'struct agent_expr *' -> unique_ptr<agent_expr>
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observer.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75
76 /* Temp hacks for tracepoint encoding migration. */
77 static char *target_buf;
78 static long target_buf_size;
79
80 /* Per-program-space data key. */
81 static const struct program_space_data *remote_pspace_data;
82
83 /* The variable registered as the control variable used by the
84 remote exec-file commands. While the remote exec-file setting is
85 per-program-space, the set/show machinery uses this as the
86 location of the remote exec-file value. */
87 static char *remote_exec_file_var;
88
89 /* The size to align memory write packets, when practical. The protocol
90 does not guarantee any alignment, and gdb will generate short
91 writes and unaligned writes, but even as a best-effort attempt this
92 can improve bulk transfers. For instance, if a write is misaligned
93 relative to the target's data bus, the stub may need to make an extra
94 round trip fetching data from the target. This doesn't make a
95 huge difference, but it's easy to do, so we try to be helpful.
96
97 The alignment chosen is arbitrary; usually data bus width is
98 important here, not the possibly larger cache line size. */
99 enum { REMOTE_ALIGN_WRITES = 16 };
100
101 /* Prototypes for local functions. */
102 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
103 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
104 int forever, int *is_notif);
105
106 static void remote_files_info (struct target_ops *ignore);
107
108 static void remote_prepare_to_store (struct target_ops *self,
109 struct regcache *regcache);
110
111 static void remote_open_1 (const char *, int, struct target_ops *,
112 int extended_p);
113
114 static void remote_close (struct target_ops *self);
115
116 struct remote_state;
117
118 static int remote_vkill (int pid, struct remote_state *rs);
119
120 static void remote_kill_k (void);
121
122 static void remote_mourn (struct target_ops *ops);
123
124 static void extended_remote_restart (void);
125
126 static void remote_send (char **buf, long *sizeof_buf_p);
127
128 static int readchar (int timeout);
129
130 static void remote_serial_write (const char *str, int len);
131
132 static void remote_kill (struct target_ops *ops);
133
134 static int remote_can_async_p (struct target_ops *);
135
136 static int remote_is_async_p (struct target_ops *);
137
138 static void remote_async (struct target_ops *ops, int enable);
139
140 static void remote_thread_events (struct target_ops *ops, int enable);
141
142 static void interrupt_query (void);
143
144 static void set_general_thread (struct ptid ptid);
145 static void set_continue_thread (struct ptid ptid);
146
147 static void get_offsets (void);
148
149 static void skip_frame (void);
150
151 static long read_frame (char **buf_p, long *sizeof_buf);
152
153 static int hexnumlen (ULONGEST num);
154
155 static void init_remote_ops (void);
156
157 static void init_extended_remote_ops (void);
158
159 static void remote_stop (struct target_ops *self, ptid_t);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (const char *);
170
171 static void compare_sections_command (char *, int);
172
173 static void packet_command (char *, int);
174
175 static int stub_unpack_int (char *buff, int fieldlength);
176
177 static ptid_t remote_current_thread (ptid_t oldptid);
178
179 static int putpkt_binary (const char *buf, int cnt);
180
181 static void check_binary_download (CORE_ADDR addr);
182
183 struct packet_config;
184
185 static void show_packet_config_cmd (struct packet_config *config);
186
187 static void show_remote_protocol_packet_cmd (struct ui_file *file,
188 int from_tty,
189 struct cmd_list_element *c,
190 const char *value);
191
192 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
193 static ptid_t read_ptid (char *buf, char **obuf);
194
195 static void remote_set_permissions (struct target_ops *self);
196
197 static int remote_get_trace_status (struct target_ops *self,
198 struct trace_status *ts);
199
200 static int remote_upload_tracepoints (struct target_ops *self,
201 struct uploaded_tp **utpp);
202
203 static int remote_upload_trace_state_variables (struct target_ops *self,
204 struct uploaded_tsv **utsvp);
205
206 static void remote_query_supported (void);
207
208 static void remote_check_symbols (void);
209
210 void _initialize_remote (void);
211
212 struct stop_reply;
213 static void stop_reply_xfree (struct stop_reply *);
214 static void remote_parse_stop_reply (char *, struct stop_reply *);
215 static void push_stop_reply (struct stop_reply *);
216 static void discard_pending_stop_replies_in_queue (struct remote_state *);
217 static int peek_stop_reply (ptid_t ptid);
218
219 struct threads_listing_context;
220 static void remove_new_fork_children (struct threads_listing_context *);
221
222 static void remote_async_inferior_event_handler (gdb_client_data);
223
224 static void remote_terminal_ours (struct target_ops *self);
225
226 static int remote_read_description_p (struct target_ops *target);
227
228 static void remote_console_output (char *msg);
229
230 static int remote_supports_cond_breakpoints (struct target_ops *self);
231
232 static int remote_can_run_breakpoint_commands (struct target_ops *self);
233
234 static void remote_btrace_reset (void);
235
236 static void remote_btrace_maybe_reopen (void);
237
238 static int stop_reply_queue_length (void);
239
240 static void readahead_cache_invalidate (void);
241
242 static void remote_unpush_and_throw (void);
243
244 /* For "remote". */
245
246 static struct cmd_list_element *remote_cmdlist;
247
248 /* For "set remote" and "show remote". */
249
250 static struct cmd_list_element *remote_set_cmdlist;
251 static struct cmd_list_element *remote_show_cmdlist;
252
253 /* Stub vCont actions support.
254
255 Each field is a boolean flag indicating whether the stub reports
256 support for the corresponding action. */
257
258 struct vCont_action_support
259 {
260 /* vCont;t */
261 int t;
262
263 /* vCont;r */
264 int r;
265
266 /* vCont;s */
267 int s;
268
269 /* vCont;S */
270 int S;
271 };
272
273 /* Controls whether GDB is willing to use range stepping. */
274
275 static int use_range_stepping = 1;
276
277 #define OPAQUETHREADBYTES 8
278
279 /* a 64 bit opaque identifier */
280 typedef unsigned char threadref[OPAQUETHREADBYTES];
281
282 /* About this many threadisds fit in a packet. */
283
284 #define MAXTHREADLISTRESULTS 32
285
286 /* Data for the vFile:pread readahead cache. */
287
288 struct readahead_cache
289 {
290 /* The file descriptor for the file that is being cached. -1 if the
291 cache is invalid. */
292 int fd;
293
294 /* The offset into the file that the cache buffer corresponds
295 to. */
296 ULONGEST offset;
297
298 /* The buffer holding the cache contents. */
299 gdb_byte *buf;
300 /* The buffer's size. We try to read as much as fits into a packet
301 at a time. */
302 size_t bufsize;
303
304 /* Cache hit and miss counters. */
305 ULONGEST hit_count;
306 ULONGEST miss_count;
307 };
308
309 /* Description of the remote protocol state for the currently
310 connected target. This is per-target state, and independent of the
311 selected architecture. */
312
313 struct remote_state
314 {
315 /* A buffer to use for incoming packets, and its current size. The
316 buffer is grown dynamically for larger incoming packets.
317 Outgoing packets may also be constructed in this buffer.
318 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
319 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
320 packets. */
321 char *buf;
322 long buf_size;
323
324 /* True if we're going through initial connection setup (finding out
325 about the remote side's threads, relocating symbols, etc.). */
326 int starting_up;
327
328 /* If we negotiated packet size explicitly (and thus can bypass
329 heuristics for the largest packet size that will not overflow
330 a buffer in the stub), this will be set to that packet size.
331 Otherwise zero, meaning to use the guessed size. */
332 long explicit_packet_size;
333
334 /* remote_wait is normally called when the target is running and
335 waits for a stop reply packet. But sometimes we need to call it
336 when the target is already stopped. We can send a "?" packet
337 and have remote_wait read the response. Or, if we already have
338 the response, we can stash it in BUF and tell remote_wait to
339 skip calling getpkt. This flag is set when BUF contains a
340 stop reply packet and the target is not waiting. */
341 int cached_wait_status;
342
343 /* True, if in no ack mode. That is, neither GDB nor the stub will
344 expect acks from each other. The connection is assumed to be
345 reliable. */
346 int noack_mode;
347
348 /* True if we're connected in extended remote mode. */
349 int extended;
350
351 /* True if we resumed the target and we're waiting for the target to
352 stop. In the mean time, we can't start another command/query.
353 The remote server wouldn't be ready to process it, so we'd
354 timeout waiting for a reply that would never come and eventually
355 we'd close the connection. This can happen in asynchronous mode
356 because we allow GDB commands while the target is running. */
357 int waiting_for_stop_reply;
358
359 /* The status of the stub support for the various vCont actions. */
360 struct vCont_action_support supports_vCont;
361
362 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
363 responded to that. */
364 int ctrlc_pending_p;
365
366 /* True if we saw a Ctrl-C while reading or writing from/to the
367 remote descriptor. At that point it is not safe to send a remote
368 interrupt packet, so we instead remember we saw the Ctrl-C and
369 process it once we're done with sending/receiving the current
370 packet, which should be shortly. If however that takes too long,
371 and the user presses Ctrl-C again, we offer to disconnect. */
372 int got_ctrlc_during_io;
373
374 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
375 remote_open knows that we don't have a file open when the program
376 starts. */
377 struct serial *remote_desc;
378
379 /* These are the threads which we last sent to the remote system. The
380 TID member will be -1 for all or -2 for not sent yet. */
381 ptid_t general_thread;
382 ptid_t continue_thread;
383
384 /* This is the traceframe which we last selected on the remote system.
385 It will be -1 if no traceframe is selected. */
386 int remote_traceframe_number;
387
388 char *last_pass_packet;
389
390 /* The last QProgramSignals packet sent to the target. We bypass
391 sending a new program signals list down to the target if the new
392 packet is exactly the same as the last we sent. IOW, we only let
393 the target know about program signals list changes. */
394 char *last_program_signals_packet;
395
396 enum gdb_signal last_sent_signal;
397
398 int last_sent_step;
399
400 /* The execution direction of the last resume we got. */
401 enum exec_direction_kind last_resume_exec_dir;
402
403 char *finished_object;
404 char *finished_annex;
405 ULONGEST finished_offset;
406
407 /* Should we try the 'ThreadInfo' query packet?
408
409 This variable (NOT available to the user: auto-detect only!)
410 determines whether GDB will use the new, simpler "ThreadInfo"
411 query or the older, more complex syntax for thread queries.
412 This is an auto-detect variable (set to true at each connect,
413 and set to false when the target fails to recognize it). */
414 int use_threadinfo_query;
415 int use_threadextra_query;
416
417 threadref echo_nextthread;
418 threadref nextthread;
419 threadref resultthreadlist[MAXTHREADLISTRESULTS];
420
421 /* The state of remote notification. */
422 struct remote_notif_state *notif_state;
423
424 /* The branch trace configuration. */
425 struct btrace_config btrace_config;
426
427 /* The argument to the last "vFile:setfs:" packet we sent, used
428 to avoid sending repeated unnecessary "vFile:setfs:" packets.
429 Initialized to -1 to indicate that no "vFile:setfs:" packet
430 has yet been sent. */
431 int fs_pid;
432
433 /* A readahead cache for vFile:pread. Often, reading a binary
434 involves a sequence of small reads. E.g., when parsing an ELF
435 file. A readahead cache helps mostly the case of remote
436 debugging on a connection with higher latency, due to the
437 request/reply nature of the RSP. We only cache data for a single
438 file descriptor at a time. */
439 struct readahead_cache readahead_cache;
440 };
441
442 /* Private data that we'll store in (struct thread_info)->private. */
443 struct private_thread_info
444 {
445 char *extra;
446 char *name;
447 int core;
448
449 /* Whether the target stopped for a breakpoint/watchpoint. */
450 enum target_stop_reason stop_reason;
451
452 /* This is set to the data address of the access causing the target
453 to stop for a watchpoint. */
454 CORE_ADDR watch_data_address;
455
456 /* Fields used by the vCont action coalescing implemented in
457 remote_resume / remote_commit_resume. remote_resume stores each
458 thread's last resume request in these fields, so that a later
459 remote_commit_resume knows which is the proper action for this
460 thread to include in the vCont packet. */
461
462 /* True if the last target_resume call for this thread was a step
463 request, false if a continue request. */
464 int last_resume_step;
465
466 /* The signal specified in the last target_resume call for this
467 thread. */
468 enum gdb_signal last_resume_sig;
469
470 /* Whether this thread was already vCont-resumed on the remote
471 side. */
472 int vcont_resumed;
473 };
474
475 static void
476 free_private_thread_info (struct private_thread_info *info)
477 {
478 xfree (info->extra);
479 xfree (info->name);
480 xfree (info);
481 }
482
483 /* This data could be associated with a target, but we do not always
484 have access to the current target when we need it, so for now it is
485 static. This will be fine for as long as only one target is in use
486 at a time. */
487 static struct remote_state *remote_state;
488
489 static struct remote_state *
490 get_remote_state_raw (void)
491 {
492 return remote_state;
493 }
494
495 /* Allocate a new struct remote_state with xmalloc, initialize it, and
496 return it. */
497
498 static struct remote_state *
499 new_remote_state (void)
500 {
501 struct remote_state *result = XCNEW (struct remote_state);
502
503 /* The default buffer size is unimportant; it will be expanded
504 whenever a larger buffer is needed. */
505 result->buf_size = 400;
506 result->buf = (char *) xmalloc (result->buf_size);
507 result->remote_traceframe_number = -1;
508 result->last_sent_signal = GDB_SIGNAL_0;
509 result->last_resume_exec_dir = EXEC_FORWARD;
510 result->fs_pid = -1;
511
512 return result;
513 }
514
515 /* Description of the remote protocol for a given architecture. */
516
517 struct packet_reg
518 {
519 long offset; /* Offset into G packet. */
520 long regnum; /* GDB's internal register number. */
521 LONGEST pnum; /* Remote protocol register number. */
522 int in_g_packet; /* Always part of G packet. */
523 /* long size in bytes; == register_size (target_gdbarch (), regnum);
524 at present. */
525 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
526 at present. */
527 };
528
529 struct remote_arch_state
530 {
531 /* Description of the remote protocol registers. */
532 long sizeof_g_packet;
533
534 /* Description of the remote protocol registers indexed by REGNUM
535 (making an array gdbarch_num_regs in size). */
536 struct packet_reg *regs;
537
538 /* This is the size (in chars) of the first response to the ``g''
539 packet. It is used as a heuristic when determining the maximum
540 size of memory-read and memory-write packets. A target will
541 typically only reserve a buffer large enough to hold the ``g''
542 packet. The size does not include packet overhead (headers and
543 trailers). */
544 long actual_register_packet_size;
545
546 /* This is the maximum size (in chars) of a non read/write packet.
547 It is also used as a cap on the size of read/write packets. */
548 long remote_packet_size;
549 };
550
551 /* Utility: generate error from an incoming stub packet. */
552 static void
553 trace_error (char *buf)
554 {
555 if (*buf++ != 'E')
556 return; /* not an error msg */
557 switch (*buf)
558 {
559 case '1': /* malformed packet error */
560 if (*++buf == '0') /* general case: */
561 error (_("remote.c: error in outgoing packet."));
562 else
563 error (_("remote.c: error in outgoing packet at field #%ld."),
564 strtol (buf, NULL, 16));
565 default:
566 error (_("Target returns error code '%s'."), buf);
567 }
568 }
569
570 /* Utility: wait for reply from stub, while accepting "O" packets. */
571 static char *
572 remote_get_noisy_reply (char **buf_p,
573 long *sizeof_buf)
574 {
575 do /* Loop on reply from remote stub. */
576 {
577 char *buf;
578
579 QUIT; /* Allow user to bail out with ^C. */
580 getpkt (buf_p, sizeof_buf, 0);
581 buf = *buf_p;
582 if (buf[0] == 'E')
583 trace_error (buf);
584 else if (startswith (buf, "qRelocInsn:"))
585 {
586 ULONGEST ul;
587 CORE_ADDR from, to, org_to;
588 char *p, *pp;
589 int adjusted_size = 0;
590 int relocated = 0;
591
592 p = buf + strlen ("qRelocInsn:");
593 pp = unpack_varlen_hex (p, &ul);
594 if (*pp != ';')
595 error (_("invalid qRelocInsn packet: %s"), buf);
596 from = ul;
597
598 p = pp + 1;
599 unpack_varlen_hex (p, &ul);
600 to = ul;
601
602 org_to = to;
603
604 TRY
605 {
606 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
607 relocated = 1;
608 }
609 CATCH (ex, RETURN_MASK_ALL)
610 {
611 if (ex.error == MEMORY_ERROR)
612 {
613 /* Propagate memory errors silently back to the
614 target. The stub may have limited the range of
615 addresses we can write to, for example. */
616 }
617 else
618 {
619 /* Something unexpectedly bad happened. Be verbose
620 so we can tell what, and propagate the error back
621 to the stub, so it doesn't get stuck waiting for
622 a response. */
623 exception_fprintf (gdb_stderr, ex,
624 _("warning: relocating instruction: "));
625 }
626 putpkt ("E01");
627 }
628 END_CATCH
629
630 if (relocated)
631 {
632 adjusted_size = to - org_to;
633
634 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
635 putpkt (buf);
636 }
637 }
638 else if (buf[0] == 'O' && buf[1] != 'K')
639 remote_console_output (buf + 1); /* 'O' message from stub */
640 else
641 return buf; /* Here's the actual reply. */
642 }
643 while (1);
644 }
645
646 /* Handle for retreving the remote protocol data from gdbarch. */
647 static struct gdbarch_data *remote_gdbarch_data_handle;
648
649 static struct remote_arch_state *
650 get_remote_arch_state (void)
651 {
652 gdb_assert (target_gdbarch () != NULL);
653 return ((struct remote_arch_state *)
654 gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle));
655 }
656
657 /* Fetch the global remote target state. */
658
659 static struct remote_state *
660 get_remote_state (void)
661 {
662 /* Make sure that the remote architecture state has been
663 initialized, because doing so might reallocate rs->buf. Any
664 function which calls getpkt also needs to be mindful of changes
665 to rs->buf, but this call limits the number of places which run
666 into trouble. */
667 get_remote_arch_state ();
668
669 return get_remote_state_raw ();
670 }
671
672 /* Cleanup routine for the remote module's pspace data. */
673
674 static void
675 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
676 {
677 char *remote_exec_file = (char *) arg;
678
679 xfree (remote_exec_file);
680 }
681
682 /* Fetch the remote exec-file from the current program space. */
683
684 static const char *
685 get_remote_exec_file (void)
686 {
687 char *remote_exec_file;
688
689 remote_exec_file
690 = (char *) program_space_data (current_program_space,
691 remote_pspace_data);
692 if (remote_exec_file == NULL)
693 return "";
694
695 return remote_exec_file;
696 }
697
698 /* Set the remote exec file for PSPACE. */
699
700 static void
701 set_pspace_remote_exec_file (struct program_space *pspace,
702 char *remote_exec_file)
703 {
704 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
705
706 xfree (old_file);
707 set_program_space_data (pspace, remote_pspace_data,
708 xstrdup (remote_exec_file));
709 }
710
711 /* The "set/show remote exec-file" set command hook. */
712
713 static void
714 set_remote_exec_file (char *ignored, int from_tty,
715 struct cmd_list_element *c)
716 {
717 gdb_assert (remote_exec_file_var != NULL);
718 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
719 }
720
721 /* The "set/show remote exec-file" show command hook. */
722
723 static void
724 show_remote_exec_file (struct ui_file *file, int from_tty,
725 struct cmd_list_element *cmd, const char *value)
726 {
727 fprintf_filtered (file, "%s\n", remote_exec_file_var);
728 }
729
730 static int
731 compare_pnums (const void *lhs_, const void *rhs_)
732 {
733 const struct packet_reg * const *lhs
734 = (const struct packet_reg * const *) lhs_;
735 const struct packet_reg * const *rhs
736 = (const struct packet_reg * const *) rhs_;
737
738 if ((*lhs)->pnum < (*rhs)->pnum)
739 return -1;
740 else if ((*lhs)->pnum == (*rhs)->pnum)
741 return 0;
742 else
743 return 1;
744 }
745
746 static int
747 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
748 {
749 int regnum, num_remote_regs, offset;
750 struct packet_reg **remote_regs;
751
752 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
753 {
754 struct packet_reg *r = &regs[regnum];
755
756 if (register_size (gdbarch, regnum) == 0)
757 /* Do not try to fetch zero-sized (placeholder) registers. */
758 r->pnum = -1;
759 else
760 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
761
762 r->regnum = regnum;
763 }
764
765 /* Define the g/G packet format as the contents of each register
766 with a remote protocol number, in order of ascending protocol
767 number. */
768
769 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
770 for (num_remote_regs = 0, regnum = 0;
771 regnum < gdbarch_num_regs (gdbarch);
772 regnum++)
773 if (regs[regnum].pnum != -1)
774 remote_regs[num_remote_regs++] = &regs[regnum];
775
776 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
777 compare_pnums);
778
779 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
780 {
781 remote_regs[regnum]->in_g_packet = 1;
782 remote_regs[regnum]->offset = offset;
783 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
784 }
785
786 return offset;
787 }
788
789 /* Given the architecture described by GDBARCH, return the remote
790 protocol register's number and the register's offset in the g/G
791 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
792 If the target does not have a mapping for REGNUM, return false,
793 otherwise, return true. */
794
795 int
796 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
797 int *pnum, int *poffset)
798 {
799 struct packet_reg *regs;
800 struct cleanup *old_chain;
801
802 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
803
804 regs = XCNEWVEC (struct packet_reg, gdbarch_num_regs (gdbarch));
805 old_chain = make_cleanup (xfree, regs);
806
807 map_regcache_remote_table (gdbarch, regs);
808
809 *pnum = regs[regnum].pnum;
810 *poffset = regs[regnum].offset;
811
812 do_cleanups (old_chain);
813
814 return *pnum != -1;
815 }
816
817 static void *
818 init_remote_state (struct gdbarch *gdbarch)
819 {
820 struct remote_state *rs = get_remote_state_raw ();
821 struct remote_arch_state *rsa;
822
823 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
824
825 /* Use the architecture to build a regnum<->pnum table, which will be
826 1:1 unless a feature set specifies otherwise. */
827 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
828 gdbarch_num_regs (gdbarch),
829 struct packet_reg);
830
831 /* Record the maximum possible size of the g packet - it may turn out
832 to be smaller. */
833 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
834
835 /* Default maximum number of characters in a packet body. Many
836 remote stubs have a hardwired buffer size of 400 bytes
837 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
838 as the maximum packet-size to ensure that the packet and an extra
839 NUL character can always fit in the buffer. This stops GDB
840 trashing stubs that try to squeeze an extra NUL into what is
841 already a full buffer (As of 1999-12-04 that was most stubs). */
842 rsa->remote_packet_size = 400 - 1;
843
844 /* This one is filled in when a ``g'' packet is received. */
845 rsa->actual_register_packet_size = 0;
846
847 /* Should rsa->sizeof_g_packet needs more space than the
848 default, adjust the size accordingly. Remember that each byte is
849 encoded as two characters. 32 is the overhead for the packet
850 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
851 (``$NN:G...#NN'') is a better guess, the below has been padded a
852 little. */
853 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
854 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
855
856 /* Make sure that the packet buffer is plenty big enough for
857 this architecture. */
858 if (rs->buf_size < rsa->remote_packet_size)
859 {
860 rs->buf_size = 2 * rsa->remote_packet_size;
861 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
862 }
863
864 return rsa;
865 }
866
867 /* Return the current allowed size of a remote packet. This is
868 inferred from the current architecture, and should be used to
869 limit the length of outgoing packets. */
870 static long
871 get_remote_packet_size (void)
872 {
873 struct remote_state *rs = get_remote_state ();
874 struct remote_arch_state *rsa = get_remote_arch_state ();
875
876 if (rs->explicit_packet_size)
877 return rs->explicit_packet_size;
878
879 return rsa->remote_packet_size;
880 }
881
882 static struct packet_reg *
883 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
884 {
885 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ()))
886 return NULL;
887 else
888 {
889 struct packet_reg *r = &rsa->regs[regnum];
890
891 gdb_assert (r->regnum == regnum);
892 return r;
893 }
894 }
895
896 static struct packet_reg *
897 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
898 {
899 int i;
900
901 for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++)
902 {
903 struct packet_reg *r = &rsa->regs[i];
904
905 if (r->pnum == pnum)
906 return r;
907 }
908 return NULL;
909 }
910
911 static struct target_ops remote_ops;
912
913 static struct target_ops extended_remote_ops;
914
915 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
916 ``forever'' still use the normal timeout mechanism. This is
917 currently used by the ASYNC code to guarentee that target reads
918 during the initial connect always time-out. Once getpkt has been
919 modified to return a timeout indication and, in turn
920 remote_wait()/wait_for_inferior() have gained a timeout parameter
921 this can go away. */
922 static int wait_forever_enabled_p = 1;
923
924 /* Allow the user to specify what sequence to send to the remote
925 when he requests a program interruption: Although ^C is usually
926 what remote systems expect (this is the default, here), it is
927 sometimes preferable to send a break. On other systems such
928 as the Linux kernel, a break followed by g, which is Magic SysRq g
929 is required in order to interrupt the execution. */
930 const char interrupt_sequence_control_c[] = "Ctrl-C";
931 const char interrupt_sequence_break[] = "BREAK";
932 const char interrupt_sequence_break_g[] = "BREAK-g";
933 static const char *const interrupt_sequence_modes[] =
934 {
935 interrupt_sequence_control_c,
936 interrupt_sequence_break,
937 interrupt_sequence_break_g,
938 NULL
939 };
940 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
941
942 static void
943 show_interrupt_sequence (struct ui_file *file, int from_tty,
944 struct cmd_list_element *c,
945 const char *value)
946 {
947 if (interrupt_sequence_mode == interrupt_sequence_control_c)
948 fprintf_filtered (file,
949 _("Send the ASCII ETX character (Ctrl-c) "
950 "to the remote target to interrupt the "
951 "execution of the program.\n"));
952 else if (interrupt_sequence_mode == interrupt_sequence_break)
953 fprintf_filtered (file,
954 _("send a break signal to the remote target "
955 "to interrupt the execution of the program.\n"));
956 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
957 fprintf_filtered (file,
958 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
959 "the remote target to interrupt the execution "
960 "of Linux kernel.\n"));
961 else
962 internal_error (__FILE__, __LINE__,
963 _("Invalid value for interrupt_sequence_mode: %s."),
964 interrupt_sequence_mode);
965 }
966
967 /* This boolean variable specifies whether interrupt_sequence is sent
968 to the remote target when gdb connects to it.
969 This is mostly needed when you debug the Linux kernel: The Linux kernel
970 expects BREAK g which is Magic SysRq g for connecting gdb. */
971 static int interrupt_on_connect = 0;
972
973 /* This variable is used to implement the "set/show remotebreak" commands.
974 Since these commands are now deprecated in favor of "set/show remote
975 interrupt-sequence", it no longer has any effect on the code. */
976 static int remote_break;
977
978 static void
979 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
980 {
981 if (remote_break)
982 interrupt_sequence_mode = interrupt_sequence_break;
983 else
984 interrupt_sequence_mode = interrupt_sequence_control_c;
985 }
986
987 static void
988 show_remotebreak (struct ui_file *file, int from_tty,
989 struct cmd_list_element *c,
990 const char *value)
991 {
992 }
993
994 /* This variable sets the number of bits in an address that are to be
995 sent in a memory ("M" or "m") packet. Normally, after stripping
996 leading zeros, the entire address would be sent. This variable
997 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
998 initial implementation of remote.c restricted the address sent in
999 memory packets to ``host::sizeof long'' bytes - (typically 32
1000 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1001 address was never sent. Since fixing this bug may cause a break in
1002 some remote targets this variable is principly provided to
1003 facilitate backward compatibility. */
1004
1005 static unsigned int remote_address_size;
1006
1007 /* Temporary to track who currently owns the terminal. See
1008 remote_terminal_* for more details. */
1009
1010 static int remote_async_terminal_ours_p;
1011
1012 \f
1013 /* User configurable variables for the number of characters in a
1014 memory read/write packet. MIN (rsa->remote_packet_size,
1015 rsa->sizeof_g_packet) is the default. Some targets need smaller
1016 values (fifo overruns, et.al.) and some users need larger values
1017 (speed up transfers). The variables ``preferred_*'' (the user
1018 request), ``current_*'' (what was actually set) and ``forced_*''
1019 (Positive - a soft limit, negative - a hard limit). */
1020
1021 struct memory_packet_config
1022 {
1023 char *name;
1024 long size;
1025 int fixed_p;
1026 };
1027
1028 /* The default max memory-write-packet-size. The 16k is historical.
1029 (It came from older GDB's using alloca for buffers and the
1030 knowledge (folklore?) that some hosts don't cope very well with
1031 large alloca calls.) */
1032 #define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1033
1034 /* The minimum remote packet size for memory transfers. Ensures we
1035 can write at least one byte. */
1036 #define MIN_MEMORY_PACKET_SIZE 20
1037
1038 /* Compute the current size of a read/write packet. Since this makes
1039 use of ``actual_register_packet_size'' the computation is dynamic. */
1040
1041 static long
1042 get_memory_packet_size (struct memory_packet_config *config)
1043 {
1044 struct remote_state *rs = get_remote_state ();
1045 struct remote_arch_state *rsa = get_remote_arch_state ();
1046
1047 long what_they_get;
1048 if (config->fixed_p)
1049 {
1050 if (config->size <= 0)
1051 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1052 else
1053 what_they_get = config->size;
1054 }
1055 else
1056 {
1057 what_they_get = get_remote_packet_size ();
1058 /* Limit the packet to the size specified by the user. */
1059 if (config->size > 0
1060 && what_they_get > config->size)
1061 what_they_get = config->size;
1062
1063 /* Limit it to the size of the targets ``g'' response unless we have
1064 permission from the stub to use a larger packet size. */
1065 if (rs->explicit_packet_size == 0
1066 && rsa->actual_register_packet_size > 0
1067 && what_they_get > rsa->actual_register_packet_size)
1068 what_they_get = rsa->actual_register_packet_size;
1069 }
1070 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1071 what_they_get = MIN_MEMORY_PACKET_SIZE;
1072
1073 /* Make sure there is room in the global buffer for this packet
1074 (including its trailing NUL byte). */
1075 if (rs->buf_size < what_they_get + 1)
1076 {
1077 rs->buf_size = 2 * what_they_get;
1078 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1079 }
1080
1081 return what_they_get;
1082 }
1083
1084 /* Update the size of a read/write packet. If they user wants
1085 something really big then do a sanity check. */
1086
1087 static void
1088 set_memory_packet_size (char *args, struct memory_packet_config *config)
1089 {
1090 int fixed_p = config->fixed_p;
1091 long size = config->size;
1092
1093 if (args == NULL)
1094 error (_("Argument required (integer, `fixed' or `limited')."));
1095 else if (strcmp (args, "hard") == 0
1096 || strcmp (args, "fixed") == 0)
1097 fixed_p = 1;
1098 else if (strcmp (args, "soft") == 0
1099 || strcmp (args, "limit") == 0)
1100 fixed_p = 0;
1101 else
1102 {
1103 char *end;
1104
1105 size = strtoul (args, &end, 0);
1106 if (args == end)
1107 error (_("Invalid %s (bad syntax)."), config->name);
1108
1109 /* Instead of explicitly capping the size of a packet to or
1110 disallowing it, the user is allowed to set the size to
1111 something arbitrarily large. */
1112 }
1113
1114 /* So that the query shows the correct value. */
1115 if (size <= 0)
1116 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1117
1118 /* Extra checks? */
1119 if (fixed_p && !config->fixed_p)
1120 {
1121 if (! query (_("The target may not be able to correctly handle a %s\n"
1122 "of %ld bytes. Change the packet size? "),
1123 config->name, size))
1124 error (_("Packet size not changed."));
1125 }
1126 /* Update the config. */
1127 config->fixed_p = fixed_p;
1128 config->size = size;
1129 }
1130
1131 static void
1132 show_memory_packet_size (struct memory_packet_config *config)
1133 {
1134 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1135 if (config->fixed_p)
1136 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1137 get_memory_packet_size (config));
1138 else
1139 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1140 get_memory_packet_size (config));
1141 }
1142
1143 static struct memory_packet_config memory_write_packet_config =
1144 {
1145 "memory-write-packet-size",
1146 };
1147
1148 static void
1149 set_memory_write_packet_size (char *args, int from_tty)
1150 {
1151 set_memory_packet_size (args, &memory_write_packet_config);
1152 }
1153
1154 static void
1155 show_memory_write_packet_size (char *args, int from_tty)
1156 {
1157 show_memory_packet_size (&memory_write_packet_config);
1158 }
1159
1160 static long
1161 get_memory_write_packet_size (void)
1162 {
1163 return get_memory_packet_size (&memory_write_packet_config);
1164 }
1165
1166 static struct memory_packet_config memory_read_packet_config =
1167 {
1168 "memory-read-packet-size",
1169 };
1170
1171 static void
1172 set_memory_read_packet_size (char *args, int from_tty)
1173 {
1174 set_memory_packet_size (args, &memory_read_packet_config);
1175 }
1176
1177 static void
1178 show_memory_read_packet_size (char *args, int from_tty)
1179 {
1180 show_memory_packet_size (&memory_read_packet_config);
1181 }
1182
1183 static long
1184 get_memory_read_packet_size (void)
1185 {
1186 long size = get_memory_packet_size (&memory_read_packet_config);
1187
1188 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1189 extra buffer size argument before the memory read size can be
1190 increased beyond this. */
1191 if (size > get_remote_packet_size ())
1192 size = get_remote_packet_size ();
1193 return size;
1194 }
1195
1196 \f
1197 /* Generic configuration support for packets the stub optionally
1198 supports. Allows the user to specify the use of the packet as well
1199 as allowing GDB to auto-detect support in the remote stub. */
1200
1201 enum packet_support
1202 {
1203 PACKET_SUPPORT_UNKNOWN = 0,
1204 PACKET_ENABLE,
1205 PACKET_DISABLE
1206 };
1207
1208 struct packet_config
1209 {
1210 const char *name;
1211 const char *title;
1212
1213 /* If auto, GDB auto-detects support for this packet or feature,
1214 either through qSupported, or by trying the packet and looking
1215 at the response. If true, GDB assumes the target supports this
1216 packet. If false, the packet is disabled. Configs that don't
1217 have an associated command always have this set to auto. */
1218 enum auto_boolean detect;
1219
1220 /* Does the target support this packet? */
1221 enum packet_support support;
1222 };
1223
1224 /* Analyze a packet's return value and update the packet config
1225 accordingly. */
1226
1227 enum packet_result
1228 {
1229 PACKET_ERROR,
1230 PACKET_OK,
1231 PACKET_UNKNOWN
1232 };
1233
1234 static enum packet_support packet_config_support (struct packet_config *config);
1235 static enum packet_support packet_support (int packet);
1236
1237 static void
1238 show_packet_config_cmd (struct packet_config *config)
1239 {
1240 char *support = "internal-error";
1241
1242 switch (packet_config_support (config))
1243 {
1244 case PACKET_ENABLE:
1245 support = "enabled";
1246 break;
1247 case PACKET_DISABLE:
1248 support = "disabled";
1249 break;
1250 case PACKET_SUPPORT_UNKNOWN:
1251 support = "unknown";
1252 break;
1253 }
1254 switch (config->detect)
1255 {
1256 case AUTO_BOOLEAN_AUTO:
1257 printf_filtered (_("Support for the `%s' packet "
1258 "is auto-detected, currently %s.\n"),
1259 config->name, support);
1260 break;
1261 case AUTO_BOOLEAN_TRUE:
1262 case AUTO_BOOLEAN_FALSE:
1263 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1264 config->name, support);
1265 break;
1266 }
1267 }
1268
1269 static void
1270 add_packet_config_cmd (struct packet_config *config, const char *name,
1271 const char *title, int legacy)
1272 {
1273 char *set_doc;
1274 char *show_doc;
1275 char *cmd_name;
1276
1277 config->name = name;
1278 config->title = title;
1279 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1280 name, title);
1281 show_doc = xstrprintf ("Show current use of remote "
1282 "protocol `%s' (%s) packet",
1283 name, title);
1284 /* set/show TITLE-packet {auto,on,off} */
1285 cmd_name = xstrprintf ("%s-packet", title);
1286 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1287 &config->detect, set_doc,
1288 show_doc, NULL, /* help_doc */
1289 NULL,
1290 show_remote_protocol_packet_cmd,
1291 &remote_set_cmdlist, &remote_show_cmdlist);
1292 /* The command code copies the documentation strings. */
1293 xfree (set_doc);
1294 xfree (show_doc);
1295 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1296 if (legacy)
1297 {
1298 char *legacy_name;
1299
1300 legacy_name = xstrprintf ("%s-packet", name);
1301 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1302 &remote_set_cmdlist);
1303 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1304 &remote_show_cmdlist);
1305 }
1306 }
1307
1308 static enum packet_result
1309 packet_check_result (const char *buf)
1310 {
1311 if (buf[0] != '\0')
1312 {
1313 /* The stub recognized the packet request. Check that the
1314 operation succeeded. */
1315 if (buf[0] == 'E'
1316 && isxdigit (buf[1]) && isxdigit (buf[2])
1317 && buf[3] == '\0')
1318 /* "Enn" - definitly an error. */
1319 return PACKET_ERROR;
1320
1321 /* Always treat "E." as an error. This will be used for
1322 more verbose error messages, such as E.memtypes. */
1323 if (buf[0] == 'E' && buf[1] == '.')
1324 return PACKET_ERROR;
1325
1326 /* The packet may or may not be OK. Just assume it is. */
1327 return PACKET_OK;
1328 }
1329 else
1330 /* The stub does not support the packet. */
1331 return PACKET_UNKNOWN;
1332 }
1333
1334 static enum packet_result
1335 packet_ok (const char *buf, struct packet_config *config)
1336 {
1337 enum packet_result result;
1338
1339 if (config->detect != AUTO_BOOLEAN_TRUE
1340 && config->support == PACKET_DISABLE)
1341 internal_error (__FILE__, __LINE__,
1342 _("packet_ok: attempt to use a disabled packet"));
1343
1344 result = packet_check_result (buf);
1345 switch (result)
1346 {
1347 case PACKET_OK:
1348 case PACKET_ERROR:
1349 /* The stub recognized the packet request. */
1350 if (config->support == PACKET_SUPPORT_UNKNOWN)
1351 {
1352 if (remote_debug)
1353 fprintf_unfiltered (gdb_stdlog,
1354 "Packet %s (%s) is supported\n",
1355 config->name, config->title);
1356 config->support = PACKET_ENABLE;
1357 }
1358 break;
1359 case PACKET_UNKNOWN:
1360 /* The stub does not support the packet. */
1361 if (config->detect == AUTO_BOOLEAN_AUTO
1362 && config->support == PACKET_ENABLE)
1363 {
1364 /* If the stub previously indicated that the packet was
1365 supported then there is a protocol error. */
1366 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1367 config->name, config->title);
1368 }
1369 else if (config->detect == AUTO_BOOLEAN_TRUE)
1370 {
1371 /* The user set it wrong. */
1372 error (_("Enabled packet %s (%s) not recognized by stub"),
1373 config->name, config->title);
1374 }
1375
1376 if (remote_debug)
1377 fprintf_unfiltered (gdb_stdlog,
1378 "Packet %s (%s) is NOT supported\n",
1379 config->name, config->title);
1380 config->support = PACKET_DISABLE;
1381 break;
1382 }
1383
1384 return result;
1385 }
1386
1387 enum {
1388 PACKET_vCont = 0,
1389 PACKET_X,
1390 PACKET_qSymbol,
1391 PACKET_P,
1392 PACKET_p,
1393 PACKET_Z0,
1394 PACKET_Z1,
1395 PACKET_Z2,
1396 PACKET_Z3,
1397 PACKET_Z4,
1398 PACKET_vFile_setfs,
1399 PACKET_vFile_open,
1400 PACKET_vFile_pread,
1401 PACKET_vFile_pwrite,
1402 PACKET_vFile_close,
1403 PACKET_vFile_unlink,
1404 PACKET_vFile_readlink,
1405 PACKET_vFile_fstat,
1406 PACKET_qXfer_auxv,
1407 PACKET_qXfer_features,
1408 PACKET_qXfer_exec_file,
1409 PACKET_qXfer_libraries,
1410 PACKET_qXfer_libraries_svr4,
1411 PACKET_qXfer_memory_map,
1412 PACKET_qXfer_spu_read,
1413 PACKET_qXfer_spu_write,
1414 PACKET_qXfer_osdata,
1415 PACKET_qXfer_threads,
1416 PACKET_qXfer_statictrace_read,
1417 PACKET_qXfer_traceframe_info,
1418 PACKET_qXfer_uib,
1419 PACKET_qGetTIBAddr,
1420 PACKET_qGetTLSAddr,
1421 PACKET_qSupported,
1422 PACKET_qTStatus,
1423 PACKET_QPassSignals,
1424 PACKET_QCatchSyscalls,
1425 PACKET_QProgramSignals,
1426 PACKET_qCRC,
1427 PACKET_qSearch_memory,
1428 PACKET_vAttach,
1429 PACKET_vRun,
1430 PACKET_QStartNoAckMode,
1431 PACKET_vKill,
1432 PACKET_qXfer_siginfo_read,
1433 PACKET_qXfer_siginfo_write,
1434 PACKET_qAttached,
1435
1436 /* Support for conditional tracepoints. */
1437 PACKET_ConditionalTracepoints,
1438
1439 /* Support for target-side breakpoint conditions. */
1440 PACKET_ConditionalBreakpoints,
1441
1442 /* Support for target-side breakpoint commands. */
1443 PACKET_BreakpointCommands,
1444
1445 /* Support for fast tracepoints. */
1446 PACKET_FastTracepoints,
1447
1448 /* Support for static tracepoints. */
1449 PACKET_StaticTracepoints,
1450
1451 /* Support for installing tracepoints while a trace experiment is
1452 running. */
1453 PACKET_InstallInTrace,
1454
1455 PACKET_bc,
1456 PACKET_bs,
1457 PACKET_TracepointSource,
1458 PACKET_QAllow,
1459 PACKET_qXfer_fdpic,
1460 PACKET_QDisableRandomization,
1461 PACKET_QAgent,
1462 PACKET_QTBuffer_size,
1463 PACKET_Qbtrace_off,
1464 PACKET_Qbtrace_bts,
1465 PACKET_Qbtrace_pt,
1466 PACKET_qXfer_btrace,
1467
1468 /* Support for the QNonStop packet. */
1469 PACKET_QNonStop,
1470
1471 /* Support for the QThreadEvents packet. */
1472 PACKET_QThreadEvents,
1473
1474 /* Support for multi-process extensions. */
1475 PACKET_multiprocess_feature,
1476
1477 /* Support for enabling and disabling tracepoints while a trace
1478 experiment is running. */
1479 PACKET_EnableDisableTracepoints_feature,
1480
1481 /* Support for collecting strings using the tracenz bytecode. */
1482 PACKET_tracenz_feature,
1483
1484 /* Support for continuing to run a trace experiment while GDB is
1485 disconnected. */
1486 PACKET_DisconnectedTracing_feature,
1487
1488 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1489 PACKET_augmented_libraries_svr4_read_feature,
1490
1491 /* Support for the qXfer:btrace-conf:read packet. */
1492 PACKET_qXfer_btrace_conf,
1493
1494 /* Support for the Qbtrace-conf:bts:size packet. */
1495 PACKET_Qbtrace_conf_bts_size,
1496
1497 /* Support for swbreak+ feature. */
1498 PACKET_swbreak_feature,
1499
1500 /* Support for hwbreak+ feature. */
1501 PACKET_hwbreak_feature,
1502
1503 /* Support for fork events. */
1504 PACKET_fork_event_feature,
1505
1506 /* Support for vfork events. */
1507 PACKET_vfork_event_feature,
1508
1509 /* Support for the Qbtrace-conf:pt:size packet. */
1510 PACKET_Qbtrace_conf_pt_size,
1511
1512 /* Support for exec events. */
1513 PACKET_exec_event_feature,
1514
1515 /* Support for query supported vCont actions. */
1516 PACKET_vContSupported,
1517
1518 /* Support remote CTRL-C. */
1519 PACKET_vCtrlC,
1520
1521 /* Support TARGET_WAITKIND_NO_RESUMED. */
1522 PACKET_no_resumed,
1523
1524 PACKET_MAX
1525 };
1526
1527 static struct packet_config remote_protocol_packets[PACKET_MAX];
1528
1529 /* Returns the packet's corresponding "set remote foo-packet" command
1530 state. See struct packet_config for more details. */
1531
1532 static enum auto_boolean
1533 packet_set_cmd_state (int packet)
1534 {
1535 return remote_protocol_packets[packet].detect;
1536 }
1537
1538 /* Returns whether a given packet or feature is supported. This takes
1539 into account the state of the corresponding "set remote foo-packet"
1540 command, which may be used to bypass auto-detection. */
1541
1542 static enum packet_support
1543 packet_config_support (struct packet_config *config)
1544 {
1545 switch (config->detect)
1546 {
1547 case AUTO_BOOLEAN_TRUE:
1548 return PACKET_ENABLE;
1549 case AUTO_BOOLEAN_FALSE:
1550 return PACKET_DISABLE;
1551 case AUTO_BOOLEAN_AUTO:
1552 return config->support;
1553 default:
1554 gdb_assert_not_reached (_("bad switch"));
1555 }
1556 }
1557
1558 /* Same as packet_config_support, but takes the packet's enum value as
1559 argument. */
1560
1561 static enum packet_support
1562 packet_support (int packet)
1563 {
1564 struct packet_config *config = &remote_protocol_packets[packet];
1565
1566 return packet_config_support (config);
1567 }
1568
1569 static void
1570 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1571 struct cmd_list_element *c,
1572 const char *value)
1573 {
1574 struct packet_config *packet;
1575
1576 for (packet = remote_protocol_packets;
1577 packet < &remote_protocol_packets[PACKET_MAX];
1578 packet++)
1579 {
1580 if (&packet->detect == c->var)
1581 {
1582 show_packet_config_cmd (packet);
1583 return;
1584 }
1585 }
1586 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1587 c->name);
1588 }
1589
1590 /* Should we try one of the 'Z' requests? */
1591
1592 enum Z_packet_type
1593 {
1594 Z_PACKET_SOFTWARE_BP,
1595 Z_PACKET_HARDWARE_BP,
1596 Z_PACKET_WRITE_WP,
1597 Z_PACKET_READ_WP,
1598 Z_PACKET_ACCESS_WP,
1599 NR_Z_PACKET_TYPES
1600 };
1601
1602 /* For compatibility with older distributions. Provide a ``set remote
1603 Z-packet ...'' command that updates all the Z packet types. */
1604
1605 static enum auto_boolean remote_Z_packet_detect;
1606
1607 static void
1608 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1609 struct cmd_list_element *c)
1610 {
1611 int i;
1612
1613 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1614 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1615 }
1616
1617 static void
1618 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1619 struct cmd_list_element *c,
1620 const char *value)
1621 {
1622 int i;
1623
1624 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1625 {
1626 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1627 }
1628 }
1629
1630 /* Returns true if the multi-process extensions are in effect. */
1631
1632 static int
1633 remote_multi_process_p (struct remote_state *rs)
1634 {
1635 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1636 }
1637
1638 /* Returns true if fork events are supported. */
1639
1640 static int
1641 remote_fork_event_p (struct remote_state *rs)
1642 {
1643 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1644 }
1645
1646 /* Returns true if vfork events are supported. */
1647
1648 static int
1649 remote_vfork_event_p (struct remote_state *rs)
1650 {
1651 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1652 }
1653
1654 /* Returns true if exec events are supported. */
1655
1656 static int
1657 remote_exec_event_p (struct remote_state *rs)
1658 {
1659 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1660 }
1661
1662 /* Insert fork catchpoint target routine. If fork events are enabled
1663 then return success, nothing more to do. */
1664
1665 static int
1666 remote_insert_fork_catchpoint (struct target_ops *ops, int pid)
1667 {
1668 struct remote_state *rs = get_remote_state ();
1669
1670 return !remote_fork_event_p (rs);
1671 }
1672
1673 /* Remove fork catchpoint target routine. Nothing to do, just
1674 return success. */
1675
1676 static int
1677 remote_remove_fork_catchpoint (struct target_ops *ops, int pid)
1678 {
1679 return 0;
1680 }
1681
1682 /* Insert vfork catchpoint target routine. If vfork events are enabled
1683 then return success, nothing more to do. */
1684
1685 static int
1686 remote_insert_vfork_catchpoint (struct target_ops *ops, int pid)
1687 {
1688 struct remote_state *rs = get_remote_state ();
1689
1690 return !remote_vfork_event_p (rs);
1691 }
1692
1693 /* Remove vfork catchpoint target routine. Nothing to do, just
1694 return success. */
1695
1696 static int
1697 remote_remove_vfork_catchpoint (struct target_ops *ops, int pid)
1698 {
1699 return 0;
1700 }
1701
1702 /* Insert exec catchpoint target routine. If exec events are
1703 enabled, just return success. */
1704
1705 static int
1706 remote_insert_exec_catchpoint (struct target_ops *ops, int pid)
1707 {
1708 struct remote_state *rs = get_remote_state ();
1709
1710 return !remote_exec_event_p (rs);
1711 }
1712
1713 /* Remove exec catchpoint target routine. Nothing to do, just
1714 return success. */
1715
1716 static int
1717 remote_remove_exec_catchpoint (struct target_ops *ops, int pid)
1718 {
1719 return 0;
1720 }
1721
1722 \f
1723 /* Asynchronous signal handle registered as event loop source for
1724 when we have pending events ready to be passed to the core. */
1725
1726 static struct async_event_handler *remote_async_inferior_event_token;
1727
1728 \f
1729
1730 static ptid_t magic_null_ptid;
1731 static ptid_t not_sent_ptid;
1732 static ptid_t any_thread_ptid;
1733
1734 /* Find out if the stub attached to PID (and hence GDB should offer to
1735 detach instead of killing it when bailing out). */
1736
1737 static int
1738 remote_query_attached (int pid)
1739 {
1740 struct remote_state *rs = get_remote_state ();
1741 size_t size = get_remote_packet_size ();
1742
1743 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
1744 return 0;
1745
1746 if (remote_multi_process_p (rs))
1747 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1748 else
1749 xsnprintf (rs->buf, size, "qAttached");
1750
1751 putpkt (rs->buf);
1752 getpkt (&rs->buf, &rs->buf_size, 0);
1753
1754 switch (packet_ok (rs->buf,
1755 &remote_protocol_packets[PACKET_qAttached]))
1756 {
1757 case PACKET_OK:
1758 if (strcmp (rs->buf, "1") == 0)
1759 return 1;
1760 break;
1761 case PACKET_ERROR:
1762 warning (_("Remote failure reply: %s"), rs->buf);
1763 break;
1764 case PACKET_UNKNOWN:
1765 break;
1766 }
1767
1768 return 0;
1769 }
1770
1771 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1772 has been invented by GDB, instead of reported by the target. Since
1773 we can be connected to a remote system before before knowing about
1774 any inferior, mark the target with execution when we find the first
1775 inferior. If ATTACHED is 1, then we had just attached to this
1776 inferior. If it is 0, then we just created this inferior. If it
1777 is -1, then try querying the remote stub to find out if it had
1778 attached to the inferior or not. If TRY_OPEN_EXEC is true then
1779 attempt to open this inferior's executable as the main executable
1780 if no main executable is open already. */
1781
1782 static struct inferior *
1783 remote_add_inferior (int fake_pid_p, int pid, int attached,
1784 int try_open_exec)
1785 {
1786 struct inferior *inf;
1787
1788 /* Check whether this process we're learning about is to be
1789 considered attached, or if is to be considered to have been
1790 spawned by the stub. */
1791 if (attached == -1)
1792 attached = remote_query_attached (pid);
1793
1794 if (gdbarch_has_global_solist (target_gdbarch ()))
1795 {
1796 /* If the target shares code across all inferiors, then every
1797 attach adds a new inferior. */
1798 inf = add_inferior (pid);
1799
1800 /* ... and every inferior is bound to the same program space.
1801 However, each inferior may still have its own address
1802 space. */
1803 inf->aspace = maybe_new_address_space ();
1804 inf->pspace = current_program_space;
1805 }
1806 else
1807 {
1808 /* In the traditional debugging scenario, there's a 1-1 match
1809 between program/address spaces. We simply bind the inferior
1810 to the program space's address space. */
1811 inf = current_inferior ();
1812 inferior_appeared (inf, pid);
1813 }
1814
1815 inf->attach_flag = attached;
1816 inf->fake_pid_p = fake_pid_p;
1817
1818 /* If no main executable is currently open then attempt to
1819 open the file that was executed to create this inferior. */
1820 if (try_open_exec && get_exec_file (0) == NULL)
1821 exec_file_locate_attach (pid, 0, 1);
1822
1823 return inf;
1824 }
1825
1826 static struct private_thread_info *
1827 get_private_info_thread (struct thread_info *info);
1828
1829 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1830 according to RUNNING. */
1831
1832 static void
1833 remote_add_thread (ptid_t ptid, int running, int executing)
1834 {
1835 struct remote_state *rs = get_remote_state ();
1836 struct thread_info *thread;
1837
1838 /* GDB historically didn't pull threads in the initial connection
1839 setup. If the remote target doesn't even have a concept of
1840 threads (e.g., a bare-metal target), even if internally we
1841 consider that a single-threaded target, mentioning a new thread
1842 might be confusing to the user. Be silent then, preserving the
1843 age old behavior. */
1844 if (rs->starting_up)
1845 thread = add_thread_silent (ptid);
1846 else
1847 thread = add_thread (ptid);
1848
1849 get_private_info_thread (thread)->vcont_resumed = executing;
1850 set_executing (ptid, executing);
1851 set_running (ptid, running);
1852 }
1853
1854 /* Come here when we learn about a thread id from the remote target.
1855 It may be the first time we hear about such thread, so take the
1856 opportunity to add it to GDB's thread list. In case this is the
1857 first time we're noticing its corresponding inferior, add it to
1858 GDB's inferior list as well. EXECUTING indicates whether the
1859 thread is (internally) executing or stopped. */
1860
1861 static void
1862 remote_notice_new_inferior (ptid_t currthread, int executing)
1863 {
1864 /* In non-stop mode, we assume new found threads are (externally)
1865 running until proven otherwise with a stop reply. In all-stop,
1866 we can only get here if all threads are stopped. */
1867 int running = target_is_non_stop_p () ? 1 : 0;
1868
1869 /* If this is a new thread, add it to GDB's thread list.
1870 If we leave it up to WFI to do this, bad things will happen. */
1871
1872 if (in_thread_list (currthread) && is_exited (currthread))
1873 {
1874 /* We're seeing an event on a thread id we knew had exited.
1875 This has to be a new thread reusing the old id. Add it. */
1876 remote_add_thread (currthread, running, executing);
1877 return;
1878 }
1879
1880 if (!in_thread_list (currthread))
1881 {
1882 struct inferior *inf = NULL;
1883 int pid = ptid_get_pid (currthread);
1884
1885 if (ptid_is_pid (inferior_ptid)
1886 && pid == ptid_get_pid (inferior_ptid))
1887 {
1888 /* inferior_ptid has no thread member yet. This can happen
1889 with the vAttach -> remote_wait,"TAAthread:" path if the
1890 stub doesn't support qC. This is the first stop reported
1891 after an attach, so this is the main thread. Update the
1892 ptid in the thread list. */
1893 if (in_thread_list (pid_to_ptid (pid)))
1894 thread_change_ptid (inferior_ptid, currthread);
1895 else
1896 {
1897 remote_add_thread (currthread, running, executing);
1898 inferior_ptid = currthread;
1899 }
1900 return;
1901 }
1902
1903 if (ptid_equal (magic_null_ptid, inferior_ptid))
1904 {
1905 /* inferior_ptid is not set yet. This can happen with the
1906 vRun -> remote_wait,"TAAthread:" path if the stub
1907 doesn't support qC. This is the first stop reported
1908 after an attach, so this is the main thread. Update the
1909 ptid in the thread list. */
1910 thread_change_ptid (inferior_ptid, currthread);
1911 return;
1912 }
1913
1914 /* When connecting to a target remote, or to a target
1915 extended-remote which already was debugging an inferior, we
1916 may not know about it yet. Add it before adding its child
1917 thread, so notifications are emitted in a sensible order. */
1918 if (!in_inferior_list (ptid_get_pid (currthread)))
1919 {
1920 struct remote_state *rs = get_remote_state ();
1921 int fake_pid_p = !remote_multi_process_p (rs);
1922
1923 inf = remote_add_inferior (fake_pid_p,
1924 ptid_get_pid (currthread), -1, 1);
1925 }
1926
1927 /* This is really a new thread. Add it. */
1928 remote_add_thread (currthread, running, executing);
1929
1930 /* If we found a new inferior, let the common code do whatever
1931 it needs to with it (e.g., read shared libraries, insert
1932 breakpoints), unless we're just setting up an all-stop
1933 connection. */
1934 if (inf != NULL)
1935 {
1936 struct remote_state *rs = get_remote_state ();
1937
1938 if (!rs->starting_up)
1939 notice_new_inferior (currthread, executing, 0);
1940 }
1941 }
1942 }
1943
1944 /* Return THREAD's private thread data, creating it if necessary. */
1945
1946 static struct private_thread_info *
1947 get_private_info_thread (struct thread_info *thread)
1948 {
1949 gdb_assert (thread != NULL);
1950
1951 if (thread->priv == NULL)
1952 {
1953 struct private_thread_info *priv = XNEW (struct private_thread_info);
1954
1955 thread->private_dtor = free_private_thread_info;
1956 thread->priv = priv;
1957
1958 priv->core = -1;
1959 priv->extra = NULL;
1960 priv->name = NULL;
1961 priv->name = NULL;
1962 priv->last_resume_step = 0;
1963 priv->last_resume_sig = GDB_SIGNAL_0;
1964 priv->vcont_resumed = 0;
1965 }
1966
1967 return thread->priv;
1968 }
1969
1970 /* Return PTID's private thread data, creating it if necessary. */
1971
1972 static struct private_thread_info *
1973 get_private_info_ptid (ptid_t ptid)
1974 {
1975 struct thread_info *info = find_thread_ptid (ptid);
1976
1977 return get_private_info_thread (info);
1978 }
1979
1980 /* Call this function as a result of
1981 1) A halt indication (T packet) containing a thread id
1982 2) A direct query of currthread
1983 3) Successful execution of set thread */
1984
1985 static void
1986 record_currthread (struct remote_state *rs, ptid_t currthread)
1987 {
1988 rs->general_thread = currthread;
1989 }
1990
1991 /* If 'QPassSignals' is supported, tell the remote stub what signals
1992 it can simply pass through to the inferior without reporting. */
1993
1994 static void
1995 remote_pass_signals (struct target_ops *self,
1996 int numsigs, unsigned char *pass_signals)
1997 {
1998 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
1999 {
2000 char *pass_packet, *p;
2001 int count = 0, i;
2002 struct remote_state *rs = get_remote_state ();
2003
2004 gdb_assert (numsigs < 256);
2005 for (i = 0; i < numsigs; i++)
2006 {
2007 if (pass_signals[i])
2008 count++;
2009 }
2010 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2011 strcpy (pass_packet, "QPassSignals:");
2012 p = pass_packet + strlen (pass_packet);
2013 for (i = 0; i < numsigs; i++)
2014 {
2015 if (pass_signals[i])
2016 {
2017 if (i >= 16)
2018 *p++ = tohex (i >> 4);
2019 *p++ = tohex (i & 15);
2020 if (count)
2021 *p++ = ';';
2022 else
2023 break;
2024 count--;
2025 }
2026 }
2027 *p = 0;
2028 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2029 {
2030 putpkt (pass_packet);
2031 getpkt (&rs->buf, &rs->buf_size, 0);
2032 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2033 if (rs->last_pass_packet)
2034 xfree (rs->last_pass_packet);
2035 rs->last_pass_packet = pass_packet;
2036 }
2037 else
2038 xfree (pass_packet);
2039 }
2040 }
2041
2042 /* If 'QCatchSyscalls' is supported, tell the remote stub
2043 to report syscalls to GDB. */
2044
2045 static int
2046 remote_set_syscall_catchpoint (struct target_ops *self,
2047 int pid, int needed, int any_count,
2048 int table_size, int *table)
2049 {
2050 char *catch_packet;
2051 enum packet_result result;
2052 int n_sysno = 0;
2053
2054 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2055 {
2056 /* Not supported. */
2057 return 1;
2058 }
2059
2060 if (needed && !any_count)
2061 {
2062 int i;
2063
2064 /* Count how many syscalls are to be caught (table[sysno] != 0). */
2065 for (i = 0; i < table_size; i++)
2066 {
2067 if (table[i] != 0)
2068 n_sysno++;
2069 }
2070 }
2071
2072 if (remote_debug)
2073 {
2074 fprintf_unfiltered (gdb_stdlog,
2075 "remote_set_syscall_catchpoint "
2076 "pid %d needed %d any_count %d n_sysno %d\n",
2077 pid, needed, any_count, n_sysno);
2078 }
2079
2080 if (needed)
2081 {
2082 /* Prepare a packet with the sysno list, assuming max 8+1
2083 characters for a sysno. If the resulting packet size is too
2084 big, fallback on the non-selective packet. */
2085 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2086
2087 catch_packet = (char *) xmalloc (maxpktsz);
2088 strcpy (catch_packet, "QCatchSyscalls:1");
2089 if (!any_count)
2090 {
2091 int i;
2092 char *p;
2093
2094 p = catch_packet;
2095 p += strlen (p);
2096
2097 /* Add in catch_packet each syscall to be caught (table[i] != 0). */
2098 for (i = 0; i < table_size; i++)
2099 {
2100 if (table[i] != 0)
2101 p += xsnprintf (p, catch_packet + maxpktsz - p, ";%x", i);
2102 }
2103 }
2104 if (strlen (catch_packet) > get_remote_packet_size ())
2105 {
2106 /* catch_packet too big. Fallback to less efficient
2107 non selective mode, with GDB doing the filtering. */
2108 catch_packet[sizeof ("QCatchSyscalls:1") - 1] = 0;
2109 }
2110 }
2111 else
2112 catch_packet = xstrdup ("QCatchSyscalls:0");
2113
2114 {
2115 struct cleanup *old_chain = make_cleanup (xfree, catch_packet);
2116 struct remote_state *rs = get_remote_state ();
2117
2118 putpkt (catch_packet);
2119 getpkt (&rs->buf, &rs->buf_size, 0);
2120 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2121 do_cleanups (old_chain);
2122 if (result == PACKET_OK)
2123 return 0;
2124 else
2125 return -1;
2126 }
2127 }
2128
2129 /* If 'QProgramSignals' is supported, tell the remote stub what
2130 signals it should pass through to the inferior when detaching. */
2131
2132 static void
2133 remote_program_signals (struct target_ops *self,
2134 int numsigs, unsigned char *signals)
2135 {
2136 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2137 {
2138 char *packet, *p;
2139 int count = 0, i;
2140 struct remote_state *rs = get_remote_state ();
2141
2142 gdb_assert (numsigs < 256);
2143 for (i = 0; i < numsigs; i++)
2144 {
2145 if (signals[i])
2146 count++;
2147 }
2148 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2149 strcpy (packet, "QProgramSignals:");
2150 p = packet + strlen (packet);
2151 for (i = 0; i < numsigs; i++)
2152 {
2153 if (signal_pass_state (i))
2154 {
2155 if (i >= 16)
2156 *p++ = tohex (i >> 4);
2157 *p++ = tohex (i & 15);
2158 if (count)
2159 *p++ = ';';
2160 else
2161 break;
2162 count--;
2163 }
2164 }
2165 *p = 0;
2166 if (!rs->last_program_signals_packet
2167 || strcmp (rs->last_program_signals_packet, packet) != 0)
2168 {
2169 putpkt (packet);
2170 getpkt (&rs->buf, &rs->buf_size, 0);
2171 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2172 xfree (rs->last_program_signals_packet);
2173 rs->last_program_signals_packet = packet;
2174 }
2175 else
2176 xfree (packet);
2177 }
2178 }
2179
2180 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2181 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2182 thread. If GEN is set, set the general thread, if not, then set
2183 the step/continue thread. */
2184 static void
2185 set_thread (struct ptid ptid, int gen)
2186 {
2187 struct remote_state *rs = get_remote_state ();
2188 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2189 char *buf = rs->buf;
2190 char *endbuf = rs->buf + get_remote_packet_size ();
2191
2192 if (ptid_equal (state, ptid))
2193 return;
2194
2195 *buf++ = 'H';
2196 *buf++ = gen ? 'g' : 'c';
2197 if (ptid_equal (ptid, magic_null_ptid))
2198 xsnprintf (buf, endbuf - buf, "0");
2199 else if (ptid_equal (ptid, any_thread_ptid))
2200 xsnprintf (buf, endbuf - buf, "0");
2201 else if (ptid_equal (ptid, minus_one_ptid))
2202 xsnprintf (buf, endbuf - buf, "-1");
2203 else
2204 write_ptid (buf, endbuf, ptid);
2205 putpkt (rs->buf);
2206 getpkt (&rs->buf, &rs->buf_size, 0);
2207 if (gen)
2208 rs->general_thread = ptid;
2209 else
2210 rs->continue_thread = ptid;
2211 }
2212
2213 static void
2214 set_general_thread (struct ptid ptid)
2215 {
2216 set_thread (ptid, 1);
2217 }
2218
2219 static void
2220 set_continue_thread (struct ptid ptid)
2221 {
2222 set_thread (ptid, 0);
2223 }
2224
2225 /* Change the remote current process. Which thread within the process
2226 ends up selected isn't important, as long as it is the same process
2227 as what INFERIOR_PTID points to.
2228
2229 This comes from that fact that there is no explicit notion of
2230 "selected process" in the protocol. The selected process for
2231 general operations is the process the selected general thread
2232 belongs to. */
2233
2234 static void
2235 set_general_process (void)
2236 {
2237 struct remote_state *rs = get_remote_state ();
2238
2239 /* If the remote can't handle multiple processes, don't bother. */
2240 if (!remote_multi_process_p (rs))
2241 return;
2242
2243 /* We only need to change the remote current thread if it's pointing
2244 at some other process. */
2245 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2246 set_general_thread (inferior_ptid);
2247 }
2248
2249 \f
2250 /* Return nonzero if this is the main thread that we made up ourselves
2251 to model non-threaded targets as single-threaded. */
2252
2253 static int
2254 remote_thread_always_alive (struct target_ops *ops, ptid_t ptid)
2255 {
2256 if (ptid_equal (ptid, magic_null_ptid))
2257 /* The main thread is always alive. */
2258 return 1;
2259
2260 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2261 /* The main thread is always alive. This can happen after a
2262 vAttach, if the remote side doesn't support
2263 multi-threading. */
2264 return 1;
2265
2266 return 0;
2267 }
2268
2269 /* Return nonzero if the thread PTID is still alive on the remote
2270 system. */
2271
2272 static int
2273 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
2274 {
2275 struct remote_state *rs = get_remote_state ();
2276 char *p, *endp;
2277
2278 /* Check if this is a thread that we made up ourselves to model
2279 non-threaded targets as single-threaded. */
2280 if (remote_thread_always_alive (ops, ptid))
2281 return 1;
2282
2283 p = rs->buf;
2284 endp = rs->buf + get_remote_packet_size ();
2285
2286 *p++ = 'T';
2287 write_ptid (p, endp, ptid);
2288
2289 putpkt (rs->buf);
2290 getpkt (&rs->buf, &rs->buf_size, 0);
2291 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2292 }
2293
2294 /* Return a pointer to a thread name if we know it and NULL otherwise.
2295 The thread_info object owns the memory for the name. */
2296
2297 static const char *
2298 remote_thread_name (struct target_ops *ops, struct thread_info *info)
2299 {
2300 if (info->priv != NULL)
2301 return info->priv->name;
2302
2303 return NULL;
2304 }
2305
2306 /* About these extended threadlist and threadinfo packets. They are
2307 variable length packets but, the fields within them are often fixed
2308 length. They are redundent enough to send over UDP as is the
2309 remote protocol in general. There is a matching unit test module
2310 in libstub. */
2311
2312 /* WARNING: This threadref data structure comes from the remote O.S.,
2313 libstub protocol encoding, and remote.c. It is not particularly
2314 changable. */
2315
2316 /* Right now, the internal structure is int. We want it to be bigger.
2317 Plan to fix this. */
2318
2319 typedef int gdb_threadref; /* Internal GDB thread reference. */
2320
2321 /* gdb_ext_thread_info is an internal GDB data structure which is
2322 equivalent to the reply of the remote threadinfo packet. */
2323
2324 struct gdb_ext_thread_info
2325 {
2326 threadref threadid; /* External form of thread reference. */
2327 int active; /* Has state interesting to GDB?
2328 regs, stack. */
2329 char display[256]; /* Brief state display, name,
2330 blocked/suspended. */
2331 char shortname[32]; /* To be used to name threads. */
2332 char more_display[256]; /* Long info, statistics, queue depth,
2333 whatever. */
2334 };
2335
2336 /* The volume of remote transfers can be limited by submitting
2337 a mask containing bits specifying the desired information.
2338 Use a union of these values as the 'selection' parameter to
2339 get_thread_info. FIXME: Make these TAG names more thread specific. */
2340
2341 #define TAG_THREADID 1
2342 #define TAG_EXISTS 2
2343 #define TAG_DISPLAY 4
2344 #define TAG_THREADNAME 8
2345 #define TAG_MOREDISPLAY 16
2346
2347 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2348
2349 static char *unpack_nibble (char *buf, int *val);
2350
2351 static char *unpack_byte (char *buf, int *value);
2352
2353 static char *pack_int (char *buf, int value);
2354
2355 static char *unpack_int (char *buf, int *value);
2356
2357 static char *unpack_string (char *src, char *dest, int length);
2358
2359 static char *pack_threadid (char *pkt, threadref *id);
2360
2361 static char *unpack_threadid (char *inbuf, threadref *id);
2362
2363 void int_to_threadref (threadref *id, int value);
2364
2365 static int threadref_to_int (threadref *ref);
2366
2367 static void copy_threadref (threadref *dest, threadref *src);
2368
2369 static int threadmatch (threadref *dest, threadref *src);
2370
2371 static char *pack_threadinfo_request (char *pkt, int mode,
2372 threadref *id);
2373
2374 static int remote_unpack_thread_info_response (char *pkt,
2375 threadref *expectedref,
2376 struct gdb_ext_thread_info
2377 *info);
2378
2379
2380 static int remote_get_threadinfo (threadref *threadid,
2381 int fieldset, /*TAG mask */
2382 struct gdb_ext_thread_info *info);
2383
2384 static char *pack_threadlist_request (char *pkt, int startflag,
2385 int threadcount,
2386 threadref *nextthread);
2387
2388 static int parse_threadlist_response (char *pkt,
2389 int result_limit,
2390 threadref *original_echo,
2391 threadref *resultlist,
2392 int *doneflag);
2393
2394 static int remote_get_threadlist (int startflag,
2395 threadref *nextthread,
2396 int result_limit,
2397 int *done,
2398 int *result_count,
2399 threadref *threadlist);
2400
2401 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2402
2403 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2404 void *context, int looplimit);
2405
2406 static int remote_newthread_step (threadref *ref, void *context);
2407
2408
2409 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2410 buffer we're allowed to write to. Returns
2411 BUF+CHARACTERS_WRITTEN. */
2412
2413 static char *
2414 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2415 {
2416 int pid, tid;
2417 struct remote_state *rs = get_remote_state ();
2418
2419 if (remote_multi_process_p (rs))
2420 {
2421 pid = ptid_get_pid (ptid);
2422 if (pid < 0)
2423 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2424 else
2425 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2426 }
2427 tid = ptid_get_lwp (ptid);
2428 if (tid < 0)
2429 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2430 else
2431 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2432
2433 return buf;
2434 }
2435
2436 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
2437 passed the last parsed char. Returns null_ptid on error. */
2438
2439 static ptid_t
2440 read_ptid (char *buf, char **obuf)
2441 {
2442 char *p = buf;
2443 char *pp;
2444 ULONGEST pid = 0, tid = 0;
2445
2446 if (*p == 'p')
2447 {
2448 /* Multi-process ptid. */
2449 pp = unpack_varlen_hex (p + 1, &pid);
2450 if (*pp != '.')
2451 error (_("invalid remote ptid: %s"), p);
2452
2453 p = pp;
2454 pp = unpack_varlen_hex (p + 1, &tid);
2455 if (obuf)
2456 *obuf = pp;
2457 return ptid_build (pid, tid, 0);
2458 }
2459
2460 /* No multi-process. Just a tid. */
2461 pp = unpack_varlen_hex (p, &tid);
2462
2463 /* Return null_ptid when no thread id is found. */
2464 if (p == pp)
2465 {
2466 if (obuf)
2467 *obuf = pp;
2468 return null_ptid;
2469 }
2470
2471 /* Since the stub is not sending a process id, then default to
2472 what's in inferior_ptid, unless it's null at this point. If so,
2473 then since there's no way to know the pid of the reported
2474 threads, use the magic number. */
2475 if (ptid_equal (inferior_ptid, null_ptid))
2476 pid = ptid_get_pid (magic_null_ptid);
2477 else
2478 pid = ptid_get_pid (inferior_ptid);
2479
2480 if (obuf)
2481 *obuf = pp;
2482 return ptid_build (pid, tid, 0);
2483 }
2484
2485 static int
2486 stubhex (int ch)
2487 {
2488 if (ch >= 'a' && ch <= 'f')
2489 return ch - 'a' + 10;
2490 if (ch >= '0' && ch <= '9')
2491 return ch - '0';
2492 if (ch >= 'A' && ch <= 'F')
2493 return ch - 'A' + 10;
2494 return -1;
2495 }
2496
2497 static int
2498 stub_unpack_int (char *buff, int fieldlength)
2499 {
2500 int nibble;
2501 int retval = 0;
2502
2503 while (fieldlength)
2504 {
2505 nibble = stubhex (*buff++);
2506 retval |= nibble;
2507 fieldlength--;
2508 if (fieldlength)
2509 retval = retval << 4;
2510 }
2511 return retval;
2512 }
2513
2514 static char *
2515 unpack_nibble (char *buf, int *val)
2516 {
2517 *val = fromhex (*buf++);
2518 return buf;
2519 }
2520
2521 static char *
2522 unpack_byte (char *buf, int *value)
2523 {
2524 *value = stub_unpack_int (buf, 2);
2525 return buf + 2;
2526 }
2527
2528 static char *
2529 pack_int (char *buf, int value)
2530 {
2531 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2532 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2533 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2534 buf = pack_hex_byte (buf, (value & 0xff));
2535 return buf;
2536 }
2537
2538 static char *
2539 unpack_int (char *buf, int *value)
2540 {
2541 *value = stub_unpack_int (buf, 8);
2542 return buf + 8;
2543 }
2544
2545 #if 0 /* Currently unused, uncomment when needed. */
2546 static char *pack_string (char *pkt, char *string);
2547
2548 static char *
2549 pack_string (char *pkt, char *string)
2550 {
2551 char ch;
2552 int len;
2553
2554 len = strlen (string);
2555 if (len > 200)
2556 len = 200; /* Bigger than most GDB packets, junk??? */
2557 pkt = pack_hex_byte (pkt, len);
2558 while (len-- > 0)
2559 {
2560 ch = *string++;
2561 if ((ch == '\0') || (ch == '#'))
2562 ch = '*'; /* Protect encapsulation. */
2563 *pkt++ = ch;
2564 }
2565 return pkt;
2566 }
2567 #endif /* 0 (unused) */
2568
2569 static char *
2570 unpack_string (char *src, char *dest, int length)
2571 {
2572 while (length--)
2573 *dest++ = *src++;
2574 *dest = '\0';
2575 return src;
2576 }
2577
2578 static char *
2579 pack_threadid (char *pkt, threadref *id)
2580 {
2581 char *limit;
2582 unsigned char *altid;
2583
2584 altid = (unsigned char *) id;
2585 limit = pkt + BUF_THREAD_ID_SIZE;
2586 while (pkt < limit)
2587 pkt = pack_hex_byte (pkt, *altid++);
2588 return pkt;
2589 }
2590
2591
2592 static char *
2593 unpack_threadid (char *inbuf, threadref *id)
2594 {
2595 char *altref;
2596 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2597 int x, y;
2598
2599 altref = (char *) id;
2600
2601 while (inbuf < limit)
2602 {
2603 x = stubhex (*inbuf++);
2604 y = stubhex (*inbuf++);
2605 *altref++ = (x << 4) | y;
2606 }
2607 return inbuf;
2608 }
2609
2610 /* Externally, threadrefs are 64 bits but internally, they are still
2611 ints. This is due to a mismatch of specifications. We would like
2612 to use 64bit thread references internally. This is an adapter
2613 function. */
2614
2615 void
2616 int_to_threadref (threadref *id, int value)
2617 {
2618 unsigned char *scan;
2619
2620 scan = (unsigned char *) id;
2621 {
2622 int i = 4;
2623 while (i--)
2624 *scan++ = 0;
2625 }
2626 *scan++ = (value >> 24) & 0xff;
2627 *scan++ = (value >> 16) & 0xff;
2628 *scan++ = (value >> 8) & 0xff;
2629 *scan++ = (value & 0xff);
2630 }
2631
2632 static int
2633 threadref_to_int (threadref *ref)
2634 {
2635 int i, value = 0;
2636 unsigned char *scan;
2637
2638 scan = *ref;
2639 scan += 4;
2640 i = 4;
2641 while (i-- > 0)
2642 value = (value << 8) | ((*scan++) & 0xff);
2643 return value;
2644 }
2645
2646 static void
2647 copy_threadref (threadref *dest, threadref *src)
2648 {
2649 int i;
2650 unsigned char *csrc, *cdest;
2651
2652 csrc = (unsigned char *) src;
2653 cdest = (unsigned char *) dest;
2654 i = 8;
2655 while (i--)
2656 *cdest++ = *csrc++;
2657 }
2658
2659 static int
2660 threadmatch (threadref *dest, threadref *src)
2661 {
2662 /* Things are broken right now, so just assume we got a match. */
2663 #if 0
2664 unsigned char *srcp, *destp;
2665 int i, result;
2666 srcp = (char *) src;
2667 destp = (char *) dest;
2668
2669 result = 1;
2670 while (i-- > 0)
2671 result &= (*srcp++ == *destp++) ? 1 : 0;
2672 return result;
2673 #endif
2674 return 1;
2675 }
2676
2677 /*
2678 threadid:1, # always request threadid
2679 context_exists:2,
2680 display:4,
2681 unique_name:8,
2682 more_display:16
2683 */
2684
2685 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2686
2687 static char *
2688 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2689 {
2690 *pkt++ = 'q'; /* Info Query */
2691 *pkt++ = 'P'; /* process or thread info */
2692 pkt = pack_int (pkt, mode); /* mode */
2693 pkt = pack_threadid (pkt, id); /* threadid */
2694 *pkt = '\0'; /* terminate */
2695 return pkt;
2696 }
2697
2698 /* These values tag the fields in a thread info response packet. */
2699 /* Tagging the fields allows us to request specific fields and to
2700 add more fields as time goes by. */
2701
2702 #define TAG_THREADID 1 /* Echo the thread identifier. */
2703 #define TAG_EXISTS 2 /* Is this process defined enough to
2704 fetch registers and its stack? */
2705 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2706 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2707 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2708 the process. */
2709
2710 static int
2711 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2712 struct gdb_ext_thread_info *info)
2713 {
2714 struct remote_state *rs = get_remote_state ();
2715 int mask, length;
2716 int tag;
2717 threadref ref;
2718 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2719 int retval = 1;
2720
2721 /* info->threadid = 0; FIXME: implement zero_threadref. */
2722 info->active = 0;
2723 info->display[0] = '\0';
2724 info->shortname[0] = '\0';
2725 info->more_display[0] = '\0';
2726
2727 /* Assume the characters indicating the packet type have been
2728 stripped. */
2729 pkt = unpack_int (pkt, &mask); /* arg mask */
2730 pkt = unpack_threadid (pkt, &ref);
2731
2732 if (mask == 0)
2733 warning (_("Incomplete response to threadinfo request."));
2734 if (!threadmatch (&ref, expectedref))
2735 { /* This is an answer to a different request. */
2736 warning (_("ERROR RMT Thread info mismatch."));
2737 return 0;
2738 }
2739 copy_threadref (&info->threadid, &ref);
2740
2741 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2742
2743 /* Packets are terminated with nulls. */
2744 while ((pkt < limit) && mask && *pkt)
2745 {
2746 pkt = unpack_int (pkt, &tag); /* tag */
2747 pkt = unpack_byte (pkt, &length); /* length */
2748 if (!(tag & mask)) /* Tags out of synch with mask. */
2749 {
2750 warning (_("ERROR RMT: threadinfo tag mismatch."));
2751 retval = 0;
2752 break;
2753 }
2754 if (tag == TAG_THREADID)
2755 {
2756 if (length != 16)
2757 {
2758 warning (_("ERROR RMT: length of threadid is not 16."));
2759 retval = 0;
2760 break;
2761 }
2762 pkt = unpack_threadid (pkt, &ref);
2763 mask = mask & ~TAG_THREADID;
2764 continue;
2765 }
2766 if (tag == TAG_EXISTS)
2767 {
2768 info->active = stub_unpack_int (pkt, length);
2769 pkt += length;
2770 mask = mask & ~(TAG_EXISTS);
2771 if (length > 8)
2772 {
2773 warning (_("ERROR RMT: 'exists' length too long."));
2774 retval = 0;
2775 break;
2776 }
2777 continue;
2778 }
2779 if (tag == TAG_THREADNAME)
2780 {
2781 pkt = unpack_string (pkt, &info->shortname[0], length);
2782 mask = mask & ~TAG_THREADNAME;
2783 continue;
2784 }
2785 if (tag == TAG_DISPLAY)
2786 {
2787 pkt = unpack_string (pkt, &info->display[0], length);
2788 mask = mask & ~TAG_DISPLAY;
2789 continue;
2790 }
2791 if (tag == TAG_MOREDISPLAY)
2792 {
2793 pkt = unpack_string (pkt, &info->more_display[0], length);
2794 mask = mask & ~TAG_MOREDISPLAY;
2795 continue;
2796 }
2797 warning (_("ERROR RMT: unknown thread info tag."));
2798 break; /* Not a tag we know about. */
2799 }
2800 return retval;
2801 }
2802
2803 static int
2804 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2805 struct gdb_ext_thread_info *info)
2806 {
2807 struct remote_state *rs = get_remote_state ();
2808 int result;
2809
2810 pack_threadinfo_request (rs->buf, fieldset, threadid);
2811 putpkt (rs->buf);
2812 getpkt (&rs->buf, &rs->buf_size, 0);
2813
2814 if (rs->buf[0] == '\0')
2815 return 0;
2816
2817 result = remote_unpack_thread_info_response (rs->buf + 2,
2818 threadid, info);
2819 return result;
2820 }
2821
2822 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2823
2824 static char *
2825 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2826 threadref *nextthread)
2827 {
2828 *pkt++ = 'q'; /* info query packet */
2829 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2830 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2831 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2832 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2833 *pkt = '\0';
2834 return pkt;
2835 }
2836
2837 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2838
2839 static int
2840 parse_threadlist_response (char *pkt, int result_limit,
2841 threadref *original_echo, threadref *resultlist,
2842 int *doneflag)
2843 {
2844 struct remote_state *rs = get_remote_state ();
2845 char *limit;
2846 int count, resultcount, done;
2847
2848 resultcount = 0;
2849 /* Assume the 'q' and 'M chars have been stripped. */
2850 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2851 /* done parse past here */
2852 pkt = unpack_byte (pkt, &count); /* count field */
2853 pkt = unpack_nibble (pkt, &done);
2854 /* The first threadid is the argument threadid. */
2855 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2856 while ((count-- > 0) && (pkt < limit))
2857 {
2858 pkt = unpack_threadid (pkt, resultlist++);
2859 if (resultcount++ >= result_limit)
2860 break;
2861 }
2862 if (doneflag)
2863 *doneflag = done;
2864 return resultcount;
2865 }
2866
2867 /* Fetch the next batch of threads from the remote. Returns -1 if the
2868 qL packet is not supported, 0 on error and 1 on success. */
2869
2870 static int
2871 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2872 int *done, int *result_count, threadref *threadlist)
2873 {
2874 struct remote_state *rs = get_remote_state ();
2875 int result = 1;
2876
2877 /* Trancate result limit to be smaller than the packet size. */
2878 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2879 >= get_remote_packet_size ())
2880 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2881
2882 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2883 putpkt (rs->buf);
2884 getpkt (&rs->buf, &rs->buf_size, 0);
2885 if (*rs->buf == '\0')
2886 {
2887 /* Packet not supported. */
2888 return -1;
2889 }
2890
2891 *result_count =
2892 parse_threadlist_response (rs->buf + 2, result_limit,
2893 &rs->echo_nextthread, threadlist, done);
2894
2895 if (!threadmatch (&rs->echo_nextthread, nextthread))
2896 {
2897 /* FIXME: This is a good reason to drop the packet. */
2898 /* Possably, there is a duplicate response. */
2899 /* Possabilities :
2900 retransmit immediatly - race conditions
2901 retransmit after timeout - yes
2902 exit
2903 wait for packet, then exit
2904 */
2905 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2906 return 0; /* I choose simply exiting. */
2907 }
2908 if (*result_count <= 0)
2909 {
2910 if (*done != 1)
2911 {
2912 warning (_("RMT ERROR : failed to get remote thread list."));
2913 result = 0;
2914 }
2915 return result; /* break; */
2916 }
2917 if (*result_count > result_limit)
2918 {
2919 *result_count = 0;
2920 warning (_("RMT ERROR: threadlist response longer than requested."));
2921 return 0;
2922 }
2923 return result;
2924 }
2925
2926 /* Fetch the list of remote threads, with the qL packet, and call
2927 STEPFUNCTION for each thread found. Stops iterating and returns 1
2928 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
2929 STEPFUNCTION returns false. If the packet is not supported,
2930 returns -1. */
2931
2932 static int
2933 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2934 int looplimit)
2935 {
2936 struct remote_state *rs = get_remote_state ();
2937 int done, i, result_count;
2938 int startflag = 1;
2939 int result = 1;
2940 int loopcount = 0;
2941
2942 done = 0;
2943 while (!done)
2944 {
2945 if (loopcount++ > looplimit)
2946 {
2947 result = 0;
2948 warning (_("Remote fetch threadlist -infinite loop-."));
2949 break;
2950 }
2951 result = remote_get_threadlist (startflag, &rs->nextthread,
2952 MAXTHREADLISTRESULTS,
2953 &done, &result_count,
2954 rs->resultthreadlist);
2955 if (result <= 0)
2956 break;
2957 /* Clear for later iterations. */
2958 startflag = 0;
2959 /* Setup to resume next batch of thread references, set nextthread. */
2960 if (result_count >= 1)
2961 copy_threadref (&rs->nextthread,
2962 &rs->resultthreadlist[result_count - 1]);
2963 i = 0;
2964 while (result_count--)
2965 {
2966 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
2967 {
2968 result = 0;
2969 break;
2970 }
2971 }
2972 }
2973 return result;
2974 }
2975
2976 /* A thread found on the remote target. */
2977
2978 typedef struct thread_item
2979 {
2980 /* The thread's PTID. */
2981 ptid_t ptid;
2982
2983 /* The thread's extra info. May be NULL. */
2984 char *extra;
2985
2986 /* The thread's name. May be NULL. */
2987 char *name;
2988
2989 /* The core the thread was running on. -1 if not known. */
2990 int core;
2991 } thread_item_t;
2992 DEF_VEC_O(thread_item_t);
2993
2994 /* Context passed around to the various methods listing remote
2995 threads. As new threads are found, they're added to the ITEMS
2996 vector. */
2997
2998 struct threads_listing_context
2999 {
3000 /* The threads found on the remote target. */
3001 VEC (thread_item_t) *items;
3002 };
3003
3004 /* Discard the contents of the constructed thread listing context. */
3005
3006 static void
3007 clear_threads_listing_context (void *p)
3008 {
3009 struct threads_listing_context *context
3010 = (struct threads_listing_context *) p;
3011 int i;
3012 struct thread_item *item;
3013
3014 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
3015 {
3016 xfree (item->extra);
3017 xfree (item->name);
3018 }
3019
3020 VEC_free (thread_item_t, context->items);
3021 }
3022
3023 /* Remove the thread specified as the related_pid field of WS
3024 from the CONTEXT list. */
3025
3026 static void
3027 threads_listing_context_remove (struct target_waitstatus *ws,
3028 struct threads_listing_context *context)
3029 {
3030 struct thread_item *item;
3031 int i;
3032 ptid_t child_ptid = ws->value.related_pid;
3033
3034 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
3035 {
3036 if (ptid_equal (item->ptid, child_ptid))
3037 {
3038 VEC_ordered_remove (thread_item_t, context->items, i);
3039 break;
3040 }
3041 }
3042 }
3043
3044 static int
3045 remote_newthread_step (threadref *ref, void *data)
3046 {
3047 struct threads_listing_context *context
3048 = (struct threads_listing_context *) data;
3049 struct thread_item item;
3050 int pid = ptid_get_pid (inferior_ptid);
3051
3052 item.ptid = ptid_build (pid, threadref_to_int (ref), 0);
3053 item.core = -1;
3054 item.name = NULL;
3055 item.extra = NULL;
3056
3057 VEC_safe_push (thread_item_t, context->items, &item);
3058
3059 return 1; /* continue iterator */
3060 }
3061
3062 #define CRAZY_MAX_THREADS 1000
3063
3064 static ptid_t
3065 remote_current_thread (ptid_t oldpid)
3066 {
3067 struct remote_state *rs = get_remote_state ();
3068
3069 putpkt ("qC");
3070 getpkt (&rs->buf, &rs->buf_size, 0);
3071 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3072 {
3073 char *obuf;
3074 ptid_t result;
3075
3076 result = read_ptid (&rs->buf[2], &obuf);
3077 if (*obuf != '\0' && remote_debug)
3078 fprintf_unfiltered (gdb_stdlog,
3079 "warning: garbage in qC reply\n");
3080
3081 return result;
3082 }
3083 else
3084 return oldpid;
3085 }
3086
3087 /* List remote threads using the deprecated qL packet. */
3088
3089 static int
3090 remote_get_threads_with_ql (struct target_ops *ops,
3091 struct threads_listing_context *context)
3092 {
3093 if (remote_threadlist_iterator (remote_newthread_step, context,
3094 CRAZY_MAX_THREADS) >= 0)
3095 return 1;
3096
3097 return 0;
3098 }
3099
3100 #if defined(HAVE_LIBEXPAT)
3101
3102 static void
3103 start_thread (struct gdb_xml_parser *parser,
3104 const struct gdb_xml_element *element,
3105 void *user_data, VEC(gdb_xml_value_s) *attributes)
3106 {
3107 struct threads_listing_context *data
3108 = (struct threads_listing_context *) user_data;
3109
3110 struct thread_item item;
3111 char *id;
3112 struct gdb_xml_value *attr;
3113
3114 id = (char *) xml_find_attribute (attributes, "id")->value;
3115 item.ptid = read_ptid (id, NULL);
3116
3117 attr = xml_find_attribute (attributes, "core");
3118 if (attr != NULL)
3119 item.core = *(ULONGEST *) attr->value;
3120 else
3121 item.core = -1;
3122
3123 attr = xml_find_attribute (attributes, "name");
3124 item.name = attr != NULL ? xstrdup ((const char *) attr->value) : NULL;
3125
3126 item.extra = 0;
3127
3128 VEC_safe_push (thread_item_t, data->items, &item);
3129 }
3130
3131 static void
3132 end_thread (struct gdb_xml_parser *parser,
3133 const struct gdb_xml_element *element,
3134 void *user_data, const char *body_text)
3135 {
3136 struct threads_listing_context *data
3137 = (struct threads_listing_context *) user_data;
3138
3139 if (body_text && *body_text)
3140 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
3141 }
3142
3143 const struct gdb_xml_attribute thread_attributes[] = {
3144 { "id", GDB_XML_AF_NONE, NULL, NULL },
3145 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3146 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3147 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3148 };
3149
3150 const struct gdb_xml_element thread_children[] = {
3151 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3152 };
3153
3154 const struct gdb_xml_element threads_children[] = {
3155 { "thread", thread_attributes, thread_children,
3156 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3157 start_thread, end_thread },
3158 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3159 };
3160
3161 const struct gdb_xml_element threads_elements[] = {
3162 { "threads", NULL, threads_children,
3163 GDB_XML_EF_NONE, NULL, NULL },
3164 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3165 };
3166
3167 #endif
3168
3169 /* List remote threads using qXfer:threads:read. */
3170
3171 static int
3172 remote_get_threads_with_qxfer (struct target_ops *ops,
3173 struct threads_listing_context *context)
3174 {
3175 #if defined(HAVE_LIBEXPAT)
3176 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3177 {
3178 char *xml = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3179 struct cleanup *back_to = make_cleanup (xfree, xml);
3180
3181 if (xml != NULL && *xml != '\0')
3182 {
3183 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3184 threads_elements, xml, context);
3185 }
3186
3187 do_cleanups (back_to);
3188 return 1;
3189 }
3190 #endif
3191
3192 return 0;
3193 }
3194
3195 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3196
3197 static int
3198 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3199 struct threads_listing_context *context)
3200 {
3201 struct remote_state *rs = get_remote_state ();
3202
3203 if (rs->use_threadinfo_query)
3204 {
3205 char *bufp;
3206
3207 putpkt ("qfThreadInfo");
3208 getpkt (&rs->buf, &rs->buf_size, 0);
3209 bufp = rs->buf;
3210 if (bufp[0] != '\0') /* q packet recognized */
3211 {
3212 while (*bufp++ == 'm') /* reply contains one or more TID */
3213 {
3214 do
3215 {
3216 struct thread_item item;
3217
3218 item.ptid = read_ptid (bufp, &bufp);
3219 item.core = -1;
3220 item.name = NULL;
3221 item.extra = NULL;
3222
3223 VEC_safe_push (thread_item_t, context->items, &item);
3224 }
3225 while (*bufp++ == ','); /* comma-separated list */
3226 putpkt ("qsThreadInfo");
3227 getpkt (&rs->buf, &rs->buf_size, 0);
3228 bufp = rs->buf;
3229 }
3230 return 1;
3231 }
3232 else
3233 {
3234 /* Packet not recognized. */
3235 rs->use_threadinfo_query = 0;
3236 }
3237 }
3238
3239 return 0;
3240 }
3241
3242 /* Implement the to_update_thread_list function for the remote
3243 targets. */
3244
3245 static void
3246 remote_update_thread_list (struct target_ops *ops)
3247 {
3248 struct threads_listing_context context;
3249 struct cleanup *old_chain;
3250 int got_list = 0;
3251
3252 context.items = NULL;
3253 old_chain = make_cleanup (clear_threads_listing_context, &context);
3254
3255 /* We have a few different mechanisms to fetch the thread list. Try
3256 them all, starting with the most preferred one first, falling
3257 back to older methods. */
3258 if (remote_get_threads_with_qxfer (ops, &context)
3259 || remote_get_threads_with_qthreadinfo (ops, &context)
3260 || remote_get_threads_with_ql (ops, &context))
3261 {
3262 int i;
3263 struct thread_item *item;
3264 struct thread_info *tp, *tmp;
3265
3266 got_list = 1;
3267
3268 if (VEC_empty (thread_item_t, context.items)
3269 && remote_thread_always_alive (ops, inferior_ptid))
3270 {
3271 /* Some targets don't really support threads, but still
3272 reply an (empty) thread list in response to the thread
3273 listing packets, instead of replying "packet not
3274 supported". Exit early so we don't delete the main
3275 thread. */
3276 do_cleanups (old_chain);
3277 return;
3278 }
3279
3280 /* CONTEXT now holds the current thread list on the remote
3281 target end. Delete GDB-side threads no longer found on the
3282 target. */
3283 ALL_THREADS_SAFE (tp, tmp)
3284 {
3285 for (i = 0;
3286 VEC_iterate (thread_item_t, context.items, i, item);
3287 ++i)
3288 {
3289 if (ptid_equal (item->ptid, tp->ptid))
3290 break;
3291 }
3292
3293 if (i == VEC_length (thread_item_t, context.items))
3294 {
3295 /* Not found. */
3296 delete_thread (tp->ptid);
3297 }
3298 }
3299
3300 /* Remove any unreported fork child threads from CONTEXT so
3301 that we don't interfere with follow fork, which is where
3302 creation of such threads is handled. */
3303 remove_new_fork_children (&context);
3304
3305 /* And now add threads we don't know about yet to our list. */
3306 for (i = 0;
3307 VEC_iterate (thread_item_t, context.items, i, item);
3308 ++i)
3309 {
3310 if (!ptid_equal (item->ptid, null_ptid))
3311 {
3312 struct private_thread_info *info;
3313 /* In non-stop mode, we assume new found threads are
3314 executing until proven otherwise with a stop reply.
3315 In all-stop, we can only get here if all threads are
3316 stopped. */
3317 int executing = target_is_non_stop_p () ? 1 : 0;
3318
3319 remote_notice_new_inferior (item->ptid, executing);
3320
3321 info = get_private_info_ptid (item->ptid);
3322 info->core = item->core;
3323 info->extra = item->extra;
3324 item->extra = NULL;
3325 info->name = item->name;
3326 item->name = NULL;
3327 }
3328 }
3329 }
3330
3331 if (!got_list)
3332 {
3333 /* If no thread listing method is supported, then query whether
3334 each known thread is alive, one by one, with the T packet.
3335 If the target doesn't support threads at all, then this is a
3336 no-op. See remote_thread_alive. */
3337 prune_threads ();
3338 }
3339
3340 do_cleanups (old_chain);
3341 }
3342
3343 /*
3344 * Collect a descriptive string about the given thread.
3345 * The target may say anything it wants to about the thread
3346 * (typically info about its blocked / runnable state, name, etc.).
3347 * This string will appear in the info threads display.
3348 *
3349 * Optional: targets are not required to implement this function.
3350 */
3351
3352 static char *
3353 remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
3354 {
3355 struct remote_state *rs = get_remote_state ();
3356 int result;
3357 int set;
3358 threadref id;
3359 struct gdb_ext_thread_info threadinfo;
3360 static char display_buf[100]; /* arbitrary... */
3361 int n = 0; /* position in display_buf */
3362
3363 if (rs->remote_desc == 0) /* paranoia */
3364 internal_error (__FILE__, __LINE__,
3365 _("remote_threads_extra_info"));
3366
3367 if (ptid_equal (tp->ptid, magic_null_ptid)
3368 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3369 /* This is the main thread which was added by GDB. The remote
3370 server doesn't know about it. */
3371 return NULL;
3372
3373 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3374 {
3375 struct thread_info *info = find_thread_ptid (tp->ptid);
3376
3377 if (info && info->priv)
3378 return info->priv->extra;
3379 else
3380 return NULL;
3381 }
3382
3383 if (rs->use_threadextra_query)
3384 {
3385 char *b = rs->buf;
3386 char *endb = rs->buf + get_remote_packet_size ();
3387
3388 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3389 b += strlen (b);
3390 write_ptid (b, endb, tp->ptid);
3391
3392 putpkt (rs->buf);
3393 getpkt (&rs->buf, &rs->buf_size, 0);
3394 if (rs->buf[0] != 0)
3395 {
3396 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3397 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3398 display_buf [result] = '\0';
3399 return display_buf;
3400 }
3401 }
3402
3403 /* If the above query fails, fall back to the old method. */
3404 rs->use_threadextra_query = 0;
3405 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3406 | TAG_MOREDISPLAY | TAG_DISPLAY;
3407 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3408 if (remote_get_threadinfo (&id, set, &threadinfo))
3409 if (threadinfo.active)
3410 {
3411 if (*threadinfo.shortname)
3412 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3413 " Name: %s,", threadinfo.shortname);
3414 if (*threadinfo.display)
3415 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3416 " State: %s,", threadinfo.display);
3417 if (*threadinfo.more_display)
3418 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3419 " Priority: %s", threadinfo.more_display);
3420
3421 if (n > 0)
3422 {
3423 /* For purely cosmetic reasons, clear up trailing commas. */
3424 if (',' == display_buf[n-1])
3425 display_buf[n-1] = ' ';
3426 return display_buf;
3427 }
3428 }
3429 return NULL;
3430 }
3431 \f
3432
3433 static int
3434 remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
3435 struct static_tracepoint_marker *marker)
3436 {
3437 struct remote_state *rs = get_remote_state ();
3438 char *p = rs->buf;
3439
3440 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3441 p += strlen (p);
3442 p += hexnumstr (p, addr);
3443 putpkt (rs->buf);
3444 getpkt (&rs->buf, &rs->buf_size, 0);
3445 p = rs->buf;
3446
3447 if (*p == 'E')
3448 error (_("Remote failure reply: %s"), p);
3449
3450 if (*p++ == 'm')
3451 {
3452 parse_static_tracepoint_marker_definition (p, &p, marker);
3453 return 1;
3454 }
3455
3456 return 0;
3457 }
3458
3459 static VEC(static_tracepoint_marker_p) *
3460 remote_static_tracepoint_markers_by_strid (struct target_ops *self,
3461 const char *strid)
3462 {
3463 struct remote_state *rs = get_remote_state ();
3464 VEC(static_tracepoint_marker_p) *markers = NULL;
3465 struct static_tracepoint_marker *marker = NULL;
3466 struct cleanup *old_chain;
3467 char *p;
3468
3469 /* Ask for a first packet of static tracepoint marker
3470 definition. */
3471 putpkt ("qTfSTM");
3472 getpkt (&rs->buf, &rs->buf_size, 0);
3473 p = rs->buf;
3474 if (*p == 'E')
3475 error (_("Remote failure reply: %s"), p);
3476
3477 old_chain = make_cleanup (free_current_marker, &marker);
3478
3479 while (*p++ == 'm')
3480 {
3481 if (marker == NULL)
3482 marker = XCNEW (struct static_tracepoint_marker);
3483
3484 do
3485 {
3486 parse_static_tracepoint_marker_definition (p, &p, marker);
3487
3488 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
3489 {
3490 VEC_safe_push (static_tracepoint_marker_p,
3491 markers, marker);
3492 marker = NULL;
3493 }
3494 else
3495 {
3496 release_static_tracepoint_marker (marker);
3497 memset (marker, 0, sizeof (*marker));
3498 }
3499 }
3500 while (*p++ == ','); /* comma-separated list */
3501 /* Ask for another packet of static tracepoint definition. */
3502 putpkt ("qTsSTM");
3503 getpkt (&rs->buf, &rs->buf_size, 0);
3504 p = rs->buf;
3505 }
3506
3507 do_cleanups (old_chain);
3508 return markers;
3509 }
3510
3511 \f
3512 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3513
3514 static ptid_t
3515 remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
3516 {
3517 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3518 }
3519 \f
3520
3521 /* Restart the remote side; this is an extended protocol operation. */
3522
3523 static void
3524 extended_remote_restart (void)
3525 {
3526 struct remote_state *rs = get_remote_state ();
3527
3528 /* Send the restart command; for reasons I don't understand the
3529 remote side really expects a number after the "R". */
3530 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3531 putpkt (rs->buf);
3532
3533 remote_fileio_reset ();
3534 }
3535 \f
3536 /* Clean up connection to a remote debugger. */
3537
3538 static void
3539 remote_close (struct target_ops *self)
3540 {
3541 struct remote_state *rs = get_remote_state ();
3542
3543 if (rs->remote_desc == NULL)
3544 return; /* already closed */
3545
3546 /* Make sure we leave stdin registered in the event loop. */
3547 remote_terminal_ours (self);
3548
3549 serial_close (rs->remote_desc);
3550 rs->remote_desc = NULL;
3551
3552 /* We don't have a connection to the remote stub anymore. Get rid
3553 of all the inferiors and their threads we were controlling.
3554 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3555 will be unable to find the thread corresponding to (pid, 0, 0). */
3556 inferior_ptid = null_ptid;
3557 discard_all_inferiors ();
3558
3559 /* We are closing the remote target, so we should discard
3560 everything of this target. */
3561 discard_pending_stop_replies_in_queue (rs);
3562
3563 if (remote_async_inferior_event_token)
3564 delete_async_event_handler (&remote_async_inferior_event_token);
3565
3566 remote_notif_state_xfree (rs->notif_state);
3567
3568 trace_reset_local_state ();
3569 }
3570
3571 /* Query the remote side for the text, data and bss offsets. */
3572
3573 static void
3574 get_offsets (void)
3575 {
3576 struct remote_state *rs = get_remote_state ();
3577 char *buf;
3578 char *ptr;
3579 int lose, num_segments = 0, do_sections, do_segments;
3580 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3581 struct section_offsets *offs;
3582 struct symfile_segment_data *data;
3583
3584 if (symfile_objfile == NULL)
3585 return;
3586
3587 putpkt ("qOffsets");
3588 getpkt (&rs->buf, &rs->buf_size, 0);
3589 buf = rs->buf;
3590
3591 if (buf[0] == '\000')
3592 return; /* Return silently. Stub doesn't support
3593 this command. */
3594 if (buf[0] == 'E')
3595 {
3596 warning (_("Remote failure reply: %s"), buf);
3597 return;
3598 }
3599
3600 /* Pick up each field in turn. This used to be done with scanf, but
3601 scanf will make trouble if CORE_ADDR size doesn't match
3602 conversion directives correctly. The following code will work
3603 with any size of CORE_ADDR. */
3604 text_addr = data_addr = bss_addr = 0;
3605 ptr = buf;
3606 lose = 0;
3607
3608 if (startswith (ptr, "Text="))
3609 {
3610 ptr += 5;
3611 /* Don't use strtol, could lose on big values. */
3612 while (*ptr && *ptr != ';')
3613 text_addr = (text_addr << 4) + fromhex (*ptr++);
3614
3615 if (startswith (ptr, ";Data="))
3616 {
3617 ptr += 6;
3618 while (*ptr && *ptr != ';')
3619 data_addr = (data_addr << 4) + fromhex (*ptr++);
3620 }
3621 else
3622 lose = 1;
3623
3624 if (!lose && startswith (ptr, ";Bss="))
3625 {
3626 ptr += 5;
3627 while (*ptr && *ptr != ';')
3628 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3629
3630 if (bss_addr != data_addr)
3631 warning (_("Target reported unsupported offsets: %s"), buf);
3632 }
3633 else
3634 lose = 1;
3635 }
3636 else if (startswith (ptr, "TextSeg="))
3637 {
3638 ptr += 8;
3639 /* Don't use strtol, could lose on big values. */
3640 while (*ptr && *ptr != ';')
3641 text_addr = (text_addr << 4) + fromhex (*ptr++);
3642 num_segments = 1;
3643
3644 if (startswith (ptr, ";DataSeg="))
3645 {
3646 ptr += 9;
3647 while (*ptr && *ptr != ';')
3648 data_addr = (data_addr << 4) + fromhex (*ptr++);
3649 num_segments++;
3650 }
3651 }
3652 else
3653 lose = 1;
3654
3655 if (lose)
3656 error (_("Malformed response to offset query, %s"), buf);
3657 else if (*ptr != '\0')
3658 warning (_("Target reported unsupported offsets: %s"), buf);
3659
3660 offs = ((struct section_offsets *)
3661 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3662 memcpy (offs, symfile_objfile->section_offsets,
3663 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3664
3665 data = get_symfile_segment_data (symfile_objfile->obfd);
3666 do_segments = (data != NULL);
3667 do_sections = num_segments == 0;
3668
3669 if (num_segments > 0)
3670 {
3671 segments[0] = text_addr;
3672 segments[1] = data_addr;
3673 }
3674 /* If we have two segments, we can still try to relocate everything
3675 by assuming that the .text and .data offsets apply to the whole
3676 text and data segments. Convert the offsets given in the packet
3677 to base addresses for symfile_map_offsets_to_segments. */
3678 else if (data && data->num_segments == 2)
3679 {
3680 segments[0] = data->segment_bases[0] + text_addr;
3681 segments[1] = data->segment_bases[1] + data_addr;
3682 num_segments = 2;
3683 }
3684 /* If the object file has only one segment, assume that it is text
3685 rather than data; main programs with no writable data are rare,
3686 but programs with no code are useless. Of course the code might
3687 have ended up in the data segment... to detect that we would need
3688 the permissions here. */
3689 else if (data && data->num_segments == 1)
3690 {
3691 segments[0] = data->segment_bases[0] + text_addr;
3692 num_segments = 1;
3693 }
3694 /* There's no way to relocate by segment. */
3695 else
3696 do_segments = 0;
3697
3698 if (do_segments)
3699 {
3700 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3701 offs, num_segments, segments);
3702
3703 if (ret == 0 && !do_sections)
3704 error (_("Can not handle qOffsets TextSeg "
3705 "response with this symbol file"));
3706
3707 if (ret > 0)
3708 do_sections = 0;
3709 }
3710
3711 if (data)
3712 free_symfile_segment_data (data);
3713
3714 if (do_sections)
3715 {
3716 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3717
3718 /* This is a temporary kludge to force data and bss to use the
3719 same offsets because that's what nlmconv does now. The real
3720 solution requires changes to the stub and remote.c that I
3721 don't have time to do right now. */
3722
3723 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3724 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3725 }
3726
3727 objfile_relocate (symfile_objfile, offs);
3728 }
3729
3730 /* Send interrupt_sequence to remote target. */
3731 static void
3732 send_interrupt_sequence (void)
3733 {
3734 struct remote_state *rs = get_remote_state ();
3735
3736 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3737 remote_serial_write ("\x03", 1);
3738 else if (interrupt_sequence_mode == interrupt_sequence_break)
3739 serial_send_break (rs->remote_desc);
3740 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3741 {
3742 serial_send_break (rs->remote_desc);
3743 remote_serial_write ("g", 1);
3744 }
3745 else
3746 internal_error (__FILE__, __LINE__,
3747 _("Invalid value for interrupt_sequence_mode: %s."),
3748 interrupt_sequence_mode);
3749 }
3750
3751
3752 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3753 and extract the PTID. Returns NULL_PTID if not found. */
3754
3755 static ptid_t
3756 stop_reply_extract_thread (char *stop_reply)
3757 {
3758 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3759 {
3760 char *p;
3761
3762 /* Txx r:val ; r:val (...) */
3763 p = &stop_reply[3];
3764
3765 /* Look for "register" named "thread". */
3766 while (*p != '\0')
3767 {
3768 char *p1;
3769
3770 p1 = strchr (p, ':');
3771 if (p1 == NULL)
3772 return null_ptid;
3773
3774 if (strncmp (p, "thread", p1 - p) == 0)
3775 return read_ptid (++p1, &p);
3776
3777 p1 = strchr (p, ';');
3778 if (p1 == NULL)
3779 return null_ptid;
3780 p1++;
3781
3782 p = p1;
3783 }
3784 }
3785
3786 return null_ptid;
3787 }
3788
3789 /* Determine the remote side's current thread. If we have a stop
3790 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3791 "thread" register we can extract the current thread from. If not,
3792 ask the remote which is the current thread with qC. The former
3793 method avoids a roundtrip. */
3794
3795 static ptid_t
3796 get_current_thread (char *wait_status)
3797 {
3798 ptid_t ptid = null_ptid;
3799
3800 /* Note we don't use remote_parse_stop_reply as that makes use of
3801 the target architecture, which we haven't yet fully determined at
3802 this point. */
3803 if (wait_status != NULL)
3804 ptid = stop_reply_extract_thread (wait_status);
3805 if (ptid_equal (ptid, null_ptid))
3806 ptid = remote_current_thread (inferior_ptid);
3807
3808 return ptid;
3809 }
3810
3811 /* Query the remote target for which is the current thread/process,
3812 add it to our tables, and update INFERIOR_PTID. The caller is
3813 responsible for setting the state such that the remote end is ready
3814 to return the current thread.
3815
3816 This function is called after handling the '?' or 'vRun' packets,
3817 whose response is a stop reply from which we can also try
3818 extracting the thread. If the target doesn't support the explicit
3819 qC query, we infer the current thread from that stop reply, passed
3820 in in WAIT_STATUS, which may be NULL. */
3821
3822 static void
3823 add_current_inferior_and_thread (char *wait_status)
3824 {
3825 struct remote_state *rs = get_remote_state ();
3826 int fake_pid_p = 0;
3827 ptid_t ptid;
3828
3829 inferior_ptid = null_ptid;
3830
3831 /* Now, if we have thread information, update inferior_ptid. */
3832 ptid = get_current_thread (wait_status);
3833
3834 if (!ptid_equal (ptid, null_ptid))
3835 {
3836 if (!remote_multi_process_p (rs))
3837 fake_pid_p = 1;
3838
3839 inferior_ptid = ptid;
3840 }
3841 else
3842 {
3843 /* Without this, some commands which require an active target
3844 (such as kill) won't work. This variable serves (at least)
3845 double duty as both the pid of the target process (if it has
3846 such), and as a flag indicating that a target is active. */
3847 inferior_ptid = magic_null_ptid;
3848 fake_pid_p = 1;
3849 }
3850
3851 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1, 1);
3852
3853 /* Add the main thread. */
3854 add_thread_silent (inferior_ptid);
3855 }
3856
3857 /* Print info about a thread that was found already stopped on
3858 connection. */
3859
3860 static void
3861 print_one_stopped_thread (struct thread_info *thread)
3862 {
3863 struct target_waitstatus *ws = &thread->suspend.waitstatus;
3864
3865 switch_to_thread (thread->ptid);
3866 stop_pc = get_frame_pc (get_current_frame ());
3867 set_current_sal_from_frame (get_current_frame ());
3868
3869 thread->suspend.waitstatus_pending_p = 0;
3870
3871 if (ws->kind == TARGET_WAITKIND_STOPPED)
3872 {
3873 enum gdb_signal sig = ws->value.sig;
3874
3875 if (signal_print_state (sig))
3876 observer_notify_signal_received (sig);
3877 }
3878 observer_notify_normal_stop (NULL, 1);
3879 }
3880
3881 /* Process all initial stop replies the remote side sent in response
3882 to the ? packet. These indicate threads that were already stopped
3883 on initial connection. We mark these threads as stopped and print
3884 their current frame before giving the user the prompt. */
3885
3886 static void
3887 process_initial_stop_replies (int from_tty)
3888 {
3889 int pending_stop_replies = stop_reply_queue_length ();
3890 struct inferior *inf;
3891 struct thread_info *thread;
3892 struct thread_info *selected = NULL;
3893 struct thread_info *lowest_stopped = NULL;
3894 struct thread_info *first = NULL;
3895
3896 /* Consume the initial pending events. */
3897 while (pending_stop_replies-- > 0)
3898 {
3899 ptid_t waiton_ptid = minus_one_ptid;
3900 ptid_t event_ptid;
3901 struct target_waitstatus ws;
3902 int ignore_event = 0;
3903 struct thread_info *thread;
3904
3905 memset (&ws, 0, sizeof (ws));
3906 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
3907 if (remote_debug)
3908 print_target_wait_results (waiton_ptid, event_ptid, &ws);
3909
3910 switch (ws.kind)
3911 {
3912 case TARGET_WAITKIND_IGNORE:
3913 case TARGET_WAITKIND_NO_RESUMED:
3914 case TARGET_WAITKIND_SIGNALLED:
3915 case TARGET_WAITKIND_EXITED:
3916 /* We shouldn't see these, but if we do, just ignore. */
3917 if (remote_debug)
3918 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
3919 ignore_event = 1;
3920 break;
3921
3922 case TARGET_WAITKIND_EXECD:
3923 xfree (ws.value.execd_pathname);
3924 break;
3925 default:
3926 break;
3927 }
3928
3929 if (ignore_event)
3930 continue;
3931
3932 thread = find_thread_ptid (event_ptid);
3933
3934 if (ws.kind == TARGET_WAITKIND_STOPPED)
3935 {
3936 enum gdb_signal sig = ws.value.sig;
3937
3938 /* Stubs traditionally report SIGTRAP as initial signal,
3939 instead of signal 0. Suppress it. */
3940 if (sig == GDB_SIGNAL_TRAP)
3941 sig = GDB_SIGNAL_0;
3942 thread->suspend.stop_signal = sig;
3943 ws.value.sig = sig;
3944 }
3945
3946 thread->suspend.waitstatus = ws;
3947
3948 if (ws.kind != TARGET_WAITKIND_STOPPED
3949 || ws.value.sig != GDB_SIGNAL_0)
3950 thread->suspend.waitstatus_pending_p = 1;
3951
3952 set_executing (event_ptid, 0);
3953 set_running (event_ptid, 0);
3954 thread->priv->vcont_resumed = 0;
3955 }
3956
3957 /* "Notice" the new inferiors before anything related to
3958 registers/memory. */
3959 ALL_INFERIORS (inf)
3960 {
3961 if (inf->pid == 0)
3962 continue;
3963
3964 inf->needs_setup = 1;
3965
3966 if (non_stop)
3967 {
3968 thread = any_live_thread_of_process (inf->pid);
3969 notice_new_inferior (thread->ptid,
3970 thread->state == THREAD_RUNNING,
3971 from_tty);
3972 }
3973 }
3974
3975 /* If all-stop on top of non-stop, pause all threads. Note this
3976 records the threads' stop pc, so must be done after "noticing"
3977 the inferiors. */
3978 if (!non_stop)
3979 {
3980 stop_all_threads ();
3981
3982 /* If all threads of an inferior were already stopped, we
3983 haven't setup the inferior yet. */
3984 ALL_INFERIORS (inf)
3985 {
3986 if (inf->pid == 0)
3987 continue;
3988
3989 if (inf->needs_setup)
3990 {
3991 thread = any_live_thread_of_process (inf->pid);
3992 switch_to_thread_no_regs (thread);
3993 setup_inferior (0);
3994 }
3995 }
3996 }
3997
3998 /* Now go over all threads that are stopped, and print their current
3999 frame. If all-stop, then if there's a signalled thread, pick
4000 that as current. */
4001 ALL_NON_EXITED_THREADS (thread)
4002 {
4003 if (first == NULL)
4004 first = thread;
4005
4006 if (!non_stop)
4007 set_running (thread->ptid, 0);
4008 else if (thread->state != THREAD_STOPPED)
4009 continue;
4010
4011 if (selected == NULL
4012 && thread->suspend.waitstatus_pending_p)
4013 selected = thread;
4014
4015 if (lowest_stopped == NULL
4016 || thread->inf->num < lowest_stopped->inf->num
4017 || thread->per_inf_num < lowest_stopped->per_inf_num)
4018 lowest_stopped = thread;
4019
4020 if (non_stop)
4021 print_one_stopped_thread (thread);
4022 }
4023
4024 /* In all-stop, we only print the status of one thread, and leave
4025 others with their status pending. */
4026 if (!non_stop)
4027 {
4028 thread = selected;
4029 if (thread == NULL)
4030 thread = lowest_stopped;
4031 if (thread == NULL)
4032 thread = first;
4033
4034 print_one_stopped_thread (thread);
4035 }
4036
4037 /* For "info program". */
4038 thread = inferior_thread ();
4039 if (thread->state == THREAD_STOPPED)
4040 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4041 }
4042
4043 /* Start the remote connection and sync state. */
4044
4045 static void
4046 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
4047 {
4048 struct remote_state *rs = get_remote_state ();
4049 struct packet_config *noack_config;
4050 char *wait_status = NULL;
4051
4052 /* Signal other parts that we're going through the initial setup,
4053 and so things may not be stable yet. E.g., we don't try to
4054 install tracepoints until we've relocated symbols. Also, a
4055 Ctrl-C before we're connected and synced up can't interrupt the
4056 target. Instead, it offers to drop the (potentially wedged)
4057 connection. */
4058 rs->starting_up = 1;
4059
4060 QUIT;
4061
4062 if (interrupt_on_connect)
4063 send_interrupt_sequence ();
4064
4065 /* Ack any packet which the remote side has already sent. */
4066 remote_serial_write ("+", 1);
4067
4068 /* The first packet we send to the target is the optional "supported
4069 packets" request. If the target can answer this, it will tell us
4070 which later probes to skip. */
4071 remote_query_supported ();
4072
4073 /* If the stub wants to get a QAllow, compose one and send it. */
4074 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4075 remote_set_permissions (target);
4076
4077 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4078 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4079 as a reply to known packet. For packet "vFile:setfs:" it is an
4080 invalid reply and GDB would return error in
4081 remote_hostio_set_filesystem, making remote files access impossible.
4082 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4083 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4084 {
4085 const char v_mustreplyempty[] = "vMustReplyEmpty";
4086
4087 putpkt (v_mustreplyempty);
4088 getpkt (&rs->buf, &rs->buf_size, 0);
4089 if (strcmp (rs->buf, "OK") == 0)
4090 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4091 else if (strcmp (rs->buf, "") != 0)
4092 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4093 rs->buf);
4094 }
4095
4096 /* Next, we possibly activate noack mode.
4097
4098 If the QStartNoAckMode packet configuration is set to AUTO,
4099 enable noack mode if the stub reported a wish for it with
4100 qSupported.
4101
4102 If set to TRUE, then enable noack mode even if the stub didn't
4103 report it in qSupported. If the stub doesn't reply OK, the
4104 session ends with an error.
4105
4106 If FALSE, then don't activate noack mode, regardless of what the
4107 stub claimed should be the default with qSupported. */
4108
4109 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4110 if (packet_config_support (noack_config) != PACKET_DISABLE)
4111 {
4112 putpkt ("QStartNoAckMode");
4113 getpkt (&rs->buf, &rs->buf_size, 0);
4114 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4115 rs->noack_mode = 1;
4116 }
4117
4118 if (extended_p)
4119 {
4120 /* Tell the remote that we are using the extended protocol. */
4121 putpkt ("!");
4122 getpkt (&rs->buf, &rs->buf_size, 0);
4123 }
4124
4125 /* Let the target know which signals it is allowed to pass down to
4126 the program. */
4127 update_signals_program_target ();
4128
4129 /* Next, if the target can specify a description, read it. We do
4130 this before anything involving memory or registers. */
4131 target_find_description ();
4132
4133 /* Next, now that we know something about the target, update the
4134 address spaces in the program spaces. */
4135 update_address_spaces ();
4136
4137 /* On OSs where the list of libraries is global to all
4138 processes, we fetch them early. */
4139 if (gdbarch_has_global_solist (target_gdbarch ()))
4140 solib_add (NULL, from_tty, target, auto_solib_add);
4141
4142 if (target_is_non_stop_p ())
4143 {
4144 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4145 error (_("Non-stop mode requested, but remote "
4146 "does not support non-stop"));
4147
4148 putpkt ("QNonStop:1");
4149 getpkt (&rs->buf, &rs->buf_size, 0);
4150
4151 if (strcmp (rs->buf, "OK") != 0)
4152 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4153
4154 /* Find about threads and processes the stub is already
4155 controlling. We default to adding them in the running state.
4156 The '?' query below will then tell us about which threads are
4157 stopped. */
4158 remote_update_thread_list (target);
4159 }
4160 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4161 {
4162 /* Don't assume that the stub can operate in all-stop mode.
4163 Request it explicitly. */
4164 putpkt ("QNonStop:0");
4165 getpkt (&rs->buf, &rs->buf_size, 0);
4166
4167 if (strcmp (rs->buf, "OK") != 0)
4168 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4169 }
4170
4171 /* Upload TSVs regardless of whether the target is running or not. The
4172 remote stub, such as GDBserver, may have some predefined or builtin
4173 TSVs, even if the target is not running. */
4174 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4175 {
4176 struct uploaded_tsv *uploaded_tsvs = NULL;
4177
4178 remote_upload_trace_state_variables (target, &uploaded_tsvs);
4179 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4180 }
4181
4182 /* Check whether the target is running now. */
4183 putpkt ("?");
4184 getpkt (&rs->buf, &rs->buf_size, 0);
4185
4186 if (!target_is_non_stop_p ())
4187 {
4188 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4189 {
4190 if (!extended_p)
4191 error (_("The target is not running (try extended-remote?)"));
4192
4193 /* We're connected, but not running. Drop out before we
4194 call start_remote. */
4195 rs->starting_up = 0;
4196 return;
4197 }
4198 else
4199 {
4200 /* Save the reply for later. */
4201 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4202 strcpy (wait_status, rs->buf);
4203 }
4204
4205 /* Fetch thread list. */
4206 target_update_thread_list ();
4207
4208 /* Let the stub know that we want it to return the thread. */
4209 set_continue_thread (minus_one_ptid);
4210
4211 if (thread_count () == 0)
4212 {
4213 /* Target has no concept of threads at all. GDB treats
4214 non-threaded target as single-threaded; add a main
4215 thread. */
4216 add_current_inferior_and_thread (wait_status);
4217 }
4218 else
4219 {
4220 /* We have thread information; select the thread the target
4221 says should be current. If we're reconnecting to a
4222 multi-threaded program, this will ideally be the thread
4223 that last reported an event before GDB disconnected. */
4224 inferior_ptid = get_current_thread (wait_status);
4225 if (ptid_equal (inferior_ptid, null_ptid))
4226 {
4227 /* Odd... The target was able to list threads, but not
4228 tell us which thread was current (no "thread"
4229 register in T stop reply?). Just pick the first
4230 thread in the thread list then. */
4231
4232 if (remote_debug)
4233 fprintf_unfiltered (gdb_stdlog,
4234 "warning: couldn't determine remote "
4235 "current thread; picking first in list.\n");
4236
4237 inferior_ptid = thread_list->ptid;
4238 }
4239 }
4240
4241 /* init_wait_for_inferior should be called before get_offsets in order
4242 to manage `inserted' flag in bp loc in a correct state.
4243 breakpoint_init_inferior, called from init_wait_for_inferior, set
4244 `inserted' flag to 0, while before breakpoint_re_set, called from
4245 start_remote, set `inserted' flag to 1. In the initialization of
4246 inferior, breakpoint_init_inferior should be called first, and then
4247 breakpoint_re_set can be called. If this order is broken, state of
4248 `inserted' flag is wrong, and cause some problems on breakpoint
4249 manipulation. */
4250 init_wait_for_inferior ();
4251
4252 get_offsets (); /* Get text, data & bss offsets. */
4253
4254 /* If we could not find a description using qXfer, and we know
4255 how to do it some other way, try again. This is not
4256 supported for non-stop; it could be, but it is tricky if
4257 there are no stopped threads when we connect. */
4258 if (remote_read_description_p (target)
4259 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4260 {
4261 target_clear_description ();
4262 target_find_description ();
4263 }
4264
4265 /* Use the previously fetched status. */
4266 gdb_assert (wait_status != NULL);
4267 strcpy (rs->buf, wait_status);
4268 rs->cached_wait_status = 1;
4269
4270 start_remote (from_tty); /* Initialize gdb process mechanisms. */
4271 }
4272 else
4273 {
4274 /* Clear WFI global state. Do this before finding about new
4275 threads and inferiors, and setting the current inferior.
4276 Otherwise we would clear the proceed status of the current
4277 inferior when we want its stop_soon state to be preserved
4278 (see notice_new_inferior). */
4279 init_wait_for_inferior ();
4280
4281 /* In non-stop, we will either get an "OK", meaning that there
4282 are no stopped threads at this time; or, a regular stop
4283 reply. In the latter case, there may be more than one thread
4284 stopped --- we pull them all out using the vStopped
4285 mechanism. */
4286 if (strcmp (rs->buf, "OK") != 0)
4287 {
4288 struct notif_client *notif = &notif_client_stop;
4289
4290 /* remote_notif_get_pending_replies acks this one, and gets
4291 the rest out. */
4292 rs->notif_state->pending_event[notif_client_stop.id]
4293 = remote_notif_parse (notif, rs->buf);
4294 remote_notif_get_pending_events (notif);
4295 }
4296
4297 if (thread_count () == 0)
4298 {
4299 if (!extended_p)
4300 error (_("The target is not running (try extended-remote?)"));
4301
4302 /* We're connected, but not running. Drop out before we
4303 call start_remote. */
4304 rs->starting_up = 0;
4305 return;
4306 }
4307
4308 /* In non-stop mode, any cached wait status will be stored in
4309 the stop reply queue. */
4310 gdb_assert (wait_status == NULL);
4311
4312 /* Report all signals during attach/startup. */
4313 remote_pass_signals (target, 0, NULL);
4314
4315 /* If there are already stopped threads, mark them stopped and
4316 report their stops before giving the prompt to the user. */
4317 process_initial_stop_replies (from_tty);
4318
4319 if (target_can_async_p ())
4320 target_async (1);
4321 }
4322
4323 /* If we connected to a live target, do some additional setup. */
4324 if (target_has_execution)
4325 {
4326 if (symfile_objfile) /* No use without a symbol-file. */
4327 remote_check_symbols ();
4328 }
4329
4330 /* Possibly the target has been engaged in a trace run started
4331 previously; find out where things are at. */
4332 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4333 {
4334 struct uploaded_tp *uploaded_tps = NULL;
4335
4336 if (current_trace_status ()->running)
4337 printf_filtered (_("Trace is already running on the target.\n"));
4338
4339 remote_upload_tracepoints (target, &uploaded_tps);
4340
4341 merge_uploaded_tracepoints (&uploaded_tps);
4342 }
4343
4344 /* Possibly the target has been engaged in a btrace record started
4345 previously; find out where things are at. */
4346 remote_btrace_maybe_reopen ();
4347
4348 /* The thread and inferior lists are now synchronized with the
4349 target, our symbols have been relocated, and we're merged the
4350 target's tracepoints with ours. We're done with basic start
4351 up. */
4352 rs->starting_up = 0;
4353
4354 /* Maybe breakpoints are global and need to be inserted now. */
4355 if (breakpoints_should_be_inserted_now ())
4356 insert_breakpoints ();
4357 }
4358
4359 /* Open a connection to a remote debugger.
4360 NAME is the filename used for communication. */
4361
4362 static void
4363 remote_open (const char *name, int from_tty)
4364 {
4365 remote_open_1 (name, from_tty, &remote_ops, 0);
4366 }
4367
4368 /* Open a connection to a remote debugger using the extended
4369 remote gdb protocol. NAME is the filename used for communication. */
4370
4371 static void
4372 extended_remote_open (const char *name, int from_tty)
4373 {
4374 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
4375 }
4376
4377 /* Reset all packets back to "unknown support". Called when opening a
4378 new connection to a remote target. */
4379
4380 static void
4381 reset_all_packet_configs_support (void)
4382 {
4383 int i;
4384
4385 for (i = 0; i < PACKET_MAX; i++)
4386 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4387 }
4388
4389 /* Initialize all packet configs. */
4390
4391 static void
4392 init_all_packet_configs (void)
4393 {
4394 int i;
4395
4396 for (i = 0; i < PACKET_MAX; i++)
4397 {
4398 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4399 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4400 }
4401 }
4402
4403 /* Symbol look-up. */
4404
4405 static void
4406 remote_check_symbols (void)
4407 {
4408 struct remote_state *rs = get_remote_state ();
4409 char *msg, *reply, *tmp;
4410 int end;
4411 long reply_size;
4412 struct cleanup *old_chain;
4413
4414 /* The remote side has no concept of inferiors that aren't running
4415 yet, it only knows about running processes. If we're connected
4416 but our current inferior is not running, we should not invite the
4417 remote target to request symbol lookups related to its
4418 (unrelated) current process. */
4419 if (!target_has_execution)
4420 return;
4421
4422 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4423 return;
4424
4425 /* Make sure the remote is pointing at the right process. Note
4426 there's no way to select "no process". */
4427 set_general_process ();
4428
4429 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4430 because we need both at the same time. */
4431 msg = (char *) xmalloc (get_remote_packet_size ());
4432 old_chain = make_cleanup (xfree, msg);
4433 reply = (char *) xmalloc (get_remote_packet_size ());
4434 make_cleanup (free_current_contents, &reply);
4435 reply_size = get_remote_packet_size ();
4436
4437 /* Invite target to request symbol lookups. */
4438
4439 putpkt ("qSymbol::");
4440 getpkt (&reply, &reply_size, 0);
4441 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4442
4443 while (startswith (reply, "qSymbol:"))
4444 {
4445 struct bound_minimal_symbol sym;
4446
4447 tmp = &reply[8];
4448 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4449 msg[end] = '\0';
4450 sym = lookup_minimal_symbol (msg, NULL, NULL);
4451 if (sym.minsym == NULL)
4452 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4453 else
4454 {
4455 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4456 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4457
4458 /* If this is a function address, return the start of code
4459 instead of any data function descriptor. */
4460 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4461 sym_addr,
4462 &current_target);
4463
4464 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4465 phex_nz (sym_addr, addr_size), &reply[8]);
4466 }
4467
4468 putpkt (msg);
4469 getpkt (&reply, &reply_size, 0);
4470 }
4471
4472 do_cleanups (old_chain);
4473 }
4474
4475 static struct serial *
4476 remote_serial_open (const char *name)
4477 {
4478 static int udp_warning = 0;
4479
4480 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4481 of in ser-tcp.c, because it is the remote protocol assuming that the
4482 serial connection is reliable and not the serial connection promising
4483 to be. */
4484 if (!udp_warning && startswith (name, "udp:"))
4485 {
4486 warning (_("The remote protocol may be unreliable over UDP.\n"
4487 "Some events may be lost, rendering further debugging "
4488 "impossible."));
4489 udp_warning = 1;
4490 }
4491
4492 return serial_open (name);
4493 }
4494
4495 /* Inform the target of our permission settings. The permission flags
4496 work without this, but if the target knows the settings, it can do
4497 a couple things. First, it can add its own check, to catch cases
4498 that somehow manage to get by the permissions checks in target
4499 methods. Second, if the target is wired to disallow particular
4500 settings (for instance, a system in the field that is not set up to
4501 be able to stop at a breakpoint), it can object to any unavailable
4502 permissions. */
4503
4504 void
4505 remote_set_permissions (struct target_ops *self)
4506 {
4507 struct remote_state *rs = get_remote_state ();
4508
4509 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4510 "WriteReg:%x;WriteMem:%x;"
4511 "InsertBreak:%x;InsertTrace:%x;"
4512 "InsertFastTrace:%x;Stop:%x",
4513 may_write_registers, may_write_memory,
4514 may_insert_breakpoints, may_insert_tracepoints,
4515 may_insert_fast_tracepoints, may_stop);
4516 putpkt (rs->buf);
4517 getpkt (&rs->buf, &rs->buf_size, 0);
4518
4519 /* If the target didn't like the packet, warn the user. Do not try
4520 to undo the user's settings, that would just be maddening. */
4521 if (strcmp (rs->buf, "OK") != 0)
4522 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4523 }
4524
4525 /* This type describes each known response to the qSupported
4526 packet. */
4527 struct protocol_feature
4528 {
4529 /* The name of this protocol feature. */
4530 const char *name;
4531
4532 /* The default for this protocol feature. */
4533 enum packet_support default_support;
4534
4535 /* The function to call when this feature is reported, or after
4536 qSupported processing if the feature is not supported.
4537 The first argument points to this structure. The second
4538 argument indicates whether the packet requested support be
4539 enabled, disabled, or probed (or the default, if this function
4540 is being called at the end of processing and this feature was
4541 not reported). The third argument may be NULL; if not NULL, it
4542 is a NUL-terminated string taken from the packet following
4543 this feature's name and an equals sign. */
4544 void (*func) (const struct protocol_feature *, enum packet_support,
4545 const char *);
4546
4547 /* The corresponding packet for this feature. Only used if
4548 FUNC is remote_supported_packet. */
4549 int packet;
4550 };
4551
4552 static void
4553 remote_supported_packet (const struct protocol_feature *feature,
4554 enum packet_support support,
4555 const char *argument)
4556 {
4557 if (argument)
4558 {
4559 warning (_("Remote qSupported response supplied an unexpected value for"
4560 " \"%s\"."), feature->name);
4561 return;
4562 }
4563
4564 remote_protocol_packets[feature->packet].support = support;
4565 }
4566
4567 static void
4568 remote_packet_size (const struct protocol_feature *feature,
4569 enum packet_support support, const char *value)
4570 {
4571 struct remote_state *rs = get_remote_state ();
4572
4573 int packet_size;
4574 char *value_end;
4575
4576 if (support != PACKET_ENABLE)
4577 return;
4578
4579 if (value == NULL || *value == '\0')
4580 {
4581 warning (_("Remote target reported \"%s\" without a size."),
4582 feature->name);
4583 return;
4584 }
4585
4586 errno = 0;
4587 packet_size = strtol (value, &value_end, 16);
4588 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4589 {
4590 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4591 feature->name, value);
4592 return;
4593 }
4594
4595 /* Record the new maximum packet size. */
4596 rs->explicit_packet_size = packet_size;
4597 }
4598
4599 static const struct protocol_feature remote_protocol_features[] = {
4600 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4601 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4602 PACKET_qXfer_auxv },
4603 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4604 PACKET_qXfer_exec_file },
4605 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4606 PACKET_qXfer_features },
4607 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4608 PACKET_qXfer_libraries },
4609 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4610 PACKET_qXfer_libraries_svr4 },
4611 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4612 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4613 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4614 PACKET_qXfer_memory_map },
4615 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4616 PACKET_qXfer_spu_read },
4617 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4618 PACKET_qXfer_spu_write },
4619 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4620 PACKET_qXfer_osdata },
4621 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4622 PACKET_qXfer_threads },
4623 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4624 PACKET_qXfer_traceframe_info },
4625 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4626 PACKET_QPassSignals },
4627 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4628 PACKET_QCatchSyscalls },
4629 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4630 PACKET_QProgramSignals },
4631 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4632 PACKET_QStartNoAckMode },
4633 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4634 PACKET_multiprocess_feature },
4635 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4636 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4637 PACKET_qXfer_siginfo_read },
4638 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4639 PACKET_qXfer_siginfo_write },
4640 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4641 PACKET_ConditionalTracepoints },
4642 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4643 PACKET_ConditionalBreakpoints },
4644 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4645 PACKET_BreakpointCommands },
4646 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4647 PACKET_FastTracepoints },
4648 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4649 PACKET_StaticTracepoints },
4650 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4651 PACKET_InstallInTrace},
4652 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4653 PACKET_DisconnectedTracing_feature },
4654 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4655 PACKET_bc },
4656 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4657 PACKET_bs },
4658 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4659 PACKET_TracepointSource },
4660 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4661 PACKET_QAllow },
4662 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4663 PACKET_EnableDisableTracepoints_feature },
4664 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4665 PACKET_qXfer_fdpic },
4666 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4667 PACKET_qXfer_uib },
4668 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4669 PACKET_QDisableRandomization },
4670 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4671 { "QTBuffer:size", PACKET_DISABLE,
4672 remote_supported_packet, PACKET_QTBuffer_size},
4673 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4674 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4675 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4676 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4677 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4678 PACKET_qXfer_btrace },
4679 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4680 PACKET_qXfer_btrace_conf },
4681 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4682 PACKET_Qbtrace_conf_bts_size },
4683 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4684 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4685 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4686 PACKET_fork_event_feature },
4687 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4688 PACKET_vfork_event_feature },
4689 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4690 PACKET_exec_event_feature },
4691 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4692 PACKET_Qbtrace_conf_pt_size },
4693 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4694 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4695 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4696 };
4697
4698 static char *remote_support_xml;
4699
4700 /* Register string appended to "xmlRegisters=" in qSupported query. */
4701
4702 void
4703 register_remote_support_xml (const char *xml)
4704 {
4705 #if defined(HAVE_LIBEXPAT)
4706 if (remote_support_xml == NULL)
4707 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4708 else
4709 {
4710 char *copy = xstrdup (remote_support_xml + 13);
4711 char *p = strtok (copy, ",");
4712
4713 do
4714 {
4715 if (strcmp (p, xml) == 0)
4716 {
4717 /* already there */
4718 xfree (copy);
4719 return;
4720 }
4721 }
4722 while ((p = strtok (NULL, ",")) != NULL);
4723 xfree (copy);
4724
4725 remote_support_xml = reconcat (remote_support_xml,
4726 remote_support_xml, ",", xml,
4727 (char *) NULL);
4728 }
4729 #endif
4730 }
4731
4732 static char *
4733 remote_query_supported_append (char *msg, const char *append)
4734 {
4735 if (msg)
4736 return reconcat (msg, msg, ";", append, (char *) NULL);
4737 else
4738 return xstrdup (append);
4739 }
4740
4741 static void
4742 remote_query_supported (void)
4743 {
4744 struct remote_state *rs = get_remote_state ();
4745 char *next;
4746 int i;
4747 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4748
4749 /* The packet support flags are handled differently for this packet
4750 than for most others. We treat an error, a disabled packet, and
4751 an empty response identically: any features which must be reported
4752 to be used will be automatically disabled. An empty buffer
4753 accomplishes this, since that is also the representation for a list
4754 containing no features. */
4755
4756 rs->buf[0] = 0;
4757 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4758 {
4759 char *q = NULL;
4760 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4761
4762 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
4763 q = remote_query_supported_append (q, "multiprocess+");
4764
4765 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
4766 q = remote_query_supported_append (q, "swbreak+");
4767 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
4768 q = remote_query_supported_append (q, "hwbreak+");
4769
4770 q = remote_query_supported_append (q, "qRelocInsn+");
4771
4772 if (packet_set_cmd_state (PACKET_fork_event_feature)
4773 != AUTO_BOOLEAN_FALSE)
4774 q = remote_query_supported_append (q, "fork-events+");
4775 if (packet_set_cmd_state (PACKET_vfork_event_feature)
4776 != AUTO_BOOLEAN_FALSE)
4777 q = remote_query_supported_append (q, "vfork-events+");
4778 if (packet_set_cmd_state (PACKET_exec_event_feature)
4779 != AUTO_BOOLEAN_FALSE)
4780 q = remote_query_supported_append (q, "exec-events+");
4781
4782 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
4783 q = remote_query_supported_append (q, "vContSupported+");
4784
4785 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
4786 q = remote_query_supported_append (q, "QThreadEvents+");
4787
4788 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
4789 q = remote_query_supported_append (q, "no-resumed+");
4790
4791 /* Keep this one last to work around a gdbserver <= 7.10 bug in
4792 the qSupported:xmlRegisters=i386 handling. */
4793 if (remote_support_xml != NULL)
4794 q = remote_query_supported_append (q, remote_support_xml);
4795
4796 q = reconcat (q, "qSupported:", q, (char *) NULL);
4797 putpkt (q);
4798
4799 do_cleanups (old_chain);
4800
4801 getpkt (&rs->buf, &rs->buf_size, 0);
4802
4803 /* If an error occured, warn, but do not return - just reset the
4804 buffer to empty and go on to disable features. */
4805 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4806 == PACKET_ERROR)
4807 {
4808 warning (_("Remote failure reply: %s"), rs->buf);
4809 rs->buf[0] = 0;
4810 }
4811 }
4812
4813 memset (seen, 0, sizeof (seen));
4814
4815 next = rs->buf;
4816 while (*next)
4817 {
4818 enum packet_support is_supported;
4819 char *p, *end, *name_end, *value;
4820
4821 /* First separate out this item from the rest of the packet. If
4822 there's another item after this, we overwrite the separator
4823 (terminated strings are much easier to work with). */
4824 p = next;
4825 end = strchr (p, ';');
4826 if (end == NULL)
4827 {
4828 end = p + strlen (p);
4829 next = end;
4830 }
4831 else
4832 {
4833 *end = '\0';
4834 next = end + 1;
4835
4836 if (end == p)
4837 {
4838 warning (_("empty item in \"qSupported\" response"));
4839 continue;
4840 }
4841 }
4842
4843 name_end = strchr (p, '=');
4844 if (name_end)
4845 {
4846 /* This is a name=value entry. */
4847 is_supported = PACKET_ENABLE;
4848 value = name_end + 1;
4849 *name_end = '\0';
4850 }
4851 else
4852 {
4853 value = NULL;
4854 switch (end[-1])
4855 {
4856 case '+':
4857 is_supported = PACKET_ENABLE;
4858 break;
4859
4860 case '-':
4861 is_supported = PACKET_DISABLE;
4862 break;
4863
4864 case '?':
4865 is_supported = PACKET_SUPPORT_UNKNOWN;
4866 break;
4867
4868 default:
4869 warning (_("unrecognized item \"%s\" "
4870 "in \"qSupported\" response"), p);
4871 continue;
4872 }
4873 end[-1] = '\0';
4874 }
4875
4876 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4877 if (strcmp (remote_protocol_features[i].name, p) == 0)
4878 {
4879 const struct protocol_feature *feature;
4880
4881 seen[i] = 1;
4882 feature = &remote_protocol_features[i];
4883 feature->func (feature, is_supported, value);
4884 break;
4885 }
4886 }
4887
4888 /* If we increased the packet size, make sure to increase the global
4889 buffer size also. We delay this until after parsing the entire
4890 qSupported packet, because this is the same buffer we were
4891 parsing. */
4892 if (rs->buf_size < rs->explicit_packet_size)
4893 {
4894 rs->buf_size = rs->explicit_packet_size;
4895 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
4896 }
4897
4898 /* Handle the defaults for unmentioned features. */
4899 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4900 if (!seen[i])
4901 {
4902 const struct protocol_feature *feature;
4903
4904 feature = &remote_protocol_features[i];
4905 feature->func (feature, feature->default_support, NULL);
4906 }
4907 }
4908
4909 /* Serial QUIT handler for the remote serial descriptor.
4910
4911 Defers handling a Ctrl-C until we're done with the current
4912 command/response packet sequence, unless:
4913
4914 - We're setting up the connection. Don't send a remote interrupt
4915 request, as we're not fully synced yet. Quit immediately
4916 instead.
4917
4918 - The target has been resumed in the foreground
4919 (target_terminal_is_ours is false) with a synchronous resume
4920 packet, and we're blocked waiting for the stop reply, thus a
4921 Ctrl-C should be immediately sent to the target.
4922
4923 - We get a second Ctrl-C while still within the same serial read or
4924 write. In that case the serial is seemingly wedged --- offer to
4925 quit/disconnect.
4926
4927 - We see a second Ctrl-C without target response, after having
4928 previously interrupted the target. In that case the target/stub
4929 is probably wedged --- offer to quit/disconnect.
4930 */
4931
4932 static void
4933 remote_serial_quit_handler (void)
4934 {
4935 struct remote_state *rs = get_remote_state ();
4936
4937 if (check_quit_flag ())
4938 {
4939 /* If we're starting up, we're not fully synced yet. Quit
4940 immediately. */
4941 if (rs->starting_up)
4942 quit ();
4943 else if (rs->got_ctrlc_during_io)
4944 {
4945 if (query (_("The target is not responding to GDB commands.\n"
4946 "Stop debugging it? ")))
4947 remote_unpush_and_throw ();
4948 }
4949 /* If ^C has already been sent once, offer to disconnect. */
4950 else if (!target_terminal_is_ours () && rs->ctrlc_pending_p)
4951 interrupt_query ();
4952 /* All-stop protocol, and blocked waiting for stop reply. Send
4953 an interrupt request. */
4954 else if (!target_terminal_is_ours () && rs->waiting_for_stop_reply)
4955 target_interrupt (inferior_ptid);
4956 else
4957 rs->got_ctrlc_during_io = 1;
4958 }
4959 }
4960
4961 /* Remove any of the remote.c targets from target stack. Upper targets depend
4962 on it so remove them first. */
4963
4964 static void
4965 remote_unpush_target (void)
4966 {
4967 pop_all_targets_at_and_above (process_stratum);
4968 }
4969
4970 static void
4971 remote_unpush_and_throw (void)
4972 {
4973 remote_unpush_target ();
4974 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
4975 }
4976
4977 static void
4978 remote_open_1 (const char *name, int from_tty,
4979 struct target_ops *target, int extended_p)
4980 {
4981 struct remote_state *rs = get_remote_state ();
4982
4983 if (name == 0)
4984 error (_("To open a remote debug connection, you need to specify what\n"
4985 "serial device is attached to the remote system\n"
4986 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4987
4988 /* See FIXME above. */
4989 if (!target_async_permitted)
4990 wait_forever_enabled_p = 1;
4991
4992 /* If we're connected to a running target, target_preopen will kill it.
4993 Ask this question first, before target_preopen has a chance to kill
4994 anything. */
4995 if (rs->remote_desc != NULL && !have_inferiors ())
4996 {
4997 if (from_tty
4998 && !query (_("Already connected to a remote target. Disconnect? ")))
4999 error (_("Still connected."));
5000 }
5001
5002 /* Here the possibly existing remote target gets unpushed. */
5003 target_preopen (from_tty);
5004
5005 /* Make sure we send the passed signals list the next time we resume. */
5006 xfree (rs->last_pass_packet);
5007 rs->last_pass_packet = NULL;
5008
5009 /* Make sure we send the program signals list the next time we
5010 resume. */
5011 xfree (rs->last_program_signals_packet);
5012 rs->last_program_signals_packet = NULL;
5013
5014 remote_fileio_reset ();
5015 reopen_exec_file ();
5016 reread_symbols ();
5017
5018 rs->remote_desc = remote_serial_open (name);
5019 if (!rs->remote_desc)
5020 perror_with_name (name);
5021
5022 if (baud_rate != -1)
5023 {
5024 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5025 {
5026 /* The requested speed could not be set. Error out to
5027 top level after closing remote_desc. Take care to
5028 set remote_desc to NULL to avoid closing remote_desc
5029 more than once. */
5030 serial_close (rs->remote_desc);
5031 rs->remote_desc = NULL;
5032 perror_with_name (name);
5033 }
5034 }
5035
5036 serial_setparity (rs->remote_desc, serial_parity);
5037 serial_raw (rs->remote_desc);
5038
5039 /* If there is something sitting in the buffer we might take it as a
5040 response to a command, which would be bad. */
5041 serial_flush_input (rs->remote_desc);
5042
5043 if (from_tty)
5044 {
5045 puts_filtered ("Remote debugging using ");
5046 puts_filtered (name);
5047 puts_filtered ("\n");
5048 }
5049 push_target (target); /* Switch to using remote target now. */
5050
5051 /* Register extra event sources in the event loop. */
5052 remote_async_inferior_event_token
5053 = create_async_event_handler (remote_async_inferior_event_handler,
5054 NULL);
5055 rs->notif_state = remote_notif_state_allocate ();
5056
5057 /* Reset the target state; these things will be queried either by
5058 remote_query_supported or as they are needed. */
5059 reset_all_packet_configs_support ();
5060 rs->cached_wait_status = 0;
5061 rs->explicit_packet_size = 0;
5062 rs->noack_mode = 0;
5063 rs->extended = extended_p;
5064 rs->waiting_for_stop_reply = 0;
5065 rs->ctrlc_pending_p = 0;
5066 rs->got_ctrlc_during_io = 0;
5067
5068 rs->general_thread = not_sent_ptid;
5069 rs->continue_thread = not_sent_ptid;
5070 rs->remote_traceframe_number = -1;
5071
5072 rs->last_resume_exec_dir = EXEC_FORWARD;
5073
5074 /* Probe for ability to use "ThreadInfo" query, as required. */
5075 rs->use_threadinfo_query = 1;
5076 rs->use_threadextra_query = 1;
5077
5078 readahead_cache_invalidate ();
5079
5080 /* Start out by owning the terminal. */
5081 remote_async_terminal_ours_p = 1;
5082
5083 if (target_async_permitted)
5084 {
5085 /* FIXME: cagney/1999-09-23: During the initial connection it is
5086 assumed that the target is already ready and able to respond to
5087 requests. Unfortunately remote_start_remote() eventually calls
5088 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5089 around this. Eventually a mechanism that allows
5090 wait_for_inferior() to expect/get timeouts will be
5091 implemented. */
5092 wait_forever_enabled_p = 0;
5093 }
5094
5095 /* First delete any symbols previously loaded from shared libraries. */
5096 no_shared_libraries (NULL, 0);
5097
5098 /* Start afresh. */
5099 init_thread_list ();
5100
5101 /* Start the remote connection. If error() or QUIT, discard this
5102 target (we'd otherwise be in an inconsistent state) and then
5103 propogate the error on up the exception chain. This ensures that
5104 the caller doesn't stumble along blindly assuming that the
5105 function succeeded. The CLI doesn't have this problem but other
5106 UI's, such as MI do.
5107
5108 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5109 this function should return an error indication letting the
5110 caller restore the previous state. Unfortunately the command
5111 ``target remote'' is directly wired to this function making that
5112 impossible. On a positive note, the CLI side of this problem has
5113 been fixed - the function set_cmd_context() makes it possible for
5114 all the ``target ....'' commands to share a common callback
5115 function. See cli-dump.c. */
5116 {
5117
5118 TRY
5119 {
5120 remote_start_remote (from_tty, target, extended_p);
5121 }
5122 CATCH (ex, RETURN_MASK_ALL)
5123 {
5124 /* Pop the partially set up target - unless something else did
5125 already before throwing the exception. */
5126 if (rs->remote_desc != NULL)
5127 remote_unpush_target ();
5128 if (target_async_permitted)
5129 wait_forever_enabled_p = 1;
5130 throw_exception (ex);
5131 }
5132 END_CATCH
5133 }
5134
5135 remote_btrace_reset ();
5136
5137 if (target_async_permitted)
5138 wait_forever_enabled_p = 1;
5139 }
5140
5141 /* Detach the specified process. */
5142
5143 static void
5144 remote_detach_pid (int pid)
5145 {
5146 struct remote_state *rs = get_remote_state ();
5147
5148 if (remote_multi_process_p (rs))
5149 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5150 else
5151 strcpy (rs->buf, "D");
5152
5153 putpkt (rs->buf);
5154 getpkt (&rs->buf, &rs->buf_size, 0);
5155
5156 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5157 ;
5158 else if (rs->buf[0] == '\0')
5159 error (_("Remote doesn't know how to detach"));
5160 else
5161 error (_("Can't detach process."));
5162 }
5163
5164 /* This detaches a program to which we previously attached, using
5165 inferior_ptid to identify the process. After this is done, GDB
5166 can be used to debug some other program. We better not have left
5167 any breakpoints in the target program or it'll die when it hits
5168 one. */
5169
5170 static void
5171 remote_detach_1 (const char *args, int from_tty)
5172 {
5173 int pid = ptid_get_pid (inferior_ptid);
5174 struct remote_state *rs = get_remote_state ();
5175 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5176 int is_fork_parent;
5177
5178 if (args)
5179 error (_("Argument given to \"detach\" when remotely debugging."));
5180
5181 if (!target_has_execution)
5182 error (_("No process to detach from."));
5183
5184 target_announce_detach (from_tty);
5185
5186 /* Tell the remote target to detach. */
5187 remote_detach_pid (pid);
5188
5189 /* Exit only if this is the only active inferior. */
5190 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5191 puts_filtered (_("Ending remote debugging.\n"));
5192
5193 /* Check to see if we are detaching a fork parent. Note that if we
5194 are detaching a fork child, tp == NULL. */
5195 is_fork_parent = (tp != NULL
5196 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5197
5198 /* If doing detach-on-fork, we don't mourn, because that will delete
5199 breakpoints that should be available for the followed inferior. */
5200 if (!is_fork_parent)
5201 target_mourn_inferior (inferior_ptid);
5202 else
5203 {
5204 inferior_ptid = null_ptid;
5205 detach_inferior (pid);
5206 }
5207 }
5208
5209 static void
5210 remote_detach (struct target_ops *ops, const char *args, int from_tty)
5211 {
5212 remote_detach_1 (args, from_tty);
5213 }
5214
5215 static void
5216 extended_remote_detach (struct target_ops *ops, const char *args, int from_tty)
5217 {
5218 remote_detach_1 (args, from_tty);
5219 }
5220
5221 /* Target follow-fork function for remote targets. On entry, and
5222 at return, the current inferior is the fork parent.
5223
5224 Note that although this is currently only used for extended-remote,
5225 it is named remote_follow_fork in anticipation of using it for the
5226 remote target as well. */
5227
5228 static int
5229 remote_follow_fork (struct target_ops *ops, int follow_child,
5230 int detach_fork)
5231 {
5232 struct remote_state *rs = get_remote_state ();
5233 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5234
5235 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5236 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5237 {
5238 /* When following the parent and detaching the child, we detach
5239 the child here. For the case of following the child and
5240 detaching the parent, the detach is done in the target-
5241 independent follow fork code in infrun.c. We can't use
5242 target_detach when detaching an unfollowed child because
5243 the client side doesn't know anything about the child. */
5244 if (detach_fork && !follow_child)
5245 {
5246 /* Detach the fork child. */
5247 ptid_t child_ptid;
5248 pid_t child_pid;
5249
5250 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5251 child_pid = ptid_get_pid (child_ptid);
5252
5253 remote_detach_pid (child_pid);
5254 detach_inferior (child_pid);
5255 }
5256 }
5257 return 0;
5258 }
5259
5260 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5261 in the program space of the new inferior. On entry and at return the
5262 current inferior is the exec'ing inferior. INF is the new exec'd
5263 inferior, which may be the same as the exec'ing inferior unless
5264 follow-exec-mode is "new". */
5265
5266 static void
5267 remote_follow_exec (struct target_ops *ops,
5268 struct inferior *inf, char *execd_pathname)
5269 {
5270 /* We know that this is a target file name, so if it has the "target:"
5271 prefix we strip it off before saving it in the program space. */
5272 if (is_target_filename (execd_pathname))
5273 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5274
5275 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5276 }
5277
5278 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5279
5280 static void
5281 remote_disconnect (struct target_ops *target, const char *args, int from_tty)
5282 {
5283 if (args)
5284 error (_("Argument given to \"disconnect\" when remotely debugging."));
5285
5286 /* Make sure we unpush even the extended remote targets. Calling
5287 target_mourn_inferior won't unpush, and remote_mourn won't
5288 unpush if there is more than one inferior left. */
5289 unpush_target (target);
5290 generic_mourn_inferior ();
5291
5292 if (from_tty)
5293 puts_filtered ("Ending remote debugging.\n");
5294 }
5295
5296 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5297 be chatty about it. */
5298
5299 static void
5300 extended_remote_attach (struct target_ops *target, const char *args,
5301 int from_tty)
5302 {
5303 struct remote_state *rs = get_remote_state ();
5304 int pid;
5305 char *wait_status = NULL;
5306
5307 pid = parse_pid_to_attach (args);
5308
5309 /* Remote PID can be freely equal to getpid, do not check it here the same
5310 way as in other targets. */
5311
5312 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5313 error (_("This target does not support attaching to a process"));
5314
5315 if (from_tty)
5316 {
5317 char *exec_file = get_exec_file (0);
5318
5319 if (exec_file)
5320 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5321 target_pid_to_str (pid_to_ptid (pid)));
5322 else
5323 printf_unfiltered (_("Attaching to %s\n"),
5324 target_pid_to_str (pid_to_ptid (pid)));
5325
5326 gdb_flush (gdb_stdout);
5327 }
5328
5329 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5330 putpkt (rs->buf);
5331 getpkt (&rs->buf, &rs->buf_size, 0);
5332
5333 switch (packet_ok (rs->buf,
5334 &remote_protocol_packets[PACKET_vAttach]))
5335 {
5336 case PACKET_OK:
5337 if (!target_is_non_stop_p ())
5338 {
5339 /* Save the reply for later. */
5340 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5341 strcpy (wait_status, rs->buf);
5342 }
5343 else if (strcmp (rs->buf, "OK") != 0)
5344 error (_("Attaching to %s failed with: %s"),
5345 target_pid_to_str (pid_to_ptid (pid)),
5346 rs->buf);
5347 break;
5348 case PACKET_UNKNOWN:
5349 error (_("This target does not support attaching to a process"));
5350 default:
5351 error (_("Attaching to %s failed"),
5352 target_pid_to_str (pid_to_ptid (pid)));
5353 }
5354
5355 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5356
5357 inferior_ptid = pid_to_ptid (pid);
5358
5359 if (target_is_non_stop_p ())
5360 {
5361 struct thread_info *thread;
5362
5363 /* Get list of threads. */
5364 remote_update_thread_list (target);
5365
5366 thread = first_thread_of_process (pid);
5367 if (thread)
5368 inferior_ptid = thread->ptid;
5369 else
5370 inferior_ptid = pid_to_ptid (pid);
5371
5372 /* Invalidate our notion of the remote current thread. */
5373 record_currthread (rs, minus_one_ptid);
5374 }
5375 else
5376 {
5377 /* Now, if we have thread information, update inferior_ptid. */
5378 inferior_ptid = remote_current_thread (inferior_ptid);
5379
5380 /* Add the main thread to the thread list. */
5381 add_thread_silent (inferior_ptid);
5382 }
5383
5384 /* Next, if the target can specify a description, read it. We do
5385 this before anything involving memory or registers. */
5386 target_find_description ();
5387
5388 if (!target_is_non_stop_p ())
5389 {
5390 /* Use the previously fetched status. */
5391 gdb_assert (wait_status != NULL);
5392
5393 if (target_can_async_p ())
5394 {
5395 struct notif_event *reply
5396 = remote_notif_parse (&notif_client_stop, wait_status);
5397
5398 push_stop_reply ((struct stop_reply *) reply);
5399
5400 target_async (1);
5401 }
5402 else
5403 {
5404 gdb_assert (wait_status != NULL);
5405 strcpy (rs->buf, wait_status);
5406 rs->cached_wait_status = 1;
5407 }
5408 }
5409 else
5410 gdb_assert (wait_status == NULL);
5411 }
5412
5413 /* Implementation of the to_post_attach method. */
5414
5415 static void
5416 extended_remote_post_attach (struct target_ops *ops, int pid)
5417 {
5418 /* Get text, data & bss offsets. */
5419 get_offsets ();
5420
5421 /* In certain cases GDB might not have had the chance to start
5422 symbol lookup up until now. This could happen if the debugged
5423 binary is not using shared libraries, the vsyscall page is not
5424 present (on Linux) and the binary itself hadn't changed since the
5425 debugging process was started. */
5426 if (symfile_objfile != NULL)
5427 remote_check_symbols();
5428 }
5429
5430 \f
5431 /* Check for the availability of vCont. This function should also check
5432 the response. */
5433
5434 static void
5435 remote_vcont_probe (struct remote_state *rs)
5436 {
5437 char *buf;
5438
5439 strcpy (rs->buf, "vCont?");
5440 putpkt (rs->buf);
5441 getpkt (&rs->buf, &rs->buf_size, 0);
5442 buf = rs->buf;
5443
5444 /* Make sure that the features we assume are supported. */
5445 if (startswith (buf, "vCont"))
5446 {
5447 char *p = &buf[5];
5448 int support_c, support_C;
5449
5450 rs->supports_vCont.s = 0;
5451 rs->supports_vCont.S = 0;
5452 support_c = 0;
5453 support_C = 0;
5454 rs->supports_vCont.t = 0;
5455 rs->supports_vCont.r = 0;
5456 while (p && *p == ';')
5457 {
5458 p++;
5459 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5460 rs->supports_vCont.s = 1;
5461 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5462 rs->supports_vCont.S = 1;
5463 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5464 support_c = 1;
5465 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5466 support_C = 1;
5467 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5468 rs->supports_vCont.t = 1;
5469 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5470 rs->supports_vCont.r = 1;
5471
5472 p = strchr (p, ';');
5473 }
5474
5475 /* If c, and C are not all supported, we can't use vCont. Clearing
5476 BUF will make packet_ok disable the packet. */
5477 if (!support_c || !support_C)
5478 buf[0] = 0;
5479 }
5480
5481 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5482 }
5483
5484 /* Helper function for building "vCont" resumptions. Write a
5485 resumption to P. ENDP points to one-passed-the-end of the buffer
5486 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5487 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5488 resumed thread should be single-stepped and/or signalled. If PTID
5489 equals minus_one_ptid, then all threads are resumed; if PTID
5490 represents a process, then all threads of the process are resumed;
5491 the thread to be stepped and/or signalled is given in the global
5492 INFERIOR_PTID. */
5493
5494 static char *
5495 append_resumption (char *p, char *endp,
5496 ptid_t ptid, int step, enum gdb_signal siggnal)
5497 {
5498 struct remote_state *rs = get_remote_state ();
5499
5500 if (step && siggnal != GDB_SIGNAL_0)
5501 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5502 else if (step
5503 /* GDB is willing to range step. */
5504 && use_range_stepping
5505 /* Target supports range stepping. */
5506 && rs->supports_vCont.r
5507 /* We don't currently support range stepping multiple
5508 threads with a wildcard (though the protocol allows it,
5509 so stubs shouldn't make an active effort to forbid
5510 it). */
5511 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5512 {
5513 struct thread_info *tp;
5514
5515 if (ptid_equal (ptid, minus_one_ptid))
5516 {
5517 /* If we don't know about the target thread's tid, then
5518 we're resuming magic_null_ptid (see caller). */
5519 tp = find_thread_ptid (magic_null_ptid);
5520 }
5521 else
5522 tp = find_thread_ptid (ptid);
5523 gdb_assert (tp != NULL);
5524
5525 if (tp->control.may_range_step)
5526 {
5527 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5528
5529 p += xsnprintf (p, endp - p, ";r%s,%s",
5530 phex_nz (tp->control.step_range_start,
5531 addr_size),
5532 phex_nz (tp->control.step_range_end,
5533 addr_size));
5534 }
5535 else
5536 p += xsnprintf (p, endp - p, ";s");
5537 }
5538 else if (step)
5539 p += xsnprintf (p, endp - p, ";s");
5540 else if (siggnal != GDB_SIGNAL_0)
5541 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5542 else
5543 p += xsnprintf (p, endp - p, ";c");
5544
5545 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5546 {
5547 ptid_t nptid;
5548
5549 /* All (-1) threads of process. */
5550 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5551
5552 p += xsnprintf (p, endp - p, ":");
5553 p = write_ptid (p, endp, nptid);
5554 }
5555 else if (!ptid_equal (ptid, minus_one_ptid))
5556 {
5557 p += xsnprintf (p, endp - p, ":");
5558 p = write_ptid (p, endp, ptid);
5559 }
5560
5561 return p;
5562 }
5563
5564 /* Clear the thread's private info on resume. */
5565
5566 static void
5567 resume_clear_thread_private_info (struct thread_info *thread)
5568 {
5569 if (thread->priv != NULL)
5570 {
5571 thread->priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5572 thread->priv->watch_data_address = 0;
5573 }
5574 }
5575
5576 /* Append a vCont continue-with-signal action for threads that have a
5577 non-zero stop signal. */
5578
5579 static char *
5580 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5581 {
5582 struct thread_info *thread;
5583
5584 ALL_NON_EXITED_THREADS (thread)
5585 if (ptid_match (thread->ptid, ptid)
5586 && !ptid_equal (inferior_ptid, thread->ptid)
5587 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5588 {
5589 p = append_resumption (p, endp, thread->ptid,
5590 0, thread->suspend.stop_signal);
5591 thread->suspend.stop_signal = GDB_SIGNAL_0;
5592 resume_clear_thread_private_info (thread);
5593 }
5594
5595 return p;
5596 }
5597
5598 /* Set the target running, using the packets that use Hc
5599 (c/s/C/S). */
5600
5601 static void
5602 remote_resume_with_hc (struct target_ops *ops,
5603 ptid_t ptid, int step, enum gdb_signal siggnal)
5604 {
5605 struct remote_state *rs = get_remote_state ();
5606 struct thread_info *thread;
5607 char *buf;
5608
5609 rs->last_sent_signal = siggnal;
5610 rs->last_sent_step = step;
5611
5612 /* The c/s/C/S resume packets use Hc, so set the continue
5613 thread. */
5614 if (ptid_equal (ptid, minus_one_ptid))
5615 set_continue_thread (any_thread_ptid);
5616 else
5617 set_continue_thread (ptid);
5618
5619 ALL_NON_EXITED_THREADS (thread)
5620 resume_clear_thread_private_info (thread);
5621
5622 buf = rs->buf;
5623 if (execution_direction == EXEC_REVERSE)
5624 {
5625 /* We don't pass signals to the target in reverse exec mode. */
5626 if (info_verbose && siggnal != GDB_SIGNAL_0)
5627 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5628 siggnal);
5629
5630 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5631 error (_("Remote reverse-step not supported."));
5632 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5633 error (_("Remote reverse-continue not supported."));
5634
5635 strcpy (buf, step ? "bs" : "bc");
5636 }
5637 else if (siggnal != GDB_SIGNAL_0)
5638 {
5639 buf[0] = step ? 'S' : 'C';
5640 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5641 buf[2] = tohex (((int) siggnal) & 0xf);
5642 buf[3] = '\0';
5643 }
5644 else
5645 strcpy (buf, step ? "s" : "c");
5646
5647 putpkt (buf);
5648 }
5649
5650 /* Resume the remote inferior by using a "vCont" packet. The thread
5651 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5652 resumed thread should be single-stepped and/or signalled. If PTID
5653 equals minus_one_ptid, then all threads are resumed; the thread to
5654 be stepped and/or signalled is given in the global INFERIOR_PTID.
5655 This function returns non-zero iff it resumes the inferior.
5656
5657 This function issues a strict subset of all possible vCont commands
5658 at the moment. */
5659
5660 static int
5661 remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5662 {
5663 struct remote_state *rs = get_remote_state ();
5664 char *p;
5665 char *endp;
5666
5667 /* No reverse execution actions defined for vCont. */
5668 if (execution_direction == EXEC_REVERSE)
5669 return 0;
5670
5671 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5672 remote_vcont_probe (rs);
5673
5674 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5675 return 0;
5676
5677 p = rs->buf;
5678 endp = rs->buf + get_remote_packet_size ();
5679
5680 /* If we could generate a wider range of packets, we'd have to worry
5681 about overflowing BUF. Should there be a generic
5682 "multi-part-packet" packet? */
5683
5684 p += xsnprintf (p, endp - p, "vCont");
5685
5686 if (ptid_equal (ptid, magic_null_ptid))
5687 {
5688 /* MAGIC_NULL_PTID means that we don't have any active threads,
5689 so we don't have any TID numbers the inferior will
5690 understand. Make sure to only send forms that do not specify
5691 a TID. */
5692 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5693 }
5694 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5695 {
5696 /* Resume all threads (of all processes, or of a single
5697 process), with preference for INFERIOR_PTID. This assumes
5698 inferior_ptid belongs to the set of all threads we are about
5699 to resume. */
5700 if (step || siggnal != GDB_SIGNAL_0)
5701 {
5702 /* Step inferior_ptid, with or without signal. */
5703 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5704 }
5705
5706 /* Also pass down any pending signaled resumption for other
5707 threads not the current. */
5708 p = append_pending_thread_resumptions (p, endp, ptid);
5709
5710 /* And continue others without a signal. */
5711 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5712 }
5713 else
5714 {
5715 /* Scheduler locking; resume only PTID. */
5716 append_resumption (p, endp, ptid, step, siggnal);
5717 }
5718
5719 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5720 putpkt (rs->buf);
5721
5722 if (target_is_non_stop_p ())
5723 {
5724 /* In non-stop, the stub replies to vCont with "OK". The stop
5725 reply will be reported asynchronously by means of a `%Stop'
5726 notification. */
5727 getpkt (&rs->buf, &rs->buf_size, 0);
5728 if (strcmp (rs->buf, "OK") != 0)
5729 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5730 }
5731
5732 return 1;
5733 }
5734
5735 /* Tell the remote machine to resume. */
5736
5737 static void
5738 remote_resume (struct target_ops *ops,
5739 ptid_t ptid, int step, enum gdb_signal siggnal)
5740 {
5741 struct remote_state *rs = get_remote_state ();
5742
5743 /* When connected in non-stop mode, the core resumes threads
5744 individually. Resuming remote threads directly in target_resume
5745 would thus result in sending one packet per thread. Instead, to
5746 minimize roundtrip latency, here we just store the resume
5747 request; the actual remote resumption will be done in
5748 target_commit_resume / remote_commit_resume, where we'll be able
5749 to do vCont action coalescing. */
5750 if (target_is_non_stop_p () && execution_direction != EXEC_REVERSE)
5751 {
5752 struct private_thread_info *remote_thr;
5753
5754 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
5755 remote_thr = get_private_info_ptid (inferior_ptid);
5756 else
5757 remote_thr = get_private_info_ptid (ptid);
5758 remote_thr->last_resume_step = step;
5759 remote_thr->last_resume_sig = siggnal;
5760 return;
5761 }
5762
5763 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
5764 (explained in remote-notif.c:handle_notification) so
5765 remote_notif_process is not called. We need find a place where
5766 it is safe to start a 'vNotif' sequence. It is good to do it
5767 before resuming inferior, because inferior was stopped and no RSP
5768 traffic at that moment. */
5769 if (!target_is_non_stop_p ())
5770 remote_notif_process (rs->notif_state, &notif_client_stop);
5771
5772 rs->last_resume_exec_dir = execution_direction;
5773
5774 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
5775 if (!remote_resume_with_vcont (ptid, step, siggnal))
5776 remote_resume_with_hc (ops, ptid, step, siggnal);
5777
5778 /* We are about to start executing the inferior, let's register it
5779 with the event loop. NOTE: this is the one place where all the
5780 execution commands end up. We could alternatively do this in each
5781 of the execution commands in infcmd.c. */
5782 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5783 into infcmd.c in order to allow inferior function calls to work
5784 NOT asynchronously. */
5785 if (target_can_async_p ())
5786 target_async (1);
5787
5788 /* We've just told the target to resume. The remote server will
5789 wait for the inferior to stop, and then send a stop reply. In
5790 the mean time, we can't start another command/query ourselves
5791 because the stub wouldn't be ready to process it. This applies
5792 only to the base all-stop protocol, however. In non-stop (which
5793 only supports vCont), the stub replies with an "OK", and is
5794 immediate able to process further serial input. */
5795 if (!target_is_non_stop_p ())
5796 rs->waiting_for_stop_reply = 1;
5797 }
5798
5799 static void check_pending_events_prevent_wildcard_vcont
5800 (int *may_global_wildcard_vcont);
5801 static int is_pending_fork_parent_thread (struct thread_info *thread);
5802
5803 /* Private per-inferior info for target remote processes. */
5804
5805 struct private_inferior
5806 {
5807 /* Whether we can send a wildcard vCont for this process. */
5808 int may_wildcard_vcont;
5809 };
5810
5811 /* Structure used to track the construction of a vCont packet in the
5812 outgoing packet buffer. This is used to send multiple vCont
5813 packets if we have more actions than would fit a single packet. */
5814
5815 struct vcont_builder
5816 {
5817 /* Pointer to the first action. P points here if no action has been
5818 appended yet. */
5819 char *first_action;
5820
5821 /* Where the next action will be appended. */
5822 char *p;
5823
5824 /* The end of the buffer. Must never write past this. */
5825 char *endp;
5826 };
5827
5828 /* Prepare the outgoing buffer for a new vCont packet. */
5829
5830 static void
5831 vcont_builder_restart (struct vcont_builder *builder)
5832 {
5833 struct remote_state *rs = get_remote_state ();
5834
5835 builder->p = rs->buf;
5836 builder->endp = rs->buf + get_remote_packet_size ();
5837 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
5838 builder->first_action = builder->p;
5839 }
5840
5841 /* If the vCont packet being built has any action, send it to the
5842 remote end. */
5843
5844 static void
5845 vcont_builder_flush (struct vcont_builder *builder)
5846 {
5847 struct remote_state *rs;
5848
5849 if (builder->p == builder->first_action)
5850 return;
5851
5852 rs = get_remote_state ();
5853 putpkt (rs->buf);
5854 getpkt (&rs->buf, &rs->buf_size, 0);
5855 if (strcmp (rs->buf, "OK") != 0)
5856 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5857 }
5858
5859 /* The largest action is range-stepping, with its two addresses. This
5860 is more than sufficient. If a new, bigger action is created, it'll
5861 quickly trigger a failed assertion in append_resumption (and we'll
5862 just bump this). */
5863 #define MAX_ACTION_SIZE 200
5864
5865 /* Append a new vCont action in the outgoing packet being built. If
5866 the action doesn't fit the packet along with previous actions, push
5867 what we've got so far to the remote end and start over a new vCont
5868 packet (with the new action). */
5869
5870 static void
5871 vcont_builder_push_action (struct vcont_builder *builder,
5872 ptid_t ptid, int step, enum gdb_signal siggnal)
5873 {
5874 char buf[MAX_ACTION_SIZE + 1];
5875 char *endp;
5876 size_t rsize;
5877
5878 endp = append_resumption (buf, buf + sizeof (buf),
5879 ptid, step, siggnal);
5880
5881 /* Check whether this new action would fit in the vCont packet along
5882 with previous actions. If not, send what we've got so far and
5883 start a new vCont packet. */
5884 rsize = endp - buf;
5885 if (rsize > builder->endp - builder->p)
5886 {
5887 vcont_builder_flush (builder);
5888 vcont_builder_restart (builder);
5889
5890 /* Should now fit. */
5891 gdb_assert (rsize <= builder->endp - builder->p);
5892 }
5893
5894 memcpy (builder->p, buf, rsize);
5895 builder->p += rsize;
5896 *builder->p = '\0';
5897 }
5898
5899 /* to_commit_resume implementation. */
5900
5901 static void
5902 remote_commit_resume (struct target_ops *ops)
5903 {
5904 struct remote_state *rs = get_remote_state ();
5905 struct inferior *inf;
5906 struct thread_info *tp;
5907 int any_process_wildcard;
5908 int may_global_wildcard_vcont;
5909 struct vcont_builder vcont_builder;
5910
5911 /* If connected in all-stop mode, we'd send the remote resume
5912 request directly from remote_resume. Likewise if
5913 reverse-debugging, as there are no defined vCont actions for
5914 reverse execution. */
5915 if (!target_is_non_stop_p () || execution_direction == EXEC_REVERSE)
5916 return;
5917
5918 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
5919 instead of resuming all threads of each process individually.
5920 However, if any thread of a process must remain halted, we can't
5921 send wildcard resumes and must send one action per thread.
5922
5923 Care must be taken to not resume threads/processes the server
5924 side already told us are stopped, but the core doesn't know about
5925 yet, because the events are still in the vStopped notification
5926 queue. For example:
5927
5928 #1 => vCont s:p1.1;c
5929 #2 <= OK
5930 #3 <= %Stopped T05 p1.1
5931 #4 => vStopped
5932 #5 <= T05 p1.2
5933 #6 => vStopped
5934 #7 <= OK
5935 #8 (infrun handles the stop for p1.1 and continues stepping)
5936 #9 => vCont s:p1.1;c
5937
5938 The last vCont above would resume thread p1.2 by mistake, because
5939 the server has no idea that the event for p1.2 had not been
5940 handled yet.
5941
5942 The server side must similarly ignore resume actions for the
5943 thread that has a pending %Stopped notification (and any other
5944 threads with events pending), until GDB acks the notification
5945 with vStopped. Otherwise, e.g., the following case is
5946 mishandled:
5947
5948 #1 => g (or any other packet)
5949 #2 <= [registers]
5950 #3 <= %Stopped T05 p1.2
5951 #4 => vCont s:p1.1;c
5952 #5 <= OK
5953
5954 Above, the server must not resume thread p1.2. GDB can't know
5955 that p1.2 stopped until it acks the %Stopped notification, and
5956 since from GDB's perspective all threads should be running, it
5957 sends a "c" action.
5958
5959 Finally, special care must also be given to handling fork/vfork
5960 events. A (v)fork event actually tells us that two processes
5961 stopped -- the parent and the child. Until we follow the fork,
5962 we must not resume the child. Therefore, if we have a pending
5963 fork follow, we must not send a global wildcard resume action
5964 (vCont;c). We can still send process-wide wildcards though. */
5965
5966 /* Start by assuming a global wildcard (vCont;c) is possible. */
5967 may_global_wildcard_vcont = 1;
5968
5969 /* And assume every process is individually wildcard-able too. */
5970 ALL_NON_EXITED_INFERIORS (inf)
5971 {
5972 if (inf->priv == NULL)
5973 inf->priv = XNEW (struct private_inferior);
5974 inf->priv->may_wildcard_vcont = 1;
5975 }
5976
5977 /* Check for any pending events (not reported or processed yet) and
5978 disable process and global wildcard resumes appropriately. */
5979 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
5980
5981 ALL_NON_EXITED_THREADS (tp)
5982 {
5983 /* If a thread of a process is not meant to be resumed, then we
5984 can't wildcard that process. */
5985 if (!tp->executing)
5986 {
5987 tp->inf->priv->may_wildcard_vcont = 0;
5988
5989 /* And if we can't wildcard a process, we can't wildcard
5990 everything either. */
5991 may_global_wildcard_vcont = 0;
5992 continue;
5993 }
5994
5995 /* If a thread is the parent of an unfollowed fork, then we
5996 can't do a global wildcard, as that would resume the fork
5997 child. */
5998 if (is_pending_fork_parent_thread (tp))
5999 may_global_wildcard_vcont = 0;
6000 }
6001
6002 /* Now let's build the vCont packet(s). Actions must be appended
6003 from narrower to wider scopes (thread -> process -> global). If
6004 we end up with too many actions for a single packet vcont_builder
6005 flushes the current vCont packet to the remote side and starts a
6006 new one. */
6007 vcont_builder_restart (&vcont_builder);
6008
6009 /* Threads first. */
6010 ALL_NON_EXITED_THREADS (tp)
6011 {
6012 struct private_thread_info *remote_thr = tp->priv;
6013
6014 if (!tp->executing || remote_thr->vcont_resumed)
6015 continue;
6016
6017 gdb_assert (!thread_is_in_step_over_chain (tp));
6018
6019 if (!remote_thr->last_resume_step
6020 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6021 && tp->inf->priv->may_wildcard_vcont)
6022 {
6023 /* We'll send a wildcard resume instead. */
6024 remote_thr->vcont_resumed = 1;
6025 continue;
6026 }
6027
6028 vcont_builder_push_action (&vcont_builder, tp->ptid,
6029 remote_thr->last_resume_step,
6030 remote_thr->last_resume_sig);
6031 remote_thr->vcont_resumed = 1;
6032 }
6033
6034 /* Now check whether we can send any process-wide wildcard. This is
6035 to avoid sending a global wildcard in the case nothing is
6036 supposed to be resumed. */
6037 any_process_wildcard = 0;
6038
6039 ALL_NON_EXITED_INFERIORS (inf)
6040 {
6041 if (inf->priv->may_wildcard_vcont)
6042 {
6043 any_process_wildcard = 1;
6044 break;
6045 }
6046 }
6047
6048 if (any_process_wildcard)
6049 {
6050 /* If all processes are wildcard-able, then send a single "c"
6051 action, otherwise, send an "all (-1) threads of process"
6052 continue action for each running process, if any. */
6053 if (may_global_wildcard_vcont)
6054 {
6055 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6056 0, GDB_SIGNAL_0);
6057 }
6058 else
6059 {
6060 ALL_NON_EXITED_INFERIORS (inf)
6061 {
6062 if (inf->priv->may_wildcard_vcont)
6063 {
6064 vcont_builder_push_action (&vcont_builder,
6065 pid_to_ptid (inf->pid),
6066 0, GDB_SIGNAL_0);
6067 }
6068 }
6069 }
6070 }
6071
6072 vcont_builder_flush (&vcont_builder);
6073 }
6074
6075 \f
6076
6077 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6078 thread, all threads of a remote process, or all threads of all
6079 processes. */
6080
6081 static void
6082 remote_stop_ns (ptid_t ptid)
6083 {
6084 struct remote_state *rs = get_remote_state ();
6085 char *p = rs->buf;
6086 char *endp = rs->buf + get_remote_packet_size ();
6087
6088 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6089 remote_vcont_probe (rs);
6090
6091 if (!rs->supports_vCont.t)
6092 error (_("Remote server does not support stopping threads"));
6093
6094 if (ptid_equal (ptid, minus_one_ptid)
6095 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6096 p += xsnprintf (p, endp - p, "vCont;t");
6097 else
6098 {
6099 ptid_t nptid;
6100
6101 p += xsnprintf (p, endp - p, "vCont;t:");
6102
6103 if (ptid_is_pid (ptid))
6104 /* All (-1) threads of process. */
6105 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6106 else
6107 {
6108 /* Small optimization: if we already have a stop reply for
6109 this thread, no use in telling the stub we want this
6110 stopped. */
6111 if (peek_stop_reply (ptid))
6112 return;
6113
6114 nptid = ptid;
6115 }
6116
6117 write_ptid (p, endp, nptid);
6118 }
6119
6120 /* In non-stop, we get an immediate OK reply. The stop reply will
6121 come in asynchronously by notification. */
6122 putpkt (rs->buf);
6123 getpkt (&rs->buf, &rs->buf_size, 0);
6124 if (strcmp (rs->buf, "OK") != 0)
6125 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6126 }
6127
6128 /* All-stop version of target_interrupt. Sends a break or a ^C to
6129 interrupt the remote target. It is undefined which thread of which
6130 process reports the interrupt. */
6131
6132 static void
6133 remote_interrupt_as (void)
6134 {
6135 struct remote_state *rs = get_remote_state ();
6136
6137 rs->ctrlc_pending_p = 1;
6138
6139 /* If the inferior is stopped already, but the core didn't know
6140 about it yet, just ignore the request. The cached wait status
6141 will be collected in remote_wait. */
6142 if (rs->cached_wait_status)
6143 return;
6144
6145 /* Send interrupt_sequence to remote target. */
6146 send_interrupt_sequence ();
6147 }
6148
6149 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6150 the remote target. It is undefined which thread of which process
6151 reports the interrupt. Throws an error if the packet is not
6152 supported by the server. */
6153
6154 static void
6155 remote_interrupt_ns (void)
6156 {
6157 struct remote_state *rs = get_remote_state ();
6158 char *p = rs->buf;
6159 char *endp = rs->buf + get_remote_packet_size ();
6160
6161 xsnprintf (p, endp - p, "vCtrlC");
6162
6163 /* In non-stop, we get an immediate OK reply. The stop reply will
6164 come in asynchronously by notification. */
6165 putpkt (rs->buf);
6166 getpkt (&rs->buf, &rs->buf_size, 0);
6167
6168 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6169 {
6170 case PACKET_OK:
6171 break;
6172 case PACKET_UNKNOWN:
6173 error (_("No support for interrupting the remote target."));
6174 case PACKET_ERROR:
6175 error (_("Interrupting target failed: %s"), rs->buf);
6176 }
6177 }
6178
6179 /* Implement the to_stop function for the remote targets. */
6180
6181 static void
6182 remote_stop (struct target_ops *self, ptid_t ptid)
6183 {
6184 if (remote_debug)
6185 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6186
6187 if (target_is_non_stop_p ())
6188 remote_stop_ns (ptid);
6189 else
6190 {
6191 /* We don't currently have a way to transparently pause the
6192 remote target in all-stop mode. Interrupt it instead. */
6193 remote_interrupt_as ();
6194 }
6195 }
6196
6197 /* Implement the to_interrupt function for the remote targets. */
6198
6199 static void
6200 remote_interrupt (struct target_ops *self, ptid_t ptid)
6201 {
6202 struct remote_state *rs = get_remote_state ();
6203
6204 if (remote_debug)
6205 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6206
6207 if (target_is_non_stop_p ())
6208 remote_interrupt_ns ();
6209 else
6210 remote_interrupt_as ();
6211 }
6212
6213 /* Implement the to_pass_ctrlc function for the remote targets. */
6214
6215 static void
6216 remote_pass_ctrlc (struct target_ops *self)
6217 {
6218 struct remote_state *rs = get_remote_state ();
6219
6220 if (remote_debug)
6221 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6222
6223 /* If we're starting up, we're not fully synced yet. Quit
6224 immediately. */
6225 if (rs->starting_up)
6226 quit ();
6227 /* If ^C has already been sent once, offer to disconnect. */
6228 else if (rs->ctrlc_pending_p)
6229 interrupt_query ();
6230 else
6231 target_interrupt (inferior_ptid);
6232 }
6233
6234 /* Ask the user what to do when an interrupt is received. */
6235
6236 static void
6237 interrupt_query (void)
6238 {
6239 struct remote_state *rs = get_remote_state ();
6240
6241 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6242 {
6243 if (query (_("The target is not responding to interrupt requests.\n"
6244 "Stop debugging it? ")))
6245 {
6246 remote_unpush_target ();
6247 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6248 }
6249 }
6250 else
6251 {
6252 if (query (_("Interrupted while waiting for the program.\n"
6253 "Give up waiting? ")))
6254 quit ();
6255 }
6256 }
6257
6258 /* Enable/disable target terminal ownership. Most targets can use
6259 terminal groups to control terminal ownership. Remote targets are
6260 different in that explicit transfer of ownership to/from GDB/target
6261 is required. */
6262
6263 static void
6264 remote_terminal_inferior (struct target_ops *self)
6265 {
6266 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
6267 idempotent. The event-loop GDB talking to an asynchronous target
6268 with a synchronous command calls this function from both
6269 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
6270 transfer the terminal to the target when it shouldn't this guard
6271 can go away. */
6272 if (!remote_async_terminal_ours_p)
6273 return;
6274 remote_async_terminal_ours_p = 0;
6275 /* NOTE: At this point we could also register our selves as the
6276 recipient of all input. Any characters typed could then be
6277 passed on down to the target. */
6278 }
6279
6280 static void
6281 remote_terminal_ours (struct target_ops *self)
6282 {
6283 /* See FIXME in remote_terminal_inferior. */
6284 if (remote_async_terminal_ours_p)
6285 return;
6286 remote_async_terminal_ours_p = 1;
6287 }
6288
6289 static void
6290 remote_console_output (char *msg)
6291 {
6292 char *p;
6293
6294 for (p = msg; p[0] && p[1]; p += 2)
6295 {
6296 char tb[2];
6297 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6298
6299 tb[0] = c;
6300 tb[1] = 0;
6301 fputs_unfiltered (tb, gdb_stdtarg);
6302 }
6303 gdb_flush (gdb_stdtarg);
6304 }
6305
6306 typedef struct cached_reg
6307 {
6308 int num;
6309 gdb_byte data[MAX_REGISTER_SIZE];
6310 } cached_reg_t;
6311
6312 DEF_VEC_O(cached_reg_t);
6313
6314 typedef struct stop_reply
6315 {
6316 struct notif_event base;
6317
6318 /* The identifier of the thread about this event */
6319 ptid_t ptid;
6320
6321 /* The remote state this event is associated with. When the remote
6322 connection, represented by a remote_state object, is closed,
6323 all the associated stop_reply events should be released. */
6324 struct remote_state *rs;
6325
6326 struct target_waitstatus ws;
6327
6328 /* Expedited registers. This makes remote debugging a bit more
6329 efficient for those targets that provide critical registers as
6330 part of their normal status mechanism (as another roundtrip to
6331 fetch them is avoided). */
6332 VEC(cached_reg_t) *regcache;
6333
6334 enum target_stop_reason stop_reason;
6335
6336 CORE_ADDR watch_data_address;
6337
6338 int core;
6339 } *stop_reply_p;
6340
6341 DECLARE_QUEUE_P (stop_reply_p);
6342 DEFINE_QUEUE_P (stop_reply_p);
6343 /* The list of already fetched and acknowledged stop events. This
6344 queue is used for notification Stop, and other notifications
6345 don't need queue for their events, because the notification events
6346 of Stop can't be consumed immediately, so that events should be
6347 queued first, and be consumed by remote_wait_{ns,as} one per
6348 time. Other notifications can consume their events immediately,
6349 so queue is not needed for them. */
6350 static QUEUE (stop_reply_p) *stop_reply_queue;
6351
6352 static void
6353 stop_reply_xfree (struct stop_reply *r)
6354 {
6355 notif_event_xfree ((struct notif_event *) r);
6356 }
6357
6358 /* Return the length of the stop reply queue. */
6359
6360 static int
6361 stop_reply_queue_length (void)
6362 {
6363 return QUEUE_length (stop_reply_p, stop_reply_queue);
6364 }
6365
6366 static void
6367 remote_notif_stop_parse (struct notif_client *self, char *buf,
6368 struct notif_event *event)
6369 {
6370 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6371 }
6372
6373 static void
6374 remote_notif_stop_ack (struct notif_client *self, char *buf,
6375 struct notif_event *event)
6376 {
6377 struct stop_reply *stop_reply = (struct stop_reply *) event;
6378
6379 /* acknowledge */
6380 putpkt (self->ack_command);
6381
6382 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6383 /* We got an unknown stop reply. */
6384 error (_("Unknown stop reply"));
6385
6386 push_stop_reply (stop_reply);
6387 }
6388
6389 static int
6390 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6391 {
6392 /* We can't get pending events in remote_notif_process for
6393 notification stop, and we have to do this in remote_wait_ns
6394 instead. If we fetch all queued events from stub, remote stub
6395 may exit and we have no chance to process them back in
6396 remote_wait_ns. */
6397 mark_async_event_handler (remote_async_inferior_event_token);
6398 return 0;
6399 }
6400
6401 static void
6402 stop_reply_dtr (struct notif_event *event)
6403 {
6404 struct stop_reply *r = (struct stop_reply *) event;
6405
6406 VEC_free (cached_reg_t, r->regcache);
6407 }
6408
6409 static struct notif_event *
6410 remote_notif_stop_alloc_reply (void)
6411 {
6412 /* We cast to a pointer to the "base class". */
6413 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6414
6415 r->dtr = stop_reply_dtr;
6416
6417 return r;
6418 }
6419
6420 /* A client of notification Stop. */
6421
6422 struct notif_client notif_client_stop =
6423 {
6424 "Stop",
6425 "vStopped",
6426 remote_notif_stop_parse,
6427 remote_notif_stop_ack,
6428 remote_notif_stop_can_get_pending_events,
6429 remote_notif_stop_alloc_reply,
6430 REMOTE_NOTIF_STOP,
6431 };
6432
6433 /* A parameter to pass data in and out. */
6434
6435 struct queue_iter_param
6436 {
6437 void *input;
6438 struct stop_reply *output;
6439 };
6440
6441 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6442 the pid of the process that owns the threads we want to check, or
6443 -1 if we want to check all threads. */
6444
6445 static int
6446 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6447 ptid_t thread_ptid)
6448 {
6449 if (ws->kind == TARGET_WAITKIND_FORKED
6450 || ws->kind == TARGET_WAITKIND_VFORKED)
6451 {
6452 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6453 return 1;
6454 }
6455
6456 return 0;
6457 }
6458
6459 /* Return the thread's pending status used to determine whether the
6460 thread is a fork parent stopped at a fork event. */
6461
6462 static struct target_waitstatus *
6463 thread_pending_fork_status (struct thread_info *thread)
6464 {
6465 if (thread->suspend.waitstatus_pending_p)
6466 return &thread->suspend.waitstatus;
6467 else
6468 return &thread->pending_follow;
6469 }
6470
6471 /* Determine if THREAD is a pending fork parent thread. */
6472
6473 static int
6474 is_pending_fork_parent_thread (struct thread_info *thread)
6475 {
6476 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6477 int pid = -1;
6478
6479 return is_pending_fork_parent (ws, pid, thread->ptid);
6480 }
6481
6482 /* Check whether EVENT is a fork event, and if it is, remove the
6483 fork child from the context list passed in DATA. */
6484
6485 static int
6486 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6487 QUEUE_ITER (stop_reply_p) *iter,
6488 stop_reply_p event,
6489 void *data)
6490 {
6491 struct queue_iter_param *param = (struct queue_iter_param *) data;
6492 struct threads_listing_context *context
6493 = (struct threads_listing_context *) param->input;
6494
6495 if (event->ws.kind == TARGET_WAITKIND_FORKED
6496 || event->ws.kind == TARGET_WAITKIND_VFORKED
6497 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6498 threads_listing_context_remove (&event->ws, context);
6499
6500 return 1;
6501 }
6502
6503 /* If CONTEXT contains any fork child threads that have not been
6504 reported yet, remove them from the CONTEXT list. If such a
6505 thread exists it is because we are stopped at a fork catchpoint
6506 and have not yet called follow_fork, which will set up the
6507 host-side data structures for the new process. */
6508
6509 static void
6510 remove_new_fork_children (struct threads_listing_context *context)
6511 {
6512 struct thread_info * thread;
6513 int pid = -1;
6514 struct notif_client *notif = &notif_client_stop;
6515 struct queue_iter_param param;
6516
6517 /* For any threads stopped at a fork event, remove the corresponding
6518 fork child threads from the CONTEXT list. */
6519 ALL_NON_EXITED_THREADS (thread)
6520 {
6521 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6522
6523 if (is_pending_fork_parent (ws, pid, thread->ptid))
6524 {
6525 threads_listing_context_remove (ws, context);
6526 }
6527 }
6528
6529 /* Check for any pending fork events (not reported or processed yet)
6530 in process PID and remove those fork child threads from the
6531 CONTEXT list as well. */
6532 remote_notif_get_pending_events (notif);
6533 param.input = context;
6534 param.output = NULL;
6535 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6536 remove_child_of_pending_fork, &param);
6537 }
6538
6539 /* Check whether EVENT would prevent a global or process wildcard
6540 vCont action. */
6541
6542 static int
6543 check_pending_event_prevents_wildcard_vcont_callback
6544 (QUEUE (stop_reply_p) *q,
6545 QUEUE_ITER (stop_reply_p) *iter,
6546 stop_reply_p event,
6547 void *data)
6548 {
6549 struct inferior *inf;
6550 int *may_global_wildcard_vcont = (int *) data;
6551
6552 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6553 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6554 return 1;
6555
6556 if (event->ws.kind == TARGET_WAITKIND_FORKED
6557 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6558 *may_global_wildcard_vcont = 0;
6559
6560 inf = find_inferior_ptid (event->ptid);
6561
6562 /* This may be the first time we heard about this process.
6563 Regardless, we must not do a global wildcard resume, otherwise
6564 we'd resume this process too. */
6565 *may_global_wildcard_vcont = 0;
6566 if (inf != NULL)
6567 inf->priv->may_wildcard_vcont = 0;
6568
6569 return 1;
6570 }
6571
6572 /* Check whether any event pending in the vStopped queue would prevent
6573 a global or process wildcard vCont action. Clear
6574 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6575 and clear the event inferior's may_wildcard_vcont flag if we can't
6576 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6577
6578 static void
6579 check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6580 {
6581 struct notif_client *notif = &notif_client_stop;
6582
6583 remote_notif_get_pending_events (notif);
6584 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6585 check_pending_event_prevents_wildcard_vcont_callback,
6586 may_global_wildcard);
6587 }
6588
6589 /* Remove stop replies in the queue if its pid is equal to the given
6590 inferior's pid. */
6591
6592 static int
6593 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6594 QUEUE_ITER (stop_reply_p) *iter,
6595 stop_reply_p event,
6596 void *data)
6597 {
6598 struct queue_iter_param *param = (struct queue_iter_param *) data;
6599 struct inferior *inf = (struct inferior *) param->input;
6600
6601 if (ptid_get_pid (event->ptid) == inf->pid)
6602 {
6603 stop_reply_xfree (event);
6604 QUEUE_remove_elem (stop_reply_p, q, iter);
6605 }
6606
6607 return 1;
6608 }
6609
6610 /* Discard all pending stop replies of inferior INF. */
6611
6612 static void
6613 discard_pending_stop_replies (struct inferior *inf)
6614 {
6615 struct queue_iter_param param;
6616 struct stop_reply *reply;
6617 struct remote_state *rs = get_remote_state ();
6618 struct remote_notif_state *rns = rs->notif_state;
6619
6620 /* This function can be notified when an inferior exists. When the
6621 target is not remote, the notification state is NULL. */
6622 if (rs->remote_desc == NULL)
6623 return;
6624
6625 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6626
6627 /* Discard the in-flight notification. */
6628 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6629 {
6630 stop_reply_xfree (reply);
6631 rns->pending_event[notif_client_stop.id] = NULL;
6632 }
6633
6634 param.input = inf;
6635 param.output = NULL;
6636 /* Discard the stop replies we have already pulled with
6637 vStopped. */
6638 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6639 remove_stop_reply_for_inferior, &param);
6640 }
6641
6642 /* If its remote state is equal to the given remote state,
6643 remove EVENT from the stop reply queue. */
6644
6645 static int
6646 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6647 QUEUE_ITER (stop_reply_p) *iter,
6648 stop_reply_p event,
6649 void *data)
6650 {
6651 struct queue_iter_param *param = (struct queue_iter_param *) data;
6652 struct remote_state *rs = (struct remote_state *) param->input;
6653
6654 if (event->rs == rs)
6655 {
6656 stop_reply_xfree (event);
6657 QUEUE_remove_elem (stop_reply_p, q, iter);
6658 }
6659
6660 return 1;
6661 }
6662
6663 /* Discard the stop replies for RS in stop_reply_queue. */
6664
6665 static void
6666 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6667 {
6668 struct queue_iter_param param;
6669
6670 param.input = rs;
6671 param.output = NULL;
6672 /* Discard the stop replies we have already pulled with
6673 vStopped. */
6674 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6675 remove_stop_reply_of_remote_state, &param);
6676 }
6677
6678 /* A parameter to pass data in and out. */
6679
6680 static int
6681 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6682 QUEUE_ITER (stop_reply_p) *iter,
6683 stop_reply_p event,
6684 void *data)
6685 {
6686 struct queue_iter_param *param = (struct queue_iter_param *) data;
6687 ptid_t *ptid = (ptid_t *) param->input;
6688
6689 if (ptid_match (event->ptid, *ptid))
6690 {
6691 param->output = event;
6692 QUEUE_remove_elem (stop_reply_p, q, iter);
6693 return 0;
6694 }
6695
6696 return 1;
6697 }
6698
6699 /* Remove the first reply in 'stop_reply_queue' which matches
6700 PTID. */
6701
6702 static struct stop_reply *
6703 remote_notif_remove_queued_reply (ptid_t ptid)
6704 {
6705 struct queue_iter_param param;
6706
6707 param.input = &ptid;
6708 param.output = NULL;
6709
6710 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6711 remote_notif_remove_once_on_match, &param);
6712 if (notif_debug)
6713 fprintf_unfiltered (gdb_stdlog,
6714 "notif: discard queued event: 'Stop' in %s\n",
6715 target_pid_to_str (ptid));
6716
6717 return param.output;
6718 }
6719
6720 /* Look for a queued stop reply belonging to PTID. If one is found,
6721 remove it from the queue, and return it. Returns NULL if none is
6722 found. If there are still queued events left to process, tell the
6723 event loop to get back to target_wait soon. */
6724
6725 static struct stop_reply *
6726 queued_stop_reply (ptid_t ptid)
6727 {
6728 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6729
6730 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6731 /* There's still at least an event left. */
6732 mark_async_event_handler (remote_async_inferior_event_token);
6733
6734 return r;
6735 }
6736
6737 /* Push a fully parsed stop reply in the stop reply queue. Since we
6738 know that we now have at least one queued event left to pass to the
6739 core side, tell the event loop to get back to target_wait soon. */
6740
6741 static void
6742 push_stop_reply (struct stop_reply *new_event)
6743 {
6744 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6745
6746 if (notif_debug)
6747 fprintf_unfiltered (gdb_stdlog,
6748 "notif: push 'Stop' %s to queue %d\n",
6749 target_pid_to_str (new_event->ptid),
6750 QUEUE_length (stop_reply_p,
6751 stop_reply_queue));
6752
6753 mark_async_event_handler (remote_async_inferior_event_token);
6754 }
6755
6756 static int
6757 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
6758 QUEUE_ITER (stop_reply_p) *iter,
6759 struct stop_reply *event,
6760 void *data)
6761 {
6762 ptid_t *ptid = (ptid_t *) data;
6763
6764 return !(ptid_equal (*ptid, event->ptid)
6765 && event->ws.kind == TARGET_WAITKIND_STOPPED);
6766 }
6767
6768 /* Returns true if we have a stop reply for PTID. */
6769
6770 static int
6771 peek_stop_reply (ptid_t ptid)
6772 {
6773 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
6774 stop_reply_match_ptid_and_ws, &ptid);
6775 }
6776
6777 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
6778 starting with P and ending with PEND matches PREFIX. */
6779
6780 static int
6781 strprefix (const char *p, const char *pend, const char *prefix)
6782 {
6783 for ( ; p < pend; p++, prefix++)
6784 if (*p != *prefix)
6785 return 0;
6786 return *prefix == '\0';
6787 }
6788
6789 /* Parse the stop reply in BUF. Either the function succeeds, and the
6790 result is stored in EVENT, or throws an error. */
6791
6792 static void
6793 remote_parse_stop_reply (char *buf, struct stop_reply *event)
6794 {
6795 struct remote_arch_state *rsa = get_remote_arch_state ();
6796 ULONGEST addr;
6797 char *p;
6798 int skipregs = 0;
6799
6800 event->ptid = null_ptid;
6801 event->rs = get_remote_state ();
6802 event->ws.kind = TARGET_WAITKIND_IGNORE;
6803 event->ws.value.integer = 0;
6804 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6805 event->regcache = NULL;
6806 event->core = -1;
6807
6808 switch (buf[0])
6809 {
6810 case 'T': /* Status with PC, SP, FP, ... */
6811 /* Expedited reply, containing Signal, {regno, reg} repeat. */
6812 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
6813 ss = signal number
6814 n... = register number
6815 r... = register contents
6816 */
6817
6818 p = &buf[3]; /* after Txx */
6819 while (*p)
6820 {
6821 char *p1;
6822 int fieldsize;
6823
6824 p1 = strchr (p, ':');
6825 if (p1 == NULL)
6826 error (_("Malformed packet(a) (missing colon): %s\n\
6827 Packet: '%s'\n"),
6828 p, buf);
6829 if (p == p1)
6830 error (_("Malformed packet(a) (missing register number): %s\n\
6831 Packet: '%s'\n"),
6832 p, buf);
6833
6834 /* Some "registers" are actually extended stop information.
6835 Note if you're adding a new entry here: GDB 7.9 and
6836 earlier assume that all register "numbers" that start
6837 with an hex digit are real register numbers. Make sure
6838 the server only sends such a packet if it knows the
6839 client understands it. */
6840
6841 if (strprefix (p, p1, "thread"))
6842 event->ptid = read_ptid (++p1, &p);
6843 else if (strprefix (p, p1, "syscall_entry"))
6844 {
6845 ULONGEST sysno;
6846
6847 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
6848 p = unpack_varlen_hex (++p1, &sysno);
6849 event->ws.value.syscall_number = (int) sysno;
6850 }
6851 else if (strprefix (p, p1, "syscall_return"))
6852 {
6853 ULONGEST sysno;
6854
6855 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
6856 p = unpack_varlen_hex (++p1, &sysno);
6857 event->ws.value.syscall_number = (int) sysno;
6858 }
6859 else if (strprefix (p, p1, "watch")
6860 || strprefix (p, p1, "rwatch")
6861 || strprefix (p, p1, "awatch"))
6862 {
6863 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
6864 p = unpack_varlen_hex (++p1, &addr);
6865 event->watch_data_address = (CORE_ADDR) addr;
6866 }
6867 else if (strprefix (p, p1, "swbreak"))
6868 {
6869 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
6870
6871 /* Make sure the stub doesn't forget to indicate support
6872 with qSupported. */
6873 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
6874 error (_("Unexpected swbreak stop reason"));
6875
6876 /* The value part is documented as "must be empty",
6877 though we ignore it, in case we ever decide to make
6878 use of it in a backward compatible way. */
6879 p = strchrnul (p1 + 1, ';');
6880 }
6881 else if (strprefix (p, p1, "hwbreak"))
6882 {
6883 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
6884
6885 /* Make sure the stub doesn't forget to indicate support
6886 with qSupported. */
6887 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
6888 error (_("Unexpected hwbreak stop reason"));
6889
6890 /* See above. */
6891 p = strchrnul (p1 + 1, ';');
6892 }
6893 else if (strprefix (p, p1, "library"))
6894 {
6895 event->ws.kind = TARGET_WAITKIND_LOADED;
6896 p = strchrnul (p1 + 1, ';');
6897 }
6898 else if (strprefix (p, p1, "replaylog"))
6899 {
6900 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
6901 /* p1 will indicate "begin" or "end", but it makes
6902 no difference for now, so ignore it. */
6903 p = strchrnul (p1 + 1, ';');
6904 }
6905 else if (strprefix (p, p1, "core"))
6906 {
6907 ULONGEST c;
6908
6909 p = unpack_varlen_hex (++p1, &c);
6910 event->core = c;
6911 }
6912 else if (strprefix (p, p1, "fork"))
6913 {
6914 event->ws.value.related_pid = read_ptid (++p1, &p);
6915 event->ws.kind = TARGET_WAITKIND_FORKED;
6916 }
6917 else if (strprefix (p, p1, "vfork"))
6918 {
6919 event->ws.value.related_pid = read_ptid (++p1, &p);
6920 event->ws.kind = TARGET_WAITKIND_VFORKED;
6921 }
6922 else if (strprefix (p, p1, "vforkdone"))
6923 {
6924 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
6925 p = strchrnul (p1 + 1, ';');
6926 }
6927 else if (strprefix (p, p1, "exec"))
6928 {
6929 ULONGEST ignored;
6930 char pathname[PATH_MAX];
6931 int pathlen;
6932
6933 /* Determine the length of the execd pathname. */
6934 p = unpack_varlen_hex (++p1, &ignored);
6935 pathlen = (p - p1) / 2;
6936
6937 /* Save the pathname for event reporting and for
6938 the next run command. */
6939 hex2bin (p1, (gdb_byte *) pathname, pathlen);
6940 pathname[pathlen] = '\0';
6941
6942 /* This is freed during event handling. */
6943 event->ws.value.execd_pathname = xstrdup (pathname);
6944 event->ws.kind = TARGET_WAITKIND_EXECD;
6945
6946 /* Skip the registers included in this packet, since
6947 they may be for an architecture different from the
6948 one used by the original program. */
6949 skipregs = 1;
6950 }
6951 else if (strprefix (p, p1, "create"))
6952 {
6953 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
6954 p = strchrnul (p1 + 1, ';');
6955 }
6956 else
6957 {
6958 ULONGEST pnum;
6959 char *p_temp;
6960
6961 if (skipregs)
6962 {
6963 p = strchrnul (p1 + 1, ';');
6964 p++;
6965 continue;
6966 }
6967
6968 /* Maybe a real ``P'' register number. */
6969 p_temp = unpack_varlen_hex (p, &pnum);
6970 /* If the first invalid character is the colon, we got a
6971 register number. Otherwise, it's an unknown stop
6972 reason. */
6973 if (p_temp == p1)
6974 {
6975 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
6976 cached_reg_t cached_reg;
6977
6978 if (reg == NULL)
6979 error (_("Remote sent bad register number %s: %s\n\
6980 Packet: '%s'\n"),
6981 hex_string (pnum), p, buf);
6982
6983 cached_reg.num = reg->regnum;
6984
6985 p = p1 + 1;
6986 fieldsize = hex2bin (p, cached_reg.data,
6987 register_size (target_gdbarch (),
6988 reg->regnum));
6989 p += 2 * fieldsize;
6990 if (fieldsize < register_size (target_gdbarch (),
6991 reg->regnum))
6992 warning (_("Remote reply is too short: %s"), buf);
6993
6994 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
6995 }
6996 else
6997 {
6998 /* Not a number. Silently skip unknown optional
6999 info. */
7000 p = strchrnul (p1 + 1, ';');
7001 }
7002 }
7003
7004 if (*p != ';')
7005 error (_("Remote register badly formatted: %s\nhere: %s"),
7006 buf, p);
7007 ++p;
7008 }
7009
7010 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7011 break;
7012
7013 /* fall through */
7014 case 'S': /* Old style status, just signal only. */
7015 {
7016 int sig;
7017
7018 event->ws.kind = TARGET_WAITKIND_STOPPED;
7019 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7020 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7021 event->ws.value.sig = (enum gdb_signal) sig;
7022 else
7023 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7024 }
7025 break;
7026 case 'w': /* Thread exited. */
7027 {
7028 char *p;
7029 ULONGEST value;
7030
7031 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7032 p = unpack_varlen_hex (&buf[1], &value);
7033 event->ws.value.integer = value;
7034 if (*p != ';')
7035 error (_("stop reply packet badly formatted: %s"), buf);
7036 event->ptid = read_ptid (++p, NULL);
7037 break;
7038 }
7039 case 'W': /* Target exited. */
7040 case 'X':
7041 {
7042 char *p;
7043 int pid;
7044 ULONGEST value;
7045
7046 /* GDB used to accept only 2 hex chars here. Stubs should
7047 only send more if they detect GDB supports multi-process
7048 support. */
7049 p = unpack_varlen_hex (&buf[1], &value);
7050
7051 if (buf[0] == 'W')
7052 {
7053 /* The remote process exited. */
7054 event->ws.kind = TARGET_WAITKIND_EXITED;
7055 event->ws.value.integer = value;
7056 }
7057 else
7058 {
7059 /* The remote process exited with a signal. */
7060 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7061 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7062 event->ws.value.sig = (enum gdb_signal) value;
7063 else
7064 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7065 }
7066
7067 /* If no process is specified, assume inferior_ptid. */
7068 pid = ptid_get_pid (inferior_ptid);
7069 if (*p == '\0')
7070 ;
7071 else if (*p == ';')
7072 {
7073 p++;
7074
7075 if (*p == '\0')
7076 ;
7077 else if (startswith (p, "process:"))
7078 {
7079 ULONGEST upid;
7080
7081 p += sizeof ("process:") - 1;
7082 unpack_varlen_hex (p, &upid);
7083 pid = upid;
7084 }
7085 else
7086 error (_("unknown stop reply packet: %s"), buf);
7087 }
7088 else
7089 error (_("unknown stop reply packet: %s"), buf);
7090 event->ptid = pid_to_ptid (pid);
7091 }
7092 break;
7093 case 'N':
7094 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7095 event->ptid = minus_one_ptid;
7096 break;
7097 }
7098
7099 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7100 error (_("No process or thread specified in stop reply: %s"), buf);
7101 }
7102
7103 /* When the stub wants to tell GDB about a new notification reply, it
7104 sends a notification (%Stop, for example). Those can come it at
7105 any time, hence, we have to make sure that any pending
7106 putpkt/getpkt sequence we're making is finished, before querying
7107 the stub for more events with the corresponding ack command
7108 (vStopped, for example). E.g., if we started a vStopped sequence
7109 immediately upon receiving the notification, something like this
7110 could happen:
7111
7112 1.1) --> Hg 1
7113 1.2) <-- OK
7114 1.3) --> g
7115 1.4) <-- %Stop
7116 1.5) --> vStopped
7117 1.6) <-- (registers reply to step #1.3)
7118
7119 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7120 query.
7121
7122 To solve this, whenever we parse a %Stop notification successfully,
7123 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7124 doing whatever we were doing:
7125
7126 2.1) --> Hg 1
7127 2.2) <-- OK
7128 2.3) --> g
7129 2.4) <-- %Stop
7130 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7131 2.5) <-- (registers reply to step #2.3)
7132
7133 Eventualy after step #2.5, we return to the event loop, which
7134 notices there's an event on the
7135 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7136 associated callback --- the function below. At this point, we're
7137 always safe to start a vStopped sequence. :
7138
7139 2.6) --> vStopped
7140 2.7) <-- T05 thread:2
7141 2.8) --> vStopped
7142 2.9) --> OK
7143 */
7144
7145 void
7146 remote_notif_get_pending_events (struct notif_client *nc)
7147 {
7148 struct remote_state *rs = get_remote_state ();
7149
7150 if (rs->notif_state->pending_event[nc->id] != NULL)
7151 {
7152 if (notif_debug)
7153 fprintf_unfiltered (gdb_stdlog,
7154 "notif: process: '%s' ack pending event\n",
7155 nc->name);
7156
7157 /* acknowledge */
7158 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7159 rs->notif_state->pending_event[nc->id] = NULL;
7160
7161 while (1)
7162 {
7163 getpkt (&rs->buf, &rs->buf_size, 0);
7164 if (strcmp (rs->buf, "OK") == 0)
7165 break;
7166 else
7167 remote_notif_ack (nc, rs->buf);
7168 }
7169 }
7170 else
7171 {
7172 if (notif_debug)
7173 fprintf_unfiltered (gdb_stdlog,
7174 "notif: process: '%s' no pending reply\n",
7175 nc->name);
7176 }
7177 }
7178
7179 /* Called when it is decided that STOP_REPLY holds the info of the
7180 event that is to be returned to the core. This function always
7181 destroys STOP_REPLY. */
7182
7183 static ptid_t
7184 process_stop_reply (struct stop_reply *stop_reply,
7185 struct target_waitstatus *status)
7186 {
7187 ptid_t ptid;
7188
7189 *status = stop_reply->ws;
7190 ptid = stop_reply->ptid;
7191
7192 /* If no thread/process was reported by the stub, assume the current
7193 inferior. */
7194 if (ptid_equal (ptid, null_ptid))
7195 ptid = inferior_ptid;
7196
7197 if (status->kind != TARGET_WAITKIND_EXITED
7198 && status->kind != TARGET_WAITKIND_SIGNALLED
7199 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7200 {
7201 struct private_thread_info *remote_thr;
7202
7203 /* Expedited registers. */
7204 if (stop_reply->regcache)
7205 {
7206 struct regcache *regcache
7207 = get_thread_arch_regcache (ptid, target_gdbarch ());
7208 cached_reg_t *reg;
7209 int ix;
7210
7211 for (ix = 0;
7212 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
7213 ix++)
7214 regcache_raw_supply (regcache, reg->num, reg->data);
7215 VEC_free (cached_reg_t, stop_reply->regcache);
7216 }
7217
7218 remote_notice_new_inferior (ptid, 0);
7219 remote_thr = get_private_info_ptid (ptid);
7220 remote_thr->core = stop_reply->core;
7221 remote_thr->stop_reason = stop_reply->stop_reason;
7222 remote_thr->watch_data_address = stop_reply->watch_data_address;
7223 remote_thr->vcont_resumed = 0;
7224 }
7225
7226 stop_reply_xfree (stop_reply);
7227 return ptid;
7228 }
7229
7230 /* The non-stop mode version of target_wait. */
7231
7232 static ptid_t
7233 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7234 {
7235 struct remote_state *rs = get_remote_state ();
7236 struct stop_reply *stop_reply;
7237 int ret;
7238 int is_notif = 0;
7239
7240 /* If in non-stop mode, get out of getpkt even if a
7241 notification is received. */
7242
7243 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7244 0 /* forever */, &is_notif);
7245 while (1)
7246 {
7247 if (ret != -1 && !is_notif)
7248 switch (rs->buf[0])
7249 {
7250 case 'E': /* Error of some sort. */
7251 /* We're out of sync with the target now. Did it continue
7252 or not? We can't tell which thread it was in non-stop,
7253 so just ignore this. */
7254 warning (_("Remote failure reply: %s"), rs->buf);
7255 break;
7256 case 'O': /* Console output. */
7257 remote_console_output (rs->buf + 1);
7258 break;
7259 default:
7260 warning (_("Invalid remote reply: %s"), rs->buf);
7261 break;
7262 }
7263
7264 /* Acknowledge a pending stop reply that may have arrived in the
7265 mean time. */
7266 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7267 remote_notif_get_pending_events (&notif_client_stop);
7268
7269 /* If indeed we noticed a stop reply, we're done. */
7270 stop_reply = queued_stop_reply (ptid);
7271 if (stop_reply != NULL)
7272 return process_stop_reply (stop_reply, status);
7273
7274 /* Still no event. If we're just polling for an event, then
7275 return to the event loop. */
7276 if (options & TARGET_WNOHANG)
7277 {
7278 status->kind = TARGET_WAITKIND_IGNORE;
7279 return minus_one_ptid;
7280 }
7281
7282 /* Otherwise do a blocking wait. */
7283 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7284 1 /* forever */, &is_notif);
7285 }
7286 }
7287
7288 /* Wait until the remote machine stops, then return, storing status in
7289 STATUS just as `wait' would. */
7290
7291 static ptid_t
7292 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7293 {
7294 struct remote_state *rs = get_remote_state ();
7295 ptid_t event_ptid = null_ptid;
7296 char *buf;
7297 struct stop_reply *stop_reply;
7298
7299 again:
7300
7301 status->kind = TARGET_WAITKIND_IGNORE;
7302 status->value.integer = 0;
7303
7304 stop_reply = queued_stop_reply (ptid);
7305 if (stop_reply != NULL)
7306 return process_stop_reply (stop_reply, status);
7307
7308 if (rs->cached_wait_status)
7309 /* Use the cached wait status, but only once. */
7310 rs->cached_wait_status = 0;
7311 else
7312 {
7313 int ret;
7314 int is_notif;
7315 int forever = ((options & TARGET_WNOHANG) == 0
7316 && wait_forever_enabled_p);
7317
7318 if (!rs->waiting_for_stop_reply)
7319 {
7320 status->kind = TARGET_WAITKIND_NO_RESUMED;
7321 return minus_one_ptid;
7322 }
7323
7324 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7325 _never_ wait for ever -> test on target_is_async_p().
7326 However, before we do that we need to ensure that the caller
7327 knows how to take the target into/out of async mode. */
7328 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7329 forever, &is_notif);
7330
7331 /* GDB gets a notification. Return to core as this event is
7332 not interesting. */
7333 if (ret != -1 && is_notif)
7334 return minus_one_ptid;
7335
7336 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7337 return minus_one_ptid;
7338 }
7339
7340 buf = rs->buf;
7341
7342 /* Assume that the target has acknowledged Ctrl-C unless we receive
7343 an 'F' or 'O' packet. */
7344 if (buf[0] != 'F' && buf[0] != 'O')
7345 rs->ctrlc_pending_p = 0;
7346
7347 switch (buf[0])
7348 {
7349 case 'E': /* Error of some sort. */
7350 /* We're out of sync with the target now. Did it continue or
7351 not? Not is more likely, so report a stop. */
7352 rs->waiting_for_stop_reply = 0;
7353
7354 warning (_("Remote failure reply: %s"), buf);
7355 status->kind = TARGET_WAITKIND_STOPPED;
7356 status->value.sig = GDB_SIGNAL_0;
7357 break;
7358 case 'F': /* File-I/O request. */
7359 /* GDB may access the inferior memory while handling the File-I/O
7360 request, but we don't want GDB accessing memory while waiting
7361 for a stop reply. See the comments in putpkt_binary. Set
7362 waiting_for_stop_reply to 0 temporarily. */
7363 rs->waiting_for_stop_reply = 0;
7364 remote_fileio_request (buf, rs->ctrlc_pending_p);
7365 rs->ctrlc_pending_p = 0;
7366 /* GDB handled the File-I/O request, and the target is running
7367 again. Keep waiting for events. */
7368 rs->waiting_for_stop_reply = 1;
7369 break;
7370 case 'N': case 'T': case 'S': case 'X': case 'W':
7371 {
7372 struct stop_reply *stop_reply;
7373
7374 /* There is a stop reply to handle. */
7375 rs->waiting_for_stop_reply = 0;
7376
7377 stop_reply
7378 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7379 rs->buf);
7380
7381 event_ptid = process_stop_reply (stop_reply, status);
7382 break;
7383 }
7384 case 'O': /* Console output. */
7385 remote_console_output (buf + 1);
7386 break;
7387 case '\0':
7388 if (rs->last_sent_signal != GDB_SIGNAL_0)
7389 {
7390 /* Zero length reply means that we tried 'S' or 'C' and the
7391 remote system doesn't support it. */
7392 target_terminal_ours_for_output ();
7393 printf_filtered
7394 ("Can't send signals to this remote system. %s not sent.\n",
7395 gdb_signal_to_name (rs->last_sent_signal));
7396 rs->last_sent_signal = GDB_SIGNAL_0;
7397 target_terminal_inferior ();
7398
7399 strcpy (buf, rs->last_sent_step ? "s" : "c");
7400 putpkt (buf);
7401 break;
7402 }
7403 /* else fallthrough */
7404 default:
7405 warning (_("Invalid remote reply: %s"), buf);
7406 break;
7407 }
7408
7409 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7410 return minus_one_ptid;
7411 else if (status->kind == TARGET_WAITKIND_IGNORE)
7412 {
7413 /* Nothing interesting happened. If we're doing a non-blocking
7414 poll, we're done. Otherwise, go back to waiting. */
7415 if (options & TARGET_WNOHANG)
7416 return minus_one_ptid;
7417 else
7418 goto again;
7419 }
7420 else if (status->kind != TARGET_WAITKIND_EXITED
7421 && status->kind != TARGET_WAITKIND_SIGNALLED)
7422 {
7423 if (!ptid_equal (event_ptid, null_ptid))
7424 record_currthread (rs, event_ptid);
7425 else
7426 event_ptid = inferior_ptid;
7427 }
7428 else
7429 /* A process exit. Invalidate our notion of current thread. */
7430 record_currthread (rs, minus_one_ptid);
7431
7432 return event_ptid;
7433 }
7434
7435 /* Wait until the remote machine stops, then return, storing status in
7436 STATUS just as `wait' would. */
7437
7438 static ptid_t
7439 remote_wait (struct target_ops *ops,
7440 ptid_t ptid, struct target_waitstatus *status, int options)
7441 {
7442 ptid_t event_ptid;
7443
7444 if (target_is_non_stop_p ())
7445 event_ptid = remote_wait_ns (ptid, status, options);
7446 else
7447 event_ptid = remote_wait_as (ptid, status, options);
7448
7449 if (target_is_async_p ())
7450 {
7451 /* If there are are events left in the queue tell the event loop
7452 to return here. */
7453 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7454 mark_async_event_handler (remote_async_inferior_event_token);
7455 }
7456
7457 return event_ptid;
7458 }
7459
7460 /* Fetch a single register using a 'p' packet. */
7461
7462 static int
7463 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7464 {
7465 struct remote_state *rs = get_remote_state ();
7466 char *buf, *p;
7467 char regp[MAX_REGISTER_SIZE];
7468 int i;
7469
7470 if (packet_support (PACKET_p) == PACKET_DISABLE)
7471 return 0;
7472
7473 if (reg->pnum == -1)
7474 return 0;
7475
7476 p = rs->buf;
7477 *p++ = 'p';
7478 p += hexnumstr (p, reg->pnum);
7479 *p++ = '\0';
7480 putpkt (rs->buf);
7481 getpkt (&rs->buf, &rs->buf_size, 0);
7482
7483 buf = rs->buf;
7484
7485 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7486 {
7487 case PACKET_OK:
7488 break;
7489 case PACKET_UNKNOWN:
7490 return 0;
7491 case PACKET_ERROR:
7492 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7493 gdbarch_register_name (get_regcache_arch (regcache),
7494 reg->regnum),
7495 buf);
7496 }
7497
7498 /* If this register is unfetchable, tell the regcache. */
7499 if (buf[0] == 'x')
7500 {
7501 regcache_raw_supply (regcache, reg->regnum, NULL);
7502 return 1;
7503 }
7504
7505 /* Otherwise, parse and supply the value. */
7506 p = buf;
7507 i = 0;
7508 while (p[0] != 0)
7509 {
7510 if (p[1] == 0)
7511 error (_("fetch_register_using_p: early buf termination"));
7512
7513 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7514 p += 2;
7515 }
7516 regcache_raw_supply (regcache, reg->regnum, regp);
7517 return 1;
7518 }
7519
7520 /* Fetch the registers included in the target's 'g' packet. */
7521
7522 static int
7523 send_g_packet (void)
7524 {
7525 struct remote_state *rs = get_remote_state ();
7526 int buf_len;
7527
7528 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7529 remote_send (&rs->buf, &rs->buf_size);
7530
7531 /* We can get out of synch in various cases. If the first character
7532 in the buffer is not a hex character, assume that has happened
7533 and try to fetch another packet to read. */
7534 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7535 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7536 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7537 && rs->buf[0] != 'x') /* New: unavailable register value. */
7538 {
7539 if (remote_debug)
7540 fprintf_unfiltered (gdb_stdlog,
7541 "Bad register packet; fetching a new packet\n");
7542 getpkt (&rs->buf, &rs->buf_size, 0);
7543 }
7544
7545 buf_len = strlen (rs->buf);
7546
7547 /* Sanity check the received packet. */
7548 if (buf_len % 2 != 0)
7549 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7550
7551 return buf_len / 2;
7552 }
7553
7554 static void
7555 process_g_packet (struct regcache *regcache)
7556 {
7557 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7558 struct remote_state *rs = get_remote_state ();
7559 struct remote_arch_state *rsa = get_remote_arch_state ();
7560 int i, buf_len;
7561 char *p;
7562 char *regs;
7563
7564 buf_len = strlen (rs->buf);
7565
7566 /* Further sanity checks, with knowledge of the architecture. */
7567 if (buf_len > 2 * rsa->sizeof_g_packet)
7568 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
7569
7570 /* Save the size of the packet sent to us by the target. It is used
7571 as a heuristic when determining the max size of packets that the
7572 target can safely receive. */
7573 if (rsa->actual_register_packet_size == 0)
7574 rsa->actual_register_packet_size = buf_len;
7575
7576 /* If this is smaller than we guessed the 'g' packet would be,
7577 update our records. A 'g' reply that doesn't include a register's
7578 value implies either that the register is not available, or that
7579 the 'p' packet must be used. */
7580 if (buf_len < 2 * rsa->sizeof_g_packet)
7581 {
7582 long sizeof_g_packet = buf_len / 2;
7583
7584 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7585 {
7586 long offset = rsa->regs[i].offset;
7587 long reg_size = register_size (gdbarch, i);
7588
7589 if (rsa->regs[i].pnum == -1)
7590 continue;
7591
7592 if (offset >= sizeof_g_packet)
7593 rsa->regs[i].in_g_packet = 0;
7594 else if (offset + reg_size > sizeof_g_packet)
7595 error (_("Truncated register %d in remote 'g' packet"), i);
7596 else
7597 rsa->regs[i].in_g_packet = 1;
7598 }
7599
7600 /* Looks valid enough, we can assume this is the correct length
7601 for a 'g' packet. It's important not to adjust
7602 rsa->sizeof_g_packet if we have truncated registers otherwise
7603 this "if" won't be run the next time the method is called
7604 with a packet of the same size and one of the internal errors
7605 below will trigger instead. */
7606 rsa->sizeof_g_packet = sizeof_g_packet;
7607 }
7608
7609 regs = (char *) alloca (rsa->sizeof_g_packet);
7610
7611 /* Unimplemented registers read as all bits zero. */
7612 memset (regs, 0, rsa->sizeof_g_packet);
7613
7614 /* Reply describes registers byte by byte, each byte encoded as two
7615 hex characters. Suck them all up, then supply them to the
7616 register cacheing/storage mechanism. */
7617
7618 p = rs->buf;
7619 for (i = 0; i < rsa->sizeof_g_packet; i++)
7620 {
7621 if (p[0] == 0 || p[1] == 0)
7622 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7623 internal_error (__FILE__, __LINE__,
7624 _("unexpected end of 'g' packet reply"));
7625
7626 if (p[0] == 'x' && p[1] == 'x')
7627 regs[i] = 0; /* 'x' */
7628 else
7629 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7630 p += 2;
7631 }
7632
7633 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7634 {
7635 struct packet_reg *r = &rsa->regs[i];
7636 long reg_size = register_size (gdbarch, i);
7637
7638 if (r->in_g_packet)
7639 {
7640 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7641 /* This shouldn't happen - we adjusted in_g_packet above. */
7642 internal_error (__FILE__, __LINE__,
7643 _("unexpected end of 'g' packet reply"));
7644 else if (rs->buf[r->offset * 2] == 'x')
7645 {
7646 gdb_assert (r->offset * 2 < strlen (rs->buf));
7647 /* The register isn't available, mark it as such (at
7648 the same time setting the value to zero). */
7649 regcache_raw_supply (regcache, r->regnum, NULL);
7650 }
7651 else
7652 regcache_raw_supply (regcache, r->regnum,
7653 regs + r->offset);
7654 }
7655 }
7656 }
7657
7658 static void
7659 fetch_registers_using_g (struct regcache *regcache)
7660 {
7661 send_g_packet ();
7662 process_g_packet (regcache);
7663 }
7664
7665 /* Make the remote selected traceframe match GDB's selected
7666 traceframe. */
7667
7668 static void
7669 set_remote_traceframe (void)
7670 {
7671 int newnum;
7672 struct remote_state *rs = get_remote_state ();
7673
7674 if (rs->remote_traceframe_number == get_traceframe_number ())
7675 return;
7676
7677 /* Avoid recursion, remote_trace_find calls us again. */
7678 rs->remote_traceframe_number = get_traceframe_number ();
7679
7680 newnum = target_trace_find (tfind_number,
7681 get_traceframe_number (), 0, 0, NULL);
7682
7683 /* Should not happen. If it does, all bets are off. */
7684 if (newnum != get_traceframe_number ())
7685 warning (_("could not set remote traceframe"));
7686 }
7687
7688 static void
7689 remote_fetch_registers (struct target_ops *ops,
7690 struct regcache *regcache, int regnum)
7691 {
7692 struct remote_arch_state *rsa = get_remote_arch_state ();
7693 int i;
7694
7695 set_remote_traceframe ();
7696 set_general_thread (inferior_ptid);
7697
7698 if (regnum >= 0)
7699 {
7700 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
7701
7702 gdb_assert (reg != NULL);
7703
7704 /* If this register might be in the 'g' packet, try that first -
7705 we are likely to read more than one register. If this is the
7706 first 'g' packet, we might be overly optimistic about its
7707 contents, so fall back to 'p'. */
7708 if (reg->in_g_packet)
7709 {
7710 fetch_registers_using_g (regcache);
7711 if (reg->in_g_packet)
7712 return;
7713 }
7714
7715 if (fetch_register_using_p (regcache, reg))
7716 return;
7717
7718 /* This register is not available. */
7719 regcache_raw_supply (regcache, reg->regnum, NULL);
7720
7721 return;
7722 }
7723
7724 fetch_registers_using_g (regcache);
7725
7726 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7727 if (!rsa->regs[i].in_g_packet)
7728 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
7729 {
7730 /* This register is not available. */
7731 regcache_raw_supply (regcache, i, NULL);
7732 }
7733 }
7734
7735 /* Prepare to store registers. Since we may send them all (using a
7736 'G' request), we have to read out the ones we don't want to change
7737 first. */
7738
7739 static void
7740 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
7741 {
7742 struct remote_arch_state *rsa = get_remote_arch_state ();
7743 int i;
7744 gdb_byte buf[MAX_REGISTER_SIZE];
7745
7746 /* Make sure the entire registers array is valid. */
7747 switch (packet_support (PACKET_P))
7748 {
7749 case PACKET_DISABLE:
7750 case PACKET_SUPPORT_UNKNOWN:
7751 /* Make sure all the necessary registers are cached. */
7752 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7753 if (rsa->regs[i].in_g_packet)
7754 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
7755 break;
7756 case PACKET_ENABLE:
7757 break;
7758 }
7759 }
7760
7761 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
7762 packet was not recognized. */
7763
7764 static int
7765 store_register_using_P (const struct regcache *regcache,
7766 struct packet_reg *reg)
7767 {
7768 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7769 struct remote_state *rs = get_remote_state ();
7770 /* Try storing a single register. */
7771 char *buf = rs->buf;
7772 gdb_byte regp[MAX_REGISTER_SIZE];
7773 char *p;
7774
7775 if (packet_support (PACKET_P) == PACKET_DISABLE)
7776 return 0;
7777
7778 if (reg->pnum == -1)
7779 return 0;
7780
7781 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
7782 p = buf + strlen (buf);
7783 regcache_raw_collect (regcache, reg->regnum, regp);
7784 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
7785 putpkt (rs->buf);
7786 getpkt (&rs->buf, &rs->buf_size, 0);
7787
7788 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
7789 {
7790 case PACKET_OK:
7791 return 1;
7792 case PACKET_ERROR:
7793 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
7794 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
7795 case PACKET_UNKNOWN:
7796 return 0;
7797 default:
7798 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
7799 }
7800 }
7801
7802 /* Store register REGNUM, or all registers if REGNUM == -1, from the
7803 contents of the register cache buffer. FIXME: ignores errors. */
7804
7805 static void
7806 store_registers_using_G (const struct regcache *regcache)
7807 {
7808 struct remote_state *rs = get_remote_state ();
7809 struct remote_arch_state *rsa = get_remote_arch_state ();
7810 gdb_byte *regs;
7811 char *p;
7812
7813 /* Extract all the registers in the regcache copying them into a
7814 local buffer. */
7815 {
7816 int i;
7817
7818 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
7819 memset (regs, 0, rsa->sizeof_g_packet);
7820 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7821 {
7822 struct packet_reg *r = &rsa->regs[i];
7823
7824 if (r->in_g_packet)
7825 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
7826 }
7827 }
7828
7829 /* Command describes registers byte by byte,
7830 each byte encoded as two hex characters. */
7831 p = rs->buf;
7832 *p++ = 'G';
7833 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
7834 updated. */
7835 bin2hex (regs, p, rsa->sizeof_g_packet);
7836 putpkt (rs->buf);
7837 getpkt (&rs->buf, &rs->buf_size, 0);
7838 if (packet_check_result (rs->buf) == PACKET_ERROR)
7839 error (_("Could not write registers; remote failure reply '%s'"),
7840 rs->buf);
7841 }
7842
7843 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
7844 of the register cache buffer. FIXME: ignores errors. */
7845
7846 static void
7847 remote_store_registers (struct target_ops *ops,
7848 struct regcache *regcache, int regnum)
7849 {
7850 struct remote_arch_state *rsa = get_remote_arch_state ();
7851 int i;
7852
7853 set_remote_traceframe ();
7854 set_general_thread (inferior_ptid);
7855
7856 if (regnum >= 0)
7857 {
7858 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
7859
7860 gdb_assert (reg != NULL);
7861
7862 /* Always prefer to store registers using the 'P' packet if
7863 possible; we often change only a small number of registers.
7864 Sometimes we change a larger number; we'd need help from a
7865 higher layer to know to use 'G'. */
7866 if (store_register_using_P (regcache, reg))
7867 return;
7868
7869 /* For now, don't complain if we have no way to write the
7870 register. GDB loses track of unavailable registers too
7871 easily. Some day, this may be an error. We don't have
7872 any way to read the register, either... */
7873 if (!reg->in_g_packet)
7874 return;
7875
7876 store_registers_using_G (regcache);
7877 return;
7878 }
7879
7880 store_registers_using_G (regcache);
7881
7882 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7883 if (!rsa->regs[i].in_g_packet)
7884 if (!store_register_using_P (regcache, &rsa->regs[i]))
7885 /* See above for why we do not issue an error here. */
7886 continue;
7887 }
7888 \f
7889
7890 /* Return the number of hex digits in num. */
7891
7892 static int
7893 hexnumlen (ULONGEST num)
7894 {
7895 int i;
7896
7897 for (i = 0; num != 0; i++)
7898 num >>= 4;
7899
7900 return std::max (i, 1);
7901 }
7902
7903 /* Set BUF to the minimum number of hex digits representing NUM. */
7904
7905 static int
7906 hexnumstr (char *buf, ULONGEST num)
7907 {
7908 int len = hexnumlen (num);
7909
7910 return hexnumnstr (buf, num, len);
7911 }
7912
7913
7914 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
7915
7916 static int
7917 hexnumnstr (char *buf, ULONGEST num, int width)
7918 {
7919 int i;
7920
7921 buf[width] = '\0';
7922
7923 for (i = width - 1; i >= 0; i--)
7924 {
7925 buf[i] = "0123456789abcdef"[(num & 0xf)];
7926 num >>= 4;
7927 }
7928
7929 return width;
7930 }
7931
7932 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
7933
7934 static CORE_ADDR
7935 remote_address_masked (CORE_ADDR addr)
7936 {
7937 unsigned int address_size = remote_address_size;
7938
7939 /* If "remoteaddresssize" was not set, default to target address size. */
7940 if (!address_size)
7941 address_size = gdbarch_addr_bit (target_gdbarch ());
7942
7943 if (address_size > 0
7944 && address_size < (sizeof (ULONGEST) * 8))
7945 {
7946 /* Only create a mask when that mask can safely be constructed
7947 in a ULONGEST variable. */
7948 ULONGEST mask = 1;
7949
7950 mask = (mask << address_size) - 1;
7951 addr &= mask;
7952 }
7953 return addr;
7954 }
7955
7956 /* Determine whether the remote target supports binary downloading.
7957 This is accomplished by sending a no-op memory write of zero length
7958 to the target at the specified address. It does not suffice to send
7959 the whole packet, since many stubs strip the eighth bit and
7960 subsequently compute a wrong checksum, which causes real havoc with
7961 remote_write_bytes.
7962
7963 NOTE: This can still lose if the serial line is not eight-bit
7964 clean. In cases like this, the user should clear "remote
7965 X-packet". */
7966
7967 static void
7968 check_binary_download (CORE_ADDR addr)
7969 {
7970 struct remote_state *rs = get_remote_state ();
7971
7972 switch (packet_support (PACKET_X))
7973 {
7974 case PACKET_DISABLE:
7975 break;
7976 case PACKET_ENABLE:
7977 break;
7978 case PACKET_SUPPORT_UNKNOWN:
7979 {
7980 char *p;
7981
7982 p = rs->buf;
7983 *p++ = 'X';
7984 p += hexnumstr (p, (ULONGEST) addr);
7985 *p++ = ',';
7986 p += hexnumstr (p, (ULONGEST) 0);
7987 *p++ = ':';
7988 *p = '\0';
7989
7990 putpkt_binary (rs->buf, (int) (p - rs->buf));
7991 getpkt (&rs->buf, &rs->buf_size, 0);
7992
7993 if (rs->buf[0] == '\0')
7994 {
7995 if (remote_debug)
7996 fprintf_unfiltered (gdb_stdlog,
7997 "binary downloading NOT "
7998 "supported by target\n");
7999 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8000 }
8001 else
8002 {
8003 if (remote_debug)
8004 fprintf_unfiltered (gdb_stdlog,
8005 "binary downloading supported by target\n");
8006 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8007 }
8008 break;
8009 }
8010 }
8011 }
8012
8013 /* Helper function to resize the payload in order to try to get a good
8014 alignment. We try to write an amount of data such that the next write will
8015 start on an address aligned on REMOTE_ALIGN_WRITES. */
8016
8017 static int
8018 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8019 {
8020 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8021 }
8022
8023 /* Write memory data directly to the remote machine.
8024 This does not inform the data cache; the data cache uses this.
8025 HEADER is the starting part of the packet.
8026 MEMADDR is the address in the remote memory space.
8027 MYADDR is the address of the buffer in our space.
8028 LEN_UNITS is the number of addressable units to write.
8029 UNIT_SIZE is the length in bytes of an addressable unit.
8030 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8031 should send data as binary ('X'), or hex-encoded ('M').
8032
8033 The function creates packet of the form
8034 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8035
8036 where encoding of <DATA> is terminated by PACKET_FORMAT.
8037
8038 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8039 are omitted.
8040
8041 Return the transferred status, error or OK (an
8042 'enum target_xfer_status' value). Save the number of addressable units
8043 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8044
8045 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8046 exchange between gdb and the stub could look like (?? in place of the
8047 checksum):
8048
8049 -> $m1000,4#??
8050 <- aaaabbbbccccdddd
8051
8052 -> $M1000,3:eeeeffffeeee#??
8053 <- OK
8054
8055 -> $m1000,4#??
8056 <- eeeeffffeeeedddd */
8057
8058 static enum target_xfer_status
8059 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8060 const gdb_byte *myaddr, ULONGEST len_units,
8061 int unit_size, ULONGEST *xfered_len_units,
8062 char packet_format, int use_length)
8063 {
8064 struct remote_state *rs = get_remote_state ();
8065 char *p;
8066 char *plen = NULL;
8067 int plenlen = 0;
8068 int todo_units;
8069 int units_written;
8070 int payload_capacity_bytes;
8071 int payload_length_bytes;
8072
8073 if (packet_format != 'X' && packet_format != 'M')
8074 internal_error (__FILE__, __LINE__,
8075 _("remote_write_bytes_aux: bad packet format"));
8076
8077 if (len_units == 0)
8078 return TARGET_XFER_EOF;
8079
8080 payload_capacity_bytes = get_memory_write_packet_size ();
8081
8082 /* The packet buffer will be large enough for the payload;
8083 get_memory_packet_size ensures this. */
8084 rs->buf[0] = '\0';
8085
8086 /* Compute the size of the actual payload by subtracting out the
8087 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8088
8089 payload_capacity_bytes -= strlen ("$,:#NN");
8090 if (!use_length)
8091 /* The comma won't be used. */
8092 payload_capacity_bytes += 1;
8093 payload_capacity_bytes -= strlen (header);
8094 payload_capacity_bytes -= hexnumlen (memaddr);
8095
8096 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8097
8098 strcat (rs->buf, header);
8099 p = rs->buf + strlen (header);
8100
8101 /* Compute a best guess of the number of bytes actually transfered. */
8102 if (packet_format == 'X')
8103 {
8104 /* Best guess at number of bytes that will fit. */
8105 todo_units = std::min (len_units,
8106 (ULONGEST) payload_capacity_bytes / unit_size);
8107 if (use_length)
8108 payload_capacity_bytes -= hexnumlen (todo_units);
8109 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8110 }
8111 else
8112 {
8113 /* Number of bytes that will fit. */
8114 todo_units
8115 = std::min (len_units,
8116 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8117 if (use_length)
8118 payload_capacity_bytes -= hexnumlen (todo_units);
8119 todo_units = std::min (todo_units,
8120 (payload_capacity_bytes / unit_size) / 2);
8121 }
8122
8123 if (todo_units <= 0)
8124 internal_error (__FILE__, __LINE__,
8125 _("minimum packet size too small to write data"));
8126
8127 /* If we already need another packet, then try to align the end
8128 of this packet to a useful boundary. */
8129 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8130 todo_units = align_for_efficient_write (todo_units, memaddr);
8131
8132 /* Append "<memaddr>". */
8133 memaddr = remote_address_masked (memaddr);
8134 p += hexnumstr (p, (ULONGEST) memaddr);
8135
8136 if (use_length)
8137 {
8138 /* Append ",". */
8139 *p++ = ',';
8140
8141 /* Append the length and retain its location and size. It may need to be
8142 adjusted once the packet body has been created. */
8143 plen = p;
8144 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8145 p += plenlen;
8146 }
8147
8148 /* Append ":". */
8149 *p++ = ':';
8150 *p = '\0';
8151
8152 /* Append the packet body. */
8153 if (packet_format == 'X')
8154 {
8155 /* Binary mode. Send target system values byte by byte, in
8156 increasing byte addresses. Only escape certain critical
8157 characters. */
8158 payload_length_bytes =
8159 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8160 &units_written, payload_capacity_bytes);
8161
8162 /* If not all TODO units fit, then we'll need another packet. Make
8163 a second try to keep the end of the packet aligned. Don't do
8164 this if the packet is tiny. */
8165 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8166 {
8167 int new_todo_units;
8168
8169 new_todo_units = align_for_efficient_write (units_written, memaddr);
8170
8171 if (new_todo_units != units_written)
8172 payload_length_bytes =
8173 remote_escape_output (myaddr, new_todo_units, unit_size,
8174 (gdb_byte *) p, &units_written,
8175 payload_capacity_bytes);
8176 }
8177
8178 p += payload_length_bytes;
8179 if (use_length && units_written < todo_units)
8180 {
8181 /* Escape chars have filled up the buffer prematurely,
8182 and we have actually sent fewer units than planned.
8183 Fix-up the length field of the packet. Use the same
8184 number of characters as before. */
8185 plen += hexnumnstr (plen, (ULONGEST) units_written,
8186 plenlen);
8187 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8188 }
8189 }
8190 else
8191 {
8192 /* Normal mode: Send target system values byte by byte, in
8193 increasing byte addresses. Each byte is encoded as a two hex
8194 value. */
8195 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8196 units_written = todo_units;
8197 }
8198
8199 putpkt_binary (rs->buf, (int) (p - rs->buf));
8200 getpkt (&rs->buf, &rs->buf_size, 0);
8201
8202 if (rs->buf[0] == 'E')
8203 return TARGET_XFER_E_IO;
8204
8205 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8206 send fewer units than we'd planned. */
8207 *xfered_len_units = (ULONGEST) units_written;
8208 return TARGET_XFER_OK;
8209 }
8210
8211 /* Write memory data directly to the remote machine.
8212 This does not inform the data cache; the data cache uses this.
8213 MEMADDR is the address in the remote memory space.
8214 MYADDR is the address of the buffer in our space.
8215 LEN is the number of bytes.
8216
8217 Return the transferred status, error or OK (an
8218 'enum target_xfer_status' value). Save the number of bytes
8219 transferred in *XFERED_LEN. Only transfer a single packet. */
8220
8221 static enum target_xfer_status
8222 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8223 int unit_size, ULONGEST *xfered_len)
8224 {
8225 char *packet_format = 0;
8226
8227 /* Check whether the target supports binary download. */
8228 check_binary_download (memaddr);
8229
8230 switch (packet_support (PACKET_X))
8231 {
8232 case PACKET_ENABLE:
8233 packet_format = "X";
8234 break;
8235 case PACKET_DISABLE:
8236 packet_format = "M";
8237 break;
8238 case PACKET_SUPPORT_UNKNOWN:
8239 internal_error (__FILE__, __LINE__,
8240 _("remote_write_bytes: bad internal state"));
8241 default:
8242 internal_error (__FILE__, __LINE__, _("bad switch"));
8243 }
8244
8245 return remote_write_bytes_aux (packet_format,
8246 memaddr, myaddr, len, unit_size, xfered_len,
8247 packet_format[0], 1);
8248 }
8249
8250 /* Read memory data directly from the remote machine.
8251 This does not use the data cache; the data cache uses this.
8252 MEMADDR is the address in the remote memory space.
8253 MYADDR is the address of the buffer in our space.
8254 LEN_UNITS is the number of addressable memory units to read..
8255 UNIT_SIZE is the length in bytes of an addressable unit.
8256
8257 Return the transferred status, error or OK (an
8258 'enum target_xfer_status' value). Save the number of bytes
8259 transferred in *XFERED_LEN_UNITS.
8260
8261 See the comment of remote_write_bytes_aux for an example of
8262 memory read/write exchange between gdb and the stub. */
8263
8264 static enum target_xfer_status
8265 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8266 int unit_size, ULONGEST *xfered_len_units)
8267 {
8268 struct remote_state *rs = get_remote_state ();
8269 int buf_size_bytes; /* Max size of packet output buffer. */
8270 char *p;
8271 int todo_units;
8272 int decoded_bytes;
8273
8274 buf_size_bytes = get_memory_read_packet_size ();
8275 /* The packet buffer will be large enough for the payload;
8276 get_memory_packet_size ensures this. */
8277
8278 /* Number of units that will fit. */
8279 todo_units = std::min (len_units,
8280 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8281
8282 /* Construct "m"<memaddr>","<len>". */
8283 memaddr = remote_address_masked (memaddr);
8284 p = rs->buf;
8285 *p++ = 'm';
8286 p += hexnumstr (p, (ULONGEST) memaddr);
8287 *p++ = ',';
8288 p += hexnumstr (p, (ULONGEST) todo_units);
8289 *p = '\0';
8290 putpkt (rs->buf);
8291 getpkt (&rs->buf, &rs->buf_size, 0);
8292 if (rs->buf[0] == 'E'
8293 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8294 && rs->buf[3] == '\0')
8295 return TARGET_XFER_E_IO;
8296 /* Reply describes memory byte by byte, each byte encoded as two hex
8297 characters. */
8298 p = rs->buf;
8299 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8300 /* Return what we have. Let higher layers handle partial reads. */
8301 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8302 return TARGET_XFER_OK;
8303 }
8304
8305 /* Using the set of read-only target sections of remote, read live
8306 read-only memory.
8307
8308 For interface/parameters/return description see target.h,
8309 to_xfer_partial. */
8310
8311 static enum target_xfer_status
8312 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8313 ULONGEST memaddr, ULONGEST len,
8314 int unit_size, ULONGEST *xfered_len)
8315 {
8316 struct target_section *secp;
8317 struct target_section_table *table;
8318
8319 secp = target_section_by_addr (ops, memaddr);
8320 if (secp != NULL
8321 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8322 secp->the_bfd_section)
8323 & SEC_READONLY))
8324 {
8325 struct target_section *p;
8326 ULONGEST memend = memaddr + len;
8327
8328 table = target_get_section_table (ops);
8329
8330 for (p = table->sections; p < table->sections_end; p++)
8331 {
8332 if (memaddr >= p->addr)
8333 {
8334 if (memend <= p->endaddr)
8335 {
8336 /* Entire transfer is within this section. */
8337 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8338 xfered_len);
8339 }
8340 else if (memaddr >= p->endaddr)
8341 {
8342 /* This section ends before the transfer starts. */
8343 continue;
8344 }
8345 else
8346 {
8347 /* This section overlaps the transfer. Just do half. */
8348 len = p->endaddr - memaddr;
8349 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8350 xfered_len);
8351 }
8352 }
8353 }
8354 }
8355
8356 return TARGET_XFER_EOF;
8357 }
8358
8359 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8360 first if the requested memory is unavailable in traceframe.
8361 Otherwise, fall back to remote_read_bytes_1. */
8362
8363 static enum target_xfer_status
8364 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8365 gdb_byte *myaddr, ULONGEST len, int unit_size,
8366 ULONGEST *xfered_len)
8367 {
8368 if (len == 0)
8369 return TARGET_XFER_EOF;
8370
8371 if (get_traceframe_number () != -1)
8372 {
8373 VEC(mem_range_s) *available;
8374
8375 /* If we fail to get the set of available memory, then the
8376 target does not support querying traceframe info, and so we
8377 attempt reading from the traceframe anyway (assuming the
8378 target implements the old QTro packet then). */
8379 if (traceframe_available_memory (&available, memaddr, len))
8380 {
8381 struct cleanup *old_chain;
8382
8383 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
8384
8385 if (VEC_empty (mem_range_s, available)
8386 || VEC_index (mem_range_s, available, 0)->start != memaddr)
8387 {
8388 enum target_xfer_status res;
8389
8390 /* Don't read into the traceframe's available
8391 memory. */
8392 if (!VEC_empty (mem_range_s, available))
8393 {
8394 LONGEST oldlen = len;
8395
8396 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
8397 gdb_assert (len <= oldlen);
8398 }
8399
8400 do_cleanups (old_chain);
8401
8402 /* This goes through the topmost target again. */
8403 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8404 len, unit_size, xfered_len);
8405 if (res == TARGET_XFER_OK)
8406 return TARGET_XFER_OK;
8407 else
8408 {
8409 /* No use trying further, we know some memory starting
8410 at MEMADDR isn't available. */
8411 *xfered_len = len;
8412 return TARGET_XFER_UNAVAILABLE;
8413 }
8414 }
8415
8416 /* Don't try to read more than how much is available, in
8417 case the target implements the deprecated QTro packet to
8418 cater for older GDBs (the target's knowledge of read-only
8419 sections may be outdated by now). */
8420 len = VEC_index (mem_range_s, available, 0)->length;
8421
8422 do_cleanups (old_chain);
8423 }
8424 }
8425
8426 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8427 }
8428
8429 \f
8430
8431 /* Sends a packet with content determined by the printf format string
8432 FORMAT and the remaining arguments, then gets the reply. Returns
8433 whether the packet was a success, a failure, or unknown. */
8434
8435 static enum packet_result remote_send_printf (const char *format, ...)
8436 ATTRIBUTE_PRINTF (1, 2);
8437
8438 static enum packet_result
8439 remote_send_printf (const char *format, ...)
8440 {
8441 struct remote_state *rs = get_remote_state ();
8442 int max_size = get_remote_packet_size ();
8443 va_list ap;
8444
8445 va_start (ap, format);
8446
8447 rs->buf[0] = '\0';
8448 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8449 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8450
8451 if (putpkt (rs->buf) < 0)
8452 error (_("Communication problem with target."));
8453
8454 rs->buf[0] = '\0';
8455 getpkt (&rs->buf, &rs->buf_size, 0);
8456
8457 return packet_check_result (rs->buf);
8458 }
8459
8460 static void
8461 restore_remote_timeout (void *p)
8462 {
8463 int value = *(int *)p;
8464
8465 remote_timeout = value;
8466 }
8467
8468 /* Flash writing can take quite some time. We'll set
8469 effectively infinite timeout for flash operations.
8470 In future, we'll need to decide on a better approach. */
8471 static const int remote_flash_timeout = 1000;
8472
8473 static void
8474 remote_flash_erase (struct target_ops *ops,
8475 ULONGEST address, LONGEST length)
8476 {
8477 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8478 int saved_remote_timeout = remote_timeout;
8479 enum packet_result ret;
8480 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
8481 &saved_remote_timeout);
8482
8483 remote_timeout = remote_flash_timeout;
8484
8485 ret = remote_send_printf ("vFlashErase:%s,%s",
8486 phex (address, addr_size),
8487 phex (length, 4));
8488 switch (ret)
8489 {
8490 case PACKET_UNKNOWN:
8491 error (_("Remote target does not support flash erase"));
8492 case PACKET_ERROR:
8493 error (_("Error erasing flash with vFlashErase packet"));
8494 default:
8495 break;
8496 }
8497
8498 do_cleanups (back_to);
8499 }
8500
8501 static enum target_xfer_status
8502 remote_flash_write (struct target_ops *ops, ULONGEST address,
8503 ULONGEST length, ULONGEST *xfered_len,
8504 const gdb_byte *data)
8505 {
8506 int saved_remote_timeout = remote_timeout;
8507 enum target_xfer_status ret;
8508 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
8509 &saved_remote_timeout);
8510
8511 remote_timeout = remote_flash_timeout;
8512 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8513 xfered_len,'X', 0);
8514 do_cleanups (back_to);
8515
8516 return ret;
8517 }
8518
8519 static void
8520 remote_flash_done (struct target_ops *ops)
8521 {
8522 int saved_remote_timeout = remote_timeout;
8523 int ret;
8524 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
8525 &saved_remote_timeout);
8526
8527 remote_timeout = remote_flash_timeout;
8528 ret = remote_send_printf ("vFlashDone");
8529 do_cleanups (back_to);
8530
8531 switch (ret)
8532 {
8533 case PACKET_UNKNOWN:
8534 error (_("Remote target does not support vFlashDone"));
8535 case PACKET_ERROR:
8536 error (_("Error finishing flash operation"));
8537 default:
8538 break;
8539 }
8540 }
8541
8542 static void
8543 remote_files_info (struct target_ops *ignore)
8544 {
8545 puts_filtered ("Debugging a target over a serial line.\n");
8546 }
8547 \f
8548 /* Stuff for dealing with the packets which are part of this protocol.
8549 See comment at top of file for details. */
8550
8551 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8552 error to higher layers. Called when a serial error is detected.
8553 The exception message is STRING, followed by a colon and a blank,
8554 the system error message for errno at function entry and final dot
8555 for output compatibility with throw_perror_with_name. */
8556
8557 static void
8558 unpush_and_perror (const char *string)
8559 {
8560 int saved_errno = errno;
8561
8562 remote_unpush_target ();
8563 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8564 safe_strerror (saved_errno));
8565 }
8566
8567 /* Read a single character from the remote end. The current quit
8568 handler is overridden to avoid quitting in the middle of packet
8569 sequence, as that would break communication with the remote server.
8570 See remote_serial_quit_handler for more detail. */
8571
8572 static int
8573 readchar (int timeout)
8574 {
8575 int ch;
8576 struct remote_state *rs = get_remote_state ();
8577 struct cleanup *old_chain;
8578
8579 old_chain = make_cleanup_override_quit_handler (remote_serial_quit_handler);
8580
8581 rs->got_ctrlc_during_io = 0;
8582
8583 ch = serial_readchar (rs->remote_desc, timeout);
8584
8585 if (rs->got_ctrlc_during_io)
8586 set_quit_flag ();
8587
8588 do_cleanups (old_chain);
8589
8590 if (ch >= 0)
8591 return ch;
8592
8593 switch ((enum serial_rc) ch)
8594 {
8595 case SERIAL_EOF:
8596 remote_unpush_target ();
8597 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8598 /* no return */
8599 case SERIAL_ERROR:
8600 unpush_and_perror (_("Remote communication error. "
8601 "Target disconnected."));
8602 /* no return */
8603 case SERIAL_TIMEOUT:
8604 break;
8605 }
8606 return ch;
8607 }
8608
8609 /* Wrapper for serial_write that closes the target and throws if
8610 writing fails. The current quit handler is overridden to avoid
8611 quitting in the middle of packet sequence, as that would break
8612 communication with the remote server. See
8613 remote_serial_quit_handler for more detail. */
8614
8615 static void
8616 remote_serial_write (const char *str, int len)
8617 {
8618 struct remote_state *rs = get_remote_state ();
8619 struct cleanup *old_chain;
8620
8621 old_chain = make_cleanup_override_quit_handler (remote_serial_quit_handler);
8622
8623 rs->got_ctrlc_during_io = 0;
8624
8625 if (serial_write (rs->remote_desc, str, len))
8626 {
8627 unpush_and_perror (_("Remote communication error. "
8628 "Target disconnected."));
8629 }
8630
8631 if (rs->got_ctrlc_during_io)
8632 set_quit_flag ();
8633
8634 do_cleanups (old_chain);
8635 }
8636
8637 /* Send the command in *BUF to the remote machine, and read the reply
8638 into *BUF. Report an error if we get an error reply. Resize
8639 *BUF using xrealloc if necessary to hold the result, and update
8640 *SIZEOF_BUF. */
8641
8642 static void
8643 remote_send (char **buf,
8644 long *sizeof_buf)
8645 {
8646 putpkt (*buf);
8647 getpkt (buf, sizeof_buf, 0);
8648
8649 if ((*buf)[0] == 'E')
8650 error (_("Remote failure reply: %s"), *buf);
8651 }
8652
8653 /* Return a string representing an escaped version of BUF, of len N.
8654 E.g. \n is converted to \\n, \t to \\t, etc. */
8655
8656 static std::string
8657 escape_buffer (const char *buf, int n)
8658 {
8659 struct cleanup *old_chain;
8660 struct ui_file *stb;
8661
8662 stb = mem_fileopen ();
8663 old_chain = make_cleanup_ui_file_delete (stb);
8664
8665 fputstrn_unfiltered (buf, n, '\\', stb);
8666 std::string str = ui_file_as_string (stb);
8667 do_cleanups (old_chain);
8668 return str;
8669 }
8670
8671 /* Display a null-terminated packet on stdout, for debugging, using C
8672 string notation. */
8673
8674 static void
8675 print_packet (const char *buf)
8676 {
8677 puts_filtered ("\"");
8678 fputstr_filtered (buf, '"', gdb_stdout);
8679 puts_filtered ("\"");
8680 }
8681
8682 int
8683 putpkt (const char *buf)
8684 {
8685 return putpkt_binary (buf, strlen (buf));
8686 }
8687
8688 /* Send a packet to the remote machine, with error checking. The data
8689 of the packet is in BUF. The string in BUF can be at most
8690 get_remote_packet_size () - 5 to account for the $, # and checksum,
8691 and for a possible /0 if we are debugging (remote_debug) and want
8692 to print the sent packet as a string. */
8693
8694 static int
8695 putpkt_binary (const char *buf, int cnt)
8696 {
8697 struct remote_state *rs = get_remote_state ();
8698 int i;
8699 unsigned char csum = 0;
8700 char *buf2 = (char *) xmalloc (cnt + 6);
8701 struct cleanup *old_chain = make_cleanup (xfree, buf2);
8702
8703 int ch;
8704 int tcount = 0;
8705 char *p;
8706
8707 /* Catch cases like trying to read memory or listing threads while
8708 we're waiting for a stop reply. The remote server wouldn't be
8709 ready to handle this request, so we'd hang and timeout. We don't
8710 have to worry about this in synchronous mode, because in that
8711 case it's not possible to issue a command while the target is
8712 running. This is not a problem in non-stop mode, because in that
8713 case, the stub is always ready to process serial input. */
8714 if (!target_is_non_stop_p ()
8715 && target_is_async_p ()
8716 && rs->waiting_for_stop_reply)
8717 {
8718 error (_("Cannot execute this command while the target is running.\n"
8719 "Use the \"interrupt\" command to stop the target\n"
8720 "and then try again."));
8721 }
8722
8723 /* We're sending out a new packet. Make sure we don't look at a
8724 stale cached response. */
8725 rs->cached_wait_status = 0;
8726
8727 /* Copy the packet into buffer BUF2, encapsulating it
8728 and giving it a checksum. */
8729
8730 p = buf2;
8731 *p++ = '$';
8732
8733 for (i = 0; i < cnt; i++)
8734 {
8735 csum += buf[i];
8736 *p++ = buf[i];
8737 }
8738 *p++ = '#';
8739 *p++ = tohex ((csum >> 4) & 0xf);
8740 *p++ = tohex (csum & 0xf);
8741
8742 /* Send it over and over until we get a positive ack. */
8743
8744 while (1)
8745 {
8746 int started_error_output = 0;
8747
8748 if (remote_debug)
8749 {
8750 *p = '\0';
8751
8752 std::string str = escape_buffer (buf2, p - buf2);
8753
8754 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str.c_str ());
8755 gdb_flush (gdb_stdlog);
8756 }
8757 remote_serial_write (buf2, p - buf2);
8758
8759 /* If this is a no acks version of the remote protocol, send the
8760 packet and move on. */
8761 if (rs->noack_mode)
8762 break;
8763
8764 /* Read until either a timeout occurs (-2) or '+' is read.
8765 Handle any notification that arrives in the mean time. */
8766 while (1)
8767 {
8768 ch = readchar (remote_timeout);
8769
8770 if (remote_debug)
8771 {
8772 switch (ch)
8773 {
8774 case '+':
8775 case '-':
8776 case SERIAL_TIMEOUT:
8777 case '$':
8778 case '%':
8779 if (started_error_output)
8780 {
8781 putchar_unfiltered ('\n');
8782 started_error_output = 0;
8783 }
8784 }
8785 }
8786
8787 switch (ch)
8788 {
8789 case '+':
8790 if (remote_debug)
8791 fprintf_unfiltered (gdb_stdlog, "Ack\n");
8792 do_cleanups (old_chain);
8793 return 1;
8794 case '-':
8795 if (remote_debug)
8796 fprintf_unfiltered (gdb_stdlog, "Nak\n");
8797 /* FALLTHROUGH */
8798 case SERIAL_TIMEOUT:
8799 tcount++;
8800 if (tcount > 3)
8801 {
8802 do_cleanups (old_chain);
8803 return 0;
8804 }
8805 break; /* Retransmit buffer. */
8806 case '$':
8807 {
8808 if (remote_debug)
8809 fprintf_unfiltered (gdb_stdlog,
8810 "Packet instead of Ack, ignoring it\n");
8811 /* It's probably an old response sent because an ACK
8812 was lost. Gobble up the packet and ack it so it
8813 doesn't get retransmitted when we resend this
8814 packet. */
8815 skip_frame ();
8816 remote_serial_write ("+", 1);
8817 continue; /* Now, go look for +. */
8818 }
8819
8820 case '%':
8821 {
8822 int val;
8823
8824 /* If we got a notification, handle it, and go back to looking
8825 for an ack. */
8826 /* We've found the start of a notification. Now
8827 collect the data. */
8828 val = read_frame (&rs->buf, &rs->buf_size);
8829 if (val >= 0)
8830 {
8831 if (remote_debug)
8832 {
8833 std::string str = escape_buffer (rs->buf, val);
8834
8835 fprintf_unfiltered (gdb_stdlog,
8836 " Notification received: %s\n",
8837 str.c_str ());
8838 }
8839 handle_notification (rs->notif_state, rs->buf);
8840 /* We're in sync now, rewait for the ack. */
8841 tcount = 0;
8842 }
8843 else
8844 {
8845 if (remote_debug)
8846 {
8847 if (!started_error_output)
8848 {
8849 started_error_output = 1;
8850 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8851 }
8852 fputc_unfiltered (ch & 0177, gdb_stdlog);
8853 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
8854 }
8855 }
8856 continue;
8857 }
8858 /* fall-through */
8859 default:
8860 if (remote_debug)
8861 {
8862 if (!started_error_output)
8863 {
8864 started_error_output = 1;
8865 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8866 }
8867 fputc_unfiltered (ch & 0177, gdb_stdlog);
8868 }
8869 continue;
8870 }
8871 break; /* Here to retransmit. */
8872 }
8873
8874 #if 0
8875 /* This is wrong. If doing a long backtrace, the user should be
8876 able to get out next time we call QUIT, without anything as
8877 violent as interrupt_query. If we want to provide a way out of
8878 here without getting to the next QUIT, it should be based on
8879 hitting ^C twice as in remote_wait. */
8880 if (quit_flag)
8881 {
8882 quit_flag = 0;
8883 interrupt_query ();
8884 }
8885 #endif
8886 }
8887
8888 do_cleanups (old_chain);
8889 return 0;
8890 }
8891
8892 /* Come here after finding the start of a frame when we expected an
8893 ack. Do our best to discard the rest of this packet. */
8894
8895 static void
8896 skip_frame (void)
8897 {
8898 int c;
8899
8900 while (1)
8901 {
8902 c = readchar (remote_timeout);
8903 switch (c)
8904 {
8905 case SERIAL_TIMEOUT:
8906 /* Nothing we can do. */
8907 return;
8908 case '#':
8909 /* Discard the two bytes of checksum and stop. */
8910 c = readchar (remote_timeout);
8911 if (c >= 0)
8912 c = readchar (remote_timeout);
8913
8914 return;
8915 case '*': /* Run length encoding. */
8916 /* Discard the repeat count. */
8917 c = readchar (remote_timeout);
8918 if (c < 0)
8919 return;
8920 break;
8921 default:
8922 /* A regular character. */
8923 break;
8924 }
8925 }
8926 }
8927
8928 /* Come here after finding the start of the frame. Collect the rest
8929 into *BUF, verifying the checksum, length, and handling run-length
8930 compression. NUL terminate the buffer. If there is not enough room,
8931 expand *BUF using xrealloc.
8932
8933 Returns -1 on error, number of characters in buffer (ignoring the
8934 trailing NULL) on success. (could be extended to return one of the
8935 SERIAL status indications). */
8936
8937 static long
8938 read_frame (char **buf_p,
8939 long *sizeof_buf)
8940 {
8941 unsigned char csum;
8942 long bc;
8943 int c;
8944 char *buf = *buf_p;
8945 struct remote_state *rs = get_remote_state ();
8946
8947 csum = 0;
8948 bc = 0;
8949
8950 while (1)
8951 {
8952 c = readchar (remote_timeout);
8953 switch (c)
8954 {
8955 case SERIAL_TIMEOUT:
8956 if (remote_debug)
8957 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
8958 return -1;
8959 case '$':
8960 if (remote_debug)
8961 fputs_filtered ("Saw new packet start in middle of old one\n",
8962 gdb_stdlog);
8963 return -1; /* Start a new packet, count retries. */
8964 case '#':
8965 {
8966 unsigned char pktcsum;
8967 int check_0 = 0;
8968 int check_1 = 0;
8969
8970 buf[bc] = '\0';
8971
8972 check_0 = readchar (remote_timeout);
8973 if (check_0 >= 0)
8974 check_1 = readchar (remote_timeout);
8975
8976 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
8977 {
8978 if (remote_debug)
8979 fputs_filtered ("Timeout in checksum, retrying\n",
8980 gdb_stdlog);
8981 return -1;
8982 }
8983 else if (check_0 < 0 || check_1 < 0)
8984 {
8985 if (remote_debug)
8986 fputs_filtered ("Communication error in checksum\n",
8987 gdb_stdlog);
8988 return -1;
8989 }
8990
8991 /* Don't recompute the checksum; with no ack packets we
8992 don't have any way to indicate a packet retransmission
8993 is necessary. */
8994 if (rs->noack_mode)
8995 return bc;
8996
8997 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
8998 if (csum == pktcsum)
8999 return bc;
9000
9001 if (remote_debug)
9002 {
9003 std::string str = escape_buffer (buf, bc);
9004
9005 fprintf_unfiltered (gdb_stdlog,
9006 "Bad checksum, sentsum=0x%x, "
9007 "csum=0x%x, buf=%s\n",
9008 pktcsum, csum, str.c_str ());
9009 }
9010 /* Number of characters in buffer ignoring trailing
9011 NULL. */
9012 return -1;
9013 }
9014 case '*': /* Run length encoding. */
9015 {
9016 int repeat;
9017
9018 csum += c;
9019 c = readchar (remote_timeout);
9020 csum += c;
9021 repeat = c - ' ' + 3; /* Compute repeat count. */
9022
9023 /* The character before ``*'' is repeated. */
9024
9025 if (repeat > 0 && repeat <= 255 && bc > 0)
9026 {
9027 if (bc + repeat - 1 >= *sizeof_buf - 1)
9028 {
9029 /* Make some more room in the buffer. */
9030 *sizeof_buf += repeat;
9031 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9032 buf = *buf_p;
9033 }
9034
9035 memset (&buf[bc], buf[bc - 1], repeat);
9036 bc += repeat;
9037 continue;
9038 }
9039
9040 buf[bc] = '\0';
9041 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9042 return -1;
9043 }
9044 default:
9045 if (bc >= *sizeof_buf - 1)
9046 {
9047 /* Make some more room in the buffer. */
9048 *sizeof_buf *= 2;
9049 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9050 buf = *buf_p;
9051 }
9052
9053 buf[bc++] = c;
9054 csum += c;
9055 continue;
9056 }
9057 }
9058 }
9059
9060 /* Read a packet from the remote machine, with error checking, and
9061 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9062 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9063 rather than timing out; this is used (in synchronous mode) to wait
9064 for a target that is is executing user code to stop. */
9065 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9066 don't have to change all the calls to getpkt to deal with the
9067 return value, because at the moment I don't know what the right
9068 thing to do it for those. */
9069 void
9070 getpkt (char **buf,
9071 long *sizeof_buf,
9072 int forever)
9073 {
9074 getpkt_sane (buf, sizeof_buf, forever);
9075 }
9076
9077
9078 /* Read a packet from the remote machine, with error checking, and
9079 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9080 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9081 rather than timing out; this is used (in synchronous mode) to wait
9082 for a target that is is executing user code to stop. If FOREVER ==
9083 0, this function is allowed to time out gracefully and return an
9084 indication of this to the caller. Otherwise return the number of
9085 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9086 enough reason to return to the caller. *IS_NOTIF is an output
9087 boolean that indicates whether *BUF holds a notification or not
9088 (a regular packet). */
9089
9090 static int
9091 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9092 int expecting_notif, int *is_notif)
9093 {
9094 struct remote_state *rs = get_remote_state ();
9095 int c;
9096 int tries;
9097 int timeout;
9098 int val = -1;
9099
9100 /* We're reading a new response. Make sure we don't look at a
9101 previously cached response. */
9102 rs->cached_wait_status = 0;
9103
9104 strcpy (*buf, "timeout");
9105
9106 if (forever)
9107 timeout = watchdog > 0 ? watchdog : -1;
9108 else if (expecting_notif)
9109 timeout = 0; /* There should already be a char in the buffer. If
9110 not, bail out. */
9111 else
9112 timeout = remote_timeout;
9113
9114 #define MAX_TRIES 3
9115
9116 /* Process any number of notifications, and then return when
9117 we get a packet. */
9118 for (;;)
9119 {
9120 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9121 times. */
9122 for (tries = 1; tries <= MAX_TRIES; tries++)
9123 {
9124 /* This can loop forever if the remote side sends us
9125 characters continuously, but if it pauses, we'll get
9126 SERIAL_TIMEOUT from readchar because of timeout. Then
9127 we'll count that as a retry.
9128
9129 Note that even when forever is set, we will only wait
9130 forever prior to the start of a packet. After that, we
9131 expect characters to arrive at a brisk pace. They should
9132 show up within remote_timeout intervals. */
9133 do
9134 c = readchar (timeout);
9135 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9136
9137 if (c == SERIAL_TIMEOUT)
9138 {
9139 if (expecting_notif)
9140 return -1; /* Don't complain, it's normal to not get
9141 anything in this case. */
9142
9143 if (forever) /* Watchdog went off? Kill the target. */
9144 {
9145 remote_unpush_target ();
9146 throw_error (TARGET_CLOSE_ERROR,
9147 _("Watchdog timeout has expired. "
9148 "Target detached."));
9149 }
9150 if (remote_debug)
9151 fputs_filtered ("Timed out.\n", gdb_stdlog);
9152 }
9153 else
9154 {
9155 /* We've found the start of a packet or notification.
9156 Now collect the data. */
9157 val = read_frame (buf, sizeof_buf);
9158 if (val >= 0)
9159 break;
9160 }
9161
9162 remote_serial_write ("-", 1);
9163 }
9164
9165 if (tries > MAX_TRIES)
9166 {
9167 /* We have tried hard enough, and just can't receive the
9168 packet/notification. Give up. */
9169 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9170
9171 /* Skip the ack char if we're in no-ack mode. */
9172 if (!rs->noack_mode)
9173 remote_serial_write ("+", 1);
9174 return -1;
9175 }
9176
9177 /* If we got an ordinary packet, return that to our caller. */
9178 if (c == '$')
9179 {
9180 if (remote_debug)
9181 {
9182 std::string str = escape_buffer (*buf, val);
9183
9184 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str.c_str ());
9185 }
9186
9187 /* Skip the ack char if we're in no-ack mode. */
9188 if (!rs->noack_mode)
9189 remote_serial_write ("+", 1);
9190 if (is_notif != NULL)
9191 *is_notif = 0;
9192 return val;
9193 }
9194
9195 /* If we got a notification, handle it, and go back to looking
9196 for a packet. */
9197 else
9198 {
9199 gdb_assert (c == '%');
9200
9201 if (remote_debug)
9202 {
9203 std::string str = escape_buffer (*buf, val);
9204
9205 fprintf_unfiltered (gdb_stdlog,
9206 " Notification received: %s\n",
9207 str.c_str ());
9208 }
9209 if (is_notif != NULL)
9210 *is_notif = 1;
9211
9212 handle_notification (rs->notif_state, *buf);
9213
9214 /* Notifications require no acknowledgement. */
9215
9216 if (expecting_notif)
9217 return val;
9218 }
9219 }
9220 }
9221
9222 static int
9223 getpkt_sane (char **buf, long *sizeof_buf, int forever)
9224 {
9225 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9226 }
9227
9228 static int
9229 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9230 int *is_notif)
9231 {
9232 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9233 is_notif);
9234 }
9235
9236 /* Check whether EVENT is a fork event for the process specified
9237 by the pid passed in DATA, and if it is, kill the fork child. */
9238
9239 static int
9240 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9241 QUEUE_ITER (stop_reply_p) *iter,
9242 stop_reply_p event,
9243 void *data)
9244 {
9245 struct queue_iter_param *param = (struct queue_iter_param *) data;
9246 int parent_pid = *(int *) param->input;
9247
9248 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9249 {
9250 struct remote_state *rs = get_remote_state ();
9251 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9252 int res;
9253
9254 res = remote_vkill (child_pid, rs);
9255 if (res != 0)
9256 error (_("Can't kill fork child process %d"), child_pid);
9257 }
9258
9259 return 1;
9260 }
9261
9262 /* Kill any new fork children of process PID that haven't been
9263 processed by follow_fork. */
9264
9265 static void
9266 kill_new_fork_children (int pid, struct remote_state *rs)
9267 {
9268 struct thread_info *thread;
9269 struct notif_client *notif = &notif_client_stop;
9270 struct queue_iter_param param;
9271
9272 /* Kill the fork child threads of any threads in process PID
9273 that are stopped at a fork event. */
9274 ALL_NON_EXITED_THREADS (thread)
9275 {
9276 struct target_waitstatus *ws = &thread->pending_follow;
9277
9278 if (is_pending_fork_parent (ws, pid, thread->ptid))
9279 {
9280 struct remote_state *rs = get_remote_state ();
9281 int child_pid = ptid_get_pid (ws->value.related_pid);
9282 int res;
9283
9284 res = remote_vkill (child_pid, rs);
9285 if (res != 0)
9286 error (_("Can't kill fork child process %d"), child_pid);
9287 }
9288 }
9289
9290 /* Check for any pending fork events (not reported or processed yet)
9291 in process PID and kill those fork child threads as well. */
9292 remote_notif_get_pending_events (notif);
9293 param.input = &pid;
9294 param.output = NULL;
9295 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9296 kill_child_of_pending_fork, &param);
9297 }
9298
9299 \f
9300 /* Target hook to kill the current inferior. */
9301
9302 static void
9303 remote_kill (struct target_ops *ops)
9304 {
9305 int res = -1;
9306 int pid = ptid_get_pid (inferior_ptid);
9307 struct remote_state *rs = get_remote_state ();
9308
9309 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9310 {
9311 /* If we're stopped while forking and we haven't followed yet,
9312 kill the child task. We need to do this before killing the
9313 parent task because if this is a vfork then the parent will
9314 be sleeping. */
9315 kill_new_fork_children (pid, rs);
9316
9317 res = remote_vkill (pid, rs);
9318 if (res == 0)
9319 {
9320 target_mourn_inferior (inferior_ptid);
9321 return;
9322 }
9323 }
9324
9325 /* If we are in 'target remote' mode and we are killing the only
9326 inferior, then we will tell gdbserver to exit and unpush the
9327 target. */
9328 if (res == -1 && !remote_multi_process_p (rs)
9329 && number_of_live_inferiors () == 1)
9330 {
9331 remote_kill_k ();
9332
9333 /* We've killed the remote end, we get to mourn it. If we are
9334 not in extended mode, mourning the inferior also unpushes
9335 remote_ops from the target stack, which closes the remote
9336 connection. */
9337 target_mourn_inferior (inferior_ptid);
9338
9339 return;
9340 }
9341
9342 error (_("Can't kill process"));
9343 }
9344
9345 /* Send a kill request to the target using the 'vKill' packet. */
9346
9347 static int
9348 remote_vkill (int pid, struct remote_state *rs)
9349 {
9350 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9351 return -1;
9352
9353 /* Tell the remote target to detach. */
9354 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9355 putpkt (rs->buf);
9356 getpkt (&rs->buf, &rs->buf_size, 0);
9357
9358 switch (packet_ok (rs->buf,
9359 &remote_protocol_packets[PACKET_vKill]))
9360 {
9361 case PACKET_OK:
9362 return 0;
9363 case PACKET_ERROR:
9364 return 1;
9365 case PACKET_UNKNOWN:
9366 return -1;
9367 default:
9368 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9369 }
9370 }
9371
9372 /* Send a kill request to the target using the 'k' packet. */
9373
9374 static void
9375 remote_kill_k (void)
9376 {
9377 /* Catch errors so the user can quit from gdb even when we
9378 aren't on speaking terms with the remote system. */
9379 TRY
9380 {
9381 putpkt ("k");
9382 }
9383 CATCH (ex, RETURN_MASK_ERROR)
9384 {
9385 if (ex.error == TARGET_CLOSE_ERROR)
9386 {
9387 /* If we got an (EOF) error that caused the target
9388 to go away, then we're done, that's what we wanted.
9389 "k" is susceptible to cause a premature EOF, given
9390 that the remote server isn't actually required to
9391 reply to "k", and it can happen that it doesn't
9392 even get to reply ACK to the "k". */
9393 return;
9394 }
9395
9396 /* Otherwise, something went wrong. We didn't actually kill
9397 the target. Just propagate the exception, and let the
9398 user or higher layers decide what to do. */
9399 throw_exception (ex);
9400 }
9401 END_CATCH
9402 }
9403
9404 static void
9405 remote_mourn (struct target_ops *target)
9406 {
9407 struct remote_state *rs = get_remote_state ();
9408
9409 /* In 'target remote' mode with one inferior, we close the connection. */
9410 if (!rs->extended && number_of_live_inferiors () <= 1)
9411 {
9412 unpush_target (target);
9413
9414 /* remote_close takes care of doing most of the clean up. */
9415 generic_mourn_inferior ();
9416 return;
9417 }
9418
9419 /* In case we got here due to an error, but we're going to stay
9420 connected. */
9421 rs->waiting_for_stop_reply = 0;
9422
9423 /* If the current general thread belonged to the process we just
9424 detached from or has exited, the remote side current general
9425 thread becomes undefined. Considering a case like this:
9426
9427 - We just got here due to a detach.
9428 - The process that we're detaching from happens to immediately
9429 report a global breakpoint being hit in non-stop mode, in the
9430 same thread we had selected before.
9431 - GDB attaches to this process again.
9432 - This event happens to be the next event we handle.
9433
9434 GDB would consider that the current general thread didn't need to
9435 be set on the stub side (with Hg), since for all it knew,
9436 GENERAL_THREAD hadn't changed.
9437
9438 Notice that although in all-stop mode, the remote server always
9439 sets the current thread to the thread reporting the stop event,
9440 that doesn't happen in non-stop mode; in non-stop, the stub *must
9441 not* change the current thread when reporting a breakpoint hit,
9442 due to the decoupling of event reporting and event handling.
9443
9444 To keep things simple, we always invalidate our notion of the
9445 current thread. */
9446 record_currthread (rs, minus_one_ptid);
9447
9448 /* Call common code to mark the inferior as not running. */
9449 generic_mourn_inferior ();
9450
9451 if (!have_inferiors ())
9452 {
9453 if (!remote_multi_process_p (rs))
9454 {
9455 /* Check whether the target is running now - some remote stubs
9456 automatically restart after kill. */
9457 putpkt ("?");
9458 getpkt (&rs->buf, &rs->buf_size, 0);
9459
9460 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9461 {
9462 /* Assume that the target has been restarted. Set
9463 inferior_ptid so that bits of core GDB realizes
9464 there's something here, e.g., so that the user can
9465 say "kill" again. */
9466 inferior_ptid = magic_null_ptid;
9467 }
9468 }
9469 }
9470 }
9471
9472 static int
9473 extended_remote_supports_disable_randomization (struct target_ops *self)
9474 {
9475 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9476 }
9477
9478 static void
9479 extended_remote_disable_randomization (int val)
9480 {
9481 struct remote_state *rs = get_remote_state ();
9482 char *reply;
9483
9484 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9485 val);
9486 putpkt (rs->buf);
9487 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
9488 if (*reply == '\0')
9489 error (_("Target does not support QDisableRandomization."));
9490 if (strcmp (reply, "OK") != 0)
9491 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9492 }
9493
9494 static int
9495 extended_remote_run (char *args)
9496 {
9497 struct remote_state *rs = get_remote_state ();
9498 int len;
9499 const char *remote_exec_file = get_remote_exec_file ();
9500
9501 /* If the user has disabled vRun support, or we have detected that
9502 support is not available, do not try it. */
9503 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9504 return -1;
9505
9506 strcpy (rs->buf, "vRun;");
9507 len = strlen (rs->buf);
9508
9509 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9510 error (_("Remote file name too long for run packet"));
9511 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9512 strlen (remote_exec_file));
9513
9514 gdb_assert (args != NULL);
9515 if (*args)
9516 {
9517 struct cleanup *back_to;
9518 int i;
9519 char **argv;
9520
9521 argv = gdb_buildargv (args);
9522 back_to = make_cleanup_freeargv (argv);
9523 for (i = 0; argv[i] != NULL; i++)
9524 {
9525 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9526 error (_("Argument list too long for run packet"));
9527 rs->buf[len++] = ';';
9528 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9529 strlen (argv[i]));
9530 }
9531 do_cleanups (back_to);
9532 }
9533
9534 rs->buf[len++] = '\0';
9535
9536 putpkt (rs->buf);
9537 getpkt (&rs->buf, &rs->buf_size, 0);
9538
9539 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9540 {
9541 case PACKET_OK:
9542 /* We have a wait response. All is well. */
9543 return 0;
9544 case PACKET_UNKNOWN:
9545 return -1;
9546 case PACKET_ERROR:
9547 if (remote_exec_file[0] == '\0')
9548 error (_("Running the default executable on the remote target failed; "
9549 "try \"set remote exec-file\"?"));
9550 else
9551 error (_("Running \"%s\" on the remote target failed"),
9552 remote_exec_file);
9553 default:
9554 gdb_assert_not_reached (_("bad switch"));
9555 }
9556 }
9557
9558 /* In the extended protocol we want to be able to do things like
9559 "run" and have them basically work as expected. So we need
9560 a special create_inferior function. We support changing the
9561 executable file and the command line arguments, but not the
9562 environment. */
9563
9564 static void
9565 extended_remote_create_inferior (struct target_ops *ops,
9566 char *exec_file, char *args,
9567 char **env, int from_tty)
9568 {
9569 int run_worked;
9570 char *stop_reply;
9571 struct remote_state *rs = get_remote_state ();
9572 const char *remote_exec_file = get_remote_exec_file ();
9573
9574 /* If running asynchronously, register the target file descriptor
9575 with the event loop. */
9576 if (target_can_async_p ())
9577 target_async (1);
9578
9579 /* Disable address space randomization if requested (and supported). */
9580 if (extended_remote_supports_disable_randomization (ops))
9581 extended_remote_disable_randomization (disable_randomization);
9582
9583 /* Now restart the remote server. */
9584 run_worked = extended_remote_run (args) != -1;
9585 if (!run_worked)
9586 {
9587 /* vRun was not supported. Fail if we need it to do what the
9588 user requested. */
9589 if (remote_exec_file[0])
9590 error (_("Remote target does not support \"set remote exec-file\""));
9591 if (args[0])
9592 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9593
9594 /* Fall back to "R". */
9595 extended_remote_restart ();
9596 }
9597
9598 if (!have_inferiors ())
9599 {
9600 /* Clean up from the last time we ran, before we mark the target
9601 running again. This will mark breakpoints uninserted, and
9602 get_offsets may insert breakpoints. */
9603 init_thread_list ();
9604 init_wait_for_inferior ();
9605 }
9606
9607 /* vRun's success return is a stop reply. */
9608 stop_reply = run_worked ? rs->buf : NULL;
9609 add_current_inferior_and_thread (stop_reply);
9610
9611 /* Get updated offsets, if the stub uses qOffsets. */
9612 get_offsets ();
9613 }
9614 \f
9615
9616 /* Given a location's target info BP_TGT and the packet buffer BUF, output
9617 the list of conditions (in agent expression bytecode format), if any, the
9618 target needs to evaluate. The output is placed into the packet buffer
9619 started from BUF and ended at BUF_END. */
9620
9621 static int
9622 remote_add_target_side_condition (struct gdbarch *gdbarch,
9623 struct bp_target_info *bp_tgt, char *buf,
9624 char *buf_end)
9625 {
9626 struct agent_expr *aexpr = NULL;
9627 int i, ix;
9628
9629 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
9630 return 0;
9631
9632 buf += strlen (buf);
9633 xsnprintf (buf, buf_end - buf, "%s", ";");
9634 buf++;
9635
9636 /* Send conditions to the target and free the vector. */
9637 for (ix = 0;
9638 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
9639 ix++)
9640 {
9641 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
9642 buf += strlen (buf);
9643 for (i = 0; i < aexpr->len; ++i)
9644 buf = pack_hex_byte (buf, aexpr->buf[i]);
9645 *buf = '\0';
9646 }
9647 return 0;
9648 }
9649
9650 static void
9651 remote_add_target_side_commands (struct gdbarch *gdbarch,
9652 struct bp_target_info *bp_tgt, char *buf)
9653 {
9654 struct agent_expr *aexpr = NULL;
9655 int i, ix;
9656
9657 if (VEC_empty (agent_expr_p, bp_tgt->tcommands))
9658 return;
9659
9660 buf += strlen (buf);
9661
9662 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
9663 buf += strlen (buf);
9664
9665 /* Concatenate all the agent expressions that are commands into the
9666 cmds parameter. */
9667 for (ix = 0;
9668 VEC_iterate (agent_expr_p, bp_tgt->tcommands, ix, aexpr);
9669 ix++)
9670 {
9671 sprintf (buf, "X%x,", aexpr->len);
9672 buf += strlen (buf);
9673 for (i = 0; i < aexpr->len; ++i)
9674 buf = pack_hex_byte (buf, aexpr->buf[i]);
9675 *buf = '\0';
9676 }
9677 }
9678
9679 /* Insert a breakpoint. On targets that have software breakpoint
9680 support, we ask the remote target to do the work; on targets
9681 which don't, we insert a traditional memory breakpoint. */
9682
9683 static int
9684 remote_insert_breakpoint (struct target_ops *ops,
9685 struct gdbarch *gdbarch,
9686 struct bp_target_info *bp_tgt)
9687 {
9688 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
9689 If it succeeds, then set the support to PACKET_ENABLE. If it
9690 fails, and the user has explicitly requested the Z support then
9691 report an error, otherwise, mark it disabled and go on. */
9692
9693 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9694 {
9695 CORE_ADDR addr = bp_tgt->reqstd_address;
9696 struct remote_state *rs;
9697 char *p, *endbuf;
9698 int bpsize;
9699
9700 /* Make sure the remote is pointing at the right process, if
9701 necessary. */
9702 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9703 set_general_process ();
9704
9705 rs = get_remote_state ();
9706 p = rs->buf;
9707 endbuf = rs->buf + get_remote_packet_size ();
9708
9709 *(p++) = 'Z';
9710 *(p++) = '0';
9711 *(p++) = ',';
9712 addr = (ULONGEST) remote_address_masked (addr);
9713 p += hexnumstr (p, addr);
9714 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9715
9716 if (remote_supports_cond_breakpoints (ops))
9717 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
9718
9719 if (remote_can_run_breakpoint_commands (ops))
9720 remote_add_target_side_commands (gdbarch, bp_tgt, p);
9721
9722 putpkt (rs->buf);
9723 getpkt (&rs->buf, &rs->buf_size, 0);
9724
9725 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
9726 {
9727 case PACKET_ERROR:
9728 return -1;
9729 case PACKET_OK:
9730 return 0;
9731 case PACKET_UNKNOWN:
9732 break;
9733 }
9734 }
9735
9736 /* If this breakpoint has target-side commands but this stub doesn't
9737 support Z0 packets, throw error. */
9738 if (!VEC_empty (agent_expr_p, bp_tgt->tcommands))
9739 throw_error (NOT_SUPPORTED_ERROR, _("\
9740 Target doesn't support breakpoints that have target side commands."));
9741
9742 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
9743 }
9744
9745 static int
9746 remote_remove_breakpoint (struct target_ops *ops,
9747 struct gdbarch *gdbarch,
9748 struct bp_target_info *bp_tgt,
9749 enum remove_bp_reason reason)
9750 {
9751 CORE_ADDR addr = bp_tgt->placed_address;
9752 struct remote_state *rs = get_remote_state ();
9753
9754 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9755 {
9756 char *p = rs->buf;
9757 char *endbuf = rs->buf + get_remote_packet_size ();
9758
9759 /* Make sure the remote is pointing at the right process, if
9760 necessary. */
9761 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9762 set_general_process ();
9763
9764 *(p++) = 'z';
9765 *(p++) = '0';
9766 *(p++) = ',';
9767
9768 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
9769 p += hexnumstr (p, addr);
9770 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9771
9772 putpkt (rs->buf);
9773 getpkt (&rs->buf, &rs->buf_size, 0);
9774
9775 return (rs->buf[0] == 'E');
9776 }
9777
9778 return memory_remove_breakpoint (ops, gdbarch, bp_tgt, reason);
9779 }
9780
9781 static enum Z_packet_type
9782 watchpoint_to_Z_packet (int type)
9783 {
9784 switch (type)
9785 {
9786 case hw_write:
9787 return Z_PACKET_WRITE_WP;
9788 break;
9789 case hw_read:
9790 return Z_PACKET_READ_WP;
9791 break;
9792 case hw_access:
9793 return Z_PACKET_ACCESS_WP;
9794 break;
9795 default:
9796 internal_error (__FILE__, __LINE__,
9797 _("hw_bp_to_z: bad watchpoint type %d"), type);
9798 }
9799 }
9800
9801 static int
9802 remote_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9803 enum target_hw_bp_type type, struct expression *cond)
9804 {
9805 struct remote_state *rs = get_remote_state ();
9806 char *endbuf = rs->buf + get_remote_packet_size ();
9807 char *p;
9808 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9809
9810 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9811 return 1;
9812
9813 /* Make sure the remote is pointing at the right process, if
9814 necessary. */
9815 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9816 set_general_process ();
9817
9818 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
9819 p = strchr (rs->buf, '\0');
9820 addr = remote_address_masked (addr);
9821 p += hexnumstr (p, (ULONGEST) addr);
9822 xsnprintf (p, endbuf - p, ",%x", len);
9823
9824 putpkt (rs->buf);
9825 getpkt (&rs->buf, &rs->buf_size, 0);
9826
9827 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9828 {
9829 case PACKET_ERROR:
9830 return -1;
9831 case PACKET_UNKNOWN:
9832 return 1;
9833 case PACKET_OK:
9834 return 0;
9835 }
9836 internal_error (__FILE__, __LINE__,
9837 _("remote_insert_watchpoint: reached end of function"));
9838 }
9839
9840 static int
9841 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
9842 CORE_ADDR start, int length)
9843 {
9844 CORE_ADDR diff = remote_address_masked (addr - start);
9845
9846 return diff < length;
9847 }
9848
9849
9850 static int
9851 remote_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9852 enum target_hw_bp_type type, struct expression *cond)
9853 {
9854 struct remote_state *rs = get_remote_state ();
9855 char *endbuf = rs->buf + get_remote_packet_size ();
9856 char *p;
9857 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9858
9859 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9860 return -1;
9861
9862 /* Make sure the remote is pointing at the right process, if
9863 necessary. */
9864 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9865 set_general_process ();
9866
9867 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
9868 p = strchr (rs->buf, '\0');
9869 addr = remote_address_masked (addr);
9870 p += hexnumstr (p, (ULONGEST) addr);
9871 xsnprintf (p, endbuf - p, ",%x", len);
9872 putpkt (rs->buf);
9873 getpkt (&rs->buf, &rs->buf_size, 0);
9874
9875 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9876 {
9877 case PACKET_ERROR:
9878 case PACKET_UNKNOWN:
9879 return -1;
9880 case PACKET_OK:
9881 return 0;
9882 }
9883 internal_error (__FILE__, __LINE__,
9884 _("remote_remove_watchpoint: reached end of function"));
9885 }
9886
9887
9888 int remote_hw_watchpoint_limit = -1;
9889 int remote_hw_watchpoint_length_limit = -1;
9890 int remote_hw_breakpoint_limit = -1;
9891
9892 static int
9893 remote_region_ok_for_hw_watchpoint (struct target_ops *self,
9894 CORE_ADDR addr, int len)
9895 {
9896 if (remote_hw_watchpoint_length_limit == 0)
9897 return 0;
9898 else if (remote_hw_watchpoint_length_limit < 0)
9899 return 1;
9900 else if (len <= remote_hw_watchpoint_length_limit)
9901 return 1;
9902 else
9903 return 0;
9904 }
9905
9906 static int
9907 remote_check_watch_resources (struct target_ops *self,
9908 enum bptype type, int cnt, int ot)
9909 {
9910 if (type == bp_hardware_breakpoint)
9911 {
9912 if (remote_hw_breakpoint_limit == 0)
9913 return 0;
9914 else if (remote_hw_breakpoint_limit < 0)
9915 return 1;
9916 else if (cnt <= remote_hw_breakpoint_limit)
9917 return 1;
9918 }
9919 else
9920 {
9921 if (remote_hw_watchpoint_limit == 0)
9922 return 0;
9923 else if (remote_hw_watchpoint_limit < 0)
9924 return 1;
9925 else if (ot)
9926 return -1;
9927 else if (cnt <= remote_hw_watchpoint_limit)
9928 return 1;
9929 }
9930 return -1;
9931 }
9932
9933 /* The to_stopped_by_sw_breakpoint method of target remote. */
9934
9935 static int
9936 remote_stopped_by_sw_breakpoint (struct target_ops *ops)
9937 {
9938 struct thread_info *thread = inferior_thread ();
9939
9940 return (thread->priv != NULL
9941 && thread->priv->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
9942 }
9943
9944 /* The to_supports_stopped_by_sw_breakpoint method of target
9945 remote. */
9946
9947 static int
9948 remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
9949 {
9950 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
9951 }
9952
9953 /* The to_stopped_by_hw_breakpoint method of target remote. */
9954
9955 static int
9956 remote_stopped_by_hw_breakpoint (struct target_ops *ops)
9957 {
9958 struct thread_info *thread = inferior_thread ();
9959
9960 return (thread->priv != NULL
9961 && thread->priv->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
9962 }
9963
9964 /* The to_supports_stopped_by_hw_breakpoint method of target
9965 remote. */
9966
9967 static int
9968 remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
9969 {
9970 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
9971 }
9972
9973 static int
9974 remote_stopped_by_watchpoint (struct target_ops *ops)
9975 {
9976 struct thread_info *thread = inferior_thread ();
9977
9978 return (thread->priv != NULL
9979 && thread->priv->stop_reason == TARGET_STOPPED_BY_WATCHPOINT);
9980 }
9981
9982 static int
9983 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
9984 {
9985 struct thread_info *thread = inferior_thread ();
9986
9987 if (thread->priv != NULL
9988 && thread->priv->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
9989 {
9990 *addr_p = thread->priv->watch_data_address;
9991 return 1;
9992 }
9993
9994 return 0;
9995 }
9996
9997
9998 static int
9999 remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10000 struct bp_target_info *bp_tgt)
10001 {
10002 CORE_ADDR addr = bp_tgt->reqstd_address;
10003 struct remote_state *rs;
10004 char *p, *endbuf;
10005 char *message;
10006
10007 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10008 return -1;
10009
10010 /* Make sure the remote is pointing at the right process, if
10011 necessary. */
10012 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10013 set_general_process ();
10014
10015 rs = get_remote_state ();
10016 p = rs->buf;
10017 endbuf = rs->buf + get_remote_packet_size ();
10018
10019 *(p++) = 'Z';
10020 *(p++) = '1';
10021 *(p++) = ',';
10022
10023 addr = remote_address_masked (addr);
10024 p += hexnumstr (p, (ULONGEST) addr);
10025 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10026
10027 if (remote_supports_cond_breakpoints (self))
10028 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10029
10030 if (remote_can_run_breakpoint_commands (self))
10031 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10032
10033 putpkt (rs->buf);
10034 getpkt (&rs->buf, &rs->buf_size, 0);
10035
10036 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10037 {
10038 case PACKET_ERROR:
10039 if (rs->buf[1] == '.')
10040 {
10041 message = strchr (rs->buf + 2, '.');
10042 if (message)
10043 error (_("Remote failure reply: %s"), message + 1);
10044 }
10045 return -1;
10046 case PACKET_UNKNOWN:
10047 return -1;
10048 case PACKET_OK:
10049 return 0;
10050 }
10051 internal_error (__FILE__, __LINE__,
10052 _("remote_insert_hw_breakpoint: reached end of function"));
10053 }
10054
10055
10056 static int
10057 remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10058 struct bp_target_info *bp_tgt)
10059 {
10060 CORE_ADDR addr;
10061 struct remote_state *rs = get_remote_state ();
10062 char *p = rs->buf;
10063 char *endbuf = rs->buf + get_remote_packet_size ();
10064
10065 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10066 return -1;
10067
10068 /* Make sure the remote is pointing at the right process, if
10069 necessary. */
10070 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10071 set_general_process ();
10072
10073 *(p++) = 'z';
10074 *(p++) = '1';
10075 *(p++) = ',';
10076
10077 addr = remote_address_masked (bp_tgt->placed_address);
10078 p += hexnumstr (p, (ULONGEST) addr);
10079 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10080
10081 putpkt (rs->buf);
10082 getpkt (&rs->buf, &rs->buf_size, 0);
10083
10084 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10085 {
10086 case PACKET_ERROR:
10087 case PACKET_UNKNOWN:
10088 return -1;
10089 case PACKET_OK:
10090 return 0;
10091 }
10092 internal_error (__FILE__, __LINE__,
10093 _("remote_remove_hw_breakpoint: reached end of function"));
10094 }
10095
10096 /* Verify memory using the "qCRC:" request. */
10097
10098 static int
10099 remote_verify_memory (struct target_ops *ops,
10100 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10101 {
10102 struct remote_state *rs = get_remote_state ();
10103 unsigned long host_crc, target_crc;
10104 char *tmp;
10105
10106 /* It doesn't make sense to use qCRC if the remote target is
10107 connected but not running. */
10108 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10109 {
10110 enum packet_result result;
10111
10112 /* Make sure the remote is pointing at the right process. */
10113 set_general_process ();
10114
10115 /* FIXME: assumes lma can fit into long. */
10116 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10117 (long) lma, (long) size);
10118 putpkt (rs->buf);
10119
10120 /* Be clever; compute the host_crc before waiting for target
10121 reply. */
10122 host_crc = xcrc32 (data, size, 0xffffffff);
10123
10124 getpkt (&rs->buf, &rs->buf_size, 0);
10125
10126 result = packet_ok (rs->buf,
10127 &remote_protocol_packets[PACKET_qCRC]);
10128 if (result == PACKET_ERROR)
10129 return -1;
10130 else if (result == PACKET_OK)
10131 {
10132 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10133 target_crc = target_crc * 16 + fromhex (*tmp);
10134
10135 return (host_crc == target_crc);
10136 }
10137 }
10138
10139 return simple_verify_memory (ops, data, lma, size);
10140 }
10141
10142 /* compare-sections command
10143
10144 With no arguments, compares each loadable section in the exec bfd
10145 with the same memory range on the target, and reports mismatches.
10146 Useful for verifying the image on the target against the exec file. */
10147
10148 static void
10149 compare_sections_command (char *args, int from_tty)
10150 {
10151 asection *s;
10152 struct cleanup *old_chain;
10153 gdb_byte *sectdata;
10154 const char *sectname;
10155 bfd_size_type size;
10156 bfd_vma lma;
10157 int matched = 0;
10158 int mismatched = 0;
10159 int res;
10160 int read_only = 0;
10161
10162 if (!exec_bfd)
10163 error (_("command cannot be used without an exec file"));
10164
10165 /* Make sure the remote is pointing at the right process. */
10166 set_general_process ();
10167
10168 if (args != NULL && strcmp (args, "-r") == 0)
10169 {
10170 read_only = 1;
10171 args = NULL;
10172 }
10173
10174 for (s = exec_bfd->sections; s; s = s->next)
10175 {
10176 if (!(s->flags & SEC_LOAD))
10177 continue; /* Skip non-loadable section. */
10178
10179 if (read_only && (s->flags & SEC_READONLY) == 0)
10180 continue; /* Skip writeable sections */
10181
10182 size = bfd_get_section_size (s);
10183 if (size == 0)
10184 continue; /* Skip zero-length section. */
10185
10186 sectname = bfd_get_section_name (exec_bfd, s);
10187 if (args && strcmp (args, sectname) != 0)
10188 continue; /* Not the section selected by user. */
10189
10190 matched = 1; /* Do this section. */
10191 lma = s->lma;
10192
10193 sectdata = (gdb_byte *) xmalloc (size);
10194 old_chain = make_cleanup (xfree, sectdata);
10195 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
10196
10197 res = target_verify_memory (sectdata, lma, size);
10198
10199 if (res == -1)
10200 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10201 paddress (target_gdbarch (), lma),
10202 paddress (target_gdbarch (), lma + size));
10203
10204 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10205 paddress (target_gdbarch (), lma),
10206 paddress (target_gdbarch (), lma + size));
10207 if (res)
10208 printf_filtered ("matched.\n");
10209 else
10210 {
10211 printf_filtered ("MIS-MATCHED!\n");
10212 mismatched++;
10213 }
10214
10215 do_cleanups (old_chain);
10216 }
10217 if (mismatched > 0)
10218 warning (_("One or more sections of the target image does not match\n\
10219 the loaded file\n"));
10220 if (args && !matched)
10221 printf_filtered (_("No loaded section named '%s'.\n"), args);
10222 }
10223
10224 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10225 into remote target. The number of bytes written to the remote
10226 target is returned, or -1 for error. */
10227
10228 static enum target_xfer_status
10229 remote_write_qxfer (struct target_ops *ops, const char *object_name,
10230 const char *annex, const gdb_byte *writebuf,
10231 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10232 struct packet_config *packet)
10233 {
10234 int i, buf_len;
10235 ULONGEST n;
10236 struct remote_state *rs = get_remote_state ();
10237 int max_size = get_memory_write_packet_size ();
10238
10239 if (packet->support == PACKET_DISABLE)
10240 return TARGET_XFER_E_IO;
10241
10242 /* Insert header. */
10243 i = snprintf (rs->buf, max_size,
10244 "qXfer:%s:write:%s:%s:",
10245 object_name, annex ? annex : "",
10246 phex_nz (offset, sizeof offset));
10247 max_size -= (i + 1);
10248
10249 /* Escape as much data as fits into rs->buf. */
10250 buf_len = remote_escape_output
10251 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10252
10253 if (putpkt_binary (rs->buf, i + buf_len) < 0
10254 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10255 || packet_ok (rs->buf, packet) != PACKET_OK)
10256 return TARGET_XFER_E_IO;
10257
10258 unpack_varlen_hex (rs->buf, &n);
10259
10260 *xfered_len = n;
10261 return TARGET_XFER_OK;
10262 }
10263
10264 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10265 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10266 number of bytes read is returned, or 0 for EOF, or -1 for error.
10267 The number of bytes read may be less than LEN without indicating an
10268 EOF. PACKET is checked and updated to indicate whether the remote
10269 target supports this object. */
10270
10271 static enum target_xfer_status
10272 remote_read_qxfer (struct target_ops *ops, const char *object_name,
10273 const char *annex,
10274 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10275 ULONGEST *xfered_len,
10276 struct packet_config *packet)
10277 {
10278 struct remote_state *rs = get_remote_state ();
10279 LONGEST i, n, packet_len;
10280
10281 if (packet->support == PACKET_DISABLE)
10282 return TARGET_XFER_E_IO;
10283
10284 /* Check whether we've cached an end-of-object packet that matches
10285 this request. */
10286 if (rs->finished_object)
10287 {
10288 if (strcmp (object_name, rs->finished_object) == 0
10289 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10290 && offset == rs->finished_offset)
10291 return TARGET_XFER_EOF;
10292
10293
10294 /* Otherwise, we're now reading something different. Discard
10295 the cache. */
10296 xfree (rs->finished_object);
10297 xfree (rs->finished_annex);
10298 rs->finished_object = NULL;
10299 rs->finished_annex = NULL;
10300 }
10301
10302 /* Request only enough to fit in a single packet. The actual data
10303 may not, since we don't know how much of it will need to be escaped;
10304 the target is free to respond with slightly less data. We subtract
10305 five to account for the response type and the protocol frame. */
10306 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10307 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10308 object_name, annex ? annex : "",
10309 phex_nz (offset, sizeof offset),
10310 phex_nz (n, sizeof n));
10311 i = putpkt (rs->buf);
10312 if (i < 0)
10313 return TARGET_XFER_E_IO;
10314
10315 rs->buf[0] = '\0';
10316 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10317 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10318 return TARGET_XFER_E_IO;
10319
10320 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10321 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10322
10323 /* 'm' means there is (or at least might be) more data after this
10324 batch. That does not make sense unless there's at least one byte
10325 of data in this reply. */
10326 if (rs->buf[0] == 'm' && packet_len == 1)
10327 error (_("Remote qXfer reply contained no data."));
10328
10329 /* Got some data. */
10330 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10331 packet_len - 1, readbuf, n);
10332
10333 /* 'l' is an EOF marker, possibly including a final block of data,
10334 or possibly empty. If we have the final block of a non-empty
10335 object, record this fact to bypass a subsequent partial read. */
10336 if (rs->buf[0] == 'l' && offset + i > 0)
10337 {
10338 rs->finished_object = xstrdup (object_name);
10339 rs->finished_annex = xstrdup (annex ? annex : "");
10340 rs->finished_offset = offset + i;
10341 }
10342
10343 if (i == 0)
10344 return TARGET_XFER_EOF;
10345 else
10346 {
10347 *xfered_len = i;
10348 return TARGET_XFER_OK;
10349 }
10350 }
10351
10352 static enum target_xfer_status
10353 remote_xfer_partial (struct target_ops *ops, enum target_object object,
10354 const char *annex, gdb_byte *readbuf,
10355 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10356 ULONGEST *xfered_len)
10357 {
10358 struct remote_state *rs;
10359 int i;
10360 char *p2;
10361 char query_type;
10362 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10363
10364 set_remote_traceframe ();
10365 set_general_thread (inferior_ptid);
10366
10367 rs = get_remote_state ();
10368
10369 /* Handle memory using the standard memory routines. */
10370 if (object == TARGET_OBJECT_MEMORY)
10371 {
10372 /* If the remote target is connected but not running, we should
10373 pass this request down to a lower stratum (e.g. the executable
10374 file). */
10375 if (!target_has_execution)
10376 return TARGET_XFER_EOF;
10377
10378 if (writebuf != NULL)
10379 return remote_write_bytes (offset, writebuf, len, unit_size,
10380 xfered_len);
10381 else
10382 return remote_read_bytes (ops, offset, readbuf, len, unit_size,
10383 xfered_len);
10384 }
10385
10386 /* Handle SPU memory using qxfer packets. */
10387 if (object == TARGET_OBJECT_SPU)
10388 {
10389 if (readbuf)
10390 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
10391 xfered_len, &remote_protocol_packets
10392 [PACKET_qXfer_spu_read]);
10393 else
10394 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
10395 xfered_len, &remote_protocol_packets
10396 [PACKET_qXfer_spu_write]);
10397 }
10398
10399 /* Handle extra signal info using qxfer packets. */
10400 if (object == TARGET_OBJECT_SIGNAL_INFO)
10401 {
10402 if (readbuf)
10403 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
10404 xfered_len, &remote_protocol_packets
10405 [PACKET_qXfer_siginfo_read]);
10406 else
10407 return remote_write_qxfer (ops, "siginfo", annex,
10408 writebuf, offset, len, xfered_len,
10409 &remote_protocol_packets
10410 [PACKET_qXfer_siginfo_write]);
10411 }
10412
10413 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10414 {
10415 if (readbuf)
10416 return remote_read_qxfer (ops, "statictrace", annex,
10417 readbuf, offset, len, xfered_len,
10418 &remote_protocol_packets
10419 [PACKET_qXfer_statictrace_read]);
10420 else
10421 return TARGET_XFER_E_IO;
10422 }
10423
10424 /* Only handle flash writes. */
10425 if (writebuf != NULL)
10426 {
10427 switch (object)
10428 {
10429 case TARGET_OBJECT_FLASH:
10430 return remote_flash_write (ops, offset, len, xfered_len,
10431 writebuf);
10432
10433 default:
10434 return TARGET_XFER_E_IO;
10435 }
10436 }
10437
10438 /* Map pre-existing objects onto letters. DO NOT do this for new
10439 objects!!! Instead specify new query packets. */
10440 switch (object)
10441 {
10442 case TARGET_OBJECT_AVR:
10443 query_type = 'R';
10444 break;
10445
10446 case TARGET_OBJECT_AUXV:
10447 gdb_assert (annex == NULL);
10448 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
10449 xfered_len,
10450 &remote_protocol_packets[PACKET_qXfer_auxv]);
10451
10452 case TARGET_OBJECT_AVAILABLE_FEATURES:
10453 return remote_read_qxfer
10454 (ops, "features", annex, readbuf, offset, len, xfered_len,
10455 &remote_protocol_packets[PACKET_qXfer_features]);
10456
10457 case TARGET_OBJECT_LIBRARIES:
10458 return remote_read_qxfer
10459 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
10460 &remote_protocol_packets[PACKET_qXfer_libraries]);
10461
10462 case TARGET_OBJECT_LIBRARIES_SVR4:
10463 return remote_read_qxfer
10464 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
10465 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10466
10467 case TARGET_OBJECT_MEMORY_MAP:
10468 gdb_assert (annex == NULL);
10469 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
10470 xfered_len,
10471 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10472
10473 case TARGET_OBJECT_OSDATA:
10474 /* Should only get here if we're connected. */
10475 gdb_assert (rs->remote_desc);
10476 return remote_read_qxfer
10477 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
10478 &remote_protocol_packets[PACKET_qXfer_osdata]);
10479
10480 case TARGET_OBJECT_THREADS:
10481 gdb_assert (annex == NULL);
10482 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
10483 xfered_len,
10484 &remote_protocol_packets[PACKET_qXfer_threads]);
10485
10486 case TARGET_OBJECT_TRACEFRAME_INFO:
10487 gdb_assert (annex == NULL);
10488 return remote_read_qxfer
10489 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
10490 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10491
10492 case TARGET_OBJECT_FDPIC:
10493 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
10494 xfered_len,
10495 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10496
10497 case TARGET_OBJECT_OPENVMS_UIB:
10498 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
10499 xfered_len,
10500 &remote_protocol_packets[PACKET_qXfer_uib]);
10501
10502 case TARGET_OBJECT_BTRACE:
10503 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
10504 xfered_len,
10505 &remote_protocol_packets[PACKET_qXfer_btrace]);
10506
10507 case TARGET_OBJECT_BTRACE_CONF:
10508 return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset,
10509 len, xfered_len,
10510 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10511
10512 case TARGET_OBJECT_EXEC_FILE:
10513 return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset,
10514 len, xfered_len,
10515 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10516
10517 default:
10518 return TARGET_XFER_E_IO;
10519 }
10520
10521 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10522 large enough let the caller deal with it. */
10523 if (len < get_remote_packet_size ())
10524 return TARGET_XFER_E_IO;
10525 len = get_remote_packet_size ();
10526
10527 /* Except for querying the minimum buffer size, target must be open. */
10528 if (!rs->remote_desc)
10529 error (_("remote query is only available after target open"));
10530
10531 gdb_assert (annex != NULL);
10532 gdb_assert (readbuf != NULL);
10533
10534 p2 = rs->buf;
10535 *p2++ = 'q';
10536 *p2++ = query_type;
10537
10538 /* We used one buffer char for the remote protocol q command and
10539 another for the query type. As the remote protocol encapsulation
10540 uses 4 chars plus one extra in case we are debugging
10541 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10542 string. */
10543 i = 0;
10544 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10545 {
10546 /* Bad caller may have sent forbidden characters. */
10547 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10548 *p2++ = annex[i];
10549 i++;
10550 }
10551 *p2 = '\0';
10552 gdb_assert (annex[i] == '\0');
10553
10554 i = putpkt (rs->buf);
10555 if (i < 0)
10556 return TARGET_XFER_E_IO;
10557
10558 getpkt (&rs->buf, &rs->buf_size, 0);
10559 strcpy ((char *) readbuf, rs->buf);
10560
10561 *xfered_len = strlen ((char *) readbuf);
10562 return TARGET_XFER_OK;
10563 }
10564
10565 /* Implementation of to_get_memory_xfer_limit. */
10566
10567 static ULONGEST
10568 remote_get_memory_xfer_limit (struct target_ops *ops)
10569 {
10570 return get_memory_write_packet_size ();
10571 }
10572
10573 static int
10574 remote_search_memory (struct target_ops* ops,
10575 CORE_ADDR start_addr, ULONGEST search_space_len,
10576 const gdb_byte *pattern, ULONGEST pattern_len,
10577 CORE_ADDR *found_addrp)
10578 {
10579 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10580 struct remote_state *rs = get_remote_state ();
10581 int max_size = get_memory_write_packet_size ();
10582 struct packet_config *packet =
10583 &remote_protocol_packets[PACKET_qSearch_memory];
10584 /* Number of packet bytes used to encode the pattern;
10585 this could be more than PATTERN_LEN due to escape characters. */
10586 int escaped_pattern_len;
10587 /* Amount of pattern that was encodable in the packet. */
10588 int used_pattern_len;
10589 int i;
10590 int found;
10591 ULONGEST found_addr;
10592
10593 /* Don't go to the target if we don't have to.
10594 This is done before checking packet->support to avoid the possibility that
10595 a success for this edge case means the facility works in general. */
10596 if (pattern_len > search_space_len)
10597 return 0;
10598 if (pattern_len == 0)
10599 {
10600 *found_addrp = start_addr;
10601 return 1;
10602 }
10603
10604 /* If we already know the packet isn't supported, fall back to the simple
10605 way of searching memory. */
10606
10607 if (packet_config_support (packet) == PACKET_DISABLE)
10608 {
10609 /* Target doesn't provided special support, fall back and use the
10610 standard support (copy memory and do the search here). */
10611 return simple_search_memory (ops, start_addr, search_space_len,
10612 pattern, pattern_len, found_addrp);
10613 }
10614
10615 /* Make sure the remote is pointing at the right process. */
10616 set_general_process ();
10617
10618 /* Insert header. */
10619 i = snprintf (rs->buf, max_size,
10620 "qSearch:memory:%s;%s;",
10621 phex_nz (start_addr, addr_size),
10622 phex_nz (search_space_len, sizeof (search_space_len)));
10623 max_size -= (i + 1);
10624
10625 /* Escape as much data as fits into rs->buf. */
10626 escaped_pattern_len =
10627 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10628 &used_pattern_len, max_size);
10629
10630 /* Bail if the pattern is too large. */
10631 if (used_pattern_len != pattern_len)
10632 error (_("Pattern is too large to transmit to remote target."));
10633
10634 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10635 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10636 || packet_ok (rs->buf, packet) != PACKET_OK)
10637 {
10638 /* The request may not have worked because the command is not
10639 supported. If so, fall back to the simple way. */
10640 if (packet->support == PACKET_DISABLE)
10641 {
10642 return simple_search_memory (ops, start_addr, search_space_len,
10643 pattern, pattern_len, found_addrp);
10644 }
10645 return -1;
10646 }
10647
10648 if (rs->buf[0] == '0')
10649 found = 0;
10650 else if (rs->buf[0] == '1')
10651 {
10652 found = 1;
10653 if (rs->buf[1] != ',')
10654 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10655 unpack_varlen_hex (rs->buf + 2, &found_addr);
10656 *found_addrp = found_addr;
10657 }
10658 else
10659 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10660
10661 return found;
10662 }
10663
10664 static void
10665 remote_rcmd (struct target_ops *self, const char *command,
10666 struct ui_file *outbuf)
10667 {
10668 struct remote_state *rs = get_remote_state ();
10669 char *p = rs->buf;
10670
10671 if (!rs->remote_desc)
10672 error (_("remote rcmd is only available after target open"));
10673
10674 /* Send a NULL command across as an empty command. */
10675 if (command == NULL)
10676 command = "";
10677
10678 /* The query prefix. */
10679 strcpy (rs->buf, "qRcmd,");
10680 p = strchr (rs->buf, '\0');
10681
10682 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
10683 > get_remote_packet_size ())
10684 error (_("\"monitor\" command ``%s'' is too long."), command);
10685
10686 /* Encode the actual command. */
10687 bin2hex ((const gdb_byte *) command, p, strlen (command));
10688
10689 if (putpkt (rs->buf) < 0)
10690 error (_("Communication problem with target."));
10691
10692 /* get/display the response */
10693 while (1)
10694 {
10695 char *buf;
10696
10697 /* XXX - see also remote_get_noisy_reply(). */
10698 QUIT; /* Allow user to bail out with ^C. */
10699 rs->buf[0] = '\0';
10700 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
10701 {
10702 /* Timeout. Continue to (try to) read responses.
10703 This is better than stopping with an error, assuming the stub
10704 is still executing the (long) monitor command.
10705 If needed, the user can interrupt gdb using C-c, obtaining
10706 an effect similar to stop on timeout. */
10707 continue;
10708 }
10709 buf = rs->buf;
10710 if (buf[0] == '\0')
10711 error (_("Target does not support this command."));
10712 if (buf[0] == 'O' && buf[1] != 'K')
10713 {
10714 remote_console_output (buf + 1); /* 'O' message from stub. */
10715 continue;
10716 }
10717 if (strcmp (buf, "OK") == 0)
10718 break;
10719 if (strlen (buf) == 3 && buf[0] == 'E'
10720 && isdigit (buf[1]) && isdigit (buf[2]))
10721 {
10722 error (_("Protocol error with Rcmd"));
10723 }
10724 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
10725 {
10726 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
10727
10728 fputc_unfiltered (c, outbuf);
10729 }
10730 break;
10731 }
10732 }
10733
10734 static VEC(mem_region_s) *
10735 remote_memory_map (struct target_ops *ops)
10736 {
10737 VEC(mem_region_s) *result = NULL;
10738 char *text = target_read_stralloc (&current_target,
10739 TARGET_OBJECT_MEMORY_MAP, NULL);
10740
10741 if (text)
10742 {
10743 struct cleanup *back_to = make_cleanup (xfree, text);
10744
10745 result = parse_memory_map (text);
10746 do_cleanups (back_to);
10747 }
10748
10749 return result;
10750 }
10751
10752 static void
10753 packet_command (char *args, int from_tty)
10754 {
10755 struct remote_state *rs = get_remote_state ();
10756
10757 if (!rs->remote_desc)
10758 error (_("command can only be used with remote target"));
10759
10760 if (!args)
10761 error (_("remote-packet command requires packet text as argument"));
10762
10763 puts_filtered ("sending: ");
10764 print_packet (args);
10765 puts_filtered ("\n");
10766 putpkt (args);
10767
10768 getpkt (&rs->buf, &rs->buf_size, 0);
10769 puts_filtered ("received: ");
10770 print_packet (rs->buf);
10771 puts_filtered ("\n");
10772 }
10773
10774 #if 0
10775 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
10776
10777 static void display_thread_info (struct gdb_ext_thread_info *info);
10778
10779 static void threadset_test_cmd (char *cmd, int tty);
10780
10781 static void threadalive_test (char *cmd, int tty);
10782
10783 static void threadlist_test_cmd (char *cmd, int tty);
10784
10785 int get_and_display_threadinfo (threadref *ref);
10786
10787 static void threadinfo_test_cmd (char *cmd, int tty);
10788
10789 static int thread_display_step (threadref *ref, void *context);
10790
10791 static void threadlist_update_test_cmd (char *cmd, int tty);
10792
10793 static void init_remote_threadtests (void);
10794
10795 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
10796
10797 static void
10798 threadset_test_cmd (char *cmd, int tty)
10799 {
10800 int sample_thread = SAMPLE_THREAD;
10801
10802 printf_filtered (_("Remote threadset test\n"));
10803 set_general_thread (sample_thread);
10804 }
10805
10806
10807 static void
10808 threadalive_test (char *cmd, int tty)
10809 {
10810 int sample_thread = SAMPLE_THREAD;
10811 int pid = ptid_get_pid (inferior_ptid);
10812 ptid_t ptid = ptid_build (pid, sample_thread, 0);
10813
10814 if (remote_thread_alive (ptid))
10815 printf_filtered ("PASS: Thread alive test\n");
10816 else
10817 printf_filtered ("FAIL: Thread alive test\n");
10818 }
10819
10820 void output_threadid (char *title, threadref *ref);
10821
10822 void
10823 output_threadid (char *title, threadref *ref)
10824 {
10825 char hexid[20];
10826
10827 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
10828 hexid[16] = 0;
10829 printf_filtered ("%s %s\n", title, (&hexid[0]));
10830 }
10831
10832 static void
10833 threadlist_test_cmd (char *cmd, int tty)
10834 {
10835 int startflag = 1;
10836 threadref nextthread;
10837 int done, result_count;
10838 threadref threadlist[3];
10839
10840 printf_filtered ("Remote Threadlist test\n");
10841 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
10842 &result_count, &threadlist[0]))
10843 printf_filtered ("FAIL: threadlist test\n");
10844 else
10845 {
10846 threadref *scan = threadlist;
10847 threadref *limit = scan + result_count;
10848
10849 while (scan < limit)
10850 output_threadid (" thread ", scan++);
10851 }
10852 }
10853
10854 void
10855 display_thread_info (struct gdb_ext_thread_info *info)
10856 {
10857 output_threadid ("Threadid: ", &info->threadid);
10858 printf_filtered ("Name: %s\n ", info->shortname);
10859 printf_filtered ("State: %s\n", info->display);
10860 printf_filtered ("other: %s\n\n", info->more_display);
10861 }
10862
10863 int
10864 get_and_display_threadinfo (threadref *ref)
10865 {
10866 int result;
10867 int set;
10868 struct gdb_ext_thread_info threadinfo;
10869
10870 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
10871 | TAG_MOREDISPLAY | TAG_DISPLAY;
10872 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
10873 display_thread_info (&threadinfo);
10874 return result;
10875 }
10876
10877 static void
10878 threadinfo_test_cmd (char *cmd, int tty)
10879 {
10880 int athread = SAMPLE_THREAD;
10881 threadref thread;
10882 int set;
10883
10884 int_to_threadref (&thread, athread);
10885 printf_filtered ("Remote Threadinfo test\n");
10886 if (!get_and_display_threadinfo (&thread))
10887 printf_filtered ("FAIL cannot get thread info\n");
10888 }
10889
10890 static int
10891 thread_display_step (threadref *ref, void *context)
10892 {
10893 /* output_threadid(" threadstep ",ref); *//* simple test */
10894 return get_and_display_threadinfo (ref);
10895 }
10896
10897 static void
10898 threadlist_update_test_cmd (char *cmd, int tty)
10899 {
10900 printf_filtered ("Remote Threadlist update test\n");
10901 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
10902 }
10903
10904 static void
10905 init_remote_threadtests (void)
10906 {
10907 add_com ("tlist", class_obscure, threadlist_test_cmd,
10908 _("Fetch and print the remote list of "
10909 "thread identifiers, one pkt only"));
10910 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
10911 _("Fetch and display info about one thread"));
10912 add_com ("tset", class_obscure, threadset_test_cmd,
10913 _("Test setting to a different thread"));
10914 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
10915 _("Iterate through updating all remote thread info"));
10916 add_com ("talive", class_obscure, threadalive_test,
10917 _(" Remote thread alive test "));
10918 }
10919
10920 #endif /* 0 */
10921
10922 /* Convert a thread ID to a string. Returns the string in a static
10923 buffer. */
10924
10925 static char *
10926 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
10927 {
10928 static char buf[64];
10929 struct remote_state *rs = get_remote_state ();
10930
10931 if (ptid_equal (ptid, null_ptid))
10932 return normal_pid_to_str (ptid);
10933 else if (ptid_is_pid (ptid))
10934 {
10935 /* Printing an inferior target id. */
10936
10937 /* When multi-process extensions are off, there's no way in the
10938 remote protocol to know the remote process id, if there's any
10939 at all. There's one exception --- when we're connected with
10940 target extended-remote, and we manually attached to a process
10941 with "attach PID". We don't record anywhere a flag that
10942 allows us to distinguish that case from the case of
10943 connecting with extended-remote and the stub already being
10944 attached to a process, and reporting yes to qAttached, hence
10945 no smart special casing here. */
10946 if (!remote_multi_process_p (rs))
10947 {
10948 xsnprintf (buf, sizeof buf, "Remote target");
10949 return buf;
10950 }
10951
10952 return normal_pid_to_str (ptid);
10953 }
10954 else
10955 {
10956 if (ptid_equal (magic_null_ptid, ptid))
10957 xsnprintf (buf, sizeof buf, "Thread <main>");
10958 else if (remote_multi_process_p (rs))
10959 if (ptid_get_lwp (ptid) == 0)
10960 return normal_pid_to_str (ptid);
10961 else
10962 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
10963 ptid_get_pid (ptid), ptid_get_lwp (ptid));
10964 else
10965 xsnprintf (buf, sizeof buf, "Thread %ld",
10966 ptid_get_lwp (ptid));
10967 return buf;
10968 }
10969 }
10970
10971 /* Get the address of the thread local variable in OBJFILE which is
10972 stored at OFFSET within the thread local storage for thread PTID. */
10973
10974 static CORE_ADDR
10975 remote_get_thread_local_address (struct target_ops *ops,
10976 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
10977 {
10978 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
10979 {
10980 struct remote_state *rs = get_remote_state ();
10981 char *p = rs->buf;
10982 char *endp = rs->buf + get_remote_packet_size ();
10983 enum packet_result result;
10984
10985 strcpy (p, "qGetTLSAddr:");
10986 p += strlen (p);
10987 p = write_ptid (p, endp, ptid);
10988 *p++ = ',';
10989 p += hexnumstr (p, offset);
10990 *p++ = ',';
10991 p += hexnumstr (p, lm);
10992 *p++ = '\0';
10993
10994 putpkt (rs->buf);
10995 getpkt (&rs->buf, &rs->buf_size, 0);
10996 result = packet_ok (rs->buf,
10997 &remote_protocol_packets[PACKET_qGetTLSAddr]);
10998 if (result == PACKET_OK)
10999 {
11000 ULONGEST result;
11001
11002 unpack_varlen_hex (rs->buf, &result);
11003 return result;
11004 }
11005 else if (result == PACKET_UNKNOWN)
11006 throw_error (TLS_GENERIC_ERROR,
11007 _("Remote target doesn't support qGetTLSAddr packet"));
11008 else
11009 throw_error (TLS_GENERIC_ERROR,
11010 _("Remote target failed to process qGetTLSAddr request"));
11011 }
11012 else
11013 throw_error (TLS_GENERIC_ERROR,
11014 _("TLS not supported or disabled on this target"));
11015 /* Not reached. */
11016 return 0;
11017 }
11018
11019 /* Provide thread local base, i.e. Thread Information Block address.
11020 Returns 1 if ptid is found and thread_local_base is non zero. */
11021
11022 static int
11023 remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
11024 {
11025 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11026 {
11027 struct remote_state *rs = get_remote_state ();
11028 char *p = rs->buf;
11029 char *endp = rs->buf + get_remote_packet_size ();
11030 enum packet_result result;
11031
11032 strcpy (p, "qGetTIBAddr:");
11033 p += strlen (p);
11034 p = write_ptid (p, endp, ptid);
11035 *p++ = '\0';
11036
11037 putpkt (rs->buf);
11038 getpkt (&rs->buf, &rs->buf_size, 0);
11039 result = packet_ok (rs->buf,
11040 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11041 if (result == PACKET_OK)
11042 {
11043 ULONGEST result;
11044
11045 unpack_varlen_hex (rs->buf, &result);
11046 if (addr)
11047 *addr = (CORE_ADDR) result;
11048 return 1;
11049 }
11050 else if (result == PACKET_UNKNOWN)
11051 error (_("Remote target doesn't support qGetTIBAddr packet"));
11052 else
11053 error (_("Remote target failed to process qGetTIBAddr request"));
11054 }
11055 else
11056 error (_("qGetTIBAddr not supported or disabled on this target"));
11057 /* Not reached. */
11058 return 0;
11059 }
11060
11061 /* Support for inferring a target description based on the current
11062 architecture and the size of a 'g' packet. While the 'g' packet
11063 can have any size (since optional registers can be left off the
11064 end), some sizes are easily recognizable given knowledge of the
11065 approximate architecture. */
11066
11067 struct remote_g_packet_guess
11068 {
11069 int bytes;
11070 const struct target_desc *tdesc;
11071 };
11072 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11073 DEF_VEC_O(remote_g_packet_guess_s);
11074
11075 struct remote_g_packet_data
11076 {
11077 VEC(remote_g_packet_guess_s) *guesses;
11078 };
11079
11080 static struct gdbarch_data *remote_g_packet_data_handle;
11081
11082 static void *
11083 remote_g_packet_data_init (struct obstack *obstack)
11084 {
11085 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11086 }
11087
11088 void
11089 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11090 const struct target_desc *tdesc)
11091 {
11092 struct remote_g_packet_data *data
11093 = ((struct remote_g_packet_data *)
11094 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11095 struct remote_g_packet_guess new_guess, *guess;
11096 int ix;
11097
11098 gdb_assert (tdesc != NULL);
11099
11100 for (ix = 0;
11101 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11102 ix++)
11103 if (guess->bytes == bytes)
11104 internal_error (__FILE__, __LINE__,
11105 _("Duplicate g packet description added for size %d"),
11106 bytes);
11107
11108 new_guess.bytes = bytes;
11109 new_guess.tdesc = tdesc;
11110 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11111 }
11112
11113 /* Return 1 if remote_read_description would do anything on this target
11114 and architecture, 0 otherwise. */
11115
11116 static int
11117 remote_read_description_p (struct target_ops *target)
11118 {
11119 struct remote_g_packet_data *data
11120 = ((struct remote_g_packet_data *)
11121 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11122
11123 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11124 return 1;
11125
11126 return 0;
11127 }
11128
11129 static const struct target_desc *
11130 remote_read_description (struct target_ops *target)
11131 {
11132 struct remote_g_packet_data *data
11133 = ((struct remote_g_packet_data *)
11134 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11135
11136 /* Do not try this during initial connection, when we do not know
11137 whether there is a running but stopped thread. */
11138 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11139 return target->beneath->to_read_description (target->beneath);
11140
11141 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11142 {
11143 struct remote_g_packet_guess *guess;
11144 int ix;
11145 int bytes = send_g_packet ();
11146
11147 for (ix = 0;
11148 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11149 ix++)
11150 if (guess->bytes == bytes)
11151 return guess->tdesc;
11152
11153 /* We discard the g packet. A minor optimization would be to
11154 hold on to it, and fill the register cache once we have selected
11155 an architecture, but it's too tricky to do safely. */
11156 }
11157
11158 return target->beneath->to_read_description (target->beneath);
11159 }
11160
11161 /* Remote file transfer support. This is host-initiated I/O, not
11162 target-initiated; for target-initiated, see remote-fileio.c. */
11163
11164 /* If *LEFT is at least the length of STRING, copy STRING to
11165 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11166 decrease *LEFT. Otherwise raise an error. */
11167
11168 static void
11169 remote_buffer_add_string (char **buffer, int *left, char *string)
11170 {
11171 int len = strlen (string);
11172
11173 if (len > *left)
11174 error (_("Packet too long for target."));
11175
11176 memcpy (*buffer, string, len);
11177 *buffer += len;
11178 *left -= len;
11179
11180 /* NUL-terminate the buffer as a convenience, if there is
11181 room. */
11182 if (*left)
11183 **buffer = '\0';
11184 }
11185
11186 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11187 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11188 decrease *LEFT. Otherwise raise an error. */
11189
11190 static void
11191 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11192 int len)
11193 {
11194 if (2 * len > *left)
11195 error (_("Packet too long for target."));
11196
11197 bin2hex (bytes, *buffer, len);
11198 *buffer += 2 * len;
11199 *left -= 2 * len;
11200
11201 /* NUL-terminate the buffer as a convenience, if there is
11202 room. */
11203 if (*left)
11204 **buffer = '\0';
11205 }
11206
11207 /* If *LEFT is large enough, convert VALUE to hex and add it to
11208 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11209 decrease *LEFT. Otherwise raise an error. */
11210
11211 static void
11212 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11213 {
11214 int len = hexnumlen (value);
11215
11216 if (len > *left)
11217 error (_("Packet too long for target."));
11218
11219 hexnumstr (*buffer, value);
11220 *buffer += len;
11221 *left -= len;
11222
11223 /* NUL-terminate the buffer as a convenience, if there is
11224 room. */
11225 if (*left)
11226 **buffer = '\0';
11227 }
11228
11229 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11230 value, *REMOTE_ERRNO to the remote error number or zero if none
11231 was included, and *ATTACHMENT to point to the start of the annex
11232 if any. The length of the packet isn't needed here; there may
11233 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11234
11235 Return 0 if the packet could be parsed, -1 if it could not. If
11236 -1 is returned, the other variables may not be initialized. */
11237
11238 static int
11239 remote_hostio_parse_result (char *buffer, int *retcode,
11240 int *remote_errno, char **attachment)
11241 {
11242 char *p, *p2;
11243
11244 *remote_errno = 0;
11245 *attachment = NULL;
11246
11247 if (buffer[0] != 'F')
11248 return -1;
11249
11250 errno = 0;
11251 *retcode = strtol (&buffer[1], &p, 16);
11252 if (errno != 0 || p == &buffer[1])
11253 return -1;
11254
11255 /* Check for ",errno". */
11256 if (*p == ',')
11257 {
11258 errno = 0;
11259 *remote_errno = strtol (p + 1, &p2, 16);
11260 if (errno != 0 || p + 1 == p2)
11261 return -1;
11262 p = p2;
11263 }
11264
11265 /* Check for ";attachment". If there is no attachment, the
11266 packet should end here. */
11267 if (*p == ';')
11268 {
11269 *attachment = p + 1;
11270 return 0;
11271 }
11272 else if (*p == '\0')
11273 return 0;
11274 else
11275 return -1;
11276 }
11277
11278 /* Send a prepared I/O packet to the target and read its response.
11279 The prepared packet is in the global RS->BUF before this function
11280 is called, and the answer is there when we return.
11281
11282 COMMAND_BYTES is the length of the request to send, which may include
11283 binary data. WHICH_PACKET is the packet configuration to check
11284 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11285 is set to the error number and -1 is returned. Otherwise the value
11286 returned by the function is returned.
11287
11288 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11289 attachment is expected; an error will be reported if there's a
11290 mismatch. If one is found, *ATTACHMENT will be set to point into
11291 the packet buffer and *ATTACHMENT_LEN will be set to the
11292 attachment's length. */
11293
11294 static int
11295 remote_hostio_send_command (int command_bytes, int which_packet,
11296 int *remote_errno, char **attachment,
11297 int *attachment_len)
11298 {
11299 struct remote_state *rs = get_remote_state ();
11300 int ret, bytes_read;
11301 char *attachment_tmp;
11302
11303 if (!rs->remote_desc
11304 || packet_support (which_packet) == PACKET_DISABLE)
11305 {
11306 *remote_errno = FILEIO_ENOSYS;
11307 return -1;
11308 }
11309
11310 putpkt_binary (rs->buf, command_bytes);
11311 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11312
11313 /* If it timed out, something is wrong. Don't try to parse the
11314 buffer. */
11315 if (bytes_read < 0)
11316 {
11317 *remote_errno = FILEIO_EINVAL;
11318 return -1;
11319 }
11320
11321 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11322 {
11323 case PACKET_ERROR:
11324 *remote_errno = FILEIO_EINVAL;
11325 return -1;
11326 case PACKET_UNKNOWN:
11327 *remote_errno = FILEIO_ENOSYS;
11328 return -1;
11329 case PACKET_OK:
11330 break;
11331 }
11332
11333 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11334 &attachment_tmp))
11335 {
11336 *remote_errno = FILEIO_EINVAL;
11337 return -1;
11338 }
11339
11340 /* Make sure we saw an attachment if and only if we expected one. */
11341 if ((attachment_tmp == NULL && attachment != NULL)
11342 || (attachment_tmp != NULL && attachment == NULL))
11343 {
11344 *remote_errno = FILEIO_EINVAL;
11345 return -1;
11346 }
11347
11348 /* If an attachment was found, it must point into the packet buffer;
11349 work out how many bytes there were. */
11350 if (attachment_tmp != NULL)
11351 {
11352 *attachment = attachment_tmp;
11353 *attachment_len = bytes_read - (*attachment - rs->buf);
11354 }
11355
11356 return ret;
11357 }
11358
11359 /* Invalidate the readahead cache. */
11360
11361 static void
11362 readahead_cache_invalidate (void)
11363 {
11364 struct remote_state *rs = get_remote_state ();
11365
11366 rs->readahead_cache.fd = -1;
11367 }
11368
11369 /* Invalidate the readahead cache if it is holding data for FD. */
11370
11371 static void
11372 readahead_cache_invalidate_fd (int fd)
11373 {
11374 struct remote_state *rs = get_remote_state ();
11375
11376 if (rs->readahead_cache.fd == fd)
11377 rs->readahead_cache.fd = -1;
11378 }
11379
11380 /* Set the filesystem remote_hostio functions that take FILENAME
11381 arguments will use. Return 0 on success, or -1 if an error
11382 occurs (and set *REMOTE_ERRNO). */
11383
11384 static int
11385 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11386 {
11387 struct remote_state *rs = get_remote_state ();
11388 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11389 char *p = rs->buf;
11390 int left = get_remote_packet_size () - 1;
11391 char arg[9];
11392 int ret;
11393
11394 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11395 return 0;
11396
11397 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11398 return 0;
11399
11400 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11401
11402 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11403 remote_buffer_add_string (&p, &left, arg);
11404
11405 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11406 remote_errno, NULL, NULL);
11407
11408 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11409 return 0;
11410
11411 if (ret == 0)
11412 rs->fs_pid = required_pid;
11413
11414 return ret;
11415 }
11416
11417 /* Implementation of to_fileio_open. */
11418
11419 static int
11420 remote_hostio_open (struct target_ops *self,
11421 struct inferior *inf, const char *filename,
11422 int flags, int mode, int warn_if_slow,
11423 int *remote_errno)
11424 {
11425 struct remote_state *rs = get_remote_state ();
11426 char *p = rs->buf;
11427 int left = get_remote_packet_size () - 1;
11428
11429 if (warn_if_slow)
11430 {
11431 static int warning_issued = 0;
11432
11433 printf_unfiltered (_("Reading %s from remote target...\n"),
11434 filename);
11435
11436 if (!warning_issued)
11437 {
11438 warning (_("File transfers from remote targets can be slow."
11439 " Use \"set sysroot\" to access files locally"
11440 " instead."));
11441 warning_issued = 1;
11442 }
11443 }
11444
11445 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11446 return -1;
11447
11448 remote_buffer_add_string (&p, &left, "vFile:open:");
11449
11450 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11451 strlen (filename));
11452 remote_buffer_add_string (&p, &left, ",");
11453
11454 remote_buffer_add_int (&p, &left, flags);
11455 remote_buffer_add_string (&p, &left, ",");
11456
11457 remote_buffer_add_int (&p, &left, mode);
11458
11459 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11460 remote_errno, NULL, NULL);
11461 }
11462
11463 /* Implementation of to_fileio_pwrite. */
11464
11465 static int
11466 remote_hostio_pwrite (struct target_ops *self,
11467 int fd, const gdb_byte *write_buf, int len,
11468 ULONGEST offset, int *remote_errno)
11469 {
11470 struct remote_state *rs = get_remote_state ();
11471 char *p = rs->buf;
11472 int left = get_remote_packet_size ();
11473 int out_len;
11474
11475 readahead_cache_invalidate_fd (fd);
11476
11477 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11478
11479 remote_buffer_add_int (&p, &left, fd);
11480 remote_buffer_add_string (&p, &left, ",");
11481
11482 remote_buffer_add_int (&p, &left, offset);
11483 remote_buffer_add_string (&p, &left, ",");
11484
11485 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11486 get_remote_packet_size () - (p - rs->buf));
11487
11488 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11489 remote_errno, NULL, NULL);
11490 }
11491
11492 /* Helper for the implementation of to_fileio_pread. Read the file
11493 from the remote side with vFile:pread. */
11494
11495 static int
11496 remote_hostio_pread_vFile (struct target_ops *self,
11497 int fd, gdb_byte *read_buf, int len,
11498 ULONGEST offset, int *remote_errno)
11499 {
11500 struct remote_state *rs = get_remote_state ();
11501 char *p = rs->buf;
11502 char *attachment;
11503 int left = get_remote_packet_size ();
11504 int ret, attachment_len;
11505 int read_len;
11506
11507 remote_buffer_add_string (&p, &left, "vFile:pread:");
11508
11509 remote_buffer_add_int (&p, &left, fd);
11510 remote_buffer_add_string (&p, &left, ",");
11511
11512 remote_buffer_add_int (&p, &left, len);
11513 remote_buffer_add_string (&p, &left, ",");
11514
11515 remote_buffer_add_int (&p, &left, offset);
11516
11517 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11518 remote_errno, &attachment,
11519 &attachment_len);
11520
11521 if (ret < 0)
11522 return ret;
11523
11524 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11525 read_buf, len);
11526 if (read_len != ret)
11527 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11528
11529 return ret;
11530 }
11531
11532 /* Serve pread from the readahead cache. Returns number of bytes
11533 read, or 0 if the request can't be served from the cache. */
11534
11535 static int
11536 remote_hostio_pread_from_cache (struct remote_state *rs,
11537 int fd, gdb_byte *read_buf, size_t len,
11538 ULONGEST offset)
11539 {
11540 struct readahead_cache *cache = &rs->readahead_cache;
11541
11542 if (cache->fd == fd
11543 && cache->offset <= offset
11544 && offset < cache->offset + cache->bufsize)
11545 {
11546 ULONGEST max = cache->offset + cache->bufsize;
11547
11548 if (offset + len > max)
11549 len = max - offset;
11550
11551 memcpy (read_buf, cache->buf + offset - cache->offset, len);
11552 return len;
11553 }
11554
11555 return 0;
11556 }
11557
11558 /* Implementation of to_fileio_pread. */
11559
11560 static int
11561 remote_hostio_pread (struct target_ops *self,
11562 int fd, gdb_byte *read_buf, int len,
11563 ULONGEST offset, int *remote_errno)
11564 {
11565 int ret;
11566 struct remote_state *rs = get_remote_state ();
11567 struct readahead_cache *cache = &rs->readahead_cache;
11568
11569 ret = remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11570 if (ret > 0)
11571 {
11572 cache->hit_count++;
11573
11574 if (remote_debug)
11575 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11576 pulongest (cache->hit_count));
11577 return ret;
11578 }
11579
11580 cache->miss_count++;
11581 if (remote_debug)
11582 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11583 pulongest (cache->miss_count));
11584
11585 cache->fd = fd;
11586 cache->offset = offset;
11587 cache->bufsize = get_remote_packet_size ();
11588 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11589
11590 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11591 cache->offset, remote_errno);
11592 if (ret <= 0)
11593 {
11594 readahead_cache_invalidate_fd (fd);
11595 return ret;
11596 }
11597
11598 cache->bufsize = ret;
11599 return remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11600 }
11601
11602 /* Implementation of to_fileio_close. */
11603
11604 static int
11605 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11606 {
11607 struct remote_state *rs = get_remote_state ();
11608 char *p = rs->buf;
11609 int left = get_remote_packet_size () - 1;
11610
11611 readahead_cache_invalidate_fd (fd);
11612
11613 remote_buffer_add_string (&p, &left, "vFile:close:");
11614
11615 remote_buffer_add_int (&p, &left, fd);
11616
11617 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11618 remote_errno, NULL, NULL);
11619 }
11620
11621 /* Implementation of to_fileio_unlink. */
11622
11623 static int
11624 remote_hostio_unlink (struct target_ops *self,
11625 struct inferior *inf, const char *filename,
11626 int *remote_errno)
11627 {
11628 struct remote_state *rs = get_remote_state ();
11629 char *p = rs->buf;
11630 int left = get_remote_packet_size () - 1;
11631
11632 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11633 return -1;
11634
11635 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11636
11637 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11638 strlen (filename));
11639
11640 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
11641 remote_errno, NULL, NULL);
11642 }
11643
11644 /* Implementation of to_fileio_readlink. */
11645
11646 static char *
11647 remote_hostio_readlink (struct target_ops *self,
11648 struct inferior *inf, const char *filename,
11649 int *remote_errno)
11650 {
11651 struct remote_state *rs = get_remote_state ();
11652 char *p = rs->buf;
11653 char *attachment;
11654 int left = get_remote_packet_size ();
11655 int len, attachment_len;
11656 int read_len;
11657 char *ret;
11658
11659 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11660 return NULL;
11661
11662 remote_buffer_add_string (&p, &left, "vFile:readlink:");
11663
11664 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11665 strlen (filename));
11666
11667 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
11668 remote_errno, &attachment,
11669 &attachment_len);
11670
11671 if (len < 0)
11672 return NULL;
11673
11674 ret = (char *) xmalloc (len + 1);
11675
11676 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11677 (gdb_byte *) ret, len);
11678 if (read_len != len)
11679 error (_("Readlink returned %d, but %d bytes."), len, read_len);
11680
11681 ret[len] = '\0';
11682 return ret;
11683 }
11684
11685 /* Implementation of to_fileio_fstat. */
11686
11687 static int
11688 remote_hostio_fstat (struct target_ops *self,
11689 int fd, struct stat *st,
11690 int *remote_errno)
11691 {
11692 struct remote_state *rs = get_remote_state ();
11693 char *p = rs->buf;
11694 int left = get_remote_packet_size ();
11695 int attachment_len, ret;
11696 char *attachment;
11697 struct fio_stat fst;
11698 int read_len;
11699
11700 remote_buffer_add_string (&p, &left, "vFile:fstat:");
11701
11702 remote_buffer_add_int (&p, &left, fd);
11703
11704 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
11705 remote_errno, &attachment,
11706 &attachment_len);
11707 if (ret < 0)
11708 {
11709 if (*remote_errno != FILEIO_ENOSYS)
11710 return ret;
11711
11712 /* Strictly we should return -1, ENOSYS here, but when
11713 "set sysroot remote:" was implemented in August 2008
11714 BFD's need for a stat function was sidestepped with
11715 this hack. This was not remedied until March 2015
11716 so we retain the previous behavior to avoid breaking
11717 compatibility.
11718
11719 Note that the memset is a March 2015 addition; older
11720 GDBs set st_size *and nothing else* so the structure
11721 would have garbage in all other fields. This might
11722 break something but retaining the previous behavior
11723 here would be just too wrong. */
11724
11725 memset (st, 0, sizeof (struct stat));
11726 st->st_size = INT_MAX;
11727 return 0;
11728 }
11729
11730 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11731 (gdb_byte *) &fst, sizeof (fst));
11732
11733 if (read_len != ret)
11734 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
11735
11736 if (read_len != sizeof (fst))
11737 error (_("vFile:fstat returned %d bytes, but expecting %d."),
11738 read_len, (int) sizeof (fst));
11739
11740 remote_fileio_to_host_stat (&fst, st);
11741
11742 return 0;
11743 }
11744
11745 /* Implementation of to_filesystem_is_local. */
11746
11747 static int
11748 remote_filesystem_is_local (struct target_ops *self)
11749 {
11750 /* Valgrind GDB presents itself as a remote target but works
11751 on the local filesystem: it does not implement remote get
11752 and users are not expected to set a sysroot. To handle
11753 this case we treat the remote filesystem as local if the
11754 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
11755 does not support vFile:open. */
11756 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
11757 {
11758 enum packet_support ps = packet_support (PACKET_vFile_open);
11759
11760 if (ps == PACKET_SUPPORT_UNKNOWN)
11761 {
11762 int fd, remote_errno;
11763
11764 /* Try opening a file to probe support. The supplied
11765 filename is irrelevant, we only care about whether
11766 the stub recognizes the packet or not. */
11767 fd = remote_hostio_open (self, NULL, "just probing",
11768 FILEIO_O_RDONLY, 0700, 0,
11769 &remote_errno);
11770
11771 if (fd >= 0)
11772 remote_hostio_close (self, fd, &remote_errno);
11773
11774 ps = packet_support (PACKET_vFile_open);
11775 }
11776
11777 if (ps == PACKET_DISABLE)
11778 {
11779 static int warning_issued = 0;
11780
11781 if (!warning_issued)
11782 {
11783 warning (_("remote target does not support file"
11784 " transfer, attempting to access files"
11785 " from local filesystem."));
11786 warning_issued = 1;
11787 }
11788
11789 return 1;
11790 }
11791 }
11792
11793 return 0;
11794 }
11795
11796 static int
11797 remote_fileio_errno_to_host (int errnum)
11798 {
11799 switch (errnum)
11800 {
11801 case FILEIO_EPERM:
11802 return EPERM;
11803 case FILEIO_ENOENT:
11804 return ENOENT;
11805 case FILEIO_EINTR:
11806 return EINTR;
11807 case FILEIO_EIO:
11808 return EIO;
11809 case FILEIO_EBADF:
11810 return EBADF;
11811 case FILEIO_EACCES:
11812 return EACCES;
11813 case FILEIO_EFAULT:
11814 return EFAULT;
11815 case FILEIO_EBUSY:
11816 return EBUSY;
11817 case FILEIO_EEXIST:
11818 return EEXIST;
11819 case FILEIO_ENODEV:
11820 return ENODEV;
11821 case FILEIO_ENOTDIR:
11822 return ENOTDIR;
11823 case FILEIO_EISDIR:
11824 return EISDIR;
11825 case FILEIO_EINVAL:
11826 return EINVAL;
11827 case FILEIO_ENFILE:
11828 return ENFILE;
11829 case FILEIO_EMFILE:
11830 return EMFILE;
11831 case FILEIO_EFBIG:
11832 return EFBIG;
11833 case FILEIO_ENOSPC:
11834 return ENOSPC;
11835 case FILEIO_ESPIPE:
11836 return ESPIPE;
11837 case FILEIO_EROFS:
11838 return EROFS;
11839 case FILEIO_ENOSYS:
11840 return ENOSYS;
11841 case FILEIO_ENAMETOOLONG:
11842 return ENAMETOOLONG;
11843 }
11844 return -1;
11845 }
11846
11847 static char *
11848 remote_hostio_error (int errnum)
11849 {
11850 int host_error = remote_fileio_errno_to_host (errnum);
11851
11852 if (host_error == -1)
11853 error (_("Unknown remote I/O error %d"), errnum);
11854 else
11855 error (_("Remote I/O error: %s"), safe_strerror (host_error));
11856 }
11857
11858 static void
11859 remote_hostio_close_cleanup (void *opaque)
11860 {
11861 int fd = *(int *) opaque;
11862 int remote_errno;
11863
11864 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
11865 }
11866
11867 void
11868 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
11869 {
11870 struct cleanup *back_to, *close_cleanup;
11871 int retcode, fd, remote_errno, bytes, io_size;
11872 FILE *file;
11873 gdb_byte *buffer;
11874 int bytes_in_buffer;
11875 int saw_eof;
11876 ULONGEST offset;
11877 struct remote_state *rs = get_remote_state ();
11878
11879 if (!rs->remote_desc)
11880 error (_("command can only be used with remote target"));
11881
11882 file = gdb_fopen_cloexec (local_file, "rb");
11883 if (file == NULL)
11884 perror_with_name (local_file);
11885 back_to = make_cleanup_fclose (file);
11886
11887 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
11888 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
11889 | FILEIO_O_TRUNC),
11890 0700, 0, &remote_errno);
11891 if (fd == -1)
11892 remote_hostio_error (remote_errno);
11893
11894 /* Send up to this many bytes at once. They won't all fit in the
11895 remote packet limit, so we'll transfer slightly fewer. */
11896 io_size = get_remote_packet_size ();
11897 buffer = (gdb_byte *) xmalloc (io_size);
11898 make_cleanup (xfree, buffer);
11899
11900 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
11901
11902 bytes_in_buffer = 0;
11903 saw_eof = 0;
11904 offset = 0;
11905 while (bytes_in_buffer || !saw_eof)
11906 {
11907 if (!saw_eof)
11908 {
11909 bytes = fread (buffer + bytes_in_buffer, 1,
11910 io_size - bytes_in_buffer,
11911 file);
11912 if (bytes == 0)
11913 {
11914 if (ferror (file))
11915 error (_("Error reading %s."), local_file);
11916 else
11917 {
11918 /* EOF. Unless there is something still in the
11919 buffer from the last iteration, we are done. */
11920 saw_eof = 1;
11921 if (bytes_in_buffer == 0)
11922 break;
11923 }
11924 }
11925 }
11926 else
11927 bytes = 0;
11928
11929 bytes += bytes_in_buffer;
11930 bytes_in_buffer = 0;
11931
11932 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
11933 fd, buffer, bytes,
11934 offset, &remote_errno);
11935
11936 if (retcode < 0)
11937 remote_hostio_error (remote_errno);
11938 else if (retcode == 0)
11939 error (_("Remote write of %d bytes returned 0!"), bytes);
11940 else if (retcode < bytes)
11941 {
11942 /* Short write. Save the rest of the read data for the next
11943 write. */
11944 bytes_in_buffer = bytes - retcode;
11945 memmove (buffer, buffer + retcode, bytes_in_buffer);
11946 }
11947
11948 offset += retcode;
11949 }
11950
11951 discard_cleanups (close_cleanup);
11952 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
11953 remote_hostio_error (remote_errno);
11954
11955 if (from_tty)
11956 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
11957 do_cleanups (back_to);
11958 }
11959
11960 void
11961 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
11962 {
11963 struct cleanup *back_to, *close_cleanup;
11964 int fd, remote_errno, bytes, io_size;
11965 FILE *file;
11966 gdb_byte *buffer;
11967 ULONGEST offset;
11968 struct remote_state *rs = get_remote_state ();
11969
11970 if (!rs->remote_desc)
11971 error (_("command can only be used with remote target"));
11972
11973 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
11974 remote_file, FILEIO_O_RDONLY, 0, 0,
11975 &remote_errno);
11976 if (fd == -1)
11977 remote_hostio_error (remote_errno);
11978
11979 file = gdb_fopen_cloexec (local_file, "wb");
11980 if (file == NULL)
11981 perror_with_name (local_file);
11982 back_to = make_cleanup_fclose (file);
11983
11984 /* Send up to this many bytes at once. They won't all fit in the
11985 remote packet limit, so we'll transfer slightly fewer. */
11986 io_size = get_remote_packet_size ();
11987 buffer = (gdb_byte *) xmalloc (io_size);
11988 make_cleanup (xfree, buffer);
11989
11990 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
11991
11992 offset = 0;
11993 while (1)
11994 {
11995 bytes = remote_hostio_pread (find_target_at (process_stratum),
11996 fd, buffer, io_size, offset, &remote_errno);
11997 if (bytes == 0)
11998 /* Success, but no bytes, means end-of-file. */
11999 break;
12000 if (bytes == -1)
12001 remote_hostio_error (remote_errno);
12002
12003 offset += bytes;
12004
12005 bytes = fwrite (buffer, 1, bytes, file);
12006 if (bytes == 0)
12007 perror_with_name (local_file);
12008 }
12009
12010 discard_cleanups (close_cleanup);
12011 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12012 remote_hostio_error (remote_errno);
12013
12014 if (from_tty)
12015 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12016 do_cleanups (back_to);
12017 }
12018
12019 void
12020 remote_file_delete (const char *remote_file, int from_tty)
12021 {
12022 int retcode, remote_errno;
12023 struct remote_state *rs = get_remote_state ();
12024
12025 if (!rs->remote_desc)
12026 error (_("command can only be used with remote target"));
12027
12028 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12029 NULL, remote_file, &remote_errno);
12030 if (retcode == -1)
12031 remote_hostio_error (remote_errno);
12032
12033 if (from_tty)
12034 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12035 }
12036
12037 static void
12038 remote_put_command (char *args, int from_tty)
12039 {
12040 struct cleanup *back_to;
12041 char **argv;
12042
12043 if (args == NULL)
12044 error_no_arg (_("file to put"));
12045
12046 argv = gdb_buildargv (args);
12047 back_to = make_cleanup_freeargv (argv);
12048 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12049 error (_("Invalid parameters to remote put"));
12050
12051 remote_file_put (argv[0], argv[1], from_tty);
12052
12053 do_cleanups (back_to);
12054 }
12055
12056 static void
12057 remote_get_command (char *args, int from_tty)
12058 {
12059 struct cleanup *back_to;
12060 char **argv;
12061
12062 if (args == NULL)
12063 error_no_arg (_("file to get"));
12064
12065 argv = gdb_buildargv (args);
12066 back_to = make_cleanup_freeargv (argv);
12067 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12068 error (_("Invalid parameters to remote get"));
12069
12070 remote_file_get (argv[0], argv[1], from_tty);
12071
12072 do_cleanups (back_to);
12073 }
12074
12075 static void
12076 remote_delete_command (char *args, int from_tty)
12077 {
12078 struct cleanup *back_to;
12079 char **argv;
12080
12081 if (args == NULL)
12082 error_no_arg (_("file to delete"));
12083
12084 argv = gdb_buildargv (args);
12085 back_to = make_cleanup_freeargv (argv);
12086 if (argv[0] == NULL || argv[1] != NULL)
12087 error (_("Invalid parameters to remote delete"));
12088
12089 remote_file_delete (argv[0], from_tty);
12090
12091 do_cleanups (back_to);
12092 }
12093
12094 static void
12095 remote_command (char *args, int from_tty)
12096 {
12097 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12098 }
12099
12100 static int
12101 remote_can_execute_reverse (struct target_ops *self)
12102 {
12103 if (packet_support (PACKET_bs) == PACKET_ENABLE
12104 || packet_support (PACKET_bc) == PACKET_ENABLE)
12105 return 1;
12106 else
12107 return 0;
12108 }
12109
12110 static int
12111 remote_supports_non_stop (struct target_ops *self)
12112 {
12113 return 1;
12114 }
12115
12116 static int
12117 remote_supports_disable_randomization (struct target_ops *self)
12118 {
12119 /* Only supported in extended mode. */
12120 return 0;
12121 }
12122
12123 static int
12124 remote_supports_multi_process (struct target_ops *self)
12125 {
12126 struct remote_state *rs = get_remote_state ();
12127
12128 return remote_multi_process_p (rs);
12129 }
12130
12131 static int
12132 remote_supports_cond_tracepoints (void)
12133 {
12134 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12135 }
12136
12137 static int
12138 remote_supports_cond_breakpoints (struct target_ops *self)
12139 {
12140 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12141 }
12142
12143 static int
12144 remote_supports_fast_tracepoints (void)
12145 {
12146 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12147 }
12148
12149 static int
12150 remote_supports_static_tracepoints (void)
12151 {
12152 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12153 }
12154
12155 static int
12156 remote_supports_install_in_trace (void)
12157 {
12158 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12159 }
12160
12161 static int
12162 remote_supports_enable_disable_tracepoint (struct target_ops *self)
12163 {
12164 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12165 == PACKET_ENABLE);
12166 }
12167
12168 static int
12169 remote_supports_string_tracing (struct target_ops *self)
12170 {
12171 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12172 }
12173
12174 static int
12175 remote_can_run_breakpoint_commands (struct target_ops *self)
12176 {
12177 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12178 }
12179
12180 static void
12181 remote_trace_init (struct target_ops *self)
12182 {
12183 putpkt ("QTinit");
12184 remote_get_noisy_reply (&target_buf, &target_buf_size);
12185 if (strcmp (target_buf, "OK") != 0)
12186 error (_("Target does not support this command."));
12187 }
12188
12189 static void free_actions_list (char **actions_list);
12190 static void free_actions_list_cleanup_wrapper (void *);
12191 static void
12192 free_actions_list_cleanup_wrapper (void *al)
12193 {
12194 free_actions_list ((char **) al);
12195 }
12196
12197 static void
12198 free_actions_list (char **actions_list)
12199 {
12200 int ndx;
12201
12202 if (actions_list == 0)
12203 return;
12204
12205 for (ndx = 0; actions_list[ndx]; ndx++)
12206 xfree (actions_list[ndx]);
12207
12208 xfree (actions_list);
12209 }
12210
12211 /* Recursive routine to walk through command list including loops, and
12212 download packets for each command. */
12213
12214 static void
12215 remote_download_command_source (int num, ULONGEST addr,
12216 struct command_line *cmds)
12217 {
12218 struct remote_state *rs = get_remote_state ();
12219 struct command_line *cmd;
12220
12221 for (cmd = cmds; cmd; cmd = cmd->next)
12222 {
12223 QUIT; /* Allow user to bail out with ^C. */
12224 strcpy (rs->buf, "QTDPsrc:");
12225 encode_source_string (num, addr, "cmd", cmd->line,
12226 rs->buf + strlen (rs->buf),
12227 rs->buf_size - strlen (rs->buf));
12228 putpkt (rs->buf);
12229 remote_get_noisy_reply (&target_buf, &target_buf_size);
12230 if (strcmp (target_buf, "OK"))
12231 warning (_("Target does not support source download."));
12232
12233 if (cmd->control_type == while_control
12234 || cmd->control_type == while_stepping_control)
12235 {
12236 remote_download_command_source (num, addr, *cmd->body_list);
12237
12238 QUIT; /* Allow user to bail out with ^C. */
12239 strcpy (rs->buf, "QTDPsrc:");
12240 encode_source_string (num, addr, "cmd", "end",
12241 rs->buf + strlen (rs->buf),
12242 rs->buf_size - strlen (rs->buf));
12243 putpkt (rs->buf);
12244 remote_get_noisy_reply (&target_buf, &target_buf_size);
12245 if (strcmp (target_buf, "OK"))
12246 warning (_("Target does not support source download."));
12247 }
12248 }
12249 }
12250
12251 static void
12252 remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
12253 {
12254 #define BUF_SIZE 2048
12255
12256 CORE_ADDR tpaddr;
12257 char addrbuf[40];
12258 char buf[BUF_SIZE];
12259 char **tdp_actions;
12260 char **stepping_actions;
12261 int ndx;
12262 struct cleanup *old_chain = NULL;
12263 char *pkt;
12264 struct breakpoint *b = loc->owner;
12265 struct tracepoint *t = (struct tracepoint *) b;
12266
12267 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12268 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
12269 tdp_actions);
12270 (void) make_cleanup (free_actions_list_cleanup_wrapper,
12271 stepping_actions);
12272
12273 tpaddr = loc->address;
12274 sprintf_vma (addrbuf, tpaddr);
12275 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12276 addrbuf, /* address */
12277 (b->enable_state == bp_enabled ? 'E' : 'D'),
12278 t->step_count, t->pass_count);
12279 /* Fast tracepoints are mostly handled by the target, but we can
12280 tell the target how big of an instruction block should be moved
12281 around. */
12282 if (b->type == bp_fast_tracepoint)
12283 {
12284 /* Only test for support at download time; we may not know
12285 target capabilities at definition time. */
12286 if (remote_supports_fast_tracepoints ())
12287 {
12288 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12289 NULL))
12290 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12291 gdb_insn_length (loc->gdbarch, tpaddr));
12292 else
12293 /* If it passed validation at definition but fails now,
12294 something is very wrong. */
12295 internal_error (__FILE__, __LINE__,
12296 _("Fast tracepoint not "
12297 "valid during download"));
12298 }
12299 else
12300 /* Fast tracepoints are functionally identical to regular
12301 tracepoints, so don't take lack of support as a reason to
12302 give up on the trace run. */
12303 warning (_("Target does not support fast tracepoints, "
12304 "downloading %d as regular tracepoint"), b->number);
12305 }
12306 else if (b->type == bp_static_tracepoint)
12307 {
12308 /* Only test for support at download time; we may not know
12309 target capabilities at definition time. */
12310 if (remote_supports_static_tracepoints ())
12311 {
12312 struct static_tracepoint_marker marker;
12313
12314 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12315 strcat (buf, ":S");
12316 else
12317 error (_("Static tracepoint not valid during download"));
12318 }
12319 else
12320 /* Fast tracepoints are functionally identical to regular
12321 tracepoints, so don't take lack of support as a reason
12322 to give up on the trace run. */
12323 error (_("Target does not support static tracepoints"));
12324 }
12325 /* If the tracepoint has a conditional, make it into an agent
12326 expression and append to the definition. */
12327 if (loc->cond)
12328 {
12329 /* Only test support at download time, we may not know target
12330 capabilities at definition time. */
12331 if (remote_supports_cond_tracepoints ())
12332 {
12333 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12334 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12335 aexpr->len);
12336 pkt = buf + strlen (buf);
12337 for (ndx = 0; ndx < aexpr->len; ++ndx)
12338 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12339 *pkt = '\0';
12340 }
12341 else
12342 warning (_("Target does not support conditional tracepoints, "
12343 "ignoring tp %d cond"), b->number);
12344 }
12345
12346 if (b->commands || *default_collect)
12347 strcat (buf, "-");
12348 putpkt (buf);
12349 remote_get_noisy_reply (&target_buf, &target_buf_size);
12350 if (strcmp (target_buf, "OK"))
12351 error (_("Target does not support tracepoints."));
12352
12353 /* do_single_steps (t); */
12354 if (tdp_actions)
12355 {
12356 for (ndx = 0; tdp_actions[ndx]; ndx++)
12357 {
12358 QUIT; /* Allow user to bail out with ^C. */
12359 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12360 b->number, addrbuf, /* address */
12361 tdp_actions[ndx],
12362 ((tdp_actions[ndx + 1] || stepping_actions)
12363 ? '-' : 0));
12364 putpkt (buf);
12365 remote_get_noisy_reply (&target_buf,
12366 &target_buf_size);
12367 if (strcmp (target_buf, "OK"))
12368 error (_("Error on target while setting tracepoints."));
12369 }
12370 }
12371 if (stepping_actions)
12372 {
12373 for (ndx = 0; stepping_actions[ndx]; ndx++)
12374 {
12375 QUIT; /* Allow user to bail out with ^C. */
12376 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12377 b->number, addrbuf, /* address */
12378 ((ndx == 0) ? "S" : ""),
12379 stepping_actions[ndx],
12380 (stepping_actions[ndx + 1] ? "-" : ""));
12381 putpkt (buf);
12382 remote_get_noisy_reply (&target_buf,
12383 &target_buf_size);
12384 if (strcmp (target_buf, "OK"))
12385 error (_("Error on target while setting tracepoints."));
12386 }
12387 }
12388
12389 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12390 {
12391 if (b->location != NULL)
12392 {
12393 strcpy (buf, "QTDPsrc:");
12394 encode_source_string (b->number, loc->address, "at",
12395 event_location_to_string (b->location),
12396 buf + strlen (buf), 2048 - strlen (buf));
12397 putpkt (buf);
12398 remote_get_noisy_reply (&target_buf, &target_buf_size);
12399 if (strcmp (target_buf, "OK"))
12400 warning (_("Target does not support source download."));
12401 }
12402 if (b->cond_string)
12403 {
12404 strcpy (buf, "QTDPsrc:");
12405 encode_source_string (b->number, loc->address,
12406 "cond", b->cond_string, buf + strlen (buf),
12407 2048 - strlen (buf));
12408 putpkt (buf);
12409 remote_get_noisy_reply (&target_buf, &target_buf_size);
12410 if (strcmp (target_buf, "OK"))
12411 warning (_("Target does not support source download."));
12412 }
12413 remote_download_command_source (b->number, loc->address,
12414 breakpoint_commands (b));
12415 }
12416
12417 do_cleanups (old_chain);
12418 }
12419
12420 static int
12421 remote_can_download_tracepoint (struct target_ops *self)
12422 {
12423 struct remote_state *rs = get_remote_state ();
12424 struct trace_status *ts;
12425 int status;
12426
12427 /* Don't try to install tracepoints until we've relocated our
12428 symbols, and fetched and merged the target's tracepoint list with
12429 ours. */
12430 if (rs->starting_up)
12431 return 0;
12432
12433 ts = current_trace_status ();
12434 status = remote_get_trace_status (self, ts);
12435
12436 if (status == -1 || !ts->running_known || !ts->running)
12437 return 0;
12438
12439 /* If we are in a tracing experiment, but remote stub doesn't support
12440 installing tracepoint in trace, we have to return. */
12441 if (!remote_supports_install_in_trace ())
12442 return 0;
12443
12444 return 1;
12445 }
12446
12447
12448 static void
12449 remote_download_trace_state_variable (struct target_ops *self,
12450 struct trace_state_variable *tsv)
12451 {
12452 struct remote_state *rs = get_remote_state ();
12453 char *p;
12454
12455 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12456 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
12457 tsv->builtin);
12458 p = rs->buf + strlen (rs->buf);
12459 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
12460 error (_("Trace state variable name too long for tsv definition packet"));
12461 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, strlen (tsv->name));
12462 *p++ = '\0';
12463 putpkt (rs->buf);
12464 remote_get_noisy_reply (&target_buf, &target_buf_size);
12465 if (*target_buf == '\0')
12466 error (_("Target does not support this command."));
12467 if (strcmp (target_buf, "OK") != 0)
12468 error (_("Error on target while downloading trace state variable."));
12469 }
12470
12471 static void
12472 remote_enable_tracepoint (struct target_ops *self,
12473 struct bp_location *location)
12474 {
12475 struct remote_state *rs = get_remote_state ();
12476 char addr_buf[40];
12477
12478 sprintf_vma (addr_buf, location->address);
12479 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12480 location->owner->number, addr_buf);
12481 putpkt (rs->buf);
12482 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
12483 if (*rs->buf == '\0')
12484 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12485 if (strcmp (rs->buf, "OK") != 0)
12486 error (_("Error on target while enabling tracepoint."));
12487 }
12488
12489 static void
12490 remote_disable_tracepoint (struct target_ops *self,
12491 struct bp_location *location)
12492 {
12493 struct remote_state *rs = get_remote_state ();
12494 char addr_buf[40];
12495
12496 sprintf_vma (addr_buf, location->address);
12497 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12498 location->owner->number, addr_buf);
12499 putpkt (rs->buf);
12500 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
12501 if (*rs->buf == '\0')
12502 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12503 if (strcmp (rs->buf, "OK") != 0)
12504 error (_("Error on target while disabling tracepoint."));
12505 }
12506
12507 static void
12508 remote_trace_set_readonly_regions (struct target_ops *self)
12509 {
12510 asection *s;
12511 bfd *abfd = NULL;
12512 bfd_size_type size;
12513 bfd_vma vma;
12514 int anysecs = 0;
12515 int offset = 0;
12516
12517 if (!exec_bfd)
12518 return; /* No information to give. */
12519
12520 strcpy (target_buf, "QTro");
12521 offset = strlen (target_buf);
12522 for (s = exec_bfd->sections; s; s = s->next)
12523 {
12524 char tmp1[40], tmp2[40];
12525 int sec_length;
12526
12527 if ((s->flags & SEC_LOAD) == 0 ||
12528 /* (s->flags & SEC_CODE) == 0 || */
12529 (s->flags & SEC_READONLY) == 0)
12530 continue;
12531
12532 anysecs = 1;
12533 vma = bfd_get_section_vma (abfd, s);
12534 size = bfd_get_section_size (s);
12535 sprintf_vma (tmp1, vma);
12536 sprintf_vma (tmp2, vma + size);
12537 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12538 if (offset + sec_length + 1 > target_buf_size)
12539 {
12540 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12541 warning (_("\
12542 Too many sections for read-only sections definition packet."));
12543 break;
12544 }
12545 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
12546 tmp1, tmp2);
12547 offset += sec_length;
12548 }
12549 if (anysecs)
12550 {
12551 putpkt (target_buf);
12552 getpkt (&target_buf, &target_buf_size, 0);
12553 }
12554 }
12555
12556 static void
12557 remote_trace_start (struct target_ops *self)
12558 {
12559 putpkt ("QTStart");
12560 remote_get_noisy_reply (&target_buf, &target_buf_size);
12561 if (*target_buf == '\0')
12562 error (_("Target does not support this command."));
12563 if (strcmp (target_buf, "OK") != 0)
12564 error (_("Bogus reply from target: %s"), target_buf);
12565 }
12566
12567 static int
12568 remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
12569 {
12570 /* Initialize it just to avoid a GCC false warning. */
12571 char *p = NULL;
12572 /* FIXME we need to get register block size some other way. */
12573 extern int trace_regblock_size;
12574 enum packet_result result;
12575
12576 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12577 return -1;
12578
12579 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
12580
12581 putpkt ("qTStatus");
12582
12583 TRY
12584 {
12585 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
12586 }
12587 CATCH (ex, RETURN_MASK_ERROR)
12588 {
12589 if (ex.error != TARGET_CLOSE_ERROR)
12590 {
12591 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12592 return -1;
12593 }
12594 throw_exception (ex);
12595 }
12596 END_CATCH
12597
12598 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12599
12600 /* If the remote target doesn't do tracing, flag it. */
12601 if (result == PACKET_UNKNOWN)
12602 return -1;
12603
12604 /* We're working with a live target. */
12605 ts->filename = NULL;
12606
12607 if (*p++ != 'T')
12608 error (_("Bogus trace status reply from target: %s"), target_buf);
12609
12610 /* Function 'parse_trace_status' sets default value of each field of
12611 'ts' at first, so we don't have to do it here. */
12612 parse_trace_status (p, ts);
12613
12614 return ts->running;
12615 }
12616
12617 static void
12618 remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
12619 struct uploaded_tp *utp)
12620 {
12621 struct remote_state *rs = get_remote_state ();
12622 char *reply;
12623 struct bp_location *loc;
12624 struct tracepoint *tp = (struct tracepoint *) bp;
12625 size_t size = get_remote_packet_size ();
12626
12627 if (tp)
12628 {
12629 tp->base.hit_count = 0;
12630 tp->traceframe_usage = 0;
12631 for (loc = tp->base.loc; loc; loc = loc->next)
12632 {
12633 /* If the tracepoint was never downloaded, don't go asking for
12634 any status. */
12635 if (tp->number_on_target == 0)
12636 continue;
12637 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12638 phex_nz (loc->address, 0));
12639 putpkt (rs->buf);
12640 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12641 if (reply && *reply)
12642 {
12643 if (*reply == 'V')
12644 parse_tracepoint_status (reply + 1, bp, utp);
12645 }
12646 }
12647 }
12648 else if (utp)
12649 {
12650 utp->hit_count = 0;
12651 utp->traceframe_usage = 0;
12652 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
12653 phex_nz (utp->addr, 0));
12654 putpkt (rs->buf);
12655 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12656 if (reply && *reply)
12657 {
12658 if (*reply == 'V')
12659 parse_tracepoint_status (reply + 1, bp, utp);
12660 }
12661 }
12662 }
12663
12664 static void
12665 remote_trace_stop (struct target_ops *self)
12666 {
12667 putpkt ("QTStop");
12668 remote_get_noisy_reply (&target_buf, &target_buf_size);
12669 if (*target_buf == '\0')
12670 error (_("Target does not support this command."));
12671 if (strcmp (target_buf, "OK") != 0)
12672 error (_("Bogus reply from target: %s"), target_buf);
12673 }
12674
12675 static int
12676 remote_trace_find (struct target_ops *self,
12677 enum trace_find_type type, int num,
12678 CORE_ADDR addr1, CORE_ADDR addr2,
12679 int *tpp)
12680 {
12681 struct remote_state *rs = get_remote_state ();
12682 char *endbuf = rs->buf + get_remote_packet_size ();
12683 char *p, *reply;
12684 int target_frameno = -1, target_tracept = -1;
12685
12686 /* Lookups other than by absolute frame number depend on the current
12687 trace selected, so make sure it is correct on the remote end
12688 first. */
12689 if (type != tfind_number)
12690 set_remote_traceframe ();
12691
12692 p = rs->buf;
12693 strcpy (p, "QTFrame:");
12694 p = strchr (p, '\0');
12695 switch (type)
12696 {
12697 case tfind_number:
12698 xsnprintf (p, endbuf - p, "%x", num);
12699 break;
12700 case tfind_pc:
12701 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
12702 break;
12703 case tfind_tp:
12704 xsnprintf (p, endbuf - p, "tdp:%x", num);
12705 break;
12706 case tfind_range:
12707 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
12708 phex_nz (addr2, 0));
12709 break;
12710 case tfind_outside:
12711 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
12712 phex_nz (addr2, 0));
12713 break;
12714 default:
12715 error (_("Unknown trace find type %d"), type);
12716 }
12717
12718 putpkt (rs->buf);
12719 reply = remote_get_noisy_reply (&(rs->buf), &rs->buf_size);
12720 if (*reply == '\0')
12721 error (_("Target does not support this command."));
12722
12723 while (reply && *reply)
12724 switch (*reply)
12725 {
12726 case 'F':
12727 p = ++reply;
12728 target_frameno = (int) strtol (p, &reply, 16);
12729 if (reply == p)
12730 error (_("Unable to parse trace frame number"));
12731 /* Don't update our remote traceframe number cache on failure
12732 to select a remote traceframe. */
12733 if (target_frameno == -1)
12734 return -1;
12735 break;
12736 case 'T':
12737 p = ++reply;
12738 target_tracept = (int) strtol (p, &reply, 16);
12739 if (reply == p)
12740 error (_("Unable to parse tracepoint number"));
12741 break;
12742 case 'O': /* "OK"? */
12743 if (reply[1] == 'K' && reply[2] == '\0')
12744 reply += 2;
12745 else
12746 error (_("Bogus reply from target: %s"), reply);
12747 break;
12748 default:
12749 error (_("Bogus reply from target: %s"), reply);
12750 }
12751 if (tpp)
12752 *tpp = target_tracept;
12753
12754 rs->remote_traceframe_number = target_frameno;
12755 return target_frameno;
12756 }
12757
12758 static int
12759 remote_get_trace_state_variable_value (struct target_ops *self,
12760 int tsvnum, LONGEST *val)
12761 {
12762 struct remote_state *rs = get_remote_state ();
12763 char *reply;
12764 ULONGEST uval;
12765
12766 set_remote_traceframe ();
12767
12768 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
12769 putpkt (rs->buf);
12770 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12771 if (reply && *reply)
12772 {
12773 if (*reply == 'V')
12774 {
12775 unpack_varlen_hex (reply + 1, &uval);
12776 *val = (LONGEST) uval;
12777 return 1;
12778 }
12779 }
12780 return 0;
12781 }
12782
12783 static int
12784 remote_save_trace_data (struct target_ops *self, const char *filename)
12785 {
12786 struct remote_state *rs = get_remote_state ();
12787 char *p, *reply;
12788
12789 p = rs->buf;
12790 strcpy (p, "QTSave:");
12791 p += strlen (p);
12792 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
12793 error (_("Remote file name too long for trace save packet"));
12794 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
12795 *p++ = '\0';
12796 putpkt (rs->buf);
12797 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12798 if (*reply == '\0')
12799 error (_("Target does not support this command."));
12800 if (strcmp (reply, "OK") != 0)
12801 error (_("Bogus reply from target: %s"), reply);
12802 return 0;
12803 }
12804
12805 /* This is basically a memory transfer, but needs to be its own packet
12806 because we don't know how the target actually organizes its trace
12807 memory, plus we want to be able to ask for as much as possible, but
12808 not be unhappy if we don't get as much as we ask for. */
12809
12810 static LONGEST
12811 remote_get_raw_trace_data (struct target_ops *self,
12812 gdb_byte *buf, ULONGEST offset, LONGEST len)
12813 {
12814 struct remote_state *rs = get_remote_state ();
12815 char *reply;
12816 char *p;
12817 int rslt;
12818
12819 p = rs->buf;
12820 strcpy (p, "qTBuffer:");
12821 p += strlen (p);
12822 p += hexnumstr (p, offset);
12823 *p++ = ',';
12824 p += hexnumstr (p, len);
12825 *p++ = '\0';
12826
12827 putpkt (rs->buf);
12828 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12829 if (reply && *reply)
12830 {
12831 /* 'l' by itself means we're at the end of the buffer and
12832 there is nothing more to get. */
12833 if (*reply == 'l')
12834 return 0;
12835
12836 /* Convert the reply into binary. Limit the number of bytes to
12837 convert according to our passed-in buffer size, rather than
12838 what was returned in the packet; if the target is
12839 unexpectedly generous and gives us a bigger reply than we
12840 asked for, we don't want to crash. */
12841 rslt = hex2bin (target_buf, buf, len);
12842 return rslt;
12843 }
12844
12845 /* Something went wrong, flag as an error. */
12846 return -1;
12847 }
12848
12849 static void
12850 remote_set_disconnected_tracing (struct target_ops *self, int val)
12851 {
12852 struct remote_state *rs = get_remote_state ();
12853
12854 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
12855 {
12856 char *reply;
12857
12858 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
12859 putpkt (rs->buf);
12860 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12861 if (*reply == '\0')
12862 error (_("Target does not support this command."));
12863 if (strcmp (reply, "OK") != 0)
12864 error (_("Bogus reply from target: %s"), reply);
12865 }
12866 else if (val)
12867 warning (_("Target does not support disconnected tracing."));
12868 }
12869
12870 static int
12871 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
12872 {
12873 struct thread_info *info = find_thread_ptid (ptid);
12874
12875 if (info && info->priv)
12876 return info->priv->core;
12877 return -1;
12878 }
12879
12880 static void
12881 remote_set_circular_trace_buffer (struct target_ops *self, int val)
12882 {
12883 struct remote_state *rs = get_remote_state ();
12884 char *reply;
12885
12886 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
12887 putpkt (rs->buf);
12888 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12889 if (*reply == '\0')
12890 error (_("Target does not support this command."));
12891 if (strcmp (reply, "OK") != 0)
12892 error (_("Bogus reply from target: %s"), reply);
12893 }
12894
12895 static struct traceframe_info *
12896 remote_traceframe_info (struct target_ops *self)
12897 {
12898 char *text;
12899
12900 text = target_read_stralloc (&current_target,
12901 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
12902 if (text != NULL)
12903 {
12904 struct traceframe_info *info;
12905 struct cleanup *back_to = make_cleanup (xfree, text);
12906
12907 info = parse_traceframe_info (text);
12908 do_cleanups (back_to);
12909 return info;
12910 }
12911
12912 return NULL;
12913 }
12914
12915 /* Handle the qTMinFTPILen packet. Returns the minimum length of
12916 instruction on which a fast tracepoint may be placed. Returns -1
12917 if the packet is not supported, and 0 if the minimum instruction
12918 length is unknown. */
12919
12920 static int
12921 remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
12922 {
12923 struct remote_state *rs = get_remote_state ();
12924 char *reply;
12925
12926 /* If we're not debugging a process yet, the IPA can't be
12927 loaded. */
12928 if (!target_has_execution)
12929 return 0;
12930
12931 /* Make sure the remote is pointing at the right process. */
12932 set_general_process ();
12933
12934 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
12935 putpkt (rs->buf);
12936 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12937 if (*reply == '\0')
12938 return -1;
12939 else
12940 {
12941 ULONGEST min_insn_len;
12942
12943 unpack_varlen_hex (reply, &min_insn_len);
12944
12945 return (int) min_insn_len;
12946 }
12947 }
12948
12949 static void
12950 remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
12951 {
12952 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
12953 {
12954 struct remote_state *rs = get_remote_state ();
12955 char *buf = rs->buf;
12956 char *endbuf = rs->buf + get_remote_packet_size ();
12957 enum packet_result result;
12958
12959 gdb_assert (val >= 0 || val == -1);
12960 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
12961 /* Send -1 as literal "-1" to avoid host size dependency. */
12962 if (val < 0)
12963 {
12964 *buf++ = '-';
12965 buf += hexnumstr (buf, (ULONGEST) -val);
12966 }
12967 else
12968 buf += hexnumstr (buf, (ULONGEST) val);
12969
12970 putpkt (rs->buf);
12971 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
12972 result = packet_ok (rs->buf,
12973 &remote_protocol_packets[PACKET_QTBuffer_size]);
12974
12975 if (result != PACKET_OK)
12976 warning (_("Bogus reply from target: %s"), rs->buf);
12977 }
12978 }
12979
12980 static int
12981 remote_set_trace_notes (struct target_ops *self,
12982 const char *user, const char *notes,
12983 const char *stop_notes)
12984 {
12985 struct remote_state *rs = get_remote_state ();
12986 char *reply;
12987 char *buf = rs->buf;
12988 char *endbuf = rs->buf + get_remote_packet_size ();
12989 int nbytes;
12990
12991 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
12992 if (user)
12993 {
12994 buf += xsnprintf (buf, endbuf - buf, "user:");
12995 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
12996 buf += 2 * nbytes;
12997 *buf++ = ';';
12998 }
12999 if (notes)
13000 {
13001 buf += xsnprintf (buf, endbuf - buf, "notes:");
13002 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13003 buf += 2 * nbytes;
13004 *buf++ = ';';
13005 }
13006 if (stop_notes)
13007 {
13008 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13009 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13010 buf += 2 * nbytes;
13011 *buf++ = ';';
13012 }
13013 /* Ensure the buffer is terminated. */
13014 *buf = '\0';
13015
13016 putpkt (rs->buf);
13017 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
13018 if (*reply == '\0')
13019 return 0;
13020
13021 if (strcmp (reply, "OK") != 0)
13022 error (_("Bogus reply from target: %s"), reply);
13023
13024 return 1;
13025 }
13026
13027 static int
13028 remote_use_agent (struct target_ops *self, int use)
13029 {
13030 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13031 {
13032 struct remote_state *rs = get_remote_state ();
13033
13034 /* If the stub supports QAgent. */
13035 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13036 putpkt (rs->buf);
13037 getpkt (&rs->buf, &rs->buf_size, 0);
13038
13039 if (strcmp (rs->buf, "OK") == 0)
13040 {
13041 use_agent = use;
13042 return 1;
13043 }
13044 }
13045
13046 return 0;
13047 }
13048
13049 static int
13050 remote_can_use_agent (struct target_ops *self)
13051 {
13052 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13053 }
13054
13055 struct btrace_target_info
13056 {
13057 /* The ptid of the traced thread. */
13058 ptid_t ptid;
13059
13060 /* The obtained branch trace configuration. */
13061 struct btrace_config conf;
13062 };
13063
13064 /* Reset our idea of our target's btrace configuration. */
13065
13066 static void
13067 remote_btrace_reset (void)
13068 {
13069 struct remote_state *rs = get_remote_state ();
13070
13071 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13072 }
13073
13074 /* Check whether the target supports branch tracing. */
13075
13076 static int
13077 remote_supports_btrace (struct target_ops *self, enum btrace_format format)
13078 {
13079 if (packet_support (PACKET_Qbtrace_off) != PACKET_ENABLE)
13080 return 0;
13081 if (packet_support (PACKET_qXfer_btrace) != PACKET_ENABLE)
13082 return 0;
13083
13084 switch (format)
13085 {
13086 case BTRACE_FORMAT_NONE:
13087 return 0;
13088
13089 case BTRACE_FORMAT_BTS:
13090 return (packet_support (PACKET_Qbtrace_bts) == PACKET_ENABLE);
13091
13092 case BTRACE_FORMAT_PT:
13093 /* The trace is decoded on the host. Even if our target supports it,
13094 we still need to have libipt to decode the trace. */
13095 #if defined (HAVE_LIBIPT)
13096 return (packet_support (PACKET_Qbtrace_pt) == PACKET_ENABLE);
13097 #else /* !defined (HAVE_LIBIPT) */
13098 return 0;
13099 #endif /* !defined (HAVE_LIBIPT) */
13100 }
13101
13102 internal_error (__FILE__, __LINE__, _("Unknown branch trace format"));
13103 }
13104
13105 /* Synchronize the configuration with the target. */
13106
13107 static void
13108 btrace_sync_conf (const struct btrace_config *conf)
13109 {
13110 struct packet_config *packet;
13111 struct remote_state *rs;
13112 char *buf, *pos, *endbuf;
13113
13114 rs = get_remote_state ();
13115 buf = rs->buf;
13116 endbuf = buf + get_remote_packet_size ();
13117
13118 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13119 if (packet_config_support (packet) == PACKET_ENABLE
13120 && conf->bts.size != rs->btrace_config.bts.size)
13121 {
13122 pos = buf;
13123 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13124 conf->bts.size);
13125
13126 putpkt (buf);
13127 getpkt (&buf, &rs->buf_size, 0);
13128
13129 if (packet_ok (buf, packet) == PACKET_ERROR)
13130 {
13131 if (buf[0] == 'E' && buf[1] == '.')
13132 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13133 else
13134 error (_("Failed to configure the BTS buffer size."));
13135 }
13136
13137 rs->btrace_config.bts.size = conf->bts.size;
13138 }
13139
13140 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13141 if (packet_config_support (packet) == PACKET_ENABLE
13142 && conf->pt.size != rs->btrace_config.pt.size)
13143 {
13144 pos = buf;
13145 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13146 conf->pt.size);
13147
13148 putpkt (buf);
13149 getpkt (&buf, &rs->buf_size, 0);
13150
13151 if (packet_ok (buf, packet) == PACKET_ERROR)
13152 {
13153 if (buf[0] == 'E' && buf[1] == '.')
13154 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13155 else
13156 error (_("Failed to configure the trace buffer size."));
13157 }
13158
13159 rs->btrace_config.pt.size = conf->pt.size;
13160 }
13161 }
13162
13163 /* Read the current thread's btrace configuration from the target and
13164 store it into CONF. */
13165
13166 static void
13167 btrace_read_config (struct btrace_config *conf)
13168 {
13169 char *xml;
13170
13171 xml = target_read_stralloc (&current_target,
13172 TARGET_OBJECT_BTRACE_CONF, "");
13173 if (xml != NULL)
13174 {
13175 struct cleanup *cleanup;
13176
13177 cleanup = make_cleanup (xfree, xml);
13178 parse_xml_btrace_conf (conf, xml);
13179 do_cleanups (cleanup);
13180 }
13181 }
13182
13183 /* Maybe reopen target btrace. */
13184
13185 static void
13186 remote_btrace_maybe_reopen (void)
13187 {
13188 struct remote_state *rs = get_remote_state ();
13189 struct cleanup *cleanup;
13190 struct thread_info *tp;
13191 int btrace_target_pushed = 0;
13192 int warned = 0;
13193
13194 cleanup = make_cleanup_restore_current_thread ();
13195 ALL_NON_EXITED_THREADS (tp)
13196 {
13197 set_general_thread (tp->ptid);
13198
13199 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13200 btrace_read_config (&rs->btrace_config);
13201
13202 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13203 continue;
13204
13205 #if !defined (HAVE_LIBIPT)
13206 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13207 {
13208 if (!warned)
13209 {
13210 warned = 1;
13211 warning (_("GDB does not support Intel Processor Trace. "
13212 "\"record\" will not work in this session."));
13213 }
13214
13215 continue;
13216 }
13217 #endif /* !defined (HAVE_LIBIPT) */
13218
13219 /* Push target, once, but before anything else happens. This way our
13220 changes to the threads will be cleaned up by unpushing the target
13221 in case btrace_read_config () throws. */
13222 if (!btrace_target_pushed)
13223 {
13224 btrace_target_pushed = 1;
13225 record_btrace_push_target ();
13226 printf_filtered (_("Target is recording using %s.\n"),
13227 btrace_format_string (rs->btrace_config.format));
13228 }
13229
13230 tp->btrace.target = XCNEW (struct btrace_target_info);
13231 tp->btrace.target->ptid = tp->ptid;
13232 tp->btrace.target->conf = rs->btrace_config;
13233 }
13234 do_cleanups (cleanup);
13235 }
13236
13237 /* Enable branch tracing. */
13238
13239 static struct btrace_target_info *
13240 remote_enable_btrace (struct target_ops *self, ptid_t ptid,
13241 const struct btrace_config *conf)
13242 {
13243 struct btrace_target_info *tinfo = NULL;
13244 struct packet_config *packet = NULL;
13245 struct remote_state *rs = get_remote_state ();
13246 char *buf = rs->buf;
13247 char *endbuf = rs->buf + get_remote_packet_size ();
13248
13249 switch (conf->format)
13250 {
13251 case BTRACE_FORMAT_BTS:
13252 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13253 break;
13254
13255 case BTRACE_FORMAT_PT:
13256 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13257 break;
13258 }
13259
13260 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13261 error (_("Target does not support branch tracing."));
13262
13263 btrace_sync_conf (conf);
13264
13265 set_general_thread (ptid);
13266
13267 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13268 putpkt (rs->buf);
13269 getpkt (&rs->buf, &rs->buf_size, 0);
13270
13271 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13272 {
13273 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13274 error (_("Could not enable branch tracing for %s: %s"),
13275 target_pid_to_str (ptid), rs->buf + 2);
13276 else
13277 error (_("Could not enable branch tracing for %s."),
13278 target_pid_to_str (ptid));
13279 }
13280
13281 tinfo = XCNEW (struct btrace_target_info);
13282 tinfo->ptid = ptid;
13283
13284 /* If we fail to read the configuration, we lose some information, but the
13285 tracing itself is not impacted. */
13286 TRY
13287 {
13288 btrace_read_config (&tinfo->conf);
13289 }
13290 CATCH (err, RETURN_MASK_ERROR)
13291 {
13292 if (err.message != NULL)
13293 warning ("%s", err.message);
13294 }
13295 END_CATCH
13296
13297 return tinfo;
13298 }
13299
13300 /* Disable branch tracing. */
13301
13302 static void
13303 remote_disable_btrace (struct target_ops *self,
13304 struct btrace_target_info *tinfo)
13305 {
13306 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13307 struct remote_state *rs = get_remote_state ();
13308 char *buf = rs->buf;
13309 char *endbuf = rs->buf + get_remote_packet_size ();
13310
13311 if (packet_config_support (packet) != PACKET_ENABLE)
13312 error (_("Target does not support branch tracing."));
13313
13314 set_general_thread (tinfo->ptid);
13315
13316 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13317 putpkt (rs->buf);
13318 getpkt (&rs->buf, &rs->buf_size, 0);
13319
13320 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13321 {
13322 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13323 error (_("Could not disable branch tracing for %s: %s"),
13324 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13325 else
13326 error (_("Could not disable branch tracing for %s."),
13327 target_pid_to_str (tinfo->ptid));
13328 }
13329
13330 xfree (tinfo);
13331 }
13332
13333 /* Teardown branch tracing. */
13334
13335 static void
13336 remote_teardown_btrace (struct target_ops *self,
13337 struct btrace_target_info *tinfo)
13338 {
13339 /* We must not talk to the target during teardown. */
13340 xfree (tinfo);
13341 }
13342
13343 /* Read the branch trace. */
13344
13345 static enum btrace_error
13346 remote_read_btrace (struct target_ops *self,
13347 struct btrace_data *btrace,
13348 struct btrace_target_info *tinfo,
13349 enum btrace_read_type type)
13350 {
13351 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13352 struct cleanup *cleanup;
13353 const char *annex;
13354 char *xml;
13355
13356 if (packet_config_support (packet) != PACKET_ENABLE)
13357 error (_("Target does not support branch tracing."));
13358
13359 #if !defined(HAVE_LIBEXPAT)
13360 error (_("Cannot process branch tracing result. XML parsing not supported."));
13361 #endif
13362
13363 switch (type)
13364 {
13365 case BTRACE_READ_ALL:
13366 annex = "all";
13367 break;
13368 case BTRACE_READ_NEW:
13369 annex = "new";
13370 break;
13371 case BTRACE_READ_DELTA:
13372 annex = "delta";
13373 break;
13374 default:
13375 internal_error (__FILE__, __LINE__,
13376 _("Bad branch tracing read type: %u."),
13377 (unsigned int) type);
13378 }
13379
13380 xml = target_read_stralloc (&current_target,
13381 TARGET_OBJECT_BTRACE, annex);
13382 if (xml == NULL)
13383 return BTRACE_ERR_UNKNOWN;
13384
13385 cleanup = make_cleanup (xfree, xml);
13386 parse_xml_btrace (btrace, xml);
13387 do_cleanups (cleanup);
13388
13389 return BTRACE_ERR_NONE;
13390 }
13391
13392 static const struct btrace_config *
13393 remote_btrace_conf (struct target_ops *self,
13394 const struct btrace_target_info *tinfo)
13395 {
13396 return &tinfo->conf;
13397 }
13398
13399 static int
13400 remote_augmented_libraries_svr4_read (struct target_ops *self)
13401 {
13402 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13403 == PACKET_ENABLE);
13404 }
13405
13406 /* Implementation of to_load. */
13407
13408 static void
13409 remote_load (struct target_ops *self, const char *name, int from_tty)
13410 {
13411 generic_load (name, from_tty);
13412 }
13413
13414 /* Accepts an integer PID; returns a string representing a file that
13415 can be opened on the remote side to get the symbols for the child
13416 process. Returns NULL if the operation is not supported. */
13417
13418 static char *
13419 remote_pid_to_exec_file (struct target_ops *self, int pid)
13420 {
13421 static char *filename = NULL;
13422 struct inferior *inf;
13423 char *annex = NULL;
13424
13425 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13426 return NULL;
13427
13428 if (filename != NULL)
13429 xfree (filename);
13430
13431 inf = find_inferior_pid (pid);
13432 if (inf == NULL)
13433 internal_error (__FILE__, __LINE__,
13434 _("not currently attached to process %d"), pid);
13435
13436 if (!inf->fake_pid_p)
13437 {
13438 const int annex_size = 9;
13439
13440 annex = (char *) alloca (annex_size);
13441 xsnprintf (annex, annex_size, "%x", pid);
13442 }
13443
13444 filename = target_read_stralloc (&current_target,
13445 TARGET_OBJECT_EXEC_FILE, annex);
13446
13447 return filename;
13448 }
13449
13450 /* Implement the to_can_do_single_step target_ops method. */
13451
13452 static int
13453 remote_can_do_single_step (struct target_ops *ops)
13454 {
13455 /* We can only tell whether target supports single step or not by
13456 supported s and S vCont actions if the stub supports vContSupported
13457 feature. If the stub doesn't support vContSupported feature,
13458 we have conservatively to think target doesn't supports single
13459 step. */
13460 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13461 {
13462 struct remote_state *rs = get_remote_state ();
13463
13464 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13465 remote_vcont_probe (rs);
13466
13467 return rs->supports_vCont.s && rs->supports_vCont.S;
13468 }
13469 else
13470 return 0;
13471 }
13472
13473 /* Implementation of the to_execution_direction method for the remote
13474 target. */
13475
13476 static enum exec_direction_kind
13477 remote_execution_direction (struct target_ops *self)
13478 {
13479 struct remote_state *rs = get_remote_state ();
13480
13481 return rs->last_resume_exec_dir;
13482 }
13483
13484 static void
13485 init_remote_ops (void)
13486 {
13487 remote_ops.to_shortname = "remote";
13488 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
13489 remote_ops.to_doc =
13490 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13491 Specify the serial device it is connected to\n\
13492 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
13493 remote_ops.to_open = remote_open;
13494 remote_ops.to_close = remote_close;
13495 remote_ops.to_detach = remote_detach;
13496 remote_ops.to_disconnect = remote_disconnect;
13497 remote_ops.to_resume = remote_resume;
13498 remote_ops.to_commit_resume = remote_commit_resume;
13499 remote_ops.to_wait = remote_wait;
13500 remote_ops.to_fetch_registers = remote_fetch_registers;
13501 remote_ops.to_store_registers = remote_store_registers;
13502 remote_ops.to_prepare_to_store = remote_prepare_to_store;
13503 remote_ops.to_files_info = remote_files_info;
13504 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
13505 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
13506 remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint;
13507 remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint;
13508 remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint;
13509 remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint;
13510 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
13511 remote_ops.to_stopped_data_address = remote_stopped_data_address;
13512 remote_ops.to_watchpoint_addr_within_range =
13513 remote_watchpoint_addr_within_range;
13514 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
13515 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
13516 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
13517 remote_ops.to_region_ok_for_hw_watchpoint
13518 = remote_region_ok_for_hw_watchpoint;
13519 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
13520 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
13521 remote_ops.to_kill = remote_kill;
13522 remote_ops.to_load = remote_load;
13523 remote_ops.to_mourn_inferior = remote_mourn;
13524 remote_ops.to_pass_signals = remote_pass_signals;
13525 remote_ops.to_set_syscall_catchpoint = remote_set_syscall_catchpoint;
13526 remote_ops.to_program_signals = remote_program_signals;
13527 remote_ops.to_thread_alive = remote_thread_alive;
13528 remote_ops.to_thread_name = remote_thread_name;
13529 remote_ops.to_update_thread_list = remote_update_thread_list;
13530 remote_ops.to_pid_to_str = remote_pid_to_str;
13531 remote_ops.to_extra_thread_info = remote_threads_extra_info;
13532 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
13533 remote_ops.to_stop = remote_stop;
13534 remote_ops.to_interrupt = remote_interrupt;
13535 remote_ops.to_pass_ctrlc = remote_pass_ctrlc;
13536 remote_ops.to_xfer_partial = remote_xfer_partial;
13537 remote_ops.to_get_memory_xfer_limit = remote_get_memory_xfer_limit;
13538 remote_ops.to_rcmd = remote_rcmd;
13539 remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file;
13540 remote_ops.to_log_command = serial_log_command;
13541 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
13542 remote_ops.to_stratum = process_stratum;
13543 remote_ops.to_has_all_memory = default_child_has_all_memory;
13544 remote_ops.to_has_memory = default_child_has_memory;
13545 remote_ops.to_has_stack = default_child_has_stack;
13546 remote_ops.to_has_registers = default_child_has_registers;
13547 remote_ops.to_has_execution = default_child_has_execution;
13548 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
13549 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
13550 remote_ops.to_magic = OPS_MAGIC;
13551 remote_ops.to_memory_map = remote_memory_map;
13552 remote_ops.to_flash_erase = remote_flash_erase;
13553 remote_ops.to_flash_done = remote_flash_done;
13554 remote_ops.to_read_description = remote_read_description;
13555 remote_ops.to_search_memory = remote_search_memory;
13556 remote_ops.to_can_async_p = remote_can_async_p;
13557 remote_ops.to_is_async_p = remote_is_async_p;
13558 remote_ops.to_async = remote_async;
13559 remote_ops.to_thread_events = remote_thread_events;
13560 remote_ops.to_can_do_single_step = remote_can_do_single_step;
13561 remote_ops.to_terminal_inferior = remote_terminal_inferior;
13562 remote_ops.to_terminal_ours = remote_terminal_ours;
13563 remote_ops.to_supports_non_stop = remote_supports_non_stop;
13564 remote_ops.to_supports_multi_process = remote_supports_multi_process;
13565 remote_ops.to_supports_disable_randomization
13566 = remote_supports_disable_randomization;
13567 remote_ops.to_filesystem_is_local = remote_filesystem_is_local;
13568 remote_ops.to_fileio_open = remote_hostio_open;
13569 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
13570 remote_ops.to_fileio_pread = remote_hostio_pread;
13571 remote_ops.to_fileio_fstat = remote_hostio_fstat;
13572 remote_ops.to_fileio_close = remote_hostio_close;
13573 remote_ops.to_fileio_unlink = remote_hostio_unlink;
13574 remote_ops.to_fileio_readlink = remote_hostio_readlink;
13575 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
13576 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
13577 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
13578 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
13579 remote_ops.to_trace_init = remote_trace_init;
13580 remote_ops.to_download_tracepoint = remote_download_tracepoint;
13581 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
13582 remote_ops.to_download_trace_state_variable
13583 = remote_download_trace_state_variable;
13584 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
13585 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
13586 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
13587 remote_ops.to_trace_start = remote_trace_start;
13588 remote_ops.to_get_trace_status = remote_get_trace_status;
13589 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
13590 remote_ops.to_trace_stop = remote_trace_stop;
13591 remote_ops.to_trace_find = remote_trace_find;
13592 remote_ops.to_get_trace_state_variable_value
13593 = remote_get_trace_state_variable_value;
13594 remote_ops.to_save_trace_data = remote_save_trace_data;
13595 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
13596 remote_ops.to_upload_trace_state_variables
13597 = remote_upload_trace_state_variables;
13598 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
13599 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
13600 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
13601 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
13602 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
13603 remote_ops.to_set_trace_notes = remote_set_trace_notes;
13604 remote_ops.to_core_of_thread = remote_core_of_thread;
13605 remote_ops.to_verify_memory = remote_verify_memory;
13606 remote_ops.to_get_tib_address = remote_get_tib_address;
13607 remote_ops.to_set_permissions = remote_set_permissions;
13608 remote_ops.to_static_tracepoint_marker_at
13609 = remote_static_tracepoint_marker_at;
13610 remote_ops.to_static_tracepoint_markers_by_strid
13611 = remote_static_tracepoint_markers_by_strid;
13612 remote_ops.to_traceframe_info = remote_traceframe_info;
13613 remote_ops.to_use_agent = remote_use_agent;
13614 remote_ops.to_can_use_agent = remote_can_use_agent;
13615 remote_ops.to_supports_btrace = remote_supports_btrace;
13616 remote_ops.to_enable_btrace = remote_enable_btrace;
13617 remote_ops.to_disable_btrace = remote_disable_btrace;
13618 remote_ops.to_teardown_btrace = remote_teardown_btrace;
13619 remote_ops.to_read_btrace = remote_read_btrace;
13620 remote_ops.to_btrace_conf = remote_btrace_conf;
13621 remote_ops.to_augmented_libraries_svr4_read =
13622 remote_augmented_libraries_svr4_read;
13623 remote_ops.to_follow_fork = remote_follow_fork;
13624 remote_ops.to_follow_exec = remote_follow_exec;
13625 remote_ops.to_insert_fork_catchpoint = remote_insert_fork_catchpoint;
13626 remote_ops.to_remove_fork_catchpoint = remote_remove_fork_catchpoint;
13627 remote_ops.to_insert_vfork_catchpoint = remote_insert_vfork_catchpoint;
13628 remote_ops.to_remove_vfork_catchpoint = remote_remove_vfork_catchpoint;
13629 remote_ops.to_insert_exec_catchpoint = remote_insert_exec_catchpoint;
13630 remote_ops.to_remove_exec_catchpoint = remote_remove_exec_catchpoint;
13631 remote_ops.to_execution_direction = remote_execution_direction;
13632 }
13633
13634 /* Set up the extended remote vector by making a copy of the standard
13635 remote vector and adding to it. */
13636
13637 static void
13638 init_extended_remote_ops (void)
13639 {
13640 extended_remote_ops = remote_ops;
13641
13642 extended_remote_ops.to_shortname = "extended-remote";
13643 extended_remote_ops.to_longname =
13644 "Extended remote serial target in gdb-specific protocol";
13645 extended_remote_ops.to_doc =
13646 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13647 Specify the serial device it is connected to (e.g. /dev/ttya).";
13648 extended_remote_ops.to_open = extended_remote_open;
13649 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
13650 extended_remote_ops.to_detach = extended_remote_detach;
13651 extended_remote_ops.to_attach = extended_remote_attach;
13652 extended_remote_ops.to_post_attach = extended_remote_post_attach;
13653 extended_remote_ops.to_supports_disable_randomization
13654 = extended_remote_supports_disable_randomization;
13655 }
13656
13657 static int
13658 remote_can_async_p (struct target_ops *ops)
13659 {
13660 struct remote_state *rs = get_remote_state ();
13661
13662 if (!target_async_permitted)
13663 /* We only enable async when the user specifically asks for it. */
13664 return 0;
13665
13666 /* We're async whenever the serial device is. */
13667 return serial_can_async_p (rs->remote_desc);
13668 }
13669
13670 static int
13671 remote_is_async_p (struct target_ops *ops)
13672 {
13673 struct remote_state *rs = get_remote_state ();
13674
13675 if (!target_async_permitted)
13676 /* We only enable async when the user specifically asks for it. */
13677 return 0;
13678
13679 /* We're async whenever the serial device is. */
13680 return serial_is_async_p (rs->remote_desc);
13681 }
13682
13683 /* Pass the SERIAL event on and up to the client. One day this code
13684 will be able to delay notifying the client of an event until the
13685 point where an entire packet has been received. */
13686
13687 static serial_event_ftype remote_async_serial_handler;
13688
13689 static void
13690 remote_async_serial_handler (struct serial *scb, void *context)
13691 {
13692 /* Don't propogate error information up to the client. Instead let
13693 the client find out about the error by querying the target. */
13694 inferior_event_handler (INF_REG_EVENT, NULL);
13695 }
13696
13697 static void
13698 remote_async_inferior_event_handler (gdb_client_data data)
13699 {
13700 inferior_event_handler (INF_REG_EVENT, NULL);
13701 }
13702
13703 static void
13704 remote_async (struct target_ops *ops, int enable)
13705 {
13706 struct remote_state *rs = get_remote_state ();
13707
13708 if (enable)
13709 {
13710 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13711
13712 /* If there are pending events in the stop reply queue tell the
13713 event loop to process them. */
13714 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13715 mark_async_event_handler (remote_async_inferior_event_token);
13716 /* For simplicity, below we clear the pending events token
13717 without remembering whether it is marked, so here we always
13718 mark it. If there's actually no pending notification to
13719 process, this ends up being a no-op (other than a spurious
13720 event-loop wakeup). */
13721 if (target_is_non_stop_p ())
13722 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13723 }
13724 else
13725 {
13726 serial_async (rs->remote_desc, NULL, NULL);
13727 /* If the core is disabling async, it doesn't want to be
13728 disturbed with target events. Clear all async event sources
13729 too. */
13730 clear_async_event_handler (remote_async_inferior_event_token);
13731 if (target_is_non_stop_p ())
13732 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13733 }
13734 }
13735
13736 /* Implementation of the to_thread_events method. */
13737
13738 static void
13739 remote_thread_events (struct target_ops *ops, int enable)
13740 {
13741 struct remote_state *rs = get_remote_state ();
13742 size_t size = get_remote_packet_size ();
13743
13744 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13745 return;
13746
13747 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13748 putpkt (rs->buf);
13749 getpkt (&rs->buf, &rs->buf_size, 0);
13750
13751 switch (packet_ok (rs->buf,
13752 &remote_protocol_packets[PACKET_QThreadEvents]))
13753 {
13754 case PACKET_OK:
13755 if (strcmp (rs->buf, "OK") != 0)
13756 error (_("Remote refused setting thread events: %s"), rs->buf);
13757 break;
13758 case PACKET_ERROR:
13759 warning (_("Remote failure reply: %s"), rs->buf);
13760 break;
13761 case PACKET_UNKNOWN:
13762 break;
13763 }
13764 }
13765
13766 static void
13767 set_remote_cmd (char *args, int from_tty)
13768 {
13769 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13770 }
13771
13772 static void
13773 show_remote_cmd (char *args, int from_tty)
13774 {
13775 /* We can't just use cmd_show_list here, because we want to skip
13776 the redundant "show remote Z-packet" and the legacy aliases. */
13777 struct cleanup *showlist_chain;
13778 struct cmd_list_element *list = remote_show_cmdlist;
13779 struct ui_out *uiout = current_uiout;
13780
13781 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
13782 for (; list != NULL; list = list->next)
13783 if (strcmp (list->name, "Z-packet") == 0)
13784 continue;
13785 else if (list->type == not_set_cmd)
13786 /* Alias commands are exactly like the original, except they
13787 don't have the normal type. */
13788 continue;
13789 else
13790 {
13791 struct cleanup *option_chain
13792 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
13793
13794 ui_out_field_string (uiout, "name", list->name);
13795 ui_out_text (uiout, ": ");
13796 if (list->type == show_cmd)
13797 do_show_command (NULL, from_tty, list);
13798 else
13799 cmd_func (list, NULL, from_tty);
13800 /* Close the tuple. */
13801 do_cleanups (option_chain);
13802 }
13803
13804 /* Close the tuple. */
13805 do_cleanups (showlist_chain);
13806 }
13807
13808
13809 /* Function to be called whenever a new objfile (shlib) is detected. */
13810 static void
13811 remote_new_objfile (struct objfile *objfile)
13812 {
13813 struct remote_state *rs = get_remote_state ();
13814
13815 if (rs->remote_desc != 0) /* Have a remote connection. */
13816 remote_check_symbols ();
13817 }
13818
13819 /* Pull all the tracepoints defined on the target and create local
13820 data structures representing them. We don't want to create real
13821 tracepoints yet, we don't want to mess up the user's existing
13822 collection. */
13823
13824 static int
13825 remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
13826 {
13827 struct remote_state *rs = get_remote_state ();
13828 char *p;
13829
13830 /* Ask for a first packet of tracepoint definition. */
13831 putpkt ("qTfP");
13832 getpkt (&rs->buf, &rs->buf_size, 0);
13833 p = rs->buf;
13834 while (*p && *p != 'l')
13835 {
13836 parse_tracepoint_definition (p, utpp);
13837 /* Ask for another packet of tracepoint definition. */
13838 putpkt ("qTsP");
13839 getpkt (&rs->buf, &rs->buf_size, 0);
13840 p = rs->buf;
13841 }
13842 return 0;
13843 }
13844
13845 static int
13846 remote_upload_trace_state_variables (struct target_ops *self,
13847 struct uploaded_tsv **utsvp)
13848 {
13849 struct remote_state *rs = get_remote_state ();
13850 char *p;
13851
13852 /* Ask for a first packet of variable definition. */
13853 putpkt ("qTfV");
13854 getpkt (&rs->buf, &rs->buf_size, 0);
13855 p = rs->buf;
13856 while (*p && *p != 'l')
13857 {
13858 parse_tsv_definition (p, utsvp);
13859 /* Ask for another packet of variable definition. */
13860 putpkt ("qTsV");
13861 getpkt (&rs->buf, &rs->buf_size, 0);
13862 p = rs->buf;
13863 }
13864 return 0;
13865 }
13866
13867 /* The "set/show range-stepping" show hook. */
13868
13869 static void
13870 show_range_stepping (struct ui_file *file, int from_tty,
13871 struct cmd_list_element *c,
13872 const char *value)
13873 {
13874 fprintf_filtered (file,
13875 _("Debugger's willingness to use range stepping "
13876 "is %s.\n"), value);
13877 }
13878
13879 /* The "set/show range-stepping" set hook. */
13880
13881 static void
13882 set_range_stepping (char *ignore_args, int from_tty,
13883 struct cmd_list_element *c)
13884 {
13885 struct remote_state *rs = get_remote_state ();
13886
13887 /* Whene enabling, check whether range stepping is actually
13888 supported by the target, and warn if not. */
13889 if (use_range_stepping)
13890 {
13891 if (rs->remote_desc != NULL)
13892 {
13893 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13894 remote_vcont_probe (rs);
13895
13896 if (packet_support (PACKET_vCont) == PACKET_ENABLE
13897 && rs->supports_vCont.r)
13898 return;
13899 }
13900
13901 warning (_("Range stepping is not supported by the current target"));
13902 }
13903 }
13904
13905 void
13906 _initialize_remote (void)
13907 {
13908 struct cmd_list_element *cmd;
13909 const char *cmd_name;
13910
13911 /* architecture specific data */
13912 remote_gdbarch_data_handle =
13913 gdbarch_data_register_post_init (init_remote_state);
13914 remote_g_packet_data_handle =
13915 gdbarch_data_register_pre_init (remote_g_packet_data_init);
13916
13917 remote_pspace_data
13918 = register_program_space_data_with_cleanup (NULL,
13919 remote_pspace_data_cleanup);
13920
13921 /* Initialize the per-target state. At the moment there is only one
13922 of these, not one per target. Only one target is active at a
13923 time. */
13924 remote_state = new_remote_state ();
13925
13926 init_remote_ops ();
13927 add_target (&remote_ops);
13928
13929 init_extended_remote_ops ();
13930 add_target (&extended_remote_ops);
13931
13932 /* Hook into new objfile notification. */
13933 observer_attach_new_objfile (remote_new_objfile);
13934 /* We're no longer interested in notification events of an inferior
13935 when it exits. */
13936 observer_attach_inferior_exit (discard_pending_stop_replies);
13937
13938 #if 0
13939 init_remote_threadtests ();
13940 #endif
13941
13942 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
13943 /* set/show remote ... */
13944
13945 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
13946 Remote protocol specific variables\n\
13947 Configure various remote-protocol specific variables such as\n\
13948 the packets being used"),
13949 &remote_set_cmdlist, "set remote ",
13950 0 /* allow-unknown */, &setlist);
13951 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
13952 Remote protocol specific variables\n\
13953 Configure various remote-protocol specific variables such as\n\
13954 the packets being used"),
13955 &remote_show_cmdlist, "show remote ",
13956 0 /* allow-unknown */, &showlist);
13957
13958 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
13959 Compare section data on target to the exec file.\n\
13960 Argument is a single section name (default: all loaded sections).\n\
13961 To compare only read-only loaded sections, specify the -r option."),
13962 &cmdlist);
13963
13964 add_cmd ("packet", class_maintenance, packet_command, _("\
13965 Send an arbitrary packet to a remote target.\n\
13966 maintenance packet TEXT\n\
13967 If GDB is talking to an inferior via the GDB serial protocol, then\n\
13968 this command sends the string TEXT to the inferior, and displays the\n\
13969 response packet. GDB supplies the initial `$' character, and the\n\
13970 terminating `#' character and checksum."),
13971 &maintenancelist);
13972
13973 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
13974 Set whether to send break if interrupted."), _("\
13975 Show whether to send break if interrupted."), _("\
13976 If set, a break, instead of a cntrl-c, is sent to the remote target."),
13977 set_remotebreak, show_remotebreak,
13978 &setlist, &showlist);
13979 cmd_name = "remotebreak";
13980 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
13981 deprecate_cmd (cmd, "set remote interrupt-sequence");
13982 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
13983 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
13984 deprecate_cmd (cmd, "show remote interrupt-sequence");
13985
13986 add_setshow_enum_cmd ("interrupt-sequence", class_support,
13987 interrupt_sequence_modes, &interrupt_sequence_mode,
13988 _("\
13989 Set interrupt sequence to remote target."), _("\
13990 Show interrupt sequence to remote target."), _("\
13991 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
13992 NULL, show_interrupt_sequence,
13993 &remote_set_cmdlist,
13994 &remote_show_cmdlist);
13995
13996 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
13997 &interrupt_on_connect, _("\
13998 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
13999 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14000 If set, interrupt sequence is sent to remote target."),
14001 NULL, NULL,
14002 &remote_set_cmdlist, &remote_show_cmdlist);
14003
14004 /* Install commands for configuring memory read/write packets. */
14005
14006 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14007 Set the maximum number of bytes per memory write packet (deprecated)."),
14008 &setlist);
14009 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14010 Show the maximum number of bytes per memory write packet (deprecated)."),
14011 &showlist);
14012 add_cmd ("memory-write-packet-size", no_class,
14013 set_memory_write_packet_size, _("\
14014 Set the maximum number of bytes per memory-write packet.\n\
14015 Specify the number of bytes in a packet or 0 (zero) for the\n\
14016 default packet size. The actual limit is further reduced\n\
14017 dependent on the target. Specify ``fixed'' to disable the\n\
14018 further restriction and ``limit'' to enable that restriction."),
14019 &remote_set_cmdlist);
14020 add_cmd ("memory-read-packet-size", no_class,
14021 set_memory_read_packet_size, _("\
14022 Set the maximum number of bytes per memory-read packet.\n\
14023 Specify the number of bytes in a packet or 0 (zero) for the\n\
14024 default packet size. The actual limit is further reduced\n\
14025 dependent on the target. Specify ``fixed'' to disable the\n\
14026 further restriction and ``limit'' to enable that restriction."),
14027 &remote_set_cmdlist);
14028 add_cmd ("memory-write-packet-size", no_class,
14029 show_memory_write_packet_size,
14030 _("Show the maximum number of bytes per memory-write packet."),
14031 &remote_show_cmdlist);
14032 add_cmd ("memory-read-packet-size", no_class,
14033 show_memory_read_packet_size,
14034 _("Show the maximum number of bytes per memory-read packet."),
14035 &remote_show_cmdlist);
14036
14037 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14038 &remote_hw_watchpoint_limit, _("\
14039 Set the maximum number of target hardware watchpoints."), _("\
14040 Show the maximum number of target hardware watchpoints."), _("\
14041 Specify a negative limit for unlimited."),
14042 NULL, NULL, /* FIXME: i18n: The maximum
14043 number of target hardware
14044 watchpoints is %s. */
14045 &remote_set_cmdlist, &remote_show_cmdlist);
14046 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14047 &remote_hw_watchpoint_length_limit, _("\
14048 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14049 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14050 Specify a negative limit for unlimited."),
14051 NULL, NULL, /* FIXME: i18n: The maximum
14052 length (in bytes) of a target
14053 hardware watchpoint is %s. */
14054 &remote_set_cmdlist, &remote_show_cmdlist);
14055 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14056 &remote_hw_breakpoint_limit, _("\
14057 Set the maximum number of target hardware breakpoints."), _("\
14058 Show the maximum number of target hardware breakpoints."), _("\
14059 Specify a negative limit for unlimited."),
14060 NULL, NULL, /* FIXME: i18n: The maximum
14061 number of target hardware
14062 breakpoints is %s. */
14063 &remote_set_cmdlist, &remote_show_cmdlist);
14064
14065 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14066 &remote_address_size, _("\
14067 Set the maximum size of the address (in bits) in a memory packet."), _("\
14068 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14069 NULL,
14070 NULL, /* FIXME: i18n: */
14071 &setlist, &showlist);
14072
14073 init_all_packet_configs ();
14074
14075 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14076 "X", "binary-download", 1);
14077
14078 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14079 "vCont", "verbose-resume", 0);
14080
14081 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14082 "QPassSignals", "pass-signals", 0);
14083
14084 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14085 "QCatchSyscalls", "catch-syscalls", 0);
14086
14087 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14088 "QProgramSignals", "program-signals", 0);
14089
14090 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14091 "qSymbol", "symbol-lookup", 0);
14092
14093 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14094 "P", "set-register", 1);
14095
14096 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14097 "p", "fetch-register", 1);
14098
14099 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14100 "Z0", "software-breakpoint", 0);
14101
14102 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14103 "Z1", "hardware-breakpoint", 0);
14104
14105 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14106 "Z2", "write-watchpoint", 0);
14107
14108 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14109 "Z3", "read-watchpoint", 0);
14110
14111 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14112 "Z4", "access-watchpoint", 0);
14113
14114 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14115 "qXfer:auxv:read", "read-aux-vector", 0);
14116
14117 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14118 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14119
14120 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14121 "qXfer:features:read", "target-features", 0);
14122
14123 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14124 "qXfer:libraries:read", "library-info", 0);
14125
14126 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14127 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14128
14129 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14130 "qXfer:memory-map:read", "memory-map", 0);
14131
14132 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14133 "qXfer:spu:read", "read-spu-object", 0);
14134
14135 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14136 "qXfer:spu:write", "write-spu-object", 0);
14137
14138 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14139 "qXfer:osdata:read", "osdata", 0);
14140
14141 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14142 "qXfer:threads:read", "threads", 0);
14143
14144 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14145 "qXfer:siginfo:read", "read-siginfo-object", 0);
14146
14147 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14148 "qXfer:siginfo:write", "write-siginfo-object", 0);
14149
14150 add_packet_config_cmd
14151 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14152 "qXfer:traceframe-info:read", "traceframe-info", 0);
14153
14154 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14155 "qXfer:uib:read", "unwind-info-block", 0);
14156
14157 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14158 "qGetTLSAddr", "get-thread-local-storage-address",
14159 0);
14160
14161 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14162 "qGetTIBAddr", "get-thread-information-block-address",
14163 0);
14164
14165 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14166 "bc", "reverse-continue", 0);
14167
14168 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14169 "bs", "reverse-step", 0);
14170
14171 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14172 "qSupported", "supported-packets", 0);
14173
14174 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14175 "qSearch:memory", "search-memory", 0);
14176
14177 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14178 "qTStatus", "trace-status", 0);
14179
14180 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14181 "vFile:setfs", "hostio-setfs", 0);
14182
14183 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14184 "vFile:open", "hostio-open", 0);
14185
14186 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14187 "vFile:pread", "hostio-pread", 0);
14188
14189 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14190 "vFile:pwrite", "hostio-pwrite", 0);
14191
14192 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14193 "vFile:close", "hostio-close", 0);
14194
14195 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14196 "vFile:unlink", "hostio-unlink", 0);
14197
14198 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14199 "vFile:readlink", "hostio-readlink", 0);
14200
14201 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14202 "vFile:fstat", "hostio-fstat", 0);
14203
14204 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14205 "vAttach", "attach", 0);
14206
14207 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14208 "vRun", "run", 0);
14209
14210 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14211 "QStartNoAckMode", "noack", 0);
14212
14213 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14214 "vKill", "kill", 0);
14215
14216 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14217 "qAttached", "query-attached", 0);
14218
14219 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14220 "ConditionalTracepoints",
14221 "conditional-tracepoints", 0);
14222
14223 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14224 "ConditionalBreakpoints",
14225 "conditional-breakpoints", 0);
14226
14227 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14228 "BreakpointCommands",
14229 "breakpoint-commands", 0);
14230
14231 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14232 "FastTracepoints", "fast-tracepoints", 0);
14233
14234 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14235 "TracepointSource", "TracepointSource", 0);
14236
14237 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14238 "QAllow", "allow", 0);
14239
14240 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14241 "StaticTracepoints", "static-tracepoints", 0);
14242
14243 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14244 "InstallInTrace", "install-in-trace", 0);
14245
14246 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14247 "qXfer:statictrace:read", "read-sdata-object", 0);
14248
14249 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14250 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14251
14252 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14253 "QDisableRandomization", "disable-randomization", 0);
14254
14255 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14256 "QAgent", "agent", 0);
14257
14258 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14259 "QTBuffer:size", "trace-buffer-size", 0);
14260
14261 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14262 "Qbtrace:off", "disable-btrace", 0);
14263
14264 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14265 "Qbtrace:bts", "enable-btrace-bts", 0);
14266
14267 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14268 "Qbtrace:pt", "enable-btrace-pt", 0);
14269
14270 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14271 "qXfer:btrace", "read-btrace", 0);
14272
14273 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14274 "qXfer:btrace-conf", "read-btrace-conf", 0);
14275
14276 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14277 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14278
14279 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14280 "multiprocess-feature", "multiprocess-feature", 0);
14281
14282 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14283 "swbreak-feature", "swbreak-feature", 0);
14284
14285 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14286 "hwbreak-feature", "hwbreak-feature", 0);
14287
14288 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14289 "fork-event-feature", "fork-event-feature", 0);
14290
14291 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14292 "vfork-event-feature", "vfork-event-feature", 0);
14293
14294 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14295 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14296
14297 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14298 "vContSupported", "verbose-resume-supported", 0);
14299
14300 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14301 "exec-event-feature", "exec-event-feature", 0);
14302
14303 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14304 "vCtrlC", "ctrl-c", 0);
14305
14306 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14307 "QThreadEvents", "thread-events", 0);
14308
14309 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14310 "N stop reply", "no-resumed-stop-reply", 0);
14311
14312 /* Assert that we've registered "set remote foo-packet" commands
14313 for all packet configs. */
14314 {
14315 int i;
14316
14317 for (i = 0; i < PACKET_MAX; i++)
14318 {
14319 /* Ideally all configs would have a command associated. Some
14320 still don't though. */
14321 int excepted;
14322
14323 switch (i)
14324 {
14325 case PACKET_QNonStop:
14326 case PACKET_EnableDisableTracepoints_feature:
14327 case PACKET_tracenz_feature:
14328 case PACKET_DisconnectedTracing_feature:
14329 case PACKET_augmented_libraries_svr4_read_feature:
14330 case PACKET_qCRC:
14331 /* Additions to this list need to be well justified:
14332 pre-existing packets are OK; new packets are not. */
14333 excepted = 1;
14334 break;
14335 default:
14336 excepted = 0;
14337 break;
14338 }
14339
14340 /* This catches both forgetting to add a config command, and
14341 forgetting to remove a packet from the exception list. */
14342 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14343 }
14344 }
14345
14346 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14347 Z sub-packet has its own set and show commands, but users may
14348 have sets to this variable in their .gdbinit files (or in their
14349 documentation). */
14350 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14351 &remote_Z_packet_detect, _("\
14352 Set use of remote protocol `Z' packets"), _("\
14353 Show use of remote protocol `Z' packets "), _("\
14354 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14355 packets."),
14356 set_remote_protocol_Z_packet_cmd,
14357 show_remote_protocol_Z_packet_cmd,
14358 /* FIXME: i18n: Use of remote protocol
14359 `Z' packets is %s. */
14360 &remote_set_cmdlist, &remote_show_cmdlist);
14361
14362 add_prefix_cmd ("remote", class_files, remote_command, _("\
14363 Manipulate files on the remote system\n\
14364 Transfer files to and from the remote target system."),
14365 &remote_cmdlist, "remote ",
14366 0 /* allow-unknown */, &cmdlist);
14367
14368 add_cmd ("put", class_files, remote_put_command,
14369 _("Copy a local file to the remote system."),
14370 &remote_cmdlist);
14371
14372 add_cmd ("get", class_files, remote_get_command,
14373 _("Copy a remote file to the local system."),
14374 &remote_cmdlist);
14375
14376 add_cmd ("delete", class_files, remote_delete_command,
14377 _("Delete a remote file."),
14378 &remote_cmdlist);
14379
14380 add_setshow_string_noescape_cmd ("exec-file", class_files,
14381 &remote_exec_file_var, _("\
14382 Set the remote pathname for \"run\""), _("\
14383 Show the remote pathname for \"run\""), NULL,
14384 set_remote_exec_file,
14385 show_remote_exec_file,
14386 &remote_set_cmdlist,
14387 &remote_show_cmdlist);
14388
14389 add_setshow_boolean_cmd ("range-stepping", class_run,
14390 &use_range_stepping, _("\
14391 Enable or disable range stepping."), _("\
14392 Show whether target-assisted range stepping is enabled."), _("\
14393 If on, and the target supports it, when stepping a source line, GDB\n\
14394 tells the target to step the corresponding range of addresses itself instead\n\
14395 of issuing multiple single-steps. This speeds up source level\n\
14396 stepping. If off, GDB always issues single-steps, even if range\n\
14397 stepping is supported by the target. The default is on."),
14398 set_range_stepping,
14399 show_range_stepping,
14400 &setlist,
14401 &showlist);
14402
14403 /* Eventually initialize fileio. See fileio.c */
14404 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14405
14406 /* Take advantage of the fact that the TID field is not used, to tag
14407 special ptids with it set to != 0. */
14408 magic_null_ptid = ptid_build (42000, -1, 1);
14409 not_sent_ptid = ptid_build (42000, -2, 1);
14410 any_thread_ptid = ptid_build (42000, 0, 1);
14411
14412 target_buf_size = 2048;
14413 target_buf = (char *) xmalloc (target_buf_size);
14414 }
14415
This page took 0.304462 seconds and 5 git commands to generate.