* rs6000-tdep.c: Do not include "rs6000-tdep.h".
[deliverable/binutils-gdb.git] / gdb / rs6000-aix-tdep.c
1 /* Native support code for PPC AIX, for GDB the GNU debugger.
2
3 Copyright (C) 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "gdb_assert.h"
25 #include "osabi.h"
26 #include "regcache.h"
27 #include "regset.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "value.h"
32 #include "infcall.h"
33 #include "objfiles.h"
34 #include "breakpoint.h"
35 #include "rs6000-tdep.h"
36 #include "ppc-tdep.h"
37
38 /* Hook for determining the TOC address when calling functions in the
39 inferior under AIX. The initialization code in rs6000-nat.c sets
40 this hook to point to find_toc_address. */
41
42 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
43
44 /* If the kernel has to deliver a signal, it pushes a sigcontext
45 structure on the stack and then calls the signal handler, passing
46 the address of the sigcontext in an argument register. Usually
47 the signal handler doesn't save this register, so we have to
48 access the sigcontext structure via an offset from the signal handler
49 frame.
50 The following constants were determined by experimentation on AIX 3.2. */
51 #define SIG_FRAME_PC_OFFSET 96
52 #define SIG_FRAME_LR_OFFSET 108
53 #define SIG_FRAME_FP_OFFSET 284
54
55
56 /* Core file support. */
57
58 static struct ppc_reg_offsets rs6000_aix32_reg_offsets =
59 {
60 /* General-purpose registers. */
61 208, /* r0_offset */
62 4, /* gpr_size */
63 4, /* xr_size */
64 24, /* pc_offset */
65 28, /* ps_offset */
66 32, /* cr_offset */
67 36, /* lr_offset */
68 40, /* ctr_offset */
69 44, /* xer_offset */
70 48, /* mq_offset */
71
72 /* Floating-point registers. */
73 336, /* f0_offset */
74 56, /* fpscr_offset */
75 4, /* fpscr_size */
76
77 /* AltiVec registers. */
78 -1, /* vr0_offset */
79 -1, /* vscr_offset */
80 -1 /* vrsave_offset */
81 };
82
83 static struct ppc_reg_offsets rs6000_aix64_reg_offsets =
84 {
85 /* General-purpose registers. */
86 0, /* r0_offset */
87 8, /* gpr_size */
88 4, /* xr_size */
89 264, /* pc_offset */
90 256, /* ps_offset */
91 288, /* cr_offset */
92 272, /* lr_offset */
93 280, /* ctr_offset */
94 292, /* xer_offset */
95 -1, /* mq_offset */
96
97 /* Floating-point registers. */
98 312, /* f0_offset */
99 296, /* fpscr_offset */
100 4, /* fpscr_size */
101
102 /* AltiVec registers. */
103 -1, /* vr0_offset */
104 -1, /* vscr_offset */
105 -1 /* vrsave_offset */
106 };
107
108
109 /* Supply register REGNUM in the general-purpose register set REGSET
110 from the buffer specified by GREGS and LEN to register cache
111 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
112
113 static void
114 rs6000_aix_supply_regset (const struct regset *regset,
115 struct regcache *regcache, int regnum,
116 const void *gregs, size_t len)
117 {
118 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
119 ppc_supply_fpregset (regset, regcache, regnum, gregs, len);
120 }
121
122 /* Collect register REGNUM in the general-purpose register set
123 REGSET. from register cache REGCACHE into the buffer specified by
124 GREGS and LEN. If REGNUM is -1, do this for all registers in
125 REGSET. */
126
127 static void
128 rs6000_aix_collect_regset (const struct regset *regset,
129 const struct regcache *regcache, int regnum,
130 void *gregs, size_t len)
131 {
132 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
133 ppc_collect_fpregset (regset, regcache, regnum, gregs, len);
134 }
135
136 /* AIX register set. */
137
138 static struct regset rs6000_aix32_regset =
139 {
140 &rs6000_aix32_reg_offsets,
141 rs6000_aix_supply_regset,
142 rs6000_aix_collect_regset,
143 };
144
145 static struct regset rs6000_aix64_regset =
146 {
147 &rs6000_aix64_reg_offsets,
148 rs6000_aix_supply_regset,
149 rs6000_aix_collect_regset,
150 };
151
152 /* Return the appropriate register set for the core section identified
153 by SECT_NAME and SECT_SIZE. */
154
155 static const struct regset *
156 rs6000_aix_regset_from_core_section (struct gdbarch *gdbarch,
157 const char *sect_name, size_t sect_size)
158 {
159 if (gdbarch_tdep (gdbarch)->wordsize == 4)
160 {
161 if (strcmp (sect_name, ".reg") == 0 && sect_size >= 592)
162 return &rs6000_aix32_regset;
163 }
164 else
165 {
166 if (strcmp (sect_name, ".reg") == 0 && sect_size >= 576)
167 return &rs6000_aix64_regset;
168 }
169
170 return NULL;
171 }
172
173
174 /* Pass the arguments in either registers, or in the stack. In RS/6000,
175 the first eight words of the argument list (that might be less than
176 eight parameters if some parameters occupy more than one word) are
177 passed in r3..r10 registers. float and double parameters are
178 passed in fpr's, in addition to that. Rest of the parameters if any
179 are passed in user stack. There might be cases in which half of the
180 parameter is copied into registers, the other half is pushed into
181 stack.
182
183 Stack must be aligned on 64-bit boundaries when synthesizing
184 function calls.
185
186 If the function is returning a structure, then the return address is passed
187 in r3, then the first 7 words of the parameters can be passed in registers,
188 starting from r4. */
189
190 static CORE_ADDR
191 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
192 struct regcache *regcache, CORE_ADDR bp_addr,
193 int nargs, struct value **args, CORE_ADDR sp,
194 int struct_return, CORE_ADDR struct_addr)
195 {
196 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
197 int ii;
198 int len = 0;
199 int argno; /* current argument number */
200 int argbytes; /* current argument byte */
201 gdb_byte tmp_buffer[50];
202 int f_argno = 0; /* current floating point argno */
203 int wordsize = gdbarch_tdep (gdbarch)->wordsize;
204 CORE_ADDR func_addr = find_function_addr (function, NULL);
205
206 struct value *arg = 0;
207 struct type *type;
208
209 ULONGEST saved_sp;
210
211 /* The calling convention this function implements assumes the
212 processor has floating-point registers. We shouldn't be using it
213 on PPC variants that lack them. */
214 gdb_assert (ppc_floating_point_unit_p (gdbarch));
215
216 /* The first eight words of ther arguments are passed in registers.
217 Copy them appropriately. */
218 ii = 0;
219
220 /* If the function is returning a `struct', then the first word
221 (which will be passed in r3) is used for struct return address.
222 In that case we should advance one word and start from r4
223 register to copy parameters. */
224 if (struct_return)
225 {
226 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
227 struct_addr);
228 ii++;
229 }
230
231 /*
232 effectively indirect call... gcc does...
233
234 return_val example( float, int);
235
236 eabi:
237 float in fp0, int in r3
238 offset of stack on overflow 8/16
239 for varargs, must go by type.
240 power open:
241 float in r3&r4, int in r5
242 offset of stack on overflow different
243 both:
244 return in r3 or f0. If no float, must study how gcc emulates floats;
245 pay attention to arg promotion.
246 User may have to cast\args to handle promotion correctly
247 since gdb won't know if prototype supplied or not.
248 */
249
250 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
251 {
252 int reg_size = register_size (gdbarch, ii + 3);
253
254 arg = args[argno];
255 type = check_typedef (value_type (arg));
256 len = TYPE_LENGTH (type);
257
258 if (TYPE_CODE (type) == TYPE_CODE_FLT)
259 {
260
261 /* Floating point arguments are passed in fpr's, as well as gpr's.
262 There are 13 fpr's reserved for passing parameters. At this point
263 there is no way we would run out of them. */
264
265 gdb_assert (len <= 8);
266
267 regcache_cooked_write (regcache,
268 tdep->ppc_fp0_regnum + 1 + f_argno,
269 value_contents (arg));
270 ++f_argno;
271 }
272
273 if (len > reg_size)
274 {
275
276 /* Argument takes more than one register. */
277 while (argbytes < len)
278 {
279 gdb_byte word[MAX_REGISTER_SIZE];
280 memset (word, 0, reg_size);
281 memcpy (word,
282 ((char *) value_contents (arg)) + argbytes,
283 (len - argbytes) > reg_size
284 ? reg_size : len - argbytes);
285 regcache_cooked_write (regcache,
286 tdep->ppc_gp0_regnum + 3 + ii,
287 word);
288 ++ii, argbytes += reg_size;
289
290 if (ii >= 8)
291 goto ran_out_of_registers_for_arguments;
292 }
293 argbytes = 0;
294 --ii;
295 }
296 else
297 {
298 /* Argument can fit in one register. No problem. */
299 int adj = gdbarch_byte_order (gdbarch)
300 == BFD_ENDIAN_BIG ? reg_size - len : 0;
301 gdb_byte word[MAX_REGISTER_SIZE];
302
303 memset (word, 0, reg_size);
304 memcpy (word, value_contents (arg), len);
305 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
306 }
307 ++argno;
308 }
309
310 ran_out_of_registers_for_arguments:
311
312 regcache_cooked_read_unsigned (regcache,
313 gdbarch_sp_regnum (gdbarch),
314 &saved_sp);
315
316 /* Location for 8 parameters are always reserved. */
317 sp -= wordsize * 8;
318
319 /* Another six words for back chain, TOC register, link register, etc. */
320 sp -= wordsize * 6;
321
322 /* Stack pointer must be quadword aligned. */
323 sp &= -16;
324
325 /* If there are more arguments, allocate space for them in
326 the stack, then push them starting from the ninth one. */
327
328 if ((argno < nargs) || argbytes)
329 {
330 int space = 0, jj;
331
332 if (argbytes)
333 {
334 space += ((len - argbytes + 3) & -4);
335 jj = argno + 1;
336 }
337 else
338 jj = argno;
339
340 for (; jj < nargs; ++jj)
341 {
342 struct value *val = args[jj];
343 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
344 }
345
346 /* Add location required for the rest of the parameters. */
347 space = (space + 15) & -16;
348 sp -= space;
349
350 /* This is another instance we need to be concerned about
351 securing our stack space. If we write anything underneath %sp
352 (r1), we might conflict with the kernel who thinks he is free
353 to use this area. So, update %sp first before doing anything
354 else. */
355
356 regcache_raw_write_signed (regcache,
357 gdbarch_sp_regnum (gdbarch), sp);
358
359 /* If the last argument copied into the registers didn't fit there
360 completely, push the rest of it into stack. */
361
362 if (argbytes)
363 {
364 write_memory (sp + 24 + (ii * 4),
365 value_contents (arg) + argbytes,
366 len - argbytes);
367 ++argno;
368 ii += ((len - argbytes + 3) & -4) / 4;
369 }
370
371 /* Push the rest of the arguments into stack. */
372 for (; argno < nargs; ++argno)
373 {
374
375 arg = args[argno];
376 type = check_typedef (value_type (arg));
377 len = TYPE_LENGTH (type);
378
379
380 /* Float types should be passed in fpr's, as well as in the
381 stack. */
382 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
383 {
384
385 gdb_assert (len <= 8);
386
387 regcache_cooked_write (regcache,
388 tdep->ppc_fp0_regnum + 1 + f_argno,
389 value_contents (arg));
390 ++f_argno;
391 }
392
393 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
394 ii += ((len + 3) & -4) / 4;
395 }
396 }
397
398 /* Set the stack pointer. According to the ABI, the SP is meant to
399 be set _before_ the corresponding stack space is used. On AIX,
400 this even applies when the target has been completely stopped!
401 Not doing this can lead to conflicts with the kernel which thinks
402 that it still has control over this not-yet-allocated stack
403 region. */
404 regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
405
406 /* Set back chain properly. */
407 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
408 write_memory (sp, tmp_buffer, wordsize);
409
410 /* Point the inferior function call's return address at the dummy's
411 breakpoint. */
412 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
413
414 /* Set the TOC register, get the value from the objfile reader
415 which, in turn, gets it from the VMAP table. */
416 if (rs6000_find_toc_address_hook != NULL)
417 {
418 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
419 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
420 }
421
422 target_store_registers (regcache, -1);
423 return sp;
424 }
425
426 static enum return_value_convention
427 rs6000_return_value (struct gdbarch *gdbarch, struct type *func_type,
428 struct type *valtype, struct regcache *regcache,
429 gdb_byte *readbuf, const gdb_byte *writebuf)
430 {
431 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
432 gdb_byte buf[8];
433
434 /* The calling convention this function implements assumes the
435 processor has floating-point registers. We shouldn't be using it
436 on PowerPC variants that lack them. */
437 gdb_assert (ppc_floating_point_unit_p (gdbarch));
438
439 /* AltiVec extension: Functions that declare a vector data type as a
440 return value place that return value in VR2. */
441 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
442 && TYPE_LENGTH (valtype) == 16)
443 {
444 if (readbuf)
445 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
446 if (writebuf)
447 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
448
449 return RETURN_VALUE_REGISTER_CONVENTION;
450 }
451
452 /* If the called subprogram returns an aggregate, there exists an
453 implicit first argument, whose value is the address of a caller-
454 allocated buffer into which the callee is assumed to store its
455 return value. All explicit parameters are appropriately
456 relabeled. */
457 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
458 || TYPE_CODE (valtype) == TYPE_CODE_UNION
459 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
460 return RETURN_VALUE_STRUCT_CONVENTION;
461
462 /* Scalar floating-point values are returned in FPR1 for float or
463 double, and in FPR1:FPR2 for quadword precision. Fortran
464 complex*8 and complex*16 are returned in FPR1:FPR2, and
465 complex*32 is returned in FPR1:FPR4. */
466 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
467 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
468 {
469 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
470 gdb_byte regval[8];
471
472 /* FIXME: kettenis/2007-01-01: Add support for quadword
473 precision and complex. */
474
475 if (readbuf)
476 {
477 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
478 convert_typed_floating (regval, regtype, readbuf, valtype);
479 }
480 if (writebuf)
481 {
482 convert_typed_floating (writebuf, valtype, regval, regtype);
483 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
484 }
485
486 return RETURN_VALUE_REGISTER_CONVENTION;
487 }
488
489 /* Values of the types int, long, short, pointer, and char (length
490 is less than or equal to four bytes), as well as bit values of
491 lengths less than or equal to 32 bits, must be returned right
492 justified in GPR3 with signed values sign extended and unsigned
493 values zero extended, as necessary. */
494 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
495 {
496 if (readbuf)
497 {
498 ULONGEST regval;
499
500 /* For reading we don't have to worry about sign extension. */
501 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
502 &regval);
503 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
504 }
505 if (writebuf)
506 {
507 /* For writing, use unpack_long since that should handle any
508 required sign extension. */
509 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
510 unpack_long (valtype, writebuf));
511 }
512
513 return RETURN_VALUE_REGISTER_CONVENTION;
514 }
515
516 /* Eight-byte non-floating-point scalar values must be returned in
517 GPR3:GPR4. */
518
519 if (TYPE_LENGTH (valtype) == 8)
520 {
521 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
522 gdb_assert (tdep->wordsize == 4);
523
524 if (readbuf)
525 {
526 gdb_byte regval[8];
527
528 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
529 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
530 regval + 4);
531 memcpy (readbuf, regval, 8);
532 }
533 if (writebuf)
534 {
535 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
536 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
537 writebuf + 4);
538 }
539
540 return RETURN_VALUE_REGISTER_CONVENTION;
541 }
542
543 return RETURN_VALUE_STRUCT_CONVENTION;
544 }
545
546 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
547
548 Usually a function pointer's representation is simply the address
549 of the function. On the RS/6000 however, a function pointer is
550 represented by a pointer to an OPD entry. This OPD entry contains
551 three words, the first word is the address of the function, the
552 second word is the TOC pointer (r2), and the third word is the
553 static chain value. Throughout GDB it is currently assumed that a
554 function pointer contains the address of the function, which is not
555 easy to fix. In addition, the conversion of a function address to
556 a function pointer would require allocation of an OPD entry in the
557 inferior's memory space, with all its drawbacks. To be able to
558 call C++ virtual methods in the inferior (which are called via
559 function pointers), find_function_addr uses this function to get the
560 function address from a function pointer. */
561
562 /* Return real function address if ADDR (a function pointer) is in the data
563 space and is therefore a special function pointer. */
564
565 static CORE_ADDR
566 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
567 CORE_ADDR addr,
568 struct target_ops *targ)
569 {
570 struct obj_section *s;
571
572 s = find_pc_section (addr);
573 if (s && s->the_bfd_section->flags & SEC_CODE)
574 return addr;
575
576 /* ADDR is in the data space, so it's a special function pointer. */
577 return read_memory_unsigned_integer (addr, gdbarch_tdep (gdbarch)->wordsize);
578 }
579
580
581 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
582
583 static CORE_ADDR
584 branch_dest (struct frame_info *frame, int opcode, int instr,
585 CORE_ADDR pc, CORE_ADDR safety)
586 {
587 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
588 CORE_ADDR dest;
589 int immediate;
590 int absolute;
591 int ext_op;
592
593 absolute = (int) ((instr >> 1) & 1);
594
595 switch (opcode)
596 {
597 case 18:
598 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
599 if (absolute)
600 dest = immediate;
601 else
602 dest = pc + immediate;
603 break;
604
605 case 16:
606 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
607 if (absolute)
608 dest = immediate;
609 else
610 dest = pc + immediate;
611 break;
612
613 case 19:
614 ext_op = (instr >> 1) & 0x3ff;
615
616 if (ext_op == 16) /* br conditional register */
617 {
618 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
619
620 /* If we are about to return from a signal handler, dest is
621 something like 0x3c90. The current frame is a signal handler
622 caller frame, upon completion of the sigreturn system call
623 execution will return to the saved PC in the frame. */
624 if (dest < AIX_TEXT_SEGMENT_BASE)
625 dest = read_memory_unsigned_integer
626 (get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
627 tdep->wordsize);
628 }
629
630 else if (ext_op == 528) /* br cond to count reg */
631 {
632 dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3;
633
634 /* If we are about to execute a system call, dest is something
635 like 0x22fc or 0x3b00. Upon completion the system call
636 will return to the address in the link register. */
637 if (dest < AIX_TEXT_SEGMENT_BASE)
638 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
639 }
640 else
641 return -1;
642 break;
643
644 default:
645 return -1;
646 }
647 return (dest < AIX_TEXT_SEGMENT_BASE) ? safety : dest;
648 }
649
650 /* AIX does not support PT_STEP. Simulate it. */
651
652 static int
653 rs6000_software_single_step (struct frame_info *frame)
654 {
655 int ii, insn;
656 CORE_ADDR loc;
657 CORE_ADDR breaks[2];
658 int opcode;
659
660 loc = get_frame_pc (frame);
661
662 insn = read_memory_integer (loc, 4);
663
664 if (ppc_deal_with_atomic_sequence (frame))
665 return 1;
666
667 breaks[0] = loc + PPC_INSN_SIZE;
668 opcode = insn >> 26;
669 breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]);
670
671 /* Don't put two breakpoints on the same address. */
672 if (breaks[1] == breaks[0])
673 breaks[1] = -1;
674
675 for (ii = 0; ii < 2; ++ii)
676 {
677 /* ignore invalid breakpoint. */
678 if (breaks[ii] == -1)
679 continue;
680 insert_single_step_breakpoint (breaks[ii]);
681 }
682
683 errno = 0; /* FIXME, don't ignore errors! */
684 /* What errors? {read,write}_memory call error(). */
685 return 1;
686 }
687
688 static enum gdb_osabi
689 rs6000_aix_osabi_sniffer (bfd *abfd)
690 {
691
692 if (bfd_get_flavour (abfd) == bfd_target_xcoff_flavour);
693 return GDB_OSABI_AIX;
694
695 return GDB_OSABI_UNKNOWN;
696 }
697
698 static void
699 rs6000_aix_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch)
700 {
701 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
702
703 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
704 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
705
706 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
707 set_gdbarch_return_value (gdbarch, rs6000_return_value);
708 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
709
710 /* Handle RS/6000 function pointers (which are really function
711 descriptors). */
712 set_gdbarch_convert_from_func_ptr_addr
713 (gdbarch, rs6000_convert_from_func_ptr_addr);
714
715 /* Core file support. */
716 set_gdbarch_regset_from_core_section
717 (gdbarch, rs6000_aix_regset_from_core_section);
718
719 if (tdep->wordsize == 8)
720 tdep->lr_frame_offset = 16;
721 else
722 tdep->lr_frame_offset = 8;
723
724 if (tdep->wordsize == 4)
725 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
726 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
727 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
728 224. */
729 set_gdbarch_frame_red_zone_size (gdbarch, 224);
730 else
731 set_gdbarch_frame_red_zone_size (gdbarch, 0);
732 }
733
734 void
735 _initialize_rs6000_aix_tdep (void)
736 {
737 gdbarch_register_osabi_sniffer (bfd_arch_rs6000,
738 bfd_target_xcoff_flavour,
739 rs6000_aix_osabi_sniffer);
740 gdbarch_register_osabi_sniffer (bfd_arch_powerpc,
741 bfd_target_xcoff_flavour,
742 rs6000_aix_osabi_sniffer);
743
744 gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_AIX,
745 rs6000_aix_init_osabi);
746 gdbarch_register_osabi (bfd_arch_powerpc, 0, GDB_OSABI_AIX,
747 rs6000_aix_init_osabi);
748 }
749
This page took 0.04976 seconds and 5 git commands to generate.