Constify add_setshow_*
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observer.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78
79 /* Per-program-space data key. */
80 static const struct program_space_data *remote_pspace_data;
81
82 /* The variable registered as the control variable used by the
83 remote exec-file commands. While the remote exec-file setting is
84 per-program-space, the set/show machinery uses this as the
85 location of the remote exec-file value. */
86 static char *remote_exec_file_var;
87
88 /* The size to align memory write packets, when practical. The protocol
89 does not guarantee any alignment, and gdb will generate short
90 writes and unaligned writes, but even as a best-effort attempt this
91 can improve bulk transfers. For instance, if a write is misaligned
92 relative to the target's data bus, the stub may need to make an extra
93 round trip fetching data from the target. This doesn't make a
94 huge difference, but it's easy to do, so we try to be helpful.
95
96 The alignment chosen is arbitrary; usually data bus width is
97 important here, not the possibly larger cache line size. */
98 enum { REMOTE_ALIGN_WRITES = 16 };
99
100 /* Prototypes for local functions. */
101 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
102 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
103 int forever, int *is_notif);
104
105 static void remote_files_info (struct target_ops *ignore);
106
107 static void remote_prepare_to_store (struct target_ops *self,
108 struct regcache *regcache);
109
110 static void remote_open_1 (const char *, int, struct target_ops *,
111 int extended_p);
112
113 static void remote_close (struct target_ops *self);
114
115 struct remote_state;
116
117 static int remote_vkill (int pid, struct remote_state *rs);
118
119 static void remote_kill_k (void);
120
121 static void remote_mourn (struct target_ops *ops);
122
123 static void extended_remote_restart (void);
124
125 static void remote_send (char **buf, long *sizeof_buf_p);
126
127 static int readchar (int timeout);
128
129 static void remote_serial_write (const char *str, int len);
130
131 static void remote_kill (struct target_ops *ops);
132
133 static int remote_can_async_p (struct target_ops *);
134
135 static int remote_is_async_p (struct target_ops *);
136
137 static void remote_async (struct target_ops *ops, int enable);
138
139 static void remote_thread_events (struct target_ops *ops, int enable);
140
141 static void interrupt_query (void);
142
143 static void set_general_thread (ptid_t ptid);
144 static void set_continue_thread (ptid_t ptid);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (struct target_ops *self, ptid_t);
159
160 static int stubhex (int ch);
161
162 static int hexnumstr (char *, ULONGEST);
163
164 static int hexnumnstr (char *, ULONGEST, int);
165
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
167
168 static void print_packet (const char *);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static int putpkt_binary (const char *buf, int cnt);
175
176 static void check_binary_download (CORE_ADDR addr);
177
178 struct packet_config;
179
180 static void show_packet_config_cmd (struct packet_config *config);
181
182 static void show_remote_protocol_packet_cmd (struct ui_file *file,
183 int from_tty,
184 struct cmd_list_element *c,
185 const char *value);
186
187 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
188 static ptid_t read_ptid (const char *buf, const char **obuf);
189
190 static void remote_set_permissions (struct target_ops *self);
191
192 static int remote_get_trace_status (struct target_ops *self,
193 struct trace_status *ts);
194
195 static int remote_upload_tracepoints (struct target_ops *self,
196 struct uploaded_tp **utpp);
197
198 static int remote_upload_trace_state_variables (struct target_ops *self,
199 struct uploaded_tsv **utsvp);
200
201 static void remote_query_supported (void);
202
203 static void remote_check_symbols (void);
204
205 struct stop_reply;
206 static void stop_reply_xfree (struct stop_reply *);
207 static void remote_parse_stop_reply (char *, struct stop_reply *);
208 static void push_stop_reply (struct stop_reply *);
209 static void discard_pending_stop_replies_in_queue (struct remote_state *);
210 static int peek_stop_reply (ptid_t ptid);
211
212 struct threads_listing_context;
213 static void remove_new_fork_children (struct threads_listing_context *);
214
215 static void remote_async_inferior_event_handler (gdb_client_data);
216
217 static void remote_terminal_ours (struct target_ops *self);
218
219 static int remote_read_description_p (struct target_ops *target);
220
221 static void remote_console_output (char *msg);
222
223 static int remote_supports_cond_breakpoints (struct target_ops *self);
224
225 static int remote_can_run_breakpoint_commands (struct target_ops *self);
226
227 static void remote_btrace_reset (void);
228
229 static void remote_btrace_maybe_reopen (void);
230
231 static int stop_reply_queue_length (void);
232
233 static void readahead_cache_invalidate (void);
234
235 static void remote_unpush_and_throw (void);
236
237 static struct remote_state *get_remote_state (void);
238
239 /* For "remote". */
240
241 static struct cmd_list_element *remote_cmdlist;
242
243 /* For "set remote" and "show remote". */
244
245 static struct cmd_list_element *remote_set_cmdlist;
246 static struct cmd_list_element *remote_show_cmdlist;
247
248 /* Stub vCont actions support.
249
250 Each field is a boolean flag indicating whether the stub reports
251 support for the corresponding action. */
252
253 struct vCont_action_support
254 {
255 /* vCont;t */
256 int t;
257
258 /* vCont;r */
259 int r;
260
261 /* vCont;s */
262 int s;
263
264 /* vCont;S */
265 int S;
266 };
267
268 /* Controls whether GDB is willing to use range stepping. */
269
270 static int use_range_stepping = 1;
271
272 #define OPAQUETHREADBYTES 8
273
274 /* a 64 bit opaque identifier */
275 typedef unsigned char threadref[OPAQUETHREADBYTES];
276
277 /* About this many threadisds fit in a packet. */
278
279 #define MAXTHREADLISTRESULTS 32
280
281 /* The max number of chars in debug output. The rest of chars are
282 omitted. */
283
284 #define REMOTE_DEBUG_MAX_CHAR 512
285
286 /* Data for the vFile:pread readahead cache. */
287
288 struct readahead_cache
289 {
290 /* The file descriptor for the file that is being cached. -1 if the
291 cache is invalid. */
292 int fd;
293
294 /* The offset into the file that the cache buffer corresponds
295 to. */
296 ULONGEST offset;
297
298 /* The buffer holding the cache contents. */
299 gdb_byte *buf;
300 /* The buffer's size. We try to read as much as fits into a packet
301 at a time. */
302 size_t bufsize;
303
304 /* Cache hit and miss counters. */
305 ULONGEST hit_count;
306 ULONGEST miss_count;
307 };
308
309 /* Description of the remote protocol state for the currently
310 connected target. This is per-target state, and independent of the
311 selected architecture. */
312
313 struct remote_state
314 {
315 /* A buffer to use for incoming packets, and its current size. The
316 buffer is grown dynamically for larger incoming packets.
317 Outgoing packets may also be constructed in this buffer.
318 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
319 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
320 packets. */
321 char *buf;
322 long buf_size;
323
324 /* True if we're going through initial connection setup (finding out
325 about the remote side's threads, relocating symbols, etc.). */
326 int starting_up;
327
328 /* If we negotiated packet size explicitly (and thus can bypass
329 heuristics for the largest packet size that will not overflow
330 a buffer in the stub), this will be set to that packet size.
331 Otherwise zero, meaning to use the guessed size. */
332 long explicit_packet_size;
333
334 /* remote_wait is normally called when the target is running and
335 waits for a stop reply packet. But sometimes we need to call it
336 when the target is already stopped. We can send a "?" packet
337 and have remote_wait read the response. Or, if we already have
338 the response, we can stash it in BUF and tell remote_wait to
339 skip calling getpkt. This flag is set when BUF contains a
340 stop reply packet and the target is not waiting. */
341 int cached_wait_status;
342
343 /* True, if in no ack mode. That is, neither GDB nor the stub will
344 expect acks from each other. The connection is assumed to be
345 reliable. */
346 int noack_mode;
347
348 /* True if we're connected in extended remote mode. */
349 int extended;
350
351 /* True if we resumed the target and we're waiting for the target to
352 stop. In the mean time, we can't start another command/query.
353 The remote server wouldn't be ready to process it, so we'd
354 timeout waiting for a reply that would never come and eventually
355 we'd close the connection. This can happen in asynchronous mode
356 because we allow GDB commands while the target is running. */
357 int waiting_for_stop_reply;
358
359 /* The status of the stub support for the various vCont actions. */
360 struct vCont_action_support supports_vCont;
361
362 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
363 responded to that. */
364 int ctrlc_pending_p;
365
366 /* True if we saw a Ctrl-C while reading or writing from/to the
367 remote descriptor. At that point it is not safe to send a remote
368 interrupt packet, so we instead remember we saw the Ctrl-C and
369 process it once we're done with sending/receiving the current
370 packet, which should be shortly. If however that takes too long,
371 and the user presses Ctrl-C again, we offer to disconnect. */
372 int got_ctrlc_during_io;
373
374 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
375 remote_open knows that we don't have a file open when the program
376 starts. */
377 struct serial *remote_desc;
378
379 /* These are the threads which we last sent to the remote system. The
380 TID member will be -1 for all or -2 for not sent yet. */
381 ptid_t general_thread;
382 ptid_t continue_thread;
383
384 /* This is the traceframe which we last selected on the remote system.
385 It will be -1 if no traceframe is selected. */
386 int remote_traceframe_number;
387
388 char *last_pass_packet;
389
390 /* The last QProgramSignals packet sent to the target. We bypass
391 sending a new program signals list down to the target if the new
392 packet is exactly the same as the last we sent. IOW, we only let
393 the target know about program signals list changes. */
394 char *last_program_signals_packet;
395
396 enum gdb_signal last_sent_signal;
397
398 int last_sent_step;
399
400 /* The execution direction of the last resume we got. */
401 enum exec_direction_kind last_resume_exec_dir;
402
403 char *finished_object;
404 char *finished_annex;
405 ULONGEST finished_offset;
406
407 /* Should we try the 'ThreadInfo' query packet?
408
409 This variable (NOT available to the user: auto-detect only!)
410 determines whether GDB will use the new, simpler "ThreadInfo"
411 query or the older, more complex syntax for thread queries.
412 This is an auto-detect variable (set to true at each connect,
413 and set to false when the target fails to recognize it). */
414 int use_threadinfo_query;
415 int use_threadextra_query;
416
417 threadref echo_nextthread;
418 threadref nextthread;
419 threadref resultthreadlist[MAXTHREADLISTRESULTS];
420
421 /* The state of remote notification. */
422 struct remote_notif_state *notif_state;
423
424 /* The branch trace configuration. */
425 struct btrace_config btrace_config;
426
427 /* The argument to the last "vFile:setfs:" packet we sent, used
428 to avoid sending repeated unnecessary "vFile:setfs:" packets.
429 Initialized to -1 to indicate that no "vFile:setfs:" packet
430 has yet been sent. */
431 int fs_pid;
432
433 /* A readahead cache for vFile:pread. Often, reading a binary
434 involves a sequence of small reads. E.g., when parsing an ELF
435 file. A readahead cache helps mostly the case of remote
436 debugging on a connection with higher latency, due to the
437 request/reply nature of the RSP. We only cache data for a single
438 file descriptor at a time. */
439 struct readahead_cache readahead_cache;
440 };
441
442 /* Private data that we'll store in (struct thread_info)->private. */
443 struct private_thread_info
444 {
445 char *extra;
446 char *name;
447 int core;
448
449 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
450 sequence of bytes. */
451 gdb::byte_vector *thread_handle;
452
453 /* Whether the target stopped for a breakpoint/watchpoint. */
454 enum target_stop_reason stop_reason;
455
456 /* This is set to the data address of the access causing the target
457 to stop for a watchpoint. */
458 CORE_ADDR watch_data_address;
459
460 /* Fields used by the vCont action coalescing implemented in
461 remote_resume / remote_commit_resume. remote_resume stores each
462 thread's last resume request in these fields, so that a later
463 remote_commit_resume knows which is the proper action for this
464 thread to include in the vCont packet. */
465
466 /* True if the last target_resume call for this thread was a step
467 request, false if a continue request. */
468 int last_resume_step;
469
470 /* The signal specified in the last target_resume call for this
471 thread. */
472 enum gdb_signal last_resume_sig;
473
474 /* Whether this thread was already vCont-resumed on the remote
475 side. */
476 int vcont_resumed;
477 };
478
479 static void
480 free_private_thread_info (struct private_thread_info *info)
481 {
482 xfree (info->extra);
483 xfree (info->name);
484 delete info->thread_handle;
485 xfree (info);
486 }
487
488 /* This data could be associated with a target, but we do not always
489 have access to the current target when we need it, so for now it is
490 static. This will be fine for as long as only one target is in use
491 at a time. */
492 static struct remote_state *remote_state;
493
494 static struct remote_state *
495 get_remote_state_raw (void)
496 {
497 return remote_state;
498 }
499
500 /* Allocate a new struct remote_state with xmalloc, initialize it, and
501 return it. */
502
503 static struct remote_state *
504 new_remote_state (void)
505 {
506 struct remote_state *result = XCNEW (struct remote_state);
507
508 /* The default buffer size is unimportant; it will be expanded
509 whenever a larger buffer is needed. */
510 result->buf_size = 400;
511 result->buf = (char *) xmalloc (result->buf_size);
512 result->remote_traceframe_number = -1;
513 result->last_sent_signal = GDB_SIGNAL_0;
514 result->last_resume_exec_dir = EXEC_FORWARD;
515 result->fs_pid = -1;
516
517 return result;
518 }
519
520 /* Description of the remote protocol for a given architecture. */
521
522 struct packet_reg
523 {
524 long offset; /* Offset into G packet. */
525 long regnum; /* GDB's internal register number. */
526 LONGEST pnum; /* Remote protocol register number. */
527 int in_g_packet; /* Always part of G packet. */
528 /* long size in bytes; == register_size (target_gdbarch (), regnum);
529 at present. */
530 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
531 at present. */
532 };
533
534 struct remote_arch_state
535 {
536 /* Description of the remote protocol registers. */
537 long sizeof_g_packet;
538
539 /* Description of the remote protocol registers indexed by REGNUM
540 (making an array gdbarch_num_regs in size). */
541 struct packet_reg *regs;
542
543 /* This is the size (in chars) of the first response to the ``g''
544 packet. It is used as a heuristic when determining the maximum
545 size of memory-read and memory-write packets. A target will
546 typically only reserve a buffer large enough to hold the ``g''
547 packet. The size does not include packet overhead (headers and
548 trailers). */
549 long actual_register_packet_size;
550
551 /* This is the maximum size (in chars) of a non read/write packet.
552 It is also used as a cap on the size of read/write packets. */
553 long remote_packet_size;
554 };
555
556 /* Utility: generate error from an incoming stub packet. */
557 static void
558 trace_error (char *buf)
559 {
560 if (*buf++ != 'E')
561 return; /* not an error msg */
562 switch (*buf)
563 {
564 case '1': /* malformed packet error */
565 if (*++buf == '0') /* general case: */
566 error (_("remote.c: error in outgoing packet."));
567 else
568 error (_("remote.c: error in outgoing packet at field #%ld."),
569 strtol (buf, NULL, 16));
570 default:
571 error (_("Target returns error code '%s'."), buf);
572 }
573 }
574
575 /* Utility: wait for reply from stub, while accepting "O" packets. */
576
577 static char *
578 remote_get_noisy_reply ()
579 {
580 struct remote_state *rs = get_remote_state ();
581
582 do /* Loop on reply from remote stub. */
583 {
584 char *buf;
585
586 QUIT; /* Allow user to bail out with ^C. */
587 getpkt (&rs->buf, &rs->buf_size, 0);
588 buf = rs->buf;
589 if (buf[0] == 'E')
590 trace_error (buf);
591 else if (startswith (buf, "qRelocInsn:"))
592 {
593 ULONGEST ul;
594 CORE_ADDR from, to, org_to;
595 const char *p, *pp;
596 int adjusted_size = 0;
597 int relocated = 0;
598
599 p = buf + strlen ("qRelocInsn:");
600 pp = unpack_varlen_hex (p, &ul);
601 if (*pp != ';')
602 error (_("invalid qRelocInsn packet: %s"), buf);
603 from = ul;
604
605 p = pp + 1;
606 unpack_varlen_hex (p, &ul);
607 to = ul;
608
609 org_to = to;
610
611 TRY
612 {
613 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
614 relocated = 1;
615 }
616 CATCH (ex, RETURN_MASK_ALL)
617 {
618 if (ex.error == MEMORY_ERROR)
619 {
620 /* Propagate memory errors silently back to the
621 target. The stub may have limited the range of
622 addresses we can write to, for example. */
623 }
624 else
625 {
626 /* Something unexpectedly bad happened. Be verbose
627 so we can tell what, and propagate the error back
628 to the stub, so it doesn't get stuck waiting for
629 a response. */
630 exception_fprintf (gdb_stderr, ex,
631 _("warning: relocating instruction: "));
632 }
633 putpkt ("E01");
634 }
635 END_CATCH
636
637 if (relocated)
638 {
639 adjusted_size = to - org_to;
640
641 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
642 putpkt (buf);
643 }
644 }
645 else if (buf[0] == 'O' && buf[1] != 'K')
646 remote_console_output (buf + 1); /* 'O' message from stub */
647 else
648 return buf; /* Here's the actual reply. */
649 }
650 while (1);
651 }
652
653 /* Handle for retreving the remote protocol data from gdbarch. */
654 static struct gdbarch_data *remote_gdbarch_data_handle;
655
656 static struct remote_arch_state *
657 get_remote_arch_state (struct gdbarch *gdbarch)
658 {
659 gdb_assert (gdbarch != NULL);
660 return ((struct remote_arch_state *)
661 gdbarch_data (gdbarch, remote_gdbarch_data_handle));
662 }
663
664 /* Fetch the global remote target state. */
665
666 static struct remote_state *
667 get_remote_state (void)
668 {
669 /* Make sure that the remote architecture state has been
670 initialized, because doing so might reallocate rs->buf. Any
671 function which calls getpkt also needs to be mindful of changes
672 to rs->buf, but this call limits the number of places which run
673 into trouble. */
674 get_remote_arch_state (target_gdbarch ());
675
676 return get_remote_state_raw ();
677 }
678
679 /* Cleanup routine for the remote module's pspace data. */
680
681 static void
682 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
683 {
684 char *remote_exec_file = (char *) arg;
685
686 xfree (remote_exec_file);
687 }
688
689 /* Fetch the remote exec-file from the current program space. */
690
691 static const char *
692 get_remote_exec_file (void)
693 {
694 char *remote_exec_file;
695
696 remote_exec_file
697 = (char *) program_space_data (current_program_space,
698 remote_pspace_data);
699 if (remote_exec_file == NULL)
700 return "";
701
702 return remote_exec_file;
703 }
704
705 /* Set the remote exec file for PSPACE. */
706
707 static void
708 set_pspace_remote_exec_file (struct program_space *pspace,
709 char *remote_exec_file)
710 {
711 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
712
713 xfree (old_file);
714 set_program_space_data (pspace, remote_pspace_data,
715 xstrdup (remote_exec_file));
716 }
717
718 /* The "set/show remote exec-file" set command hook. */
719
720 static void
721 set_remote_exec_file (const char *ignored, int from_tty,
722 struct cmd_list_element *c)
723 {
724 gdb_assert (remote_exec_file_var != NULL);
725 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
726 }
727
728 /* The "set/show remote exec-file" show command hook. */
729
730 static void
731 show_remote_exec_file (struct ui_file *file, int from_tty,
732 struct cmd_list_element *cmd, const char *value)
733 {
734 fprintf_filtered (file, "%s\n", remote_exec_file_var);
735 }
736
737 static int
738 compare_pnums (const void *lhs_, const void *rhs_)
739 {
740 const struct packet_reg * const *lhs
741 = (const struct packet_reg * const *) lhs_;
742 const struct packet_reg * const *rhs
743 = (const struct packet_reg * const *) rhs_;
744
745 if ((*lhs)->pnum < (*rhs)->pnum)
746 return -1;
747 else if ((*lhs)->pnum == (*rhs)->pnum)
748 return 0;
749 else
750 return 1;
751 }
752
753 static int
754 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
755 {
756 int regnum, num_remote_regs, offset;
757 struct packet_reg **remote_regs;
758
759 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
760 {
761 struct packet_reg *r = &regs[regnum];
762
763 if (register_size (gdbarch, regnum) == 0)
764 /* Do not try to fetch zero-sized (placeholder) registers. */
765 r->pnum = -1;
766 else
767 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
768
769 r->regnum = regnum;
770 }
771
772 /* Define the g/G packet format as the contents of each register
773 with a remote protocol number, in order of ascending protocol
774 number. */
775
776 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
777 for (num_remote_regs = 0, regnum = 0;
778 regnum < gdbarch_num_regs (gdbarch);
779 regnum++)
780 if (regs[regnum].pnum != -1)
781 remote_regs[num_remote_regs++] = &regs[regnum];
782
783 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
784 compare_pnums);
785
786 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
787 {
788 remote_regs[regnum]->in_g_packet = 1;
789 remote_regs[regnum]->offset = offset;
790 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
791 }
792
793 return offset;
794 }
795
796 /* Given the architecture described by GDBARCH, return the remote
797 protocol register's number and the register's offset in the g/G
798 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
799 If the target does not have a mapping for REGNUM, return false,
800 otherwise, return true. */
801
802 int
803 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
804 int *pnum, int *poffset)
805 {
806 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
807
808 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
809
810 map_regcache_remote_table (gdbarch, regs.data ());
811
812 *pnum = regs[regnum].pnum;
813 *poffset = regs[regnum].offset;
814
815 return *pnum != -1;
816 }
817
818 static void *
819 init_remote_state (struct gdbarch *gdbarch)
820 {
821 struct remote_state *rs = get_remote_state_raw ();
822 struct remote_arch_state *rsa;
823
824 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
825
826 /* Use the architecture to build a regnum<->pnum table, which will be
827 1:1 unless a feature set specifies otherwise. */
828 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
829 gdbarch_num_regs (gdbarch),
830 struct packet_reg);
831
832 /* Record the maximum possible size of the g packet - it may turn out
833 to be smaller. */
834 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
835
836 /* Default maximum number of characters in a packet body. Many
837 remote stubs have a hardwired buffer size of 400 bytes
838 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
839 as the maximum packet-size to ensure that the packet and an extra
840 NUL character can always fit in the buffer. This stops GDB
841 trashing stubs that try to squeeze an extra NUL into what is
842 already a full buffer (As of 1999-12-04 that was most stubs). */
843 rsa->remote_packet_size = 400 - 1;
844
845 /* This one is filled in when a ``g'' packet is received. */
846 rsa->actual_register_packet_size = 0;
847
848 /* Should rsa->sizeof_g_packet needs more space than the
849 default, adjust the size accordingly. Remember that each byte is
850 encoded as two characters. 32 is the overhead for the packet
851 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
852 (``$NN:G...#NN'') is a better guess, the below has been padded a
853 little. */
854 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
855 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
856
857 /* Make sure that the packet buffer is plenty big enough for
858 this architecture. */
859 if (rs->buf_size < rsa->remote_packet_size)
860 {
861 rs->buf_size = 2 * rsa->remote_packet_size;
862 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
863 }
864
865 return rsa;
866 }
867
868 /* Return the current allowed size of a remote packet. This is
869 inferred from the current architecture, and should be used to
870 limit the length of outgoing packets. */
871 static long
872 get_remote_packet_size (void)
873 {
874 struct remote_state *rs = get_remote_state ();
875 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
876
877 if (rs->explicit_packet_size)
878 return rs->explicit_packet_size;
879
880 return rsa->remote_packet_size;
881 }
882
883 static struct packet_reg *
884 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
885 long regnum)
886 {
887 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
888 return NULL;
889 else
890 {
891 struct packet_reg *r = &rsa->regs[regnum];
892
893 gdb_assert (r->regnum == regnum);
894 return r;
895 }
896 }
897
898 static struct packet_reg *
899 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
900 LONGEST pnum)
901 {
902 int i;
903
904 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
905 {
906 struct packet_reg *r = &rsa->regs[i];
907
908 if (r->pnum == pnum)
909 return r;
910 }
911 return NULL;
912 }
913
914 static struct target_ops remote_ops;
915
916 static struct target_ops extended_remote_ops;
917
918 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
919 ``forever'' still use the normal timeout mechanism. This is
920 currently used by the ASYNC code to guarentee that target reads
921 during the initial connect always time-out. Once getpkt has been
922 modified to return a timeout indication and, in turn
923 remote_wait()/wait_for_inferior() have gained a timeout parameter
924 this can go away. */
925 static int wait_forever_enabled_p = 1;
926
927 /* Allow the user to specify what sequence to send to the remote
928 when he requests a program interruption: Although ^C is usually
929 what remote systems expect (this is the default, here), it is
930 sometimes preferable to send a break. On other systems such
931 as the Linux kernel, a break followed by g, which is Magic SysRq g
932 is required in order to interrupt the execution. */
933 const char interrupt_sequence_control_c[] = "Ctrl-C";
934 const char interrupt_sequence_break[] = "BREAK";
935 const char interrupt_sequence_break_g[] = "BREAK-g";
936 static const char *const interrupt_sequence_modes[] =
937 {
938 interrupt_sequence_control_c,
939 interrupt_sequence_break,
940 interrupt_sequence_break_g,
941 NULL
942 };
943 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
944
945 static void
946 show_interrupt_sequence (struct ui_file *file, int from_tty,
947 struct cmd_list_element *c,
948 const char *value)
949 {
950 if (interrupt_sequence_mode == interrupt_sequence_control_c)
951 fprintf_filtered (file,
952 _("Send the ASCII ETX character (Ctrl-c) "
953 "to the remote target to interrupt the "
954 "execution of the program.\n"));
955 else if (interrupt_sequence_mode == interrupt_sequence_break)
956 fprintf_filtered (file,
957 _("send a break signal to the remote target "
958 "to interrupt the execution of the program.\n"));
959 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
960 fprintf_filtered (file,
961 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
962 "the remote target to interrupt the execution "
963 "of Linux kernel.\n"));
964 else
965 internal_error (__FILE__, __LINE__,
966 _("Invalid value for interrupt_sequence_mode: %s."),
967 interrupt_sequence_mode);
968 }
969
970 /* This boolean variable specifies whether interrupt_sequence is sent
971 to the remote target when gdb connects to it.
972 This is mostly needed when you debug the Linux kernel: The Linux kernel
973 expects BREAK g which is Magic SysRq g for connecting gdb. */
974 static int interrupt_on_connect = 0;
975
976 /* This variable is used to implement the "set/show remotebreak" commands.
977 Since these commands are now deprecated in favor of "set/show remote
978 interrupt-sequence", it no longer has any effect on the code. */
979 static int remote_break;
980
981 static void
982 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
983 {
984 if (remote_break)
985 interrupt_sequence_mode = interrupt_sequence_break;
986 else
987 interrupt_sequence_mode = interrupt_sequence_control_c;
988 }
989
990 static void
991 show_remotebreak (struct ui_file *file, int from_tty,
992 struct cmd_list_element *c,
993 const char *value)
994 {
995 }
996
997 /* This variable sets the number of bits in an address that are to be
998 sent in a memory ("M" or "m") packet. Normally, after stripping
999 leading zeros, the entire address would be sent. This variable
1000 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1001 initial implementation of remote.c restricted the address sent in
1002 memory packets to ``host::sizeof long'' bytes - (typically 32
1003 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1004 address was never sent. Since fixing this bug may cause a break in
1005 some remote targets this variable is principly provided to
1006 facilitate backward compatibility. */
1007
1008 static unsigned int remote_address_size;
1009
1010 \f
1011 /* User configurable variables for the number of characters in a
1012 memory read/write packet. MIN (rsa->remote_packet_size,
1013 rsa->sizeof_g_packet) is the default. Some targets need smaller
1014 values (fifo overruns, et.al.) and some users need larger values
1015 (speed up transfers). The variables ``preferred_*'' (the user
1016 request), ``current_*'' (what was actually set) and ``forced_*''
1017 (Positive - a soft limit, negative - a hard limit). */
1018
1019 struct memory_packet_config
1020 {
1021 const char *name;
1022 long size;
1023 int fixed_p;
1024 };
1025
1026 /* The default max memory-write-packet-size. The 16k is historical.
1027 (It came from older GDB's using alloca for buffers and the
1028 knowledge (folklore?) that some hosts don't cope very well with
1029 large alloca calls.) */
1030 #define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1031
1032 /* The minimum remote packet size for memory transfers. Ensures we
1033 can write at least one byte. */
1034 #define MIN_MEMORY_PACKET_SIZE 20
1035
1036 /* Compute the current size of a read/write packet. Since this makes
1037 use of ``actual_register_packet_size'' the computation is dynamic. */
1038
1039 static long
1040 get_memory_packet_size (struct memory_packet_config *config)
1041 {
1042 struct remote_state *rs = get_remote_state ();
1043 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
1044
1045 long what_they_get;
1046 if (config->fixed_p)
1047 {
1048 if (config->size <= 0)
1049 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1050 else
1051 what_they_get = config->size;
1052 }
1053 else
1054 {
1055 what_they_get = get_remote_packet_size ();
1056 /* Limit the packet to the size specified by the user. */
1057 if (config->size > 0
1058 && what_they_get > config->size)
1059 what_they_get = config->size;
1060
1061 /* Limit it to the size of the targets ``g'' response unless we have
1062 permission from the stub to use a larger packet size. */
1063 if (rs->explicit_packet_size == 0
1064 && rsa->actual_register_packet_size > 0
1065 && what_they_get > rsa->actual_register_packet_size)
1066 what_they_get = rsa->actual_register_packet_size;
1067 }
1068 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1069 what_they_get = MIN_MEMORY_PACKET_SIZE;
1070
1071 /* Make sure there is room in the global buffer for this packet
1072 (including its trailing NUL byte). */
1073 if (rs->buf_size < what_they_get + 1)
1074 {
1075 rs->buf_size = 2 * what_they_get;
1076 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1077 }
1078
1079 return what_they_get;
1080 }
1081
1082 /* Update the size of a read/write packet. If they user wants
1083 something really big then do a sanity check. */
1084
1085 static void
1086 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1087 {
1088 int fixed_p = config->fixed_p;
1089 long size = config->size;
1090
1091 if (args == NULL)
1092 error (_("Argument required (integer, `fixed' or `limited')."));
1093 else if (strcmp (args, "hard") == 0
1094 || strcmp (args, "fixed") == 0)
1095 fixed_p = 1;
1096 else if (strcmp (args, "soft") == 0
1097 || strcmp (args, "limit") == 0)
1098 fixed_p = 0;
1099 else
1100 {
1101 char *end;
1102
1103 size = strtoul (args, &end, 0);
1104 if (args == end)
1105 error (_("Invalid %s (bad syntax)."), config->name);
1106
1107 /* Instead of explicitly capping the size of a packet to or
1108 disallowing it, the user is allowed to set the size to
1109 something arbitrarily large. */
1110 }
1111
1112 /* So that the query shows the correct value. */
1113 if (size <= 0)
1114 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1115
1116 /* Extra checks? */
1117 if (fixed_p && !config->fixed_p)
1118 {
1119 if (! query (_("The target may not be able to correctly handle a %s\n"
1120 "of %ld bytes. Change the packet size? "),
1121 config->name, size))
1122 error (_("Packet size not changed."));
1123 }
1124 /* Update the config. */
1125 config->fixed_p = fixed_p;
1126 config->size = size;
1127 }
1128
1129 static void
1130 show_memory_packet_size (struct memory_packet_config *config)
1131 {
1132 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1133 if (config->fixed_p)
1134 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1135 get_memory_packet_size (config));
1136 else
1137 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1138 get_memory_packet_size (config));
1139 }
1140
1141 static struct memory_packet_config memory_write_packet_config =
1142 {
1143 "memory-write-packet-size",
1144 };
1145
1146 static void
1147 set_memory_write_packet_size (const char *args, int from_tty)
1148 {
1149 set_memory_packet_size (args, &memory_write_packet_config);
1150 }
1151
1152 static void
1153 show_memory_write_packet_size (const char *args, int from_tty)
1154 {
1155 show_memory_packet_size (&memory_write_packet_config);
1156 }
1157
1158 static long
1159 get_memory_write_packet_size (void)
1160 {
1161 return get_memory_packet_size (&memory_write_packet_config);
1162 }
1163
1164 static struct memory_packet_config memory_read_packet_config =
1165 {
1166 "memory-read-packet-size",
1167 };
1168
1169 static void
1170 set_memory_read_packet_size (const char *args, int from_tty)
1171 {
1172 set_memory_packet_size (args, &memory_read_packet_config);
1173 }
1174
1175 static void
1176 show_memory_read_packet_size (const char *args, int from_tty)
1177 {
1178 show_memory_packet_size (&memory_read_packet_config);
1179 }
1180
1181 static long
1182 get_memory_read_packet_size (void)
1183 {
1184 long size = get_memory_packet_size (&memory_read_packet_config);
1185
1186 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1187 extra buffer size argument before the memory read size can be
1188 increased beyond this. */
1189 if (size > get_remote_packet_size ())
1190 size = get_remote_packet_size ();
1191 return size;
1192 }
1193
1194 \f
1195 /* Generic configuration support for packets the stub optionally
1196 supports. Allows the user to specify the use of the packet as well
1197 as allowing GDB to auto-detect support in the remote stub. */
1198
1199 enum packet_support
1200 {
1201 PACKET_SUPPORT_UNKNOWN = 0,
1202 PACKET_ENABLE,
1203 PACKET_DISABLE
1204 };
1205
1206 struct packet_config
1207 {
1208 const char *name;
1209 const char *title;
1210
1211 /* If auto, GDB auto-detects support for this packet or feature,
1212 either through qSupported, or by trying the packet and looking
1213 at the response. If true, GDB assumes the target supports this
1214 packet. If false, the packet is disabled. Configs that don't
1215 have an associated command always have this set to auto. */
1216 enum auto_boolean detect;
1217
1218 /* Does the target support this packet? */
1219 enum packet_support support;
1220 };
1221
1222 /* Analyze a packet's return value and update the packet config
1223 accordingly. */
1224
1225 enum packet_result
1226 {
1227 PACKET_ERROR,
1228 PACKET_OK,
1229 PACKET_UNKNOWN
1230 };
1231
1232 static enum packet_support packet_config_support (struct packet_config *config);
1233 static enum packet_support packet_support (int packet);
1234
1235 static void
1236 show_packet_config_cmd (struct packet_config *config)
1237 {
1238 const char *support = "internal-error";
1239
1240 switch (packet_config_support (config))
1241 {
1242 case PACKET_ENABLE:
1243 support = "enabled";
1244 break;
1245 case PACKET_DISABLE:
1246 support = "disabled";
1247 break;
1248 case PACKET_SUPPORT_UNKNOWN:
1249 support = "unknown";
1250 break;
1251 }
1252 switch (config->detect)
1253 {
1254 case AUTO_BOOLEAN_AUTO:
1255 printf_filtered (_("Support for the `%s' packet "
1256 "is auto-detected, currently %s.\n"),
1257 config->name, support);
1258 break;
1259 case AUTO_BOOLEAN_TRUE:
1260 case AUTO_BOOLEAN_FALSE:
1261 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1262 config->name, support);
1263 break;
1264 }
1265 }
1266
1267 static void
1268 add_packet_config_cmd (struct packet_config *config, const char *name,
1269 const char *title, int legacy)
1270 {
1271 char *set_doc;
1272 char *show_doc;
1273 char *cmd_name;
1274
1275 config->name = name;
1276 config->title = title;
1277 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1278 name, title);
1279 show_doc = xstrprintf ("Show current use of remote "
1280 "protocol `%s' (%s) packet",
1281 name, title);
1282 /* set/show TITLE-packet {auto,on,off} */
1283 cmd_name = xstrprintf ("%s-packet", title);
1284 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1285 &config->detect, set_doc,
1286 show_doc, NULL, /* help_doc */
1287 NULL,
1288 show_remote_protocol_packet_cmd,
1289 &remote_set_cmdlist, &remote_show_cmdlist);
1290 /* The command code copies the documentation strings. */
1291 xfree (set_doc);
1292 xfree (show_doc);
1293 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1294 if (legacy)
1295 {
1296 char *legacy_name;
1297
1298 legacy_name = xstrprintf ("%s-packet", name);
1299 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1300 &remote_set_cmdlist);
1301 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1302 &remote_show_cmdlist);
1303 }
1304 }
1305
1306 static enum packet_result
1307 packet_check_result (const char *buf)
1308 {
1309 if (buf[0] != '\0')
1310 {
1311 /* The stub recognized the packet request. Check that the
1312 operation succeeded. */
1313 if (buf[0] == 'E'
1314 && isxdigit (buf[1]) && isxdigit (buf[2])
1315 && buf[3] == '\0')
1316 /* "Enn" - definitly an error. */
1317 return PACKET_ERROR;
1318
1319 /* Always treat "E." as an error. This will be used for
1320 more verbose error messages, such as E.memtypes. */
1321 if (buf[0] == 'E' && buf[1] == '.')
1322 return PACKET_ERROR;
1323
1324 /* The packet may or may not be OK. Just assume it is. */
1325 return PACKET_OK;
1326 }
1327 else
1328 /* The stub does not support the packet. */
1329 return PACKET_UNKNOWN;
1330 }
1331
1332 static enum packet_result
1333 packet_ok (const char *buf, struct packet_config *config)
1334 {
1335 enum packet_result result;
1336
1337 if (config->detect != AUTO_BOOLEAN_TRUE
1338 && config->support == PACKET_DISABLE)
1339 internal_error (__FILE__, __LINE__,
1340 _("packet_ok: attempt to use a disabled packet"));
1341
1342 result = packet_check_result (buf);
1343 switch (result)
1344 {
1345 case PACKET_OK:
1346 case PACKET_ERROR:
1347 /* The stub recognized the packet request. */
1348 if (config->support == PACKET_SUPPORT_UNKNOWN)
1349 {
1350 if (remote_debug)
1351 fprintf_unfiltered (gdb_stdlog,
1352 "Packet %s (%s) is supported\n",
1353 config->name, config->title);
1354 config->support = PACKET_ENABLE;
1355 }
1356 break;
1357 case PACKET_UNKNOWN:
1358 /* The stub does not support the packet. */
1359 if (config->detect == AUTO_BOOLEAN_AUTO
1360 && config->support == PACKET_ENABLE)
1361 {
1362 /* If the stub previously indicated that the packet was
1363 supported then there is a protocol error. */
1364 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1365 config->name, config->title);
1366 }
1367 else if (config->detect == AUTO_BOOLEAN_TRUE)
1368 {
1369 /* The user set it wrong. */
1370 error (_("Enabled packet %s (%s) not recognized by stub"),
1371 config->name, config->title);
1372 }
1373
1374 if (remote_debug)
1375 fprintf_unfiltered (gdb_stdlog,
1376 "Packet %s (%s) is NOT supported\n",
1377 config->name, config->title);
1378 config->support = PACKET_DISABLE;
1379 break;
1380 }
1381
1382 return result;
1383 }
1384
1385 enum {
1386 PACKET_vCont = 0,
1387 PACKET_X,
1388 PACKET_qSymbol,
1389 PACKET_P,
1390 PACKET_p,
1391 PACKET_Z0,
1392 PACKET_Z1,
1393 PACKET_Z2,
1394 PACKET_Z3,
1395 PACKET_Z4,
1396 PACKET_vFile_setfs,
1397 PACKET_vFile_open,
1398 PACKET_vFile_pread,
1399 PACKET_vFile_pwrite,
1400 PACKET_vFile_close,
1401 PACKET_vFile_unlink,
1402 PACKET_vFile_readlink,
1403 PACKET_vFile_fstat,
1404 PACKET_qXfer_auxv,
1405 PACKET_qXfer_features,
1406 PACKET_qXfer_exec_file,
1407 PACKET_qXfer_libraries,
1408 PACKET_qXfer_libraries_svr4,
1409 PACKET_qXfer_memory_map,
1410 PACKET_qXfer_spu_read,
1411 PACKET_qXfer_spu_write,
1412 PACKET_qXfer_osdata,
1413 PACKET_qXfer_threads,
1414 PACKET_qXfer_statictrace_read,
1415 PACKET_qXfer_traceframe_info,
1416 PACKET_qXfer_uib,
1417 PACKET_qGetTIBAddr,
1418 PACKET_qGetTLSAddr,
1419 PACKET_qSupported,
1420 PACKET_qTStatus,
1421 PACKET_QPassSignals,
1422 PACKET_QCatchSyscalls,
1423 PACKET_QProgramSignals,
1424 PACKET_QSetWorkingDir,
1425 PACKET_QStartupWithShell,
1426 PACKET_QEnvironmentHexEncoded,
1427 PACKET_QEnvironmentReset,
1428 PACKET_QEnvironmentUnset,
1429 PACKET_qCRC,
1430 PACKET_qSearch_memory,
1431 PACKET_vAttach,
1432 PACKET_vRun,
1433 PACKET_QStartNoAckMode,
1434 PACKET_vKill,
1435 PACKET_qXfer_siginfo_read,
1436 PACKET_qXfer_siginfo_write,
1437 PACKET_qAttached,
1438
1439 /* Support for conditional tracepoints. */
1440 PACKET_ConditionalTracepoints,
1441
1442 /* Support for target-side breakpoint conditions. */
1443 PACKET_ConditionalBreakpoints,
1444
1445 /* Support for target-side breakpoint commands. */
1446 PACKET_BreakpointCommands,
1447
1448 /* Support for fast tracepoints. */
1449 PACKET_FastTracepoints,
1450
1451 /* Support for static tracepoints. */
1452 PACKET_StaticTracepoints,
1453
1454 /* Support for installing tracepoints while a trace experiment is
1455 running. */
1456 PACKET_InstallInTrace,
1457
1458 PACKET_bc,
1459 PACKET_bs,
1460 PACKET_TracepointSource,
1461 PACKET_QAllow,
1462 PACKET_qXfer_fdpic,
1463 PACKET_QDisableRandomization,
1464 PACKET_QAgent,
1465 PACKET_QTBuffer_size,
1466 PACKET_Qbtrace_off,
1467 PACKET_Qbtrace_bts,
1468 PACKET_Qbtrace_pt,
1469 PACKET_qXfer_btrace,
1470
1471 /* Support for the QNonStop packet. */
1472 PACKET_QNonStop,
1473
1474 /* Support for the QThreadEvents packet. */
1475 PACKET_QThreadEvents,
1476
1477 /* Support for multi-process extensions. */
1478 PACKET_multiprocess_feature,
1479
1480 /* Support for enabling and disabling tracepoints while a trace
1481 experiment is running. */
1482 PACKET_EnableDisableTracepoints_feature,
1483
1484 /* Support for collecting strings using the tracenz bytecode. */
1485 PACKET_tracenz_feature,
1486
1487 /* Support for continuing to run a trace experiment while GDB is
1488 disconnected. */
1489 PACKET_DisconnectedTracing_feature,
1490
1491 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1492 PACKET_augmented_libraries_svr4_read_feature,
1493
1494 /* Support for the qXfer:btrace-conf:read packet. */
1495 PACKET_qXfer_btrace_conf,
1496
1497 /* Support for the Qbtrace-conf:bts:size packet. */
1498 PACKET_Qbtrace_conf_bts_size,
1499
1500 /* Support for swbreak+ feature. */
1501 PACKET_swbreak_feature,
1502
1503 /* Support for hwbreak+ feature. */
1504 PACKET_hwbreak_feature,
1505
1506 /* Support for fork events. */
1507 PACKET_fork_event_feature,
1508
1509 /* Support for vfork events. */
1510 PACKET_vfork_event_feature,
1511
1512 /* Support for the Qbtrace-conf:pt:size packet. */
1513 PACKET_Qbtrace_conf_pt_size,
1514
1515 /* Support for exec events. */
1516 PACKET_exec_event_feature,
1517
1518 /* Support for query supported vCont actions. */
1519 PACKET_vContSupported,
1520
1521 /* Support remote CTRL-C. */
1522 PACKET_vCtrlC,
1523
1524 /* Support TARGET_WAITKIND_NO_RESUMED. */
1525 PACKET_no_resumed,
1526
1527 PACKET_MAX
1528 };
1529
1530 static struct packet_config remote_protocol_packets[PACKET_MAX];
1531
1532 /* Returns the packet's corresponding "set remote foo-packet" command
1533 state. See struct packet_config for more details. */
1534
1535 static enum auto_boolean
1536 packet_set_cmd_state (int packet)
1537 {
1538 return remote_protocol_packets[packet].detect;
1539 }
1540
1541 /* Returns whether a given packet or feature is supported. This takes
1542 into account the state of the corresponding "set remote foo-packet"
1543 command, which may be used to bypass auto-detection. */
1544
1545 static enum packet_support
1546 packet_config_support (struct packet_config *config)
1547 {
1548 switch (config->detect)
1549 {
1550 case AUTO_BOOLEAN_TRUE:
1551 return PACKET_ENABLE;
1552 case AUTO_BOOLEAN_FALSE:
1553 return PACKET_DISABLE;
1554 case AUTO_BOOLEAN_AUTO:
1555 return config->support;
1556 default:
1557 gdb_assert_not_reached (_("bad switch"));
1558 }
1559 }
1560
1561 /* Same as packet_config_support, but takes the packet's enum value as
1562 argument. */
1563
1564 static enum packet_support
1565 packet_support (int packet)
1566 {
1567 struct packet_config *config = &remote_protocol_packets[packet];
1568
1569 return packet_config_support (config);
1570 }
1571
1572 static void
1573 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1574 struct cmd_list_element *c,
1575 const char *value)
1576 {
1577 struct packet_config *packet;
1578
1579 for (packet = remote_protocol_packets;
1580 packet < &remote_protocol_packets[PACKET_MAX];
1581 packet++)
1582 {
1583 if (&packet->detect == c->var)
1584 {
1585 show_packet_config_cmd (packet);
1586 return;
1587 }
1588 }
1589 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1590 c->name);
1591 }
1592
1593 /* Should we try one of the 'Z' requests? */
1594
1595 enum Z_packet_type
1596 {
1597 Z_PACKET_SOFTWARE_BP,
1598 Z_PACKET_HARDWARE_BP,
1599 Z_PACKET_WRITE_WP,
1600 Z_PACKET_READ_WP,
1601 Z_PACKET_ACCESS_WP,
1602 NR_Z_PACKET_TYPES
1603 };
1604
1605 /* For compatibility with older distributions. Provide a ``set remote
1606 Z-packet ...'' command that updates all the Z packet types. */
1607
1608 static enum auto_boolean remote_Z_packet_detect;
1609
1610 static void
1611 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
1612 struct cmd_list_element *c)
1613 {
1614 int i;
1615
1616 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1617 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1618 }
1619
1620 static void
1621 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1622 struct cmd_list_element *c,
1623 const char *value)
1624 {
1625 int i;
1626
1627 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1628 {
1629 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1630 }
1631 }
1632
1633 /* Returns true if the multi-process extensions are in effect. */
1634
1635 static int
1636 remote_multi_process_p (struct remote_state *rs)
1637 {
1638 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1639 }
1640
1641 /* Returns true if fork events are supported. */
1642
1643 static int
1644 remote_fork_event_p (struct remote_state *rs)
1645 {
1646 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1647 }
1648
1649 /* Returns true if vfork events are supported. */
1650
1651 static int
1652 remote_vfork_event_p (struct remote_state *rs)
1653 {
1654 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1655 }
1656
1657 /* Returns true if exec events are supported. */
1658
1659 static int
1660 remote_exec_event_p (struct remote_state *rs)
1661 {
1662 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1663 }
1664
1665 /* Insert fork catchpoint target routine. If fork events are enabled
1666 then return success, nothing more to do. */
1667
1668 static int
1669 remote_insert_fork_catchpoint (struct target_ops *ops, int pid)
1670 {
1671 struct remote_state *rs = get_remote_state ();
1672
1673 return !remote_fork_event_p (rs);
1674 }
1675
1676 /* Remove fork catchpoint target routine. Nothing to do, just
1677 return success. */
1678
1679 static int
1680 remote_remove_fork_catchpoint (struct target_ops *ops, int pid)
1681 {
1682 return 0;
1683 }
1684
1685 /* Insert vfork catchpoint target routine. If vfork events are enabled
1686 then return success, nothing more to do. */
1687
1688 static int
1689 remote_insert_vfork_catchpoint (struct target_ops *ops, int pid)
1690 {
1691 struct remote_state *rs = get_remote_state ();
1692
1693 return !remote_vfork_event_p (rs);
1694 }
1695
1696 /* Remove vfork catchpoint target routine. Nothing to do, just
1697 return success. */
1698
1699 static int
1700 remote_remove_vfork_catchpoint (struct target_ops *ops, int pid)
1701 {
1702 return 0;
1703 }
1704
1705 /* Insert exec catchpoint target routine. If exec events are
1706 enabled, just return success. */
1707
1708 static int
1709 remote_insert_exec_catchpoint (struct target_ops *ops, int pid)
1710 {
1711 struct remote_state *rs = get_remote_state ();
1712
1713 return !remote_exec_event_p (rs);
1714 }
1715
1716 /* Remove exec catchpoint target routine. Nothing to do, just
1717 return success. */
1718
1719 static int
1720 remote_remove_exec_catchpoint (struct target_ops *ops, int pid)
1721 {
1722 return 0;
1723 }
1724
1725 \f
1726 /* Asynchronous signal handle registered as event loop source for
1727 when we have pending events ready to be passed to the core. */
1728
1729 static struct async_event_handler *remote_async_inferior_event_token;
1730
1731 \f
1732
1733 static ptid_t magic_null_ptid;
1734 static ptid_t not_sent_ptid;
1735 static ptid_t any_thread_ptid;
1736
1737 /* Find out if the stub attached to PID (and hence GDB should offer to
1738 detach instead of killing it when bailing out). */
1739
1740 static int
1741 remote_query_attached (int pid)
1742 {
1743 struct remote_state *rs = get_remote_state ();
1744 size_t size = get_remote_packet_size ();
1745
1746 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
1747 return 0;
1748
1749 if (remote_multi_process_p (rs))
1750 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1751 else
1752 xsnprintf (rs->buf, size, "qAttached");
1753
1754 putpkt (rs->buf);
1755 getpkt (&rs->buf, &rs->buf_size, 0);
1756
1757 switch (packet_ok (rs->buf,
1758 &remote_protocol_packets[PACKET_qAttached]))
1759 {
1760 case PACKET_OK:
1761 if (strcmp (rs->buf, "1") == 0)
1762 return 1;
1763 break;
1764 case PACKET_ERROR:
1765 warning (_("Remote failure reply: %s"), rs->buf);
1766 break;
1767 case PACKET_UNKNOWN:
1768 break;
1769 }
1770
1771 return 0;
1772 }
1773
1774 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1775 has been invented by GDB, instead of reported by the target. Since
1776 we can be connected to a remote system before before knowing about
1777 any inferior, mark the target with execution when we find the first
1778 inferior. If ATTACHED is 1, then we had just attached to this
1779 inferior. If it is 0, then we just created this inferior. If it
1780 is -1, then try querying the remote stub to find out if it had
1781 attached to the inferior or not. If TRY_OPEN_EXEC is true then
1782 attempt to open this inferior's executable as the main executable
1783 if no main executable is open already. */
1784
1785 static struct inferior *
1786 remote_add_inferior (int fake_pid_p, int pid, int attached,
1787 int try_open_exec)
1788 {
1789 struct inferior *inf;
1790
1791 /* Check whether this process we're learning about is to be
1792 considered attached, or if is to be considered to have been
1793 spawned by the stub. */
1794 if (attached == -1)
1795 attached = remote_query_attached (pid);
1796
1797 if (gdbarch_has_global_solist (target_gdbarch ()))
1798 {
1799 /* If the target shares code across all inferiors, then every
1800 attach adds a new inferior. */
1801 inf = add_inferior (pid);
1802
1803 /* ... and every inferior is bound to the same program space.
1804 However, each inferior may still have its own address
1805 space. */
1806 inf->aspace = maybe_new_address_space ();
1807 inf->pspace = current_program_space;
1808 }
1809 else
1810 {
1811 /* In the traditional debugging scenario, there's a 1-1 match
1812 between program/address spaces. We simply bind the inferior
1813 to the program space's address space. */
1814 inf = current_inferior ();
1815 inferior_appeared (inf, pid);
1816 }
1817
1818 inf->attach_flag = attached;
1819 inf->fake_pid_p = fake_pid_p;
1820
1821 /* If no main executable is currently open then attempt to
1822 open the file that was executed to create this inferior. */
1823 if (try_open_exec && get_exec_file (0) == NULL)
1824 exec_file_locate_attach (pid, 0, 1);
1825
1826 return inf;
1827 }
1828
1829 static struct private_thread_info *
1830 get_private_info_thread (struct thread_info *info);
1831
1832 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1833 according to RUNNING. */
1834
1835 static void
1836 remote_add_thread (ptid_t ptid, int running, int executing)
1837 {
1838 struct remote_state *rs = get_remote_state ();
1839 struct thread_info *thread;
1840
1841 /* GDB historically didn't pull threads in the initial connection
1842 setup. If the remote target doesn't even have a concept of
1843 threads (e.g., a bare-metal target), even if internally we
1844 consider that a single-threaded target, mentioning a new thread
1845 might be confusing to the user. Be silent then, preserving the
1846 age old behavior. */
1847 if (rs->starting_up)
1848 thread = add_thread_silent (ptid);
1849 else
1850 thread = add_thread (ptid);
1851
1852 get_private_info_thread (thread)->vcont_resumed = executing;
1853 set_executing (ptid, executing);
1854 set_running (ptid, running);
1855 }
1856
1857 /* Come here when we learn about a thread id from the remote target.
1858 It may be the first time we hear about such thread, so take the
1859 opportunity to add it to GDB's thread list. In case this is the
1860 first time we're noticing its corresponding inferior, add it to
1861 GDB's inferior list as well. EXECUTING indicates whether the
1862 thread is (internally) executing or stopped. */
1863
1864 static void
1865 remote_notice_new_inferior (ptid_t currthread, int executing)
1866 {
1867 /* In non-stop mode, we assume new found threads are (externally)
1868 running until proven otherwise with a stop reply. In all-stop,
1869 we can only get here if all threads are stopped. */
1870 int running = target_is_non_stop_p () ? 1 : 0;
1871
1872 /* If this is a new thread, add it to GDB's thread list.
1873 If we leave it up to WFI to do this, bad things will happen. */
1874
1875 if (in_thread_list (currthread) && is_exited (currthread))
1876 {
1877 /* We're seeing an event on a thread id we knew had exited.
1878 This has to be a new thread reusing the old id. Add it. */
1879 remote_add_thread (currthread, running, executing);
1880 return;
1881 }
1882
1883 if (!in_thread_list (currthread))
1884 {
1885 struct inferior *inf = NULL;
1886 int pid = ptid_get_pid (currthread);
1887
1888 if (ptid_is_pid (inferior_ptid)
1889 && pid == ptid_get_pid (inferior_ptid))
1890 {
1891 /* inferior_ptid has no thread member yet. This can happen
1892 with the vAttach -> remote_wait,"TAAthread:" path if the
1893 stub doesn't support qC. This is the first stop reported
1894 after an attach, so this is the main thread. Update the
1895 ptid in the thread list. */
1896 if (in_thread_list (pid_to_ptid (pid)))
1897 thread_change_ptid (inferior_ptid, currthread);
1898 else
1899 {
1900 remote_add_thread (currthread, running, executing);
1901 inferior_ptid = currthread;
1902 }
1903 return;
1904 }
1905
1906 if (ptid_equal (magic_null_ptid, inferior_ptid))
1907 {
1908 /* inferior_ptid is not set yet. This can happen with the
1909 vRun -> remote_wait,"TAAthread:" path if the stub
1910 doesn't support qC. This is the first stop reported
1911 after an attach, so this is the main thread. Update the
1912 ptid in the thread list. */
1913 thread_change_ptid (inferior_ptid, currthread);
1914 return;
1915 }
1916
1917 /* When connecting to a target remote, or to a target
1918 extended-remote which already was debugging an inferior, we
1919 may not know about it yet. Add it before adding its child
1920 thread, so notifications are emitted in a sensible order. */
1921 if (!in_inferior_list (ptid_get_pid (currthread)))
1922 {
1923 struct remote_state *rs = get_remote_state ();
1924 int fake_pid_p = !remote_multi_process_p (rs);
1925
1926 inf = remote_add_inferior (fake_pid_p,
1927 ptid_get_pid (currthread), -1, 1);
1928 }
1929
1930 /* This is really a new thread. Add it. */
1931 remote_add_thread (currthread, running, executing);
1932
1933 /* If we found a new inferior, let the common code do whatever
1934 it needs to with it (e.g., read shared libraries, insert
1935 breakpoints), unless we're just setting up an all-stop
1936 connection. */
1937 if (inf != NULL)
1938 {
1939 struct remote_state *rs = get_remote_state ();
1940
1941 if (!rs->starting_up)
1942 notice_new_inferior (currthread, executing, 0);
1943 }
1944 }
1945 }
1946
1947 /* Return THREAD's private thread data, creating it if necessary. */
1948
1949 static struct private_thread_info *
1950 get_private_info_thread (struct thread_info *thread)
1951 {
1952 gdb_assert (thread != NULL);
1953
1954 if (thread->priv == NULL)
1955 {
1956 struct private_thread_info *priv = XNEW (struct private_thread_info);
1957
1958 thread->private_dtor = free_private_thread_info;
1959 thread->priv = priv;
1960
1961 priv->core = -1;
1962 priv->extra = NULL;
1963 priv->name = NULL;
1964 priv->name = NULL;
1965 priv->last_resume_step = 0;
1966 priv->last_resume_sig = GDB_SIGNAL_0;
1967 priv->vcont_resumed = 0;
1968 priv->thread_handle = nullptr;
1969 }
1970
1971 return thread->priv;
1972 }
1973
1974 /* Return PTID's private thread data, creating it if necessary. */
1975
1976 static struct private_thread_info *
1977 get_private_info_ptid (ptid_t ptid)
1978 {
1979 struct thread_info *info = find_thread_ptid (ptid);
1980
1981 return get_private_info_thread (info);
1982 }
1983
1984 /* Call this function as a result of
1985 1) A halt indication (T packet) containing a thread id
1986 2) A direct query of currthread
1987 3) Successful execution of set thread */
1988
1989 static void
1990 record_currthread (struct remote_state *rs, ptid_t currthread)
1991 {
1992 rs->general_thread = currthread;
1993 }
1994
1995 /* If 'QPassSignals' is supported, tell the remote stub what signals
1996 it can simply pass through to the inferior without reporting. */
1997
1998 static void
1999 remote_pass_signals (struct target_ops *self,
2000 int numsigs, unsigned char *pass_signals)
2001 {
2002 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2003 {
2004 char *pass_packet, *p;
2005 int count = 0, i;
2006 struct remote_state *rs = get_remote_state ();
2007
2008 gdb_assert (numsigs < 256);
2009 for (i = 0; i < numsigs; i++)
2010 {
2011 if (pass_signals[i])
2012 count++;
2013 }
2014 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2015 strcpy (pass_packet, "QPassSignals:");
2016 p = pass_packet + strlen (pass_packet);
2017 for (i = 0; i < numsigs; i++)
2018 {
2019 if (pass_signals[i])
2020 {
2021 if (i >= 16)
2022 *p++ = tohex (i >> 4);
2023 *p++ = tohex (i & 15);
2024 if (count)
2025 *p++ = ';';
2026 else
2027 break;
2028 count--;
2029 }
2030 }
2031 *p = 0;
2032 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2033 {
2034 putpkt (pass_packet);
2035 getpkt (&rs->buf, &rs->buf_size, 0);
2036 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2037 if (rs->last_pass_packet)
2038 xfree (rs->last_pass_packet);
2039 rs->last_pass_packet = pass_packet;
2040 }
2041 else
2042 xfree (pass_packet);
2043 }
2044 }
2045
2046 /* If 'QCatchSyscalls' is supported, tell the remote stub
2047 to report syscalls to GDB. */
2048
2049 static int
2050 remote_set_syscall_catchpoint (struct target_ops *self,
2051 int pid, int needed, int any_count,
2052 int table_size, int *table)
2053 {
2054 const char *catch_packet;
2055 enum packet_result result;
2056 int n_sysno = 0;
2057
2058 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2059 {
2060 /* Not supported. */
2061 return 1;
2062 }
2063
2064 if (needed && !any_count)
2065 {
2066 int i;
2067
2068 /* Count how many syscalls are to be caught (table[sysno] != 0). */
2069 for (i = 0; i < table_size; i++)
2070 {
2071 if (table[i] != 0)
2072 n_sysno++;
2073 }
2074 }
2075
2076 if (remote_debug)
2077 {
2078 fprintf_unfiltered (gdb_stdlog,
2079 "remote_set_syscall_catchpoint "
2080 "pid %d needed %d any_count %d n_sysno %d\n",
2081 pid, needed, any_count, n_sysno);
2082 }
2083
2084 std::string built_packet;
2085 if (needed)
2086 {
2087 /* Prepare a packet with the sysno list, assuming max 8+1
2088 characters for a sysno. If the resulting packet size is too
2089 big, fallback on the non-selective packet. */
2090 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2091 built_packet.reserve (maxpktsz);
2092 built_packet = "QCatchSyscalls:1";
2093 if (!any_count)
2094 {
2095 /* Add in catch_packet each syscall to be caught (table[i] != 0). */
2096 for (int i = 0; i < table_size; i++)
2097 {
2098 if (table[i] != 0)
2099 string_appendf (built_packet, ";%x", i);
2100 }
2101 }
2102 if (built_packet.size () > get_remote_packet_size ())
2103 {
2104 /* catch_packet too big. Fallback to less efficient
2105 non selective mode, with GDB doing the filtering. */
2106 catch_packet = "QCatchSyscalls:1";
2107 }
2108 else
2109 catch_packet = built_packet.c_str ();
2110 }
2111 else
2112 catch_packet = "QCatchSyscalls:0";
2113
2114 struct remote_state *rs = get_remote_state ();
2115
2116 putpkt (catch_packet);
2117 getpkt (&rs->buf, &rs->buf_size, 0);
2118 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2119 if (result == PACKET_OK)
2120 return 0;
2121 else
2122 return -1;
2123 }
2124
2125 /* If 'QProgramSignals' is supported, tell the remote stub what
2126 signals it should pass through to the inferior when detaching. */
2127
2128 static void
2129 remote_program_signals (struct target_ops *self,
2130 int numsigs, unsigned char *signals)
2131 {
2132 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2133 {
2134 char *packet, *p;
2135 int count = 0, i;
2136 struct remote_state *rs = get_remote_state ();
2137
2138 gdb_assert (numsigs < 256);
2139 for (i = 0; i < numsigs; i++)
2140 {
2141 if (signals[i])
2142 count++;
2143 }
2144 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2145 strcpy (packet, "QProgramSignals:");
2146 p = packet + strlen (packet);
2147 for (i = 0; i < numsigs; i++)
2148 {
2149 if (signal_pass_state (i))
2150 {
2151 if (i >= 16)
2152 *p++ = tohex (i >> 4);
2153 *p++ = tohex (i & 15);
2154 if (count)
2155 *p++ = ';';
2156 else
2157 break;
2158 count--;
2159 }
2160 }
2161 *p = 0;
2162 if (!rs->last_program_signals_packet
2163 || strcmp (rs->last_program_signals_packet, packet) != 0)
2164 {
2165 putpkt (packet);
2166 getpkt (&rs->buf, &rs->buf_size, 0);
2167 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2168 xfree (rs->last_program_signals_packet);
2169 rs->last_program_signals_packet = packet;
2170 }
2171 else
2172 xfree (packet);
2173 }
2174 }
2175
2176 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2177 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2178 thread. If GEN is set, set the general thread, if not, then set
2179 the step/continue thread. */
2180 static void
2181 set_thread (ptid_t ptid, int gen)
2182 {
2183 struct remote_state *rs = get_remote_state ();
2184 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2185 char *buf = rs->buf;
2186 char *endbuf = rs->buf + get_remote_packet_size ();
2187
2188 if (ptid_equal (state, ptid))
2189 return;
2190
2191 *buf++ = 'H';
2192 *buf++ = gen ? 'g' : 'c';
2193 if (ptid_equal (ptid, magic_null_ptid))
2194 xsnprintf (buf, endbuf - buf, "0");
2195 else if (ptid_equal (ptid, any_thread_ptid))
2196 xsnprintf (buf, endbuf - buf, "0");
2197 else if (ptid_equal (ptid, minus_one_ptid))
2198 xsnprintf (buf, endbuf - buf, "-1");
2199 else
2200 write_ptid (buf, endbuf, ptid);
2201 putpkt (rs->buf);
2202 getpkt (&rs->buf, &rs->buf_size, 0);
2203 if (gen)
2204 rs->general_thread = ptid;
2205 else
2206 rs->continue_thread = ptid;
2207 }
2208
2209 static void
2210 set_general_thread (ptid_t ptid)
2211 {
2212 set_thread (ptid, 1);
2213 }
2214
2215 static void
2216 set_continue_thread (ptid_t ptid)
2217 {
2218 set_thread (ptid, 0);
2219 }
2220
2221 /* Change the remote current process. Which thread within the process
2222 ends up selected isn't important, as long as it is the same process
2223 as what INFERIOR_PTID points to.
2224
2225 This comes from that fact that there is no explicit notion of
2226 "selected process" in the protocol. The selected process for
2227 general operations is the process the selected general thread
2228 belongs to. */
2229
2230 static void
2231 set_general_process (void)
2232 {
2233 struct remote_state *rs = get_remote_state ();
2234
2235 /* If the remote can't handle multiple processes, don't bother. */
2236 if (!remote_multi_process_p (rs))
2237 return;
2238
2239 /* We only need to change the remote current thread if it's pointing
2240 at some other process. */
2241 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2242 set_general_thread (inferior_ptid);
2243 }
2244
2245 \f
2246 /* Return nonzero if this is the main thread that we made up ourselves
2247 to model non-threaded targets as single-threaded. */
2248
2249 static int
2250 remote_thread_always_alive (struct target_ops *ops, ptid_t ptid)
2251 {
2252 if (ptid_equal (ptid, magic_null_ptid))
2253 /* The main thread is always alive. */
2254 return 1;
2255
2256 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2257 /* The main thread is always alive. This can happen after a
2258 vAttach, if the remote side doesn't support
2259 multi-threading. */
2260 return 1;
2261
2262 return 0;
2263 }
2264
2265 /* Return nonzero if the thread PTID is still alive on the remote
2266 system. */
2267
2268 static int
2269 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
2270 {
2271 struct remote_state *rs = get_remote_state ();
2272 char *p, *endp;
2273
2274 /* Check if this is a thread that we made up ourselves to model
2275 non-threaded targets as single-threaded. */
2276 if (remote_thread_always_alive (ops, ptid))
2277 return 1;
2278
2279 p = rs->buf;
2280 endp = rs->buf + get_remote_packet_size ();
2281
2282 *p++ = 'T';
2283 write_ptid (p, endp, ptid);
2284
2285 putpkt (rs->buf);
2286 getpkt (&rs->buf, &rs->buf_size, 0);
2287 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2288 }
2289
2290 /* Return a pointer to a thread name if we know it and NULL otherwise.
2291 The thread_info object owns the memory for the name. */
2292
2293 static const char *
2294 remote_thread_name (struct target_ops *ops, struct thread_info *info)
2295 {
2296 if (info->priv != NULL)
2297 return info->priv->name;
2298
2299 return NULL;
2300 }
2301
2302 /* About these extended threadlist and threadinfo packets. They are
2303 variable length packets but, the fields within them are often fixed
2304 length. They are redundent enough to send over UDP as is the
2305 remote protocol in general. There is a matching unit test module
2306 in libstub. */
2307
2308 /* WARNING: This threadref data structure comes from the remote O.S.,
2309 libstub protocol encoding, and remote.c. It is not particularly
2310 changable. */
2311
2312 /* Right now, the internal structure is int. We want it to be bigger.
2313 Plan to fix this. */
2314
2315 typedef int gdb_threadref; /* Internal GDB thread reference. */
2316
2317 /* gdb_ext_thread_info is an internal GDB data structure which is
2318 equivalent to the reply of the remote threadinfo packet. */
2319
2320 struct gdb_ext_thread_info
2321 {
2322 threadref threadid; /* External form of thread reference. */
2323 int active; /* Has state interesting to GDB?
2324 regs, stack. */
2325 char display[256]; /* Brief state display, name,
2326 blocked/suspended. */
2327 char shortname[32]; /* To be used to name threads. */
2328 char more_display[256]; /* Long info, statistics, queue depth,
2329 whatever. */
2330 };
2331
2332 /* The volume of remote transfers can be limited by submitting
2333 a mask containing bits specifying the desired information.
2334 Use a union of these values as the 'selection' parameter to
2335 get_thread_info. FIXME: Make these TAG names more thread specific. */
2336
2337 #define TAG_THREADID 1
2338 #define TAG_EXISTS 2
2339 #define TAG_DISPLAY 4
2340 #define TAG_THREADNAME 8
2341 #define TAG_MOREDISPLAY 16
2342
2343 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2344
2345 static char *unpack_nibble (char *buf, int *val);
2346
2347 static char *unpack_byte (char *buf, int *value);
2348
2349 static char *pack_int (char *buf, int value);
2350
2351 static char *unpack_int (char *buf, int *value);
2352
2353 static char *unpack_string (char *src, char *dest, int length);
2354
2355 static char *pack_threadid (char *pkt, threadref *id);
2356
2357 static char *unpack_threadid (char *inbuf, threadref *id);
2358
2359 void int_to_threadref (threadref *id, int value);
2360
2361 static int threadref_to_int (threadref *ref);
2362
2363 static void copy_threadref (threadref *dest, threadref *src);
2364
2365 static int threadmatch (threadref *dest, threadref *src);
2366
2367 static char *pack_threadinfo_request (char *pkt, int mode,
2368 threadref *id);
2369
2370 static int remote_unpack_thread_info_response (char *pkt,
2371 threadref *expectedref,
2372 struct gdb_ext_thread_info
2373 *info);
2374
2375
2376 static int remote_get_threadinfo (threadref *threadid,
2377 int fieldset, /*TAG mask */
2378 struct gdb_ext_thread_info *info);
2379
2380 static char *pack_threadlist_request (char *pkt, int startflag,
2381 int threadcount,
2382 threadref *nextthread);
2383
2384 static int parse_threadlist_response (char *pkt,
2385 int result_limit,
2386 threadref *original_echo,
2387 threadref *resultlist,
2388 int *doneflag);
2389
2390 static int remote_get_threadlist (int startflag,
2391 threadref *nextthread,
2392 int result_limit,
2393 int *done,
2394 int *result_count,
2395 threadref *threadlist);
2396
2397 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2398
2399 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2400 void *context, int looplimit);
2401
2402 static int remote_newthread_step (threadref *ref, void *context);
2403
2404
2405 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2406 buffer we're allowed to write to. Returns
2407 BUF+CHARACTERS_WRITTEN. */
2408
2409 static char *
2410 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2411 {
2412 int pid, tid;
2413 struct remote_state *rs = get_remote_state ();
2414
2415 if (remote_multi_process_p (rs))
2416 {
2417 pid = ptid_get_pid (ptid);
2418 if (pid < 0)
2419 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2420 else
2421 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2422 }
2423 tid = ptid_get_lwp (ptid);
2424 if (tid < 0)
2425 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2426 else
2427 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2428
2429 return buf;
2430 }
2431
2432 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2433 last parsed char. Returns null_ptid if no thread id is found, and
2434 throws an error if the thread id has an invalid format. */
2435
2436 static ptid_t
2437 read_ptid (const char *buf, const char **obuf)
2438 {
2439 const char *p = buf;
2440 const char *pp;
2441 ULONGEST pid = 0, tid = 0;
2442
2443 if (*p == 'p')
2444 {
2445 /* Multi-process ptid. */
2446 pp = unpack_varlen_hex (p + 1, &pid);
2447 if (*pp != '.')
2448 error (_("invalid remote ptid: %s"), p);
2449
2450 p = pp;
2451 pp = unpack_varlen_hex (p + 1, &tid);
2452 if (obuf)
2453 *obuf = pp;
2454 return ptid_build (pid, tid, 0);
2455 }
2456
2457 /* No multi-process. Just a tid. */
2458 pp = unpack_varlen_hex (p, &tid);
2459
2460 /* Return null_ptid when no thread id is found. */
2461 if (p == pp)
2462 {
2463 if (obuf)
2464 *obuf = pp;
2465 return null_ptid;
2466 }
2467
2468 /* Since the stub is not sending a process id, then default to
2469 what's in inferior_ptid, unless it's null at this point. If so,
2470 then since there's no way to know the pid of the reported
2471 threads, use the magic number. */
2472 if (ptid_equal (inferior_ptid, null_ptid))
2473 pid = ptid_get_pid (magic_null_ptid);
2474 else
2475 pid = ptid_get_pid (inferior_ptid);
2476
2477 if (obuf)
2478 *obuf = pp;
2479 return ptid_build (pid, tid, 0);
2480 }
2481
2482 static int
2483 stubhex (int ch)
2484 {
2485 if (ch >= 'a' && ch <= 'f')
2486 return ch - 'a' + 10;
2487 if (ch >= '0' && ch <= '9')
2488 return ch - '0';
2489 if (ch >= 'A' && ch <= 'F')
2490 return ch - 'A' + 10;
2491 return -1;
2492 }
2493
2494 static int
2495 stub_unpack_int (char *buff, int fieldlength)
2496 {
2497 int nibble;
2498 int retval = 0;
2499
2500 while (fieldlength)
2501 {
2502 nibble = stubhex (*buff++);
2503 retval |= nibble;
2504 fieldlength--;
2505 if (fieldlength)
2506 retval = retval << 4;
2507 }
2508 return retval;
2509 }
2510
2511 static char *
2512 unpack_nibble (char *buf, int *val)
2513 {
2514 *val = fromhex (*buf++);
2515 return buf;
2516 }
2517
2518 static char *
2519 unpack_byte (char *buf, int *value)
2520 {
2521 *value = stub_unpack_int (buf, 2);
2522 return buf + 2;
2523 }
2524
2525 static char *
2526 pack_int (char *buf, int value)
2527 {
2528 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2529 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2530 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2531 buf = pack_hex_byte (buf, (value & 0xff));
2532 return buf;
2533 }
2534
2535 static char *
2536 unpack_int (char *buf, int *value)
2537 {
2538 *value = stub_unpack_int (buf, 8);
2539 return buf + 8;
2540 }
2541
2542 #if 0 /* Currently unused, uncomment when needed. */
2543 static char *pack_string (char *pkt, char *string);
2544
2545 static char *
2546 pack_string (char *pkt, char *string)
2547 {
2548 char ch;
2549 int len;
2550
2551 len = strlen (string);
2552 if (len > 200)
2553 len = 200; /* Bigger than most GDB packets, junk??? */
2554 pkt = pack_hex_byte (pkt, len);
2555 while (len-- > 0)
2556 {
2557 ch = *string++;
2558 if ((ch == '\0') || (ch == '#'))
2559 ch = '*'; /* Protect encapsulation. */
2560 *pkt++ = ch;
2561 }
2562 return pkt;
2563 }
2564 #endif /* 0 (unused) */
2565
2566 static char *
2567 unpack_string (char *src, char *dest, int length)
2568 {
2569 while (length--)
2570 *dest++ = *src++;
2571 *dest = '\0';
2572 return src;
2573 }
2574
2575 static char *
2576 pack_threadid (char *pkt, threadref *id)
2577 {
2578 char *limit;
2579 unsigned char *altid;
2580
2581 altid = (unsigned char *) id;
2582 limit = pkt + BUF_THREAD_ID_SIZE;
2583 while (pkt < limit)
2584 pkt = pack_hex_byte (pkt, *altid++);
2585 return pkt;
2586 }
2587
2588
2589 static char *
2590 unpack_threadid (char *inbuf, threadref *id)
2591 {
2592 char *altref;
2593 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2594 int x, y;
2595
2596 altref = (char *) id;
2597
2598 while (inbuf < limit)
2599 {
2600 x = stubhex (*inbuf++);
2601 y = stubhex (*inbuf++);
2602 *altref++ = (x << 4) | y;
2603 }
2604 return inbuf;
2605 }
2606
2607 /* Externally, threadrefs are 64 bits but internally, they are still
2608 ints. This is due to a mismatch of specifications. We would like
2609 to use 64bit thread references internally. This is an adapter
2610 function. */
2611
2612 void
2613 int_to_threadref (threadref *id, int value)
2614 {
2615 unsigned char *scan;
2616
2617 scan = (unsigned char *) id;
2618 {
2619 int i = 4;
2620 while (i--)
2621 *scan++ = 0;
2622 }
2623 *scan++ = (value >> 24) & 0xff;
2624 *scan++ = (value >> 16) & 0xff;
2625 *scan++ = (value >> 8) & 0xff;
2626 *scan++ = (value & 0xff);
2627 }
2628
2629 static int
2630 threadref_to_int (threadref *ref)
2631 {
2632 int i, value = 0;
2633 unsigned char *scan;
2634
2635 scan = *ref;
2636 scan += 4;
2637 i = 4;
2638 while (i-- > 0)
2639 value = (value << 8) | ((*scan++) & 0xff);
2640 return value;
2641 }
2642
2643 static void
2644 copy_threadref (threadref *dest, threadref *src)
2645 {
2646 int i;
2647 unsigned char *csrc, *cdest;
2648
2649 csrc = (unsigned char *) src;
2650 cdest = (unsigned char *) dest;
2651 i = 8;
2652 while (i--)
2653 *cdest++ = *csrc++;
2654 }
2655
2656 static int
2657 threadmatch (threadref *dest, threadref *src)
2658 {
2659 /* Things are broken right now, so just assume we got a match. */
2660 #if 0
2661 unsigned char *srcp, *destp;
2662 int i, result;
2663 srcp = (char *) src;
2664 destp = (char *) dest;
2665
2666 result = 1;
2667 while (i-- > 0)
2668 result &= (*srcp++ == *destp++) ? 1 : 0;
2669 return result;
2670 #endif
2671 return 1;
2672 }
2673
2674 /*
2675 threadid:1, # always request threadid
2676 context_exists:2,
2677 display:4,
2678 unique_name:8,
2679 more_display:16
2680 */
2681
2682 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2683
2684 static char *
2685 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2686 {
2687 *pkt++ = 'q'; /* Info Query */
2688 *pkt++ = 'P'; /* process or thread info */
2689 pkt = pack_int (pkt, mode); /* mode */
2690 pkt = pack_threadid (pkt, id); /* threadid */
2691 *pkt = '\0'; /* terminate */
2692 return pkt;
2693 }
2694
2695 /* These values tag the fields in a thread info response packet. */
2696 /* Tagging the fields allows us to request specific fields and to
2697 add more fields as time goes by. */
2698
2699 #define TAG_THREADID 1 /* Echo the thread identifier. */
2700 #define TAG_EXISTS 2 /* Is this process defined enough to
2701 fetch registers and its stack? */
2702 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2703 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2704 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2705 the process. */
2706
2707 static int
2708 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2709 struct gdb_ext_thread_info *info)
2710 {
2711 struct remote_state *rs = get_remote_state ();
2712 int mask, length;
2713 int tag;
2714 threadref ref;
2715 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2716 int retval = 1;
2717
2718 /* info->threadid = 0; FIXME: implement zero_threadref. */
2719 info->active = 0;
2720 info->display[0] = '\0';
2721 info->shortname[0] = '\0';
2722 info->more_display[0] = '\0';
2723
2724 /* Assume the characters indicating the packet type have been
2725 stripped. */
2726 pkt = unpack_int (pkt, &mask); /* arg mask */
2727 pkt = unpack_threadid (pkt, &ref);
2728
2729 if (mask == 0)
2730 warning (_("Incomplete response to threadinfo request."));
2731 if (!threadmatch (&ref, expectedref))
2732 { /* This is an answer to a different request. */
2733 warning (_("ERROR RMT Thread info mismatch."));
2734 return 0;
2735 }
2736 copy_threadref (&info->threadid, &ref);
2737
2738 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2739
2740 /* Packets are terminated with nulls. */
2741 while ((pkt < limit) && mask && *pkt)
2742 {
2743 pkt = unpack_int (pkt, &tag); /* tag */
2744 pkt = unpack_byte (pkt, &length); /* length */
2745 if (!(tag & mask)) /* Tags out of synch with mask. */
2746 {
2747 warning (_("ERROR RMT: threadinfo tag mismatch."));
2748 retval = 0;
2749 break;
2750 }
2751 if (tag == TAG_THREADID)
2752 {
2753 if (length != 16)
2754 {
2755 warning (_("ERROR RMT: length of threadid is not 16."));
2756 retval = 0;
2757 break;
2758 }
2759 pkt = unpack_threadid (pkt, &ref);
2760 mask = mask & ~TAG_THREADID;
2761 continue;
2762 }
2763 if (tag == TAG_EXISTS)
2764 {
2765 info->active = stub_unpack_int (pkt, length);
2766 pkt += length;
2767 mask = mask & ~(TAG_EXISTS);
2768 if (length > 8)
2769 {
2770 warning (_("ERROR RMT: 'exists' length too long."));
2771 retval = 0;
2772 break;
2773 }
2774 continue;
2775 }
2776 if (tag == TAG_THREADNAME)
2777 {
2778 pkt = unpack_string (pkt, &info->shortname[0], length);
2779 mask = mask & ~TAG_THREADNAME;
2780 continue;
2781 }
2782 if (tag == TAG_DISPLAY)
2783 {
2784 pkt = unpack_string (pkt, &info->display[0], length);
2785 mask = mask & ~TAG_DISPLAY;
2786 continue;
2787 }
2788 if (tag == TAG_MOREDISPLAY)
2789 {
2790 pkt = unpack_string (pkt, &info->more_display[0], length);
2791 mask = mask & ~TAG_MOREDISPLAY;
2792 continue;
2793 }
2794 warning (_("ERROR RMT: unknown thread info tag."));
2795 break; /* Not a tag we know about. */
2796 }
2797 return retval;
2798 }
2799
2800 static int
2801 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2802 struct gdb_ext_thread_info *info)
2803 {
2804 struct remote_state *rs = get_remote_state ();
2805 int result;
2806
2807 pack_threadinfo_request (rs->buf, fieldset, threadid);
2808 putpkt (rs->buf);
2809 getpkt (&rs->buf, &rs->buf_size, 0);
2810
2811 if (rs->buf[0] == '\0')
2812 return 0;
2813
2814 result = remote_unpack_thread_info_response (rs->buf + 2,
2815 threadid, info);
2816 return result;
2817 }
2818
2819 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2820
2821 static char *
2822 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2823 threadref *nextthread)
2824 {
2825 *pkt++ = 'q'; /* info query packet */
2826 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2827 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2828 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2829 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2830 *pkt = '\0';
2831 return pkt;
2832 }
2833
2834 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2835
2836 static int
2837 parse_threadlist_response (char *pkt, int result_limit,
2838 threadref *original_echo, threadref *resultlist,
2839 int *doneflag)
2840 {
2841 struct remote_state *rs = get_remote_state ();
2842 char *limit;
2843 int count, resultcount, done;
2844
2845 resultcount = 0;
2846 /* Assume the 'q' and 'M chars have been stripped. */
2847 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2848 /* done parse past here */
2849 pkt = unpack_byte (pkt, &count); /* count field */
2850 pkt = unpack_nibble (pkt, &done);
2851 /* The first threadid is the argument threadid. */
2852 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2853 while ((count-- > 0) && (pkt < limit))
2854 {
2855 pkt = unpack_threadid (pkt, resultlist++);
2856 if (resultcount++ >= result_limit)
2857 break;
2858 }
2859 if (doneflag)
2860 *doneflag = done;
2861 return resultcount;
2862 }
2863
2864 /* Fetch the next batch of threads from the remote. Returns -1 if the
2865 qL packet is not supported, 0 on error and 1 on success. */
2866
2867 static int
2868 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2869 int *done, int *result_count, threadref *threadlist)
2870 {
2871 struct remote_state *rs = get_remote_state ();
2872 int result = 1;
2873
2874 /* Trancate result limit to be smaller than the packet size. */
2875 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2876 >= get_remote_packet_size ())
2877 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2878
2879 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2880 putpkt (rs->buf);
2881 getpkt (&rs->buf, &rs->buf_size, 0);
2882 if (*rs->buf == '\0')
2883 {
2884 /* Packet not supported. */
2885 return -1;
2886 }
2887
2888 *result_count =
2889 parse_threadlist_response (rs->buf + 2, result_limit,
2890 &rs->echo_nextthread, threadlist, done);
2891
2892 if (!threadmatch (&rs->echo_nextthread, nextthread))
2893 {
2894 /* FIXME: This is a good reason to drop the packet. */
2895 /* Possably, there is a duplicate response. */
2896 /* Possabilities :
2897 retransmit immediatly - race conditions
2898 retransmit after timeout - yes
2899 exit
2900 wait for packet, then exit
2901 */
2902 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2903 return 0; /* I choose simply exiting. */
2904 }
2905 if (*result_count <= 0)
2906 {
2907 if (*done != 1)
2908 {
2909 warning (_("RMT ERROR : failed to get remote thread list."));
2910 result = 0;
2911 }
2912 return result; /* break; */
2913 }
2914 if (*result_count > result_limit)
2915 {
2916 *result_count = 0;
2917 warning (_("RMT ERROR: threadlist response longer than requested."));
2918 return 0;
2919 }
2920 return result;
2921 }
2922
2923 /* Fetch the list of remote threads, with the qL packet, and call
2924 STEPFUNCTION for each thread found. Stops iterating and returns 1
2925 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
2926 STEPFUNCTION returns false. If the packet is not supported,
2927 returns -1. */
2928
2929 static int
2930 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2931 int looplimit)
2932 {
2933 struct remote_state *rs = get_remote_state ();
2934 int done, i, result_count;
2935 int startflag = 1;
2936 int result = 1;
2937 int loopcount = 0;
2938
2939 done = 0;
2940 while (!done)
2941 {
2942 if (loopcount++ > looplimit)
2943 {
2944 result = 0;
2945 warning (_("Remote fetch threadlist -infinite loop-."));
2946 break;
2947 }
2948 result = remote_get_threadlist (startflag, &rs->nextthread,
2949 MAXTHREADLISTRESULTS,
2950 &done, &result_count,
2951 rs->resultthreadlist);
2952 if (result <= 0)
2953 break;
2954 /* Clear for later iterations. */
2955 startflag = 0;
2956 /* Setup to resume next batch of thread references, set nextthread. */
2957 if (result_count >= 1)
2958 copy_threadref (&rs->nextthread,
2959 &rs->resultthreadlist[result_count - 1]);
2960 i = 0;
2961 while (result_count--)
2962 {
2963 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
2964 {
2965 result = 0;
2966 break;
2967 }
2968 }
2969 }
2970 return result;
2971 }
2972
2973 /* A thread found on the remote target. */
2974
2975 typedef struct thread_item
2976 {
2977 /* The thread's PTID. */
2978 ptid_t ptid;
2979
2980 /* The thread's extra info. May be NULL. */
2981 char *extra;
2982
2983 /* The thread's name. May be NULL. */
2984 char *name;
2985
2986 /* The core the thread was running on. -1 if not known. */
2987 int core;
2988
2989 /* The thread handle associated with the thread. */
2990 gdb::byte_vector *thread_handle;
2991
2992 } thread_item_t;
2993 DEF_VEC_O(thread_item_t);
2994
2995 /* Context passed around to the various methods listing remote
2996 threads. As new threads are found, they're added to the ITEMS
2997 vector. */
2998
2999 struct threads_listing_context
3000 {
3001 /* The threads found on the remote target. */
3002 VEC (thread_item_t) *items;
3003 };
3004
3005 /* Discard the contents of the constructed thread listing context. */
3006
3007 static void
3008 clear_threads_listing_context (void *p)
3009 {
3010 struct threads_listing_context *context
3011 = (struct threads_listing_context *) p;
3012 int i;
3013 struct thread_item *item;
3014
3015 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
3016 {
3017 xfree (item->extra);
3018 xfree (item->name);
3019 delete item->thread_handle;
3020 }
3021
3022 VEC_free (thread_item_t, context->items);
3023 }
3024
3025 /* Remove the thread specified as the related_pid field of WS
3026 from the CONTEXT list. */
3027
3028 static void
3029 threads_listing_context_remove (struct target_waitstatus *ws,
3030 struct threads_listing_context *context)
3031 {
3032 struct thread_item *item;
3033 int i;
3034 ptid_t child_ptid = ws->value.related_pid;
3035
3036 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
3037 {
3038 if (ptid_equal (item->ptid, child_ptid))
3039 {
3040 VEC_ordered_remove (thread_item_t, context->items, i);
3041 break;
3042 }
3043 }
3044 }
3045
3046 static int
3047 remote_newthread_step (threadref *ref, void *data)
3048 {
3049 struct threads_listing_context *context
3050 = (struct threads_listing_context *) data;
3051 struct thread_item item;
3052 int pid = ptid_get_pid (inferior_ptid);
3053
3054 item.ptid = ptid_build (pid, threadref_to_int (ref), 0);
3055 item.core = -1;
3056 item.name = NULL;
3057 item.extra = NULL;
3058 item.thread_handle = nullptr;
3059
3060 VEC_safe_push (thread_item_t, context->items, &item);
3061
3062 return 1; /* continue iterator */
3063 }
3064
3065 #define CRAZY_MAX_THREADS 1000
3066
3067 static ptid_t
3068 remote_current_thread (ptid_t oldpid)
3069 {
3070 struct remote_state *rs = get_remote_state ();
3071
3072 putpkt ("qC");
3073 getpkt (&rs->buf, &rs->buf_size, 0);
3074 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3075 {
3076 const char *obuf;
3077 ptid_t result;
3078
3079 result = read_ptid (&rs->buf[2], &obuf);
3080 if (*obuf != '\0' && remote_debug)
3081 fprintf_unfiltered (gdb_stdlog,
3082 "warning: garbage in qC reply\n");
3083
3084 return result;
3085 }
3086 else
3087 return oldpid;
3088 }
3089
3090 /* List remote threads using the deprecated qL packet. */
3091
3092 static int
3093 remote_get_threads_with_ql (struct target_ops *ops,
3094 struct threads_listing_context *context)
3095 {
3096 if (remote_threadlist_iterator (remote_newthread_step, context,
3097 CRAZY_MAX_THREADS) >= 0)
3098 return 1;
3099
3100 return 0;
3101 }
3102
3103 #if defined(HAVE_LIBEXPAT)
3104
3105 static void
3106 start_thread (struct gdb_xml_parser *parser,
3107 const struct gdb_xml_element *element,
3108 void *user_data, VEC(gdb_xml_value_s) *attributes)
3109 {
3110 struct threads_listing_context *data
3111 = (struct threads_listing_context *) user_data;
3112
3113 struct thread_item item;
3114 char *id;
3115 struct gdb_xml_value *attr;
3116
3117 id = (char *) xml_find_attribute (attributes, "id")->value;
3118 item.ptid = read_ptid (id, NULL);
3119
3120 attr = xml_find_attribute (attributes, "core");
3121 if (attr != NULL)
3122 item.core = *(ULONGEST *) attr->value;
3123 else
3124 item.core = -1;
3125
3126 attr = xml_find_attribute (attributes, "name");
3127 item.name = attr != NULL ? xstrdup ((const char *) attr->value) : NULL;
3128
3129 attr = xml_find_attribute (attributes, "handle");
3130 if (attr != NULL)
3131 {
3132 item.thread_handle = new gdb::byte_vector
3133 (strlen ((const char *) attr->value) / 2);
3134 hex2bin ((const char *) attr->value, item.thread_handle->data (),
3135 item.thread_handle->size ());
3136 }
3137 else
3138 item.thread_handle = nullptr;
3139
3140 item.extra = 0;
3141
3142 VEC_safe_push (thread_item_t, data->items, &item);
3143 }
3144
3145 static void
3146 end_thread (struct gdb_xml_parser *parser,
3147 const struct gdb_xml_element *element,
3148 void *user_data, const char *body_text)
3149 {
3150 struct threads_listing_context *data
3151 = (struct threads_listing_context *) user_data;
3152
3153 if (body_text && *body_text)
3154 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
3155 }
3156
3157 const struct gdb_xml_attribute thread_attributes[] = {
3158 { "id", GDB_XML_AF_NONE, NULL, NULL },
3159 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3160 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3161 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3162 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3163 };
3164
3165 const struct gdb_xml_element thread_children[] = {
3166 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3167 };
3168
3169 const struct gdb_xml_element threads_children[] = {
3170 { "thread", thread_attributes, thread_children,
3171 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3172 start_thread, end_thread },
3173 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3174 };
3175
3176 const struct gdb_xml_element threads_elements[] = {
3177 { "threads", NULL, threads_children,
3178 GDB_XML_EF_NONE, NULL, NULL },
3179 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3180 };
3181
3182 #endif
3183
3184 /* List remote threads using qXfer:threads:read. */
3185
3186 static int
3187 remote_get_threads_with_qxfer (struct target_ops *ops,
3188 struct threads_listing_context *context)
3189 {
3190 #if defined(HAVE_LIBEXPAT)
3191 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3192 {
3193 gdb::unique_xmalloc_ptr<char> xml
3194 = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3195
3196 if (xml != NULL && *xml != '\0')
3197 {
3198 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3199 threads_elements, xml.get (), context);
3200 }
3201
3202 return 1;
3203 }
3204 #endif
3205
3206 return 0;
3207 }
3208
3209 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3210
3211 static int
3212 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3213 struct threads_listing_context *context)
3214 {
3215 struct remote_state *rs = get_remote_state ();
3216
3217 if (rs->use_threadinfo_query)
3218 {
3219 const char *bufp;
3220
3221 putpkt ("qfThreadInfo");
3222 getpkt (&rs->buf, &rs->buf_size, 0);
3223 bufp = rs->buf;
3224 if (bufp[0] != '\0') /* q packet recognized */
3225 {
3226 while (*bufp++ == 'm') /* reply contains one or more TID */
3227 {
3228 do
3229 {
3230 struct thread_item item;
3231
3232 item.ptid = read_ptid (bufp, &bufp);
3233 item.core = -1;
3234 item.name = NULL;
3235 item.extra = NULL;
3236 item.thread_handle = nullptr;
3237
3238 VEC_safe_push (thread_item_t, context->items, &item);
3239 }
3240 while (*bufp++ == ','); /* comma-separated list */
3241 putpkt ("qsThreadInfo");
3242 getpkt (&rs->buf, &rs->buf_size, 0);
3243 bufp = rs->buf;
3244 }
3245 return 1;
3246 }
3247 else
3248 {
3249 /* Packet not recognized. */
3250 rs->use_threadinfo_query = 0;
3251 }
3252 }
3253
3254 return 0;
3255 }
3256
3257 /* Implement the to_update_thread_list function for the remote
3258 targets. */
3259
3260 static void
3261 remote_update_thread_list (struct target_ops *ops)
3262 {
3263 struct threads_listing_context context;
3264 struct cleanup *old_chain;
3265 int got_list = 0;
3266
3267 context.items = NULL;
3268 old_chain = make_cleanup (clear_threads_listing_context, &context);
3269
3270 /* We have a few different mechanisms to fetch the thread list. Try
3271 them all, starting with the most preferred one first, falling
3272 back to older methods. */
3273 if (remote_get_threads_with_qxfer (ops, &context)
3274 || remote_get_threads_with_qthreadinfo (ops, &context)
3275 || remote_get_threads_with_ql (ops, &context))
3276 {
3277 int i;
3278 struct thread_item *item;
3279 struct thread_info *tp, *tmp;
3280
3281 got_list = 1;
3282
3283 if (VEC_empty (thread_item_t, context.items)
3284 && remote_thread_always_alive (ops, inferior_ptid))
3285 {
3286 /* Some targets don't really support threads, but still
3287 reply an (empty) thread list in response to the thread
3288 listing packets, instead of replying "packet not
3289 supported". Exit early so we don't delete the main
3290 thread. */
3291 do_cleanups (old_chain);
3292 return;
3293 }
3294
3295 /* CONTEXT now holds the current thread list on the remote
3296 target end. Delete GDB-side threads no longer found on the
3297 target. */
3298 ALL_THREADS_SAFE (tp, tmp)
3299 {
3300 for (i = 0;
3301 VEC_iterate (thread_item_t, context.items, i, item);
3302 ++i)
3303 {
3304 if (ptid_equal (item->ptid, tp->ptid))
3305 break;
3306 }
3307
3308 if (i == VEC_length (thread_item_t, context.items))
3309 {
3310 /* Not found. */
3311 delete_thread (tp->ptid);
3312 }
3313 }
3314
3315 /* Remove any unreported fork child threads from CONTEXT so
3316 that we don't interfere with follow fork, which is where
3317 creation of such threads is handled. */
3318 remove_new_fork_children (&context);
3319
3320 /* And now add threads we don't know about yet to our list. */
3321 for (i = 0;
3322 VEC_iterate (thread_item_t, context.items, i, item);
3323 ++i)
3324 {
3325 if (!ptid_equal (item->ptid, null_ptid))
3326 {
3327 struct private_thread_info *info;
3328 /* In non-stop mode, we assume new found threads are
3329 executing until proven otherwise with a stop reply.
3330 In all-stop, we can only get here if all threads are
3331 stopped. */
3332 int executing = target_is_non_stop_p () ? 1 : 0;
3333
3334 remote_notice_new_inferior (item->ptid, executing);
3335
3336 info = get_private_info_ptid (item->ptid);
3337 info->core = item->core;
3338 info->extra = item->extra;
3339 item->extra = NULL;
3340 info->name = item->name;
3341 item->name = NULL;
3342 info->thread_handle = item->thread_handle;
3343 item->thread_handle = nullptr;
3344 }
3345 }
3346 }
3347
3348 if (!got_list)
3349 {
3350 /* If no thread listing method is supported, then query whether
3351 each known thread is alive, one by one, with the T packet.
3352 If the target doesn't support threads at all, then this is a
3353 no-op. See remote_thread_alive. */
3354 prune_threads ();
3355 }
3356
3357 do_cleanups (old_chain);
3358 }
3359
3360 /*
3361 * Collect a descriptive string about the given thread.
3362 * The target may say anything it wants to about the thread
3363 * (typically info about its blocked / runnable state, name, etc.).
3364 * This string will appear in the info threads display.
3365 *
3366 * Optional: targets are not required to implement this function.
3367 */
3368
3369 static const char *
3370 remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
3371 {
3372 struct remote_state *rs = get_remote_state ();
3373 int result;
3374 int set;
3375 threadref id;
3376 struct gdb_ext_thread_info threadinfo;
3377 static char display_buf[100]; /* arbitrary... */
3378 int n = 0; /* position in display_buf */
3379
3380 if (rs->remote_desc == 0) /* paranoia */
3381 internal_error (__FILE__, __LINE__,
3382 _("remote_threads_extra_info"));
3383
3384 if (ptid_equal (tp->ptid, magic_null_ptid)
3385 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3386 /* This is the main thread which was added by GDB. The remote
3387 server doesn't know about it. */
3388 return NULL;
3389
3390 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3391 {
3392 struct thread_info *info = find_thread_ptid (tp->ptid);
3393
3394 if (info && info->priv)
3395 return info->priv->extra;
3396 else
3397 return NULL;
3398 }
3399
3400 if (rs->use_threadextra_query)
3401 {
3402 char *b = rs->buf;
3403 char *endb = rs->buf + get_remote_packet_size ();
3404
3405 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3406 b += strlen (b);
3407 write_ptid (b, endb, tp->ptid);
3408
3409 putpkt (rs->buf);
3410 getpkt (&rs->buf, &rs->buf_size, 0);
3411 if (rs->buf[0] != 0)
3412 {
3413 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3414 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3415 display_buf [result] = '\0';
3416 return display_buf;
3417 }
3418 }
3419
3420 /* If the above query fails, fall back to the old method. */
3421 rs->use_threadextra_query = 0;
3422 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3423 | TAG_MOREDISPLAY | TAG_DISPLAY;
3424 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3425 if (remote_get_threadinfo (&id, set, &threadinfo))
3426 if (threadinfo.active)
3427 {
3428 if (*threadinfo.shortname)
3429 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3430 " Name: %s,", threadinfo.shortname);
3431 if (*threadinfo.display)
3432 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3433 " State: %s,", threadinfo.display);
3434 if (*threadinfo.more_display)
3435 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3436 " Priority: %s", threadinfo.more_display);
3437
3438 if (n > 0)
3439 {
3440 /* For purely cosmetic reasons, clear up trailing commas. */
3441 if (',' == display_buf[n-1])
3442 display_buf[n-1] = ' ';
3443 return display_buf;
3444 }
3445 }
3446 return NULL;
3447 }
3448 \f
3449
3450 static int
3451 remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
3452 struct static_tracepoint_marker *marker)
3453 {
3454 struct remote_state *rs = get_remote_state ();
3455 char *p = rs->buf;
3456
3457 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3458 p += strlen (p);
3459 p += hexnumstr (p, addr);
3460 putpkt (rs->buf);
3461 getpkt (&rs->buf, &rs->buf_size, 0);
3462 p = rs->buf;
3463
3464 if (*p == 'E')
3465 error (_("Remote failure reply: %s"), p);
3466
3467 if (*p++ == 'm')
3468 {
3469 parse_static_tracepoint_marker_definition (p, NULL, marker);
3470 return 1;
3471 }
3472
3473 return 0;
3474 }
3475
3476 static VEC(static_tracepoint_marker_p) *
3477 remote_static_tracepoint_markers_by_strid (struct target_ops *self,
3478 const char *strid)
3479 {
3480 struct remote_state *rs = get_remote_state ();
3481 VEC(static_tracepoint_marker_p) *markers = NULL;
3482 struct static_tracepoint_marker *marker = NULL;
3483 struct cleanup *old_chain;
3484 const char *p;
3485
3486 /* Ask for a first packet of static tracepoint marker
3487 definition. */
3488 putpkt ("qTfSTM");
3489 getpkt (&rs->buf, &rs->buf_size, 0);
3490 p = rs->buf;
3491 if (*p == 'E')
3492 error (_("Remote failure reply: %s"), p);
3493
3494 old_chain = make_cleanup (free_current_marker, &marker);
3495
3496 while (*p++ == 'm')
3497 {
3498 if (marker == NULL)
3499 marker = XCNEW (struct static_tracepoint_marker);
3500
3501 do
3502 {
3503 parse_static_tracepoint_marker_definition (p, &p, marker);
3504
3505 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
3506 {
3507 VEC_safe_push (static_tracepoint_marker_p,
3508 markers, marker);
3509 marker = NULL;
3510 }
3511 else
3512 {
3513 release_static_tracepoint_marker (marker);
3514 memset (marker, 0, sizeof (*marker));
3515 }
3516 }
3517 while (*p++ == ','); /* comma-separated list */
3518 /* Ask for another packet of static tracepoint definition. */
3519 putpkt ("qTsSTM");
3520 getpkt (&rs->buf, &rs->buf_size, 0);
3521 p = rs->buf;
3522 }
3523
3524 do_cleanups (old_chain);
3525 return markers;
3526 }
3527
3528 \f
3529 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3530
3531 static ptid_t
3532 remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
3533 {
3534 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3535 }
3536 \f
3537
3538 /* Restart the remote side; this is an extended protocol operation. */
3539
3540 static void
3541 extended_remote_restart (void)
3542 {
3543 struct remote_state *rs = get_remote_state ();
3544
3545 /* Send the restart command; for reasons I don't understand the
3546 remote side really expects a number after the "R". */
3547 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3548 putpkt (rs->buf);
3549
3550 remote_fileio_reset ();
3551 }
3552 \f
3553 /* Clean up connection to a remote debugger. */
3554
3555 static void
3556 remote_close (struct target_ops *self)
3557 {
3558 struct remote_state *rs = get_remote_state ();
3559
3560 if (rs->remote_desc == NULL)
3561 return; /* already closed */
3562
3563 /* Make sure we leave stdin registered in the event loop. */
3564 remote_terminal_ours (self);
3565
3566 serial_close (rs->remote_desc);
3567 rs->remote_desc = NULL;
3568
3569 /* We don't have a connection to the remote stub anymore. Get rid
3570 of all the inferiors and their threads we were controlling.
3571 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3572 will be unable to find the thread corresponding to (pid, 0, 0). */
3573 inferior_ptid = null_ptid;
3574 discard_all_inferiors ();
3575
3576 /* We are closing the remote target, so we should discard
3577 everything of this target. */
3578 discard_pending_stop_replies_in_queue (rs);
3579
3580 if (remote_async_inferior_event_token)
3581 delete_async_event_handler (&remote_async_inferior_event_token);
3582
3583 remote_notif_state_xfree (rs->notif_state);
3584
3585 trace_reset_local_state ();
3586 }
3587
3588 /* Query the remote side for the text, data and bss offsets. */
3589
3590 static void
3591 get_offsets (void)
3592 {
3593 struct remote_state *rs = get_remote_state ();
3594 char *buf;
3595 char *ptr;
3596 int lose, num_segments = 0, do_sections, do_segments;
3597 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3598 struct section_offsets *offs;
3599 struct symfile_segment_data *data;
3600
3601 if (symfile_objfile == NULL)
3602 return;
3603
3604 putpkt ("qOffsets");
3605 getpkt (&rs->buf, &rs->buf_size, 0);
3606 buf = rs->buf;
3607
3608 if (buf[0] == '\000')
3609 return; /* Return silently. Stub doesn't support
3610 this command. */
3611 if (buf[0] == 'E')
3612 {
3613 warning (_("Remote failure reply: %s"), buf);
3614 return;
3615 }
3616
3617 /* Pick up each field in turn. This used to be done with scanf, but
3618 scanf will make trouble if CORE_ADDR size doesn't match
3619 conversion directives correctly. The following code will work
3620 with any size of CORE_ADDR. */
3621 text_addr = data_addr = bss_addr = 0;
3622 ptr = buf;
3623 lose = 0;
3624
3625 if (startswith (ptr, "Text="))
3626 {
3627 ptr += 5;
3628 /* Don't use strtol, could lose on big values. */
3629 while (*ptr && *ptr != ';')
3630 text_addr = (text_addr << 4) + fromhex (*ptr++);
3631
3632 if (startswith (ptr, ";Data="))
3633 {
3634 ptr += 6;
3635 while (*ptr && *ptr != ';')
3636 data_addr = (data_addr << 4) + fromhex (*ptr++);
3637 }
3638 else
3639 lose = 1;
3640
3641 if (!lose && startswith (ptr, ";Bss="))
3642 {
3643 ptr += 5;
3644 while (*ptr && *ptr != ';')
3645 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3646
3647 if (bss_addr != data_addr)
3648 warning (_("Target reported unsupported offsets: %s"), buf);
3649 }
3650 else
3651 lose = 1;
3652 }
3653 else if (startswith (ptr, "TextSeg="))
3654 {
3655 ptr += 8;
3656 /* Don't use strtol, could lose on big values. */
3657 while (*ptr && *ptr != ';')
3658 text_addr = (text_addr << 4) + fromhex (*ptr++);
3659 num_segments = 1;
3660
3661 if (startswith (ptr, ";DataSeg="))
3662 {
3663 ptr += 9;
3664 while (*ptr && *ptr != ';')
3665 data_addr = (data_addr << 4) + fromhex (*ptr++);
3666 num_segments++;
3667 }
3668 }
3669 else
3670 lose = 1;
3671
3672 if (lose)
3673 error (_("Malformed response to offset query, %s"), buf);
3674 else if (*ptr != '\0')
3675 warning (_("Target reported unsupported offsets: %s"), buf);
3676
3677 offs = ((struct section_offsets *)
3678 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3679 memcpy (offs, symfile_objfile->section_offsets,
3680 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3681
3682 data = get_symfile_segment_data (symfile_objfile->obfd);
3683 do_segments = (data != NULL);
3684 do_sections = num_segments == 0;
3685
3686 if (num_segments > 0)
3687 {
3688 segments[0] = text_addr;
3689 segments[1] = data_addr;
3690 }
3691 /* If we have two segments, we can still try to relocate everything
3692 by assuming that the .text and .data offsets apply to the whole
3693 text and data segments. Convert the offsets given in the packet
3694 to base addresses for symfile_map_offsets_to_segments. */
3695 else if (data && data->num_segments == 2)
3696 {
3697 segments[0] = data->segment_bases[0] + text_addr;
3698 segments[1] = data->segment_bases[1] + data_addr;
3699 num_segments = 2;
3700 }
3701 /* If the object file has only one segment, assume that it is text
3702 rather than data; main programs with no writable data are rare,
3703 but programs with no code are useless. Of course the code might
3704 have ended up in the data segment... to detect that we would need
3705 the permissions here. */
3706 else if (data && data->num_segments == 1)
3707 {
3708 segments[0] = data->segment_bases[0] + text_addr;
3709 num_segments = 1;
3710 }
3711 /* There's no way to relocate by segment. */
3712 else
3713 do_segments = 0;
3714
3715 if (do_segments)
3716 {
3717 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3718 offs, num_segments, segments);
3719
3720 if (ret == 0 && !do_sections)
3721 error (_("Can not handle qOffsets TextSeg "
3722 "response with this symbol file"));
3723
3724 if (ret > 0)
3725 do_sections = 0;
3726 }
3727
3728 if (data)
3729 free_symfile_segment_data (data);
3730
3731 if (do_sections)
3732 {
3733 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3734
3735 /* This is a temporary kludge to force data and bss to use the
3736 same offsets because that's what nlmconv does now. The real
3737 solution requires changes to the stub and remote.c that I
3738 don't have time to do right now. */
3739
3740 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3741 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3742 }
3743
3744 objfile_relocate (symfile_objfile, offs);
3745 }
3746
3747 /* Send interrupt_sequence to remote target. */
3748 static void
3749 send_interrupt_sequence (void)
3750 {
3751 struct remote_state *rs = get_remote_state ();
3752
3753 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3754 remote_serial_write ("\x03", 1);
3755 else if (interrupt_sequence_mode == interrupt_sequence_break)
3756 serial_send_break (rs->remote_desc);
3757 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3758 {
3759 serial_send_break (rs->remote_desc);
3760 remote_serial_write ("g", 1);
3761 }
3762 else
3763 internal_error (__FILE__, __LINE__,
3764 _("Invalid value for interrupt_sequence_mode: %s."),
3765 interrupt_sequence_mode);
3766 }
3767
3768
3769 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3770 and extract the PTID. Returns NULL_PTID if not found. */
3771
3772 static ptid_t
3773 stop_reply_extract_thread (char *stop_reply)
3774 {
3775 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3776 {
3777 const char *p;
3778
3779 /* Txx r:val ; r:val (...) */
3780 p = &stop_reply[3];
3781
3782 /* Look for "register" named "thread". */
3783 while (*p != '\0')
3784 {
3785 const char *p1;
3786
3787 p1 = strchr (p, ':');
3788 if (p1 == NULL)
3789 return null_ptid;
3790
3791 if (strncmp (p, "thread", p1 - p) == 0)
3792 return read_ptid (++p1, &p);
3793
3794 p1 = strchr (p, ';');
3795 if (p1 == NULL)
3796 return null_ptid;
3797 p1++;
3798
3799 p = p1;
3800 }
3801 }
3802
3803 return null_ptid;
3804 }
3805
3806 /* Determine the remote side's current thread. If we have a stop
3807 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3808 "thread" register we can extract the current thread from. If not,
3809 ask the remote which is the current thread with qC. The former
3810 method avoids a roundtrip. */
3811
3812 static ptid_t
3813 get_current_thread (char *wait_status)
3814 {
3815 ptid_t ptid = null_ptid;
3816
3817 /* Note we don't use remote_parse_stop_reply as that makes use of
3818 the target architecture, which we haven't yet fully determined at
3819 this point. */
3820 if (wait_status != NULL)
3821 ptid = stop_reply_extract_thread (wait_status);
3822 if (ptid_equal (ptid, null_ptid))
3823 ptid = remote_current_thread (inferior_ptid);
3824
3825 return ptid;
3826 }
3827
3828 /* Query the remote target for which is the current thread/process,
3829 add it to our tables, and update INFERIOR_PTID. The caller is
3830 responsible for setting the state such that the remote end is ready
3831 to return the current thread.
3832
3833 This function is called after handling the '?' or 'vRun' packets,
3834 whose response is a stop reply from which we can also try
3835 extracting the thread. If the target doesn't support the explicit
3836 qC query, we infer the current thread from that stop reply, passed
3837 in in WAIT_STATUS, which may be NULL. */
3838
3839 static void
3840 add_current_inferior_and_thread (char *wait_status)
3841 {
3842 struct remote_state *rs = get_remote_state ();
3843 int fake_pid_p = 0;
3844
3845 inferior_ptid = null_ptid;
3846
3847 /* Now, if we have thread information, update inferior_ptid. */
3848 ptid_t curr_ptid = get_current_thread (wait_status);
3849
3850 if (curr_ptid != null_ptid)
3851 {
3852 if (!remote_multi_process_p (rs))
3853 fake_pid_p = 1;
3854 }
3855 else
3856 {
3857 /* Without this, some commands which require an active target
3858 (such as kill) won't work. This variable serves (at least)
3859 double duty as both the pid of the target process (if it has
3860 such), and as a flag indicating that a target is active. */
3861 curr_ptid = magic_null_ptid;
3862 fake_pid_p = 1;
3863 }
3864
3865 remote_add_inferior (fake_pid_p, ptid_get_pid (curr_ptid), -1, 1);
3866
3867 /* Add the main thread and switch to it. Don't try reading
3868 registers yet, since we haven't fetched the target description
3869 yet. */
3870 thread_info *tp = add_thread_silent (curr_ptid);
3871 switch_to_thread_no_regs (tp);
3872 }
3873
3874 /* Print info about a thread that was found already stopped on
3875 connection. */
3876
3877 static void
3878 print_one_stopped_thread (struct thread_info *thread)
3879 {
3880 struct target_waitstatus *ws = &thread->suspend.waitstatus;
3881
3882 switch_to_thread (thread->ptid);
3883 stop_pc = get_frame_pc (get_current_frame ());
3884 set_current_sal_from_frame (get_current_frame ());
3885
3886 thread->suspend.waitstatus_pending_p = 0;
3887
3888 if (ws->kind == TARGET_WAITKIND_STOPPED)
3889 {
3890 enum gdb_signal sig = ws->value.sig;
3891
3892 if (signal_print_state (sig))
3893 observer_notify_signal_received (sig);
3894 }
3895 observer_notify_normal_stop (NULL, 1);
3896 }
3897
3898 /* Process all initial stop replies the remote side sent in response
3899 to the ? packet. These indicate threads that were already stopped
3900 on initial connection. We mark these threads as stopped and print
3901 their current frame before giving the user the prompt. */
3902
3903 static void
3904 process_initial_stop_replies (int from_tty)
3905 {
3906 int pending_stop_replies = stop_reply_queue_length ();
3907 struct inferior *inf;
3908 struct thread_info *thread;
3909 struct thread_info *selected = NULL;
3910 struct thread_info *lowest_stopped = NULL;
3911 struct thread_info *first = NULL;
3912
3913 /* Consume the initial pending events. */
3914 while (pending_stop_replies-- > 0)
3915 {
3916 ptid_t waiton_ptid = minus_one_ptid;
3917 ptid_t event_ptid;
3918 struct target_waitstatus ws;
3919 int ignore_event = 0;
3920 struct thread_info *thread;
3921
3922 memset (&ws, 0, sizeof (ws));
3923 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
3924 if (remote_debug)
3925 print_target_wait_results (waiton_ptid, event_ptid, &ws);
3926
3927 switch (ws.kind)
3928 {
3929 case TARGET_WAITKIND_IGNORE:
3930 case TARGET_WAITKIND_NO_RESUMED:
3931 case TARGET_WAITKIND_SIGNALLED:
3932 case TARGET_WAITKIND_EXITED:
3933 /* We shouldn't see these, but if we do, just ignore. */
3934 if (remote_debug)
3935 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
3936 ignore_event = 1;
3937 break;
3938
3939 case TARGET_WAITKIND_EXECD:
3940 xfree (ws.value.execd_pathname);
3941 break;
3942 default:
3943 break;
3944 }
3945
3946 if (ignore_event)
3947 continue;
3948
3949 thread = find_thread_ptid (event_ptid);
3950
3951 if (ws.kind == TARGET_WAITKIND_STOPPED)
3952 {
3953 enum gdb_signal sig = ws.value.sig;
3954
3955 /* Stubs traditionally report SIGTRAP as initial signal,
3956 instead of signal 0. Suppress it. */
3957 if (sig == GDB_SIGNAL_TRAP)
3958 sig = GDB_SIGNAL_0;
3959 thread->suspend.stop_signal = sig;
3960 ws.value.sig = sig;
3961 }
3962
3963 thread->suspend.waitstatus = ws;
3964
3965 if (ws.kind != TARGET_WAITKIND_STOPPED
3966 || ws.value.sig != GDB_SIGNAL_0)
3967 thread->suspend.waitstatus_pending_p = 1;
3968
3969 set_executing (event_ptid, 0);
3970 set_running (event_ptid, 0);
3971 thread->priv->vcont_resumed = 0;
3972 }
3973
3974 /* "Notice" the new inferiors before anything related to
3975 registers/memory. */
3976 ALL_INFERIORS (inf)
3977 {
3978 if (inf->pid == 0)
3979 continue;
3980
3981 inf->needs_setup = 1;
3982
3983 if (non_stop)
3984 {
3985 thread = any_live_thread_of_process (inf->pid);
3986 notice_new_inferior (thread->ptid,
3987 thread->state == THREAD_RUNNING,
3988 from_tty);
3989 }
3990 }
3991
3992 /* If all-stop on top of non-stop, pause all threads. Note this
3993 records the threads' stop pc, so must be done after "noticing"
3994 the inferiors. */
3995 if (!non_stop)
3996 {
3997 stop_all_threads ();
3998
3999 /* If all threads of an inferior were already stopped, we
4000 haven't setup the inferior yet. */
4001 ALL_INFERIORS (inf)
4002 {
4003 if (inf->pid == 0)
4004 continue;
4005
4006 if (inf->needs_setup)
4007 {
4008 thread = any_live_thread_of_process (inf->pid);
4009 switch_to_thread_no_regs (thread);
4010 setup_inferior (0);
4011 }
4012 }
4013 }
4014
4015 /* Now go over all threads that are stopped, and print their current
4016 frame. If all-stop, then if there's a signalled thread, pick
4017 that as current. */
4018 ALL_NON_EXITED_THREADS (thread)
4019 {
4020 if (first == NULL)
4021 first = thread;
4022
4023 if (!non_stop)
4024 set_running (thread->ptid, 0);
4025 else if (thread->state != THREAD_STOPPED)
4026 continue;
4027
4028 if (selected == NULL
4029 && thread->suspend.waitstatus_pending_p)
4030 selected = thread;
4031
4032 if (lowest_stopped == NULL
4033 || thread->inf->num < lowest_stopped->inf->num
4034 || thread->per_inf_num < lowest_stopped->per_inf_num)
4035 lowest_stopped = thread;
4036
4037 if (non_stop)
4038 print_one_stopped_thread (thread);
4039 }
4040
4041 /* In all-stop, we only print the status of one thread, and leave
4042 others with their status pending. */
4043 if (!non_stop)
4044 {
4045 thread = selected;
4046 if (thread == NULL)
4047 thread = lowest_stopped;
4048 if (thread == NULL)
4049 thread = first;
4050
4051 print_one_stopped_thread (thread);
4052 }
4053
4054 /* For "info program". */
4055 thread = inferior_thread ();
4056 if (thread->state == THREAD_STOPPED)
4057 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4058 }
4059
4060 /* Start the remote connection and sync state. */
4061
4062 static void
4063 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
4064 {
4065 struct remote_state *rs = get_remote_state ();
4066 struct packet_config *noack_config;
4067 char *wait_status = NULL;
4068
4069 /* Signal other parts that we're going through the initial setup,
4070 and so things may not be stable yet. E.g., we don't try to
4071 install tracepoints until we've relocated symbols. Also, a
4072 Ctrl-C before we're connected and synced up can't interrupt the
4073 target. Instead, it offers to drop the (potentially wedged)
4074 connection. */
4075 rs->starting_up = 1;
4076
4077 QUIT;
4078
4079 if (interrupt_on_connect)
4080 send_interrupt_sequence ();
4081
4082 /* Ack any packet which the remote side has already sent. */
4083 remote_serial_write ("+", 1);
4084
4085 /* The first packet we send to the target is the optional "supported
4086 packets" request. If the target can answer this, it will tell us
4087 which later probes to skip. */
4088 remote_query_supported ();
4089
4090 /* If the stub wants to get a QAllow, compose one and send it. */
4091 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4092 remote_set_permissions (target);
4093
4094 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4095 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4096 as a reply to known packet. For packet "vFile:setfs:" it is an
4097 invalid reply and GDB would return error in
4098 remote_hostio_set_filesystem, making remote files access impossible.
4099 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4100 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4101 {
4102 const char v_mustreplyempty[] = "vMustReplyEmpty";
4103
4104 putpkt (v_mustreplyempty);
4105 getpkt (&rs->buf, &rs->buf_size, 0);
4106 if (strcmp (rs->buf, "OK") == 0)
4107 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4108 else if (strcmp (rs->buf, "") != 0)
4109 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4110 rs->buf);
4111 }
4112
4113 /* Next, we possibly activate noack mode.
4114
4115 If the QStartNoAckMode packet configuration is set to AUTO,
4116 enable noack mode if the stub reported a wish for it with
4117 qSupported.
4118
4119 If set to TRUE, then enable noack mode even if the stub didn't
4120 report it in qSupported. If the stub doesn't reply OK, the
4121 session ends with an error.
4122
4123 If FALSE, then don't activate noack mode, regardless of what the
4124 stub claimed should be the default with qSupported. */
4125
4126 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4127 if (packet_config_support (noack_config) != PACKET_DISABLE)
4128 {
4129 putpkt ("QStartNoAckMode");
4130 getpkt (&rs->buf, &rs->buf_size, 0);
4131 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4132 rs->noack_mode = 1;
4133 }
4134
4135 if (extended_p)
4136 {
4137 /* Tell the remote that we are using the extended protocol. */
4138 putpkt ("!");
4139 getpkt (&rs->buf, &rs->buf_size, 0);
4140 }
4141
4142 /* Let the target know which signals it is allowed to pass down to
4143 the program. */
4144 update_signals_program_target ();
4145
4146 /* Next, if the target can specify a description, read it. We do
4147 this before anything involving memory or registers. */
4148 target_find_description ();
4149
4150 /* Next, now that we know something about the target, update the
4151 address spaces in the program spaces. */
4152 update_address_spaces ();
4153
4154 /* On OSs where the list of libraries is global to all
4155 processes, we fetch them early. */
4156 if (gdbarch_has_global_solist (target_gdbarch ()))
4157 solib_add (NULL, from_tty, auto_solib_add);
4158
4159 if (target_is_non_stop_p ())
4160 {
4161 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4162 error (_("Non-stop mode requested, but remote "
4163 "does not support non-stop"));
4164
4165 putpkt ("QNonStop:1");
4166 getpkt (&rs->buf, &rs->buf_size, 0);
4167
4168 if (strcmp (rs->buf, "OK") != 0)
4169 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4170
4171 /* Find about threads and processes the stub is already
4172 controlling. We default to adding them in the running state.
4173 The '?' query below will then tell us about which threads are
4174 stopped. */
4175 remote_update_thread_list (target);
4176 }
4177 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4178 {
4179 /* Don't assume that the stub can operate in all-stop mode.
4180 Request it explicitly. */
4181 putpkt ("QNonStop:0");
4182 getpkt (&rs->buf, &rs->buf_size, 0);
4183
4184 if (strcmp (rs->buf, "OK") != 0)
4185 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4186 }
4187
4188 /* Upload TSVs regardless of whether the target is running or not. The
4189 remote stub, such as GDBserver, may have some predefined or builtin
4190 TSVs, even if the target is not running. */
4191 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4192 {
4193 struct uploaded_tsv *uploaded_tsvs = NULL;
4194
4195 remote_upload_trace_state_variables (target, &uploaded_tsvs);
4196 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4197 }
4198
4199 /* Check whether the target is running now. */
4200 putpkt ("?");
4201 getpkt (&rs->buf, &rs->buf_size, 0);
4202
4203 if (!target_is_non_stop_p ())
4204 {
4205 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4206 {
4207 if (!extended_p)
4208 error (_("The target is not running (try extended-remote?)"));
4209
4210 /* We're connected, but not running. Drop out before we
4211 call start_remote. */
4212 rs->starting_up = 0;
4213 return;
4214 }
4215 else
4216 {
4217 /* Save the reply for later. */
4218 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4219 strcpy (wait_status, rs->buf);
4220 }
4221
4222 /* Fetch thread list. */
4223 target_update_thread_list ();
4224
4225 /* Let the stub know that we want it to return the thread. */
4226 set_continue_thread (minus_one_ptid);
4227
4228 if (thread_count () == 0)
4229 {
4230 /* Target has no concept of threads at all. GDB treats
4231 non-threaded target as single-threaded; add a main
4232 thread. */
4233 add_current_inferior_and_thread (wait_status);
4234 }
4235 else
4236 {
4237 /* We have thread information; select the thread the target
4238 says should be current. If we're reconnecting to a
4239 multi-threaded program, this will ideally be the thread
4240 that last reported an event before GDB disconnected. */
4241 inferior_ptid = get_current_thread (wait_status);
4242 if (ptid_equal (inferior_ptid, null_ptid))
4243 {
4244 /* Odd... The target was able to list threads, but not
4245 tell us which thread was current (no "thread"
4246 register in T stop reply?). Just pick the first
4247 thread in the thread list then. */
4248
4249 if (remote_debug)
4250 fprintf_unfiltered (gdb_stdlog,
4251 "warning: couldn't determine remote "
4252 "current thread; picking first in list.\n");
4253
4254 inferior_ptid = thread_list->ptid;
4255 }
4256 }
4257
4258 /* init_wait_for_inferior should be called before get_offsets in order
4259 to manage `inserted' flag in bp loc in a correct state.
4260 breakpoint_init_inferior, called from init_wait_for_inferior, set
4261 `inserted' flag to 0, while before breakpoint_re_set, called from
4262 start_remote, set `inserted' flag to 1. In the initialization of
4263 inferior, breakpoint_init_inferior should be called first, and then
4264 breakpoint_re_set can be called. If this order is broken, state of
4265 `inserted' flag is wrong, and cause some problems on breakpoint
4266 manipulation. */
4267 init_wait_for_inferior ();
4268
4269 get_offsets (); /* Get text, data & bss offsets. */
4270
4271 /* If we could not find a description using qXfer, and we know
4272 how to do it some other way, try again. This is not
4273 supported for non-stop; it could be, but it is tricky if
4274 there are no stopped threads when we connect. */
4275 if (remote_read_description_p (target)
4276 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4277 {
4278 target_clear_description ();
4279 target_find_description ();
4280 }
4281
4282 /* Use the previously fetched status. */
4283 gdb_assert (wait_status != NULL);
4284 strcpy (rs->buf, wait_status);
4285 rs->cached_wait_status = 1;
4286
4287 start_remote (from_tty); /* Initialize gdb process mechanisms. */
4288 }
4289 else
4290 {
4291 /* Clear WFI global state. Do this before finding about new
4292 threads and inferiors, and setting the current inferior.
4293 Otherwise we would clear the proceed status of the current
4294 inferior when we want its stop_soon state to be preserved
4295 (see notice_new_inferior). */
4296 init_wait_for_inferior ();
4297
4298 /* In non-stop, we will either get an "OK", meaning that there
4299 are no stopped threads at this time; or, a regular stop
4300 reply. In the latter case, there may be more than one thread
4301 stopped --- we pull them all out using the vStopped
4302 mechanism. */
4303 if (strcmp (rs->buf, "OK") != 0)
4304 {
4305 struct notif_client *notif = &notif_client_stop;
4306
4307 /* remote_notif_get_pending_replies acks this one, and gets
4308 the rest out. */
4309 rs->notif_state->pending_event[notif_client_stop.id]
4310 = remote_notif_parse (notif, rs->buf);
4311 remote_notif_get_pending_events (notif);
4312 }
4313
4314 if (thread_count () == 0)
4315 {
4316 if (!extended_p)
4317 error (_("The target is not running (try extended-remote?)"));
4318
4319 /* We're connected, but not running. Drop out before we
4320 call start_remote. */
4321 rs->starting_up = 0;
4322 return;
4323 }
4324
4325 /* In non-stop mode, any cached wait status will be stored in
4326 the stop reply queue. */
4327 gdb_assert (wait_status == NULL);
4328
4329 /* Report all signals during attach/startup. */
4330 remote_pass_signals (target, 0, NULL);
4331
4332 /* If there are already stopped threads, mark them stopped and
4333 report their stops before giving the prompt to the user. */
4334 process_initial_stop_replies (from_tty);
4335
4336 if (target_can_async_p ())
4337 target_async (1);
4338 }
4339
4340 /* If we connected to a live target, do some additional setup. */
4341 if (target_has_execution)
4342 {
4343 if (symfile_objfile) /* No use without a symbol-file. */
4344 remote_check_symbols ();
4345 }
4346
4347 /* Possibly the target has been engaged in a trace run started
4348 previously; find out where things are at. */
4349 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4350 {
4351 struct uploaded_tp *uploaded_tps = NULL;
4352
4353 if (current_trace_status ()->running)
4354 printf_filtered (_("Trace is already running on the target.\n"));
4355
4356 remote_upload_tracepoints (target, &uploaded_tps);
4357
4358 merge_uploaded_tracepoints (&uploaded_tps);
4359 }
4360
4361 /* Possibly the target has been engaged in a btrace record started
4362 previously; find out where things are at. */
4363 remote_btrace_maybe_reopen ();
4364
4365 /* The thread and inferior lists are now synchronized with the
4366 target, our symbols have been relocated, and we're merged the
4367 target's tracepoints with ours. We're done with basic start
4368 up. */
4369 rs->starting_up = 0;
4370
4371 /* Maybe breakpoints are global and need to be inserted now. */
4372 if (breakpoints_should_be_inserted_now ())
4373 insert_breakpoints ();
4374 }
4375
4376 /* Open a connection to a remote debugger.
4377 NAME is the filename used for communication. */
4378
4379 static void
4380 remote_open (const char *name, int from_tty)
4381 {
4382 remote_open_1 (name, from_tty, &remote_ops, 0);
4383 }
4384
4385 /* Open a connection to a remote debugger using the extended
4386 remote gdb protocol. NAME is the filename used for communication. */
4387
4388 static void
4389 extended_remote_open (const char *name, int from_tty)
4390 {
4391 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
4392 }
4393
4394 /* Reset all packets back to "unknown support". Called when opening a
4395 new connection to a remote target. */
4396
4397 static void
4398 reset_all_packet_configs_support (void)
4399 {
4400 int i;
4401
4402 for (i = 0; i < PACKET_MAX; i++)
4403 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4404 }
4405
4406 /* Initialize all packet configs. */
4407
4408 static void
4409 init_all_packet_configs (void)
4410 {
4411 int i;
4412
4413 for (i = 0; i < PACKET_MAX; i++)
4414 {
4415 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4416 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4417 }
4418 }
4419
4420 /* Symbol look-up. */
4421
4422 static void
4423 remote_check_symbols (void)
4424 {
4425 struct remote_state *rs = get_remote_state ();
4426 char *msg, *reply, *tmp;
4427 int end;
4428 long reply_size;
4429 struct cleanup *old_chain;
4430
4431 /* The remote side has no concept of inferiors that aren't running
4432 yet, it only knows about running processes. If we're connected
4433 but our current inferior is not running, we should not invite the
4434 remote target to request symbol lookups related to its
4435 (unrelated) current process. */
4436 if (!target_has_execution)
4437 return;
4438
4439 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4440 return;
4441
4442 /* Make sure the remote is pointing at the right process. Note
4443 there's no way to select "no process". */
4444 set_general_process ();
4445
4446 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4447 because we need both at the same time. */
4448 msg = (char *) xmalloc (get_remote_packet_size ());
4449 old_chain = make_cleanup (xfree, msg);
4450 reply = (char *) xmalloc (get_remote_packet_size ());
4451 make_cleanup (free_current_contents, &reply);
4452 reply_size = get_remote_packet_size ();
4453
4454 /* Invite target to request symbol lookups. */
4455
4456 putpkt ("qSymbol::");
4457 getpkt (&reply, &reply_size, 0);
4458 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4459
4460 while (startswith (reply, "qSymbol:"))
4461 {
4462 struct bound_minimal_symbol sym;
4463
4464 tmp = &reply[8];
4465 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4466 msg[end] = '\0';
4467 sym = lookup_minimal_symbol (msg, NULL, NULL);
4468 if (sym.minsym == NULL)
4469 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4470 else
4471 {
4472 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4473 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4474
4475 /* If this is a function address, return the start of code
4476 instead of any data function descriptor. */
4477 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4478 sym_addr,
4479 &current_target);
4480
4481 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4482 phex_nz (sym_addr, addr_size), &reply[8]);
4483 }
4484
4485 putpkt (msg);
4486 getpkt (&reply, &reply_size, 0);
4487 }
4488
4489 do_cleanups (old_chain);
4490 }
4491
4492 static struct serial *
4493 remote_serial_open (const char *name)
4494 {
4495 static int udp_warning = 0;
4496
4497 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4498 of in ser-tcp.c, because it is the remote protocol assuming that the
4499 serial connection is reliable and not the serial connection promising
4500 to be. */
4501 if (!udp_warning && startswith (name, "udp:"))
4502 {
4503 warning (_("The remote protocol may be unreliable over UDP.\n"
4504 "Some events may be lost, rendering further debugging "
4505 "impossible."));
4506 udp_warning = 1;
4507 }
4508
4509 return serial_open (name);
4510 }
4511
4512 /* Inform the target of our permission settings. The permission flags
4513 work without this, but if the target knows the settings, it can do
4514 a couple things. First, it can add its own check, to catch cases
4515 that somehow manage to get by the permissions checks in target
4516 methods. Second, if the target is wired to disallow particular
4517 settings (for instance, a system in the field that is not set up to
4518 be able to stop at a breakpoint), it can object to any unavailable
4519 permissions. */
4520
4521 void
4522 remote_set_permissions (struct target_ops *self)
4523 {
4524 struct remote_state *rs = get_remote_state ();
4525
4526 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4527 "WriteReg:%x;WriteMem:%x;"
4528 "InsertBreak:%x;InsertTrace:%x;"
4529 "InsertFastTrace:%x;Stop:%x",
4530 may_write_registers, may_write_memory,
4531 may_insert_breakpoints, may_insert_tracepoints,
4532 may_insert_fast_tracepoints, may_stop);
4533 putpkt (rs->buf);
4534 getpkt (&rs->buf, &rs->buf_size, 0);
4535
4536 /* If the target didn't like the packet, warn the user. Do not try
4537 to undo the user's settings, that would just be maddening. */
4538 if (strcmp (rs->buf, "OK") != 0)
4539 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4540 }
4541
4542 /* This type describes each known response to the qSupported
4543 packet. */
4544 struct protocol_feature
4545 {
4546 /* The name of this protocol feature. */
4547 const char *name;
4548
4549 /* The default for this protocol feature. */
4550 enum packet_support default_support;
4551
4552 /* The function to call when this feature is reported, or after
4553 qSupported processing if the feature is not supported.
4554 The first argument points to this structure. The second
4555 argument indicates whether the packet requested support be
4556 enabled, disabled, or probed (or the default, if this function
4557 is being called at the end of processing and this feature was
4558 not reported). The third argument may be NULL; if not NULL, it
4559 is a NUL-terminated string taken from the packet following
4560 this feature's name and an equals sign. */
4561 void (*func) (const struct protocol_feature *, enum packet_support,
4562 const char *);
4563
4564 /* The corresponding packet for this feature. Only used if
4565 FUNC is remote_supported_packet. */
4566 int packet;
4567 };
4568
4569 static void
4570 remote_supported_packet (const struct protocol_feature *feature,
4571 enum packet_support support,
4572 const char *argument)
4573 {
4574 if (argument)
4575 {
4576 warning (_("Remote qSupported response supplied an unexpected value for"
4577 " \"%s\"."), feature->name);
4578 return;
4579 }
4580
4581 remote_protocol_packets[feature->packet].support = support;
4582 }
4583
4584 static void
4585 remote_packet_size (const struct protocol_feature *feature,
4586 enum packet_support support, const char *value)
4587 {
4588 struct remote_state *rs = get_remote_state ();
4589
4590 int packet_size;
4591 char *value_end;
4592
4593 if (support != PACKET_ENABLE)
4594 return;
4595
4596 if (value == NULL || *value == '\0')
4597 {
4598 warning (_("Remote target reported \"%s\" without a size."),
4599 feature->name);
4600 return;
4601 }
4602
4603 errno = 0;
4604 packet_size = strtol (value, &value_end, 16);
4605 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4606 {
4607 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4608 feature->name, value);
4609 return;
4610 }
4611
4612 /* Record the new maximum packet size. */
4613 rs->explicit_packet_size = packet_size;
4614 }
4615
4616 static const struct protocol_feature remote_protocol_features[] = {
4617 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4618 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4619 PACKET_qXfer_auxv },
4620 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4621 PACKET_qXfer_exec_file },
4622 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4623 PACKET_qXfer_features },
4624 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4625 PACKET_qXfer_libraries },
4626 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4627 PACKET_qXfer_libraries_svr4 },
4628 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4629 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4630 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4631 PACKET_qXfer_memory_map },
4632 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4633 PACKET_qXfer_spu_read },
4634 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4635 PACKET_qXfer_spu_write },
4636 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4637 PACKET_qXfer_osdata },
4638 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4639 PACKET_qXfer_threads },
4640 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4641 PACKET_qXfer_traceframe_info },
4642 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4643 PACKET_QPassSignals },
4644 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4645 PACKET_QCatchSyscalls },
4646 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4647 PACKET_QProgramSignals },
4648 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
4649 PACKET_QSetWorkingDir },
4650 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
4651 PACKET_QStartupWithShell },
4652 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
4653 PACKET_QEnvironmentHexEncoded },
4654 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
4655 PACKET_QEnvironmentReset },
4656 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
4657 PACKET_QEnvironmentUnset },
4658 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4659 PACKET_QStartNoAckMode },
4660 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4661 PACKET_multiprocess_feature },
4662 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4663 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4664 PACKET_qXfer_siginfo_read },
4665 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4666 PACKET_qXfer_siginfo_write },
4667 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4668 PACKET_ConditionalTracepoints },
4669 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4670 PACKET_ConditionalBreakpoints },
4671 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4672 PACKET_BreakpointCommands },
4673 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4674 PACKET_FastTracepoints },
4675 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4676 PACKET_StaticTracepoints },
4677 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4678 PACKET_InstallInTrace},
4679 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4680 PACKET_DisconnectedTracing_feature },
4681 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4682 PACKET_bc },
4683 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4684 PACKET_bs },
4685 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4686 PACKET_TracepointSource },
4687 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4688 PACKET_QAllow },
4689 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4690 PACKET_EnableDisableTracepoints_feature },
4691 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4692 PACKET_qXfer_fdpic },
4693 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4694 PACKET_qXfer_uib },
4695 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4696 PACKET_QDisableRandomization },
4697 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4698 { "QTBuffer:size", PACKET_DISABLE,
4699 remote_supported_packet, PACKET_QTBuffer_size},
4700 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4701 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4702 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4703 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4704 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4705 PACKET_qXfer_btrace },
4706 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4707 PACKET_qXfer_btrace_conf },
4708 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4709 PACKET_Qbtrace_conf_bts_size },
4710 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4711 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4712 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4713 PACKET_fork_event_feature },
4714 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4715 PACKET_vfork_event_feature },
4716 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4717 PACKET_exec_event_feature },
4718 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4719 PACKET_Qbtrace_conf_pt_size },
4720 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4721 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4722 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4723 };
4724
4725 static char *remote_support_xml;
4726
4727 /* Register string appended to "xmlRegisters=" in qSupported query. */
4728
4729 void
4730 register_remote_support_xml (const char *xml)
4731 {
4732 #if defined(HAVE_LIBEXPAT)
4733 if (remote_support_xml == NULL)
4734 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4735 else
4736 {
4737 char *copy = xstrdup (remote_support_xml + 13);
4738 char *p = strtok (copy, ",");
4739
4740 do
4741 {
4742 if (strcmp (p, xml) == 0)
4743 {
4744 /* already there */
4745 xfree (copy);
4746 return;
4747 }
4748 }
4749 while ((p = strtok (NULL, ",")) != NULL);
4750 xfree (copy);
4751
4752 remote_support_xml = reconcat (remote_support_xml,
4753 remote_support_xml, ",", xml,
4754 (char *) NULL);
4755 }
4756 #endif
4757 }
4758
4759 static char *
4760 remote_query_supported_append (char *msg, const char *append)
4761 {
4762 if (msg)
4763 return reconcat (msg, msg, ";", append, (char *) NULL);
4764 else
4765 return xstrdup (append);
4766 }
4767
4768 static void
4769 remote_query_supported (void)
4770 {
4771 struct remote_state *rs = get_remote_state ();
4772 char *next;
4773 int i;
4774 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4775
4776 /* The packet support flags are handled differently for this packet
4777 than for most others. We treat an error, a disabled packet, and
4778 an empty response identically: any features which must be reported
4779 to be used will be automatically disabled. An empty buffer
4780 accomplishes this, since that is also the representation for a list
4781 containing no features. */
4782
4783 rs->buf[0] = 0;
4784 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4785 {
4786 char *q = NULL;
4787 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4788
4789 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
4790 q = remote_query_supported_append (q, "multiprocess+");
4791
4792 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
4793 q = remote_query_supported_append (q, "swbreak+");
4794 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
4795 q = remote_query_supported_append (q, "hwbreak+");
4796
4797 q = remote_query_supported_append (q, "qRelocInsn+");
4798
4799 if (packet_set_cmd_state (PACKET_fork_event_feature)
4800 != AUTO_BOOLEAN_FALSE)
4801 q = remote_query_supported_append (q, "fork-events+");
4802 if (packet_set_cmd_state (PACKET_vfork_event_feature)
4803 != AUTO_BOOLEAN_FALSE)
4804 q = remote_query_supported_append (q, "vfork-events+");
4805 if (packet_set_cmd_state (PACKET_exec_event_feature)
4806 != AUTO_BOOLEAN_FALSE)
4807 q = remote_query_supported_append (q, "exec-events+");
4808
4809 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
4810 q = remote_query_supported_append (q, "vContSupported+");
4811
4812 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
4813 q = remote_query_supported_append (q, "QThreadEvents+");
4814
4815 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
4816 q = remote_query_supported_append (q, "no-resumed+");
4817
4818 /* Keep this one last to work around a gdbserver <= 7.10 bug in
4819 the qSupported:xmlRegisters=i386 handling. */
4820 if (remote_support_xml != NULL)
4821 q = remote_query_supported_append (q, remote_support_xml);
4822
4823 q = reconcat (q, "qSupported:", q, (char *) NULL);
4824 putpkt (q);
4825
4826 do_cleanups (old_chain);
4827
4828 getpkt (&rs->buf, &rs->buf_size, 0);
4829
4830 /* If an error occured, warn, but do not return - just reset the
4831 buffer to empty and go on to disable features. */
4832 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4833 == PACKET_ERROR)
4834 {
4835 warning (_("Remote failure reply: %s"), rs->buf);
4836 rs->buf[0] = 0;
4837 }
4838 }
4839
4840 memset (seen, 0, sizeof (seen));
4841
4842 next = rs->buf;
4843 while (*next)
4844 {
4845 enum packet_support is_supported;
4846 char *p, *end, *name_end, *value;
4847
4848 /* First separate out this item from the rest of the packet. If
4849 there's another item after this, we overwrite the separator
4850 (terminated strings are much easier to work with). */
4851 p = next;
4852 end = strchr (p, ';');
4853 if (end == NULL)
4854 {
4855 end = p + strlen (p);
4856 next = end;
4857 }
4858 else
4859 {
4860 *end = '\0';
4861 next = end + 1;
4862
4863 if (end == p)
4864 {
4865 warning (_("empty item in \"qSupported\" response"));
4866 continue;
4867 }
4868 }
4869
4870 name_end = strchr (p, '=');
4871 if (name_end)
4872 {
4873 /* This is a name=value entry. */
4874 is_supported = PACKET_ENABLE;
4875 value = name_end + 1;
4876 *name_end = '\0';
4877 }
4878 else
4879 {
4880 value = NULL;
4881 switch (end[-1])
4882 {
4883 case '+':
4884 is_supported = PACKET_ENABLE;
4885 break;
4886
4887 case '-':
4888 is_supported = PACKET_DISABLE;
4889 break;
4890
4891 case '?':
4892 is_supported = PACKET_SUPPORT_UNKNOWN;
4893 break;
4894
4895 default:
4896 warning (_("unrecognized item \"%s\" "
4897 "in \"qSupported\" response"), p);
4898 continue;
4899 }
4900 end[-1] = '\0';
4901 }
4902
4903 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4904 if (strcmp (remote_protocol_features[i].name, p) == 0)
4905 {
4906 const struct protocol_feature *feature;
4907
4908 seen[i] = 1;
4909 feature = &remote_protocol_features[i];
4910 feature->func (feature, is_supported, value);
4911 break;
4912 }
4913 }
4914
4915 /* If we increased the packet size, make sure to increase the global
4916 buffer size also. We delay this until after parsing the entire
4917 qSupported packet, because this is the same buffer we were
4918 parsing. */
4919 if (rs->buf_size < rs->explicit_packet_size)
4920 {
4921 rs->buf_size = rs->explicit_packet_size;
4922 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
4923 }
4924
4925 /* Handle the defaults for unmentioned features. */
4926 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4927 if (!seen[i])
4928 {
4929 const struct protocol_feature *feature;
4930
4931 feature = &remote_protocol_features[i];
4932 feature->func (feature, feature->default_support, NULL);
4933 }
4934 }
4935
4936 /* Serial QUIT handler for the remote serial descriptor.
4937
4938 Defers handling a Ctrl-C until we're done with the current
4939 command/response packet sequence, unless:
4940
4941 - We're setting up the connection. Don't send a remote interrupt
4942 request, as we're not fully synced yet. Quit immediately
4943 instead.
4944
4945 - The target has been resumed in the foreground
4946 (target_terminal::is_ours is false) with a synchronous resume
4947 packet, and we're blocked waiting for the stop reply, thus a
4948 Ctrl-C should be immediately sent to the target.
4949
4950 - We get a second Ctrl-C while still within the same serial read or
4951 write. In that case the serial is seemingly wedged --- offer to
4952 quit/disconnect.
4953
4954 - We see a second Ctrl-C without target response, after having
4955 previously interrupted the target. In that case the target/stub
4956 is probably wedged --- offer to quit/disconnect.
4957 */
4958
4959 static void
4960 remote_serial_quit_handler (void)
4961 {
4962 struct remote_state *rs = get_remote_state ();
4963
4964 if (check_quit_flag ())
4965 {
4966 /* If we're starting up, we're not fully synced yet. Quit
4967 immediately. */
4968 if (rs->starting_up)
4969 quit ();
4970 else if (rs->got_ctrlc_during_io)
4971 {
4972 if (query (_("The target is not responding to GDB commands.\n"
4973 "Stop debugging it? ")))
4974 remote_unpush_and_throw ();
4975 }
4976 /* If ^C has already been sent once, offer to disconnect. */
4977 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
4978 interrupt_query ();
4979 /* All-stop protocol, and blocked waiting for stop reply. Send
4980 an interrupt request. */
4981 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
4982 target_interrupt (inferior_ptid);
4983 else
4984 rs->got_ctrlc_during_io = 1;
4985 }
4986 }
4987
4988 /* Remove any of the remote.c targets from target stack. Upper targets depend
4989 on it so remove them first. */
4990
4991 static void
4992 remote_unpush_target (void)
4993 {
4994 pop_all_targets_at_and_above (process_stratum);
4995 }
4996
4997 static void
4998 remote_unpush_and_throw (void)
4999 {
5000 remote_unpush_target ();
5001 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5002 }
5003
5004 static void
5005 remote_open_1 (const char *name, int from_tty,
5006 struct target_ops *target, int extended_p)
5007 {
5008 struct remote_state *rs = get_remote_state ();
5009
5010 if (name == 0)
5011 error (_("To open a remote debug connection, you need to specify what\n"
5012 "serial device is attached to the remote system\n"
5013 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5014
5015 /* See FIXME above. */
5016 if (!target_async_permitted)
5017 wait_forever_enabled_p = 1;
5018
5019 /* If we're connected to a running target, target_preopen will kill it.
5020 Ask this question first, before target_preopen has a chance to kill
5021 anything. */
5022 if (rs->remote_desc != NULL && !have_inferiors ())
5023 {
5024 if (from_tty
5025 && !query (_("Already connected to a remote target. Disconnect? ")))
5026 error (_("Still connected."));
5027 }
5028
5029 /* Here the possibly existing remote target gets unpushed. */
5030 target_preopen (from_tty);
5031
5032 /* Make sure we send the passed signals list the next time we resume. */
5033 xfree (rs->last_pass_packet);
5034 rs->last_pass_packet = NULL;
5035
5036 /* Make sure we send the program signals list the next time we
5037 resume. */
5038 xfree (rs->last_program_signals_packet);
5039 rs->last_program_signals_packet = NULL;
5040
5041 remote_fileio_reset ();
5042 reopen_exec_file ();
5043 reread_symbols ();
5044
5045 rs->remote_desc = remote_serial_open (name);
5046 if (!rs->remote_desc)
5047 perror_with_name (name);
5048
5049 if (baud_rate != -1)
5050 {
5051 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5052 {
5053 /* The requested speed could not be set. Error out to
5054 top level after closing remote_desc. Take care to
5055 set remote_desc to NULL to avoid closing remote_desc
5056 more than once. */
5057 serial_close (rs->remote_desc);
5058 rs->remote_desc = NULL;
5059 perror_with_name (name);
5060 }
5061 }
5062
5063 serial_setparity (rs->remote_desc, serial_parity);
5064 serial_raw (rs->remote_desc);
5065
5066 /* If there is something sitting in the buffer we might take it as a
5067 response to a command, which would be bad. */
5068 serial_flush_input (rs->remote_desc);
5069
5070 if (from_tty)
5071 {
5072 puts_filtered ("Remote debugging using ");
5073 puts_filtered (name);
5074 puts_filtered ("\n");
5075 }
5076 push_target (target); /* Switch to using remote target now. */
5077
5078 /* Register extra event sources in the event loop. */
5079 remote_async_inferior_event_token
5080 = create_async_event_handler (remote_async_inferior_event_handler,
5081 NULL);
5082 rs->notif_state = remote_notif_state_allocate ();
5083
5084 /* Reset the target state; these things will be queried either by
5085 remote_query_supported or as they are needed. */
5086 reset_all_packet_configs_support ();
5087 rs->cached_wait_status = 0;
5088 rs->explicit_packet_size = 0;
5089 rs->noack_mode = 0;
5090 rs->extended = extended_p;
5091 rs->waiting_for_stop_reply = 0;
5092 rs->ctrlc_pending_p = 0;
5093 rs->got_ctrlc_during_io = 0;
5094
5095 rs->general_thread = not_sent_ptid;
5096 rs->continue_thread = not_sent_ptid;
5097 rs->remote_traceframe_number = -1;
5098
5099 rs->last_resume_exec_dir = EXEC_FORWARD;
5100
5101 /* Probe for ability to use "ThreadInfo" query, as required. */
5102 rs->use_threadinfo_query = 1;
5103 rs->use_threadextra_query = 1;
5104
5105 readahead_cache_invalidate ();
5106
5107 if (target_async_permitted)
5108 {
5109 /* FIXME: cagney/1999-09-23: During the initial connection it is
5110 assumed that the target is already ready and able to respond to
5111 requests. Unfortunately remote_start_remote() eventually calls
5112 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5113 around this. Eventually a mechanism that allows
5114 wait_for_inferior() to expect/get timeouts will be
5115 implemented. */
5116 wait_forever_enabled_p = 0;
5117 }
5118
5119 /* First delete any symbols previously loaded from shared libraries. */
5120 no_shared_libraries (NULL, 0);
5121
5122 /* Start afresh. */
5123 init_thread_list ();
5124
5125 /* Start the remote connection. If error() or QUIT, discard this
5126 target (we'd otherwise be in an inconsistent state) and then
5127 propogate the error on up the exception chain. This ensures that
5128 the caller doesn't stumble along blindly assuming that the
5129 function succeeded. The CLI doesn't have this problem but other
5130 UI's, such as MI do.
5131
5132 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5133 this function should return an error indication letting the
5134 caller restore the previous state. Unfortunately the command
5135 ``target remote'' is directly wired to this function making that
5136 impossible. On a positive note, the CLI side of this problem has
5137 been fixed - the function set_cmd_context() makes it possible for
5138 all the ``target ....'' commands to share a common callback
5139 function. See cli-dump.c. */
5140 {
5141
5142 TRY
5143 {
5144 remote_start_remote (from_tty, target, extended_p);
5145 }
5146 CATCH (ex, RETURN_MASK_ALL)
5147 {
5148 /* Pop the partially set up target - unless something else did
5149 already before throwing the exception. */
5150 if (rs->remote_desc != NULL)
5151 remote_unpush_target ();
5152 if (target_async_permitted)
5153 wait_forever_enabled_p = 1;
5154 throw_exception (ex);
5155 }
5156 END_CATCH
5157 }
5158
5159 remote_btrace_reset ();
5160
5161 if (target_async_permitted)
5162 wait_forever_enabled_p = 1;
5163 }
5164
5165 /* Detach the specified process. */
5166
5167 static void
5168 remote_detach_pid (int pid)
5169 {
5170 struct remote_state *rs = get_remote_state ();
5171
5172 if (remote_multi_process_p (rs))
5173 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5174 else
5175 strcpy (rs->buf, "D");
5176
5177 putpkt (rs->buf);
5178 getpkt (&rs->buf, &rs->buf_size, 0);
5179
5180 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5181 ;
5182 else if (rs->buf[0] == '\0')
5183 error (_("Remote doesn't know how to detach"));
5184 else
5185 error (_("Can't detach process."));
5186 }
5187
5188 /* This detaches a program to which we previously attached, using
5189 inferior_ptid to identify the process. After this is done, GDB
5190 can be used to debug some other program. We better not have left
5191 any breakpoints in the target program or it'll die when it hits
5192 one. */
5193
5194 static void
5195 remote_detach_1 (const char *args, int from_tty)
5196 {
5197 int pid = ptid_get_pid (inferior_ptid);
5198 struct remote_state *rs = get_remote_state ();
5199 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5200 int is_fork_parent;
5201
5202 if (args)
5203 error (_("Argument given to \"detach\" when remotely debugging."));
5204
5205 if (!target_has_execution)
5206 error (_("No process to detach from."));
5207
5208 target_announce_detach (from_tty);
5209
5210 /* Tell the remote target to detach. */
5211 remote_detach_pid (pid);
5212
5213 /* Exit only if this is the only active inferior. */
5214 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5215 puts_filtered (_("Ending remote debugging.\n"));
5216
5217 /* Check to see if we are detaching a fork parent. Note that if we
5218 are detaching a fork child, tp == NULL. */
5219 is_fork_parent = (tp != NULL
5220 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5221
5222 /* If doing detach-on-fork, we don't mourn, because that will delete
5223 breakpoints that should be available for the followed inferior. */
5224 if (!is_fork_parent)
5225 target_mourn_inferior (inferior_ptid);
5226 else
5227 {
5228 inferior_ptid = null_ptid;
5229 detach_inferior (pid);
5230 }
5231 }
5232
5233 static void
5234 remote_detach (struct target_ops *ops, const char *args, int from_tty)
5235 {
5236 remote_detach_1 (args, from_tty);
5237 }
5238
5239 static void
5240 extended_remote_detach (struct target_ops *ops, const char *args, int from_tty)
5241 {
5242 remote_detach_1 (args, from_tty);
5243 }
5244
5245 /* Target follow-fork function for remote targets. On entry, and
5246 at return, the current inferior is the fork parent.
5247
5248 Note that although this is currently only used for extended-remote,
5249 it is named remote_follow_fork in anticipation of using it for the
5250 remote target as well. */
5251
5252 static int
5253 remote_follow_fork (struct target_ops *ops, int follow_child,
5254 int detach_fork)
5255 {
5256 struct remote_state *rs = get_remote_state ();
5257 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5258
5259 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5260 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5261 {
5262 /* When following the parent and detaching the child, we detach
5263 the child here. For the case of following the child and
5264 detaching the parent, the detach is done in the target-
5265 independent follow fork code in infrun.c. We can't use
5266 target_detach when detaching an unfollowed child because
5267 the client side doesn't know anything about the child. */
5268 if (detach_fork && !follow_child)
5269 {
5270 /* Detach the fork child. */
5271 ptid_t child_ptid;
5272 pid_t child_pid;
5273
5274 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5275 child_pid = ptid_get_pid (child_ptid);
5276
5277 remote_detach_pid (child_pid);
5278 detach_inferior (child_pid);
5279 }
5280 }
5281 return 0;
5282 }
5283
5284 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5285 in the program space of the new inferior. On entry and at return the
5286 current inferior is the exec'ing inferior. INF is the new exec'd
5287 inferior, which may be the same as the exec'ing inferior unless
5288 follow-exec-mode is "new". */
5289
5290 static void
5291 remote_follow_exec (struct target_ops *ops,
5292 struct inferior *inf, char *execd_pathname)
5293 {
5294 /* We know that this is a target file name, so if it has the "target:"
5295 prefix we strip it off before saving it in the program space. */
5296 if (is_target_filename (execd_pathname))
5297 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5298
5299 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5300 }
5301
5302 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5303
5304 static void
5305 remote_disconnect (struct target_ops *target, const char *args, int from_tty)
5306 {
5307 if (args)
5308 error (_("Argument given to \"disconnect\" when remotely debugging."));
5309
5310 /* Make sure we unpush even the extended remote targets. Calling
5311 target_mourn_inferior won't unpush, and remote_mourn won't
5312 unpush if there is more than one inferior left. */
5313 unpush_target (target);
5314 generic_mourn_inferior ();
5315
5316 if (from_tty)
5317 puts_filtered ("Ending remote debugging.\n");
5318 }
5319
5320 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5321 be chatty about it. */
5322
5323 static void
5324 extended_remote_attach (struct target_ops *target, const char *args,
5325 int from_tty)
5326 {
5327 struct remote_state *rs = get_remote_state ();
5328 int pid;
5329 char *wait_status = NULL;
5330
5331 pid = parse_pid_to_attach (args);
5332
5333 /* Remote PID can be freely equal to getpid, do not check it here the same
5334 way as in other targets. */
5335
5336 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5337 error (_("This target does not support attaching to a process"));
5338
5339 if (from_tty)
5340 {
5341 char *exec_file = get_exec_file (0);
5342
5343 if (exec_file)
5344 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5345 target_pid_to_str (pid_to_ptid (pid)));
5346 else
5347 printf_unfiltered (_("Attaching to %s\n"),
5348 target_pid_to_str (pid_to_ptid (pid)));
5349
5350 gdb_flush (gdb_stdout);
5351 }
5352
5353 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5354 putpkt (rs->buf);
5355 getpkt (&rs->buf, &rs->buf_size, 0);
5356
5357 switch (packet_ok (rs->buf,
5358 &remote_protocol_packets[PACKET_vAttach]))
5359 {
5360 case PACKET_OK:
5361 if (!target_is_non_stop_p ())
5362 {
5363 /* Save the reply for later. */
5364 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5365 strcpy (wait_status, rs->buf);
5366 }
5367 else if (strcmp (rs->buf, "OK") != 0)
5368 error (_("Attaching to %s failed with: %s"),
5369 target_pid_to_str (pid_to_ptid (pid)),
5370 rs->buf);
5371 break;
5372 case PACKET_UNKNOWN:
5373 error (_("This target does not support attaching to a process"));
5374 default:
5375 error (_("Attaching to %s failed"),
5376 target_pid_to_str (pid_to_ptid (pid)));
5377 }
5378
5379 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5380
5381 inferior_ptid = pid_to_ptid (pid);
5382
5383 if (target_is_non_stop_p ())
5384 {
5385 struct thread_info *thread;
5386
5387 /* Get list of threads. */
5388 remote_update_thread_list (target);
5389
5390 thread = first_thread_of_process (pid);
5391 if (thread)
5392 inferior_ptid = thread->ptid;
5393 else
5394 inferior_ptid = pid_to_ptid (pid);
5395
5396 /* Invalidate our notion of the remote current thread. */
5397 record_currthread (rs, minus_one_ptid);
5398 }
5399 else
5400 {
5401 /* Now, if we have thread information, update inferior_ptid. */
5402 inferior_ptid = remote_current_thread (inferior_ptid);
5403
5404 /* Add the main thread to the thread list. */
5405 add_thread_silent (inferior_ptid);
5406 }
5407
5408 /* Next, if the target can specify a description, read it. We do
5409 this before anything involving memory or registers. */
5410 target_find_description ();
5411
5412 if (!target_is_non_stop_p ())
5413 {
5414 /* Use the previously fetched status. */
5415 gdb_assert (wait_status != NULL);
5416
5417 if (target_can_async_p ())
5418 {
5419 struct notif_event *reply
5420 = remote_notif_parse (&notif_client_stop, wait_status);
5421
5422 push_stop_reply ((struct stop_reply *) reply);
5423
5424 target_async (1);
5425 }
5426 else
5427 {
5428 gdb_assert (wait_status != NULL);
5429 strcpy (rs->buf, wait_status);
5430 rs->cached_wait_status = 1;
5431 }
5432 }
5433 else
5434 gdb_assert (wait_status == NULL);
5435 }
5436
5437 /* Implementation of the to_post_attach method. */
5438
5439 static void
5440 extended_remote_post_attach (struct target_ops *ops, int pid)
5441 {
5442 /* Get text, data & bss offsets. */
5443 get_offsets ();
5444
5445 /* In certain cases GDB might not have had the chance to start
5446 symbol lookup up until now. This could happen if the debugged
5447 binary is not using shared libraries, the vsyscall page is not
5448 present (on Linux) and the binary itself hadn't changed since the
5449 debugging process was started. */
5450 if (symfile_objfile != NULL)
5451 remote_check_symbols();
5452 }
5453
5454 \f
5455 /* Check for the availability of vCont. This function should also check
5456 the response. */
5457
5458 static void
5459 remote_vcont_probe (struct remote_state *rs)
5460 {
5461 char *buf;
5462
5463 strcpy (rs->buf, "vCont?");
5464 putpkt (rs->buf);
5465 getpkt (&rs->buf, &rs->buf_size, 0);
5466 buf = rs->buf;
5467
5468 /* Make sure that the features we assume are supported. */
5469 if (startswith (buf, "vCont"))
5470 {
5471 char *p = &buf[5];
5472 int support_c, support_C;
5473
5474 rs->supports_vCont.s = 0;
5475 rs->supports_vCont.S = 0;
5476 support_c = 0;
5477 support_C = 0;
5478 rs->supports_vCont.t = 0;
5479 rs->supports_vCont.r = 0;
5480 while (p && *p == ';')
5481 {
5482 p++;
5483 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5484 rs->supports_vCont.s = 1;
5485 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5486 rs->supports_vCont.S = 1;
5487 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5488 support_c = 1;
5489 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5490 support_C = 1;
5491 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5492 rs->supports_vCont.t = 1;
5493 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5494 rs->supports_vCont.r = 1;
5495
5496 p = strchr (p, ';');
5497 }
5498
5499 /* If c, and C are not all supported, we can't use vCont. Clearing
5500 BUF will make packet_ok disable the packet. */
5501 if (!support_c || !support_C)
5502 buf[0] = 0;
5503 }
5504
5505 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5506 }
5507
5508 /* Helper function for building "vCont" resumptions. Write a
5509 resumption to P. ENDP points to one-passed-the-end of the buffer
5510 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5511 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5512 resumed thread should be single-stepped and/or signalled. If PTID
5513 equals minus_one_ptid, then all threads are resumed; if PTID
5514 represents a process, then all threads of the process are resumed;
5515 the thread to be stepped and/or signalled is given in the global
5516 INFERIOR_PTID. */
5517
5518 static char *
5519 append_resumption (char *p, char *endp,
5520 ptid_t ptid, int step, enum gdb_signal siggnal)
5521 {
5522 struct remote_state *rs = get_remote_state ();
5523
5524 if (step && siggnal != GDB_SIGNAL_0)
5525 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5526 else if (step
5527 /* GDB is willing to range step. */
5528 && use_range_stepping
5529 /* Target supports range stepping. */
5530 && rs->supports_vCont.r
5531 /* We don't currently support range stepping multiple
5532 threads with a wildcard (though the protocol allows it,
5533 so stubs shouldn't make an active effort to forbid
5534 it). */
5535 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5536 {
5537 struct thread_info *tp;
5538
5539 if (ptid_equal (ptid, minus_one_ptid))
5540 {
5541 /* If we don't know about the target thread's tid, then
5542 we're resuming magic_null_ptid (see caller). */
5543 tp = find_thread_ptid (magic_null_ptid);
5544 }
5545 else
5546 tp = find_thread_ptid (ptid);
5547 gdb_assert (tp != NULL);
5548
5549 if (tp->control.may_range_step)
5550 {
5551 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5552
5553 p += xsnprintf (p, endp - p, ";r%s,%s",
5554 phex_nz (tp->control.step_range_start,
5555 addr_size),
5556 phex_nz (tp->control.step_range_end,
5557 addr_size));
5558 }
5559 else
5560 p += xsnprintf (p, endp - p, ";s");
5561 }
5562 else if (step)
5563 p += xsnprintf (p, endp - p, ";s");
5564 else if (siggnal != GDB_SIGNAL_0)
5565 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5566 else
5567 p += xsnprintf (p, endp - p, ";c");
5568
5569 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5570 {
5571 ptid_t nptid;
5572
5573 /* All (-1) threads of process. */
5574 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5575
5576 p += xsnprintf (p, endp - p, ":");
5577 p = write_ptid (p, endp, nptid);
5578 }
5579 else if (!ptid_equal (ptid, minus_one_ptid))
5580 {
5581 p += xsnprintf (p, endp - p, ":");
5582 p = write_ptid (p, endp, ptid);
5583 }
5584
5585 return p;
5586 }
5587
5588 /* Clear the thread's private info on resume. */
5589
5590 static void
5591 resume_clear_thread_private_info (struct thread_info *thread)
5592 {
5593 if (thread->priv != NULL)
5594 {
5595 thread->priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5596 thread->priv->watch_data_address = 0;
5597 }
5598 }
5599
5600 /* Append a vCont continue-with-signal action for threads that have a
5601 non-zero stop signal. */
5602
5603 static char *
5604 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5605 {
5606 struct thread_info *thread;
5607
5608 ALL_NON_EXITED_THREADS (thread)
5609 if (ptid_match (thread->ptid, ptid)
5610 && !ptid_equal (inferior_ptid, thread->ptid)
5611 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5612 {
5613 p = append_resumption (p, endp, thread->ptid,
5614 0, thread->suspend.stop_signal);
5615 thread->suspend.stop_signal = GDB_SIGNAL_0;
5616 resume_clear_thread_private_info (thread);
5617 }
5618
5619 return p;
5620 }
5621
5622 /* Set the target running, using the packets that use Hc
5623 (c/s/C/S). */
5624
5625 static void
5626 remote_resume_with_hc (struct target_ops *ops,
5627 ptid_t ptid, int step, enum gdb_signal siggnal)
5628 {
5629 struct remote_state *rs = get_remote_state ();
5630 struct thread_info *thread;
5631 char *buf;
5632
5633 rs->last_sent_signal = siggnal;
5634 rs->last_sent_step = step;
5635
5636 /* The c/s/C/S resume packets use Hc, so set the continue
5637 thread. */
5638 if (ptid_equal (ptid, minus_one_ptid))
5639 set_continue_thread (any_thread_ptid);
5640 else
5641 set_continue_thread (ptid);
5642
5643 ALL_NON_EXITED_THREADS (thread)
5644 resume_clear_thread_private_info (thread);
5645
5646 buf = rs->buf;
5647 if (execution_direction == EXEC_REVERSE)
5648 {
5649 /* We don't pass signals to the target in reverse exec mode. */
5650 if (info_verbose && siggnal != GDB_SIGNAL_0)
5651 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5652 siggnal);
5653
5654 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5655 error (_("Remote reverse-step not supported."));
5656 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5657 error (_("Remote reverse-continue not supported."));
5658
5659 strcpy (buf, step ? "bs" : "bc");
5660 }
5661 else if (siggnal != GDB_SIGNAL_0)
5662 {
5663 buf[0] = step ? 'S' : 'C';
5664 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5665 buf[2] = tohex (((int) siggnal) & 0xf);
5666 buf[3] = '\0';
5667 }
5668 else
5669 strcpy (buf, step ? "s" : "c");
5670
5671 putpkt (buf);
5672 }
5673
5674 /* Resume the remote inferior by using a "vCont" packet. The thread
5675 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5676 resumed thread should be single-stepped and/or signalled. If PTID
5677 equals minus_one_ptid, then all threads are resumed; the thread to
5678 be stepped and/or signalled is given in the global INFERIOR_PTID.
5679 This function returns non-zero iff it resumes the inferior.
5680
5681 This function issues a strict subset of all possible vCont commands
5682 at the moment. */
5683
5684 static int
5685 remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5686 {
5687 struct remote_state *rs = get_remote_state ();
5688 char *p;
5689 char *endp;
5690
5691 /* No reverse execution actions defined for vCont. */
5692 if (execution_direction == EXEC_REVERSE)
5693 return 0;
5694
5695 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5696 remote_vcont_probe (rs);
5697
5698 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5699 return 0;
5700
5701 p = rs->buf;
5702 endp = rs->buf + get_remote_packet_size ();
5703
5704 /* If we could generate a wider range of packets, we'd have to worry
5705 about overflowing BUF. Should there be a generic
5706 "multi-part-packet" packet? */
5707
5708 p += xsnprintf (p, endp - p, "vCont");
5709
5710 if (ptid_equal (ptid, magic_null_ptid))
5711 {
5712 /* MAGIC_NULL_PTID means that we don't have any active threads,
5713 so we don't have any TID numbers the inferior will
5714 understand. Make sure to only send forms that do not specify
5715 a TID. */
5716 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5717 }
5718 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5719 {
5720 /* Resume all threads (of all processes, or of a single
5721 process), with preference for INFERIOR_PTID. This assumes
5722 inferior_ptid belongs to the set of all threads we are about
5723 to resume. */
5724 if (step || siggnal != GDB_SIGNAL_0)
5725 {
5726 /* Step inferior_ptid, with or without signal. */
5727 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5728 }
5729
5730 /* Also pass down any pending signaled resumption for other
5731 threads not the current. */
5732 p = append_pending_thread_resumptions (p, endp, ptid);
5733
5734 /* And continue others without a signal. */
5735 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5736 }
5737 else
5738 {
5739 /* Scheduler locking; resume only PTID. */
5740 append_resumption (p, endp, ptid, step, siggnal);
5741 }
5742
5743 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5744 putpkt (rs->buf);
5745
5746 if (target_is_non_stop_p ())
5747 {
5748 /* In non-stop, the stub replies to vCont with "OK". The stop
5749 reply will be reported asynchronously by means of a `%Stop'
5750 notification. */
5751 getpkt (&rs->buf, &rs->buf_size, 0);
5752 if (strcmp (rs->buf, "OK") != 0)
5753 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5754 }
5755
5756 return 1;
5757 }
5758
5759 /* Tell the remote machine to resume. */
5760
5761 static void
5762 remote_resume (struct target_ops *ops,
5763 ptid_t ptid, int step, enum gdb_signal siggnal)
5764 {
5765 struct remote_state *rs = get_remote_state ();
5766
5767 /* When connected in non-stop mode, the core resumes threads
5768 individually. Resuming remote threads directly in target_resume
5769 would thus result in sending one packet per thread. Instead, to
5770 minimize roundtrip latency, here we just store the resume
5771 request; the actual remote resumption will be done in
5772 target_commit_resume / remote_commit_resume, where we'll be able
5773 to do vCont action coalescing. */
5774 if (target_is_non_stop_p () && execution_direction != EXEC_REVERSE)
5775 {
5776 struct private_thread_info *remote_thr;
5777
5778 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
5779 remote_thr = get_private_info_ptid (inferior_ptid);
5780 else
5781 remote_thr = get_private_info_ptid (ptid);
5782 remote_thr->last_resume_step = step;
5783 remote_thr->last_resume_sig = siggnal;
5784 return;
5785 }
5786
5787 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
5788 (explained in remote-notif.c:handle_notification) so
5789 remote_notif_process is not called. We need find a place where
5790 it is safe to start a 'vNotif' sequence. It is good to do it
5791 before resuming inferior, because inferior was stopped and no RSP
5792 traffic at that moment. */
5793 if (!target_is_non_stop_p ())
5794 remote_notif_process (rs->notif_state, &notif_client_stop);
5795
5796 rs->last_resume_exec_dir = execution_direction;
5797
5798 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
5799 if (!remote_resume_with_vcont (ptid, step, siggnal))
5800 remote_resume_with_hc (ops, ptid, step, siggnal);
5801
5802 /* We are about to start executing the inferior, let's register it
5803 with the event loop. NOTE: this is the one place where all the
5804 execution commands end up. We could alternatively do this in each
5805 of the execution commands in infcmd.c. */
5806 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5807 into infcmd.c in order to allow inferior function calls to work
5808 NOT asynchronously. */
5809 if (target_can_async_p ())
5810 target_async (1);
5811
5812 /* We've just told the target to resume. The remote server will
5813 wait for the inferior to stop, and then send a stop reply. In
5814 the mean time, we can't start another command/query ourselves
5815 because the stub wouldn't be ready to process it. This applies
5816 only to the base all-stop protocol, however. In non-stop (which
5817 only supports vCont), the stub replies with an "OK", and is
5818 immediate able to process further serial input. */
5819 if (!target_is_non_stop_p ())
5820 rs->waiting_for_stop_reply = 1;
5821 }
5822
5823 static void check_pending_events_prevent_wildcard_vcont
5824 (int *may_global_wildcard_vcont);
5825 static int is_pending_fork_parent_thread (struct thread_info *thread);
5826
5827 /* Private per-inferior info for target remote processes. */
5828
5829 struct private_inferior
5830 {
5831 /* Whether we can send a wildcard vCont for this process. */
5832 int may_wildcard_vcont;
5833 };
5834
5835 /* Structure used to track the construction of a vCont packet in the
5836 outgoing packet buffer. This is used to send multiple vCont
5837 packets if we have more actions than would fit a single packet. */
5838
5839 struct vcont_builder
5840 {
5841 /* Pointer to the first action. P points here if no action has been
5842 appended yet. */
5843 char *first_action;
5844
5845 /* Where the next action will be appended. */
5846 char *p;
5847
5848 /* The end of the buffer. Must never write past this. */
5849 char *endp;
5850 };
5851
5852 /* Prepare the outgoing buffer for a new vCont packet. */
5853
5854 static void
5855 vcont_builder_restart (struct vcont_builder *builder)
5856 {
5857 struct remote_state *rs = get_remote_state ();
5858
5859 builder->p = rs->buf;
5860 builder->endp = rs->buf + get_remote_packet_size ();
5861 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
5862 builder->first_action = builder->p;
5863 }
5864
5865 /* If the vCont packet being built has any action, send it to the
5866 remote end. */
5867
5868 static void
5869 vcont_builder_flush (struct vcont_builder *builder)
5870 {
5871 struct remote_state *rs;
5872
5873 if (builder->p == builder->first_action)
5874 return;
5875
5876 rs = get_remote_state ();
5877 putpkt (rs->buf);
5878 getpkt (&rs->buf, &rs->buf_size, 0);
5879 if (strcmp (rs->buf, "OK") != 0)
5880 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5881 }
5882
5883 /* The largest action is range-stepping, with its two addresses. This
5884 is more than sufficient. If a new, bigger action is created, it'll
5885 quickly trigger a failed assertion in append_resumption (and we'll
5886 just bump this). */
5887 #define MAX_ACTION_SIZE 200
5888
5889 /* Append a new vCont action in the outgoing packet being built. If
5890 the action doesn't fit the packet along with previous actions, push
5891 what we've got so far to the remote end and start over a new vCont
5892 packet (with the new action). */
5893
5894 static void
5895 vcont_builder_push_action (struct vcont_builder *builder,
5896 ptid_t ptid, int step, enum gdb_signal siggnal)
5897 {
5898 char buf[MAX_ACTION_SIZE + 1];
5899 char *endp;
5900 size_t rsize;
5901
5902 endp = append_resumption (buf, buf + sizeof (buf),
5903 ptid, step, siggnal);
5904
5905 /* Check whether this new action would fit in the vCont packet along
5906 with previous actions. If not, send what we've got so far and
5907 start a new vCont packet. */
5908 rsize = endp - buf;
5909 if (rsize > builder->endp - builder->p)
5910 {
5911 vcont_builder_flush (builder);
5912 vcont_builder_restart (builder);
5913
5914 /* Should now fit. */
5915 gdb_assert (rsize <= builder->endp - builder->p);
5916 }
5917
5918 memcpy (builder->p, buf, rsize);
5919 builder->p += rsize;
5920 *builder->p = '\0';
5921 }
5922
5923 /* to_commit_resume implementation. */
5924
5925 static void
5926 remote_commit_resume (struct target_ops *ops)
5927 {
5928 struct remote_state *rs = get_remote_state ();
5929 struct inferior *inf;
5930 struct thread_info *tp;
5931 int any_process_wildcard;
5932 int may_global_wildcard_vcont;
5933 struct vcont_builder vcont_builder;
5934
5935 /* If connected in all-stop mode, we'd send the remote resume
5936 request directly from remote_resume. Likewise if
5937 reverse-debugging, as there are no defined vCont actions for
5938 reverse execution. */
5939 if (!target_is_non_stop_p () || execution_direction == EXEC_REVERSE)
5940 return;
5941
5942 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
5943 instead of resuming all threads of each process individually.
5944 However, if any thread of a process must remain halted, we can't
5945 send wildcard resumes and must send one action per thread.
5946
5947 Care must be taken to not resume threads/processes the server
5948 side already told us are stopped, but the core doesn't know about
5949 yet, because the events are still in the vStopped notification
5950 queue. For example:
5951
5952 #1 => vCont s:p1.1;c
5953 #2 <= OK
5954 #3 <= %Stopped T05 p1.1
5955 #4 => vStopped
5956 #5 <= T05 p1.2
5957 #6 => vStopped
5958 #7 <= OK
5959 #8 (infrun handles the stop for p1.1 and continues stepping)
5960 #9 => vCont s:p1.1;c
5961
5962 The last vCont above would resume thread p1.2 by mistake, because
5963 the server has no idea that the event for p1.2 had not been
5964 handled yet.
5965
5966 The server side must similarly ignore resume actions for the
5967 thread that has a pending %Stopped notification (and any other
5968 threads with events pending), until GDB acks the notification
5969 with vStopped. Otherwise, e.g., the following case is
5970 mishandled:
5971
5972 #1 => g (or any other packet)
5973 #2 <= [registers]
5974 #3 <= %Stopped T05 p1.2
5975 #4 => vCont s:p1.1;c
5976 #5 <= OK
5977
5978 Above, the server must not resume thread p1.2. GDB can't know
5979 that p1.2 stopped until it acks the %Stopped notification, and
5980 since from GDB's perspective all threads should be running, it
5981 sends a "c" action.
5982
5983 Finally, special care must also be given to handling fork/vfork
5984 events. A (v)fork event actually tells us that two processes
5985 stopped -- the parent and the child. Until we follow the fork,
5986 we must not resume the child. Therefore, if we have a pending
5987 fork follow, we must not send a global wildcard resume action
5988 (vCont;c). We can still send process-wide wildcards though. */
5989
5990 /* Start by assuming a global wildcard (vCont;c) is possible. */
5991 may_global_wildcard_vcont = 1;
5992
5993 /* And assume every process is individually wildcard-able too. */
5994 ALL_NON_EXITED_INFERIORS (inf)
5995 {
5996 if (inf->priv == NULL)
5997 inf->priv = XNEW (struct private_inferior);
5998 inf->priv->may_wildcard_vcont = 1;
5999 }
6000
6001 /* Check for any pending events (not reported or processed yet) and
6002 disable process and global wildcard resumes appropriately. */
6003 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6004
6005 ALL_NON_EXITED_THREADS (tp)
6006 {
6007 /* If a thread of a process is not meant to be resumed, then we
6008 can't wildcard that process. */
6009 if (!tp->executing)
6010 {
6011 tp->inf->priv->may_wildcard_vcont = 0;
6012
6013 /* And if we can't wildcard a process, we can't wildcard
6014 everything either. */
6015 may_global_wildcard_vcont = 0;
6016 continue;
6017 }
6018
6019 /* If a thread is the parent of an unfollowed fork, then we
6020 can't do a global wildcard, as that would resume the fork
6021 child. */
6022 if (is_pending_fork_parent_thread (tp))
6023 may_global_wildcard_vcont = 0;
6024 }
6025
6026 /* Now let's build the vCont packet(s). Actions must be appended
6027 from narrower to wider scopes (thread -> process -> global). If
6028 we end up with too many actions for a single packet vcont_builder
6029 flushes the current vCont packet to the remote side and starts a
6030 new one. */
6031 vcont_builder_restart (&vcont_builder);
6032
6033 /* Threads first. */
6034 ALL_NON_EXITED_THREADS (tp)
6035 {
6036 struct private_thread_info *remote_thr = tp->priv;
6037
6038 if (!tp->executing || remote_thr->vcont_resumed)
6039 continue;
6040
6041 gdb_assert (!thread_is_in_step_over_chain (tp));
6042
6043 if (!remote_thr->last_resume_step
6044 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6045 && tp->inf->priv->may_wildcard_vcont)
6046 {
6047 /* We'll send a wildcard resume instead. */
6048 remote_thr->vcont_resumed = 1;
6049 continue;
6050 }
6051
6052 vcont_builder_push_action (&vcont_builder, tp->ptid,
6053 remote_thr->last_resume_step,
6054 remote_thr->last_resume_sig);
6055 remote_thr->vcont_resumed = 1;
6056 }
6057
6058 /* Now check whether we can send any process-wide wildcard. This is
6059 to avoid sending a global wildcard in the case nothing is
6060 supposed to be resumed. */
6061 any_process_wildcard = 0;
6062
6063 ALL_NON_EXITED_INFERIORS (inf)
6064 {
6065 if (inf->priv->may_wildcard_vcont)
6066 {
6067 any_process_wildcard = 1;
6068 break;
6069 }
6070 }
6071
6072 if (any_process_wildcard)
6073 {
6074 /* If all processes are wildcard-able, then send a single "c"
6075 action, otherwise, send an "all (-1) threads of process"
6076 continue action for each running process, if any. */
6077 if (may_global_wildcard_vcont)
6078 {
6079 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6080 0, GDB_SIGNAL_0);
6081 }
6082 else
6083 {
6084 ALL_NON_EXITED_INFERIORS (inf)
6085 {
6086 if (inf->priv->may_wildcard_vcont)
6087 {
6088 vcont_builder_push_action (&vcont_builder,
6089 pid_to_ptid (inf->pid),
6090 0, GDB_SIGNAL_0);
6091 }
6092 }
6093 }
6094 }
6095
6096 vcont_builder_flush (&vcont_builder);
6097 }
6098
6099 \f
6100
6101 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6102 thread, all threads of a remote process, or all threads of all
6103 processes. */
6104
6105 static void
6106 remote_stop_ns (ptid_t ptid)
6107 {
6108 struct remote_state *rs = get_remote_state ();
6109 char *p = rs->buf;
6110 char *endp = rs->buf + get_remote_packet_size ();
6111
6112 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6113 remote_vcont_probe (rs);
6114
6115 if (!rs->supports_vCont.t)
6116 error (_("Remote server does not support stopping threads"));
6117
6118 if (ptid_equal (ptid, minus_one_ptid)
6119 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6120 p += xsnprintf (p, endp - p, "vCont;t");
6121 else
6122 {
6123 ptid_t nptid;
6124
6125 p += xsnprintf (p, endp - p, "vCont;t:");
6126
6127 if (ptid_is_pid (ptid))
6128 /* All (-1) threads of process. */
6129 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6130 else
6131 {
6132 /* Small optimization: if we already have a stop reply for
6133 this thread, no use in telling the stub we want this
6134 stopped. */
6135 if (peek_stop_reply (ptid))
6136 return;
6137
6138 nptid = ptid;
6139 }
6140
6141 write_ptid (p, endp, nptid);
6142 }
6143
6144 /* In non-stop, we get an immediate OK reply. The stop reply will
6145 come in asynchronously by notification. */
6146 putpkt (rs->buf);
6147 getpkt (&rs->buf, &rs->buf_size, 0);
6148 if (strcmp (rs->buf, "OK") != 0)
6149 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6150 }
6151
6152 /* All-stop version of target_interrupt. Sends a break or a ^C to
6153 interrupt the remote target. It is undefined which thread of which
6154 process reports the interrupt. */
6155
6156 static void
6157 remote_interrupt_as (void)
6158 {
6159 struct remote_state *rs = get_remote_state ();
6160
6161 rs->ctrlc_pending_p = 1;
6162
6163 /* If the inferior is stopped already, but the core didn't know
6164 about it yet, just ignore the request. The cached wait status
6165 will be collected in remote_wait. */
6166 if (rs->cached_wait_status)
6167 return;
6168
6169 /* Send interrupt_sequence to remote target. */
6170 send_interrupt_sequence ();
6171 }
6172
6173 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6174 the remote target. It is undefined which thread of which process
6175 reports the interrupt. Throws an error if the packet is not
6176 supported by the server. */
6177
6178 static void
6179 remote_interrupt_ns (void)
6180 {
6181 struct remote_state *rs = get_remote_state ();
6182 char *p = rs->buf;
6183 char *endp = rs->buf + get_remote_packet_size ();
6184
6185 xsnprintf (p, endp - p, "vCtrlC");
6186
6187 /* In non-stop, we get an immediate OK reply. The stop reply will
6188 come in asynchronously by notification. */
6189 putpkt (rs->buf);
6190 getpkt (&rs->buf, &rs->buf_size, 0);
6191
6192 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6193 {
6194 case PACKET_OK:
6195 break;
6196 case PACKET_UNKNOWN:
6197 error (_("No support for interrupting the remote target."));
6198 case PACKET_ERROR:
6199 error (_("Interrupting target failed: %s"), rs->buf);
6200 }
6201 }
6202
6203 /* Implement the to_stop function for the remote targets. */
6204
6205 static void
6206 remote_stop (struct target_ops *self, ptid_t ptid)
6207 {
6208 if (remote_debug)
6209 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6210
6211 if (target_is_non_stop_p ())
6212 remote_stop_ns (ptid);
6213 else
6214 {
6215 /* We don't currently have a way to transparently pause the
6216 remote target in all-stop mode. Interrupt it instead. */
6217 remote_interrupt_as ();
6218 }
6219 }
6220
6221 /* Implement the to_interrupt function for the remote targets. */
6222
6223 static void
6224 remote_interrupt (struct target_ops *self, ptid_t ptid)
6225 {
6226 struct remote_state *rs = get_remote_state ();
6227
6228 if (remote_debug)
6229 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6230
6231 if (target_is_non_stop_p ())
6232 remote_interrupt_ns ();
6233 else
6234 remote_interrupt_as ();
6235 }
6236
6237 /* Implement the to_pass_ctrlc function for the remote targets. */
6238
6239 static void
6240 remote_pass_ctrlc (struct target_ops *self)
6241 {
6242 struct remote_state *rs = get_remote_state ();
6243
6244 if (remote_debug)
6245 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6246
6247 /* If we're starting up, we're not fully synced yet. Quit
6248 immediately. */
6249 if (rs->starting_up)
6250 quit ();
6251 /* If ^C has already been sent once, offer to disconnect. */
6252 else if (rs->ctrlc_pending_p)
6253 interrupt_query ();
6254 else
6255 target_interrupt (inferior_ptid);
6256 }
6257
6258 /* Ask the user what to do when an interrupt is received. */
6259
6260 static void
6261 interrupt_query (void)
6262 {
6263 struct remote_state *rs = get_remote_state ();
6264
6265 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6266 {
6267 if (query (_("The target is not responding to interrupt requests.\n"
6268 "Stop debugging it? ")))
6269 {
6270 remote_unpush_target ();
6271 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6272 }
6273 }
6274 else
6275 {
6276 if (query (_("Interrupted while waiting for the program.\n"
6277 "Give up waiting? ")))
6278 quit ();
6279 }
6280 }
6281
6282 /* Enable/disable target terminal ownership. Most targets can use
6283 terminal groups to control terminal ownership. Remote targets are
6284 different in that explicit transfer of ownership to/from GDB/target
6285 is required. */
6286
6287 static void
6288 remote_terminal_inferior (struct target_ops *self)
6289 {
6290 /* NOTE: At this point we could also register our selves as the
6291 recipient of all input. Any characters typed could then be
6292 passed on down to the target. */
6293 }
6294
6295 static void
6296 remote_terminal_ours (struct target_ops *self)
6297 {
6298 }
6299
6300 static void
6301 remote_console_output (char *msg)
6302 {
6303 char *p;
6304
6305 for (p = msg; p[0] && p[1]; p += 2)
6306 {
6307 char tb[2];
6308 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6309
6310 tb[0] = c;
6311 tb[1] = 0;
6312 fputs_unfiltered (tb, gdb_stdtarg);
6313 }
6314 gdb_flush (gdb_stdtarg);
6315 }
6316
6317 DEF_VEC_O(cached_reg_t);
6318
6319 typedef struct stop_reply
6320 {
6321 struct notif_event base;
6322
6323 /* The identifier of the thread about this event */
6324 ptid_t ptid;
6325
6326 /* The remote state this event is associated with. When the remote
6327 connection, represented by a remote_state object, is closed,
6328 all the associated stop_reply events should be released. */
6329 struct remote_state *rs;
6330
6331 struct target_waitstatus ws;
6332
6333 /* The architecture associated with the expedited registers. */
6334 gdbarch *arch;
6335
6336 /* Expedited registers. This makes remote debugging a bit more
6337 efficient for those targets that provide critical registers as
6338 part of their normal status mechanism (as another roundtrip to
6339 fetch them is avoided). */
6340 VEC(cached_reg_t) *regcache;
6341
6342 enum target_stop_reason stop_reason;
6343
6344 CORE_ADDR watch_data_address;
6345
6346 int core;
6347 } *stop_reply_p;
6348
6349 DECLARE_QUEUE_P (stop_reply_p);
6350 DEFINE_QUEUE_P (stop_reply_p);
6351 /* The list of already fetched and acknowledged stop events. This
6352 queue is used for notification Stop, and other notifications
6353 don't need queue for their events, because the notification events
6354 of Stop can't be consumed immediately, so that events should be
6355 queued first, and be consumed by remote_wait_{ns,as} one per
6356 time. Other notifications can consume their events immediately,
6357 so queue is not needed for them. */
6358 static QUEUE (stop_reply_p) *stop_reply_queue;
6359
6360 static void
6361 stop_reply_xfree (struct stop_reply *r)
6362 {
6363 notif_event_xfree ((struct notif_event *) r);
6364 }
6365
6366 /* Return the length of the stop reply queue. */
6367
6368 static int
6369 stop_reply_queue_length (void)
6370 {
6371 return QUEUE_length (stop_reply_p, stop_reply_queue);
6372 }
6373
6374 static void
6375 remote_notif_stop_parse (struct notif_client *self, char *buf,
6376 struct notif_event *event)
6377 {
6378 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6379 }
6380
6381 static void
6382 remote_notif_stop_ack (struct notif_client *self, char *buf,
6383 struct notif_event *event)
6384 {
6385 struct stop_reply *stop_reply = (struct stop_reply *) event;
6386
6387 /* acknowledge */
6388 putpkt (self->ack_command);
6389
6390 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6391 /* We got an unknown stop reply. */
6392 error (_("Unknown stop reply"));
6393
6394 push_stop_reply (stop_reply);
6395 }
6396
6397 static int
6398 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6399 {
6400 /* We can't get pending events in remote_notif_process for
6401 notification stop, and we have to do this in remote_wait_ns
6402 instead. If we fetch all queued events from stub, remote stub
6403 may exit and we have no chance to process them back in
6404 remote_wait_ns. */
6405 mark_async_event_handler (remote_async_inferior_event_token);
6406 return 0;
6407 }
6408
6409 static void
6410 stop_reply_dtr (struct notif_event *event)
6411 {
6412 struct stop_reply *r = (struct stop_reply *) event;
6413 cached_reg_t *reg;
6414 int ix;
6415
6416 for (ix = 0;
6417 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6418 ix++)
6419 xfree (reg->data);
6420
6421 VEC_free (cached_reg_t, r->regcache);
6422 }
6423
6424 static struct notif_event *
6425 remote_notif_stop_alloc_reply (void)
6426 {
6427 /* We cast to a pointer to the "base class". */
6428 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6429
6430 r->dtr = stop_reply_dtr;
6431
6432 return r;
6433 }
6434
6435 /* A client of notification Stop. */
6436
6437 struct notif_client notif_client_stop =
6438 {
6439 "Stop",
6440 "vStopped",
6441 remote_notif_stop_parse,
6442 remote_notif_stop_ack,
6443 remote_notif_stop_can_get_pending_events,
6444 remote_notif_stop_alloc_reply,
6445 REMOTE_NOTIF_STOP,
6446 };
6447
6448 /* A parameter to pass data in and out. */
6449
6450 struct queue_iter_param
6451 {
6452 void *input;
6453 struct stop_reply *output;
6454 };
6455
6456 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6457 the pid of the process that owns the threads we want to check, or
6458 -1 if we want to check all threads. */
6459
6460 static int
6461 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6462 ptid_t thread_ptid)
6463 {
6464 if (ws->kind == TARGET_WAITKIND_FORKED
6465 || ws->kind == TARGET_WAITKIND_VFORKED)
6466 {
6467 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6468 return 1;
6469 }
6470
6471 return 0;
6472 }
6473
6474 /* Return the thread's pending status used to determine whether the
6475 thread is a fork parent stopped at a fork event. */
6476
6477 static struct target_waitstatus *
6478 thread_pending_fork_status (struct thread_info *thread)
6479 {
6480 if (thread->suspend.waitstatus_pending_p)
6481 return &thread->suspend.waitstatus;
6482 else
6483 return &thread->pending_follow;
6484 }
6485
6486 /* Determine if THREAD is a pending fork parent thread. */
6487
6488 static int
6489 is_pending_fork_parent_thread (struct thread_info *thread)
6490 {
6491 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6492 int pid = -1;
6493
6494 return is_pending_fork_parent (ws, pid, thread->ptid);
6495 }
6496
6497 /* Check whether EVENT is a fork event, and if it is, remove the
6498 fork child from the context list passed in DATA. */
6499
6500 static int
6501 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6502 QUEUE_ITER (stop_reply_p) *iter,
6503 stop_reply_p event,
6504 void *data)
6505 {
6506 struct queue_iter_param *param = (struct queue_iter_param *) data;
6507 struct threads_listing_context *context
6508 = (struct threads_listing_context *) param->input;
6509
6510 if (event->ws.kind == TARGET_WAITKIND_FORKED
6511 || event->ws.kind == TARGET_WAITKIND_VFORKED
6512 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6513 threads_listing_context_remove (&event->ws, context);
6514
6515 return 1;
6516 }
6517
6518 /* If CONTEXT contains any fork child threads that have not been
6519 reported yet, remove them from the CONTEXT list. If such a
6520 thread exists it is because we are stopped at a fork catchpoint
6521 and have not yet called follow_fork, which will set up the
6522 host-side data structures for the new process. */
6523
6524 static void
6525 remove_new_fork_children (struct threads_listing_context *context)
6526 {
6527 struct thread_info * thread;
6528 int pid = -1;
6529 struct notif_client *notif = &notif_client_stop;
6530 struct queue_iter_param param;
6531
6532 /* For any threads stopped at a fork event, remove the corresponding
6533 fork child threads from the CONTEXT list. */
6534 ALL_NON_EXITED_THREADS (thread)
6535 {
6536 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6537
6538 if (is_pending_fork_parent (ws, pid, thread->ptid))
6539 {
6540 threads_listing_context_remove (ws, context);
6541 }
6542 }
6543
6544 /* Check for any pending fork events (not reported or processed yet)
6545 in process PID and remove those fork child threads from the
6546 CONTEXT list as well. */
6547 remote_notif_get_pending_events (notif);
6548 param.input = context;
6549 param.output = NULL;
6550 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6551 remove_child_of_pending_fork, &param);
6552 }
6553
6554 /* Check whether EVENT would prevent a global or process wildcard
6555 vCont action. */
6556
6557 static int
6558 check_pending_event_prevents_wildcard_vcont_callback
6559 (QUEUE (stop_reply_p) *q,
6560 QUEUE_ITER (stop_reply_p) *iter,
6561 stop_reply_p event,
6562 void *data)
6563 {
6564 struct inferior *inf;
6565 int *may_global_wildcard_vcont = (int *) data;
6566
6567 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6568 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6569 return 1;
6570
6571 if (event->ws.kind == TARGET_WAITKIND_FORKED
6572 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6573 *may_global_wildcard_vcont = 0;
6574
6575 inf = find_inferior_ptid (event->ptid);
6576
6577 /* This may be the first time we heard about this process.
6578 Regardless, we must not do a global wildcard resume, otherwise
6579 we'd resume this process too. */
6580 *may_global_wildcard_vcont = 0;
6581 if (inf != NULL)
6582 inf->priv->may_wildcard_vcont = 0;
6583
6584 return 1;
6585 }
6586
6587 /* Check whether any event pending in the vStopped queue would prevent
6588 a global or process wildcard vCont action. Clear
6589 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6590 and clear the event inferior's may_wildcard_vcont flag if we can't
6591 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6592
6593 static void
6594 check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6595 {
6596 struct notif_client *notif = &notif_client_stop;
6597
6598 remote_notif_get_pending_events (notif);
6599 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6600 check_pending_event_prevents_wildcard_vcont_callback,
6601 may_global_wildcard);
6602 }
6603
6604 /* Remove stop replies in the queue if its pid is equal to the given
6605 inferior's pid. */
6606
6607 static int
6608 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6609 QUEUE_ITER (stop_reply_p) *iter,
6610 stop_reply_p event,
6611 void *data)
6612 {
6613 struct queue_iter_param *param = (struct queue_iter_param *) data;
6614 struct inferior *inf = (struct inferior *) param->input;
6615
6616 if (ptid_get_pid (event->ptid) == inf->pid)
6617 {
6618 stop_reply_xfree (event);
6619 QUEUE_remove_elem (stop_reply_p, q, iter);
6620 }
6621
6622 return 1;
6623 }
6624
6625 /* Discard all pending stop replies of inferior INF. */
6626
6627 static void
6628 discard_pending_stop_replies (struct inferior *inf)
6629 {
6630 struct queue_iter_param param;
6631 struct stop_reply *reply;
6632 struct remote_state *rs = get_remote_state ();
6633 struct remote_notif_state *rns = rs->notif_state;
6634
6635 /* This function can be notified when an inferior exists. When the
6636 target is not remote, the notification state is NULL. */
6637 if (rs->remote_desc == NULL)
6638 return;
6639
6640 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6641
6642 /* Discard the in-flight notification. */
6643 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6644 {
6645 stop_reply_xfree (reply);
6646 rns->pending_event[notif_client_stop.id] = NULL;
6647 }
6648
6649 param.input = inf;
6650 param.output = NULL;
6651 /* Discard the stop replies we have already pulled with
6652 vStopped. */
6653 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6654 remove_stop_reply_for_inferior, &param);
6655 }
6656
6657 /* If its remote state is equal to the given remote state,
6658 remove EVENT from the stop reply queue. */
6659
6660 static int
6661 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6662 QUEUE_ITER (stop_reply_p) *iter,
6663 stop_reply_p event,
6664 void *data)
6665 {
6666 struct queue_iter_param *param = (struct queue_iter_param *) data;
6667 struct remote_state *rs = (struct remote_state *) param->input;
6668
6669 if (event->rs == rs)
6670 {
6671 stop_reply_xfree (event);
6672 QUEUE_remove_elem (stop_reply_p, q, iter);
6673 }
6674
6675 return 1;
6676 }
6677
6678 /* Discard the stop replies for RS in stop_reply_queue. */
6679
6680 static void
6681 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6682 {
6683 struct queue_iter_param param;
6684
6685 param.input = rs;
6686 param.output = NULL;
6687 /* Discard the stop replies we have already pulled with
6688 vStopped. */
6689 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6690 remove_stop_reply_of_remote_state, &param);
6691 }
6692
6693 /* A parameter to pass data in and out. */
6694
6695 static int
6696 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6697 QUEUE_ITER (stop_reply_p) *iter,
6698 stop_reply_p event,
6699 void *data)
6700 {
6701 struct queue_iter_param *param = (struct queue_iter_param *) data;
6702 ptid_t *ptid = (ptid_t *) param->input;
6703
6704 if (ptid_match (event->ptid, *ptid))
6705 {
6706 param->output = event;
6707 QUEUE_remove_elem (stop_reply_p, q, iter);
6708 return 0;
6709 }
6710
6711 return 1;
6712 }
6713
6714 /* Remove the first reply in 'stop_reply_queue' which matches
6715 PTID. */
6716
6717 static struct stop_reply *
6718 remote_notif_remove_queued_reply (ptid_t ptid)
6719 {
6720 struct queue_iter_param param;
6721
6722 param.input = &ptid;
6723 param.output = NULL;
6724
6725 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6726 remote_notif_remove_once_on_match, &param);
6727 if (notif_debug)
6728 fprintf_unfiltered (gdb_stdlog,
6729 "notif: discard queued event: 'Stop' in %s\n",
6730 target_pid_to_str (ptid));
6731
6732 return param.output;
6733 }
6734
6735 /* Look for a queued stop reply belonging to PTID. If one is found,
6736 remove it from the queue, and return it. Returns NULL if none is
6737 found. If there are still queued events left to process, tell the
6738 event loop to get back to target_wait soon. */
6739
6740 static struct stop_reply *
6741 queued_stop_reply (ptid_t ptid)
6742 {
6743 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6744
6745 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6746 /* There's still at least an event left. */
6747 mark_async_event_handler (remote_async_inferior_event_token);
6748
6749 return r;
6750 }
6751
6752 /* Push a fully parsed stop reply in the stop reply queue. Since we
6753 know that we now have at least one queued event left to pass to the
6754 core side, tell the event loop to get back to target_wait soon. */
6755
6756 static void
6757 push_stop_reply (struct stop_reply *new_event)
6758 {
6759 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6760
6761 if (notif_debug)
6762 fprintf_unfiltered (gdb_stdlog,
6763 "notif: push 'Stop' %s to queue %d\n",
6764 target_pid_to_str (new_event->ptid),
6765 QUEUE_length (stop_reply_p,
6766 stop_reply_queue));
6767
6768 mark_async_event_handler (remote_async_inferior_event_token);
6769 }
6770
6771 static int
6772 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
6773 QUEUE_ITER (stop_reply_p) *iter,
6774 struct stop_reply *event,
6775 void *data)
6776 {
6777 ptid_t *ptid = (ptid_t *) data;
6778
6779 return !(ptid_equal (*ptid, event->ptid)
6780 && event->ws.kind == TARGET_WAITKIND_STOPPED);
6781 }
6782
6783 /* Returns true if we have a stop reply for PTID. */
6784
6785 static int
6786 peek_stop_reply (ptid_t ptid)
6787 {
6788 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
6789 stop_reply_match_ptid_and_ws, &ptid);
6790 }
6791
6792 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
6793 starting with P and ending with PEND matches PREFIX. */
6794
6795 static int
6796 strprefix (const char *p, const char *pend, const char *prefix)
6797 {
6798 for ( ; p < pend; p++, prefix++)
6799 if (*p != *prefix)
6800 return 0;
6801 return *prefix == '\0';
6802 }
6803
6804 /* Parse the stop reply in BUF. Either the function succeeds, and the
6805 result is stored in EVENT, or throws an error. */
6806
6807 static void
6808 remote_parse_stop_reply (char *buf, struct stop_reply *event)
6809 {
6810 remote_arch_state *rsa = NULL;
6811 ULONGEST addr;
6812 const char *p;
6813 int skipregs = 0;
6814
6815 event->ptid = null_ptid;
6816 event->rs = get_remote_state ();
6817 event->ws.kind = TARGET_WAITKIND_IGNORE;
6818 event->ws.value.integer = 0;
6819 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6820 event->regcache = NULL;
6821 event->core = -1;
6822
6823 switch (buf[0])
6824 {
6825 case 'T': /* Status with PC, SP, FP, ... */
6826 /* Expedited reply, containing Signal, {regno, reg} repeat. */
6827 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
6828 ss = signal number
6829 n... = register number
6830 r... = register contents
6831 */
6832
6833 p = &buf[3]; /* after Txx */
6834 while (*p)
6835 {
6836 const char *p1;
6837 int fieldsize;
6838
6839 p1 = strchr (p, ':');
6840 if (p1 == NULL)
6841 error (_("Malformed packet(a) (missing colon): %s\n\
6842 Packet: '%s'\n"),
6843 p, buf);
6844 if (p == p1)
6845 error (_("Malformed packet(a) (missing register number): %s\n\
6846 Packet: '%s'\n"),
6847 p, buf);
6848
6849 /* Some "registers" are actually extended stop information.
6850 Note if you're adding a new entry here: GDB 7.9 and
6851 earlier assume that all register "numbers" that start
6852 with an hex digit are real register numbers. Make sure
6853 the server only sends such a packet if it knows the
6854 client understands it. */
6855
6856 if (strprefix (p, p1, "thread"))
6857 event->ptid = read_ptid (++p1, &p);
6858 else if (strprefix (p, p1, "syscall_entry"))
6859 {
6860 ULONGEST sysno;
6861
6862 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
6863 p = unpack_varlen_hex (++p1, &sysno);
6864 event->ws.value.syscall_number = (int) sysno;
6865 }
6866 else if (strprefix (p, p1, "syscall_return"))
6867 {
6868 ULONGEST sysno;
6869
6870 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
6871 p = unpack_varlen_hex (++p1, &sysno);
6872 event->ws.value.syscall_number = (int) sysno;
6873 }
6874 else if (strprefix (p, p1, "watch")
6875 || strprefix (p, p1, "rwatch")
6876 || strprefix (p, p1, "awatch"))
6877 {
6878 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
6879 p = unpack_varlen_hex (++p1, &addr);
6880 event->watch_data_address = (CORE_ADDR) addr;
6881 }
6882 else if (strprefix (p, p1, "swbreak"))
6883 {
6884 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
6885
6886 /* Make sure the stub doesn't forget to indicate support
6887 with qSupported. */
6888 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
6889 error (_("Unexpected swbreak stop reason"));
6890
6891 /* The value part is documented as "must be empty",
6892 though we ignore it, in case we ever decide to make
6893 use of it in a backward compatible way. */
6894 p = strchrnul (p1 + 1, ';');
6895 }
6896 else if (strprefix (p, p1, "hwbreak"))
6897 {
6898 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
6899
6900 /* Make sure the stub doesn't forget to indicate support
6901 with qSupported. */
6902 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
6903 error (_("Unexpected hwbreak stop reason"));
6904
6905 /* See above. */
6906 p = strchrnul (p1 + 1, ';');
6907 }
6908 else if (strprefix (p, p1, "library"))
6909 {
6910 event->ws.kind = TARGET_WAITKIND_LOADED;
6911 p = strchrnul (p1 + 1, ';');
6912 }
6913 else if (strprefix (p, p1, "replaylog"))
6914 {
6915 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
6916 /* p1 will indicate "begin" or "end", but it makes
6917 no difference for now, so ignore it. */
6918 p = strchrnul (p1 + 1, ';');
6919 }
6920 else if (strprefix (p, p1, "core"))
6921 {
6922 ULONGEST c;
6923
6924 p = unpack_varlen_hex (++p1, &c);
6925 event->core = c;
6926 }
6927 else if (strprefix (p, p1, "fork"))
6928 {
6929 event->ws.value.related_pid = read_ptid (++p1, &p);
6930 event->ws.kind = TARGET_WAITKIND_FORKED;
6931 }
6932 else if (strprefix (p, p1, "vfork"))
6933 {
6934 event->ws.value.related_pid = read_ptid (++p1, &p);
6935 event->ws.kind = TARGET_WAITKIND_VFORKED;
6936 }
6937 else if (strprefix (p, p1, "vforkdone"))
6938 {
6939 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
6940 p = strchrnul (p1 + 1, ';');
6941 }
6942 else if (strprefix (p, p1, "exec"))
6943 {
6944 ULONGEST ignored;
6945 char pathname[PATH_MAX];
6946 int pathlen;
6947
6948 /* Determine the length of the execd pathname. */
6949 p = unpack_varlen_hex (++p1, &ignored);
6950 pathlen = (p - p1) / 2;
6951
6952 /* Save the pathname for event reporting and for
6953 the next run command. */
6954 hex2bin (p1, (gdb_byte *) pathname, pathlen);
6955 pathname[pathlen] = '\0';
6956
6957 /* This is freed during event handling. */
6958 event->ws.value.execd_pathname = xstrdup (pathname);
6959 event->ws.kind = TARGET_WAITKIND_EXECD;
6960
6961 /* Skip the registers included in this packet, since
6962 they may be for an architecture different from the
6963 one used by the original program. */
6964 skipregs = 1;
6965 }
6966 else if (strprefix (p, p1, "create"))
6967 {
6968 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
6969 p = strchrnul (p1 + 1, ';');
6970 }
6971 else
6972 {
6973 ULONGEST pnum;
6974 const char *p_temp;
6975
6976 if (skipregs)
6977 {
6978 p = strchrnul (p1 + 1, ';');
6979 p++;
6980 continue;
6981 }
6982
6983 /* Maybe a real ``P'' register number. */
6984 p_temp = unpack_varlen_hex (p, &pnum);
6985 /* If the first invalid character is the colon, we got a
6986 register number. Otherwise, it's an unknown stop
6987 reason. */
6988 if (p_temp == p1)
6989 {
6990 /* If we haven't parsed the event's thread yet, find
6991 it now, in order to find the architecture of the
6992 reported expedited registers. */
6993 if (event->ptid == null_ptid)
6994 {
6995 const char *thr = strstr (p1 + 1, ";thread:");
6996 if (thr != NULL)
6997 event->ptid = read_ptid (thr + strlen (";thread:"),
6998 NULL);
6999 else
7000 event->ptid = magic_null_ptid;
7001 }
7002
7003 if (rsa == NULL)
7004 {
7005 inferior *inf = (event->ptid == null_ptid
7006 ? NULL
7007 : find_inferior_ptid (event->ptid));
7008 /* If this is the first time we learn anything
7009 about this process, skip the registers
7010 included in this packet, since we don't yet
7011 know which architecture to use to parse them.
7012 We'll determine the architecture later when
7013 we process the stop reply and retrieve the
7014 target description, via
7015 remote_notice_new_inferior ->
7016 post_create_inferior. */
7017 if (inf == NULL)
7018 {
7019 p = strchrnul (p1 + 1, ';');
7020 p++;
7021 continue;
7022 }
7023
7024 event->arch = inf->gdbarch;
7025 rsa = get_remote_arch_state (event->arch);
7026 }
7027
7028 packet_reg *reg
7029 = packet_reg_from_pnum (event->arch, rsa, pnum);
7030 cached_reg_t cached_reg;
7031
7032 if (reg == NULL)
7033 error (_("Remote sent bad register number %s: %s\n\
7034 Packet: '%s'\n"),
7035 hex_string (pnum), p, buf);
7036
7037 cached_reg.num = reg->regnum;
7038 cached_reg.data = (gdb_byte *)
7039 xmalloc (register_size (event->arch, reg->regnum));
7040
7041 p = p1 + 1;
7042 fieldsize = hex2bin (p, cached_reg.data,
7043 register_size (event->arch, reg->regnum));
7044 p += 2 * fieldsize;
7045 if (fieldsize < register_size (event->arch, reg->regnum))
7046 warning (_("Remote reply is too short: %s"), buf);
7047
7048 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
7049 }
7050 else
7051 {
7052 /* Not a number. Silently skip unknown optional
7053 info. */
7054 p = strchrnul (p1 + 1, ';');
7055 }
7056 }
7057
7058 if (*p != ';')
7059 error (_("Remote register badly formatted: %s\nhere: %s"),
7060 buf, p);
7061 ++p;
7062 }
7063
7064 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7065 break;
7066
7067 /* fall through */
7068 case 'S': /* Old style status, just signal only. */
7069 {
7070 int sig;
7071
7072 event->ws.kind = TARGET_WAITKIND_STOPPED;
7073 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7074 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7075 event->ws.value.sig = (enum gdb_signal) sig;
7076 else
7077 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7078 }
7079 break;
7080 case 'w': /* Thread exited. */
7081 {
7082 const char *p;
7083 ULONGEST value;
7084
7085 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7086 p = unpack_varlen_hex (&buf[1], &value);
7087 event->ws.value.integer = value;
7088 if (*p != ';')
7089 error (_("stop reply packet badly formatted: %s"), buf);
7090 event->ptid = read_ptid (++p, NULL);
7091 break;
7092 }
7093 case 'W': /* Target exited. */
7094 case 'X':
7095 {
7096 const char *p;
7097 int pid;
7098 ULONGEST value;
7099
7100 /* GDB used to accept only 2 hex chars here. Stubs should
7101 only send more if they detect GDB supports multi-process
7102 support. */
7103 p = unpack_varlen_hex (&buf[1], &value);
7104
7105 if (buf[0] == 'W')
7106 {
7107 /* The remote process exited. */
7108 event->ws.kind = TARGET_WAITKIND_EXITED;
7109 event->ws.value.integer = value;
7110 }
7111 else
7112 {
7113 /* The remote process exited with a signal. */
7114 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7115 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7116 event->ws.value.sig = (enum gdb_signal) value;
7117 else
7118 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7119 }
7120
7121 /* If no process is specified, assume inferior_ptid. */
7122 pid = ptid_get_pid (inferior_ptid);
7123 if (*p == '\0')
7124 ;
7125 else if (*p == ';')
7126 {
7127 p++;
7128
7129 if (*p == '\0')
7130 ;
7131 else if (startswith (p, "process:"))
7132 {
7133 ULONGEST upid;
7134
7135 p += sizeof ("process:") - 1;
7136 unpack_varlen_hex (p, &upid);
7137 pid = upid;
7138 }
7139 else
7140 error (_("unknown stop reply packet: %s"), buf);
7141 }
7142 else
7143 error (_("unknown stop reply packet: %s"), buf);
7144 event->ptid = pid_to_ptid (pid);
7145 }
7146 break;
7147 case 'N':
7148 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7149 event->ptid = minus_one_ptid;
7150 break;
7151 }
7152
7153 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7154 error (_("No process or thread specified in stop reply: %s"), buf);
7155 }
7156
7157 /* When the stub wants to tell GDB about a new notification reply, it
7158 sends a notification (%Stop, for example). Those can come it at
7159 any time, hence, we have to make sure that any pending
7160 putpkt/getpkt sequence we're making is finished, before querying
7161 the stub for more events with the corresponding ack command
7162 (vStopped, for example). E.g., if we started a vStopped sequence
7163 immediately upon receiving the notification, something like this
7164 could happen:
7165
7166 1.1) --> Hg 1
7167 1.2) <-- OK
7168 1.3) --> g
7169 1.4) <-- %Stop
7170 1.5) --> vStopped
7171 1.6) <-- (registers reply to step #1.3)
7172
7173 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7174 query.
7175
7176 To solve this, whenever we parse a %Stop notification successfully,
7177 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7178 doing whatever we were doing:
7179
7180 2.1) --> Hg 1
7181 2.2) <-- OK
7182 2.3) --> g
7183 2.4) <-- %Stop
7184 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7185 2.5) <-- (registers reply to step #2.3)
7186
7187 Eventualy after step #2.5, we return to the event loop, which
7188 notices there's an event on the
7189 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7190 associated callback --- the function below. At this point, we're
7191 always safe to start a vStopped sequence. :
7192
7193 2.6) --> vStopped
7194 2.7) <-- T05 thread:2
7195 2.8) --> vStopped
7196 2.9) --> OK
7197 */
7198
7199 void
7200 remote_notif_get_pending_events (struct notif_client *nc)
7201 {
7202 struct remote_state *rs = get_remote_state ();
7203
7204 if (rs->notif_state->pending_event[nc->id] != NULL)
7205 {
7206 if (notif_debug)
7207 fprintf_unfiltered (gdb_stdlog,
7208 "notif: process: '%s' ack pending event\n",
7209 nc->name);
7210
7211 /* acknowledge */
7212 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7213 rs->notif_state->pending_event[nc->id] = NULL;
7214
7215 while (1)
7216 {
7217 getpkt (&rs->buf, &rs->buf_size, 0);
7218 if (strcmp (rs->buf, "OK") == 0)
7219 break;
7220 else
7221 remote_notif_ack (nc, rs->buf);
7222 }
7223 }
7224 else
7225 {
7226 if (notif_debug)
7227 fprintf_unfiltered (gdb_stdlog,
7228 "notif: process: '%s' no pending reply\n",
7229 nc->name);
7230 }
7231 }
7232
7233 /* Called when it is decided that STOP_REPLY holds the info of the
7234 event that is to be returned to the core. This function always
7235 destroys STOP_REPLY. */
7236
7237 static ptid_t
7238 process_stop_reply (struct stop_reply *stop_reply,
7239 struct target_waitstatus *status)
7240 {
7241 ptid_t ptid;
7242
7243 *status = stop_reply->ws;
7244 ptid = stop_reply->ptid;
7245
7246 /* If no thread/process was reported by the stub, assume the current
7247 inferior. */
7248 if (ptid_equal (ptid, null_ptid))
7249 ptid = inferior_ptid;
7250
7251 if (status->kind != TARGET_WAITKIND_EXITED
7252 && status->kind != TARGET_WAITKIND_SIGNALLED
7253 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7254 {
7255 struct private_thread_info *remote_thr;
7256
7257 /* Expedited registers. */
7258 if (stop_reply->regcache)
7259 {
7260 struct regcache *regcache
7261 = get_thread_arch_regcache (ptid, stop_reply->arch);
7262 cached_reg_t *reg;
7263 int ix;
7264
7265 for (ix = 0;
7266 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7267 ix++)
7268 {
7269 regcache_raw_supply (regcache, reg->num, reg->data);
7270 xfree (reg->data);
7271 }
7272
7273 VEC_free (cached_reg_t, stop_reply->regcache);
7274 }
7275
7276 remote_notice_new_inferior (ptid, 0);
7277 remote_thr = get_private_info_ptid (ptid);
7278 remote_thr->core = stop_reply->core;
7279 remote_thr->stop_reason = stop_reply->stop_reason;
7280 remote_thr->watch_data_address = stop_reply->watch_data_address;
7281 remote_thr->vcont_resumed = 0;
7282 }
7283
7284 stop_reply_xfree (stop_reply);
7285 return ptid;
7286 }
7287
7288 /* The non-stop mode version of target_wait. */
7289
7290 static ptid_t
7291 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7292 {
7293 struct remote_state *rs = get_remote_state ();
7294 struct stop_reply *stop_reply;
7295 int ret;
7296 int is_notif = 0;
7297
7298 /* If in non-stop mode, get out of getpkt even if a
7299 notification is received. */
7300
7301 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7302 0 /* forever */, &is_notif);
7303 while (1)
7304 {
7305 if (ret != -1 && !is_notif)
7306 switch (rs->buf[0])
7307 {
7308 case 'E': /* Error of some sort. */
7309 /* We're out of sync with the target now. Did it continue
7310 or not? We can't tell which thread it was in non-stop,
7311 so just ignore this. */
7312 warning (_("Remote failure reply: %s"), rs->buf);
7313 break;
7314 case 'O': /* Console output. */
7315 remote_console_output (rs->buf + 1);
7316 break;
7317 default:
7318 warning (_("Invalid remote reply: %s"), rs->buf);
7319 break;
7320 }
7321
7322 /* Acknowledge a pending stop reply that may have arrived in the
7323 mean time. */
7324 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7325 remote_notif_get_pending_events (&notif_client_stop);
7326
7327 /* If indeed we noticed a stop reply, we're done. */
7328 stop_reply = queued_stop_reply (ptid);
7329 if (stop_reply != NULL)
7330 return process_stop_reply (stop_reply, status);
7331
7332 /* Still no event. If we're just polling for an event, then
7333 return to the event loop. */
7334 if (options & TARGET_WNOHANG)
7335 {
7336 status->kind = TARGET_WAITKIND_IGNORE;
7337 return minus_one_ptid;
7338 }
7339
7340 /* Otherwise do a blocking wait. */
7341 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7342 1 /* forever */, &is_notif);
7343 }
7344 }
7345
7346 /* Wait until the remote machine stops, then return, storing status in
7347 STATUS just as `wait' would. */
7348
7349 static ptid_t
7350 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7351 {
7352 struct remote_state *rs = get_remote_state ();
7353 ptid_t event_ptid = null_ptid;
7354 char *buf;
7355 struct stop_reply *stop_reply;
7356
7357 again:
7358
7359 status->kind = TARGET_WAITKIND_IGNORE;
7360 status->value.integer = 0;
7361
7362 stop_reply = queued_stop_reply (ptid);
7363 if (stop_reply != NULL)
7364 return process_stop_reply (stop_reply, status);
7365
7366 if (rs->cached_wait_status)
7367 /* Use the cached wait status, but only once. */
7368 rs->cached_wait_status = 0;
7369 else
7370 {
7371 int ret;
7372 int is_notif;
7373 int forever = ((options & TARGET_WNOHANG) == 0
7374 && wait_forever_enabled_p);
7375
7376 if (!rs->waiting_for_stop_reply)
7377 {
7378 status->kind = TARGET_WAITKIND_NO_RESUMED;
7379 return minus_one_ptid;
7380 }
7381
7382 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7383 _never_ wait for ever -> test on target_is_async_p().
7384 However, before we do that we need to ensure that the caller
7385 knows how to take the target into/out of async mode. */
7386 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7387 forever, &is_notif);
7388
7389 /* GDB gets a notification. Return to core as this event is
7390 not interesting. */
7391 if (ret != -1 && is_notif)
7392 return minus_one_ptid;
7393
7394 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7395 return minus_one_ptid;
7396 }
7397
7398 buf = rs->buf;
7399
7400 /* Assume that the target has acknowledged Ctrl-C unless we receive
7401 an 'F' or 'O' packet. */
7402 if (buf[0] != 'F' && buf[0] != 'O')
7403 rs->ctrlc_pending_p = 0;
7404
7405 switch (buf[0])
7406 {
7407 case 'E': /* Error of some sort. */
7408 /* We're out of sync with the target now. Did it continue or
7409 not? Not is more likely, so report a stop. */
7410 rs->waiting_for_stop_reply = 0;
7411
7412 warning (_("Remote failure reply: %s"), buf);
7413 status->kind = TARGET_WAITKIND_STOPPED;
7414 status->value.sig = GDB_SIGNAL_0;
7415 break;
7416 case 'F': /* File-I/O request. */
7417 /* GDB may access the inferior memory while handling the File-I/O
7418 request, but we don't want GDB accessing memory while waiting
7419 for a stop reply. See the comments in putpkt_binary. Set
7420 waiting_for_stop_reply to 0 temporarily. */
7421 rs->waiting_for_stop_reply = 0;
7422 remote_fileio_request (buf, rs->ctrlc_pending_p);
7423 rs->ctrlc_pending_p = 0;
7424 /* GDB handled the File-I/O request, and the target is running
7425 again. Keep waiting for events. */
7426 rs->waiting_for_stop_reply = 1;
7427 break;
7428 case 'N': case 'T': case 'S': case 'X': case 'W':
7429 {
7430 struct stop_reply *stop_reply;
7431
7432 /* There is a stop reply to handle. */
7433 rs->waiting_for_stop_reply = 0;
7434
7435 stop_reply
7436 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7437 rs->buf);
7438
7439 event_ptid = process_stop_reply (stop_reply, status);
7440 break;
7441 }
7442 case 'O': /* Console output. */
7443 remote_console_output (buf + 1);
7444 break;
7445 case '\0':
7446 if (rs->last_sent_signal != GDB_SIGNAL_0)
7447 {
7448 /* Zero length reply means that we tried 'S' or 'C' and the
7449 remote system doesn't support it. */
7450 target_terminal::ours_for_output ();
7451 printf_filtered
7452 ("Can't send signals to this remote system. %s not sent.\n",
7453 gdb_signal_to_name (rs->last_sent_signal));
7454 rs->last_sent_signal = GDB_SIGNAL_0;
7455 target_terminal::inferior ();
7456
7457 strcpy (buf, rs->last_sent_step ? "s" : "c");
7458 putpkt (buf);
7459 break;
7460 }
7461 /* else fallthrough */
7462 default:
7463 warning (_("Invalid remote reply: %s"), buf);
7464 break;
7465 }
7466
7467 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7468 return minus_one_ptid;
7469 else if (status->kind == TARGET_WAITKIND_IGNORE)
7470 {
7471 /* Nothing interesting happened. If we're doing a non-blocking
7472 poll, we're done. Otherwise, go back to waiting. */
7473 if (options & TARGET_WNOHANG)
7474 return minus_one_ptid;
7475 else
7476 goto again;
7477 }
7478 else if (status->kind != TARGET_WAITKIND_EXITED
7479 && status->kind != TARGET_WAITKIND_SIGNALLED)
7480 {
7481 if (!ptid_equal (event_ptid, null_ptid))
7482 record_currthread (rs, event_ptid);
7483 else
7484 event_ptid = inferior_ptid;
7485 }
7486 else
7487 /* A process exit. Invalidate our notion of current thread. */
7488 record_currthread (rs, minus_one_ptid);
7489
7490 return event_ptid;
7491 }
7492
7493 /* Wait until the remote machine stops, then return, storing status in
7494 STATUS just as `wait' would. */
7495
7496 static ptid_t
7497 remote_wait (struct target_ops *ops,
7498 ptid_t ptid, struct target_waitstatus *status, int options)
7499 {
7500 ptid_t event_ptid;
7501
7502 if (target_is_non_stop_p ())
7503 event_ptid = remote_wait_ns (ptid, status, options);
7504 else
7505 event_ptid = remote_wait_as (ptid, status, options);
7506
7507 if (target_is_async_p ())
7508 {
7509 /* If there are are events left in the queue tell the event loop
7510 to return here. */
7511 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7512 mark_async_event_handler (remote_async_inferior_event_token);
7513 }
7514
7515 return event_ptid;
7516 }
7517
7518 /* Fetch a single register using a 'p' packet. */
7519
7520 static int
7521 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7522 {
7523 struct gdbarch *gdbarch = regcache->arch ();
7524 struct remote_state *rs = get_remote_state ();
7525 char *buf, *p;
7526 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7527 int i;
7528
7529 if (packet_support (PACKET_p) == PACKET_DISABLE)
7530 return 0;
7531
7532 if (reg->pnum == -1)
7533 return 0;
7534
7535 p = rs->buf;
7536 *p++ = 'p';
7537 p += hexnumstr (p, reg->pnum);
7538 *p++ = '\0';
7539 putpkt (rs->buf);
7540 getpkt (&rs->buf, &rs->buf_size, 0);
7541
7542 buf = rs->buf;
7543
7544 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7545 {
7546 case PACKET_OK:
7547 break;
7548 case PACKET_UNKNOWN:
7549 return 0;
7550 case PACKET_ERROR:
7551 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7552 gdbarch_register_name (regcache->arch (),
7553 reg->regnum),
7554 buf);
7555 }
7556
7557 /* If this register is unfetchable, tell the regcache. */
7558 if (buf[0] == 'x')
7559 {
7560 regcache_raw_supply (regcache, reg->regnum, NULL);
7561 return 1;
7562 }
7563
7564 /* Otherwise, parse and supply the value. */
7565 p = buf;
7566 i = 0;
7567 while (p[0] != 0)
7568 {
7569 if (p[1] == 0)
7570 error (_("fetch_register_using_p: early buf termination"));
7571
7572 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7573 p += 2;
7574 }
7575 regcache_raw_supply (regcache, reg->regnum, regp);
7576 return 1;
7577 }
7578
7579 /* Fetch the registers included in the target's 'g' packet. */
7580
7581 static int
7582 send_g_packet (void)
7583 {
7584 struct remote_state *rs = get_remote_state ();
7585 int buf_len;
7586
7587 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7588 remote_send (&rs->buf, &rs->buf_size);
7589
7590 /* We can get out of synch in various cases. If the first character
7591 in the buffer is not a hex character, assume that has happened
7592 and try to fetch another packet to read. */
7593 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7594 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7595 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7596 && rs->buf[0] != 'x') /* New: unavailable register value. */
7597 {
7598 if (remote_debug)
7599 fprintf_unfiltered (gdb_stdlog,
7600 "Bad register packet; fetching a new packet\n");
7601 getpkt (&rs->buf, &rs->buf_size, 0);
7602 }
7603
7604 buf_len = strlen (rs->buf);
7605
7606 /* Sanity check the received packet. */
7607 if (buf_len % 2 != 0)
7608 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7609
7610 return buf_len / 2;
7611 }
7612
7613 static void
7614 process_g_packet (struct regcache *regcache)
7615 {
7616 struct gdbarch *gdbarch = regcache->arch ();
7617 struct remote_state *rs = get_remote_state ();
7618 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7619 int i, buf_len;
7620 char *p;
7621 char *regs;
7622
7623 buf_len = strlen (rs->buf);
7624
7625 /* Further sanity checks, with knowledge of the architecture. */
7626 if (buf_len > 2 * rsa->sizeof_g_packet)
7627 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7628 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
7629
7630 /* Save the size of the packet sent to us by the target. It is used
7631 as a heuristic when determining the max size of packets that the
7632 target can safely receive. */
7633 if (rsa->actual_register_packet_size == 0)
7634 rsa->actual_register_packet_size = buf_len;
7635
7636 /* If this is smaller than we guessed the 'g' packet would be,
7637 update our records. A 'g' reply that doesn't include a register's
7638 value implies either that the register is not available, or that
7639 the 'p' packet must be used. */
7640 if (buf_len < 2 * rsa->sizeof_g_packet)
7641 {
7642 long sizeof_g_packet = buf_len / 2;
7643
7644 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7645 {
7646 long offset = rsa->regs[i].offset;
7647 long reg_size = register_size (gdbarch, i);
7648
7649 if (rsa->regs[i].pnum == -1)
7650 continue;
7651
7652 if (offset >= sizeof_g_packet)
7653 rsa->regs[i].in_g_packet = 0;
7654 else if (offset + reg_size > sizeof_g_packet)
7655 error (_("Truncated register %d in remote 'g' packet"), i);
7656 else
7657 rsa->regs[i].in_g_packet = 1;
7658 }
7659
7660 /* Looks valid enough, we can assume this is the correct length
7661 for a 'g' packet. It's important not to adjust
7662 rsa->sizeof_g_packet if we have truncated registers otherwise
7663 this "if" won't be run the next time the method is called
7664 with a packet of the same size and one of the internal errors
7665 below will trigger instead. */
7666 rsa->sizeof_g_packet = sizeof_g_packet;
7667 }
7668
7669 regs = (char *) alloca (rsa->sizeof_g_packet);
7670
7671 /* Unimplemented registers read as all bits zero. */
7672 memset (regs, 0, rsa->sizeof_g_packet);
7673
7674 /* Reply describes registers byte by byte, each byte encoded as two
7675 hex characters. Suck them all up, then supply them to the
7676 register cacheing/storage mechanism. */
7677
7678 p = rs->buf;
7679 for (i = 0; i < rsa->sizeof_g_packet; i++)
7680 {
7681 if (p[0] == 0 || p[1] == 0)
7682 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7683 internal_error (__FILE__, __LINE__,
7684 _("unexpected end of 'g' packet reply"));
7685
7686 if (p[0] == 'x' && p[1] == 'x')
7687 regs[i] = 0; /* 'x' */
7688 else
7689 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7690 p += 2;
7691 }
7692
7693 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7694 {
7695 struct packet_reg *r = &rsa->regs[i];
7696 long reg_size = register_size (gdbarch, i);
7697
7698 if (r->in_g_packet)
7699 {
7700 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7701 /* This shouldn't happen - we adjusted in_g_packet above. */
7702 internal_error (__FILE__, __LINE__,
7703 _("unexpected end of 'g' packet reply"));
7704 else if (rs->buf[r->offset * 2] == 'x')
7705 {
7706 gdb_assert (r->offset * 2 < strlen (rs->buf));
7707 /* The register isn't available, mark it as such (at
7708 the same time setting the value to zero). */
7709 regcache_raw_supply (regcache, r->regnum, NULL);
7710 }
7711 else
7712 regcache_raw_supply (regcache, r->regnum,
7713 regs + r->offset);
7714 }
7715 }
7716 }
7717
7718 static void
7719 fetch_registers_using_g (struct regcache *regcache)
7720 {
7721 send_g_packet ();
7722 process_g_packet (regcache);
7723 }
7724
7725 /* Make the remote selected traceframe match GDB's selected
7726 traceframe. */
7727
7728 static void
7729 set_remote_traceframe (void)
7730 {
7731 int newnum;
7732 struct remote_state *rs = get_remote_state ();
7733
7734 if (rs->remote_traceframe_number == get_traceframe_number ())
7735 return;
7736
7737 /* Avoid recursion, remote_trace_find calls us again. */
7738 rs->remote_traceframe_number = get_traceframe_number ();
7739
7740 newnum = target_trace_find (tfind_number,
7741 get_traceframe_number (), 0, 0, NULL);
7742
7743 /* Should not happen. If it does, all bets are off. */
7744 if (newnum != get_traceframe_number ())
7745 warning (_("could not set remote traceframe"));
7746 }
7747
7748 static void
7749 remote_fetch_registers (struct target_ops *ops,
7750 struct regcache *regcache, int regnum)
7751 {
7752 struct gdbarch *gdbarch = regcache->arch ();
7753 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7754 int i;
7755
7756 set_remote_traceframe ();
7757 set_general_thread (regcache_get_ptid (regcache));
7758
7759 if (regnum >= 0)
7760 {
7761 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7762
7763 gdb_assert (reg != NULL);
7764
7765 /* If this register might be in the 'g' packet, try that first -
7766 we are likely to read more than one register. If this is the
7767 first 'g' packet, we might be overly optimistic about its
7768 contents, so fall back to 'p'. */
7769 if (reg->in_g_packet)
7770 {
7771 fetch_registers_using_g (regcache);
7772 if (reg->in_g_packet)
7773 return;
7774 }
7775
7776 if (fetch_register_using_p (regcache, reg))
7777 return;
7778
7779 /* This register is not available. */
7780 regcache_raw_supply (regcache, reg->regnum, NULL);
7781
7782 return;
7783 }
7784
7785 fetch_registers_using_g (regcache);
7786
7787 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7788 if (!rsa->regs[i].in_g_packet)
7789 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
7790 {
7791 /* This register is not available. */
7792 regcache_raw_supply (regcache, i, NULL);
7793 }
7794 }
7795
7796 /* Prepare to store registers. Since we may send them all (using a
7797 'G' request), we have to read out the ones we don't want to change
7798 first. */
7799
7800 static void
7801 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
7802 {
7803 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7804 int i;
7805
7806 /* Make sure the entire registers array is valid. */
7807 switch (packet_support (PACKET_P))
7808 {
7809 case PACKET_DISABLE:
7810 case PACKET_SUPPORT_UNKNOWN:
7811 /* Make sure all the necessary registers are cached. */
7812 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7813 if (rsa->regs[i].in_g_packet)
7814 regcache_raw_update (regcache, rsa->regs[i].regnum);
7815 break;
7816 case PACKET_ENABLE:
7817 break;
7818 }
7819 }
7820
7821 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
7822 packet was not recognized. */
7823
7824 static int
7825 store_register_using_P (const struct regcache *regcache,
7826 struct packet_reg *reg)
7827 {
7828 struct gdbarch *gdbarch = regcache->arch ();
7829 struct remote_state *rs = get_remote_state ();
7830 /* Try storing a single register. */
7831 char *buf = rs->buf;
7832 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7833 char *p;
7834
7835 if (packet_support (PACKET_P) == PACKET_DISABLE)
7836 return 0;
7837
7838 if (reg->pnum == -1)
7839 return 0;
7840
7841 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
7842 p = buf + strlen (buf);
7843 regcache_raw_collect (regcache, reg->regnum, regp);
7844 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
7845 putpkt (rs->buf);
7846 getpkt (&rs->buf, &rs->buf_size, 0);
7847
7848 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
7849 {
7850 case PACKET_OK:
7851 return 1;
7852 case PACKET_ERROR:
7853 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
7854 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
7855 case PACKET_UNKNOWN:
7856 return 0;
7857 default:
7858 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
7859 }
7860 }
7861
7862 /* Store register REGNUM, or all registers if REGNUM == -1, from the
7863 contents of the register cache buffer. FIXME: ignores errors. */
7864
7865 static void
7866 store_registers_using_G (const struct regcache *regcache)
7867 {
7868 struct remote_state *rs = get_remote_state ();
7869 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7870 gdb_byte *regs;
7871 char *p;
7872
7873 /* Extract all the registers in the regcache copying them into a
7874 local buffer. */
7875 {
7876 int i;
7877
7878 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
7879 memset (regs, 0, rsa->sizeof_g_packet);
7880 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7881 {
7882 struct packet_reg *r = &rsa->regs[i];
7883
7884 if (r->in_g_packet)
7885 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
7886 }
7887 }
7888
7889 /* Command describes registers byte by byte,
7890 each byte encoded as two hex characters. */
7891 p = rs->buf;
7892 *p++ = 'G';
7893 bin2hex (regs, p, rsa->sizeof_g_packet);
7894 putpkt (rs->buf);
7895 getpkt (&rs->buf, &rs->buf_size, 0);
7896 if (packet_check_result (rs->buf) == PACKET_ERROR)
7897 error (_("Could not write registers; remote failure reply '%s'"),
7898 rs->buf);
7899 }
7900
7901 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
7902 of the register cache buffer. FIXME: ignores errors. */
7903
7904 static void
7905 remote_store_registers (struct target_ops *ops,
7906 struct regcache *regcache, int regnum)
7907 {
7908 struct gdbarch *gdbarch = regcache->arch ();
7909 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7910 int i;
7911
7912 set_remote_traceframe ();
7913 set_general_thread (regcache_get_ptid (regcache));
7914
7915 if (regnum >= 0)
7916 {
7917 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7918
7919 gdb_assert (reg != NULL);
7920
7921 /* Always prefer to store registers using the 'P' packet if
7922 possible; we often change only a small number of registers.
7923 Sometimes we change a larger number; we'd need help from a
7924 higher layer to know to use 'G'. */
7925 if (store_register_using_P (regcache, reg))
7926 return;
7927
7928 /* For now, don't complain if we have no way to write the
7929 register. GDB loses track of unavailable registers too
7930 easily. Some day, this may be an error. We don't have
7931 any way to read the register, either... */
7932 if (!reg->in_g_packet)
7933 return;
7934
7935 store_registers_using_G (regcache);
7936 return;
7937 }
7938
7939 store_registers_using_G (regcache);
7940
7941 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7942 if (!rsa->regs[i].in_g_packet)
7943 if (!store_register_using_P (regcache, &rsa->regs[i]))
7944 /* See above for why we do not issue an error here. */
7945 continue;
7946 }
7947 \f
7948
7949 /* Return the number of hex digits in num. */
7950
7951 static int
7952 hexnumlen (ULONGEST num)
7953 {
7954 int i;
7955
7956 for (i = 0; num != 0; i++)
7957 num >>= 4;
7958
7959 return std::max (i, 1);
7960 }
7961
7962 /* Set BUF to the minimum number of hex digits representing NUM. */
7963
7964 static int
7965 hexnumstr (char *buf, ULONGEST num)
7966 {
7967 int len = hexnumlen (num);
7968
7969 return hexnumnstr (buf, num, len);
7970 }
7971
7972
7973 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
7974
7975 static int
7976 hexnumnstr (char *buf, ULONGEST num, int width)
7977 {
7978 int i;
7979
7980 buf[width] = '\0';
7981
7982 for (i = width - 1; i >= 0; i--)
7983 {
7984 buf[i] = "0123456789abcdef"[(num & 0xf)];
7985 num >>= 4;
7986 }
7987
7988 return width;
7989 }
7990
7991 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
7992
7993 static CORE_ADDR
7994 remote_address_masked (CORE_ADDR addr)
7995 {
7996 unsigned int address_size = remote_address_size;
7997
7998 /* If "remoteaddresssize" was not set, default to target address size. */
7999 if (!address_size)
8000 address_size = gdbarch_addr_bit (target_gdbarch ());
8001
8002 if (address_size > 0
8003 && address_size < (sizeof (ULONGEST) * 8))
8004 {
8005 /* Only create a mask when that mask can safely be constructed
8006 in a ULONGEST variable. */
8007 ULONGEST mask = 1;
8008
8009 mask = (mask << address_size) - 1;
8010 addr &= mask;
8011 }
8012 return addr;
8013 }
8014
8015 /* Determine whether the remote target supports binary downloading.
8016 This is accomplished by sending a no-op memory write of zero length
8017 to the target at the specified address. It does not suffice to send
8018 the whole packet, since many stubs strip the eighth bit and
8019 subsequently compute a wrong checksum, which causes real havoc with
8020 remote_write_bytes.
8021
8022 NOTE: This can still lose if the serial line is not eight-bit
8023 clean. In cases like this, the user should clear "remote
8024 X-packet". */
8025
8026 static void
8027 check_binary_download (CORE_ADDR addr)
8028 {
8029 struct remote_state *rs = get_remote_state ();
8030
8031 switch (packet_support (PACKET_X))
8032 {
8033 case PACKET_DISABLE:
8034 break;
8035 case PACKET_ENABLE:
8036 break;
8037 case PACKET_SUPPORT_UNKNOWN:
8038 {
8039 char *p;
8040
8041 p = rs->buf;
8042 *p++ = 'X';
8043 p += hexnumstr (p, (ULONGEST) addr);
8044 *p++ = ',';
8045 p += hexnumstr (p, (ULONGEST) 0);
8046 *p++ = ':';
8047 *p = '\0';
8048
8049 putpkt_binary (rs->buf, (int) (p - rs->buf));
8050 getpkt (&rs->buf, &rs->buf_size, 0);
8051
8052 if (rs->buf[0] == '\0')
8053 {
8054 if (remote_debug)
8055 fprintf_unfiltered (gdb_stdlog,
8056 "binary downloading NOT "
8057 "supported by target\n");
8058 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8059 }
8060 else
8061 {
8062 if (remote_debug)
8063 fprintf_unfiltered (gdb_stdlog,
8064 "binary downloading supported by target\n");
8065 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8066 }
8067 break;
8068 }
8069 }
8070 }
8071
8072 /* Helper function to resize the payload in order to try to get a good
8073 alignment. We try to write an amount of data such that the next write will
8074 start on an address aligned on REMOTE_ALIGN_WRITES. */
8075
8076 static int
8077 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8078 {
8079 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8080 }
8081
8082 /* Write memory data directly to the remote machine.
8083 This does not inform the data cache; the data cache uses this.
8084 HEADER is the starting part of the packet.
8085 MEMADDR is the address in the remote memory space.
8086 MYADDR is the address of the buffer in our space.
8087 LEN_UNITS is the number of addressable units to write.
8088 UNIT_SIZE is the length in bytes of an addressable unit.
8089 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8090 should send data as binary ('X'), or hex-encoded ('M').
8091
8092 The function creates packet of the form
8093 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8094
8095 where encoding of <DATA> is terminated by PACKET_FORMAT.
8096
8097 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8098 are omitted.
8099
8100 Return the transferred status, error or OK (an
8101 'enum target_xfer_status' value). Save the number of addressable units
8102 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8103
8104 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8105 exchange between gdb and the stub could look like (?? in place of the
8106 checksum):
8107
8108 -> $m1000,4#??
8109 <- aaaabbbbccccdddd
8110
8111 -> $M1000,3:eeeeffffeeee#??
8112 <- OK
8113
8114 -> $m1000,4#??
8115 <- eeeeffffeeeedddd */
8116
8117 static enum target_xfer_status
8118 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8119 const gdb_byte *myaddr, ULONGEST len_units,
8120 int unit_size, ULONGEST *xfered_len_units,
8121 char packet_format, int use_length)
8122 {
8123 struct remote_state *rs = get_remote_state ();
8124 char *p;
8125 char *plen = NULL;
8126 int plenlen = 0;
8127 int todo_units;
8128 int units_written;
8129 int payload_capacity_bytes;
8130 int payload_length_bytes;
8131
8132 if (packet_format != 'X' && packet_format != 'M')
8133 internal_error (__FILE__, __LINE__,
8134 _("remote_write_bytes_aux: bad packet format"));
8135
8136 if (len_units == 0)
8137 return TARGET_XFER_EOF;
8138
8139 payload_capacity_bytes = get_memory_write_packet_size ();
8140
8141 /* The packet buffer will be large enough for the payload;
8142 get_memory_packet_size ensures this. */
8143 rs->buf[0] = '\0';
8144
8145 /* Compute the size of the actual payload by subtracting out the
8146 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8147
8148 payload_capacity_bytes -= strlen ("$,:#NN");
8149 if (!use_length)
8150 /* The comma won't be used. */
8151 payload_capacity_bytes += 1;
8152 payload_capacity_bytes -= strlen (header);
8153 payload_capacity_bytes -= hexnumlen (memaddr);
8154
8155 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8156
8157 strcat (rs->buf, header);
8158 p = rs->buf + strlen (header);
8159
8160 /* Compute a best guess of the number of bytes actually transfered. */
8161 if (packet_format == 'X')
8162 {
8163 /* Best guess at number of bytes that will fit. */
8164 todo_units = std::min (len_units,
8165 (ULONGEST) payload_capacity_bytes / unit_size);
8166 if (use_length)
8167 payload_capacity_bytes -= hexnumlen (todo_units);
8168 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8169 }
8170 else
8171 {
8172 /* Number of bytes that will fit. */
8173 todo_units
8174 = std::min (len_units,
8175 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8176 if (use_length)
8177 payload_capacity_bytes -= hexnumlen (todo_units);
8178 todo_units = std::min (todo_units,
8179 (payload_capacity_bytes / unit_size) / 2);
8180 }
8181
8182 if (todo_units <= 0)
8183 internal_error (__FILE__, __LINE__,
8184 _("minimum packet size too small to write data"));
8185
8186 /* If we already need another packet, then try to align the end
8187 of this packet to a useful boundary. */
8188 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8189 todo_units = align_for_efficient_write (todo_units, memaddr);
8190
8191 /* Append "<memaddr>". */
8192 memaddr = remote_address_masked (memaddr);
8193 p += hexnumstr (p, (ULONGEST) memaddr);
8194
8195 if (use_length)
8196 {
8197 /* Append ",". */
8198 *p++ = ',';
8199
8200 /* Append the length and retain its location and size. It may need to be
8201 adjusted once the packet body has been created. */
8202 plen = p;
8203 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8204 p += plenlen;
8205 }
8206
8207 /* Append ":". */
8208 *p++ = ':';
8209 *p = '\0';
8210
8211 /* Append the packet body. */
8212 if (packet_format == 'X')
8213 {
8214 /* Binary mode. Send target system values byte by byte, in
8215 increasing byte addresses. Only escape certain critical
8216 characters. */
8217 payload_length_bytes =
8218 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8219 &units_written, payload_capacity_bytes);
8220
8221 /* If not all TODO units fit, then we'll need another packet. Make
8222 a second try to keep the end of the packet aligned. Don't do
8223 this if the packet is tiny. */
8224 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8225 {
8226 int new_todo_units;
8227
8228 new_todo_units = align_for_efficient_write (units_written, memaddr);
8229
8230 if (new_todo_units != units_written)
8231 payload_length_bytes =
8232 remote_escape_output (myaddr, new_todo_units, unit_size,
8233 (gdb_byte *) p, &units_written,
8234 payload_capacity_bytes);
8235 }
8236
8237 p += payload_length_bytes;
8238 if (use_length && units_written < todo_units)
8239 {
8240 /* Escape chars have filled up the buffer prematurely,
8241 and we have actually sent fewer units than planned.
8242 Fix-up the length field of the packet. Use the same
8243 number of characters as before. */
8244 plen += hexnumnstr (plen, (ULONGEST) units_written,
8245 plenlen);
8246 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8247 }
8248 }
8249 else
8250 {
8251 /* Normal mode: Send target system values byte by byte, in
8252 increasing byte addresses. Each byte is encoded as a two hex
8253 value. */
8254 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8255 units_written = todo_units;
8256 }
8257
8258 putpkt_binary (rs->buf, (int) (p - rs->buf));
8259 getpkt (&rs->buf, &rs->buf_size, 0);
8260
8261 if (rs->buf[0] == 'E')
8262 return TARGET_XFER_E_IO;
8263
8264 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8265 send fewer units than we'd planned. */
8266 *xfered_len_units = (ULONGEST) units_written;
8267 return TARGET_XFER_OK;
8268 }
8269
8270 /* Write memory data directly to the remote machine.
8271 This does not inform the data cache; the data cache uses this.
8272 MEMADDR is the address in the remote memory space.
8273 MYADDR is the address of the buffer in our space.
8274 LEN is the number of bytes.
8275
8276 Return the transferred status, error or OK (an
8277 'enum target_xfer_status' value). Save the number of bytes
8278 transferred in *XFERED_LEN. Only transfer a single packet. */
8279
8280 static enum target_xfer_status
8281 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8282 int unit_size, ULONGEST *xfered_len)
8283 {
8284 const char *packet_format = NULL;
8285
8286 /* Check whether the target supports binary download. */
8287 check_binary_download (memaddr);
8288
8289 switch (packet_support (PACKET_X))
8290 {
8291 case PACKET_ENABLE:
8292 packet_format = "X";
8293 break;
8294 case PACKET_DISABLE:
8295 packet_format = "M";
8296 break;
8297 case PACKET_SUPPORT_UNKNOWN:
8298 internal_error (__FILE__, __LINE__,
8299 _("remote_write_bytes: bad internal state"));
8300 default:
8301 internal_error (__FILE__, __LINE__, _("bad switch"));
8302 }
8303
8304 return remote_write_bytes_aux (packet_format,
8305 memaddr, myaddr, len, unit_size, xfered_len,
8306 packet_format[0], 1);
8307 }
8308
8309 /* Read memory data directly from the remote machine.
8310 This does not use the data cache; the data cache uses this.
8311 MEMADDR is the address in the remote memory space.
8312 MYADDR is the address of the buffer in our space.
8313 LEN_UNITS is the number of addressable memory units to read..
8314 UNIT_SIZE is the length in bytes of an addressable unit.
8315
8316 Return the transferred status, error or OK (an
8317 'enum target_xfer_status' value). Save the number of bytes
8318 transferred in *XFERED_LEN_UNITS.
8319
8320 See the comment of remote_write_bytes_aux for an example of
8321 memory read/write exchange between gdb and the stub. */
8322
8323 static enum target_xfer_status
8324 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8325 int unit_size, ULONGEST *xfered_len_units)
8326 {
8327 struct remote_state *rs = get_remote_state ();
8328 int buf_size_bytes; /* Max size of packet output buffer. */
8329 char *p;
8330 int todo_units;
8331 int decoded_bytes;
8332
8333 buf_size_bytes = get_memory_read_packet_size ();
8334 /* The packet buffer will be large enough for the payload;
8335 get_memory_packet_size ensures this. */
8336
8337 /* Number of units that will fit. */
8338 todo_units = std::min (len_units,
8339 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8340
8341 /* Construct "m"<memaddr>","<len>". */
8342 memaddr = remote_address_masked (memaddr);
8343 p = rs->buf;
8344 *p++ = 'm';
8345 p += hexnumstr (p, (ULONGEST) memaddr);
8346 *p++ = ',';
8347 p += hexnumstr (p, (ULONGEST) todo_units);
8348 *p = '\0';
8349 putpkt (rs->buf);
8350 getpkt (&rs->buf, &rs->buf_size, 0);
8351 if (rs->buf[0] == 'E'
8352 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8353 && rs->buf[3] == '\0')
8354 return TARGET_XFER_E_IO;
8355 /* Reply describes memory byte by byte, each byte encoded as two hex
8356 characters. */
8357 p = rs->buf;
8358 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8359 /* Return what we have. Let higher layers handle partial reads. */
8360 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8361 return TARGET_XFER_OK;
8362 }
8363
8364 /* Using the set of read-only target sections of remote, read live
8365 read-only memory.
8366
8367 For interface/parameters/return description see target.h,
8368 to_xfer_partial. */
8369
8370 static enum target_xfer_status
8371 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8372 ULONGEST memaddr, ULONGEST len,
8373 int unit_size, ULONGEST *xfered_len)
8374 {
8375 struct target_section *secp;
8376 struct target_section_table *table;
8377
8378 secp = target_section_by_addr (ops, memaddr);
8379 if (secp != NULL
8380 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8381 secp->the_bfd_section)
8382 & SEC_READONLY))
8383 {
8384 struct target_section *p;
8385 ULONGEST memend = memaddr + len;
8386
8387 table = target_get_section_table (ops);
8388
8389 for (p = table->sections; p < table->sections_end; p++)
8390 {
8391 if (memaddr >= p->addr)
8392 {
8393 if (memend <= p->endaddr)
8394 {
8395 /* Entire transfer is within this section. */
8396 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8397 xfered_len);
8398 }
8399 else if (memaddr >= p->endaddr)
8400 {
8401 /* This section ends before the transfer starts. */
8402 continue;
8403 }
8404 else
8405 {
8406 /* This section overlaps the transfer. Just do half. */
8407 len = p->endaddr - memaddr;
8408 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8409 xfered_len);
8410 }
8411 }
8412 }
8413 }
8414
8415 return TARGET_XFER_EOF;
8416 }
8417
8418 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8419 first if the requested memory is unavailable in traceframe.
8420 Otherwise, fall back to remote_read_bytes_1. */
8421
8422 static enum target_xfer_status
8423 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8424 gdb_byte *myaddr, ULONGEST len, int unit_size,
8425 ULONGEST *xfered_len)
8426 {
8427 if (len == 0)
8428 return TARGET_XFER_EOF;
8429
8430 if (get_traceframe_number () != -1)
8431 {
8432 std::vector<mem_range> available;
8433
8434 /* If we fail to get the set of available memory, then the
8435 target does not support querying traceframe info, and so we
8436 attempt reading from the traceframe anyway (assuming the
8437 target implements the old QTro packet then). */
8438 if (traceframe_available_memory (&available, memaddr, len))
8439 {
8440 if (available.empty () || available[0].start != memaddr)
8441 {
8442 enum target_xfer_status res;
8443
8444 /* Don't read into the traceframe's available
8445 memory. */
8446 if (!available.empty ())
8447 {
8448 LONGEST oldlen = len;
8449
8450 len = available[0].start - memaddr;
8451 gdb_assert (len <= oldlen);
8452 }
8453
8454 /* This goes through the topmost target again. */
8455 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8456 len, unit_size, xfered_len);
8457 if (res == TARGET_XFER_OK)
8458 return TARGET_XFER_OK;
8459 else
8460 {
8461 /* No use trying further, we know some memory starting
8462 at MEMADDR isn't available. */
8463 *xfered_len = len;
8464 return TARGET_XFER_UNAVAILABLE;
8465 }
8466 }
8467
8468 /* Don't try to read more than how much is available, in
8469 case the target implements the deprecated QTro packet to
8470 cater for older GDBs (the target's knowledge of read-only
8471 sections may be outdated by now). */
8472 len = available[0].length;
8473 }
8474 }
8475
8476 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8477 }
8478
8479 \f
8480
8481 /* Sends a packet with content determined by the printf format string
8482 FORMAT and the remaining arguments, then gets the reply. Returns
8483 whether the packet was a success, a failure, or unknown. */
8484
8485 static enum packet_result remote_send_printf (const char *format, ...)
8486 ATTRIBUTE_PRINTF (1, 2);
8487
8488 static enum packet_result
8489 remote_send_printf (const char *format, ...)
8490 {
8491 struct remote_state *rs = get_remote_state ();
8492 int max_size = get_remote_packet_size ();
8493 va_list ap;
8494
8495 va_start (ap, format);
8496
8497 rs->buf[0] = '\0';
8498 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8499 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8500
8501 if (putpkt (rs->buf) < 0)
8502 error (_("Communication problem with target."));
8503
8504 rs->buf[0] = '\0';
8505 getpkt (&rs->buf, &rs->buf_size, 0);
8506
8507 return packet_check_result (rs->buf);
8508 }
8509
8510 /* Flash writing can take quite some time. We'll set
8511 effectively infinite timeout for flash operations.
8512 In future, we'll need to decide on a better approach. */
8513 static const int remote_flash_timeout = 1000;
8514
8515 static void
8516 remote_flash_erase (struct target_ops *ops,
8517 ULONGEST address, LONGEST length)
8518 {
8519 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8520 enum packet_result ret;
8521 scoped_restore restore_timeout
8522 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8523
8524 ret = remote_send_printf ("vFlashErase:%s,%s",
8525 phex (address, addr_size),
8526 phex (length, 4));
8527 switch (ret)
8528 {
8529 case PACKET_UNKNOWN:
8530 error (_("Remote target does not support flash erase"));
8531 case PACKET_ERROR:
8532 error (_("Error erasing flash with vFlashErase packet"));
8533 default:
8534 break;
8535 }
8536 }
8537
8538 static enum target_xfer_status
8539 remote_flash_write (struct target_ops *ops, ULONGEST address,
8540 ULONGEST length, ULONGEST *xfered_len,
8541 const gdb_byte *data)
8542 {
8543 scoped_restore restore_timeout
8544 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8545 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8546 xfered_len,'X', 0);
8547 }
8548
8549 static void
8550 remote_flash_done (struct target_ops *ops)
8551 {
8552 int ret;
8553
8554 scoped_restore restore_timeout
8555 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8556
8557 ret = remote_send_printf ("vFlashDone");
8558
8559 switch (ret)
8560 {
8561 case PACKET_UNKNOWN:
8562 error (_("Remote target does not support vFlashDone"));
8563 case PACKET_ERROR:
8564 error (_("Error finishing flash operation"));
8565 default:
8566 break;
8567 }
8568 }
8569
8570 static void
8571 remote_files_info (struct target_ops *ignore)
8572 {
8573 puts_filtered ("Debugging a target over a serial line.\n");
8574 }
8575 \f
8576 /* Stuff for dealing with the packets which are part of this protocol.
8577 See comment at top of file for details. */
8578
8579 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8580 error to higher layers. Called when a serial error is detected.
8581 The exception message is STRING, followed by a colon and a blank,
8582 the system error message for errno at function entry and final dot
8583 for output compatibility with throw_perror_with_name. */
8584
8585 static void
8586 unpush_and_perror (const char *string)
8587 {
8588 int saved_errno = errno;
8589
8590 remote_unpush_target ();
8591 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8592 safe_strerror (saved_errno));
8593 }
8594
8595 /* Read a single character from the remote end. The current quit
8596 handler is overridden to avoid quitting in the middle of packet
8597 sequence, as that would break communication with the remote server.
8598 See remote_serial_quit_handler for more detail. */
8599
8600 static int
8601 readchar (int timeout)
8602 {
8603 int ch;
8604 struct remote_state *rs = get_remote_state ();
8605
8606 {
8607 scoped_restore restore_quit
8608 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8609
8610 rs->got_ctrlc_during_io = 0;
8611
8612 ch = serial_readchar (rs->remote_desc, timeout);
8613
8614 if (rs->got_ctrlc_during_io)
8615 set_quit_flag ();
8616 }
8617
8618 if (ch >= 0)
8619 return ch;
8620
8621 switch ((enum serial_rc) ch)
8622 {
8623 case SERIAL_EOF:
8624 remote_unpush_target ();
8625 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8626 /* no return */
8627 case SERIAL_ERROR:
8628 unpush_and_perror (_("Remote communication error. "
8629 "Target disconnected."));
8630 /* no return */
8631 case SERIAL_TIMEOUT:
8632 break;
8633 }
8634 return ch;
8635 }
8636
8637 /* Wrapper for serial_write that closes the target and throws if
8638 writing fails. The current quit handler is overridden to avoid
8639 quitting in the middle of packet sequence, as that would break
8640 communication with the remote server. See
8641 remote_serial_quit_handler for more detail. */
8642
8643 static void
8644 remote_serial_write (const char *str, int len)
8645 {
8646 struct remote_state *rs = get_remote_state ();
8647
8648 scoped_restore restore_quit
8649 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8650
8651 rs->got_ctrlc_during_io = 0;
8652
8653 if (serial_write (rs->remote_desc, str, len))
8654 {
8655 unpush_and_perror (_("Remote communication error. "
8656 "Target disconnected."));
8657 }
8658
8659 if (rs->got_ctrlc_during_io)
8660 set_quit_flag ();
8661 }
8662
8663 /* Send the command in *BUF to the remote machine, and read the reply
8664 into *BUF. Report an error if we get an error reply. Resize
8665 *BUF using xrealloc if necessary to hold the result, and update
8666 *SIZEOF_BUF. */
8667
8668 static void
8669 remote_send (char **buf,
8670 long *sizeof_buf)
8671 {
8672 putpkt (*buf);
8673 getpkt (buf, sizeof_buf, 0);
8674
8675 if ((*buf)[0] == 'E')
8676 error (_("Remote failure reply: %s"), *buf);
8677 }
8678
8679 /* Return a string representing an escaped version of BUF, of len N.
8680 E.g. \n is converted to \\n, \t to \\t, etc. */
8681
8682 static std::string
8683 escape_buffer (const char *buf, int n)
8684 {
8685 string_file stb;
8686
8687 stb.putstrn (buf, n, '\\');
8688 return std::move (stb.string ());
8689 }
8690
8691 /* Display a null-terminated packet on stdout, for debugging, using C
8692 string notation. */
8693
8694 static void
8695 print_packet (const char *buf)
8696 {
8697 puts_filtered ("\"");
8698 fputstr_filtered (buf, '"', gdb_stdout);
8699 puts_filtered ("\"");
8700 }
8701
8702 int
8703 putpkt (const char *buf)
8704 {
8705 return putpkt_binary (buf, strlen (buf));
8706 }
8707
8708 /* Send a packet to the remote machine, with error checking. The data
8709 of the packet is in BUF. The string in BUF can be at most
8710 get_remote_packet_size () - 5 to account for the $, # and checksum,
8711 and for a possible /0 if we are debugging (remote_debug) and want
8712 to print the sent packet as a string. */
8713
8714 static int
8715 putpkt_binary (const char *buf, int cnt)
8716 {
8717 struct remote_state *rs = get_remote_state ();
8718 int i;
8719 unsigned char csum = 0;
8720 gdb::def_vector<char> data (cnt + 6);
8721 char *buf2 = data.data ();
8722
8723 int ch;
8724 int tcount = 0;
8725 char *p;
8726
8727 /* Catch cases like trying to read memory or listing threads while
8728 we're waiting for a stop reply. The remote server wouldn't be
8729 ready to handle this request, so we'd hang and timeout. We don't
8730 have to worry about this in synchronous mode, because in that
8731 case it's not possible to issue a command while the target is
8732 running. This is not a problem in non-stop mode, because in that
8733 case, the stub is always ready to process serial input. */
8734 if (!target_is_non_stop_p ()
8735 && target_is_async_p ()
8736 && rs->waiting_for_stop_reply)
8737 {
8738 error (_("Cannot execute this command while the target is running.\n"
8739 "Use the \"interrupt\" command to stop the target\n"
8740 "and then try again."));
8741 }
8742
8743 /* We're sending out a new packet. Make sure we don't look at a
8744 stale cached response. */
8745 rs->cached_wait_status = 0;
8746
8747 /* Copy the packet into buffer BUF2, encapsulating it
8748 and giving it a checksum. */
8749
8750 p = buf2;
8751 *p++ = '$';
8752
8753 for (i = 0; i < cnt; i++)
8754 {
8755 csum += buf[i];
8756 *p++ = buf[i];
8757 }
8758 *p++ = '#';
8759 *p++ = tohex ((csum >> 4) & 0xf);
8760 *p++ = tohex (csum & 0xf);
8761
8762 /* Send it over and over until we get a positive ack. */
8763
8764 while (1)
8765 {
8766 int started_error_output = 0;
8767
8768 if (remote_debug)
8769 {
8770 *p = '\0';
8771
8772 int len = (int) (p - buf2);
8773
8774 std::string str
8775 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
8776
8777 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
8778
8779 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
8780 {
8781 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
8782 str.length () - REMOTE_DEBUG_MAX_CHAR);
8783 }
8784
8785 fprintf_unfiltered (gdb_stdlog, "...");
8786
8787 gdb_flush (gdb_stdlog);
8788 }
8789 remote_serial_write (buf2, p - buf2);
8790
8791 /* If this is a no acks version of the remote protocol, send the
8792 packet and move on. */
8793 if (rs->noack_mode)
8794 break;
8795
8796 /* Read until either a timeout occurs (-2) or '+' is read.
8797 Handle any notification that arrives in the mean time. */
8798 while (1)
8799 {
8800 ch = readchar (remote_timeout);
8801
8802 if (remote_debug)
8803 {
8804 switch (ch)
8805 {
8806 case '+':
8807 case '-':
8808 case SERIAL_TIMEOUT:
8809 case '$':
8810 case '%':
8811 if (started_error_output)
8812 {
8813 putchar_unfiltered ('\n');
8814 started_error_output = 0;
8815 }
8816 }
8817 }
8818
8819 switch (ch)
8820 {
8821 case '+':
8822 if (remote_debug)
8823 fprintf_unfiltered (gdb_stdlog, "Ack\n");
8824 return 1;
8825 case '-':
8826 if (remote_debug)
8827 fprintf_unfiltered (gdb_stdlog, "Nak\n");
8828 /* FALLTHROUGH */
8829 case SERIAL_TIMEOUT:
8830 tcount++;
8831 if (tcount > 3)
8832 return 0;
8833 break; /* Retransmit buffer. */
8834 case '$':
8835 {
8836 if (remote_debug)
8837 fprintf_unfiltered (gdb_stdlog,
8838 "Packet instead of Ack, ignoring it\n");
8839 /* It's probably an old response sent because an ACK
8840 was lost. Gobble up the packet and ack it so it
8841 doesn't get retransmitted when we resend this
8842 packet. */
8843 skip_frame ();
8844 remote_serial_write ("+", 1);
8845 continue; /* Now, go look for +. */
8846 }
8847
8848 case '%':
8849 {
8850 int val;
8851
8852 /* If we got a notification, handle it, and go back to looking
8853 for an ack. */
8854 /* We've found the start of a notification. Now
8855 collect the data. */
8856 val = read_frame (&rs->buf, &rs->buf_size);
8857 if (val >= 0)
8858 {
8859 if (remote_debug)
8860 {
8861 std::string str = escape_buffer (rs->buf, val);
8862
8863 fprintf_unfiltered (gdb_stdlog,
8864 " Notification received: %s\n",
8865 str.c_str ());
8866 }
8867 handle_notification (rs->notif_state, rs->buf);
8868 /* We're in sync now, rewait for the ack. */
8869 tcount = 0;
8870 }
8871 else
8872 {
8873 if (remote_debug)
8874 {
8875 if (!started_error_output)
8876 {
8877 started_error_output = 1;
8878 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8879 }
8880 fputc_unfiltered (ch & 0177, gdb_stdlog);
8881 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
8882 }
8883 }
8884 continue;
8885 }
8886 /* fall-through */
8887 default:
8888 if (remote_debug)
8889 {
8890 if (!started_error_output)
8891 {
8892 started_error_output = 1;
8893 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8894 }
8895 fputc_unfiltered (ch & 0177, gdb_stdlog);
8896 }
8897 continue;
8898 }
8899 break; /* Here to retransmit. */
8900 }
8901
8902 #if 0
8903 /* This is wrong. If doing a long backtrace, the user should be
8904 able to get out next time we call QUIT, without anything as
8905 violent as interrupt_query. If we want to provide a way out of
8906 here without getting to the next QUIT, it should be based on
8907 hitting ^C twice as in remote_wait. */
8908 if (quit_flag)
8909 {
8910 quit_flag = 0;
8911 interrupt_query ();
8912 }
8913 #endif
8914 }
8915
8916 return 0;
8917 }
8918
8919 /* Come here after finding the start of a frame when we expected an
8920 ack. Do our best to discard the rest of this packet. */
8921
8922 static void
8923 skip_frame (void)
8924 {
8925 int c;
8926
8927 while (1)
8928 {
8929 c = readchar (remote_timeout);
8930 switch (c)
8931 {
8932 case SERIAL_TIMEOUT:
8933 /* Nothing we can do. */
8934 return;
8935 case '#':
8936 /* Discard the two bytes of checksum and stop. */
8937 c = readchar (remote_timeout);
8938 if (c >= 0)
8939 c = readchar (remote_timeout);
8940
8941 return;
8942 case '*': /* Run length encoding. */
8943 /* Discard the repeat count. */
8944 c = readchar (remote_timeout);
8945 if (c < 0)
8946 return;
8947 break;
8948 default:
8949 /* A regular character. */
8950 break;
8951 }
8952 }
8953 }
8954
8955 /* Come here after finding the start of the frame. Collect the rest
8956 into *BUF, verifying the checksum, length, and handling run-length
8957 compression. NUL terminate the buffer. If there is not enough room,
8958 expand *BUF using xrealloc.
8959
8960 Returns -1 on error, number of characters in buffer (ignoring the
8961 trailing NULL) on success. (could be extended to return one of the
8962 SERIAL status indications). */
8963
8964 static long
8965 read_frame (char **buf_p,
8966 long *sizeof_buf)
8967 {
8968 unsigned char csum;
8969 long bc;
8970 int c;
8971 char *buf = *buf_p;
8972 struct remote_state *rs = get_remote_state ();
8973
8974 csum = 0;
8975 bc = 0;
8976
8977 while (1)
8978 {
8979 c = readchar (remote_timeout);
8980 switch (c)
8981 {
8982 case SERIAL_TIMEOUT:
8983 if (remote_debug)
8984 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
8985 return -1;
8986 case '$':
8987 if (remote_debug)
8988 fputs_filtered ("Saw new packet start in middle of old one\n",
8989 gdb_stdlog);
8990 return -1; /* Start a new packet, count retries. */
8991 case '#':
8992 {
8993 unsigned char pktcsum;
8994 int check_0 = 0;
8995 int check_1 = 0;
8996
8997 buf[bc] = '\0';
8998
8999 check_0 = readchar (remote_timeout);
9000 if (check_0 >= 0)
9001 check_1 = readchar (remote_timeout);
9002
9003 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9004 {
9005 if (remote_debug)
9006 fputs_filtered ("Timeout in checksum, retrying\n",
9007 gdb_stdlog);
9008 return -1;
9009 }
9010 else if (check_0 < 0 || check_1 < 0)
9011 {
9012 if (remote_debug)
9013 fputs_filtered ("Communication error in checksum\n",
9014 gdb_stdlog);
9015 return -1;
9016 }
9017
9018 /* Don't recompute the checksum; with no ack packets we
9019 don't have any way to indicate a packet retransmission
9020 is necessary. */
9021 if (rs->noack_mode)
9022 return bc;
9023
9024 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9025 if (csum == pktcsum)
9026 return bc;
9027
9028 if (remote_debug)
9029 {
9030 std::string str = escape_buffer (buf, bc);
9031
9032 fprintf_unfiltered (gdb_stdlog,
9033 "Bad checksum, sentsum=0x%x, "
9034 "csum=0x%x, buf=%s\n",
9035 pktcsum, csum, str.c_str ());
9036 }
9037 /* Number of characters in buffer ignoring trailing
9038 NULL. */
9039 return -1;
9040 }
9041 case '*': /* Run length encoding. */
9042 {
9043 int repeat;
9044
9045 csum += c;
9046 c = readchar (remote_timeout);
9047 csum += c;
9048 repeat = c - ' ' + 3; /* Compute repeat count. */
9049
9050 /* The character before ``*'' is repeated. */
9051
9052 if (repeat > 0 && repeat <= 255 && bc > 0)
9053 {
9054 if (bc + repeat - 1 >= *sizeof_buf - 1)
9055 {
9056 /* Make some more room in the buffer. */
9057 *sizeof_buf += repeat;
9058 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9059 buf = *buf_p;
9060 }
9061
9062 memset (&buf[bc], buf[bc - 1], repeat);
9063 bc += repeat;
9064 continue;
9065 }
9066
9067 buf[bc] = '\0';
9068 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9069 return -1;
9070 }
9071 default:
9072 if (bc >= *sizeof_buf - 1)
9073 {
9074 /* Make some more room in the buffer. */
9075 *sizeof_buf *= 2;
9076 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9077 buf = *buf_p;
9078 }
9079
9080 buf[bc++] = c;
9081 csum += c;
9082 continue;
9083 }
9084 }
9085 }
9086
9087 /* Read a packet from the remote machine, with error checking, and
9088 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9089 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9090 rather than timing out; this is used (in synchronous mode) to wait
9091 for a target that is is executing user code to stop. */
9092 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9093 don't have to change all the calls to getpkt to deal with the
9094 return value, because at the moment I don't know what the right
9095 thing to do it for those. */
9096 void
9097 getpkt (char **buf,
9098 long *sizeof_buf,
9099 int forever)
9100 {
9101 getpkt_sane (buf, sizeof_buf, forever);
9102 }
9103
9104
9105 /* Read a packet from the remote machine, with error checking, and
9106 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9107 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9108 rather than timing out; this is used (in synchronous mode) to wait
9109 for a target that is is executing user code to stop. If FOREVER ==
9110 0, this function is allowed to time out gracefully and return an
9111 indication of this to the caller. Otherwise return the number of
9112 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9113 enough reason to return to the caller. *IS_NOTIF is an output
9114 boolean that indicates whether *BUF holds a notification or not
9115 (a regular packet). */
9116
9117 static int
9118 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9119 int expecting_notif, int *is_notif)
9120 {
9121 struct remote_state *rs = get_remote_state ();
9122 int c;
9123 int tries;
9124 int timeout;
9125 int val = -1;
9126
9127 /* We're reading a new response. Make sure we don't look at a
9128 previously cached response. */
9129 rs->cached_wait_status = 0;
9130
9131 strcpy (*buf, "timeout");
9132
9133 if (forever)
9134 timeout = watchdog > 0 ? watchdog : -1;
9135 else if (expecting_notif)
9136 timeout = 0; /* There should already be a char in the buffer. If
9137 not, bail out. */
9138 else
9139 timeout = remote_timeout;
9140
9141 #define MAX_TRIES 3
9142
9143 /* Process any number of notifications, and then return when
9144 we get a packet. */
9145 for (;;)
9146 {
9147 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9148 times. */
9149 for (tries = 1; tries <= MAX_TRIES; tries++)
9150 {
9151 /* This can loop forever if the remote side sends us
9152 characters continuously, but if it pauses, we'll get
9153 SERIAL_TIMEOUT from readchar because of timeout. Then
9154 we'll count that as a retry.
9155
9156 Note that even when forever is set, we will only wait
9157 forever prior to the start of a packet. After that, we
9158 expect characters to arrive at a brisk pace. They should
9159 show up within remote_timeout intervals. */
9160 do
9161 c = readchar (timeout);
9162 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9163
9164 if (c == SERIAL_TIMEOUT)
9165 {
9166 if (expecting_notif)
9167 return -1; /* Don't complain, it's normal to not get
9168 anything in this case. */
9169
9170 if (forever) /* Watchdog went off? Kill the target. */
9171 {
9172 remote_unpush_target ();
9173 throw_error (TARGET_CLOSE_ERROR,
9174 _("Watchdog timeout has expired. "
9175 "Target detached."));
9176 }
9177 if (remote_debug)
9178 fputs_filtered ("Timed out.\n", gdb_stdlog);
9179 }
9180 else
9181 {
9182 /* We've found the start of a packet or notification.
9183 Now collect the data. */
9184 val = read_frame (buf, sizeof_buf);
9185 if (val >= 0)
9186 break;
9187 }
9188
9189 remote_serial_write ("-", 1);
9190 }
9191
9192 if (tries > MAX_TRIES)
9193 {
9194 /* We have tried hard enough, and just can't receive the
9195 packet/notification. Give up. */
9196 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9197
9198 /* Skip the ack char if we're in no-ack mode. */
9199 if (!rs->noack_mode)
9200 remote_serial_write ("+", 1);
9201 return -1;
9202 }
9203
9204 /* If we got an ordinary packet, return that to our caller. */
9205 if (c == '$')
9206 {
9207 if (remote_debug)
9208 {
9209 std::string str
9210 = escape_buffer (*buf,
9211 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9212
9213 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9214 str.c_str ());
9215
9216 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
9217 {
9218 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
9219 str.length () - REMOTE_DEBUG_MAX_CHAR);
9220 }
9221
9222 fprintf_unfiltered (gdb_stdlog, "\n");
9223 }
9224
9225 /* Skip the ack char if we're in no-ack mode. */
9226 if (!rs->noack_mode)
9227 remote_serial_write ("+", 1);
9228 if (is_notif != NULL)
9229 *is_notif = 0;
9230 return val;
9231 }
9232
9233 /* If we got a notification, handle it, and go back to looking
9234 for a packet. */
9235 else
9236 {
9237 gdb_assert (c == '%');
9238
9239 if (remote_debug)
9240 {
9241 std::string str = escape_buffer (*buf, val);
9242
9243 fprintf_unfiltered (gdb_stdlog,
9244 " Notification received: %s\n",
9245 str.c_str ());
9246 }
9247 if (is_notif != NULL)
9248 *is_notif = 1;
9249
9250 handle_notification (rs->notif_state, *buf);
9251
9252 /* Notifications require no acknowledgement. */
9253
9254 if (expecting_notif)
9255 return val;
9256 }
9257 }
9258 }
9259
9260 static int
9261 getpkt_sane (char **buf, long *sizeof_buf, int forever)
9262 {
9263 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9264 }
9265
9266 static int
9267 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9268 int *is_notif)
9269 {
9270 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9271 is_notif);
9272 }
9273
9274 /* Check whether EVENT is a fork event for the process specified
9275 by the pid passed in DATA, and if it is, kill the fork child. */
9276
9277 static int
9278 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9279 QUEUE_ITER (stop_reply_p) *iter,
9280 stop_reply_p event,
9281 void *data)
9282 {
9283 struct queue_iter_param *param = (struct queue_iter_param *) data;
9284 int parent_pid = *(int *) param->input;
9285
9286 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9287 {
9288 struct remote_state *rs = get_remote_state ();
9289 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9290 int res;
9291
9292 res = remote_vkill (child_pid, rs);
9293 if (res != 0)
9294 error (_("Can't kill fork child process %d"), child_pid);
9295 }
9296
9297 return 1;
9298 }
9299
9300 /* Kill any new fork children of process PID that haven't been
9301 processed by follow_fork. */
9302
9303 static void
9304 kill_new_fork_children (int pid, struct remote_state *rs)
9305 {
9306 struct thread_info *thread;
9307 struct notif_client *notif = &notif_client_stop;
9308 struct queue_iter_param param;
9309
9310 /* Kill the fork child threads of any threads in process PID
9311 that are stopped at a fork event. */
9312 ALL_NON_EXITED_THREADS (thread)
9313 {
9314 struct target_waitstatus *ws = &thread->pending_follow;
9315
9316 if (is_pending_fork_parent (ws, pid, thread->ptid))
9317 {
9318 struct remote_state *rs = get_remote_state ();
9319 int child_pid = ptid_get_pid (ws->value.related_pid);
9320 int res;
9321
9322 res = remote_vkill (child_pid, rs);
9323 if (res != 0)
9324 error (_("Can't kill fork child process %d"), child_pid);
9325 }
9326 }
9327
9328 /* Check for any pending fork events (not reported or processed yet)
9329 in process PID and kill those fork child threads as well. */
9330 remote_notif_get_pending_events (notif);
9331 param.input = &pid;
9332 param.output = NULL;
9333 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9334 kill_child_of_pending_fork, &param);
9335 }
9336
9337 \f
9338 /* Target hook to kill the current inferior. */
9339
9340 static void
9341 remote_kill (struct target_ops *ops)
9342 {
9343 int res = -1;
9344 int pid = ptid_get_pid (inferior_ptid);
9345 struct remote_state *rs = get_remote_state ();
9346
9347 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9348 {
9349 /* If we're stopped while forking and we haven't followed yet,
9350 kill the child task. We need to do this before killing the
9351 parent task because if this is a vfork then the parent will
9352 be sleeping. */
9353 kill_new_fork_children (pid, rs);
9354
9355 res = remote_vkill (pid, rs);
9356 if (res == 0)
9357 {
9358 target_mourn_inferior (inferior_ptid);
9359 return;
9360 }
9361 }
9362
9363 /* If we are in 'target remote' mode and we are killing the only
9364 inferior, then we will tell gdbserver to exit and unpush the
9365 target. */
9366 if (res == -1 && !remote_multi_process_p (rs)
9367 && number_of_live_inferiors () == 1)
9368 {
9369 remote_kill_k ();
9370
9371 /* We've killed the remote end, we get to mourn it. If we are
9372 not in extended mode, mourning the inferior also unpushes
9373 remote_ops from the target stack, which closes the remote
9374 connection. */
9375 target_mourn_inferior (inferior_ptid);
9376
9377 return;
9378 }
9379
9380 error (_("Can't kill process"));
9381 }
9382
9383 /* Send a kill request to the target using the 'vKill' packet. */
9384
9385 static int
9386 remote_vkill (int pid, struct remote_state *rs)
9387 {
9388 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9389 return -1;
9390
9391 /* Tell the remote target to detach. */
9392 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9393 putpkt (rs->buf);
9394 getpkt (&rs->buf, &rs->buf_size, 0);
9395
9396 switch (packet_ok (rs->buf,
9397 &remote_protocol_packets[PACKET_vKill]))
9398 {
9399 case PACKET_OK:
9400 return 0;
9401 case PACKET_ERROR:
9402 return 1;
9403 case PACKET_UNKNOWN:
9404 return -1;
9405 default:
9406 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9407 }
9408 }
9409
9410 /* Send a kill request to the target using the 'k' packet. */
9411
9412 static void
9413 remote_kill_k (void)
9414 {
9415 /* Catch errors so the user can quit from gdb even when we
9416 aren't on speaking terms with the remote system. */
9417 TRY
9418 {
9419 putpkt ("k");
9420 }
9421 CATCH (ex, RETURN_MASK_ERROR)
9422 {
9423 if (ex.error == TARGET_CLOSE_ERROR)
9424 {
9425 /* If we got an (EOF) error that caused the target
9426 to go away, then we're done, that's what we wanted.
9427 "k" is susceptible to cause a premature EOF, given
9428 that the remote server isn't actually required to
9429 reply to "k", and it can happen that it doesn't
9430 even get to reply ACK to the "k". */
9431 return;
9432 }
9433
9434 /* Otherwise, something went wrong. We didn't actually kill
9435 the target. Just propagate the exception, and let the
9436 user or higher layers decide what to do. */
9437 throw_exception (ex);
9438 }
9439 END_CATCH
9440 }
9441
9442 static void
9443 remote_mourn (struct target_ops *target)
9444 {
9445 struct remote_state *rs = get_remote_state ();
9446
9447 /* In 'target remote' mode with one inferior, we close the connection. */
9448 if (!rs->extended && number_of_live_inferiors () <= 1)
9449 {
9450 unpush_target (target);
9451
9452 /* remote_close takes care of doing most of the clean up. */
9453 generic_mourn_inferior ();
9454 return;
9455 }
9456
9457 /* In case we got here due to an error, but we're going to stay
9458 connected. */
9459 rs->waiting_for_stop_reply = 0;
9460
9461 /* If the current general thread belonged to the process we just
9462 detached from or has exited, the remote side current general
9463 thread becomes undefined. Considering a case like this:
9464
9465 - We just got here due to a detach.
9466 - The process that we're detaching from happens to immediately
9467 report a global breakpoint being hit in non-stop mode, in the
9468 same thread we had selected before.
9469 - GDB attaches to this process again.
9470 - This event happens to be the next event we handle.
9471
9472 GDB would consider that the current general thread didn't need to
9473 be set on the stub side (with Hg), since for all it knew,
9474 GENERAL_THREAD hadn't changed.
9475
9476 Notice that although in all-stop mode, the remote server always
9477 sets the current thread to the thread reporting the stop event,
9478 that doesn't happen in non-stop mode; in non-stop, the stub *must
9479 not* change the current thread when reporting a breakpoint hit,
9480 due to the decoupling of event reporting and event handling.
9481
9482 To keep things simple, we always invalidate our notion of the
9483 current thread. */
9484 record_currthread (rs, minus_one_ptid);
9485
9486 /* Call common code to mark the inferior as not running. */
9487 generic_mourn_inferior ();
9488
9489 if (!have_inferiors ())
9490 {
9491 if (!remote_multi_process_p (rs))
9492 {
9493 /* Check whether the target is running now - some remote stubs
9494 automatically restart after kill. */
9495 putpkt ("?");
9496 getpkt (&rs->buf, &rs->buf_size, 0);
9497
9498 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9499 {
9500 /* Assume that the target has been restarted. Set
9501 inferior_ptid so that bits of core GDB realizes
9502 there's something here, e.g., so that the user can
9503 say "kill" again. */
9504 inferior_ptid = magic_null_ptid;
9505 }
9506 }
9507 }
9508 }
9509
9510 static int
9511 extended_remote_supports_disable_randomization (struct target_ops *self)
9512 {
9513 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9514 }
9515
9516 static void
9517 extended_remote_disable_randomization (int val)
9518 {
9519 struct remote_state *rs = get_remote_state ();
9520 char *reply;
9521
9522 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9523 val);
9524 putpkt (rs->buf);
9525 reply = remote_get_noisy_reply ();
9526 if (*reply == '\0')
9527 error (_("Target does not support QDisableRandomization."));
9528 if (strcmp (reply, "OK") != 0)
9529 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9530 }
9531
9532 static int
9533 extended_remote_run (const std::string &args)
9534 {
9535 struct remote_state *rs = get_remote_state ();
9536 int len;
9537 const char *remote_exec_file = get_remote_exec_file ();
9538
9539 /* If the user has disabled vRun support, or we have detected that
9540 support is not available, do not try it. */
9541 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9542 return -1;
9543
9544 strcpy (rs->buf, "vRun;");
9545 len = strlen (rs->buf);
9546
9547 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9548 error (_("Remote file name too long for run packet"));
9549 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9550 strlen (remote_exec_file));
9551
9552 if (!args.empty ())
9553 {
9554 int i;
9555
9556 gdb_argv argv (args.c_str ());
9557 for (i = 0; argv[i] != NULL; i++)
9558 {
9559 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9560 error (_("Argument list too long for run packet"));
9561 rs->buf[len++] = ';';
9562 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9563 strlen (argv[i]));
9564 }
9565 }
9566
9567 rs->buf[len++] = '\0';
9568
9569 putpkt (rs->buf);
9570 getpkt (&rs->buf, &rs->buf_size, 0);
9571
9572 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9573 {
9574 case PACKET_OK:
9575 /* We have a wait response. All is well. */
9576 return 0;
9577 case PACKET_UNKNOWN:
9578 return -1;
9579 case PACKET_ERROR:
9580 if (remote_exec_file[0] == '\0')
9581 error (_("Running the default executable on the remote target failed; "
9582 "try \"set remote exec-file\"?"));
9583 else
9584 error (_("Running \"%s\" on the remote target failed"),
9585 remote_exec_file);
9586 default:
9587 gdb_assert_not_reached (_("bad switch"));
9588 }
9589 }
9590
9591 /* Helper function to send set/unset environment packets. ACTION is
9592 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9593 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9594 sent. */
9595
9596 static void
9597 send_environment_packet (struct remote_state *rs,
9598 const char *action,
9599 const char *packet,
9600 const char *value)
9601 {
9602 /* Convert the environment variable to an hex string, which
9603 is the best format to be transmitted over the wire. */
9604 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9605 strlen (value));
9606
9607 xsnprintf (rs->buf, get_remote_packet_size (),
9608 "%s:%s", packet, encoded_value.c_str ());
9609
9610 putpkt (rs->buf);
9611 getpkt (&rs->buf, &rs->buf_size, 0);
9612 if (strcmp (rs->buf, "OK") != 0)
9613 warning (_("Unable to %s environment variable '%s' on remote."),
9614 action, value);
9615 }
9616
9617 /* Helper function to handle the QEnvironment* packets. */
9618
9619 static void
9620 extended_remote_environment_support (struct remote_state *rs)
9621 {
9622 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9623 {
9624 putpkt ("QEnvironmentReset");
9625 getpkt (&rs->buf, &rs->buf_size, 0);
9626 if (strcmp (rs->buf, "OK") != 0)
9627 warning (_("Unable to reset environment on remote."));
9628 }
9629
9630 gdb_environ *e = &current_inferior ()->environment;
9631
9632 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9633 for (const std::string &el : e->user_set_env ())
9634 send_environment_packet (rs, "set", "QEnvironmentHexEncoded",
9635 el.c_str ());
9636
9637 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9638 for (const std::string &el : e->user_unset_env ())
9639 send_environment_packet (rs, "unset", "QEnvironmentUnset", el.c_str ());
9640 }
9641
9642 /* Helper function to set the current working directory for the
9643 inferior in the remote target. */
9644
9645 static void
9646 extended_remote_set_inferior_cwd (struct remote_state *rs)
9647 {
9648 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
9649 {
9650 const char *inferior_cwd = get_inferior_cwd ();
9651
9652 if (inferior_cwd != NULL)
9653 {
9654 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
9655 strlen (inferior_cwd));
9656
9657 xsnprintf (rs->buf, get_remote_packet_size (),
9658 "QSetWorkingDir:%s", hexpath.c_str ());
9659 }
9660 else
9661 {
9662 /* An empty inferior_cwd means that the user wants us to
9663 reset the remote server's inferior's cwd. */
9664 xsnprintf (rs->buf, get_remote_packet_size (),
9665 "QSetWorkingDir:");
9666 }
9667
9668 putpkt (rs->buf);
9669 getpkt (&rs->buf, &rs->buf_size, 0);
9670 if (packet_ok (rs->buf,
9671 &remote_protocol_packets[PACKET_QSetWorkingDir])
9672 != PACKET_OK)
9673 error (_("\
9674 Remote replied unexpectedly while setting the inferior's working\n\
9675 directory: %s"),
9676 rs->buf);
9677
9678 }
9679 }
9680
9681 /* In the extended protocol we want to be able to do things like
9682 "run" and have them basically work as expected. So we need
9683 a special create_inferior function. We support changing the
9684 executable file and the command line arguments, but not the
9685 environment. */
9686
9687 static void
9688 extended_remote_create_inferior (struct target_ops *ops,
9689 const char *exec_file,
9690 const std::string &args,
9691 char **env, int from_tty)
9692 {
9693 int run_worked;
9694 char *stop_reply;
9695 struct remote_state *rs = get_remote_state ();
9696 const char *remote_exec_file = get_remote_exec_file ();
9697
9698 /* If running asynchronously, register the target file descriptor
9699 with the event loop. */
9700 if (target_can_async_p ())
9701 target_async (1);
9702
9703 /* Disable address space randomization if requested (and supported). */
9704 if (extended_remote_supports_disable_randomization (ops))
9705 extended_remote_disable_randomization (disable_randomization);
9706
9707 /* If startup-with-shell is on, we inform gdbserver to start the
9708 remote inferior using a shell. */
9709 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
9710 {
9711 xsnprintf (rs->buf, get_remote_packet_size (),
9712 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
9713 putpkt (rs->buf);
9714 getpkt (&rs->buf, &rs->buf_size, 0);
9715 if (strcmp (rs->buf, "OK") != 0)
9716 error (_("\
9717 Remote replied unexpectedly while setting startup-with-shell: %s"),
9718 rs->buf);
9719 }
9720
9721 extended_remote_environment_support (rs);
9722
9723 extended_remote_set_inferior_cwd (rs);
9724
9725 /* Now restart the remote server. */
9726 run_worked = extended_remote_run (args) != -1;
9727 if (!run_worked)
9728 {
9729 /* vRun was not supported. Fail if we need it to do what the
9730 user requested. */
9731 if (remote_exec_file[0])
9732 error (_("Remote target does not support \"set remote exec-file\""));
9733 if (!args.empty ())
9734 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9735
9736 /* Fall back to "R". */
9737 extended_remote_restart ();
9738 }
9739
9740 if (!have_inferiors ())
9741 {
9742 /* Clean up from the last time we ran, before we mark the target
9743 running again. This will mark breakpoints uninserted, and
9744 get_offsets may insert breakpoints. */
9745 init_thread_list ();
9746 init_wait_for_inferior ();
9747 }
9748
9749 /* vRun's success return is a stop reply. */
9750 stop_reply = run_worked ? rs->buf : NULL;
9751 add_current_inferior_and_thread (stop_reply);
9752
9753 /* Get updated offsets, if the stub uses qOffsets. */
9754 get_offsets ();
9755 }
9756 \f
9757
9758 /* Given a location's target info BP_TGT and the packet buffer BUF, output
9759 the list of conditions (in agent expression bytecode format), if any, the
9760 target needs to evaluate. The output is placed into the packet buffer
9761 started from BUF and ended at BUF_END. */
9762
9763 static int
9764 remote_add_target_side_condition (struct gdbarch *gdbarch,
9765 struct bp_target_info *bp_tgt, char *buf,
9766 char *buf_end)
9767 {
9768 if (bp_tgt->conditions.empty ())
9769 return 0;
9770
9771 buf += strlen (buf);
9772 xsnprintf (buf, buf_end - buf, "%s", ";");
9773 buf++;
9774
9775 /* Send conditions to the target. */
9776 for (agent_expr *aexpr : bp_tgt->conditions)
9777 {
9778 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
9779 buf += strlen (buf);
9780 for (int i = 0; i < aexpr->len; ++i)
9781 buf = pack_hex_byte (buf, aexpr->buf[i]);
9782 *buf = '\0';
9783 }
9784 return 0;
9785 }
9786
9787 static void
9788 remote_add_target_side_commands (struct gdbarch *gdbarch,
9789 struct bp_target_info *bp_tgt, char *buf)
9790 {
9791 if (bp_tgt->tcommands.empty ())
9792 return;
9793
9794 buf += strlen (buf);
9795
9796 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
9797 buf += strlen (buf);
9798
9799 /* Concatenate all the agent expressions that are commands into the
9800 cmds parameter. */
9801 for (agent_expr *aexpr : bp_tgt->tcommands)
9802 {
9803 sprintf (buf, "X%x,", aexpr->len);
9804 buf += strlen (buf);
9805 for (int i = 0; i < aexpr->len; ++i)
9806 buf = pack_hex_byte (buf, aexpr->buf[i]);
9807 *buf = '\0';
9808 }
9809 }
9810
9811 /* Insert a breakpoint. On targets that have software breakpoint
9812 support, we ask the remote target to do the work; on targets
9813 which don't, we insert a traditional memory breakpoint. */
9814
9815 static int
9816 remote_insert_breakpoint (struct target_ops *ops,
9817 struct gdbarch *gdbarch,
9818 struct bp_target_info *bp_tgt)
9819 {
9820 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
9821 If it succeeds, then set the support to PACKET_ENABLE. If it
9822 fails, and the user has explicitly requested the Z support then
9823 report an error, otherwise, mark it disabled and go on. */
9824
9825 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9826 {
9827 CORE_ADDR addr = bp_tgt->reqstd_address;
9828 struct remote_state *rs;
9829 char *p, *endbuf;
9830 int bpsize;
9831
9832 /* Make sure the remote is pointing at the right process, if
9833 necessary. */
9834 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9835 set_general_process ();
9836
9837 rs = get_remote_state ();
9838 p = rs->buf;
9839 endbuf = rs->buf + get_remote_packet_size ();
9840
9841 *(p++) = 'Z';
9842 *(p++) = '0';
9843 *(p++) = ',';
9844 addr = (ULONGEST) remote_address_masked (addr);
9845 p += hexnumstr (p, addr);
9846 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9847
9848 if (remote_supports_cond_breakpoints (ops))
9849 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
9850
9851 if (remote_can_run_breakpoint_commands (ops))
9852 remote_add_target_side_commands (gdbarch, bp_tgt, p);
9853
9854 putpkt (rs->buf);
9855 getpkt (&rs->buf, &rs->buf_size, 0);
9856
9857 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
9858 {
9859 case PACKET_ERROR:
9860 return -1;
9861 case PACKET_OK:
9862 return 0;
9863 case PACKET_UNKNOWN:
9864 break;
9865 }
9866 }
9867
9868 /* If this breakpoint has target-side commands but this stub doesn't
9869 support Z0 packets, throw error. */
9870 if (!bp_tgt->tcommands.empty ())
9871 throw_error (NOT_SUPPORTED_ERROR, _("\
9872 Target doesn't support breakpoints that have target side commands."));
9873
9874 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
9875 }
9876
9877 static int
9878 remote_remove_breakpoint (struct target_ops *ops,
9879 struct gdbarch *gdbarch,
9880 struct bp_target_info *bp_tgt,
9881 enum remove_bp_reason reason)
9882 {
9883 CORE_ADDR addr = bp_tgt->placed_address;
9884 struct remote_state *rs = get_remote_state ();
9885
9886 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9887 {
9888 char *p = rs->buf;
9889 char *endbuf = rs->buf + get_remote_packet_size ();
9890
9891 /* Make sure the remote is pointing at the right process, if
9892 necessary. */
9893 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9894 set_general_process ();
9895
9896 *(p++) = 'z';
9897 *(p++) = '0';
9898 *(p++) = ',';
9899
9900 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
9901 p += hexnumstr (p, addr);
9902 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9903
9904 putpkt (rs->buf);
9905 getpkt (&rs->buf, &rs->buf_size, 0);
9906
9907 return (rs->buf[0] == 'E');
9908 }
9909
9910 return memory_remove_breakpoint (ops, gdbarch, bp_tgt, reason);
9911 }
9912
9913 static enum Z_packet_type
9914 watchpoint_to_Z_packet (int type)
9915 {
9916 switch (type)
9917 {
9918 case hw_write:
9919 return Z_PACKET_WRITE_WP;
9920 break;
9921 case hw_read:
9922 return Z_PACKET_READ_WP;
9923 break;
9924 case hw_access:
9925 return Z_PACKET_ACCESS_WP;
9926 break;
9927 default:
9928 internal_error (__FILE__, __LINE__,
9929 _("hw_bp_to_z: bad watchpoint type %d"), type);
9930 }
9931 }
9932
9933 static int
9934 remote_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9935 enum target_hw_bp_type type, struct expression *cond)
9936 {
9937 struct remote_state *rs = get_remote_state ();
9938 char *endbuf = rs->buf + get_remote_packet_size ();
9939 char *p;
9940 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9941
9942 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9943 return 1;
9944
9945 /* Make sure the remote is pointing at the right process, if
9946 necessary. */
9947 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9948 set_general_process ();
9949
9950 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
9951 p = strchr (rs->buf, '\0');
9952 addr = remote_address_masked (addr);
9953 p += hexnumstr (p, (ULONGEST) addr);
9954 xsnprintf (p, endbuf - p, ",%x", len);
9955
9956 putpkt (rs->buf);
9957 getpkt (&rs->buf, &rs->buf_size, 0);
9958
9959 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9960 {
9961 case PACKET_ERROR:
9962 return -1;
9963 case PACKET_UNKNOWN:
9964 return 1;
9965 case PACKET_OK:
9966 return 0;
9967 }
9968 internal_error (__FILE__, __LINE__,
9969 _("remote_insert_watchpoint: reached end of function"));
9970 }
9971
9972 static int
9973 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
9974 CORE_ADDR start, int length)
9975 {
9976 CORE_ADDR diff = remote_address_masked (addr - start);
9977
9978 return diff < length;
9979 }
9980
9981
9982 static int
9983 remote_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9984 enum target_hw_bp_type type, struct expression *cond)
9985 {
9986 struct remote_state *rs = get_remote_state ();
9987 char *endbuf = rs->buf + get_remote_packet_size ();
9988 char *p;
9989 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9990
9991 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9992 return -1;
9993
9994 /* Make sure the remote is pointing at the right process, if
9995 necessary. */
9996 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9997 set_general_process ();
9998
9999 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
10000 p = strchr (rs->buf, '\0');
10001 addr = remote_address_masked (addr);
10002 p += hexnumstr (p, (ULONGEST) addr);
10003 xsnprintf (p, endbuf - p, ",%x", len);
10004 putpkt (rs->buf);
10005 getpkt (&rs->buf, &rs->buf_size, 0);
10006
10007 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10008 {
10009 case PACKET_ERROR:
10010 case PACKET_UNKNOWN:
10011 return -1;
10012 case PACKET_OK:
10013 return 0;
10014 }
10015 internal_error (__FILE__, __LINE__,
10016 _("remote_remove_watchpoint: reached end of function"));
10017 }
10018
10019
10020 int remote_hw_watchpoint_limit = -1;
10021 int remote_hw_watchpoint_length_limit = -1;
10022 int remote_hw_breakpoint_limit = -1;
10023
10024 static int
10025 remote_region_ok_for_hw_watchpoint (struct target_ops *self,
10026 CORE_ADDR addr, int len)
10027 {
10028 if (remote_hw_watchpoint_length_limit == 0)
10029 return 0;
10030 else if (remote_hw_watchpoint_length_limit < 0)
10031 return 1;
10032 else if (len <= remote_hw_watchpoint_length_limit)
10033 return 1;
10034 else
10035 return 0;
10036 }
10037
10038 static int
10039 remote_check_watch_resources (struct target_ops *self,
10040 enum bptype type, int cnt, int ot)
10041 {
10042 if (type == bp_hardware_breakpoint)
10043 {
10044 if (remote_hw_breakpoint_limit == 0)
10045 return 0;
10046 else if (remote_hw_breakpoint_limit < 0)
10047 return 1;
10048 else if (cnt <= remote_hw_breakpoint_limit)
10049 return 1;
10050 }
10051 else
10052 {
10053 if (remote_hw_watchpoint_limit == 0)
10054 return 0;
10055 else if (remote_hw_watchpoint_limit < 0)
10056 return 1;
10057 else if (ot)
10058 return -1;
10059 else if (cnt <= remote_hw_watchpoint_limit)
10060 return 1;
10061 }
10062 return -1;
10063 }
10064
10065 /* The to_stopped_by_sw_breakpoint method of target remote. */
10066
10067 static int
10068 remote_stopped_by_sw_breakpoint (struct target_ops *ops)
10069 {
10070 struct thread_info *thread = inferior_thread ();
10071
10072 return (thread->priv != NULL
10073 && thread->priv->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
10074 }
10075
10076 /* The to_supports_stopped_by_sw_breakpoint method of target
10077 remote. */
10078
10079 static int
10080 remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
10081 {
10082 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10083 }
10084
10085 /* The to_stopped_by_hw_breakpoint method of target remote. */
10086
10087 static int
10088 remote_stopped_by_hw_breakpoint (struct target_ops *ops)
10089 {
10090 struct thread_info *thread = inferior_thread ();
10091
10092 return (thread->priv != NULL
10093 && thread->priv->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
10094 }
10095
10096 /* The to_supports_stopped_by_hw_breakpoint method of target
10097 remote. */
10098
10099 static int
10100 remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
10101 {
10102 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10103 }
10104
10105 static int
10106 remote_stopped_by_watchpoint (struct target_ops *ops)
10107 {
10108 struct thread_info *thread = inferior_thread ();
10109
10110 return (thread->priv != NULL
10111 && thread->priv->stop_reason == TARGET_STOPPED_BY_WATCHPOINT);
10112 }
10113
10114 static int
10115 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
10116 {
10117 struct thread_info *thread = inferior_thread ();
10118
10119 if (thread->priv != NULL
10120 && thread->priv->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
10121 {
10122 *addr_p = thread->priv->watch_data_address;
10123 return 1;
10124 }
10125
10126 return 0;
10127 }
10128
10129
10130 static int
10131 remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10132 struct bp_target_info *bp_tgt)
10133 {
10134 CORE_ADDR addr = bp_tgt->reqstd_address;
10135 struct remote_state *rs;
10136 char *p, *endbuf;
10137 char *message;
10138
10139 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10140 return -1;
10141
10142 /* Make sure the remote is pointing at the right process, if
10143 necessary. */
10144 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10145 set_general_process ();
10146
10147 rs = get_remote_state ();
10148 p = rs->buf;
10149 endbuf = rs->buf + get_remote_packet_size ();
10150
10151 *(p++) = 'Z';
10152 *(p++) = '1';
10153 *(p++) = ',';
10154
10155 addr = remote_address_masked (addr);
10156 p += hexnumstr (p, (ULONGEST) addr);
10157 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10158
10159 if (remote_supports_cond_breakpoints (self))
10160 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10161
10162 if (remote_can_run_breakpoint_commands (self))
10163 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10164
10165 putpkt (rs->buf);
10166 getpkt (&rs->buf, &rs->buf_size, 0);
10167
10168 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10169 {
10170 case PACKET_ERROR:
10171 if (rs->buf[1] == '.')
10172 {
10173 message = strchr (rs->buf + 2, '.');
10174 if (message)
10175 error (_("Remote failure reply: %s"), message + 1);
10176 }
10177 return -1;
10178 case PACKET_UNKNOWN:
10179 return -1;
10180 case PACKET_OK:
10181 return 0;
10182 }
10183 internal_error (__FILE__, __LINE__,
10184 _("remote_insert_hw_breakpoint: reached end of function"));
10185 }
10186
10187
10188 static int
10189 remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10190 struct bp_target_info *bp_tgt)
10191 {
10192 CORE_ADDR addr;
10193 struct remote_state *rs = get_remote_state ();
10194 char *p = rs->buf;
10195 char *endbuf = rs->buf + get_remote_packet_size ();
10196
10197 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10198 return -1;
10199
10200 /* Make sure the remote is pointing at the right process, if
10201 necessary. */
10202 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10203 set_general_process ();
10204
10205 *(p++) = 'z';
10206 *(p++) = '1';
10207 *(p++) = ',';
10208
10209 addr = remote_address_masked (bp_tgt->placed_address);
10210 p += hexnumstr (p, (ULONGEST) addr);
10211 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10212
10213 putpkt (rs->buf);
10214 getpkt (&rs->buf, &rs->buf_size, 0);
10215
10216 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10217 {
10218 case PACKET_ERROR:
10219 case PACKET_UNKNOWN:
10220 return -1;
10221 case PACKET_OK:
10222 return 0;
10223 }
10224 internal_error (__FILE__, __LINE__,
10225 _("remote_remove_hw_breakpoint: reached end of function"));
10226 }
10227
10228 /* Verify memory using the "qCRC:" request. */
10229
10230 static int
10231 remote_verify_memory (struct target_ops *ops,
10232 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10233 {
10234 struct remote_state *rs = get_remote_state ();
10235 unsigned long host_crc, target_crc;
10236 char *tmp;
10237
10238 /* It doesn't make sense to use qCRC if the remote target is
10239 connected but not running. */
10240 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10241 {
10242 enum packet_result result;
10243
10244 /* Make sure the remote is pointing at the right process. */
10245 set_general_process ();
10246
10247 /* FIXME: assumes lma can fit into long. */
10248 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10249 (long) lma, (long) size);
10250 putpkt (rs->buf);
10251
10252 /* Be clever; compute the host_crc before waiting for target
10253 reply. */
10254 host_crc = xcrc32 (data, size, 0xffffffff);
10255
10256 getpkt (&rs->buf, &rs->buf_size, 0);
10257
10258 result = packet_ok (rs->buf,
10259 &remote_protocol_packets[PACKET_qCRC]);
10260 if (result == PACKET_ERROR)
10261 return -1;
10262 else if (result == PACKET_OK)
10263 {
10264 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10265 target_crc = target_crc * 16 + fromhex (*tmp);
10266
10267 return (host_crc == target_crc);
10268 }
10269 }
10270
10271 return simple_verify_memory (ops, data, lma, size);
10272 }
10273
10274 /* compare-sections command
10275
10276 With no arguments, compares each loadable section in the exec bfd
10277 with the same memory range on the target, and reports mismatches.
10278 Useful for verifying the image on the target against the exec file. */
10279
10280 static void
10281 compare_sections_command (const char *args, int from_tty)
10282 {
10283 asection *s;
10284 gdb_byte *sectdata;
10285 const char *sectname;
10286 bfd_size_type size;
10287 bfd_vma lma;
10288 int matched = 0;
10289 int mismatched = 0;
10290 int res;
10291 int read_only = 0;
10292
10293 if (!exec_bfd)
10294 error (_("command cannot be used without an exec file"));
10295
10296 /* Make sure the remote is pointing at the right process. */
10297 set_general_process ();
10298
10299 if (args != NULL && strcmp (args, "-r") == 0)
10300 {
10301 read_only = 1;
10302 args = NULL;
10303 }
10304
10305 for (s = exec_bfd->sections; s; s = s->next)
10306 {
10307 if (!(s->flags & SEC_LOAD))
10308 continue; /* Skip non-loadable section. */
10309
10310 if (read_only && (s->flags & SEC_READONLY) == 0)
10311 continue; /* Skip writeable sections */
10312
10313 size = bfd_get_section_size (s);
10314 if (size == 0)
10315 continue; /* Skip zero-length section. */
10316
10317 sectname = bfd_get_section_name (exec_bfd, s);
10318 if (args && strcmp (args, sectname) != 0)
10319 continue; /* Not the section selected by user. */
10320
10321 matched = 1; /* Do this section. */
10322 lma = s->lma;
10323
10324 gdb::byte_vector sectdata (size);
10325 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10326
10327 res = target_verify_memory (sectdata.data (), lma, size);
10328
10329 if (res == -1)
10330 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10331 paddress (target_gdbarch (), lma),
10332 paddress (target_gdbarch (), lma + size));
10333
10334 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10335 paddress (target_gdbarch (), lma),
10336 paddress (target_gdbarch (), lma + size));
10337 if (res)
10338 printf_filtered ("matched.\n");
10339 else
10340 {
10341 printf_filtered ("MIS-MATCHED!\n");
10342 mismatched++;
10343 }
10344 }
10345 if (mismatched > 0)
10346 warning (_("One or more sections of the target image does not match\n\
10347 the loaded file\n"));
10348 if (args && !matched)
10349 printf_filtered (_("No loaded section named '%s'.\n"), args);
10350 }
10351
10352 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10353 into remote target. The number of bytes written to the remote
10354 target is returned, or -1 for error. */
10355
10356 static enum target_xfer_status
10357 remote_write_qxfer (struct target_ops *ops, const char *object_name,
10358 const char *annex, const gdb_byte *writebuf,
10359 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10360 struct packet_config *packet)
10361 {
10362 int i, buf_len;
10363 ULONGEST n;
10364 struct remote_state *rs = get_remote_state ();
10365 int max_size = get_memory_write_packet_size ();
10366
10367 if (packet->support == PACKET_DISABLE)
10368 return TARGET_XFER_E_IO;
10369
10370 /* Insert header. */
10371 i = snprintf (rs->buf, max_size,
10372 "qXfer:%s:write:%s:%s:",
10373 object_name, annex ? annex : "",
10374 phex_nz (offset, sizeof offset));
10375 max_size -= (i + 1);
10376
10377 /* Escape as much data as fits into rs->buf. */
10378 buf_len = remote_escape_output
10379 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10380
10381 if (putpkt_binary (rs->buf, i + buf_len) < 0
10382 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10383 || packet_ok (rs->buf, packet) != PACKET_OK)
10384 return TARGET_XFER_E_IO;
10385
10386 unpack_varlen_hex (rs->buf, &n);
10387
10388 *xfered_len = n;
10389 return TARGET_XFER_OK;
10390 }
10391
10392 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10393 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10394 number of bytes read is returned, or 0 for EOF, or -1 for error.
10395 The number of bytes read may be less than LEN without indicating an
10396 EOF. PACKET is checked and updated to indicate whether the remote
10397 target supports this object. */
10398
10399 static enum target_xfer_status
10400 remote_read_qxfer (struct target_ops *ops, const char *object_name,
10401 const char *annex,
10402 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10403 ULONGEST *xfered_len,
10404 struct packet_config *packet)
10405 {
10406 struct remote_state *rs = get_remote_state ();
10407 LONGEST i, n, packet_len;
10408
10409 if (packet->support == PACKET_DISABLE)
10410 return TARGET_XFER_E_IO;
10411
10412 /* Check whether we've cached an end-of-object packet that matches
10413 this request. */
10414 if (rs->finished_object)
10415 {
10416 if (strcmp (object_name, rs->finished_object) == 0
10417 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10418 && offset == rs->finished_offset)
10419 return TARGET_XFER_EOF;
10420
10421
10422 /* Otherwise, we're now reading something different. Discard
10423 the cache. */
10424 xfree (rs->finished_object);
10425 xfree (rs->finished_annex);
10426 rs->finished_object = NULL;
10427 rs->finished_annex = NULL;
10428 }
10429
10430 /* Request only enough to fit in a single packet. The actual data
10431 may not, since we don't know how much of it will need to be escaped;
10432 the target is free to respond with slightly less data. We subtract
10433 five to account for the response type and the protocol frame. */
10434 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10435 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10436 object_name, annex ? annex : "",
10437 phex_nz (offset, sizeof offset),
10438 phex_nz (n, sizeof n));
10439 i = putpkt (rs->buf);
10440 if (i < 0)
10441 return TARGET_XFER_E_IO;
10442
10443 rs->buf[0] = '\0';
10444 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10445 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10446 return TARGET_XFER_E_IO;
10447
10448 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10449 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10450
10451 /* 'm' means there is (or at least might be) more data after this
10452 batch. That does not make sense unless there's at least one byte
10453 of data in this reply. */
10454 if (rs->buf[0] == 'm' && packet_len == 1)
10455 error (_("Remote qXfer reply contained no data."));
10456
10457 /* Got some data. */
10458 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10459 packet_len - 1, readbuf, n);
10460
10461 /* 'l' is an EOF marker, possibly including a final block of data,
10462 or possibly empty. If we have the final block of a non-empty
10463 object, record this fact to bypass a subsequent partial read. */
10464 if (rs->buf[0] == 'l' && offset + i > 0)
10465 {
10466 rs->finished_object = xstrdup (object_name);
10467 rs->finished_annex = xstrdup (annex ? annex : "");
10468 rs->finished_offset = offset + i;
10469 }
10470
10471 if (i == 0)
10472 return TARGET_XFER_EOF;
10473 else
10474 {
10475 *xfered_len = i;
10476 return TARGET_XFER_OK;
10477 }
10478 }
10479
10480 static enum target_xfer_status
10481 remote_xfer_partial (struct target_ops *ops, enum target_object object,
10482 const char *annex, gdb_byte *readbuf,
10483 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10484 ULONGEST *xfered_len)
10485 {
10486 struct remote_state *rs;
10487 int i;
10488 char *p2;
10489 char query_type;
10490 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10491
10492 set_remote_traceframe ();
10493 set_general_thread (inferior_ptid);
10494
10495 rs = get_remote_state ();
10496
10497 /* Handle memory using the standard memory routines. */
10498 if (object == TARGET_OBJECT_MEMORY)
10499 {
10500 /* If the remote target is connected but not running, we should
10501 pass this request down to a lower stratum (e.g. the executable
10502 file). */
10503 if (!target_has_execution)
10504 return TARGET_XFER_EOF;
10505
10506 if (writebuf != NULL)
10507 return remote_write_bytes (offset, writebuf, len, unit_size,
10508 xfered_len);
10509 else
10510 return remote_read_bytes (ops, offset, readbuf, len, unit_size,
10511 xfered_len);
10512 }
10513
10514 /* Handle SPU memory using qxfer packets. */
10515 if (object == TARGET_OBJECT_SPU)
10516 {
10517 if (readbuf)
10518 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
10519 xfered_len, &remote_protocol_packets
10520 [PACKET_qXfer_spu_read]);
10521 else
10522 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
10523 xfered_len, &remote_protocol_packets
10524 [PACKET_qXfer_spu_write]);
10525 }
10526
10527 /* Handle extra signal info using qxfer packets. */
10528 if (object == TARGET_OBJECT_SIGNAL_INFO)
10529 {
10530 if (readbuf)
10531 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
10532 xfered_len, &remote_protocol_packets
10533 [PACKET_qXfer_siginfo_read]);
10534 else
10535 return remote_write_qxfer (ops, "siginfo", annex,
10536 writebuf, offset, len, xfered_len,
10537 &remote_protocol_packets
10538 [PACKET_qXfer_siginfo_write]);
10539 }
10540
10541 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10542 {
10543 if (readbuf)
10544 return remote_read_qxfer (ops, "statictrace", annex,
10545 readbuf, offset, len, xfered_len,
10546 &remote_protocol_packets
10547 [PACKET_qXfer_statictrace_read]);
10548 else
10549 return TARGET_XFER_E_IO;
10550 }
10551
10552 /* Only handle flash writes. */
10553 if (writebuf != NULL)
10554 {
10555 switch (object)
10556 {
10557 case TARGET_OBJECT_FLASH:
10558 return remote_flash_write (ops, offset, len, xfered_len,
10559 writebuf);
10560
10561 default:
10562 return TARGET_XFER_E_IO;
10563 }
10564 }
10565
10566 /* Map pre-existing objects onto letters. DO NOT do this for new
10567 objects!!! Instead specify new query packets. */
10568 switch (object)
10569 {
10570 case TARGET_OBJECT_AVR:
10571 query_type = 'R';
10572 break;
10573
10574 case TARGET_OBJECT_AUXV:
10575 gdb_assert (annex == NULL);
10576 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
10577 xfered_len,
10578 &remote_protocol_packets[PACKET_qXfer_auxv]);
10579
10580 case TARGET_OBJECT_AVAILABLE_FEATURES:
10581 return remote_read_qxfer
10582 (ops, "features", annex, readbuf, offset, len, xfered_len,
10583 &remote_protocol_packets[PACKET_qXfer_features]);
10584
10585 case TARGET_OBJECT_LIBRARIES:
10586 return remote_read_qxfer
10587 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
10588 &remote_protocol_packets[PACKET_qXfer_libraries]);
10589
10590 case TARGET_OBJECT_LIBRARIES_SVR4:
10591 return remote_read_qxfer
10592 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
10593 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10594
10595 case TARGET_OBJECT_MEMORY_MAP:
10596 gdb_assert (annex == NULL);
10597 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
10598 xfered_len,
10599 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10600
10601 case TARGET_OBJECT_OSDATA:
10602 /* Should only get here if we're connected. */
10603 gdb_assert (rs->remote_desc);
10604 return remote_read_qxfer
10605 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
10606 &remote_protocol_packets[PACKET_qXfer_osdata]);
10607
10608 case TARGET_OBJECT_THREADS:
10609 gdb_assert (annex == NULL);
10610 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
10611 xfered_len,
10612 &remote_protocol_packets[PACKET_qXfer_threads]);
10613
10614 case TARGET_OBJECT_TRACEFRAME_INFO:
10615 gdb_assert (annex == NULL);
10616 return remote_read_qxfer
10617 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
10618 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10619
10620 case TARGET_OBJECT_FDPIC:
10621 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
10622 xfered_len,
10623 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10624
10625 case TARGET_OBJECT_OPENVMS_UIB:
10626 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
10627 xfered_len,
10628 &remote_protocol_packets[PACKET_qXfer_uib]);
10629
10630 case TARGET_OBJECT_BTRACE:
10631 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
10632 xfered_len,
10633 &remote_protocol_packets[PACKET_qXfer_btrace]);
10634
10635 case TARGET_OBJECT_BTRACE_CONF:
10636 return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset,
10637 len, xfered_len,
10638 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10639
10640 case TARGET_OBJECT_EXEC_FILE:
10641 return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset,
10642 len, xfered_len,
10643 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10644
10645 default:
10646 return TARGET_XFER_E_IO;
10647 }
10648
10649 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10650 large enough let the caller deal with it. */
10651 if (len < get_remote_packet_size ())
10652 return TARGET_XFER_E_IO;
10653 len = get_remote_packet_size ();
10654
10655 /* Except for querying the minimum buffer size, target must be open. */
10656 if (!rs->remote_desc)
10657 error (_("remote query is only available after target open"));
10658
10659 gdb_assert (annex != NULL);
10660 gdb_assert (readbuf != NULL);
10661
10662 p2 = rs->buf;
10663 *p2++ = 'q';
10664 *p2++ = query_type;
10665
10666 /* We used one buffer char for the remote protocol q command and
10667 another for the query type. As the remote protocol encapsulation
10668 uses 4 chars plus one extra in case we are debugging
10669 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10670 string. */
10671 i = 0;
10672 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10673 {
10674 /* Bad caller may have sent forbidden characters. */
10675 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10676 *p2++ = annex[i];
10677 i++;
10678 }
10679 *p2 = '\0';
10680 gdb_assert (annex[i] == '\0');
10681
10682 i = putpkt (rs->buf);
10683 if (i < 0)
10684 return TARGET_XFER_E_IO;
10685
10686 getpkt (&rs->buf, &rs->buf_size, 0);
10687 strcpy ((char *) readbuf, rs->buf);
10688
10689 *xfered_len = strlen ((char *) readbuf);
10690 return TARGET_XFER_OK;
10691 }
10692
10693 /* Implementation of to_get_memory_xfer_limit. */
10694
10695 static ULONGEST
10696 remote_get_memory_xfer_limit (struct target_ops *ops)
10697 {
10698 return get_memory_write_packet_size ();
10699 }
10700
10701 static int
10702 remote_search_memory (struct target_ops* ops,
10703 CORE_ADDR start_addr, ULONGEST search_space_len,
10704 const gdb_byte *pattern, ULONGEST pattern_len,
10705 CORE_ADDR *found_addrp)
10706 {
10707 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10708 struct remote_state *rs = get_remote_state ();
10709 int max_size = get_memory_write_packet_size ();
10710 struct packet_config *packet =
10711 &remote_protocol_packets[PACKET_qSearch_memory];
10712 /* Number of packet bytes used to encode the pattern;
10713 this could be more than PATTERN_LEN due to escape characters. */
10714 int escaped_pattern_len;
10715 /* Amount of pattern that was encodable in the packet. */
10716 int used_pattern_len;
10717 int i;
10718 int found;
10719 ULONGEST found_addr;
10720
10721 /* Don't go to the target if we don't have to.
10722 This is done before checking packet->support to avoid the possibility that
10723 a success for this edge case means the facility works in general. */
10724 if (pattern_len > search_space_len)
10725 return 0;
10726 if (pattern_len == 0)
10727 {
10728 *found_addrp = start_addr;
10729 return 1;
10730 }
10731
10732 /* If we already know the packet isn't supported, fall back to the simple
10733 way of searching memory. */
10734
10735 if (packet_config_support (packet) == PACKET_DISABLE)
10736 {
10737 /* Target doesn't provided special support, fall back and use the
10738 standard support (copy memory and do the search here). */
10739 return simple_search_memory (ops, start_addr, search_space_len,
10740 pattern, pattern_len, found_addrp);
10741 }
10742
10743 /* Make sure the remote is pointing at the right process. */
10744 set_general_process ();
10745
10746 /* Insert header. */
10747 i = snprintf (rs->buf, max_size,
10748 "qSearch:memory:%s;%s;",
10749 phex_nz (start_addr, addr_size),
10750 phex_nz (search_space_len, sizeof (search_space_len)));
10751 max_size -= (i + 1);
10752
10753 /* Escape as much data as fits into rs->buf. */
10754 escaped_pattern_len =
10755 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10756 &used_pattern_len, max_size);
10757
10758 /* Bail if the pattern is too large. */
10759 if (used_pattern_len != pattern_len)
10760 error (_("Pattern is too large to transmit to remote target."));
10761
10762 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10763 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10764 || packet_ok (rs->buf, packet) != PACKET_OK)
10765 {
10766 /* The request may not have worked because the command is not
10767 supported. If so, fall back to the simple way. */
10768 if (packet->support == PACKET_DISABLE)
10769 {
10770 return simple_search_memory (ops, start_addr, search_space_len,
10771 pattern, pattern_len, found_addrp);
10772 }
10773 return -1;
10774 }
10775
10776 if (rs->buf[0] == '0')
10777 found = 0;
10778 else if (rs->buf[0] == '1')
10779 {
10780 found = 1;
10781 if (rs->buf[1] != ',')
10782 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10783 unpack_varlen_hex (rs->buf + 2, &found_addr);
10784 *found_addrp = found_addr;
10785 }
10786 else
10787 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10788
10789 return found;
10790 }
10791
10792 static void
10793 remote_rcmd (struct target_ops *self, const char *command,
10794 struct ui_file *outbuf)
10795 {
10796 struct remote_state *rs = get_remote_state ();
10797 char *p = rs->buf;
10798
10799 if (!rs->remote_desc)
10800 error (_("remote rcmd is only available after target open"));
10801
10802 /* Send a NULL command across as an empty command. */
10803 if (command == NULL)
10804 command = "";
10805
10806 /* The query prefix. */
10807 strcpy (rs->buf, "qRcmd,");
10808 p = strchr (rs->buf, '\0');
10809
10810 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
10811 > get_remote_packet_size ())
10812 error (_("\"monitor\" command ``%s'' is too long."), command);
10813
10814 /* Encode the actual command. */
10815 bin2hex ((const gdb_byte *) command, p, strlen (command));
10816
10817 if (putpkt (rs->buf) < 0)
10818 error (_("Communication problem with target."));
10819
10820 /* get/display the response */
10821 while (1)
10822 {
10823 char *buf;
10824
10825 /* XXX - see also remote_get_noisy_reply(). */
10826 QUIT; /* Allow user to bail out with ^C. */
10827 rs->buf[0] = '\0';
10828 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
10829 {
10830 /* Timeout. Continue to (try to) read responses.
10831 This is better than stopping with an error, assuming the stub
10832 is still executing the (long) monitor command.
10833 If needed, the user can interrupt gdb using C-c, obtaining
10834 an effect similar to stop on timeout. */
10835 continue;
10836 }
10837 buf = rs->buf;
10838 if (buf[0] == '\0')
10839 error (_("Target does not support this command."));
10840 if (buf[0] == 'O' && buf[1] != 'K')
10841 {
10842 remote_console_output (buf + 1); /* 'O' message from stub. */
10843 continue;
10844 }
10845 if (strcmp (buf, "OK") == 0)
10846 break;
10847 if (strlen (buf) == 3 && buf[0] == 'E'
10848 && isdigit (buf[1]) && isdigit (buf[2]))
10849 {
10850 error (_("Protocol error with Rcmd"));
10851 }
10852 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
10853 {
10854 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
10855
10856 fputc_unfiltered (c, outbuf);
10857 }
10858 break;
10859 }
10860 }
10861
10862 static std::vector<mem_region>
10863 remote_memory_map (struct target_ops *ops)
10864 {
10865 std::vector<mem_region> result;
10866 gdb::unique_xmalloc_ptr<char> text
10867 = target_read_stralloc (&current_target, TARGET_OBJECT_MEMORY_MAP, NULL);
10868
10869 if (text)
10870 result = parse_memory_map (text.get ());
10871
10872 return result;
10873 }
10874
10875 static void
10876 packet_command (const char *args, int from_tty)
10877 {
10878 struct remote_state *rs = get_remote_state ();
10879
10880 if (!rs->remote_desc)
10881 error (_("command can only be used with remote target"));
10882
10883 if (!args)
10884 error (_("remote-packet command requires packet text as argument"));
10885
10886 puts_filtered ("sending: ");
10887 print_packet (args);
10888 puts_filtered ("\n");
10889 putpkt (args);
10890
10891 getpkt (&rs->buf, &rs->buf_size, 0);
10892 puts_filtered ("received: ");
10893 print_packet (rs->buf);
10894 puts_filtered ("\n");
10895 }
10896
10897 #if 0
10898 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
10899
10900 static void display_thread_info (struct gdb_ext_thread_info *info);
10901
10902 static void threadset_test_cmd (char *cmd, int tty);
10903
10904 static void threadalive_test (char *cmd, int tty);
10905
10906 static void threadlist_test_cmd (char *cmd, int tty);
10907
10908 int get_and_display_threadinfo (threadref *ref);
10909
10910 static void threadinfo_test_cmd (char *cmd, int tty);
10911
10912 static int thread_display_step (threadref *ref, void *context);
10913
10914 static void threadlist_update_test_cmd (char *cmd, int tty);
10915
10916 static void init_remote_threadtests (void);
10917
10918 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
10919
10920 static void
10921 threadset_test_cmd (const char *cmd, int tty)
10922 {
10923 int sample_thread = SAMPLE_THREAD;
10924
10925 printf_filtered (_("Remote threadset test\n"));
10926 set_general_thread (sample_thread);
10927 }
10928
10929
10930 static void
10931 threadalive_test (const char *cmd, int tty)
10932 {
10933 int sample_thread = SAMPLE_THREAD;
10934 int pid = ptid_get_pid (inferior_ptid);
10935 ptid_t ptid = ptid_build (pid, sample_thread, 0);
10936
10937 if (remote_thread_alive (ptid))
10938 printf_filtered ("PASS: Thread alive test\n");
10939 else
10940 printf_filtered ("FAIL: Thread alive test\n");
10941 }
10942
10943 void output_threadid (char *title, threadref *ref);
10944
10945 void
10946 output_threadid (char *title, threadref *ref)
10947 {
10948 char hexid[20];
10949
10950 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
10951 hexid[16] = 0;
10952 printf_filtered ("%s %s\n", title, (&hexid[0]));
10953 }
10954
10955 static void
10956 threadlist_test_cmd (const char *cmd, int tty)
10957 {
10958 int startflag = 1;
10959 threadref nextthread;
10960 int done, result_count;
10961 threadref threadlist[3];
10962
10963 printf_filtered ("Remote Threadlist test\n");
10964 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
10965 &result_count, &threadlist[0]))
10966 printf_filtered ("FAIL: threadlist test\n");
10967 else
10968 {
10969 threadref *scan = threadlist;
10970 threadref *limit = scan + result_count;
10971
10972 while (scan < limit)
10973 output_threadid (" thread ", scan++);
10974 }
10975 }
10976
10977 void
10978 display_thread_info (struct gdb_ext_thread_info *info)
10979 {
10980 output_threadid ("Threadid: ", &info->threadid);
10981 printf_filtered ("Name: %s\n ", info->shortname);
10982 printf_filtered ("State: %s\n", info->display);
10983 printf_filtered ("other: %s\n\n", info->more_display);
10984 }
10985
10986 int
10987 get_and_display_threadinfo (threadref *ref)
10988 {
10989 int result;
10990 int set;
10991 struct gdb_ext_thread_info threadinfo;
10992
10993 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
10994 | TAG_MOREDISPLAY | TAG_DISPLAY;
10995 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
10996 display_thread_info (&threadinfo);
10997 return result;
10998 }
10999
11000 static void
11001 threadinfo_test_cmd (const char *cmd, int tty)
11002 {
11003 int athread = SAMPLE_THREAD;
11004 threadref thread;
11005 int set;
11006
11007 int_to_threadref (&thread, athread);
11008 printf_filtered ("Remote Threadinfo test\n");
11009 if (!get_and_display_threadinfo (&thread))
11010 printf_filtered ("FAIL cannot get thread info\n");
11011 }
11012
11013 static int
11014 thread_display_step (threadref *ref, void *context)
11015 {
11016 /* output_threadid(" threadstep ",ref); *//* simple test */
11017 return get_and_display_threadinfo (ref);
11018 }
11019
11020 static void
11021 threadlist_update_test_cmd (const char *cmd, int tty)
11022 {
11023 printf_filtered ("Remote Threadlist update test\n");
11024 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11025 }
11026
11027 static void
11028 init_remote_threadtests (void)
11029 {
11030 add_com ("tlist", class_obscure, threadlist_test_cmd,
11031 _("Fetch and print the remote list of "
11032 "thread identifiers, one pkt only"));
11033 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11034 _("Fetch and display info about one thread"));
11035 add_com ("tset", class_obscure, threadset_test_cmd,
11036 _("Test setting to a different thread"));
11037 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11038 _("Iterate through updating all remote thread info"));
11039 add_com ("talive", class_obscure, threadalive_test,
11040 _(" Remote thread alive test "));
11041 }
11042
11043 #endif /* 0 */
11044
11045 /* Convert a thread ID to a string. Returns the string in a static
11046 buffer. */
11047
11048 static const char *
11049 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
11050 {
11051 static char buf[64];
11052 struct remote_state *rs = get_remote_state ();
11053
11054 if (ptid_equal (ptid, null_ptid))
11055 return normal_pid_to_str (ptid);
11056 else if (ptid_is_pid (ptid))
11057 {
11058 /* Printing an inferior target id. */
11059
11060 /* When multi-process extensions are off, there's no way in the
11061 remote protocol to know the remote process id, if there's any
11062 at all. There's one exception --- when we're connected with
11063 target extended-remote, and we manually attached to a process
11064 with "attach PID". We don't record anywhere a flag that
11065 allows us to distinguish that case from the case of
11066 connecting with extended-remote and the stub already being
11067 attached to a process, and reporting yes to qAttached, hence
11068 no smart special casing here. */
11069 if (!remote_multi_process_p (rs))
11070 {
11071 xsnprintf (buf, sizeof buf, "Remote target");
11072 return buf;
11073 }
11074
11075 return normal_pid_to_str (ptid);
11076 }
11077 else
11078 {
11079 if (ptid_equal (magic_null_ptid, ptid))
11080 xsnprintf (buf, sizeof buf, "Thread <main>");
11081 else if (remote_multi_process_p (rs))
11082 if (ptid_get_lwp (ptid) == 0)
11083 return normal_pid_to_str (ptid);
11084 else
11085 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11086 ptid_get_pid (ptid), ptid_get_lwp (ptid));
11087 else
11088 xsnprintf (buf, sizeof buf, "Thread %ld",
11089 ptid_get_lwp (ptid));
11090 return buf;
11091 }
11092 }
11093
11094 /* Get the address of the thread local variable in OBJFILE which is
11095 stored at OFFSET within the thread local storage for thread PTID. */
11096
11097 static CORE_ADDR
11098 remote_get_thread_local_address (struct target_ops *ops,
11099 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
11100 {
11101 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11102 {
11103 struct remote_state *rs = get_remote_state ();
11104 char *p = rs->buf;
11105 char *endp = rs->buf + get_remote_packet_size ();
11106 enum packet_result result;
11107
11108 strcpy (p, "qGetTLSAddr:");
11109 p += strlen (p);
11110 p = write_ptid (p, endp, ptid);
11111 *p++ = ',';
11112 p += hexnumstr (p, offset);
11113 *p++ = ',';
11114 p += hexnumstr (p, lm);
11115 *p++ = '\0';
11116
11117 putpkt (rs->buf);
11118 getpkt (&rs->buf, &rs->buf_size, 0);
11119 result = packet_ok (rs->buf,
11120 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11121 if (result == PACKET_OK)
11122 {
11123 ULONGEST result;
11124
11125 unpack_varlen_hex (rs->buf, &result);
11126 return result;
11127 }
11128 else if (result == PACKET_UNKNOWN)
11129 throw_error (TLS_GENERIC_ERROR,
11130 _("Remote target doesn't support qGetTLSAddr packet"));
11131 else
11132 throw_error (TLS_GENERIC_ERROR,
11133 _("Remote target failed to process qGetTLSAddr request"));
11134 }
11135 else
11136 throw_error (TLS_GENERIC_ERROR,
11137 _("TLS not supported or disabled on this target"));
11138 /* Not reached. */
11139 return 0;
11140 }
11141
11142 /* Provide thread local base, i.e. Thread Information Block address.
11143 Returns 1 if ptid is found and thread_local_base is non zero. */
11144
11145 static int
11146 remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
11147 {
11148 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11149 {
11150 struct remote_state *rs = get_remote_state ();
11151 char *p = rs->buf;
11152 char *endp = rs->buf + get_remote_packet_size ();
11153 enum packet_result result;
11154
11155 strcpy (p, "qGetTIBAddr:");
11156 p += strlen (p);
11157 p = write_ptid (p, endp, ptid);
11158 *p++ = '\0';
11159
11160 putpkt (rs->buf);
11161 getpkt (&rs->buf, &rs->buf_size, 0);
11162 result = packet_ok (rs->buf,
11163 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11164 if (result == PACKET_OK)
11165 {
11166 ULONGEST result;
11167
11168 unpack_varlen_hex (rs->buf, &result);
11169 if (addr)
11170 *addr = (CORE_ADDR) result;
11171 return 1;
11172 }
11173 else if (result == PACKET_UNKNOWN)
11174 error (_("Remote target doesn't support qGetTIBAddr packet"));
11175 else
11176 error (_("Remote target failed to process qGetTIBAddr request"));
11177 }
11178 else
11179 error (_("qGetTIBAddr not supported or disabled on this target"));
11180 /* Not reached. */
11181 return 0;
11182 }
11183
11184 /* Support for inferring a target description based on the current
11185 architecture and the size of a 'g' packet. While the 'g' packet
11186 can have any size (since optional registers can be left off the
11187 end), some sizes are easily recognizable given knowledge of the
11188 approximate architecture. */
11189
11190 struct remote_g_packet_guess
11191 {
11192 int bytes;
11193 const struct target_desc *tdesc;
11194 };
11195 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11196 DEF_VEC_O(remote_g_packet_guess_s);
11197
11198 struct remote_g_packet_data
11199 {
11200 VEC(remote_g_packet_guess_s) *guesses;
11201 };
11202
11203 static struct gdbarch_data *remote_g_packet_data_handle;
11204
11205 static void *
11206 remote_g_packet_data_init (struct obstack *obstack)
11207 {
11208 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11209 }
11210
11211 void
11212 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11213 const struct target_desc *tdesc)
11214 {
11215 struct remote_g_packet_data *data
11216 = ((struct remote_g_packet_data *)
11217 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11218 struct remote_g_packet_guess new_guess, *guess;
11219 int ix;
11220
11221 gdb_assert (tdesc != NULL);
11222
11223 for (ix = 0;
11224 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11225 ix++)
11226 if (guess->bytes == bytes)
11227 internal_error (__FILE__, __LINE__,
11228 _("Duplicate g packet description added for size %d"),
11229 bytes);
11230
11231 new_guess.bytes = bytes;
11232 new_guess.tdesc = tdesc;
11233 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11234 }
11235
11236 /* Return 1 if remote_read_description would do anything on this target
11237 and architecture, 0 otherwise. */
11238
11239 static int
11240 remote_read_description_p (struct target_ops *target)
11241 {
11242 struct remote_g_packet_data *data
11243 = ((struct remote_g_packet_data *)
11244 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11245
11246 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11247 return 1;
11248
11249 return 0;
11250 }
11251
11252 static const struct target_desc *
11253 remote_read_description (struct target_ops *target)
11254 {
11255 struct remote_g_packet_data *data
11256 = ((struct remote_g_packet_data *)
11257 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11258
11259 /* Do not try this during initial connection, when we do not know
11260 whether there is a running but stopped thread. */
11261 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11262 return target->beneath->to_read_description (target->beneath);
11263
11264 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11265 {
11266 struct remote_g_packet_guess *guess;
11267 int ix;
11268 int bytes = send_g_packet ();
11269
11270 for (ix = 0;
11271 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11272 ix++)
11273 if (guess->bytes == bytes)
11274 return guess->tdesc;
11275
11276 /* We discard the g packet. A minor optimization would be to
11277 hold on to it, and fill the register cache once we have selected
11278 an architecture, but it's too tricky to do safely. */
11279 }
11280
11281 return target->beneath->to_read_description (target->beneath);
11282 }
11283
11284 /* Remote file transfer support. This is host-initiated I/O, not
11285 target-initiated; for target-initiated, see remote-fileio.c. */
11286
11287 /* If *LEFT is at least the length of STRING, copy STRING to
11288 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11289 decrease *LEFT. Otherwise raise an error. */
11290
11291 static void
11292 remote_buffer_add_string (char **buffer, int *left, const char *string)
11293 {
11294 int len = strlen (string);
11295
11296 if (len > *left)
11297 error (_("Packet too long for target."));
11298
11299 memcpy (*buffer, string, len);
11300 *buffer += len;
11301 *left -= len;
11302
11303 /* NUL-terminate the buffer as a convenience, if there is
11304 room. */
11305 if (*left)
11306 **buffer = '\0';
11307 }
11308
11309 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11310 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11311 decrease *LEFT. Otherwise raise an error. */
11312
11313 static void
11314 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11315 int len)
11316 {
11317 if (2 * len > *left)
11318 error (_("Packet too long for target."));
11319
11320 bin2hex (bytes, *buffer, len);
11321 *buffer += 2 * len;
11322 *left -= 2 * len;
11323
11324 /* NUL-terminate the buffer as a convenience, if there is
11325 room. */
11326 if (*left)
11327 **buffer = '\0';
11328 }
11329
11330 /* If *LEFT is large enough, convert VALUE to hex and add it to
11331 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11332 decrease *LEFT. Otherwise raise an error. */
11333
11334 static void
11335 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11336 {
11337 int len = hexnumlen (value);
11338
11339 if (len > *left)
11340 error (_("Packet too long for target."));
11341
11342 hexnumstr (*buffer, value);
11343 *buffer += len;
11344 *left -= len;
11345
11346 /* NUL-terminate the buffer as a convenience, if there is
11347 room. */
11348 if (*left)
11349 **buffer = '\0';
11350 }
11351
11352 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11353 value, *REMOTE_ERRNO to the remote error number or zero if none
11354 was included, and *ATTACHMENT to point to the start of the annex
11355 if any. The length of the packet isn't needed here; there may
11356 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11357
11358 Return 0 if the packet could be parsed, -1 if it could not. If
11359 -1 is returned, the other variables may not be initialized. */
11360
11361 static int
11362 remote_hostio_parse_result (char *buffer, int *retcode,
11363 int *remote_errno, char **attachment)
11364 {
11365 char *p, *p2;
11366
11367 *remote_errno = 0;
11368 *attachment = NULL;
11369
11370 if (buffer[0] != 'F')
11371 return -1;
11372
11373 errno = 0;
11374 *retcode = strtol (&buffer[1], &p, 16);
11375 if (errno != 0 || p == &buffer[1])
11376 return -1;
11377
11378 /* Check for ",errno". */
11379 if (*p == ',')
11380 {
11381 errno = 0;
11382 *remote_errno = strtol (p + 1, &p2, 16);
11383 if (errno != 0 || p + 1 == p2)
11384 return -1;
11385 p = p2;
11386 }
11387
11388 /* Check for ";attachment". If there is no attachment, the
11389 packet should end here. */
11390 if (*p == ';')
11391 {
11392 *attachment = p + 1;
11393 return 0;
11394 }
11395 else if (*p == '\0')
11396 return 0;
11397 else
11398 return -1;
11399 }
11400
11401 /* Send a prepared I/O packet to the target and read its response.
11402 The prepared packet is in the global RS->BUF before this function
11403 is called, and the answer is there when we return.
11404
11405 COMMAND_BYTES is the length of the request to send, which may include
11406 binary data. WHICH_PACKET is the packet configuration to check
11407 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11408 is set to the error number and -1 is returned. Otherwise the value
11409 returned by the function is returned.
11410
11411 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11412 attachment is expected; an error will be reported if there's a
11413 mismatch. If one is found, *ATTACHMENT will be set to point into
11414 the packet buffer and *ATTACHMENT_LEN will be set to the
11415 attachment's length. */
11416
11417 static int
11418 remote_hostio_send_command (int command_bytes, int which_packet,
11419 int *remote_errno, char **attachment,
11420 int *attachment_len)
11421 {
11422 struct remote_state *rs = get_remote_state ();
11423 int ret, bytes_read;
11424 char *attachment_tmp;
11425
11426 if (!rs->remote_desc
11427 || packet_support (which_packet) == PACKET_DISABLE)
11428 {
11429 *remote_errno = FILEIO_ENOSYS;
11430 return -1;
11431 }
11432
11433 putpkt_binary (rs->buf, command_bytes);
11434 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11435
11436 /* If it timed out, something is wrong. Don't try to parse the
11437 buffer. */
11438 if (bytes_read < 0)
11439 {
11440 *remote_errno = FILEIO_EINVAL;
11441 return -1;
11442 }
11443
11444 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11445 {
11446 case PACKET_ERROR:
11447 *remote_errno = FILEIO_EINVAL;
11448 return -1;
11449 case PACKET_UNKNOWN:
11450 *remote_errno = FILEIO_ENOSYS;
11451 return -1;
11452 case PACKET_OK:
11453 break;
11454 }
11455
11456 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11457 &attachment_tmp))
11458 {
11459 *remote_errno = FILEIO_EINVAL;
11460 return -1;
11461 }
11462
11463 /* Make sure we saw an attachment if and only if we expected one. */
11464 if ((attachment_tmp == NULL && attachment != NULL)
11465 || (attachment_tmp != NULL && attachment == NULL))
11466 {
11467 *remote_errno = FILEIO_EINVAL;
11468 return -1;
11469 }
11470
11471 /* If an attachment was found, it must point into the packet buffer;
11472 work out how many bytes there were. */
11473 if (attachment_tmp != NULL)
11474 {
11475 *attachment = attachment_tmp;
11476 *attachment_len = bytes_read - (*attachment - rs->buf);
11477 }
11478
11479 return ret;
11480 }
11481
11482 /* Invalidate the readahead cache. */
11483
11484 static void
11485 readahead_cache_invalidate (void)
11486 {
11487 struct remote_state *rs = get_remote_state ();
11488
11489 rs->readahead_cache.fd = -1;
11490 }
11491
11492 /* Invalidate the readahead cache if it is holding data for FD. */
11493
11494 static void
11495 readahead_cache_invalidate_fd (int fd)
11496 {
11497 struct remote_state *rs = get_remote_state ();
11498
11499 if (rs->readahead_cache.fd == fd)
11500 rs->readahead_cache.fd = -1;
11501 }
11502
11503 /* Set the filesystem remote_hostio functions that take FILENAME
11504 arguments will use. Return 0 on success, or -1 if an error
11505 occurs (and set *REMOTE_ERRNO). */
11506
11507 static int
11508 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11509 {
11510 struct remote_state *rs = get_remote_state ();
11511 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11512 char *p = rs->buf;
11513 int left = get_remote_packet_size () - 1;
11514 char arg[9];
11515 int ret;
11516
11517 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11518 return 0;
11519
11520 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11521 return 0;
11522
11523 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11524
11525 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11526 remote_buffer_add_string (&p, &left, arg);
11527
11528 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11529 remote_errno, NULL, NULL);
11530
11531 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11532 return 0;
11533
11534 if (ret == 0)
11535 rs->fs_pid = required_pid;
11536
11537 return ret;
11538 }
11539
11540 /* Implementation of to_fileio_open. */
11541
11542 static int
11543 remote_hostio_open (struct target_ops *self,
11544 struct inferior *inf, const char *filename,
11545 int flags, int mode, int warn_if_slow,
11546 int *remote_errno)
11547 {
11548 struct remote_state *rs = get_remote_state ();
11549 char *p = rs->buf;
11550 int left = get_remote_packet_size () - 1;
11551
11552 if (warn_if_slow)
11553 {
11554 static int warning_issued = 0;
11555
11556 printf_unfiltered (_("Reading %s from remote target...\n"),
11557 filename);
11558
11559 if (!warning_issued)
11560 {
11561 warning (_("File transfers from remote targets can be slow."
11562 " Use \"set sysroot\" to access files locally"
11563 " instead."));
11564 warning_issued = 1;
11565 }
11566 }
11567
11568 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11569 return -1;
11570
11571 remote_buffer_add_string (&p, &left, "vFile:open:");
11572
11573 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11574 strlen (filename));
11575 remote_buffer_add_string (&p, &left, ",");
11576
11577 remote_buffer_add_int (&p, &left, flags);
11578 remote_buffer_add_string (&p, &left, ",");
11579
11580 remote_buffer_add_int (&p, &left, mode);
11581
11582 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11583 remote_errno, NULL, NULL);
11584 }
11585
11586 /* Implementation of to_fileio_pwrite. */
11587
11588 static int
11589 remote_hostio_pwrite (struct target_ops *self,
11590 int fd, const gdb_byte *write_buf, int len,
11591 ULONGEST offset, int *remote_errno)
11592 {
11593 struct remote_state *rs = get_remote_state ();
11594 char *p = rs->buf;
11595 int left = get_remote_packet_size ();
11596 int out_len;
11597
11598 readahead_cache_invalidate_fd (fd);
11599
11600 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11601
11602 remote_buffer_add_int (&p, &left, fd);
11603 remote_buffer_add_string (&p, &left, ",");
11604
11605 remote_buffer_add_int (&p, &left, offset);
11606 remote_buffer_add_string (&p, &left, ",");
11607
11608 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11609 get_remote_packet_size () - (p - rs->buf));
11610
11611 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11612 remote_errno, NULL, NULL);
11613 }
11614
11615 /* Helper for the implementation of to_fileio_pread. Read the file
11616 from the remote side with vFile:pread. */
11617
11618 static int
11619 remote_hostio_pread_vFile (struct target_ops *self,
11620 int fd, gdb_byte *read_buf, int len,
11621 ULONGEST offset, int *remote_errno)
11622 {
11623 struct remote_state *rs = get_remote_state ();
11624 char *p = rs->buf;
11625 char *attachment;
11626 int left = get_remote_packet_size ();
11627 int ret, attachment_len;
11628 int read_len;
11629
11630 remote_buffer_add_string (&p, &left, "vFile:pread:");
11631
11632 remote_buffer_add_int (&p, &left, fd);
11633 remote_buffer_add_string (&p, &left, ",");
11634
11635 remote_buffer_add_int (&p, &left, len);
11636 remote_buffer_add_string (&p, &left, ",");
11637
11638 remote_buffer_add_int (&p, &left, offset);
11639
11640 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11641 remote_errno, &attachment,
11642 &attachment_len);
11643
11644 if (ret < 0)
11645 return ret;
11646
11647 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11648 read_buf, len);
11649 if (read_len != ret)
11650 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11651
11652 return ret;
11653 }
11654
11655 /* Serve pread from the readahead cache. Returns number of bytes
11656 read, or 0 if the request can't be served from the cache. */
11657
11658 static int
11659 remote_hostio_pread_from_cache (struct remote_state *rs,
11660 int fd, gdb_byte *read_buf, size_t len,
11661 ULONGEST offset)
11662 {
11663 struct readahead_cache *cache = &rs->readahead_cache;
11664
11665 if (cache->fd == fd
11666 && cache->offset <= offset
11667 && offset < cache->offset + cache->bufsize)
11668 {
11669 ULONGEST max = cache->offset + cache->bufsize;
11670
11671 if (offset + len > max)
11672 len = max - offset;
11673
11674 memcpy (read_buf, cache->buf + offset - cache->offset, len);
11675 return len;
11676 }
11677
11678 return 0;
11679 }
11680
11681 /* Implementation of to_fileio_pread. */
11682
11683 static int
11684 remote_hostio_pread (struct target_ops *self,
11685 int fd, gdb_byte *read_buf, int len,
11686 ULONGEST offset, int *remote_errno)
11687 {
11688 int ret;
11689 struct remote_state *rs = get_remote_state ();
11690 struct readahead_cache *cache = &rs->readahead_cache;
11691
11692 ret = remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11693 if (ret > 0)
11694 {
11695 cache->hit_count++;
11696
11697 if (remote_debug)
11698 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11699 pulongest (cache->hit_count));
11700 return ret;
11701 }
11702
11703 cache->miss_count++;
11704 if (remote_debug)
11705 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11706 pulongest (cache->miss_count));
11707
11708 cache->fd = fd;
11709 cache->offset = offset;
11710 cache->bufsize = get_remote_packet_size ();
11711 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11712
11713 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11714 cache->offset, remote_errno);
11715 if (ret <= 0)
11716 {
11717 readahead_cache_invalidate_fd (fd);
11718 return ret;
11719 }
11720
11721 cache->bufsize = ret;
11722 return remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11723 }
11724
11725 /* Implementation of to_fileio_close. */
11726
11727 static int
11728 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11729 {
11730 struct remote_state *rs = get_remote_state ();
11731 char *p = rs->buf;
11732 int left = get_remote_packet_size () - 1;
11733
11734 readahead_cache_invalidate_fd (fd);
11735
11736 remote_buffer_add_string (&p, &left, "vFile:close:");
11737
11738 remote_buffer_add_int (&p, &left, fd);
11739
11740 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11741 remote_errno, NULL, NULL);
11742 }
11743
11744 /* Implementation of to_fileio_unlink. */
11745
11746 static int
11747 remote_hostio_unlink (struct target_ops *self,
11748 struct inferior *inf, const char *filename,
11749 int *remote_errno)
11750 {
11751 struct remote_state *rs = get_remote_state ();
11752 char *p = rs->buf;
11753 int left = get_remote_packet_size () - 1;
11754
11755 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11756 return -1;
11757
11758 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11759
11760 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11761 strlen (filename));
11762
11763 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
11764 remote_errno, NULL, NULL);
11765 }
11766
11767 /* Implementation of to_fileio_readlink. */
11768
11769 static char *
11770 remote_hostio_readlink (struct target_ops *self,
11771 struct inferior *inf, const char *filename,
11772 int *remote_errno)
11773 {
11774 struct remote_state *rs = get_remote_state ();
11775 char *p = rs->buf;
11776 char *attachment;
11777 int left = get_remote_packet_size ();
11778 int len, attachment_len;
11779 int read_len;
11780 char *ret;
11781
11782 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11783 return NULL;
11784
11785 remote_buffer_add_string (&p, &left, "vFile:readlink:");
11786
11787 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11788 strlen (filename));
11789
11790 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
11791 remote_errno, &attachment,
11792 &attachment_len);
11793
11794 if (len < 0)
11795 return NULL;
11796
11797 ret = (char *) xmalloc (len + 1);
11798
11799 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11800 (gdb_byte *) ret, len);
11801 if (read_len != len)
11802 error (_("Readlink returned %d, but %d bytes."), len, read_len);
11803
11804 ret[len] = '\0';
11805 return ret;
11806 }
11807
11808 /* Implementation of to_fileio_fstat. */
11809
11810 static int
11811 remote_hostio_fstat (struct target_ops *self,
11812 int fd, struct stat *st,
11813 int *remote_errno)
11814 {
11815 struct remote_state *rs = get_remote_state ();
11816 char *p = rs->buf;
11817 int left = get_remote_packet_size ();
11818 int attachment_len, ret;
11819 char *attachment;
11820 struct fio_stat fst;
11821 int read_len;
11822
11823 remote_buffer_add_string (&p, &left, "vFile:fstat:");
11824
11825 remote_buffer_add_int (&p, &left, fd);
11826
11827 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
11828 remote_errno, &attachment,
11829 &attachment_len);
11830 if (ret < 0)
11831 {
11832 if (*remote_errno != FILEIO_ENOSYS)
11833 return ret;
11834
11835 /* Strictly we should return -1, ENOSYS here, but when
11836 "set sysroot remote:" was implemented in August 2008
11837 BFD's need for a stat function was sidestepped with
11838 this hack. This was not remedied until March 2015
11839 so we retain the previous behavior to avoid breaking
11840 compatibility.
11841
11842 Note that the memset is a March 2015 addition; older
11843 GDBs set st_size *and nothing else* so the structure
11844 would have garbage in all other fields. This might
11845 break something but retaining the previous behavior
11846 here would be just too wrong. */
11847
11848 memset (st, 0, sizeof (struct stat));
11849 st->st_size = INT_MAX;
11850 return 0;
11851 }
11852
11853 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11854 (gdb_byte *) &fst, sizeof (fst));
11855
11856 if (read_len != ret)
11857 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
11858
11859 if (read_len != sizeof (fst))
11860 error (_("vFile:fstat returned %d bytes, but expecting %d."),
11861 read_len, (int) sizeof (fst));
11862
11863 remote_fileio_to_host_stat (&fst, st);
11864
11865 return 0;
11866 }
11867
11868 /* Implementation of to_filesystem_is_local. */
11869
11870 static int
11871 remote_filesystem_is_local (struct target_ops *self)
11872 {
11873 /* Valgrind GDB presents itself as a remote target but works
11874 on the local filesystem: it does not implement remote get
11875 and users are not expected to set a sysroot. To handle
11876 this case we treat the remote filesystem as local if the
11877 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
11878 does not support vFile:open. */
11879 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
11880 {
11881 enum packet_support ps = packet_support (PACKET_vFile_open);
11882
11883 if (ps == PACKET_SUPPORT_UNKNOWN)
11884 {
11885 int fd, remote_errno;
11886
11887 /* Try opening a file to probe support. The supplied
11888 filename is irrelevant, we only care about whether
11889 the stub recognizes the packet or not. */
11890 fd = remote_hostio_open (self, NULL, "just probing",
11891 FILEIO_O_RDONLY, 0700, 0,
11892 &remote_errno);
11893
11894 if (fd >= 0)
11895 remote_hostio_close (self, fd, &remote_errno);
11896
11897 ps = packet_support (PACKET_vFile_open);
11898 }
11899
11900 if (ps == PACKET_DISABLE)
11901 {
11902 static int warning_issued = 0;
11903
11904 if (!warning_issued)
11905 {
11906 warning (_("remote target does not support file"
11907 " transfer, attempting to access files"
11908 " from local filesystem."));
11909 warning_issued = 1;
11910 }
11911
11912 return 1;
11913 }
11914 }
11915
11916 return 0;
11917 }
11918
11919 static int
11920 remote_fileio_errno_to_host (int errnum)
11921 {
11922 switch (errnum)
11923 {
11924 case FILEIO_EPERM:
11925 return EPERM;
11926 case FILEIO_ENOENT:
11927 return ENOENT;
11928 case FILEIO_EINTR:
11929 return EINTR;
11930 case FILEIO_EIO:
11931 return EIO;
11932 case FILEIO_EBADF:
11933 return EBADF;
11934 case FILEIO_EACCES:
11935 return EACCES;
11936 case FILEIO_EFAULT:
11937 return EFAULT;
11938 case FILEIO_EBUSY:
11939 return EBUSY;
11940 case FILEIO_EEXIST:
11941 return EEXIST;
11942 case FILEIO_ENODEV:
11943 return ENODEV;
11944 case FILEIO_ENOTDIR:
11945 return ENOTDIR;
11946 case FILEIO_EISDIR:
11947 return EISDIR;
11948 case FILEIO_EINVAL:
11949 return EINVAL;
11950 case FILEIO_ENFILE:
11951 return ENFILE;
11952 case FILEIO_EMFILE:
11953 return EMFILE;
11954 case FILEIO_EFBIG:
11955 return EFBIG;
11956 case FILEIO_ENOSPC:
11957 return ENOSPC;
11958 case FILEIO_ESPIPE:
11959 return ESPIPE;
11960 case FILEIO_EROFS:
11961 return EROFS;
11962 case FILEIO_ENOSYS:
11963 return ENOSYS;
11964 case FILEIO_ENAMETOOLONG:
11965 return ENAMETOOLONG;
11966 }
11967 return -1;
11968 }
11969
11970 static char *
11971 remote_hostio_error (int errnum)
11972 {
11973 int host_error = remote_fileio_errno_to_host (errnum);
11974
11975 if (host_error == -1)
11976 error (_("Unknown remote I/O error %d"), errnum);
11977 else
11978 error (_("Remote I/O error: %s"), safe_strerror (host_error));
11979 }
11980
11981 static void
11982 remote_hostio_close_cleanup (void *opaque)
11983 {
11984 int fd = *(int *) opaque;
11985 int remote_errno;
11986
11987 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
11988 }
11989
11990 void
11991 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
11992 {
11993 struct cleanup *back_to, *close_cleanup;
11994 int retcode, fd, remote_errno, bytes, io_size;
11995 gdb_byte *buffer;
11996 int bytes_in_buffer;
11997 int saw_eof;
11998 ULONGEST offset;
11999 struct remote_state *rs = get_remote_state ();
12000
12001 if (!rs->remote_desc)
12002 error (_("command can only be used with remote target"));
12003
12004 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12005 if (file == NULL)
12006 perror_with_name (local_file);
12007
12008 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
12009 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12010 | FILEIO_O_TRUNC),
12011 0700, 0, &remote_errno);
12012 if (fd == -1)
12013 remote_hostio_error (remote_errno);
12014
12015 /* Send up to this many bytes at once. They won't all fit in the
12016 remote packet limit, so we'll transfer slightly fewer. */
12017 io_size = get_remote_packet_size ();
12018 buffer = (gdb_byte *) xmalloc (io_size);
12019 back_to = make_cleanup (xfree, buffer);
12020
12021 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
12022
12023 bytes_in_buffer = 0;
12024 saw_eof = 0;
12025 offset = 0;
12026 while (bytes_in_buffer || !saw_eof)
12027 {
12028 if (!saw_eof)
12029 {
12030 bytes = fread (buffer + bytes_in_buffer, 1,
12031 io_size - bytes_in_buffer,
12032 file.get ());
12033 if (bytes == 0)
12034 {
12035 if (ferror (file.get ()))
12036 error (_("Error reading %s."), local_file);
12037 else
12038 {
12039 /* EOF. Unless there is something still in the
12040 buffer from the last iteration, we are done. */
12041 saw_eof = 1;
12042 if (bytes_in_buffer == 0)
12043 break;
12044 }
12045 }
12046 }
12047 else
12048 bytes = 0;
12049
12050 bytes += bytes_in_buffer;
12051 bytes_in_buffer = 0;
12052
12053 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
12054 fd, buffer, bytes,
12055 offset, &remote_errno);
12056
12057 if (retcode < 0)
12058 remote_hostio_error (remote_errno);
12059 else if (retcode == 0)
12060 error (_("Remote write of %d bytes returned 0!"), bytes);
12061 else if (retcode < bytes)
12062 {
12063 /* Short write. Save the rest of the read data for the next
12064 write. */
12065 bytes_in_buffer = bytes - retcode;
12066 memmove (buffer, buffer + retcode, bytes_in_buffer);
12067 }
12068
12069 offset += retcode;
12070 }
12071
12072 discard_cleanups (close_cleanup);
12073 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12074 remote_hostio_error (remote_errno);
12075
12076 if (from_tty)
12077 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12078 do_cleanups (back_to);
12079 }
12080
12081 void
12082 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12083 {
12084 struct cleanup *back_to, *close_cleanup;
12085 int fd, remote_errno, bytes, io_size;
12086 gdb_byte *buffer;
12087 ULONGEST offset;
12088 struct remote_state *rs = get_remote_state ();
12089
12090 if (!rs->remote_desc)
12091 error (_("command can only be used with remote target"));
12092
12093 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
12094 remote_file, FILEIO_O_RDONLY, 0, 0,
12095 &remote_errno);
12096 if (fd == -1)
12097 remote_hostio_error (remote_errno);
12098
12099 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12100 if (file == NULL)
12101 perror_with_name (local_file);
12102
12103 /* Send up to this many bytes at once. They won't all fit in the
12104 remote packet limit, so we'll transfer slightly fewer. */
12105 io_size = get_remote_packet_size ();
12106 buffer = (gdb_byte *) xmalloc (io_size);
12107 back_to = make_cleanup (xfree, buffer);
12108
12109 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
12110
12111 offset = 0;
12112 while (1)
12113 {
12114 bytes = remote_hostio_pread (find_target_at (process_stratum),
12115 fd, buffer, io_size, offset, &remote_errno);
12116 if (bytes == 0)
12117 /* Success, but no bytes, means end-of-file. */
12118 break;
12119 if (bytes == -1)
12120 remote_hostio_error (remote_errno);
12121
12122 offset += bytes;
12123
12124 bytes = fwrite (buffer, 1, bytes, file.get ());
12125 if (bytes == 0)
12126 perror_with_name (local_file);
12127 }
12128
12129 discard_cleanups (close_cleanup);
12130 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12131 remote_hostio_error (remote_errno);
12132
12133 if (from_tty)
12134 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12135 do_cleanups (back_to);
12136 }
12137
12138 void
12139 remote_file_delete (const char *remote_file, int from_tty)
12140 {
12141 int retcode, remote_errno;
12142 struct remote_state *rs = get_remote_state ();
12143
12144 if (!rs->remote_desc)
12145 error (_("command can only be used with remote target"));
12146
12147 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12148 NULL, remote_file, &remote_errno);
12149 if (retcode == -1)
12150 remote_hostio_error (remote_errno);
12151
12152 if (from_tty)
12153 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12154 }
12155
12156 static void
12157 remote_put_command (const char *args, int from_tty)
12158 {
12159 if (args == NULL)
12160 error_no_arg (_("file to put"));
12161
12162 gdb_argv argv (args);
12163 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12164 error (_("Invalid parameters to remote put"));
12165
12166 remote_file_put (argv[0], argv[1], from_tty);
12167 }
12168
12169 static void
12170 remote_get_command (const char *args, int from_tty)
12171 {
12172 if (args == NULL)
12173 error_no_arg (_("file to get"));
12174
12175 gdb_argv argv (args);
12176 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12177 error (_("Invalid parameters to remote get"));
12178
12179 remote_file_get (argv[0], argv[1], from_tty);
12180 }
12181
12182 static void
12183 remote_delete_command (const char *args, int from_tty)
12184 {
12185 if (args == NULL)
12186 error_no_arg (_("file to delete"));
12187
12188 gdb_argv argv (args);
12189 if (argv[0] == NULL || argv[1] != NULL)
12190 error (_("Invalid parameters to remote delete"));
12191
12192 remote_file_delete (argv[0], from_tty);
12193 }
12194
12195 static void
12196 remote_command (const char *args, int from_tty)
12197 {
12198 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12199 }
12200
12201 static int
12202 remote_can_execute_reverse (struct target_ops *self)
12203 {
12204 if (packet_support (PACKET_bs) == PACKET_ENABLE
12205 || packet_support (PACKET_bc) == PACKET_ENABLE)
12206 return 1;
12207 else
12208 return 0;
12209 }
12210
12211 static int
12212 remote_supports_non_stop (struct target_ops *self)
12213 {
12214 return 1;
12215 }
12216
12217 static int
12218 remote_supports_disable_randomization (struct target_ops *self)
12219 {
12220 /* Only supported in extended mode. */
12221 return 0;
12222 }
12223
12224 static int
12225 remote_supports_multi_process (struct target_ops *self)
12226 {
12227 struct remote_state *rs = get_remote_state ();
12228
12229 return remote_multi_process_p (rs);
12230 }
12231
12232 static int
12233 remote_supports_cond_tracepoints (void)
12234 {
12235 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12236 }
12237
12238 static int
12239 remote_supports_cond_breakpoints (struct target_ops *self)
12240 {
12241 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12242 }
12243
12244 static int
12245 remote_supports_fast_tracepoints (void)
12246 {
12247 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12248 }
12249
12250 static int
12251 remote_supports_static_tracepoints (void)
12252 {
12253 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12254 }
12255
12256 static int
12257 remote_supports_install_in_trace (void)
12258 {
12259 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12260 }
12261
12262 static int
12263 remote_supports_enable_disable_tracepoint (struct target_ops *self)
12264 {
12265 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12266 == PACKET_ENABLE);
12267 }
12268
12269 static int
12270 remote_supports_string_tracing (struct target_ops *self)
12271 {
12272 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12273 }
12274
12275 static int
12276 remote_can_run_breakpoint_commands (struct target_ops *self)
12277 {
12278 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12279 }
12280
12281 static void
12282 remote_trace_init (struct target_ops *self)
12283 {
12284 struct remote_state *rs = get_remote_state ();
12285
12286 putpkt ("QTinit");
12287 remote_get_noisy_reply ();
12288 if (strcmp (rs->buf, "OK") != 0)
12289 error (_("Target does not support this command."));
12290 }
12291
12292 static void free_actions_list (char **actions_list);
12293 static void free_actions_list_cleanup_wrapper (void *);
12294 static void
12295 free_actions_list_cleanup_wrapper (void *al)
12296 {
12297 free_actions_list ((char **) al);
12298 }
12299
12300 static void
12301 free_actions_list (char **actions_list)
12302 {
12303 int ndx;
12304
12305 if (actions_list == 0)
12306 return;
12307
12308 for (ndx = 0; actions_list[ndx]; ndx++)
12309 xfree (actions_list[ndx]);
12310
12311 xfree (actions_list);
12312 }
12313
12314 /* Recursive routine to walk through command list including loops, and
12315 download packets for each command. */
12316
12317 static void
12318 remote_download_command_source (int num, ULONGEST addr,
12319 struct command_line *cmds)
12320 {
12321 struct remote_state *rs = get_remote_state ();
12322 struct command_line *cmd;
12323
12324 for (cmd = cmds; cmd; cmd = cmd->next)
12325 {
12326 QUIT; /* Allow user to bail out with ^C. */
12327 strcpy (rs->buf, "QTDPsrc:");
12328 encode_source_string (num, addr, "cmd", cmd->line,
12329 rs->buf + strlen (rs->buf),
12330 rs->buf_size - strlen (rs->buf));
12331 putpkt (rs->buf);
12332 remote_get_noisy_reply ();
12333 if (strcmp (rs->buf, "OK"))
12334 warning (_("Target does not support source download."));
12335
12336 if (cmd->control_type == while_control
12337 || cmd->control_type == while_stepping_control)
12338 {
12339 remote_download_command_source (num, addr, *cmd->body_list);
12340
12341 QUIT; /* Allow user to bail out with ^C. */
12342 strcpy (rs->buf, "QTDPsrc:");
12343 encode_source_string (num, addr, "cmd", "end",
12344 rs->buf + strlen (rs->buf),
12345 rs->buf_size - strlen (rs->buf));
12346 putpkt (rs->buf);
12347 remote_get_noisy_reply ();
12348 if (strcmp (rs->buf, "OK"))
12349 warning (_("Target does not support source download."));
12350 }
12351 }
12352 }
12353
12354 static void
12355 remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
12356 {
12357 #define BUF_SIZE 2048
12358
12359 CORE_ADDR tpaddr;
12360 char addrbuf[40];
12361 char buf[BUF_SIZE];
12362 char **tdp_actions;
12363 char **stepping_actions;
12364 int ndx;
12365 struct cleanup *old_chain = NULL;
12366 char *pkt;
12367 struct breakpoint *b = loc->owner;
12368 struct tracepoint *t = (struct tracepoint *) b;
12369 struct remote_state *rs = get_remote_state ();
12370
12371 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12372 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
12373 tdp_actions);
12374 (void) make_cleanup (free_actions_list_cleanup_wrapper,
12375 stepping_actions);
12376
12377 tpaddr = loc->address;
12378 sprintf_vma (addrbuf, tpaddr);
12379 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12380 addrbuf, /* address */
12381 (b->enable_state == bp_enabled ? 'E' : 'D'),
12382 t->step_count, t->pass_count);
12383 /* Fast tracepoints are mostly handled by the target, but we can
12384 tell the target how big of an instruction block should be moved
12385 around. */
12386 if (b->type == bp_fast_tracepoint)
12387 {
12388 /* Only test for support at download time; we may not know
12389 target capabilities at definition time. */
12390 if (remote_supports_fast_tracepoints ())
12391 {
12392 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12393 NULL))
12394 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12395 gdb_insn_length (loc->gdbarch, tpaddr));
12396 else
12397 /* If it passed validation at definition but fails now,
12398 something is very wrong. */
12399 internal_error (__FILE__, __LINE__,
12400 _("Fast tracepoint not "
12401 "valid during download"));
12402 }
12403 else
12404 /* Fast tracepoints are functionally identical to regular
12405 tracepoints, so don't take lack of support as a reason to
12406 give up on the trace run. */
12407 warning (_("Target does not support fast tracepoints, "
12408 "downloading %d as regular tracepoint"), b->number);
12409 }
12410 else if (b->type == bp_static_tracepoint)
12411 {
12412 /* Only test for support at download time; we may not know
12413 target capabilities at definition time. */
12414 if (remote_supports_static_tracepoints ())
12415 {
12416 struct static_tracepoint_marker marker;
12417
12418 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12419 strcat (buf, ":S");
12420 else
12421 error (_("Static tracepoint not valid during download"));
12422 }
12423 else
12424 /* Fast tracepoints are functionally identical to regular
12425 tracepoints, so don't take lack of support as a reason
12426 to give up on the trace run. */
12427 error (_("Target does not support static tracepoints"));
12428 }
12429 /* If the tracepoint has a conditional, make it into an agent
12430 expression and append to the definition. */
12431 if (loc->cond)
12432 {
12433 /* Only test support at download time, we may not know target
12434 capabilities at definition time. */
12435 if (remote_supports_cond_tracepoints ())
12436 {
12437 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12438 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12439 aexpr->len);
12440 pkt = buf + strlen (buf);
12441 for (ndx = 0; ndx < aexpr->len; ++ndx)
12442 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12443 *pkt = '\0';
12444 }
12445 else
12446 warning (_("Target does not support conditional tracepoints, "
12447 "ignoring tp %d cond"), b->number);
12448 }
12449
12450 if (b->commands || *default_collect)
12451 strcat (buf, "-");
12452 putpkt (buf);
12453 remote_get_noisy_reply ();
12454 if (strcmp (rs->buf, "OK"))
12455 error (_("Target does not support tracepoints."));
12456
12457 /* do_single_steps (t); */
12458 if (tdp_actions)
12459 {
12460 for (ndx = 0; tdp_actions[ndx]; ndx++)
12461 {
12462 QUIT; /* Allow user to bail out with ^C. */
12463 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12464 b->number, addrbuf, /* address */
12465 tdp_actions[ndx],
12466 ((tdp_actions[ndx + 1] || stepping_actions)
12467 ? '-' : 0));
12468 putpkt (buf);
12469 remote_get_noisy_reply ();
12470 if (strcmp (rs->buf, "OK"))
12471 error (_("Error on target while setting tracepoints."));
12472 }
12473 }
12474 if (stepping_actions)
12475 {
12476 for (ndx = 0; stepping_actions[ndx]; ndx++)
12477 {
12478 QUIT; /* Allow user to bail out with ^C. */
12479 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12480 b->number, addrbuf, /* address */
12481 ((ndx == 0) ? "S" : ""),
12482 stepping_actions[ndx],
12483 (stepping_actions[ndx + 1] ? "-" : ""));
12484 putpkt (buf);
12485 remote_get_noisy_reply ();
12486 if (strcmp (rs->buf, "OK"))
12487 error (_("Error on target while setting tracepoints."));
12488 }
12489 }
12490
12491 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12492 {
12493 if (b->location != NULL)
12494 {
12495 strcpy (buf, "QTDPsrc:");
12496 encode_source_string (b->number, loc->address, "at",
12497 event_location_to_string (b->location.get ()),
12498 buf + strlen (buf), 2048 - strlen (buf));
12499 putpkt (buf);
12500 remote_get_noisy_reply ();
12501 if (strcmp (rs->buf, "OK"))
12502 warning (_("Target does not support source download."));
12503 }
12504 if (b->cond_string)
12505 {
12506 strcpy (buf, "QTDPsrc:");
12507 encode_source_string (b->number, loc->address,
12508 "cond", b->cond_string, buf + strlen (buf),
12509 2048 - strlen (buf));
12510 putpkt (buf);
12511 remote_get_noisy_reply ();
12512 if (strcmp (rs->buf, "OK"))
12513 warning (_("Target does not support source download."));
12514 }
12515 remote_download_command_source (b->number, loc->address,
12516 breakpoint_commands (b));
12517 }
12518
12519 do_cleanups (old_chain);
12520 }
12521
12522 static int
12523 remote_can_download_tracepoint (struct target_ops *self)
12524 {
12525 struct remote_state *rs = get_remote_state ();
12526 struct trace_status *ts;
12527 int status;
12528
12529 /* Don't try to install tracepoints until we've relocated our
12530 symbols, and fetched and merged the target's tracepoint list with
12531 ours. */
12532 if (rs->starting_up)
12533 return 0;
12534
12535 ts = current_trace_status ();
12536 status = remote_get_trace_status (self, ts);
12537
12538 if (status == -1 || !ts->running_known || !ts->running)
12539 return 0;
12540
12541 /* If we are in a tracing experiment, but remote stub doesn't support
12542 installing tracepoint in trace, we have to return. */
12543 if (!remote_supports_install_in_trace ())
12544 return 0;
12545
12546 return 1;
12547 }
12548
12549
12550 static void
12551 remote_download_trace_state_variable (struct target_ops *self,
12552 struct trace_state_variable *tsv)
12553 {
12554 struct remote_state *rs = get_remote_state ();
12555 char *p;
12556
12557 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12558 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
12559 tsv->builtin);
12560 p = rs->buf + strlen (rs->buf);
12561 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
12562 error (_("Trace state variable name too long for tsv definition packet"));
12563 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, strlen (tsv->name));
12564 *p++ = '\0';
12565 putpkt (rs->buf);
12566 remote_get_noisy_reply ();
12567 if (*rs->buf == '\0')
12568 error (_("Target does not support this command."));
12569 if (strcmp (rs->buf, "OK") != 0)
12570 error (_("Error on target while downloading trace state variable."));
12571 }
12572
12573 static void
12574 remote_enable_tracepoint (struct target_ops *self,
12575 struct bp_location *location)
12576 {
12577 struct remote_state *rs = get_remote_state ();
12578 char addr_buf[40];
12579
12580 sprintf_vma (addr_buf, location->address);
12581 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12582 location->owner->number, addr_buf);
12583 putpkt (rs->buf);
12584 remote_get_noisy_reply ();
12585 if (*rs->buf == '\0')
12586 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12587 if (strcmp (rs->buf, "OK") != 0)
12588 error (_("Error on target while enabling tracepoint."));
12589 }
12590
12591 static void
12592 remote_disable_tracepoint (struct target_ops *self,
12593 struct bp_location *location)
12594 {
12595 struct remote_state *rs = get_remote_state ();
12596 char addr_buf[40];
12597
12598 sprintf_vma (addr_buf, location->address);
12599 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12600 location->owner->number, addr_buf);
12601 putpkt (rs->buf);
12602 remote_get_noisy_reply ();
12603 if (*rs->buf == '\0')
12604 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12605 if (strcmp (rs->buf, "OK") != 0)
12606 error (_("Error on target while disabling tracepoint."));
12607 }
12608
12609 static void
12610 remote_trace_set_readonly_regions (struct target_ops *self)
12611 {
12612 asection *s;
12613 bfd *abfd = NULL;
12614 bfd_size_type size;
12615 bfd_vma vma;
12616 int anysecs = 0;
12617 int offset = 0;
12618
12619 if (!exec_bfd)
12620 return; /* No information to give. */
12621
12622 struct remote_state *rs = get_remote_state ();
12623
12624 strcpy (rs->buf, "QTro");
12625 offset = strlen (rs->buf);
12626 for (s = exec_bfd->sections; s; s = s->next)
12627 {
12628 char tmp1[40], tmp2[40];
12629 int sec_length;
12630
12631 if ((s->flags & SEC_LOAD) == 0 ||
12632 /* (s->flags & SEC_CODE) == 0 || */
12633 (s->flags & SEC_READONLY) == 0)
12634 continue;
12635
12636 anysecs = 1;
12637 vma = bfd_get_section_vma (abfd, s);
12638 size = bfd_get_section_size (s);
12639 sprintf_vma (tmp1, vma);
12640 sprintf_vma (tmp2, vma + size);
12641 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12642 if (offset + sec_length + 1 > rs->buf_size)
12643 {
12644 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12645 warning (_("\
12646 Too many sections for read-only sections definition packet."));
12647 break;
12648 }
12649 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
12650 tmp1, tmp2);
12651 offset += sec_length;
12652 }
12653 if (anysecs)
12654 {
12655 putpkt (rs->buf);
12656 getpkt (&rs->buf, &rs->buf_size, 0);
12657 }
12658 }
12659
12660 static void
12661 remote_trace_start (struct target_ops *self)
12662 {
12663 struct remote_state *rs = get_remote_state ();
12664
12665 putpkt ("QTStart");
12666 remote_get_noisy_reply ();
12667 if (*rs->buf == '\0')
12668 error (_("Target does not support this command."));
12669 if (strcmp (rs->buf, "OK") != 0)
12670 error (_("Bogus reply from target: %s"), rs->buf);
12671 }
12672
12673 static int
12674 remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
12675 {
12676 /* Initialize it just to avoid a GCC false warning. */
12677 char *p = NULL;
12678 /* FIXME we need to get register block size some other way. */
12679 extern int trace_regblock_size;
12680 enum packet_result result;
12681 struct remote_state *rs = get_remote_state ();
12682
12683 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12684 return -1;
12685
12686 trace_regblock_size
12687 = get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
12688
12689 putpkt ("qTStatus");
12690
12691 TRY
12692 {
12693 p = remote_get_noisy_reply ();
12694 }
12695 CATCH (ex, RETURN_MASK_ERROR)
12696 {
12697 if (ex.error != TARGET_CLOSE_ERROR)
12698 {
12699 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12700 return -1;
12701 }
12702 throw_exception (ex);
12703 }
12704 END_CATCH
12705
12706 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12707
12708 /* If the remote target doesn't do tracing, flag it. */
12709 if (result == PACKET_UNKNOWN)
12710 return -1;
12711
12712 /* We're working with a live target. */
12713 ts->filename = NULL;
12714
12715 if (*p++ != 'T')
12716 error (_("Bogus trace status reply from target: %s"), rs->buf);
12717
12718 /* Function 'parse_trace_status' sets default value of each field of
12719 'ts' at first, so we don't have to do it here. */
12720 parse_trace_status (p, ts);
12721
12722 return ts->running;
12723 }
12724
12725 static void
12726 remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
12727 struct uploaded_tp *utp)
12728 {
12729 struct remote_state *rs = get_remote_state ();
12730 char *reply;
12731 struct bp_location *loc;
12732 struct tracepoint *tp = (struct tracepoint *) bp;
12733 size_t size = get_remote_packet_size ();
12734
12735 if (tp)
12736 {
12737 tp->hit_count = 0;
12738 tp->traceframe_usage = 0;
12739 for (loc = tp->loc; loc; loc = loc->next)
12740 {
12741 /* If the tracepoint was never downloaded, don't go asking for
12742 any status. */
12743 if (tp->number_on_target == 0)
12744 continue;
12745 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12746 phex_nz (loc->address, 0));
12747 putpkt (rs->buf);
12748 reply = remote_get_noisy_reply ();
12749 if (reply && *reply)
12750 {
12751 if (*reply == 'V')
12752 parse_tracepoint_status (reply + 1, bp, utp);
12753 }
12754 }
12755 }
12756 else if (utp)
12757 {
12758 utp->hit_count = 0;
12759 utp->traceframe_usage = 0;
12760 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
12761 phex_nz (utp->addr, 0));
12762 putpkt (rs->buf);
12763 reply = remote_get_noisy_reply ();
12764 if (reply && *reply)
12765 {
12766 if (*reply == 'V')
12767 parse_tracepoint_status (reply + 1, bp, utp);
12768 }
12769 }
12770 }
12771
12772 static void
12773 remote_trace_stop (struct target_ops *self)
12774 {
12775 struct remote_state *rs = get_remote_state ();
12776
12777 putpkt ("QTStop");
12778 remote_get_noisy_reply ();
12779 if (*rs->buf == '\0')
12780 error (_("Target does not support this command."));
12781 if (strcmp (rs->buf, "OK") != 0)
12782 error (_("Bogus reply from target: %s"), rs->buf);
12783 }
12784
12785 static int
12786 remote_trace_find (struct target_ops *self,
12787 enum trace_find_type type, int num,
12788 CORE_ADDR addr1, CORE_ADDR addr2,
12789 int *tpp)
12790 {
12791 struct remote_state *rs = get_remote_state ();
12792 char *endbuf = rs->buf + get_remote_packet_size ();
12793 char *p, *reply;
12794 int target_frameno = -1, target_tracept = -1;
12795
12796 /* Lookups other than by absolute frame number depend on the current
12797 trace selected, so make sure it is correct on the remote end
12798 first. */
12799 if (type != tfind_number)
12800 set_remote_traceframe ();
12801
12802 p = rs->buf;
12803 strcpy (p, "QTFrame:");
12804 p = strchr (p, '\0');
12805 switch (type)
12806 {
12807 case tfind_number:
12808 xsnprintf (p, endbuf - p, "%x", num);
12809 break;
12810 case tfind_pc:
12811 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
12812 break;
12813 case tfind_tp:
12814 xsnprintf (p, endbuf - p, "tdp:%x", num);
12815 break;
12816 case tfind_range:
12817 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
12818 phex_nz (addr2, 0));
12819 break;
12820 case tfind_outside:
12821 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
12822 phex_nz (addr2, 0));
12823 break;
12824 default:
12825 error (_("Unknown trace find type %d"), type);
12826 }
12827
12828 putpkt (rs->buf);
12829 reply = remote_get_noisy_reply ();
12830 if (*reply == '\0')
12831 error (_("Target does not support this command."));
12832
12833 while (reply && *reply)
12834 switch (*reply)
12835 {
12836 case 'F':
12837 p = ++reply;
12838 target_frameno = (int) strtol (p, &reply, 16);
12839 if (reply == p)
12840 error (_("Unable to parse trace frame number"));
12841 /* Don't update our remote traceframe number cache on failure
12842 to select a remote traceframe. */
12843 if (target_frameno == -1)
12844 return -1;
12845 break;
12846 case 'T':
12847 p = ++reply;
12848 target_tracept = (int) strtol (p, &reply, 16);
12849 if (reply == p)
12850 error (_("Unable to parse tracepoint number"));
12851 break;
12852 case 'O': /* "OK"? */
12853 if (reply[1] == 'K' && reply[2] == '\0')
12854 reply += 2;
12855 else
12856 error (_("Bogus reply from target: %s"), reply);
12857 break;
12858 default:
12859 error (_("Bogus reply from target: %s"), reply);
12860 }
12861 if (tpp)
12862 *tpp = target_tracept;
12863
12864 rs->remote_traceframe_number = target_frameno;
12865 return target_frameno;
12866 }
12867
12868 static int
12869 remote_get_trace_state_variable_value (struct target_ops *self,
12870 int tsvnum, LONGEST *val)
12871 {
12872 struct remote_state *rs = get_remote_state ();
12873 char *reply;
12874 ULONGEST uval;
12875
12876 set_remote_traceframe ();
12877
12878 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
12879 putpkt (rs->buf);
12880 reply = remote_get_noisy_reply ();
12881 if (reply && *reply)
12882 {
12883 if (*reply == 'V')
12884 {
12885 unpack_varlen_hex (reply + 1, &uval);
12886 *val = (LONGEST) uval;
12887 return 1;
12888 }
12889 }
12890 return 0;
12891 }
12892
12893 static int
12894 remote_save_trace_data (struct target_ops *self, const char *filename)
12895 {
12896 struct remote_state *rs = get_remote_state ();
12897 char *p, *reply;
12898
12899 p = rs->buf;
12900 strcpy (p, "QTSave:");
12901 p += strlen (p);
12902 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
12903 error (_("Remote file name too long for trace save packet"));
12904 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
12905 *p++ = '\0';
12906 putpkt (rs->buf);
12907 reply = remote_get_noisy_reply ();
12908 if (*reply == '\0')
12909 error (_("Target does not support this command."));
12910 if (strcmp (reply, "OK") != 0)
12911 error (_("Bogus reply from target: %s"), reply);
12912 return 0;
12913 }
12914
12915 /* This is basically a memory transfer, but needs to be its own packet
12916 because we don't know how the target actually organizes its trace
12917 memory, plus we want to be able to ask for as much as possible, but
12918 not be unhappy if we don't get as much as we ask for. */
12919
12920 static LONGEST
12921 remote_get_raw_trace_data (struct target_ops *self,
12922 gdb_byte *buf, ULONGEST offset, LONGEST len)
12923 {
12924 struct remote_state *rs = get_remote_state ();
12925 char *reply;
12926 char *p;
12927 int rslt;
12928
12929 p = rs->buf;
12930 strcpy (p, "qTBuffer:");
12931 p += strlen (p);
12932 p += hexnumstr (p, offset);
12933 *p++ = ',';
12934 p += hexnumstr (p, len);
12935 *p++ = '\0';
12936
12937 putpkt (rs->buf);
12938 reply = remote_get_noisy_reply ();
12939 if (reply && *reply)
12940 {
12941 /* 'l' by itself means we're at the end of the buffer and
12942 there is nothing more to get. */
12943 if (*reply == 'l')
12944 return 0;
12945
12946 /* Convert the reply into binary. Limit the number of bytes to
12947 convert according to our passed-in buffer size, rather than
12948 what was returned in the packet; if the target is
12949 unexpectedly generous and gives us a bigger reply than we
12950 asked for, we don't want to crash. */
12951 rslt = hex2bin (reply, buf, len);
12952 return rslt;
12953 }
12954
12955 /* Something went wrong, flag as an error. */
12956 return -1;
12957 }
12958
12959 static void
12960 remote_set_disconnected_tracing (struct target_ops *self, int val)
12961 {
12962 struct remote_state *rs = get_remote_state ();
12963
12964 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
12965 {
12966 char *reply;
12967
12968 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
12969 putpkt (rs->buf);
12970 reply = remote_get_noisy_reply ();
12971 if (*reply == '\0')
12972 error (_("Target does not support this command."));
12973 if (strcmp (reply, "OK") != 0)
12974 error (_("Bogus reply from target: %s"), reply);
12975 }
12976 else if (val)
12977 warning (_("Target does not support disconnected tracing."));
12978 }
12979
12980 static int
12981 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
12982 {
12983 struct thread_info *info = find_thread_ptid (ptid);
12984
12985 if (info && info->priv)
12986 return info->priv->core;
12987 return -1;
12988 }
12989
12990 static void
12991 remote_set_circular_trace_buffer (struct target_ops *self, int val)
12992 {
12993 struct remote_state *rs = get_remote_state ();
12994 char *reply;
12995
12996 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
12997 putpkt (rs->buf);
12998 reply = remote_get_noisy_reply ();
12999 if (*reply == '\0')
13000 error (_("Target does not support this command."));
13001 if (strcmp (reply, "OK") != 0)
13002 error (_("Bogus reply from target: %s"), reply);
13003 }
13004
13005 static traceframe_info_up
13006 remote_traceframe_info (struct target_ops *self)
13007 {
13008 gdb::unique_xmalloc_ptr<char> text
13009 = target_read_stralloc (&current_target, TARGET_OBJECT_TRACEFRAME_INFO,
13010 NULL);
13011 if (text != NULL)
13012 return parse_traceframe_info (text.get ());
13013
13014 return NULL;
13015 }
13016
13017 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13018 instruction on which a fast tracepoint may be placed. Returns -1
13019 if the packet is not supported, and 0 if the minimum instruction
13020 length is unknown. */
13021
13022 static int
13023 remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
13024 {
13025 struct remote_state *rs = get_remote_state ();
13026 char *reply;
13027
13028 /* If we're not debugging a process yet, the IPA can't be
13029 loaded. */
13030 if (!target_has_execution)
13031 return 0;
13032
13033 /* Make sure the remote is pointing at the right process. */
13034 set_general_process ();
13035
13036 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
13037 putpkt (rs->buf);
13038 reply = remote_get_noisy_reply ();
13039 if (*reply == '\0')
13040 return -1;
13041 else
13042 {
13043 ULONGEST min_insn_len;
13044
13045 unpack_varlen_hex (reply, &min_insn_len);
13046
13047 return (int) min_insn_len;
13048 }
13049 }
13050
13051 static void
13052 remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
13053 {
13054 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13055 {
13056 struct remote_state *rs = get_remote_state ();
13057 char *buf = rs->buf;
13058 char *endbuf = rs->buf + get_remote_packet_size ();
13059 enum packet_result result;
13060
13061 gdb_assert (val >= 0 || val == -1);
13062 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13063 /* Send -1 as literal "-1" to avoid host size dependency. */
13064 if (val < 0)
13065 {
13066 *buf++ = '-';
13067 buf += hexnumstr (buf, (ULONGEST) -val);
13068 }
13069 else
13070 buf += hexnumstr (buf, (ULONGEST) val);
13071
13072 putpkt (rs->buf);
13073 remote_get_noisy_reply ();
13074 result = packet_ok (rs->buf,
13075 &remote_protocol_packets[PACKET_QTBuffer_size]);
13076
13077 if (result != PACKET_OK)
13078 warning (_("Bogus reply from target: %s"), rs->buf);
13079 }
13080 }
13081
13082 static int
13083 remote_set_trace_notes (struct target_ops *self,
13084 const char *user, const char *notes,
13085 const char *stop_notes)
13086 {
13087 struct remote_state *rs = get_remote_state ();
13088 char *reply;
13089 char *buf = rs->buf;
13090 char *endbuf = rs->buf + get_remote_packet_size ();
13091 int nbytes;
13092
13093 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13094 if (user)
13095 {
13096 buf += xsnprintf (buf, endbuf - buf, "user:");
13097 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13098 buf += 2 * nbytes;
13099 *buf++ = ';';
13100 }
13101 if (notes)
13102 {
13103 buf += xsnprintf (buf, endbuf - buf, "notes:");
13104 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13105 buf += 2 * nbytes;
13106 *buf++ = ';';
13107 }
13108 if (stop_notes)
13109 {
13110 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13111 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13112 buf += 2 * nbytes;
13113 *buf++ = ';';
13114 }
13115 /* Ensure the buffer is terminated. */
13116 *buf = '\0';
13117
13118 putpkt (rs->buf);
13119 reply = remote_get_noisy_reply ();
13120 if (*reply == '\0')
13121 return 0;
13122
13123 if (strcmp (reply, "OK") != 0)
13124 error (_("Bogus reply from target: %s"), reply);
13125
13126 return 1;
13127 }
13128
13129 static int
13130 remote_use_agent (struct target_ops *self, int use)
13131 {
13132 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13133 {
13134 struct remote_state *rs = get_remote_state ();
13135
13136 /* If the stub supports QAgent. */
13137 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13138 putpkt (rs->buf);
13139 getpkt (&rs->buf, &rs->buf_size, 0);
13140
13141 if (strcmp (rs->buf, "OK") == 0)
13142 {
13143 use_agent = use;
13144 return 1;
13145 }
13146 }
13147
13148 return 0;
13149 }
13150
13151 static int
13152 remote_can_use_agent (struct target_ops *self)
13153 {
13154 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13155 }
13156
13157 struct btrace_target_info
13158 {
13159 /* The ptid of the traced thread. */
13160 ptid_t ptid;
13161
13162 /* The obtained branch trace configuration. */
13163 struct btrace_config conf;
13164 };
13165
13166 /* Reset our idea of our target's btrace configuration. */
13167
13168 static void
13169 remote_btrace_reset (void)
13170 {
13171 struct remote_state *rs = get_remote_state ();
13172
13173 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13174 }
13175
13176 /* Check whether the target supports branch tracing. */
13177
13178 static int
13179 remote_supports_btrace (struct target_ops *self, enum btrace_format format)
13180 {
13181 if (packet_support (PACKET_Qbtrace_off) != PACKET_ENABLE)
13182 return 0;
13183 if (packet_support (PACKET_qXfer_btrace) != PACKET_ENABLE)
13184 return 0;
13185
13186 switch (format)
13187 {
13188 case BTRACE_FORMAT_NONE:
13189 return 0;
13190
13191 case BTRACE_FORMAT_BTS:
13192 return (packet_support (PACKET_Qbtrace_bts) == PACKET_ENABLE);
13193
13194 case BTRACE_FORMAT_PT:
13195 /* The trace is decoded on the host. Even if our target supports it,
13196 we still need to have libipt to decode the trace. */
13197 #if defined (HAVE_LIBIPT)
13198 return (packet_support (PACKET_Qbtrace_pt) == PACKET_ENABLE);
13199 #else /* !defined (HAVE_LIBIPT) */
13200 return 0;
13201 #endif /* !defined (HAVE_LIBIPT) */
13202 }
13203
13204 internal_error (__FILE__, __LINE__, _("Unknown branch trace format"));
13205 }
13206
13207 /* Synchronize the configuration with the target. */
13208
13209 static void
13210 btrace_sync_conf (const struct btrace_config *conf)
13211 {
13212 struct packet_config *packet;
13213 struct remote_state *rs;
13214 char *buf, *pos, *endbuf;
13215
13216 rs = get_remote_state ();
13217 buf = rs->buf;
13218 endbuf = buf + get_remote_packet_size ();
13219
13220 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13221 if (packet_config_support (packet) == PACKET_ENABLE
13222 && conf->bts.size != rs->btrace_config.bts.size)
13223 {
13224 pos = buf;
13225 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13226 conf->bts.size);
13227
13228 putpkt (buf);
13229 getpkt (&buf, &rs->buf_size, 0);
13230
13231 if (packet_ok (buf, packet) == PACKET_ERROR)
13232 {
13233 if (buf[0] == 'E' && buf[1] == '.')
13234 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13235 else
13236 error (_("Failed to configure the BTS buffer size."));
13237 }
13238
13239 rs->btrace_config.bts.size = conf->bts.size;
13240 }
13241
13242 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13243 if (packet_config_support (packet) == PACKET_ENABLE
13244 && conf->pt.size != rs->btrace_config.pt.size)
13245 {
13246 pos = buf;
13247 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13248 conf->pt.size);
13249
13250 putpkt (buf);
13251 getpkt (&buf, &rs->buf_size, 0);
13252
13253 if (packet_ok (buf, packet) == PACKET_ERROR)
13254 {
13255 if (buf[0] == 'E' && buf[1] == '.')
13256 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13257 else
13258 error (_("Failed to configure the trace buffer size."));
13259 }
13260
13261 rs->btrace_config.pt.size = conf->pt.size;
13262 }
13263 }
13264
13265 /* Read the current thread's btrace configuration from the target and
13266 store it into CONF. */
13267
13268 static void
13269 btrace_read_config (struct btrace_config *conf)
13270 {
13271 gdb::unique_xmalloc_ptr<char> xml
13272 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE_CONF, "");
13273 if (xml != NULL)
13274 parse_xml_btrace_conf (conf, xml.get ());
13275 }
13276
13277 /* Maybe reopen target btrace. */
13278
13279 static void
13280 remote_btrace_maybe_reopen (void)
13281 {
13282 struct remote_state *rs = get_remote_state ();
13283 struct thread_info *tp;
13284 int btrace_target_pushed = 0;
13285 int warned = 0;
13286
13287 scoped_restore_current_thread restore_thread;
13288
13289 ALL_NON_EXITED_THREADS (tp)
13290 {
13291 set_general_thread (tp->ptid);
13292
13293 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13294 btrace_read_config (&rs->btrace_config);
13295
13296 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13297 continue;
13298
13299 #if !defined (HAVE_LIBIPT)
13300 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13301 {
13302 if (!warned)
13303 {
13304 warned = 1;
13305 warning (_("GDB does not support Intel Processor Trace. "
13306 "\"record\" will not work in this session."));
13307 }
13308
13309 continue;
13310 }
13311 #endif /* !defined (HAVE_LIBIPT) */
13312
13313 /* Push target, once, but before anything else happens. This way our
13314 changes to the threads will be cleaned up by unpushing the target
13315 in case btrace_read_config () throws. */
13316 if (!btrace_target_pushed)
13317 {
13318 btrace_target_pushed = 1;
13319 record_btrace_push_target ();
13320 printf_filtered (_("Target is recording using %s.\n"),
13321 btrace_format_string (rs->btrace_config.format));
13322 }
13323
13324 tp->btrace.target = XCNEW (struct btrace_target_info);
13325 tp->btrace.target->ptid = tp->ptid;
13326 tp->btrace.target->conf = rs->btrace_config;
13327 }
13328 }
13329
13330 /* Enable branch tracing. */
13331
13332 static struct btrace_target_info *
13333 remote_enable_btrace (struct target_ops *self, ptid_t ptid,
13334 const struct btrace_config *conf)
13335 {
13336 struct btrace_target_info *tinfo = NULL;
13337 struct packet_config *packet = NULL;
13338 struct remote_state *rs = get_remote_state ();
13339 char *buf = rs->buf;
13340 char *endbuf = rs->buf + get_remote_packet_size ();
13341
13342 switch (conf->format)
13343 {
13344 case BTRACE_FORMAT_BTS:
13345 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13346 break;
13347
13348 case BTRACE_FORMAT_PT:
13349 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13350 break;
13351 }
13352
13353 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13354 error (_("Target does not support branch tracing."));
13355
13356 btrace_sync_conf (conf);
13357
13358 set_general_thread (ptid);
13359
13360 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13361 putpkt (rs->buf);
13362 getpkt (&rs->buf, &rs->buf_size, 0);
13363
13364 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13365 {
13366 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13367 error (_("Could not enable branch tracing for %s: %s"),
13368 target_pid_to_str (ptid), rs->buf + 2);
13369 else
13370 error (_("Could not enable branch tracing for %s."),
13371 target_pid_to_str (ptid));
13372 }
13373
13374 tinfo = XCNEW (struct btrace_target_info);
13375 tinfo->ptid = ptid;
13376
13377 /* If we fail to read the configuration, we lose some information, but the
13378 tracing itself is not impacted. */
13379 TRY
13380 {
13381 btrace_read_config (&tinfo->conf);
13382 }
13383 CATCH (err, RETURN_MASK_ERROR)
13384 {
13385 if (err.message != NULL)
13386 warning ("%s", err.message);
13387 }
13388 END_CATCH
13389
13390 return tinfo;
13391 }
13392
13393 /* Disable branch tracing. */
13394
13395 static void
13396 remote_disable_btrace (struct target_ops *self,
13397 struct btrace_target_info *tinfo)
13398 {
13399 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13400 struct remote_state *rs = get_remote_state ();
13401 char *buf = rs->buf;
13402 char *endbuf = rs->buf + get_remote_packet_size ();
13403
13404 if (packet_config_support (packet) != PACKET_ENABLE)
13405 error (_("Target does not support branch tracing."));
13406
13407 set_general_thread (tinfo->ptid);
13408
13409 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13410 putpkt (rs->buf);
13411 getpkt (&rs->buf, &rs->buf_size, 0);
13412
13413 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13414 {
13415 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13416 error (_("Could not disable branch tracing for %s: %s"),
13417 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13418 else
13419 error (_("Could not disable branch tracing for %s."),
13420 target_pid_to_str (tinfo->ptid));
13421 }
13422
13423 xfree (tinfo);
13424 }
13425
13426 /* Teardown branch tracing. */
13427
13428 static void
13429 remote_teardown_btrace (struct target_ops *self,
13430 struct btrace_target_info *tinfo)
13431 {
13432 /* We must not talk to the target during teardown. */
13433 xfree (tinfo);
13434 }
13435
13436 /* Read the branch trace. */
13437
13438 static enum btrace_error
13439 remote_read_btrace (struct target_ops *self,
13440 struct btrace_data *btrace,
13441 struct btrace_target_info *tinfo,
13442 enum btrace_read_type type)
13443 {
13444 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13445 const char *annex;
13446
13447 if (packet_config_support (packet) != PACKET_ENABLE)
13448 error (_("Target does not support branch tracing."));
13449
13450 #if !defined(HAVE_LIBEXPAT)
13451 error (_("Cannot process branch tracing result. XML parsing not supported."));
13452 #endif
13453
13454 switch (type)
13455 {
13456 case BTRACE_READ_ALL:
13457 annex = "all";
13458 break;
13459 case BTRACE_READ_NEW:
13460 annex = "new";
13461 break;
13462 case BTRACE_READ_DELTA:
13463 annex = "delta";
13464 break;
13465 default:
13466 internal_error (__FILE__, __LINE__,
13467 _("Bad branch tracing read type: %u."),
13468 (unsigned int) type);
13469 }
13470
13471 gdb::unique_xmalloc_ptr<char> xml
13472 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE, annex);
13473 if (xml == NULL)
13474 return BTRACE_ERR_UNKNOWN;
13475
13476 parse_xml_btrace (btrace, xml.get ());
13477
13478 return BTRACE_ERR_NONE;
13479 }
13480
13481 static const struct btrace_config *
13482 remote_btrace_conf (struct target_ops *self,
13483 const struct btrace_target_info *tinfo)
13484 {
13485 return &tinfo->conf;
13486 }
13487
13488 static int
13489 remote_augmented_libraries_svr4_read (struct target_ops *self)
13490 {
13491 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13492 == PACKET_ENABLE);
13493 }
13494
13495 /* Implementation of to_load. */
13496
13497 static void
13498 remote_load (struct target_ops *self, const char *name, int from_tty)
13499 {
13500 generic_load (name, from_tty);
13501 }
13502
13503 /* Accepts an integer PID; returns a string representing a file that
13504 can be opened on the remote side to get the symbols for the child
13505 process. Returns NULL if the operation is not supported. */
13506
13507 static char *
13508 remote_pid_to_exec_file (struct target_ops *self, int pid)
13509 {
13510 static gdb::unique_xmalloc_ptr<char> filename;
13511 struct inferior *inf;
13512 char *annex = NULL;
13513
13514 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13515 return NULL;
13516
13517 inf = find_inferior_pid (pid);
13518 if (inf == NULL)
13519 internal_error (__FILE__, __LINE__,
13520 _("not currently attached to process %d"), pid);
13521
13522 if (!inf->fake_pid_p)
13523 {
13524 const int annex_size = 9;
13525
13526 annex = (char *) alloca (annex_size);
13527 xsnprintf (annex, annex_size, "%x", pid);
13528 }
13529
13530 filename = target_read_stralloc (&current_target,
13531 TARGET_OBJECT_EXEC_FILE, annex);
13532
13533 return filename.get ();
13534 }
13535
13536 /* Implement the to_can_do_single_step target_ops method. */
13537
13538 static int
13539 remote_can_do_single_step (struct target_ops *ops)
13540 {
13541 /* We can only tell whether target supports single step or not by
13542 supported s and S vCont actions if the stub supports vContSupported
13543 feature. If the stub doesn't support vContSupported feature,
13544 we have conservatively to think target doesn't supports single
13545 step. */
13546 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13547 {
13548 struct remote_state *rs = get_remote_state ();
13549
13550 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13551 remote_vcont_probe (rs);
13552
13553 return rs->supports_vCont.s && rs->supports_vCont.S;
13554 }
13555 else
13556 return 0;
13557 }
13558
13559 /* Implementation of the to_execution_direction method for the remote
13560 target. */
13561
13562 static enum exec_direction_kind
13563 remote_execution_direction (struct target_ops *self)
13564 {
13565 struct remote_state *rs = get_remote_state ();
13566
13567 return rs->last_resume_exec_dir;
13568 }
13569
13570 /* Return pointer to the thread_info struct which corresponds to
13571 THREAD_HANDLE (having length HANDLE_LEN). */
13572
13573 static struct thread_info *
13574 remote_thread_handle_to_thread_info (struct target_ops *ops,
13575 const gdb_byte *thread_handle,
13576 int handle_len,
13577 struct inferior *inf)
13578 {
13579 struct thread_info *tp;
13580
13581 ALL_NON_EXITED_THREADS (tp)
13582 {
13583 struct private_thread_info *priv = get_private_info_thread (tp);
13584
13585 if (tp->inf == inf && priv != NULL)
13586 {
13587 if (handle_len != priv->thread_handle->size ())
13588 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13589 handle_len, priv->thread_handle->size ());
13590 if (memcmp (thread_handle, priv->thread_handle->data (),
13591 handle_len) == 0)
13592 return tp;
13593 }
13594 }
13595
13596 return NULL;
13597 }
13598
13599 static void
13600 init_remote_ops (void)
13601 {
13602 remote_ops.to_shortname = "remote";
13603 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
13604 remote_ops.to_doc =
13605 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13606 Specify the serial device it is connected to\n\
13607 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
13608 remote_ops.to_open = remote_open;
13609 remote_ops.to_close = remote_close;
13610 remote_ops.to_detach = remote_detach;
13611 remote_ops.to_disconnect = remote_disconnect;
13612 remote_ops.to_resume = remote_resume;
13613 remote_ops.to_commit_resume = remote_commit_resume;
13614 remote_ops.to_wait = remote_wait;
13615 remote_ops.to_fetch_registers = remote_fetch_registers;
13616 remote_ops.to_store_registers = remote_store_registers;
13617 remote_ops.to_prepare_to_store = remote_prepare_to_store;
13618 remote_ops.to_files_info = remote_files_info;
13619 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
13620 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
13621 remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint;
13622 remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint;
13623 remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint;
13624 remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint;
13625 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
13626 remote_ops.to_stopped_data_address = remote_stopped_data_address;
13627 remote_ops.to_watchpoint_addr_within_range =
13628 remote_watchpoint_addr_within_range;
13629 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
13630 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
13631 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
13632 remote_ops.to_region_ok_for_hw_watchpoint
13633 = remote_region_ok_for_hw_watchpoint;
13634 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
13635 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
13636 remote_ops.to_kill = remote_kill;
13637 remote_ops.to_load = remote_load;
13638 remote_ops.to_mourn_inferior = remote_mourn;
13639 remote_ops.to_pass_signals = remote_pass_signals;
13640 remote_ops.to_set_syscall_catchpoint = remote_set_syscall_catchpoint;
13641 remote_ops.to_program_signals = remote_program_signals;
13642 remote_ops.to_thread_alive = remote_thread_alive;
13643 remote_ops.to_thread_name = remote_thread_name;
13644 remote_ops.to_update_thread_list = remote_update_thread_list;
13645 remote_ops.to_pid_to_str = remote_pid_to_str;
13646 remote_ops.to_extra_thread_info = remote_threads_extra_info;
13647 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
13648 remote_ops.to_stop = remote_stop;
13649 remote_ops.to_interrupt = remote_interrupt;
13650 remote_ops.to_pass_ctrlc = remote_pass_ctrlc;
13651 remote_ops.to_xfer_partial = remote_xfer_partial;
13652 remote_ops.to_get_memory_xfer_limit = remote_get_memory_xfer_limit;
13653 remote_ops.to_rcmd = remote_rcmd;
13654 remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file;
13655 remote_ops.to_log_command = serial_log_command;
13656 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
13657 remote_ops.to_stratum = process_stratum;
13658 remote_ops.to_has_all_memory = default_child_has_all_memory;
13659 remote_ops.to_has_memory = default_child_has_memory;
13660 remote_ops.to_has_stack = default_child_has_stack;
13661 remote_ops.to_has_registers = default_child_has_registers;
13662 remote_ops.to_has_execution = default_child_has_execution;
13663 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
13664 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
13665 remote_ops.to_magic = OPS_MAGIC;
13666 remote_ops.to_memory_map = remote_memory_map;
13667 remote_ops.to_flash_erase = remote_flash_erase;
13668 remote_ops.to_flash_done = remote_flash_done;
13669 remote_ops.to_read_description = remote_read_description;
13670 remote_ops.to_search_memory = remote_search_memory;
13671 remote_ops.to_can_async_p = remote_can_async_p;
13672 remote_ops.to_is_async_p = remote_is_async_p;
13673 remote_ops.to_async = remote_async;
13674 remote_ops.to_thread_events = remote_thread_events;
13675 remote_ops.to_can_do_single_step = remote_can_do_single_step;
13676 remote_ops.to_terminal_inferior = remote_terminal_inferior;
13677 remote_ops.to_terminal_ours = remote_terminal_ours;
13678 remote_ops.to_supports_non_stop = remote_supports_non_stop;
13679 remote_ops.to_supports_multi_process = remote_supports_multi_process;
13680 remote_ops.to_supports_disable_randomization
13681 = remote_supports_disable_randomization;
13682 remote_ops.to_filesystem_is_local = remote_filesystem_is_local;
13683 remote_ops.to_fileio_open = remote_hostio_open;
13684 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
13685 remote_ops.to_fileio_pread = remote_hostio_pread;
13686 remote_ops.to_fileio_fstat = remote_hostio_fstat;
13687 remote_ops.to_fileio_close = remote_hostio_close;
13688 remote_ops.to_fileio_unlink = remote_hostio_unlink;
13689 remote_ops.to_fileio_readlink = remote_hostio_readlink;
13690 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
13691 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
13692 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
13693 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
13694 remote_ops.to_trace_init = remote_trace_init;
13695 remote_ops.to_download_tracepoint = remote_download_tracepoint;
13696 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
13697 remote_ops.to_download_trace_state_variable
13698 = remote_download_trace_state_variable;
13699 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
13700 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
13701 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
13702 remote_ops.to_trace_start = remote_trace_start;
13703 remote_ops.to_get_trace_status = remote_get_trace_status;
13704 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
13705 remote_ops.to_trace_stop = remote_trace_stop;
13706 remote_ops.to_trace_find = remote_trace_find;
13707 remote_ops.to_get_trace_state_variable_value
13708 = remote_get_trace_state_variable_value;
13709 remote_ops.to_save_trace_data = remote_save_trace_data;
13710 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
13711 remote_ops.to_upload_trace_state_variables
13712 = remote_upload_trace_state_variables;
13713 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
13714 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
13715 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
13716 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
13717 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
13718 remote_ops.to_set_trace_notes = remote_set_trace_notes;
13719 remote_ops.to_core_of_thread = remote_core_of_thread;
13720 remote_ops.to_verify_memory = remote_verify_memory;
13721 remote_ops.to_get_tib_address = remote_get_tib_address;
13722 remote_ops.to_set_permissions = remote_set_permissions;
13723 remote_ops.to_static_tracepoint_marker_at
13724 = remote_static_tracepoint_marker_at;
13725 remote_ops.to_static_tracepoint_markers_by_strid
13726 = remote_static_tracepoint_markers_by_strid;
13727 remote_ops.to_traceframe_info = remote_traceframe_info;
13728 remote_ops.to_use_agent = remote_use_agent;
13729 remote_ops.to_can_use_agent = remote_can_use_agent;
13730 remote_ops.to_supports_btrace = remote_supports_btrace;
13731 remote_ops.to_enable_btrace = remote_enable_btrace;
13732 remote_ops.to_disable_btrace = remote_disable_btrace;
13733 remote_ops.to_teardown_btrace = remote_teardown_btrace;
13734 remote_ops.to_read_btrace = remote_read_btrace;
13735 remote_ops.to_btrace_conf = remote_btrace_conf;
13736 remote_ops.to_augmented_libraries_svr4_read =
13737 remote_augmented_libraries_svr4_read;
13738 remote_ops.to_follow_fork = remote_follow_fork;
13739 remote_ops.to_follow_exec = remote_follow_exec;
13740 remote_ops.to_insert_fork_catchpoint = remote_insert_fork_catchpoint;
13741 remote_ops.to_remove_fork_catchpoint = remote_remove_fork_catchpoint;
13742 remote_ops.to_insert_vfork_catchpoint = remote_insert_vfork_catchpoint;
13743 remote_ops.to_remove_vfork_catchpoint = remote_remove_vfork_catchpoint;
13744 remote_ops.to_insert_exec_catchpoint = remote_insert_exec_catchpoint;
13745 remote_ops.to_remove_exec_catchpoint = remote_remove_exec_catchpoint;
13746 remote_ops.to_execution_direction = remote_execution_direction;
13747 remote_ops.to_thread_handle_to_thread_info =
13748 remote_thread_handle_to_thread_info;
13749 }
13750
13751 /* Set up the extended remote vector by making a copy of the standard
13752 remote vector and adding to it. */
13753
13754 static void
13755 init_extended_remote_ops (void)
13756 {
13757 extended_remote_ops = remote_ops;
13758
13759 extended_remote_ops.to_shortname = "extended-remote";
13760 extended_remote_ops.to_longname =
13761 "Extended remote serial target in gdb-specific protocol";
13762 extended_remote_ops.to_doc =
13763 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13764 Specify the serial device it is connected to (e.g. /dev/ttya).";
13765 extended_remote_ops.to_open = extended_remote_open;
13766 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
13767 extended_remote_ops.to_detach = extended_remote_detach;
13768 extended_remote_ops.to_attach = extended_remote_attach;
13769 extended_remote_ops.to_post_attach = extended_remote_post_attach;
13770 extended_remote_ops.to_supports_disable_randomization
13771 = extended_remote_supports_disable_randomization;
13772 }
13773
13774 static int
13775 remote_can_async_p (struct target_ops *ops)
13776 {
13777 struct remote_state *rs = get_remote_state ();
13778
13779 /* We don't go async if the user has explicitly prevented it with the
13780 "maint set target-async" command. */
13781 if (!target_async_permitted)
13782 return 0;
13783
13784 /* We're async whenever the serial device is. */
13785 return serial_can_async_p (rs->remote_desc);
13786 }
13787
13788 static int
13789 remote_is_async_p (struct target_ops *ops)
13790 {
13791 struct remote_state *rs = get_remote_state ();
13792
13793 if (!target_async_permitted)
13794 /* We only enable async when the user specifically asks for it. */
13795 return 0;
13796
13797 /* We're async whenever the serial device is. */
13798 return serial_is_async_p (rs->remote_desc);
13799 }
13800
13801 /* Pass the SERIAL event on and up to the client. One day this code
13802 will be able to delay notifying the client of an event until the
13803 point where an entire packet has been received. */
13804
13805 static serial_event_ftype remote_async_serial_handler;
13806
13807 static void
13808 remote_async_serial_handler (struct serial *scb, void *context)
13809 {
13810 /* Don't propogate error information up to the client. Instead let
13811 the client find out about the error by querying the target. */
13812 inferior_event_handler (INF_REG_EVENT, NULL);
13813 }
13814
13815 static void
13816 remote_async_inferior_event_handler (gdb_client_data data)
13817 {
13818 inferior_event_handler (INF_REG_EVENT, NULL);
13819 }
13820
13821 static void
13822 remote_async (struct target_ops *ops, int enable)
13823 {
13824 struct remote_state *rs = get_remote_state ();
13825
13826 if (enable)
13827 {
13828 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13829
13830 /* If there are pending events in the stop reply queue tell the
13831 event loop to process them. */
13832 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13833 mark_async_event_handler (remote_async_inferior_event_token);
13834 /* For simplicity, below we clear the pending events token
13835 without remembering whether it is marked, so here we always
13836 mark it. If there's actually no pending notification to
13837 process, this ends up being a no-op (other than a spurious
13838 event-loop wakeup). */
13839 if (target_is_non_stop_p ())
13840 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13841 }
13842 else
13843 {
13844 serial_async (rs->remote_desc, NULL, NULL);
13845 /* If the core is disabling async, it doesn't want to be
13846 disturbed with target events. Clear all async event sources
13847 too. */
13848 clear_async_event_handler (remote_async_inferior_event_token);
13849 if (target_is_non_stop_p ())
13850 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13851 }
13852 }
13853
13854 /* Implementation of the to_thread_events method. */
13855
13856 static void
13857 remote_thread_events (struct target_ops *ops, int enable)
13858 {
13859 struct remote_state *rs = get_remote_state ();
13860 size_t size = get_remote_packet_size ();
13861
13862 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13863 return;
13864
13865 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13866 putpkt (rs->buf);
13867 getpkt (&rs->buf, &rs->buf_size, 0);
13868
13869 switch (packet_ok (rs->buf,
13870 &remote_protocol_packets[PACKET_QThreadEvents]))
13871 {
13872 case PACKET_OK:
13873 if (strcmp (rs->buf, "OK") != 0)
13874 error (_("Remote refused setting thread events: %s"), rs->buf);
13875 break;
13876 case PACKET_ERROR:
13877 warning (_("Remote failure reply: %s"), rs->buf);
13878 break;
13879 case PACKET_UNKNOWN:
13880 break;
13881 }
13882 }
13883
13884 static void
13885 set_remote_cmd (const char *args, int from_tty)
13886 {
13887 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13888 }
13889
13890 static void
13891 show_remote_cmd (const char *args, int from_tty)
13892 {
13893 /* We can't just use cmd_show_list here, because we want to skip
13894 the redundant "show remote Z-packet" and the legacy aliases. */
13895 struct cmd_list_element *list = remote_show_cmdlist;
13896 struct ui_out *uiout = current_uiout;
13897
13898 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
13899 for (; list != NULL; list = list->next)
13900 if (strcmp (list->name, "Z-packet") == 0)
13901 continue;
13902 else if (list->type == not_set_cmd)
13903 /* Alias commands are exactly like the original, except they
13904 don't have the normal type. */
13905 continue;
13906 else
13907 {
13908 ui_out_emit_tuple option_emitter (uiout, "option");
13909
13910 uiout->field_string ("name", list->name);
13911 uiout->text (": ");
13912 if (list->type == show_cmd)
13913 do_show_command (NULL, from_tty, list);
13914 else
13915 cmd_func (list, NULL, from_tty);
13916 }
13917 }
13918
13919
13920 /* Function to be called whenever a new objfile (shlib) is detected. */
13921 static void
13922 remote_new_objfile (struct objfile *objfile)
13923 {
13924 struct remote_state *rs = get_remote_state ();
13925
13926 if (rs->remote_desc != 0) /* Have a remote connection. */
13927 remote_check_symbols ();
13928 }
13929
13930 /* Pull all the tracepoints defined on the target and create local
13931 data structures representing them. We don't want to create real
13932 tracepoints yet, we don't want to mess up the user's existing
13933 collection. */
13934
13935 static int
13936 remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
13937 {
13938 struct remote_state *rs = get_remote_state ();
13939 char *p;
13940
13941 /* Ask for a first packet of tracepoint definition. */
13942 putpkt ("qTfP");
13943 getpkt (&rs->buf, &rs->buf_size, 0);
13944 p = rs->buf;
13945 while (*p && *p != 'l')
13946 {
13947 parse_tracepoint_definition (p, utpp);
13948 /* Ask for another packet of tracepoint definition. */
13949 putpkt ("qTsP");
13950 getpkt (&rs->buf, &rs->buf_size, 0);
13951 p = rs->buf;
13952 }
13953 return 0;
13954 }
13955
13956 static int
13957 remote_upload_trace_state_variables (struct target_ops *self,
13958 struct uploaded_tsv **utsvp)
13959 {
13960 struct remote_state *rs = get_remote_state ();
13961 char *p;
13962
13963 /* Ask for a first packet of variable definition. */
13964 putpkt ("qTfV");
13965 getpkt (&rs->buf, &rs->buf_size, 0);
13966 p = rs->buf;
13967 while (*p && *p != 'l')
13968 {
13969 parse_tsv_definition (p, utsvp);
13970 /* Ask for another packet of variable definition. */
13971 putpkt ("qTsV");
13972 getpkt (&rs->buf, &rs->buf_size, 0);
13973 p = rs->buf;
13974 }
13975 return 0;
13976 }
13977
13978 /* The "set/show range-stepping" show hook. */
13979
13980 static void
13981 show_range_stepping (struct ui_file *file, int from_tty,
13982 struct cmd_list_element *c,
13983 const char *value)
13984 {
13985 fprintf_filtered (file,
13986 _("Debugger's willingness to use range stepping "
13987 "is %s.\n"), value);
13988 }
13989
13990 /* The "set/show range-stepping" set hook. */
13991
13992 static void
13993 set_range_stepping (const char *ignore_args, int from_tty,
13994 struct cmd_list_element *c)
13995 {
13996 struct remote_state *rs = get_remote_state ();
13997
13998 /* Whene enabling, check whether range stepping is actually
13999 supported by the target, and warn if not. */
14000 if (use_range_stepping)
14001 {
14002 if (rs->remote_desc != NULL)
14003 {
14004 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14005 remote_vcont_probe (rs);
14006
14007 if (packet_support (PACKET_vCont) == PACKET_ENABLE
14008 && rs->supports_vCont.r)
14009 return;
14010 }
14011
14012 warning (_("Range stepping is not supported by the current target"));
14013 }
14014 }
14015
14016 void
14017 _initialize_remote (void)
14018 {
14019 struct cmd_list_element *cmd;
14020 const char *cmd_name;
14021
14022 /* architecture specific data */
14023 remote_gdbarch_data_handle =
14024 gdbarch_data_register_post_init (init_remote_state);
14025 remote_g_packet_data_handle =
14026 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14027
14028 remote_pspace_data
14029 = register_program_space_data_with_cleanup (NULL,
14030 remote_pspace_data_cleanup);
14031
14032 /* Initialize the per-target state. At the moment there is only one
14033 of these, not one per target. Only one target is active at a
14034 time. */
14035 remote_state = new_remote_state ();
14036
14037 init_remote_ops ();
14038 add_target (&remote_ops);
14039
14040 init_extended_remote_ops ();
14041 add_target (&extended_remote_ops);
14042
14043 /* Hook into new objfile notification. */
14044 observer_attach_new_objfile (remote_new_objfile);
14045 /* We're no longer interested in notification events of an inferior
14046 when it exits. */
14047 observer_attach_inferior_exit (discard_pending_stop_replies);
14048
14049 #if 0
14050 init_remote_threadtests ();
14051 #endif
14052
14053 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
14054 /* set/show remote ... */
14055
14056 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14057 Remote protocol specific variables\n\
14058 Configure various remote-protocol specific variables such as\n\
14059 the packets being used"),
14060 &remote_set_cmdlist, "set remote ",
14061 0 /* allow-unknown */, &setlist);
14062 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14063 Remote protocol specific variables\n\
14064 Configure various remote-protocol specific variables such as\n\
14065 the packets being used"),
14066 &remote_show_cmdlist, "show remote ",
14067 0 /* allow-unknown */, &showlist);
14068
14069 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14070 Compare section data on target to the exec file.\n\
14071 Argument is a single section name (default: all loaded sections).\n\
14072 To compare only read-only loaded sections, specify the -r option."),
14073 &cmdlist);
14074
14075 add_cmd ("packet", class_maintenance, packet_command, _("\
14076 Send an arbitrary packet to a remote target.\n\
14077 maintenance packet TEXT\n\
14078 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14079 this command sends the string TEXT to the inferior, and displays the\n\
14080 response packet. GDB supplies the initial `$' character, and the\n\
14081 terminating `#' character and checksum."),
14082 &maintenancelist);
14083
14084 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14085 Set whether to send break if interrupted."), _("\
14086 Show whether to send break if interrupted."), _("\
14087 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14088 set_remotebreak, show_remotebreak,
14089 &setlist, &showlist);
14090 cmd_name = "remotebreak";
14091 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14092 deprecate_cmd (cmd, "set remote interrupt-sequence");
14093 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14094 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14095 deprecate_cmd (cmd, "show remote interrupt-sequence");
14096
14097 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14098 interrupt_sequence_modes, &interrupt_sequence_mode,
14099 _("\
14100 Set interrupt sequence to remote target."), _("\
14101 Show interrupt sequence to remote target."), _("\
14102 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14103 NULL, show_interrupt_sequence,
14104 &remote_set_cmdlist,
14105 &remote_show_cmdlist);
14106
14107 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14108 &interrupt_on_connect, _("\
14109 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14110 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14111 If set, interrupt sequence is sent to remote target."),
14112 NULL, NULL,
14113 &remote_set_cmdlist, &remote_show_cmdlist);
14114
14115 /* Install commands for configuring memory read/write packets. */
14116
14117 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14118 Set the maximum number of bytes per memory write packet (deprecated)."),
14119 &setlist);
14120 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14121 Show the maximum number of bytes per memory write packet (deprecated)."),
14122 &showlist);
14123 add_cmd ("memory-write-packet-size", no_class,
14124 set_memory_write_packet_size, _("\
14125 Set the maximum number of bytes per memory-write packet.\n\
14126 Specify the number of bytes in a packet or 0 (zero) for the\n\
14127 default packet size. The actual limit is further reduced\n\
14128 dependent on the target. Specify ``fixed'' to disable the\n\
14129 further restriction and ``limit'' to enable that restriction."),
14130 &remote_set_cmdlist);
14131 add_cmd ("memory-read-packet-size", no_class,
14132 set_memory_read_packet_size, _("\
14133 Set the maximum number of bytes per memory-read packet.\n\
14134 Specify the number of bytes in a packet or 0 (zero) for the\n\
14135 default packet size. The actual limit is further reduced\n\
14136 dependent on the target. Specify ``fixed'' to disable the\n\
14137 further restriction and ``limit'' to enable that restriction."),
14138 &remote_set_cmdlist);
14139 add_cmd ("memory-write-packet-size", no_class,
14140 show_memory_write_packet_size,
14141 _("Show the maximum number of bytes per memory-write packet."),
14142 &remote_show_cmdlist);
14143 add_cmd ("memory-read-packet-size", no_class,
14144 show_memory_read_packet_size,
14145 _("Show the maximum number of bytes per memory-read packet."),
14146 &remote_show_cmdlist);
14147
14148 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14149 &remote_hw_watchpoint_limit, _("\
14150 Set the maximum number of target hardware watchpoints."), _("\
14151 Show the maximum number of target hardware watchpoints."), _("\
14152 Specify a negative limit for unlimited."),
14153 NULL, NULL, /* FIXME: i18n: The maximum
14154 number of target hardware
14155 watchpoints is %s. */
14156 &remote_set_cmdlist, &remote_show_cmdlist);
14157 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14158 &remote_hw_watchpoint_length_limit, _("\
14159 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14160 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14161 Specify a negative limit for unlimited."),
14162 NULL, NULL, /* FIXME: i18n: The maximum
14163 length (in bytes) of a target
14164 hardware watchpoint is %s. */
14165 &remote_set_cmdlist, &remote_show_cmdlist);
14166 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14167 &remote_hw_breakpoint_limit, _("\
14168 Set the maximum number of target hardware breakpoints."), _("\
14169 Show the maximum number of target hardware breakpoints."), _("\
14170 Specify a negative limit for unlimited."),
14171 NULL, NULL, /* FIXME: i18n: The maximum
14172 number of target hardware
14173 breakpoints is %s. */
14174 &remote_set_cmdlist, &remote_show_cmdlist);
14175
14176 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14177 &remote_address_size, _("\
14178 Set the maximum size of the address (in bits) in a memory packet."), _("\
14179 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14180 NULL,
14181 NULL, /* FIXME: i18n: */
14182 &setlist, &showlist);
14183
14184 init_all_packet_configs ();
14185
14186 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14187 "X", "binary-download", 1);
14188
14189 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14190 "vCont", "verbose-resume", 0);
14191
14192 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14193 "QPassSignals", "pass-signals", 0);
14194
14195 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14196 "QCatchSyscalls", "catch-syscalls", 0);
14197
14198 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14199 "QProgramSignals", "program-signals", 0);
14200
14201 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14202 "QSetWorkingDir", "set-working-dir", 0);
14203
14204 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14205 "QStartupWithShell", "startup-with-shell", 0);
14206
14207 add_packet_config_cmd (&remote_protocol_packets
14208 [PACKET_QEnvironmentHexEncoded],
14209 "QEnvironmentHexEncoded", "environment-hex-encoded",
14210 0);
14211
14212 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14213 "QEnvironmentReset", "environment-reset",
14214 0);
14215
14216 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14217 "QEnvironmentUnset", "environment-unset",
14218 0);
14219
14220 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14221 "qSymbol", "symbol-lookup", 0);
14222
14223 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14224 "P", "set-register", 1);
14225
14226 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14227 "p", "fetch-register", 1);
14228
14229 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14230 "Z0", "software-breakpoint", 0);
14231
14232 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14233 "Z1", "hardware-breakpoint", 0);
14234
14235 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14236 "Z2", "write-watchpoint", 0);
14237
14238 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14239 "Z3", "read-watchpoint", 0);
14240
14241 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14242 "Z4", "access-watchpoint", 0);
14243
14244 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14245 "qXfer:auxv:read", "read-aux-vector", 0);
14246
14247 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14248 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14249
14250 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14251 "qXfer:features:read", "target-features", 0);
14252
14253 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14254 "qXfer:libraries:read", "library-info", 0);
14255
14256 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14257 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14258
14259 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14260 "qXfer:memory-map:read", "memory-map", 0);
14261
14262 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14263 "qXfer:spu:read", "read-spu-object", 0);
14264
14265 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14266 "qXfer:spu:write", "write-spu-object", 0);
14267
14268 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14269 "qXfer:osdata:read", "osdata", 0);
14270
14271 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14272 "qXfer:threads:read", "threads", 0);
14273
14274 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14275 "qXfer:siginfo:read", "read-siginfo-object", 0);
14276
14277 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14278 "qXfer:siginfo:write", "write-siginfo-object", 0);
14279
14280 add_packet_config_cmd
14281 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14282 "qXfer:traceframe-info:read", "traceframe-info", 0);
14283
14284 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14285 "qXfer:uib:read", "unwind-info-block", 0);
14286
14287 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14288 "qGetTLSAddr", "get-thread-local-storage-address",
14289 0);
14290
14291 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14292 "qGetTIBAddr", "get-thread-information-block-address",
14293 0);
14294
14295 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14296 "bc", "reverse-continue", 0);
14297
14298 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14299 "bs", "reverse-step", 0);
14300
14301 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14302 "qSupported", "supported-packets", 0);
14303
14304 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14305 "qSearch:memory", "search-memory", 0);
14306
14307 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14308 "qTStatus", "trace-status", 0);
14309
14310 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14311 "vFile:setfs", "hostio-setfs", 0);
14312
14313 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14314 "vFile:open", "hostio-open", 0);
14315
14316 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14317 "vFile:pread", "hostio-pread", 0);
14318
14319 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14320 "vFile:pwrite", "hostio-pwrite", 0);
14321
14322 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14323 "vFile:close", "hostio-close", 0);
14324
14325 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14326 "vFile:unlink", "hostio-unlink", 0);
14327
14328 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14329 "vFile:readlink", "hostio-readlink", 0);
14330
14331 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14332 "vFile:fstat", "hostio-fstat", 0);
14333
14334 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14335 "vAttach", "attach", 0);
14336
14337 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14338 "vRun", "run", 0);
14339
14340 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14341 "QStartNoAckMode", "noack", 0);
14342
14343 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14344 "vKill", "kill", 0);
14345
14346 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14347 "qAttached", "query-attached", 0);
14348
14349 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14350 "ConditionalTracepoints",
14351 "conditional-tracepoints", 0);
14352
14353 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14354 "ConditionalBreakpoints",
14355 "conditional-breakpoints", 0);
14356
14357 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14358 "BreakpointCommands",
14359 "breakpoint-commands", 0);
14360
14361 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14362 "FastTracepoints", "fast-tracepoints", 0);
14363
14364 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14365 "TracepointSource", "TracepointSource", 0);
14366
14367 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14368 "QAllow", "allow", 0);
14369
14370 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14371 "StaticTracepoints", "static-tracepoints", 0);
14372
14373 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14374 "InstallInTrace", "install-in-trace", 0);
14375
14376 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14377 "qXfer:statictrace:read", "read-sdata-object", 0);
14378
14379 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14380 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14381
14382 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14383 "QDisableRandomization", "disable-randomization", 0);
14384
14385 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14386 "QAgent", "agent", 0);
14387
14388 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14389 "QTBuffer:size", "trace-buffer-size", 0);
14390
14391 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14392 "Qbtrace:off", "disable-btrace", 0);
14393
14394 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14395 "Qbtrace:bts", "enable-btrace-bts", 0);
14396
14397 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14398 "Qbtrace:pt", "enable-btrace-pt", 0);
14399
14400 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14401 "qXfer:btrace", "read-btrace", 0);
14402
14403 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14404 "qXfer:btrace-conf", "read-btrace-conf", 0);
14405
14406 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14407 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14408
14409 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14410 "multiprocess-feature", "multiprocess-feature", 0);
14411
14412 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14413 "swbreak-feature", "swbreak-feature", 0);
14414
14415 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14416 "hwbreak-feature", "hwbreak-feature", 0);
14417
14418 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14419 "fork-event-feature", "fork-event-feature", 0);
14420
14421 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14422 "vfork-event-feature", "vfork-event-feature", 0);
14423
14424 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14425 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14426
14427 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14428 "vContSupported", "verbose-resume-supported", 0);
14429
14430 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14431 "exec-event-feature", "exec-event-feature", 0);
14432
14433 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14434 "vCtrlC", "ctrl-c", 0);
14435
14436 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14437 "QThreadEvents", "thread-events", 0);
14438
14439 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14440 "N stop reply", "no-resumed-stop-reply", 0);
14441
14442 /* Assert that we've registered "set remote foo-packet" commands
14443 for all packet configs. */
14444 {
14445 int i;
14446
14447 for (i = 0; i < PACKET_MAX; i++)
14448 {
14449 /* Ideally all configs would have a command associated. Some
14450 still don't though. */
14451 int excepted;
14452
14453 switch (i)
14454 {
14455 case PACKET_QNonStop:
14456 case PACKET_EnableDisableTracepoints_feature:
14457 case PACKET_tracenz_feature:
14458 case PACKET_DisconnectedTracing_feature:
14459 case PACKET_augmented_libraries_svr4_read_feature:
14460 case PACKET_qCRC:
14461 /* Additions to this list need to be well justified:
14462 pre-existing packets are OK; new packets are not. */
14463 excepted = 1;
14464 break;
14465 default:
14466 excepted = 0;
14467 break;
14468 }
14469
14470 /* This catches both forgetting to add a config command, and
14471 forgetting to remove a packet from the exception list. */
14472 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14473 }
14474 }
14475
14476 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14477 Z sub-packet has its own set and show commands, but users may
14478 have sets to this variable in their .gdbinit files (or in their
14479 documentation). */
14480 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14481 &remote_Z_packet_detect, _("\
14482 Set use of remote protocol `Z' packets"), _("\
14483 Show use of remote protocol `Z' packets "), _("\
14484 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14485 packets."),
14486 set_remote_protocol_Z_packet_cmd,
14487 show_remote_protocol_Z_packet_cmd,
14488 /* FIXME: i18n: Use of remote protocol
14489 `Z' packets is %s. */
14490 &remote_set_cmdlist, &remote_show_cmdlist);
14491
14492 add_prefix_cmd ("remote", class_files, remote_command, _("\
14493 Manipulate files on the remote system\n\
14494 Transfer files to and from the remote target system."),
14495 &remote_cmdlist, "remote ",
14496 0 /* allow-unknown */, &cmdlist);
14497
14498 add_cmd ("put", class_files, remote_put_command,
14499 _("Copy a local file to the remote system."),
14500 &remote_cmdlist);
14501
14502 add_cmd ("get", class_files, remote_get_command,
14503 _("Copy a remote file to the local system."),
14504 &remote_cmdlist);
14505
14506 add_cmd ("delete", class_files, remote_delete_command,
14507 _("Delete a remote file."),
14508 &remote_cmdlist);
14509
14510 add_setshow_string_noescape_cmd ("exec-file", class_files,
14511 &remote_exec_file_var, _("\
14512 Set the remote pathname for \"run\""), _("\
14513 Show the remote pathname for \"run\""), NULL,
14514 set_remote_exec_file,
14515 show_remote_exec_file,
14516 &remote_set_cmdlist,
14517 &remote_show_cmdlist);
14518
14519 add_setshow_boolean_cmd ("range-stepping", class_run,
14520 &use_range_stepping, _("\
14521 Enable or disable range stepping."), _("\
14522 Show whether target-assisted range stepping is enabled."), _("\
14523 If on, and the target supports it, when stepping a source line, GDB\n\
14524 tells the target to step the corresponding range of addresses itself instead\n\
14525 of issuing multiple single-steps. This speeds up source level\n\
14526 stepping. If off, GDB always issues single-steps, even if range\n\
14527 stepping is supported by the target. The default is on."),
14528 set_range_stepping,
14529 show_range_stepping,
14530 &setlist,
14531 &showlist);
14532
14533 /* Eventually initialize fileio. See fileio.c */
14534 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14535
14536 /* Take advantage of the fact that the TID field is not used, to tag
14537 special ptids with it set to != 0. */
14538 magic_null_ptid = ptid_build (42000, -1, 1);
14539 not_sent_ptid = ptid_build (42000, -2, 1);
14540 any_thread_ptid = ptid_build (42000, 0, 1);
14541 }
This page took 0.34761 seconds and 5 git commands to generate.