gdb: allocate symfile_segment_data with new
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include <algorithm>
79 #include <unordered_map>
80 #include "async-event.h"
81
82 /* The remote target. */
83
84 static const char remote_doc[] = N_("\
85 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
86 Specify the serial device it is connected to\n\
87 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
88
89 #define OPAQUETHREADBYTES 8
90
91 /* a 64 bit opaque identifier */
92 typedef unsigned char threadref[OPAQUETHREADBYTES];
93
94 struct gdb_ext_thread_info;
95 struct threads_listing_context;
96 typedef int (*rmt_thread_action) (threadref *ref, void *context);
97 struct protocol_feature;
98 struct packet_reg;
99
100 struct stop_reply;
101 typedef std::unique_ptr<stop_reply> stop_reply_up;
102
103 /* Generic configuration support for packets the stub optionally
104 supports. Allows the user to specify the use of the packet as well
105 as allowing GDB to auto-detect support in the remote stub. */
106
107 enum packet_support
108 {
109 PACKET_SUPPORT_UNKNOWN = 0,
110 PACKET_ENABLE,
111 PACKET_DISABLE
112 };
113
114 /* Analyze a packet's return value and update the packet config
115 accordingly. */
116
117 enum packet_result
118 {
119 PACKET_ERROR,
120 PACKET_OK,
121 PACKET_UNKNOWN
122 };
123
124 struct threads_listing_context;
125
126 /* Stub vCont actions support.
127
128 Each field is a boolean flag indicating whether the stub reports
129 support for the corresponding action. */
130
131 struct vCont_action_support
132 {
133 /* vCont;t */
134 bool t = false;
135
136 /* vCont;r */
137 bool r = false;
138
139 /* vCont;s */
140 bool s = false;
141
142 /* vCont;S */
143 bool S = false;
144 };
145
146 /* About this many threadids fit in a packet. */
147
148 #define MAXTHREADLISTRESULTS 32
149
150 /* Data for the vFile:pread readahead cache. */
151
152 struct readahead_cache
153 {
154 /* Invalidate the readahead cache. */
155 void invalidate ();
156
157 /* Invalidate the readahead cache if it is holding data for FD. */
158 void invalidate_fd (int fd);
159
160 /* Serve pread from the readahead cache. Returns number of bytes
161 read, or 0 if the request can't be served from the cache. */
162 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
163
164 /* The file descriptor for the file that is being cached. -1 if the
165 cache is invalid. */
166 int fd = -1;
167
168 /* The offset into the file that the cache buffer corresponds
169 to. */
170 ULONGEST offset = 0;
171
172 /* The buffer holding the cache contents. */
173 gdb_byte *buf = nullptr;
174 /* The buffer's size. We try to read as much as fits into a packet
175 at a time. */
176 size_t bufsize = 0;
177
178 /* Cache hit and miss counters. */
179 ULONGEST hit_count = 0;
180 ULONGEST miss_count = 0;
181 };
182
183 /* Description of the remote protocol for a given architecture. */
184
185 struct packet_reg
186 {
187 long offset; /* Offset into G packet. */
188 long regnum; /* GDB's internal register number. */
189 LONGEST pnum; /* Remote protocol register number. */
190 int in_g_packet; /* Always part of G packet. */
191 /* long size in bytes; == register_size (target_gdbarch (), regnum);
192 at present. */
193 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
194 at present. */
195 };
196
197 struct remote_arch_state
198 {
199 explicit remote_arch_state (struct gdbarch *gdbarch);
200
201 /* Description of the remote protocol registers. */
202 long sizeof_g_packet;
203
204 /* Description of the remote protocol registers indexed by REGNUM
205 (making an array gdbarch_num_regs in size). */
206 std::unique_ptr<packet_reg[]> regs;
207
208 /* This is the size (in chars) of the first response to the ``g''
209 packet. It is used as a heuristic when determining the maximum
210 size of memory-read and memory-write packets. A target will
211 typically only reserve a buffer large enough to hold the ``g''
212 packet. The size does not include packet overhead (headers and
213 trailers). */
214 long actual_register_packet_size;
215
216 /* This is the maximum size (in chars) of a non read/write packet.
217 It is also used as a cap on the size of read/write packets. */
218 long remote_packet_size;
219 };
220
221 /* Description of the remote protocol state for the currently
222 connected target. This is per-target state, and independent of the
223 selected architecture. */
224
225 class remote_state
226 {
227 public:
228
229 remote_state ();
230 ~remote_state ();
231
232 /* Get the remote arch state for GDBARCH. */
233 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
234
235 public: /* data */
236
237 /* A buffer to use for incoming packets, and its current size. The
238 buffer is grown dynamically for larger incoming packets.
239 Outgoing packets may also be constructed in this buffer.
240 The size of the buffer is always at least REMOTE_PACKET_SIZE;
241 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
242 packets. */
243 gdb::char_vector buf;
244
245 /* True if we're going through initial connection setup (finding out
246 about the remote side's threads, relocating symbols, etc.). */
247 bool starting_up = false;
248
249 /* If we negotiated packet size explicitly (and thus can bypass
250 heuristics for the largest packet size that will not overflow
251 a buffer in the stub), this will be set to that packet size.
252 Otherwise zero, meaning to use the guessed size. */
253 long explicit_packet_size = 0;
254
255 /* remote_wait is normally called when the target is running and
256 waits for a stop reply packet. But sometimes we need to call it
257 when the target is already stopped. We can send a "?" packet
258 and have remote_wait read the response. Or, if we already have
259 the response, we can stash it in BUF and tell remote_wait to
260 skip calling getpkt. This flag is set when BUF contains a
261 stop reply packet and the target is not waiting. */
262 int cached_wait_status = 0;
263
264 /* True, if in no ack mode. That is, neither GDB nor the stub will
265 expect acks from each other. The connection is assumed to be
266 reliable. */
267 bool noack_mode = false;
268
269 /* True if we're connected in extended remote mode. */
270 bool extended = false;
271
272 /* True if we resumed the target and we're waiting for the target to
273 stop. In the mean time, we can't start another command/query.
274 The remote server wouldn't be ready to process it, so we'd
275 timeout waiting for a reply that would never come and eventually
276 we'd close the connection. This can happen in asynchronous mode
277 because we allow GDB commands while the target is running. */
278 bool waiting_for_stop_reply = false;
279
280 /* The status of the stub support for the various vCont actions. */
281 vCont_action_support supports_vCont;
282 /* Whether vCont support was probed already. This is a workaround
283 until packet_support is per-connection. */
284 bool supports_vCont_probed;
285
286 /* True if the user has pressed Ctrl-C, but the target hasn't
287 responded to that. */
288 bool ctrlc_pending_p = false;
289
290 /* True if we saw a Ctrl-C while reading or writing from/to the
291 remote descriptor. At that point it is not safe to send a remote
292 interrupt packet, so we instead remember we saw the Ctrl-C and
293 process it once we're done with sending/receiving the current
294 packet, which should be shortly. If however that takes too long,
295 and the user presses Ctrl-C again, we offer to disconnect. */
296 bool got_ctrlc_during_io = false;
297
298 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
299 remote_open knows that we don't have a file open when the program
300 starts. */
301 struct serial *remote_desc = nullptr;
302
303 /* These are the threads which we last sent to the remote system. The
304 TID member will be -1 for all or -2 for not sent yet. */
305 ptid_t general_thread = null_ptid;
306 ptid_t continue_thread = null_ptid;
307
308 /* This is the traceframe which we last selected on the remote system.
309 It will be -1 if no traceframe is selected. */
310 int remote_traceframe_number = -1;
311
312 char *last_pass_packet = nullptr;
313
314 /* The last QProgramSignals packet sent to the target. We bypass
315 sending a new program signals list down to the target if the new
316 packet is exactly the same as the last we sent. IOW, we only let
317 the target know about program signals list changes. */
318 char *last_program_signals_packet = nullptr;
319
320 gdb_signal last_sent_signal = GDB_SIGNAL_0;
321
322 bool last_sent_step = false;
323
324 /* The execution direction of the last resume we got. */
325 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
326
327 char *finished_object = nullptr;
328 char *finished_annex = nullptr;
329 ULONGEST finished_offset = 0;
330
331 /* Should we try the 'ThreadInfo' query packet?
332
333 This variable (NOT available to the user: auto-detect only!)
334 determines whether GDB will use the new, simpler "ThreadInfo"
335 query or the older, more complex syntax for thread queries.
336 This is an auto-detect variable (set to true at each connect,
337 and set to false when the target fails to recognize it). */
338 bool use_threadinfo_query = false;
339 bool use_threadextra_query = false;
340
341 threadref echo_nextthread {};
342 threadref nextthread {};
343 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
344
345 /* The state of remote notification. */
346 struct remote_notif_state *notif_state = nullptr;
347
348 /* The branch trace configuration. */
349 struct btrace_config btrace_config {};
350
351 /* The argument to the last "vFile:setfs:" packet we sent, used
352 to avoid sending repeated unnecessary "vFile:setfs:" packets.
353 Initialized to -1 to indicate that no "vFile:setfs:" packet
354 has yet been sent. */
355 int fs_pid = -1;
356
357 /* A readahead cache for vFile:pread. Often, reading a binary
358 involves a sequence of small reads. E.g., when parsing an ELF
359 file. A readahead cache helps mostly the case of remote
360 debugging on a connection with higher latency, due to the
361 request/reply nature of the RSP. We only cache data for a single
362 file descriptor at a time. */
363 struct readahead_cache readahead_cache;
364
365 /* The list of already fetched and acknowledged stop events. This
366 queue is used for notification Stop, and other notifications
367 don't need queue for their events, because the notification
368 events of Stop can't be consumed immediately, so that events
369 should be queued first, and be consumed by remote_wait_{ns,as}
370 one per time. Other notifications can consume their events
371 immediately, so queue is not needed for them. */
372 std::vector<stop_reply_up> stop_reply_queue;
373
374 /* Asynchronous signal handle registered as event loop source for
375 when we have pending events ready to be passed to the core. */
376 struct async_event_handler *remote_async_inferior_event_token = nullptr;
377
378 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
379 ``forever'' still use the normal timeout mechanism. This is
380 currently used by the ASYNC code to guarentee that target reads
381 during the initial connect always time-out. Once getpkt has been
382 modified to return a timeout indication and, in turn
383 remote_wait()/wait_for_inferior() have gained a timeout parameter
384 this can go away. */
385 int wait_forever_enabled_p = 1;
386
387 private:
388 /* Mapping of remote protocol data for each gdbarch. Usually there
389 is only one entry here, though we may see more with stubs that
390 support multi-process. */
391 std::unordered_map<struct gdbarch *, remote_arch_state>
392 m_arch_states;
393 };
394
395 static const target_info remote_target_info = {
396 "remote",
397 N_("Remote serial target in gdb-specific protocol"),
398 remote_doc
399 };
400
401 class remote_target : public process_stratum_target
402 {
403 public:
404 remote_target () = default;
405 ~remote_target () override;
406
407 const target_info &info () const override
408 { return remote_target_info; }
409
410 const char *connection_string () override;
411
412 thread_control_capabilities get_thread_control_capabilities () override
413 { return tc_schedlock; }
414
415 /* Open a remote connection. */
416 static void open (const char *, int);
417
418 void close () override;
419
420 void detach (inferior *, int) override;
421 void disconnect (const char *, int) override;
422
423 void commit_resume () override;
424 void resume (ptid_t, int, enum gdb_signal) override;
425 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
426
427 void fetch_registers (struct regcache *, int) override;
428 void store_registers (struct regcache *, int) override;
429 void prepare_to_store (struct regcache *) override;
430
431 void files_info () override;
432
433 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
434
435 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
436 enum remove_bp_reason) override;
437
438
439 bool stopped_by_sw_breakpoint () override;
440 bool supports_stopped_by_sw_breakpoint () override;
441
442 bool stopped_by_hw_breakpoint () override;
443
444 bool supports_stopped_by_hw_breakpoint () override;
445
446 bool stopped_by_watchpoint () override;
447
448 bool stopped_data_address (CORE_ADDR *) override;
449
450 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
451
452 int can_use_hw_breakpoint (enum bptype, int, int) override;
453
454 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
455
456 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
457
458 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
459
460 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
461 struct expression *) override;
462
463 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
464 struct expression *) override;
465
466 void kill () override;
467
468 void load (const char *, int) override;
469
470 void mourn_inferior () override;
471
472 void pass_signals (gdb::array_view<const unsigned char>) override;
473
474 int set_syscall_catchpoint (int, bool, int,
475 gdb::array_view<const int>) override;
476
477 void program_signals (gdb::array_view<const unsigned char>) override;
478
479 bool thread_alive (ptid_t ptid) override;
480
481 const char *thread_name (struct thread_info *) override;
482
483 void update_thread_list () override;
484
485 std::string pid_to_str (ptid_t) override;
486
487 const char *extra_thread_info (struct thread_info *) override;
488
489 ptid_t get_ada_task_ptid (long lwp, long thread) override;
490
491 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
492 int handle_len,
493 inferior *inf) override;
494
495 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
496 override;
497
498 void stop (ptid_t) override;
499
500 void interrupt () override;
501
502 void pass_ctrlc () override;
503
504 enum target_xfer_status xfer_partial (enum target_object object,
505 const char *annex,
506 gdb_byte *readbuf,
507 const gdb_byte *writebuf,
508 ULONGEST offset, ULONGEST len,
509 ULONGEST *xfered_len) override;
510
511 ULONGEST get_memory_xfer_limit () override;
512
513 void rcmd (const char *command, struct ui_file *output) override;
514
515 char *pid_to_exec_file (int pid) override;
516
517 void log_command (const char *cmd) override
518 {
519 serial_log_command (this, cmd);
520 }
521
522 CORE_ADDR get_thread_local_address (ptid_t ptid,
523 CORE_ADDR load_module_addr,
524 CORE_ADDR offset) override;
525
526 bool can_execute_reverse () override;
527
528 std::vector<mem_region> memory_map () override;
529
530 void flash_erase (ULONGEST address, LONGEST length) override;
531
532 void flash_done () override;
533
534 const struct target_desc *read_description () override;
535
536 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
537 const gdb_byte *pattern, ULONGEST pattern_len,
538 CORE_ADDR *found_addrp) override;
539
540 bool can_async_p () override;
541
542 bool is_async_p () override;
543
544 void async (int) override;
545
546 int async_wait_fd () override;
547
548 void thread_events (int) override;
549
550 int can_do_single_step () override;
551
552 void terminal_inferior () override;
553
554 void terminal_ours () override;
555
556 bool supports_non_stop () override;
557
558 bool supports_multi_process () override;
559
560 bool supports_disable_randomization () override;
561
562 bool filesystem_is_local () override;
563
564
565 int fileio_open (struct inferior *inf, const char *filename,
566 int flags, int mode, int warn_if_slow,
567 int *target_errno) override;
568
569 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
570 ULONGEST offset, int *target_errno) override;
571
572 int fileio_pread (int fd, gdb_byte *read_buf, int len,
573 ULONGEST offset, int *target_errno) override;
574
575 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
576
577 int fileio_close (int fd, int *target_errno) override;
578
579 int fileio_unlink (struct inferior *inf,
580 const char *filename,
581 int *target_errno) override;
582
583 gdb::optional<std::string>
584 fileio_readlink (struct inferior *inf,
585 const char *filename,
586 int *target_errno) override;
587
588 bool supports_enable_disable_tracepoint () override;
589
590 bool supports_string_tracing () override;
591
592 bool supports_evaluation_of_breakpoint_conditions () override;
593
594 bool can_run_breakpoint_commands () override;
595
596 void trace_init () override;
597
598 void download_tracepoint (struct bp_location *location) override;
599
600 bool can_download_tracepoint () override;
601
602 void download_trace_state_variable (const trace_state_variable &tsv) override;
603
604 void enable_tracepoint (struct bp_location *location) override;
605
606 void disable_tracepoint (struct bp_location *location) override;
607
608 void trace_set_readonly_regions () override;
609
610 void trace_start () override;
611
612 int get_trace_status (struct trace_status *ts) override;
613
614 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
615 override;
616
617 void trace_stop () override;
618
619 int trace_find (enum trace_find_type type, int num,
620 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
621
622 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
623
624 int save_trace_data (const char *filename) override;
625
626 int upload_tracepoints (struct uploaded_tp **utpp) override;
627
628 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
629
630 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
631
632 int get_min_fast_tracepoint_insn_len () override;
633
634 void set_disconnected_tracing (int val) override;
635
636 void set_circular_trace_buffer (int val) override;
637
638 void set_trace_buffer_size (LONGEST val) override;
639
640 bool set_trace_notes (const char *user, const char *notes,
641 const char *stopnotes) override;
642
643 int core_of_thread (ptid_t ptid) override;
644
645 int verify_memory (const gdb_byte *data,
646 CORE_ADDR memaddr, ULONGEST size) override;
647
648
649 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
650
651 void set_permissions () override;
652
653 bool static_tracepoint_marker_at (CORE_ADDR,
654 struct static_tracepoint_marker *marker)
655 override;
656
657 std::vector<static_tracepoint_marker>
658 static_tracepoint_markers_by_strid (const char *id) override;
659
660 traceframe_info_up traceframe_info () override;
661
662 bool use_agent (bool use) override;
663 bool can_use_agent () override;
664
665 struct btrace_target_info *enable_btrace (ptid_t ptid,
666 const struct btrace_config *conf) override;
667
668 void disable_btrace (struct btrace_target_info *tinfo) override;
669
670 void teardown_btrace (struct btrace_target_info *tinfo) override;
671
672 enum btrace_error read_btrace (struct btrace_data *data,
673 struct btrace_target_info *btinfo,
674 enum btrace_read_type type) override;
675
676 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
677 bool augmented_libraries_svr4_read () override;
678 bool follow_fork (bool, bool) override;
679 void follow_exec (struct inferior *, const char *) override;
680 int insert_fork_catchpoint (int) override;
681 int remove_fork_catchpoint (int) override;
682 int insert_vfork_catchpoint (int) override;
683 int remove_vfork_catchpoint (int) override;
684 int insert_exec_catchpoint (int) override;
685 int remove_exec_catchpoint (int) override;
686 enum exec_direction_kind execution_direction () override;
687
688 public: /* Remote specific methods. */
689
690 void remote_download_command_source (int num, ULONGEST addr,
691 struct command_line *cmds);
692
693 void remote_file_put (const char *local_file, const char *remote_file,
694 int from_tty);
695 void remote_file_get (const char *remote_file, const char *local_file,
696 int from_tty);
697 void remote_file_delete (const char *remote_file, int from_tty);
698
699 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
700 ULONGEST offset, int *remote_errno);
701 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
702 ULONGEST offset, int *remote_errno);
703 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
704 ULONGEST offset, int *remote_errno);
705
706 int remote_hostio_send_command (int command_bytes, int which_packet,
707 int *remote_errno, char **attachment,
708 int *attachment_len);
709 int remote_hostio_set_filesystem (struct inferior *inf,
710 int *remote_errno);
711 /* We should get rid of this and use fileio_open directly. */
712 int remote_hostio_open (struct inferior *inf, const char *filename,
713 int flags, int mode, int warn_if_slow,
714 int *remote_errno);
715 int remote_hostio_close (int fd, int *remote_errno);
716
717 int remote_hostio_unlink (inferior *inf, const char *filename,
718 int *remote_errno);
719
720 struct remote_state *get_remote_state ();
721
722 long get_remote_packet_size (void);
723 long get_memory_packet_size (struct memory_packet_config *config);
724
725 long get_memory_write_packet_size ();
726 long get_memory_read_packet_size ();
727
728 char *append_pending_thread_resumptions (char *p, char *endp,
729 ptid_t ptid);
730 static void open_1 (const char *name, int from_tty, int extended_p);
731 void start_remote (int from_tty, int extended_p);
732 void remote_detach_1 (struct inferior *inf, int from_tty);
733
734 char *append_resumption (char *p, char *endp,
735 ptid_t ptid, int step, gdb_signal siggnal);
736 int remote_resume_with_vcont (ptid_t ptid, int step,
737 gdb_signal siggnal);
738
739 void add_current_inferior_and_thread (char *wait_status);
740
741 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
742 int options);
743 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
744 int options);
745
746 ptid_t process_stop_reply (struct stop_reply *stop_reply,
747 target_waitstatus *status);
748
749 void remote_notice_new_inferior (ptid_t currthread, int executing);
750
751 void process_initial_stop_replies (int from_tty);
752
753 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
754
755 void btrace_sync_conf (const btrace_config *conf);
756
757 void remote_btrace_maybe_reopen ();
758
759 void remove_new_fork_children (threads_listing_context *context);
760 void kill_new_fork_children (int pid);
761 void discard_pending_stop_replies (struct inferior *inf);
762 int stop_reply_queue_length ();
763
764 void check_pending_events_prevent_wildcard_vcont
765 (int *may_global_wildcard_vcont);
766
767 void discard_pending_stop_replies_in_queue ();
768 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
769 struct stop_reply *queued_stop_reply (ptid_t ptid);
770 int peek_stop_reply (ptid_t ptid);
771 void remote_parse_stop_reply (const char *buf, stop_reply *event);
772
773 void remote_stop_ns (ptid_t ptid);
774 void remote_interrupt_as ();
775 void remote_interrupt_ns ();
776
777 char *remote_get_noisy_reply ();
778 int remote_query_attached (int pid);
779 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
780 int try_open_exec);
781
782 ptid_t remote_current_thread (ptid_t oldpid);
783 ptid_t get_current_thread (char *wait_status);
784
785 void set_thread (ptid_t ptid, int gen);
786 void set_general_thread (ptid_t ptid);
787 void set_continue_thread (ptid_t ptid);
788 void set_general_process ();
789
790 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
791
792 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
793 gdb_ext_thread_info *info);
794 int remote_get_threadinfo (threadref *threadid, int fieldset,
795 gdb_ext_thread_info *info);
796
797 int parse_threadlist_response (char *pkt, int result_limit,
798 threadref *original_echo,
799 threadref *resultlist,
800 int *doneflag);
801 int remote_get_threadlist (int startflag, threadref *nextthread,
802 int result_limit, int *done, int *result_count,
803 threadref *threadlist);
804
805 int remote_threadlist_iterator (rmt_thread_action stepfunction,
806 void *context, int looplimit);
807
808 int remote_get_threads_with_ql (threads_listing_context *context);
809 int remote_get_threads_with_qxfer (threads_listing_context *context);
810 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
811
812 void extended_remote_restart ();
813
814 void get_offsets ();
815
816 void remote_check_symbols ();
817
818 void remote_supported_packet (const struct protocol_feature *feature,
819 enum packet_support support,
820 const char *argument);
821
822 void remote_query_supported ();
823
824 void remote_packet_size (const protocol_feature *feature,
825 packet_support support, const char *value);
826
827 void remote_serial_quit_handler ();
828
829 void remote_detach_pid (int pid);
830
831 void remote_vcont_probe ();
832
833 void remote_resume_with_hc (ptid_t ptid, int step,
834 gdb_signal siggnal);
835
836 void send_interrupt_sequence ();
837 void interrupt_query ();
838
839 void remote_notif_get_pending_events (notif_client *nc);
840
841 int fetch_register_using_p (struct regcache *regcache,
842 packet_reg *reg);
843 int send_g_packet ();
844 void process_g_packet (struct regcache *regcache);
845 void fetch_registers_using_g (struct regcache *regcache);
846 int store_register_using_P (const struct regcache *regcache,
847 packet_reg *reg);
848 void store_registers_using_G (const struct regcache *regcache);
849
850 void set_remote_traceframe ();
851
852 void check_binary_download (CORE_ADDR addr);
853
854 target_xfer_status remote_write_bytes_aux (const char *header,
855 CORE_ADDR memaddr,
856 const gdb_byte *myaddr,
857 ULONGEST len_units,
858 int unit_size,
859 ULONGEST *xfered_len_units,
860 char packet_format,
861 int use_length);
862
863 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
864 const gdb_byte *myaddr, ULONGEST len,
865 int unit_size, ULONGEST *xfered_len);
866
867 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
868 ULONGEST len_units,
869 int unit_size, ULONGEST *xfered_len_units);
870
871 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
872 ULONGEST memaddr,
873 ULONGEST len,
874 int unit_size,
875 ULONGEST *xfered_len);
876
877 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
878 gdb_byte *myaddr, ULONGEST len,
879 int unit_size,
880 ULONGEST *xfered_len);
881
882 packet_result remote_send_printf (const char *format, ...)
883 ATTRIBUTE_PRINTF (2, 3);
884
885 target_xfer_status remote_flash_write (ULONGEST address,
886 ULONGEST length, ULONGEST *xfered_len,
887 const gdb_byte *data);
888
889 int readchar (int timeout);
890
891 void remote_serial_write (const char *str, int len);
892
893 int putpkt (const char *buf);
894 int putpkt_binary (const char *buf, int cnt);
895
896 int putpkt (const gdb::char_vector &buf)
897 {
898 return putpkt (buf.data ());
899 }
900
901 void skip_frame ();
902 long read_frame (gdb::char_vector *buf_p);
903 void getpkt (gdb::char_vector *buf, int forever);
904 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
905 int expecting_notif, int *is_notif);
906 int getpkt_sane (gdb::char_vector *buf, int forever);
907 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
908 int *is_notif);
909 int remote_vkill (int pid);
910 void remote_kill_k ();
911
912 void extended_remote_disable_randomization (int val);
913 int extended_remote_run (const std::string &args);
914
915 void send_environment_packet (const char *action,
916 const char *packet,
917 const char *value);
918
919 void extended_remote_environment_support ();
920 void extended_remote_set_inferior_cwd ();
921
922 target_xfer_status remote_write_qxfer (const char *object_name,
923 const char *annex,
924 const gdb_byte *writebuf,
925 ULONGEST offset, LONGEST len,
926 ULONGEST *xfered_len,
927 struct packet_config *packet);
928
929 target_xfer_status remote_read_qxfer (const char *object_name,
930 const char *annex,
931 gdb_byte *readbuf, ULONGEST offset,
932 LONGEST len,
933 ULONGEST *xfered_len,
934 struct packet_config *packet);
935
936 void push_stop_reply (struct stop_reply *new_event);
937
938 bool vcont_r_supported ();
939
940 void packet_command (const char *args, int from_tty);
941
942 private: /* data fields */
943
944 /* The remote state. Don't reference this directly. Use the
945 get_remote_state method instead. */
946 remote_state m_remote_state;
947 };
948
949 static const target_info extended_remote_target_info = {
950 "extended-remote",
951 N_("Extended remote serial target in gdb-specific protocol"),
952 remote_doc
953 };
954
955 /* Set up the extended remote target by extending the standard remote
956 target and adding to it. */
957
958 class extended_remote_target final : public remote_target
959 {
960 public:
961 const target_info &info () const override
962 { return extended_remote_target_info; }
963
964 /* Open an extended-remote connection. */
965 static void open (const char *, int);
966
967 bool can_create_inferior () override { return true; }
968 void create_inferior (const char *, const std::string &,
969 char **, int) override;
970
971 void detach (inferior *, int) override;
972
973 bool can_attach () override { return true; }
974 void attach (const char *, int) override;
975
976 void post_attach (int) override;
977 bool supports_disable_randomization () override;
978 };
979
980 /* Per-program-space data key. */
981 static const struct program_space_key<char, gdb::xfree_deleter<char>>
982 remote_pspace_data;
983
984 /* The variable registered as the control variable used by the
985 remote exec-file commands. While the remote exec-file setting is
986 per-program-space, the set/show machinery uses this as the
987 location of the remote exec-file value. */
988 static char *remote_exec_file_var;
989
990 /* The size to align memory write packets, when practical. The protocol
991 does not guarantee any alignment, and gdb will generate short
992 writes and unaligned writes, but even as a best-effort attempt this
993 can improve bulk transfers. For instance, if a write is misaligned
994 relative to the target's data bus, the stub may need to make an extra
995 round trip fetching data from the target. This doesn't make a
996 huge difference, but it's easy to do, so we try to be helpful.
997
998 The alignment chosen is arbitrary; usually data bus width is
999 important here, not the possibly larger cache line size. */
1000 enum { REMOTE_ALIGN_WRITES = 16 };
1001
1002 /* Prototypes for local functions. */
1003
1004 static int hexnumlen (ULONGEST num);
1005
1006 static int stubhex (int ch);
1007
1008 static int hexnumstr (char *, ULONGEST);
1009
1010 static int hexnumnstr (char *, ULONGEST, int);
1011
1012 static CORE_ADDR remote_address_masked (CORE_ADDR);
1013
1014 static void print_packet (const char *);
1015
1016 static int stub_unpack_int (char *buff, int fieldlength);
1017
1018 struct packet_config;
1019
1020 static void show_packet_config_cmd (struct packet_config *config);
1021
1022 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1023 int from_tty,
1024 struct cmd_list_element *c,
1025 const char *value);
1026
1027 static ptid_t read_ptid (const char *buf, const char **obuf);
1028
1029 static void remote_async_inferior_event_handler (gdb_client_data);
1030
1031 static bool remote_read_description_p (struct target_ops *target);
1032
1033 static void remote_console_output (const char *msg);
1034
1035 static void remote_btrace_reset (remote_state *rs);
1036
1037 static void remote_unpush_and_throw (remote_target *target);
1038
1039 /* For "remote". */
1040
1041 static struct cmd_list_element *remote_cmdlist;
1042
1043 /* For "set remote" and "show remote". */
1044
1045 static struct cmd_list_element *remote_set_cmdlist;
1046 static struct cmd_list_element *remote_show_cmdlist;
1047
1048 /* Controls whether GDB is willing to use range stepping. */
1049
1050 static bool use_range_stepping = true;
1051
1052 /* Private data that we'll store in (struct thread_info)->priv. */
1053 struct remote_thread_info : public private_thread_info
1054 {
1055 std::string extra;
1056 std::string name;
1057 int core = -1;
1058
1059 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1060 sequence of bytes. */
1061 gdb::byte_vector thread_handle;
1062
1063 /* Whether the target stopped for a breakpoint/watchpoint. */
1064 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1065
1066 /* This is set to the data address of the access causing the target
1067 to stop for a watchpoint. */
1068 CORE_ADDR watch_data_address = 0;
1069
1070 /* Fields used by the vCont action coalescing implemented in
1071 remote_resume / remote_commit_resume. remote_resume stores each
1072 thread's last resume request in these fields, so that a later
1073 remote_commit_resume knows which is the proper action for this
1074 thread to include in the vCont packet. */
1075
1076 /* True if the last target_resume call for this thread was a step
1077 request, false if a continue request. */
1078 int last_resume_step = 0;
1079
1080 /* The signal specified in the last target_resume call for this
1081 thread. */
1082 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1083
1084 /* Whether this thread was already vCont-resumed on the remote
1085 side. */
1086 int vcont_resumed = 0;
1087 };
1088
1089 remote_state::remote_state ()
1090 : buf (400)
1091 {
1092 }
1093
1094 remote_state::~remote_state ()
1095 {
1096 xfree (this->last_pass_packet);
1097 xfree (this->last_program_signals_packet);
1098 xfree (this->finished_object);
1099 xfree (this->finished_annex);
1100 }
1101
1102 /* Utility: generate error from an incoming stub packet. */
1103 static void
1104 trace_error (char *buf)
1105 {
1106 if (*buf++ != 'E')
1107 return; /* not an error msg */
1108 switch (*buf)
1109 {
1110 case '1': /* malformed packet error */
1111 if (*++buf == '0') /* general case: */
1112 error (_("remote.c: error in outgoing packet."));
1113 else
1114 error (_("remote.c: error in outgoing packet at field #%ld."),
1115 strtol (buf, NULL, 16));
1116 default:
1117 error (_("Target returns error code '%s'."), buf);
1118 }
1119 }
1120
1121 /* Utility: wait for reply from stub, while accepting "O" packets. */
1122
1123 char *
1124 remote_target::remote_get_noisy_reply ()
1125 {
1126 struct remote_state *rs = get_remote_state ();
1127
1128 do /* Loop on reply from remote stub. */
1129 {
1130 char *buf;
1131
1132 QUIT; /* Allow user to bail out with ^C. */
1133 getpkt (&rs->buf, 0);
1134 buf = rs->buf.data ();
1135 if (buf[0] == 'E')
1136 trace_error (buf);
1137 else if (startswith (buf, "qRelocInsn:"))
1138 {
1139 ULONGEST ul;
1140 CORE_ADDR from, to, org_to;
1141 const char *p, *pp;
1142 int adjusted_size = 0;
1143 int relocated = 0;
1144
1145 p = buf + strlen ("qRelocInsn:");
1146 pp = unpack_varlen_hex (p, &ul);
1147 if (*pp != ';')
1148 error (_("invalid qRelocInsn packet: %s"), buf);
1149 from = ul;
1150
1151 p = pp + 1;
1152 unpack_varlen_hex (p, &ul);
1153 to = ul;
1154
1155 org_to = to;
1156
1157 try
1158 {
1159 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1160 relocated = 1;
1161 }
1162 catch (const gdb_exception &ex)
1163 {
1164 if (ex.error == MEMORY_ERROR)
1165 {
1166 /* Propagate memory errors silently back to the
1167 target. The stub may have limited the range of
1168 addresses we can write to, for example. */
1169 }
1170 else
1171 {
1172 /* Something unexpectedly bad happened. Be verbose
1173 so we can tell what, and propagate the error back
1174 to the stub, so it doesn't get stuck waiting for
1175 a response. */
1176 exception_fprintf (gdb_stderr, ex,
1177 _("warning: relocating instruction: "));
1178 }
1179 putpkt ("E01");
1180 }
1181
1182 if (relocated)
1183 {
1184 adjusted_size = to - org_to;
1185
1186 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1187 putpkt (buf);
1188 }
1189 }
1190 else if (buf[0] == 'O' && buf[1] != 'K')
1191 remote_console_output (buf + 1); /* 'O' message from stub */
1192 else
1193 return buf; /* Here's the actual reply. */
1194 }
1195 while (1);
1196 }
1197
1198 struct remote_arch_state *
1199 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1200 {
1201 remote_arch_state *rsa;
1202
1203 auto it = this->m_arch_states.find (gdbarch);
1204 if (it == this->m_arch_states.end ())
1205 {
1206 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1207 std::forward_as_tuple (gdbarch),
1208 std::forward_as_tuple (gdbarch));
1209 rsa = &p.first->second;
1210
1211 /* Make sure that the packet buffer is plenty big enough for
1212 this architecture. */
1213 if (this->buf.size () < rsa->remote_packet_size)
1214 this->buf.resize (2 * rsa->remote_packet_size);
1215 }
1216 else
1217 rsa = &it->second;
1218
1219 return rsa;
1220 }
1221
1222 /* Fetch the global remote target state. */
1223
1224 remote_state *
1225 remote_target::get_remote_state ()
1226 {
1227 /* Make sure that the remote architecture state has been
1228 initialized, because doing so might reallocate rs->buf. Any
1229 function which calls getpkt also needs to be mindful of changes
1230 to rs->buf, but this call limits the number of places which run
1231 into trouble. */
1232 m_remote_state.get_remote_arch_state (target_gdbarch ());
1233
1234 return &m_remote_state;
1235 }
1236
1237 /* Fetch the remote exec-file from the current program space. */
1238
1239 static const char *
1240 get_remote_exec_file (void)
1241 {
1242 char *remote_exec_file;
1243
1244 remote_exec_file = remote_pspace_data.get (current_program_space);
1245 if (remote_exec_file == NULL)
1246 return "";
1247
1248 return remote_exec_file;
1249 }
1250
1251 /* Set the remote exec file for PSPACE. */
1252
1253 static void
1254 set_pspace_remote_exec_file (struct program_space *pspace,
1255 const char *remote_exec_file)
1256 {
1257 char *old_file = remote_pspace_data.get (pspace);
1258
1259 xfree (old_file);
1260 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1261 }
1262
1263 /* The "set/show remote exec-file" set command hook. */
1264
1265 static void
1266 set_remote_exec_file (const char *ignored, int from_tty,
1267 struct cmd_list_element *c)
1268 {
1269 gdb_assert (remote_exec_file_var != NULL);
1270 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1271 }
1272
1273 /* The "set/show remote exec-file" show command hook. */
1274
1275 static void
1276 show_remote_exec_file (struct ui_file *file, int from_tty,
1277 struct cmd_list_element *cmd, const char *value)
1278 {
1279 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1280 }
1281
1282 static int
1283 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1284 {
1285 int regnum, num_remote_regs, offset;
1286 struct packet_reg **remote_regs;
1287
1288 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1289 {
1290 struct packet_reg *r = &regs[regnum];
1291
1292 if (register_size (gdbarch, regnum) == 0)
1293 /* Do not try to fetch zero-sized (placeholder) registers. */
1294 r->pnum = -1;
1295 else
1296 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1297
1298 r->regnum = regnum;
1299 }
1300
1301 /* Define the g/G packet format as the contents of each register
1302 with a remote protocol number, in order of ascending protocol
1303 number. */
1304
1305 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1306 for (num_remote_regs = 0, regnum = 0;
1307 regnum < gdbarch_num_regs (gdbarch);
1308 regnum++)
1309 if (regs[regnum].pnum != -1)
1310 remote_regs[num_remote_regs++] = &regs[regnum];
1311
1312 std::sort (remote_regs, remote_regs + num_remote_regs,
1313 [] (const packet_reg *a, const packet_reg *b)
1314 { return a->pnum < b->pnum; });
1315
1316 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1317 {
1318 remote_regs[regnum]->in_g_packet = 1;
1319 remote_regs[regnum]->offset = offset;
1320 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1321 }
1322
1323 return offset;
1324 }
1325
1326 /* Given the architecture described by GDBARCH, return the remote
1327 protocol register's number and the register's offset in the g/G
1328 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1329 If the target does not have a mapping for REGNUM, return false,
1330 otherwise, return true. */
1331
1332 int
1333 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1334 int *pnum, int *poffset)
1335 {
1336 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1337
1338 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1339
1340 map_regcache_remote_table (gdbarch, regs.data ());
1341
1342 *pnum = regs[regnum].pnum;
1343 *poffset = regs[regnum].offset;
1344
1345 return *pnum != -1;
1346 }
1347
1348 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1349 {
1350 /* Use the architecture to build a regnum<->pnum table, which will be
1351 1:1 unless a feature set specifies otherwise. */
1352 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1353
1354 /* Record the maximum possible size of the g packet - it may turn out
1355 to be smaller. */
1356 this->sizeof_g_packet
1357 = map_regcache_remote_table (gdbarch, this->regs.get ());
1358
1359 /* Default maximum number of characters in a packet body. Many
1360 remote stubs have a hardwired buffer size of 400 bytes
1361 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1362 as the maximum packet-size to ensure that the packet and an extra
1363 NUL character can always fit in the buffer. This stops GDB
1364 trashing stubs that try to squeeze an extra NUL into what is
1365 already a full buffer (As of 1999-12-04 that was most stubs). */
1366 this->remote_packet_size = 400 - 1;
1367
1368 /* This one is filled in when a ``g'' packet is received. */
1369 this->actual_register_packet_size = 0;
1370
1371 /* Should rsa->sizeof_g_packet needs more space than the
1372 default, adjust the size accordingly. Remember that each byte is
1373 encoded as two characters. 32 is the overhead for the packet
1374 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1375 (``$NN:G...#NN'') is a better guess, the below has been padded a
1376 little. */
1377 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1378 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1379 }
1380
1381 /* Get a pointer to the current remote target. If not connected to a
1382 remote target, return NULL. */
1383
1384 static remote_target *
1385 get_current_remote_target ()
1386 {
1387 target_ops *proc_target = current_inferior ()->process_target ();
1388 return dynamic_cast<remote_target *> (proc_target);
1389 }
1390
1391 /* Return the current allowed size of a remote packet. This is
1392 inferred from the current architecture, and should be used to
1393 limit the length of outgoing packets. */
1394 long
1395 remote_target::get_remote_packet_size ()
1396 {
1397 struct remote_state *rs = get_remote_state ();
1398 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1399
1400 if (rs->explicit_packet_size)
1401 return rs->explicit_packet_size;
1402
1403 return rsa->remote_packet_size;
1404 }
1405
1406 static struct packet_reg *
1407 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1408 long regnum)
1409 {
1410 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1411 return NULL;
1412 else
1413 {
1414 struct packet_reg *r = &rsa->regs[regnum];
1415
1416 gdb_assert (r->regnum == regnum);
1417 return r;
1418 }
1419 }
1420
1421 static struct packet_reg *
1422 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1423 LONGEST pnum)
1424 {
1425 int i;
1426
1427 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1428 {
1429 struct packet_reg *r = &rsa->regs[i];
1430
1431 if (r->pnum == pnum)
1432 return r;
1433 }
1434 return NULL;
1435 }
1436
1437 /* Allow the user to specify what sequence to send to the remote
1438 when he requests a program interruption: Although ^C is usually
1439 what remote systems expect (this is the default, here), it is
1440 sometimes preferable to send a break. On other systems such
1441 as the Linux kernel, a break followed by g, which is Magic SysRq g
1442 is required in order to interrupt the execution. */
1443 const char interrupt_sequence_control_c[] = "Ctrl-C";
1444 const char interrupt_sequence_break[] = "BREAK";
1445 const char interrupt_sequence_break_g[] = "BREAK-g";
1446 static const char *const interrupt_sequence_modes[] =
1447 {
1448 interrupt_sequence_control_c,
1449 interrupt_sequence_break,
1450 interrupt_sequence_break_g,
1451 NULL
1452 };
1453 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1454
1455 static void
1456 show_interrupt_sequence (struct ui_file *file, int from_tty,
1457 struct cmd_list_element *c,
1458 const char *value)
1459 {
1460 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1461 fprintf_filtered (file,
1462 _("Send the ASCII ETX character (Ctrl-c) "
1463 "to the remote target to interrupt the "
1464 "execution of the program.\n"));
1465 else if (interrupt_sequence_mode == interrupt_sequence_break)
1466 fprintf_filtered (file,
1467 _("send a break signal to the remote target "
1468 "to interrupt the execution of the program.\n"));
1469 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1470 fprintf_filtered (file,
1471 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1472 "the remote target to interrupt the execution "
1473 "of Linux kernel.\n"));
1474 else
1475 internal_error (__FILE__, __LINE__,
1476 _("Invalid value for interrupt_sequence_mode: %s."),
1477 interrupt_sequence_mode);
1478 }
1479
1480 /* This boolean variable specifies whether interrupt_sequence is sent
1481 to the remote target when gdb connects to it.
1482 This is mostly needed when you debug the Linux kernel: The Linux kernel
1483 expects BREAK g which is Magic SysRq g for connecting gdb. */
1484 static bool interrupt_on_connect = false;
1485
1486 /* This variable is used to implement the "set/show remotebreak" commands.
1487 Since these commands are now deprecated in favor of "set/show remote
1488 interrupt-sequence", it no longer has any effect on the code. */
1489 static bool remote_break;
1490
1491 static void
1492 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1493 {
1494 if (remote_break)
1495 interrupt_sequence_mode = interrupt_sequence_break;
1496 else
1497 interrupt_sequence_mode = interrupt_sequence_control_c;
1498 }
1499
1500 static void
1501 show_remotebreak (struct ui_file *file, int from_tty,
1502 struct cmd_list_element *c,
1503 const char *value)
1504 {
1505 }
1506
1507 /* This variable sets the number of bits in an address that are to be
1508 sent in a memory ("M" or "m") packet. Normally, after stripping
1509 leading zeros, the entire address would be sent. This variable
1510 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1511 initial implementation of remote.c restricted the address sent in
1512 memory packets to ``host::sizeof long'' bytes - (typically 32
1513 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1514 address was never sent. Since fixing this bug may cause a break in
1515 some remote targets this variable is principally provided to
1516 facilitate backward compatibility. */
1517
1518 static unsigned int remote_address_size;
1519
1520 \f
1521 /* User configurable variables for the number of characters in a
1522 memory read/write packet. MIN (rsa->remote_packet_size,
1523 rsa->sizeof_g_packet) is the default. Some targets need smaller
1524 values (fifo overruns, et.al.) and some users need larger values
1525 (speed up transfers). The variables ``preferred_*'' (the user
1526 request), ``current_*'' (what was actually set) and ``forced_*''
1527 (Positive - a soft limit, negative - a hard limit). */
1528
1529 struct memory_packet_config
1530 {
1531 const char *name;
1532 long size;
1533 int fixed_p;
1534 };
1535
1536 /* The default max memory-write-packet-size, when the setting is
1537 "fixed". The 16k is historical. (It came from older GDB's using
1538 alloca for buffers and the knowledge (folklore?) that some hosts
1539 don't cope very well with large alloca calls.) */
1540 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1541
1542 /* The minimum remote packet size for memory transfers. Ensures we
1543 can write at least one byte. */
1544 #define MIN_MEMORY_PACKET_SIZE 20
1545
1546 /* Get the memory packet size, assuming it is fixed. */
1547
1548 static long
1549 get_fixed_memory_packet_size (struct memory_packet_config *config)
1550 {
1551 gdb_assert (config->fixed_p);
1552
1553 if (config->size <= 0)
1554 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1555 else
1556 return config->size;
1557 }
1558
1559 /* Compute the current size of a read/write packet. Since this makes
1560 use of ``actual_register_packet_size'' the computation is dynamic. */
1561
1562 long
1563 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1564 {
1565 struct remote_state *rs = get_remote_state ();
1566 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1567
1568 long what_they_get;
1569 if (config->fixed_p)
1570 what_they_get = get_fixed_memory_packet_size (config);
1571 else
1572 {
1573 what_they_get = get_remote_packet_size ();
1574 /* Limit the packet to the size specified by the user. */
1575 if (config->size > 0
1576 && what_they_get > config->size)
1577 what_they_get = config->size;
1578
1579 /* Limit it to the size of the targets ``g'' response unless we have
1580 permission from the stub to use a larger packet size. */
1581 if (rs->explicit_packet_size == 0
1582 && rsa->actual_register_packet_size > 0
1583 && what_they_get > rsa->actual_register_packet_size)
1584 what_they_get = rsa->actual_register_packet_size;
1585 }
1586 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1587 what_they_get = MIN_MEMORY_PACKET_SIZE;
1588
1589 /* Make sure there is room in the global buffer for this packet
1590 (including its trailing NUL byte). */
1591 if (rs->buf.size () < what_they_get + 1)
1592 rs->buf.resize (2 * what_they_get);
1593
1594 return what_they_get;
1595 }
1596
1597 /* Update the size of a read/write packet. If they user wants
1598 something really big then do a sanity check. */
1599
1600 static void
1601 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1602 {
1603 int fixed_p = config->fixed_p;
1604 long size = config->size;
1605
1606 if (args == NULL)
1607 error (_("Argument required (integer, `fixed' or `limited')."));
1608 else if (strcmp (args, "hard") == 0
1609 || strcmp (args, "fixed") == 0)
1610 fixed_p = 1;
1611 else if (strcmp (args, "soft") == 0
1612 || strcmp (args, "limit") == 0)
1613 fixed_p = 0;
1614 else
1615 {
1616 char *end;
1617
1618 size = strtoul (args, &end, 0);
1619 if (args == end)
1620 error (_("Invalid %s (bad syntax)."), config->name);
1621
1622 /* Instead of explicitly capping the size of a packet to or
1623 disallowing it, the user is allowed to set the size to
1624 something arbitrarily large. */
1625 }
1626
1627 /* Extra checks? */
1628 if (fixed_p && !config->fixed_p)
1629 {
1630 /* So that the query shows the correct value. */
1631 long query_size = (size <= 0
1632 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1633 : size);
1634
1635 if (! query (_("The target may not be able to correctly handle a %s\n"
1636 "of %ld bytes. Change the packet size? "),
1637 config->name, query_size))
1638 error (_("Packet size not changed."));
1639 }
1640 /* Update the config. */
1641 config->fixed_p = fixed_p;
1642 config->size = size;
1643 }
1644
1645 static void
1646 show_memory_packet_size (struct memory_packet_config *config)
1647 {
1648 if (config->size == 0)
1649 printf_filtered (_("The %s is 0 (default). "), config->name);
1650 else
1651 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1652 if (config->fixed_p)
1653 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1654 get_fixed_memory_packet_size (config));
1655 else
1656 {
1657 remote_target *remote = get_current_remote_target ();
1658
1659 if (remote != NULL)
1660 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1661 remote->get_memory_packet_size (config));
1662 else
1663 puts_filtered ("The actual limit will be further reduced "
1664 "dependent on the target.\n");
1665 }
1666 }
1667
1668 /* FIXME: needs to be per-remote-target. */
1669 static struct memory_packet_config memory_write_packet_config =
1670 {
1671 "memory-write-packet-size",
1672 };
1673
1674 static void
1675 set_memory_write_packet_size (const char *args, int from_tty)
1676 {
1677 set_memory_packet_size (args, &memory_write_packet_config);
1678 }
1679
1680 static void
1681 show_memory_write_packet_size (const char *args, int from_tty)
1682 {
1683 show_memory_packet_size (&memory_write_packet_config);
1684 }
1685
1686 /* Show the number of hardware watchpoints that can be used. */
1687
1688 static void
1689 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1690 struct cmd_list_element *c,
1691 const char *value)
1692 {
1693 fprintf_filtered (file, _("The maximum number of target hardware "
1694 "watchpoints is %s.\n"), value);
1695 }
1696
1697 /* Show the length limit (in bytes) for hardware watchpoints. */
1698
1699 static void
1700 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1701 struct cmd_list_element *c,
1702 const char *value)
1703 {
1704 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1705 "hardware watchpoint is %s.\n"), value);
1706 }
1707
1708 /* Show the number of hardware breakpoints that can be used. */
1709
1710 static void
1711 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1712 struct cmd_list_element *c,
1713 const char *value)
1714 {
1715 fprintf_filtered (file, _("The maximum number of target hardware "
1716 "breakpoints is %s.\n"), value);
1717 }
1718
1719 /* Controls the maximum number of characters to display in the debug output
1720 for each remote packet. The remaining characters are omitted. */
1721
1722 static int remote_packet_max_chars = 512;
1723
1724 /* Show the maximum number of characters to display for each remote packet
1725 when remote debugging is enabled. */
1726
1727 static void
1728 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1729 struct cmd_list_element *c,
1730 const char *value)
1731 {
1732 fprintf_filtered (file, _("Number of remote packet characters to "
1733 "display is %s.\n"), value);
1734 }
1735
1736 long
1737 remote_target::get_memory_write_packet_size ()
1738 {
1739 return get_memory_packet_size (&memory_write_packet_config);
1740 }
1741
1742 /* FIXME: needs to be per-remote-target. */
1743 static struct memory_packet_config memory_read_packet_config =
1744 {
1745 "memory-read-packet-size",
1746 };
1747
1748 static void
1749 set_memory_read_packet_size (const char *args, int from_tty)
1750 {
1751 set_memory_packet_size (args, &memory_read_packet_config);
1752 }
1753
1754 static void
1755 show_memory_read_packet_size (const char *args, int from_tty)
1756 {
1757 show_memory_packet_size (&memory_read_packet_config);
1758 }
1759
1760 long
1761 remote_target::get_memory_read_packet_size ()
1762 {
1763 long size = get_memory_packet_size (&memory_read_packet_config);
1764
1765 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1766 extra buffer size argument before the memory read size can be
1767 increased beyond this. */
1768 if (size > get_remote_packet_size ())
1769 size = get_remote_packet_size ();
1770 return size;
1771 }
1772
1773 \f
1774
1775 struct packet_config
1776 {
1777 const char *name;
1778 const char *title;
1779
1780 /* If auto, GDB auto-detects support for this packet or feature,
1781 either through qSupported, or by trying the packet and looking
1782 at the response. If true, GDB assumes the target supports this
1783 packet. If false, the packet is disabled. Configs that don't
1784 have an associated command always have this set to auto. */
1785 enum auto_boolean detect;
1786
1787 /* Does the target support this packet? */
1788 enum packet_support support;
1789 };
1790
1791 static enum packet_support packet_config_support (struct packet_config *config);
1792 static enum packet_support packet_support (int packet);
1793
1794 static void
1795 show_packet_config_cmd (struct packet_config *config)
1796 {
1797 const char *support = "internal-error";
1798
1799 switch (packet_config_support (config))
1800 {
1801 case PACKET_ENABLE:
1802 support = "enabled";
1803 break;
1804 case PACKET_DISABLE:
1805 support = "disabled";
1806 break;
1807 case PACKET_SUPPORT_UNKNOWN:
1808 support = "unknown";
1809 break;
1810 }
1811 switch (config->detect)
1812 {
1813 case AUTO_BOOLEAN_AUTO:
1814 printf_filtered (_("Support for the `%s' packet "
1815 "is auto-detected, currently %s.\n"),
1816 config->name, support);
1817 break;
1818 case AUTO_BOOLEAN_TRUE:
1819 case AUTO_BOOLEAN_FALSE:
1820 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1821 config->name, support);
1822 break;
1823 }
1824 }
1825
1826 static void
1827 add_packet_config_cmd (struct packet_config *config, const char *name,
1828 const char *title, int legacy)
1829 {
1830 char *set_doc;
1831 char *show_doc;
1832 char *cmd_name;
1833
1834 config->name = name;
1835 config->title = title;
1836 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1837 name, title);
1838 show_doc = xstrprintf ("Show current use of remote "
1839 "protocol `%s' (%s) packet.",
1840 name, title);
1841 /* set/show TITLE-packet {auto,on,off} */
1842 cmd_name = xstrprintf ("%s-packet", title);
1843 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1844 &config->detect, set_doc,
1845 show_doc, NULL, /* help_doc */
1846 NULL,
1847 show_remote_protocol_packet_cmd,
1848 &remote_set_cmdlist, &remote_show_cmdlist);
1849 /* The command code copies the documentation strings. */
1850 xfree (set_doc);
1851 xfree (show_doc);
1852 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1853 if (legacy)
1854 {
1855 char *legacy_name;
1856
1857 legacy_name = xstrprintf ("%s-packet", name);
1858 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1859 &remote_set_cmdlist);
1860 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1861 &remote_show_cmdlist);
1862 }
1863 }
1864
1865 static enum packet_result
1866 packet_check_result (const char *buf)
1867 {
1868 if (buf[0] != '\0')
1869 {
1870 /* The stub recognized the packet request. Check that the
1871 operation succeeded. */
1872 if (buf[0] == 'E'
1873 && isxdigit (buf[1]) && isxdigit (buf[2])
1874 && buf[3] == '\0')
1875 /* "Enn" - definitely an error. */
1876 return PACKET_ERROR;
1877
1878 /* Always treat "E." as an error. This will be used for
1879 more verbose error messages, such as E.memtypes. */
1880 if (buf[0] == 'E' && buf[1] == '.')
1881 return PACKET_ERROR;
1882
1883 /* The packet may or may not be OK. Just assume it is. */
1884 return PACKET_OK;
1885 }
1886 else
1887 /* The stub does not support the packet. */
1888 return PACKET_UNKNOWN;
1889 }
1890
1891 static enum packet_result
1892 packet_check_result (const gdb::char_vector &buf)
1893 {
1894 return packet_check_result (buf.data ());
1895 }
1896
1897 static enum packet_result
1898 packet_ok (const char *buf, struct packet_config *config)
1899 {
1900 enum packet_result result;
1901
1902 if (config->detect != AUTO_BOOLEAN_TRUE
1903 && config->support == PACKET_DISABLE)
1904 internal_error (__FILE__, __LINE__,
1905 _("packet_ok: attempt to use a disabled packet"));
1906
1907 result = packet_check_result (buf);
1908 switch (result)
1909 {
1910 case PACKET_OK:
1911 case PACKET_ERROR:
1912 /* The stub recognized the packet request. */
1913 if (config->support == PACKET_SUPPORT_UNKNOWN)
1914 {
1915 if (remote_debug)
1916 fprintf_unfiltered (gdb_stdlog,
1917 "Packet %s (%s) is supported\n",
1918 config->name, config->title);
1919 config->support = PACKET_ENABLE;
1920 }
1921 break;
1922 case PACKET_UNKNOWN:
1923 /* The stub does not support the packet. */
1924 if (config->detect == AUTO_BOOLEAN_AUTO
1925 && config->support == PACKET_ENABLE)
1926 {
1927 /* If the stub previously indicated that the packet was
1928 supported then there is a protocol error. */
1929 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1930 config->name, config->title);
1931 }
1932 else if (config->detect == AUTO_BOOLEAN_TRUE)
1933 {
1934 /* The user set it wrong. */
1935 error (_("Enabled packet %s (%s) not recognized by stub"),
1936 config->name, config->title);
1937 }
1938
1939 if (remote_debug)
1940 fprintf_unfiltered (gdb_stdlog,
1941 "Packet %s (%s) is NOT supported\n",
1942 config->name, config->title);
1943 config->support = PACKET_DISABLE;
1944 break;
1945 }
1946
1947 return result;
1948 }
1949
1950 static enum packet_result
1951 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1952 {
1953 return packet_ok (buf.data (), config);
1954 }
1955
1956 enum {
1957 PACKET_vCont = 0,
1958 PACKET_X,
1959 PACKET_qSymbol,
1960 PACKET_P,
1961 PACKET_p,
1962 PACKET_Z0,
1963 PACKET_Z1,
1964 PACKET_Z2,
1965 PACKET_Z3,
1966 PACKET_Z4,
1967 PACKET_vFile_setfs,
1968 PACKET_vFile_open,
1969 PACKET_vFile_pread,
1970 PACKET_vFile_pwrite,
1971 PACKET_vFile_close,
1972 PACKET_vFile_unlink,
1973 PACKET_vFile_readlink,
1974 PACKET_vFile_fstat,
1975 PACKET_qXfer_auxv,
1976 PACKET_qXfer_features,
1977 PACKET_qXfer_exec_file,
1978 PACKET_qXfer_libraries,
1979 PACKET_qXfer_libraries_svr4,
1980 PACKET_qXfer_memory_map,
1981 PACKET_qXfer_osdata,
1982 PACKET_qXfer_threads,
1983 PACKET_qXfer_statictrace_read,
1984 PACKET_qXfer_traceframe_info,
1985 PACKET_qXfer_uib,
1986 PACKET_qGetTIBAddr,
1987 PACKET_qGetTLSAddr,
1988 PACKET_qSupported,
1989 PACKET_qTStatus,
1990 PACKET_QPassSignals,
1991 PACKET_QCatchSyscalls,
1992 PACKET_QProgramSignals,
1993 PACKET_QSetWorkingDir,
1994 PACKET_QStartupWithShell,
1995 PACKET_QEnvironmentHexEncoded,
1996 PACKET_QEnvironmentReset,
1997 PACKET_QEnvironmentUnset,
1998 PACKET_qCRC,
1999 PACKET_qSearch_memory,
2000 PACKET_vAttach,
2001 PACKET_vRun,
2002 PACKET_QStartNoAckMode,
2003 PACKET_vKill,
2004 PACKET_qXfer_siginfo_read,
2005 PACKET_qXfer_siginfo_write,
2006 PACKET_qAttached,
2007
2008 /* Support for conditional tracepoints. */
2009 PACKET_ConditionalTracepoints,
2010
2011 /* Support for target-side breakpoint conditions. */
2012 PACKET_ConditionalBreakpoints,
2013
2014 /* Support for target-side breakpoint commands. */
2015 PACKET_BreakpointCommands,
2016
2017 /* Support for fast tracepoints. */
2018 PACKET_FastTracepoints,
2019
2020 /* Support for static tracepoints. */
2021 PACKET_StaticTracepoints,
2022
2023 /* Support for installing tracepoints while a trace experiment is
2024 running. */
2025 PACKET_InstallInTrace,
2026
2027 PACKET_bc,
2028 PACKET_bs,
2029 PACKET_TracepointSource,
2030 PACKET_QAllow,
2031 PACKET_qXfer_fdpic,
2032 PACKET_QDisableRandomization,
2033 PACKET_QAgent,
2034 PACKET_QTBuffer_size,
2035 PACKET_Qbtrace_off,
2036 PACKET_Qbtrace_bts,
2037 PACKET_Qbtrace_pt,
2038 PACKET_qXfer_btrace,
2039
2040 /* Support for the QNonStop packet. */
2041 PACKET_QNonStop,
2042
2043 /* Support for the QThreadEvents packet. */
2044 PACKET_QThreadEvents,
2045
2046 /* Support for multi-process extensions. */
2047 PACKET_multiprocess_feature,
2048
2049 /* Support for enabling and disabling tracepoints while a trace
2050 experiment is running. */
2051 PACKET_EnableDisableTracepoints_feature,
2052
2053 /* Support for collecting strings using the tracenz bytecode. */
2054 PACKET_tracenz_feature,
2055
2056 /* Support for continuing to run a trace experiment while GDB is
2057 disconnected. */
2058 PACKET_DisconnectedTracing_feature,
2059
2060 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2061 PACKET_augmented_libraries_svr4_read_feature,
2062
2063 /* Support for the qXfer:btrace-conf:read packet. */
2064 PACKET_qXfer_btrace_conf,
2065
2066 /* Support for the Qbtrace-conf:bts:size packet. */
2067 PACKET_Qbtrace_conf_bts_size,
2068
2069 /* Support for swbreak+ feature. */
2070 PACKET_swbreak_feature,
2071
2072 /* Support for hwbreak+ feature. */
2073 PACKET_hwbreak_feature,
2074
2075 /* Support for fork events. */
2076 PACKET_fork_event_feature,
2077
2078 /* Support for vfork events. */
2079 PACKET_vfork_event_feature,
2080
2081 /* Support for the Qbtrace-conf:pt:size packet. */
2082 PACKET_Qbtrace_conf_pt_size,
2083
2084 /* Support for exec events. */
2085 PACKET_exec_event_feature,
2086
2087 /* Support for query supported vCont actions. */
2088 PACKET_vContSupported,
2089
2090 /* Support remote CTRL-C. */
2091 PACKET_vCtrlC,
2092
2093 /* Support TARGET_WAITKIND_NO_RESUMED. */
2094 PACKET_no_resumed,
2095
2096 PACKET_MAX
2097 };
2098
2099 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2100 assuming all remote targets are the same server (thus all support
2101 the same packets). */
2102 static struct packet_config remote_protocol_packets[PACKET_MAX];
2103
2104 /* Returns the packet's corresponding "set remote foo-packet" command
2105 state. See struct packet_config for more details. */
2106
2107 static enum auto_boolean
2108 packet_set_cmd_state (int packet)
2109 {
2110 return remote_protocol_packets[packet].detect;
2111 }
2112
2113 /* Returns whether a given packet or feature is supported. This takes
2114 into account the state of the corresponding "set remote foo-packet"
2115 command, which may be used to bypass auto-detection. */
2116
2117 static enum packet_support
2118 packet_config_support (struct packet_config *config)
2119 {
2120 switch (config->detect)
2121 {
2122 case AUTO_BOOLEAN_TRUE:
2123 return PACKET_ENABLE;
2124 case AUTO_BOOLEAN_FALSE:
2125 return PACKET_DISABLE;
2126 case AUTO_BOOLEAN_AUTO:
2127 return config->support;
2128 default:
2129 gdb_assert_not_reached (_("bad switch"));
2130 }
2131 }
2132
2133 /* Same as packet_config_support, but takes the packet's enum value as
2134 argument. */
2135
2136 static enum packet_support
2137 packet_support (int packet)
2138 {
2139 struct packet_config *config = &remote_protocol_packets[packet];
2140
2141 return packet_config_support (config);
2142 }
2143
2144 static void
2145 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2146 struct cmd_list_element *c,
2147 const char *value)
2148 {
2149 struct packet_config *packet;
2150
2151 for (packet = remote_protocol_packets;
2152 packet < &remote_protocol_packets[PACKET_MAX];
2153 packet++)
2154 {
2155 if (&packet->detect == c->var)
2156 {
2157 show_packet_config_cmd (packet);
2158 return;
2159 }
2160 }
2161 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2162 c->name);
2163 }
2164
2165 /* Should we try one of the 'Z' requests? */
2166
2167 enum Z_packet_type
2168 {
2169 Z_PACKET_SOFTWARE_BP,
2170 Z_PACKET_HARDWARE_BP,
2171 Z_PACKET_WRITE_WP,
2172 Z_PACKET_READ_WP,
2173 Z_PACKET_ACCESS_WP,
2174 NR_Z_PACKET_TYPES
2175 };
2176
2177 /* For compatibility with older distributions. Provide a ``set remote
2178 Z-packet ...'' command that updates all the Z packet types. */
2179
2180 static enum auto_boolean remote_Z_packet_detect;
2181
2182 static void
2183 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2184 struct cmd_list_element *c)
2185 {
2186 int i;
2187
2188 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2189 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2190 }
2191
2192 static void
2193 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2194 struct cmd_list_element *c,
2195 const char *value)
2196 {
2197 int i;
2198
2199 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2200 {
2201 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2202 }
2203 }
2204
2205 /* Returns true if the multi-process extensions are in effect. */
2206
2207 static int
2208 remote_multi_process_p (struct remote_state *rs)
2209 {
2210 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2211 }
2212
2213 /* Returns true if fork events are supported. */
2214
2215 static int
2216 remote_fork_event_p (struct remote_state *rs)
2217 {
2218 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2219 }
2220
2221 /* Returns true if vfork events are supported. */
2222
2223 static int
2224 remote_vfork_event_p (struct remote_state *rs)
2225 {
2226 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2227 }
2228
2229 /* Returns true if exec events are supported. */
2230
2231 static int
2232 remote_exec_event_p (struct remote_state *rs)
2233 {
2234 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2235 }
2236
2237 /* Insert fork catchpoint target routine. If fork events are enabled
2238 then return success, nothing more to do. */
2239
2240 int
2241 remote_target::insert_fork_catchpoint (int pid)
2242 {
2243 struct remote_state *rs = get_remote_state ();
2244
2245 return !remote_fork_event_p (rs);
2246 }
2247
2248 /* Remove fork catchpoint target routine. Nothing to do, just
2249 return success. */
2250
2251 int
2252 remote_target::remove_fork_catchpoint (int pid)
2253 {
2254 return 0;
2255 }
2256
2257 /* Insert vfork catchpoint target routine. If vfork events are enabled
2258 then return success, nothing more to do. */
2259
2260 int
2261 remote_target::insert_vfork_catchpoint (int pid)
2262 {
2263 struct remote_state *rs = get_remote_state ();
2264
2265 return !remote_vfork_event_p (rs);
2266 }
2267
2268 /* Remove vfork catchpoint target routine. Nothing to do, just
2269 return success. */
2270
2271 int
2272 remote_target::remove_vfork_catchpoint (int pid)
2273 {
2274 return 0;
2275 }
2276
2277 /* Insert exec catchpoint target routine. If exec events are
2278 enabled, just return success. */
2279
2280 int
2281 remote_target::insert_exec_catchpoint (int pid)
2282 {
2283 struct remote_state *rs = get_remote_state ();
2284
2285 return !remote_exec_event_p (rs);
2286 }
2287
2288 /* Remove exec catchpoint target routine. Nothing to do, just
2289 return success. */
2290
2291 int
2292 remote_target::remove_exec_catchpoint (int pid)
2293 {
2294 return 0;
2295 }
2296
2297 \f
2298
2299 /* Take advantage of the fact that the TID field is not used, to tag
2300 special ptids with it set to != 0. */
2301 static const ptid_t magic_null_ptid (42000, -1, 1);
2302 static const ptid_t not_sent_ptid (42000, -2, 1);
2303 static const ptid_t any_thread_ptid (42000, 0, 1);
2304
2305 /* Find out if the stub attached to PID (and hence GDB should offer to
2306 detach instead of killing it when bailing out). */
2307
2308 int
2309 remote_target::remote_query_attached (int pid)
2310 {
2311 struct remote_state *rs = get_remote_state ();
2312 size_t size = get_remote_packet_size ();
2313
2314 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2315 return 0;
2316
2317 if (remote_multi_process_p (rs))
2318 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2319 else
2320 xsnprintf (rs->buf.data (), size, "qAttached");
2321
2322 putpkt (rs->buf);
2323 getpkt (&rs->buf, 0);
2324
2325 switch (packet_ok (rs->buf,
2326 &remote_protocol_packets[PACKET_qAttached]))
2327 {
2328 case PACKET_OK:
2329 if (strcmp (rs->buf.data (), "1") == 0)
2330 return 1;
2331 break;
2332 case PACKET_ERROR:
2333 warning (_("Remote failure reply: %s"), rs->buf.data ());
2334 break;
2335 case PACKET_UNKNOWN:
2336 break;
2337 }
2338
2339 return 0;
2340 }
2341
2342 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2343 has been invented by GDB, instead of reported by the target. Since
2344 we can be connected to a remote system before before knowing about
2345 any inferior, mark the target with execution when we find the first
2346 inferior. If ATTACHED is 1, then we had just attached to this
2347 inferior. If it is 0, then we just created this inferior. If it
2348 is -1, then try querying the remote stub to find out if it had
2349 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2350 attempt to open this inferior's executable as the main executable
2351 if no main executable is open already. */
2352
2353 inferior *
2354 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2355 int try_open_exec)
2356 {
2357 struct inferior *inf;
2358
2359 /* Check whether this process we're learning about is to be
2360 considered attached, or if is to be considered to have been
2361 spawned by the stub. */
2362 if (attached == -1)
2363 attached = remote_query_attached (pid);
2364
2365 if (gdbarch_has_global_solist (target_gdbarch ()))
2366 {
2367 /* If the target shares code across all inferiors, then every
2368 attach adds a new inferior. */
2369 inf = add_inferior (pid);
2370
2371 /* ... and every inferior is bound to the same program space.
2372 However, each inferior may still have its own address
2373 space. */
2374 inf->aspace = maybe_new_address_space ();
2375 inf->pspace = current_program_space;
2376 }
2377 else
2378 {
2379 /* In the traditional debugging scenario, there's a 1-1 match
2380 between program/address spaces. We simply bind the inferior
2381 to the program space's address space. */
2382 inf = current_inferior ();
2383
2384 /* However, if the current inferior is already bound to a
2385 process, find some other empty inferior. */
2386 if (inf->pid != 0)
2387 {
2388 inf = nullptr;
2389 for (inferior *it : all_inferiors ())
2390 if (it->pid == 0)
2391 {
2392 inf = it;
2393 break;
2394 }
2395 }
2396 if (inf == nullptr)
2397 {
2398 /* Since all inferiors were already bound to a process, add
2399 a new inferior. */
2400 inf = add_inferior_with_spaces ();
2401 }
2402 switch_to_inferior_no_thread (inf);
2403 push_target (this);
2404 inferior_appeared (inf, pid);
2405 }
2406
2407 inf->attach_flag = attached;
2408 inf->fake_pid_p = fake_pid_p;
2409
2410 /* If no main executable is currently open then attempt to
2411 open the file that was executed to create this inferior. */
2412 if (try_open_exec && get_exec_file (0) == NULL)
2413 exec_file_locate_attach (pid, 0, 1);
2414
2415 /* Check for exec file mismatch, and let the user solve it. */
2416 validate_exec_file (1);
2417
2418 return inf;
2419 }
2420
2421 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2422 static remote_thread_info *get_remote_thread_info (remote_target *target,
2423 ptid_t ptid);
2424
2425 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2426 according to RUNNING. */
2427
2428 thread_info *
2429 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2430 {
2431 struct remote_state *rs = get_remote_state ();
2432 struct thread_info *thread;
2433
2434 /* GDB historically didn't pull threads in the initial connection
2435 setup. If the remote target doesn't even have a concept of
2436 threads (e.g., a bare-metal target), even if internally we
2437 consider that a single-threaded target, mentioning a new thread
2438 might be confusing to the user. Be silent then, preserving the
2439 age old behavior. */
2440 if (rs->starting_up)
2441 thread = add_thread_silent (this, ptid);
2442 else
2443 thread = add_thread (this, ptid);
2444
2445 get_remote_thread_info (thread)->vcont_resumed = executing;
2446 set_executing (this, ptid, executing);
2447 set_running (this, ptid, running);
2448
2449 return thread;
2450 }
2451
2452 /* Come here when we learn about a thread id from the remote target.
2453 It may be the first time we hear about such thread, so take the
2454 opportunity to add it to GDB's thread list. In case this is the
2455 first time we're noticing its corresponding inferior, add it to
2456 GDB's inferior list as well. EXECUTING indicates whether the
2457 thread is (internally) executing or stopped. */
2458
2459 void
2460 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2461 {
2462 /* In non-stop mode, we assume new found threads are (externally)
2463 running until proven otherwise with a stop reply. In all-stop,
2464 we can only get here if all threads are stopped. */
2465 int running = target_is_non_stop_p () ? 1 : 0;
2466
2467 /* If this is a new thread, add it to GDB's thread list.
2468 If we leave it up to WFI to do this, bad things will happen. */
2469
2470 thread_info *tp = find_thread_ptid (this, currthread);
2471 if (tp != NULL && tp->state == THREAD_EXITED)
2472 {
2473 /* We're seeing an event on a thread id we knew had exited.
2474 This has to be a new thread reusing the old id. Add it. */
2475 remote_add_thread (currthread, running, executing);
2476 return;
2477 }
2478
2479 if (!in_thread_list (this, currthread))
2480 {
2481 struct inferior *inf = NULL;
2482 int pid = currthread.pid ();
2483
2484 if (inferior_ptid.is_pid ()
2485 && pid == inferior_ptid.pid ())
2486 {
2487 /* inferior_ptid has no thread member yet. This can happen
2488 with the vAttach -> remote_wait,"TAAthread:" path if the
2489 stub doesn't support qC. This is the first stop reported
2490 after an attach, so this is the main thread. Update the
2491 ptid in the thread list. */
2492 if (in_thread_list (this, ptid_t (pid)))
2493 thread_change_ptid (this, inferior_ptid, currthread);
2494 else
2495 {
2496 remote_add_thread (currthread, running, executing);
2497 inferior_ptid = currthread;
2498 }
2499 return;
2500 }
2501
2502 if (magic_null_ptid == inferior_ptid)
2503 {
2504 /* inferior_ptid is not set yet. This can happen with the
2505 vRun -> remote_wait,"TAAthread:" path if the stub
2506 doesn't support qC. This is the first stop reported
2507 after an attach, so this is the main thread. Update the
2508 ptid in the thread list. */
2509 thread_change_ptid (this, inferior_ptid, currthread);
2510 return;
2511 }
2512
2513 /* When connecting to a target remote, or to a target
2514 extended-remote which already was debugging an inferior, we
2515 may not know about it yet. Add it before adding its child
2516 thread, so notifications are emitted in a sensible order. */
2517 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2518 {
2519 struct remote_state *rs = get_remote_state ();
2520 bool fake_pid_p = !remote_multi_process_p (rs);
2521
2522 inf = remote_add_inferior (fake_pid_p,
2523 currthread.pid (), -1, 1);
2524 }
2525
2526 /* This is really a new thread. Add it. */
2527 thread_info *new_thr
2528 = remote_add_thread (currthread, running, executing);
2529
2530 /* If we found a new inferior, let the common code do whatever
2531 it needs to with it (e.g., read shared libraries, insert
2532 breakpoints), unless we're just setting up an all-stop
2533 connection. */
2534 if (inf != NULL)
2535 {
2536 struct remote_state *rs = get_remote_state ();
2537
2538 if (!rs->starting_up)
2539 notice_new_inferior (new_thr, executing, 0);
2540 }
2541 }
2542 }
2543
2544 /* Return THREAD's private thread data, creating it if necessary. */
2545
2546 static remote_thread_info *
2547 get_remote_thread_info (thread_info *thread)
2548 {
2549 gdb_assert (thread != NULL);
2550
2551 if (thread->priv == NULL)
2552 thread->priv.reset (new remote_thread_info);
2553
2554 return static_cast<remote_thread_info *> (thread->priv.get ());
2555 }
2556
2557 /* Return PTID's private thread data, creating it if necessary. */
2558
2559 static remote_thread_info *
2560 get_remote_thread_info (remote_target *target, ptid_t ptid)
2561 {
2562 thread_info *thr = find_thread_ptid (target, ptid);
2563 return get_remote_thread_info (thr);
2564 }
2565
2566 /* Call this function as a result of
2567 1) A halt indication (T packet) containing a thread id
2568 2) A direct query of currthread
2569 3) Successful execution of set thread */
2570
2571 static void
2572 record_currthread (struct remote_state *rs, ptid_t currthread)
2573 {
2574 rs->general_thread = currthread;
2575 }
2576
2577 /* If 'QPassSignals' is supported, tell the remote stub what signals
2578 it can simply pass through to the inferior without reporting. */
2579
2580 void
2581 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2582 {
2583 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2584 {
2585 char *pass_packet, *p;
2586 int count = 0;
2587 struct remote_state *rs = get_remote_state ();
2588
2589 gdb_assert (pass_signals.size () < 256);
2590 for (size_t i = 0; i < pass_signals.size (); i++)
2591 {
2592 if (pass_signals[i])
2593 count++;
2594 }
2595 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2596 strcpy (pass_packet, "QPassSignals:");
2597 p = pass_packet + strlen (pass_packet);
2598 for (size_t i = 0; i < pass_signals.size (); i++)
2599 {
2600 if (pass_signals[i])
2601 {
2602 if (i >= 16)
2603 *p++ = tohex (i >> 4);
2604 *p++ = tohex (i & 15);
2605 if (count)
2606 *p++ = ';';
2607 else
2608 break;
2609 count--;
2610 }
2611 }
2612 *p = 0;
2613 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2614 {
2615 putpkt (pass_packet);
2616 getpkt (&rs->buf, 0);
2617 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2618 if (rs->last_pass_packet)
2619 xfree (rs->last_pass_packet);
2620 rs->last_pass_packet = pass_packet;
2621 }
2622 else
2623 xfree (pass_packet);
2624 }
2625 }
2626
2627 /* If 'QCatchSyscalls' is supported, tell the remote stub
2628 to report syscalls to GDB. */
2629
2630 int
2631 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2632 gdb::array_view<const int> syscall_counts)
2633 {
2634 const char *catch_packet;
2635 enum packet_result result;
2636 int n_sysno = 0;
2637
2638 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2639 {
2640 /* Not supported. */
2641 return 1;
2642 }
2643
2644 if (needed && any_count == 0)
2645 {
2646 /* Count how many syscalls are to be caught. */
2647 for (size_t i = 0; i < syscall_counts.size (); i++)
2648 {
2649 if (syscall_counts[i] != 0)
2650 n_sysno++;
2651 }
2652 }
2653
2654 if (remote_debug)
2655 {
2656 fprintf_unfiltered (gdb_stdlog,
2657 "remote_set_syscall_catchpoint "
2658 "pid %d needed %d any_count %d n_sysno %d\n",
2659 pid, needed, any_count, n_sysno);
2660 }
2661
2662 std::string built_packet;
2663 if (needed)
2664 {
2665 /* Prepare a packet with the sysno list, assuming max 8+1
2666 characters for a sysno. If the resulting packet size is too
2667 big, fallback on the non-selective packet. */
2668 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2669 built_packet.reserve (maxpktsz);
2670 built_packet = "QCatchSyscalls:1";
2671 if (any_count == 0)
2672 {
2673 /* Add in each syscall to be caught. */
2674 for (size_t i = 0; i < syscall_counts.size (); i++)
2675 {
2676 if (syscall_counts[i] != 0)
2677 string_appendf (built_packet, ";%zx", i);
2678 }
2679 }
2680 if (built_packet.size () > get_remote_packet_size ())
2681 {
2682 /* catch_packet too big. Fallback to less efficient
2683 non selective mode, with GDB doing the filtering. */
2684 catch_packet = "QCatchSyscalls:1";
2685 }
2686 else
2687 catch_packet = built_packet.c_str ();
2688 }
2689 else
2690 catch_packet = "QCatchSyscalls:0";
2691
2692 struct remote_state *rs = get_remote_state ();
2693
2694 putpkt (catch_packet);
2695 getpkt (&rs->buf, 0);
2696 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2697 if (result == PACKET_OK)
2698 return 0;
2699 else
2700 return -1;
2701 }
2702
2703 /* If 'QProgramSignals' is supported, tell the remote stub what
2704 signals it should pass through to the inferior when detaching. */
2705
2706 void
2707 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2708 {
2709 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2710 {
2711 char *packet, *p;
2712 int count = 0;
2713 struct remote_state *rs = get_remote_state ();
2714
2715 gdb_assert (signals.size () < 256);
2716 for (size_t i = 0; i < signals.size (); i++)
2717 {
2718 if (signals[i])
2719 count++;
2720 }
2721 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2722 strcpy (packet, "QProgramSignals:");
2723 p = packet + strlen (packet);
2724 for (size_t i = 0; i < signals.size (); i++)
2725 {
2726 if (signal_pass_state (i))
2727 {
2728 if (i >= 16)
2729 *p++ = tohex (i >> 4);
2730 *p++ = tohex (i & 15);
2731 if (count)
2732 *p++ = ';';
2733 else
2734 break;
2735 count--;
2736 }
2737 }
2738 *p = 0;
2739 if (!rs->last_program_signals_packet
2740 || strcmp (rs->last_program_signals_packet, packet) != 0)
2741 {
2742 putpkt (packet);
2743 getpkt (&rs->buf, 0);
2744 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2745 xfree (rs->last_program_signals_packet);
2746 rs->last_program_signals_packet = packet;
2747 }
2748 else
2749 xfree (packet);
2750 }
2751 }
2752
2753 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2754 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2755 thread. If GEN is set, set the general thread, if not, then set
2756 the step/continue thread. */
2757 void
2758 remote_target::set_thread (ptid_t ptid, int gen)
2759 {
2760 struct remote_state *rs = get_remote_state ();
2761 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2762 char *buf = rs->buf.data ();
2763 char *endbuf = buf + get_remote_packet_size ();
2764
2765 if (state == ptid)
2766 return;
2767
2768 *buf++ = 'H';
2769 *buf++ = gen ? 'g' : 'c';
2770 if (ptid == magic_null_ptid)
2771 xsnprintf (buf, endbuf - buf, "0");
2772 else if (ptid == any_thread_ptid)
2773 xsnprintf (buf, endbuf - buf, "0");
2774 else if (ptid == minus_one_ptid)
2775 xsnprintf (buf, endbuf - buf, "-1");
2776 else
2777 write_ptid (buf, endbuf, ptid);
2778 putpkt (rs->buf);
2779 getpkt (&rs->buf, 0);
2780 if (gen)
2781 rs->general_thread = ptid;
2782 else
2783 rs->continue_thread = ptid;
2784 }
2785
2786 void
2787 remote_target::set_general_thread (ptid_t ptid)
2788 {
2789 set_thread (ptid, 1);
2790 }
2791
2792 void
2793 remote_target::set_continue_thread (ptid_t ptid)
2794 {
2795 set_thread (ptid, 0);
2796 }
2797
2798 /* Change the remote current process. Which thread within the process
2799 ends up selected isn't important, as long as it is the same process
2800 as what INFERIOR_PTID points to.
2801
2802 This comes from that fact that there is no explicit notion of
2803 "selected process" in the protocol. The selected process for
2804 general operations is the process the selected general thread
2805 belongs to. */
2806
2807 void
2808 remote_target::set_general_process ()
2809 {
2810 struct remote_state *rs = get_remote_state ();
2811
2812 /* If the remote can't handle multiple processes, don't bother. */
2813 if (!remote_multi_process_p (rs))
2814 return;
2815
2816 /* We only need to change the remote current thread if it's pointing
2817 at some other process. */
2818 if (rs->general_thread.pid () != inferior_ptid.pid ())
2819 set_general_thread (inferior_ptid);
2820 }
2821
2822 \f
2823 /* Return nonzero if this is the main thread that we made up ourselves
2824 to model non-threaded targets as single-threaded. */
2825
2826 static int
2827 remote_thread_always_alive (ptid_t ptid)
2828 {
2829 if (ptid == magic_null_ptid)
2830 /* The main thread is always alive. */
2831 return 1;
2832
2833 if (ptid.pid () != 0 && ptid.lwp () == 0)
2834 /* The main thread is always alive. This can happen after a
2835 vAttach, if the remote side doesn't support
2836 multi-threading. */
2837 return 1;
2838
2839 return 0;
2840 }
2841
2842 /* Return nonzero if the thread PTID is still alive on the remote
2843 system. */
2844
2845 bool
2846 remote_target::thread_alive (ptid_t ptid)
2847 {
2848 struct remote_state *rs = get_remote_state ();
2849 char *p, *endp;
2850
2851 /* Check if this is a thread that we made up ourselves to model
2852 non-threaded targets as single-threaded. */
2853 if (remote_thread_always_alive (ptid))
2854 return 1;
2855
2856 p = rs->buf.data ();
2857 endp = p + get_remote_packet_size ();
2858
2859 *p++ = 'T';
2860 write_ptid (p, endp, ptid);
2861
2862 putpkt (rs->buf);
2863 getpkt (&rs->buf, 0);
2864 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2865 }
2866
2867 /* Return a pointer to a thread name if we know it and NULL otherwise.
2868 The thread_info object owns the memory for the name. */
2869
2870 const char *
2871 remote_target::thread_name (struct thread_info *info)
2872 {
2873 if (info->priv != NULL)
2874 {
2875 const std::string &name = get_remote_thread_info (info)->name;
2876 return !name.empty () ? name.c_str () : NULL;
2877 }
2878
2879 return NULL;
2880 }
2881
2882 /* About these extended threadlist and threadinfo packets. They are
2883 variable length packets but, the fields within them are often fixed
2884 length. They are redundant enough to send over UDP as is the
2885 remote protocol in general. There is a matching unit test module
2886 in libstub. */
2887
2888 /* WARNING: This threadref data structure comes from the remote O.S.,
2889 libstub protocol encoding, and remote.c. It is not particularly
2890 changable. */
2891
2892 /* Right now, the internal structure is int. We want it to be bigger.
2893 Plan to fix this. */
2894
2895 typedef int gdb_threadref; /* Internal GDB thread reference. */
2896
2897 /* gdb_ext_thread_info is an internal GDB data structure which is
2898 equivalent to the reply of the remote threadinfo packet. */
2899
2900 struct gdb_ext_thread_info
2901 {
2902 threadref threadid; /* External form of thread reference. */
2903 int active; /* Has state interesting to GDB?
2904 regs, stack. */
2905 char display[256]; /* Brief state display, name,
2906 blocked/suspended. */
2907 char shortname[32]; /* To be used to name threads. */
2908 char more_display[256]; /* Long info, statistics, queue depth,
2909 whatever. */
2910 };
2911
2912 /* The volume of remote transfers can be limited by submitting
2913 a mask containing bits specifying the desired information.
2914 Use a union of these values as the 'selection' parameter to
2915 get_thread_info. FIXME: Make these TAG names more thread specific. */
2916
2917 #define TAG_THREADID 1
2918 #define TAG_EXISTS 2
2919 #define TAG_DISPLAY 4
2920 #define TAG_THREADNAME 8
2921 #define TAG_MOREDISPLAY 16
2922
2923 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2924
2925 static char *unpack_nibble (char *buf, int *val);
2926
2927 static char *unpack_byte (char *buf, int *value);
2928
2929 static char *pack_int (char *buf, int value);
2930
2931 static char *unpack_int (char *buf, int *value);
2932
2933 static char *unpack_string (char *src, char *dest, int length);
2934
2935 static char *pack_threadid (char *pkt, threadref *id);
2936
2937 static char *unpack_threadid (char *inbuf, threadref *id);
2938
2939 void int_to_threadref (threadref *id, int value);
2940
2941 static int threadref_to_int (threadref *ref);
2942
2943 static void copy_threadref (threadref *dest, threadref *src);
2944
2945 static int threadmatch (threadref *dest, threadref *src);
2946
2947 static char *pack_threadinfo_request (char *pkt, int mode,
2948 threadref *id);
2949
2950 static char *pack_threadlist_request (char *pkt, int startflag,
2951 int threadcount,
2952 threadref *nextthread);
2953
2954 static int remote_newthread_step (threadref *ref, void *context);
2955
2956
2957 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2958 buffer we're allowed to write to. Returns
2959 BUF+CHARACTERS_WRITTEN. */
2960
2961 char *
2962 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2963 {
2964 int pid, tid;
2965 struct remote_state *rs = get_remote_state ();
2966
2967 if (remote_multi_process_p (rs))
2968 {
2969 pid = ptid.pid ();
2970 if (pid < 0)
2971 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2972 else
2973 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2974 }
2975 tid = ptid.lwp ();
2976 if (tid < 0)
2977 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2978 else
2979 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2980
2981 return buf;
2982 }
2983
2984 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2985 last parsed char. Returns null_ptid if no thread id is found, and
2986 throws an error if the thread id has an invalid format. */
2987
2988 static ptid_t
2989 read_ptid (const char *buf, const char **obuf)
2990 {
2991 const char *p = buf;
2992 const char *pp;
2993 ULONGEST pid = 0, tid = 0;
2994
2995 if (*p == 'p')
2996 {
2997 /* Multi-process ptid. */
2998 pp = unpack_varlen_hex (p + 1, &pid);
2999 if (*pp != '.')
3000 error (_("invalid remote ptid: %s"), p);
3001
3002 p = pp;
3003 pp = unpack_varlen_hex (p + 1, &tid);
3004 if (obuf)
3005 *obuf = pp;
3006 return ptid_t (pid, tid, 0);
3007 }
3008
3009 /* No multi-process. Just a tid. */
3010 pp = unpack_varlen_hex (p, &tid);
3011
3012 /* Return null_ptid when no thread id is found. */
3013 if (p == pp)
3014 {
3015 if (obuf)
3016 *obuf = pp;
3017 return null_ptid;
3018 }
3019
3020 /* Since the stub is not sending a process id, then default to
3021 what's in inferior_ptid, unless it's null at this point. If so,
3022 then since there's no way to know the pid of the reported
3023 threads, use the magic number. */
3024 if (inferior_ptid == null_ptid)
3025 pid = magic_null_ptid.pid ();
3026 else
3027 pid = inferior_ptid.pid ();
3028
3029 if (obuf)
3030 *obuf = pp;
3031 return ptid_t (pid, tid, 0);
3032 }
3033
3034 static int
3035 stubhex (int ch)
3036 {
3037 if (ch >= 'a' && ch <= 'f')
3038 return ch - 'a' + 10;
3039 if (ch >= '0' && ch <= '9')
3040 return ch - '0';
3041 if (ch >= 'A' && ch <= 'F')
3042 return ch - 'A' + 10;
3043 return -1;
3044 }
3045
3046 static int
3047 stub_unpack_int (char *buff, int fieldlength)
3048 {
3049 int nibble;
3050 int retval = 0;
3051
3052 while (fieldlength)
3053 {
3054 nibble = stubhex (*buff++);
3055 retval |= nibble;
3056 fieldlength--;
3057 if (fieldlength)
3058 retval = retval << 4;
3059 }
3060 return retval;
3061 }
3062
3063 static char *
3064 unpack_nibble (char *buf, int *val)
3065 {
3066 *val = fromhex (*buf++);
3067 return buf;
3068 }
3069
3070 static char *
3071 unpack_byte (char *buf, int *value)
3072 {
3073 *value = stub_unpack_int (buf, 2);
3074 return buf + 2;
3075 }
3076
3077 static char *
3078 pack_int (char *buf, int value)
3079 {
3080 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3081 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3082 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3083 buf = pack_hex_byte (buf, (value & 0xff));
3084 return buf;
3085 }
3086
3087 static char *
3088 unpack_int (char *buf, int *value)
3089 {
3090 *value = stub_unpack_int (buf, 8);
3091 return buf + 8;
3092 }
3093
3094 #if 0 /* Currently unused, uncomment when needed. */
3095 static char *pack_string (char *pkt, char *string);
3096
3097 static char *
3098 pack_string (char *pkt, char *string)
3099 {
3100 char ch;
3101 int len;
3102
3103 len = strlen (string);
3104 if (len > 200)
3105 len = 200; /* Bigger than most GDB packets, junk??? */
3106 pkt = pack_hex_byte (pkt, len);
3107 while (len-- > 0)
3108 {
3109 ch = *string++;
3110 if ((ch == '\0') || (ch == '#'))
3111 ch = '*'; /* Protect encapsulation. */
3112 *pkt++ = ch;
3113 }
3114 return pkt;
3115 }
3116 #endif /* 0 (unused) */
3117
3118 static char *
3119 unpack_string (char *src, char *dest, int length)
3120 {
3121 while (length--)
3122 *dest++ = *src++;
3123 *dest = '\0';
3124 return src;
3125 }
3126
3127 static char *
3128 pack_threadid (char *pkt, threadref *id)
3129 {
3130 char *limit;
3131 unsigned char *altid;
3132
3133 altid = (unsigned char *) id;
3134 limit = pkt + BUF_THREAD_ID_SIZE;
3135 while (pkt < limit)
3136 pkt = pack_hex_byte (pkt, *altid++);
3137 return pkt;
3138 }
3139
3140
3141 static char *
3142 unpack_threadid (char *inbuf, threadref *id)
3143 {
3144 char *altref;
3145 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3146 int x, y;
3147
3148 altref = (char *) id;
3149
3150 while (inbuf < limit)
3151 {
3152 x = stubhex (*inbuf++);
3153 y = stubhex (*inbuf++);
3154 *altref++ = (x << 4) | y;
3155 }
3156 return inbuf;
3157 }
3158
3159 /* Externally, threadrefs are 64 bits but internally, they are still
3160 ints. This is due to a mismatch of specifications. We would like
3161 to use 64bit thread references internally. This is an adapter
3162 function. */
3163
3164 void
3165 int_to_threadref (threadref *id, int value)
3166 {
3167 unsigned char *scan;
3168
3169 scan = (unsigned char *) id;
3170 {
3171 int i = 4;
3172 while (i--)
3173 *scan++ = 0;
3174 }
3175 *scan++ = (value >> 24) & 0xff;
3176 *scan++ = (value >> 16) & 0xff;
3177 *scan++ = (value >> 8) & 0xff;
3178 *scan++ = (value & 0xff);
3179 }
3180
3181 static int
3182 threadref_to_int (threadref *ref)
3183 {
3184 int i, value = 0;
3185 unsigned char *scan;
3186
3187 scan = *ref;
3188 scan += 4;
3189 i = 4;
3190 while (i-- > 0)
3191 value = (value << 8) | ((*scan++) & 0xff);
3192 return value;
3193 }
3194
3195 static void
3196 copy_threadref (threadref *dest, threadref *src)
3197 {
3198 int i;
3199 unsigned char *csrc, *cdest;
3200
3201 csrc = (unsigned char *) src;
3202 cdest = (unsigned char *) dest;
3203 i = 8;
3204 while (i--)
3205 *cdest++ = *csrc++;
3206 }
3207
3208 static int
3209 threadmatch (threadref *dest, threadref *src)
3210 {
3211 /* Things are broken right now, so just assume we got a match. */
3212 #if 0
3213 unsigned char *srcp, *destp;
3214 int i, result;
3215 srcp = (char *) src;
3216 destp = (char *) dest;
3217
3218 result = 1;
3219 while (i-- > 0)
3220 result &= (*srcp++ == *destp++) ? 1 : 0;
3221 return result;
3222 #endif
3223 return 1;
3224 }
3225
3226 /*
3227 threadid:1, # always request threadid
3228 context_exists:2,
3229 display:4,
3230 unique_name:8,
3231 more_display:16
3232 */
3233
3234 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3235
3236 static char *
3237 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3238 {
3239 *pkt++ = 'q'; /* Info Query */
3240 *pkt++ = 'P'; /* process or thread info */
3241 pkt = pack_int (pkt, mode); /* mode */
3242 pkt = pack_threadid (pkt, id); /* threadid */
3243 *pkt = '\0'; /* terminate */
3244 return pkt;
3245 }
3246
3247 /* These values tag the fields in a thread info response packet. */
3248 /* Tagging the fields allows us to request specific fields and to
3249 add more fields as time goes by. */
3250
3251 #define TAG_THREADID 1 /* Echo the thread identifier. */
3252 #define TAG_EXISTS 2 /* Is this process defined enough to
3253 fetch registers and its stack? */
3254 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3255 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3256 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3257 the process. */
3258
3259 int
3260 remote_target::remote_unpack_thread_info_response (char *pkt,
3261 threadref *expectedref,
3262 gdb_ext_thread_info *info)
3263 {
3264 struct remote_state *rs = get_remote_state ();
3265 int mask, length;
3266 int tag;
3267 threadref ref;
3268 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3269 int retval = 1;
3270
3271 /* info->threadid = 0; FIXME: implement zero_threadref. */
3272 info->active = 0;
3273 info->display[0] = '\0';
3274 info->shortname[0] = '\0';
3275 info->more_display[0] = '\0';
3276
3277 /* Assume the characters indicating the packet type have been
3278 stripped. */
3279 pkt = unpack_int (pkt, &mask); /* arg mask */
3280 pkt = unpack_threadid (pkt, &ref);
3281
3282 if (mask == 0)
3283 warning (_("Incomplete response to threadinfo request."));
3284 if (!threadmatch (&ref, expectedref))
3285 { /* This is an answer to a different request. */
3286 warning (_("ERROR RMT Thread info mismatch."));
3287 return 0;
3288 }
3289 copy_threadref (&info->threadid, &ref);
3290
3291 /* Loop on tagged fields , try to bail if something goes wrong. */
3292
3293 /* Packets are terminated with nulls. */
3294 while ((pkt < limit) && mask && *pkt)
3295 {
3296 pkt = unpack_int (pkt, &tag); /* tag */
3297 pkt = unpack_byte (pkt, &length); /* length */
3298 if (!(tag & mask)) /* Tags out of synch with mask. */
3299 {
3300 warning (_("ERROR RMT: threadinfo tag mismatch."));
3301 retval = 0;
3302 break;
3303 }
3304 if (tag == TAG_THREADID)
3305 {
3306 if (length != 16)
3307 {
3308 warning (_("ERROR RMT: length of threadid is not 16."));
3309 retval = 0;
3310 break;
3311 }
3312 pkt = unpack_threadid (pkt, &ref);
3313 mask = mask & ~TAG_THREADID;
3314 continue;
3315 }
3316 if (tag == TAG_EXISTS)
3317 {
3318 info->active = stub_unpack_int (pkt, length);
3319 pkt += length;
3320 mask = mask & ~(TAG_EXISTS);
3321 if (length > 8)
3322 {
3323 warning (_("ERROR RMT: 'exists' length too long."));
3324 retval = 0;
3325 break;
3326 }
3327 continue;
3328 }
3329 if (tag == TAG_THREADNAME)
3330 {
3331 pkt = unpack_string (pkt, &info->shortname[0], length);
3332 mask = mask & ~TAG_THREADNAME;
3333 continue;
3334 }
3335 if (tag == TAG_DISPLAY)
3336 {
3337 pkt = unpack_string (pkt, &info->display[0], length);
3338 mask = mask & ~TAG_DISPLAY;
3339 continue;
3340 }
3341 if (tag == TAG_MOREDISPLAY)
3342 {
3343 pkt = unpack_string (pkt, &info->more_display[0], length);
3344 mask = mask & ~TAG_MOREDISPLAY;
3345 continue;
3346 }
3347 warning (_("ERROR RMT: unknown thread info tag."));
3348 break; /* Not a tag we know about. */
3349 }
3350 return retval;
3351 }
3352
3353 int
3354 remote_target::remote_get_threadinfo (threadref *threadid,
3355 int fieldset,
3356 gdb_ext_thread_info *info)
3357 {
3358 struct remote_state *rs = get_remote_state ();
3359 int result;
3360
3361 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3362 putpkt (rs->buf);
3363 getpkt (&rs->buf, 0);
3364
3365 if (rs->buf[0] == '\0')
3366 return 0;
3367
3368 result = remote_unpack_thread_info_response (&rs->buf[2],
3369 threadid, info);
3370 return result;
3371 }
3372
3373 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3374
3375 static char *
3376 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3377 threadref *nextthread)
3378 {
3379 *pkt++ = 'q'; /* info query packet */
3380 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3381 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3382 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3383 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3384 *pkt = '\0';
3385 return pkt;
3386 }
3387
3388 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3389
3390 int
3391 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3392 threadref *original_echo,
3393 threadref *resultlist,
3394 int *doneflag)
3395 {
3396 struct remote_state *rs = get_remote_state ();
3397 char *limit;
3398 int count, resultcount, done;
3399
3400 resultcount = 0;
3401 /* Assume the 'q' and 'M chars have been stripped. */
3402 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3403 /* done parse past here */
3404 pkt = unpack_byte (pkt, &count); /* count field */
3405 pkt = unpack_nibble (pkt, &done);
3406 /* The first threadid is the argument threadid. */
3407 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3408 while ((count-- > 0) && (pkt < limit))
3409 {
3410 pkt = unpack_threadid (pkt, resultlist++);
3411 if (resultcount++ >= result_limit)
3412 break;
3413 }
3414 if (doneflag)
3415 *doneflag = done;
3416 return resultcount;
3417 }
3418
3419 /* Fetch the next batch of threads from the remote. Returns -1 if the
3420 qL packet is not supported, 0 on error and 1 on success. */
3421
3422 int
3423 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3424 int result_limit, int *done, int *result_count,
3425 threadref *threadlist)
3426 {
3427 struct remote_state *rs = get_remote_state ();
3428 int result = 1;
3429
3430 /* Truncate result limit to be smaller than the packet size. */
3431 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3432 >= get_remote_packet_size ())
3433 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3434
3435 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3436 nextthread);
3437 putpkt (rs->buf);
3438 getpkt (&rs->buf, 0);
3439 if (rs->buf[0] == '\0')
3440 {
3441 /* Packet not supported. */
3442 return -1;
3443 }
3444
3445 *result_count =
3446 parse_threadlist_response (&rs->buf[2], result_limit,
3447 &rs->echo_nextthread, threadlist, done);
3448
3449 if (!threadmatch (&rs->echo_nextthread, nextthread))
3450 {
3451 /* FIXME: This is a good reason to drop the packet. */
3452 /* Possibly, there is a duplicate response. */
3453 /* Possibilities :
3454 retransmit immediatly - race conditions
3455 retransmit after timeout - yes
3456 exit
3457 wait for packet, then exit
3458 */
3459 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3460 return 0; /* I choose simply exiting. */
3461 }
3462 if (*result_count <= 0)
3463 {
3464 if (*done != 1)
3465 {
3466 warning (_("RMT ERROR : failed to get remote thread list."));
3467 result = 0;
3468 }
3469 return result; /* break; */
3470 }
3471 if (*result_count > result_limit)
3472 {
3473 *result_count = 0;
3474 warning (_("RMT ERROR: threadlist response longer than requested."));
3475 return 0;
3476 }
3477 return result;
3478 }
3479
3480 /* Fetch the list of remote threads, with the qL packet, and call
3481 STEPFUNCTION for each thread found. Stops iterating and returns 1
3482 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3483 STEPFUNCTION returns false. If the packet is not supported,
3484 returns -1. */
3485
3486 int
3487 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3488 void *context, int looplimit)
3489 {
3490 struct remote_state *rs = get_remote_state ();
3491 int done, i, result_count;
3492 int startflag = 1;
3493 int result = 1;
3494 int loopcount = 0;
3495
3496 done = 0;
3497 while (!done)
3498 {
3499 if (loopcount++ > looplimit)
3500 {
3501 result = 0;
3502 warning (_("Remote fetch threadlist -infinite loop-."));
3503 break;
3504 }
3505 result = remote_get_threadlist (startflag, &rs->nextthread,
3506 MAXTHREADLISTRESULTS,
3507 &done, &result_count,
3508 rs->resultthreadlist);
3509 if (result <= 0)
3510 break;
3511 /* Clear for later iterations. */
3512 startflag = 0;
3513 /* Setup to resume next batch of thread references, set nextthread. */
3514 if (result_count >= 1)
3515 copy_threadref (&rs->nextthread,
3516 &rs->resultthreadlist[result_count - 1]);
3517 i = 0;
3518 while (result_count--)
3519 {
3520 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3521 {
3522 result = 0;
3523 break;
3524 }
3525 }
3526 }
3527 return result;
3528 }
3529
3530 /* A thread found on the remote target. */
3531
3532 struct thread_item
3533 {
3534 explicit thread_item (ptid_t ptid_)
3535 : ptid (ptid_)
3536 {}
3537
3538 thread_item (thread_item &&other) = default;
3539 thread_item &operator= (thread_item &&other) = default;
3540
3541 DISABLE_COPY_AND_ASSIGN (thread_item);
3542
3543 /* The thread's PTID. */
3544 ptid_t ptid;
3545
3546 /* The thread's extra info. */
3547 std::string extra;
3548
3549 /* The thread's name. */
3550 std::string name;
3551
3552 /* The core the thread was running on. -1 if not known. */
3553 int core = -1;
3554
3555 /* The thread handle associated with the thread. */
3556 gdb::byte_vector thread_handle;
3557 };
3558
3559 /* Context passed around to the various methods listing remote
3560 threads. As new threads are found, they're added to the ITEMS
3561 vector. */
3562
3563 struct threads_listing_context
3564 {
3565 /* Return true if this object contains an entry for a thread with ptid
3566 PTID. */
3567
3568 bool contains_thread (ptid_t ptid) const
3569 {
3570 auto match_ptid = [&] (const thread_item &item)
3571 {
3572 return item.ptid == ptid;
3573 };
3574
3575 auto it = std::find_if (this->items.begin (),
3576 this->items.end (),
3577 match_ptid);
3578
3579 return it != this->items.end ();
3580 }
3581
3582 /* Remove the thread with ptid PTID. */
3583
3584 void remove_thread (ptid_t ptid)
3585 {
3586 auto match_ptid = [&] (const thread_item &item)
3587 {
3588 return item.ptid == ptid;
3589 };
3590
3591 auto it = std::remove_if (this->items.begin (),
3592 this->items.end (),
3593 match_ptid);
3594
3595 if (it != this->items.end ())
3596 this->items.erase (it);
3597 }
3598
3599 /* The threads found on the remote target. */
3600 std::vector<thread_item> items;
3601 };
3602
3603 static int
3604 remote_newthread_step (threadref *ref, void *data)
3605 {
3606 struct threads_listing_context *context
3607 = (struct threads_listing_context *) data;
3608 int pid = inferior_ptid.pid ();
3609 int lwp = threadref_to_int (ref);
3610 ptid_t ptid (pid, lwp);
3611
3612 context->items.emplace_back (ptid);
3613
3614 return 1; /* continue iterator */
3615 }
3616
3617 #define CRAZY_MAX_THREADS 1000
3618
3619 ptid_t
3620 remote_target::remote_current_thread (ptid_t oldpid)
3621 {
3622 struct remote_state *rs = get_remote_state ();
3623
3624 putpkt ("qC");
3625 getpkt (&rs->buf, 0);
3626 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3627 {
3628 const char *obuf;
3629 ptid_t result;
3630
3631 result = read_ptid (&rs->buf[2], &obuf);
3632 if (*obuf != '\0' && remote_debug)
3633 fprintf_unfiltered (gdb_stdlog,
3634 "warning: garbage in qC reply\n");
3635
3636 return result;
3637 }
3638 else
3639 return oldpid;
3640 }
3641
3642 /* List remote threads using the deprecated qL packet. */
3643
3644 int
3645 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3646 {
3647 if (remote_threadlist_iterator (remote_newthread_step, context,
3648 CRAZY_MAX_THREADS) >= 0)
3649 return 1;
3650
3651 return 0;
3652 }
3653
3654 #if defined(HAVE_LIBEXPAT)
3655
3656 static void
3657 start_thread (struct gdb_xml_parser *parser,
3658 const struct gdb_xml_element *element,
3659 void *user_data,
3660 std::vector<gdb_xml_value> &attributes)
3661 {
3662 struct threads_listing_context *data
3663 = (struct threads_listing_context *) user_data;
3664 struct gdb_xml_value *attr;
3665
3666 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3667 ptid_t ptid = read_ptid (id, NULL);
3668
3669 data->items.emplace_back (ptid);
3670 thread_item &item = data->items.back ();
3671
3672 attr = xml_find_attribute (attributes, "core");
3673 if (attr != NULL)
3674 item.core = *(ULONGEST *) attr->value.get ();
3675
3676 attr = xml_find_attribute (attributes, "name");
3677 if (attr != NULL)
3678 item.name = (const char *) attr->value.get ();
3679
3680 attr = xml_find_attribute (attributes, "handle");
3681 if (attr != NULL)
3682 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3683 }
3684
3685 static void
3686 end_thread (struct gdb_xml_parser *parser,
3687 const struct gdb_xml_element *element,
3688 void *user_data, const char *body_text)
3689 {
3690 struct threads_listing_context *data
3691 = (struct threads_listing_context *) user_data;
3692
3693 if (body_text != NULL && *body_text != '\0')
3694 data->items.back ().extra = body_text;
3695 }
3696
3697 const struct gdb_xml_attribute thread_attributes[] = {
3698 { "id", GDB_XML_AF_NONE, NULL, NULL },
3699 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3700 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3701 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3702 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3703 };
3704
3705 const struct gdb_xml_element thread_children[] = {
3706 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3707 };
3708
3709 const struct gdb_xml_element threads_children[] = {
3710 { "thread", thread_attributes, thread_children,
3711 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3712 start_thread, end_thread },
3713 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3714 };
3715
3716 const struct gdb_xml_element threads_elements[] = {
3717 { "threads", NULL, threads_children,
3718 GDB_XML_EF_NONE, NULL, NULL },
3719 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3720 };
3721
3722 #endif
3723
3724 /* List remote threads using qXfer:threads:read. */
3725
3726 int
3727 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3728 {
3729 #if defined(HAVE_LIBEXPAT)
3730 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3731 {
3732 gdb::optional<gdb::char_vector> xml
3733 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3734
3735 if (xml && (*xml)[0] != '\0')
3736 {
3737 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3738 threads_elements, xml->data (), context);
3739 }
3740
3741 return 1;
3742 }
3743 #endif
3744
3745 return 0;
3746 }
3747
3748 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3749
3750 int
3751 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3752 {
3753 struct remote_state *rs = get_remote_state ();
3754
3755 if (rs->use_threadinfo_query)
3756 {
3757 const char *bufp;
3758
3759 putpkt ("qfThreadInfo");
3760 getpkt (&rs->buf, 0);
3761 bufp = rs->buf.data ();
3762 if (bufp[0] != '\0') /* q packet recognized */
3763 {
3764 while (*bufp++ == 'm') /* reply contains one or more TID */
3765 {
3766 do
3767 {
3768 ptid_t ptid = read_ptid (bufp, &bufp);
3769 context->items.emplace_back (ptid);
3770 }
3771 while (*bufp++ == ','); /* comma-separated list */
3772 putpkt ("qsThreadInfo");
3773 getpkt (&rs->buf, 0);
3774 bufp = rs->buf.data ();
3775 }
3776 return 1;
3777 }
3778 else
3779 {
3780 /* Packet not recognized. */
3781 rs->use_threadinfo_query = 0;
3782 }
3783 }
3784
3785 return 0;
3786 }
3787
3788 /* Return true if INF only has one non-exited thread. */
3789
3790 static bool
3791 has_single_non_exited_thread (inferior *inf)
3792 {
3793 int count = 0;
3794 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3795 if (++count > 1)
3796 break;
3797 return count == 1;
3798 }
3799
3800 /* Implement the to_update_thread_list function for the remote
3801 targets. */
3802
3803 void
3804 remote_target::update_thread_list ()
3805 {
3806 struct threads_listing_context context;
3807 int got_list = 0;
3808
3809 /* We have a few different mechanisms to fetch the thread list. Try
3810 them all, starting with the most preferred one first, falling
3811 back to older methods. */
3812 if (remote_get_threads_with_qxfer (&context)
3813 || remote_get_threads_with_qthreadinfo (&context)
3814 || remote_get_threads_with_ql (&context))
3815 {
3816 got_list = 1;
3817
3818 if (context.items.empty ()
3819 && remote_thread_always_alive (inferior_ptid))
3820 {
3821 /* Some targets don't really support threads, but still
3822 reply an (empty) thread list in response to the thread
3823 listing packets, instead of replying "packet not
3824 supported". Exit early so we don't delete the main
3825 thread. */
3826 return;
3827 }
3828
3829 /* CONTEXT now holds the current thread list on the remote
3830 target end. Delete GDB-side threads no longer found on the
3831 target. */
3832 for (thread_info *tp : all_threads_safe ())
3833 {
3834 if (tp->inf->process_target () != this)
3835 continue;
3836
3837 if (!context.contains_thread (tp->ptid))
3838 {
3839 /* Do not remove the thread if it is the last thread in
3840 the inferior. This situation happens when we have a
3841 pending exit process status to process. Otherwise we
3842 may end up with a seemingly live inferior (i.e. pid
3843 != 0) that has no threads. */
3844 if (has_single_non_exited_thread (tp->inf))
3845 continue;
3846
3847 /* Not found. */
3848 delete_thread (tp);
3849 }
3850 }
3851
3852 /* Remove any unreported fork child threads from CONTEXT so
3853 that we don't interfere with follow fork, which is where
3854 creation of such threads is handled. */
3855 remove_new_fork_children (&context);
3856
3857 /* And now add threads we don't know about yet to our list. */
3858 for (thread_item &item : context.items)
3859 {
3860 if (item.ptid != null_ptid)
3861 {
3862 /* In non-stop mode, we assume new found threads are
3863 executing until proven otherwise with a stop reply.
3864 In all-stop, we can only get here if all threads are
3865 stopped. */
3866 int executing = target_is_non_stop_p () ? 1 : 0;
3867
3868 remote_notice_new_inferior (item.ptid, executing);
3869
3870 thread_info *tp = find_thread_ptid (this, item.ptid);
3871 remote_thread_info *info = get_remote_thread_info (tp);
3872 info->core = item.core;
3873 info->extra = std::move (item.extra);
3874 info->name = std::move (item.name);
3875 info->thread_handle = std::move (item.thread_handle);
3876 }
3877 }
3878 }
3879
3880 if (!got_list)
3881 {
3882 /* If no thread listing method is supported, then query whether
3883 each known thread is alive, one by one, with the T packet.
3884 If the target doesn't support threads at all, then this is a
3885 no-op. See remote_thread_alive. */
3886 prune_threads ();
3887 }
3888 }
3889
3890 /*
3891 * Collect a descriptive string about the given thread.
3892 * The target may say anything it wants to about the thread
3893 * (typically info about its blocked / runnable state, name, etc.).
3894 * This string will appear in the info threads display.
3895 *
3896 * Optional: targets are not required to implement this function.
3897 */
3898
3899 const char *
3900 remote_target::extra_thread_info (thread_info *tp)
3901 {
3902 struct remote_state *rs = get_remote_state ();
3903 int set;
3904 threadref id;
3905 struct gdb_ext_thread_info threadinfo;
3906
3907 if (rs->remote_desc == 0) /* paranoia */
3908 internal_error (__FILE__, __LINE__,
3909 _("remote_threads_extra_info"));
3910
3911 if (tp->ptid == magic_null_ptid
3912 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3913 /* This is the main thread which was added by GDB. The remote
3914 server doesn't know about it. */
3915 return NULL;
3916
3917 std::string &extra = get_remote_thread_info (tp)->extra;
3918
3919 /* If already have cached info, use it. */
3920 if (!extra.empty ())
3921 return extra.c_str ();
3922
3923 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3924 {
3925 /* If we're using qXfer:threads:read, then the extra info is
3926 included in the XML. So if we didn't have anything cached,
3927 it's because there's really no extra info. */
3928 return NULL;
3929 }
3930
3931 if (rs->use_threadextra_query)
3932 {
3933 char *b = rs->buf.data ();
3934 char *endb = b + get_remote_packet_size ();
3935
3936 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3937 b += strlen (b);
3938 write_ptid (b, endb, tp->ptid);
3939
3940 putpkt (rs->buf);
3941 getpkt (&rs->buf, 0);
3942 if (rs->buf[0] != 0)
3943 {
3944 extra.resize (strlen (rs->buf.data ()) / 2);
3945 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3946 return extra.c_str ();
3947 }
3948 }
3949
3950 /* If the above query fails, fall back to the old method. */
3951 rs->use_threadextra_query = 0;
3952 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3953 | TAG_MOREDISPLAY | TAG_DISPLAY;
3954 int_to_threadref (&id, tp->ptid.lwp ());
3955 if (remote_get_threadinfo (&id, set, &threadinfo))
3956 if (threadinfo.active)
3957 {
3958 if (*threadinfo.shortname)
3959 string_appendf (extra, " Name: %s", threadinfo.shortname);
3960 if (*threadinfo.display)
3961 {
3962 if (!extra.empty ())
3963 extra += ',';
3964 string_appendf (extra, " State: %s", threadinfo.display);
3965 }
3966 if (*threadinfo.more_display)
3967 {
3968 if (!extra.empty ())
3969 extra += ',';
3970 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3971 }
3972 return extra.c_str ();
3973 }
3974 return NULL;
3975 }
3976 \f
3977
3978 bool
3979 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3980 struct static_tracepoint_marker *marker)
3981 {
3982 struct remote_state *rs = get_remote_state ();
3983 char *p = rs->buf.data ();
3984
3985 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3986 p += strlen (p);
3987 p += hexnumstr (p, addr);
3988 putpkt (rs->buf);
3989 getpkt (&rs->buf, 0);
3990 p = rs->buf.data ();
3991
3992 if (*p == 'E')
3993 error (_("Remote failure reply: %s"), p);
3994
3995 if (*p++ == 'm')
3996 {
3997 parse_static_tracepoint_marker_definition (p, NULL, marker);
3998 return true;
3999 }
4000
4001 return false;
4002 }
4003
4004 std::vector<static_tracepoint_marker>
4005 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4006 {
4007 struct remote_state *rs = get_remote_state ();
4008 std::vector<static_tracepoint_marker> markers;
4009 const char *p;
4010 static_tracepoint_marker marker;
4011
4012 /* Ask for a first packet of static tracepoint marker
4013 definition. */
4014 putpkt ("qTfSTM");
4015 getpkt (&rs->buf, 0);
4016 p = rs->buf.data ();
4017 if (*p == 'E')
4018 error (_("Remote failure reply: %s"), p);
4019
4020 while (*p++ == 'm')
4021 {
4022 do
4023 {
4024 parse_static_tracepoint_marker_definition (p, &p, &marker);
4025
4026 if (strid == NULL || marker.str_id == strid)
4027 markers.push_back (std::move (marker));
4028 }
4029 while (*p++ == ','); /* comma-separated list */
4030 /* Ask for another packet of static tracepoint definition. */
4031 putpkt ("qTsSTM");
4032 getpkt (&rs->buf, 0);
4033 p = rs->buf.data ();
4034 }
4035
4036 return markers;
4037 }
4038
4039 \f
4040 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4041
4042 ptid_t
4043 remote_target::get_ada_task_ptid (long lwp, long thread)
4044 {
4045 return ptid_t (inferior_ptid.pid (), lwp, 0);
4046 }
4047 \f
4048
4049 /* Restart the remote side; this is an extended protocol operation. */
4050
4051 void
4052 remote_target::extended_remote_restart ()
4053 {
4054 struct remote_state *rs = get_remote_state ();
4055
4056 /* Send the restart command; for reasons I don't understand the
4057 remote side really expects a number after the "R". */
4058 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4059 putpkt (rs->buf);
4060
4061 remote_fileio_reset ();
4062 }
4063 \f
4064 /* Clean up connection to a remote debugger. */
4065
4066 void
4067 remote_target::close ()
4068 {
4069 /* Make sure we leave stdin registered in the event loop. */
4070 terminal_ours ();
4071
4072 trace_reset_local_state ();
4073
4074 delete this;
4075 }
4076
4077 remote_target::~remote_target ()
4078 {
4079 struct remote_state *rs = get_remote_state ();
4080
4081 /* Check for NULL because we may get here with a partially
4082 constructed target/connection. */
4083 if (rs->remote_desc == nullptr)
4084 return;
4085
4086 serial_close (rs->remote_desc);
4087
4088 /* We are destroying the remote target, so we should discard
4089 everything of this target. */
4090 discard_pending_stop_replies_in_queue ();
4091
4092 if (rs->remote_async_inferior_event_token)
4093 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4094
4095 delete rs->notif_state;
4096 }
4097
4098 /* Query the remote side for the text, data and bss offsets. */
4099
4100 void
4101 remote_target::get_offsets ()
4102 {
4103 struct remote_state *rs = get_remote_state ();
4104 char *buf;
4105 char *ptr;
4106 int lose, num_segments = 0, do_sections, do_segments;
4107 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4108
4109 if (symfile_objfile == NULL)
4110 return;
4111
4112 putpkt ("qOffsets");
4113 getpkt (&rs->buf, 0);
4114 buf = rs->buf.data ();
4115
4116 if (buf[0] == '\000')
4117 return; /* Return silently. Stub doesn't support
4118 this command. */
4119 if (buf[0] == 'E')
4120 {
4121 warning (_("Remote failure reply: %s"), buf);
4122 return;
4123 }
4124
4125 /* Pick up each field in turn. This used to be done with scanf, but
4126 scanf will make trouble if CORE_ADDR size doesn't match
4127 conversion directives correctly. The following code will work
4128 with any size of CORE_ADDR. */
4129 text_addr = data_addr = bss_addr = 0;
4130 ptr = buf;
4131 lose = 0;
4132
4133 if (startswith (ptr, "Text="))
4134 {
4135 ptr += 5;
4136 /* Don't use strtol, could lose on big values. */
4137 while (*ptr && *ptr != ';')
4138 text_addr = (text_addr << 4) + fromhex (*ptr++);
4139
4140 if (startswith (ptr, ";Data="))
4141 {
4142 ptr += 6;
4143 while (*ptr && *ptr != ';')
4144 data_addr = (data_addr << 4) + fromhex (*ptr++);
4145 }
4146 else
4147 lose = 1;
4148
4149 if (!lose && startswith (ptr, ";Bss="))
4150 {
4151 ptr += 5;
4152 while (*ptr && *ptr != ';')
4153 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4154
4155 if (bss_addr != data_addr)
4156 warning (_("Target reported unsupported offsets: %s"), buf);
4157 }
4158 else
4159 lose = 1;
4160 }
4161 else if (startswith (ptr, "TextSeg="))
4162 {
4163 ptr += 8;
4164 /* Don't use strtol, could lose on big values. */
4165 while (*ptr && *ptr != ';')
4166 text_addr = (text_addr << 4) + fromhex (*ptr++);
4167 num_segments = 1;
4168
4169 if (startswith (ptr, ";DataSeg="))
4170 {
4171 ptr += 9;
4172 while (*ptr && *ptr != ';')
4173 data_addr = (data_addr << 4) + fromhex (*ptr++);
4174 num_segments++;
4175 }
4176 }
4177 else
4178 lose = 1;
4179
4180 if (lose)
4181 error (_("Malformed response to offset query, %s"), buf);
4182 else if (*ptr != '\0')
4183 warning (_("Target reported unsupported offsets: %s"), buf);
4184
4185 section_offsets offs = symfile_objfile->section_offsets;
4186
4187 symfile_segment_data_up data
4188 = get_symfile_segment_data (symfile_objfile->obfd);
4189 do_segments = (data != NULL);
4190 do_sections = num_segments == 0;
4191
4192 if (num_segments > 0)
4193 {
4194 segments[0] = text_addr;
4195 segments[1] = data_addr;
4196 }
4197 /* If we have two segments, we can still try to relocate everything
4198 by assuming that the .text and .data offsets apply to the whole
4199 text and data segments. Convert the offsets given in the packet
4200 to base addresses for symfile_map_offsets_to_segments. */
4201 else if (data && data->num_segments == 2)
4202 {
4203 segments[0] = data->segment_bases[0] + text_addr;
4204 segments[1] = data->segment_bases[1] + data_addr;
4205 num_segments = 2;
4206 }
4207 /* If the object file has only one segment, assume that it is text
4208 rather than data; main programs with no writable data are rare,
4209 but programs with no code are useless. Of course the code might
4210 have ended up in the data segment... to detect that we would need
4211 the permissions here. */
4212 else if (data && data->num_segments == 1)
4213 {
4214 segments[0] = data->segment_bases[0] + text_addr;
4215 num_segments = 1;
4216 }
4217 /* There's no way to relocate by segment. */
4218 else
4219 do_segments = 0;
4220
4221 if (do_segments)
4222 {
4223 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd,
4224 data.get (), offs,
4225 num_segments, segments);
4226
4227 if (ret == 0 && !do_sections)
4228 error (_("Can not handle qOffsets TextSeg "
4229 "response with this symbol file"));
4230
4231 if (ret > 0)
4232 do_sections = 0;
4233 }
4234
4235 if (do_sections)
4236 {
4237 offs[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4238
4239 /* This is a temporary kludge to force data and bss to use the
4240 same offsets because that's what nlmconv does now. The real
4241 solution requires changes to the stub and remote.c that I
4242 don't have time to do right now. */
4243
4244 offs[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4245 offs[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4246 }
4247
4248 objfile_relocate (symfile_objfile, offs);
4249 }
4250
4251 /* Send interrupt_sequence to remote target. */
4252
4253 void
4254 remote_target::send_interrupt_sequence ()
4255 {
4256 struct remote_state *rs = get_remote_state ();
4257
4258 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4259 remote_serial_write ("\x03", 1);
4260 else if (interrupt_sequence_mode == interrupt_sequence_break)
4261 serial_send_break (rs->remote_desc);
4262 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4263 {
4264 serial_send_break (rs->remote_desc);
4265 remote_serial_write ("g", 1);
4266 }
4267 else
4268 internal_error (__FILE__, __LINE__,
4269 _("Invalid value for interrupt_sequence_mode: %s."),
4270 interrupt_sequence_mode);
4271 }
4272
4273
4274 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4275 and extract the PTID. Returns NULL_PTID if not found. */
4276
4277 static ptid_t
4278 stop_reply_extract_thread (char *stop_reply)
4279 {
4280 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4281 {
4282 const char *p;
4283
4284 /* Txx r:val ; r:val (...) */
4285 p = &stop_reply[3];
4286
4287 /* Look for "register" named "thread". */
4288 while (*p != '\0')
4289 {
4290 const char *p1;
4291
4292 p1 = strchr (p, ':');
4293 if (p1 == NULL)
4294 return null_ptid;
4295
4296 if (strncmp (p, "thread", p1 - p) == 0)
4297 return read_ptid (++p1, &p);
4298
4299 p1 = strchr (p, ';');
4300 if (p1 == NULL)
4301 return null_ptid;
4302 p1++;
4303
4304 p = p1;
4305 }
4306 }
4307
4308 return null_ptid;
4309 }
4310
4311 /* Determine the remote side's current thread. If we have a stop
4312 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4313 "thread" register we can extract the current thread from. If not,
4314 ask the remote which is the current thread with qC. The former
4315 method avoids a roundtrip. */
4316
4317 ptid_t
4318 remote_target::get_current_thread (char *wait_status)
4319 {
4320 ptid_t ptid = null_ptid;
4321
4322 /* Note we don't use remote_parse_stop_reply as that makes use of
4323 the target architecture, which we haven't yet fully determined at
4324 this point. */
4325 if (wait_status != NULL)
4326 ptid = stop_reply_extract_thread (wait_status);
4327 if (ptid == null_ptid)
4328 ptid = remote_current_thread (inferior_ptid);
4329
4330 return ptid;
4331 }
4332
4333 /* Query the remote target for which is the current thread/process,
4334 add it to our tables, and update INFERIOR_PTID. The caller is
4335 responsible for setting the state such that the remote end is ready
4336 to return the current thread.
4337
4338 This function is called after handling the '?' or 'vRun' packets,
4339 whose response is a stop reply from which we can also try
4340 extracting the thread. If the target doesn't support the explicit
4341 qC query, we infer the current thread from that stop reply, passed
4342 in in WAIT_STATUS, which may be NULL. */
4343
4344 void
4345 remote_target::add_current_inferior_and_thread (char *wait_status)
4346 {
4347 struct remote_state *rs = get_remote_state ();
4348 bool fake_pid_p = false;
4349
4350 inferior_ptid = null_ptid;
4351
4352 /* Now, if we have thread information, update inferior_ptid. */
4353 ptid_t curr_ptid = get_current_thread (wait_status);
4354
4355 if (curr_ptid != null_ptid)
4356 {
4357 if (!remote_multi_process_p (rs))
4358 fake_pid_p = true;
4359 }
4360 else
4361 {
4362 /* Without this, some commands which require an active target
4363 (such as kill) won't work. This variable serves (at least)
4364 double duty as both the pid of the target process (if it has
4365 such), and as a flag indicating that a target is active. */
4366 curr_ptid = magic_null_ptid;
4367 fake_pid_p = true;
4368 }
4369
4370 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4371
4372 /* Add the main thread and switch to it. Don't try reading
4373 registers yet, since we haven't fetched the target description
4374 yet. */
4375 thread_info *tp = add_thread_silent (this, curr_ptid);
4376 switch_to_thread_no_regs (tp);
4377 }
4378
4379 /* Print info about a thread that was found already stopped on
4380 connection. */
4381
4382 static void
4383 print_one_stopped_thread (struct thread_info *thread)
4384 {
4385 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4386
4387 switch_to_thread (thread);
4388 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4389 set_current_sal_from_frame (get_current_frame ());
4390
4391 thread->suspend.waitstatus_pending_p = 0;
4392
4393 if (ws->kind == TARGET_WAITKIND_STOPPED)
4394 {
4395 enum gdb_signal sig = ws->value.sig;
4396
4397 if (signal_print_state (sig))
4398 gdb::observers::signal_received.notify (sig);
4399 }
4400 gdb::observers::normal_stop.notify (NULL, 1);
4401 }
4402
4403 /* Process all initial stop replies the remote side sent in response
4404 to the ? packet. These indicate threads that were already stopped
4405 on initial connection. We mark these threads as stopped and print
4406 their current frame before giving the user the prompt. */
4407
4408 void
4409 remote_target::process_initial_stop_replies (int from_tty)
4410 {
4411 int pending_stop_replies = stop_reply_queue_length ();
4412 struct thread_info *selected = NULL;
4413 struct thread_info *lowest_stopped = NULL;
4414 struct thread_info *first = NULL;
4415
4416 /* Consume the initial pending events. */
4417 while (pending_stop_replies-- > 0)
4418 {
4419 ptid_t waiton_ptid = minus_one_ptid;
4420 ptid_t event_ptid;
4421 struct target_waitstatus ws;
4422 int ignore_event = 0;
4423
4424 memset (&ws, 0, sizeof (ws));
4425 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4426 if (remote_debug)
4427 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4428
4429 switch (ws.kind)
4430 {
4431 case TARGET_WAITKIND_IGNORE:
4432 case TARGET_WAITKIND_NO_RESUMED:
4433 case TARGET_WAITKIND_SIGNALLED:
4434 case TARGET_WAITKIND_EXITED:
4435 /* We shouldn't see these, but if we do, just ignore. */
4436 if (remote_debug)
4437 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4438 ignore_event = 1;
4439 break;
4440
4441 case TARGET_WAITKIND_EXECD:
4442 xfree (ws.value.execd_pathname);
4443 break;
4444 default:
4445 break;
4446 }
4447
4448 if (ignore_event)
4449 continue;
4450
4451 thread_info *evthread = find_thread_ptid (this, event_ptid);
4452
4453 if (ws.kind == TARGET_WAITKIND_STOPPED)
4454 {
4455 enum gdb_signal sig = ws.value.sig;
4456
4457 /* Stubs traditionally report SIGTRAP as initial signal,
4458 instead of signal 0. Suppress it. */
4459 if (sig == GDB_SIGNAL_TRAP)
4460 sig = GDB_SIGNAL_0;
4461 evthread->suspend.stop_signal = sig;
4462 ws.value.sig = sig;
4463 }
4464
4465 evthread->suspend.waitstatus = ws;
4466
4467 if (ws.kind != TARGET_WAITKIND_STOPPED
4468 || ws.value.sig != GDB_SIGNAL_0)
4469 evthread->suspend.waitstatus_pending_p = 1;
4470
4471 set_executing (this, event_ptid, false);
4472 set_running (this, event_ptid, false);
4473 get_remote_thread_info (evthread)->vcont_resumed = 0;
4474 }
4475
4476 /* "Notice" the new inferiors before anything related to
4477 registers/memory. */
4478 for (inferior *inf : all_non_exited_inferiors (this))
4479 {
4480 inf->needs_setup = 1;
4481
4482 if (non_stop)
4483 {
4484 thread_info *thread = any_live_thread_of_inferior (inf);
4485 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4486 from_tty);
4487 }
4488 }
4489
4490 /* If all-stop on top of non-stop, pause all threads. Note this
4491 records the threads' stop pc, so must be done after "noticing"
4492 the inferiors. */
4493 if (!non_stop)
4494 {
4495 stop_all_threads ();
4496
4497 /* If all threads of an inferior were already stopped, we
4498 haven't setup the inferior yet. */
4499 for (inferior *inf : all_non_exited_inferiors (this))
4500 {
4501 if (inf->needs_setup)
4502 {
4503 thread_info *thread = any_live_thread_of_inferior (inf);
4504 switch_to_thread_no_regs (thread);
4505 setup_inferior (0);
4506 }
4507 }
4508 }
4509
4510 /* Now go over all threads that are stopped, and print their current
4511 frame. If all-stop, then if there's a signalled thread, pick
4512 that as current. */
4513 for (thread_info *thread : all_non_exited_threads (this))
4514 {
4515 if (first == NULL)
4516 first = thread;
4517
4518 if (!non_stop)
4519 thread->set_running (false);
4520 else if (thread->state != THREAD_STOPPED)
4521 continue;
4522
4523 if (selected == NULL
4524 && thread->suspend.waitstatus_pending_p)
4525 selected = thread;
4526
4527 if (lowest_stopped == NULL
4528 || thread->inf->num < lowest_stopped->inf->num
4529 || thread->per_inf_num < lowest_stopped->per_inf_num)
4530 lowest_stopped = thread;
4531
4532 if (non_stop)
4533 print_one_stopped_thread (thread);
4534 }
4535
4536 /* In all-stop, we only print the status of one thread, and leave
4537 others with their status pending. */
4538 if (!non_stop)
4539 {
4540 thread_info *thread = selected;
4541 if (thread == NULL)
4542 thread = lowest_stopped;
4543 if (thread == NULL)
4544 thread = first;
4545
4546 print_one_stopped_thread (thread);
4547 }
4548
4549 /* For "info program". */
4550 thread_info *thread = inferior_thread ();
4551 if (thread->state == THREAD_STOPPED)
4552 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4553 }
4554
4555 /* Start the remote connection and sync state. */
4556
4557 void
4558 remote_target::start_remote (int from_tty, int extended_p)
4559 {
4560 struct remote_state *rs = get_remote_state ();
4561 struct packet_config *noack_config;
4562 char *wait_status = NULL;
4563
4564 /* Signal other parts that we're going through the initial setup,
4565 and so things may not be stable yet. E.g., we don't try to
4566 install tracepoints until we've relocated symbols. Also, a
4567 Ctrl-C before we're connected and synced up can't interrupt the
4568 target. Instead, it offers to drop the (potentially wedged)
4569 connection. */
4570 rs->starting_up = 1;
4571
4572 QUIT;
4573
4574 if (interrupt_on_connect)
4575 send_interrupt_sequence ();
4576
4577 /* Ack any packet which the remote side has already sent. */
4578 remote_serial_write ("+", 1);
4579
4580 /* The first packet we send to the target is the optional "supported
4581 packets" request. If the target can answer this, it will tell us
4582 which later probes to skip. */
4583 remote_query_supported ();
4584
4585 /* If the stub wants to get a QAllow, compose one and send it. */
4586 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4587 set_permissions ();
4588
4589 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4590 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4591 as a reply to known packet. For packet "vFile:setfs:" it is an
4592 invalid reply and GDB would return error in
4593 remote_hostio_set_filesystem, making remote files access impossible.
4594 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4595 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4596 {
4597 const char v_mustreplyempty[] = "vMustReplyEmpty";
4598
4599 putpkt (v_mustreplyempty);
4600 getpkt (&rs->buf, 0);
4601 if (strcmp (rs->buf.data (), "OK") == 0)
4602 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4603 else if (strcmp (rs->buf.data (), "") != 0)
4604 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4605 rs->buf.data ());
4606 }
4607
4608 /* Next, we possibly activate noack mode.
4609
4610 If the QStartNoAckMode packet configuration is set to AUTO,
4611 enable noack mode if the stub reported a wish for it with
4612 qSupported.
4613
4614 If set to TRUE, then enable noack mode even if the stub didn't
4615 report it in qSupported. If the stub doesn't reply OK, the
4616 session ends with an error.
4617
4618 If FALSE, then don't activate noack mode, regardless of what the
4619 stub claimed should be the default with qSupported. */
4620
4621 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4622 if (packet_config_support (noack_config) != PACKET_DISABLE)
4623 {
4624 putpkt ("QStartNoAckMode");
4625 getpkt (&rs->buf, 0);
4626 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4627 rs->noack_mode = 1;
4628 }
4629
4630 if (extended_p)
4631 {
4632 /* Tell the remote that we are using the extended protocol. */
4633 putpkt ("!");
4634 getpkt (&rs->buf, 0);
4635 }
4636
4637 /* Let the target know which signals it is allowed to pass down to
4638 the program. */
4639 update_signals_program_target ();
4640
4641 /* Next, if the target can specify a description, read it. We do
4642 this before anything involving memory or registers. */
4643 target_find_description ();
4644
4645 /* Next, now that we know something about the target, update the
4646 address spaces in the program spaces. */
4647 update_address_spaces ();
4648
4649 /* On OSs where the list of libraries is global to all
4650 processes, we fetch them early. */
4651 if (gdbarch_has_global_solist (target_gdbarch ()))
4652 solib_add (NULL, from_tty, auto_solib_add);
4653
4654 if (target_is_non_stop_p ())
4655 {
4656 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4657 error (_("Non-stop mode requested, but remote "
4658 "does not support non-stop"));
4659
4660 putpkt ("QNonStop:1");
4661 getpkt (&rs->buf, 0);
4662
4663 if (strcmp (rs->buf.data (), "OK") != 0)
4664 error (_("Remote refused setting non-stop mode with: %s"),
4665 rs->buf.data ());
4666
4667 /* Find about threads and processes the stub is already
4668 controlling. We default to adding them in the running state.
4669 The '?' query below will then tell us about which threads are
4670 stopped. */
4671 this->update_thread_list ();
4672 }
4673 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4674 {
4675 /* Don't assume that the stub can operate in all-stop mode.
4676 Request it explicitly. */
4677 putpkt ("QNonStop:0");
4678 getpkt (&rs->buf, 0);
4679
4680 if (strcmp (rs->buf.data (), "OK") != 0)
4681 error (_("Remote refused setting all-stop mode with: %s"),
4682 rs->buf.data ());
4683 }
4684
4685 /* Upload TSVs regardless of whether the target is running or not. The
4686 remote stub, such as GDBserver, may have some predefined or builtin
4687 TSVs, even if the target is not running. */
4688 if (get_trace_status (current_trace_status ()) != -1)
4689 {
4690 struct uploaded_tsv *uploaded_tsvs = NULL;
4691
4692 upload_trace_state_variables (&uploaded_tsvs);
4693 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4694 }
4695
4696 /* Check whether the target is running now. */
4697 putpkt ("?");
4698 getpkt (&rs->buf, 0);
4699
4700 if (!target_is_non_stop_p ())
4701 {
4702 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4703 {
4704 if (!extended_p)
4705 error (_("The target is not running (try extended-remote?)"));
4706
4707 /* We're connected, but not running. Drop out before we
4708 call start_remote. */
4709 rs->starting_up = 0;
4710 return;
4711 }
4712 else
4713 {
4714 /* Save the reply for later. */
4715 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4716 strcpy (wait_status, rs->buf.data ());
4717 }
4718
4719 /* Fetch thread list. */
4720 target_update_thread_list ();
4721
4722 /* Let the stub know that we want it to return the thread. */
4723 set_continue_thread (minus_one_ptid);
4724
4725 if (thread_count (this) == 0)
4726 {
4727 /* Target has no concept of threads at all. GDB treats
4728 non-threaded target as single-threaded; add a main
4729 thread. */
4730 add_current_inferior_and_thread (wait_status);
4731 }
4732 else
4733 {
4734 /* We have thread information; select the thread the target
4735 says should be current. If we're reconnecting to a
4736 multi-threaded program, this will ideally be the thread
4737 that last reported an event before GDB disconnected. */
4738 ptid_t curr_thread = get_current_thread (wait_status);
4739 if (curr_thread == null_ptid)
4740 {
4741 /* Odd... The target was able to list threads, but not
4742 tell us which thread was current (no "thread"
4743 register in T stop reply?). Just pick the first
4744 thread in the thread list then. */
4745
4746 if (remote_debug)
4747 fprintf_unfiltered (gdb_stdlog,
4748 "warning: couldn't determine remote "
4749 "current thread; picking first in list.\n");
4750
4751 for (thread_info *tp : all_non_exited_threads (this,
4752 minus_one_ptid))
4753 {
4754 switch_to_thread (tp);
4755 break;
4756 }
4757 }
4758 else
4759 switch_to_thread (find_thread_ptid (this, curr_thread));
4760 }
4761
4762 /* init_wait_for_inferior should be called before get_offsets in order
4763 to manage `inserted' flag in bp loc in a correct state.
4764 breakpoint_init_inferior, called from init_wait_for_inferior, set
4765 `inserted' flag to 0, while before breakpoint_re_set, called from
4766 start_remote, set `inserted' flag to 1. In the initialization of
4767 inferior, breakpoint_init_inferior should be called first, and then
4768 breakpoint_re_set can be called. If this order is broken, state of
4769 `inserted' flag is wrong, and cause some problems on breakpoint
4770 manipulation. */
4771 init_wait_for_inferior ();
4772
4773 get_offsets (); /* Get text, data & bss offsets. */
4774
4775 /* If we could not find a description using qXfer, and we know
4776 how to do it some other way, try again. This is not
4777 supported for non-stop; it could be, but it is tricky if
4778 there are no stopped threads when we connect. */
4779 if (remote_read_description_p (this)
4780 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4781 {
4782 target_clear_description ();
4783 target_find_description ();
4784 }
4785
4786 /* Use the previously fetched status. */
4787 gdb_assert (wait_status != NULL);
4788 strcpy (rs->buf.data (), wait_status);
4789 rs->cached_wait_status = 1;
4790
4791 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4792 }
4793 else
4794 {
4795 /* Clear WFI global state. Do this before finding about new
4796 threads and inferiors, and setting the current inferior.
4797 Otherwise we would clear the proceed status of the current
4798 inferior when we want its stop_soon state to be preserved
4799 (see notice_new_inferior). */
4800 init_wait_for_inferior ();
4801
4802 /* In non-stop, we will either get an "OK", meaning that there
4803 are no stopped threads at this time; or, a regular stop
4804 reply. In the latter case, there may be more than one thread
4805 stopped --- we pull them all out using the vStopped
4806 mechanism. */
4807 if (strcmp (rs->buf.data (), "OK") != 0)
4808 {
4809 struct notif_client *notif = &notif_client_stop;
4810
4811 /* remote_notif_get_pending_replies acks this one, and gets
4812 the rest out. */
4813 rs->notif_state->pending_event[notif_client_stop.id]
4814 = remote_notif_parse (this, notif, rs->buf.data ());
4815 remote_notif_get_pending_events (notif);
4816 }
4817
4818 if (thread_count (this) == 0)
4819 {
4820 if (!extended_p)
4821 error (_("The target is not running (try extended-remote?)"));
4822
4823 /* We're connected, but not running. Drop out before we
4824 call start_remote. */
4825 rs->starting_up = 0;
4826 return;
4827 }
4828
4829 /* In non-stop mode, any cached wait status will be stored in
4830 the stop reply queue. */
4831 gdb_assert (wait_status == NULL);
4832
4833 /* Report all signals during attach/startup. */
4834 pass_signals ({});
4835
4836 /* If there are already stopped threads, mark them stopped and
4837 report their stops before giving the prompt to the user. */
4838 process_initial_stop_replies (from_tty);
4839
4840 if (target_can_async_p ())
4841 target_async (1);
4842 }
4843
4844 /* If we connected to a live target, do some additional setup. */
4845 if (target_has_execution)
4846 {
4847 if (symfile_objfile) /* No use without a symbol-file. */
4848 remote_check_symbols ();
4849 }
4850
4851 /* Possibly the target has been engaged in a trace run started
4852 previously; find out where things are at. */
4853 if (get_trace_status (current_trace_status ()) != -1)
4854 {
4855 struct uploaded_tp *uploaded_tps = NULL;
4856
4857 if (current_trace_status ()->running)
4858 printf_filtered (_("Trace is already running on the target.\n"));
4859
4860 upload_tracepoints (&uploaded_tps);
4861
4862 merge_uploaded_tracepoints (&uploaded_tps);
4863 }
4864
4865 /* Possibly the target has been engaged in a btrace record started
4866 previously; find out where things are at. */
4867 remote_btrace_maybe_reopen ();
4868
4869 /* The thread and inferior lists are now synchronized with the
4870 target, our symbols have been relocated, and we're merged the
4871 target's tracepoints with ours. We're done with basic start
4872 up. */
4873 rs->starting_up = 0;
4874
4875 /* Maybe breakpoints are global and need to be inserted now. */
4876 if (breakpoints_should_be_inserted_now ())
4877 insert_breakpoints ();
4878 }
4879
4880 const char *
4881 remote_target::connection_string ()
4882 {
4883 remote_state *rs = get_remote_state ();
4884
4885 if (rs->remote_desc->name != NULL)
4886 return rs->remote_desc->name;
4887 else
4888 return NULL;
4889 }
4890
4891 /* Open a connection to a remote debugger.
4892 NAME is the filename used for communication. */
4893
4894 void
4895 remote_target::open (const char *name, int from_tty)
4896 {
4897 open_1 (name, from_tty, 0);
4898 }
4899
4900 /* Open a connection to a remote debugger using the extended
4901 remote gdb protocol. NAME is the filename used for communication. */
4902
4903 void
4904 extended_remote_target::open (const char *name, int from_tty)
4905 {
4906 open_1 (name, from_tty, 1 /*extended_p */);
4907 }
4908
4909 /* Reset all packets back to "unknown support". Called when opening a
4910 new connection to a remote target. */
4911
4912 static void
4913 reset_all_packet_configs_support (void)
4914 {
4915 int i;
4916
4917 for (i = 0; i < PACKET_MAX; i++)
4918 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4919 }
4920
4921 /* Initialize all packet configs. */
4922
4923 static void
4924 init_all_packet_configs (void)
4925 {
4926 int i;
4927
4928 for (i = 0; i < PACKET_MAX; i++)
4929 {
4930 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4931 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4932 }
4933 }
4934
4935 /* Symbol look-up. */
4936
4937 void
4938 remote_target::remote_check_symbols ()
4939 {
4940 char *tmp;
4941 int end;
4942
4943 /* The remote side has no concept of inferiors that aren't running
4944 yet, it only knows about running processes. If we're connected
4945 but our current inferior is not running, we should not invite the
4946 remote target to request symbol lookups related to its
4947 (unrelated) current process. */
4948 if (!target_has_execution)
4949 return;
4950
4951 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4952 return;
4953
4954 /* Make sure the remote is pointing at the right process. Note
4955 there's no way to select "no process". */
4956 set_general_process ();
4957
4958 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4959 because we need both at the same time. */
4960 gdb::char_vector msg (get_remote_packet_size ());
4961 gdb::char_vector reply (get_remote_packet_size ());
4962
4963 /* Invite target to request symbol lookups. */
4964
4965 putpkt ("qSymbol::");
4966 getpkt (&reply, 0);
4967 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4968
4969 while (startswith (reply.data (), "qSymbol:"))
4970 {
4971 struct bound_minimal_symbol sym;
4972
4973 tmp = &reply[8];
4974 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4975 strlen (tmp) / 2);
4976 msg[end] = '\0';
4977 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4978 if (sym.minsym == NULL)
4979 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4980 &reply[8]);
4981 else
4982 {
4983 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4984 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4985
4986 /* If this is a function address, return the start of code
4987 instead of any data function descriptor. */
4988 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4989 sym_addr,
4990 current_top_target ());
4991
4992 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4993 phex_nz (sym_addr, addr_size), &reply[8]);
4994 }
4995
4996 putpkt (msg.data ());
4997 getpkt (&reply, 0);
4998 }
4999 }
5000
5001 static struct serial *
5002 remote_serial_open (const char *name)
5003 {
5004 static int udp_warning = 0;
5005
5006 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5007 of in ser-tcp.c, because it is the remote protocol assuming that the
5008 serial connection is reliable and not the serial connection promising
5009 to be. */
5010 if (!udp_warning && startswith (name, "udp:"))
5011 {
5012 warning (_("The remote protocol may be unreliable over UDP.\n"
5013 "Some events may be lost, rendering further debugging "
5014 "impossible."));
5015 udp_warning = 1;
5016 }
5017
5018 return serial_open (name);
5019 }
5020
5021 /* Inform the target of our permission settings. The permission flags
5022 work without this, but if the target knows the settings, it can do
5023 a couple things. First, it can add its own check, to catch cases
5024 that somehow manage to get by the permissions checks in target
5025 methods. Second, if the target is wired to disallow particular
5026 settings (for instance, a system in the field that is not set up to
5027 be able to stop at a breakpoint), it can object to any unavailable
5028 permissions. */
5029
5030 void
5031 remote_target::set_permissions ()
5032 {
5033 struct remote_state *rs = get_remote_state ();
5034
5035 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5036 "WriteReg:%x;WriteMem:%x;"
5037 "InsertBreak:%x;InsertTrace:%x;"
5038 "InsertFastTrace:%x;Stop:%x",
5039 may_write_registers, may_write_memory,
5040 may_insert_breakpoints, may_insert_tracepoints,
5041 may_insert_fast_tracepoints, may_stop);
5042 putpkt (rs->buf);
5043 getpkt (&rs->buf, 0);
5044
5045 /* If the target didn't like the packet, warn the user. Do not try
5046 to undo the user's settings, that would just be maddening. */
5047 if (strcmp (rs->buf.data (), "OK") != 0)
5048 warning (_("Remote refused setting permissions with: %s"),
5049 rs->buf.data ());
5050 }
5051
5052 /* This type describes each known response to the qSupported
5053 packet. */
5054 struct protocol_feature
5055 {
5056 /* The name of this protocol feature. */
5057 const char *name;
5058
5059 /* The default for this protocol feature. */
5060 enum packet_support default_support;
5061
5062 /* The function to call when this feature is reported, or after
5063 qSupported processing if the feature is not supported.
5064 The first argument points to this structure. The second
5065 argument indicates whether the packet requested support be
5066 enabled, disabled, or probed (or the default, if this function
5067 is being called at the end of processing and this feature was
5068 not reported). The third argument may be NULL; if not NULL, it
5069 is a NUL-terminated string taken from the packet following
5070 this feature's name and an equals sign. */
5071 void (*func) (remote_target *remote, const struct protocol_feature *,
5072 enum packet_support, const char *);
5073
5074 /* The corresponding packet for this feature. Only used if
5075 FUNC is remote_supported_packet. */
5076 int packet;
5077 };
5078
5079 static void
5080 remote_supported_packet (remote_target *remote,
5081 const struct protocol_feature *feature,
5082 enum packet_support support,
5083 const char *argument)
5084 {
5085 if (argument)
5086 {
5087 warning (_("Remote qSupported response supplied an unexpected value for"
5088 " \"%s\"."), feature->name);
5089 return;
5090 }
5091
5092 remote_protocol_packets[feature->packet].support = support;
5093 }
5094
5095 void
5096 remote_target::remote_packet_size (const protocol_feature *feature,
5097 enum packet_support support, const char *value)
5098 {
5099 struct remote_state *rs = get_remote_state ();
5100
5101 int packet_size;
5102 char *value_end;
5103
5104 if (support != PACKET_ENABLE)
5105 return;
5106
5107 if (value == NULL || *value == '\0')
5108 {
5109 warning (_("Remote target reported \"%s\" without a size."),
5110 feature->name);
5111 return;
5112 }
5113
5114 errno = 0;
5115 packet_size = strtol (value, &value_end, 16);
5116 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5117 {
5118 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5119 feature->name, value);
5120 return;
5121 }
5122
5123 /* Record the new maximum packet size. */
5124 rs->explicit_packet_size = packet_size;
5125 }
5126
5127 static void
5128 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5129 enum packet_support support, const char *value)
5130 {
5131 remote->remote_packet_size (feature, support, value);
5132 }
5133
5134 static const struct protocol_feature remote_protocol_features[] = {
5135 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5136 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5137 PACKET_qXfer_auxv },
5138 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5139 PACKET_qXfer_exec_file },
5140 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5141 PACKET_qXfer_features },
5142 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5143 PACKET_qXfer_libraries },
5144 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5145 PACKET_qXfer_libraries_svr4 },
5146 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5147 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5148 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5149 PACKET_qXfer_memory_map },
5150 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5151 PACKET_qXfer_osdata },
5152 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5153 PACKET_qXfer_threads },
5154 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5155 PACKET_qXfer_traceframe_info },
5156 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5157 PACKET_QPassSignals },
5158 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5159 PACKET_QCatchSyscalls },
5160 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5161 PACKET_QProgramSignals },
5162 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5163 PACKET_QSetWorkingDir },
5164 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5165 PACKET_QStartupWithShell },
5166 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5167 PACKET_QEnvironmentHexEncoded },
5168 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5169 PACKET_QEnvironmentReset },
5170 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5171 PACKET_QEnvironmentUnset },
5172 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5173 PACKET_QStartNoAckMode },
5174 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5175 PACKET_multiprocess_feature },
5176 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5177 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5178 PACKET_qXfer_siginfo_read },
5179 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5180 PACKET_qXfer_siginfo_write },
5181 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5182 PACKET_ConditionalTracepoints },
5183 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5184 PACKET_ConditionalBreakpoints },
5185 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5186 PACKET_BreakpointCommands },
5187 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5188 PACKET_FastTracepoints },
5189 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5190 PACKET_StaticTracepoints },
5191 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5192 PACKET_InstallInTrace},
5193 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5194 PACKET_DisconnectedTracing_feature },
5195 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5196 PACKET_bc },
5197 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5198 PACKET_bs },
5199 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5200 PACKET_TracepointSource },
5201 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5202 PACKET_QAllow },
5203 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5204 PACKET_EnableDisableTracepoints_feature },
5205 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5206 PACKET_qXfer_fdpic },
5207 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5208 PACKET_qXfer_uib },
5209 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5210 PACKET_QDisableRandomization },
5211 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5212 { "QTBuffer:size", PACKET_DISABLE,
5213 remote_supported_packet, PACKET_QTBuffer_size},
5214 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5215 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5216 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5217 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5218 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5219 PACKET_qXfer_btrace },
5220 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5221 PACKET_qXfer_btrace_conf },
5222 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5223 PACKET_Qbtrace_conf_bts_size },
5224 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5225 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5226 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5227 PACKET_fork_event_feature },
5228 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5229 PACKET_vfork_event_feature },
5230 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5231 PACKET_exec_event_feature },
5232 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5233 PACKET_Qbtrace_conf_pt_size },
5234 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5235 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5236 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5237 };
5238
5239 static char *remote_support_xml;
5240
5241 /* Register string appended to "xmlRegisters=" in qSupported query. */
5242
5243 void
5244 register_remote_support_xml (const char *xml)
5245 {
5246 #if defined(HAVE_LIBEXPAT)
5247 if (remote_support_xml == NULL)
5248 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5249 else
5250 {
5251 char *copy = xstrdup (remote_support_xml + 13);
5252 char *saveptr;
5253 char *p = strtok_r (copy, ",", &saveptr);
5254
5255 do
5256 {
5257 if (strcmp (p, xml) == 0)
5258 {
5259 /* already there */
5260 xfree (copy);
5261 return;
5262 }
5263 }
5264 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5265 xfree (copy);
5266
5267 remote_support_xml = reconcat (remote_support_xml,
5268 remote_support_xml, ",", xml,
5269 (char *) NULL);
5270 }
5271 #endif
5272 }
5273
5274 static void
5275 remote_query_supported_append (std::string *msg, const char *append)
5276 {
5277 if (!msg->empty ())
5278 msg->append (";");
5279 msg->append (append);
5280 }
5281
5282 void
5283 remote_target::remote_query_supported ()
5284 {
5285 struct remote_state *rs = get_remote_state ();
5286 char *next;
5287 int i;
5288 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5289
5290 /* The packet support flags are handled differently for this packet
5291 than for most others. We treat an error, a disabled packet, and
5292 an empty response identically: any features which must be reported
5293 to be used will be automatically disabled. An empty buffer
5294 accomplishes this, since that is also the representation for a list
5295 containing no features. */
5296
5297 rs->buf[0] = 0;
5298 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5299 {
5300 std::string q;
5301
5302 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5303 remote_query_supported_append (&q, "multiprocess+");
5304
5305 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5306 remote_query_supported_append (&q, "swbreak+");
5307 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5308 remote_query_supported_append (&q, "hwbreak+");
5309
5310 remote_query_supported_append (&q, "qRelocInsn+");
5311
5312 if (packet_set_cmd_state (PACKET_fork_event_feature)
5313 != AUTO_BOOLEAN_FALSE)
5314 remote_query_supported_append (&q, "fork-events+");
5315 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5316 != AUTO_BOOLEAN_FALSE)
5317 remote_query_supported_append (&q, "vfork-events+");
5318 if (packet_set_cmd_state (PACKET_exec_event_feature)
5319 != AUTO_BOOLEAN_FALSE)
5320 remote_query_supported_append (&q, "exec-events+");
5321
5322 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5323 remote_query_supported_append (&q, "vContSupported+");
5324
5325 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5326 remote_query_supported_append (&q, "QThreadEvents+");
5327
5328 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5329 remote_query_supported_append (&q, "no-resumed+");
5330
5331 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5332 the qSupported:xmlRegisters=i386 handling. */
5333 if (remote_support_xml != NULL
5334 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5335 remote_query_supported_append (&q, remote_support_xml);
5336
5337 q = "qSupported:" + q;
5338 putpkt (q.c_str ());
5339
5340 getpkt (&rs->buf, 0);
5341
5342 /* If an error occured, warn, but do not return - just reset the
5343 buffer to empty and go on to disable features. */
5344 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5345 == PACKET_ERROR)
5346 {
5347 warning (_("Remote failure reply: %s"), rs->buf.data ());
5348 rs->buf[0] = 0;
5349 }
5350 }
5351
5352 memset (seen, 0, sizeof (seen));
5353
5354 next = rs->buf.data ();
5355 while (*next)
5356 {
5357 enum packet_support is_supported;
5358 char *p, *end, *name_end, *value;
5359
5360 /* First separate out this item from the rest of the packet. If
5361 there's another item after this, we overwrite the separator
5362 (terminated strings are much easier to work with). */
5363 p = next;
5364 end = strchr (p, ';');
5365 if (end == NULL)
5366 {
5367 end = p + strlen (p);
5368 next = end;
5369 }
5370 else
5371 {
5372 *end = '\0';
5373 next = end + 1;
5374
5375 if (end == p)
5376 {
5377 warning (_("empty item in \"qSupported\" response"));
5378 continue;
5379 }
5380 }
5381
5382 name_end = strchr (p, '=');
5383 if (name_end)
5384 {
5385 /* This is a name=value entry. */
5386 is_supported = PACKET_ENABLE;
5387 value = name_end + 1;
5388 *name_end = '\0';
5389 }
5390 else
5391 {
5392 value = NULL;
5393 switch (end[-1])
5394 {
5395 case '+':
5396 is_supported = PACKET_ENABLE;
5397 break;
5398
5399 case '-':
5400 is_supported = PACKET_DISABLE;
5401 break;
5402
5403 case '?':
5404 is_supported = PACKET_SUPPORT_UNKNOWN;
5405 break;
5406
5407 default:
5408 warning (_("unrecognized item \"%s\" "
5409 "in \"qSupported\" response"), p);
5410 continue;
5411 }
5412 end[-1] = '\0';
5413 }
5414
5415 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5416 if (strcmp (remote_protocol_features[i].name, p) == 0)
5417 {
5418 const struct protocol_feature *feature;
5419
5420 seen[i] = 1;
5421 feature = &remote_protocol_features[i];
5422 feature->func (this, feature, is_supported, value);
5423 break;
5424 }
5425 }
5426
5427 /* If we increased the packet size, make sure to increase the global
5428 buffer size also. We delay this until after parsing the entire
5429 qSupported packet, because this is the same buffer we were
5430 parsing. */
5431 if (rs->buf.size () < rs->explicit_packet_size)
5432 rs->buf.resize (rs->explicit_packet_size);
5433
5434 /* Handle the defaults for unmentioned features. */
5435 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5436 if (!seen[i])
5437 {
5438 const struct protocol_feature *feature;
5439
5440 feature = &remote_protocol_features[i];
5441 feature->func (this, feature, feature->default_support, NULL);
5442 }
5443 }
5444
5445 /* Serial QUIT handler for the remote serial descriptor.
5446
5447 Defers handling a Ctrl-C until we're done with the current
5448 command/response packet sequence, unless:
5449
5450 - We're setting up the connection. Don't send a remote interrupt
5451 request, as we're not fully synced yet. Quit immediately
5452 instead.
5453
5454 - The target has been resumed in the foreground
5455 (target_terminal::is_ours is false) with a synchronous resume
5456 packet, and we're blocked waiting for the stop reply, thus a
5457 Ctrl-C should be immediately sent to the target.
5458
5459 - We get a second Ctrl-C while still within the same serial read or
5460 write. In that case the serial is seemingly wedged --- offer to
5461 quit/disconnect.
5462
5463 - We see a second Ctrl-C without target response, after having
5464 previously interrupted the target. In that case the target/stub
5465 is probably wedged --- offer to quit/disconnect.
5466 */
5467
5468 void
5469 remote_target::remote_serial_quit_handler ()
5470 {
5471 struct remote_state *rs = get_remote_state ();
5472
5473 if (check_quit_flag ())
5474 {
5475 /* If we're starting up, we're not fully synced yet. Quit
5476 immediately. */
5477 if (rs->starting_up)
5478 quit ();
5479 else if (rs->got_ctrlc_during_io)
5480 {
5481 if (query (_("The target is not responding to GDB commands.\n"
5482 "Stop debugging it? ")))
5483 remote_unpush_and_throw (this);
5484 }
5485 /* If ^C has already been sent once, offer to disconnect. */
5486 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5487 interrupt_query ();
5488 /* All-stop protocol, and blocked waiting for stop reply. Send
5489 an interrupt request. */
5490 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5491 target_interrupt ();
5492 else
5493 rs->got_ctrlc_during_io = 1;
5494 }
5495 }
5496
5497 /* The remote_target that is current while the quit handler is
5498 overridden with remote_serial_quit_handler. */
5499 static remote_target *curr_quit_handler_target;
5500
5501 static void
5502 remote_serial_quit_handler ()
5503 {
5504 curr_quit_handler_target->remote_serial_quit_handler ();
5505 }
5506
5507 /* Remove the remote target from the target stack of each inferior
5508 that is using it. Upper targets depend on it so remove them
5509 first. */
5510
5511 static void
5512 remote_unpush_target (remote_target *target)
5513 {
5514 /* We have to unpush the target from all inferiors, even those that
5515 aren't running. */
5516 scoped_restore_current_inferior restore_current_inferior;
5517
5518 for (inferior *inf : all_inferiors (target))
5519 {
5520 switch_to_inferior_no_thread (inf);
5521 pop_all_targets_at_and_above (process_stratum);
5522 generic_mourn_inferior ();
5523 }
5524 }
5525
5526 static void
5527 remote_unpush_and_throw (remote_target *target)
5528 {
5529 remote_unpush_target (target);
5530 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5531 }
5532
5533 void
5534 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5535 {
5536 remote_target *curr_remote = get_current_remote_target ();
5537
5538 if (name == 0)
5539 error (_("To open a remote debug connection, you need to specify what\n"
5540 "serial device is attached to the remote system\n"
5541 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5542
5543 /* If we're connected to a running target, target_preopen will kill it.
5544 Ask this question first, before target_preopen has a chance to kill
5545 anything. */
5546 if (curr_remote != NULL && !target_has_execution)
5547 {
5548 if (from_tty
5549 && !query (_("Already connected to a remote target. Disconnect? ")))
5550 error (_("Still connected."));
5551 }
5552
5553 /* Here the possibly existing remote target gets unpushed. */
5554 target_preopen (from_tty);
5555
5556 remote_fileio_reset ();
5557 reopen_exec_file ();
5558 reread_symbols ();
5559
5560 remote_target *remote
5561 = (extended_p ? new extended_remote_target () : new remote_target ());
5562 target_ops_up target_holder (remote);
5563
5564 remote_state *rs = remote->get_remote_state ();
5565
5566 /* See FIXME above. */
5567 if (!target_async_permitted)
5568 rs->wait_forever_enabled_p = 1;
5569
5570 rs->remote_desc = remote_serial_open (name);
5571 if (!rs->remote_desc)
5572 perror_with_name (name);
5573
5574 if (baud_rate != -1)
5575 {
5576 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5577 {
5578 /* The requested speed could not be set. Error out to
5579 top level after closing remote_desc. Take care to
5580 set remote_desc to NULL to avoid closing remote_desc
5581 more than once. */
5582 serial_close (rs->remote_desc);
5583 rs->remote_desc = NULL;
5584 perror_with_name (name);
5585 }
5586 }
5587
5588 serial_setparity (rs->remote_desc, serial_parity);
5589 serial_raw (rs->remote_desc);
5590
5591 /* If there is something sitting in the buffer we might take it as a
5592 response to a command, which would be bad. */
5593 serial_flush_input (rs->remote_desc);
5594
5595 if (from_tty)
5596 {
5597 puts_filtered ("Remote debugging using ");
5598 puts_filtered (name);
5599 puts_filtered ("\n");
5600 }
5601
5602 /* Switch to using the remote target now. */
5603 push_target (std::move (target_holder));
5604
5605 /* Register extra event sources in the event loop. */
5606 rs->remote_async_inferior_event_token
5607 = create_async_event_handler (remote_async_inferior_event_handler,
5608 remote);
5609 rs->notif_state = remote_notif_state_allocate (remote);
5610
5611 /* Reset the target state; these things will be queried either by
5612 remote_query_supported or as they are needed. */
5613 reset_all_packet_configs_support ();
5614 rs->cached_wait_status = 0;
5615 rs->explicit_packet_size = 0;
5616 rs->noack_mode = 0;
5617 rs->extended = extended_p;
5618 rs->waiting_for_stop_reply = 0;
5619 rs->ctrlc_pending_p = 0;
5620 rs->got_ctrlc_during_io = 0;
5621
5622 rs->general_thread = not_sent_ptid;
5623 rs->continue_thread = not_sent_ptid;
5624 rs->remote_traceframe_number = -1;
5625
5626 rs->last_resume_exec_dir = EXEC_FORWARD;
5627
5628 /* Probe for ability to use "ThreadInfo" query, as required. */
5629 rs->use_threadinfo_query = 1;
5630 rs->use_threadextra_query = 1;
5631
5632 rs->readahead_cache.invalidate ();
5633
5634 if (target_async_permitted)
5635 {
5636 /* FIXME: cagney/1999-09-23: During the initial connection it is
5637 assumed that the target is already ready and able to respond to
5638 requests. Unfortunately remote_start_remote() eventually calls
5639 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5640 around this. Eventually a mechanism that allows
5641 wait_for_inferior() to expect/get timeouts will be
5642 implemented. */
5643 rs->wait_forever_enabled_p = 0;
5644 }
5645
5646 /* First delete any symbols previously loaded from shared libraries. */
5647 no_shared_libraries (NULL, 0);
5648
5649 /* Start the remote connection. If error() or QUIT, discard this
5650 target (we'd otherwise be in an inconsistent state) and then
5651 propogate the error on up the exception chain. This ensures that
5652 the caller doesn't stumble along blindly assuming that the
5653 function succeeded. The CLI doesn't have this problem but other
5654 UI's, such as MI do.
5655
5656 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5657 this function should return an error indication letting the
5658 caller restore the previous state. Unfortunately the command
5659 ``target remote'' is directly wired to this function making that
5660 impossible. On a positive note, the CLI side of this problem has
5661 been fixed - the function set_cmd_context() makes it possible for
5662 all the ``target ....'' commands to share a common callback
5663 function. See cli-dump.c. */
5664 {
5665
5666 try
5667 {
5668 remote->start_remote (from_tty, extended_p);
5669 }
5670 catch (const gdb_exception &ex)
5671 {
5672 /* Pop the partially set up target - unless something else did
5673 already before throwing the exception. */
5674 if (ex.error != TARGET_CLOSE_ERROR)
5675 remote_unpush_target (remote);
5676 throw;
5677 }
5678 }
5679
5680 remote_btrace_reset (rs);
5681
5682 if (target_async_permitted)
5683 rs->wait_forever_enabled_p = 1;
5684 }
5685
5686 /* Detach the specified process. */
5687
5688 void
5689 remote_target::remote_detach_pid (int pid)
5690 {
5691 struct remote_state *rs = get_remote_state ();
5692
5693 /* This should not be necessary, but the handling for D;PID in
5694 GDBserver versions prior to 8.2 incorrectly assumes that the
5695 selected process points to the same process we're detaching,
5696 leading to misbehavior (and possibly GDBserver crashing) when it
5697 does not. Since it's easy and cheap, work around it by forcing
5698 GDBserver to select GDB's current process. */
5699 set_general_process ();
5700
5701 if (remote_multi_process_p (rs))
5702 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5703 else
5704 strcpy (rs->buf.data (), "D");
5705
5706 putpkt (rs->buf);
5707 getpkt (&rs->buf, 0);
5708
5709 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5710 ;
5711 else if (rs->buf[0] == '\0')
5712 error (_("Remote doesn't know how to detach"));
5713 else
5714 error (_("Can't detach process."));
5715 }
5716
5717 /* This detaches a program to which we previously attached, using
5718 inferior_ptid to identify the process. After this is done, GDB
5719 can be used to debug some other program. We better not have left
5720 any breakpoints in the target program or it'll die when it hits
5721 one. */
5722
5723 void
5724 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5725 {
5726 int pid = inferior_ptid.pid ();
5727 struct remote_state *rs = get_remote_state ();
5728 int is_fork_parent;
5729
5730 if (!target_has_execution)
5731 error (_("No process to detach from."));
5732
5733 target_announce_detach (from_tty);
5734
5735 /* Tell the remote target to detach. */
5736 remote_detach_pid (pid);
5737
5738 /* Exit only if this is the only active inferior. */
5739 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5740 puts_filtered (_("Ending remote debugging.\n"));
5741
5742 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5743
5744 /* Check to see if we are detaching a fork parent. Note that if we
5745 are detaching a fork child, tp == NULL. */
5746 is_fork_parent = (tp != NULL
5747 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5748
5749 /* If doing detach-on-fork, we don't mourn, because that will delete
5750 breakpoints that should be available for the followed inferior. */
5751 if (!is_fork_parent)
5752 {
5753 /* Save the pid as a string before mourning, since that will
5754 unpush the remote target, and we need the string after. */
5755 std::string infpid = target_pid_to_str (ptid_t (pid));
5756
5757 target_mourn_inferior (inferior_ptid);
5758 if (print_inferior_events)
5759 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5760 inf->num, infpid.c_str ());
5761 }
5762 else
5763 {
5764 inferior_ptid = null_ptid;
5765 detach_inferior (current_inferior ());
5766 }
5767 }
5768
5769 void
5770 remote_target::detach (inferior *inf, int from_tty)
5771 {
5772 remote_detach_1 (inf, from_tty);
5773 }
5774
5775 void
5776 extended_remote_target::detach (inferior *inf, int from_tty)
5777 {
5778 remote_detach_1 (inf, from_tty);
5779 }
5780
5781 /* Target follow-fork function for remote targets. On entry, and
5782 at return, the current inferior is the fork parent.
5783
5784 Note that although this is currently only used for extended-remote,
5785 it is named remote_follow_fork in anticipation of using it for the
5786 remote target as well. */
5787
5788 bool
5789 remote_target::follow_fork (bool follow_child, bool detach_fork)
5790 {
5791 struct remote_state *rs = get_remote_state ();
5792 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5793
5794 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5795 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5796 {
5797 /* When following the parent and detaching the child, we detach
5798 the child here. For the case of following the child and
5799 detaching the parent, the detach is done in the target-
5800 independent follow fork code in infrun.c. We can't use
5801 target_detach when detaching an unfollowed child because
5802 the client side doesn't know anything about the child. */
5803 if (detach_fork && !follow_child)
5804 {
5805 /* Detach the fork child. */
5806 ptid_t child_ptid;
5807 pid_t child_pid;
5808
5809 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5810 child_pid = child_ptid.pid ();
5811
5812 remote_detach_pid (child_pid);
5813 }
5814 }
5815
5816 return false;
5817 }
5818
5819 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5820 in the program space of the new inferior. On entry and at return the
5821 current inferior is the exec'ing inferior. INF is the new exec'd
5822 inferior, which may be the same as the exec'ing inferior unless
5823 follow-exec-mode is "new". */
5824
5825 void
5826 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5827 {
5828 /* We know that this is a target file name, so if it has the "target:"
5829 prefix we strip it off before saving it in the program space. */
5830 if (is_target_filename (execd_pathname))
5831 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5832
5833 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5834 }
5835
5836 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5837
5838 void
5839 remote_target::disconnect (const char *args, int from_tty)
5840 {
5841 if (args)
5842 error (_("Argument given to \"disconnect\" when remotely debugging."));
5843
5844 /* Make sure we unpush even the extended remote targets. Calling
5845 target_mourn_inferior won't unpush, and
5846 remote_target::mourn_inferior won't unpush if there is more than
5847 one inferior left. */
5848 remote_unpush_target (this);
5849
5850 if (from_tty)
5851 puts_filtered ("Ending remote debugging.\n");
5852 }
5853
5854 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5855 be chatty about it. */
5856
5857 void
5858 extended_remote_target::attach (const char *args, int from_tty)
5859 {
5860 struct remote_state *rs = get_remote_state ();
5861 int pid;
5862 char *wait_status = NULL;
5863
5864 pid = parse_pid_to_attach (args);
5865
5866 /* Remote PID can be freely equal to getpid, do not check it here the same
5867 way as in other targets. */
5868
5869 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5870 error (_("This target does not support attaching to a process"));
5871
5872 if (from_tty)
5873 {
5874 const char *exec_file = get_exec_file (0);
5875
5876 if (exec_file)
5877 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5878 target_pid_to_str (ptid_t (pid)).c_str ());
5879 else
5880 printf_unfiltered (_("Attaching to %s\n"),
5881 target_pid_to_str (ptid_t (pid)).c_str ());
5882 }
5883
5884 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5885 putpkt (rs->buf);
5886 getpkt (&rs->buf, 0);
5887
5888 switch (packet_ok (rs->buf,
5889 &remote_protocol_packets[PACKET_vAttach]))
5890 {
5891 case PACKET_OK:
5892 if (!target_is_non_stop_p ())
5893 {
5894 /* Save the reply for later. */
5895 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5896 strcpy (wait_status, rs->buf.data ());
5897 }
5898 else if (strcmp (rs->buf.data (), "OK") != 0)
5899 error (_("Attaching to %s failed with: %s"),
5900 target_pid_to_str (ptid_t (pid)).c_str (),
5901 rs->buf.data ());
5902 break;
5903 case PACKET_UNKNOWN:
5904 error (_("This target does not support attaching to a process"));
5905 default:
5906 error (_("Attaching to %s failed"),
5907 target_pid_to_str (ptid_t (pid)).c_str ());
5908 }
5909
5910 set_current_inferior (remote_add_inferior (false, pid, 1, 0));
5911
5912 inferior_ptid = ptid_t (pid);
5913
5914 if (target_is_non_stop_p ())
5915 {
5916 struct thread_info *thread;
5917
5918 /* Get list of threads. */
5919 update_thread_list ();
5920
5921 thread = first_thread_of_inferior (current_inferior ());
5922 if (thread)
5923 inferior_ptid = thread->ptid;
5924 else
5925 inferior_ptid = ptid_t (pid);
5926
5927 /* Invalidate our notion of the remote current thread. */
5928 record_currthread (rs, minus_one_ptid);
5929 }
5930 else
5931 {
5932 /* Now, if we have thread information, update inferior_ptid. */
5933 inferior_ptid = remote_current_thread (inferior_ptid);
5934
5935 /* Add the main thread to the thread list. */
5936 thread_info *thr = add_thread_silent (this, inferior_ptid);
5937 /* Don't consider the thread stopped until we've processed the
5938 saved stop reply. */
5939 set_executing (this, thr->ptid, true);
5940 }
5941
5942 /* Next, if the target can specify a description, read it. We do
5943 this before anything involving memory or registers. */
5944 target_find_description ();
5945
5946 if (!target_is_non_stop_p ())
5947 {
5948 /* Use the previously fetched status. */
5949 gdb_assert (wait_status != NULL);
5950
5951 if (target_can_async_p ())
5952 {
5953 struct notif_event *reply
5954 = remote_notif_parse (this, &notif_client_stop, wait_status);
5955
5956 push_stop_reply ((struct stop_reply *) reply);
5957
5958 target_async (1);
5959 }
5960 else
5961 {
5962 gdb_assert (wait_status != NULL);
5963 strcpy (rs->buf.data (), wait_status);
5964 rs->cached_wait_status = 1;
5965 }
5966 }
5967 else
5968 gdb_assert (wait_status == NULL);
5969 }
5970
5971 /* Implementation of the to_post_attach method. */
5972
5973 void
5974 extended_remote_target::post_attach (int pid)
5975 {
5976 /* Get text, data & bss offsets. */
5977 get_offsets ();
5978
5979 /* In certain cases GDB might not have had the chance to start
5980 symbol lookup up until now. This could happen if the debugged
5981 binary is not using shared libraries, the vsyscall page is not
5982 present (on Linux) and the binary itself hadn't changed since the
5983 debugging process was started. */
5984 if (symfile_objfile != NULL)
5985 remote_check_symbols();
5986 }
5987
5988 \f
5989 /* Check for the availability of vCont. This function should also check
5990 the response. */
5991
5992 void
5993 remote_target::remote_vcont_probe ()
5994 {
5995 remote_state *rs = get_remote_state ();
5996 char *buf;
5997
5998 strcpy (rs->buf.data (), "vCont?");
5999 putpkt (rs->buf);
6000 getpkt (&rs->buf, 0);
6001 buf = rs->buf.data ();
6002
6003 /* Make sure that the features we assume are supported. */
6004 if (startswith (buf, "vCont"))
6005 {
6006 char *p = &buf[5];
6007 int support_c, support_C;
6008
6009 rs->supports_vCont.s = 0;
6010 rs->supports_vCont.S = 0;
6011 support_c = 0;
6012 support_C = 0;
6013 rs->supports_vCont.t = 0;
6014 rs->supports_vCont.r = 0;
6015 while (p && *p == ';')
6016 {
6017 p++;
6018 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6019 rs->supports_vCont.s = 1;
6020 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6021 rs->supports_vCont.S = 1;
6022 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6023 support_c = 1;
6024 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6025 support_C = 1;
6026 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6027 rs->supports_vCont.t = 1;
6028 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6029 rs->supports_vCont.r = 1;
6030
6031 p = strchr (p, ';');
6032 }
6033
6034 /* If c, and C are not all supported, we can't use vCont. Clearing
6035 BUF will make packet_ok disable the packet. */
6036 if (!support_c || !support_C)
6037 buf[0] = 0;
6038 }
6039
6040 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6041 rs->supports_vCont_probed = true;
6042 }
6043
6044 /* Helper function for building "vCont" resumptions. Write a
6045 resumption to P. ENDP points to one-passed-the-end of the buffer
6046 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6047 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6048 resumed thread should be single-stepped and/or signalled. If PTID
6049 equals minus_one_ptid, then all threads are resumed; if PTID
6050 represents a process, then all threads of the process are resumed;
6051 the thread to be stepped and/or signalled is given in the global
6052 INFERIOR_PTID. */
6053
6054 char *
6055 remote_target::append_resumption (char *p, char *endp,
6056 ptid_t ptid, int step, gdb_signal siggnal)
6057 {
6058 struct remote_state *rs = get_remote_state ();
6059
6060 if (step && siggnal != GDB_SIGNAL_0)
6061 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6062 else if (step
6063 /* GDB is willing to range step. */
6064 && use_range_stepping
6065 /* Target supports range stepping. */
6066 && rs->supports_vCont.r
6067 /* We don't currently support range stepping multiple
6068 threads with a wildcard (though the protocol allows it,
6069 so stubs shouldn't make an active effort to forbid
6070 it). */
6071 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6072 {
6073 struct thread_info *tp;
6074
6075 if (ptid == minus_one_ptid)
6076 {
6077 /* If we don't know about the target thread's tid, then
6078 we're resuming magic_null_ptid (see caller). */
6079 tp = find_thread_ptid (this, magic_null_ptid);
6080 }
6081 else
6082 tp = find_thread_ptid (this, ptid);
6083 gdb_assert (tp != NULL);
6084
6085 if (tp->control.may_range_step)
6086 {
6087 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6088
6089 p += xsnprintf (p, endp - p, ";r%s,%s",
6090 phex_nz (tp->control.step_range_start,
6091 addr_size),
6092 phex_nz (tp->control.step_range_end,
6093 addr_size));
6094 }
6095 else
6096 p += xsnprintf (p, endp - p, ";s");
6097 }
6098 else if (step)
6099 p += xsnprintf (p, endp - p, ";s");
6100 else if (siggnal != GDB_SIGNAL_0)
6101 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6102 else
6103 p += xsnprintf (p, endp - p, ";c");
6104
6105 if (remote_multi_process_p (rs) && ptid.is_pid ())
6106 {
6107 ptid_t nptid;
6108
6109 /* All (-1) threads of process. */
6110 nptid = ptid_t (ptid.pid (), -1, 0);
6111
6112 p += xsnprintf (p, endp - p, ":");
6113 p = write_ptid (p, endp, nptid);
6114 }
6115 else if (ptid != minus_one_ptid)
6116 {
6117 p += xsnprintf (p, endp - p, ":");
6118 p = write_ptid (p, endp, ptid);
6119 }
6120
6121 return p;
6122 }
6123
6124 /* Clear the thread's private info on resume. */
6125
6126 static void
6127 resume_clear_thread_private_info (struct thread_info *thread)
6128 {
6129 if (thread->priv != NULL)
6130 {
6131 remote_thread_info *priv = get_remote_thread_info (thread);
6132
6133 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6134 priv->watch_data_address = 0;
6135 }
6136 }
6137
6138 /* Append a vCont continue-with-signal action for threads that have a
6139 non-zero stop signal. */
6140
6141 char *
6142 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6143 ptid_t ptid)
6144 {
6145 for (thread_info *thread : all_non_exited_threads (this, ptid))
6146 if (inferior_ptid != thread->ptid
6147 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6148 {
6149 p = append_resumption (p, endp, thread->ptid,
6150 0, thread->suspend.stop_signal);
6151 thread->suspend.stop_signal = GDB_SIGNAL_0;
6152 resume_clear_thread_private_info (thread);
6153 }
6154
6155 return p;
6156 }
6157
6158 /* Set the target running, using the packets that use Hc
6159 (c/s/C/S). */
6160
6161 void
6162 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6163 gdb_signal siggnal)
6164 {
6165 struct remote_state *rs = get_remote_state ();
6166 char *buf;
6167
6168 rs->last_sent_signal = siggnal;
6169 rs->last_sent_step = step;
6170
6171 /* The c/s/C/S resume packets use Hc, so set the continue
6172 thread. */
6173 if (ptid == minus_one_ptid)
6174 set_continue_thread (any_thread_ptid);
6175 else
6176 set_continue_thread (ptid);
6177
6178 for (thread_info *thread : all_non_exited_threads (this))
6179 resume_clear_thread_private_info (thread);
6180
6181 buf = rs->buf.data ();
6182 if (::execution_direction == EXEC_REVERSE)
6183 {
6184 /* We don't pass signals to the target in reverse exec mode. */
6185 if (info_verbose && siggnal != GDB_SIGNAL_0)
6186 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6187 siggnal);
6188
6189 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6190 error (_("Remote reverse-step not supported."));
6191 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6192 error (_("Remote reverse-continue not supported."));
6193
6194 strcpy (buf, step ? "bs" : "bc");
6195 }
6196 else if (siggnal != GDB_SIGNAL_0)
6197 {
6198 buf[0] = step ? 'S' : 'C';
6199 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6200 buf[2] = tohex (((int) siggnal) & 0xf);
6201 buf[3] = '\0';
6202 }
6203 else
6204 strcpy (buf, step ? "s" : "c");
6205
6206 putpkt (buf);
6207 }
6208
6209 /* Resume the remote inferior by using a "vCont" packet. The thread
6210 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6211 resumed thread should be single-stepped and/or signalled. If PTID
6212 equals minus_one_ptid, then all threads are resumed; the thread to
6213 be stepped and/or signalled is given in the global INFERIOR_PTID.
6214 This function returns non-zero iff it resumes the inferior.
6215
6216 This function issues a strict subset of all possible vCont commands
6217 at the moment. */
6218
6219 int
6220 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6221 enum gdb_signal siggnal)
6222 {
6223 struct remote_state *rs = get_remote_state ();
6224 char *p;
6225 char *endp;
6226
6227 /* No reverse execution actions defined for vCont. */
6228 if (::execution_direction == EXEC_REVERSE)
6229 return 0;
6230
6231 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6232 remote_vcont_probe ();
6233
6234 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6235 return 0;
6236
6237 p = rs->buf.data ();
6238 endp = p + get_remote_packet_size ();
6239
6240 /* If we could generate a wider range of packets, we'd have to worry
6241 about overflowing BUF. Should there be a generic
6242 "multi-part-packet" packet? */
6243
6244 p += xsnprintf (p, endp - p, "vCont");
6245
6246 if (ptid == magic_null_ptid)
6247 {
6248 /* MAGIC_NULL_PTID means that we don't have any active threads,
6249 so we don't have any TID numbers the inferior will
6250 understand. Make sure to only send forms that do not specify
6251 a TID. */
6252 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6253 }
6254 else if (ptid == minus_one_ptid || ptid.is_pid ())
6255 {
6256 /* Resume all threads (of all processes, or of a single
6257 process), with preference for INFERIOR_PTID. This assumes
6258 inferior_ptid belongs to the set of all threads we are about
6259 to resume. */
6260 if (step || siggnal != GDB_SIGNAL_0)
6261 {
6262 /* Step inferior_ptid, with or without signal. */
6263 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6264 }
6265
6266 /* Also pass down any pending signaled resumption for other
6267 threads not the current. */
6268 p = append_pending_thread_resumptions (p, endp, ptid);
6269
6270 /* And continue others without a signal. */
6271 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6272 }
6273 else
6274 {
6275 /* Scheduler locking; resume only PTID. */
6276 append_resumption (p, endp, ptid, step, siggnal);
6277 }
6278
6279 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6280 putpkt (rs->buf);
6281
6282 if (target_is_non_stop_p ())
6283 {
6284 /* In non-stop, the stub replies to vCont with "OK". The stop
6285 reply will be reported asynchronously by means of a `%Stop'
6286 notification. */
6287 getpkt (&rs->buf, 0);
6288 if (strcmp (rs->buf.data (), "OK") != 0)
6289 error (_("Unexpected vCont reply in non-stop mode: %s"),
6290 rs->buf.data ());
6291 }
6292
6293 return 1;
6294 }
6295
6296 /* Tell the remote machine to resume. */
6297
6298 void
6299 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6300 {
6301 struct remote_state *rs = get_remote_state ();
6302
6303 /* When connected in non-stop mode, the core resumes threads
6304 individually. Resuming remote threads directly in target_resume
6305 would thus result in sending one packet per thread. Instead, to
6306 minimize roundtrip latency, here we just store the resume
6307 request; the actual remote resumption will be done in
6308 target_commit_resume / remote_commit_resume, where we'll be able
6309 to do vCont action coalescing. */
6310 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6311 {
6312 remote_thread_info *remote_thr;
6313
6314 if (minus_one_ptid == ptid || ptid.is_pid ())
6315 remote_thr = get_remote_thread_info (this, inferior_ptid);
6316 else
6317 remote_thr = get_remote_thread_info (this, ptid);
6318
6319 remote_thr->last_resume_step = step;
6320 remote_thr->last_resume_sig = siggnal;
6321 return;
6322 }
6323
6324 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6325 (explained in remote-notif.c:handle_notification) so
6326 remote_notif_process is not called. We need find a place where
6327 it is safe to start a 'vNotif' sequence. It is good to do it
6328 before resuming inferior, because inferior was stopped and no RSP
6329 traffic at that moment. */
6330 if (!target_is_non_stop_p ())
6331 remote_notif_process (rs->notif_state, &notif_client_stop);
6332
6333 rs->last_resume_exec_dir = ::execution_direction;
6334
6335 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6336 if (!remote_resume_with_vcont (ptid, step, siggnal))
6337 remote_resume_with_hc (ptid, step, siggnal);
6338
6339 /* We are about to start executing the inferior, let's register it
6340 with the event loop. NOTE: this is the one place where all the
6341 execution commands end up. We could alternatively do this in each
6342 of the execution commands in infcmd.c. */
6343 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6344 into infcmd.c in order to allow inferior function calls to work
6345 NOT asynchronously. */
6346 if (target_can_async_p ())
6347 target_async (1);
6348
6349 /* We've just told the target to resume. The remote server will
6350 wait for the inferior to stop, and then send a stop reply. In
6351 the mean time, we can't start another command/query ourselves
6352 because the stub wouldn't be ready to process it. This applies
6353 only to the base all-stop protocol, however. In non-stop (which
6354 only supports vCont), the stub replies with an "OK", and is
6355 immediate able to process further serial input. */
6356 if (!target_is_non_stop_p ())
6357 rs->waiting_for_stop_reply = 1;
6358 }
6359
6360 static int is_pending_fork_parent_thread (struct thread_info *thread);
6361
6362 /* Private per-inferior info for target remote processes. */
6363
6364 struct remote_inferior : public private_inferior
6365 {
6366 /* Whether we can send a wildcard vCont for this process. */
6367 bool may_wildcard_vcont = true;
6368 };
6369
6370 /* Get the remote private inferior data associated to INF. */
6371
6372 static remote_inferior *
6373 get_remote_inferior (inferior *inf)
6374 {
6375 if (inf->priv == NULL)
6376 inf->priv.reset (new remote_inferior);
6377
6378 return static_cast<remote_inferior *> (inf->priv.get ());
6379 }
6380
6381 /* Class used to track the construction of a vCont packet in the
6382 outgoing packet buffer. This is used to send multiple vCont
6383 packets if we have more actions than would fit a single packet. */
6384
6385 class vcont_builder
6386 {
6387 public:
6388 explicit vcont_builder (remote_target *remote)
6389 : m_remote (remote)
6390 {
6391 restart ();
6392 }
6393
6394 void flush ();
6395 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6396
6397 private:
6398 void restart ();
6399
6400 /* The remote target. */
6401 remote_target *m_remote;
6402
6403 /* Pointer to the first action. P points here if no action has been
6404 appended yet. */
6405 char *m_first_action;
6406
6407 /* Where the next action will be appended. */
6408 char *m_p;
6409
6410 /* The end of the buffer. Must never write past this. */
6411 char *m_endp;
6412 };
6413
6414 /* Prepare the outgoing buffer for a new vCont packet. */
6415
6416 void
6417 vcont_builder::restart ()
6418 {
6419 struct remote_state *rs = m_remote->get_remote_state ();
6420
6421 m_p = rs->buf.data ();
6422 m_endp = m_p + m_remote->get_remote_packet_size ();
6423 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6424 m_first_action = m_p;
6425 }
6426
6427 /* If the vCont packet being built has any action, send it to the
6428 remote end. */
6429
6430 void
6431 vcont_builder::flush ()
6432 {
6433 struct remote_state *rs;
6434
6435 if (m_p == m_first_action)
6436 return;
6437
6438 rs = m_remote->get_remote_state ();
6439 m_remote->putpkt (rs->buf);
6440 m_remote->getpkt (&rs->buf, 0);
6441 if (strcmp (rs->buf.data (), "OK") != 0)
6442 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6443 }
6444
6445 /* The largest action is range-stepping, with its two addresses. This
6446 is more than sufficient. If a new, bigger action is created, it'll
6447 quickly trigger a failed assertion in append_resumption (and we'll
6448 just bump this). */
6449 #define MAX_ACTION_SIZE 200
6450
6451 /* Append a new vCont action in the outgoing packet being built. If
6452 the action doesn't fit the packet along with previous actions, push
6453 what we've got so far to the remote end and start over a new vCont
6454 packet (with the new action). */
6455
6456 void
6457 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6458 {
6459 char buf[MAX_ACTION_SIZE + 1];
6460
6461 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6462 ptid, step, siggnal);
6463
6464 /* Check whether this new action would fit in the vCont packet along
6465 with previous actions. If not, send what we've got so far and
6466 start a new vCont packet. */
6467 size_t rsize = endp - buf;
6468 if (rsize > m_endp - m_p)
6469 {
6470 flush ();
6471 restart ();
6472
6473 /* Should now fit. */
6474 gdb_assert (rsize <= m_endp - m_p);
6475 }
6476
6477 memcpy (m_p, buf, rsize);
6478 m_p += rsize;
6479 *m_p = '\0';
6480 }
6481
6482 /* to_commit_resume implementation. */
6483
6484 void
6485 remote_target::commit_resume ()
6486 {
6487 int any_process_wildcard;
6488 int may_global_wildcard_vcont;
6489
6490 /* If connected in all-stop mode, we'd send the remote resume
6491 request directly from remote_resume. Likewise if
6492 reverse-debugging, as there are no defined vCont actions for
6493 reverse execution. */
6494 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6495 return;
6496
6497 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6498 instead of resuming all threads of each process individually.
6499 However, if any thread of a process must remain halted, we can't
6500 send wildcard resumes and must send one action per thread.
6501
6502 Care must be taken to not resume threads/processes the server
6503 side already told us are stopped, but the core doesn't know about
6504 yet, because the events are still in the vStopped notification
6505 queue. For example:
6506
6507 #1 => vCont s:p1.1;c
6508 #2 <= OK
6509 #3 <= %Stopped T05 p1.1
6510 #4 => vStopped
6511 #5 <= T05 p1.2
6512 #6 => vStopped
6513 #7 <= OK
6514 #8 (infrun handles the stop for p1.1 and continues stepping)
6515 #9 => vCont s:p1.1;c
6516
6517 The last vCont above would resume thread p1.2 by mistake, because
6518 the server has no idea that the event for p1.2 had not been
6519 handled yet.
6520
6521 The server side must similarly ignore resume actions for the
6522 thread that has a pending %Stopped notification (and any other
6523 threads with events pending), until GDB acks the notification
6524 with vStopped. Otherwise, e.g., the following case is
6525 mishandled:
6526
6527 #1 => g (or any other packet)
6528 #2 <= [registers]
6529 #3 <= %Stopped T05 p1.2
6530 #4 => vCont s:p1.1;c
6531 #5 <= OK
6532
6533 Above, the server must not resume thread p1.2. GDB can't know
6534 that p1.2 stopped until it acks the %Stopped notification, and
6535 since from GDB's perspective all threads should be running, it
6536 sends a "c" action.
6537
6538 Finally, special care must also be given to handling fork/vfork
6539 events. A (v)fork event actually tells us that two processes
6540 stopped -- the parent and the child. Until we follow the fork,
6541 we must not resume the child. Therefore, if we have a pending
6542 fork follow, we must not send a global wildcard resume action
6543 (vCont;c). We can still send process-wide wildcards though. */
6544
6545 /* Start by assuming a global wildcard (vCont;c) is possible. */
6546 may_global_wildcard_vcont = 1;
6547
6548 /* And assume every process is individually wildcard-able too. */
6549 for (inferior *inf : all_non_exited_inferiors (this))
6550 {
6551 remote_inferior *priv = get_remote_inferior (inf);
6552
6553 priv->may_wildcard_vcont = true;
6554 }
6555
6556 /* Check for any pending events (not reported or processed yet) and
6557 disable process and global wildcard resumes appropriately. */
6558 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6559
6560 for (thread_info *tp : all_non_exited_threads (this))
6561 {
6562 /* If a thread of a process is not meant to be resumed, then we
6563 can't wildcard that process. */
6564 if (!tp->executing)
6565 {
6566 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6567
6568 /* And if we can't wildcard a process, we can't wildcard
6569 everything either. */
6570 may_global_wildcard_vcont = 0;
6571 continue;
6572 }
6573
6574 /* If a thread is the parent of an unfollowed fork, then we
6575 can't do a global wildcard, as that would resume the fork
6576 child. */
6577 if (is_pending_fork_parent_thread (tp))
6578 may_global_wildcard_vcont = 0;
6579 }
6580
6581 /* Now let's build the vCont packet(s). Actions must be appended
6582 from narrower to wider scopes (thread -> process -> global). If
6583 we end up with too many actions for a single packet vcont_builder
6584 flushes the current vCont packet to the remote side and starts a
6585 new one. */
6586 struct vcont_builder vcont_builder (this);
6587
6588 /* Threads first. */
6589 for (thread_info *tp : all_non_exited_threads (this))
6590 {
6591 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6592
6593 if (!tp->executing || remote_thr->vcont_resumed)
6594 continue;
6595
6596 gdb_assert (!thread_is_in_step_over_chain (tp));
6597
6598 if (!remote_thr->last_resume_step
6599 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6600 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6601 {
6602 /* We'll send a wildcard resume instead. */
6603 remote_thr->vcont_resumed = 1;
6604 continue;
6605 }
6606
6607 vcont_builder.push_action (tp->ptid,
6608 remote_thr->last_resume_step,
6609 remote_thr->last_resume_sig);
6610 remote_thr->vcont_resumed = 1;
6611 }
6612
6613 /* Now check whether we can send any process-wide wildcard. This is
6614 to avoid sending a global wildcard in the case nothing is
6615 supposed to be resumed. */
6616 any_process_wildcard = 0;
6617
6618 for (inferior *inf : all_non_exited_inferiors (this))
6619 {
6620 if (get_remote_inferior (inf)->may_wildcard_vcont)
6621 {
6622 any_process_wildcard = 1;
6623 break;
6624 }
6625 }
6626
6627 if (any_process_wildcard)
6628 {
6629 /* If all processes are wildcard-able, then send a single "c"
6630 action, otherwise, send an "all (-1) threads of process"
6631 continue action for each running process, if any. */
6632 if (may_global_wildcard_vcont)
6633 {
6634 vcont_builder.push_action (minus_one_ptid,
6635 false, GDB_SIGNAL_0);
6636 }
6637 else
6638 {
6639 for (inferior *inf : all_non_exited_inferiors (this))
6640 {
6641 if (get_remote_inferior (inf)->may_wildcard_vcont)
6642 {
6643 vcont_builder.push_action (ptid_t (inf->pid),
6644 false, GDB_SIGNAL_0);
6645 }
6646 }
6647 }
6648 }
6649
6650 vcont_builder.flush ();
6651 }
6652
6653 \f
6654
6655 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6656 thread, all threads of a remote process, or all threads of all
6657 processes. */
6658
6659 void
6660 remote_target::remote_stop_ns (ptid_t ptid)
6661 {
6662 struct remote_state *rs = get_remote_state ();
6663 char *p = rs->buf.data ();
6664 char *endp = p + get_remote_packet_size ();
6665
6666 /* FIXME: This supports_vCont_probed check is a workaround until
6667 packet_support is per-connection. */
6668 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6669 || !rs->supports_vCont_probed)
6670 remote_vcont_probe ();
6671
6672 if (!rs->supports_vCont.t)
6673 error (_("Remote server does not support stopping threads"));
6674
6675 if (ptid == minus_one_ptid
6676 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6677 p += xsnprintf (p, endp - p, "vCont;t");
6678 else
6679 {
6680 ptid_t nptid;
6681
6682 p += xsnprintf (p, endp - p, "vCont;t:");
6683
6684 if (ptid.is_pid ())
6685 /* All (-1) threads of process. */
6686 nptid = ptid_t (ptid.pid (), -1, 0);
6687 else
6688 {
6689 /* Small optimization: if we already have a stop reply for
6690 this thread, no use in telling the stub we want this
6691 stopped. */
6692 if (peek_stop_reply (ptid))
6693 return;
6694
6695 nptid = ptid;
6696 }
6697
6698 write_ptid (p, endp, nptid);
6699 }
6700
6701 /* In non-stop, we get an immediate OK reply. The stop reply will
6702 come in asynchronously by notification. */
6703 putpkt (rs->buf);
6704 getpkt (&rs->buf, 0);
6705 if (strcmp (rs->buf.data (), "OK") != 0)
6706 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6707 rs->buf.data ());
6708 }
6709
6710 /* All-stop version of target_interrupt. Sends a break or a ^C to
6711 interrupt the remote target. It is undefined which thread of which
6712 process reports the interrupt. */
6713
6714 void
6715 remote_target::remote_interrupt_as ()
6716 {
6717 struct remote_state *rs = get_remote_state ();
6718
6719 rs->ctrlc_pending_p = 1;
6720
6721 /* If the inferior is stopped already, but the core didn't know
6722 about it yet, just ignore the request. The cached wait status
6723 will be collected in remote_wait. */
6724 if (rs->cached_wait_status)
6725 return;
6726
6727 /* Send interrupt_sequence to remote target. */
6728 send_interrupt_sequence ();
6729 }
6730
6731 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6732 the remote target. It is undefined which thread of which process
6733 reports the interrupt. Throws an error if the packet is not
6734 supported by the server. */
6735
6736 void
6737 remote_target::remote_interrupt_ns ()
6738 {
6739 struct remote_state *rs = get_remote_state ();
6740 char *p = rs->buf.data ();
6741 char *endp = p + get_remote_packet_size ();
6742
6743 xsnprintf (p, endp - p, "vCtrlC");
6744
6745 /* In non-stop, we get an immediate OK reply. The stop reply will
6746 come in asynchronously by notification. */
6747 putpkt (rs->buf);
6748 getpkt (&rs->buf, 0);
6749
6750 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6751 {
6752 case PACKET_OK:
6753 break;
6754 case PACKET_UNKNOWN:
6755 error (_("No support for interrupting the remote target."));
6756 case PACKET_ERROR:
6757 error (_("Interrupting target failed: %s"), rs->buf.data ());
6758 }
6759 }
6760
6761 /* Implement the to_stop function for the remote targets. */
6762
6763 void
6764 remote_target::stop (ptid_t ptid)
6765 {
6766 if (remote_debug)
6767 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6768
6769 if (target_is_non_stop_p ())
6770 remote_stop_ns (ptid);
6771 else
6772 {
6773 /* We don't currently have a way to transparently pause the
6774 remote target in all-stop mode. Interrupt it instead. */
6775 remote_interrupt_as ();
6776 }
6777 }
6778
6779 /* Implement the to_interrupt function for the remote targets. */
6780
6781 void
6782 remote_target::interrupt ()
6783 {
6784 if (remote_debug)
6785 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6786
6787 if (target_is_non_stop_p ())
6788 remote_interrupt_ns ();
6789 else
6790 remote_interrupt_as ();
6791 }
6792
6793 /* Implement the to_pass_ctrlc function for the remote targets. */
6794
6795 void
6796 remote_target::pass_ctrlc ()
6797 {
6798 struct remote_state *rs = get_remote_state ();
6799
6800 if (remote_debug)
6801 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6802
6803 /* If we're starting up, we're not fully synced yet. Quit
6804 immediately. */
6805 if (rs->starting_up)
6806 quit ();
6807 /* If ^C has already been sent once, offer to disconnect. */
6808 else if (rs->ctrlc_pending_p)
6809 interrupt_query ();
6810 else
6811 target_interrupt ();
6812 }
6813
6814 /* Ask the user what to do when an interrupt is received. */
6815
6816 void
6817 remote_target::interrupt_query ()
6818 {
6819 struct remote_state *rs = get_remote_state ();
6820
6821 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6822 {
6823 if (query (_("The target is not responding to interrupt requests.\n"
6824 "Stop debugging it? ")))
6825 {
6826 remote_unpush_target (this);
6827 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6828 }
6829 }
6830 else
6831 {
6832 if (query (_("Interrupted while waiting for the program.\n"
6833 "Give up waiting? ")))
6834 quit ();
6835 }
6836 }
6837
6838 /* Enable/disable target terminal ownership. Most targets can use
6839 terminal groups to control terminal ownership. Remote targets are
6840 different in that explicit transfer of ownership to/from GDB/target
6841 is required. */
6842
6843 void
6844 remote_target::terminal_inferior ()
6845 {
6846 /* NOTE: At this point we could also register our selves as the
6847 recipient of all input. Any characters typed could then be
6848 passed on down to the target. */
6849 }
6850
6851 void
6852 remote_target::terminal_ours ()
6853 {
6854 }
6855
6856 static void
6857 remote_console_output (const char *msg)
6858 {
6859 const char *p;
6860
6861 for (p = msg; p[0] && p[1]; p += 2)
6862 {
6863 char tb[2];
6864 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6865
6866 tb[0] = c;
6867 tb[1] = 0;
6868 gdb_stdtarg->puts (tb);
6869 }
6870 gdb_stdtarg->flush ();
6871 }
6872
6873 struct stop_reply : public notif_event
6874 {
6875 ~stop_reply ();
6876
6877 /* The identifier of the thread about this event */
6878 ptid_t ptid;
6879
6880 /* The remote state this event is associated with. When the remote
6881 connection, represented by a remote_state object, is closed,
6882 all the associated stop_reply events should be released. */
6883 struct remote_state *rs;
6884
6885 struct target_waitstatus ws;
6886
6887 /* The architecture associated with the expedited registers. */
6888 gdbarch *arch;
6889
6890 /* Expedited registers. This makes remote debugging a bit more
6891 efficient for those targets that provide critical registers as
6892 part of their normal status mechanism (as another roundtrip to
6893 fetch them is avoided). */
6894 std::vector<cached_reg_t> regcache;
6895
6896 enum target_stop_reason stop_reason;
6897
6898 CORE_ADDR watch_data_address;
6899
6900 int core;
6901 };
6902
6903 /* Return the length of the stop reply queue. */
6904
6905 int
6906 remote_target::stop_reply_queue_length ()
6907 {
6908 remote_state *rs = get_remote_state ();
6909 return rs->stop_reply_queue.size ();
6910 }
6911
6912 static void
6913 remote_notif_stop_parse (remote_target *remote,
6914 struct notif_client *self, const char *buf,
6915 struct notif_event *event)
6916 {
6917 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6918 }
6919
6920 static void
6921 remote_notif_stop_ack (remote_target *remote,
6922 struct notif_client *self, const char *buf,
6923 struct notif_event *event)
6924 {
6925 struct stop_reply *stop_reply = (struct stop_reply *) event;
6926
6927 /* acknowledge */
6928 putpkt (remote, self->ack_command);
6929
6930 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6931 {
6932 /* We got an unknown stop reply. */
6933 error (_("Unknown stop reply"));
6934 }
6935
6936 remote->push_stop_reply (stop_reply);
6937 }
6938
6939 static int
6940 remote_notif_stop_can_get_pending_events (remote_target *remote,
6941 struct notif_client *self)
6942 {
6943 /* We can't get pending events in remote_notif_process for
6944 notification stop, and we have to do this in remote_wait_ns
6945 instead. If we fetch all queued events from stub, remote stub
6946 may exit and we have no chance to process them back in
6947 remote_wait_ns. */
6948 remote_state *rs = remote->get_remote_state ();
6949 mark_async_event_handler (rs->remote_async_inferior_event_token);
6950 return 0;
6951 }
6952
6953 stop_reply::~stop_reply ()
6954 {
6955 for (cached_reg_t &reg : regcache)
6956 xfree (reg.data);
6957 }
6958
6959 static notif_event_up
6960 remote_notif_stop_alloc_reply ()
6961 {
6962 return notif_event_up (new struct stop_reply ());
6963 }
6964
6965 /* A client of notification Stop. */
6966
6967 struct notif_client notif_client_stop =
6968 {
6969 "Stop",
6970 "vStopped",
6971 remote_notif_stop_parse,
6972 remote_notif_stop_ack,
6973 remote_notif_stop_can_get_pending_events,
6974 remote_notif_stop_alloc_reply,
6975 REMOTE_NOTIF_STOP,
6976 };
6977
6978 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6979 the pid of the process that owns the threads we want to check, or
6980 -1 if we want to check all threads. */
6981
6982 static int
6983 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6984 ptid_t thread_ptid)
6985 {
6986 if (ws->kind == TARGET_WAITKIND_FORKED
6987 || ws->kind == TARGET_WAITKIND_VFORKED)
6988 {
6989 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6990 return 1;
6991 }
6992
6993 return 0;
6994 }
6995
6996 /* Return the thread's pending status used to determine whether the
6997 thread is a fork parent stopped at a fork event. */
6998
6999 static struct target_waitstatus *
7000 thread_pending_fork_status (struct thread_info *thread)
7001 {
7002 if (thread->suspend.waitstatus_pending_p)
7003 return &thread->suspend.waitstatus;
7004 else
7005 return &thread->pending_follow;
7006 }
7007
7008 /* Determine if THREAD is a pending fork parent thread. */
7009
7010 static int
7011 is_pending_fork_parent_thread (struct thread_info *thread)
7012 {
7013 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7014 int pid = -1;
7015
7016 return is_pending_fork_parent (ws, pid, thread->ptid);
7017 }
7018
7019 /* If CONTEXT contains any fork child threads that have not been
7020 reported yet, remove them from the CONTEXT list. If such a
7021 thread exists it is because we are stopped at a fork catchpoint
7022 and have not yet called follow_fork, which will set up the
7023 host-side data structures for the new process. */
7024
7025 void
7026 remote_target::remove_new_fork_children (threads_listing_context *context)
7027 {
7028 int pid = -1;
7029 struct notif_client *notif = &notif_client_stop;
7030
7031 /* For any threads stopped at a fork event, remove the corresponding
7032 fork child threads from the CONTEXT list. */
7033 for (thread_info *thread : all_non_exited_threads (this))
7034 {
7035 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7036
7037 if (is_pending_fork_parent (ws, pid, thread->ptid))
7038 context->remove_thread (ws->value.related_pid);
7039 }
7040
7041 /* Check for any pending fork events (not reported or processed yet)
7042 in process PID and remove those fork child threads from the
7043 CONTEXT list as well. */
7044 remote_notif_get_pending_events (notif);
7045 for (auto &event : get_remote_state ()->stop_reply_queue)
7046 if (event->ws.kind == TARGET_WAITKIND_FORKED
7047 || event->ws.kind == TARGET_WAITKIND_VFORKED
7048 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7049 context->remove_thread (event->ws.value.related_pid);
7050 }
7051
7052 /* Check whether any event pending in the vStopped queue would prevent
7053 a global or process wildcard vCont action. Clear
7054 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7055 and clear the event inferior's may_wildcard_vcont flag if we can't
7056 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7057
7058 void
7059 remote_target::check_pending_events_prevent_wildcard_vcont
7060 (int *may_global_wildcard)
7061 {
7062 struct notif_client *notif = &notif_client_stop;
7063
7064 remote_notif_get_pending_events (notif);
7065 for (auto &event : get_remote_state ()->stop_reply_queue)
7066 {
7067 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7068 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7069 continue;
7070
7071 if (event->ws.kind == TARGET_WAITKIND_FORKED
7072 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7073 *may_global_wildcard = 0;
7074
7075 struct inferior *inf = find_inferior_ptid (this, event->ptid);
7076
7077 /* This may be the first time we heard about this process.
7078 Regardless, we must not do a global wildcard resume, otherwise
7079 we'd resume this process too. */
7080 *may_global_wildcard = 0;
7081 if (inf != NULL)
7082 get_remote_inferior (inf)->may_wildcard_vcont = false;
7083 }
7084 }
7085
7086 /* Discard all pending stop replies of inferior INF. */
7087
7088 void
7089 remote_target::discard_pending_stop_replies (struct inferior *inf)
7090 {
7091 struct stop_reply *reply;
7092 struct remote_state *rs = get_remote_state ();
7093 struct remote_notif_state *rns = rs->notif_state;
7094
7095 /* This function can be notified when an inferior exists. When the
7096 target is not remote, the notification state is NULL. */
7097 if (rs->remote_desc == NULL)
7098 return;
7099
7100 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7101
7102 /* Discard the in-flight notification. */
7103 if (reply != NULL && reply->ptid.pid () == inf->pid)
7104 {
7105 delete reply;
7106 rns->pending_event[notif_client_stop.id] = NULL;
7107 }
7108
7109 /* Discard the stop replies we have already pulled with
7110 vStopped. */
7111 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7112 rs->stop_reply_queue.end (),
7113 [=] (const stop_reply_up &event)
7114 {
7115 return event->ptid.pid () == inf->pid;
7116 });
7117 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7118 }
7119
7120 /* Discard the stop replies for RS in stop_reply_queue. */
7121
7122 void
7123 remote_target::discard_pending_stop_replies_in_queue ()
7124 {
7125 remote_state *rs = get_remote_state ();
7126
7127 /* Discard the stop replies we have already pulled with
7128 vStopped. */
7129 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7130 rs->stop_reply_queue.end (),
7131 [=] (const stop_reply_up &event)
7132 {
7133 return event->rs == rs;
7134 });
7135 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7136 }
7137
7138 /* Remove the first reply in 'stop_reply_queue' which matches
7139 PTID. */
7140
7141 struct stop_reply *
7142 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7143 {
7144 remote_state *rs = get_remote_state ();
7145
7146 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7147 rs->stop_reply_queue.end (),
7148 [=] (const stop_reply_up &event)
7149 {
7150 return event->ptid.matches (ptid);
7151 });
7152 struct stop_reply *result;
7153 if (iter == rs->stop_reply_queue.end ())
7154 result = nullptr;
7155 else
7156 {
7157 result = iter->release ();
7158 rs->stop_reply_queue.erase (iter);
7159 }
7160
7161 if (notif_debug)
7162 fprintf_unfiltered (gdb_stdlog,
7163 "notif: discard queued event: 'Stop' in %s\n",
7164 target_pid_to_str (ptid).c_str ());
7165
7166 return result;
7167 }
7168
7169 /* Look for a queued stop reply belonging to PTID. If one is found,
7170 remove it from the queue, and return it. Returns NULL if none is
7171 found. If there are still queued events left to process, tell the
7172 event loop to get back to target_wait soon. */
7173
7174 struct stop_reply *
7175 remote_target::queued_stop_reply (ptid_t ptid)
7176 {
7177 remote_state *rs = get_remote_state ();
7178 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7179
7180 if (!rs->stop_reply_queue.empty ())
7181 {
7182 /* There's still at least an event left. */
7183 mark_async_event_handler (rs->remote_async_inferior_event_token);
7184 }
7185
7186 return r;
7187 }
7188
7189 /* Push a fully parsed stop reply in the stop reply queue. Since we
7190 know that we now have at least one queued event left to pass to the
7191 core side, tell the event loop to get back to target_wait soon. */
7192
7193 void
7194 remote_target::push_stop_reply (struct stop_reply *new_event)
7195 {
7196 remote_state *rs = get_remote_state ();
7197 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7198
7199 if (notif_debug)
7200 fprintf_unfiltered (gdb_stdlog,
7201 "notif: push 'Stop' %s to queue %d\n",
7202 target_pid_to_str (new_event->ptid).c_str (),
7203 int (rs->stop_reply_queue.size ()));
7204
7205 mark_async_event_handler (rs->remote_async_inferior_event_token);
7206 }
7207
7208 /* Returns true if we have a stop reply for PTID. */
7209
7210 int
7211 remote_target::peek_stop_reply (ptid_t ptid)
7212 {
7213 remote_state *rs = get_remote_state ();
7214 for (auto &event : rs->stop_reply_queue)
7215 if (ptid == event->ptid
7216 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7217 return 1;
7218 return 0;
7219 }
7220
7221 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7222 starting with P and ending with PEND matches PREFIX. */
7223
7224 static int
7225 strprefix (const char *p, const char *pend, const char *prefix)
7226 {
7227 for ( ; p < pend; p++, prefix++)
7228 if (*p != *prefix)
7229 return 0;
7230 return *prefix == '\0';
7231 }
7232
7233 /* Parse the stop reply in BUF. Either the function succeeds, and the
7234 result is stored in EVENT, or throws an error. */
7235
7236 void
7237 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7238 {
7239 remote_arch_state *rsa = NULL;
7240 ULONGEST addr;
7241 const char *p;
7242 int skipregs = 0;
7243
7244 event->ptid = null_ptid;
7245 event->rs = get_remote_state ();
7246 event->ws.kind = TARGET_WAITKIND_IGNORE;
7247 event->ws.value.integer = 0;
7248 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7249 event->regcache.clear ();
7250 event->core = -1;
7251
7252 switch (buf[0])
7253 {
7254 case 'T': /* Status with PC, SP, FP, ... */
7255 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7256 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7257 ss = signal number
7258 n... = register number
7259 r... = register contents
7260 */
7261
7262 p = &buf[3]; /* after Txx */
7263 while (*p)
7264 {
7265 const char *p1;
7266 int fieldsize;
7267
7268 p1 = strchr (p, ':');
7269 if (p1 == NULL)
7270 error (_("Malformed packet(a) (missing colon): %s\n\
7271 Packet: '%s'\n"),
7272 p, buf);
7273 if (p == p1)
7274 error (_("Malformed packet(a) (missing register number): %s\n\
7275 Packet: '%s'\n"),
7276 p, buf);
7277
7278 /* Some "registers" are actually extended stop information.
7279 Note if you're adding a new entry here: GDB 7.9 and
7280 earlier assume that all register "numbers" that start
7281 with an hex digit are real register numbers. Make sure
7282 the server only sends such a packet if it knows the
7283 client understands it. */
7284
7285 if (strprefix (p, p1, "thread"))
7286 event->ptid = read_ptid (++p1, &p);
7287 else if (strprefix (p, p1, "syscall_entry"))
7288 {
7289 ULONGEST sysno;
7290
7291 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7292 p = unpack_varlen_hex (++p1, &sysno);
7293 event->ws.value.syscall_number = (int) sysno;
7294 }
7295 else if (strprefix (p, p1, "syscall_return"))
7296 {
7297 ULONGEST sysno;
7298
7299 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7300 p = unpack_varlen_hex (++p1, &sysno);
7301 event->ws.value.syscall_number = (int) sysno;
7302 }
7303 else if (strprefix (p, p1, "watch")
7304 || strprefix (p, p1, "rwatch")
7305 || strprefix (p, p1, "awatch"))
7306 {
7307 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7308 p = unpack_varlen_hex (++p1, &addr);
7309 event->watch_data_address = (CORE_ADDR) addr;
7310 }
7311 else if (strprefix (p, p1, "swbreak"))
7312 {
7313 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7314
7315 /* Make sure the stub doesn't forget to indicate support
7316 with qSupported. */
7317 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7318 error (_("Unexpected swbreak stop reason"));
7319
7320 /* The value part is documented as "must be empty",
7321 though we ignore it, in case we ever decide to make
7322 use of it in a backward compatible way. */
7323 p = strchrnul (p1 + 1, ';');
7324 }
7325 else if (strprefix (p, p1, "hwbreak"))
7326 {
7327 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7328
7329 /* Make sure the stub doesn't forget to indicate support
7330 with qSupported. */
7331 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7332 error (_("Unexpected hwbreak stop reason"));
7333
7334 /* See above. */
7335 p = strchrnul (p1 + 1, ';');
7336 }
7337 else if (strprefix (p, p1, "library"))
7338 {
7339 event->ws.kind = TARGET_WAITKIND_LOADED;
7340 p = strchrnul (p1 + 1, ';');
7341 }
7342 else if (strprefix (p, p1, "replaylog"))
7343 {
7344 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7345 /* p1 will indicate "begin" or "end", but it makes
7346 no difference for now, so ignore it. */
7347 p = strchrnul (p1 + 1, ';');
7348 }
7349 else if (strprefix (p, p1, "core"))
7350 {
7351 ULONGEST c;
7352
7353 p = unpack_varlen_hex (++p1, &c);
7354 event->core = c;
7355 }
7356 else if (strprefix (p, p1, "fork"))
7357 {
7358 event->ws.value.related_pid = read_ptid (++p1, &p);
7359 event->ws.kind = TARGET_WAITKIND_FORKED;
7360 }
7361 else if (strprefix (p, p1, "vfork"))
7362 {
7363 event->ws.value.related_pid = read_ptid (++p1, &p);
7364 event->ws.kind = TARGET_WAITKIND_VFORKED;
7365 }
7366 else if (strprefix (p, p1, "vforkdone"))
7367 {
7368 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7369 p = strchrnul (p1 + 1, ';');
7370 }
7371 else if (strprefix (p, p1, "exec"))
7372 {
7373 ULONGEST ignored;
7374 int pathlen;
7375
7376 /* Determine the length of the execd pathname. */
7377 p = unpack_varlen_hex (++p1, &ignored);
7378 pathlen = (p - p1) / 2;
7379
7380 /* Save the pathname for event reporting and for
7381 the next run command. */
7382 gdb::unique_xmalloc_ptr<char[]> pathname
7383 ((char *) xmalloc (pathlen + 1));
7384 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7385 pathname[pathlen] = '\0';
7386
7387 /* This is freed during event handling. */
7388 event->ws.value.execd_pathname = pathname.release ();
7389 event->ws.kind = TARGET_WAITKIND_EXECD;
7390
7391 /* Skip the registers included in this packet, since
7392 they may be for an architecture different from the
7393 one used by the original program. */
7394 skipregs = 1;
7395 }
7396 else if (strprefix (p, p1, "create"))
7397 {
7398 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7399 p = strchrnul (p1 + 1, ';');
7400 }
7401 else
7402 {
7403 ULONGEST pnum;
7404 const char *p_temp;
7405
7406 if (skipregs)
7407 {
7408 p = strchrnul (p1 + 1, ';');
7409 p++;
7410 continue;
7411 }
7412
7413 /* Maybe a real ``P'' register number. */
7414 p_temp = unpack_varlen_hex (p, &pnum);
7415 /* If the first invalid character is the colon, we got a
7416 register number. Otherwise, it's an unknown stop
7417 reason. */
7418 if (p_temp == p1)
7419 {
7420 /* If we haven't parsed the event's thread yet, find
7421 it now, in order to find the architecture of the
7422 reported expedited registers. */
7423 if (event->ptid == null_ptid)
7424 {
7425 /* If there is no thread-id information then leave
7426 the event->ptid as null_ptid. Later in
7427 process_stop_reply we will pick a suitable
7428 thread. */
7429 const char *thr = strstr (p1 + 1, ";thread:");
7430 if (thr != NULL)
7431 event->ptid = read_ptid (thr + strlen (";thread:"),
7432 NULL);
7433 }
7434
7435 if (rsa == NULL)
7436 {
7437 inferior *inf
7438 = (event->ptid == null_ptid
7439 ? NULL
7440 : find_inferior_ptid (this, event->ptid));
7441 /* If this is the first time we learn anything
7442 about this process, skip the registers
7443 included in this packet, since we don't yet
7444 know which architecture to use to parse them.
7445 We'll determine the architecture later when
7446 we process the stop reply and retrieve the
7447 target description, via
7448 remote_notice_new_inferior ->
7449 post_create_inferior. */
7450 if (inf == NULL)
7451 {
7452 p = strchrnul (p1 + 1, ';');
7453 p++;
7454 continue;
7455 }
7456
7457 event->arch = inf->gdbarch;
7458 rsa = event->rs->get_remote_arch_state (event->arch);
7459 }
7460
7461 packet_reg *reg
7462 = packet_reg_from_pnum (event->arch, rsa, pnum);
7463 cached_reg_t cached_reg;
7464
7465 if (reg == NULL)
7466 error (_("Remote sent bad register number %s: %s\n\
7467 Packet: '%s'\n"),
7468 hex_string (pnum), p, buf);
7469
7470 cached_reg.num = reg->regnum;
7471 cached_reg.data = (gdb_byte *)
7472 xmalloc (register_size (event->arch, reg->regnum));
7473
7474 p = p1 + 1;
7475 fieldsize = hex2bin (p, cached_reg.data,
7476 register_size (event->arch, reg->regnum));
7477 p += 2 * fieldsize;
7478 if (fieldsize < register_size (event->arch, reg->regnum))
7479 warning (_("Remote reply is too short: %s"), buf);
7480
7481 event->regcache.push_back (cached_reg);
7482 }
7483 else
7484 {
7485 /* Not a number. Silently skip unknown optional
7486 info. */
7487 p = strchrnul (p1 + 1, ';');
7488 }
7489 }
7490
7491 if (*p != ';')
7492 error (_("Remote register badly formatted: %s\nhere: %s"),
7493 buf, p);
7494 ++p;
7495 }
7496
7497 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7498 break;
7499
7500 /* fall through */
7501 case 'S': /* Old style status, just signal only. */
7502 {
7503 int sig;
7504
7505 event->ws.kind = TARGET_WAITKIND_STOPPED;
7506 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7507 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7508 event->ws.value.sig = (enum gdb_signal) sig;
7509 else
7510 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7511 }
7512 break;
7513 case 'w': /* Thread exited. */
7514 {
7515 ULONGEST value;
7516
7517 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7518 p = unpack_varlen_hex (&buf[1], &value);
7519 event->ws.value.integer = value;
7520 if (*p != ';')
7521 error (_("stop reply packet badly formatted: %s"), buf);
7522 event->ptid = read_ptid (++p, NULL);
7523 break;
7524 }
7525 case 'W': /* Target exited. */
7526 case 'X':
7527 {
7528 ULONGEST value;
7529
7530 /* GDB used to accept only 2 hex chars here. Stubs should
7531 only send more if they detect GDB supports multi-process
7532 support. */
7533 p = unpack_varlen_hex (&buf[1], &value);
7534
7535 if (buf[0] == 'W')
7536 {
7537 /* The remote process exited. */
7538 event->ws.kind = TARGET_WAITKIND_EXITED;
7539 event->ws.value.integer = value;
7540 }
7541 else
7542 {
7543 /* The remote process exited with a signal. */
7544 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7545 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7546 event->ws.value.sig = (enum gdb_signal) value;
7547 else
7548 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7549 }
7550
7551 /* If no process is specified, return null_ptid, and let the
7552 caller figure out the right process to use. */
7553 int pid = 0;
7554 if (*p == '\0')
7555 ;
7556 else if (*p == ';')
7557 {
7558 p++;
7559
7560 if (*p == '\0')
7561 ;
7562 else if (startswith (p, "process:"))
7563 {
7564 ULONGEST upid;
7565
7566 p += sizeof ("process:") - 1;
7567 unpack_varlen_hex (p, &upid);
7568 pid = upid;
7569 }
7570 else
7571 error (_("unknown stop reply packet: %s"), buf);
7572 }
7573 else
7574 error (_("unknown stop reply packet: %s"), buf);
7575 event->ptid = ptid_t (pid);
7576 }
7577 break;
7578 case 'N':
7579 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7580 event->ptid = minus_one_ptid;
7581 break;
7582 }
7583 }
7584
7585 /* When the stub wants to tell GDB about a new notification reply, it
7586 sends a notification (%Stop, for example). Those can come it at
7587 any time, hence, we have to make sure that any pending
7588 putpkt/getpkt sequence we're making is finished, before querying
7589 the stub for more events with the corresponding ack command
7590 (vStopped, for example). E.g., if we started a vStopped sequence
7591 immediately upon receiving the notification, something like this
7592 could happen:
7593
7594 1.1) --> Hg 1
7595 1.2) <-- OK
7596 1.3) --> g
7597 1.4) <-- %Stop
7598 1.5) --> vStopped
7599 1.6) <-- (registers reply to step #1.3)
7600
7601 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7602 query.
7603
7604 To solve this, whenever we parse a %Stop notification successfully,
7605 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7606 doing whatever we were doing:
7607
7608 2.1) --> Hg 1
7609 2.2) <-- OK
7610 2.3) --> g
7611 2.4) <-- %Stop
7612 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7613 2.5) <-- (registers reply to step #2.3)
7614
7615 Eventually after step #2.5, we return to the event loop, which
7616 notices there's an event on the
7617 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7618 associated callback --- the function below. At this point, we're
7619 always safe to start a vStopped sequence. :
7620
7621 2.6) --> vStopped
7622 2.7) <-- T05 thread:2
7623 2.8) --> vStopped
7624 2.9) --> OK
7625 */
7626
7627 void
7628 remote_target::remote_notif_get_pending_events (notif_client *nc)
7629 {
7630 struct remote_state *rs = get_remote_state ();
7631
7632 if (rs->notif_state->pending_event[nc->id] != NULL)
7633 {
7634 if (notif_debug)
7635 fprintf_unfiltered (gdb_stdlog,
7636 "notif: process: '%s' ack pending event\n",
7637 nc->name);
7638
7639 /* acknowledge */
7640 nc->ack (this, nc, rs->buf.data (),
7641 rs->notif_state->pending_event[nc->id]);
7642 rs->notif_state->pending_event[nc->id] = NULL;
7643
7644 while (1)
7645 {
7646 getpkt (&rs->buf, 0);
7647 if (strcmp (rs->buf.data (), "OK") == 0)
7648 break;
7649 else
7650 remote_notif_ack (this, nc, rs->buf.data ());
7651 }
7652 }
7653 else
7654 {
7655 if (notif_debug)
7656 fprintf_unfiltered (gdb_stdlog,
7657 "notif: process: '%s' no pending reply\n",
7658 nc->name);
7659 }
7660 }
7661
7662 /* Wrapper around remote_target::remote_notif_get_pending_events to
7663 avoid having to export the whole remote_target class. */
7664
7665 void
7666 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7667 {
7668 remote->remote_notif_get_pending_events (nc);
7669 }
7670
7671 /* Called when it is decided that STOP_REPLY holds the info of the
7672 event that is to be returned to the core. This function always
7673 destroys STOP_REPLY. */
7674
7675 ptid_t
7676 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7677 struct target_waitstatus *status)
7678 {
7679 ptid_t ptid;
7680
7681 *status = stop_reply->ws;
7682 ptid = stop_reply->ptid;
7683
7684 /* If no thread/process was reported by the stub then use the first
7685 non-exited thread in the current target. */
7686 if (ptid == null_ptid)
7687 {
7688 /* Some stop events apply to all threads in an inferior, while others
7689 only apply to a single thread. */
7690 bool is_stop_for_all_threads
7691 = (status->kind == TARGET_WAITKIND_EXITED
7692 || status->kind == TARGET_WAITKIND_SIGNALLED);
7693
7694 for (thread_info *thr : all_non_exited_threads (this))
7695 {
7696 if (ptid != null_ptid
7697 && (!is_stop_for_all_threads
7698 || ptid.pid () != thr->ptid.pid ()))
7699 {
7700 static bool warned = false;
7701
7702 if (!warned)
7703 {
7704 /* If you are seeing this warning then the remote target
7705 has stopped without specifying a thread-id, but the
7706 target does have multiple threads (or inferiors), and
7707 so GDB is having to guess which thread stopped.
7708
7709 Examples of what might cause this are the target
7710 sending and 'S' stop packet, or a 'T' stop packet and
7711 not including a thread-id.
7712
7713 Additionally, the target might send a 'W' or 'X
7714 packet without including a process-id, when the target
7715 has multiple running inferiors. */
7716 if (is_stop_for_all_threads)
7717 warning (_("multi-inferior target stopped without "
7718 "sending a process-id, using first "
7719 "non-exited inferior"));
7720 else
7721 warning (_("multi-threaded target stopped without "
7722 "sending a thread-id, using first "
7723 "non-exited thread"));
7724 warned = true;
7725 }
7726 break;
7727 }
7728
7729 /* If this is a stop for all threads then don't use a particular
7730 threads ptid, instead create a new ptid where only the pid
7731 field is set. */
7732 if (is_stop_for_all_threads)
7733 ptid = ptid_t (thr->ptid.pid ());
7734 else
7735 ptid = thr->ptid;
7736 }
7737 gdb_assert (ptid != null_ptid);
7738 }
7739
7740 if (status->kind != TARGET_WAITKIND_EXITED
7741 && status->kind != TARGET_WAITKIND_SIGNALLED
7742 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7743 {
7744 /* Expedited registers. */
7745 if (!stop_reply->regcache.empty ())
7746 {
7747 struct regcache *regcache
7748 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
7749
7750 for (cached_reg_t &reg : stop_reply->regcache)
7751 {
7752 regcache->raw_supply (reg.num, reg.data);
7753 xfree (reg.data);
7754 }
7755
7756 stop_reply->regcache.clear ();
7757 }
7758
7759 remote_notice_new_inferior (ptid, 0);
7760 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
7761 remote_thr->core = stop_reply->core;
7762 remote_thr->stop_reason = stop_reply->stop_reason;
7763 remote_thr->watch_data_address = stop_reply->watch_data_address;
7764 remote_thr->vcont_resumed = 0;
7765 }
7766
7767 delete stop_reply;
7768 return ptid;
7769 }
7770
7771 /* The non-stop mode version of target_wait. */
7772
7773 ptid_t
7774 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7775 {
7776 struct remote_state *rs = get_remote_state ();
7777 struct stop_reply *stop_reply;
7778 int ret;
7779 int is_notif = 0;
7780
7781 /* If in non-stop mode, get out of getpkt even if a
7782 notification is received. */
7783
7784 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7785 while (1)
7786 {
7787 if (ret != -1 && !is_notif)
7788 switch (rs->buf[0])
7789 {
7790 case 'E': /* Error of some sort. */
7791 /* We're out of sync with the target now. Did it continue
7792 or not? We can't tell which thread it was in non-stop,
7793 so just ignore this. */
7794 warning (_("Remote failure reply: %s"), rs->buf.data ());
7795 break;
7796 case 'O': /* Console output. */
7797 remote_console_output (&rs->buf[1]);
7798 break;
7799 default:
7800 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7801 break;
7802 }
7803
7804 /* Acknowledge a pending stop reply that may have arrived in the
7805 mean time. */
7806 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7807 remote_notif_get_pending_events (&notif_client_stop);
7808
7809 /* If indeed we noticed a stop reply, we're done. */
7810 stop_reply = queued_stop_reply (ptid);
7811 if (stop_reply != NULL)
7812 return process_stop_reply (stop_reply, status);
7813
7814 /* Still no event. If we're just polling for an event, then
7815 return to the event loop. */
7816 if (options & TARGET_WNOHANG)
7817 {
7818 status->kind = TARGET_WAITKIND_IGNORE;
7819 return minus_one_ptid;
7820 }
7821
7822 /* Otherwise do a blocking wait. */
7823 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7824 }
7825 }
7826
7827 /* Return the first resumed thread. */
7828
7829 static ptid_t
7830 first_remote_resumed_thread (remote_target *target)
7831 {
7832 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
7833 if (tp->resumed)
7834 return tp->ptid;
7835 return null_ptid;
7836 }
7837
7838 /* Wait until the remote machine stops, then return, storing status in
7839 STATUS just as `wait' would. */
7840
7841 ptid_t
7842 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7843 {
7844 struct remote_state *rs = get_remote_state ();
7845 ptid_t event_ptid = null_ptid;
7846 char *buf;
7847 struct stop_reply *stop_reply;
7848
7849 again:
7850
7851 status->kind = TARGET_WAITKIND_IGNORE;
7852 status->value.integer = 0;
7853
7854 stop_reply = queued_stop_reply (ptid);
7855 if (stop_reply != NULL)
7856 return process_stop_reply (stop_reply, status);
7857
7858 if (rs->cached_wait_status)
7859 /* Use the cached wait status, but only once. */
7860 rs->cached_wait_status = 0;
7861 else
7862 {
7863 int ret;
7864 int is_notif;
7865 int forever = ((options & TARGET_WNOHANG) == 0
7866 && rs->wait_forever_enabled_p);
7867
7868 if (!rs->waiting_for_stop_reply)
7869 {
7870 status->kind = TARGET_WAITKIND_NO_RESUMED;
7871 return minus_one_ptid;
7872 }
7873
7874 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7875 _never_ wait for ever -> test on target_is_async_p().
7876 However, before we do that we need to ensure that the caller
7877 knows how to take the target into/out of async mode. */
7878 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7879
7880 /* GDB gets a notification. Return to core as this event is
7881 not interesting. */
7882 if (ret != -1 && is_notif)
7883 return minus_one_ptid;
7884
7885 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7886 return minus_one_ptid;
7887 }
7888
7889 buf = rs->buf.data ();
7890
7891 /* Assume that the target has acknowledged Ctrl-C unless we receive
7892 an 'F' or 'O' packet. */
7893 if (buf[0] != 'F' && buf[0] != 'O')
7894 rs->ctrlc_pending_p = 0;
7895
7896 switch (buf[0])
7897 {
7898 case 'E': /* Error of some sort. */
7899 /* We're out of sync with the target now. Did it continue or
7900 not? Not is more likely, so report a stop. */
7901 rs->waiting_for_stop_reply = 0;
7902
7903 warning (_("Remote failure reply: %s"), buf);
7904 status->kind = TARGET_WAITKIND_STOPPED;
7905 status->value.sig = GDB_SIGNAL_0;
7906 break;
7907 case 'F': /* File-I/O request. */
7908 /* GDB may access the inferior memory while handling the File-I/O
7909 request, but we don't want GDB accessing memory while waiting
7910 for a stop reply. See the comments in putpkt_binary. Set
7911 waiting_for_stop_reply to 0 temporarily. */
7912 rs->waiting_for_stop_reply = 0;
7913 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7914 rs->ctrlc_pending_p = 0;
7915 /* GDB handled the File-I/O request, and the target is running
7916 again. Keep waiting for events. */
7917 rs->waiting_for_stop_reply = 1;
7918 break;
7919 case 'N': case 'T': case 'S': case 'X': case 'W':
7920 {
7921 /* There is a stop reply to handle. */
7922 rs->waiting_for_stop_reply = 0;
7923
7924 stop_reply
7925 = (struct stop_reply *) remote_notif_parse (this,
7926 &notif_client_stop,
7927 rs->buf.data ());
7928
7929 event_ptid = process_stop_reply (stop_reply, status);
7930 break;
7931 }
7932 case 'O': /* Console output. */
7933 remote_console_output (buf + 1);
7934 break;
7935 case '\0':
7936 if (rs->last_sent_signal != GDB_SIGNAL_0)
7937 {
7938 /* Zero length reply means that we tried 'S' or 'C' and the
7939 remote system doesn't support it. */
7940 target_terminal::ours_for_output ();
7941 printf_filtered
7942 ("Can't send signals to this remote system. %s not sent.\n",
7943 gdb_signal_to_name (rs->last_sent_signal));
7944 rs->last_sent_signal = GDB_SIGNAL_0;
7945 target_terminal::inferior ();
7946
7947 strcpy (buf, rs->last_sent_step ? "s" : "c");
7948 putpkt (buf);
7949 break;
7950 }
7951 /* fallthrough */
7952 default:
7953 warning (_("Invalid remote reply: %s"), buf);
7954 break;
7955 }
7956
7957 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7958 return minus_one_ptid;
7959 else if (status->kind == TARGET_WAITKIND_IGNORE)
7960 {
7961 /* Nothing interesting happened. If we're doing a non-blocking
7962 poll, we're done. Otherwise, go back to waiting. */
7963 if (options & TARGET_WNOHANG)
7964 return minus_one_ptid;
7965 else
7966 goto again;
7967 }
7968 else if (status->kind != TARGET_WAITKIND_EXITED
7969 && status->kind != TARGET_WAITKIND_SIGNALLED)
7970 {
7971 if (event_ptid != null_ptid)
7972 record_currthread (rs, event_ptid);
7973 else
7974 event_ptid = first_remote_resumed_thread (this);
7975 }
7976 else
7977 {
7978 /* A process exit. Invalidate our notion of current thread. */
7979 record_currthread (rs, minus_one_ptid);
7980 /* It's possible that the packet did not include a pid. */
7981 if (event_ptid == null_ptid)
7982 event_ptid = first_remote_resumed_thread (this);
7983 /* EVENT_PTID could still be NULL_PTID. Double-check. */
7984 if (event_ptid == null_ptid)
7985 event_ptid = magic_null_ptid;
7986 }
7987
7988 return event_ptid;
7989 }
7990
7991 /* Wait until the remote machine stops, then return, storing status in
7992 STATUS just as `wait' would. */
7993
7994 ptid_t
7995 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7996 {
7997 ptid_t event_ptid;
7998
7999 if (target_is_non_stop_p ())
8000 event_ptid = wait_ns (ptid, status, options);
8001 else
8002 event_ptid = wait_as (ptid, status, options);
8003
8004 if (target_is_async_p ())
8005 {
8006 remote_state *rs = get_remote_state ();
8007
8008 /* If there are are events left in the queue tell the event loop
8009 to return here. */
8010 if (!rs->stop_reply_queue.empty ())
8011 mark_async_event_handler (rs->remote_async_inferior_event_token);
8012 }
8013
8014 return event_ptid;
8015 }
8016
8017 /* Fetch a single register using a 'p' packet. */
8018
8019 int
8020 remote_target::fetch_register_using_p (struct regcache *regcache,
8021 packet_reg *reg)
8022 {
8023 struct gdbarch *gdbarch = regcache->arch ();
8024 struct remote_state *rs = get_remote_state ();
8025 char *buf, *p;
8026 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8027 int i;
8028
8029 if (packet_support (PACKET_p) == PACKET_DISABLE)
8030 return 0;
8031
8032 if (reg->pnum == -1)
8033 return 0;
8034
8035 p = rs->buf.data ();
8036 *p++ = 'p';
8037 p += hexnumstr (p, reg->pnum);
8038 *p++ = '\0';
8039 putpkt (rs->buf);
8040 getpkt (&rs->buf, 0);
8041
8042 buf = rs->buf.data ();
8043
8044 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8045 {
8046 case PACKET_OK:
8047 break;
8048 case PACKET_UNKNOWN:
8049 return 0;
8050 case PACKET_ERROR:
8051 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8052 gdbarch_register_name (regcache->arch (),
8053 reg->regnum),
8054 buf);
8055 }
8056
8057 /* If this register is unfetchable, tell the regcache. */
8058 if (buf[0] == 'x')
8059 {
8060 regcache->raw_supply (reg->regnum, NULL);
8061 return 1;
8062 }
8063
8064 /* Otherwise, parse and supply the value. */
8065 p = buf;
8066 i = 0;
8067 while (p[0] != 0)
8068 {
8069 if (p[1] == 0)
8070 error (_("fetch_register_using_p: early buf termination"));
8071
8072 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8073 p += 2;
8074 }
8075 regcache->raw_supply (reg->regnum, regp);
8076 return 1;
8077 }
8078
8079 /* Fetch the registers included in the target's 'g' packet. */
8080
8081 int
8082 remote_target::send_g_packet ()
8083 {
8084 struct remote_state *rs = get_remote_state ();
8085 int buf_len;
8086
8087 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8088 putpkt (rs->buf);
8089 getpkt (&rs->buf, 0);
8090 if (packet_check_result (rs->buf) == PACKET_ERROR)
8091 error (_("Could not read registers; remote failure reply '%s'"),
8092 rs->buf.data ());
8093
8094 /* We can get out of synch in various cases. If the first character
8095 in the buffer is not a hex character, assume that has happened
8096 and try to fetch another packet to read. */
8097 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8098 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8099 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8100 && rs->buf[0] != 'x') /* New: unavailable register value. */
8101 {
8102 if (remote_debug)
8103 fprintf_unfiltered (gdb_stdlog,
8104 "Bad register packet; fetching a new packet\n");
8105 getpkt (&rs->buf, 0);
8106 }
8107
8108 buf_len = strlen (rs->buf.data ());
8109
8110 /* Sanity check the received packet. */
8111 if (buf_len % 2 != 0)
8112 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8113
8114 return buf_len / 2;
8115 }
8116
8117 void
8118 remote_target::process_g_packet (struct regcache *regcache)
8119 {
8120 struct gdbarch *gdbarch = regcache->arch ();
8121 struct remote_state *rs = get_remote_state ();
8122 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8123 int i, buf_len;
8124 char *p;
8125 char *regs;
8126
8127 buf_len = strlen (rs->buf.data ());
8128
8129 /* Further sanity checks, with knowledge of the architecture. */
8130 if (buf_len > 2 * rsa->sizeof_g_packet)
8131 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8132 "bytes): %s"),
8133 rsa->sizeof_g_packet, buf_len / 2,
8134 rs->buf.data ());
8135
8136 /* Save the size of the packet sent to us by the target. It is used
8137 as a heuristic when determining the max size of packets that the
8138 target can safely receive. */
8139 if (rsa->actual_register_packet_size == 0)
8140 rsa->actual_register_packet_size = buf_len;
8141
8142 /* If this is smaller than we guessed the 'g' packet would be,
8143 update our records. A 'g' reply that doesn't include a register's
8144 value implies either that the register is not available, or that
8145 the 'p' packet must be used. */
8146 if (buf_len < 2 * rsa->sizeof_g_packet)
8147 {
8148 long sizeof_g_packet = buf_len / 2;
8149
8150 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8151 {
8152 long offset = rsa->regs[i].offset;
8153 long reg_size = register_size (gdbarch, i);
8154
8155 if (rsa->regs[i].pnum == -1)
8156 continue;
8157
8158 if (offset >= sizeof_g_packet)
8159 rsa->regs[i].in_g_packet = 0;
8160 else if (offset + reg_size > sizeof_g_packet)
8161 error (_("Truncated register %d in remote 'g' packet"), i);
8162 else
8163 rsa->regs[i].in_g_packet = 1;
8164 }
8165
8166 /* Looks valid enough, we can assume this is the correct length
8167 for a 'g' packet. It's important not to adjust
8168 rsa->sizeof_g_packet if we have truncated registers otherwise
8169 this "if" won't be run the next time the method is called
8170 with a packet of the same size and one of the internal errors
8171 below will trigger instead. */
8172 rsa->sizeof_g_packet = sizeof_g_packet;
8173 }
8174
8175 regs = (char *) alloca (rsa->sizeof_g_packet);
8176
8177 /* Unimplemented registers read as all bits zero. */
8178 memset (regs, 0, rsa->sizeof_g_packet);
8179
8180 /* Reply describes registers byte by byte, each byte encoded as two
8181 hex characters. Suck them all up, then supply them to the
8182 register cacheing/storage mechanism. */
8183
8184 p = rs->buf.data ();
8185 for (i = 0; i < rsa->sizeof_g_packet; i++)
8186 {
8187 if (p[0] == 0 || p[1] == 0)
8188 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8189 internal_error (__FILE__, __LINE__,
8190 _("unexpected end of 'g' packet reply"));
8191
8192 if (p[0] == 'x' && p[1] == 'x')
8193 regs[i] = 0; /* 'x' */
8194 else
8195 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8196 p += 2;
8197 }
8198
8199 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8200 {
8201 struct packet_reg *r = &rsa->regs[i];
8202 long reg_size = register_size (gdbarch, i);
8203
8204 if (r->in_g_packet)
8205 {
8206 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8207 /* This shouldn't happen - we adjusted in_g_packet above. */
8208 internal_error (__FILE__, __LINE__,
8209 _("unexpected end of 'g' packet reply"));
8210 else if (rs->buf[r->offset * 2] == 'x')
8211 {
8212 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8213 /* The register isn't available, mark it as such (at
8214 the same time setting the value to zero). */
8215 regcache->raw_supply (r->regnum, NULL);
8216 }
8217 else
8218 regcache->raw_supply (r->regnum, regs + r->offset);
8219 }
8220 }
8221 }
8222
8223 void
8224 remote_target::fetch_registers_using_g (struct regcache *regcache)
8225 {
8226 send_g_packet ();
8227 process_g_packet (regcache);
8228 }
8229
8230 /* Make the remote selected traceframe match GDB's selected
8231 traceframe. */
8232
8233 void
8234 remote_target::set_remote_traceframe ()
8235 {
8236 int newnum;
8237 struct remote_state *rs = get_remote_state ();
8238
8239 if (rs->remote_traceframe_number == get_traceframe_number ())
8240 return;
8241
8242 /* Avoid recursion, remote_trace_find calls us again. */
8243 rs->remote_traceframe_number = get_traceframe_number ();
8244
8245 newnum = target_trace_find (tfind_number,
8246 get_traceframe_number (), 0, 0, NULL);
8247
8248 /* Should not happen. If it does, all bets are off. */
8249 if (newnum != get_traceframe_number ())
8250 warning (_("could not set remote traceframe"));
8251 }
8252
8253 void
8254 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8255 {
8256 struct gdbarch *gdbarch = regcache->arch ();
8257 struct remote_state *rs = get_remote_state ();
8258 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8259 int i;
8260
8261 set_remote_traceframe ();
8262 set_general_thread (regcache->ptid ());
8263
8264 if (regnum >= 0)
8265 {
8266 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8267
8268 gdb_assert (reg != NULL);
8269
8270 /* If this register might be in the 'g' packet, try that first -
8271 we are likely to read more than one register. If this is the
8272 first 'g' packet, we might be overly optimistic about its
8273 contents, so fall back to 'p'. */
8274 if (reg->in_g_packet)
8275 {
8276 fetch_registers_using_g (regcache);
8277 if (reg->in_g_packet)
8278 return;
8279 }
8280
8281 if (fetch_register_using_p (regcache, reg))
8282 return;
8283
8284 /* This register is not available. */
8285 regcache->raw_supply (reg->regnum, NULL);
8286
8287 return;
8288 }
8289
8290 fetch_registers_using_g (regcache);
8291
8292 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8293 if (!rsa->regs[i].in_g_packet)
8294 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8295 {
8296 /* This register is not available. */
8297 regcache->raw_supply (i, NULL);
8298 }
8299 }
8300
8301 /* Prepare to store registers. Since we may send them all (using a
8302 'G' request), we have to read out the ones we don't want to change
8303 first. */
8304
8305 void
8306 remote_target::prepare_to_store (struct regcache *regcache)
8307 {
8308 struct remote_state *rs = get_remote_state ();
8309 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8310 int i;
8311
8312 /* Make sure the entire registers array is valid. */
8313 switch (packet_support (PACKET_P))
8314 {
8315 case PACKET_DISABLE:
8316 case PACKET_SUPPORT_UNKNOWN:
8317 /* Make sure all the necessary registers are cached. */
8318 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8319 if (rsa->regs[i].in_g_packet)
8320 regcache->raw_update (rsa->regs[i].regnum);
8321 break;
8322 case PACKET_ENABLE:
8323 break;
8324 }
8325 }
8326
8327 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8328 packet was not recognized. */
8329
8330 int
8331 remote_target::store_register_using_P (const struct regcache *regcache,
8332 packet_reg *reg)
8333 {
8334 struct gdbarch *gdbarch = regcache->arch ();
8335 struct remote_state *rs = get_remote_state ();
8336 /* Try storing a single register. */
8337 char *buf = rs->buf.data ();
8338 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8339 char *p;
8340
8341 if (packet_support (PACKET_P) == PACKET_DISABLE)
8342 return 0;
8343
8344 if (reg->pnum == -1)
8345 return 0;
8346
8347 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8348 p = buf + strlen (buf);
8349 regcache->raw_collect (reg->regnum, regp);
8350 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8351 putpkt (rs->buf);
8352 getpkt (&rs->buf, 0);
8353
8354 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8355 {
8356 case PACKET_OK:
8357 return 1;
8358 case PACKET_ERROR:
8359 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8360 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8361 case PACKET_UNKNOWN:
8362 return 0;
8363 default:
8364 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8365 }
8366 }
8367
8368 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8369 contents of the register cache buffer. FIXME: ignores errors. */
8370
8371 void
8372 remote_target::store_registers_using_G (const struct regcache *regcache)
8373 {
8374 struct remote_state *rs = get_remote_state ();
8375 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8376 gdb_byte *regs;
8377 char *p;
8378
8379 /* Extract all the registers in the regcache copying them into a
8380 local buffer. */
8381 {
8382 int i;
8383
8384 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8385 memset (regs, 0, rsa->sizeof_g_packet);
8386 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8387 {
8388 struct packet_reg *r = &rsa->regs[i];
8389
8390 if (r->in_g_packet)
8391 regcache->raw_collect (r->regnum, regs + r->offset);
8392 }
8393 }
8394
8395 /* Command describes registers byte by byte,
8396 each byte encoded as two hex characters. */
8397 p = rs->buf.data ();
8398 *p++ = 'G';
8399 bin2hex (regs, p, rsa->sizeof_g_packet);
8400 putpkt (rs->buf);
8401 getpkt (&rs->buf, 0);
8402 if (packet_check_result (rs->buf) == PACKET_ERROR)
8403 error (_("Could not write registers; remote failure reply '%s'"),
8404 rs->buf.data ());
8405 }
8406
8407 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8408 of the register cache buffer. FIXME: ignores errors. */
8409
8410 void
8411 remote_target::store_registers (struct regcache *regcache, int regnum)
8412 {
8413 struct gdbarch *gdbarch = regcache->arch ();
8414 struct remote_state *rs = get_remote_state ();
8415 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8416 int i;
8417
8418 set_remote_traceframe ();
8419 set_general_thread (regcache->ptid ());
8420
8421 if (regnum >= 0)
8422 {
8423 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8424
8425 gdb_assert (reg != NULL);
8426
8427 /* Always prefer to store registers using the 'P' packet if
8428 possible; we often change only a small number of registers.
8429 Sometimes we change a larger number; we'd need help from a
8430 higher layer to know to use 'G'. */
8431 if (store_register_using_P (regcache, reg))
8432 return;
8433
8434 /* For now, don't complain if we have no way to write the
8435 register. GDB loses track of unavailable registers too
8436 easily. Some day, this may be an error. We don't have
8437 any way to read the register, either... */
8438 if (!reg->in_g_packet)
8439 return;
8440
8441 store_registers_using_G (regcache);
8442 return;
8443 }
8444
8445 store_registers_using_G (regcache);
8446
8447 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8448 if (!rsa->regs[i].in_g_packet)
8449 if (!store_register_using_P (regcache, &rsa->regs[i]))
8450 /* See above for why we do not issue an error here. */
8451 continue;
8452 }
8453 \f
8454
8455 /* Return the number of hex digits in num. */
8456
8457 static int
8458 hexnumlen (ULONGEST num)
8459 {
8460 int i;
8461
8462 for (i = 0; num != 0; i++)
8463 num >>= 4;
8464
8465 return std::max (i, 1);
8466 }
8467
8468 /* Set BUF to the minimum number of hex digits representing NUM. */
8469
8470 static int
8471 hexnumstr (char *buf, ULONGEST num)
8472 {
8473 int len = hexnumlen (num);
8474
8475 return hexnumnstr (buf, num, len);
8476 }
8477
8478
8479 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8480
8481 static int
8482 hexnumnstr (char *buf, ULONGEST num, int width)
8483 {
8484 int i;
8485
8486 buf[width] = '\0';
8487
8488 for (i = width - 1; i >= 0; i--)
8489 {
8490 buf[i] = "0123456789abcdef"[(num & 0xf)];
8491 num >>= 4;
8492 }
8493
8494 return width;
8495 }
8496
8497 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8498
8499 static CORE_ADDR
8500 remote_address_masked (CORE_ADDR addr)
8501 {
8502 unsigned int address_size = remote_address_size;
8503
8504 /* If "remoteaddresssize" was not set, default to target address size. */
8505 if (!address_size)
8506 address_size = gdbarch_addr_bit (target_gdbarch ());
8507
8508 if (address_size > 0
8509 && address_size < (sizeof (ULONGEST) * 8))
8510 {
8511 /* Only create a mask when that mask can safely be constructed
8512 in a ULONGEST variable. */
8513 ULONGEST mask = 1;
8514
8515 mask = (mask << address_size) - 1;
8516 addr &= mask;
8517 }
8518 return addr;
8519 }
8520
8521 /* Determine whether the remote target supports binary downloading.
8522 This is accomplished by sending a no-op memory write of zero length
8523 to the target at the specified address. It does not suffice to send
8524 the whole packet, since many stubs strip the eighth bit and
8525 subsequently compute a wrong checksum, which causes real havoc with
8526 remote_write_bytes.
8527
8528 NOTE: This can still lose if the serial line is not eight-bit
8529 clean. In cases like this, the user should clear "remote
8530 X-packet". */
8531
8532 void
8533 remote_target::check_binary_download (CORE_ADDR addr)
8534 {
8535 struct remote_state *rs = get_remote_state ();
8536
8537 switch (packet_support (PACKET_X))
8538 {
8539 case PACKET_DISABLE:
8540 break;
8541 case PACKET_ENABLE:
8542 break;
8543 case PACKET_SUPPORT_UNKNOWN:
8544 {
8545 char *p;
8546
8547 p = rs->buf.data ();
8548 *p++ = 'X';
8549 p += hexnumstr (p, (ULONGEST) addr);
8550 *p++ = ',';
8551 p += hexnumstr (p, (ULONGEST) 0);
8552 *p++ = ':';
8553 *p = '\0';
8554
8555 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8556 getpkt (&rs->buf, 0);
8557
8558 if (rs->buf[0] == '\0')
8559 {
8560 if (remote_debug)
8561 fprintf_unfiltered (gdb_stdlog,
8562 "binary downloading NOT "
8563 "supported by target\n");
8564 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8565 }
8566 else
8567 {
8568 if (remote_debug)
8569 fprintf_unfiltered (gdb_stdlog,
8570 "binary downloading supported by target\n");
8571 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8572 }
8573 break;
8574 }
8575 }
8576 }
8577
8578 /* Helper function to resize the payload in order to try to get a good
8579 alignment. We try to write an amount of data such that the next write will
8580 start on an address aligned on REMOTE_ALIGN_WRITES. */
8581
8582 static int
8583 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8584 {
8585 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8586 }
8587
8588 /* Write memory data directly to the remote machine.
8589 This does not inform the data cache; the data cache uses this.
8590 HEADER is the starting part of the packet.
8591 MEMADDR is the address in the remote memory space.
8592 MYADDR is the address of the buffer in our space.
8593 LEN_UNITS is the number of addressable units to write.
8594 UNIT_SIZE is the length in bytes of an addressable unit.
8595 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8596 should send data as binary ('X'), or hex-encoded ('M').
8597
8598 The function creates packet of the form
8599 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8600
8601 where encoding of <DATA> is terminated by PACKET_FORMAT.
8602
8603 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8604 are omitted.
8605
8606 Return the transferred status, error or OK (an
8607 'enum target_xfer_status' value). Save the number of addressable units
8608 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8609
8610 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8611 exchange between gdb and the stub could look like (?? in place of the
8612 checksum):
8613
8614 -> $m1000,4#??
8615 <- aaaabbbbccccdddd
8616
8617 -> $M1000,3:eeeeffffeeee#??
8618 <- OK
8619
8620 -> $m1000,4#??
8621 <- eeeeffffeeeedddd */
8622
8623 target_xfer_status
8624 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8625 const gdb_byte *myaddr,
8626 ULONGEST len_units,
8627 int unit_size,
8628 ULONGEST *xfered_len_units,
8629 char packet_format, int use_length)
8630 {
8631 struct remote_state *rs = get_remote_state ();
8632 char *p;
8633 char *plen = NULL;
8634 int plenlen = 0;
8635 int todo_units;
8636 int units_written;
8637 int payload_capacity_bytes;
8638 int payload_length_bytes;
8639
8640 if (packet_format != 'X' && packet_format != 'M')
8641 internal_error (__FILE__, __LINE__,
8642 _("remote_write_bytes_aux: bad packet format"));
8643
8644 if (len_units == 0)
8645 return TARGET_XFER_EOF;
8646
8647 payload_capacity_bytes = get_memory_write_packet_size ();
8648
8649 /* The packet buffer will be large enough for the payload;
8650 get_memory_packet_size ensures this. */
8651 rs->buf[0] = '\0';
8652
8653 /* Compute the size of the actual payload by subtracting out the
8654 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8655
8656 payload_capacity_bytes -= strlen ("$,:#NN");
8657 if (!use_length)
8658 /* The comma won't be used. */
8659 payload_capacity_bytes += 1;
8660 payload_capacity_bytes -= strlen (header);
8661 payload_capacity_bytes -= hexnumlen (memaddr);
8662
8663 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8664
8665 strcat (rs->buf.data (), header);
8666 p = rs->buf.data () + strlen (header);
8667
8668 /* Compute a best guess of the number of bytes actually transfered. */
8669 if (packet_format == 'X')
8670 {
8671 /* Best guess at number of bytes that will fit. */
8672 todo_units = std::min (len_units,
8673 (ULONGEST) payload_capacity_bytes / unit_size);
8674 if (use_length)
8675 payload_capacity_bytes -= hexnumlen (todo_units);
8676 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8677 }
8678 else
8679 {
8680 /* Number of bytes that will fit. */
8681 todo_units
8682 = std::min (len_units,
8683 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8684 if (use_length)
8685 payload_capacity_bytes -= hexnumlen (todo_units);
8686 todo_units = std::min (todo_units,
8687 (payload_capacity_bytes / unit_size) / 2);
8688 }
8689
8690 if (todo_units <= 0)
8691 internal_error (__FILE__, __LINE__,
8692 _("minimum packet size too small to write data"));
8693
8694 /* If we already need another packet, then try to align the end
8695 of this packet to a useful boundary. */
8696 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8697 todo_units = align_for_efficient_write (todo_units, memaddr);
8698
8699 /* Append "<memaddr>". */
8700 memaddr = remote_address_masked (memaddr);
8701 p += hexnumstr (p, (ULONGEST) memaddr);
8702
8703 if (use_length)
8704 {
8705 /* Append ",". */
8706 *p++ = ',';
8707
8708 /* Append the length and retain its location and size. It may need to be
8709 adjusted once the packet body has been created. */
8710 plen = p;
8711 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8712 p += plenlen;
8713 }
8714
8715 /* Append ":". */
8716 *p++ = ':';
8717 *p = '\0';
8718
8719 /* Append the packet body. */
8720 if (packet_format == 'X')
8721 {
8722 /* Binary mode. Send target system values byte by byte, in
8723 increasing byte addresses. Only escape certain critical
8724 characters. */
8725 payload_length_bytes =
8726 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8727 &units_written, payload_capacity_bytes);
8728
8729 /* If not all TODO units fit, then we'll need another packet. Make
8730 a second try to keep the end of the packet aligned. Don't do
8731 this if the packet is tiny. */
8732 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8733 {
8734 int new_todo_units;
8735
8736 new_todo_units = align_for_efficient_write (units_written, memaddr);
8737
8738 if (new_todo_units != units_written)
8739 payload_length_bytes =
8740 remote_escape_output (myaddr, new_todo_units, unit_size,
8741 (gdb_byte *) p, &units_written,
8742 payload_capacity_bytes);
8743 }
8744
8745 p += payload_length_bytes;
8746 if (use_length && units_written < todo_units)
8747 {
8748 /* Escape chars have filled up the buffer prematurely,
8749 and we have actually sent fewer units than planned.
8750 Fix-up the length field of the packet. Use the same
8751 number of characters as before. */
8752 plen += hexnumnstr (plen, (ULONGEST) units_written,
8753 plenlen);
8754 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8755 }
8756 }
8757 else
8758 {
8759 /* Normal mode: Send target system values byte by byte, in
8760 increasing byte addresses. Each byte is encoded as a two hex
8761 value. */
8762 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8763 units_written = todo_units;
8764 }
8765
8766 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8767 getpkt (&rs->buf, 0);
8768
8769 if (rs->buf[0] == 'E')
8770 return TARGET_XFER_E_IO;
8771
8772 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8773 send fewer units than we'd planned. */
8774 *xfered_len_units = (ULONGEST) units_written;
8775 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8776 }
8777
8778 /* Write memory data directly to the remote machine.
8779 This does not inform the data cache; the data cache uses this.
8780 MEMADDR is the address in the remote memory space.
8781 MYADDR is the address of the buffer in our space.
8782 LEN is the number of bytes.
8783
8784 Return the transferred status, error or OK (an
8785 'enum target_xfer_status' value). Save the number of bytes
8786 transferred in *XFERED_LEN. Only transfer a single packet. */
8787
8788 target_xfer_status
8789 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8790 ULONGEST len, int unit_size,
8791 ULONGEST *xfered_len)
8792 {
8793 const char *packet_format = NULL;
8794
8795 /* Check whether the target supports binary download. */
8796 check_binary_download (memaddr);
8797
8798 switch (packet_support (PACKET_X))
8799 {
8800 case PACKET_ENABLE:
8801 packet_format = "X";
8802 break;
8803 case PACKET_DISABLE:
8804 packet_format = "M";
8805 break;
8806 case PACKET_SUPPORT_UNKNOWN:
8807 internal_error (__FILE__, __LINE__,
8808 _("remote_write_bytes: bad internal state"));
8809 default:
8810 internal_error (__FILE__, __LINE__, _("bad switch"));
8811 }
8812
8813 return remote_write_bytes_aux (packet_format,
8814 memaddr, myaddr, len, unit_size, xfered_len,
8815 packet_format[0], 1);
8816 }
8817
8818 /* Read memory data directly from the remote machine.
8819 This does not use the data cache; the data cache uses this.
8820 MEMADDR is the address in the remote memory space.
8821 MYADDR is the address of the buffer in our space.
8822 LEN_UNITS is the number of addressable memory units to read..
8823 UNIT_SIZE is the length in bytes of an addressable unit.
8824
8825 Return the transferred status, error or OK (an
8826 'enum target_xfer_status' value). Save the number of bytes
8827 transferred in *XFERED_LEN_UNITS.
8828
8829 See the comment of remote_write_bytes_aux for an example of
8830 memory read/write exchange between gdb and the stub. */
8831
8832 target_xfer_status
8833 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8834 ULONGEST len_units,
8835 int unit_size, ULONGEST *xfered_len_units)
8836 {
8837 struct remote_state *rs = get_remote_state ();
8838 int buf_size_bytes; /* Max size of packet output buffer. */
8839 char *p;
8840 int todo_units;
8841 int decoded_bytes;
8842
8843 buf_size_bytes = get_memory_read_packet_size ();
8844 /* The packet buffer will be large enough for the payload;
8845 get_memory_packet_size ensures this. */
8846
8847 /* Number of units that will fit. */
8848 todo_units = std::min (len_units,
8849 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8850
8851 /* Construct "m"<memaddr>","<len>". */
8852 memaddr = remote_address_masked (memaddr);
8853 p = rs->buf.data ();
8854 *p++ = 'm';
8855 p += hexnumstr (p, (ULONGEST) memaddr);
8856 *p++ = ',';
8857 p += hexnumstr (p, (ULONGEST) todo_units);
8858 *p = '\0';
8859 putpkt (rs->buf);
8860 getpkt (&rs->buf, 0);
8861 if (rs->buf[0] == 'E'
8862 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8863 && rs->buf[3] == '\0')
8864 return TARGET_XFER_E_IO;
8865 /* Reply describes memory byte by byte, each byte encoded as two hex
8866 characters. */
8867 p = rs->buf.data ();
8868 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8869 /* Return what we have. Let higher layers handle partial reads. */
8870 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8871 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8872 }
8873
8874 /* Using the set of read-only target sections of remote, read live
8875 read-only memory.
8876
8877 For interface/parameters/return description see target.h,
8878 to_xfer_partial. */
8879
8880 target_xfer_status
8881 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8882 ULONGEST memaddr,
8883 ULONGEST len,
8884 int unit_size,
8885 ULONGEST *xfered_len)
8886 {
8887 struct target_section *secp;
8888 struct target_section_table *table;
8889
8890 secp = target_section_by_addr (this, memaddr);
8891 if (secp != NULL
8892 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
8893 {
8894 struct target_section *p;
8895 ULONGEST memend = memaddr + len;
8896
8897 table = target_get_section_table (this);
8898
8899 for (p = table->sections; p < table->sections_end; p++)
8900 {
8901 if (memaddr >= p->addr)
8902 {
8903 if (memend <= p->endaddr)
8904 {
8905 /* Entire transfer is within this section. */
8906 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8907 xfered_len);
8908 }
8909 else if (memaddr >= p->endaddr)
8910 {
8911 /* This section ends before the transfer starts. */
8912 continue;
8913 }
8914 else
8915 {
8916 /* This section overlaps the transfer. Just do half. */
8917 len = p->endaddr - memaddr;
8918 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8919 xfered_len);
8920 }
8921 }
8922 }
8923 }
8924
8925 return TARGET_XFER_EOF;
8926 }
8927
8928 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8929 first if the requested memory is unavailable in traceframe.
8930 Otherwise, fall back to remote_read_bytes_1. */
8931
8932 target_xfer_status
8933 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8934 gdb_byte *myaddr, ULONGEST len, int unit_size,
8935 ULONGEST *xfered_len)
8936 {
8937 if (len == 0)
8938 return TARGET_XFER_EOF;
8939
8940 if (get_traceframe_number () != -1)
8941 {
8942 std::vector<mem_range> available;
8943
8944 /* If we fail to get the set of available memory, then the
8945 target does not support querying traceframe info, and so we
8946 attempt reading from the traceframe anyway (assuming the
8947 target implements the old QTro packet then). */
8948 if (traceframe_available_memory (&available, memaddr, len))
8949 {
8950 if (available.empty () || available[0].start != memaddr)
8951 {
8952 enum target_xfer_status res;
8953
8954 /* Don't read into the traceframe's available
8955 memory. */
8956 if (!available.empty ())
8957 {
8958 LONGEST oldlen = len;
8959
8960 len = available[0].start - memaddr;
8961 gdb_assert (len <= oldlen);
8962 }
8963
8964 /* This goes through the topmost target again. */
8965 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8966 len, unit_size, xfered_len);
8967 if (res == TARGET_XFER_OK)
8968 return TARGET_XFER_OK;
8969 else
8970 {
8971 /* No use trying further, we know some memory starting
8972 at MEMADDR isn't available. */
8973 *xfered_len = len;
8974 return (*xfered_len != 0) ?
8975 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8976 }
8977 }
8978
8979 /* Don't try to read more than how much is available, in
8980 case the target implements the deprecated QTro packet to
8981 cater for older GDBs (the target's knowledge of read-only
8982 sections may be outdated by now). */
8983 len = available[0].length;
8984 }
8985 }
8986
8987 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8988 }
8989
8990 \f
8991
8992 /* Sends a packet with content determined by the printf format string
8993 FORMAT and the remaining arguments, then gets the reply. Returns
8994 whether the packet was a success, a failure, or unknown. */
8995
8996 packet_result
8997 remote_target::remote_send_printf (const char *format, ...)
8998 {
8999 struct remote_state *rs = get_remote_state ();
9000 int max_size = get_remote_packet_size ();
9001 va_list ap;
9002
9003 va_start (ap, format);
9004
9005 rs->buf[0] = '\0';
9006 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9007
9008 va_end (ap);
9009
9010 if (size >= max_size)
9011 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9012
9013 if (putpkt (rs->buf) < 0)
9014 error (_("Communication problem with target."));
9015
9016 rs->buf[0] = '\0';
9017 getpkt (&rs->buf, 0);
9018
9019 return packet_check_result (rs->buf);
9020 }
9021
9022 /* Flash writing can take quite some time. We'll set
9023 effectively infinite timeout for flash operations.
9024 In future, we'll need to decide on a better approach. */
9025 static const int remote_flash_timeout = 1000;
9026
9027 void
9028 remote_target::flash_erase (ULONGEST address, LONGEST length)
9029 {
9030 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9031 enum packet_result ret;
9032 scoped_restore restore_timeout
9033 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9034
9035 ret = remote_send_printf ("vFlashErase:%s,%s",
9036 phex (address, addr_size),
9037 phex (length, 4));
9038 switch (ret)
9039 {
9040 case PACKET_UNKNOWN:
9041 error (_("Remote target does not support flash erase"));
9042 case PACKET_ERROR:
9043 error (_("Error erasing flash with vFlashErase packet"));
9044 default:
9045 break;
9046 }
9047 }
9048
9049 target_xfer_status
9050 remote_target::remote_flash_write (ULONGEST address,
9051 ULONGEST length, ULONGEST *xfered_len,
9052 const gdb_byte *data)
9053 {
9054 scoped_restore restore_timeout
9055 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9056 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9057 xfered_len,'X', 0);
9058 }
9059
9060 void
9061 remote_target::flash_done ()
9062 {
9063 int ret;
9064
9065 scoped_restore restore_timeout
9066 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9067
9068 ret = remote_send_printf ("vFlashDone");
9069
9070 switch (ret)
9071 {
9072 case PACKET_UNKNOWN:
9073 error (_("Remote target does not support vFlashDone"));
9074 case PACKET_ERROR:
9075 error (_("Error finishing flash operation"));
9076 default:
9077 break;
9078 }
9079 }
9080
9081 void
9082 remote_target::files_info ()
9083 {
9084 puts_filtered ("Debugging a target over a serial line.\n");
9085 }
9086 \f
9087 /* Stuff for dealing with the packets which are part of this protocol.
9088 See comment at top of file for details. */
9089
9090 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9091 error to higher layers. Called when a serial error is detected.
9092 The exception message is STRING, followed by a colon and a blank,
9093 the system error message for errno at function entry and final dot
9094 for output compatibility with throw_perror_with_name. */
9095
9096 static void
9097 unpush_and_perror (remote_target *target, const char *string)
9098 {
9099 int saved_errno = errno;
9100
9101 remote_unpush_target (target);
9102 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9103 safe_strerror (saved_errno));
9104 }
9105
9106 /* Read a single character from the remote end. The current quit
9107 handler is overridden to avoid quitting in the middle of packet
9108 sequence, as that would break communication with the remote server.
9109 See remote_serial_quit_handler for more detail. */
9110
9111 int
9112 remote_target::readchar (int timeout)
9113 {
9114 int ch;
9115 struct remote_state *rs = get_remote_state ();
9116
9117 {
9118 scoped_restore restore_quit_target
9119 = make_scoped_restore (&curr_quit_handler_target, this);
9120 scoped_restore restore_quit
9121 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9122
9123 rs->got_ctrlc_during_io = 0;
9124
9125 ch = serial_readchar (rs->remote_desc, timeout);
9126
9127 if (rs->got_ctrlc_during_io)
9128 set_quit_flag ();
9129 }
9130
9131 if (ch >= 0)
9132 return ch;
9133
9134 switch ((enum serial_rc) ch)
9135 {
9136 case SERIAL_EOF:
9137 remote_unpush_target (this);
9138 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9139 /* no return */
9140 case SERIAL_ERROR:
9141 unpush_and_perror (this, _("Remote communication error. "
9142 "Target disconnected."));
9143 /* no return */
9144 case SERIAL_TIMEOUT:
9145 break;
9146 }
9147 return ch;
9148 }
9149
9150 /* Wrapper for serial_write that closes the target and throws if
9151 writing fails. The current quit handler is overridden to avoid
9152 quitting in the middle of packet sequence, as that would break
9153 communication with the remote server. See
9154 remote_serial_quit_handler for more detail. */
9155
9156 void
9157 remote_target::remote_serial_write (const char *str, int len)
9158 {
9159 struct remote_state *rs = get_remote_state ();
9160
9161 scoped_restore restore_quit_target
9162 = make_scoped_restore (&curr_quit_handler_target, this);
9163 scoped_restore restore_quit
9164 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9165
9166 rs->got_ctrlc_during_io = 0;
9167
9168 if (serial_write (rs->remote_desc, str, len))
9169 {
9170 unpush_and_perror (this, _("Remote communication error. "
9171 "Target disconnected."));
9172 }
9173
9174 if (rs->got_ctrlc_during_io)
9175 set_quit_flag ();
9176 }
9177
9178 /* Return a string representing an escaped version of BUF, of len N.
9179 E.g. \n is converted to \\n, \t to \\t, etc. */
9180
9181 static std::string
9182 escape_buffer (const char *buf, int n)
9183 {
9184 string_file stb;
9185
9186 stb.putstrn (buf, n, '\\');
9187 return std::move (stb.string ());
9188 }
9189
9190 /* Display a null-terminated packet on stdout, for debugging, using C
9191 string notation. */
9192
9193 static void
9194 print_packet (const char *buf)
9195 {
9196 puts_filtered ("\"");
9197 fputstr_filtered (buf, '"', gdb_stdout);
9198 puts_filtered ("\"");
9199 }
9200
9201 int
9202 remote_target::putpkt (const char *buf)
9203 {
9204 return putpkt_binary (buf, strlen (buf));
9205 }
9206
9207 /* Wrapper around remote_target::putpkt to avoid exporting
9208 remote_target. */
9209
9210 int
9211 putpkt (remote_target *remote, const char *buf)
9212 {
9213 return remote->putpkt (buf);
9214 }
9215
9216 /* Send a packet to the remote machine, with error checking. The data
9217 of the packet is in BUF. The string in BUF can be at most
9218 get_remote_packet_size () - 5 to account for the $, # and checksum,
9219 and for a possible /0 if we are debugging (remote_debug) and want
9220 to print the sent packet as a string. */
9221
9222 int
9223 remote_target::putpkt_binary (const char *buf, int cnt)
9224 {
9225 struct remote_state *rs = get_remote_state ();
9226 int i;
9227 unsigned char csum = 0;
9228 gdb::def_vector<char> data (cnt + 6);
9229 char *buf2 = data.data ();
9230
9231 int ch;
9232 int tcount = 0;
9233 char *p;
9234
9235 /* Catch cases like trying to read memory or listing threads while
9236 we're waiting for a stop reply. The remote server wouldn't be
9237 ready to handle this request, so we'd hang and timeout. We don't
9238 have to worry about this in synchronous mode, because in that
9239 case it's not possible to issue a command while the target is
9240 running. This is not a problem in non-stop mode, because in that
9241 case, the stub is always ready to process serial input. */
9242 if (!target_is_non_stop_p ()
9243 && target_is_async_p ()
9244 && rs->waiting_for_stop_reply)
9245 {
9246 error (_("Cannot execute this command while the target is running.\n"
9247 "Use the \"interrupt\" command to stop the target\n"
9248 "and then try again."));
9249 }
9250
9251 /* We're sending out a new packet. Make sure we don't look at a
9252 stale cached response. */
9253 rs->cached_wait_status = 0;
9254
9255 /* Copy the packet into buffer BUF2, encapsulating it
9256 and giving it a checksum. */
9257
9258 p = buf2;
9259 *p++ = '$';
9260
9261 for (i = 0; i < cnt; i++)
9262 {
9263 csum += buf[i];
9264 *p++ = buf[i];
9265 }
9266 *p++ = '#';
9267 *p++ = tohex ((csum >> 4) & 0xf);
9268 *p++ = tohex (csum & 0xf);
9269
9270 /* Send it over and over until we get a positive ack. */
9271
9272 while (1)
9273 {
9274 int started_error_output = 0;
9275
9276 if (remote_debug)
9277 {
9278 *p = '\0';
9279
9280 int len = (int) (p - buf2);
9281 int max_chars;
9282
9283 if (remote_packet_max_chars < 0)
9284 max_chars = len;
9285 else
9286 max_chars = remote_packet_max_chars;
9287
9288 std::string str
9289 = escape_buffer (buf2, std::min (len, max_chars));
9290
9291 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9292
9293 if (len > max_chars)
9294 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9295 len - max_chars);
9296
9297 fprintf_unfiltered (gdb_stdlog, "...");
9298
9299 gdb_flush (gdb_stdlog);
9300 }
9301 remote_serial_write (buf2, p - buf2);
9302
9303 /* If this is a no acks version of the remote protocol, send the
9304 packet and move on. */
9305 if (rs->noack_mode)
9306 break;
9307
9308 /* Read until either a timeout occurs (-2) or '+' is read.
9309 Handle any notification that arrives in the mean time. */
9310 while (1)
9311 {
9312 ch = readchar (remote_timeout);
9313
9314 if (remote_debug)
9315 {
9316 switch (ch)
9317 {
9318 case '+':
9319 case '-':
9320 case SERIAL_TIMEOUT:
9321 case '$':
9322 case '%':
9323 if (started_error_output)
9324 {
9325 putchar_unfiltered ('\n');
9326 started_error_output = 0;
9327 }
9328 }
9329 }
9330
9331 switch (ch)
9332 {
9333 case '+':
9334 if (remote_debug)
9335 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9336 return 1;
9337 case '-':
9338 if (remote_debug)
9339 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9340 /* FALLTHROUGH */
9341 case SERIAL_TIMEOUT:
9342 tcount++;
9343 if (tcount > 3)
9344 return 0;
9345 break; /* Retransmit buffer. */
9346 case '$':
9347 {
9348 if (remote_debug)
9349 fprintf_unfiltered (gdb_stdlog,
9350 "Packet instead of Ack, ignoring it\n");
9351 /* It's probably an old response sent because an ACK
9352 was lost. Gobble up the packet and ack it so it
9353 doesn't get retransmitted when we resend this
9354 packet. */
9355 skip_frame ();
9356 remote_serial_write ("+", 1);
9357 continue; /* Now, go look for +. */
9358 }
9359
9360 case '%':
9361 {
9362 int val;
9363
9364 /* If we got a notification, handle it, and go back to looking
9365 for an ack. */
9366 /* We've found the start of a notification. Now
9367 collect the data. */
9368 val = read_frame (&rs->buf);
9369 if (val >= 0)
9370 {
9371 if (remote_debug)
9372 {
9373 std::string str = escape_buffer (rs->buf.data (), val);
9374
9375 fprintf_unfiltered (gdb_stdlog,
9376 " Notification received: %s\n",
9377 str.c_str ());
9378 }
9379 handle_notification (rs->notif_state, rs->buf.data ());
9380 /* We're in sync now, rewait for the ack. */
9381 tcount = 0;
9382 }
9383 else
9384 {
9385 if (remote_debug)
9386 {
9387 if (!started_error_output)
9388 {
9389 started_error_output = 1;
9390 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9391 }
9392 fputc_unfiltered (ch & 0177, gdb_stdlog);
9393 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9394 }
9395 }
9396 continue;
9397 }
9398 /* fall-through */
9399 default:
9400 if (remote_debug)
9401 {
9402 if (!started_error_output)
9403 {
9404 started_error_output = 1;
9405 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9406 }
9407 fputc_unfiltered (ch & 0177, gdb_stdlog);
9408 }
9409 continue;
9410 }
9411 break; /* Here to retransmit. */
9412 }
9413
9414 #if 0
9415 /* This is wrong. If doing a long backtrace, the user should be
9416 able to get out next time we call QUIT, without anything as
9417 violent as interrupt_query. If we want to provide a way out of
9418 here without getting to the next QUIT, it should be based on
9419 hitting ^C twice as in remote_wait. */
9420 if (quit_flag)
9421 {
9422 quit_flag = 0;
9423 interrupt_query ();
9424 }
9425 #endif
9426 }
9427
9428 return 0;
9429 }
9430
9431 /* Come here after finding the start of a frame when we expected an
9432 ack. Do our best to discard the rest of this packet. */
9433
9434 void
9435 remote_target::skip_frame ()
9436 {
9437 int c;
9438
9439 while (1)
9440 {
9441 c = readchar (remote_timeout);
9442 switch (c)
9443 {
9444 case SERIAL_TIMEOUT:
9445 /* Nothing we can do. */
9446 return;
9447 case '#':
9448 /* Discard the two bytes of checksum and stop. */
9449 c = readchar (remote_timeout);
9450 if (c >= 0)
9451 c = readchar (remote_timeout);
9452
9453 return;
9454 case '*': /* Run length encoding. */
9455 /* Discard the repeat count. */
9456 c = readchar (remote_timeout);
9457 if (c < 0)
9458 return;
9459 break;
9460 default:
9461 /* A regular character. */
9462 break;
9463 }
9464 }
9465 }
9466
9467 /* Come here after finding the start of the frame. Collect the rest
9468 into *BUF, verifying the checksum, length, and handling run-length
9469 compression. NUL terminate the buffer. If there is not enough room,
9470 expand *BUF.
9471
9472 Returns -1 on error, number of characters in buffer (ignoring the
9473 trailing NULL) on success. (could be extended to return one of the
9474 SERIAL status indications). */
9475
9476 long
9477 remote_target::read_frame (gdb::char_vector *buf_p)
9478 {
9479 unsigned char csum;
9480 long bc;
9481 int c;
9482 char *buf = buf_p->data ();
9483 struct remote_state *rs = get_remote_state ();
9484
9485 csum = 0;
9486 bc = 0;
9487
9488 while (1)
9489 {
9490 c = readchar (remote_timeout);
9491 switch (c)
9492 {
9493 case SERIAL_TIMEOUT:
9494 if (remote_debug)
9495 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9496 return -1;
9497 case '$':
9498 if (remote_debug)
9499 fputs_filtered ("Saw new packet start in middle of old one\n",
9500 gdb_stdlog);
9501 return -1; /* Start a new packet, count retries. */
9502 case '#':
9503 {
9504 unsigned char pktcsum;
9505 int check_0 = 0;
9506 int check_1 = 0;
9507
9508 buf[bc] = '\0';
9509
9510 check_0 = readchar (remote_timeout);
9511 if (check_0 >= 0)
9512 check_1 = readchar (remote_timeout);
9513
9514 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9515 {
9516 if (remote_debug)
9517 fputs_filtered ("Timeout in checksum, retrying\n",
9518 gdb_stdlog);
9519 return -1;
9520 }
9521 else if (check_0 < 0 || check_1 < 0)
9522 {
9523 if (remote_debug)
9524 fputs_filtered ("Communication error in checksum\n",
9525 gdb_stdlog);
9526 return -1;
9527 }
9528
9529 /* Don't recompute the checksum; with no ack packets we
9530 don't have any way to indicate a packet retransmission
9531 is necessary. */
9532 if (rs->noack_mode)
9533 return bc;
9534
9535 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9536 if (csum == pktcsum)
9537 return bc;
9538
9539 if (remote_debug)
9540 {
9541 std::string str = escape_buffer (buf, bc);
9542
9543 fprintf_unfiltered (gdb_stdlog,
9544 "Bad checksum, sentsum=0x%x, "
9545 "csum=0x%x, buf=%s\n",
9546 pktcsum, csum, str.c_str ());
9547 }
9548 /* Number of characters in buffer ignoring trailing
9549 NULL. */
9550 return -1;
9551 }
9552 case '*': /* Run length encoding. */
9553 {
9554 int repeat;
9555
9556 csum += c;
9557 c = readchar (remote_timeout);
9558 csum += c;
9559 repeat = c - ' ' + 3; /* Compute repeat count. */
9560
9561 /* The character before ``*'' is repeated. */
9562
9563 if (repeat > 0 && repeat <= 255 && bc > 0)
9564 {
9565 if (bc + repeat - 1 >= buf_p->size () - 1)
9566 {
9567 /* Make some more room in the buffer. */
9568 buf_p->resize (buf_p->size () + repeat);
9569 buf = buf_p->data ();
9570 }
9571
9572 memset (&buf[bc], buf[bc - 1], repeat);
9573 bc += repeat;
9574 continue;
9575 }
9576
9577 buf[bc] = '\0';
9578 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9579 return -1;
9580 }
9581 default:
9582 if (bc >= buf_p->size () - 1)
9583 {
9584 /* Make some more room in the buffer. */
9585 buf_p->resize (buf_p->size () * 2);
9586 buf = buf_p->data ();
9587 }
9588
9589 buf[bc++] = c;
9590 csum += c;
9591 continue;
9592 }
9593 }
9594 }
9595
9596 /* Set this to the maximum number of seconds to wait instead of waiting forever
9597 in target_wait(). If this timer times out, then it generates an error and
9598 the command is aborted. This replaces most of the need for timeouts in the
9599 GDB test suite, and makes it possible to distinguish between a hung target
9600 and one with slow communications. */
9601
9602 static int watchdog = 0;
9603 static void
9604 show_watchdog (struct ui_file *file, int from_tty,
9605 struct cmd_list_element *c, const char *value)
9606 {
9607 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9608 }
9609
9610 /* Read a packet from the remote machine, with error checking, and
9611 store it in *BUF. Resize *BUF if necessary to hold the result. If
9612 FOREVER, wait forever rather than timing out; this is used (in
9613 synchronous mode) to wait for a target that is is executing user
9614 code to stop. */
9615 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9616 don't have to change all the calls to getpkt to deal with the
9617 return value, because at the moment I don't know what the right
9618 thing to do it for those. */
9619
9620 void
9621 remote_target::getpkt (gdb::char_vector *buf, int forever)
9622 {
9623 getpkt_sane (buf, forever);
9624 }
9625
9626
9627 /* Read a packet from the remote machine, with error checking, and
9628 store it in *BUF. Resize *BUF if necessary to hold the result. If
9629 FOREVER, wait forever rather than timing out; this is used (in
9630 synchronous mode) to wait for a target that is is executing user
9631 code to stop. If FOREVER == 0, this function is allowed to time
9632 out gracefully and return an indication of this to the caller.
9633 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9634 consider receiving a notification enough reason to return to the
9635 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9636 holds a notification or not (a regular packet). */
9637
9638 int
9639 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9640 int forever, int expecting_notif,
9641 int *is_notif)
9642 {
9643 struct remote_state *rs = get_remote_state ();
9644 int c;
9645 int tries;
9646 int timeout;
9647 int val = -1;
9648
9649 /* We're reading a new response. Make sure we don't look at a
9650 previously cached response. */
9651 rs->cached_wait_status = 0;
9652
9653 strcpy (buf->data (), "timeout");
9654
9655 if (forever)
9656 timeout = watchdog > 0 ? watchdog : -1;
9657 else if (expecting_notif)
9658 timeout = 0; /* There should already be a char in the buffer. If
9659 not, bail out. */
9660 else
9661 timeout = remote_timeout;
9662
9663 #define MAX_TRIES 3
9664
9665 /* Process any number of notifications, and then return when
9666 we get a packet. */
9667 for (;;)
9668 {
9669 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9670 times. */
9671 for (tries = 1; tries <= MAX_TRIES; tries++)
9672 {
9673 /* This can loop forever if the remote side sends us
9674 characters continuously, but if it pauses, we'll get
9675 SERIAL_TIMEOUT from readchar because of timeout. Then
9676 we'll count that as a retry.
9677
9678 Note that even when forever is set, we will only wait
9679 forever prior to the start of a packet. After that, we
9680 expect characters to arrive at a brisk pace. They should
9681 show up within remote_timeout intervals. */
9682 do
9683 c = readchar (timeout);
9684 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9685
9686 if (c == SERIAL_TIMEOUT)
9687 {
9688 if (expecting_notif)
9689 return -1; /* Don't complain, it's normal to not get
9690 anything in this case. */
9691
9692 if (forever) /* Watchdog went off? Kill the target. */
9693 {
9694 remote_unpush_target (this);
9695 throw_error (TARGET_CLOSE_ERROR,
9696 _("Watchdog timeout has expired. "
9697 "Target detached."));
9698 }
9699 if (remote_debug)
9700 fputs_filtered ("Timed out.\n", gdb_stdlog);
9701 }
9702 else
9703 {
9704 /* We've found the start of a packet or notification.
9705 Now collect the data. */
9706 val = read_frame (buf);
9707 if (val >= 0)
9708 break;
9709 }
9710
9711 remote_serial_write ("-", 1);
9712 }
9713
9714 if (tries > MAX_TRIES)
9715 {
9716 /* We have tried hard enough, and just can't receive the
9717 packet/notification. Give up. */
9718 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9719
9720 /* Skip the ack char if we're in no-ack mode. */
9721 if (!rs->noack_mode)
9722 remote_serial_write ("+", 1);
9723 return -1;
9724 }
9725
9726 /* If we got an ordinary packet, return that to our caller. */
9727 if (c == '$')
9728 {
9729 if (remote_debug)
9730 {
9731 int max_chars;
9732
9733 if (remote_packet_max_chars < 0)
9734 max_chars = val;
9735 else
9736 max_chars = remote_packet_max_chars;
9737
9738 std::string str
9739 = escape_buffer (buf->data (),
9740 std::min (val, max_chars));
9741
9742 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9743 str.c_str ());
9744
9745 if (val > max_chars)
9746 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9747 val - max_chars);
9748
9749 fprintf_unfiltered (gdb_stdlog, "\n");
9750 }
9751
9752 /* Skip the ack char if we're in no-ack mode. */
9753 if (!rs->noack_mode)
9754 remote_serial_write ("+", 1);
9755 if (is_notif != NULL)
9756 *is_notif = 0;
9757 return val;
9758 }
9759
9760 /* If we got a notification, handle it, and go back to looking
9761 for a packet. */
9762 else
9763 {
9764 gdb_assert (c == '%');
9765
9766 if (remote_debug)
9767 {
9768 std::string str = escape_buffer (buf->data (), val);
9769
9770 fprintf_unfiltered (gdb_stdlog,
9771 " Notification received: %s\n",
9772 str.c_str ());
9773 }
9774 if (is_notif != NULL)
9775 *is_notif = 1;
9776
9777 handle_notification (rs->notif_state, buf->data ());
9778
9779 /* Notifications require no acknowledgement. */
9780
9781 if (expecting_notif)
9782 return val;
9783 }
9784 }
9785 }
9786
9787 int
9788 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9789 {
9790 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9791 }
9792
9793 int
9794 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9795 int *is_notif)
9796 {
9797 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9798 }
9799
9800 /* Kill any new fork children of process PID that haven't been
9801 processed by follow_fork. */
9802
9803 void
9804 remote_target::kill_new_fork_children (int pid)
9805 {
9806 remote_state *rs = get_remote_state ();
9807 struct notif_client *notif = &notif_client_stop;
9808
9809 /* Kill the fork child threads of any threads in process PID
9810 that are stopped at a fork event. */
9811 for (thread_info *thread : all_non_exited_threads (this))
9812 {
9813 struct target_waitstatus *ws = &thread->pending_follow;
9814
9815 if (is_pending_fork_parent (ws, pid, thread->ptid))
9816 {
9817 int child_pid = ws->value.related_pid.pid ();
9818 int res;
9819
9820 res = remote_vkill (child_pid);
9821 if (res != 0)
9822 error (_("Can't kill fork child process %d"), child_pid);
9823 }
9824 }
9825
9826 /* Check for any pending fork events (not reported or processed yet)
9827 in process PID and kill those fork child threads as well. */
9828 remote_notif_get_pending_events (notif);
9829 for (auto &event : rs->stop_reply_queue)
9830 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9831 {
9832 int child_pid = event->ws.value.related_pid.pid ();
9833 int res;
9834
9835 res = remote_vkill (child_pid);
9836 if (res != 0)
9837 error (_("Can't kill fork child process %d"), child_pid);
9838 }
9839 }
9840
9841 \f
9842 /* Target hook to kill the current inferior. */
9843
9844 void
9845 remote_target::kill ()
9846 {
9847 int res = -1;
9848 int pid = inferior_ptid.pid ();
9849 struct remote_state *rs = get_remote_state ();
9850
9851 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9852 {
9853 /* If we're stopped while forking and we haven't followed yet,
9854 kill the child task. We need to do this before killing the
9855 parent task because if this is a vfork then the parent will
9856 be sleeping. */
9857 kill_new_fork_children (pid);
9858
9859 res = remote_vkill (pid);
9860 if (res == 0)
9861 {
9862 target_mourn_inferior (inferior_ptid);
9863 return;
9864 }
9865 }
9866
9867 /* If we are in 'target remote' mode and we are killing the only
9868 inferior, then we will tell gdbserver to exit and unpush the
9869 target. */
9870 if (res == -1 && !remote_multi_process_p (rs)
9871 && number_of_live_inferiors (this) == 1)
9872 {
9873 remote_kill_k ();
9874
9875 /* We've killed the remote end, we get to mourn it. If we are
9876 not in extended mode, mourning the inferior also unpushes
9877 remote_ops from the target stack, which closes the remote
9878 connection. */
9879 target_mourn_inferior (inferior_ptid);
9880
9881 return;
9882 }
9883
9884 error (_("Can't kill process"));
9885 }
9886
9887 /* Send a kill request to the target using the 'vKill' packet. */
9888
9889 int
9890 remote_target::remote_vkill (int pid)
9891 {
9892 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9893 return -1;
9894
9895 remote_state *rs = get_remote_state ();
9896
9897 /* Tell the remote target to detach. */
9898 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9899 putpkt (rs->buf);
9900 getpkt (&rs->buf, 0);
9901
9902 switch (packet_ok (rs->buf,
9903 &remote_protocol_packets[PACKET_vKill]))
9904 {
9905 case PACKET_OK:
9906 return 0;
9907 case PACKET_ERROR:
9908 return 1;
9909 case PACKET_UNKNOWN:
9910 return -1;
9911 default:
9912 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9913 }
9914 }
9915
9916 /* Send a kill request to the target using the 'k' packet. */
9917
9918 void
9919 remote_target::remote_kill_k ()
9920 {
9921 /* Catch errors so the user can quit from gdb even when we
9922 aren't on speaking terms with the remote system. */
9923 try
9924 {
9925 putpkt ("k");
9926 }
9927 catch (const gdb_exception_error &ex)
9928 {
9929 if (ex.error == TARGET_CLOSE_ERROR)
9930 {
9931 /* If we got an (EOF) error that caused the target
9932 to go away, then we're done, that's what we wanted.
9933 "k" is susceptible to cause a premature EOF, given
9934 that the remote server isn't actually required to
9935 reply to "k", and it can happen that it doesn't
9936 even get to reply ACK to the "k". */
9937 return;
9938 }
9939
9940 /* Otherwise, something went wrong. We didn't actually kill
9941 the target. Just propagate the exception, and let the
9942 user or higher layers decide what to do. */
9943 throw;
9944 }
9945 }
9946
9947 void
9948 remote_target::mourn_inferior ()
9949 {
9950 struct remote_state *rs = get_remote_state ();
9951
9952 /* We're no longer interested in notification events of an inferior
9953 that exited or was killed/detached. */
9954 discard_pending_stop_replies (current_inferior ());
9955
9956 /* In 'target remote' mode with one inferior, we close the connection. */
9957 if (!rs->extended && number_of_live_inferiors (this) <= 1)
9958 {
9959 remote_unpush_target (this);
9960 return;
9961 }
9962
9963 /* In case we got here due to an error, but we're going to stay
9964 connected. */
9965 rs->waiting_for_stop_reply = 0;
9966
9967 /* If the current general thread belonged to the process we just
9968 detached from or has exited, the remote side current general
9969 thread becomes undefined. Considering a case like this:
9970
9971 - We just got here due to a detach.
9972 - The process that we're detaching from happens to immediately
9973 report a global breakpoint being hit in non-stop mode, in the
9974 same thread we had selected before.
9975 - GDB attaches to this process again.
9976 - This event happens to be the next event we handle.
9977
9978 GDB would consider that the current general thread didn't need to
9979 be set on the stub side (with Hg), since for all it knew,
9980 GENERAL_THREAD hadn't changed.
9981
9982 Notice that although in all-stop mode, the remote server always
9983 sets the current thread to the thread reporting the stop event,
9984 that doesn't happen in non-stop mode; in non-stop, the stub *must
9985 not* change the current thread when reporting a breakpoint hit,
9986 due to the decoupling of event reporting and event handling.
9987
9988 To keep things simple, we always invalidate our notion of the
9989 current thread. */
9990 record_currthread (rs, minus_one_ptid);
9991
9992 /* Call common code to mark the inferior as not running. */
9993 generic_mourn_inferior ();
9994 }
9995
9996 bool
9997 extended_remote_target::supports_disable_randomization ()
9998 {
9999 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10000 }
10001
10002 void
10003 remote_target::extended_remote_disable_randomization (int val)
10004 {
10005 struct remote_state *rs = get_remote_state ();
10006 char *reply;
10007
10008 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10009 "QDisableRandomization:%x", val);
10010 putpkt (rs->buf);
10011 reply = remote_get_noisy_reply ();
10012 if (*reply == '\0')
10013 error (_("Target does not support QDisableRandomization."));
10014 if (strcmp (reply, "OK") != 0)
10015 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10016 }
10017
10018 int
10019 remote_target::extended_remote_run (const std::string &args)
10020 {
10021 struct remote_state *rs = get_remote_state ();
10022 int len;
10023 const char *remote_exec_file = get_remote_exec_file ();
10024
10025 /* If the user has disabled vRun support, or we have detected that
10026 support is not available, do not try it. */
10027 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10028 return -1;
10029
10030 strcpy (rs->buf.data (), "vRun;");
10031 len = strlen (rs->buf.data ());
10032
10033 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10034 error (_("Remote file name too long for run packet"));
10035 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10036 strlen (remote_exec_file));
10037
10038 if (!args.empty ())
10039 {
10040 int i;
10041
10042 gdb_argv argv (args.c_str ());
10043 for (i = 0; argv[i] != NULL; i++)
10044 {
10045 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10046 error (_("Argument list too long for run packet"));
10047 rs->buf[len++] = ';';
10048 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10049 strlen (argv[i]));
10050 }
10051 }
10052
10053 rs->buf[len++] = '\0';
10054
10055 putpkt (rs->buf);
10056 getpkt (&rs->buf, 0);
10057
10058 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10059 {
10060 case PACKET_OK:
10061 /* We have a wait response. All is well. */
10062 return 0;
10063 case PACKET_UNKNOWN:
10064 return -1;
10065 case PACKET_ERROR:
10066 if (remote_exec_file[0] == '\0')
10067 error (_("Running the default executable on the remote target failed; "
10068 "try \"set remote exec-file\"?"));
10069 else
10070 error (_("Running \"%s\" on the remote target failed"),
10071 remote_exec_file);
10072 default:
10073 gdb_assert_not_reached (_("bad switch"));
10074 }
10075 }
10076
10077 /* Helper function to send set/unset environment packets. ACTION is
10078 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10079 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10080 sent. */
10081
10082 void
10083 remote_target::send_environment_packet (const char *action,
10084 const char *packet,
10085 const char *value)
10086 {
10087 remote_state *rs = get_remote_state ();
10088
10089 /* Convert the environment variable to an hex string, which
10090 is the best format to be transmitted over the wire. */
10091 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10092 strlen (value));
10093
10094 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10095 "%s:%s", packet, encoded_value.c_str ());
10096
10097 putpkt (rs->buf);
10098 getpkt (&rs->buf, 0);
10099 if (strcmp (rs->buf.data (), "OK") != 0)
10100 warning (_("Unable to %s environment variable '%s' on remote."),
10101 action, value);
10102 }
10103
10104 /* Helper function to handle the QEnvironment* packets. */
10105
10106 void
10107 remote_target::extended_remote_environment_support ()
10108 {
10109 remote_state *rs = get_remote_state ();
10110
10111 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10112 {
10113 putpkt ("QEnvironmentReset");
10114 getpkt (&rs->buf, 0);
10115 if (strcmp (rs->buf.data (), "OK") != 0)
10116 warning (_("Unable to reset environment on remote."));
10117 }
10118
10119 gdb_environ *e = &current_inferior ()->environment;
10120
10121 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10122 for (const std::string &el : e->user_set_env ())
10123 send_environment_packet ("set", "QEnvironmentHexEncoded",
10124 el.c_str ());
10125
10126 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10127 for (const std::string &el : e->user_unset_env ())
10128 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10129 }
10130
10131 /* Helper function to set the current working directory for the
10132 inferior in the remote target. */
10133
10134 void
10135 remote_target::extended_remote_set_inferior_cwd ()
10136 {
10137 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10138 {
10139 const char *inferior_cwd = get_inferior_cwd ();
10140 remote_state *rs = get_remote_state ();
10141
10142 if (inferior_cwd != NULL)
10143 {
10144 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10145 strlen (inferior_cwd));
10146
10147 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10148 "QSetWorkingDir:%s", hexpath.c_str ());
10149 }
10150 else
10151 {
10152 /* An empty inferior_cwd means that the user wants us to
10153 reset the remote server's inferior's cwd. */
10154 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10155 "QSetWorkingDir:");
10156 }
10157
10158 putpkt (rs->buf);
10159 getpkt (&rs->buf, 0);
10160 if (packet_ok (rs->buf,
10161 &remote_protocol_packets[PACKET_QSetWorkingDir])
10162 != PACKET_OK)
10163 error (_("\
10164 Remote replied unexpectedly while setting the inferior's working\n\
10165 directory: %s"),
10166 rs->buf.data ());
10167
10168 }
10169 }
10170
10171 /* In the extended protocol we want to be able to do things like
10172 "run" and have them basically work as expected. So we need
10173 a special create_inferior function. We support changing the
10174 executable file and the command line arguments, but not the
10175 environment. */
10176
10177 void
10178 extended_remote_target::create_inferior (const char *exec_file,
10179 const std::string &args,
10180 char **env, int from_tty)
10181 {
10182 int run_worked;
10183 char *stop_reply;
10184 struct remote_state *rs = get_remote_state ();
10185 const char *remote_exec_file = get_remote_exec_file ();
10186
10187 /* If running asynchronously, register the target file descriptor
10188 with the event loop. */
10189 if (target_can_async_p ())
10190 target_async (1);
10191
10192 /* Disable address space randomization if requested (and supported). */
10193 if (supports_disable_randomization ())
10194 extended_remote_disable_randomization (disable_randomization);
10195
10196 /* If startup-with-shell is on, we inform gdbserver to start the
10197 remote inferior using a shell. */
10198 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10199 {
10200 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10201 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10202 putpkt (rs->buf);
10203 getpkt (&rs->buf, 0);
10204 if (strcmp (rs->buf.data (), "OK") != 0)
10205 error (_("\
10206 Remote replied unexpectedly while setting startup-with-shell: %s"),
10207 rs->buf.data ());
10208 }
10209
10210 extended_remote_environment_support ();
10211
10212 extended_remote_set_inferior_cwd ();
10213
10214 /* Now restart the remote server. */
10215 run_worked = extended_remote_run (args) != -1;
10216 if (!run_worked)
10217 {
10218 /* vRun was not supported. Fail if we need it to do what the
10219 user requested. */
10220 if (remote_exec_file[0])
10221 error (_("Remote target does not support \"set remote exec-file\""));
10222 if (!args.empty ())
10223 error (_("Remote target does not support \"set args\" or run ARGS"));
10224
10225 /* Fall back to "R". */
10226 extended_remote_restart ();
10227 }
10228
10229 /* vRun's success return is a stop reply. */
10230 stop_reply = run_worked ? rs->buf.data () : NULL;
10231 add_current_inferior_and_thread (stop_reply);
10232
10233 /* Get updated offsets, if the stub uses qOffsets. */
10234 get_offsets ();
10235 }
10236 \f
10237
10238 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10239 the list of conditions (in agent expression bytecode format), if any, the
10240 target needs to evaluate. The output is placed into the packet buffer
10241 started from BUF and ended at BUF_END. */
10242
10243 static int
10244 remote_add_target_side_condition (struct gdbarch *gdbarch,
10245 struct bp_target_info *bp_tgt, char *buf,
10246 char *buf_end)
10247 {
10248 if (bp_tgt->conditions.empty ())
10249 return 0;
10250
10251 buf += strlen (buf);
10252 xsnprintf (buf, buf_end - buf, "%s", ";");
10253 buf++;
10254
10255 /* Send conditions to the target. */
10256 for (agent_expr *aexpr : bp_tgt->conditions)
10257 {
10258 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10259 buf += strlen (buf);
10260 for (int i = 0; i < aexpr->len; ++i)
10261 buf = pack_hex_byte (buf, aexpr->buf[i]);
10262 *buf = '\0';
10263 }
10264 return 0;
10265 }
10266
10267 static void
10268 remote_add_target_side_commands (struct gdbarch *gdbarch,
10269 struct bp_target_info *bp_tgt, char *buf)
10270 {
10271 if (bp_tgt->tcommands.empty ())
10272 return;
10273
10274 buf += strlen (buf);
10275
10276 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10277 buf += strlen (buf);
10278
10279 /* Concatenate all the agent expressions that are commands into the
10280 cmds parameter. */
10281 for (agent_expr *aexpr : bp_tgt->tcommands)
10282 {
10283 sprintf (buf, "X%x,", aexpr->len);
10284 buf += strlen (buf);
10285 for (int i = 0; i < aexpr->len; ++i)
10286 buf = pack_hex_byte (buf, aexpr->buf[i]);
10287 *buf = '\0';
10288 }
10289 }
10290
10291 /* Insert a breakpoint. On targets that have software breakpoint
10292 support, we ask the remote target to do the work; on targets
10293 which don't, we insert a traditional memory breakpoint. */
10294
10295 int
10296 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10297 struct bp_target_info *bp_tgt)
10298 {
10299 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10300 If it succeeds, then set the support to PACKET_ENABLE. If it
10301 fails, and the user has explicitly requested the Z support then
10302 report an error, otherwise, mark it disabled and go on. */
10303
10304 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10305 {
10306 CORE_ADDR addr = bp_tgt->reqstd_address;
10307 struct remote_state *rs;
10308 char *p, *endbuf;
10309
10310 /* Make sure the remote is pointing at the right process, if
10311 necessary. */
10312 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10313 set_general_process ();
10314
10315 rs = get_remote_state ();
10316 p = rs->buf.data ();
10317 endbuf = p + get_remote_packet_size ();
10318
10319 *(p++) = 'Z';
10320 *(p++) = '0';
10321 *(p++) = ',';
10322 addr = (ULONGEST) remote_address_masked (addr);
10323 p += hexnumstr (p, addr);
10324 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10325
10326 if (supports_evaluation_of_breakpoint_conditions ())
10327 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10328
10329 if (can_run_breakpoint_commands ())
10330 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10331
10332 putpkt (rs->buf);
10333 getpkt (&rs->buf, 0);
10334
10335 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10336 {
10337 case PACKET_ERROR:
10338 return -1;
10339 case PACKET_OK:
10340 return 0;
10341 case PACKET_UNKNOWN:
10342 break;
10343 }
10344 }
10345
10346 /* If this breakpoint has target-side commands but this stub doesn't
10347 support Z0 packets, throw error. */
10348 if (!bp_tgt->tcommands.empty ())
10349 throw_error (NOT_SUPPORTED_ERROR, _("\
10350 Target doesn't support breakpoints that have target side commands."));
10351
10352 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10353 }
10354
10355 int
10356 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10357 struct bp_target_info *bp_tgt,
10358 enum remove_bp_reason reason)
10359 {
10360 CORE_ADDR addr = bp_tgt->placed_address;
10361 struct remote_state *rs = get_remote_state ();
10362
10363 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10364 {
10365 char *p = rs->buf.data ();
10366 char *endbuf = p + get_remote_packet_size ();
10367
10368 /* Make sure the remote is pointing at the right process, if
10369 necessary. */
10370 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10371 set_general_process ();
10372
10373 *(p++) = 'z';
10374 *(p++) = '0';
10375 *(p++) = ',';
10376
10377 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10378 p += hexnumstr (p, addr);
10379 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10380
10381 putpkt (rs->buf);
10382 getpkt (&rs->buf, 0);
10383
10384 return (rs->buf[0] == 'E');
10385 }
10386
10387 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10388 }
10389
10390 static enum Z_packet_type
10391 watchpoint_to_Z_packet (int type)
10392 {
10393 switch (type)
10394 {
10395 case hw_write:
10396 return Z_PACKET_WRITE_WP;
10397 break;
10398 case hw_read:
10399 return Z_PACKET_READ_WP;
10400 break;
10401 case hw_access:
10402 return Z_PACKET_ACCESS_WP;
10403 break;
10404 default:
10405 internal_error (__FILE__, __LINE__,
10406 _("hw_bp_to_z: bad watchpoint type %d"), type);
10407 }
10408 }
10409
10410 int
10411 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10412 enum target_hw_bp_type type, struct expression *cond)
10413 {
10414 struct remote_state *rs = get_remote_state ();
10415 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10416 char *p;
10417 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10418
10419 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10420 return 1;
10421
10422 /* Make sure the remote is pointing at the right process, if
10423 necessary. */
10424 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10425 set_general_process ();
10426
10427 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10428 p = strchr (rs->buf.data (), '\0');
10429 addr = remote_address_masked (addr);
10430 p += hexnumstr (p, (ULONGEST) addr);
10431 xsnprintf (p, endbuf - p, ",%x", len);
10432
10433 putpkt (rs->buf);
10434 getpkt (&rs->buf, 0);
10435
10436 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10437 {
10438 case PACKET_ERROR:
10439 return -1;
10440 case PACKET_UNKNOWN:
10441 return 1;
10442 case PACKET_OK:
10443 return 0;
10444 }
10445 internal_error (__FILE__, __LINE__,
10446 _("remote_insert_watchpoint: reached end of function"));
10447 }
10448
10449 bool
10450 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10451 CORE_ADDR start, int length)
10452 {
10453 CORE_ADDR diff = remote_address_masked (addr - start);
10454
10455 return diff < length;
10456 }
10457
10458
10459 int
10460 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10461 enum target_hw_bp_type type, struct expression *cond)
10462 {
10463 struct remote_state *rs = get_remote_state ();
10464 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10465 char *p;
10466 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10467
10468 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10469 return -1;
10470
10471 /* Make sure the remote is pointing at the right process, if
10472 necessary. */
10473 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10474 set_general_process ();
10475
10476 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10477 p = strchr (rs->buf.data (), '\0');
10478 addr = remote_address_masked (addr);
10479 p += hexnumstr (p, (ULONGEST) addr);
10480 xsnprintf (p, endbuf - p, ",%x", len);
10481 putpkt (rs->buf);
10482 getpkt (&rs->buf, 0);
10483
10484 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10485 {
10486 case PACKET_ERROR:
10487 case PACKET_UNKNOWN:
10488 return -1;
10489 case PACKET_OK:
10490 return 0;
10491 }
10492 internal_error (__FILE__, __LINE__,
10493 _("remote_remove_watchpoint: reached end of function"));
10494 }
10495
10496
10497 static int remote_hw_watchpoint_limit = -1;
10498 static int remote_hw_watchpoint_length_limit = -1;
10499 static int remote_hw_breakpoint_limit = -1;
10500
10501 int
10502 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10503 {
10504 if (remote_hw_watchpoint_length_limit == 0)
10505 return 0;
10506 else if (remote_hw_watchpoint_length_limit < 0)
10507 return 1;
10508 else if (len <= remote_hw_watchpoint_length_limit)
10509 return 1;
10510 else
10511 return 0;
10512 }
10513
10514 int
10515 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10516 {
10517 if (type == bp_hardware_breakpoint)
10518 {
10519 if (remote_hw_breakpoint_limit == 0)
10520 return 0;
10521 else if (remote_hw_breakpoint_limit < 0)
10522 return 1;
10523 else if (cnt <= remote_hw_breakpoint_limit)
10524 return 1;
10525 }
10526 else
10527 {
10528 if (remote_hw_watchpoint_limit == 0)
10529 return 0;
10530 else if (remote_hw_watchpoint_limit < 0)
10531 return 1;
10532 else if (ot)
10533 return -1;
10534 else if (cnt <= remote_hw_watchpoint_limit)
10535 return 1;
10536 }
10537 return -1;
10538 }
10539
10540 /* The to_stopped_by_sw_breakpoint method of target remote. */
10541
10542 bool
10543 remote_target::stopped_by_sw_breakpoint ()
10544 {
10545 struct thread_info *thread = inferior_thread ();
10546
10547 return (thread->priv != NULL
10548 && (get_remote_thread_info (thread)->stop_reason
10549 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10550 }
10551
10552 /* The to_supports_stopped_by_sw_breakpoint method of target
10553 remote. */
10554
10555 bool
10556 remote_target::supports_stopped_by_sw_breakpoint ()
10557 {
10558 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10559 }
10560
10561 /* The to_stopped_by_hw_breakpoint method of target remote. */
10562
10563 bool
10564 remote_target::stopped_by_hw_breakpoint ()
10565 {
10566 struct thread_info *thread = inferior_thread ();
10567
10568 return (thread->priv != NULL
10569 && (get_remote_thread_info (thread)->stop_reason
10570 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10571 }
10572
10573 /* The to_supports_stopped_by_hw_breakpoint method of target
10574 remote. */
10575
10576 bool
10577 remote_target::supports_stopped_by_hw_breakpoint ()
10578 {
10579 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10580 }
10581
10582 bool
10583 remote_target::stopped_by_watchpoint ()
10584 {
10585 struct thread_info *thread = inferior_thread ();
10586
10587 return (thread->priv != NULL
10588 && (get_remote_thread_info (thread)->stop_reason
10589 == TARGET_STOPPED_BY_WATCHPOINT));
10590 }
10591
10592 bool
10593 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10594 {
10595 struct thread_info *thread = inferior_thread ();
10596
10597 if (thread->priv != NULL
10598 && (get_remote_thread_info (thread)->stop_reason
10599 == TARGET_STOPPED_BY_WATCHPOINT))
10600 {
10601 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10602 return true;
10603 }
10604
10605 return false;
10606 }
10607
10608
10609 int
10610 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10611 struct bp_target_info *bp_tgt)
10612 {
10613 CORE_ADDR addr = bp_tgt->reqstd_address;
10614 struct remote_state *rs;
10615 char *p, *endbuf;
10616 char *message;
10617
10618 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10619 return -1;
10620
10621 /* Make sure the remote is pointing at the right process, if
10622 necessary. */
10623 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10624 set_general_process ();
10625
10626 rs = get_remote_state ();
10627 p = rs->buf.data ();
10628 endbuf = p + get_remote_packet_size ();
10629
10630 *(p++) = 'Z';
10631 *(p++) = '1';
10632 *(p++) = ',';
10633
10634 addr = remote_address_masked (addr);
10635 p += hexnumstr (p, (ULONGEST) addr);
10636 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10637
10638 if (supports_evaluation_of_breakpoint_conditions ())
10639 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10640
10641 if (can_run_breakpoint_commands ())
10642 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10643
10644 putpkt (rs->buf);
10645 getpkt (&rs->buf, 0);
10646
10647 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10648 {
10649 case PACKET_ERROR:
10650 if (rs->buf[1] == '.')
10651 {
10652 message = strchr (&rs->buf[2], '.');
10653 if (message)
10654 error (_("Remote failure reply: %s"), message + 1);
10655 }
10656 return -1;
10657 case PACKET_UNKNOWN:
10658 return -1;
10659 case PACKET_OK:
10660 return 0;
10661 }
10662 internal_error (__FILE__, __LINE__,
10663 _("remote_insert_hw_breakpoint: reached end of function"));
10664 }
10665
10666
10667 int
10668 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10669 struct bp_target_info *bp_tgt)
10670 {
10671 CORE_ADDR addr;
10672 struct remote_state *rs = get_remote_state ();
10673 char *p = rs->buf.data ();
10674 char *endbuf = p + get_remote_packet_size ();
10675
10676 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10677 return -1;
10678
10679 /* Make sure the remote is pointing at the right process, if
10680 necessary. */
10681 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10682 set_general_process ();
10683
10684 *(p++) = 'z';
10685 *(p++) = '1';
10686 *(p++) = ',';
10687
10688 addr = remote_address_masked (bp_tgt->placed_address);
10689 p += hexnumstr (p, (ULONGEST) addr);
10690 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10691
10692 putpkt (rs->buf);
10693 getpkt (&rs->buf, 0);
10694
10695 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10696 {
10697 case PACKET_ERROR:
10698 case PACKET_UNKNOWN:
10699 return -1;
10700 case PACKET_OK:
10701 return 0;
10702 }
10703 internal_error (__FILE__, __LINE__,
10704 _("remote_remove_hw_breakpoint: reached end of function"));
10705 }
10706
10707 /* Verify memory using the "qCRC:" request. */
10708
10709 int
10710 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10711 {
10712 struct remote_state *rs = get_remote_state ();
10713 unsigned long host_crc, target_crc;
10714 char *tmp;
10715
10716 /* It doesn't make sense to use qCRC if the remote target is
10717 connected but not running. */
10718 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10719 {
10720 enum packet_result result;
10721
10722 /* Make sure the remote is pointing at the right process. */
10723 set_general_process ();
10724
10725 /* FIXME: assumes lma can fit into long. */
10726 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10727 (long) lma, (long) size);
10728 putpkt (rs->buf);
10729
10730 /* Be clever; compute the host_crc before waiting for target
10731 reply. */
10732 host_crc = xcrc32 (data, size, 0xffffffff);
10733
10734 getpkt (&rs->buf, 0);
10735
10736 result = packet_ok (rs->buf,
10737 &remote_protocol_packets[PACKET_qCRC]);
10738 if (result == PACKET_ERROR)
10739 return -1;
10740 else if (result == PACKET_OK)
10741 {
10742 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10743 target_crc = target_crc * 16 + fromhex (*tmp);
10744
10745 return (host_crc == target_crc);
10746 }
10747 }
10748
10749 return simple_verify_memory (this, data, lma, size);
10750 }
10751
10752 /* compare-sections command
10753
10754 With no arguments, compares each loadable section in the exec bfd
10755 with the same memory range on the target, and reports mismatches.
10756 Useful for verifying the image on the target against the exec file. */
10757
10758 static void
10759 compare_sections_command (const char *args, int from_tty)
10760 {
10761 asection *s;
10762 const char *sectname;
10763 bfd_size_type size;
10764 bfd_vma lma;
10765 int matched = 0;
10766 int mismatched = 0;
10767 int res;
10768 int read_only = 0;
10769
10770 if (!exec_bfd)
10771 error (_("command cannot be used without an exec file"));
10772
10773 if (args != NULL && strcmp (args, "-r") == 0)
10774 {
10775 read_only = 1;
10776 args = NULL;
10777 }
10778
10779 for (s = exec_bfd->sections; s; s = s->next)
10780 {
10781 if (!(s->flags & SEC_LOAD))
10782 continue; /* Skip non-loadable section. */
10783
10784 if (read_only && (s->flags & SEC_READONLY) == 0)
10785 continue; /* Skip writeable sections */
10786
10787 size = bfd_section_size (s);
10788 if (size == 0)
10789 continue; /* Skip zero-length section. */
10790
10791 sectname = bfd_section_name (s);
10792 if (args && strcmp (args, sectname) != 0)
10793 continue; /* Not the section selected by user. */
10794
10795 matched = 1; /* Do this section. */
10796 lma = s->lma;
10797
10798 gdb::byte_vector sectdata (size);
10799 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10800
10801 res = target_verify_memory (sectdata.data (), lma, size);
10802
10803 if (res == -1)
10804 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10805 paddress (target_gdbarch (), lma),
10806 paddress (target_gdbarch (), lma + size));
10807
10808 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10809 paddress (target_gdbarch (), lma),
10810 paddress (target_gdbarch (), lma + size));
10811 if (res)
10812 printf_filtered ("matched.\n");
10813 else
10814 {
10815 printf_filtered ("MIS-MATCHED!\n");
10816 mismatched++;
10817 }
10818 }
10819 if (mismatched > 0)
10820 warning (_("One or more sections of the target image does not match\n\
10821 the loaded file\n"));
10822 if (args && !matched)
10823 printf_filtered (_("No loaded section named '%s'.\n"), args);
10824 }
10825
10826 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10827 into remote target. The number of bytes written to the remote
10828 target is returned, or -1 for error. */
10829
10830 target_xfer_status
10831 remote_target::remote_write_qxfer (const char *object_name,
10832 const char *annex, const gdb_byte *writebuf,
10833 ULONGEST offset, LONGEST len,
10834 ULONGEST *xfered_len,
10835 struct packet_config *packet)
10836 {
10837 int i, buf_len;
10838 ULONGEST n;
10839 struct remote_state *rs = get_remote_state ();
10840 int max_size = get_memory_write_packet_size ();
10841
10842 if (packet_config_support (packet) == PACKET_DISABLE)
10843 return TARGET_XFER_E_IO;
10844
10845 /* Insert header. */
10846 i = snprintf (rs->buf.data (), max_size,
10847 "qXfer:%s:write:%s:%s:",
10848 object_name, annex ? annex : "",
10849 phex_nz (offset, sizeof offset));
10850 max_size -= (i + 1);
10851
10852 /* Escape as much data as fits into rs->buf. */
10853 buf_len = remote_escape_output
10854 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10855
10856 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10857 || getpkt_sane (&rs->buf, 0) < 0
10858 || packet_ok (rs->buf, packet) != PACKET_OK)
10859 return TARGET_XFER_E_IO;
10860
10861 unpack_varlen_hex (rs->buf.data (), &n);
10862
10863 *xfered_len = n;
10864 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10865 }
10866
10867 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10868 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10869 number of bytes read is returned, or 0 for EOF, or -1 for error.
10870 The number of bytes read may be less than LEN without indicating an
10871 EOF. PACKET is checked and updated to indicate whether the remote
10872 target supports this object. */
10873
10874 target_xfer_status
10875 remote_target::remote_read_qxfer (const char *object_name,
10876 const char *annex,
10877 gdb_byte *readbuf, ULONGEST offset,
10878 LONGEST len,
10879 ULONGEST *xfered_len,
10880 struct packet_config *packet)
10881 {
10882 struct remote_state *rs = get_remote_state ();
10883 LONGEST i, n, packet_len;
10884
10885 if (packet_config_support (packet) == PACKET_DISABLE)
10886 return TARGET_XFER_E_IO;
10887
10888 /* Check whether we've cached an end-of-object packet that matches
10889 this request. */
10890 if (rs->finished_object)
10891 {
10892 if (strcmp (object_name, rs->finished_object) == 0
10893 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10894 && offset == rs->finished_offset)
10895 return TARGET_XFER_EOF;
10896
10897
10898 /* Otherwise, we're now reading something different. Discard
10899 the cache. */
10900 xfree (rs->finished_object);
10901 xfree (rs->finished_annex);
10902 rs->finished_object = NULL;
10903 rs->finished_annex = NULL;
10904 }
10905
10906 /* Request only enough to fit in a single packet. The actual data
10907 may not, since we don't know how much of it will need to be escaped;
10908 the target is free to respond with slightly less data. We subtract
10909 five to account for the response type and the protocol frame. */
10910 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10911 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10912 "qXfer:%s:read:%s:%s,%s",
10913 object_name, annex ? annex : "",
10914 phex_nz (offset, sizeof offset),
10915 phex_nz (n, sizeof n));
10916 i = putpkt (rs->buf);
10917 if (i < 0)
10918 return TARGET_XFER_E_IO;
10919
10920 rs->buf[0] = '\0';
10921 packet_len = getpkt_sane (&rs->buf, 0);
10922 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10923 return TARGET_XFER_E_IO;
10924
10925 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10926 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10927
10928 /* 'm' means there is (or at least might be) more data after this
10929 batch. That does not make sense unless there's at least one byte
10930 of data in this reply. */
10931 if (rs->buf[0] == 'm' && packet_len == 1)
10932 error (_("Remote qXfer reply contained no data."));
10933
10934 /* Got some data. */
10935 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10936 packet_len - 1, readbuf, n);
10937
10938 /* 'l' is an EOF marker, possibly including a final block of data,
10939 or possibly empty. If we have the final block of a non-empty
10940 object, record this fact to bypass a subsequent partial read. */
10941 if (rs->buf[0] == 'l' && offset + i > 0)
10942 {
10943 rs->finished_object = xstrdup (object_name);
10944 rs->finished_annex = xstrdup (annex ? annex : "");
10945 rs->finished_offset = offset + i;
10946 }
10947
10948 if (i == 0)
10949 return TARGET_XFER_EOF;
10950 else
10951 {
10952 *xfered_len = i;
10953 return TARGET_XFER_OK;
10954 }
10955 }
10956
10957 enum target_xfer_status
10958 remote_target::xfer_partial (enum target_object object,
10959 const char *annex, gdb_byte *readbuf,
10960 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10961 ULONGEST *xfered_len)
10962 {
10963 struct remote_state *rs;
10964 int i;
10965 char *p2;
10966 char query_type;
10967 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10968
10969 set_remote_traceframe ();
10970 set_general_thread (inferior_ptid);
10971
10972 rs = get_remote_state ();
10973
10974 /* Handle memory using the standard memory routines. */
10975 if (object == TARGET_OBJECT_MEMORY)
10976 {
10977 /* If the remote target is connected but not running, we should
10978 pass this request down to a lower stratum (e.g. the executable
10979 file). */
10980 if (!target_has_execution)
10981 return TARGET_XFER_EOF;
10982
10983 if (writebuf != NULL)
10984 return remote_write_bytes (offset, writebuf, len, unit_size,
10985 xfered_len);
10986 else
10987 return remote_read_bytes (offset, readbuf, len, unit_size,
10988 xfered_len);
10989 }
10990
10991 /* Handle extra signal info using qxfer packets. */
10992 if (object == TARGET_OBJECT_SIGNAL_INFO)
10993 {
10994 if (readbuf)
10995 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10996 xfered_len, &remote_protocol_packets
10997 [PACKET_qXfer_siginfo_read]);
10998 else
10999 return remote_write_qxfer ("siginfo", annex,
11000 writebuf, offset, len, xfered_len,
11001 &remote_protocol_packets
11002 [PACKET_qXfer_siginfo_write]);
11003 }
11004
11005 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11006 {
11007 if (readbuf)
11008 return remote_read_qxfer ("statictrace", annex,
11009 readbuf, offset, len, xfered_len,
11010 &remote_protocol_packets
11011 [PACKET_qXfer_statictrace_read]);
11012 else
11013 return TARGET_XFER_E_IO;
11014 }
11015
11016 /* Only handle flash writes. */
11017 if (writebuf != NULL)
11018 {
11019 switch (object)
11020 {
11021 case TARGET_OBJECT_FLASH:
11022 return remote_flash_write (offset, len, xfered_len,
11023 writebuf);
11024
11025 default:
11026 return TARGET_XFER_E_IO;
11027 }
11028 }
11029
11030 /* Map pre-existing objects onto letters. DO NOT do this for new
11031 objects!!! Instead specify new query packets. */
11032 switch (object)
11033 {
11034 case TARGET_OBJECT_AVR:
11035 query_type = 'R';
11036 break;
11037
11038 case TARGET_OBJECT_AUXV:
11039 gdb_assert (annex == NULL);
11040 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11041 xfered_len,
11042 &remote_protocol_packets[PACKET_qXfer_auxv]);
11043
11044 case TARGET_OBJECT_AVAILABLE_FEATURES:
11045 return remote_read_qxfer
11046 ("features", annex, readbuf, offset, len, xfered_len,
11047 &remote_protocol_packets[PACKET_qXfer_features]);
11048
11049 case TARGET_OBJECT_LIBRARIES:
11050 return remote_read_qxfer
11051 ("libraries", annex, readbuf, offset, len, xfered_len,
11052 &remote_protocol_packets[PACKET_qXfer_libraries]);
11053
11054 case TARGET_OBJECT_LIBRARIES_SVR4:
11055 return remote_read_qxfer
11056 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11057 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11058
11059 case TARGET_OBJECT_MEMORY_MAP:
11060 gdb_assert (annex == NULL);
11061 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11062 xfered_len,
11063 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11064
11065 case TARGET_OBJECT_OSDATA:
11066 /* Should only get here if we're connected. */
11067 gdb_assert (rs->remote_desc);
11068 return remote_read_qxfer
11069 ("osdata", annex, readbuf, offset, len, xfered_len,
11070 &remote_protocol_packets[PACKET_qXfer_osdata]);
11071
11072 case TARGET_OBJECT_THREADS:
11073 gdb_assert (annex == NULL);
11074 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11075 xfered_len,
11076 &remote_protocol_packets[PACKET_qXfer_threads]);
11077
11078 case TARGET_OBJECT_TRACEFRAME_INFO:
11079 gdb_assert (annex == NULL);
11080 return remote_read_qxfer
11081 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11082 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11083
11084 case TARGET_OBJECT_FDPIC:
11085 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11086 xfered_len,
11087 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11088
11089 case TARGET_OBJECT_OPENVMS_UIB:
11090 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11091 xfered_len,
11092 &remote_protocol_packets[PACKET_qXfer_uib]);
11093
11094 case TARGET_OBJECT_BTRACE:
11095 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11096 xfered_len,
11097 &remote_protocol_packets[PACKET_qXfer_btrace]);
11098
11099 case TARGET_OBJECT_BTRACE_CONF:
11100 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11101 len, xfered_len,
11102 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11103
11104 case TARGET_OBJECT_EXEC_FILE:
11105 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11106 len, xfered_len,
11107 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11108
11109 default:
11110 return TARGET_XFER_E_IO;
11111 }
11112
11113 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11114 large enough let the caller deal with it. */
11115 if (len < get_remote_packet_size ())
11116 return TARGET_XFER_E_IO;
11117 len = get_remote_packet_size ();
11118
11119 /* Except for querying the minimum buffer size, target must be open. */
11120 if (!rs->remote_desc)
11121 error (_("remote query is only available after target open"));
11122
11123 gdb_assert (annex != NULL);
11124 gdb_assert (readbuf != NULL);
11125
11126 p2 = rs->buf.data ();
11127 *p2++ = 'q';
11128 *p2++ = query_type;
11129
11130 /* We used one buffer char for the remote protocol q command and
11131 another for the query type. As the remote protocol encapsulation
11132 uses 4 chars plus one extra in case we are debugging
11133 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11134 string. */
11135 i = 0;
11136 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11137 {
11138 /* Bad caller may have sent forbidden characters. */
11139 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11140 *p2++ = annex[i];
11141 i++;
11142 }
11143 *p2 = '\0';
11144 gdb_assert (annex[i] == '\0');
11145
11146 i = putpkt (rs->buf);
11147 if (i < 0)
11148 return TARGET_XFER_E_IO;
11149
11150 getpkt (&rs->buf, 0);
11151 strcpy ((char *) readbuf, rs->buf.data ());
11152
11153 *xfered_len = strlen ((char *) readbuf);
11154 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11155 }
11156
11157 /* Implementation of to_get_memory_xfer_limit. */
11158
11159 ULONGEST
11160 remote_target::get_memory_xfer_limit ()
11161 {
11162 return get_memory_write_packet_size ();
11163 }
11164
11165 int
11166 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11167 const gdb_byte *pattern, ULONGEST pattern_len,
11168 CORE_ADDR *found_addrp)
11169 {
11170 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11171 struct remote_state *rs = get_remote_state ();
11172 int max_size = get_memory_write_packet_size ();
11173 struct packet_config *packet =
11174 &remote_protocol_packets[PACKET_qSearch_memory];
11175 /* Number of packet bytes used to encode the pattern;
11176 this could be more than PATTERN_LEN due to escape characters. */
11177 int escaped_pattern_len;
11178 /* Amount of pattern that was encodable in the packet. */
11179 int used_pattern_len;
11180 int i;
11181 int found;
11182 ULONGEST found_addr;
11183
11184 /* Don't go to the target if we don't have to. This is done before
11185 checking packet_config_support to avoid the possibility that a
11186 success for this edge case means the facility works in
11187 general. */
11188 if (pattern_len > search_space_len)
11189 return 0;
11190 if (pattern_len == 0)
11191 {
11192 *found_addrp = start_addr;
11193 return 1;
11194 }
11195
11196 /* If we already know the packet isn't supported, fall back to the simple
11197 way of searching memory. */
11198
11199 if (packet_config_support (packet) == PACKET_DISABLE)
11200 {
11201 /* Target doesn't provided special support, fall back and use the
11202 standard support (copy memory and do the search here). */
11203 return simple_search_memory (this, start_addr, search_space_len,
11204 pattern, pattern_len, found_addrp);
11205 }
11206
11207 /* Make sure the remote is pointing at the right process. */
11208 set_general_process ();
11209
11210 /* Insert header. */
11211 i = snprintf (rs->buf.data (), max_size,
11212 "qSearch:memory:%s;%s;",
11213 phex_nz (start_addr, addr_size),
11214 phex_nz (search_space_len, sizeof (search_space_len)));
11215 max_size -= (i + 1);
11216
11217 /* Escape as much data as fits into rs->buf. */
11218 escaped_pattern_len =
11219 remote_escape_output (pattern, pattern_len, 1,
11220 (gdb_byte *) rs->buf.data () + i,
11221 &used_pattern_len, max_size);
11222
11223 /* Bail if the pattern is too large. */
11224 if (used_pattern_len != pattern_len)
11225 error (_("Pattern is too large to transmit to remote target."));
11226
11227 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11228 || getpkt_sane (&rs->buf, 0) < 0
11229 || packet_ok (rs->buf, packet) != PACKET_OK)
11230 {
11231 /* The request may not have worked because the command is not
11232 supported. If so, fall back to the simple way. */
11233 if (packet_config_support (packet) == PACKET_DISABLE)
11234 {
11235 return simple_search_memory (this, start_addr, search_space_len,
11236 pattern, pattern_len, found_addrp);
11237 }
11238 return -1;
11239 }
11240
11241 if (rs->buf[0] == '0')
11242 found = 0;
11243 else if (rs->buf[0] == '1')
11244 {
11245 found = 1;
11246 if (rs->buf[1] != ',')
11247 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11248 unpack_varlen_hex (&rs->buf[2], &found_addr);
11249 *found_addrp = found_addr;
11250 }
11251 else
11252 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11253
11254 return found;
11255 }
11256
11257 void
11258 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11259 {
11260 struct remote_state *rs = get_remote_state ();
11261 char *p = rs->buf.data ();
11262
11263 if (!rs->remote_desc)
11264 error (_("remote rcmd is only available after target open"));
11265
11266 /* Send a NULL command across as an empty command. */
11267 if (command == NULL)
11268 command = "";
11269
11270 /* The query prefix. */
11271 strcpy (rs->buf.data (), "qRcmd,");
11272 p = strchr (rs->buf.data (), '\0');
11273
11274 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11275 > get_remote_packet_size ())
11276 error (_("\"monitor\" command ``%s'' is too long."), command);
11277
11278 /* Encode the actual command. */
11279 bin2hex ((const gdb_byte *) command, p, strlen (command));
11280
11281 if (putpkt (rs->buf) < 0)
11282 error (_("Communication problem with target."));
11283
11284 /* get/display the response */
11285 while (1)
11286 {
11287 char *buf;
11288
11289 /* XXX - see also remote_get_noisy_reply(). */
11290 QUIT; /* Allow user to bail out with ^C. */
11291 rs->buf[0] = '\0';
11292 if (getpkt_sane (&rs->buf, 0) == -1)
11293 {
11294 /* Timeout. Continue to (try to) read responses.
11295 This is better than stopping with an error, assuming the stub
11296 is still executing the (long) monitor command.
11297 If needed, the user can interrupt gdb using C-c, obtaining
11298 an effect similar to stop on timeout. */
11299 continue;
11300 }
11301 buf = rs->buf.data ();
11302 if (buf[0] == '\0')
11303 error (_("Target does not support this command."));
11304 if (buf[0] == 'O' && buf[1] != 'K')
11305 {
11306 remote_console_output (buf + 1); /* 'O' message from stub. */
11307 continue;
11308 }
11309 if (strcmp (buf, "OK") == 0)
11310 break;
11311 if (strlen (buf) == 3 && buf[0] == 'E'
11312 && isdigit (buf[1]) && isdigit (buf[2]))
11313 {
11314 error (_("Protocol error with Rcmd"));
11315 }
11316 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11317 {
11318 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11319
11320 fputc_unfiltered (c, outbuf);
11321 }
11322 break;
11323 }
11324 }
11325
11326 std::vector<mem_region>
11327 remote_target::memory_map ()
11328 {
11329 std::vector<mem_region> result;
11330 gdb::optional<gdb::char_vector> text
11331 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11332
11333 if (text)
11334 result = parse_memory_map (text->data ());
11335
11336 return result;
11337 }
11338
11339 static void
11340 packet_command (const char *args, int from_tty)
11341 {
11342 remote_target *remote = get_current_remote_target ();
11343
11344 if (remote == nullptr)
11345 error (_("command can only be used with remote target"));
11346
11347 remote->packet_command (args, from_tty);
11348 }
11349
11350 void
11351 remote_target::packet_command (const char *args, int from_tty)
11352 {
11353 if (!args)
11354 error (_("remote-packet command requires packet text as argument"));
11355
11356 puts_filtered ("sending: ");
11357 print_packet (args);
11358 puts_filtered ("\n");
11359 putpkt (args);
11360
11361 remote_state *rs = get_remote_state ();
11362
11363 getpkt (&rs->buf, 0);
11364 puts_filtered ("received: ");
11365 print_packet (rs->buf.data ());
11366 puts_filtered ("\n");
11367 }
11368
11369 #if 0
11370 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11371
11372 static void display_thread_info (struct gdb_ext_thread_info *info);
11373
11374 static void threadset_test_cmd (char *cmd, int tty);
11375
11376 static void threadalive_test (char *cmd, int tty);
11377
11378 static void threadlist_test_cmd (char *cmd, int tty);
11379
11380 int get_and_display_threadinfo (threadref *ref);
11381
11382 static void threadinfo_test_cmd (char *cmd, int tty);
11383
11384 static int thread_display_step (threadref *ref, void *context);
11385
11386 static void threadlist_update_test_cmd (char *cmd, int tty);
11387
11388 static void init_remote_threadtests (void);
11389
11390 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11391
11392 static void
11393 threadset_test_cmd (const char *cmd, int tty)
11394 {
11395 int sample_thread = SAMPLE_THREAD;
11396
11397 printf_filtered (_("Remote threadset test\n"));
11398 set_general_thread (sample_thread);
11399 }
11400
11401
11402 static void
11403 threadalive_test (const char *cmd, int tty)
11404 {
11405 int sample_thread = SAMPLE_THREAD;
11406 int pid = inferior_ptid.pid ();
11407 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11408
11409 if (remote_thread_alive (ptid))
11410 printf_filtered ("PASS: Thread alive test\n");
11411 else
11412 printf_filtered ("FAIL: Thread alive test\n");
11413 }
11414
11415 void output_threadid (char *title, threadref *ref);
11416
11417 void
11418 output_threadid (char *title, threadref *ref)
11419 {
11420 char hexid[20];
11421
11422 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11423 hexid[16] = 0;
11424 printf_filtered ("%s %s\n", title, (&hexid[0]));
11425 }
11426
11427 static void
11428 threadlist_test_cmd (const char *cmd, int tty)
11429 {
11430 int startflag = 1;
11431 threadref nextthread;
11432 int done, result_count;
11433 threadref threadlist[3];
11434
11435 printf_filtered ("Remote Threadlist test\n");
11436 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11437 &result_count, &threadlist[0]))
11438 printf_filtered ("FAIL: threadlist test\n");
11439 else
11440 {
11441 threadref *scan = threadlist;
11442 threadref *limit = scan + result_count;
11443
11444 while (scan < limit)
11445 output_threadid (" thread ", scan++);
11446 }
11447 }
11448
11449 void
11450 display_thread_info (struct gdb_ext_thread_info *info)
11451 {
11452 output_threadid ("Threadid: ", &info->threadid);
11453 printf_filtered ("Name: %s\n ", info->shortname);
11454 printf_filtered ("State: %s\n", info->display);
11455 printf_filtered ("other: %s\n\n", info->more_display);
11456 }
11457
11458 int
11459 get_and_display_threadinfo (threadref *ref)
11460 {
11461 int result;
11462 int set;
11463 struct gdb_ext_thread_info threadinfo;
11464
11465 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11466 | TAG_MOREDISPLAY | TAG_DISPLAY;
11467 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11468 display_thread_info (&threadinfo);
11469 return result;
11470 }
11471
11472 static void
11473 threadinfo_test_cmd (const char *cmd, int tty)
11474 {
11475 int athread = SAMPLE_THREAD;
11476 threadref thread;
11477 int set;
11478
11479 int_to_threadref (&thread, athread);
11480 printf_filtered ("Remote Threadinfo test\n");
11481 if (!get_and_display_threadinfo (&thread))
11482 printf_filtered ("FAIL cannot get thread info\n");
11483 }
11484
11485 static int
11486 thread_display_step (threadref *ref, void *context)
11487 {
11488 /* output_threadid(" threadstep ",ref); *//* simple test */
11489 return get_and_display_threadinfo (ref);
11490 }
11491
11492 static void
11493 threadlist_update_test_cmd (const char *cmd, int tty)
11494 {
11495 printf_filtered ("Remote Threadlist update test\n");
11496 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11497 }
11498
11499 static void
11500 init_remote_threadtests (void)
11501 {
11502 add_com ("tlist", class_obscure, threadlist_test_cmd,
11503 _("Fetch and print the remote list of "
11504 "thread identifiers, one pkt only."));
11505 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11506 _("Fetch and display info about one thread."));
11507 add_com ("tset", class_obscure, threadset_test_cmd,
11508 _("Test setting to a different thread."));
11509 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11510 _("Iterate through updating all remote thread info."));
11511 add_com ("talive", class_obscure, threadalive_test,
11512 _("Remote thread alive test."));
11513 }
11514
11515 #endif /* 0 */
11516
11517 /* Convert a thread ID to a string. */
11518
11519 std::string
11520 remote_target::pid_to_str (ptid_t ptid)
11521 {
11522 struct remote_state *rs = get_remote_state ();
11523
11524 if (ptid == null_ptid)
11525 return normal_pid_to_str (ptid);
11526 else if (ptid.is_pid ())
11527 {
11528 /* Printing an inferior target id. */
11529
11530 /* When multi-process extensions are off, there's no way in the
11531 remote protocol to know the remote process id, if there's any
11532 at all. There's one exception --- when we're connected with
11533 target extended-remote, and we manually attached to a process
11534 with "attach PID". We don't record anywhere a flag that
11535 allows us to distinguish that case from the case of
11536 connecting with extended-remote and the stub already being
11537 attached to a process, and reporting yes to qAttached, hence
11538 no smart special casing here. */
11539 if (!remote_multi_process_p (rs))
11540 return "Remote target";
11541
11542 return normal_pid_to_str (ptid);
11543 }
11544 else
11545 {
11546 if (magic_null_ptid == ptid)
11547 return "Thread <main>";
11548 else if (remote_multi_process_p (rs))
11549 if (ptid.lwp () == 0)
11550 return normal_pid_to_str (ptid);
11551 else
11552 return string_printf ("Thread %d.%ld",
11553 ptid.pid (), ptid.lwp ());
11554 else
11555 return string_printf ("Thread %ld", ptid.lwp ());
11556 }
11557 }
11558
11559 /* Get the address of the thread local variable in OBJFILE which is
11560 stored at OFFSET within the thread local storage for thread PTID. */
11561
11562 CORE_ADDR
11563 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11564 CORE_ADDR offset)
11565 {
11566 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11567 {
11568 struct remote_state *rs = get_remote_state ();
11569 char *p = rs->buf.data ();
11570 char *endp = p + get_remote_packet_size ();
11571 enum packet_result result;
11572
11573 strcpy (p, "qGetTLSAddr:");
11574 p += strlen (p);
11575 p = write_ptid (p, endp, ptid);
11576 *p++ = ',';
11577 p += hexnumstr (p, offset);
11578 *p++ = ',';
11579 p += hexnumstr (p, lm);
11580 *p++ = '\0';
11581
11582 putpkt (rs->buf);
11583 getpkt (&rs->buf, 0);
11584 result = packet_ok (rs->buf,
11585 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11586 if (result == PACKET_OK)
11587 {
11588 ULONGEST addr;
11589
11590 unpack_varlen_hex (rs->buf.data (), &addr);
11591 return addr;
11592 }
11593 else if (result == PACKET_UNKNOWN)
11594 throw_error (TLS_GENERIC_ERROR,
11595 _("Remote target doesn't support qGetTLSAddr packet"));
11596 else
11597 throw_error (TLS_GENERIC_ERROR,
11598 _("Remote target failed to process qGetTLSAddr request"));
11599 }
11600 else
11601 throw_error (TLS_GENERIC_ERROR,
11602 _("TLS not supported or disabled on this target"));
11603 /* Not reached. */
11604 return 0;
11605 }
11606
11607 /* Provide thread local base, i.e. Thread Information Block address.
11608 Returns 1 if ptid is found and thread_local_base is non zero. */
11609
11610 bool
11611 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11612 {
11613 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11614 {
11615 struct remote_state *rs = get_remote_state ();
11616 char *p = rs->buf.data ();
11617 char *endp = p + get_remote_packet_size ();
11618 enum packet_result result;
11619
11620 strcpy (p, "qGetTIBAddr:");
11621 p += strlen (p);
11622 p = write_ptid (p, endp, ptid);
11623 *p++ = '\0';
11624
11625 putpkt (rs->buf);
11626 getpkt (&rs->buf, 0);
11627 result = packet_ok (rs->buf,
11628 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11629 if (result == PACKET_OK)
11630 {
11631 ULONGEST val;
11632 unpack_varlen_hex (rs->buf.data (), &val);
11633 if (addr)
11634 *addr = (CORE_ADDR) val;
11635 return true;
11636 }
11637 else if (result == PACKET_UNKNOWN)
11638 error (_("Remote target doesn't support qGetTIBAddr packet"));
11639 else
11640 error (_("Remote target failed to process qGetTIBAddr request"));
11641 }
11642 else
11643 error (_("qGetTIBAddr not supported or disabled on this target"));
11644 /* Not reached. */
11645 return false;
11646 }
11647
11648 /* Support for inferring a target description based on the current
11649 architecture and the size of a 'g' packet. While the 'g' packet
11650 can have any size (since optional registers can be left off the
11651 end), some sizes are easily recognizable given knowledge of the
11652 approximate architecture. */
11653
11654 struct remote_g_packet_guess
11655 {
11656 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11657 : bytes (bytes_),
11658 tdesc (tdesc_)
11659 {
11660 }
11661
11662 int bytes;
11663 const struct target_desc *tdesc;
11664 };
11665
11666 struct remote_g_packet_data : public allocate_on_obstack
11667 {
11668 std::vector<remote_g_packet_guess> guesses;
11669 };
11670
11671 static struct gdbarch_data *remote_g_packet_data_handle;
11672
11673 static void *
11674 remote_g_packet_data_init (struct obstack *obstack)
11675 {
11676 return new (obstack) remote_g_packet_data;
11677 }
11678
11679 void
11680 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11681 const struct target_desc *tdesc)
11682 {
11683 struct remote_g_packet_data *data
11684 = ((struct remote_g_packet_data *)
11685 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11686
11687 gdb_assert (tdesc != NULL);
11688
11689 for (const remote_g_packet_guess &guess : data->guesses)
11690 if (guess.bytes == bytes)
11691 internal_error (__FILE__, __LINE__,
11692 _("Duplicate g packet description added for size %d"),
11693 bytes);
11694
11695 data->guesses.emplace_back (bytes, tdesc);
11696 }
11697
11698 /* Return true if remote_read_description would do anything on this target
11699 and architecture, false otherwise. */
11700
11701 static bool
11702 remote_read_description_p (struct target_ops *target)
11703 {
11704 struct remote_g_packet_data *data
11705 = ((struct remote_g_packet_data *)
11706 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11707
11708 return !data->guesses.empty ();
11709 }
11710
11711 const struct target_desc *
11712 remote_target::read_description ()
11713 {
11714 struct remote_g_packet_data *data
11715 = ((struct remote_g_packet_data *)
11716 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11717
11718 /* Do not try this during initial connection, when we do not know
11719 whether there is a running but stopped thread. */
11720 if (!target_has_execution || inferior_ptid == null_ptid)
11721 return beneath ()->read_description ();
11722
11723 if (!data->guesses.empty ())
11724 {
11725 int bytes = send_g_packet ();
11726
11727 for (const remote_g_packet_guess &guess : data->guesses)
11728 if (guess.bytes == bytes)
11729 return guess.tdesc;
11730
11731 /* We discard the g packet. A minor optimization would be to
11732 hold on to it, and fill the register cache once we have selected
11733 an architecture, but it's too tricky to do safely. */
11734 }
11735
11736 return beneath ()->read_description ();
11737 }
11738
11739 /* Remote file transfer support. This is host-initiated I/O, not
11740 target-initiated; for target-initiated, see remote-fileio.c. */
11741
11742 /* If *LEFT is at least the length of STRING, copy STRING to
11743 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11744 decrease *LEFT. Otherwise raise an error. */
11745
11746 static void
11747 remote_buffer_add_string (char **buffer, int *left, const char *string)
11748 {
11749 int len = strlen (string);
11750
11751 if (len > *left)
11752 error (_("Packet too long for target."));
11753
11754 memcpy (*buffer, string, len);
11755 *buffer += len;
11756 *left -= len;
11757
11758 /* NUL-terminate the buffer as a convenience, if there is
11759 room. */
11760 if (*left)
11761 **buffer = '\0';
11762 }
11763
11764 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11765 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11766 decrease *LEFT. Otherwise raise an error. */
11767
11768 static void
11769 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11770 int len)
11771 {
11772 if (2 * len > *left)
11773 error (_("Packet too long for target."));
11774
11775 bin2hex (bytes, *buffer, len);
11776 *buffer += 2 * len;
11777 *left -= 2 * len;
11778
11779 /* NUL-terminate the buffer as a convenience, if there is
11780 room. */
11781 if (*left)
11782 **buffer = '\0';
11783 }
11784
11785 /* If *LEFT is large enough, convert VALUE to hex and add it to
11786 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11787 decrease *LEFT. Otherwise raise an error. */
11788
11789 static void
11790 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11791 {
11792 int len = hexnumlen (value);
11793
11794 if (len > *left)
11795 error (_("Packet too long for target."));
11796
11797 hexnumstr (*buffer, value);
11798 *buffer += len;
11799 *left -= len;
11800
11801 /* NUL-terminate the buffer as a convenience, if there is
11802 room. */
11803 if (*left)
11804 **buffer = '\0';
11805 }
11806
11807 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11808 value, *REMOTE_ERRNO to the remote error number or zero if none
11809 was included, and *ATTACHMENT to point to the start of the annex
11810 if any. The length of the packet isn't needed here; there may
11811 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11812
11813 Return 0 if the packet could be parsed, -1 if it could not. If
11814 -1 is returned, the other variables may not be initialized. */
11815
11816 static int
11817 remote_hostio_parse_result (char *buffer, int *retcode,
11818 int *remote_errno, char **attachment)
11819 {
11820 char *p, *p2;
11821
11822 *remote_errno = 0;
11823 *attachment = NULL;
11824
11825 if (buffer[0] != 'F')
11826 return -1;
11827
11828 errno = 0;
11829 *retcode = strtol (&buffer[1], &p, 16);
11830 if (errno != 0 || p == &buffer[1])
11831 return -1;
11832
11833 /* Check for ",errno". */
11834 if (*p == ',')
11835 {
11836 errno = 0;
11837 *remote_errno = strtol (p + 1, &p2, 16);
11838 if (errno != 0 || p + 1 == p2)
11839 return -1;
11840 p = p2;
11841 }
11842
11843 /* Check for ";attachment". If there is no attachment, the
11844 packet should end here. */
11845 if (*p == ';')
11846 {
11847 *attachment = p + 1;
11848 return 0;
11849 }
11850 else if (*p == '\0')
11851 return 0;
11852 else
11853 return -1;
11854 }
11855
11856 /* Send a prepared I/O packet to the target and read its response.
11857 The prepared packet is in the global RS->BUF before this function
11858 is called, and the answer is there when we return.
11859
11860 COMMAND_BYTES is the length of the request to send, which may include
11861 binary data. WHICH_PACKET is the packet configuration to check
11862 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11863 is set to the error number and -1 is returned. Otherwise the value
11864 returned by the function is returned.
11865
11866 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11867 attachment is expected; an error will be reported if there's a
11868 mismatch. If one is found, *ATTACHMENT will be set to point into
11869 the packet buffer and *ATTACHMENT_LEN will be set to the
11870 attachment's length. */
11871
11872 int
11873 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11874 int *remote_errno, char **attachment,
11875 int *attachment_len)
11876 {
11877 struct remote_state *rs = get_remote_state ();
11878 int ret, bytes_read;
11879 char *attachment_tmp;
11880
11881 if (packet_support (which_packet) == PACKET_DISABLE)
11882 {
11883 *remote_errno = FILEIO_ENOSYS;
11884 return -1;
11885 }
11886
11887 putpkt_binary (rs->buf.data (), command_bytes);
11888 bytes_read = getpkt_sane (&rs->buf, 0);
11889
11890 /* If it timed out, something is wrong. Don't try to parse the
11891 buffer. */
11892 if (bytes_read < 0)
11893 {
11894 *remote_errno = FILEIO_EINVAL;
11895 return -1;
11896 }
11897
11898 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11899 {
11900 case PACKET_ERROR:
11901 *remote_errno = FILEIO_EINVAL;
11902 return -1;
11903 case PACKET_UNKNOWN:
11904 *remote_errno = FILEIO_ENOSYS;
11905 return -1;
11906 case PACKET_OK:
11907 break;
11908 }
11909
11910 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11911 &attachment_tmp))
11912 {
11913 *remote_errno = FILEIO_EINVAL;
11914 return -1;
11915 }
11916
11917 /* Make sure we saw an attachment if and only if we expected one. */
11918 if ((attachment_tmp == NULL && attachment != NULL)
11919 || (attachment_tmp != NULL && attachment == NULL))
11920 {
11921 *remote_errno = FILEIO_EINVAL;
11922 return -1;
11923 }
11924
11925 /* If an attachment was found, it must point into the packet buffer;
11926 work out how many bytes there were. */
11927 if (attachment_tmp != NULL)
11928 {
11929 *attachment = attachment_tmp;
11930 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11931 }
11932
11933 return ret;
11934 }
11935
11936 /* See declaration.h. */
11937
11938 void
11939 readahead_cache::invalidate ()
11940 {
11941 this->fd = -1;
11942 }
11943
11944 /* See declaration.h. */
11945
11946 void
11947 readahead_cache::invalidate_fd (int fd)
11948 {
11949 if (this->fd == fd)
11950 this->fd = -1;
11951 }
11952
11953 /* Set the filesystem remote_hostio functions that take FILENAME
11954 arguments will use. Return 0 on success, or -1 if an error
11955 occurs (and set *REMOTE_ERRNO). */
11956
11957 int
11958 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11959 int *remote_errno)
11960 {
11961 struct remote_state *rs = get_remote_state ();
11962 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11963 char *p = rs->buf.data ();
11964 int left = get_remote_packet_size () - 1;
11965 char arg[9];
11966 int ret;
11967
11968 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11969 return 0;
11970
11971 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11972 return 0;
11973
11974 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11975
11976 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11977 remote_buffer_add_string (&p, &left, arg);
11978
11979 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11980 remote_errno, NULL, NULL);
11981
11982 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11983 return 0;
11984
11985 if (ret == 0)
11986 rs->fs_pid = required_pid;
11987
11988 return ret;
11989 }
11990
11991 /* Implementation of to_fileio_open. */
11992
11993 int
11994 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11995 int flags, int mode, int warn_if_slow,
11996 int *remote_errno)
11997 {
11998 struct remote_state *rs = get_remote_state ();
11999 char *p = rs->buf.data ();
12000 int left = get_remote_packet_size () - 1;
12001
12002 if (warn_if_slow)
12003 {
12004 static int warning_issued = 0;
12005
12006 printf_unfiltered (_("Reading %s from remote target...\n"),
12007 filename);
12008
12009 if (!warning_issued)
12010 {
12011 warning (_("File transfers from remote targets can be slow."
12012 " Use \"set sysroot\" to access files locally"
12013 " instead."));
12014 warning_issued = 1;
12015 }
12016 }
12017
12018 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12019 return -1;
12020
12021 remote_buffer_add_string (&p, &left, "vFile:open:");
12022
12023 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12024 strlen (filename));
12025 remote_buffer_add_string (&p, &left, ",");
12026
12027 remote_buffer_add_int (&p, &left, flags);
12028 remote_buffer_add_string (&p, &left, ",");
12029
12030 remote_buffer_add_int (&p, &left, mode);
12031
12032 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12033 remote_errno, NULL, NULL);
12034 }
12035
12036 int
12037 remote_target::fileio_open (struct inferior *inf, const char *filename,
12038 int flags, int mode, int warn_if_slow,
12039 int *remote_errno)
12040 {
12041 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12042 remote_errno);
12043 }
12044
12045 /* Implementation of to_fileio_pwrite. */
12046
12047 int
12048 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12049 ULONGEST offset, int *remote_errno)
12050 {
12051 struct remote_state *rs = get_remote_state ();
12052 char *p = rs->buf.data ();
12053 int left = get_remote_packet_size ();
12054 int out_len;
12055
12056 rs->readahead_cache.invalidate_fd (fd);
12057
12058 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12059
12060 remote_buffer_add_int (&p, &left, fd);
12061 remote_buffer_add_string (&p, &left, ",");
12062
12063 remote_buffer_add_int (&p, &left, offset);
12064 remote_buffer_add_string (&p, &left, ",");
12065
12066 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12067 (get_remote_packet_size ()
12068 - (p - rs->buf.data ())));
12069
12070 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12071 remote_errno, NULL, NULL);
12072 }
12073
12074 int
12075 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12076 ULONGEST offset, int *remote_errno)
12077 {
12078 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12079 }
12080
12081 /* Helper for the implementation of to_fileio_pread. Read the file
12082 from the remote side with vFile:pread. */
12083
12084 int
12085 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12086 ULONGEST offset, int *remote_errno)
12087 {
12088 struct remote_state *rs = get_remote_state ();
12089 char *p = rs->buf.data ();
12090 char *attachment;
12091 int left = get_remote_packet_size ();
12092 int ret, attachment_len;
12093 int read_len;
12094
12095 remote_buffer_add_string (&p, &left, "vFile:pread:");
12096
12097 remote_buffer_add_int (&p, &left, fd);
12098 remote_buffer_add_string (&p, &left, ",");
12099
12100 remote_buffer_add_int (&p, &left, len);
12101 remote_buffer_add_string (&p, &left, ",");
12102
12103 remote_buffer_add_int (&p, &left, offset);
12104
12105 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12106 remote_errno, &attachment,
12107 &attachment_len);
12108
12109 if (ret < 0)
12110 return ret;
12111
12112 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12113 read_buf, len);
12114 if (read_len != ret)
12115 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12116
12117 return ret;
12118 }
12119
12120 /* See declaration.h. */
12121
12122 int
12123 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12124 ULONGEST offset)
12125 {
12126 if (this->fd == fd
12127 && this->offset <= offset
12128 && offset < this->offset + this->bufsize)
12129 {
12130 ULONGEST max = this->offset + this->bufsize;
12131
12132 if (offset + len > max)
12133 len = max - offset;
12134
12135 memcpy (read_buf, this->buf + offset - this->offset, len);
12136 return len;
12137 }
12138
12139 return 0;
12140 }
12141
12142 /* Implementation of to_fileio_pread. */
12143
12144 int
12145 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12146 ULONGEST offset, int *remote_errno)
12147 {
12148 int ret;
12149 struct remote_state *rs = get_remote_state ();
12150 readahead_cache *cache = &rs->readahead_cache;
12151
12152 ret = cache->pread (fd, read_buf, len, offset);
12153 if (ret > 0)
12154 {
12155 cache->hit_count++;
12156
12157 if (remote_debug)
12158 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12159 pulongest (cache->hit_count));
12160 return ret;
12161 }
12162
12163 cache->miss_count++;
12164 if (remote_debug)
12165 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12166 pulongest (cache->miss_count));
12167
12168 cache->fd = fd;
12169 cache->offset = offset;
12170 cache->bufsize = get_remote_packet_size ();
12171 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12172
12173 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12174 cache->offset, remote_errno);
12175 if (ret <= 0)
12176 {
12177 cache->invalidate_fd (fd);
12178 return ret;
12179 }
12180
12181 cache->bufsize = ret;
12182 return cache->pread (fd, read_buf, len, offset);
12183 }
12184
12185 int
12186 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12187 ULONGEST offset, int *remote_errno)
12188 {
12189 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12190 }
12191
12192 /* Implementation of to_fileio_close. */
12193
12194 int
12195 remote_target::remote_hostio_close (int fd, int *remote_errno)
12196 {
12197 struct remote_state *rs = get_remote_state ();
12198 char *p = rs->buf.data ();
12199 int left = get_remote_packet_size () - 1;
12200
12201 rs->readahead_cache.invalidate_fd (fd);
12202
12203 remote_buffer_add_string (&p, &left, "vFile:close:");
12204
12205 remote_buffer_add_int (&p, &left, fd);
12206
12207 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12208 remote_errno, NULL, NULL);
12209 }
12210
12211 int
12212 remote_target::fileio_close (int fd, int *remote_errno)
12213 {
12214 return remote_hostio_close (fd, remote_errno);
12215 }
12216
12217 /* Implementation of to_fileio_unlink. */
12218
12219 int
12220 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12221 int *remote_errno)
12222 {
12223 struct remote_state *rs = get_remote_state ();
12224 char *p = rs->buf.data ();
12225 int left = get_remote_packet_size () - 1;
12226
12227 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12228 return -1;
12229
12230 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12231
12232 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12233 strlen (filename));
12234
12235 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12236 remote_errno, NULL, NULL);
12237 }
12238
12239 int
12240 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12241 int *remote_errno)
12242 {
12243 return remote_hostio_unlink (inf, filename, remote_errno);
12244 }
12245
12246 /* Implementation of to_fileio_readlink. */
12247
12248 gdb::optional<std::string>
12249 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12250 int *remote_errno)
12251 {
12252 struct remote_state *rs = get_remote_state ();
12253 char *p = rs->buf.data ();
12254 char *attachment;
12255 int left = get_remote_packet_size ();
12256 int len, attachment_len;
12257 int read_len;
12258
12259 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12260 return {};
12261
12262 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12263
12264 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12265 strlen (filename));
12266
12267 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12268 remote_errno, &attachment,
12269 &attachment_len);
12270
12271 if (len < 0)
12272 return {};
12273
12274 std::string ret (len, '\0');
12275
12276 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12277 (gdb_byte *) &ret[0], len);
12278 if (read_len != len)
12279 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12280
12281 return ret;
12282 }
12283
12284 /* Implementation of to_fileio_fstat. */
12285
12286 int
12287 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12288 {
12289 struct remote_state *rs = get_remote_state ();
12290 char *p = rs->buf.data ();
12291 int left = get_remote_packet_size ();
12292 int attachment_len, ret;
12293 char *attachment;
12294 struct fio_stat fst;
12295 int read_len;
12296
12297 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12298
12299 remote_buffer_add_int (&p, &left, fd);
12300
12301 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12302 remote_errno, &attachment,
12303 &attachment_len);
12304 if (ret < 0)
12305 {
12306 if (*remote_errno != FILEIO_ENOSYS)
12307 return ret;
12308
12309 /* Strictly we should return -1, ENOSYS here, but when
12310 "set sysroot remote:" was implemented in August 2008
12311 BFD's need for a stat function was sidestepped with
12312 this hack. This was not remedied until March 2015
12313 so we retain the previous behavior to avoid breaking
12314 compatibility.
12315
12316 Note that the memset is a March 2015 addition; older
12317 GDBs set st_size *and nothing else* so the structure
12318 would have garbage in all other fields. This might
12319 break something but retaining the previous behavior
12320 here would be just too wrong. */
12321
12322 memset (st, 0, sizeof (struct stat));
12323 st->st_size = INT_MAX;
12324 return 0;
12325 }
12326
12327 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12328 (gdb_byte *) &fst, sizeof (fst));
12329
12330 if (read_len != ret)
12331 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12332
12333 if (read_len != sizeof (fst))
12334 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12335 read_len, (int) sizeof (fst));
12336
12337 remote_fileio_to_host_stat (&fst, st);
12338
12339 return 0;
12340 }
12341
12342 /* Implementation of to_filesystem_is_local. */
12343
12344 bool
12345 remote_target::filesystem_is_local ()
12346 {
12347 /* Valgrind GDB presents itself as a remote target but works
12348 on the local filesystem: it does not implement remote get
12349 and users are not expected to set a sysroot. To handle
12350 this case we treat the remote filesystem as local if the
12351 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12352 does not support vFile:open. */
12353 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12354 {
12355 enum packet_support ps = packet_support (PACKET_vFile_open);
12356
12357 if (ps == PACKET_SUPPORT_UNKNOWN)
12358 {
12359 int fd, remote_errno;
12360
12361 /* Try opening a file to probe support. The supplied
12362 filename is irrelevant, we only care about whether
12363 the stub recognizes the packet or not. */
12364 fd = remote_hostio_open (NULL, "just probing",
12365 FILEIO_O_RDONLY, 0700, 0,
12366 &remote_errno);
12367
12368 if (fd >= 0)
12369 remote_hostio_close (fd, &remote_errno);
12370
12371 ps = packet_support (PACKET_vFile_open);
12372 }
12373
12374 if (ps == PACKET_DISABLE)
12375 {
12376 static int warning_issued = 0;
12377
12378 if (!warning_issued)
12379 {
12380 warning (_("remote target does not support file"
12381 " transfer, attempting to access files"
12382 " from local filesystem."));
12383 warning_issued = 1;
12384 }
12385
12386 return true;
12387 }
12388 }
12389
12390 return false;
12391 }
12392
12393 static int
12394 remote_fileio_errno_to_host (int errnum)
12395 {
12396 switch (errnum)
12397 {
12398 case FILEIO_EPERM:
12399 return EPERM;
12400 case FILEIO_ENOENT:
12401 return ENOENT;
12402 case FILEIO_EINTR:
12403 return EINTR;
12404 case FILEIO_EIO:
12405 return EIO;
12406 case FILEIO_EBADF:
12407 return EBADF;
12408 case FILEIO_EACCES:
12409 return EACCES;
12410 case FILEIO_EFAULT:
12411 return EFAULT;
12412 case FILEIO_EBUSY:
12413 return EBUSY;
12414 case FILEIO_EEXIST:
12415 return EEXIST;
12416 case FILEIO_ENODEV:
12417 return ENODEV;
12418 case FILEIO_ENOTDIR:
12419 return ENOTDIR;
12420 case FILEIO_EISDIR:
12421 return EISDIR;
12422 case FILEIO_EINVAL:
12423 return EINVAL;
12424 case FILEIO_ENFILE:
12425 return ENFILE;
12426 case FILEIO_EMFILE:
12427 return EMFILE;
12428 case FILEIO_EFBIG:
12429 return EFBIG;
12430 case FILEIO_ENOSPC:
12431 return ENOSPC;
12432 case FILEIO_ESPIPE:
12433 return ESPIPE;
12434 case FILEIO_EROFS:
12435 return EROFS;
12436 case FILEIO_ENOSYS:
12437 return ENOSYS;
12438 case FILEIO_ENAMETOOLONG:
12439 return ENAMETOOLONG;
12440 }
12441 return -1;
12442 }
12443
12444 static char *
12445 remote_hostio_error (int errnum)
12446 {
12447 int host_error = remote_fileio_errno_to_host (errnum);
12448
12449 if (host_error == -1)
12450 error (_("Unknown remote I/O error %d"), errnum);
12451 else
12452 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12453 }
12454
12455 /* A RAII wrapper around a remote file descriptor. */
12456
12457 class scoped_remote_fd
12458 {
12459 public:
12460 scoped_remote_fd (remote_target *remote, int fd)
12461 : m_remote (remote), m_fd (fd)
12462 {
12463 }
12464
12465 ~scoped_remote_fd ()
12466 {
12467 if (m_fd != -1)
12468 {
12469 try
12470 {
12471 int remote_errno;
12472 m_remote->remote_hostio_close (m_fd, &remote_errno);
12473 }
12474 catch (...)
12475 {
12476 /* Swallow exception before it escapes the dtor. If
12477 something goes wrong, likely the connection is gone,
12478 and there's nothing else that can be done. */
12479 }
12480 }
12481 }
12482
12483 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12484
12485 /* Release ownership of the file descriptor, and return it. */
12486 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12487 {
12488 int fd = m_fd;
12489 m_fd = -1;
12490 return fd;
12491 }
12492
12493 /* Return the owned file descriptor. */
12494 int get () const noexcept
12495 {
12496 return m_fd;
12497 }
12498
12499 private:
12500 /* The remote target. */
12501 remote_target *m_remote;
12502
12503 /* The owned remote I/O file descriptor. */
12504 int m_fd;
12505 };
12506
12507 void
12508 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12509 {
12510 remote_target *remote = get_current_remote_target ();
12511
12512 if (remote == nullptr)
12513 error (_("command can only be used with remote target"));
12514
12515 remote->remote_file_put (local_file, remote_file, from_tty);
12516 }
12517
12518 void
12519 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12520 int from_tty)
12521 {
12522 int retcode, remote_errno, bytes, io_size;
12523 int bytes_in_buffer;
12524 int saw_eof;
12525 ULONGEST offset;
12526
12527 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12528 if (file == NULL)
12529 perror_with_name (local_file);
12530
12531 scoped_remote_fd fd
12532 (this, remote_hostio_open (NULL,
12533 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12534 | FILEIO_O_TRUNC),
12535 0700, 0, &remote_errno));
12536 if (fd.get () == -1)
12537 remote_hostio_error (remote_errno);
12538
12539 /* Send up to this many bytes at once. They won't all fit in the
12540 remote packet limit, so we'll transfer slightly fewer. */
12541 io_size = get_remote_packet_size ();
12542 gdb::byte_vector buffer (io_size);
12543
12544 bytes_in_buffer = 0;
12545 saw_eof = 0;
12546 offset = 0;
12547 while (bytes_in_buffer || !saw_eof)
12548 {
12549 if (!saw_eof)
12550 {
12551 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12552 io_size - bytes_in_buffer,
12553 file.get ());
12554 if (bytes == 0)
12555 {
12556 if (ferror (file.get ()))
12557 error (_("Error reading %s."), local_file);
12558 else
12559 {
12560 /* EOF. Unless there is something still in the
12561 buffer from the last iteration, we are done. */
12562 saw_eof = 1;
12563 if (bytes_in_buffer == 0)
12564 break;
12565 }
12566 }
12567 }
12568 else
12569 bytes = 0;
12570
12571 bytes += bytes_in_buffer;
12572 bytes_in_buffer = 0;
12573
12574 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12575 offset, &remote_errno);
12576
12577 if (retcode < 0)
12578 remote_hostio_error (remote_errno);
12579 else if (retcode == 0)
12580 error (_("Remote write of %d bytes returned 0!"), bytes);
12581 else if (retcode < bytes)
12582 {
12583 /* Short write. Save the rest of the read data for the next
12584 write. */
12585 bytes_in_buffer = bytes - retcode;
12586 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12587 }
12588
12589 offset += retcode;
12590 }
12591
12592 if (remote_hostio_close (fd.release (), &remote_errno))
12593 remote_hostio_error (remote_errno);
12594
12595 if (from_tty)
12596 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12597 }
12598
12599 void
12600 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12601 {
12602 remote_target *remote = get_current_remote_target ();
12603
12604 if (remote == nullptr)
12605 error (_("command can only be used with remote target"));
12606
12607 remote->remote_file_get (remote_file, local_file, from_tty);
12608 }
12609
12610 void
12611 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12612 int from_tty)
12613 {
12614 int remote_errno, bytes, io_size;
12615 ULONGEST offset;
12616
12617 scoped_remote_fd fd
12618 (this, remote_hostio_open (NULL,
12619 remote_file, FILEIO_O_RDONLY, 0, 0,
12620 &remote_errno));
12621 if (fd.get () == -1)
12622 remote_hostio_error (remote_errno);
12623
12624 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12625 if (file == NULL)
12626 perror_with_name (local_file);
12627
12628 /* Send up to this many bytes at once. They won't all fit in the
12629 remote packet limit, so we'll transfer slightly fewer. */
12630 io_size = get_remote_packet_size ();
12631 gdb::byte_vector buffer (io_size);
12632
12633 offset = 0;
12634 while (1)
12635 {
12636 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12637 &remote_errno);
12638 if (bytes == 0)
12639 /* Success, but no bytes, means end-of-file. */
12640 break;
12641 if (bytes == -1)
12642 remote_hostio_error (remote_errno);
12643
12644 offset += bytes;
12645
12646 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12647 if (bytes == 0)
12648 perror_with_name (local_file);
12649 }
12650
12651 if (remote_hostio_close (fd.release (), &remote_errno))
12652 remote_hostio_error (remote_errno);
12653
12654 if (from_tty)
12655 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12656 }
12657
12658 void
12659 remote_file_delete (const char *remote_file, int from_tty)
12660 {
12661 remote_target *remote = get_current_remote_target ();
12662
12663 if (remote == nullptr)
12664 error (_("command can only be used with remote target"));
12665
12666 remote->remote_file_delete (remote_file, from_tty);
12667 }
12668
12669 void
12670 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12671 {
12672 int retcode, remote_errno;
12673
12674 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12675 if (retcode == -1)
12676 remote_hostio_error (remote_errno);
12677
12678 if (from_tty)
12679 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12680 }
12681
12682 static void
12683 remote_put_command (const char *args, int from_tty)
12684 {
12685 if (args == NULL)
12686 error_no_arg (_("file to put"));
12687
12688 gdb_argv argv (args);
12689 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12690 error (_("Invalid parameters to remote put"));
12691
12692 remote_file_put (argv[0], argv[1], from_tty);
12693 }
12694
12695 static void
12696 remote_get_command (const char *args, int from_tty)
12697 {
12698 if (args == NULL)
12699 error_no_arg (_("file to get"));
12700
12701 gdb_argv argv (args);
12702 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12703 error (_("Invalid parameters to remote get"));
12704
12705 remote_file_get (argv[0], argv[1], from_tty);
12706 }
12707
12708 static void
12709 remote_delete_command (const char *args, int from_tty)
12710 {
12711 if (args == NULL)
12712 error_no_arg (_("file to delete"));
12713
12714 gdb_argv argv (args);
12715 if (argv[0] == NULL || argv[1] != NULL)
12716 error (_("Invalid parameters to remote delete"));
12717
12718 remote_file_delete (argv[0], from_tty);
12719 }
12720
12721 bool
12722 remote_target::can_execute_reverse ()
12723 {
12724 if (packet_support (PACKET_bs) == PACKET_ENABLE
12725 || packet_support (PACKET_bc) == PACKET_ENABLE)
12726 return true;
12727 else
12728 return false;
12729 }
12730
12731 bool
12732 remote_target::supports_non_stop ()
12733 {
12734 return true;
12735 }
12736
12737 bool
12738 remote_target::supports_disable_randomization ()
12739 {
12740 /* Only supported in extended mode. */
12741 return false;
12742 }
12743
12744 bool
12745 remote_target::supports_multi_process ()
12746 {
12747 struct remote_state *rs = get_remote_state ();
12748
12749 return remote_multi_process_p (rs);
12750 }
12751
12752 static int
12753 remote_supports_cond_tracepoints ()
12754 {
12755 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12756 }
12757
12758 bool
12759 remote_target::supports_evaluation_of_breakpoint_conditions ()
12760 {
12761 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12762 }
12763
12764 static int
12765 remote_supports_fast_tracepoints ()
12766 {
12767 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12768 }
12769
12770 static int
12771 remote_supports_static_tracepoints ()
12772 {
12773 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12774 }
12775
12776 static int
12777 remote_supports_install_in_trace ()
12778 {
12779 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12780 }
12781
12782 bool
12783 remote_target::supports_enable_disable_tracepoint ()
12784 {
12785 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12786 == PACKET_ENABLE);
12787 }
12788
12789 bool
12790 remote_target::supports_string_tracing ()
12791 {
12792 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12793 }
12794
12795 bool
12796 remote_target::can_run_breakpoint_commands ()
12797 {
12798 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12799 }
12800
12801 void
12802 remote_target::trace_init ()
12803 {
12804 struct remote_state *rs = get_remote_state ();
12805
12806 putpkt ("QTinit");
12807 remote_get_noisy_reply ();
12808 if (strcmp (rs->buf.data (), "OK") != 0)
12809 error (_("Target does not support this command."));
12810 }
12811
12812 /* Recursive routine to walk through command list including loops, and
12813 download packets for each command. */
12814
12815 void
12816 remote_target::remote_download_command_source (int num, ULONGEST addr,
12817 struct command_line *cmds)
12818 {
12819 struct remote_state *rs = get_remote_state ();
12820 struct command_line *cmd;
12821
12822 for (cmd = cmds; cmd; cmd = cmd->next)
12823 {
12824 QUIT; /* Allow user to bail out with ^C. */
12825 strcpy (rs->buf.data (), "QTDPsrc:");
12826 encode_source_string (num, addr, "cmd", cmd->line,
12827 rs->buf.data () + strlen (rs->buf.data ()),
12828 rs->buf.size () - strlen (rs->buf.data ()));
12829 putpkt (rs->buf);
12830 remote_get_noisy_reply ();
12831 if (strcmp (rs->buf.data (), "OK"))
12832 warning (_("Target does not support source download."));
12833
12834 if (cmd->control_type == while_control
12835 || cmd->control_type == while_stepping_control)
12836 {
12837 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12838
12839 QUIT; /* Allow user to bail out with ^C. */
12840 strcpy (rs->buf.data (), "QTDPsrc:");
12841 encode_source_string (num, addr, "cmd", "end",
12842 rs->buf.data () + strlen (rs->buf.data ()),
12843 rs->buf.size () - strlen (rs->buf.data ()));
12844 putpkt (rs->buf);
12845 remote_get_noisy_reply ();
12846 if (strcmp (rs->buf.data (), "OK"))
12847 warning (_("Target does not support source download."));
12848 }
12849 }
12850 }
12851
12852 void
12853 remote_target::download_tracepoint (struct bp_location *loc)
12854 {
12855 CORE_ADDR tpaddr;
12856 char addrbuf[40];
12857 std::vector<std::string> tdp_actions;
12858 std::vector<std::string> stepping_actions;
12859 char *pkt;
12860 struct breakpoint *b = loc->owner;
12861 struct tracepoint *t = (struct tracepoint *) b;
12862 struct remote_state *rs = get_remote_state ();
12863 int ret;
12864 const char *err_msg = _("Tracepoint packet too large for target.");
12865 size_t size_left;
12866
12867 /* We use a buffer other than rs->buf because we'll build strings
12868 across multiple statements, and other statements in between could
12869 modify rs->buf. */
12870 gdb::char_vector buf (get_remote_packet_size ());
12871
12872 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12873
12874 tpaddr = loc->address;
12875 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
12876 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12877 b->number, addrbuf, /* address */
12878 (b->enable_state == bp_enabled ? 'E' : 'D'),
12879 t->step_count, t->pass_count);
12880
12881 if (ret < 0 || ret >= buf.size ())
12882 error ("%s", err_msg);
12883
12884 /* Fast tracepoints are mostly handled by the target, but we can
12885 tell the target how big of an instruction block should be moved
12886 around. */
12887 if (b->type == bp_fast_tracepoint)
12888 {
12889 /* Only test for support at download time; we may not know
12890 target capabilities at definition time. */
12891 if (remote_supports_fast_tracepoints ())
12892 {
12893 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12894 NULL))
12895 {
12896 size_left = buf.size () - strlen (buf.data ());
12897 ret = snprintf (buf.data () + strlen (buf.data ()),
12898 size_left, ":F%x",
12899 gdb_insn_length (loc->gdbarch, tpaddr));
12900
12901 if (ret < 0 || ret >= size_left)
12902 error ("%s", err_msg);
12903 }
12904 else
12905 /* If it passed validation at definition but fails now,
12906 something is very wrong. */
12907 internal_error (__FILE__, __LINE__,
12908 _("Fast tracepoint not "
12909 "valid during download"));
12910 }
12911 else
12912 /* Fast tracepoints are functionally identical to regular
12913 tracepoints, so don't take lack of support as a reason to
12914 give up on the trace run. */
12915 warning (_("Target does not support fast tracepoints, "
12916 "downloading %d as regular tracepoint"), b->number);
12917 }
12918 else if (b->type == bp_static_tracepoint)
12919 {
12920 /* Only test for support at download time; we may not know
12921 target capabilities at definition time. */
12922 if (remote_supports_static_tracepoints ())
12923 {
12924 struct static_tracepoint_marker marker;
12925
12926 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12927 {
12928 size_left = buf.size () - strlen (buf.data ());
12929 ret = snprintf (buf.data () + strlen (buf.data ()),
12930 size_left, ":S");
12931
12932 if (ret < 0 || ret >= size_left)
12933 error ("%s", err_msg);
12934 }
12935 else
12936 error (_("Static tracepoint not valid during download"));
12937 }
12938 else
12939 /* Fast tracepoints are functionally identical to regular
12940 tracepoints, so don't take lack of support as a reason
12941 to give up on the trace run. */
12942 error (_("Target does not support static tracepoints"));
12943 }
12944 /* If the tracepoint has a conditional, make it into an agent
12945 expression and append to the definition. */
12946 if (loc->cond)
12947 {
12948 /* Only test support at download time, we may not know target
12949 capabilities at definition time. */
12950 if (remote_supports_cond_tracepoints ())
12951 {
12952 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12953 loc->cond.get ());
12954
12955 size_left = buf.size () - strlen (buf.data ());
12956
12957 ret = snprintf (buf.data () + strlen (buf.data ()),
12958 size_left, ":X%x,", aexpr->len);
12959
12960 if (ret < 0 || ret >= size_left)
12961 error ("%s", err_msg);
12962
12963 size_left = buf.size () - strlen (buf.data ());
12964
12965 /* Two bytes to encode each aexpr byte, plus the terminating
12966 null byte. */
12967 if (aexpr->len * 2 + 1 > size_left)
12968 error ("%s", err_msg);
12969
12970 pkt = buf.data () + strlen (buf.data ());
12971
12972 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12973 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12974 *pkt = '\0';
12975 }
12976 else
12977 warning (_("Target does not support conditional tracepoints, "
12978 "ignoring tp %d cond"), b->number);
12979 }
12980
12981 if (b->commands || *default_collect)
12982 {
12983 size_left = buf.size () - strlen (buf.data ());
12984
12985 ret = snprintf (buf.data () + strlen (buf.data ()),
12986 size_left, "-");
12987
12988 if (ret < 0 || ret >= size_left)
12989 error ("%s", err_msg);
12990 }
12991
12992 putpkt (buf.data ());
12993 remote_get_noisy_reply ();
12994 if (strcmp (rs->buf.data (), "OK"))
12995 error (_("Target does not support tracepoints."));
12996
12997 /* do_single_steps (t); */
12998 for (auto action_it = tdp_actions.begin ();
12999 action_it != tdp_actions.end (); action_it++)
13000 {
13001 QUIT; /* Allow user to bail out with ^C. */
13002
13003 bool has_more = ((action_it + 1) != tdp_actions.end ()
13004 || !stepping_actions.empty ());
13005
13006 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13007 b->number, addrbuf, /* address */
13008 action_it->c_str (),
13009 has_more ? '-' : 0);
13010
13011 if (ret < 0 || ret >= buf.size ())
13012 error ("%s", err_msg);
13013
13014 putpkt (buf.data ());
13015 remote_get_noisy_reply ();
13016 if (strcmp (rs->buf.data (), "OK"))
13017 error (_("Error on target while setting tracepoints."));
13018 }
13019
13020 for (auto action_it = stepping_actions.begin ();
13021 action_it != stepping_actions.end (); action_it++)
13022 {
13023 QUIT; /* Allow user to bail out with ^C. */
13024
13025 bool is_first = action_it == stepping_actions.begin ();
13026 bool has_more = (action_it + 1) != stepping_actions.end ();
13027
13028 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13029 b->number, addrbuf, /* address */
13030 is_first ? "S" : "",
13031 action_it->c_str (),
13032 has_more ? "-" : "");
13033
13034 if (ret < 0 || ret >= buf.size ())
13035 error ("%s", err_msg);
13036
13037 putpkt (buf.data ());
13038 remote_get_noisy_reply ();
13039 if (strcmp (rs->buf.data (), "OK"))
13040 error (_("Error on target while setting tracepoints."));
13041 }
13042
13043 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13044 {
13045 if (b->location != NULL)
13046 {
13047 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13048
13049 if (ret < 0 || ret >= buf.size ())
13050 error ("%s", err_msg);
13051
13052 encode_source_string (b->number, loc->address, "at",
13053 event_location_to_string (b->location.get ()),
13054 buf.data () + strlen (buf.data ()),
13055 buf.size () - strlen (buf.data ()));
13056 putpkt (buf.data ());
13057 remote_get_noisy_reply ();
13058 if (strcmp (rs->buf.data (), "OK"))
13059 warning (_("Target does not support source download."));
13060 }
13061 if (b->cond_string)
13062 {
13063 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13064
13065 if (ret < 0 || ret >= buf.size ())
13066 error ("%s", err_msg);
13067
13068 encode_source_string (b->number, loc->address,
13069 "cond", b->cond_string,
13070 buf.data () + strlen (buf.data ()),
13071 buf.size () - strlen (buf.data ()));
13072 putpkt (buf.data ());
13073 remote_get_noisy_reply ();
13074 if (strcmp (rs->buf.data (), "OK"))
13075 warning (_("Target does not support source download."));
13076 }
13077 remote_download_command_source (b->number, loc->address,
13078 breakpoint_commands (b));
13079 }
13080 }
13081
13082 bool
13083 remote_target::can_download_tracepoint ()
13084 {
13085 struct remote_state *rs = get_remote_state ();
13086 struct trace_status *ts;
13087 int status;
13088
13089 /* Don't try to install tracepoints until we've relocated our
13090 symbols, and fetched and merged the target's tracepoint list with
13091 ours. */
13092 if (rs->starting_up)
13093 return false;
13094
13095 ts = current_trace_status ();
13096 status = get_trace_status (ts);
13097
13098 if (status == -1 || !ts->running_known || !ts->running)
13099 return false;
13100
13101 /* If we are in a tracing experiment, but remote stub doesn't support
13102 installing tracepoint in trace, we have to return. */
13103 if (!remote_supports_install_in_trace ())
13104 return false;
13105
13106 return true;
13107 }
13108
13109
13110 void
13111 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13112 {
13113 struct remote_state *rs = get_remote_state ();
13114 char *p;
13115
13116 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13117 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13118 tsv.builtin);
13119 p = rs->buf.data () + strlen (rs->buf.data ());
13120 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13121 >= get_remote_packet_size ())
13122 error (_("Trace state variable name too long for tsv definition packet"));
13123 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13124 *p++ = '\0';
13125 putpkt (rs->buf);
13126 remote_get_noisy_reply ();
13127 if (rs->buf[0] == '\0')
13128 error (_("Target does not support this command."));
13129 if (strcmp (rs->buf.data (), "OK") != 0)
13130 error (_("Error on target while downloading trace state variable."));
13131 }
13132
13133 void
13134 remote_target::enable_tracepoint (struct bp_location *location)
13135 {
13136 struct remote_state *rs = get_remote_state ();
13137
13138 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13139 location->owner->number,
13140 phex (location->address, sizeof (CORE_ADDR)));
13141 putpkt (rs->buf);
13142 remote_get_noisy_reply ();
13143 if (rs->buf[0] == '\0')
13144 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13145 if (strcmp (rs->buf.data (), "OK") != 0)
13146 error (_("Error on target while enabling tracepoint."));
13147 }
13148
13149 void
13150 remote_target::disable_tracepoint (struct bp_location *location)
13151 {
13152 struct remote_state *rs = get_remote_state ();
13153
13154 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13155 location->owner->number,
13156 phex (location->address, sizeof (CORE_ADDR)));
13157 putpkt (rs->buf);
13158 remote_get_noisy_reply ();
13159 if (rs->buf[0] == '\0')
13160 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13161 if (strcmp (rs->buf.data (), "OK") != 0)
13162 error (_("Error on target while disabling tracepoint."));
13163 }
13164
13165 void
13166 remote_target::trace_set_readonly_regions ()
13167 {
13168 asection *s;
13169 bfd_size_type size;
13170 bfd_vma vma;
13171 int anysecs = 0;
13172 int offset = 0;
13173
13174 if (!exec_bfd)
13175 return; /* No information to give. */
13176
13177 struct remote_state *rs = get_remote_state ();
13178
13179 strcpy (rs->buf.data (), "QTro");
13180 offset = strlen (rs->buf.data ());
13181 for (s = exec_bfd->sections; s; s = s->next)
13182 {
13183 char tmp1[40], tmp2[40];
13184 int sec_length;
13185
13186 if ((s->flags & SEC_LOAD) == 0 ||
13187 /* (s->flags & SEC_CODE) == 0 || */
13188 (s->flags & SEC_READONLY) == 0)
13189 continue;
13190
13191 anysecs = 1;
13192 vma = bfd_section_vma (s);
13193 size = bfd_section_size (s);
13194 sprintf_vma (tmp1, vma);
13195 sprintf_vma (tmp2, vma + size);
13196 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13197 if (offset + sec_length + 1 > rs->buf.size ())
13198 {
13199 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13200 warning (_("\
13201 Too many sections for read-only sections definition packet."));
13202 break;
13203 }
13204 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13205 tmp1, tmp2);
13206 offset += sec_length;
13207 }
13208 if (anysecs)
13209 {
13210 putpkt (rs->buf);
13211 getpkt (&rs->buf, 0);
13212 }
13213 }
13214
13215 void
13216 remote_target::trace_start ()
13217 {
13218 struct remote_state *rs = get_remote_state ();
13219
13220 putpkt ("QTStart");
13221 remote_get_noisy_reply ();
13222 if (rs->buf[0] == '\0')
13223 error (_("Target does not support this command."));
13224 if (strcmp (rs->buf.data (), "OK") != 0)
13225 error (_("Bogus reply from target: %s"), rs->buf.data ());
13226 }
13227
13228 int
13229 remote_target::get_trace_status (struct trace_status *ts)
13230 {
13231 /* Initialize it just to avoid a GCC false warning. */
13232 char *p = NULL;
13233 enum packet_result result;
13234 struct remote_state *rs = get_remote_state ();
13235
13236 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13237 return -1;
13238
13239 /* FIXME we need to get register block size some other way. */
13240 trace_regblock_size
13241 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13242
13243 putpkt ("qTStatus");
13244
13245 try
13246 {
13247 p = remote_get_noisy_reply ();
13248 }
13249 catch (const gdb_exception_error &ex)
13250 {
13251 if (ex.error != TARGET_CLOSE_ERROR)
13252 {
13253 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13254 return -1;
13255 }
13256 throw;
13257 }
13258
13259 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13260
13261 /* If the remote target doesn't do tracing, flag it. */
13262 if (result == PACKET_UNKNOWN)
13263 return -1;
13264
13265 /* We're working with a live target. */
13266 ts->filename = NULL;
13267
13268 if (*p++ != 'T')
13269 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13270
13271 /* Function 'parse_trace_status' sets default value of each field of
13272 'ts' at first, so we don't have to do it here. */
13273 parse_trace_status (p, ts);
13274
13275 return ts->running;
13276 }
13277
13278 void
13279 remote_target::get_tracepoint_status (struct breakpoint *bp,
13280 struct uploaded_tp *utp)
13281 {
13282 struct remote_state *rs = get_remote_state ();
13283 char *reply;
13284 struct bp_location *loc;
13285 struct tracepoint *tp = (struct tracepoint *) bp;
13286 size_t size = get_remote_packet_size ();
13287
13288 if (tp)
13289 {
13290 tp->hit_count = 0;
13291 tp->traceframe_usage = 0;
13292 for (loc = tp->loc; loc; loc = loc->next)
13293 {
13294 /* If the tracepoint was never downloaded, don't go asking for
13295 any status. */
13296 if (tp->number_on_target == 0)
13297 continue;
13298 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13299 phex_nz (loc->address, 0));
13300 putpkt (rs->buf);
13301 reply = remote_get_noisy_reply ();
13302 if (reply && *reply)
13303 {
13304 if (*reply == 'V')
13305 parse_tracepoint_status (reply + 1, bp, utp);
13306 }
13307 }
13308 }
13309 else if (utp)
13310 {
13311 utp->hit_count = 0;
13312 utp->traceframe_usage = 0;
13313 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13314 phex_nz (utp->addr, 0));
13315 putpkt (rs->buf);
13316 reply = remote_get_noisy_reply ();
13317 if (reply && *reply)
13318 {
13319 if (*reply == 'V')
13320 parse_tracepoint_status (reply + 1, bp, utp);
13321 }
13322 }
13323 }
13324
13325 void
13326 remote_target::trace_stop ()
13327 {
13328 struct remote_state *rs = get_remote_state ();
13329
13330 putpkt ("QTStop");
13331 remote_get_noisy_reply ();
13332 if (rs->buf[0] == '\0')
13333 error (_("Target does not support this command."));
13334 if (strcmp (rs->buf.data (), "OK") != 0)
13335 error (_("Bogus reply from target: %s"), rs->buf.data ());
13336 }
13337
13338 int
13339 remote_target::trace_find (enum trace_find_type type, int num,
13340 CORE_ADDR addr1, CORE_ADDR addr2,
13341 int *tpp)
13342 {
13343 struct remote_state *rs = get_remote_state ();
13344 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13345 char *p, *reply;
13346 int target_frameno = -1, target_tracept = -1;
13347
13348 /* Lookups other than by absolute frame number depend on the current
13349 trace selected, so make sure it is correct on the remote end
13350 first. */
13351 if (type != tfind_number)
13352 set_remote_traceframe ();
13353
13354 p = rs->buf.data ();
13355 strcpy (p, "QTFrame:");
13356 p = strchr (p, '\0');
13357 switch (type)
13358 {
13359 case tfind_number:
13360 xsnprintf (p, endbuf - p, "%x", num);
13361 break;
13362 case tfind_pc:
13363 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13364 break;
13365 case tfind_tp:
13366 xsnprintf (p, endbuf - p, "tdp:%x", num);
13367 break;
13368 case tfind_range:
13369 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13370 phex_nz (addr2, 0));
13371 break;
13372 case tfind_outside:
13373 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13374 phex_nz (addr2, 0));
13375 break;
13376 default:
13377 error (_("Unknown trace find type %d"), type);
13378 }
13379
13380 putpkt (rs->buf);
13381 reply = remote_get_noisy_reply ();
13382 if (*reply == '\0')
13383 error (_("Target does not support this command."));
13384
13385 while (reply && *reply)
13386 switch (*reply)
13387 {
13388 case 'F':
13389 p = ++reply;
13390 target_frameno = (int) strtol (p, &reply, 16);
13391 if (reply == p)
13392 error (_("Unable to parse trace frame number"));
13393 /* Don't update our remote traceframe number cache on failure
13394 to select a remote traceframe. */
13395 if (target_frameno == -1)
13396 return -1;
13397 break;
13398 case 'T':
13399 p = ++reply;
13400 target_tracept = (int) strtol (p, &reply, 16);
13401 if (reply == p)
13402 error (_("Unable to parse tracepoint number"));
13403 break;
13404 case 'O': /* "OK"? */
13405 if (reply[1] == 'K' && reply[2] == '\0')
13406 reply += 2;
13407 else
13408 error (_("Bogus reply from target: %s"), reply);
13409 break;
13410 default:
13411 error (_("Bogus reply from target: %s"), reply);
13412 }
13413 if (tpp)
13414 *tpp = target_tracept;
13415
13416 rs->remote_traceframe_number = target_frameno;
13417 return target_frameno;
13418 }
13419
13420 bool
13421 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13422 {
13423 struct remote_state *rs = get_remote_state ();
13424 char *reply;
13425 ULONGEST uval;
13426
13427 set_remote_traceframe ();
13428
13429 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13430 putpkt (rs->buf);
13431 reply = remote_get_noisy_reply ();
13432 if (reply && *reply)
13433 {
13434 if (*reply == 'V')
13435 {
13436 unpack_varlen_hex (reply + 1, &uval);
13437 *val = (LONGEST) uval;
13438 return true;
13439 }
13440 }
13441 return false;
13442 }
13443
13444 int
13445 remote_target::save_trace_data (const char *filename)
13446 {
13447 struct remote_state *rs = get_remote_state ();
13448 char *p, *reply;
13449
13450 p = rs->buf.data ();
13451 strcpy (p, "QTSave:");
13452 p += strlen (p);
13453 if ((p - rs->buf.data ()) + strlen (filename) * 2
13454 >= get_remote_packet_size ())
13455 error (_("Remote file name too long for trace save packet"));
13456 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13457 *p++ = '\0';
13458 putpkt (rs->buf);
13459 reply = remote_get_noisy_reply ();
13460 if (*reply == '\0')
13461 error (_("Target does not support this command."));
13462 if (strcmp (reply, "OK") != 0)
13463 error (_("Bogus reply from target: %s"), reply);
13464 return 0;
13465 }
13466
13467 /* This is basically a memory transfer, but needs to be its own packet
13468 because we don't know how the target actually organizes its trace
13469 memory, plus we want to be able to ask for as much as possible, but
13470 not be unhappy if we don't get as much as we ask for. */
13471
13472 LONGEST
13473 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13474 {
13475 struct remote_state *rs = get_remote_state ();
13476 char *reply;
13477 char *p;
13478 int rslt;
13479
13480 p = rs->buf.data ();
13481 strcpy (p, "qTBuffer:");
13482 p += strlen (p);
13483 p += hexnumstr (p, offset);
13484 *p++ = ',';
13485 p += hexnumstr (p, len);
13486 *p++ = '\0';
13487
13488 putpkt (rs->buf);
13489 reply = remote_get_noisy_reply ();
13490 if (reply && *reply)
13491 {
13492 /* 'l' by itself means we're at the end of the buffer and
13493 there is nothing more to get. */
13494 if (*reply == 'l')
13495 return 0;
13496
13497 /* Convert the reply into binary. Limit the number of bytes to
13498 convert according to our passed-in buffer size, rather than
13499 what was returned in the packet; if the target is
13500 unexpectedly generous and gives us a bigger reply than we
13501 asked for, we don't want to crash. */
13502 rslt = hex2bin (reply, buf, len);
13503 return rslt;
13504 }
13505
13506 /* Something went wrong, flag as an error. */
13507 return -1;
13508 }
13509
13510 void
13511 remote_target::set_disconnected_tracing (int val)
13512 {
13513 struct remote_state *rs = get_remote_state ();
13514
13515 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13516 {
13517 char *reply;
13518
13519 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13520 "QTDisconnected:%x", val);
13521 putpkt (rs->buf);
13522 reply = remote_get_noisy_reply ();
13523 if (*reply == '\0')
13524 error (_("Target does not support this command."));
13525 if (strcmp (reply, "OK") != 0)
13526 error (_("Bogus reply from target: %s"), reply);
13527 }
13528 else if (val)
13529 warning (_("Target does not support disconnected tracing."));
13530 }
13531
13532 int
13533 remote_target::core_of_thread (ptid_t ptid)
13534 {
13535 thread_info *info = find_thread_ptid (this, ptid);
13536
13537 if (info != NULL && info->priv != NULL)
13538 return get_remote_thread_info (info)->core;
13539
13540 return -1;
13541 }
13542
13543 void
13544 remote_target::set_circular_trace_buffer (int val)
13545 {
13546 struct remote_state *rs = get_remote_state ();
13547 char *reply;
13548
13549 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13550 "QTBuffer:circular:%x", val);
13551 putpkt (rs->buf);
13552 reply = remote_get_noisy_reply ();
13553 if (*reply == '\0')
13554 error (_("Target does not support this command."));
13555 if (strcmp (reply, "OK") != 0)
13556 error (_("Bogus reply from target: %s"), reply);
13557 }
13558
13559 traceframe_info_up
13560 remote_target::traceframe_info ()
13561 {
13562 gdb::optional<gdb::char_vector> text
13563 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13564 NULL);
13565 if (text)
13566 return parse_traceframe_info (text->data ());
13567
13568 return NULL;
13569 }
13570
13571 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13572 instruction on which a fast tracepoint may be placed. Returns -1
13573 if the packet is not supported, and 0 if the minimum instruction
13574 length is unknown. */
13575
13576 int
13577 remote_target::get_min_fast_tracepoint_insn_len ()
13578 {
13579 struct remote_state *rs = get_remote_state ();
13580 char *reply;
13581
13582 /* If we're not debugging a process yet, the IPA can't be
13583 loaded. */
13584 if (!target_has_execution)
13585 return 0;
13586
13587 /* Make sure the remote is pointing at the right process. */
13588 set_general_process ();
13589
13590 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13591 putpkt (rs->buf);
13592 reply = remote_get_noisy_reply ();
13593 if (*reply == '\0')
13594 return -1;
13595 else
13596 {
13597 ULONGEST min_insn_len;
13598
13599 unpack_varlen_hex (reply, &min_insn_len);
13600
13601 return (int) min_insn_len;
13602 }
13603 }
13604
13605 void
13606 remote_target::set_trace_buffer_size (LONGEST val)
13607 {
13608 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13609 {
13610 struct remote_state *rs = get_remote_state ();
13611 char *buf = rs->buf.data ();
13612 char *endbuf = buf + get_remote_packet_size ();
13613 enum packet_result result;
13614
13615 gdb_assert (val >= 0 || val == -1);
13616 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13617 /* Send -1 as literal "-1" to avoid host size dependency. */
13618 if (val < 0)
13619 {
13620 *buf++ = '-';
13621 buf += hexnumstr (buf, (ULONGEST) -val);
13622 }
13623 else
13624 buf += hexnumstr (buf, (ULONGEST) val);
13625
13626 putpkt (rs->buf);
13627 remote_get_noisy_reply ();
13628 result = packet_ok (rs->buf,
13629 &remote_protocol_packets[PACKET_QTBuffer_size]);
13630
13631 if (result != PACKET_OK)
13632 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13633 }
13634 }
13635
13636 bool
13637 remote_target::set_trace_notes (const char *user, const char *notes,
13638 const char *stop_notes)
13639 {
13640 struct remote_state *rs = get_remote_state ();
13641 char *reply;
13642 char *buf = rs->buf.data ();
13643 char *endbuf = buf + get_remote_packet_size ();
13644 int nbytes;
13645
13646 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13647 if (user)
13648 {
13649 buf += xsnprintf (buf, endbuf - buf, "user:");
13650 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13651 buf += 2 * nbytes;
13652 *buf++ = ';';
13653 }
13654 if (notes)
13655 {
13656 buf += xsnprintf (buf, endbuf - buf, "notes:");
13657 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13658 buf += 2 * nbytes;
13659 *buf++ = ';';
13660 }
13661 if (stop_notes)
13662 {
13663 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13664 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13665 buf += 2 * nbytes;
13666 *buf++ = ';';
13667 }
13668 /* Ensure the buffer is terminated. */
13669 *buf = '\0';
13670
13671 putpkt (rs->buf);
13672 reply = remote_get_noisy_reply ();
13673 if (*reply == '\0')
13674 return false;
13675
13676 if (strcmp (reply, "OK") != 0)
13677 error (_("Bogus reply from target: %s"), reply);
13678
13679 return true;
13680 }
13681
13682 bool
13683 remote_target::use_agent (bool use)
13684 {
13685 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13686 {
13687 struct remote_state *rs = get_remote_state ();
13688
13689 /* If the stub supports QAgent. */
13690 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13691 putpkt (rs->buf);
13692 getpkt (&rs->buf, 0);
13693
13694 if (strcmp (rs->buf.data (), "OK") == 0)
13695 {
13696 ::use_agent = use;
13697 return true;
13698 }
13699 }
13700
13701 return false;
13702 }
13703
13704 bool
13705 remote_target::can_use_agent ()
13706 {
13707 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13708 }
13709
13710 struct btrace_target_info
13711 {
13712 /* The ptid of the traced thread. */
13713 ptid_t ptid;
13714
13715 /* The obtained branch trace configuration. */
13716 struct btrace_config conf;
13717 };
13718
13719 /* Reset our idea of our target's btrace configuration. */
13720
13721 static void
13722 remote_btrace_reset (remote_state *rs)
13723 {
13724 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13725 }
13726
13727 /* Synchronize the configuration with the target. */
13728
13729 void
13730 remote_target::btrace_sync_conf (const btrace_config *conf)
13731 {
13732 struct packet_config *packet;
13733 struct remote_state *rs;
13734 char *buf, *pos, *endbuf;
13735
13736 rs = get_remote_state ();
13737 buf = rs->buf.data ();
13738 endbuf = buf + get_remote_packet_size ();
13739
13740 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13741 if (packet_config_support (packet) == PACKET_ENABLE
13742 && conf->bts.size != rs->btrace_config.bts.size)
13743 {
13744 pos = buf;
13745 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13746 conf->bts.size);
13747
13748 putpkt (buf);
13749 getpkt (&rs->buf, 0);
13750
13751 if (packet_ok (buf, packet) == PACKET_ERROR)
13752 {
13753 if (buf[0] == 'E' && buf[1] == '.')
13754 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13755 else
13756 error (_("Failed to configure the BTS buffer size."));
13757 }
13758
13759 rs->btrace_config.bts.size = conf->bts.size;
13760 }
13761
13762 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13763 if (packet_config_support (packet) == PACKET_ENABLE
13764 && conf->pt.size != rs->btrace_config.pt.size)
13765 {
13766 pos = buf;
13767 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13768 conf->pt.size);
13769
13770 putpkt (buf);
13771 getpkt (&rs->buf, 0);
13772
13773 if (packet_ok (buf, packet) == PACKET_ERROR)
13774 {
13775 if (buf[0] == 'E' && buf[1] == '.')
13776 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13777 else
13778 error (_("Failed to configure the trace buffer size."));
13779 }
13780
13781 rs->btrace_config.pt.size = conf->pt.size;
13782 }
13783 }
13784
13785 /* Read the current thread's btrace configuration from the target and
13786 store it into CONF. */
13787
13788 static void
13789 btrace_read_config (struct btrace_config *conf)
13790 {
13791 gdb::optional<gdb::char_vector> xml
13792 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13793 if (xml)
13794 parse_xml_btrace_conf (conf, xml->data ());
13795 }
13796
13797 /* Maybe reopen target btrace. */
13798
13799 void
13800 remote_target::remote_btrace_maybe_reopen ()
13801 {
13802 struct remote_state *rs = get_remote_state ();
13803 int btrace_target_pushed = 0;
13804 #if !defined (HAVE_LIBIPT)
13805 int warned = 0;
13806 #endif
13807
13808 /* Don't bother walking the entirety of the remote thread list when
13809 we know the feature isn't supported by the remote. */
13810 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13811 return;
13812
13813 scoped_restore_current_thread restore_thread;
13814
13815 for (thread_info *tp : all_non_exited_threads (this))
13816 {
13817 set_general_thread (tp->ptid);
13818
13819 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13820 btrace_read_config (&rs->btrace_config);
13821
13822 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13823 continue;
13824
13825 #if !defined (HAVE_LIBIPT)
13826 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13827 {
13828 if (!warned)
13829 {
13830 warned = 1;
13831 warning (_("Target is recording using Intel Processor Trace "
13832 "but support was disabled at compile time."));
13833 }
13834
13835 continue;
13836 }
13837 #endif /* !defined (HAVE_LIBIPT) */
13838
13839 /* Push target, once, but before anything else happens. This way our
13840 changes to the threads will be cleaned up by unpushing the target
13841 in case btrace_read_config () throws. */
13842 if (!btrace_target_pushed)
13843 {
13844 btrace_target_pushed = 1;
13845 record_btrace_push_target ();
13846 printf_filtered (_("Target is recording using %s.\n"),
13847 btrace_format_string (rs->btrace_config.format));
13848 }
13849
13850 tp->btrace.target = XCNEW (struct btrace_target_info);
13851 tp->btrace.target->ptid = tp->ptid;
13852 tp->btrace.target->conf = rs->btrace_config;
13853 }
13854 }
13855
13856 /* Enable branch tracing. */
13857
13858 struct btrace_target_info *
13859 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13860 {
13861 struct btrace_target_info *tinfo = NULL;
13862 struct packet_config *packet = NULL;
13863 struct remote_state *rs = get_remote_state ();
13864 char *buf = rs->buf.data ();
13865 char *endbuf = buf + get_remote_packet_size ();
13866
13867 switch (conf->format)
13868 {
13869 case BTRACE_FORMAT_BTS:
13870 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13871 break;
13872
13873 case BTRACE_FORMAT_PT:
13874 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13875 break;
13876 }
13877
13878 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13879 error (_("Target does not support branch tracing."));
13880
13881 btrace_sync_conf (conf);
13882
13883 set_general_thread (ptid);
13884
13885 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13886 putpkt (rs->buf);
13887 getpkt (&rs->buf, 0);
13888
13889 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13890 {
13891 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13892 error (_("Could not enable branch tracing for %s: %s"),
13893 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13894 else
13895 error (_("Could not enable branch tracing for %s."),
13896 target_pid_to_str (ptid).c_str ());
13897 }
13898
13899 tinfo = XCNEW (struct btrace_target_info);
13900 tinfo->ptid = ptid;
13901
13902 /* If we fail to read the configuration, we lose some information, but the
13903 tracing itself is not impacted. */
13904 try
13905 {
13906 btrace_read_config (&tinfo->conf);
13907 }
13908 catch (const gdb_exception_error &err)
13909 {
13910 if (err.message != NULL)
13911 warning ("%s", err.what ());
13912 }
13913
13914 return tinfo;
13915 }
13916
13917 /* Disable branch tracing. */
13918
13919 void
13920 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13921 {
13922 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13923 struct remote_state *rs = get_remote_state ();
13924 char *buf = rs->buf.data ();
13925 char *endbuf = buf + get_remote_packet_size ();
13926
13927 if (packet_config_support (packet) != PACKET_ENABLE)
13928 error (_("Target does not support branch tracing."));
13929
13930 set_general_thread (tinfo->ptid);
13931
13932 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13933 putpkt (rs->buf);
13934 getpkt (&rs->buf, 0);
13935
13936 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13937 {
13938 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13939 error (_("Could not disable branch tracing for %s: %s"),
13940 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13941 else
13942 error (_("Could not disable branch tracing for %s."),
13943 target_pid_to_str (tinfo->ptid).c_str ());
13944 }
13945
13946 xfree (tinfo);
13947 }
13948
13949 /* Teardown branch tracing. */
13950
13951 void
13952 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13953 {
13954 /* We must not talk to the target during teardown. */
13955 xfree (tinfo);
13956 }
13957
13958 /* Read the branch trace. */
13959
13960 enum btrace_error
13961 remote_target::read_btrace (struct btrace_data *btrace,
13962 struct btrace_target_info *tinfo,
13963 enum btrace_read_type type)
13964 {
13965 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13966 const char *annex;
13967
13968 if (packet_config_support (packet) != PACKET_ENABLE)
13969 error (_("Target does not support branch tracing."));
13970
13971 #if !defined(HAVE_LIBEXPAT)
13972 error (_("Cannot process branch tracing result. XML parsing not supported."));
13973 #endif
13974
13975 switch (type)
13976 {
13977 case BTRACE_READ_ALL:
13978 annex = "all";
13979 break;
13980 case BTRACE_READ_NEW:
13981 annex = "new";
13982 break;
13983 case BTRACE_READ_DELTA:
13984 annex = "delta";
13985 break;
13986 default:
13987 internal_error (__FILE__, __LINE__,
13988 _("Bad branch tracing read type: %u."),
13989 (unsigned int) type);
13990 }
13991
13992 gdb::optional<gdb::char_vector> xml
13993 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13994 if (!xml)
13995 return BTRACE_ERR_UNKNOWN;
13996
13997 parse_xml_btrace (btrace, xml->data ());
13998
13999 return BTRACE_ERR_NONE;
14000 }
14001
14002 const struct btrace_config *
14003 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14004 {
14005 return &tinfo->conf;
14006 }
14007
14008 bool
14009 remote_target::augmented_libraries_svr4_read ()
14010 {
14011 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14012 == PACKET_ENABLE);
14013 }
14014
14015 /* Implementation of to_load. */
14016
14017 void
14018 remote_target::load (const char *name, int from_tty)
14019 {
14020 generic_load (name, from_tty);
14021 }
14022
14023 /* Accepts an integer PID; returns a string representing a file that
14024 can be opened on the remote side to get the symbols for the child
14025 process. Returns NULL if the operation is not supported. */
14026
14027 char *
14028 remote_target::pid_to_exec_file (int pid)
14029 {
14030 static gdb::optional<gdb::char_vector> filename;
14031 char *annex = NULL;
14032
14033 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14034 return NULL;
14035
14036 inferior *inf = find_inferior_pid (this, pid);
14037 if (inf == NULL)
14038 internal_error (__FILE__, __LINE__,
14039 _("not currently attached to process %d"), pid);
14040
14041 if (!inf->fake_pid_p)
14042 {
14043 const int annex_size = 9;
14044
14045 annex = (char *) alloca (annex_size);
14046 xsnprintf (annex, annex_size, "%x", pid);
14047 }
14048
14049 filename = target_read_stralloc (current_top_target (),
14050 TARGET_OBJECT_EXEC_FILE, annex);
14051
14052 return filename ? filename->data () : nullptr;
14053 }
14054
14055 /* Implement the to_can_do_single_step target_ops method. */
14056
14057 int
14058 remote_target::can_do_single_step ()
14059 {
14060 /* We can only tell whether target supports single step or not by
14061 supported s and S vCont actions if the stub supports vContSupported
14062 feature. If the stub doesn't support vContSupported feature,
14063 we have conservatively to think target doesn't supports single
14064 step. */
14065 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14066 {
14067 struct remote_state *rs = get_remote_state ();
14068
14069 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14070 remote_vcont_probe ();
14071
14072 return rs->supports_vCont.s && rs->supports_vCont.S;
14073 }
14074 else
14075 return 0;
14076 }
14077
14078 /* Implementation of the to_execution_direction method for the remote
14079 target. */
14080
14081 enum exec_direction_kind
14082 remote_target::execution_direction ()
14083 {
14084 struct remote_state *rs = get_remote_state ();
14085
14086 return rs->last_resume_exec_dir;
14087 }
14088
14089 /* Return pointer to the thread_info struct which corresponds to
14090 THREAD_HANDLE (having length HANDLE_LEN). */
14091
14092 thread_info *
14093 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14094 int handle_len,
14095 inferior *inf)
14096 {
14097 for (thread_info *tp : all_non_exited_threads (this))
14098 {
14099 remote_thread_info *priv = get_remote_thread_info (tp);
14100
14101 if (tp->inf == inf && priv != NULL)
14102 {
14103 if (handle_len != priv->thread_handle.size ())
14104 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14105 handle_len, priv->thread_handle.size ());
14106 if (memcmp (thread_handle, priv->thread_handle.data (),
14107 handle_len) == 0)
14108 return tp;
14109 }
14110 }
14111
14112 return NULL;
14113 }
14114
14115 gdb::byte_vector
14116 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14117 {
14118 remote_thread_info *priv = get_remote_thread_info (tp);
14119 return priv->thread_handle;
14120 }
14121
14122 bool
14123 remote_target::can_async_p ()
14124 {
14125 struct remote_state *rs = get_remote_state ();
14126
14127 /* We don't go async if the user has explicitly prevented it with the
14128 "maint set target-async" command. */
14129 if (!target_async_permitted)
14130 return false;
14131
14132 /* We're async whenever the serial device is. */
14133 return serial_can_async_p (rs->remote_desc);
14134 }
14135
14136 bool
14137 remote_target::is_async_p ()
14138 {
14139 struct remote_state *rs = get_remote_state ();
14140
14141 if (!target_async_permitted)
14142 /* We only enable async when the user specifically asks for it. */
14143 return false;
14144
14145 /* We're async whenever the serial device is. */
14146 return serial_is_async_p (rs->remote_desc);
14147 }
14148
14149 /* Pass the SERIAL event on and up to the client. One day this code
14150 will be able to delay notifying the client of an event until the
14151 point where an entire packet has been received. */
14152
14153 static serial_event_ftype remote_async_serial_handler;
14154
14155 static void
14156 remote_async_serial_handler (struct serial *scb, void *context)
14157 {
14158 /* Don't propogate error information up to the client. Instead let
14159 the client find out about the error by querying the target. */
14160 inferior_event_handler (INF_REG_EVENT, NULL);
14161 }
14162
14163 static void
14164 remote_async_inferior_event_handler (gdb_client_data data)
14165 {
14166 inferior_event_handler (INF_REG_EVENT, data);
14167 }
14168
14169 int
14170 remote_target::async_wait_fd ()
14171 {
14172 struct remote_state *rs = get_remote_state ();
14173 return rs->remote_desc->fd;
14174 }
14175
14176 void
14177 remote_target::async (int enable)
14178 {
14179 struct remote_state *rs = get_remote_state ();
14180
14181 if (enable)
14182 {
14183 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14184
14185 /* If there are pending events in the stop reply queue tell the
14186 event loop to process them. */
14187 if (!rs->stop_reply_queue.empty ())
14188 mark_async_event_handler (rs->remote_async_inferior_event_token);
14189 /* For simplicity, below we clear the pending events token
14190 without remembering whether it is marked, so here we always
14191 mark it. If there's actually no pending notification to
14192 process, this ends up being a no-op (other than a spurious
14193 event-loop wakeup). */
14194 if (target_is_non_stop_p ())
14195 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14196 }
14197 else
14198 {
14199 serial_async (rs->remote_desc, NULL, NULL);
14200 /* If the core is disabling async, it doesn't want to be
14201 disturbed with target events. Clear all async event sources
14202 too. */
14203 clear_async_event_handler (rs->remote_async_inferior_event_token);
14204 if (target_is_non_stop_p ())
14205 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14206 }
14207 }
14208
14209 /* Implementation of the to_thread_events method. */
14210
14211 void
14212 remote_target::thread_events (int enable)
14213 {
14214 struct remote_state *rs = get_remote_state ();
14215 size_t size = get_remote_packet_size ();
14216
14217 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14218 return;
14219
14220 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14221 putpkt (rs->buf);
14222 getpkt (&rs->buf, 0);
14223
14224 switch (packet_ok (rs->buf,
14225 &remote_protocol_packets[PACKET_QThreadEvents]))
14226 {
14227 case PACKET_OK:
14228 if (strcmp (rs->buf.data (), "OK") != 0)
14229 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14230 break;
14231 case PACKET_ERROR:
14232 warning (_("Remote failure reply: %s"), rs->buf.data ());
14233 break;
14234 case PACKET_UNKNOWN:
14235 break;
14236 }
14237 }
14238
14239 static void
14240 show_remote_cmd (const char *args, int from_tty)
14241 {
14242 /* We can't just use cmd_show_list here, because we want to skip
14243 the redundant "show remote Z-packet" and the legacy aliases. */
14244 struct cmd_list_element *list = remote_show_cmdlist;
14245 struct ui_out *uiout = current_uiout;
14246
14247 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14248 for (; list != NULL; list = list->next)
14249 if (strcmp (list->name, "Z-packet") == 0)
14250 continue;
14251 else if (list->type == not_set_cmd)
14252 /* Alias commands are exactly like the original, except they
14253 don't have the normal type. */
14254 continue;
14255 else
14256 {
14257 ui_out_emit_tuple option_emitter (uiout, "option");
14258
14259 uiout->field_string ("name", list->name);
14260 uiout->text (": ");
14261 if (list->type == show_cmd)
14262 do_show_command (NULL, from_tty, list);
14263 else
14264 cmd_func (list, NULL, from_tty);
14265 }
14266 }
14267
14268
14269 /* Function to be called whenever a new objfile (shlib) is detected. */
14270 static void
14271 remote_new_objfile (struct objfile *objfile)
14272 {
14273 remote_target *remote = get_current_remote_target ();
14274
14275 if (remote != NULL) /* Have a remote connection. */
14276 remote->remote_check_symbols ();
14277 }
14278
14279 /* Pull all the tracepoints defined on the target and create local
14280 data structures representing them. We don't want to create real
14281 tracepoints yet, we don't want to mess up the user's existing
14282 collection. */
14283
14284 int
14285 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14286 {
14287 struct remote_state *rs = get_remote_state ();
14288 char *p;
14289
14290 /* Ask for a first packet of tracepoint definition. */
14291 putpkt ("qTfP");
14292 getpkt (&rs->buf, 0);
14293 p = rs->buf.data ();
14294 while (*p && *p != 'l')
14295 {
14296 parse_tracepoint_definition (p, utpp);
14297 /* Ask for another packet of tracepoint definition. */
14298 putpkt ("qTsP");
14299 getpkt (&rs->buf, 0);
14300 p = rs->buf.data ();
14301 }
14302 return 0;
14303 }
14304
14305 int
14306 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14307 {
14308 struct remote_state *rs = get_remote_state ();
14309 char *p;
14310
14311 /* Ask for a first packet of variable definition. */
14312 putpkt ("qTfV");
14313 getpkt (&rs->buf, 0);
14314 p = rs->buf.data ();
14315 while (*p && *p != 'l')
14316 {
14317 parse_tsv_definition (p, utsvp);
14318 /* Ask for another packet of variable definition. */
14319 putpkt ("qTsV");
14320 getpkt (&rs->buf, 0);
14321 p = rs->buf.data ();
14322 }
14323 return 0;
14324 }
14325
14326 /* The "set/show range-stepping" show hook. */
14327
14328 static void
14329 show_range_stepping (struct ui_file *file, int from_tty,
14330 struct cmd_list_element *c,
14331 const char *value)
14332 {
14333 fprintf_filtered (file,
14334 _("Debugger's willingness to use range stepping "
14335 "is %s.\n"), value);
14336 }
14337
14338 /* Return true if the vCont;r action is supported by the remote
14339 stub. */
14340
14341 bool
14342 remote_target::vcont_r_supported ()
14343 {
14344 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14345 remote_vcont_probe ();
14346
14347 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14348 && get_remote_state ()->supports_vCont.r);
14349 }
14350
14351 /* The "set/show range-stepping" set hook. */
14352
14353 static void
14354 set_range_stepping (const char *ignore_args, int from_tty,
14355 struct cmd_list_element *c)
14356 {
14357 /* When enabling, check whether range stepping is actually supported
14358 by the target, and warn if not. */
14359 if (use_range_stepping)
14360 {
14361 remote_target *remote = get_current_remote_target ();
14362 if (remote == NULL
14363 || !remote->vcont_r_supported ())
14364 warning (_("Range stepping is not supported by the current target"));
14365 }
14366 }
14367
14368 void _initialize_remote ();
14369 void
14370 _initialize_remote ()
14371 {
14372 struct cmd_list_element *cmd;
14373 const char *cmd_name;
14374
14375 /* architecture specific data */
14376 remote_g_packet_data_handle =
14377 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14378
14379 add_target (remote_target_info, remote_target::open);
14380 add_target (extended_remote_target_info, extended_remote_target::open);
14381
14382 /* Hook into new objfile notification. */
14383 gdb::observers::new_objfile.attach (remote_new_objfile);
14384
14385 #if 0
14386 init_remote_threadtests ();
14387 #endif
14388
14389 /* set/show remote ... */
14390
14391 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14392 Remote protocol specific variables.\n\
14393 Configure various remote-protocol specific variables such as\n\
14394 the packets being used."),
14395 &remote_set_cmdlist, "set remote ",
14396 0 /* allow-unknown */, &setlist);
14397 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14398 Remote protocol specific variables.\n\
14399 Configure various remote-protocol specific variables such as\n\
14400 the packets being used."),
14401 &remote_show_cmdlist, "show remote ",
14402 0 /* allow-unknown */, &showlist);
14403
14404 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14405 Compare section data on target to the exec file.\n\
14406 Argument is a single section name (default: all loaded sections).\n\
14407 To compare only read-only loaded sections, specify the -r option."),
14408 &cmdlist);
14409
14410 add_cmd ("packet", class_maintenance, packet_command, _("\
14411 Send an arbitrary packet to a remote target.\n\
14412 maintenance packet TEXT\n\
14413 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14414 this command sends the string TEXT to the inferior, and displays the\n\
14415 response packet. GDB supplies the initial `$' character, and the\n\
14416 terminating `#' character and checksum."),
14417 &maintenancelist);
14418
14419 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14420 Set whether to send break if interrupted."), _("\
14421 Show whether to send break if interrupted."), _("\
14422 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14423 set_remotebreak, show_remotebreak,
14424 &setlist, &showlist);
14425 cmd_name = "remotebreak";
14426 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14427 deprecate_cmd (cmd, "set remote interrupt-sequence");
14428 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14429 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14430 deprecate_cmd (cmd, "show remote interrupt-sequence");
14431
14432 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14433 interrupt_sequence_modes, &interrupt_sequence_mode,
14434 _("\
14435 Set interrupt sequence to remote target."), _("\
14436 Show interrupt sequence to remote target."), _("\
14437 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14438 NULL, show_interrupt_sequence,
14439 &remote_set_cmdlist,
14440 &remote_show_cmdlist);
14441
14442 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14443 &interrupt_on_connect, _("\
14444 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14445 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14446 If set, interrupt sequence is sent to remote target."),
14447 NULL, NULL,
14448 &remote_set_cmdlist, &remote_show_cmdlist);
14449
14450 /* Install commands for configuring memory read/write packets. */
14451
14452 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14453 Set the maximum number of bytes per memory write packet (deprecated)."),
14454 &setlist);
14455 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14456 Show the maximum number of bytes per memory write packet (deprecated)."),
14457 &showlist);
14458 add_cmd ("memory-write-packet-size", no_class,
14459 set_memory_write_packet_size, _("\
14460 Set the maximum number of bytes per memory-write packet.\n\
14461 Specify the number of bytes in a packet or 0 (zero) for the\n\
14462 default packet size. The actual limit is further reduced\n\
14463 dependent on the target. Specify ``fixed'' to disable the\n\
14464 further restriction and ``limit'' to enable that restriction."),
14465 &remote_set_cmdlist);
14466 add_cmd ("memory-read-packet-size", no_class,
14467 set_memory_read_packet_size, _("\
14468 Set the maximum number of bytes per memory-read packet.\n\
14469 Specify the number of bytes in a packet or 0 (zero) for the\n\
14470 default packet size. The actual limit is further reduced\n\
14471 dependent on the target. Specify ``fixed'' to disable the\n\
14472 further restriction and ``limit'' to enable that restriction."),
14473 &remote_set_cmdlist);
14474 add_cmd ("memory-write-packet-size", no_class,
14475 show_memory_write_packet_size,
14476 _("Show the maximum number of bytes per memory-write packet."),
14477 &remote_show_cmdlist);
14478 add_cmd ("memory-read-packet-size", no_class,
14479 show_memory_read_packet_size,
14480 _("Show the maximum number of bytes per memory-read packet."),
14481 &remote_show_cmdlist);
14482
14483 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14484 &remote_hw_watchpoint_limit, _("\
14485 Set the maximum number of target hardware watchpoints."), _("\
14486 Show the maximum number of target hardware watchpoints."), _("\
14487 Specify \"unlimited\" for unlimited hardware watchpoints."),
14488 NULL, show_hardware_watchpoint_limit,
14489 &remote_set_cmdlist,
14490 &remote_show_cmdlist);
14491 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14492 no_class,
14493 &remote_hw_watchpoint_length_limit, _("\
14494 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14495 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14496 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14497 NULL, show_hardware_watchpoint_length_limit,
14498 &remote_set_cmdlist, &remote_show_cmdlist);
14499 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14500 &remote_hw_breakpoint_limit, _("\
14501 Set the maximum number of target hardware breakpoints."), _("\
14502 Show the maximum number of target hardware breakpoints."), _("\
14503 Specify \"unlimited\" for unlimited hardware breakpoints."),
14504 NULL, show_hardware_breakpoint_limit,
14505 &remote_set_cmdlist, &remote_show_cmdlist);
14506
14507 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14508 &remote_address_size, _("\
14509 Set the maximum size of the address (in bits) in a memory packet."), _("\
14510 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14511 NULL,
14512 NULL, /* FIXME: i18n: */
14513 &setlist, &showlist);
14514
14515 init_all_packet_configs ();
14516
14517 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14518 "X", "binary-download", 1);
14519
14520 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14521 "vCont", "verbose-resume", 0);
14522
14523 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14524 "QPassSignals", "pass-signals", 0);
14525
14526 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14527 "QCatchSyscalls", "catch-syscalls", 0);
14528
14529 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14530 "QProgramSignals", "program-signals", 0);
14531
14532 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14533 "QSetWorkingDir", "set-working-dir", 0);
14534
14535 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14536 "QStartupWithShell", "startup-with-shell", 0);
14537
14538 add_packet_config_cmd (&remote_protocol_packets
14539 [PACKET_QEnvironmentHexEncoded],
14540 "QEnvironmentHexEncoded", "environment-hex-encoded",
14541 0);
14542
14543 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14544 "QEnvironmentReset", "environment-reset",
14545 0);
14546
14547 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14548 "QEnvironmentUnset", "environment-unset",
14549 0);
14550
14551 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14552 "qSymbol", "symbol-lookup", 0);
14553
14554 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14555 "P", "set-register", 1);
14556
14557 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14558 "p", "fetch-register", 1);
14559
14560 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14561 "Z0", "software-breakpoint", 0);
14562
14563 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14564 "Z1", "hardware-breakpoint", 0);
14565
14566 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14567 "Z2", "write-watchpoint", 0);
14568
14569 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14570 "Z3", "read-watchpoint", 0);
14571
14572 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14573 "Z4", "access-watchpoint", 0);
14574
14575 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14576 "qXfer:auxv:read", "read-aux-vector", 0);
14577
14578 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14579 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14580
14581 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14582 "qXfer:features:read", "target-features", 0);
14583
14584 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14585 "qXfer:libraries:read", "library-info", 0);
14586
14587 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14588 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14589
14590 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14591 "qXfer:memory-map:read", "memory-map", 0);
14592
14593 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14594 "qXfer:osdata:read", "osdata", 0);
14595
14596 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14597 "qXfer:threads:read", "threads", 0);
14598
14599 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14600 "qXfer:siginfo:read", "read-siginfo-object", 0);
14601
14602 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14603 "qXfer:siginfo:write", "write-siginfo-object", 0);
14604
14605 add_packet_config_cmd
14606 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14607 "qXfer:traceframe-info:read", "traceframe-info", 0);
14608
14609 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14610 "qXfer:uib:read", "unwind-info-block", 0);
14611
14612 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14613 "qGetTLSAddr", "get-thread-local-storage-address",
14614 0);
14615
14616 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14617 "qGetTIBAddr", "get-thread-information-block-address",
14618 0);
14619
14620 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14621 "bc", "reverse-continue", 0);
14622
14623 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14624 "bs", "reverse-step", 0);
14625
14626 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14627 "qSupported", "supported-packets", 0);
14628
14629 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14630 "qSearch:memory", "search-memory", 0);
14631
14632 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14633 "qTStatus", "trace-status", 0);
14634
14635 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14636 "vFile:setfs", "hostio-setfs", 0);
14637
14638 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14639 "vFile:open", "hostio-open", 0);
14640
14641 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14642 "vFile:pread", "hostio-pread", 0);
14643
14644 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14645 "vFile:pwrite", "hostio-pwrite", 0);
14646
14647 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14648 "vFile:close", "hostio-close", 0);
14649
14650 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14651 "vFile:unlink", "hostio-unlink", 0);
14652
14653 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14654 "vFile:readlink", "hostio-readlink", 0);
14655
14656 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14657 "vFile:fstat", "hostio-fstat", 0);
14658
14659 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14660 "vAttach", "attach", 0);
14661
14662 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14663 "vRun", "run", 0);
14664
14665 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14666 "QStartNoAckMode", "noack", 0);
14667
14668 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14669 "vKill", "kill", 0);
14670
14671 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14672 "qAttached", "query-attached", 0);
14673
14674 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14675 "ConditionalTracepoints",
14676 "conditional-tracepoints", 0);
14677
14678 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14679 "ConditionalBreakpoints",
14680 "conditional-breakpoints", 0);
14681
14682 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14683 "BreakpointCommands",
14684 "breakpoint-commands", 0);
14685
14686 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14687 "FastTracepoints", "fast-tracepoints", 0);
14688
14689 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14690 "TracepointSource", "TracepointSource", 0);
14691
14692 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14693 "QAllow", "allow", 0);
14694
14695 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14696 "StaticTracepoints", "static-tracepoints", 0);
14697
14698 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14699 "InstallInTrace", "install-in-trace", 0);
14700
14701 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14702 "qXfer:statictrace:read", "read-sdata-object", 0);
14703
14704 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14705 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14706
14707 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14708 "QDisableRandomization", "disable-randomization", 0);
14709
14710 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14711 "QAgent", "agent", 0);
14712
14713 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14714 "QTBuffer:size", "trace-buffer-size", 0);
14715
14716 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14717 "Qbtrace:off", "disable-btrace", 0);
14718
14719 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14720 "Qbtrace:bts", "enable-btrace-bts", 0);
14721
14722 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14723 "Qbtrace:pt", "enable-btrace-pt", 0);
14724
14725 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14726 "qXfer:btrace", "read-btrace", 0);
14727
14728 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14729 "qXfer:btrace-conf", "read-btrace-conf", 0);
14730
14731 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14732 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14733
14734 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14735 "multiprocess-feature", "multiprocess-feature", 0);
14736
14737 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14738 "swbreak-feature", "swbreak-feature", 0);
14739
14740 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14741 "hwbreak-feature", "hwbreak-feature", 0);
14742
14743 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14744 "fork-event-feature", "fork-event-feature", 0);
14745
14746 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14747 "vfork-event-feature", "vfork-event-feature", 0);
14748
14749 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14750 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14751
14752 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14753 "vContSupported", "verbose-resume-supported", 0);
14754
14755 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14756 "exec-event-feature", "exec-event-feature", 0);
14757
14758 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14759 "vCtrlC", "ctrl-c", 0);
14760
14761 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14762 "QThreadEvents", "thread-events", 0);
14763
14764 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14765 "N stop reply", "no-resumed-stop-reply", 0);
14766
14767 /* Assert that we've registered "set remote foo-packet" commands
14768 for all packet configs. */
14769 {
14770 int i;
14771
14772 for (i = 0; i < PACKET_MAX; i++)
14773 {
14774 /* Ideally all configs would have a command associated. Some
14775 still don't though. */
14776 int excepted;
14777
14778 switch (i)
14779 {
14780 case PACKET_QNonStop:
14781 case PACKET_EnableDisableTracepoints_feature:
14782 case PACKET_tracenz_feature:
14783 case PACKET_DisconnectedTracing_feature:
14784 case PACKET_augmented_libraries_svr4_read_feature:
14785 case PACKET_qCRC:
14786 /* Additions to this list need to be well justified:
14787 pre-existing packets are OK; new packets are not. */
14788 excepted = 1;
14789 break;
14790 default:
14791 excepted = 0;
14792 break;
14793 }
14794
14795 /* This catches both forgetting to add a config command, and
14796 forgetting to remove a packet from the exception list. */
14797 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14798 }
14799 }
14800
14801 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14802 Z sub-packet has its own set and show commands, but users may
14803 have sets to this variable in their .gdbinit files (or in their
14804 documentation). */
14805 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14806 &remote_Z_packet_detect, _("\
14807 Set use of remote protocol `Z' packets."), _("\
14808 Show use of remote protocol `Z' packets."), _("\
14809 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14810 packets."),
14811 set_remote_protocol_Z_packet_cmd,
14812 show_remote_protocol_Z_packet_cmd,
14813 /* FIXME: i18n: Use of remote protocol
14814 `Z' packets is %s. */
14815 &remote_set_cmdlist, &remote_show_cmdlist);
14816
14817 add_basic_prefix_cmd ("remote", class_files, _("\
14818 Manipulate files on the remote system.\n\
14819 Transfer files to and from the remote target system."),
14820 &remote_cmdlist, "remote ",
14821 0 /* allow-unknown */, &cmdlist);
14822
14823 add_cmd ("put", class_files, remote_put_command,
14824 _("Copy a local file to the remote system."),
14825 &remote_cmdlist);
14826
14827 add_cmd ("get", class_files, remote_get_command,
14828 _("Copy a remote file to the local system."),
14829 &remote_cmdlist);
14830
14831 add_cmd ("delete", class_files, remote_delete_command,
14832 _("Delete a remote file."),
14833 &remote_cmdlist);
14834
14835 add_setshow_string_noescape_cmd ("exec-file", class_files,
14836 &remote_exec_file_var, _("\
14837 Set the remote pathname for \"run\"."), _("\
14838 Show the remote pathname for \"run\"."), NULL,
14839 set_remote_exec_file,
14840 show_remote_exec_file,
14841 &remote_set_cmdlist,
14842 &remote_show_cmdlist);
14843
14844 add_setshow_boolean_cmd ("range-stepping", class_run,
14845 &use_range_stepping, _("\
14846 Enable or disable range stepping."), _("\
14847 Show whether target-assisted range stepping is enabled."), _("\
14848 If on, and the target supports it, when stepping a source line, GDB\n\
14849 tells the target to step the corresponding range of addresses itself instead\n\
14850 of issuing multiple single-steps. This speeds up source level\n\
14851 stepping. If off, GDB always issues single-steps, even if range\n\
14852 stepping is supported by the target. The default is on."),
14853 set_range_stepping,
14854 show_range_stepping,
14855 &setlist,
14856 &showlist);
14857
14858 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
14859 Set watchdog timer."), _("\
14860 Show watchdog timer."), _("\
14861 When non-zero, this timeout is used instead of waiting forever for a target\n\
14862 to finish a low-level step or continue operation. If the specified amount\n\
14863 of time passes without a response from the target, an error occurs."),
14864 NULL,
14865 show_watchdog,
14866 &setlist, &showlist);
14867
14868 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
14869 &remote_packet_max_chars, _("\
14870 Set the maximum number of characters to display for each remote packet."), _("\
14871 Show the maximum number of characters to display for each remote packet."), _("\
14872 Specify \"unlimited\" to display all the characters."),
14873 NULL, show_remote_packet_max_chars,
14874 &setdebuglist, &showdebuglist);
14875
14876 /* Eventually initialize fileio. See fileio.c */
14877 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
14878 }
This page took 0.46341 seconds and 5 git commands to generate.