Per-inferior target_terminal state, fix PR gdb/13211, more
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observer.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78
79 /* Per-program-space data key. */
80 static const struct program_space_data *remote_pspace_data;
81
82 /* The variable registered as the control variable used by the
83 remote exec-file commands. While the remote exec-file setting is
84 per-program-space, the set/show machinery uses this as the
85 location of the remote exec-file value. */
86 static char *remote_exec_file_var;
87
88 /* The size to align memory write packets, when practical. The protocol
89 does not guarantee any alignment, and gdb will generate short
90 writes and unaligned writes, but even as a best-effort attempt this
91 can improve bulk transfers. For instance, if a write is misaligned
92 relative to the target's data bus, the stub may need to make an extra
93 round trip fetching data from the target. This doesn't make a
94 huge difference, but it's easy to do, so we try to be helpful.
95
96 The alignment chosen is arbitrary; usually data bus width is
97 important here, not the possibly larger cache line size. */
98 enum { REMOTE_ALIGN_WRITES = 16 };
99
100 /* Prototypes for local functions. */
101 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
102 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
103 int forever, int *is_notif);
104
105 static void remote_files_info (struct target_ops *ignore);
106
107 static void remote_prepare_to_store (struct target_ops *self,
108 struct regcache *regcache);
109
110 static void remote_open_1 (const char *, int, struct target_ops *,
111 int extended_p);
112
113 static void remote_close (struct target_ops *self);
114
115 struct remote_state;
116
117 static int remote_vkill (int pid, struct remote_state *rs);
118
119 static void remote_kill_k (void);
120
121 static void remote_mourn (struct target_ops *ops);
122
123 static void extended_remote_restart (void);
124
125 static void remote_send (char **buf, long *sizeof_buf_p);
126
127 static int readchar (int timeout);
128
129 static void remote_serial_write (const char *str, int len);
130
131 static void remote_kill (struct target_ops *ops);
132
133 static int remote_can_async_p (struct target_ops *);
134
135 static int remote_is_async_p (struct target_ops *);
136
137 static void remote_async (struct target_ops *ops, int enable);
138
139 static void remote_thread_events (struct target_ops *ops, int enable);
140
141 static void interrupt_query (void);
142
143 static void set_general_thread (ptid_t ptid);
144 static void set_continue_thread (ptid_t ptid);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (struct target_ops *self, ptid_t);
159
160 static int stubhex (int ch);
161
162 static int hexnumstr (char *, ULONGEST);
163
164 static int hexnumnstr (char *, ULONGEST, int);
165
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
167
168 static void print_packet (const char *);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static int putpkt_binary (const char *buf, int cnt);
175
176 static void check_binary_download (CORE_ADDR addr);
177
178 struct packet_config;
179
180 static void show_packet_config_cmd (struct packet_config *config);
181
182 static void show_remote_protocol_packet_cmd (struct ui_file *file,
183 int from_tty,
184 struct cmd_list_element *c,
185 const char *value);
186
187 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
188 static ptid_t read_ptid (const char *buf, const char **obuf);
189
190 static void remote_set_permissions (struct target_ops *self);
191
192 static int remote_get_trace_status (struct target_ops *self,
193 struct trace_status *ts);
194
195 static int remote_upload_tracepoints (struct target_ops *self,
196 struct uploaded_tp **utpp);
197
198 static int remote_upload_trace_state_variables (struct target_ops *self,
199 struct uploaded_tsv **utsvp);
200
201 static void remote_query_supported (void);
202
203 static void remote_check_symbols (void);
204
205 struct stop_reply;
206 static void stop_reply_xfree (struct stop_reply *);
207 static void remote_parse_stop_reply (char *, struct stop_reply *);
208 static void push_stop_reply (struct stop_reply *);
209 static void discard_pending_stop_replies_in_queue (struct remote_state *);
210 static int peek_stop_reply (ptid_t ptid);
211
212 struct threads_listing_context;
213 static void remove_new_fork_children (struct threads_listing_context *);
214
215 static void remote_async_inferior_event_handler (gdb_client_data);
216
217 static void remote_terminal_ours (struct target_ops *self);
218
219 static int remote_read_description_p (struct target_ops *target);
220
221 static void remote_console_output (char *msg);
222
223 static int remote_supports_cond_breakpoints (struct target_ops *self);
224
225 static int remote_can_run_breakpoint_commands (struct target_ops *self);
226
227 static void remote_btrace_reset (void);
228
229 static void remote_btrace_maybe_reopen (void);
230
231 static int stop_reply_queue_length (void);
232
233 static void readahead_cache_invalidate (void);
234
235 static void remote_unpush_and_throw (void);
236
237 static struct remote_state *get_remote_state (void);
238
239 /* For "remote". */
240
241 static struct cmd_list_element *remote_cmdlist;
242
243 /* For "set remote" and "show remote". */
244
245 static struct cmd_list_element *remote_set_cmdlist;
246 static struct cmd_list_element *remote_show_cmdlist;
247
248 /* Stub vCont actions support.
249
250 Each field is a boolean flag indicating whether the stub reports
251 support for the corresponding action. */
252
253 struct vCont_action_support
254 {
255 /* vCont;t */
256 int t;
257
258 /* vCont;r */
259 int r;
260
261 /* vCont;s */
262 int s;
263
264 /* vCont;S */
265 int S;
266 };
267
268 /* Controls whether GDB is willing to use range stepping. */
269
270 static int use_range_stepping = 1;
271
272 #define OPAQUETHREADBYTES 8
273
274 /* a 64 bit opaque identifier */
275 typedef unsigned char threadref[OPAQUETHREADBYTES];
276
277 /* About this many threadisds fit in a packet. */
278
279 #define MAXTHREADLISTRESULTS 32
280
281 /* The max number of chars in debug output. The rest of chars are
282 omitted. */
283
284 #define REMOTE_DEBUG_MAX_CHAR 512
285
286 /* Data for the vFile:pread readahead cache. */
287
288 struct readahead_cache
289 {
290 /* The file descriptor for the file that is being cached. -1 if the
291 cache is invalid. */
292 int fd;
293
294 /* The offset into the file that the cache buffer corresponds
295 to. */
296 ULONGEST offset;
297
298 /* The buffer holding the cache contents. */
299 gdb_byte *buf;
300 /* The buffer's size. We try to read as much as fits into a packet
301 at a time. */
302 size_t bufsize;
303
304 /* Cache hit and miss counters. */
305 ULONGEST hit_count;
306 ULONGEST miss_count;
307 };
308
309 /* Description of the remote protocol state for the currently
310 connected target. This is per-target state, and independent of the
311 selected architecture. */
312
313 struct remote_state
314 {
315 /* A buffer to use for incoming packets, and its current size. The
316 buffer is grown dynamically for larger incoming packets.
317 Outgoing packets may also be constructed in this buffer.
318 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
319 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
320 packets. */
321 char *buf;
322 long buf_size;
323
324 /* True if we're going through initial connection setup (finding out
325 about the remote side's threads, relocating symbols, etc.). */
326 int starting_up;
327
328 /* If we negotiated packet size explicitly (and thus can bypass
329 heuristics for the largest packet size that will not overflow
330 a buffer in the stub), this will be set to that packet size.
331 Otherwise zero, meaning to use the guessed size. */
332 long explicit_packet_size;
333
334 /* remote_wait is normally called when the target is running and
335 waits for a stop reply packet. But sometimes we need to call it
336 when the target is already stopped. We can send a "?" packet
337 and have remote_wait read the response. Or, if we already have
338 the response, we can stash it in BUF and tell remote_wait to
339 skip calling getpkt. This flag is set when BUF contains a
340 stop reply packet and the target is not waiting. */
341 int cached_wait_status;
342
343 /* True, if in no ack mode. That is, neither GDB nor the stub will
344 expect acks from each other. The connection is assumed to be
345 reliable. */
346 int noack_mode;
347
348 /* True if we're connected in extended remote mode. */
349 int extended;
350
351 /* True if we resumed the target and we're waiting for the target to
352 stop. In the mean time, we can't start another command/query.
353 The remote server wouldn't be ready to process it, so we'd
354 timeout waiting for a reply that would never come and eventually
355 we'd close the connection. This can happen in asynchronous mode
356 because we allow GDB commands while the target is running. */
357 int waiting_for_stop_reply;
358
359 /* The status of the stub support for the various vCont actions. */
360 struct vCont_action_support supports_vCont;
361
362 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
363 responded to that. */
364 int ctrlc_pending_p;
365
366 /* True if we saw a Ctrl-C while reading or writing from/to the
367 remote descriptor. At that point it is not safe to send a remote
368 interrupt packet, so we instead remember we saw the Ctrl-C and
369 process it once we're done with sending/receiving the current
370 packet, which should be shortly. If however that takes too long,
371 and the user presses Ctrl-C again, we offer to disconnect. */
372 int got_ctrlc_during_io;
373
374 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
375 remote_open knows that we don't have a file open when the program
376 starts. */
377 struct serial *remote_desc;
378
379 /* These are the threads which we last sent to the remote system. The
380 TID member will be -1 for all or -2 for not sent yet. */
381 ptid_t general_thread;
382 ptid_t continue_thread;
383
384 /* This is the traceframe which we last selected on the remote system.
385 It will be -1 if no traceframe is selected. */
386 int remote_traceframe_number;
387
388 char *last_pass_packet;
389
390 /* The last QProgramSignals packet sent to the target. We bypass
391 sending a new program signals list down to the target if the new
392 packet is exactly the same as the last we sent. IOW, we only let
393 the target know about program signals list changes. */
394 char *last_program_signals_packet;
395
396 enum gdb_signal last_sent_signal;
397
398 int last_sent_step;
399
400 /* The execution direction of the last resume we got. */
401 enum exec_direction_kind last_resume_exec_dir;
402
403 char *finished_object;
404 char *finished_annex;
405 ULONGEST finished_offset;
406
407 /* Should we try the 'ThreadInfo' query packet?
408
409 This variable (NOT available to the user: auto-detect only!)
410 determines whether GDB will use the new, simpler "ThreadInfo"
411 query or the older, more complex syntax for thread queries.
412 This is an auto-detect variable (set to true at each connect,
413 and set to false when the target fails to recognize it). */
414 int use_threadinfo_query;
415 int use_threadextra_query;
416
417 threadref echo_nextthread;
418 threadref nextthread;
419 threadref resultthreadlist[MAXTHREADLISTRESULTS];
420
421 /* The state of remote notification. */
422 struct remote_notif_state *notif_state;
423
424 /* The branch trace configuration. */
425 struct btrace_config btrace_config;
426
427 /* The argument to the last "vFile:setfs:" packet we sent, used
428 to avoid sending repeated unnecessary "vFile:setfs:" packets.
429 Initialized to -1 to indicate that no "vFile:setfs:" packet
430 has yet been sent. */
431 int fs_pid;
432
433 /* A readahead cache for vFile:pread. Often, reading a binary
434 involves a sequence of small reads. E.g., when parsing an ELF
435 file. A readahead cache helps mostly the case of remote
436 debugging on a connection with higher latency, due to the
437 request/reply nature of the RSP. We only cache data for a single
438 file descriptor at a time. */
439 struct readahead_cache readahead_cache;
440 };
441
442 /* Private data that we'll store in (struct thread_info)->priv. */
443 struct remote_thread_info : public private_thread_info
444 {
445 std::string extra;
446 std::string name;
447 int core = -1;
448
449 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
450 sequence of bytes. */
451 gdb::byte_vector thread_handle;
452
453 /* Whether the target stopped for a breakpoint/watchpoint. */
454 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
455
456 /* This is set to the data address of the access causing the target
457 to stop for a watchpoint. */
458 CORE_ADDR watch_data_address = 0;
459
460 /* Fields used by the vCont action coalescing implemented in
461 remote_resume / remote_commit_resume. remote_resume stores each
462 thread's last resume request in these fields, so that a later
463 remote_commit_resume knows which is the proper action for this
464 thread to include in the vCont packet. */
465
466 /* True if the last target_resume call for this thread was a step
467 request, false if a continue request. */
468 int last_resume_step = 0;
469
470 /* The signal specified in the last target_resume call for this
471 thread. */
472 gdb_signal last_resume_sig = GDB_SIGNAL_0;
473
474 /* Whether this thread was already vCont-resumed on the remote
475 side. */
476 int vcont_resumed = 0;
477 };
478
479 /* This data could be associated with a target, but we do not always
480 have access to the current target when we need it, so for now it is
481 static. This will be fine for as long as only one target is in use
482 at a time. */
483 static struct remote_state *remote_state;
484
485 static struct remote_state *
486 get_remote_state_raw (void)
487 {
488 return remote_state;
489 }
490
491 /* Allocate a new struct remote_state with xmalloc, initialize it, and
492 return it. */
493
494 static struct remote_state *
495 new_remote_state (void)
496 {
497 struct remote_state *result = XCNEW (struct remote_state);
498
499 /* The default buffer size is unimportant; it will be expanded
500 whenever a larger buffer is needed. */
501 result->buf_size = 400;
502 result->buf = (char *) xmalloc (result->buf_size);
503 result->remote_traceframe_number = -1;
504 result->last_sent_signal = GDB_SIGNAL_0;
505 result->last_resume_exec_dir = EXEC_FORWARD;
506 result->fs_pid = -1;
507
508 return result;
509 }
510
511 /* Description of the remote protocol for a given architecture. */
512
513 struct packet_reg
514 {
515 long offset; /* Offset into G packet. */
516 long regnum; /* GDB's internal register number. */
517 LONGEST pnum; /* Remote protocol register number. */
518 int in_g_packet; /* Always part of G packet. */
519 /* long size in bytes; == register_size (target_gdbarch (), regnum);
520 at present. */
521 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
522 at present. */
523 };
524
525 struct remote_arch_state
526 {
527 /* Description of the remote protocol registers. */
528 long sizeof_g_packet;
529
530 /* Description of the remote protocol registers indexed by REGNUM
531 (making an array gdbarch_num_regs in size). */
532 struct packet_reg *regs;
533
534 /* This is the size (in chars) of the first response to the ``g''
535 packet. It is used as a heuristic when determining the maximum
536 size of memory-read and memory-write packets. A target will
537 typically only reserve a buffer large enough to hold the ``g''
538 packet. The size does not include packet overhead (headers and
539 trailers). */
540 long actual_register_packet_size;
541
542 /* This is the maximum size (in chars) of a non read/write packet.
543 It is also used as a cap on the size of read/write packets. */
544 long remote_packet_size;
545 };
546
547 /* Utility: generate error from an incoming stub packet. */
548 static void
549 trace_error (char *buf)
550 {
551 if (*buf++ != 'E')
552 return; /* not an error msg */
553 switch (*buf)
554 {
555 case '1': /* malformed packet error */
556 if (*++buf == '0') /* general case: */
557 error (_("remote.c: error in outgoing packet."));
558 else
559 error (_("remote.c: error in outgoing packet at field #%ld."),
560 strtol (buf, NULL, 16));
561 default:
562 error (_("Target returns error code '%s'."), buf);
563 }
564 }
565
566 /* Utility: wait for reply from stub, while accepting "O" packets. */
567
568 static char *
569 remote_get_noisy_reply ()
570 {
571 struct remote_state *rs = get_remote_state ();
572
573 do /* Loop on reply from remote stub. */
574 {
575 char *buf;
576
577 QUIT; /* Allow user to bail out with ^C. */
578 getpkt (&rs->buf, &rs->buf_size, 0);
579 buf = rs->buf;
580 if (buf[0] == 'E')
581 trace_error (buf);
582 else if (startswith (buf, "qRelocInsn:"))
583 {
584 ULONGEST ul;
585 CORE_ADDR from, to, org_to;
586 const char *p, *pp;
587 int adjusted_size = 0;
588 int relocated = 0;
589
590 p = buf + strlen ("qRelocInsn:");
591 pp = unpack_varlen_hex (p, &ul);
592 if (*pp != ';')
593 error (_("invalid qRelocInsn packet: %s"), buf);
594 from = ul;
595
596 p = pp + 1;
597 unpack_varlen_hex (p, &ul);
598 to = ul;
599
600 org_to = to;
601
602 TRY
603 {
604 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
605 relocated = 1;
606 }
607 CATCH (ex, RETURN_MASK_ALL)
608 {
609 if (ex.error == MEMORY_ERROR)
610 {
611 /* Propagate memory errors silently back to the
612 target. The stub may have limited the range of
613 addresses we can write to, for example. */
614 }
615 else
616 {
617 /* Something unexpectedly bad happened. Be verbose
618 so we can tell what, and propagate the error back
619 to the stub, so it doesn't get stuck waiting for
620 a response. */
621 exception_fprintf (gdb_stderr, ex,
622 _("warning: relocating instruction: "));
623 }
624 putpkt ("E01");
625 }
626 END_CATCH
627
628 if (relocated)
629 {
630 adjusted_size = to - org_to;
631
632 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
633 putpkt (buf);
634 }
635 }
636 else if (buf[0] == 'O' && buf[1] != 'K')
637 remote_console_output (buf + 1); /* 'O' message from stub */
638 else
639 return buf; /* Here's the actual reply. */
640 }
641 while (1);
642 }
643
644 /* Handle for retreving the remote protocol data from gdbarch. */
645 static struct gdbarch_data *remote_gdbarch_data_handle;
646
647 static struct remote_arch_state *
648 get_remote_arch_state (struct gdbarch *gdbarch)
649 {
650 gdb_assert (gdbarch != NULL);
651 return ((struct remote_arch_state *)
652 gdbarch_data (gdbarch, remote_gdbarch_data_handle));
653 }
654
655 /* Fetch the global remote target state. */
656
657 static struct remote_state *
658 get_remote_state (void)
659 {
660 /* Make sure that the remote architecture state has been
661 initialized, because doing so might reallocate rs->buf. Any
662 function which calls getpkt also needs to be mindful of changes
663 to rs->buf, but this call limits the number of places which run
664 into trouble. */
665 get_remote_arch_state (target_gdbarch ());
666
667 return get_remote_state_raw ();
668 }
669
670 /* Cleanup routine for the remote module's pspace data. */
671
672 static void
673 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
674 {
675 char *remote_exec_file = (char *) arg;
676
677 xfree (remote_exec_file);
678 }
679
680 /* Fetch the remote exec-file from the current program space. */
681
682 static const char *
683 get_remote_exec_file (void)
684 {
685 char *remote_exec_file;
686
687 remote_exec_file
688 = (char *) program_space_data (current_program_space,
689 remote_pspace_data);
690 if (remote_exec_file == NULL)
691 return "";
692
693 return remote_exec_file;
694 }
695
696 /* Set the remote exec file for PSPACE. */
697
698 static void
699 set_pspace_remote_exec_file (struct program_space *pspace,
700 char *remote_exec_file)
701 {
702 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
703
704 xfree (old_file);
705 set_program_space_data (pspace, remote_pspace_data,
706 xstrdup (remote_exec_file));
707 }
708
709 /* The "set/show remote exec-file" set command hook. */
710
711 static void
712 set_remote_exec_file (const char *ignored, int from_tty,
713 struct cmd_list_element *c)
714 {
715 gdb_assert (remote_exec_file_var != NULL);
716 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
717 }
718
719 /* The "set/show remote exec-file" show command hook. */
720
721 static void
722 show_remote_exec_file (struct ui_file *file, int from_tty,
723 struct cmd_list_element *cmd, const char *value)
724 {
725 fprintf_filtered (file, "%s\n", remote_exec_file_var);
726 }
727
728 static int
729 compare_pnums (const void *lhs_, const void *rhs_)
730 {
731 const struct packet_reg * const *lhs
732 = (const struct packet_reg * const *) lhs_;
733 const struct packet_reg * const *rhs
734 = (const struct packet_reg * const *) rhs_;
735
736 if ((*lhs)->pnum < (*rhs)->pnum)
737 return -1;
738 else if ((*lhs)->pnum == (*rhs)->pnum)
739 return 0;
740 else
741 return 1;
742 }
743
744 static int
745 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
746 {
747 int regnum, num_remote_regs, offset;
748 struct packet_reg **remote_regs;
749
750 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
751 {
752 struct packet_reg *r = &regs[regnum];
753
754 if (register_size (gdbarch, regnum) == 0)
755 /* Do not try to fetch zero-sized (placeholder) registers. */
756 r->pnum = -1;
757 else
758 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
759
760 r->regnum = regnum;
761 }
762
763 /* Define the g/G packet format as the contents of each register
764 with a remote protocol number, in order of ascending protocol
765 number. */
766
767 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
768 for (num_remote_regs = 0, regnum = 0;
769 regnum < gdbarch_num_regs (gdbarch);
770 regnum++)
771 if (regs[regnum].pnum != -1)
772 remote_regs[num_remote_regs++] = &regs[regnum];
773
774 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
775 compare_pnums);
776
777 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
778 {
779 remote_regs[regnum]->in_g_packet = 1;
780 remote_regs[regnum]->offset = offset;
781 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
782 }
783
784 return offset;
785 }
786
787 /* Given the architecture described by GDBARCH, return the remote
788 protocol register's number and the register's offset in the g/G
789 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
790 If the target does not have a mapping for REGNUM, return false,
791 otherwise, return true. */
792
793 int
794 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
795 int *pnum, int *poffset)
796 {
797 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
798
799 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
800
801 map_regcache_remote_table (gdbarch, regs.data ());
802
803 *pnum = regs[regnum].pnum;
804 *poffset = regs[regnum].offset;
805
806 return *pnum != -1;
807 }
808
809 static void *
810 init_remote_state (struct gdbarch *gdbarch)
811 {
812 struct remote_state *rs = get_remote_state_raw ();
813 struct remote_arch_state *rsa;
814
815 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
816
817 /* Use the architecture to build a regnum<->pnum table, which will be
818 1:1 unless a feature set specifies otherwise. */
819 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
820 gdbarch_num_regs (gdbarch),
821 struct packet_reg);
822
823 /* Record the maximum possible size of the g packet - it may turn out
824 to be smaller. */
825 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
826
827 /* Default maximum number of characters in a packet body. Many
828 remote stubs have a hardwired buffer size of 400 bytes
829 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
830 as the maximum packet-size to ensure that the packet and an extra
831 NUL character can always fit in the buffer. This stops GDB
832 trashing stubs that try to squeeze an extra NUL into what is
833 already a full buffer (As of 1999-12-04 that was most stubs). */
834 rsa->remote_packet_size = 400 - 1;
835
836 /* This one is filled in when a ``g'' packet is received. */
837 rsa->actual_register_packet_size = 0;
838
839 /* Should rsa->sizeof_g_packet needs more space than the
840 default, adjust the size accordingly. Remember that each byte is
841 encoded as two characters. 32 is the overhead for the packet
842 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
843 (``$NN:G...#NN'') is a better guess, the below has been padded a
844 little. */
845 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
846 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
847
848 /* Make sure that the packet buffer is plenty big enough for
849 this architecture. */
850 if (rs->buf_size < rsa->remote_packet_size)
851 {
852 rs->buf_size = 2 * rsa->remote_packet_size;
853 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
854 }
855
856 return rsa;
857 }
858
859 /* Return the current allowed size of a remote packet. This is
860 inferred from the current architecture, and should be used to
861 limit the length of outgoing packets. */
862 static long
863 get_remote_packet_size (void)
864 {
865 struct remote_state *rs = get_remote_state ();
866 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
867
868 if (rs->explicit_packet_size)
869 return rs->explicit_packet_size;
870
871 return rsa->remote_packet_size;
872 }
873
874 static struct packet_reg *
875 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
876 long regnum)
877 {
878 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
879 return NULL;
880 else
881 {
882 struct packet_reg *r = &rsa->regs[regnum];
883
884 gdb_assert (r->regnum == regnum);
885 return r;
886 }
887 }
888
889 static struct packet_reg *
890 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
891 LONGEST pnum)
892 {
893 int i;
894
895 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
896 {
897 struct packet_reg *r = &rsa->regs[i];
898
899 if (r->pnum == pnum)
900 return r;
901 }
902 return NULL;
903 }
904
905 static struct target_ops remote_ops;
906
907 static struct target_ops extended_remote_ops;
908
909 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
910 ``forever'' still use the normal timeout mechanism. This is
911 currently used by the ASYNC code to guarentee that target reads
912 during the initial connect always time-out. Once getpkt has been
913 modified to return a timeout indication and, in turn
914 remote_wait()/wait_for_inferior() have gained a timeout parameter
915 this can go away. */
916 static int wait_forever_enabled_p = 1;
917
918 /* Allow the user to specify what sequence to send to the remote
919 when he requests a program interruption: Although ^C is usually
920 what remote systems expect (this is the default, here), it is
921 sometimes preferable to send a break. On other systems such
922 as the Linux kernel, a break followed by g, which is Magic SysRq g
923 is required in order to interrupt the execution. */
924 const char interrupt_sequence_control_c[] = "Ctrl-C";
925 const char interrupt_sequence_break[] = "BREAK";
926 const char interrupt_sequence_break_g[] = "BREAK-g";
927 static const char *const interrupt_sequence_modes[] =
928 {
929 interrupt_sequence_control_c,
930 interrupt_sequence_break,
931 interrupt_sequence_break_g,
932 NULL
933 };
934 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
935
936 static void
937 show_interrupt_sequence (struct ui_file *file, int from_tty,
938 struct cmd_list_element *c,
939 const char *value)
940 {
941 if (interrupt_sequence_mode == interrupt_sequence_control_c)
942 fprintf_filtered (file,
943 _("Send the ASCII ETX character (Ctrl-c) "
944 "to the remote target to interrupt the "
945 "execution of the program.\n"));
946 else if (interrupt_sequence_mode == interrupt_sequence_break)
947 fprintf_filtered (file,
948 _("send a break signal to the remote target "
949 "to interrupt the execution of the program.\n"));
950 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
951 fprintf_filtered (file,
952 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
953 "the remote target to interrupt the execution "
954 "of Linux kernel.\n"));
955 else
956 internal_error (__FILE__, __LINE__,
957 _("Invalid value for interrupt_sequence_mode: %s."),
958 interrupt_sequence_mode);
959 }
960
961 /* This boolean variable specifies whether interrupt_sequence is sent
962 to the remote target when gdb connects to it.
963 This is mostly needed when you debug the Linux kernel: The Linux kernel
964 expects BREAK g which is Magic SysRq g for connecting gdb. */
965 static int interrupt_on_connect = 0;
966
967 /* This variable is used to implement the "set/show remotebreak" commands.
968 Since these commands are now deprecated in favor of "set/show remote
969 interrupt-sequence", it no longer has any effect on the code. */
970 static int remote_break;
971
972 static void
973 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
974 {
975 if (remote_break)
976 interrupt_sequence_mode = interrupt_sequence_break;
977 else
978 interrupt_sequence_mode = interrupt_sequence_control_c;
979 }
980
981 static void
982 show_remotebreak (struct ui_file *file, int from_tty,
983 struct cmd_list_element *c,
984 const char *value)
985 {
986 }
987
988 /* This variable sets the number of bits in an address that are to be
989 sent in a memory ("M" or "m") packet. Normally, after stripping
990 leading zeros, the entire address would be sent. This variable
991 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
992 initial implementation of remote.c restricted the address sent in
993 memory packets to ``host::sizeof long'' bytes - (typically 32
994 bits). Consequently, for 64 bit targets, the upper 32 bits of an
995 address was never sent. Since fixing this bug may cause a break in
996 some remote targets this variable is principly provided to
997 facilitate backward compatibility. */
998
999 static unsigned int remote_address_size;
1000
1001 \f
1002 /* User configurable variables for the number of characters in a
1003 memory read/write packet. MIN (rsa->remote_packet_size,
1004 rsa->sizeof_g_packet) is the default. Some targets need smaller
1005 values (fifo overruns, et.al.) and some users need larger values
1006 (speed up transfers). The variables ``preferred_*'' (the user
1007 request), ``current_*'' (what was actually set) and ``forced_*''
1008 (Positive - a soft limit, negative - a hard limit). */
1009
1010 struct memory_packet_config
1011 {
1012 const char *name;
1013 long size;
1014 int fixed_p;
1015 };
1016
1017 /* The default max memory-write-packet-size. The 16k is historical.
1018 (It came from older GDB's using alloca for buffers and the
1019 knowledge (folklore?) that some hosts don't cope very well with
1020 large alloca calls.) */
1021 #define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1022
1023 /* The minimum remote packet size for memory transfers. Ensures we
1024 can write at least one byte. */
1025 #define MIN_MEMORY_PACKET_SIZE 20
1026
1027 /* Compute the current size of a read/write packet. Since this makes
1028 use of ``actual_register_packet_size'' the computation is dynamic. */
1029
1030 static long
1031 get_memory_packet_size (struct memory_packet_config *config)
1032 {
1033 struct remote_state *rs = get_remote_state ();
1034 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
1035
1036 long what_they_get;
1037 if (config->fixed_p)
1038 {
1039 if (config->size <= 0)
1040 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1041 else
1042 what_they_get = config->size;
1043 }
1044 else
1045 {
1046 what_they_get = get_remote_packet_size ();
1047 /* Limit the packet to the size specified by the user. */
1048 if (config->size > 0
1049 && what_they_get > config->size)
1050 what_they_get = config->size;
1051
1052 /* Limit it to the size of the targets ``g'' response unless we have
1053 permission from the stub to use a larger packet size. */
1054 if (rs->explicit_packet_size == 0
1055 && rsa->actual_register_packet_size > 0
1056 && what_they_get > rsa->actual_register_packet_size)
1057 what_they_get = rsa->actual_register_packet_size;
1058 }
1059 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1060 what_they_get = MIN_MEMORY_PACKET_SIZE;
1061
1062 /* Make sure there is room in the global buffer for this packet
1063 (including its trailing NUL byte). */
1064 if (rs->buf_size < what_they_get + 1)
1065 {
1066 rs->buf_size = 2 * what_they_get;
1067 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1068 }
1069
1070 return what_they_get;
1071 }
1072
1073 /* Update the size of a read/write packet. If they user wants
1074 something really big then do a sanity check. */
1075
1076 static void
1077 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1078 {
1079 int fixed_p = config->fixed_p;
1080 long size = config->size;
1081
1082 if (args == NULL)
1083 error (_("Argument required (integer, `fixed' or `limited')."));
1084 else if (strcmp (args, "hard") == 0
1085 || strcmp (args, "fixed") == 0)
1086 fixed_p = 1;
1087 else if (strcmp (args, "soft") == 0
1088 || strcmp (args, "limit") == 0)
1089 fixed_p = 0;
1090 else
1091 {
1092 char *end;
1093
1094 size = strtoul (args, &end, 0);
1095 if (args == end)
1096 error (_("Invalid %s (bad syntax)."), config->name);
1097
1098 /* Instead of explicitly capping the size of a packet to or
1099 disallowing it, the user is allowed to set the size to
1100 something arbitrarily large. */
1101 }
1102
1103 /* So that the query shows the correct value. */
1104 if (size <= 0)
1105 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1106
1107 /* Extra checks? */
1108 if (fixed_p && !config->fixed_p)
1109 {
1110 if (! query (_("The target may not be able to correctly handle a %s\n"
1111 "of %ld bytes. Change the packet size? "),
1112 config->name, size))
1113 error (_("Packet size not changed."));
1114 }
1115 /* Update the config. */
1116 config->fixed_p = fixed_p;
1117 config->size = size;
1118 }
1119
1120 static void
1121 show_memory_packet_size (struct memory_packet_config *config)
1122 {
1123 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1124 if (config->fixed_p)
1125 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1126 get_memory_packet_size (config));
1127 else
1128 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1129 get_memory_packet_size (config));
1130 }
1131
1132 static struct memory_packet_config memory_write_packet_config =
1133 {
1134 "memory-write-packet-size",
1135 };
1136
1137 static void
1138 set_memory_write_packet_size (const char *args, int from_tty)
1139 {
1140 set_memory_packet_size (args, &memory_write_packet_config);
1141 }
1142
1143 static void
1144 show_memory_write_packet_size (const char *args, int from_tty)
1145 {
1146 show_memory_packet_size (&memory_write_packet_config);
1147 }
1148
1149 static long
1150 get_memory_write_packet_size (void)
1151 {
1152 return get_memory_packet_size (&memory_write_packet_config);
1153 }
1154
1155 static struct memory_packet_config memory_read_packet_config =
1156 {
1157 "memory-read-packet-size",
1158 };
1159
1160 static void
1161 set_memory_read_packet_size (const char *args, int from_tty)
1162 {
1163 set_memory_packet_size (args, &memory_read_packet_config);
1164 }
1165
1166 static void
1167 show_memory_read_packet_size (const char *args, int from_tty)
1168 {
1169 show_memory_packet_size (&memory_read_packet_config);
1170 }
1171
1172 static long
1173 get_memory_read_packet_size (void)
1174 {
1175 long size = get_memory_packet_size (&memory_read_packet_config);
1176
1177 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1178 extra buffer size argument before the memory read size can be
1179 increased beyond this. */
1180 if (size > get_remote_packet_size ())
1181 size = get_remote_packet_size ();
1182 return size;
1183 }
1184
1185 \f
1186 /* Generic configuration support for packets the stub optionally
1187 supports. Allows the user to specify the use of the packet as well
1188 as allowing GDB to auto-detect support in the remote stub. */
1189
1190 enum packet_support
1191 {
1192 PACKET_SUPPORT_UNKNOWN = 0,
1193 PACKET_ENABLE,
1194 PACKET_DISABLE
1195 };
1196
1197 struct packet_config
1198 {
1199 const char *name;
1200 const char *title;
1201
1202 /* If auto, GDB auto-detects support for this packet or feature,
1203 either through qSupported, or by trying the packet and looking
1204 at the response. If true, GDB assumes the target supports this
1205 packet. If false, the packet is disabled. Configs that don't
1206 have an associated command always have this set to auto. */
1207 enum auto_boolean detect;
1208
1209 /* Does the target support this packet? */
1210 enum packet_support support;
1211 };
1212
1213 /* Analyze a packet's return value and update the packet config
1214 accordingly. */
1215
1216 enum packet_result
1217 {
1218 PACKET_ERROR,
1219 PACKET_OK,
1220 PACKET_UNKNOWN
1221 };
1222
1223 static enum packet_support packet_config_support (struct packet_config *config);
1224 static enum packet_support packet_support (int packet);
1225
1226 static void
1227 show_packet_config_cmd (struct packet_config *config)
1228 {
1229 const char *support = "internal-error";
1230
1231 switch (packet_config_support (config))
1232 {
1233 case PACKET_ENABLE:
1234 support = "enabled";
1235 break;
1236 case PACKET_DISABLE:
1237 support = "disabled";
1238 break;
1239 case PACKET_SUPPORT_UNKNOWN:
1240 support = "unknown";
1241 break;
1242 }
1243 switch (config->detect)
1244 {
1245 case AUTO_BOOLEAN_AUTO:
1246 printf_filtered (_("Support for the `%s' packet "
1247 "is auto-detected, currently %s.\n"),
1248 config->name, support);
1249 break;
1250 case AUTO_BOOLEAN_TRUE:
1251 case AUTO_BOOLEAN_FALSE:
1252 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1253 config->name, support);
1254 break;
1255 }
1256 }
1257
1258 static void
1259 add_packet_config_cmd (struct packet_config *config, const char *name,
1260 const char *title, int legacy)
1261 {
1262 char *set_doc;
1263 char *show_doc;
1264 char *cmd_name;
1265
1266 config->name = name;
1267 config->title = title;
1268 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1269 name, title);
1270 show_doc = xstrprintf ("Show current use of remote "
1271 "protocol `%s' (%s) packet",
1272 name, title);
1273 /* set/show TITLE-packet {auto,on,off} */
1274 cmd_name = xstrprintf ("%s-packet", title);
1275 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1276 &config->detect, set_doc,
1277 show_doc, NULL, /* help_doc */
1278 NULL,
1279 show_remote_protocol_packet_cmd,
1280 &remote_set_cmdlist, &remote_show_cmdlist);
1281 /* The command code copies the documentation strings. */
1282 xfree (set_doc);
1283 xfree (show_doc);
1284 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1285 if (legacy)
1286 {
1287 char *legacy_name;
1288
1289 legacy_name = xstrprintf ("%s-packet", name);
1290 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1291 &remote_set_cmdlist);
1292 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1293 &remote_show_cmdlist);
1294 }
1295 }
1296
1297 static enum packet_result
1298 packet_check_result (const char *buf)
1299 {
1300 if (buf[0] != '\0')
1301 {
1302 /* The stub recognized the packet request. Check that the
1303 operation succeeded. */
1304 if (buf[0] == 'E'
1305 && isxdigit (buf[1]) && isxdigit (buf[2])
1306 && buf[3] == '\0')
1307 /* "Enn" - definitly an error. */
1308 return PACKET_ERROR;
1309
1310 /* Always treat "E." as an error. This will be used for
1311 more verbose error messages, such as E.memtypes. */
1312 if (buf[0] == 'E' && buf[1] == '.')
1313 return PACKET_ERROR;
1314
1315 /* The packet may or may not be OK. Just assume it is. */
1316 return PACKET_OK;
1317 }
1318 else
1319 /* The stub does not support the packet. */
1320 return PACKET_UNKNOWN;
1321 }
1322
1323 static enum packet_result
1324 packet_ok (const char *buf, struct packet_config *config)
1325 {
1326 enum packet_result result;
1327
1328 if (config->detect != AUTO_BOOLEAN_TRUE
1329 && config->support == PACKET_DISABLE)
1330 internal_error (__FILE__, __LINE__,
1331 _("packet_ok: attempt to use a disabled packet"));
1332
1333 result = packet_check_result (buf);
1334 switch (result)
1335 {
1336 case PACKET_OK:
1337 case PACKET_ERROR:
1338 /* The stub recognized the packet request. */
1339 if (config->support == PACKET_SUPPORT_UNKNOWN)
1340 {
1341 if (remote_debug)
1342 fprintf_unfiltered (gdb_stdlog,
1343 "Packet %s (%s) is supported\n",
1344 config->name, config->title);
1345 config->support = PACKET_ENABLE;
1346 }
1347 break;
1348 case PACKET_UNKNOWN:
1349 /* The stub does not support the packet. */
1350 if (config->detect == AUTO_BOOLEAN_AUTO
1351 && config->support == PACKET_ENABLE)
1352 {
1353 /* If the stub previously indicated that the packet was
1354 supported then there is a protocol error. */
1355 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1356 config->name, config->title);
1357 }
1358 else if (config->detect == AUTO_BOOLEAN_TRUE)
1359 {
1360 /* The user set it wrong. */
1361 error (_("Enabled packet %s (%s) not recognized by stub"),
1362 config->name, config->title);
1363 }
1364
1365 if (remote_debug)
1366 fprintf_unfiltered (gdb_stdlog,
1367 "Packet %s (%s) is NOT supported\n",
1368 config->name, config->title);
1369 config->support = PACKET_DISABLE;
1370 break;
1371 }
1372
1373 return result;
1374 }
1375
1376 enum {
1377 PACKET_vCont = 0,
1378 PACKET_X,
1379 PACKET_qSymbol,
1380 PACKET_P,
1381 PACKET_p,
1382 PACKET_Z0,
1383 PACKET_Z1,
1384 PACKET_Z2,
1385 PACKET_Z3,
1386 PACKET_Z4,
1387 PACKET_vFile_setfs,
1388 PACKET_vFile_open,
1389 PACKET_vFile_pread,
1390 PACKET_vFile_pwrite,
1391 PACKET_vFile_close,
1392 PACKET_vFile_unlink,
1393 PACKET_vFile_readlink,
1394 PACKET_vFile_fstat,
1395 PACKET_qXfer_auxv,
1396 PACKET_qXfer_features,
1397 PACKET_qXfer_exec_file,
1398 PACKET_qXfer_libraries,
1399 PACKET_qXfer_libraries_svr4,
1400 PACKET_qXfer_memory_map,
1401 PACKET_qXfer_spu_read,
1402 PACKET_qXfer_spu_write,
1403 PACKET_qXfer_osdata,
1404 PACKET_qXfer_threads,
1405 PACKET_qXfer_statictrace_read,
1406 PACKET_qXfer_traceframe_info,
1407 PACKET_qXfer_uib,
1408 PACKET_qGetTIBAddr,
1409 PACKET_qGetTLSAddr,
1410 PACKET_qSupported,
1411 PACKET_qTStatus,
1412 PACKET_QPassSignals,
1413 PACKET_QCatchSyscalls,
1414 PACKET_QProgramSignals,
1415 PACKET_QSetWorkingDir,
1416 PACKET_QStartupWithShell,
1417 PACKET_QEnvironmentHexEncoded,
1418 PACKET_QEnvironmentReset,
1419 PACKET_QEnvironmentUnset,
1420 PACKET_qCRC,
1421 PACKET_qSearch_memory,
1422 PACKET_vAttach,
1423 PACKET_vRun,
1424 PACKET_QStartNoAckMode,
1425 PACKET_vKill,
1426 PACKET_qXfer_siginfo_read,
1427 PACKET_qXfer_siginfo_write,
1428 PACKET_qAttached,
1429
1430 /* Support for conditional tracepoints. */
1431 PACKET_ConditionalTracepoints,
1432
1433 /* Support for target-side breakpoint conditions. */
1434 PACKET_ConditionalBreakpoints,
1435
1436 /* Support for target-side breakpoint commands. */
1437 PACKET_BreakpointCommands,
1438
1439 /* Support for fast tracepoints. */
1440 PACKET_FastTracepoints,
1441
1442 /* Support for static tracepoints. */
1443 PACKET_StaticTracepoints,
1444
1445 /* Support for installing tracepoints while a trace experiment is
1446 running. */
1447 PACKET_InstallInTrace,
1448
1449 PACKET_bc,
1450 PACKET_bs,
1451 PACKET_TracepointSource,
1452 PACKET_QAllow,
1453 PACKET_qXfer_fdpic,
1454 PACKET_QDisableRandomization,
1455 PACKET_QAgent,
1456 PACKET_QTBuffer_size,
1457 PACKET_Qbtrace_off,
1458 PACKET_Qbtrace_bts,
1459 PACKET_Qbtrace_pt,
1460 PACKET_qXfer_btrace,
1461
1462 /* Support for the QNonStop packet. */
1463 PACKET_QNonStop,
1464
1465 /* Support for the QThreadEvents packet. */
1466 PACKET_QThreadEvents,
1467
1468 /* Support for multi-process extensions. */
1469 PACKET_multiprocess_feature,
1470
1471 /* Support for enabling and disabling tracepoints while a trace
1472 experiment is running. */
1473 PACKET_EnableDisableTracepoints_feature,
1474
1475 /* Support for collecting strings using the tracenz bytecode. */
1476 PACKET_tracenz_feature,
1477
1478 /* Support for continuing to run a trace experiment while GDB is
1479 disconnected. */
1480 PACKET_DisconnectedTracing_feature,
1481
1482 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1483 PACKET_augmented_libraries_svr4_read_feature,
1484
1485 /* Support for the qXfer:btrace-conf:read packet. */
1486 PACKET_qXfer_btrace_conf,
1487
1488 /* Support for the Qbtrace-conf:bts:size packet. */
1489 PACKET_Qbtrace_conf_bts_size,
1490
1491 /* Support for swbreak+ feature. */
1492 PACKET_swbreak_feature,
1493
1494 /* Support for hwbreak+ feature. */
1495 PACKET_hwbreak_feature,
1496
1497 /* Support for fork events. */
1498 PACKET_fork_event_feature,
1499
1500 /* Support for vfork events. */
1501 PACKET_vfork_event_feature,
1502
1503 /* Support for the Qbtrace-conf:pt:size packet. */
1504 PACKET_Qbtrace_conf_pt_size,
1505
1506 /* Support for exec events. */
1507 PACKET_exec_event_feature,
1508
1509 /* Support for query supported vCont actions. */
1510 PACKET_vContSupported,
1511
1512 /* Support remote CTRL-C. */
1513 PACKET_vCtrlC,
1514
1515 /* Support TARGET_WAITKIND_NO_RESUMED. */
1516 PACKET_no_resumed,
1517
1518 PACKET_MAX
1519 };
1520
1521 static struct packet_config remote_protocol_packets[PACKET_MAX];
1522
1523 /* Returns the packet's corresponding "set remote foo-packet" command
1524 state. See struct packet_config for more details. */
1525
1526 static enum auto_boolean
1527 packet_set_cmd_state (int packet)
1528 {
1529 return remote_protocol_packets[packet].detect;
1530 }
1531
1532 /* Returns whether a given packet or feature is supported. This takes
1533 into account the state of the corresponding "set remote foo-packet"
1534 command, which may be used to bypass auto-detection. */
1535
1536 static enum packet_support
1537 packet_config_support (struct packet_config *config)
1538 {
1539 switch (config->detect)
1540 {
1541 case AUTO_BOOLEAN_TRUE:
1542 return PACKET_ENABLE;
1543 case AUTO_BOOLEAN_FALSE:
1544 return PACKET_DISABLE;
1545 case AUTO_BOOLEAN_AUTO:
1546 return config->support;
1547 default:
1548 gdb_assert_not_reached (_("bad switch"));
1549 }
1550 }
1551
1552 /* Same as packet_config_support, but takes the packet's enum value as
1553 argument. */
1554
1555 static enum packet_support
1556 packet_support (int packet)
1557 {
1558 struct packet_config *config = &remote_protocol_packets[packet];
1559
1560 return packet_config_support (config);
1561 }
1562
1563 static void
1564 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1565 struct cmd_list_element *c,
1566 const char *value)
1567 {
1568 struct packet_config *packet;
1569
1570 for (packet = remote_protocol_packets;
1571 packet < &remote_protocol_packets[PACKET_MAX];
1572 packet++)
1573 {
1574 if (&packet->detect == c->var)
1575 {
1576 show_packet_config_cmd (packet);
1577 return;
1578 }
1579 }
1580 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1581 c->name);
1582 }
1583
1584 /* Should we try one of the 'Z' requests? */
1585
1586 enum Z_packet_type
1587 {
1588 Z_PACKET_SOFTWARE_BP,
1589 Z_PACKET_HARDWARE_BP,
1590 Z_PACKET_WRITE_WP,
1591 Z_PACKET_READ_WP,
1592 Z_PACKET_ACCESS_WP,
1593 NR_Z_PACKET_TYPES
1594 };
1595
1596 /* For compatibility with older distributions. Provide a ``set remote
1597 Z-packet ...'' command that updates all the Z packet types. */
1598
1599 static enum auto_boolean remote_Z_packet_detect;
1600
1601 static void
1602 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
1603 struct cmd_list_element *c)
1604 {
1605 int i;
1606
1607 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1608 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1609 }
1610
1611 static void
1612 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1613 struct cmd_list_element *c,
1614 const char *value)
1615 {
1616 int i;
1617
1618 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1619 {
1620 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1621 }
1622 }
1623
1624 /* Returns true if the multi-process extensions are in effect. */
1625
1626 static int
1627 remote_multi_process_p (struct remote_state *rs)
1628 {
1629 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1630 }
1631
1632 /* Returns true if fork events are supported. */
1633
1634 static int
1635 remote_fork_event_p (struct remote_state *rs)
1636 {
1637 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1638 }
1639
1640 /* Returns true if vfork events are supported. */
1641
1642 static int
1643 remote_vfork_event_p (struct remote_state *rs)
1644 {
1645 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1646 }
1647
1648 /* Returns true if exec events are supported. */
1649
1650 static int
1651 remote_exec_event_p (struct remote_state *rs)
1652 {
1653 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1654 }
1655
1656 /* Insert fork catchpoint target routine. If fork events are enabled
1657 then return success, nothing more to do. */
1658
1659 static int
1660 remote_insert_fork_catchpoint (struct target_ops *ops, int pid)
1661 {
1662 struct remote_state *rs = get_remote_state ();
1663
1664 return !remote_fork_event_p (rs);
1665 }
1666
1667 /* Remove fork catchpoint target routine. Nothing to do, just
1668 return success. */
1669
1670 static int
1671 remote_remove_fork_catchpoint (struct target_ops *ops, int pid)
1672 {
1673 return 0;
1674 }
1675
1676 /* Insert vfork catchpoint target routine. If vfork events are enabled
1677 then return success, nothing more to do. */
1678
1679 static int
1680 remote_insert_vfork_catchpoint (struct target_ops *ops, int pid)
1681 {
1682 struct remote_state *rs = get_remote_state ();
1683
1684 return !remote_vfork_event_p (rs);
1685 }
1686
1687 /* Remove vfork catchpoint target routine. Nothing to do, just
1688 return success. */
1689
1690 static int
1691 remote_remove_vfork_catchpoint (struct target_ops *ops, int pid)
1692 {
1693 return 0;
1694 }
1695
1696 /* Insert exec catchpoint target routine. If exec events are
1697 enabled, just return success. */
1698
1699 static int
1700 remote_insert_exec_catchpoint (struct target_ops *ops, int pid)
1701 {
1702 struct remote_state *rs = get_remote_state ();
1703
1704 return !remote_exec_event_p (rs);
1705 }
1706
1707 /* Remove exec catchpoint target routine. Nothing to do, just
1708 return success. */
1709
1710 static int
1711 remote_remove_exec_catchpoint (struct target_ops *ops, int pid)
1712 {
1713 return 0;
1714 }
1715
1716 \f
1717 /* Asynchronous signal handle registered as event loop source for
1718 when we have pending events ready to be passed to the core. */
1719
1720 static struct async_event_handler *remote_async_inferior_event_token;
1721
1722 \f
1723
1724 static ptid_t magic_null_ptid;
1725 static ptid_t not_sent_ptid;
1726 static ptid_t any_thread_ptid;
1727
1728 /* Find out if the stub attached to PID (and hence GDB should offer to
1729 detach instead of killing it when bailing out). */
1730
1731 static int
1732 remote_query_attached (int pid)
1733 {
1734 struct remote_state *rs = get_remote_state ();
1735 size_t size = get_remote_packet_size ();
1736
1737 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
1738 return 0;
1739
1740 if (remote_multi_process_p (rs))
1741 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1742 else
1743 xsnprintf (rs->buf, size, "qAttached");
1744
1745 putpkt (rs->buf);
1746 getpkt (&rs->buf, &rs->buf_size, 0);
1747
1748 switch (packet_ok (rs->buf,
1749 &remote_protocol_packets[PACKET_qAttached]))
1750 {
1751 case PACKET_OK:
1752 if (strcmp (rs->buf, "1") == 0)
1753 return 1;
1754 break;
1755 case PACKET_ERROR:
1756 warning (_("Remote failure reply: %s"), rs->buf);
1757 break;
1758 case PACKET_UNKNOWN:
1759 break;
1760 }
1761
1762 return 0;
1763 }
1764
1765 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1766 has been invented by GDB, instead of reported by the target. Since
1767 we can be connected to a remote system before before knowing about
1768 any inferior, mark the target with execution when we find the first
1769 inferior. If ATTACHED is 1, then we had just attached to this
1770 inferior. If it is 0, then we just created this inferior. If it
1771 is -1, then try querying the remote stub to find out if it had
1772 attached to the inferior or not. If TRY_OPEN_EXEC is true then
1773 attempt to open this inferior's executable as the main executable
1774 if no main executable is open already. */
1775
1776 static struct inferior *
1777 remote_add_inferior (int fake_pid_p, int pid, int attached,
1778 int try_open_exec)
1779 {
1780 struct inferior *inf;
1781
1782 /* Check whether this process we're learning about is to be
1783 considered attached, or if is to be considered to have been
1784 spawned by the stub. */
1785 if (attached == -1)
1786 attached = remote_query_attached (pid);
1787
1788 if (gdbarch_has_global_solist (target_gdbarch ()))
1789 {
1790 /* If the target shares code across all inferiors, then every
1791 attach adds a new inferior. */
1792 inf = add_inferior (pid);
1793
1794 /* ... and every inferior is bound to the same program space.
1795 However, each inferior may still have its own address
1796 space. */
1797 inf->aspace = maybe_new_address_space ();
1798 inf->pspace = current_program_space;
1799 }
1800 else
1801 {
1802 /* In the traditional debugging scenario, there's a 1-1 match
1803 between program/address spaces. We simply bind the inferior
1804 to the program space's address space. */
1805 inf = current_inferior ();
1806 inferior_appeared (inf, pid);
1807 }
1808
1809 inf->attach_flag = attached;
1810 inf->fake_pid_p = fake_pid_p;
1811
1812 /* If no main executable is currently open then attempt to
1813 open the file that was executed to create this inferior. */
1814 if (try_open_exec && get_exec_file (0) == NULL)
1815 exec_file_locate_attach (pid, 0, 1);
1816
1817 return inf;
1818 }
1819
1820 static remote_thread_info *get_remote_thread_info (thread_info *thread);
1821
1822 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1823 according to RUNNING. */
1824
1825 static void
1826 remote_add_thread (ptid_t ptid, int running, int executing)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829 struct thread_info *thread;
1830
1831 /* GDB historically didn't pull threads in the initial connection
1832 setup. If the remote target doesn't even have a concept of
1833 threads (e.g., a bare-metal target), even if internally we
1834 consider that a single-threaded target, mentioning a new thread
1835 might be confusing to the user. Be silent then, preserving the
1836 age old behavior. */
1837 if (rs->starting_up)
1838 thread = add_thread_silent (ptid);
1839 else
1840 thread = add_thread (ptid);
1841
1842 get_remote_thread_info (thread)->vcont_resumed = executing;
1843 set_executing (ptid, executing);
1844 set_running (ptid, running);
1845 }
1846
1847 /* Come here when we learn about a thread id from the remote target.
1848 It may be the first time we hear about such thread, so take the
1849 opportunity to add it to GDB's thread list. In case this is the
1850 first time we're noticing its corresponding inferior, add it to
1851 GDB's inferior list as well. EXECUTING indicates whether the
1852 thread is (internally) executing or stopped. */
1853
1854 static void
1855 remote_notice_new_inferior (ptid_t currthread, int executing)
1856 {
1857 /* In non-stop mode, we assume new found threads are (externally)
1858 running until proven otherwise with a stop reply. In all-stop,
1859 we can only get here if all threads are stopped. */
1860 int running = target_is_non_stop_p () ? 1 : 0;
1861
1862 /* If this is a new thread, add it to GDB's thread list.
1863 If we leave it up to WFI to do this, bad things will happen. */
1864
1865 if (in_thread_list (currthread) && is_exited (currthread))
1866 {
1867 /* We're seeing an event on a thread id we knew had exited.
1868 This has to be a new thread reusing the old id. Add it. */
1869 remote_add_thread (currthread, running, executing);
1870 return;
1871 }
1872
1873 if (!in_thread_list (currthread))
1874 {
1875 struct inferior *inf = NULL;
1876 int pid = ptid_get_pid (currthread);
1877
1878 if (ptid_is_pid (inferior_ptid)
1879 && pid == ptid_get_pid (inferior_ptid))
1880 {
1881 /* inferior_ptid has no thread member yet. This can happen
1882 with the vAttach -> remote_wait,"TAAthread:" path if the
1883 stub doesn't support qC. This is the first stop reported
1884 after an attach, so this is the main thread. Update the
1885 ptid in the thread list. */
1886 if (in_thread_list (pid_to_ptid (pid)))
1887 thread_change_ptid (inferior_ptid, currthread);
1888 else
1889 {
1890 remote_add_thread (currthread, running, executing);
1891 inferior_ptid = currthread;
1892 }
1893 return;
1894 }
1895
1896 if (ptid_equal (magic_null_ptid, inferior_ptid))
1897 {
1898 /* inferior_ptid is not set yet. This can happen with the
1899 vRun -> remote_wait,"TAAthread:" path if the stub
1900 doesn't support qC. This is the first stop reported
1901 after an attach, so this is the main thread. Update the
1902 ptid in the thread list. */
1903 thread_change_ptid (inferior_ptid, currthread);
1904 return;
1905 }
1906
1907 /* When connecting to a target remote, or to a target
1908 extended-remote which already was debugging an inferior, we
1909 may not know about it yet. Add it before adding its child
1910 thread, so notifications are emitted in a sensible order. */
1911 if (!in_inferior_list (ptid_get_pid (currthread)))
1912 {
1913 struct remote_state *rs = get_remote_state ();
1914 int fake_pid_p = !remote_multi_process_p (rs);
1915
1916 inf = remote_add_inferior (fake_pid_p,
1917 ptid_get_pid (currthread), -1, 1);
1918 }
1919
1920 /* This is really a new thread. Add it. */
1921 remote_add_thread (currthread, running, executing);
1922
1923 /* If we found a new inferior, let the common code do whatever
1924 it needs to with it (e.g., read shared libraries, insert
1925 breakpoints), unless we're just setting up an all-stop
1926 connection. */
1927 if (inf != NULL)
1928 {
1929 struct remote_state *rs = get_remote_state ();
1930
1931 if (!rs->starting_up)
1932 notice_new_inferior (currthread, executing, 0);
1933 }
1934 }
1935 }
1936
1937 /* Return THREAD's private thread data, creating it if necessary. */
1938
1939 static remote_thread_info *
1940 get_remote_thread_info (thread_info *thread)
1941 {
1942 gdb_assert (thread != NULL);
1943
1944 if (thread->priv == NULL)
1945 thread->priv.reset (new remote_thread_info);
1946
1947 return static_cast<remote_thread_info *> (thread->priv.get ());
1948 }
1949
1950 /* Return PTID's private thread data, creating it if necessary. */
1951
1952 static remote_thread_info *
1953 get_remote_thread_info (ptid_t ptid)
1954 {
1955 struct thread_info *info = find_thread_ptid (ptid);
1956
1957 return get_remote_thread_info (info);
1958 }
1959
1960 /* Call this function as a result of
1961 1) A halt indication (T packet) containing a thread id
1962 2) A direct query of currthread
1963 3) Successful execution of set thread */
1964
1965 static void
1966 record_currthread (struct remote_state *rs, ptid_t currthread)
1967 {
1968 rs->general_thread = currthread;
1969 }
1970
1971 /* If 'QPassSignals' is supported, tell the remote stub what signals
1972 it can simply pass through to the inferior without reporting. */
1973
1974 static void
1975 remote_pass_signals (struct target_ops *self,
1976 int numsigs, unsigned char *pass_signals)
1977 {
1978 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
1979 {
1980 char *pass_packet, *p;
1981 int count = 0, i;
1982 struct remote_state *rs = get_remote_state ();
1983
1984 gdb_assert (numsigs < 256);
1985 for (i = 0; i < numsigs; i++)
1986 {
1987 if (pass_signals[i])
1988 count++;
1989 }
1990 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1991 strcpy (pass_packet, "QPassSignals:");
1992 p = pass_packet + strlen (pass_packet);
1993 for (i = 0; i < numsigs; i++)
1994 {
1995 if (pass_signals[i])
1996 {
1997 if (i >= 16)
1998 *p++ = tohex (i >> 4);
1999 *p++ = tohex (i & 15);
2000 if (count)
2001 *p++ = ';';
2002 else
2003 break;
2004 count--;
2005 }
2006 }
2007 *p = 0;
2008 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2009 {
2010 putpkt (pass_packet);
2011 getpkt (&rs->buf, &rs->buf_size, 0);
2012 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2013 if (rs->last_pass_packet)
2014 xfree (rs->last_pass_packet);
2015 rs->last_pass_packet = pass_packet;
2016 }
2017 else
2018 xfree (pass_packet);
2019 }
2020 }
2021
2022 /* If 'QCatchSyscalls' is supported, tell the remote stub
2023 to report syscalls to GDB. */
2024
2025 static int
2026 remote_set_syscall_catchpoint (struct target_ops *self,
2027 int pid, bool needed, int any_count,
2028 gdb::array_view<const int> syscall_counts)
2029 {
2030 const char *catch_packet;
2031 enum packet_result result;
2032 int n_sysno = 0;
2033
2034 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2035 {
2036 /* Not supported. */
2037 return 1;
2038 }
2039
2040 if (needed && any_count == 0)
2041 {
2042 /* Count how many syscalls are to be caught. */
2043 for (size_t i = 0; i < syscall_counts.size (); i++)
2044 {
2045 if (syscall_counts[i] != 0)
2046 n_sysno++;
2047 }
2048 }
2049
2050 if (remote_debug)
2051 {
2052 fprintf_unfiltered (gdb_stdlog,
2053 "remote_set_syscall_catchpoint "
2054 "pid %d needed %d any_count %d n_sysno %d\n",
2055 pid, needed, any_count, n_sysno);
2056 }
2057
2058 std::string built_packet;
2059 if (needed)
2060 {
2061 /* Prepare a packet with the sysno list, assuming max 8+1
2062 characters for a sysno. If the resulting packet size is too
2063 big, fallback on the non-selective packet. */
2064 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2065 built_packet.reserve (maxpktsz);
2066 built_packet = "QCatchSyscalls:1";
2067 if (any_count == 0)
2068 {
2069 /* Add in each syscall to be caught. */
2070 for (size_t i = 0; i < syscall_counts.size (); i++)
2071 {
2072 if (syscall_counts[i] != 0)
2073 string_appendf (built_packet, ";%zx", i);
2074 }
2075 }
2076 if (built_packet.size () > get_remote_packet_size ())
2077 {
2078 /* catch_packet too big. Fallback to less efficient
2079 non selective mode, with GDB doing the filtering. */
2080 catch_packet = "QCatchSyscalls:1";
2081 }
2082 else
2083 catch_packet = built_packet.c_str ();
2084 }
2085 else
2086 catch_packet = "QCatchSyscalls:0";
2087
2088 struct remote_state *rs = get_remote_state ();
2089
2090 putpkt (catch_packet);
2091 getpkt (&rs->buf, &rs->buf_size, 0);
2092 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2093 if (result == PACKET_OK)
2094 return 0;
2095 else
2096 return -1;
2097 }
2098
2099 /* If 'QProgramSignals' is supported, tell the remote stub what
2100 signals it should pass through to the inferior when detaching. */
2101
2102 static void
2103 remote_program_signals (struct target_ops *self,
2104 int numsigs, unsigned char *signals)
2105 {
2106 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2107 {
2108 char *packet, *p;
2109 int count = 0, i;
2110 struct remote_state *rs = get_remote_state ();
2111
2112 gdb_assert (numsigs < 256);
2113 for (i = 0; i < numsigs; i++)
2114 {
2115 if (signals[i])
2116 count++;
2117 }
2118 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2119 strcpy (packet, "QProgramSignals:");
2120 p = packet + strlen (packet);
2121 for (i = 0; i < numsigs; i++)
2122 {
2123 if (signal_pass_state (i))
2124 {
2125 if (i >= 16)
2126 *p++ = tohex (i >> 4);
2127 *p++ = tohex (i & 15);
2128 if (count)
2129 *p++ = ';';
2130 else
2131 break;
2132 count--;
2133 }
2134 }
2135 *p = 0;
2136 if (!rs->last_program_signals_packet
2137 || strcmp (rs->last_program_signals_packet, packet) != 0)
2138 {
2139 putpkt (packet);
2140 getpkt (&rs->buf, &rs->buf_size, 0);
2141 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2142 xfree (rs->last_program_signals_packet);
2143 rs->last_program_signals_packet = packet;
2144 }
2145 else
2146 xfree (packet);
2147 }
2148 }
2149
2150 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2151 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2152 thread. If GEN is set, set the general thread, if not, then set
2153 the step/continue thread. */
2154 static void
2155 set_thread (ptid_t ptid, int gen)
2156 {
2157 struct remote_state *rs = get_remote_state ();
2158 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2159 char *buf = rs->buf;
2160 char *endbuf = rs->buf + get_remote_packet_size ();
2161
2162 if (ptid_equal (state, ptid))
2163 return;
2164
2165 *buf++ = 'H';
2166 *buf++ = gen ? 'g' : 'c';
2167 if (ptid_equal (ptid, magic_null_ptid))
2168 xsnprintf (buf, endbuf - buf, "0");
2169 else if (ptid_equal (ptid, any_thread_ptid))
2170 xsnprintf (buf, endbuf - buf, "0");
2171 else if (ptid_equal (ptid, minus_one_ptid))
2172 xsnprintf (buf, endbuf - buf, "-1");
2173 else
2174 write_ptid (buf, endbuf, ptid);
2175 putpkt (rs->buf);
2176 getpkt (&rs->buf, &rs->buf_size, 0);
2177 if (gen)
2178 rs->general_thread = ptid;
2179 else
2180 rs->continue_thread = ptid;
2181 }
2182
2183 static void
2184 set_general_thread (ptid_t ptid)
2185 {
2186 set_thread (ptid, 1);
2187 }
2188
2189 static void
2190 set_continue_thread (ptid_t ptid)
2191 {
2192 set_thread (ptid, 0);
2193 }
2194
2195 /* Change the remote current process. Which thread within the process
2196 ends up selected isn't important, as long as it is the same process
2197 as what INFERIOR_PTID points to.
2198
2199 This comes from that fact that there is no explicit notion of
2200 "selected process" in the protocol. The selected process for
2201 general operations is the process the selected general thread
2202 belongs to. */
2203
2204 static void
2205 set_general_process (void)
2206 {
2207 struct remote_state *rs = get_remote_state ();
2208
2209 /* If the remote can't handle multiple processes, don't bother. */
2210 if (!remote_multi_process_p (rs))
2211 return;
2212
2213 /* We only need to change the remote current thread if it's pointing
2214 at some other process. */
2215 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2216 set_general_thread (inferior_ptid);
2217 }
2218
2219 \f
2220 /* Return nonzero if this is the main thread that we made up ourselves
2221 to model non-threaded targets as single-threaded. */
2222
2223 static int
2224 remote_thread_always_alive (struct target_ops *ops, ptid_t ptid)
2225 {
2226 if (ptid_equal (ptid, magic_null_ptid))
2227 /* The main thread is always alive. */
2228 return 1;
2229
2230 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2231 /* The main thread is always alive. This can happen after a
2232 vAttach, if the remote side doesn't support
2233 multi-threading. */
2234 return 1;
2235
2236 return 0;
2237 }
2238
2239 /* Return nonzero if the thread PTID is still alive on the remote
2240 system. */
2241
2242 static int
2243 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
2244 {
2245 struct remote_state *rs = get_remote_state ();
2246 char *p, *endp;
2247
2248 /* Check if this is a thread that we made up ourselves to model
2249 non-threaded targets as single-threaded. */
2250 if (remote_thread_always_alive (ops, ptid))
2251 return 1;
2252
2253 p = rs->buf;
2254 endp = rs->buf + get_remote_packet_size ();
2255
2256 *p++ = 'T';
2257 write_ptid (p, endp, ptid);
2258
2259 putpkt (rs->buf);
2260 getpkt (&rs->buf, &rs->buf_size, 0);
2261 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2262 }
2263
2264 /* Return a pointer to a thread name if we know it and NULL otherwise.
2265 The thread_info object owns the memory for the name. */
2266
2267 static const char *
2268 remote_thread_name (struct target_ops *ops, struct thread_info *info)
2269 {
2270 if (info->priv != NULL)
2271 {
2272 const std::string &name = get_remote_thread_info (info)->name;
2273 return !name.empty () ? name.c_str () : NULL;
2274 }
2275
2276 return NULL;
2277 }
2278
2279 /* About these extended threadlist and threadinfo packets. They are
2280 variable length packets but, the fields within them are often fixed
2281 length. They are redundent enough to send over UDP as is the
2282 remote protocol in general. There is a matching unit test module
2283 in libstub. */
2284
2285 /* WARNING: This threadref data structure comes from the remote O.S.,
2286 libstub protocol encoding, and remote.c. It is not particularly
2287 changable. */
2288
2289 /* Right now, the internal structure is int. We want it to be bigger.
2290 Plan to fix this. */
2291
2292 typedef int gdb_threadref; /* Internal GDB thread reference. */
2293
2294 /* gdb_ext_thread_info is an internal GDB data structure which is
2295 equivalent to the reply of the remote threadinfo packet. */
2296
2297 struct gdb_ext_thread_info
2298 {
2299 threadref threadid; /* External form of thread reference. */
2300 int active; /* Has state interesting to GDB?
2301 regs, stack. */
2302 char display[256]; /* Brief state display, name,
2303 blocked/suspended. */
2304 char shortname[32]; /* To be used to name threads. */
2305 char more_display[256]; /* Long info, statistics, queue depth,
2306 whatever. */
2307 };
2308
2309 /* The volume of remote transfers can be limited by submitting
2310 a mask containing bits specifying the desired information.
2311 Use a union of these values as the 'selection' parameter to
2312 get_thread_info. FIXME: Make these TAG names more thread specific. */
2313
2314 #define TAG_THREADID 1
2315 #define TAG_EXISTS 2
2316 #define TAG_DISPLAY 4
2317 #define TAG_THREADNAME 8
2318 #define TAG_MOREDISPLAY 16
2319
2320 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2321
2322 static char *unpack_nibble (char *buf, int *val);
2323
2324 static char *unpack_byte (char *buf, int *value);
2325
2326 static char *pack_int (char *buf, int value);
2327
2328 static char *unpack_int (char *buf, int *value);
2329
2330 static char *unpack_string (char *src, char *dest, int length);
2331
2332 static char *pack_threadid (char *pkt, threadref *id);
2333
2334 static char *unpack_threadid (char *inbuf, threadref *id);
2335
2336 void int_to_threadref (threadref *id, int value);
2337
2338 static int threadref_to_int (threadref *ref);
2339
2340 static void copy_threadref (threadref *dest, threadref *src);
2341
2342 static int threadmatch (threadref *dest, threadref *src);
2343
2344 static char *pack_threadinfo_request (char *pkt, int mode,
2345 threadref *id);
2346
2347 static int remote_unpack_thread_info_response (char *pkt,
2348 threadref *expectedref,
2349 struct gdb_ext_thread_info
2350 *info);
2351
2352
2353 static int remote_get_threadinfo (threadref *threadid,
2354 int fieldset, /*TAG mask */
2355 struct gdb_ext_thread_info *info);
2356
2357 static char *pack_threadlist_request (char *pkt, int startflag,
2358 int threadcount,
2359 threadref *nextthread);
2360
2361 static int parse_threadlist_response (char *pkt,
2362 int result_limit,
2363 threadref *original_echo,
2364 threadref *resultlist,
2365 int *doneflag);
2366
2367 static int remote_get_threadlist (int startflag,
2368 threadref *nextthread,
2369 int result_limit,
2370 int *done,
2371 int *result_count,
2372 threadref *threadlist);
2373
2374 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2375
2376 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2377 void *context, int looplimit);
2378
2379 static int remote_newthread_step (threadref *ref, void *context);
2380
2381
2382 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2383 buffer we're allowed to write to. Returns
2384 BUF+CHARACTERS_WRITTEN. */
2385
2386 static char *
2387 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2388 {
2389 int pid, tid;
2390 struct remote_state *rs = get_remote_state ();
2391
2392 if (remote_multi_process_p (rs))
2393 {
2394 pid = ptid_get_pid (ptid);
2395 if (pid < 0)
2396 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2397 else
2398 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2399 }
2400 tid = ptid_get_lwp (ptid);
2401 if (tid < 0)
2402 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2403 else
2404 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2405
2406 return buf;
2407 }
2408
2409 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2410 last parsed char. Returns null_ptid if no thread id is found, and
2411 throws an error if the thread id has an invalid format. */
2412
2413 static ptid_t
2414 read_ptid (const char *buf, const char **obuf)
2415 {
2416 const char *p = buf;
2417 const char *pp;
2418 ULONGEST pid = 0, tid = 0;
2419
2420 if (*p == 'p')
2421 {
2422 /* Multi-process ptid. */
2423 pp = unpack_varlen_hex (p + 1, &pid);
2424 if (*pp != '.')
2425 error (_("invalid remote ptid: %s"), p);
2426
2427 p = pp;
2428 pp = unpack_varlen_hex (p + 1, &tid);
2429 if (obuf)
2430 *obuf = pp;
2431 return ptid_build (pid, tid, 0);
2432 }
2433
2434 /* No multi-process. Just a tid. */
2435 pp = unpack_varlen_hex (p, &tid);
2436
2437 /* Return null_ptid when no thread id is found. */
2438 if (p == pp)
2439 {
2440 if (obuf)
2441 *obuf = pp;
2442 return null_ptid;
2443 }
2444
2445 /* Since the stub is not sending a process id, then default to
2446 what's in inferior_ptid, unless it's null at this point. If so,
2447 then since there's no way to know the pid of the reported
2448 threads, use the magic number. */
2449 if (ptid_equal (inferior_ptid, null_ptid))
2450 pid = ptid_get_pid (magic_null_ptid);
2451 else
2452 pid = ptid_get_pid (inferior_ptid);
2453
2454 if (obuf)
2455 *obuf = pp;
2456 return ptid_build (pid, tid, 0);
2457 }
2458
2459 static int
2460 stubhex (int ch)
2461 {
2462 if (ch >= 'a' && ch <= 'f')
2463 return ch - 'a' + 10;
2464 if (ch >= '0' && ch <= '9')
2465 return ch - '0';
2466 if (ch >= 'A' && ch <= 'F')
2467 return ch - 'A' + 10;
2468 return -1;
2469 }
2470
2471 static int
2472 stub_unpack_int (char *buff, int fieldlength)
2473 {
2474 int nibble;
2475 int retval = 0;
2476
2477 while (fieldlength)
2478 {
2479 nibble = stubhex (*buff++);
2480 retval |= nibble;
2481 fieldlength--;
2482 if (fieldlength)
2483 retval = retval << 4;
2484 }
2485 return retval;
2486 }
2487
2488 static char *
2489 unpack_nibble (char *buf, int *val)
2490 {
2491 *val = fromhex (*buf++);
2492 return buf;
2493 }
2494
2495 static char *
2496 unpack_byte (char *buf, int *value)
2497 {
2498 *value = stub_unpack_int (buf, 2);
2499 return buf + 2;
2500 }
2501
2502 static char *
2503 pack_int (char *buf, int value)
2504 {
2505 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2506 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2507 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2508 buf = pack_hex_byte (buf, (value & 0xff));
2509 return buf;
2510 }
2511
2512 static char *
2513 unpack_int (char *buf, int *value)
2514 {
2515 *value = stub_unpack_int (buf, 8);
2516 return buf + 8;
2517 }
2518
2519 #if 0 /* Currently unused, uncomment when needed. */
2520 static char *pack_string (char *pkt, char *string);
2521
2522 static char *
2523 pack_string (char *pkt, char *string)
2524 {
2525 char ch;
2526 int len;
2527
2528 len = strlen (string);
2529 if (len > 200)
2530 len = 200; /* Bigger than most GDB packets, junk??? */
2531 pkt = pack_hex_byte (pkt, len);
2532 while (len-- > 0)
2533 {
2534 ch = *string++;
2535 if ((ch == '\0') || (ch == '#'))
2536 ch = '*'; /* Protect encapsulation. */
2537 *pkt++ = ch;
2538 }
2539 return pkt;
2540 }
2541 #endif /* 0 (unused) */
2542
2543 static char *
2544 unpack_string (char *src, char *dest, int length)
2545 {
2546 while (length--)
2547 *dest++ = *src++;
2548 *dest = '\0';
2549 return src;
2550 }
2551
2552 static char *
2553 pack_threadid (char *pkt, threadref *id)
2554 {
2555 char *limit;
2556 unsigned char *altid;
2557
2558 altid = (unsigned char *) id;
2559 limit = pkt + BUF_THREAD_ID_SIZE;
2560 while (pkt < limit)
2561 pkt = pack_hex_byte (pkt, *altid++);
2562 return pkt;
2563 }
2564
2565
2566 static char *
2567 unpack_threadid (char *inbuf, threadref *id)
2568 {
2569 char *altref;
2570 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2571 int x, y;
2572
2573 altref = (char *) id;
2574
2575 while (inbuf < limit)
2576 {
2577 x = stubhex (*inbuf++);
2578 y = stubhex (*inbuf++);
2579 *altref++ = (x << 4) | y;
2580 }
2581 return inbuf;
2582 }
2583
2584 /* Externally, threadrefs are 64 bits but internally, they are still
2585 ints. This is due to a mismatch of specifications. We would like
2586 to use 64bit thread references internally. This is an adapter
2587 function. */
2588
2589 void
2590 int_to_threadref (threadref *id, int value)
2591 {
2592 unsigned char *scan;
2593
2594 scan = (unsigned char *) id;
2595 {
2596 int i = 4;
2597 while (i--)
2598 *scan++ = 0;
2599 }
2600 *scan++ = (value >> 24) & 0xff;
2601 *scan++ = (value >> 16) & 0xff;
2602 *scan++ = (value >> 8) & 0xff;
2603 *scan++ = (value & 0xff);
2604 }
2605
2606 static int
2607 threadref_to_int (threadref *ref)
2608 {
2609 int i, value = 0;
2610 unsigned char *scan;
2611
2612 scan = *ref;
2613 scan += 4;
2614 i = 4;
2615 while (i-- > 0)
2616 value = (value << 8) | ((*scan++) & 0xff);
2617 return value;
2618 }
2619
2620 static void
2621 copy_threadref (threadref *dest, threadref *src)
2622 {
2623 int i;
2624 unsigned char *csrc, *cdest;
2625
2626 csrc = (unsigned char *) src;
2627 cdest = (unsigned char *) dest;
2628 i = 8;
2629 while (i--)
2630 *cdest++ = *csrc++;
2631 }
2632
2633 static int
2634 threadmatch (threadref *dest, threadref *src)
2635 {
2636 /* Things are broken right now, so just assume we got a match. */
2637 #if 0
2638 unsigned char *srcp, *destp;
2639 int i, result;
2640 srcp = (char *) src;
2641 destp = (char *) dest;
2642
2643 result = 1;
2644 while (i-- > 0)
2645 result &= (*srcp++ == *destp++) ? 1 : 0;
2646 return result;
2647 #endif
2648 return 1;
2649 }
2650
2651 /*
2652 threadid:1, # always request threadid
2653 context_exists:2,
2654 display:4,
2655 unique_name:8,
2656 more_display:16
2657 */
2658
2659 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2660
2661 static char *
2662 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2663 {
2664 *pkt++ = 'q'; /* Info Query */
2665 *pkt++ = 'P'; /* process or thread info */
2666 pkt = pack_int (pkt, mode); /* mode */
2667 pkt = pack_threadid (pkt, id); /* threadid */
2668 *pkt = '\0'; /* terminate */
2669 return pkt;
2670 }
2671
2672 /* These values tag the fields in a thread info response packet. */
2673 /* Tagging the fields allows us to request specific fields and to
2674 add more fields as time goes by. */
2675
2676 #define TAG_THREADID 1 /* Echo the thread identifier. */
2677 #define TAG_EXISTS 2 /* Is this process defined enough to
2678 fetch registers and its stack? */
2679 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2680 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2681 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2682 the process. */
2683
2684 static int
2685 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2686 struct gdb_ext_thread_info *info)
2687 {
2688 struct remote_state *rs = get_remote_state ();
2689 int mask, length;
2690 int tag;
2691 threadref ref;
2692 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2693 int retval = 1;
2694
2695 /* info->threadid = 0; FIXME: implement zero_threadref. */
2696 info->active = 0;
2697 info->display[0] = '\0';
2698 info->shortname[0] = '\0';
2699 info->more_display[0] = '\0';
2700
2701 /* Assume the characters indicating the packet type have been
2702 stripped. */
2703 pkt = unpack_int (pkt, &mask); /* arg mask */
2704 pkt = unpack_threadid (pkt, &ref);
2705
2706 if (mask == 0)
2707 warning (_("Incomplete response to threadinfo request."));
2708 if (!threadmatch (&ref, expectedref))
2709 { /* This is an answer to a different request. */
2710 warning (_("ERROR RMT Thread info mismatch."));
2711 return 0;
2712 }
2713 copy_threadref (&info->threadid, &ref);
2714
2715 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2716
2717 /* Packets are terminated with nulls. */
2718 while ((pkt < limit) && mask && *pkt)
2719 {
2720 pkt = unpack_int (pkt, &tag); /* tag */
2721 pkt = unpack_byte (pkt, &length); /* length */
2722 if (!(tag & mask)) /* Tags out of synch with mask. */
2723 {
2724 warning (_("ERROR RMT: threadinfo tag mismatch."));
2725 retval = 0;
2726 break;
2727 }
2728 if (tag == TAG_THREADID)
2729 {
2730 if (length != 16)
2731 {
2732 warning (_("ERROR RMT: length of threadid is not 16."));
2733 retval = 0;
2734 break;
2735 }
2736 pkt = unpack_threadid (pkt, &ref);
2737 mask = mask & ~TAG_THREADID;
2738 continue;
2739 }
2740 if (tag == TAG_EXISTS)
2741 {
2742 info->active = stub_unpack_int (pkt, length);
2743 pkt += length;
2744 mask = mask & ~(TAG_EXISTS);
2745 if (length > 8)
2746 {
2747 warning (_("ERROR RMT: 'exists' length too long."));
2748 retval = 0;
2749 break;
2750 }
2751 continue;
2752 }
2753 if (tag == TAG_THREADNAME)
2754 {
2755 pkt = unpack_string (pkt, &info->shortname[0], length);
2756 mask = mask & ~TAG_THREADNAME;
2757 continue;
2758 }
2759 if (tag == TAG_DISPLAY)
2760 {
2761 pkt = unpack_string (pkt, &info->display[0], length);
2762 mask = mask & ~TAG_DISPLAY;
2763 continue;
2764 }
2765 if (tag == TAG_MOREDISPLAY)
2766 {
2767 pkt = unpack_string (pkt, &info->more_display[0], length);
2768 mask = mask & ~TAG_MOREDISPLAY;
2769 continue;
2770 }
2771 warning (_("ERROR RMT: unknown thread info tag."));
2772 break; /* Not a tag we know about. */
2773 }
2774 return retval;
2775 }
2776
2777 static int
2778 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2779 struct gdb_ext_thread_info *info)
2780 {
2781 struct remote_state *rs = get_remote_state ();
2782 int result;
2783
2784 pack_threadinfo_request (rs->buf, fieldset, threadid);
2785 putpkt (rs->buf);
2786 getpkt (&rs->buf, &rs->buf_size, 0);
2787
2788 if (rs->buf[0] == '\0')
2789 return 0;
2790
2791 result = remote_unpack_thread_info_response (rs->buf + 2,
2792 threadid, info);
2793 return result;
2794 }
2795
2796 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2797
2798 static char *
2799 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2800 threadref *nextthread)
2801 {
2802 *pkt++ = 'q'; /* info query packet */
2803 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2804 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2805 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2806 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2807 *pkt = '\0';
2808 return pkt;
2809 }
2810
2811 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2812
2813 static int
2814 parse_threadlist_response (char *pkt, int result_limit,
2815 threadref *original_echo, threadref *resultlist,
2816 int *doneflag)
2817 {
2818 struct remote_state *rs = get_remote_state ();
2819 char *limit;
2820 int count, resultcount, done;
2821
2822 resultcount = 0;
2823 /* Assume the 'q' and 'M chars have been stripped. */
2824 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2825 /* done parse past here */
2826 pkt = unpack_byte (pkt, &count); /* count field */
2827 pkt = unpack_nibble (pkt, &done);
2828 /* The first threadid is the argument threadid. */
2829 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2830 while ((count-- > 0) && (pkt < limit))
2831 {
2832 pkt = unpack_threadid (pkt, resultlist++);
2833 if (resultcount++ >= result_limit)
2834 break;
2835 }
2836 if (doneflag)
2837 *doneflag = done;
2838 return resultcount;
2839 }
2840
2841 /* Fetch the next batch of threads from the remote. Returns -1 if the
2842 qL packet is not supported, 0 on error and 1 on success. */
2843
2844 static int
2845 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2846 int *done, int *result_count, threadref *threadlist)
2847 {
2848 struct remote_state *rs = get_remote_state ();
2849 int result = 1;
2850
2851 /* Trancate result limit to be smaller than the packet size. */
2852 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2853 >= get_remote_packet_size ())
2854 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2855
2856 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2857 putpkt (rs->buf);
2858 getpkt (&rs->buf, &rs->buf_size, 0);
2859 if (*rs->buf == '\0')
2860 {
2861 /* Packet not supported. */
2862 return -1;
2863 }
2864
2865 *result_count =
2866 parse_threadlist_response (rs->buf + 2, result_limit,
2867 &rs->echo_nextthread, threadlist, done);
2868
2869 if (!threadmatch (&rs->echo_nextthread, nextthread))
2870 {
2871 /* FIXME: This is a good reason to drop the packet. */
2872 /* Possably, there is a duplicate response. */
2873 /* Possabilities :
2874 retransmit immediatly - race conditions
2875 retransmit after timeout - yes
2876 exit
2877 wait for packet, then exit
2878 */
2879 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2880 return 0; /* I choose simply exiting. */
2881 }
2882 if (*result_count <= 0)
2883 {
2884 if (*done != 1)
2885 {
2886 warning (_("RMT ERROR : failed to get remote thread list."));
2887 result = 0;
2888 }
2889 return result; /* break; */
2890 }
2891 if (*result_count > result_limit)
2892 {
2893 *result_count = 0;
2894 warning (_("RMT ERROR: threadlist response longer than requested."));
2895 return 0;
2896 }
2897 return result;
2898 }
2899
2900 /* Fetch the list of remote threads, with the qL packet, and call
2901 STEPFUNCTION for each thread found. Stops iterating and returns 1
2902 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
2903 STEPFUNCTION returns false. If the packet is not supported,
2904 returns -1. */
2905
2906 static int
2907 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2908 int looplimit)
2909 {
2910 struct remote_state *rs = get_remote_state ();
2911 int done, i, result_count;
2912 int startflag = 1;
2913 int result = 1;
2914 int loopcount = 0;
2915
2916 done = 0;
2917 while (!done)
2918 {
2919 if (loopcount++ > looplimit)
2920 {
2921 result = 0;
2922 warning (_("Remote fetch threadlist -infinite loop-."));
2923 break;
2924 }
2925 result = remote_get_threadlist (startflag, &rs->nextthread,
2926 MAXTHREADLISTRESULTS,
2927 &done, &result_count,
2928 rs->resultthreadlist);
2929 if (result <= 0)
2930 break;
2931 /* Clear for later iterations. */
2932 startflag = 0;
2933 /* Setup to resume next batch of thread references, set nextthread. */
2934 if (result_count >= 1)
2935 copy_threadref (&rs->nextthread,
2936 &rs->resultthreadlist[result_count - 1]);
2937 i = 0;
2938 while (result_count--)
2939 {
2940 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
2941 {
2942 result = 0;
2943 break;
2944 }
2945 }
2946 }
2947 return result;
2948 }
2949
2950 /* A thread found on the remote target. */
2951
2952 struct thread_item
2953 {
2954 explicit thread_item (ptid_t ptid_)
2955 : ptid (ptid_)
2956 {}
2957
2958 thread_item (thread_item &&other) = default;
2959 thread_item &operator= (thread_item &&other) = default;
2960
2961 DISABLE_COPY_AND_ASSIGN (thread_item);
2962
2963 /* The thread's PTID. */
2964 ptid_t ptid;
2965
2966 /* The thread's extra info. */
2967 std::string extra;
2968
2969 /* The thread's name. */
2970 std::string name;
2971
2972 /* The core the thread was running on. -1 if not known. */
2973 int core = -1;
2974
2975 /* The thread handle associated with the thread. */
2976 gdb::byte_vector thread_handle;
2977 };
2978
2979 /* Context passed around to the various methods listing remote
2980 threads. As new threads are found, they're added to the ITEMS
2981 vector. */
2982
2983 struct threads_listing_context
2984 {
2985 /* Return true if this object contains an entry for a thread with ptid
2986 PTID. */
2987
2988 bool contains_thread (ptid_t ptid) const
2989 {
2990 auto match_ptid = [&] (const thread_item &item)
2991 {
2992 return item.ptid == ptid;
2993 };
2994
2995 auto it = std::find_if (this->items.begin (),
2996 this->items.end (),
2997 match_ptid);
2998
2999 return it != this->items.end ();
3000 }
3001
3002 /* Remove the thread with ptid PTID. */
3003
3004 void remove_thread (ptid_t ptid)
3005 {
3006 auto match_ptid = [&] (const thread_item &item)
3007 {
3008 return item.ptid == ptid;
3009 };
3010
3011 auto it = std::remove_if (this->items.begin (),
3012 this->items.end (),
3013 match_ptid);
3014
3015 if (it != this->items.end ())
3016 this->items.erase (it);
3017 }
3018
3019 /* The threads found on the remote target. */
3020 std::vector<thread_item> items;
3021 };
3022
3023 static int
3024 remote_newthread_step (threadref *ref, void *data)
3025 {
3026 struct threads_listing_context *context
3027 = (struct threads_listing_context *) data;
3028 int pid = inferior_ptid.pid ();
3029 int lwp = threadref_to_int (ref);
3030 ptid_t ptid (pid, lwp);
3031
3032 context->items.emplace_back (ptid);
3033
3034 return 1; /* continue iterator */
3035 }
3036
3037 #define CRAZY_MAX_THREADS 1000
3038
3039 static ptid_t
3040 remote_current_thread (ptid_t oldpid)
3041 {
3042 struct remote_state *rs = get_remote_state ();
3043
3044 putpkt ("qC");
3045 getpkt (&rs->buf, &rs->buf_size, 0);
3046 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3047 {
3048 const char *obuf;
3049 ptid_t result;
3050
3051 result = read_ptid (&rs->buf[2], &obuf);
3052 if (*obuf != '\0' && remote_debug)
3053 fprintf_unfiltered (gdb_stdlog,
3054 "warning: garbage in qC reply\n");
3055
3056 return result;
3057 }
3058 else
3059 return oldpid;
3060 }
3061
3062 /* List remote threads using the deprecated qL packet. */
3063
3064 static int
3065 remote_get_threads_with_ql (struct target_ops *ops,
3066 struct threads_listing_context *context)
3067 {
3068 if (remote_threadlist_iterator (remote_newthread_step, context,
3069 CRAZY_MAX_THREADS) >= 0)
3070 return 1;
3071
3072 return 0;
3073 }
3074
3075 #if defined(HAVE_LIBEXPAT)
3076
3077 static void
3078 start_thread (struct gdb_xml_parser *parser,
3079 const struct gdb_xml_element *element,
3080 void *user_data,
3081 std::vector<gdb_xml_value> &attributes)
3082 {
3083 struct threads_listing_context *data
3084 = (struct threads_listing_context *) user_data;
3085 struct gdb_xml_value *attr;
3086
3087 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3088 ptid_t ptid = read_ptid (id, NULL);
3089
3090 data->items.emplace_back (ptid);
3091 thread_item &item = data->items.back ();
3092
3093 attr = xml_find_attribute (attributes, "core");
3094 if (attr != NULL)
3095 item.core = *(ULONGEST *) attr->value.get ();
3096
3097 attr = xml_find_attribute (attributes, "name");
3098 if (attr != NULL)
3099 item.name = (const char *) attr->value.get ();
3100
3101 attr = xml_find_attribute (attributes, "handle");
3102 if (attr != NULL)
3103 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3104 }
3105
3106 static void
3107 end_thread (struct gdb_xml_parser *parser,
3108 const struct gdb_xml_element *element,
3109 void *user_data, const char *body_text)
3110 {
3111 struct threads_listing_context *data
3112 = (struct threads_listing_context *) user_data;
3113
3114 if (body_text != NULL && *body_text != '\0')
3115 data->items.back ().extra = body_text;
3116 }
3117
3118 const struct gdb_xml_attribute thread_attributes[] = {
3119 { "id", GDB_XML_AF_NONE, NULL, NULL },
3120 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3121 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3122 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3123 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3124 };
3125
3126 const struct gdb_xml_element thread_children[] = {
3127 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3128 };
3129
3130 const struct gdb_xml_element threads_children[] = {
3131 { "thread", thread_attributes, thread_children,
3132 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3133 start_thread, end_thread },
3134 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3135 };
3136
3137 const struct gdb_xml_element threads_elements[] = {
3138 { "threads", NULL, threads_children,
3139 GDB_XML_EF_NONE, NULL, NULL },
3140 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3141 };
3142
3143 #endif
3144
3145 /* List remote threads using qXfer:threads:read. */
3146
3147 static int
3148 remote_get_threads_with_qxfer (struct target_ops *ops,
3149 struct threads_listing_context *context)
3150 {
3151 #if defined(HAVE_LIBEXPAT)
3152 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3153 {
3154 gdb::unique_xmalloc_ptr<char> xml
3155 = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3156
3157 if (xml != NULL && *xml != '\0')
3158 {
3159 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3160 threads_elements, xml.get (), context);
3161 }
3162
3163 return 1;
3164 }
3165 #endif
3166
3167 return 0;
3168 }
3169
3170 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3171
3172 static int
3173 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3174 struct threads_listing_context *context)
3175 {
3176 struct remote_state *rs = get_remote_state ();
3177
3178 if (rs->use_threadinfo_query)
3179 {
3180 const char *bufp;
3181
3182 putpkt ("qfThreadInfo");
3183 getpkt (&rs->buf, &rs->buf_size, 0);
3184 bufp = rs->buf;
3185 if (bufp[0] != '\0') /* q packet recognized */
3186 {
3187 while (*bufp++ == 'm') /* reply contains one or more TID */
3188 {
3189 do
3190 {
3191 ptid_t ptid = read_ptid (bufp, &bufp);
3192 context->items.emplace_back (ptid);
3193 }
3194 while (*bufp++ == ','); /* comma-separated list */
3195 putpkt ("qsThreadInfo");
3196 getpkt (&rs->buf, &rs->buf_size, 0);
3197 bufp = rs->buf;
3198 }
3199 return 1;
3200 }
3201 else
3202 {
3203 /* Packet not recognized. */
3204 rs->use_threadinfo_query = 0;
3205 }
3206 }
3207
3208 return 0;
3209 }
3210
3211 /* Implement the to_update_thread_list function for the remote
3212 targets. */
3213
3214 static void
3215 remote_update_thread_list (struct target_ops *ops)
3216 {
3217 struct threads_listing_context context;
3218 int got_list = 0;
3219
3220 /* We have a few different mechanisms to fetch the thread list. Try
3221 them all, starting with the most preferred one first, falling
3222 back to older methods. */
3223 if (remote_get_threads_with_qxfer (ops, &context)
3224 || remote_get_threads_with_qthreadinfo (ops, &context)
3225 || remote_get_threads_with_ql (ops, &context))
3226 {
3227 struct thread_info *tp, *tmp;
3228
3229 got_list = 1;
3230
3231 if (context.items.empty ()
3232 && remote_thread_always_alive (ops, inferior_ptid))
3233 {
3234 /* Some targets don't really support threads, but still
3235 reply an (empty) thread list in response to the thread
3236 listing packets, instead of replying "packet not
3237 supported". Exit early so we don't delete the main
3238 thread. */
3239 return;
3240 }
3241
3242 /* CONTEXT now holds the current thread list on the remote
3243 target end. Delete GDB-side threads no longer found on the
3244 target. */
3245 ALL_THREADS_SAFE (tp, tmp)
3246 {
3247 if (!context.contains_thread (tp->ptid))
3248 {
3249 /* Not found. */
3250 delete_thread (tp->ptid);
3251 }
3252 }
3253
3254 /* Remove any unreported fork child threads from CONTEXT so
3255 that we don't interfere with follow fork, which is where
3256 creation of such threads is handled. */
3257 remove_new_fork_children (&context);
3258
3259 /* And now add threads we don't know about yet to our list. */
3260 for (thread_item &item : context.items)
3261 {
3262 if (item.ptid != null_ptid)
3263 {
3264 /* In non-stop mode, we assume new found threads are
3265 executing until proven otherwise with a stop reply.
3266 In all-stop, we can only get here if all threads are
3267 stopped. */
3268 int executing = target_is_non_stop_p () ? 1 : 0;
3269
3270 remote_notice_new_inferior (item.ptid, executing);
3271
3272 remote_thread_info *info = get_remote_thread_info (item.ptid);
3273 info->core = item.core;
3274 info->extra = std::move (item.extra);
3275 info->name = std::move (item.name);
3276 info->thread_handle = std::move (item.thread_handle);
3277 }
3278 }
3279 }
3280
3281 if (!got_list)
3282 {
3283 /* If no thread listing method is supported, then query whether
3284 each known thread is alive, one by one, with the T packet.
3285 If the target doesn't support threads at all, then this is a
3286 no-op. See remote_thread_alive. */
3287 prune_threads ();
3288 }
3289 }
3290
3291 /*
3292 * Collect a descriptive string about the given thread.
3293 * The target may say anything it wants to about the thread
3294 * (typically info about its blocked / runnable state, name, etc.).
3295 * This string will appear in the info threads display.
3296 *
3297 * Optional: targets are not required to implement this function.
3298 */
3299
3300 static const char *
3301 remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
3302 {
3303 struct remote_state *rs = get_remote_state ();
3304 int result;
3305 int set;
3306 threadref id;
3307 struct gdb_ext_thread_info threadinfo;
3308 static char display_buf[100]; /* arbitrary... */
3309 int n = 0; /* position in display_buf */
3310
3311 if (rs->remote_desc == 0) /* paranoia */
3312 internal_error (__FILE__, __LINE__,
3313 _("remote_threads_extra_info"));
3314
3315 if (ptid_equal (tp->ptid, magic_null_ptid)
3316 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3317 /* This is the main thread which was added by GDB. The remote
3318 server doesn't know about it. */
3319 return NULL;
3320
3321 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3322 {
3323 struct thread_info *info = find_thread_ptid (tp->ptid);
3324
3325 if (info != NULL && info->priv != NULL)
3326 {
3327 const std::string &extra = get_remote_thread_info (info)->extra;
3328 return !extra.empty () ? extra.c_str () : NULL;
3329 }
3330 else
3331 return NULL;
3332 }
3333
3334 if (rs->use_threadextra_query)
3335 {
3336 char *b = rs->buf;
3337 char *endb = rs->buf + get_remote_packet_size ();
3338
3339 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3340 b += strlen (b);
3341 write_ptid (b, endb, tp->ptid);
3342
3343 putpkt (rs->buf);
3344 getpkt (&rs->buf, &rs->buf_size, 0);
3345 if (rs->buf[0] != 0)
3346 {
3347 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3348 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3349 display_buf [result] = '\0';
3350 return display_buf;
3351 }
3352 }
3353
3354 /* If the above query fails, fall back to the old method. */
3355 rs->use_threadextra_query = 0;
3356 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3357 | TAG_MOREDISPLAY | TAG_DISPLAY;
3358 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3359 if (remote_get_threadinfo (&id, set, &threadinfo))
3360 if (threadinfo.active)
3361 {
3362 if (*threadinfo.shortname)
3363 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3364 " Name: %s,", threadinfo.shortname);
3365 if (*threadinfo.display)
3366 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3367 " State: %s,", threadinfo.display);
3368 if (*threadinfo.more_display)
3369 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3370 " Priority: %s", threadinfo.more_display);
3371
3372 if (n > 0)
3373 {
3374 /* For purely cosmetic reasons, clear up trailing commas. */
3375 if (',' == display_buf[n-1])
3376 display_buf[n-1] = ' ';
3377 return display_buf;
3378 }
3379 }
3380 return NULL;
3381 }
3382 \f
3383
3384 static int
3385 remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
3386 struct static_tracepoint_marker *marker)
3387 {
3388 struct remote_state *rs = get_remote_state ();
3389 char *p = rs->buf;
3390
3391 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3392 p += strlen (p);
3393 p += hexnumstr (p, addr);
3394 putpkt (rs->buf);
3395 getpkt (&rs->buf, &rs->buf_size, 0);
3396 p = rs->buf;
3397
3398 if (*p == 'E')
3399 error (_("Remote failure reply: %s"), p);
3400
3401 if (*p++ == 'm')
3402 {
3403 parse_static_tracepoint_marker_definition (p, NULL, marker);
3404 return 1;
3405 }
3406
3407 return 0;
3408 }
3409
3410 static VEC(static_tracepoint_marker_p) *
3411 remote_static_tracepoint_markers_by_strid (struct target_ops *self,
3412 const char *strid)
3413 {
3414 struct remote_state *rs = get_remote_state ();
3415 VEC(static_tracepoint_marker_p) *markers = NULL;
3416 struct static_tracepoint_marker *marker = NULL;
3417 struct cleanup *old_chain;
3418 const char *p;
3419
3420 /* Ask for a first packet of static tracepoint marker
3421 definition. */
3422 putpkt ("qTfSTM");
3423 getpkt (&rs->buf, &rs->buf_size, 0);
3424 p = rs->buf;
3425 if (*p == 'E')
3426 error (_("Remote failure reply: %s"), p);
3427
3428 old_chain = make_cleanup (free_current_marker, &marker);
3429
3430 while (*p++ == 'm')
3431 {
3432 if (marker == NULL)
3433 marker = XCNEW (struct static_tracepoint_marker);
3434
3435 do
3436 {
3437 parse_static_tracepoint_marker_definition (p, &p, marker);
3438
3439 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
3440 {
3441 VEC_safe_push (static_tracepoint_marker_p,
3442 markers, marker);
3443 marker = NULL;
3444 }
3445 else
3446 {
3447 release_static_tracepoint_marker (marker);
3448 memset (marker, 0, sizeof (*marker));
3449 }
3450 }
3451 while (*p++ == ','); /* comma-separated list */
3452 /* Ask for another packet of static tracepoint definition. */
3453 putpkt ("qTsSTM");
3454 getpkt (&rs->buf, &rs->buf_size, 0);
3455 p = rs->buf;
3456 }
3457
3458 do_cleanups (old_chain);
3459 return markers;
3460 }
3461
3462 \f
3463 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3464
3465 static ptid_t
3466 remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
3467 {
3468 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3469 }
3470 \f
3471
3472 /* Restart the remote side; this is an extended protocol operation. */
3473
3474 static void
3475 extended_remote_restart (void)
3476 {
3477 struct remote_state *rs = get_remote_state ();
3478
3479 /* Send the restart command; for reasons I don't understand the
3480 remote side really expects a number after the "R". */
3481 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3482 putpkt (rs->buf);
3483
3484 remote_fileio_reset ();
3485 }
3486 \f
3487 /* Clean up connection to a remote debugger. */
3488
3489 static void
3490 remote_close (struct target_ops *self)
3491 {
3492 struct remote_state *rs = get_remote_state ();
3493
3494 if (rs->remote_desc == NULL)
3495 return; /* already closed */
3496
3497 /* Make sure we leave stdin registered in the event loop. */
3498 remote_terminal_ours (self);
3499
3500 serial_close (rs->remote_desc);
3501 rs->remote_desc = NULL;
3502
3503 /* We don't have a connection to the remote stub anymore. Get rid
3504 of all the inferiors and their threads we were controlling.
3505 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3506 will be unable to find the thread corresponding to (pid, 0, 0). */
3507 inferior_ptid = null_ptid;
3508 discard_all_inferiors ();
3509
3510 /* We are closing the remote target, so we should discard
3511 everything of this target. */
3512 discard_pending_stop_replies_in_queue (rs);
3513
3514 if (remote_async_inferior_event_token)
3515 delete_async_event_handler (&remote_async_inferior_event_token);
3516
3517 remote_notif_state_xfree (rs->notif_state);
3518
3519 trace_reset_local_state ();
3520 }
3521
3522 /* Query the remote side for the text, data and bss offsets. */
3523
3524 static void
3525 get_offsets (void)
3526 {
3527 struct remote_state *rs = get_remote_state ();
3528 char *buf;
3529 char *ptr;
3530 int lose, num_segments = 0, do_sections, do_segments;
3531 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3532 struct section_offsets *offs;
3533 struct symfile_segment_data *data;
3534
3535 if (symfile_objfile == NULL)
3536 return;
3537
3538 putpkt ("qOffsets");
3539 getpkt (&rs->buf, &rs->buf_size, 0);
3540 buf = rs->buf;
3541
3542 if (buf[0] == '\000')
3543 return; /* Return silently. Stub doesn't support
3544 this command. */
3545 if (buf[0] == 'E')
3546 {
3547 warning (_("Remote failure reply: %s"), buf);
3548 return;
3549 }
3550
3551 /* Pick up each field in turn. This used to be done with scanf, but
3552 scanf will make trouble if CORE_ADDR size doesn't match
3553 conversion directives correctly. The following code will work
3554 with any size of CORE_ADDR. */
3555 text_addr = data_addr = bss_addr = 0;
3556 ptr = buf;
3557 lose = 0;
3558
3559 if (startswith (ptr, "Text="))
3560 {
3561 ptr += 5;
3562 /* Don't use strtol, could lose on big values. */
3563 while (*ptr && *ptr != ';')
3564 text_addr = (text_addr << 4) + fromhex (*ptr++);
3565
3566 if (startswith (ptr, ";Data="))
3567 {
3568 ptr += 6;
3569 while (*ptr && *ptr != ';')
3570 data_addr = (data_addr << 4) + fromhex (*ptr++);
3571 }
3572 else
3573 lose = 1;
3574
3575 if (!lose && startswith (ptr, ";Bss="))
3576 {
3577 ptr += 5;
3578 while (*ptr && *ptr != ';')
3579 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3580
3581 if (bss_addr != data_addr)
3582 warning (_("Target reported unsupported offsets: %s"), buf);
3583 }
3584 else
3585 lose = 1;
3586 }
3587 else if (startswith (ptr, "TextSeg="))
3588 {
3589 ptr += 8;
3590 /* Don't use strtol, could lose on big values. */
3591 while (*ptr && *ptr != ';')
3592 text_addr = (text_addr << 4) + fromhex (*ptr++);
3593 num_segments = 1;
3594
3595 if (startswith (ptr, ";DataSeg="))
3596 {
3597 ptr += 9;
3598 while (*ptr && *ptr != ';')
3599 data_addr = (data_addr << 4) + fromhex (*ptr++);
3600 num_segments++;
3601 }
3602 }
3603 else
3604 lose = 1;
3605
3606 if (lose)
3607 error (_("Malformed response to offset query, %s"), buf);
3608 else if (*ptr != '\0')
3609 warning (_("Target reported unsupported offsets: %s"), buf);
3610
3611 offs = ((struct section_offsets *)
3612 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3613 memcpy (offs, symfile_objfile->section_offsets,
3614 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3615
3616 data = get_symfile_segment_data (symfile_objfile->obfd);
3617 do_segments = (data != NULL);
3618 do_sections = num_segments == 0;
3619
3620 if (num_segments > 0)
3621 {
3622 segments[0] = text_addr;
3623 segments[1] = data_addr;
3624 }
3625 /* If we have two segments, we can still try to relocate everything
3626 by assuming that the .text and .data offsets apply to the whole
3627 text and data segments. Convert the offsets given in the packet
3628 to base addresses for symfile_map_offsets_to_segments. */
3629 else if (data && data->num_segments == 2)
3630 {
3631 segments[0] = data->segment_bases[0] + text_addr;
3632 segments[1] = data->segment_bases[1] + data_addr;
3633 num_segments = 2;
3634 }
3635 /* If the object file has only one segment, assume that it is text
3636 rather than data; main programs with no writable data are rare,
3637 but programs with no code are useless. Of course the code might
3638 have ended up in the data segment... to detect that we would need
3639 the permissions here. */
3640 else if (data && data->num_segments == 1)
3641 {
3642 segments[0] = data->segment_bases[0] + text_addr;
3643 num_segments = 1;
3644 }
3645 /* There's no way to relocate by segment. */
3646 else
3647 do_segments = 0;
3648
3649 if (do_segments)
3650 {
3651 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3652 offs, num_segments, segments);
3653
3654 if (ret == 0 && !do_sections)
3655 error (_("Can not handle qOffsets TextSeg "
3656 "response with this symbol file"));
3657
3658 if (ret > 0)
3659 do_sections = 0;
3660 }
3661
3662 if (data)
3663 free_symfile_segment_data (data);
3664
3665 if (do_sections)
3666 {
3667 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3668
3669 /* This is a temporary kludge to force data and bss to use the
3670 same offsets because that's what nlmconv does now. The real
3671 solution requires changes to the stub and remote.c that I
3672 don't have time to do right now. */
3673
3674 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3675 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3676 }
3677
3678 objfile_relocate (symfile_objfile, offs);
3679 }
3680
3681 /* Send interrupt_sequence to remote target. */
3682 static void
3683 send_interrupt_sequence (void)
3684 {
3685 struct remote_state *rs = get_remote_state ();
3686
3687 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3688 remote_serial_write ("\x03", 1);
3689 else if (interrupt_sequence_mode == interrupt_sequence_break)
3690 serial_send_break (rs->remote_desc);
3691 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3692 {
3693 serial_send_break (rs->remote_desc);
3694 remote_serial_write ("g", 1);
3695 }
3696 else
3697 internal_error (__FILE__, __LINE__,
3698 _("Invalid value for interrupt_sequence_mode: %s."),
3699 interrupt_sequence_mode);
3700 }
3701
3702
3703 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3704 and extract the PTID. Returns NULL_PTID if not found. */
3705
3706 static ptid_t
3707 stop_reply_extract_thread (char *stop_reply)
3708 {
3709 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3710 {
3711 const char *p;
3712
3713 /* Txx r:val ; r:val (...) */
3714 p = &stop_reply[3];
3715
3716 /* Look for "register" named "thread". */
3717 while (*p != '\0')
3718 {
3719 const char *p1;
3720
3721 p1 = strchr (p, ':');
3722 if (p1 == NULL)
3723 return null_ptid;
3724
3725 if (strncmp (p, "thread", p1 - p) == 0)
3726 return read_ptid (++p1, &p);
3727
3728 p1 = strchr (p, ';');
3729 if (p1 == NULL)
3730 return null_ptid;
3731 p1++;
3732
3733 p = p1;
3734 }
3735 }
3736
3737 return null_ptid;
3738 }
3739
3740 /* Determine the remote side's current thread. If we have a stop
3741 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3742 "thread" register we can extract the current thread from. If not,
3743 ask the remote which is the current thread with qC. The former
3744 method avoids a roundtrip. */
3745
3746 static ptid_t
3747 get_current_thread (char *wait_status)
3748 {
3749 ptid_t ptid = null_ptid;
3750
3751 /* Note we don't use remote_parse_stop_reply as that makes use of
3752 the target architecture, which we haven't yet fully determined at
3753 this point. */
3754 if (wait_status != NULL)
3755 ptid = stop_reply_extract_thread (wait_status);
3756 if (ptid_equal (ptid, null_ptid))
3757 ptid = remote_current_thread (inferior_ptid);
3758
3759 return ptid;
3760 }
3761
3762 /* Query the remote target for which is the current thread/process,
3763 add it to our tables, and update INFERIOR_PTID. The caller is
3764 responsible for setting the state such that the remote end is ready
3765 to return the current thread.
3766
3767 This function is called after handling the '?' or 'vRun' packets,
3768 whose response is a stop reply from which we can also try
3769 extracting the thread. If the target doesn't support the explicit
3770 qC query, we infer the current thread from that stop reply, passed
3771 in in WAIT_STATUS, which may be NULL. */
3772
3773 static void
3774 add_current_inferior_and_thread (char *wait_status)
3775 {
3776 struct remote_state *rs = get_remote_state ();
3777 int fake_pid_p = 0;
3778
3779 inferior_ptid = null_ptid;
3780
3781 /* Now, if we have thread information, update inferior_ptid. */
3782 ptid_t curr_ptid = get_current_thread (wait_status);
3783
3784 if (curr_ptid != null_ptid)
3785 {
3786 if (!remote_multi_process_p (rs))
3787 fake_pid_p = 1;
3788 }
3789 else
3790 {
3791 /* Without this, some commands which require an active target
3792 (such as kill) won't work. This variable serves (at least)
3793 double duty as both the pid of the target process (if it has
3794 such), and as a flag indicating that a target is active. */
3795 curr_ptid = magic_null_ptid;
3796 fake_pid_p = 1;
3797 }
3798
3799 remote_add_inferior (fake_pid_p, ptid_get_pid (curr_ptid), -1, 1);
3800
3801 /* Add the main thread and switch to it. Don't try reading
3802 registers yet, since we haven't fetched the target description
3803 yet. */
3804 thread_info *tp = add_thread_silent (curr_ptid);
3805 switch_to_thread_no_regs (tp);
3806 }
3807
3808 /* Print info about a thread that was found already stopped on
3809 connection. */
3810
3811 static void
3812 print_one_stopped_thread (struct thread_info *thread)
3813 {
3814 struct target_waitstatus *ws = &thread->suspend.waitstatus;
3815
3816 switch_to_thread (thread->ptid);
3817 stop_pc = get_frame_pc (get_current_frame ());
3818 set_current_sal_from_frame (get_current_frame ());
3819
3820 thread->suspend.waitstatus_pending_p = 0;
3821
3822 if (ws->kind == TARGET_WAITKIND_STOPPED)
3823 {
3824 enum gdb_signal sig = ws->value.sig;
3825
3826 if (signal_print_state (sig))
3827 observer_notify_signal_received (sig);
3828 }
3829 observer_notify_normal_stop (NULL, 1);
3830 }
3831
3832 /* Process all initial stop replies the remote side sent in response
3833 to the ? packet. These indicate threads that were already stopped
3834 on initial connection. We mark these threads as stopped and print
3835 their current frame before giving the user the prompt. */
3836
3837 static void
3838 process_initial_stop_replies (int from_tty)
3839 {
3840 int pending_stop_replies = stop_reply_queue_length ();
3841 struct inferior *inf;
3842 struct thread_info *thread;
3843 struct thread_info *selected = NULL;
3844 struct thread_info *lowest_stopped = NULL;
3845 struct thread_info *first = NULL;
3846
3847 /* Consume the initial pending events. */
3848 while (pending_stop_replies-- > 0)
3849 {
3850 ptid_t waiton_ptid = minus_one_ptid;
3851 ptid_t event_ptid;
3852 struct target_waitstatus ws;
3853 int ignore_event = 0;
3854 struct thread_info *thread;
3855
3856 memset (&ws, 0, sizeof (ws));
3857 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
3858 if (remote_debug)
3859 print_target_wait_results (waiton_ptid, event_ptid, &ws);
3860
3861 switch (ws.kind)
3862 {
3863 case TARGET_WAITKIND_IGNORE:
3864 case TARGET_WAITKIND_NO_RESUMED:
3865 case TARGET_WAITKIND_SIGNALLED:
3866 case TARGET_WAITKIND_EXITED:
3867 /* We shouldn't see these, but if we do, just ignore. */
3868 if (remote_debug)
3869 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
3870 ignore_event = 1;
3871 break;
3872
3873 case TARGET_WAITKIND_EXECD:
3874 xfree (ws.value.execd_pathname);
3875 break;
3876 default:
3877 break;
3878 }
3879
3880 if (ignore_event)
3881 continue;
3882
3883 thread = find_thread_ptid (event_ptid);
3884
3885 if (ws.kind == TARGET_WAITKIND_STOPPED)
3886 {
3887 enum gdb_signal sig = ws.value.sig;
3888
3889 /* Stubs traditionally report SIGTRAP as initial signal,
3890 instead of signal 0. Suppress it. */
3891 if (sig == GDB_SIGNAL_TRAP)
3892 sig = GDB_SIGNAL_0;
3893 thread->suspend.stop_signal = sig;
3894 ws.value.sig = sig;
3895 }
3896
3897 thread->suspend.waitstatus = ws;
3898
3899 if (ws.kind != TARGET_WAITKIND_STOPPED
3900 || ws.value.sig != GDB_SIGNAL_0)
3901 thread->suspend.waitstatus_pending_p = 1;
3902
3903 set_executing (event_ptid, 0);
3904 set_running (event_ptid, 0);
3905 get_remote_thread_info (thread)->vcont_resumed = 0;
3906 }
3907
3908 /* "Notice" the new inferiors before anything related to
3909 registers/memory. */
3910 ALL_INFERIORS (inf)
3911 {
3912 if (inf->pid == 0)
3913 continue;
3914
3915 inf->needs_setup = 1;
3916
3917 if (non_stop)
3918 {
3919 thread = any_live_thread_of_process (inf->pid);
3920 notice_new_inferior (thread->ptid,
3921 thread->state == THREAD_RUNNING,
3922 from_tty);
3923 }
3924 }
3925
3926 /* If all-stop on top of non-stop, pause all threads. Note this
3927 records the threads' stop pc, so must be done after "noticing"
3928 the inferiors. */
3929 if (!non_stop)
3930 {
3931 stop_all_threads ();
3932
3933 /* If all threads of an inferior were already stopped, we
3934 haven't setup the inferior yet. */
3935 ALL_INFERIORS (inf)
3936 {
3937 if (inf->pid == 0)
3938 continue;
3939
3940 if (inf->needs_setup)
3941 {
3942 thread = any_live_thread_of_process (inf->pid);
3943 switch_to_thread_no_regs (thread);
3944 setup_inferior (0);
3945 }
3946 }
3947 }
3948
3949 /* Now go over all threads that are stopped, and print their current
3950 frame. If all-stop, then if there's a signalled thread, pick
3951 that as current. */
3952 ALL_NON_EXITED_THREADS (thread)
3953 {
3954 if (first == NULL)
3955 first = thread;
3956
3957 if (!non_stop)
3958 set_running (thread->ptid, 0);
3959 else if (thread->state != THREAD_STOPPED)
3960 continue;
3961
3962 if (selected == NULL
3963 && thread->suspend.waitstatus_pending_p)
3964 selected = thread;
3965
3966 if (lowest_stopped == NULL
3967 || thread->inf->num < lowest_stopped->inf->num
3968 || thread->per_inf_num < lowest_stopped->per_inf_num)
3969 lowest_stopped = thread;
3970
3971 if (non_stop)
3972 print_one_stopped_thread (thread);
3973 }
3974
3975 /* In all-stop, we only print the status of one thread, and leave
3976 others with their status pending. */
3977 if (!non_stop)
3978 {
3979 thread = selected;
3980 if (thread == NULL)
3981 thread = lowest_stopped;
3982 if (thread == NULL)
3983 thread = first;
3984
3985 print_one_stopped_thread (thread);
3986 }
3987
3988 /* For "info program". */
3989 thread = inferior_thread ();
3990 if (thread->state == THREAD_STOPPED)
3991 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
3992 }
3993
3994 /* Start the remote connection and sync state. */
3995
3996 static void
3997 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3998 {
3999 struct remote_state *rs = get_remote_state ();
4000 struct packet_config *noack_config;
4001 char *wait_status = NULL;
4002
4003 /* Signal other parts that we're going through the initial setup,
4004 and so things may not be stable yet. E.g., we don't try to
4005 install tracepoints until we've relocated symbols. Also, a
4006 Ctrl-C before we're connected and synced up can't interrupt the
4007 target. Instead, it offers to drop the (potentially wedged)
4008 connection. */
4009 rs->starting_up = 1;
4010
4011 QUIT;
4012
4013 if (interrupt_on_connect)
4014 send_interrupt_sequence ();
4015
4016 /* Ack any packet which the remote side has already sent. */
4017 remote_serial_write ("+", 1);
4018
4019 /* The first packet we send to the target is the optional "supported
4020 packets" request. If the target can answer this, it will tell us
4021 which later probes to skip. */
4022 remote_query_supported ();
4023
4024 /* If the stub wants to get a QAllow, compose one and send it. */
4025 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4026 remote_set_permissions (target);
4027
4028 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4029 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4030 as a reply to known packet. For packet "vFile:setfs:" it is an
4031 invalid reply and GDB would return error in
4032 remote_hostio_set_filesystem, making remote files access impossible.
4033 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4034 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4035 {
4036 const char v_mustreplyempty[] = "vMustReplyEmpty";
4037
4038 putpkt (v_mustreplyempty);
4039 getpkt (&rs->buf, &rs->buf_size, 0);
4040 if (strcmp (rs->buf, "OK") == 0)
4041 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4042 else if (strcmp (rs->buf, "") != 0)
4043 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4044 rs->buf);
4045 }
4046
4047 /* Next, we possibly activate noack mode.
4048
4049 If the QStartNoAckMode packet configuration is set to AUTO,
4050 enable noack mode if the stub reported a wish for it with
4051 qSupported.
4052
4053 If set to TRUE, then enable noack mode even if the stub didn't
4054 report it in qSupported. If the stub doesn't reply OK, the
4055 session ends with an error.
4056
4057 If FALSE, then don't activate noack mode, regardless of what the
4058 stub claimed should be the default with qSupported. */
4059
4060 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4061 if (packet_config_support (noack_config) != PACKET_DISABLE)
4062 {
4063 putpkt ("QStartNoAckMode");
4064 getpkt (&rs->buf, &rs->buf_size, 0);
4065 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4066 rs->noack_mode = 1;
4067 }
4068
4069 if (extended_p)
4070 {
4071 /* Tell the remote that we are using the extended protocol. */
4072 putpkt ("!");
4073 getpkt (&rs->buf, &rs->buf_size, 0);
4074 }
4075
4076 /* Let the target know which signals it is allowed to pass down to
4077 the program. */
4078 update_signals_program_target ();
4079
4080 /* Next, if the target can specify a description, read it. We do
4081 this before anything involving memory or registers. */
4082 target_find_description ();
4083
4084 /* Next, now that we know something about the target, update the
4085 address spaces in the program spaces. */
4086 update_address_spaces ();
4087
4088 /* On OSs where the list of libraries is global to all
4089 processes, we fetch them early. */
4090 if (gdbarch_has_global_solist (target_gdbarch ()))
4091 solib_add (NULL, from_tty, auto_solib_add);
4092
4093 if (target_is_non_stop_p ())
4094 {
4095 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4096 error (_("Non-stop mode requested, but remote "
4097 "does not support non-stop"));
4098
4099 putpkt ("QNonStop:1");
4100 getpkt (&rs->buf, &rs->buf_size, 0);
4101
4102 if (strcmp (rs->buf, "OK") != 0)
4103 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4104
4105 /* Find about threads and processes the stub is already
4106 controlling. We default to adding them in the running state.
4107 The '?' query below will then tell us about which threads are
4108 stopped. */
4109 remote_update_thread_list (target);
4110 }
4111 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4112 {
4113 /* Don't assume that the stub can operate in all-stop mode.
4114 Request it explicitly. */
4115 putpkt ("QNonStop:0");
4116 getpkt (&rs->buf, &rs->buf_size, 0);
4117
4118 if (strcmp (rs->buf, "OK") != 0)
4119 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4120 }
4121
4122 /* Upload TSVs regardless of whether the target is running or not. The
4123 remote stub, such as GDBserver, may have some predefined or builtin
4124 TSVs, even if the target is not running. */
4125 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4126 {
4127 struct uploaded_tsv *uploaded_tsvs = NULL;
4128
4129 remote_upload_trace_state_variables (target, &uploaded_tsvs);
4130 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4131 }
4132
4133 /* Check whether the target is running now. */
4134 putpkt ("?");
4135 getpkt (&rs->buf, &rs->buf_size, 0);
4136
4137 if (!target_is_non_stop_p ())
4138 {
4139 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4140 {
4141 if (!extended_p)
4142 error (_("The target is not running (try extended-remote?)"));
4143
4144 /* We're connected, but not running. Drop out before we
4145 call start_remote. */
4146 rs->starting_up = 0;
4147 return;
4148 }
4149 else
4150 {
4151 /* Save the reply for later. */
4152 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4153 strcpy (wait_status, rs->buf);
4154 }
4155
4156 /* Fetch thread list. */
4157 target_update_thread_list ();
4158
4159 /* Let the stub know that we want it to return the thread. */
4160 set_continue_thread (minus_one_ptid);
4161
4162 if (thread_count () == 0)
4163 {
4164 /* Target has no concept of threads at all. GDB treats
4165 non-threaded target as single-threaded; add a main
4166 thread. */
4167 add_current_inferior_and_thread (wait_status);
4168 }
4169 else
4170 {
4171 /* We have thread information; select the thread the target
4172 says should be current. If we're reconnecting to a
4173 multi-threaded program, this will ideally be the thread
4174 that last reported an event before GDB disconnected. */
4175 inferior_ptid = get_current_thread (wait_status);
4176 if (ptid_equal (inferior_ptid, null_ptid))
4177 {
4178 /* Odd... The target was able to list threads, but not
4179 tell us which thread was current (no "thread"
4180 register in T stop reply?). Just pick the first
4181 thread in the thread list then. */
4182
4183 if (remote_debug)
4184 fprintf_unfiltered (gdb_stdlog,
4185 "warning: couldn't determine remote "
4186 "current thread; picking first in list.\n");
4187
4188 inferior_ptid = thread_list->ptid;
4189 }
4190 }
4191
4192 /* init_wait_for_inferior should be called before get_offsets in order
4193 to manage `inserted' flag in bp loc in a correct state.
4194 breakpoint_init_inferior, called from init_wait_for_inferior, set
4195 `inserted' flag to 0, while before breakpoint_re_set, called from
4196 start_remote, set `inserted' flag to 1. In the initialization of
4197 inferior, breakpoint_init_inferior should be called first, and then
4198 breakpoint_re_set can be called. If this order is broken, state of
4199 `inserted' flag is wrong, and cause some problems on breakpoint
4200 manipulation. */
4201 init_wait_for_inferior ();
4202
4203 get_offsets (); /* Get text, data & bss offsets. */
4204
4205 /* If we could not find a description using qXfer, and we know
4206 how to do it some other way, try again. This is not
4207 supported for non-stop; it could be, but it is tricky if
4208 there are no stopped threads when we connect. */
4209 if (remote_read_description_p (target)
4210 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4211 {
4212 target_clear_description ();
4213 target_find_description ();
4214 }
4215
4216 /* Use the previously fetched status. */
4217 gdb_assert (wait_status != NULL);
4218 strcpy (rs->buf, wait_status);
4219 rs->cached_wait_status = 1;
4220
4221 start_remote (from_tty); /* Initialize gdb process mechanisms. */
4222 }
4223 else
4224 {
4225 /* Clear WFI global state. Do this before finding about new
4226 threads and inferiors, and setting the current inferior.
4227 Otherwise we would clear the proceed status of the current
4228 inferior when we want its stop_soon state to be preserved
4229 (see notice_new_inferior). */
4230 init_wait_for_inferior ();
4231
4232 /* In non-stop, we will either get an "OK", meaning that there
4233 are no stopped threads at this time; or, a regular stop
4234 reply. In the latter case, there may be more than one thread
4235 stopped --- we pull them all out using the vStopped
4236 mechanism. */
4237 if (strcmp (rs->buf, "OK") != 0)
4238 {
4239 struct notif_client *notif = &notif_client_stop;
4240
4241 /* remote_notif_get_pending_replies acks this one, and gets
4242 the rest out. */
4243 rs->notif_state->pending_event[notif_client_stop.id]
4244 = remote_notif_parse (notif, rs->buf);
4245 remote_notif_get_pending_events (notif);
4246 }
4247
4248 if (thread_count () == 0)
4249 {
4250 if (!extended_p)
4251 error (_("The target is not running (try extended-remote?)"));
4252
4253 /* We're connected, but not running. Drop out before we
4254 call start_remote. */
4255 rs->starting_up = 0;
4256 return;
4257 }
4258
4259 /* In non-stop mode, any cached wait status will be stored in
4260 the stop reply queue. */
4261 gdb_assert (wait_status == NULL);
4262
4263 /* Report all signals during attach/startup. */
4264 remote_pass_signals (target, 0, NULL);
4265
4266 /* If there are already stopped threads, mark them stopped and
4267 report their stops before giving the prompt to the user. */
4268 process_initial_stop_replies (from_tty);
4269
4270 if (target_can_async_p ())
4271 target_async (1);
4272 }
4273
4274 /* If we connected to a live target, do some additional setup. */
4275 if (target_has_execution)
4276 {
4277 if (symfile_objfile) /* No use without a symbol-file. */
4278 remote_check_symbols ();
4279 }
4280
4281 /* Possibly the target has been engaged in a trace run started
4282 previously; find out where things are at. */
4283 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4284 {
4285 struct uploaded_tp *uploaded_tps = NULL;
4286
4287 if (current_trace_status ()->running)
4288 printf_filtered (_("Trace is already running on the target.\n"));
4289
4290 remote_upload_tracepoints (target, &uploaded_tps);
4291
4292 merge_uploaded_tracepoints (&uploaded_tps);
4293 }
4294
4295 /* Possibly the target has been engaged in a btrace record started
4296 previously; find out where things are at. */
4297 remote_btrace_maybe_reopen ();
4298
4299 /* The thread and inferior lists are now synchronized with the
4300 target, our symbols have been relocated, and we're merged the
4301 target's tracepoints with ours. We're done with basic start
4302 up. */
4303 rs->starting_up = 0;
4304
4305 /* Maybe breakpoints are global and need to be inserted now. */
4306 if (breakpoints_should_be_inserted_now ())
4307 insert_breakpoints ();
4308 }
4309
4310 /* Open a connection to a remote debugger.
4311 NAME is the filename used for communication. */
4312
4313 static void
4314 remote_open (const char *name, int from_tty)
4315 {
4316 remote_open_1 (name, from_tty, &remote_ops, 0);
4317 }
4318
4319 /* Open a connection to a remote debugger using the extended
4320 remote gdb protocol. NAME is the filename used for communication. */
4321
4322 static void
4323 extended_remote_open (const char *name, int from_tty)
4324 {
4325 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
4326 }
4327
4328 /* Reset all packets back to "unknown support". Called when opening a
4329 new connection to a remote target. */
4330
4331 static void
4332 reset_all_packet_configs_support (void)
4333 {
4334 int i;
4335
4336 for (i = 0; i < PACKET_MAX; i++)
4337 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4338 }
4339
4340 /* Initialize all packet configs. */
4341
4342 static void
4343 init_all_packet_configs (void)
4344 {
4345 int i;
4346
4347 for (i = 0; i < PACKET_MAX; i++)
4348 {
4349 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4350 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4351 }
4352 }
4353
4354 /* Symbol look-up. */
4355
4356 static void
4357 remote_check_symbols (void)
4358 {
4359 char *msg, *reply, *tmp;
4360 int end;
4361 long reply_size;
4362 struct cleanup *old_chain;
4363
4364 /* The remote side has no concept of inferiors that aren't running
4365 yet, it only knows about running processes. If we're connected
4366 but our current inferior is not running, we should not invite the
4367 remote target to request symbol lookups related to its
4368 (unrelated) current process. */
4369 if (!target_has_execution)
4370 return;
4371
4372 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4373 return;
4374
4375 /* Make sure the remote is pointing at the right process. Note
4376 there's no way to select "no process". */
4377 set_general_process ();
4378
4379 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4380 because we need both at the same time. */
4381 msg = (char *) xmalloc (get_remote_packet_size ());
4382 old_chain = make_cleanup (xfree, msg);
4383 reply = (char *) xmalloc (get_remote_packet_size ());
4384 make_cleanup (free_current_contents, &reply);
4385 reply_size = get_remote_packet_size ();
4386
4387 /* Invite target to request symbol lookups. */
4388
4389 putpkt ("qSymbol::");
4390 getpkt (&reply, &reply_size, 0);
4391 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4392
4393 while (startswith (reply, "qSymbol:"))
4394 {
4395 struct bound_minimal_symbol sym;
4396
4397 tmp = &reply[8];
4398 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4399 msg[end] = '\0';
4400 sym = lookup_minimal_symbol (msg, NULL, NULL);
4401 if (sym.minsym == NULL)
4402 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4403 else
4404 {
4405 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4406 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4407
4408 /* If this is a function address, return the start of code
4409 instead of any data function descriptor. */
4410 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4411 sym_addr,
4412 &current_target);
4413
4414 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4415 phex_nz (sym_addr, addr_size), &reply[8]);
4416 }
4417
4418 putpkt (msg);
4419 getpkt (&reply, &reply_size, 0);
4420 }
4421
4422 do_cleanups (old_chain);
4423 }
4424
4425 static struct serial *
4426 remote_serial_open (const char *name)
4427 {
4428 static int udp_warning = 0;
4429
4430 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4431 of in ser-tcp.c, because it is the remote protocol assuming that the
4432 serial connection is reliable and not the serial connection promising
4433 to be. */
4434 if (!udp_warning && startswith (name, "udp:"))
4435 {
4436 warning (_("The remote protocol may be unreliable over UDP.\n"
4437 "Some events may be lost, rendering further debugging "
4438 "impossible."));
4439 udp_warning = 1;
4440 }
4441
4442 return serial_open (name);
4443 }
4444
4445 /* Inform the target of our permission settings. The permission flags
4446 work without this, but if the target knows the settings, it can do
4447 a couple things. First, it can add its own check, to catch cases
4448 that somehow manage to get by the permissions checks in target
4449 methods. Second, if the target is wired to disallow particular
4450 settings (for instance, a system in the field that is not set up to
4451 be able to stop at a breakpoint), it can object to any unavailable
4452 permissions. */
4453
4454 void
4455 remote_set_permissions (struct target_ops *self)
4456 {
4457 struct remote_state *rs = get_remote_state ();
4458
4459 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4460 "WriteReg:%x;WriteMem:%x;"
4461 "InsertBreak:%x;InsertTrace:%x;"
4462 "InsertFastTrace:%x;Stop:%x",
4463 may_write_registers, may_write_memory,
4464 may_insert_breakpoints, may_insert_tracepoints,
4465 may_insert_fast_tracepoints, may_stop);
4466 putpkt (rs->buf);
4467 getpkt (&rs->buf, &rs->buf_size, 0);
4468
4469 /* If the target didn't like the packet, warn the user. Do not try
4470 to undo the user's settings, that would just be maddening. */
4471 if (strcmp (rs->buf, "OK") != 0)
4472 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4473 }
4474
4475 /* This type describes each known response to the qSupported
4476 packet. */
4477 struct protocol_feature
4478 {
4479 /* The name of this protocol feature. */
4480 const char *name;
4481
4482 /* The default for this protocol feature. */
4483 enum packet_support default_support;
4484
4485 /* The function to call when this feature is reported, or after
4486 qSupported processing if the feature is not supported.
4487 The first argument points to this structure. The second
4488 argument indicates whether the packet requested support be
4489 enabled, disabled, or probed (or the default, if this function
4490 is being called at the end of processing and this feature was
4491 not reported). The third argument may be NULL; if not NULL, it
4492 is a NUL-terminated string taken from the packet following
4493 this feature's name and an equals sign. */
4494 void (*func) (const struct protocol_feature *, enum packet_support,
4495 const char *);
4496
4497 /* The corresponding packet for this feature. Only used if
4498 FUNC is remote_supported_packet. */
4499 int packet;
4500 };
4501
4502 static void
4503 remote_supported_packet (const struct protocol_feature *feature,
4504 enum packet_support support,
4505 const char *argument)
4506 {
4507 if (argument)
4508 {
4509 warning (_("Remote qSupported response supplied an unexpected value for"
4510 " \"%s\"."), feature->name);
4511 return;
4512 }
4513
4514 remote_protocol_packets[feature->packet].support = support;
4515 }
4516
4517 static void
4518 remote_packet_size (const struct protocol_feature *feature,
4519 enum packet_support support, const char *value)
4520 {
4521 struct remote_state *rs = get_remote_state ();
4522
4523 int packet_size;
4524 char *value_end;
4525
4526 if (support != PACKET_ENABLE)
4527 return;
4528
4529 if (value == NULL || *value == '\0')
4530 {
4531 warning (_("Remote target reported \"%s\" without a size."),
4532 feature->name);
4533 return;
4534 }
4535
4536 errno = 0;
4537 packet_size = strtol (value, &value_end, 16);
4538 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4539 {
4540 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4541 feature->name, value);
4542 return;
4543 }
4544
4545 /* Record the new maximum packet size. */
4546 rs->explicit_packet_size = packet_size;
4547 }
4548
4549 static const struct protocol_feature remote_protocol_features[] = {
4550 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4551 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4552 PACKET_qXfer_auxv },
4553 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4554 PACKET_qXfer_exec_file },
4555 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4556 PACKET_qXfer_features },
4557 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4558 PACKET_qXfer_libraries },
4559 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4560 PACKET_qXfer_libraries_svr4 },
4561 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4562 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4563 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4564 PACKET_qXfer_memory_map },
4565 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4566 PACKET_qXfer_spu_read },
4567 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4568 PACKET_qXfer_spu_write },
4569 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4570 PACKET_qXfer_osdata },
4571 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4572 PACKET_qXfer_threads },
4573 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4574 PACKET_qXfer_traceframe_info },
4575 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4576 PACKET_QPassSignals },
4577 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4578 PACKET_QCatchSyscalls },
4579 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4580 PACKET_QProgramSignals },
4581 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
4582 PACKET_QSetWorkingDir },
4583 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
4584 PACKET_QStartupWithShell },
4585 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
4586 PACKET_QEnvironmentHexEncoded },
4587 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
4588 PACKET_QEnvironmentReset },
4589 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
4590 PACKET_QEnvironmentUnset },
4591 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4592 PACKET_QStartNoAckMode },
4593 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4594 PACKET_multiprocess_feature },
4595 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4596 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4597 PACKET_qXfer_siginfo_read },
4598 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4599 PACKET_qXfer_siginfo_write },
4600 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4601 PACKET_ConditionalTracepoints },
4602 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4603 PACKET_ConditionalBreakpoints },
4604 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4605 PACKET_BreakpointCommands },
4606 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4607 PACKET_FastTracepoints },
4608 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4609 PACKET_StaticTracepoints },
4610 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4611 PACKET_InstallInTrace},
4612 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4613 PACKET_DisconnectedTracing_feature },
4614 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4615 PACKET_bc },
4616 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4617 PACKET_bs },
4618 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4619 PACKET_TracepointSource },
4620 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4621 PACKET_QAllow },
4622 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4623 PACKET_EnableDisableTracepoints_feature },
4624 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4625 PACKET_qXfer_fdpic },
4626 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4627 PACKET_qXfer_uib },
4628 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4629 PACKET_QDisableRandomization },
4630 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4631 { "QTBuffer:size", PACKET_DISABLE,
4632 remote_supported_packet, PACKET_QTBuffer_size},
4633 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4634 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4635 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4636 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4637 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4638 PACKET_qXfer_btrace },
4639 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4640 PACKET_qXfer_btrace_conf },
4641 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4642 PACKET_Qbtrace_conf_bts_size },
4643 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4644 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4645 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4646 PACKET_fork_event_feature },
4647 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4648 PACKET_vfork_event_feature },
4649 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4650 PACKET_exec_event_feature },
4651 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4652 PACKET_Qbtrace_conf_pt_size },
4653 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4654 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4655 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4656 };
4657
4658 static char *remote_support_xml;
4659
4660 /* Register string appended to "xmlRegisters=" in qSupported query. */
4661
4662 void
4663 register_remote_support_xml (const char *xml)
4664 {
4665 #if defined(HAVE_LIBEXPAT)
4666 if (remote_support_xml == NULL)
4667 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4668 else
4669 {
4670 char *copy = xstrdup (remote_support_xml + 13);
4671 char *p = strtok (copy, ",");
4672
4673 do
4674 {
4675 if (strcmp (p, xml) == 0)
4676 {
4677 /* already there */
4678 xfree (copy);
4679 return;
4680 }
4681 }
4682 while ((p = strtok (NULL, ",")) != NULL);
4683 xfree (copy);
4684
4685 remote_support_xml = reconcat (remote_support_xml,
4686 remote_support_xml, ",", xml,
4687 (char *) NULL);
4688 }
4689 #endif
4690 }
4691
4692 static char *
4693 remote_query_supported_append (char *msg, const char *append)
4694 {
4695 if (msg)
4696 return reconcat (msg, msg, ";", append, (char *) NULL);
4697 else
4698 return xstrdup (append);
4699 }
4700
4701 static void
4702 remote_query_supported (void)
4703 {
4704 struct remote_state *rs = get_remote_state ();
4705 char *next;
4706 int i;
4707 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4708
4709 /* The packet support flags are handled differently for this packet
4710 than for most others. We treat an error, a disabled packet, and
4711 an empty response identically: any features which must be reported
4712 to be used will be automatically disabled. An empty buffer
4713 accomplishes this, since that is also the representation for a list
4714 containing no features. */
4715
4716 rs->buf[0] = 0;
4717 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4718 {
4719 char *q = NULL;
4720 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4721
4722 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
4723 q = remote_query_supported_append (q, "multiprocess+");
4724
4725 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
4726 q = remote_query_supported_append (q, "swbreak+");
4727 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
4728 q = remote_query_supported_append (q, "hwbreak+");
4729
4730 q = remote_query_supported_append (q, "qRelocInsn+");
4731
4732 if (packet_set_cmd_state (PACKET_fork_event_feature)
4733 != AUTO_BOOLEAN_FALSE)
4734 q = remote_query_supported_append (q, "fork-events+");
4735 if (packet_set_cmd_state (PACKET_vfork_event_feature)
4736 != AUTO_BOOLEAN_FALSE)
4737 q = remote_query_supported_append (q, "vfork-events+");
4738 if (packet_set_cmd_state (PACKET_exec_event_feature)
4739 != AUTO_BOOLEAN_FALSE)
4740 q = remote_query_supported_append (q, "exec-events+");
4741
4742 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
4743 q = remote_query_supported_append (q, "vContSupported+");
4744
4745 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
4746 q = remote_query_supported_append (q, "QThreadEvents+");
4747
4748 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
4749 q = remote_query_supported_append (q, "no-resumed+");
4750
4751 /* Keep this one last to work around a gdbserver <= 7.10 bug in
4752 the qSupported:xmlRegisters=i386 handling. */
4753 if (remote_support_xml != NULL
4754 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
4755 q = remote_query_supported_append (q, remote_support_xml);
4756
4757 q = reconcat (q, "qSupported:", q, (char *) NULL);
4758 putpkt (q);
4759
4760 do_cleanups (old_chain);
4761
4762 getpkt (&rs->buf, &rs->buf_size, 0);
4763
4764 /* If an error occured, warn, but do not return - just reset the
4765 buffer to empty and go on to disable features. */
4766 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4767 == PACKET_ERROR)
4768 {
4769 warning (_("Remote failure reply: %s"), rs->buf);
4770 rs->buf[0] = 0;
4771 }
4772 }
4773
4774 memset (seen, 0, sizeof (seen));
4775
4776 next = rs->buf;
4777 while (*next)
4778 {
4779 enum packet_support is_supported;
4780 char *p, *end, *name_end, *value;
4781
4782 /* First separate out this item from the rest of the packet. If
4783 there's another item after this, we overwrite the separator
4784 (terminated strings are much easier to work with). */
4785 p = next;
4786 end = strchr (p, ';');
4787 if (end == NULL)
4788 {
4789 end = p + strlen (p);
4790 next = end;
4791 }
4792 else
4793 {
4794 *end = '\0';
4795 next = end + 1;
4796
4797 if (end == p)
4798 {
4799 warning (_("empty item in \"qSupported\" response"));
4800 continue;
4801 }
4802 }
4803
4804 name_end = strchr (p, '=');
4805 if (name_end)
4806 {
4807 /* This is a name=value entry. */
4808 is_supported = PACKET_ENABLE;
4809 value = name_end + 1;
4810 *name_end = '\0';
4811 }
4812 else
4813 {
4814 value = NULL;
4815 switch (end[-1])
4816 {
4817 case '+':
4818 is_supported = PACKET_ENABLE;
4819 break;
4820
4821 case '-':
4822 is_supported = PACKET_DISABLE;
4823 break;
4824
4825 case '?':
4826 is_supported = PACKET_SUPPORT_UNKNOWN;
4827 break;
4828
4829 default:
4830 warning (_("unrecognized item \"%s\" "
4831 "in \"qSupported\" response"), p);
4832 continue;
4833 }
4834 end[-1] = '\0';
4835 }
4836
4837 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4838 if (strcmp (remote_protocol_features[i].name, p) == 0)
4839 {
4840 const struct protocol_feature *feature;
4841
4842 seen[i] = 1;
4843 feature = &remote_protocol_features[i];
4844 feature->func (feature, is_supported, value);
4845 break;
4846 }
4847 }
4848
4849 /* If we increased the packet size, make sure to increase the global
4850 buffer size also. We delay this until after parsing the entire
4851 qSupported packet, because this is the same buffer we were
4852 parsing. */
4853 if (rs->buf_size < rs->explicit_packet_size)
4854 {
4855 rs->buf_size = rs->explicit_packet_size;
4856 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
4857 }
4858
4859 /* Handle the defaults for unmentioned features. */
4860 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4861 if (!seen[i])
4862 {
4863 const struct protocol_feature *feature;
4864
4865 feature = &remote_protocol_features[i];
4866 feature->func (feature, feature->default_support, NULL);
4867 }
4868 }
4869
4870 /* Serial QUIT handler for the remote serial descriptor.
4871
4872 Defers handling a Ctrl-C until we're done with the current
4873 command/response packet sequence, unless:
4874
4875 - We're setting up the connection. Don't send a remote interrupt
4876 request, as we're not fully synced yet. Quit immediately
4877 instead.
4878
4879 - The target has been resumed in the foreground
4880 (target_terminal::is_ours is false) with a synchronous resume
4881 packet, and we're blocked waiting for the stop reply, thus a
4882 Ctrl-C should be immediately sent to the target.
4883
4884 - We get a second Ctrl-C while still within the same serial read or
4885 write. In that case the serial is seemingly wedged --- offer to
4886 quit/disconnect.
4887
4888 - We see a second Ctrl-C without target response, after having
4889 previously interrupted the target. In that case the target/stub
4890 is probably wedged --- offer to quit/disconnect.
4891 */
4892
4893 static void
4894 remote_serial_quit_handler (void)
4895 {
4896 struct remote_state *rs = get_remote_state ();
4897
4898 if (check_quit_flag ())
4899 {
4900 /* If we're starting up, we're not fully synced yet. Quit
4901 immediately. */
4902 if (rs->starting_up)
4903 quit ();
4904 else if (rs->got_ctrlc_during_io)
4905 {
4906 if (query (_("The target is not responding to GDB commands.\n"
4907 "Stop debugging it? ")))
4908 remote_unpush_and_throw ();
4909 }
4910 /* If ^C has already been sent once, offer to disconnect. */
4911 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
4912 interrupt_query ();
4913 /* All-stop protocol, and blocked waiting for stop reply. Send
4914 an interrupt request. */
4915 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
4916 target_interrupt ();
4917 else
4918 rs->got_ctrlc_during_io = 1;
4919 }
4920 }
4921
4922 /* Remove any of the remote.c targets from target stack. Upper targets depend
4923 on it so remove them first. */
4924
4925 static void
4926 remote_unpush_target (void)
4927 {
4928 pop_all_targets_at_and_above (process_stratum);
4929 }
4930
4931 static void
4932 remote_unpush_and_throw (void)
4933 {
4934 remote_unpush_target ();
4935 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
4936 }
4937
4938 static void
4939 remote_open_1 (const char *name, int from_tty,
4940 struct target_ops *target, int extended_p)
4941 {
4942 struct remote_state *rs = get_remote_state ();
4943
4944 if (name == 0)
4945 error (_("To open a remote debug connection, you need to specify what\n"
4946 "serial device is attached to the remote system\n"
4947 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4948
4949 /* See FIXME above. */
4950 if (!target_async_permitted)
4951 wait_forever_enabled_p = 1;
4952
4953 /* If we're connected to a running target, target_preopen will kill it.
4954 Ask this question first, before target_preopen has a chance to kill
4955 anything. */
4956 if (rs->remote_desc != NULL && !have_inferiors ())
4957 {
4958 if (from_tty
4959 && !query (_("Already connected to a remote target. Disconnect? ")))
4960 error (_("Still connected."));
4961 }
4962
4963 /* Here the possibly existing remote target gets unpushed. */
4964 target_preopen (from_tty);
4965
4966 /* Make sure we send the passed signals list the next time we resume. */
4967 xfree (rs->last_pass_packet);
4968 rs->last_pass_packet = NULL;
4969
4970 /* Make sure we send the program signals list the next time we
4971 resume. */
4972 xfree (rs->last_program_signals_packet);
4973 rs->last_program_signals_packet = NULL;
4974
4975 remote_fileio_reset ();
4976 reopen_exec_file ();
4977 reread_symbols ();
4978
4979 rs->remote_desc = remote_serial_open (name);
4980 if (!rs->remote_desc)
4981 perror_with_name (name);
4982
4983 if (baud_rate != -1)
4984 {
4985 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4986 {
4987 /* The requested speed could not be set. Error out to
4988 top level after closing remote_desc. Take care to
4989 set remote_desc to NULL to avoid closing remote_desc
4990 more than once. */
4991 serial_close (rs->remote_desc);
4992 rs->remote_desc = NULL;
4993 perror_with_name (name);
4994 }
4995 }
4996
4997 serial_setparity (rs->remote_desc, serial_parity);
4998 serial_raw (rs->remote_desc);
4999
5000 /* If there is something sitting in the buffer we might take it as a
5001 response to a command, which would be bad. */
5002 serial_flush_input (rs->remote_desc);
5003
5004 if (from_tty)
5005 {
5006 puts_filtered ("Remote debugging using ");
5007 puts_filtered (name);
5008 puts_filtered ("\n");
5009 }
5010 push_target (target); /* Switch to using remote target now. */
5011
5012 /* Register extra event sources in the event loop. */
5013 remote_async_inferior_event_token
5014 = create_async_event_handler (remote_async_inferior_event_handler,
5015 NULL);
5016 rs->notif_state = remote_notif_state_allocate ();
5017
5018 /* Reset the target state; these things will be queried either by
5019 remote_query_supported or as they are needed. */
5020 reset_all_packet_configs_support ();
5021 rs->cached_wait_status = 0;
5022 rs->explicit_packet_size = 0;
5023 rs->noack_mode = 0;
5024 rs->extended = extended_p;
5025 rs->waiting_for_stop_reply = 0;
5026 rs->ctrlc_pending_p = 0;
5027 rs->got_ctrlc_during_io = 0;
5028
5029 rs->general_thread = not_sent_ptid;
5030 rs->continue_thread = not_sent_ptid;
5031 rs->remote_traceframe_number = -1;
5032
5033 rs->last_resume_exec_dir = EXEC_FORWARD;
5034
5035 /* Probe for ability to use "ThreadInfo" query, as required. */
5036 rs->use_threadinfo_query = 1;
5037 rs->use_threadextra_query = 1;
5038
5039 readahead_cache_invalidate ();
5040
5041 if (target_async_permitted)
5042 {
5043 /* FIXME: cagney/1999-09-23: During the initial connection it is
5044 assumed that the target is already ready and able to respond to
5045 requests. Unfortunately remote_start_remote() eventually calls
5046 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5047 around this. Eventually a mechanism that allows
5048 wait_for_inferior() to expect/get timeouts will be
5049 implemented. */
5050 wait_forever_enabled_p = 0;
5051 }
5052
5053 /* First delete any symbols previously loaded from shared libraries. */
5054 no_shared_libraries (NULL, 0);
5055
5056 /* Start afresh. */
5057 init_thread_list ();
5058
5059 /* Start the remote connection. If error() or QUIT, discard this
5060 target (we'd otherwise be in an inconsistent state) and then
5061 propogate the error on up the exception chain. This ensures that
5062 the caller doesn't stumble along blindly assuming that the
5063 function succeeded. The CLI doesn't have this problem but other
5064 UI's, such as MI do.
5065
5066 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5067 this function should return an error indication letting the
5068 caller restore the previous state. Unfortunately the command
5069 ``target remote'' is directly wired to this function making that
5070 impossible. On a positive note, the CLI side of this problem has
5071 been fixed - the function set_cmd_context() makes it possible for
5072 all the ``target ....'' commands to share a common callback
5073 function. See cli-dump.c. */
5074 {
5075
5076 TRY
5077 {
5078 remote_start_remote (from_tty, target, extended_p);
5079 }
5080 CATCH (ex, RETURN_MASK_ALL)
5081 {
5082 /* Pop the partially set up target - unless something else did
5083 already before throwing the exception. */
5084 if (rs->remote_desc != NULL)
5085 remote_unpush_target ();
5086 if (target_async_permitted)
5087 wait_forever_enabled_p = 1;
5088 throw_exception (ex);
5089 }
5090 END_CATCH
5091 }
5092
5093 remote_btrace_reset ();
5094
5095 if (target_async_permitted)
5096 wait_forever_enabled_p = 1;
5097 }
5098
5099 /* Detach the specified process. */
5100
5101 static void
5102 remote_detach_pid (int pid)
5103 {
5104 struct remote_state *rs = get_remote_state ();
5105
5106 if (remote_multi_process_p (rs))
5107 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5108 else
5109 strcpy (rs->buf, "D");
5110
5111 putpkt (rs->buf);
5112 getpkt (&rs->buf, &rs->buf_size, 0);
5113
5114 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5115 ;
5116 else if (rs->buf[0] == '\0')
5117 error (_("Remote doesn't know how to detach"));
5118 else
5119 error (_("Can't detach process."));
5120 }
5121
5122 /* This detaches a program to which we previously attached, using
5123 inferior_ptid to identify the process. After this is done, GDB
5124 can be used to debug some other program. We better not have left
5125 any breakpoints in the target program or it'll die when it hits
5126 one. */
5127
5128 static void
5129 remote_detach_1 (int from_tty, inferior *inf)
5130 {
5131 int pid = ptid_get_pid (inferior_ptid);
5132 struct remote_state *rs = get_remote_state ();
5133 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5134 int is_fork_parent;
5135
5136 if (!target_has_execution)
5137 error (_("No process to detach from."));
5138
5139 target_announce_detach (from_tty);
5140
5141 /* Tell the remote target to detach. */
5142 remote_detach_pid (pid);
5143
5144 /* Exit only if this is the only active inferior. */
5145 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5146 puts_filtered (_("Ending remote debugging.\n"));
5147
5148 /* Check to see if we are detaching a fork parent. Note that if we
5149 are detaching a fork child, tp == NULL. */
5150 is_fork_parent = (tp != NULL
5151 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5152
5153 /* If doing detach-on-fork, we don't mourn, because that will delete
5154 breakpoints that should be available for the followed inferior. */
5155 if (!is_fork_parent)
5156 target_mourn_inferior (inferior_ptid);
5157 else
5158 {
5159 inferior_ptid = null_ptid;
5160 detach_inferior (pid);
5161 }
5162 }
5163
5164 static void
5165 remote_detach (struct target_ops *ops, inferior *inf, int from_tty)
5166 {
5167 remote_detach_1 (from_tty, inf);
5168 }
5169
5170 static void
5171 extended_remote_detach (struct target_ops *ops, inferior *inf, int from_tty)
5172 {
5173 remote_detach_1 (from_tty, inf);
5174 }
5175
5176 /* Target follow-fork function for remote targets. On entry, and
5177 at return, the current inferior is the fork parent.
5178
5179 Note that although this is currently only used for extended-remote,
5180 it is named remote_follow_fork in anticipation of using it for the
5181 remote target as well. */
5182
5183 static int
5184 remote_follow_fork (struct target_ops *ops, int follow_child,
5185 int detach_fork)
5186 {
5187 struct remote_state *rs = get_remote_state ();
5188 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5189
5190 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5191 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5192 {
5193 /* When following the parent and detaching the child, we detach
5194 the child here. For the case of following the child and
5195 detaching the parent, the detach is done in the target-
5196 independent follow fork code in infrun.c. We can't use
5197 target_detach when detaching an unfollowed child because
5198 the client side doesn't know anything about the child. */
5199 if (detach_fork && !follow_child)
5200 {
5201 /* Detach the fork child. */
5202 ptid_t child_ptid;
5203 pid_t child_pid;
5204
5205 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5206 child_pid = ptid_get_pid (child_ptid);
5207
5208 remote_detach_pid (child_pid);
5209 }
5210 }
5211 return 0;
5212 }
5213
5214 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5215 in the program space of the new inferior. On entry and at return the
5216 current inferior is the exec'ing inferior. INF is the new exec'd
5217 inferior, which may be the same as the exec'ing inferior unless
5218 follow-exec-mode is "new". */
5219
5220 static void
5221 remote_follow_exec (struct target_ops *ops,
5222 struct inferior *inf, char *execd_pathname)
5223 {
5224 /* We know that this is a target file name, so if it has the "target:"
5225 prefix we strip it off before saving it in the program space. */
5226 if (is_target_filename (execd_pathname))
5227 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5228
5229 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5230 }
5231
5232 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5233
5234 static void
5235 remote_disconnect (struct target_ops *target, const char *args, int from_tty)
5236 {
5237 if (args)
5238 error (_("Argument given to \"disconnect\" when remotely debugging."));
5239
5240 /* Make sure we unpush even the extended remote targets. Calling
5241 target_mourn_inferior won't unpush, and remote_mourn won't
5242 unpush if there is more than one inferior left. */
5243 unpush_target (target);
5244 generic_mourn_inferior ();
5245
5246 if (from_tty)
5247 puts_filtered ("Ending remote debugging.\n");
5248 }
5249
5250 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5251 be chatty about it. */
5252
5253 static void
5254 extended_remote_attach (struct target_ops *target, const char *args,
5255 int from_tty)
5256 {
5257 struct remote_state *rs = get_remote_state ();
5258 int pid;
5259 char *wait_status = NULL;
5260
5261 pid = parse_pid_to_attach (args);
5262
5263 /* Remote PID can be freely equal to getpid, do not check it here the same
5264 way as in other targets. */
5265
5266 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5267 error (_("This target does not support attaching to a process"));
5268
5269 if (from_tty)
5270 {
5271 char *exec_file = get_exec_file (0);
5272
5273 if (exec_file)
5274 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5275 target_pid_to_str (pid_to_ptid (pid)));
5276 else
5277 printf_unfiltered (_("Attaching to %s\n"),
5278 target_pid_to_str (pid_to_ptid (pid)));
5279
5280 gdb_flush (gdb_stdout);
5281 }
5282
5283 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5284 putpkt (rs->buf);
5285 getpkt (&rs->buf, &rs->buf_size, 0);
5286
5287 switch (packet_ok (rs->buf,
5288 &remote_protocol_packets[PACKET_vAttach]))
5289 {
5290 case PACKET_OK:
5291 if (!target_is_non_stop_p ())
5292 {
5293 /* Save the reply for later. */
5294 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5295 strcpy (wait_status, rs->buf);
5296 }
5297 else if (strcmp (rs->buf, "OK") != 0)
5298 error (_("Attaching to %s failed with: %s"),
5299 target_pid_to_str (pid_to_ptid (pid)),
5300 rs->buf);
5301 break;
5302 case PACKET_UNKNOWN:
5303 error (_("This target does not support attaching to a process"));
5304 default:
5305 error (_("Attaching to %s failed"),
5306 target_pid_to_str (pid_to_ptid (pid)));
5307 }
5308
5309 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5310
5311 inferior_ptid = pid_to_ptid (pid);
5312
5313 if (target_is_non_stop_p ())
5314 {
5315 struct thread_info *thread;
5316
5317 /* Get list of threads. */
5318 remote_update_thread_list (target);
5319
5320 thread = first_thread_of_process (pid);
5321 if (thread)
5322 inferior_ptid = thread->ptid;
5323 else
5324 inferior_ptid = pid_to_ptid (pid);
5325
5326 /* Invalidate our notion of the remote current thread. */
5327 record_currthread (rs, minus_one_ptid);
5328 }
5329 else
5330 {
5331 /* Now, if we have thread information, update inferior_ptid. */
5332 inferior_ptid = remote_current_thread (inferior_ptid);
5333
5334 /* Add the main thread to the thread list. */
5335 add_thread_silent (inferior_ptid);
5336 }
5337
5338 /* Next, if the target can specify a description, read it. We do
5339 this before anything involving memory or registers. */
5340 target_find_description ();
5341
5342 if (!target_is_non_stop_p ())
5343 {
5344 /* Use the previously fetched status. */
5345 gdb_assert (wait_status != NULL);
5346
5347 if (target_can_async_p ())
5348 {
5349 struct notif_event *reply
5350 = remote_notif_parse (&notif_client_stop, wait_status);
5351
5352 push_stop_reply ((struct stop_reply *) reply);
5353
5354 target_async (1);
5355 }
5356 else
5357 {
5358 gdb_assert (wait_status != NULL);
5359 strcpy (rs->buf, wait_status);
5360 rs->cached_wait_status = 1;
5361 }
5362 }
5363 else
5364 gdb_assert (wait_status == NULL);
5365 }
5366
5367 /* Implementation of the to_post_attach method. */
5368
5369 static void
5370 extended_remote_post_attach (struct target_ops *ops, int pid)
5371 {
5372 /* Get text, data & bss offsets. */
5373 get_offsets ();
5374
5375 /* In certain cases GDB might not have had the chance to start
5376 symbol lookup up until now. This could happen if the debugged
5377 binary is not using shared libraries, the vsyscall page is not
5378 present (on Linux) and the binary itself hadn't changed since the
5379 debugging process was started. */
5380 if (symfile_objfile != NULL)
5381 remote_check_symbols();
5382 }
5383
5384 \f
5385 /* Check for the availability of vCont. This function should also check
5386 the response. */
5387
5388 static void
5389 remote_vcont_probe (struct remote_state *rs)
5390 {
5391 char *buf;
5392
5393 strcpy (rs->buf, "vCont?");
5394 putpkt (rs->buf);
5395 getpkt (&rs->buf, &rs->buf_size, 0);
5396 buf = rs->buf;
5397
5398 /* Make sure that the features we assume are supported. */
5399 if (startswith (buf, "vCont"))
5400 {
5401 char *p = &buf[5];
5402 int support_c, support_C;
5403
5404 rs->supports_vCont.s = 0;
5405 rs->supports_vCont.S = 0;
5406 support_c = 0;
5407 support_C = 0;
5408 rs->supports_vCont.t = 0;
5409 rs->supports_vCont.r = 0;
5410 while (p && *p == ';')
5411 {
5412 p++;
5413 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5414 rs->supports_vCont.s = 1;
5415 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5416 rs->supports_vCont.S = 1;
5417 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5418 support_c = 1;
5419 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5420 support_C = 1;
5421 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5422 rs->supports_vCont.t = 1;
5423 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5424 rs->supports_vCont.r = 1;
5425
5426 p = strchr (p, ';');
5427 }
5428
5429 /* If c, and C are not all supported, we can't use vCont. Clearing
5430 BUF will make packet_ok disable the packet. */
5431 if (!support_c || !support_C)
5432 buf[0] = 0;
5433 }
5434
5435 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5436 }
5437
5438 /* Helper function for building "vCont" resumptions. Write a
5439 resumption to P. ENDP points to one-passed-the-end of the buffer
5440 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5441 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5442 resumed thread should be single-stepped and/or signalled. If PTID
5443 equals minus_one_ptid, then all threads are resumed; if PTID
5444 represents a process, then all threads of the process are resumed;
5445 the thread to be stepped and/or signalled is given in the global
5446 INFERIOR_PTID. */
5447
5448 static char *
5449 append_resumption (char *p, char *endp,
5450 ptid_t ptid, int step, enum gdb_signal siggnal)
5451 {
5452 struct remote_state *rs = get_remote_state ();
5453
5454 if (step && siggnal != GDB_SIGNAL_0)
5455 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5456 else if (step
5457 /* GDB is willing to range step. */
5458 && use_range_stepping
5459 /* Target supports range stepping. */
5460 && rs->supports_vCont.r
5461 /* We don't currently support range stepping multiple
5462 threads with a wildcard (though the protocol allows it,
5463 so stubs shouldn't make an active effort to forbid
5464 it). */
5465 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5466 {
5467 struct thread_info *tp;
5468
5469 if (ptid_equal (ptid, minus_one_ptid))
5470 {
5471 /* If we don't know about the target thread's tid, then
5472 we're resuming magic_null_ptid (see caller). */
5473 tp = find_thread_ptid (magic_null_ptid);
5474 }
5475 else
5476 tp = find_thread_ptid (ptid);
5477 gdb_assert (tp != NULL);
5478
5479 if (tp->control.may_range_step)
5480 {
5481 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5482
5483 p += xsnprintf (p, endp - p, ";r%s,%s",
5484 phex_nz (tp->control.step_range_start,
5485 addr_size),
5486 phex_nz (tp->control.step_range_end,
5487 addr_size));
5488 }
5489 else
5490 p += xsnprintf (p, endp - p, ";s");
5491 }
5492 else if (step)
5493 p += xsnprintf (p, endp - p, ";s");
5494 else if (siggnal != GDB_SIGNAL_0)
5495 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5496 else
5497 p += xsnprintf (p, endp - p, ";c");
5498
5499 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5500 {
5501 ptid_t nptid;
5502
5503 /* All (-1) threads of process. */
5504 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5505
5506 p += xsnprintf (p, endp - p, ":");
5507 p = write_ptid (p, endp, nptid);
5508 }
5509 else if (!ptid_equal (ptid, minus_one_ptid))
5510 {
5511 p += xsnprintf (p, endp - p, ":");
5512 p = write_ptid (p, endp, ptid);
5513 }
5514
5515 return p;
5516 }
5517
5518 /* Clear the thread's private info on resume. */
5519
5520 static void
5521 resume_clear_thread_private_info (struct thread_info *thread)
5522 {
5523 if (thread->priv != NULL)
5524 {
5525 remote_thread_info *priv = get_remote_thread_info (thread);
5526
5527 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5528 priv->watch_data_address = 0;
5529 }
5530 }
5531
5532 /* Append a vCont continue-with-signal action for threads that have a
5533 non-zero stop signal. */
5534
5535 static char *
5536 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5537 {
5538 struct thread_info *thread;
5539
5540 ALL_NON_EXITED_THREADS (thread)
5541 if (ptid_match (thread->ptid, ptid)
5542 && !ptid_equal (inferior_ptid, thread->ptid)
5543 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5544 {
5545 p = append_resumption (p, endp, thread->ptid,
5546 0, thread->suspend.stop_signal);
5547 thread->suspend.stop_signal = GDB_SIGNAL_0;
5548 resume_clear_thread_private_info (thread);
5549 }
5550
5551 return p;
5552 }
5553
5554 /* Set the target running, using the packets that use Hc
5555 (c/s/C/S). */
5556
5557 static void
5558 remote_resume_with_hc (struct target_ops *ops,
5559 ptid_t ptid, int step, enum gdb_signal siggnal)
5560 {
5561 struct remote_state *rs = get_remote_state ();
5562 struct thread_info *thread;
5563 char *buf;
5564
5565 rs->last_sent_signal = siggnal;
5566 rs->last_sent_step = step;
5567
5568 /* The c/s/C/S resume packets use Hc, so set the continue
5569 thread. */
5570 if (ptid_equal (ptid, minus_one_ptid))
5571 set_continue_thread (any_thread_ptid);
5572 else
5573 set_continue_thread (ptid);
5574
5575 ALL_NON_EXITED_THREADS (thread)
5576 resume_clear_thread_private_info (thread);
5577
5578 buf = rs->buf;
5579 if (execution_direction == EXEC_REVERSE)
5580 {
5581 /* We don't pass signals to the target in reverse exec mode. */
5582 if (info_verbose && siggnal != GDB_SIGNAL_0)
5583 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5584 siggnal);
5585
5586 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5587 error (_("Remote reverse-step not supported."));
5588 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5589 error (_("Remote reverse-continue not supported."));
5590
5591 strcpy (buf, step ? "bs" : "bc");
5592 }
5593 else if (siggnal != GDB_SIGNAL_0)
5594 {
5595 buf[0] = step ? 'S' : 'C';
5596 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5597 buf[2] = tohex (((int) siggnal) & 0xf);
5598 buf[3] = '\0';
5599 }
5600 else
5601 strcpy (buf, step ? "s" : "c");
5602
5603 putpkt (buf);
5604 }
5605
5606 /* Resume the remote inferior by using a "vCont" packet. The thread
5607 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5608 resumed thread should be single-stepped and/or signalled. If PTID
5609 equals minus_one_ptid, then all threads are resumed; the thread to
5610 be stepped and/or signalled is given in the global INFERIOR_PTID.
5611 This function returns non-zero iff it resumes the inferior.
5612
5613 This function issues a strict subset of all possible vCont commands
5614 at the moment. */
5615
5616 static int
5617 remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5618 {
5619 struct remote_state *rs = get_remote_state ();
5620 char *p;
5621 char *endp;
5622
5623 /* No reverse execution actions defined for vCont. */
5624 if (execution_direction == EXEC_REVERSE)
5625 return 0;
5626
5627 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5628 remote_vcont_probe (rs);
5629
5630 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5631 return 0;
5632
5633 p = rs->buf;
5634 endp = rs->buf + get_remote_packet_size ();
5635
5636 /* If we could generate a wider range of packets, we'd have to worry
5637 about overflowing BUF. Should there be a generic
5638 "multi-part-packet" packet? */
5639
5640 p += xsnprintf (p, endp - p, "vCont");
5641
5642 if (ptid_equal (ptid, magic_null_ptid))
5643 {
5644 /* MAGIC_NULL_PTID means that we don't have any active threads,
5645 so we don't have any TID numbers the inferior will
5646 understand. Make sure to only send forms that do not specify
5647 a TID. */
5648 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5649 }
5650 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5651 {
5652 /* Resume all threads (of all processes, or of a single
5653 process), with preference for INFERIOR_PTID. This assumes
5654 inferior_ptid belongs to the set of all threads we are about
5655 to resume. */
5656 if (step || siggnal != GDB_SIGNAL_0)
5657 {
5658 /* Step inferior_ptid, with or without signal. */
5659 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5660 }
5661
5662 /* Also pass down any pending signaled resumption for other
5663 threads not the current. */
5664 p = append_pending_thread_resumptions (p, endp, ptid);
5665
5666 /* And continue others without a signal. */
5667 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5668 }
5669 else
5670 {
5671 /* Scheduler locking; resume only PTID. */
5672 append_resumption (p, endp, ptid, step, siggnal);
5673 }
5674
5675 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5676 putpkt (rs->buf);
5677
5678 if (target_is_non_stop_p ())
5679 {
5680 /* In non-stop, the stub replies to vCont with "OK". The stop
5681 reply will be reported asynchronously by means of a `%Stop'
5682 notification. */
5683 getpkt (&rs->buf, &rs->buf_size, 0);
5684 if (strcmp (rs->buf, "OK") != 0)
5685 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5686 }
5687
5688 return 1;
5689 }
5690
5691 /* Tell the remote machine to resume. */
5692
5693 static void
5694 remote_resume (struct target_ops *ops,
5695 ptid_t ptid, int step, enum gdb_signal siggnal)
5696 {
5697 struct remote_state *rs = get_remote_state ();
5698
5699 /* When connected in non-stop mode, the core resumes threads
5700 individually. Resuming remote threads directly in target_resume
5701 would thus result in sending one packet per thread. Instead, to
5702 minimize roundtrip latency, here we just store the resume
5703 request; the actual remote resumption will be done in
5704 target_commit_resume / remote_commit_resume, where we'll be able
5705 to do vCont action coalescing. */
5706 if (target_is_non_stop_p () && execution_direction != EXEC_REVERSE)
5707 {
5708 remote_thread_info *remote_thr;
5709
5710 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
5711 remote_thr = get_remote_thread_info (inferior_ptid);
5712 else
5713 remote_thr = get_remote_thread_info (ptid);
5714
5715 remote_thr->last_resume_step = step;
5716 remote_thr->last_resume_sig = siggnal;
5717 return;
5718 }
5719
5720 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
5721 (explained in remote-notif.c:handle_notification) so
5722 remote_notif_process is not called. We need find a place where
5723 it is safe to start a 'vNotif' sequence. It is good to do it
5724 before resuming inferior, because inferior was stopped and no RSP
5725 traffic at that moment. */
5726 if (!target_is_non_stop_p ())
5727 remote_notif_process (rs->notif_state, &notif_client_stop);
5728
5729 rs->last_resume_exec_dir = execution_direction;
5730
5731 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
5732 if (!remote_resume_with_vcont (ptid, step, siggnal))
5733 remote_resume_with_hc (ops, ptid, step, siggnal);
5734
5735 /* We are about to start executing the inferior, let's register it
5736 with the event loop. NOTE: this is the one place where all the
5737 execution commands end up. We could alternatively do this in each
5738 of the execution commands in infcmd.c. */
5739 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5740 into infcmd.c in order to allow inferior function calls to work
5741 NOT asynchronously. */
5742 if (target_can_async_p ())
5743 target_async (1);
5744
5745 /* We've just told the target to resume. The remote server will
5746 wait for the inferior to stop, and then send a stop reply. In
5747 the mean time, we can't start another command/query ourselves
5748 because the stub wouldn't be ready to process it. This applies
5749 only to the base all-stop protocol, however. In non-stop (which
5750 only supports vCont), the stub replies with an "OK", and is
5751 immediate able to process further serial input. */
5752 if (!target_is_non_stop_p ())
5753 rs->waiting_for_stop_reply = 1;
5754 }
5755
5756 static void check_pending_events_prevent_wildcard_vcont
5757 (int *may_global_wildcard_vcont);
5758 static int is_pending_fork_parent_thread (struct thread_info *thread);
5759
5760 /* Private per-inferior info for target remote processes. */
5761
5762 struct remote_inferior : public private_inferior
5763 {
5764 /* Whether we can send a wildcard vCont for this process. */
5765 bool may_wildcard_vcont = true;
5766 };
5767
5768 /* Get the remote private inferior data associated to INF. */
5769
5770 static remote_inferior *
5771 get_remote_inferior (inferior *inf)
5772 {
5773 if (inf->priv == NULL)
5774 inf->priv.reset (new remote_inferior);
5775
5776 return static_cast<remote_inferior *> (inf->priv.get ());
5777 }
5778
5779 /* Structure used to track the construction of a vCont packet in the
5780 outgoing packet buffer. This is used to send multiple vCont
5781 packets if we have more actions than would fit a single packet. */
5782
5783 struct vcont_builder
5784 {
5785 /* Pointer to the first action. P points here if no action has been
5786 appended yet. */
5787 char *first_action;
5788
5789 /* Where the next action will be appended. */
5790 char *p;
5791
5792 /* The end of the buffer. Must never write past this. */
5793 char *endp;
5794 };
5795
5796 /* Prepare the outgoing buffer for a new vCont packet. */
5797
5798 static void
5799 vcont_builder_restart (struct vcont_builder *builder)
5800 {
5801 struct remote_state *rs = get_remote_state ();
5802
5803 builder->p = rs->buf;
5804 builder->endp = rs->buf + get_remote_packet_size ();
5805 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
5806 builder->first_action = builder->p;
5807 }
5808
5809 /* If the vCont packet being built has any action, send it to the
5810 remote end. */
5811
5812 static void
5813 vcont_builder_flush (struct vcont_builder *builder)
5814 {
5815 struct remote_state *rs;
5816
5817 if (builder->p == builder->first_action)
5818 return;
5819
5820 rs = get_remote_state ();
5821 putpkt (rs->buf);
5822 getpkt (&rs->buf, &rs->buf_size, 0);
5823 if (strcmp (rs->buf, "OK") != 0)
5824 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5825 }
5826
5827 /* The largest action is range-stepping, with its two addresses. This
5828 is more than sufficient. If a new, bigger action is created, it'll
5829 quickly trigger a failed assertion in append_resumption (and we'll
5830 just bump this). */
5831 #define MAX_ACTION_SIZE 200
5832
5833 /* Append a new vCont action in the outgoing packet being built. If
5834 the action doesn't fit the packet along with previous actions, push
5835 what we've got so far to the remote end and start over a new vCont
5836 packet (with the new action). */
5837
5838 static void
5839 vcont_builder_push_action (struct vcont_builder *builder,
5840 ptid_t ptid, int step, enum gdb_signal siggnal)
5841 {
5842 char buf[MAX_ACTION_SIZE + 1];
5843 char *endp;
5844 size_t rsize;
5845
5846 endp = append_resumption (buf, buf + sizeof (buf),
5847 ptid, step, siggnal);
5848
5849 /* Check whether this new action would fit in the vCont packet along
5850 with previous actions. If not, send what we've got so far and
5851 start a new vCont packet. */
5852 rsize = endp - buf;
5853 if (rsize > builder->endp - builder->p)
5854 {
5855 vcont_builder_flush (builder);
5856 vcont_builder_restart (builder);
5857
5858 /* Should now fit. */
5859 gdb_assert (rsize <= builder->endp - builder->p);
5860 }
5861
5862 memcpy (builder->p, buf, rsize);
5863 builder->p += rsize;
5864 *builder->p = '\0';
5865 }
5866
5867 /* to_commit_resume implementation. */
5868
5869 static void
5870 remote_commit_resume (struct target_ops *ops)
5871 {
5872 struct inferior *inf;
5873 struct thread_info *tp;
5874 int any_process_wildcard;
5875 int may_global_wildcard_vcont;
5876 struct vcont_builder vcont_builder;
5877
5878 /* If connected in all-stop mode, we'd send the remote resume
5879 request directly from remote_resume. Likewise if
5880 reverse-debugging, as there are no defined vCont actions for
5881 reverse execution. */
5882 if (!target_is_non_stop_p () || execution_direction == EXEC_REVERSE)
5883 return;
5884
5885 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
5886 instead of resuming all threads of each process individually.
5887 However, if any thread of a process must remain halted, we can't
5888 send wildcard resumes and must send one action per thread.
5889
5890 Care must be taken to not resume threads/processes the server
5891 side already told us are stopped, but the core doesn't know about
5892 yet, because the events are still in the vStopped notification
5893 queue. For example:
5894
5895 #1 => vCont s:p1.1;c
5896 #2 <= OK
5897 #3 <= %Stopped T05 p1.1
5898 #4 => vStopped
5899 #5 <= T05 p1.2
5900 #6 => vStopped
5901 #7 <= OK
5902 #8 (infrun handles the stop for p1.1 and continues stepping)
5903 #9 => vCont s:p1.1;c
5904
5905 The last vCont above would resume thread p1.2 by mistake, because
5906 the server has no idea that the event for p1.2 had not been
5907 handled yet.
5908
5909 The server side must similarly ignore resume actions for the
5910 thread that has a pending %Stopped notification (and any other
5911 threads with events pending), until GDB acks the notification
5912 with vStopped. Otherwise, e.g., the following case is
5913 mishandled:
5914
5915 #1 => g (or any other packet)
5916 #2 <= [registers]
5917 #3 <= %Stopped T05 p1.2
5918 #4 => vCont s:p1.1;c
5919 #5 <= OK
5920
5921 Above, the server must not resume thread p1.2. GDB can't know
5922 that p1.2 stopped until it acks the %Stopped notification, and
5923 since from GDB's perspective all threads should be running, it
5924 sends a "c" action.
5925
5926 Finally, special care must also be given to handling fork/vfork
5927 events. A (v)fork event actually tells us that two processes
5928 stopped -- the parent and the child. Until we follow the fork,
5929 we must not resume the child. Therefore, if we have a pending
5930 fork follow, we must not send a global wildcard resume action
5931 (vCont;c). We can still send process-wide wildcards though. */
5932
5933 /* Start by assuming a global wildcard (vCont;c) is possible. */
5934 may_global_wildcard_vcont = 1;
5935
5936 /* And assume every process is individually wildcard-able too. */
5937 ALL_NON_EXITED_INFERIORS (inf)
5938 {
5939 remote_inferior *priv = get_remote_inferior (inf);
5940
5941 priv->may_wildcard_vcont = true;
5942 }
5943
5944 /* Check for any pending events (not reported or processed yet) and
5945 disable process and global wildcard resumes appropriately. */
5946 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
5947
5948 ALL_NON_EXITED_THREADS (tp)
5949 {
5950 /* If a thread of a process is not meant to be resumed, then we
5951 can't wildcard that process. */
5952 if (!tp->executing)
5953 {
5954 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
5955
5956 /* And if we can't wildcard a process, we can't wildcard
5957 everything either. */
5958 may_global_wildcard_vcont = 0;
5959 continue;
5960 }
5961
5962 /* If a thread is the parent of an unfollowed fork, then we
5963 can't do a global wildcard, as that would resume the fork
5964 child. */
5965 if (is_pending_fork_parent_thread (tp))
5966 may_global_wildcard_vcont = 0;
5967 }
5968
5969 /* Now let's build the vCont packet(s). Actions must be appended
5970 from narrower to wider scopes (thread -> process -> global). If
5971 we end up with too many actions for a single packet vcont_builder
5972 flushes the current vCont packet to the remote side and starts a
5973 new one. */
5974 vcont_builder_restart (&vcont_builder);
5975
5976 /* Threads first. */
5977 ALL_NON_EXITED_THREADS (tp)
5978 {
5979 remote_thread_info *remote_thr = get_remote_thread_info (tp);
5980
5981 if (!tp->executing || remote_thr->vcont_resumed)
5982 continue;
5983
5984 gdb_assert (!thread_is_in_step_over_chain (tp));
5985
5986 if (!remote_thr->last_resume_step
5987 && remote_thr->last_resume_sig == GDB_SIGNAL_0
5988 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
5989 {
5990 /* We'll send a wildcard resume instead. */
5991 remote_thr->vcont_resumed = 1;
5992 continue;
5993 }
5994
5995 vcont_builder_push_action (&vcont_builder, tp->ptid,
5996 remote_thr->last_resume_step,
5997 remote_thr->last_resume_sig);
5998 remote_thr->vcont_resumed = 1;
5999 }
6000
6001 /* Now check whether we can send any process-wide wildcard. This is
6002 to avoid sending a global wildcard in the case nothing is
6003 supposed to be resumed. */
6004 any_process_wildcard = 0;
6005
6006 ALL_NON_EXITED_INFERIORS (inf)
6007 {
6008 if (get_remote_inferior (inf)->may_wildcard_vcont)
6009 {
6010 any_process_wildcard = 1;
6011 break;
6012 }
6013 }
6014
6015 if (any_process_wildcard)
6016 {
6017 /* If all processes are wildcard-able, then send a single "c"
6018 action, otherwise, send an "all (-1) threads of process"
6019 continue action for each running process, if any. */
6020 if (may_global_wildcard_vcont)
6021 {
6022 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6023 0, GDB_SIGNAL_0);
6024 }
6025 else
6026 {
6027 ALL_NON_EXITED_INFERIORS (inf)
6028 {
6029 if (get_remote_inferior (inf)->may_wildcard_vcont)
6030 {
6031 vcont_builder_push_action (&vcont_builder,
6032 pid_to_ptid (inf->pid),
6033 0, GDB_SIGNAL_0);
6034 }
6035 }
6036 }
6037 }
6038
6039 vcont_builder_flush (&vcont_builder);
6040 }
6041
6042 \f
6043
6044 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6045 thread, all threads of a remote process, or all threads of all
6046 processes. */
6047
6048 static void
6049 remote_stop_ns (ptid_t ptid)
6050 {
6051 struct remote_state *rs = get_remote_state ();
6052 char *p = rs->buf;
6053 char *endp = rs->buf + get_remote_packet_size ();
6054
6055 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6056 remote_vcont_probe (rs);
6057
6058 if (!rs->supports_vCont.t)
6059 error (_("Remote server does not support stopping threads"));
6060
6061 if (ptid_equal (ptid, minus_one_ptid)
6062 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6063 p += xsnprintf (p, endp - p, "vCont;t");
6064 else
6065 {
6066 ptid_t nptid;
6067
6068 p += xsnprintf (p, endp - p, "vCont;t:");
6069
6070 if (ptid_is_pid (ptid))
6071 /* All (-1) threads of process. */
6072 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6073 else
6074 {
6075 /* Small optimization: if we already have a stop reply for
6076 this thread, no use in telling the stub we want this
6077 stopped. */
6078 if (peek_stop_reply (ptid))
6079 return;
6080
6081 nptid = ptid;
6082 }
6083
6084 write_ptid (p, endp, nptid);
6085 }
6086
6087 /* In non-stop, we get an immediate OK reply. The stop reply will
6088 come in asynchronously by notification. */
6089 putpkt (rs->buf);
6090 getpkt (&rs->buf, &rs->buf_size, 0);
6091 if (strcmp (rs->buf, "OK") != 0)
6092 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6093 }
6094
6095 /* All-stop version of target_interrupt. Sends a break or a ^C to
6096 interrupt the remote target. It is undefined which thread of which
6097 process reports the interrupt. */
6098
6099 static void
6100 remote_interrupt_as (void)
6101 {
6102 struct remote_state *rs = get_remote_state ();
6103
6104 rs->ctrlc_pending_p = 1;
6105
6106 /* If the inferior is stopped already, but the core didn't know
6107 about it yet, just ignore the request. The cached wait status
6108 will be collected in remote_wait. */
6109 if (rs->cached_wait_status)
6110 return;
6111
6112 /* Send interrupt_sequence to remote target. */
6113 send_interrupt_sequence ();
6114 }
6115
6116 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6117 the remote target. It is undefined which thread of which process
6118 reports the interrupt. Throws an error if the packet is not
6119 supported by the server. */
6120
6121 static void
6122 remote_interrupt_ns (void)
6123 {
6124 struct remote_state *rs = get_remote_state ();
6125 char *p = rs->buf;
6126 char *endp = rs->buf + get_remote_packet_size ();
6127
6128 xsnprintf (p, endp - p, "vCtrlC");
6129
6130 /* In non-stop, we get an immediate OK reply. The stop reply will
6131 come in asynchronously by notification. */
6132 putpkt (rs->buf);
6133 getpkt (&rs->buf, &rs->buf_size, 0);
6134
6135 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6136 {
6137 case PACKET_OK:
6138 break;
6139 case PACKET_UNKNOWN:
6140 error (_("No support for interrupting the remote target."));
6141 case PACKET_ERROR:
6142 error (_("Interrupting target failed: %s"), rs->buf);
6143 }
6144 }
6145
6146 /* Implement the to_stop function for the remote targets. */
6147
6148 static void
6149 remote_stop (struct target_ops *self, ptid_t ptid)
6150 {
6151 if (remote_debug)
6152 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6153
6154 if (target_is_non_stop_p ())
6155 remote_stop_ns (ptid);
6156 else
6157 {
6158 /* We don't currently have a way to transparently pause the
6159 remote target in all-stop mode. Interrupt it instead. */
6160 remote_interrupt_as ();
6161 }
6162 }
6163
6164 /* Implement the to_interrupt function for the remote targets. */
6165
6166 static void
6167 remote_interrupt (struct target_ops *self)
6168 {
6169 if (remote_debug)
6170 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6171
6172 if (target_is_non_stop_p ())
6173 remote_interrupt_ns ();
6174 else
6175 remote_interrupt_as ();
6176 }
6177
6178 /* Implement the to_pass_ctrlc function for the remote targets. */
6179
6180 static void
6181 remote_pass_ctrlc (struct target_ops *self)
6182 {
6183 struct remote_state *rs = get_remote_state ();
6184
6185 if (remote_debug)
6186 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6187
6188 /* If we're starting up, we're not fully synced yet. Quit
6189 immediately. */
6190 if (rs->starting_up)
6191 quit ();
6192 /* If ^C has already been sent once, offer to disconnect. */
6193 else if (rs->ctrlc_pending_p)
6194 interrupt_query ();
6195 else
6196 target_interrupt ();
6197 }
6198
6199 /* Ask the user what to do when an interrupt is received. */
6200
6201 static void
6202 interrupt_query (void)
6203 {
6204 struct remote_state *rs = get_remote_state ();
6205
6206 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6207 {
6208 if (query (_("The target is not responding to interrupt requests.\n"
6209 "Stop debugging it? ")))
6210 {
6211 remote_unpush_target ();
6212 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6213 }
6214 }
6215 else
6216 {
6217 if (query (_("Interrupted while waiting for the program.\n"
6218 "Give up waiting? ")))
6219 quit ();
6220 }
6221 }
6222
6223 /* Enable/disable target terminal ownership. Most targets can use
6224 terminal groups to control terminal ownership. Remote targets are
6225 different in that explicit transfer of ownership to/from GDB/target
6226 is required. */
6227
6228 static void
6229 remote_terminal_inferior (struct target_ops *self)
6230 {
6231 /* NOTE: At this point we could also register our selves as the
6232 recipient of all input. Any characters typed could then be
6233 passed on down to the target. */
6234 }
6235
6236 static void
6237 remote_terminal_ours (struct target_ops *self)
6238 {
6239 }
6240
6241 static void
6242 remote_console_output (char *msg)
6243 {
6244 char *p;
6245
6246 for (p = msg; p[0] && p[1]; p += 2)
6247 {
6248 char tb[2];
6249 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6250
6251 tb[0] = c;
6252 tb[1] = 0;
6253 fputs_unfiltered (tb, gdb_stdtarg);
6254 }
6255 gdb_flush (gdb_stdtarg);
6256 }
6257
6258 DEF_VEC_O(cached_reg_t);
6259
6260 typedef struct stop_reply
6261 {
6262 struct notif_event base;
6263
6264 /* The identifier of the thread about this event */
6265 ptid_t ptid;
6266
6267 /* The remote state this event is associated with. When the remote
6268 connection, represented by a remote_state object, is closed,
6269 all the associated stop_reply events should be released. */
6270 struct remote_state *rs;
6271
6272 struct target_waitstatus ws;
6273
6274 /* The architecture associated with the expedited registers. */
6275 gdbarch *arch;
6276
6277 /* Expedited registers. This makes remote debugging a bit more
6278 efficient for those targets that provide critical registers as
6279 part of their normal status mechanism (as another roundtrip to
6280 fetch them is avoided). */
6281 VEC(cached_reg_t) *regcache;
6282
6283 enum target_stop_reason stop_reason;
6284
6285 CORE_ADDR watch_data_address;
6286
6287 int core;
6288 } *stop_reply_p;
6289
6290 DECLARE_QUEUE_P (stop_reply_p);
6291 DEFINE_QUEUE_P (stop_reply_p);
6292 /* The list of already fetched and acknowledged stop events. This
6293 queue is used for notification Stop, and other notifications
6294 don't need queue for their events, because the notification events
6295 of Stop can't be consumed immediately, so that events should be
6296 queued first, and be consumed by remote_wait_{ns,as} one per
6297 time. Other notifications can consume their events immediately,
6298 so queue is not needed for them. */
6299 static QUEUE (stop_reply_p) *stop_reply_queue;
6300
6301 static void
6302 stop_reply_xfree (struct stop_reply *r)
6303 {
6304 notif_event_xfree ((struct notif_event *) r);
6305 }
6306
6307 /* Return the length of the stop reply queue. */
6308
6309 static int
6310 stop_reply_queue_length (void)
6311 {
6312 return QUEUE_length (stop_reply_p, stop_reply_queue);
6313 }
6314
6315 static void
6316 remote_notif_stop_parse (struct notif_client *self, char *buf,
6317 struct notif_event *event)
6318 {
6319 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6320 }
6321
6322 static void
6323 remote_notif_stop_ack (struct notif_client *self, char *buf,
6324 struct notif_event *event)
6325 {
6326 struct stop_reply *stop_reply = (struct stop_reply *) event;
6327
6328 /* acknowledge */
6329 putpkt (self->ack_command);
6330
6331 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6332 /* We got an unknown stop reply. */
6333 error (_("Unknown stop reply"));
6334
6335 push_stop_reply (stop_reply);
6336 }
6337
6338 static int
6339 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6340 {
6341 /* We can't get pending events in remote_notif_process for
6342 notification stop, and we have to do this in remote_wait_ns
6343 instead. If we fetch all queued events from stub, remote stub
6344 may exit and we have no chance to process them back in
6345 remote_wait_ns. */
6346 mark_async_event_handler (remote_async_inferior_event_token);
6347 return 0;
6348 }
6349
6350 static void
6351 stop_reply_dtr (struct notif_event *event)
6352 {
6353 struct stop_reply *r = (struct stop_reply *) event;
6354 cached_reg_t *reg;
6355 int ix;
6356
6357 for (ix = 0;
6358 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6359 ix++)
6360 xfree (reg->data);
6361
6362 VEC_free (cached_reg_t, r->regcache);
6363 }
6364
6365 static struct notif_event *
6366 remote_notif_stop_alloc_reply (void)
6367 {
6368 /* We cast to a pointer to the "base class". */
6369 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6370
6371 r->dtr = stop_reply_dtr;
6372
6373 return r;
6374 }
6375
6376 /* A client of notification Stop. */
6377
6378 struct notif_client notif_client_stop =
6379 {
6380 "Stop",
6381 "vStopped",
6382 remote_notif_stop_parse,
6383 remote_notif_stop_ack,
6384 remote_notif_stop_can_get_pending_events,
6385 remote_notif_stop_alloc_reply,
6386 REMOTE_NOTIF_STOP,
6387 };
6388
6389 /* A parameter to pass data in and out. */
6390
6391 struct queue_iter_param
6392 {
6393 void *input;
6394 struct stop_reply *output;
6395 };
6396
6397 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6398 the pid of the process that owns the threads we want to check, or
6399 -1 if we want to check all threads. */
6400
6401 static int
6402 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6403 ptid_t thread_ptid)
6404 {
6405 if (ws->kind == TARGET_WAITKIND_FORKED
6406 || ws->kind == TARGET_WAITKIND_VFORKED)
6407 {
6408 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6409 return 1;
6410 }
6411
6412 return 0;
6413 }
6414
6415 /* Return the thread's pending status used to determine whether the
6416 thread is a fork parent stopped at a fork event. */
6417
6418 static struct target_waitstatus *
6419 thread_pending_fork_status (struct thread_info *thread)
6420 {
6421 if (thread->suspend.waitstatus_pending_p)
6422 return &thread->suspend.waitstatus;
6423 else
6424 return &thread->pending_follow;
6425 }
6426
6427 /* Determine if THREAD is a pending fork parent thread. */
6428
6429 static int
6430 is_pending_fork_parent_thread (struct thread_info *thread)
6431 {
6432 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6433 int pid = -1;
6434
6435 return is_pending_fork_parent (ws, pid, thread->ptid);
6436 }
6437
6438 /* Check whether EVENT is a fork event, and if it is, remove the
6439 fork child from the context list passed in DATA. */
6440
6441 static int
6442 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6443 QUEUE_ITER (stop_reply_p) *iter,
6444 stop_reply_p event,
6445 void *data)
6446 {
6447 struct queue_iter_param *param = (struct queue_iter_param *) data;
6448 struct threads_listing_context *context
6449 = (struct threads_listing_context *) param->input;
6450
6451 if (event->ws.kind == TARGET_WAITKIND_FORKED
6452 || event->ws.kind == TARGET_WAITKIND_VFORKED
6453 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6454 context->remove_thread (event->ws.value.related_pid);
6455
6456 return 1;
6457 }
6458
6459 /* If CONTEXT contains any fork child threads that have not been
6460 reported yet, remove them from the CONTEXT list. If such a
6461 thread exists it is because we are stopped at a fork catchpoint
6462 and have not yet called follow_fork, which will set up the
6463 host-side data structures for the new process. */
6464
6465 static void
6466 remove_new_fork_children (struct threads_listing_context *context)
6467 {
6468 struct thread_info * thread;
6469 int pid = -1;
6470 struct notif_client *notif = &notif_client_stop;
6471 struct queue_iter_param param;
6472
6473 /* For any threads stopped at a fork event, remove the corresponding
6474 fork child threads from the CONTEXT list. */
6475 ALL_NON_EXITED_THREADS (thread)
6476 {
6477 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6478
6479 if (is_pending_fork_parent (ws, pid, thread->ptid))
6480 context->remove_thread (ws->value.related_pid);
6481 }
6482
6483 /* Check for any pending fork events (not reported or processed yet)
6484 in process PID and remove those fork child threads from the
6485 CONTEXT list as well. */
6486 remote_notif_get_pending_events (notif);
6487 param.input = context;
6488 param.output = NULL;
6489 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6490 remove_child_of_pending_fork, &param);
6491 }
6492
6493 /* Check whether EVENT would prevent a global or process wildcard
6494 vCont action. */
6495
6496 static int
6497 check_pending_event_prevents_wildcard_vcont_callback
6498 (QUEUE (stop_reply_p) *q,
6499 QUEUE_ITER (stop_reply_p) *iter,
6500 stop_reply_p event,
6501 void *data)
6502 {
6503 struct inferior *inf;
6504 int *may_global_wildcard_vcont = (int *) data;
6505
6506 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6507 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6508 return 1;
6509
6510 if (event->ws.kind == TARGET_WAITKIND_FORKED
6511 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6512 *may_global_wildcard_vcont = 0;
6513
6514 inf = find_inferior_ptid (event->ptid);
6515
6516 /* This may be the first time we heard about this process.
6517 Regardless, we must not do a global wildcard resume, otherwise
6518 we'd resume this process too. */
6519 *may_global_wildcard_vcont = 0;
6520 if (inf != NULL)
6521 get_remote_inferior (inf)->may_wildcard_vcont = false;
6522
6523 return 1;
6524 }
6525
6526 /* Check whether any event pending in the vStopped queue would prevent
6527 a global or process wildcard vCont action. Clear
6528 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6529 and clear the event inferior's may_wildcard_vcont flag if we can't
6530 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6531
6532 static void
6533 check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6534 {
6535 struct notif_client *notif = &notif_client_stop;
6536
6537 remote_notif_get_pending_events (notif);
6538 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6539 check_pending_event_prevents_wildcard_vcont_callback,
6540 may_global_wildcard);
6541 }
6542
6543 /* Remove stop replies in the queue if its pid is equal to the given
6544 inferior's pid. */
6545
6546 static int
6547 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6548 QUEUE_ITER (stop_reply_p) *iter,
6549 stop_reply_p event,
6550 void *data)
6551 {
6552 struct queue_iter_param *param = (struct queue_iter_param *) data;
6553 struct inferior *inf = (struct inferior *) param->input;
6554
6555 if (ptid_get_pid (event->ptid) == inf->pid)
6556 {
6557 stop_reply_xfree (event);
6558 QUEUE_remove_elem (stop_reply_p, q, iter);
6559 }
6560
6561 return 1;
6562 }
6563
6564 /* Discard all pending stop replies of inferior INF. */
6565
6566 static void
6567 discard_pending_stop_replies (struct inferior *inf)
6568 {
6569 struct queue_iter_param param;
6570 struct stop_reply *reply;
6571 struct remote_state *rs = get_remote_state ();
6572 struct remote_notif_state *rns = rs->notif_state;
6573
6574 /* This function can be notified when an inferior exists. When the
6575 target is not remote, the notification state is NULL. */
6576 if (rs->remote_desc == NULL)
6577 return;
6578
6579 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6580
6581 /* Discard the in-flight notification. */
6582 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6583 {
6584 stop_reply_xfree (reply);
6585 rns->pending_event[notif_client_stop.id] = NULL;
6586 }
6587
6588 param.input = inf;
6589 param.output = NULL;
6590 /* Discard the stop replies we have already pulled with
6591 vStopped. */
6592 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6593 remove_stop_reply_for_inferior, &param);
6594 }
6595
6596 /* If its remote state is equal to the given remote state,
6597 remove EVENT from the stop reply queue. */
6598
6599 static int
6600 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6601 QUEUE_ITER (stop_reply_p) *iter,
6602 stop_reply_p event,
6603 void *data)
6604 {
6605 struct queue_iter_param *param = (struct queue_iter_param *) data;
6606 struct remote_state *rs = (struct remote_state *) param->input;
6607
6608 if (event->rs == rs)
6609 {
6610 stop_reply_xfree (event);
6611 QUEUE_remove_elem (stop_reply_p, q, iter);
6612 }
6613
6614 return 1;
6615 }
6616
6617 /* Discard the stop replies for RS in stop_reply_queue. */
6618
6619 static void
6620 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6621 {
6622 struct queue_iter_param param;
6623
6624 param.input = rs;
6625 param.output = NULL;
6626 /* Discard the stop replies we have already pulled with
6627 vStopped. */
6628 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6629 remove_stop_reply_of_remote_state, &param);
6630 }
6631
6632 /* A parameter to pass data in and out. */
6633
6634 static int
6635 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6636 QUEUE_ITER (stop_reply_p) *iter,
6637 stop_reply_p event,
6638 void *data)
6639 {
6640 struct queue_iter_param *param = (struct queue_iter_param *) data;
6641 ptid_t *ptid = (ptid_t *) param->input;
6642
6643 if (ptid_match (event->ptid, *ptid))
6644 {
6645 param->output = event;
6646 QUEUE_remove_elem (stop_reply_p, q, iter);
6647 return 0;
6648 }
6649
6650 return 1;
6651 }
6652
6653 /* Remove the first reply in 'stop_reply_queue' which matches
6654 PTID. */
6655
6656 static struct stop_reply *
6657 remote_notif_remove_queued_reply (ptid_t ptid)
6658 {
6659 struct queue_iter_param param;
6660
6661 param.input = &ptid;
6662 param.output = NULL;
6663
6664 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6665 remote_notif_remove_once_on_match, &param);
6666 if (notif_debug)
6667 fprintf_unfiltered (gdb_stdlog,
6668 "notif: discard queued event: 'Stop' in %s\n",
6669 target_pid_to_str (ptid));
6670
6671 return param.output;
6672 }
6673
6674 /* Look for a queued stop reply belonging to PTID. If one is found,
6675 remove it from the queue, and return it. Returns NULL if none is
6676 found. If there are still queued events left to process, tell the
6677 event loop to get back to target_wait soon. */
6678
6679 static struct stop_reply *
6680 queued_stop_reply (ptid_t ptid)
6681 {
6682 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6683
6684 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6685 /* There's still at least an event left. */
6686 mark_async_event_handler (remote_async_inferior_event_token);
6687
6688 return r;
6689 }
6690
6691 /* Push a fully parsed stop reply in the stop reply queue. Since we
6692 know that we now have at least one queued event left to pass to the
6693 core side, tell the event loop to get back to target_wait soon. */
6694
6695 static void
6696 push_stop_reply (struct stop_reply *new_event)
6697 {
6698 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6699
6700 if (notif_debug)
6701 fprintf_unfiltered (gdb_stdlog,
6702 "notif: push 'Stop' %s to queue %d\n",
6703 target_pid_to_str (new_event->ptid),
6704 QUEUE_length (stop_reply_p,
6705 stop_reply_queue));
6706
6707 mark_async_event_handler (remote_async_inferior_event_token);
6708 }
6709
6710 static int
6711 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
6712 QUEUE_ITER (stop_reply_p) *iter,
6713 struct stop_reply *event,
6714 void *data)
6715 {
6716 ptid_t *ptid = (ptid_t *) data;
6717
6718 return !(ptid_equal (*ptid, event->ptid)
6719 && event->ws.kind == TARGET_WAITKIND_STOPPED);
6720 }
6721
6722 /* Returns true if we have a stop reply for PTID. */
6723
6724 static int
6725 peek_stop_reply (ptid_t ptid)
6726 {
6727 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
6728 stop_reply_match_ptid_and_ws, &ptid);
6729 }
6730
6731 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
6732 starting with P and ending with PEND matches PREFIX. */
6733
6734 static int
6735 strprefix (const char *p, const char *pend, const char *prefix)
6736 {
6737 for ( ; p < pend; p++, prefix++)
6738 if (*p != *prefix)
6739 return 0;
6740 return *prefix == '\0';
6741 }
6742
6743 /* Parse the stop reply in BUF. Either the function succeeds, and the
6744 result is stored in EVENT, or throws an error. */
6745
6746 static void
6747 remote_parse_stop_reply (char *buf, struct stop_reply *event)
6748 {
6749 remote_arch_state *rsa = NULL;
6750 ULONGEST addr;
6751 const char *p;
6752 int skipregs = 0;
6753
6754 event->ptid = null_ptid;
6755 event->rs = get_remote_state ();
6756 event->ws.kind = TARGET_WAITKIND_IGNORE;
6757 event->ws.value.integer = 0;
6758 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6759 event->regcache = NULL;
6760 event->core = -1;
6761
6762 switch (buf[0])
6763 {
6764 case 'T': /* Status with PC, SP, FP, ... */
6765 /* Expedited reply, containing Signal, {regno, reg} repeat. */
6766 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
6767 ss = signal number
6768 n... = register number
6769 r... = register contents
6770 */
6771
6772 p = &buf[3]; /* after Txx */
6773 while (*p)
6774 {
6775 const char *p1;
6776 int fieldsize;
6777
6778 p1 = strchr (p, ':');
6779 if (p1 == NULL)
6780 error (_("Malformed packet(a) (missing colon): %s\n\
6781 Packet: '%s'\n"),
6782 p, buf);
6783 if (p == p1)
6784 error (_("Malformed packet(a) (missing register number): %s\n\
6785 Packet: '%s'\n"),
6786 p, buf);
6787
6788 /* Some "registers" are actually extended stop information.
6789 Note if you're adding a new entry here: GDB 7.9 and
6790 earlier assume that all register "numbers" that start
6791 with an hex digit are real register numbers. Make sure
6792 the server only sends such a packet if it knows the
6793 client understands it. */
6794
6795 if (strprefix (p, p1, "thread"))
6796 event->ptid = read_ptid (++p1, &p);
6797 else if (strprefix (p, p1, "syscall_entry"))
6798 {
6799 ULONGEST sysno;
6800
6801 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
6802 p = unpack_varlen_hex (++p1, &sysno);
6803 event->ws.value.syscall_number = (int) sysno;
6804 }
6805 else if (strprefix (p, p1, "syscall_return"))
6806 {
6807 ULONGEST sysno;
6808
6809 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
6810 p = unpack_varlen_hex (++p1, &sysno);
6811 event->ws.value.syscall_number = (int) sysno;
6812 }
6813 else if (strprefix (p, p1, "watch")
6814 || strprefix (p, p1, "rwatch")
6815 || strprefix (p, p1, "awatch"))
6816 {
6817 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
6818 p = unpack_varlen_hex (++p1, &addr);
6819 event->watch_data_address = (CORE_ADDR) addr;
6820 }
6821 else if (strprefix (p, p1, "swbreak"))
6822 {
6823 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
6824
6825 /* Make sure the stub doesn't forget to indicate support
6826 with qSupported. */
6827 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
6828 error (_("Unexpected swbreak stop reason"));
6829
6830 /* The value part is documented as "must be empty",
6831 though we ignore it, in case we ever decide to make
6832 use of it in a backward compatible way. */
6833 p = strchrnul (p1 + 1, ';');
6834 }
6835 else if (strprefix (p, p1, "hwbreak"))
6836 {
6837 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
6838
6839 /* Make sure the stub doesn't forget to indicate support
6840 with qSupported. */
6841 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
6842 error (_("Unexpected hwbreak stop reason"));
6843
6844 /* See above. */
6845 p = strchrnul (p1 + 1, ';');
6846 }
6847 else if (strprefix (p, p1, "library"))
6848 {
6849 event->ws.kind = TARGET_WAITKIND_LOADED;
6850 p = strchrnul (p1 + 1, ';');
6851 }
6852 else if (strprefix (p, p1, "replaylog"))
6853 {
6854 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
6855 /* p1 will indicate "begin" or "end", but it makes
6856 no difference for now, so ignore it. */
6857 p = strchrnul (p1 + 1, ';');
6858 }
6859 else if (strprefix (p, p1, "core"))
6860 {
6861 ULONGEST c;
6862
6863 p = unpack_varlen_hex (++p1, &c);
6864 event->core = c;
6865 }
6866 else if (strprefix (p, p1, "fork"))
6867 {
6868 event->ws.value.related_pid = read_ptid (++p1, &p);
6869 event->ws.kind = TARGET_WAITKIND_FORKED;
6870 }
6871 else if (strprefix (p, p1, "vfork"))
6872 {
6873 event->ws.value.related_pid = read_ptid (++p1, &p);
6874 event->ws.kind = TARGET_WAITKIND_VFORKED;
6875 }
6876 else if (strprefix (p, p1, "vforkdone"))
6877 {
6878 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
6879 p = strchrnul (p1 + 1, ';');
6880 }
6881 else if (strprefix (p, p1, "exec"))
6882 {
6883 ULONGEST ignored;
6884 char pathname[PATH_MAX];
6885 int pathlen;
6886
6887 /* Determine the length of the execd pathname. */
6888 p = unpack_varlen_hex (++p1, &ignored);
6889 pathlen = (p - p1) / 2;
6890
6891 /* Save the pathname for event reporting and for
6892 the next run command. */
6893 hex2bin (p1, (gdb_byte *) pathname, pathlen);
6894 pathname[pathlen] = '\0';
6895
6896 /* This is freed during event handling. */
6897 event->ws.value.execd_pathname = xstrdup (pathname);
6898 event->ws.kind = TARGET_WAITKIND_EXECD;
6899
6900 /* Skip the registers included in this packet, since
6901 they may be for an architecture different from the
6902 one used by the original program. */
6903 skipregs = 1;
6904 }
6905 else if (strprefix (p, p1, "create"))
6906 {
6907 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
6908 p = strchrnul (p1 + 1, ';');
6909 }
6910 else
6911 {
6912 ULONGEST pnum;
6913 const char *p_temp;
6914
6915 if (skipregs)
6916 {
6917 p = strchrnul (p1 + 1, ';');
6918 p++;
6919 continue;
6920 }
6921
6922 /* Maybe a real ``P'' register number. */
6923 p_temp = unpack_varlen_hex (p, &pnum);
6924 /* If the first invalid character is the colon, we got a
6925 register number. Otherwise, it's an unknown stop
6926 reason. */
6927 if (p_temp == p1)
6928 {
6929 /* If we haven't parsed the event's thread yet, find
6930 it now, in order to find the architecture of the
6931 reported expedited registers. */
6932 if (event->ptid == null_ptid)
6933 {
6934 const char *thr = strstr (p1 + 1, ";thread:");
6935 if (thr != NULL)
6936 event->ptid = read_ptid (thr + strlen (";thread:"),
6937 NULL);
6938 else
6939 {
6940 /* Either the current thread hasn't changed,
6941 or the inferior is not multi-threaded.
6942 The event must be for the thread we last
6943 set as (or learned as being) current. */
6944 event->ptid = event->rs->general_thread;
6945 }
6946 }
6947
6948 if (rsa == NULL)
6949 {
6950 inferior *inf = (event->ptid == null_ptid
6951 ? NULL
6952 : find_inferior_ptid (event->ptid));
6953 /* If this is the first time we learn anything
6954 about this process, skip the registers
6955 included in this packet, since we don't yet
6956 know which architecture to use to parse them.
6957 We'll determine the architecture later when
6958 we process the stop reply and retrieve the
6959 target description, via
6960 remote_notice_new_inferior ->
6961 post_create_inferior. */
6962 if (inf == NULL)
6963 {
6964 p = strchrnul (p1 + 1, ';');
6965 p++;
6966 continue;
6967 }
6968
6969 event->arch = inf->gdbarch;
6970 rsa = get_remote_arch_state (event->arch);
6971 }
6972
6973 packet_reg *reg
6974 = packet_reg_from_pnum (event->arch, rsa, pnum);
6975 cached_reg_t cached_reg;
6976
6977 if (reg == NULL)
6978 error (_("Remote sent bad register number %s: %s\n\
6979 Packet: '%s'\n"),
6980 hex_string (pnum), p, buf);
6981
6982 cached_reg.num = reg->regnum;
6983 cached_reg.data = (gdb_byte *)
6984 xmalloc (register_size (event->arch, reg->regnum));
6985
6986 p = p1 + 1;
6987 fieldsize = hex2bin (p, cached_reg.data,
6988 register_size (event->arch, reg->regnum));
6989 p += 2 * fieldsize;
6990 if (fieldsize < register_size (event->arch, reg->regnum))
6991 warning (_("Remote reply is too short: %s"), buf);
6992
6993 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
6994 }
6995 else
6996 {
6997 /* Not a number. Silently skip unknown optional
6998 info. */
6999 p = strchrnul (p1 + 1, ';');
7000 }
7001 }
7002
7003 if (*p != ';')
7004 error (_("Remote register badly formatted: %s\nhere: %s"),
7005 buf, p);
7006 ++p;
7007 }
7008
7009 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7010 break;
7011
7012 /* fall through */
7013 case 'S': /* Old style status, just signal only. */
7014 {
7015 int sig;
7016
7017 event->ws.kind = TARGET_WAITKIND_STOPPED;
7018 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7019 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7020 event->ws.value.sig = (enum gdb_signal) sig;
7021 else
7022 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7023 }
7024 break;
7025 case 'w': /* Thread exited. */
7026 {
7027 const char *p;
7028 ULONGEST value;
7029
7030 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7031 p = unpack_varlen_hex (&buf[1], &value);
7032 event->ws.value.integer = value;
7033 if (*p != ';')
7034 error (_("stop reply packet badly formatted: %s"), buf);
7035 event->ptid = read_ptid (++p, NULL);
7036 break;
7037 }
7038 case 'W': /* Target exited. */
7039 case 'X':
7040 {
7041 const char *p;
7042 int pid;
7043 ULONGEST value;
7044
7045 /* GDB used to accept only 2 hex chars here. Stubs should
7046 only send more if they detect GDB supports multi-process
7047 support. */
7048 p = unpack_varlen_hex (&buf[1], &value);
7049
7050 if (buf[0] == 'W')
7051 {
7052 /* The remote process exited. */
7053 event->ws.kind = TARGET_WAITKIND_EXITED;
7054 event->ws.value.integer = value;
7055 }
7056 else
7057 {
7058 /* The remote process exited with a signal. */
7059 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7060 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7061 event->ws.value.sig = (enum gdb_signal) value;
7062 else
7063 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7064 }
7065
7066 /* If no process is specified, assume inferior_ptid. */
7067 pid = ptid_get_pid (inferior_ptid);
7068 if (*p == '\0')
7069 ;
7070 else if (*p == ';')
7071 {
7072 p++;
7073
7074 if (*p == '\0')
7075 ;
7076 else if (startswith (p, "process:"))
7077 {
7078 ULONGEST upid;
7079
7080 p += sizeof ("process:") - 1;
7081 unpack_varlen_hex (p, &upid);
7082 pid = upid;
7083 }
7084 else
7085 error (_("unknown stop reply packet: %s"), buf);
7086 }
7087 else
7088 error (_("unknown stop reply packet: %s"), buf);
7089 event->ptid = pid_to_ptid (pid);
7090 }
7091 break;
7092 case 'N':
7093 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7094 event->ptid = minus_one_ptid;
7095 break;
7096 }
7097
7098 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7099 error (_("No process or thread specified in stop reply: %s"), buf);
7100 }
7101
7102 /* When the stub wants to tell GDB about a new notification reply, it
7103 sends a notification (%Stop, for example). Those can come it at
7104 any time, hence, we have to make sure that any pending
7105 putpkt/getpkt sequence we're making is finished, before querying
7106 the stub for more events with the corresponding ack command
7107 (vStopped, for example). E.g., if we started a vStopped sequence
7108 immediately upon receiving the notification, something like this
7109 could happen:
7110
7111 1.1) --> Hg 1
7112 1.2) <-- OK
7113 1.3) --> g
7114 1.4) <-- %Stop
7115 1.5) --> vStopped
7116 1.6) <-- (registers reply to step #1.3)
7117
7118 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7119 query.
7120
7121 To solve this, whenever we parse a %Stop notification successfully,
7122 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7123 doing whatever we were doing:
7124
7125 2.1) --> Hg 1
7126 2.2) <-- OK
7127 2.3) --> g
7128 2.4) <-- %Stop
7129 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7130 2.5) <-- (registers reply to step #2.3)
7131
7132 Eventualy after step #2.5, we return to the event loop, which
7133 notices there's an event on the
7134 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7135 associated callback --- the function below. At this point, we're
7136 always safe to start a vStopped sequence. :
7137
7138 2.6) --> vStopped
7139 2.7) <-- T05 thread:2
7140 2.8) --> vStopped
7141 2.9) --> OK
7142 */
7143
7144 void
7145 remote_notif_get_pending_events (struct notif_client *nc)
7146 {
7147 struct remote_state *rs = get_remote_state ();
7148
7149 if (rs->notif_state->pending_event[nc->id] != NULL)
7150 {
7151 if (notif_debug)
7152 fprintf_unfiltered (gdb_stdlog,
7153 "notif: process: '%s' ack pending event\n",
7154 nc->name);
7155
7156 /* acknowledge */
7157 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7158 rs->notif_state->pending_event[nc->id] = NULL;
7159
7160 while (1)
7161 {
7162 getpkt (&rs->buf, &rs->buf_size, 0);
7163 if (strcmp (rs->buf, "OK") == 0)
7164 break;
7165 else
7166 remote_notif_ack (nc, rs->buf);
7167 }
7168 }
7169 else
7170 {
7171 if (notif_debug)
7172 fprintf_unfiltered (gdb_stdlog,
7173 "notif: process: '%s' no pending reply\n",
7174 nc->name);
7175 }
7176 }
7177
7178 /* Called when it is decided that STOP_REPLY holds the info of the
7179 event that is to be returned to the core. This function always
7180 destroys STOP_REPLY. */
7181
7182 static ptid_t
7183 process_stop_reply (struct stop_reply *stop_reply,
7184 struct target_waitstatus *status)
7185 {
7186 ptid_t ptid;
7187
7188 *status = stop_reply->ws;
7189 ptid = stop_reply->ptid;
7190
7191 /* If no thread/process was reported by the stub, assume the current
7192 inferior. */
7193 if (ptid_equal (ptid, null_ptid))
7194 ptid = inferior_ptid;
7195
7196 if (status->kind != TARGET_WAITKIND_EXITED
7197 && status->kind != TARGET_WAITKIND_SIGNALLED
7198 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7199 {
7200 /* Expedited registers. */
7201 if (stop_reply->regcache)
7202 {
7203 struct regcache *regcache
7204 = get_thread_arch_regcache (ptid, stop_reply->arch);
7205 cached_reg_t *reg;
7206 int ix;
7207
7208 for (ix = 0;
7209 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7210 ix++)
7211 {
7212 regcache_raw_supply (regcache, reg->num, reg->data);
7213 xfree (reg->data);
7214 }
7215
7216 VEC_free (cached_reg_t, stop_reply->regcache);
7217 }
7218
7219 remote_notice_new_inferior (ptid, 0);
7220 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7221 remote_thr->core = stop_reply->core;
7222 remote_thr->stop_reason = stop_reply->stop_reason;
7223 remote_thr->watch_data_address = stop_reply->watch_data_address;
7224 remote_thr->vcont_resumed = 0;
7225 }
7226
7227 stop_reply_xfree (stop_reply);
7228 return ptid;
7229 }
7230
7231 /* The non-stop mode version of target_wait. */
7232
7233 static ptid_t
7234 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7235 {
7236 struct remote_state *rs = get_remote_state ();
7237 struct stop_reply *stop_reply;
7238 int ret;
7239 int is_notif = 0;
7240
7241 /* If in non-stop mode, get out of getpkt even if a
7242 notification is received. */
7243
7244 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7245 0 /* forever */, &is_notif);
7246 while (1)
7247 {
7248 if (ret != -1 && !is_notif)
7249 switch (rs->buf[0])
7250 {
7251 case 'E': /* Error of some sort. */
7252 /* We're out of sync with the target now. Did it continue
7253 or not? We can't tell which thread it was in non-stop,
7254 so just ignore this. */
7255 warning (_("Remote failure reply: %s"), rs->buf);
7256 break;
7257 case 'O': /* Console output. */
7258 remote_console_output (rs->buf + 1);
7259 break;
7260 default:
7261 warning (_("Invalid remote reply: %s"), rs->buf);
7262 break;
7263 }
7264
7265 /* Acknowledge a pending stop reply that may have arrived in the
7266 mean time. */
7267 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7268 remote_notif_get_pending_events (&notif_client_stop);
7269
7270 /* If indeed we noticed a stop reply, we're done. */
7271 stop_reply = queued_stop_reply (ptid);
7272 if (stop_reply != NULL)
7273 return process_stop_reply (stop_reply, status);
7274
7275 /* Still no event. If we're just polling for an event, then
7276 return to the event loop. */
7277 if (options & TARGET_WNOHANG)
7278 {
7279 status->kind = TARGET_WAITKIND_IGNORE;
7280 return minus_one_ptid;
7281 }
7282
7283 /* Otherwise do a blocking wait. */
7284 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7285 1 /* forever */, &is_notif);
7286 }
7287 }
7288
7289 /* Wait until the remote machine stops, then return, storing status in
7290 STATUS just as `wait' would. */
7291
7292 static ptid_t
7293 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7294 {
7295 struct remote_state *rs = get_remote_state ();
7296 ptid_t event_ptid = null_ptid;
7297 char *buf;
7298 struct stop_reply *stop_reply;
7299
7300 again:
7301
7302 status->kind = TARGET_WAITKIND_IGNORE;
7303 status->value.integer = 0;
7304
7305 stop_reply = queued_stop_reply (ptid);
7306 if (stop_reply != NULL)
7307 return process_stop_reply (stop_reply, status);
7308
7309 if (rs->cached_wait_status)
7310 /* Use the cached wait status, but only once. */
7311 rs->cached_wait_status = 0;
7312 else
7313 {
7314 int ret;
7315 int is_notif;
7316 int forever = ((options & TARGET_WNOHANG) == 0
7317 && wait_forever_enabled_p);
7318
7319 if (!rs->waiting_for_stop_reply)
7320 {
7321 status->kind = TARGET_WAITKIND_NO_RESUMED;
7322 return minus_one_ptid;
7323 }
7324
7325 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7326 _never_ wait for ever -> test on target_is_async_p().
7327 However, before we do that we need to ensure that the caller
7328 knows how to take the target into/out of async mode. */
7329 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7330 forever, &is_notif);
7331
7332 /* GDB gets a notification. Return to core as this event is
7333 not interesting. */
7334 if (ret != -1 && is_notif)
7335 return minus_one_ptid;
7336
7337 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7338 return minus_one_ptid;
7339 }
7340
7341 buf = rs->buf;
7342
7343 /* Assume that the target has acknowledged Ctrl-C unless we receive
7344 an 'F' or 'O' packet. */
7345 if (buf[0] != 'F' && buf[0] != 'O')
7346 rs->ctrlc_pending_p = 0;
7347
7348 switch (buf[0])
7349 {
7350 case 'E': /* Error of some sort. */
7351 /* We're out of sync with the target now. Did it continue or
7352 not? Not is more likely, so report a stop. */
7353 rs->waiting_for_stop_reply = 0;
7354
7355 warning (_("Remote failure reply: %s"), buf);
7356 status->kind = TARGET_WAITKIND_STOPPED;
7357 status->value.sig = GDB_SIGNAL_0;
7358 break;
7359 case 'F': /* File-I/O request. */
7360 /* GDB may access the inferior memory while handling the File-I/O
7361 request, but we don't want GDB accessing memory while waiting
7362 for a stop reply. See the comments in putpkt_binary. Set
7363 waiting_for_stop_reply to 0 temporarily. */
7364 rs->waiting_for_stop_reply = 0;
7365 remote_fileio_request (buf, rs->ctrlc_pending_p);
7366 rs->ctrlc_pending_p = 0;
7367 /* GDB handled the File-I/O request, and the target is running
7368 again. Keep waiting for events. */
7369 rs->waiting_for_stop_reply = 1;
7370 break;
7371 case 'N': case 'T': case 'S': case 'X': case 'W':
7372 {
7373 struct stop_reply *stop_reply;
7374
7375 /* There is a stop reply to handle. */
7376 rs->waiting_for_stop_reply = 0;
7377
7378 stop_reply
7379 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7380 rs->buf);
7381
7382 event_ptid = process_stop_reply (stop_reply, status);
7383 break;
7384 }
7385 case 'O': /* Console output. */
7386 remote_console_output (buf + 1);
7387 break;
7388 case '\0':
7389 if (rs->last_sent_signal != GDB_SIGNAL_0)
7390 {
7391 /* Zero length reply means that we tried 'S' or 'C' and the
7392 remote system doesn't support it. */
7393 target_terminal::ours_for_output ();
7394 printf_filtered
7395 ("Can't send signals to this remote system. %s not sent.\n",
7396 gdb_signal_to_name (rs->last_sent_signal));
7397 rs->last_sent_signal = GDB_SIGNAL_0;
7398 target_terminal::inferior ();
7399
7400 strcpy (buf, rs->last_sent_step ? "s" : "c");
7401 putpkt (buf);
7402 break;
7403 }
7404 /* else fallthrough */
7405 default:
7406 warning (_("Invalid remote reply: %s"), buf);
7407 break;
7408 }
7409
7410 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7411 return minus_one_ptid;
7412 else if (status->kind == TARGET_WAITKIND_IGNORE)
7413 {
7414 /* Nothing interesting happened. If we're doing a non-blocking
7415 poll, we're done. Otherwise, go back to waiting. */
7416 if (options & TARGET_WNOHANG)
7417 return minus_one_ptid;
7418 else
7419 goto again;
7420 }
7421 else if (status->kind != TARGET_WAITKIND_EXITED
7422 && status->kind != TARGET_WAITKIND_SIGNALLED)
7423 {
7424 if (!ptid_equal (event_ptid, null_ptid))
7425 record_currthread (rs, event_ptid);
7426 else
7427 event_ptid = inferior_ptid;
7428 }
7429 else
7430 /* A process exit. Invalidate our notion of current thread. */
7431 record_currthread (rs, minus_one_ptid);
7432
7433 return event_ptid;
7434 }
7435
7436 /* Wait until the remote machine stops, then return, storing status in
7437 STATUS just as `wait' would. */
7438
7439 static ptid_t
7440 remote_wait (struct target_ops *ops,
7441 ptid_t ptid, struct target_waitstatus *status, int options)
7442 {
7443 ptid_t event_ptid;
7444
7445 if (target_is_non_stop_p ())
7446 event_ptid = remote_wait_ns (ptid, status, options);
7447 else
7448 event_ptid = remote_wait_as (ptid, status, options);
7449
7450 if (target_is_async_p ())
7451 {
7452 /* If there are are events left in the queue tell the event loop
7453 to return here. */
7454 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7455 mark_async_event_handler (remote_async_inferior_event_token);
7456 }
7457
7458 return event_ptid;
7459 }
7460
7461 /* Fetch a single register using a 'p' packet. */
7462
7463 static int
7464 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7465 {
7466 struct gdbarch *gdbarch = regcache->arch ();
7467 struct remote_state *rs = get_remote_state ();
7468 char *buf, *p;
7469 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7470 int i;
7471
7472 if (packet_support (PACKET_p) == PACKET_DISABLE)
7473 return 0;
7474
7475 if (reg->pnum == -1)
7476 return 0;
7477
7478 p = rs->buf;
7479 *p++ = 'p';
7480 p += hexnumstr (p, reg->pnum);
7481 *p++ = '\0';
7482 putpkt (rs->buf);
7483 getpkt (&rs->buf, &rs->buf_size, 0);
7484
7485 buf = rs->buf;
7486
7487 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7488 {
7489 case PACKET_OK:
7490 break;
7491 case PACKET_UNKNOWN:
7492 return 0;
7493 case PACKET_ERROR:
7494 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7495 gdbarch_register_name (regcache->arch (),
7496 reg->regnum),
7497 buf);
7498 }
7499
7500 /* If this register is unfetchable, tell the regcache. */
7501 if (buf[0] == 'x')
7502 {
7503 regcache_raw_supply (regcache, reg->regnum, NULL);
7504 return 1;
7505 }
7506
7507 /* Otherwise, parse and supply the value. */
7508 p = buf;
7509 i = 0;
7510 while (p[0] != 0)
7511 {
7512 if (p[1] == 0)
7513 error (_("fetch_register_using_p: early buf termination"));
7514
7515 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7516 p += 2;
7517 }
7518 regcache_raw_supply (regcache, reg->regnum, regp);
7519 return 1;
7520 }
7521
7522 /* Fetch the registers included in the target's 'g' packet. */
7523
7524 static int
7525 send_g_packet (void)
7526 {
7527 struct remote_state *rs = get_remote_state ();
7528 int buf_len;
7529
7530 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7531 remote_send (&rs->buf, &rs->buf_size);
7532
7533 /* We can get out of synch in various cases. If the first character
7534 in the buffer is not a hex character, assume that has happened
7535 and try to fetch another packet to read. */
7536 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7537 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7538 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7539 && rs->buf[0] != 'x') /* New: unavailable register value. */
7540 {
7541 if (remote_debug)
7542 fprintf_unfiltered (gdb_stdlog,
7543 "Bad register packet; fetching a new packet\n");
7544 getpkt (&rs->buf, &rs->buf_size, 0);
7545 }
7546
7547 buf_len = strlen (rs->buf);
7548
7549 /* Sanity check the received packet. */
7550 if (buf_len % 2 != 0)
7551 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7552
7553 return buf_len / 2;
7554 }
7555
7556 static void
7557 process_g_packet (struct regcache *regcache)
7558 {
7559 struct gdbarch *gdbarch = regcache->arch ();
7560 struct remote_state *rs = get_remote_state ();
7561 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7562 int i, buf_len;
7563 char *p;
7564 char *regs;
7565
7566 buf_len = strlen (rs->buf);
7567
7568 /* Further sanity checks, with knowledge of the architecture. */
7569 if (buf_len > 2 * rsa->sizeof_g_packet)
7570 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7571 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
7572
7573 /* Save the size of the packet sent to us by the target. It is used
7574 as a heuristic when determining the max size of packets that the
7575 target can safely receive. */
7576 if (rsa->actual_register_packet_size == 0)
7577 rsa->actual_register_packet_size = buf_len;
7578
7579 /* If this is smaller than we guessed the 'g' packet would be,
7580 update our records. A 'g' reply that doesn't include a register's
7581 value implies either that the register is not available, or that
7582 the 'p' packet must be used. */
7583 if (buf_len < 2 * rsa->sizeof_g_packet)
7584 {
7585 long sizeof_g_packet = buf_len / 2;
7586
7587 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7588 {
7589 long offset = rsa->regs[i].offset;
7590 long reg_size = register_size (gdbarch, i);
7591
7592 if (rsa->regs[i].pnum == -1)
7593 continue;
7594
7595 if (offset >= sizeof_g_packet)
7596 rsa->regs[i].in_g_packet = 0;
7597 else if (offset + reg_size > sizeof_g_packet)
7598 error (_("Truncated register %d in remote 'g' packet"), i);
7599 else
7600 rsa->regs[i].in_g_packet = 1;
7601 }
7602
7603 /* Looks valid enough, we can assume this is the correct length
7604 for a 'g' packet. It's important not to adjust
7605 rsa->sizeof_g_packet if we have truncated registers otherwise
7606 this "if" won't be run the next time the method is called
7607 with a packet of the same size and one of the internal errors
7608 below will trigger instead. */
7609 rsa->sizeof_g_packet = sizeof_g_packet;
7610 }
7611
7612 regs = (char *) alloca (rsa->sizeof_g_packet);
7613
7614 /* Unimplemented registers read as all bits zero. */
7615 memset (regs, 0, rsa->sizeof_g_packet);
7616
7617 /* Reply describes registers byte by byte, each byte encoded as two
7618 hex characters. Suck them all up, then supply them to the
7619 register cacheing/storage mechanism. */
7620
7621 p = rs->buf;
7622 for (i = 0; i < rsa->sizeof_g_packet; i++)
7623 {
7624 if (p[0] == 0 || p[1] == 0)
7625 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7626 internal_error (__FILE__, __LINE__,
7627 _("unexpected end of 'g' packet reply"));
7628
7629 if (p[0] == 'x' && p[1] == 'x')
7630 regs[i] = 0; /* 'x' */
7631 else
7632 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7633 p += 2;
7634 }
7635
7636 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7637 {
7638 struct packet_reg *r = &rsa->regs[i];
7639 long reg_size = register_size (gdbarch, i);
7640
7641 if (r->in_g_packet)
7642 {
7643 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7644 /* This shouldn't happen - we adjusted in_g_packet above. */
7645 internal_error (__FILE__, __LINE__,
7646 _("unexpected end of 'g' packet reply"));
7647 else if (rs->buf[r->offset * 2] == 'x')
7648 {
7649 gdb_assert (r->offset * 2 < strlen (rs->buf));
7650 /* The register isn't available, mark it as such (at
7651 the same time setting the value to zero). */
7652 regcache_raw_supply (regcache, r->regnum, NULL);
7653 }
7654 else
7655 regcache_raw_supply (regcache, r->regnum,
7656 regs + r->offset);
7657 }
7658 }
7659 }
7660
7661 static void
7662 fetch_registers_using_g (struct regcache *regcache)
7663 {
7664 send_g_packet ();
7665 process_g_packet (regcache);
7666 }
7667
7668 /* Make the remote selected traceframe match GDB's selected
7669 traceframe. */
7670
7671 static void
7672 set_remote_traceframe (void)
7673 {
7674 int newnum;
7675 struct remote_state *rs = get_remote_state ();
7676
7677 if (rs->remote_traceframe_number == get_traceframe_number ())
7678 return;
7679
7680 /* Avoid recursion, remote_trace_find calls us again. */
7681 rs->remote_traceframe_number = get_traceframe_number ();
7682
7683 newnum = target_trace_find (tfind_number,
7684 get_traceframe_number (), 0, 0, NULL);
7685
7686 /* Should not happen. If it does, all bets are off. */
7687 if (newnum != get_traceframe_number ())
7688 warning (_("could not set remote traceframe"));
7689 }
7690
7691 static void
7692 remote_fetch_registers (struct target_ops *ops,
7693 struct regcache *regcache, int regnum)
7694 {
7695 struct gdbarch *gdbarch = regcache->arch ();
7696 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7697 int i;
7698
7699 set_remote_traceframe ();
7700 set_general_thread (regcache_get_ptid (regcache));
7701
7702 if (regnum >= 0)
7703 {
7704 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7705
7706 gdb_assert (reg != NULL);
7707
7708 /* If this register might be in the 'g' packet, try that first -
7709 we are likely to read more than one register. If this is the
7710 first 'g' packet, we might be overly optimistic about its
7711 contents, so fall back to 'p'. */
7712 if (reg->in_g_packet)
7713 {
7714 fetch_registers_using_g (regcache);
7715 if (reg->in_g_packet)
7716 return;
7717 }
7718
7719 if (fetch_register_using_p (regcache, reg))
7720 return;
7721
7722 /* This register is not available. */
7723 regcache_raw_supply (regcache, reg->regnum, NULL);
7724
7725 return;
7726 }
7727
7728 fetch_registers_using_g (regcache);
7729
7730 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7731 if (!rsa->regs[i].in_g_packet)
7732 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
7733 {
7734 /* This register is not available. */
7735 regcache_raw_supply (regcache, i, NULL);
7736 }
7737 }
7738
7739 /* Prepare to store registers. Since we may send them all (using a
7740 'G' request), we have to read out the ones we don't want to change
7741 first. */
7742
7743 static void
7744 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
7745 {
7746 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7747 int i;
7748
7749 /* Make sure the entire registers array is valid. */
7750 switch (packet_support (PACKET_P))
7751 {
7752 case PACKET_DISABLE:
7753 case PACKET_SUPPORT_UNKNOWN:
7754 /* Make sure all the necessary registers are cached. */
7755 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7756 if (rsa->regs[i].in_g_packet)
7757 regcache_raw_update (regcache, rsa->regs[i].regnum);
7758 break;
7759 case PACKET_ENABLE:
7760 break;
7761 }
7762 }
7763
7764 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
7765 packet was not recognized. */
7766
7767 static int
7768 store_register_using_P (const struct regcache *regcache,
7769 struct packet_reg *reg)
7770 {
7771 struct gdbarch *gdbarch = regcache->arch ();
7772 struct remote_state *rs = get_remote_state ();
7773 /* Try storing a single register. */
7774 char *buf = rs->buf;
7775 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7776 char *p;
7777
7778 if (packet_support (PACKET_P) == PACKET_DISABLE)
7779 return 0;
7780
7781 if (reg->pnum == -1)
7782 return 0;
7783
7784 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
7785 p = buf + strlen (buf);
7786 regcache_raw_collect (regcache, reg->regnum, regp);
7787 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
7788 putpkt (rs->buf);
7789 getpkt (&rs->buf, &rs->buf_size, 0);
7790
7791 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
7792 {
7793 case PACKET_OK:
7794 return 1;
7795 case PACKET_ERROR:
7796 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
7797 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
7798 case PACKET_UNKNOWN:
7799 return 0;
7800 default:
7801 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
7802 }
7803 }
7804
7805 /* Store register REGNUM, or all registers if REGNUM == -1, from the
7806 contents of the register cache buffer. FIXME: ignores errors. */
7807
7808 static void
7809 store_registers_using_G (const struct regcache *regcache)
7810 {
7811 struct remote_state *rs = get_remote_state ();
7812 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7813 gdb_byte *regs;
7814 char *p;
7815
7816 /* Extract all the registers in the regcache copying them into a
7817 local buffer. */
7818 {
7819 int i;
7820
7821 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
7822 memset (regs, 0, rsa->sizeof_g_packet);
7823 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7824 {
7825 struct packet_reg *r = &rsa->regs[i];
7826
7827 if (r->in_g_packet)
7828 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
7829 }
7830 }
7831
7832 /* Command describes registers byte by byte,
7833 each byte encoded as two hex characters. */
7834 p = rs->buf;
7835 *p++ = 'G';
7836 bin2hex (regs, p, rsa->sizeof_g_packet);
7837 putpkt (rs->buf);
7838 getpkt (&rs->buf, &rs->buf_size, 0);
7839 if (packet_check_result (rs->buf) == PACKET_ERROR)
7840 error (_("Could not write registers; remote failure reply '%s'"),
7841 rs->buf);
7842 }
7843
7844 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
7845 of the register cache buffer. FIXME: ignores errors. */
7846
7847 static void
7848 remote_store_registers (struct target_ops *ops,
7849 struct regcache *regcache, int regnum)
7850 {
7851 struct gdbarch *gdbarch = regcache->arch ();
7852 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7853 int i;
7854
7855 set_remote_traceframe ();
7856 set_general_thread (regcache_get_ptid (regcache));
7857
7858 if (regnum >= 0)
7859 {
7860 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7861
7862 gdb_assert (reg != NULL);
7863
7864 /* Always prefer to store registers using the 'P' packet if
7865 possible; we often change only a small number of registers.
7866 Sometimes we change a larger number; we'd need help from a
7867 higher layer to know to use 'G'. */
7868 if (store_register_using_P (regcache, reg))
7869 return;
7870
7871 /* For now, don't complain if we have no way to write the
7872 register. GDB loses track of unavailable registers too
7873 easily. Some day, this may be an error. We don't have
7874 any way to read the register, either... */
7875 if (!reg->in_g_packet)
7876 return;
7877
7878 store_registers_using_G (regcache);
7879 return;
7880 }
7881
7882 store_registers_using_G (regcache);
7883
7884 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7885 if (!rsa->regs[i].in_g_packet)
7886 if (!store_register_using_P (regcache, &rsa->regs[i]))
7887 /* See above for why we do not issue an error here. */
7888 continue;
7889 }
7890 \f
7891
7892 /* Return the number of hex digits in num. */
7893
7894 static int
7895 hexnumlen (ULONGEST num)
7896 {
7897 int i;
7898
7899 for (i = 0; num != 0; i++)
7900 num >>= 4;
7901
7902 return std::max (i, 1);
7903 }
7904
7905 /* Set BUF to the minimum number of hex digits representing NUM. */
7906
7907 static int
7908 hexnumstr (char *buf, ULONGEST num)
7909 {
7910 int len = hexnumlen (num);
7911
7912 return hexnumnstr (buf, num, len);
7913 }
7914
7915
7916 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
7917
7918 static int
7919 hexnumnstr (char *buf, ULONGEST num, int width)
7920 {
7921 int i;
7922
7923 buf[width] = '\0';
7924
7925 for (i = width - 1; i >= 0; i--)
7926 {
7927 buf[i] = "0123456789abcdef"[(num & 0xf)];
7928 num >>= 4;
7929 }
7930
7931 return width;
7932 }
7933
7934 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
7935
7936 static CORE_ADDR
7937 remote_address_masked (CORE_ADDR addr)
7938 {
7939 unsigned int address_size = remote_address_size;
7940
7941 /* If "remoteaddresssize" was not set, default to target address size. */
7942 if (!address_size)
7943 address_size = gdbarch_addr_bit (target_gdbarch ());
7944
7945 if (address_size > 0
7946 && address_size < (sizeof (ULONGEST) * 8))
7947 {
7948 /* Only create a mask when that mask can safely be constructed
7949 in a ULONGEST variable. */
7950 ULONGEST mask = 1;
7951
7952 mask = (mask << address_size) - 1;
7953 addr &= mask;
7954 }
7955 return addr;
7956 }
7957
7958 /* Determine whether the remote target supports binary downloading.
7959 This is accomplished by sending a no-op memory write of zero length
7960 to the target at the specified address. It does not suffice to send
7961 the whole packet, since many stubs strip the eighth bit and
7962 subsequently compute a wrong checksum, which causes real havoc with
7963 remote_write_bytes.
7964
7965 NOTE: This can still lose if the serial line is not eight-bit
7966 clean. In cases like this, the user should clear "remote
7967 X-packet". */
7968
7969 static void
7970 check_binary_download (CORE_ADDR addr)
7971 {
7972 struct remote_state *rs = get_remote_state ();
7973
7974 switch (packet_support (PACKET_X))
7975 {
7976 case PACKET_DISABLE:
7977 break;
7978 case PACKET_ENABLE:
7979 break;
7980 case PACKET_SUPPORT_UNKNOWN:
7981 {
7982 char *p;
7983
7984 p = rs->buf;
7985 *p++ = 'X';
7986 p += hexnumstr (p, (ULONGEST) addr);
7987 *p++ = ',';
7988 p += hexnumstr (p, (ULONGEST) 0);
7989 *p++ = ':';
7990 *p = '\0';
7991
7992 putpkt_binary (rs->buf, (int) (p - rs->buf));
7993 getpkt (&rs->buf, &rs->buf_size, 0);
7994
7995 if (rs->buf[0] == '\0')
7996 {
7997 if (remote_debug)
7998 fprintf_unfiltered (gdb_stdlog,
7999 "binary downloading NOT "
8000 "supported by target\n");
8001 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8002 }
8003 else
8004 {
8005 if (remote_debug)
8006 fprintf_unfiltered (gdb_stdlog,
8007 "binary downloading supported by target\n");
8008 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8009 }
8010 break;
8011 }
8012 }
8013 }
8014
8015 /* Helper function to resize the payload in order to try to get a good
8016 alignment. We try to write an amount of data such that the next write will
8017 start on an address aligned on REMOTE_ALIGN_WRITES. */
8018
8019 static int
8020 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8021 {
8022 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8023 }
8024
8025 /* Write memory data directly to the remote machine.
8026 This does not inform the data cache; the data cache uses this.
8027 HEADER is the starting part of the packet.
8028 MEMADDR is the address in the remote memory space.
8029 MYADDR is the address of the buffer in our space.
8030 LEN_UNITS is the number of addressable units to write.
8031 UNIT_SIZE is the length in bytes of an addressable unit.
8032 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8033 should send data as binary ('X'), or hex-encoded ('M').
8034
8035 The function creates packet of the form
8036 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8037
8038 where encoding of <DATA> is terminated by PACKET_FORMAT.
8039
8040 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8041 are omitted.
8042
8043 Return the transferred status, error or OK (an
8044 'enum target_xfer_status' value). Save the number of addressable units
8045 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8046
8047 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8048 exchange between gdb and the stub could look like (?? in place of the
8049 checksum):
8050
8051 -> $m1000,4#??
8052 <- aaaabbbbccccdddd
8053
8054 -> $M1000,3:eeeeffffeeee#??
8055 <- OK
8056
8057 -> $m1000,4#??
8058 <- eeeeffffeeeedddd */
8059
8060 static enum target_xfer_status
8061 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8062 const gdb_byte *myaddr, ULONGEST len_units,
8063 int unit_size, ULONGEST *xfered_len_units,
8064 char packet_format, int use_length)
8065 {
8066 struct remote_state *rs = get_remote_state ();
8067 char *p;
8068 char *plen = NULL;
8069 int plenlen = 0;
8070 int todo_units;
8071 int units_written;
8072 int payload_capacity_bytes;
8073 int payload_length_bytes;
8074
8075 if (packet_format != 'X' && packet_format != 'M')
8076 internal_error (__FILE__, __LINE__,
8077 _("remote_write_bytes_aux: bad packet format"));
8078
8079 if (len_units == 0)
8080 return TARGET_XFER_EOF;
8081
8082 payload_capacity_bytes = get_memory_write_packet_size ();
8083
8084 /* The packet buffer will be large enough for the payload;
8085 get_memory_packet_size ensures this. */
8086 rs->buf[0] = '\0';
8087
8088 /* Compute the size of the actual payload by subtracting out the
8089 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8090
8091 payload_capacity_bytes -= strlen ("$,:#NN");
8092 if (!use_length)
8093 /* The comma won't be used. */
8094 payload_capacity_bytes += 1;
8095 payload_capacity_bytes -= strlen (header);
8096 payload_capacity_bytes -= hexnumlen (memaddr);
8097
8098 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8099
8100 strcat (rs->buf, header);
8101 p = rs->buf + strlen (header);
8102
8103 /* Compute a best guess of the number of bytes actually transfered. */
8104 if (packet_format == 'X')
8105 {
8106 /* Best guess at number of bytes that will fit. */
8107 todo_units = std::min (len_units,
8108 (ULONGEST) payload_capacity_bytes / unit_size);
8109 if (use_length)
8110 payload_capacity_bytes -= hexnumlen (todo_units);
8111 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8112 }
8113 else
8114 {
8115 /* Number of bytes that will fit. */
8116 todo_units
8117 = std::min (len_units,
8118 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8119 if (use_length)
8120 payload_capacity_bytes -= hexnumlen (todo_units);
8121 todo_units = std::min (todo_units,
8122 (payload_capacity_bytes / unit_size) / 2);
8123 }
8124
8125 if (todo_units <= 0)
8126 internal_error (__FILE__, __LINE__,
8127 _("minimum packet size too small to write data"));
8128
8129 /* If we already need another packet, then try to align the end
8130 of this packet to a useful boundary. */
8131 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8132 todo_units = align_for_efficient_write (todo_units, memaddr);
8133
8134 /* Append "<memaddr>". */
8135 memaddr = remote_address_masked (memaddr);
8136 p += hexnumstr (p, (ULONGEST) memaddr);
8137
8138 if (use_length)
8139 {
8140 /* Append ",". */
8141 *p++ = ',';
8142
8143 /* Append the length and retain its location and size. It may need to be
8144 adjusted once the packet body has been created. */
8145 plen = p;
8146 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8147 p += plenlen;
8148 }
8149
8150 /* Append ":". */
8151 *p++ = ':';
8152 *p = '\0';
8153
8154 /* Append the packet body. */
8155 if (packet_format == 'X')
8156 {
8157 /* Binary mode. Send target system values byte by byte, in
8158 increasing byte addresses. Only escape certain critical
8159 characters. */
8160 payload_length_bytes =
8161 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8162 &units_written, payload_capacity_bytes);
8163
8164 /* If not all TODO units fit, then we'll need another packet. Make
8165 a second try to keep the end of the packet aligned. Don't do
8166 this if the packet is tiny. */
8167 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8168 {
8169 int new_todo_units;
8170
8171 new_todo_units = align_for_efficient_write (units_written, memaddr);
8172
8173 if (new_todo_units != units_written)
8174 payload_length_bytes =
8175 remote_escape_output (myaddr, new_todo_units, unit_size,
8176 (gdb_byte *) p, &units_written,
8177 payload_capacity_bytes);
8178 }
8179
8180 p += payload_length_bytes;
8181 if (use_length && units_written < todo_units)
8182 {
8183 /* Escape chars have filled up the buffer prematurely,
8184 and we have actually sent fewer units than planned.
8185 Fix-up the length field of the packet. Use the same
8186 number of characters as before. */
8187 plen += hexnumnstr (plen, (ULONGEST) units_written,
8188 plenlen);
8189 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8190 }
8191 }
8192 else
8193 {
8194 /* Normal mode: Send target system values byte by byte, in
8195 increasing byte addresses. Each byte is encoded as a two hex
8196 value. */
8197 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8198 units_written = todo_units;
8199 }
8200
8201 putpkt_binary (rs->buf, (int) (p - rs->buf));
8202 getpkt (&rs->buf, &rs->buf_size, 0);
8203
8204 if (rs->buf[0] == 'E')
8205 return TARGET_XFER_E_IO;
8206
8207 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8208 send fewer units than we'd planned. */
8209 *xfered_len_units = (ULONGEST) units_written;
8210 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8211 }
8212
8213 /* Write memory data directly to the remote machine.
8214 This does not inform the data cache; the data cache uses this.
8215 MEMADDR is the address in the remote memory space.
8216 MYADDR is the address of the buffer in our space.
8217 LEN is the number of bytes.
8218
8219 Return the transferred status, error or OK (an
8220 'enum target_xfer_status' value). Save the number of bytes
8221 transferred in *XFERED_LEN. Only transfer a single packet. */
8222
8223 static enum target_xfer_status
8224 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8225 int unit_size, ULONGEST *xfered_len)
8226 {
8227 const char *packet_format = NULL;
8228
8229 /* Check whether the target supports binary download. */
8230 check_binary_download (memaddr);
8231
8232 switch (packet_support (PACKET_X))
8233 {
8234 case PACKET_ENABLE:
8235 packet_format = "X";
8236 break;
8237 case PACKET_DISABLE:
8238 packet_format = "M";
8239 break;
8240 case PACKET_SUPPORT_UNKNOWN:
8241 internal_error (__FILE__, __LINE__,
8242 _("remote_write_bytes: bad internal state"));
8243 default:
8244 internal_error (__FILE__, __LINE__, _("bad switch"));
8245 }
8246
8247 return remote_write_bytes_aux (packet_format,
8248 memaddr, myaddr, len, unit_size, xfered_len,
8249 packet_format[0], 1);
8250 }
8251
8252 /* Read memory data directly from the remote machine.
8253 This does not use the data cache; the data cache uses this.
8254 MEMADDR is the address in the remote memory space.
8255 MYADDR is the address of the buffer in our space.
8256 LEN_UNITS is the number of addressable memory units to read..
8257 UNIT_SIZE is the length in bytes of an addressable unit.
8258
8259 Return the transferred status, error or OK (an
8260 'enum target_xfer_status' value). Save the number of bytes
8261 transferred in *XFERED_LEN_UNITS.
8262
8263 See the comment of remote_write_bytes_aux for an example of
8264 memory read/write exchange between gdb and the stub. */
8265
8266 static enum target_xfer_status
8267 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8268 int unit_size, ULONGEST *xfered_len_units)
8269 {
8270 struct remote_state *rs = get_remote_state ();
8271 int buf_size_bytes; /* Max size of packet output buffer. */
8272 char *p;
8273 int todo_units;
8274 int decoded_bytes;
8275
8276 buf_size_bytes = get_memory_read_packet_size ();
8277 /* The packet buffer will be large enough for the payload;
8278 get_memory_packet_size ensures this. */
8279
8280 /* Number of units that will fit. */
8281 todo_units = std::min (len_units,
8282 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8283
8284 /* Construct "m"<memaddr>","<len>". */
8285 memaddr = remote_address_masked (memaddr);
8286 p = rs->buf;
8287 *p++ = 'm';
8288 p += hexnumstr (p, (ULONGEST) memaddr);
8289 *p++ = ',';
8290 p += hexnumstr (p, (ULONGEST) todo_units);
8291 *p = '\0';
8292 putpkt (rs->buf);
8293 getpkt (&rs->buf, &rs->buf_size, 0);
8294 if (rs->buf[0] == 'E'
8295 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8296 && rs->buf[3] == '\0')
8297 return TARGET_XFER_E_IO;
8298 /* Reply describes memory byte by byte, each byte encoded as two hex
8299 characters. */
8300 p = rs->buf;
8301 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8302 /* Return what we have. Let higher layers handle partial reads. */
8303 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8304 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8305 }
8306
8307 /* Using the set of read-only target sections of remote, read live
8308 read-only memory.
8309
8310 For interface/parameters/return description see target.h,
8311 to_xfer_partial. */
8312
8313 static enum target_xfer_status
8314 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8315 ULONGEST memaddr, ULONGEST len,
8316 int unit_size, ULONGEST *xfered_len)
8317 {
8318 struct target_section *secp;
8319 struct target_section_table *table;
8320
8321 secp = target_section_by_addr (ops, memaddr);
8322 if (secp != NULL
8323 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8324 secp->the_bfd_section)
8325 & SEC_READONLY))
8326 {
8327 struct target_section *p;
8328 ULONGEST memend = memaddr + len;
8329
8330 table = target_get_section_table (ops);
8331
8332 for (p = table->sections; p < table->sections_end; p++)
8333 {
8334 if (memaddr >= p->addr)
8335 {
8336 if (memend <= p->endaddr)
8337 {
8338 /* Entire transfer is within this section. */
8339 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8340 xfered_len);
8341 }
8342 else if (memaddr >= p->endaddr)
8343 {
8344 /* This section ends before the transfer starts. */
8345 continue;
8346 }
8347 else
8348 {
8349 /* This section overlaps the transfer. Just do half. */
8350 len = p->endaddr - memaddr;
8351 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8352 xfered_len);
8353 }
8354 }
8355 }
8356 }
8357
8358 return TARGET_XFER_EOF;
8359 }
8360
8361 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8362 first if the requested memory is unavailable in traceframe.
8363 Otherwise, fall back to remote_read_bytes_1. */
8364
8365 static enum target_xfer_status
8366 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8367 gdb_byte *myaddr, ULONGEST len, int unit_size,
8368 ULONGEST *xfered_len)
8369 {
8370 if (len == 0)
8371 return TARGET_XFER_EOF;
8372
8373 if (get_traceframe_number () != -1)
8374 {
8375 std::vector<mem_range> available;
8376
8377 /* If we fail to get the set of available memory, then the
8378 target does not support querying traceframe info, and so we
8379 attempt reading from the traceframe anyway (assuming the
8380 target implements the old QTro packet then). */
8381 if (traceframe_available_memory (&available, memaddr, len))
8382 {
8383 if (available.empty () || available[0].start != memaddr)
8384 {
8385 enum target_xfer_status res;
8386
8387 /* Don't read into the traceframe's available
8388 memory. */
8389 if (!available.empty ())
8390 {
8391 LONGEST oldlen = len;
8392
8393 len = available[0].start - memaddr;
8394 gdb_assert (len <= oldlen);
8395 }
8396
8397 /* This goes through the topmost target again. */
8398 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8399 len, unit_size, xfered_len);
8400 if (res == TARGET_XFER_OK)
8401 return TARGET_XFER_OK;
8402 else
8403 {
8404 /* No use trying further, we know some memory starting
8405 at MEMADDR isn't available. */
8406 *xfered_len = len;
8407 return (*xfered_len != 0) ?
8408 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8409 }
8410 }
8411
8412 /* Don't try to read more than how much is available, in
8413 case the target implements the deprecated QTro packet to
8414 cater for older GDBs (the target's knowledge of read-only
8415 sections may be outdated by now). */
8416 len = available[0].length;
8417 }
8418 }
8419
8420 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8421 }
8422
8423 \f
8424
8425 /* Sends a packet with content determined by the printf format string
8426 FORMAT and the remaining arguments, then gets the reply. Returns
8427 whether the packet was a success, a failure, or unknown. */
8428
8429 static enum packet_result remote_send_printf (const char *format, ...)
8430 ATTRIBUTE_PRINTF (1, 2);
8431
8432 static enum packet_result
8433 remote_send_printf (const char *format, ...)
8434 {
8435 struct remote_state *rs = get_remote_state ();
8436 int max_size = get_remote_packet_size ();
8437 va_list ap;
8438
8439 va_start (ap, format);
8440
8441 rs->buf[0] = '\0';
8442 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8443 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8444
8445 if (putpkt (rs->buf) < 0)
8446 error (_("Communication problem with target."));
8447
8448 rs->buf[0] = '\0';
8449 getpkt (&rs->buf, &rs->buf_size, 0);
8450
8451 return packet_check_result (rs->buf);
8452 }
8453
8454 /* Flash writing can take quite some time. We'll set
8455 effectively infinite timeout for flash operations.
8456 In future, we'll need to decide on a better approach. */
8457 static const int remote_flash_timeout = 1000;
8458
8459 static void
8460 remote_flash_erase (struct target_ops *ops,
8461 ULONGEST address, LONGEST length)
8462 {
8463 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8464 enum packet_result ret;
8465 scoped_restore restore_timeout
8466 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8467
8468 ret = remote_send_printf ("vFlashErase:%s,%s",
8469 phex (address, addr_size),
8470 phex (length, 4));
8471 switch (ret)
8472 {
8473 case PACKET_UNKNOWN:
8474 error (_("Remote target does not support flash erase"));
8475 case PACKET_ERROR:
8476 error (_("Error erasing flash with vFlashErase packet"));
8477 default:
8478 break;
8479 }
8480 }
8481
8482 static enum target_xfer_status
8483 remote_flash_write (struct target_ops *ops, ULONGEST address,
8484 ULONGEST length, ULONGEST *xfered_len,
8485 const gdb_byte *data)
8486 {
8487 scoped_restore restore_timeout
8488 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8489 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8490 xfered_len,'X', 0);
8491 }
8492
8493 static void
8494 remote_flash_done (struct target_ops *ops)
8495 {
8496 int ret;
8497
8498 scoped_restore restore_timeout
8499 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8500
8501 ret = remote_send_printf ("vFlashDone");
8502
8503 switch (ret)
8504 {
8505 case PACKET_UNKNOWN:
8506 error (_("Remote target does not support vFlashDone"));
8507 case PACKET_ERROR:
8508 error (_("Error finishing flash operation"));
8509 default:
8510 break;
8511 }
8512 }
8513
8514 static void
8515 remote_files_info (struct target_ops *ignore)
8516 {
8517 puts_filtered ("Debugging a target over a serial line.\n");
8518 }
8519 \f
8520 /* Stuff for dealing with the packets which are part of this protocol.
8521 See comment at top of file for details. */
8522
8523 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8524 error to higher layers. Called when a serial error is detected.
8525 The exception message is STRING, followed by a colon and a blank,
8526 the system error message for errno at function entry and final dot
8527 for output compatibility with throw_perror_with_name. */
8528
8529 static void
8530 unpush_and_perror (const char *string)
8531 {
8532 int saved_errno = errno;
8533
8534 remote_unpush_target ();
8535 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8536 safe_strerror (saved_errno));
8537 }
8538
8539 /* Read a single character from the remote end. The current quit
8540 handler is overridden to avoid quitting in the middle of packet
8541 sequence, as that would break communication with the remote server.
8542 See remote_serial_quit_handler for more detail. */
8543
8544 static int
8545 readchar (int timeout)
8546 {
8547 int ch;
8548 struct remote_state *rs = get_remote_state ();
8549
8550 {
8551 scoped_restore restore_quit
8552 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8553
8554 rs->got_ctrlc_during_io = 0;
8555
8556 ch = serial_readchar (rs->remote_desc, timeout);
8557
8558 if (rs->got_ctrlc_during_io)
8559 set_quit_flag ();
8560 }
8561
8562 if (ch >= 0)
8563 return ch;
8564
8565 switch ((enum serial_rc) ch)
8566 {
8567 case SERIAL_EOF:
8568 remote_unpush_target ();
8569 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8570 /* no return */
8571 case SERIAL_ERROR:
8572 unpush_and_perror (_("Remote communication error. "
8573 "Target disconnected."));
8574 /* no return */
8575 case SERIAL_TIMEOUT:
8576 break;
8577 }
8578 return ch;
8579 }
8580
8581 /* Wrapper for serial_write that closes the target and throws if
8582 writing fails. The current quit handler is overridden to avoid
8583 quitting in the middle of packet sequence, as that would break
8584 communication with the remote server. See
8585 remote_serial_quit_handler for more detail. */
8586
8587 static void
8588 remote_serial_write (const char *str, int len)
8589 {
8590 struct remote_state *rs = get_remote_state ();
8591
8592 scoped_restore restore_quit
8593 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8594
8595 rs->got_ctrlc_during_io = 0;
8596
8597 if (serial_write (rs->remote_desc, str, len))
8598 {
8599 unpush_and_perror (_("Remote communication error. "
8600 "Target disconnected."));
8601 }
8602
8603 if (rs->got_ctrlc_during_io)
8604 set_quit_flag ();
8605 }
8606
8607 /* Send the command in *BUF to the remote machine, and read the reply
8608 into *BUF. Report an error if we get an error reply. Resize
8609 *BUF using xrealloc if necessary to hold the result, and update
8610 *SIZEOF_BUF. */
8611
8612 static void
8613 remote_send (char **buf,
8614 long *sizeof_buf)
8615 {
8616 putpkt (*buf);
8617 getpkt (buf, sizeof_buf, 0);
8618
8619 if ((*buf)[0] == 'E')
8620 error (_("Remote failure reply: %s"), *buf);
8621 }
8622
8623 /* Return a string representing an escaped version of BUF, of len N.
8624 E.g. \n is converted to \\n, \t to \\t, etc. */
8625
8626 static std::string
8627 escape_buffer (const char *buf, int n)
8628 {
8629 string_file stb;
8630
8631 stb.putstrn (buf, n, '\\');
8632 return std::move (stb.string ());
8633 }
8634
8635 /* Display a null-terminated packet on stdout, for debugging, using C
8636 string notation. */
8637
8638 static void
8639 print_packet (const char *buf)
8640 {
8641 puts_filtered ("\"");
8642 fputstr_filtered (buf, '"', gdb_stdout);
8643 puts_filtered ("\"");
8644 }
8645
8646 int
8647 putpkt (const char *buf)
8648 {
8649 return putpkt_binary (buf, strlen (buf));
8650 }
8651
8652 /* Send a packet to the remote machine, with error checking. The data
8653 of the packet is in BUF. The string in BUF can be at most
8654 get_remote_packet_size () - 5 to account for the $, # and checksum,
8655 and for a possible /0 if we are debugging (remote_debug) and want
8656 to print the sent packet as a string. */
8657
8658 static int
8659 putpkt_binary (const char *buf, int cnt)
8660 {
8661 struct remote_state *rs = get_remote_state ();
8662 int i;
8663 unsigned char csum = 0;
8664 gdb::def_vector<char> data (cnt + 6);
8665 char *buf2 = data.data ();
8666
8667 int ch;
8668 int tcount = 0;
8669 char *p;
8670
8671 /* Catch cases like trying to read memory or listing threads while
8672 we're waiting for a stop reply. The remote server wouldn't be
8673 ready to handle this request, so we'd hang and timeout. We don't
8674 have to worry about this in synchronous mode, because in that
8675 case it's not possible to issue a command while the target is
8676 running. This is not a problem in non-stop mode, because in that
8677 case, the stub is always ready to process serial input. */
8678 if (!target_is_non_stop_p ()
8679 && target_is_async_p ()
8680 && rs->waiting_for_stop_reply)
8681 {
8682 error (_("Cannot execute this command while the target is running.\n"
8683 "Use the \"interrupt\" command to stop the target\n"
8684 "and then try again."));
8685 }
8686
8687 /* We're sending out a new packet. Make sure we don't look at a
8688 stale cached response. */
8689 rs->cached_wait_status = 0;
8690
8691 /* Copy the packet into buffer BUF2, encapsulating it
8692 and giving it a checksum. */
8693
8694 p = buf2;
8695 *p++ = '$';
8696
8697 for (i = 0; i < cnt; i++)
8698 {
8699 csum += buf[i];
8700 *p++ = buf[i];
8701 }
8702 *p++ = '#';
8703 *p++ = tohex ((csum >> 4) & 0xf);
8704 *p++ = tohex (csum & 0xf);
8705
8706 /* Send it over and over until we get a positive ack. */
8707
8708 while (1)
8709 {
8710 int started_error_output = 0;
8711
8712 if (remote_debug)
8713 {
8714 *p = '\0';
8715
8716 int len = (int) (p - buf2);
8717
8718 std::string str
8719 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
8720
8721 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
8722
8723 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
8724 {
8725 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
8726 str.length () - REMOTE_DEBUG_MAX_CHAR);
8727 }
8728
8729 fprintf_unfiltered (gdb_stdlog, "...");
8730
8731 gdb_flush (gdb_stdlog);
8732 }
8733 remote_serial_write (buf2, p - buf2);
8734
8735 /* If this is a no acks version of the remote protocol, send the
8736 packet and move on. */
8737 if (rs->noack_mode)
8738 break;
8739
8740 /* Read until either a timeout occurs (-2) or '+' is read.
8741 Handle any notification that arrives in the mean time. */
8742 while (1)
8743 {
8744 ch = readchar (remote_timeout);
8745
8746 if (remote_debug)
8747 {
8748 switch (ch)
8749 {
8750 case '+':
8751 case '-':
8752 case SERIAL_TIMEOUT:
8753 case '$':
8754 case '%':
8755 if (started_error_output)
8756 {
8757 putchar_unfiltered ('\n');
8758 started_error_output = 0;
8759 }
8760 }
8761 }
8762
8763 switch (ch)
8764 {
8765 case '+':
8766 if (remote_debug)
8767 fprintf_unfiltered (gdb_stdlog, "Ack\n");
8768 return 1;
8769 case '-':
8770 if (remote_debug)
8771 fprintf_unfiltered (gdb_stdlog, "Nak\n");
8772 /* FALLTHROUGH */
8773 case SERIAL_TIMEOUT:
8774 tcount++;
8775 if (tcount > 3)
8776 return 0;
8777 break; /* Retransmit buffer. */
8778 case '$':
8779 {
8780 if (remote_debug)
8781 fprintf_unfiltered (gdb_stdlog,
8782 "Packet instead of Ack, ignoring it\n");
8783 /* It's probably an old response sent because an ACK
8784 was lost. Gobble up the packet and ack it so it
8785 doesn't get retransmitted when we resend this
8786 packet. */
8787 skip_frame ();
8788 remote_serial_write ("+", 1);
8789 continue; /* Now, go look for +. */
8790 }
8791
8792 case '%':
8793 {
8794 int val;
8795
8796 /* If we got a notification, handle it, and go back to looking
8797 for an ack. */
8798 /* We've found the start of a notification. Now
8799 collect the data. */
8800 val = read_frame (&rs->buf, &rs->buf_size);
8801 if (val >= 0)
8802 {
8803 if (remote_debug)
8804 {
8805 std::string str = escape_buffer (rs->buf, val);
8806
8807 fprintf_unfiltered (gdb_stdlog,
8808 " Notification received: %s\n",
8809 str.c_str ());
8810 }
8811 handle_notification (rs->notif_state, rs->buf);
8812 /* We're in sync now, rewait for the ack. */
8813 tcount = 0;
8814 }
8815 else
8816 {
8817 if (remote_debug)
8818 {
8819 if (!started_error_output)
8820 {
8821 started_error_output = 1;
8822 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8823 }
8824 fputc_unfiltered (ch & 0177, gdb_stdlog);
8825 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
8826 }
8827 }
8828 continue;
8829 }
8830 /* fall-through */
8831 default:
8832 if (remote_debug)
8833 {
8834 if (!started_error_output)
8835 {
8836 started_error_output = 1;
8837 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8838 }
8839 fputc_unfiltered (ch & 0177, gdb_stdlog);
8840 }
8841 continue;
8842 }
8843 break; /* Here to retransmit. */
8844 }
8845
8846 #if 0
8847 /* This is wrong. If doing a long backtrace, the user should be
8848 able to get out next time we call QUIT, without anything as
8849 violent as interrupt_query. If we want to provide a way out of
8850 here without getting to the next QUIT, it should be based on
8851 hitting ^C twice as in remote_wait. */
8852 if (quit_flag)
8853 {
8854 quit_flag = 0;
8855 interrupt_query ();
8856 }
8857 #endif
8858 }
8859
8860 return 0;
8861 }
8862
8863 /* Come here after finding the start of a frame when we expected an
8864 ack. Do our best to discard the rest of this packet. */
8865
8866 static void
8867 skip_frame (void)
8868 {
8869 int c;
8870
8871 while (1)
8872 {
8873 c = readchar (remote_timeout);
8874 switch (c)
8875 {
8876 case SERIAL_TIMEOUT:
8877 /* Nothing we can do. */
8878 return;
8879 case '#':
8880 /* Discard the two bytes of checksum and stop. */
8881 c = readchar (remote_timeout);
8882 if (c >= 0)
8883 c = readchar (remote_timeout);
8884
8885 return;
8886 case '*': /* Run length encoding. */
8887 /* Discard the repeat count. */
8888 c = readchar (remote_timeout);
8889 if (c < 0)
8890 return;
8891 break;
8892 default:
8893 /* A regular character. */
8894 break;
8895 }
8896 }
8897 }
8898
8899 /* Come here after finding the start of the frame. Collect the rest
8900 into *BUF, verifying the checksum, length, and handling run-length
8901 compression. NUL terminate the buffer. If there is not enough room,
8902 expand *BUF using xrealloc.
8903
8904 Returns -1 on error, number of characters in buffer (ignoring the
8905 trailing NULL) on success. (could be extended to return one of the
8906 SERIAL status indications). */
8907
8908 static long
8909 read_frame (char **buf_p,
8910 long *sizeof_buf)
8911 {
8912 unsigned char csum;
8913 long bc;
8914 int c;
8915 char *buf = *buf_p;
8916 struct remote_state *rs = get_remote_state ();
8917
8918 csum = 0;
8919 bc = 0;
8920
8921 while (1)
8922 {
8923 c = readchar (remote_timeout);
8924 switch (c)
8925 {
8926 case SERIAL_TIMEOUT:
8927 if (remote_debug)
8928 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
8929 return -1;
8930 case '$':
8931 if (remote_debug)
8932 fputs_filtered ("Saw new packet start in middle of old one\n",
8933 gdb_stdlog);
8934 return -1; /* Start a new packet, count retries. */
8935 case '#':
8936 {
8937 unsigned char pktcsum;
8938 int check_0 = 0;
8939 int check_1 = 0;
8940
8941 buf[bc] = '\0';
8942
8943 check_0 = readchar (remote_timeout);
8944 if (check_0 >= 0)
8945 check_1 = readchar (remote_timeout);
8946
8947 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
8948 {
8949 if (remote_debug)
8950 fputs_filtered ("Timeout in checksum, retrying\n",
8951 gdb_stdlog);
8952 return -1;
8953 }
8954 else if (check_0 < 0 || check_1 < 0)
8955 {
8956 if (remote_debug)
8957 fputs_filtered ("Communication error in checksum\n",
8958 gdb_stdlog);
8959 return -1;
8960 }
8961
8962 /* Don't recompute the checksum; with no ack packets we
8963 don't have any way to indicate a packet retransmission
8964 is necessary. */
8965 if (rs->noack_mode)
8966 return bc;
8967
8968 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
8969 if (csum == pktcsum)
8970 return bc;
8971
8972 if (remote_debug)
8973 {
8974 std::string str = escape_buffer (buf, bc);
8975
8976 fprintf_unfiltered (gdb_stdlog,
8977 "Bad checksum, sentsum=0x%x, "
8978 "csum=0x%x, buf=%s\n",
8979 pktcsum, csum, str.c_str ());
8980 }
8981 /* Number of characters in buffer ignoring trailing
8982 NULL. */
8983 return -1;
8984 }
8985 case '*': /* Run length encoding. */
8986 {
8987 int repeat;
8988
8989 csum += c;
8990 c = readchar (remote_timeout);
8991 csum += c;
8992 repeat = c - ' ' + 3; /* Compute repeat count. */
8993
8994 /* The character before ``*'' is repeated. */
8995
8996 if (repeat > 0 && repeat <= 255 && bc > 0)
8997 {
8998 if (bc + repeat - 1 >= *sizeof_buf - 1)
8999 {
9000 /* Make some more room in the buffer. */
9001 *sizeof_buf += repeat;
9002 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9003 buf = *buf_p;
9004 }
9005
9006 memset (&buf[bc], buf[bc - 1], repeat);
9007 bc += repeat;
9008 continue;
9009 }
9010
9011 buf[bc] = '\0';
9012 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9013 return -1;
9014 }
9015 default:
9016 if (bc >= *sizeof_buf - 1)
9017 {
9018 /* Make some more room in the buffer. */
9019 *sizeof_buf *= 2;
9020 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9021 buf = *buf_p;
9022 }
9023
9024 buf[bc++] = c;
9025 csum += c;
9026 continue;
9027 }
9028 }
9029 }
9030
9031 /* Read a packet from the remote machine, with error checking, and
9032 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9033 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9034 rather than timing out; this is used (in synchronous mode) to wait
9035 for a target that is is executing user code to stop. */
9036 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9037 don't have to change all the calls to getpkt to deal with the
9038 return value, because at the moment I don't know what the right
9039 thing to do it for those. */
9040 void
9041 getpkt (char **buf,
9042 long *sizeof_buf,
9043 int forever)
9044 {
9045 getpkt_sane (buf, sizeof_buf, forever);
9046 }
9047
9048
9049 /* Read a packet from the remote machine, with error checking, and
9050 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9051 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9052 rather than timing out; this is used (in synchronous mode) to wait
9053 for a target that is is executing user code to stop. If FOREVER ==
9054 0, this function is allowed to time out gracefully and return an
9055 indication of this to the caller. Otherwise return the number of
9056 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9057 enough reason to return to the caller. *IS_NOTIF is an output
9058 boolean that indicates whether *BUF holds a notification or not
9059 (a regular packet). */
9060
9061 static int
9062 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9063 int expecting_notif, int *is_notif)
9064 {
9065 struct remote_state *rs = get_remote_state ();
9066 int c;
9067 int tries;
9068 int timeout;
9069 int val = -1;
9070
9071 /* We're reading a new response. Make sure we don't look at a
9072 previously cached response. */
9073 rs->cached_wait_status = 0;
9074
9075 strcpy (*buf, "timeout");
9076
9077 if (forever)
9078 timeout = watchdog > 0 ? watchdog : -1;
9079 else if (expecting_notif)
9080 timeout = 0; /* There should already be a char in the buffer. If
9081 not, bail out. */
9082 else
9083 timeout = remote_timeout;
9084
9085 #define MAX_TRIES 3
9086
9087 /* Process any number of notifications, and then return when
9088 we get a packet. */
9089 for (;;)
9090 {
9091 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9092 times. */
9093 for (tries = 1; tries <= MAX_TRIES; tries++)
9094 {
9095 /* This can loop forever if the remote side sends us
9096 characters continuously, but if it pauses, we'll get
9097 SERIAL_TIMEOUT from readchar because of timeout. Then
9098 we'll count that as a retry.
9099
9100 Note that even when forever is set, we will only wait
9101 forever prior to the start of a packet. After that, we
9102 expect characters to arrive at a brisk pace. They should
9103 show up within remote_timeout intervals. */
9104 do
9105 c = readchar (timeout);
9106 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9107
9108 if (c == SERIAL_TIMEOUT)
9109 {
9110 if (expecting_notif)
9111 return -1; /* Don't complain, it's normal to not get
9112 anything in this case. */
9113
9114 if (forever) /* Watchdog went off? Kill the target. */
9115 {
9116 remote_unpush_target ();
9117 throw_error (TARGET_CLOSE_ERROR,
9118 _("Watchdog timeout has expired. "
9119 "Target detached."));
9120 }
9121 if (remote_debug)
9122 fputs_filtered ("Timed out.\n", gdb_stdlog);
9123 }
9124 else
9125 {
9126 /* We've found the start of a packet or notification.
9127 Now collect the data. */
9128 val = read_frame (buf, sizeof_buf);
9129 if (val >= 0)
9130 break;
9131 }
9132
9133 remote_serial_write ("-", 1);
9134 }
9135
9136 if (tries > MAX_TRIES)
9137 {
9138 /* We have tried hard enough, and just can't receive the
9139 packet/notification. Give up. */
9140 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9141
9142 /* Skip the ack char if we're in no-ack mode. */
9143 if (!rs->noack_mode)
9144 remote_serial_write ("+", 1);
9145 return -1;
9146 }
9147
9148 /* If we got an ordinary packet, return that to our caller. */
9149 if (c == '$')
9150 {
9151 if (remote_debug)
9152 {
9153 std::string str
9154 = escape_buffer (*buf,
9155 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9156
9157 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9158 str.c_str ());
9159
9160 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
9161 {
9162 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
9163 str.length () - REMOTE_DEBUG_MAX_CHAR);
9164 }
9165
9166 fprintf_unfiltered (gdb_stdlog, "\n");
9167 }
9168
9169 /* Skip the ack char if we're in no-ack mode. */
9170 if (!rs->noack_mode)
9171 remote_serial_write ("+", 1);
9172 if (is_notif != NULL)
9173 *is_notif = 0;
9174 return val;
9175 }
9176
9177 /* If we got a notification, handle it, and go back to looking
9178 for a packet. */
9179 else
9180 {
9181 gdb_assert (c == '%');
9182
9183 if (remote_debug)
9184 {
9185 std::string str = escape_buffer (*buf, val);
9186
9187 fprintf_unfiltered (gdb_stdlog,
9188 " Notification received: %s\n",
9189 str.c_str ());
9190 }
9191 if (is_notif != NULL)
9192 *is_notif = 1;
9193
9194 handle_notification (rs->notif_state, *buf);
9195
9196 /* Notifications require no acknowledgement. */
9197
9198 if (expecting_notif)
9199 return val;
9200 }
9201 }
9202 }
9203
9204 static int
9205 getpkt_sane (char **buf, long *sizeof_buf, int forever)
9206 {
9207 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9208 }
9209
9210 static int
9211 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9212 int *is_notif)
9213 {
9214 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9215 is_notif);
9216 }
9217
9218 /* Check whether EVENT is a fork event for the process specified
9219 by the pid passed in DATA, and if it is, kill the fork child. */
9220
9221 static int
9222 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9223 QUEUE_ITER (stop_reply_p) *iter,
9224 stop_reply_p event,
9225 void *data)
9226 {
9227 struct queue_iter_param *param = (struct queue_iter_param *) data;
9228 int parent_pid = *(int *) param->input;
9229
9230 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9231 {
9232 struct remote_state *rs = get_remote_state ();
9233 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9234 int res;
9235
9236 res = remote_vkill (child_pid, rs);
9237 if (res != 0)
9238 error (_("Can't kill fork child process %d"), child_pid);
9239 }
9240
9241 return 1;
9242 }
9243
9244 /* Kill any new fork children of process PID that haven't been
9245 processed by follow_fork. */
9246
9247 static void
9248 kill_new_fork_children (int pid, struct remote_state *rs)
9249 {
9250 struct thread_info *thread;
9251 struct notif_client *notif = &notif_client_stop;
9252 struct queue_iter_param param;
9253
9254 /* Kill the fork child threads of any threads in process PID
9255 that are stopped at a fork event. */
9256 ALL_NON_EXITED_THREADS (thread)
9257 {
9258 struct target_waitstatus *ws = &thread->pending_follow;
9259
9260 if (is_pending_fork_parent (ws, pid, thread->ptid))
9261 {
9262 struct remote_state *rs = get_remote_state ();
9263 int child_pid = ptid_get_pid (ws->value.related_pid);
9264 int res;
9265
9266 res = remote_vkill (child_pid, rs);
9267 if (res != 0)
9268 error (_("Can't kill fork child process %d"), child_pid);
9269 }
9270 }
9271
9272 /* Check for any pending fork events (not reported or processed yet)
9273 in process PID and kill those fork child threads as well. */
9274 remote_notif_get_pending_events (notif);
9275 param.input = &pid;
9276 param.output = NULL;
9277 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9278 kill_child_of_pending_fork, &param);
9279 }
9280
9281 \f
9282 /* Target hook to kill the current inferior. */
9283
9284 static void
9285 remote_kill (struct target_ops *ops)
9286 {
9287 int res = -1;
9288 int pid = ptid_get_pid (inferior_ptid);
9289 struct remote_state *rs = get_remote_state ();
9290
9291 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9292 {
9293 /* If we're stopped while forking and we haven't followed yet,
9294 kill the child task. We need to do this before killing the
9295 parent task because if this is a vfork then the parent will
9296 be sleeping. */
9297 kill_new_fork_children (pid, rs);
9298
9299 res = remote_vkill (pid, rs);
9300 if (res == 0)
9301 {
9302 target_mourn_inferior (inferior_ptid);
9303 return;
9304 }
9305 }
9306
9307 /* If we are in 'target remote' mode and we are killing the only
9308 inferior, then we will tell gdbserver to exit and unpush the
9309 target. */
9310 if (res == -1 && !remote_multi_process_p (rs)
9311 && number_of_live_inferiors () == 1)
9312 {
9313 remote_kill_k ();
9314
9315 /* We've killed the remote end, we get to mourn it. If we are
9316 not in extended mode, mourning the inferior also unpushes
9317 remote_ops from the target stack, which closes the remote
9318 connection. */
9319 target_mourn_inferior (inferior_ptid);
9320
9321 return;
9322 }
9323
9324 error (_("Can't kill process"));
9325 }
9326
9327 /* Send a kill request to the target using the 'vKill' packet. */
9328
9329 static int
9330 remote_vkill (int pid, struct remote_state *rs)
9331 {
9332 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9333 return -1;
9334
9335 /* Tell the remote target to detach. */
9336 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9337 putpkt (rs->buf);
9338 getpkt (&rs->buf, &rs->buf_size, 0);
9339
9340 switch (packet_ok (rs->buf,
9341 &remote_protocol_packets[PACKET_vKill]))
9342 {
9343 case PACKET_OK:
9344 return 0;
9345 case PACKET_ERROR:
9346 return 1;
9347 case PACKET_UNKNOWN:
9348 return -1;
9349 default:
9350 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9351 }
9352 }
9353
9354 /* Send a kill request to the target using the 'k' packet. */
9355
9356 static void
9357 remote_kill_k (void)
9358 {
9359 /* Catch errors so the user can quit from gdb even when we
9360 aren't on speaking terms with the remote system. */
9361 TRY
9362 {
9363 putpkt ("k");
9364 }
9365 CATCH (ex, RETURN_MASK_ERROR)
9366 {
9367 if (ex.error == TARGET_CLOSE_ERROR)
9368 {
9369 /* If we got an (EOF) error that caused the target
9370 to go away, then we're done, that's what we wanted.
9371 "k" is susceptible to cause a premature EOF, given
9372 that the remote server isn't actually required to
9373 reply to "k", and it can happen that it doesn't
9374 even get to reply ACK to the "k". */
9375 return;
9376 }
9377
9378 /* Otherwise, something went wrong. We didn't actually kill
9379 the target. Just propagate the exception, and let the
9380 user or higher layers decide what to do. */
9381 throw_exception (ex);
9382 }
9383 END_CATCH
9384 }
9385
9386 static void
9387 remote_mourn (struct target_ops *target)
9388 {
9389 struct remote_state *rs = get_remote_state ();
9390
9391 /* In 'target remote' mode with one inferior, we close the connection. */
9392 if (!rs->extended && number_of_live_inferiors () <= 1)
9393 {
9394 unpush_target (target);
9395
9396 /* remote_close takes care of doing most of the clean up. */
9397 generic_mourn_inferior ();
9398 return;
9399 }
9400
9401 /* In case we got here due to an error, but we're going to stay
9402 connected. */
9403 rs->waiting_for_stop_reply = 0;
9404
9405 /* If the current general thread belonged to the process we just
9406 detached from or has exited, the remote side current general
9407 thread becomes undefined. Considering a case like this:
9408
9409 - We just got here due to a detach.
9410 - The process that we're detaching from happens to immediately
9411 report a global breakpoint being hit in non-stop mode, in the
9412 same thread we had selected before.
9413 - GDB attaches to this process again.
9414 - This event happens to be the next event we handle.
9415
9416 GDB would consider that the current general thread didn't need to
9417 be set on the stub side (with Hg), since for all it knew,
9418 GENERAL_THREAD hadn't changed.
9419
9420 Notice that although in all-stop mode, the remote server always
9421 sets the current thread to the thread reporting the stop event,
9422 that doesn't happen in non-stop mode; in non-stop, the stub *must
9423 not* change the current thread when reporting a breakpoint hit,
9424 due to the decoupling of event reporting and event handling.
9425
9426 To keep things simple, we always invalidate our notion of the
9427 current thread. */
9428 record_currthread (rs, minus_one_ptid);
9429
9430 /* Call common code to mark the inferior as not running. */
9431 generic_mourn_inferior ();
9432
9433 if (!have_inferiors ())
9434 {
9435 if (!remote_multi_process_p (rs))
9436 {
9437 /* Check whether the target is running now - some remote stubs
9438 automatically restart after kill. */
9439 putpkt ("?");
9440 getpkt (&rs->buf, &rs->buf_size, 0);
9441
9442 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9443 {
9444 /* Assume that the target has been restarted. Set
9445 inferior_ptid so that bits of core GDB realizes
9446 there's something here, e.g., so that the user can
9447 say "kill" again. */
9448 inferior_ptid = magic_null_ptid;
9449 }
9450 }
9451 }
9452 }
9453
9454 static int
9455 extended_remote_supports_disable_randomization (struct target_ops *self)
9456 {
9457 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9458 }
9459
9460 static void
9461 extended_remote_disable_randomization (int val)
9462 {
9463 struct remote_state *rs = get_remote_state ();
9464 char *reply;
9465
9466 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9467 val);
9468 putpkt (rs->buf);
9469 reply = remote_get_noisy_reply ();
9470 if (*reply == '\0')
9471 error (_("Target does not support QDisableRandomization."));
9472 if (strcmp (reply, "OK") != 0)
9473 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9474 }
9475
9476 static int
9477 extended_remote_run (const std::string &args)
9478 {
9479 struct remote_state *rs = get_remote_state ();
9480 int len;
9481 const char *remote_exec_file = get_remote_exec_file ();
9482
9483 /* If the user has disabled vRun support, or we have detected that
9484 support is not available, do not try it. */
9485 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9486 return -1;
9487
9488 strcpy (rs->buf, "vRun;");
9489 len = strlen (rs->buf);
9490
9491 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9492 error (_("Remote file name too long for run packet"));
9493 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9494 strlen (remote_exec_file));
9495
9496 if (!args.empty ())
9497 {
9498 int i;
9499
9500 gdb_argv argv (args.c_str ());
9501 for (i = 0; argv[i] != NULL; i++)
9502 {
9503 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9504 error (_("Argument list too long for run packet"));
9505 rs->buf[len++] = ';';
9506 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9507 strlen (argv[i]));
9508 }
9509 }
9510
9511 rs->buf[len++] = '\0';
9512
9513 putpkt (rs->buf);
9514 getpkt (&rs->buf, &rs->buf_size, 0);
9515
9516 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9517 {
9518 case PACKET_OK:
9519 /* We have a wait response. All is well. */
9520 return 0;
9521 case PACKET_UNKNOWN:
9522 return -1;
9523 case PACKET_ERROR:
9524 if (remote_exec_file[0] == '\0')
9525 error (_("Running the default executable on the remote target failed; "
9526 "try \"set remote exec-file\"?"));
9527 else
9528 error (_("Running \"%s\" on the remote target failed"),
9529 remote_exec_file);
9530 default:
9531 gdb_assert_not_reached (_("bad switch"));
9532 }
9533 }
9534
9535 /* Helper function to send set/unset environment packets. ACTION is
9536 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9537 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9538 sent. */
9539
9540 static void
9541 send_environment_packet (struct remote_state *rs,
9542 const char *action,
9543 const char *packet,
9544 const char *value)
9545 {
9546 /* Convert the environment variable to an hex string, which
9547 is the best format to be transmitted over the wire. */
9548 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9549 strlen (value));
9550
9551 xsnprintf (rs->buf, get_remote_packet_size (),
9552 "%s:%s", packet, encoded_value.c_str ());
9553
9554 putpkt (rs->buf);
9555 getpkt (&rs->buf, &rs->buf_size, 0);
9556 if (strcmp (rs->buf, "OK") != 0)
9557 warning (_("Unable to %s environment variable '%s' on remote."),
9558 action, value);
9559 }
9560
9561 /* Helper function to handle the QEnvironment* packets. */
9562
9563 static void
9564 extended_remote_environment_support (struct remote_state *rs)
9565 {
9566 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9567 {
9568 putpkt ("QEnvironmentReset");
9569 getpkt (&rs->buf, &rs->buf_size, 0);
9570 if (strcmp (rs->buf, "OK") != 0)
9571 warning (_("Unable to reset environment on remote."));
9572 }
9573
9574 gdb_environ *e = &current_inferior ()->environment;
9575
9576 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9577 for (const std::string &el : e->user_set_env ())
9578 send_environment_packet (rs, "set", "QEnvironmentHexEncoded",
9579 el.c_str ());
9580
9581 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9582 for (const std::string &el : e->user_unset_env ())
9583 send_environment_packet (rs, "unset", "QEnvironmentUnset", el.c_str ());
9584 }
9585
9586 /* Helper function to set the current working directory for the
9587 inferior in the remote target. */
9588
9589 static void
9590 extended_remote_set_inferior_cwd (struct remote_state *rs)
9591 {
9592 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
9593 {
9594 const char *inferior_cwd = get_inferior_cwd ();
9595
9596 if (inferior_cwd != NULL)
9597 {
9598 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
9599 strlen (inferior_cwd));
9600
9601 xsnprintf (rs->buf, get_remote_packet_size (),
9602 "QSetWorkingDir:%s", hexpath.c_str ());
9603 }
9604 else
9605 {
9606 /* An empty inferior_cwd means that the user wants us to
9607 reset the remote server's inferior's cwd. */
9608 xsnprintf (rs->buf, get_remote_packet_size (),
9609 "QSetWorkingDir:");
9610 }
9611
9612 putpkt (rs->buf);
9613 getpkt (&rs->buf, &rs->buf_size, 0);
9614 if (packet_ok (rs->buf,
9615 &remote_protocol_packets[PACKET_QSetWorkingDir])
9616 != PACKET_OK)
9617 error (_("\
9618 Remote replied unexpectedly while setting the inferior's working\n\
9619 directory: %s"),
9620 rs->buf);
9621
9622 }
9623 }
9624
9625 /* In the extended protocol we want to be able to do things like
9626 "run" and have them basically work as expected. So we need
9627 a special create_inferior function. We support changing the
9628 executable file and the command line arguments, but not the
9629 environment. */
9630
9631 static void
9632 extended_remote_create_inferior (struct target_ops *ops,
9633 const char *exec_file,
9634 const std::string &args,
9635 char **env, int from_tty)
9636 {
9637 int run_worked;
9638 char *stop_reply;
9639 struct remote_state *rs = get_remote_state ();
9640 const char *remote_exec_file = get_remote_exec_file ();
9641
9642 /* If running asynchronously, register the target file descriptor
9643 with the event loop. */
9644 if (target_can_async_p ())
9645 target_async (1);
9646
9647 /* Disable address space randomization if requested (and supported). */
9648 if (extended_remote_supports_disable_randomization (ops))
9649 extended_remote_disable_randomization (disable_randomization);
9650
9651 /* If startup-with-shell is on, we inform gdbserver to start the
9652 remote inferior using a shell. */
9653 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
9654 {
9655 xsnprintf (rs->buf, get_remote_packet_size (),
9656 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
9657 putpkt (rs->buf);
9658 getpkt (&rs->buf, &rs->buf_size, 0);
9659 if (strcmp (rs->buf, "OK") != 0)
9660 error (_("\
9661 Remote replied unexpectedly while setting startup-with-shell: %s"),
9662 rs->buf);
9663 }
9664
9665 extended_remote_environment_support (rs);
9666
9667 extended_remote_set_inferior_cwd (rs);
9668
9669 /* Now restart the remote server. */
9670 run_worked = extended_remote_run (args) != -1;
9671 if (!run_worked)
9672 {
9673 /* vRun was not supported. Fail if we need it to do what the
9674 user requested. */
9675 if (remote_exec_file[0])
9676 error (_("Remote target does not support \"set remote exec-file\""));
9677 if (!args.empty ())
9678 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9679
9680 /* Fall back to "R". */
9681 extended_remote_restart ();
9682 }
9683
9684 if (!have_inferiors ())
9685 {
9686 /* Clean up from the last time we ran, before we mark the target
9687 running again. This will mark breakpoints uninserted, and
9688 get_offsets may insert breakpoints. */
9689 init_thread_list ();
9690 init_wait_for_inferior ();
9691 }
9692
9693 /* vRun's success return is a stop reply. */
9694 stop_reply = run_worked ? rs->buf : NULL;
9695 add_current_inferior_and_thread (stop_reply);
9696
9697 /* Get updated offsets, if the stub uses qOffsets. */
9698 get_offsets ();
9699 }
9700 \f
9701
9702 /* Given a location's target info BP_TGT and the packet buffer BUF, output
9703 the list of conditions (in agent expression bytecode format), if any, the
9704 target needs to evaluate. The output is placed into the packet buffer
9705 started from BUF and ended at BUF_END. */
9706
9707 static int
9708 remote_add_target_side_condition (struct gdbarch *gdbarch,
9709 struct bp_target_info *bp_tgt, char *buf,
9710 char *buf_end)
9711 {
9712 if (bp_tgt->conditions.empty ())
9713 return 0;
9714
9715 buf += strlen (buf);
9716 xsnprintf (buf, buf_end - buf, "%s", ";");
9717 buf++;
9718
9719 /* Send conditions to the target. */
9720 for (agent_expr *aexpr : bp_tgt->conditions)
9721 {
9722 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
9723 buf += strlen (buf);
9724 for (int i = 0; i < aexpr->len; ++i)
9725 buf = pack_hex_byte (buf, aexpr->buf[i]);
9726 *buf = '\0';
9727 }
9728 return 0;
9729 }
9730
9731 static void
9732 remote_add_target_side_commands (struct gdbarch *gdbarch,
9733 struct bp_target_info *bp_tgt, char *buf)
9734 {
9735 if (bp_tgt->tcommands.empty ())
9736 return;
9737
9738 buf += strlen (buf);
9739
9740 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
9741 buf += strlen (buf);
9742
9743 /* Concatenate all the agent expressions that are commands into the
9744 cmds parameter. */
9745 for (agent_expr *aexpr : bp_tgt->tcommands)
9746 {
9747 sprintf (buf, "X%x,", aexpr->len);
9748 buf += strlen (buf);
9749 for (int i = 0; i < aexpr->len; ++i)
9750 buf = pack_hex_byte (buf, aexpr->buf[i]);
9751 *buf = '\0';
9752 }
9753 }
9754
9755 /* Insert a breakpoint. On targets that have software breakpoint
9756 support, we ask the remote target to do the work; on targets
9757 which don't, we insert a traditional memory breakpoint. */
9758
9759 static int
9760 remote_insert_breakpoint (struct target_ops *ops,
9761 struct gdbarch *gdbarch,
9762 struct bp_target_info *bp_tgt)
9763 {
9764 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
9765 If it succeeds, then set the support to PACKET_ENABLE. If it
9766 fails, and the user has explicitly requested the Z support then
9767 report an error, otherwise, mark it disabled and go on. */
9768
9769 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9770 {
9771 CORE_ADDR addr = bp_tgt->reqstd_address;
9772 struct remote_state *rs;
9773 char *p, *endbuf;
9774
9775 /* Make sure the remote is pointing at the right process, if
9776 necessary. */
9777 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9778 set_general_process ();
9779
9780 rs = get_remote_state ();
9781 p = rs->buf;
9782 endbuf = rs->buf + get_remote_packet_size ();
9783
9784 *(p++) = 'Z';
9785 *(p++) = '0';
9786 *(p++) = ',';
9787 addr = (ULONGEST) remote_address_masked (addr);
9788 p += hexnumstr (p, addr);
9789 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9790
9791 if (remote_supports_cond_breakpoints (ops))
9792 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
9793
9794 if (remote_can_run_breakpoint_commands (ops))
9795 remote_add_target_side_commands (gdbarch, bp_tgt, p);
9796
9797 putpkt (rs->buf);
9798 getpkt (&rs->buf, &rs->buf_size, 0);
9799
9800 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
9801 {
9802 case PACKET_ERROR:
9803 return -1;
9804 case PACKET_OK:
9805 return 0;
9806 case PACKET_UNKNOWN:
9807 break;
9808 }
9809 }
9810
9811 /* If this breakpoint has target-side commands but this stub doesn't
9812 support Z0 packets, throw error. */
9813 if (!bp_tgt->tcommands.empty ())
9814 throw_error (NOT_SUPPORTED_ERROR, _("\
9815 Target doesn't support breakpoints that have target side commands."));
9816
9817 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
9818 }
9819
9820 static int
9821 remote_remove_breakpoint (struct target_ops *ops,
9822 struct gdbarch *gdbarch,
9823 struct bp_target_info *bp_tgt,
9824 enum remove_bp_reason reason)
9825 {
9826 CORE_ADDR addr = bp_tgt->placed_address;
9827 struct remote_state *rs = get_remote_state ();
9828
9829 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9830 {
9831 char *p = rs->buf;
9832 char *endbuf = rs->buf + get_remote_packet_size ();
9833
9834 /* Make sure the remote is pointing at the right process, if
9835 necessary. */
9836 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9837 set_general_process ();
9838
9839 *(p++) = 'z';
9840 *(p++) = '0';
9841 *(p++) = ',';
9842
9843 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
9844 p += hexnumstr (p, addr);
9845 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9846
9847 putpkt (rs->buf);
9848 getpkt (&rs->buf, &rs->buf_size, 0);
9849
9850 return (rs->buf[0] == 'E');
9851 }
9852
9853 return memory_remove_breakpoint (ops, gdbarch, bp_tgt, reason);
9854 }
9855
9856 static enum Z_packet_type
9857 watchpoint_to_Z_packet (int type)
9858 {
9859 switch (type)
9860 {
9861 case hw_write:
9862 return Z_PACKET_WRITE_WP;
9863 break;
9864 case hw_read:
9865 return Z_PACKET_READ_WP;
9866 break;
9867 case hw_access:
9868 return Z_PACKET_ACCESS_WP;
9869 break;
9870 default:
9871 internal_error (__FILE__, __LINE__,
9872 _("hw_bp_to_z: bad watchpoint type %d"), type);
9873 }
9874 }
9875
9876 static int
9877 remote_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9878 enum target_hw_bp_type type, struct expression *cond)
9879 {
9880 struct remote_state *rs = get_remote_state ();
9881 char *endbuf = rs->buf + get_remote_packet_size ();
9882 char *p;
9883 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9884
9885 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9886 return 1;
9887
9888 /* Make sure the remote is pointing at the right process, if
9889 necessary. */
9890 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9891 set_general_process ();
9892
9893 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
9894 p = strchr (rs->buf, '\0');
9895 addr = remote_address_masked (addr);
9896 p += hexnumstr (p, (ULONGEST) addr);
9897 xsnprintf (p, endbuf - p, ",%x", len);
9898
9899 putpkt (rs->buf);
9900 getpkt (&rs->buf, &rs->buf_size, 0);
9901
9902 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9903 {
9904 case PACKET_ERROR:
9905 return -1;
9906 case PACKET_UNKNOWN:
9907 return 1;
9908 case PACKET_OK:
9909 return 0;
9910 }
9911 internal_error (__FILE__, __LINE__,
9912 _("remote_insert_watchpoint: reached end of function"));
9913 }
9914
9915 static int
9916 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
9917 CORE_ADDR start, int length)
9918 {
9919 CORE_ADDR diff = remote_address_masked (addr - start);
9920
9921 return diff < length;
9922 }
9923
9924
9925 static int
9926 remote_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9927 enum target_hw_bp_type type, struct expression *cond)
9928 {
9929 struct remote_state *rs = get_remote_state ();
9930 char *endbuf = rs->buf + get_remote_packet_size ();
9931 char *p;
9932 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9933
9934 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9935 return -1;
9936
9937 /* Make sure the remote is pointing at the right process, if
9938 necessary. */
9939 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9940 set_general_process ();
9941
9942 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
9943 p = strchr (rs->buf, '\0');
9944 addr = remote_address_masked (addr);
9945 p += hexnumstr (p, (ULONGEST) addr);
9946 xsnprintf (p, endbuf - p, ",%x", len);
9947 putpkt (rs->buf);
9948 getpkt (&rs->buf, &rs->buf_size, 0);
9949
9950 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9951 {
9952 case PACKET_ERROR:
9953 case PACKET_UNKNOWN:
9954 return -1;
9955 case PACKET_OK:
9956 return 0;
9957 }
9958 internal_error (__FILE__, __LINE__,
9959 _("remote_remove_watchpoint: reached end of function"));
9960 }
9961
9962
9963 int remote_hw_watchpoint_limit = -1;
9964 int remote_hw_watchpoint_length_limit = -1;
9965 int remote_hw_breakpoint_limit = -1;
9966
9967 static int
9968 remote_region_ok_for_hw_watchpoint (struct target_ops *self,
9969 CORE_ADDR addr, int len)
9970 {
9971 if (remote_hw_watchpoint_length_limit == 0)
9972 return 0;
9973 else if (remote_hw_watchpoint_length_limit < 0)
9974 return 1;
9975 else if (len <= remote_hw_watchpoint_length_limit)
9976 return 1;
9977 else
9978 return 0;
9979 }
9980
9981 static int
9982 remote_check_watch_resources (struct target_ops *self,
9983 enum bptype type, int cnt, int ot)
9984 {
9985 if (type == bp_hardware_breakpoint)
9986 {
9987 if (remote_hw_breakpoint_limit == 0)
9988 return 0;
9989 else if (remote_hw_breakpoint_limit < 0)
9990 return 1;
9991 else if (cnt <= remote_hw_breakpoint_limit)
9992 return 1;
9993 }
9994 else
9995 {
9996 if (remote_hw_watchpoint_limit == 0)
9997 return 0;
9998 else if (remote_hw_watchpoint_limit < 0)
9999 return 1;
10000 else if (ot)
10001 return -1;
10002 else if (cnt <= remote_hw_watchpoint_limit)
10003 return 1;
10004 }
10005 return -1;
10006 }
10007
10008 /* The to_stopped_by_sw_breakpoint method of target remote. */
10009
10010 static int
10011 remote_stopped_by_sw_breakpoint (struct target_ops *ops)
10012 {
10013 struct thread_info *thread = inferior_thread ();
10014
10015 return (thread->priv != NULL
10016 && (get_remote_thread_info (thread)->stop_reason
10017 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10018 }
10019
10020 /* The to_supports_stopped_by_sw_breakpoint method of target
10021 remote. */
10022
10023 static int
10024 remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
10025 {
10026 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10027 }
10028
10029 /* The to_stopped_by_hw_breakpoint method of target remote. */
10030
10031 static int
10032 remote_stopped_by_hw_breakpoint (struct target_ops *ops)
10033 {
10034 struct thread_info *thread = inferior_thread ();
10035
10036 return (thread->priv != NULL
10037 && (get_remote_thread_info (thread)->stop_reason
10038 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10039 }
10040
10041 /* The to_supports_stopped_by_hw_breakpoint method of target
10042 remote. */
10043
10044 static int
10045 remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
10046 {
10047 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10048 }
10049
10050 static int
10051 remote_stopped_by_watchpoint (struct target_ops *ops)
10052 {
10053 struct thread_info *thread = inferior_thread ();
10054
10055 return (thread->priv != NULL
10056 && (get_remote_thread_info (thread)->stop_reason
10057 == TARGET_STOPPED_BY_WATCHPOINT));
10058 }
10059
10060 static int
10061 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
10062 {
10063 struct thread_info *thread = inferior_thread ();
10064
10065 if (thread->priv != NULL
10066 && (get_remote_thread_info (thread)->stop_reason
10067 == TARGET_STOPPED_BY_WATCHPOINT))
10068 {
10069 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10070 return 1;
10071 }
10072
10073 return 0;
10074 }
10075
10076
10077 static int
10078 remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10079 struct bp_target_info *bp_tgt)
10080 {
10081 CORE_ADDR addr = bp_tgt->reqstd_address;
10082 struct remote_state *rs;
10083 char *p, *endbuf;
10084 char *message;
10085
10086 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10087 return -1;
10088
10089 /* Make sure the remote is pointing at the right process, if
10090 necessary. */
10091 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10092 set_general_process ();
10093
10094 rs = get_remote_state ();
10095 p = rs->buf;
10096 endbuf = rs->buf + get_remote_packet_size ();
10097
10098 *(p++) = 'Z';
10099 *(p++) = '1';
10100 *(p++) = ',';
10101
10102 addr = remote_address_masked (addr);
10103 p += hexnumstr (p, (ULONGEST) addr);
10104 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10105
10106 if (remote_supports_cond_breakpoints (self))
10107 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10108
10109 if (remote_can_run_breakpoint_commands (self))
10110 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10111
10112 putpkt (rs->buf);
10113 getpkt (&rs->buf, &rs->buf_size, 0);
10114
10115 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10116 {
10117 case PACKET_ERROR:
10118 if (rs->buf[1] == '.')
10119 {
10120 message = strchr (rs->buf + 2, '.');
10121 if (message)
10122 error (_("Remote failure reply: %s"), message + 1);
10123 }
10124 return -1;
10125 case PACKET_UNKNOWN:
10126 return -1;
10127 case PACKET_OK:
10128 return 0;
10129 }
10130 internal_error (__FILE__, __LINE__,
10131 _("remote_insert_hw_breakpoint: reached end of function"));
10132 }
10133
10134
10135 static int
10136 remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10137 struct bp_target_info *bp_tgt)
10138 {
10139 CORE_ADDR addr;
10140 struct remote_state *rs = get_remote_state ();
10141 char *p = rs->buf;
10142 char *endbuf = rs->buf + get_remote_packet_size ();
10143
10144 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10145 return -1;
10146
10147 /* Make sure the remote is pointing at the right process, if
10148 necessary. */
10149 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10150 set_general_process ();
10151
10152 *(p++) = 'z';
10153 *(p++) = '1';
10154 *(p++) = ',';
10155
10156 addr = remote_address_masked (bp_tgt->placed_address);
10157 p += hexnumstr (p, (ULONGEST) addr);
10158 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10159
10160 putpkt (rs->buf);
10161 getpkt (&rs->buf, &rs->buf_size, 0);
10162
10163 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10164 {
10165 case PACKET_ERROR:
10166 case PACKET_UNKNOWN:
10167 return -1;
10168 case PACKET_OK:
10169 return 0;
10170 }
10171 internal_error (__FILE__, __LINE__,
10172 _("remote_remove_hw_breakpoint: reached end of function"));
10173 }
10174
10175 /* Verify memory using the "qCRC:" request. */
10176
10177 static int
10178 remote_verify_memory (struct target_ops *ops,
10179 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10180 {
10181 struct remote_state *rs = get_remote_state ();
10182 unsigned long host_crc, target_crc;
10183 char *tmp;
10184
10185 /* It doesn't make sense to use qCRC if the remote target is
10186 connected but not running. */
10187 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10188 {
10189 enum packet_result result;
10190
10191 /* Make sure the remote is pointing at the right process. */
10192 set_general_process ();
10193
10194 /* FIXME: assumes lma can fit into long. */
10195 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10196 (long) lma, (long) size);
10197 putpkt (rs->buf);
10198
10199 /* Be clever; compute the host_crc before waiting for target
10200 reply. */
10201 host_crc = xcrc32 (data, size, 0xffffffff);
10202
10203 getpkt (&rs->buf, &rs->buf_size, 0);
10204
10205 result = packet_ok (rs->buf,
10206 &remote_protocol_packets[PACKET_qCRC]);
10207 if (result == PACKET_ERROR)
10208 return -1;
10209 else if (result == PACKET_OK)
10210 {
10211 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10212 target_crc = target_crc * 16 + fromhex (*tmp);
10213
10214 return (host_crc == target_crc);
10215 }
10216 }
10217
10218 return simple_verify_memory (ops, data, lma, size);
10219 }
10220
10221 /* compare-sections command
10222
10223 With no arguments, compares each loadable section in the exec bfd
10224 with the same memory range on the target, and reports mismatches.
10225 Useful for verifying the image on the target against the exec file. */
10226
10227 static void
10228 compare_sections_command (const char *args, int from_tty)
10229 {
10230 asection *s;
10231 const char *sectname;
10232 bfd_size_type size;
10233 bfd_vma lma;
10234 int matched = 0;
10235 int mismatched = 0;
10236 int res;
10237 int read_only = 0;
10238
10239 if (!exec_bfd)
10240 error (_("command cannot be used without an exec file"));
10241
10242 /* Make sure the remote is pointing at the right process. */
10243 set_general_process ();
10244
10245 if (args != NULL && strcmp (args, "-r") == 0)
10246 {
10247 read_only = 1;
10248 args = NULL;
10249 }
10250
10251 for (s = exec_bfd->sections; s; s = s->next)
10252 {
10253 if (!(s->flags & SEC_LOAD))
10254 continue; /* Skip non-loadable section. */
10255
10256 if (read_only && (s->flags & SEC_READONLY) == 0)
10257 continue; /* Skip writeable sections */
10258
10259 size = bfd_get_section_size (s);
10260 if (size == 0)
10261 continue; /* Skip zero-length section. */
10262
10263 sectname = bfd_get_section_name (exec_bfd, s);
10264 if (args && strcmp (args, sectname) != 0)
10265 continue; /* Not the section selected by user. */
10266
10267 matched = 1; /* Do this section. */
10268 lma = s->lma;
10269
10270 gdb::byte_vector sectdata (size);
10271 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10272
10273 res = target_verify_memory (sectdata.data (), lma, size);
10274
10275 if (res == -1)
10276 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10277 paddress (target_gdbarch (), lma),
10278 paddress (target_gdbarch (), lma + size));
10279
10280 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10281 paddress (target_gdbarch (), lma),
10282 paddress (target_gdbarch (), lma + size));
10283 if (res)
10284 printf_filtered ("matched.\n");
10285 else
10286 {
10287 printf_filtered ("MIS-MATCHED!\n");
10288 mismatched++;
10289 }
10290 }
10291 if (mismatched > 0)
10292 warning (_("One or more sections of the target image does not match\n\
10293 the loaded file\n"));
10294 if (args && !matched)
10295 printf_filtered (_("No loaded section named '%s'.\n"), args);
10296 }
10297
10298 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10299 into remote target. The number of bytes written to the remote
10300 target is returned, or -1 for error. */
10301
10302 static enum target_xfer_status
10303 remote_write_qxfer (struct target_ops *ops, const char *object_name,
10304 const char *annex, const gdb_byte *writebuf,
10305 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10306 struct packet_config *packet)
10307 {
10308 int i, buf_len;
10309 ULONGEST n;
10310 struct remote_state *rs = get_remote_state ();
10311 int max_size = get_memory_write_packet_size ();
10312
10313 if (packet_config_support (packet) == PACKET_DISABLE)
10314 return TARGET_XFER_E_IO;
10315
10316 /* Insert header. */
10317 i = snprintf (rs->buf, max_size,
10318 "qXfer:%s:write:%s:%s:",
10319 object_name, annex ? annex : "",
10320 phex_nz (offset, sizeof offset));
10321 max_size -= (i + 1);
10322
10323 /* Escape as much data as fits into rs->buf. */
10324 buf_len = remote_escape_output
10325 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10326
10327 if (putpkt_binary (rs->buf, i + buf_len) < 0
10328 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10329 || packet_ok (rs->buf, packet) != PACKET_OK)
10330 return TARGET_XFER_E_IO;
10331
10332 unpack_varlen_hex (rs->buf, &n);
10333
10334 *xfered_len = n;
10335 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10336 }
10337
10338 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10339 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10340 number of bytes read is returned, or 0 for EOF, or -1 for error.
10341 The number of bytes read may be less than LEN without indicating an
10342 EOF. PACKET is checked and updated to indicate whether the remote
10343 target supports this object. */
10344
10345 static enum target_xfer_status
10346 remote_read_qxfer (struct target_ops *ops, const char *object_name,
10347 const char *annex,
10348 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10349 ULONGEST *xfered_len,
10350 struct packet_config *packet)
10351 {
10352 struct remote_state *rs = get_remote_state ();
10353 LONGEST i, n, packet_len;
10354
10355 if (packet_config_support (packet) == PACKET_DISABLE)
10356 return TARGET_XFER_E_IO;
10357
10358 /* Check whether we've cached an end-of-object packet that matches
10359 this request. */
10360 if (rs->finished_object)
10361 {
10362 if (strcmp (object_name, rs->finished_object) == 0
10363 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10364 && offset == rs->finished_offset)
10365 return TARGET_XFER_EOF;
10366
10367
10368 /* Otherwise, we're now reading something different. Discard
10369 the cache. */
10370 xfree (rs->finished_object);
10371 xfree (rs->finished_annex);
10372 rs->finished_object = NULL;
10373 rs->finished_annex = NULL;
10374 }
10375
10376 /* Request only enough to fit in a single packet. The actual data
10377 may not, since we don't know how much of it will need to be escaped;
10378 the target is free to respond with slightly less data. We subtract
10379 five to account for the response type and the protocol frame. */
10380 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10381 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10382 object_name, annex ? annex : "",
10383 phex_nz (offset, sizeof offset),
10384 phex_nz (n, sizeof n));
10385 i = putpkt (rs->buf);
10386 if (i < 0)
10387 return TARGET_XFER_E_IO;
10388
10389 rs->buf[0] = '\0';
10390 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10391 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10392 return TARGET_XFER_E_IO;
10393
10394 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10395 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10396
10397 /* 'm' means there is (or at least might be) more data after this
10398 batch. That does not make sense unless there's at least one byte
10399 of data in this reply. */
10400 if (rs->buf[0] == 'm' && packet_len == 1)
10401 error (_("Remote qXfer reply contained no data."));
10402
10403 /* Got some data. */
10404 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10405 packet_len - 1, readbuf, n);
10406
10407 /* 'l' is an EOF marker, possibly including a final block of data,
10408 or possibly empty. If we have the final block of a non-empty
10409 object, record this fact to bypass a subsequent partial read. */
10410 if (rs->buf[0] == 'l' && offset + i > 0)
10411 {
10412 rs->finished_object = xstrdup (object_name);
10413 rs->finished_annex = xstrdup (annex ? annex : "");
10414 rs->finished_offset = offset + i;
10415 }
10416
10417 if (i == 0)
10418 return TARGET_XFER_EOF;
10419 else
10420 {
10421 *xfered_len = i;
10422 return TARGET_XFER_OK;
10423 }
10424 }
10425
10426 static enum target_xfer_status
10427 remote_xfer_partial (struct target_ops *ops, enum target_object object,
10428 const char *annex, gdb_byte *readbuf,
10429 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10430 ULONGEST *xfered_len)
10431 {
10432 struct remote_state *rs;
10433 int i;
10434 char *p2;
10435 char query_type;
10436 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10437
10438 set_remote_traceframe ();
10439 set_general_thread (inferior_ptid);
10440
10441 rs = get_remote_state ();
10442
10443 /* Handle memory using the standard memory routines. */
10444 if (object == TARGET_OBJECT_MEMORY)
10445 {
10446 /* If the remote target is connected but not running, we should
10447 pass this request down to a lower stratum (e.g. the executable
10448 file). */
10449 if (!target_has_execution)
10450 return TARGET_XFER_EOF;
10451
10452 if (writebuf != NULL)
10453 return remote_write_bytes (offset, writebuf, len, unit_size,
10454 xfered_len);
10455 else
10456 return remote_read_bytes (ops, offset, readbuf, len, unit_size,
10457 xfered_len);
10458 }
10459
10460 /* Handle SPU memory using qxfer packets. */
10461 if (object == TARGET_OBJECT_SPU)
10462 {
10463 if (readbuf)
10464 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
10465 xfered_len, &remote_protocol_packets
10466 [PACKET_qXfer_spu_read]);
10467 else
10468 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
10469 xfered_len, &remote_protocol_packets
10470 [PACKET_qXfer_spu_write]);
10471 }
10472
10473 /* Handle extra signal info using qxfer packets. */
10474 if (object == TARGET_OBJECT_SIGNAL_INFO)
10475 {
10476 if (readbuf)
10477 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
10478 xfered_len, &remote_protocol_packets
10479 [PACKET_qXfer_siginfo_read]);
10480 else
10481 return remote_write_qxfer (ops, "siginfo", annex,
10482 writebuf, offset, len, xfered_len,
10483 &remote_protocol_packets
10484 [PACKET_qXfer_siginfo_write]);
10485 }
10486
10487 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10488 {
10489 if (readbuf)
10490 return remote_read_qxfer (ops, "statictrace", annex,
10491 readbuf, offset, len, xfered_len,
10492 &remote_protocol_packets
10493 [PACKET_qXfer_statictrace_read]);
10494 else
10495 return TARGET_XFER_E_IO;
10496 }
10497
10498 /* Only handle flash writes. */
10499 if (writebuf != NULL)
10500 {
10501 switch (object)
10502 {
10503 case TARGET_OBJECT_FLASH:
10504 return remote_flash_write (ops, offset, len, xfered_len,
10505 writebuf);
10506
10507 default:
10508 return TARGET_XFER_E_IO;
10509 }
10510 }
10511
10512 /* Map pre-existing objects onto letters. DO NOT do this for new
10513 objects!!! Instead specify new query packets. */
10514 switch (object)
10515 {
10516 case TARGET_OBJECT_AVR:
10517 query_type = 'R';
10518 break;
10519
10520 case TARGET_OBJECT_AUXV:
10521 gdb_assert (annex == NULL);
10522 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
10523 xfered_len,
10524 &remote_protocol_packets[PACKET_qXfer_auxv]);
10525
10526 case TARGET_OBJECT_AVAILABLE_FEATURES:
10527 return remote_read_qxfer
10528 (ops, "features", annex, readbuf, offset, len, xfered_len,
10529 &remote_protocol_packets[PACKET_qXfer_features]);
10530
10531 case TARGET_OBJECT_LIBRARIES:
10532 return remote_read_qxfer
10533 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
10534 &remote_protocol_packets[PACKET_qXfer_libraries]);
10535
10536 case TARGET_OBJECT_LIBRARIES_SVR4:
10537 return remote_read_qxfer
10538 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
10539 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10540
10541 case TARGET_OBJECT_MEMORY_MAP:
10542 gdb_assert (annex == NULL);
10543 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
10544 xfered_len,
10545 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10546
10547 case TARGET_OBJECT_OSDATA:
10548 /* Should only get here if we're connected. */
10549 gdb_assert (rs->remote_desc);
10550 return remote_read_qxfer
10551 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
10552 &remote_protocol_packets[PACKET_qXfer_osdata]);
10553
10554 case TARGET_OBJECT_THREADS:
10555 gdb_assert (annex == NULL);
10556 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
10557 xfered_len,
10558 &remote_protocol_packets[PACKET_qXfer_threads]);
10559
10560 case TARGET_OBJECT_TRACEFRAME_INFO:
10561 gdb_assert (annex == NULL);
10562 return remote_read_qxfer
10563 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
10564 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10565
10566 case TARGET_OBJECT_FDPIC:
10567 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
10568 xfered_len,
10569 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10570
10571 case TARGET_OBJECT_OPENVMS_UIB:
10572 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
10573 xfered_len,
10574 &remote_protocol_packets[PACKET_qXfer_uib]);
10575
10576 case TARGET_OBJECT_BTRACE:
10577 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
10578 xfered_len,
10579 &remote_protocol_packets[PACKET_qXfer_btrace]);
10580
10581 case TARGET_OBJECT_BTRACE_CONF:
10582 return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset,
10583 len, xfered_len,
10584 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10585
10586 case TARGET_OBJECT_EXEC_FILE:
10587 return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset,
10588 len, xfered_len,
10589 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10590
10591 default:
10592 return TARGET_XFER_E_IO;
10593 }
10594
10595 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10596 large enough let the caller deal with it. */
10597 if (len < get_remote_packet_size ())
10598 return TARGET_XFER_E_IO;
10599 len = get_remote_packet_size ();
10600
10601 /* Except for querying the minimum buffer size, target must be open. */
10602 if (!rs->remote_desc)
10603 error (_("remote query is only available after target open"));
10604
10605 gdb_assert (annex != NULL);
10606 gdb_assert (readbuf != NULL);
10607
10608 p2 = rs->buf;
10609 *p2++ = 'q';
10610 *p2++ = query_type;
10611
10612 /* We used one buffer char for the remote protocol q command and
10613 another for the query type. As the remote protocol encapsulation
10614 uses 4 chars plus one extra in case we are debugging
10615 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10616 string. */
10617 i = 0;
10618 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10619 {
10620 /* Bad caller may have sent forbidden characters. */
10621 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10622 *p2++ = annex[i];
10623 i++;
10624 }
10625 *p2 = '\0';
10626 gdb_assert (annex[i] == '\0');
10627
10628 i = putpkt (rs->buf);
10629 if (i < 0)
10630 return TARGET_XFER_E_IO;
10631
10632 getpkt (&rs->buf, &rs->buf_size, 0);
10633 strcpy ((char *) readbuf, rs->buf);
10634
10635 *xfered_len = strlen ((char *) readbuf);
10636 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10637 }
10638
10639 /* Implementation of to_get_memory_xfer_limit. */
10640
10641 static ULONGEST
10642 remote_get_memory_xfer_limit (struct target_ops *ops)
10643 {
10644 return get_memory_write_packet_size ();
10645 }
10646
10647 static int
10648 remote_search_memory (struct target_ops* ops,
10649 CORE_ADDR start_addr, ULONGEST search_space_len,
10650 const gdb_byte *pattern, ULONGEST pattern_len,
10651 CORE_ADDR *found_addrp)
10652 {
10653 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10654 struct remote_state *rs = get_remote_state ();
10655 int max_size = get_memory_write_packet_size ();
10656 struct packet_config *packet =
10657 &remote_protocol_packets[PACKET_qSearch_memory];
10658 /* Number of packet bytes used to encode the pattern;
10659 this could be more than PATTERN_LEN due to escape characters. */
10660 int escaped_pattern_len;
10661 /* Amount of pattern that was encodable in the packet. */
10662 int used_pattern_len;
10663 int i;
10664 int found;
10665 ULONGEST found_addr;
10666
10667 /* Don't go to the target if we don't have to. This is done before
10668 checking packet_config_support to avoid the possibility that a
10669 success for this edge case means the facility works in
10670 general. */
10671 if (pattern_len > search_space_len)
10672 return 0;
10673 if (pattern_len == 0)
10674 {
10675 *found_addrp = start_addr;
10676 return 1;
10677 }
10678
10679 /* If we already know the packet isn't supported, fall back to the simple
10680 way of searching memory. */
10681
10682 if (packet_config_support (packet) == PACKET_DISABLE)
10683 {
10684 /* Target doesn't provided special support, fall back and use the
10685 standard support (copy memory and do the search here). */
10686 return simple_search_memory (ops, start_addr, search_space_len,
10687 pattern, pattern_len, found_addrp);
10688 }
10689
10690 /* Make sure the remote is pointing at the right process. */
10691 set_general_process ();
10692
10693 /* Insert header. */
10694 i = snprintf (rs->buf, max_size,
10695 "qSearch:memory:%s;%s;",
10696 phex_nz (start_addr, addr_size),
10697 phex_nz (search_space_len, sizeof (search_space_len)));
10698 max_size -= (i + 1);
10699
10700 /* Escape as much data as fits into rs->buf. */
10701 escaped_pattern_len =
10702 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10703 &used_pattern_len, max_size);
10704
10705 /* Bail if the pattern is too large. */
10706 if (used_pattern_len != pattern_len)
10707 error (_("Pattern is too large to transmit to remote target."));
10708
10709 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10710 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10711 || packet_ok (rs->buf, packet) != PACKET_OK)
10712 {
10713 /* The request may not have worked because the command is not
10714 supported. If so, fall back to the simple way. */
10715 if (packet_config_support (packet) == PACKET_DISABLE)
10716 {
10717 return simple_search_memory (ops, start_addr, search_space_len,
10718 pattern, pattern_len, found_addrp);
10719 }
10720 return -1;
10721 }
10722
10723 if (rs->buf[0] == '0')
10724 found = 0;
10725 else if (rs->buf[0] == '1')
10726 {
10727 found = 1;
10728 if (rs->buf[1] != ',')
10729 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10730 unpack_varlen_hex (rs->buf + 2, &found_addr);
10731 *found_addrp = found_addr;
10732 }
10733 else
10734 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10735
10736 return found;
10737 }
10738
10739 static void
10740 remote_rcmd (struct target_ops *self, const char *command,
10741 struct ui_file *outbuf)
10742 {
10743 struct remote_state *rs = get_remote_state ();
10744 char *p = rs->buf;
10745
10746 if (!rs->remote_desc)
10747 error (_("remote rcmd is only available after target open"));
10748
10749 /* Send a NULL command across as an empty command. */
10750 if (command == NULL)
10751 command = "";
10752
10753 /* The query prefix. */
10754 strcpy (rs->buf, "qRcmd,");
10755 p = strchr (rs->buf, '\0');
10756
10757 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
10758 > get_remote_packet_size ())
10759 error (_("\"monitor\" command ``%s'' is too long."), command);
10760
10761 /* Encode the actual command. */
10762 bin2hex ((const gdb_byte *) command, p, strlen (command));
10763
10764 if (putpkt (rs->buf) < 0)
10765 error (_("Communication problem with target."));
10766
10767 /* get/display the response */
10768 while (1)
10769 {
10770 char *buf;
10771
10772 /* XXX - see also remote_get_noisy_reply(). */
10773 QUIT; /* Allow user to bail out with ^C. */
10774 rs->buf[0] = '\0';
10775 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
10776 {
10777 /* Timeout. Continue to (try to) read responses.
10778 This is better than stopping with an error, assuming the stub
10779 is still executing the (long) monitor command.
10780 If needed, the user can interrupt gdb using C-c, obtaining
10781 an effect similar to stop on timeout. */
10782 continue;
10783 }
10784 buf = rs->buf;
10785 if (buf[0] == '\0')
10786 error (_("Target does not support this command."));
10787 if (buf[0] == 'O' && buf[1] != 'K')
10788 {
10789 remote_console_output (buf + 1); /* 'O' message from stub. */
10790 continue;
10791 }
10792 if (strcmp (buf, "OK") == 0)
10793 break;
10794 if (strlen (buf) == 3 && buf[0] == 'E'
10795 && isdigit (buf[1]) && isdigit (buf[2]))
10796 {
10797 error (_("Protocol error with Rcmd"));
10798 }
10799 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
10800 {
10801 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
10802
10803 fputc_unfiltered (c, outbuf);
10804 }
10805 break;
10806 }
10807 }
10808
10809 static std::vector<mem_region>
10810 remote_memory_map (struct target_ops *ops)
10811 {
10812 std::vector<mem_region> result;
10813 gdb::unique_xmalloc_ptr<char> text
10814 = target_read_stralloc (&current_target, TARGET_OBJECT_MEMORY_MAP, NULL);
10815
10816 if (text)
10817 result = parse_memory_map (text.get ());
10818
10819 return result;
10820 }
10821
10822 static void
10823 packet_command (const char *args, int from_tty)
10824 {
10825 struct remote_state *rs = get_remote_state ();
10826
10827 if (!rs->remote_desc)
10828 error (_("command can only be used with remote target"));
10829
10830 if (!args)
10831 error (_("remote-packet command requires packet text as argument"));
10832
10833 puts_filtered ("sending: ");
10834 print_packet (args);
10835 puts_filtered ("\n");
10836 putpkt (args);
10837
10838 getpkt (&rs->buf, &rs->buf_size, 0);
10839 puts_filtered ("received: ");
10840 print_packet (rs->buf);
10841 puts_filtered ("\n");
10842 }
10843
10844 #if 0
10845 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
10846
10847 static void display_thread_info (struct gdb_ext_thread_info *info);
10848
10849 static void threadset_test_cmd (char *cmd, int tty);
10850
10851 static void threadalive_test (char *cmd, int tty);
10852
10853 static void threadlist_test_cmd (char *cmd, int tty);
10854
10855 int get_and_display_threadinfo (threadref *ref);
10856
10857 static void threadinfo_test_cmd (char *cmd, int tty);
10858
10859 static int thread_display_step (threadref *ref, void *context);
10860
10861 static void threadlist_update_test_cmd (char *cmd, int tty);
10862
10863 static void init_remote_threadtests (void);
10864
10865 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
10866
10867 static void
10868 threadset_test_cmd (const char *cmd, int tty)
10869 {
10870 int sample_thread = SAMPLE_THREAD;
10871
10872 printf_filtered (_("Remote threadset test\n"));
10873 set_general_thread (sample_thread);
10874 }
10875
10876
10877 static void
10878 threadalive_test (const char *cmd, int tty)
10879 {
10880 int sample_thread = SAMPLE_THREAD;
10881 int pid = ptid_get_pid (inferior_ptid);
10882 ptid_t ptid = ptid_build (pid, sample_thread, 0);
10883
10884 if (remote_thread_alive (ptid))
10885 printf_filtered ("PASS: Thread alive test\n");
10886 else
10887 printf_filtered ("FAIL: Thread alive test\n");
10888 }
10889
10890 void output_threadid (char *title, threadref *ref);
10891
10892 void
10893 output_threadid (char *title, threadref *ref)
10894 {
10895 char hexid[20];
10896
10897 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
10898 hexid[16] = 0;
10899 printf_filtered ("%s %s\n", title, (&hexid[0]));
10900 }
10901
10902 static void
10903 threadlist_test_cmd (const char *cmd, int tty)
10904 {
10905 int startflag = 1;
10906 threadref nextthread;
10907 int done, result_count;
10908 threadref threadlist[3];
10909
10910 printf_filtered ("Remote Threadlist test\n");
10911 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
10912 &result_count, &threadlist[0]))
10913 printf_filtered ("FAIL: threadlist test\n");
10914 else
10915 {
10916 threadref *scan = threadlist;
10917 threadref *limit = scan + result_count;
10918
10919 while (scan < limit)
10920 output_threadid (" thread ", scan++);
10921 }
10922 }
10923
10924 void
10925 display_thread_info (struct gdb_ext_thread_info *info)
10926 {
10927 output_threadid ("Threadid: ", &info->threadid);
10928 printf_filtered ("Name: %s\n ", info->shortname);
10929 printf_filtered ("State: %s\n", info->display);
10930 printf_filtered ("other: %s\n\n", info->more_display);
10931 }
10932
10933 int
10934 get_and_display_threadinfo (threadref *ref)
10935 {
10936 int result;
10937 int set;
10938 struct gdb_ext_thread_info threadinfo;
10939
10940 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
10941 | TAG_MOREDISPLAY | TAG_DISPLAY;
10942 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
10943 display_thread_info (&threadinfo);
10944 return result;
10945 }
10946
10947 static void
10948 threadinfo_test_cmd (const char *cmd, int tty)
10949 {
10950 int athread = SAMPLE_THREAD;
10951 threadref thread;
10952 int set;
10953
10954 int_to_threadref (&thread, athread);
10955 printf_filtered ("Remote Threadinfo test\n");
10956 if (!get_and_display_threadinfo (&thread))
10957 printf_filtered ("FAIL cannot get thread info\n");
10958 }
10959
10960 static int
10961 thread_display_step (threadref *ref, void *context)
10962 {
10963 /* output_threadid(" threadstep ",ref); *//* simple test */
10964 return get_and_display_threadinfo (ref);
10965 }
10966
10967 static void
10968 threadlist_update_test_cmd (const char *cmd, int tty)
10969 {
10970 printf_filtered ("Remote Threadlist update test\n");
10971 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
10972 }
10973
10974 static void
10975 init_remote_threadtests (void)
10976 {
10977 add_com ("tlist", class_obscure, threadlist_test_cmd,
10978 _("Fetch and print the remote list of "
10979 "thread identifiers, one pkt only"));
10980 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
10981 _("Fetch and display info about one thread"));
10982 add_com ("tset", class_obscure, threadset_test_cmd,
10983 _("Test setting to a different thread"));
10984 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
10985 _("Iterate through updating all remote thread info"));
10986 add_com ("talive", class_obscure, threadalive_test,
10987 _(" Remote thread alive test "));
10988 }
10989
10990 #endif /* 0 */
10991
10992 /* Convert a thread ID to a string. Returns the string in a static
10993 buffer. */
10994
10995 static const char *
10996 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
10997 {
10998 static char buf[64];
10999 struct remote_state *rs = get_remote_state ();
11000
11001 if (ptid_equal (ptid, null_ptid))
11002 return normal_pid_to_str (ptid);
11003 else if (ptid_is_pid (ptid))
11004 {
11005 /* Printing an inferior target id. */
11006
11007 /* When multi-process extensions are off, there's no way in the
11008 remote protocol to know the remote process id, if there's any
11009 at all. There's one exception --- when we're connected with
11010 target extended-remote, and we manually attached to a process
11011 with "attach PID". We don't record anywhere a flag that
11012 allows us to distinguish that case from the case of
11013 connecting with extended-remote and the stub already being
11014 attached to a process, and reporting yes to qAttached, hence
11015 no smart special casing here. */
11016 if (!remote_multi_process_p (rs))
11017 {
11018 xsnprintf (buf, sizeof buf, "Remote target");
11019 return buf;
11020 }
11021
11022 return normal_pid_to_str (ptid);
11023 }
11024 else
11025 {
11026 if (ptid_equal (magic_null_ptid, ptid))
11027 xsnprintf (buf, sizeof buf, "Thread <main>");
11028 else if (remote_multi_process_p (rs))
11029 if (ptid_get_lwp (ptid) == 0)
11030 return normal_pid_to_str (ptid);
11031 else
11032 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11033 ptid_get_pid (ptid), ptid_get_lwp (ptid));
11034 else
11035 xsnprintf (buf, sizeof buf, "Thread %ld",
11036 ptid_get_lwp (ptid));
11037 return buf;
11038 }
11039 }
11040
11041 /* Get the address of the thread local variable in OBJFILE which is
11042 stored at OFFSET within the thread local storage for thread PTID. */
11043
11044 static CORE_ADDR
11045 remote_get_thread_local_address (struct target_ops *ops,
11046 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
11047 {
11048 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11049 {
11050 struct remote_state *rs = get_remote_state ();
11051 char *p = rs->buf;
11052 char *endp = rs->buf + get_remote_packet_size ();
11053 enum packet_result result;
11054
11055 strcpy (p, "qGetTLSAddr:");
11056 p += strlen (p);
11057 p = write_ptid (p, endp, ptid);
11058 *p++ = ',';
11059 p += hexnumstr (p, offset);
11060 *p++ = ',';
11061 p += hexnumstr (p, lm);
11062 *p++ = '\0';
11063
11064 putpkt (rs->buf);
11065 getpkt (&rs->buf, &rs->buf_size, 0);
11066 result = packet_ok (rs->buf,
11067 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11068 if (result == PACKET_OK)
11069 {
11070 ULONGEST result;
11071
11072 unpack_varlen_hex (rs->buf, &result);
11073 return result;
11074 }
11075 else if (result == PACKET_UNKNOWN)
11076 throw_error (TLS_GENERIC_ERROR,
11077 _("Remote target doesn't support qGetTLSAddr packet"));
11078 else
11079 throw_error (TLS_GENERIC_ERROR,
11080 _("Remote target failed to process qGetTLSAddr request"));
11081 }
11082 else
11083 throw_error (TLS_GENERIC_ERROR,
11084 _("TLS not supported or disabled on this target"));
11085 /* Not reached. */
11086 return 0;
11087 }
11088
11089 /* Provide thread local base, i.e. Thread Information Block address.
11090 Returns 1 if ptid is found and thread_local_base is non zero. */
11091
11092 static int
11093 remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
11094 {
11095 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11096 {
11097 struct remote_state *rs = get_remote_state ();
11098 char *p = rs->buf;
11099 char *endp = rs->buf + get_remote_packet_size ();
11100 enum packet_result result;
11101
11102 strcpy (p, "qGetTIBAddr:");
11103 p += strlen (p);
11104 p = write_ptid (p, endp, ptid);
11105 *p++ = '\0';
11106
11107 putpkt (rs->buf);
11108 getpkt (&rs->buf, &rs->buf_size, 0);
11109 result = packet_ok (rs->buf,
11110 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11111 if (result == PACKET_OK)
11112 {
11113 ULONGEST result;
11114
11115 unpack_varlen_hex (rs->buf, &result);
11116 if (addr)
11117 *addr = (CORE_ADDR) result;
11118 return 1;
11119 }
11120 else if (result == PACKET_UNKNOWN)
11121 error (_("Remote target doesn't support qGetTIBAddr packet"));
11122 else
11123 error (_("Remote target failed to process qGetTIBAddr request"));
11124 }
11125 else
11126 error (_("qGetTIBAddr not supported or disabled on this target"));
11127 /* Not reached. */
11128 return 0;
11129 }
11130
11131 /* Support for inferring a target description based on the current
11132 architecture and the size of a 'g' packet. While the 'g' packet
11133 can have any size (since optional registers can be left off the
11134 end), some sizes are easily recognizable given knowledge of the
11135 approximate architecture. */
11136
11137 struct remote_g_packet_guess
11138 {
11139 int bytes;
11140 const struct target_desc *tdesc;
11141 };
11142 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11143 DEF_VEC_O(remote_g_packet_guess_s);
11144
11145 struct remote_g_packet_data
11146 {
11147 VEC(remote_g_packet_guess_s) *guesses;
11148 };
11149
11150 static struct gdbarch_data *remote_g_packet_data_handle;
11151
11152 static void *
11153 remote_g_packet_data_init (struct obstack *obstack)
11154 {
11155 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11156 }
11157
11158 void
11159 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11160 const struct target_desc *tdesc)
11161 {
11162 struct remote_g_packet_data *data
11163 = ((struct remote_g_packet_data *)
11164 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11165 struct remote_g_packet_guess new_guess, *guess;
11166 int ix;
11167
11168 gdb_assert (tdesc != NULL);
11169
11170 for (ix = 0;
11171 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11172 ix++)
11173 if (guess->bytes == bytes)
11174 internal_error (__FILE__, __LINE__,
11175 _("Duplicate g packet description added for size %d"),
11176 bytes);
11177
11178 new_guess.bytes = bytes;
11179 new_guess.tdesc = tdesc;
11180 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11181 }
11182
11183 /* Return 1 if remote_read_description would do anything on this target
11184 and architecture, 0 otherwise. */
11185
11186 static int
11187 remote_read_description_p (struct target_ops *target)
11188 {
11189 struct remote_g_packet_data *data
11190 = ((struct remote_g_packet_data *)
11191 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11192
11193 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11194 return 1;
11195
11196 return 0;
11197 }
11198
11199 static const struct target_desc *
11200 remote_read_description (struct target_ops *target)
11201 {
11202 struct remote_g_packet_data *data
11203 = ((struct remote_g_packet_data *)
11204 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11205
11206 /* Do not try this during initial connection, when we do not know
11207 whether there is a running but stopped thread. */
11208 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11209 return target->beneath->to_read_description (target->beneath);
11210
11211 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11212 {
11213 struct remote_g_packet_guess *guess;
11214 int ix;
11215 int bytes = send_g_packet ();
11216
11217 for (ix = 0;
11218 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11219 ix++)
11220 if (guess->bytes == bytes)
11221 return guess->tdesc;
11222
11223 /* We discard the g packet. A minor optimization would be to
11224 hold on to it, and fill the register cache once we have selected
11225 an architecture, but it's too tricky to do safely. */
11226 }
11227
11228 return target->beneath->to_read_description (target->beneath);
11229 }
11230
11231 /* Remote file transfer support. This is host-initiated I/O, not
11232 target-initiated; for target-initiated, see remote-fileio.c. */
11233
11234 /* If *LEFT is at least the length of STRING, copy STRING to
11235 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11236 decrease *LEFT. Otherwise raise an error. */
11237
11238 static void
11239 remote_buffer_add_string (char **buffer, int *left, const char *string)
11240 {
11241 int len = strlen (string);
11242
11243 if (len > *left)
11244 error (_("Packet too long for target."));
11245
11246 memcpy (*buffer, string, len);
11247 *buffer += len;
11248 *left -= len;
11249
11250 /* NUL-terminate the buffer as a convenience, if there is
11251 room. */
11252 if (*left)
11253 **buffer = '\0';
11254 }
11255
11256 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11257 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11258 decrease *LEFT. Otherwise raise an error. */
11259
11260 static void
11261 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11262 int len)
11263 {
11264 if (2 * len > *left)
11265 error (_("Packet too long for target."));
11266
11267 bin2hex (bytes, *buffer, len);
11268 *buffer += 2 * len;
11269 *left -= 2 * len;
11270
11271 /* NUL-terminate the buffer as a convenience, if there is
11272 room. */
11273 if (*left)
11274 **buffer = '\0';
11275 }
11276
11277 /* If *LEFT is large enough, convert VALUE to hex and add it to
11278 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11279 decrease *LEFT. Otherwise raise an error. */
11280
11281 static void
11282 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11283 {
11284 int len = hexnumlen (value);
11285
11286 if (len > *left)
11287 error (_("Packet too long for target."));
11288
11289 hexnumstr (*buffer, value);
11290 *buffer += len;
11291 *left -= len;
11292
11293 /* NUL-terminate the buffer as a convenience, if there is
11294 room. */
11295 if (*left)
11296 **buffer = '\0';
11297 }
11298
11299 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11300 value, *REMOTE_ERRNO to the remote error number or zero if none
11301 was included, and *ATTACHMENT to point to the start of the annex
11302 if any. The length of the packet isn't needed here; there may
11303 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11304
11305 Return 0 if the packet could be parsed, -1 if it could not. If
11306 -1 is returned, the other variables may not be initialized. */
11307
11308 static int
11309 remote_hostio_parse_result (char *buffer, int *retcode,
11310 int *remote_errno, char **attachment)
11311 {
11312 char *p, *p2;
11313
11314 *remote_errno = 0;
11315 *attachment = NULL;
11316
11317 if (buffer[0] != 'F')
11318 return -1;
11319
11320 errno = 0;
11321 *retcode = strtol (&buffer[1], &p, 16);
11322 if (errno != 0 || p == &buffer[1])
11323 return -1;
11324
11325 /* Check for ",errno". */
11326 if (*p == ',')
11327 {
11328 errno = 0;
11329 *remote_errno = strtol (p + 1, &p2, 16);
11330 if (errno != 0 || p + 1 == p2)
11331 return -1;
11332 p = p2;
11333 }
11334
11335 /* Check for ";attachment". If there is no attachment, the
11336 packet should end here. */
11337 if (*p == ';')
11338 {
11339 *attachment = p + 1;
11340 return 0;
11341 }
11342 else if (*p == '\0')
11343 return 0;
11344 else
11345 return -1;
11346 }
11347
11348 /* Send a prepared I/O packet to the target and read its response.
11349 The prepared packet is in the global RS->BUF before this function
11350 is called, and the answer is there when we return.
11351
11352 COMMAND_BYTES is the length of the request to send, which may include
11353 binary data. WHICH_PACKET is the packet configuration to check
11354 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11355 is set to the error number and -1 is returned. Otherwise the value
11356 returned by the function is returned.
11357
11358 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11359 attachment is expected; an error will be reported if there's a
11360 mismatch. If one is found, *ATTACHMENT will be set to point into
11361 the packet buffer and *ATTACHMENT_LEN will be set to the
11362 attachment's length. */
11363
11364 static int
11365 remote_hostio_send_command (int command_bytes, int which_packet,
11366 int *remote_errno, char **attachment,
11367 int *attachment_len)
11368 {
11369 struct remote_state *rs = get_remote_state ();
11370 int ret, bytes_read;
11371 char *attachment_tmp;
11372
11373 if (!rs->remote_desc
11374 || packet_support (which_packet) == PACKET_DISABLE)
11375 {
11376 *remote_errno = FILEIO_ENOSYS;
11377 return -1;
11378 }
11379
11380 putpkt_binary (rs->buf, command_bytes);
11381 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11382
11383 /* If it timed out, something is wrong. Don't try to parse the
11384 buffer. */
11385 if (bytes_read < 0)
11386 {
11387 *remote_errno = FILEIO_EINVAL;
11388 return -1;
11389 }
11390
11391 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11392 {
11393 case PACKET_ERROR:
11394 *remote_errno = FILEIO_EINVAL;
11395 return -1;
11396 case PACKET_UNKNOWN:
11397 *remote_errno = FILEIO_ENOSYS;
11398 return -1;
11399 case PACKET_OK:
11400 break;
11401 }
11402
11403 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11404 &attachment_tmp))
11405 {
11406 *remote_errno = FILEIO_EINVAL;
11407 return -1;
11408 }
11409
11410 /* Make sure we saw an attachment if and only if we expected one. */
11411 if ((attachment_tmp == NULL && attachment != NULL)
11412 || (attachment_tmp != NULL && attachment == NULL))
11413 {
11414 *remote_errno = FILEIO_EINVAL;
11415 return -1;
11416 }
11417
11418 /* If an attachment was found, it must point into the packet buffer;
11419 work out how many bytes there were. */
11420 if (attachment_tmp != NULL)
11421 {
11422 *attachment = attachment_tmp;
11423 *attachment_len = bytes_read - (*attachment - rs->buf);
11424 }
11425
11426 return ret;
11427 }
11428
11429 /* Invalidate the readahead cache. */
11430
11431 static void
11432 readahead_cache_invalidate (void)
11433 {
11434 struct remote_state *rs = get_remote_state ();
11435
11436 rs->readahead_cache.fd = -1;
11437 }
11438
11439 /* Invalidate the readahead cache if it is holding data for FD. */
11440
11441 static void
11442 readahead_cache_invalidate_fd (int fd)
11443 {
11444 struct remote_state *rs = get_remote_state ();
11445
11446 if (rs->readahead_cache.fd == fd)
11447 rs->readahead_cache.fd = -1;
11448 }
11449
11450 /* Set the filesystem remote_hostio functions that take FILENAME
11451 arguments will use. Return 0 on success, or -1 if an error
11452 occurs (and set *REMOTE_ERRNO). */
11453
11454 static int
11455 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11456 {
11457 struct remote_state *rs = get_remote_state ();
11458 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11459 char *p = rs->buf;
11460 int left = get_remote_packet_size () - 1;
11461 char arg[9];
11462 int ret;
11463
11464 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11465 return 0;
11466
11467 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11468 return 0;
11469
11470 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11471
11472 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11473 remote_buffer_add_string (&p, &left, arg);
11474
11475 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11476 remote_errno, NULL, NULL);
11477
11478 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11479 return 0;
11480
11481 if (ret == 0)
11482 rs->fs_pid = required_pid;
11483
11484 return ret;
11485 }
11486
11487 /* Implementation of to_fileio_open. */
11488
11489 static int
11490 remote_hostio_open (struct target_ops *self,
11491 struct inferior *inf, const char *filename,
11492 int flags, int mode, int warn_if_slow,
11493 int *remote_errno)
11494 {
11495 struct remote_state *rs = get_remote_state ();
11496 char *p = rs->buf;
11497 int left = get_remote_packet_size () - 1;
11498
11499 if (warn_if_slow)
11500 {
11501 static int warning_issued = 0;
11502
11503 printf_unfiltered (_("Reading %s from remote target...\n"),
11504 filename);
11505
11506 if (!warning_issued)
11507 {
11508 warning (_("File transfers from remote targets can be slow."
11509 " Use \"set sysroot\" to access files locally"
11510 " instead."));
11511 warning_issued = 1;
11512 }
11513 }
11514
11515 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11516 return -1;
11517
11518 remote_buffer_add_string (&p, &left, "vFile:open:");
11519
11520 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11521 strlen (filename));
11522 remote_buffer_add_string (&p, &left, ",");
11523
11524 remote_buffer_add_int (&p, &left, flags);
11525 remote_buffer_add_string (&p, &left, ",");
11526
11527 remote_buffer_add_int (&p, &left, mode);
11528
11529 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11530 remote_errno, NULL, NULL);
11531 }
11532
11533 /* Implementation of to_fileio_pwrite. */
11534
11535 static int
11536 remote_hostio_pwrite (struct target_ops *self,
11537 int fd, const gdb_byte *write_buf, int len,
11538 ULONGEST offset, int *remote_errno)
11539 {
11540 struct remote_state *rs = get_remote_state ();
11541 char *p = rs->buf;
11542 int left = get_remote_packet_size ();
11543 int out_len;
11544
11545 readahead_cache_invalidate_fd (fd);
11546
11547 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11548
11549 remote_buffer_add_int (&p, &left, fd);
11550 remote_buffer_add_string (&p, &left, ",");
11551
11552 remote_buffer_add_int (&p, &left, offset);
11553 remote_buffer_add_string (&p, &left, ",");
11554
11555 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11556 get_remote_packet_size () - (p - rs->buf));
11557
11558 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11559 remote_errno, NULL, NULL);
11560 }
11561
11562 /* Helper for the implementation of to_fileio_pread. Read the file
11563 from the remote side with vFile:pread. */
11564
11565 static int
11566 remote_hostio_pread_vFile (struct target_ops *self,
11567 int fd, gdb_byte *read_buf, int len,
11568 ULONGEST offset, int *remote_errno)
11569 {
11570 struct remote_state *rs = get_remote_state ();
11571 char *p = rs->buf;
11572 char *attachment;
11573 int left = get_remote_packet_size ();
11574 int ret, attachment_len;
11575 int read_len;
11576
11577 remote_buffer_add_string (&p, &left, "vFile:pread:");
11578
11579 remote_buffer_add_int (&p, &left, fd);
11580 remote_buffer_add_string (&p, &left, ",");
11581
11582 remote_buffer_add_int (&p, &left, len);
11583 remote_buffer_add_string (&p, &left, ",");
11584
11585 remote_buffer_add_int (&p, &left, offset);
11586
11587 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11588 remote_errno, &attachment,
11589 &attachment_len);
11590
11591 if (ret < 0)
11592 return ret;
11593
11594 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11595 read_buf, len);
11596 if (read_len != ret)
11597 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11598
11599 return ret;
11600 }
11601
11602 /* Serve pread from the readahead cache. Returns number of bytes
11603 read, or 0 if the request can't be served from the cache. */
11604
11605 static int
11606 remote_hostio_pread_from_cache (struct remote_state *rs,
11607 int fd, gdb_byte *read_buf, size_t len,
11608 ULONGEST offset)
11609 {
11610 struct readahead_cache *cache = &rs->readahead_cache;
11611
11612 if (cache->fd == fd
11613 && cache->offset <= offset
11614 && offset < cache->offset + cache->bufsize)
11615 {
11616 ULONGEST max = cache->offset + cache->bufsize;
11617
11618 if (offset + len > max)
11619 len = max - offset;
11620
11621 memcpy (read_buf, cache->buf + offset - cache->offset, len);
11622 return len;
11623 }
11624
11625 return 0;
11626 }
11627
11628 /* Implementation of to_fileio_pread. */
11629
11630 static int
11631 remote_hostio_pread (struct target_ops *self,
11632 int fd, gdb_byte *read_buf, int len,
11633 ULONGEST offset, int *remote_errno)
11634 {
11635 int ret;
11636 struct remote_state *rs = get_remote_state ();
11637 struct readahead_cache *cache = &rs->readahead_cache;
11638
11639 ret = remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11640 if (ret > 0)
11641 {
11642 cache->hit_count++;
11643
11644 if (remote_debug)
11645 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11646 pulongest (cache->hit_count));
11647 return ret;
11648 }
11649
11650 cache->miss_count++;
11651 if (remote_debug)
11652 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11653 pulongest (cache->miss_count));
11654
11655 cache->fd = fd;
11656 cache->offset = offset;
11657 cache->bufsize = get_remote_packet_size ();
11658 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11659
11660 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11661 cache->offset, remote_errno);
11662 if (ret <= 0)
11663 {
11664 readahead_cache_invalidate_fd (fd);
11665 return ret;
11666 }
11667
11668 cache->bufsize = ret;
11669 return remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11670 }
11671
11672 /* Implementation of to_fileio_close. */
11673
11674 static int
11675 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11676 {
11677 struct remote_state *rs = get_remote_state ();
11678 char *p = rs->buf;
11679 int left = get_remote_packet_size () - 1;
11680
11681 readahead_cache_invalidate_fd (fd);
11682
11683 remote_buffer_add_string (&p, &left, "vFile:close:");
11684
11685 remote_buffer_add_int (&p, &left, fd);
11686
11687 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11688 remote_errno, NULL, NULL);
11689 }
11690
11691 /* Implementation of to_fileio_unlink. */
11692
11693 static int
11694 remote_hostio_unlink (struct target_ops *self,
11695 struct inferior *inf, const char *filename,
11696 int *remote_errno)
11697 {
11698 struct remote_state *rs = get_remote_state ();
11699 char *p = rs->buf;
11700 int left = get_remote_packet_size () - 1;
11701
11702 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11703 return -1;
11704
11705 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11706
11707 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11708 strlen (filename));
11709
11710 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
11711 remote_errno, NULL, NULL);
11712 }
11713
11714 /* Implementation of to_fileio_readlink. */
11715
11716 static char *
11717 remote_hostio_readlink (struct target_ops *self,
11718 struct inferior *inf, const char *filename,
11719 int *remote_errno)
11720 {
11721 struct remote_state *rs = get_remote_state ();
11722 char *p = rs->buf;
11723 char *attachment;
11724 int left = get_remote_packet_size ();
11725 int len, attachment_len;
11726 int read_len;
11727 char *ret;
11728
11729 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11730 return NULL;
11731
11732 remote_buffer_add_string (&p, &left, "vFile:readlink:");
11733
11734 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11735 strlen (filename));
11736
11737 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
11738 remote_errno, &attachment,
11739 &attachment_len);
11740
11741 if (len < 0)
11742 return NULL;
11743
11744 ret = (char *) xmalloc (len + 1);
11745
11746 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11747 (gdb_byte *) ret, len);
11748 if (read_len != len)
11749 error (_("Readlink returned %d, but %d bytes."), len, read_len);
11750
11751 ret[len] = '\0';
11752 return ret;
11753 }
11754
11755 /* Implementation of to_fileio_fstat. */
11756
11757 static int
11758 remote_hostio_fstat (struct target_ops *self,
11759 int fd, struct stat *st,
11760 int *remote_errno)
11761 {
11762 struct remote_state *rs = get_remote_state ();
11763 char *p = rs->buf;
11764 int left = get_remote_packet_size ();
11765 int attachment_len, ret;
11766 char *attachment;
11767 struct fio_stat fst;
11768 int read_len;
11769
11770 remote_buffer_add_string (&p, &left, "vFile:fstat:");
11771
11772 remote_buffer_add_int (&p, &left, fd);
11773
11774 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
11775 remote_errno, &attachment,
11776 &attachment_len);
11777 if (ret < 0)
11778 {
11779 if (*remote_errno != FILEIO_ENOSYS)
11780 return ret;
11781
11782 /* Strictly we should return -1, ENOSYS here, but when
11783 "set sysroot remote:" was implemented in August 2008
11784 BFD's need for a stat function was sidestepped with
11785 this hack. This was not remedied until March 2015
11786 so we retain the previous behavior to avoid breaking
11787 compatibility.
11788
11789 Note that the memset is a March 2015 addition; older
11790 GDBs set st_size *and nothing else* so the structure
11791 would have garbage in all other fields. This might
11792 break something but retaining the previous behavior
11793 here would be just too wrong. */
11794
11795 memset (st, 0, sizeof (struct stat));
11796 st->st_size = INT_MAX;
11797 return 0;
11798 }
11799
11800 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11801 (gdb_byte *) &fst, sizeof (fst));
11802
11803 if (read_len != ret)
11804 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
11805
11806 if (read_len != sizeof (fst))
11807 error (_("vFile:fstat returned %d bytes, but expecting %d."),
11808 read_len, (int) sizeof (fst));
11809
11810 remote_fileio_to_host_stat (&fst, st);
11811
11812 return 0;
11813 }
11814
11815 /* Implementation of to_filesystem_is_local. */
11816
11817 static int
11818 remote_filesystem_is_local (struct target_ops *self)
11819 {
11820 /* Valgrind GDB presents itself as a remote target but works
11821 on the local filesystem: it does not implement remote get
11822 and users are not expected to set a sysroot. To handle
11823 this case we treat the remote filesystem as local if the
11824 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
11825 does not support vFile:open. */
11826 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
11827 {
11828 enum packet_support ps = packet_support (PACKET_vFile_open);
11829
11830 if (ps == PACKET_SUPPORT_UNKNOWN)
11831 {
11832 int fd, remote_errno;
11833
11834 /* Try opening a file to probe support. The supplied
11835 filename is irrelevant, we only care about whether
11836 the stub recognizes the packet or not. */
11837 fd = remote_hostio_open (self, NULL, "just probing",
11838 FILEIO_O_RDONLY, 0700, 0,
11839 &remote_errno);
11840
11841 if (fd >= 0)
11842 remote_hostio_close (self, fd, &remote_errno);
11843
11844 ps = packet_support (PACKET_vFile_open);
11845 }
11846
11847 if (ps == PACKET_DISABLE)
11848 {
11849 static int warning_issued = 0;
11850
11851 if (!warning_issued)
11852 {
11853 warning (_("remote target does not support file"
11854 " transfer, attempting to access files"
11855 " from local filesystem."));
11856 warning_issued = 1;
11857 }
11858
11859 return 1;
11860 }
11861 }
11862
11863 return 0;
11864 }
11865
11866 static int
11867 remote_fileio_errno_to_host (int errnum)
11868 {
11869 switch (errnum)
11870 {
11871 case FILEIO_EPERM:
11872 return EPERM;
11873 case FILEIO_ENOENT:
11874 return ENOENT;
11875 case FILEIO_EINTR:
11876 return EINTR;
11877 case FILEIO_EIO:
11878 return EIO;
11879 case FILEIO_EBADF:
11880 return EBADF;
11881 case FILEIO_EACCES:
11882 return EACCES;
11883 case FILEIO_EFAULT:
11884 return EFAULT;
11885 case FILEIO_EBUSY:
11886 return EBUSY;
11887 case FILEIO_EEXIST:
11888 return EEXIST;
11889 case FILEIO_ENODEV:
11890 return ENODEV;
11891 case FILEIO_ENOTDIR:
11892 return ENOTDIR;
11893 case FILEIO_EISDIR:
11894 return EISDIR;
11895 case FILEIO_EINVAL:
11896 return EINVAL;
11897 case FILEIO_ENFILE:
11898 return ENFILE;
11899 case FILEIO_EMFILE:
11900 return EMFILE;
11901 case FILEIO_EFBIG:
11902 return EFBIG;
11903 case FILEIO_ENOSPC:
11904 return ENOSPC;
11905 case FILEIO_ESPIPE:
11906 return ESPIPE;
11907 case FILEIO_EROFS:
11908 return EROFS;
11909 case FILEIO_ENOSYS:
11910 return ENOSYS;
11911 case FILEIO_ENAMETOOLONG:
11912 return ENAMETOOLONG;
11913 }
11914 return -1;
11915 }
11916
11917 static char *
11918 remote_hostio_error (int errnum)
11919 {
11920 int host_error = remote_fileio_errno_to_host (errnum);
11921
11922 if (host_error == -1)
11923 error (_("Unknown remote I/O error %d"), errnum);
11924 else
11925 error (_("Remote I/O error: %s"), safe_strerror (host_error));
11926 }
11927
11928 static void
11929 remote_hostio_close_cleanup (void *opaque)
11930 {
11931 int fd = *(int *) opaque;
11932 int remote_errno;
11933
11934 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
11935 }
11936
11937 void
11938 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
11939 {
11940 struct cleanup *back_to, *close_cleanup;
11941 int retcode, fd, remote_errno, bytes, io_size;
11942 gdb_byte *buffer;
11943 int bytes_in_buffer;
11944 int saw_eof;
11945 ULONGEST offset;
11946 struct remote_state *rs = get_remote_state ();
11947
11948 if (!rs->remote_desc)
11949 error (_("command can only be used with remote target"));
11950
11951 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
11952 if (file == NULL)
11953 perror_with_name (local_file);
11954
11955 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
11956 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
11957 | FILEIO_O_TRUNC),
11958 0700, 0, &remote_errno);
11959 if (fd == -1)
11960 remote_hostio_error (remote_errno);
11961
11962 /* Send up to this many bytes at once. They won't all fit in the
11963 remote packet limit, so we'll transfer slightly fewer. */
11964 io_size = get_remote_packet_size ();
11965 buffer = (gdb_byte *) xmalloc (io_size);
11966 back_to = make_cleanup (xfree, buffer);
11967
11968 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
11969
11970 bytes_in_buffer = 0;
11971 saw_eof = 0;
11972 offset = 0;
11973 while (bytes_in_buffer || !saw_eof)
11974 {
11975 if (!saw_eof)
11976 {
11977 bytes = fread (buffer + bytes_in_buffer, 1,
11978 io_size - bytes_in_buffer,
11979 file.get ());
11980 if (bytes == 0)
11981 {
11982 if (ferror (file.get ()))
11983 error (_("Error reading %s."), local_file);
11984 else
11985 {
11986 /* EOF. Unless there is something still in the
11987 buffer from the last iteration, we are done. */
11988 saw_eof = 1;
11989 if (bytes_in_buffer == 0)
11990 break;
11991 }
11992 }
11993 }
11994 else
11995 bytes = 0;
11996
11997 bytes += bytes_in_buffer;
11998 bytes_in_buffer = 0;
11999
12000 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
12001 fd, buffer, bytes,
12002 offset, &remote_errno);
12003
12004 if (retcode < 0)
12005 remote_hostio_error (remote_errno);
12006 else if (retcode == 0)
12007 error (_("Remote write of %d bytes returned 0!"), bytes);
12008 else if (retcode < bytes)
12009 {
12010 /* Short write. Save the rest of the read data for the next
12011 write. */
12012 bytes_in_buffer = bytes - retcode;
12013 memmove (buffer, buffer + retcode, bytes_in_buffer);
12014 }
12015
12016 offset += retcode;
12017 }
12018
12019 discard_cleanups (close_cleanup);
12020 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12021 remote_hostio_error (remote_errno);
12022
12023 if (from_tty)
12024 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12025 do_cleanups (back_to);
12026 }
12027
12028 void
12029 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12030 {
12031 struct cleanup *back_to, *close_cleanup;
12032 int fd, remote_errno, bytes, io_size;
12033 gdb_byte *buffer;
12034 ULONGEST offset;
12035 struct remote_state *rs = get_remote_state ();
12036
12037 if (!rs->remote_desc)
12038 error (_("command can only be used with remote target"));
12039
12040 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
12041 remote_file, FILEIO_O_RDONLY, 0, 0,
12042 &remote_errno);
12043 if (fd == -1)
12044 remote_hostio_error (remote_errno);
12045
12046 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12047 if (file == NULL)
12048 perror_with_name (local_file);
12049
12050 /* Send up to this many bytes at once. They won't all fit in the
12051 remote packet limit, so we'll transfer slightly fewer. */
12052 io_size = get_remote_packet_size ();
12053 buffer = (gdb_byte *) xmalloc (io_size);
12054 back_to = make_cleanup (xfree, buffer);
12055
12056 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
12057
12058 offset = 0;
12059 while (1)
12060 {
12061 bytes = remote_hostio_pread (find_target_at (process_stratum),
12062 fd, buffer, io_size, offset, &remote_errno);
12063 if (bytes == 0)
12064 /* Success, but no bytes, means end-of-file. */
12065 break;
12066 if (bytes == -1)
12067 remote_hostio_error (remote_errno);
12068
12069 offset += bytes;
12070
12071 bytes = fwrite (buffer, 1, bytes, file.get ());
12072 if (bytes == 0)
12073 perror_with_name (local_file);
12074 }
12075
12076 discard_cleanups (close_cleanup);
12077 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12078 remote_hostio_error (remote_errno);
12079
12080 if (from_tty)
12081 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12082 do_cleanups (back_to);
12083 }
12084
12085 void
12086 remote_file_delete (const char *remote_file, int from_tty)
12087 {
12088 int retcode, remote_errno;
12089 struct remote_state *rs = get_remote_state ();
12090
12091 if (!rs->remote_desc)
12092 error (_("command can only be used with remote target"));
12093
12094 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12095 NULL, remote_file, &remote_errno);
12096 if (retcode == -1)
12097 remote_hostio_error (remote_errno);
12098
12099 if (from_tty)
12100 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12101 }
12102
12103 static void
12104 remote_put_command (const char *args, int from_tty)
12105 {
12106 if (args == NULL)
12107 error_no_arg (_("file to put"));
12108
12109 gdb_argv argv (args);
12110 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12111 error (_("Invalid parameters to remote put"));
12112
12113 remote_file_put (argv[0], argv[1], from_tty);
12114 }
12115
12116 static void
12117 remote_get_command (const char *args, int from_tty)
12118 {
12119 if (args == NULL)
12120 error_no_arg (_("file to get"));
12121
12122 gdb_argv argv (args);
12123 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12124 error (_("Invalid parameters to remote get"));
12125
12126 remote_file_get (argv[0], argv[1], from_tty);
12127 }
12128
12129 static void
12130 remote_delete_command (const char *args, int from_tty)
12131 {
12132 if (args == NULL)
12133 error_no_arg (_("file to delete"));
12134
12135 gdb_argv argv (args);
12136 if (argv[0] == NULL || argv[1] != NULL)
12137 error (_("Invalid parameters to remote delete"));
12138
12139 remote_file_delete (argv[0], from_tty);
12140 }
12141
12142 static void
12143 remote_command (const char *args, int from_tty)
12144 {
12145 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12146 }
12147
12148 static int
12149 remote_can_execute_reverse (struct target_ops *self)
12150 {
12151 if (packet_support (PACKET_bs) == PACKET_ENABLE
12152 || packet_support (PACKET_bc) == PACKET_ENABLE)
12153 return 1;
12154 else
12155 return 0;
12156 }
12157
12158 static int
12159 remote_supports_non_stop (struct target_ops *self)
12160 {
12161 return 1;
12162 }
12163
12164 static int
12165 remote_supports_disable_randomization (struct target_ops *self)
12166 {
12167 /* Only supported in extended mode. */
12168 return 0;
12169 }
12170
12171 static int
12172 remote_supports_multi_process (struct target_ops *self)
12173 {
12174 struct remote_state *rs = get_remote_state ();
12175
12176 return remote_multi_process_p (rs);
12177 }
12178
12179 static int
12180 remote_supports_cond_tracepoints (void)
12181 {
12182 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12183 }
12184
12185 static int
12186 remote_supports_cond_breakpoints (struct target_ops *self)
12187 {
12188 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12189 }
12190
12191 static int
12192 remote_supports_fast_tracepoints (void)
12193 {
12194 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12195 }
12196
12197 static int
12198 remote_supports_static_tracepoints (void)
12199 {
12200 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12201 }
12202
12203 static int
12204 remote_supports_install_in_trace (void)
12205 {
12206 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12207 }
12208
12209 static int
12210 remote_supports_enable_disable_tracepoint (struct target_ops *self)
12211 {
12212 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12213 == PACKET_ENABLE);
12214 }
12215
12216 static int
12217 remote_supports_string_tracing (struct target_ops *self)
12218 {
12219 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12220 }
12221
12222 static int
12223 remote_can_run_breakpoint_commands (struct target_ops *self)
12224 {
12225 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12226 }
12227
12228 static void
12229 remote_trace_init (struct target_ops *self)
12230 {
12231 struct remote_state *rs = get_remote_state ();
12232
12233 putpkt ("QTinit");
12234 remote_get_noisy_reply ();
12235 if (strcmp (rs->buf, "OK") != 0)
12236 error (_("Target does not support this command."));
12237 }
12238
12239 /* Recursive routine to walk through command list including loops, and
12240 download packets for each command. */
12241
12242 static void
12243 remote_download_command_source (int num, ULONGEST addr,
12244 struct command_line *cmds)
12245 {
12246 struct remote_state *rs = get_remote_state ();
12247 struct command_line *cmd;
12248
12249 for (cmd = cmds; cmd; cmd = cmd->next)
12250 {
12251 QUIT; /* Allow user to bail out with ^C. */
12252 strcpy (rs->buf, "QTDPsrc:");
12253 encode_source_string (num, addr, "cmd", cmd->line,
12254 rs->buf + strlen (rs->buf),
12255 rs->buf_size - strlen (rs->buf));
12256 putpkt (rs->buf);
12257 remote_get_noisy_reply ();
12258 if (strcmp (rs->buf, "OK"))
12259 warning (_("Target does not support source download."));
12260
12261 if (cmd->control_type == while_control
12262 || cmd->control_type == while_stepping_control)
12263 {
12264 remote_download_command_source (num, addr, *cmd->body_list);
12265
12266 QUIT; /* Allow user to bail out with ^C. */
12267 strcpy (rs->buf, "QTDPsrc:");
12268 encode_source_string (num, addr, "cmd", "end",
12269 rs->buf + strlen (rs->buf),
12270 rs->buf_size - strlen (rs->buf));
12271 putpkt (rs->buf);
12272 remote_get_noisy_reply ();
12273 if (strcmp (rs->buf, "OK"))
12274 warning (_("Target does not support source download."));
12275 }
12276 }
12277 }
12278
12279 static void
12280 remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
12281 {
12282 #define BUF_SIZE 2048
12283
12284 CORE_ADDR tpaddr;
12285 char addrbuf[40];
12286 char buf[BUF_SIZE];
12287 std::vector<std::string> tdp_actions;
12288 std::vector<std::string> stepping_actions;
12289 char *pkt;
12290 struct breakpoint *b = loc->owner;
12291 struct tracepoint *t = (struct tracepoint *) b;
12292 struct remote_state *rs = get_remote_state ();
12293
12294 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12295
12296 tpaddr = loc->address;
12297 sprintf_vma (addrbuf, tpaddr);
12298 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12299 addrbuf, /* address */
12300 (b->enable_state == bp_enabled ? 'E' : 'D'),
12301 t->step_count, t->pass_count);
12302 /* Fast tracepoints are mostly handled by the target, but we can
12303 tell the target how big of an instruction block should be moved
12304 around. */
12305 if (b->type == bp_fast_tracepoint)
12306 {
12307 /* Only test for support at download time; we may not know
12308 target capabilities at definition time. */
12309 if (remote_supports_fast_tracepoints ())
12310 {
12311 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12312 NULL))
12313 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12314 gdb_insn_length (loc->gdbarch, tpaddr));
12315 else
12316 /* If it passed validation at definition but fails now,
12317 something is very wrong. */
12318 internal_error (__FILE__, __LINE__,
12319 _("Fast tracepoint not "
12320 "valid during download"));
12321 }
12322 else
12323 /* Fast tracepoints are functionally identical to regular
12324 tracepoints, so don't take lack of support as a reason to
12325 give up on the trace run. */
12326 warning (_("Target does not support fast tracepoints, "
12327 "downloading %d as regular tracepoint"), b->number);
12328 }
12329 else if (b->type == bp_static_tracepoint)
12330 {
12331 /* Only test for support at download time; we may not know
12332 target capabilities at definition time. */
12333 if (remote_supports_static_tracepoints ())
12334 {
12335 struct static_tracepoint_marker marker;
12336
12337 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12338 strcat (buf, ":S");
12339 else
12340 error (_("Static tracepoint not valid during download"));
12341 }
12342 else
12343 /* Fast tracepoints are functionally identical to regular
12344 tracepoints, so don't take lack of support as a reason
12345 to give up on the trace run. */
12346 error (_("Target does not support static tracepoints"));
12347 }
12348 /* If the tracepoint has a conditional, make it into an agent
12349 expression and append to the definition. */
12350 if (loc->cond)
12351 {
12352 /* Only test support at download time, we may not know target
12353 capabilities at definition time. */
12354 if (remote_supports_cond_tracepoints ())
12355 {
12356 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12357 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12358 aexpr->len);
12359 pkt = buf + strlen (buf);
12360 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12361 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12362 *pkt = '\0';
12363 }
12364 else
12365 warning (_("Target does not support conditional tracepoints, "
12366 "ignoring tp %d cond"), b->number);
12367 }
12368
12369 if (b->commands || *default_collect)
12370 strcat (buf, "-");
12371 putpkt (buf);
12372 remote_get_noisy_reply ();
12373 if (strcmp (rs->buf, "OK"))
12374 error (_("Target does not support tracepoints."));
12375
12376 /* do_single_steps (t); */
12377 for (auto action_it = tdp_actions.begin ();
12378 action_it != tdp_actions.end (); action_it++)
12379 {
12380 QUIT; /* Allow user to bail out with ^C. */
12381
12382 bool has_more = (action_it != tdp_actions.end ()
12383 || !stepping_actions.empty ());
12384
12385 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12386 b->number, addrbuf, /* address */
12387 action_it->c_str (),
12388 has_more ? '-' : 0);
12389 putpkt (buf);
12390 remote_get_noisy_reply ();
12391 if (strcmp (rs->buf, "OK"))
12392 error (_("Error on target while setting tracepoints."));
12393 }
12394
12395 for (auto action_it = stepping_actions.begin ();
12396 action_it != stepping_actions.end (); action_it++)
12397 {
12398 QUIT; /* Allow user to bail out with ^C. */
12399
12400 bool is_first = action_it == stepping_actions.begin ();
12401 bool has_more = action_it != stepping_actions.end ();
12402
12403 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12404 b->number, addrbuf, /* address */
12405 is_first ? "S" : "",
12406 action_it->c_str (),
12407 has_more ? "-" : "");
12408 putpkt (buf);
12409 remote_get_noisy_reply ();
12410 if (strcmp (rs->buf, "OK"))
12411 error (_("Error on target while setting tracepoints."));
12412 }
12413
12414 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12415 {
12416 if (b->location != NULL)
12417 {
12418 strcpy (buf, "QTDPsrc:");
12419 encode_source_string (b->number, loc->address, "at",
12420 event_location_to_string (b->location.get ()),
12421 buf + strlen (buf), 2048 - strlen (buf));
12422 putpkt (buf);
12423 remote_get_noisy_reply ();
12424 if (strcmp (rs->buf, "OK"))
12425 warning (_("Target does not support source download."));
12426 }
12427 if (b->cond_string)
12428 {
12429 strcpy (buf, "QTDPsrc:");
12430 encode_source_string (b->number, loc->address,
12431 "cond", b->cond_string, buf + strlen (buf),
12432 2048 - strlen (buf));
12433 putpkt (buf);
12434 remote_get_noisy_reply ();
12435 if (strcmp (rs->buf, "OK"))
12436 warning (_("Target does not support source download."));
12437 }
12438 remote_download_command_source (b->number, loc->address,
12439 breakpoint_commands (b));
12440 }
12441 }
12442
12443 static int
12444 remote_can_download_tracepoint (struct target_ops *self)
12445 {
12446 struct remote_state *rs = get_remote_state ();
12447 struct trace_status *ts;
12448 int status;
12449
12450 /* Don't try to install tracepoints until we've relocated our
12451 symbols, and fetched and merged the target's tracepoint list with
12452 ours. */
12453 if (rs->starting_up)
12454 return 0;
12455
12456 ts = current_trace_status ();
12457 status = remote_get_trace_status (self, ts);
12458
12459 if (status == -1 || !ts->running_known || !ts->running)
12460 return 0;
12461
12462 /* If we are in a tracing experiment, but remote stub doesn't support
12463 installing tracepoint in trace, we have to return. */
12464 if (!remote_supports_install_in_trace ())
12465 return 0;
12466
12467 return 1;
12468 }
12469
12470
12471 static void
12472 remote_download_trace_state_variable (struct target_ops *self,
12473 struct trace_state_variable *tsv)
12474 {
12475 struct remote_state *rs = get_remote_state ();
12476 char *p;
12477
12478 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12479 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
12480 tsv->builtin);
12481 p = rs->buf + strlen (rs->buf);
12482 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
12483 error (_("Trace state variable name too long for tsv definition packet"));
12484 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, strlen (tsv->name));
12485 *p++ = '\0';
12486 putpkt (rs->buf);
12487 remote_get_noisy_reply ();
12488 if (*rs->buf == '\0')
12489 error (_("Target does not support this command."));
12490 if (strcmp (rs->buf, "OK") != 0)
12491 error (_("Error on target while downloading trace state variable."));
12492 }
12493
12494 static void
12495 remote_enable_tracepoint (struct target_ops *self,
12496 struct bp_location *location)
12497 {
12498 struct remote_state *rs = get_remote_state ();
12499 char addr_buf[40];
12500
12501 sprintf_vma (addr_buf, location->address);
12502 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12503 location->owner->number, addr_buf);
12504 putpkt (rs->buf);
12505 remote_get_noisy_reply ();
12506 if (*rs->buf == '\0')
12507 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12508 if (strcmp (rs->buf, "OK") != 0)
12509 error (_("Error on target while enabling tracepoint."));
12510 }
12511
12512 static void
12513 remote_disable_tracepoint (struct target_ops *self,
12514 struct bp_location *location)
12515 {
12516 struct remote_state *rs = get_remote_state ();
12517 char addr_buf[40];
12518
12519 sprintf_vma (addr_buf, location->address);
12520 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12521 location->owner->number, addr_buf);
12522 putpkt (rs->buf);
12523 remote_get_noisy_reply ();
12524 if (*rs->buf == '\0')
12525 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12526 if (strcmp (rs->buf, "OK") != 0)
12527 error (_("Error on target while disabling tracepoint."));
12528 }
12529
12530 static void
12531 remote_trace_set_readonly_regions (struct target_ops *self)
12532 {
12533 asection *s;
12534 bfd *abfd = NULL;
12535 bfd_size_type size;
12536 bfd_vma vma;
12537 int anysecs = 0;
12538 int offset = 0;
12539
12540 if (!exec_bfd)
12541 return; /* No information to give. */
12542
12543 struct remote_state *rs = get_remote_state ();
12544
12545 strcpy (rs->buf, "QTro");
12546 offset = strlen (rs->buf);
12547 for (s = exec_bfd->sections; s; s = s->next)
12548 {
12549 char tmp1[40], tmp2[40];
12550 int sec_length;
12551
12552 if ((s->flags & SEC_LOAD) == 0 ||
12553 /* (s->flags & SEC_CODE) == 0 || */
12554 (s->flags & SEC_READONLY) == 0)
12555 continue;
12556
12557 anysecs = 1;
12558 vma = bfd_get_section_vma (abfd, s);
12559 size = bfd_get_section_size (s);
12560 sprintf_vma (tmp1, vma);
12561 sprintf_vma (tmp2, vma + size);
12562 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12563 if (offset + sec_length + 1 > rs->buf_size)
12564 {
12565 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12566 warning (_("\
12567 Too many sections for read-only sections definition packet."));
12568 break;
12569 }
12570 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
12571 tmp1, tmp2);
12572 offset += sec_length;
12573 }
12574 if (anysecs)
12575 {
12576 putpkt (rs->buf);
12577 getpkt (&rs->buf, &rs->buf_size, 0);
12578 }
12579 }
12580
12581 static void
12582 remote_trace_start (struct target_ops *self)
12583 {
12584 struct remote_state *rs = get_remote_state ();
12585
12586 putpkt ("QTStart");
12587 remote_get_noisy_reply ();
12588 if (*rs->buf == '\0')
12589 error (_("Target does not support this command."));
12590 if (strcmp (rs->buf, "OK") != 0)
12591 error (_("Bogus reply from target: %s"), rs->buf);
12592 }
12593
12594 static int
12595 remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
12596 {
12597 /* Initialize it just to avoid a GCC false warning. */
12598 char *p = NULL;
12599 /* FIXME we need to get register block size some other way. */
12600 extern int trace_regblock_size;
12601 enum packet_result result;
12602 struct remote_state *rs = get_remote_state ();
12603
12604 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12605 return -1;
12606
12607 trace_regblock_size
12608 = get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
12609
12610 putpkt ("qTStatus");
12611
12612 TRY
12613 {
12614 p = remote_get_noisy_reply ();
12615 }
12616 CATCH (ex, RETURN_MASK_ERROR)
12617 {
12618 if (ex.error != TARGET_CLOSE_ERROR)
12619 {
12620 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12621 return -1;
12622 }
12623 throw_exception (ex);
12624 }
12625 END_CATCH
12626
12627 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12628
12629 /* If the remote target doesn't do tracing, flag it. */
12630 if (result == PACKET_UNKNOWN)
12631 return -1;
12632
12633 /* We're working with a live target. */
12634 ts->filename = NULL;
12635
12636 if (*p++ != 'T')
12637 error (_("Bogus trace status reply from target: %s"), rs->buf);
12638
12639 /* Function 'parse_trace_status' sets default value of each field of
12640 'ts' at first, so we don't have to do it here. */
12641 parse_trace_status (p, ts);
12642
12643 return ts->running;
12644 }
12645
12646 static void
12647 remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
12648 struct uploaded_tp *utp)
12649 {
12650 struct remote_state *rs = get_remote_state ();
12651 char *reply;
12652 struct bp_location *loc;
12653 struct tracepoint *tp = (struct tracepoint *) bp;
12654 size_t size = get_remote_packet_size ();
12655
12656 if (tp)
12657 {
12658 tp->hit_count = 0;
12659 tp->traceframe_usage = 0;
12660 for (loc = tp->loc; loc; loc = loc->next)
12661 {
12662 /* If the tracepoint was never downloaded, don't go asking for
12663 any status. */
12664 if (tp->number_on_target == 0)
12665 continue;
12666 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12667 phex_nz (loc->address, 0));
12668 putpkt (rs->buf);
12669 reply = remote_get_noisy_reply ();
12670 if (reply && *reply)
12671 {
12672 if (*reply == 'V')
12673 parse_tracepoint_status (reply + 1, bp, utp);
12674 }
12675 }
12676 }
12677 else if (utp)
12678 {
12679 utp->hit_count = 0;
12680 utp->traceframe_usage = 0;
12681 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
12682 phex_nz (utp->addr, 0));
12683 putpkt (rs->buf);
12684 reply = remote_get_noisy_reply ();
12685 if (reply && *reply)
12686 {
12687 if (*reply == 'V')
12688 parse_tracepoint_status (reply + 1, bp, utp);
12689 }
12690 }
12691 }
12692
12693 static void
12694 remote_trace_stop (struct target_ops *self)
12695 {
12696 struct remote_state *rs = get_remote_state ();
12697
12698 putpkt ("QTStop");
12699 remote_get_noisy_reply ();
12700 if (*rs->buf == '\0')
12701 error (_("Target does not support this command."));
12702 if (strcmp (rs->buf, "OK") != 0)
12703 error (_("Bogus reply from target: %s"), rs->buf);
12704 }
12705
12706 static int
12707 remote_trace_find (struct target_ops *self,
12708 enum trace_find_type type, int num,
12709 CORE_ADDR addr1, CORE_ADDR addr2,
12710 int *tpp)
12711 {
12712 struct remote_state *rs = get_remote_state ();
12713 char *endbuf = rs->buf + get_remote_packet_size ();
12714 char *p, *reply;
12715 int target_frameno = -1, target_tracept = -1;
12716
12717 /* Lookups other than by absolute frame number depend on the current
12718 trace selected, so make sure it is correct on the remote end
12719 first. */
12720 if (type != tfind_number)
12721 set_remote_traceframe ();
12722
12723 p = rs->buf;
12724 strcpy (p, "QTFrame:");
12725 p = strchr (p, '\0');
12726 switch (type)
12727 {
12728 case tfind_number:
12729 xsnprintf (p, endbuf - p, "%x", num);
12730 break;
12731 case tfind_pc:
12732 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
12733 break;
12734 case tfind_tp:
12735 xsnprintf (p, endbuf - p, "tdp:%x", num);
12736 break;
12737 case tfind_range:
12738 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
12739 phex_nz (addr2, 0));
12740 break;
12741 case tfind_outside:
12742 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
12743 phex_nz (addr2, 0));
12744 break;
12745 default:
12746 error (_("Unknown trace find type %d"), type);
12747 }
12748
12749 putpkt (rs->buf);
12750 reply = remote_get_noisy_reply ();
12751 if (*reply == '\0')
12752 error (_("Target does not support this command."));
12753
12754 while (reply && *reply)
12755 switch (*reply)
12756 {
12757 case 'F':
12758 p = ++reply;
12759 target_frameno = (int) strtol (p, &reply, 16);
12760 if (reply == p)
12761 error (_("Unable to parse trace frame number"));
12762 /* Don't update our remote traceframe number cache on failure
12763 to select a remote traceframe. */
12764 if (target_frameno == -1)
12765 return -1;
12766 break;
12767 case 'T':
12768 p = ++reply;
12769 target_tracept = (int) strtol (p, &reply, 16);
12770 if (reply == p)
12771 error (_("Unable to parse tracepoint number"));
12772 break;
12773 case 'O': /* "OK"? */
12774 if (reply[1] == 'K' && reply[2] == '\0')
12775 reply += 2;
12776 else
12777 error (_("Bogus reply from target: %s"), reply);
12778 break;
12779 default:
12780 error (_("Bogus reply from target: %s"), reply);
12781 }
12782 if (tpp)
12783 *tpp = target_tracept;
12784
12785 rs->remote_traceframe_number = target_frameno;
12786 return target_frameno;
12787 }
12788
12789 static int
12790 remote_get_trace_state_variable_value (struct target_ops *self,
12791 int tsvnum, LONGEST *val)
12792 {
12793 struct remote_state *rs = get_remote_state ();
12794 char *reply;
12795 ULONGEST uval;
12796
12797 set_remote_traceframe ();
12798
12799 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
12800 putpkt (rs->buf);
12801 reply = remote_get_noisy_reply ();
12802 if (reply && *reply)
12803 {
12804 if (*reply == 'V')
12805 {
12806 unpack_varlen_hex (reply + 1, &uval);
12807 *val = (LONGEST) uval;
12808 return 1;
12809 }
12810 }
12811 return 0;
12812 }
12813
12814 static int
12815 remote_save_trace_data (struct target_ops *self, const char *filename)
12816 {
12817 struct remote_state *rs = get_remote_state ();
12818 char *p, *reply;
12819
12820 p = rs->buf;
12821 strcpy (p, "QTSave:");
12822 p += strlen (p);
12823 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
12824 error (_("Remote file name too long for trace save packet"));
12825 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
12826 *p++ = '\0';
12827 putpkt (rs->buf);
12828 reply = remote_get_noisy_reply ();
12829 if (*reply == '\0')
12830 error (_("Target does not support this command."));
12831 if (strcmp (reply, "OK") != 0)
12832 error (_("Bogus reply from target: %s"), reply);
12833 return 0;
12834 }
12835
12836 /* This is basically a memory transfer, but needs to be its own packet
12837 because we don't know how the target actually organizes its trace
12838 memory, plus we want to be able to ask for as much as possible, but
12839 not be unhappy if we don't get as much as we ask for. */
12840
12841 static LONGEST
12842 remote_get_raw_trace_data (struct target_ops *self,
12843 gdb_byte *buf, ULONGEST offset, LONGEST len)
12844 {
12845 struct remote_state *rs = get_remote_state ();
12846 char *reply;
12847 char *p;
12848 int rslt;
12849
12850 p = rs->buf;
12851 strcpy (p, "qTBuffer:");
12852 p += strlen (p);
12853 p += hexnumstr (p, offset);
12854 *p++ = ',';
12855 p += hexnumstr (p, len);
12856 *p++ = '\0';
12857
12858 putpkt (rs->buf);
12859 reply = remote_get_noisy_reply ();
12860 if (reply && *reply)
12861 {
12862 /* 'l' by itself means we're at the end of the buffer and
12863 there is nothing more to get. */
12864 if (*reply == 'l')
12865 return 0;
12866
12867 /* Convert the reply into binary. Limit the number of bytes to
12868 convert according to our passed-in buffer size, rather than
12869 what was returned in the packet; if the target is
12870 unexpectedly generous and gives us a bigger reply than we
12871 asked for, we don't want to crash. */
12872 rslt = hex2bin (reply, buf, len);
12873 return rslt;
12874 }
12875
12876 /* Something went wrong, flag as an error. */
12877 return -1;
12878 }
12879
12880 static void
12881 remote_set_disconnected_tracing (struct target_ops *self, int val)
12882 {
12883 struct remote_state *rs = get_remote_state ();
12884
12885 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
12886 {
12887 char *reply;
12888
12889 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
12890 putpkt (rs->buf);
12891 reply = remote_get_noisy_reply ();
12892 if (*reply == '\0')
12893 error (_("Target does not support this command."));
12894 if (strcmp (reply, "OK") != 0)
12895 error (_("Bogus reply from target: %s"), reply);
12896 }
12897 else if (val)
12898 warning (_("Target does not support disconnected tracing."));
12899 }
12900
12901 static int
12902 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
12903 {
12904 struct thread_info *info = find_thread_ptid (ptid);
12905
12906 if (info != NULL && info->priv != NULL)
12907 return get_remote_thread_info (info)->core;
12908
12909 return -1;
12910 }
12911
12912 static void
12913 remote_set_circular_trace_buffer (struct target_ops *self, int val)
12914 {
12915 struct remote_state *rs = get_remote_state ();
12916 char *reply;
12917
12918 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
12919 putpkt (rs->buf);
12920 reply = remote_get_noisy_reply ();
12921 if (*reply == '\0')
12922 error (_("Target does not support this command."));
12923 if (strcmp (reply, "OK") != 0)
12924 error (_("Bogus reply from target: %s"), reply);
12925 }
12926
12927 static traceframe_info_up
12928 remote_traceframe_info (struct target_ops *self)
12929 {
12930 gdb::unique_xmalloc_ptr<char> text
12931 = target_read_stralloc (&current_target, TARGET_OBJECT_TRACEFRAME_INFO,
12932 NULL);
12933 if (text != NULL)
12934 return parse_traceframe_info (text.get ());
12935
12936 return NULL;
12937 }
12938
12939 /* Handle the qTMinFTPILen packet. Returns the minimum length of
12940 instruction on which a fast tracepoint may be placed. Returns -1
12941 if the packet is not supported, and 0 if the minimum instruction
12942 length is unknown. */
12943
12944 static int
12945 remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
12946 {
12947 struct remote_state *rs = get_remote_state ();
12948 char *reply;
12949
12950 /* If we're not debugging a process yet, the IPA can't be
12951 loaded. */
12952 if (!target_has_execution)
12953 return 0;
12954
12955 /* Make sure the remote is pointing at the right process. */
12956 set_general_process ();
12957
12958 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
12959 putpkt (rs->buf);
12960 reply = remote_get_noisy_reply ();
12961 if (*reply == '\0')
12962 return -1;
12963 else
12964 {
12965 ULONGEST min_insn_len;
12966
12967 unpack_varlen_hex (reply, &min_insn_len);
12968
12969 return (int) min_insn_len;
12970 }
12971 }
12972
12973 static void
12974 remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
12975 {
12976 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
12977 {
12978 struct remote_state *rs = get_remote_state ();
12979 char *buf = rs->buf;
12980 char *endbuf = rs->buf + get_remote_packet_size ();
12981 enum packet_result result;
12982
12983 gdb_assert (val >= 0 || val == -1);
12984 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
12985 /* Send -1 as literal "-1" to avoid host size dependency. */
12986 if (val < 0)
12987 {
12988 *buf++ = '-';
12989 buf += hexnumstr (buf, (ULONGEST) -val);
12990 }
12991 else
12992 buf += hexnumstr (buf, (ULONGEST) val);
12993
12994 putpkt (rs->buf);
12995 remote_get_noisy_reply ();
12996 result = packet_ok (rs->buf,
12997 &remote_protocol_packets[PACKET_QTBuffer_size]);
12998
12999 if (result != PACKET_OK)
13000 warning (_("Bogus reply from target: %s"), rs->buf);
13001 }
13002 }
13003
13004 static int
13005 remote_set_trace_notes (struct target_ops *self,
13006 const char *user, const char *notes,
13007 const char *stop_notes)
13008 {
13009 struct remote_state *rs = get_remote_state ();
13010 char *reply;
13011 char *buf = rs->buf;
13012 char *endbuf = rs->buf + get_remote_packet_size ();
13013 int nbytes;
13014
13015 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13016 if (user)
13017 {
13018 buf += xsnprintf (buf, endbuf - buf, "user:");
13019 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13020 buf += 2 * nbytes;
13021 *buf++ = ';';
13022 }
13023 if (notes)
13024 {
13025 buf += xsnprintf (buf, endbuf - buf, "notes:");
13026 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13027 buf += 2 * nbytes;
13028 *buf++ = ';';
13029 }
13030 if (stop_notes)
13031 {
13032 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13033 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13034 buf += 2 * nbytes;
13035 *buf++ = ';';
13036 }
13037 /* Ensure the buffer is terminated. */
13038 *buf = '\0';
13039
13040 putpkt (rs->buf);
13041 reply = remote_get_noisy_reply ();
13042 if (*reply == '\0')
13043 return 0;
13044
13045 if (strcmp (reply, "OK") != 0)
13046 error (_("Bogus reply from target: %s"), reply);
13047
13048 return 1;
13049 }
13050
13051 static int
13052 remote_use_agent (struct target_ops *self, int use)
13053 {
13054 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13055 {
13056 struct remote_state *rs = get_remote_state ();
13057
13058 /* If the stub supports QAgent. */
13059 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13060 putpkt (rs->buf);
13061 getpkt (&rs->buf, &rs->buf_size, 0);
13062
13063 if (strcmp (rs->buf, "OK") == 0)
13064 {
13065 use_agent = use;
13066 return 1;
13067 }
13068 }
13069
13070 return 0;
13071 }
13072
13073 static int
13074 remote_can_use_agent (struct target_ops *self)
13075 {
13076 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13077 }
13078
13079 struct btrace_target_info
13080 {
13081 /* The ptid of the traced thread. */
13082 ptid_t ptid;
13083
13084 /* The obtained branch trace configuration. */
13085 struct btrace_config conf;
13086 };
13087
13088 /* Reset our idea of our target's btrace configuration. */
13089
13090 static void
13091 remote_btrace_reset (void)
13092 {
13093 struct remote_state *rs = get_remote_state ();
13094
13095 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13096 }
13097
13098 /* Check whether the target supports branch tracing. */
13099
13100 static int
13101 remote_supports_btrace (struct target_ops *self, enum btrace_format format)
13102 {
13103 if (packet_support (PACKET_Qbtrace_off) != PACKET_ENABLE)
13104 return 0;
13105 if (packet_support (PACKET_qXfer_btrace) != PACKET_ENABLE)
13106 return 0;
13107
13108 switch (format)
13109 {
13110 case BTRACE_FORMAT_NONE:
13111 return 0;
13112
13113 case BTRACE_FORMAT_BTS:
13114 return (packet_support (PACKET_Qbtrace_bts) == PACKET_ENABLE);
13115
13116 case BTRACE_FORMAT_PT:
13117 /* The trace is decoded on the host. Even if our target supports it,
13118 we still need to have libipt to decode the trace. */
13119 #if defined (HAVE_LIBIPT)
13120 return (packet_support (PACKET_Qbtrace_pt) == PACKET_ENABLE);
13121 #else /* !defined (HAVE_LIBIPT) */
13122 return 0;
13123 #endif /* !defined (HAVE_LIBIPT) */
13124 }
13125
13126 internal_error (__FILE__, __LINE__, _("Unknown branch trace format"));
13127 }
13128
13129 /* Synchronize the configuration with the target. */
13130
13131 static void
13132 btrace_sync_conf (const struct btrace_config *conf)
13133 {
13134 struct packet_config *packet;
13135 struct remote_state *rs;
13136 char *buf, *pos, *endbuf;
13137
13138 rs = get_remote_state ();
13139 buf = rs->buf;
13140 endbuf = buf + get_remote_packet_size ();
13141
13142 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13143 if (packet_config_support (packet) == PACKET_ENABLE
13144 && conf->bts.size != rs->btrace_config.bts.size)
13145 {
13146 pos = buf;
13147 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13148 conf->bts.size);
13149
13150 putpkt (buf);
13151 getpkt (&buf, &rs->buf_size, 0);
13152
13153 if (packet_ok (buf, packet) == PACKET_ERROR)
13154 {
13155 if (buf[0] == 'E' && buf[1] == '.')
13156 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13157 else
13158 error (_("Failed to configure the BTS buffer size."));
13159 }
13160
13161 rs->btrace_config.bts.size = conf->bts.size;
13162 }
13163
13164 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13165 if (packet_config_support (packet) == PACKET_ENABLE
13166 && conf->pt.size != rs->btrace_config.pt.size)
13167 {
13168 pos = buf;
13169 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13170 conf->pt.size);
13171
13172 putpkt (buf);
13173 getpkt (&buf, &rs->buf_size, 0);
13174
13175 if (packet_ok (buf, packet) == PACKET_ERROR)
13176 {
13177 if (buf[0] == 'E' && buf[1] == '.')
13178 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13179 else
13180 error (_("Failed to configure the trace buffer size."));
13181 }
13182
13183 rs->btrace_config.pt.size = conf->pt.size;
13184 }
13185 }
13186
13187 /* Read the current thread's btrace configuration from the target and
13188 store it into CONF. */
13189
13190 static void
13191 btrace_read_config (struct btrace_config *conf)
13192 {
13193 gdb::unique_xmalloc_ptr<char> xml
13194 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE_CONF, "");
13195 if (xml != NULL)
13196 parse_xml_btrace_conf (conf, xml.get ());
13197 }
13198
13199 /* Maybe reopen target btrace. */
13200
13201 static void
13202 remote_btrace_maybe_reopen (void)
13203 {
13204 struct remote_state *rs = get_remote_state ();
13205 struct thread_info *tp;
13206 int btrace_target_pushed = 0;
13207 int warned = 0;
13208
13209 scoped_restore_current_thread restore_thread;
13210
13211 ALL_NON_EXITED_THREADS (tp)
13212 {
13213 set_general_thread (tp->ptid);
13214
13215 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13216 btrace_read_config (&rs->btrace_config);
13217
13218 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13219 continue;
13220
13221 #if !defined (HAVE_LIBIPT)
13222 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13223 {
13224 if (!warned)
13225 {
13226 warned = 1;
13227 warning (_("GDB does not support Intel Processor Trace. "
13228 "\"record\" will not work in this session."));
13229 }
13230
13231 continue;
13232 }
13233 #endif /* !defined (HAVE_LIBIPT) */
13234
13235 /* Push target, once, but before anything else happens. This way our
13236 changes to the threads will be cleaned up by unpushing the target
13237 in case btrace_read_config () throws. */
13238 if (!btrace_target_pushed)
13239 {
13240 btrace_target_pushed = 1;
13241 record_btrace_push_target ();
13242 printf_filtered (_("Target is recording using %s.\n"),
13243 btrace_format_string (rs->btrace_config.format));
13244 }
13245
13246 tp->btrace.target = XCNEW (struct btrace_target_info);
13247 tp->btrace.target->ptid = tp->ptid;
13248 tp->btrace.target->conf = rs->btrace_config;
13249 }
13250 }
13251
13252 /* Enable branch tracing. */
13253
13254 static struct btrace_target_info *
13255 remote_enable_btrace (struct target_ops *self, ptid_t ptid,
13256 const struct btrace_config *conf)
13257 {
13258 struct btrace_target_info *tinfo = NULL;
13259 struct packet_config *packet = NULL;
13260 struct remote_state *rs = get_remote_state ();
13261 char *buf = rs->buf;
13262 char *endbuf = rs->buf + get_remote_packet_size ();
13263
13264 switch (conf->format)
13265 {
13266 case BTRACE_FORMAT_BTS:
13267 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13268 break;
13269
13270 case BTRACE_FORMAT_PT:
13271 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13272 break;
13273 }
13274
13275 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13276 error (_("Target does not support branch tracing."));
13277
13278 btrace_sync_conf (conf);
13279
13280 set_general_thread (ptid);
13281
13282 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13283 putpkt (rs->buf);
13284 getpkt (&rs->buf, &rs->buf_size, 0);
13285
13286 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13287 {
13288 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13289 error (_("Could not enable branch tracing for %s: %s"),
13290 target_pid_to_str (ptid), rs->buf + 2);
13291 else
13292 error (_("Could not enable branch tracing for %s."),
13293 target_pid_to_str (ptid));
13294 }
13295
13296 tinfo = XCNEW (struct btrace_target_info);
13297 tinfo->ptid = ptid;
13298
13299 /* If we fail to read the configuration, we lose some information, but the
13300 tracing itself is not impacted. */
13301 TRY
13302 {
13303 btrace_read_config (&tinfo->conf);
13304 }
13305 CATCH (err, RETURN_MASK_ERROR)
13306 {
13307 if (err.message != NULL)
13308 warning ("%s", err.message);
13309 }
13310 END_CATCH
13311
13312 return tinfo;
13313 }
13314
13315 /* Disable branch tracing. */
13316
13317 static void
13318 remote_disable_btrace (struct target_ops *self,
13319 struct btrace_target_info *tinfo)
13320 {
13321 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13322 struct remote_state *rs = get_remote_state ();
13323 char *buf = rs->buf;
13324 char *endbuf = rs->buf + get_remote_packet_size ();
13325
13326 if (packet_config_support (packet) != PACKET_ENABLE)
13327 error (_("Target does not support branch tracing."));
13328
13329 set_general_thread (tinfo->ptid);
13330
13331 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13332 putpkt (rs->buf);
13333 getpkt (&rs->buf, &rs->buf_size, 0);
13334
13335 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13336 {
13337 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13338 error (_("Could not disable branch tracing for %s: %s"),
13339 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13340 else
13341 error (_("Could not disable branch tracing for %s."),
13342 target_pid_to_str (tinfo->ptid));
13343 }
13344
13345 xfree (tinfo);
13346 }
13347
13348 /* Teardown branch tracing. */
13349
13350 static void
13351 remote_teardown_btrace (struct target_ops *self,
13352 struct btrace_target_info *tinfo)
13353 {
13354 /* We must not talk to the target during teardown. */
13355 xfree (tinfo);
13356 }
13357
13358 /* Read the branch trace. */
13359
13360 static enum btrace_error
13361 remote_read_btrace (struct target_ops *self,
13362 struct btrace_data *btrace,
13363 struct btrace_target_info *tinfo,
13364 enum btrace_read_type type)
13365 {
13366 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13367 const char *annex;
13368
13369 if (packet_config_support (packet) != PACKET_ENABLE)
13370 error (_("Target does not support branch tracing."));
13371
13372 #if !defined(HAVE_LIBEXPAT)
13373 error (_("Cannot process branch tracing result. XML parsing not supported."));
13374 #endif
13375
13376 switch (type)
13377 {
13378 case BTRACE_READ_ALL:
13379 annex = "all";
13380 break;
13381 case BTRACE_READ_NEW:
13382 annex = "new";
13383 break;
13384 case BTRACE_READ_DELTA:
13385 annex = "delta";
13386 break;
13387 default:
13388 internal_error (__FILE__, __LINE__,
13389 _("Bad branch tracing read type: %u."),
13390 (unsigned int) type);
13391 }
13392
13393 gdb::unique_xmalloc_ptr<char> xml
13394 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE, annex);
13395 if (xml == NULL)
13396 return BTRACE_ERR_UNKNOWN;
13397
13398 parse_xml_btrace (btrace, xml.get ());
13399
13400 return BTRACE_ERR_NONE;
13401 }
13402
13403 static const struct btrace_config *
13404 remote_btrace_conf (struct target_ops *self,
13405 const struct btrace_target_info *tinfo)
13406 {
13407 return &tinfo->conf;
13408 }
13409
13410 static int
13411 remote_augmented_libraries_svr4_read (struct target_ops *self)
13412 {
13413 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13414 == PACKET_ENABLE);
13415 }
13416
13417 /* Implementation of to_load. */
13418
13419 static void
13420 remote_load (struct target_ops *self, const char *name, int from_tty)
13421 {
13422 generic_load (name, from_tty);
13423 }
13424
13425 /* Accepts an integer PID; returns a string representing a file that
13426 can be opened on the remote side to get the symbols for the child
13427 process. Returns NULL if the operation is not supported. */
13428
13429 static char *
13430 remote_pid_to_exec_file (struct target_ops *self, int pid)
13431 {
13432 static gdb::unique_xmalloc_ptr<char> filename;
13433 struct inferior *inf;
13434 char *annex = NULL;
13435
13436 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13437 return NULL;
13438
13439 inf = find_inferior_pid (pid);
13440 if (inf == NULL)
13441 internal_error (__FILE__, __LINE__,
13442 _("not currently attached to process %d"), pid);
13443
13444 if (!inf->fake_pid_p)
13445 {
13446 const int annex_size = 9;
13447
13448 annex = (char *) alloca (annex_size);
13449 xsnprintf (annex, annex_size, "%x", pid);
13450 }
13451
13452 filename = target_read_stralloc (&current_target,
13453 TARGET_OBJECT_EXEC_FILE, annex);
13454
13455 return filename.get ();
13456 }
13457
13458 /* Implement the to_can_do_single_step target_ops method. */
13459
13460 static int
13461 remote_can_do_single_step (struct target_ops *ops)
13462 {
13463 /* We can only tell whether target supports single step or not by
13464 supported s and S vCont actions if the stub supports vContSupported
13465 feature. If the stub doesn't support vContSupported feature,
13466 we have conservatively to think target doesn't supports single
13467 step. */
13468 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13469 {
13470 struct remote_state *rs = get_remote_state ();
13471
13472 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13473 remote_vcont_probe (rs);
13474
13475 return rs->supports_vCont.s && rs->supports_vCont.S;
13476 }
13477 else
13478 return 0;
13479 }
13480
13481 /* Implementation of the to_execution_direction method for the remote
13482 target. */
13483
13484 static enum exec_direction_kind
13485 remote_execution_direction (struct target_ops *self)
13486 {
13487 struct remote_state *rs = get_remote_state ();
13488
13489 return rs->last_resume_exec_dir;
13490 }
13491
13492 /* Return pointer to the thread_info struct which corresponds to
13493 THREAD_HANDLE (having length HANDLE_LEN). */
13494
13495 static struct thread_info *
13496 remote_thread_handle_to_thread_info (struct target_ops *ops,
13497 const gdb_byte *thread_handle,
13498 int handle_len,
13499 struct inferior *inf)
13500 {
13501 struct thread_info *tp;
13502
13503 ALL_NON_EXITED_THREADS (tp)
13504 {
13505 remote_thread_info *priv = get_remote_thread_info (tp);
13506
13507 if (tp->inf == inf && priv != NULL)
13508 {
13509 if (handle_len != priv->thread_handle.size ())
13510 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13511 handle_len, priv->thread_handle.size ());
13512 if (memcmp (thread_handle, priv->thread_handle.data (),
13513 handle_len) == 0)
13514 return tp;
13515 }
13516 }
13517
13518 return NULL;
13519 }
13520
13521 static void
13522 init_remote_ops (void)
13523 {
13524 remote_ops.to_shortname = "remote";
13525 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
13526 remote_ops.to_doc =
13527 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13528 Specify the serial device it is connected to\n\
13529 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
13530 remote_ops.to_open = remote_open;
13531 remote_ops.to_close = remote_close;
13532 remote_ops.to_detach = remote_detach;
13533 remote_ops.to_disconnect = remote_disconnect;
13534 remote_ops.to_resume = remote_resume;
13535 remote_ops.to_commit_resume = remote_commit_resume;
13536 remote_ops.to_wait = remote_wait;
13537 remote_ops.to_fetch_registers = remote_fetch_registers;
13538 remote_ops.to_store_registers = remote_store_registers;
13539 remote_ops.to_prepare_to_store = remote_prepare_to_store;
13540 remote_ops.to_files_info = remote_files_info;
13541 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
13542 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
13543 remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint;
13544 remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint;
13545 remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint;
13546 remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint;
13547 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
13548 remote_ops.to_stopped_data_address = remote_stopped_data_address;
13549 remote_ops.to_watchpoint_addr_within_range =
13550 remote_watchpoint_addr_within_range;
13551 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
13552 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
13553 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
13554 remote_ops.to_region_ok_for_hw_watchpoint
13555 = remote_region_ok_for_hw_watchpoint;
13556 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
13557 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
13558 remote_ops.to_kill = remote_kill;
13559 remote_ops.to_load = remote_load;
13560 remote_ops.to_mourn_inferior = remote_mourn;
13561 remote_ops.to_pass_signals = remote_pass_signals;
13562 remote_ops.to_set_syscall_catchpoint = remote_set_syscall_catchpoint;
13563 remote_ops.to_program_signals = remote_program_signals;
13564 remote_ops.to_thread_alive = remote_thread_alive;
13565 remote_ops.to_thread_name = remote_thread_name;
13566 remote_ops.to_update_thread_list = remote_update_thread_list;
13567 remote_ops.to_pid_to_str = remote_pid_to_str;
13568 remote_ops.to_extra_thread_info = remote_threads_extra_info;
13569 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
13570 remote_ops.to_stop = remote_stop;
13571 remote_ops.to_interrupt = remote_interrupt;
13572 remote_ops.to_pass_ctrlc = remote_pass_ctrlc;
13573 remote_ops.to_xfer_partial = remote_xfer_partial;
13574 remote_ops.to_get_memory_xfer_limit = remote_get_memory_xfer_limit;
13575 remote_ops.to_rcmd = remote_rcmd;
13576 remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file;
13577 remote_ops.to_log_command = serial_log_command;
13578 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
13579 remote_ops.to_stratum = process_stratum;
13580 remote_ops.to_has_all_memory = default_child_has_all_memory;
13581 remote_ops.to_has_memory = default_child_has_memory;
13582 remote_ops.to_has_stack = default_child_has_stack;
13583 remote_ops.to_has_registers = default_child_has_registers;
13584 remote_ops.to_has_execution = default_child_has_execution;
13585 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
13586 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
13587 remote_ops.to_magic = OPS_MAGIC;
13588 remote_ops.to_memory_map = remote_memory_map;
13589 remote_ops.to_flash_erase = remote_flash_erase;
13590 remote_ops.to_flash_done = remote_flash_done;
13591 remote_ops.to_read_description = remote_read_description;
13592 remote_ops.to_search_memory = remote_search_memory;
13593 remote_ops.to_can_async_p = remote_can_async_p;
13594 remote_ops.to_is_async_p = remote_is_async_p;
13595 remote_ops.to_async = remote_async;
13596 remote_ops.to_thread_events = remote_thread_events;
13597 remote_ops.to_can_do_single_step = remote_can_do_single_step;
13598 remote_ops.to_terminal_inferior = remote_terminal_inferior;
13599 remote_ops.to_terminal_ours = remote_terminal_ours;
13600 remote_ops.to_supports_non_stop = remote_supports_non_stop;
13601 remote_ops.to_supports_multi_process = remote_supports_multi_process;
13602 remote_ops.to_supports_disable_randomization
13603 = remote_supports_disable_randomization;
13604 remote_ops.to_filesystem_is_local = remote_filesystem_is_local;
13605 remote_ops.to_fileio_open = remote_hostio_open;
13606 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
13607 remote_ops.to_fileio_pread = remote_hostio_pread;
13608 remote_ops.to_fileio_fstat = remote_hostio_fstat;
13609 remote_ops.to_fileio_close = remote_hostio_close;
13610 remote_ops.to_fileio_unlink = remote_hostio_unlink;
13611 remote_ops.to_fileio_readlink = remote_hostio_readlink;
13612 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
13613 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
13614 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
13615 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
13616 remote_ops.to_trace_init = remote_trace_init;
13617 remote_ops.to_download_tracepoint = remote_download_tracepoint;
13618 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
13619 remote_ops.to_download_trace_state_variable
13620 = remote_download_trace_state_variable;
13621 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
13622 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
13623 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
13624 remote_ops.to_trace_start = remote_trace_start;
13625 remote_ops.to_get_trace_status = remote_get_trace_status;
13626 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
13627 remote_ops.to_trace_stop = remote_trace_stop;
13628 remote_ops.to_trace_find = remote_trace_find;
13629 remote_ops.to_get_trace_state_variable_value
13630 = remote_get_trace_state_variable_value;
13631 remote_ops.to_save_trace_data = remote_save_trace_data;
13632 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
13633 remote_ops.to_upload_trace_state_variables
13634 = remote_upload_trace_state_variables;
13635 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
13636 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
13637 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
13638 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
13639 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
13640 remote_ops.to_set_trace_notes = remote_set_trace_notes;
13641 remote_ops.to_core_of_thread = remote_core_of_thread;
13642 remote_ops.to_verify_memory = remote_verify_memory;
13643 remote_ops.to_get_tib_address = remote_get_tib_address;
13644 remote_ops.to_set_permissions = remote_set_permissions;
13645 remote_ops.to_static_tracepoint_marker_at
13646 = remote_static_tracepoint_marker_at;
13647 remote_ops.to_static_tracepoint_markers_by_strid
13648 = remote_static_tracepoint_markers_by_strid;
13649 remote_ops.to_traceframe_info = remote_traceframe_info;
13650 remote_ops.to_use_agent = remote_use_agent;
13651 remote_ops.to_can_use_agent = remote_can_use_agent;
13652 remote_ops.to_supports_btrace = remote_supports_btrace;
13653 remote_ops.to_enable_btrace = remote_enable_btrace;
13654 remote_ops.to_disable_btrace = remote_disable_btrace;
13655 remote_ops.to_teardown_btrace = remote_teardown_btrace;
13656 remote_ops.to_read_btrace = remote_read_btrace;
13657 remote_ops.to_btrace_conf = remote_btrace_conf;
13658 remote_ops.to_augmented_libraries_svr4_read =
13659 remote_augmented_libraries_svr4_read;
13660 remote_ops.to_follow_fork = remote_follow_fork;
13661 remote_ops.to_follow_exec = remote_follow_exec;
13662 remote_ops.to_insert_fork_catchpoint = remote_insert_fork_catchpoint;
13663 remote_ops.to_remove_fork_catchpoint = remote_remove_fork_catchpoint;
13664 remote_ops.to_insert_vfork_catchpoint = remote_insert_vfork_catchpoint;
13665 remote_ops.to_remove_vfork_catchpoint = remote_remove_vfork_catchpoint;
13666 remote_ops.to_insert_exec_catchpoint = remote_insert_exec_catchpoint;
13667 remote_ops.to_remove_exec_catchpoint = remote_remove_exec_catchpoint;
13668 remote_ops.to_execution_direction = remote_execution_direction;
13669 remote_ops.to_thread_handle_to_thread_info =
13670 remote_thread_handle_to_thread_info;
13671 }
13672
13673 /* Set up the extended remote vector by making a copy of the standard
13674 remote vector and adding to it. */
13675
13676 static void
13677 init_extended_remote_ops (void)
13678 {
13679 extended_remote_ops = remote_ops;
13680
13681 extended_remote_ops.to_shortname = "extended-remote";
13682 extended_remote_ops.to_longname =
13683 "Extended remote serial target in gdb-specific protocol";
13684 extended_remote_ops.to_doc =
13685 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13686 Specify the serial device it is connected to (e.g. /dev/ttya).";
13687 extended_remote_ops.to_open = extended_remote_open;
13688 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
13689 extended_remote_ops.to_detach = extended_remote_detach;
13690 extended_remote_ops.to_attach = extended_remote_attach;
13691 extended_remote_ops.to_post_attach = extended_remote_post_attach;
13692 extended_remote_ops.to_supports_disable_randomization
13693 = extended_remote_supports_disable_randomization;
13694 }
13695
13696 static int
13697 remote_can_async_p (struct target_ops *ops)
13698 {
13699 struct remote_state *rs = get_remote_state ();
13700
13701 /* We don't go async if the user has explicitly prevented it with the
13702 "maint set target-async" command. */
13703 if (!target_async_permitted)
13704 return 0;
13705
13706 /* We're async whenever the serial device is. */
13707 return serial_can_async_p (rs->remote_desc);
13708 }
13709
13710 static int
13711 remote_is_async_p (struct target_ops *ops)
13712 {
13713 struct remote_state *rs = get_remote_state ();
13714
13715 if (!target_async_permitted)
13716 /* We only enable async when the user specifically asks for it. */
13717 return 0;
13718
13719 /* We're async whenever the serial device is. */
13720 return serial_is_async_p (rs->remote_desc);
13721 }
13722
13723 /* Pass the SERIAL event on and up to the client. One day this code
13724 will be able to delay notifying the client of an event until the
13725 point where an entire packet has been received. */
13726
13727 static serial_event_ftype remote_async_serial_handler;
13728
13729 static void
13730 remote_async_serial_handler (struct serial *scb, void *context)
13731 {
13732 /* Don't propogate error information up to the client. Instead let
13733 the client find out about the error by querying the target. */
13734 inferior_event_handler (INF_REG_EVENT, NULL);
13735 }
13736
13737 static void
13738 remote_async_inferior_event_handler (gdb_client_data data)
13739 {
13740 inferior_event_handler (INF_REG_EVENT, NULL);
13741 }
13742
13743 static void
13744 remote_async (struct target_ops *ops, int enable)
13745 {
13746 struct remote_state *rs = get_remote_state ();
13747
13748 if (enable)
13749 {
13750 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13751
13752 /* If there are pending events in the stop reply queue tell the
13753 event loop to process them. */
13754 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13755 mark_async_event_handler (remote_async_inferior_event_token);
13756 /* For simplicity, below we clear the pending events token
13757 without remembering whether it is marked, so here we always
13758 mark it. If there's actually no pending notification to
13759 process, this ends up being a no-op (other than a spurious
13760 event-loop wakeup). */
13761 if (target_is_non_stop_p ())
13762 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13763 }
13764 else
13765 {
13766 serial_async (rs->remote_desc, NULL, NULL);
13767 /* If the core is disabling async, it doesn't want to be
13768 disturbed with target events. Clear all async event sources
13769 too. */
13770 clear_async_event_handler (remote_async_inferior_event_token);
13771 if (target_is_non_stop_p ())
13772 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13773 }
13774 }
13775
13776 /* Implementation of the to_thread_events method. */
13777
13778 static void
13779 remote_thread_events (struct target_ops *ops, int enable)
13780 {
13781 struct remote_state *rs = get_remote_state ();
13782 size_t size = get_remote_packet_size ();
13783
13784 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13785 return;
13786
13787 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13788 putpkt (rs->buf);
13789 getpkt (&rs->buf, &rs->buf_size, 0);
13790
13791 switch (packet_ok (rs->buf,
13792 &remote_protocol_packets[PACKET_QThreadEvents]))
13793 {
13794 case PACKET_OK:
13795 if (strcmp (rs->buf, "OK") != 0)
13796 error (_("Remote refused setting thread events: %s"), rs->buf);
13797 break;
13798 case PACKET_ERROR:
13799 warning (_("Remote failure reply: %s"), rs->buf);
13800 break;
13801 case PACKET_UNKNOWN:
13802 break;
13803 }
13804 }
13805
13806 static void
13807 set_remote_cmd (const char *args, int from_tty)
13808 {
13809 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13810 }
13811
13812 static void
13813 show_remote_cmd (const char *args, int from_tty)
13814 {
13815 /* We can't just use cmd_show_list here, because we want to skip
13816 the redundant "show remote Z-packet" and the legacy aliases. */
13817 struct cmd_list_element *list = remote_show_cmdlist;
13818 struct ui_out *uiout = current_uiout;
13819
13820 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
13821 for (; list != NULL; list = list->next)
13822 if (strcmp (list->name, "Z-packet") == 0)
13823 continue;
13824 else if (list->type == not_set_cmd)
13825 /* Alias commands are exactly like the original, except they
13826 don't have the normal type. */
13827 continue;
13828 else
13829 {
13830 ui_out_emit_tuple option_emitter (uiout, "option");
13831
13832 uiout->field_string ("name", list->name);
13833 uiout->text (": ");
13834 if (list->type == show_cmd)
13835 do_show_command (NULL, from_tty, list);
13836 else
13837 cmd_func (list, NULL, from_tty);
13838 }
13839 }
13840
13841
13842 /* Function to be called whenever a new objfile (shlib) is detected. */
13843 static void
13844 remote_new_objfile (struct objfile *objfile)
13845 {
13846 struct remote_state *rs = get_remote_state ();
13847
13848 if (rs->remote_desc != 0) /* Have a remote connection. */
13849 remote_check_symbols ();
13850 }
13851
13852 /* Pull all the tracepoints defined on the target and create local
13853 data structures representing them. We don't want to create real
13854 tracepoints yet, we don't want to mess up the user's existing
13855 collection. */
13856
13857 static int
13858 remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
13859 {
13860 struct remote_state *rs = get_remote_state ();
13861 char *p;
13862
13863 /* Ask for a first packet of tracepoint definition. */
13864 putpkt ("qTfP");
13865 getpkt (&rs->buf, &rs->buf_size, 0);
13866 p = rs->buf;
13867 while (*p && *p != 'l')
13868 {
13869 parse_tracepoint_definition (p, utpp);
13870 /* Ask for another packet of tracepoint definition. */
13871 putpkt ("qTsP");
13872 getpkt (&rs->buf, &rs->buf_size, 0);
13873 p = rs->buf;
13874 }
13875 return 0;
13876 }
13877
13878 static int
13879 remote_upload_trace_state_variables (struct target_ops *self,
13880 struct uploaded_tsv **utsvp)
13881 {
13882 struct remote_state *rs = get_remote_state ();
13883 char *p;
13884
13885 /* Ask for a first packet of variable definition. */
13886 putpkt ("qTfV");
13887 getpkt (&rs->buf, &rs->buf_size, 0);
13888 p = rs->buf;
13889 while (*p && *p != 'l')
13890 {
13891 parse_tsv_definition (p, utsvp);
13892 /* Ask for another packet of variable definition. */
13893 putpkt ("qTsV");
13894 getpkt (&rs->buf, &rs->buf_size, 0);
13895 p = rs->buf;
13896 }
13897 return 0;
13898 }
13899
13900 /* The "set/show range-stepping" show hook. */
13901
13902 static void
13903 show_range_stepping (struct ui_file *file, int from_tty,
13904 struct cmd_list_element *c,
13905 const char *value)
13906 {
13907 fprintf_filtered (file,
13908 _("Debugger's willingness to use range stepping "
13909 "is %s.\n"), value);
13910 }
13911
13912 /* The "set/show range-stepping" set hook. */
13913
13914 static void
13915 set_range_stepping (const char *ignore_args, int from_tty,
13916 struct cmd_list_element *c)
13917 {
13918 struct remote_state *rs = get_remote_state ();
13919
13920 /* Whene enabling, check whether range stepping is actually
13921 supported by the target, and warn if not. */
13922 if (use_range_stepping)
13923 {
13924 if (rs->remote_desc != NULL)
13925 {
13926 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13927 remote_vcont_probe (rs);
13928
13929 if (packet_support (PACKET_vCont) == PACKET_ENABLE
13930 && rs->supports_vCont.r)
13931 return;
13932 }
13933
13934 warning (_("Range stepping is not supported by the current target"));
13935 }
13936 }
13937
13938 void
13939 _initialize_remote (void)
13940 {
13941 struct cmd_list_element *cmd;
13942 const char *cmd_name;
13943
13944 /* architecture specific data */
13945 remote_gdbarch_data_handle =
13946 gdbarch_data_register_post_init (init_remote_state);
13947 remote_g_packet_data_handle =
13948 gdbarch_data_register_pre_init (remote_g_packet_data_init);
13949
13950 remote_pspace_data
13951 = register_program_space_data_with_cleanup (NULL,
13952 remote_pspace_data_cleanup);
13953
13954 /* Initialize the per-target state. At the moment there is only one
13955 of these, not one per target. Only one target is active at a
13956 time. */
13957 remote_state = new_remote_state ();
13958
13959 init_remote_ops ();
13960 add_target (&remote_ops);
13961
13962 init_extended_remote_ops ();
13963 add_target (&extended_remote_ops);
13964
13965 /* Hook into new objfile notification. */
13966 observer_attach_new_objfile (remote_new_objfile);
13967 /* We're no longer interested in notification events of an inferior
13968 when it exits. */
13969 observer_attach_inferior_exit (discard_pending_stop_replies);
13970
13971 #if 0
13972 init_remote_threadtests ();
13973 #endif
13974
13975 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
13976 /* set/show remote ... */
13977
13978 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
13979 Remote protocol specific variables\n\
13980 Configure various remote-protocol specific variables such as\n\
13981 the packets being used"),
13982 &remote_set_cmdlist, "set remote ",
13983 0 /* allow-unknown */, &setlist);
13984 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
13985 Remote protocol specific variables\n\
13986 Configure various remote-protocol specific variables such as\n\
13987 the packets being used"),
13988 &remote_show_cmdlist, "show remote ",
13989 0 /* allow-unknown */, &showlist);
13990
13991 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
13992 Compare section data on target to the exec file.\n\
13993 Argument is a single section name (default: all loaded sections).\n\
13994 To compare only read-only loaded sections, specify the -r option."),
13995 &cmdlist);
13996
13997 add_cmd ("packet", class_maintenance, packet_command, _("\
13998 Send an arbitrary packet to a remote target.\n\
13999 maintenance packet TEXT\n\
14000 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14001 this command sends the string TEXT to the inferior, and displays the\n\
14002 response packet. GDB supplies the initial `$' character, and the\n\
14003 terminating `#' character and checksum."),
14004 &maintenancelist);
14005
14006 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14007 Set whether to send break if interrupted."), _("\
14008 Show whether to send break if interrupted."), _("\
14009 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14010 set_remotebreak, show_remotebreak,
14011 &setlist, &showlist);
14012 cmd_name = "remotebreak";
14013 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14014 deprecate_cmd (cmd, "set remote interrupt-sequence");
14015 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14016 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14017 deprecate_cmd (cmd, "show remote interrupt-sequence");
14018
14019 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14020 interrupt_sequence_modes, &interrupt_sequence_mode,
14021 _("\
14022 Set interrupt sequence to remote target."), _("\
14023 Show interrupt sequence to remote target."), _("\
14024 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14025 NULL, show_interrupt_sequence,
14026 &remote_set_cmdlist,
14027 &remote_show_cmdlist);
14028
14029 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14030 &interrupt_on_connect, _("\
14031 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14032 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14033 If set, interrupt sequence is sent to remote target."),
14034 NULL, NULL,
14035 &remote_set_cmdlist, &remote_show_cmdlist);
14036
14037 /* Install commands for configuring memory read/write packets. */
14038
14039 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14040 Set the maximum number of bytes per memory write packet (deprecated)."),
14041 &setlist);
14042 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14043 Show the maximum number of bytes per memory write packet (deprecated)."),
14044 &showlist);
14045 add_cmd ("memory-write-packet-size", no_class,
14046 set_memory_write_packet_size, _("\
14047 Set the maximum number of bytes per memory-write packet.\n\
14048 Specify the number of bytes in a packet or 0 (zero) for the\n\
14049 default packet size. The actual limit is further reduced\n\
14050 dependent on the target. Specify ``fixed'' to disable the\n\
14051 further restriction and ``limit'' to enable that restriction."),
14052 &remote_set_cmdlist);
14053 add_cmd ("memory-read-packet-size", no_class,
14054 set_memory_read_packet_size, _("\
14055 Set the maximum number of bytes per memory-read packet.\n\
14056 Specify the number of bytes in a packet or 0 (zero) for the\n\
14057 default packet size. The actual limit is further reduced\n\
14058 dependent on the target. Specify ``fixed'' to disable the\n\
14059 further restriction and ``limit'' to enable that restriction."),
14060 &remote_set_cmdlist);
14061 add_cmd ("memory-write-packet-size", no_class,
14062 show_memory_write_packet_size,
14063 _("Show the maximum number of bytes per memory-write packet."),
14064 &remote_show_cmdlist);
14065 add_cmd ("memory-read-packet-size", no_class,
14066 show_memory_read_packet_size,
14067 _("Show the maximum number of bytes per memory-read packet."),
14068 &remote_show_cmdlist);
14069
14070 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14071 &remote_hw_watchpoint_limit, _("\
14072 Set the maximum number of target hardware watchpoints."), _("\
14073 Show the maximum number of target hardware watchpoints."), _("\
14074 Specify a negative limit for unlimited."),
14075 NULL, NULL, /* FIXME: i18n: The maximum
14076 number of target hardware
14077 watchpoints is %s. */
14078 &remote_set_cmdlist, &remote_show_cmdlist);
14079 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14080 &remote_hw_watchpoint_length_limit, _("\
14081 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14082 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14083 Specify a negative limit for unlimited."),
14084 NULL, NULL, /* FIXME: i18n: The maximum
14085 length (in bytes) of a target
14086 hardware watchpoint is %s. */
14087 &remote_set_cmdlist, &remote_show_cmdlist);
14088 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14089 &remote_hw_breakpoint_limit, _("\
14090 Set the maximum number of target hardware breakpoints."), _("\
14091 Show the maximum number of target hardware breakpoints."), _("\
14092 Specify a negative limit for unlimited."),
14093 NULL, NULL, /* FIXME: i18n: The maximum
14094 number of target hardware
14095 breakpoints is %s. */
14096 &remote_set_cmdlist, &remote_show_cmdlist);
14097
14098 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14099 &remote_address_size, _("\
14100 Set the maximum size of the address (in bits) in a memory packet."), _("\
14101 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14102 NULL,
14103 NULL, /* FIXME: i18n: */
14104 &setlist, &showlist);
14105
14106 init_all_packet_configs ();
14107
14108 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14109 "X", "binary-download", 1);
14110
14111 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14112 "vCont", "verbose-resume", 0);
14113
14114 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14115 "QPassSignals", "pass-signals", 0);
14116
14117 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14118 "QCatchSyscalls", "catch-syscalls", 0);
14119
14120 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14121 "QProgramSignals", "program-signals", 0);
14122
14123 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14124 "QSetWorkingDir", "set-working-dir", 0);
14125
14126 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14127 "QStartupWithShell", "startup-with-shell", 0);
14128
14129 add_packet_config_cmd (&remote_protocol_packets
14130 [PACKET_QEnvironmentHexEncoded],
14131 "QEnvironmentHexEncoded", "environment-hex-encoded",
14132 0);
14133
14134 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14135 "QEnvironmentReset", "environment-reset",
14136 0);
14137
14138 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14139 "QEnvironmentUnset", "environment-unset",
14140 0);
14141
14142 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14143 "qSymbol", "symbol-lookup", 0);
14144
14145 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14146 "P", "set-register", 1);
14147
14148 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14149 "p", "fetch-register", 1);
14150
14151 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14152 "Z0", "software-breakpoint", 0);
14153
14154 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14155 "Z1", "hardware-breakpoint", 0);
14156
14157 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14158 "Z2", "write-watchpoint", 0);
14159
14160 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14161 "Z3", "read-watchpoint", 0);
14162
14163 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14164 "Z4", "access-watchpoint", 0);
14165
14166 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14167 "qXfer:auxv:read", "read-aux-vector", 0);
14168
14169 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14170 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14171
14172 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14173 "qXfer:features:read", "target-features", 0);
14174
14175 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14176 "qXfer:libraries:read", "library-info", 0);
14177
14178 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14179 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14180
14181 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14182 "qXfer:memory-map:read", "memory-map", 0);
14183
14184 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14185 "qXfer:spu:read", "read-spu-object", 0);
14186
14187 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14188 "qXfer:spu:write", "write-spu-object", 0);
14189
14190 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14191 "qXfer:osdata:read", "osdata", 0);
14192
14193 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14194 "qXfer:threads:read", "threads", 0);
14195
14196 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14197 "qXfer:siginfo:read", "read-siginfo-object", 0);
14198
14199 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14200 "qXfer:siginfo:write", "write-siginfo-object", 0);
14201
14202 add_packet_config_cmd
14203 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14204 "qXfer:traceframe-info:read", "traceframe-info", 0);
14205
14206 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14207 "qXfer:uib:read", "unwind-info-block", 0);
14208
14209 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14210 "qGetTLSAddr", "get-thread-local-storage-address",
14211 0);
14212
14213 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14214 "qGetTIBAddr", "get-thread-information-block-address",
14215 0);
14216
14217 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14218 "bc", "reverse-continue", 0);
14219
14220 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14221 "bs", "reverse-step", 0);
14222
14223 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14224 "qSupported", "supported-packets", 0);
14225
14226 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14227 "qSearch:memory", "search-memory", 0);
14228
14229 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14230 "qTStatus", "trace-status", 0);
14231
14232 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14233 "vFile:setfs", "hostio-setfs", 0);
14234
14235 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14236 "vFile:open", "hostio-open", 0);
14237
14238 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14239 "vFile:pread", "hostio-pread", 0);
14240
14241 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14242 "vFile:pwrite", "hostio-pwrite", 0);
14243
14244 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14245 "vFile:close", "hostio-close", 0);
14246
14247 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14248 "vFile:unlink", "hostio-unlink", 0);
14249
14250 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14251 "vFile:readlink", "hostio-readlink", 0);
14252
14253 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14254 "vFile:fstat", "hostio-fstat", 0);
14255
14256 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14257 "vAttach", "attach", 0);
14258
14259 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14260 "vRun", "run", 0);
14261
14262 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14263 "QStartNoAckMode", "noack", 0);
14264
14265 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14266 "vKill", "kill", 0);
14267
14268 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14269 "qAttached", "query-attached", 0);
14270
14271 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14272 "ConditionalTracepoints",
14273 "conditional-tracepoints", 0);
14274
14275 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14276 "ConditionalBreakpoints",
14277 "conditional-breakpoints", 0);
14278
14279 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14280 "BreakpointCommands",
14281 "breakpoint-commands", 0);
14282
14283 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14284 "FastTracepoints", "fast-tracepoints", 0);
14285
14286 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14287 "TracepointSource", "TracepointSource", 0);
14288
14289 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14290 "QAllow", "allow", 0);
14291
14292 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14293 "StaticTracepoints", "static-tracepoints", 0);
14294
14295 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14296 "InstallInTrace", "install-in-trace", 0);
14297
14298 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14299 "qXfer:statictrace:read", "read-sdata-object", 0);
14300
14301 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14302 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14303
14304 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14305 "QDisableRandomization", "disable-randomization", 0);
14306
14307 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14308 "QAgent", "agent", 0);
14309
14310 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14311 "QTBuffer:size", "trace-buffer-size", 0);
14312
14313 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14314 "Qbtrace:off", "disable-btrace", 0);
14315
14316 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14317 "Qbtrace:bts", "enable-btrace-bts", 0);
14318
14319 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14320 "Qbtrace:pt", "enable-btrace-pt", 0);
14321
14322 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14323 "qXfer:btrace", "read-btrace", 0);
14324
14325 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14326 "qXfer:btrace-conf", "read-btrace-conf", 0);
14327
14328 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14329 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14330
14331 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14332 "multiprocess-feature", "multiprocess-feature", 0);
14333
14334 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14335 "swbreak-feature", "swbreak-feature", 0);
14336
14337 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14338 "hwbreak-feature", "hwbreak-feature", 0);
14339
14340 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14341 "fork-event-feature", "fork-event-feature", 0);
14342
14343 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14344 "vfork-event-feature", "vfork-event-feature", 0);
14345
14346 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14347 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14348
14349 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14350 "vContSupported", "verbose-resume-supported", 0);
14351
14352 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14353 "exec-event-feature", "exec-event-feature", 0);
14354
14355 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14356 "vCtrlC", "ctrl-c", 0);
14357
14358 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14359 "QThreadEvents", "thread-events", 0);
14360
14361 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14362 "N stop reply", "no-resumed-stop-reply", 0);
14363
14364 /* Assert that we've registered "set remote foo-packet" commands
14365 for all packet configs. */
14366 {
14367 int i;
14368
14369 for (i = 0; i < PACKET_MAX; i++)
14370 {
14371 /* Ideally all configs would have a command associated. Some
14372 still don't though. */
14373 int excepted;
14374
14375 switch (i)
14376 {
14377 case PACKET_QNonStop:
14378 case PACKET_EnableDisableTracepoints_feature:
14379 case PACKET_tracenz_feature:
14380 case PACKET_DisconnectedTracing_feature:
14381 case PACKET_augmented_libraries_svr4_read_feature:
14382 case PACKET_qCRC:
14383 /* Additions to this list need to be well justified:
14384 pre-existing packets are OK; new packets are not. */
14385 excepted = 1;
14386 break;
14387 default:
14388 excepted = 0;
14389 break;
14390 }
14391
14392 /* This catches both forgetting to add a config command, and
14393 forgetting to remove a packet from the exception list. */
14394 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14395 }
14396 }
14397
14398 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14399 Z sub-packet has its own set and show commands, but users may
14400 have sets to this variable in their .gdbinit files (or in their
14401 documentation). */
14402 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14403 &remote_Z_packet_detect, _("\
14404 Set use of remote protocol `Z' packets"), _("\
14405 Show use of remote protocol `Z' packets "), _("\
14406 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14407 packets."),
14408 set_remote_protocol_Z_packet_cmd,
14409 show_remote_protocol_Z_packet_cmd,
14410 /* FIXME: i18n: Use of remote protocol
14411 `Z' packets is %s. */
14412 &remote_set_cmdlist, &remote_show_cmdlist);
14413
14414 add_prefix_cmd ("remote", class_files, remote_command, _("\
14415 Manipulate files on the remote system\n\
14416 Transfer files to and from the remote target system."),
14417 &remote_cmdlist, "remote ",
14418 0 /* allow-unknown */, &cmdlist);
14419
14420 add_cmd ("put", class_files, remote_put_command,
14421 _("Copy a local file to the remote system."),
14422 &remote_cmdlist);
14423
14424 add_cmd ("get", class_files, remote_get_command,
14425 _("Copy a remote file to the local system."),
14426 &remote_cmdlist);
14427
14428 add_cmd ("delete", class_files, remote_delete_command,
14429 _("Delete a remote file."),
14430 &remote_cmdlist);
14431
14432 add_setshow_string_noescape_cmd ("exec-file", class_files,
14433 &remote_exec_file_var, _("\
14434 Set the remote pathname for \"run\""), _("\
14435 Show the remote pathname for \"run\""), NULL,
14436 set_remote_exec_file,
14437 show_remote_exec_file,
14438 &remote_set_cmdlist,
14439 &remote_show_cmdlist);
14440
14441 add_setshow_boolean_cmd ("range-stepping", class_run,
14442 &use_range_stepping, _("\
14443 Enable or disable range stepping."), _("\
14444 Show whether target-assisted range stepping is enabled."), _("\
14445 If on, and the target supports it, when stepping a source line, GDB\n\
14446 tells the target to step the corresponding range of addresses itself instead\n\
14447 of issuing multiple single-steps. This speeds up source level\n\
14448 stepping. If off, GDB always issues single-steps, even if range\n\
14449 stepping is supported by the target. The default is on."),
14450 set_range_stepping,
14451 show_range_stepping,
14452 &setlist,
14453 &showlist);
14454
14455 /* Eventually initialize fileio. See fileio.c */
14456 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14457
14458 /* Take advantage of the fact that the TID field is not used, to tag
14459 special ptids with it set to != 0. */
14460 magic_null_ptid = ptid_build (42000, -1, 1);
14461 not_sent_ptid = ptid_build (42000, -2, 1);
14462 any_thread_ptid = ptid_build (42000, 0, 1);
14463 }
This page took 0.33113 seconds and 5 git commands to generate.