Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / rs6000-aix-tdep.c
1 /* Native support code for PPC AIX, for GDB the GNU debugger.
2
3 Copyright (C) 2006-2021 Free Software Foundation, Inc.
4
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "osabi.h"
24 #include "regcache.h"
25 #include "regset.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "value.h"
30 #include "infcall.h"
31 #include "objfiles.h"
32 #include "breakpoint.h"
33 #include "rs6000-tdep.h"
34 #include "ppc-tdep.h"
35 #include "rs6000-aix-tdep.h"
36 #include "xcoffread.h"
37 #include "solib.h"
38 #include "solib-aix.h"
39 #include "target-float.h"
40 #include "gdbsupport/xml-utils.h"
41 #include "trad-frame.h"
42 #include "frame-unwind.h"
43
44 /* If the kernel has to deliver a signal, it pushes a sigcontext
45 structure on the stack and then calls the signal handler, passing
46 the address of the sigcontext in an argument register. Usually
47 the signal handler doesn't save this register, so we have to
48 access the sigcontext structure via an offset from the signal handler
49 frame.
50 The following constants were determined by experimentation on AIX 3.2.
51
52 sigcontext structure have the mstsave saved under the
53 sc_jmpbuf.jmp_context. STKMIN(minimum stack size) is 56 for 32-bit
54 processes, and iar offset under sc_jmpbuf.jmp_context is 40.
55 ie offsetof(struct sigcontext, sc_jmpbuf.jmp_context.iar).
56 so PC offset in this case is STKMIN+iar offset, which is 96. */
57
58 #define SIG_FRAME_PC_OFFSET 96
59 #define SIG_FRAME_LR_OFFSET 108
60 /* STKMIN+grp1 offset, which is 56+228=284 */
61 #define SIG_FRAME_FP_OFFSET 284
62
63 /* 64 bit process.
64 STKMIN64 is 112 and iar offset is 312. So 112+312=424 */
65 #define SIG_FRAME_LR_OFFSET64 424
66 /* STKMIN64+grp1 offset. 112+56=168 */
67 #define SIG_FRAME_FP_OFFSET64 168
68
69 static struct trad_frame_cache *
70 aix_sighandle_frame_cache (struct frame_info *this_frame,
71 void **this_cache)
72 {
73 LONGEST backchain;
74 CORE_ADDR base, base_orig, func;
75 struct gdbarch *gdbarch = get_frame_arch (this_frame);
76 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
77 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
78 struct trad_frame_cache *this_trad_cache;
79
80 if ((*this_cache) != NULL)
81 return (struct trad_frame_cache *) (*this_cache);
82
83 this_trad_cache = trad_frame_cache_zalloc (this_frame);
84 (*this_cache) = this_trad_cache;
85
86 base = get_frame_register_unsigned (this_frame,
87 gdbarch_sp_regnum (gdbarch));
88 base_orig = base;
89
90 if (tdep->wordsize == 4)
91 {
92 func = read_memory_unsigned_integer (base_orig +
93 SIG_FRAME_PC_OFFSET + 8,
94 tdep->wordsize, byte_order);
95 safe_read_memory_integer (base_orig + SIG_FRAME_FP_OFFSET + 8,
96 tdep->wordsize, byte_order, &backchain);
97 base = (CORE_ADDR)backchain;
98 }
99 else
100 {
101 func = read_memory_unsigned_integer (base_orig +
102 SIG_FRAME_LR_OFFSET64,
103 tdep->wordsize, byte_order);
104 safe_read_memory_integer (base_orig + SIG_FRAME_FP_OFFSET64,
105 tdep->wordsize, byte_order, &backchain);
106 base = (CORE_ADDR)backchain;
107 }
108
109 trad_frame_set_reg_value (this_trad_cache, gdbarch_pc_regnum (gdbarch), func);
110 trad_frame_set_reg_value (this_trad_cache, gdbarch_sp_regnum (gdbarch), base);
111
112 if (tdep->wordsize == 4)
113 trad_frame_set_reg_addr (this_trad_cache, tdep->ppc_lr_regnum,
114 base_orig + 0x38 + 52 + 8);
115 else
116 trad_frame_set_reg_addr (this_trad_cache, tdep->ppc_lr_regnum,
117 base_orig + 0x70 + 320);
118
119 trad_frame_set_id (this_trad_cache, frame_id_build (base, func));
120 trad_frame_set_this_base (this_trad_cache, base);
121
122 return this_trad_cache;
123 }
124
125 static void
126 aix_sighandle_frame_this_id (struct frame_info *this_frame,
127 void **this_prologue_cache,
128 struct frame_id *this_id)
129 {
130 struct trad_frame_cache *this_trad_cache
131 = aix_sighandle_frame_cache (this_frame, this_prologue_cache);
132 trad_frame_get_id (this_trad_cache, this_id);
133 }
134
135 static struct value *
136 aix_sighandle_frame_prev_register (struct frame_info *this_frame,
137 void **this_prologue_cache, int regnum)
138 {
139 struct trad_frame_cache *this_trad_cache
140 = aix_sighandle_frame_cache (this_frame, this_prologue_cache);
141 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
142 }
143
144 static int
145 aix_sighandle_frame_sniffer (const struct frame_unwind *self,
146 struct frame_info *this_frame,
147 void **this_prologue_cache)
148 {
149 CORE_ADDR pc = get_frame_pc (this_frame);
150 if (pc && pc < AIX_TEXT_SEGMENT_BASE)
151 return 1;
152
153 return 0;
154 }
155
156 /* AIX signal handler frame unwinder */
157
158 static const struct frame_unwind aix_sighandle_frame_unwind = {
159 "rs6000 aix sighandle",
160 SIGTRAMP_FRAME,
161 default_frame_unwind_stop_reason,
162 aix_sighandle_frame_this_id,
163 aix_sighandle_frame_prev_register,
164 NULL,
165 aix_sighandle_frame_sniffer
166 };
167
168 /* Core file support. */
169
170 static struct ppc_reg_offsets rs6000_aix32_reg_offsets =
171 {
172 /* General-purpose registers. */
173 208, /* r0_offset */
174 4, /* gpr_size */
175 4, /* xr_size */
176 24, /* pc_offset */
177 28, /* ps_offset */
178 32, /* cr_offset */
179 36, /* lr_offset */
180 40, /* ctr_offset */
181 44, /* xer_offset */
182 48, /* mq_offset */
183
184 /* Floating-point registers. */
185 336, /* f0_offset */
186 56, /* fpscr_offset */
187 4 /* fpscr_size */
188 };
189
190 static struct ppc_reg_offsets rs6000_aix64_reg_offsets =
191 {
192 /* General-purpose registers. */
193 0, /* r0_offset */
194 8, /* gpr_size */
195 4, /* xr_size */
196 264, /* pc_offset */
197 256, /* ps_offset */
198 288, /* cr_offset */
199 272, /* lr_offset */
200 280, /* ctr_offset */
201 292, /* xer_offset */
202 -1, /* mq_offset */
203
204 /* Floating-point registers. */
205 312, /* f0_offset */
206 296, /* fpscr_offset */
207 4 /* fpscr_size */
208 };
209
210
211 /* Supply register REGNUM in the general-purpose register set REGSET
212 from the buffer specified by GREGS and LEN to register cache
213 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
214
215 static void
216 rs6000_aix_supply_regset (const struct regset *regset,
217 struct regcache *regcache, int regnum,
218 const void *gregs, size_t len)
219 {
220 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
221 ppc_supply_fpregset (regset, regcache, regnum, gregs, len);
222 }
223
224 /* Collect register REGNUM in the general-purpose register set
225 REGSET, from register cache REGCACHE into the buffer specified by
226 GREGS and LEN. If REGNUM is -1, do this for all registers in
227 REGSET. */
228
229 static void
230 rs6000_aix_collect_regset (const struct regset *regset,
231 const struct regcache *regcache, int regnum,
232 void *gregs, size_t len)
233 {
234 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
235 ppc_collect_fpregset (regset, regcache, regnum, gregs, len);
236 }
237
238 /* AIX register set. */
239
240 static const struct regset rs6000_aix32_regset =
241 {
242 &rs6000_aix32_reg_offsets,
243 rs6000_aix_supply_regset,
244 rs6000_aix_collect_regset,
245 };
246
247 static const struct regset rs6000_aix64_regset =
248 {
249 &rs6000_aix64_reg_offsets,
250 rs6000_aix_supply_regset,
251 rs6000_aix_collect_regset,
252 };
253
254 /* Iterate over core file register note sections. */
255
256 static void
257 rs6000_aix_iterate_over_regset_sections (struct gdbarch *gdbarch,
258 iterate_over_regset_sections_cb *cb,
259 void *cb_data,
260 const struct regcache *regcache)
261 {
262 if (gdbarch_tdep (gdbarch)->wordsize == 4)
263 cb (".reg", 592, 592, &rs6000_aix32_regset, NULL, cb_data);
264 else
265 cb (".reg", 576, 576, &rs6000_aix64_regset, NULL, cb_data);
266 }
267
268
269 /* Pass the arguments in either registers, or in the stack. In RS/6000,
270 the first eight words of the argument list (that might be less than
271 eight parameters if some parameters occupy more than one word) are
272 passed in r3..r10 registers. Float and double parameters are
273 passed in fpr's, in addition to that. Rest of the parameters if any
274 are passed in user stack. There might be cases in which half of the
275 parameter is copied into registers, the other half is pushed into
276 stack.
277
278 Stack must be aligned on 64-bit boundaries when synthesizing
279 function calls.
280
281 If the function is returning a structure, then the return address is passed
282 in r3, then the first 7 words of the parameters can be passed in registers,
283 starting from r4. */
284
285 static CORE_ADDR
286 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
287 struct regcache *regcache, CORE_ADDR bp_addr,
288 int nargs, struct value **args, CORE_ADDR sp,
289 function_call_return_method return_method,
290 CORE_ADDR struct_addr)
291 {
292 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
293 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
294 int ii;
295 int len = 0;
296 int argno; /* current argument number */
297 int argbytes; /* current argument byte */
298 gdb_byte tmp_buffer[50];
299 int f_argno = 0; /* current floating point argno */
300 int wordsize = gdbarch_tdep (gdbarch)->wordsize;
301 CORE_ADDR func_addr = find_function_addr (function, NULL);
302
303 struct value *arg = 0;
304 struct type *type;
305
306 ULONGEST saved_sp;
307
308 /* The calling convention this function implements assumes the
309 processor has floating-point registers. We shouldn't be using it
310 on PPC variants that lack them. */
311 gdb_assert (ppc_floating_point_unit_p (gdbarch));
312
313 /* The first eight words of ther arguments are passed in registers.
314 Copy them appropriately. */
315 ii = 0;
316
317 /* If the function is returning a `struct', then the first word
318 (which will be passed in r3) is used for struct return address.
319 In that case we should advance one word and start from r4
320 register to copy parameters. */
321 if (return_method == return_method_struct)
322 {
323 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
324 struct_addr);
325 ii++;
326 }
327
328 /* effectively indirect call... gcc does...
329
330 return_val example( float, int);
331
332 eabi:
333 float in fp0, int in r3
334 offset of stack on overflow 8/16
335 for varargs, must go by type.
336 power open:
337 float in r3&r4, int in r5
338 offset of stack on overflow different
339 both:
340 return in r3 or f0. If no float, must study how gcc emulates floats;
341 pay attention to arg promotion.
342 User may have to cast\args to handle promotion correctly
343 since gdb won't know if prototype supplied or not. */
344
345 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
346 {
347 int reg_size = register_size (gdbarch, ii + 3);
348
349 arg = args[argno];
350 type = check_typedef (value_type (arg));
351 len = TYPE_LENGTH (type);
352
353 if (type->code () == TYPE_CODE_FLT)
354 {
355 /* Floating point arguments are passed in fpr's, as well as gpr's.
356 There are 13 fpr's reserved for passing parameters. At this point
357 there is no way we would run out of them.
358
359 Always store the floating point value using the register's
360 floating-point format. */
361 const int fp_regnum = tdep->ppc_fp0_regnum + 1 + f_argno;
362 gdb_byte reg_val[PPC_MAX_REGISTER_SIZE];
363 struct type *reg_type = register_type (gdbarch, fp_regnum);
364
365 gdb_assert (len <= 8);
366
367 target_float_convert (value_contents (arg), type, reg_val, reg_type);
368 regcache->cooked_write (fp_regnum, reg_val);
369 ++f_argno;
370 }
371
372 if (len > reg_size)
373 {
374
375 /* Argument takes more than one register. */
376 while (argbytes < len)
377 {
378 gdb_byte word[PPC_MAX_REGISTER_SIZE];
379 memset (word, 0, reg_size);
380 memcpy (word,
381 ((char *) value_contents (arg)) + argbytes,
382 (len - argbytes) > reg_size
383 ? reg_size : len - argbytes);
384 regcache->cooked_write (tdep->ppc_gp0_regnum + 3 + ii, word);
385 ++ii, argbytes += reg_size;
386
387 if (ii >= 8)
388 goto ran_out_of_registers_for_arguments;
389 }
390 argbytes = 0;
391 --ii;
392 }
393 else
394 {
395 /* Argument can fit in one register. No problem. */
396 gdb_byte word[PPC_MAX_REGISTER_SIZE];
397
398 memset (word, 0, reg_size);
399 memcpy (word, value_contents (arg), len);
400 regcache->cooked_write (tdep->ppc_gp0_regnum + 3 +ii, word);
401 }
402 ++argno;
403 }
404
405 ran_out_of_registers_for_arguments:
406
407 regcache_cooked_read_unsigned (regcache,
408 gdbarch_sp_regnum (gdbarch),
409 &saved_sp);
410
411 /* Location for 8 parameters are always reserved. */
412 sp -= wordsize * 8;
413
414 /* Another six words for back chain, TOC register, link register, etc. */
415 sp -= wordsize * 6;
416
417 /* Stack pointer must be quadword aligned. */
418 sp &= -16;
419
420 /* If there are more arguments, allocate space for them in
421 the stack, then push them starting from the ninth one. */
422
423 if ((argno < nargs) || argbytes)
424 {
425 int space = 0, jj;
426
427 if (argbytes)
428 {
429 space += ((len - argbytes + 3) & -4);
430 jj = argno + 1;
431 }
432 else
433 jj = argno;
434
435 for (; jj < nargs; ++jj)
436 {
437 struct value *val = args[jj];
438 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
439 }
440
441 /* Add location required for the rest of the parameters. */
442 space = (space + 15) & -16;
443 sp -= space;
444
445 /* This is another instance we need to be concerned about
446 securing our stack space. If we write anything underneath %sp
447 (r1), we might conflict with the kernel who thinks he is free
448 to use this area. So, update %sp first before doing anything
449 else. */
450
451 regcache_raw_write_signed (regcache,
452 gdbarch_sp_regnum (gdbarch), sp);
453
454 /* If the last argument copied into the registers didn't fit there
455 completely, push the rest of it into stack. */
456
457 if (argbytes)
458 {
459 write_memory (sp + 24 + (ii * 4),
460 value_contents (arg) + argbytes,
461 len - argbytes);
462 ++argno;
463 ii += ((len - argbytes + 3) & -4) / 4;
464 }
465
466 /* Push the rest of the arguments into stack. */
467 for (; argno < nargs; ++argno)
468 {
469
470 arg = args[argno];
471 type = check_typedef (value_type (arg));
472 len = TYPE_LENGTH (type);
473
474
475 /* Float types should be passed in fpr's, as well as in the
476 stack. */
477 if (type->code () == TYPE_CODE_FLT && f_argno < 13)
478 {
479
480 gdb_assert (len <= 8);
481
482 regcache->cooked_write (tdep->ppc_fp0_regnum + 1 + f_argno,
483 value_contents (arg));
484 ++f_argno;
485 }
486
487 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
488 ii += ((len + 3) & -4) / 4;
489 }
490 }
491
492 /* Set the stack pointer. According to the ABI, the SP is meant to
493 be set _before_ the corresponding stack space is used. On AIX,
494 this even applies when the target has been completely stopped!
495 Not doing this can lead to conflicts with the kernel which thinks
496 that it still has control over this not-yet-allocated stack
497 region. */
498 regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
499
500 /* Set back chain properly. */
501 store_unsigned_integer (tmp_buffer, wordsize, byte_order, saved_sp);
502 write_memory (sp, tmp_buffer, wordsize);
503
504 /* Point the inferior function call's return address at the dummy's
505 breakpoint. */
506 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
507
508 /* Set the TOC register value. */
509 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum,
510 solib_aix_get_toc_value (func_addr));
511
512 target_store_registers (regcache, -1);
513 return sp;
514 }
515
516 static enum return_value_convention
517 rs6000_return_value (struct gdbarch *gdbarch, struct value *function,
518 struct type *valtype, struct regcache *regcache,
519 gdb_byte *readbuf, const gdb_byte *writebuf)
520 {
521 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
522 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
523
524 /* The calling convention this function implements assumes the
525 processor has floating-point registers. We shouldn't be using it
526 on PowerPC variants that lack them. */
527 gdb_assert (ppc_floating_point_unit_p (gdbarch));
528
529 /* AltiVec extension: Functions that declare a vector data type as a
530 return value place that return value in VR2. */
531 if (valtype->code () == TYPE_CODE_ARRAY && valtype->is_vector ()
532 && TYPE_LENGTH (valtype) == 16)
533 {
534 if (readbuf)
535 regcache->cooked_read (tdep->ppc_vr0_regnum + 2, readbuf);
536 if (writebuf)
537 regcache->cooked_write (tdep->ppc_vr0_regnum + 2, writebuf);
538
539 return RETURN_VALUE_REGISTER_CONVENTION;
540 }
541
542 /* If the called subprogram returns an aggregate, there exists an
543 implicit first argument, whose value is the address of a caller-
544 allocated buffer into which the callee is assumed to store its
545 return value. All explicit parameters are appropriately
546 relabeled. */
547 if (valtype->code () == TYPE_CODE_STRUCT
548 || valtype->code () == TYPE_CODE_UNION
549 || valtype->code () == TYPE_CODE_ARRAY)
550 return RETURN_VALUE_STRUCT_CONVENTION;
551
552 /* Scalar floating-point values are returned in FPR1 for float or
553 double, and in FPR1:FPR2 for quadword precision. Fortran
554 complex*8 and complex*16 are returned in FPR1:FPR2, and
555 complex*32 is returned in FPR1:FPR4. */
556 if (valtype->code () == TYPE_CODE_FLT
557 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
558 {
559 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
560 gdb_byte regval[8];
561
562 /* FIXME: kettenis/2007-01-01: Add support for quadword
563 precision and complex. */
564
565 if (readbuf)
566 {
567 regcache->cooked_read (tdep->ppc_fp0_regnum + 1, regval);
568 target_float_convert (regval, regtype, readbuf, valtype);
569 }
570 if (writebuf)
571 {
572 target_float_convert (writebuf, valtype, regval, regtype);
573 regcache->cooked_write (tdep->ppc_fp0_regnum + 1, regval);
574 }
575
576 return RETURN_VALUE_REGISTER_CONVENTION;
577 }
578
579 /* Values of the types int, long, short, pointer, and char (length
580 is less than or equal to four bytes), as well as bit values of
581 lengths less than or equal to 32 bits, must be returned right
582 justified in GPR3 with signed values sign extended and unsigned
583 values zero extended, as necessary. */
584 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
585 {
586 if (readbuf)
587 {
588 ULONGEST regval;
589
590 /* For reading we don't have to worry about sign extension. */
591 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
592 &regval);
593 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order,
594 regval);
595 }
596 if (writebuf)
597 {
598 /* For writing, use unpack_long since that should handle any
599 required sign extension. */
600 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
601 unpack_long (valtype, writebuf));
602 }
603
604 return RETURN_VALUE_REGISTER_CONVENTION;
605 }
606
607 /* Eight-byte non-floating-point scalar values must be returned in
608 GPR3:GPR4. */
609
610 if (TYPE_LENGTH (valtype) == 8)
611 {
612 gdb_assert (valtype->code () != TYPE_CODE_FLT);
613 gdb_assert (tdep->wordsize == 4);
614
615 if (readbuf)
616 {
617 gdb_byte regval[8];
618
619 regcache->cooked_read (tdep->ppc_gp0_regnum + 3, regval);
620 regcache->cooked_read (tdep->ppc_gp0_regnum + 4, regval + 4);
621 memcpy (readbuf, regval, 8);
622 }
623 if (writebuf)
624 {
625 regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf);
626 regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4);
627 }
628
629 return RETURN_VALUE_REGISTER_CONVENTION;
630 }
631
632 return RETURN_VALUE_STRUCT_CONVENTION;
633 }
634
635 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
636
637 Usually a function pointer's representation is simply the address
638 of the function. On the RS/6000 however, a function pointer is
639 represented by a pointer to an OPD entry. This OPD entry contains
640 three words, the first word is the address of the function, the
641 second word is the TOC pointer (r2), and the third word is the
642 static chain value. Throughout GDB it is currently assumed that a
643 function pointer contains the address of the function, which is not
644 easy to fix. In addition, the conversion of a function address to
645 a function pointer would require allocation of an OPD entry in the
646 inferior's memory space, with all its drawbacks. To be able to
647 call C++ virtual methods in the inferior (which are called via
648 function pointers), find_function_addr uses this function to get the
649 function address from a function pointer. */
650
651 /* Return real function address if ADDR (a function pointer) is in the data
652 space and is therefore a special function pointer. */
653
654 static CORE_ADDR
655 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
656 CORE_ADDR addr,
657 struct target_ops *targ)
658 {
659 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
660 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
661 struct obj_section *s;
662
663 s = find_pc_section (addr);
664
665 /* Normally, functions live inside a section that is executable.
666 So, if ADDR points to a non-executable section, then treat it
667 as a function descriptor and return the target address iff
668 the target address itself points to a section that is executable. */
669 if (s && (s->the_bfd_section->flags & SEC_CODE) == 0)
670 {
671 CORE_ADDR pc = 0;
672 struct obj_section *pc_section;
673
674 try
675 {
676 pc = read_memory_unsigned_integer (addr, tdep->wordsize, byte_order);
677 }
678 catch (const gdb_exception_error &e)
679 {
680 /* An error occured during reading. Probably a memory error
681 due to the section not being loaded yet. This address
682 cannot be a function descriptor. */
683 return addr;
684 }
685
686 pc_section = find_pc_section (pc);
687
688 if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE))
689 return pc;
690 }
691
692 return addr;
693 }
694
695
696 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
697
698 static CORE_ADDR
699 branch_dest (struct regcache *regcache, int opcode, int instr,
700 CORE_ADDR pc, CORE_ADDR safety)
701 {
702 struct gdbarch *gdbarch = regcache->arch ();
703 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
704 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
705 CORE_ADDR dest;
706 int immediate;
707 int absolute;
708 int ext_op;
709
710 absolute = (int) ((instr >> 1) & 1);
711
712 switch (opcode)
713 {
714 case 18:
715 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
716 if (absolute)
717 dest = immediate;
718 else
719 dest = pc + immediate;
720 break;
721
722 case 16:
723 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
724 if (absolute)
725 dest = immediate;
726 else
727 dest = pc + immediate;
728 break;
729
730 case 19:
731 ext_op = (instr >> 1) & 0x3ff;
732
733 if (ext_op == 16) /* br conditional register */
734 {
735 dest = regcache_raw_get_unsigned (regcache, tdep->ppc_lr_regnum) & ~3;
736
737 /* If we are about to return from a signal handler, dest is
738 something like 0x3c90. The current frame is a signal handler
739 caller frame, upon completion of the sigreturn system call
740 execution will return to the saved PC in the frame. */
741 if (dest < AIX_TEXT_SEGMENT_BASE)
742 {
743 struct frame_info *frame = get_current_frame ();
744
745 dest = read_memory_unsigned_integer
746 (get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
747 tdep->wordsize, byte_order);
748 }
749 }
750
751 else if (ext_op == 528) /* br cond to count reg */
752 {
753 dest = regcache_raw_get_unsigned (regcache,
754 tdep->ppc_ctr_regnum) & ~3;
755
756 /* If we are about to execute a system call, dest is something
757 like 0x22fc or 0x3b00. Upon completion the system call
758 will return to the address in the link register. */
759 if (dest < AIX_TEXT_SEGMENT_BASE)
760 dest = regcache_raw_get_unsigned (regcache,
761 tdep->ppc_lr_regnum) & ~3;
762 }
763 else
764 return -1;
765 break;
766
767 default:
768 return -1;
769 }
770 return (dest < AIX_TEXT_SEGMENT_BASE) ? safety : dest;
771 }
772
773 /* AIX does not support PT_STEP. Simulate it. */
774
775 static std::vector<CORE_ADDR>
776 rs6000_software_single_step (struct regcache *regcache)
777 {
778 struct gdbarch *gdbarch = regcache->arch ();
779 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
780 int ii, insn;
781 CORE_ADDR loc;
782 CORE_ADDR breaks[2];
783 int opcode;
784
785 loc = regcache_read_pc (regcache);
786
787 insn = read_memory_integer (loc, 4, byte_order);
788
789 std::vector<CORE_ADDR> next_pcs = ppc_deal_with_atomic_sequence (regcache);
790 if (!next_pcs.empty ())
791 return next_pcs;
792
793 breaks[0] = loc + PPC_INSN_SIZE;
794 opcode = insn >> 26;
795 breaks[1] = branch_dest (regcache, opcode, insn, loc, breaks[0]);
796
797 /* Don't put two breakpoints on the same address. */
798 if (breaks[1] == breaks[0])
799 breaks[1] = -1;
800
801 for (ii = 0; ii < 2; ++ii)
802 {
803 /* ignore invalid breakpoint. */
804 if (breaks[ii] == -1)
805 continue;
806
807 next_pcs.push_back (breaks[ii]);
808 }
809
810 errno = 0; /* FIXME, don't ignore errors! */
811 /* What errors? {read,write}_memory call error(). */
812 return next_pcs;
813 }
814
815 /* Implement the "auto_wide_charset" gdbarch method for this platform. */
816
817 static const char *
818 rs6000_aix_auto_wide_charset (void)
819 {
820 return "UTF-16";
821 }
822
823 /* Implement an osabi sniffer for RS6000/AIX.
824
825 This function assumes that ABFD's flavour is XCOFF. In other words,
826 it should be registered as a sniffer for bfd_target_xcoff_flavour
827 objfiles only. A failed assertion will be raised if this condition
828 is not met. */
829
830 static enum gdb_osabi
831 rs6000_aix_osabi_sniffer (bfd *abfd)
832 {
833 gdb_assert (bfd_get_flavour (abfd) == bfd_target_xcoff_flavour);
834
835 /* The only noticeable difference between Lynx178 XCOFF files and
836 AIX XCOFF files comes from the fact that there are no shared
837 libraries on Lynx178. On AIX, we are betting that an executable
838 linked with no shared library will never exist. */
839 if (xcoff_get_n_import_files (abfd) <= 0)
840 return GDB_OSABI_UNKNOWN;
841
842 return GDB_OSABI_AIX;
843 }
844
845 /* A structure encoding the offset and size of a field within
846 a struct. */
847
848 struct field_info
849 {
850 int offset;
851 int size;
852 };
853
854 /* A structure describing the layout of all the fields of interest
855 in AIX's struct ld_info. Each field in this struct corresponds
856 to the field of the same name in struct ld_info. */
857
858 struct ld_info_desc
859 {
860 struct field_info ldinfo_next;
861 struct field_info ldinfo_fd;
862 struct field_info ldinfo_textorg;
863 struct field_info ldinfo_textsize;
864 struct field_info ldinfo_dataorg;
865 struct field_info ldinfo_datasize;
866 struct field_info ldinfo_filename;
867 };
868
869 /* The following data has been generated by compiling and running
870 the following program on AIX 5.3. */
871
872 #if 0
873 #include <stddef.h>
874 #include <stdio.h>
875 #define __LDINFO_PTRACE32__
876 #define __LDINFO_PTRACE64__
877 #include <sys/ldr.h>
878
879 #define pinfo(type,member) \
880 { \
881 struct type ldi = {0}; \
882 \
883 printf (" {%d, %d},\t/* %s */\n", \
884 offsetof (struct type, member), \
885 sizeof (ldi.member), \
886 #member); \
887 } \
888 while (0)
889
890 int
891 main (void)
892 {
893 printf ("static const struct ld_info_desc ld_info32_desc =\n{\n");
894 pinfo (__ld_info32, ldinfo_next);
895 pinfo (__ld_info32, ldinfo_fd);
896 pinfo (__ld_info32, ldinfo_textorg);
897 pinfo (__ld_info32, ldinfo_textsize);
898 pinfo (__ld_info32, ldinfo_dataorg);
899 pinfo (__ld_info32, ldinfo_datasize);
900 pinfo (__ld_info32, ldinfo_filename);
901 printf ("};\n");
902
903 printf ("\n");
904
905 printf ("static const struct ld_info_desc ld_info64_desc =\n{\n");
906 pinfo (__ld_info64, ldinfo_next);
907 pinfo (__ld_info64, ldinfo_fd);
908 pinfo (__ld_info64, ldinfo_textorg);
909 pinfo (__ld_info64, ldinfo_textsize);
910 pinfo (__ld_info64, ldinfo_dataorg);
911 pinfo (__ld_info64, ldinfo_datasize);
912 pinfo (__ld_info64, ldinfo_filename);
913 printf ("};\n");
914
915 return 0;
916 }
917 #endif /* 0 */
918
919 /* Layout of the 32bit version of struct ld_info. */
920
921 static const struct ld_info_desc ld_info32_desc =
922 {
923 {0, 4}, /* ldinfo_next */
924 {4, 4}, /* ldinfo_fd */
925 {8, 4}, /* ldinfo_textorg */
926 {12, 4}, /* ldinfo_textsize */
927 {16, 4}, /* ldinfo_dataorg */
928 {20, 4}, /* ldinfo_datasize */
929 {24, 2}, /* ldinfo_filename */
930 };
931
932 /* Layout of the 64bit version of struct ld_info. */
933
934 static const struct ld_info_desc ld_info64_desc =
935 {
936 {0, 4}, /* ldinfo_next */
937 {8, 4}, /* ldinfo_fd */
938 {16, 8}, /* ldinfo_textorg */
939 {24, 8}, /* ldinfo_textsize */
940 {32, 8}, /* ldinfo_dataorg */
941 {40, 8}, /* ldinfo_datasize */
942 {48, 2}, /* ldinfo_filename */
943 };
944
945 /* A structured representation of one entry read from the ld_info
946 binary data provided by the AIX loader. */
947
948 struct ld_info
949 {
950 ULONGEST next;
951 int fd;
952 CORE_ADDR textorg;
953 ULONGEST textsize;
954 CORE_ADDR dataorg;
955 ULONGEST datasize;
956 char *filename;
957 char *member_name;
958 };
959
960 /* Return a struct ld_info object corresponding to the entry at
961 LDI_BUF.
962
963 Note that the filename and member_name strings still point
964 to the data in LDI_BUF. So LDI_BUF must not be deallocated
965 while the struct ld_info object returned is in use. */
966
967 static struct ld_info
968 rs6000_aix_extract_ld_info (struct gdbarch *gdbarch,
969 const gdb_byte *ldi_buf)
970 {
971 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
972 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
973 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
974 const struct ld_info_desc desc
975 = tdep->wordsize == 8 ? ld_info64_desc : ld_info32_desc;
976 struct ld_info info;
977
978 info.next = extract_unsigned_integer (ldi_buf + desc.ldinfo_next.offset,
979 desc.ldinfo_next.size,
980 byte_order);
981 info.fd = extract_signed_integer (ldi_buf + desc.ldinfo_fd.offset,
982 desc.ldinfo_fd.size,
983 byte_order);
984 info.textorg = extract_typed_address (ldi_buf + desc.ldinfo_textorg.offset,
985 ptr_type);
986 info.textsize
987 = extract_unsigned_integer (ldi_buf + desc.ldinfo_textsize.offset,
988 desc.ldinfo_textsize.size,
989 byte_order);
990 info.dataorg = extract_typed_address (ldi_buf + desc.ldinfo_dataorg.offset,
991 ptr_type);
992 info.datasize
993 = extract_unsigned_integer (ldi_buf + desc.ldinfo_datasize.offset,
994 desc.ldinfo_datasize.size,
995 byte_order);
996 info.filename = (char *) ldi_buf + desc.ldinfo_filename.offset;
997 info.member_name = info.filename + strlen (info.filename) + 1;
998
999 return info;
1000 }
1001
1002 /* Append to OBJSTACK an XML string description of the shared library
1003 corresponding to LDI, following the TARGET_OBJECT_LIBRARIES_AIX
1004 format. */
1005
1006 static void
1007 rs6000_aix_shared_library_to_xml (struct ld_info *ldi,
1008 struct obstack *obstack)
1009 {
1010 obstack_grow_str (obstack, "<library name=\"");
1011 std::string p = xml_escape_text (ldi->filename);
1012 obstack_grow_str (obstack, p.c_str ());
1013 obstack_grow_str (obstack, "\"");
1014
1015 if (ldi->member_name[0] != '\0')
1016 {
1017 obstack_grow_str (obstack, " member=\"");
1018 p = xml_escape_text (ldi->member_name);
1019 obstack_grow_str (obstack, p.c_str ());
1020 obstack_grow_str (obstack, "\"");
1021 }
1022
1023 obstack_grow_str (obstack, " text_addr=\"");
1024 obstack_grow_str (obstack, core_addr_to_string (ldi->textorg));
1025 obstack_grow_str (obstack, "\"");
1026
1027 obstack_grow_str (obstack, " text_size=\"");
1028 obstack_grow_str (obstack, pulongest (ldi->textsize));
1029 obstack_grow_str (obstack, "\"");
1030
1031 obstack_grow_str (obstack, " data_addr=\"");
1032 obstack_grow_str (obstack, core_addr_to_string (ldi->dataorg));
1033 obstack_grow_str (obstack, "\"");
1034
1035 obstack_grow_str (obstack, " data_size=\"");
1036 obstack_grow_str (obstack, pulongest (ldi->datasize));
1037 obstack_grow_str (obstack, "\"");
1038
1039 obstack_grow_str (obstack, "></library>");
1040 }
1041
1042 /* Convert the ld_info binary data provided by the AIX loader into
1043 an XML representation following the TARGET_OBJECT_LIBRARIES_AIX
1044 format.
1045
1046 LDI_BUF is a buffer containing the ld_info data.
1047 READBUF, OFFSET and LEN follow the same semantics as target_ops'
1048 to_xfer_partial target_ops method.
1049
1050 If CLOSE_LDINFO_FD is nonzero, then this routine also closes
1051 the ldinfo_fd file descriptor. This is useful when the ldinfo
1052 data is obtained via ptrace, as ptrace opens a file descriptor
1053 for each and every entry; but we cannot use this descriptor
1054 as the consumer of the XML library list might live in a different
1055 process. */
1056
1057 ULONGEST
1058 rs6000_aix_ld_info_to_xml (struct gdbarch *gdbarch, const gdb_byte *ldi_buf,
1059 gdb_byte *readbuf, ULONGEST offset, ULONGEST len,
1060 int close_ldinfo_fd)
1061 {
1062 struct obstack obstack;
1063 const char *buf;
1064 ULONGEST len_avail;
1065
1066 obstack_init (&obstack);
1067 obstack_grow_str (&obstack, "<library-list-aix version=\"1.0\">\n");
1068
1069 while (1)
1070 {
1071 struct ld_info ldi = rs6000_aix_extract_ld_info (gdbarch, ldi_buf);
1072
1073 rs6000_aix_shared_library_to_xml (&ldi, &obstack);
1074 if (close_ldinfo_fd)
1075 close (ldi.fd);
1076
1077 if (!ldi.next)
1078 break;
1079 ldi_buf = ldi_buf + ldi.next;
1080 }
1081
1082 obstack_grow_str0 (&obstack, "</library-list-aix>\n");
1083
1084 buf = (const char *) obstack_finish (&obstack);
1085 len_avail = strlen (buf);
1086 if (offset >= len_avail)
1087 len= 0;
1088 else
1089 {
1090 if (len > len_avail - offset)
1091 len = len_avail - offset;
1092 memcpy (readbuf, buf + offset, len);
1093 }
1094
1095 obstack_free (&obstack, NULL);
1096 return len;
1097 }
1098
1099 /* Implement the core_xfer_shared_libraries_aix gdbarch method. */
1100
1101 static ULONGEST
1102 rs6000_aix_core_xfer_shared_libraries_aix (struct gdbarch *gdbarch,
1103 gdb_byte *readbuf,
1104 ULONGEST offset,
1105 ULONGEST len)
1106 {
1107 struct bfd_section *ldinfo_sec;
1108 int ldinfo_size;
1109
1110 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1111 if (ldinfo_sec == NULL)
1112 error (_("cannot find .ldinfo section from core file: %s"),
1113 bfd_errmsg (bfd_get_error ()));
1114 ldinfo_size = bfd_section_size (ldinfo_sec);
1115
1116 gdb::byte_vector ldinfo_buf (ldinfo_size);
1117
1118 if (! bfd_get_section_contents (core_bfd, ldinfo_sec,
1119 ldinfo_buf.data (), 0, ldinfo_size))
1120 error (_("unable to read .ldinfo section from core file: %s"),
1121 bfd_errmsg (bfd_get_error ()));
1122
1123 return rs6000_aix_ld_info_to_xml (gdbarch, ldinfo_buf.data (), readbuf,
1124 offset, len, 0);
1125 }
1126
1127 static void
1128 rs6000_aix_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch)
1129 {
1130 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1131
1132 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
1133 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
1134
1135 /* Displaced stepping is currently not supported in combination with
1136 software single-stepping. These override the values set by
1137 rs6000_gdbarch_init. */
1138 set_gdbarch_displaced_step_copy_insn (gdbarch, NULL);
1139 set_gdbarch_displaced_step_fixup (gdbarch, NULL);
1140 set_gdbarch_displaced_step_prepare (gdbarch, NULL);
1141 set_gdbarch_displaced_step_finish (gdbarch, NULL);
1142
1143 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
1144 set_gdbarch_return_value (gdbarch, rs6000_return_value);
1145 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1146
1147 /* Handle RS/6000 function pointers (which are really function
1148 descriptors). */
1149 set_gdbarch_convert_from_func_ptr_addr
1150 (gdbarch, rs6000_convert_from_func_ptr_addr);
1151
1152 /* Core file support. */
1153 set_gdbarch_iterate_over_regset_sections
1154 (gdbarch, rs6000_aix_iterate_over_regset_sections);
1155 set_gdbarch_core_xfer_shared_libraries_aix
1156 (gdbarch, rs6000_aix_core_xfer_shared_libraries_aix);
1157
1158 if (tdep->wordsize == 8)
1159 tdep->lr_frame_offset = 16;
1160 else
1161 tdep->lr_frame_offset = 8;
1162
1163 if (tdep->wordsize == 4)
1164 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
1165 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
1166 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
1167 224. */
1168 set_gdbarch_frame_red_zone_size (gdbarch, 224);
1169 else
1170 set_gdbarch_frame_red_zone_size (gdbarch, 0);
1171
1172 if (tdep->wordsize == 8)
1173 set_gdbarch_wchar_bit (gdbarch, 32);
1174 else
1175 set_gdbarch_wchar_bit (gdbarch, 16);
1176 set_gdbarch_wchar_signed (gdbarch, 0);
1177 set_gdbarch_auto_wide_charset (gdbarch, rs6000_aix_auto_wide_charset);
1178
1179 set_solib_ops (gdbarch, &solib_aix_so_ops);
1180 frame_unwind_append_unwinder (gdbarch, &aix_sighandle_frame_unwind);
1181 }
1182
1183 void _initialize_rs6000_aix_tdep ();
1184 void
1185 _initialize_rs6000_aix_tdep ()
1186 {
1187 gdbarch_register_osabi_sniffer (bfd_arch_rs6000,
1188 bfd_target_xcoff_flavour,
1189 rs6000_aix_osabi_sniffer);
1190 gdbarch_register_osabi_sniffer (bfd_arch_powerpc,
1191 bfd_target_xcoff_flavour,
1192 rs6000_aix_osabi_sniffer);
1193
1194 gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_AIX,
1195 rs6000_aix_init_osabi);
1196 gdbarch_register_osabi (bfd_arch_powerpc, 0, GDB_OSABI_AIX,
1197 rs6000_aix_init_osabi);
1198 }
1199
This page took 0.053755 seconds and 4 git commands to generate.