PPC: Migrate from 'regset_from_core_section' to 'iterate_over_regset_sections'
[deliverable/binutils-gdb.git] / gdb / rs6000-aix-tdep.c
1 /* Native support code for PPC AIX, for GDB the GNU debugger.
2
3 Copyright (C) 2006-2014 Free Software Foundation, Inc.
4
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "osabi.h"
24 #include "regcache.h"
25 #include "regset.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "value.h"
30 #include "infcall.h"
31 #include "objfiles.h"
32 #include "breakpoint.h"
33 #include "rs6000-tdep.h"
34 #include "ppc-tdep.h"
35 #include "rs6000-aix-tdep.h"
36 #include "exceptions.h"
37 #include "xcoffread.h"
38 #include "solib.h"
39 #include "solib-aix.h"
40 #include "xml-utils.h"
41
42 /* If the kernel has to deliver a signal, it pushes a sigcontext
43 structure on the stack and then calls the signal handler, passing
44 the address of the sigcontext in an argument register. Usually
45 the signal handler doesn't save this register, so we have to
46 access the sigcontext structure via an offset from the signal handler
47 frame.
48 The following constants were determined by experimentation on AIX 3.2. */
49 #define SIG_FRAME_PC_OFFSET 96
50 #define SIG_FRAME_LR_OFFSET 108
51 #define SIG_FRAME_FP_OFFSET 284
52
53
54 /* Core file support. */
55
56 static struct ppc_reg_offsets rs6000_aix32_reg_offsets =
57 {
58 /* General-purpose registers. */
59 208, /* r0_offset */
60 4, /* gpr_size */
61 4, /* xr_size */
62 24, /* pc_offset */
63 28, /* ps_offset */
64 32, /* cr_offset */
65 36, /* lr_offset */
66 40, /* ctr_offset */
67 44, /* xer_offset */
68 48, /* mq_offset */
69
70 /* Floating-point registers. */
71 336, /* f0_offset */
72 56, /* fpscr_offset */
73 4, /* fpscr_size */
74
75 /* AltiVec registers. */
76 -1, /* vr0_offset */
77 -1, /* vscr_offset */
78 -1 /* vrsave_offset */
79 };
80
81 static struct ppc_reg_offsets rs6000_aix64_reg_offsets =
82 {
83 /* General-purpose registers. */
84 0, /* r0_offset */
85 8, /* gpr_size */
86 4, /* xr_size */
87 264, /* pc_offset */
88 256, /* ps_offset */
89 288, /* cr_offset */
90 272, /* lr_offset */
91 280, /* ctr_offset */
92 292, /* xer_offset */
93 -1, /* mq_offset */
94
95 /* Floating-point registers. */
96 312, /* f0_offset */
97 296, /* fpscr_offset */
98 4, /* fpscr_size */
99
100 /* AltiVec registers. */
101 -1, /* vr0_offset */
102 -1, /* vscr_offset */
103 -1 /* vrsave_offset */
104 };
105
106
107 /* Supply register REGNUM in the general-purpose register set REGSET
108 from the buffer specified by GREGS and LEN to register cache
109 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
110
111 static void
112 rs6000_aix_supply_regset (const struct regset *regset,
113 struct regcache *regcache, int regnum,
114 const void *gregs, size_t len)
115 {
116 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
117 ppc_supply_fpregset (regset, regcache, regnum, gregs, len);
118 }
119
120 /* Collect register REGNUM in the general-purpose register set
121 REGSET, from register cache REGCACHE into the buffer specified by
122 GREGS and LEN. If REGNUM is -1, do this for all registers in
123 REGSET. */
124
125 static void
126 rs6000_aix_collect_regset (const struct regset *regset,
127 const struct regcache *regcache, int regnum,
128 void *gregs, size_t len)
129 {
130 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
131 ppc_collect_fpregset (regset, regcache, regnum, gregs, len);
132 }
133
134 /* AIX register set. */
135
136 static const struct regset rs6000_aix32_regset =
137 {
138 &rs6000_aix32_reg_offsets,
139 rs6000_aix_supply_regset,
140 rs6000_aix_collect_regset,
141 };
142
143 static const struct regset rs6000_aix64_regset =
144 {
145 &rs6000_aix64_reg_offsets,
146 rs6000_aix_supply_regset,
147 rs6000_aix_collect_regset,
148 };
149
150 /* Iterate over core file register note sections. */
151
152 static void
153 rs6000_aix_iterate_over_regset_sections (struct gdbarch *gdbarch,
154 iterate_over_regset_sections_cb *cb,
155 void *cb_data,
156 const struct regcache *regcache)
157 {
158 if (gdbarch_tdep (gdbarch)->wordsize == 4)
159 cb (".reg", 592, &rs6000_aix32_regset, NULL, cb_data);
160 else
161 cb (".reg", 576, &rs6000_aix64_regset, NULL, cb_data);
162 }
163
164
165 /* Pass the arguments in either registers, or in the stack. In RS/6000,
166 the first eight words of the argument list (that might be less than
167 eight parameters if some parameters occupy more than one word) are
168 passed in r3..r10 registers. Float and double parameters are
169 passed in fpr's, in addition to that. Rest of the parameters if any
170 are passed in user stack. There might be cases in which half of the
171 parameter is copied into registers, the other half is pushed into
172 stack.
173
174 Stack must be aligned on 64-bit boundaries when synthesizing
175 function calls.
176
177 If the function is returning a structure, then the return address is passed
178 in r3, then the first 7 words of the parameters can be passed in registers,
179 starting from r4. */
180
181 static CORE_ADDR
182 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
183 struct regcache *regcache, CORE_ADDR bp_addr,
184 int nargs, struct value **args, CORE_ADDR sp,
185 int struct_return, CORE_ADDR struct_addr)
186 {
187 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
188 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
189 int ii;
190 int len = 0;
191 int argno; /* current argument number */
192 int argbytes; /* current argument byte */
193 gdb_byte tmp_buffer[50];
194 int f_argno = 0; /* current floating point argno */
195 int wordsize = gdbarch_tdep (gdbarch)->wordsize;
196 CORE_ADDR func_addr = find_function_addr (function, NULL);
197
198 struct value *arg = 0;
199 struct type *type;
200
201 ULONGEST saved_sp;
202
203 /* The calling convention this function implements assumes the
204 processor has floating-point registers. We shouldn't be using it
205 on PPC variants that lack them. */
206 gdb_assert (ppc_floating_point_unit_p (gdbarch));
207
208 /* The first eight words of ther arguments are passed in registers.
209 Copy them appropriately. */
210 ii = 0;
211
212 /* If the function is returning a `struct', then the first word
213 (which will be passed in r3) is used for struct return address.
214 In that case we should advance one word and start from r4
215 register to copy parameters. */
216 if (struct_return)
217 {
218 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
219 struct_addr);
220 ii++;
221 }
222
223 /* effectively indirect call... gcc does...
224
225 return_val example( float, int);
226
227 eabi:
228 float in fp0, int in r3
229 offset of stack on overflow 8/16
230 for varargs, must go by type.
231 power open:
232 float in r3&r4, int in r5
233 offset of stack on overflow different
234 both:
235 return in r3 or f0. If no float, must study how gcc emulates floats;
236 pay attention to arg promotion.
237 User may have to cast\args to handle promotion correctly
238 since gdb won't know if prototype supplied or not. */
239
240 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
241 {
242 int reg_size = register_size (gdbarch, ii + 3);
243
244 arg = args[argno];
245 type = check_typedef (value_type (arg));
246 len = TYPE_LENGTH (type);
247
248 if (TYPE_CODE (type) == TYPE_CODE_FLT)
249 {
250 /* Floating point arguments are passed in fpr's, as well as gpr's.
251 There are 13 fpr's reserved for passing parameters. At this point
252 there is no way we would run out of them.
253
254 Always store the floating point value using the register's
255 floating-point format. */
256 const int fp_regnum = tdep->ppc_fp0_regnum + 1 + f_argno;
257 gdb_byte reg_val[MAX_REGISTER_SIZE];
258 struct type *reg_type = register_type (gdbarch, fp_regnum);
259
260 gdb_assert (len <= 8);
261
262 convert_typed_floating (value_contents (arg), type,
263 reg_val, reg_type);
264 regcache_cooked_write (regcache, fp_regnum, reg_val);
265 ++f_argno;
266 }
267
268 if (len > reg_size)
269 {
270
271 /* Argument takes more than one register. */
272 while (argbytes < len)
273 {
274 gdb_byte word[MAX_REGISTER_SIZE];
275 memset (word, 0, reg_size);
276 memcpy (word,
277 ((char *) value_contents (arg)) + argbytes,
278 (len - argbytes) > reg_size
279 ? reg_size : len - argbytes);
280 regcache_cooked_write (regcache,
281 tdep->ppc_gp0_regnum + 3 + ii,
282 word);
283 ++ii, argbytes += reg_size;
284
285 if (ii >= 8)
286 goto ran_out_of_registers_for_arguments;
287 }
288 argbytes = 0;
289 --ii;
290 }
291 else
292 {
293 /* Argument can fit in one register. No problem. */
294 int adj = gdbarch_byte_order (gdbarch)
295 == BFD_ENDIAN_BIG ? reg_size - len : 0;
296 gdb_byte word[MAX_REGISTER_SIZE];
297
298 memset (word, 0, reg_size);
299 memcpy (word, value_contents (arg), len);
300 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
301 }
302 ++argno;
303 }
304
305 ran_out_of_registers_for_arguments:
306
307 regcache_cooked_read_unsigned (regcache,
308 gdbarch_sp_regnum (gdbarch),
309 &saved_sp);
310
311 /* Location for 8 parameters are always reserved. */
312 sp -= wordsize * 8;
313
314 /* Another six words for back chain, TOC register, link register, etc. */
315 sp -= wordsize * 6;
316
317 /* Stack pointer must be quadword aligned. */
318 sp &= -16;
319
320 /* If there are more arguments, allocate space for them in
321 the stack, then push them starting from the ninth one. */
322
323 if ((argno < nargs) || argbytes)
324 {
325 int space = 0, jj;
326
327 if (argbytes)
328 {
329 space += ((len - argbytes + 3) & -4);
330 jj = argno + 1;
331 }
332 else
333 jj = argno;
334
335 for (; jj < nargs; ++jj)
336 {
337 struct value *val = args[jj];
338 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
339 }
340
341 /* Add location required for the rest of the parameters. */
342 space = (space + 15) & -16;
343 sp -= space;
344
345 /* This is another instance we need to be concerned about
346 securing our stack space. If we write anything underneath %sp
347 (r1), we might conflict with the kernel who thinks he is free
348 to use this area. So, update %sp first before doing anything
349 else. */
350
351 regcache_raw_write_signed (regcache,
352 gdbarch_sp_regnum (gdbarch), sp);
353
354 /* If the last argument copied into the registers didn't fit there
355 completely, push the rest of it into stack. */
356
357 if (argbytes)
358 {
359 write_memory (sp + 24 + (ii * 4),
360 value_contents (arg) + argbytes,
361 len - argbytes);
362 ++argno;
363 ii += ((len - argbytes + 3) & -4) / 4;
364 }
365
366 /* Push the rest of the arguments into stack. */
367 for (; argno < nargs; ++argno)
368 {
369
370 arg = args[argno];
371 type = check_typedef (value_type (arg));
372 len = TYPE_LENGTH (type);
373
374
375 /* Float types should be passed in fpr's, as well as in the
376 stack. */
377 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
378 {
379
380 gdb_assert (len <= 8);
381
382 regcache_cooked_write (regcache,
383 tdep->ppc_fp0_regnum + 1 + f_argno,
384 value_contents (arg));
385 ++f_argno;
386 }
387
388 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
389 ii += ((len + 3) & -4) / 4;
390 }
391 }
392
393 /* Set the stack pointer. According to the ABI, the SP is meant to
394 be set _before_ the corresponding stack space is used. On AIX,
395 this even applies when the target has been completely stopped!
396 Not doing this can lead to conflicts with the kernel which thinks
397 that it still has control over this not-yet-allocated stack
398 region. */
399 regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
400
401 /* Set back chain properly. */
402 store_unsigned_integer (tmp_buffer, wordsize, byte_order, saved_sp);
403 write_memory (sp, tmp_buffer, wordsize);
404
405 /* Point the inferior function call's return address at the dummy's
406 breakpoint. */
407 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
408
409 /* Set the TOC register value. */
410 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum,
411 solib_aix_get_toc_value (func_addr));
412
413 target_store_registers (regcache, -1);
414 return sp;
415 }
416
417 static enum return_value_convention
418 rs6000_return_value (struct gdbarch *gdbarch, struct value *function,
419 struct type *valtype, struct regcache *regcache,
420 gdb_byte *readbuf, const gdb_byte *writebuf)
421 {
422 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
423 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
424
425 /* The calling convention this function implements assumes the
426 processor has floating-point registers. We shouldn't be using it
427 on PowerPC variants that lack them. */
428 gdb_assert (ppc_floating_point_unit_p (gdbarch));
429
430 /* AltiVec extension: Functions that declare a vector data type as a
431 return value place that return value in VR2. */
432 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
433 && TYPE_LENGTH (valtype) == 16)
434 {
435 if (readbuf)
436 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
437 if (writebuf)
438 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
439
440 return RETURN_VALUE_REGISTER_CONVENTION;
441 }
442
443 /* If the called subprogram returns an aggregate, there exists an
444 implicit first argument, whose value is the address of a caller-
445 allocated buffer into which the callee is assumed to store its
446 return value. All explicit parameters are appropriately
447 relabeled. */
448 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
449 || TYPE_CODE (valtype) == TYPE_CODE_UNION
450 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
451 return RETURN_VALUE_STRUCT_CONVENTION;
452
453 /* Scalar floating-point values are returned in FPR1 for float or
454 double, and in FPR1:FPR2 for quadword precision. Fortran
455 complex*8 and complex*16 are returned in FPR1:FPR2, and
456 complex*32 is returned in FPR1:FPR4. */
457 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
458 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
459 {
460 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
461 gdb_byte regval[8];
462
463 /* FIXME: kettenis/2007-01-01: Add support for quadword
464 precision and complex. */
465
466 if (readbuf)
467 {
468 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
469 convert_typed_floating (regval, regtype, readbuf, valtype);
470 }
471 if (writebuf)
472 {
473 convert_typed_floating (writebuf, valtype, regval, regtype);
474 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
475 }
476
477 return RETURN_VALUE_REGISTER_CONVENTION;
478 }
479
480 /* Values of the types int, long, short, pointer, and char (length
481 is less than or equal to four bytes), as well as bit values of
482 lengths less than or equal to 32 bits, must be returned right
483 justified in GPR3 with signed values sign extended and unsigned
484 values zero extended, as necessary. */
485 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
486 {
487 if (readbuf)
488 {
489 ULONGEST regval;
490
491 /* For reading we don't have to worry about sign extension. */
492 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
493 &regval);
494 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order,
495 regval);
496 }
497 if (writebuf)
498 {
499 /* For writing, use unpack_long since that should handle any
500 required sign extension. */
501 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
502 unpack_long (valtype, writebuf));
503 }
504
505 return RETURN_VALUE_REGISTER_CONVENTION;
506 }
507
508 /* Eight-byte non-floating-point scalar values must be returned in
509 GPR3:GPR4. */
510
511 if (TYPE_LENGTH (valtype) == 8)
512 {
513 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
514 gdb_assert (tdep->wordsize == 4);
515
516 if (readbuf)
517 {
518 gdb_byte regval[8];
519
520 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
521 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
522 regval + 4);
523 memcpy (readbuf, regval, 8);
524 }
525 if (writebuf)
526 {
527 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
528 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
529 writebuf + 4);
530 }
531
532 return RETURN_VALUE_REGISTER_CONVENTION;
533 }
534
535 return RETURN_VALUE_STRUCT_CONVENTION;
536 }
537
538 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
539
540 Usually a function pointer's representation is simply the address
541 of the function. On the RS/6000 however, a function pointer is
542 represented by a pointer to an OPD entry. This OPD entry contains
543 three words, the first word is the address of the function, the
544 second word is the TOC pointer (r2), and the third word is the
545 static chain value. Throughout GDB it is currently assumed that a
546 function pointer contains the address of the function, which is not
547 easy to fix. In addition, the conversion of a function address to
548 a function pointer would require allocation of an OPD entry in the
549 inferior's memory space, with all its drawbacks. To be able to
550 call C++ virtual methods in the inferior (which are called via
551 function pointers), find_function_addr uses this function to get the
552 function address from a function pointer. */
553
554 /* Return real function address if ADDR (a function pointer) is in the data
555 space and is therefore a special function pointer. */
556
557 static CORE_ADDR
558 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
559 CORE_ADDR addr,
560 struct target_ops *targ)
561 {
562 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
563 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
564 struct obj_section *s;
565
566 s = find_pc_section (addr);
567
568 /* Normally, functions live inside a section that is executable.
569 So, if ADDR points to a non-executable section, then treat it
570 as a function descriptor and return the target address iff
571 the target address itself points to a section that is executable. */
572 if (s && (s->the_bfd_section->flags & SEC_CODE) == 0)
573 {
574 CORE_ADDR pc = 0;
575 struct obj_section *pc_section;
576 volatile struct gdb_exception e;
577
578 TRY_CATCH (e, RETURN_MASK_ERROR)
579 {
580 pc = read_memory_unsigned_integer (addr, tdep->wordsize, byte_order);
581 }
582 if (e.reason < 0)
583 {
584 /* An error occured during reading. Probably a memory error
585 due to the section not being loaded yet. This address
586 cannot be a function descriptor. */
587 return addr;
588 }
589 pc_section = find_pc_section (pc);
590
591 if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE))
592 return pc;
593 }
594
595 return addr;
596 }
597
598
599 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
600
601 static CORE_ADDR
602 branch_dest (struct frame_info *frame, int opcode, int instr,
603 CORE_ADDR pc, CORE_ADDR safety)
604 {
605 struct gdbarch *gdbarch = get_frame_arch (frame);
606 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
607 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
608 CORE_ADDR dest;
609 int immediate;
610 int absolute;
611 int ext_op;
612
613 absolute = (int) ((instr >> 1) & 1);
614
615 switch (opcode)
616 {
617 case 18:
618 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
619 if (absolute)
620 dest = immediate;
621 else
622 dest = pc + immediate;
623 break;
624
625 case 16:
626 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
627 if (absolute)
628 dest = immediate;
629 else
630 dest = pc + immediate;
631 break;
632
633 case 19:
634 ext_op = (instr >> 1) & 0x3ff;
635
636 if (ext_op == 16) /* br conditional register */
637 {
638 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
639
640 /* If we are about to return from a signal handler, dest is
641 something like 0x3c90. The current frame is a signal handler
642 caller frame, upon completion of the sigreturn system call
643 execution will return to the saved PC in the frame. */
644 if (dest < AIX_TEXT_SEGMENT_BASE)
645 dest = read_memory_unsigned_integer
646 (get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
647 tdep->wordsize, byte_order);
648 }
649
650 else if (ext_op == 528) /* br cond to count reg */
651 {
652 dest = get_frame_register_unsigned (frame,
653 tdep->ppc_ctr_regnum) & ~3;
654
655 /* If we are about to execute a system call, dest is something
656 like 0x22fc or 0x3b00. Upon completion the system call
657 will return to the address in the link register. */
658 if (dest < AIX_TEXT_SEGMENT_BASE)
659 dest = get_frame_register_unsigned (frame,
660 tdep->ppc_lr_regnum) & ~3;
661 }
662 else
663 return -1;
664 break;
665
666 default:
667 return -1;
668 }
669 return (dest < AIX_TEXT_SEGMENT_BASE) ? safety : dest;
670 }
671
672 /* AIX does not support PT_STEP. Simulate it. */
673
674 static int
675 rs6000_software_single_step (struct frame_info *frame)
676 {
677 struct gdbarch *gdbarch = get_frame_arch (frame);
678 struct address_space *aspace = get_frame_address_space (frame);
679 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
680 int ii, insn;
681 CORE_ADDR loc;
682 CORE_ADDR breaks[2];
683 int opcode;
684
685 loc = get_frame_pc (frame);
686
687 insn = read_memory_integer (loc, 4, byte_order);
688
689 if (ppc_deal_with_atomic_sequence (frame))
690 return 1;
691
692 breaks[0] = loc + PPC_INSN_SIZE;
693 opcode = insn >> 26;
694 breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]);
695
696 /* Don't put two breakpoints on the same address. */
697 if (breaks[1] == breaks[0])
698 breaks[1] = -1;
699
700 for (ii = 0; ii < 2; ++ii)
701 {
702 /* ignore invalid breakpoint. */
703 if (breaks[ii] == -1)
704 continue;
705 insert_single_step_breakpoint (gdbarch, aspace, breaks[ii]);
706 }
707
708 errno = 0; /* FIXME, don't ignore errors! */
709 /* What errors? {read,write}_memory call error(). */
710 return 1;
711 }
712
713 /* Implement the "auto_wide_charset" gdbarch method for this platform. */
714
715 static const char *
716 rs6000_aix_auto_wide_charset (void)
717 {
718 return "UTF-16";
719 }
720
721 /* Implement an osabi sniffer for RS6000/AIX.
722
723 This function assumes that ABFD's flavour is XCOFF. In other words,
724 it should be registered as a sniffer for bfd_target_xcoff_flavour
725 objfiles only. A failed assertion will be raised if this condition
726 is not met. */
727
728 static enum gdb_osabi
729 rs6000_aix_osabi_sniffer (bfd *abfd)
730 {
731 gdb_assert (bfd_get_flavour (abfd) == bfd_target_xcoff_flavour);
732
733 /* The only noticeable difference between Lynx178 XCOFF files and
734 AIX XCOFF files comes from the fact that there are no shared
735 libraries on Lynx178. On AIX, we are betting that an executable
736 linked with no shared library will never exist. */
737 if (xcoff_get_n_import_files (abfd) <= 0)
738 return GDB_OSABI_UNKNOWN;
739
740 return GDB_OSABI_AIX;
741 }
742
743 /* A structure encoding the offset and size of a field within
744 a struct. */
745
746 struct field_info
747 {
748 int offset;
749 int size;
750 };
751
752 /* A structure describing the layout of all the fields of interest
753 in AIX's struct ld_info. Each field in this struct corresponds
754 to the field of the same name in struct ld_info. */
755
756 struct ld_info_desc
757 {
758 struct field_info ldinfo_next;
759 struct field_info ldinfo_fd;
760 struct field_info ldinfo_textorg;
761 struct field_info ldinfo_textsize;
762 struct field_info ldinfo_dataorg;
763 struct field_info ldinfo_datasize;
764 struct field_info ldinfo_filename;
765 };
766
767 /* The following data has been generated by compiling and running
768 the following program on AIX 5.3. */
769
770 #if 0
771 #include <stddef.h>
772 #include <stdio.h>
773 #define __LDINFO_PTRACE32__
774 #define __LDINFO_PTRACE64__
775 #include <sys/ldr.h>
776
777 #define pinfo(type,member) \
778 { \
779 struct type ldi = {0}; \
780 \
781 printf (" {%d, %d},\t/* %s */\n", \
782 offsetof (struct type, member), \
783 sizeof (ldi.member), \
784 #member); \
785 } \
786 while (0)
787
788 int
789 main (void)
790 {
791 printf ("static const struct ld_info_desc ld_info32_desc =\n{\n");
792 pinfo (__ld_info32, ldinfo_next);
793 pinfo (__ld_info32, ldinfo_fd);
794 pinfo (__ld_info32, ldinfo_textorg);
795 pinfo (__ld_info32, ldinfo_textsize);
796 pinfo (__ld_info32, ldinfo_dataorg);
797 pinfo (__ld_info32, ldinfo_datasize);
798 pinfo (__ld_info32, ldinfo_filename);
799 printf ("};\n");
800
801 printf ("\n");
802
803 printf ("static const struct ld_info_desc ld_info64_desc =\n{\n");
804 pinfo (__ld_info64, ldinfo_next);
805 pinfo (__ld_info64, ldinfo_fd);
806 pinfo (__ld_info64, ldinfo_textorg);
807 pinfo (__ld_info64, ldinfo_textsize);
808 pinfo (__ld_info64, ldinfo_dataorg);
809 pinfo (__ld_info64, ldinfo_datasize);
810 pinfo (__ld_info64, ldinfo_filename);
811 printf ("};\n");
812
813 return 0;
814 }
815 #endif /* 0 */
816
817 /* Layout of the 32bit version of struct ld_info. */
818
819 static const struct ld_info_desc ld_info32_desc =
820 {
821 {0, 4}, /* ldinfo_next */
822 {4, 4}, /* ldinfo_fd */
823 {8, 4}, /* ldinfo_textorg */
824 {12, 4}, /* ldinfo_textsize */
825 {16, 4}, /* ldinfo_dataorg */
826 {20, 4}, /* ldinfo_datasize */
827 {24, 2}, /* ldinfo_filename */
828 };
829
830 /* Layout of the 64bit version of struct ld_info. */
831
832 static const struct ld_info_desc ld_info64_desc =
833 {
834 {0, 4}, /* ldinfo_next */
835 {8, 4}, /* ldinfo_fd */
836 {16, 8}, /* ldinfo_textorg */
837 {24, 8}, /* ldinfo_textsize */
838 {32, 8}, /* ldinfo_dataorg */
839 {40, 8}, /* ldinfo_datasize */
840 {48, 2}, /* ldinfo_filename */
841 };
842
843 /* A structured representation of one entry read from the ld_info
844 binary data provided by the AIX loader. */
845
846 struct ld_info
847 {
848 ULONGEST next;
849 int fd;
850 CORE_ADDR textorg;
851 ULONGEST textsize;
852 CORE_ADDR dataorg;
853 ULONGEST datasize;
854 char *filename;
855 char *member_name;
856 };
857
858 /* Return a struct ld_info object corresponding to the entry at
859 LDI_BUF.
860
861 Note that the filename and member_name strings still point
862 to the data in LDI_BUF. So LDI_BUF must not be deallocated
863 while the struct ld_info object returned is in use. */
864
865 static struct ld_info
866 rs6000_aix_extract_ld_info (struct gdbarch *gdbarch,
867 const gdb_byte *ldi_buf)
868 {
869 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
871 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
872 const struct ld_info_desc desc
873 = tdep->wordsize == 8 ? ld_info64_desc : ld_info32_desc;
874 struct ld_info info;
875
876 info.next = extract_unsigned_integer (ldi_buf + desc.ldinfo_next.offset,
877 desc.ldinfo_next.size,
878 byte_order);
879 info.fd = extract_signed_integer (ldi_buf + desc.ldinfo_fd.offset,
880 desc.ldinfo_fd.size,
881 byte_order);
882 info.textorg = extract_typed_address (ldi_buf + desc.ldinfo_textorg.offset,
883 ptr_type);
884 info.textsize
885 = extract_unsigned_integer (ldi_buf + desc.ldinfo_textsize.offset,
886 desc.ldinfo_textsize.size,
887 byte_order);
888 info.dataorg = extract_typed_address (ldi_buf + desc.ldinfo_dataorg.offset,
889 ptr_type);
890 info.datasize
891 = extract_unsigned_integer (ldi_buf + desc.ldinfo_datasize.offset,
892 desc.ldinfo_datasize.size,
893 byte_order);
894 info.filename = (char *) ldi_buf + desc.ldinfo_filename.offset;
895 info.member_name = info.filename + strlen (info.filename) + 1;
896
897 return info;
898 }
899
900 /* Append to OBJSTACK an XML string description of the shared library
901 corresponding to LDI, following the TARGET_OBJECT_LIBRARIES_AIX
902 format. */
903
904 static void
905 rs6000_aix_shared_library_to_xml (struct ld_info *ldi,
906 struct obstack *obstack)
907 {
908 char *p;
909
910 obstack_grow_str (obstack, "<library name=\"");
911 p = xml_escape_text (ldi->filename);
912 obstack_grow_str (obstack, p);
913 xfree (p);
914 obstack_grow_str (obstack, "\"");
915
916 if (ldi->member_name[0] != '\0')
917 {
918 obstack_grow_str (obstack, " member=\"");
919 p = xml_escape_text (ldi->member_name);
920 obstack_grow_str (obstack, p);
921 xfree (p);
922 obstack_grow_str (obstack, "\"");
923 }
924
925 obstack_grow_str (obstack, " text_addr=\"");
926 obstack_grow_str (obstack, core_addr_to_string (ldi->textorg));
927 obstack_grow_str (obstack, "\"");
928
929 obstack_grow_str (obstack, " text_size=\"");
930 obstack_grow_str (obstack, pulongest (ldi->textsize));
931 obstack_grow_str (obstack, "\"");
932
933 obstack_grow_str (obstack, " data_addr=\"");
934 obstack_grow_str (obstack, core_addr_to_string (ldi->dataorg));
935 obstack_grow_str (obstack, "\"");
936
937 obstack_grow_str (obstack, " data_size=\"");
938 obstack_grow_str (obstack, pulongest (ldi->datasize));
939 obstack_grow_str (obstack, "\"");
940
941 obstack_grow_str (obstack, "></library>");
942 }
943
944 /* Convert the ld_info binary data provided by the AIX loader into
945 an XML representation following the TARGET_OBJECT_LIBRARIES_AIX
946 format.
947
948 LDI_BUF is a buffer containing the ld_info data.
949 READBUF, OFFSET and LEN follow the same semantics as target_ops'
950 to_xfer_partial target_ops method.
951
952 If CLOSE_LDINFO_FD is nonzero, then this routine also closes
953 the ldinfo_fd file descriptor. This is useful when the ldinfo
954 data is obtained via ptrace, as ptrace opens a file descriptor
955 for each and every entry; but we cannot use this descriptor
956 as the consumer of the XML library list might live in a different
957 process. */
958
959 ULONGEST
960 rs6000_aix_ld_info_to_xml (struct gdbarch *gdbarch, const gdb_byte *ldi_buf,
961 gdb_byte *readbuf, ULONGEST offset, ULONGEST len,
962 int close_ldinfo_fd)
963 {
964 struct obstack obstack;
965 const char *buf;
966 ULONGEST len_avail;
967
968 obstack_init (&obstack);
969 obstack_grow_str (&obstack, "<library-list-aix version=\"1.0\">\n");
970
971 while (1)
972 {
973 struct ld_info ldi = rs6000_aix_extract_ld_info (gdbarch, ldi_buf);
974
975 rs6000_aix_shared_library_to_xml (&ldi, &obstack);
976 if (close_ldinfo_fd)
977 close (ldi.fd);
978
979 if (!ldi.next)
980 break;
981 ldi_buf = ldi_buf + ldi.next;
982 }
983
984 obstack_grow_str0 (&obstack, "</library-list-aix>\n");
985
986 buf = obstack_finish (&obstack);
987 len_avail = strlen (buf);
988 if (offset >= len_avail)
989 len= 0;
990 else
991 {
992 if (len > len_avail - offset)
993 len = len_avail - offset;
994 memcpy (readbuf, buf + offset, len);
995 }
996
997 obstack_free (&obstack, NULL);
998 return len;
999 }
1000
1001 /* Implement the core_xfer_shared_libraries_aix gdbarch method. */
1002
1003 static ULONGEST
1004 rs6000_aix_core_xfer_shared_libraries_aix (struct gdbarch *gdbarch,
1005 gdb_byte *readbuf,
1006 ULONGEST offset,
1007 ULONGEST len)
1008 {
1009 struct bfd_section *ldinfo_sec;
1010 int ldinfo_size;
1011 gdb_byte *ldinfo_buf;
1012 struct cleanup *cleanup;
1013 LONGEST result;
1014
1015 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1016 if (ldinfo_sec == NULL)
1017 error (_("cannot find .ldinfo section from core file: %s"),
1018 bfd_errmsg (bfd_get_error ()));
1019 ldinfo_size = bfd_get_section_size (ldinfo_sec);
1020
1021 ldinfo_buf = xmalloc (ldinfo_size);
1022 cleanup = make_cleanup (xfree, ldinfo_buf);
1023
1024 if (! bfd_get_section_contents (core_bfd, ldinfo_sec,
1025 ldinfo_buf, 0, ldinfo_size))
1026 error (_("unable to read .ldinfo section from core file: %s"),
1027 bfd_errmsg (bfd_get_error ()));
1028
1029 result = rs6000_aix_ld_info_to_xml (gdbarch, ldinfo_buf, readbuf,
1030 offset, len, 0);
1031
1032 do_cleanups (cleanup);
1033 return result;
1034 }
1035
1036 static void
1037 rs6000_aix_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch)
1038 {
1039 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1040
1041 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
1042 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
1043
1044 /* Displaced stepping is currently not supported in combination with
1045 software single-stepping. */
1046 set_gdbarch_displaced_step_copy_insn (gdbarch, NULL);
1047 set_gdbarch_displaced_step_fixup (gdbarch, NULL);
1048 set_gdbarch_displaced_step_free_closure (gdbarch, NULL);
1049 set_gdbarch_displaced_step_location (gdbarch, NULL);
1050
1051 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
1052 set_gdbarch_return_value (gdbarch, rs6000_return_value);
1053 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1054
1055 /* Handle RS/6000 function pointers (which are really function
1056 descriptors). */
1057 set_gdbarch_convert_from_func_ptr_addr
1058 (gdbarch, rs6000_convert_from_func_ptr_addr);
1059
1060 /* Core file support. */
1061 set_gdbarch_iterate_over_regset_sections
1062 (gdbarch, rs6000_aix_iterate_over_regset_sections);
1063 set_gdbarch_core_xfer_shared_libraries_aix
1064 (gdbarch, rs6000_aix_core_xfer_shared_libraries_aix);
1065
1066 if (tdep->wordsize == 8)
1067 tdep->lr_frame_offset = 16;
1068 else
1069 tdep->lr_frame_offset = 8;
1070
1071 if (tdep->wordsize == 4)
1072 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
1073 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
1074 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
1075 224. */
1076 set_gdbarch_frame_red_zone_size (gdbarch, 224);
1077 else
1078 set_gdbarch_frame_red_zone_size (gdbarch, 0);
1079
1080 set_gdbarch_auto_wide_charset (gdbarch, rs6000_aix_auto_wide_charset);
1081
1082 set_solib_ops (gdbarch, &solib_aix_so_ops);
1083 }
1084
1085 /* Provide a prototype to silence -Wmissing-prototypes. */
1086 extern initialize_file_ftype _initialize_rs6000_aix_tdep;
1087
1088 void
1089 _initialize_rs6000_aix_tdep (void)
1090 {
1091 gdbarch_register_osabi_sniffer (bfd_arch_rs6000,
1092 bfd_target_xcoff_flavour,
1093 rs6000_aix_osabi_sniffer);
1094 gdbarch_register_osabi_sniffer (bfd_arch_powerpc,
1095 bfd_target_xcoff_flavour,
1096 rs6000_aix_osabi_sniffer);
1097
1098 gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_AIX,
1099 rs6000_aix_init_osabi);
1100 gdbarch_register_osabi (bfd_arch_powerpc, 0, GDB_OSABI_AIX,
1101 rs6000_aix_init_osabi);
1102 }
1103
This page took 0.066148 seconds and 5 git commands to generate.