The size does not include packet overhead (headers and
211 trailers). */
212 long actual_register_packet_size;
213
214 /* This is the maximum size (in chars) of a non read/write packet.
215 It is also used as a cap on the size of read/write packets. */
216 long remote_packet_size;
217 };
218
219 /* Description of the remote protocol state for the currently
220 connected target. This is per-target state, and independent of the
221 selected architecture. */
222
223 class remote_state
224 {
225 public:
226
227 remote_state ();
228 ~remote_state ();
229
230 /* Get the remote arch state for GDBARCH. */
231 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
232
233 public: /* data */
234
235 /* A buffer to use for incoming packets, and its current size. The
236 buffer is grown dynamically for larger incoming packets.
237 Outgoing packets may also be constructed in this buffer.
238 The size of the buffer is always at least REMOTE_PACKET_SIZE;
239 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
240 packets. */
241 gdb::char_vector buf;
242
243 /* True if we're going through initial connection setup (finding out
244 about the remote side's threads, relocating symbols, etc.). */
245 bool starting_up = false;
246
247 /* If we negotiated packet size explicitly (and thus can bypass
248 heuristics for the largest packet size that will not overflow
249 a buffer in the stub), this will be set to that packet size.
250 Otherwise zero, meaning to use the guessed size. */
251 long explicit_packet_size = 0;
252
253 /* remote_wait is normally called when the target is running and
254 waits for a stop reply packet. But sometimes we need to call it
255 when the target is already stopped. We can send a "?" packet
256 and have remote_wait read the response. Or, if we already have
257 the response, we can stash it in BUF and tell remote_wait to
258 skip calling getpkt. This flag is set when BUF contains a
259 stop reply packet and the target is not waiting. */
260 int cached_wait_status = 0;
261
262 /* True, if in no ack mode. That is, neither GDB nor the stub will
263 expect acks from each other. The connection is assumed to be
264 reliable. */
265 bool noack_mode = false;
266
267 /* True if we're connected in extended remote mode. */
268 bool extended = false;
269
270 /* True if we resumed the target and we're waiting for the target to
271 stop. In the mean time, we can't start another command/query.
272 The remote server wouldn't be ready to process it, so we'd
273 timeout waiting for a reply that would never come and eventually
274 we'd close the connection. This can happen in asynchronous mode
275 because we allow GDB commands while the target is running. */
276 bool waiting_for_stop_reply = false;
277
278 /* The status of the stub support for the various vCont actions. */
279 vCont_action_support supports_vCont;
280
281 /* True if the user has pressed Ctrl-C, but the target hasn't
282 responded to that. */
283 bool ctrlc_pending_p = false;
284
285 /* True if we saw a Ctrl-C while reading or writing from/to the
286 remote descriptor. At that point it is not safe to send a remote
287 interrupt packet, so we instead remember we saw the Ctrl-C and
288 process it once we're done with sending/receiving the current
289 packet, which should be shortly. If however that takes too long,
290 and the user presses Ctrl-C again, we offer to disconnect. */
291 bool got_ctrlc_during_io = false;
292
293 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
294 remote_open knows that we don't have a file open when the program
295 starts. */
296 struct serial *remote_desc = nullptr;
297
298 /* These are the threads which we last sent to the remote system. The
299 TID member will be -1 for all or -2 for not sent yet. */
300 ptid_t general_thread = null_ptid;
301 ptid_t continue_thread = null_ptid;
302
303 /* This is the traceframe which we last selected on the remote system.
304 It will be -1 if no traceframe is selected. */
305 int remote_traceframe_number = -1;
306
307 char *last_pass_packet = nullptr;
308
309 /* The last QProgramSignals packet sent to the target. We bypass
310 sending a new program signals list down to the target if the new
311 packet is exactly the same as the last we sent. IOW, we only let
312 the target know about program signals list changes. */
313 char *last_program_signals_packet = nullptr;
314
315 gdb_signal last_sent_signal = GDB_SIGNAL_0;
316
317 bool last_sent_step = false;
318
319 /* The execution direction of the last resume we got. */
320 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
321
322 char *finished_object = nullptr;
323 char *finished_annex = nullptr;
324 ULONGEST finished_offset = 0;
325
326 /* Should we try the 'ThreadInfo' query packet?
327
328 This variable (NOT available to the user: auto-detect only!)
329 determines whether GDB will use the new, simpler "ThreadInfo"
330 query or the older, more complex syntax for thread queries.
331 This is an auto-detect variable (set to true at each connect,
332 and set to false when the target fails to recognize it). */
333 bool use_threadinfo_query = false;
334 bool use_threadextra_query = false;
335
336 threadref echo_nextthread {};
337 threadref nextthread {};
338 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
339
340 /* The state of remote notification. */
341 struct remote_notif_state *notif_state = nullptr;
342
343 /* The branch trace configuration. */
344 struct btrace_config btrace_config {};
345
346 /* The argument to the last "vFile:setfs:" packet we sent, used
347 to avoid sending repeated unnecessary "vFile:setfs:" packets.
348 Initialized to -1 to indicate that no "vFile:setfs:" packet
349 has yet been sent. */
350 int fs_pid = -1;
351
352 /* A readahead cache for vFile:pread. Often, reading a binary
353 involves a sequence of small reads. E.g., when parsing an ELF
354 file. A readahead cache helps mostly the case of remote
355 debugging on a connection with higher latency, due to the
356 request/reply nature of the RSP. We only cache data for a single
357 file descriptor at a time. */
358 struct readahead_cache readahead_cache;
359
360 /* The list of already fetched and acknowledged stop events. This
361 queue is used for notification Stop, and other notifications
362 don't need queue for their events, because the notification
363 events of Stop can't be consumed immediately, so that events
364 should be queued first, and be consumed by remote_wait_{ns,as}
365 one per time. Other notifications can consume their events
366 immediately, so queue is not needed for them. */
367 std::vector<stop_reply_up> stop_reply_queue;
368
369 /* Asynchronous signal handle registered as event loop source for
370 when we have pending events ready to be passed to the core. */
371 struct async_event_handler *remote_async_inferior_event_token = nullptr;
372
373 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
374 ``forever'' still use the normal timeout mechanism. This is
375 currently used by the ASYNC code to guarentee that target reads
376 during the initial connect always time-out. Once getpkt has been
377 modified to return a timeout indication and, in turn
378 remote_wait()/wait_for_inferior() have gained a timeout parameter
379 this can go away. */
380 int wait_forever_enabled_p = 1;
381
382 private:
383 /* Mapping of remote protocol data for each gdbarch. Usually there
384 is only one entry here, though we may see more with stubs that
385 support multi-process. */
386 std::unordered_map<struct gdbarch *, remote_arch_state>
387 m_arch_states;
388 };
389
390 static const target_info remote_target_info = {
391 "remote",
392 N_("Remote serial target in gdb-specific protocol"),
393 remote_doc
394 };
395
396 class remote_target : public process_stratum_target
397 {
398 public:
399 remote_target () = default;
400 ~remote_target () override;
401
402 const target_info &info () const override
403 { return remote_target_info; }
404
405 thread_control_capabilities get_thread_control_capabilities () override
406 { return tc_schedlock; }
407
408 /* Open a remote connection. */
409 static void open (const char *, int);
410
411 void close () override;
412
413 void detach (inferior *, int) override;
414 void disconnect (const char *, int) override;
415
416 void commit_resume () override;
417 void resume (ptid_t, int, enum gdb_signal) override;
418 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
419
420 void fetch_registers (struct regcache *, int) override;
421 void store_registers (struct regcache *, int) override;
422 void prepare_to_store (struct regcache *) override;
423
424 void files_info () override;
425
426 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
427
428 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
429 enum remove_bp_reason) override;
430
431
432 bool stopped_by_sw_breakpoint () override;
433 bool supports_stopped_by_sw_breakpoint () override;
434
435 bool stopped_by_hw_breakpoint () override;
436
437 bool supports_stopped_by_hw_breakpoint () override;
438
439 bool stopped_by_watchpoint () override;
440
441 bool stopped_data_address (CORE_ADDR *) override;
442
443 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
444
445 int can_use_hw_breakpoint (enum bptype, int, int) override;
446
447 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
448
449 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
450
451 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
452
453 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
454 struct expression *) override;
455
456 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
457 struct expression *) override;
458
459 void kill () override;
460
461 void load (const char *, int) override;
462
463 void mourn_inferior () override;
464
465 void pass_signals (gdb::array_view<const unsigned char>) override;
466
467 int set_syscall_catchpoint (int, bool, int,
468 gdb::array_view<const int>) override;
469
470 void program_signals (gdb::array_view<const unsigned char>) override;
471
472 bool thread_alive (ptid_t ptid) override;
473
474 const char *thread_name (struct thread_info *) override;
475
476 void update_thread_list () override;
477
478 std::string pid_to_str (ptid_t) override;
479
480 const char *extra_thread_info (struct thread_info *) override;
481
482 ptid_t get_ada_task_ptid (long lwp, long thread) override;
483
484 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
485 int handle_len,
486 inferior *inf) override;
487
488 void stop (ptid_t) override;
489
490 void interrupt () override;
491
492 void pass_ctrlc () override;
493
494 enum target_xfer_status xfer_partial (enum target_object object,
495 const char *annex,
496 gdb_byte *readbuf,
497 const gdb_byte *writebuf,
498 ULONGEST offset, ULONGEST len,
499 ULONGEST *xfered_len) override;
500
501 ULONGEST get_memory_xfer_limit () override;
502
503 void rcmd (const char *command, struct ui_file *output) override;
504
505 char *pid_to_exec_file (int pid) override;
506
507 void log_command (const char *cmd) override
508 {
509 serial_log_command (this, cmd);
510 }
511
512 CORE_ADDR get_thread_local_address (ptid_t ptid,
513 CORE_ADDR load_module_addr,
514 CORE_ADDR offset) override;
515
516 bool can_execute_reverse () override;
517
518 std::vector<mem_region> memory_map () override;
519
520 void flash_erase (ULONGEST address, LONGEST length) override;
521
522 void flash_done () override;
523
524 const struct target_desc *read_description () override;
525
526 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
527 const gdb_byte *pattern, ULONGEST pattern_len,
528 CORE_ADDR *found_addrp) override;
529
530 bool can_async_p () override;
531
532 bool is_async_p () override;
533
534 void async (int) override;
535
536 void thread_events (int) override;
537
538 int can_do_single_step () override;
539
540 void terminal_inferior () override;
541
542 void terminal_ours () override;
543
544 bool supports_non_stop () override;
545
546 bool supports_multi_process () override;
547
548 bool supports_disable_randomization () override;
549
550 bool filesystem_is_local () override;
551
552
553 int fileio_open (struct inferior *inf, const char *filename,
554 int flags, int mode, int warn_if_slow,
555 int *target_errno) override;
556
557 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
558 ULONGEST offset, int *target_errno) override;
559
560 int fileio_pread (int fd, gdb_byte *read_buf, int len,
561 ULONGEST offset, int *target_errno) override;
562
563 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
564
565 int fileio_close (int fd, int *target_errno) override;
566
567 int fileio_unlink (struct inferior *inf,
568 const char *filename,
569 int *target_errno) override;
570
571 gdb::optional<std::string>
572 fileio_readlink (struct inferior *inf,
573 const char *filename,
574 int *target_errno) override;
575
576 bool supports_enable_disable_tracepoint () override;
577
578 bool supports_string_tracing () override;
579
580 bool supports_evaluation_of_breakpoint_conditions () override;
581
582 bool can_run_breakpoint_commands () override;
583
584 void trace_init () override;
585
586 void download_tracepoint (struct bp_location *location) override;
587
588 bool can_download_tracepoint () override;
589
590 void download_trace_state_variable (const trace_state_variable &tsv) override;
591
592 void enable_tracepoint (struct bp_location *location) override;
593
594 void disable_tracepoint (struct bp_location *location) override;
595
596 void trace_set_readonly_regions () override;
597
598 void trace_start () override;
599
600 int get_trace_status (struct trace_status *ts) override;
601
602 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
603 override;
604
605 void trace_stop () override;
606
607 int trace_find (enum trace_find_type type, int num,
608 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
609
610 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
611
612 int save_trace_data (const char *filename) override;
613
614 int upload_tracepoints (struct uploaded_tp **utpp) override;
615
616 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
617
618 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
619
620 int get_min_fast_tracepoint_insn_len () override;
621
622 void set_disconnected_tracing (int val) override;
623
624 void set_circular_trace_buffer (int val) override;
625
626 void set_trace_buffer_size (LONGEST val) override;
627
628 bool set_trace_notes (const char *user, const char *notes,
629 const char *stopnotes) override;
630
631 int core_of_thread (ptid_t ptid) override;
632
633 int verify_memory (const gdb_byte *data,
634 CORE_ADDR memaddr, ULONGEST size) override;
635
636
637 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
638
639 void set_permissions () override;
640
641 bool static_tracepoint_marker_at (CORE_ADDR,
642 struct static_tracepoint_marker *marker)
643 override;
644
645 std::vector<static_tracepoint_marker>
646 static_tracepoint_markers_by_strid (const char *id) override;
647
648 traceframe_info_up traceframe_info () override;
649
650 bool use_agent (bool use) override;
651 bool can_use_agent () override;
652
653 struct btrace_target_info *enable_btrace (ptid_t ptid,
654 const struct btrace_config *conf) override;
655
656 void disable_btrace (struct btrace_target_info *tinfo) override;
657
658 void teardown_btrace (struct btrace_target_info *tinfo) override;
659
660 enum btrace_error read_btrace (struct btrace_data *data,
661 struct btrace_target_info *btinfo,
662 enum btrace_read_type type) override;
663
664 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
665 bool augmented_libraries_svr4_read () override;
666 int follow_fork (int, int) override;
667 void follow_exec (struct inferior *, char *) override;
668 int insert_fork_catchpoint (int) override;
669 int remove_fork_catchpoint (int) override;
670 int insert_vfork_catchpoint (int) override;
671 int remove_vfork_catchpoint (int) override;
672 int insert_exec_catchpoint (int) override;
673 int remove_exec_catchpoint (int) override;
674 enum exec_direction_kind execution_direction () override;
675
676 public: /* Remote specific methods. */
677
678 void remote_download_command_source (int num, ULONGEST addr,
679 struct command_line *cmds);
680
681 void remote_file_put (const char *local_file, const char *remote_file,
682 int from_tty);
683 void remote_file_get (const char *remote_file, const char *local_file,
684 int from_tty);
685 void remote_file_delete (const char *remote_file, int from_tty);
686
687 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
688 ULONGEST offset, int *remote_errno);
689 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
690 ULONGEST offset, int *remote_errno);
691 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
692 ULONGEST offset, int *remote_errno);
693
694 int remote_hostio_send_command (int command_bytes, int which_packet,
695 int *remote_errno, char **attachment,
696 int *attachment_len);
697 int remote_hostio_set_filesystem (struct inferior *inf,
698 int *remote_errno);
699 /* We should get rid of this and use fileio_open directly. */
700 int remote_hostio_open (struct inferior *inf, const char *filename,
701 int flags, int mode, int warn_if_slow,
702 int *remote_errno);
703 int remote_hostio_close (int fd, int *remote_errno);
704
705 int remote_hostio_unlink (inferior *inf, const char *filename,
706 int *remote_errno);
707
708 struct remote_state *get_remote_state ();
709
710 long get_remote_packet_size (void);
711 long get_memory_packet_size (struct memory_packet_config *config);
712
713 long get_memory_write_packet_size ();
714 long get_memory_read_packet_size ();
715
716 char *append_pending_thread_resumptions (char *p, char *endp,
717 ptid_t ptid);
718 static void open_1 (const char *name, int from_tty, int extended_p);
719 void start_remote (int from_tty, int extended_p);
720 void remote_detach_1 (struct inferior *inf, int from_tty);
721
722 char *append_resumption (char *p, char *endp,
723 ptid_t ptid, int step, gdb_signal siggnal);
724 int remote_resume_with_vcont (ptid_t ptid, int step,
725 gdb_signal siggnal);
726
727 void add_current_inferior_and_thread (char *wait_status);
728
729 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
730 int options);
731 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
732 int options);
733
734 ptid_t process_stop_reply (struct stop_reply *stop_reply,
735 target_waitstatus *status);
736
737 void remote_notice_new_inferior (ptid_t currthread, int executing);
738
739 void process_initial_stop_replies (int from_tty);
740
741 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
742
743 void btrace_sync_conf (const btrace_config *conf);
744
745 void remote_btrace_maybe_reopen ();
746
747 void remove_new_fork_children (threads_listing_context *context);
748 void kill_new_fork_children (int pid);
749 void discard_pending_stop_replies (struct inferior *inf);
750 int stop_reply_queue_length ();
751
752 void check_pending_events_prevent_wildcard_vcont
753 (int *may_global_wildcard_vcont);
754
755 void discard_pending_stop_replies_in_queue ();
756 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
757 struct stop_reply *queued_stop_reply (ptid_t ptid);
758 int peek_stop_reply (ptid_t ptid);
759 void remote_parse_stop_reply (const char *buf, stop_reply *event);
760
761 void remote_stop_ns (ptid_t ptid);
762 void remote_interrupt_as ();
763 void remote_interrupt_ns ();
764
765 char *remote_get_noisy_reply ();
766 int remote_query_attached (int pid);
767 inferior *remote_add_inferior (int fake_pid_p, int pid, int attached,
768 int try_open_exec);
769
770 ptid_t remote_current_thread (ptid_t oldpid);
771 ptid_t get_current_thread (char *wait_status);
772
773 void set_thread (ptid_t ptid, int gen);
774 void set_general_thread (ptid_t ptid);
775 void set_continue_thread (ptid_t ptid);
776 void set_general_process ();
777
778 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
779
780 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
781 gdb_ext_thread_info *info);
782 int remote_get_threadinfo (threadref *threadid, int fieldset,
783 gdb_ext_thread_info *info);
784
785 int parse_threadlist_response (char *pkt, int result_limit,
786 threadref *original_echo,
787 threadref *resultlist,
788 int *doneflag);
789 int remote_get_threadlist (int startflag, threadref *nextthread,
790 int result_limit, int *done, int *result_count,
791 threadref *threadlist);
792
793 int remote_threadlist_iterator (rmt_thread_action stepfunction,
794 void *context, int looplimit);
795
796 int remote_get_threads_with_ql (threads_listing_context *context);
797 int remote_get_threads_with_qxfer (threads_listing_context *context);
798 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
799
800 void extended_remote_restart ();
801
802 void get_offsets ();
803
804 void remote_check_symbols ();
805
806 void remote_supported_packet (const struct protocol_feature *feature,
807 enum packet_support support,
808 const char *argument);
809
810 void remote_query_supported ();
811
812 void remote_packet_size (const protocol_feature *feature,
813 packet_support support, const char *value);
814
815 void remote_serial_quit_handler ();
816
817 void remote_detach_pid (int pid);
818
819 void remote_vcont_probe ();
820
821 void remote_resume_with_hc (ptid_t ptid, int step,
822 gdb_signal siggnal);
823
824 void send_interrupt_sequence ();
825 void interrupt_query ();
826
827 void remote_notif_get_pending_events (notif_client *nc);
828
829 int fetch_register_using_p (struct regcache *regcache,
830 packet_reg *reg);
831 int send_g_packet ();
832 void process_g_packet (struct regcache *regcache);
833 void fetch_registers_using_g (struct regcache *regcache);
834 int store_register_using_P (const struct regcache *regcache,
835 packet_reg *reg);
836 void store_registers_using_G (const struct regcache *regcache);
837
838 void set_remote_traceframe ();
839
840 void check_binary_download (CORE_ADDR addr);
841
842 target_xfer_status remote_write_bytes_aux (const char *header,
843 CORE_ADDR memaddr,
844 const gdb_byte *myaddr,
845 ULONGEST len_units,
846 int unit_size,
847 ULONGEST *xfered_len_units,
848 char packet_format,
849 int use_length);
850
851 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
852 const gdb_byte *myaddr, ULONGEST len,
853 int unit_size, ULONGEST *xfered_len);
854
855 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
856 ULONGEST len_units,
857 int unit_size, ULONGEST *xfered_len_units);
858
859 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
860 ULONGEST memaddr,
861 ULONGEST len,
862 int unit_size,
863 ULONGEST *xfered_len);
864
865 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
866 gdb_byte *myaddr, ULONGEST len,
867 int unit_size,
868 ULONGEST *xfered_len);
869
870 packet_result remote_send_printf (const char *format, ...)
871 ATTRIBUTE_PRINTF (2, 3);
872
873 target_xfer_status remote_flash_write (ULONGEST address,
874 ULONGEST length, ULONGEST *xfered_len,
875 const gdb_byte *data);
876
877 int readchar (int timeout);
878
879 void remote_serial_write (const char *str, int len);
880
881 int putpkt (const char *buf);
882 int putpkt_binary (const char *buf, int cnt);
883
884 int putpkt (const gdb::char_vector &buf)
885 {
886 return putpkt (buf.data ());
887 }
888
889 void skip_frame ();
890 long read_frame (gdb::char_vector *buf_p);
891 void getpkt (gdb::char_vector *buf, int forever);
892 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
893 int expecting_notif, int *is_notif);
894 int getpkt_sane (gdb::char_vector *buf, int forever);
895 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
896 int *is_notif);
897 int remote_vkill (int pid);
898 void remote_kill_k ();
899
900 void extended_remote_disable_randomization (int val);
901 int extended_remote_run (const std::string &args);
902
903 void send_environment_packet (const char *action,
904 const char *packet,
905 const char *value);
906
907 void extended_remote_environment_support ();
908 void extended_remote_set_inferior_cwd ();
909
910 target_xfer_status remote_write_qxfer (const char *object_name,
911 const char *annex,
912 const gdb_byte *writebuf,
913 ULONGEST offset, LONGEST len,
914 ULONGEST *xfered_len,
915 struct packet_config *packet);
916
917 target_xfer_status remote_read_qxfer (const char *object_name,
918 const char *annex,
919 gdb_byte *readbuf, ULONGEST offset,
920 LONGEST len,
921 ULONGEST *xfered_len,
922 struct packet_config *packet);
923
924 void push_stop_reply (struct stop_reply *new_event);
925
926 bool vcont_r_supported ();
927
928 void packet_command (const char *args, int from_tty);
929
930 private: /* data fields */
931
932 /* The remote state. Don't reference this directly. Use the
933 get_remote_state method instead. */
934 remote_state m_remote_state;
935 };
936
937 static const target_info extended_remote_target_info = {
938 "extended-remote",
939 N_("Extended remote serial target in gdb-specific protocol"),
940 remote_doc
941 };
942
943 /* Set up the extended remote target by extending the standard remote
944 target and adding to it. */
945
946 class extended_remote_target final : public remote_target
947 {
948 public:
949 const target_info &info () const override
950 { return extended_remote_target_info; }
951
952 /* Open an extended-remote connection. */
953 static void open (const char *, int);
954
955 bool can_create_inferior () override { return true; }
956 void create_inferior (const char *, const std::string &,
957 char **, int) override;
958
959 void detach (inferior *, int) override;
960
961 bool can_attach () override { return true; }
962 void attach (const char *, int) override;
963
964 void post_attach (int) override;
965 bool supports_disable_randomization () override;
966 };
967
968 /* Per-program-space data key. */
969 static const struct program_space_data *remote_pspace_data;
970
971 /* The variable registered as the control variable used by the
972 remote exec-file commands. While the remote exec-file setting is
973 per-program-space, the set/show machinery uses this as the
974 location of the remote exec-file value. */
975 static char *remote_exec_file_var;
976
977 /* The size to align memory write packets, when practical. The protocol
978 does not guarantee any alignment, and gdb will generate short
979 writes and unaligned writes, but even as a best-effort attempt this
980 can improve bulk transfers. For instance, if a write is misaligned
981 relative to the target's data bus, the stub may need to make an extra
982 round trip fetching data from the target. This doesn't make a
983 huge difference, but it's easy to do, so we try to be helpful.
984
985 The alignment chosen is arbitrary; usually data bus width is
986 important here, not the possibly larger cache line size. */
987 enum { REMOTE_ALIGN_WRITES = 16 };
988
989 /* Prototypes for local functions. */
990
991 static int hexnumlen (ULONGEST num);
992
993 static int stubhex (int ch);
994
995 static int hexnumstr (char *, ULONGEST);
996
997 static int hexnumnstr (char *, ULONGEST, int);
998
999 static CORE_ADDR remote_address_masked (CORE_ADDR);
1000
1001 static void print_packet (const char *);
1002
1003 static int stub_unpack_int (char *buff, int fieldlength);
1004
1005 struct packet_config;
1006
1007 static void show_packet_config_cmd (struct packet_config *config);
1008
1009 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1010 int from_tty,
1011 struct cmd_list_element *c,
1012 const char *value);
1013
1014 static ptid_t read_ptid (const char *buf, const char **obuf);
1015
1016 static void remote_async_inferior_event_handler (gdb_client_data);
1017
1018 static bool remote_read_description_p (struct target_ops *target);
1019
1020 static void remote_console_output (const char *msg);
1021
1022 static void remote_btrace_reset (remote_state *rs);
1023
1024 static void remote_unpush_and_throw (void);
1025
1026 /* For "remote". */
1027
1028 static struct cmd_list_element *remote_cmdlist;
1029
1030 /* For "set remote" and "show remote". */
1031
1032 static struct cmd_list_element *remote_set_cmdlist;
1033 static struct cmd_list_element *remote_show_cmdlist;
1034
1035 /* Controls whether GDB is willing to use range stepping. */
1036
1037 static int use_range_stepping = 1;
1038
1039 /* The max number of chars in debug output. The rest of chars are
1040 omitted. */
1041
1042 #define REMOTE_DEBUG_MAX_CHAR 512
1043
1044 /* Private data that we'll store in (struct thread_info)->priv. */
1045 struct remote_thread_info : public private_thread_info
1046 {
1047 std::string extra;
1048 std::string name;
1049 int core = -1;
1050
1051 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1052 sequence of bytes. */
1053 gdb::byte_vector thread_handle;
1054
1055 /* Whether the target stopped for a breakpoint/watchpoint. */
1056 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1057
1058 /* This is set to the data address of the access causing the target
1059 to stop for a watchpoint. */
1060 CORE_ADDR watch_data_address = 0;
1061
1062 /* Fields used by the vCont action coalescing implemented in
1063 remote_resume / remote_commit_resume. remote_resume stores each
1064 thread's last resume request in these fields, so that a later
1065 remote_commit_resume knows which is the proper action for this
1066 thread to include in the vCont packet. */
1067
1068 /* True if the last target_resume call for this thread was a step
1069 request, false if a continue request. */
1070 int last_resume_step = 0;
1071
1072 /* The signal specified in the last target_resume call for this
1073 thread. */
1074 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1075
1076 /* Whether this thread was already vCont-resumed on the remote
1077 side. */
1078 int vcont_resumed = 0;
1079 };
1080
1081 remote_state::remote_state ()
1082 : buf (400)
1083 {
1084 }
1085
1086 remote_state::~remote_state ()
1087 {
1088 xfree (this->last_pass_packet);
1089 xfree (this->last_program_signals_packet);
1090 xfree (this->finished_object);
1091 xfree (this->finished_annex);
1092 }
1093
1094 /* Utility: generate error from an incoming stub packet. */
1095 static void
1096 trace_error (char *buf)
1097 {
1098 if (*buf++ != 'E')
1099 return; /* not an error msg */
1100 switch (*buf)
1101 {
1102 case '1': /* malformed packet error */
1103 if (*++buf == '0') /* general case: */
1104 error (_("remote.c: error in outgoing packet."));
1105 else
1106 error (_("remote.c: error in outgoing packet at field #%ld."),
1107 strtol (buf, NULL, 16));
1108 default:
1109 error (_("Target returns error code '%s'."), buf);
1110 }
1111 }
1112
1113 /* Utility: wait for reply from stub, while accepting "O" packets. */
1114
1115 char *
1116 remote_target::remote_get_noisy_reply ()
1117 {
1118 struct remote_state *rs = get_remote_state ();
1119
1120 do /* Loop on reply from remote stub. */
1121 {
1122 char *buf;
1123
1124 QUIT; /* Allow user to bail out with ^C. */
1125 getpkt (&rs->buf, 0);
1126 buf = rs->buf.data ();
1127 if (buf[0] == 'E')
1128 trace_error (buf);
1129 else if (startswith (buf, "qRelocInsn:"))
1130 {
1131 ULONGEST ul;
1132 CORE_ADDR from, to, org_to;
1133 const char *p, *pp;
1134 int adjusted_size = 0;
1135 int relocated = 0;
1136
1137 p = buf + strlen ("qRelocInsn:");
1138 pp = unpack_varlen_hex (p, &ul);
1139 if (*pp != ';')
1140 error (_("invalid qRelocInsn packet: %s"), buf);
1141 from = ul;
1142
1143 p = pp + 1;
1144 unpack_varlen_hex (p, &ul);
1145 to = ul;
1146
1147 org_to = to;
1148
1149 TRY
1150 {
1151 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1152 relocated = 1;
1153 }
1154 CATCH (ex, RETURN_MASK_ALL)
1155 {
1156 if (ex.error == MEMORY_ERROR)
1157 {
1158 /* Propagate memory errors silently back to the
1159 target. The stub may have limited the range of
1160 addresses we can write to, for example. */
1161 }
1162 else
1163 {
1164 /* Something unexpectedly bad happened. Be verbose
1165 so we can tell what, and propagate the error back
1166 to the stub, so it doesn't get stuck waiting for
1167 a response. */
1168 exception_fprintf (gdb_stderr, ex,
1169 _("warning: relocating instruction: "));
1170 }
1171 putpkt ("E01");
1172 }
1173 END_CATCH
1174
1175 if (relocated)
1176 {
1177 adjusted_size = to - org_to;
1178
1179 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1180 putpkt (buf);
1181 }
1182 }
1183 else if (buf[0] == 'O' && buf[1] != 'K')
1184 remote_console_output (buf + 1); /* 'O' message from stub */
1185 else
1186 return buf; /* Here's the actual reply. */
1187 }
1188 while (1);
1189 }
1190
1191 struct remote_arch_state *
1192 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1193 {
1194 remote_arch_state *rsa;
1195
1196 auto it = this->m_arch_states.find (gdbarch);
1197 if (it == this->m_arch_states.end ())
1198 {
1199 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1200 std::forward_as_tuple (gdbarch),
1201 std::forward_as_tuple (gdbarch));
1202 rsa = &p.first->second;
1203
1204 /* Make sure that the packet buffer is plenty big enough for
1205 this architecture. */
1206 if (this->buf.size () < rsa->remote_packet_size)
1207 this->buf.resize (2 * rsa->remote_packet_size);
1208 }
1209 else
1210 rsa = &it->second;
1211
1212 return rsa;
1213 }
1214
1215 /* Fetch the global remote target state. */
1216
1217 remote_state *
1218 remote_target::get_remote_state ()
1219 {
1220 /* Make sure that the remote architecture state has been
1221 initialized, because doing so might reallocate rs->buf. Any
1222 function which calls getpkt also needs to be mindful of changes
1223 to rs->buf, but this call limits the number of places which run
1224 into trouble. */
1225 m_remote_state.get_remote_arch_state (target_gdbarch ());
1226
1227 return &m_remote_state;
1228 }
1229
1230 /* Cleanup routine for the remote module's pspace data. */
1231
1232 static void
1233 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
1234 {
1235 char *remote_exec_file = (char *) arg;
1236
1237 xfree (remote_exec_file);
1238 }
1239
1240 /* Fetch the remote exec-file from the current program space. */
1241
1242 static const char *
1243 get_remote_exec_file (void)
1244 {
1245 char *remote_exec_file;
1246
1247 remote_exec_file
1248 = (char *) program_space_data (current_program_space,
1249 remote_pspace_data);
1250 if (remote_exec_file == NULL)
1251 return "";
1252
1253 return remote_exec_file;
1254 }
1255
1256 /* Set the remote exec file for PSPACE. */
1257
1258 static void
1259 set_pspace_remote_exec_file (struct program_space *pspace,
1260 char *remote_exec_file)
1261 {
1262 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
1263
1264 xfree (old_file);
1265 set_program_space_data (pspace, remote_pspace_data,
1266 xstrdup (remote_exec_file));
1267 }
1268
1269 /* The "set/show remote exec-file" set command hook. */
1270
1271 static void
1272 set_remote_exec_file (const char *ignored, int from_tty,
1273 struct cmd_list_element *c)
1274 {
1275 gdb_assert (remote_exec_file_var != NULL);
1276 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1277 }
1278
1279 /* The "set/show remote exec-file" show command hook. */
1280
1281 static void
1282 show_remote_exec_file (struct ui_file *file, int from_tty,
1283 struct cmd_list_element *cmd, const char *value)
1284 {
1285 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1286 }
1287
1288 static int
1289 compare_pnums (const void *lhs_, const void *rhs_)
1290 {
1291 const struct packet_reg * const *lhs
1292 = (const struct packet_reg * const *) lhs_;
1293 const struct packet_reg * const *rhs
1294 = (const struct packet_reg * const *) rhs_;
1295
1296 if ((*lhs)->pnum < (*rhs)->pnum)
1297 return -1;
1298 else if ((*lhs)->pnum == (*rhs)->pnum)
1299 return 0;
1300 else
1301 return 1;
1302 }
1303
1304 static int
1305 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1306 {
1307 int regnum, num_remote_regs, offset;
1308 struct packet_reg **remote_regs;
1309
1310 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1311 {
1312 struct packet_reg *r = &regs[regnum];
1313
1314 if (register_size (gdbarch, regnum) == 0)
1315 /* Do not try to fetch zero-sized (placeholder) registers. */
1316 r->pnum = -1;
1317 else
1318 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1319
1320 r->regnum = regnum;
1321 }
1322
1323 /* Define the g/G packet format as the contents of each register
1324 with a remote protocol number, in order of ascending protocol
1325 number. */
1326
1327 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1328 for (num_remote_regs = 0, regnum = 0;
1329 regnum < gdbarch_num_regs (gdbarch);
1330 regnum++)
1331 if (regs[regnum].pnum != -1)
1332 remote_regs[num_remote_regs++] = &regs[regnum];
1333
1334 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
1335 compare_pnums);
1336
1337 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1338 {
1339 remote_regs[regnum]->in_g_packet = 1;
1340 remote_regs[regnum]->offset = offset;
1341 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1342 }
1343
1344 return offset;
1345 }
1346
1347 /* Given the architecture described by GDBARCH, return the remote
1348 protocol register's number and the register's offset in the g/G
1349 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1350 If the target does not have a mapping for REGNUM, return false,
1351 otherwise, return true. */
1352
1353 int
1354 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1355 int *pnum, int *poffset)
1356 {
1357 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1358
1359 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1360
1361 map_regcache_remote_table (gdbarch, regs.data ());
1362
1363 *pnum = regs[regnum].pnum;
1364 *poffset = regs[regnum].offset;
1365
1366 return *pnum != -1;
1367 }
1368
1369 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1370 {
1371 /* Use the architecture to build a regnum<->pnum table, which will be
1372 1:1 unless a feature set specifies otherwise. */
1373 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1374
1375 /* Record the maximum possible size of the g packet - it may turn out
1376 to be smaller. */
1377 this->sizeof_g_packet
1378 = map_regcache_remote_table (gdbarch, this->regs.get ());
1379
1380 /* Default maximum number of characters in a packet body. Many
1381 remote stubs have a hardwired buffer size of 400 bytes
1382 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1383 as the maximum packet-size to ensure that the packet and an extra
1384 NUL character can always fit in the buffer. This stops GDB
1385 trashing stubs that try to squeeze an extra NUL into what is
1386 already a full buffer (As of 1999-12-04 that was most stubs). */
1387 this->remote_packet_size = 400 - 1;
1388
1389 /* This one is filled in when a ``g'' packet is received. */
1390 this->actual_register_packet_size = 0;
1391
1392 /* Should rsa->sizeof_g_packet needs more space than the
1393 default, adjust the size accordingly. Remember that each byte is
1394 encoded as two characters. 32 is the overhead for the packet
1395 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1396 (``$NN:G...#NN'') is a better guess, the below has been padded a
1397 little. */
1398 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1399 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1400 }
1401
1402 /* Get a pointer to the current remote target. If not connected to a
1403 remote target, return NULL. */
1404
1405 static remote_target *
1406 get_current_remote_target ()
1407 {
1408 target_ops *proc_target = find_target_at (process_stratum);
1409 return dynamic_cast<remote_target *> (proc_target);
1410 }
1411
1412 /* Return the current allowed size of a remote packet. This is
1413 inferred from the current architecture, and should be used to
1414 limit the length of outgoing packets. */
1415 long
1416 remote_target::get_remote_packet_size ()
1417 {
1418 struct remote_state *rs = get_remote_state ();
1419 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1420
1421 if (rs->explicit_packet_size)
1422 return rs->explicit_packet_size;
1423
1424 return rsa->remote_packet_size;
1425 }
1426
1427 static struct packet_reg *
1428 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1429 long regnum)
1430 {
1431 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1432 return NULL;
1433 else
1434 {
1435 struct packet_reg *r = &rsa->regs[regnum];
1436
1437 gdb_assert (r->regnum == regnum);
1438 return r;
1439 }
1440 }
1441
1442 static struct packet_reg *
1443 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1444 LONGEST pnum)
1445 {
1446 int i;
1447
1448 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1449 {
1450 struct packet_reg *r = &rsa->regs[i];
1451
1452 if (r->pnum == pnum)
1453 return r;
1454 }
1455 return NULL;
1456 }
1457
1458 /* Allow the user to specify what sequence to send to the remote
1459 when he requests a program interruption: Although ^C is usually
1460 what remote systems expect (this is the default, here), it is
1461 sometimes preferable to send a break. On other systems such
1462 as the Linux kernel, a break followed by g, which is Magic SysRq g
1463 is required in order to interrupt the execution. */
1464 const char interrupt_sequence_control_c[] = "Ctrl-C";
1465 const char interrupt_sequence_break[] = "BREAK";
1466 const char interrupt_sequence_break_g[] = "BREAK-g";
1467 static const char *const interrupt_sequence_modes[] =
1468 {
1469 interrupt_sequence_control_c,
1470 interrupt_sequence_break,
1471 interrupt_sequence_break_g,
1472 NULL
1473 };
1474 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1475
1476 static void
1477 show_interrupt_sequence (struct ui_file *file, int from_tty,
1478 struct cmd_list_element *c,
1479 const char *value)
1480 {
1481 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1482 fprintf_filtered (file,
1483 _("Send the ASCII ETX character (Ctrl-c) "
1484 "to the remote target to interrupt the "
1485 "execution of the program.\n"));
1486 else if (interrupt_sequence_mode == interrupt_sequence_break)
1487 fprintf_filtered (file,
1488 _("send a break signal to the remote target "
1489 "to interrupt the execution of the program.\n"));
1490 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1491 fprintf_filtered (file,
1492 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1493 "the remote target to interrupt the execution "
1494 "of Linux kernel.\n"));
1495 else
1496 internal_error (__FILE__, __LINE__,
1497 _("Invalid value for interrupt_sequence_mode: %s."),
1498 interrupt_sequence_mode);
1499 }
1500
1501 /* This boolean variable specifies whether interrupt_sequence is sent
1502 to the remote target when gdb connects to it.
1503 This is mostly needed when you debug the Linux kernel: The Linux kernel
1504 expects BREAK g which is Magic SysRq g for connecting gdb. */
1505 static int interrupt_on_connect = 0;
1506
1507 /* This variable is used to implement the "set/show remotebreak" commands.
1508 Since these commands are now deprecated in favor of "set/show remote
1509 interrupt-sequence", it no longer has any effect on the code. */
1510 static int remote_break;
1511
1512 static void
1513 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1514 {
1515 if (remote_break)
1516 interrupt_sequence_mode = interrupt_sequence_break;
1517 else
1518 interrupt_sequence_mode = interrupt_sequence_control_c;
1519 }
1520
1521 static void
1522 show_remotebreak (struct ui_file *file, int from_tty,
1523 struct cmd_list_element *c,
1524 const char *value)
1525 {
1526 }
1527
1528 /* This variable sets the number of bits in an address that are to be
1529 sent in a memory ("M" or "m") packet. Normally, after stripping
1530 leading zeros, the entire address would be sent. This variable
1531 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1532 initial implementation of remote.c restricted the address sent in
1533 memory packets to ``host::sizeof long'' bytes - (typically 32
1534 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1535 address was never sent. Since fixing this bug may cause a break in
1536 some remote targets this variable is principly provided to
1537 facilitate backward compatibility. */
1538
1539 static unsigned int remote_address_size;
1540
1541 \f
1542 /* User configurable variables for the number of characters in a
1543 memory read/write packet. MIN (rsa->remote_packet_size,
1544 rsa->sizeof_g_packet) is the default. Some targets need smaller
1545 values (fifo overruns, et.al.) and some users need larger values
1546 (speed up transfers). The variables ``preferred_*'' (the user
1547 request), ``current_*'' (what was actually set) and ``forced_*''
1548 (Positive - a soft limit, negative - a hard limit). */
1549
1550 struct memory_packet_config
1551 {
1552 const char *name;
1553 long size;
1554 int fixed_p;
1555 };
1556
1557 /* The default max memory-write-packet-size, when the setting is
1558 "fixed". The 16k is historical. (It came from older GDB's using
1559 alloca for buffers and the knowledge (folklore?) that some hosts
1560 don't cope very well with large alloca calls.) */
1561 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1562
1563 /* The minimum remote packet size for memory transfers. Ensures we
1564 can write at least one byte. */
1565 #define MIN_MEMORY_PACKET_SIZE 20
1566
1567 /* Get the memory packet size, assuming it is fixed. */
1568
1569 static long
1570 get_fixed_memory_packet_size (struct memory_packet_config *config)
1571 {
1572 gdb_assert (config->fixed_p);
1573
1574 if (config->size <= 0)
1575 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1576 else
1577 return config->size;
1578 }
1579
1580 /* Compute the current size of a read/write packet. Since this makes
1581 use of ``actual_register_packet_size'' the computation is dynamic. */
1582
1583 long
1584 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1585 {
1586 struct remote_state *rs = get_remote_state ();
1587 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1588
1589 long what_they_get;
1590 if (config->fixed_p)
1591 what_they_get = get_fixed_memory_packet_size (config);
1592 else
1593 {
1594 what_they_get = get_remote_packet_size ();
1595 /* Limit the packet to the size specified by the user. */
1596 if (config->size > 0
1597 && what_they_get > config->size)
1598 what_they_get = config->size;
1599
1600 /* Limit it to the size of the targets ``g'' response unless we have
1601 permission from the stub to use a larger packet size. */
1602 if (rs->explicit_packet_size == 0
1603 && rsa->actual_register_packet_size > 0
1604 && what_they_get > rsa->actual_register_packet_size)
1605 what_they_get = rsa->actual_register_packet_size;
1606 }
1607 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1608 what_they_get = MIN_MEMORY_PACKET_SIZE;
1609
1610 /* Make sure there is room in the global buffer for this packet
1611 (including its trailing NUL byte). */
1612 if (rs->buf.size () < what_they_get + 1)
1613 rs->buf.resize (2 * what_they_get);
1614
1615 return what_they_get;
1616 }
1617
1618 /* Update the size of a read/write packet. If they user wants
1619 something really big then do a sanity check. */
1620
1621 static void
1622 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1623 {
1624 int fixed_p = config->fixed_p;
1625 long size = config->size;
1626
1627 if (args == NULL)
1628 error (_("Argument required (integer, `fixed' or `limited')."));
1629 else if (strcmp (args, "hard") == 0
1630 || strcmp (args, "fixed") == 0)
1631 fixed_p = 1;
1632 else if (strcmp (args, "soft") == 0
1633 || strcmp (args, "limit") == 0)
1634 fixed_p = 0;
1635 else
1636 {
1637 char *end;
1638
1639 size = strtoul (args, &end, 0);
1640 if (args == end)
1641 error (_("Invalid %s (bad syntax)."), config->name);
1642
1643 /* Instead of explicitly capping the size of a packet to or
1644 disallowing it, the user is allowed to set the size to
1645 something arbitrarily large. */
1646 }
1647
1648 /* Extra checks? */
1649 if (fixed_p && !config->fixed_p)
1650 {
1651 /* So that the query shows the correct value. */
1652 long query_size = (size <= 0
1653 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1654 : size);
1655
1656 if (! query (_("The target may not be able to correctly handle a %s\n"
1657 "of %ld bytes. Change the packet size? "),
1658 config->name, query_size))
1659 error (_("Packet size not changed."));
1660 }
1661 /* Update the config. */
1662 config->fixed_p = fixed_p;
1663 config->size = size;
1664 }
1665
1666 static void
1667 show_memory_packet_size (struct memory_packet_config *config)
1668 {
1669 if (config->size == 0)
1670 printf_filtered (_("The %s is 0 (default). "), config->name);
1671 else
1672 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1673 if (config->fixed_p)
1674 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1675 get_fixed_memory_packet_size (config));
1676 else
1677 {
1678 remote_target *remote = get_current_remote_target ();
1679
1680 if (remote != NULL)
1681 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1682 remote->get_memory_packet_size (config));
1683 else
1684 puts_filtered ("The actual limit will be further reduced "
1685 "dependent on the target.\n");
1686 }
1687 }
1688
1689 static struct memory_packet_config memory_write_packet_config =
1690 {
1691 "memory-write-packet-size",
1692 };
1693
1694 static void
1695 set_memory_write_packet_size (const char *args, int from_tty)
1696 {
1697 set_memory_packet_size (args, &memory_write_packet_config);
1698 }
1699
1700 static void
1701 show_memory_write_packet_size (const char *args, int from_tty)
1702 {
1703 show_memory_packet_size (&memory_write_packet_config);
1704 }
1705
1706 /* Show the number of hardware watchpoints that can be used. */
1707
1708 static void
1709 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1710 struct cmd_list_element *c,
1711 const char *value)
1712 {
1713 fprintf_filtered (file, _("The maximum number of target hardware "
1714 "watchpoints is %s.\n"), value);
1715 }
1716
1717 /* Show the length limit (in bytes) for hardware watchpoints. */
1718
1719 static void
1720 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1721 struct cmd_list_element *c,
1722 const char *value)
1723 {
1724 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1725 "hardware watchpoint is %s.\n"), value);
1726 }
1727
1728 /* Show the number of hardware breakpoints that can be used. */
1729
1730 static void
1731 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1732 struct cmd_list_element *c,
1733 const char *value)
1734 {
1735 fprintf_filtered (file, _("The maximum number of target hardware "
1736 "breakpoints is %s.\n"), value);
1737 }
1738
1739 long
1740 remote_target::get_memory_write_packet_size ()
1741 {
1742 return get_memory_packet_size (&memory_write_packet_config);
1743 }
1744
1745 static struct memory_packet_config memory_read_packet_config =
1746 {
1747 "memory-read-packet-size",
1748 };
1749
1750 static void
1751 set_memory_read_packet_size (const char *args, int from_tty)
1752 {
1753 set_memory_packet_size (args, &memory_read_packet_config);
1754 }
1755
1756 static void
1757 show_memory_read_packet_size (const char *args, int from_tty)
1758 {
1759 show_memory_packet_size (&memory_read_packet_config);
1760 }
1761
1762 long
1763 remote_target::get_memory_read_packet_size ()
1764 {
1765 long size = get_memory_packet_size (&memory_read_packet_config);
1766
1767 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1768 extra buffer size argument before the memory read size can be
1769 increased beyond this. */
1770 if (size > get_remote_packet_size ())
1771 size = get_remote_packet_size ();
1772 return size;
1773 }
1774
1775 \f
1776
1777 struct packet_config
1778 {
1779 const char *name;
1780 const char *title;
1781
1782 /* If auto, GDB auto-detects support for this packet or feature,
1783 either through qSupported, or by trying the packet and looking
1784 at the response. If true, GDB assumes the target supports this
1785 packet. If false, the packet is disabled. Configs that don't
1786 have an associated command always have this set to auto. */
1787 enum auto_boolean detect;
1788
1789 /* Does the target support this packet? */
1790 enum packet_support support;
1791 };
1792
1793 static enum packet_support packet_config_support (struct packet_config *config);
1794 static enum packet_support packet_support (int packet);
1795
1796 static void
1797 show_packet_config_cmd (struct packet_config *config)
1798 {
1799 const char *support = "internal-error";
1800
1801 switch (packet_config_support (config))
1802 {
1803 case PACKET_ENABLE:
1804 support = "enabled";
1805 break;
1806 case PACKET_DISABLE:
1807 support = "disabled";
1808 break;
1809 case PACKET_SUPPORT_UNKNOWN:
1810 support = "unknown";
1811 break;
1812 }
1813 switch (config->detect)
1814 {
1815 case AUTO_BOOLEAN_AUTO:
1816 printf_filtered (_("Support for the `%s' packet "
1817 "is auto-detected, currently %s.\n"),
1818 config->name, support);
1819 break;
1820 case AUTO_BOOLEAN_TRUE:
1821 case AUTO_BOOLEAN_FALSE:
1822 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1823 config->name, support);
1824 break;
1825 }
1826 }
1827
1828 static void
1829 add_packet_config_cmd (struct packet_config *config, const char *name,
1830 const char *title, int legacy)
1831 {
1832 char *set_doc;
1833 char *show_doc;
1834 char *cmd_name;
1835
1836 config->name = name;
1837 config->title = title;
1838 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1839 name, title);
1840 show_doc = xstrprintf ("Show current use of remote "
1841 "protocol `%s' (%s) packet",
1842 name, title);
1843 /* set/show TITLE-packet {auto,on,off} */
1844 cmd_name = xstrprintf ("%s-packet", title);
1845 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1846 &config->detect, set_doc,
1847 show_doc, NULL, /* help_doc */
1848 NULL,
1849 show_remote_protocol_packet_cmd,
1850 &remote_set_cmdlist, &remote_show_cmdlist);
1851 /* The command code copies the documentation strings. */
1852 xfree (set_doc);
1853 xfree (show_doc);
1854 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1855 if (legacy)
1856 {
1857 char *legacy_name;
1858
1859 legacy_name = xstrprintf ("%s-packet", name);
1860 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1861 &remote_set_cmdlist);
1862 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1863 &remote_show_cmdlist);
1864 }
1865 }
1866
1867 static enum packet_result
1868 packet_check_result (const char *buf)
1869 {
1870 if (buf[0] != '\0')
1871 {
1872 /* The stub recognized the packet request. Check that the
1873 operation succeeded. */
1874 if (buf[0] == 'E'
1875 && isxdigit (buf[1]) && isxdigit (buf[2])
1876 && buf[3] == '\0')
1877 /* "Enn" - definitly an error. */
1878 return PACKET_ERROR;
1879
1880 /* Always treat "E." as an error. This will be used for
1881 more verbose error messages, such as E.memtypes. */
1882 if (buf[0] == 'E' && buf[1] == '.')
1883 return PACKET_ERROR;
1884
1885 /* The packet may or may not be OK. Just assume it is. */
1886 return PACKET_OK;
1887 }
1888 else
1889 /* The stub does not support the packet. */
1890 return PACKET_UNKNOWN;
1891 }
1892
1893 static enum packet_result
1894 packet_check_result (const gdb::char_vector &buf)
1895 {
1896 return packet_check_result (buf.data ());
1897 }
1898
1899 static enum packet_result
1900 packet_ok (const char *buf, struct packet_config *config)
1901 {
1902 enum packet_result result;
1903
1904 if (config->detect != AUTO_BOOLEAN_TRUE
1905 && config->support == PACKET_DISABLE)
1906 internal_error (__FILE__, __LINE__,
1907 _("packet_ok: attempt to use a disabled packet"));
1908
1909 result = packet_check_result (buf);
1910 switch (result)
1911 {
1912 case PACKET_OK:
1913 case PACKET_ERROR:
1914 /* The stub recognized the packet request. */
1915 if (config->support == PACKET_SUPPORT_UNKNOWN)
1916 {
1917 if (remote_debug)
1918 fprintf_unfiltered (gdb_stdlog,
1919 "Packet %s (%s) is supported\n",
1920 config->name, config->title);
1921 config->support = PACKET_ENABLE;
1922 }
1923 break;
1924 case PACKET_UNKNOWN:
1925 /* The stub does not support the packet. */
1926 if (config->detect == AUTO_BOOLEAN_AUTO
1927 && config->support == PACKET_ENABLE)
1928 {
1929 /* If the stub previously indicated that the packet was
1930 supported then there is a protocol error. */
1931 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1932 config->name, config->title);
1933 }
1934 else if (config->detect == AUTO_BOOLEAN_TRUE)
1935 {
1936 /* The user set it wrong. */
1937 error (_("Enabled packet %s (%s) not recognized by stub"),
1938 config->name, config->title);
1939 }
1940
1941 if (remote_debug)
1942 fprintf_unfiltered (gdb_stdlog,
1943 "Packet %s (%s) is NOT supported\n",
1944 config->name, config->title);
1945 config->support = PACKET_DISABLE;
1946 break;
1947 }
1948
1949 return result;
1950 }
1951
1952 static enum packet_result
1953 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1954 {
1955 return packet_ok (buf.data (), config);
1956 }
1957
1958 enum {
1959 PACKET_vCont = 0,
1960 PACKET_X,
1961 PACKET_qSymbol,
1962 PACKET_P,
1963 PACKET_p,
1964 PACKET_Z0,
1965 PACKET_Z1,
1966 PACKET_Z2,
1967 PACKET_Z3,
1968 PACKET_Z4,
1969 PACKET_vFile_setfs,
1970 PACKET_vFile_open,
1971 PACKET_vFile_pread,
1972 PACKET_vFile_pwrite,
1973 PACKET_vFile_close,
1974 PACKET_vFile_unlink,
1975 PACKET_vFile_readlink,
1976 PACKET_vFile_fstat,
1977 PACKET_qXfer_auxv,
1978 PACKET_qXfer_features,
1979 PACKET_qXfer_exec_file,
1980 PACKET_qXfer_libraries,
1981 PACKET_qXfer_libraries_svr4,
1982 PACKET_qXfer_memory_map,
1983 PACKET_qXfer_spu_read,
1984 PACKET_qXfer_spu_write,
1985 PACKET_qXfer_osdata,
1986 PACKET_qXfer_threads,
1987 PACKET_qXfer_statictrace_read,
1988 PACKET_qXfer_traceframe_info,
1989 PACKET_qXfer_uib,
1990 PACKET_qGetTIBAddr,
1991 PACKET_qGetTLSAddr,
1992 PACKET_qSupported,
1993 PACKET_qTStatus,
1994 PACKET_QPassSignals,
1995 PACKET_QCatchSyscalls,
1996 PACKET_QProgramSignals,
1997 PACKET_QSetWorkingDir,
1998 PACKET_QStartupWithShell,
1999 PACKET_QEnvironmentHexEncoded,
2000 PACKET_QEnvironmentReset,
2001 PACKET_QEnvironmentUnset,
2002 PACKET_qCRC,
2003 PACKET_qSearch_memory,
2004 PACKET_vAttach,
2005 PACKET_vRun,
2006 PACKET_QStartNoAckMode,
2007 PACKET_vKill,
2008 PACKET_qXfer_siginfo_read,
2009 PACKET_qXfer_siginfo_write,
2010 PACKET_qAttached,
2011
2012 /* Support for conditional tracepoints. */
2013 PACKET_ConditionalTracepoints,
2014
2015 /* Support for target-side breakpoint conditions. */
2016 PACKET_ConditionalBreakpoints,
2017
2018 /* Support for target-side breakpoint commands. */
2019 PACKET_BreakpointCommands,
2020
2021 /* Support for fast tracepoints. */
2022 PACKET_FastTracepoints,
2023
2024 /* Support for static tracepoints. */
2025 PACKET_StaticTracepoints,
2026
2027 /* Support for installing tracepoints while a trace experiment is
2028 running. */
2029 PACKET_InstallInTrace,
2030
2031 PACKET_bc,
2032 PACKET_bs,
2033 PACKET_TracepointSource,
2034 PACKET_QAllow,
2035 PACKET_qXfer_fdpic,
2036 PACKET_QDisableRandomization,
2037 PACKET_QAgent,
2038 PACKET_QTBuffer_size,
2039 PACKET_Qbtrace_off,
2040 PACKET_Qbtrace_bts,
2041 PACKET_Qbtrace_pt,
2042 PACKET_qXfer_btrace,
2043
2044 /* Support for the QNonStop packet. */
2045 PACKET_QNonStop,
2046
2047 /* Support for the QThreadEvents packet. */
2048 PACKET_QThreadEvents,
2049
2050 /* Support for multi-process extensions. */
2051 PACKET_multiprocess_feature,
2052
2053 /* Support for enabling and disabling tracepoints while a trace
2054 experiment is running. */
2055 PACKET_EnableDisableTracepoints_feature,
2056
2057 /* Support for collecting strings using the tracenz bytecode. */
2058 PACKET_tracenz_feature,
2059
2060 /* Support for continuing to run a trace experiment while GDB is
2061 disconnected. */
2062 PACKET_DisconnectedTracing_feature,
2063
2064 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2065 PACKET_augmented_libraries_svr4_read_feature,
2066
2067 /* Support for the qXfer:btrace-conf:read packet. */
2068 PACKET_qXfer_btrace_conf,
2069
2070 /* Support for the Qbtrace-conf:bts:size packet. */
2071 PACKET_Qbtrace_conf_bts_size,
2072
2073 /* Support for swbreak+ feature. */
2074 PACKET_swbreak_feature,
2075
2076 /* Support for hwbreak+ feature. */
2077 PACKET_hwbreak_feature,
2078
2079 /* Support for fork events. */
2080 PACKET_fork_event_feature,
2081
2082 /* Support for vfork events. */
2083 PACKET_vfork_event_feature,
2084
2085 /* Support for the Qbtrace-conf:pt:size packet. */
2086 PACKET_Qbtrace_conf_pt_size,
2087
2088 /* Support for exec events. */
2089 PACKET_exec_event_feature,
2090
2091 /* Support for query supported vCont actions. */
2092 PACKET_vContSupported,
2093
2094 /* Support remote CTRL-C. */
2095 PACKET_vCtrlC,
2096
2097 /* Support TARGET_WAITKIND_NO_RESUMED. */
2098 PACKET_no_resumed,
2099
2100 PACKET_MAX
2101 };
2102
2103 static struct packet_config remote_protocol_packets[PACKET_MAX];
2104
2105 /* Returns the packet's corresponding "set remote foo-packet" command
2106 state. See struct packet_config for more details. */
2107
2108 static enum auto_boolean
2109 packet_set_cmd_state (int packet)
2110 {
2111 return remote_protocol_packets[packet].detect;
2112 }
2113
2114 /* Returns whether a given packet or feature is supported. This takes
2115 into account the state of the corresponding "set remote foo-packet"
2116 command, which may be used to bypass auto-detection. */
2117
2118 static enum packet_support
2119 packet_config_support (struct packet_config *config)
2120 {
2121 switch (config->detect)
2122 {
2123 case AUTO_BOOLEAN_TRUE:
2124 return PACKET_ENABLE;
2125 case AUTO_BOOLEAN_FALSE:
2126 return PACKET_DISABLE;
2127 case AUTO_BOOLEAN_AUTO:
2128 return config->support;
2129 default:
2130 gdb_assert_not_reached (_("bad switch"));
2131 }
2132 }
2133
2134 /* Same as packet_config_support, but takes the packet's enum value as
2135 argument. */
2136
2137 static enum packet_support
2138 packet_support (int packet)
2139 {
2140 struct packet_config *config = &remote_protocol_packets[packet];
2141
2142 return packet_config_support (config);
2143 }
2144
2145 static void
2146 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2147 struct cmd_list_element *c,
2148 const char *value)
2149 {
2150 struct packet_config *packet;
2151
2152 for (packet = remote_protocol_packets;
2153 packet < &remote_protocol_packets[PACKET_MAX];
2154 packet++)
2155 {
2156 if (&packet->detect == c->var)
2157 {
2158 show_packet_config_cmd (packet);
2159 return;
2160 }
2161 }
2162 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2163 c->name);
2164 }
2165
2166 /* Should we try one of the 'Z' requests? */
2167
2168 enum Z_packet_type
2169 {
2170 Z_PACKET_SOFTWARE_BP,
2171 Z_PACKET_HARDWARE_BP,
2172 Z_PACKET_WRITE_WP,
2173 Z_PACKET_READ_WP,
2174 Z_PACKET_ACCESS_WP,
2175 NR_Z_PACKET_TYPES
2176 };
2177
2178 /* For compatibility with older distributions. Provide a ``set remote
2179 Z-packet ...'' command that updates all the Z packet types. */
2180
2181 static enum auto_boolean remote_Z_packet_detect;
2182
2183 static void
2184 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2185 struct cmd_list_element *c)
2186 {
2187 int i;
2188
2189 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2190 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2191 }
2192
2193 static void
2194 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2195 struct cmd_list_element *c,
2196 const char *value)
2197 {
2198 int i;
2199
2200 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2201 {
2202 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2203 }
2204 }
2205
2206 /* Returns true if the multi-process extensions are in effect. */
2207
2208 static int
2209 remote_multi_process_p (struct remote_state *rs)
2210 {
2211 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2212 }
2213
2214 /* Returns true if fork events are supported. */
2215
2216 static int
2217 remote_fork_event_p (struct remote_state *rs)
2218 {
2219 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2220 }
2221
2222 /* Returns true if vfork events are supported. */
2223
2224 static int
2225 remote_vfork_event_p (struct remote_state *rs)
2226 {
2227 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2228 }
2229
2230 /* Returns true if exec events are supported. */
2231
2232 static int
2233 remote_exec_event_p (struct remote_state *rs)
2234 {
2235 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2236 }
2237
2238 /* Insert fork catchpoint target routine. If fork events are enabled
2239 then return success, nothing more to do. */
2240
2241 int
2242 remote_target::insert_fork_catchpoint (int pid)
2243 {
2244 struct remote_state *rs = get_remote_state ();
2245
2246 return !remote_fork_event_p (rs);
2247 }
2248
2249 /* Remove fork catchpoint target routine. Nothing to do, just
2250 return success. */
2251
2252 int
2253 remote_target::remove_fork_catchpoint (int pid)
2254 {
2255 return 0;
2256 }
2257
2258 /* Insert vfork catchpoint target routine. If vfork events are enabled
2259 then return success, nothing more to do. */
2260
2261 int
2262 remote_target::insert_vfork_catchpoint (int pid)
2263 {
2264 struct remote_state *rs = get_remote_state ();
2265
2266 return !remote_vfork_event_p (rs);
2267 }
2268
2269 /* Remove vfork catchpoint target routine. Nothing to do, just
2270 return success. */
2271
2272 int
2273 remote_target::remove_vfork_catchpoint (int pid)
2274 {
2275 return 0;
2276 }
2277
2278 /* Insert exec catchpoint target routine. If exec events are
2279 enabled, just return success. */
2280
2281 int
2282 remote_target::insert_exec_catchpoint (int pid)
2283 {
2284 struct remote_state *rs = get_remote_state ();
2285
2286 return !remote_exec_event_p (rs);
2287 }
2288
2289 /* Remove exec catchpoint target routine. Nothing to do, just
2290 return success. */
2291
2292 int
2293 remote_target::remove_exec_catchpoint (int pid)
2294 {
2295 return 0;
2296 }
2297
2298 \f
2299
2300 /* Take advantage of the fact that the TID field is not used, to tag
2301 special ptids with it set to != 0. */
2302 static const ptid_t magic_null_ptid (42000, -1, 1);
2303 static const ptid_t not_sent_ptid (42000, -2, 1);
2304 static const ptid_t any_thread_ptid (42000, 0, 1);
2305
2306 /* Find out if the stub attached to PID (and hence GDB should offer to
2307 detach instead of killing it when bailing out). */
2308
2309 int
2310 remote_target::remote_query_attached (int pid)
2311 {
2312 struct remote_state *rs = get_remote_state ();
2313 size_t size = get_remote_packet_size ();
2314
2315 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2316 return 0;
2317
2318 if (remote_multi_process_p (rs))
2319 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2320 else
2321 xsnprintf (rs->buf.data (), size, "qAttached");
2322
2323 putpkt (rs->buf);
2324 getpkt (&rs->buf, 0);
2325
2326 switch (packet_ok (rs->buf,
2327 &remote_protocol_packets[PACKET_qAttached]))
2328 {
2329 case PACKET_OK:
2330 if (strcmp (rs->buf.data (), "1") == 0)
2331 return 1;
2332 break;
2333 case PACKET_ERROR:
2334 warning (_("Remote failure reply: %s"), rs->buf.data ());
2335 break;
2336 case PACKET_UNKNOWN:
2337 break;
2338 }
2339
2340 return 0;
2341 }
2342
2343 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2344 has been invented by GDB, instead of reported by the target. Since
2345 we can be connected to a remote system before before knowing about
2346 any inferior, mark the target with execution when we find the first
2347 inferior. If ATTACHED is 1, then we had just attached to this
2348 inferior. If it is 0, then we just created this inferior. If it
2349 is -1, then try querying the remote stub to find out if it had
2350 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2351 attempt to open this inferior's executable as the main executable
2352 if no main executable is open already. */
2353
2354 inferior *
2355 remote_target::remote_add_inferior (int fake_pid_p, int pid, int attached,
2356 int try_open_exec)
2357 {
2358 struct inferior *inf;
2359
2360 /* Check whether this process we're learning about is to be
2361 considered attached, or if is to be considered to have been
2362 spawned by the stub. */
2363 if (attached == -1)
2364 attached = remote_query_attached (pid);
2365
2366 if (gdbarch_has_global_solist (target_gdbarch ()))
2367 {
2368 /* If the target shares code across all inferiors, then every
2369 attach adds a new inferior. */
2370 inf = add_inferior (pid);
2371
2372 /* ... and every inferior is bound to the same program space.
2373 However, each inferior may still have its own address
2374 space. */
2375 inf->aspace = maybe_new_address_space ();
2376 inf->pspace = current_program_space;
2377 }
2378 else
2379 {
2380 /* In the traditional debugging scenario, there's a 1-1 match
2381 between program/address spaces. We simply bind the inferior
2382 to the program space's address space. */
2383 inf = current_inferior ();
2384 inferior_appeared (inf, pid);
2385 }
2386
2387 inf->attach_flag = attached;
2388 inf->fake_pid_p = fake_pid_p;
2389
2390 /* If no main executable is currently open then attempt to
2391 open the file that was executed to create this inferior. */
2392 if (try_open_exec && get_exec_file (0) == NULL)
2393 exec_file_locate_attach (pid, 0, 1);
2394
2395 return inf;
2396 }
2397
2398 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2399 static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2400
2401 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2402 according to RUNNING. */
2403
2404 thread_info *
2405 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2406 {
2407 struct remote_state *rs = get_remote_state ();
2408 struct thread_info *thread;
2409
2410 /* GDB historically didn't pull threads in the initial connection
2411 setup. If the remote target doesn't even have a concept of
2412 threads (e.g., a bare-metal target), even if internally we
2413 consider that a single-threaded target, mentioning a new thread
2414 might be confusing to the user. Be silent then, preserving the
2415 age old behavior. */
2416 if (rs->starting_up)
2417 thread = add_thread_silent (ptid);
2418 else
2419 thread = add_thread (ptid);
2420
2421 get_remote_thread_info (thread)->vcont_resumed = executing;
2422 set_executing (ptid, executing);
2423 set_running (ptid, running);
2424
2425 return thread;
2426 }
2427
2428 /* Come here when we learn about a thread id from the remote target.
2429 It may be the first time we hear about such thread, so take the
2430 opportunity to add it to GDB's thread list. In case this is the
2431 first time we're noticing its corresponding inferior, add it to
2432 GDB's inferior list as well. EXECUTING indicates whether the
2433 thread is (internally) executing or stopped. */
2434
2435 void
2436 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2437 {
2438 /* In non-stop mode, we assume new found threads are (externally)
2439 running until proven otherwise with a stop reply. In all-stop,
2440 we can only get here if all threads are stopped. */
2441 int running = target_is_non_stop_p () ? 1 : 0;
2442
2443 /* If this is a new thread, add it to GDB's thread list.
2444 If we leave it up to WFI to do this, bad things will happen. */
2445
2446 thread_info *tp = find_thread_ptid (currthread);
2447 if (tp != NULL && tp->state == THREAD_EXITED)
2448 {
2449 /* We're seeing an event on a thread id we knew had exited.
2450 This has to be a new thread reusing the old id. Add it. */
2451 remote_add_thread (currthread, running, executing);
2452 return;
2453 }
2454
2455 if (!in_thread_list (currthread))
2456 {
2457 struct inferior *inf = NULL;
2458 int pid = currthread.pid ();
2459
2460 if (inferior_ptid.is_pid ()
2461 && pid == inferior_ptid.pid ())
2462 {
2463 /* inferior_ptid has no thread member yet. This can happen
2464 with the vAttach -> remote_wait,"TAAthread:" path if the
2465 stub doesn't support qC. This is the first stop reported
2466 after an attach, so this is the main thread. Update the
2467 ptid in the thread list. */
2468 if (in_thread_list (ptid_t (pid)))
2469 thread_change_ptid (inferior_ptid, currthread);
2470 else
2471 {
2472 remote_add_thread (currthread, running, executing);
2473 inferior_ptid = currthread;
2474 }
2475 return;
2476 }
2477
2478 if (magic_null_ptid == inferior_ptid)
2479 {
2480 /* inferior_ptid is not set yet. This can happen with the
2481 vRun -> remote_wait,"TAAthread:" path if the stub
2482 doesn't support qC. This is the first stop reported
2483 after an attach, so this is the main thread. Update the
2484 ptid in the thread list. */
2485 thread_change_ptid (inferior_ptid, currthread);
2486 return;
2487 }
2488
2489 /* When connecting to a target remote, or to a target
2490 extended-remote which already was debugging an inferior, we
2491 may not know about it yet. Add it before adding its child
2492 thread, so notifications are emitted in a sensible order. */
2493 if (find_inferior_pid (currthread.pid ()) == NULL)
2494 {
2495 struct remote_state *rs = get_remote_state ();
2496 int fake_pid_p = !remote_multi_process_p (rs);
2497
2498 inf = remote_add_inferior (fake_pid_p,
2499 currthread.pid (), -1, 1);
2500 }
2501
2502 /* This is really a new thread. Add it. */
2503 thread_info *new_thr
2504 = remote_add_thread (currthread, running, executing);
2505
2506 /* If we found a new inferior, let the common code do whatever
2507 it needs to with it (e.g., read shared libraries, insert
2508 breakpoints), unless we're just setting up an all-stop
2509 connection. */
2510 if (inf != NULL)
2511 {
2512 struct remote_state *rs = get_remote_state ();
2513
2514 if (!rs->starting_up)
2515 notice_new_inferior (new_thr, executing, 0);
2516 }
2517 }
2518 }
2519
2520 /* Return THREAD's private thread data, creating it if necessary. */
2521
2522 static remote_thread_info *
2523 get_remote_thread_info (thread_info *thread)
2524 {
2525 gdb_assert (thread != NULL);
2526
2527 if (thread->priv == NULL)
2528 thread->priv.reset (new remote_thread_info);
2529
2530 return static_cast<remote_thread_info *> (thread->priv.get ());
2531 }
2532
2533 static remote_thread_info *
2534 get_remote_thread_info (ptid_t ptid)
2535 {
2536 thread_info *thr = find_thread_ptid (ptid);
2537 return get_remote_thread_info (thr);
2538 }
2539
2540 /* Call this function as a result of
2541 1) A halt indication (T packet) containing a thread id
2542 2) A direct query of currthread
2543 3) Successful execution of set thread */
2544
2545 static void
2546 record_currthread (struct remote_state *rs, ptid_t currthread)
2547 {
2548 rs->general_thread = currthread;
2549 }
2550
2551 /* If 'QPassSignals' is supported, tell the remote stub what signals
2552 it can simply pass through to the inferior without reporting. */
2553
2554 void
2555 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2556 {
2557 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2558 {
2559 char *pass_packet, *p;
2560 int count = 0;
2561 struct remote_state *rs = get_remote_state ();
2562
2563 gdb_assert (pass_signals.size () < 256);
2564 for (size_t i = 0; i < pass_signals.size (); i++)
2565 {
2566 if (pass_signals[i])
2567 count++;
2568 }
2569 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2570 strcpy (pass_packet, "QPassSignals:");
2571 p = pass_packet + strlen (pass_packet);
2572 for (size_t i = 0; i < pass_signals.size (); i++)
2573 {
2574 if (pass_signals[i])
2575 {
2576 if (i >= 16)
2577 *p++ = tohex (i >> 4);
2578 *p++ = tohex (i & 15);
2579 if (count)
2580 *p++ = ';';
2581 else
2582 break;
2583 count--;
2584 }
2585 }
2586 *p = 0;
2587 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2588 {
2589 putpkt (pass_packet);
2590 getpkt (&rs->buf, 0);
2591 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2592 if (rs->last_pass_packet)
2593 xfree (rs->last_pass_packet);
2594 rs->last_pass_packet = pass_packet;
2595 }
2596 else
2597 xfree (pass_packet);
2598 }
2599 }
2600
2601 /* If 'QCatchSyscalls' is supported, tell the remote stub
2602 to report syscalls to GDB. */
2603
2604 int
2605 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2606 gdb::array_view<const int> syscall_counts)
2607 {
2608 const char *catch_packet;
2609 enum packet_result result;
2610 int n_sysno = 0;
2611
2612 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2613 {
2614 /* Not supported. */
2615 return 1;
2616 }
2617
2618 if (needed && any_count == 0)
2619 {
2620 /* Count how many syscalls are to be caught. */
2621 for (size_t i = 0; i < syscall_counts.size (); i++)
2622 {
2623 if (syscall_counts[i] != 0)
2624 n_sysno++;
2625 }
2626 }
2627
2628 if (remote_debug)
2629 {
2630 fprintf_unfiltered (gdb_stdlog,
2631 "remote_set_syscall_catchpoint "
2632 "pid %d needed %d any_count %d n_sysno %d\n",
2633 pid, needed, any_count, n_sysno);
2634 }
2635
2636 std::string built_packet;
2637 if (needed)
2638 {
2639 /* Prepare a packet with the sysno list, assuming max 8+1
2640 characters for a sysno. If the resulting packet size is too
2641 big, fallback on the non-selective packet. */
2642 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2643 built_packet.reserve (maxpktsz);
2644 built_packet = "QCatchSyscalls:1";
2645 if (any_count == 0)
2646 {
2647 /* Add in each syscall to be caught. */
2648 for (size_t i = 0; i < syscall_counts.size (); i++)
2649 {
2650 if (syscall_counts[i] != 0)
2651 string_appendf (built_packet, ";%zx", i);
2652 }
2653 }
2654 if (built_packet.size () > get_remote_packet_size ())
2655 {
2656 /* catch_packet too big. Fallback to less efficient
2657 non selective mode, with GDB doing the filtering. */
2658 catch_packet = "QCatchSyscalls:1";
2659 }
2660 else
2661 catch_packet = built_packet.c_str ();
2662 }
2663 else
2664 catch_packet = "QCatchSyscalls:0";
2665
2666 struct remote_state *rs = get_remote_state ();
2667
2668 putpkt (catch_packet);
2669 getpkt (&rs->buf, 0);
2670 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2671 if (result == PACKET_OK)
2672 return 0;
2673 else
2674 return -1;
2675 }
2676
2677 /* If 'QProgramSignals' is supported, tell the remote stub what
2678 signals it should pass through to the inferior when detaching. */
2679
2680 void
2681 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2682 {
2683 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2684 {
2685 char *packet, *p;
2686 int count = 0;
2687 struct remote_state *rs = get_remote_state ();
2688
2689 gdb_assert (signals.size () < 256);
2690 for (size_t i = 0; i < signals.size (); i++)
2691 {
2692 if (signals[i])
2693 count++;
2694 }
2695 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2696 strcpy (packet, "QProgramSignals:");
2697 p = packet + strlen (packet);
2698 for (size_t i = 0; i < signals.size (); i++)
2699 {
2700 if (signal_pass_state (i))
2701 {
2702 if (i >= 16)
2703 *p++ = tohex (i >> 4);
2704 *p++ = tohex (i & 15);
2705 if (count)
2706 *p++ = ';';
2707 else
2708 break;
2709 count--;
2710 }
2711 }
2712 *p = 0;
2713 if (!rs->last_program_signals_packet
2714 || strcmp (rs->last_program_signals_packet, packet) != 0)
2715 {
2716 putpkt (packet);
2717 getpkt (&rs->buf, 0);
2718 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2719 xfree (rs->last_program_signals_packet);
2720 rs->last_program_signals_packet = packet;
2721 }
2722 else
2723 xfree (packet);
2724 }
2725 }
2726
2727 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2728 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2729 thread. If GEN is set, set the general thread, if not, then set
2730 the step/continue thread. */
2731 void
2732 remote_target::set_thread (ptid_t ptid, int gen)
2733 {
2734 struct remote_state *rs = get_remote_state ();
2735 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2736 char *buf = rs->buf.data ();
2737 char *endbuf = buf + get_remote_packet_size ();
2738
2739 if (state == ptid)
2740 return;
2741
2742 *buf++ = 'H';
2743 *buf++ = gen ? 'g' : 'c';
2744 if (ptid == magic_null_ptid)
2745 xsnprintf (buf, endbuf - buf, "0");
2746 else if (ptid == any_thread_ptid)
2747 xsnprintf (buf, endbuf - buf, "0");
2748 else if (ptid == minus_one_ptid)
2749 xsnprintf (buf, endbuf - buf, "-1");
2750 else
2751 write_ptid (buf, endbuf, ptid);
2752 putpkt (rs->buf);
2753 getpkt (&rs->buf, 0);
2754 if (gen)
2755 rs->general_thread = ptid;
2756 else
2757 rs->continue_thread = ptid;
2758 }
2759
2760 void
2761 remote_target::set_general_thread (ptid_t ptid)
2762 {
2763 set_thread (ptid, 1);
2764 }
2765
2766 void
2767 remote_target::set_continue_thread (ptid_t ptid)
2768 {
2769 set_thread (ptid, 0);
2770 }
2771
2772 /* Change the remote current process. Which thread within the process
2773 ends up selected isn't important, as long as it is the same process
2774 as what INFERIOR_PTID points to.
2775
2776 This comes from that fact that there is no explicit notion of
2777 "selected process" in the protocol. The selected process for
2778 general operations is the process the selected general thread
2779 belongs to. */
2780
2781 void
2782 remote_target::set_general_process ()
2783 {
2784 struct remote_state *rs = get_remote_state ();
2785
2786 /* If the remote can't handle multiple processes, don't bother. */
2787 if (!remote_multi_process_p (rs))
2788 return;
2789
2790 /* We only need to change the remote current thread if it's pointing
2791 at some other process. */
2792 if (rs->general_thread.pid () != inferior_ptid.pid ())
2793 set_general_thread (inferior_ptid);
2794 }
2795
2796 \f
2797 /* Return nonzero if this is the main thread that we made up ourselves
2798 to model non-threaded targets as single-threaded. */
2799
2800 static int
2801 remote_thread_always_alive (ptid_t ptid)
2802 {
2803 if (ptid == magic_null_ptid)
2804 /* The main thread is always alive. */
2805 return 1;
2806
2807 if (ptid.pid () != 0 && ptid.lwp () == 0)
2808 /* The main thread is always alive. This can happen after a
2809 vAttach, if the remote side doesn't support
2810 multi-threading. */
2811 return 1;
2812
2813 return 0;
2814 }
2815
2816 /* Return nonzero if the thread PTID is still alive on the remote
2817 system. */
2818
2819 bool
2820 remote_target::thread_alive (ptid_t ptid)
2821 {
2822 struct remote_state *rs = get_remote_state ();
2823 char *p, *endp;
2824
2825 /* Check if this is a thread that we made up ourselves to model
2826 non-threaded targets as single-threaded. */
2827 if (remote_thread_always_alive (ptid))
2828 return 1;
2829
2830 p = rs->buf.data ();
2831 endp = p + get_remote_packet_size ();
2832
2833 *p++ = 'T';
2834 write_ptid (p, endp, ptid);
2835
2836 putpkt (rs->buf);
2837 getpkt (&rs->buf, 0);
2838 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2839 }
2840
2841 /* Return a pointer to a thread name if we know it and NULL otherwise.
2842 The thread_info object owns the memory for the name. */
2843
2844 const char *
2845 remote_target::thread_name (struct thread_info *info)
2846 {
2847 if (info->priv != NULL)
2848 {
2849 const std::string &name = get_remote_thread_info (info)->name;
2850 return !name.empty () ? name.c_str () : NULL;
2851 }
2852
2853 return NULL;
2854 }
2855
2856 /* About these extended threadlist and threadinfo packets. They are
2857 variable length packets but, the fields within them are often fixed
2858 length. They are redundent enough to send over UDP as is the
2859 remote protocol in general. There is a matching unit test module
2860 in libstub. */
2861
2862 /* WARNING: This threadref data structure comes from the remote O.S.,
2863 libstub protocol encoding, and remote.c. It is not particularly
2864 changable. */
2865
2866 /* Right now, the internal structure is int. We want it to be bigger.
2867 Plan to fix this. */
2868
2869 typedef int gdb_threadref; /* Internal GDB thread reference. */
2870
2871 /* gdb_ext_thread_info is an internal GDB data structure which is
2872 equivalent to the reply of the remote threadinfo packet. */
2873
2874 struct gdb_ext_thread_info
2875 {
2876 threadref threadid; /* External form of thread reference. */
2877 int active; /* Has state interesting to GDB?
2878 regs, stack. */
2879 char display[256]; /* Brief state display, name,
2880 blocked/suspended. */
2881 char shortname[32]; /* To be used to name threads. */
2882 char more_display[256]; /* Long info, statistics, queue depth,
2883 whatever. */
2884 };
2885
2886 /* The volume of remote transfers can be limited by submitting
2887 a mask containing bits specifying the desired information.
2888 Use a union of these values as the 'selection' parameter to
2889 get_thread_info. FIXME: Make these TAG names more thread specific. */
2890
2891 #define TAG_THREADID 1
2892 #define TAG_EXISTS 2
2893 #define TAG_DISPLAY 4
2894 #define TAG_THREADNAME 8
2895 #define TAG_MOREDISPLAY 16
2896
2897 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2898
2899 static char *unpack_nibble (char *buf, int *val);
2900
2901 static char *unpack_byte (char *buf, int *value);
2902
2903 static char *pack_int (char *buf, int value);
2904
2905 static char *unpack_int (char *buf, int *value);
2906
2907 static char *unpack_string (char *src, char *dest, int length);
2908
2909 static char *pack_threadid (char *pkt, threadref *id);
2910
2911 static char *unpack_threadid (char *inbuf, threadref *id);
2912
2913 void int_to_threadref (threadref *id, int value);
2914
2915 static int threadref_to_int (threadref *ref);
2916
2917 static void copy_threadref (threadref *dest, threadref *src);
2918
2919 static int threadmatch (threadref *dest, threadref *src);
2920
2921 static char *pack_threadinfo_request (char *pkt, int mode,
2922 threadref *id);
2923
2924 static char *pack_threadlist_request (char *pkt, int startflag,
2925 int threadcount,
2926 threadref *nextthread);
2927
2928 static int remote_newthread_step (threadref *ref, void *context);
2929
2930
2931 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2932 buffer we're allowed to write to. Returns
2933 BUF+CHARACTERS_WRITTEN. */
2934
2935 char *
2936 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2937 {
2938 int pid, tid;
2939 struct remote_state *rs = get_remote_state ();
2940
2941 if (remote_multi_process_p (rs))
2942 {
2943 pid = ptid.pid ();
2944 if (pid < 0)
2945 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2946 else
2947 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2948 }
2949 tid = ptid.lwp ();
2950 if (tid < 0)
2951 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2952 else
2953 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2954
2955 return buf;
2956 }
2957
2958 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2959 last parsed char. Returns null_ptid if no thread id is found, and
2960 throws an error if the thread id has an invalid format. */
2961
2962 static ptid_t
2963 read_ptid (const char *buf, const char **obuf)
2964 {
2965 const char *p = buf;
2966 const char *pp;
2967 ULONGEST pid = 0, tid = 0;
2968
2969 if (*p == 'p')
2970 {
2971 /* Multi-process ptid. */
2972 pp = unpack_varlen_hex (p + 1, &pid);
2973 if (*pp != '.')
2974 error (_("invalid remote ptid: %s"), p);
2975
2976 p = pp;
2977 pp = unpack_varlen_hex (p + 1, &tid);
2978 if (obuf)
2979 *obuf = pp;
2980 return ptid_t (pid, tid, 0);
2981 }
2982
2983 /* No multi-process. Just a tid. */
2984 pp = unpack_varlen_hex (p, &tid);
2985
2986 /* Return null_ptid when no thread id is found. */
2987 if (p == pp)
2988 {
2989 if (obuf)
2990 *obuf = pp;
2991 return null_ptid;
2992 }
2993
2994 /* Since the stub is not sending a process id, then default to
2995 what's in inferior_ptid, unless it's null at this point. If so,
2996 then since there's no way to know the pid of the reported
2997 threads, use the magic number. */
2998 if (inferior_ptid == null_ptid)
2999 pid = magic_null_ptid.pid ();
3000 else
3001 pid = inferior_ptid.pid ();
3002
3003 if (obuf)
3004 *obuf = pp;
3005 return ptid_t (pid, tid, 0);
3006 }
3007
3008 static int
3009 stubhex (int ch)
3010 {
3011 if (ch >= 'a' && ch <= 'f')
3012 return ch - 'a' + 10;
3013 if (ch >= '0' && ch <= '9')
3014 return ch - '0';
3015 if (ch >= 'A' && ch <= 'F')
3016 return ch - 'A' + 10;
3017 return -1;
3018 }
3019
3020 static int
3021 stub_unpack_int (char *buff, int fieldlength)
3022 {
3023 int nibble;
3024 int retval = 0;
3025
3026 while (fieldlength)
3027 {
3028 nibble = stubhex (*buff++);
3029 retval |= nibble;
3030 fieldlength--;
3031 if (fieldlength)
3032 retval = retval << 4;
3033 }
3034 return retval;
3035 }
3036
3037 static char *
3038 unpack_nibble (char *buf, int *val)
3039 {
3040 *val = fromhex (*buf++);
3041 return buf;
3042 }
3043
3044 static char *
3045 unpack_byte (char *buf, int *value)
3046 {
3047 *value = stub_unpack_int (buf, 2);
3048 return buf + 2;
3049 }
3050
3051 static char *
3052 pack_int (char *buf, int value)
3053 {
3054 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3055 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3056 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3057 buf = pack_hex_byte (buf, (value & 0xff));
3058 return buf;
3059 }
3060
3061 static char *
3062 unpack_int (char *buf, int *value)
3063 {
3064 *value = stub_unpack_int (buf, 8);
3065 return buf + 8;
3066 }
3067
3068 #if 0 /* Currently unused, uncomment when needed. */
3069 static char *pack_string (char *pkt, char *string);
3070
3071 static char *
3072 pack_string (char *pkt, char *string)
3073 {
3074 char ch;
3075 int len;
3076
3077 len = strlen (string);
3078 if (len > 200)
3079 len = 200; /* Bigger than most GDB packets, junk??? */
3080 pkt = pack_hex_byte (pkt, len);
3081 while (len-- > 0)
3082 {
3083 ch = *string++;
3084 if ((ch == '\0') || (ch == '#'))
3085 ch = '*'; /* Protect encapsulation. */
3086 *pkt++ = ch;
3087 }
3088 return pkt;
3089 }
3090 #endif /* 0 (unused) */
3091
3092 static char *
3093 unpack_string (char *src, char *dest, int length)
3094 {
3095 while (length--)
3096 *dest++ = *src++;
3097 *dest = '\0';
3098 return src;
3099 }
3100
3101 static char *
3102 pack_threadid (char *pkt, threadref *id)
3103 {
3104 char *limit;
3105 unsigned char *altid;
3106
3107 altid = (unsigned char *) id;
3108 limit = pkt + BUF_THREAD_ID_SIZE;
3109 while (pkt < limit)
3110 pkt = pack_hex_byte (pkt, *altid++);
3111 return pkt;
3112 }
3113
3114
3115 static char *
3116 unpack_threadid (char *inbuf, threadref *id)
3117 {
3118 char *altref;
3119 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3120 int x, y;
3121
3122 altref = (char *) id;
3123
3124 while (inbuf < limit)
3125 {
3126 x = stubhex (*inbuf++);
3127 y = stubhex (*inbuf++);
3128 *altref++ = (x << 4) | y;
3129 }
3130 return inbuf;
3131 }
3132
3133 /* Externally, threadrefs are 64 bits but internally, they are still
3134 ints. This is due to a mismatch of specifications. We would like
3135 to use 64bit thread references internally. This is an adapter
3136 function. */
3137
3138 void
3139 int_to_threadref (threadref *id, int value)
3140 {
3141 unsigned char *scan;
3142
3143 scan = (unsigned char *) id;
3144 {
3145 int i = 4;
3146 while (i--)
3147 *scan++ = 0;
3148 }
3149 *scan++ = (value >> 24) & 0xff;
3150 *scan++ = (value >> 16) & 0xff;
3151 *scan++ = (value >> 8) & 0xff;
3152 *scan++ = (value & 0xff);
3153 }
3154
3155 static int
3156 threadref_to_int (threadref *ref)
3157 {
3158 int i, value = 0;
3159 unsigned char *scan;
3160
3161 scan = *ref;
3162 scan += 4;
3163 i = 4;
3164 while (i-- > 0)
3165 value = (value << 8) | ((*scan++) & 0xff);
3166 return value;
3167 }
3168
3169 static void
3170 copy_threadref (threadref *dest, threadref *src)
3171 {
3172 int i;
3173 unsigned char *csrc, *cdest;
3174
3175 csrc = (unsigned char *) src;
3176 cdest = (unsigned char *) dest;
3177 i = 8;
3178 while (i--)
3179 *cdest++ = *csrc++;
3180 }
3181
3182 static int
3183 threadmatch (threadref *dest, threadref *src)
3184 {
3185 /* Things are broken right now, so just assume we got a match. */
3186 #if 0
3187 unsigned char *srcp, *destp;
3188 int i, result;
3189 srcp = (char *) src;
3190 destp = (char *) dest;
3191
3192 result = 1;
3193 while (i-- > 0)
3194 result &= (*srcp++ == *destp++) ? 1 : 0;
3195 return result;
3196 #endif
3197 return 1;
3198 }
3199
3200 /*
3201 threadid:1, # always request threadid
3202 context_exists:2,
3203 display:4,
3204 unique_name:8,
3205 more_display:16
3206 */
3207
3208 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3209
3210 static char *
3211 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3212 {
3213 *pkt++ = 'q'; /* Info Query */
3214 *pkt++ = 'P'; /* process or thread info */
3215 pkt = pack_int (pkt, mode); /* mode */
3216 pkt = pack_threadid (pkt, id); /* threadid */
3217 *pkt = '\0'; /* terminate */
3218 return pkt;
3219 }
3220
3221 /* These values tag the fields in a thread info response packet. */
3222 /* Tagging the fields allows us to request specific fields and to
3223 add more fields as time goes by. */
3224
3225 #define TAG_THREADID 1 /* Echo the thread identifier. */
3226 #define TAG_EXISTS 2 /* Is this process defined enough to
3227 fetch registers and its stack? */
3228 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3229 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3230 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3231 the process. */
3232
3233 int
3234 remote_target::remote_unpack_thread_info_response (char *pkt,
3235 threadref *expectedref,
3236 gdb_ext_thread_info *info)
3237 {
3238 struct remote_state *rs = get_remote_state ();
3239 int mask, length;
3240 int tag;
3241 threadref ref;
3242 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3243 int retval = 1;
3244
3245 /* info->threadid = 0; FIXME: implement zero_threadref. */
3246 info->active = 0;
3247 info->display[0] = '\0';
3248 info->shortname[0] = '\0';
3249 info->more_display[0] = '\0';
3250
3251 /* Assume the characters indicating the packet type have been
3252 stripped. */
3253 pkt = unpack_int (pkt, &mask); /* arg mask */
3254 pkt = unpack_threadid (pkt, &ref);
3255
3256 if (mask == 0)
3257 warning (_("Incomplete response to threadinfo request."));
3258 if (!threadmatch (&ref, expectedref))
3259 { /* This is an answer to a different request. */
3260 warning (_("ERROR RMT Thread info mismatch."));
3261 return 0;
3262 }
3263 copy_threadref (&info->threadid, &ref);
3264
3265 /* Loop on tagged fields , try to bail if somthing goes wrong. */
3266
3267 /* Packets are terminated with nulls. */
3268 while ((pkt < limit) && mask && *pkt)
3269 {
3270 pkt = unpack_int (pkt, &tag); /* tag */
3271 pkt = unpack_byte (pkt, &length); /* length */
3272 if (!(tag & mask)) /* Tags out of synch with mask. */
3273 {
3274 warning (_("ERROR RMT: threadinfo tag mismatch."));
3275 retval = 0;
3276 break;
3277 }
3278 if (tag == TAG_THREADID)
3279 {
3280 if (length != 16)
3281 {
3282 warning (_("ERROR RMT: length of threadid is not 16."));
3283 retval = 0;
3284 break;
3285 }
3286 pkt = unpack_threadid (pkt, &ref);
3287 mask = mask & ~TAG_THREADID;
3288 continue;
3289 }
3290 if (tag == TAG_EXISTS)
3291 {
3292 info->active = stub_unpack_int (pkt, length);
3293 pkt += length;
3294 mask = mask & ~(TAG_EXISTS);
3295 if (length > 8)
3296 {
3297 warning (_("ERROR RMT: 'exists' length too long."));
3298 retval = 0;
3299 break;
3300 }
3301 continue;
3302 }
3303 if (tag == TAG_THREADNAME)
3304 {
3305 pkt = unpack_string (pkt, &info->shortname[0], length);
3306 mask = mask & ~TAG_THREADNAME;
3307 continue;
3308 }
3309 if (tag == TAG_DISPLAY)
3310 {
3311 pkt = unpack_string (pkt, &info->display[0], length);
3312 mask = mask & ~TAG_DISPLAY;
3313 continue;
3314 }
3315 if (tag == TAG_MOREDISPLAY)
3316 {
3317 pkt = unpack_string (pkt, &info->more_display[0], length);
3318 mask = mask & ~TAG_MOREDISPLAY;
3319 continue;
3320 }
3321 warning (_("ERROR RMT: unknown thread info tag."));
3322 break; /* Not a tag we know about. */
3323 }
3324 return retval;
3325 }
3326
3327 int
3328 remote_target::remote_get_threadinfo (threadref *threadid,
3329 int fieldset,
3330 gdb_ext_thread_info *info)
3331 {
3332 struct remote_state *rs = get_remote_state ();
3333 int result;
3334
3335 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3336 putpkt (rs->buf);
3337 getpkt (&rs->buf, 0);
3338
3339 if (rs->buf[0] == '\0')
3340 return 0;
3341
3342 result = remote_unpack_thread_info_response (&rs->buf[2],
3343 threadid, info);
3344 return result;
3345 }
3346
3347 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3348
3349 static char *
3350 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3351 threadref *nextthread)
3352 {
3353 *pkt++ = 'q'; /* info query packet */
3354 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3355 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3356 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3357 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3358 *pkt = '\0';
3359 return pkt;
3360 }
3361
3362 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3363
3364 int
3365 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3366 threadref *original_echo,
3367 threadref *resultlist,
3368 int *doneflag)
3369 {
3370 struct remote_state *rs = get_remote_state ();
3371 char *limit;
3372 int count, resultcount, done;
3373
3374 resultcount = 0;
3375 /* Assume the 'q' and 'M chars have been stripped. */
3376 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3377 /* done parse past here */
3378 pkt = unpack_byte (pkt, &count); /* count field */
3379 pkt = unpack_nibble (pkt, &done);
3380 /* The first threadid is the argument threadid. */
3381 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3382 while ((count-- > 0) && (pkt < limit))
3383 {
3384 pkt = unpack_threadid (pkt, resultlist++);
3385 if (resultcount++ >= result_limit)
3386 break;
3387 }
3388 if (doneflag)
3389 *doneflag = done;
3390 return resultcount;
3391 }
3392
3393 /* Fetch the next batch of threads from the remote. Returns -1 if the
3394 qL packet is not supported, 0 on error and 1 on success. */
3395
3396 int
3397 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3398 int result_limit, int *done, int *result_count,
3399 threadref *threadlist)
3400 {
3401 struct remote_state *rs = get_remote_state ();
3402 int result = 1;
3403
3404 /* Trancate result limit to be smaller than the packet size. */
3405 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3406 >= get_remote_packet_size ())
3407 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3408
3409 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3410 nextthread);
3411 putpkt (rs->buf);
3412 getpkt (&rs->buf, 0);
3413 if (rs->buf[0] == '\0')
3414 {
3415 /* Packet not supported. */
3416 return -1;
3417 }
3418
3419 *result_count =
3420 parse_threadlist_response (&rs->buf[2], result_limit,
3421 &rs->echo_nextthread, threadlist, done);
3422
3423 if (!threadmatch (&rs->echo_nextthread, nextthread))
3424 {
3425 /* FIXME: This is a good reason to drop the packet. */
3426 /* Possably, there is a duplicate response. */
3427 /* Possabilities :
3428 retransmit immediatly - race conditions
3429 retransmit after timeout - yes
3430 exit
3431 wait for packet, then exit
3432 */
3433 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3434 return 0; /* I choose simply exiting. */
3435 }
3436 if (*result_count <= 0)
3437 {
3438 if (*done != 1)
3439 {
3440 warning (_("RMT ERROR : failed to get remote thread list."));
3441 result = 0;
3442 }
3443 return result; /* break; */
3444 }
3445 if (*result_count > result_limit)
3446 {
3447 *result_count = 0;
3448 warning (_("RMT ERROR: threadlist response longer than requested."));
3449 return 0;
3450 }
3451 return result;
3452 }
3453
3454 /* Fetch the list of remote threads, with the qL packet, and call
3455 STEPFUNCTION for each thread found. Stops iterating and returns 1
3456 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3457 STEPFUNCTION returns false. If the packet is not supported,
3458 returns -1. */
3459
3460 int
3461 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3462 void *context, int looplimit)
3463 {
3464 struct remote_state *rs = get_remote_state ();
3465 int done, i, result_count;
3466 int startflag = 1;
3467 int result = 1;
3468 int loopcount = 0;
3469
3470 done = 0;
3471 while (!done)
3472 {
3473 if (loopcount++ > looplimit)
3474 {
3475 result = 0;
3476 warning (_("Remote fetch threadlist -infinite loop-."));
3477 break;
3478 }
3479 result = remote_get_threadlist (startflag, &rs->nextthread,
3480 MAXTHREADLISTRESULTS,
3481 &done, &result_count,
3482 rs->resultthreadlist);
3483 if (result <= 0)
3484 break;
3485 /* Clear for later iterations. */
3486 startflag = 0;
3487 /* Setup to resume next batch of thread references, set nextthread. */
3488 if (result_count >= 1)
3489 copy_threadref (&rs->nextthread,
3490 &rs->resultthreadlist[result_count - 1]);
3491 i = 0;
3492 while (result_count--)
3493 {
3494 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3495 {
3496 result = 0;
3497 break;
3498 }
3499 }
3500 }
3501 return result;
3502 }
3503
3504 /* A thread found on the remote target. */
3505
3506 struct thread_item
3507 {
3508 explicit thread_item (ptid_t ptid_)
3509 : ptid (ptid_)
3510 {}
3511
3512 thread_item (thread_item &&other) = default;
3513 thread_item &operator= (thread_item &&other) = default;
3514
3515 DISABLE_COPY_AND_ASSIGN (thread_item);
3516
3517 /* The thread's PTID. */
3518 ptid_t ptid;
3519
3520 /* The thread's extra info. */
3521 std::string extra;
3522
3523 /* The thread's name. */
3524 std::string name;
3525
3526 /* The core the thread was running on. -1 if not known. */
3527 int core = -1;
3528
3529 /* The thread handle associated with the thread. */
3530 gdb::byte_vector thread_handle;
3531 };
3532
3533 /* Context passed around to the various methods listing remote
3534 threads. As new threads are found, they're added to the ITEMS
3535 vector. */
3536
3537 struct threads_listing_context
3538 {
3539 /* Return true if this object contains an entry for a thread with ptid
3540 PTID. */
3541
3542 bool contains_thread (ptid_t ptid) const
3543 {
3544 auto match_ptid = [&] (const thread_item &item)
3545 {
3546 return item.ptid == ptid;
3547 };
3548
3549 auto it = std::find_if (this->items.begin (),
3550 this->items.end (),
3551 match_ptid);
3552
3553 return it != this->items.end ();
3554 }
3555
3556 /* Remove the thread with ptid PTID. */
3557
3558 void remove_thread (ptid_t ptid)
3559 {
3560 auto match_ptid = [&] (const thread_item &item)
3561 {
3562 return item.ptid == ptid;
3563 };
3564
3565 auto it = std::remove_if (this->items.begin (),
3566 this->items.end (),
3567 match_ptid);
3568
3569 if (it != this->items.end ())
3570 this->items.erase (it);
3571 }
3572
3573 /* The threads found on the remote target. */
3574 std::vector<thread_item> items;
3575 };
3576
3577 static int
3578 remote_newthread_step (threadref *ref, void *data)
3579 {
3580 struct threads_listing_context *context
3581 = (struct threads_listing_context *) data;
3582 int pid = inferior_ptid.pid ();
3583 int lwp = threadref_to_int (ref);
3584 ptid_t ptid (pid, lwp);
3585
3586 context->items.emplace_back (ptid);
3587
3588 return 1; /* continue iterator */
3589 }
3590
3591 #define CRAZY_MAX_THREADS 1000
3592
3593 ptid_t
3594 remote_target::remote_current_thread (ptid_t oldpid)
3595 {
3596 struct remote_state *rs = get_remote_state ();
3597
3598 putpkt ("qC");
3599 getpkt (&rs->buf, 0);
3600 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3601 {
3602 const char *obuf;
3603 ptid_t result;
3604
3605 result = read_ptid (&rs->buf[2], &obuf);
3606 if (*obuf != '\0' && remote_debug)
3607 fprintf_unfiltered (gdb_stdlog,
3608 "warning: garbage in qC reply\n");
3609
3610 return result;
3611 }
3612 else
3613 return oldpid;
3614 }
3615
3616 /* List remote threads using the deprecated qL packet. */
3617
3618 int
3619 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3620 {
3621 if (remote_threadlist_iterator (remote_newthread_step, context,
3622 CRAZY_MAX_THREADS) >= 0)
3623 return 1;
3624
3625 return 0;
3626 }
3627
3628 #if defined(HAVE_LIBEXPAT)
3629
3630 static void
3631 start_thread (struct gdb_xml_parser *parser,
3632 const struct gdb_xml_element *element,
3633 void *user_data,
3634 std::vector<gdb_xml_value> &attributes)
3635 {
3636 struct threads_listing_context *data
3637 = (struct threads_listing_context *) user_data;
3638 struct gdb_xml_value *attr;
3639
3640 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3641 ptid_t ptid = read_ptid (id, NULL);
3642
3643 data->items.emplace_back (ptid);
3644 thread_item &item = data->items.back ();
3645
3646 attr = xml_find_attribute (attributes, "core");
3647 if (attr != NULL)
3648 item.core = *(ULONGEST *) attr->value.get ();
3649
3650 attr = xml_find_attribute (attributes, "name");
3651 if (attr != NULL)
3652 item.name = (const char *) attr->value.get ();
3653
3654 attr = xml_find_attribute (attributes, "handle");
3655 if (attr != NULL)
3656 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3657 }
3658
3659 static void
3660 end_thread (struct gdb_xml_parser *parser,
3661 const struct gdb_xml_element *element,
3662 void *user_data, const char *body_text)
3663 {
3664 struct threads_listing_context *data
3665 = (struct threads_listing_context *) user_data;
3666
3667 if (body_text != NULL && *body_text != '\0')
3668 data->items.back ().extra = body_text;
3669 }
3670
3671 const struct gdb_xml_attribute thread_attributes[] = {
3672 { "id", GDB_XML_AF_NONE, NULL, NULL },
3673 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3674 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3675 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3676 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3677 };
3678
3679 const struct gdb_xml_element thread_children[] = {
3680 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3681 };
3682
3683 const struct gdb_xml_element threads_children[] = {
3684 { "thread", thread_attributes, thread_children,
3685 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3686 start_thread, end_thread },
3687 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3688 };
3689
3690 const struct gdb_xml_element threads_elements[] = {
3691 { "threads", NULL, threads_children,
3692 GDB_XML_EF_NONE, NULL, NULL },
3693 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3694 };
3695
3696 #endif
3697
3698 /* List remote threads using qXfer:threads:read. */
3699
3700 int
3701 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3702 {
3703 #if defined(HAVE_LIBEXPAT)
3704 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3705 {
3706 gdb::optional<gdb::char_vector> xml
3707 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3708
3709 if (xml && (*xml)[0] != '\0')
3710 {
3711 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3712 threads_elements, xml->data (), context);
3713 }
3714
3715 return 1;
3716 }
3717 #endif
3718
3719 return 0;
3720 }
3721
3722 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3723
3724 int
3725 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3726 {
3727 struct remote_state *rs = get_remote_state ();
3728
3729 if (rs->use_threadinfo_query)
3730 {
3731 const char *bufp;
3732
3733 putpkt ("qfThreadInfo");
3734 getpkt (&rs->buf, 0);
3735 bufp = rs->buf.data ();
3736 if (bufp[0] != '\0') /* q packet recognized */
3737 {
3738 while (*bufp++ == 'm') /* reply contains one or more TID */
3739 {
3740 do
3741 {
3742 ptid_t ptid = read_ptid (bufp, &bufp);
3743 context->items.emplace_back (ptid);
3744 }
3745 while (*bufp++ == ','); /* comma-separated list */
3746 putpkt ("qsThreadInfo");
3747 getpkt (&rs->buf, 0);
3748 bufp = rs->buf.data ();
3749 }
3750 return 1;
3751 }
3752 else
3753 {
3754 /* Packet not recognized. */
3755 rs->use_threadinfo_query = 0;
3756 }
3757 }
3758
3759 return 0;
3760 }
3761
3762 /* Implement the to_update_thread_list function for the remote
3763 targets. */
3764
3765 void
3766 remote_target::update_thread_list ()
3767 {
3768 struct threads_listing_context context;
3769 int got_list = 0;
3770
3771 /* We have a few different mechanisms to fetch the thread list. Try
3772 them all, starting with the most preferred one first, falling
3773 back to older methods. */
3774 if (remote_get_threads_with_qxfer (&context)
3775 || remote_get_threads_with_qthreadinfo (&context)
3776 || remote_get_threads_with_ql (&context))
3777 {
3778 got_list = 1;
3779
3780 if (context.items.empty ()
3781 && remote_thread_always_alive (inferior_ptid))
3782 {
3783 /* Some targets don't really support threads, but still
3784 reply an (empty) thread list in response to the thread
3785 listing packets, instead of replying "packet not
3786 supported". Exit early so we don't delete the main
3787 thread. */
3788 return;
3789 }
3790
3791 /* CONTEXT now holds the current thread list on the remote
3792 target end. Delete GDB-side threads no longer found on the
3793 target. */
3794 for (thread_info *tp : all_threads_safe ())
3795 {
3796 if (!context.contains_thread (tp->ptid))
3797 {
3798 /* Not found. */
3799 delete_thread (tp);
3800 }
3801 }
3802
3803 /* Remove any unreported fork child threads from CONTEXT so
3804 that we don't interfere with follow fork, which is where
3805 creation of such threads is handled. */
3806 remove_new_fork_children (&context);
3807
3808 /* And now add threads we don't know about yet to our list. */
3809 for (thread_item &item : context.items)
3810 {
3811 if (item.ptid != null_ptid)
3812 {
3813 /* In non-stop mode, we assume new found threads are
3814 executing until proven otherwise with a stop reply.
3815 In all-stop, we can only get here if all threads are
3816 stopped. */
3817 int executing = target_is_non_stop_p () ? 1 : 0;
3818
3819 remote_notice_new_inferior (item.ptid, executing);
3820
3821 thread_info *tp = find_thread_ptid (item.ptid);
3822 remote_thread_info *info = get_remote_thread_info (tp);
3823 info->core = item.core;
3824 info->extra = std::move (item.extra);
3825 info->name = std::move (item.name);
3826 info->thread_handle = std::move (item.thread_handle);
3827 }
3828 }
3829 }
3830
3831 if (!got_list)
3832 {
3833 /* If no thread listing method is supported, then query whether
3834 each known thread is alive, one by one, with the T packet.
3835 If the target doesn't support threads at all, then this is a
3836 no-op. See remote_thread_alive. */
3837 prune_threads ();
3838 }
3839 }
3840
3841 /*
3842 * Collect a descriptive string about the given thread.
3843 * The target may say anything it wants to about the thread
3844 * (typically info about its blocked / runnable state, name, etc.).
3845 * This string will appear in the info threads display.
3846 *
3847 * Optional: targets are not required to implement this function.
3848 */
3849
3850 const char *
3851 remote_target::extra_thread_info (thread_info *tp)
3852 {
3853 struct remote_state *rs = get_remote_state ();
3854 int set;
3855 threadref id;
3856 struct gdb_ext_thread_info threadinfo;
3857
3858 if (rs->remote_desc == 0) /* paranoia */
3859 internal_error (__FILE__, __LINE__,
3860 _("remote_threads_extra_info"));
3861
3862 if (tp->ptid == magic_null_ptid
3863 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3864 /* This is the main thread which was added by GDB. The remote
3865 server doesn't know about it. */
3866 return NULL;
3867
3868 std::string &extra = get_remote_thread_info (tp)->extra;
3869
3870 /* If already have cached info, use it. */
3871 if (!extra.empty ())
3872 return extra.c_str ();
3873
3874 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3875 {
3876 /* If we're using qXfer:threads:read, then the extra info is
3877 included in the XML. So if we didn't have anything cached,
3878 it's because there's really no extra info. */
3879 return NULL;
3880 }
3881
3882 if (rs->use_threadextra_query)
3883 {
3884 char *b = rs->buf.data ();
3885 char *endb = b + get_remote_packet_size ();
3886
3887 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3888 b += strlen (b);
3889 write_ptid (b, endb, tp->ptid);
3890
3891 putpkt (rs->buf);
3892 getpkt (&rs->buf, 0);
3893 if (rs->buf[0] != 0)
3894 {
3895 extra.resize (strlen (rs->buf.data ()) / 2);
3896 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3897 return extra.c_str ();
3898 }
3899 }
3900
3901 /* If the above query fails, fall back to the old method. */
3902 rs->use_threadextra_query = 0;
3903 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3904 | TAG_MOREDISPLAY | TAG_DISPLAY;
3905 int_to_threadref (&id, tp->ptid.lwp ());
3906 if (remote_get_threadinfo (&id, set, &threadinfo))
3907 if (threadinfo.active)
3908 {
3909 if (*threadinfo.shortname)
3910 string_appendf (extra, " Name: %s", threadinfo.shortname);
3911 if (*threadinfo.display)
3912 {
3913 if (!extra.empty ())
3914 extra += ',';
3915 string_appendf (extra, " State: %s", threadinfo.display);
3916 }
3917 if (*threadinfo.more_display)
3918 {
3919 if (!extra.empty ())
3920 extra += ',';
3921 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3922 }
3923 return extra.c_str ();
3924 }
3925 return NULL;
3926 }
3927 \f
3928
3929 bool
3930 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3931 struct static_tracepoint_marker *marker)
3932 {
3933 struct remote_state *rs = get_remote_state ();
3934 char *p = rs->buf.data ();
3935
3936 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3937 p += strlen (p);
3938 p += hexnumstr (p, addr);
3939 putpkt (rs->buf);
3940 getpkt (&rs->buf, 0);
3941 p = rs->buf.data ();
3942
3943 if (*p == 'E')
3944 error (_("Remote failure reply: %s"), p);
3945
3946 if (*p++ == 'm')
3947 {
3948 parse_static_tracepoint_marker_definition (p, NULL, marker);
3949 return true;
3950 }
3951
3952 return false;
3953 }
3954
3955 std::vector<static_tracepoint_marker>
3956 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3957 {
3958 struct remote_state *rs = get_remote_state ();
3959 std::vector<static_tracepoint_marker> markers;
3960 const char *p;
3961 static_tracepoint_marker marker;
3962
3963 /* Ask for a first packet of static tracepoint marker
3964 definition. */
3965 putpkt ("qTfSTM");
3966 getpkt (&rs->buf, 0);
3967 p = rs->buf.data ();
3968 if (*p == 'E')
3969 error (_("Remote failure reply: %s"), p);
3970
3971 while (*p++ == 'm')
3972 {
3973 do
3974 {
3975 parse_static_tracepoint_marker_definition (p, &p, &marker);
3976
3977 if (strid == NULL || marker.str_id == strid)
3978 markers.push_back (std::move (marker));
3979 }
3980 while (*p++ == ','); /* comma-separated list */
3981 /* Ask for another packet of static tracepoint definition. */
3982 putpkt ("qTsSTM");
3983 getpkt (&rs->buf, 0);
3984 p = rs->buf.data ();
3985 }
3986
3987 return markers;
3988 }
3989
3990 \f
3991 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3992
3993 ptid_t
3994 remote_target::get_ada_task_ptid (long lwp, long thread)
3995 {
3996 return ptid_t (inferior_ptid.pid (), lwp, 0);
3997 }
3998 \f
3999
4000 /* Restart the remote side; this is an extended protocol operation. */
4001
4002 void
4003 remote_target::extended_remote_restart ()
4004 {
4005 struct remote_state *rs = get_remote_state ();
4006
4007 /* Send the restart command; for reasons I don't understand the
4008 remote side really expects a number after the "R". */
4009 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4010 putpkt (rs->buf);
4011
4012 remote_fileio_reset ();
4013 }
4014 \f
4015 /* Clean up connection to a remote debugger. */
4016
4017 void
4018 remote_target::close ()
4019 {
4020 /* Make sure we leave stdin registered in the event loop. */
4021 terminal_ours ();
4022
4023 /* We don't have a connection to the remote stub anymore. Get rid
4024 of all the inferiors and their threads we were controlling.
4025 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4026 will be unable to find the thread corresponding to (pid, 0, 0). */
4027 inferior_ptid = null_ptid;
4028 discard_all_inferiors ();
4029
4030 trace_reset_local_state ();
4031
4032 delete this;
4033 }
4034
4035 remote_target::~remote_target ()
4036 {
4037 struct remote_state *rs = get_remote_state ();
4038
4039 /* Check for NULL because we may get here with a partially
4040 constructed target/connection. */
4041 if (rs->remote_desc == nullptr)
4042 return;
4043
4044 serial_close (rs->remote_desc);
4045
4046 /* We are destroying the remote target, so we should discard
4047 everything of this target. */
4048 discard_pending_stop_replies_in_queue ();
4049
4050 if (rs->remote_async_inferior_event_token)
4051 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4052
4053 remote_notif_state_xfree (rs->notif_state);
4054 }
4055
4056 /* Query the remote side for the text, data and bss offsets. */
4057
4058 void
4059 remote_target::get_offsets ()
4060 {
4061 struct remote_state *rs = get_remote_state ();
4062 char *buf;
4063 char *ptr;
4064 int lose, num_segments = 0, do_sections, do_segments;
4065 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4066 struct section_offsets *offs;
4067 struct symfile_segment_data *data;
4068
4069 if (symfile_objfile == NULL)
4070 return;
4071
4072 putpkt ("qOffsets");
4073 getpkt (&rs->buf, 0);
4074 buf = rs->buf.data ();
4075
4076 if (buf[0] == '\000')
4077 return; /* Return silently. Stub doesn't support
4078 this command. */
4079 if (buf[0] == 'E')
4080 {
4081 warning (_("Remote failure reply: %s"), buf);
4082 return;
4083 }
4084
4085 /* Pick up each field in turn. This used to be done with scanf, but
4086 scanf will make trouble if CORE_ADDR size doesn't match
4087 conversion directives correctly. The following code will work
4088 with any size of CORE_ADDR. */
4089 text_addr = data_addr = bss_addr = 0;
4090 ptr = buf;
4091 lose = 0;
4092
4093 if (startswith (ptr, "Text="))
4094 {
4095 ptr += 5;
4096 /* Don't use strtol, could lose on big values. */
4097 while (*ptr && *ptr != ';')
4098 text_addr = (text_addr << 4) + fromhex (*ptr++);
4099
4100 if (startswith (ptr, ";Data="))
4101 {
4102 ptr += 6;
4103 while (*ptr && *ptr != ';')
4104 data_addr = (data_addr << 4) + fromhex (*ptr++);
4105 }
4106 else
4107 lose = 1;
4108
4109 if (!lose && startswith (ptr, ";Bss="))
4110 {
4111 ptr += 5;
4112 while (*ptr && *ptr != ';')
4113 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4114
4115 if (bss_addr != data_addr)
4116 warning (_("Target reported unsupported offsets: %s"), buf);
4117 }
4118 else
4119 lose = 1;
4120 }
4121 else if (startswith (ptr, "TextSeg="))
4122 {
4123 ptr += 8;
4124 /* Don't use strtol, could lose on big values. */
4125 while (*ptr && *ptr != ';')
4126 text_addr = (text_addr << 4) + fromhex (*ptr++);
4127 num_segments = 1;
4128
4129 if (startswith (ptr, ";DataSeg="))
4130 {
4131 ptr += 9;
4132 while (*ptr && *ptr != ';')
4133 data_addr = (data_addr << 4) + fromhex (*ptr++);
4134 num_segments++;
4135 }
4136 }
4137 else
4138 lose = 1;
4139
4140 if (lose)
4141 error (_("Malformed response to offset query, %s"), buf);
4142 else if (*ptr != '\0')
4143 warning (_("Target reported unsupported offsets: %s"), buf);
4144
4145 offs = ((struct section_offsets *)
4146 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
4147 memcpy (offs, symfile_objfile->section_offsets,
4148 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
4149
4150 data = get_symfile_segment_data (symfile_objfile->obfd);
4151 do_segments = (data != NULL);
4152 do_sections = num_segments == 0;
4153
4154 if (num_segments > 0)
4155 {
4156 segments[0] = text_addr;
4157 segments[1] = data_addr;
4158 }
4159 /* If we have two segments, we can still try to relocate everything
4160 by assuming that the .text and .data offsets apply to the whole
4161 text and data segments. Convert the offsets given in the packet
4162 to base addresses for symfile_map_offsets_to_segments. */
4163 else if (data && data->num_segments == 2)
4164 {
4165 segments[0] = data->segment_bases[0] + text_addr;
4166 segments[1] = data->segment_bases[1] + data_addr;
4167 num_segments = 2;
4168 }
4169 /* If the object file has only one segment, assume that it is text
4170 rather than data; main programs with no writable data are rare,
4171 but programs with no code are useless. Of course the code might
4172 have ended up in the data segment... to detect that we would need
4173 the permissions here. */
4174 else if (data && data->num_segments == 1)
4175 {
4176 segments[0] = data->segment_bases[0] + text_addr;
4177 num_segments = 1;
4178 }
4179 /* There's no way to relocate by segment. */
4180 else
4181 do_segments = 0;
4182
4183 if (do_segments)
4184 {
4185 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4186 offs, num_segments, segments);
4187
4188 if (ret == 0 && !do_sections)
4189 error (_("Can not handle qOffsets TextSeg "
4190 "response with this symbol file"));
4191
4192 if (ret > 0)
4193 do_sections = 0;
4194 }
4195
4196 if (data)
4197 free_symfile_segment_data (data);
4198
4199 if (do_sections)
4200 {
4201 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4202
4203 /* This is a temporary kludge to force data and bss to use the
4204 same offsets because that's what nlmconv does now. The real
4205 solution requires changes to the stub and remote.c that I
4206 don't have time to do right now. */
4207
4208 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4209 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4210 }
4211
4212 objfile_relocate (symfile_objfile, offs);
4213 }
4214
4215 /* Send interrupt_sequence to remote target. */
4216
4217 void
4218 remote_target::send_interrupt_sequence ()
4219 {
4220 struct remote_state *rs = get_remote_state ();
4221
4222 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4223 remote_serial_write ("\x03", 1);
4224 else if (interrupt_sequence_mode == interrupt_sequence_break)
4225 serial_send_break (rs->remote_desc);
4226 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4227 {
4228 serial_send_break (rs->remote_desc);
4229 remote_serial_write ("g", 1);
4230 }
4231 else
4232 internal_error (__FILE__, __LINE__,
4233 _("Invalid value for interrupt_sequence_mode: %s."),
4234 interrupt_sequence_mode);
4235 }
4236
4237
4238 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4239 and extract the PTID. Returns NULL_PTID if not found. */
4240
4241 static ptid_t
4242 stop_reply_extract_thread (char *stop_reply)
4243 {
4244 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4245 {
4246 const char *p;
4247
4248 /* Txx r:val ; r:val (...) */
4249 p = &stop_reply[3];
4250
4251 /* Look for "register" named "thread". */
4252 while (*p != '\0')
4253 {
4254 const char *p1;
4255
4256 p1 = strchr (p, ':');
4257 if (p1 == NULL)
4258 return null_ptid;
4259
4260 if (strncmp (p, "thread", p1 - p) == 0)
4261 return read_ptid (++p1, &p);
4262
4263 p1 = strchr (p, ';');
4264 if (p1 == NULL)
4265 return null_ptid;
4266 p1++;
4267
4268 p = p1;
4269 }
4270 }
4271
4272 return null_ptid;
4273 }
4274
4275 /* Determine the remote side's current thread. If we have a stop
4276 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4277 "thread" register we can extract the current thread from. If not,
4278 ask the remote which is the current thread with qC. The former
4279 method avoids a roundtrip. */
4280
4281 ptid_t
4282 remote_target::get_current_thread (char *wait_status)
4283 {
4284 ptid_t ptid = null_ptid;
4285
4286 /* Note we don't use remote_parse_stop_reply as that makes use of
4287 the target architecture, which we haven't yet fully determined at
4288 this point. */
4289 if (wait_status != NULL)
4290 ptid = stop_reply_extract_thread (wait_status);
4291 if (ptid == null_ptid)
4292 ptid = remote_current_thread (inferior_ptid);
4293
4294 return ptid;
4295 }
4296
4297 /* Query the remote target for which is the current thread/process,
4298 add it to our tables, and update INFERIOR_PTID. The caller is
4299 responsible for setting the state such that the remote end is ready
4300 to return the current thread.
4301
4302 This function is called after handling the '?' or 'vRun' packets,
4303 whose response is a stop reply from which we can also try
4304 extracting the thread. If the target doesn't support the explicit
4305 qC query, we infer the current thread from that stop reply, passed
4306 in in WAIT_STATUS, which may be NULL. */
4307
4308 void
4309 remote_target::add_current_inferior_and_thread (char *wait_status)
4310 {
4311 struct remote_state *rs = get_remote_state ();
4312 int fake_pid_p = 0;
4313
4314 inferior_ptid = null_ptid;
4315
4316 /* Now, if we have thread information, update inferior_ptid. */
4317 ptid_t curr_ptid = get_current_thread (wait_status);
4318
4319 if (curr_ptid != null_ptid)
4320 {
4321 if (!remote_multi_process_p (rs))
4322 fake_pid_p = 1;
4323 }
4324 else
4325 {
4326 /* Without this, some commands which require an active target
4327 (such as kill) won't work. This variable serves (at least)
4328 double duty as both the pid of the target process (if it has
4329 such), and as a flag indicating that a target is active. */
4330 curr_ptid = magic_null_ptid;
4331 fake_pid_p = 1;
4332 }
4333
4334 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4335
4336 /* Add the main thread and switch to it. Don't try reading
4337 registers yet, since we haven't fetched the target description
4338 yet. */
4339 thread_info *tp = add_thread_silent (curr_ptid);
4340 switch_to_thread_no_regs (tp);
4341 }
4342
4343 /* Print info about a thread that was found already stopped on
4344 connection. */
4345
4346 static void
4347 print_one_stopped_thread (struct thread_info *thread)
4348 {
4349 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4350
4351 switch_to_thread (thread);
4352 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4353 set_current_sal_from_frame (get_current_frame ());
4354
4355 thread->suspend.waitstatus_pending_p = 0;
4356
4357 if (ws->kind == TARGET_WAITKIND_STOPPED)
4358 {
4359 enum gdb_signal sig = ws->value.sig;
4360
4361 if (signal_print_state (sig))
4362 gdb::observers::signal_received.notify (sig);
4363 }
4364 gdb::observers::normal_stop.notify (NULL, 1);
4365 }
4366
4367 /* Process all initial stop replies the remote side sent in response
4368 to the ? packet. These indicate threads that were already stopped
4369 on initial connection. We mark these threads as stopped and print
4370 their current frame before giving the user the prompt. */
4371
4372 void
4373 remote_target::process_initial_stop_replies (int from_tty)
4374 {
4375 int pending_stop_replies = stop_reply_queue_length ();
4376 struct thread_info *selected = NULL;
4377 struct thread_info *lowest_stopped = NULL;
4378 struct thread_info *first = NULL;
4379
4380 /* Consume the initial pending events. */
4381 while (pending_stop_replies-- > 0)
4382 {
4383 ptid_t waiton_ptid = minus_one_ptid;
4384 ptid_t event_ptid;
4385 struct target_waitstatus ws;
4386 int ignore_event = 0;
4387
4388 memset (&ws, 0, sizeof (ws));
4389 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4390 if (remote_debug)
4391 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4392
4393 switch (ws.kind)
4394 {
4395 case TARGET_WAITKIND_IGNORE:
4396 case TARGET_WAITKIND_NO_RESUMED:
4397 case TARGET_WAITKIND_SIGNALLED:
4398 case TARGET_WAITKIND_EXITED:
4399 /* We shouldn't see these, but if we do, just ignore. */
4400 if (remote_debug)
4401 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4402 ignore_event = 1;
4403 break;
4404
4405 case TARGET_WAITKIND_EXECD:
4406 xfree (ws.value.execd_pathname);
4407 break;
4408 default:
4409 break;
4410 }
4411
4412 if (ignore_event)
4413 continue;
4414
4415 struct thread_info *evthread = find_thread_ptid (event_ptid);
4416
4417 if (ws.kind == TARGET_WAITKIND_STOPPED)
4418 {
4419 enum gdb_signal sig = ws.value.sig;
4420
4421 /* Stubs traditionally report SIGTRAP as initial signal,
4422 instead of signal 0. Suppress it. */
4423 if (sig == GDB_SIGNAL_TRAP)
4424 sig = GDB_SIGNAL_0;
4425 evthread->suspend.stop_signal = sig;
4426 ws.value.sig = sig;
4427 }
4428
4429 evthread->suspend.waitstatus = ws;
4430
4431 if (ws.kind != TARGET_WAITKIND_STOPPED
4432 || ws.value.sig != GDB_SIGNAL_0)
4433 evthread->suspend.waitstatus_pending_p = 1;
4434
4435 set_executing (event_ptid, 0);
4436 set_running (event_ptid, 0);
4437 get_remote_thread_info (evthread)->vcont_resumed = 0;
4438 }
4439
4440 /* "Notice" the new inferiors before anything related to
4441 registers/memory. */
4442 for (inferior *inf : all_non_exited_inferiors ())
4443 {
4444 inf->needs_setup = 1;
4445
4446 if (non_stop)
4447 {
4448 thread_info *thread = any_live_thread_of_inferior (inf);
4449 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4450 from_tty);
4451 }
4452 }
4453
4454 /* If all-stop on top of non-stop, pause all threads. Note this
4455 records the threads' stop pc, so must be done after "noticing"
4456 the inferiors. */
4457 if (!non_stop)
4458 {
4459 stop_all_threads ();
4460
4461 /* If all threads of an inferior were already stopped, we
4462 haven't setup the inferior yet. */
4463 for (inferior *inf : all_non_exited_inferiors ())
4464 {
4465 if (inf->needs_setup)
4466 {
4467 thread_info *thread = any_live_thread_of_inferior (inf);
4468 switch_to_thread_no_regs (thread);
4469 setup_inferior (0);
4470 }
4471 }
4472 }
4473
4474 /* Now go over all threads that are stopped, and print their current
4475 frame. If all-stop, then if there's a signalled thread, pick
4476 that as current. */
4477 for (thread_info *thread : all_non_exited_threads ())
4478 {
4479 if (first == NULL)
4480 first = thread;
4481
4482 if (!non_stop)
4483 thread->set_running (false);
4484 else if (thread->state != THREAD_STOPPED)
4485 continue;
4486
4487 if (selected == NULL
4488 && thread->suspend.waitstatus_pending_p)
4489 selected = thread;
4490
4491 if (lowest_stopped == NULL
4492 || thread->inf->num < lowest_stopped->inf->num
4493 || thread->per_inf_num < lowest_stopped->per_inf_num)
4494 lowest_stopped = thread;
4495
4496 if (non_stop)
4497 print_one_stopped_thread (thread);
4498 }
4499
4500 /* In all-stop, we only print the status of one thread, and leave
4501 others with their status pending. */
4502 if (!non_stop)
4503 {
4504 thread_info *thread = selected;
4505 if (thread == NULL)
4506 thread = lowest_stopped;
4507 if (thread == NULL)
4508 thread = first;
4509
4510 print_one_stopped_thread (thread);
4511 }
4512
4513 /* For "info program". */
4514 thread_info *thread = inferior_thread ();
4515 if (thread->state == THREAD_STOPPED)
4516 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4517 }
4518
4519 /* Start the remote connection and sync state. */
4520
4521 void
4522 remote_target::start_remote (int from_tty, int extended_p)
4523 {
4524 struct remote_state *rs = get_remote_state ();
4525 struct packet_config *noack_config;
4526 char *wait_status = NULL;
4527
4528 /* Signal other parts that we're going through the initial setup,
4529 and so things may not be stable yet. E.g., we don't try to
4530 install tracepoints until we've relocated symbols. Also, a
4531 Ctrl-C before we're connected and synced up can't interrupt the
4532 target. Instead, it offers to drop the (potentially wedged)
4533 connection. */
4534 rs->starting_up = 1;
4535
4536 QUIT;
4537
4538 if (interrupt_on_connect)
4539 send_interrupt_sequence ();
4540
4541 /* Ack any packet which the remote side has already sent. */
4542 remote_serial_write ("+", 1);
4543
4544 /* The first packet we send to the target is the optional "supported
4545 packets" request. If the target can answer this, it will tell us
4546 which later probes to skip. */
4547 remote_query_supported ();
4548
4549 /* If the stub wants to get a QAllow, compose one and send it. */
4550 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4551 set_permissions ();
4552
4553 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4554 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4555 as a reply to known packet. For packet "vFile:setfs:" it is an
4556 invalid reply and GDB would return error in
4557 remote_hostio_set_filesystem, making remote files access impossible.
4558 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4559 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4560 {
4561 const char v_mustreplyempty[] = "vMustReplyEmpty";
4562
4563 putpkt (v_mustreplyempty);
4564 getpkt (&rs->buf, 0);
4565 if (strcmp (rs->buf.data (), "OK") == 0)
4566 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4567 else if (strcmp (rs->buf.data (), "") != 0)
4568 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4569 rs->buf.data ());
4570 }
4571
4572 /* Next, we possibly activate noack mode.
4573
4574 If the QStartNoAckMode packet configuration is set to AUTO,
4575 enable noack mode if the stub reported a wish for it with
4576 qSupported.
4577
4578 If set to TRUE, then enable noack mode even if the stub didn't
4579 report it in qSupported. If the stub doesn't reply OK, the
4580 session ends with an error.
4581
4582 If FALSE, then don't activate noack mode, regardless of what the
4583 stub claimed should be the default with qSupported. */
4584
4585 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4586 if (packet_config_support (noack_config) != PACKET_DISABLE)
4587 {
4588 putpkt ("QStartNoAckMode");
4589 getpkt (&rs->buf, 0);
4590 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4591 rs->noack_mode = 1;
4592 }
4593
4594 if (extended_p)
4595 {
4596 /* Tell the remote that we are using the extended protocol. */
4597 putpkt ("!");
4598 getpkt (&rs->buf, 0);
4599 }
4600
4601 /* Let the target know which signals it is allowed to pass down to
4602 the program. */
4603 update_signals_program_target ();
4604
4605 /* Next, if the target can specify a description, read it. We do
4606 this before anything involving memory or registers. */
4607 target_find_description ();
4608
4609 /* Next, now that we know something about the target, update the
4610 address spaces in the program spaces. */
4611 update_address_spaces ();
4612
4613 /* On OSs where the list of libraries is global to all
4614 processes, we fetch them early. */
4615 if (gdbarch_has_global_solist (target_gdbarch ()))
4616 solib_add (NULL, from_tty, auto_solib_add);
4617
4618 if (target_is_non_stop_p ())
4619 {
4620 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4621 error (_("Non-stop mode requested, but remote "
4622 "does not support non-stop"));
4623
4624 putpkt ("QNonStop:1");
4625 getpkt (&rs->buf, 0);
4626
4627 if (strcmp (rs->buf.data (), "OK") != 0)
4628 error (_("Remote refused setting non-stop mode with: %s"),
4629 rs->buf.data ());
4630
4631 /* Find about threads and processes the stub is already
4632 controlling. We default to adding them in the running state.
4633 The '?' query below will then tell us about which threads are
4634 stopped. */
4635 this->update_thread_list ();
4636 }
4637 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4638 {
4639 /* Don't assume that the stub can operate in all-stop mode.
4640 Request it explicitly. */
4641 putpkt ("QNonStop:0");
4642 getpkt (&rs->buf, 0);
4643
4644 if (strcmp (rs->buf.data (), "OK") != 0)
4645 error (_("Remote refused setting all-stop mode with: %s"),
4646 rs->buf.data ());
4647 }
4648
4649 /* Upload TSVs regardless of whether the target is running or not. The
4650 remote stub, such as GDBserver, may have some predefined or builtin
4651 TSVs, even if the target is not running. */
4652 if (get_trace_status (current_trace_status ()) != -1)
4653 {
4654 struct uploaded_tsv *uploaded_tsvs = NULL;
4655
4656 upload_trace_state_variables (&uploaded_tsvs);
4657 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4658 }
4659
4660 /* Check whether the target is running now. */
4661 putpkt ("?");
4662 getpkt (&rs->buf, 0);
4663
4664 if (!target_is_non_stop_p ())
4665 {
4666 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4667 {
4668 if (!extended_p)
4669 error (_("The target is not running (try extended-remote?)"));
4670
4671 /* We're connected, but not running. Drop out before we
4672 call start_remote. */
4673 rs->starting_up = 0;
4674 return;
4675 }
4676 else
4677 {
4678 /* Save the reply for later. */
4679 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4680 strcpy (wait_status, rs->buf.data ());
4681 }
4682
4683 /* Fetch thread list. */
4684 target_update_thread_list ();
4685
4686 /* Let the stub know that we want it to return the thread. */
4687 set_continue_thread (minus_one_ptid);
4688
4689 if (thread_count () == 0)
4690 {
4691 /* Target has no concept of threads at all. GDB treats
4692 non-threaded target as single-threaded; add a main
4693 thread. */
4694 add_current_inferior_and_thread (wait_status);
4695 }
4696 else
4697 {
4698 /* We have thread information; select the thread the target
4699 says should be current. If we're reconnecting to a
4700 multi-threaded program, this will ideally be the thread
4701 that last reported an event before GDB disconnected. */
4702 inferior_ptid = get_current_thread (wait_status);
4703 if (inferior_ptid == null_ptid)
4704 {
4705 /* Odd... The target was able to list threads, but not
4706 tell us which thread was current (no "thread"
4707 register in T stop reply?). Just pick the first
4708 thread in the thread list then. */
4709
4710 if (remote_debug)
4711 fprintf_unfiltered (gdb_stdlog,
4712 "warning: couldn't determine remote "
4713 "current thread; picking first in list.\n");
4714
4715 inferior_ptid = inferior_list->thread_list->ptid;
4716 }
4717 }
4718
4719 /* init_wait_for_inferior should be called before get_offsets in order
4720 to manage `inserted' flag in bp loc in a correct state.
4721 breakpoint_init_inferior, called from init_wait_for_inferior, set
4722 `inserted' flag to 0, while before breakpoint_re_set, called from
4723 start_remote, set `inserted' flag to 1. In the initialization of
4724 inferior, breakpoint_init_inferior should be called first, and then
4725 breakpoint_re_set can be called. If this order is broken, state of
4726 `inserted' flag is wrong, and cause some problems on breakpoint
4727 manipulation. */
4728 init_wait_for_inferior ();
4729
4730 get_offsets (); /* Get text, data & bss offsets. */
4731
4732 /* If we could not find a description using qXfer, and we know
4733 how to do it some other way, try again. This is not
4734 supported for non-stop; it could be, but it is tricky if
4735 there are no stopped threads when we connect. */
4736 if (remote_read_description_p (this)
4737 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4738 {
4739 target_clear_description ();
4740 target_find_description ();
4741 }
4742
4743 /* Use the previously fetched status. */
4744 gdb_assert (wait_status != NULL);
4745 strcpy (rs->buf.data (), wait_status);
4746 rs->cached_wait_status = 1;
4747
4748 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4749 }
4750 else
4751 {
4752 /* Clear WFI global state. Do this before finding about new
4753 threads and inferiors, and setting the current inferior.
4754 Otherwise we would clear the proceed status of the current
4755 inferior when we want its stop_soon state to be preserved
4756 (see notice_new_inferior). */
4757 init_wait_for_inferior ();
4758
4759 /* In non-stop, we will either get an "OK", meaning that there
4760 are no stopped threads at this time; or, a regular stop
4761 reply. In the latter case, there may be more than one thread
4762 stopped --- we pull them all out using the vStopped
4763 mechanism. */
4764 if (strcmp (rs->buf.data (), "OK") != 0)
4765 {
4766 struct notif_client *notif = &notif_client_stop;
4767
4768 /* remote_notif_get_pending_replies acks this one, and gets
4769 the rest out. */
4770 rs->notif_state->pending_event[notif_client_stop.id]
4771 = remote_notif_parse (this, notif, rs->buf.data ());
4772 remote_notif_get_pending_events (notif);
4773 }
4774
4775 if (thread_count () == 0)
4776 {
4777 if (!extended_p)
4778 error (_("The target is not running (try extended-remote?)"));
4779
4780 /* We're connected, but not running. Drop out before we
4781 call start_remote. */
4782 rs->starting_up = 0;
4783 return;
4784 }
4785
4786 /* In non-stop mode, any cached wait status will be stored in
4787 the stop reply queue. */
4788 gdb_assert (wait_status == NULL);
4789
4790 /* Report all signals during attach/startup. */
4791 pass_signals ({});
4792
4793 /* If there are already stopped threads, mark them stopped and
4794 report their stops before giving the prompt to the user. */
4795 process_initial_stop_replies (from_tty);
4796
4797 if (target_can_async_p ())
4798 target_async (1);
4799 }
4800
4801 /* If we connected to a live target, do some additional setup. */
4802 if (target_has_execution)
4803 {
4804 if (symfile_objfile) /* No use without a symbol-file. */
4805 remote_check_symbols ();
4806 }
4807
4808 /* Possibly the target has been engaged in a trace run started
4809 previously; find out where things are at. */
4810 if (get_trace_status (current_trace_status ()) != -1)
4811 {
4812 struct uploaded_tp *uploaded_tps = NULL;
4813
4814 if (current_trace_status ()->running)
4815 printf_filtered (_("Trace is already running on the target.\n"));
4816
4817 upload_tracepoints (&uploaded_tps);
4818
4819 merge_uploaded_tracepoints (&uploaded_tps);
4820 }
4821
4822 /* Possibly the target has been engaged in a btrace record started
4823 previously; find out where things are at. */
4824 remote_btrace_maybe_reopen ();
4825
4826 /* The thread and inferior lists are now synchronized with the
4827 target, our symbols have been relocated, and we're merged the
4828 target's tracepoints with ours. We're done with basic start
4829 up. */
4830 rs->starting_up = 0;
4831
4832 /* Maybe breakpoints are global and need to be inserted now. */
4833 if (breakpoints_should_be_inserted_now ())
4834 insert_breakpoints ();
4835 }
4836
4837 /* Open a connection to a remote debugger.
4838 NAME is the filename used for communication. */
4839
4840 void
4841 remote_target::open (const char *name, int from_tty)
4842 {
4843 open_1 (name, from_tty, 0);
4844 }
4845
4846 /* Open a connection to a remote debugger using the extended
4847 remote gdb protocol. NAME is the filename used for communication. */
4848
4849 void
4850 extended_remote_target::open (const char *name, int from_tty)
4851 {
4852 open_1 (name, from_tty, 1 /*extended_p */);
4853 }
4854
4855 /* Reset all packets back to "unknown support". Called when opening a
4856 new connection to a remote target. */
4857
4858 static void
4859 reset_all_packet_configs_support (void)
4860 {
4861 int i;
4862
4863 for (i = 0; i < PACKET_MAX; i++)
4864 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4865 }
4866
4867 /* Initialize all packet configs. */
4868
4869 static void
4870 init_all_packet_configs (void)
4871 {
4872 int i;
4873
4874 for (i = 0; i < PACKET_MAX; i++)
4875 {
4876 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4877 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4878 }
4879 }
4880
4881 /* Symbol look-up. */
4882
4883 void
4884 remote_target::remote_check_symbols ()
4885 {
4886 char *tmp;
4887 int end;
4888
4889 /* The remote side has no concept of inferiors that aren't running
4890 yet, it only knows about running processes. If we're connected
4891 but our current inferior is not running, we should not invite the
4892 remote target to request symbol lookups related to its
4893 (unrelated) current process. */
4894 if (!target_has_execution)
4895 return;
4896
4897 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4898 return;
4899
4900 /* Make sure the remote is pointing at the right process. Note
4901 there's no way to select "no process". */
4902 set_general_process ();
4903
4904 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4905 because we need both at the same time. */
4906 gdb::char_vector msg (get_remote_packet_size ());
4907 gdb::char_vector reply (get_remote_packet_size ());
4908
4909 /* Invite target to request symbol lookups. */
4910
4911 putpkt ("qSymbol::");
4912 getpkt (&reply, 0);
4913 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4914
4915 while (startswith (reply.data (), "qSymbol:"))
4916 {
4917 struct bound_minimal_symbol sym;
4918
4919 tmp = &reply[8];
4920 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4921 strlen (tmp) / 2);
4922 msg[end] = '\0';
4923 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4924 if (sym.minsym == NULL)
4925 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4926 &reply[8]);
4927 else
4928 {
4929 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4930 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4931
4932 /* If this is a function address, return the start of code
4933 instead of any data function descriptor. */
4934 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4935 sym_addr,
4936 current_top_target ());
4937
4938 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4939 phex_nz (sym_addr, addr_size), &reply[8]);
4940 }
4941
4942 putpkt (msg.data ());
4943 getpkt (&reply, 0);
4944 }
4945 }
4946
4947 static struct serial *
4948 remote_serial_open (const char *name)
4949 {
4950 static int udp_warning = 0;
4951
4952 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4953 of in ser-tcp.c, because it is the remote protocol assuming that the
4954 serial connection is reliable and not the serial connection promising
4955 to be. */
4956 if (!udp_warning && startswith (name, "udp:"))
4957 {
4958 warning (_("The remote protocol may be unreliable over UDP.\n"
4959 "Some events may be lost, rendering further debugging "
4960 "impossible."));
4961 udp_warning = 1;
4962 }
4963
4964 return serial_open (name);
4965 }
4966
4967 /* Inform the target of our permission settings. The permission flags
4968 work without this, but if the target knows the settings, it can do
4969 a couple things. First, it can add its own check, to catch cases
4970 that somehow manage to get by the permissions checks in target
4971 methods. Second, if the target is wired to disallow particular
4972 settings (for instance, a system in the field that is not set up to
4973 be able to stop at a breakpoint), it can object to any unavailable
4974 permissions. */
4975
4976 void
4977 remote_target::set_permissions ()
4978 {
4979 struct remote_state *rs = get_remote_state ();
4980
4981 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
4982 "WriteReg:%x;WriteMem:%x;"
4983 "InsertBreak:%x;InsertTrace:%x;"
4984 "InsertFastTrace:%x;Stop:%x",
4985 may_write_registers, may_write_memory,
4986 may_insert_breakpoints, may_insert_tracepoints,
4987 may_insert_fast_tracepoints, may_stop);
4988 putpkt (rs->buf);
4989 getpkt (&rs->buf, 0);
4990
4991 /* If the target didn't like the packet, warn the user. Do not try
4992 to undo the user's settings, that would just be maddening. */
4993 if (strcmp (rs->buf.data (), "OK") != 0)
4994 warning (_("Remote refused setting permissions with: %s"),
4995 rs->buf.data ());
4996 }
4997
4998 /* This type describes each known response to the qSupported
4999 packet. */
5000 struct protocol_feature
5001 {
5002 /* The name of this protocol feature. */
5003 const char *name;
5004
5005 /* The default for this protocol feature. */
5006 enum packet_support default_support;
5007
5008 /* The function to call when this feature is reported, or after
5009 qSupported processing if the feature is not supported.
5010 The first argument points to this structure. The second
5011 argument indicates whether the packet requested support be
5012 enabled, disabled, or probed (or the default, if this function
5013 is being called at the end of processing and this feature was
5014 not reported). The third argument may be NULL; if not NULL, it
5015 is a NUL-terminated string taken from the packet following
5016 this feature's name and an equals sign. */
5017 void (*func) (remote_target *remote, const struct protocol_feature *,
5018 enum packet_support, const char *);
5019
5020 /* The corresponding packet for this feature. Only used if
5021 FUNC is remote_supported_packet. */
5022 int packet;
5023 };
5024
5025 static void
5026 remote_supported_packet (remote_target *remote,
5027 const struct protocol_feature *feature,
5028 enum packet_support support,
5029 const char *argument)
5030 {
5031 if (argument)
5032 {
5033 warning (_("Remote qSupported response supplied an unexpected value for"
5034 " \"%s\"."), feature->name);
5035 return;
5036 }
5037
5038 remote_protocol_packets[feature->packet].support = support;
5039 }
5040
5041 void
5042 remote_target::remote_packet_size (const protocol_feature *feature,
5043 enum packet_support support, const char *value)
5044 {
5045 struct remote_state *rs = get_remote_state ();
5046
5047 int packet_size;
5048 char *value_end;
5049
5050 if (support != PACKET_ENABLE)
5051 return;
5052
5053 if (value == NULL || *value == '\0')
5054 {
5055 warning (_("Remote target reported \"%s\" without a size."),
5056 feature->name);
5057 return;
5058 }
5059
5060 errno = 0;
5061 packet_size = strtol (value, &value_end, 16);
5062 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5063 {
5064 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5065 feature->name, value);
5066 return;
5067 }
5068
5069 /* Record the new maximum packet size. */
5070 rs->explicit_packet_size = packet_size;
5071 }
5072
5073 void
5074 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5075 enum packet_support support, const char *value)
5076 {
5077 remote->remote_packet_size (feature, support, value);
5078 }
5079
5080 static const struct protocol_feature remote_protocol_features[] = {
5081 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5082 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5083 PACKET_qXfer_auxv },
5084 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5085 PACKET_qXfer_exec_file },
5086 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5087 PACKET_qXfer_features },
5088 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5089 PACKET_qXfer_libraries },
5090 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5091 PACKET_qXfer_libraries_svr4 },
5092 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5093 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5094 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5095 PACKET_qXfer_memory_map },
5096 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
5097 PACKET_qXfer_spu_read },
5098 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
5099 PACKET_qXfer_spu_write },
5100 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5101 PACKET_qXfer_osdata },
5102 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5103 PACKET_qXfer_threads },
5104 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5105 PACKET_qXfer_traceframe_info },
5106 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5107 PACKET_QPassSignals },
5108 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5109 PACKET_QCatchSyscalls },
5110 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5111 PACKET_QProgramSignals },
5112 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5113 PACKET_QSetWorkingDir },
5114 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5115 PACKET_QStartupWithShell },
5116 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5117 PACKET_QEnvironmentHexEncoded },
5118 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5119 PACKET_QEnvironmentReset },
5120 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5121 PACKET_QEnvironmentUnset },
5122 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5123 PACKET_QStartNoAckMode },
5124 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5125 PACKET_multiprocess_feature },
5126 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5127 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5128 PACKET_qXfer_siginfo_read },
5129 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5130 PACKET_qXfer_siginfo_write },
5131 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5132 PACKET_ConditionalTracepoints },
5133 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5134 PACKET_ConditionalBreakpoints },
5135 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_BreakpointCommands },
5137 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_FastTracepoints },
5139 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_StaticTracepoints },
5141 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_InstallInTrace},
5143 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5144 PACKET_DisconnectedTracing_feature },
5145 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5146 PACKET_bc },
5147 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5148 PACKET_bs },
5149 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5150 PACKET_TracepointSource },
5151 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5152 PACKET_QAllow },
5153 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5154 PACKET_EnableDisableTracepoints_feature },
5155 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5156 PACKET_qXfer_fdpic },
5157 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5158 PACKET_qXfer_uib },
5159 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5160 PACKET_QDisableRandomization },
5161 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5162 { "QTBuffer:size", PACKET_DISABLE,
5163 remote_supported_packet, PACKET_QTBuffer_size},
5164 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5165 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5166 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5167 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5168 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5169 PACKET_qXfer_btrace },
5170 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5171 PACKET_qXfer_btrace_conf },
5172 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5173 PACKET_Qbtrace_conf_bts_size },
5174 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5175 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5176 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5177 PACKET_fork_event_feature },
5178 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5179 PACKET_vfork_event_feature },
5180 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5181 PACKET_exec_event_feature },
5182 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5183 PACKET_Qbtrace_conf_pt_size },
5184 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5185 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5186 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5187 };
5188
5189 static char *remote_support_xml;
5190
5191 /* Register string appended to "xmlRegisters=" in qSupported query. */
5192
5193 void
5194 register_remote_support_xml (const char *xml)
5195 {
5196 #if defined(HAVE_LIBEXPAT)
5197 if (remote_support_xml == NULL)
5198 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5199 else
5200 {
5201 char *copy = xstrdup (remote_support_xml + 13);
5202 char *p = strtok (copy, ",");
5203
5204 do
5205 {
5206 if (strcmp (p, xml) == 0)
5207 {
5208 /* already there */
5209 xfree (copy);
5210 return;
5211 }
5212 }
5213 while ((p = strtok (NULL, ",")) != NULL);
5214 xfree (copy);
5215
5216 remote_support_xml = reconcat (remote_support_xml,
5217 remote_support_xml, ",", xml,
5218 (char *) NULL);
5219 }
5220 #endif
5221 }
5222
5223 static void
5224 remote_query_supported_append (std::string *msg, const char *append)
5225 {
5226 if (!msg->empty ())
5227 msg->append (";");
5228 msg->append (append);
5229 }
5230
5231 void
5232 remote_target::remote_query_supported ()
5233 {
5234 struct remote_state *rs = get_remote_state ();
5235 char *next;
5236 int i;
5237 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5238
5239 /* The packet support flags are handled differently for this packet
5240 than for most others. We treat an error, a disabled packet, and
5241 an empty response identically: any features which must be reported
5242 to be used will be automatically disabled. An empty buffer
5243 accomplishes this, since that is also the representation for a list
5244 containing no features. */
5245
5246 rs->buf[0] = 0;
5247 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5248 {
5249 std::string q;
5250
5251 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5252 remote_query_supported_append (&q, "multiprocess+");
5253
5254 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5255 remote_query_supported_append (&q, "swbreak+");
5256 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5257 remote_query_supported_append (&q, "hwbreak+");
5258
5259 remote_query_supported_append (&q, "qRelocInsn+");
5260
5261 if (packet_set_cmd_state (PACKET_fork_event_feature)
5262 != AUTO_BOOLEAN_FALSE)
5263 remote_query_supported_append (&q, "fork-events+");
5264 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5265 != AUTO_BOOLEAN_FALSE)
5266 remote_query_supported_append (&q, "vfork-events+");
5267 if (packet_set_cmd_state (PACKET_exec_event_feature)
5268 != AUTO_BOOLEAN_FALSE)
5269 remote_query_supported_append (&q, "exec-events+");
5270
5271 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5272 remote_query_supported_append (&q, "vContSupported+");
5273
5274 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5275 remote_query_supported_append (&q, "QThreadEvents+");
5276
5277 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5278 remote_query_supported_append (&q, "no-resumed+");
5279
5280 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5281 the qSupported:xmlRegisters=i386 handling. */
5282 if (remote_support_xml != NULL
5283 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5284 remote_query_supported_append (&q, remote_support_xml);
5285
5286 q = "qSupported:" + q;
5287 putpkt (q.c_str ());
5288
5289 getpkt (&rs->buf, 0);
5290
5291 /* If an error occured, warn, but do not return - just reset the
5292 buffer to empty and go on to disable features. */
5293 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5294 == PACKET_ERROR)
5295 {
5296 warning (_("Remote failure reply: %s"), rs->buf.data ());
5297 rs->buf[0] = 0;
5298 }
5299 }
5300
5301 memset (seen, 0, sizeof (seen));
5302
5303 next = rs->buf.data ();
5304 while (*next)
5305 {
5306 enum packet_support is_supported;
5307 char *p, *end, *name_end, *value;
5308
5309 /* First separate out this item from the rest of the packet. If
5310 there's another item after this, we overwrite the separator
5311 (terminated strings are much easier to work with). */
5312 p = next;
5313 end = strchr (p, ';');
5314 if (end == NULL)
5315 {
5316 end = p + strlen (p);
5317 next = end;
5318 }
5319 else
5320 {
5321 *end = '\0';
5322 next = end + 1;
5323
5324 if (end == p)
5325 {
5326 warning (_("empty item in \"qSupported\" response"));
5327 continue;
5328 }
5329 }
5330
5331 name_end = strchr (p, '=');
5332 if (name_end)
5333 {
5334 /* This is a name=value entry. */
5335 is_supported = PACKET_ENABLE;
5336 value = name_end + 1;
5337 *name_end = '\0';
5338 }
5339 else
5340 {
5341 value = NULL;
5342 switch (end[-1])
5343 {
5344 case '+':
5345 is_supported = PACKET_ENABLE;
5346 break;
5347
5348 case '-':
5349 is_supported = PACKET_DISABLE;
5350 break;
5351
5352 case '?':
5353 is_supported = PACKET_SUPPORT_UNKNOWN;
5354 break;
5355
5356 default:
5357 warning (_("unrecognized item \"%s\" "
5358 "in \"qSupported\" response"), p);
5359 continue;
5360 }
5361 end[-1] = '\0';
5362 }
5363
5364 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5365 if (strcmp (remote_protocol_features[i].name, p) == 0)
5366 {
5367 const struct protocol_feature *feature;
5368
5369 seen[i] = 1;
5370 feature = &remote_protocol_features[i];
5371 feature->func (this, feature, is_supported, value);
5372 break;
5373 }
5374 }
5375
5376 /* If we increased the packet size, make sure to increase the global
5377 buffer size also. We delay this until after parsing the entire
5378 qSupported packet, because this is the same buffer we were
5379 parsing. */
5380 if (rs->buf.size () < rs->explicit_packet_size)
5381 rs->buf.resize (rs->explicit_packet_size);
5382
5383 /* Handle the defaults for unmentioned features. */
5384 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5385 if (!seen[i])
5386 {
5387 const struct protocol_feature *feature;
5388
5389 feature = &remote_protocol_features[i];
5390 feature->func (this, feature, feature->default_support, NULL);
5391 }
5392 }
5393
5394 /* Serial QUIT handler for the remote serial descriptor.
5395
5396 Defers handling a Ctrl-C until we're done with the current
5397 command/response packet sequence, unless:
5398
5399 - We're setting up the connection. Don't send a remote interrupt
5400 request, as we're not fully synced yet. Quit immediately
5401 instead.
5402
5403 - The target has been resumed in the foreground
5404 (target_terminal::is_ours is false) with a synchronous resume
5405 packet, and we're blocked waiting for the stop reply, thus a
5406 Ctrl-C should be immediately sent to the target.
5407
5408 - We get a second Ctrl-C while still within the same serial read or
5409 write. In that case the serial is seemingly wedged --- offer to
5410 quit/disconnect.
5411
5412 - We see a second Ctrl-C without target response, after having
5413 previously interrupted the target. In that case the target/stub
5414 is probably wedged --- offer to quit/disconnect.
5415 */
5416
5417 void
5418 remote_target::remote_serial_quit_handler ()
5419 {
5420 struct remote_state *rs = get_remote_state ();
5421
5422 if (check_quit_flag ())
5423 {
5424 /* If we're starting up, we're not fully synced yet. Quit
5425 immediately. */
5426 if (rs->starting_up)
5427 quit ();
5428 else if (rs->got_ctrlc_during_io)
5429 {
5430 if (query (_("The target is not responding to GDB commands.\n"
5431 "Stop debugging it? ")))
5432 remote_unpush_and_throw ();
5433 }
5434 /* If ^C has already been sent once, offer to disconnect. */
5435 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5436 interrupt_query ();
5437 /* All-stop protocol, and blocked waiting for stop reply. Send
5438 an interrupt request. */
5439 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5440 target_interrupt ();
5441 else
5442 rs->got_ctrlc_during_io = 1;
5443 }
5444 }
5445
5446 /* The remote_target that is current while the quit handler is
5447 overridden with remote_serial_quit_handler. */
5448 static remote_target *curr_quit_handler_target;
5449
5450 static void
5451 remote_serial_quit_handler ()
5452 {
5453 curr_quit_handler_target->remote_serial_quit_handler ();
5454 }
5455
5456 /* Remove any of the remote.c targets from target stack. Upper targets depend
5457 on it so remove them first. */
5458
5459 static void
5460 remote_unpush_target (void)
5461 {
5462 pop_all_targets_at_and_above (process_stratum);
5463 }
5464
5465 static void
5466 remote_unpush_and_throw (void)
5467 {
5468 remote_unpush_target ();
5469 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5470 }
5471
5472 void
5473 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5474 {
5475 remote_target *curr_remote = get_current_remote_target ();
5476
5477 if (name == 0)
5478 error (_("To open a remote debug connection, you need to specify what\n"
5479 "serial device is attached to the remote system\n"
5480 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5481
5482 /* If we're connected to a running target, target_preopen will kill it.
5483 Ask this question first, before target_preopen has a chance to kill
5484 anything. */
5485 if (curr_remote != NULL && !have_inferiors ())
5486 {
5487 if (from_tty
5488 && !query (_("Already connected to a remote target. Disconnect? ")))
5489 error (_("Still connected."));
5490 }
5491
5492 /* Here the possibly existing remote target gets unpushed. */
5493 target_preopen (from_tty);
5494
5495 remote_fileio_reset ();
5496 reopen_exec_file ();
5497 reread_symbols ();
5498
5499 remote_target *remote
5500 = (extended_p ? new extended_remote_target () : new remote_target ());
5501 target_ops_up target_holder (remote);
5502
5503 remote_state *rs = remote->get_remote_state ();
5504
5505 /* See FIXME above. */
5506 if (!target_async_permitted)
5507 rs->wait_forever_enabled_p = 1;
5508
5509 rs->remote_desc = remote_serial_open (name);
5510 if (!rs->remote_desc)
5511 perror_with_name (name);
5512
5513 if (baud_rate != -1)
5514 {
5515 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5516 {
5517 /* The requested speed could not be set. Error out to
5518 top level after closing remote_desc. Take care to
5519 set remote_desc to NULL to avoid closing remote_desc
5520 more than once. */
5521 serial_close (rs->remote_desc);
5522 rs->remote_desc = NULL;
5523 perror_with_name (name);
5524 }
5525 }
5526
5527 serial_setparity (rs->remote_desc, serial_parity);
5528 serial_raw (rs->remote_desc);
5529
5530 /* If there is something sitting in the buffer we might take it as a
5531 response to a command, which would be bad. */
5532 serial_flush_input (rs->remote_desc);
5533
5534 if (from_tty)
5535 {
5536 puts_filtered ("Remote debugging using ");
5537 puts_filtered (name);
5538 puts_filtered ("\n");
5539 }
5540
5541 /* Switch to using the remote target now. */
5542 push_target (std::move (target_holder));
5543
5544 /* Register extra event sources in the event loop. */
5545 rs->remote_async_inferior_event_token
5546 = create_async_event_handler (remote_async_inferior_event_handler,
5547 remote);
5548 rs->notif_state = remote_notif_state_allocate (remote);
5549
5550 /* Reset the target state; these things will be queried either by
5551 remote_query_supported or as they are needed. */
5552 reset_all_packet_configs_support ();
5553 rs->cached_wait_status = 0;
5554 rs->explicit_packet_size = 0;
5555 rs->noack_mode = 0;
5556 rs->extended = extended_p;
5557 rs->waiting_for_stop_reply = 0;
5558 rs->ctrlc_pending_p = 0;
5559 rs->got_ctrlc_during_io = 0;
5560
5561 rs->general_thread = not_sent_ptid;
5562 rs->continue_thread = not_sent_ptid;
5563 rs->remote_traceframe_number = -1;
5564
5565 rs->last_resume_exec_dir = EXEC_FORWARD;
5566
5567 /* Probe for ability to use "ThreadInfo" query, as required. */
5568 rs->use_threadinfo_query = 1;
5569 rs->use_threadextra_query = 1;
5570
5571 rs->readahead_cache.invalidate ();
5572
5573 if (target_async_permitted)
5574 {
5575 /* FIXME: cagney/1999-09-23: During the initial connection it is
5576 assumed that the target is already ready and able to respond to
5577 requests. Unfortunately remote_start_remote() eventually calls
5578 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5579 around this. Eventually a mechanism that allows
5580 wait_for_inferior() to expect/get timeouts will be
5581 implemented. */
5582 rs->wait_forever_enabled_p = 0;
5583 }
5584
5585 /* First delete any symbols previously loaded from shared libraries. */
5586 no_shared_libraries (NULL, 0);
5587
5588 /* Start the remote connection. If error() or QUIT, discard this
5589 target (we'd otherwise be in an inconsistent state) and then
5590 propogate the error on up the exception chain. This ensures that
5591 the caller doesn't stumble along blindly assuming that the
5592 function succeeded. The CLI doesn't have this problem but other
5593 UI's, such as MI do.
5594
5595 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5596 this function should return an error indication letting the
5597 caller restore the previous state. Unfortunately the command
5598 ``target remote'' is directly wired to this function making that
5599 impossible. On a positive note, the CLI side of this problem has
5600 been fixed - the function set_cmd_context() makes it possible for
5601 all the ``target ....'' commands to share a common callback
5602 function. See cli-dump.c. */
5603 {
5604
5605 TRY
5606 {
5607 remote->start_remote (from_tty, extended_p);
5608 }
5609 CATCH (ex, RETURN_MASK_ALL)
5610 {
5611 /* Pop the partially set up target - unless something else did
5612 already before throwing the exception. */
5613 if (ex.error != TARGET_CLOSE_ERROR)
5614 remote_unpush_target ();
5615 throw_exception (ex);
5616 }
5617 END_CATCH
5618 }
5619
5620 remote_btrace_reset (rs);
5621
5622 if (target_async_permitted)
5623 rs->wait_forever_enabled_p = 1;
5624 }
5625
5626 /* Detach the specified process. */
5627
5628 void
5629 remote_target::remote_detach_pid (int pid)
5630 {
5631 struct remote_state *rs = get_remote_state ();
5632
5633 /* This should not be necessary, but the handling for D;PID in
5634 GDBserver versions prior to 8.2 incorrectly assumes that the
5635 selected process points to the same process we're detaching,
5636 leading to misbehavior (and possibly GDBserver crashing) when it
5637 does not. Since it's easy and cheap, work around it by forcing
5638 GDBserver to select GDB's current process. */
5639 set_general_process ();
5640
5641 if (remote_multi_process_p (rs))
5642 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5643 else
5644 strcpy (rs->buf.data (), "D");
5645
5646 putpkt (rs->buf);
5647 getpkt (&rs->buf, 0);
5648
5649 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5650 ;
5651 else if (rs->buf[0] == '\0')
5652 error (_("Remote doesn't know how to detach"));
5653 else
5654 error (_("Can't detach process."));
5655 }
5656
5657 /* This detaches a program to which we previously attached, using
5658 inferior_ptid to identify the process. After this is done, GDB
5659 can be used to debug some other program. We better not have left
5660 any breakpoints in the target program or it'll die when it hits
5661 one. */
5662
5663 void
5664 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5665 {
5666 int pid = inferior_ptid.pid ();
5667 struct remote_state *rs = get_remote_state ();
5668 int is_fork_parent;
5669
5670 if (!target_has_execution)
5671 error (_("No process to detach from."));
5672
5673 target_announce_detach (from_tty);
5674
5675 /* Tell the remote target to detach. */
5676 remote_detach_pid (pid);
5677
5678 /* Exit only if this is the only active inferior. */
5679 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5680 puts_filtered (_("Ending remote debugging.\n"));
5681
5682 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5683
5684 /* Check to see if we are detaching a fork parent. Note that if we
5685 are detaching a fork child, tp == NULL. */
5686 is_fork_parent = (tp != NULL
5687 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5688
5689 /* If doing detach-on-fork, we don't mourn, because that will delete
5690 breakpoints that should be available for the followed inferior. */
5691 if (!is_fork_parent)
5692 {
5693 /* Save the pid as a string before mourning, since that will
5694 unpush the remote target, and we need the string after. */
5695 std::string infpid = target_pid_to_str (ptid_t (pid));
5696
5697 target_mourn_inferior (inferior_ptid);
5698 if (print_inferior_events)
5699 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5700 inf->num, infpid.c_str ());
5701 }
5702 else
5703 {
5704 inferior_ptid = null_ptid;
5705 detach_inferior (current_inferior ());
5706 }
5707 }
5708
5709 void
5710 remote_target::detach (inferior *inf, int from_tty)
5711 {
5712 remote_detach_1 (inf, from_tty);
5713 }
5714
5715 void
5716 extended_remote_target::detach (inferior *inf, int from_tty)
5717 {
5718 remote_detach_1 (inf, from_tty);
5719 }
5720
5721 /* Target follow-fork function for remote targets. On entry, and
5722 at return, the current inferior is the fork parent.
5723
5724 Note that although this is currently only used for extended-remote,
5725 it is named remote_follow_fork in anticipation of using it for the
5726 remote target as well. */
5727
5728 int
5729 remote_target::follow_fork (int follow_child, int detach_fork)
5730 {
5731 struct remote_state *rs = get_remote_state ();
5732 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5733
5734 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5735 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5736 {
5737 /* When following the parent and detaching the child, we detach
5738 the child here. For the case of following the child and
5739 detaching the parent, the detach is done in the target-
5740 independent follow fork code in infrun.c. We can't use
5741 target_detach when detaching an unfollowed child because
5742 the client side doesn't know anything about the child. */
5743 if (detach_fork && !follow_child)
5744 {
5745 /* Detach the fork child. */
5746 ptid_t child_ptid;
5747 pid_t child_pid;
5748
5749 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5750 child_pid = child_ptid.pid ();
5751
5752 remote_detach_pid (child_pid);
5753 }
5754 }
5755 return 0;
5756 }
5757
5758 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5759 in the program space of the new inferior. On entry and at return the
5760 current inferior is the exec'ing inferior. INF is the new exec'd
5761 inferior, which may be the same as the exec'ing inferior unless
5762 follow-exec-mode is "new". */
5763
5764 void
5765 remote_target::follow_exec (struct inferior *inf, char *execd_pathname)
5766 {
5767 /* We know that this is a target file name, so if it has the "target:"
5768 prefix we strip it off before saving it in the program space. */
5769 if (is_target_filename (execd_pathname))
5770 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5771
5772 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5773 }
5774
5775 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5776
5777 void
5778 remote_target::disconnect (const char *args, int from_tty)
5779 {
5780 if (args)
5781 error (_("Argument given to \"disconnect\" when remotely debugging."));
5782
5783 /* Make sure we unpush even the extended remote targets. Calling
5784 target_mourn_inferior won't unpush, and remote_mourn won't
5785 unpush if there is more than one inferior left. */
5786 unpush_target (this);
5787 generic_mourn_inferior ();
5788
5789 if (from_tty)
5790 puts_filtered ("Ending remote debugging.\n");
5791 }
5792
5793 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5794 be chatty about it. */
5795
5796 void
5797 extended_remote_target::attach (const char *args, int from_tty)
5798 {
5799 struct remote_state *rs = get_remote_state ();
5800 int pid;
5801 char *wait_status = NULL;
5802
5803 pid = parse_pid_to_attach (args);
5804
5805 /* Remote PID can be freely equal to getpid, do not check it here the same
5806 way as in other targets. */
5807
5808 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5809 error (_("This target does not support attaching to a process"));
5810
5811 if (from_tty)
5812 {
5813 char *exec_file = get_exec_file (0);
5814
5815 if (exec_file)
5816 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5817 target_pid_to_str (ptid_t (pid)).c_str ());
5818 else
5819 printf_unfiltered (_("Attaching to %s\n"),
5820 target_pid_to_str (ptid_t (pid)).c_str ());
5821 }
5822
5823 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5824 putpkt (rs->buf);
5825 getpkt (&rs->buf, 0);
5826
5827 switch (packet_ok (rs->buf,
5828 &remote_protocol_packets[PACKET_vAttach]))
5829 {
5830 case PACKET_OK:
5831 if (!target_is_non_stop_p ())
5832 {
5833 /* Save the reply for later. */
5834 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5835 strcpy (wait_status, rs->buf.data ());
5836 }
5837 else if (strcmp (rs->buf.data (), "OK") != 0)
5838 error (_("Attaching to %s failed with: %s"),
5839 target_pid_to_str (ptid_t (pid)).c_str (),
5840 rs->buf.data ());
5841 break;
5842 case PACKET_UNKNOWN:
5843 error (_("This target does not support attaching to a process"));
5844 default:
5845 error (_("Attaching to %s failed"),
5846 target_pid_to_str (ptid_t (pid)).c_str ());
5847 }
5848
5849 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5850
5851 inferior_ptid = ptid_t (pid);
5852
5853 if (target_is_non_stop_p ())
5854 {
5855 struct thread_info *thread;
5856
5857 /* Get list of threads. */
5858 update_thread_list ();
5859
5860 thread = first_thread_of_inferior (current_inferior ());
5861 if (thread)
5862 inferior_ptid = thread->ptid;
5863 else
5864 inferior_ptid = ptid_t (pid);
5865
5866 /* Invalidate our notion of the remote current thread. */
5867 record_currthread (rs, minus_one_ptid);
5868 }
5869 else
5870 {
5871 /* Now, if we have thread information, update inferior_ptid. */
5872 inferior_ptid = remote_current_thread (inferior_ptid);
5873
5874 /* Add the main thread to the thread list. */
5875 thread_info *thr = add_thread_silent (inferior_ptid);
5876 /* Don't consider the thread stopped until we've processed the
5877 saved stop reply. */
5878 set_executing (thr->ptid, true);
5879 }
5880
5881 /* Next, if the target can specify a description, read it. We do
5882 this before anything involving memory or registers. */
5883 target_find_description ();
5884
5885 if (!target_is_non_stop_p ())
5886 {
5887 /* Use the previously fetched status. */
5888 gdb_assert (wait_status != NULL);
5889
5890 if (target_can_async_p ())
5891 {
5892 struct notif_event *reply
5893 = remote_notif_parse (this, &notif_client_stop, wait_status);
5894
5895 push_stop_reply ((struct stop_reply *) reply);
5896
5897 target_async (1);
5898 }
5899 else
5900 {
5901 gdb_assert (wait_status != NULL);
5902 strcpy (rs->buf.data (), wait_status);
5903 rs->cached_wait_status = 1;
5904 }
5905 }
5906 else
5907 gdb_assert (wait_status == NULL);
5908 }
5909
5910 /* Implementation of the to_post_attach method. */
5911
5912 void
5913 extended_remote_target::post_attach (int pid)
5914 {
5915 /* Get text, data & bss offsets. */
5916 get_offsets ();
5917
5918 /* In certain cases GDB might not have had the chance to start
5919 symbol lookup up until now. This could happen if the debugged
5920 binary is not using shared libraries, the vsyscall page is not
5921 present (on Linux) and the binary itself hadn't changed since the
5922 debugging process was started. */
5923 if (symfile_objfile != NULL)
5924 remote_check_symbols();
5925 }
5926
5927 \f
5928 /* Check for the availability of vCont. This function should also check
5929 the response. */
5930
5931 void
5932 remote_target::remote_vcont_probe ()
5933 {
5934 remote_state *rs = get_remote_state ();
5935 char *buf;
5936
5937 strcpy (rs->buf.data (), "vCont?");
5938 putpkt (rs->buf);
5939 getpkt (&rs->buf, 0);
5940 buf = rs->buf.data ();
5941
5942 /* Make sure that the features we assume are supported. */
5943 if (startswith (buf, "vCont"))
5944 {
5945 char *p = &buf[5];
5946 int support_c, support_C;
5947
5948 rs->supports_vCont.s = 0;
5949 rs->supports_vCont.S = 0;
5950 support_c = 0;
5951 support_C = 0;
5952 rs->supports_vCont.t = 0;
5953 rs->supports_vCont.r = 0;
5954 while (p && *p == ';')
5955 {
5956 p++;
5957 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5958 rs->supports_vCont.s = 1;
5959 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5960 rs->supports_vCont.S = 1;
5961 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5962 support_c = 1;
5963 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5964 support_C = 1;
5965 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5966 rs->supports_vCont.t = 1;
5967 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5968 rs->supports_vCont.r = 1;
5969
5970 p = strchr (p, ';');
5971 }
5972
5973 /* If c, and C are not all supported, we can't use vCont. Clearing
5974 BUF will make packet_ok disable the packet. */
5975 if (!support_c || !support_C)
5976 buf[0] = 0;
5977 }
5978
5979 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
5980 }
5981
5982 /* Helper function for building "vCont" resumptions. Write a
5983 resumption to P. ENDP points to one-passed-the-end of the buffer
5984 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5985 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5986 resumed thread should be single-stepped and/or signalled. If PTID
5987 equals minus_one_ptid, then all threads are resumed; if PTID
5988 represents a process, then all threads of the process are resumed;
5989 the thread to be stepped and/or signalled is given in the global
5990 INFERIOR_PTID. */
5991
5992 char *
5993 remote_target::append_resumption (char *p, char *endp,
5994 ptid_t ptid, int step, gdb_signal siggnal)
5995 {
5996 struct remote_state *rs = get_remote_state ();
5997
5998 if (step && siggnal != GDB_SIGNAL_0)
5999 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6000 else if (step
6001 /* GDB is willing to range step. */
6002 && use_range_stepping
6003 /* Target supports range stepping. */
6004 && rs->supports_vCont.r
6005 /* We don't currently support range stepping multiple
6006 threads with a wildcard (though the protocol allows it,
6007 so stubs shouldn't make an active effort to forbid
6008 it). */
6009 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6010 {
6011 struct thread_info *tp;
6012
6013 if (ptid == minus_one_ptid)
6014 {
6015 /* If we don't know about the target thread's tid, then
6016 we're resuming magic_null_ptid (see caller). */
6017 tp = find_thread_ptid (magic_null_ptid);
6018 }
6019 else
6020 tp = find_thread_ptid (ptid);
6021 gdb_assert (tp != NULL);
6022
6023 if (tp->control.may_range_step)
6024 {
6025 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6026
6027 p += xsnprintf (p, endp - p, ";r%s,%s",
6028 phex_nz (tp->control.step_range_start,
6029 addr_size),
6030 phex_nz (tp->control.step_range_end,
6031 addr_size));
6032 }
6033 else
6034 p += xsnprintf (p, endp - p, ";s");
6035 }
6036 else if (step)
6037 p += xsnprintf (p, endp - p, ";s");
6038 else if (siggnal != GDB_SIGNAL_0)
6039 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6040 else
6041 p += xsnprintf (p, endp - p, ";c");
6042
6043 if (remote_multi_process_p (rs) && ptid.is_pid ())
6044 {
6045 ptid_t nptid;
6046
6047 /* All (-1) threads of process. */
6048 nptid = ptid_t (ptid.pid (), -1, 0);
6049
6050 p += xsnprintf (p, endp - p, ":");
6051 p = write_ptid (p, endp, nptid);
6052 }
6053 else if (ptid != minus_one_ptid)
6054 {
6055 p += xsnprintf (p, endp - p, ":");
6056 p = write_ptid (p, endp, ptid);
6057 }
6058
6059 return p;
6060 }
6061
6062 /* Clear the thread's private info on resume. */
6063
6064 static void
6065 resume_clear_thread_private_info (struct thread_info *thread)
6066 {
6067 if (thread->priv != NULL)
6068 {
6069 remote_thread_info *priv = get_remote_thread_info (thread);
6070
6071 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6072 priv->watch_data_address = 0;
6073 }
6074 }
6075
6076 /* Append a vCont continue-with-signal action for threads that have a
6077 non-zero stop signal. */
6078
6079 char *
6080 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6081 ptid_t ptid)
6082 {
6083 for (thread_info *thread : all_non_exited_threads (ptid))
6084 if (inferior_ptid != thread->ptid
6085 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6086 {
6087 p = append_resumption (p, endp, thread->ptid,
6088 0, thread->suspend.stop_signal);
6089 thread->suspend.stop_signal = GDB_SIGNAL_0;
6090 resume_clear_thread_private_info (thread);
6091 }
6092
6093 return p;
6094 }
6095
6096 /* Set the target running, using the packets that use Hc
6097 (c/s/C/S). */
6098
6099 void
6100 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6101 gdb_signal siggnal)
6102 {
6103 struct remote_state *rs = get_remote_state ();
6104 char *buf;
6105
6106 rs->last_sent_signal = siggnal;
6107 rs->last_sent_step = step;
6108
6109 /* The c/s/C/S resume packets use Hc, so set the continue
6110 thread. */
6111 if (ptid == minus_one_ptid)
6112 set_continue_thread (any_thread_ptid);
6113 else
6114 set_continue_thread (ptid);
6115
6116 for (thread_info *thread : all_non_exited_threads ())
6117 resume_clear_thread_private_info (thread);
6118
6119 buf = rs->buf.data ();
6120 if (::execution_direction == EXEC_REVERSE)
6121 {
6122 /* We don't pass signals to the target in reverse exec mode. */
6123 if (info_verbose && siggnal != GDB_SIGNAL_0)
6124 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6125 siggnal);
6126
6127 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6128 error (_("Remote reverse-step not supported."));
6129 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6130 error (_("Remote reverse-continue not supported."));
6131
6132 strcpy (buf, step ? "bs" : "bc");
6133 }
6134 else if (siggnal != GDB_SIGNAL_0)
6135 {
6136 buf[0] = step ? 'S' : 'C';
6137 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6138 buf[2] = tohex (((int) siggnal) & 0xf);
6139 buf[3] = '\0';
6140 }
6141 else
6142 strcpy (buf, step ? "s" : "c");
6143
6144 putpkt (buf);
6145 }
6146
6147 /* Resume the remote inferior by using a "vCont" packet. The thread
6148 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6149 resumed thread should be single-stepped and/or signalled. If PTID
6150 equals minus_one_ptid, then all threads are resumed; the thread to
6151 be stepped and/or signalled is given in the global INFERIOR_PTID.
6152 This function returns non-zero iff it resumes the inferior.
6153
6154 This function issues a strict subset of all possible vCont commands
6155 at the moment. */
6156
6157 int
6158 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6159 enum gdb_signal siggnal)
6160 {
6161 struct remote_state *rs = get_remote_state ();
6162 char *p;
6163 char *endp;
6164
6165 /* No reverse execution actions defined for vCont. */
6166 if (::execution_direction == EXEC_REVERSE)
6167 return 0;
6168
6169 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6170 remote_vcont_probe ();
6171
6172 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6173 return 0;
6174
6175 p = rs->buf.data ();
6176 endp = p + get_remote_packet_size ();
6177
6178 /* If we could generate a wider range of packets, we'd have to worry
6179 about overflowing BUF. Should there be a generic
6180 "multi-part-packet" packet? */
6181
6182 p += xsnprintf (p, endp - p, "vCont");
6183
6184 if (ptid == magic_null_ptid)
6185 {
6186 /* MAGIC_NULL_PTID means that we don't have any active threads,
6187 so we don't have any TID numbers the inferior will
6188 understand. Make sure to only send forms that do not specify
6189 a TID. */
6190 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6191 }
6192 else if (ptid == minus_one_ptid || ptid.is_pid ())
6193 {
6194 /* Resume all threads (of all processes, or of a single
6195 process), with preference for INFERIOR_PTID. This assumes
6196 inferior_ptid belongs to the set of all threads we are about
6197 to resume. */
6198 if (step || siggnal != GDB_SIGNAL_0)
6199 {
6200 /* Step inferior_ptid, with or without signal. */
6201 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6202 }
6203
6204 /* Also pass down any pending signaled resumption for other
6205 threads not the current. */
6206 p = append_pending_thread_resumptions (p, endp, ptid);
6207
6208 /* And continue others without a signal. */
6209 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6210 }
6211 else
6212 {
6213 /* Scheduler locking; resume only PTID. */
6214 append_resumption (p, endp, ptid, step, siggnal);
6215 }
6216
6217 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6218 putpkt (rs->buf);
6219
6220 if (target_is_non_stop_p ())
6221 {
6222 /* In non-stop, the stub replies to vCont with "OK". The stop
6223 reply will be reported asynchronously by means of a `%Stop'
6224 notification. */
6225 getpkt (&rs->buf, 0);
6226 if (strcmp (rs->buf.data (), "OK") != 0)
6227 error (_("Unexpected vCont reply in non-stop mode: %s"),
6228 rs->buf.data ());
6229 }
6230
6231 return 1;
6232 }
6233
6234 /* Tell the remote machine to resume. */
6235
6236 void
6237 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6238 {
6239 struct remote_state *rs = get_remote_state ();
6240
6241 /* When connected in non-stop mode, the core resumes threads
6242 individually. Resuming remote threads directly in target_resume
6243 would thus result in sending one packet per thread. Instead, to
6244 minimize roundtrip latency, here we just store the resume
6245 request; the actual remote resumption will be done in
6246 target_commit_resume / remote_commit_resume, where we'll be able
6247 to do vCont action coalescing. */
6248 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6249 {
6250 remote_thread_info *remote_thr;
6251
6252 if (minus_one_ptid == ptid || ptid.is_pid ())
6253 remote_thr = get_remote_thread_info (inferior_ptid);
6254 else
6255 remote_thr = get_remote_thread_info (ptid);
6256
6257 remote_thr->last_resume_step = step;
6258 remote_thr->last_resume_sig = siggnal;
6259 return;
6260 }
6261
6262 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6263 (explained in remote-notif.c:handle_notification) so
6264 remote_notif_process is not called. We need find a place where
6265 it is safe to start a 'vNotif' sequence. It is good to do it
6266 before resuming inferior, because inferior was stopped and no RSP
6267 traffic at that moment. */
6268 if (!target_is_non_stop_p ())
6269 remote_notif_process (rs->notif_state, &notif_client_stop);
6270
6271 rs->last_resume_exec_dir = ::execution_direction;
6272
6273 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6274 if (!remote_resume_with_vcont (ptid, step, siggnal))
6275 remote_resume_with_hc (ptid, step, siggnal);
6276
6277 /* We are about to start executing the inferior, let's register it
6278 with the event loop. NOTE: this is the one place where all the
6279 execution commands end up. We could alternatively do this in each
6280 of the execution commands in infcmd.c. */
6281 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6282 into infcmd.c in order to allow inferior function calls to work
6283 NOT asynchronously. */
6284 if (target_can_async_p ())
6285 target_async (1);
6286
6287 /* We've just told the target to resume. The remote server will
6288 wait for the inferior to stop, and then send a stop reply. In
6289 the mean time, we can't start another command/query ourselves
6290 because the stub wouldn't be ready to process it. This applies
6291 only to the base all-stop protocol, however. In non-stop (which
6292 only supports vCont), the stub replies with an "OK", and is
6293 immediate able to process further serial input. */
6294 if (!target_is_non_stop_p ())
6295 rs->waiting_for_stop_reply = 1;
6296 }
6297
6298 static int is_pending_fork_parent_thread (struct thread_info *thread);
6299
6300 /* Private per-inferior info for target remote processes. */
6301
6302 struct remote_inferior : public private_inferior
6303 {
6304 /* Whether we can send a wildcard vCont for this process. */
6305 bool may_wildcard_vcont = true;
6306 };
6307
6308 /* Get the remote private inferior data associated to INF. */
6309
6310 static remote_inferior *
6311 get_remote_inferior (inferior *inf)
6312 {
6313 if (inf->priv == NULL)
6314 inf->priv.reset (new remote_inferior);
6315
6316 return static_cast<remote_inferior *> (inf->priv.get ());
6317 }
6318
6319 /* Class used to track the construction of a vCont packet in the
6320 outgoing packet buffer. This is used to send multiple vCont
6321 packets if we have more actions than would fit a single packet. */
6322
6323 class vcont_builder
6324 {
6325 public:
6326 explicit vcont_builder (remote_target *remote)
6327 : m_remote (remote)
6328 {
6329 restart ();
6330 }
6331
6332 void flush ();
6333 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6334
6335 private:
6336 void restart ();
6337
6338 /* The remote target. */
6339 remote_target *m_remote;
6340
6341 /* Pointer to the first action. P points here if no action has been
6342 appended yet. */
6343 char *m_first_action;
6344
6345 /* Where the next action will be appended. */
6346 char *m_p;
6347
6348 /* The end of the buffer. Must never write past this. */
6349 char *m_endp;
6350 };
6351
6352 /* Prepare the outgoing buffer for a new vCont packet. */
6353
6354 void
6355 vcont_builder::restart ()
6356 {
6357 struct remote_state *rs = m_remote->get_remote_state ();
6358
6359 m_p = rs->buf.data ();
6360 m_endp = m_p + m_remote->get_remote_packet_size ();
6361 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6362 m_first_action = m_p;
6363 }
6364
6365 /* If the vCont packet being built has any action, send it to the
6366 remote end. */
6367
6368 void
6369 vcont_builder::flush ()
6370 {
6371 struct remote_state *rs;
6372
6373 if (m_p == m_first_action)
6374 return;
6375
6376 rs = m_remote->get_remote_state ();
6377 m_remote->putpkt (rs->buf);
6378 m_remote->getpkt (&rs->buf, 0);
6379 if (strcmp (rs->buf.data (), "OK") != 0)
6380 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6381 }
6382
6383 /* The largest action is range-stepping, with its two addresses. This
6384 is more than sufficient. If a new, bigger action is created, it'll
6385 quickly trigger a failed assertion in append_resumption (and we'll
6386 just bump this). */
6387 #define MAX_ACTION_SIZE 200
6388
6389 /* Append a new vCont action in the outgoing packet being built. If
6390 the action doesn't fit the packet along with previous actions, push
6391 what we've got so far to the remote end and start over a new vCont
6392 packet (with the new action). */
6393
6394 void
6395 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6396 {
6397 char buf[MAX_ACTION_SIZE + 1];
6398
6399 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6400 ptid, step, siggnal);
6401
6402 /* Check whether this new action would fit in the vCont packet along
6403 with previous actions. If not, send what we've got so far and
6404 start a new vCont packet. */
6405 size_t rsize = endp - buf;
6406 if (rsize > m_endp - m_p)
6407 {
6408 flush ();
6409 restart ();
6410
6411 /* Should now fit. */
6412 gdb_assert (rsize <= m_endp - m_p);
6413 }
6414
6415 memcpy (m_p, buf, rsize);
6416 m_p += rsize;
6417 *m_p = '\0';
6418 }
6419
6420 /* to_commit_resume implementation. */
6421
6422 void
6423 remote_target::commit_resume ()
6424 {
6425 int any_process_wildcard;
6426 int may_global_wildcard_vcont;
6427
6428 /* If connected in all-stop mode, we'd send the remote resume
6429 request directly from remote_resume. Likewise if
6430 reverse-debugging, as there are no defined vCont actions for
6431 reverse execution. */
6432 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6433 return;
6434
6435 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6436 instead of resuming all threads of each process individually.
6437 However, if any thread of a process must remain halted, we can't
6438 send wildcard resumes and must send one action per thread.
6439
6440 Care must be taken to not resume threads/processes the server
6441 side already told us are stopped, but the core doesn't know about
6442 yet, because the events are still in the vStopped notification
6443 queue. For example:
6444
6445 #1 => vCont s:p1.1;c
6446 #2 <= OK
6447 #3 <= %Stopped T05 p1.1
6448 #4 => vStopped
6449 #5 <= T05 p1.2
6450 #6 => vStopped
6451 #7 <= OK
6452 #8 (infrun handles the stop for p1.1 and continues stepping)
6453 #9 => vCont s:p1.1;c
6454
6455 The last vCont above would resume thread p1.2 by mistake, because
6456 the server has no idea that the event for p1.2 had not been
6457 handled yet.
6458
6459 The server side must similarly ignore resume actions for the
6460 thread that has a pending %Stopped notification (and any other
6461 threads with events pending), until GDB acks the notification
6462 with vStopped. Otherwise, e.g., the following case is
6463 mishandled:
6464
6465 #1 => g (or any other packet)
6466 #2 <= [registers]
6467 #3 <= %Stopped T05 p1.2
6468 #4 => vCont s:p1.1;c
6469 #5 <= OK
6470
6471 Above, the server must not resume thread p1.2. GDB can't know
6472 that p1.2 stopped until it acks the %Stopped notification, and
6473 since from GDB's perspective all threads should be running, it
6474 sends a "c" action.
6475
6476 Finally, special care must also be given to handling fork/vfork
6477 events. A (v)fork event actually tells us that two processes
6478 stopped -- the parent and the child. Until we follow the fork,
6479 we must not resume the child. Therefore, if we have a pending
6480 fork follow, we must not send a global wildcard resume action
6481 (vCont;c). We can still send process-wide wildcards though. */
6482
6483 /* Start by assuming a global wildcard (vCont;c) is possible. */
6484 may_global_wildcard_vcont = 1;
6485
6486 /* And assume every process is individually wildcard-able too. */
6487 for (inferior *inf : all_non_exited_inferiors ())
6488 {
6489 remote_inferior *priv = get_remote_inferior (inf);
6490
6491 priv->may_wildcard_vcont = true;
6492 }
6493
6494 /* Check for any pending events (not reported or processed yet) and
6495 disable process and global wildcard resumes appropriately. */
6496 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6497
6498 for (thread_info *tp : all_non_exited_threads ())
6499 {
6500 /* If a thread of a process is not meant to be resumed, then we
6501 can't wildcard that process. */
6502 if (!tp->executing)
6503 {
6504 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6505
6506 /* And if we can't wildcard a process, we can't wildcard
6507 everything either. */
6508 may_global_wildcard_vcont = 0;
6509 continue;
6510 }
6511
6512 /* If a thread is the parent of an unfollowed fork, then we
6513 can't do a global wildcard, as that would resume the fork
6514 child. */
6515 if (is_pending_fork_parent_thread (tp))
6516 may_global_wildcard_vcont = 0;
6517 }
6518
6519 /* Now let's build the vCont packet(s). Actions must be appended
6520 from narrower to wider scopes (thread -> process -> global). If
6521 we end up with too many actions for a single packet vcont_builder
6522 flushes the current vCont packet to the remote side and starts a
6523 new one. */
6524 struct vcont_builder vcont_builder (this);
6525
6526 /* Threads first. */
6527 for (thread_info *tp : all_non_exited_threads ())
6528 {
6529 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6530
6531 if (!tp->executing || remote_thr->vcont_resumed)
6532 continue;
6533
6534 gdb_assert (!thread_is_in_step_over_chain (tp));
6535
6536 if (!remote_thr->last_resume_step
6537 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6538 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6539 {
6540 /* We'll send a wildcard resume instead. */
6541 remote_thr->vcont_resumed = 1;
6542 continue;
6543 }
6544
6545 vcont_builder.push_action (tp->ptid,
6546 remote_thr->last_resume_step,
6547 remote_thr->last_resume_sig);
6548 remote_thr->vcont_resumed = 1;
6549 }
6550
6551 /* Now check whether we can send any process-wide wildcard. This is
6552 to avoid sending a global wildcard in the case nothing is
6553 supposed to be resumed. */
6554 any_process_wildcard = 0;
6555
6556 for (inferior *inf : all_non_exited_inferiors ())
6557 {
6558 if (get_remote_inferior (inf)->may_wildcard_vcont)
6559 {
6560 any_process_wildcard = 1;
6561 break;
6562 }
6563 }
6564
6565 if (any_process_wildcard)
6566 {
6567 /* If all processes are wildcard-able, then send a single "c"
6568 action, otherwise, send an "all (-1) threads of process"
6569 continue action for each running process, if any. */
6570 if (may_global_wildcard_vcont)
6571 {
6572 vcont_builder.push_action (minus_one_ptid,
6573 false, GDB_SIGNAL_0);
6574 }
6575 else
6576 {
6577 for (inferior *inf : all_non_exited_inferiors ())
6578 {
6579 if (get_remote_inferior (inf)->may_wildcard_vcont)
6580 {
6581 vcont_builder.push_action (ptid_t (inf->pid),
6582 false, GDB_SIGNAL_0);
6583 }
6584 }
6585 }
6586 }
6587
6588 vcont_builder.flush ();
6589 }
6590
6591 \f
6592
6593 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6594 thread, all threads of a remote process, or all threads of all
6595 processes. */
6596
6597 void
6598 remote_target::remote_stop_ns (ptid_t ptid)
6599 {
6600 struct remote_state *rs = get_remote_state ();
6601 char *p = rs->buf.data ();
6602 char *endp = p + get_remote_packet_size ();
6603
6604 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6605 remote_vcont_probe ();
6606
6607 if (!rs->supports_vCont.t)
6608 error (_("Remote server does not support stopping threads"));
6609
6610 if (ptid == minus_one_ptid
6611 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6612 p += xsnprintf (p, endp - p, "vCont;t");
6613 else
6614 {
6615 ptid_t nptid;
6616
6617 p += xsnprintf (p, endp - p, "vCont;t:");
6618
6619 if (ptid.is_pid ())
6620 /* All (-1) threads of process. */
6621 nptid = ptid_t (ptid.pid (), -1, 0);
6622 else
6623 {
6624 /* Small optimization: if we already have a stop reply for
6625 this thread, no use in telling the stub we want this
6626 stopped. */
6627 if (peek_stop_reply (ptid))
6628 return;
6629
6630 nptid = ptid;
6631 }
6632
6633 write_ptid (p, endp, nptid);
6634 }
6635
6636 /* In non-stop, we get an immediate OK reply. The stop reply will
6637 come in asynchronously by notification. */
6638 putpkt (rs->buf);
6639 getpkt (&rs->buf, 0);
6640 if (strcmp (rs->buf.data (), "OK") != 0)
6641 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6642 rs->buf.data ());
6643 }
6644
6645 /* All-stop version of target_interrupt. Sends a break or a ^C to
6646 interrupt the remote target. It is undefined which thread of which
6647 process reports the interrupt. */
6648
6649 void
6650 remote_target::remote_interrupt_as ()
6651 {
6652 struct remote_state *rs = get_remote_state ();
6653
6654 rs->ctrlc_pending_p = 1;
6655
6656 /* If the inferior is stopped already, but the core didn't know
6657 about it yet, just ignore the request. The cached wait status
6658 will be collected in remote_wait. */
6659 if (rs->cached_wait_status)
6660 return;
6661
6662 /* Send interrupt_sequence to remote target. */
6663 send_interrupt_sequence ();
6664 }
6665
6666 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6667 the remote target. It is undefined which thread of which process
6668 reports the interrupt. Throws an error if the packet is not
6669 supported by the server. */
6670
6671 void
6672 remote_target::remote_interrupt_ns ()
6673 {
6674 struct remote_state *rs = get_remote_state ();
6675 char *p = rs->buf.data ();
6676 char *endp = p + get_remote_packet_size ();
6677
6678 xsnprintf (p, endp - p, "vCtrlC");
6679
6680 /* In non-stop, we get an immediate OK reply. The stop reply will
6681 come in asynchronously by notification. */
6682 putpkt (rs->buf);
6683 getpkt (&rs->buf, 0);
6684
6685 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6686 {
6687 case PACKET_OK:
6688 break;
6689 case PACKET_UNKNOWN:
6690 error (_("No support for interrupting the remote target."));
6691 case PACKET_ERROR:
6692 error (_("Interrupting target failed: %s"), rs->buf.data ());
6693 }
6694 }
6695
6696 /* Implement the to_stop function for the remote targets. */
6697
6698 void
6699 remote_target::stop (ptid_t ptid)
6700 {
6701 if (remote_debug)
6702 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6703
6704 if (target_is_non_stop_p ())
6705 remote_stop_ns (ptid);
6706 else
6707 {
6708 /* We don't currently have a way to transparently pause the
6709 remote target in all-stop mode. Interrupt it instead. */
6710 remote_interrupt_as ();
6711 }
6712 }
6713
6714 /* Implement the to_interrupt function for the remote targets. */
6715
6716 void
6717 remote_target::interrupt ()
6718 {
6719 if (remote_debug)
6720 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6721
6722 if (target_is_non_stop_p ())
6723 remote_interrupt_ns ();
6724 else
6725 remote_interrupt_as ();
6726 }
6727
6728 /* Implement the to_pass_ctrlc function for the remote targets. */
6729
6730 void
6731 remote_target::pass_ctrlc ()
6732 {
6733 struct remote_state *rs = get_remote_state ();
6734
6735 if (remote_debug)
6736 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6737
6738 /* If we're starting up, we're not fully synced yet. Quit
6739 immediately. */
6740 if (rs->starting_up)
6741 quit ();
6742 /* If ^C has already been sent once, offer to disconnect. */
6743 else if (rs->ctrlc_pending_p)
6744 interrupt_query ();
6745 else
6746 target_interrupt ();
6747 }
6748
6749 /* Ask the user what to do when an interrupt is received. */
6750
6751 void
6752 remote_target::interrupt_query ()
6753 {
6754 struct remote_state *rs = get_remote_state ();
6755
6756 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6757 {
6758 if (query (_("The target is not responding to interrupt requests.\n"
6759 "Stop debugging it? ")))
6760 {
6761 remote_unpush_target ();
6762 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6763 }
6764 }
6765 else
6766 {
6767 if (query (_("Interrupted while waiting for the program.\n"
6768 "Give up waiting? ")))
6769 quit ();
6770 }
6771 }
6772
6773 /* Enable/disable target terminal ownership. Most targets can use
6774 terminal groups to control terminal ownership. Remote targets are
6775 different in that explicit transfer of ownership to/from GDB/target
6776 is required. */
6777
6778 void
6779 remote_target::terminal_inferior ()
6780 {
6781 /* NOTE: At this point we could also register our selves as the
6782 recipient of all input. Any characters typed could then be
6783 passed on down to the target. */
6784 }
6785
6786 void
6787 remote_target::terminal_ours ()
6788 {
6789 }
6790
6791 static void
6792 remote_console_output (const char *msg)
6793 {
6794 const char *p;
6795
6796 for (p = msg; p[0] && p[1]; p += 2)
6797 {
6798 char tb[2];
6799 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6800
6801 tb[0] = c;
6802 tb[1] = 0;
6803 fputs_unfiltered (tb, gdb_stdtarg);
6804 }
6805 gdb_flush (gdb_stdtarg);
6806 }
6807
6808 struct stop_reply : public notif_event
6809 {
6810 ~stop_reply ();
6811
6812 /* The identifier of the thread about this event */
6813 ptid_t ptid;
6814
6815 /* The remote state this event is associated with. When the remote
6816 connection, represented by a remote_state object, is closed,
6817 all the associated stop_reply events should be released. */
6818 struct remote_state *rs;
6819
6820 struct target_waitstatus ws;
6821
6822 /* The architecture associated with the expedited registers. */
6823 gdbarch *arch;
6824
6825 /* Expedited registers. This makes remote debugging a bit more
6826 efficient for those targets that provide critical registers as
6827 part of their normal status mechanism (as another roundtrip to
6828 fetch them is avoided). */
6829 std::vector<cached_reg_t> regcache;
6830
6831 enum target_stop_reason stop_reason;
6832
6833 CORE_ADDR watch_data_address;
6834
6835 int core;
6836 };
6837
6838 /* Return the length of the stop reply queue. */
6839
6840 int
6841 remote_target::stop_reply_queue_length ()
6842 {
6843 remote_state *rs = get_remote_state ();
6844 return rs->stop_reply_queue.size ();
6845 }
6846
6847 void
6848 remote_notif_stop_parse (remote_target *remote,
6849 struct notif_client *self, const char *buf,
6850 struct notif_event *event)
6851 {
6852 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6853 }
6854
6855 static void
6856 remote_notif_stop_ack (remote_target *remote,
6857 struct notif_client *self, const char *buf,
6858 struct notif_event *event)
6859 {
6860 struct stop_reply *stop_reply = (struct stop_reply *) event;
6861
6862 /* acknowledge */
6863 putpkt (remote, self->ack_command);
6864
6865 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6866 {
6867 /* We got an unknown stop reply. */
6868 error (_("Unknown stop reply"));
6869 }
6870
6871 remote->push_stop_reply (stop_reply);
6872 }
6873
6874 static int
6875 remote_notif_stop_can_get_pending_events (remote_target *remote,
6876 struct notif_client *self)
6877 {
6878 /* We can't get pending events in remote_notif_process for
6879 notification stop, and we have to do this in remote_wait_ns
6880 instead. If we fetch all queued events from stub, remote stub
6881 may exit and we have no chance to process them back in
6882 remote_wait_ns. */
6883 remote_state *rs = remote->get_remote_state ();
6884 mark_async_event_handler (rs->remote_async_inferior_event_token);
6885 return 0;
6886 }
6887
6888 stop_reply::~stop_reply ()
6889 {
6890 for (cached_reg_t &reg : regcache)
6891 xfree (reg.data);
6892 }
6893
6894 static notif_event_up
6895 remote_notif_stop_alloc_reply ()
6896 {
6897 return notif_event_up (new struct stop_reply ());
6898 }
6899
6900 /* A client of notification Stop. */
6901
6902 struct notif_client notif_client_stop =
6903 {
6904 "Stop",
6905 "vStopped",
6906 remote_notif_stop_parse,
6907 remote_notif_stop_ack,
6908 remote_notif_stop_can_get_pending_events,
6909 remote_notif_stop_alloc_reply,
6910 REMOTE_NOTIF_STOP,
6911 };
6912
6913 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6914 the pid of the process that owns the threads we want to check, or
6915 -1 if we want to check all threads. */
6916
6917 static int
6918 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6919 ptid_t thread_ptid)
6920 {
6921 if (ws->kind == TARGET_WAITKIND_FORKED
6922 || ws->kind == TARGET_WAITKIND_VFORKED)
6923 {
6924 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6925 return 1;
6926 }
6927
6928 return 0;
6929 }
6930
6931 /* Return the thread's pending status used to determine whether the
6932 thread is a fork parent stopped at a fork event. */
6933
6934 static struct target_waitstatus *
6935 thread_pending_fork_status (struct thread_info *thread)
6936 {
6937 if (thread->suspend.waitstatus_pending_p)
6938 return &thread->suspend.waitstatus;
6939 else
6940 return &thread->pending_follow;
6941 }
6942
6943 /* Determine if THREAD is a pending fork parent thread. */
6944
6945 static int
6946 is_pending_fork_parent_thread (struct thread_info *thread)
6947 {
6948 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6949 int pid = -1;
6950
6951 return is_pending_fork_parent (ws, pid, thread->ptid);
6952 }
6953
6954 /* If CONTEXT contains any fork child threads that have not been
6955 reported yet, remove them from the CONTEXT list. If such a
6956 thread exists it is because we are stopped at a fork catchpoint
6957 and have not yet called follow_fork, which will set up the
6958 host-side data structures for the new process. */
6959
6960 void
6961 remote_target::remove_new_fork_children (threads_listing_context *context)
6962 {
6963 int pid = -1;
6964 struct notif_client *notif = &notif_client_stop;
6965
6966 /* For any threads stopped at a fork event, remove the corresponding
6967 fork child threads from the CONTEXT list. */
6968 for (thread_info *thread : all_non_exited_threads ())
6969 {
6970 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6971
6972 if (is_pending_fork_parent (ws, pid, thread->ptid))
6973 context->remove_thread (ws->value.related_pid);
6974 }
6975
6976 /* Check for any pending fork events (not reported or processed yet)
6977 in process PID and remove those fork child threads from the
6978 CONTEXT list as well. */
6979 remote_notif_get_pending_events (notif);
6980 for (auto &event : get_remote_state ()->stop_reply_queue)
6981 if (event->ws.kind == TARGET_WAITKIND_FORKED
6982 || event->ws.kind == TARGET_WAITKIND_VFORKED
6983 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6984 context->remove_thread (event->ws.value.related_pid);
6985 }
6986
6987 /* Check whether any event pending in the vStopped queue would prevent
6988 a global or process wildcard vCont action. Clear
6989 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6990 and clear the event inferior's may_wildcard_vcont flag if we can't
6991 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6992
6993 void
6994 remote_target::check_pending_events_prevent_wildcard_vcont
6995 (int *may_global_wildcard)
6996 {
6997 struct notif_client *notif = &notif_client_stop;
6998
6999 remote_notif_get_pending_events (notif);
7000 for (auto &event : get_remote_state ()->stop_reply_queue)
7001 {
7002 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7003 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7004 continue;
7005
7006 if (event->ws.kind == TARGET_WAITKIND_FORKED
7007 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7008 *may_global_wildcard = 0;
7009
7010 struct inferior *inf = find_inferior_ptid (event->ptid);
7011
7012 /* This may be the first time we heard about this process.
7013 Regardless, we must not do a global wildcard resume, otherwise
7014 we'd resume this process too. */
7015 *may_global_wildcard = 0;
7016 if (inf != NULL)
7017 get_remote_inferior (inf)->may_wildcard_vcont = false;
7018 }
7019 }
7020
7021 /* Discard all pending stop replies of inferior INF. */
7022
7023 void
7024 remote_target::discard_pending_stop_replies (struct inferior *inf)
7025 {
7026 struct stop_reply *reply;
7027 struct remote_state *rs = get_remote_state ();
7028 struct remote_notif_state *rns = rs->notif_state;
7029
7030 /* This function can be notified when an inferior exists. When the
7031 target is not remote, the notification state is NULL. */
7032 if (rs->remote_desc == NULL)
7033 return;
7034
7035 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7036
7037 /* Discard the in-flight notification. */
7038 if (reply != NULL && reply->ptid.pid () == inf->pid)
7039 {
7040 delete reply;
7041 rns->pending_event[notif_client_stop.id] = NULL;
7042 }
7043
7044 /* Discard the stop replies we have already pulled with
7045 vStopped. */
7046 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7047 rs->stop_reply_queue.end (),
7048 [=] (const stop_reply_up &event)
7049 {
7050 return event->ptid.pid () == inf->pid;
7051 });
7052 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7053 }
7054
7055 /* Discard the stop replies for RS in stop_reply_queue. */
7056
7057 void
7058 remote_target::discard_pending_stop_replies_in_queue ()
7059 {
7060 remote_state *rs = get_remote_state ();
7061
7062 /* Discard the stop replies we have already pulled with
7063 vStopped. */
7064 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7065 rs->stop_reply_queue.end (),
7066 [=] (const stop_reply_up &event)
7067 {
7068 return event->rs == rs;
7069 });
7070 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7071 }
7072
7073 /* Remove the first reply in 'stop_reply_queue' which matches
7074 PTID. */
7075
7076 struct stop_reply *
7077 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7078 {
7079 remote_state *rs = get_remote_state ();
7080
7081 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7082 rs->stop_reply_queue.end (),
7083 [=] (const stop_reply_up &event)
7084 {
7085 return event->ptid.matches (ptid);
7086 });
7087 struct stop_reply *result;
7088 if (iter == rs->stop_reply_queue.end ())
7089 result = nullptr;
7090 else
7091 {
7092 result = iter->release ();
7093 rs->stop_reply_queue.erase (iter);
7094 }
7095
7096 if (notif_debug)
7097 fprintf_unfiltered (gdb_stdlog,
7098 "notif: discard queued event: 'Stop' in %s\n",
7099 target_pid_to_str (ptid).c_str ());
7100
7101 return result;
7102 }
7103
7104 /* Look for a queued stop reply belonging to PTID. If one is found,
7105 remove it from the queue, and return it. Returns NULL if none is
7106 found. If there are still queued events left to process, tell the
7107 event loop to get back to target_wait soon. */
7108
7109 struct stop_reply *
7110 remote_target::queued_stop_reply (ptid_t ptid)
7111 {
7112 remote_state *rs = get_remote_state ();
7113 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7114
7115 if (!rs->stop_reply_queue.empty ())
7116 {
7117 /* There's still at least an event left. */
7118 mark_async_event_handler (rs->remote_async_inferior_event_token);
7119 }
7120
7121 return r;
7122 }
7123
7124 /* Push a fully parsed stop reply in the stop reply queue. Since we
7125 know that we now have at least one queued event left to pass to the
7126 core side, tell the event loop to get back to target_wait soon. */
7127
7128 void
7129 remote_target::push_stop_reply (struct stop_reply *new_event)
7130 {
7131 remote_state *rs = get_remote_state ();
7132 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7133
7134 if (notif_debug)
7135 fprintf_unfiltered (gdb_stdlog,
7136 "notif: push 'Stop' %s to queue %d\n",
7137 target_pid_to_str (new_event->ptid).c_str (),
7138 int (rs->stop_reply_queue.size ()));
7139
7140 mark_async_event_handler (rs->remote_async_inferior_event_token);
7141 }
7142
7143 /* Returns true if we have a stop reply for PTID. */
7144
7145 int
7146 remote_target::peek_stop_reply (ptid_t ptid)
7147 {
7148 remote_state *rs = get_remote_state ();
7149 for (auto &event : rs->stop_reply_queue)
7150 if (ptid == event->ptid
7151 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7152 return 1;
7153 return 0;
7154 }
7155
7156 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7157 starting with P and ending with PEND matches PREFIX. */
7158
7159 static int
7160 strprefix (const char *p, const char *pend, const char *prefix)
7161 {
7162 for ( ; p < pend; p++, prefix++)
7163 if (*p != *prefix)
7164 return 0;
7165 return *prefix == '\0';
7166 }
7167
7168 /* Parse the stop reply in BUF. Either the function succeeds, and the
7169 result is stored in EVENT, or throws an error. */
7170
7171 void
7172 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7173 {
7174 remote_arch_state *rsa = NULL;
7175 ULONGEST addr;
7176 const char *p;
7177 int skipregs = 0;
7178
7179 event->ptid = null_ptid;
7180 event->rs = get_remote_state ();
7181 event->ws.kind = TARGET_WAITKIND_IGNORE;
7182 event->ws.value.integer = 0;
7183 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7184 event->regcache.clear ();
7185 event->core = -1;
7186
7187 switch (buf[0])
7188 {
7189 case 'T': /* Status with PC, SP, FP, ... */
7190 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7191 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7192 ss = signal number
7193 n... = register number
7194 r... = register contents
7195 */
7196
7197 p = &buf[3]; /* after Txx */
7198 while (*p)
7199 {
7200 const char *p1;
7201 int fieldsize;
7202
7203 p1 = strchr (p, ':');
7204 if (p1 == NULL)
7205 error (_("Malformed packet(a) (missing colon): %s\n\
7206 Packet: '%s'\n"),
7207 p, buf);
7208 if (p == p1)
7209 error (_("Malformed packet(a) (missing register number): %s\n\
7210 Packet: '%s'\n"),
7211 p, buf);
7212
7213 /* Some "registers" are actually extended stop information.
7214 Note if you're adding a new entry here: GDB 7.9 and
7215 earlier assume that all register "numbers" that start
7216 with an hex digit are real register numbers. Make sure
7217 the server only sends such a packet if it knows the
7218 client understands it. */
7219
7220 if (strprefix (p, p1, "thread"))
7221 event->ptid = read_ptid (++p1, &p);
7222 else if (strprefix (p, p1, "syscall_entry"))
7223 {
7224 ULONGEST sysno;
7225
7226 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7227 p = unpack_varlen_hex (++p1, &sysno);
7228 event->ws.value.syscall_number = (int) sysno;
7229 }
7230 else if (strprefix (p, p1, "syscall_return"))
7231 {
7232 ULONGEST sysno;
7233
7234 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7235 p = unpack_varlen_hex (++p1, &sysno);
7236 event->ws.value.syscall_number = (int) sysno;
7237 }
7238 else if (strprefix (p, p1, "watch")
7239 || strprefix (p, p1, "rwatch")
7240 || strprefix (p, p1, "awatch"))
7241 {
7242 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7243 p = unpack_varlen_hex (++p1, &addr);
7244 event->watch_data_address = (CORE_ADDR) addr;
7245 }
7246 else if (strprefix (p, p1, "swbreak"))
7247 {
7248 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7249
7250 /* Make sure the stub doesn't forget to indicate support
7251 with qSupported. */
7252 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7253 error (_("Unexpected swbreak stop reason"));
7254
7255 /* The value part is documented as "must be empty",
7256 though we ignore it, in case we ever decide to make
7257 use of it in a backward compatible way. */
7258 p = strchrnul (p1 + 1, ';');
7259 }
7260 else if (strprefix (p, p1, "hwbreak"))
7261 {
7262 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7263
7264 /* Make sure the stub doesn't forget to indicate support
7265 with qSupported. */
7266 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7267 error (_("Unexpected hwbreak stop reason"));
7268
7269 /* See above. */
7270 p = strchrnul (p1 + 1, ';');
7271 }
7272 else if (strprefix (p, p1, "library"))
7273 {
7274 event->ws.kind = TARGET_WAITKIND_LOADED;
7275 p = strchrnul (p1 + 1, ';');
7276 }
7277 else if (strprefix (p, p1, "replaylog"))
7278 {
7279 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7280 /* p1 will indicate "begin" or "end", but it makes
7281 no difference for now, so ignore it. */
7282 p = strchrnul (p1 + 1, ';');
7283 }
7284 else if (strprefix (p, p1, "core"))
7285 {
7286 ULONGEST c;
7287
7288 p = unpack_varlen_hex (++p1, &c);
7289 event->core = c;
7290 }
7291 else if (strprefix (p, p1, "fork"))
7292 {
7293 event->ws.value.related_pid = read_ptid (++p1, &p);
7294 event->ws.kind = TARGET_WAITKIND_FORKED;
7295 }
7296 else if (strprefix (p, p1, "vfork"))
7297 {
7298 event->ws.value.related_pid = read_ptid (++p1, &p);
7299 event->ws.kind = TARGET_WAITKIND_VFORKED;
7300 }
7301 else if (strprefix (p, p1, "vforkdone"))
7302 {
7303 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7304 p = strchrnul (p1 + 1, ';');
7305 }
7306 else if (strprefix (p, p1, "exec"))
7307 {
7308 ULONGEST ignored;
7309 int pathlen;
7310
7311 /* Determine the length of the execd pathname. */
7312 p = unpack_varlen_hex (++p1, &ignored);
7313 pathlen = (p - p1) / 2;
7314
7315 /* Save the pathname for event reporting and for
7316 the next run command. */
7317 gdb::unique_xmalloc_ptr<char[]> pathname
7318 ((char *) xmalloc (pathlen + 1));
7319 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7320 pathname[pathlen] = '\0';
7321
7322 /* This is freed during event handling. */
7323 event->ws.value.execd_pathname = pathname.release ();
7324 event->ws.kind = TARGET_WAITKIND_EXECD;
7325
7326 /* Skip the registers included in this packet, since
7327 they may be for an architecture different from the
7328 one used by the original program. */
7329 skipregs = 1;
7330 }
7331 else if (strprefix (p, p1, "create"))
7332 {
7333 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7334 p = strchrnul (p1 + 1, ';');
7335 }
7336 else
7337 {
7338 ULONGEST pnum;
7339 const char *p_temp;
7340
7341 if (skipregs)
7342 {
7343 p = strchrnul (p1 + 1, ';');
7344 p++;
7345 continue;
7346 }
7347
7348 /* Maybe a real ``P'' register number. */
7349 p_temp = unpack_varlen_hex (p, &pnum);
7350 /* If the first invalid character is the colon, we got a
7351 register number. Otherwise, it's an unknown stop
7352 reason. */
7353 if (p_temp == p1)
7354 {
7355 /* If we haven't parsed the event's thread yet, find
7356 it now, in order to find the architecture of the
7357 reported expedited registers. */
7358 if (event->ptid == null_ptid)
7359 {
7360 const char *thr = strstr (p1 + 1, ";thread:");
7361 if (thr != NULL)
7362 event->ptid = read_ptid (thr + strlen (";thread:"),
7363 NULL);
7364 else
7365 {
7366 /* Either the current thread hasn't changed,
7367 or the inferior is not multi-threaded.
7368 The event must be for the thread we last
7369 set as (or learned as being) current. */
7370 event->ptid = event->rs->general_thread;
7371 }
7372 }
7373
7374 if (rsa == NULL)
7375 {
7376 inferior *inf = (event->ptid == null_ptid
7377 ? NULL
7378 : find_inferior_ptid (event->ptid));
7379 /* If this is the first time we learn anything
7380 about this process, skip the registers
7381 included in this packet, since we don't yet
7382 know which architecture to use to parse them.
7383 We'll determine the architecture later when
7384 we process the stop reply and retrieve the
7385 target description, via
7386 remote_notice_new_inferior ->
7387 post_create_inferior. */
7388 if (inf == NULL)
7389 {
7390 p = strchrnul (p1 + 1, ';');
7391 p++;
7392 continue;
7393 }
7394
7395 event->arch = inf->gdbarch;
7396 rsa = event->rs->get_remote_arch_state (event->arch);
7397 }
7398
7399 packet_reg *reg
7400 = packet_reg_from_pnum (event->arch, rsa, pnum);
7401 cached_reg_t cached_reg;
7402
7403 if (reg == NULL)
7404 error (_("Remote sent bad register number %s: %s\n\
7405 Packet: '%s'\n"),
7406 hex_string (pnum), p, buf);
7407
7408 cached_reg.num = reg->regnum;
7409 cached_reg.data = (gdb_byte *)
7410 xmalloc (register_size (event->arch, reg->regnum));
7411
7412 p = p1 + 1;
7413 fieldsize = hex2bin (p, cached_reg.data,
7414 register_size (event->arch, reg->regnum));
7415 p += 2 * fieldsize;
7416 if (fieldsize < register_size (event->arch, reg->regnum))
7417 warning (_("Remote reply is too short: %s"), buf);
7418
7419 event->regcache.push_back (cached_reg);
7420 }
7421 else
7422 {
7423 /* Not a number. Silently skip unknown optional
7424 info. */
7425 p = strchrnul (p1 + 1, ';');
7426 }
7427 }
7428
7429 if (*p != ';')
7430 error (_("Remote register badly formatted: %s\nhere: %s"),
7431 buf, p);
7432 ++p;
7433 }
7434
7435 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7436 break;
7437
7438 /* fall through */
7439 case 'S': /* Old style status, just signal only. */
7440 {
7441 int sig;
7442
7443 event->ws.kind = TARGET_WAITKIND_STOPPED;
7444 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7445 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7446 event->ws.value.sig = (enum gdb_signal) sig;
7447 else
7448 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7449 }
7450 break;
7451 case 'w': /* Thread exited. */
7452 {
7453 ULONGEST value;
7454
7455 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7456 p = unpack_varlen_hex (&buf[1], &value);
7457 event->ws.value.integer = value;
7458 if (*p != ';')
7459 error (_("stop reply packet badly formatted: %s"), buf);
7460 event->ptid = read_ptid (++p, NULL);
7461 break;
7462 }
7463 case 'W': /* Target exited. */
7464 case 'X':
7465 {
7466 int pid;
7467 ULONGEST value;
7468
7469 /* GDB used to accept only 2 hex chars here. Stubs should
7470 only send more if they detect GDB supports multi-process
7471 support. */
7472 p = unpack_varlen_hex (&buf[1], &value);
7473
7474 if (buf[0] == 'W')
7475 {
7476 /* The remote process exited. */
7477 event->ws.kind = TARGET_WAITKIND_EXITED;
7478 event->ws.value.integer = value;
7479 }
7480 else
7481 {
7482 /* The remote process exited with a signal. */
7483 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7484 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7485 event->ws.value.sig = (enum gdb_signal) value;
7486 else
7487 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7488 }
7489
7490 /* If no process is specified, assume inferior_ptid. */
7491 pid = inferior_ptid.pid ();
7492 if (*p == '\0')
7493 ;
7494 else if (*p == ';')
7495 {
7496 p++;
7497
7498 if (*p == '\0')
7499 ;
7500 else if (startswith (p, "process:"))
7501 {
7502 ULONGEST upid;
7503
7504 p += sizeof ("process:") - 1;
7505 unpack_varlen_hex (p, &upid);
7506 pid = upid;
7507 }
7508 else
7509 error (_("unknown stop reply packet: %s"), buf);
7510 }
7511 else
7512 error (_("unknown stop reply packet: %s"), buf);
7513 event->ptid = ptid_t (pid);
7514 }
7515 break;
7516 case 'N':
7517 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7518 event->ptid = minus_one_ptid;
7519 break;
7520 }
7521
7522 if (target_is_non_stop_p () && event->ptid == null_ptid)
7523 error (_("No process or thread specified in stop reply: %s"), buf);
7524 }
7525
7526 /* When the stub wants to tell GDB about a new notification reply, it
7527 sends a notification (%Stop, for example). Those can come it at
7528 any time, hence, we have to make sure that any pending
7529 putpkt/getpkt sequence we're making is finished, before querying
7530 the stub for more events with the corresponding ack command
7531 (vStopped, for example). E.g., if we started a vStopped sequence
7532 immediately upon receiving the notification, something like this
7533 could happen:
7534
7535 1.1) --> Hg 1
7536 1.2) <-- OK
7537 1.3) --> g
7538 1.4) <-- %Stop
7539 1.5) --> vStopped
7540 1.6) <-- (registers reply to step #1.3)
7541
7542 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7543 query.
7544
7545 To solve this, whenever we parse a %Stop notification successfully,
7546 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7547 doing whatever we were doing:
7548
7549 2.1) --> Hg 1
7550 2.2) <-- OK
7551 2.3) --> g
7552 2.4) <-- %Stop
7553 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7554 2.5) <-- (registers reply to step #2.3)
7555
7556 Eventualy after step #2.5, we return to the event loop, which
7557 notices there's an event on the
7558 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7559 associated callback --- the function below. At this point, we're
7560 always safe to start a vStopped sequence. :
7561
7562 2.6) --> vStopped
7563 2.7) <-- T05 thread:2
7564 2.8) --> vStopped
7565 2.9) --> OK
7566 */
7567
7568 void
7569 remote_target::remote_notif_get_pending_events (notif_client *nc)
7570 {
7571 struct remote_state *rs = get_remote_state ();
7572
7573 if (rs->notif_state->pending_event[nc->id] != NULL)
7574 {
7575 if (notif_debug)
7576 fprintf_unfiltered (gdb_stdlog,
7577 "notif: process: '%s' ack pending event\n",
7578 nc->name);
7579
7580 /* acknowledge */
7581 nc->ack (this, nc, rs->buf.data (),
7582 rs->notif_state->pending_event[nc->id]);
7583 rs->notif_state->pending_event[nc->id] = NULL;
7584
7585 while (1)
7586 {
7587 getpkt (&rs->buf, 0);
7588 if (strcmp (rs->buf.data (), "OK") == 0)
7589 break;
7590 else
7591 remote_notif_ack (this, nc, rs->buf.data ());
7592 }
7593 }
7594 else
7595 {
7596 if (notif_debug)
7597 fprintf_unfiltered (gdb_stdlog,
7598 "notif: process: '%s' no pending reply\n",
7599 nc->name);
7600 }
7601 }
7602
7603 /* Wrapper around remote_target::remote_notif_get_pending_events to
7604 avoid having to export the whole remote_target class. */
7605
7606 void
7607 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7608 {
7609 remote->remote_notif_get_pending_events (nc);
7610 }
7611
7612 /* Called when it is decided that STOP_REPLY holds the info of the
7613 event that is to be returned to the core. This function always
7614 destroys STOP_REPLY. */
7615
7616 ptid_t
7617 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7618 struct target_waitstatus *status)
7619 {
7620 ptid_t ptid;
7621
7622 *status = stop_reply->ws;
7623 ptid = stop_reply->ptid;
7624
7625 /* If no thread/process was reported by the stub, assume the current
7626 inferior. */
7627 if (ptid == null_ptid)
7628 ptid = inferior_ptid;
7629
7630 if (status->kind != TARGET_WAITKIND_EXITED
7631 && status->kind != TARGET_WAITKIND_SIGNALLED
7632 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7633 {
7634 /* Expedited registers. */
7635 if (!stop_reply->regcache.empty ())
7636 {
7637 struct regcache *regcache
7638 = get_thread_arch_regcache (ptid, stop_reply->arch);
7639
7640 for (cached_reg_t &reg : stop_reply->regcache)
7641 {
7642 regcache->raw_supply (reg.num, reg.data);
7643 xfree (reg.data);
7644 }
7645
7646 stop_reply->regcache.clear ();
7647 }
7648
7649 remote_notice_new_inferior (ptid, 0);
7650 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7651 remote_thr->core = stop_reply->core;
7652 remote_thr->stop_reason = stop_reply->stop_reason;
7653 remote_thr->watch_data_address = stop_reply->watch_data_address;
7654 remote_thr->vcont_resumed = 0;
7655 }
7656
7657 delete stop_reply;
7658 return ptid;
7659 }
7660
7661 /* The non-stop mode version of target_wait. */
7662
7663 ptid_t
7664 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7665 {
7666 struct remote_state *rs = get_remote_state ();
7667 struct stop_reply *stop_reply;
7668 int ret;
7669 int is_notif = 0;
7670
7671 /* If in non-stop mode, get out of getpkt even if a
7672 notification is received. */
7673
7674 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7675 while (1)
7676 {
7677 if (ret != -1 && !is_notif)
7678 switch (rs->buf[0])
7679 {
7680 case 'E': /* Error of some sort. */
7681 /* We're out of sync with the target now. Did it continue
7682 or not? We can't tell which thread it was in non-stop,
7683 so just ignore this. */
7684 warning (_("Remote failure reply: %s"), rs->buf.data ());
7685 break;
7686 case 'O': /* Console output. */
7687 remote_console_output (&rs->buf[1]);
7688 break;
7689 default:
7690 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7691 break;
7692 }
7693
7694 /* Acknowledge a pending stop reply that may have arrived in the
7695 mean time. */
7696 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7697 remote_notif_get_pending_events (&notif_client_stop);
7698
7699 /* If indeed we noticed a stop reply, we're done. */
7700 stop_reply = queued_stop_reply (ptid);
7701 if (stop_reply != NULL)
7702 return process_stop_reply (stop_reply, status);
7703
7704 /* Still no event. If we're just polling for an event, then
7705 return to the event loop. */
7706 if (options & TARGET_WNOHANG)
7707 {
7708 status->kind = TARGET_WAITKIND_IGNORE;
7709 return minus_one_ptid;
7710 }
7711
7712 /* Otherwise do a blocking wait. */
7713 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7714 }
7715 }
7716
7717 /* Wait until the remote machine stops, then return, storing status in
7718 STATUS just as `wait' would. */
7719
7720 ptid_t
7721 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7722 {
7723 struct remote_state *rs = get_remote_state ();
7724 ptid_t event_ptid = null_ptid;
7725 char *buf;
7726 struct stop_reply *stop_reply;
7727
7728 again:
7729
7730 status->kind = TARGET_WAITKIND_IGNORE;
7731 status->value.integer = 0;
7732
7733 stop_reply = queued_stop_reply (ptid);
7734 if (stop_reply != NULL)
7735 return process_stop_reply (stop_reply, status);
7736
7737 if (rs->cached_wait_status)
7738 /* Use the cached wait status, but only once. */
7739 rs->cached_wait_status = 0;
7740 else
7741 {
7742 int ret;
7743 int is_notif;
7744 int forever = ((options & TARGET_WNOHANG) == 0
7745 && rs->wait_forever_enabled_p);
7746
7747 if (!rs->waiting_for_stop_reply)
7748 {
7749 status->kind = TARGET_WAITKIND_NO_RESUMED;
7750 return minus_one_ptid;
7751 }
7752
7753 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7754 _never_ wait for ever -> test on target_is_async_p().
7755 However, before we do that we need to ensure that the caller
7756 knows how to take the target into/out of async mode. */
7757 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7758
7759 /* GDB gets a notification. Return to core as this event is
7760 not interesting. */
7761 if (ret != -1 && is_notif)
7762 return minus_one_ptid;
7763
7764 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7765 return minus_one_ptid;
7766 }
7767
7768 buf = rs->buf.data ();
7769
7770 /* Assume that the target has acknowledged Ctrl-C unless we receive
7771 an 'F' or 'O' packet. */
7772 if (buf[0] != 'F' && buf[0] != 'O')
7773 rs->ctrlc_pending_p = 0;
7774
7775 switch (buf[0])
7776 {
7777 case 'E': /* Error of some sort. */
7778 /* We're out of sync with the target now. Did it continue or
7779 not? Not is more likely, so report a stop. */
7780 rs->waiting_for_stop_reply = 0;
7781
7782 warning (_("Remote failure reply: %s"), buf);
7783 status->kind = TARGET_WAITKIND_STOPPED;
7784 status->value.sig = GDB_SIGNAL_0;
7785 break;
7786 case 'F': /* File-I/O request. */
7787 /* GDB may access the inferior memory while handling the File-I/O
7788 request, but we don't want GDB accessing memory while waiting
7789 for a stop reply. See the comments in putpkt_binary. Set
7790 waiting_for_stop_reply to 0 temporarily. */
7791 rs->waiting_for_stop_reply = 0;
7792 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7793 rs->ctrlc_pending_p = 0;
7794 /* GDB handled the File-I/O request, and the target is running
7795 again. Keep waiting for events. */
7796 rs->waiting_for_stop_reply = 1;
7797 break;
7798 case 'N': case 'T': case 'S': case 'X': case 'W':
7799 {
7800 /* There is a stop reply to handle. */
7801 rs->waiting_for_stop_reply = 0;
7802
7803 stop_reply
7804 = (struct stop_reply *) remote_notif_parse (this,
7805 &notif_client_stop,
7806 rs->buf.data ());
7807
7808 event_ptid = process_stop_reply (stop_reply, status);
7809 break;
7810 }
7811 case 'O': /* Console output. */
7812 remote_console_output (buf + 1);
7813 break;
7814 case '\0':
7815 if (rs->last_sent_signal != GDB_SIGNAL_0)
7816 {
7817 /* Zero length reply means that we tried 'S' or 'C' and the
7818 remote system doesn't support it. */
7819 target_terminal::ours_for_output ();
7820 printf_filtered
7821 ("Can't send signals to this remote system. %s not sent.\n",
7822 gdb_signal_to_name (rs->last_sent_signal));
7823 rs->last_sent_signal = GDB_SIGNAL_0;
7824 target_terminal::inferior ();
7825
7826 strcpy (buf, rs->last_sent_step ? "s" : "c");
7827 putpkt (buf);
7828 break;
7829 }
7830 /* fallthrough */
7831 default:
7832 warning (_("Invalid remote reply: %s"), buf);
7833 break;
7834 }
7835
7836 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7837 return minus_one_ptid;
7838 else if (status->kind == TARGET_WAITKIND_IGNORE)
7839 {
7840 /* Nothing interesting happened. If we're doing a non-blocking
7841 poll, we're done. Otherwise, go back to waiting. */
7842 if (options & TARGET_WNOHANG)
7843 return minus_one_ptid;
7844 else
7845 goto again;
7846 }
7847 else if (status->kind != TARGET_WAITKIND_EXITED
7848 && status->kind != TARGET_WAITKIND_SIGNALLED)
7849 {
7850 if (event_ptid != null_ptid)
7851 record_currthread (rs, event_ptid);
7852 else
7853 event_ptid = inferior_ptid;
7854 }
7855 else
7856 /* A process exit. Invalidate our notion of current thread. */
7857 record_currthread (rs, minus_one_ptid);
7858
7859 return event_ptid;
7860 }
7861
7862 /* Wait until the remote machine stops, then return, storing status in
7863 STATUS just as `wait' would. */
7864
7865 ptid_t
7866 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7867 {
7868 ptid_t event_ptid;
7869
7870 if (target_is_non_stop_p ())
7871 event_ptid = wait_ns (ptid, status, options);
7872 else
7873 event_ptid = wait_as (ptid, status, options);
7874
7875 if (target_is_async_p ())
7876 {
7877 remote_state *rs = get_remote_state ();
7878
7879 /* If there are are events left in the queue tell the event loop
7880 to return here. */
7881 if (!rs->stop_reply_queue.empty ())
7882 mark_async_event_handler (rs->remote_async_inferior_event_token);
7883 }
7884
7885 return event_ptid;
7886 }
7887
7888 /* Fetch a single register using a 'p' packet. */
7889
7890 int
7891 remote_target::fetch_register_using_p (struct regcache *regcache,
7892 packet_reg *reg)
7893 {
7894 struct gdbarch *gdbarch = regcache->arch ();
7895 struct remote_state *rs = get_remote_state ();
7896 char *buf, *p;
7897 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7898 int i;
7899
7900 if (packet_support (PACKET_p) == PACKET_DISABLE)
7901 return 0;
7902
7903 if (reg->pnum == -1)
7904 return 0;
7905
7906 p = rs->buf.data ();
7907 *p++ = 'p';
7908 p += hexnumstr (p, reg->pnum);
7909 *p++ = '\0';
7910 putpkt (rs->buf);
7911 getpkt (&rs->buf, 0);
7912
7913 buf = rs->buf.data ();
7914
7915 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
7916 {
7917 case PACKET_OK:
7918 break;
7919 case PACKET_UNKNOWN:
7920 return 0;
7921 case PACKET_ERROR:
7922 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7923 gdbarch_register_name (regcache->arch (),
7924 reg->regnum),
7925 buf);
7926 }
7927
7928 /* If this register is unfetchable, tell the regcache. */
7929 if (buf[0] == 'x')
7930 {
7931 regcache->raw_supply (reg->regnum, NULL);
7932 return 1;
7933 }
7934
7935 /* Otherwise, parse and supply the value. */
7936 p = buf;
7937 i = 0;
7938 while (p[0] != 0)
7939 {
7940 if (p[1] == 0)
7941 error (_("fetch_register_using_p: early buf termination"));
7942
7943 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7944 p += 2;
7945 }
7946 regcache->raw_supply (reg->regnum, regp);
7947 return 1;
7948 }
7949
7950 /* Fetch the registers included in the target's 'g' packet. */
7951
7952 int
7953 remote_target::send_g_packet ()
7954 {
7955 struct remote_state *rs = get_remote_state ();
7956 int buf_len;
7957
7958 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
7959 putpkt (rs->buf);
7960 getpkt (&rs->buf, 0);
7961 if (packet_check_result (rs->buf) == PACKET_ERROR)
7962 error (_("Could not read registers; remote failure reply '%s'"),
7963 rs->buf.data ());
7964
7965 /* We can get out of synch in various cases. If the first character
7966 in the buffer is not a hex character, assume that has happened
7967 and try to fetch another packet to read. */
7968 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7969 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7970 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7971 && rs->buf[0] != 'x') /* New: unavailable register value. */
7972 {
7973 if (remote_debug)
7974 fprintf_unfiltered (gdb_stdlog,
7975 "Bad register packet; fetching a new packet\n");
7976 getpkt (&rs->buf, 0);
7977 }
7978
7979 buf_len = strlen (rs->buf.data ());
7980
7981 /* Sanity check the received packet. */
7982 if (buf_len % 2 != 0)
7983 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
7984
7985 return buf_len / 2;
7986 }
7987
7988 void
7989 remote_target::process_g_packet (struct regcache *regcache)
7990 {
7991 struct gdbarch *gdbarch = regcache->arch ();
7992 struct remote_state *rs = get_remote_state ();
7993 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
7994 int i, buf_len;
7995 char *p;
7996 char *regs;
7997
7998 buf_len = strlen (rs->buf.data ());
7999
8000 /* Further sanity checks, with knowledge of the architecture. */
8001 if (buf_len > 2 * rsa->sizeof_g_packet)
8002 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8003 "bytes): %s"),
8004 rsa->sizeof_g_packet, buf_len / 2,
8005 rs->buf.data ());
8006
8007 /* Save the size of the packet sent to us by the target. It is used
8008 as a heuristic when determining the max size of packets that the
8009 target can safely receive. */
8010 if (rsa->actual_register_packet_size == 0)
8011 rsa->actual_register_packet_size = buf_len;
8012
8013 /* If this is smaller than we guessed the 'g' packet would be,
8014 update our records. A 'g' reply that doesn't include a register's
8015 value implies either that the register is not available, or that
8016 the 'p' packet must be used. */
8017 if (buf_len < 2 * rsa->sizeof_g_packet)
8018 {
8019 long sizeof_g_packet = buf_len / 2;
8020
8021 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8022 {
8023 long offset = rsa->regs[i].offset;
8024 long reg_size = register_size (gdbarch, i);
8025
8026 if (rsa->regs[i].pnum == -1)
8027 continue;
8028
8029 if (offset >= sizeof_g_packet)
8030 rsa->regs[i].in_g_packet = 0;
8031 else if (offset + reg_size > sizeof_g_packet)
8032 error (_("Truncated register %d in remote 'g' packet"), i);
8033 else
8034 rsa->regs[i].in_g_packet = 1;
8035 }
8036
8037 /* Looks valid enough, we can assume this is the correct length
8038 for a 'g' packet. It's important not to adjust
8039 rsa->sizeof_g_packet if we have truncated registers otherwise
8040 this "if" won't be run the next time the method is called
8041 with a packet of the same size and one of the internal errors
8042 below will trigger instead. */
8043 rsa->sizeof_g_packet = sizeof_g_packet;
8044 }
8045
8046 regs = (char *) alloca (rsa->sizeof_g_packet);
8047
8048 /* Unimplemented registers read as all bits zero. */
8049 memset (regs, 0, rsa->sizeof_g_packet);
8050
8051 /* Reply describes registers byte by byte, each byte encoded as two
8052 hex characters. Suck them all up, then supply them to the
8053 register cacheing/storage mechanism. */
8054
8055 p = rs->buf.data ();
8056 for (i = 0; i < rsa->sizeof_g_packet; i++)
8057 {
8058 if (p[0] == 0 || p[1] == 0)
8059 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8060 internal_error (__FILE__, __LINE__,
8061 _("unexpected end of 'g' packet reply"));
8062
8063 if (p[0] == 'x' && p[1] == 'x')
8064 regs[i] = 0; /* 'x' */
8065 else
8066 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8067 p += 2;
8068 }
8069
8070 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8071 {
8072 struct packet_reg *r = &rsa->regs[i];
8073 long reg_size = register_size (gdbarch, i);
8074
8075 if (r->in_g_packet)
8076 {
8077 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8078 /* This shouldn't happen - we adjusted in_g_packet above. */
8079 internal_error (__FILE__, __LINE__,
8080 _("unexpected end of 'g' packet reply"));
8081 else if (rs->buf[r->offset * 2] == 'x')
8082 {
8083 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8084 /* The register isn't available, mark it as such (at
8085 the same time setting the value to zero). */
8086 regcache->raw_supply (r->regnum, NULL);
8087 }
8088 else
8089 regcache->raw_supply (r->regnum, regs + r->offset);
8090 }
8091 }
8092 }
8093
8094 void
8095 remote_target::fetch_registers_using_g (struct regcache *regcache)
8096 {
8097 send_g_packet ();
8098 process_g_packet (regcache);
8099 }
8100
8101 /* Make the remote selected traceframe match GDB's selected
8102 traceframe. */
8103
8104 void
8105 remote_target::set_remote_traceframe ()
8106 {
8107 int newnum;
8108 struct remote_state *rs = get_remote_state ();
8109
8110 if (rs->remote_traceframe_number == get_traceframe_number ())
8111 return;
8112
8113 /* Avoid recursion, remote_trace_find calls us again. */
8114 rs->remote_traceframe_number = get_traceframe_number ();
8115
8116 newnum = target_trace_find (tfind_number,
8117 get_traceframe_number (), 0, 0, NULL);
8118
8119 /* Should not happen. If it does, all bets are off. */
8120 if (newnum != get_traceframe_number ())
8121 warning (_("could not set remote traceframe"));
8122 }
8123
8124 void
8125 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8126 {
8127 struct gdbarch *gdbarch = regcache->arch ();
8128 struct remote_state *rs = get_remote_state ();
8129 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8130 int i;
8131
8132 set_remote_traceframe ();
8133 set_general_thread (regcache->ptid ());
8134
8135 if (regnum >= 0)
8136 {
8137 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8138
8139 gdb_assert (reg != NULL);
8140
8141 /* If this register might be in the 'g' packet, try that first -
8142 we are likely to read more than one register. If this is the
8143 first 'g' packet, we might be overly optimistic about its
8144 contents, so fall back to 'p'. */
8145 if (reg->in_g_packet)
8146 {
8147 fetch_registers_using_g (regcache);
8148 if (reg->in_g_packet)
8149 return;
8150 }
8151
8152 if (fetch_register_using_p (regcache, reg))
8153 return;
8154
8155 /* This register is not available. */
8156 regcache->raw_supply (reg->regnum, NULL);
8157
8158 return;
8159 }
8160
8161 fetch_registers_using_g (regcache);
8162
8163 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8164 if (!rsa->regs[i].in_g_packet)
8165 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8166 {
8167 /* This register is not available. */
8168 regcache->raw_supply (i, NULL);
8169 }
8170 }
8171
8172 /* Prepare to store registers. Since we may send them all (using a
8173 'G' request), we have to read out the ones we don't want to change
8174 first. */
8175
8176 void
8177 remote_target::prepare_to_store (struct regcache *regcache)
8178 {
8179 struct remote_state *rs = get_remote_state ();
8180 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8181 int i;
8182
8183 /* Make sure the entire registers array is valid. */
8184 switch (packet_support (PACKET_P))
8185 {
8186 case PACKET_DISABLE:
8187 case PACKET_SUPPORT_UNKNOWN:
8188 /* Make sure all the necessary registers are cached. */
8189 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8190 if (rsa->regs[i].in_g_packet)
8191 regcache->raw_update (rsa->regs[i].regnum);
8192 break;
8193 case PACKET_ENABLE:
8194 break;
8195 }
8196 }
8197
8198 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8199 packet was not recognized. */
8200
8201 int
8202 remote_target::store_register_using_P (const struct regcache *regcache,
8203 packet_reg *reg)
8204 {
8205 struct gdbarch *gdbarch = regcache->arch ();
8206 struct remote_state *rs = get_remote_state ();
8207 /* Try storing a single register. */
8208 char *buf = rs->buf.data ();
8209 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8210 char *p;
8211
8212 if (packet_support (PACKET_P) == PACKET_DISABLE)
8213 return 0;
8214
8215 if (reg->pnum == -1)
8216 return 0;
8217
8218 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8219 p = buf + strlen (buf);
8220 regcache->raw_collect (reg->regnum, regp);
8221 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8222 putpkt (rs->buf);
8223 getpkt (&rs->buf, 0);
8224
8225 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8226 {
8227 case PACKET_OK:
8228 return 1;
8229 case PACKET_ERROR:
8230 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8231 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8232 case PACKET_UNKNOWN:
8233 return 0;
8234 default:
8235 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8236 }
8237 }
8238
8239 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8240 contents of the register cache buffer. FIXME: ignores errors. */
8241
8242 void
8243 remote_target::store_registers_using_G (const struct regcache *regcache)
8244 {
8245 struct remote_state *rs = get_remote_state ();
8246 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8247 gdb_byte *regs;
8248 char *p;
8249
8250 /* Extract all the registers in the regcache copying them into a
8251 local buffer. */
8252 {
8253 int i;
8254
8255 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8256 memset (regs, 0, rsa->sizeof_g_packet);
8257 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8258 {
8259 struct packet_reg *r = &rsa->regs[i];
8260
8261 if (r->in_g_packet)
8262 regcache->raw_collect (r->regnum, regs + r->offset);
8263 }
8264 }
8265
8266 /* Command describes registers byte by byte,
8267 each byte encoded as two hex characters. */
8268 p = rs->buf.data ();
8269 *p++ = 'G';
8270 bin2hex (regs, p, rsa->sizeof_g_packet);
8271 putpkt (rs->buf);
8272 getpkt (&rs->buf, 0);
8273 if (packet_check_result (rs->buf) == PACKET_ERROR)
8274 error (_("Could not write registers; remote failure reply '%s'"),
8275 rs->buf.data ());
8276 }
8277
8278 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8279 of the register cache buffer. FIXME: ignores errors. */
8280
8281 void
8282 remote_target::store_registers (struct regcache *regcache, int regnum)
8283 {
8284 struct gdbarch *gdbarch = regcache->arch ();
8285 struct remote_state *rs = get_remote_state ();
8286 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8287 int i;
8288
8289 set_remote_traceframe ();
8290 set_general_thread (regcache->ptid ());
8291
8292 if (regnum >= 0)
8293 {
8294 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8295
8296 gdb_assert (reg != NULL);
8297
8298 /* Always prefer to store registers using the 'P' packet if
8299 possible; we often change only a small number of registers.
8300 Sometimes we change a larger number; we'd need help from a
8301 higher layer to know to use 'G'. */
8302 if (store_register_using_P (regcache, reg))
8303 return;
8304
8305 /* For now, don't complain if we have no way to write the
8306 register. GDB loses track of unavailable registers too
8307 easily. Some day, this may be an error. We don't have
8308 any way to read the register, either... */
8309 if (!reg->in_g_packet)
8310 return;
8311
8312 store_registers_using_G (regcache);
8313 return;
8314 }
8315
8316 store_registers_using_G (regcache);
8317
8318 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8319 if (!rsa->regs[i].in_g_packet)
8320 if (!store_register_using_P (regcache, &rsa->regs[i]))
8321 /* See above for why we do not issue an error here. */
8322 continue;
8323 }
8324 \f
8325
8326 /* Return the number of hex digits in num. */
8327
8328 static int
8329 hexnumlen (ULONGEST num)
8330 {
8331 int i;
8332
8333 for (i = 0; num != 0; i++)
8334 num >>= 4;
8335
8336 return std::max (i, 1);
8337 }
8338
8339 /* Set BUF to the minimum number of hex digits representing NUM. */
8340
8341 static int
8342 hexnumstr (char *buf, ULONGEST num)
8343 {
8344 int len = hexnumlen (num);
8345
8346 return hexnumnstr (buf, num, len);
8347 }
8348
8349
8350 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8351
8352 static int
8353 hexnumnstr (char *buf, ULONGEST num, int width)
8354 {
8355 int i;
8356
8357 buf[width] = '\0';
8358
8359 for (i = width - 1; i >= 0; i--)
8360 {
8361 buf[i] = "0123456789abcdef"[(num & 0xf)];
8362 num >>= 4;
8363 }
8364
8365 return width;
8366 }
8367
8368 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8369
8370 static CORE_ADDR
8371 remote_address_masked (CORE_ADDR addr)
8372 {
8373 unsigned int address_size = remote_address_size;
8374
8375 /* If "remoteaddresssize" was not set, default to target address size. */
8376 if (!address_size)
8377 address_size = gdbarch_addr_bit (target_gdbarch ());
8378
8379 if (address_size > 0
8380 && address_size < (sizeof (ULONGEST) * 8))
8381 {
8382 /* Only create a mask when that mask can safely be constructed
8383 in a ULONGEST variable. */
8384 ULONGEST mask = 1;
8385
8386 mask = (mask << address_size) - 1;
8387 addr &= mask;
8388 }
8389 return addr;
8390 }
8391
8392 /* Determine whether the remote target supports binary downloading.
8393 This is accomplished by sending a no-op memory write of zero length
8394 to the target at the specified address. It does not suffice to send
8395 the whole packet, since many stubs strip the eighth bit and
8396 subsequently compute a wrong checksum, which causes real havoc with
8397 remote_write_bytes.
8398
8399 NOTE: This can still lose if the serial line is not eight-bit
8400 clean. In cases like this, the user should clear "remote
8401 X-packet". */
8402
8403 void
8404 remote_target::check_binary_download (CORE_ADDR addr)
8405 {
8406 struct remote_state *rs = get_remote_state ();
8407
8408 switch (packet_support (PACKET_X))
8409 {
8410 case PACKET_DISABLE:
8411 break;
8412 case PACKET_ENABLE:
8413 break;
8414 case PACKET_SUPPORT_UNKNOWN:
8415 {
8416 char *p;
8417
8418 p = rs->buf.data ();
8419 *p++ = 'X';
8420 p += hexnumstr (p, (ULONGEST) addr);
8421 *p++ = ',';
8422 p += hexnumstr (p, (ULONGEST) 0);
8423 *p++ = ':';
8424 *p = '\0';
8425
8426 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8427 getpkt (&rs->buf, 0);
8428
8429 if (rs->buf[0] == '\0')
8430 {
8431 if (remote_debug)
8432 fprintf_unfiltered (gdb_stdlog,
8433 "binary downloading NOT "
8434 "supported by target\n");
8435 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8436 }
8437 else
8438 {
8439 if (remote_debug)
8440 fprintf_unfiltered (gdb_stdlog,
8441 "binary downloading supported by target\n");
8442 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8443 }
8444 break;
8445 }
8446 }
8447 }
8448
8449 /* Helper function to resize the payload in order to try to get a good
8450 alignment. We try to write an amount of data such that the next write will
8451 start on an address aligned on REMOTE_ALIGN_WRITES. */
8452
8453 static int
8454 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8455 {
8456 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8457 }
8458
8459 /* Write memory data directly to the remote machine.
8460 This does not inform the data cache; the data cache uses this.
8461 HEADER is the starting part of the packet.
8462 MEMADDR is the address in the remote memory space.
8463 MYADDR is the address of the buffer in our space.
8464 LEN_UNITS is the number of addressable units to write.
8465 UNIT_SIZE is the length in bytes of an addressable unit.
8466 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8467 should send data as binary ('X'), or hex-encoded ('M').
8468
8469 The function creates packet of the form
8470 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8471
8472 where encoding of <DATA> is terminated by PACKET_FORMAT.
8473
8474 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8475 are omitted.
8476
8477 Return the transferred status, error or OK (an
8478 'enum target_xfer_status' value). Save the number of addressable units
8479 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8480
8481 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8482 exchange between gdb and the stub could look like (?? in place of the
8483 checksum):
8484
8485 -> $m1000,4#??
8486 <- aaaabbbbccccdddd
8487
8488 -> $M1000,3:eeeeffffeeee#??
8489 <- OK
8490
8491 -> $m1000,4#??
8492 <- eeeeffffeeeedddd */
8493
8494 target_xfer_status
8495 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8496 const gdb_byte *myaddr,
8497 ULONGEST len_units,
8498 int unit_size,
8499 ULONGEST *xfered_len_units,
8500 char packet_format, int use_length)
8501 {
8502 struct remote_state *rs = get_remote_state ();
8503 char *p;
8504 char *plen = NULL;
8505 int plenlen = 0;
8506 int todo_units;
8507 int units_written;
8508 int payload_capacity_bytes;
8509 int payload_length_bytes;
8510
8511 if (packet_format != 'X' && packet_format != 'M')
8512 internal_error (__FILE__, __LINE__,
8513 _("remote_write_bytes_aux: bad packet format"));
8514
8515 if (len_units == 0)
8516 return TARGET_XFER_EOF;
8517
8518 payload_capacity_bytes = get_memory_write_packet_size ();
8519
8520 /* The packet buffer will be large enough for the payload;
8521 get_memory_packet_size ensures this. */
8522 rs->buf[0] = '\0';
8523
8524 /* Compute the size of the actual payload by subtracting out the
8525 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8526
8527 payload_capacity_bytes -= strlen ("$,:#NN");
8528 if (!use_length)
8529 /* The comma won't be used. */
8530 payload_capacity_bytes += 1;
8531 payload_capacity_bytes -= strlen (header);
8532 payload_capacity_bytes -= hexnumlen (memaddr);
8533
8534 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8535
8536 strcat (rs->buf.data (), header);
8537 p = rs->buf.data () + strlen (header);
8538
8539 /* Compute a best guess of the number of bytes actually transfered. */
8540 if (packet_format == 'X')
8541 {
8542 /* Best guess at number of bytes that will fit. */
8543 todo_units = std::min (len_units,
8544 (ULONGEST) payload_capacity_bytes / unit_size);
8545 if (use_length)
8546 payload_capacity_bytes -= hexnumlen (todo_units);
8547 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8548 }
8549 else
8550 {
8551 /* Number of bytes that will fit. */
8552 todo_units
8553 = std::min (len_units,
8554 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8555 if (use_length)
8556 payload_capacity_bytes -= hexnumlen (todo_units);
8557 todo_units = std::min (todo_units,
8558 (payload_capacity_bytes / unit_size) / 2);
8559 }
8560
8561 if (todo_units <= 0)
8562 internal_error (__FILE__, __LINE__,
8563 _("minimum packet size too small to write data"));
8564
8565 /* If we already need another packet, then try to align the end
8566 of this packet to a useful boundary. */
8567 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8568 todo_units = align_for_efficient_write (todo_units, memaddr);
8569
8570 /* Append "<memaddr>". */
8571 memaddr = remote_address_masked (memaddr);
8572 p += hexnumstr (p, (ULONGEST) memaddr);
8573
8574 if (use_length)
8575 {
8576 /* Append ",". */
8577 *p++ = ',';
8578
8579 /* Append the length and retain its location and size. It may need to be
8580 adjusted once the packet body has been created. */
8581 plen = p;
8582 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8583 p += plenlen;
8584 }
8585
8586 /* Append ":". */
8587 *p++ = ':';
8588 *p = '\0';
8589
8590 /* Append the packet body. */
8591 if (packet_format == 'X')
8592 {
8593 /* Binary mode. Send target system values byte by byte, in
8594 increasing byte addresses. Only escape certain critical
8595 characters. */
8596 payload_length_bytes =
8597 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8598 &units_written, payload_capacity_bytes);
8599
8600 /* If not all TODO units fit, then we'll need another packet. Make
8601 a second try to keep the end of the packet aligned. Don't do
8602 this if the packet is tiny. */
8603 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8604 {
8605 int new_todo_units;
8606
8607 new_todo_units = align_for_efficient_write (units_written, memaddr);
8608
8609 if (new_todo_units != units_written)
8610 payload_length_bytes =
8611 remote_escape_output (myaddr, new_todo_units, unit_size,
8612 (gdb_byte *) p, &units_written,
8613 payload_capacity_bytes);
8614 }
8615
8616 p += payload_length_bytes;
8617 if (use_length && units_written < todo_units)
8618 {
8619 /* Escape chars have filled up the buffer prematurely,
8620 and we have actually sent fewer units than planned.
8621 Fix-up the length field of the packet. Use the same
8622 number of characters as before. */
8623 plen += hexnumnstr (plen, (ULONGEST) units_written,
8624 plenlen);
8625 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8626 }
8627 }
8628 else
8629 {
8630 /* Normal mode: Send target system values byte by byte, in
8631 increasing byte addresses. Each byte is encoded as a two hex
8632 value. */
8633 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8634 units_written = todo_units;
8635 }
8636
8637 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8638 getpkt (&rs->buf, 0);
8639
8640 if (rs->buf[0] == 'E')
8641 return TARGET_XFER_E_IO;
8642
8643 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8644 send fewer units than we'd planned. */
8645 *xfered_len_units = (ULONGEST) units_written;
8646 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8647 }
8648
8649 /* Write memory data directly to the remote machine.
8650 This does not inform the data cache; the data cache uses this.
8651 MEMADDR is the address in the remote memory space.
8652 MYADDR is the address of the buffer in our space.
8653 LEN is the number of bytes.
8654
8655 Return the transferred status, error or OK (an
8656 'enum target_xfer_status' value). Save the number of bytes
8657 transferred in *XFERED_LEN. Only transfer a single packet. */
8658
8659 target_xfer_status
8660 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8661 ULONGEST len, int unit_size,
8662 ULONGEST *xfered_len)
8663 {
8664 const char *packet_format = NULL;
8665
8666 /* Check whether the target supports binary download. */
8667 check_binary_download (memaddr);
8668
8669 switch (packet_support (PACKET_X))
8670 {
8671 case PACKET_ENABLE:
8672 packet_format = "X";
8673 break;
8674 case PACKET_DISABLE:
8675 packet_format = "M";
8676 break;
8677 case PACKET_SUPPORT_UNKNOWN:
8678 internal_error (__FILE__, __LINE__,
8679 _("remote_write_bytes: bad internal state"));
8680 default:
8681 internal_error (__FILE__, __LINE__, _("bad switch"));
8682 }
8683
8684 return remote_write_bytes_aux (packet_format,
8685 memaddr, myaddr, len, unit_size, xfered_len,
8686 packet_format[0], 1);
8687 }
8688
8689 /* Read memory data directly from the remote machine.
8690 This does not use the data cache; the data cache uses this.
8691 MEMADDR is the address in the remote memory space.
8692 MYADDR is the address of the buffer in our space.
8693 LEN_UNITS is the number of addressable memory units to read..
8694 UNIT_SIZE is the length in bytes of an addressable unit.
8695
8696 Return the transferred status, error or OK (an
8697 'enum target_xfer_status' value). Save the number of bytes
8698 transferred in *XFERED_LEN_UNITS.
8699
8700 See the comment of remote_write_bytes_aux for an example of
8701 memory read/write exchange between gdb and the stub. */
8702
8703 target_xfer_status
8704 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8705 ULONGEST len_units,
8706 int unit_size, ULONGEST *xfered_len_units)
8707 {
8708 struct remote_state *rs = get_remote_state ();
8709 int buf_size_bytes; /* Max size of packet output buffer. */
8710 char *p;
8711 int todo_units;
8712 int decoded_bytes;
8713
8714 buf_size_bytes = get_memory_read_packet_size ();
8715 /* The packet buffer will be large enough for the payload;
8716 get_memory_packet_size ensures this. */
8717
8718 /* Number of units that will fit. */
8719 todo_units = std::min (len_units,
8720 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8721
8722 /* Construct "m"<memaddr>","<len>". */
8723 memaddr = remote_address_masked (memaddr);
8724 p = rs->buf.data ();
8725 *p++ = 'm';
8726 p += hexnumstr (p, (ULONGEST) memaddr);
8727 *p++ = ',';
8728 p += hexnumstr (p, (ULONGEST) todo_units);
8729 *p = '\0';
8730 putpkt (rs->buf);
8731 getpkt (&rs->buf, 0);
8732 if (rs->buf[0] == 'E'
8733 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8734 && rs->buf[3] == '\0')
8735 return TARGET_XFER_E_IO;
8736 /* Reply describes memory byte by byte, each byte encoded as two hex
8737 characters. */
8738 p = rs->buf.data ();
8739 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8740 /* Return what we have. Let higher layers handle partial reads. */
8741 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8742 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8743 }
8744
8745 /* Using the set of read-only target sections of remote, read live
8746 read-only memory.
8747
8748 For interface/parameters/return description see target.h,
8749 to_xfer_partial. */
8750
8751 target_xfer_status
8752 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8753 ULONGEST memaddr,
8754 ULONGEST len,
8755 int unit_size,
8756 ULONGEST *xfered_len)
8757 {
8758 struct target_section *secp;
8759 struct target_section_table *table;
8760
8761 secp = target_section_by_addr (this, memaddr);
8762 if (secp != NULL
8763 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8764 secp->the_bfd_section)
8765 & SEC_READONLY))
8766 {
8767 struct target_section *p;
8768 ULONGEST memend = memaddr + len;
8769
8770 table = target_get_section_table (this);
8771
8772 for (p = table->sections; p < table->sections_end; p++)
8773 {
8774 if (memaddr >= p->addr)
8775 {
8776 if (memend <= p->endaddr)
8777 {
8778 /* Entire transfer is within this section. */
8779 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8780 xfered_len);
8781 }
8782 else if (memaddr >= p->endaddr)
8783 {
8784 /* This section ends before the transfer starts. */
8785 continue;
8786 }
8787 else
8788 {
8789 /* This section overlaps the transfer. Just do half. */
8790 len = p->endaddr - memaddr;
8791 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8792 xfered_len);
8793 }
8794 }
8795 }
8796 }
8797
8798 return TARGET_XFER_EOF;
8799 }
8800
8801 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8802 first if the requested memory is unavailable in traceframe.
8803 Otherwise, fall back to remote_read_bytes_1. */
8804
8805 target_xfer_status
8806 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8807 gdb_byte *myaddr, ULONGEST len, int unit_size,
8808 ULONGEST *xfered_len)
8809 {
8810 if (len == 0)
8811 return TARGET_XFER_EOF;
8812
8813 if (get_traceframe_number () != -1)
8814 {
8815 std::vector<mem_range> available;
8816
8817 /* If we fail to get the set of available memory, then the
8818 target does not support querying traceframe info, and so we
8819 attempt reading from the traceframe anyway (assuming the
8820 target implements the old QTro packet then). */
8821 if (traceframe_available_memory (&available, memaddr, len))
8822 {
8823 if (available.empty () || available[0].start != memaddr)
8824 {
8825 enum target_xfer_status res;
8826
8827 /* Don't read into the traceframe's available
8828 memory. */
8829 if (!available.empty ())
8830 {
8831 LONGEST oldlen = len;
8832
8833 len = available[0].start - memaddr;
8834 gdb_assert (len <= oldlen);
8835 }
8836
8837 /* This goes through the topmost target again. */
8838 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8839 len, unit_size, xfered_len);
8840 if (res == TARGET_XFER_OK)
8841 return TARGET_XFER_OK;
8842 else
8843 {
8844 /* No use trying further, we know some memory starting
8845 at MEMADDR isn't available. */
8846 *xfered_len = len;
8847 return (*xfered_len != 0) ?
8848 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8849 }
8850 }
8851
8852 /* Don't try to read more than how much is available, in
8853 case the target implements the deprecated QTro packet to
8854 cater for older GDBs (the target's knowledge of read-only
8855 sections may be outdated by now). */
8856 len = available[0].length;
8857 }
8858 }
8859
8860 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8861 }
8862
8863 \f
8864
8865 /* Sends a packet with content determined by the printf format string
8866 FORMAT and the remaining arguments, then gets the reply. Returns
8867 whether the packet was a success, a failure, or unknown. */
8868
8869 packet_result
8870 remote_target::remote_send_printf (const char *format, ...)
8871 {
8872 struct remote_state *rs = get_remote_state ();
8873 int max_size = get_remote_packet_size ();
8874 va_list ap;
8875
8876 va_start (ap, format);
8877
8878 rs->buf[0] = '\0';
8879 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8880
8881 va_end (ap);
8882
8883 if (size >= max_size)
8884 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8885
8886 if (putpkt (rs->buf) < 0)
8887 error (_("Communication problem with target."));
8888
8889 rs->buf[0] = '\0';
8890 getpkt (&rs->buf, 0);
8891
8892 return packet_check_result (rs->buf);
8893 }
8894
8895 /* Flash writing can take quite some time. We'll set
8896 effectively infinite timeout for flash operations.
8897 In future, we'll need to decide on a better approach. */
8898 static const int remote_flash_timeout = 1000;
8899
8900 void
8901 remote_target::flash_erase (ULONGEST address, LONGEST length)
8902 {
8903 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8904 enum packet_result ret;
8905 scoped_restore restore_timeout
8906 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8907
8908 ret = remote_send_printf ("vFlashErase:%s,%s",
8909 phex (address, addr_size),
8910 phex (length, 4));
8911 switch (ret)
8912 {
8913 case PACKET_UNKNOWN:
8914 error (_("Remote target does not support flash erase"));
8915 case PACKET_ERROR:
8916 error (_("Error erasing flash with vFlashErase packet"));
8917 default:
8918 break;
8919 }
8920 }
8921
8922 target_xfer_status
8923 remote_target::remote_flash_write (ULONGEST address,
8924 ULONGEST length, ULONGEST *xfered_len,
8925 const gdb_byte *data)
8926 {
8927 scoped_restore restore_timeout
8928 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8929 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8930 xfered_len,'X', 0);
8931 }
8932
8933 void
8934 remote_target::flash_done ()
8935 {
8936 int ret;
8937
8938 scoped_restore restore_timeout
8939 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8940
8941 ret = remote_send_printf ("vFlashDone");
8942
8943 switch (ret)
8944 {
8945 case PACKET_UNKNOWN:
8946 error (_("Remote target does not support vFlashDone"));
8947 case PACKET_ERROR:
8948 error (_("Error finishing flash operation"));
8949 default:
8950 break;
8951 }
8952 }
8953
8954 void
8955 remote_target::files_info ()
8956 {
8957 puts_filtered ("Debugging a target over a serial line.\n");
8958 }
8959 \f
8960 /* Stuff for dealing with the packets which are part of this protocol.
8961 See comment at top of file for details. */
8962
8963 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8964 error to higher layers. Called when a serial error is detected.
8965 The exception message is STRING, followed by a colon and a blank,
8966 the system error message for errno at function entry and final dot
8967 for output compatibility with throw_perror_with_name. */
8968
8969 static void
8970 unpush_and_perror (const char *string)
8971 {
8972 int saved_errno = errno;
8973
8974 remote_unpush_target ();
8975 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8976 safe_strerror (saved_errno));
8977 }
8978
8979 /* Read a single character from the remote end. The current quit
8980 handler is overridden to avoid quitting in the middle of packet
8981 sequence, as that would break communication with the remote server.
8982 See remote_serial_quit_handler for more detail. */
8983
8984 int
8985 remote_target::readchar (int timeout)
8986 {
8987 int ch;
8988 struct remote_state *rs = get_remote_state ();
8989
8990 {
8991 scoped_restore restore_quit_target
8992 = make_scoped_restore (&curr_quit_handler_target, this);
8993 scoped_restore restore_quit
8994 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
8995
8996 rs->got_ctrlc_during_io = 0;
8997
8998 ch = serial_readchar (rs->remote_desc, timeout);
8999
9000 if (rs->got_ctrlc_during_io)
9001 set_quit_flag ();
9002 }
9003
9004 if (ch >= 0)
9005 return ch;
9006
9007 switch ((enum serial_rc) ch)
9008 {
9009 case SERIAL_EOF:
9010 remote_unpush_target ();
9011 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9012 /* no return */
9013 case SERIAL_ERROR:
9014 unpush_and_perror (_("Remote communication error. "
9015 "Target disconnected."));
9016 /* no return */
9017 case SERIAL_TIMEOUT:
9018 break;
9019 }
9020 return ch;
9021 }
9022
9023 /* Wrapper for serial_write that closes the target and throws if
9024 writing fails. The current quit handler is overridden to avoid
9025 quitting in the middle of packet sequence, as that would break
9026 communication with the remote server. See
9027 remote_serial_quit_handler for more detail. */
9028
9029 void
9030 remote_target::remote_serial_write (const char *str, int len)
9031 {
9032 struct remote_state *rs = get_remote_state ();
9033
9034 scoped_restore restore_quit_target
9035 = make_scoped_restore (&curr_quit_handler_target, this);
9036 scoped_restore restore_quit
9037 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9038
9039 rs->got_ctrlc_during_io = 0;
9040
9041 if (serial_write (rs->remote_desc, str, len))
9042 {
9043 unpush_and_perror (_("Remote communication error. "
9044 "Target disconnected."));
9045 }
9046
9047 if (rs->got_ctrlc_during_io)
9048 set_quit_flag ();
9049 }
9050
9051 /* Return a string representing an escaped version of BUF, of len N.
9052 E.g. \n is converted to \\n, \t to \\t, etc. */
9053
9054 static std::string
9055 escape_buffer (const char *buf, int n)
9056 {
9057 string_file stb;
9058
9059 stb.putstrn (buf, n, '\\');
9060 return std::move (stb.string ());
9061 }
9062
9063 /* Display a null-terminated packet on stdout, for debugging, using C
9064 string notation. */
9065
9066 static void
9067 print_packet (const char *buf)
9068 {
9069 puts_filtered ("\"");
9070 fputstr_filtered (buf, '"', gdb_stdout);
9071 puts_filtered ("\"");
9072 }
9073
9074 int
9075 remote_target::putpkt (const char *buf)
9076 {
9077 return putpkt_binary (buf, strlen (buf));
9078 }
9079
9080 /* Wrapper around remote_target::putpkt to avoid exporting
9081 remote_target. */
9082
9083 int
9084 putpkt (remote_target *remote, const char *buf)
9085 {
9086 return remote->putpkt (buf);
9087 }
9088
9089 /* Send a packet to the remote machine, with error checking. The data
9090 of the packet is in BUF. The string in BUF can be at most
9091 get_remote_packet_size () - 5 to account for the $, # and checksum,
9092 and for a possible /0 if we are debugging (remote_debug) and want
9093 to print the sent packet as a string. */
9094
9095 int
9096 remote_target::putpkt_binary (const char *buf, int cnt)
9097 {
9098 struct remote_state *rs = get_remote_state ();
9099 int i;
9100 unsigned char csum = 0;
9101 gdb::def_vector<char> data (cnt + 6);
9102 char *buf2 = data.data ();
9103
9104 int ch;
9105 int tcount = 0;
9106 char *p;
9107
9108 /* Catch cases like trying to read memory or listing threads while
9109 we're waiting for a stop reply. The remote server wouldn't be
9110 ready to handle this request, so we'd hang and timeout. We don't
9111 have to worry about this in synchronous mode, because in that
9112 case it's not possible to issue a command while the target is
9113 running. This is not a problem in non-stop mode, because in that
9114 case, the stub is always ready to process serial input. */
9115 if (!target_is_non_stop_p ()
9116 && target_is_async_p ()
9117 && rs->waiting_for_stop_reply)
9118 {
9119 error (_("Cannot execute this command while the target is running.\n"
9120 "Use the \"interrupt\" command to stop the target\n"
9121 "and then try again."));
9122 }
9123
9124 /* We're sending out a new packet. Make sure we don't look at a
9125 stale cached response. */
9126 rs->cached_wait_status = 0;
9127
9128 /* Copy the packet into buffer BUF2, encapsulating it
9129 and giving it a checksum. */
9130
9131 p = buf2;
9132 *p++ = '$';
9133
9134 for (i = 0; i < cnt; i++)
9135 {
9136 csum += buf[i];
9137 *p++ = buf[i];
9138 }
9139 *p++ = '#';
9140 *p++ = tohex ((csum >> 4) & 0xf);
9141 *p++ = tohex (csum & 0xf);
9142
9143 /* Send it over and over until we get a positive ack. */
9144
9145 while (1)
9146 {
9147 int started_error_output = 0;
9148
9149 if (remote_debug)
9150 {
9151 *p = '\0';
9152
9153 int len = (int) (p - buf2);
9154
9155 std::string str
9156 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
9157
9158 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9159
9160 if (len > REMOTE_DEBUG_MAX_CHAR)
9161 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9162 len - REMOTE_DEBUG_MAX_CHAR);
9163
9164 fprintf_unfiltered (gdb_stdlog, "...");
9165
9166 gdb_flush (gdb_stdlog);
9167 }
9168 remote_serial_write (buf2, p - buf2);
9169
9170 /* If this is a no acks version of the remote protocol, send the
9171 packet and move on. */
9172 if (rs->noack_mode)
9173 break;
9174
9175 /* Read until either a timeout occurs (-2) or '+' is read.
9176 Handle any notification that arrives in the mean time. */
9177 while (1)
9178 {
9179 ch = readchar (remote_timeout);
9180
9181 if (remote_debug)
9182 {
9183 switch (ch)
9184 {
9185 case '+':
9186 case '-':
9187 case SERIAL_TIMEOUT:
9188 case '$':
9189 case '%':
9190 if (started_error_output)
9191 {
9192 putchar_unfiltered ('\n');
9193 started_error_output = 0;
9194 }
9195 }
9196 }
9197
9198 switch (ch)
9199 {
9200 case '+':
9201 if (remote_debug)
9202 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9203 return 1;
9204 case '-':
9205 if (remote_debug)
9206 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9207 /* FALLTHROUGH */
9208 case SERIAL_TIMEOUT:
9209 tcount++;
9210 if (tcount > 3)
9211 return 0;
9212 break; /* Retransmit buffer. */
9213 case '$':
9214 {
9215 if (remote_debug)
9216 fprintf_unfiltered (gdb_stdlog,
9217 "Packet instead of Ack, ignoring it\n");
9218 /* It's probably an old response sent because an ACK
9219 was lost. Gobble up the packet and ack it so it
9220 doesn't get retransmitted when we resend this
9221 packet. */
9222 skip_frame ();
9223 remote_serial_write ("+", 1);
9224 continue; /* Now, go look for +. */
9225 }
9226
9227 case '%':
9228 {
9229 int val;
9230
9231 /* If we got a notification, handle it, and go back to looking
9232 for an ack. */
9233 /* We've found the start of a notification. Now
9234 collect the data. */
9235 val = read_frame (&rs->buf);
9236 if (val >= 0)
9237 {
9238 if (remote_debug)
9239 {
9240 std::string str = escape_buffer (rs->buf.data (), val);
9241
9242 fprintf_unfiltered (gdb_stdlog,
9243 " Notification received: %s\n",
9244 str.c_str ());
9245 }
9246 handle_notification (rs->notif_state, rs->buf.data ());
9247 /* We're in sync now, rewait for the ack. */
9248 tcount = 0;
9249 }
9250 else
9251 {
9252 if (remote_debug)
9253 {
9254 if (!started_error_output)
9255 {
9256 started_error_output = 1;
9257 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9258 }
9259 fputc_unfiltered (ch & 0177, gdb_stdlog);
9260 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9261 }
9262 }
9263 continue;
9264 }
9265 /* fall-through */
9266 default:
9267 if (remote_debug)
9268 {
9269 if (!started_error_output)
9270 {
9271 started_error_output = 1;
9272 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9273 }
9274 fputc_unfiltered (ch & 0177, gdb_stdlog);
9275 }
9276 continue;
9277 }
9278 break; /* Here to retransmit. */
9279 }
9280
9281 #if 0
9282 /* This is wrong. If doing a long backtrace, the user should be
9283 able to get out next time we call QUIT, without anything as
9284 violent as interrupt_query. If we want to provide a way out of
9285 here without getting to the next QUIT, it should be based on
9286 hitting ^C twice as in remote_wait. */
9287 if (quit_flag)
9288 {
9289 quit_flag = 0;
9290 interrupt_query ();
9291 }
9292 #endif
9293 }
9294
9295 return 0;
9296 }
9297
9298 /* Come here after finding the start of a frame when we expected an
9299 ack. Do our best to discard the rest of this packet. */
9300
9301 void
9302 remote_target::skip_frame ()
9303 {
9304 int c;
9305
9306 while (1)
9307 {
9308 c = readchar (remote_timeout);
9309 switch (c)
9310 {
9311 case SERIAL_TIMEOUT:
9312 /* Nothing we can do. */
9313 return;
9314 case '#':
9315 /* Discard the two bytes of checksum and stop. */
9316 c = readchar (remote_timeout);
9317 if (c >= 0)
9318 c = readchar (remote_timeout);
9319
9320 return;
9321 case '*': /* Run length encoding. */
9322 /* Discard the repeat count. */
9323 c = readchar (remote_timeout);
9324 if (c < 0)
9325 return;
9326 break;
9327 default:
9328 /* A regular character. */
9329 break;
9330 }
9331 }
9332 }
9333
9334 /* Come here after finding the start of the frame. Collect the rest
9335 into *BUF, verifying the checksum, length, and handling run-length
9336 compression. NUL terminate the buffer. If there is not enough room,
9337 expand *BUF.
9338
9339 Returns -1 on error, number of characters in buffer (ignoring the
9340 trailing NULL) on success. (could be extended to return one of the
9341 SERIAL status indications). */
9342
9343 long
9344 remote_target::read_frame (gdb::char_vector *buf_p)
9345 {
9346 unsigned char csum;
9347 long bc;
9348 int c;
9349 char *buf = buf_p->data ();
9350 struct remote_state *rs = get_remote_state ();
9351
9352 csum = 0;
9353 bc = 0;
9354
9355 while (1)
9356 {
9357 c = readchar (remote_timeout);
9358 switch (c)
9359 {
9360 case SERIAL_TIMEOUT:
9361 if (remote_debug)
9362 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9363 return -1;
9364 case '$':
9365 if (remote_debug)
9366 fputs_filtered ("Saw new packet start in middle of old one\n",
9367 gdb_stdlog);
9368 return -1; /* Start a new packet, count retries. */
9369 case '#':
9370 {
9371 unsigned char pktcsum;
9372 int check_0 = 0;
9373 int check_1 = 0;
9374
9375 buf[bc] = '\0';
9376
9377 check_0 = readchar (remote_timeout);
9378 if (check_0 >= 0)
9379 check_1 = readchar (remote_timeout);
9380
9381 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9382 {
9383 if (remote_debug)
9384 fputs_filtered ("Timeout in checksum, retrying\n",
9385 gdb_stdlog);
9386 return -1;
9387 }
9388 else if (check_0 < 0 || check_1 < 0)
9389 {
9390 if (remote_debug)
9391 fputs_filtered ("Communication error in checksum\n",
9392 gdb_stdlog);
9393 return -1;
9394 }
9395
9396 /* Don't recompute the checksum; with no ack packets we
9397 don't have any way to indicate a packet retransmission
9398 is necessary. */
9399 if (rs->noack_mode)
9400 return bc;
9401
9402 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9403 if (csum == pktcsum)
9404 return bc;
9405
9406 if (remote_debug)
9407 {
9408 std::string str = escape_buffer (buf, bc);
9409
9410 fprintf_unfiltered (gdb_stdlog,
9411 "Bad checksum, sentsum=0x%x, "
9412 "csum=0x%x, buf=%s\n",
9413 pktcsum, csum, str.c_str ());
9414 }
9415 /* Number of characters in buffer ignoring trailing
9416 NULL. */
9417 return -1;
9418 }
9419 case '*': /* Run length encoding. */
9420 {
9421 int repeat;
9422
9423 csum += c;
9424 c = readchar (remote_timeout);
9425 csum += c;
9426 repeat = c - ' ' + 3; /* Compute repeat count. */
9427
9428 /* The character before ``*'' is repeated. */
9429
9430 if (repeat > 0 && repeat <= 255 && bc > 0)
9431 {
9432 if (bc + repeat - 1 >= buf_p->size () - 1)
9433 {
9434 /* Make some more room in the buffer. */
9435 buf_p->resize (buf_p->size () + repeat);
9436 buf = buf_p->data ();
9437 }
9438
9439 memset (&buf[bc], buf[bc - 1], repeat);
9440 bc += repeat;
9441 continue;
9442 }
9443
9444 buf[bc] = '\0';
9445 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9446 return -1;
9447 }
9448 default:
9449 if (bc >= buf_p->size () - 1)
9450 {
9451 /* Make some more room in the buffer. */
9452 buf_p->resize (buf_p->size () * 2);
9453 buf = buf_p->data ();
9454 }
9455
9456 buf[bc++] = c;
9457 csum += c;
9458 continue;
9459 }
9460 }
9461 }
9462
9463 /* Read a packet from the remote machine, with error checking, and
9464 store it in *BUF. Resize *BUF if necessary to hold the result. If
9465 FOREVER, wait forever rather than timing out; this is used (in
9466 synchronous mode) to wait for a target that is is executing user
9467 code to stop. */
9468 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9469 don't have to change all the calls to getpkt to deal with the
9470 return value, because at the moment I don't know what the right
9471 thing to do it for those. */
9472
9473 void
9474 remote_target::getpkt (gdb::char_vector *buf, int forever)
9475 {
9476 getpkt_sane (buf, forever);
9477 }
9478
9479
9480 /* Read a packet from the remote machine, with error checking, and
9481 store it in *BUF. Resize *BUF if necessary to hold the result. If
9482 FOREVER, wait forever rather than timing out; this is used (in
9483 synchronous mode) to wait for a target that is is executing user
9484 code to stop. If FOREVER == 0, this function is allowed to time
9485 out gracefully and return an indication of this to the caller.
9486 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9487 consider receiving a notification enough reason to return to the
9488 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9489 holds a notification or not (a regular packet). */
9490
9491 int
9492 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9493 int forever, int expecting_notif,
9494 int *is_notif)
9495 {
9496 struct remote_state *rs = get_remote_state ();
9497 int c;
9498 int tries;
9499 int timeout;
9500 int val = -1;
9501
9502 /* We're reading a new response. Make sure we don't look at a
9503 previously cached response. */
9504 rs->cached_wait_status = 0;
9505
9506 strcpy (buf->data (), "timeout");
9507
9508 if (forever)
9509 timeout = watchdog > 0 ? watchdog : -1;
9510 else if (expecting_notif)
9511 timeout = 0; /* There should already be a char in the buffer. If
9512 not, bail out. */
9513 else
9514 timeout = remote_timeout;
9515
9516 #define MAX_TRIES 3
9517
9518 /* Process any number of notifications, and then return when
9519 we get a packet. */
9520 for (;;)
9521 {
9522 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9523 times. */
9524 for (tries = 1; tries <= MAX_TRIES; tries++)
9525 {
9526 /* This can loop forever if the remote side sends us
9527 characters continuously, but if it pauses, we'll get
9528 SERIAL_TIMEOUT from readchar because of timeout. Then
9529 we'll count that as a retry.
9530
9531 Note that even when forever is set, we will only wait
9532 forever prior to the start of a packet. After that, we
9533 expect characters to arrive at a brisk pace. They should
9534 show up within remote_timeout intervals. */
9535 do
9536 c = readchar (timeout);
9537 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9538
9539 if (c == SERIAL_TIMEOUT)
9540 {
9541 if (expecting_notif)
9542 return -1; /* Don't complain, it's normal to not get
9543 anything in this case. */
9544
9545 if (forever) /* Watchdog went off? Kill the target. */
9546 {
9547 remote_unpush_target ();
9548 throw_error (TARGET_CLOSE_ERROR,
9549 _("Watchdog timeout has expired. "
9550 "Target detached."));
9551 }
9552 if (remote_debug)
9553 fputs_filtered ("Timed out.\n", gdb_stdlog);
9554 }
9555 else
9556 {
9557 /* We've found the start of a packet or notification.
9558 Now collect the data. */
9559 val = read_frame (buf);
9560 if (val >= 0)
9561 break;
9562 }
9563
9564 remote_serial_write ("-", 1);
9565 }
9566
9567 if (tries > MAX_TRIES)
9568 {
9569 /* We have tried hard enough, and just can't receive the
9570 packet/notification. Give up. */
9571 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9572
9573 /* Skip the ack char if we're in no-ack mode. */
9574 if (!rs->noack_mode)
9575 remote_serial_write ("+", 1);
9576 return -1;
9577 }
9578
9579 /* If we got an ordinary packet, return that to our caller. */
9580 if (c == '$')
9581 {
9582 if (remote_debug)
9583 {
9584 std::string str
9585 = escape_buffer (buf->data (),
9586 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9587
9588 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9589 str.c_str ());
9590
9591 if (val > REMOTE_DEBUG_MAX_CHAR)
9592 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9593 val - REMOTE_DEBUG_MAX_CHAR);
9594
9595 fprintf_unfiltered (gdb_stdlog, "\n");
9596 }
9597
9598 /* Skip the ack char if we're in no-ack mode. */
9599 if (!rs->noack_mode)
9600 remote_serial_write ("+", 1);
9601 if (is_notif != NULL)
9602 *is_notif = 0;
9603 return val;
9604 }
9605
9606 /* If we got a notification, handle it, and go back to looking
9607 for a packet. */
9608 else
9609 {
9610 gdb_assert (c == '%');
9611
9612 if (remote_debug)
9613 {
9614 std::string str = escape_buffer (buf->data (), val);
9615
9616 fprintf_unfiltered (gdb_stdlog,
9617 " Notification received: %s\n",
9618 str.c_str ());
9619 }
9620 if (is_notif != NULL)
9621 *is_notif = 1;
9622
9623 handle_notification (rs->notif_state, buf->data ());
9624
9625 /* Notifications require no acknowledgement. */
9626
9627 if (expecting_notif)
9628 return val;
9629 }
9630 }
9631 }
9632
9633 int
9634 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9635 {
9636 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9637 }
9638
9639 int
9640 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9641 int *is_notif)
9642 {
9643 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9644 }
9645
9646 /* Kill any new fork children of process PID that haven't been
9647 processed by follow_fork. */
9648
9649 void
9650 remote_target::kill_new_fork_children (int pid)
9651 {
9652 remote_state *rs = get_remote_state ();
9653 struct notif_client *notif = &notif_client_stop;
9654
9655 /* Kill the fork child threads of any threads in process PID
9656 that are stopped at a fork event. */
9657 for (thread_info *thread : all_non_exited_threads ())
9658 {
9659 struct target_waitstatus *ws = &thread->pending_follow;
9660
9661 if (is_pending_fork_parent (ws, pid, thread->ptid))
9662 {
9663 int child_pid = ws->value.related_pid.pid ();
9664 int res;
9665
9666 res = remote_vkill (child_pid);
9667 if (res != 0)
9668 error (_("Can't kill fork child process %d"), child_pid);
9669 }
9670 }
9671
9672 /* Check for any pending fork events (not reported or processed yet)
9673 in process PID and kill those fork child threads as well. */
9674 remote_notif_get_pending_events (notif);
9675 for (auto &event : rs->stop_reply_queue)
9676 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9677 {
9678 int child_pid = event->ws.value.related_pid.pid ();
9679 int res;
9680
9681 res = remote_vkill (child_pid);
9682 if (res != 0)
9683 error (_("Can't kill fork child process %d"), child_pid);
9684 }
9685 }
9686
9687 \f
9688 /* Target hook to kill the current inferior. */
9689
9690 void
9691 remote_target::kill ()
9692 {
9693 int res = -1;
9694 int pid = inferior_ptid.pid ();
9695 struct remote_state *rs = get_remote_state ();
9696
9697 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9698 {
9699 /* If we're stopped while forking and we haven't followed yet,
9700 kill the child task. We need to do this before killing the
9701 parent task because if this is a vfork then the parent will
9702 be sleeping. */
9703 kill_new_fork_children (pid);
9704
9705 res = remote_vkill (pid);
9706 if (res == 0)
9707 {
9708 target_mourn_inferior (inferior_ptid);
9709 return;
9710 }
9711 }
9712
9713 /* If we are in 'target remote' mode and we are killing the only
9714 inferior, then we will tell gdbserver to exit and unpush the
9715 target. */
9716 if (res == -1 && !remote_multi_process_p (rs)
9717 && number_of_live_inferiors () == 1)
9718 {
9719 remote_kill_k ();
9720
9721 /* We've killed the remote end, we get to mourn it. If we are
9722 not in extended mode, mourning the inferior also unpushes
9723 remote_ops from the target stack, which closes the remote
9724 connection. */
9725 target_mourn_inferior (inferior_ptid);
9726
9727 return;
9728 }
9729
9730 error (_("Can't kill process"));
9731 }
9732
9733 /* Send a kill request to the target using the 'vKill' packet. */
9734
9735 int
9736 remote_target::remote_vkill (int pid)
9737 {
9738 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9739 return -1;
9740
9741 remote_state *rs = get_remote_state ();
9742
9743 /* Tell the remote target to detach. */
9744 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9745 putpkt (rs->buf);
9746 getpkt (&rs->buf, 0);
9747
9748 switch (packet_ok (rs->buf,
9749 &remote_protocol_packets[PACKET_vKill]))
9750 {
9751 case PACKET_OK:
9752 return 0;
9753 case PACKET_ERROR:
9754 return 1;
9755 case PACKET_UNKNOWN:
9756 return -1;
9757 default:
9758 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9759 }
9760 }
9761
9762 /* Send a kill request to the target using the 'k' packet. */
9763
9764 void
9765 remote_target::remote_kill_k ()
9766 {
9767 /* Catch errors so the user can quit from gdb even when we
9768 aren't on speaking terms with the remote system. */
9769 TRY
9770 {
9771 putpkt ("k");
9772 }
9773 CATCH (ex, RETURN_MASK_ERROR)
9774 {
9775 if (ex.error == TARGET_CLOSE_ERROR)
9776 {
9777 /* If we got an (EOF) error that caused the target
9778 to go away, then we're done, that's what we wanted.
9779 "k" is susceptible to cause a premature EOF, given
9780 that the remote server isn't actually required to
9781 reply to "k", and it can happen that it doesn't
9782 even get to reply ACK to the "k". */
9783 return;
9784 }
9785
9786 /* Otherwise, something went wrong. We didn't actually kill
9787 the target. Just propagate the exception, and let the
9788 user or higher layers decide what to do. */
9789 throw_exception (ex);
9790 }
9791 END_CATCH
9792 }
9793
9794 void
9795 remote_target::mourn_inferior ()
9796 {
9797 struct remote_state *rs = get_remote_state ();
9798
9799 /* We're no longer interested in notification events of an inferior
9800 that exited or was killed/detached. */
9801 discard_pending_stop_replies (current_inferior ());
9802
9803 /* In 'target remote' mode with one inferior, we close the connection. */
9804 if (!rs->extended && number_of_live_inferiors () <= 1)
9805 {
9806 unpush_target (this);
9807
9808 /* remote_close takes care of doing most of the clean up. */
9809 generic_mourn_inferior ();
9810 return;
9811 }
9812
9813 /* In case we got here due to an error, but we're going to stay
9814 connected. */
9815 rs->waiting_for_stop_reply = 0;
9816
9817 /* If the current general thread belonged to the process we just
9818 detached from or has exited, the remote side current general
9819 thread becomes undefined. Considering a case like this:
9820
9821 - We just got here due to a detach.
9822 - The process that we're detaching from happens to immediately
9823 report a global breakpoint being hit in non-stop mode, in the
9824 same thread we had selected before.
9825 - GDB attaches to this process again.
9826 - This event happens to be the next event we handle.
9827
9828 GDB would consider that the current general thread didn't need to
9829 be set on the stub side (with Hg), since for all it knew,
9830 GENERAL_THREAD hadn't changed.
9831
9832 Notice that although in all-stop mode, the remote server always
9833 sets the current thread to the thread reporting the stop event,
9834 that doesn't happen in non-stop mode; in non-stop, the stub *must
9835 not* change the current thread when reporting a breakpoint hit,
9836 due to the decoupling of event reporting and event handling.
9837
9838 To keep things simple, we always invalidate our notion of the
9839 current thread. */
9840 record_currthread (rs, minus_one_ptid);
9841
9842 /* Call common code to mark the inferior as not running. */
9843 generic_mourn_inferior ();
9844
9845 if (!have_inferiors ())
9846 {
9847 if (!remote_multi_process_p (rs))
9848 {
9849 /* Check whether the target is running now - some remote stubs
9850 automatically restart after kill. */
9851 putpkt ("?");
9852 getpkt (&rs->buf, 0);
9853
9854 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9855 {
9856 /* Assume that the target has been restarted. Set
9857 inferior_ptid so that bits of core GDB realizes
9858 there's something here, e.g., so that the user can
9859 say "kill" again. */
9860 inferior_ptid = magic_null_ptid;
9861 }
9862 }
9863 }
9864 }
9865
9866 bool
9867 extended_remote_target::supports_disable_randomization ()
9868 {
9869 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9870 }
9871
9872 void
9873 remote_target::extended_remote_disable_randomization (int val)
9874 {
9875 struct remote_state *rs = get_remote_state ();
9876 char *reply;
9877
9878 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9879 "QDisableRandomization:%x", val);
9880 putpkt (rs->buf);
9881 reply = remote_get_noisy_reply ();
9882 if (*reply == '\0')
9883 error (_("Target does not support QDisableRandomization."));
9884 if (strcmp (reply, "OK") != 0)
9885 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9886 }
9887
9888 int
9889 remote_target::extended_remote_run (const std::string &args)
9890 {
9891 struct remote_state *rs = get_remote_state ();
9892 int len;
9893 const char *remote_exec_file = get_remote_exec_file ();
9894
9895 /* If the user has disabled vRun support, or we have detected that
9896 support is not available, do not try it. */
9897 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9898 return -1;
9899
9900 strcpy (rs->buf.data (), "vRun;");
9901 len = strlen (rs->buf.data ());
9902
9903 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9904 error (_("Remote file name too long for run packet"));
9905 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
9906 strlen (remote_exec_file));
9907
9908 if (!args.empty ())
9909 {
9910 int i;
9911
9912 gdb_argv argv (args.c_str ());
9913 for (i = 0; argv[i] != NULL; i++)
9914 {
9915 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9916 error (_("Argument list too long for run packet"));
9917 rs->buf[len++] = ';';
9918 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
9919 strlen (argv[i]));
9920 }
9921 }
9922
9923 rs->buf[len++] = '\0';
9924
9925 putpkt (rs->buf);
9926 getpkt (&rs->buf, 0);
9927
9928 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9929 {
9930 case PACKET_OK:
9931 /* We have a wait response. All is well. */
9932 return 0;
9933 case PACKET_UNKNOWN:
9934 return -1;
9935 case PACKET_ERROR:
9936 if (remote_exec_file[0] == '\0')
9937 error (_("Running the default executable on the remote target failed; "
9938 "try \"set remote exec-file\"?"));
9939 else
9940 error (_("Running \"%s\" on the remote target failed"),
9941 remote_exec_file);
9942 default:
9943 gdb_assert_not_reached (_("bad switch"));
9944 }
9945 }
9946
9947 /* Helper function to send set/unset environment packets. ACTION is
9948 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9949 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9950 sent. */
9951
9952 void
9953 remote_target::send_environment_packet (const char *action,
9954 const char *packet,
9955 const char *value)
9956 {
9957 remote_state *rs = get_remote_state ();
9958
9959 /* Convert the environment variable to an hex string, which
9960 is the best format to be transmitted over the wire. */
9961 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9962 strlen (value));
9963
9964 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9965 "%s:%s", packet, encoded_value.c_str ());
9966
9967 putpkt (rs->buf);
9968 getpkt (&rs->buf, 0);
9969 if (strcmp (rs->buf.data (), "OK") != 0)
9970 warning (_("Unable to %s environment variable '%s' on remote."),
9971 action, value);
9972 }
9973
9974 /* Helper function to handle the QEnvironment* packets. */
9975
9976 void
9977 remote_target::extended_remote_environment_support ()
9978 {
9979 remote_state *rs = get_remote_state ();
9980
9981 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9982 {
9983 putpkt ("QEnvironmentReset");
9984 getpkt (&rs->buf, 0);
9985 if (strcmp (rs->buf.data (), "OK") != 0)
9986 warning (_("Unable to reset environment on remote."));
9987 }
9988
9989 gdb_environ *e = &current_inferior ()->environment;
9990
9991 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9992 for (const std::string &el : e->user_set_env ())
9993 send_environment_packet ("set", "QEnvironmentHexEncoded",
9994 el.c_str ());
9995
9996 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9997 for (const std::string &el : e->user_unset_env ())
9998 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
9999 }
10000
10001 /* Helper function to set the current working directory for the
10002 inferior in the remote target. */
10003
10004 void
10005 remote_target::extended_remote_set_inferior_cwd ()
10006 {
10007 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10008 {
10009 const char *inferior_cwd = get_inferior_cwd ();
10010 remote_state *rs = get_remote_state ();
10011
10012 if (inferior_cwd != NULL)
10013 {
10014 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10015 strlen (inferior_cwd));
10016
10017 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10018 "QSetWorkingDir:%s", hexpath.c_str ());
10019 }
10020 else
10021 {
10022 /* An empty inferior_cwd means that the user wants us to
10023 reset the remote server's inferior's cwd. */
10024 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10025 "QSetWorkingDir:");
10026 }
10027
10028 putpkt (rs->buf);
10029 getpkt (&rs->buf, 0);
10030 if (packet_ok (rs->buf,
10031 &remote_protocol_packets[PACKET_QSetWorkingDir])
10032 != PACKET_OK)
10033 error (_("\
10034 Remote replied unexpectedly while setting the inferior's working\n\
10035 directory: %s"),
10036 rs->buf.data ());
10037
10038 }
10039 }
10040
10041 /* In the extended protocol we want to be able to do things like
10042 "run" and have them basically work as expected. So we need
10043 a special create_inferior function. We support changing the
10044 executable file and the command line arguments, but not the
10045 environment. */
10046
10047 void
10048 extended_remote_target::create_inferior (const char *exec_file,
10049 const std::string &args,
10050 char **env, int from_tty)
10051 {
10052 int run_worked;
10053 char *stop_reply;
10054 struct remote_state *rs = get_remote_state ();
10055 const char *remote_exec_file = get_remote_exec_file ();
10056
10057 /* If running asynchronously, register the target file descriptor
10058 with the event loop. */
10059 if (target_can_async_p ())
10060 target_async (1);
10061
10062 /* Disable address space randomization if requested (and supported). */
10063 if (supports_disable_randomization ())
10064 extended_remote_disable_randomization (disable_randomization);
10065
10066 /* If startup-with-shell is on, we inform gdbserver to start the
10067 remote inferior using a shell. */
10068 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10069 {
10070 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10071 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10072 putpkt (rs->buf);
10073 getpkt (&rs->buf, 0);
10074 if (strcmp (rs->buf.data (), "OK") != 0)
10075 error (_("\
10076 Remote replied unexpectedly while setting startup-with-shell: %s"),
10077 rs->buf.data ());
10078 }
10079
10080 extended_remote_environment_support ();
10081
10082 extended_remote_set_inferior_cwd ();
10083
10084 /* Now restart the remote server. */
10085 run_worked = extended_remote_run (args) != -1;
10086 if (!run_worked)
10087 {
10088 /* vRun was not supported. Fail if we need it to do what the
10089 user requested. */
10090 if (remote_exec_file[0])
10091 error (_("Remote target does not support \"set remote exec-file\""));
10092 if (!args.empty ())
10093 error (_("Remote target does not support \"set args\" or run ARGS"));
10094
10095 /* Fall back to "R". */
10096 extended_remote_restart ();
10097 }
10098
10099 /* vRun's success return is a stop reply. */
10100 stop_reply = run_worked ? rs->buf.data () : NULL;
10101 add_current_inferior_and_thread (stop_reply);
10102
10103 /* Get updated offsets, if the stub uses qOffsets. */
10104 get_offsets ();
10105 }
10106 \f
10107
10108 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10109 the list of conditions (in agent expression bytecode format), if any, the
10110 target needs to evaluate. The output is placed into the packet buffer
10111 started from BUF and ended at BUF_END. */
10112
10113 static int
10114 remote_add_target_side_condition (struct gdbarch *gdbarch,
10115 struct bp_target_info *bp_tgt, char *buf,
10116 char *buf_end)
10117 {
10118 if (bp_tgt->conditions.empty ())
10119 return 0;
10120
10121 buf += strlen (buf);
10122 xsnprintf (buf, buf_end - buf, "%s", ";");
10123 buf++;
10124
10125 /* Send conditions to the target. */
10126 for (agent_expr *aexpr : bp_tgt->conditions)
10127 {
10128 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10129 buf += strlen (buf);
10130 for (int i = 0; i < aexpr->len; ++i)
10131 buf = pack_hex_byte (buf, aexpr->buf[i]);
10132 *buf = '\0';
10133 }
10134 return 0;
10135 }
10136
10137 static void
10138 remote_add_target_side_commands (struct gdbarch *gdbarch,
10139 struct bp_target_info *bp_tgt, char *buf)
10140 {
10141 if (bp_tgt->tcommands.empty ())
10142 return;
10143
10144 buf += strlen (buf);
10145
10146 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10147 buf += strlen (buf);
10148
10149 /* Concatenate all the agent expressions that are commands into the
10150 cmds parameter. */
10151 for (agent_expr *aexpr : bp_tgt->tcommands)
10152 {
10153 sprintf (buf, "X%x,", aexpr->len);
10154 buf += strlen (buf);
10155 for (int i = 0; i < aexpr->len; ++i)
10156 buf = pack_hex_byte (buf, aexpr->buf[i]);
10157 *buf = '\0';
10158 }
10159 }
10160
10161 /* Insert a breakpoint. On targets that have software breakpoint
10162 support, we ask the remote target to do the work; on targets
10163 which don't, we insert a traditional memory breakpoint. */
10164
10165 int
10166 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10167 struct bp_target_info *bp_tgt)
10168 {
10169 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10170 If it succeeds, then set the support to PACKET_ENABLE. If it
10171 fails, and the user has explicitly requested the Z support then
10172 report an error, otherwise, mark it disabled and go on. */
10173
10174 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10175 {
10176 CORE_ADDR addr = bp_tgt->reqstd_address;
10177 struct remote_state *rs;
10178 char *p, *endbuf;
10179
10180 /* Make sure the remote is pointing at the right process, if
10181 necessary. */
10182 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10183 set_general_process ();
10184
10185 rs = get_remote_state ();
10186 p = rs->buf.data ();
10187 endbuf = p + get_remote_packet_size ();
10188
10189 *(p++) = 'Z';
10190 *(p++) = '0';
10191 *(p++) = ',';
10192 addr = (ULONGEST) remote_address_masked (addr);
10193 p += hexnumstr (p, addr);
10194 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10195
10196 if (supports_evaluation_of_breakpoint_conditions ())
10197 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10198
10199 if (can_run_breakpoint_commands ())
10200 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10201
10202 putpkt (rs->buf);
10203 getpkt (&rs->buf, 0);
10204
10205 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10206 {
10207 case PACKET_ERROR:
10208 return -1;
10209 case PACKET_OK:
10210 return 0;
10211 case PACKET_UNKNOWN:
10212 break;
10213 }
10214 }
10215
10216 /* If this breakpoint has target-side commands but this stub doesn't
10217 support Z0 packets, throw error. */
10218 if (!bp_tgt->tcommands.empty ())
10219 throw_error (NOT_SUPPORTED_ERROR, _("\
10220 Target doesn't support breakpoints that have target side commands."));
10221
10222 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10223 }
10224
10225 int
10226 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10227 struct bp_target_info *bp_tgt,
10228 enum remove_bp_reason reason)
10229 {
10230 CORE_ADDR addr = bp_tgt->placed_address;
10231 struct remote_state *rs = get_remote_state ();
10232
10233 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10234 {
10235 char *p = rs->buf.data ();
10236 char *endbuf = p + get_remote_packet_size ();
10237
10238 /* Make sure the remote is pointing at the right process, if
10239 necessary. */
10240 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10241 set_general_process ();
10242
10243 *(p++) = 'z';
10244 *(p++) = '0';
10245 *(p++) = ',';
10246
10247 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10248 p += hexnumstr (p, addr);
10249 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10250
10251 putpkt (rs->buf);
10252 getpkt (&rs->buf, 0);
10253
10254 return (rs->buf[0] == 'E');
10255 }
10256
10257 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10258 }
10259
10260 static enum Z_packet_type
10261 watchpoint_to_Z_packet (int type)
10262 {
10263 switch (type)
10264 {
10265 case hw_write:
10266 return Z_PACKET_WRITE_WP;
10267 break;
10268 case hw_read:
10269 return Z_PACKET_READ_WP;
10270 break;
10271 case hw_access:
10272 return Z_PACKET_ACCESS_WP;
10273 break;
10274 default:
10275 internal_error (__FILE__, __LINE__,
10276 _("hw_bp_to_z: bad watchpoint type %d"), type);
10277 }
10278 }
10279
10280 int
10281 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10282 enum target_hw_bp_type type, struct expression *cond)
10283 {
10284 struct remote_state *rs = get_remote_state ();
10285 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10286 char *p;
10287 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10288
10289 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10290 return 1;
10291
10292 /* Make sure the remote is pointing at the right process, if
10293 necessary. */
10294 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10295 set_general_process ();
10296
10297 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10298 p = strchr (rs->buf.data (), '\0');
10299 addr = remote_address_masked (addr);
10300 p += hexnumstr (p, (ULONGEST) addr);
10301 xsnprintf (p, endbuf - p, ",%x", len);
10302
10303 putpkt (rs->buf);
10304 getpkt (&rs->buf, 0);
10305
10306 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10307 {
10308 case PACKET_ERROR:
10309 return -1;
10310 case PACKET_UNKNOWN:
10311 return 1;
10312 case PACKET_OK:
10313 return 0;
10314 }
10315 internal_error (__FILE__, __LINE__,
10316 _("remote_insert_watchpoint: reached end of function"));
10317 }
10318
10319 bool
10320 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10321 CORE_ADDR start, int length)
10322 {
10323 CORE_ADDR diff = remote_address_masked (addr - start);
10324
10325 return diff < length;
10326 }
10327
10328
10329 int
10330 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10331 enum target_hw_bp_type type, struct expression *cond)
10332 {
10333 struct remote_state *rs = get_remote_state ();
10334 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10335 char *p;
10336 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10337
10338 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10339 return -1;
10340
10341 /* Make sure the remote is pointing at the right process, if
10342 necessary. */
10343 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10344 set_general_process ();
10345
10346 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10347 p = strchr (rs->buf.data (), '\0');
10348 addr = remote_address_masked (addr);
10349 p += hexnumstr (p, (ULONGEST) addr);
10350 xsnprintf (p, endbuf - p, ",%x", len);
10351 putpkt (rs->buf);
10352 getpkt (&rs->buf, 0);
10353
10354 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10355 {
10356 case PACKET_ERROR:
10357 case PACKET_UNKNOWN:
10358 return -1;
10359 case PACKET_OK:
10360 return 0;
10361 }
10362 internal_error (__FILE__, __LINE__,
10363 _("remote_remove_watchpoint: reached end of function"));
10364 }
10365
10366
10367 int remote_hw_watchpoint_limit = -1;
10368 int remote_hw_watchpoint_length_limit = -1;
10369 int remote_hw_breakpoint_limit = -1;
10370
10371 int
10372 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10373 {
10374 if (remote_hw_watchpoint_length_limit == 0)
10375 return 0;
10376 else if (remote_hw_watchpoint_length_limit < 0)
10377 return 1;
10378 else if (len <= remote_hw_watchpoint_length_limit)
10379 return 1;
10380 else
10381 return 0;
10382 }
10383
10384 int
10385 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10386 {
10387 if (type == bp_hardware_breakpoint)
10388 {
10389 if (remote_hw_breakpoint_limit == 0)
10390 return 0;
10391 else if (remote_hw_breakpoint_limit < 0)
10392 return 1;
10393 else if (cnt <= remote_hw_breakpoint_limit)
10394 return 1;
10395 }
10396 else
10397 {
10398 if (remote_hw_watchpoint_limit == 0)
10399 return 0;
10400 else if (remote_hw_watchpoint_limit < 0)
10401 return 1;
10402 else if (ot)
10403 return -1;
10404 else if (cnt <= remote_hw_watchpoint_limit)
10405 return 1;
10406 }
10407 return -1;
10408 }
10409
10410 /* The to_stopped_by_sw_breakpoint method of target remote. */
10411
10412 bool
10413 remote_target::stopped_by_sw_breakpoint ()
10414 {
10415 struct thread_info *thread = inferior_thread ();
10416
10417 return (thread->priv != NULL
10418 && (get_remote_thread_info (thread)->stop_reason
10419 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10420 }
10421
10422 /* The to_supports_stopped_by_sw_breakpoint method of target
10423 remote. */
10424
10425 bool
10426 remote_target::supports_stopped_by_sw_breakpoint ()
10427 {
10428 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10429 }
10430
10431 /* The to_stopped_by_hw_breakpoint method of target remote. */
10432
10433 bool
10434 remote_target::stopped_by_hw_breakpoint ()
10435 {
10436 struct thread_info *thread = inferior_thread ();
10437
10438 return (thread->priv != NULL
10439 && (get_remote_thread_info (thread)->stop_reason
10440 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10441 }
10442
10443 /* The to_supports_stopped_by_hw_breakpoint method of target
10444 remote. */
10445
10446 bool
10447 remote_target::supports_stopped_by_hw_breakpoint ()
10448 {
10449 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10450 }
10451
10452 bool
10453 remote_target::stopped_by_watchpoint ()
10454 {
10455 struct thread_info *thread = inferior_thread ();
10456
10457 return (thread->priv != NULL
10458 && (get_remote_thread_info (thread)->stop_reason
10459 == TARGET_STOPPED_BY_WATCHPOINT));
10460 }
10461
10462 bool
10463 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10464 {
10465 struct thread_info *thread = inferior_thread ();
10466
10467 if (thread->priv != NULL
10468 && (get_remote_thread_info (thread)->stop_reason
10469 == TARGET_STOPPED_BY_WATCHPOINT))
10470 {
10471 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10472 return true;
10473 }
10474
10475 return false;
10476 }
10477
10478
10479 int
10480 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10481 struct bp_target_info *bp_tgt)
10482 {
10483 CORE_ADDR addr = bp_tgt->reqstd_address;
10484 struct remote_state *rs;
10485 char *p, *endbuf;
10486 char *message;
10487
10488 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10489 return -1;
10490
10491 /* Make sure the remote is pointing at the right process, if
10492 necessary. */
10493 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10494 set_general_process ();
10495
10496 rs = get_remote_state ();
10497 p = rs->buf.data ();
10498 endbuf = p + get_remote_packet_size ();
10499
10500 *(p++) = 'Z';
10501 *(p++) = '1';
10502 *(p++) = ',';
10503
10504 addr = remote_address_masked (addr);
10505 p += hexnumstr (p, (ULONGEST) addr);
10506 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10507
10508 if (supports_evaluation_of_breakpoint_conditions ())
10509 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10510
10511 if (can_run_breakpoint_commands ())
10512 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10513
10514 putpkt (rs->buf);
10515 getpkt (&rs->buf, 0);
10516
10517 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10518 {
10519 case PACKET_ERROR:
10520 if (rs->buf[1] == '.')
10521 {
10522 message = strchr (&rs->buf[2], '.');
10523 if (message)
10524 error (_("Remote failure reply: %s"), message + 1);
10525 }
10526 return -1;
10527 case PACKET_UNKNOWN:
10528 return -1;
10529 case PACKET_OK:
10530 return 0;
10531 }
10532 internal_error (__FILE__, __LINE__,
10533 _("remote_insert_hw_breakpoint: reached end of function"));
10534 }
10535
10536
10537 int
10538 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10539 struct bp_target_info *bp_tgt)
10540 {
10541 CORE_ADDR addr;
10542 struct remote_state *rs = get_remote_state ();
10543 char *p = rs->buf.data ();
10544 char *endbuf = p + get_remote_packet_size ();
10545
10546 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10547 return -1;
10548
10549 /* Make sure the remote is pointing at the right process, if
10550 necessary. */
10551 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10552 set_general_process ();
10553
10554 *(p++) = 'z';
10555 *(p++) = '1';
10556 *(p++) = ',';
10557
10558 addr = remote_address_masked (bp_tgt->placed_address);
10559 p += hexnumstr (p, (ULONGEST) addr);
10560 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10561
10562 putpkt (rs->buf);
10563 getpkt (&rs->buf, 0);
10564
10565 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10566 {
10567 case PACKET_ERROR:
10568 case PACKET_UNKNOWN:
10569 return -1;
10570 case PACKET_OK:
10571 return 0;
10572 }
10573 internal_error (__FILE__, __LINE__,
10574 _("remote_remove_hw_breakpoint: reached end of function"));
10575 }
10576
10577 /* Verify memory using the "qCRC:" request. */
10578
10579 int
10580 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10581 {
10582 struct remote_state *rs = get_remote_state ();
10583 unsigned long host_crc, target_crc;
10584 char *tmp;
10585
10586 /* It doesn't make sense to use qCRC if the remote target is
10587 connected but not running. */
10588 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10589 {
10590 enum packet_result result;
10591
10592 /* Make sure the remote is pointing at the right process. */
10593 set_general_process ();
10594
10595 /* FIXME: assumes lma can fit into long. */
10596 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10597 (long) lma, (long) size);
10598 putpkt (rs->buf);
10599
10600 /* Be clever; compute the host_crc before waiting for target
10601 reply. */
10602 host_crc = xcrc32 (data, size, 0xffffffff);
10603
10604 getpkt (&rs->buf, 0);
10605
10606 result = packet_ok (rs->buf,
10607 &remote_protocol_packets[PACKET_qCRC]);
10608 if (result == PACKET_ERROR)
10609 return -1;
10610 else if (result == PACKET_OK)
10611 {
10612 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10613 target_crc = target_crc * 16 + fromhex (*tmp);
10614
10615 return (host_crc == target_crc);
10616 }
10617 }
10618
10619 return simple_verify_memory (this, data, lma, size);
10620 }
10621
10622 /* compare-sections command
10623
10624 With no arguments, compares each loadable section in the exec bfd
10625 with the same memory range on the target, and reports mismatches.
10626 Useful for verifying the image on the target against the exec file. */
10627
10628 static void
10629 compare_sections_command (const char *args, int from_tty)
10630 {
10631 asection *s;
10632 const char *sectname;
10633 bfd_size_type size;
10634 bfd_vma lma;
10635 int matched = 0;
10636 int mismatched = 0;
10637 int res;
10638 int read_only = 0;
10639
10640 if (!exec_bfd)
10641 error (_("command cannot be used without an exec file"));
10642
10643 if (args != NULL && strcmp (args, "-r") == 0)
10644 {
10645 read_only = 1;
10646 args = NULL;
10647 }
10648
10649 for (s = exec_bfd->sections; s; s = s->next)
10650 {
10651 if (!(s->flags & SEC_LOAD))
10652 continue; /* Skip non-loadable section. */
10653
10654 if (read_only && (s->flags & SEC_READONLY) == 0)
10655 continue; /* Skip writeable sections */
10656
10657 size = bfd_get_section_size (s);
10658 if (size == 0)
10659 continue; /* Skip zero-length section. */
10660
10661 sectname = bfd_get_section_name (exec_bfd, s);
10662 if (args && strcmp (args, sectname) != 0)
10663 continue; /* Not the section selected by user. */
10664
10665 matched = 1; /* Do this section. */
10666 lma = s->lma;
10667
10668 gdb::byte_vector sectdata (size);
10669 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10670
10671 res = target_verify_memory (sectdata.data (), lma, size);
10672
10673 if (res == -1)
10674 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10675 paddress (target_gdbarch (), lma),
10676 paddress (target_gdbarch (), lma + size));
10677
10678 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10679 paddress (target_gdbarch (), lma),
10680 paddress (target_gdbarch (), lma + size));
10681 if (res)
10682 printf_filtered ("matched.\n");
10683 else
10684 {
10685 printf_filtered ("MIS-MATCHED!\n");
10686 mismatched++;
10687 }
10688 }
10689 if (mismatched > 0)
10690 warning (_("One or more sections of the target image does not match\n\
10691 the loaded file\n"));
10692 if (args && !matched)
10693 printf_filtered (_("No loaded section named '%s'.\n"), args);
10694 }
10695
10696 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10697 into remote target. The number of bytes written to the remote
10698 target is returned, or -1 for error. */
10699
10700 target_xfer_status
10701 remote_target::remote_write_qxfer (const char *object_name,
10702 const char *annex, const gdb_byte *writebuf,
10703 ULONGEST offset, LONGEST len,
10704 ULONGEST *xfered_len,
10705 struct packet_config *packet)
10706 {
10707 int i, buf_len;
10708 ULONGEST n;
10709 struct remote_state *rs = get_remote_state ();
10710 int max_size = get_memory_write_packet_size ();
10711
10712 if (packet_config_support (packet) == PACKET_DISABLE)
10713 return TARGET_XFER_E_IO;
10714
10715 /* Insert header. */
10716 i = snprintf (rs->buf.data (), max_size,
10717 "qXfer:%s:write:%s:%s:",
10718 object_name, annex ? annex : "",
10719 phex_nz (offset, sizeof offset));
10720 max_size -= (i + 1);
10721
10722 /* Escape as much data as fits into rs->buf. */
10723 buf_len = remote_escape_output
10724 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10725
10726 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10727 || getpkt_sane (&rs->buf, 0) < 0
10728 || packet_ok (rs->buf, packet) != PACKET_OK)
10729 return TARGET_XFER_E_IO;
10730
10731 unpack_varlen_hex (rs->buf.data (), &n);
10732
10733 *xfered_len = n;
10734 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10735 }
10736
10737 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10738 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10739 number of bytes read is returned, or 0 for EOF, or -1 for error.
10740 The number of bytes read may be less than LEN without indicating an
10741 EOF. PACKET is checked and updated to indicate whether the remote
10742 target supports this object. */
10743
10744 target_xfer_status
10745 remote_target::remote_read_qxfer (const char *object_name,
10746 const char *annex,
10747 gdb_byte *readbuf, ULONGEST offset,
10748 LONGEST len,
10749 ULONGEST *xfered_len,
10750 struct packet_config *packet)
10751 {
10752 struct remote_state *rs = get_remote_state ();
10753 LONGEST i, n, packet_len;
10754
10755 if (packet_config_support (packet) == PACKET_DISABLE)
10756 return TARGET_XFER_E_IO;
10757
10758 /* Check whether we've cached an end-of-object packet that matches
10759 this request. */
10760 if (rs->finished_object)
10761 {
10762 if (strcmp (object_name, rs->finished_object) == 0
10763 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10764 && offset == rs->finished_offset)
10765 return TARGET_XFER_EOF;
10766
10767
10768 /* Otherwise, we're now reading something different. Discard
10769 the cache. */
10770 xfree (rs->finished_object);
10771 xfree (rs->finished_annex);
10772 rs->finished_object = NULL;
10773 rs->finished_annex = NULL;
10774 }
10775
10776 /* Request only enough to fit in a single packet. The actual data
10777 may not, since we don't know how much of it will need to be escaped;
10778 the target is free to respond with slightly less data. We subtract
10779 five to account for the response type and the protocol frame. */
10780 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10781 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10782 "qXfer:%s:read:%s:%s,%s",
10783 object_name, annex ? annex : "",
10784 phex_nz (offset, sizeof offset),
10785 phex_nz (n, sizeof n));
10786 i = putpkt (rs->buf);
10787 if (i < 0)
10788 return TARGET_XFER_E_IO;
10789
10790 rs->buf[0] = '\0';
10791 packet_len = getpkt_sane (&rs->buf, 0);
10792 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10793 return TARGET_XFER_E_IO;
10794
10795 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10796 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10797
10798 /* 'm' means there is (or at least might be) more data after this
10799 batch. That does not make sense unless there's at least one byte
10800 of data in this reply. */
10801 if (rs->buf[0] == 'm' && packet_len == 1)
10802 error (_("Remote qXfer reply contained no data."));
10803
10804 /* Got some data. */
10805 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10806 packet_len - 1, readbuf, n);
10807
10808 /* 'l' is an EOF marker, possibly including a final block of data,
10809 or possibly empty. If we have the final block of a non-empty
10810 object, record this fact to bypass a subsequent partial read. */
10811 if (rs->buf[0] == 'l' && offset + i > 0)
10812 {
10813 rs->finished_object = xstrdup (object_name);
10814 rs->finished_annex = xstrdup (annex ? annex : "");
10815 rs->finished_offset = offset + i;
10816 }
10817
10818 if (i == 0)
10819 return TARGET_XFER_EOF;
10820 else
10821 {
10822 *xfered_len = i;
10823 return TARGET_XFER_OK;
10824 }
10825 }
10826
10827 enum target_xfer_status
10828 remote_target::xfer_partial (enum target_object object,
10829 const char *annex, gdb_byte *readbuf,
10830 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10831 ULONGEST *xfered_len)
10832 {
10833 struct remote_state *rs;
10834 int i;
10835 char *p2;
10836 char query_type;
10837 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10838
10839 set_remote_traceframe ();
10840 set_general_thread (inferior_ptid);
10841
10842 rs = get_remote_state ();
10843
10844 /* Handle memory using the standard memory routines. */
10845 if (object == TARGET_OBJECT_MEMORY)
10846 {
10847 /* If the remote target is connected but not running, we should
10848 pass this request down to a lower stratum (e.g. the executable
10849 file). */
10850 if (!target_has_execution)
10851 return TARGET_XFER_EOF;
10852
10853 if (writebuf != NULL)
10854 return remote_write_bytes (offset, writebuf, len, unit_size,
10855 xfered_len);
10856 else
10857 return remote_read_bytes (offset, readbuf, len, unit_size,
10858 xfered_len);
10859 }
10860
10861 /* Handle SPU memory using qxfer packets. */
10862 if (object == TARGET_OBJECT_SPU)
10863 {
10864 if (readbuf)
10865 return remote_read_qxfer ("spu", annex, readbuf, offset, len,
10866 xfered_len, &remote_protocol_packets
10867 [PACKET_qXfer_spu_read]);
10868 else
10869 return remote_write_qxfer ("spu", annex, writebuf, offset, len,
10870 xfered_len, &remote_protocol_packets
10871 [PACKET_qXfer_spu_write]);
10872 }
10873
10874 /* Handle extra signal info using qxfer packets. */
10875 if (object == TARGET_OBJECT_SIGNAL_INFO)
10876 {
10877 if (readbuf)
10878 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10879 xfered_len, &remote_protocol_packets
10880 [PACKET_qXfer_siginfo_read]);
10881 else
10882 return remote_write_qxfer ("siginfo", annex,
10883 writebuf, offset, len, xfered_len,
10884 &remote_protocol_packets
10885 [PACKET_qXfer_siginfo_write]);
10886 }
10887
10888 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10889 {
10890 if (readbuf)
10891 return remote_read_qxfer ("statictrace", annex,
10892 readbuf, offset, len, xfered_len,
10893 &remote_protocol_packets
10894 [PACKET_qXfer_statictrace_read]);
10895 else
10896 return TARGET_XFER_E_IO;
10897 }
10898
10899 /* Only handle flash writes. */
10900 if (writebuf != NULL)
10901 {
10902 switch (object)
10903 {
10904 case TARGET_OBJECT_FLASH:
10905 return remote_flash_write (offset, len, xfered_len,
10906 writebuf);
10907
10908 default:
10909 return TARGET_XFER_E_IO;
10910 }
10911 }
10912
10913 /* Map pre-existing objects onto letters. DO NOT do this for new
10914 objects!!! Instead specify new query packets. */
10915 switch (object)
10916 {
10917 case TARGET_OBJECT_AVR:
10918 query_type = 'R';
10919 break;
10920
10921 case TARGET_OBJECT_AUXV:
10922 gdb_assert (annex == NULL);
10923 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10924 xfered_len,
10925 &remote_protocol_packets[PACKET_qXfer_auxv]);
10926
10927 case TARGET_OBJECT_AVAILABLE_FEATURES:
10928 return remote_read_qxfer
10929 ("features", annex, readbuf, offset, len, xfered_len,
10930 &remote_protocol_packets[PACKET_qXfer_features]);
10931
10932 case TARGET_OBJECT_LIBRARIES:
10933 return remote_read_qxfer
10934 ("libraries", annex, readbuf, offset, len, xfered_len,
10935 &remote_protocol_packets[PACKET_qXfer_libraries]);
10936
10937 case TARGET_OBJECT_LIBRARIES_SVR4:
10938 return remote_read_qxfer
10939 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10940 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10941
10942 case TARGET_OBJECT_MEMORY_MAP:
10943 gdb_assert (annex == NULL);
10944 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10945 xfered_len,
10946 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10947
10948 case TARGET_OBJECT_OSDATA:
10949 /* Should only get here if we're connected. */
10950 gdb_assert (rs->remote_desc);
10951 return remote_read_qxfer
10952 ("osdata", annex, readbuf, offset, len, xfered_len,
10953 &remote_protocol_packets[PACKET_qXfer_osdata]);
10954
10955 case TARGET_OBJECT_THREADS:
10956 gdb_assert (annex == NULL);
10957 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10958 xfered_len,
10959 &remote_protocol_packets[PACKET_qXfer_threads]);
10960
10961 case TARGET_OBJECT_TRACEFRAME_INFO:
10962 gdb_assert (annex == NULL);
10963 return remote_read_qxfer
10964 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
10965 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10966
10967 case TARGET_OBJECT_FDPIC:
10968 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
10969 xfered_len,
10970 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10971
10972 case TARGET_OBJECT_OPENVMS_UIB:
10973 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
10974 xfered_len,
10975 &remote_protocol_packets[PACKET_qXfer_uib]);
10976
10977 case TARGET_OBJECT_BTRACE:
10978 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
10979 xfered_len,
10980 &remote_protocol_packets[PACKET_qXfer_btrace]);
10981
10982 case TARGET_OBJECT_BTRACE_CONF:
10983 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
10984 len, xfered_len,
10985 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10986
10987 case TARGET_OBJECT_EXEC_FILE:
10988 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
10989 len, xfered_len,
10990 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10991
10992 default:
10993 return TARGET_XFER_E_IO;
10994 }
10995
10996 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10997 large enough let the caller deal with it. */
10998 if (len < get_remote_packet_size ())
10999 return TARGET_XFER_E_IO;
11000 len = get_remote_packet_size ();
11001
11002 /* Except for querying the minimum buffer size, target must be open. */
11003 if (!rs->remote_desc)
11004 error (_("remote query is only available after target open"));
11005
11006 gdb_assert (annex != NULL);
11007 gdb_assert (readbuf != NULL);
11008
11009 p2 = rs->buf.data ();
11010 *p2++ = 'q';
11011 *p2++ = query_type;
11012
11013 /* We used one buffer char for the remote protocol q command and
11014 another for the query type. As the remote protocol encapsulation
11015 uses 4 chars plus one extra in case we are debugging
11016 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11017 string. */
11018 i = 0;
11019 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11020 {
11021 /* Bad caller may have sent forbidden characters. */
11022 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11023 *p2++ = annex[i];
11024 i++;
11025 }
11026 *p2 = '\0';
11027 gdb_assert (annex[i] == '\0');
11028
11029 i = putpkt (rs->buf);
11030 if (i < 0)
11031 return TARGET_XFER_E_IO;
11032
11033 getpkt (&rs->buf, 0);
11034 strcpy ((char *) readbuf, rs->buf.data ());
11035
11036 *xfered_len = strlen ((char *) readbuf);
11037 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11038 }
11039
11040 /* Implementation of to_get_memory_xfer_limit. */
11041
11042 ULONGEST
11043 remote_target::get_memory_xfer_limit ()
11044 {
11045 return get_memory_write_packet_size ();
11046 }
11047
11048 int
11049 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11050 const gdb_byte *pattern, ULONGEST pattern_len,
11051 CORE_ADDR *found_addrp)
11052 {
11053 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11054 struct remote_state *rs = get_remote_state ();
11055 int max_size = get_memory_write_packet_size ();
11056 struct packet_config *packet =
11057 &remote_protocol_packets[PACKET_qSearch_memory];
11058 /* Number of packet bytes used to encode the pattern;
11059 this could be more than PATTERN_LEN due to escape characters. */
11060 int escaped_pattern_len;
11061 /* Amount of pattern that was encodable in the packet. */
11062 int used_pattern_len;
11063 int i;
11064 int found;
11065 ULONGEST found_addr;
11066
11067 /* Don't go to the target if we don't have to. This is done before
11068 checking packet_config_support to avoid the possibility that a
11069 success for this edge case means the facility works in
11070 general. */
11071 if (pattern_len > search_space_len)
11072 return 0;
11073 if (pattern_len == 0)
11074 {
11075 *found_addrp = start_addr;
11076 return 1;
11077 }
11078
11079 /* If we already know the packet isn't supported, fall back to the simple
11080 way of searching memory. */
11081
11082 if (packet_config_support (packet) == PACKET_DISABLE)
11083 {
11084 /* Target doesn't provided special support, fall back and use the
11085 standard support (copy memory and do the search here). */
11086 return simple_search_memory (this, start_addr, search_space_len,
11087 pattern, pattern_len, found_addrp);
11088 }
11089
11090 /* Make sure the remote is pointing at the right process. */
11091 set_general_process ();
11092
11093 /* Insert header. */
11094 i = snprintf (rs->buf.data (), max_size,
11095 "qSearch:memory:%s;%s;",
11096 phex_nz (start_addr, addr_size),
11097 phex_nz (search_space_len, sizeof (search_space_len)));
11098 max_size -= (i + 1);
11099
11100 /* Escape as much data as fits into rs->buf. */
11101 escaped_pattern_len =
11102 remote_escape_output (pattern, pattern_len, 1,
11103 (gdb_byte *) rs->buf.data () + i,
11104 &used_pattern_len, max_size);
11105
11106 /* Bail if the pattern is too large. */
11107 if (used_pattern_len != pattern_len)
11108 error (_("Pattern is too large to transmit to remote target."));
11109
11110 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11111 || getpkt_sane (&rs->buf, 0) < 0
11112 || packet_ok (rs->buf, packet) != PACKET_OK)
11113 {
11114 /* The request may not have worked because the command is not
11115 supported. If so, fall back to the simple way. */
11116 if (packet_config_support (packet) == PACKET_DISABLE)
11117 {
11118 return simple_search_memory (this, start_addr, search_space_len,
11119 pattern, pattern_len, found_addrp);
11120 }
11121 return -1;
11122 }
11123
11124 if (rs->buf[0] == '0')
11125 found = 0;
11126 else if (rs->buf[0] == '1')
11127 {
11128 found = 1;
11129 if (rs->buf[1] != ',')
11130 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11131 unpack_varlen_hex (&rs->buf[2], &found_addr);
11132 *found_addrp = found_addr;
11133 }
11134 else
11135 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11136
11137 return found;
11138 }
11139
11140 void
11141 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11142 {
11143 struct remote_state *rs = get_remote_state ();
11144 char *p = rs->buf.data ();
11145
11146 if (!rs->remote_desc)
11147 error (_("remote rcmd is only available after target open"));
11148
11149 /* Send a NULL command across as an empty command. */
11150 if (command == NULL)
11151 command = "";
11152
11153 /* The query prefix. */
11154 strcpy (rs->buf.data (), "qRcmd,");
11155 p = strchr (rs->buf.data (), '\0');
11156
11157 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11158 > get_remote_packet_size ())
11159 error (_("\"monitor\" command ``%s'' is too long."), command);
11160
11161 /* Encode the actual command. */
11162 bin2hex ((const gdb_byte *) command, p, strlen (command));
11163
11164 if (putpkt (rs->buf) < 0)
11165 error (_("Communication problem with target."));
11166
11167 /* get/display the response */
11168 while (1)
11169 {
11170 char *buf;
11171
11172 /* XXX - see also remote_get_noisy_reply(). */
11173 QUIT; /* Allow user to bail out with ^C. */
11174 rs->buf[0] = '\0';
11175 if (getpkt_sane (&rs->buf, 0) == -1)
11176 {
11177 /* Timeout. Continue to (try to) read responses.
11178 This is better than stopping with an error, assuming the stub
11179 is still executing the (long) monitor command.
11180 If needed, the user can interrupt gdb using C-c, obtaining
11181 an effect similar to stop on timeout. */
11182 continue;
11183 }
11184 buf = rs->buf.data ();
11185 if (buf[0] == '\0')
11186 error (_("Target does not support this command."));
11187 if (buf[0] == 'O' && buf[1] != 'K')
11188 {
11189 remote_console_output (buf + 1); /* 'O' message from stub. */
11190 continue;
11191 }
11192 if (strcmp (buf, "OK") == 0)
11193 break;
11194 if (strlen (buf) == 3 && buf[0] == 'E'
11195 && isdigit (buf[1]) && isdigit (buf[2]))
11196 {
11197 error (_("Protocol error with Rcmd"));
11198 }
11199 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11200 {
11201 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11202
11203 fputc_unfiltered (c, outbuf);
11204 }
11205 break;
11206 }
11207 }
11208
11209 std::vector<mem_region>
11210 remote_target::memory_map ()
11211 {
11212 std::vector<mem_region> result;
11213 gdb::optional<gdb::char_vector> text
11214 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11215
11216 if (text)
11217 result = parse_memory_map (text->data ());
11218
11219 return result;
11220 }
11221
11222 static void
11223 packet_command (const char *args, int from_tty)
11224 {
11225 remote_target *remote = get_current_remote_target ();
11226
11227 if (remote == nullptr)
11228 error (_("command can only be used with remote target"));
11229
11230 remote->packet_command (args, from_tty);
11231 }
11232
11233 void
11234 remote_target::packet_command (const char *args, int from_tty)
11235 {
11236 if (!args)
11237 error (_("remote-packet command requires packet text as argument"));
11238
11239 puts_filtered ("sending: ");
11240 print_packet (args);
11241 puts_filtered ("\n");
11242 putpkt (args);
11243
11244 remote_state *rs = get_remote_state ();
11245
11246 getpkt (&rs->buf, 0);
11247 puts_filtered ("received: ");
11248 print_packet (rs->buf.data ());
11249 puts_filtered ("\n");
11250 }
11251
11252 #if 0
11253 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11254
11255 static void display_thread_info (struct gdb_ext_thread_info *info);
11256
11257 static void threadset_test_cmd (char *cmd, int tty);
11258
11259 static void threadalive_test (char *cmd, int tty);
11260
11261 static void threadlist_test_cmd (char *cmd, int tty);
11262
11263 int get_and_display_threadinfo (threadref *ref);
11264
11265 static void threadinfo_test_cmd (char *cmd, int tty);
11266
11267 static int thread_display_step (threadref *ref, void *context);
11268
11269 static void threadlist_update_test_cmd (char *cmd, int tty);
11270
11271 static void init_remote_threadtests (void);
11272
11273 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11274
11275 static void
11276 threadset_test_cmd (const char *cmd, int tty)
11277 {
11278 int sample_thread = SAMPLE_THREAD;
11279
11280 printf_filtered (_("Remote threadset test\n"));
11281 set_general_thread (sample_thread);
11282 }
11283
11284
11285 static void
11286 threadalive_test (const char *cmd, int tty)
11287 {
11288 int sample_thread = SAMPLE_THREAD;
11289 int pid = inferior_ptid.pid ();
11290 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11291
11292 if (remote_thread_alive (ptid))
11293 printf_filtered ("PASS: Thread alive test\n");
11294 else
11295 printf_filtered ("FAIL: Thread alive test\n");
11296 }
11297
11298 void output_threadid (char *title, threadref *ref);
11299
11300 void
11301 output_threadid (char *title, threadref *ref)
11302 {
11303 char hexid[20];
11304
11305 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
11306 hexid[16] = 0;
11307 printf_filtered ("%s %s\n", title, (&hexid[0]));
11308 }
11309
11310 static void
11311 threadlist_test_cmd (const char *cmd, int tty)
11312 {
11313 int startflag = 1;
11314 threadref nextthread;
11315 int done, result_count;
11316 threadref threadlist[3];
11317
11318 printf_filtered ("Remote Threadlist test\n");
11319 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11320 &result_count, &threadlist[0]))
11321 printf_filtered ("FAIL: threadlist test\n");
11322 else
11323 {
11324 threadref *scan = threadlist;
11325 threadref *limit = scan + result_count;
11326
11327 while (scan < limit)
11328 output_threadid (" thread ", scan++);
11329 }
11330 }
11331
11332 void
11333 display_thread_info (struct gdb_ext_thread_info *info)
11334 {
11335 output_threadid ("Threadid: ", &info->threadid);
11336 printf_filtered ("Name: %s\n ", info->shortname);
11337 printf_filtered ("State: %s\n", info->display);
11338 printf_filtered ("other: %s\n\n", info->more_display);
11339 }
11340
11341 int
11342 get_and_display_threadinfo (threadref *ref)
11343 {
11344 int result;
11345 int set;
11346 struct gdb_ext_thread_info threadinfo;
11347
11348 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11349 | TAG_MOREDISPLAY | TAG_DISPLAY;
11350 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11351 display_thread_info (&threadinfo);
11352 return result;
11353 }
11354
11355 static void
11356 threadinfo_test_cmd (const char *cmd, int tty)
11357 {
11358 int athread = SAMPLE_THREAD;
11359 threadref thread;
11360 int set;
11361
11362 int_to_threadref (&thread, athread);
11363 printf_filtered ("Remote Threadinfo test\n");
11364 if (!get_and_display_threadinfo (&thread))
11365 printf_filtered ("FAIL cannot get thread info\n");
11366 }
11367
11368 static int
11369 thread_display_step (threadref *ref, void *context)
11370 {
11371 /* output_threadid(" threadstep ",ref); *//* simple test */
11372 return get_and_display_threadinfo (ref);
11373 }
11374
11375 static void
11376 threadlist_update_test_cmd (const char *cmd, int tty)
11377 {
11378 printf_filtered ("Remote Threadlist update test\n");
11379 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11380 }
11381
11382 static void
11383 init_remote_threadtests (void)
11384 {
11385 add_com ("tlist", class_obscure, threadlist_test_cmd,
11386 _("Fetch and print the remote list of "
11387 "thread identifiers, one pkt only"));
11388 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11389 _("Fetch and display info about one thread"));
11390 add_com ("tset", class_obscure, threadset_test_cmd,
11391 _("Test setting to a different thread"));
11392 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11393 _("Iterate through updating all remote thread info"));
11394 add_com ("talive", class_obscure, threadalive_test,
11395 _(" Remote thread alive test "));
11396 }
11397
11398 #endif /* 0 */
11399
11400 /* Convert a thread ID to a string. */
11401
11402 std::string
11403 remote_target::pid_to_str (ptid_t ptid)
11404 {
11405 struct remote_state *rs = get_remote_state ();
11406
11407 if (ptid == null_ptid)
11408 return normal_pid_to_str (ptid);
11409 else if (ptid.is_pid ())
11410 {
11411 /* Printing an inferior target id. */
11412
11413 /* When multi-process extensions are off, there's no way in the
11414 remote protocol to know the remote process id, if there's any
11415 at all. There's one exception --- when we're connected with
11416 target extended-remote, and we manually attached to a process
11417 with "attach PID". We don't record anywhere a flag that
11418 allows us to distinguish that case from the case of
11419 connecting with extended-remote and the stub already being
11420 attached to a process, and reporting yes to qAttached, hence
11421 no smart special casing here. */
11422 if (!remote_multi_process_p (rs))
11423 return "Remote target";
11424
11425 return normal_pid_to_str (ptid);
11426 }
11427 else
11428 {
11429 if (magic_null_ptid == ptid)
11430 return "Thread <main>";
11431 else if (remote_multi_process_p (rs))
11432 if (ptid.lwp () == 0)
11433 return normal_pid_to_str (ptid);
11434 else
11435 return string_printf ("Thread %d.%ld",
11436 ptid.pid (), ptid.lwp ());
11437 else
11438 return string_printf ("Thread %ld", ptid.lwp ());
11439 }
11440 }
11441
11442 /* Get the address of the thread local variable in OBJFILE which is
11443 stored at OFFSET within the thread local storage for thread PTID. */
11444
11445 CORE_ADDR
11446 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11447 CORE_ADDR offset)
11448 {
11449 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11450 {
11451 struct remote_state *rs = get_remote_state ();
11452 char *p = rs->buf.data ();
11453 char *endp = p + get_remote_packet_size ();
11454 enum packet_result result;
11455
11456 strcpy (p, "qGetTLSAddr:");
11457 p += strlen (p);
11458 p = write_ptid (p, endp, ptid);
11459 *p++ = ',';
11460 p += hexnumstr (p, offset);
11461 *p++ = ',';
11462 p += hexnumstr (p, lm);
11463 *p++ = '\0';
11464
11465 putpkt (rs->buf);
11466 getpkt (&rs->buf, 0);
11467 result = packet_ok (rs->buf,
11468 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11469 if (result == PACKET_OK)
11470 {
11471 ULONGEST addr;
11472
11473 unpack_varlen_hex (rs->buf.data (), &addr);
11474 return addr;
11475 }
11476 else if (result == PACKET_UNKNOWN)
11477 throw_error (TLS_GENERIC_ERROR,
11478 _("Remote target doesn't support qGetTLSAddr packet"));
11479 else
11480 throw_error (TLS_GENERIC_ERROR,
11481 _("Remote target failed to process qGetTLSAddr request"));
11482 }
11483 else
11484 throw_error (TLS_GENERIC_ERROR,
11485 _("TLS not supported or disabled on this target"));
11486 /* Not reached. */
11487 return 0;
11488 }
11489
11490 /* Provide thread local base, i.e. Thread Information Block address.
11491 Returns 1 if ptid is found and thread_local_base is non zero. */
11492
11493 bool
11494 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11495 {
11496 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11497 {
11498 struct remote_state *rs = get_remote_state ();
11499 char *p = rs->buf.data ();
11500 char *endp = p + get_remote_packet_size ();
11501 enum packet_result result;
11502
11503 strcpy (p, "qGetTIBAddr:");
11504 p += strlen (p);
11505 p = write_ptid (p, endp, ptid);
11506 *p++ = '\0';
11507
11508 putpkt (rs->buf);
11509 getpkt (&rs->buf, 0);
11510 result = packet_ok (rs->buf,
11511 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11512 if (result == PACKET_OK)
11513 {
11514 ULONGEST val;
11515 unpack_varlen_hex (rs->buf.data (), &val);
11516 if (addr)
11517 *addr = (CORE_ADDR) val;
11518 return true;
11519 }
11520 else if (result == PACKET_UNKNOWN)
11521 error (_("Remote target doesn't support qGetTIBAddr packet"));
11522 else
11523 error (_("Remote target failed to process qGetTIBAddr request"));
11524 }
11525 else
11526 error (_("qGetTIBAddr not supported or disabled on this target"));
11527 /* Not reached. */
11528 return false;
11529 }
11530
11531 /* Support for inferring a target description based on the current
11532 architecture and the size of a 'g' packet. While the 'g' packet
11533 can have any size (since optional registers can be left off the
11534 end), some sizes are easily recognizable given knowledge of the
11535 approximate architecture. */
11536
11537 struct remote_g_packet_guess
11538 {
11539 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11540 : bytes (bytes_),
11541 tdesc (tdesc_)
11542 {
11543 }
11544
11545 int bytes;
11546 const struct target_desc *tdesc;
11547 };
11548
11549 struct remote_g_packet_data : public allocate_on_obstack
11550 {
11551 std::vector<remote_g_packet_guess> guesses;
11552 };
11553
11554 static struct gdbarch_data *remote_g_packet_data_handle;
11555
11556 static void *
11557 remote_g_packet_data_init (struct obstack *obstack)
11558 {
11559 return new (obstack) remote_g_packet_data;
11560 }
11561
11562 void
11563 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11564 const struct target_desc *tdesc)
11565 {
11566 struct remote_g_packet_data *data
11567 = ((struct remote_g_packet_data *)
11568 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11569
11570 gdb_assert (tdesc != NULL);
11571
11572 for (const remote_g_packet_guess &guess : data->guesses)
11573 if (guess.bytes == bytes)
11574 internal_error (__FILE__, __LINE__,
11575 _("Duplicate g packet description added for size %d"),
11576 bytes);
11577
11578 data->guesses.emplace_back (bytes, tdesc);
11579 }
11580
11581 /* Return true if remote_read_description would do anything on this target
11582 and architecture, false otherwise. */
11583
11584 static bool
11585 remote_read_description_p (struct target_ops *target)
11586 {
11587 struct remote_g_packet_data *data
11588 = ((struct remote_g_packet_data *)
11589 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11590
11591 return !data->guesses.empty ();
11592 }
11593
11594 const struct target_desc *
11595 remote_target::read_description ()
11596 {
11597 struct remote_g_packet_data *data
11598 = ((struct remote_g_packet_data *)
11599 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11600
11601 /* Do not try this during initial connection, when we do not know
11602 whether there is a running but stopped thread. */
11603 if (!target_has_execution || inferior_ptid == null_ptid)
11604 return beneath ()->read_description ();
11605
11606 if (!data->guesses.empty ())
11607 {
11608 int bytes = send_g_packet ();
11609
11610 for (const remote_g_packet_guess &guess : data->guesses)
11611 if (guess.bytes == bytes)
11612 return guess.tdesc;
11613
11614 /* We discard the g packet. A minor optimization would be to
11615 hold on to it, and fill the register cache once we have selected
11616 an architecture, but it's too tricky to do safely. */
11617 }
11618
11619 return beneath ()->read_description ();
11620 }
11621
11622 /* Remote file transfer support. This is host-initiated I/O, not
11623 target-initiated; for target-initiated, see remote-fileio.c. */
11624
11625 /* If *LEFT is at least the length of STRING, copy STRING to
11626 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11627 decrease *LEFT. Otherwise raise an error. */
11628
11629 static void
11630 remote_buffer_add_string (char **buffer, int *left, const char *string)
11631 {
11632 int len = strlen (string);
11633
11634 if (len > *left)
11635 error (_("Packet too long for target."));
11636
11637 memcpy (*buffer, string, len);
11638 *buffer += len;
11639 *left -= len;
11640
11641 /* NUL-terminate the buffer as a convenience, if there is
11642 room. */
11643 if (*left)
11644 **buffer = '\0';
11645 }
11646
11647 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11648 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11649 decrease *LEFT. Otherwise raise an error. */
11650
11651 static void
11652 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11653 int len)
11654 {
11655 if (2 * len > *left)
11656 error (_("Packet too long for target."));
11657
11658 bin2hex (bytes, *buffer, len);
11659 *buffer += 2 * len;
11660 *left -= 2 * len;
11661
11662 /* NUL-terminate the buffer as a convenience, if there is
11663 room. */
11664 if (*left)
11665 **buffer = '\0';
11666 }
11667
11668 /* If *LEFT is large enough, convert VALUE to hex and add it to
11669 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11670 decrease *LEFT. Otherwise raise an error. */
11671
11672 static void
11673 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11674 {
11675 int len = hexnumlen (value);
11676
11677 if (len > *left)
11678 error (_("Packet too long for target."));
11679
11680 hexnumstr (*buffer, value);
11681 *buffer += len;
11682 *left -= len;
11683
11684 /* NUL-terminate the buffer as a convenience, if there is
11685 room. */
11686 if (*left)
11687 **buffer = '\0';
11688 }
11689
11690 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11691 value, *REMOTE_ERRNO to the remote error number or zero if none
11692 was included, and *ATTACHMENT to point to the start of the annex
11693 if any. The length of the packet isn't needed here; there may
11694 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11695
11696 Return 0 if the packet could be parsed, -1 if it could not. If
11697 -1 is returned, the other variables may not be initialized. */
11698
11699 static int
11700 remote_hostio_parse_result (char *buffer, int *retcode,
11701 int *remote_errno, char **attachment)
11702 {
11703 char *p, *p2;
11704
11705 *remote_errno = 0;
11706 *attachment = NULL;
11707
11708 if (buffer[0] != 'F')
11709 return -1;
11710
11711 errno = 0;
11712 *retcode = strtol (&buffer[1], &p, 16);
11713 if (errno != 0 || p == &buffer[1])
11714 return -1;
11715
11716 /* Check for ",errno". */
11717 if (*p == ',')
11718 {
11719 errno = 0;
11720 *remote_errno = strtol (p + 1, &p2, 16);
11721 if (errno != 0 || p + 1 == p2)
11722 return -1;
11723 p = p2;
11724 }
11725
11726 /* Check for ";attachment". If there is no attachment, the
11727 packet should end here. */
11728 if (*p == ';')
11729 {
11730 *attachment = p + 1;
11731 return 0;
11732 }
11733 else if (*p == '\0')
11734 return 0;
11735 else
11736 return -1;
11737 }
11738
11739 /* Send a prepared I/O packet to the target and read its response.
11740 The prepared packet is in the global RS->BUF before this function
11741 is called, and the answer is there when we return.
11742
11743 COMMAND_BYTES is the length of the request to send, which may include
11744 binary data. WHICH_PACKET is the packet configuration to check
11745 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11746 is set to the error number and -1 is returned. Otherwise the value
11747 returned by the function is returned.
11748
11749 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11750 attachment is expected; an error will be reported if there's a
11751 mismatch. If one is found, *ATTACHMENT will be set to point into
11752 the packet buffer and *ATTACHMENT_LEN will be set to the
11753 attachment's length. */
11754
11755 int
11756 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11757 int *remote_errno, char **attachment,
11758 int *attachment_len)
11759 {
11760 struct remote_state *rs = get_remote_state ();
11761 int ret, bytes_read;
11762 char *attachment_tmp;
11763
11764 if (packet_support (which_packet) == PACKET_DISABLE)
11765 {
11766 *remote_errno = FILEIO_ENOSYS;
11767 return -1;
11768 }
11769
11770 putpkt_binary (rs->buf.data (), command_bytes);
11771 bytes_read = getpkt_sane (&rs->buf, 0);
11772
11773 /* If it timed out, something is wrong. Don't try to parse the
11774 buffer. */
11775 if (bytes_read < 0)
11776 {
11777 *remote_errno = FILEIO_EINVAL;
11778 return -1;
11779 }
11780
11781 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11782 {
11783 case PACKET_ERROR:
11784 *remote_errno = FILEIO_EINVAL;
11785 return -1;
11786 case PACKET_UNKNOWN:
11787 *remote_errno = FILEIO_ENOSYS;
11788 return -1;
11789 case PACKET_OK:
11790 break;
11791 }
11792
11793 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11794 &attachment_tmp))
11795 {
11796 *remote_errno = FILEIO_EINVAL;
11797 return -1;
11798 }
11799
11800 /* Make sure we saw an attachment if and only if we expected one. */
11801 if ((attachment_tmp == NULL && attachment != NULL)
11802 || (attachment_tmp != NULL && attachment == NULL))
11803 {
11804 *remote_errno = FILEIO_EINVAL;
11805 return -1;
11806 }
11807
11808 /* If an attachment was found, it must point into the packet buffer;
11809 work out how many bytes there were. */
11810 if (attachment_tmp != NULL)
11811 {
11812 *attachment = attachment_tmp;
11813 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11814 }
11815
11816 return ret;
11817 }
11818
11819 /* See declaration.h. */
11820
11821 void
11822 readahead_cache::invalidate ()
11823 {
11824 this->fd = -1;
11825 }
11826
11827 /* See declaration.h. */
11828
11829 void
11830 readahead_cache::invalidate_fd (int fd)
11831 {
11832 if (this->fd == fd)
11833 this->fd = -1;
11834 }
11835
11836 /* Set the filesystem remote_hostio functions that take FILENAME
11837 arguments will use. Return 0 on success, or -1 if an error
11838 occurs (and set *REMOTE_ERRNO). */
11839
11840 int
11841 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11842 int *remote_errno)
11843 {
11844 struct remote_state *rs = get_remote_state ();
11845 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11846 char *p = rs->buf.data ();
11847 int left = get_remote_packet_size () - 1;
11848 char arg[9];
11849 int ret;
11850
11851 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11852 return 0;
11853
11854 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11855 return 0;
11856
11857 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11858
11859 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11860 remote_buffer_add_string (&p, &left, arg);
11861
11862 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11863 remote_errno, NULL, NULL);
11864
11865 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11866 return 0;
11867
11868 if (ret == 0)
11869 rs->fs_pid = required_pid;
11870
11871 return ret;
11872 }
11873
11874 /* Implementation of to_fileio_open. */
11875
11876 int
11877 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11878 int flags, int mode, int warn_if_slow,
11879 int *remote_errno)
11880 {
11881 struct remote_state *rs = get_remote_state ();
11882 char *p = rs->buf.data ();
11883 int left = get_remote_packet_size () - 1;
11884
11885 if (warn_if_slow)
11886 {
11887 static int warning_issued = 0;
11888
11889 printf_unfiltered (_("Reading %s from remote target...\n"),
11890 filename);
11891
11892 if (!warning_issued)
11893 {
11894 warning (_("File transfers from remote targets can be slow."
11895 " Use \"set sysroot\" to access files locally"
11896 " instead."));
11897 warning_issued = 1;
11898 }
11899 }
11900
11901 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11902 return -1;
11903
11904 remote_buffer_add_string (&p, &left, "vFile:open:");
11905
11906 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11907 strlen (filename));
11908 remote_buffer_add_string (&p, &left, ",");
11909
11910 remote_buffer_add_int (&p, &left, flags);
11911 remote_buffer_add_string (&p, &left, ",");
11912
11913 remote_buffer_add_int (&p, &left, mode);
11914
11915 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
11916 remote_errno, NULL, NULL);
11917 }
11918
11919 int
11920 remote_target::fileio_open (struct inferior *inf, const char *filename,
11921 int flags, int mode, int warn_if_slow,
11922 int *remote_errno)
11923 {
11924 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
11925 remote_errno);
11926 }
11927
11928 /* Implementation of to_fileio_pwrite. */
11929
11930 int
11931 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
11932 ULONGEST offset, int *remote_errno)
11933 {
11934 struct remote_state *rs = get_remote_state ();
11935 char *p = rs->buf.data ();
11936 int left = get_remote_packet_size ();
11937 int out_len;
11938
11939 rs->readahead_cache.invalidate_fd (fd);
11940
11941 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11942
11943 remote_buffer_add_int (&p, &left, fd);
11944 remote_buffer_add_string (&p, &left, ",");
11945
11946 remote_buffer_add_int (&p, &left, offset);
11947 remote_buffer_add_string (&p, &left, ",");
11948
11949 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11950 (get_remote_packet_size ()
11951 - (p - rs->buf.data ())));
11952
11953 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
11954 remote_errno, NULL, NULL);
11955 }
11956
11957 int
11958 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
11959 ULONGEST offset, int *remote_errno)
11960 {
11961 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
11962 }
11963
11964 /* Helper for the implementation of to_fileio_pread. Read the file
11965 from the remote side with vFile:pread. */
11966
11967 int
11968 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
11969 ULONGEST offset, int *remote_errno)
11970 {
11971 struct remote_state *rs = get_remote_state ();
11972 char *p = rs->buf.data ();
11973 char *attachment;
11974 int left = get_remote_packet_size ();
11975 int ret, attachment_len;
11976 int read_len;
11977
11978 remote_buffer_add_string (&p, &left, "vFile:pread:");
11979
11980 remote_buffer_add_int (&p, &left, fd);
11981 remote_buffer_add_string (&p, &left, ",");
11982
11983 remote_buffer_add_int (&p, &left, len);
11984 remote_buffer_add_string (&p, &left, ",");
11985
11986 remote_buffer_add_int (&p, &left, offset);
11987
11988 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
11989 remote_errno, &attachment,
11990 &attachment_len);
11991
11992 if (ret < 0)
11993 return ret;
11994
11995 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11996 read_buf, len);
11997 if (read_len != ret)
11998 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11999
12000 return ret;
12001 }
12002
12003 /* See declaration.h. */
12004
12005 int
12006 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12007 ULONGEST offset)
12008 {
12009 if (this->fd == fd
12010 && this->offset <= offset
12011 && offset < this->offset + this->bufsize)
12012 {
12013 ULONGEST max = this->offset + this->bufsize;
12014
12015 if (offset + len > max)
12016 len = max - offset;
12017
12018 memcpy (read_buf, this->buf + offset - this->offset, len);
12019 return len;
12020 }
12021
12022 return 0;
12023 }
12024
12025 /* Implementation of to_fileio_pread. */
12026
12027 int
12028 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12029 ULONGEST offset, int *remote_errno)
12030 {
12031 int ret;
12032 struct remote_state *rs = get_remote_state ();
12033 readahead_cache *cache = &rs->readahead_cache;
12034
12035 ret = cache->pread (fd, read_buf, len, offset);
12036 if (ret > 0)
12037 {
12038 cache->hit_count++;
12039
12040 if (remote_debug)
12041 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12042 pulongest (cache->hit_count));
12043 return ret;
12044 }
12045
12046 cache->miss_count++;
12047 if (remote_debug)
12048 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12049 pulongest (cache->miss_count));
12050
12051 cache->fd = fd;
12052 cache->offset = offset;
12053 cache->bufsize = get_remote_packet_size ();
12054 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12055
12056 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12057 cache->offset, remote_errno);
12058 if (ret <= 0)
12059 {
12060 cache->invalidate_fd (fd);
12061 return ret;
12062 }
12063
12064 cache->bufsize = ret;
12065 return cache->pread (fd, read_buf, len, offset);
12066 }
12067
12068 int
12069 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12070 ULONGEST offset, int *remote_errno)
12071 {
12072 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12073 }
12074
12075 /* Implementation of to_fileio_close. */
12076
12077 int
12078 remote_target::remote_hostio_close (int fd, int *remote_errno)
12079 {
12080 struct remote_state *rs = get_remote_state ();
12081 char *p = rs->buf.data ();
12082 int left = get_remote_packet_size () - 1;
12083
12084 rs->readahead_cache.invalidate_fd (fd);
12085
12086 remote_buffer_add_string (&p, &left, "vFile:close:");
12087
12088 remote_buffer_add_int (&p, &left, fd);
12089
12090 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12091 remote_errno, NULL, NULL);
12092 }
12093
12094 int
12095 remote_target::fileio_close (int fd, int *remote_errno)
12096 {
12097 return remote_hostio_close (fd, remote_errno);
12098 }
12099
12100 /* Implementation of to_fileio_unlink. */
12101
12102 int
12103 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12104 int *remote_errno)
12105 {
12106 struct remote_state *rs = get_remote_state ();
12107 char *p = rs->buf.data ();
12108 int left = get_remote_packet_size () - 1;
12109
12110 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12111 return -1;
12112
12113 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12114
12115 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12116 strlen (filename));
12117
12118 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12119 remote_errno, NULL, NULL);
12120 }
12121
12122 int
12123 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12124 int *remote_errno)
12125 {
12126 return remote_hostio_unlink (inf, filename, remote_errno);
12127 }
12128
12129 /* Implementation of to_fileio_readlink. */
12130
12131 gdb::optional<std::string>
12132 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12133 int *remote_errno)
12134 {
12135 struct remote_state *rs = get_remote_state ();
12136 char *p = rs->buf.data ();
12137 char *attachment;
12138 int left = get_remote_packet_size ();
12139 int len, attachment_len;
12140 int read_len;
12141
12142 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12143 return {};
12144
12145 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12146
12147 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12148 strlen (filename));
12149
12150 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12151 remote_errno, &attachment,
12152 &attachment_len);
12153
12154 if (len < 0)
12155 return {};
12156
12157 std::string ret (len, '\0');
12158
12159 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12160 (gdb_byte *) &ret[0], len);
12161 if (read_len != len)
12162 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12163
12164 return ret;
12165 }
12166
12167 /* Implementation of to_fileio_fstat. */
12168
12169 int
12170 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12171 {
12172 struct remote_state *rs = get_remote_state ();
12173 char *p = rs->buf.data ();
12174 int left = get_remote_packet_size ();
12175 int attachment_len, ret;
12176 char *attachment;
12177 struct fio_stat fst;
12178 int read_len;
12179
12180 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12181
12182 remote_buffer_add_int (&p, &left, fd);
12183
12184 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12185 remote_errno, &attachment,
12186 &attachment_len);
12187 if (ret < 0)
12188 {
12189 if (*remote_errno != FILEIO_ENOSYS)
12190 return ret;
12191
12192 /* Strictly we should return -1, ENOSYS here, but when
12193 "set sysroot remote:" was implemented in August 2008
12194 BFD's need for a stat function was sidestepped with
12195 this hack. This was not remedied until March 2015
12196 so we retain the previous behavior to avoid breaking
12197 compatibility.
12198
12199 Note that the memset is a March 2015 addition; older
12200 GDBs set st_size *and nothing else* so the structure
12201 would have garbage in all other fields. This might
12202 break something but retaining the previous behavior
12203 here would be just too wrong. */
12204
12205 memset (st, 0, sizeof (struct stat));
12206 st->st_size = INT_MAX;
12207 return 0;
12208 }
12209
12210 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12211 (gdb_byte *) &fst, sizeof (fst));
12212
12213 if (read_len != ret)
12214 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12215
12216 if (read_len != sizeof (fst))
12217 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12218 read_len, (int) sizeof (fst));
12219
12220 remote_fileio_to_host_stat (&fst, st);
12221
12222 return 0;
12223 }
12224
12225 /* Implementation of to_filesystem_is_local. */
12226
12227 bool
12228 remote_target::filesystem_is_local ()
12229 {
12230 /* Valgrind GDB presents itself as a remote target but works
12231 on the local filesystem: it does not implement remote get
12232 and users are not expected to set a sysroot. To handle
12233 this case we treat the remote filesystem as local if the
12234 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12235 does not support vFile:open. */
12236 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12237 {
12238 enum packet_support ps = packet_support (PACKET_vFile_open);
12239
12240 if (ps == PACKET_SUPPORT_UNKNOWN)
12241 {
12242 int fd, remote_errno;
12243
12244 /* Try opening a file to probe support. The supplied
12245 filename is irrelevant, we only care about whether
12246 the stub recognizes the packet or not. */
12247 fd = remote_hostio_open (NULL, "just probing",
12248 FILEIO_O_RDONLY, 0700, 0,
12249 &remote_errno);
12250
12251 if (fd >= 0)
12252 remote_hostio_close (fd, &remote_errno);
12253
12254 ps = packet_support (PACKET_vFile_open);
12255 }
12256
12257 if (ps == PACKET_DISABLE)
12258 {
12259 static int warning_issued = 0;
12260
12261 if (!warning_issued)
12262 {
12263 warning (_("remote target does not support file"
12264 " transfer, attempting to access files"
12265 " from local filesystem."));
12266 warning_issued = 1;
12267 }
12268
12269 return true;
12270 }
12271 }
12272
12273 return false;
12274 }
12275
12276 static int
12277 remote_fileio_errno_to_host (int errnum)
12278 {
12279 switch (errnum)
12280 {
12281 case FILEIO_EPERM:
12282 return EPERM;
12283 case FILEIO_ENOENT:
12284 return ENOENT;
12285 case FILEIO_EINTR:
12286 return EINTR;
12287 case FILEIO_EIO:
12288 return EIO;
12289 case FILEIO_EBADF:
12290 return EBADF;
12291 case FILEIO_EACCES:
12292 return EACCES;
12293 case FILEIO_EFAULT:
12294 return EFAULT;
12295 case FILEIO_EBUSY:
12296 return EBUSY;
12297 case FILEIO_EEXIST:
12298 return EEXIST;
12299 case FILEIO_ENODEV:
12300 return ENODEV;
12301 case FILEIO_ENOTDIR:
12302 return ENOTDIR;
12303 case FILEIO_EISDIR:
12304 return EISDIR;
12305 case FILEIO_EINVAL:
12306 return EINVAL;
12307 case FILEIO_ENFILE:
12308 return ENFILE;
12309 case FILEIO_EMFILE:
12310 return EMFILE;
12311 case FILEIO_EFBIG:
12312 return EFBIG;
12313 case FILEIO_ENOSPC:
12314 return ENOSPC;
12315 case FILEIO_ESPIPE:
12316 return ESPIPE;
12317 case FILEIO_EROFS:
12318 return EROFS;
12319 case FILEIO_ENOSYS:
12320 return ENOSYS;
12321 case FILEIO_ENAMETOOLONG:
12322 return ENAMETOOLONG;
12323 }
12324 return -1;
12325 }
12326
12327 static char *
12328 remote_hostio_error (int errnum)
12329 {
12330 int host_error = remote_fileio_errno_to_host (errnum);
12331
12332 if (host_error == -1)
12333 error (_("Unknown remote I/O error %d"), errnum);
12334 else
12335 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12336 }
12337
12338 /* A RAII wrapper around a remote file descriptor. */
12339
12340 class scoped_remote_fd
12341 {
12342 public:
12343 scoped_remote_fd (remote_target *remote, int fd)
12344 : m_remote (remote), m_fd (fd)
12345 {
12346 }
12347
12348 ~scoped_remote_fd ()
12349 {
12350 if (m_fd != -1)
12351 {
12352 try
12353 {
12354 int remote_errno;
12355 m_remote->remote_hostio_close (m_fd, &remote_errno);
12356 }
12357 catch (...)
12358 {
12359 /* Swallow exception before it escapes the dtor. If
12360 something goes wrong, likely the connection is gone,
12361 and there's nothing else that can be done. */
12362 }
12363 }
12364 }
12365
12366 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12367
12368 /* Release ownership of the file descriptor, and return it. */
12369 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12370 {
12371 int fd = m_fd;
12372 m_fd = -1;
12373 return fd;
12374 }
12375
12376 /* Return the owned file descriptor. */
12377 int get () const noexcept
12378 {
12379 return m_fd;
12380 }
12381
12382 private:
12383 /* The remote target. */
12384 remote_target *m_remote;
12385
12386 /* The owned remote I/O file descriptor. */
12387 int m_fd;
12388 };
12389
12390 void
12391 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12392 {
12393 remote_target *remote = get_current_remote_target ();
12394
12395 if (remote == nullptr)
12396 error (_("command can only be used with remote target"));
12397
12398 remote->remote_file_put (local_file, remote_file, from_tty);
12399 }
12400
12401 void
12402 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12403 int from_tty)
12404 {
12405 int retcode, remote_errno, bytes, io_size;
12406 int bytes_in_buffer;
12407 int saw_eof;
12408 ULONGEST offset;
12409
12410 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12411 if (file == NULL)
12412 perror_with_name (local_file);
12413
12414 scoped_remote_fd fd
12415 (this, remote_hostio_open (NULL,
12416 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12417 | FILEIO_O_TRUNC),
12418 0700, 0, &remote_errno));
12419 if (fd.get () == -1)
12420 remote_hostio_error (remote_errno);
12421
12422 /* Send up to this many bytes at once. They won't all fit in the
12423 remote packet limit, so we'll transfer slightly fewer. */
12424 io_size = get_remote_packet_size ();
12425 gdb::byte_vector buffer (io_size);
12426
12427 bytes_in_buffer = 0;
12428 saw_eof = 0;
12429 offset = 0;
12430 while (bytes_in_buffer || !saw_eof)
12431 {
12432 if (!saw_eof)
12433 {
12434 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12435 io_size - bytes_in_buffer,
12436 file.get ());
12437 if (bytes == 0)
12438 {
12439 if (ferror (file.get ()))
12440 error (_("Error reading %s."), local_file);
12441 else
12442 {
12443 /* EOF. Unless there is something still in the
12444 buffer from the last iteration, we are done. */
12445 saw_eof = 1;
12446 if (bytes_in_buffer == 0)
12447 break;
12448 }
12449 }
12450 }
12451 else
12452 bytes = 0;
12453
12454 bytes += bytes_in_buffer;
12455 bytes_in_buffer = 0;
12456
12457 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12458 offset, &remote_errno);
12459
12460 if (retcode < 0)
12461 remote_hostio_error (remote_errno);
12462 else if (retcode == 0)
12463 error (_("Remote write of %d bytes returned 0!"), bytes);
12464 else if (retcode < bytes)
12465 {
12466 /* Short write. Save the rest of the read data for the next
12467 write. */
12468 bytes_in_buffer = bytes - retcode;
12469 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12470 }
12471
12472 offset += retcode;
12473 }
12474
12475 if (remote_hostio_close (fd.release (), &remote_errno))
12476 remote_hostio_error (remote_errno);
12477
12478 if (from_tty)
12479 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12480 }
12481
12482 void
12483 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12484 {
12485 remote_target *remote = get_current_remote_target ();
12486
12487 if (remote == nullptr)
12488 error (_("command can only be used with remote target"));
12489
12490 remote->remote_file_get (remote_file, local_file, from_tty);
12491 }
12492
12493 void
12494 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12495 int from_tty)
12496 {
12497 int remote_errno, bytes, io_size;
12498 ULONGEST offset;
12499
12500 scoped_remote_fd fd
12501 (this, remote_hostio_open (NULL,
12502 remote_file, FILEIO_O_RDONLY, 0, 0,
12503 &remote_errno));
12504 if (fd.get () == -1)
12505 remote_hostio_error (remote_errno);
12506
12507 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12508 if (file == NULL)
12509 perror_with_name (local_file);
12510
12511 /* Send up to this many bytes at once. They won't all fit in the
12512 remote packet limit, so we'll transfer slightly fewer. */
12513 io_size = get_remote_packet_size ();
12514 gdb::byte_vector buffer (io_size);
12515
12516 offset = 0;
12517 while (1)
12518 {
12519 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12520 &remote_errno);
12521 if (bytes == 0)
12522 /* Success, but no bytes, means end-of-file. */
12523 break;
12524 if (bytes == -1)
12525 remote_hostio_error (remote_errno);
12526
12527 offset += bytes;
12528
12529 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12530 if (bytes == 0)
12531 perror_with_name (local_file);
12532 }
12533
12534 if (remote_hostio_close (fd.release (), &remote_errno))
12535 remote_hostio_error (remote_errno);
12536
12537 if (from_tty)
12538 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12539 }
12540
12541 void
12542 remote_file_delete (const char *remote_file, int from_tty)
12543 {
12544 remote_target *remote = get_current_remote_target ();
12545
12546 if (remote == nullptr)
12547 error (_("command can only be used with remote target"));
12548
12549 remote->remote_file_delete (remote_file, from_tty);
12550 }
12551
12552 void
12553 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12554 {
12555 int retcode, remote_errno;
12556
12557 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12558 if (retcode == -1)
12559 remote_hostio_error (remote_errno);
12560
12561 if (from_tty)
12562 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12563 }
12564
12565 static void
12566 remote_put_command (const char *args, int from_tty)
12567 {
12568 if (args == NULL)
12569 error_no_arg (_("file to put"));
12570
12571 gdb_argv argv (args);
12572 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12573 error (_("Invalid parameters to remote put"));
12574
12575 remote_file_put (argv[0], argv[1], from_tty);
12576 }
12577
12578 static void
12579 remote_get_command (const char *args, int from_tty)
12580 {
12581 if (args == NULL)
12582 error_no_arg (_("file to get"));
12583
12584 gdb_argv argv (args);
12585 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12586 error (_("Invalid parameters to remote get"));
12587
12588 remote_file_get (argv[0], argv[1], from_tty);
12589 }
12590
12591 static void
12592 remote_delete_command (const char *args, int from_tty)
12593 {
12594 if (args == NULL)
12595 error_no_arg (_("file to delete"));
12596
12597 gdb_argv argv (args);
12598 if (argv[0] == NULL || argv[1] != NULL)
12599 error (_("Invalid parameters to remote delete"));
12600
12601 remote_file_delete (argv[0], from_tty);
12602 }
12603
12604 static void
12605 remote_command (const char *args, int from_tty)
12606 {
12607 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12608 }
12609
12610 bool
12611 remote_target::can_execute_reverse ()
12612 {
12613 if (packet_support (PACKET_bs) == PACKET_ENABLE
12614 || packet_support (PACKET_bc) == PACKET_ENABLE)
12615 return true;
12616 else
12617 return false;
12618 }
12619
12620 bool
12621 remote_target::supports_non_stop ()
12622 {
12623 return true;
12624 }
12625
12626 bool
12627 remote_target::supports_disable_randomization ()
12628 {
12629 /* Only supported in extended mode. */
12630 return false;
12631 }
12632
12633 bool
12634 remote_target::supports_multi_process ()
12635 {
12636 struct remote_state *rs = get_remote_state ();
12637
12638 return remote_multi_process_p (rs);
12639 }
12640
12641 static int
12642 remote_supports_cond_tracepoints ()
12643 {
12644 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12645 }
12646
12647 bool
12648 remote_target::supports_evaluation_of_breakpoint_conditions ()
12649 {
12650 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12651 }
12652
12653 static int
12654 remote_supports_fast_tracepoints ()
12655 {
12656 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12657 }
12658
12659 static int
12660 remote_supports_static_tracepoints ()
12661 {
12662 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12663 }
12664
12665 static int
12666 remote_supports_install_in_trace ()
12667 {
12668 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12669 }
12670
12671 bool
12672 remote_target::supports_enable_disable_tracepoint ()
12673 {
12674 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12675 == PACKET_ENABLE);
12676 }
12677
12678 bool
12679 remote_target::supports_string_tracing ()
12680 {
12681 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12682 }
12683
12684 bool
12685 remote_target::can_run_breakpoint_commands ()
12686 {
12687 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12688 }
12689
12690 void
12691 remote_target::trace_init ()
12692 {
12693 struct remote_state *rs = get_remote_state ();
12694
12695 putpkt ("QTinit");
12696 remote_get_noisy_reply ();
12697 if (strcmp (rs->buf.data (), "OK") != 0)
12698 error (_("Target does not support this command."));
12699 }
12700
12701 /* Recursive routine to walk through command list including loops, and
12702 download packets for each command. */
12703
12704 void
12705 remote_target::remote_download_command_source (int num, ULONGEST addr,
12706 struct command_line *cmds)
12707 {
12708 struct remote_state *rs = get_remote_state ();
12709 struct command_line *cmd;
12710
12711 for (cmd = cmds; cmd; cmd = cmd->next)
12712 {
12713 QUIT; /* Allow user to bail out with ^C. */
12714 strcpy (rs->buf.data (), "QTDPsrc:");
12715 encode_source_string (num, addr, "cmd", cmd->line,
12716 rs->buf.data () + strlen (rs->buf.data ()),
12717 rs->buf.size () - strlen (rs->buf.data ()));
12718 putpkt (rs->buf);
12719 remote_get_noisy_reply ();
12720 if (strcmp (rs->buf.data (), "OK"))
12721 warning (_("Target does not support source download."));
12722
12723 if (cmd->control_type == while_control
12724 || cmd->control_type == while_stepping_control)
12725 {
12726 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12727
12728 QUIT; /* Allow user to bail out with ^C. */
12729 strcpy (rs->buf.data (), "QTDPsrc:");
12730 encode_source_string (num, addr, "cmd", "end",
12731 rs->buf.data () + strlen (rs->buf.data ()),
12732 rs->buf.size () - strlen (rs->buf.data ()));
12733 putpkt (rs->buf);
12734 remote_get_noisy_reply ();
12735 if (strcmp (rs->buf.data (), "OK"))
12736 warning (_("Target does not support source download."));
12737 }
12738 }
12739 }
12740
12741 void
12742 remote_target::download_tracepoint (struct bp_location *loc)
12743 {
12744 CORE_ADDR tpaddr;
12745 char addrbuf[40];
12746 std::vector<std::string> tdp_actions;
12747 std::vector<std::string> stepping_actions;
12748 char *pkt;
12749 struct breakpoint *b = loc->owner;
12750 struct tracepoint *t = (struct tracepoint *) b;
12751 struct remote_state *rs = get_remote_state ();
12752 int ret;
12753 const char *err_msg = _("Tracepoint packet too large for target.");
12754 size_t size_left;
12755
12756 /* We use a buffer other than rs->buf because we'll build strings
12757 across multiple statements, and other statements in between could
12758 modify rs->buf. */
12759 gdb::char_vector buf (get_remote_packet_size ());
12760
12761 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12762
12763 tpaddr = loc->address;
12764 sprintf_vma (addrbuf, tpaddr);
12765 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12766 b->number, addrbuf, /* address */
12767 (b->enable_state == bp_enabled ? 'E' : 'D'),
12768 t->step_count, t->pass_count);
12769
12770 if (ret < 0 || ret >= buf.size ())
12771 error ("%s", err_msg);
12772
12773 /* Fast tracepoints are mostly handled by the target, but we can
12774 tell the target how big of an instruction block should be moved
12775 around. */
12776 if (b->type == bp_fast_tracepoint)
12777 {
12778 /* Only test for support at download time; we may not know
12779 target capabilities at definition time. */
12780 if (remote_supports_fast_tracepoints ())
12781 {
12782 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12783 NULL))
12784 {
12785 size_left = buf.size () - strlen (buf.data ());
12786 ret = snprintf (buf.data () + strlen (buf.data ()),
12787 size_left, ":F%x",
12788 gdb_insn_length (loc->gdbarch, tpaddr));
12789
12790 if (ret < 0 || ret >= size_left)
12791 error ("%s", err_msg);
12792 }
12793 else
12794 /* If it passed validation at definition but fails now,
12795 something is very wrong. */
12796 internal_error (__FILE__, __LINE__,
12797 _("Fast tracepoint not "
12798 "valid during download"));
12799 }
12800 else
12801 /* Fast tracepoints are functionally identical to regular
12802 tracepoints, so don't take lack of support as a reason to
12803 give up on the trace run. */
12804 warning (_("Target does not support fast tracepoints, "
12805 "downloading %d as regular tracepoint"), b->number);
12806 }
12807 else if (b->type == bp_static_tracepoint)
12808 {
12809 /* Only test for support at download time; we may not know
12810 target capabilities at definition time. */
12811 if (remote_supports_static_tracepoints ())
12812 {
12813 struct static_tracepoint_marker marker;
12814
12815 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12816 {
12817 size_left = buf.size () - strlen (buf.data ());
12818 ret = snprintf (buf.data () + strlen (buf.data ()),
12819 size_left, ":S");
12820
12821 if (ret < 0 || ret >= size_left)
12822 error ("%s", err_msg);
12823 }
12824 else
12825 error (_("Static tracepoint not valid during download"));
12826 }
12827 else
12828 /* Fast tracepoints are functionally identical to regular
12829 tracepoints, so don't take lack of support as a reason
12830 to give up on the trace run. */
12831 error (_("Target does not support static tracepoints"));
12832 }
12833 /* If the tracepoint has a conditional, make it into an agent
12834 expression and append to the definition. */
12835 if (loc->cond)
12836 {
12837 /* Only test support at download time, we may not know target
12838 capabilities at definition time. */
12839 if (remote_supports_cond_tracepoints ())
12840 {
12841 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12842 loc->cond.get ());
12843
12844 size_left = buf.size () - strlen (buf.data ());
12845
12846 ret = snprintf (buf.data () + strlen (buf.data ()),
12847 size_left, ":X%x,", aexpr->len);
12848
12849 if (ret < 0 || ret >= size_left)
12850 error ("%s", err_msg);
12851
12852 size_left = buf.size () - strlen (buf.data ());
12853
12854 /* Two bytes to encode each aexpr byte, plus the terminating
12855 null byte. */
12856 if (aexpr->len * 2 + 1 > size_left)
12857 error ("%s", err_msg);
12858
12859 pkt = buf.data () + strlen (buf.data ());
12860
12861 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12862 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12863 *pkt = '\0';
12864 }
12865 else
12866 warning (_("Target does not support conditional tracepoints, "
12867 "ignoring tp %d cond"), b->number);
12868 }
12869
12870 if (b->commands || *default_collect)
12871 {
12872 size_left = buf.size () - strlen (buf.data ());
12873
12874 ret = snprintf (buf.data () + strlen (buf.data ()),
12875 size_left, "-");
12876
12877 if (ret < 0 || ret >= size_left)
12878 error ("%s", err_msg);
12879 }
12880
12881 putpkt (buf.data ());
12882 remote_get_noisy_reply ();
12883 if (strcmp (rs->buf.data (), "OK"))
12884 error (_("Target does not support tracepoints."));
12885
12886 /* do_single_steps (t); */
12887 for (auto action_it = tdp_actions.begin ();
12888 action_it != tdp_actions.end (); action_it++)
12889 {
12890 QUIT; /* Allow user to bail out with ^C. */
12891
12892 bool has_more = ((action_it + 1) != tdp_actions.end ()
12893 || !stepping_actions.empty ());
12894
12895 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12896 b->number, addrbuf, /* address */
12897 action_it->c_str (),
12898 has_more ? '-' : 0);
12899
12900 if (ret < 0 || ret >= buf.size ())
12901 error ("%s", err_msg);
12902
12903 putpkt (buf.data ());
12904 remote_get_noisy_reply ();
12905 if (strcmp (rs->buf.data (), "OK"))
12906 error (_("Error on target while setting tracepoints."));
12907 }
12908
12909 for (auto action_it = stepping_actions.begin ();
12910 action_it != stepping_actions.end (); action_it++)
12911 {
12912 QUIT; /* Allow user to bail out with ^C. */
12913
12914 bool is_first = action_it == stepping_actions.begin ();
12915 bool has_more = (action_it + 1) != stepping_actions.end ();
12916
12917 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
12918 b->number, addrbuf, /* address */
12919 is_first ? "S" : "",
12920 action_it->c_str (),
12921 has_more ? "-" : "");
12922
12923 if (ret < 0 || ret >= buf.size ())
12924 error ("%s", err_msg);
12925
12926 putpkt (buf.data ());
12927 remote_get_noisy_reply ();
12928 if (strcmp (rs->buf.data (), "OK"))
12929 error (_("Error on target while setting tracepoints."));
12930 }
12931
12932 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12933 {
12934 if (b->location != NULL)
12935 {
12936 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12937
12938 if (ret < 0 || ret >= buf.size ())
12939 error ("%s", err_msg);
12940
12941 encode_source_string (b->number, loc->address, "at",
12942 event_location_to_string (b->location.get ()),
12943 buf.data () + strlen (buf.data ()),
12944 buf.size () - strlen (buf.data ()));
12945 putpkt (buf.data ());
12946 remote_get_noisy_reply ();
12947 if (strcmp (rs->buf.data (), "OK"))
12948 warning (_("Target does not support source download."));
12949 }
12950 if (b->cond_string)
12951 {
12952 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12953
12954 if (ret < 0 || ret >= buf.size ())
12955 error ("%s", err_msg);
12956
12957 encode_source_string (b->number, loc->address,
12958 "cond", b->cond_string,
12959 buf.data () + strlen (buf.data ()),
12960 buf.size () - strlen (buf.data ()));
12961 putpkt (buf.data ());
12962 remote_get_noisy_reply ();
12963 if (strcmp (rs->buf.data (), "OK"))
12964 warning (_("Target does not support source download."));
12965 }
12966 remote_download_command_source (b->number, loc->address,
12967 breakpoint_commands (b));
12968 }
12969 }
12970
12971 bool
12972 remote_target::can_download_tracepoint ()
12973 {
12974 struct remote_state *rs = get_remote_state ();
12975 struct trace_status *ts;
12976 int status;
12977
12978 /* Don't try to install tracepoints until we've relocated our
12979 symbols, and fetched and merged the target's tracepoint list with
12980 ours. */
12981 if (rs->starting_up)
12982 return false;
12983
12984 ts = current_trace_status ();
12985 status = get_trace_status (ts);
12986
12987 if (status == -1 || !ts->running_known || !ts->running)
12988 return false;
12989
12990 /* If we are in a tracing experiment, but remote stub doesn't support
12991 installing tracepoint in trace, we have to return. */
12992 if (!remote_supports_install_in_trace ())
12993 return false;
12994
12995 return true;
12996 }
12997
12998
12999 void
13000 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13001 {
13002 struct remote_state *rs = get_remote_state ();
13003 char *p;
13004
13005 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13006 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13007 tsv.builtin);
13008 p = rs->buf.data () + strlen (rs->buf.data ());
13009 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13010 >= get_remote_packet_size ())
13011 error (_("Trace state variable name too long for tsv definition packet"));
13012 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13013 *p++ = '\0';
13014 putpkt (rs->buf);
13015 remote_get_noisy_reply ();
13016 if (rs->buf[0] == '\0')
13017 error (_("Target does not support this command."));
13018 if (strcmp (rs->buf.data (), "OK") != 0)
13019 error (_("Error on target while downloading trace state variable."));
13020 }
13021
13022 void
13023 remote_target::enable_tracepoint (struct bp_location *location)
13024 {
13025 struct remote_state *rs = get_remote_state ();
13026 char addr_buf[40];
13027
13028 sprintf_vma (addr_buf, location->address);
13029 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13030 location->owner->number, addr_buf);
13031 putpkt (rs->buf);
13032 remote_get_noisy_reply ();
13033 if (rs->buf[0] == '\0')
13034 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13035 if (strcmp (rs->buf.data (), "OK") != 0)
13036 error (_("Error on target while enabling tracepoint."));
13037 }
13038
13039 void
13040 remote_target::disable_tracepoint (struct bp_location *location)
13041 {
13042 struct remote_state *rs = get_remote_state ();
13043 char addr_buf[40];
13044
13045 sprintf_vma (addr_buf, location->address);
13046 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13047 location->owner->number, addr_buf);
13048 putpkt (rs->buf);
13049 remote_get_noisy_reply ();
13050 if (rs->buf[0] == '\0')
13051 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13052 if (strcmp (rs->buf.data (), "OK") != 0)
13053 error (_("Error on target while disabling tracepoint."));
13054 }
13055
13056 void
13057 remote_target::trace_set_readonly_regions ()
13058 {
13059 asection *s;
13060 bfd *abfd = NULL;
13061 bfd_size_type size;
13062 bfd_vma vma;
13063 int anysecs = 0;
13064 int offset = 0;
13065
13066 if (!exec_bfd)
13067 return; /* No information to give. */
13068
13069 struct remote_state *rs = get_remote_state ();
13070
13071 strcpy (rs->buf.data (), "QTro");
13072 offset = strlen (rs->buf.data ());
13073 for (s = exec_bfd->sections; s; s = s->next)
13074 {
13075 char tmp1[40], tmp2[40];
13076 int sec_length;
13077
13078 if ((s->flags & SEC_LOAD) == 0 ||
13079 /* (s->flags & SEC_CODE) == 0 || */
13080 (s->flags & SEC_READONLY) == 0)
13081 continue;
13082
13083 anysecs = 1;
13084 vma = bfd_get_section_vma (abfd, s);
13085 size = bfd_get_section_size (s);
13086 sprintf_vma (tmp1, vma);
13087 sprintf_vma (tmp2, vma + size);
13088 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13089 if (offset + sec_length + 1 > rs->buf.size ())
13090 {
13091 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13092 warning (_("\
13093 Too many sections for read-only sections definition packet."));
13094 break;
13095 }
13096 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13097 tmp1, tmp2);
13098 offset += sec_length;
13099 }
13100 if (anysecs)
13101 {
13102 putpkt (rs->buf);
13103 getpkt (&rs->buf, 0);
13104 }
13105 }
13106
13107 void
13108 remote_target::trace_start ()
13109 {
13110 struct remote_state *rs = get_remote_state ();
13111
13112 putpkt ("QTStart");
13113 remote_get_noisy_reply ();
13114 if (rs->buf[0] == '\0')
13115 error (_("Target does not support this command."));
13116 if (strcmp (rs->buf.data (), "OK") != 0)
13117 error (_("Bogus reply from target: %s"), rs->buf.data ());
13118 }
13119
13120 int
13121 remote_target::get_trace_status (struct trace_status *ts)
13122 {
13123 /* Initialize it just to avoid a GCC false warning. */
13124 char *p = NULL;
13125 /* FIXME we need to get register block size some other way. */
13126 extern int trace_regblock_size;
13127 enum packet_result result;
13128 struct remote_state *rs = get_remote_state ();
13129
13130 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13131 return -1;
13132
13133 trace_regblock_size
13134 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13135
13136 putpkt ("qTStatus");
13137
13138 TRY
13139 {
13140 p = remote_get_noisy_reply ();
13141 }
13142 CATCH (ex, RETURN_MASK_ERROR)
13143 {
13144 if (ex.error != TARGET_CLOSE_ERROR)
13145 {
13146 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13147 return -1;
13148 }
13149 throw_exception (ex);
13150 }
13151 END_CATCH
13152
13153 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13154
13155 /* If the remote target doesn't do tracing, flag it. */
13156 if (result == PACKET_UNKNOWN)
13157 return -1;
13158
13159 /* We're working with a live target. */
13160 ts->filename = NULL;
13161
13162 if (*p++ != 'T')
13163 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13164
13165 /* Function 'parse_trace_status' sets default value of each field of
13166 'ts' at first, so we don't have to do it here. */
13167 parse_trace_status (p, ts);
13168
13169 return ts->running;
13170 }
13171
13172 void
13173 remote_target::get_tracepoint_status (struct breakpoint *bp,
13174 struct uploaded_tp *utp)
13175 {
13176 struct remote_state *rs = get_remote_state ();
13177 char *reply;
13178 struct bp_location *loc;
13179 struct tracepoint *tp = (struct tracepoint *) bp;
13180 size_t size = get_remote_packet_size ();
13181
13182 if (tp)
13183 {
13184 tp->hit_count = 0;
13185 tp->traceframe_usage = 0;
13186 for (loc = tp->loc; loc; loc = loc->next)
13187 {
13188 /* If the tracepoint was never downloaded, don't go asking for
13189 any status. */
13190 if (tp->number_on_target == 0)
13191 continue;
13192 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13193 phex_nz (loc->address, 0));
13194 putpkt (rs->buf);
13195 reply = remote_get_noisy_reply ();
13196 if (reply && *reply)
13197 {
13198 if (*reply == 'V')
13199 parse_tracepoint_status (reply + 1, bp, utp);
13200 }
13201 }
13202 }
13203 else if (utp)
13204 {
13205 utp->hit_count = 0;
13206 utp->traceframe_usage = 0;
13207 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13208 phex_nz (utp->addr, 0));
13209 putpkt (rs->buf);
13210 reply = remote_get_noisy_reply ();
13211 if (reply && *reply)
13212 {
13213 if (*reply == 'V')
13214 parse_tracepoint_status (reply + 1, bp, utp);
13215 }
13216 }
13217 }
13218
13219 void
13220 remote_target::trace_stop ()
13221 {
13222 struct remote_state *rs = get_remote_state ();
13223
13224 putpkt ("QTStop");
13225 remote_get_noisy_reply ();
13226 if (rs->buf[0] == '\0')
13227 error (_("Target does not support this command."));
13228 if (strcmp (rs->buf.data (), "OK") != 0)
13229 error (_("Bogus reply from target: %s"), rs->buf.data ());
13230 }
13231
13232 int
13233 remote_target::trace_find (enum trace_find_type type, int num,
13234 CORE_ADDR addr1, CORE_ADDR addr2,
13235 int *tpp)
13236 {
13237 struct remote_state *rs = get_remote_state ();
13238 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13239 char *p, *reply;
13240 int target_frameno = -1, target_tracept = -1;
13241
13242 /* Lookups other than by absolute frame number depend on the current
13243 trace selected, so make sure it is correct on the remote end
13244 first. */
13245 if (type != tfind_number)
13246 set_remote_traceframe ();
13247
13248 p = rs->buf.data ();
13249 strcpy (p, "QTFrame:");
13250 p = strchr (p, '\0');
13251 switch (type)
13252 {
13253 case tfind_number:
13254 xsnprintf (p, endbuf - p, "%x", num);
13255 break;
13256 case tfind_pc:
13257 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13258 break;
13259 case tfind_tp:
13260 xsnprintf (p, endbuf - p, "tdp:%x", num);
13261 break;
13262 case tfind_range:
13263 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13264 phex_nz (addr2, 0));
13265 break;
13266 case tfind_outside:
13267 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13268 phex_nz (addr2, 0));
13269 break;
13270 default:
13271 error (_("Unknown trace find type %d"), type);
13272 }
13273
13274 putpkt (rs->buf);
13275 reply = remote_get_noisy_reply ();
13276 if (*reply == '\0')
13277 error (_("Target does not support this command."));
13278
13279 while (reply && *reply)
13280 switch (*reply)
13281 {
13282 case 'F':
13283 p = ++reply;
13284 target_frameno = (int) strtol (p, &reply, 16);
13285 if (reply == p)
13286 error (_("Unable to parse trace frame number"));
13287 /* Don't update our remote traceframe number cache on failure
13288 to select a remote traceframe. */
13289 if (target_frameno == -1)
13290 return -1;
13291 break;
13292 case 'T':
13293 p = ++reply;
13294 target_tracept = (int) strtol (p, &reply, 16);
13295 if (reply == p)
13296 error (_("Unable to parse tracepoint number"));
13297 break;
13298 case 'O': /* "OK"? */
13299 if (reply[1] == 'K' && reply[2] == '\0')
13300 reply += 2;
13301 else
13302 error (_("Bogus reply from target: %s"), reply);
13303 break;
13304 default:
13305 error (_("Bogus reply from target: %s"), reply);
13306 }
13307 if (tpp)
13308 *tpp = target_tracept;
13309
13310 rs->remote_traceframe_number = target_frameno;
13311 return target_frameno;
13312 }
13313
13314 bool
13315 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13316 {
13317 struct remote_state *rs = get_remote_state ();
13318 char *reply;
13319 ULONGEST uval;
13320
13321 set_remote_traceframe ();
13322
13323 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13324 putpkt (rs->buf);
13325 reply = remote_get_noisy_reply ();
13326 if (reply && *reply)
13327 {
13328 if (*reply == 'V')
13329 {
13330 unpack_varlen_hex (reply + 1, &uval);
13331 *val = (LONGEST) uval;
13332 return true;
13333 }
13334 }
13335 return false;
13336 }
13337
13338 int
13339 remote_target::save_trace_data (const char *filename)
13340 {
13341 struct remote_state *rs = get_remote_state ();
13342 char *p, *reply;
13343
13344 p = rs->buf.data ();
13345 strcpy (p, "QTSave:");
13346 p += strlen (p);
13347 if ((p - rs->buf.data ()) + strlen (filename) * 2
13348 >= get_remote_packet_size ())
13349 error (_("Remote file name too long for trace save packet"));
13350 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13351 *p++ = '\0';
13352 putpkt (rs->buf);
13353 reply = remote_get_noisy_reply ();
13354 if (*reply == '\0')
13355 error (_("Target does not support this command."));
13356 if (strcmp (reply, "OK") != 0)
13357 error (_("Bogus reply from target: %s"), reply);
13358 return 0;
13359 }
13360
13361 /* This is basically a memory transfer, but needs to be its own packet
13362 because we don't know how the target actually organizes its trace
13363 memory, plus we want to be able to ask for as much as possible, but
13364 not be unhappy if we don't get as much as we ask for. */
13365
13366 LONGEST
13367 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13368 {
13369 struct remote_state *rs = get_remote_state ();
13370 char *reply;
13371 char *p;
13372 int rslt;
13373
13374 p = rs->buf.data ();
13375 strcpy (p, "qTBuffer:");
13376 p += strlen (p);
13377 p += hexnumstr (p, offset);
13378 *p++ = ',';
13379 p += hexnumstr (p, len);
13380 *p++ = '\0';
13381
13382 putpkt (rs->buf);
13383 reply = remote_get_noisy_reply ();
13384 if (reply && *reply)
13385 {
13386 /* 'l' by itself means we're at the end of the buffer and
13387 there is nothing more to get. */
13388 if (*reply == 'l')
13389 return 0;
13390
13391 /* Convert the reply into binary. Limit the number of bytes to
13392 convert according to our passed-in buffer size, rather than
13393 what was returned in the packet; if the target is
13394 unexpectedly generous and gives us a bigger reply than we
13395 asked for, we don't want to crash. */
13396 rslt = hex2bin (reply, buf, len);
13397 return rslt;
13398 }
13399
13400 /* Something went wrong, flag as an error. */
13401 return -1;
13402 }
13403
13404 void
13405 remote_target::set_disconnected_tracing (int val)
13406 {
13407 struct remote_state *rs = get_remote_state ();
13408
13409 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13410 {
13411 char *reply;
13412
13413 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13414 "QTDisconnected:%x", val);
13415 putpkt (rs->buf);
13416 reply = remote_get_noisy_reply ();
13417 if (*reply == '\0')
13418 error (_("Target does not support this command."));
13419 if (strcmp (reply, "OK") != 0)
13420 error (_("Bogus reply from target: %s"), reply);
13421 }
13422 else if (val)
13423 warning (_("Target does not support disconnected tracing."));
13424 }
13425
13426 int
13427 remote_target::core_of_thread (ptid_t ptid)
13428 {
13429 struct thread_info *info = find_thread_ptid (ptid);
13430
13431 if (info != NULL && info->priv != NULL)
13432 return get_remote_thread_info (info)->core;
13433
13434 return -1;
13435 }
13436
13437 void
13438 remote_target::set_circular_trace_buffer (int val)
13439 {
13440 struct remote_state *rs = get_remote_state ();
13441 char *reply;
13442
13443 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13444 "QTBuffer:circular:%x", val);
13445 putpkt (rs->buf);
13446 reply = remote_get_noisy_reply ();
13447 if (*reply == '\0')
13448 error (_("Target does not support this command."));
13449 if (strcmp (reply, "OK") != 0)
13450 error (_("Bogus reply from target: %s"), reply);
13451 }
13452
13453 traceframe_info_up
13454 remote_target::traceframe_info ()
13455 {
13456 gdb::optional<gdb::char_vector> text
13457 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13458 NULL);
13459 if (text)
13460 return parse_traceframe_info (text->data ());
13461
13462 return NULL;
13463 }
13464
13465 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13466 instruction on which a fast tracepoint may be placed. Returns -1
13467 if the packet is not supported, and 0 if the minimum instruction
13468 length is unknown. */
13469
13470 int
13471 remote_target::get_min_fast_tracepoint_insn_len ()
13472 {
13473 struct remote_state *rs = get_remote_state ();
13474 char *reply;
13475
13476 /* If we're not debugging a process yet, the IPA can't be
13477 loaded. */
13478 if (!target_has_execution)
13479 return 0;
13480
13481 /* Make sure the remote is pointing at the right process. */
13482 set_general_process ();
13483
13484 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13485 putpkt (rs->buf);
13486 reply = remote_get_noisy_reply ();
13487 if (*reply == '\0')
13488 return -1;
13489 else
13490 {
13491 ULONGEST min_insn_len;
13492
13493 unpack_varlen_hex (reply, &min_insn_len);
13494
13495 return (int) min_insn_len;
13496 }
13497 }
13498
13499 void
13500 remote_target::set_trace_buffer_size (LONGEST val)
13501 {
13502 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13503 {
13504 struct remote_state *rs = get_remote_state ();
13505 char *buf = rs->buf.data ();
13506 char *endbuf = buf + get_remote_packet_size ();
13507 enum packet_result result;
13508
13509 gdb_assert (val >= 0 || val == -1);
13510 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13511 /* Send -1 as literal "-1" to avoid host size dependency. */
13512 if (val < 0)
13513 {
13514 *buf++ = '-';
13515 buf += hexnumstr (buf, (ULONGEST) -val);
13516 }
13517 else
13518 buf += hexnumstr (buf, (ULONGEST) val);
13519
13520 putpkt (rs->buf);
13521 remote_get_noisy_reply ();
13522 result = packet_ok (rs->buf,
13523 &remote_protocol_packets[PACKET_QTBuffer_size]);
13524
13525 if (result != PACKET_OK)
13526 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13527 }
13528 }
13529
13530 bool
13531 remote_target::set_trace_notes (const char *user, const char *notes,
13532 const char *stop_notes)
13533 {
13534 struct remote_state *rs = get_remote_state ();
13535 char *reply;
13536 char *buf = rs->buf.data ();
13537 char *endbuf = buf + get_remote_packet_size ();
13538 int nbytes;
13539
13540 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13541 if (user)
13542 {
13543 buf += xsnprintf (buf, endbuf - buf, "user:");
13544 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13545 buf += 2 * nbytes;
13546 *buf++ = ';';
13547 }
13548 if (notes)
13549 {
13550 buf += xsnprintf (buf, endbuf - buf, "notes:");
13551 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13552 buf += 2 * nbytes;
13553 *buf++ = ';';
13554 }
13555 if (stop_notes)
13556 {
13557 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13558 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13559 buf += 2 * nbytes;
13560 *buf++ = ';';
13561 }
13562 /* Ensure the buffer is terminated. */
13563 *buf = '\0';
13564
13565 putpkt (rs->buf);
13566 reply = remote_get_noisy_reply ();
13567 if (*reply == '\0')
13568 return false;
13569
13570 if (strcmp (reply, "OK") != 0)
13571 error (_("Bogus reply from target: %s"), reply);
13572
13573 return true;
13574 }
13575
13576 bool
13577 remote_target::use_agent (bool use)
13578 {
13579 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13580 {
13581 struct remote_state *rs = get_remote_state ();
13582
13583 /* If the stub supports QAgent. */
13584 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13585 putpkt (rs->buf);
13586 getpkt (&rs->buf, 0);
13587
13588 if (strcmp (rs->buf.data (), "OK") == 0)
13589 {
13590 ::use_agent = use;
13591 return true;
13592 }
13593 }
13594
13595 return false;
13596 }
13597
13598 bool
13599 remote_target::can_use_agent ()
13600 {
13601 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13602 }
13603
13604 struct btrace_target_info
13605 {
13606 /* The ptid of the traced thread. */
13607 ptid_t ptid;
13608
13609 /* The obtained branch trace configuration. */
13610 struct btrace_config conf;
13611 };
13612
13613 /* Reset our idea of our target's btrace configuration. */
13614
13615 static void
13616 remote_btrace_reset (remote_state *rs)
13617 {
13618 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13619 }
13620
13621 /* Synchronize the configuration with the target. */
13622
13623 void
13624 remote_target::btrace_sync_conf (const btrace_config *conf)
13625 {
13626 struct packet_config *packet;
13627 struct remote_state *rs;
13628 char *buf, *pos, *endbuf;
13629
13630 rs = get_remote_state ();
13631 buf = rs->buf.data ();
13632 endbuf = buf + get_remote_packet_size ();
13633
13634 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13635 if (packet_config_support (packet) == PACKET_ENABLE
13636 && conf->bts.size != rs->btrace_config.bts.size)
13637 {
13638 pos = buf;
13639 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13640 conf->bts.size);
13641
13642 putpkt (buf);
13643 getpkt (&rs->buf, 0);
13644
13645 if (packet_ok (buf, packet) == PACKET_ERROR)
13646 {
13647 if (buf[0] == 'E' && buf[1] == '.')
13648 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13649 else
13650 error (_("Failed to configure the BTS buffer size."));
13651 }
13652
13653 rs->btrace_config.bts.size = conf->bts.size;
13654 }
13655
13656 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13657 if (packet_config_support (packet) == PACKET_ENABLE
13658 && conf->pt.size != rs->btrace_config.pt.size)
13659 {
13660 pos = buf;
13661 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13662 conf->pt.size);
13663
13664 putpkt (buf);
13665 getpkt (&rs->buf, 0);
13666
13667 if (packet_ok (buf, packet) == PACKET_ERROR)
13668 {
13669 if (buf[0] == 'E' && buf[1] == '.')
13670 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13671 else
13672 error (_("Failed to configure the trace buffer size."));
13673 }
13674
13675 rs->btrace_config.pt.size = conf->pt.size;
13676 }
13677 }
13678
13679 /* Read the current thread's btrace configuration from the target and
13680 store it into CONF. */
13681
13682 static void
13683 btrace_read_config (struct btrace_config *conf)
13684 {
13685 gdb::optional<gdb::char_vector> xml
13686 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13687 if (xml)
13688 parse_xml_btrace_conf (conf, xml->data ());
13689 }
13690
13691 /* Maybe reopen target btrace. */
13692
13693 void
13694 remote_target::remote_btrace_maybe_reopen ()
13695 {
13696 struct remote_state *rs = get_remote_state ();
13697 int btrace_target_pushed = 0;
13698 #if !defined (HAVE_LIBIPT)
13699 int warned = 0;
13700 #endif
13701
13702 scoped_restore_current_thread restore_thread;
13703
13704 for (thread_info *tp : all_non_exited_threads ())
13705 {
13706 set_general_thread (tp->ptid);
13707
13708 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13709 btrace_read_config (&rs->btrace_config);
13710
13711 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13712 continue;
13713
13714 #if !defined (HAVE_LIBIPT)
13715 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13716 {
13717 if (!warned)
13718 {
13719 warned = 1;
13720 warning (_("Target is recording using Intel Processor Trace "
13721 "but support was disabled at compile time."));
13722 }
13723
13724 continue;
13725 }
13726 #endif /* !defined (HAVE_LIBIPT) */
13727
13728 /* Push target, once, but before anything else happens. This way our
13729 changes to the threads will be cleaned up by unpushing the target
13730 in case btrace_read_config () throws. */
13731 if (!btrace_target_pushed)
13732 {
13733 btrace_target_pushed = 1;
13734 record_btrace_push_target ();
13735 printf_filtered (_("Target is recording using %s.\n"),
13736 btrace_format_string (rs->btrace_config.format));
13737 }
13738
13739 tp->btrace.target = XCNEW (struct btrace_target_info);
13740 tp->btrace.target->ptid = tp->ptid;
13741 tp->btrace.target->conf = rs->btrace_config;
13742 }
13743 }
13744
13745 /* Enable branch tracing. */
13746
13747 struct btrace_target_info *
13748 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13749 {
13750 struct btrace_target_info *tinfo = NULL;
13751 struct packet_config *packet = NULL;
13752 struct remote_state *rs = get_remote_state ();
13753 char *buf = rs->buf.data ();
13754 char *endbuf = buf + get_remote_packet_size ();
13755
13756 switch (conf->format)
13757 {
13758 case BTRACE_FORMAT_BTS:
13759 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13760 break;
13761
13762 case BTRACE_FORMAT_PT:
13763 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13764 break;
13765 }
13766
13767 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13768 error (_("Target does not support branch tracing."));
13769
13770 btrace_sync_conf (conf);
13771
13772 set_general_thread (ptid);
13773
13774 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13775 putpkt (rs->buf);
13776 getpkt (&rs->buf, 0);
13777
13778 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13779 {
13780 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13781 error (_("Could not enable branch tracing for %s: %s"),
13782 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13783 else
13784 error (_("Could not enable branch tracing for %s."),
13785 target_pid_to_str (ptid).c_str ());
13786 }
13787
13788 tinfo = XCNEW (struct btrace_target_info);
13789 tinfo->ptid = ptid;
13790
13791 /* If we fail to read the configuration, we lose some information, but the
13792 tracing itself is not impacted. */
13793 TRY
13794 {
13795 btrace_read_config (&tinfo->conf);
13796 }
13797 CATCH (err, RETURN_MASK_ERROR)
13798 {
13799 if (err.message != NULL)
13800 warning ("%s", err.what ());
13801 }
13802 END_CATCH
13803
13804 return tinfo;
13805 }
13806
13807 /* Disable branch tracing. */
13808
13809 void
13810 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13811 {
13812 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13813 struct remote_state *rs = get_remote_state ();
13814 char *buf = rs->buf.data ();
13815 char *endbuf = buf + get_remote_packet_size ();
13816
13817 if (packet_config_support (packet) != PACKET_ENABLE)
13818 error (_("Target does not support branch tracing."));
13819
13820 set_general_thread (tinfo->ptid);
13821
13822 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13823 putpkt (rs->buf);
13824 getpkt (&rs->buf, 0);
13825
13826 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13827 {
13828 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13829 error (_("Could not disable branch tracing for %s: %s"),
13830 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13831 else
13832 error (_("Could not disable branch tracing for %s."),
13833 target_pid_to_str (tinfo->ptid).c_str ());
13834 }
13835
13836 xfree (tinfo);
13837 }
13838
13839 /* Teardown branch tracing. */
13840
13841 void
13842 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13843 {
13844 /* We must not talk to the target during teardown. */
13845 xfree (tinfo);
13846 }
13847
13848 /* Read the branch trace. */
13849
13850 enum btrace_error
13851 remote_target::read_btrace (struct btrace_data *btrace,
13852 struct btrace_target_info *tinfo,
13853 enum btrace_read_type type)
13854 {
13855 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13856 const char *annex;
13857
13858 if (packet_config_support (packet) != PACKET_ENABLE)
13859 error (_("Target does not support branch tracing."));
13860
13861 #if !defined(HAVE_LIBEXPAT)
13862 error (_("Cannot process branch tracing result. XML parsing not supported."));
13863 #endif
13864
13865 switch (type)
13866 {
13867 case BTRACE_READ_ALL:
13868 annex = "all";
13869 break;
13870 case BTRACE_READ_NEW:
13871 annex = "new";
13872 break;
13873 case BTRACE_READ_DELTA:
13874 annex = "delta";
13875 break;
13876 default:
13877 internal_error (__FILE__, __LINE__,
13878 _("Bad branch tracing read type: %u."),
13879 (unsigned int) type);
13880 }
13881
13882 gdb::optional<gdb::char_vector> xml
13883 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13884 if (!xml)
13885 return BTRACE_ERR_UNKNOWN;
13886
13887 parse_xml_btrace (btrace, xml->data ());
13888
13889 return BTRACE_ERR_NONE;
13890 }
13891
13892 const struct btrace_config *
13893 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13894 {
13895 return &tinfo->conf;
13896 }
13897
13898 bool
13899 remote_target::augmented_libraries_svr4_read ()
13900 {
13901 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13902 == PACKET_ENABLE);
13903 }
13904
13905 /* Implementation of to_load. */
13906
13907 void
13908 remote_target::load (const char *name, int from_tty)
13909 {
13910 generic_load (name, from_tty);
13911 }
13912
13913 /* Accepts an integer PID; returns a string representing a file that
13914 can be opened on the remote side to get the symbols for the child
13915 process. Returns NULL if the operation is not supported. */
13916
13917 char *
13918 remote_target::pid_to_exec_file (int pid)
13919 {
13920 static gdb::optional<gdb::char_vector> filename;
13921 struct inferior *inf;
13922 char *annex = NULL;
13923
13924 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13925 return NULL;
13926
13927 inf = find_inferior_pid (pid);
13928 if (inf == NULL)
13929 internal_error (__FILE__, __LINE__,
13930 _("not currently attached to process %d"), pid);
13931
13932 if (!inf->fake_pid_p)
13933 {
13934 const int annex_size = 9;
13935
13936 annex = (char *) alloca (annex_size);
13937 xsnprintf (annex, annex_size, "%x", pid);
13938 }
13939
13940 filename = target_read_stralloc (current_top_target (),
13941 TARGET_OBJECT_EXEC_FILE, annex);
13942
13943 return filename ? filename->data () : nullptr;
13944 }
13945
13946 /* Implement the to_can_do_single_step target_ops method. */
13947
13948 int
13949 remote_target::can_do_single_step ()
13950 {
13951 /* We can only tell whether target supports single step or not by
13952 supported s and S vCont actions if the stub supports vContSupported
13953 feature. If the stub doesn't support vContSupported feature,
13954 we have conservatively to think target doesn't supports single
13955 step. */
13956 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13957 {
13958 struct remote_state *rs = get_remote_state ();
13959
13960 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13961 remote_vcont_probe ();
13962
13963 return rs->supports_vCont.s && rs->supports_vCont.S;
13964 }
13965 else
13966 return 0;
13967 }
13968
13969 /* Implementation of the to_execution_direction method for the remote
13970 target. */
13971
13972 enum exec_direction_kind
13973 remote_target::execution_direction ()
13974 {
13975 struct remote_state *rs = get_remote_state ();
13976
13977 return rs->last_resume_exec_dir;
13978 }
13979
13980 /* Return pointer to the thread_info struct which corresponds to
13981 THREAD_HANDLE (having length HANDLE_LEN). */
13982
13983 thread_info *
13984 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
13985 int handle_len,
13986 inferior *inf)
13987 {
13988 for (thread_info *tp : all_non_exited_threads ())
13989 {
13990 remote_thread_info *priv = get_remote_thread_info (tp);
13991
13992 if (tp->inf == inf && priv != NULL)
13993 {
13994 if (handle_len != priv->thread_handle.size ())
13995 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13996 handle_len, priv->thread_handle.size ());
13997 if (memcmp (thread_handle, priv->thread_handle.data (),
13998 handle_len) == 0)
13999 return tp;
14000 }
14001 }
14002
14003 return NULL;
14004 }
14005
14006 bool
14007 remote_target::can_async_p ()
14008 {
14009 struct remote_state *rs = get_remote_state ();
14010
14011 /* We don't go async if the user has explicitly prevented it with the
14012 "maint set target-async" command. */
14013 if (!target_async_permitted)
14014 return false;
14015
14016 /* We're async whenever the serial device is. */
14017 return serial_can_async_p (rs->remote_desc);
14018 }
14019
14020 bool
14021 remote_target::is_async_p ()
14022 {
14023 struct remote_state *rs = get_remote_state ();
14024
14025 if (!target_async_permitted)
14026 /* We only enable async when the user specifically asks for it. */
14027 return false;
14028
14029 /* We're async whenever the serial device is. */
14030 return serial_is_async_p (rs->remote_desc);
14031 }
14032
14033 /* Pass the SERIAL event on and up to the client. One day this code
14034 will be able to delay notifying the client of an event until the
14035 point where an entire packet has been received. */
14036
14037 static serial_event_ftype remote_async_serial_handler;
14038
14039 static void
14040 remote_async_serial_handler (struct serial *scb, void *context)
14041 {
14042 /* Don't propogate error information up to the client. Instead let
14043 the client find out about the error by querying the target. */
14044 inferior_event_handler (INF_REG_EVENT, NULL);
14045 }
14046
14047 static void
14048 remote_async_inferior_event_handler (gdb_client_data data)
14049 {
14050 inferior_event_handler (INF_REG_EVENT, data);
14051 }
14052
14053 void
14054 remote_target::async (int enable)
14055 {
14056 struct remote_state *rs = get_remote_state ();
14057
14058 if (enable)
14059 {
14060 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14061
14062 /* If there are pending events in the stop reply queue tell the
14063 event loop to process them. */
14064 if (!rs->stop_reply_queue.empty ())
14065 mark_async_event_handler (rs->remote_async_inferior_event_token);
14066 /* For simplicity, below we clear the pending events token
14067 without remembering whether it is marked, so here we always
14068 mark it. If there's actually no pending notification to
14069 process, this ends up being a no-op (other than a spurious
14070 event-loop wakeup). */
14071 if (target_is_non_stop_p ())
14072 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14073 }
14074 else
14075 {
14076 serial_async (rs->remote_desc, NULL, NULL);
14077 /* If the core is disabling async, it doesn't want to be
14078 disturbed with target events. Clear all async event sources
14079 too. */
14080 clear_async_event_handler (rs->remote_async_inferior_event_token);
14081 if (target_is_non_stop_p ())
14082 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14083 }
14084 }
14085
14086 /* Implementation of the to_thread_events method. */
14087
14088 void
14089 remote_target::thread_events (int enable)
14090 {
14091 struct remote_state *rs = get_remote_state ();
14092 size_t size = get_remote_packet_size ();
14093
14094 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14095 return;
14096
14097 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14098 putpkt (rs->buf);
14099 getpkt (&rs->buf, 0);
14100
14101 switch (packet_ok (rs->buf,
14102 &remote_protocol_packets[PACKET_QThreadEvents]))
14103 {
14104 case PACKET_OK:
14105 if (strcmp (rs->buf.data (), "OK") != 0)
14106 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14107 break;
14108 case PACKET_ERROR:
14109 warning (_("Remote failure reply: %s"), rs->buf.data ());
14110 break;
14111 case PACKET_UNKNOWN:
14112 break;
14113 }
14114 }
14115
14116 static void
14117 set_remote_cmd (const char *args, int from_tty)
14118 {
14119 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14120 }
14121
14122 static void
14123 show_remote_cmd (const char *args, int from_tty)
14124 {
14125 /* We can't just use cmd_show_list here, because we want to skip
14126 the redundant "show remote Z-packet" and the legacy aliases. */
14127 struct cmd_list_element *list = remote_show_cmdlist;
14128 struct ui_out *uiout = current_uiout;
14129
14130 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14131 for (; list != NULL; list = list->next)
14132 if (strcmp (list->name, "Z-packet") == 0)
14133 continue;
14134 else if (list->type == not_set_cmd)
14135 /* Alias commands are exactly like the original, except they
14136 don't have the normal type. */
14137 continue;
14138 else
14139 {
14140 ui_out_emit_tuple option_emitter (uiout, "option");
14141
14142 uiout->field_string ("name", list->name);
14143 uiout->text (": ");
14144 if (list->type == show_cmd)
14145 do_show_command (NULL, from_tty, list);
14146 else
14147 cmd_func (list, NULL, from_tty);
14148 }
14149 }
14150
14151
14152 /* Function to be called whenever a new objfile (shlib) is detected. */
14153 static void
14154 remote_new_objfile (struct objfile *objfile)
14155 {
14156 remote_target *remote = get_current_remote_target ();
14157
14158 if (remote != NULL) /* Have a remote connection. */
14159 remote->remote_check_symbols ();
14160 }
14161
14162 /* Pull all the tracepoints defined on the target and create local
14163 data structures representing them. We don't want to create real
14164 tracepoints yet, we don't want to mess up the user's existing
14165 collection. */
14166
14167 int
14168 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14169 {
14170 struct remote_state *rs = get_remote_state ();
14171 char *p;
14172
14173 /* Ask for a first packet of tracepoint definition. */
14174 putpkt ("qTfP");
14175 getpkt (&rs->buf, 0);
14176 p = rs->buf.data ();
14177 while (*p && *p != 'l')
14178 {
14179 parse_tracepoint_definition (p, utpp);
14180 /* Ask for another packet of tracepoint definition. */
14181 putpkt ("qTsP");
14182 getpkt (&rs->buf, 0);
14183 p = rs->buf.data ();
14184 }
14185 return 0;
14186 }
14187
14188 int
14189 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14190 {
14191 struct remote_state *rs = get_remote_state ();
14192 char *p;
14193
14194 /* Ask for a first packet of variable definition. */
14195 putpkt ("qTfV");
14196 getpkt (&rs->buf, 0);
14197 p = rs->buf.data ();
14198 while (*p && *p != 'l')
14199 {
14200 parse_tsv_definition (p, utsvp);
14201 /* Ask for another packet of variable definition. */
14202 putpkt ("qTsV");
14203 getpkt (&rs->buf, 0);
14204 p = rs->buf.data ();
14205 }
14206 return 0;
14207 }
14208
14209 /* The "set/show range-stepping" show hook. */
14210
14211 static void
14212 show_range_stepping (struct ui_file *file, int from_tty,
14213 struct cmd_list_element *c,
14214 const char *value)
14215 {
14216 fprintf_filtered (file,
14217 _("Debugger's willingness to use range stepping "
14218 "is %s.\n"), value);
14219 }
14220
14221 /* Return true if the vCont;r action is supported by the remote
14222 stub. */
14223
14224 bool
14225 remote_target::vcont_r_supported ()
14226 {
14227 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14228 remote_vcont_probe ();
14229
14230 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14231 && get_remote_state ()->supports_vCont.r);
14232 }
14233
14234 /* The "set/show range-stepping" set hook. */
14235
14236 static void
14237 set_range_stepping (const char *ignore_args, int from_tty,
14238 struct cmd_list_element *c)
14239 {
14240 /* When enabling, check whether range stepping is actually supported
14241 by the target, and warn if not. */
14242 if (use_range_stepping)
14243 {
14244 remote_target *remote = get_current_remote_target ();
14245 if (remote == NULL
14246 || !remote->vcont_r_supported ())
14247 warning (_("Range stepping is not supported by the current target"));
14248 }
14249 }
14250
14251 void
14252 _initialize_remote (void)
14253 {
14254 struct cmd_list_element *cmd;
14255 const char *cmd_name;
14256
14257 /* architecture specific data */
14258 remote_g_packet_data_handle =
14259 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14260
14261 remote_pspace_data
14262 = register_program_space_data_with_cleanup (NULL,
14263 remote_pspace_data_cleanup);
14264
14265 add_target (remote_target_info, remote_target::open);
14266 add_target (extended_remote_target_info, extended_remote_target::open);
14267
14268 /* Hook into new objfile notification. */
14269 gdb::observers::new_objfile.attach (remote_new_objfile);
14270
14271 #if 0
14272 init_remote_threadtests ();
14273 #endif
14274
14275 /* set/show remote ... */
14276
14277 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14278 Remote protocol specific variables\n\
14279 Configure various remote-protocol specific variables such as\n\
14280 the packets being used"),
14281 &remote_set_cmdlist, "set remote ",
14282 0 /* allow-unknown */, &setlist);
14283 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14284 Remote protocol specific variables\n\
14285 Configure various remote-protocol specific variables such as\n\
14286 the packets being used"),
14287 &remote_show_cmdlist, "show remote ",
14288 0 /* allow-unknown */, &showlist);
14289
14290 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14291 Compare section data on target to the exec file.\n\
14292 Argument is a single section name (default: all loaded sections).\n\
14293 To compare only read-only loaded sections, specify the -r option."),
14294 &cmdlist);
14295
14296 add_cmd ("packet", class_maintenance, packet_command, _("\
14297 Send an arbitrary packet to a remote target.\n\
14298 maintenance packet TEXT\n\
14299 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14300 this command sends the string TEXT to the inferior, and displays the\n\
14301 response packet. GDB supplies the initial `$' character, and the\n\
14302 terminating `#' character and checksum."),
14303 &maintenancelist);
14304
14305 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14306 Set whether to send break if interrupted."), _("\
14307 Show whether to send break if interrupted."), _("\
14308 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14309 set_remotebreak, show_remotebreak,
14310 &setlist, &showlist);
14311 cmd_name = "remotebreak";
14312 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14313 deprecate_cmd (cmd, "set remote interrupt-sequence");
14314 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14315 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14316 deprecate_cmd (cmd, "show remote interrupt-sequence");
14317
14318 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14319 interrupt_sequence_modes, &interrupt_sequence_mode,
14320 _("\
14321 Set interrupt sequence to remote target."), _("\
14322 Show interrupt sequence to remote target."), _("\
14323 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14324 NULL, show_interrupt_sequence,
14325 &remote_set_cmdlist,
14326 &remote_show_cmdlist);
14327
14328 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14329 &interrupt_on_connect, _("\
14330 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14331 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14332 If set, interrupt sequence is sent to remote target."),
14333 NULL, NULL,
14334 &remote_set_cmdlist, &remote_show_cmdlist);
14335
14336 /* Install commands for configuring memory read/write packets. */
14337
14338 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14339 Set the maximum number of bytes per memory write packet (deprecated)."),
14340 &setlist);
14341 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14342 Show the maximum number of bytes per memory write packet (deprecated)."),
14343 &showlist);
14344 add_cmd ("memory-write-packet-size", no_class,
14345 set_memory_write_packet_size, _("\
14346 Set the maximum number of bytes per memory-write packet.\n\
14347 Specify the number of bytes in a packet or 0 (zero) for the\n\
14348 default packet size. The actual limit is further reduced\n\
14349 dependent on the target. Specify ``fixed'' to disable the\n\
14350 further restriction and ``limit'' to enable that restriction."),
14351 &remote_set_cmdlist);
14352 add_cmd ("memory-read-packet-size", no_class,
14353 set_memory_read_packet_size, _("\
14354 Set the maximum number of bytes per memory-read packet.\n\
14355 Specify the number of bytes in a packet or 0 (zero) for the\n\
14356 default packet size. The actual limit is further reduced\n\
14357 dependent on the target. Specify ``fixed'' to disable the\n\
14358 further restriction and ``limit'' to enable that restriction."),
14359 &remote_set_cmdlist);
14360 add_cmd ("memory-write-packet-size", no_class,
14361 show_memory_write_packet_size,
14362 _("Show the maximum number of bytes per memory-write packet."),
14363 &remote_show_cmdlist);
14364 add_cmd ("memory-read-packet-size", no_class,
14365 show_memory_read_packet_size,
14366 _("Show the maximum number of bytes per memory-read packet."),
14367 &remote_show_cmdlist);
14368
14369 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14370 &remote_hw_watchpoint_limit, _("\
14371 Set the maximum number of target hardware watchpoints."), _("\
14372 Show the maximum number of target hardware watchpoints."), _("\
14373 Specify \"unlimited\" for unlimited hardware watchpoints."),
14374 NULL, show_hardware_watchpoint_limit,
14375 &remote_set_cmdlist,
14376 &remote_show_cmdlist);
14377 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14378 no_class,
14379 &remote_hw_watchpoint_length_limit, _("\
14380 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14381 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14382 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14383 NULL, show_hardware_watchpoint_length_limit,
14384 &remote_set_cmdlist, &remote_show_cmdlist);
14385 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14386 &remote_hw_breakpoint_limit, _("\
14387 Set the maximum number of target hardware breakpoints."), _("\
14388 Show the maximum number of target hardware breakpoints."), _("\
14389 Specify \"unlimited\" for unlimited hardware breakpoints."),
14390 NULL, show_hardware_breakpoint_limit,
14391 &remote_set_cmdlist, &remote_show_cmdlist);
14392
14393 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14394 &remote_address_size, _("\
14395 Set the maximum size of the address (in bits) in a memory packet."), _("\
14396 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14397 NULL,
14398 NULL, /* FIXME: i18n: */
14399 &setlist, &showlist);
14400
14401 init_all_packet_configs ();
14402
14403 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14404 "X", "binary-download", 1);
14405
14406 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14407 "vCont", "verbose-resume", 0);
14408
14409 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14410 "QPassSignals", "pass-signals", 0);
14411
14412 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14413 "QCatchSyscalls", "catch-syscalls", 0);
14414
14415 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14416 "QProgramSignals", "program-signals", 0);
14417
14418 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14419 "QSetWorkingDir", "set-working-dir", 0);
14420
14421 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14422 "QStartupWithShell", "startup-with-shell", 0);
14423
14424 add_packet_config_cmd (&remote_protocol_packets
14425 [PACKET_QEnvironmentHexEncoded],
14426 "QEnvironmentHexEncoded", "environment-hex-encoded",
14427 0);
14428
14429 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14430 "QEnvironmentReset", "environment-reset",
14431 0);
14432
14433 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14434 "QEnvironmentUnset", "environment-unset",
14435 0);
14436
14437 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14438 "qSymbol", "symbol-lookup", 0);
14439
14440 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14441 "P", "set-register", 1);
14442
14443 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14444 "p", "fetch-register", 1);
14445
14446 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14447 "Z0", "software-breakpoint", 0);
14448
14449 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14450 "Z1", "hardware-breakpoint", 0);
14451
14452 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14453 "Z2", "write-watchpoint", 0);
14454
14455 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14456 "Z3", "read-watchpoint", 0);
14457
14458 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14459 "Z4", "access-watchpoint", 0);
14460
14461 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14462 "qXfer:auxv:read", "read-aux-vector", 0);
14463
14464 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14465 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14466
14467 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14468 "qXfer:features:read", "target-features", 0);
14469
14470 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14471 "qXfer:libraries:read", "library-info", 0);
14472
14473 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14474 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14475
14476 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14477 "qXfer:memory-map:read", "memory-map", 0);
14478
14479 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14480 "qXfer:spu:read", "read-spu-object", 0);
14481
14482 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14483 "qXfer:spu:write", "write-spu-object", 0);
14484
14485 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14486 "qXfer:osdata:read", "osdata", 0);
14487
14488 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14489 "qXfer:threads:read", "threads", 0);
14490
14491 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14492 "qXfer:siginfo:read", "read-siginfo-object", 0);
14493
14494 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14495 "qXfer:siginfo:write", "write-siginfo-object", 0);
14496
14497 add_packet_config_cmd
14498 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14499 "qXfer:traceframe-info:read", "traceframe-info", 0);
14500
14501 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14502 "qXfer:uib:read", "unwind-info-block", 0);
14503
14504 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14505 "qGetTLSAddr", "get-thread-local-storage-address",
14506 0);
14507
14508 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14509 "qGetTIBAddr", "get-thread-information-block-address",
14510 0);
14511
14512 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14513 "bc", "reverse-continue", 0);
14514
14515 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14516 "bs", "reverse-step", 0);
14517
14518 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14519 "qSupported", "supported-packets", 0);
14520
14521 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14522 "qSearch:memory", "search-memory", 0);
14523
14524 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14525 "qTStatus", "trace-status", 0);
14526
14527 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14528 "vFile:setfs", "hostio-setfs", 0);
14529
14530 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14531 "vFile:open", "hostio-open", 0);
14532
14533 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14534 "vFile:pread", "hostio-pread", 0);
14535
14536 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14537 "vFile:pwrite", "hostio-pwrite", 0);
14538
14539 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14540 "vFile:close", "hostio-close", 0);
14541
14542 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14543 "vFile:unlink", "hostio-unlink", 0);
14544
14545 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14546 "vFile:readlink", "hostio-readlink", 0);
14547
14548 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14549 "vFile:fstat", "hostio-fstat", 0);
14550
14551 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14552 "vAttach", "attach", 0);
14553
14554 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14555 "vRun", "run", 0);
14556
14557 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14558 "QStartNoAckMode", "noack", 0);
14559
14560 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14561 "vKill", "kill", 0);
14562
14563 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14564 "qAttached", "query-attached", 0);
14565
14566 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14567 "ConditionalTracepoints",
14568 "conditional-tracepoints", 0);
14569
14570 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14571 "ConditionalBreakpoints",
14572 "conditional-breakpoints", 0);
14573
14574 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14575 "BreakpointCommands",
14576 "breakpoint-commands", 0);
14577
14578 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14579 "FastTracepoints", "fast-tracepoints", 0);
14580
14581 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14582 "TracepointSource", "TracepointSource", 0);
14583
14584 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14585 "QAllow", "allow", 0);
14586
14587 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14588 "StaticTracepoints", "static-tracepoints", 0);
14589
14590 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14591 "InstallInTrace", "install-in-trace", 0);
14592
14593 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14594 "qXfer:statictrace:read", "read-sdata-object", 0);
14595
14596 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14597 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14598
14599 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14600 "QDisableRandomization", "disable-randomization", 0);
14601
14602 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14603 "QAgent", "agent", 0);
14604
14605 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14606 "QTBuffer:size", "trace-buffer-size", 0);
14607
14608 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14609 "Qbtrace:off", "disable-btrace", 0);
14610
14611 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14612 "Qbtrace:bts", "enable-btrace-bts", 0);
14613
14614 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14615 "Qbtrace:pt", "enable-btrace-pt", 0);
14616
14617 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14618 "qXfer:btrace", "read-btrace", 0);
14619
14620 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14621 "qXfer:btrace-conf", "read-btrace-conf", 0);
14622
14623 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14624 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14625
14626 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14627 "multiprocess-feature", "multiprocess-feature", 0);
14628
14629 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14630 "swbreak-feature", "swbreak-feature", 0);
14631
14632 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14633 "hwbreak-feature", "hwbreak-feature", 0);
14634
14635 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14636 "fork-event-feature", "fork-event-feature", 0);
14637
14638 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14639 "vfork-event-feature", "vfork-event-feature", 0);
14640
14641 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14642 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14643
14644 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14645 "vContSupported", "verbose-resume-supported", 0);
14646
14647 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14648 "exec-event-feature", "exec-event-feature", 0);
14649
14650 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14651 "vCtrlC", "ctrl-c", 0);
14652
14653 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14654 "QThreadEvents", "thread-events", 0);
14655
14656 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14657 "N stop reply", "no-resumed-stop-reply", 0);
14658
14659 /* Assert that we've registered "set remote foo-packet" commands
14660 for all packet configs. */
14661 {
14662 int i;
14663
14664 for (i = 0; i < PACKET_MAX; i++)
14665 {
14666 /* Ideally all configs would have a command associated. Some
14667 still don't though. */
14668 int excepted;
14669
14670 switch (i)
14671 {
14672 case PACKET_QNonStop:
14673 case PACKET_EnableDisableTracepoints_feature:
14674 case PACKET_tracenz_feature:
14675 case PACKET_DisconnectedTracing_feature:
14676 case PACKET_augmented_libraries_svr4_read_feature:
14677 case PACKET_qCRC:
14678 /* Additions to this list need to be well justified:
14679 pre-existing packets are OK; new packets are not. */
14680 excepted = 1;
14681 break;
14682 default:
14683 excepted = 0;
14684 break;
14685 }
14686
14687 /* This catches both forgetting to add a config command, and
14688 forgetting to remove a packet from the exception list. */
14689 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14690 }
14691 }
14692
14693 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14694 Z sub-packet has its own set and show commands, but users may
14695 have sets to this variable in their .gdbinit files (or in their
14696 documentation). */
14697 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14698 &remote_Z_packet_detect, _("\
14699 Set use of remote protocol `Z' packets"), _("\
14700 Show use of remote protocol `Z' packets "), _("\
14701 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14702 packets."),
14703 set_remote_protocol_Z_packet_cmd,
14704 show_remote_protocol_Z_packet_cmd,
14705 /* FIXME: i18n: Use of remote protocol
14706 `Z' packets is %s. */
14707 &remote_set_cmdlist, &remote_show_cmdlist);
14708
14709 add_prefix_cmd ("remote", class_files, remote_command, _("\
14710 Manipulate files on the remote system\n\
14711 Transfer files to and from the remote target system."),
14712 &remote_cmdlist, "remote ",
14713 0 /* allow-unknown */, &cmdlist);
14714
14715 add_cmd ("put", class_files, remote_put_command,
14716 _("Copy a local file to the remote system."),
14717 &remote_cmdlist);
14718
14719 add_cmd ("get", class_files, remote_get_command,
14720 _("Copy a remote file to the local system."),
14721 &remote_cmdlist);
14722
14723 add_cmd ("delete", class_files, remote_delete_command,
14724 _("Delete a remote file."),
14725 &remote_cmdlist);
14726
14727 add_setshow_string_noescape_cmd ("exec-file", class_files,
14728 &remote_exec_file_var, _("\
14729 Set the remote pathname for \"run\""), _("\
14730 Show the remote pathname for \"run\""), NULL,
14731 set_remote_exec_file,
14732 show_remote_exec_file,
14733 &remote_set_cmdlist,
14734 &remote_show_cmdlist);
14735
14736 add_setshow_boolean_cmd ("range-stepping", class_run,
14737 &use_range_stepping, _("\
14738 Enable or disable range stepping."), _("\
14739 Show whether target-assisted range stepping is enabled."), _("\
14740 If on, and the target supports it, when stepping a source line, GDB\n\
14741 tells the target to step the corresponding range of addresses itself instead\n\
14742 of issuing multiple single-steps. This speeds up source level\n\
14743 stepping. If off, GDB always issues single-steps, even if range\n\
14744 stepping is supported by the target. The default is on."),
14745 set_range_stepping,
14746 show_range_stepping,
14747 &setlist,
14748 &showlist);
14749
14750 /* Eventually initialize fileio. See fileio.c */
14751 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14752 }
This page took 0.30783 seconds and 5 git commands to generate.