gdb: Handle W and X remote packets without giving a warning
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include <algorithm>
79 #include <unordered_map>
80
81 /* The remote target. */
82
83 static const char remote_doc[] = N_("\
84 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
85 Specify the serial device it is connected to\n\
86 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
87
88 #define OPAQUETHREADBYTES 8
89
90 /* a 64 bit opaque identifier */
91 typedef unsigned char threadref[OPAQUETHREADBYTES];
92
93 struct gdb_ext_thread_info;
94 struct threads_listing_context;
95 typedef int (*rmt_thread_action) (threadref *ref, void *context);
96 struct protocol_feature;
97 struct packet_reg;
98
99 struct stop_reply;
100 typedef std::unique_ptr<stop_reply> stop_reply_up;
101
102 /* Generic configuration support for packets the stub optionally
103 supports. Allows the user to specify the use of the packet as well
104 as allowing GDB to auto-detect support in the remote stub. */
105
106 enum packet_support
107 {
108 PACKET_SUPPORT_UNKNOWN = 0,
109 PACKET_ENABLE,
110 PACKET_DISABLE
111 };
112
113 /* Analyze a packet's return value and update the packet config
114 accordingly. */
115
116 enum packet_result
117 {
118 PACKET_ERROR,
119 PACKET_OK,
120 PACKET_UNKNOWN
121 };
122
123 struct threads_listing_context;
124
125 /* Stub vCont actions support.
126
127 Each field is a boolean flag indicating whether the stub reports
128 support for the corresponding action. */
129
130 struct vCont_action_support
131 {
132 /* vCont;t */
133 bool t = false;
134
135 /* vCont;r */
136 bool r = false;
137
138 /* vCont;s */
139 bool s = false;
140
141 /* vCont;S */
142 bool S = false;
143 };
144
145 /* About this many threadids fit in a packet. */
146
147 #define MAXTHREADLISTRESULTS 32
148
149 /* Data for the vFile:pread readahead cache. */
150
151 struct readahead_cache
152 {
153 /* Invalidate the readahead cache. */
154 void invalidate ();
155
156 /* Invalidate the readahead cache if it is holding data for FD. */
157 void invalidate_fd (int fd);
158
159 /* Serve pread from the readahead cache. Returns number of bytes
160 read, or 0 if the request can't be served from the cache. */
161 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
162
163 /* The file descriptor for the file that is being cached. -1 if the
164 cache is invalid. */
165 int fd = -1;
166
167 /* The offset into the file that the cache buffer corresponds
168 to. */
169 ULONGEST offset = 0;
170
171 /* The buffer holding the cache contents. */
172 gdb_byte *buf = nullptr;
173 /* The buffer's size. We try to read as much as fits into a packet
174 at a time. */
175 size_t bufsize = 0;
176
177 /* Cache hit and miss counters. */
178 ULONGEST hit_count = 0;
179 ULONGEST miss_count = 0;
180 };
181
182 /* Description of the remote protocol for a given architecture. */
183
184 struct packet_reg
185 {
186 long offset; /* Offset into G packet. */
187 long regnum; /* GDB's internal register number. */
188 LONGEST pnum; /* Remote protocol register number. */
189 int in_g_packet; /* Always part of G packet. */
190 /* long size in bytes; == register_size (target_gdbarch (), regnum);
191 at present. */
192 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
193 at present. */
194 };
195
196 struct remote_arch_state
197 {
198 explicit remote_arch_state (struct gdbarch *gdbarch);
199
200 /* Description of the remote protocol registers. */
201 long sizeof_g_packet;
202
203 /* Description of the remote protocol registers indexed by REGNUM
204 (making an array gdbarch_num_regs in size). */
205 std::unique_ptr<packet_reg[]> regs;
206
207 /* This is the size (in chars) of the first response to the ``g''
208 packet. It is used as a heuristic when determining the maximum
209 size of memory-read and memory-write packets. A target will
210 typically only reserve a buffer large enough to hold the ``g''
211 packet. The size does not include packet overhead (headers and
212 trailers). */
213 long actual_register_packet_size;
214
215 /* This is the maximum size (in chars) of a non read/write packet.
216 It is also used as a cap on the size of read/write packets. */
217 long remote_packet_size;
218 };
219
220 /* Description of the remote protocol state for the currently
221 connected target. This is per-target state, and independent of the
222 selected architecture. */
223
224 class remote_state
225 {
226 public:
227
228 remote_state ();
229 ~remote_state ();
230
231 /* Get the remote arch state for GDBARCH. */
232 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
233
234 public: /* data */
235
236 /* A buffer to use for incoming packets, and its current size. The
237 buffer is grown dynamically for larger incoming packets.
238 Outgoing packets may also be constructed in this buffer.
239 The size of the buffer is always at least REMOTE_PACKET_SIZE;
240 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
241 packets. */
242 gdb::char_vector buf;
243
244 /* True if we're going through initial connection setup (finding out
245 about the remote side's threads, relocating symbols, etc.). */
246 bool starting_up = false;
247
248 /* If we negotiated packet size explicitly (and thus can bypass
249 heuristics for the largest packet size that will not overflow
250 a buffer in the stub), this will be set to that packet size.
251 Otherwise zero, meaning to use the guessed size. */
252 long explicit_packet_size = 0;
253
254 /* remote_wait is normally called when the target is running and
255 waits for a stop reply packet. But sometimes we need to call it
256 when the target is already stopped. We can send a "?" packet
257 and have remote_wait read the response. Or, if we already have
258 the response, we can stash it in BUF and tell remote_wait to
259 skip calling getpkt. This flag is set when BUF contains a
260 stop reply packet and the target is not waiting. */
261 int cached_wait_status = 0;
262
263 /* True, if in no ack mode. That is, neither GDB nor the stub will
264 expect acks from each other. The connection is assumed to be
265 reliable. */
266 bool noack_mode = false;
267
268 /* True if we're connected in extended remote mode. */
269 bool extended = false;
270
271 /* True if we resumed the target and we're waiting for the target to
272 stop. In the mean time, we can't start another command/query.
273 The remote server wouldn't be ready to process it, so we'd
274 timeout waiting for a reply that would never come and eventually
275 we'd close the connection. This can happen in asynchronous mode
276 because we allow GDB commands while the target is running. */
277 bool waiting_for_stop_reply = false;
278
279 /* The status of the stub support for the various vCont actions. */
280 vCont_action_support supports_vCont;
281 /* Whether vCont support was probed already. This is a workaround
282 until packet_support is per-connection. */
283 bool supports_vCont_probed;
284
285 /* True if the user has pressed Ctrl-C, but the target hasn't
286 responded to that. */
287 bool ctrlc_pending_p = false;
288
289 /* True if we saw a Ctrl-C while reading or writing from/to the
290 remote descriptor. At that point it is not safe to send a remote
291 interrupt packet, so we instead remember we saw the Ctrl-C and
292 process it once we're done with sending/receiving the current
293 packet, which should be shortly. If however that takes too long,
294 and the user presses Ctrl-C again, we offer to disconnect. */
295 bool got_ctrlc_during_io = false;
296
297 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
298 remote_open knows that we don't have a file open when the program
299 starts. */
300 struct serial *remote_desc = nullptr;
301
302 /* These are the threads which we last sent to the remote system. The
303 TID member will be -1 for all or -2 for not sent yet. */
304 ptid_t general_thread = null_ptid;
305 ptid_t continue_thread = null_ptid;
306
307 /* This is the traceframe which we last selected on the remote system.
308 It will be -1 if no traceframe is selected. */
309 int remote_traceframe_number = -1;
310
311 char *last_pass_packet = nullptr;
312
313 /* The last QProgramSignals packet sent to the target. We bypass
314 sending a new program signals list down to the target if the new
315 packet is exactly the same as the last we sent. IOW, we only let
316 the target know about program signals list changes. */
317 char *last_program_signals_packet = nullptr;
318
319 gdb_signal last_sent_signal = GDB_SIGNAL_0;
320
321 bool last_sent_step = false;
322
323 /* The execution direction of the last resume we got. */
324 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
325
326 char *finished_object = nullptr;
327 char *finished_annex = nullptr;
328 ULONGEST finished_offset = 0;
329
330 /* Should we try the 'ThreadInfo' query packet?
331
332 This variable (NOT available to the user: auto-detect only!)
333 determines whether GDB will use the new, simpler "ThreadInfo"
334 query or the older, more complex syntax for thread queries.
335 This is an auto-detect variable (set to true at each connect,
336 and set to false when the target fails to recognize it). */
337 bool use_threadinfo_query = false;
338 bool use_threadextra_query = false;
339
340 threadref echo_nextthread {};
341 threadref nextthread {};
342 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
343
344 /* The state of remote notification. */
345 struct remote_notif_state *notif_state = nullptr;
346
347 /* The branch trace configuration. */
348 struct btrace_config btrace_config {};
349
350 /* The argument to the last "vFile:setfs:" packet we sent, used
351 to avoid sending repeated unnecessary "vFile:setfs:" packets.
352 Initialized to -1 to indicate that no "vFile:setfs:" packet
353 has yet been sent. */
354 int fs_pid = -1;
355
356 /* A readahead cache for vFile:pread. Often, reading a binary
357 involves a sequence of small reads. E.g., when parsing an ELF
358 file. A readahead cache helps mostly the case of remote
359 debugging on a connection with higher latency, due to the
360 request/reply nature of the RSP. We only cache data for a single
361 file descriptor at a time. */
362 struct readahead_cache readahead_cache;
363
364 /* The list of already fetched and acknowledged stop events. This
365 queue is used for notification Stop, and other notifications
366 don't need queue for their events, because the notification
367 events of Stop can't be consumed immediately, so that events
368 should be queued first, and be consumed by remote_wait_{ns,as}
369 one per time. Other notifications can consume their events
370 immediately, so queue is not needed for them. */
371 std::vector<stop_reply_up> stop_reply_queue;
372
373 /* Asynchronous signal handle registered as event loop source for
374 when we have pending events ready to be passed to the core. */
375 struct async_event_handler *remote_async_inferior_event_token = nullptr;
376
377 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
378 ``forever'' still use the normal timeout mechanism. This is
379 currently used by the ASYNC code to guarentee that target reads
380 during the initial connect always time-out. Once getpkt has been
381 modified to return a timeout indication and, in turn
382 remote_wait()/wait_for_inferior() have gained a timeout parameter
383 this can go away. */
384 int wait_forever_enabled_p = 1;
385
386 private:
387 /* Mapping of remote protocol data for each gdbarch. Usually there
388 is only one entry here, though we may see more with stubs that
389 support multi-process. */
390 std::unordered_map<struct gdbarch *, remote_arch_state>
391 m_arch_states;
392 };
393
394 static const target_info remote_target_info = {
395 "remote",
396 N_("Remote serial target in gdb-specific protocol"),
397 remote_doc
398 };
399
400 class remote_target : public process_stratum_target
401 {
402 public:
403 remote_target () = default;
404 ~remote_target () override;
405
406 const target_info &info () const override
407 { return remote_target_info; }
408
409 const char *connection_string () override;
410
411 thread_control_capabilities get_thread_control_capabilities () override
412 { return tc_schedlock; }
413
414 /* Open a remote connection. */
415 static void open (const char *, int);
416
417 void close () override;
418
419 void detach (inferior *, int) override;
420 void disconnect (const char *, int) override;
421
422 void commit_resume () override;
423 void resume (ptid_t, int, enum gdb_signal) override;
424 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
425
426 void fetch_registers (struct regcache *, int) override;
427 void store_registers (struct regcache *, int) override;
428 void prepare_to_store (struct regcache *) override;
429
430 void files_info () override;
431
432 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
433
434 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
435 enum remove_bp_reason) override;
436
437
438 bool stopped_by_sw_breakpoint () override;
439 bool supports_stopped_by_sw_breakpoint () override;
440
441 bool stopped_by_hw_breakpoint () override;
442
443 bool supports_stopped_by_hw_breakpoint () override;
444
445 bool stopped_by_watchpoint () override;
446
447 bool stopped_data_address (CORE_ADDR *) override;
448
449 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
450
451 int can_use_hw_breakpoint (enum bptype, int, int) override;
452
453 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
454
455 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
456
457 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
458
459 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
460 struct expression *) override;
461
462 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
463 struct expression *) override;
464
465 void kill () override;
466
467 void load (const char *, int) override;
468
469 void mourn_inferior () override;
470
471 void pass_signals (gdb::array_view<const unsigned char>) override;
472
473 int set_syscall_catchpoint (int, bool, int,
474 gdb::array_view<const int>) override;
475
476 void program_signals (gdb::array_view<const unsigned char>) override;
477
478 bool thread_alive (ptid_t ptid) override;
479
480 const char *thread_name (struct thread_info *) override;
481
482 void update_thread_list () override;
483
484 std::string pid_to_str (ptid_t) override;
485
486 const char *extra_thread_info (struct thread_info *) override;
487
488 ptid_t get_ada_task_ptid (long lwp, long thread) override;
489
490 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
491 int handle_len,
492 inferior *inf) override;
493
494 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
495 override;
496
497 void stop (ptid_t) override;
498
499 void interrupt () override;
500
501 void pass_ctrlc () override;
502
503 enum target_xfer_status xfer_partial (enum target_object object,
504 const char *annex,
505 gdb_byte *readbuf,
506 const gdb_byte *writebuf,
507 ULONGEST offset, ULONGEST len,
508 ULONGEST *xfered_len) override;
509
510 ULONGEST get_memory_xfer_limit () override;
511
512 void rcmd (const char *command, struct ui_file *output) override;
513
514 char *pid_to_exec_file (int pid) override;
515
516 void log_command (const char *cmd) override
517 {
518 serial_log_command (this, cmd);
519 }
520
521 CORE_ADDR get_thread_local_address (ptid_t ptid,
522 CORE_ADDR load_module_addr,
523 CORE_ADDR offset) override;
524
525 bool can_execute_reverse () override;
526
527 std::vector<mem_region> memory_map () override;
528
529 void flash_erase (ULONGEST address, LONGEST length) override;
530
531 void flash_done () override;
532
533 const struct target_desc *read_description () override;
534
535 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
536 const gdb_byte *pattern, ULONGEST pattern_len,
537 CORE_ADDR *found_addrp) override;
538
539 bool can_async_p () override;
540
541 bool is_async_p () override;
542
543 void async (int) override;
544
545 int async_wait_fd () override;
546
547 void thread_events (int) override;
548
549 int can_do_single_step () override;
550
551 void terminal_inferior () override;
552
553 void terminal_ours () override;
554
555 bool supports_non_stop () override;
556
557 bool supports_multi_process () override;
558
559 bool supports_disable_randomization () override;
560
561 bool filesystem_is_local () override;
562
563
564 int fileio_open (struct inferior *inf, const char *filename,
565 int flags, int mode, int warn_if_slow,
566 int *target_errno) override;
567
568 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
569 ULONGEST offset, int *target_errno) override;
570
571 int fileio_pread (int fd, gdb_byte *read_buf, int len,
572 ULONGEST offset, int *target_errno) override;
573
574 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
575
576 int fileio_close (int fd, int *target_errno) override;
577
578 int fileio_unlink (struct inferior *inf,
579 const char *filename,
580 int *target_errno) override;
581
582 gdb::optional<std::string>
583 fileio_readlink (struct inferior *inf,
584 const char *filename,
585 int *target_errno) override;
586
587 bool supports_enable_disable_tracepoint () override;
588
589 bool supports_string_tracing () override;
590
591 bool supports_evaluation_of_breakpoint_conditions () override;
592
593 bool can_run_breakpoint_commands () override;
594
595 void trace_init () override;
596
597 void download_tracepoint (struct bp_location *location) override;
598
599 bool can_download_tracepoint () override;
600
601 void download_trace_state_variable (const trace_state_variable &tsv) override;
602
603 void enable_tracepoint (struct bp_location *location) override;
604
605 void disable_tracepoint (struct bp_location *location) override;
606
607 void trace_set_readonly_regions () override;
608
609 void trace_start () override;
610
611 int get_trace_status (struct trace_status *ts) override;
612
613 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
614 override;
615
616 void trace_stop () override;
617
618 int trace_find (enum trace_find_type type, int num,
619 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
620
621 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
622
623 int save_trace_data (const char *filename) override;
624
625 int upload_tracepoints (struct uploaded_tp **utpp) override;
626
627 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
628
629 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
630
631 int get_min_fast_tracepoint_insn_len () override;
632
633 void set_disconnected_tracing (int val) override;
634
635 void set_circular_trace_buffer (int val) override;
636
637 void set_trace_buffer_size (LONGEST val) override;
638
639 bool set_trace_notes (const char *user, const char *notes,
640 const char *stopnotes) override;
641
642 int core_of_thread (ptid_t ptid) override;
643
644 int verify_memory (const gdb_byte *data,
645 CORE_ADDR memaddr, ULONGEST size) override;
646
647
648 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
649
650 void set_permissions () override;
651
652 bool static_tracepoint_marker_at (CORE_ADDR,
653 struct static_tracepoint_marker *marker)
654 override;
655
656 std::vector<static_tracepoint_marker>
657 static_tracepoint_markers_by_strid (const char *id) override;
658
659 traceframe_info_up traceframe_info () override;
660
661 bool use_agent (bool use) override;
662 bool can_use_agent () override;
663
664 struct btrace_target_info *enable_btrace (ptid_t ptid,
665 const struct btrace_config *conf) override;
666
667 void disable_btrace (struct btrace_target_info *tinfo) override;
668
669 void teardown_btrace (struct btrace_target_info *tinfo) override;
670
671 enum btrace_error read_btrace (struct btrace_data *data,
672 struct btrace_target_info *btinfo,
673 enum btrace_read_type type) override;
674
675 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
676 bool augmented_libraries_svr4_read () override;
677 int follow_fork (int, int) override;
678 void follow_exec (struct inferior *, const char *) override;
679 int insert_fork_catchpoint (int) override;
680 int remove_fork_catchpoint (int) override;
681 int insert_vfork_catchpoint (int) override;
682 int remove_vfork_catchpoint (int) override;
683 int insert_exec_catchpoint (int) override;
684 int remove_exec_catchpoint (int) override;
685 enum exec_direction_kind execution_direction () override;
686
687 public: /* Remote specific methods. */
688
689 void remote_download_command_source (int num, ULONGEST addr,
690 struct command_line *cmds);
691
692 void remote_file_put (const char *local_file, const char *remote_file,
693 int from_tty);
694 void remote_file_get (const char *remote_file, const char *local_file,
695 int from_tty);
696 void remote_file_delete (const char *remote_file, int from_tty);
697
698 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
699 ULONGEST offset, int *remote_errno);
700 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
701 ULONGEST offset, int *remote_errno);
702 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
703 ULONGEST offset, int *remote_errno);
704
705 int remote_hostio_send_command (int command_bytes, int which_packet,
706 int *remote_errno, char **attachment,
707 int *attachment_len);
708 int remote_hostio_set_filesystem (struct inferior *inf,
709 int *remote_errno);
710 /* We should get rid of this and use fileio_open directly. */
711 int remote_hostio_open (struct inferior *inf, const char *filename,
712 int flags, int mode, int warn_if_slow,
713 int *remote_errno);
714 int remote_hostio_close (int fd, int *remote_errno);
715
716 int remote_hostio_unlink (inferior *inf, const char *filename,
717 int *remote_errno);
718
719 struct remote_state *get_remote_state ();
720
721 long get_remote_packet_size (void);
722 long get_memory_packet_size (struct memory_packet_config *config);
723
724 long get_memory_write_packet_size ();
725 long get_memory_read_packet_size ();
726
727 char *append_pending_thread_resumptions (char *p, char *endp,
728 ptid_t ptid);
729 static void open_1 (const char *name, int from_tty, int extended_p);
730 void start_remote (int from_tty, int extended_p);
731 void remote_detach_1 (struct inferior *inf, int from_tty);
732
733 char *append_resumption (char *p, char *endp,
734 ptid_t ptid, int step, gdb_signal siggnal);
735 int remote_resume_with_vcont (ptid_t ptid, int step,
736 gdb_signal siggnal);
737
738 void add_current_inferior_and_thread (char *wait_status);
739
740 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
741 int options);
742 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
743 int options);
744
745 ptid_t process_stop_reply (struct stop_reply *stop_reply,
746 target_waitstatus *status);
747
748 void remote_notice_new_inferior (ptid_t currthread, int executing);
749
750 void process_initial_stop_replies (int from_tty);
751
752 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
753
754 void btrace_sync_conf (const btrace_config *conf);
755
756 void remote_btrace_maybe_reopen ();
757
758 void remove_new_fork_children (threads_listing_context *context);
759 void kill_new_fork_children (int pid);
760 void discard_pending_stop_replies (struct inferior *inf);
761 int stop_reply_queue_length ();
762
763 void check_pending_events_prevent_wildcard_vcont
764 (int *may_global_wildcard_vcont);
765
766 void discard_pending_stop_replies_in_queue ();
767 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
768 struct stop_reply *queued_stop_reply (ptid_t ptid);
769 int peek_stop_reply (ptid_t ptid);
770 void remote_parse_stop_reply (const char *buf, stop_reply *event);
771
772 void remote_stop_ns (ptid_t ptid);
773 void remote_interrupt_as ();
774 void remote_interrupt_ns ();
775
776 char *remote_get_noisy_reply ();
777 int remote_query_attached (int pid);
778 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
779 int try_open_exec);
780
781 ptid_t remote_current_thread (ptid_t oldpid);
782 ptid_t get_current_thread (char *wait_status);
783
784 void set_thread (ptid_t ptid, int gen);
785 void set_general_thread (ptid_t ptid);
786 void set_continue_thread (ptid_t ptid);
787 void set_general_process ();
788
789 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
790
791 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
792 gdb_ext_thread_info *info);
793 int remote_get_threadinfo (threadref *threadid, int fieldset,
794 gdb_ext_thread_info *info);
795
796 int parse_threadlist_response (char *pkt, int result_limit,
797 threadref *original_echo,
798 threadref *resultlist,
799 int *doneflag);
800 int remote_get_threadlist (int startflag, threadref *nextthread,
801 int result_limit, int *done, int *result_count,
802 threadref *threadlist);
803
804 int remote_threadlist_iterator (rmt_thread_action stepfunction,
805 void *context, int looplimit);
806
807 int remote_get_threads_with_ql (threads_listing_context *context);
808 int remote_get_threads_with_qxfer (threads_listing_context *context);
809 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
810
811 void extended_remote_restart ();
812
813 void get_offsets ();
814
815 void remote_check_symbols ();
816
817 void remote_supported_packet (const struct protocol_feature *feature,
818 enum packet_support support,
819 const char *argument);
820
821 void remote_query_supported ();
822
823 void remote_packet_size (const protocol_feature *feature,
824 packet_support support, const char *value);
825
826 void remote_serial_quit_handler ();
827
828 void remote_detach_pid (int pid);
829
830 void remote_vcont_probe ();
831
832 void remote_resume_with_hc (ptid_t ptid, int step,
833 gdb_signal siggnal);
834
835 void send_interrupt_sequence ();
836 void interrupt_query ();
837
838 void remote_notif_get_pending_events (notif_client *nc);
839
840 int fetch_register_using_p (struct regcache *regcache,
841 packet_reg *reg);
842 int send_g_packet ();
843 void process_g_packet (struct regcache *regcache);
844 void fetch_registers_using_g (struct regcache *regcache);
845 int store_register_using_P (const struct regcache *regcache,
846 packet_reg *reg);
847 void store_registers_using_G (const struct regcache *regcache);
848
849 void set_remote_traceframe ();
850
851 void check_binary_download (CORE_ADDR addr);
852
853 target_xfer_status remote_write_bytes_aux (const char *header,
854 CORE_ADDR memaddr,
855 const gdb_byte *myaddr,
856 ULONGEST len_units,
857 int unit_size,
858 ULONGEST *xfered_len_units,
859 char packet_format,
860 int use_length);
861
862 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
863 const gdb_byte *myaddr, ULONGEST len,
864 int unit_size, ULONGEST *xfered_len);
865
866 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
867 ULONGEST len_units,
868 int unit_size, ULONGEST *xfered_len_units);
869
870 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
871 ULONGEST memaddr,
872 ULONGEST len,
873 int unit_size,
874 ULONGEST *xfered_len);
875
876 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
877 gdb_byte *myaddr, ULONGEST len,
878 int unit_size,
879 ULONGEST *xfered_len);
880
881 packet_result remote_send_printf (const char *format, ...)
882 ATTRIBUTE_PRINTF (2, 3);
883
884 target_xfer_status remote_flash_write (ULONGEST address,
885 ULONGEST length, ULONGEST *xfered_len,
886 const gdb_byte *data);
887
888 int readchar (int timeout);
889
890 void remote_serial_write (const char *str, int len);
891
892 int putpkt (const char *buf);
893 int putpkt_binary (const char *buf, int cnt);
894
895 int putpkt (const gdb::char_vector &buf)
896 {
897 return putpkt (buf.data ());
898 }
899
900 void skip_frame ();
901 long read_frame (gdb::char_vector *buf_p);
902 void getpkt (gdb::char_vector *buf, int forever);
903 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
904 int expecting_notif, int *is_notif);
905 int getpkt_sane (gdb::char_vector *buf, int forever);
906 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
907 int *is_notif);
908 int remote_vkill (int pid);
909 void remote_kill_k ();
910
911 void extended_remote_disable_randomization (int val);
912 int extended_remote_run (const std::string &args);
913
914 void send_environment_packet (const char *action,
915 const char *packet,
916 const char *value);
917
918 void extended_remote_environment_support ();
919 void extended_remote_set_inferior_cwd ();
920
921 target_xfer_status remote_write_qxfer (const char *object_name,
922 const char *annex,
923 const gdb_byte *writebuf,
924 ULONGEST offset, LONGEST len,
925 ULONGEST *xfered_len,
926 struct packet_config *packet);
927
928 target_xfer_status remote_read_qxfer (const char *object_name,
929 const char *annex,
930 gdb_byte *readbuf, ULONGEST offset,
931 LONGEST len,
932 ULONGEST *xfered_len,
933 struct packet_config *packet);
934
935 void push_stop_reply (struct stop_reply *new_event);
936
937 bool vcont_r_supported ();
938
939 void packet_command (const char *args, int from_tty);
940
941 private: /* data fields */
942
943 /* The remote state. Don't reference this directly. Use the
944 get_remote_state method instead. */
945 remote_state m_remote_state;
946 };
947
948 static const target_info extended_remote_target_info = {
949 "extended-remote",
950 N_("Extended remote serial target in gdb-specific protocol"),
951 remote_doc
952 };
953
954 /* Set up the extended remote target by extending the standard remote
955 target and adding to it. */
956
957 class extended_remote_target final : public remote_target
958 {
959 public:
960 const target_info &info () const override
961 { return extended_remote_target_info; }
962
963 /* Open an extended-remote connection. */
964 static void open (const char *, int);
965
966 bool can_create_inferior () override { return true; }
967 void create_inferior (const char *, const std::string &,
968 char **, int) override;
969
970 void detach (inferior *, int) override;
971
972 bool can_attach () override { return true; }
973 void attach (const char *, int) override;
974
975 void post_attach (int) override;
976 bool supports_disable_randomization () override;
977 };
978
979 /* Per-program-space data key. */
980 static const struct program_space_key<char, gdb::xfree_deleter<char>>
981 remote_pspace_data;
982
983 /* The variable registered as the control variable used by the
984 remote exec-file commands. While the remote exec-file setting is
985 per-program-space, the set/show machinery uses this as the
986 location of the remote exec-file value. */
987 static char *remote_exec_file_var;
988
989 /* The size to align memory write packets, when practical. The protocol
990 does not guarantee any alignment, and gdb will generate short
991 writes and unaligned writes, but even as a best-effort attempt this
992 can improve bulk transfers. For instance, if a write is misaligned
993 relative to the target's data bus, the stub may need to make an extra
994 round trip fetching data from the target. This doesn't make a
995 huge difference, but it's easy to do, so we try to be helpful.
996
997 The alignment chosen is arbitrary; usually data bus width is
998 important here, not the possibly larger cache line size. */
999 enum { REMOTE_ALIGN_WRITES = 16 };
1000
1001 /* Prototypes for local functions. */
1002
1003 static int hexnumlen (ULONGEST num);
1004
1005 static int stubhex (int ch);
1006
1007 static int hexnumstr (char *, ULONGEST);
1008
1009 static int hexnumnstr (char *, ULONGEST, int);
1010
1011 static CORE_ADDR remote_address_masked (CORE_ADDR);
1012
1013 static void print_packet (const char *);
1014
1015 static int stub_unpack_int (char *buff, int fieldlength);
1016
1017 struct packet_config;
1018
1019 static void show_packet_config_cmd (struct packet_config *config);
1020
1021 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1022 int from_tty,
1023 struct cmd_list_element *c,
1024 const char *value);
1025
1026 static ptid_t read_ptid (const char *buf, const char **obuf);
1027
1028 static void remote_async_inferior_event_handler (gdb_client_data);
1029
1030 static bool remote_read_description_p (struct target_ops *target);
1031
1032 static void remote_console_output (const char *msg);
1033
1034 static void remote_btrace_reset (remote_state *rs);
1035
1036 static void remote_unpush_and_throw (remote_target *target);
1037
1038 /* For "remote". */
1039
1040 static struct cmd_list_element *remote_cmdlist;
1041
1042 /* For "set remote" and "show remote". */
1043
1044 static struct cmd_list_element *remote_set_cmdlist;
1045 static struct cmd_list_element *remote_show_cmdlist;
1046
1047 /* Controls whether GDB is willing to use range stepping. */
1048
1049 static bool use_range_stepping = true;
1050
1051 /* Private data that we'll store in (struct thread_info)->priv. */
1052 struct remote_thread_info : public private_thread_info
1053 {
1054 std::string extra;
1055 std::string name;
1056 int core = -1;
1057
1058 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1059 sequence of bytes. */
1060 gdb::byte_vector thread_handle;
1061
1062 /* Whether the target stopped for a breakpoint/watchpoint. */
1063 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1064
1065 /* This is set to the data address of the access causing the target
1066 to stop for a watchpoint. */
1067 CORE_ADDR watch_data_address = 0;
1068
1069 /* Fields used by the vCont action coalescing implemented in
1070 remote_resume / remote_commit_resume. remote_resume stores each
1071 thread's last resume request in these fields, so that a later
1072 remote_commit_resume knows which is the proper action for this
1073 thread to include in the vCont packet. */
1074
1075 /* True if the last target_resume call for this thread was a step
1076 request, false if a continue request. */
1077 int last_resume_step = 0;
1078
1079 /* The signal specified in the last target_resume call for this
1080 thread. */
1081 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1082
1083 /* Whether this thread was already vCont-resumed on the remote
1084 side. */
1085 int vcont_resumed = 0;
1086 };
1087
1088 remote_state::remote_state ()
1089 : buf (400)
1090 {
1091 }
1092
1093 remote_state::~remote_state ()
1094 {
1095 xfree (this->last_pass_packet);
1096 xfree (this->last_program_signals_packet);
1097 xfree (this->finished_object);
1098 xfree (this->finished_annex);
1099 }
1100
1101 /* Utility: generate error from an incoming stub packet. */
1102 static void
1103 trace_error (char *buf)
1104 {
1105 if (*buf++ != 'E')
1106 return; /* not an error msg */
1107 switch (*buf)
1108 {
1109 case '1': /* malformed packet error */
1110 if (*++buf == '0') /* general case: */
1111 error (_("remote.c: error in outgoing packet."));
1112 else
1113 error (_("remote.c: error in outgoing packet at field #%ld."),
1114 strtol (buf, NULL, 16));
1115 default:
1116 error (_("Target returns error code '%s'."), buf);
1117 }
1118 }
1119
1120 /* Utility: wait for reply from stub, while accepting "O" packets. */
1121
1122 char *
1123 remote_target::remote_get_noisy_reply ()
1124 {
1125 struct remote_state *rs = get_remote_state ();
1126
1127 do /* Loop on reply from remote stub. */
1128 {
1129 char *buf;
1130
1131 QUIT; /* Allow user to bail out with ^C. */
1132 getpkt (&rs->buf, 0);
1133 buf = rs->buf.data ();
1134 if (buf[0] == 'E')
1135 trace_error (buf);
1136 else if (startswith (buf, "qRelocInsn:"))
1137 {
1138 ULONGEST ul;
1139 CORE_ADDR from, to, org_to;
1140 const char *p, *pp;
1141 int adjusted_size = 0;
1142 int relocated = 0;
1143
1144 p = buf + strlen ("qRelocInsn:");
1145 pp = unpack_varlen_hex (p, &ul);
1146 if (*pp != ';')
1147 error (_("invalid qRelocInsn packet: %s"), buf);
1148 from = ul;
1149
1150 p = pp + 1;
1151 unpack_varlen_hex (p, &ul);
1152 to = ul;
1153
1154 org_to = to;
1155
1156 try
1157 {
1158 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1159 relocated = 1;
1160 }
1161 catch (const gdb_exception &ex)
1162 {
1163 if (ex.error == MEMORY_ERROR)
1164 {
1165 /* Propagate memory errors silently back to the
1166 target. The stub may have limited the range of
1167 addresses we can write to, for example. */
1168 }
1169 else
1170 {
1171 /* Something unexpectedly bad happened. Be verbose
1172 so we can tell what, and propagate the error back
1173 to the stub, so it doesn't get stuck waiting for
1174 a response. */
1175 exception_fprintf (gdb_stderr, ex,
1176 _("warning: relocating instruction: "));
1177 }
1178 putpkt ("E01");
1179 }
1180
1181 if (relocated)
1182 {
1183 adjusted_size = to - org_to;
1184
1185 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1186 putpkt (buf);
1187 }
1188 }
1189 else if (buf[0] == 'O' && buf[1] != 'K')
1190 remote_console_output (buf + 1); /* 'O' message from stub */
1191 else
1192 return buf; /* Here's the actual reply. */
1193 }
1194 while (1);
1195 }
1196
1197 struct remote_arch_state *
1198 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1199 {
1200 remote_arch_state *rsa;
1201
1202 auto it = this->m_arch_states.find (gdbarch);
1203 if (it == this->m_arch_states.end ())
1204 {
1205 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1206 std::forward_as_tuple (gdbarch),
1207 std::forward_as_tuple (gdbarch));
1208 rsa = &p.first->second;
1209
1210 /* Make sure that the packet buffer is plenty big enough for
1211 this architecture. */
1212 if (this->buf.size () < rsa->remote_packet_size)
1213 this->buf.resize (2 * rsa->remote_packet_size);
1214 }
1215 else
1216 rsa = &it->second;
1217
1218 return rsa;
1219 }
1220
1221 /* Fetch the global remote target state. */
1222
1223 remote_state *
1224 remote_target::get_remote_state ()
1225 {
1226 /* Make sure that the remote architecture state has been
1227 initialized, because doing so might reallocate rs->buf. Any
1228 function which calls getpkt also needs to be mindful of changes
1229 to rs->buf, but this call limits the number of places which run
1230 into trouble. */
1231 m_remote_state.get_remote_arch_state (target_gdbarch ());
1232
1233 return &m_remote_state;
1234 }
1235
1236 /* Fetch the remote exec-file from the current program space. */
1237
1238 static const char *
1239 get_remote_exec_file (void)
1240 {
1241 char *remote_exec_file;
1242
1243 remote_exec_file = remote_pspace_data.get (current_program_space);
1244 if (remote_exec_file == NULL)
1245 return "";
1246
1247 return remote_exec_file;
1248 }
1249
1250 /* Set the remote exec file for PSPACE. */
1251
1252 static void
1253 set_pspace_remote_exec_file (struct program_space *pspace,
1254 const char *remote_exec_file)
1255 {
1256 char *old_file = remote_pspace_data.get (pspace);
1257
1258 xfree (old_file);
1259 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1260 }
1261
1262 /* The "set/show remote exec-file" set command hook. */
1263
1264 static void
1265 set_remote_exec_file (const char *ignored, int from_tty,
1266 struct cmd_list_element *c)
1267 {
1268 gdb_assert (remote_exec_file_var != NULL);
1269 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1270 }
1271
1272 /* The "set/show remote exec-file" show command hook. */
1273
1274 static void
1275 show_remote_exec_file (struct ui_file *file, int from_tty,
1276 struct cmd_list_element *cmd, const char *value)
1277 {
1278 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1279 }
1280
1281 static int
1282 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1283 {
1284 int regnum, num_remote_regs, offset;
1285 struct packet_reg **remote_regs;
1286
1287 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1288 {
1289 struct packet_reg *r = &regs[regnum];
1290
1291 if (register_size (gdbarch, regnum) == 0)
1292 /* Do not try to fetch zero-sized (placeholder) registers. */
1293 r->pnum = -1;
1294 else
1295 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1296
1297 r->regnum = regnum;
1298 }
1299
1300 /* Define the g/G packet format as the contents of each register
1301 with a remote protocol number, in order of ascending protocol
1302 number. */
1303
1304 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1305 for (num_remote_regs = 0, regnum = 0;
1306 regnum < gdbarch_num_regs (gdbarch);
1307 regnum++)
1308 if (regs[regnum].pnum != -1)
1309 remote_regs[num_remote_regs++] = &regs[regnum];
1310
1311 std::sort (remote_regs, remote_regs + num_remote_regs,
1312 [] (const packet_reg *a, const packet_reg *b)
1313 { return a->pnum < b->pnum; });
1314
1315 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1316 {
1317 remote_regs[regnum]->in_g_packet = 1;
1318 remote_regs[regnum]->offset = offset;
1319 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1320 }
1321
1322 return offset;
1323 }
1324
1325 /* Given the architecture described by GDBARCH, return the remote
1326 protocol register's number and the register's offset in the g/G
1327 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1328 If the target does not have a mapping for REGNUM, return false,
1329 otherwise, return true. */
1330
1331 int
1332 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1333 int *pnum, int *poffset)
1334 {
1335 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1336
1337 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1338
1339 map_regcache_remote_table (gdbarch, regs.data ());
1340
1341 *pnum = regs[regnum].pnum;
1342 *poffset = regs[regnum].offset;
1343
1344 return *pnum != -1;
1345 }
1346
1347 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1348 {
1349 /* Use the architecture to build a regnum<->pnum table, which will be
1350 1:1 unless a feature set specifies otherwise. */
1351 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1352
1353 /* Record the maximum possible size of the g packet - it may turn out
1354 to be smaller. */
1355 this->sizeof_g_packet
1356 = map_regcache_remote_table (gdbarch, this->regs.get ());
1357
1358 /* Default maximum number of characters in a packet body. Many
1359 remote stubs have a hardwired buffer size of 400 bytes
1360 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1361 as the maximum packet-size to ensure that the packet and an extra
1362 NUL character can always fit in the buffer. This stops GDB
1363 trashing stubs that try to squeeze an extra NUL into what is
1364 already a full buffer (As of 1999-12-04 that was most stubs). */
1365 this->remote_packet_size = 400 - 1;
1366
1367 /* This one is filled in when a ``g'' packet is received. */
1368 this->actual_register_packet_size = 0;
1369
1370 /* Should rsa->sizeof_g_packet needs more space than the
1371 default, adjust the size accordingly. Remember that each byte is
1372 encoded as two characters. 32 is the overhead for the packet
1373 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1374 (``$NN:G...#NN'') is a better guess, the below has been padded a
1375 little. */
1376 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1377 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1378 }
1379
1380 /* Get a pointer to the current remote target. If not connected to a
1381 remote target, return NULL. */
1382
1383 static remote_target *
1384 get_current_remote_target ()
1385 {
1386 target_ops *proc_target = current_inferior ()->process_target ();
1387 return dynamic_cast<remote_target *> (proc_target);
1388 }
1389
1390 /* Return the current allowed size of a remote packet. This is
1391 inferred from the current architecture, and should be used to
1392 limit the length of outgoing packets. */
1393 long
1394 remote_target::get_remote_packet_size ()
1395 {
1396 struct remote_state *rs = get_remote_state ();
1397 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1398
1399 if (rs->explicit_packet_size)
1400 return rs->explicit_packet_size;
1401
1402 return rsa->remote_packet_size;
1403 }
1404
1405 static struct packet_reg *
1406 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1407 long regnum)
1408 {
1409 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1410 return NULL;
1411 else
1412 {
1413 struct packet_reg *r = &rsa->regs[regnum];
1414
1415 gdb_assert (r->regnum == regnum);
1416 return r;
1417 }
1418 }
1419
1420 static struct packet_reg *
1421 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1422 LONGEST pnum)
1423 {
1424 int i;
1425
1426 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1427 {
1428 struct packet_reg *r = &rsa->regs[i];
1429
1430 if (r->pnum == pnum)
1431 return r;
1432 }
1433 return NULL;
1434 }
1435
1436 /* Allow the user to specify what sequence to send to the remote
1437 when he requests a program interruption: Although ^C is usually
1438 what remote systems expect (this is the default, here), it is
1439 sometimes preferable to send a break. On other systems such
1440 as the Linux kernel, a break followed by g, which is Magic SysRq g
1441 is required in order to interrupt the execution. */
1442 const char interrupt_sequence_control_c[] = "Ctrl-C";
1443 const char interrupt_sequence_break[] = "BREAK";
1444 const char interrupt_sequence_break_g[] = "BREAK-g";
1445 static const char *const interrupt_sequence_modes[] =
1446 {
1447 interrupt_sequence_control_c,
1448 interrupt_sequence_break,
1449 interrupt_sequence_break_g,
1450 NULL
1451 };
1452 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1453
1454 static void
1455 show_interrupt_sequence (struct ui_file *file, int from_tty,
1456 struct cmd_list_element *c,
1457 const char *value)
1458 {
1459 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1460 fprintf_filtered (file,
1461 _("Send the ASCII ETX character (Ctrl-c) "
1462 "to the remote target to interrupt the "
1463 "execution of the program.\n"));
1464 else if (interrupt_sequence_mode == interrupt_sequence_break)
1465 fprintf_filtered (file,
1466 _("send a break signal to the remote target "
1467 "to interrupt the execution of the program.\n"));
1468 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1469 fprintf_filtered (file,
1470 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1471 "the remote target to interrupt the execution "
1472 "of Linux kernel.\n"));
1473 else
1474 internal_error (__FILE__, __LINE__,
1475 _("Invalid value for interrupt_sequence_mode: %s."),
1476 interrupt_sequence_mode);
1477 }
1478
1479 /* This boolean variable specifies whether interrupt_sequence is sent
1480 to the remote target when gdb connects to it.
1481 This is mostly needed when you debug the Linux kernel: The Linux kernel
1482 expects BREAK g which is Magic SysRq g for connecting gdb. */
1483 static bool interrupt_on_connect = false;
1484
1485 /* This variable is used to implement the "set/show remotebreak" commands.
1486 Since these commands are now deprecated in favor of "set/show remote
1487 interrupt-sequence", it no longer has any effect on the code. */
1488 static bool remote_break;
1489
1490 static void
1491 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1492 {
1493 if (remote_break)
1494 interrupt_sequence_mode = interrupt_sequence_break;
1495 else
1496 interrupt_sequence_mode = interrupt_sequence_control_c;
1497 }
1498
1499 static void
1500 show_remotebreak (struct ui_file *file, int from_tty,
1501 struct cmd_list_element *c,
1502 const char *value)
1503 {
1504 }
1505
1506 /* This variable sets the number of bits in an address that are to be
1507 sent in a memory ("M" or "m") packet. Normally, after stripping
1508 leading zeros, the entire address would be sent. This variable
1509 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1510 initial implementation of remote.c restricted the address sent in
1511 memory packets to ``host::sizeof long'' bytes - (typically 32
1512 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1513 address was never sent. Since fixing this bug may cause a break in
1514 some remote targets this variable is principally provided to
1515 facilitate backward compatibility. */
1516
1517 static unsigned int remote_address_size;
1518
1519 \f
1520 /* User configurable variables for the number of characters in a
1521 memory read/write packet. MIN (rsa->remote_packet_size,
1522 rsa->sizeof_g_packet) is the default. Some targets need smaller
1523 values (fifo overruns, et.al.) and some users need larger values
1524 (speed up transfers). The variables ``preferred_*'' (the user
1525 request), ``current_*'' (what was actually set) and ``forced_*''
1526 (Positive - a soft limit, negative - a hard limit). */
1527
1528 struct memory_packet_config
1529 {
1530 const char *name;
1531 long size;
1532 int fixed_p;
1533 };
1534
1535 /* The default max memory-write-packet-size, when the setting is
1536 "fixed". The 16k is historical. (It came from older GDB's using
1537 alloca for buffers and the knowledge (folklore?) that some hosts
1538 don't cope very well with large alloca calls.) */
1539 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1540
1541 /* The minimum remote packet size for memory transfers. Ensures we
1542 can write at least one byte. */
1543 #define MIN_MEMORY_PACKET_SIZE 20
1544
1545 /* Get the memory packet size, assuming it is fixed. */
1546
1547 static long
1548 get_fixed_memory_packet_size (struct memory_packet_config *config)
1549 {
1550 gdb_assert (config->fixed_p);
1551
1552 if (config->size <= 0)
1553 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1554 else
1555 return config->size;
1556 }
1557
1558 /* Compute the current size of a read/write packet. Since this makes
1559 use of ``actual_register_packet_size'' the computation is dynamic. */
1560
1561 long
1562 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1563 {
1564 struct remote_state *rs = get_remote_state ();
1565 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1566
1567 long what_they_get;
1568 if (config->fixed_p)
1569 what_they_get = get_fixed_memory_packet_size (config);
1570 else
1571 {
1572 what_they_get = get_remote_packet_size ();
1573 /* Limit the packet to the size specified by the user. */
1574 if (config->size > 0
1575 && what_they_get > config->size)
1576 what_they_get = config->size;
1577
1578 /* Limit it to the size of the targets ``g'' response unless we have
1579 permission from the stub to use a larger packet size. */
1580 if (rs->explicit_packet_size == 0
1581 && rsa->actual_register_packet_size > 0
1582 && what_they_get > rsa->actual_register_packet_size)
1583 what_they_get = rsa->actual_register_packet_size;
1584 }
1585 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1586 what_they_get = MIN_MEMORY_PACKET_SIZE;
1587
1588 /* Make sure there is room in the global buffer for this packet
1589 (including its trailing NUL byte). */
1590 if (rs->buf.size () < what_they_get + 1)
1591 rs->buf.resize (2 * what_they_get);
1592
1593 return what_they_get;
1594 }
1595
1596 /* Update the size of a read/write packet. If they user wants
1597 something really big then do a sanity check. */
1598
1599 static void
1600 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1601 {
1602 int fixed_p = config->fixed_p;
1603 long size = config->size;
1604
1605 if (args == NULL)
1606 error (_("Argument required (integer, `fixed' or `limited')."));
1607 else if (strcmp (args, "hard") == 0
1608 || strcmp (args, "fixed") == 0)
1609 fixed_p = 1;
1610 else if (strcmp (args, "soft") == 0
1611 || strcmp (args, "limit") == 0)
1612 fixed_p = 0;
1613 else
1614 {
1615 char *end;
1616
1617 size = strtoul (args, &end, 0);
1618 if (args == end)
1619 error (_("Invalid %s (bad syntax)."), config->name);
1620
1621 /* Instead of explicitly capping the size of a packet to or
1622 disallowing it, the user is allowed to set the size to
1623 something arbitrarily large. */
1624 }
1625
1626 /* Extra checks? */
1627 if (fixed_p && !config->fixed_p)
1628 {
1629 /* So that the query shows the correct value. */
1630 long query_size = (size <= 0
1631 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1632 : size);
1633
1634 if (! query (_("The target may not be able to correctly handle a %s\n"
1635 "of %ld bytes. Change the packet size? "),
1636 config->name, query_size))
1637 error (_("Packet size not changed."));
1638 }
1639 /* Update the config. */
1640 config->fixed_p = fixed_p;
1641 config->size = size;
1642 }
1643
1644 static void
1645 show_memory_packet_size (struct memory_packet_config *config)
1646 {
1647 if (config->size == 0)
1648 printf_filtered (_("The %s is 0 (default). "), config->name);
1649 else
1650 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1651 if (config->fixed_p)
1652 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1653 get_fixed_memory_packet_size (config));
1654 else
1655 {
1656 remote_target *remote = get_current_remote_target ();
1657
1658 if (remote != NULL)
1659 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1660 remote->get_memory_packet_size (config));
1661 else
1662 puts_filtered ("The actual limit will be further reduced "
1663 "dependent on the target.\n");
1664 }
1665 }
1666
1667 /* FIXME: needs to be per-remote-target. */
1668 static struct memory_packet_config memory_write_packet_config =
1669 {
1670 "memory-write-packet-size",
1671 };
1672
1673 static void
1674 set_memory_write_packet_size (const char *args, int from_tty)
1675 {
1676 set_memory_packet_size (args, &memory_write_packet_config);
1677 }
1678
1679 static void
1680 show_memory_write_packet_size (const char *args, int from_tty)
1681 {
1682 show_memory_packet_size (&memory_write_packet_config);
1683 }
1684
1685 /* Show the number of hardware watchpoints that can be used. */
1686
1687 static void
1688 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1689 struct cmd_list_element *c,
1690 const char *value)
1691 {
1692 fprintf_filtered (file, _("The maximum number of target hardware "
1693 "watchpoints is %s.\n"), value);
1694 }
1695
1696 /* Show the length limit (in bytes) for hardware watchpoints. */
1697
1698 static void
1699 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1700 struct cmd_list_element *c,
1701 const char *value)
1702 {
1703 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1704 "hardware watchpoint is %s.\n"), value);
1705 }
1706
1707 /* Show the number of hardware breakpoints that can be used. */
1708
1709 static void
1710 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1711 struct cmd_list_element *c,
1712 const char *value)
1713 {
1714 fprintf_filtered (file, _("The maximum number of target hardware "
1715 "breakpoints is %s.\n"), value);
1716 }
1717
1718 /* Controls the maximum number of characters to display in the debug output
1719 for each remote packet. The remaining characters are omitted. */
1720
1721 static int remote_packet_max_chars = 512;
1722
1723 /* Show the maximum number of characters to display for each remote packet
1724 when remote debugging is enabled. */
1725
1726 static void
1727 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1728 struct cmd_list_element *c,
1729 const char *value)
1730 {
1731 fprintf_filtered (file, _("Number of remote packet characters to "
1732 "display is %s.\n"), value);
1733 }
1734
1735 long
1736 remote_target::get_memory_write_packet_size ()
1737 {
1738 return get_memory_packet_size (&memory_write_packet_config);
1739 }
1740
1741 /* FIXME: needs to be per-remote-target. */
1742 static struct memory_packet_config memory_read_packet_config =
1743 {
1744 "memory-read-packet-size",
1745 };
1746
1747 static void
1748 set_memory_read_packet_size (const char *args, int from_tty)
1749 {
1750 set_memory_packet_size (args, &memory_read_packet_config);
1751 }
1752
1753 static void
1754 show_memory_read_packet_size (const char *args, int from_tty)
1755 {
1756 show_memory_packet_size (&memory_read_packet_config);
1757 }
1758
1759 long
1760 remote_target::get_memory_read_packet_size ()
1761 {
1762 long size = get_memory_packet_size (&memory_read_packet_config);
1763
1764 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1765 extra buffer size argument before the memory read size can be
1766 increased beyond this. */
1767 if (size > get_remote_packet_size ())
1768 size = get_remote_packet_size ();
1769 return size;
1770 }
1771
1772 \f
1773
1774 struct packet_config
1775 {
1776 const char *name;
1777 const char *title;
1778
1779 /* If auto, GDB auto-detects support for this packet or feature,
1780 either through qSupported, or by trying the packet and looking
1781 at the response. If true, GDB assumes the target supports this
1782 packet. If false, the packet is disabled. Configs that don't
1783 have an associated command always have this set to auto. */
1784 enum auto_boolean detect;
1785
1786 /* Does the target support this packet? */
1787 enum packet_support support;
1788 };
1789
1790 static enum packet_support packet_config_support (struct packet_config *config);
1791 static enum packet_support packet_support (int packet);
1792
1793 static void
1794 show_packet_config_cmd (struct packet_config *config)
1795 {
1796 const char *support = "internal-error";
1797
1798 switch (packet_config_support (config))
1799 {
1800 case PACKET_ENABLE:
1801 support = "enabled";
1802 break;
1803 case PACKET_DISABLE:
1804 support = "disabled";
1805 break;
1806 case PACKET_SUPPORT_UNKNOWN:
1807 support = "unknown";
1808 break;
1809 }
1810 switch (config->detect)
1811 {
1812 case AUTO_BOOLEAN_AUTO:
1813 printf_filtered (_("Support for the `%s' packet "
1814 "is auto-detected, currently %s.\n"),
1815 config->name, support);
1816 break;
1817 case AUTO_BOOLEAN_TRUE:
1818 case AUTO_BOOLEAN_FALSE:
1819 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1820 config->name, support);
1821 break;
1822 }
1823 }
1824
1825 static void
1826 add_packet_config_cmd (struct packet_config *config, const char *name,
1827 const char *title, int legacy)
1828 {
1829 char *set_doc;
1830 char *show_doc;
1831 char *cmd_name;
1832
1833 config->name = name;
1834 config->title = title;
1835 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1836 name, title);
1837 show_doc = xstrprintf ("Show current use of remote "
1838 "protocol `%s' (%s) packet.",
1839 name, title);
1840 /* set/show TITLE-packet {auto,on,off} */
1841 cmd_name = xstrprintf ("%s-packet", title);
1842 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1843 &config->detect, set_doc,
1844 show_doc, NULL, /* help_doc */
1845 NULL,
1846 show_remote_protocol_packet_cmd,
1847 &remote_set_cmdlist, &remote_show_cmdlist);
1848 /* The command code copies the documentation strings. */
1849 xfree (set_doc);
1850 xfree (show_doc);
1851 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1852 if (legacy)
1853 {
1854 char *legacy_name;
1855
1856 legacy_name = xstrprintf ("%s-packet", name);
1857 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1858 &remote_set_cmdlist);
1859 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1860 &remote_show_cmdlist);
1861 }
1862 }
1863
1864 static enum packet_result
1865 packet_check_result (const char *buf)
1866 {
1867 if (buf[0] != '\0')
1868 {
1869 /* The stub recognized the packet request. Check that the
1870 operation succeeded. */
1871 if (buf[0] == 'E'
1872 && isxdigit (buf[1]) && isxdigit (buf[2])
1873 && buf[3] == '\0')
1874 /* "Enn" - definitely an error. */
1875 return PACKET_ERROR;
1876
1877 /* Always treat "E." as an error. This will be used for
1878 more verbose error messages, such as E.memtypes. */
1879 if (buf[0] == 'E' && buf[1] == '.')
1880 return PACKET_ERROR;
1881
1882 /* The packet may or may not be OK. Just assume it is. */
1883 return PACKET_OK;
1884 }
1885 else
1886 /* The stub does not support the packet. */
1887 return PACKET_UNKNOWN;
1888 }
1889
1890 static enum packet_result
1891 packet_check_result (const gdb::char_vector &buf)
1892 {
1893 return packet_check_result (buf.data ());
1894 }
1895
1896 static enum packet_result
1897 packet_ok (const char *buf, struct packet_config *config)
1898 {
1899 enum packet_result result;
1900
1901 if (config->detect != AUTO_BOOLEAN_TRUE
1902 && config->support == PACKET_DISABLE)
1903 internal_error (__FILE__, __LINE__,
1904 _("packet_ok: attempt to use a disabled packet"));
1905
1906 result = packet_check_result (buf);
1907 switch (result)
1908 {
1909 case PACKET_OK:
1910 case PACKET_ERROR:
1911 /* The stub recognized the packet request. */
1912 if (config->support == PACKET_SUPPORT_UNKNOWN)
1913 {
1914 if (remote_debug)
1915 fprintf_unfiltered (gdb_stdlog,
1916 "Packet %s (%s) is supported\n",
1917 config->name, config->title);
1918 config->support = PACKET_ENABLE;
1919 }
1920 break;
1921 case PACKET_UNKNOWN:
1922 /* The stub does not support the packet. */
1923 if (config->detect == AUTO_BOOLEAN_AUTO
1924 && config->support == PACKET_ENABLE)
1925 {
1926 /* If the stub previously indicated that the packet was
1927 supported then there is a protocol error. */
1928 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1929 config->name, config->title);
1930 }
1931 else if (config->detect == AUTO_BOOLEAN_TRUE)
1932 {
1933 /* The user set it wrong. */
1934 error (_("Enabled packet %s (%s) not recognized by stub"),
1935 config->name, config->title);
1936 }
1937
1938 if (remote_debug)
1939 fprintf_unfiltered (gdb_stdlog,
1940 "Packet %s (%s) is NOT supported\n",
1941 config->name, config->title);
1942 config->support = PACKET_DISABLE;
1943 break;
1944 }
1945
1946 return result;
1947 }
1948
1949 static enum packet_result
1950 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1951 {
1952 return packet_ok (buf.data (), config);
1953 }
1954
1955 enum {
1956 PACKET_vCont = 0,
1957 PACKET_X,
1958 PACKET_qSymbol,
1959 PACKET_P,
1960 PACKET_p,
1961 PACKET_Z0,
1962 PACKET_Z1,
1963 PACKET_Z2,
1964 PACKET_Z3,
1965 PACKET_Z4,
1966 PACKET_vFile_setfs,
1967 PACKET_vFile_open,
1968 PACKET_vFile_pread,
1969 PACKET_vFile_pwrite,
1970 PACKET_vFile_close,
1971 PACKET_vFile_unlink,
1972 PACKET_vFile_readlink,
1973 PACKET_vFile_fstat,
1974 PACKET_qXfer_auxv,
1975 PACKET_qXfer_features,
1976 PACKET_qXfer_exec_file,
1977 PACKET_qXfer_libraries,
1978 PACKET_qXfer_libraries_svr4,
1979 PACKET_qXfer_memory_map,
1980 PACKET_qXfer_osdata,
1981 PACKET_qXfer_threads,
1982 PACKET_qXfer_statictrace_read,
1983 PACKET_qXfer_traceframe_info,
1984 PACKET_qXfer_uib,
1985 PACKET_qGetTIBAddr,
1986 PACKET_qGetTLSAddr,
1987 PACKET_qSupported,
1988 PACKET_qTStatus,
1989 PACKET_QPassSignals,
1990 PACKET_QCatchSyscalls,
1991 PACKET_QProgramSignals,
1992 PACKET_QSetWorkingDir,
1993 PACKET_QStartupWithShell,
1994 PACKET_QEnvironmentHexEncoded,
1995 PACKET_QEnvironmentReset,
1996 PACKET_QEnvironmentUnset,
1997 PACKET_qCRC,
1998 PACKET_qSearch_memory,
1999 PACKET_vAttach,
2000 PACKET_vRun,
2001 PACKET_QStartNoAckMode,
2002 PACKET_vKill,
2003 PACKET_qXfer_siginfo_read,
2004 PACKET_qXfer_siginfo_write,
2005 PACKET_qAttached,
2006
2007 /* Support for conditional tracepoints. */
2008 PACKET_ConditionalTracepoints,
2009
2010 /* Support for target-side breakpoint conditions. */
2011 PACKET_ConditionalBreakpoints,
2012
2013 /* Support for target-side breakpoint commands. */
2014 PACKET_BreakpointCommands,
2015
2016 /* Support for fast tracepoints. */
2017 PACKET_FastTracepoints,
2018
2019 /* Support for static tracepoints. */
2020 PACKET_StaticTracepoints,
2021
2022 /* Support for installing tracepoints while a trace experiment is
2023 running. */
2024 PACKET_InstallInTrace,
2025
2026 PACKET_bc,
2027 PACKET_bs,
2028 PACKET_TracepointSource,
2029 PACKET_QAllow,
2030 PACKET_qXfer_fdpic,
2031 PACKET_QDisableRandomization,
2032 PACKET_QAgent,
2033 PACKET_QTBuffer_size,
2034 PACKET_Qbtrace_off,
2035 PACKET_Qbtrace_bts,
2036 PACKET_Qbtrace_pt,
2037 PACKET_qXfer_btrace,
2038
2039 /* Support for the QNonStop packet. */
2040 PACKET_QNonStop,
2041
2042 /* Support for the QThreadEvents packet. */
2043 PACKET_QThreadEvents,
2044
2045 /* Support for multi-process extensions. */
2046 PACKET_multiprocess_feature,
2047
2048 /* Support for enabling and disabling tracepoints while a trace
2049 experiment is running. */
2050 PACKET_EnableDisableTracepoints_feature,
2051
2052 /* Support for collecting strings using the tracenz bytecode. */
2053 PACKET_tracenz_feature,
2054
2055 /* Support for continuing to run a trace experiment while GDB is
2056 disconnected. */
2057 PACKET_DisconnectedTracing_feature,
2058
2059 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2060 PACKET_augmented_libraries_svr4_read_feature,
2061
2062 /* Support for the qXfer:btrace-conf:read packet. */
2063 PACKET_qXfer_btrace_conf,
2064
2065 /* Support for the Qbtrace-conf:bts:size packet. */
2066 PACKET_Qbtrace_conf_bts_size,
2067
2068 /* Support for swbreak+ feature. */
2069 PACKET_swbreak_feature,
2070
2071 /* Support for hwbreak+ feature. */
2072 PACKET_hwbreak_feature,
2073
2074 /* Support for fork events. */
2075 PACKET_fork_event_feature,
2076
2077 /* Support for vfork events. */
2078 PACKET_vfork_event_feature,
2079
2080 /* Support for the Qbtrace-conf:pt:size packet. */
2081 PACKET_Qbtrace_conf_pt_size,
2082
2083 /* Support for exec events. */
2084 PACKET_exec_event_feature,
2085
2086 /* Support for query supported vCont actions. */
2087 PACKET_vContSupported,
2088
2089 /* Support remote CTRL-C. */
2090 PACKET_vCtrlC,
2091
2092 /* Support TARGET_WAITKIND_NO_RESUMED. */
2093 PACKET_no_resumed,
2094
2095 PACKET_MAX
2096 };
2097
2098 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2099 assuming all remote targets are the same server (thus all support
2100 the same packets). */
2101 static struct packet_config remote_protocol_packets[PACKET_MAX];
2102
2103 /* Returns the packet's corresponding "set remote foo-packet" command
2104 state. See struct packet_config for more details. */
2105
2106 static enum auto_boolean
2107 packet_set_cmd_state (int packet)
2108 {
2109 return remote_protocol_packets[packet].detect;
2110 }
2111
2112 /* Returns whether a given packet or feature is supported. This takes
2113 into account the state of the corresponding "set remote foo-packet"
2114 command, which may be used to bypass auto-detection. */
2115
2116 static enum packet_support
2117 packet_config_support (struct packet_config *config)
2118 {
2119 switch (config->detect)
2120 {
2121 case AUTO_BOOLEAN_TRUE:
2122 return PACKET_ENABLE;
2123 case AUTO_BOOLEAN_FALSE:
2124 return PACKET_DISABLE;
2125 case AUTO_BOOLEAN_AUTO:
2126 return config->support;
2127 default:
2128 gdb_assert_not_reached (_("bad switch"));
2129 }
2130 }
2131
2132 /* Same as packet_config_support, but takes the packet's enum value as
2133 argument. */
2134
2135 static enum packet_support
2136 packet_support (int packet)
2137 {
2138 struct packet_config *config = &remote_protocol_packets[packet];
2139
2140 return packet_config_support (config);
2141 }
2142
2143 static void
2144 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2145 struct cmd_list_element *c,
2146 const char *value)
2147 {
2148 struct packet_config *packet;
2149
2150 for (packet = remote_protocol_packets;
2151 packet < &remote_protocol_packets[PACKET_MAX];
2152 packet++)
2153 {
2154 if (&packet->detect == c->var)
2155 {
2156 show_packet_config_cmd (packet);
2157 return;
2158 }
2159 }
2160 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2161 c->name);
2162 }
2163
2164 /* Should we try one of the 'Z' requests? */
2165
2166 enum Z_packet_type
2167 {
2168 Z_PACKET_SOFTWARE_BP,
2169 Z_PACKET_HARDWARE_BP,
2170 Z_PACKET_WRITE_WP,
2171 Z_PACKET_READ_WP,
2172 Z_PACKET_ACCESS_WP,
2173 NR_Z_PACKET_TYPES
2174 };
2175
2176 /* For compatibility with older distributions. Provide a ``set remote
2177 Z-packet ...'' command that updates all the Z packet types. */
2178
2179 static enum auto_boolean remote_Z_packet_detect;
2180
2181 static void
2182 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2183 struct cmd_list_element *c)
2184 {
2185 int i;
2186
2187 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2188 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2189 }
2190
2191 static void
2192 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2193 struct cmd_list_element *c,
2194 const char *value)
2195 {
2196 int i;
2197
2198 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2199 {
2200 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2201 }
2202 }
2203
2204 /* Returns true if the multi-process extensions are in effect. */
2205
2206 static int
2207 remote_multi_process_p (struct remote_state *rs)
2208 {
2209 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2210 }
2211
2212 /* Returns true if fork events are supported. */
2213
2214 static int
2215 remote_fork_event_p (struct remote_state *rs)
2216 {
2217 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2218 }
2219
2220 /* Returns true if vfork events are supported. */
2221
2222 static int
2223 remote_vfork_event_p (struct remote_state *rs)
2224 {
2225 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2226 }
2227
2228 /* Returns true if exec events are supported. */
2229
2230 static int
2231 remote_exec_event_p (struct remote_state *rs)
2232 {
2233 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2234 }
2235
2236 /* Insert fork catchpoint target routine. If fork events are enabled
2237 then return success, nothing more to do. */
2238
2239 int
2240 remote_target::insert_fork_catchpoint (int pid)
2241 {
2242 struct remote_state *rs = get_remote_state ();
2243
2244 return !remote_fork_event_p (rs);
2245 }
2246
2247 /* Remove fork catchpoint target routine. Nothing to do, just
2248 return success. */
2249
2250 int
2251 remote_target::remove_fork_catchpoint (int pid)
2252 {
2253 return 0;
2254 }
2255
2256 /* Insert vfork catchpoint target routine. If vfork events are enabled
2257 then return success, nothing more to do. */
2258
2259 int
2260 remote_target::insert_vfork_catchpoint (int pid)
2261 {
2262 struct remote_state *rs = get_remote_state ();
2263
2264 return !remote_vfork_event_p (rs);
2265 }
2266
2267 /* Remove vfork catchpoint target routine. Nothing to do, just
2268 return success. */
2269
2270 int
2271 remote_target::remove_vfork_catchpoint (int pid)
2272 {
2273 return 0;
2274 }
2275
2276 /* Insert exec catchpoint target routine. If exec events are
2277 enabled, just return success. */
2278
2279 int
2280 remote_target::insert_exec_catchpoint (int pid)
2281 {
2282 struct remote_state *rs = get_remote_state ();
2283
2284 return !remote_exec_event_p (rs);
2285 }
2286
2287 /* Remove exec catchpoint target routine. Nothing to do, just
2288 return success. */
2289
2290 int
2291 remote_target::remove_exec_catchpoint (int pid)
2292 {
2293 return 0;
2294 }
2295
2296 \f
2297
2298 /* Take advantage of the fact that the TID field is not used, to tag
2299 special ptids with it set to != 0. */
2300 static const ptid_t magic_null_ptid (42000, -1, 1);
2301 static const ptid_t not_sent_ptid (42000, -2, 1);
2302 static const ptid_t any_thread_ptid (42000, 0, 1);
2303
2304 /* Find out if the stub attached to PID (and hence GDB should offer to
2305 detach instead of killing it when bailing out). */
2306
2307 int
2308 remote_target::remote_query_attached (int pid)
2309 {
2310 struct remote_state *rs = get_remote_state ();
2311 size_t size = get_remote_packet_size ();
2312
2313 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2314 return 0;
2315
2316 if (remote_multi_process_p (rs))
2317 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2318 else
2319 xsnprintf (rs->buf.data (), size, "qAttached");
2320
2321 putpkt (rs->buf);
2322 getpkt (&rs->buf, 0);
2323
2324 switch (packet_ok (rs->buf,
2325 &remote_protocol_packets[PACKET_qAttached]))
2326 {
2327 case PACKET_OK:
2328 if (strcmp (rs->buf.data (), "1") == 0)
2329 return 1;
2330 break;
2331 case PACKET_ERROR:
2332 warning (_("Remote failure reply: %s"), rs->buf.data ());
2333 break;
2334 case PACKET_UNKNOWN:
2335 break;
2336 }
2337
2338 return 0;
2339 }
2340
2341 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2342 has been invented by GDB, instead of reported by the target. Since
2343 we can be connected to a remote system before before knowing about
2344 any inferior, mark the target with execution when we find the first
2345 inferior. If ATTACHED is 1, then we had just attached to this
2346 inferior. If it is 0, then we just created this inferior. If it
2347 is -1, then try querying the remote stub to find out if it had
2348 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2349 attempt to open this inferior's executable as the main executable
2350 if no main executable is open already. */
2351
2352 inferior *
2353 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2354 int try_open_exec)
2355 {
2356 struct inferior *inf;
2357
2358 /* Check whether this process we're learning about is to be
2359 considered attached, or if is to be considered to have been
2360 spawned by the stub. */
2361 if (attached == -1)
2362 attached = remote_query_attached (pid);
2363
2364 if (gdbarch_has_global_solist (target_gdbarch ()))
2365 {
2366 /* If the target shares code across all inferiors, then every
2367 attach adds a new inferior. */
2368 inf = add_inferior (pid);
2369
2370 /* ... and every inferior is bound to the same program space.
2371 However, each inferior may still have its own address
2372 space. */
2373 inf->aspace = maybe_new_address_space ();
2374 inf->pspace = current_program_space;
2375 }
2376 else
2377 {
2378 /* In the traditional debugging scenario, there's a 1-1 match
2379 between program/address spaces. We simply bind the inferior
2380 to the program space's address space. */
2381 inf = current_inferior ();
2382
2383 /* However, if the current inferior is already bound to a
2384 process, find some other empty inferior. */
2385 if (inf->pid != 0)
2386 {
2387 inf = nullptr;
2388 for (inferior *it : all_inferiors ())
2389 if (it->pid == 0)
2390 {
2391 inf = it;
2392 break;
2393 }
2394 }
2395 if (inf == nullptr)
2396 {
2397 /* Since all inferiors were already bound to a process, add
2398 a new inferior. */
2399 inf = add_inferior_with_spaces ();
2400 }
2401 switch_to_inferior_no_thread (inf);
2402 push_target (this);
2403 inferior_appeared (inf, pid);
2404 }
2405
2406 inf->attach_flag = attached;
2407 inf->fake_pid_p = fake_pid_p;
2408
2409 /* If no main executable is currently open then attempt to
2410 open the file that was executed to create this inferior. */
2411 if (try_open_exec && get_exec_file (0) == NULL)
2412 exec_file_locate_attach (pid, 0, 1);
2413
2414 /* Check for exec file mismatch, and let the user solve it. */
2415 validate_exec_file (1);
2416
2417 return inf;
2418 }
2419
2420 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2421 static remote_thread_info *get_remote_thread_info (remote_target *target,
2422 ptid_t ptid);
2423
2424 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2425 according to RUNNING. */
2426
2427 thread_info *
2428 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2429 {
2430 struct remote_state *rs = get_remote_state ();
2431 struct thread_info *thread;
2432
2433 /* GDB historically didn't pull threads in the initial connection
2434 setup. If the remote target doesn't even have a concept of
2435 threads (e.g., a bare-metal target), even if internally we
2436 consider that a single-threaded target, mentioning a new thread
2437 might be confusing to the user. Be silent then, preserving the
2438 age old behavior. */
2439 if (rs->starting_up)
2440 thread = add_thread_silent (this, ptid);
2441 else
2442 thread = add_thread (this, ptid);
2443
2444 get_remote_thread_info (thread)->vcont_resumed = executing;
2445 set_executing (this, ptid, executing);
2446 set_running (this, ptid, running);
2447
2448 return thread;
2449 }
2450
2451 /* Come here when we learn about a thread id from the remote target.
2452 It may be the first time we hear about such thread, so take the
2453 opportunity to add it to GDB's thread list. In case this is the
2454 first time we're noticing its corresponding inferior, add it to
2455 GDB's inferior list as well. EXECUTING indicates whether the
2456 thread is (internally) executing or stopped. */
2457
2458 void
2459 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2460 {
2461 /* In non-stop mode, we assume new found threads are (externally)
2462 running until proven otherwise with a stop reply. In all-stop,
2463 we can only get here if all threads are stopped. */
2464 int running = target_is_non_stop_p () ? 1 : 0;
2465
2466 /* If this is a new thread, add it to GDB's thread list.
2467 If we leave it up to WFI to do this, bad things will happen. */
2468
2469 thread_info *tp = find_thread_ptid (this, currthread);
2470 if (tp != NULL && tp->state == THREAD_EXITED)
2471 {
2472 /* We're seeing an event on a thread id we knew had exited.
2473 This has to be a new thread reusing the old id. Add it. */
2474 remote_add_thread (currthread, running, executing);
2475 return;
2476 }
2477
2478 if (!in_thread_list (this, currthread))
2479 {
2480 struct inferior *inf = NULL;
2481 int pid = currthread.pid ();
2482
2483 if (inferior_ptid.is_pid ()
2484 && pid == inferior_ptid.pid ())
2485 {
2486 /* inferior_ptid has no thread member yet. This can happen
2487 with the vAttach -> remote_wait,"TAAthread:" path if the
2488 stub doesn't support qC. This is the first stop reported
2489 after an attach, so this is the main thread. Update the
2490 ptid in the thread list. */
2491 if (in_thread_list (this, ptid_t (pid)))
2492 thread_change_ptid (this, inferior_ptid, currthread);
2493 else
2494 {
2495 remote_add_thread (currthread, running, executing);
2496 inferior_ptid = currthread;
2497 }
2498 return;
2499 }
2500
2501 if (magic_null_ptid == inferior_ptid)
2502 {
2503 /* inferior_ptid is not set yet. This can happen with the
2504 vRun -> remote_wait,"TAAthread:" path if the stub
2505 doesn't support qC. This is the first stop reported
2506 after an attach, so this is the main thread. Update the
2507 ptid in the thread list. */
2508 thread_change_ptid (this, inferior_ptid, currthread);
2509 return;
2510 }
2511
2512 /* When connecting to a target remote, or to a target
2513 extended-remote which already was debugging an inferior, we
2514 may not know about it yet. Add it before adding its child
2515 thread, so notifications are emitted in a sensible order. */
2516 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2517 {
2518 struct remote_state *rs = get_remote_state ();
2519 bool fake_pid_p = !remote_multi_process_p (rs);
2520
2521 inf = remote_add_inferior (fake_pid_p,
2522 currthread.pid (), -1, 1);
2523 }
2524
2525 /* This is really a new thread. Add it. */
2526 thread_info *new_thr
2527 = remote_add_thread (currthread, running, executing);
2528
2529 /* If we found a new inferior, let the common code do whatever
2530 it needs to with it (e.g., read shared libraries, insert
2531 breakpoints), unless we're just setting up an all-stop
2532 connection. */
2533 if (inf != NULL)
2534 {
2535 struct remote_state *rs = get_remote_state ();
2536
2537 if (!rs->starting_up)
2538 notice_new_inferior (new_thr, executing, 0);
2539 }
2540 }
2541 }
2542
2543 /* Return THREAD's private thread data, creating it if necessary. */
2544
2545 static remote_thread_info *
2546 get_remote_thread_info (thread_info *thread)
2547 {
2548 gdb_assert (thread != NULL);
2549
2550 if (thread->priv == NULL)
2551 thread->priv.reset (new remote_thread_info);
2552
2553 return static_cast<remote_thread_info *> (thread->priv.get ());
2554 }
2555
2556 /* Return PTID's private thread data, creating it if necessary. */
2557
2558 static remote_thread_info *
2559 get_remote_thread_info (remote_target *target, ptid_t ptid)
2560 {
2561 thread_info *thr = find_thread_ptid (target, ptid);
2562 return get_remote_thread_info (thr);
2563 }
2564
2565 /* Call this function as a result of
2566 1) A halt indication (T packet) containing a thread id
2567 2) A direct query of currthread
2568 3) Successful execution of set thread */
2569
2570 static void
2571 record_currthread (struct remote_state *rs, ptid_t currthread)
2572 {
2573 rs->general_thread = currthread;
2574 }
2575
2576 /* If 'QPassSignals' is supported, tell the remote stub what signals
2577 it can simply pass through to the inferior without reporting. */
2578
2579 void
2580 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2581 {
2582 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2583 {
2584 char *pass_packet, *p;
2585 int count = 0;
2586 struct remote_state *rs = get_remote_state ();
2587
2588 gdb_assert (pass_signals.size () < 256);
2589 for (size_t i = 0; i < pass_signals.size (); i++)
2590 {
2591 if (pass_signals[i])
2592 count++;
2593 }
2594 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2595 strcpy (pass_packet, "QPassSignals:");
2596 p = pass_packet + strlen (pass_packet);
2597 for (size_t i = 0; i < pass_signals.size (); i++)
2598 {
2599 if (pass_signals[i])
2600 {
2601 if (i >= 16)
2602 *p++ = tohex (i >> 4);
2603 *p++ = tohex (i & 15);
2604 if (count)
2605 *p++ = ';';
2606 else
2607 break;
2608 count--;
2609 }
2610 }
2611 *p = 0;
2612 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2613 {
2614 putpkt (pass_packet);
2615 getpkt (&rs->buf, 0);
2616 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2617 if (rs->last_pass_packet)
2618 xfree (rs->last_pass_packet);
2619 rs->last_pass_packet = pass_packet;
2620 }
2621 else
2622 xfree (pass_packet);
2623 }
2624 }
2625
2626 /* If 'QCatchSyscalls' is supported, tell the remote stub
2627 to report syscalls to GDB. */
2628
2629 int
2630 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2631 gdb::array_view<const int> syscall_counts)
2632 {
2633 const char *catch_packet;
2634 enum packet_result result;
2635 int n_sysno = 0;
2636
2637 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2638 {
2639 /* Not supported. */
2640 return 1;
2641 }
2642
2643 if (needed && any_count == 0)
2644 {
2645 /* Count how many syscalls are to be caught. */
2646 for (size_t i = 0; i < syscall_counts.size (); i++)
2647 {
2648 if (syscall_counts[i] != 0)
2649 n_sysno++;
2650 }
2651 }
2652
2653 if (remote_debug)
2654 {
2655 fprintf_unfiltered (gdb_stdlog,
2656 "remote_set_syscall_catchpoint "
2657 "pid %d needed %d any_count %d n_sysno %d\n",
2658 pid, needed, any_count, n_sysno);
2659 }
2660
2661 std::string built_packet;
2662 if (needed)
2663 {
2664 /* Prepare a packet with the sysno list, assuming max 8+1
2665 characters for a sysno. If the resulting packet size is too
2666 big, fallback on the non-selective packet. */
2667 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2668 built_packet.reserve (maxpktsz);
2669 built_packet = "QCatchSyscalls:1";
2670 if (any_count == 0)
2671 {
2672 /* Add in each syscall to be caught. */
2673 for (size_t i = 0; i < syscall_counts.size (); i++)
2674 {
2675 if (syscall_counts[i] != 0)
2676 string_appendf (built_packet, ";%zx", i);
2677 }
2678 }
2679 if (built_packet.size () > get_remote_packet_size ())
2680 {
2681 /* catch_packet too big. Fallback to less efficient
2682 non selective mode, with GDB doing the filtering. */
2683 catch_packet = "QCatchSyscalls:1";
2684 }
2685 else
2686 catch_packet = built_packet.c_str ();
2687 }
2688 else
2689 catch_packet = "QCatchSyscalls:0";
2690
2691 struct remote_state *rs = get_remote_state ();
2692
2693 putpkt (catch_packet);
2694 getpkt (&rs->buf, 0);
2695 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2696 if (result == PACKET_OK)
2697 return 0;
2698 else
2699 return -1;
2700 }
2701
2702 /* If 'QProgramSignals' is supported, tell the remote stub what
2703 signals it should pass through to the inferior when detaching. */
2704
2705 void
2706 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2707 {
2708 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2709 {
2710 char *packet, *p;
2711 int count = 0;
2712 struct remote_state *rs = get_remote_state ();
2713
2714 gdb_assert (signals.size () < 256);
2715 for (size_t i = 0; i < signals.size (); i++)
2716 {
2717 if (signals[i])
2718 count++;
2719 }
2720 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2721 strcpy (packet, "QProgramSignals:");
2722 p = packet + strlen (packet);
2723 for (size_t i = 0; i < signals.size (); i++)
2724 {
2725 if (signal_pass_state (i))
2726 {
2727 if (i >= 16)
2728 *p++ = tohex (i >> 4);
2729 *p++ = tohex (i & 15);
2730 if (count)
2731 *p++ = ';';
2732 else
2733 break;
2734 count--;
2735 }
2736 }
2737 *p = 0;
2738 if (!rs->last_program_signals_packet
2739 || strcmp (rs->last_program_signals_packet, packet) != 0)
2740 {
2741 putpkt (packet);
2742 getpkt (&rs->buf, 0);
2743 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2744 xfree (rs->last_program_signals_packet);
2745 rs->last_program_signals_packet = packet;
2746 }
2747 else
2748 xfree (packet);
2749 }
2750 }
2751
2752 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2753 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2754 thread. If GEN is set, set the general thread, if not, then set
2755 the step/continue thread. */
2756 void
2757 remote_target::set_thread (ptid_t ptid, int gen)
2758 {
2759 struct remote_state *rs = get_remote_state ();
2760 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2761 char *buf = rs->buf.data ();
2762 char *endbuf = buf + get_remote_packet_size ();
2763
2764 if (state == ptid)
2765 return;
2766
2767 *buf++ = 'H';
2768 *buf++ = gen ? 'g' : 'c';
2769 if (ptid == magic_null_ptid)
2770 xsnprintf (buf, endbuf - buf, "0");
2771 else if (ptid == any_thread_ptid)
2772 xsnprintf (buf, endbuf - buf, "0");
2773 else if (ptid == minus_one_ptid)
2774 xsnprintf (buf, endbuf - buf, "-1");
2775 else
2776 write_ptid (buf, endbuf, ptid);
2777 putpkt (rs->buf);
2778 getpkt (&rs->buf, 0);
2779 if (gen)
2780 rs->general_thread = ptid;
2781 else
2782 rs->continue_thread = ptid;
2783 }
2784
2785 void
2786 remote_target::set_general_thread (ptid_t ptid)
2787 {
2788 set_thread (ptid, 1);
2789 }
2790
2791 void
2792 remote_target::set_continue_thread (ptid_t ptid)
2793 {
2794 set_thread (ptid, 0);
2795 }
2796
2797 /* Change the remote current process. Which thread within the process
2798 ends up selected isn't important, as long as it is the same process
2799 as what INFERIOR_PTID points to.
2800
2801 This comes from that fact that there is no explicit notion of
2802 "selected process" in the protocol. The selected process for
2803 general operations is the process the selected general thread
2804 belongs to. */
2805
2806 void
2807 remote_target::set_general_process ()
2808 {
2809 struct remote_state *rs = get_remote_state ();
2810
2811 /* If the remote can't handle multiple processes, don't bother. */
2812 if (!remote_multi_process_p (rs))
2813 return;
2814
2815 /* We only need to change the remote current thread if it's pointing
2816 at some other process. */
2817 if (rs->general_thread.pid () != inferior_ptid.pid ())
2818 set_general_thread (inferior_ptid);
2819 }
2820
2821 \f
2822 /* Return nonzero if this is the main thread that we made up ourselves
2823 to model non-threaded targets as single-threaded. */
2824
2825 static int
2826 remote_thread_always_alive (ptid_t ptid)
2827 {
2828 if (ptid == magic_null_ptid)
2829 /* The main thread is always alive. */
2830 return 1;
2831
2832 if (ptid.pid () != 0 && ptid.lwp () == 0)
2833 /* The main thread is always alive. This can happen after a
2834 vAttach, if the remote side doesn't support
2835 multi-threading. */
2836 return 1;
2837
2838 return 0;
2839 }
2840
2841 /* Return nonzero if the thread PTID is still alive on the remote
2842 system. */
2843
2844 bool
2845 remote_target::thread_alive (ptid_t ptid)
2846 {
2847 struct remote_state *rs = get_remote_state ();
2848 char *p, *endp;
2849
2850 /* Check if this is a thread that we made up ourselves to model
2851 non-threaded targets as single-threaded. */
2852 if (remote_thread_always_alive (ptid))
2853 return 1;
2854
2855 p = rs->buf.data ();
2856 endp = p + get_remote_packet_size ();
2857
2858 *p++ = 'T';
2859 write_ptid (p, endp, ptid);
2860
2861 putpkt (rs->buf);
2862 getpkt (&rs->buf, 0);
2863 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2864 }
2865
2866 /* Return a pointer to a thread name if we know it and NULL otherwise.
2867 The thread_info object owns the memory for the name. */
2868
2869 const char *
2870 remote_target::thread_name (struct thread_info *info)
2871 {
2872 if (info->priv != NULL)
2873 {
2874 const std::string &name = get_remote_thread_info (info)->name;
2875 return !name.empty () ? name.c_str () : NULL;
2876 }
2877
2878 return NULL;
2879 }
2880
2881 /* About these extended threadlist and threadinfo packets. They are
2882 variable length packets but, the fields within them are often fixed
2883 length. They are redundant enough to send over UDP as is the
2884 remote protocol in general. There is a matching unit test module
2885 in libstub. */
2886
2887 /* WARNING: This threadref data structure comes from the remote O.S.,
2888 libstub protocol encoding, and remote.c. It is not particularly
2889 changable. */
2890
2891 /* Right now, the internal structure is int. We want it to be bigger.
2892 Plan to fix this. */
2893
2894 typedef int gdb_threadref; /* Internal GDB thread reference. */
2895
2896 /* gdb_ext_thread_info is an internal GDB data structure which is
2897 equivalent to the reply of the remote threadinfo packet. */
2898
2899 struct gdb_ext_thread_info
2900 {
2901 threadref threadid; /* External form of thread reference. */
2902 int active; /* Has state interesting to GDB?
2903 regs, stack. */
2904 char display[256]; /* Brief state display, name,
2905 blocked/suspended. */
2906 char shortname[32]; /* To be used to name threads. */
2907 char more_display[256]; /* Long info, statistics, queue depth,
2908 whatever. */
2909 };
2910
2911 /* The volume of remote transfers can be limited by submitting
2912 a mask containing bits specifying the desired information.
2913 Use a union of these values as the 'selection' parameter to
2914 get_thread_info. FIXME: Make these TAG names more thread specific. */
2915
2916 #define TAG_THREADID 1
2917 #define TAG_EXISTS 2
2918 #define TAG_DISPLAY 4
2919 #define TAG_THREADNAME 8
2920 #define TAG_MOREDISPLAY 16
2921
2922 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2923
2924 static char *unpack_nibble (char *buf, int *val);
2925
2926 static char *unpack_byte (char *buf, int *value);
2927
2928 static char *pack_int (char *buf, int value);
2929
2930 static char *unpack_int (char *buf, int *value);
2931
2932 static char *unpack_string (char *src, char *dest, int length);
2933
2934 static char *pack_threadid (char *pkt, threadref *id);
2935
2936 static char *unpack_threadid (char *inbuf, threadref *id);
2937
2938 void int_to_threadref (threadref *id, int value);
2939
2940 static int threadref_to_int (threadref *ref);
2941
2942 static void copy_threadref (threadref *dest, threadref *src);
2943
2944 static int threadmatch (threadref *dest, threadref *src);
2945
2946 static char *pack_threadinfo_request (char *pkt, int mode,
2947 threadref *id);
2948
2949 static char *pack_threadlist_request (char *pkt, int startflag,
2950 int threadcount,
2951 threadref *nextthread);
2952
2953 static int remote_newthread_step (threadref *ref, void *context);
2954
2955
2956 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2957 buffer we're allowed to write to. Returns
2958 BUF+CHARACTERS_WRITTEN. */
2959
2960 char *
2961 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2962 {
2963 int pid, tid;
2964 struct remote_state *rs = get_remote_state ();
2965
2966 if (remote_multi_process_p (rs))
2967 {
2968 pid = ptid.pid ();
2969 if (pid < 0)
2970 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2971 else
2972 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2973 }
2974 tid = ptid.lwp ();
2975 if (tid < 0)
2976 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2977 else
2978 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2979
2980 return buf;
2981 }
2982
2983 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2984 last parsed char. Returns null_ptid if no thread id is found, and
2985 throws an error if the thread id has an invalid format. */
2986
2987 static ptid_t
2988 read_ptid (const char *buf, const char **obuf)
2989 {
2990 const char *p = buf;
2991 const char *pp;
2992 ULONGEST pid = 0, tid = 0;
2993
2994 if (*p == 'p')
2995 {
2996 /* Multi-process ptid. */
2997 pp = unpack_varlen_hex (p + 1, &pid);
2998 if (*pp != '.')
2999 error (_("invalid remote ptid: %s"), p);
3000
3001 p = pp;
3002 pp = unpack_varlen_hex (p + 1, &tid);
3003 if (obuf)
3004 *obuf = pp;
3005 return ptid_t (pid, tid, 0);
3006 }
3007
3008 /* No multi-process. Just a tid. */
3009 pp = unpack_varlen_hex (p, &tid);
3010
3011 /* Return null_ptid when no thread id is found. */
3012 if (p == pp)
3013 {
3014 if (obuf)
3015 *obuf = pp;
3016 return null_ptid;
3017 }
3018
3019 /* Since the stub is not sending a process id, then default to
3020 what's in inferior_ptid, unless it's null at this point. If so,
3021 then since there's no way to know the pid of the reported
3022 threads, use the magic number. */
3023 if (inferior_ptid == null_ptid)
3024 pid = magic_null_ptid.pid ();
3025 else
3026 pid = inferior_ptid.pid ();
3027
3028 if (obuf)
3029 *obuf = pp;
3030 return ptid_t (pid, tid, 0);
3031 }
3032
3033 static int
3034 stubhex (int ch)
3035 {
3036 if (ch >= 'a' && ch <= 'f')
3037 return ch - 'a' + 10;
3038 if (ch >= '0' && ch <= '9')
3039 return ch - '0';
3040 if (ch >= 'A' && ch <= 'F')
3041 return ch - 'A' + 10;
3042 return -1;
3043 }
3044
3045 static int
3046 stub_unpack_int (char *buff, int fieldlength)
3047 {
3048 int nibble;
3049 int retval = 0;
3050
3051 while (fieldlength)
3052 {
3053 nibble = stubhex (*buff++);
3054 retval |= nibble;
3055 fieldlength--;
3056 if (fieldlength)
3057 retval = retval << 4;
3058 }
3059 return retval;
3060 }
3061
3062 static char *
3063 unpack_nibble (char *buf, int *val)
3064 {
3065 *val = fromhex (*buf++);
3066 return buf;
3067 }
3068
3069 static char *
3070 unpack_byte (char *buf, int *value)
3071 {
3072 *value = stub_unpack_int (buf, 2);
3073 return buf + 2;
3074 }
3075
3076 static char *
3077 pack_int (char *buf, int value)
3078 {
3079 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3080 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3081 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3082 buf = pack_hex_byte (buf, (value & 0xff));
3083 return buf;
3084 }
3085
3086 static char *
3087 unpack_int (char *buf, int *value)
3088 {
3089 *value = stub_unpack_int (buf, 8);
3090 return buf + 8;
3091 }
3092
3093 #if 0 /* Currently unused, uncomment when needed. */
3094 static char *pack_string (char *pkt, char *string);
3095
3096 static char *
3097 pack_string (char *pkt, char *string)
3098 {
3099 char ch;
3100 int len;
3101
3102 len = strlen (string);
3103 if (len > 200)
3104 len = 200; /* Bigger than most GDB packets, junk??? */
3105 pkt = pack_hex_byte (pkt, len);
3106 while (len-- > 0)
3107 {
3108 ch = *string++;
3109 if ((ch == '\0') || (ch == '#'))
3110 ch = '*'; /* Protect encapsulation. */
3111 *pkt++ = ch;
3112 }
3113 return pkt;
3114 }
3115 #endif /* 0 (unused) */
3116
3117 static char *
3118 unpack_string (char *src, char *dest, int length)
3119 {
3120 while (length--)
3121 *dest++ = *src++;
3122 *dest = '\0';
3123 return src;
3124 }
3125
3126 static char *
3127 pack_threadid (char *pkt, threadref *id)
3128 {
3129 char *limit;
3130 unsigned char *altid;
3131
3132 altid = (unsigned char *) id;
3133 limit = pkt + BUF_THREAD_ID_SIZE;
3134 while (pkt < limit)
3135 pkt = pack_hex_byte (pkt, *altid++);
3136 return pkt;
3137 }
3138
3139
3140 static char *
3141 unpack_threadid (char *inbuf, threadref *id)
3142 {
3143 char *altref;
3144 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3145 int x, y;
3146
3147 altref = (char *) id;
3148
3149 while (inbuf < limit)
3150 {
3151 x = stubhex (*inbuf++);
3152 y = stubhex (*inbuf++);
3153 *altref++ = (x << 4) | y;
3154 }
3155 return inbuf;
3156 }
3157
3158 /* Externally, threadrefs are 64 bits but internally, they are still
3159 ints. This is due to a mismatch of specifications. We would like
3160 to use 64bit thread references internally. This is an adapter
3161 function. */
3162
3163 void
3164 int_to_threadref (threadref *id, int value)
3165 {
3166 unsigned char *scan;
3167
3168 scan = (unsigned char *) id;
3169 {
3170 int i = 4;
3171 while (i--)
3172 *scan++ = 0;
3173 }
3174 *scan++ = (value >> 24) & 0xff;
3175 *scan++ = (value >> 16) & 0xff;
3176 *scan++ = (value >> 8) & 0xff;
3177 *scan++ = (value & 0xff);
3178 }
3179
3180 static int
3181 threadref_to_int (threadref *ref)
3182 {
3183 int i, value = 0;
3184 unsigned char *scan;
3185
3186 scan = *ref;
3187 scan += 4;
3188 i = 4;
3189 while (i-- > 0)
3190 value = (value << 8) | ((*scan++) & 0xff);
3191 return value;
3192 }
3193
3194 static void
3195 copy_threadref (threadref *dest, threadref *src)
3196 {
3197 int i;
3198 unsigned char *csrc, *cdest;
3199
3200 csrc = (unsigned char *) src;
3201 cdest = (unsigned char *) dest;
3202 i = 8;
3203 while (i--)
3204 *cdest++ = *csrc++;
3205 }
3206
3207 static int
3208 threadmatch (threadref *dest, threadref *src)
3209 {
3210 /* Things are broken right now, so just assume we got a match. */
3211 #if 0
3212 unsigned char *srcp, *destp;
3213 int i, result;
3214 srcp = (char *) src;
3215 destp = (char *) dest;
3216
3217 result = 1;
3218 while (i-- > 0)
3219 result &= (*srcp++ == *destp++) ? 1 : 0;
3220 return result;
3221 #endif
3222 return 1;
3223 }
3224
3225 /*
3226 threadid:1, # always request threadid
3227 context_exists:2,
3228 display:4,
3229 unique_name:8,
3230 more_display:16
3231 */
3232
3233 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3234
3235 static char *
3236 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3237 {
3238 *pkt++ = 'q'; /* Info Query */
3239 *pkt++ = 'P'; /* process or thread info */
3240 pkt = pack_int (pkt, mode); /* mode */
3241 pkt = pack_threadid (pkt, id); /* threadid */
3242 *pkt = '\0'; /* terminate */
3243 return pkt;
3244 }
3245
3246 /* These values tag the fields in a thread info response packet. */
3247 /* Tagging the fields allows us to request specific fields and to
3248 add more fields as time goes by. */
3249
3250 #define TAG_THREADID 1 /* Echo the thread identifier. */
3251 #define TAG_EXISTS 2 /* Is this process defined enough to
3252 fetch registers and its stack? */
3253 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3254 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3255 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3256 the process. */
3257
3258 int
3259 remote_target::remote_unpack_thread_info_response (char *pkt,
3260 threadref *expectedref,
3261 gdb_ext_thread_info *info)
3262 {
3263 struct remote_state *rs = get_remote_state ();
3264 int mask, length;
3265 int tag;
3266 threadref ref;
3267 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3268 int retval = 1;
3269
3270 /* info->threadid = 0; FIXME: implement zero_threadref. */
3271 info->active = 0;
3272 info->display[0] = '\0';
3273 info->shortname[0] = '\0';
3274 info->more_display[0] = '\0';
3275
3276 /* Assume the characters indicating the packet type have been
3277 stripped. */
3278 pkt = unpack_int (pkt, &mask); /* arg mask */
3279 pkt = unpack_threadid (pkt, &ref);
3280
3281 if (mask == 0)
3282 warning (_("Incomplete response to threadinfo request."));
3283 if (!threadmatch (&ref, expectedref))
3284 { /* This is an answer to a different request. */
3285 warning (_("ERROR RMT Thread info mismatch."));
3286 return 0;
3287 }
3288 copy_threadref (&info->threadid, &ref);
3289
3290 /* Loop on tagged fields , try to bail if something goes wrong. */
3291
3292 /* Packets are terminated with nulls. */
3293 while ((pkt < limit) && mask && *pkt)
3294 {
3295 pkt = unpack_int (pkt, &tag); /* tag */
3296 pkt = unpack_byte (pkt, &length); /* length */
3297 if (!(tag & mask)) /* Tags out of synch with mask. */
3298 {
3299 warning (_("ERROR RMT: threadinfo tag mismatch."));
3300 retval = 0;
3301 break;
3302 }
3303 if (tag == TAG_THREADID)
3304 {
3305 if (length != 16)
3306 {
3307 warning (_("ERROR RMT: length of threadid is not 16."));
3308 retval = 0;
3309 break;
3310 }
3311 pkt = unpack_threadid (pkt, &ref);
3312 mask = mask & ~TAG_THREADID;
3313 continue;
3314 }
3315 if (tag == TAG_EXISTS)
3316 {
3317 info->active = stub_unpack_int (pkt, length);
3318 pkt += length;
3319 mask = mask & ~(TAG_EXISTS);
3320 if (length > 8)
3321 {
3322 warning (_("ERROR RMT: 'exists' length too long."));
3323 retval = 0;
3324 break;
3325 }
3326 continue;
3327 }
3328 if (tag == TAG_THREADNAME)
3329 {
3330 pkt = unpack_string (pkt, &info->shortname[0], length);
3331 mask = mask & ~TAG_THREADNAME;
3332 continue;
3333 }
3334 if (tag == TAG_DISPLAY)
3335 {
3336 pkt = unpack_string (pkt, &info->display[0], length);
3337 mask = mask & ~TAG_DISPLAY;
3338 continue;
3339 }
3340 if (tag == TAG_MOREDISPLAY)
3341 {
3342 pkt = unpack_string (pkt, &info->more_display[0], length);
3343 mask = mask & ~TAG_MOREDISPLAY;
3344 continue;
3345 }
3346 warning (_("ERROR RMT: unknown thread info tag."));
3347 break; /* Not a tag we know about. */
3348 }
3349 return retval;
3350 }
3351
3352 int
3353 remote_target::remote_get_threadinfo (threadref *threadid,
3354 int fieldset,
3355 gdb_ext_thread_info *info)
3356 {
3357 struct remote_state *rs = get_remote_state ();
3358 int result;
3359
3360 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3361 putpkt (rs->buf);
3362 getpkt (&rs->buf, 0);
3363
3364 if (rs->buf[0] == '\0')
3365 return 0;
3366
3367 result = remote_unpack_thread_info_response (&rs->buf[2],
3368 threadid, info);
3369 return result;
3370 }
3371
3372 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3373
3374 static char *
3375 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3376 threadref *nextthread)
3377 {
3378 *pkt++ = 'q'; /* info query packet */
3379 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3380 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3381 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3382 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3383 *pkt = '\0';
3384 return pkt;
3385 }
3386
3387 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3388
3389 int
3390 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3391 threadref *original_echo,
3392 threadref *resultlist,
3393 int *doneflag)
3394 {
3395 struct remote_state *rs = get_remote_state ();
3396 char *limit;
3397 int count, resultcount, done;
3398
3399 resultcount = 0;
3400 /* Assume the 'q' and 'M chars have been stripped. */
3401 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3402 /* done parse past here */
3403 pkt = unpack_byte (pkt, &count); /* count field */
3404 pkt = unpack_nibble (pkt, &done);
3405 /* The first threadid is the argument threadid. */
3406 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3407 while ((count-- > 0) && (pkt < limit))
3408 {
3409 pkt = unpack_threadid (pkt, resultlist++);
3410 if (resultcount++ >= result_limit)
3411 break;
3412 }
3413 if (doneflag)
3414 *doneflag = done;
3415 return resultcount;
3416 }
3417
3418 /* Fetch the next batch of threads from the remote. Returns -1 if the
3419 qL packet is not supported, 0 on error and 1 on success. */
3420
3421 int
3422 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3423 int result_limit, int *done, int *result_count,
3424 threadref *threadlist)
3425 {
3426 struct remote_state *rs = get_remote_state ();
3427 int result = 1;
3428
3429 /* Truncate result limit to be smaller than the packet size. */
3430 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3431 >= get_remote_packet_size ())
3432 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3433
3434 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3435 nextthread);
3436 putpkt (rs->buf);
3437 getpkt (&rs->buf, 0);
3438 if (rs->buf[0] == '\0')
3439 {
3440 /* Packet not supported. */
3441 return -1;
3442 }
3443
3444 *result_count =
3445 parse_threadlist_response (&rs->buf[2], result_limit,
3446 &rs->echo_nextthread, threadlist, done);
3447
3448 if (!threadmatch (&rs->echo_nextthread, nextthread))
3449 {
3450 /* FIXME: This is a good reason to drop the packet. */
3451 /* Possibly, there is a duplicate response. */
3452 /* Possibilities :
3453 retransmit immediatly - race conditions
3454 retransmit after timeout - yes
3455 exit
3456 wait for packet, then exit
3457 */
3458 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3459 return 0; /* I choose simply exiting. */
3460 }
3461 if (*result_count <= 0)
3462 {
3463 if (*done != 1)
3464 {
3465 warning (_("RMT ERROR : failed to get remote thread list."));
3466 result = 0;
3467 }
3468 return result; /* break; */
3469 }
3470 if (*result_count > result_limit)
3471 {
3472 *result_count = 0;
3473 warning (_("RMT ERROR: threadlist response longer than requested."));
3474 return 0;
3475 }
3476 return result;
3477 }
3478
3479 /* Fetch the list of remote threads, with the qL packet, and call
3480 STEPFUNCTION for each thread found. Stops iterating and returns 1
3481 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3482 STEPFUNCTION returns false. If the packet is not supported,
3483 returns -1. */
3484
3485 int
3486 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3487 void *context, int looplimit)
3488 {
3489 struct remote_state *rs = get_remote_state ();
3490 int done, i, result_count;
3491 int startflag = 1;
3492 int result = 1;
3493 int loopcount = 0;
3494
3495 done = 0;
3496 while (!done)
3497 {
3498 if (loopcount++ > looplimit)
3499 {
3500 result = 0;
3501 warning (_("Remote fetch threadlist -infinite loop-."));
3502 break;
3503 }
3504 result = remote_get_threadlist (startflag, &rs->nextthread,
3505 MAXTHREADLISTRESULTS,
3506 &done, &result_count,
3507 rs->resultthreadlist);
3508 if (result <= 0)
3509 break;
3510 /* Clear for later iterations. */
3511 startflag = 0;
3512 /* Setup to resume next batch of thread references, set nextthread. */
3513 if (result_count >= 1)
3514 copy_threadref (&rs->nextthread,
3515 &rs->resultthreadlist[result_count - 1]);
3516 i = 0;
3517 while (result_count--)
3518 {
3519 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3520 {
3521 result = 0;
3522 break;
3523 }
3524 }
3525 }
3526 return result;
3527 }
3528
3529 /* A thread found on the remote target. */
3530
3531 struct thread_item
3532 {
3533 explicit thread_item (ptid_t ptid_)
3534 : ptid (ptid_)
3535 {}
3536
3537 thread_item (thread_item &&other) = default;
3538 thread_item &operator= (thread_item &&other) = default;
3539
3540 DISABLE_COPY_AND_ASSIGN (thread_item);
3541
3542 /* The thread's PTID. */
3543 ptid_t ptid;
3544
3545 /* The thread's extra info. */
3546 std::string extra;
3547
3548 /* The thread's name. */
3549 std::string name;
3550
3551 /* The core the thread was running on. -1 if not known. */
3552 int core = -1;
3553
3554 /* The thread handle associated with the thread. */
3555 gdb::byte_vector thread_handle;
3556 };
3557
3558 /* Context passed around to the various methods listing remote
3559 threads. As new threads are found, they're added to the ITEMS
3560 vector. */
3561
3562 struct threads_listing_context
3563 {
3564 /* Return true if this object contains an entry for a thread with ptid
3565 PTID. */
3566
3567 bool contains_thread (ptid_t ptid) const
3568 {
3569 auto match_ptid = [&] (const thread_item &item)
3570 {
3571 return item.ptid == ptid;
3572 };
3573
3574 auto it = std::find_if (this->items.begin (),
3575 this->items.end (),
3576 match_ptid);
3577
3578 return it != this->items.end ();
3579 }
3580
3581 /* Remove the thread with ptid PTID. */
3582
3583 void remove_thread (ptid_t ptid)
3584 {
3585 auto match_ptid = [&] (const thread_item &item)
3586 {
3587 return item.ptid == ptid;
3588 };
3589
3590 auto it = std::remove_if (this->items.begin (),
3591 this->items.end (),
3592 match_ptid);
3593
3594 if (it != this->items.end ())
3595 this->items.erase (it);
3596 }
3597
3598 /* The threads found on the remote target. */
3599 std::vector<thread_item> items;
3600 };
3601
3602 static int
3603 remote_newthread_step (threadref *ref, void *data)
3604 {
3605 struct threads_listing_context *context
3606 = (struct threads_listing_context *) data;
3607 int pid = inferior_ptid.pid ();
3608 int lwp = threadref_to_int (ref);
3609 ptid_t ptid (pid, lwp);
3610
3611 context->items.emplace_back (ptid);
3612
3613 return 1; /* continue iterator */
3614 }
3615
3616 #define CRAZY_MAX_THREADS 1000
3617
3618 ptid_t
3619 remote_target::remote_current_thread (ptid_t oldpid)
3620 {
3621 struct remote_state *rs = get_remote_state ();
3622
3623 putpkt ("qC");
3624 getpkt (&rs->buf, 0);
3625 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3626 {
3627 const char *obuf;
3628 ptid_t result;
3629
3630 result = read_ptid (&rs->buf[2], &obuf);
3631 if (*obuf != '\0' && remote_debug)
3632 fprintf_unfiltered (gdb_stdlog,
3633 "warning: garbage in qC reply\n");
3634
3635 return result;
3636 }
3637 else
3638 return oldpid;
3639 }
3640
3641 /* List remote threads using the deprecated qL packet. */
3642
3643 int
3644 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3645 {
3646 if (remote_threadlist_iterator (remote_newthread_step, context,
3647 CRAZY_MAX_THREADS) >= 0)
3648 return 1;
3649
3650 return 0;
3651 }
3652
3653 #if defined(HAVE_LIBEXPAT)
3654
3655 static void
3656 start_thread (struct gdb_xml_parser *parser,
3657 const struct gdb_xml_element *element,
3658 void *user_data,
3659 std::vector<gdb_xml_value> &attributes)
3660 {
3661 struct threads_listing_context *data
3662 = (struct threads_listing_context *) user_data;
3663 struct gdb_xml_value *attr;
3664
3665 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3666 ptid_t ptid = read_ptid (id, NULL);
3667
3668 data->items.emplace_back (ptid);
3669 thread_item &item = data->items.back ();
3670
3671 attr = xml_find_attribute (attributes, "core");
3672 if (attr != NULL)
3673 item.core = *(ULONGEST *) attr->value.get ();
3674
3675 attr = xml_find_attribute (attributes, "name");
3676 if (attr != NULL)
3677 item.name = (const char *) attr->value.get ();
3678
3679 attr = xml_find_attribute (attributes, "handle");
3680 if (attr != NULL)
3681 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3682 }
3683
3684 static void
3685 end_thread (struct gdb_xml_parser *parser,
3686 const struct gdb_xml_element *element,
3687 void *user_data, const char *body_text)
3688 {
3689 struct threads_listing_context *data
3690 = (struct threads_listing_context *) user_data;
3691
3692 if (body_text != NULL && *body_text != '\0')
3693 data->items.back ().extra = body_text;
3694 }
3695
3696 const struct gdb_xml_attribute thread_attributes[] = {
3697 { "id", GDB_XML_AF_NONE, NULL, NULL },
3698 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3699 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3700 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3701 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3702 };
3703
3704 const struct gdb_xml_element thread_children[] = {
3705 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3706 };
3707
3708 const struct gdb_xml_element threads_children[] = {
3709 { "thread", thread_attributes, thread_children,
3710 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3711 start_thread, end_thread },
3712 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3713 };
3714
3715 const struct gdb_xml_element threads_elements[] = {
3716 { "threads", NULL, threads_children,
3717 GDB_XML_EF_NONE, NULL, NULL },
3718 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3719 };
3720
3721 #endif
3722
3723 /* List remote threads using qXfer:threads:read. */
3724
3725 int
3726 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3727 {
3728 #if defined(HAVE_LIBEXPAT)
3729 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3730 {
3731 gdb::optional<gdb::char_vector> xml
3732 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3733
3734 if (xml && (*xml)[0] != '\0')
3735 {
3736 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3737 threads_elements, xml->data (), context);
3738 }
3739
3740 return 1;
3741 }
3742 #endif
3743
3744 return 0;
3745 }
3746
3747 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3748
3749 int
3750 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3751 {
3752 struct remote_state *rs = get_remote_state ();
3753
3754 if (rs->use_threadinfo_query)
3755 {
3756 const char *bufp;
3757
3758 putpkt ("qfThreadInfo");
3759 getpkt (&rs->buf, 0);
3760 bufp = rs->buf.data ();
3761 if (bufp[0] != '\0') /* q packet recognized */
3762 {
3763 while (*bufp++ == 'm') /* reply contains one or more TID */
3764 {
3765 do
3766 {
3767 ptid_t ptid = read_ptid (bufp, &bufp);
3768 context->items.emplace_back (ptid);
3769 }
3770 while (*bufp++ == ','); /* comma-separated list */
3771 putpkt ("qsThreadInfo");
3772 getpkt (&rs->buf, 0);
3773 bufp = rs->buf.data ();
3774 }
3775 return 1;
3776 }
3777 else
3778 {
3779 /* Packet not recognized. */
3780 rs->use_threadinfo_query = 0;
3781 }
3782 }
3783
3784 return 0;
3785 }
3786
3787 /* Implement the to_update_thread_list function for the remote
3788 targets. */
3789
3790 void
3791 remote_target::update_thread_list ()
3792 {
3793 struct threads_listing_context context;
3794 int got_list = 0;
3795
3796 /* We have a few different mechanisms to fetch the thread list. Try
3797 them all, starting with the most preferred one first, falling
3798 back to older methods. */
3799 if (remote_get_threads_with_qxfer (&context)
3800 || remote_get_threads_with_qthreadinfo (&context)
3801 || remote_get_threads_with_ql (&context))
3802 {
3803 got_list = 1;
3804
3805 if (context.items.empty ()
3806 && remote_thread_always_alive (inferior_ptid))
3807 {
3808 /* Some targets don't really support threads, but still
3809 reply an (empty) thread list in response to the thread
3810 listing packets, instead of replying "packet not
3811 supported". Exit early so we don't delete the main
3812 thread. */
3813 return;
3814 }
3815
3816 /* CONTEXT now holds the current thread list on the remote
3817 target end. Delete GDB-side threads no longer found on the
3818 target. */
3819 for (thread_info *tp : all_threads_safe ())
3820 {
3821 if (tp->inf->process_target () != this)
3822 continue;
3823
3824 if (!context.contains_thread (tp->ptid))
3825 {
3826 /* Not found. */
3827 delete_thread (tp);
3828 }
3829 }
3830
3831 /* Remove any unreported fork child threads from CONTEXT so
3832 that we don't interfere with follow fork, which is where
3833 creation of such threads is handled. */
3834 remove_new_fork_children (&context);
3835
3836 /* And now add threads we don't know about yet to our list. */
3837 for (thread_item &item : context.items)
3838 {
3839 if (item.ptid != null_ptid)
3840 {
3841 /* In non-stop mode, we assume new found threads are
3842 executing until proven otherwise with a stop reply.
3843 In all-stop, we can only get here if all threads are
3844 stopped. */
3845 int executing = target_is_non_stop_p () ? 1 : 0;
3846
3847 remote_notice_new_inferior (item.ptid, executing);
3848
3849 thread_info *tp = find_thread_ptid (this, item.ptid);
3850 remote_thread_info *info = get_remote_thread_info (tp);
3851 info->core = item.core;
3852 info->extra = std::move (item.extra);
3853 info->name = std::move (item.name);
3854 info->thread_handle = std::move (item.thread_handle);
3855 }
3856 }
3857 }
3858
3859 if (!got_list)
3860 {
3861 /* If no thread listing method is supported, then query whether
3862 each known thread is alive, one by one, with the T packet.
3863 If the target doesn't support threads at all, then this is a
3864 no-op. See remote_thread_alive. */
3865 prune_threads ();
3866 }
3867 }
3868
3869 /*
3870 * Collect a descriptive string about the given thread.
3871 * The target may say anything it wants to about the thread
3872 * (typically info about its blocked / runnable state, name, etc.).
3873 * This string will appear in the info threads display.
3874 *
3875 * Optional: targets are not required to implement this function.
3876 */
3877
3878 const char *
3879 remote_target::extra_thread_info (thread_info *tp)
3880 {
3881 struct remote_state *rs = get_remote_state ();
3882 int set;
3883 threadref id;
3884 struct gdb_ext_thread_info threadinfo;
3885
3886 if (rs->remote_desc == 0) /* paranoia */
3887 internal_error (__FILE__, __LINE__,
3888 _("remote_threads_extra_info"));
3889
3890 if (tp->ptid == magic_null_ptid
3891 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3892 /* This is the main thread which was added by GDB. The remote
3893 server doesn't know about it. */
3894 return NULL;
3895
3896 std::string &extra = get_remote_thread_info (tp)->extra;
3897
3898 /* If already have cached info, use it. */
3899 if (!extra.empty ())
3900 return extra.c_str ();
3901
3902 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3903 {
3904 /* If we're using qXfer:threads:read, then the extra info is
3905 included in the XML. So if we didn't have anything cached,
3906 it's because there's really no extra info. */
3907 return NULL;
3908 }
3909
3910 if (rs->use_threadextra_query)
3911 {
3912 char *b = rs->buf.data ();
3913 char *endb = b + get_remote_packet_size ();
3914
3915 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3916 b += strlen (b);
3917 write_ptid (b, endb, tp->ptid);
3918
3919 putpkt (rs->buf);
3920 getpkt (&rs->buf, 0);
3921 if (rs->buf[0] != 0)
3922 {
3923 extra.resize (strlen (rs->buf.data ()) / 2);
3924 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3925 return extra.c_str ();
3926 }
3927 }
3928
3929 /* If the above query fails, fall back to the old method. */
3930 rs->use_threadextra_query = 0;
3931 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3932 | TAG_MOREDISPLAY | TAG_DISPLAY;
3933 int_to_threadref (&id, tp->ptid.lwp ());
3934 if (remote_get_threadinfo (&id, set, &threadinfo))
3935 if (threadinfo.active)
3936 {
3937 if (*threadinfo.shortname)
3938 string_appendf (extra, " Name: %s", threadinfo.shortname);
3939 if (*threadinfo.display)
3940 {
3941 if (!extra.empty ())
3942 extra += ',';
3943 string_appendf (extra, " State: %s", threadinfo.display);
3944 }
3945 if (*threadinfo.more_display)
3946 {
3947 if (!extra.empty ())
3948 extra += ',';
3949 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3950 }
3951 return extra.c_str ();
3952 }
3953 return NULL;
3954 }
3955 \f
3956
3957 bool
3958 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3959 struct static_tracepoint_marker *marker)
3960 {
3961 struct remote_state *rs = get_remote_state ();
3962 char *p = rs->buf.data ();
3963
3964 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3965 p += strlen (p);
3966 p += hexnumstr (p, addr);
3967 putpkt (rs->buf);
3968 getpkt (&rs->buf, 0);
3969 p = rs->buf.data ();
3970
3971 if (*p == 'E')
3972 error (_("Remote failure reply: %s"), p);
3973
3974 if (*p++ == 'm')
3975 {
3976 parse_static_tracepoint_marker_definition (p, NULL, marker);
3977 return true;
3978 }
3979
3980 return false;
3981 }
3982
3983 std::vector<static_tracepoint_marker>
3984 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3985 {
3986 struct remote_state *rs = get_remote_state ();
3987 std::vector<static_tracepoint_marker> markers;
3988 const char *p;
3989 static_tracepoint_marker marker;
3990
3991 /* Ask for a first packet of static tracepoint marker
3992 definition. */
3993 putpkt ("qTfSTM");
3994 getpkt (&rs->buf, 0);
3995 p = rs->buf.data ();
3996 if (*p == 'E')
3997 error (_("Remote failure reply: %s"), p);
3998
3999 while (*p++ == 'm')
4000 {
4001 do
4002 {
4003 parse_static_tracepoint_marker_definition (p, &p, &marker);
4004
4005 if (strid == NULL || marker.str_id == strid)
4006 markers.push_back (std::move (marker));
4007 }
4008 while (*p++ == ','); /* comma-separated list */
4009 /* Ask for another packet of static tracepoint definition. */
4010 putpkt ("qTsSTM");
4011 getpkt (&rs->buf, 0);
4012 p = rs->buf.data ();
4013 }
4014
4015 return markers;
4016 }
4017
4018 \f
4019 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4020
4021 ptid_t
4022 remote_target::get_ada_task_ptid (long lwp, long thread)
4023 {
4024 return ptid_t (inferior_ptid.pid (), lwp, 0);
4025 }
4026 \f
4027
4028 /* Restart the remote side; this is an extended protocol operation. */
4029
4030 void
4031 remote_target::extended_remote_restart ()
4032 {
4033 struct remote_state *rs = get_remote_state ();
4034
4035 /* Send the restart command; for reasons I don't understand the
4036 remote side really expects a number after the "R". */
4037 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4038 putpkt (rs->buf);
4039
4040 remote_fileio_reset ();
4041 }
4042 \f
4043 /* Clean up connection to a remote debugger. */
4044
4045 void
4046 remote_target::close ()
4047 {
4048 /* Make sure we leave stdin registered in the event loop. */
4049 terminal_ours ();
4050
4051 trace_reset_local_state ();
4052
4053 delete this;
4054 }
4055
4056 remote_target::~remote_target ()
4057 {
4058 struct remote_state *rs = get_remote_state ();
4059
4060 /* Check for NULL because we may get here with a partially
4061 constructed target/connection. */
4062 if (rs->remote_desc == nullptr)
4063 return;
4064
4065 serial_close (rs->remote_desc);
4066
4067 /* We are destroying the remote target, so we should discard
4068 everything of this target. */
4069 discard_pending_stop_replies_in_queue ();
4070
4071 if (rs->remote_async_inferior_event_token)
4072 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4073
4074 delete rs->notif_state;
4075 }
4076
4077 /* Query the remote side for the text, data and bss offsets. */
4078
4079 void
4080 remote_target::get_offsets ()
4081 {
4082 struct remote_state *rs = get_remote_state ();
4083 char *buf;
4084 char *ptr;
4085 int lose, num_segments = 0, do_sections, do_segments;
4086 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4087 struct symfile_segment_data *data;
4088
4089 if (symfile_objfile == NULL)
4090 return;
4091
4092 putpkt ("qOffsets");
4093 getpkt (&rs->buf, 0);
4094 buf = rs->buf.data ();
4095
4096 if (buf[0] == '\000')
4097 return; /* Return silently. Stub doesn't support
4098 this command. */
4099 if (buf[0] == 'E')
4100 {
4101 warning (_("Remote failure reply: %s"), buf);
4102 return;
4103 }
4104
4105 /* Pick up each field in turn. This used to be done with scanf, but
4106 scanf will make trouble if CORE_ADDR size doesn't match
4107 conversion directives correctly. The following code will work
4108 with any size of CORE_ADDR. */
4109 text_addr = data_addr = bss_addr = 0;
4110 ptr = buf;
4111 lose = 0;
4112
4113 if (startswith (ptr, "Text="))
4114 {
4115 ptr += 5;
4116 /* Don't use strtol, could lose on big values. */
4117 while (*ptr && *ptr != ';')
4118 text_addr = (text_addr << 4) + fromhex (*ptr++);
4119
4120 if (startswith (ptr, ";Data="))
4121 {
4122 ptr += 6;
4123 while (*ptr && *ptr != ';')
4124 data_addr = (data_addr << 4) + fromhex (*ptr++);
4125 }
4126 else
4127 lose = 1;
4128
4129 if (!lose && startswith (ptr, ";Bss="))
4130 {
4131 ptr += 5;
4132 while (*ptr && *ptr != ';')
4133 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4134
4135 if (bss_addr != data_addr)
4136 warning (_("Target reported unsupported offsets: %s"), buf);
4137 }
4138 else
4139 lose = 1;
4140 }
4141 else if (startswith (ptr, "TextSeg="))
4142 {
4143 ptr += 8;
4144 /* Don't use strtol, could lose on big values. */
4145 while (*ptr && *ptr != ';')
4146 text_addr = (text_addr << 4) + fromhex (*ptr++);
4147 num_segments = 1;
4148
4149 if (startswith (ptr, ";DataSeg="))
4150 {
4151 ptr += 9;
4152 while (*ptr && *ptr != ';')
4153 data_addr = (data_addr << 4) + fromhex (*ptr++);
4154 num_segments++;
4155 }
4156 }
4157 else
4158 lose = 1;
4159
4160 if (lose)
4161 error (_("Malformed response to offset query, %s"), buf);
4162 else if (*ptr != '\0')
4163 warning (_("Target reported unsupported offsets: %s"), buf);
4164
4165 section_offsets offs = symfile_objfile->section_offsets;
4166
4167 data = get_symfile_segment_data (symfile_objfile->obfd);
4168 do_segments = (data != NULL);
4169 do_sections = num_segments == 0;
4170
4171 if (num_segments > 0)
4172 {
4173 segments[0] = text_addr;
4174 segments[1] = data_addr;
4175 }
4176 /* If we have two segments, we can still try to relocate everything
4177 by assuming that the .text and .data offsets apply to the whole
4178 text and data segments. Convert the offsets given in the packet
4179 to base addresses for symfile_map_offsets_to_segments. */
4180 else if (data && data->num_segments == 2)
4181 {
4182 segments[0] = data->segment_bases[0] + text_addr;
4183 segments[1] = data->segment_bases[1] + data_addr;
4184 num_segments = 2;
4185 }
4186 /* If the object file has only one segment, assume that it is text
4187 rather than data; main programs with no writable data are rare,
4188 but programs with no code are useless. Of course the code might
4189 have ended up in the data segment... to detect that we would need
4190 the permissions here. */
4191 else if (data && data->num_segments == 1)
4192 {
4193 segments[0] = data->segment_bases[0] + text_addr;
4194 num_segments = 1;
4195 }
4196 /* There's no way to relocate by segment. */
4197 else
4198 do_segments = 0;
4199
4200 if (do_segments)
4201 {
4202 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4203 offs, num_segments, segments);
4204
4205 if (ret == 0 && !do_sections)
4206 error (_("Can not handle qOffsets TextSeg "
4207 "response with this symbol file"));
4208
4209 if (ret > 0)
4210 do_sections = 0;
4211 }
4212
4213 if (data)
4214 free_symfile_segment_data (data);
4215
4216 if (do_sections)
4217 {
4218 offs[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4219
4220 /* This is a temporary kludge to force data and bss to use the
4221 same offsets because that's what nlmconv does now. The real
4222 solution requires changes to the stub and remote.c that I
4223 don't have time to do right now. */
4224
4225 offs[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4226 offs[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4227 }
4228
4229 objfile_relocate (symfile_objfile, offs);
4230 }
4231
4232 /* Send interrupt_sequence to remote target. */
4233
4234 void
4235 remote_target::send_interrupt_sequence ()
4236 {
4237 struct remote_state *rs = get_remote_state ();
4238
4239 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4240 remote_serial_write ("\x03", 1);
4241 else if (interrupt_sequence_mode == interrupt_sequence_break)
4242 serial_send_break (rs->remote_desc);
4243 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4244 {
4245 serial_send_break (rs->remote_desc);
4246 remote_serial_write ("g", 1);
4247 }
4248 else
4249 internal_error (__FILE__, __LINE__,
4250 _("Invalid value for interrupt_sequence_mode: %s."),
4251 interrupt_sequence_mode);
4252 }
4253
4254
4255 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4256 and extract the PTID. Returns NULL_PTID if not found. */
4257
4258 static ptid_t
4259 stop_reply_extract_thread (char *stop_reply)
4260 {
4261 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4262 {
4263 const char *p;
4264
4265 /* Txx r:val ; r:val (...) */
4266 p = &stop_reply[3];
4267
4268 /* Look for "register" named "thread". */
4269 while (*p != '\0')
4270 {
4271 const char *p1;
4272
4273 p1 = strchr (p, ':');
4274 if (p1 == NULL)
4275 return null_ptid;
4276
4277 if (strncmp (p, "thread", p1 - p) == 0)
4278 return read_ptid (++p1, &p);
4279
4280 p1 = strchr (p, ';');
4281 if (p1 == NULL)
4282 return null_ptid;
4283 p1++;
4284
4285 p = p1;
4286 }
4287 }
4288
4289 return null_ptid;
4290 }
4291
4292 /* Determine the remote side's current thread. If we have a stop
4293 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4294 "thread" register we can extract the current thread from. If not,
4295 ask the remote which is the current thread with qC. The former
4296 method avoids a roundtrip. */
4297
4298 ptid_t
4299 remote_target::get_current_thread (char *wait_status)
4300 {
4301 ptid_t ptid = null_ptid;
4302
4303 /* Note we don't use remote_parse_stop_reply as that makes use of
4304 the target architecture, which we haven't yet fully determined at
4305 this point. */
4306 if (wait_status != NULL)
4307 ptid = stop_reply_extract_thread (wait_status);
4308 if (ptid == null_ptid)
4309 ptid = remote_current_thread (inferior_ptid);
4310
4311 return ptid;
4312 }
4313
4314 /* Query the remote target for which is the current thread/process,
4315 add it to our tables, and update INFERIOR_PTID. The caller is
4316 responsible for setting the state such that the remote end is ready
4317 to return the current thread.
4318
4319 This function is called after handling the '?' or 'vRun' packets,
4320 whose response is a stop reply from which we can also try
4321 extracting the thread. If the target doesn't support the explicit
4322 qC query, we infer the current thread from that stop reply, passed
4323 in in WAIT_STATUS, which may be NULL. */
4324
4325 void
4326 remote_target::add_current_inferior_and_thread (char *wait_status)
4327 {
4328 struct remote_state *rs = get_remote_state ();
4329 bool fake_pid_p = false;
4330
4331 inferior_ptid = null_ptid;
4332
4333 /* Now, if we have thread information, update inferior_ptid. */
4334 ptid_t curr_ptid = get_current_thread (wait_status);
4335
4336 if (curr_ptid != null_ptid)
4337 {
4338 if (!remote_multi_process_p (rs))
4339 fake_pid_p = true;
4340 }
4341 else
4342 {
4343 /* Without this, some commands which require an active target
4344 (such as kill) won't work. This variable serves (at least)
4345 double duty as both the pid of the target process (if it has
4346 such), and as a flag indicating that a target is active. */
4347 curr_ptid = magic_null_ptid;
4348 fake_pid_p = true;
4349 }
4350
4351 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4352
4353 /* Add the main thread and switch to it. Don't try reading
4354 registers yet, since we haven't fetched the target description
4355 yet. */
4356 thread_info *tp = add_thread_silent (this, curr_ptid);
4357 switch_to_thread_no_regs (tp);
4358 }
4359
4360 /* Print info about a thread that was found already stopped on
4361 connection. */
4362
4363 static void
4364 print_one_stopped_thread (struct thread_info *thread)
4365 {
4366 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4367
4368 switch_to_thread (thread);
4369 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4370 set_current_sal_from_frame (get_current_frame ());
4371
4372 thread->suspend.waitstatus_pending_p = 0;
4373
4374 if (ws->kind == TARGET_WAITKIND_STOPPED)
4375 {
4376 enum gdb_signal sig = ws->value.sig;
4377
4378 if (signal_print_state (sig))
4379 gdb::observers::signal_received.notify (sig);
4380 }
4381 gdb::observers::normal_stop.notify (NULL, 1);
4382 }
4383
4384 /* Process all initial stop replies the remote side sent in response
4385 to the ? packet. These indicate threads that were already stopped
4386 on initial connection. We mark these threads as stopped and print
4387 their current frame before giving the user the prompt. */
4388
4389 void
4390 remote_target::process_initial_stop_replies (int from_tty)
4391 {
4392 int pending_stop_replies = stop_reply_queue_length ();
4393 struct thread_info *selected = NULL;
4394 struct thread_info *lowest_stopped = NULL;
4395 struct thread_info *first = NULL;
4396
4397 /* Consume the initial pending events. */
4398 while (pending_stop_replies-- > 0)
4399 {
4400 ptid_t waiton_ptid = minus_one_ptid;
4401 ptid_t event_ptid;
4402 struct target_waitstatus ws;
4403 int ignore_event = 0;
4404
4405 memset (&ws, 0, sizeof (ws));
4406 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4407 if (remote_debug)
4408 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4409
4410 switch (ws.kind)
4411 {
4412 case TARGET_WAITKIND_IGNORE:
4413 case TARGET_WAITKIND_NO_RESUMED:
4414 case TARGET_WAITKIND_SIGNALLED:
4415 case TARGET_WAITKIND_EXITED:
4416 /* We shouldn't see these, but if we do, just ignore. */
4417 if (remote_debug)
4418 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4419 ignore_event = 1;
4420 break;
4421
4422 case TARGET_WAITKIND_EXECD:
4423 xfree (ws.value.execd_pathname);
4424 break;
4425 default:
4426 break;
4427 }
4428
4429 if (ignore_event)
4430 continue;
4431
4432 thread_info *evthread = find_thread_ptid (this, event_ptid);
4433
4434 if (ws.kind == TARGET_WAITKIND_STOPPED)
4435 {
4436 enum gdb_signal sig = ws.value.sig;
4437
4438 /* Stubs traditionally report SIGTRAP as initial signal,
4439 instead of signal 0. Suppress it. */
4440 if (sig == GDB_SIGNAL_TRAP)
4441 sig = GDB_SIGNAL_0;
4442 evthread->suspend.stop_signal = sig;
4443 ws.value.sig = sig;
4444 }
4445
4446 evthread->suspend.waitstatus = ws;
4447
4448 if (ws.kind != TARGET_WAITKIND_STOPPED
4449 || ws.value.sig != GDB_SIGNAL_0)
4450 evthread->suspend.waitstatus_pending_p = 1;
4451
4452 set_executing (this, event_ptid, false);
4453 set_running (this, event_ptid, false);
4454 get_remote_thread_info (evthread)->vcont_resumed = 0;
4455 }
4456
4457 /* "Notice" the new inferiors before anything related to
4458 registers/memory. */
4459 for (inferior *inf : all_non_exited_inferiors (this))
4460 {
4461 inf->needs_setup = 1;
4462
4463 if (non_stop)
4464 {
4465 thread_info *thread = any_live_thread_of_inferior (inf);
4466 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4467 from_tty);
4468 }
4469 }
4470
4471 /* If all-stop on top of non-stop, pause all threads. Note this
4472 records the threads' stop pc, so must be done after "noticing"
4473 the inferiors. */
4474 if (!non_stop)
4475 {
4476 stop_all_threads ();
4477
4478 /* If all threads of an inferior were already stopped, we
4479 haven't setup the inferior yet. */
4480 for (inferior *inf : all_non_exited_inferiors (this))
4481 {
4482 if (inf->needs_setup)
4483 {
4484 thread_info *thread = any_live_thread_of_inferior (inf);
4485 switch_to_thread_no_regs (thread);
4486 setup_inferior (0);
4487 }
4488 }
4489 }
4490
4491 /* Now go over all threads that are stopped, and print their current
4492 frame. If all-stop, then if there's a signalled thread, pick
4493 that as current. */
4494 for (thread_info *thread : all_non_exited_threads (this))
4495 {
4496 if (first == NULL)
4497 first = thread;
4498
4499 if (!non_stop)
4500 thread->set_running (false);
4501 else if (thread->state != THREAD_STOPPED)
4502 continue;
4503
4504 if (selected == NULL
4505 && thread->suspend.waitstatus_pending_p)
4506 selected = thread;
4507
4508 if (lowest_stopped == NULL
4509 || thread->inf->num < lowest_stopped->inf->num
4510 || thread->per_inf_num < lowest_stopped->per_inf_num)
4511 lowest_stopped = thread;
4512
4513 if (non_stop)
4514 print_one_stopped_thread (thread);
4515 }
4516
4517 /* In all-stop, we only print the status of one thread, and leave
4518 others with their status pending. */
4519 if (!non_stop)
4520 {
4521 thread_info *thread = selected;
4522 if (thread == NULL)
4523 thread = lowest_stopped;
4524 if (thread == NULL)
4525 thread = first;
4526
4527 print_one_stopped_thread (thread);
4528 }
4529
4530 /* For "info program". */
4531 thread_info *thread = inferior_thread ();
4532 if (thread->state == THREAD_STOPPED)
4533 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4534 }
4535
4536 /* Start the remote connection and sync state. */
4537
4538 void
4539 remote_target::start_remote (int from_tty, int extended_p)
4540 {
4541 struct remote_state *rs = get_remote_state ();
4542 struct packet_config *noack_config;
4543 char *wait_status = NULL;
4544
4545 /* Signal other parts that we're going through the initial setup,
4546 and so things may not be stable yet. E.g., we don't try to
4547 install tracepoints until we've relocated symbols. Also, a
4548 Ctrl-C before we're connected and synced up can't interrupt the
4549 target. Instead, it offers to drop the (potentially wedged)
4550 connection. */
4551 rs->starting_up = 1;
4552
4553 QUIT;
4554
4555 if (interrupt_on_connect)
4556 send_interrupt_sequence ();
4557
4558 /* Ack any packet which the remote side has already sent. */
4559 remote_serial_write ("+", 1);
4560
4561 /* The first packet we send to the target is the optional "supported
4562 packets" request. If the target can answer this, it will tell us
4563 which later probes to skip. */
4564 remote_query_supported ();
4565
4566 /* If the stub wants to get a QAllow, compose one and send it. */
4567 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4568 set_permissions ();
4569
4570 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4571 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4572 as a reply to known packet. For packet "vFile:setfs:" it is an
4573 invalid reply and GDB would return error in
4574 remote_hostio_set_filesystem, making remote files access impossible.
4575 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4576 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4577 {
4578 const char v_mustreplyempty[] = "vMustReplyEmpty";
4579
4580 putpkt (v_mustreplyempty);
4581 getpkt (&rs->buf, 0);
4582 if (strcmp (rs->buf.data (), "OK") == 0)
4583 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4584 else if (strcmp (rs->buf.data (), "") != 0)
4585 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4586 rs->buf.data ());
4587 }
4588
4589 /* Next, we possibly activate noack mode.
4590
4591 If the QStartNoAckMode packet configuration is set to AUTO,
4592 enable noack mode if the stub reported a wish for it with
4593 qSupported.
4594
4595 If set to TRUE, then enable noack mode even if the stub didn't
4596 report it in qSupported. If the stub doesn't reply OK, the
4597 session ends with an error.
4598
4599 If FALSE, then don't activate noack mode, regardless of what the
4600 stub claimed should be the default with qSupported. */
4601
4602 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4603 if (packet_config_support (noack_config) != PACKET_DISABLE)
4604 {
4605 putpkt ("QStartNoAckMode");
4606 getpkt (&rs->buf, 0);
4607 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4608 rs->noack_mode = 1;
4609 }
4610
4611 if (extended_p)
4612 {
4613 /* Tell the remote that we are using the extended protocol. */
4614 putpkt ("!");
4615 getpkt (&rs->buf, 0);
4616 }
4617
4618 /* Let the target know which signals it is allowed to pass down to
4619 the program. */
4620 update_signals_program_target ();
4621
4622 /* Next, if the target can specify a description, read it. We do
4623 this before anything involving memory or registers. */
4624 target_find_description ();
4625
4626 /* Next, now that we know something about the target, update the
4627 address spaces in the program spaces. */
4628 update_address_spaces ();
4629
4630 /* On OSs where the list of libraries is global to all
4631 processes, we fetch them early. */
4632 if (gdbarch_has_global_solist (target_gdbarch ()))
4633 solib_add (NULL, from_tty, auto_solib_add);
4634
4635 if (target_is_non_stop_p ())
4636 {
4637 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4638 error (_("Non-stop mode requested, but remote "
4639 "does not support non-stop"));
4640
4641 putpkt ("QNonStop:1");
4642 getpkt (&rs->buf, 0);
4643
4644 if (strcmp (rs->buf.data (), "OK") != 0)
4645 error (_("Remote refused setting non-stop mode with: %s"),
4646 rs->buf.data ());
4647
4648 /* Find about threads and processes the stub is already
4649 controlling. We default to adding them in the running state.
4650 The '?' query below will then tell us about which threads are
4651 stopped. */
4652 this->update_thread_list ();
4653 }
4654 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4655 {
4656 /* Don't assume that the stub can operate in all-stop mode.
4657 Request it explicitly. */
4658 putpkt ("QNonStop:0");
4659 getpkt (&rs->buf, 0);
4660
4661 if (strcmp (rs->buf.data (), "OK") != 0)
4662 error (_("Remote refused setting all-stop mode with: %s"),
4663 rs->buf.data ());
4664 }
4665
4666 /* Upload TSVs regardless of whether the target is running or not. The
4667 remote stub, such as GDBserver, may have some predefined or builtin
4668 TSVs, even if the target is not running. */
4669 if (get_trace_status (current_trace_status ()) != -1)
4670 {
4671 struct uploaded_tsv *uploaded_tsvs = NULL;
4672
4673 upload_trace_state_variables (&uploaded_tsvs);
4674 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4675 }
4676
4677 /* Check whether the target is running now. */
4678 putpkt ("?");
4679 getpkt (&rs->buf, 0);
4680
4681 if (!target_is_non_stop_p ())
4682 {
4683 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4684 {
4685 if (!extended_p)
4686 error (_("The target is not running (try extended-remote?)"));
4687
4688 /* We're connected, but not running. Drop out before we
4689 call start_remote. */
4690 rs->starting_up = 0;
4691 return;
4692 }
4693 else
4694 {
4695 /* Save the reply for later. */
4696 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4697 strcpy (wait_status, rs->buf.data ());
4698 }
4699
4700 /* Fetch thread list. */
4701 target_update_thread_list ();
4702
4703 /* Let the stub know that we want it to return the thread. */
4704 set_continue_thread (minus_one_ptid);
4705
4706 if (thread_count (this) == 0)
4707 {
4708 /* Target has no concept of threads at all. GDB treats
4709 non-threaded target as single-threaded; add a main
4710 thread. */
4711 add_current_inferior_and_thread (wait_status);
4712 }
4713 else
4714 {
4715 /* We have thread information; select the thread the target
4716 says should be current. If we're reconnecting to a
4717 multi-threaded program, this will ideally be the thread
4718 that last reported an event before GDB disconnected. */
4719 ptid_t curr_thread = get_current_thread (wait_status);
4720 if (curr_thread == null_ptid)
4721 {
4722 /* Odd... The target was able to list threads, but not
4723 tell us which thread was current (no "thread"
4724 register in T stop reply?). Just pick the first
4725 thread in the thread list then. */
4726
4727 if (remote_debug)
4728 fprintf_unfiltered (gdb_stdlog,
4729 "warning: couldn't determine remote "
4730 "current thread; picking first in list.\n");
4731
4732 for (thread_info *tp : all_non_exited_threads (this,
4733 minus_one_ptid))
4734 {
4735 switch_to_thread (tp);
4736 break;
4737 }
4738 }
4739 else
4740 switch_to_thread (find_thread_ptid (this, curr_thread));
4741 }
4742
4743 /* init_wait_for_inferior should be called before get_offsets in order
4744 to manage `inserted' flag in bp loc in a correct state.
4745 breakpoint_init_inferior, called from init_wait_for_inferior, set
4746 `inserted' flag to 0, while before breakpoint_re_set, called from
4747 start_remote, set `inserted' flag to 1. In the initialization of
4748 inferior, breakpoint_init_inferior should be called first, and then
4749 breakpoint_re_set can be called. If this order is broken, state of
4750 `inserted' flag is wrong, and cause some problems on breakpoint
4751 manipulation. */
4752 init_wait_for_inferior ();
4753
4754 get_offsets (); /* Get text, data & bss offsets. */
4755
4756 /* If we could not find a description using qXfer, and we know
4757 how to do it some other way, try again. This is not
4758 supported for non-stop; it could be, but it is tricky if
4759 there are no stopped threads when we connect. */
4760 if (remote_read_description_p (this)
4761 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4762 {
4763 target_clear_description ();
4764 target_find_description ();
4765 }
4766
4767 /* Use the previously fetched status. */
4768 gdb_assert (wait_status != NULL);
4769 strcpy (rs->buf.data (), wait_status);
4770 rs->cached_wait_status = 1;
4771
4772 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4773 }
4774 else
4775 {
4776 /* Clear WFI global state. Do this before finding about new
4777 threads and inferiors, and setting the current inferior.
4778 Otherwise we would clear the proceed status of the current
4779 inferior when we want its stop_soon state to be preserved
4780 (see notice_new_inferior). */
4781 init_wait_for_inferior ();
4782
4783 /* In non-stop, we will either get an "OK", meaning that there
4784 are no stopped threads at this time; or, a regular stop
4785 reply. In the latter case, there may be more than one thread
4786 stopped --- we pull them all out using the vStopped
4787 mechanism. */
4788 if (strcmp (rs->buf.data (), "OK") != 0)
4789 {
4790 struct notif_client *notif = &notif_client_stop;
4791
4792 /* remote_notif_get_pending_replies acks this one, and gets
4793 the rest out. */
4794 rs->notif_state->pending_event[notif_client_stop.id]
4795 = remote_notif_parse (this, notif, rs->buf.data ());
4796 remote_notif_get_pending_events (notif);
4797 }
4798
4799 if (thread_count (this) == 0)
4800 {
4801 if (!extended_p)
4802 error (_("The target is not running (try extended-remote?)"));
4803
4804 /* We're connected, but not running. Drop out before we
4805 call start_remote. */
4806 rs->starting_up = 0;
4807 return;
4808 }
4809
4810 /* In non-stop mode, any cached wait status will be stored in
4811 the stop reply queue. */
4812 gdb_assert (wait_status == NULL);
4813
4814 /* Report all signals during attach/startup. */
4815 pass_signals ({});
4816
4817 /* If there are already stopped threads, mark them stopped and
4818 report their stops before giving the prompt to the user. */
4819 process_initial_stop_replies (from_tty);
4820
4821 if (target_can_async_p ())
4822 target_async (1);
4823 }
4824
4825 /* If we connected to a live target, do some additional setup. */
4826 if (target_has_execution)
4827 {
4828 if (symfile_objfile) /* No use without a symbol-file. */
4829 remote_check_symbols ();
4830 }
4831
4832 /* Possibly the target has been engaged in a trace run started
4833 previously; find out where things are at. */
4834 if (get_trace_status (current_trace_status ()) != -1)
4835 {
4836 struct uploaded_tp *uploaded_tps = NULL;
4837
4838 if (current_trace_status ()->running)
4839 printf_filtered (_("Trace is already running on the target.\n"));
4840
4841 upload_tracepoints (&uploaded_tps);
4842
4843 merge_uploaded_tracepoints (&uploaded_tps);
4844 }
4845
4846 /* Possibly the target has been engaged in a btrace record started
4847 previously; find out where things are at. */
4848 remote_btrace_maybe_reopen ();
4849
4850 /* The thread and inferior lists are now synchronized with the
4851 target, our symbols have been relocated, and we're merged the
4852 target's tracepoints with ours. We're done with basic start
4853 up. */
4854 rs->starting_up = 0;
4855
4856 /* Maybe breakpoints are global and need to be inserted now. */
4857 if (breakpoints_should_be_inserted_now ())
4858 insert_breakpoints ();
4859 }
4860
4861 const char *
4862 remote_target::connection_string ()
4863 {
4864 remote_state *rs = get_remote_state ();
4865
4866 if (rs->remote_desc->name != NULL)
4867 return rs->remote_desc->name;
4868 else
4869 return NULL;
4870 }
4871
4872 /* Open a connection to a remote debugger.
4873 NAME is the filename used for communication. */
4874
4875 void
4876 remote_target::open (const char *name, int from_tty)
4877 {
4878 open_1 (name, from_tty, 0);
4879 }
4880
4881 /* Open a connection to a remote debugger using the extended
4882 remote gdb protocol. NAME is the filename used for communication. */
4883
4884 void
4885 extended_remote_target::open (const char *name, int from_tty)
4886 {
4887 open_1 (name, from_tty, 1 /*extended_p */);
4888 }
4889
4890 /* Reset all packets back to "unknown support". Called when opening a
4891 new connection to a remote target. */
4892
4893 static void
4894 reset_all_packet_configs_support (void)
4895 {
4896 int i;
4897
4898 for (i = 0; i < PACKET_MAX; i++)
4899 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4900 }
4901
4902 /* Initialize all packet configs. */
4903
4904 static void
4905 init_all_packet_configs (void)
4906 {
4907 int i;
4908
4909 for (i = 0; i < PACKET_MAX; i++)
4910 {
4911 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4912 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4913 }
4914 }
4915
4916 /* Symbol look-up. */
4917
4918 void
4919 remote_target::remote_check_symbols ()
4920 {
4921 char *tmp;
4922 int end;
4923
4924 /* The remote side has no concept of inferiors that aren't running
4925 yet, it only knows about running processes. If we're connected
4926 but our current inferior is not running, we should not invite the
4927 remote target to request symbol lookups related to its
4928 (unrelated) current process. */
4929 if (!target_has_execution)
4930 return;
4931
4932 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4933 return;
4934
4935 /* Make sure the remote is pointing at the right process. Note
4936 there's no way to select "no process". */
4937 set_general_process ();
4938
4939 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4940 because we need both at the same time. */
4941 gdb::char_vector msg (get_remote_packet_size ());
4942 gdb::char_vector reply (get_remote_packet_size ());
4943
4944 /* Invite target to request symbol lookups. */
4945
4946 putpkt ("qSymbol::");
4947 getpkt (&reply, 0);
4948 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4949
4950 while (startswith (reply.data (), "qSymbol:"))
4951 {
4952 struct bound_minimal_symbol sym;
4953
4954 tmp = &reply[8];
4955 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4956 strlen (tmp) / 2);
4957 msg[end] = '\0';
4958 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4959 if (sym.minsym == NULL)
4960 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4961 &reply[8]);
4962 else
4963 {
4964 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4965 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4966
4967 /* If this is a function address, return the start of code
4968 instead of any data function descriptor. */
4969 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4970 sym_addr,
4971 current_top_target ());
4972
4973 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4974 phex_nz (sym_addr, addr_size), &reply[8]);
4975 }
4976
4977 putpkt (msg.data ());
4978 getpkt (&reply, 0);
4979 }
4980 }
4981
4982 static struct serial *
4983 remote_serial_open (const char *name)
4984 {
4985 static int udp_warning = 0;
4986
4987 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4988 of in ser-tcp.c, because it is the remote protocol assuming that the
4989 serial connection is reliable and not the serial connection promising
4990 to be. */
4991 if (!udp_warning && startswith (name, "udp:"))
4992 {
4993 warning (_("The remote protocol may be unreliable over UDP.\n"
4994 "Some events may be lost, rendering further debugging "
4995 "impossible."));
4996 udp_warning = 1;
4997 }
4998
4999 return serial_open (name);
5000 }
5001
5002 /* Inform the target of our permission settings. The permission flags
5003 work without this, but if the target knows the settings, it can do
5004 a couple things. First, it can add its own check, to catch cases
5005 that somehow manage to get by the permissions checks in target
5006 methods. Second, if the target is wired to disallow particular
5007 settings (for instance, a system in the field that is not set up to
5008 be able to stop at a breakpoint), it can object to any unavailable
5009 permissions. */
5010
5011 void
5012 remote_target::set_permissions ()
5013 {
5014 struct remote_state *rs = get_remote_state ();
5015
5016 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5017 "WriteReg:%x;WriteMem:%x;"
5018 "InsertBreak:%x;InsertTrace:%x;"
5019 "InsertFastTrace:%x;Stop:%x",
5020 may_write_registers, may_write_memory,
5021 may_insert_breakpoints, may_insert_tracepoints,
5022 may_insert_fast_tracepoints, may_stop);
5023 putpkt (rs->buf);
5024 getpkt (&rs->buf, 0);
5025
5026 /* If the target didn't like the packet, warn the user. Do not try
5027 to undo the user's settings, that would just be maddening. */
5028 if (strcmp (rs->buf.data (), "OK") != 0)
5029 warning (_("Remote refused setting permissions with: %s"),
5030 rs->buf.data ());
5031 }
5032
5033 /* This type describes each known response to the qSupported
5034 packet. */
5035 struct protocol_feature
5036 {
5037 /* The name of this protocol feature. */
5038 const char *name;
5039
5040 /* The default for this protocol feature. */
5041 enum packet_support default_support;
5042
5043 /* The function to call when this feature is reported, or after
5044 qSupported processing if the feature is not supported.
5045 The first argument points to this structure. The second
5046 argument indicates whether the packet requested support be
5047 enabled, disabled, or probed (or the default, if this function
5048 is being called at the end of processing and this feature was
5049 not reported). The third argument may be NULL; if not NULL, it
5050 is a NUL-terminated string taken from the packet following
5051 this feature's name and an equals sign. */
5052 void (*func) (remote_target *remote, const struct protocol_feature *,
5053 enum packet_support, const char *);
5054
5055 /* The corresponding packet for this feature. Only used if
5056 FUNC is remote_supported_packet. */
5057 int packet;
5058 };
5059
5060 static void
5061 remote_supported_packet (remote_target *remote,
5062 const struct protocol_feature *feature,
5063 enum packet_support support,
5064 const char *argument)
5065 {
5066 if (argument)
5067 {
5068 warning (_("Remote qSupported response supplied an unexpected value for"
5069 " \"%s\"."), feature->name);
5070 return;
5071 }
5072
5073 remote_protocol_packets[feature->packet].support = support;
5074 }
5075
5076 void
5077 remote_target::remote_packet_size (const protocol_feature *feature,
5078 enum packet_support support, const char *value)
5079 {
5080 struct remote_state *rs = get_remote_state ();
5081
5082 int packet_size;
5083 char *value_end;
5084
5085 if (support != PACKET_ENABLE)
5086 return;
5087
5088 if (value == NULL || *value == '\0')
5089 {
5090 warning (_("Remote target reported \"%s\" without a size."),
5091 feature->name);
5092 return;
5093 }
5094
5095 errno = 0;
5096 packet_size = strtol (value, &value_end, 16);
5097 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5098 {
5099 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5100 feature->name, value);
5101 return;
5102 }
5103
5104 /* Record the new maximum packet size. */
5105 rs->explicit_packet_size = packet_size;
5106 }
5107
5108 static void
5109 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5110 enum packet_support support, const char *value)
5111 {
5112 remote->remote_packet_size (feature, support, value);
5113 }
5114
5115 static const struct protocol_feature remote_protocol_features[] = {
5116 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5117 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5118 PACKET_qXfer_auxv },
5119 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5120 PACKET_qXfer_exec_file },
5121 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5122 PACKET_qXfer_features },
5123 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5124 PACKET_qXfer_libraries },
5125 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5126 PACKET_qXfer_libraries_svr4 },
5127 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5128 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5129 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5130 PACKET_qXfer_memory_map },
5131 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5132 PACKET_qXfer_osdata },
5133 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5134 PACKET_qXfer_threads },
5135 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_qXfer_traceframe_info },
5137 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_QPassSignals },
5139 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_QCatchSyscalls },
5141 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_QProgramSignals },
5143 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5144 PACKET_QSetWorkingDir },
5145 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5146 PACKET_QStartupWithShell },
5147 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5148 PACKET_QEnvironmentHexEncoded },
5149 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5150 PACKET_QEnvironmentReset },
5151 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5152 PACKET_QEnvironmentUnset },
5153 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5154 PACKET_QStartNoAckMode },
5155 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5156 PACKET_multiprocess_feature },
5157 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5158 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5159 PACKET_qXfer_siginfo_read },
5160 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5161 PACKET_qXfer_siginfo_write },
5162 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5163 PACKET_ConditionalTracepoints },
5164 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5165 PACKET_ConditionalBreakpoints },
5166 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5167 PACKET_BreakpointCommands },
5168 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5169 PACKET_FastTracepoints },
5170 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5171 PACKET_StaticTracepoints },
5172 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5173 PACKET_InstallInTrace},
5174 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5175 PACKET_DisconnectedTracing_feature },
5176 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5177 PACKET_bc },
5178 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5179 PACKET_bs },
5180 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5181 PACKET_TracepointSource },
5182 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5183 PACKET_QAllow },
5184 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5185 PACKET_EnableDisableTracepoints_feature },
5186 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5187 PACKET_qXfer_fdpic },
5188 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5189 PACKET_qXfer_uib },
5190 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5191 PACKET_QDisableRandomization },
5192 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5193 { "QTBuffer:size", PACKET_DISABLE,
5194 remote_supported_packet, PACKET_QTBuffer_size},
5195 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5196 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5197 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5198 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5199 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5200 PACKET_qXfer_btrace },
5201 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5202 PACKET_qXfer_btrace_conf },
5203 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5204 PACKET_Qbtrace_conf_bts_size },
5205 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5206 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5207 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5208 PACKET_fork_event_feature },
5209 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5210 PACKET_vfork_event_feature },
5211 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5212 PACKET_exec_event_feature },
5213 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5214 PACKET_Qbtrace_conf_pt_size },
5215 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5216 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5217 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5218 };
5219
5220 static char *remote_support_xml;
5221
5222 /* Register string appended to "xmlRegisters=" in qSupported query. */
5223
5224 void
5225 register_remote_support_xml (const char *xml)
5226 {
5227 #if defined(HAVE_LIBEXPAT)
5228 if (remote_support_xml == NULL)
5229 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5230 else
5231 {
5232 char *copy = xstrdup (remote_support_xml + 13);
5233 char *saveptr;
5234 char *p = strtok_r (copy, ",", &saveptr);
5235
5236 do
5237 {
5238 if (strcmp (p, xml) == 0)
5239 {
5240 /* already there */
5241 xfree (copy);
5242 return;
5243 }
5244 }
5245 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5246 xfree (copy);
5247
5248 remote_support_xml = reconcat (remote_support_xml,
5249 remote_support_xml, ",", xml,
5250 (char *) NULL);
5251 }
5252 #endif
5253 }
5254
5255 static void
5256 remote_query_supported_append (std::string *msg, const char *append)
5257 {
5258 if (!msg->empty ())
5259 msg->append (";");
5260 msg->append (append);
5261 }
5262
5263 void
5264 remote_target::remote_query_supported ()
5265 {
5266 struct remote_state *rs = get_remote_state ();
5267 char *next;
5268 int i;
5269 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5270
5271 /* The packet support flags are handled differently for this packet
5272 than for most others. We treat an error, a disabled packet, and
5273 an empty response identically: any features which must be reported
5274 to be used will be automatically disabled. An empty buffer
5275 accomplishes this, since that is also the representation for a list
5276 containing no features. */
5277
5278 rs->buf[0] = 0;
5279 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5280 {
5281 std::string q;
5282
5283 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5284 remote_query_supported_append (&q, "multiprocess+");
5285
5286 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5287 remote_query_supported_append (&q, "swbreak+");
5288 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5289 remote_query_supported_append (&q, "hwbreak+");
5290
5291 remote_query_supported_append (&q, "qRelocInsn+");
5292
5293 if (packet_set_cmd_state (PACKET_fork_event_feature)
5294 != AUTO_BOOLEAN_FALSE)
5295 remote_query_supported_append (&q, "fork-events+");
5296 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5297 != AUTO_BOOLEAN_FALSE)
5298 remote_query_supported_append (&q, "vfork-events+");
5299 if (packet_set_cmd_state (PACKET_exec_event_feature)
5300 != AUTO_BOOLEAN_FALSE)
5301 remote_query_supported_append (&q, "exec-events+");
5302
5303 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5304 remote_query_supported_append (&q, "vContSupported+");
5305
5306 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5307 remote_query_supported_append (&q, "QThreadEvents+");
5308
5309 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5310 remote_query_supported_append (&q, "no-resumed+");
5311
5312 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5313 the qSupported:xmlRegisters=i386 handling. */
5314 if (remote_support_xml != NULL
5315 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5316 remote_query_supported_append (&q, remote_support_xml);
5317
5318 q = "qSupported:" + q;
5319 putpkt (q.c_str ());
5320
5321 getpkt (&rs->buf, 0);
5322
5323 /* If an error occured, warn, but do not return - just reset the
5324 buffer to empty and go on to disable features. */
5325 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5326 == PACKET_ERROR)
5327 {
5328 warning (_("Remote failure reply: %s"), rs->buf.data ());
5329 rs->buf[0] = 0;
5330 }
5331 }
5332
5333 memset (seen, 0, sizeof (seen));
5334
5335 next = rs->buf.data ();
5336 while (*next)
5337 {
5338 enum packet_support is_supported;
5339 char *p, *end, *name_end, *value;
5340
5341 /* First separate out this item from the rest of the packet. If
5342 there's another item after this, we overwrite the separator
5343 (terminated strings are much easier to work with). */
5344 p = next;
5345 end = strchr (p, ';');
5346 if (end == NULL)
5347 {
5348 end = p + strlen (p);
5349 next = end;
5350 }
5351 else
5352 {
5353 *end = '\0';
5354 next = end + 1;
5355
5356 if (end == p)
5357 {
5358 warning (_("empty item in \"qSupported\" response"));
5359 continue;
5360 }
5361 }
5362
5363 name_end = strchr (p, '=');
5364 if (name_end)
5365 {
5366 /* This is a name=value entry. */
5367 is_supported = PACKET_ENABLE;
5368 value = name_end + 1;
5369 *name_end = '\0';
5370 }
5371 else
5372 {
5373 value = NULL;
5374 switch (end[-1])
5375 {
5376 case '+':
5377 is_supported = PACKET_ENABLE;
5378 break;
5379
5380 case '-':
5381 is_supported = PACKET_DISABLE;
5382 break;
5383
5384 case '?':
5385 is_supported = PACKET_SUPPORT_UNKNOWN;
5386 break;
5387
5388 default:
5389 warning (_("unrecognized item \"%s\" "
5390 "in \"qSupported\" response"), p);
5391 continue;
5392 }
5393 end[-1] = '\0';
5394 }
5395
5396 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5397 if (strcmp (remote_protocol_features[i].name, p) == 0)
5398 {
5399 const struct protocol_feature *feature;
5400
5401 seen[i] = 1;
5402 feature = &remote_protocol_features[i];
5403 feature->func (this, feature, is_supported, value);
5404 break;
5405 }
5406 }
5407
5408 /* If we increased the packet size, make sure to increase the global
5409 buffer size also. We delay this until after parsing the entire
5410 qSupported packet, because this is the same buffer we were
5411 parsing. */
5412 if (rs->buf.size () < rs->explicit_packet_size)
5413 rs->buf.resize (rs->explicit_packet_size);
5414
5415 /* Handle the defaults for unmentioned features. */
5416 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5417 if (!seen[i])
5418 {
5419 const struct protocol_feature *feature;
5420
5421 feature = &remote_protocol_features[i];
5422 feature->func (this, feature, feature->default_support, NULL);
5423 }
5424 }
5425
5426 /* Serial QUIT handler for the remote serial descriptor.
5427
5428 Defers handling a Ctrl-C until we're done with the current
5429 command/response packet sequence, unless:
5430
5431 - We're setting up the connection. Don't send a remote interrupt
5432 request, as we're not fully synced yet. Quit immediately
5433 instead.
5434
5435 - The target has been resumed in the foreground
5436 (target_terminal::is_ours is false) with a synchronous resume
5437 packet, and we're blocked waiting for the stop reply, thus a
5438 Ctrl-C should be immediately sent to the target.
5439
5440 - We get a second Ctrl-C while still within the same serial read or
5441 write. In that case the serial is seemingly wedged --- offer to
5442 quit/disconnect.
5443
5444 - We see a second Ctrl-C without target response, after having
5445 previously interrupted the target. In that case the target/stub
5446 is probably wedged --- offer to quit/disconnect.
5447 */
5448
5449 void
5450 remote_target::remote_serial_quit_handler ()
5451 {
5452 struct remote_state *rs = get_remote_state ();
5453
5454 if (check_quit_flag ())
5455 {
5456 /* If we're starting up, we're not fully synced yet. Quit
5457 immediately. */
5458 if (rs->starting_up)
5459 quit ();
5460 else if (rs->got_ctrlc_during_io)
5461 {
5462 if (query (_("The target is not responding to GDB commands.\n"
5463 "Stop debugging it? ")))
5464 remote_unpush_and_throw (this);
5465 }
5466 /* If ^C has already been sent once, offer to disconnect. */
5467 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5468 interrupt_query ();
5469 /* All-stop protocol, and blocked waiting for stop reply. Send
5470 an interrupt request. */
5471 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5472 target_interrupt ();
5473 else
5474 rs->got_ctrlc_during_io = 1;
5475 }
5476 }
5477
5478 /* The remote_target that is current while the quit handler is
5479 overridden with remote_serial_quit_handler. */
5480 static remote_target *curr_quit_handler_target;
5481
5482 static void
5483 remote_serial_quit_handler ()
5484 {
5485 curr_quit_handler_target->remote_serial_quit_handler ();
5486 }
5487
5488 /* Remove the remote target from the target stack of each inferior
5489 that is using it. Upper targets depend on it so remove them
5490 first. */
5491
5492 static void
5493 remote_unpush_target (remote_target *target)
5494 {
5495 /* We have to unpush the target from all inferiors, even those that
5496 aren't running. */
5497 scoped_restore_current_inferior restore_current_inferior;
5498
5499 for (inferior *inf : all_inferiors (target))
5500 {
5501 switch_to_inferior_no_thread (inf);
5502 pop_all_targets_at_and_above (process_stratum);
5503 generic_mourn_inferior ();
5504 }
5505 }
5506
5507 static void
5508 remote_unpush_and_throw (remote_target *target)
5509 {
5510 remote_unpush_target (target);
5511 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5512 }
5513
5514 void
5515 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5516 {
5517 remote_target *curr_remote = get_current_remote_target ();
5518
5519 if (name == 0)
5520 error (_("To open a remote debug connection, you need to specify what\n"
5521 "serial device is attached to the remote system\n"
5522 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5523
5524 /* If we're connected to a running target, target_preopen will kill it.
5525 Ask this question first, before target_preopen has a chance to kill
5526 anything. */
5527 if (curr_remote != NULL && !target_has_execution)
5528 {
5529 if (from_tty
5530 && !query (_("Already connected to a remote target. Disconnect? ")))
5531 error (_("Still connected."));
5532 }
5533
5534 /* Here the possibly existing remote target gets unpushed. */
5535 target_preopen (from_tty);
5536
5537 remote_fileio_reset ();
5538 reopen_exec_file ();
5539 reread_symbols ();
5540
5541 remote_target *remote
5542 = (extended_p ? new extended_remote_target () : new remote_target ());
5543 target_ops_up target_holder (remote);
5544
5545 remote_state *rs = remote->get_remote_state ();
5546
5547 /* See FIXME above. */
5548 if (!target_async_permitted)
5549 rs->wait_forever_enabled_p = 1;
5550
5551 rs->remote_desc = remote_serial_open (name);
5552 if (!rs->remote_desc)
5553 perror_with_name (name);
5554
5555 if (baud_rate != -1)
5556 {
5557 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5558 {
5559 /* The requested speed could not be set. Error out to
5560 top level after closing remote_desc. Take care to
5561 set remote_desc to NULL to avoid closing remote_desc
5562 more than once. */
5563 serial_close (rs->remote_desc);
5564 rs->remote_desc = NULL;
5565 perror_with_name (name);
5566 }
5567 }
5568
5569 serial_setparity (rs->remote_desc, serial_parity);
5570 serial_raw (rs->remote_desc);
5571
5572 /* If there is something sitting in the buffer we might take it as a
5573 response to a command, which would be bad. */
5574 serial_flush_input (rs->remote_desc);
5575
5576 if (from_tty)
5577 {
5578 puts_filtered ("Remote debugging using ");
5579 puts_filtered (name);
5580 puts_filtered ("\n");
5581 }
5582
5583 /* Switch to using the remote target now. */
5584 push_target (std::move (target_holder));
5585
5586 /* Register extra event sources in the event loop. */
5587 rs->remote_async_inferior_event_token
5588 = create_async_event_handler (remote_async_inferior_event_handler,
5589 remote);
5590 rs->notif_state = remote_notif_state_allocate (remote);
5591
5592 /* Reset the target state; these things will be queried either by
5593 remote_query_supported or as they are needed. */
5594 reset_all_packet_configs_support ();
5595 rs->cached_wait_status = 0;
5596 rs->explicit_packet_size = 0;
5597 rs->noack_mode = 0;
5598 rs->extended = extended_p;
5599 rs->waiting_for_stop_reply = 0;
5600 rs->ctrlc_pending_p = 0;
5601 rs->got_ctrlc_during_io = 0;
5602
5603 rs->general_thread = not_sent_ptid;
5604 rs->continue_thread = not_sent_ptid;
5605 rs->remote_traceframe_number = -1;
5606
5607 rs->last_resume_exec_dir = EXEC_FORWARD;
5608
5609 /* Probe for ability to use "ThreadInfo" query, as required. */
5610 rs->use_threadinfo_query = 1;
5611 rs->use_threadextra_query = 1;
5612
5613 rs->readahead_cache.invalidate ();
5614
5615 if (target_async_permitted)
5616 {
5617 /* FIXME: cagney/1999-09-23: During the initial connection it is
5618 assumed that the target is already ready and able to respond to
5619 requests. Unfortunately remote_start_remote() eventually calls
5620 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5621 around this. Eventually a mechanism that allows
5622 wait_for_inferior() to expect/get timeouts will be
5623 implemented. */
5624 rs->wait_forever_enabled_p = 0;
5625 }
5626
5627 /* First delete any symbols previously loaded from shared libraries. */
5628 no_shared_libraries (NULL, 0);
5629
5630 /* Start the remote connection. If error() or QUIT, discard this
5631 target (we'd otherwise be in an inconsistent state) and then
5632 propogate the error on up the exception chain. This ensures that
5633 the caller doesn't stumble along blindly assuming that the
5634 function succeeded. The CLI doesn't have this problem but other
5635 UI's, such as MI do.
5636
5637 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5638 this function should return an error indication letting the
5639 caller restore the previous state. Unfortunately the command
5640 ``target remote'' is directly wired to this function making that
5641 impossible. On a positive note, the CLI side of this problem has
5642 been fixed - the function set_cmd_context() makes it possible for
5643 all the ``target ....'' commands to share a common callback
5644 function. See cli-dump.c. */
5645 {
5646
5647 try
5648 {
5649 remote->start_remote (from_tty, extended_p);
5650 }
5651 catch (const gdb_exception &ex)
5652 {
5653 /* Pop the partially set up target - unless something else did
5654 already before throwing the exception. */
5655 if (ex.error != TARGET_CLOSE_ERROR)
5656 remote_unpush_target (remote);
5657 throw;
5658 }
5659 }
5660
5661 remote_btrace_reset (rs);
5662
5663 if (target_async_permitted)
5664 rs->wait_forever_enabled_p = 1;
5665 }
5666
5667 /* Detach the specified process. */
5668
5669 void
5670 remote_target::remote_detach_pid (int pid)
5671 {
5672 struct remote_state *rs = get_remote_state ();
5673
5674 /* This should not be necessary, but the handling for D;PID in
5675 GDBserver versions prior to 8.2 incorrectly assumes that the
5676 selected process points to the same process we're detaching,
5677 leading to misbehavior (and possibly GDBserver crashing) when it
5678 does not. Since it's easy and cheap, work around it by forcing
5679 GDBserver to select GDB's current process. */
5680 set_general_process ();
5681
5682 if (remote_multi_process_p (rs))
5683 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5684 else
5685 strcpy (rs->buf.data (), "D");
5686
5687 putpkt (rs->buf);
5688 getpkt (&rs->buf, 0);
5689
5690 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5691 ;
5692 else if (rs->buf[0] == '\0')
5693 error (_("Remote doesn't know how to detach"));
5694 else
5695 error (_("Can't detach process."));
5696 }
5697
5698 /* This detaches a program to which we previously attached, using
5699 inferior_ptid to identify the process. After this is done, GDB
5700 can be used to debug some other program. We better not have left
5701 any breakpoints in the target program or it'll die when it hits
5702 one. */
5703
5704 void
5705 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5706 {
5707 int pid = inferior_ptid.pid ();
5708 struct remote_state *rs = get_remote_state ();
5709 int is_fork_parent;
5710
5711 if (!target_has_execution)
5712 error (_("No process to detach from."));
5713
5714 target_announce_detach (from_tty);
5715
5716 /* Tell the remote target to detach. */
5717 remote_detach_pid (pid);
5718
5719 /* Exit only if this is the only active inferior. */
5720 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5721 puts_filtered (_("Ending remote debugging.\n"));
5722
5723 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5724
5725 /* Check to see if we are detaching a fork parent. Note that if we
5726 are detaching a fork child, tp == NULL. */
5727 is_fork_parent = (tp != NULL
5728 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5729
5730 /* If doing detach-on-fork, we don't mourn, because that will delete
5731 breakpoints that should be available for the followed inferior. */
5732 if (!is_fork_parent)
5733 {
5734 /* Save the pid as a string before mourning, since that will
5735 unpush the remote target, and we need the string after. */
5736 std::string infpid = target_pid_to_str (ptid_t (pid));
5737
5738 target_mourn_inferior (inferior_ptid);
5739 if (print_inferior_events)
5740 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5741 inf->num, infpid.c_str ());
5742 }
5743 else
5744 {
5745 inferior_ptid = null_ptid;
5746 detach_inferior (current_inferior ());
5747 }
5748 }
5749
5750 void
5751 remote_target::detach (inferior *inf, int from_tty)
5752 {
5753 remote_detach_1 (inf, from_tty);
5754 }
5755
5756 void
5757 extended_remote_target::detach (inferior *inf, int from_tty)
5758 {
5759 remote_detach_1 (inf, from_tty);
5760 }
5761
5762 /* Target follow-fork function for remote targets. On entry, and
5763 at return, the current inferior is the fork parent.
5764
5765 Note that although this is currently only used for extended-remote,
5766 it is named remote_follow_fork in anticipation of using it for the
5767 remote target as well. */
5768
5769 int
5770 remote_target::follow_fork (int follow_child, int detach_fork)
5771 {
5772 struct remote_state *rs = get_remote_state ();
5773 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5774
5775 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5776 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5777 {
5778 /* When following the parent and detaching the child, we detach
5779 the child here. For the case of following the child and
5780 detaching the parent, the detach is done in the target-
5781 independent follow fork code in infrun.c. We can't use
5782 target_detach when detaching an unfollowed child because
5783 the client side doesn't know anything about the child. */
5784 if (detach_fork && !follow_child)
5785 {
5786 /* Detach the fork child. */
5787 ptid_t child_ptid;
5788 pid_t child_pid;
5789
5790 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5791 child_pid = child_ptid.pid ();
5792
5793 remote_detach_pid (child_pid);
5794 }
5795 }
5796 return 0;
5797 }
5798
5799 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5800 in the program space of the new inferior. On entry and at return the
5801 current inferior is the exec'ing inferior. INF is the new exec'd
5802 inferior, which may be the same as the exec'ing inferior unless
5803 follow-exec-mode is "new". */
5804
5805 void
5806 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5807 {
5808 /* We know that this is a target file name, so if it has the "target:"
5809 prefix we strip it off before saving it in the program space. */
5810 if (is_target_filename (execd_pathname))
5811 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5812
5813 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5814 }
5815
5816 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5817
5818 void
5819 remote_target::disconnect (const char *args, int from_tty)
5820 {
5821 if (args)
5822 error (_("Argument given to \"disconnect\" when remotely debugging."));
5823
5824 /* Make sure we unpush even the extended remote targets. Calling
5825 target_mourn_inferior won't unpush, and
5826 remote_target::mourn_inferior won't unpush if there is more than
5827 one inferior left. */
5828 remote_unpush_target (this);
5829
5830 if (from_tty)
5831 puts_filtered ("Ending remote debugging.\n");
5832 }
5833
5834 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5835 be chatty about it. */
5836
5837 void
5838 extended_remote_target::attach (const char *args, int from_tty)
5839 {
5840 struct remote_state *rs = get_remote_state ();
5841 int pid;
5842 char *wait_status = NULL;
5843
5844 pid = parse_pid_to_attach (args);
5845
5846 /* Remote PID can be freely equal to getpid, do not check it here the same
5847 way as in other targets. */
5848
5849 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5850 error (_("This target does not support attaching to a process"));
5851
5852 if (from_tty)
5853 {
5854 const char *exec_file = get_exec_file (0);
5855
5856 if (exec_file)
5857 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5858 target_pid_to_str (ptid_t (pid)).c_str ());
5859 else
5860 printf_unfiltered (_("Attaching to %s\n"),
5861 target_pid_to_str (ptid_t (pid)).c_str ());
5862 }
5863
5864 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5865 putpkt (rs->buf);
5866 getpkt (&rs->buf, 0);
5867
5868 switch (packet_ok (rs->buf,
5869 &remote_protocol_packets[PACKET_vAttach]))
5870 {
5871 case PACKET_OK:
5872 if (!target_is_non_stop_p ())
5873 {
5874 /* Save the reply for later. */
5875 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5876 strcpy (wait_status, rs->buf.data ());
5877 }
5878 else if (strcmp (rs->buf.data (), "OK") != 0)
5879 error (_("Attaching to %s failed with: %s"),
5880 target_pid_to_str (ptid_t (pid)).c_str (),
5881 rs->buf.data ());
5882 break;
5883 case PACKET_UNKNOWN:
5884 error (_("This target does not support attaching to a process"));
5885 default:
5886 error (_("Attaching to %s failed"),
5887 target_pid_to_str (ptid_t (pid)).c_str ());
5888 }
5889
5890 set_current_inferior (remote_add_inferior (false, pid, 1, 0));
5891
5892 inferior_ptid = ptid_t (pid);
5893
5894 if (target_is_non_stop_p ())
5895 {
5896 struct thread_info *thread;
5897
5898 /* Get list of threads. */
5899 update_thread_list ();
5900
5901 thread = first_thread_of_inferior (current_inferior ());
5902 if (thread)
5903 inferior_ptid = thread->ptid;
5904 else
5905 inferior_ptid = ptid_t (pid);
5906
5907 /* Invalidate our notion of the remote current thread. */
5908 record_currthread (rs, minus_one_ptid);
5909 }
5910 else
5911 {
5912 /* Now, if we have thread information, update inferior_ptid. */
5913 inferior_ptid = remote_current_thread (inferior_ptid);
5914
5915 /* Add the main thread to the thread list. */
5916 thread_info *thr = add_thread_silent (this, inferior_ptid);
5917 /* Don't consider the thread stopped until we've processed the
5918 saved stop reply. */
5919 set_executing (this, thr->ptid, true);
5920 }
5921
5922 /* Next, if the target can specify a description, read it. We do
5923 this before anything involving memory or registers. */
5924 target_find_description ();
5925
5926 if (!target_is_non_stop_p ())
5927 {
5928 /* Use the previously fetched status. */
5929 gdb_assert (wait_status != NULL);
5930
5931 if (target_can_async_p ())
5932 {
5933 struct notif_event *reply
5934 = remote_notif_parse (this, &notif_client_stop, wait_status);
5935
5936 push_stop_reply ((struct stop_reply *) reply);
5937
5938 target_async (1);
5939 }
5940 else
5941 {
5942 gdb_assert (wait_status != NULL);
5943 strcpy (rs->buf.data (), wait_status);
5944 rs->cached_wait_status = 1;
5945 }
5946 }
5947 else
5948 gdb_assert (wait_status == NULL);
5949 }
5950
5951 /* Implementation of the to_post_attach method. */
5952
5953 void
5954 extended_remote_target::post_attach (int pid)
5955 {
5956 /* Get text, data & bss offsets. */
5957 get_offsets ();
5958
5959 /* In certain cases GDB might not have had the chance to start
5960 symbol lookup up until now. This could happen if the debugged
5961 binary is not using shared libraries, the vsyscall page is not
5962 present (on Linux) and the binary itself hadn't changed since the
5963 debugging process was started. */
5964 if (symfile_objfile != NULL)
5965 remote_check_symbols();
5966 }
5967
5968 \f
5969 /* Check for the availability of vCont. This function should also check
5970 the response. */
5971
5972 void
5973 remote_target::remote_vcont_probe ()
5974 {
5975 remote_state *rs = get_remote_state ();
5976 char *buf;
5977
5978 strcpy (rs->buf.data (), "vCont?");
5979 putpkt (rs->buf);
5980 getpkt (&rs->buf, 0);
5981 buf = rs->buf.data ();
5982
5983 /* Make sure that the features we assume are supported. */
5984 if (startswith (buf, "vCont"))
5985 {
5986 char *p = &buf[5];
5987 int support_c, support_C;
5988
5989 rs->supports_vCont.s = 0;
5990 rs->supports_vCont.S = 0;
5991 support_c = 0;
5992 support_C = 0;
5993 rs->supports_vCont.t = 0;
5994 rs->supports_vCont.r = 0;
5995 while (p && *p == ';')
5996 {
5997 p++;
5998 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5999 rs->supports_vCont.s = 1;
6000 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6001 rs->supports_vCont.S = 1;
6002 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6003 support_c = 1;
6004 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6005 support_C = 1;
6006 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6007 rs->supports_vCont.t = 1;
6008 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6009 rs->supports_vCont.r = 1;
6010
6011 p = strchr (p, ';');
6012 }
6013
6014 /* If c, and C are not all supported, we can't use vCont. Clearing
6015 BUF will make packet_ok disable the packet. */
6016 if (!support_c || !support_C)
6017 buf[0] = 0;
6018 }
6019
6020 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6021 rs->supports_vCont_probed = true;
6022 }
6023
6024 /* Helper function for building "vCont" resumptions. Write a
6025 resumption to P. ENDP points to one-passed-the-end of the buffer
6026 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6027 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6028 resumed thread should be single-stepped and/or signalled. If PTID
6029 equals minus_one_ptid, then all threads are resumed; if PTID
6030 represents a process, then all threads of the process are resumed;
6031 the thread to be stepped and/or signalled is given in the global
6032 INFERIOR_PTID. */
6033
6034 char *
6035 remote_target::append_resumption (char *p, char *endp,
6036 ptid_t ptid, int step, gdb_signal siggnal)
6037 {
6038 struct remote_state *rs = get_remote_state ();
6039
6040 if (step && siggnal != GDB_SIGNAL_0)
6041 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6042 else if (step
6043 /* GDB is willing to range step. */
6044 && use_range_stepping
6045 /* Target supports range stepping. */
6046 && rs->supports_vCont.r
6047 /* We don't currently support range stepping multiple
6048 threads with a wildcard (though the protocol allows it,
6049 so stubs shouldn't make an active effort to forbid
6050 it). */
6051 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6052 {
6053 struct thread_info *tp;
6054
6055 if (ptid == minus_one_ptid)
6056 {
6057 /* If we don't know about the target thread's tid, then
6058 we're resuming magic_null_ptid (see caller). */
6059 tp = find_thread_ptid (this, magic_null_ptid);
6060 }
6061 else
6062 tp = find_thread_ptid (this, ptid);
6063 gdb_assert (tp != NULL);
6064
6065 if (tp->control.may_range_step)
6066 {
6067 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6068
6069 p += xsnprintf (p, endp - p, ";r%s,%s",
6070 phex_nz (tp->control.step_range_start,
6071 addr_size),
6072 phex_nz (tp->control.step_range_end,
6073 addr_size));
6074 }
6075 else
6076 p += xsnprintf (p, endp - p, ";s");
6077 }
6078 else if (step)
6079 p += xsnprintf (p, endp - p, ";s");
6080 else if (siggnal != GDB_SIGNAL_0)
6081 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6082 else
6083 p += xsnprintf (p, endp - p, ";c");
6084
6085 if (remote_multi_process_p (rs) && ptid.is_pid ())
6086 {
6087 ptid_t nptid;
6088
6089 /* All (-1) threads of process. */
6090 nptid = ptid_t (ptid.pid (), -1, 0);
6091
6092 p += xsnprintf (p, endp - p, ":");
6093 p = write_ptid (p, endp, nptid);
6094 }
6095 else if (ptid != minus_one_ptid)
6096 {
6097 p += xsnprintf (p, endp - p, ":");
6098 p = write_ptid (p, endp, ptid);
6099 }
6100
6101 return p;
6102 }
6103
6104 /* Clear the thread's private info on resume. */
6105
6106 static void
6107 resume_clear_thread_private_info (struct thread_info *thread)
6108 {
6109 if (thread->priv != NULL)
6110 {
6111 remote_thread_info *priv = get_remote_thread_info (thread);
6112
6113 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6114 priv->watch_data_address = 0;
6115 }
6116 }
6117
6118 /* Append a vCont continue-with-signal action for threads that have a
6119 non-zero stop signal. */
6120
6121 char *
6122 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6123 ptid_t ptid)
6124 {
6125 for (thread_info *thread : all_non_exited_threads (this, ptid))
6126 if (inferior_ptid != thread->ptid
6127 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6128 {
6129 p = append_resumption (p, endp, thread->ptid,
6130 0, thread->suspend.stop_signal);
6131 thread->suspend.stop_signal = GDB_SIGNAL_0;
6132 resume_clear_thread_private_info (thread);
6133 }
6134
6135 return p;
6136 }
6137
6138 /* Set the target running, using the packets that use Hc
6139 (c/s/C/S). */
6140
6141 void
6142 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6143 gdb_signal siggnal)
6144 {
6145 struct remote_state *rs = get_remote_state ();
6146 char *buf;
6147
6148 rs->last_sent_signal = siggnal;
6149 rs->last_sent_step = step;
6150
6151 /* The c/s/C/S resume packets use Hc, so set the continue
6152 thread. */
6153 if (ptid == minus_one_ptid)
6154 set_continue_thread (any_thread_ptid);
6155 else
6156 set_continue_thread (ptid);
6157
6158 for (thread_info *thread : all_non_exited_threads (this))
6159 resume_clear_thread_private_info (thread);
6160
6161 buf = rs->buf.data ();
6162 if (::execution_direction == EXEC_REVERSE)
6163 {
6164 /* We don't pass signals to the target in reverse exec mode. */
6165 if (info_verbose && siggnal != GDB_SIGNAL_0)
6166 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6167 siggnal);
6168
6169 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6170 error (_("Remote reverse-step not supported."));
6171 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6172 error (_("Remote reverse-continue not supported."));
6173
6174 strcpy (buf, step ? "bs" : "bc");
6175 }
6176 else if (siggnal != GDB_SIGNAL_0)
6177 {
6178 buf[0] = step ? 'S' : 'C';
6179 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6180 buf[2] = tohex (((int) siggnal) & 0xf);
6181 buf[3] = '\0';
6182 }
6183 else
6184 strcpy (buf, step ? "s" : "c");
6185
6186 putpkt (buf);
6187 }
6188
6189 /* Resume the remote inferior by using a "vCont" packet. The thread
6190 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6191 resumed thread should be single-stepped and/or signalled. If PTID
6192 equals minus_one_ptid, then all threads are resumed; the thread to
6193 be stepped and/or signalled is given in the global INFERIOR_PTID.
6194 This function returns non-zero iff it resumes the inferior.
6195
6196 This function issues a strict subset of all possible vCont commands
6197 at the moment. */
6198
6199 int
6200 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6201 enum gdb_signal siggnal)
6202 {
6203 struct remote_state *rs = get_remote_state ();
6204 char *p;
6205 char *endp;
6206
6207 /* No reverse execution actions defined for vCont. */
6208 if (::execution_direction == EXEC_REVERSE)
6209 return 0;
6210
6211 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6212 remote_vcont_probe ();
6213
6214 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6215 return 0;
6216
6217 p = rs->buf.data ();
6218 endp = p + get_remote_packet_size ();
6219
6220 /* If we could generate a wider range of packets, we'd have to worry
6221 about overflowing BUF. Should there be a generic
6222 "multi-part-packet" packet? */
6223
6224 p += xsnprintf (p, endp - p, "vCont");
6225
6226 if (ptid == magic_null_ptid)
6227 {
6228 /* MAGIC_NULL_PTID means that we don't have any active threads,
6229 so we don't have any TID numbers the inferior will
6230 understand. Make sure to only send forms that do not specify
6231 a TID. */
6232 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6233 }
6234 else if (ptid == minus_one_ptid || ptid.is_pid ())
6235 {
6236 /* Resume all threads (of all processes, or of a single
6237 process), with preference for INFERIOR_PTID. This assumes
6238 inferior_ptid belongs to the set of all threads we are about
6239 to resume. */
6240 if (step || siggnal != GDB_SIGNAL_0)
6241 {
6242 /* Step inferior_ptid, with or without signal. */
6243 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6244 }
6245
6246 /* Also pass down any pending signaled resumption for other
6247 threads not the current. */
6248 p = append_pending_thread_resumptions (p, endp, ptid);
6249
6250 /* And continue others without a signal. */
6251 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6252 }
6253 else
6254 {
6255 /* Scheduler locking; resume only PTID. */
6256 append_resumption (p, endp, ptid, step, siggnal);
6257 }
6258
6259 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6260 putpkt (rs->buf);
6261
6262 if (target_is_non_stop_p ())
6263 {
6264 /* In non-stop, the stub replies to vCont with "OK". The stop
6265 reply will be reported asynchronously by means of a `%Stop'
6266 notification. */
6267 getpkt (&rs->buf, 0);
6268 if (strcmp (rs->buf.data (), "OK") != 0)
6269 error (_("Unexpected vCont reply in non-stop mode: %s"),
6270 rs->buf.data ());
6271 }
6272
6273 return 1;
6274 }
6275
6276 /* Tell the remote machine to resume. */
6277
6278 void
6279 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6280 {
6281 struct remote_state *rs = get_remote_state ();
6282
6283 /* When connected in non-stop mode, the core resumes threads
6284 individually. Resuming remote threads directly in target_resume
6285 would thus result in sending one packet per thread. Instead, to
6286 minimize roundtrip latency, here we just store the resume
6287 request; the actual remote resumption will be done in
6288 target_commit_resume / remote_commit_resume, where we'll be able
6289 to do vCont action coalescing. */
6290 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6291 {
6292 remote_thread_info *remote_thr;
6293
6294 if (minus_one_ptid == ptid || ptid.is_pid ())
6295 remote_thr = get_remote_thread_info (this, inferior_ptid);
6296 else
6297 remote_thr = get_remote_thread_info (this, ptid);
6298
6299 remote_thr->last_resume_step = step;
6300 remote_thr->last_resume_sig = siggnal;
6301 return;
6302 }
6303
6304 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6305 (explained in remote-notif.c:handle_notification) so
6306 remote_notif_process is not called. We need find a place where
6307 it is safe to start a 'vNotif' sequence. It is good to do it
6308 before resuming inferior, because inferior was stopped and no RSP
6309 traffic at that moment. */
6310 if (!target_is_non_stop_p ())
6311 remote_notif_process (rs->notif_state, &notif_client_stop);
6312
6313 rs->last_resume_exec_dir = ::execution_direction;
6314
6315 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6316 if (!remote_resume_with_vcont (ptid, step, siggnal))
6317 remote_resume_with_hc (ptid, step, siggnal);
6318
6319 /* We are about to start executing the inferior, let's register it
6320 with the event loop. NOTE: this is the one place where all the
6321 execution commands end up. We could alternatively do this in each
6322 of the execution commands in infcmd.c. */
6323 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6324 into infcmd.c in order to allow inferior function calls to work
6325 NOT asynchronously. */
6326 if (target_can_async_p ())
6327 target_async (1);
6328
6329 /* We've just told the target to resume. The remote server will
6330 wait for the inferior to stop, and then send a stop reply. In
6331 the mean time, we can't start another command/query ourselves
6332 because the stub wouldn't be ready to process it. This applies
6333 only to the base all-stop protocol, however. In non-stop (which
6334 only supports vCont), the stub replies with an "OK", and is
6335 immediate able to process further serial input. */
6336 if (!target_is_non_stop_p ())
6337 rs->waiting_for_stop_reply = 1;
6338 }
6339
6340 static int is_pending_fork_parent_thread (struct thread_info *thread);
6341
6342 /* Private per-inferior info for target remote processes. */
6343
6344 struct remote_inferior : public private_inferior
6345 {
6346 /* Whether we can send a wildcard vCont for this process. */
6347 bool may_wildcard_vcont = true;
6348 };
6349
6350 /* Get the remote private inferior data associated to INF. */
6351
6352 static remote_inferior *
6353 get_remote_inferior (inferior *inf)
6354 {
6355 if (inf->priv == NULL)
6356 inf->priv.reset (new remote_inferior);
6357
6358 return static_cast<remote_inferior *> (inf->priv.get ());
6359 }
6360
6361 /* Class used to track the construction of a vCont packet in the
6362 outgoing packet buffer. This is used to send multiple vCont
6363 packets if we have more actions than would fit a single packet. */
6364
6365 class vcont_builder
6366 {
6367 public:
6368 explicit vcont_builder (remote_target *remote)
6369 : m_remote (remote)
6370 {
6371 restart ();
6372 }
6373
6374 void flush ();
6375 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6376
6377 private:
6378 void restart ();
6379
6380 /* The remote target. */
6381 remote_target *m_remote;
6382
6383 /* Pointer to the first action. P points here if no action has been
6384 appended yet. */
6385 char *m_first_action;
6386
6387 /* Where the next action will be appended. */
6388 char *m_p;
6389
6390 /* The end of the buffer. Must never write past this. */
6391 char *m_endp;
6392 };
6393
6394 /* Prepare the outgoing buffer for a new vCont packet. */
6395
6396 void
6397 vcont_builder::restart ()
6398 {
6399 struct remote_state *rs = m_remote->get_remote_state ();
6400
6401 m_p = rs->buf.data ();
6402 m_endp = m_p + m_remote->get_remote_packet_size ();
6403 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6404 m_first_action = m_p;
6405 }
6406
6407 /* If the vCont packet being built has any action, send it to the
6408 remote end. */
6409
6410 void
6411 vcont_builder::flush ()
6412 {
6413 struct remote_state *rs;
6414
6415 if (m_p == m_first_action)
6416 return;
6417
6418 rs = m_remote->get_remote_state ();
6419 m_remote->putpkt (rs->buf);
6420 m_remote->getpkt (&rs->buf, 0);
6421 if (strcmp (rs->buf.data (), "OK") != 0)
6422 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6423 }
6424
6425 /* The largest action is range-stepping, with its two addresses. This
6426 is more than sufficient. If a new, bigger action is created, it'll
6427 quickly trigger a failed assertion in append_resumption (and we'll
6428 just bump this). */
6429 #define MAX_ACTION_SIZE 200
6430
6431 /* Append a new vCont action in the outgoing packet being built. If
6432 the action doesn't fit the packet along with previous actions, push
6433 what we've got so far to the remote end and start over a new vCont
6434 packet (with the new action). */
6435
6436 void
6437 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6438 {
6439 char buf[MAX_ACTION_SIZE + 1];
6440
6441 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6442 ptid, step, siggnal);
6443
6444 /* Check whether this new action would fit in the vCont packet along
6445 with previous actions. If not, send what we've got so far and
6446 start a new vCont packet. */
6447 size_t rsize = endp - buf;
6448 if (rsize > m_endp - m_p)
6449 {
6450 flush ();
6451 restart ();
6452
6453 /* Should now fit. */
6454 gdb_assert (rsize <= m_endp - m_p);
6455 }
6456
6457 memcpy (m_p, buf, rsize);
6458 m_p += rsize;
6459 *m_p = '\0';
6460 }
6461
6462 /* to_commit_resume implementation. */
6463
6464 void
6465 remote_target::commit_resume ()
6466 {
6467 int any_process_wildcard;
6468 int may_global_wildcard_vcont;
6469
6470 /* If connected in all-stop mode, we'd send the remote resume
6471 request directly from remote_resume. Likewise if
6472 reverse-debugging, as there are no defined vCont actions for
6473 reverse execution. */
6474 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6475 return;
6476
6477 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6478 instead of resuming all threads of each process individually.
6479 However, if any thread of a process must remain halted, we can't
6480 send wildcard resumes and must send one action per thread.
6481
6482 Care must be taken to not resume threads/processes the server
6483 side already told us are stopped, but the core doesn't know about
6484 yet, because the events are still in the vStopped notification
6485 queue. For example:
6486
6487 #1 => vCont s:p1.1;c
6488 #2 <= OK
6489 #3 <= %Stopped T05 p1.1
6490 #4 => vStopped
6491 #5 <= T05 p1.2
6492 #6 => vStopped
6493 #7 <= OK
6494 #8 (infrun handles the stop for p1.1 and continues stepping)
6495 #9 => vCont s:p1.1;c
6496
6497 The last vCont above would resume thread p1.2 by mistake, because
6498 the server has no idea that the event for p1.2 had not been
6499 handled yet.
6500
6501 The server side must similarly ignore resume actions for the
6502 thread that has a pending %Stopped notification (and any other
6503 threads with events pending), until GDB acks the notification
6504 with vStopped. Otherwise, e.g., the following case is
6505 mishandled:
6506
6507 #1 => g (or any other packet)
6508 #2 <= [registers]
6509 #3 <= %Stopped T05 p1.2
6510 #4 => vCont s:p1.1;c
6511 #5 <= OK
6512
6513 Above, the server must not resume thread p1.2. GDB can't know
6514 that p1.2 stopped until it acks the %Stopped notification, and
6515 since from GDB's perspective all threads should be running, it
6516 sends a "c" action.
6517
6518 Finally, special care must also be given to handling fork/vfork
6519 events. A (v)fork event actually tells us that two processes
6520 stopped -- the parent and the child. Until we follow the fork,
6521 we must not resume the child. Therefore, if we have a pending
6522 fork follow, we must not send a global wildcard resume action
6523 (vCont;c). We can still send process-wide wildcards though. */
6524
6525 /* Start by assuming a global wildcard (vCont;c) is possible. */
6526 may_global_wildcard_vcont = 1;
6527
6528 /* And assume every process is individually wildcard-able too. */
6529 for (inferior *inf : all_non_exited_inferiors (this))
6530 {
6531 remote_inferior *priv = get_remote_inferior (inf);
6532
6533 priv->may_wildcard_vcont = true;
6534 }
6535
6536 /* Check for any pending events (not reported or processed yet) and
6537 disable process and global wildcard resumes appropriately. */
6538 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6539
6540 for (thread_info *tp : all_non_exited_threads (this))
6541 {
6542 /* If a thread of a process is not meant to be resumed, then we
6543 can't wildcard that process. */
6544 if (!tp->executing)
6545 {
6546 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6547
6548 /* And if we can't wildcard a process, we can't wildcard
6549 everything either. */
6550 may_global_wildcard_vcont = 0;
6551 continue;
6552 }
6553
6554 /* If a thread is the parent of an unfollowed fork, then we
6555 can't do a global wildcard, as that would resume the fork
6556 child. */
6557 if (is_pending_fork_parent_thread (tp))
6558 may_global_wildcard_vcont = 0;
6559 }
6560
6561 /* Now let's build the vCont packet(s). Actions must be appended
6562 from narrower to wider scopes (thread -> process -> global). If
6563 we end up with too many actions for a single packet vcont_builder
6564 flushes the current vCont packet to the remote side and starts a
6565 new one. */
6566 struct vcont_builder vcont_builder (this);
6567
6568 /* Threads first. */
6569 for (thread_info *tp : all_non_exited_threads (this))
6570 {
6571 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6572
6573 if (!tp->executing || remote_thr->vcont_resumed)
6574 continue;
6575
6576 gdb_assert (!thread_is_in_step_over_chain (tp));
6577
6578 if (!remote_thr->last_resume_step
6579 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6580 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6581 {
6582 /* We'll send a wildcard resume instead. */
6583 remote_thr->vcont_resumed = 1;
6584 continue;
6585 }
6586
6587 vcont_builder.push_action (tp->ptid,
6588 remote_thr->last_resume_step,
6589 remote_thr->last_resume_sig);
6590 remote_thr->vcont_resumed = 1;
6591 }
6592
6593 /* Now check whether we can send any process-wide wildcard. This is
6594 to avoid sending a global wildcard in the case nothing is
6595 supposed to be resumed. */
6596 any_process_wildcard = 0;
6597
6598 for (inferior *inf : all_non_exited_inferiors (this))
6599 {
6600 if (get_remote_inferior (inf)->may_wildcard_vcont)
6601 {
6602 any_process_wildcard = 1;
6603 break;
6604 }
6605 }
6606
6607 if (any_process_wildcard)
6608 {
6609 /* If all processes are wildcard-able, then send a single "c"
6610 action, otherwise, send an "all (-1) threads of process"
6611 continue action for each running process, if any. */
6612 if (may_global_wildcard_vcont)
6613 {
6614 vcont_builder.push_action (minus_one_ptid,
6615 false, GDB_SIGNAL_0);
6616 }
6617 else
6618 {
6619 for (inferior *inf : all_non_exited_inferiors (this))
6620 {
6621 if (get_remote_inferior (inf)->may_wildcard_vcont)
6622 {
6623 vcont_builder.push_action (ptid_t (inf->pid),
6624 false, GDB_SIGNAL_0);
6625 }
6626 }
6627 }
6628 }
6629
6630 vcont_builder.flush ();
6631 }
6632
6633 \f
6634
6635 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6636 thread, all threads of a remote process, or all threads of all
6637 processes. */
6638
6639 void
6640 remote_target::remote_stop_ns (ptid_t ptid)
6641 {
6642 struct remote_state *rs = get_remote_state ();
6643 char *p = rs->buf.data ();
6644 char *endp = p + get_remote_packet_size ();
6645
6646 /* FIXME: This supports_vCont_probed check is a workaround until
6647 packet_support is per-connection. */
6648 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6649 || !rs->supports_vCont_probed)
6650 remote_vcont_probe ();
6651
6652 if (!rs->supports_vCont.t)
6653 error (_("Remote server does not support stopping threads"));
6654
6655 if (ptid == minus_one_ptid
6656 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6657 p += xsnprintf (p, endp - p, "vCont;t");
6658 else
6659 {
6660 ptid_t nptid;
6661
6662 p += xsnprintf (p, endp - p, "vCont;t:");
6663
6664 if (ptid.is_pid ())
6665 /* All (-1) threads of process. */
6666 nptid = ptid_t (ptid.pid (), -1, 0);
6667 else
6668 {
6669 /* Small optimization: if we already have a stop reply for
6670 this thread, no use in telling the stub we want this
6671 stopped. */
6672 if (peek_stop_reply (ptid))
6673 return;
6674
6675 nptid = ptid;
6676 }
6677
6678 write_ptid (p, endp, nptid);
6679 }
6680
6681 /* In non-stop, we get an immediate OK reply. The stop reply will
6682 come in asynchronously by notification. */
6683 putpkt (rs->buf);
6684 getpkt (&rs->buf, 0);
6685 if (strcmp (rs->buf.data (), "OK") != 0)
6686 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6687 rs->buf.data ());
6688 }
6689
6690 /* All-stop version of target_interrupt. Sends a break or a ^C to
6691 interrupt the remote target. It is undefined which thread of which
6692 process reports the interrupt. */
6693
6694 void
6695 remote_target::remote_interrupt_as ()
6696 {
6697 struct remote_state *rs = get_remote_state ();
6698
6699 rs->ctrlc_pending_p = 1;
6700
6701 /* If the inferior is stopped already, but the core didn't know
6702 about it yet, just ignore the request. The cached wait status
6703 will be collected in remote_wait. */
6704 if (rs->cached_wait_status)
6705 return;
6706
6707 /* Send interrupt_sequence to remote target. */
6708 send_interrupt_sequence ();
6709 }
6710
6711 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6712 the remote target. It is undefined which thread of which process
6713 reports the interrupt. Throws an error if the packet is not
6714 supported by the server. */
6715
6716 void
6717 remote_target::remote_interrupt_ns ()
6718 {
6719 struct remote_state *rs = get_remote_state ();
6720 char *p = rs->buf.data ();
6721 char *endp = p + get_remote_packet_size ();
6722
6723 xsnprintf (p, endp - p, "vCtrlC");
6724
6725 /* In non-stop, we get an immediate OK reply. The stop reply will
6726 come in asynchronously by notification. */
6727 putpkt (rs->buf);
6728 getpkt (&rs->buf, 0);
6729
6730 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6731 {
6732 case PACKET_OK:
6733 break;
6734 case PACKET_UNKNOWN:
6735 error (_("No support for interrupting the remote target."));
6736 case PACKET_ERROR:
6737 error (_("Interrupting target failed: %s"), rs->buf.data ());
6738 }
6739 }
6740
6741 /* Implement the to_stop function for the remote targets. */
6742
6743 void
6744 remote_target::stop (ptid_t ptid)
6745 {
6746 if (remote_debug)
6747 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6748
6749 if (target_is_non_stop_p ())
6750 remote_stop_ns (ptid);
6751 else
6752 {
6753 /* We don't currently have a way to transparently pause the
6754 remote target in all-stop mode. Interrupt it instead. */
6755 remote_interrupt_as ();
6756 }
6757 }
6758
6759 /* Implement the to_interrupt function for the remote targets. */
6760
6761 void
6762 remote_target::interrupt ()
6763 {
6764 if (remote_debug)
6765 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6766
6767 if (target_is_non_stop_p ())
6768 remote_interrupt_ns ();
6769 else
6770 remote_interrupt_as ();
6771 }
6772
6773 /* Implement the to_pass_ctrlc function for the remote targets. */
6774
6775 void
6776 remote_target::pass_ctrlc ()
6777 {
6778 struct remote_state *rs = get_remote_state ();
6779
6780 if (remote_debug)
6781 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6782
6783 /* If we're starting up, we're not fully synced yet. Quit
6784 immediately. */
6785 if (rs->starting_up)
6786 quit ();
6787 /* If ^C has already been sent once, offer to disconnect. */
6788 else if (rs->ctrlc_pending_p)
6789 interrupt_query ();
6790 else
6791 target_interrupt ();
6792 }
6793
6794 /* Ask the user what to do when an interrupt is received. */
6795
6796 void
6797 remote_target::interrupt_query ()
6798 {
6799 struct remote_state *rs = get_remote_state ();
6800
6801 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6802 {
6803 if (query (_("The target is not responding to interrupt requests.\n"
6804 "Stop debugging it? ")))
6805 {
6806 remote_unpush_target (this);
6807 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6808 }
6809 }
6810 else
6811 {
6812 if (query (_("Interrupted while waiting for the program.\n"
6813 "Give up waiting? ")))
6814 quit ();
6815 }
6816 }
6817
6818 /* Enable/disable target terminal ownership. Most targets can use
6819 terminal groups to control terminal ownership. Remote targets are
6820 different in that explicit transfer of ownership to/from GDB/target
6821 is required. */
6822
6823 void
6824 remote_target::terminal_inferior ()
6825 {
6826 /* NOTE: At this point we could also register our selves as the
6827 recipient of all input. Any characters typed could then be
6828 passed on down to the target. */
6829 }
6830
6831 void
6832 remote_target::terminal_ours ()
6833 {
6834 }
6835
6836 static void
6837 remote_console_output (const char *msg)
6838 {
6839 const char *p;
6840
6841 for (p = msg; p[0] && p[1]; p += 2)
6842 {
6843 char tb[2];
6844 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6845
6846 tb[0] = c;
6847 tb[1] = 0;
6848 gdb_stdtarg->puts (tb);
6849 }
6850 gdb_stdtarg->flush ();
6851 }
6852
6853 struct stop_reply : public notif_event
6854 {
6855 ~stop_reply ();
6856
6857 /* The identifier of the thread about this event */
6858 ptid_t ptid;
6859
6860 /* The remote state this event is associated with. When the remote
6861 connection, represented by a remote_state object, is closed,
6862 all the associated stop_reply events should be released. */
6863 struct remote_state *rs;
6864
6865 struct target_waitstatus ws;
6866
6867 /* The architecture associated with the expedited registers. */
6868 gdbarch *arch;
6869
6870 /* Expedited registers. This makes remote debugging a bit more
6871 efficient for those targets that provide critical registers as
6872 part of their normal status mechanism (as another roundtrip to
6873 fetch them is avoided). */
6874 std::vector<cached_reg_t> regcache;
6875
6876 enum target_stop_reason stop_reason;
6877
6878 CORE_ADDR watch_data_address;
6879
6880 int core;
6881 };
6882
6883 /* Return the length of the stop reply queue. */
6884
6885 int
6886 remote_target::stop_reply_queue_length ()
6887 {
6888 remote_state *rs = get_remote_state ();
6889 return rs->stop_reply_queue.size ();
6890 }
6891
6892 static void
6893 remote_notif_stop_parse (remote_target *remote,
6894 struct notif_client *self, const char *buf,
6895 struct notif_event *event)
6896 {
6897 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6898 }
6899
6900 static void
6901 remote_notif_stop_ack (remote_target *remote,
6902 struct notif_client *self, const char *buf,
6903 struct notif_event *event)
6904 {
6905 struct stop_reply *stop_reply = (struct stop_reply *) event;
6906
6907 /* acknowledge */
6908 putpkt (remote, self->ack_command);
6909
6910 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6911 {
6912 /* We got an unknown stop reply. */
6913 error (_("Unknown stop reply"));
6914 }
6915
6916 remote->push_stop_reply (stop_reply);
6917 }
6918
6919 static int
6920 remote_notif_stop_can_get_pending_events (remote_target *remote,
6921 struct notif_client *self)
6922 {
6923 /* We can't get pending events in remote_notif_process for
6924 notification stop, and we have to do this in remote_wait_ns
6925 instead. If we fetch all queued events from stub, remote stub
6926 may exit and we have no chance to process them back in
6927 remote_wait_ns. */
6928 remote_state *rs = remote->get_remote_state ();
6929 mark_async_event_handler (rs->remote_async_inferior_event_token);
6930 return 0;
6931 }
6932
6933 stop_reply::~stop_reply ()
6934 {
6935 for (cached_reg_t &reg : regcache)
6936 xfree (reg.data);
6937 }
6938
6939 static notif_event_up
6940 remote_notif_stop_alloc_reply ()
6941 {
6942 return notif_event_up (new struct stop_reply ());
6943 }
6944
6945 /* A client of notification Stop. */
6946
6947 struct notif_client notif_client_stop =
6948 {
6949 "Stop",
6950 "vStopped",
6951 remote_notif_stop_parse,
6952 remote_notif_stop_ack,
6953 remote_notif_stop_can_get_pending_events,
6954 remote_notif_stop_alloc_reply,
6955 REMOTE_NOTIF_STOP,
6956 };
6957
6958 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6959 the pid of the process that owns the threads we want to check, or
6960 -1 if we want to check all threads. */
6961
6962 static int
6963 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6964 ptid_t thread_ptid)
6965 {
6966 if (ws->kind == TARGET_WAITKIND_FORKED
6967 || ws->kind == TARGET_WAITKIND_VFORKED)
6968 {
6969 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6970 return 1;
6971 }
6972
6973 return 0;
6974 }
6975
6976 /* Return the thread's pending status used to determine whether the
6977 thread is a fork parent stopped at a fork event. */
6978
6979 static struct target_waitstatus *
6980 thread_pending_fork_status (struct thread_info *thread)
6981 {
6982 if (thread->suspend.waitstatus_pending_p)
6983 return &thread->suspend.waitstatus;
6984 else
6985 return &thread->pending_follow;
6986 }
6987
6988 /* Determine if THREAD is a pending fork parent thread. */
6989
6990 static int
6991 is_pending_fork_parent_thread (struct thread_info *thread)
6992 {
6993 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6994 int pid = -1;
6995
6996 return is_pending_fork_parent (ws, pid, thread->ptid);
6997 }
6998
6999 /* If CONTEXT contains any fork child threads that have not been
7000 reported yet, remove them from the CONTEXT list. If such a
7001 thread exists it is because we are stopped at a fork catchpoint
7002 and have not yet called follow_fork, which will set up the
7003 host-side data structures for the new process. */
7004
7005 void
7006 remote_target::remove_new_fork_children (threads_listing_context *context)
7007 {
7008 int pid = -1;
7009 struct notif_client *notif = &notif_client_stop;
7010
7011 /* For any threads stopped at a fork event, remove the corresponding
7012 fork child threads from the CONTEXT list. */
7013 for (thread_info *thread : all_non_exited_threads (this))
7014 {
7015 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7016
7017 if (is_pending_fork_parent (ws, pid, thread->ptid))
7018 context->remove_thread (ws->value.related_pid);
7019 }
7020
7021 /* Check for any pending fork events (not reported or processed yet)
7022 in process PID and remove those fork child threads from the
7023 CONTEXT list as well. */
7024 remote_notif_get_pending_events (notif);
7025 for (auto &event : get_remote_state ()->stop_reply_queue)
7026 if (event->ws.kind == TARGET_WAITKIND_FORKED
7027 || event->ws.kind == TARGET_WAITKIND_VFORKED
7028 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7029 context->remove_thread (event->ws.value.related_pid);
7030 }
7031
7032 /* Check whether any event pending in the vStopped queue would prevent
7033 a global or process wildcard vCont action. Clear
7034 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7035 and clear the event inferior's may_wildcard_vcont flag if we can't
7036 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7037
7038 void
7039 remote_target::check_pending_events_prevent_wildcard_vcont
7040 (int *may_global_wildcard)
7041 {
7042 struct notif_client *notif = &notif_client_stop;
7043
7044 remote_notif_get_pending_events (notif);
7045 for (auto &event : get_remote_state ()->stop_reply_queue)
7046 {
7047 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7048 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7049 continue;
7050
7051 if (event->ws.kind == TARGET_WAITKIND_FORKED
7052 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7053 *may_global_wildcard = 0;
7054
7055 struct inferior *inf = find_inferior_ptid (this, event->ptid);
7056
7057 /* This may be the first time we heard about this process.
7058 Regardless, we must not do a global wildcard resume, otherwise
7059 we'd resume this process too. */
7060 *may_global_wildcard = 0;
7061 if (inf != NULL)
7062 get_remote_inferior (inf)->may_wildcard_vcont = false;
7063 }
7064 }
7065
7066 /* Discard all pending stop replies of inferior INF. */
7067
7068 void
7069 remote_target::discard_pending_stop_replies (struct inferior *inf)
7070 {
7071 struct stop_reply *reply;
7072 struct remote_state *rs = get_remote_state ();
7073 struct remote_notif_state *rns = rs->notif_state;
7074
7075 /* This function can be notified when an inferior exists. When the
7076 target is not remote, the notification state is NULL. */
7077 if (rs->remote_desc == NULL)
7078 return;
7079
7080 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7081
7082 /* Discard the in-flight notification. */
7083 if (reply != NULL && reply->ptid.pid () == inf->pid)
7084 {
7085 delete reply;
7086 rns->pending_event[notif_client_stop.id] = NULL;
7087 }
7088
7089 /* Discard the stop replies we have already pulled with
7090 vStopped. */
7091 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7092 rs->stop_reply_queue.end (),
7093 [=] (const stop_reply_up &event)
7094 {
7095 return event->ptid.pid () == inf->pid;
7096 });
7097 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7098 }
7099
7100 /* Discard the stop replies for RS in stop_reply_queue. */
7101
7102 void
7103 remote_target::discard_pending_stop_replies_in_queue ()
7104 {
7105 remote_state *rs = get_remote_state ();
7106
7107 /* Discard the stop replies we have already pulled with
7108 vStopped. */
7109 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7110 rs->stop_reply_queue.end (),
7111 [=] (const stop_reply_up &event)
7112 {
7113 return event->rs == rs;
7114 });
7115 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7116 }
7117
7118 /* Remove the first reply in 'stop_reply_queue' which matches
7119 PTID. */
7120
7121 struct stop_reply *
7122 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7123 {
7124 remote_state *rs = get_remote_state ();
7125
7126 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7127 rs->stop_reply_queue.end (),
7128 [=] (const stop_reply_up &event)
7129 {
7130 return event->ptid.matches (ptid);
7131 });
7132 struct stop_reply *result;
7133 if (iter == rs->stop_reply_queue.end ())
7134 result = nullptr;
7135 else
7136 {
7137 result = iter->release ();
7138 rs->stop_reply_queue.erase (iter);
7139 }
7140
7141 if (notif_debug)
7142 fprintf_unfiltered (gdb_stdlog,
7143 "notif: discard queued event: 'Stop' in %s\n",
7144 target_pid_to_str (ptid).c_str ());
7145
7146 return result;
7147 }
7148
7149 /* Look for a queued stop reply belonging to PTID. If one is found,
7150 remove it from the queue, and return it. Returns NULL if none is
7151 found. If there are still queued events left to process, tell the
7152 event loop to get back to target_wait soon. */
7153
7154 struct stop_reply *
7155 remote_target::queued_stop_reply (ptid_t ptid)
7156 {
7157 remote_state *rs = get_remote_state ();
7158 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7159
7160 if (!rs->stop_reply_queue.empty ())
7161 {
7162 /* There's still at least an event left. */
7163 mark_async_event_handler (rs->remote_async_inferior_event_token);
7164 }
7165
7166 return r;
7167 }
7168
7169 /* Push a fully parsed stop reply in the stop reply queue. Since we
7170 know that we now have at least one queued event left to pass to the
7171 core side, tell the event loop to get back to target_wait soon. */
7172
7173 void
7174 remote_target::push_stop_reply (struct stop_reply *new_event)
7175 {
7176 remote_state *rs = get_remote_state ();
7177 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7178
7179 if (notif_debug)
7180 fprintf_unfiltered (gdb_stdlog,
7181 "notif: push 'Stop' %s to queue %d\n",
7182 target_pid_to_str (new_event->ptid).c_str (),
7183 int (rs->stop_reply_queue.size ()));
7184
7185 mark_async_event_handler (rs->remote_async_inferior_event_token);
7186 }
7187
7188 /* Returns true if we have a stop reply for PTID. */
7189
7190 int
7191 remote_target::peek_stop_reply (ptid_t ptid)
7192 {
7193 remote_state *rs = get_remote_state ();
7194 for (auto &event : rs->stop_reply_queue)
7195 if (ptid == event->ptid
7196 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7197 return 1;
7198 return 0;
7199 }
7200
7201 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7202 starting with P and ending with PEND matches PREFIX. */
7203
7204 static int
7205 strprefix (const char *p, const char *pend, const char *prefix)
7206 {
7207 for ( ; p < pend; p++, prefix++)
7208 if (*p != *prefix)
7209 return 0;
7210 return *prefix == '\0';
7211 }
7212
7213 /* Parse the stop reply in BUF. Either the function succeeds, and the
7214 result is stored in EVENT, or throws an error. */
7215
7216 void
7217 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7218 {
7219 remote_arch_state *rsa = NULL;
7220 ULONGEST addr;
7221 const char *p;
7222 int skipregs = 0;
7223
7224 event->ptid = null_ptid;
7225 event->rs = get_remote_state ();
7226 event->ws.kind = TARGET_WAITKIND_IGNORE;
7227 event->ws.value.integer = 0;
7228 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7229 event->regcache.clear ();
7230 event->core = -1;
7231
7232 switch (buf[0])
7233 {
7234 case 'T': /* Status with PC, SP, FP, ... */
7235 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7236 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7237 ss = signal number
7238 n... = register number
7239 r... = register contents
7240 */
7241
7242 p = &buf[3]; /* after Txx */
7243 while (*p)
7244 {
7245 const char *p1;
7246 int fieldsize;
7247
7248 p1 = strchr (p, ':');
7249 if (p1 == NULL)
7250 error (_("Malformed packet(a) (missing colon): %s\n\
7251 Packet: '%s'\n"),
7252 p, buf);
7253 if (p == p1)
7254 error (_("Malformed packet(a) (missing register number): %s\n\
7255 Packet: '%s'\n"),
7256 p, buf);
7257
7258 /* Some "registers" are actually extended stop information.
7259 Note if you're adding a new entry here: GDB 7.9 and
7260 earlier assume that all register "numbers" that start
7261 with an hex digit are real register numbers. Make sure
7262 the server only sends such a packet if it knows the
7263 client understands it. */
7264
7265 if (strprefix (p, p1, "thread"))
7266 event->ptid = read_ptid (++p1, &p);
7267 else if (strprefix (p, p1, "syscall_entry"))
7268 {
7269 ULONGEST sysno;
7270
7271 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7272 p = unpack_varlen_hex (++p1, &sysno);
7273 event->ws.value.syscall_number = (int) sysno;
7274 }
7275 else if (strprefix (p, p1, "syscall_return"))
7276 {
7277 ULONGEST sysno;
7278
7279 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7280 p = unpack_varlen_hex (++p1, &sysno);
7281 event->ws.value.syscall_number = (int) sysno;
7282 }
7283 else if (strprefix (p, p1, "watch")
7284 || strprefix (p, p1, "rwatch")
7285 || strprefix (p, p1, "awatch"))
7286 {
7287 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7288 p = unpack_varlen_hex (++p1, &addr);
7289 event->watch_data_address = (CORE_ADDR) addr;
7290 }
7291 else if (strprefix (p, p1, "swbreak"))
7292 {
7293 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7294
7295 /* Make sure the stub doesn't forget to indicate support
7296 with qSupported. */
7297 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7298 error (_("Unexpected swbreak stop reason"));
7299
7300 /* The value part is documented as "must be empty",
7301 though we ignore it, in case we ever decide to make
7302 use of it in a backward compatible way. */
7303 p = strchrnul (p1 + 1, ';');
7304 }
7305 else if (strprefix (p, p1, "hwbreak"))
7306 {
7307 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7308
7309 /* Make sure the stub doesn't forget to indicate support
7310 with qSupported. */
7311 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7312 error (_("Unexpected hwbreak stop reason"));
7313
7314 /* See above. */
7315 p = strchrnul (p1 + 1, ';');
7316 }
7317 else if (strprefix (p, p1, "library"))
7318 {
7319 event->ws.kind = TARGET_WAITKIND_LOADED;
7320 p = strchrnul (p1 + 1, ';');
7321 }
7322 else if (strprefix (p, p1, "replaylog"))
7323 {
7324 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7325 /* p1 will indicate "begin" or "end", but it makes
7326 no difference for now, so ignore it. */
7327 p = strchrnul (p1 + 1, ';');
7328 }
7329 else if (strprefix (p, p1, "core"))
7330 {
7331 ULONGEST c;
7332
7333 p = unpack_varlen_hex (++p1, &c);
7334 event->core = c;
7335 }
7336 else if (strprefix (p, p1, "fork"))
7337 {
7338 event->ws.value.related_pid = read_ptid (++p1, &p);
7339 event->ws.kind = TARGET_WAITKIND_FORKED;
7340 }
7341 else if (strprefix (p, p1, "vfork"))
7342 {
7343 event->ws.value.related_pid = read_ptid (++p1, &p);
7344 event->ws.kind = TARGET_WAITKIND_VFORKED;
7345 }
7346 else if (strprefix (p, p1, "vforkdone"))
7347 {
7348 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7349 p = strchrnul (p1 + 1, ';');
7350 }
7351 else if (strprefix (p, p1, "exec"))
7352 {
7353 ULONGEST ignored;
7354 int pathlen;
7355
7356 /* Determine the length of the execd pathname. */
7357 p = unpack_varlen_hex (++p1, &ignored);
7358 pathlen = (p - p1) / 2;
7359
7360 /* Save the pathname for event reporting and for
7361 the next run command. */
7362 gdb::unique_xmalloc_ptr<char[]> pathname
7363 ((char *) xmalloc (pathlen + 1));
7364 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7365 pathname[pathlen] = '\0';
7366
7367 /* This is freed during event handling. */
7368 event->ws.value.execd_pathname = pathname.release ();
7369 event->ws.kind = TARGET_WAITKIND_EXECD;
7370
7371 /* Skip the registers included in this packet, since
7372 they may be for an architecture different from the
7373 one used by the original program. */
7374 skipregs = 1;
7375 }
7376 else if (strprefix (p, p1, "create"))
7377 {
7378 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7379 p = strchrnul (p1 + 1, ';');
7380 }
7381 else
7382 {
7383 ULONGEST pnum;
7384 const char *p_temp;
7385
7386 if (skipregs)
7387 {
7388 p = strchrnul (p1 + 1, ';');
7389 p++;
7390 continue;
7391 }
7392
7393 /* Maybe a real ``P'' register number. */
7394 p_temp = unpack_varlen_hex (p, &pnum);
7395 /* If the first invalid character is the colon, we got a
7396 register number. Otherwise, it's an unknown stop
7397 reason. */
7398 if (p_temp == p1)
7399 {
7400 /* If we haven't parsed the event's thread yet, find
7401 it now, in order to find the architecture of the
7402 reported expedited registers. */
7403 if (event->ptid == null_ptid)
7404 {
7405 /* If there is no thread-id information then leave
7406 the event->ptid as null_ptid. Later in
7407 process_stop_reply we will pick a suitable
7408 thread. */
7409 const char *thr = strstr (p1 + 1, ";thread:");
7410 if (thr != NULL)
7411 event->ptid = read_ptid (thr + strlen (";thread:"),
7412 NULL);
7413 }
7414
7415 if (rsa == NULL)
7416 {
7417 inferior *inf
7418 = (event->ptid == null_ptid
7419 ? NULL
7420 : find_inferior_ptid (this, event->ptid));
7421 /* If this is the first time we learn anything
7422 about this process, skip the registers
7423 included in this packet, since we don't yet
7424 know which architecture to use to parse them.
7425 We'll determine the architecture later when
7426 we process the stop reply and retrieve the
7427 target description, via
7428 remote_notice_new_inferior ->
7429 post_create_inferior. */
7430 if (inf == NULL)
7431 {
7432 p = strchrnul (p1 + 1, ';');
7433 p++;
7434 continue;
7435 }
7436
7437 event->arch = inf->gdbarch;
7438 rsa = event->rs->get_remote_arch_state (event->arch);
7439 }
7440
7441 packet_reg *reg
7442 = packet_reg_from_pnum (event->arch, rsa, pnum);
7443 cached_reg_t cached_reg;
7444
7445 if (reg == NULL)
7446 error (_("Remote sent bad register number %s: %s\n\
7447 Packet: '%s'\n"),
7448 hex_string (pnum), p, buf);
7449
7450 cached_reg.num = reg->regnum;
7451 cached_reg.data = (gdb_byte *)
7452 xmalloc (register_size (event->arch, reg->regnum));
7453
7454 p = p1 + 1;
7455 fieldsize = hex2bin (p, cached_reg.data,
7456 register_size (event->arch, reg->regnum));
7457 p += 2 * fieldsize;
7458 if (fieldsize < register_size (event->arch, reg->regnum))
7459 warning (_("Remote reply is too short: %s"), buf);
7460
7461 event->regcache.push_back (cached_reg);
7462 }
7463 else
7464 {
7465 /* Not a number. Silently skip unknown optional
7466 info. */
7467 p = strchrnul (p1 + 1, ';');
7468 }
7469 }
7470
7471 if (*p != ';')
7472 error (_("Remote register badly formatted: %s\nhere: %s"),
7473 buf, p);
7474 ++p;
7475 }
7476
7477 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7478 break;
7479
7480 /* fall through */
7481 case 'S': /* Old style status, just signal only. */
7482 {
7483 int sig;
7484
7485 event->ws.kind = TARGET_WAITKIND_STOPPED;
7486 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7487 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7488 event->ws.value.sig = (enum gdb_signal) sig;
7489 else
7490 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7491 }
7492 break;
7493 case 'w': /* Thread exited. */
7494 {
7495 ULONGEST value;
7496
7497 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7498 p = unpack_varlen_hex (&buf[1], &value);
7499 event->ws.value.integer = value;
7500 if (*p != ';')
7501 error (_("stop reply packet badly formatted: %s"), buf);
7502 event->ptid = read_ptid (++p, NULL);
7503 break;
7504 }
7505 case 'W': /* Target exited. */
7506 case 'X':
7507 {
7508 ULONGEST value;
7509
7510 /* GDB used to accept only 2 hex chars here. Stubs should
7511 only send more if they detect GDB supports multi-process
7512 support. */
7513 p = unpack_varlen_hex (&buf[1], &value);
7514
7515 if (buf[0] == 'W')
7516 {
7517 /* The remote process exited. */
7518 event->ws.kind = TARGET_WAITKIND_EXITED;
7519 event->ws.value.integer = value;
7520 }
7521 else
7522 {
7523 /* The remote process exited with a signal. */
7524 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7525 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7526 event->ws.value.sig = (enum gdb_signal) value;
7527 else
7528 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7529 }
7530
7531 /* If no process is specified, return null_ptid, and let the
7532 caller figure out the right process to use. */
7533 int pid = 0;
7534 if (*p == '\0')
7535 ;
7536 else if (*p == ';')
7537 {
7538 p++;
7539
7540 if (*p == '\0')
7541 ;
7542 else if (startswith (p, "process:"))
7543 {
7544 ULONGEST upid;
7545
7546 p += sizeof ("process:") - 1;
7547 unpack_varlen_hex (p, &upid);
7548 pid = upid;
7549 }
7550 else
7551 error (_("unknown stop reply packet: %s"), buf);
7552 }
7553 else
7554 error (_("unknown stop reply packet: %s"), buf);
7555 event->ptid = ptid_t (pid);
7556 }
7557 break;
7558 case 'N':
7559 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7560 event->ptid = minus_one_ptid;
7561 break;
7562 }
7563
7564 if (target_is_non_stop_p () && event->ptid == null_ptid)
7565 error (_("No process or thread specified in stop reply: %s"), buf);
7566 }
7567
7568 /* When the stub wants to tell GDB about a new notification reply, it
7569 sends a notification (%Stop, for example). Those can come it at
7570 any time, hence, we have to make sure that any pending
7571 putpkt/getpkt sequence we're making is finished, before querying
7572 the stub for more events with the corresponding ack command
7573 (vStopped, for example). E.g., if we started a vStopped sequence
7574 immediately upon receiving the notification, something like this
7575 could happen:
7576
7577 1.1) --> Hg 1
7578 1.2) <-- OK
7579 1.3) --> g
7580 1.4) <-- %Stop
7581 1.5) --> vStopped
7582 1.6) <-- (registers reply to step #1.3)
7583
7584 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7585 query.
7586
7587 To solve this, whenever we parse a %Stop notification successfully,
7588 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7589 doing whatever we were doing:
7590
7591 2.1) --> Hg 1
7592 2.2) <-- OK
7593 2.3) --> g
7594 2.4) <-- %Stop
7595 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7596 2.5) <-- (registers reply to step #2.3)
7597
7598 Eventually after step #2.5, we return to the event loop, which
7599 notices there's an event on the
7600 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7601 associated callback --- the function below. At this point, we're
7602 always safe to start a vStopped sequence. :
7603
7604 2.6) --> vStopped
7605 2.7) <-- T05 thread:2
7606 2.8) --> vStopped
7607 2.9) --> OK
7608 */
7609
7610 void
7611 remote_target::remote_notif_get_pending_events (notif_client *nc)
7612 {
7613 struct remote_state *rs = get_remote_state ();
7614
7615 if (rs->notif_state->pending_event[nc->id] != NULL)
7616 {
7617 if (notif_debug)
7618 fprintf_unfiltered (gdb_stdlog,
7619 "notif: process: '%s' ack pending event\n",
7620 nc->name);
7621
7622 /* acknowledge */
7623 nc->ack (this, nc, rs->buf.data (),
7624 rs->notif_state->pending_event[nc->id]);
7625 rs->notif_state->pending_event[nc->id] = NULL;
7626
7627 while (1)
7628 {
7629 getpkt (&rs->buf, 0);
7630 if (strcmp (rs->buf.data (), "OK") == 0)
7631 break;
7632 else
7633 remote_notif_ack (this, nc, rs->buf.data ());
7634 }
7635 }
7636 else
7637 {
7638 if (notif_debug)
7639 fprintf_unfiltered (gdb_stdlog,
7640 "notif: process: '%s' no pending reply\n",
7641 nc->name);
7642 }
7643 }
7644
7645 /* Wrapper around remote_target::remote_notif_get_pending_events to
7646 avoid having to export the whole remote_target class. */
7647
7648 void
7649 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7650 {
7651 remote->remote_notif_get_pending_events (nc);
7652 }
7653
7654 /* Called when it is decided that STOP_REPLY holds the info of the
7655 event that is to be returned to the core. This function always
7656 destroys STOP_REPLY. */
7657
7658 ptid_t
7659 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7660 struct target_waitstatus *status)
7661 {
7662 ptid_t ptid;
7663
7664 *status = stop_reply->ws;
7665 ptid = stop_reply->ptid;
7666
7667 /* If no thread/process was reported by the stub then use the first
7668 non-exited thread in the current target. */
7669 if (ptid == null_ptid)
7670 {
7671 /* Some stop events apply to all threads in an inferior, while others
7672 only apply to a single thread. */
7673 bool is_stop_for_all_threads
7674 = (status->kind == TARGET_WAITKIND_EXITED
7675 || status->kind == TARGET_WAITKIND_SIGNALLED);
7676
7677 for (thread_info *thr : all_non_exited_threads (this))
7678 {
7679 if (ptid != null_ptid
7680 && (!is_stop_for_all_threads
7681 || ptid.pid () != thr->ptid.pid ()))
7682 {
7683 static bool warned = false;
7684
7685 if (!warned)
7686 {
7687 /* If you are seeing this warning then the remote target
7688 has stopped without specifying a thread-id, but the
7689 target does have multiple threads (or inferiors), and
7690 so GDB is having to guess which thread stopped.
7691
7692 Examples of what might cause this are the target
7693 sending and 'S' stop packet, or a 'T' stop packet and
7694 not including a thread-id.
7695
7696 Additionally, the target might send a 'W' or 'X
7697 packet without including a process-id, when the target
7698 has multiple running inferiors. */
7699 if (is_stop_for_all_threads)
7700 warning (_("multi-inferior target stopped without "
7701 "sending a process-id, using first "
7702 "non-exited inferior"));
7703 else
7704 warning (_("multi-threaded target stopped without "
7705 "sending a thread-id, using first "
7706 "non-exited thread"));
7707 warned = true;
7708 }
7709 break;
7710 }
7711
7712 /* If this is a stop for all threads then don't use a particular
7713 threads ptid, instead create a new ptid where only the pid
7714 field is set. */
7715 if (is_stop_for_all_threads)
7716 ptid = ptid_t (thr->ptid.pid ());
7717 else
7718 ptid = thr->ptid;
7719 }
7720 gdb_assert (ptid != null_ptid);
7721 }
7722
7723 if (status->kind != TARGET_WAITKIND_EXITED
7724 && status->kind != TARGET_WAITKIND_SIGNALLED
7725 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7726 {
7727 /* Expedited registers. */
7728 if (!stop_reply->regcache.empty ())
7729 {
7730 struct regcache *regcache
7731 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
7732
7733 for (cached_reg_t &reg : stop_reply->regcache)
7734 {
7735 regcache->raw_supply (reg.num, reg.data);
7736 xfree (reg.data);
7737 }
7738
7739 stop_reply->regcache.clear ();
7740 }
7741
7742 remote_notice_new_inferior (ptid, 0);
7743 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
7744 remote_thr->core = stop_reply->core;
7745 remote_thr->stop_reason = stop_reply->stop_reason;
7746 remote_thr->watch_data_address = stop_reply->watch_data_address;
7747 remote_thr->vcont_resumed = 0;
7748 }
7749
7750 delete stop_reply;
7751 return ptid;
7752 }
7753
7754 /* The non-stop mode version of target_wait. */
7755
7756 ptid_t
7757 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7758 {
7759 struct remote_state *rs = get_remote_state ();
7760 struct stop_reply *stop_reply;
7761 int ret;
7762 int is_notif = 0;
7763
7764 /* If in non-stop mode, get out of getpkt even if a
7765 notification is received. */
7766
7767 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7768 while (1)
7769 {
7770 if (ret != -1 && !is_notif)
7771 switch (rs->buf[0])
7772 {
7773 case 'E': /* Error of some sort. */
7774 /* We're out of sync with the target now. Did it continue
7775 or not? We can't tell which thread it was in non-stop,
7776 so just ignore this. */
7777 warning (_("Remote failure reply: %s"), rs->buf.data ());
7778 break;
7779 case 'O': /* Console output. */
7780 remote_console_output (&rs->buf[1]);
7781 break;
7782 default:
7783 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7784 break;
7785 }
7786
7787 /* Acknowledge a pending stop reply that may have arrived in the
7788 mean time. */
7789 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7790 remote_notif_get_pending_events (&notif_client_stop);
7791
7792 /* If indeed we noticed a stop reply, we're done. */
7793 stop_reply = queued_stop_reply (ptid);
7794 if (stop_reply != NULL)
7795 return process_stop_reply (stop_reply, status);
7796
7797 /* Still no event. If we're just polling for an event, then
7798 return to the event loop. */
7799 if (options & TARGET_WNOHANG)
7800 {
7801 status->kind = TARGET_WAITKIND_IGNORE;
7802 return minus_one_ptid;
7803 }
7804
7805 /* Otherwise do a blocking wait. */
7806 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7807 }
7808 }
7809
7810 /* Return the first resumed thread. */
7811
7812 static ptid_t
7813 first_remote_resumed_thread (remote_target *target)
7814 {
7815 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
7816 if (tp->resumed)
7817 return tp->ptid;
7818 return null_ptid;
7819 }
7820
7821 /* Wait until the remote machine stops, then return, storing status in
7822 STATUS just as `wait' would. */
7823
7824 ptid_t
7825 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7826 {
7827 struct remote_state *rs = get_remote_state ();
7828 ptid_t event_ptid = null_ptid;
7829 char *buf;
7830 struct stop_reply *stop_reply;
7831
7832 again:
7833
7834 status->kind = TARGET_WAITKIND_IGNORE;
7835 status->value.integer = 0;
7836
7837 stop_reply = queued_stop_reply (ptid);
7838 if (stop_reply != NULL)
7839 return process_stop_reply (stop_reply, status);
7840
7841 if (rs->cached_wait_status)
7842 /* Use the cached wait status, but only once. */
7843 rs->cached_wait_status = 0;
7844 else
7845 {
7846 int ret;
7847 int is_notif;
7848 int forever = ((options & TARGET_WNOHANG) == 0
7849 && rs->wait_forever_enabled_p);
7850
7851 if (!rs->waiting_for_stop_reply)
7852 {
7853 status->kind = TARGET_WAITKIND_NO_RESUMED;
7854 return minus_one_ptid;
7855 }
7856
7857 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7858 _never_ wait for ever -> test on target_is_async_p().
7859 However, before we do that we need to ensure that the caller
7860 knows how to take the target into/out of async mode. */
7861 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7862
7863 /* GDB gets a notification. Return to core as this event is
7864 not interesting. */
7865 if (ret != -1 && is_notif)
7866 return minus_one_ptid;
7867
7868 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7869 return minus_one_ptid;
7870 }
7871
7872 buf = rs->buf.data ();
7873
7874 /* Assume that the target has acknowledged Ctrl-C unless we receive
7875 an 'F' or 'O' packet. */
7876 if (buf[0] != 'F' && buf[0] != 'O')
7877 rs->ctrlc_pending_p = 0;
7878
7879 switch (buf[0])
7880 {
7881 case 'E': /* Error of some sort. */
7882 /* We're out of sync with the target now. Did it continue or
7883 not? Not is more likely, so report a stop. */
7884 rs->waiting_for_stop_reply = 0;
7885
7886 warning (_("Remote failure reply: %s"), buf);
7887 status->kind = TARGET_WAITKIND_STOPPED;
7888 status->value.sig = GDB_SIGNAL_0;
7889 break;
7890 case 'F': /* File-I/O request. */
7891 /* GDB may access the inferior memory while handling the File-I/O
7892 request, but we don't want GDB accessing memory while waiting
7893 for a stop reply. See the comments in putpkt_binary. Set
7894 waiting_for_stop_reply to 0 temporarily. */
7895 rs->waiting_for_stop_reply = 0;
7896 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7897 rs->ctrlc_pending_p = 0;
7898 /* GDB handled the File-I/O request, and the target is running
7899 again. Keep waiting for events. */
7900 rs->waiting_for_stop_reply = 1;
7901 break;
7902 case 'N': case 'T': case 'S': case 'X': case 'W':
7903 {
7904 /* There is a stop reply to handle. */
7905 rs->waiting_for_stop_reply = 0;
7906
7907 stop_reply
7908 = (struct stop_reply *) remote_notif_parse (this,
7909 &notif_client_stop,
7910 rs->buf.data ());
7911
7912 event_ptid = process_stop_reply (stop_reply, status);
7913 break;
7914 }
7915 case 'O': /* Console output. */
7916 remote_console_output (buf + 1);
7917 break;
7918 case '\0':
7919 if (rs->last_sent_signal != GDB_SIGNAL_0)
7920 {
7921 /* Zero length reply means that we tried 'S' or 'C' and the
7922 remote system doesn't support it. */
7923 target_terminal::ours_for_output ();
7924 printf_filtered
7925 ("Can't send signals to this remote system. %s not sent.\n",
7926 gdb_signal_to_name (rs->last_sent_signal));
7927 rs->last_sent_signal = GDB_SIGNAL_0;
7928 target_terminal::inferior ();
7929
7930 strcpy (buf, rs->last_sent_step ? "s" : "c");
7931 putpkt (buf);
7932 break;
7933 }
7934 /* fallthrough */
7935 default:
7936 warning (_("Invalid remote reply: %s"), buf);
7937 break;
7938 }
7939
7940 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7941 return minus_one_ptid;
7942 else if (status->kind == TARGET_WAITKIND_IGNORE)
7943 {
7944 /* Nothing interesting happened. If we're doing a non-blocking
7945 poll, we're done. Otherwise, go back to waiting. */
7946 if (options & TARGET_WNOHANG)
7947 return minus_one_ptid;
7948 else
7949 goto again;
7950 }
7951 else if (status->kind != TARGET_WAITKIND_EXITED
7952 && status->kind != TARGET_WAITKIND_SIGNALLED)
7953 {
7954 if (event_ptid != null_ptid)
7955 record_currthread (rs, event_ptid);
7956 else
7957 event_ptid = first_remote_resumed_thread (this);
7958 }
7959 else
7960 {
7961 /* A process exit. Invalidate our notion of current thread. */
7962 record_currthread (rs, minus_one_ptid);
7963 /* It's possible that the packet did not include a pid. */
7964 if (event_ptid == null_ptid)
7965 event_ptid = first_remote_resumed_thread (this);
7966 /* EVENT_PTID could still be NULL_PTID. Double-check. */
7967 if (event_ptid == null_ptid)
7968 event_ptid = magic_null_ptid;
7969 }
7970
7971 return event_ptid;
7972 }
7973
7974 /* Wait until the remote machine stops, then return, storing status in
7975 STATUS just as `wait' would. */
7976
7977 ptid_t
7978 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7979 {
7980 ptid_t event_ptid;
7981
7982 if (target_is_non_stop_p ())
7983 event_ptid = wait_ns (ptid, status, options);
7984 else
7985 event_ptid = wait_as (ptid, status, options);
7986
7987 if (target_is_async_p ())
7988 {
7989 remote_state *rs = get_remote_state ();
7990
7991 /* If there are are events left in the queue tell the event loop
7992 to return here. */
7993 if (!rs->stop_reply_queue.empty ())
7994 mark_async_event_handler (rs->remote_async_inferior_event_token);
7995 }
7996
7997 return event_ptid;
7998 }
7999
8000 /* Fetch a single register using a 'p' packet. */
8001
8002 int
8003 remote_target::fetch_register_using_p (struct regcache *regcache,
8004 packet_reg *reg)
8005 {
8006 struct gdbarch *gdbarch = regcache->arch ();
8007 struct remote_state *rs = get_remote_state ();
8008 char *buf, *p;
8009 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8010 int i;
8011
8012 if (packet_support (PACKET_p) == PACKET_DISABLE)
8013 return 0;
8014
8015 if (reg->pnum == -1)
8016 return 0;
8017
8018 p = rs->buf.data ();
8019 *p++ = 'p';
8020 p += hexnumstr (p, reg->pnum);
8021 *p++ = '\0';
8022 putpkt (rs->buf);
8023 getpkt (&rs->buf, 0);
8024
8025 buf = rs->buf.data ();
8026
8027 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8028 {
8029 case PACKET_OK:
8030 break;
8031 case PACKET_UNKNOWN:
8032 return 0;
8033 case PACKET_ERROR:
8034 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8035 gdbarch_register_name (regcache->arch (),
8036 reg->regnum),
8037 buf);
8038 }
8039
8040 /* If this register is unfetchable, tell the regcache. */
8041 if (buf[0] == 'x')
8042 {
8043 regcache->raw_supply (reg->regnum, NULL);
8044 return 1;
8045 }
8046
8047 /* Otherwise, parse and supply the value. */
8048 p = buf;
8049 i = 0;
8050 while (p[0] != 0)
8051 {
8052 if (p[1] == 0)
8053 error (_("fetch_register_using_p: early buf termination"));
8054
8055 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8056 p += 2;
8057 }
8058 regcache->raw_supply (reg->regnum, regp);
8059 return 1;
8060 }
8061
8062 /* Fetch the registers included in the target's 'g' packet. */
8063
8064 int
8065 remote_target::send_g_packet ()
8066 {
8067 struct remote_state *rs = get_remote_state ();
8068 int buf_len;
8069
8070 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8071 putpkt (rs->buf);
8072 getpkt (&rs->buf, 0);
8073 if (packet_check_result (rs->buf) == PACKET_ERROR)
8074 error (_("Could not read registers; remote failure reply '%s'"),
8075 rs->buf.data ());
8076
8077 /* We can get out of synch in various cases. If the first character
8078 in the buffer is not a hex character, assume that has happened
8079 and try to fetch another packet to read. */
8080 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8081 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8082 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8083 && rs->buf[0] != 'x') /* New: unavailable register value. */
8084 {
8085 if (remote_debug)
8086 fprintf_unfiltered (gdb_stdlog,
8087 "Bad register packet; fetching a new packet\n");
8088 getpkt (&rs->buf, 0);
8089 }
8090
8091 buf_len = strlen (rs->buf.data ());
8092
8093 /* Sanity check the received packet. */
8094 if (buf_len % 2 != 0)
8095 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8096
8097 return buf_len / 2;
8098 }
8099
8100 void
8101 remote_target::process_g_packet (struct regcache *regcache)
8102 {
8103 struct gdbarch *gdbarch = regcache->arch ();
8104 struct remote_state *rs = get_remote_state ();
8105 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8106 int i, buf_len;
8107 char *p;
8108 char *regs;
8109
8110 buf_len = strlen (rs->buf.data ());
8111
8112 /* Further sanity checks, with knowledge of the architecture. */
8113 if (buf_len > 2 * rsa->sizeof_g_packet)
8114 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8115 "bytes): %s"),
8116 rsa->sizeof_g_packet, buf_len / 2,
8117 rs->buf.data ());
8118
8119 /* Save the size of the packet sent to us by the target. It is used
8120 as a heuristic when determining the max size of packets that the
8121 target can safely receive. */
8122 if (rsa->actual_register_packet_size == 0)
8123 rsa->actual_register_packet_size = buf_len;
8124
8125 /* If this is smaller than we guessed the 'g' packet would be,
8126 update our records. A 'g' reply that doesn't include a register's
8127 value implies either that the register is not available, or that
8128 the 'p' packet must be used. */
8129 if (buf_len < 2 * rsa->sizeof_g_packet)
8130 {
8131 long sizeof_g_packet = buf_len / 2;
8132
8133 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8134 {
8135 long offset = rsa->regs[i].offset;
8136 long reg_size = register_size (gdbarch, i);
8137
8138 if (rsa->regs[i].pnum == -1)
8139 continue;
8140
8141 if (offset >= sizeof_g_packet)
8142 rsa->regs[i].in_g_packet = 0;
8143 else if (offset + reg_size > sizeof_g_packet)
8144 error (_("Truncated register %d in remote 'g' packet"), i);
8145 else
8146 rsa->regs[i].in_g_packet = 1;
8147 }
8148
8149 /* Looks valid enough, we can assume this is the correct length
8150 for a 'g' packet. It's important not to adjust
8151 rsa->sizeof_g_packet if we have truncated registers otherwise
8152 this "if" won't be run the next time the method is called
8153 with a packet of the same size and one of the internal errors
8154 below will trigger instead. */
8155 rsa->sizeof_g_packet = sizeof_g_packet;
8156 }
8157
8158 regs = (char *) alloca (rsa->sizeof_g_packet);
8159
8160 /* Unimplemented registers read as all bits zero. */
8161 memset (regs, 0, rsa->sizeof_g_packet);
8162
8163 /* Reply describes registers byte by byte, each byte encoded as two
8164 hex characters. Suck them all up, then supply them to the
8165 register cacheing/storage mechanism. */
8166
8167 p = rs->buf.data ();
8168 for (i = 0; i < rsa->sizeof_g_packet; i++)
8169 {
8170 if (p[0] == 0 || p[1] == 0)
8171 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8172 internal_error (__FILE__, __LINE__,
8173 _("unexpected end of 'g' packet reply"));
8174
8175 if (p[0] == 'x' && p[1] == 'x')
8176 regs[i] = 0; /* 'x' */
8177 else
8178 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8179 p += 2;
8180 }
8181
8182 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8183 {
8184 struct packet_reg *r = &rsa->regs[i];
8185 long reg_size = register_size (gdbarch, i);
8186
8187 if (r->in_g_packet)
8188 {
8189 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8190 /* This shouldn't happen - we adjusted in_g_packet above. */
8191 internal_error (__FILE__, __LINE__,
8192 _("unexpected end of 'g' packet reply"));
8193 else if (rs->buf[r->offset * 2] == 'x')
8194 {
8195 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8196 /* The register isn't available, mark it as such (at
8197 the same time setting the value to zero). */
8198 regcache->raw_supply (r->regnum, NULL);
8199 }
8200 else
8201 regcache->raw_supply (r->regnum, regs + r->offset);
8202 }
8203 }
8204 }
8205
8206 void
8207 remote_target::fetch_registers_using_g (struct regcache *regcache)
8208 {
8209 send_g_packet ();
8210 process_g_packet (regcache);
8211 }
8212
8213 /* Make the remote selected traceframe match GDB's selected
8214 traceframe. */
8215
8216 void
8217 remote_target::set_remote_traceframe ()
8218 {
8219 int newnum;
8220 struct remote_state *rs = get_remote_state ();
8221
8222 if (rs->remote_traceframe_number == get_traceframe_number ())
8223 return;
8224
8225 /* Avoid recursion, remote_trace_find calls us again. */
8226 rs->remote_traceframe_number = get_traceframe_number ();
8227
8228 newnum = target_trace_find (tfind_number,
8229 get_traceframe_number (), 0, 0, NULL);
8230
8231 /* Should not happen. If it does, all bets are off. */
8232 if (newnum != get_traceframe_number ())
8233 warning (_("could not set remote traceframe"));
8234 }
8235
8236 void
8237 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8238 {
8239 struct gdbarch *gdbarch = regcache->arch ();
8240 struct remote_state *rs = get_remote_state ();
8241 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8242 int i;
8243
8244 set_remote_traceframe ();
8245 set_general_thread (regcache->ptid ());
8246
8247 if (regnum >= 0)
8248 {
8249 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8250
8251 gdb_assert (reg != NULL);
8252
8253 /* If this register might be in the 'g' packet, try that first -
8254 we are likely to read more than one register. If this is the
8255 first 'g' packet, we might be overly optimistic about its
8256 contents, so fall back to 'p'. */
8257 if (reg->in_g_packet)
8258 {
8259 fetch_registers_using_g (regcache);
8260 if (reg->in_g_packet)
8261 return;
8262 }
8263
8264 if (fetch_register_using_p (regcache, reg))
8265 return;
8266
8267 /* This register is not available. */
8268 regcache->raw_supply (reg->regnum, NULL);
8269
8270 return;
8271 }
8272
8273 fetch_registers_using_g (regcache);
8274
8275 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8276 if (!rsa->regs[i].in_g_packet)
8277 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8278 {
8279 /* This register is not available. */
8280 regcache->raw_supply (i, NULL);
8281 }
8282 }
8283
8284 /* Prepare to store registers. Since we may send them all (using a
8285 'G' request), we have to read out the ones we don't want to change
8286 first. */
8287
8288 void
8289 remote_target::prepare_to_store (struct regcache *regcache)
8290 {
8291 struct remote_state *rs = get_remote_state ();
8292 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8293 int i;
8294
8295 /* Make sure the entire registers array is valid. */
8296 switch (packet_support (PACKET_P))
8297 {
8298 case PACKET_DISABLE:
8299 case PACKET_SUPPORT_UNKNOWN:
8300 /* Make sure all the necessary registers are cached. */
8301 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8302 if (rsa->regs[i].in_g_packet)
8303 regcache->raw_update (rsa->regs[i].regnum);
8304 break;
8305 case PACKET_ENABLE:
8306 break;
8307 }
8308 }
8309
8310 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8311 packet was not recognized. */
8312
8313 int
8314 remote_target::store_register_using_P (const struct regcache *regcache,
8315 packet_reg *reg)
8316 {
8317 struct gdbarch *gdbarch = regcache->arch ();
8318 struct remote_state *rs = get_remote_state ();
8319 /* Try storing a single register. */
8320 char *buf = rs->buf.data ();
8321 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8322 char *p;
8323
8324 if (packet_support (PACKET_P) == PACKET_DISABLE)
8325 return 0;
8326
8327 if (reg->pnum == -1)
8328 return 0;
8329
8330 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8331 p = buf + strlen (buf);
8332 regcache->raw_collect (reg->regnum, regp);
8333 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8334 putpkt (rs->buf);
8335 getpkt (&rs->buf, 0);
8336
8337 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8338 {
8339 case PACKET_OK:
8340 return 1;
8341 case PACKET_ERROR:
8342 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8343 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8344 case PACKET_UNKNOWN:
8345 return 0;
8346 default:
8347 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8348 }
8349 }
8350
8351 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8352 contents of the register cache buffer. FIXME: ignores errors. */
8353
8354 void
8355 remote_target::store_registers_using_G (const struct regcache *regcache)
8356 {
8357 struct remote_state *rs = get_remote_state ();
8358 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8359 gdb_byte *regs;
8360 char *p;
8361
8362 /* Extract all the registers in the regcache copying them into a
8363 local buffer. */
8364 {
8365 int i;
8366
8367 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8368 memset (regs, 0, rsa->sizeof_g_packet);
8369 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8370 {
8371 struct packet_reg *r = &rsa->regs[i];
8372
8373 if (r->in_g_packet)
8374 regcache->raw_collect (r->regnum, regs + r->offset);
8375 }
8376 }
8377
8378 /* Command describes registers byte by byte,
8379 each byte encoded as two hex characters. */
8380 p = rs->buf.data ();
8381 *p++ = 'G';
8382 bin2hex (regs, p, rsa->sizeof_g_packet);
8383 putpkt (rs->buf);
8384 getpkt (&rs->buf, 0);
8385 if (packet_check_result (rs->buf) == PACKET_ERROR)
8386 error (_("Could not write registers; remote failure reply '%s'"),
8387 rs->buf.data ());
8388 }
8389
8390 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8391 of the register cache buffer. FIXME: ignores errors. */
8392
8393 void
8394 remote_target::store_registers (struct regcache *regcache, int regnum)
8395 {
8396 struct gdbarch *gdbarch = regcache->arch ();
8397 struct remote_state *rs = get_remote_state ();
8398 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8399 int i;
8400
8401 set_remote_traceframe ();
8402 set_general_thread (regcache->ptid ());
8403
8404 if (regnum >= 0)
8405 {
8406 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8407
8408 gdb_assert (reg != NULL);
8409
8410 /* Always prefer to store registers using the 'P' packet if
8411 possible; we often change only a small number of registers.
8412 Sometimes we change a larger number; we'd need help from a
8413 higher layer to know to use 'G'. */
8414 if (store_register_using_P (regcache, reg))
8415 return;
8416
8417 /* For now, don't complain if we have no way to write the
8418 register. GDB loses track of unavailable registers too
8419 easily. Some day, this may be an error. We don't have
8420 any way to read the register, either... */
8421 if (!reg->in_g_packet)
8422 return;
8423
8424 store_registers_using_G (regcache);
8425 return;
8426 }
8427
8428 store_registers_using_G (regcache);
8429
8430 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8431 if (!rsa->regs[i].in_g_packet)
8432 if (!store_register_using_P (regcache, &rsa->regs[i]))
8433 /* See above for why we do not issue an error here. */
8434 continue;
8435 }
8436 \f
8437
8438 /* Return the number of hex digits in num. */
8439
8440 static int
8441 hexnumlen (ULONGEST num)
8442 {
8443 int i;
8444
8445 for (i = 0; num != 0; i++)
8446 num >>= 4;
8447
8448 return std::max (i, 1);
8449 }
8450
8451 /* Set BUF to the minimum number of hex digits representing NUM. */
8452
8453 static int
8454 hexnumstr (char *buf, ULONGEST num)
8455 {
8456 int len = hexnumlen (num);
8457
8458 return hexnumnstr (buf, num, len);
8459 }
8460
8461
8462 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8463
8464 static int
8465 hexnumnstr (char *buf, ULONGEST num, int width)
8466 {
8467 int i;
8468
8469 buf[width] = '\0';
8470
8471 for (i = width - 1; i >= 0; i--)
8472 {
8473 buf[i] = "0123456789abcdef"[(num & 0xf)];
8474 num >>= 4;
8475 }
8476
8477 return width;
8478 }
8479
8480 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8481
8482 static CORE_ADDR
8483 remote_address_masked (CORE_ADDR addr)
8484 {
8485 unsigned int address_size = remote_address_size;
8486
8487 /* If "remoteaddresssize" was not set, default to target address size. */
8488 if (!address_size)
8489 address_size = gdbarch_addr_bit (target_gdbarch ());
8490
8491 if (address_size > 0
8492 && address_size < (sizeof (ULONGEST) * 8))
8493 {
8494 /* Only create a mask when that mask can safely be constructed
8495 in a ULONGEST variable. */
8496 ULONGEST mask = 1;
8497
8498 mask = (mask << address_size) - 1;
8499 addr &= mask;
8500 }
8501 return addr;
8502 }
8503
8504 /* Determine whether the remote target supports binary downloading.
8505 This is accomplished by sending a no-op memory write of zero length
8506 to the target at the specified address. It does not suffice to send
8507 the whole packet, since many stubs strip the eighth bit and
8508 subsequently compute a wrong checksum, which causes real havoc with
8509 remote_write_bytes.
8510
8511 NOTE: This can still lose if the serial line is not eight-bit
8512 clean. In cases like this, the user should clear "remote
8513 X-packet". */
8514
8515 void
8516 remote_target::check_binary_download (CORE_ADDR addr)
8517 {
8518 struct remote_state *rs = get_remote_state ();
8519
8520 switch (packet_support (PACKET_X))
8521 {
8522 case PACKET_DISABLE:
8523 break;
8524 case PACKET_ENABLE:
8525 break;
8526 case PACKET_SUPPORT_UNKNOWN:
8527 {
8528 char *p;
8529
8530 p = rs->buf.data ();
8531 *p++ = 'X';
8532 p += hexnumstr (p, (ULONGEST) addr);
8533 *p++ = ',';
8534 p += hexnumstr (p, (ULONGEST) 0);
8535 *p++ = ':';
8536 *p = '\0';
8537
8538 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8539 getpkt (&rs->buf, 0);
8540
8541 if (rs->buf[0] == '\0')
8542 {
8543 if (remote_debug)
8544 fprintf_unfiltered (gdb_stdlog,
8545 "binary downloading NOT "
8546 "supported by target\n");
8547 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8548 }
8549 else
8550 {
8551 if (remote_debug)
8552 fprintf_unfiltered (gdb_stdlog,
8553 "binary downloading supported by target\n");
8554 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8555 }
8556 break;
8557 }
8558 }
8559 }
8560
8561 /* Helper function to resize the payload in order to try to get a good
8562 alignment. We try to write an amount of data such that the next write will
8563 start on an address aligned on REMOTE_ALIGN_WRITES. */
8564
8565 static int
8566 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8567 {
8568 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8569 }
8570
8571 /* Write memory data directly to the remote machine.
8572 This does not inform the data cache; the data cache uses this.
8573 HEADER is the starting part of the packet.
8574 MEMADDR is the address in the remote memory space.
8575 MYADDR is the address of the buffer in our space.
8576 LEN_UNITS is the number of addressable units to write.
8577 UNIT_SIZE is the length in bytes of an addressable unit.
8578 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8579 should send data as binary ('X'), or hex-encoded ('M').
8580
8581 The function creates packet of the form
8582 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8583
8584 where encoding of <DATA> is terminated by PACKET_FORMAT.
8585
8586 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8587 are omitted.
8588
8589 Return the transferred status, error or OK (an
8590 'enum target_xfer_status' value). Save the number of addressable units
8591 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8592
8593 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8594 exchange between gdb and the stub could look like (?? in place of the
8595 checksum):
8596
8597 -> $m1000,4#??
8598 <- aaaabbbbccccdddd
8599
8600 -> $M1000,3:eeeeffffeeee#??
8601 <- OK
8602
8603 -> $m1000,4#??
8604 <- eeeeffffeeeedddd */
8605
8606 target_xfer_status
8607 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8608 const gdb_byte *myaddr,
8609 ULONGEST len_units,
8610 int unit_size,
8611 ULONGEST *xfered_len_units,
8612 char packet_format, int use_length)
8613 {
8614 struct remote_state *rs = get_remote_state ();
8615 char *p;
8616 char *plen = NULL;
8617 int plenlen = 0;
8618 int todo_units;
8619 int units_written;
8620 int payload_capacity_bytes;
8621 int payload_length_bytes;
8622
8623 if (packet_format != 'X' && packet_format != 'M')
8624 internal_error (__FILE__, __LINE__,
8625 _("remote_write_bytes_aux: bad packet format"));
8626
8627 if (len_units == 0)
8628 return TARGET_XFER_EOF;
8629
8630 payload_capacity_bytes = get_memory_write_packet_size ();
8631
8632 /* The packet buffer will be large enough for the payload;
8633 get_memory_packet_size ensures this. */
8634 rs->buf[0] = '\0';
8635
8636 /* Compute the size of the actual payload by subtracting out the
8637 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8638
8639 payload_capacity_bytes -= strlen ("$,:#NN");
8640 if (!use_length)
8641 /* The comma won't be used. */
8642 payload_capacity_bytes += 1;
8643 payload_capacity_bytes -= strlen (header);
8644 payload_capacity_bytes -= hexnumlen (memaddr);
8645
8646 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8647
8648 strcat (rs->buf.data (), header);
8649 p = rs->buf.data () + strlen (header);
8650
8651 /* Compute a best guess of the number of bytes actually transfered. */
8652 if (packet_format == 'X')
8653 {
8654 /* Best guess at number of bytes that will fit. */
8655 todo_units = std::min (len_units,
8656 (ULONGEST) payload_capacity_bytes / unit_size);
8657 if (use_length)
8658 payload_capacity_bytes -= hexnumlen (todo_units);
8659 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8660 }
8661 else
8662 {
8663 /* Number of bytes that will fit. */
8664 todo_units
8665 = std::min (len_units,
8666 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8667 if (use_length)
8668 payload_capacity_bytes -= hexnumlen (todo_units);
8669 todo_units = std::min (todo_units,
8670 (payload_capacity_bytes / unit_size) / 2);
8671 }
8672
8673 if (todo_units <= 0)
8674 internal_error (__FILE__, __LINE__,
8675 _("minimum packet size too small to write data"));
8676
8677 /* If we already need another packet, then try to align the end
8678 of this packet to a useful boundary. */
8679 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8680 todo_units = align_for_efficient_write (todo_units, memaddr);
8681
8682 /* Append "<memaddr>". */
8683 memaddr = remote_address_masked (memaddr);
8684 p += hexnumstr (p, (ULONGEST) memaddr);
8685
8686 if (use_length)
8687 {
8688 /* Append ",". */
8689 *p++ = ',';
8690
8691 /* Append the length and retain its location and size. It may need to be
8692 adjusted once the packet body has been created. */
8693 plen = p;
8694 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8695 p += plenlen;
8696 }
8697
8698 /* Append ":". */
8699 *p++ = ':';
8700 *p = '\0';
8701
8702 /* Append the packet body. */
8703 if (packet_format == 'X')
8704 {
8705 /* Binary mode. Send target system values byte by byte, in
8706 increasing byte addresses. Only escape certain critical
8707 characters. */
8708 payload_length_bytes =
8709 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8710 &units_written, payload_capacity_bytes);
8711
8712 /* If not all TODO units fit, then we'll need another packet. Make
8713 a second try to keep the end of the packet aligned. Don't do
8714 this if the packet is tiny. */
8715 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8716 {
8717 int new_todo_units;
8718
8719 new_todo_units = align_for_efficient_write (units_written, memaddr);
8720
8721 if (new_todo_units != units_written)
8722 payload_length_bytes =
8723 remote_escape_output (myaddr, new_todo_units, unit_size,
8724 (gdb_byte *) p, &units_written,
8725 payload_capacity_bytes);
8726 }
8727
8728 p += payload_length_bytes;
8729 if (use_length && units_written < todo_units)
8730 {
8731 /* Escape chars have filled up the buffer prematurely,
8732 and we have actually sent fewer units than planned.
8733 Fix-up the length field of the packet. Use the same
8734 number of characters as before. */
8735 plen += hexnumnstr (plen, (ULONGEST) units_written,
8736 plenlen);
8737 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8738 }
8739 }
8740 else
8741 {
8742 /* Normal mode: Send target system values byte by byte, in
8743 increasing byte addresses. Each byte is encoded as a two hex
8744 value. */
8745 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8746 units_written = todo_units;
8747 }
8748
8749 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8750 getpkt (&rs->buf, 0);
8751
8752 if (rs->buf[0] == 'E')
8753 return TARGET_XFER_E_IO;
8754
8755 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8756 send fewer units than we'd planned. */
8757 *xfered_len_units = (ULONGEST) units_written;
8758 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8759 }
8760
8761 /* Write memory data directly to the remote machine.
8762 This does not inform the data cache; the data cache uses this.
8763 MEMADDR is the address in the remote memory space.
8764 MYADDR is the address of the buffer in our space.
8765 LEN is the number of bytes.
8766
8767 Return the transferred status, error or OK (an
8768 'enum target_xfer_status' value). Save the number of bytes
8769 transferred in *XFERED_LEN. Only transfer a single packet. */
8770
8771 target_xfer_status
8772 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8773 ULONGEST len, int unit_size,
8774 ULONGEST *xfered_len)
8775 {
8776 const char *packet_format = NULL;
8777
8778 /* Check whether the target supports binary download. */
8779 check_binary_download (memaddr);
8780
8781 switch (packet_support (PACKET_X))
8782 {
8783 case PACKET_ENABLE:
8784 packet_format = "X";
8785 break;
8786 case PACKET_DISABLE:
8787 packet_format = "M";
8788 break;
8789 case PACKET_SUPPORT_UNKNOWN:
8790 internal_error (__FILE__, __LINE__,
8791 _("remote_write_bytes: bad internal state"));
8792 default:
8793 internal_error (__FILE__, __LINE__, _("bad switch"));
8794 }
8795
8796 return remote_write_bytes_aux (packet_format,
8797 memaddr, myaddr, len, unit_size, xfered_len,
8798 packet_format[0], 1);
8799 }
8800
8801 /* Read memory data directly from the remote machine.
8802 This does not use the data cache; the data cache uses this.
8803 MEMADDR is the address in the remote memory space.
8804 MYADDR is the address of the buffer in our space.
8805 LEN_UNITS is the number of addressable memory units to read..
8806 UNIT_SIZE is the length in bytes of an addressable unit.
8807
8808 Return the transferred status, error or OK (an
8809 'enum target_xfer_status' value). Save the number of bytes
8810 transferred in *XFERED_LEN_UNITS.
8811
8812 See the comment of remote_write_bytes_aux for an example of
8813 memory read/write exchange between gdb and the stub. */
8814
8815 target_xfer_status
8816 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8817 ULONGEST len_units,
8818 int unit_size, ULONGEST *xfered_len_units)
8819 {
8820 struct remote_state *rs = get_remote_state ();
8821 int buf_size_bytes; /* Max size of packet output buffer. */
8822 char *p;
8823 int todo_units;
8824 int decoded_bytes;
8825
8826 buf_size_bytes = get_memory_read_packet_size ();
8827 /* The packet buffer will be large enough for the payload;
8828 get_memory_packet_size ensures this. */
8829
8830 /* Number of units that will fit. */
8831 todo_units = std::min (len_units,
8832 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8833
8834 /* Construct "m"<memaddr>","<len>". */
8835 memaddr = remote_address_masked (memaddr);
8836 p = rs->buf.data ();
8837 *p++ = 'm';
8838 p += hexnumstr (p, (ULONGEST) memaddr);
8839 *p++ = ',';
8840 p += hexnumstr (p, (ULONGEST) todo_units);
8841 *p = '\0';
8842 putpkt (rs->buf);
8843 getpkt (&rs->buf, 0);
8844 if (rs->buf[0] == 'E'
8845 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8846 && rs->buf[3] == '\0')
8847 return TARGET_XFER_E_IO;
8848 /* Reply describes memory byte by byte, each byte encoded as two hex
8849 characters. */
8850 p = rs->buf.data ();
8851 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8852 /* Return what we have. Let higher layers handle partial reads. */
8853 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8854 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8855 }
8856
8857 /* Using the set of read-only target sections of remote, read live
8858 read-only memory.
8859
8860 For interface/parameters/return description see target.h,
8861 to_xfer_partial. */
8862
8863 target_xfer_status
8864 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8865 ULONGEST memaddr,
8866 ULONGEST len,
8867 int unit_size,
8868 ULONGEST *xfered_len)
8869 {
8870 struct target_section *secp;
8871 struct target_section_table *table;
8872
8873 secp = target_section_by_addr (this, memaddr);
8874 if (secp != NULL
8875 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
8876 {
8877 struct target_section *p;
8878 ULONGEST memend = memaddr + len;
8879
8880 table = target_get_section_table (this);
8881
8882 for (p = table->sections; p < table->sections_end; p++)
8883 {
8884 if (memaddr >= p->addr)
8885 {
8886 if (memend <= p->endaddr)
8887 {
8888 /* Entire transfer is within this section. */
8889 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8890 xfered_len);
8891 }
8892 else if (memaddr >= p->endaddr)
8893 {
8894 /* This section ends before the transfer starts. */
8895 continue;
8896 }
8897 else
8898 {
8899 /* This section overlaps the transfer. Just do half. */
8900 len = p->endaddr - memaddr;
8901 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8902 xfered_len);
8903 }
8904 }
8905 }
8906 }
8907
8908 return TARGET_XFER_EOF;
8909 }
8910
8911 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8912 first if the requested memory is unavailable in traceframe.
8913 Otherwise, fall back to remote_read_bytes_1. */
8914
8915 target_xfer_status
8916 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8917 gdb_byte *myaddr, ULONGEST len, int unit_size,
8918 ULONGEST *xfered_len)
8919 {
8920 if (len == 0)
8921 return TARGET_XFER_EOF;
8922
8923 if (get_traceframe_number () != -1)
8924 {
8925 std::vector<mem_range> available;
8926
8927 /* If we fail to get the set of available memory, then the
8928 target does not support querying traceframe info, and so we
8929 attempt reading from the traceframe anyway (assuming the
8930 target implements the old QTro packet then). */
8931 if (traceframe_available_memory (&available, memaddr, len))
8932 {
8933 if (available.empty () || available[0].start != memaddr)
8934 {
8935 enum target_xfer_status res;
8936
8937 /* Don't read into the traceframe's available
8938 memory. */
8939 if (!available.empty ())
8940 {
8941 LONGEST oldlen = len;
8942
8943 len = available[0].start - memaddr;
8944 gdb_assert (len <= oldlen);
8945 }
8946
8947 /* This goes through the topmost target again. */
8948 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8949 len, unit_size, xfered_len);
8950 if (res == TARGET_XFER_OK)
8951 return TARGET_XFER_OK;
8952 else
8953 {
8954 /* No use trying further, we know some memory starting
8955 at MEMADDR isn't available. */
8956 *xfered_len = len;
8957 return (*xfered_len != 0) ?
8958 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8959 }
8960 }
8961
8962 /* Don't try to read more than how much is available, in
8963 case the target implements the deprecated QTro packet to
8964 cater for older GDBs (the target's knowledge of read-only
8965 sections may be outdated by now). */
8966 len = available[0].length;
8967 }
8968 }
8969
8970 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8971 }
8972
8973 \f
8974
8975 /* Sends a packet with content determined by the printf format string
8976 FORMAT and the remaining arguments, then gets the reply. Returns
8977 whether the packet was a success, a failure, or unknown. */
8978
8979 packet_result
8980 remote_target::remote_send_printf (const char *format, ...)
8981 {
8982 struct remote_state *rs = get_remote_state ();
8983 int max_size = get_remote_packet_size ();
8984 va_list ap;
8985
8986 va_start (ap, format);
8987
8988 rs->buf[0] = '\0';
8989 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8990
8991 va_end (ap);
8992
8993 if (size >= max_size)
8994 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8995
8996 if (putpkt (rs->buf) < 0)
8997 error (_("Communication problem with target."));
8998
8999 rs->buf[0] = '\0';
9000 getpkt (&rs->buf, 0);
9001
9002 return packet_check_result (rs->buf);
9003 }
9004
9005 /* Flash writing can take quite some time. We'll set
9006 effectively infinite timeout for flash operations.
9007 In future, we'll need to decide on a better approach. */
9008 static const int remote_flash_timeout = 1000;
9009
9010 void
9011 remote_target::flash_erase (ULONGEST address, LONGEST length)
9012 {
9013 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9014 enum packet_result ret;
9015 scoped_restore restore_timeout
9016 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9017
9018 ret = remote_send_printf ("vFlashErase:%s,%s",
9019 phex (address, addr_size),
9020 phex (length, 4));
9021 switch (ret)
9022 {
9023 case PACKET_UNKNOWN:
9024 error (_("Remote target does not support flash erase"));
9025 case PACKET_ERROR:
9026 error (_("Error erasing flash with vFlashErase packet"));
9027 default:
9028 break;
9029 }
9030 }
9031
9032 target_xfer_status
9033 remote_target::remote_flash_write (ULONGEST address,
9034 ULONGEST length, ULONGEST *xfered_len,
9035 const gdb_byte *data)
9036 {
9037 scoped_restore restore_timeout
9038 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9039 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9040 xfered_len,'X', 0);
9041 }
9042
9043 void
9044 remote_target::flash_done ()
9045 {
9046 int ret;
9047
9048 scoped_restore restore_timeout
9049 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9050
9051 ret = remote_send_printf ("vFlashDone");
9052
9053 switch (ret)
9054 {
9055 case PACKET_UNKNOWN:
9056 error (_("Remote target does not support vFlashDone"));
9057 case PACKET_ERROR:
9058 error (_("Error finishing flash operation"));
9059 default:
9060 break;
9061 }
9062 }
9063
9064 void
9065 remote_target::files_info ()
9066 {
9067 puts_filtered ("Debugging a target over a serial line.\n");
9068 }
9069 \f
9070 /* Stuff for dealing with the packets which are part of this protocol.
9071 See comment at top of file for details. */
9072
9073 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9074 error to higher layers. Called when a serial error is detected.
9075 The exception message is STRING, followed by a colon and a blank,
9076 the system error message for errno at function entry and final dot
9077 for output compatibility with throw_perror_with_name. */
9078
9079 static void
9080 unpush_and_perror (remote_target *target, const char *string)
9081 {
9082 int saved_errno = errno;
9083
9084 remote_unpush_target (target);
9085 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9086 safe_strerror (saved_errno));
9087 }
9088
9089 /* Read a single character from the remote end. The current quit
9090 handler is overridden to avoid quitting in the middle of packet
9091 sequence, as that would break communication with the remote server.
9092 See remote_serial_quit_handler for more detail. */
9093
9094 int
9095 remote_target::readchar (int timeout)
9096 {
9097 int ch;
9098 struct remote_state *rs = get_remote_state ();
9099
9100 {
9101 scoped_restore restore_quit_target
9102 = make_scoped_restore (&curr_quit_handler_target, this);
9103 scoped_restore restore_quit
9104 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9105
9106 rs->got_ctrlc_during_io = 0;
9107
9108 ch = serial_readchar (rs->remote_desc, timeout);
9109
9110 if (rs->got_ctrlc_during_io)
9111 set_quit_flag ();
9112 }
9113
9114 if (ch >= 0)
9115 return ch;
9116
9117 switch ((enum serial_rc) ch)
9118 {
9119 case SERIAL_EOF:
9120 remote_unpush_target (this);
9121 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9122 /* no return */
9123 case SERIAL_ERROR:
9124 unpush_and_perror (this, _("Remote communication error. "
9125 "Target disconnected."));
9126 /* no return */
9127 case SERIAL_TIMEOUT:
9128 break;
9129 }
9130 return ch;
9131 }
9132
9133 /* Wrapper for serial_write that closes the target and throws if
9134 writing fails. The current quit handler is overridden to avoid
9135 quitting in the middle of packet sequence, as that would break
9136 communication with the remote server. See
9137 remote_serial_quit_handler for more detail. */
9138
9139 void
9140 remote_target::remote_serial_write (const char *str, int len)
9141 {
9142 struct remote_state *rs = get_remote_state ();
9143
9144 scoped_restore restore_quit_target
9145 = make_scoped_restore (&curr_quit_handler_target, this);
9146 scoped_restore restore_quit
9147 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9148
9149 rs->got_ctrlc_during_io = 0;
9150
9151 if (serial_write (rs->remote_desc, str, len))
9152 {
9153 unpush_and_perror (this, _("Remote communication error. "
9154 "Target disconnected."));
9155 }
9156
9157 if (rs->got_ctrlc_during_io)
9158 set_quit_flag ();
9159 }
9160
9161 /* Return a string representing an escaped version of BUF, of len N.
9162 E.g. \n is converted to \\n, \t to \\t, etc. */
9163
9164 static std::string
9165 escape_buffer (const char *buf, int n)
9166 {
9167 string_file stb;
9168
9169 stb.putstrn (buf, n, '\\');
9170 return std::move (stb.string ());
9171 }
9172
9173 /* Display a null-terminated packet on stdout, for debugging, using C
9174 string notation. */
9175
9176 static void
9177 print_packet (const char *buf)
9178 {
9179 puts_filtered ("\"");
9180 fputstr_filtered (buf, '"', gdb_stdout);
9181 puts_filtered ("\"");
9182 }
9183
9184 int
9185 remote_target::putpkt (const char *buf)
9186 {
9187 return putpkt_binary (buf, strlen (buf));
9188 }
9189
9190 /* Wrapper around remote_target::putpkt to avoid exporting
9191 remote_target. */
9192
9193 int
9194 putpkt (remote_target *remote, const char *buf)
9195 {
9196 return remote->putpkt (buf);
9197 }
9198
9199 /* Send a packet to the remote machine, with error checking. The data
9200 of the packet is in BUF. The string in BUF can be at most
9201 get_remote_packet_size () - 5 to account for the $, # and checksum,
9202 and for a possible /0 if we are debugging (remote_debug) and want
9203 to print the sent packet as a string. */
9204
9205 int
9206 remote_target::putpkt_binary (const char *buf, int cnt)
9207 {
9208 struct remote_state *rs = get_remote_state ();
9209 int i;
9210 unsigned char csum = 0;
9211 gdb::def_vector<char> data (cnt + 6);
9212 char *buf2 = data.data ();
9213
9214 int ch;
9215 int tcount = 0;
9216 char *p;
9217
9218 /* Catch cases like trying to read memory or listing threads while
9219 we're waiting for a stop reply. The remote server wouldn't be
9220 ready to handle this request, so we'd hang and timeout. We don't
9221 have to worry about this in synchronous mode, because in that
9222 case it's not possible to issue a command while the target is
9223 running. This is not a problem in non-stop mode, because in that
9224 case, the stub is always ready to process serial input. */
9225 if (!target_is_non_stop_p ()
9226 && target_is_async_p ()
9227 && rs->waiting_for_stop_reply)
9228 {
9229 error (_("Cannot execute this command while the target is running.\n"
9230 "Use the \"interrupt\" command to stop the target\n"
9231 "and then try again."));
9232 }
9233
9234 /* We're sending out a new packet. Make sure we don't look at a
9235 stale cached response. */
9236 rs->cached_wait_status = 0;
9237
9238 /* Copy the packet into buffer BUF2, encapsulating it
9239 and giving it a checksum. */
9240
9241 p = buf2;
9242 *p++ = '$';
9243
9244 for (i = 0; i < cnt; i++)
9245 {
9246 csum += buf[i];
9247 *p++ = buf[i];
9248 }
9249 *p++ = '#';
9250 *p++ = tohex ((csum >> 4) & 0xf);
9251 *p++ = tohex (csum & 0xf);
9252
9253 /* Send it over and over until we get a positive ack. */
9254
9255 while (1)
9256 {
9257 int started_error_output = 0;
9258
9259 if (remote_debug)
9260 {
9261 *p = '\0';
9262
9263 int len = (int) (p - buf2);
9264 int max_chars;
9265
9266 if (remote_packet_max_chars < 0)
9267 max_chars = len;
9268 else
9269 max_chars = remote_packet_max_chars;
9270
9271 std::string str
9272 = escape_buffer (buf2, std::min (len, max_chars));
9273
9274 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9275
9276 if (len > max_chars)
9277 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9278 len - max_chars);
9279
9280 fprintf_unfiltered (gdb_stdlog, "...");
9281
9282 gdb_flush (gdb_stdlog);
9283 }
9284 remote_serial_write (buf2, p - buf2);
9285
9286 /* If this is a no acks version of the remote protocol, send the
9287 packet and move on. */
9288 if (rs->noack_mode)
9289 break;
9290
9291 /* Read until either a timeout occurs (-2) or '+' is read.
9292 Handle any notification that arrives in the mean time. */
9293 while (1)
9294 {
9295 ch = readchar (remote_timeout);
9296
9297 if (remote_debug)
9298 {
9299 switch (ch)
9300 {
9301 case '+':
9302 case '-':
9303 case SERIAL_TIMEOUT:
9304 case '$':
9305 case '%':
9306 if (started_error_output)
9307 {
9308 putchar_unfiltered ('\n');
9309 started_error_output = 0;
9310 }
9311 }
9312 }
9313
9314 switch (ch)
9315 {
9316 case '+':
9317 if (remote_debug)
9318 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9319 return 1;
9320 case '-':
9321 if (remote_debug)
9322 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9323 /* FALLTHROUGH */
9324 case SERIAL_TIMEOUT:
9325 tcount++;
9326 if (tcount > 3)
9327 return 0;
9328 break; /* Retransmit buffer. */
9329 case '$':
9330 {
9331 if (remote_debug)
9332 fprintf_unfiltered (gdb_stdlog,
9333 "Packet instead of Ack, ignoring it\n");
9334 /* It's probably an old response sent because an ACK
9335 was lost. Gobble up the packet and ack it so it
9336 doesn't get retransmitted when we resend this
9337 packet. */
9338 skip_frame ();
9339 remote_serial_write ("+", 1);
9340 continue; /* Now, go look for +. */
9341 }
9342
9343 case '%':
9344 {
9345 int val;
9346
9347 /* If we got a notification, handle it, and go back to looking
9348 for an ack. */
9349 /* We've found the start of a notification. Now
9350 collect the data. */
9351 val = read_frame (&rs->buf);
9352 if (val >= 0)
9353 {
9354 if (remote_debug)
9355 {
9356 std::string str = escape_buffer (rs->buf.data (), val);
9357
9358 fprintf_unfiltered (gdb_stdlog,
9359 " Notification received: %s\n",
9360 str.c_str ());
9361 }
9362 handle_notification (rs->notif_state, rs->buf.data ());
9363 /* We're in sync now, rewait for the ack. */
9364 tcount = 0;
9365 }
9366 else
9367 {
9368 if (remote_debug)
9369 {
9370 if (!started_error_output)
9371 {
9372 started_error_output = 1;
9373 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9374 }
9375 fputc_unfiltered (ch & 0177, gdb_stdlog);
9376 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9377 }
9378 }
9379 continue;
9380 }
9381 /* fall-through */
9382 default:
9383 if (remote_debug)
9384 {
9385 if (!started_error_output)
9386 {
9387 started_error_output = 1;
9388 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9389 }
9390 fputc_unfiltered (ch & 0177, gdb_stdlog);
9391 }
9392 continue;
9393 }
9394 break; /* Here to retransmit. */
9395 }
9396
9397 #if 0
9398 /* This is wrong. If doing a long backtrace, the user should be
9399 able to get out next time we call QUIT, without anything as
9400 violent as interrupt_query. If we want to provide a way out of
9401 here without getting to the next QUIT, it should be based on
9402 hitting ^C twice as in remote_wait. */
9403 if (quit_flag)
9404 {
9405 quit_flag = 0;
9406 interrupt_query ();
9407 }
9408 #endif
9409 }
9410
9411 return 0;
9412 }
9413
9414 /* Come here after finding the start of a frame when we expected an
9415 ack. Do our best to discard the rest of this packet. */
9416
9417 void
9418 remote_target::skip_frame ()
9419 {
9420 int c;
9421
9422 while (1)
9423 {
9424 c = readchar (remote_timeout);
9425 switch (c)
9426 {
9427 case SERIAL_TIMEOUT:
9428 /* Nothing we can do. */
9429 return;
9430 case '#':
9431 /* Discard the two bytes of checksum and stop. */
9432 c = readchar (remote_timeout);
9433 if (c >= 0)
9434 c = readchar (remote_timeout);
9435
9436 return;
9437 case '*': /* Run length encoding. */
9438 /* Discard the repeat count. */
9439 c = readchar (remote_timeout);
9440 if (c < 0)
9441 return;
9442 break;
9443 default:
9444 /* A regular character. */
9445 break;
9446 }
9447 }
9448 }
9449
9450 /* Come here after finding the start of the frame. Collect the rest
9451 into *BUF, verifying the checksum, length, and handling run-length
9452 compression. NUL terminate the buffer. If there is not enough room,
9453 expand *BUF.
9454
9455 Returns -1 on error, number of characters in buffer (ignoring the
9456 trailing NULL) on success. (could be extended to return one of the
9457 SERIAL status indications). */
9458
9459 long
9460 remote_target::read_frame (gdb::char_vector *buf_p)
9461 {
9462 unsigned char csum;
9463 long bc;
9464 int c;
9465 char *buf = buf_p->data ();
9466 struct remote_state *rs = get_remote_state ();
9467
9468 csum = 0;
9469 bc = 0;
9470
9471 while (1)
9472 {
9473 c = readchar (remote_timeout);
9474 switch (c)
9475 {
9476 case SERIAL_TIMEOUT:
9477 if (remote_debug)
9478 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9479 return -1;
9480 case '$':
9481 if (remote_debug)
9482 fputs_filtered ("Saw new packet start in middle of old one\n",
9483 gdb_stdlog);
9484 return -1; /* Start a new packet, count retries. */
9485 case '#':
9486 {
9487 unsigned char pktcsum;
9488 int check_0 = 0;
9489 int check_1 = 0;
9490
9491 buf[bc] = '\0';
9492
9493 check_0 = readchar (remote_timeout);
9494 if (check_0 >= 0)
9495 check_1 = readchar (remote_timeout);
9496
9497 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9498 {
9499 if (remote_debug)
9500 fputs_filtered ("Timeout in checksum, retrying\n",
9501 gdb_stdlog);
9502 return -1;
9503 }
9504 else if (check_0 < 0 || check_1 < 0)
9505 {
9506 if (remote_debug)
9507 fputs_filtered ("Communication error in checksum\n",
9508 gdb_stdlog);
9509 return -1;
9510 }
9511
9512 /* Don't recompute the checksum; with no ack packets we
9513 don't have any way to indicate a packet retransmission
9514 is necessary. */
9515 if (rs->noack_mode)
9516 return bc;
9517
9518 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9519 if (csum == pktcsum)
9520 return bc;
9521
9522 if (remote_debug)
9523 {
9524 std::string str = escape_buffer (buf, bc);
9525
9526 fprintf_unfiltered (gdb_stdlog,
9527 "Bad checksum, sentsum=0x%x, "
9528 "csum=0x%x, buf=%s\n",
9529 pktcsum, csum, str.c_str ());
9530 }
9531 /* Number of characters in buffer ignoring trailing
9532 NULL. */
9533 return -1;
9534 }
9535 case '*': /* Run length encoding. */
9536 {
9537 int repeat;
9538
9539 csum += c;
9540 c = readchar (remote_timeout);
9541 csum += c;
9542 repeat = c - ' ' + 3; /* Compute repeat count. */
9543
9544 /* The character before ``*'' is repeated. */
9545
9546 if (repeat > 0 && repeat <= 255 && bc > 0)
9547 {
9548 if (bc + repeat - 1 >= buf_p->size () - 1)
9549 {
9550 /* Make some more room in the buffer. */
9551 buf_p->resize (buf_p->size () + repeat);
9552 buf = buf_p->data ();
9553 }
9554
9555 memset (&buf[bc], buf[bc - 1], repeat);
9556 bc += repeat;
9557 continue;
9558 }
9559
9560 buf[bc] = '\0';
9561 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9562 return -1;
9563 }
9564 default:
9565 if (bc >= buf_p->size () - 1)
9566 {
9567 /* Make some more room in the buffer. */
9568 buf_p->resize (buf_p->size () * 2);
9569 buf = buf_p->data ();
9570 }
9571
9572 buf[bc++] = c;
9573 csum += c;
9574 continue;
9575 }
9576 }
9577 }
9578
9579 /* Set this to the maximum number of seconds to wait instead of waiting forever
9580 in target_wait(). If this timer times out, then it generates an error and
9581 the command is aborted. This replaces most of the need for timeouts in the
9582 GDB test suite, and makes it possible to distinguish between a hung target
9583 and one with slow communications. */
9584
9585 static int watchdog = 0;
9586 static void
9587 show_watchdog (struct ui_file *file, int from_tty,
9588 struct cmd_list_element *c, const char *value)
9589 {
9590 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9591 }
9592
9593 /* Read a packet from the remote machine, with error checking, and
9594 store it in *BUF. Resize *BUF if necessary to hold the result. If
9595 FOREVER, wait forever rather than timing out; this is used (in
9596 synchronous mode) to wait for a target that is is executing user
9597 code to stop. */
9598 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9599 don't have to change all the calls to getpkt to deal with the
9600 return value, because at the moment I don't know what the right
9601 thing to do it for those. */
9602
9603 void
9604 remote_target::getpkt (gdb::char_vector *buf, int forever)
9605 {
9606 getpkt_sane (buf, forever);
9607 }
9608
9609
9610 /* Read a packet from the remote machine, with error checking, and
9611 store it in *BUF. Resize *BUF if necessary to hold the result. If
9612 FOREVER, wait forever rather than timing out; this is used (in
9613 synchronous mode) to wait for a target that is is executing user
9614 code to stop. If FOREVER == 0, this function is allowed to time
9615 out gracefully and return an indication of this to the caller.
9616 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9617 consider receiving a notification enough reason to return to the
9618 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9619 holds a notification or not (a regular packet). */
9620
9621 int
9622 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9623 int forever, int expecting_notif,
9624 int *is_notif)
9625 {
9626 struct remote_state *rs = get_remote_state ();
9627 int c;
9628 int tries;
9629 int timeout;
9630 int val = -1;
9631
9632 /* We're reading a new response. Make sure we don't look at a
9633 previously cached response. */
9634 rs->cached_wait_status = 0;
9635
9636 strcpy (buf->data (), "timeout");
9637
9638 if (forever)
9639 timeout = watchdog > 0 ? watchdog : -1;
9640 else if (expecting_notif)
9641 timeout = 0; /* There should already be a char in the buffer. If
9642 not, bail out. */
9643 else
9644 timeout = remote_timeout;
9645
9646 #define MAX_TRIES 3
9647
9648 /* Process any number of notifications, and then return when
9649 we get a packet. */
9650 for (;;)
9651 {
9652 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9653 times. */
9654 for (tries = 1; tries <= MAX_TRIES; tries++)
9655 {
9656 /* This can loop forever if the remote side sends us
9657 characters continuously, but if it pauses, we'll get
9658 SERIAL_TIMEOUT from readchar because of timeout. Then
9659 we'll count that as a retry.
9660
9661 Note that even when forever is set, we will only wait
9662 forever prior to the start of a packet. After that, we
9663 expect characters to arrive at a brisk pace. They should
9664 show up within remote_timeout intervals. */
9665 do
9666 c = readchar (timeout);
9667 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9668
9669 if (c == SERIAL_TIMEOUT)
9670 {
9671 if (expecting_notif)
9672 return -1; /* Don't complain, it's normal to not get
9673 anything in this case. */
9674
9675 if (forever) /* Watchdog went off? Kill the target. */
9676 {
9677 remote_unpush_target (this);
9678 throw_error (TARGET_CLOSE_ERROR,
9679 _("Watchdog timeout has expired. "
9680 "Target detached."));
9681 }
9682 if (remote_debug)
9683 fputs_filtered ("Timed out.\n", gdb_stdlog);
9684 }
9685 else
9686 {
9687 /* We've found the start of a packet or notification.
9688 Now collect the data. */
9689 val = read_frame (buf);
9690 if (val >= 0)
9691 break;
9692 }
9693
9694 remote_serial_write ("-", 1);
9695 }
9696
9697 if (tries > MAX_TRIES)
9698 {
9699 /* We have tried hard enough, and just can't receive the
9700 packet/notification. Give up. */
9701 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9702
9703 /* Skip the ack char if we're in no-ack mode. */
9704 if (!rs->noack_mode)
9705 remote_serial_write ("+", 1);
9706 return -1;
9707 }
9708
9709 /* If we got an ordinary packet, return that to our caller. */
9710 if (c == '$')
9711 {
9712 if (remote_debug)
9713 {
9714 int max_chars;
9715
9716 if (remote_packet_max_chars < 0)
9717 max_chars = val;
9718 else
9719 max_chars = remote_packet_max_chars;
9720
9721 std::string str
9722 = escape_buffer (buf->data (),
9723 std::min (val, max_chars));
9724
9725 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9726 str.c_str ());
9727
9728 if (val > max_chars)
9729 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9730 val - max_chars);
9731
9732 fprintf_unfiltered (gdb_stdlog, "\n");
9733 }
9734
9735 /* Skip the ack char if we're in no-ack mode. */
9736 if (!rs->noack_mode)
9737 remote_serial_write ("+", 1);
9738 if (is_notif != NULL)
9739 *is_notif = 0;
9740 return val;
9741 }
9742
9743 /* If we got a notification, handle it, and go back to looking
9744 for a packet. */
9745 else
9746 {
9747 gdb_assert (c == '%');
9748
9749 if (remote_debug)
9750 {
9751 std::string str = escape_buffer (buf->data (), val);
9752
9753 fprintf_unfiltered (gdb_stdlog,
9754 " Notification received: %s\n",
9755 str.c_str ());
9756 }
9757 if (is_notif != NULL)
9758 *is_notif = 1;
9759
9760 handle_notification (rs->notif_state, buf->data ());
9761
9762 /* Notifications require no acknowledgement. */
9763
9764 if (expecting_notif)
9765 return val;
9766 }
9767 }
9768 }
9769
9770 int
9771 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9772 {
9773 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9774 }
9775
9776 int
9777 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9778 int *is_notif)
9779 {
9780 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9781 }
9782
9783 /* Kill any new fork children of process PID that haven't been
9784 processed by follow_fork. */
9785
9786 void
9787 remote_target::kill_new_fork_children (int pid)
9788 {
9789 remote_state *rs = get_remote_state ();
9790 struct notif_client *notif = &notif_client_stop;
9791
9792 /* Kill the fork child threads of any threads in process PID
9793 that are stopped at a fork event. */
9794 for (thread_info *thread : all_non_exited_threads (this))
9795 {
9796 struct target_waitstatus *ws = &thread->pending_follow;
9797
9798 if (is_pending_fork_parent (ws, pid, thread->ptid))
9799 {
9800 int child_pid = ws->value.related_pid.pid ();
9801 int res;
9802
9803 res = remote_vkill (child_pid);
9804 if (res != 0)
9805 error (_("Can't kill fork child process %d"), child_pid);
9806 }
9807 }
9808
9809 /* Check for any pending fork events (not reported or processed yet)
9810 in process PID and kill those fork child threads as well. */
9811 remote_notif_get_pending_events (notif);
9812 for (auto &event : rs->stop_reply_queue)
9813 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9814 {
9815 int child_pid = event->ws.value.related_pid.pid ();
9816 int res;
9817
9818 res = remote_vkill (child_pid);
9819 if (res != 0)
9820 error (_("Can't kill fork child process %d"), child_pid);
9821 }
9822 }
9823
9824 \f
9825 /* Target hook to kill the current inferior. */
9826
9827 void
9828 remote_target::kill ()
9829 {
9830 int res = -1;
9831 int pid = inferior_ptid.pid ();
9832 struct remote_state *rs = get_remote_state ();
9833
9834 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9835 {
9836 /* If we're stopped while forking and we haven't followed yet,
9837 kill the child task. We need to do this before killing the
9838 parent task because if this is a vfork then the parent will
9839 be sleeping. */
9840 kill_new_fork_children (pid);
9841
9842 res = remote_vkill (pid);
9843 if (res == 0)
9844 {
9845 target_mourn_inferior (inferior_ptid);
9846 return;
9847 }
9848 }
9849
9850 /* If we are in 'target remote' mode and we are killing the only
9851 inferior, then we will tell gdbserver to exit and unpush the
9852 target. */
9853 if (res == -1 && !remote_multi_process_p (rs)
9854 && number_of_live_inferiors (this) == 1)
9855 {
9856 remote_kill_k ();
9857
9858 /* We've killed the remote end, we get to mourn it. If we are
9859 not in extended mode, mourning the inferior also unpushes
9860 remote_ops from the target stack, which closes the remote
9861 connection. */
9862 target_mourn_inferior (inferior_ptid);
9863
9864 return;
9865 }
9866
9867 error (_("Can't kill process"));
9868 }
9869
9870 /* Send a kill request to the target using the 'vKill' packet. */
9871
9872 int
9873 remote_target::remote_vkill (int pid)
9874 {
9875 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9876 return -1;
9877
9878 remote_state *rs = get_remote_state ();
9879
9880 /* Tell the remote target to detach. */
9881 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9882 putpkt (rs->buf);
9883 getpkt (&rs->buf, 0);
9884
9885 switch (packet_ok (rs->buf,
9886 &remote_protocol_packets[PACKET_vKill]))
9887 {
9888 case PACKET_OK:
9889 return 0;
9890 case PACKET_ERROR:
9891 return 1;
9892 case PACKET_UNKNOWN:
9893 return -1;
9894 default:
9895 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9896 }
9897 }
9898
9899 /* Send a kill request to the target using the 'k' packet. */
9900
9901 void
9902 remote_target::remote_kill_k ()
9903 {
9904 /* Catch errors so the user can quit from gdb even when we
9905 aren't on speaking terms with the remote system. */
9906 try
9907 {
9908 putpkt ("k");
9909 }
9910 catch (const gdb_exception_error &ex)
9911 {
9912 if (ex.error == TARGET_CLOSE_ERROR)
9913 {
9914 /* If we got an (EOF) error that caused the target
9915 to go away, then we're done, that's what we wanted.
9916 "k" is susceptible to cause a premature EOF, given
9917 that the remote server isn't actually required to
9918 reply to "k", and it can happen that it doesn't
9919 even get to reply ACK to the "k". */
9920 return;
9921 }
9922
9923 /* Otherwise, something went wrong. We didn't actually kill
9924 the target. Just propagate the exception, and let the
9925 user or higher layers decide what to do. */
9926 throw;
9927 }
9928 }
9929
9930 void
9931 remote_target::mourn_inferior ()
9932 {
9933 struct remote_state *rs = get_remote_state ();
9934
9935 /* We're no longer interested in notification events of an inferior
9936 that exited or was killed/detached. */
9937 discard_pending_stop_replies (current_inferior ());
9938
9939 /* In 'target remote' mode with one inferior, we close the connection. */
9940 if (!rs->extended && number_of_live_inferiors (this) <= 1)
9941 {
9942 remote_unpush_target (this);
9943 return;
9944 }
9945
9946 /* In case we got here due to an error, but we're going to stay
9947 connected. */
9948 rs->waiting_for_stop_reply = 0;
9949
9950 /* If the current general thread belonged to the process we just
9951 detached from or has exited, the remote side current general
9952 thread becomes undefined. Considering a case like this:
9953
9954 - We just got here due to a detach.
9955 - The process that we're detaching from happens to immediately
9956 report a global breakpoint being hit in non-stop mode, in the
9957 same thread we had selected before.
9958 - GDB attaches to this process again.
9959 - This event happens to be the next event we handle.
9960
9961 GDB would consider that the current general thread didn't need to
9962 be set on the stub side (with Hg), since for all it knew,
9963 GENERAL_THREAD hadn't changed.
9964
9965 Notice that although in all-stop mode, the remote server always
9966 sets the current thread to the thread reporting the stop event,
9967 that doesn't happen in non-stop mode; in non-stop, the stub *must
9968 not* change the current thread when reporting a breakpoint hit,
9969 due to the decoupling of event reporting and event handling.
9970
9971 To keep things simple, we always invalidate our notion of the
9972 current thread. */
9973 record_currthread (rs, minus_one_ptid);
9974
9975 /* Call common code to mark the inferior as not running. */
9976 generic_mourn_inferior ();
9977 }
9978
9979 bool
9980 extended_remote_target::supports_disable_randomization ()
9981 {
9982 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9983 }
9984
9985 void
9986 remote_target::extended_remote_disable_randomization (int val)
9987 {
9988 struct remote_state *rs = get_remote_state ();
9989 char *reply;
9990
9991 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9992 "QDisableRandomization:%x", val);
9993 putpkt (rs->buf);
9994 reply = remote_get_noisy_reply ();
9995 if (*reply == '\0')
9996 error (_("Target does not support QDisableRandomization."));
9997 if (strcmp (reply, "OK") != 0)
9998 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9999 }
10000
10001 int
10002 remote_target::extended_remote_run (const std::string &args)
10003 {
10004 struct remote_state *rs = get_remote_state ();
10005 int len;
10006 const char *remote_exec_file = get_remote_exec_file ();
10007
10008 /* If the user has disabled vRun support, or we have detected that
10009 support is not available, do not try it. */
10010 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10011 return -1;
10012
10013 strcpy (rs->buf.data (), "vRun;");
10014 len = strlen (rs->buf.data ());
10015
10016 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10017 error (_("Remote file name too long for run packet"));
10018 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10019 strlen (remote_exec_file));
10020
10021 if (!args.empty ())
10022 {
10023 int i;
10024
10025 gdb_argv argv (args.c_str ());
10026 for (i = 0; argv[i] != NULL; i++)
10027 {
10028 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10029 error (_("Argument list too long for run packet"));
10030 rs->buf[len++] = ';';
10031 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10032 strlen (argv[i]));
10033 }
10034 }
10035
10036 rs->buf[len++] = '\0';
10037
10038 putpkt (rs->buf);
10039 getpkt (&rs->buf, 0);
10040
10041 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10042 {
10043 case PACKET_OK:
10044 /* We have a wait response. All is well. */
10045 return 0;
10046 case PACKET_UNKNOWN:
10047 return -1;
10048 case PACKET_ERROR:
10049 if (remote_exec_file[0] == '\0')
10050 error (_("Running the default executable on the remote target failed; "
10051 "try \"set remote exec-file\"?"));
10052 else
10053 error (_("Running \"%s\" on the remote target failed"),
10054 remote_exec_file);
10055 default:
10056 gdb_assert_not_reached (_("bad switch"));
10057 }
10058 }
10059
10060 /* Helper function to send set/unset environment packets. ACTION is
10061 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10062 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10063 sent. */
10064
10065 void
10066 remote_target::send_environment_packet (const char *action,
10067 const char *packet,
10068 const char *value)
10069 {
10070 remote_state *rs = get_remote_state ();
10071
10072 /* Convert the environment variable to an hex string, which
10073 is the best format to be transmitted over the wire. */
10074 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10075 strlen (value));
10076
10077 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10078 "%s:%s", packet, encoded_value.c_str ());
10079
10080 putpkt (rs->buf);
10081 getpkt (&rs->buf, 0);
10082 if (strcmp (rs->buf.data (), "OK") != 0)
10083 warning (_("Unable to %s environment variable '%s' on remote."),
10084 action, value);
10085 }
10086
10087 /* Helper function to handle the QEnvironment* packets. */
10088
10089 void
10090 remote_target::extended_remote_environment_support ()
10091 {
10092 remote_state *rs = get_remote_state ();
10093
10094 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10095 {
10096 putpkt ("QEnvironmentReset");
10097 getpkt (&rs->buf, 0);
10098 if (strcmp (rs->buf.data (), "OK") != 0)
10099 warning (_("Unable to reset environment on remote."));
10100 }
10101
10102 gdb_environ *e = &current_inferior ()->environment;
10103
10104 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10105 for (const std::string &el : e->user_set_env ())
10106 send_environment_packet ("set", "QEnvironmentHexEncoded",
10107 el.c_str ());
10108
10109 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10110 for (const std::string &el : e->user_unset_env ())
10111 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10112 }
10113
10114 /* Helper function to set the current working directory for the
10115 inferior in the remote target. */
10116
10117 void
10118 remote_target::extended_remote_set_inferior_cwd ()
10119 {
10120 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10121 {
10122 const char *inferior_cwd = get_inferior_cwd ();
10123 remote_state *rs = get_remote_state ();
10124
10125 if (inferior_cwd != NULL)
10126 {
10127 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10128 strlen (inferior_cwd));
10129
10130 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10131 "QSetWorkingDir:%s", hexpath.c_str ());
10132 }
10133 else
10134 {
10135 /* An empty inferior_cwd means that the user wants us to
10136 reset the remote server's inferior's cwd. */
10137 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10138 "QSetWorkingDir:");
10139 }
10140
10141 putpkt (rs->buf);
10142 getpkt (&rs->buf, 0);
10143 if (packet_ok (rs->buf,
10144 &remote_protocol_packets[PACKET_QSetWorkingDir])
10145 != PACKET_OK)
10146 error (_("\
10147 Remote replied unexpectedly while setting the inferior's working\n\
10148 directory: %s"),
10149 rs->buf.data ());
10150
10151 }
10152 }
10153
10154 /* In the extended protocol we want to be able to do things like
10155 "run" and have them basically work as expected. So we need
10156 a special create_inferior function. We support changing the
10157 executable file and the command line arguments, but not the
10158 environment. */
10159
10160 void
10161 extended_remote_target::create_inferior (const char *exec_file,
10162 const std::string &args,
10163 char **env, int from_tty)
10164 {
10165 int run_worked;
10166 char *stop_reply;
10167 struct remote_state *rs = get_remote_state ();
10168 const char *remote_exec_file = get_remote_exec_file ();
10169
10170 /* If running asynchronously, register the target file descriptor
10171 with the event loop. */
10172 if (target_can_async_p ())
10173 target_async (1);
10174
10175 /* Disable address space randomization if requested (and supported). */
10176 if (supports_disable_randomization ())
10177 extended_remote_disable_randomization (disable_randomization);
10178
10179 /* If startup-with-shell is on, we inform gdbserver to start the
10180 remote inferior using a shell. */
10181 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10182 {
10183 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10184 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10185 putpkt (rs->buf);
10186 getpkt (&rs->buf, 0);
10187 if (strcmp (rs->buf.data (), "OK") != 0)
10188 error (_("\
10189 Remote replied unexpectedly while setting startup-with-shell: %s"),
10190 rs->buf.data ());
10191 }
10192
10193 extended_remote_environment_support ();
10194
10195 extended_remote_set_inferior_cwd ();
10196
10197 /* Now restart the remote server. */
10198 run_worked = extended_remote_run (args) != -1;
10199 if (!run_worked)
10200 {
10201 /* vRun was not supported. Fail if we need it to do what the
10202 user requested. */
10203 if (remote_exec_file[0])
10204 error (_("Remote target does not support \"set remote exec-file\""));
10205 if (!args.empty ())
10206 error (_("Remote target does not support \"set args\" or run ARGS"));
10207
10208 /* Fall back to "R". */
10209 extended_remote_restart ();
10210 }
10211
10212 /* vRun's success return is a stop reply. */
10213 stop_reply = run_worked ? rs->buf.data () : NULL;
10214 add_current_inferior_and_thread (stop_reply);
10215
10216 /* Get updated offsets, if the stub uses qOffsets. */
10217 get_offsets ();
10218 }
10219 \f
10220
10221 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10222 the list of conditions (in agent expression bytecode format), if any, the
10223 target needs to evaluate. The output is placed into the packet buffer
10224 started from BUF and ended at BUF_END. */
10225
10226 static int
10227 remote_add_target_side_condition (struct gdbarch *gdbarch,
10228 struct bp_target_info *bp_tgt, char *buf,
10229 char *buf_end)
10230 {
10231 if (bp_tgt->conditions.empty ())
10232 return 0;
10233
10234 buf += strlen (buf);
10235 xsnprintf (buf, buf_end - buf, "%s", ";");
10236 buf++;
10237
10238 /* Send conditions to the target. */
10239 for (agent_expr *aexpr : bp_tgt->conditions)
10240 {
10241 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10242 buf += strlen (buf);
10243 for (int i = 0; i < aexpr->len; ++i)
10244 buf = pack_hex_byte (buf, aexpr->buf[i]);
10245 *buf = '\0';
10246 }
10247 return 0;
10248 }
10249
10250 static void
10251 remote_add_target_side_commands (struct gdbarch *gdbarch,
10252 struct bp_target_info *bp_tgt, char *buf)
10253 {
10254 if (bp_tgt->tcommands.empty ())
10255 return;
10256
10257 buf += strlen (buf);
10258
10259 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10260 buf += strlen (buf);
10261
10262 /* Concatenate all the agent expressions that are commands into the
10263 cmds parameter. */
10264 for (agent_expr *aexpr : bp_tgt->tcommands)
10265 {
10266 sprintf (buf, "X%x,", aexpr->len);
10267 buf += strlen (buf);
10268 for (int i = 0; i < aexpr->len; ++i)
10269 buf = pack_hex_byte (buf, aexpr->buf[i]);
10270 *buf = '\0';
10271 }
10272 }
10273
10274 /* Insert a breakpoint. On targets that have software breakpoint
10275 support, we ask the remote target to do the work; on targets
10276 which don't, we insert a traditional memory breakpoint. */
10277
10278 int
10279 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10280 struct bp_target_info *bp_tgt)
10281 {
10282 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10283 If it succeeds, then set the support to PACKET_ENABLE. If it
10284 fails, and the user has explicitly requested the Z support then
10285 report an error, otherwise, mark it disabled and go on. */
10286
10287 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10288 {
10289 CORE_ADDR addr = bp_tgt->reqstd_address;
10290 struct remote_state *rs;
10291 char *p, *endbuf;
10292
10293 /* Make sure the remote is pointing at the right process, if
10294 necessary. */
10295 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10296 set_general_process ();
10297
10298 rs = get_remote_state ();
10299 p = rs->buf.data ();
10300 endbuf = p + get_remote_packet_size ();
10301
10302 *(p++) = 'Z';
10303 *(p++) = '0';
10304 *(p++) = ',';
10305 addr = (ULONGEST) remote_address_masked (addr);
10306 p += hexnumstr (p, addr);
10307 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10308
10309 if (supports_evaluation_of_breakpoint_conditions ())
10310 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10311
10312 if (can_run_breakpoint_commands ())
10313 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10314
10315 putpkt (rs->buf);
10316 getpkt (&rs->buf, 0);
10317
10318 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10319 {
10320 case PACKET_ERROR:
10321 return -1;
10322 case PACKET_OK:
10323 return 0;
10324 case PACKET_UNKNOWN:
10325 break;
10326 }
10327 }
10328
10329 /* If this breakpoint has target-side commands but this stub doesn't
10330 support Z0 packets, throw error. */
10331 if (!bp_tgt->tcommands.empty ())
10332 throw_error (NOT_SUPPORTED_ERROR, _("\
10333 Target doesn't support breakpoints that have target side commands."));
10334
10335 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10336 }
10337
10338 int
10339 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10340 struct bp_target_info *bp_tgt,
10341 enum remove_bp_reason reason)
10342 {
10343 CORE_ADDR addr = bp_tgt->placed_address;
10344 struct remote_state *rs = get_remote_state ();
10345
10346 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10347 {
10348 char *p = rs->buf.data ();
10349 char *endbuf = p + get_remote_packet_size ();
10350
10351 /* Make sure the remote is pointing at the right process, if
10352 necessary. */
10353 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10354 set_general_process ();
10355
10356 *(p++) = 'z';
10357 *(p++) = '0';
10358 *(p++) = ',';
10359
10360 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10361 p += hexnumstr (p, addr);
10362 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10363
10364 putpkt (rs->buf);
10365 getpkt (&rs->buf, 0);
10366
10367 return (rs->buf[0] == 'E');
10368 }
10369
10370 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10371 }
10372
10373 static enum Z_packet_type
10374 watchpoint_to_Z_packet (int type)
10375 {
10376 switch (type)
10377 {
10378 case hw_write:
10379 return Z_PACKET_WRITE_WP;
10380 break;
10381 case hw_read:
10382 return Z_PACKET_READ_WP;
10383 break;
10384 case hw_access:
10385 return Z_PACKET_ACCESS_WP;
10386 break;
10387 default:
10388 internal_error (__FILE__, __LINE__,
10389 _("hw_bp_to_z: bad watchpoint type %d"), type);
10390 }
10391 }
10392
10393 int
10394 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10395 enum target_hw_bp_type type, struct expression *cond)
10396 {
10397 struct remote_state *rs = get_remote_state ();
10398 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10399 char *p;
10400 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10401
10402 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10403 return 1;
10404
10405 /* Make sure the remote is pointing at the right process, if
10406 necessary. */
10407 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10408 set_general_process ();
10409
10410 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10411 p = strchr (rs->buf.data (), '\0');
10412 addr = remote_address_masked (addr);
10413 p += hexnumstr (p, (ULONGEST) addr);
10414 xsnprintf (p, endbuf - p, ",%x", len);
10415
10416 putpkt (rs->buf);
10417 getpkt (&rs->buf, 0);
10418
10419 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10420 {
10421 case PACKET_ERROR:
10422 return -1;
10423 case PACKET_UNKNOWN:
10424 return 1;
10425 case PACKET_OK:
10426 return 0;
10427 }
10428 internal_error (__FILE__, __LINE__,
10429 _("remote_insert_watchpoint: reached end of function"));
10430 }
10431
10432 bool
10433 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10434 CORE_ADDR start, int length)
10435 {
10436 CORE_ADDR diff = remote_address_masked (addr - start);
10437
10438 return diff < length;
10439 }
10440
10441
10442 int
10443 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10444 enum target_hw_bp_type type, struct expression *cond)
10445 {
10446 struct remote_state *rs = get_remote_state ();
10447 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10448 char *p;
10449 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10450
10451 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10452 return -1;
10453
10454 /* Make sure the remote is pointing at the right process, if
10455 necessary. */
10456 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10457 set_general_process ();
10458
10459 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10460 p = strchr (rs->buf.data (), '\0');
10461 addr = remote_address_masked (addr);
10462 p += hexnumstr (p, (ULONGEST) addr);
10463 xsnprintf (p, endbuf - p, ",%x", len);
10464 putpkt (rs->buf);
10465 getpkt (&rs->buf, 0);
10466
10467 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10468 {
10469 case PACKET_ERROR:
10470 case PACKET_UNKNOWN:
10471 return -1;
10472 case PACKET_OK:
10473 return 0;
10474 }
10475 internal_error (__FILE__, __LINE__,
10476 _("remote_remove_watchpoint: reached end of function"));
10477 }
10478
10479
10480 static int remote_hw_watchpoint_limit = -1;
10481 static int remote_hw_watchpoint_length_limit = -1;
10482 static int remote_hw_breakpoint_limit = -1;
10483
10484 int
10485 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10486 {
10487 if (remote_hw_watchpoint_length_limit == 0)
10488 return 0;
10489 else if (remote_hw_watchpoint_length_limit < 0)
10490 return 1;
10491 else if (len <= remote_hw_watchpoint_length_limit)
10492 return 1;
10493 else
10494 return 0;
10495 }
10496
10497 int
10498 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10499 {
10500 if (type == bp_hardware_breakpoint)
10501 {
10502 if (remote_hw_breakpoint_limit == 0)
10503 return 0;
10504 else if (remote_hw_breakpoint_limit < 0)
10505 return 1;
10506 else if (cnt <= remote_hw_breakpoint_limit)
10507 return 1;
10508 }
10509 else
10510 {
10511 if (remote_hw_watchpoint_limit == 0)
10512 return 0;
10513 else if (remote_hw_watchpoint_limit < 0)
10514 return 1;
10515 else if (ot)
10516 return -1;
10517 else if (cnt <= remote_hw_watchpoint_limit)
10518 return 1;
10519 }
10520 return -1;
10521 }
10522
10523 /* The to_stopped_by_sw_breakpoint method of target remote. */
10524
10525 bool
10526 remote_target::stopped_by_sw_breakpoint ()
10527 {
10528 struct thread_info *thread = inferior_thread ();
10529
10530 return (thread->priv != NULL
10531 && (get_remote_thread_info (thread)->stop_reason
10532 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10533 }
10534
10535 /* The to_supports_stopped_by_sw_breakpoint method of target
10536 remote. */
10537
10538 bool
10539 remote_target::supports_stopped_by_sw_breakpoint ()
10540 {
10541 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10542 }
10543
10544 /* The to_stopped_by_hw_breakpoint method of target remote. */
10545
10546 bool
10547 remote_target::stopped_by_hw_breakpoint ()
10548 {
10549 struct thread_info *thread = inferior_thread ();
10550
10551 return (thread->priv != NULL
10552 && (get_remote_thread_info (thread)->stop_reason
10553 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10554 }
10555
10556 /* The to_supports_stopped_by_hw_breakpoint method of target
10557 remote. */
10558
10559 bool
10560 remote_target::supports_stopped_by_hw_breakpoint ()
10561 {
10562 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10563 }
10564
10565 bool
10566 remote_target::stopped_by_watchpoint ()
10567 {
10568 struct thread_info *thread = inferior_thread ();
10569
10570 return (thread->priv != NULL
10571 && (get_remote_thread_info (thread)->stop_reason
10572 == TARGET_STOPPED_BY_WATCHPOINT));
10573 }
10574
10575 bool
10576 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10577 {
10578 struct thread_info *thread = inferior_thread ();
10579
10580 if (thread->priv != NULL
10581 && (get_remote_thread_info (thread)->stop_reason
10582 == TARGET_STOPPED_BY_WATCHPOINT))
10583 {
10584 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10585 return true;
10586 }
10587
10588 return false;
10589 }
10590
10591
10592 int
10593 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10594 struct bp_target_info *bp_tgt)
10595 {
10596 CORE_ADDR addr = bp_tgt->reqstd_address;
10597 struct remote_state *rs;
10598 char *p, *endbuf;
10599 char *message;
10600
10601 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10602 return -1;
10603
10604 /* Make sure the remote is pointing at the right process, if
10605 necessary. */
10606 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10607 set_general_process ();
10608
10609 rs = get_remote_state ();
10610 p = rs->buf.data ();
10611 endbuf = p + get_remote_packet_size ();
10612
10613 *(p++) = 'Z';
10614 *(p++) = '1';
10615 *(p++) = ',';
10616
10617 addr = remote_address_masked (addr);
10618 p += hexnumstr (p, (ULONGEST) addr);
10619 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10620
10621 if (supports_evaluation_of_breakpoint_conditions ())
10622 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10623
10624 if (can_run_breakpoint_commands ())
10625 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10626
10627 putpkt (rs->buf);
10628 getpkt (&rs->buf, 0);
10629
10630 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10631 {
10632 case PACKET_ERROR:
10633 if (rs->buf[1] == '.')
10634 {
10635 message = strchr (&rs->buf[2], '.');
10636 if (message)
10637 error (_("Remote failure reply: %s"), message + 1);
10638 }
10639 return -1;
10640 case PACKET_UNKNOWN:
10641 return -1;
10642 case PACKET_OK:
10643 return 0;
10644 }
10645 internal_error (__FILE__, __LINE__,
10646 _("remote_insert_hw_breakpoint: reached end of function"));
10647 }
10648
10649
10650 int
10651 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10652 struct bp_target_info *bp_tgt)
10653 {
10654 CORE_ADDR addr;
10655 struct remote_state *rs = get_remote_state ();
10656 char *p = rs->buf.data ();
10657 char *endbuf = p + get_remote_packet_size ();
10658
10659 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10660 return -1;
10661
10662 /* Make sure the remote is pointing at the right process, if
10663 necessary. */
10664 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10665 set_general_process ();
10666
10667 *(p++) = 'z';
10668 *(p++) = '1';
10669 *(p++) = ',';
10670
10671 addr = remote_address_masked (bp_tgt->placed_address);
10672 p += hexnumstr (p, (ULONGEST) addr);
10673 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10674
10675 putpkt (rs->buf);
10676 getpkt (&rs->buf, 0);
10677
10678 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10679 {
10680 case PACKET_ERROR:
10681 case PACKET_UNKNOWN:
10682 return -1;
10683 case PACKET_OK:
10684 return 0;
10685 }
10686 internal_error (__FILE__, __LINE__,
10687 _("remote_remove_hw_breakpoint: reached end of function"));
10688 }
10689
10690 /* Verify memory using the "qCRC:" request. */
10691
10692 int
10693 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10694 {
10695 struct remote_state *rs = get_remote_state ();
10696 unsigned long host_crc, target_crc;
10697 char *tmp;
10698
10699 /* It doesn't make sense to use qCRC if the remote target is
10700 connected but not running. */
10701 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10702 {
10703 enum packet_result result;
10704
10705 /* Make sure the remote is pointing at the right process. */
10706 set_general_process ();
10707
10708 /* FIXME: assumes lma can fit into long. */
10709 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10710 (long) lma, (long) size);
10711 putpkt (rs->buf);
10712
10713 /* Be clever; compute the host_crc before waiting for target
10714 reply. */
10715 host_crc = xcrc32 (data, size, 0xffffffff);
10716
10717 getpkt (&rs->buf, 0);
10718
10719 result = packet_ok (rs->buf,
10720 &remote_protocol_packets[PACKET_qCRC]);
10721 if (result == PACKET_ERROR)
10722 return -1;
10723 else if (result == PACKET_OK)
10724 {
10725 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10726 target_crc = target_crc * 16 + fromhex (*tmp);
10727
10728 return (host_crc == target_crc);
10729 }
10730 }
10731
10732 return simple_verify_memory (this, data, lma, size);
10733 }
10734
10735 /* compare-sections command
10736
10737 With no arguments, compares each loadable section in the exec bfd
10738 with the same memory range on the target, and reports mismatches.
10739 Useful for verifying the image on the target against the exec file. */
10740
10741 static void
10742 compare_sections_command (const char *args, int from_tty)
10743 {
10744 asection *s;
10745 const char *sectname;
10746 bfd_size_type size;
10747 bfd_vma lma;
10748 int matched = 0;
10749 int mismatched = 0;
10750 int res;
10751 int read_only = 0;
10752
10753 if (!exec_bfd)
10754 error (_("command cannot be used without an exec file"));
10755
10756 if (args != NULL && strcmp (args, "-r") == 0)
10757 {
10758 read_only = 1;
10759 args = NULL;
10760 }
10761
10762 for (s = exec_bfd->sections; s; s = s->next)
10763 {
10764 if (!(s->flags & SEC_LOAD))
10765 continue; /* Skip non-loadable section. */
10766
10767 if (read_only && (s->flags & SEC_READONLY) == 0)
10768 continue; /* Skip writeable sections */
10769
10770 size = bfd_section_size (s);
10771 if (size == 0)
10772 continue; /* Skip zero-length section. */
10773
10774 sectname = bfd_section_name (s);
10775 if (args && strcmp (args, sectname) != 0)
10776 continue; /* Not the section selected by user. */
10777
10778 matched = 1; /* Do this section. */
10779 lma = s->lma;
10780
10781 gdb::byte_vector sectdata (size);
10782 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10783
10784 res = target_verify_memory (sectdata.data (), lma, size);
10785
10786 if (res == -1)
10787 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10788 paddress (target_gdbarch (), lma),
10789 paddress (target_gdbarch (), lma + size));
10790
10791 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10792 paddress (target_gdbarch (), lma),
10793 paddress (target_gdbarch (), lma + size));
10794 if (res)
10795 printf_filtered ("matched.\n");
10796 else
10797 {
10798 printf_filtered ("MIS-MATCHED!\n");
10799 mismatched++;
10800 }
10801 }
10802 if (mismatched > 0)
10803 warning (_("One or more sections of the target image does not match\n\
10804 the loaded file\n"));
10805 if (args && !matched)
10806 printf_filtered (_("No loaded section named '%s'.\n"), args);
10807 }
10808
10809 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10810 into remote target. The number of bytes written to the remote
10811 target is returned, or -1 for error. */
10812
10813 target_xfer_status
10814 remote_target::remote_write_qxfer (const char *object_name,
10815 const char *annex, const gdb_byte *writebuf,
10816 ULONGEST offset, LONGEST len,
10817 ULONGEST *xfered_len,
10818 struct packet_config *packet)
10819 {
10820 int i, buf_len;
10821 ULONGEST n;
10822 struct remote_state *rs = get_remote_state ();
10823 int max_size = get_memory_write_packet_size ();
10824
10825 if (packet_config_support (packet) == PACKET_DISABLE)
10826 return TARGET_XFER_E_IO;
10827
10828 /* Insert header. */
10829 i = snprintf (rs->buf.data (), max_size,
10830 "qXfer:%s:write:%s:%s:",
10831 object_name, annex ? annex : "",
10832 phex_nz (offset, sizeof offset));
10833 max_size -= (i + 1);
10834
10835 /* Escape as much data as fits into rs->buf. */
10836 buf_len = remote_escape_output
10837 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10838
10839 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10840 || getpkt_sane (&rs->buf, 0) < 0
10841 || packet_ok (rs->buf, packet) != PACKET_OK)
10842 return TARGET_XFER_E_IO;
10843
10844 unpack_varlen_hex (rs->buf.data (), &n);
10845
10846 *xfered_len = n;
10847 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10848 }
10849
10850 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10851 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10852 number of bytes read is returned, or 0 for EOF, or -1 for error.
10853 The number of bytes read may be less than LEN without indicating an
10854 EOF. PACKET is checked and updated to indicate whether the remote
10855 target supports this object. */
10856
10857 target_xfer_status
10858 remote_target::remote_read_qxfer (const char *object_name,
10859 const char *annex,
10860 gdb_byte *readbuf, ULONGEST offset,
10861 LONGEST len,
10862 ULONGEST *xfered_len,
10863 struct packet_config *packet)
10864 {
10865 struct remote_state *rs = get_remote_state ();
10866 LONGEST i, n, packet_len;
10867
10868 if (packet_config_support (packet) == PACKET_DISABLE)
10869 return TARGET_XFER_E_IO;
10870
10871 /* Check whether we've cached an end-of-object packet that matches
10872 this request. */
10873 if (rs->finished_object)
10874 {
10875 if (strcmp (object_name, rs->finished_object) == 0
10876 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10877 && offset == rs->finished_offset)
10878 return TARGET_XFER_EOF;
10879
10880
10881 /* Otherwise, we're now reading something different. Discard
10882 the cache. */
10883 xfree (rs->finished_object);
10884 xfree (rs->finished_annex);
10885 rs->finished_object = NULL;
10886 rs->finished_annex = NULL;
10887 }
10888
10889 /* Request only enough to fit in a single packet. The actual data
10890 may not, since we don't know how much of it will need to be escaped;
10891 the target is free to respond with slightly less data. We subtract
10892 five to account for the response type and the protocol frame. */
10893 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10894 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10895 "qXfer:%s:read:%s:%s,%s",
10896 object_name, annex ? annex : "",
10897 phex_nz (offset, sizeof offset),
10898 phex_nz (n, sizeof n));
10899 i = putpkt (rs->buf);
10900 if (i < 0)
10901 return TARGET_XFER_E_IO;
10902
10903 rs->buf[0] = '\0';
10904 packet_len = getpkt_sane (&rs->buf, 0);
10905 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10906 return TARGET_XFER_E_IO;
10907
10908 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10909 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10910
10911 /* 'm' means there is (or at least might be) more data after this
10912 batch. That does not make sense unless there's at least one byte
10913 of data in this reply. */
10914 if (rs->buf[0] == 'm' && packet_len == 1)
10915 error (_("Remote qXfer reply contained no data."));
10916
10917 /* Got some data. */
10918 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10919 packet_len - 1, readbuf, n);
10920
10921 /* 'l' is an EOF marker, possibly including a final block of data,
10922 or possibly empty. If we have the final block of a non-empty
10923 object, record this fact to bypass a subsequent partial read. */
10924 if (rs->buf[0] == 'l' && offset + i > 0)
10925 {
10926 rs->finished_object = xstrdup (object_name);
10927 rs->finished_annex = xstrdup (annex ? annex : "");
10928 rs->finished_offset = offset + i;
10929 }
10930
10931 if (i == 0)
10932 return TARGET_XFER_EOF;
10933 else
10934 {
10935 *xfered_len = i;
10936 return TARGET_XFER_OK;
10937 }
10938 }
10939
10940 enum target_xfer_status
10941 remote_target::xfer_partial (enum target_object object,
10942 const char *annex, gdb_byte *readbuf,
10943 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10944 ULONGEST *xfered_len)
10945 {
10946 struct remote_state *rs;
10947 int i;
10948 char *p2;
10949 char query_type;
10950 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10951
10952 set_remote_traceframe ();
10953 set_general_thread (inferior_ptid);
10954
10955 rs = get_remote_state ();
10956
10957 /* Handle memory using the standard memory routines. */
10958 if (object == TARGET_OBJECT_MEMORY)
10959 {
10960 /* If the remote target is connected but not running, we should
10961 pass this request down to a lower stratum (e.g. the executable
10962 file). */
10963 if (!target_has_execution)
10964 return TARGET_XFER_EOF;
10965
10966 if (writebuf != NULL)
10967 return remote_write_bytes (offset, writebuf, len, unit_size,
10968 xfered_len);
10969 else
10970 return remote_read_bytes (offset, readbuf, len, unit_size,
10971 xfered_len);
10972 }
10973
10974 /* Handle extra signal info using qxfer packets. */
10975 if (object == TARGET_OBJECT_SIGNAL_INFO)
10976 {
10977 if (readbuf)
10978 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10979 xfered_len, &remote_protocol_packets
10980 [PACKET_qXfer_siginfo_read]);
10981 else
10982 return remote_write_qxfer ("siginfo", annex,
10983 writebuf, offset, len, xfered_len,
10984 &remote_protocol_packets
10985 [PACKET_qXfer_siginfo_write]);
10986 }
10987
10988 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10989 {
10990 if (readbuf)
10991 return remote_read_qxfer ("statictrace", annex,
10992 readbuf, offset, len, xfered_len,
10993 &remote_protocol_packets
10994 [PACKET_qXfer_statictrace_read]);
10995 else
10996 return TARGET_XFER_E_IO;
10997 }
10998
10999 /* Only handle flash writes. */
11000 if (writebuf != NULL)
11001 {
11002 switch (object)
11003 {
11004 case TARGET_OBJECT_FLASH:
11005 return remote_flash_write (offset, len, xfered_len,
11006 writebuf);
11007
11008 default:
11009 return TARGET_XFER_E_IO;
11010 }
11011 }
11012
11013 /* Map pre-existing objects onto letters. DO NOT do this for new
11014 objects!!! Instead specify new query packets. */
11015 switch (object)
11016 {
11017 case TARGET_OBJECT_AVR:
11018 query_type = 'R';
11019 break;
11020
11021 case TARGET_OBJECT_AUXV:
11022 gdb_assert (annex == NULL);
11023 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11024 xfered_len,
11025 &remote_protocol_packets[PACKET_qXfer_auxv]);
11026
11027 case TARGET_OBJECT_AVAILABLE_FEATURES:
11028 return remote_read_qxfer
11029 ("features", annex, readbuf, offset, len, xfered_len,
11030 &remote_protocol_packets[PACKET_qXfer_features]);
11031
11032 case TARGET_OBJECT_LIBRARIES:
11033 return remote_read_qxfer
11034 ("libraries", annex, readbuf, offset, len, xfered_len,
11035 &remote_protocol_packets[PACKET_qXfer_libraries]);
11036
11037 case TARGET_OBJECT_LIBRARIES_SVR4:
11038 return remote_read_qxfer
11039 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11040 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11041
11042 case TARGET_OBJECT_MEMORY_MAP:
11043 gdb_assert (annex == NULL);
11044 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11045 xfered_len,
11046 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11047
11048 case TARGET_OBJECT_OSDATA:
11049 /* Should only get here if we're connected. */
11050 gdb_assert (rs->remote_desc);
11051 return remote_read_qxfer
11052 ("osdata", annex, readbuf, offset, len, xfered_len,
11053 &remote_protocol_packets[PACKET_qXfer_osdata]);
11054
11055 case TARGET_OBJECT_THREADS:
11056 gdb_assert (annex == NULL);
11057 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11058 xfered_len,
11059 &remote_protocol_packets[PACKET_qXfer_threads]);
11060
11061 case TARGET_OBJECT_TRACEFRAME_INFO:
11062 gdb_assert (annex == NULL);
11063 return remote_read_qxfer
11064 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11065 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11066
11067 case TARGET_OBJECT_FDPIC:
11068 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11069 xfered_len,
11070 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11071
11072 case TARGET_OBJECT_OPENVMS_UIB:
11073 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11074 xfered_len,
11075 &remote_protocol_packets[PACKET_qXfer_uib]);
11076
11077 case TARGET_OBJECT_BTRACE:
11078 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11079 xfered_len,
11080 &remote_protocol_packets[PACKET_qXfer_btrace]);
11081
11082 case TARGET_OBJECT_BTRACE_CONF:
11083 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11084 len, xfered_len,
11085 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11086
11087 case TARGET_OBJECT_EXEC_FILE:
11088 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11089 len, xfered_len,
11090 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11091
11092 default:
11093 return TARGET_XFER_E_IO;
11094 }
11095
11096 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11097 large enough let the caller deal with it. */
11098 if (len < get_remote_packet_size ())
11099 return TARGET_XFER_E_IO;
11100 len = get_remote_packet_size ();
11101
11102 /* Except for querying the minimum buffer size, target must be open. */
11103 if (!rs->remote_desc)
11104 error (_("remote query is only available after target open"));
11105
11106 gdb_assert (annex != NULL);
11107 gdb_assert (readbuf != NULL);
11108
11109 p2 = rs->buf.data ();
11110 *p2++ = 'q';
11111 *p2++ = query_type;
11112
11113 /* We used one buffer char for the remote protocol q command and
11114 another for the query type. As the remote protocol encapsulation
11115 uses 4 chars plus one extra in case we are debugging
11116 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11117 string. */
11118 i = 0;
11119 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11120 {
11121 /* Bad caller may have sent forbidden characters. */
11122 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11123 *p2++ = annex[i];
11124 i++;
11125 }
11126 *p2 = '\0';
11127 gdb_assert (annex[i] == '\0');
11128
11129 i = putpkt (rs->buf);
11130 if (i < 0)
11131 return TARGET_XFER_E_IO;
11132
11133 getpkt (&rs->buf, 0);
11134 strcpy ((char *) readbuf, rs->buf.data ());
11135
11136 *xfered_len = strlen ((char *) readbuf);
11137 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11138 }
11139
11140 /* Implementation of to_get_memory_xfer_limit. */
11141
11142 ULONGEST
11143 remote_target::get_memory_xfer_limit ()
11144 {
11145 return get_memory_write_packet_size ();
11146 }
11147
11148 int
11149 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11150 const gdb_byte *pattern, ULONGEST pattern_len,
11151 CORE_ADDR *found_addrp)
11152 {
11153 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11154 struct remote_state *rs = get_remote_state ();
11155 int max_size = get_memory_write_packet_size ();
11156 struct packet_config *packet =
11157 &remote_protocol_packets[PACKET_qSearch_memory];
11158 /* Number of packet bytes used to encode the pattern;
11159 this could be more than PATTERN_LEN due to escape characters. */
11160 int escaped_pattern_len;
11161 /* Amount of pattern that was encodable in the packet. */
11162 int used_pattern_len;
11163 int i;
11164 int found;
11165 ULONGEST found_addr;
11166
11167 /* Don't go to the target if we don't have to. This is done before
11168 checking packet_config_support to avoid the possibility that a
11169 success for this edge case means the facility works in
11170 general. */
11171 if (pattern_len > search_space_len)
11172 return 0;
11173 if (pattern_len == 0)
11174 {
11175 *found_addrp = start_addr;
11176 return 1;
11177 }
11178
11179 /* If we already know the packet isn't supported, fall back to the simple
11180 way of searching memory. */
11181
11182 if (packet_config_support (packet) == PACKET_DISABLE)
11183 {
11184 /* Target doesn't provided special support, fall back and use the
11185 standard support (copy memory and do the search here). */
11186 return simple_search_memory (this, start_addr, search_space_len,
11187 pattern, pattern_len, found_addrp);
11188 }
11189
11190 /* Make sure the remote is pointing at the right process. */
11191 set_general_process ();
11192
11193 /* Insert header. */
11194 i = snprintf (rs->buf.data (), max_size,
11195 "qSearch:memory:%s;%s;",
11196 phex_nz (start_addr, addr_size),
11197 phex_nz (search_space_len, sizeof (search_space_len)));
11198 max_size -= (i + 1);
11199
11200 /* Escape as much data as fits into rs->buf. */
11201 escaped_pattern_len =
11202 remote_escape_output (pattern, pattern_len, 1,
11203 (gdb_byte *) rs->buf.data () + i,
11204 &used_pattern_len, max_size);
11205
11206 /* Bail if the pattern is too large. */
11207 if (used_pattern_len != pattern_len)
11208 error (_("Pattern is too large to transmit to remote target."));
11209
11210 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11211 || getpkt_sane (&rs->buf, 0) < 0
11212 || packet_ok (rs->buf, packet) != PACKET_OK)
11213 {
11214 /* The request may not have worked because the command is not
11215 supported. If so, fall back to the simple way. */
11216 if (packet_config_support (packet) == PACKET_DISABLE)
11217 {
11218 return simple_search_memory (this, start_addr, search_space_len,
11219 pattern, pattern_len, found_addrp);
11220 }
11221 return -1;
11222 }
11223
11224 if (rs->buf[0] == '0')
11225 found = 0;
11226 else if (rs->buf[0] == '1')
11227 {
11228 found = 1;
11229 if (rs->buf[1] != ',')
11230 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11231 unpack_varlen_hex (&rs->buf[2], &found_addr);
11232 *found_addrp = found_addr;
11233 }
11234 else
11235 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11236
11237 return found;
11238 }
11239
11240 void
11241 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11242 {
11243 struct remote_state *rs = get_remote_state ();
11244 char *p = rs->buf.data ();
11245
11246 if (!rs->remote_desc)
11247 error (_("remote rcmd is only available after target open"));
11248
11249 /* Send a NULL command across as an empty command. */
11250 if (command == NULL)
11251 command = "";
11252
11253 /* The query prefix. */
11254 strcpy (rs->buf.data (), "qRcmd,");
11255 p = strchr (rs->buf.data (), '\0');
11256
11257 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11258 > get_remote_packet_size ())
11259 error (_("\"monitor\" command ``%s'' is too long."), command);
11260
11261 /* Encode the actual command. */
11262 bin2hex ((const gdb_byte *) command, p, strlen (command));
11263
11264 if (putpkt (rs->buf) < 0)
11265 error (_("Communication problem with target."));
11266
11267 /* get/display the response */
11268 while (1)
11269 {
11270 char *buf;
11271
11272 /* XXX - see also remote_get_noisy_reply(). */
11273 QUIT; /* Allow user to bail out with ^C. */
11274 rs->buf[0] = '\0';
11275 if (getpkt_sane (&rs->buf, 0) == -1)
11276 {
11277 /* Timeout. Continue to (try to) read responses.
11278 This is better than stopping with an error, assuming the stub
11279 is still executing the (long) monitor command.
11280 If needed, the user can interrupt gdb using C-c, obtaining
11281 an effect similar to stop on timeout. */
11282 continue;
11283 }
11284 buf = rs->buf.data ();
11285 if (buf[0] == '\0')
11286 error (_("Target does not support this command."));
11287 if (buf[0] == 'O' && buf[1] != 'K')
11288 {
11289 remote_console_output (buf + 1); /* 'O' message from stub. */
11290 continue;
11291 }
11292 if (strcmp (buf, "OK") == 0)
11293 break;
11294 if (strlen (buf) == 3 && buf[0] == 'E'
11295 && isdigit (buf[1]) && isdigit (buf[2]))
11296 {
11297 error (_("Protocol error with Rcmd"));
11298 }
11299 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11300 {
11301 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11302
11303 fputc_unfiltered (c, outbuf);
11304 }
11305 break;
11306 }
11307 }
11308
11309 std::vector<mem_region>
11310 remote_target::memory_map ()
11311 {
11312 std::vector<mem_region> result;
11313 gdb::optional<gdb::char_vector> text
11314 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11315
11316 if (text)
11317 result = parse_memory_map (text->data ());
11318
11319 return result;
11320 }
11321
11322 static void
11323 packet_command (const char *args, int from_tty)
11324 {
11325 remote_target *remote = get_current_remote_target ();
11326
11327 if (remote == nullptr)
11328 error (_("command can only be used with remote target"));
11329
11330 remote->packet_command (args, from_tty);
11331 }
11332
11333 void
11334 remote_target::packet_command (const char *args, int from_tty)
11335 {
11336 if (!args)
11337 error (_("remote-packet command requires packet text as argument"));
11338
11339 puts_filtered ("sending: ");
11340 print_packet (args);
11341 puts_filtered ("\n");
11342 putpkt (args);
11343
11344 remote_state *rs = get_remote_state ();
11345
11346 getpkt (&rs->buf, 0);
11347 puts_filtered ("received: ");
11348 print_packet (rs->buf.data ());
11349 puts_filtered ("\n");
11350 }
11351
11352 #if 0
11353 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11354
11355 static void display_thread_info (struct gdb_ext_thread_info *info);
11356
11357 static void threadset_test_cmd (char *cmd, int tty);
11358
11359 static void threadalive_test (char *cmd, int tty);
11360
11361 static void threadlist_test_cmd (char *cmd, int tty);
11362
11363 int get_and_display_threadinfo (threadref *ref);
11364
11365 static void threadinfo_test_cmd (char *cmd, int tty);
11366
11367 static int thread_display_step (threadref *ref, void *context);
11368
11369 static void threadlist_update_test_cmd (char *cmd, int tty);
11370
11371 static void init_remote_threadtests (void);
11372
11373 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11374
11375 static void
11376 threadset_test_cmd (const char *cmd, int tty)
11377 {
11378 int sample_thread = SAMPLE_THREAD;
11379
11380 printf_filtered (_("Remote threadset test\n"));
11381 set_general_thread (sample_thread);
11382 }
11383
11384
11385 static void
11386 threadalive_test (const char *cmd, int tty)
11387 {
11388 int sample_thread = SAMPLE_THREAD;
11389 int pid = inferior_ptid.pid ();
11390 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11391
11392 if (remote_thread_alive (ptid))
11393 printf_filtered ("PASS: Thread alive test\n");
11394 else
11395 printf_filtered ("FAIL: Thread alive test\n");
11396 }
11397
11398 void output_threadid (char *title, threadref *ref);
11399
11400 void
11401 output_threadid (char *title, threadref *ref)
11402 {
11403 char hexid[20];
11404
11405 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11406 hexid[16] = 0;
11407 printf_filtered ("%s %s\n", title, (&hexid[0]));
11408 }
11409
11410 static void
11411 threadlist_test_cmd (const char *cmd, int tty)
11412 {
11413 int startflag = 1;
11414 threadref nextthread;
11415 int done, result_count;
11416 threadref threadlist[3];
11417
11418 printf_filtered ("Remote Threadlist test\n");
11419 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11420 &result_count, &threadlist[0]))
11421 printf_filtered ("FAIL: threadlist test\n");
11422 else
11423 {
11424 threadref *scan = threadlist;
11425 threadref *limit = scan + result_count;
11426
11427 while (scan < limit)
11428 output_threadid (" thread ", scan++);
11429 }
11430 }
11431
11432 void
11433 display_thread_info (struct gdb_ext_thread_info *info)
11434 {
11435 output_threadid ("Threadid: ", &info->threadid);
11436 printf_filtered ("Name: %s\n ", info->shortname);
11437 printf_filtered ("State: %s\n", info->display);
11438 printf_filtered ("other: %s\n\n", info->more_display);
11439 }
11440
11441 int
11442 get_and_display_threadinfo (threadref *ref)
11443 {
11444 int result;
11445 int set;
11446 struct gdb_ext_thread_info threadinfo;
11447
11448 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11449 | TAG_MOREDISPLAY | TAG_DISPLAY;
11450 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11451 display_thread_info (&threadinfo);
11452 return result;
11453 }
11454
11455 static void
11456 threadinfo_test_cmd (const char *cmd, int tty)
11457 {
11458 int athread = SAMPLE_THREAD;
11459 threadref thread;
11460 int set;
11461
11462 int_to_threadref (&thread, athread);
11463 printf_filtered ("Remote Threadinfo test\n");
11464 if (!get_and_display_threadinfo (&thread))
11465 printf_filtered ("FAIL cannot get thread info\n");
11466 }
11467
11468 static int
11469 thread_display_step (threadref *ref, void *context)
11470 {
11471 /* output_threadid(" threadstep ",ref); *//* simple test */
11472 return get_and_display_threadinfo (ref);
11473 }
11474
11475 static void
11476 threadlist_update_test_cmd (const char *cmd, int tty)
11477 {
11478 printf_filtered ("Remote Threadlist update test\n");
11479 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11480 }
11481
11482 static void
11483 init_remote_threadtests (void)
11484 {
11485 add_com ("tlist", class_obscure, threadlist_test_cmd,
11486 _("Fetch and print the remote list of "
11487 "thread identifiers, one pkt only."));
11488 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11489 _("Fetch and display info about one thread."));
11490 add_com ("tset", class_obscure, threadset_test_cmd,
11491 _("Test setting to a different thread."));
11492 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11493 _("Iterate through updating all remote thread info."));
11494 add_com ("talive", class_obscure, threadalive_test,
11495 _("Remote thread alive test."));
11496 }
11497
11498 #endif /* 0 */
11499
11500 /* Convert a thread ID to a string. */
11501
11502 std::string
11503 remote_target::pid_to_str (ptid_t ptid)
11504 {
11505 struct remote_state *rs = get_remote_state ();
11506
11507 if (ptid == null_ptid)
11508 return normal_pid_to_str (ptid);
11509 else if (ptid.is_pid ())
11510 {
11511 /* Printing an inferior target id. */
11512
11513 /* When multi-process extensions are off, there's no way in the
11514 remote protocol to know the remote process id, if there's any
11515 at all. There's one exception --- when we're connected with
11516 target extended-remote, and we manually attached to a process
11517 with "attach PID". We don't record anywhere a flag that
11518 allows us to distinguish that case from the case of
11519 connecting with extended-remote and the stub already being
11520 attached to a process, and reporting yes to qAttached, hence
11521 no smart special casing here. */
11522 if (!remote_multi_process_p (rs))
11523 return "Remote target";
11524
11525 return normal_pid_to_str (ptid);
11526 }
11527 else
11528 {
11529 if (magic_null_ptid == ptid)
11530 return "Thread <main>";
11531 else if (remote_multi_process_p (rs))
11532 if (ptid.lwp () == 0)
11533 return normal_pid_to_str (ptid);
11534 else
11535 return string_printf ("Thread %d.%ld",
11536 ptid.pid (), ptid.lwp ());
11537 else
11538 return string_printf ("Thread %ld", ptid.lwp ());
11539 }
11540 }
11541
11542 /* Get the address of the thread local variable in OBJFILE which is
11543 stored at OFFSET within the thread local storage for thread PTID. */
11544
11545 CORE_ADDR
11546 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11547 CORE_ADDR offset)
11548 {
11549 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11550 {
11551 struct remote_state *rs = get_remote_state ();
11552 char *p = rs->buf.data ();
11553 char *endp = p + get_remote_packet_size ();
11554 enum packet_result result;
11555
11556 strcpy (p, "qGetTLSAddr:");
11557 p += strlen (p);
11558 p = write_ptid (p, endp, ptid);
11559 *p++ = ',';
11560 p += hexnumstr (p, offset);
11561 *p++ = ',';
11562 p += hexnumstr (p, lm);
11563 *p++ = '\0';
11564
11565 putpkt (rs->buf);
11566 getpkt (&rs->buf, 0);
11567 result = packet_ok (rs->buf,
11568 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11569 if (result == PACKET_OK)
11570 {
11571 ULONGEST addr;
11572
11573 unpack_varlen_hex (rs->buf.data (), &addr);
11574 return addr;
11575 }
11576 else if (result == PACKET_UNKNOWN)
11577 throw_error (TLS_GENERIC_ERROR,
11578 _("Remote target doesn't support qGetTLSAddr packet"));
11579 else
11580 throw_error (TLS_GENERIC_ERROR,
11581 _("Remote target failed to process qGetTLSAddr request"));
11582 }
11583 else
11584 throw_error (TLS_GENERIC_ERROR,
11585 _("TLS not supported or disabled on this target"));
11586 /* Not reached. */
11587 return 0;
11588 }
11589
11590 /* Provide thread local base, i.e. Thread Information Block address.
11591 Returns 1 if ptid is found and thread_local_base is non zero. */
11592
11593 bool
11594 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11595 {
11596 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11597 {
11598 struct remote_state *rs = get_remote_state ();
11599 char *p = rs->buf.data ();
11600 char *endp = p + get_remote_packet_size ();
11601 enum packet_result result;
11602
11603 strcpy (p, "qGetTIBAddr:");
11604 p += strlen (p);
11605 p = write_ptid (p, endp, ptid);
11606 *p++ = '\0';
11607
11608 putpkt (rs->buf);
11609 getpkt (&rs->buf, 0);
11610 result = packet_ok (rs->buf,
11611 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11612 if (result == PACKET_OK)
11613 {
11614 ULONGEST val;
11615 unpack_varlen_hex (rs->buf.data (), &val);
11616 if (addr)
11617 *addr = (CORE_ADDR) val;
11618 return true;
11619 }
11620 else if (result == PACKET_UNKNOWN)
11621 error (_("Remote target doesn't support qGetTIBAddr packet"));
11622 else
11623 error (_("Remote target failed to process qGetTIBAddr request"));
11624 }
11625 else
11626 error (_("qGetTIBAddr not supported or disabled on this target"));
11627 /* Not reached. */
11628 return false;
11629 }
11630
11631 /* Support for inferring a target description based on the current
11632 architecture and the size of a 'g' packet. While the 'g' packet
11633 can have any size (since optional registers can be left off the
11634 end), some sizes are easily recognizable given knowledge of the
11635 approximate architecture. */
11636
11637 struct remote_g_packet_guess
11638 {
11639 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11640 : bytes (bytes_),
11641 tdesc (tdesc_)
11642 {
11643 }
11644
11645 int bytes;
11646 const struct target_desc *tdesc;
11647 };
11648
11649 struct remote_g_packet_data : public allocate_on_obstack
11650 {
11651 std::vector<remote_g_packet_guess> guesses;
11652 };
11653
11654 static struct gdbarch_data *remote_g_packet_data_handle;
11655
11656 static void *
11657 remote_g_packet_data_init (struct obstack *obstack)
11658 {
11659 return new (obstack) remote_g_packet_data;
11660 }
11661
11662 void
11663 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11664 const struct target_desc *tdesc)
11665 {
11666 struct remote_g_packet_data *data
11667 = ((struct remote_g_packet_data *)
11668 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11669
11670 gdb_assert (tdesc != NULL);
11671
11672 for (const remote_g_packet_guess &guess : data->guesses)
11673 if (guess.bytes == bytes)
11674 internal_error (__FILE__, __LINE__,
11675 _("Duplicate g packet description added for size %d"),
11676 bytes);
11677
11678 data->guesses.emplace_back (bytes, tdesc);
11679 }
11680
11681 /* Return true if remote_read_description would do anything on this target
11682 and architecture, false otherwise. */
11683
11684 static bool
11685 remote_read_description_p (struct target_ops *target)
11686 {
11687 struct remote_g_packet_data *data
11688 = ((struct remote_g_packet_data *)
11689 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11690
11691 return !data->guesses.empty ();
11692 }
11693
11694 const struct target_desc *
11695 remote_target::read_description ()
11696 {
11697 struct remote_g_packet_data *data
11698 = ((struct remote_g_packet_data *)
11699 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11700
11701 /* Do not try this during initial connection, when we do not know
11702 whether there is a running but stopped thread. */
11703 if (!target_has_execution || inferior_ptid == null_ptid)
11704 return beneath ()->read_description ();
11705
11706 if (!data->guesses.empty ())
11707 {
11708 int bytes = send_g_packet ();
11709
11710 for (const remote_g_packet_guess &guess : data->guesses)
11711 if (guess.bytes == bytes)
11712 return guess.tdesc;
11713
11714 /* We discard the g packet. A minor optimization would be to
11715 hold on to it, and fill the register cache once we have selected
11716 an architecture, but it's too tricky to do safely. */
11717 }
11718
11719 return beneath ()->read_description ();
11720 }
11721
11722 /* Remote file transfer support. This is host-initiated I/O, not
11723 target-initiated; for target-initiated, see remote-fileio.c. */
11724
11725 /* If *LEFT is at least the length of STRING, copy STRING to
11726 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11727 decrease *LEFT. Otherwise raise an error. */
11728
11729 static void
11730 remote_buffer_add_string (char **buffer, int *left, const char *string)
11731 {
11732 int len = strlen (string);
11733
11734 if (len > *left)
11735 error (_("Packet too long for target."));
11736
11737 memcpy (*buffer, string, len);
11738 *buffer += len;
11739 *left -= len;
11740
11741 /* NUL-terminate the buffer as a convenience, if there is
11742 room. */
11743 if (*left)
11744 **buffer = '\0';
11745 }
11746
11747 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11748 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11749 decrease *LEFT. Otherwise raise an error. */
11750
11751 static void
11752 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11753 int len)
11754 {
11755 if (2 * len > *left)
11756 error (_("Packet too long for target."));
11757
11758 bin2hex (bytes, *buffer, len);
11759 *buffer += 2 * len;
11760 *left -= 2 * len;
11761
11762 /* NUL-terminate the buffer as a convenience, if there is
11763 room. */
11764 if (*left)
11765 **buffer = '\0';
11766 }
11767
11768 /* If *LEFT is large enough, convert VALUE to hex and add it to
11769 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11770 decrease *LEFT. Otherwise raise an error. */
11771
11772 static void
11773 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11774 {
11775 int len = hexnumlen (value);
11776
11777 if (len > *left)
11778 error (_("Packet too long for target."));
11779
11780 hexnumstr (*buffer, value);
11781 *buffer += len;
11782 *left -= len;
11783
11784 /* NUL-terminate the buffer as a convenience, if there is
11785 room. */
11786 if (*left)
11787 **buffer = '\0';
11788 }
11789
11790 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11791 value, *REMOTE_ERRNO to the remote error number or zero if none
11792 was included, and *ATTACHMENT to point to the start of the annex
11793 if any. The length of the packet isn't needed here; there may
11794 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11795
11796 Return 0 if the packet could be parsed, -1 if it could not. If
11797 -1 is returned, the other variables may not be initialized. */
11798
11799 static int
11800 remote_hostio_parse_result (char *buffer, int *retcode,
11801 int *remote_errno, char **attachment)
11802 {
11803 char *p, *p2;
11804
11805 *remote_errno = 0;
11806 *attachment = NULL;
11807
11808 if (buffer[0] != 'F')
11809 return -1;
11810
11811 errno = 0;
11812 *retcode = strtol (&buffer[1], &p, 16);
11813 if (errno != 0 || p == &buffer[1])
11814 return -1;
11815
11816 /* Check for ",errno". */
11817 if (*p == ',')
11818 {
11819 errno = 0;
11820 *remote_errno = strtol (p + 1, &p2, 16);
11821 if (errno != 0 || p + 1 == p2)
11822 return -1;
11823 p = p2;
11824 }
11825
11826 /* Check for ";attachment". If there is no attachment, the
11827 packet should end here. */
11828 if (*p == ';')
11829 {
11830 *attachment = p + 1;
11831 return 0;
11832 }
11833 else if (*p == '\0')
11834 return 0;
11835 else
11836 return -1;
11837 }
11838
11839 /* Send a prepared I/O packet to the target and read its response.
11840 The prepared packet is in the global RS->BUF before this function
11841 is called, and the answer is there when we return.
11842
11843 COMMAND_BYTES is the length of the request to send, which may include
11844 binary data. WHICH_PACKET is the packet configuration to check
11845 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11846 is set to the error number and -1 is returned. Otherwise the value
11847 returned by the function is returned.
11848
11849 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11850 attachment is expected; an error will be reported if there's a
11851 mismatch. If one is found, *ATTACHMENT will be set to point into
11852 the packet buffer and *ATTACHMENT_LEN will be set to the
11853 attachment's length. */
11854
11855 int
11856 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11857 int *remote_errno, char **attachment,
11858 int *attachment_len)
11859 {
11860 struct remote_state *rs = get_remote_state ();
11861 int ret, bytes_read;
11862 char *attachment_tmp;
11863
11864 if (packet_support (which_packet) == PACKET_DISABLE)
11865 {
11866 *remote_errno = FILEIO_ENOSYS;
11867 return -1;
11868 }
11869
11870 putpkt_binary (rs->buf.data (), command_bytes);
11871 bytes_read = getpkt_sane (&rs->buf, 0);
11872
11873 /* If it timed out, something is wrong. Don't try to parse the
11874 buffer. */
11875 if (bytes_read < 0)
11876 {
11877 *remote_errno = FILEIO_EINVAL;
11878 return -1;
11879 }
11880
11881 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11882 {
11883 case PACKET_ERROR:
11884 *remote_errno = FILEIO_EINVAL;
11885 return -1;
11886 case PACKET_UNKNOWN:
11887 *remote_errno = FILEIO_ENOSYS;
11888 return -1;
11889 case PACKET_OK:
11890 break;
11891 }
11892
11893 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11894 &attachment_tmp))
11895 {
11896 *remote_errno = FILEIO_EINVAL;
11897 return -1;
11898 }
11899
11900 /* Make sure we saw an attachment if and only if we expected one. */
11901 if ((attachment_tmp == NULL && attachment != NULL)
11902 || (attachment_tmp != NULL && attachment == NULL))
11903 {
11904 *remote_errno = FILEIO_EINVAL;
11905 return -1;
11906 }
11907
11908 /* If an attachment was found, it must point into the packet buffer;
11909 work out how many bytes there were. */
11910 if (attachment_tmp != NULL)
11911 {
11912 *attachment = attachment_tmp;
11913 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11914 }
11915
11916 return ret;
11917 }
11918
11919 /* See declaration.h. */
11920
11921 void
11922 readahead_cache::invalidate ()
11923 {
11924 this->fd = -1;
11925 }
11926
11927 /* See declaration.h. */
11928
11929 void
11930 readahead_cache::invalidate_fd (int fd)
11931 {
11932 if (this->fd == fd)
11933 this->fd = -1;
11934 }
11935
11936 /* Set the filesystem remote_hostio functions that take FILENAME
11937 arguments will use. Return 0 on success, or -1 if an error
11938 occurs (and set *REMOTE_ERRNO). */
11939
11940 int
11941 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11942 int *remote_errno)
11943 {
11944 struct remote_state *rs = get_remote_state ();
11945 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11946 char *p = rs->buf.data ();
11947 int left = get_remote_packet_size () - 1;
11948 char arg[9];
11949 int ret;
11950
11951 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11952 return 0;
11953
11954 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11955 return 0;
11956
11957 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11958
11959 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11960 remote_buffer_add_string (&p, &left, arg);
11961
11962 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11963 remote_errno, NULL, NULL);
11964
11965 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11966 return 0;
11967
11968 if (ret == 0)
11969 rs->fs_pid = required_pid;
11970
11971 return ret;
11972 }
11973
11974 /* Implementation of to_fileio_open. */
11975
11976 int
11977 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11978 int flags, int mode, int warn_if_slow,
11979 int *remote_errno)
11980 {
11981 struct remote_state *rs = get_remote_state ();
11982 char *p = rs->buf.data ();
11983 int left = get_remote_packet_size () - 1;
11984
11985 if (warn_if_slow)
11986 {
11987 static int warning_issued = 0;
11988
11989 printf_unfiltered (_("Reading %s from remote target...\n"),
11990 filename);
11991
11992 if (!warning_issued)
11993 {
11994 warning (_("File transfers from remote targets can be slow."
11995 " Use \"set sysroot\" to access files locally"
11996 " instead."));
11997 warning_issued = 1;
11998 }
11999 }
12000
12001 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12002 return -1;
12003
12004 remote_buffer_add_string (&p, &left, "vFile:open:");
12005
12006 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12007 strlen (filename));
12008 remote_buffer_add_string (&p, &left, ",");
12009
12010 remote_buffer_add_int (&p, &left, flags);
12011 remote_buffer_add_string (&p, &left, ",");
12012
12013 remote_buffer_add_int (&p, &left, mode);
12014
12015 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12016 remote_errno, NULL, NULL);
12017 }
12018
12019 int
12020 remote_target::fileio_open (struct inferior *inf, const char *filename,
12021 int flags, int mode, int warn_if_slow,
12022 int *remote_errno)
12023 {
12024 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12025 remote_errno);
12026 }
12027
12028 /* Implementation of to_fileio_pwrite. */
12029
12030 int
12031 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12032 ULONGEST offset, int *remote_errno)
12033 {
12034 struct remote_state *rs = get_remote_state ();
12035 char *p = rs->buf.data ();
12036 int left = get_remote_packet_size ();
12037 int out_len;
12038
12039 rs->readahead_cache.invalidate_fd (fd);
12040
12041 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12042
12043 remote_buffer_add_int (&p, &left, fd);
12044 remote_buffer_add_string (&p, &left, ",");
12045
12046 remote_buffer_add_int (&p, &left, offset);
12047 remote_buffer_add_string (&p, &left, ",");
12048
12049 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12050 (get_remote_packet_size ()
12051 - (p - rs->buf.data ())));
12052
12053 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12054 remote_errno, NULL, NULL);
12055 }
12056
12057 int
12058 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12059 ULONGEST offset, int *remote_errno)
12060 {
12061 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12062 }
12063
12064 /* Helper for the implementation of to_fileio_pread. Read the file
12065 from the remote side with vFile:pread. */
12066
12067 int
12068 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12069 ULONGEST offset, int *remote_errno)
12070 {
12071 struct remote_state *rs = get_remote_state ();
12072 char *p = rs->buf.data ();
12073 char *attachment;
12074 int left = get_remote_packet_size ();
12075 int ret, attachment_len;
12076 int read_len;
12077
12078 remote_buffer_add_string (&p, &left, "vFile:pread:");
12079
12080 remote_buffer_add_int (&p, &left, fd);
12081 remote_buffer_add_string (&p, &left, ",");
12082
12083 remote_buffer_add_int (&p, &left, len);
12084 remote_buffer_add_string (&p, &left, ",");
12085
12086 remote_buffer_add_int (&p, &left, offset);
12087
12088 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12089 remote_errno, &attachment,
12090 &attachment_len);
12091
12092 if (ret < 0)
12093 return ret;
12094
12095 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12096 read_buf, len);
12097 if (read_len != ret)
12098 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12099
12100 return ret;
12101 }
12102
12103 /* See declaration.h. */
12104
12105 int
12106 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12107 ULONGEST offset)
12108 {
12109 if (this->fd == fd
12110 && this->offset <= offset
12111 && offset < this->offset + this->bufsize)
12112 {
12113 ULONGEST max = this->offset + this->bufsize;
12114
12115 if (offset + len > max)
12116 len = max - offset;
12117
12118 memcpy (read_buf, this->buf + offset - this->offset, len);
12119 return len;
12120 }
12121
12122 return 0;
12123 }
12124
12125 /* Implementation of to_fileio_pread. */
12126
12127 int
12128 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12129 ULONGEST offset, int *remote_errno)
12130 {
12131 int ret;
12132 struct remote_state *rs = get_remote_state ();
12133 readahead_cache *cache = &rs->readahead_cache;
12134
12135 ret = cache->pread (fd, read_buf, len, offset);
12136 if (ret > 0)
12137 {
12138 cache->hit_count++;
12139
12140 if (remote_debug)
12141 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12142 pulongest (cache->hit_count));
12143 return ret;
12144 }
12145
12146 cache->miss_count++;
12147 if (remote_debug)
12148 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12149 pulongest (cache->miss_count));
12150
12151 cache->fd = fd;
12152 cache->offset = offset;
12153 cache->bufsize = get_remote_packet_size ();
12154 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12155
12156 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12157 cache->offset, remote_errno);
12158 if (ret <= 0)
12159 {
12160 cache->invalidate_fd (fd);
12161 return ret;
12162 }
12163
12164 cache->bufsize = ret;
12165 return cache->pread (fd, read_buf, len, offset);
12166 }
12167
12168 int
12169 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12170 ULONGEST offset, int *remote_errno)
12171 {
12172 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12173 }
12174
12175 /* Implementation of to_fileio_close. */
12176
12177 int
12178 remote_target::remote_hostio_close (int fd, int *remote_errno)
12179 {
12180 struct remote_state *rs = get_remote_state ();
12181 char *p = rs->buf.data ();
12182 int left = get_remote_packet_size () - 1;
12183
12184 rs->readahead_cache.invalidate_fd (fd);
12185
12186 remote_buffer_add_string (&p, &left, "vFile:close:");
12187
12188 remote_buffer_add_int (&p, &left, fd);
12189
12190 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12191 remote_errno, NULL, NULL);
12192 }
12193
12194 int
12195 remote_target::fileio_close (int fd, int *remote_errno)
12196 {
12197 return remote_hostio_close (fd, remote_errno);
12198 }
12199
12200 /* Implementation of to_fileio_unlink. */
12201
12202 int
12203 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12204 int *remote_errno)
12205 {
12206 struct remote_state *rs = get_remote_state ();
12207 char *p = rs->buf.data ();
12208 int left = get_remote_packet_size () - 1;
12209
12210 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12211 return -1;
12212
12213 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12214
12215 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12216 strlen (filename));
12217
12218 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12219 remote_errno, NULL, NULL);
12220 }
12221
12222 int
12223 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12224 int *remote_errno)
12225 {
12226 return remote_hostio_unlink (inf, filename, remote_errno);
12227 }
12228
12229 /* Implementation of to_fileio_readlink. */
12230
12231 gdb::optional<std::string>
12232 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12233 int *remote_errno)
12234 {
12235 struct remote_state *rs = get_remote_state ();
12236 char *p = rs->buf.data ();
12237 char *attachment;
12238 int left = get_remote_packet_size ();
12239 int len, attachment_len;
12240 int read_len;
12241
12242 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12243 return {};
12244
12245 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12246
12247 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12248 strlen (filename));
12249
12250 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12251 remote_errno, &attachment,
12252 &attachment_len);
12253
12254 if (len < 0)
12255 return {};
12256
12257 std::string ret (len, '\0');
12258
12259 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12260 (gdb_byte *) &ret[0], len);
12261 if (read_len != len)
12262 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12263
12264 return ret;
12265 }
12266
12267 /* Implementation of to_fileio_fstat. */
12268
12269 int
12270 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12271 {
12272 struct remote_state *rs = get_remote_state ();
12273 char *p = rs->buf.data ();
12274 int left = get_remote_packet_size ();
12275 int attachment_len, ret;
12276 char *attachment;
12277 struct fio_stat fst;
12278 int read_len;
12279
12280 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12281
12282 remote_buffer_add_int (&p, &left, fd);
12283
12284 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12285 remote_errno, &attachment,
12286 &attachment_len);
12287 if (ret < 0)
12288 {
12289 if (*remote_errno != FILEIO_ENOSYS)
12290 return ret;
12291
12292 /* Strictly we should return -1, ENOSYS here, but when
12293 "set sysroot remote:" was implemented in August 2008
12294 BFD's need for a stat function was sidestepped with
12295 this hack. This was not remedied until March 2015
12296 so we retain the previous behavior to avoid breaking
12297 compatibility.
12298
12299 Note that the memset is a March 2015 addition; older
12300 GDBs set st_size *and nothing else* so the structure
12301 would have garbage in all other fields. This might
12302 break something but retaining the previous behavior
12303 here would be just too wrong. */
12304
12305 memset (st, 0, sizeof (struct stat));
12306 st->st_size = INT_MAX;
12307 return 0;
12308 }
12309
12310 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12311 (gdb_byte *) &fst, sizeof (fst));
12312
12313 if (read_len != ret)
12314 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12315
12316 if (read_len != sizeof (fst))
12317 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12318 read_len, (int) sizeof (fst));
12319
12320 remote_fileio_to_host_stat (&fst, st);
12321
12322 return 0;
12323 }
12324
12325 /* Implementation of to_filesystem_is_local. */
12326
12327 bool
12328 remote_target::filesystem_is_local ()
12329 {
12330 /* Valgrind GDB presents itself as a remote target but works
12331 on the local filesystem: it does not implement remote get
12332 and users are not expected to set a sysroot. To handle
12333 this case we treat the remote filesystem as local if the
12334 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12335 does not support vFile:open. */
12336 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12337 {
12338 enum packet_support ps = packet_support (PACKET_vFile_open);
12339
12340 if (ps == PACKET_SUPPORT_UNKNOWN)
12341 {
12342 int fd, remote_errno;
12343
12344 /* Try opening a file to probe support. The supplied
12345 filename is irrelevant, we only care about whether
12346 the stub recognizes the packet or not. */
12347 fd = remote_hostio_open (NULL, "just probing",
12348 FILEIO_O_RDONLY, 0700, 0,
12349 &remote_errno);
12350
12351 if (fd >= 0)
12352 remote_hostio_close (fd, &remote_errno);
12353
12354 ps = packet_support (PACKET_vFile_open);
12355 }
12356
12357 if (ps == PACKET_DISABLE)
12358 {
12359 static int warning_issued = 0;
12360
12361 if (!warning_issued)
12362 {
12363 warning (_("remote target does not support file"
12364 " transfer, attempting to access files"
12365 " from local filesystem."));
12366 warning_issued = 1;
12367 }
12368
12369 return true;
12370 }
12371 }
12372
12373 return false;
12374 }
12375
12376 static int
12377 remote_fileio_errno_to_host (int errnum)
12378 {
12379 switch (errnum)
12380 {
12381 case FILEIO_EPERM:
12382 return EPERM;
12383 case FILEIO_ENOENT:
12384 return ENOENT;
12385 case FILEIO_EINTR:
12386 return EINTR;
12387 case FILEIO_EIO:
12388 return EIO;
12389 case FILEIO_EBADF:
12390 return EBADF;
12391 case FILEIO_EACCES:
12392 return EACCES;
12393 case FILEIO_EFAULT:
12394 return EFAULT;
12395 case FILEIO_EBUSY:
12396 return EBUSY;
12397 case FILEIO_EEXIST:
12398 return EEXIST;
12399 case FILEIO_ENODEV:
12400 return ENODEV;
12401 case FILEIO_ENOTDIR:
12402 return ENOTDIR;
12403 case FILEIO_EISDIR:
12404 return EISDIR;
12405 case FILEIO_EINVAL:
12406 return EINVAL;
12407 case FILEIO_ENFILE:
12408 return ENFILE;
12409 case FILEIO_EMFILE:
12410 return EMFILE;
12411 case FILEIO_EFBIG:
12412 return EFBIG;
12413 case FILEIO_ENOSPC:
12414 return ENOSPC;
12415 case FILEIO_ESPIPE:
12416 return ESPIPE;
12417 case FILEIO_EROFS:
12418 return EROFS;
12419 case FILEIO_ENOSYS:
12420 return ENOSYS;
12421 case FILEIO_ENAMETOOLONG:
12422 return ENAMETOOLONG;
12423 }
12424 return -1;
12425 }
12426
12427 static char *
12428 remote_hostio_error (int errnum)
12429 {
12430 int host_error = remote_fileio_errno_to_host (errnum);
12431
12432 if (host_error == -1)
12433 error (_("Unknown remote I/O error %d"), errnum);
12434 else
12435 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12436 }
12437
12438 /* A RAII wrapper around a remote file descriptor. */
12439
12440 class scoped_remote_fd
12441 {
12442 public:
12443 scoped_remote_fd (remote_target *remote, int fd)
12444 : m_remote (remote), m_fd (fd)
12445 {
12446 }
12447
12448 ~scoped_remote_fd ()
12449 {
12450 if (m_fd != -1)
12451 {
12452 try
12453 {
12454 int remote_errno;
12455 m_remote->remote_hostio_close (m_fd, &remote_errno);
12456 }
12457 catch (...)
12458 {
12459 /* Swallow exception before it escapes the dtor. If
12460 something goes wrong, likely the connection is gone,
12461 and there's nothing else that can be done. */
12462 }
12463 }
12464 }
12465
12466 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12467
12468 /* Release ownership of the file descriptor, and return it. */
12469 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12470 {
12471 int fd = m_fd;
12472 m_fd = -1;
12473 return fd;
12474 }
12475
12476 /* Return the owned file descriptor. */
12477 int get () const noexcept
12478 {
12479 return m_fd;
12480 }
12481
12482 private:
12483 /* The remote target. */
12484 remote_target *m_remote;
12485
12486 /* The owned remote I/O file descriptor. */
12487 int m_fd;
12488 };
12489
12490 void
12491 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12492 {
12493 remote_target *remote = get_current_remote_target ();
12494
12495 if (remote == nullptr)
12496 error (_("command can only be used with remote target"));
12497
12498 remote->remote_file_put (local_file, remote_file, from_tty);
12499 }
12500
12501 void
12502 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12503 int from_tty)
12504 {
12505 int retcode, remote_errno, bytes, io_size;
12506 int bytes_in_buffer;
12507 int saw_eof;
12508 ULONGEST offset;
12509
12510 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12511 if (file == NULL)
12512 perror_with_name (local_file);
12513
12514 scoped_remote_fd fd
12515 (this, remote_hostio_open (NULL,
12516 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12517 | FILEIO_O_TRUNC),
12518 0700, 0, &remote_errno));
12519 if (fd.get () == -1)
12520 remote_hostio_error (remote_errno);
12521
12522 /* Send up to this many bytes at once. They won't all fit in the
12523 remote packet limit, so we'll transfer slightly fewer. */
12524 io_size = get_remote_packet_size ();
12525 gdb::byte_vector buffer (io_size);
12526
12527 bytes_in_buffer = 0;
12528 saw_eof = 0;
12529 offset = 0;
12530 while (bytes_in_buffer || !saw_eof)
12531 {
12532 if (!saw_eof)
12533 {
12534 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12535 io_size - bytes_in_buffer,
12536 file.get ());
12537 if (bytes == 0)
12538 {
12539 if (ferror (file.get ()))
12540 error (_("Error reading %s."), local_file);
12541 else
12542 {
12543 /* EOF. Unless there is something still in the
12544 buffer from the last iteration, we are done. */
12545 saw_eof = 1;
12546 if (bytes_in_buffer == 0)
12547 break;
12548 }
12549 }
12550 }
12551 else
12552 bytes = 0;
12553
12554 bytes += bytes_in_buffer;
12555 bytes_in_buffer = 0;
12556
12557 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12558 offset, &remote_errno);
12559
12560 if (retcode < 0)
12561 remote_hostio_error (remote_errno);
12562 else if (retcode == 0)
12563 error (_("Remote write of %d bytes returned 0!"), bytes);
12564 else if (retcode < bytes)
12565 {
12566 /* Short write. Save the rest of the read data for the next
12567 write. */
12568 bytes_in_buffer = bytes - retcode;
12569 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12570 }
12571
12572 offset += retcode;
12573 }
12574
12575 if (remote_hostio_close (fd.release (), &remote_errno))
12576 remote_hostio_error (remote_errno);
12577
12578 if (from_tty)
12579 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12580 }
12581
12582 void
12583 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12584 {
12585 remote_target *remote = get_current_remote_target ();
12586
12587 if (remote == nullptr)
12588 error (_("command can only be used with remote target"));
12589
12590 remote->remote_file_get (remote_file, local_file, from_tty);
12591 }
12592
12593 void
12594 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12595 int from_tty)
12596 {
12597 int remote_errno, bytes, io_size;
12598 ULONGEST offset;
12599
12600 scoped_remote_fd fd
12601 (this, remote_hostio_open (NULL,
12602 remote_file, FILEIO_O_RDONLY, 0, 0,
12603 &remote_errno));
12604 if (fd.get () == -1)
12605 remote_hostio_error (remote_errno);
12606
12607 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12608 if (file == NULL)
12609 perror_with_name (local_file);
12610
12611 /* Send up to this many bytes at once. They won't all fit in the
12612 remote packet limit, so we'll transfer slightly fewer. */
12613 io_size = get_remote_packet_size ();
12614 gdb::byte_vector buffer (io_size);
12615
12616 offset = 0;
12617 while (1)
12618 {
12619 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12620 &remote_errno);
12621 if (bytes == 0)
12622 /* Success, but no bytes, means end-of-file. */
12623 break;
12624 if (bytes == -1)
12625 remote_hostio_error (remote_errno);
12626
12627 offset += bytes;
12628
12629 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12630 if (bytes == 0)
12631 perror_with_name (local_file);
12632 }
12633
12634 if (remote_hostio_close (fd.release (), &remote_errno))
12635 remote_hostio_error (remote_errno);
12636
12637 if (from_tty)
12638 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12639 }
12640
12641 void
12642 remote_file_delete (const char *remote_file, int from_tty)
12643 {
12644 remote_target *remote = get_current_remote_target ();
12645
12646 if (remote == nullptr)
12647 error (_("command can only be used with remote target"));
12648
12649 remote->remote_file_delete (remote_file, from_tty);
12650 }
12651
12652 void
12653 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12654 {
12655 int retcode, remote_errno;
12656
12657 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12658 if (retcode == -1)
12659 remote_hostio_error (remote_errno);
12660
12661 if (from_tty)
12662 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12663 }
12664
12665 static void
12666 remote_put_command (const char *args, int from_tty)
12667 {
12668 if (args == NULL)
12669 error_no_arg (_("file to put"));
12670
12671 gdb_argv argv (args);
12672 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12673 error (_("Invalid parameters to remote put"));
12674
12675 remote_file_put (argv[0], argv[1], from_tty);
12676 }
12677
12678 static void
12679 remote_get_command (const char *args, int from_tty)
12680 {
12681 if (args == NULL)
12682 error_no_arg (_("file to get"));
12683
12684 gdb_argv argv (args);
12685 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12686 error (_("Invalid parameters to remote get"));
12687
12688 remote_file_get (argv[0], argv[1], from_tty);
12689 }
12690
12691 static void
12692 remote_delete_command (const char *args, int from_tty)
12693 {
12694 if (args == NULL)
12695 error_no_arg (_("file to delete"));
12696
12697 gdb_argv argv (args);
12698 if (argv[0] == NULL || argv[1] != NULL)
12699 error (_("Invalid parameters to remote delete"));
12700
12701 remote_file_delete (argv[0], from_tty);
12702 }
12703
12704 static void
12705 remote_command (const char *args, int from_tty)
12706 {
12707 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12708 }
12709
12710 bool
12711 remote_target::can_execute_reverse ()
12712 {
12713 if (packet_support (PACKET_bs) == PACKET_ENABLE
12714 || packet_support (PACKET_bc) == PACKET_ENABLE)
12715 return true;
12716 else
12717 return false;
12718 }
12719
12720 bool
12721 remote_target::supports_non_stop ()
12722 {
12723 return true;
12724 }
12725
12726 bool
12727 remote_target::supports_disable_randomization ()
12728 {
12729 /* Only supported in extended mode. */
12730 return false;
12731 }
12732
12733 bool
12734 remote_target::supports_multi_process ()
12735 {
12736 struct remote_state *rs = get_remote_state ();
12737
12738 return remote_multi_process_p (rs);
12739 }
12740
12741 static int
12742 remote_supports_cond_tracepoints ()
12743 {
12744 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12745 }
12746
12747 bool
12748 remote_target::supports_evaluation_of_breakpoint_conditions ()
12749 {
12750 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12751 }
12752
12753 static int
12754 remote_supports_fast_tracepoints ()
12755 {
12756 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12757 }
12758
12759 static int
12760 remote_supports_static_tracepoints ()
12761 {
12762 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12763 }
12764
12765 static int
12766 remote_supports_install_in_trace ()
12767 {
12768 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12769 }
12770
12771 bool
12772 remote_target::supports_enable_disable_tracepoint ()
12773 {
12774 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12775 == PACKET_ENABLE);
12776 }
12777
12778 bool
12779 remote_target::supports_string_tracing ()
12780 {
12781 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12782 }
12783
12784 bool
12785 remote_target::can_run_breakpoint_commands ()
12786 {
12787 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12788 }
12789
12790 void
12791 remote_target::trace_init ()
12792 {
12793 struct remote_state *rs = get_remote_state ();
12794
12795 putpkt ("QTinit");
12796 remote_get_noisy_reply ();
12797 if (strcmp (rs->buf.data (), "OK") != 0)
12798 error (_("Target does not support this command."));
12799 }
12800
12801 /* Recursive routine to walk through command list including loops, and
12802 download packets for each command. */
12803
12804 void
12805 remote_target::remote_download_command_source (int num, ULONGEST addr,
12806 struct command_line *cmds)
12807 {
12808 struct remote_state *rs = get_remote_state ();
12809 struct command_line *cmd;
12810
12811 for (cmd = cmds; cmd; cmd = cmd->next)
12812 {
12813 QUIT; /* Allow user to bail out with ^C. */
12814 strcpy (rs->buf.data (), "QTDPsrc:");
12815 encode_source_string (num, addr, "cmd", cmd->line,
12816 rs->buf.data () + strlen (rs->buf.data ()),
12817 rs->buf.size () - strlen (rs->buf.data ()));
12818 putpkt (rs->buf);
12819 remote_get_noisy_reply ();
12820 if (strcmp (rs->buf.data (), "OK"))
12821 warning (_("Target does not support source download."));
12822
12823 if (cmd->control_type == while_control
12824 || cmd->control_type == while_stepping_control)
12825 {
12826 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12827
12828 QUIT; /* Allow user to bail out with ^C. */
12829 strcpy (rs->buf.data (), "QTDPsrc:");
12830 encode_source_string (num, addr, "cmd", "end",
12831 rs->buf.data () + strlen (rs->buf.data ()),
12832 rs->buf.size () - strlen (rs->buf.data ()));
12833 putpkt (rs->buf);
12834 remote_get_noisy_reply ();
12835 if (strcmp (rs->buf.data (), "OK"))
12836 warning (_("Target does not support source download."));
12837 }
12838 }
12839 }
12840
12841 void
12842 remote_target::download_tracepoint (struct bp_location *loc)
12843 {
12844 CORE_ADDR tpaddr;
12845 char addrbuf[40];
12846 std::vector<std::string> tdp_actions;
12847 std::vector<std::string> stepping_actions;
12848 char *pkt;
12849 struct breakpoint *b = loc->owner;
12850 struct tracepoint *t = (struct tracepoint *) b;
12851 struct remote_state *rs = get_remote_state ();
12852 int ret;
12853 const char *err_msg = _("Tracepoint packet too large for target.");
12854 size_t size_left;
12855
12856 /* We use a buffer other than rs->buf because we'll build strings
12857 across multiple statements, and other statements in between could
12858 modify rs->buf. */
12859 gdb::char_vector buf (get_remote_packet_size ());
12860
12861 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12862
12863 tpaddr = loc->address;
12864 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
12865 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12866 b->number, addrbuf, /* address */
12867 (b->enable_state == bp_enabled ? 'E' : 'D'),
12868 t->step_count, t->pass_count);
12869
12870 if (ret < 0 || ret >= buf.size ())
12871 error ("%s", err_msg);
12872
12873 /* Fast tracepoints are mostly handled by the target, but we can
12874 tell the target how big of an instruction block should be moved
12875 around. */
12876 if (b->type == bp_fast_tracepoint)
12877 {
12878 /* Only test for support at download time; we may not know
12879 target capabilities at definition time. */
12880 if (remote_supports_fast_tracepoints ())
12881 {
12882 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12883 NULL))
12884 {
12885 size_left = buf.size () - strlen (buf.data ());
12886 ret = snprintf (buf.data () + strlen (buf.data ()),
12887 size_left, ":F%x",
12888 gdb_insn_length (loc->gdbarch, tpaddr));
12889
12890 if (ret < 0 || ret >= size_left)
12891 error ("%s", err_msg);
12892 }
12893 else
12894 /* If it passed validation at definition but fails now,
12895 something is very wrong. */
12896 internal_error (__FILE__, __LINE__,
12897 _("Fast tracepoint not "
12898 "valid during download"));
12899 }
12900 else
12901 /* Fast tracepoints are functionally identical to regular
12902 tracepoints, so don't take lack of support as a reason to
12903 give up on the trace run. */
12904 warning (_("Target does not support fast tracepoints, "
12905 "downloading %d as regular tracepoint"), b->number);
12906 }
12907 else if (b->type == bp_static_tracepoint)
12908 {
12909 /* Only test for support at download time; we may not know
12910 target capabilities at definition time. */
12911 if (remote_supports_static_tracepoints ())
12912 {
12913 struct static_tracepoint_marker marker;
12914
12915 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12916 {
12917 size_left = buf.size () - strlen (buf.data ());
12918 ret = snprintf (buf.data () + strlen (buf.data ()),
12919 size_left, ":S");
12920
12921 if (ret < 0 || ret >= size_left)
12922 error ("%s", err_msg);
12923 }
12924 else
12925 error (_("Static tracepoint not valid during download"));
12926 }
12927 else
12928 /* Fast tracepoints are functionally identical to regular
12929 tracepoints, so don't take lack of support as a reason
12930 to give up on the trace run. */
12931 error (_("Target does not support static tracepoints"));
12932 }
12933 /* If the tracepoint has a conditional, make it into an agent
12934 expression and append to the definition. */
12935 if (loc->cond)
12936 {
12937 /* Only test support at download time, we may not know target
12938 capabilities at definition time. */
12939 if (remote_supports_cond_tracepoints ())
12940 {
12941 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12942 loc->cond.get ());
12943
12944 size_left = buf.size () - strlen (buf.data ());
12945
12946 ret = snprintf (buf.data () + strlen (buf.data ()),
12947 size_left, ":X%x,", aexpr->len);
12948
12949 if (ret < 0 || ret >= size_left)
12950 error ("%s", err_msg);
12951
12952 size_left = buf.size () - strlen (buf.data ());
12953
12954 /* Two bytes to encode each aexpr byte, plus the terminating
12955 null byte. */
12956 if (aexpr->len * 2 + 1 > size_left)
12957 error ("%s", err_msg);
12958
12959 pkt = buf.data () + strlen (buf.data ());
12960
12961 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12962 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12963 *pkt = '\0';
12964 }
12965 else
12966 warning (_("Target does not support conditional tracepoints, "
12967 "ignoring tp %d cond"), b->number);
12968 }
12969
12970 if (b->commands || *default_collect)
12971 {
12972 size_left = buf.size () - strlen (buf.data ());
12973
12974 ret = snprintf (buf.data () + strlen (buf.data ()),
12975 size_left, "-");
12976
12977 if (ret < 0 || ret >= size_left)
12978 error ("%s", err_msg);
12979 }
12980
12981 putpkt (buf.data ());
12982 remote_get_noisy_reply ();
12983 if (strcmp (rs->buf.data (), "OK"))
12984 error (_("Target does not support tracepoints."));
12985
12986 /* do_single_steps (t); */
12987 for (auto action_it = tdp_actions.begin ();
12988 action_it != tdp_actions.end (); action_it++)
12989 {
12990 QUIT; /* Allow user to bail out with ^C. */
12991
12992 bool has_more = ((action_it + 1) != tdp_actions.end ()
12993 || !stepping_actions.empty ());
12994
12995 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12996 b->number, addrbuf, /* address */
12997 action_it->c_str (),
12998 has_more ? '-' : 0);
12999
13000 if (ret < 0 || ret >= buf.size ())
13001 error ("%s", err_msg);
13002
13003 putpkt (buf.data ());
13004 remote_get_noisy_reply ();
13005 if (strcmp (rs->buf.data (), "OK"))
13006 error (_("Error on target while setting tracepoints."));
13007 }
13008
13009 for (auto action_it = stepping_actions.begin ();
13010 action_it != stepping_actions.end (); action_it++)
13011 {
13012 QUIT; /* Allow user to bail out with ^C. */
13013
13014 bool is_first = action_it == stepping_actions.begin ();
13015 bool has_more = (action_it + 1) != stepping_actions.end ();
13016
13017 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13018 b->number, addrbuf, /* address */
13019 is_first ? "S" : "",
13020 action_it->c_str (),
13021 has_more ? "-" : "");
13022
13023 if (ret < 0 || ret >= buf.size ())
13024 error ("%s", err_msg);
13025
13026 putpkt (buf.data ());
13027 remote_get_noisy_reply ();
13028 if (strcmp (rs->buf.data (), "OK"))
13029 error (_("Error on target while setting tracepoints."));
13030 }
13031
13032 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13033 {
13034 if (b->location != NULL)
13035 {
13036 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13037
13038 if (ret < 0 || ret >= buf.size ())
13039 error ("%s", err_msg);
13040
13041 encode_source_string (b->number, loc->address, "at",
13042 event_location_to_string (b->location.get ()),
13043 buf.data () + strlen (buf.data ()),
13044 buf.size () - strlen (buf.data ()));
13045 putpkt (buf.data ());
13046 remote_get_noisy_reply ();
13047 if (strcmp (rs->buf.data (), "OK"))
13048 warning (_("Target does not support source download."));
13049 }
13050 if (b->cond_string)
13051 {
13052 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13053
13054 if (ret < 0 || ret >= buf.size ())
13055 error ("%s", err_msg);
13056
13057 encode_source_string (b->number, loc->address,
13058 "cond", b->cond_string,
13059 buf.data () + strlen (buf.data ()),
13060 buf.size () - strlen (buf.data ()));
13061 putpkt (buf.data ());
13062 remote_get_noisy_reply ();
13063 if (strcmp (rs->buf.data (), "OK"))
13064 warning (_("Target does not support source download."));
13065 }
13066 remote_download_command_source (b->number, loc->address,
13067 breakpoint_commands (b));
13068 }
13069 }
13070
13071 bool
13072 remote_target::can_download_tracepoint ()
13073 {
13074 struct remote_state *rs = get_remote_state ();
13075 struct trace_status *ts;
13076 int status;
13077
13078 /* Don't try to install tracepoints until we've relocated our
13079 symbols, and fetched and merged the target's tracepoint list with
13080 ours. */
13081 if (rs->starting_up)
13082 return false;
13083
13084 ts = current_trace_status ();
13085 status = get_trace_status (ts);
13086
13087 if (status == -1 || !ts->running_known || !ts->running)
13088 return false;
13089
13090 /* If we are in a tracing experiment, but remote stub doesn't support
13091 installing tracepoint in trace, we have to return. */
13092 if (!remote_supports_install_in_trace ())
13093 return false;
13094
13095 return true;
13096 }
13097
13098
13099 void
13100 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13101 {
13102 struct remote_state *rs = get_remote_state ();
13103 char *p;
13104
13105 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13106 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13107 tsv.builtin);
13108 p = rs->buf.data () + strlen (rs->buf.data ());
13109 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13110 >= get_remote_packet_size ())
13111 error (_("Trace state variable name too long for tsv definition packet"));
13112 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13113 *p++ = '\0';
13114 putpkt (rs->buf);
13115 remote_get_noisy_reply ();
13116 if (rs->buf[0] == '\0')
13117 error (_("Target does not support this command."));
13118 if (strcmp (rs->buf.data (), "OK") != 0)
13119 error (_("Error on target while downloading trace state variable."));
13120 }
13121
13122 void
13123 remote_target::enable_tracepoint (struct bp_location *location)
13124 {
13125 struct remote_state *rs = get_remote_state ();
13126
13127 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13128 location->owner->number,
13129 phex (location->address, sizeof (CORE_ADDR)));
13130 putpkt (rs->buf);
13131 remote_get_noisy_reply ();
13132 if (rs->buf[0] == '\0')
13133 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13134 if (strcmp (rs->buf.data (), "OK") != 0)
13135 error (_("Error on target while enabling tracepoint."));
13136 }
13137
13138 void
13139 remote_target::disable_tracepoint (struct bp_location *location)
13140 {
13141 struct remote_state *rs = get_remote_state ();
13142
13143 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13144 location->owner->number,
13145 phex (location->address, sizeof (CORE_ADDR)));
13146 putpkt (rs->buf);
13147 remote_get_noisy_reply ();
13148 if (rs->buf[0] == '\0')
13149 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13150 if (strcmp (rs->buf.data (), "OK") != 0)
13151 error (_("Error on target while disabling tracepoint."));
13152 }
13153
13154 void
13155 remote_target::trace_set_readonly_regions ()
13156 {
13157 asection *s;
13158 bfd_size_type size;
13159 bfd_vma vma;
13160 int anysecs = 0;
13161 int offset = 0;
13162
13163 if (!exec_bfd)
13164 return; /* No information to give. */
13165
13166 struct remote_state *rs = get_remote_state ();
13167
13168 strcpy (rs->buf.data (), "QTro");
13169 offset = strlen (rs->buf.data ());
13170 for (s = exec_bfd->sections; s; s = s->next)
13171 {
13172 char tmp1[40], tmp2[40];
13173 int sec_length;
13174
13175 if ((s->flags & SEC_LOAD) == 0 ||
13176 /* (s->flags & SEC_CODE) == 0 || */
13177 (s->flags & SEC_READONLY) == 0)
13178 continue;
13179
13180 anysecs = 1;
13181 vma = bfd_section_vma (s);
13182 size = bfd_section_size (s);
13183 sprintf_vma (tmp1, vma);
13184 sprintf_vma (tmp2, vma + size);
13185 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13186 if (offset + sec_length + 1 > rs->buf.size ())
13187 {
13188 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13189 warning (_("\
13190 Too many sections for read-only sections definition packet."));
13191 break;
13192 }
13193 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13194 tmp1, tmp2);
13195 offset += sec_length;
13196 }
13197 if (anysecs)
13198 {
13199 putpkt (rs->buf);
13200 getpkt (&rs->buf, 0);
13201 }
13202 }
13203
13204 void
13205 remote_target::trace_start ()
13206 {
13207 struct remote_state *rs = get_remote_state ();
13208
13209 putpkt ("QTStart");
13210 remote_get_noisy_reply ();
13211 if (rs->buf[0] == '\0')
13212 error (_("Target does not support this command."));
13213 if (strcmp (rs->buf.data (), "OK") != 0)
13214 error (_("Bogus reply from target: %s"), rs->buf.data ());
13215 }
13216
13217 int
13218 remote_target::get_trace_status (struct trace_status *ts)
13219 {
13220 /* Initialize it just to avoid a GCC false warning. */
13221 char *p = NULL;
13222 enum packet_result result;
13223 struct remote_state *rs = get_remote_state ();
13224
13225 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13226 return -1;
13227
13228 /* FIXME we need to get register block size some other way. */
13229 trace_regblock_size
13230 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13231
13232 putpkt ("qTStatus");
13233
13234 try
13235 {
13236 p = remote_get_noisy_reply ();
13237 }
13238 catch (const gdb_exception_error &ex)
13239 {
13240 if (ex.error != TARGET_CLOSE_ERROR)
13241 {
13242 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13243 return -1;
13244 }
13245 throw;
13246 }
13247
13248 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13249
13250 /* If the remote target doesn't do tracing, flag it. */
13251 if (result == PACKET_UNKNOWN)
13252 return -1;
13253
13254 /* We're working with a live target. */
13255 ts->filename = NULL;
13256
13257 if (*p++ != 'T')
13258 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13259
13260 /* Function 'parse_trace_status' sets default value of each field of
13261 'ts' at first, so we don't have to do it here. */
13262 parse_trace_status (p, ts);
13263
13264 return ts->running;
13265 }
13266
13267 void
13268 remote_target::get_tracepoint_status (struct breakpoint *bp,
13269 struct uploaded_tp *utp)
13270 {
13271 struct remote_state *rs = get_remote_state ();
13272 char *reply;
13273 struct bp_location *loc;
13274 struct tracepoint *tp = (struct tracepoint *) bp;
13275 size_t size = get_remote_packet_size ();
13276
13277 if (tp)
13278 {
13279 tp->hit_count = 0;
13280 tp->traceframe_usage = 0;
13281 for (loc = tp->loc; loc; loc = loc->next)
13282 {
13283 /* If the tracepoint was never downloaded, don't go asking for
13284 any status. */
13285 if (tp->number_on_target == 0)
13286 continue;
13287 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13288 phex_nz (loc->address, 0));
13289 putpkt (rs->buf);
13290 reply = remote_get_noisy_reply ();
13291 if (reply && *reply)
13292 {
13293 if (*reply == 'V')
13294 parse_tracepoint_status (reply + 1, bp, utp);
13295 }
13296 }
13297 }
13298 else if (utp)
13299 {
13300 utp->hit_count = 0;
13301 utp->traceframe_usage = 0;
13302 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13303 phex_nz (utp->addr, 0));
13304 putpkt (rs->buf);
13305 reply = remote_get_noisy_reply ();
13306 if (reply && *reply)
13307 {
13308 if (*reply == 'V')
13309 parse_tracepoint_status (reply + 1, bp, utp);
13310 }
13311 }
13312 }
13313
13314 void
13315 remote_target::trace_stop ()
13316 {
13317 struct remote_state *rs = get_remote_state ();
13318
13319 putpkt ("QTStop");
13320 remote_get_noisy_reply ();
13321 if (rs->buf[0] == '\0')
13322 error (_("Target does not support this command."));
13323 if (strcmp (rs->buf.data (), "OK") != 0)
13324 error (_("Bogus reply from target: %s"), rs->buf.data ());
13325 }
13326
13327 int
13328 remote_target::trace_find (enum trace_find_type type, int num,
13329 CORE_ADDR addr1, CORE_ADDR addr2,
13330 int *tpp)
13331 {
13332 struct remote_state *rs = get_remote_state ();
13333 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13334 char *p, *reply;
13335 int target_frameno = -1, target_tracept = -1;
13336
13337 /* Lookups other than by absolute frame number depend on the current
13338 trace selected, so make sure it is correct on the remote end
13339 first. */
13340 if (type != tfind_number)
13341 set_remote_traceframe ();
13342
13343 p = rs->buf.data ();
13344 strcpy (p, "QTFrame:");
13345 p = strchr (p, '\0');
13346 switch (type)
13347 {
13348 case tfind_number:
13349 xsnprintf (p, endbuf - p, "%x", num);
13350 break;
13351 case tfind_pc:
13352 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13353 break;
13354 case tfind_tp:
13355 xsnprintf (p, endbuf - p, "tdp:%x", num);
13356 break;
13357 case tfind_range:
13358 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13359 phex_nz (addr2, 0));
13360 break;
13361 case tfind_outside:
13362 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13363 phex_nz (addr2, 0));
13364 break;
13365 default:
13366 error (_("Unknown trace find type %d"), type);
13367 }
13368
13369 putpkt (rs->buf);
13370 reply = remote_get_noisy_reply ();
13371 if (*reply == '\0')
13372 error (_("Target does not support this command."));
13373
13374 while (reply && *reply)
13375 switch (*reply)
13376 {
13377 case 'F':
13378 p = ++reply;
13379 target_frameno = (int) strtol (p, &reply, 16);
13380 if (reply == p)
13381 error (_("Unable to parse trace frame number"));
13382 /* Don't update our remote traceframe number cache on failure
13383 to select a remote traceframe. */
13384 if (target_frameno == -1)
13385 return -1;
13386 break;
13387 case 'T':
13388 p = ++reply;
13389 target_tracept = (int) strtol (p, &reply, 16);
13390 if (reply == p)
13391 error (_("Unable to parse tracepoint number"));
13392 break;
13393 case 'O': /* "OK"? */
13394 if (reply[1] == 'K' && reply[2] == '\0')
13395 reply += 2;
13396 else
13397 error (_("Bogus reply from target: %s"), reply);
13398 break;
13399 default:
13400 error (_("Bogus reply from target: %s"), reply);
13401 }
13402 if (tpp)
13403 *tpp = target_tracept;
13404
13405 rs->remote_traceframe_number = target_frameno;
13406 return target_frameno;
13407 }
13408
13409 bool
13410 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13411 {
13412 struct remote_state *rs = get_remote_state ();
13413 char *reply;
13414 ULONGEST uval;
13415
13416 set_remote_traceframe ();
13417
13418 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13419 putpkt (rs->buf);
13420 reply = remote_get_noisy_reply ();
13421 if (reply && *reply)
13422 {
13423 if (*reply == 'V')
13424 {
13425 unpack_varlen_hex (reply + 1, &uval);
13426 *val = (LONGEST) uval;
13427 return true;
13428 }
13429 }
13430 return false;
13431 }
13432
13433 int
13434 remote_target::save_trace_data (const char *filename)
13435 {
13436 struct remote_state *rs = get_remote_state ();
13437 char *p, *reply;
13438
13439 p = rs->buf.data ();
13440 strcpy (p, "QTSave:");
13441 p += strlen (p);
13442 if ((p - rs->buf.data ()) + strlen (filename) * 2
13443 >= get_remote_packet_size ())
13444 error (_("Remote file name too long for trace save packet"));
13445 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13446 *p++ = '\0';
13447 putpkt (rs->buf);
13448 reply = remote_get_noisy_reply ();
13449 if (*reply == '\0')
13450 error (_("Target does not support this command."));
13451 if (strcmp (reply, "OK") != 0)
13452 error (_("Bogus reply from target: %s"), reply);
13453 return 0;
13454 }
13455
13456 /* This is basically a memory transfer, but needs to be its own packet
13457 because we don't know how the target actually organizes its trace
13458 memory, plus we want to be able to ask for as much as possible, but
13459 not be unhappy if we don't get as much as we ask for. */
13460
13461 LONGEST
13462 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13463 {
13464 struct remote_state *rs = get_remote_state ();
13465 char *reply;
13466 char *p;
13467 int rslt;
13468
13469 p = rs->buf.data ();
13470 strcpy (p, "qTBuffer:");
13471 p += strlen (p);
13472 p += hexnumstr (p, offset);
13473 *p++ = ',';
13474 p += hexnumstr (p, len);
13475 *p++ = '\0';
13476
13477 putpkt (rs->buf);
13478 reply = remote_get_noisy_reply ();
13479 if (reply && *reply)
13480 {
13481 /* 'l' by itself means we're at the end of the buffer and
13482 there is nothing more to get. */
13483 if (*reply == 'l')
13484 return 0;
13485
13486 /* Convert the reply into binary. Limit the number of bytes to
13487 convert according to our passed-in buffer size, rather than
13488 what was returned in the packet; if the target is
13489 unexpectedly generous and gives us a bigger reply than we
13490 asked for, we don't want to crash. */
13491 rslt = hex2bin (reply, buf, len);
13492 return rslt;
13493 }
13494
13495 /* Something went wrong, flag as an error. */
13496 return -1;
13497 }
13498
13499 void
13500 remote_target::set_disconnected_tracing (int val)
13501 {
13502 struct remote_state *rs = get_remote_state ();
13503
13504 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13505 {
13506 char *reply;
13507
13508 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13509 "QTDisconnected:%x", val);
13510 putpkt (rs->buf);
13511 reply = remote_get_noisy_reply ();
13512 if (*reply == '\0')
13513 error (_("Target does not support this command."));
13514 if (strcmp (reply, "OK") != 0)
13515 error (_("Bogus reply from target: %s"), reply);
13516 }
13517 else if (val)
13518 warning (_("Target does not support disconnected tracing."));
13519 }
13520
13521 int
13522 remote_target::core_of_thread (ptid_t ptid)
13523 {
13524 thread_info *info = find_thread_ptid (this, ptid);
13525
13526 if (info != NULL && info->priv != NULL)
13527 return get_remote_thread_info (info)->core;
13528
13529 return -1;
13530 }
13531
13532 void
13533 remote_target::set_circular_trace_buffer (int val)
13534 {
13535 struct remote_state *rs = get_remote_state ();
13536 char *reply;
13537
13538 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13539 "QTBuffer:circular:%x", val);
13540 putpkt (rs->buf);
13541 reply = remote_get_noisy_reply ();
13542 if (*reply == '\0')
13543 error (_("Target does not support this command."));
13544 if (strcmp (reply, "OK") != 0)
13545 error (_("Bogus reply from target: %s"), reply);
13546 }
13547
13548 traceframe_info_up
13549 remote_target::traceframe_info ()
13550 {
13551 gdb::optional<gdb::char_vector> text
13552 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13553 NULL);
13554 if (text)
13555 return parse_traceframe_info (text->data ());
13556
13557 return NULL;
13558 }
13559
13560 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13561 instruction on which a fast tracepoint may be placed. Returns -1
13562 if the packet is not supported, and 0 if the minimum instruction
13563 length is unknown. */
13564
13565 int
13566 remote_target::get_min_fast_tracepoint_insn_len ()
13567 {
13568 struct remote_state *rs = get_remote_state ();
13569 char *reply;
13570
13571 /* If we're not debugging a process yet, the IPA can't be
13572 loaded. */
13573 if (!target_has_execution)
13574 return 0;
13575
13576 /* Make sure the remote is pointing at the right process. */
13577 set_general_process ();
13578
13579 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13580 putpkt (rs->buf);
13581 reply = remote_get_noisy_reply ();
13582 if (*reply == '\0')
13583 return -1;
13584 else
13585 {
13586 ULONGEST min_insn_len;
13587
13588 unpack_varlen_hex (reply, &min_insn_len);
13589
13590 return (int) min_insn_len;
13591 }
13592 }
13593
13594 void
13595 remote_target::set_trace_buffer_size (LONGEST val)
13596 {
13597 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13598 {
13599 struct remote_state *rs = get_remote_state ();
13600 char *buf = rs->buf.data ();
13601 char *endbuf = buf + get_remote_packet_size ();
13602 enum packet_result result;
13603
13604 gdb_assert (val >= 0 || val == -1);
13605 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13606 /* Send -1 as literal "-1" to avoid host size dependency. */
13607 if (val < 0)
13608 {
13609 *buf++ = '-';
13610 buf += hexnumstr (buf, (ULONGEST) -val);
13611 }
13612 else
13613 buf += hexnumstr (buf, (ULONGEST) val);
13614
13615 putpkt (rs->buf);
13616 remote_get_noisy_reply ();
13617 result = packet_ok (rs->buf,
13618 &remote_protocol_packets[PACKET_QTBuffer_size]);
13619
13620 if (result != PACKET_OK)
13621 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13622 }
13623 }
13624
13625 bool
13626 remote_target::set_trace_notes (const char *user, const char *notes,
13627 const char *stop_notes)
13628 {
13629 struct remote_state *rs = get_remote_state ();
13630 char *reply;
13631 char *buf = rs->buf.data ();
13632 char *endbuf = buf + get_remote_packet_size ();
13633 int nbytes;
13634
13635 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13636 if (user)
13637 {
13638 buf += xsnprintf (buf, endbuf - buf, "user:");
13639 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13640 buf += 2 * nbytes;
13641 *buf++ = ';';
13642 }
13643 if (notes)
13644 {
13645 buf += xsnprintf (buf, endbuf - buf, "notes:");
13646 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13647 buf += 2 * nbytes;
13648 *buf++ = ';';
13649 }
13650 if (stop_notes)
13651 {
13652 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13653 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13654 buf += 2 * nbytes;
13655 *buf++ = ';';
13656 }
13657 /* Ensure the buffer is terminated. */
13658 *buf = '\0';
13659
13660 putpkt (rs->buf);
13661 reply = remote_get_noisy_reply ();
13662 if (*reply == '\0')
13663 return false;
13664
13665 if (strcmp (reply, "OK") != 0)
13666 error (_("Bogus reply from target: %s"), reply);
13667
13668 return true;
13669 }
13670
13671 bool
13672 remote_target::use_agent (bool use)
13673 {
13674 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13675 {
13676 struct remote_state *rs = get_remote_state ();
13677
13678 /* If the stub supports QAgent. */
13679 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13680 putpkt (rs->buf);
13681 getpkt (&rs->buf, 0);
13682
13683 if (strcmp (rs->buf.data (), "OK") == 0)
13684 {
13685 ::use_agent = use;
13686 return true;
13687 }
13688 }
13689
13690 return false;
13691 }
13692
13693 bool
13694 remote_target::can_use_agent ()
13695 {
13696 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13697 }
13698
13699 struct btrace_target_info
13700 {
13701 /* The ptid of the traced thread. */
13702 ptid_t ptid;
13703
13704 /* The obtained branch trace configuration. */
13705 struct btrace_config conf;
13706 };
13707
13708 /* Reset our idea of our target's btrace configuration. */
13709
13710 static void
13711 remote_btrace_reset (remote_state *rs)
13712 {
13713 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13714 }
13715
13716 /* Synchronize the configuration with the target. */
13717
13718 void
13719 remote_target::btrace_sync_conf (const btrace_config *conf)
13720 {
13721 struct packet_config *packet;
13722 struct remote_state *rs;
13723 char *buf, *pos, *endbuf;
13724
13725 rs = get_remote_state ();
13726 buf = rs->buf.data ();
13727 endbuf = buf + get_remote_packet_size ();
13728
13729 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13730 if (packet_config_support (packet) == PACKET_ENABLE
13731 && conf->bts.size != rs->btrace_config.bts.size)
13732 {
13733 pos = buf;
13734 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13735 conf->bts.size);
13736
13737 putpkt (buf);
13738 getpkt (&rs->buf, 0);
13739
13740 if (packet_ok (buf, packet) == PACKET_ERROR)
13741 {
13742 if (buf[0] == 'E' && buf[1] == '.')
13743 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13744 else
13745 error (_("Failed to configure the BTS buffer size."));
13746 }
13747
13748 rs->btrace_config.bts.size = conf->bts.size;
13749 }
13750
13751 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13752 if (packet_config_support (packet) == PACKET_ENABLE
13753 && conf->pt.size != rs->btrace_config.pt.size)
13754 {
13755 pos = buf;
13756 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13757 conf->pt.size);
13758
13759 putpkt (buf);
13760 getpkt (&rs->buf, 0);
13761
13762 if (packet_ok (buf, packet) == PACKET_ERROR)
13763 {
13764 if (buf[0] == 'E' && buf[1] == '.')
13765 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13766 else
13767 error (_("Failed to configure the trace buffer size."));
13768 }
13769
13770 rs->btrace_config.pt.size = conf->pt.size;
13771 }
13772 }
13773
13774 /* Read the current thread's btrace configuration from the target and
13775 store it into CONF. */
13776
13777 static void
13778 btrace_read_config (struct btrace_config *conf)
13779 {
13780 gdb::optional<gdb::char_vector> xml
13781 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13782 if (xml)
13783 parse_xml_btrace_conf (conf, xml->data ());
13784 }
13785
13786 /* Maybe reopen target btrace. */
13787
13788 void
13789 remote_target::remote_btrace_maybe_reopen ()
13790 {
13791 struct remote_state *rs = get_remote_state ();
13792 int btrace_target_pushed = 0;
13793 #if !defined (HAVE_LIBIPT)
13794 int warned = 0;
13795 #endif
13796
13797 /* Don't bother walking the entirety of the remote thread list when
13798 we know the feature isn't supported by the remote. */
13799 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13800 return;
13801
13802 scoped_restore_current_thread restore_thread;
13803
13804 for (thread_info *tp : all_non_exited_threads (this))
13805 {
13806 set_general_thread (tp->ptid);
13807
13808 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13809 btrace_read_config (&rs->btrace_config);
13810
13811 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13812 continue;
13813
13814 #if !defined (HAVE_LIBIPT)
13815 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13816 {
13817 if (!warned)
13818 {
13819 warned = 1;
13820 warning (_("Target is recording using Intel Processor Trace "
13821 "but support was disabled at compile time."));
13822 }
13823
13824 continue;
13825 }
13826 #endif /* !defined (HAVE_LIBIPT) */
13827
13828 /* Push target, once, but before anything else happens. This way our
13829 changes to the threads will be cleaned up by unpushing the target
13830 in case btrace_read_config () throws. */
13831 if (!btrace_target_pushed)
13832 {
13833 btrace_target_pushed = 1;
13834 record_btrace_push_target ();
13835 printf_filtered (_("Target is recording using %s.\n"),
13836 btrace_format_string (rs->btrace_config.format));
13837 }
13838
13839 tp->btrace.target = XCNEW (struct btrace_target_info);
13840 tp->btrace.target->ptid = tp->ptid;
13841 tp->btrace.target->conf = rs->btrace_config;
13842 }
13843 }
13844
13845 /* Enable branch tracing. */
13846
13847 struct btrace_target_info *
13848 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13849 {
13850 struct btrace_target_info *tinfo = NULL;
13851 struct packet_config *packet = NULL;
13852 struct remote_state *rs = get_remote_state ();
13853 char *buf = rs->buf.data ();
13854 char *endbuf = buf + get_remote_packet_size ();
13855
13856 switch (conf->format)
13857 {
13858 case BTRACE_FORMAT_BTS:
13859 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13860 break;
13861
13862 case BTRACE_FORMAT_PT:
13863 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13864 break;
13865 }
13866
13867 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13868 error (_("Target does not support branch tracing."));
13869
13870 btrace_sync_conf (conf);
13871
13872 set_general_thread (ptid);
13873
13874 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13875 putpkt (rs->buf);
13876 getpkt (&rs->buf, 0);
13877
13878 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13879 {
13880 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13881 error (_("Could not enable branch tracing for %s: %s"),
13882 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13883 else
13884 error (_("Could not enable branch tracing for %s."),
13885 target_pid_to_str (ptid).c_str ());
13886 }
13887
13888 tinfo = XCNEW (struct btrace_target_info);
13889 tinfo->ptid = ptid;
13890
13891 /* If we fail to read the configuration, we lose some information, but the
13892 tracing itself is not impacted. */
13893 try
13894 {
13895 btrace_read_config (&tinfo->conf);
13896 }
13897 catch (const gdb_exception_error &err)
13898 {
13899 if (err.message != NULL)
13900 warning ("%s", err.what ());
13901 }
13902
13903 return tinfo;
13904 }
13905
13906 /* Disable branch tracing. */
13907
13908 void
13909 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13910 {
13911 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13912 struct remote_state *rs = get_remote_state ();
13913 char *buf = rs->buf.data ();
13914 char *endbuf = buf + get_remote_packet_size ();
13915
13916 if (packet_config_support (packet) != PACKET_ENABLE)
13917 error (_("Target does not support branch tracing."));
13918
13919 set_general_thread (tinfo->ptid);
13920
13921 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13922 putpkt (rs->buf);
13923 getpkt (&rs->buf, 0);
13924
13925 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13926 {
13927 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13928 error (_("Could not disable branch tracing for %s: %s"),
13929 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13930 else
13931 error (_("Could not disable branch tracing for %s."),
13932 target_pid_to_str (tinfo->ptid).c_str ());
13933 }
13934
13935 xfree (tinfo);
13936 }
13937
13938 /* Teardown branch tracing. */
13939
13940 void
13941 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13942 {
13943 /* We must not talk to the target during teardown. */
13944 xfree (tinfo);
13945 }
13946
13947 /* Read the branch trace. */
13948
13949 enum btrace_error
13950 remote_target::read_btrace (struct btrace_data *btrace,
13951 struct btrace_target_info *tinfo,
13952 enum btrace_read_type type)
13953 {
13954 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13955 const char *annex;
13956
13957 if (packet_config_support (packet) != PACKET_ENABLE)
13958 error (_("Target does not support branch tracing."));
13959
13960 #if !defined(HAVE_LIBEXPAT)
13961 error (_("Cannot process branch tracing result. XML parsing not supported."));
13962 #endif
13963
13964 switch (type)
13965 {
13966 case BTRACE_READ_ALL:
13967 annex = "all";
13968 break;
13969 case BTRACE_READ_NEW:
13970 annex = "new";
13971 break;
13972 case BTRACE_READ_DELTA:
13973 annex = "delta";
13974 break;
13975 default:
13976 internal_error (__FILE__, __LINE__,
13977 _("Bad branch tracing read type: %u."),
13978 (unsigned int) type);
13979 }
13980
13981 gdb::optional<gdb::char_vector> xml
13982 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13983 if (!xml)
13984 return BTRACE_ERR_UNKNOWN;
13985
13986 parse_xml_btrace (btrace, xml->data ());
13987
13988 return BTRACE_ERR_NONE;
13989 }
13990
13991 const struct btrace_config *
13992 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13993 {
13994 return &tinfo->conf;
13995 }
13996
13997 bool
13998 remote_target::augmented_libraries_svr4_read ()
13999 {
14000 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14001 == PACKET_ENABLE);
14002 }
14003
14004 /* Implementation of to_load. */
14005
14006 void
14007 remote_target::load (const char *name, int from_tty)
14008 {
14009 generic_load (name, from_tty);
14010 }
14011
14012 /* Accepts an integer PID; returns a string representing a file that
14013 can be opened on the remote side to get the symbols for the child
14014 process. Returns NULL if the operation is not supported. */
14015
14016 char *
14017 remote_target::pid_to_exec_file (int pid)
14018 {
14019 static gdb::optional<gdb::char_vector> filename;
14020 char *annex = NULL;
14021
14022 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14023 return NULL;
14024
14025 inferior *inf = find_inferior_pid (this, pid);
14026 if (inf == NULL)
14027 internal_error (__FILE__, __LINE__,
14028 _("not currently attached to process %d"), pid);
14029
14030 if (!inf->fake_pid_p)
14031 {
14032 const int annex_size = 9;
14033
14034 annex = (char *) alloca (annex_size);
14035 xsnprintf (annex, annex_size, "%x", pid);
14036 }
14037
14038 filename = target_read_stralloc (current_top_target (),
14039 TARGET_OBJECT_EXEC_FILE, annex);
14040
14041 return filename ? filename->data () : nullptr;
14042 }
14043
14044 /* Implement the to_can_do_single_step target_ops method. */
14045
14046 int
14047 remote_target::can_do_single_step ()
14048 {
14049 /* We can only tell whether target supports single step or not by
14050 supported s and S vCont actions if the stub supports vContSupported
14051 feature. If the stub doesn't support vContSupported feature,
14052 we have conservatively to think target doesn't supports single
14053 step. */
14054 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14055 {
14056 struct remote_state *rs = get_remote_state ();
14057
14058 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14059 remote_vcont_probe ();
14060
14061 return rs->supports_vCont.s && rs->supports_vCont.S;
14062 }
14063 else
14064 return 0;
14065 }
14066
14067 /* Implementation of the to_execution_direction method for the remote
14068 target. */
14069
14070 enum exec_direction_kind
14071 remote_target::execution_direction ()
14072 {
14073 struct remote_state *rs = get_remote_state ();
14074
14075 return rs->last_resume_exec_dir;
14076 }
14077
14078 /* Return pointer to the thread_info struct which corresponds to
14079 THREAD_HANDLE (having length HANDLE_LEN). */
14080
14081 thread_info *
14082 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14083 int handle_len,
14084 inferior *inf)
14085 {
14086 for (thread_info *tp : all_non_exited_threads (this))
14087 {
14088 remote_thread_info *priv = get_remote_thread_info (tp);
14089
14090 if (tp->inf == inf && priv != NULL)
14091 {
14092 if (handle_len != priv->thread_handle.size ())
14093 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14094 handle_len, priv->thread_handle.size ());
14095 if (memcmp (thread_handle, priv->thread_handle.data (),
14096 handle_len) == 0)
14097 return tp;
14098 }
14099 }
14100
14101 return NULL;
14102 }
14103
14104 gdb::byte_vector
14105 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14106 {
14107 remote_thread_info *priv = get_remote_thread_info (tp);
14108 return priv->thread_handle;
14109 }
14110
14111 bool
14112 remote_target::can_async_p ()
14113 {
14114 struct remote_state *rs = get_remote_state ();
14115
14116 /* We don't go async if the user has explicitly prevented it with the
14117 "maint set target-async" command. */
14118 if (!target_async_permitted)
14119 return false;
14120
14121 /* We're async whenever the serial device is. */
14122 return serial_can_async_p (rs->remote_desc);
14123 }
14124
14125 bool
14126 remote_target::is_async_p ()
14127 {
14128 struct remote_state *rs = get_remote_state ();
14129
14130 if (!target_async_permitted)
14131 /* We only enable async when the user specifically asks for it. */
14132 return false;
14133
14134 /* We're async whenever the serial device is. */
14135 return serial_is_async_p (rs->remote_desc);
14136 }
14137
14138 /* Pass the SERIAL event on and up to the client. One day this code
14139 will be able to delay notifying the client of an event until the
14140 point where an entire packet has been received. */
14141
14142 static serial_event_ftype remote_async_serial_handler;
14143
14144 static void
14145 remote_async_serial_handler (struct serial *scb, void *context)
14146 {
14147 /* Don't propogate error information up to the client. Instead let
14148 the client find out about the error by querying the target. */
14149 inferior_event_handler (INF_REG_EVENT, NULL);
14150 }
14151
14152 static void
14153 remote_async_inferior_event_handler (gdb_client_data data)
14154 {
14155 inferior_event_handler (INF_REG_EVENT, data);
14156 }
14157
14158 int
14159 remote_target::async_wait_fd ()
14160 {
14161 struct remote_state *rs = get_remote_state ();
14162 return rs->remote_desc->fd;
14163 }
14164
14165 void
14166 remote_target::async (int enable)
14167 {
14168 struct remote_state *rs = get_remote_state ();
14169
14170 if (enable)
14171 {
14172 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14173
14174 /* If there are pending events in the stop reply queue tell the
14175 event loop to process them. */
14176 if (!rs->stop_reply_queue.empty ())
14177 mark_async_event_handler (rs->remote_async_inferior_event_token);
14178 /* For simplicity, below we clear the pending events token
14179 without remembering whether it is marked, so here we always
14180 mark it. If there's actually no pending notification to
14181 process, this ends up being a no-op (other than a spurious
14182 event-loop wakeup). */
14183 if (target_is_non_stop_p ())
14184 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14185 }
14186 else
14187 {
14188 serial_async (rs->remote_desc, NULL, NULL);
14189 /* If the core is disabling async, it doesn't want to be
14190 disturbed with target events. Clear all async event sources
14191 too. */
14192 clear_async_event_handler (rs->remote_async_inferior_event_token);
14193 if (target_is_non_stop_p ())
14194 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14195 }
14196 }
14197
14198 /* Implementation of the to_thread_events method. */
14199
14200 void
14201 remote_target::thread_events (int enable)
14202 {
14203 struct remote_state *rs = get_remote_state ();
14204 size_t size = get_remote_packet_size ();
14205
14206 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14207 return;
14208
14209 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14210 putpkt (rs->buf);
14211 getpkt (&rs->buf, 0);
14212
14213 switch (packet_ok (rs->buf,
14214 &remote_protocol_packets[PACKET_QThreadEvents]))
14215 {
14216 case PACKET_OK:
14217 if (strcmp (rs->buf.data (), "OK") != 0)
14218 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14219 break;
14220 case PACKET_ERROR:
14221 warning (_("Remote failure reply: %s"), rs->buf.data ());
14222 break;
14223 case PACKET_UNKNOWN:
14224 break;
14225 }
14226 }
14227
14228 static void
14229 set_remote_cmd (const char *args, int from_tty)
14230 {
14231 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14232 }
14233
14234 static void
14235 show_remote_cmd (const char *args, int from_tty)
14236 {
14237 /* We can't just use cmd_show_list here, because we want to skip
14238 the redundant "show remote Z-packet" and the legacy aliases. */
14239 struct cmd_list_element *list = remote_show_cmdlist;
14240 struct ui_out *uiout = current_uiout;
14241
14242 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14243 for (; list != NULL; list = list->next)
14244 if (strcmp (list->name, "Z-packet") == 0)
14245 continue;
14246 else if (list->type == not_set_cmd)
14247 /* Alias commands are exactly like the original, except they
14248 don't have the normal type. */
14249 continue;
14250 else
14251 {
14252 ui_out_emit_tuple option_emitter (uiout, "option");
14253
14254 uiout->field_string ("name", list->name);
14255 uiout->text (": ");
14256 if (list->type == show_cmd)
14257 do_show_command (NULL, from_tty, list);
14258 else
14259 cmd_func (list, NULL, from_tty);
14260 }
14261 }
14262
14263
14264 /* Function to be called whenever a new objfile (shlib) is detected. */
14265 static void
14266 remote_new_objfile (struct objfile *objfile)
14267 {
14268 remote_target *remote = get_current_remote_target ();
14269
14270 if (remote != NULL) /* Have a remote connection. */
14271 remote->remote_check_symbols ();
14272 }
14273
14274 /* Pull all the tracepoints defined on the target and create local
14275 data structures representing them. We don't want to create real
14276 tracepoints yet, we don't want to mess up the user's existing
14277 collection. */
14278
14279 int
14280 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14281 {
14282 struct remote_state *rs = get_remote_state ();
14283 char *p;
14284
14285 /* Ask for a first packet of tracepoint definition. */
14286 putpkt ("qTfP");
14287 getpkt (&rs->buf, 0);
14288 p = rs->buf.data ();
14289 while (*p && *p != 'l')
14290 {
14291 parse_tracepoint_definition (p, utpp);
14292 /* Ask for another packet of tracepoint definition. */
14293 putpkt ("qTsP");
14294 getpkt (&rs->buf, 0);
14295 p = rs->buf.data ();
14296 }
14297 return 0;
14298 }
14299
14300 int
14301 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14302 {
14303 struct remote_state *rs = get_remote_state ();
14304 char *p;
14305
14306 /* Ask for a first packet of variable definition. */
14307 putpkt ("qTfV");
14308 getpkt (&rs->buf, 0);
14309 p = rs->buf.data ();
14310 while (*p && *p != 'l')
14311 {
14312 parse_tsv_definition (p, utsvp);
14313 /* Ask for another packet of variable definition. */
14314 putpkt ("qTsV");
14315 getpkt (&rs->buf, 0);
14316 p = rs->buf.data ();
14317 }
14318 return 0;
14319 }
14320
14321 /* The "set/show range-stepping" show hook. */
14322
14323 static void
14324 show_range_stepping (struct ui_file *file, int from_tty,
14325 struct cmd_list_element *c,
14326 const char *value)
14327 {
14328 fprintf_filtered (file,
14329 _("Debugger's willingness to use range stepping "
14330 "is %s.\n"), value);
14331 }
14332
14333 /* Return true if the vCont;r action is supported by the remote
14334 stub. */
14335
14336 bool
14337 remote_target::vcont_r_supported ()
14338 {
14339 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14340 remote_vcont_probe ();
14341
14342 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14343 && get_remote_state ()->supports_vCont.r);
14344 }
14345
14346 /* The "set/show range-stepping" set hook. */
14347
14348 static void
14349 set_range_stepping (const char *ignore_args, int from_tty,
14350 struct cmd_list_element *c)
14351 {
14352 /* When enabling, check whether range stepping is actually supported
14353 by the target, and warn if not. */
14354 if (use_range_stepping)
14355 {
14356 remote_target *remote = get_current_remote_target ();
14357 if (remote == NULL
14358 || !remote->vcont_r_supported ())
14359 warning (_("Range stepping is not supported by the current target"));
14360 }
14361 }
14362
14363 void _initialize_remote ();
14364 void
14365 _initialize_remote ()
14366 {
14367 struct cmd_list_element *cmd;
14368 const char *cmd_name;
14369
14370 /* architecture specific data */
14371 remote_g_packet_data_handle =
14372 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14373
14374 add_target (remote_target_info, remote_target::open);
14375 add_target (extended_remote_target_info, extended_remote_target::open);
14376
14377 /* Hook into new objfile notification. */
14378 gdb::observers::new_objfile.attach (remote_new_objfile);
14379
14380 #if 0
14381 init_remote_threadtests ();
14382 #endif
14383
14384 /* set/show remote ... */
14385
14386 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14387 Remote protocol specific variables.\n\
14388 Configure various remote-protocol specific variables such as\n\
14389 the packets being used."),
14390 &remote_set_cmdlist, "set remote ",
14391 0 /* allow-unknown */, &setlist);
14392 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14393 Remote protocol specific variables.\n\
14394 Configure various remote-protocol specific variables such as\n\
14395 the packets being used."),
14396 &remote_show_cmdlist, "show remote ",
14397 0 /* allow-unknown */, &showlist);
14398
14399 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14400 Compare section data on target to the exec file.\n\
14401 Argument is a single section name (default: all loaded sections).\n\
14402 To compare only read-only loaded sections, specify the -r option."),
14403 &cmdlist);
14404
14405 add_cmd ("packet", class_maintenance, packet_command, _("\
14406 Send an arbitrary packet to a remote target.\n\
14407 maintenance packet TEXT\n\
14408 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14409 this command sends the string TEXT to the inferior, and displays the\n\
14410 response packet. GDB supplies the initial `$' character, and the\n\
14411 terminating `#' character and checksum."),
14412 &maintenancelist);
14413
14414 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14415 Set whether to send break if interrupted."), _("\
14416 Show whether to send break if interrupted."), _("\
14417 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14418 set_remotebreak, show_remotebreak,
14419 &setlist, &showlist);
14420 cmd_name = "remotebreak";
14421 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14422 deprecate_cmd (cmd, "set remote interrupt-sequence");
14423 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14424 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14425 deprecate_cmd (cmd, "show remote interrupt-sequence");
14426
14427 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14428 interrupt_sequence_modes, &interrupt_sequence_mode,
14429 _("\
14430 Set interrupt sequence to remote target."), _("\
14431 Show interrupt sequence to remote target."), _("\
14432 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14433 NULL, show_interrupt_sequence,
14434 &remote_set_cmdlist,
14435 &remote_show_cmdlist);
14436
14437 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14438 &interrupt_on_connect, _("\
14439 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14440 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14441 If set, interrupt sequence is sent to remote target."),
14442 NULL, NULL,
14443 &remote_set_cmdlist, &remote_show_cmdlist);
14444
14445 /* Install commands for configuring memory read/write packets. */
14446
14447 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14448 Set the maximum number of bytes per memory write packet (deprecated)."),
14449 &setlist);
14450 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14451 Show the maximum number of bytes per memory write packet (deprecated)."),
14452 &showlist);
14453 add_cmd ("memory-write-packet-size", no_class,
14454 set_memory_write_packet_size, _("\
14455 Set the maximum number of bytes per memory-write packet.\n\
14456 Specify the number of bytes in a packet or 0 (zero) for the\n\
14457 default packet size. The actual limit is further reduced\n\
14458 dependent on the target. Specify ``fixed'' to disable the\n\
14459 further restriction and ``limit'' to enable that restriction."),
14460 &remote_set_cmdlist);
14461 add_cmd ("memory-read-packet-size", no_class,
14462 set_memory_read_packet_size, _("\
14463 Set the maximum number of bytes per memory-read packet.\n\
14464 Specify the number of bytes in a packet or 0 (zero) for the\n\
14465 default packet size. The actual limit is further reduced\n\
14466 dependent on the target. Specify ``fixed'' to disable the\n\
14467 further restriction and ``limit'' to enable that restriction."),
14468 &remote_set_cmdlist);
14469 add_cmd ("memory-write-packet-size", no_class,
14470 show_memory_write_packet_size,
14471 _("Show the maximum number of bytes per memory-write packet."),
14472 &remote_show_cmdlist);
14473 add_cmd ("memory-read-packet-size", no_class,
14474 show_memory_read_packet_size,
14475 _("Show the maximum number of bytes per memory-read packet."),
14476 &remote_show_cmdlist);
14477
14478 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14479 &remote_hw_watchpoint_limit, _("\
14480 Set the maximum number of target hardware watchpoints."), _("\
14481 Show the maximum number of target hardware watchpoints."), _("\
14482 Specify \"unlimited\" for unlimited hardware watchpoints."),
14483 NULL, show_hardware_watchpoint_limit,
14484 &remote_set_cmdlist,
14485 &remote_show_cmdlist);
14486 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14487 no_class,
14488 &remote_hw_watchpoint_length_limit, _("\
14489 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14490 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14491 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14492 NULL, show_hardware_watchpoint_length_limit,
14493 &remote_set_cmdlist, &remote_show_cmdlist);
14494 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14495 &remote_hw_breakpoint_limit, _("\
14496 Set the maximum number of target hardware breakpoints."), _("\
14497 Show the maximum number of target hardware breakpoints."), _("\
14498 Specify \"unlimited\" for unlimited hardware breakpoints."),
14499 NULL, show_hardware_breakpoint_limit,
14500 &remote_set_cmdlist, &remote_show_cmdlist);
14501
14502 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14503 &remote_address_size, _("\
14504 Set the maximum size of the address (in bits) in a memory packet."), _("\
14505 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14506 NULL,
14507 NULL, /* FIXME: i18n: */
14508 &setlist, &showlist);
14509
14510 init_all_packet_configs ();
14511
14512 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14513 "X", "binary-download", 1);
14514
14515 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14516 "vCont", "verbose-resume", 0);
14517
14518 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14519 "QPassSignals", "pass-signals", 0);
14520
14521 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14522 "QCatchSyscalls", "catch-syscalls", 0);
14523
14524 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14525 "QProgramSignals", "program-signals", 0);
14526
14527 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14528 "QSetWorkingDir", "set-working-dir", 0);
14529
14530 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14531 "QStartupWithShell", "startup-with-shell", 0);
14532
14533 add_packet_config_cmd (&remote_protocol_packets
14534 [PACKET_QEnvironmentHexEncoded],
14535 "QEnvironmentHexEncoded", "environment-hex-encoded",
14536 0);
14537
14538 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14539 "QEnvironmentReset", "environment-reset",
14540 0);
14541
14542 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14543 "QEnvironmentUnset", "environment-unset",
14544 0);
14545
14546 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14547 "qSymbol", "symbol-lookup", 0);
14548
14549 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14550 "P", "set-register", 1);
14551
14552 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14553 "p", "fetch-register", 1);
14554
14555 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14556 "Z0", "software-breakpoint", 0);
14557
14558 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14559 "Z1", "hardware-breakpoint", 0);
14560
14561 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14562 "Z2", "write-watchpoint", 0);
14563
14564 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14565 "Z3", "read-watchpoint", 0);
14566
14567 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14568 "Z4", "access-watchpoint", 0);
14569
14570 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14571 "qXfer:auxv:read", "read-aux-vector", 0);
14572
14573 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14574 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14575
14576 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14577 "qXfer:features:read", "target-features", 0);
14578
14579 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14580 "qXfer:libraries:read", "library-info", 0);
14581
14582 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14583 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14584
14585 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14586 "qXfer:memory-map:read", "memory-map", 0);
14587
14588 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14589 "qXfer:osdata:read", "osdata", 0);
14590
14591 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14592 "qXfer:threads:read", "threads", 0);
14593
14594 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14595 "qXfer:siginfo:read", "read-siginfo-object", 0);
14596
14597 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14598 "qXfer:siginfo:write", "write-siginfo-object", 0);
14599
14600 add_packet_config_cmd
14601 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14602 "qXfer:traceframe-info:read", "traceframe-info", 0);
14603
14604 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14605 "qXfer:uib:read", "unwind-info-block", 0);
14606
14607 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14608 "qGetTLSAddr", "get-thread-local-storage-address",
14609 0);
14610
14611 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14612 "qGetTIBAddr", "get-thread-information-block-address",
14613 0);
14614
14615 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14616 "bc", "reverse-continue", 0);
14617
14618 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14619 "bs", "reverse-step", 0);
14620
14621 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14622 "qSupported", "supported-packets", 0);
14623
14624 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14625 "qSearch:memory", "search-memory", 0);
14626
14627 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14628 "qTStatus", "trace-status", 0);
14629
14630 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14631 "vFile:setfs", "hostio-setfs", 0);
14632
14633 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14634 "vFile:open", "hostio-open", 0);
14635
14636 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14637 "vFile:pread", "hostio-pread", 0);
14638
14639 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14640 "vFile:pwrite", "hostio-pwrite", 0);
14641
14642 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14643 "vFile:close", "hostio-close", 0);
14644
14645 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14646 "vFile:unlink", "hostio-unlink", 0);
14647
14648 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14649 "vFile:readlink", "hostio-readlink", 0);
14650
14651 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14652 "vFile:fstat", "hostio-fstat", 0);
14653
14654 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14655 "vAttach", "attach", 0);
14656
14657 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14658 "vRun", "run", 0);
14659
14660 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14661 "QStartNoAckMode", "noack", 0);
14662
14663 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14664 "vKill", "kill", 0);
14665
14666 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14667 "qAttached", "query-attached", 0);
14668
14669 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14670 "ConditionalTracepoints",
14671 "conditional-tracepoints", 0);
14672
14673 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14674 "ConditionalBreakpoints",
14675 "conditional-breakpoints", 0);
14676
14677 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14678 "BreakpointCommands",
14679 "breakpoint-commands", 0);
14680
14681 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14682 "FastTracepoints", "fast-tracepoints", 0);
14683
14684 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14685 "TracepointSource", "TracepointSource", 0);
14686
14687 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14688 "QAllow", "allow", 0);
14689
14690 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14691 "StaticTracepoints", "static-tracepoints", 0);
14692
14693 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14694 "InstallInTrace", "install-in-trace", 0);
14695
14696 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14697 "qXfer:statictrace:read", "read-sdata-object", 0);
14698
14699 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14700 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14701
14702 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14703 "QDisableRandomization", "disable-randomization", 0);
14704
14705 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14706 "QAgent", "agent", 0);
14707
14708 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14709 "QTBuffer:size", "trace-buffer-size", 0);
14710
14711 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14712 "Qbtrace:off", "disable-btrace", 0);
14713
14714 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14715 "Qbtrace:bts", "enable-btrace-bts", 0);
14716
14717 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14718 "Qbtrace:pt", "enable-btrace-pt", 0);
14719
14720 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14721 "qXfer:btrace", "read-btrace", 0);
14722
14723 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14724 "qXfer:btrace-conf", "read-btrace-conf", 0);
14725
14726 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14727 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14728
14729 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14730 "multiprocess-feature", "multiprocess-feature", 0);
14731
14732 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14733 "swbreak-feature", "swbreak-feature", 0);
14734
14735 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14736 "hwbreak-feature", "hwbreak-feature", 0);
14737
14738 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14739 "fork-event-feature", "fork-event-feature", 0);
14740
14741 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14742 "vfork-event-feature", "vfork-event-feature", 0);
14743
14744 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14745 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14746
14747 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14748 "vContSupported", "verbose-resume-supported", 0);
14749
14750 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14751 "exec-event-feature", "exec-event-feature", 0);
14752
14753 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14754 "vCtrlC", "ctrl-c", 0);
14755
14756 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14757 "QThreadEvents", "thread-events", 0);
14758
14759 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14760 "N stop reply", "no-resumed-stop-reply", 0);
14761
14762 /* Assert that we've registered "set remote foo-packet" commands
14763 for all packet configs. */
14764 {
14765 int i;
14766
14767 for (i = 0; i < PACKET_MAX; i++)
14768 {
14769 /* Ideally all configs would have a command associated. Some
14770 still don't though. */
14771 int excepted;
14772
14773 switch (i)
14774 {
14775 case PACKET_QNonStop:
14776 case PACKET_EnableDisableTracepoints_feature:
14777 case PACKET_tracenz_feature:
14778 case PACKET_DisconnectedTracing_feature:
14779 case PACKET_augmented_libraries_svr4_read_feature:
14780 case PACKET_qCRC:
14781 /* Additions to this list need to be well justified:
14782 pre-existing packets are OK; new packets are not. */
14783 excepted = 1;
14784 break;
14785 default:
14786 excepted = 0;
14787 break;
14788 }
14789
14790 /* This catches both forgetting to add a config command, and
14791 forgetting to remove a packet from the exception list. */
14792 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14793 }
14794 }
14795
14796 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14797 Z sub-packet has its own set and show commands, but users may
14798 have sets to this variable in their .gdbinit files (or in their
14799 documentation). */
14800 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14801 &remote_Z_packet_detect, _("\
14802 Set use of remote protocol `Z' packets."), _("\
14803 Show use of remote protocol `Z' packets."), _("\
14804 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14805 packets."),
14806 set_remote_protocol_Z_packet_cmd,
14807 show_remote_protocol_Z_packet_cmd,
14808 /* FIXME: i18n: Use of remote protocol
14809 `Z' packets is %s. */
14810 &remote_set_cmdlist, &remote_show_cmdlist);
14811
14812 add_prefix_cmd ("remote", class_files, remote_command, _("\
14813 Manipulate files on the remote system.\n\
14814 Transfer files to and from the remote target system."),
14815 &remote_cmdlist, "remote ",
14816 0 /* allow-unknown */, &cmdlist);
14817
14818 add_cmd ("put", class_files, remote_put_command,
14819 _("Copy a local file to the remote system."),
14820 &remote_cmdlist);
14821
14822 add_cmd ("get", class_files, remote_get_command,
14823 _("Copy a remote file to the local system."),
14824 &remote_cmdlist);
14825
14826 add_cmd ("delete", class_files, remote_delete_command,
14827 _("Delete a remote file."),
14828 &remote_cmdlist);
14829
14830 add_setshow_string_noescape_cmd ("exec-file", class_files,
14831 &remote_exec_file_var, _("\
14832 Set the remote pathname for \"run\"."), _("\
14833 Show the remote pathname for \"run\"."), NULL,
14834 set_remote_exec_file,
14835 show_remote_exec_file,
14836 &remote_set_cmdlist,
14837 &remote_show_cmdlist);
14838
14839 add_setshow_boolean_cmd ("range-stepping", class_run,
14840 &use_range_stepping, _("\
14841 Enable or disable range stepping."), _("\
14842 Show whether target-assisted range stepping is enabled."), _("\
14843 If on, and the target supports it, when stepping a source line, GDB\n\
14844 tells the target to step the corresponding range of addresses itself instead\n\
14845 of issuing multiple single-steps. This speeds up source level\n\
14846 stepping. If off, GDB always issues single-steps, even if range\n\
14847 stepping is supported by the target. The default is on."),
14848 set_range_stepping,
14849 show_range_stepping,
14850 &setlist,
14851 &showlist);
14852
14853 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
14854 Set watchdog timer."), _("\
14855 Show watchdog timer."), _("\
14856 When non-zero, this timeout is used instead of waiting forever for a target\n\
14857 to finish a low-level step or continue operation. If the specified amount\n\
14858 of time passes without a response from the target, an error occurs."),
14859 NULL,
14860 show_watchdog,
14861 &setlist, &showlist);
14862
14863 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
14864 &remote_packet_max_chars, _("\
14865 Set the maximum number of characters to display for each remote packet."), _("\
14866 Show the maximum number of characters to display for each remote packet."), _("\
14867 Specify \"unlimited\" to display all the characters."),
14868 NULL, show_remote_packet_max_chars,
14869 &setdebuglist, &showdebuglist);
14870
14871 /* Eventually initialize fileio. See fileio.c */
14872 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14873 }
This page took 0.320502 seconds and 5 git commands to generate.